

Ron Schmelzer et al.

XML and Web
Services

Unleashed

00 0672323419 FM 3/15/04 11:14 AM Page i

XML and Web Services Unleashed
Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the publish-
er. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-323419

Library of Congress Catalog Card Number: 2001097282

Printed in the United States of America

First Printing: February 2002

05 04 03 02 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis.

EXECUTIVE EDITOR

Rochelle J. Kronzek

DEVELOPMENT EDITOR

Songlin Qiu

MANAGING EDITOR

Matt Purcell

PROJECT EDITOR

George E. Nedeff

COPY EDITOR

Bart Reed

INDEXER

Kelly Castell

PROOFREADER

Karen Whitehouse

TECHNICAL EDITOR

Mike Farley

INTERIOR DESIGNER

Anne Jones

COVER DESIGNER

Aren Howell

PAGE LAYOUT

D&G Limited, LLC

00 0672323419 FM 3/15/04 11:14 AM Page ii

Contents at a Glance
Introduction 1

Part I Essentials of XML 5

1 XML in Context 7

2 The Fundamentals of XML 35

3 Validating XML with the Document Type Definition (DTD) 67

4 Creating XML Schemas 107

5 The X-Files: XPath, XPointer, and XLink 169

6 Defining XML Using Alternate Schema Representations 223

Part II Building XML-Based Applications 265

7 Parsing XML Using Document Object Model 267

8 Parsing XML Using SAX 309

9 Transforming XML with XSL 345

10 Integrating XML with Databases 405

11 Formatting XML for the Web 439

12 Interactive Graphical Visualizations with SVG 499

13 XML and Content Management 545

14 Architecting Web Services 591

15 Web Services Building Blocks: SOAP 629

16 Web Services Building Blocks: WSDL and UDDI 677

17 Leveraging XML in Visual Studio .NET 719

18 Using XML in the .NET Enterprise Servers 769

Part III Applied XML 811

19 Understanding XML Standards 813

20 Implementing XML in E-Business 847

21 Delivering Wireless and Voice Services with XML 889

22 Applied XML in Vertical Industry 941

00 0672323419 FM 3/15/04 11:14 AM Page iii

Part IV The Semantic Web 995

23 RDF for Information Owners 997

24 The Semantic Web for Information Owners 1039

Part V Appendix 1069

A Extensible Markup Language (XML) 1.0 (Second Edition) Specification 1071

Index 1133

00 0672323419 FM 3/15/04 11:14 AM Page iv

Contents
Introduction 1

Who This Book’s Intended Audience Is ..1
What You Need to Know Prior to Reading This Book1
What You Will Learn from Reading This Book2
What Software You Will Need to Complete the Examples Provided

with This Book ..2
How This Book Is Organized ..2
What’s on the Sams Web Site for This Book ..4
Conventions Used in This Book ..4

PART I Essentials of XML 5

1 XML in Context 7
XML: A Brief Glimpse ..9
The Time Is Right ..9
How We Got Here ..11

Standard Generalized Markup Language (SGML)11
Hypertext Markup Language (HTML) ..15
Electronic Data Interchange ..16

The Beginnings of XML ..19
The Promise of XML ..20

Benefits of XML ..20
Advantages of XML over SGML ..23
Advantages of XML over HTML ..23
Advantages of XML over EDI ..24
Advantages of XML over Databases and Flat Files25
Drawbacks to XML ..26
XML-Based Standards ..27

Where Is XML Heading? ..28
E-Business and E-Commerce ..28
Content Management ..29
Web Services and Distributed Computing30
Peer-to-Peer Networking and Instant Messaging31
Getting More Meaning out of the Web: The Semantic Web32

Summary ..33

00 0672323419 FM 3/15/04 11:15 AM Page v

XML and Web Services

UNLEASHED
vi

2 The Fundamentals of XML 35
Introduction to XML Syntax ..36

Markup Languages and Self-Describing Data37
A Simple XML Document ..38

XML Document Structure ..39
XML Declaration ..40
Document Type Declaration ..41
Markup and Content ..43
Elements ..43
Attributes ..45
Entity References ..47
Comments ..48
Processing Instructions ..49
Marked CDATA Sections ..49
Document Type Definitions ..50
XML Content ..50

XML Content Models ..51
Handling Whitespace in XML ..52

Rules of XML Structure ..53
All XML Elements Must Have a Closing Tag53
XML Tags Are Case Sensitive ..54
All XML Elements Must Have Proper Nesting54
All XML Documents Must Contain a Single Root Element54
Attribute Values Must Be Quoted ..55
Attributes May Only Appear Once in the Same Start Tag55
Attribute Values Cannot Contain References to External

Entities ..56
All Entities Except amp, lt, gt, apos, and quot Must Be

Declared Before They Are Used ..56
Other Rules of XML Structure ..56

Well-Formed and Valid Documents ..56
Well-Formed Documents ..56
Valid Documents ..57

Linking XML Documents Together ..57
Namespaces in XML ..58

Declaring Namespaces ..60
Identifying the Scope of Namespaces ..61

Applying Style to XML ..61
Basics of Reading and Processing XML ..62

Parsers ..62
The Document Object Model (DOM) ..64
The SAX API ..64

00 0672323419 FM 3/15/04 11:15 AM Page vi

CONTENTS
vii

International Language Support in XML ..65
Unicode ..65

Summary ..66

3 Validating XML with the Document Type Definition (DTD) 67
Document Type Definitions ..68
Some Simple DTD Examples ..70
Structure of a Document Type Definition ..72

The Document Type Declaration ..72
DTD Attributes ..85
DTD Entities ..92
More DTD Directives ..101

DTD Drawbacks and Alternatives ..103
Summary ..105

4 Creating XML Schemas 107
Introduction to the W3C XML Schema Recommendation108

Sample XML Document ..109
Schema for XML Document ..112

Creating XML Schemas ..116
Declaring Attributes ..118
Declaring Elements ..125
Declaring Complex Elements ..128
Declaring Simple Types ..130
Refining Simple Types Using Facets ..131
Anonymous Type Declarations ..138
Specifying Mixed Content for Elements140
Annotating Schemas ..141
Model Groups ..142
Attribute Groups ..148
Targeting Namespaces ..149
”Inheriting” from Other Schemas ..159

Summary ..168

5 The X-Files: XPath, XPointer, and XLink 169
XPath ..171

Operators and Special Characters ..171
XPath Syntax ..172

XPointer ..207
Points ..209
Ranges ..213
Abbreviating XPointer Notation ..214

00 0672323419 FM 3/15/04 11:15 AM Page vii

XML and Web Services

UNLEASHED
viii

XLink ..215
Simple Links ..219
Extended Links ..219

Summary ..221

6 Defining XML Using Alternate Schema Representations 223
A Brief Review of XML Schemas ..224
Dead Formats: XDR, DSD, and DCD ..229

XML Data Reduced (XDR) Schema ..230
Document Structure Description (DSD) Schema233
Document Content Description (DCD) Schema237

Schema for Object-Oriented XML (SOX) ..240
RELAX NG Schema ..243

RELAX ..244
TREX ..247
Combining RELAX and TREX ..249

Schematron ..253
Summary ..262

PART II Building XML-Based Applications 265

7 Parsing XML Using Document Object Model 267
What Is DOM, Anyway? ..269
What DOM Is Not ..269
Why Do I Need DOM? ..270
Disadvantages of Using DOM ..270
DOM Levels ..271
DOM Core ..271

Parents, Children, and Siblings ..272
DOM Interfaces ..273
Java Bindings ..274
Walking Through an XML Document ..275
Creating an XML Document ..281

DOM Traversal and Range ..284
Traversal ..284
Range ..288

Other DOM Implementations ..291
JDOM ..291
Small DOM-like Implementations ..294

Java Architecture for XML Binding (JAXB)294
Data Binding ..295
JAXB Example ..296

Summary ..307

00 0672323419 FM 3/15/04 11:15 AM Page viii

CONTENTS
ix

8 Parsing XML Using SAX 309
What Is SAX, Anyway? ..310
What SAX Is Not ..311
Why Do I Need SAX? ..311
SAX vs. DOM ..312
Disadvantages ..312
SAX Versions ..313
SAX Basics ..314

SAX Packages ..314
SAX Implementations ..316

Working with SAX ..317
Walking Through an XML Document ..317
Validation ..321
Handling Errors ..325
Entity References ..328
Lexical Events ..331

Summary ..344

9 Transforming XML with XSL 345
XSL Technologies ..346
XSLT for Document Publishing ..347

Getting Started with XSLT ..349
The Missing Piece: The XSLT Processor352
Advanced Features of XSLT ..360

XSL for Business-to-Business (B2B) Communication371
Creating the XSL Style Sheet ..373
Using the XSLT Processor ..374
Running the Example ..376

XSL Formatting Objects ..377
XSL-FO Formatting Engines ..377
Basic Document Structure ..379
Generating a PDF Document ..386
Page Headers and Footers ..387
Graphics ..390
Tables ..391

Web Application Integration: Java Servlets, XSLT, and
XSL-FO ..399

Developing the Java Servlet ..400
Testing the Example ..403

Summary ..403

00 0672323419 FM 3/15/04 11:15 AM Page ix

XML and Web Services

UNLEASHED
x

10 Integrating XML with Databases 405
XML Database Solutions ..407

XML Database Mapping ..407
Native XML Support ..408

Modeling Databases in XML ..409
JAXB Solution ..410
Reviewing the Database Schema ..411
Constructing the Desired XML Document412
Defining a Schema for the XML Document413
Creating the JAXB Binding Schema ..414
Generating the JAXB Classes Based on Schemas416
Developing a Data Access Object (DAO)419
Developing a Servlet for HTTP Access ..429
Testing the Application ..432
Converting the XML Data to HTML with XSLT435
Testing the JSP Page ..437

Summary ..437

11 Formatting XML for the Web 439
A Brief History of DSSSL ..440
A Brief History of CSS ..443
XML Presentation Using CSS ..448
An Overview of XHTML ..454

XHTML 1.0: The Transition ..454
XHTML 1.1: Modularization ..470

An Overview of XForms ..487
Introduction to XForms ..488
Next Generation of Web Forms ..488
XForms: Three Layers ..491
Instance Data Tracking ..493
Rich Data Type and Form Validation ..495
Multiple Form Documents ..496

Summary ..497

12 Interactive Graphical Visualizations with SVG 499
Vector Graphics to Complement Bitmap Graphics500

Bitmap Graphics ..501
Vector Graphics ..501
Complementary Bitmap and Vector Graphics503

SVG: An XML Standard for Vector Graphics503
The SVG Standard ..504
XML Technologies Related to SVG ..504

00 0672323419 FM 3/15/04 11:15 AM Page x

CONTENTS
xi

Creating an Interactive Graphical Visualization505
Defining the Content DTD ..507
Creating the XML Content ..508
Creating an SVG Content Presentation Prototype508
SVG with Style Using CSS ..512
Defining the XSL to Transform XML Content to SVG

Presentation ..516
Powering Web Pages with SVG ..519
SVG-To-Go with XSL-FO ..533

SVG Structure and Elements ..536
Structure ..536
Elements ..536

Development Primer ..541
The Future of SVG ..542

Direct Web Browser Support for SVG ..542
New SVG Applications ..542
Expanding the Scope of SVG ..542

Summary ..543

13 XML and Content Management 545
What Is Web Content Management? ..546
What Are the Components of a Content-Management

Workflow? ..547
Content-Input Phase ..547
Content-Repository Phase ..549
Content-Delivery Phase ..550

The Role of XML in Web Content Management552
XML to Integrate System Components ..552
XML-Based Application Components ..552

WebDAV Document Creation ..553
The Role of WebDAV ..553
WebDAV-Enabled Authoring Environments554
WebDAV and XML ..555

How to Design the XML Content Environment556
Reusable Document Objects ..556
XML Document Design Principles ..556

The Role of Metadata (RDF and PRISM) in Web Content
Management ..557

What Is Metadata? ..558
About the Resource Description Framework559
About XMP ..562
About PRISM ..562

00 0672323419 FM 3/15/04 11:15 AM Page xi

XML and Web Services

UNLEASHED
xii

Web Content Syndication with RSS and ICE566
RSS Content Syndication ..567
Content Syndication using ICE ..577

Selecting a Content-Management Solution ..588
Is the Solution Standards Based? ..589
System Performance ..589
Can the System Scale? ..589
Cost of Implementation ..589
Ongoing Support ..589

Summary ..590

14 Architecting Web Services 591
What Are Web Services? ..592
Business Motivations for Web Services ..593

Managing Complexity and IT Costs ..594
Lingua Franca of B2B E-Commerce ..594
Global E-Marketplace Vision ..595

Technical Motivations for Web Services ..595
Limitations of CORBA and DCOM ..595
Problems with Business Modeling ..597
Problems with Vendor Dependence ..598
Reuse and Integration Goals ..599

The Service-Oriented Architecture (SOA) ..600
Flexibility of E-Business Services ..601
Lessons Learned from Object Orientation602
Key Functional Components ..604
Just In Time Integration ..606
Semantic Issues and Taxonomies ..607
Security and Quality of Service Issues ..608
Composition and Conversations ..612

Architecting Web Services ..616
The Implementation Architectural View: The Web Services

Technology Stack ..617
The Logical Architectural View: Composition of Web

Services ..620
The Deployment Architectural View: From Application

Servers to Peer-to-Peer ..624
The Process Architectural View: Life in the Runtime626

Summary ..627

00 0672323419 FM 3/15/04 11:15 AM Page xii

CONTENTS
xiii

15 Web Services Building Blocks: SOAP 629
Introduction to SOAP ..630

Improved RPC ..631
Improved Interoperability ..633
Key Building Block for Web Services ..633

Basic SOAP Syntax ..634
SOAP Message Structure and Namespaces634
SOAP Envelope Element ..639
SOAP Header Element ..639
SOAP Body Element ..641
Data Types ..641
Arrays ..645
Structs ..647
Faults ..649

Sending SOAP messages ..650
SOAP and HTTP ..651
Header Extensions ..653
SOAP and SMTP ..654

SOAP Implementations ..655
Microsoft SOAP Toolkit ..656
Apache SOAP ..663
Interoperability Issues ..666

The Future of SOAP ..668
SOAP with Attachments ..669
SOAP Security ..670
SOAP Transactions ..672
SOAP 1.2 ..673
The XML Protocol ..674

Summary ..675

16 Web Services Building Blocks: WSDL and UDDI 677
Introduction to WSDL ..678
Basic WSDL Syntax ..679

The definitions Element and Namespaces682
The types Element ..682
The message and portType Elements ..683
The binding Element ..683
The service Element ..684
The documentation Element ..684
The import Element ..684
Extensibility Elements ..685

00 0672323419 FM 3/15/04 11:15 AM Page xiii

XML and Web Services

UNLEASHED
xiv

SOAP Binding ..685
soap:binding, soap:operation, soap:header, and soap:body686
soap:address, soap:fault, and
soap:headerfault ..687

Other Bindings ..688
WSDL Implementations ..688

WSDL the Microsoft Way ..689
WSDL the IBM Way ..689

Introduction to UDDI ..695
UDDI Basics ..696
The Structure of UDDI ..697
tModel Structure ..699
Publishing and Finding WSDL Descriptions in a UDDI

Registry ..700
UDDI Invocation Model ..703

The UDDI API ..704
Inquiry API ..704
Publication API ..705

Vendor Implementations ..707
UDDI4J (IBM) ..708
The Microsoft UDDI SDK ..712

The Future of UDDI ..716
Summary ..718

17 Leveraging XML in Visual Studio .NET 719
The .NET Strategy ..720
ADO.NET ..722

The ADO.NET Data Provider ..723
The ADO.NET DataSet Class ..729
XML Within ADO.NET ..738

The System.Xml Namespace ..758
Summary ..767

18 Using XML in the .NET Enterprise Servers 769
BizTalk ..770

Organizations ..771
Ports ..771
Channels ..772
Applications ..773
Document Definitions ..773
Document Maps ..774
WebDAV ..774
Distribution Lists ..775
Submitting Documents ..775

00 0672323419 FM 3/15/04 11:15 AM Page xiv

CONTENTS
xv

SQL Server 2000 ..776
Configuring IIS ..777
URL Queries ..782
Template Queries ..788
XPath Queries ..794
XML Updategrams ..803

Summary ..810

PART III Applied XML 811

19 Understanding XML Standards 813
Standards and Vocabularies ..814

What Is an Open Standard? ..818
The Standards-Creation Process ..818

Standards Organizations: Who Is Creating the Standards?820
The World Wide Web Consortium (W3C)821
The Internet Engineering Task Force (IETF)823
The Organization for the Advancement of Structured

Information Standards (OASIS) ..826
Governmental Bodies ..828
Industry Consortia ..830
Birds-of-a-Feather Vendor Groupings ..830
Individuals and Organizations ..831
The Standards Stack ..832

Standards Stack Layers ..834
Message-Oriented Protocols Versus

Document-Oriented Specifications ..834
XML Base Architecture ..835
XML Transport Layer ..836
XML Messaging Layer ..836
Services Layer ..838
Process Layer ..838

Standards Stack Aspects ..839
Presentation Aspect ..840
Security Aspect ..840
Query Aspect ..841
Semantics Aspect ..841

Community Vocabularies Layer ..842
Summary ..844

20 Implementing XML in E-Business 847
What Is the Supply Chain? ..848

Business to Consumer (B2C) ..851
Business to Business (B2B) ..852

00 0672323419 FM 3/15/04 11:15 AM Page xv

XML and Web Services

UNLEASHED
xvi

Electronic Data Interchange (EDI) ..853
E-Business and the Internet-Enabled Supply Chain856

E-Commerce ..857
E-Procurement ..858
E-Collaboration ..858

Different Types of B2B Interaction ..859
Direct Partnership ..859
Multiparty Procurement ..860
Agents and Distributors ..860
Exchanges, Auctions, and Digital Transaction Hubs861

Components of E-business XML Systems ..861
Enterprise Integration ..862

Fundamental Network and Platform Layers862
Messaging (Transport, Routing, and Packaging)864
Registry and Repository ..864
Data Dictionaries ..864
Process and Workflow ..864
Trading Partner Agreements ..865
Business Vocabulary ..865

CommerceNet eCo Framework ..866
XML/EDI ..870
ebXML ..872

Overview of ebXML Process ..874
Collaborative Protocol Profile ..875
Core Components ..876
Registry and Repository ..876
Messaging ..877
Business Process and Information Modeling878
Business Messages ..880
Proof of Concept Demonstration ..880
More on ebXML Architecture ..881
Future Development and Maintenance ..882

RosettaNet ..883
Data Dictionaries ..884
Partner Interface Processes (PIP) ..885
The RosettaNet Implementation Framework885
Business Process Modeling and Analysis886
Future of RosettaNet ..886

Summary ..888

21 Delivering Wireless and Voice Services with XML 889
The Vision of Ubiquitous Computing ..891
Key Technologies ..892

00 0672323419 FM 3/15/04 11:15 AM Page xvi

CONTENTS
xvii

Wireless Services: WAP and WML ..892
Voice Services: VoiceXML ..894

Wireless Applications with WAP and WML896
A WML Application Architecture ..896
WML Applications ..897
Example: A Wireless Phonebook Service with WML900
WML Structure and Elements ..912
WMLScript ..915
Development Primer ..916
Getting Started ..917
Future WAP/WML Developments ..917

Voice Applications with VoiceXML ..919
Voice Portals and VoiceXML ..919
A VoiceXML Application Architecture ..920
Voice Portal Architecture ..921
Advantages and Limitations of VoiceXML Applications922
The Profile of a Successful VoiceXML Application922
Example: A Voice Phonebook Service with VoiceXML923
VoiceXML Structure and Elements ..933
Development Primer ..938
Future VoiceXML Developments ..939

Summary ..940

22 Applied XML in Vertical Industry 941
The Vertical Industries ..943
Professional Services Standards ..944

Finance and Accounting ..945
Insurance ..955
Health Care ..956
Legal Industry XML Standards ..963
Real Estate ..968
Business Administration and Human Resources (HR)969
Travel and Hospitality ..971

Manufacturing ..977
Shipping and Logistics ..978
Architecture and Construction ..980

Scientific and Engineering ..984
Biotech ..984
Chemistry ..986

Print, Media, and Entertainment ..989
NewsML ..989

A Final Note: XML Standards Adoption ..992
Summary ..993

00 0672323419 FM 3/15/04 11:15 AM Page xvii

XML and Web Services

UNLEASHED
xviii

PART IV The Semantic Web 995

23 RDF for Information Owners 997
Basics of the Resource Description Framework998
The RDF Family of Specifications ..1001

Core Specifications ..1001
Recent Working Drafts and Notes ..1002
Making the Case for RDF Investment ..1005

The RDF Data Model ..1006
Just Enough Graph Theory ..1006
The RDF Graph ..1008

RDF Schema ..1030
Validity in RDF Schema ..1030
The RDFS Typing System ..1031
Extensibility ..1036

Working with the Angle Brackets ..1037
Summary ..1038

24 The Semantic Web for Information Owners 1039
Precursors of the Semantic Web ..1041

Project Xanadu ..1041
HyTime ..1042

Architecture of the Semantic Web ..1044
Unicode and URIs ..1045
XML Specifications ..1052
Ontology ..1053
Logic ..1058
Proof ..1061
Trust ..1062

How Do Semantics Get into the Semantic Web?1063
Summary ..1067

PART V Appendix 1069

A Extensible Markup Language (XML) 1.0 (Second Edition)
Specification 1071

Abstract ..1073
Status of This Document ..1073
Table of Contents ..1074
Appendices ..1076
1 Introduction ..1076

1.1 Origin and Goals ..1077
1.2 Terminology ..1077

00 0672323419 FM 3/15/04 11:15 AM Page xviii

CONTENTS
xix

2 Documents ..1079
2.1 Well-Formed XML Documents ..1079
2.2 Characters ..1080
2.3 Common Syntactic Constructs ..1080
2.4 Character Data and Markup ..1082
2.5 Comments ..1083
2.6 Processing Instructions ..1083
2.7 CDATA Sections ..1084
2.8 Prolog and Document Type Declaration1084
2.9 Standalone Document Declaration ..1087
2.10 White Space Handling ..1088
2.11 End-of-Line Handling ..1089
2.12 Language Identification ..1089

3 Logical Structures ..1091
3.1 Start-Tags, End-Tags, and Empty-Element Tags1092
3.2 Element Type Declarations ..1093
3.3 Attribute-List Declarations ..1096
3.4 Conditional Sections ..1101

4 Physical Structures ..1102
4.1 Character and Entity References ..1103
4.2 Entity Declarations ..1105
4.3 Parsed Entities ..1107
4.4 XML Processor Treatment of Entities and References1109
4.5 Construction of Internal Entity Replacement Text1112
4.6 Predefined Entities ..1113
4.7 Notation Declarations ..1114
4.8 Document Entity ..1114

5 Conformance ..1115
5.1 Validating and Non-Validating Processors1115
5.2 Using XML Processors ..1115

6 Notation ..1116
A References ..1118

A.1 Normative References ..1118
A.2 Other References ..1119

B Character Classes ..1120
C XML and SGML (Non-Normative) ..1125
D Expansion of Entity and Character References

(Non-Normative) ..1126
E Deterministic Content Models (Non-Normative)1127
F Autodetection of Character Encodings (Non-Normative)1128

F.1 Detection Without External Encoding Information1128
F.2 Priorities in the Presence of External Encoding

Information ..1130

00 0672323419 FM 3/15/04 11:15 AM Page xix

XML and Web Services

UNLEASHED
xx

G W3C XML Working Group (Non-Normative)1131
H W3C XML Core Group

(Non-Normative) ..1131
I Production Notes

(Non-Normative) ..1132

Index 1133

00 0672323419 FM 3/15/04 11:15 AM Page xx

About the Lead Author
Ron Schmelzer, founder and senior analyst of ZapThink, an XML-
focused industry analyst group, is a well-known expert in the field of
XML and XML-based standards and initiatives. Ron has been featured
in and written for periodicals, and he has spoken at numerous industry
conferences, including XML One, Comdex, and Internet World, on the
topic of XML.

Prior to ZapThink, Ron Schmelzer was a founder and “ePostle of
Partners” for ChannelWave, where he was responsible for identifying
the needs of channel partners and making sure all partners received the

full benefit of partner relationship management systems. Prior to co-founding
ChannelWave, Ron worked on advanced Internet applications for U.S. Robotics and was
a founding partner of Dynamic Data Services, a data-networking services company.

Ron was named “Geek of the Week” in Internet Magazine and was listed among Boston
Magazine’s Internet Top 40. Ron received a B.S. degree in Computer Science and
Electrical Engineering from the Massachusetts Institute of Technology (MIT).

About the Contributing
Authors

Travis Vandersypen is a senior software developer working for
EPS Software Corporation, located in Houston, Texas. He concen-
trates on building distributed applications using COM+, XML,
Visual Studio .NET, SQL Server, and other supporting technolo-
gies. He is an internationally published author and speaker, a three-
time Microsoft Visual FoxPro Excellence Award nominee, and
co-author of several development utilities and libraries. He can
be reached via e-mail at tvandersypen@msn.com or at travis@
eps-software.com.

00 0672323419 FM 3/15/04 11:15 AM Page xxi

Jason Bloomberg is an e-business technology manager and industry
analyst with a diverse background in the business and technology of
e-business. He is currently the Director of E-Services at Ashton
Services, a Massachusetts-based boutique Web firm. He has been a
senior analyst in IDC’s e-business advisory group as well as serving in
e-business management positions at USWeb/CKS (later marchFIRST)
and WaveBend Solutions (now Experio Solutions). Bloomberg is a
widely published business and technical writer, whose articles have
appeared in Electronic Commerce World, Intranet Journal,

Datamation, The Rational Edge, DM Review Interactive, and ZDNet: Developer. He also
co-authored the book Web Page Scripting Techniques (Hayden Books, 1996). He can be
reached at wizard@rhodes.com.

Madhu Siddalingaiah is a consultant and technical trainer. Since
1995, Madhu has focused on Web technologies. He has authored
several books and articles on Java, embedded systems, and XML.
Madhu works with organizations to architect and develop Web-
based systems to achieve their business goals. Madhu relates much
of his experience through lectures at technology conferences all
over the world. He is also a rated helicopter pilot and enjoys flying
when the weather and his schedule permits.

Michael D. Qualls is a Webmaster and developer currently working
with Marketing Information Network, a leading data provider for the
direct marketing industry. Michael has worked extensively with the
creation of Web applications since 1996, utilizing Visual Basic, Active
Server Pages, Microsoft SQL Server, and XML. More recently,
Michael has specialized in creating custom online order applications
for e-commerce companies. He lives in Oklahoma City, Oklahoma
with his wife, Holly, and two daughters, Alexandra and Michaela. In
his spare time, Michael enjoys practicing a wide variety of martial

arts, including Brazilian Jiujitsu, Muay Thai kickboxing, Western boxing, and
Buguazhang.

00 0672323419 FM 3/15/04 11:15 AM Page xxii

Sam Hunting is the CEO of eTopicality, Inc., a consultancy that pro-
vides analytical services for the Semantic Web and content providers,
including schema development, topic maps, and all phases of DTD
development. He specializes in complex content where rapid and flex-
ible development of quality solutions is paramount. His expertise
includes legal content, medical content, interactive electronic technical
manuals for aircraft, textbooks, encyclopedias, electronic commerce,
and workflow. His specifications work includes co-editorship of XML
Topic Maps (XTM) and co-authorship of the XTM 1.0 DTD. When he

is not analyzing content, he is dabbling in programming languages with clean syntax,
such as Python and Eiffel, listening to music, or improving his rudimentary French.

Chád Darby has experience developing n-tier Web applications for
Fortune 500 companies and the Department of Defense. Chád is a
contributing author for the books Professional Java E-commerce and
Java Networking. He has also published articles in Java Report, Java
Developer’s Journal, and Web Techniques. He has been an invited
speaker at conferences, including SD West 99, XML DevCon 2000,
and JavaCon 2000. Chád recently gave a presentation on JSP custom
tags in Mumbai, India. He holds a B.S. in Computer Science from
Carnegie Mellon University.

David Houlding is a software architect at The Technical Resource
Connection. With 10 years of experience in software design and
development, he is responsible for leading the creation of secure
enterprise wireless, voice, and Web-enabled distributed object systems
that leverage the power of XML, XSL, WML, VoiceXML, and other
powerful XML technologies to deliver real business value. He has
extolled the virtues of distributed and mobile computing with presen-
tations at numerous major industry conferences, article publications in
major trade journals, contributions to book publications, and inter-

views for newspaper and other articles. David’s interests include visualizing software
architectures, and he led the creation of, and currently manages, the Architecture Zone
Web-based ASP service dedicated to the SVG-based interactive visualization of complex
systems. He may be contacted at david@houlding.net.

00 0672323419 FM 3/15/04 11:15 AM Page xxiii

Dianne Kennedy has a long history in publishing, beginning with her
experience as a editor/writer for the textbook division of Doubleday.
Dianne began working with information technologies in 1986, when
she was one of the pioneers in SGML. In 1997, Dianne founded
XMLXperts and began work as an independent XML consultant. She
is CEO and principal consultant for XMLXperts.

Dianne also serves as Chief Technical Consultant for IDEAlliance, is
an editor of the XML Files, participates as an invited expert on the
ICE authoring group, and was chairperson for the XML1998–2000

Conferences. She is also the chairperson for the Knowledge Technologies Conference
(2001–2002), the Open Publish 2002 Conference, and the XML in Publishing Day at the
Seybold Seminars, both in San Francisco and New York.

00 0672323419 FM 3/15/04 11:15 AM Page xxiv

Dedication
Dedicated to my family, Jennifer Fairman, Milo, and Rudy—people and cats of distinction.

—Ronald Schmelzer

Dedicated to Karen, Joshua, Simon, and Melanie for their inspiration and support.

—David Houlding

Dedicated to my mother, Constance Hunting.

—Sam Hunting

Dedicated to my family Janine, Chade, and Ty. Thanks for giving me a purpose in life.

—Chád Darby

Acknowledgments
Ronald Schmelzer. It would be difficult to say that authoring a book, even in part, is an
effortless and challenge-free process. Many people and lots of resources have gone into
making this a successful endeavor. It goes without saying that the Sams publication staff
deserves much of the kudos and thanks for helping to shepherd this process in a com-
pressed timeframe with the excellent results contained within. In particular, I would like
to acknowledge Shelley Kronzek, the Executive Editor for this project, Songlin Qiu, the
development editor, Mike Farley, the technical editor, and Bart Reed, copy editor.
Without their help, many of our authors would be ships without rudders in the sea. Of
course, none of this would be possible without the tremendous and superlative effort of
the other co-authors on this project: Jason Bloomberg, Chád Darby, Sam Hunting, David
Houlding, Dianne Kennedy, Mike Qualls, Madhu Siddalingaiah, and Travis Vandersypen.
I commend each of them for their dedication in helping to make this a book to be proud
of. On a personal note, I would like to acknowledge Jennifer E. Fairman of Fairman
Studios for her understanding, time, and constant inspiration. She planted the seed in my
mind that writing a book was more than just a hope, but a soon-to-be realized goal.

Jason Bloomberg. I would like to thank Steve Stassen and the rest of the Ashton Services
development team for assistance with the source code for the chapters on Web Services.

Sam Hunting. My thanks to the editors of Sams Publishing for their hard work.

00 0672323419 FM 3/15/04 11:15 AM Page xxv

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can
e-mail or write me directly to let me know what you did or didn’t like about this book—as
well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail:

Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

00 0672323419 FM 3/15/04 11:15 AM Page xxvi

Introduction
Congratulations! Whether you are a recent newcomer to the Extensible Markup
Language (XML) or are already a power user, you have just chosen a book that will give
you a leg-up on understanding and using the power and flexibility of the XML language.
No doubt, you have seen a considerable amount about XML and have heard what it can
do. Some of it is grounded in technical reality, and some of it is just hype. In general,
though, the technology has piqued your interest enough that you are willing to dive
headfirst into learning how XML can benefit you.

It is well known that XML as a technology is a moving target. What may be new and
cutting edge one month is already old news the next. However, this book has been writ-
ten in an in-depth manner by experts in the space. You will find this book to be useful
long after it first hits the shelves because the concepts introduced in this book will help
guide you in crafting XML strategies and implementations that leverage today’s stan-
dards while making room for tomorrow’s innovations.

Rather than just skimming the surface of what XML has to offer, this book provides an
overarching view of how XML impacts different vertical industries, implementations,
and technological needs.

Who This Book’s Intended
Audience Is
This book is focused on those intermediate-to-advanced users who already know some-
thing about XML but still are unsure of its various intricacies, technical complexities,
and implementations that allow one to make the most of XML and its related technolo-
gies. Although the book starts with a level-setting definition of what XML is and how it
has evolved, most of the chapters are focused on detailed, relevant, and timely explana-
tions of XML implementation in areas as diverse as databases, content management, e-
business, and the Semantic Web.

What You Need to Know Prior to
Reading This Book
This book is aimed at the developer who is itching to implement XML technologies, but
at the same time it offers full coverage of XML topics. Therefore, the only things you

01 0672323419 Intro 3/15/04 11:15 AM Page 1

XML and Web Services

UNLEASHED
2

need to know prior to reading this book are the fundamentals of the Internet and the
basic concepts of XML. You’ll also want to be in possession of at least a basic set of
tools for experimenting with the concepts explained within.

What You Will Learn from Reading
This Book
This book covers a wide range of implementation and development tools, techniques,
and technologies for use with XML. You will learn everything from the basic foundation
and history of XML to how to read, transform, process, and make programmatic use of
XML. In particular, you will gain a fundamental knowledge of processing technologies
such as SAX and the Document Object Model, XML document structure, including
XML Schema, XPath, XLink, and XPointer, in-depth and cutting-edge knowledge of
Web Services and Microsoft’s .NET Framework, and specific XML implementations in
areas such as content management, e-business, voice and wireless, vertical industries,
and the Semantic Web. In general, this book will give you the knowledge you need to
unleash your XML capabilities!

What Software You Will Need to
Complete the Examples Provided
with This Book
Various chapters in this book contain different requirements for tools and processing
technologies. In some cases, the choice of tools will be left up to you, with a listing of
the available toolsets included in the chapter. In other cases, most notably the .NET
chapters, the use of Microsoft- or Java-specific tools will be mandated. In any case, the
open nature of XML and the availability of cheap, and often free, tools will make it easy
to obtain the technology necessary to follow along and implement the XML and related
code as specified in this book.

How This Book Is Organized
Although it is understood that many readers don’t read a book in sequential order, this
book is set up so that general and fundamental topics of XML are covered first, and
more specific implementation and technologies are covered later.

01 0672323419 Intro 3/15/04 11:15 AM Page 2

INTRODUCTION
3

This book is divided into the following parts:

• Part I: Essentials of XML

This part gives you a foundation upon which all technologies and strategies around
XML are based. The first chapter covers XML history and basics, whereas the rest
of the chapters cover the essential elements of XML, XML validation technologies,
including Document Type Definitions (DTDs), XML Schema and other schema
types, and supporting XML technologies, including XLink, XPath, and XPointer.

• Part II: Building XML-Based Applications

Once you have a good understanding of XML and its components, you can start
building robust applications. Part II of this book covers all the technologies and
techniques needed to read, process, and make use of XML, including using the
Document Object Model (DOM), using the Simple API for XML (SAX), trans-
forming XML, integrating XML with databases, formatting XML for presentation,
using the Simple Vector Graphics (SVG) specification, working with XML-based
content management, understanding and using Web Services, and making use of
Microsoft’s .NET Framework.

• Part III: Applied XML

Given a thorough understanding of XML fundamentals and the tools and tech-
niques needed to make use of XML in a robust manner, you are guided through
several chapters in Part III that illustrate how XML can be used in specific scenar-
ios. First, you are introduced to the world of XML-based standards and specifica-
tions by means of the “standards stack.” Next, you gain an understanding of how
XML is used in e-business systems, in voice and wireless applications, and in vari-
ous vertical industries, such as healthcare, manufacturing, and finance.

• Part IV: The Semantic Web

Finally, after learning the new directions that XML is taking us, you are introduced
to the complex and sophisticated world of the Semantic Web. Given how XML is
transforming the use of data and its exchange between organizations and systems,
the Semantic Web will soon be a major technology that will change the way we
deal with systems. The two chapters contained here give you an understanding of
the framework behind many Semantic Web efforts and the Resource Description
Framework (RDF) as well as provide a more general treatment of the Semantic
Web and what it has to offer.

01 0672323419 Intro 3/15/04 11:15 AM Page 3

XML and Web Services

UNLEASHED
4

• Appendix A

This appendix is a copy of the World Wide Web Consortium (W3C) specification
for the XML 1.0 Recommendation. It is included as a reference and a source for
various technologies and concepts mentioned in this book. Other resources are ref-
erenced within specific chapters because their contents may change over time.

What’s on the Sams Web Site
for This Book
The chapter-by-chapter code files described in this book are available on the Sams Web
site at http://www.samspublishing.com/. Enter this book’s ISBN (without the
hyphens) in the Search box and click Search. When the book’s title is displayed, click
the title to go to a page where you can download all the code in a chapter-by-chapter zip
file format.

Conventions Used in This Book
The following conventions are used in this book:

• Code lines, commands, statements, variables, and any text you type or see
onscreen appears in a monospace typeface. Bold monospace typeface is used to
represent text you need to input.

• Placeholders in syntax descriptions appear in an italic monospace typeface.
Replace the placeholder with the actual filename, parameter, or whatever element
it represents.

• Italics highlight technical terms when they’re being defined.

• The ➥ icon is used before a line of code that is really a continuation of the preced-
ing line. Sometimes a line of code is too long to fit as a single line on the page. If
you see ➥ before a line of code, remember that it’s part of the line immediately
above it.

• The book also contains notes, tips, and cautions to help you spot important or use-
ful information more quickly. Some of these are helpful shortcuts to help you work
more efficiently.

• In addition, you will see the use of sidebars to highlight additional resources and
information, case studies, and guides to help you make the most of what you are
reading.

01 0672323419 Intro 3/15/04 11:15 AM Page 4

Essentials of XML
PART

I
IN THIS PART

1 XML in Context 7

2 The Fundamentals of XML 35

3 Validating XML with the Document Type
Definition (DTD) 67

4 Creating XML Schemas 107

5 The X-Files: XPath, XPointer, and XLink 169

6 Defining XML Using Alternate Schema
Representations 223

02 0672323419 Part 1 3/15/04 11:15 AM Page 5

02 0672323419 Part 1 3/15/04 11:15 AM Page 6

IN THIS CHAPTER

• XML: A Brief Glimpse 9

• The Time Is Right 9

• How We Got Here 11

• The Beginnings of XML 19

• The Promise of XML 20

• Where Is XML Heading? 28

1
C

H
A

PT
ER

XML in Context

03 0672323419 CH01 3/15/04 11:15 AM Page 7

We are truly living in wonderful and privileged times. We can schedule airfare and book
hotels from the convenience of our homes. Finding restaurants and mapping directions to
a 3 P.M. meeting is as simple as opening a Web browser. Gone are the long waits in ser-
vice lines and the 30-minute hold times with the inevitably rude customer service person-
nel. We can order phone service, view real estate and apartments, shop and bid on flea
market items, lodge customer-service complaints, and even file our tax returns without
ever having to leave our homes or pick up the phone. We don’t even have to interact with
a single human being. In fact, we can now live our entire lives without ever having to
leave our homes. All these wondrous things would have seemed impossible a mere
decade ago, and some of them are only now beginning to be realized.

Of course, none of this would be possible without data—the lifeblood of information
flow. Everywhere we look, data is present. It’s in the phone bill we receive in the mail,
the bar code on our soft drink beverage, the e-mail we exchange, the tax forms we pre-
pare, and the millions of financial and banking transactions that occur on a daily basis
without our knowledge. In the context of our discussion, data is any and all information
that can be represented in a computer. Data is so intertwined with computing that to say
one can exist without the other is akin to saying that humans can exist without organs.

What’s more, the Extensible Markup Language (XML) is powering this data revolution.
This book, XML Unleashed!, is designed to get you well on your way toward developing
XML applications and systems that enable your most important business processes as
well as your simplest visions for data representation and exchange. Written for those
already familiar with many of the concepts of XML but still not sure how to make best
use of the technologies, this book aims to help you become a more advanced user of
XML. Although this chapter covers the way that XML came to be, the “meat” of this
book starts very soon in Chapter 2, “The Fundamentals of XML.”

Written for intermediate-to-advanced XML developers, this book covers all the necessary
topics, from the basics of Document Type Definitions (DTDs) to the more advanced top-
ics in XML database integration and the semantic Web. The foundations of XML as well
as specific development methodologies and applications are contained within. By reading
this book, you can unleash the XML developer within.

In this chapter you will learn:

• What XML is

• Why XML is important

• Why the timing of XML is right

• What other technologies, such as EDI, SGML, and HTML, have brought to the
table

Essentials of XML

PART I
8

03 0672323419 CH01 3/15/04 11:15 AM Page 8

• Why those technologies are insufficient to solve our problems

• Where XML is heading

XML: A Brief Glimpse
Although Chapter 2, “The Fundamentals of XML,” lays the foundation work for XML,
in order to have a good discussion about what XML can do for you and how it differs
from past efforts, it does make sense to give you a brief glimpse of what XML is. XML
stands for Extensible Markup Language, a series of three words that mean a whole lot.
The basic idea is that with XML, you can encode information in a text document that not
only has data in it but also has information that describes what the information means—
and in a structured manner that humans can read. This may sound abstract or extremely
simple, depending on your viewpoint, but it is the truly basic core of the language. XML
is simply a text document that allows users to store data in a structured manner that also
encodes information, or “metadata,” as to what that data means.

For a more detailed introduction to XML, you should read Chapter 2. The remainder of
this book details extensions to this basic concept to power robust applications and make
XML work in a real-world context.

With this explanation in mind, we can now address the bigger questions: Why does XML
matter? Why will it solve our data-representation problems? Why is it different from
other formats that have attempted to solve the same problems? Why will it make a differ-
ence in the way we run our businesses, day-to-day tasks, and lives?

The Time Is Right
Before we talk about what XML is and how it began, it makes sense to talk about why
the revolution in structured data is happening now. As you’ll learn later in this section,
although XML has many compelling features, as a technology, it offers little that others
have not attempted with differing degrees of success. So, the question that begs to be
asked is, “how is XML different?”

As a partial answer to this question, timing is everything. There are many reasons why
XML may not have worked as a technology or movement even a decade ago. Some of
these reasons are technology based, whereas others deal more with the sociological rami-
fications of how technology is used and adopted.

The simplest of reasons why XML is becoming popular is that our machines are only
now capable of the processing requirements of this data format. It simply would have
been extremely difficult, if not impossible, to support the processing, data storage, and

XML in Context

CHAPTER 1
9

1

X
M

L IN
C

O
N

TEN
T

03 0672323419 CH01 3/15/04 11:15 AM Page 9

bandwidth requirements for the exchange of XML documents 20 years ago. We started
approaching the ability to process this information in an effective manner only a decade
ago. Simply put, processing power, data storage, and bandwidth is becoming incredibly
cheap these days. Processing XML now is not as big a challenge as it would have been
in 1980.

The driving force for the use of a technology like XML is the desire to exchange infor-
mation in an open, nonproprietary manner. The terms open systems and open software
imply that a particular application or data format can be created by Corporation A’s tools
and processed by Corporation B, C, or D’s tools or by open-source applications and
tools. Open systems can be created and processed in any combination of different tools
and applications by different or competing tool vendors. For vendors of software applica-
tions who open their data formats and programming layers, this means their software can
be replaced more easily. Obviously, this primarily represents an advantage to the con-
sumers, who have increased choices in how they choose to have their problems
addressed. But this is also an advantage for the software vendors in that they can develop
open interfaces that keep their software applications always current and open for modifi-
cation. In the past few years, the movement to open-source systems and platforms has
been tremendous. In part, this has been a reaction to the dominance of the industry by
particular software corporations, and in part this is due to the general demand for sys-
tems that can interoperate with each other. Ten years ago, this cry for openness was
hardly a whisper. It simply would have been impossible to demand open, nonproprietary
systems in 1990 when most desktop computers ran DOS and back-office servers ran
either Novell or Unix. However, the environment today is ripe for the use of open,
nonproprietary data formats.

Of course, the development of the Internet itself is a reason why XML could not have
existed in any widespread manner a decade or more ago. Although the Internet was
developed in the late 1960s, widespread commercial use of the vast worldwide network
was not possible until the early 1990s. Without the Internet, it would be costly, ineffi-
cient, and difficult to exchange data in a format such as XML. In fact, the Electronic
Data Interchange (EDI) format thrived mainly because it provided both a means for rep-
resenting data as well as a method for transporting it from place to place. With the wide-
spread use of the Internet, however, technologies such XML could be used in a more
extensive manner than formats requiring the use of a closed, proprietary network.

Furthermore, we have had experience now with many technologies that have worked to
varying degrees of success. Our experience with EDI has given us an understanding of
what it takes to perform electronic transactions. Usage of the Standard Generalized
Markup Language (SGML) and the widely popular Hypertext Markup Language

Essentials of XML

PART I
10

03 0672323419 CH01 3/15/04 11:15 AM Page 10

(HTML) has given us experience in what it takes to create, manage, and maintain struc-
tured data stores. The development and use of various object-oriented and distributed
application technologies such as Microsoft’s Component Object Model (COM) and the
Common Object Request Broker Architecture (CORBA) have given us the required
know-how of when and how to apply distributed processing techniques and methodolo-
gies. All that XML has given us is another means for expressing this experience. Without
that experience, there is no doubt that XML would simply be another step in the path
towards a more perfect data-representation technology. Although XML may not be that
final step, it surely is a product of all the experience, mistakes, and wisdom learned from
our previous attempts to exchange information in an open manner.

The advent of HTML has brought a new kind of developer to the forefront. These
“developers” are not programmers, EDI data wranglers, or publishing industry workers
but rather the hordes of individuals who create and manage content on a daily basis. The
Web has taught them that they, too, can be part of the information revolution—and now
they will be part of the XML revolution. These are the very same developers who would
be capable of implementing XML in all its different forms. After all, how can the revolu-
tion be fought without any soldiers?

So, not only does XML solve some of the key problems facing data interchange, but its
technology comes at a time when we can deal with its existence. In technology, timing is
everything.

How We Got Here
The development of XML was not an epiphany that came to a lone inventor working in
isolation, nor was it conceived of as part of a corporation’s product-development efforts.
Rather, XML is an evolution of data formats that existed previously but solved problems
of different sorts. In understanding XML, one needs to understand these formats and how
their limitations prevented their widespread adoption.

Standard Generalized Markup Language
(SGML)
With its roots originating all the way back in 1969 and its standardization by the ISO in
1986, SGML is really the forefather of all markup languages. It introduced the notion
that data processing and document processing could be one and the same thing—but
we’re getting ahead of ourselves here.

XML in Context

CHAPTER 1
11

1

X
M

L IN
C

O
N

TEN
T

03 0672323419 CH01 3/15/04 11:15 AM Page 11

Computers have long been used for document and text processing. In the early days,
computers were used to assist in document preparation and typesetting. They allowed
copy creators and editors to quickly prototype how a specific document would look prior
to its printing on a traditional printing press. As computing progressed, so did its applica-
tion in the document-preparation industry. The advent of word processors necessitated
the invention of a means to indicate how the content was to be modified for printing.
Because software applications at the time were text based with no graphical capabilities
to speak of, the text contained in the documents were “marked up” using textual com-
mands that were later processed by the final printing destination. These so-called
markups surrounded the text and explained how it was to be handled for printing. This
included notations for boldface, underline, font sizing, placement, and other such com-
mands. Word processors didn’t invent markup as a concept—markup is common in docu-
ment creation and editing. Editors have used markup for decades, if not centuries, to
indicate their revisions and changes to text. Word processors merely implemented a way
by which markup could be encoded in a computer-based system.

The number and type of such markups proliferated with the number of word processing
formats. Markup languages such as troff, rich-text format (RTF), and LaTeX were cre-
ated to meet these needs. An example of LaTeX can be found in Listing 1.1 (This code is
from a Web site on LaTeX at http://www.oxy.edu/~jquinn/home/Math400/LaTeX/
thesis-example-latexcode.html). Finally, the development of graphical WYSIWYG
(What You See Is What You Get) systems eliminated the need for textual markup of
documents to indicate their final presentation format. However, the legacy of markup
lives on.

LISTING 1.1 LaTeX Example

\documentclass[11pt]{article}
\setlength{\textwidth}{6in}
\setlength{\textheight}{9in}
\setlength{\oddsidemargin}{0.2in}
\setlength{\evensidemargin}{0.2in}
\setlength{\topmargin}{-.6in}
\begin{document}
\newtheorem{lemma}{Lemma}[section]

Essentials of XML

PART I
12

Note

SGML is formally standardized as ISO specification 8879:1986. You can obtain
more information from the World Wide Web Consortium (W3C) Web site at
http://www.w3.org/MarkUp/SGML/.

03 0672323419 CH01 3/15/04 11:15 AM Page 12

LISTING 1.1 continued

\newtheorem{theorem}[lemma]{Theorem}
\newtheorem{corollary}[lemma]{Corollary}
\newtheorem{conjecture}[lemma]{Conjecture}
\newtheorem{proposition}[lemma]{Proposition}
\newtheorem{definition}[lemma]{Definition}
\def\square{{\Box}}
\title{Title For a Sample Comprehensive Paper}
\author{ Your Name Here \\Department of Mathematics \\Occidental College \\ \\
{\it Submitted in partial fulfillment of the requirements for the degree}\\
{\sc Bachelor of Arts}}
\maketitle
\begin{abstract}
Every paper needs to begin with an abstract. This is a brief overview of the
entire paper. It should be independent of the body of the paper (i.e. no
referencing things to come). If you feel a definition is needed to make the
ideas here clear, then by all means include it. A lazy reader should be able
to get the entire gist of your work by reading the abstract to be able to
determine if it is worth reading more of the paper.
\end{abstract}
\section{Introduction}
The introduction serves to acquaint the reader with your topic and place it in
a greater perspective. Notation and definitions which are used throughout the
work should be presented here. You may find yourself repeating the ideas in
the abstract —- that’s okay. They should be more fleshed out in the
introduction.
\section{Main Body}

SGML built upon this markup history by providing a common format for defining and
exchanging markups between systems that may not share the same markup language
inherently. In 1969, IBM sought to simplify the tasks of creating, archiving, searching,
and managing legal documents. Charles Goldfarb headed up this task of creating the
system and defining a format to meet these needs. In the process of doing so, Goldfarb,
along with his coworkers Ed Mosher and Ray Lorie, realized that IBM’s multiple sys-
tems stored their information in different formats. Producing an application and data
format that would cross these systems and produce a unified result would mean that a
standard format would have to be created. The solution to this set of problems took the
form of the Generalized Markup Language (GML), the initials of which are also the cre-
ators’ initials. GML was designed to provide a standard means for marking up content
that could then be archived, managed, and searched. See Listing 1.2 for an example of an
SGML document.

XML in Context

CHAPTER 1
13

1

X
M

L IN
C

O
N

TEN
T

03 0672323419 CH01 3/15/04 11:15 AM Page 13

LISTING 1.2 SGML Example

<!DOCTYPE book [
<!ELEMENT book O O ((title & subject & author & ISBN?), body)>
<!ELEMENT body – O (bodylines+)>
<!ELEMENT bodylines O O (#PCDATA)>
<!ELEMENT (title, subject, author, ISBN) – O (#PCDATA)>
]>
<title>Little Miss Muffet</title>
<subject>Children’s fairy tale</subject>
<author>Mother Goose</author>
<body>

<bodylines>Little Miss Muffet</bodylines>
<bodylines>Sat on her tuffet</bodylines>

</body>

SGML also introduced the notion of a generalized document format. Rather than having
proprietary, custom markup languages that could not be exchanged between systems, a
common means for markup definition was defined. Systems that complied with the
SGML specification could communicate with each other, even if competing vendors cre-
ated them. SGML also brought forth the idea that documents can have custom types that
indicate the nature and purpose of the information contained within. Rather than specify-
ing a single, monolithic specification that was to be used across all industries, SGML
conceived that individual industries would be concerned specifically with the way they
represent information. Each of these industries would be able to maintain a Document
Type Definition (DTD) for itself and thus be able to exchange documents in an even
more specific, standardized manner.

All these features in SGML have transformed the simple document into a representation
of text content and its associated data. SGML proved, at a very early age, that document
processing and data processing could be one and the same. This idea would be carried
forward in the development of its subsequent successor formats: XML and HTML.

However, as SGML development progressed, it became increasingly more overweight
and complicated. Both the creation and parsing of SGML documents were difficult and
complex, and the various “optional” features of SGML started to bog down its ability to
become widely adopted. By necessity, the SGML specification was pulled and influenced
by many conflicting industry groups, each of which wanted to make sure the language
was able to meet their needs. As a result, the creation of a simple, generic parser for the
language was a difficult proposition, at best.

However, the legacy of SGML continued to live on, not only in the number of documents
created in the language, but in subsequent formats that borrowed heavily from its creative
direction while attempting to side-step some of its complexities.

Essentials of XML

PART I
14

03 0672323419 CH01 3/15/04 11:15 AM Page 14

Hypertext Markup Language (HTML)
SGML could have continued its steady growth as the only generalized markup language
in use if it weren’t for the sudden emergence of the Web and its own format for data
exchange—the Hypertext Markup Language (HTML).

Although the Internet has been around since the late 1960s, it was the development of the
Web that truly brought the Internet into its current prominence and widespread usage.
The Web finally put a visual, interactive, and easy-to-use front end on a network system
that had formerly been dominated by applications such as Telnet, FTP, and Gopher. The
Web provided users a means to easily create repositories of knowledge that could be
linked with one another as well as contain graphical images and well-formatted layouts.
What’s more, the Web was based, in part, on SGML.

In 1989, a physics researcher at the CERN European Nuclear Research Facility named
Tim Berners-Lee proposed that information collected and produced by the facility could
be shared in a more interactive and visual manner. Berners-Lee took a peek at what
SGML had to offer on this subject, and upon further exploration, he realized that he
could create a simple DTD based on SGML that would allow users to create simple
hypertext-linked documents. He named this DTD and subsequent development the
Hypertext Markup Language (HTML), a sample of which can be seen at Listing 1.3.

LISTING 1.3 HTML Example

<HTML>
<HEAD>
<TITLE>This an HTML Hello World!</TITLE>

</HEAD>
<BODY>
<H1>Hello World!</H1>
Using a Font Tag, with Boldface
and <I>Italics</I>

</BODY>
</HTML>

However, HTML is nothing like SGML when it comes to the strictness and complexity
of the language. HTML was developed relatively quickly and was meant to solve a fairly
simple job. It was created with simple developers in mind; therefore, “sloppiness” was
allowed to thrive. In fact, this sloppiness may be the very reason why the Web exists in
the first place. Because it was so easy to create HTML documents and browsers, the
format flourished in the vacuum of the Internet. Users simply were craving a document
format that could express their ideas in a visual, linked manner. HTML met this need.

XML in Context

CHAPTER 1
15

1

X
M

L IN
C

O
N

TEN
T

03 0672323419 CH01 3/15/04 11:15 AM Page 15

Because it borrows much of its functionality from SGML, HTML provides many similar
features: the use of angle-bracketed elements and attributes as well as a structure defined
by a DTD that was independent of display mechanisms. Of course, this latter part
became increasingly fuzzy as the various Internet browser vendors started to battle over
control of the market. In particular, Microsoft and Netscape sought to add their own pro-
prietary elements to the HTML language that would be understandable only by their
respective browser platforms. Of course, this violated the basic tenets of SGML in that
the markup language should be standardized and generalized.

In addition, HTML solved only one part of the SGML realm of problems—namely the
presentational and layout aspects. HTML was aimed squarely at representing information
for display on a browser or other display devices such as cell phones and handheld
devices. The language was never intended as a means for storing data and metadata
(information that describes data) or for providing a framework for users to exchange data
in a structured manner. HTML had separated the notions of data processing from docu-
ment processing.

It soon became clear that once again a need for a language such as SGML was needed on
the Internet. HTML was not adequate for the extensible, data-oriented nature of informa-
tion exchange, and SGML was too complex and not native to the Internet environment.

Electronic Data Interchange
Of course, HTML and SGML were not the only data formats in existence prior to the
emergence of XML. In the electronic commerce and business communities, another
acronym held even more sway than SGML.

The Transportation Data Coordinating Committee (TDCC) developed the Electronic Data
Interchange (EDI) format in the early 1970s as a means for transportation industry ven-
dors to specify transaction sets that enabled electronic processing of purchase orders and
bills. At the time, computing power was concentrated in isolated mainframes that had
low storage capacity and even lower bandwidth capabilities for exchanging information.

Because freight transactions were dominated by high-volume, low-dollar transactions,
transportation suppliers were early adopters of EDI standards. Many large carriers and
shippers achieved significant productivity gains by switching their internal, paper-ori-
ented systems to electronic transactions enabled by EDI.

Because the presence of an established message-transport infrastructure, standardized
business process rules, and file formats did not exist in the early years of EDI’s forma-
tion, the EDI format carried with it specifications for how the messages were to be
exchanged and processed. Before the Internet came into widespread use, EDI messages
were sent across private value-added networks (VANs) that ensured that transactional

Essentials of XML

PART I
16

03 0672323419 CH01 3/15/04 11:15 AM Page 16

messages reached their destination with security, integrity, and messaging validity, along
with receipts that guaranteed the messages were received. The EDI transaction sets also
contained strict business rules on how the messages were to be handled.

The EDI file format used a fairly arcane syntax that was unintelligible to most humans.
Just looking at Listing 1.4 is enough to give many of us headaches. The structure was
aimed at efficiency and compactness over flexibility and human readability. As such, EDI
parsers and processors were used to create, read, and manage these files. In general, two
parties that wished to conduct an EDI transaction would need to enter into a trading
agreement, choose a VAN for message delivery, build or buy software to conduct map-
ping between data formats and EDI messages, and build translators to interpret the
sender’s message into the company’s native data format. Each of these operations would
have to be accomplished for every new trading partner added to the network. In addition,
VANs charge monthly and per-transaction fees for the handling of these messages. It is
no wonder that implementation cost and complexity is so high with EDI systems. It is
also no wonder that only the large manufacturers were able to afford to participate!

LISTING 1.4 EDI Example

ISA*00* *00* *01*003897733 *12*PARTNER ID*980923*1804*U*00200*000000002*0*T*@
GS*PO*MFUS*PARTNER ID*19980924*0937*3*X*004010
ST*850*0001
BEG*00*SA*4560006385**19980923
CUR*BY*USD
TAX*1-00-123456-6
FOB*DF***02*DDP
ITD*01*ZZ*****45*****NET 45 - Payment due 45 days from Document Date
TD5*Z****Ship via Airborne
N9*L1**NOTE FOLLOWING TEXT
MSG*PLEASE CONFIRM PRICE IF NOT CORRECT.
N9*L1**NOTE FOLLOWING TEXT
MSG*CONTACT JACK WITH QUESTIONS 212-555-1212
N1*BT**92*USA1
N1*BY*ACME HARDWARE CORPORATION*92*MFUS
PER*BD*JOHN DOE
N1*SE*PARTNER COMPANY NAME*92*0010001000
N1*ST*Acme Hardware Corporation*92*0000002924
N3*123 Random Hill Rd
N4*Megalopolis*NY*01429*US
PO1*00010*3600*EA*1.233*CT*BP*123456-123*EC*AM*VP*123456*123
PID*F****STROMBOLI, 4000,XCR-P5
SCH*3300*EA***002*19981101
CTT*1
SE*23*0001
GE*1*2
IEA*1*000000002

XML in Context

CHAPTER 1
17

1

X
M

L IN
C

O
N

TEN
T

03 0672323419 CH01 3/15/04 11:15 AM Page 17

Each of the EDI transaction sets defines which fields of data are contained in a specific
transactional message. The format defines the fields themselves, their order of appear-
ance, and the length of the information contained within. A number of “implementation
guidelines” are also applied to the transaction sets to assist in the development of valid
EDI messages.

The EDI transaction sets were developed by two separate bodies: the American National
Standards Institute’s (ANSI) Accredited Standards Committee (ASC) X12 and the
United Nations Standards Messages Directory for Electronic Data Interchange for
Administration, Commerce, and Transport (EDIFACT). Whereas ANSI X12 met the
needs of North American commerce users, EDIFACT was focused on meeting more
international needs. Later, the ANSI ASC X12 effort was moved to the Data Interchange
Standards Association (DISA) for ongoing management. As such, the specifications devi-
ated somewhat and the “standard” nature of EDI was rapidly degraded.

EDI has been used as the basis for a number of industry-specific standards efforts. In
particular, the healthcare industry has used EDI to define its Health Level Seven (HL7)
standard, which is in use by most of the world’s hospitals and insurance companies for
exchanging healthcare and health insurance information. In addition, other groups
including automotive, insurance, government, retail, and grocery industries have looked
to EDI as a format on which to base their business-to-business interactions.

However, many of the supposed gains that EDI was to deliver were never realized due to
the inability of the electronic applications to eliminate the paper processes necessary to
support the business processes. EDI exhibits the “80/20 rule,” which states that the last
20 percent of a company’s trading partners to be implemented in EDI will represent 80
percent of its savings. The reason for this is simple: The trading partners that still con-
duct business in paper formats and processes still need to be supported. That means dual
and somewhat-redundant processes—one electronic and one paper—need to be sup-
ported. This is very inefficient in the long run. In addition, EDI was never really able to
help the small and medium-sized trading partners to participate in the electronic com-
merce game. This is primarily due to EDI’s cost and the complexity of implementation.
It was simply too expensive to get all the small-business suppliers to switch from
their paper processes to EDI. This meant that the returns for everyone were greatly
diminished.

Another of EDI’s problems is its reliance on fixed transaction sets. The rigidity of these
transaction sets makes EDI somewhat impervious to the natural changes that occur in
business processes and methodologies. This rigidity is reflected in the somewhat-strict
manner in which EDI messages must be processed and the standardization process by
which these transaction sets are defined. Transaction sets have a well-defined field

Essentials of XML

PART I
18

03 0672323419 CH01 3/15/04 11:15 AM Page 18

format and structure. Companies are not free to add their own data elements or redefine
data structures. This has required many users to implement EDI in a nonstandard manner
in order for it to serve their business needs.

However, the EDI industry sought to fix many of these shortcomings by embracing the
Internet as a means for transportation, and by relaxing many of the strict processing
requirements. EDI has actually made some significant strides in the past five or so years
in trying to adapt to the rapidly changing business frontier. In this regard, it is unlikely
that EDI is going to disappear entirely. Rather, we may find that within EDI’s already
large community base, its use will solidify. However, as a means for transporting data in
general or as a solution for e-business for the community at large, EDI has had its day in
the sun, and now XML is due to bask in some of the sunlight.

The investment that many companies have made in EDI is not going to simply be thrown
away, however. Many companies are looking to leverage their EDI expertise into crafting
XML solutions that take advantage of the EDI infrastructure, business processes, and
architecture. In fact, a number of XML proposals seek to “XML-enable” EDI by simply
replacing the arcane EDI format with XML tags. Others seek to mirror the transaction
sets using a similar XML-based element structure. In any case, many companies are
seeking to soften the transition from EDI to XML-based systems by utilizing the decades
of experience in EDI systems and using this experience to create robust XML-based
systems.

The Beginnings of XML
As the Internet emerged and rapidly became a viable place to conduct business, commu-
nicate, and entertain, it became apparent that the need to exchange data in an open man-
ner was still unmet. SGML provided a solution for exchanging data in a structured,
standardized manner, but it was inappropriate for direct application on the Internet.
HTML was a pure-Internet approach for displaying and presenting information in a plat-
form-independent manner, but it was wholly inadequate for representing data structures.
EDI had proven its merit in conducting electronic business transactions but was ill-suited
to being exchanged on the Internet and lacked the sophisticated features of either HTML
or SGML. It was obvious something more was needed.

In this environment, an initiative led Jon Bosak and supported by a group of SGML and
industry notables, including Tim Bray, C. M. Sperberg-McQueen, Jean Paoli, and James
Clark, sought to take some of the best features of SGML and “put them on the Web.”
Their goal was to take the standard, generalized manner for marking up data and extend
it with metadata while stripping out all the complexities and optional features that made

XML in Context

CHAPTER 1
19

1

X
M

L IN
C

O
N

TEN
T

03 0672323419 CH01 3/15/04 11:15 AM Page 19

SGML too difficult to implement. On top of that, the new language would be designed
inherently for the Internet and have the support of the Internet’s top standards-setting
body, the World Wide Web Consortium (W3C). Originally called Web SGML, this new
language was later named the Extensible Markup Language (XML) .

Essentials of XML

PART I
20

Note

A great history of XML in Jon Bosak’s own words can be found at http://
java.sun.com/xml/birth_of_xml.html.

The Promise of XML
What can XML offer that these other various formats have been unable to deliver at this
point? How will XML make our lives better, make our systems more efficient, lower our
costs, and increase our revenues? How will XML make the task of representing, storing,
and exchanging data an easier process than using SGML, HTML, or EDI?

Benefits of XML
The very nature of XML is that it is a structured document format that represents not
only the information to be exchanged but also the metadata encapsulating its meaning.
Most information has structure of some type. For example, information about a book
contains information about the title, author, chapters, body text, and index. In turn, body
text contains paragraphs, line text, and footnotes. This information is structured because
a document that describes a book would need to describe that information in a way that a
person or machine can understand it. Author information should not be contained within
the index section, and vice versa. Although SGML has provided this functionality to
XML by virtue of being a “parent language,” XML has simplified the process of defining
and using this metadata.

Although XML is fairly simple in nature, in that it only needs to follow basic syntax
rules to be considered “well-formed,” one of the biggest features of the language is its
ability to provide a means for guaranteeing the validity of a document. This means that
not only can you send a document to a receiving party but you can also send criteria, in
the form of Document Type Definitions (DTDs) or other schema formats, with which the
document must comply. For example, criteria may specify that an XML document should
contain only the listed set of elements and attributes in a specific order and in given
quantities. XML documents, on the other hand, come built in with error and validity
checking. The DTD or schema that is referred to by an XML document can guarantee,

03 0672323419 CH01 3/15/04 11:15 AM Page 20

at the time of document creation, that all the elements are correctly specified and in the
correct order. Furthermore, the usage of a more advanced validity-guaranteeing mecha-
nism such as XML Schema can help guarantee that the values of the element content
itself are valid and fall within acceptable ranges. Documents can be validated at their
time of creation or at their time of receipt, and they can be rejected or accepted on an
automated basis without human intervention. At design time, these errors can be fixed
before transmission, and upon receipt, they can be sent back to the sender for further
human processing with an exact pinpointing as to where these errors have occurred.

Validity-checking software is also very low cost, if not free. Most parsers on the market
are available in open-source form and come with validation capabilities built in.
Although many of these are currently only DTD compliant, the move to XML
Schema–based validity checking is well under way. Batches of documents can be
checked for compliance against a single DTD or schema, or they can be checked against
different schema based on their destination or origination. Although the use of a DTD
and schema does not guarantee 100-percent validity, it goes a long way toward ensuring
that the vast majority of documents exchanged and received fit an acceptable policy.

One benefit of using XML with DTDs or schemas is that XML editors provide structured
editing “for free.” As a developer, how many times have you run a processor on some
formatted file only to get a complaint about a syntax error at line 37? Editing software
that only allows you to enter valid XML will catch many of these errors as you type
them. From another perspective, editors can automatically create a form-style interface
from a DTD or schema. Therefore, XML can provide a simpler user interface and elimi-
nate some of the complexity of creating XML documents.

XML takes advantage of existing Internet protocols, and as such, designers choosing to
use XML in their solutions don’t have to create new protocols as a means for transport-
ing their documents. Designing a new protocol today may not make sense when existing
and well-understood protocols such as HTTP exist. Using these protocols makes the doc-
ument more portable across multiple platforms, more easily debugged, and easier to
understand how to qualify and route. In addition, HTTP as a protocol is well understood,
and IT engineers know how to manage the HTTP traffic. Using a new protocol would
require inventing a protocol to go over the wires, which would necessitate identifying
new data streams for firewalls, management of the traffic, and a whole ball of wax that is
simply not necessary for a structured data format.

Because XML is a structured document that shares many of the same processing and
parsing requirements as SGML and HTML, plenty of generally available parsers have
been built. Many of these parsers are now built in to general browsers and server-side
agents. Chapter 2 talks about these various client-side and server-side parsers and
processors and explains which tools are available for use today.

XML in Context

CHAPTER 1
21

1

X
M

L IN
C

O
N

TEN
T

03 0672323419 CH01 3/15/04 11:15 AM Page 21

In addition, the Document Object Model (DOM) has been created by the W3C as a gen-
eral model for how parsers and processors should interact and process XML documents
for representation as a data-bound tree. As a result, the DOM has produced a generic,
universal method for processing XML documents. Applications that require XML pro-
cessing can access this wealth of tools and specifications and thus add parsing in a rela-
tively pain-free way. Developers do not have to write new parsers, unless they really
want to. Many parsers exist in a wide variety of languages, and many of these are free.

Another oft-cited benefit of XML is its ability to be read and written by humans, rather
than created by applications in a machine-only readable format. Although many say that
XML will be primarily used for machine-to-machine communication and can be created
using visual tools that don’t necessitate the actually editing of the code, experience with
HTML has shown that there are numerous occasions when a developer has to “dip in” to
the actual document and make adjustments. It is for this reason that XML is plain text
and uses elements that represent actual words or phrases that contain some semantic
meaning.

XML represents information and the metadata about that information; therefore, it does
not specify any particular manner for how the data should be processed or provide any
constraints for mechanisms with which to handle the information. This is in contrast to
other formats, such as EDI, certain types of text files, and databases, that explicitly
require accessing the documents in a specific manner. Furthermore, the files themselves
define how the information is to be processed and what requirements systems must have
in order to make sense of the documents. In contrast, XML documents simply encode
information and their metadata without specifying how the information is to be processed
or displayed.

Often, the capability of XML to separate its process and data content is known as being
future-proof or loosely coupled, depending on which end of the marketing spectrum you
stand. Future-proof in this instance means that no future changes in the data-exchange
layer should affect the programming layer, and vice versa. Loosely coupled systems
allow for “arms-length” exchange of information, where one party does not need to know
details of how the other party plans to process the information. These systems are then
“loosely coupled” from the existing systems they need to integrate with or whatever sys-
tem is to be in place in future. This allows for changes in the presentation, process, and
data layers without affecting the other layers.

Due to XML’s popularity, ease of use, and increasing proliferation of tools, the number
of individuals and organizations skilled in XML use is increasing exponentially. It is
becoming considerably easier to find skilled employees and contractors who are familiar
with XML, the standards, and best practices for implementing XML in multiple

Essentials of XML

PART I
22

03 0672323419 CH01 3/15/04 11:15 AM Page 22

environments. Perhaps one of the best arguments for the use of XML is that the more
people there are who make use of the language, the more it will be supported and capa-
ble of meeting your needs. Sometimes the best technologies are the ones that are the
most in use, regardless of their technological advantages.

Advantages of XML over SGML
Although XML borrows much of its functionality from SGML, it provides a number of
distinct advantages. Although SGML may still be suitable for content and data represen-
tation, the tide of public opinion is definitely shifting in XML’s favor. As such, it makes
sense to at least consider XML in place of existing or proposed SGML implementations.

XML permits well-formed documents to be parsed without the need for a DTD, whereas
many SGML implementations require some DTD for processing. XML is much simpler
and more permissive in its syntax than SGML. The XML specification is very small,
includes a bare-bones set of features (rather than a bunch of optional features that can
make implementation costs difficult to judge), and avoids some of the stigma associated
with the SGML name.

XML was created because a direct implementation of SGML on the Internet was diffi-
cult. SGML simply did too much. One of SGML’s benefits is that it provides significant
flexibility for a diverse community of users by providing a wide array of choices, which
resulted in a wide range of syntactical variations for documents. This produced a specifi-
cation that was very difficult for developers to implement. XML 1.0 simplified the speci-
fication by eliminating unnecessary flexibility. This resulted in a specification that was
both powerful and easy to implement. The goal was to aim at meeting the majority of
users’ needs, without aiming to meet all the users’ needs.

Advantages of XML over HTML
HTML was created to meet a very different need than XML. It is clear that XML will
not now, or perhaps ever, completely replace HTML. Except of course with regard to the
XML-enabled version of HTML, known as XHTML. HTML was designed as a language
to present hyperlinked, formatted information in a Web browser. It has no capability to
represent metadata, provide validation, support extensibility by users, or support even
the basic needs of e-business. Fundamentally, the difference is that HTML is intended
for consumption by humans, whereas XML is meant for both machine and human
consumption.

XML in Context

CHAPTER 1
23

1

X
M

L IN
C

O
N

TEN
T

03 0672323419 CH01 3/15/04 11:15 AM Page 23

Advantages of XML over EDI
EDI adoption has been fairly widespread, even though mainly among larger-sized busi-
nesses. The cost of EDI implementation and ongoing maintenance can be measured in
the billions in aggregate. Millions of dollars in transactions occur on a daily basis using
EDI-mediated messages. It would be very difficult, if not impossible, to uproot all this
activity and replace it with exclusively XML-based transactions. These businesses have
so much money and time invested in ANSI X12/EDI that they will be fairly slow to
adopt a new standard, which would necessitate new processing technology, mapping
software, and back-end integration. For them, it would seem that they would need to
discard their existing, working technology in favor of an unproven and still immature
technology.

However, XML offers a number of clear advantages over EDI, which has long had its
time in the sun. XML is a good replacement for EDI because it uses the Internet for the
data exchange. There have been efforts to provide mechanisms for EDI to also be trans-
ported over the Internet, but many of these have not met with much success. Recent
efforts have attempted to make use of Internet protocols such as SMTP, FTP, and HTTP
to transport EDI, but it is clear that the format was not originally designed or intended
for such use.

Compared to EDI and other electronic commerce and data-interchange standards, XML
offers serious cost savings and efficiency enhancements that make implementation of
XML good for the bottom line. There are many components to document exchange and
electronic commerce systems: document creation tools, processing components, validity
checking, data mapping, back-end integration, access to a communications backbone,
security, and other pieces of the commerce puzzle. XML greatly simplifies, if not elimi-
nates, many of these steps.

XML’s built-in validity checking, low-cost parsers and processing tools, Extensible
Stylesheet Language (XSL) based mapping, and use of the Internet keep down much of
the e-commerce chain cost. In many cases, general XML tools can be found that are not
only applicable to the problem to be solved, but are flexible and very inexpensive.
Whereas EDI is a specific domain of knowledge and expertise that comes with a compa-
rable price tag, XML makes use of technology that has been in use for years, if not
decades. Systems that take advantage of this wealth of available processing power and
know-how will greatly reduce not only their costs but also their time to implementation.

The use of the Internet itself greatly lowers the barrier for small and medium-sized com-
panies that have found EDI too costly to implement. Simple functionality and low-cost
tools will go a long way in helping these companies afford to exchange high-quality,

Essentials of XML

PART I
24

03 0672323419 CH01 3/15/04 11:15 AM Page 24

structured documents that are capable of supporting commercial exchange and back-end
integration.

As one XML user states, “XML is hip, happening, now.” EDI is perceived as crusty and
old. Text files are blasé, and databases have increasingly become a staple of data storage
locked in a proprietary format. The idea that XML represents a new, fresh approach to
solving many lingering problems in a flexible manner appeals to many in senior manage-
ment. In many instances, buying into a new technology requires the approval of the
senior levels of IT, if not the corporate and management levels. With XML’s continuing
positive exposure, getting management approval on an XML project is become an
increasingly simpler endeavor.

Another of the drawbacks to EDI and some text file and database formats is that they
don’t easily support the needs for internationalization and localization. Specifically, in
those languages it is difficult to represent information contained in a non-Latin alphabet.
XML, as part of its initial specification, supports these needs inherently.

XML syntax allows for international characters that follow the Unicode standard to be
included as content in any XML element. These can then be marked up and included in
any XML-based exchange. The use of internationalization features helps to surpass one
of the early problems of other formats that cause unnecessary schism and conflict
between different geographies. For example, it is not fair that an English technical man-
ual can be marked up in a file format if a Japanese manual can’t be likewise formatted.
XML sought to solve this problem from the get-go.

Advantages of XML over Databases
and Flat Files
XML is a structured document format that includes not only the data but also metadata
that describes that data’s content and context. Most text files simply cannot offer this
clear advantage. They either represent simply the information to be exchanged without
metadata or include metadata in a flat, one-level manner. Common file exchange formats
such as comma-delimited and tab-delimited text files merely contain data in predefined
locations or delimitations in the files. Complex file formats such as Microsoft Excel con-
tain more structured information but are machine-readable only and still do not contain
the level of structuring present in XML.

Relational and object-oriented databases and formats can represent data as well as meta-
data, but for the most part, their formats are not text based. Most databases use a propri-
etary binary format to represent their information. There are other text-based formats that

XML in Context

CHAPTER 1
25

1

X
M

L IN
C

O
N

TEN
T

03 0672323419 CH01 3/15/04 11:15 AM Page 25

include metadata regarding information and are structured in a hierarchical representa-
tion, but they have not caught on in popularity nearly to the extent that XML or even
SGML has.

Although text files can also be transmitted via e-mail and over the Web, structured for-
mats such as relational and object-oriented databases are not easily accessible over the
Internet. Their binary-based formats and proprietary connection mechanisms preclude
their ability to be easily accessible via the Internet. Many times, gateway software and
other mechanisms are needed to access these formats, and when they are made accessible
it usually is through one particular transport protocol, such as HTTP. Other means for
accessing the data, such as through e-mail and FTP, are simply not available.

One of the primary issues faced by alternate file format and database languages is that
processing tools are custom, proprietary, or expensive. When tools are widespread, they
are usually specific to the particular file format in question. One of XML’s greatest
strengths is that processing tools have become relatively widespread and inexpensive, if
not free.

Drawbacks to XML
One of the most notable and significant “knocks” against XML is that it’s huge. XML
takes up lots of space to represent data that could be similarly modeled using a binary
format or a simpler text file format. The reason for this is simple: It’s the price we pay
for human-readable, platform-neutral, process-separated, metadata-enhanced, structured,
validated code.

And this space difference is not insignificant. XML documents can be 3 to 20 times as
large as a comparable binary or alternate text file representation. The effects of this space
should not be underestimated. It’s possible that 1GB of database information can result
in over 20GB of XML-encoded information. This information then needs to get stored
and transmitted over the network—facts that should make computer, storage, and net-
work hardware manufacturers very happy indeed!

Let’s not also forget that computers need to process this information. Large XML docu-
ments may need to be loaded into memory before processing, and some XML documents
can be gigabytes in size! This can result in sluggish processing, unnecessary reparsing of
documents, and otherwise heavy system loads. In addition, much of the “stack” of proto-
cols requires fairly heavy processing to make it work as intended. For example, the
Simple Object Access Protocol (SOAP), which is a cross-platform messaging and com-
munication platform for use in remote procedure calls (RPCs) between and within server
systems, is a very heavy protocol to manipulate on-the-fly. The marshalling that occurs
in the process of working with the protocol can cause system performance to be quite

Essentials of XML

PART I
26

03 0672323419 CH01 3/15/04 11:15 AM Page 26

poor because XML is, after all, a text-based protocol that is being used to make RPCs
between systems. Using XML in this transactional, real-time manner may impose more
requirements on the system as far as parsing and processing than the system can handle.

In addition, a problem of many current XML parsers is that they read an entire XML
document into memory before processing. This practice can be disastrous for XML doc-
uments of very large sizes. XML is not only a data language but a complicated one at
that (from a parsing perspective). It oftentimes increases code complexity, because XML
can be more difficult to parse than a simpler data format such as comma- or tab-delim-
ited fields.

Despite all the added value in representing data and metadata in a structured manner,
some projects simply don’t require the complexity that XML introduces. In these cases,
simple text files do the job more efficiently. For example, a configuration file that
includes a short list of a few commands and their values doesn’t require a multilevel,
metadata-enhanced file format for its communication. Therefore, one shouldn’t take the
stance that simply because XML contains structure and metadata it should be used for all
file formatting and document-exchange needs.

Although XML does offer validation technology, it is not currently as sophisticated as
many of the EDI syntax checkers. XML editors often lack the detail and helpfulness
found in common EDI editors. Many EDI syntax editors can report error details through-
out a document and can complete the parsing of the entire document. Many XML editors
are unable to proceed beyond the first syntax.

In addition, XML inherits the notorious security issues associated with the Internet, but it
also inherits the possible solutions to those problems as well. As long as a system is
designed with security in mind, exchanging XML over the Internet should be fairly prob-
lem free.

XML-Based Standards
We have already discussed the advantages of the “ML” in XML, but the “X” presents
advantages of its own. Extensibility, as applied to XML, is the ability for the language to
be used to define specific vocabularies and metadata. Rather than being fixed in describ-
ing a particular set of data, XML, in conjunction with its DTDs and schema, is able to
define any number of documents that together form a language of their own.

Indeed, hundreds, if not thousands, of specific document vocabularies have been created
based on XML to meet the different needs of healthcare, manufacturing, user interface
design, petroleum refining, and even chess games. Text files and relational database
schemas are rigid in that they are meant to represent the information contained within

XML in Context

CHAPTER 1
27

1

X
M

L IN
C

O
N

TEN
T

03 0672323419 CH01 3/15/04 11:15 AM Page 27

and nothing more. It would be a difficult proposition at best to add a new set of informa-
tion to a text file or relational database management system (RDBMS). XML files, espe-
cially those created using an “open content model,” can easily be extended by adding
additional elements and attributes. Whole classes of documents can be defined simply by
sending a document with a new DTD or schema. Sharing a DTD and schema within a
user community results in a joint specification—if not a de facto or explicit standard.

Where Is XML Heading?
Someone once said that XML is better than sliced bread—it doesn’t mold. With all this
XML hubbub, people tend to forget that XML isn’t an application. It’s not a program-
ming language. It’s not the answer to world peace and starvation. It’s not even a break-
fast cereal. XML is simply a document format that has characteristics that make it very
well suited to sending structured information containing metadata that is easily validated.

However, with a standard language that has all the capabilities of XML, tremendous
advancements can be made in areas dealing with the representation, storage, and
exchange of information. In particular, XML is making it easier to conduct e-business
and e-commerce, manage online content, work with distributed applications, communi-
cate, and otherwise provide value.

E-Business and E-Commerce
In the past few years, the Internet and the Web have revolutionized the way we commu-
nicate. As part of this revolution, the way in which we do business has likewise been rad-
ically altered. We can finally be liberated from paper-based processes and be empowered
to conduct business and improve our customer support. We have moved from “tradi-
tional” business to “e-business,” and XML is helping every step of the way.

E-commerce is not a concept that was invented with the Web. Rather, it has been around
as long as there have been electronic means for exchanging commercial transactions.
EDI has been around since the late 1960s and has been in use to exchange supply, ship-
ping, and purchase information. However, the technology is rather arcane, relatively
expensive, and cumbersome to implement. The promise of being able to exchange vital
business information using open protocols such as XML and the Internet have tickled
more than one idle mind.

It is widely understood that e-business, as a term, refers to a collection of business con-
cepts and processes that are enabled by a variety of electronic or online solutions. In gen-
eral, e-business often refers to the practice of using electronically-enabled processes to

Essentials of XML

PART I
28

03 0672323419 CH01 3/15/04 11:15 AM Page 28

manage and run portions of a company’s business practices, or managing its overall busi-
ness approach using an electronic or online mentality. Particular e-business practices
include delivering information to customers via the Internet, implementing customer
relationship management systems, and connecting branches together utilizing electroni-
cally distributed methods.

Although overlapping somewhat with the definition of e-business, e-commerce generally
refers to the ability to perform a particular transaction with a customer in an electronic or
online format. E-commerce is usually much smaller in scope and focused than overall e-
business and usually implies a direct transaction between two parties. To make the dis-
tinction with e-business clear, buying a book online is considered an e-commerce
transaction, whereas enabling the fulfillment and delivery of that book using electronic
methods is considered e-business.

One of the main uses of XML in e-business is the representation of the various business
transactions that occur on a daily basis between partners in a trading process. This
includes purchase orders, invoices, shipping, bills of lading, and warehousing informa-
tion. Because these transactions represent billions, if not trillions, of dollars on a daily
basis, it’s no wonder that the first target of many XML standards-setting bodies is to
specify these very transactions.

In addition to the actual transactions themselves, XML is helping to standardize the
process by which these messages are exchanged among trading partners. One of the
biggest values that EDI brought to implementing companies was that in addition to get-
ting a file format, you also got a message-transport mechanism. In order for XML to
truly be enabled for e-business, it also needs a means for guaranteeing that messages
reach their final destination in the order and quantity necessary. As such, business-ori-
ented standards groups have been creating the means for transporting, routing, and pack-
aging XML messages for consumption in business processes.

One of the major steps in any e-business process is payment for services rendered or
goods sold. Even in this area, XML is making a major impact. XML has been used to
send payment information of all types, including credit cards, cash, vouchers, barter
exchanges, and electronic funds transfers. Of course, security remains one of the biggest
concerns when it comes to sending payment information, and in this area too, XML is
making waves. XML has been used for security specifications of all sorts, ranging from
encryption and authorization to privacy.

Content Management
The proliferation of computing power and the means to connect these machines has
resulted in an explosion of data. All of a sudden, any application or document can

XML in Context

CHAPTER 1
29

1

X
M

L IN
C

O
N

TEN
T

03 0672323419 CH01 3/15/04 11:15 AM Page 29

instantly be shared with others. This has led to the concept that all information or data
can be considered “content” that can be accessible and integrated with other systems.
XML is being used to enable all forms of content management and application
integration.

In particular, content that formerly was locked into proprietary file formats has been
encoded with a variety of XML-based formats. XML is now enabling this content to be
searched, located, and integrated with applications. “Legacy” systems, such as Customer
Relationship Management (CRM), Enterprise Resource Planning (ERP), accounting,
finance, Human Resources (HR), and other systems, are now communicating with each
other using XML as the “lingua franca” of exchange. In addition, documents that have
been sitting in various file repositories are being marked up and made available to users,
both internal and external, through the Web.

XML is not only being used to mark up and integrate with existing content but also to
assist in its creation and management. A variety of new technologies based on XML are
being used to help in authoring, versioning, posting, and maintenance of content of all
sorts. These new XML formats allow many types of users to work with content in an
open, nonproprietary manner. As well as giving users the ability to control how their con-
tent is viewed, XML is enabling developers to “syndicate” content by distributing it to
subscribers of all types. This means that a single source of data can be placed on multi-
ple Web servers and destinations, without having to key in the data multiple times. Truly,
XML has liberated data to serve its function of conveying information.

Web Services and Distributed Computing
XML even aims to solve some of the long-standing challenges in getting computer sys-
tems to interact with each other on a programmatic level. Distributed computing (the
ability to distribute processing responsibilities and functions among machines on a local
or wide area network) has long faced challenges in the way that programming functional-
ity encapsulated within “objects” is exchanged. Over the past few decades, many differ-
ent approaches have been attempted at getting systems of even the same operating
system type to be able to efficiently exchange programming functionality. This ability to
call remote computing functionality, known as remote procedure calls (RPCs) or distrib-
uted computing, has been attempted through technologies such as the Component Object
Model (COM) and CORBA. However, each of these technologies has its supporters from
different, proprietary implementation camps. COM is supported mainly by the Microsoft
camp, whereas CORBA is supported by competing vendors. XML aims to put this divi-
siveness to rest by specifying a platform-neutral approach by which objects and program-
matic functionality can be operated on a global, distributed basis.

Essentials of XML

PART I
30

03 0672323419 CH01 3/15/04 11:15 AM Page 30

This ability to access computing functionality through XML and Web technologies is
becoming known as Web Services and will no doubt play a major role in the next few
years. Backed by such industry notables as IBM, Microsoft, Sun, and Oracle, Web
Services are poised to change the way computing is accomplished on a distributed, open
basis. XML is being used to define and transport application functionality as well as
allow users a means to register and locate these Web Services for their own internal use.
For example, a Web site developer who wants to create complex shipping and delivery
options can locate a Web Service offered by the United Parcel Service (UPS) and
instantly “plug it in” to his company’s Web site in a seamless fashion without having to
make any modifications to the internal systems.

Peer-to-Peer Networking and Instant
Messaging
In the past few years, another major revolution in communication and data exchange has
swept the Internet. With the increasing number of machines and individuals now able to
access the Internet, file sharing has moved from centralized servers to the desktop.
Individuals can quickly exchange messages, files, and other information with each other
on an on-demand basis. Known as peer-to-peer networks (P2P), this “instant file shar-
ing” technology was popularized by the Napster movement, which aimed to facilitate the
sharing of music, albeit often copyrighted. Despite the negative publicity attached to
Napster, P2P technology has shown that it can be useful in many other arenas, both
within and external to the walls of an organization.

In a similar vein, the ability to quickly send messages to colleagues, friends, acquain-
tances, and business partners has been greatly enhanced by the ubiquity of Internet con-
nectivity. Originally popularized by AOL and ICQ, instant messaging of all sorts has
become very popular. Instant messaging has spread to many different devices, ranging
from desktop computers to cell phones, and has included such features as desktop appli-
cation sharing, video conferencing, and voice communications.

XML is quickly making its presence felt in both of these rapidly growing technology
areas. Various XML specifications and protocols are being used to allow individuals and
organizations to send instant messages, locate other users, and locate, exchange, and
store files on peer-to-peer networks in an open and nonproprietary manner.

XML in Context

CHAPTER 1
31

1

X
M

L IN
C

O
N

TEN
T

03 0672323419 CH01 3/15/04 11:15 AM Page 31

Getting More Meaning out of the Web:
The Semantic Web
The very nature of XML allows users to create their own tags that represent the context
and meaning of data. However, there is nothing that prevents two or more organizations
from calling the same data element different things or using the same name for different
data elements. Furthermore, how will computers be able to understand the various ways
of representing the same information? To a human, “PO,” “Purchase Order,” and
“PurchOrd” all mean the same thing, but to a computer, they are all as different as “cow,”
“swim,” and “Volkswagen.” Crossing language boundaries makes things even more diffi-
cult. Not only do element names change dramatically, but their context and possible
meanings do as well.

The Semantic Web aims to change all this by giving data elements additional ways of
specifying their meaning in a semantically relevant manner. A variety of XML-enabled
initiatives are on the front burner of the W3C and other major standards-setting organiza-
tions. We will soon be introduced to the terms ontology and topic maps and learn how
these new ways of looking at information and its meaning can help computers and
humans make better decisions about how to use data.

In the words of the World Wide Web Consortium (W3C), “The Semantic Web is an
extension of the current Web in which information is given well-defined meaning, better
enabling computers and people to work in cooperation.”

Essentials of XML

PART I
32

Note

You can find more information about the Semantic Web by visiting the W3C
home page at http://www.w3.org/2001/sw/.

The most practical of these implementations will help enable users to make better, more
relevant searches. How many times have you used a search engine and found that 90 per-
cent of the returned results are completely irrelevant? With a context-aware search
engine, it is possible to turn that ratio on its head. Now, rather than wading through a zil-
lion dead-end search engine entries, a user can zero in on the specific item of interest and
make use of the information in the best means possible. The implications of the Semantic
Web, made possible only through the use of XML, are tremendous.

03 0672323419 CH01 3/15/04 11:15 AM Page 32

Summary
The amazing information revolution of the past few years has resulted in tremendous
changes in the way we represent, store, and exchange data. These changes have brought
us to where we are today. However, in the process of trying to deal with the onslaught of
information, we have created an overwhelming number of different file formats, stan-
dards, and mechanisms for exchanging information. This proliferation of data formats
has increasingly complicated our lives as we attempt to interconnect systems that were
not originally created to speak to each other. Furthermore, our use of proprietary systems
and applications has unpleasantly pigeonholed many of us into trying to shoehorn new
uses for our old “legacy” systems.

XML hopes to change all this. Stemming from a heritage of structured data formats,
starting with SGML and ending most recently with HTML, XML combines the sophisti-
cation of structured, metadata-enriched, self-describing data with the ubiquity and sim-
plicity of the Internet. It also presents major advantages over other file format and
exchange mechanisms such as EDI, text files, and relational database formats.

Furthermore, the timing is right for XML to take root and grow. The market craves open
and nonproprietary systems. The user base of trained developers familiar with HTML,
SGML, EDI, and other technologies is growing tremendously. The prevalence and wide-
spread use of the Internet provides a perfect platform for the exchange of information
and integration of systems. What’s more, XML has firmly jumped on the positive public-
ity bandwagon. XML may not have been the first technology of its kind, but it is at the
right place at the right time.

Although XML may not be the answer to all the world’s ills, it represents the latest itera-
tion of steadily improving ways for us to communicate and interact.

This book will help you find the best ways to use XML in a manner that is not only
detailed and comprehensive for the intermediate user but also in a way that borrows from
experience and practical use of XML in the real world. The authors of this book reflect a
wide range of experiences with XML in practical implementation and include industry
notables and professionals in the field who have been using XML, in some instances,
almost since its very day of inception.

XML in Context

CHAPTER 1
33

1

X
M

L IN
C

O
N

TEN
T

03 0672323419 CH01 3/15/04 11:15 AM Page 33

03 0672323419 CH01 3/15/04 11:15 AM Page 34

IN THIS CHAPTER

• Introduction to XML Syntax 36

• XML Document Structure 39

• XML Content Models 51

• Rules of XML Structure 53

• Well-Formed and Valid Documents 56

• Linking XML Documents Together 57

• Namespaces in XML 58

• Applying Style to XML 61

• Basics of Reading and
Processing XML 62

• International Language Support
in XML 65

2
C

H
A

PT
ER

The Fundamentals
of XML

04 0672323419 CH02 3/15/04 11:15 AM Page 35

In the previous chapter, you were introduced to the ocean of possibilities that XML pro-
vides. Now, it is time to get your feet wet. You have seen how XML has emerged from a
rich history of structured data representation formats to meet the current needs of devel-
opers and content generators. However, the question remains, “Now what?” How can
you make use of XML to meet your specific application and development needs? What
are the basics of XML so that you can get started and create XML applications today?

In this chapter, you will learn the basic elements and fundamentals of the structure and
meaning of XML. You will learn what tools and technologies are needed to read, write,
and process XML documents. In addition, this chapter identifies the various portions of
the XML document, how they interrelate, and the specifications in working with those
various document components. Finally, you will be introduced to the tools you need to
create, read, and process XML documents. These tools allow you to unlock the wealth
that XML promises.

We’ll explore the details in a sample XML document, and in the process you’ll learn all
about

• Markup languages

• The XML document structure

• Elements

• Attributes

• Entities

• Document types

• The well-formed and valid XML document

• Unicode and internationalization

• Reading and processing XML

Introduction to XML Syntax
Every language and document representation format needs to have a goal. The “goal” of
a document’s format gives it meaning and a long-term direction. After all, it is not possi-
ble for a single data-representation format to be used for all possible data needs. The
goal of the Microsoft Word format is to represent a word-processing document; the goal
of the Microsoft Excel format is to represent a spreadsheet of numerical information.
Although it is possible to use Excel to represent a word-processing document and Word
to encode numerical data, these are not the “intended uses” of these document formats.
Continuing development of the formats will not make Word a better spreadsheet or Excel
a better word processor. It’s like fitting a square peg in a round hole.

Essentials of XML

PART I
36

04 0672323419 CH02 3/15/04 11:15 AM Page 36

So, what is the goal of XML and its intended use? We have spent a chapter talking about
how XML can be used to encode any structured information, but the one-size-fits-all
document format simply doesn’t exist. XML is good at representing information that has
an extensible, hierarchical format and requires encoding of metadata. These three con-
cepts form the basis of the XML language’s structure and data model.

The Fundamentals of XML

CHAPTER 2
37

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

NOTE

If you’re interested in hearing about XML syntax straight from the horse’s
mouth, you can find the complete W3C XML 1.0 Recommendation in Appendix
A of this book.

Markup Languages and Self-Describing Data
One of the early design goals of XML was that it should be fairly easy to create XML
documents using standard text editors and widely available editing tools. This is actually
a legacy of the SGML and HTML languages, which are also text based. These languages
use “markup” in order to encode metadata in a text format. The main concept behind
markup languages is that they use special text strings to surround data or text with infor-
mation that indicates the context, meaning, or interpretation of the data encapsulated in
the markup. In effect, markup languages in general and XML in particular really contain
only two kinds of information: markup elements and actual data that are given meaning
by these markup elements. Together, these are known as XML text.

Caution

It is a mistake to call just the text that is being marked up in an XML document
“XML text,” because this term refers to the combination of markup elements
and character data, and not just character data alone.

Markup text has a couple rules. First, it needs to be differentiated from the rest of the
document text by a unique set of characters that delineates where the markup informa-
tion starts and ends. These special characters are known as delimiters. The XML lan-
guage has four special delimiters, as outlined in Table 2.1.

04 0672323419 CH02 3/15/04 11:15 AM Page 37

TABLE 2.1 XML Delimiter Characters

Character Meaning

< The start of an XML markup tag

> The end of an)> less than angle brackets> XML markup
tag

& The start of an XML entity

; The end of an XML entity

In XML, angle brackets (less-than and greater-than signs) are used to delimit an XML
“tag,” and the ampersand and semicolon characters delimit “entity” information. Tags are
a unit of information that we will refer to later when we start talking about XML ele-
ments, and entities provide another way of encoding specific information within an XML
document.

Of course, the data contained within the delimiting characters is where all the informa-
tion lies. Because XML is a plain-text language, markup tags can actually indicate what
information is being described. This is actually a major feature of XML and similar lan-
guages—namely, the ability for the XML document to self-describe what it is talking
about. The following example in Listing 2.1 shows a simple XML document that demon-
strates the self-describing property of XML.

LISTING 2.1 XML As a Self-Describing Language

<?xml version=”1.0”?>
<the_following_text_is_my_first_name>Ron</the_following_text_is_my_first_name>

It is clear from this example that the markup tag is talking about someone’s first name,
and the encapsulated text is the actual first name. The power of a self-describing lan-
guage is tremendous. It simplifies document creation, maintenance, and debugging. This
also makes it easier to communicate with others who may not have prior knowledge of a
document’s contents. Of course, the big drawback of such languages is that they take up
a lot of space. But nowadays, disk space and memory are plentiful and cheap.

A Simple XML Document
Throughout this chapter, we will refer to a simple XML document to demonstrate the
various portions of an XML document and how it is structured. In this case, we’ll talk
about a shirt. There’s actually a lot we can talk about with regard to a shirt: size, color,
fabric, price, brand, and condition, among other properties. Listing 2.2 shows one possi-
ble XML rendition of a document describing a shirt. Of course, there are many other

Essentials of XML

PART I
38

04 0672323419 CH02 3/15/04 11:15 AM Page 38

possible ways to describe a shirt, but this example provides a foundation for our further
discussions.

LISTING 2.2 A Simple XML document

<?xml version=”1.0”?>

<shirt>
<model>Zippy Tee</model>
<brand>Tommy Hilbunger</brand>
<price currency=”USD”>14.99</price>
<on_sale/>
<fabric content=”60%”>cotton</fabric>
<fabric content=”40%”>polyester</fabric>
<options>
<colorOptions>

<color>red</color>
<color>white</color>

</colorOptions>
<sizeOptions>
<size>Medium</size>

<size>Large</size>
</sizeOptions>

</options>
<description>

This is a funky Tee shirt similar to the
Floppy Tee shirt
</description>
</shirt>

XML Document Structure
As you can tell from the example in Listing 2.2, an XML document consists of a number
of discrete components or sections. Although not all the sections of an XML document
may be necessary, their use and inclusion helps to make for a well-structured XML docu-
ment that can easily be transported between systems and devices.

The major portions of an XML document include the following:

• The XML declaration

• The Document Type Declaration

• The element data

• The attribute data

• The character data or XML content

The Fundamentals of XML

CHAPTER 2
39

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

04 0672323419 CH02 3/15/04 11:15 AM Page 39

Each of these major components will be explored in great detail in this section of the
chapter. By the end of this section, you should have a thorough understanding of what
comprises an XML document.

XML Declaration
The first part of an XML document is the declaration. A declaration is exactly as it
sounds: It is a definite way of stating exactly what the document contains. Just like the
Declaration of Independence states that the United States planned to separate itself from
Great Britain, the XML declaration states that the following document contains XML
content.

The XML declaration is a processing instruction of the form <?xml ...?>. Although it is
not required, the presence of the declaration explicitly identifies the document as an
XML document and indicates the version of XML to which it was authored. In addition,
the XML declaration indicates the presence of external markup declarations and charac-
ter encoding. Because a number of document formats use markup similar to XML, the
declaration is useful in establishing the document as being compliant with a specific ver-
sion of XML without any doubt or ambiguity. In general, every XML document should
use an XML declaration. As documents increase in size and complexity, this importance
likewise grows.

The XML declaration consists of a number of components. Table 2.2 lists these various
components and their specifications.

TABLE 2.2 Components of the XML Declaration

Component Description

<?xml Starts the beginning of the processing instruction (in this
case, for the XML declaration).

Version=”xxx” Describes the specific version of XML being used in the
document (in this case, version 1.0 of the W3C specifica-
tion). Future iterations could be 2.0, 1.1, and so on.

standalone=”xxx” This standalone option defines whether documents are
allowed to contain external markup declarations. This
option can be set to “yes” or “no”.

encoding=”xxx” Indicates the character encoding that the document uses.
The default is “US-ASCII” but can be set to any value that
XML processors recognize and can support. The most
common alternate setting is “UTF-8”.

Essentials of XML

PART I
40

04 0672323419 CH02 3/15/04 11:15 AM Page 40

The standalone document declaration defines whether an external DTD will be processed
as part of the XML document. When standalone is set to “yes”, only internal DTDs
will be allowed. When it is set to “no”, an external DTD is required and an internal DTD
becomes an optional feature. Listing 2.3 illustrates a few valid XML declarations.

LISTING 2.3 Valid XML Declarations

<?xml version=”1.0” standalone=”yes”?>
<?xml version=”1.0” standalone=”no”?>
<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

The first declaration defines a well-formed XML document, whereas the second defines
a well-formed and valid XML document. The third declaration shows a more complete
definition that states a typical use-case for XML. Namely, the declaration states that the
XML document complies with version 1.0 of the specification and requires external
markup declarations that are encoded in UTF-8.

Document Type Declaration
Once we are aware that we are talking about a specific version of an XML document, the
next step is to be more specific about the content contained within. The Document Type
Declaration (DOCTYPE) gives a name to the XML content and provides a means to guaran-
tee the document’s validity, either by including or specifying a link to a Document Type
Definition (DTD). Although SGML requires a Document Type Declaration, XML has no
restrictions of the sort, although one should be included to avoid an ambiguous under-
standing of document content.

The Fundamentals of XML

CHAPTER 2
41

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

Caution

Don’t confuse the Document Type Declaration with the Document Type
Definition (DTD). When abbreviated using a “normal” abbreviation method,
both terms would seem the same, but the reality is quite different. A Document
Type Declaration (DOCTYPE) and a DTD serve very different, although related
purposes. The former is used to identify and name the XML content, whereas
the latter is used to validate the metadata contained within.

Although well-formed XML documents don’t require the inclusion of the DOCTYPE, valid
XML documents do. This discussion of “well formed” and “valid” will be covered later
in this document, but the basic gist is that XML documents can be fairly freeform or

04 0672323419 CH02 3/15/04 11:15 AM Page 41

comply to a strict guideline of what content can be contained within. Valid XML docu-
ments must declare the document type to which they comply, whereas well-formed XML
documents can include the DOCTYPE to simplify the task of the various tools that will be
manipulating the XML document.

A Document Type Declaration names the document type and identifies the internal con-
tent by specifying the root element, in essence the first XML tag that the XML-process-
ing tools will encounter in the document. A DOCTYPE can identify the constraints on the
validity of the document by making a reference to an external DTD subset and/or include
the DTD internally within the document by means of an internal DTD subset. The gen-
eral forms of Document Type Declarations follow the forms identified in Listing 2.4.

LISTING 2.4 General Forms of the Document Type Declarations

<!DOCTYPE NAME SYSTEM “file”>
<!DOCTYPE NAME []>
<!DOCTYPE NAME SYSTEM “file” []>

In the first form listed, the DOCTYPE is referring to a document that only allows use of an
externally defined DTD subset. The second declaration only allows an internally defined
subset within the document. The final listing provides a place for inclusion of an inter-
nally defined DTD subset between the square brackets while also making use of an
external subset. In the preceding listing, the keyword NAME should be replaced with the
actual root element contained in the document, and the “file” keyword should be
replaced with a path to a valid DTD. In the case of our shirt example, the DOCTYPE is

<!DOCTYPE shirt SYSTEM “shirt.dtd”>

because the first tag in the document will be the <shirt> element and our DTD is saved
to a file named shirt.dtd, which saved in the same path as the XML document.

The only real difference between internally and externally defined DTD subsets is that
the DTD content itself is contained within the square brackets, in the case of internal
subsets, whereas external subsets save this content to a file for reference, usually with a
.dtd extension. The actual components of the Document Type Declaration are listed in
Table 2.3.

TABLE 2.3 Components of the Document Type Declaration

Component Description

< The start of the XML tag (in this case, the beginning of the
Document Type Declaration).

Essentials of XML

PART I
42

04 0672323419 CH02 3/15/04 11:15 AM Page 42

TABLE 2.3 continued

Component Description

!DOCTYPE The beginning of the Document Type Declaration.

NAME Specifies the name of the document type being defined.
This must comply with XML naming rules.

SYSTEM Specifies that the following system identifier will be read
and processed.

“file” Specifies the name of the file to be processed by the sys-
tem.

[Starts an internal DTD subset.

] Ends the internal DTD subset.

> The end of the XML tag (in this case, the end of the
Document Type Declaration) .

Markup and Content
In addition to the XML declaration and the Document Type Declaration, XML docu-
ments are composed of markup and content. In general, six kinds of markup can occur in
an XML document: elements, entity references, comments, processing instructions,
marked sections, and Document Type Declarations. The following sections explore these
markup types and illustrate how they are used. Of course, needless to say, that which is
not markup is content, and this content must comply with rules of its own.

Elements
Within an XML document, elements are the most common form of markup. XML ele-
ments are either a matched pair of XML tags or single XML tags that are “self-closing.”
Matching XML tags consist of markup tags that contain the same content, except that the
ending tag is prefixed with a forward slash. For example, our shirt element begins with
<shirt> and ends with </shirt>. Everything between these tags is additional XML text
that has either been defined by a DTD or can exist by virtue of the document merely
being well formed. When elements do not come in pairs, the element name is suffixed by
the forward slash. For example, if we were merely making a statement that a shirt
existed, we may use <on_sale/>. In this case, there would be no other matching element
of the same name used in a different manner. These “unmatched” elements are known as
empty elements. The trailing “/>” in the modified syntax indicates to a program process-
ing the XML document that the element is empty and no matching end tag should be

The Fundamentals of XML

CHAPTER 2
43

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

04 0672323419 CH02 3/15/04 11:15 AM Page 43

sought. Because XML documents do not require a Document Type Declaration, without
this clue it could be impossible for an XML parser to determine which tags were inten-
tionally empty and which had been left empty by mistake.

A question arises about the difference between empty elements and matched element
tags that simply contain no content. In reality, there is basically no distinction between
the two. It is valid in XML to use the empty-element tag syntax in either case. Therefore,
it is legal to use a matched start and end tag pair for elements that are declared as empty.
However, for concerns of interoperability and parser compliance, it is best to use the
empty-element syntax for elements declared as empty and to make sure that other ele-
ments have some content contained within.

Elements can be arbitrarily nested within other elements ad infinitum. In essence, XML
is a hierarchical tree. This means that XML elements exist within other elements and can
branch off with various children nodes. Although these elements may be restricted by
DTDs or schema, the nature of XML is to allow for the growth of these elements in a
manner that’s as “wide” or “deep” as possible. This means that a single XML element
can contain any number of child elements, and the depth of the XML tree can consist of
any number of nodes.

You can pretty much name XML elements anything you want, but specific rules need to
be followed so that the elements aren’t confused with other markup content. XML ele-
ments can contain letters, numbers, and other characters, but names cannot start with a
number or any punctuation character. XML names cannot contain spaces because white-
space is used within an element to separate the various attribute sections. Also, XML ele-
ments cannot contain the greater-than or less-than characters for obvious reasons. For
less-obvious reasons, XML elements cannot start with the letters “xml” because they are
reserved for future use. Also, XML elements cannot contain the colon character because
it is reserved for use in XML namespaces (covered later in this chapter).

In particular, no XML element names are reserved because namespaces can be used to
avoid inadvertent conflicts. Although punctuation marks (other than the colon) can be
used within an XML element name, you should avoid the hyphen (-) and period (.)
characters in element names because some software applications might confuse them for
arithmetic or object operations. Element names should be descriptive and not confusing.
After all, one of the main values of XML is that it can be read by humans! For example,
what does <jxf12> mean to anyone but a computer—if anything at all? Document cre-
ators should use descriptive terms that accurately and as specifically as possible describe
the content contained within.

Essentials of XML

PART I
44

04 0672323419 CH02 3/15/04 11:15 AM Page 44

Element names can be as long as you like, with almost no real size limitation. This means
that the element <wow_this_really_is_one_heck_of_a_long_element_name> is actually
valid, but what programmer would want to type that element repeatedly or encode a soft-
ware application to key on that particular element name. Also, some devices with con-
strained memory capabilities may not work well with overly long XML tag names. In any
case, long names are an annoyance to developers, systems, and users alike, despite XML’s
support for this feature. It’s best to leave long content strings to the XML content and
keep them out of element and attribute names. XML also allows for the use of non-
English letters, such as á, é, and ò, in a document. In fact, XML allows all Unicode 2.3
characters to be used, although there is an effort to upgrade the specification to further use
Unicode 3.0 characters in attribute and element names. However, there is no such restric-
tion on XML content, which allows any valid Unicode character to be used.

Attributes
Within elements, additional information can be communicated to XML processors that
modifies the nature of the encapsulated content. For example, we may have specified a
<price> element, but how do we know what currency this applies to? Although it’s pos-
sible to create a <currency> subtag, another more viable approach is to use an attribute.
Attributes are name/value pairs contained within the start element that can specify text
strings that modify the context of the element. Listing 2.5 shows an example of possible
attributes in our shirt example.

LISTING 2.5 Attribute Examples

<price currency=”USD”>…</price>
<on_sale start_date=”10-15-2001”/>

One of the significant features of attributes is that the content described by them can fol-
low strict rules as to their value. Attributes can be required, optional, or contain a fixed
value. Required or optional attributes can either contain freeform text or contain one of a
set list of enumerated values. Fixed attributes, if present, must contain a specific value.
Attributes can specify a default value that is applied if the attribute is optional but not
present. With these properties, attributes can add a considerable amount of value to ele-
ment content. For example, we may wish to restrict the possible currency values submit-
ted to a list of acceptable three-character ISO currency codes. Or, we may only allow the
value “USD” to be submitted. Likewise, we can specify that if no currency value is sub-
mitted, the system will assume “USD” as the default value.

The Fundamentals of XML

CHAPTER 2
45

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

04 0672323419 CH02 3/15/04 11:15 AM Page 45

Essentials of XML

PART I
46

Attributes vs. Elements: What’s the Right Approach?

As you have seen, we can represent information in either elements or attrib-
utes. So, when is the right time to communicate information in an element ver-
sus using an attribute to communicate the same information. For instance, in
our shirt example, when should we use <shirt><color>red</color></shirt>
versus <shirt color=”red”>? This issue of elements versus attributes is a con-
stantly recurring question that can be traced back to the SGML days. Of course,
the answer is, it depends! After all, both formats are valid.

The main way to determine whether an element approach is more favorable to
an attribute approach, or vice versa, is to identify how the information is to be
used. Because most XML users agree that the decision is dependent on the
implementation, many would argue that XML is not really an ideal language
for data modeling, which requires a more strict sense for how data should be
represented. Some of the common arguments are as follows.

Some visual XML browsers display element information but ignore attribute val-
ues for purposes of display. Of course, many technologies display both element
and attribute values. For those that don’t, the use of elements may prevail over
attributes.

When DTDs are used, attributes allow default or enumerated values as well as
provide a means to restrict the possible data entered. Of course, various XML-
based schema technologies are allowing these very same features in elements.
However, for those using exclusively DTDs, these features may be a deciding
point for the choice of attributes.

Because attributes are nonstructural (that is, they are merely name/value pairs),
if you need further internal structure, the use of elements will be the logical
choice.

If you are producing an application that is keyed on the name of elements, you
should choose elements as the source of information. However, if that informa-
tion is mainly in empty elements, using attributes can be equally useful and
more simple.

Attributes can simplify the level of XML element nesting but can complicate
document processing.

Various technologies are keyed on the element name rather than the attribute
name or value. For this reason, using either elements or attributes may be the
right approach.

If an item needs to occur multiple times, only elements can be used because
attributes are restricted to appearing once within an element.

04 0672323419 CH02 3/15/04 11:15 AM Page 46

Entity References
There are times when we want to introduce special characters or make use of content that
is constantly repeated without having to enter it multiple times. This is the role of the XML
entity. Entities provide a means to indicate to XML-processing applications that a special
text string is to follow that will be replaced with a different literal value. Entities can solve
some otherwise intractable problems. For example, how do we insert a greater-than or less-
than sign in our text? XML processors would interpret those characters as parts of an XML
tag, which may not be our desired result. As such, the entity gives us a way to provide a
character sequence that will be replaced with these otherwise invalid characters.

Each entity has a unique name that is defined as part of an entity declaration in a DTD or
XML Schema. Entities are used by simply referring to them by name. Entity references
are delimited by an ampersand at the beginning and a semicolon at the ending. The con-
tent contained between the delimiters is the entity that will be replaced. For example, the
< entity inserts the less-than sign (<) into a document. Elements can be encoded so
they aren’t processed or replaced by their entity equivalents in order to be used for dis-
play or encoding within other element values. For example, the string <element> can be
encoded in an XML document as <element>, and it therefore will not be
processed. Listing 2.6 shows a number of sample entity references.

LISTING 2.6 Sample Entity References

<description>The following says that 8 is greater than 5</description>
<equation>4 > 5</equation>
<prescription>The Rx prescription symbol is ℞

which is the same as ℞</prescription>

The Fundamentals of XML

CHAPTER 2
47

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

In general, elements are logical, structural units of information that represent
objects of information. These objects can either contain textual information or
subelements. However, attributes represent the characteristics of this informa-
tion and therefore can only contain textual information. So, elements represent
objects, whereas attributes represent the properties of those objects. Therefore,
elements should be used for information chunks that are considered to be
informational objects that can be related in a parent/child relationship, whereas
attributes should be used to represent any information that describes the
objects in context.

In any case, neither approach is right or wrong. The use of elements or attrib-
utes is a choice that a designer needs to make upon implementation, taking
into consideration all the benefits and advantages of each approach.

04 0672323419 CH02 3/15/04 11:15 AM Page 47

Entities can also be used to refer to often repeated or varying text as well as to include
the content of external files. For example, an entity &legal; can be replaced with an
organization’s legal disclaimer, consisting of any XML text that is included in the DTD
or read from a file.

There are internal and external entities, and they both can be general or parameter enti-
ties. Internal entities are defined and used within the context of a document, whereas
external entities are defined in a source that is accessible via a URI. Internal entities are
largely simple string replacements, whereas external entities can consist of entire XML
documents or non-XML text, such as binary files. When using an external entity, you
must define the type of the file. External entities that refer to these files must declare that
the data they contain is not XML by using a notation. Parameter entities are entities that
are declared and used within the context of a DTD or schema. They allow users to create
replacement text that can be used multiple times to modularize the creation of valid doc-
uments. Parameter entities can be either internal or external, but they cannot refer to non-
XML data because you can’t have a parameter entity with a notation.

Another special form of entity is the character reference, which is used to insert arbitrary
Unicode characters into an XML document. This allows international characters to be
entered even if they can’t be typed directly on a keyboard. Character entities use decimal
or hexadecimal references to describe their Unicode data values. For example, ℞
and ℞ both encode the “Rx” character, also known as character number U+211E
in Unicode.

Comments
One of the key benefits of XML is that humans can read it. A side effect of this feature is
that there is a necessity to provide documentation around XML content that describes the
intent or context of a given XML markup. Comments are quite simple to include in a
document. The character sequence <!-- begins a comment and --> ends the comment.
Between these two delimiters, any text at all can be written, including valid XML
markup. The only restriction is that the comment delimiters cannot be used; neither can
the literal string --. Comments can be placed anywhere in a document and are not con-
sidered to be part of the textual content of an XML document. As a result, XML proces-
sors are not required to pass comments along to an application. An example of a
comment is shown in Listing 2.7.

LISTING 2.7 A Sample Comment

<!-- The below element talks about an Elephant I once owned... -->
<animal>Elephant</animal>

Essentials of XML

PART I
48

04 0672323419 CH02 3/15/04 11:15 AM Page 48

Processing Instructions
Processing instructions (PIs) perform a similar function as comments in that they are not
a textual part of an XML document but provide information to applications as to how the
content should be processed. Unlike comments, XML processors are required to pass
along PIs. Processing instructions have the following form:

<?instruction options?>

The instruction name, called the PI target, is a special identifier that the processing
application is intended to understand. Any following information can be optionally speci-
fied so that the application is able to understand the context or further requirements of
the PI. PI names can be formally declared as notations (a structure for sending such
information). The only restriction is that PI names may not start with xml, which is
reserved for the core XML standards. Listing 2.8 shows a sample processing instruction.

LISTING 2.8 Example of a Processing Instruction

<?send-message “process complete”?>

Marked CDATA Sections
Some documents will contain a large number of characters and text that an XML processor
should ignore and pass to an application. These are known as character data (or CDATA) sec-
tions. Within an XML document, a CDATA section instructs the parser to ignore all markup
characters except the end of the CDATA markup instruction. This allows for a section of
XML code to be “escaped” so that it doesn’t inadvertently disrupt XML processing.

CDATA sections follow this general form:

<![CDATA[content]]>

In the content section, any characters can be included, with the necessary exception of
the character string]]>. All content contained in the CDATA section is passed directly to
the application without interpretation. This means that elements, entity references, com-
ments, and processing instructions are all ignored and passed as string literals to process-
ing applications. CDATA instructions must exist in the context of XML elements and not
as standalone entities. Listing 2.9 shows sample CDATA information.

LISTING 2.9 A Sample CDATA Section

<object_code>
<![CDATA[
function master(poltice integer) {

The Fundamentals of XML

CHAPTER 2
49

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

04 0672323419 CH02 3/15/04 11:15 AM Page 49

LISTING 2.9 continued

if poltice<=3 then {
intMaster=poltice+IntToString(FindElement(“<chicken>”));

}
}
]]>

</object_code>

Document Type Definitions
Document Type Definitions (DTDs) provide a means for defining what XML markup
can occur in an XML document. Basically, the DTD provides a mechanism to guarantee
that a given XML document complies with a well-defined set of rules for document
structure and content. These rules provide a framework for guaranteeing the “validity” of
a document. DTDs and the more recent XML Schema are the means for defining the
validity constraints on XML documents. Each of these are covered in great detail in later
chapters of this book, but for now it is important to recognize that DTDs represent a spe-
cific form of XML text that is allowable in an XML document.

Essentials of XML

PART I
50

Caution

Don’t confuse the Document Type Definition (DTD) with the Document Type
Declaration (DOCTYPE). See the earlier caution in the “Document Type
Declaration” section for a more precise clarification of these two terms.

XML Content
Of course, the value of XML is greatly enhanced by the presence of content within the
elements. The content between XML elements is where most of the value lies in an
XML document. In fact, that is almost exclusively where all the variable content lies.
XML elements are usually well defined and strict in their application. When a DTD or
XML Schema is used, users can’t change these portions of the document. Therefore, the
informational content that the metadata describes is precisely where the variable data
resides. Of course, it then behooves XML to be as widely lenient about XML content as
possible.

In fact, XML content can consist of any data at all, including binary data, as long as it
doesn’t violate rules that would confuse the content with valid XML metadata instruc-
tions. This means that XML metadata delimiters must be escaped if they are not to

04 0672323419 CH02 3/15/04 11:15 AM Page 50

be processed, and entities should be referenced if they are needed. XML content can
contain any characters, including any valid Unicode and international characters. The
content can be as long as necessary and contain hundreds of megabytes of textual infor-
mation, if required. Of course, the size of the content is an implementation decision.

XML Content Models
Because elements, attributes, and content are the most important parts of the XML docu-
ment, figuring out the restrictions on how those elements and attributes can be created,
modified, or removed from a document is of extreme importance. Should an XML docu-
ment creator allow additional, unforeseen elements to be added to the document in an
arbitrary fashion, or should the creator restrict elements to only those that are allowed by
the DTD or XML Schema? These questions are the main concepts behind the use of
XML content models. A content model provides a framework around which the extensi-
bility features of XML can be taken advantage of, if at all. At the very least, the model
provides an indication of the intent of the document creator as to the explicit extensibility
of the document, because users can extend a document using an internal DTD subset if
they are so inclined. However, by doing so, the users are “overriding” the content model
as intended by the document creator.

An “open” content model enables a user to add additional elements and attributes to a
document without them having to be explicitly declared in a DTD or schema. In an open
content model, users can take full advantage of the extensibility of XML without having
to make changes to a DTD. As expected, the use of a DTD precludes an open content
model. In fact, you cannot have an open content model when using a DTD, except if a
user chooses to override the DTD by using an internal DTD subset. However, new
schema formats, such as XML Schema, provide this mechanism. Also, the use of an
open content model isn’t completely freeform. For example, you cannot add or remove
content that will result in the existing content model being broken. In an open content
model, all required elements must be present, but it is not invalid for additional elements
to also be present. This means that content must follow the rules of the schema before
extensibility features can be taken advantage of. If these rules are not followed, XML
validation will fail. In addition, you can add undeclared XML elements in an open con-
tent model as long as they are defined in a different namespace. By definition, well-
formed XML documents that have no validity constraints are open content models.

On the other hand, a “closed” content model restricts elements and attributes to only
those that are specified in the DTD or schema. By definition, a DTD is a closed content
model because it describes what may exclusively appear in the content of the element. In
a closed model, the XML document creator maintains strict control of specifically which

The Fundamentals of XML

CHAPTER 2
51

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

04 0672323419 CH02 3/15/04 11:15 AM Page 51

elements and attributes as well as the order that markup may appear in a given compliant
document. Closed models are helpful when you’re enforcing strict document exchange
and provide a means to guarantee that incoming data complies with data requirements.

A more focused content model is a “mixed” content model, which enables individual ele-
ments to allow an arbitrary mixture of text and additional elements. These mixed ele-
ments are useful when freeform fields, with possible XML or other markup data are to
be included. This allows the majority of the document to remain closed while portions of
the document are noted as extensible. Mixed models represent a good compromise that
can allow for strictness while providing a limited means for extensibility.

Handling Whitespace in XML
Whitespace is the term used for character spaces, tabs, linefeeds, and carriage returns in
documents. Issues around the handling of these seemingly “invisible” characters are
important for many reasons. It is hard to tell whether whitespace should be ignored or
passed “as is” to documents. Listing 2.10 illustrates our shirt example with various
whitespace issues.

LISTING 2.10 Shirt Example with Whitespace

<?xml version=”1.0”?>
<!DOCTYPE shirt SYSTEM “shirt.dtd”>
<shirt>

<model>Zippy Tee</model>
<brand>Tommy

Hilbunger</brand>
<price currency=”USD”>14.99</price>
<on_sale/>
<fabric content=”60%”>cotton</fabric>
<fabric content=”40%”>polyester</fabric>
<options>

<colorOptions>
<color>red</color>
<color>white</color>

</colorOptions>

<sizeOptions>
<size>Medium</size>

<size>Large</size>
</sizeOptions>

</options>
<description>

This is a funky Tee shirt similar

Essentials of XML

PART I
52

04 0672323419 CH02 3/15/04 11:15 AM Page 52

LISTING 2.10 continued

to the
Floppy Tee shirt
</description>
</shirt>

Are these various whitespace issues significant? The whitespace between the initial
<shirt> element and the <model> element may not be significant, but the whitespace
within the <description> tag might be. How are we to know?

It turns out that the only way XML processors can determine whether whitespace is sig-
nificant is by knowing the content model of the XML document. Basically, in a mixed
content model, whitespace is significant because the application is not sure as to whether
or not the whitespace will be used in processing, but in an open or closed model, it is
not. However, the rule for XML processors is that they must pass all characters that are
not markup intact to the application. Validating processors also inform applications about
the significance of the various whitespace characters. In addition, a special attribute
called xml:space with the value preserve or default can be used to explicitly indicate
that the whitespace contained within the element is significant. For example,
xml:space=’preserve’ indicates that all whitespace contained in the element is signifi-
cant. Of course, the xml:space attribute must be defined in the DTD as an enumerated
type with only those two values.

Also, XML processors simplify cross-platform portability issues by normalizing all end-
of-line characters to the single linefeed character “&#A;”.

Rules of XML Structure
We have explored the structure of XML documents, but there are various rules that XML
documents must comply with in order for them to be appropriately processed and parsed.
Some of these rules enforce the hierarchical, structured nature of XML, whereas others
impose restrictions to simplify the task of XML processing for applications.

All XML Elements Must Have a Closing Tag
Even though other markup languages such as HTML allow their markup tags to remain
“open” or contain only a beginning element tag, XML requires all tags to be closed.
They can be closed by matching a beginning element tag with a closing tag, or they can
be closed by the use of empty elements. In either case, no tag may be left unclosed.
Listing 2.11 shows this incorrect use of XML.

The Fundamentals of XML

CHAPTER 2
53

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

04 0672323419 CH02 3/15/04 11:15 AM Page 53

LISTING 2.11 Incorrect XML Due to Unclosed Tags

<markup>This is not valid XML
<markup>Since there is no closing tag

XML Tags Are Case Sensitive
In XML, the use of capitalization is incredibly important. XML elements and attributes
are case sensitive. This means that differences in capitalization will be interpreted as dif-
ferent elements or attributes. This differs from HTML, where tags are not case sensitive
and arbitrary capitalization is allowed. In XML, the elements <shirt> and <Shirt> are
as different as <egg> and <house>. Listing 2.12 shows an example of the incorrect
matching of element capitalization.

LISTING 2.12 Incorrect XML Due to Capitalization Mismatch

<Markup>These two tags are very different</markup>

All XML Elements Must Have Proper Nesting
Unlike languages such as HTML, XML requires that elements be nested in proper hierar-
chical order. Tags must be closed in the reverse order in which they are opened. A proper
analogy is to think of XML tags as envelopes. There must never be a case where one
envelope is closed when an envelope contained within it is still open. Listing 2.13 shows
an incorrect nesting order of XML elements.

LISTING 2.13 Incorrect XML Due to Improper Element Nesting

<oxygen><nitrogen>These tags are improperly nested</oxygen></nitrogen>

All XML Documents Must Contain a
Single Root Element
XML documents must contain a single root element—no less, and certainly no more. All
other elements in the XML document are then nested within this root element. Once the
root element is defined, any number of child elements can branch off it as long as they
follow the other rules mentioned in this section. The root element is the most important
one in the document because it contains all the other elements and reflects the document
type as declared in the Document Type Declaration. Root elements can be listed only
once and not repeated, nor can there be multiple, different root elements. Listing 2.14
illustrates the improper use of root elements.

Essentials of XML

PART I
54

04 0672323419 CH02 3/15/04 11:15 AM Page 54

LISTING 2.14 Incorrect XML Due to Multiple Root Elements

<?xml version=”1.0”?>
<Father>

<Son>
<Daughter>
</Daughter>

</Son>
</Father>
<Mother>

<Son>
<Daughter>
</Daughter>

</Son>
</Mother>

Attribute Values Must Be Quoted
When attributes are used within XML elements, their values must be surrounded by
quotes. Although most systems accept single or double quotes for attribute values, it is
generally accepted to use double quotes around attribute values. If you need to use the
quote literal within an attribute value, you can use the quote entity " or ' to
insert the required quote character. Listing 2.15 illustrates the improper use of non-
quoted attributes.

LISTING 2.15 Incorrect XML Due to Improper Quoting of Attributes

<?xml version=1.0?>
<shirt>
<price currency=USD>14.99</price>

</shirt>

Attributes May Only Appear Once in the Same
Start Tag
Even though attributes may be optional, when they are present, they can only appear
once. This simple restriction prevents ambiguity when multiple, conflicting attribute
name/value pairs are present. By only allowing a single attribute name/value pair to be
present, the system avoids any conflicts or other errors. Listing 2.16 shows the improper
use of multiple attributes within a single element.

LISTING 2.16 Incorrect XML Due to Multiple Attribute Names in Start Tag

<shirt size=”large” size=”small”>Zippy Tee</shirt>

The Fundamentals of XML

CHAPTER 2
55

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

04 0672323419 CH02 3/15/04 11:15 AM Page 55

Attribute Values Cannot Contain References to
External Entities
Although external entities may be allowed for general markup text, attribute values can-
not contain references to external entities. However, attribute values can make use of
internally defined entities and generally available entities, such as < and ".

All Entities Except amp, lt, gt, apos, and quot
Must Be Declared Before They Are Used
Although this goes without saying, entities cannot be used before they are properly
declared. Referring to an undeclared entity would obviously result in an XML document
that is not well formed and proper. However, there are a number of entities that can be
assumed to be defined by XML processors. So far, these are limited to the entities &,
<, >, ', and ".

Other Rules of XML Structure
Other rules exist for well-formed XML. For example, binary entities cannot be refer-
enced in the general content of an XML document. Rather, these entities can only be
used in an attribute declared as ENTITY or ENTITIES. Also, text and parameter entities are
not allowed to be directly or indirectly recursive, and the replacement text for all parame-
ter entities referenced inside a markup declaration must be complete markup
declarations.

Well-Formed and Valid Documents
Not all XML documents are the same. In particular, two specific descriptions can be
applied to XML documents to describe the content contained within them. XML docu-
ments can be well formed, and they can also be valid. Validity implies “well-formed-
ness,” but not vice versa. That’s because a valid XML document is a more strict form of
a well-formed XML document. It’s like saying that a square is a rectangle, but not vice
versa.

Well-Formed Documents
An XML document is well formed if it follows all the preceding syntax rules of XML.
On the other hand, if it includes inappropriate markup or characters that cannot be
processed by XML parsers, the document cannot be considered well formed. It goes
without saying that an XML document can’t be partially well formed. And, by definition,

Essentials of XML

PART I
56

04 0672323419 CH02 3/15/04 11:15 AM Page 56

if a document is not well formed, it is not XML. This means that there is no such thing
as an XML document that is not well formed, and XML processors are not required to
process these documents.

Valid Documents
Although the property of “well-formedness” is a matter of making sure the XML docu-
ment complies to syntactical rules, the property of validity is a different ballgame. A
well-formed XML document is considered valid only if it contains a proper Document
Type Declaration and if the document obeys the constraints of that declaration. In most
cases, the constraints of the declaration will be expressed as a DTD or an XML Schema.
Well-formed XML documents are designed for use without any constraints, whereas
valid XML documents explicitly require these constraint mechanisms. In addition to con-
straining the possible elements and the ordering of those elements in a document, valid
XML documents can take advantage of certain advanced features of XML that are not
available to merely well-formed documents due to their lack of a DTD or XML Schema.
Some of these advanced features include linking mechanisms, value and range bounding,
and data typing.

Although the creation of well-formed XML is a simple process, the use of valid XML
documents can greatly improve the quality of document processes. Valid XML docu-
ments allow users to take advantage of content management, business-to-business trans-
actions, enterprise integration, and other processes that require the exchange of
constrained XML documents. After all, any document can be well formed, but only spe-
cific documents are valid when applied against a constraining DTD or schema.

Linking XML Documents Together
The clear benefit and raison d’étre of HTML is that documents can be linked together to
form an aggregate system of information and value. XML has a similar value proposition
when taking into account the XLink and XPointer specifications. These specifications
allow users to link related XML documents together in a structured manner.

XLink provides XML document links that express a relationship between XML docu-
ments and resources. A resource is any location within an XML document, such as an
element, document tree, or any portion of content that can be addressed in a link. The
nature of the link relationship between resources is determined by applications that
process the link within its context.

XPointers provide a means to locate these resources, without explicitly requiring that the
resource be identified with an ID attribute. Links are not identified by name because

The Fundamentals of XML

CHAPTER 2
57

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

04 0672323419 CH02 3/15/04 11:15 AM Page 57

XML does not have a fixed set of elements. XML processors instead use a specific
attribute to identify links. Additional attributes provide further information to the XML
processor as well as provide a facility to avoid link name collisions and a means to con-
trol linking behavior.

Namespaces in XML
As XML documents become more predominate, the increasing interdependence of XML
documents will require the use of technologies to separate XML documents with multi-
ple, possibly conflicting tag sets. For example, our shirt XML DTD may include part of
a more general “apparel” DTD. In this case, a mechanism is provided to associate these
various XML data sources. In order for a processing application to properly understand
and associate the correct elements, it must know which tag set the elements come from.

XML solves this problem with namespaces. Namespaces use a colon-delimited prefix to
associate external semantics with elements that can be identified via a Universal
Resource Identifier (URI). The use of the namespace-identified element then acts as if
the element was defined in a local manner. Listing 2.17 shows an example of namespace
usage.

LISTING 2.17 Namespace Example

<?xml version=”1.0”?>
<shirt:shirt xmlns:shirt=”http://xmlshirts.org/schema”
xmlns:apparel=”http://xmlapparel.org/schema”>

<shirt:model>Zippy Tee</shirt:model>
<apparel:mfgID>KFL233562</apparel:mfgID>

<shirt:description>This is a funky Tee shirt
similar to the Floppy Tee shirt

</shirt:description>
</shirt:shirt>

Because XML is an open standard in which XML authors are free to create whatever ele-
ments and attributes they wish, it’s inevitable that multiple XML developers will choose
the same element and attribute names for their standards. However, they could mean,
depending on the document, entirely different things. For instance, let’s examine the
following sample XML document:

<Customer>
<Name>John Smith</Name>

</Customer>

Essentials of XML

PART I
58

04 0672323419 CH02 3/15/04 11:15 AM Page 58

This sample document contains the root element <Customer>, which contains a child
element called <Name>. We can clearly determine that the <Name> element contains the
name of the customer referred to by the <Customer> element.

Now, let’s look at another sample XML document. This time, however, the XML
document contains details regarding a product, as shown here:

<Product>
<Name>Hot Dog Buns</Name>

</Product>

You can see that this document contains a <Product> element as the root element and a
<Name> element, which contains the name of the product. Now, let’s look at another typi-
cal scenario. Let’s imagine that the customer places an order for a product (a very typical
scenario for a Web store). The following XML document could be constructed to indi-
cate that a customer has placed an order for a particular product:

<Customer>
<Name>John Smith</Name>
<Order>

<Product>
<Name>Hot Dog Buns</Name>

</Product>
</Order>

</Customer>

We can easily distinguish the differences between the two <Name> elements. The first
<Name> element, which appears as a child of the <Customer> element, contains the cus-
tomer’s name. The second <Name> element, on the other hand, contains the product’s
name. However, how can the parser tell the difference? It can’t, not unless we explicitly
tell it what the difference is. This is where XML namespaces come in. By using name-
spaces, XML parsers can easily tell the difference between the two <Name> elements.

Therefore, modifying the preceding XML document to specify the appropriate name-
spaces turns it into this:

<Customer>
<cust:Name xmlns:cust=”customer-namespace-URI”>John Smith</cust:Name>
<Order>

<Product>
<prod:Name xmlns:prod=”product-namespace-URI”>Hot Dog Buns</prod:Name>

</Product>
</Order>

</Customer>

Now, the XML parsers can easily tell the difference between any validation rules
between the customer’s <Name> element and the product’s <Name> element.

The Fundamentals of XML

CHAPTER 2
59

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

04 0672323419 CH02 3/15/04 11:15 AM Page 59

Declaring Namespaces
Within an XML document, namespaces can be declared using one of two methods: a
default declaration or an explicit declaration. Which method to use is completely open
and left up to you; either way will suffice.

A default namespace declaration specifies a namespace to use for all child elements of
the current element that do not have a namespace prefix associated with them. For
instance, in the following XML document, a default declaration for the <Customer> ele-
ment is defined by using the xmlns attribute on the parent element without specifying or
attaching a prefix to the namespace:

<Customer xmlns=”http://www.eps-software.com/po”>
<Name>Travis Vandersypen</Name>
<Order>

<Product>
<Name>Hot Dog Buns</Name>

</Product>
</Order>

</Customer>

For this XML document, all child elements of the <Customer> element are specified as
belonging to the http://www.eps-software.com/po namespace.

Sometimes, however, it may be necessary and more readable to explicitly declare an ele-
ment’s namespace. This is accomplished much the same way in which a default name-
space is declared, except a prefix is associated with the xmlns attribute. If you examine
the following XML document, you can see that a prefix of po is with the elements within
the document:

<po:Customer xmlns:po=”http://www.eps-software.com/po”>
<po:Name>Travis Vandersypen</po:Name>
<po:Order>

<po:Product>
<po:Name>Hot Dog Buns</po:Name>

</po:Product>
</po:Order>

</po:Customer>

One thing worth pointing out here is that the prefix associated with the elements is a
shorthand notation to be used in place of the full namespace. Although the preceding
XML document provides a rather simple scenario for explicitly identifying namespaces,
the true power behind explicitly declaring namespaces becomes clear when you utilize
elements from different namespaces, as is the case in the following XML document:

<cust:Customer xmlns:cust=”http://www.eps-software.com/customer”
➥ xmlns:ord=”http://www.eps-software.com/order”>

Essentials of XML

PART I
60

04 0672323419 CH02 3/15/04 11:15 AM Page 60

<cust:Name>Travis Vandersypen</cust:Name>
<ord:Order>

<ord:Product>
<ord:Name xmlns:prod=”product-namespace-URI”>Hot Dog Buns</ord:Name>

</ord:Product>
</ord:Order>

</cust:Customer>

From looking at this example, you can see that two different namespaces are referenced:
one for customers and one for orders. This allows a different set of rules to be applied for
customer names versus product names.

Identifying the Scope of Namespaces
By default, all child elements within a parent element, unless indicated otherwise by ref-
erencing another namespace, appear within the parent’s namespace. This allows all child
elements to “inherit” their parent element’s namespace. However, this “inherited” name-
space can be overwritten by specifying a new namespace on a particular child element.
Let’s examine the following XML document:

<Customer xmlns=”http://www.eps-software.com/customer”>
<Name>Travis Vandersypen</Name>
<Order xmlns=”http://www.eps-software.com/order”>
<Product>

<Name>Hot Dog Buns</Name>
</Product>

</Order>
</Customer>

In the preceding XML document, the <Customer> element declares a default namespace
located at http://www.eps-software.com/customer. All elements contained within the
<Customer> element that do not explicitly qualify a namespace “inherit”, the namespace
declared by the <Customer> element. However, the <Order> element also declares a
default namespace. Starting at the <Order> element, all unqualified elements within the
<Order> element will inherit the namespace declared by the <Order> element.

Applying Style to XML
Because XML largely represents information, it is separated from how that information
is to be displayed and represented to the end user. HTML is a language that strongly con-
nects its metadata with presentation. For example, the <hr> element always displays a
horizontal rule. However, there is no such limitation for the <horizontal_rule> element
in XML, which can be displayed as a horizontal, vertical, or diagonal line, a string of
asterisks, an image of the prime minister, or anything at all! Therefore, styling and
presentation-level specificity needs to be applied to XML.

The Fundamentals of XML

CHAPTER 2
61

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

04 0672323419 CH02 3/15/04 11:15 AM Page 61

In HTML, the concept of applying style sheets to further abstract the presentation layer
was introduced in the form of Cascading Style Sheets (CSS). The intent was to provide a
mechanism to allow for the flexible display of HTML across multiple devices, browsers,
and display formats. Of course, because XML doesn’t have any presentation capability at
all, it makes sense to use a similar approach. XML borrows from this concept; the result
is the XML Stylesheet Language (XSL). In XML, no element includes a notion of how it
is to be displayed, but XSL provides a mechanism to convert the XML element to a
visual or other rendition for output. XSL can convert an XML document into HTML,
SGML, RTF, another XML format, or any other file format possible. In this method,
XML truly separates its content from presentation by providing an abstraction as to how
the information specified is to be displayed.

Basics of Reading and Processing
XML
Now that you have learned the basics of how to write well-formed XML documents
(learning how to write valid XML documents is covered in the chapters on DTDs and the
XML Schema), it is now important that you learn how to process and handle these XML
documents. After all, the value of XML is not in its creation but in its use.

Along these lines, processing XML follows a few major lines: parsing the XML docu-
ment, processing and making use of the parsed elements, and integrating with other sys-
tems and programming languages. Because XML is just a text document format and not
a programming language, it provides no mechanism to instruct machines how to process
the content contained within it. That’s actually a good thing. Because there are no spe-
cific processing requirements, XML documents can be processed by all types of devices,
operating systems, clients, servers, and other information consumers, all which only need
to understand how to read XML. XML not only has separated the presentation from data,
it has separated the strict processing requirements from data. In essence, XML is as pure
a data format as possible.

The following sections explore the various steps of processing XML and the tools
available to accomplish these tasks.

Parsers
The first step for any system that plans to make use of XML documents is to actually
read the documents into memory. Although this may seem like a simple task, the struc-
tured nature of XML imposes several requirements on parsers. In addition, the behavior

Essentials of XML

PART I
62

04 0672323419 CH02 3/15/04 11:15 AM Page 62

of parsing applications needs to be consistent so that XML documents can be reliably
exchanged between disparate systems. As a result, XML parsers must adhere to a certain
accepted level of compliance.

Because an XML document is just a text file, any user can write his or her own program
to read in the XML text file and take it apart for use in a programming application.
However, the amount of time and complexity it would take to write such an XML docu-
ment reader (which, by the way, would have to be written over and over again for the dif-
ferent programs that need access to the information in XML documents) would make the
adoption of XML an onerous task. The WC3 (the XML standardization body) came to
the realization that a standard mechanism was needed to parse these XML documents
and promoted the use of compliant XML parsers. As a result, a number of widely avail-
able XML parsers exist that allow the application developer to focus on application-spe-
cific code rather than on XML document reading or processing.

In actuality, there are really two types of XML parsers: validating parsers and nonvalidat-
ing parsers. Nonvalidating parsers merely read XML documents and verify that the docu-
ments are well formed. Validating parsers read well-formed documents in addition to
checking their compliance against a DTD, XML Schema, or other validation set.
Obviously, nonvalidating parsers are much easier to program and can be made extremely
efficient and space conserving. The first iteration of XML parsers were nonvalidating
because the DTD and XML Schema proposals were far from stable. As the specifications
became more stable, the number of validating parsers likewise increased. As a result,
many of the parsers currently on the market (commercial or open source) are validating
parsers that have progressively become more robust and efficient.

Because of the added complexity of ensuring validity and compliance with a DTD or
schema, validating parsers tend to be much larger in memory and processing footprint
than nonvalidating parsers. If most of the XML in a particular system is well formed
and doesn’t need to be checked for validity, the use of a nonvalidating parser may be a
better idea.

Examples of nonvalidating parsers include James Clark’s expat, XP, and Lark. Examples
of validating parsers include IBM’s XML for Java, the DataChannel XML Parser (DXP),
Daniel Veillard’s libXML, and Apache’s Xerces. Microsoft’s MSXML includes both vali-
dating and nonvalidating parsers that support a variety of platforms. These parsers run
the gamut from open source efforts to commercial products, from extremely tiny imple-
mentations to large, robust efforts. Information about these tools and links to find out
more information are included in the chapters that cover them in more detail.

The Fundamentals of XML

CHAPTER 2
63

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

04 0672323419 CH02 3/15/04 11:15 AM Page 63

The Document Object Model (DOM)
Parsing XML is essential to working with XML documents, but applications that plan to
actually use and manipulate XML content require a more robust model for programmatic
interaction with XML data. To this effect, the Document Object Model (DOM) was cre-
ated as a means to allow developers to refer to, retrieve, and change the content and
structure of XML documents. The Document Object Model offers two levels of interface
implementation: the DOM Core, which supports basic XML document integration, and
DOM HTML, which extends the model to HTML documents.

DOM converts XML documents into a programmatic object model that can then be used
and processed by standard applications. Once the XML document has been parsed, an
object model representation exists in the memory of the processing client. This object
model allows users to manipulate the XML document without having to write and reread
the XML document multiple times. In effect, DOM allows a user to manipulate an XML
file in memory using an object-oriented approach. The document object that is created
consists of a tree of nodes that represents the structure of the XML document and the
data contained within. This in-memory tree is accessed via DOM.

As the DOM parser creates an object model based on the XML document, it also
expands all entities used in the file and compares the structure of the information in the
XML document to a DTD or XML Schema, if one is used. Then, a reference object is
created of some class type that can call methods on the document objects. The W3C also
provides a set of Java interfaces known as the DOM API that provide a core set of meth-
ods for interacting with XML document objects. However, because the DOM API is just
a specification, the actual implementation of the XML objects is up to individual XML
parser applications.

The SAX API
Both DOM and the Simple API for XML (SAX) provide a programmatic layer that
allows a user to directly access the information contained within an XML document.
However, each of these mechanisms provides a different approach to accessing this infor-
mation. Whereas DOM creates an object that represents a hierarchical tree of nodes that
reflects the structure of an XML document, SAX processes an XML document by giving
applications a stream of parsing events around that document. Rather than interacting
with an in-memory XML tree, a user is interacting with a stream of data that can be
acted upon. DOM is great for in-memory tree manipulation, whereas SAX is great for
linear processing of large XML documents.

Essentials of XML

PART I
64

04 0672323419 CH02 3/15/04 11:15 AM Page 64

Event-based parsers such as SAX provide a view of XML documents that is data centric
and event driven. When a user reads an XML document using SAX, elements that are
encountered by the parser are read, processed, and then forgotten. The event-based parser
reads the elements from the document and returns them to the application with a list of
attributes and content. By taking this approach, a user obtains a more efficient means of
processing XML documents because the search time is greatly optimized, requiring less
code and memory. The primary reason for this is that an in-memory tree representation
of the XML document is not required. Event-based APIs merely report parsing events
such as the start and end of XML markup, which are processed by application event han-
dlers through callbacks. This mechanism is widely used in many “process-and-forget”
systems and is especially appropriate for XML-based messaging and transaction systems,
where keeping the XML tree in memory is simply not appropriate.

International Language Support
in XML
Because XML is by and large just a text document format with features for validation
checking and representing structured, hierarchical metadata, there is nothing that restricts
it from being applicable in only certain geographies. As a result, the W3C and other stan-
dards organizations have gone through great pains to make sure XML can support vari-
ous international and localization needs that have plagued the adoption of other
document formats. In particular, XML is capable of supporting a number of languages,
data formats, character sets, and peculiarities of localization that allow the format to not
only cross geographic boundaries but logical boundaries as well.

Unicode
Developed prior to the emergence of XML, the Unicode standard is a universal character
set whose goal is to provide an unambiguous encoding of the content of plain text that
can be written in any and all languages of the world. The latest version of Unicode, ver-
sion 3.0, covers almost all the languages and dialects used in the world, including lan-
guages that are no longer actively spoken. Unicode 3.0 contains all the characters needed
by these languages as well as additional characters used for interoperability with older
character encodings and for control functions.

Because XML is a text-based language, it is dependent on characters and the representa-
tion of those characters. As such, it has relied on a version of Unicode to encode its ele-
ments, attributes, and data content. Therefore, XML can support as part of its native
specification any of a number of major language and character sets, thus enabling the

The Fundamentals of XML

CHAPTER 2
65

2

T
H

E
F

U
N

D
A

M
EN

TA
LS

O
F

X
M

L

04 0672323419 CH02 3/15/04 11:15 AM Page 65

encoding of almost any text document. However, it should be noted that some inconsis-
tencies in Unicode adoption are present. For example, a wider use of Unicode characters
is permitted in general XML content than is allowable for element and attribute names. A
movement is underway to correct this shortfall and allow for an equally wide use of arbi-
trary and complete characters as are possible in Unicode 3.0 and future versions.

Summary
Writing XML documents is a fairly simple endeavor that only requires a user to under-
stand the basics of creating well-formed, structural markup. In essence, all one needs to
do is open a text editor of choice and start writing XML. By understanding how the vari-
ous elements of XML syntax are composed, a user can almost immediately start making
XML work for him or her. It is to XML’s credit that creating useful XML applications is
so easy—and often extremely low cost.

The various portions of an XML document, ranging from the XML declaration to the
actual construction of XML elements and attributes, interact in a manner that allows for
the creation of a document that truly separates data content from its presentation and pro-
cessing requirements. The use of nonvalidating and validating parsers gives the user the
ability to turn such text-based documents into a programming model that provides all the
power and capability of any data-based access mechanism. And if simple parsing of
XML documents is not enough, the DOM and SAX APIs provide a robust means for
translating XML documents directly into programmatic APIs for inclusion in the most
sophisticated of applications. In addition, the international features of XML give it scope
beyond any single geography, operating system, or display device platform.

In essence, XML is a simple markup language with simple rules that nevertheless pro-
vide robust support for even the most complex of data interchange and representation
requirements. All that is needed is to follow the simple rules of XML document creation
to find the appropriate tools that match one’s needs. For this reason, XML is being used
in an ever-increasing scale.

Essentials of XML

PART I
66

04 0672323419 CH02 3/15/04 11:15 AM Page 66

IN THIS CHAPTER

• Document Type Definitions 68

• Some Simple DTD Examples 70

• Structure of a Document Type
Definition 72

• DTD Drawbacks and Alternatives 103

3
C

H
A

PT
ER

Validating XML
with the
Document Type
Definition (DTD)

05 0672323419 CH03 3/15/04 11:16 AM Page 67

XML is a meta-markup language that is fully extensible. As long as it is well formed,
XML authors can create any XML structure they desire in order to describe their data.
However, an XML author cannot be sure that the structure he poured so much time and
effort into creating won’t be changed by another XML author or for that matter an appli-
cation. There needs to be a way to ensure that the XML structure cannot be changed at
random. This type of assurance for XML document structure is vital for e-commerce
applications and business-to-business processing, among other things. This is where the
Document Type Definition (DTD) steps in. A DTD provides a roadmap for describing
and documenting the structure that makes up an XML document. A DTD can be used to
determine the validity of an XML document.

In this chapter we will start with several examples and a brief overview of the DTD and
what it does. Then we will break down the different items that make up the structure of
the DTD. The coverage of the DTD structure will begin with a discussion of the
Document Type Declaration. Then we will move on to the functional items that make up
the DTD. The DTD includes element definitions, entity definitions, and parameters.
Finally, before closing the chapter, we will explore some of the drawbacks of DTDS and
emerging alternatives for validation. Now, let’s start by defining the Document Type
Definition.

Document Type Definitions
DTD stands for Document Type Definition. A Document Type Definition allows the
XML author to define a set of rules for an XML document to make it valid. An XML
document is considered “well formed” if that document is syntactically correct according
to the syntax rules of XML 1.0. However, that does not mean the document is necessarily
valid. In order to be considered valid, an XML document must be validated, or verified,
against a DTD. The DTD will define the elements required by an XML document, the
elements that are optional, the number of times an element should (could) occur, and the
order in which elements should be nested. DTD markup also defines the type of data that
will occur in an XML element and the attributes that may be associated with those ele-
ments. A document, even if well formed, is not considered valid if it does not follow the
rules defined in the DTD.

Essentials of XML

PART I
68

Note

DTDs are part of the W3C’s XML 1.0 recommendation. This recommendation
may be found at http://www.w3.org/TR/REC-xml.

05 0672323419 CH03 3/15/04 11:16 AM Page 68

When an XML document is validated against a DTD by a validating XML parser, the
XML document will be checked to ensure that all required elements are present and that
no undeclared elements have been added. The hierarchical structure of elements defined
in the DTD must be maintained. The values of all attributes will be checked to ensure
that they fall within defined guidelines. No undeclared attributes will be allowed and no
required attributes may be omitted. In short, every last detail of the XML document from
top to bottom will be defined and validated by the DTD.

Although validation is optional, if an XML author is publishing an XML document for
which maintaining the structure is vital, the author can reference a DTD from the XML
document and use a validating XML parser during processing. Requiring that an XML
document be validated against a DTD ensures the integrity of the data structure.
XML documents may be parsed and validated before they are ever loaded by an
application. That way, XML data that is not valid can be flagged as “invalid” before
it ever gets processed by the application (thus saving a lot of the headaches that
corrupt or incomplete data can cause).

Imagine a scenario where data is being exchanged in an XML format between multiple
organizations. The integrity of business-to-business data is vital for the smooth function-
ing of commerce. There needs to be a way to ensure that the structure of the XML data
does not change from organization to organization (thus rendering the data corrupt and
useless). A DTD can ensure this.

An extra advantage of using DTDs in this situation is that a single DTD could be refer-
enced by all the organization’s applications. The defined structure of the data would be in
a centralized resource, which means that any changes to the data structure definition
would only need to be implemented in one place. All the applications that referenced the
DTD would automatically use the new, updated structure.

A DTD can be internal, residing within the body of a single XML document. It can also
be external, referenced by the XML document. A single XML document could even have
both a portion (or subset) of its DTD that is internal and a portion that is external. As
mentioned in the previous paragraph, a single external DTD can be referenced by many
XML documents. Because an external DTD may be referenced by many documents, it is
a good repository for global types of definitions (definitions that apply to all documents).
An internal DTD is good to use for rules that only apply to that specific document. If a
document has both internal and external DTD subsets, the internal rules override the
external rules in cases where the same item is defined in both subsets.

Given this brief overview, you can quickly see why a DTD would be important to appli-
cations that exchange data in an XML format. Before diving into the actual coverage of

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
69

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

05 0672323419 CH03 3/15/04 11:16 AM Page 69

the structure of DTDs, take a look at a couple of quick examples. This will give you a
better impression of what we are talking about as we go forward.

Some Simple DTD Examples
Let’s take a quick look at two DTDs—one internal and one external. Listing 3.1 shows
an internal DTD.

LISTING 3.1 An Internal DTD

<?xml version=”1.0”?>
<!DOCTYPE message [
<!ELEMENT message (#PCDATA)>
]>
<message>
Let the good times roll!
</message>

In Listing 3.1, the internal DTD is contained within the Document Type Declaration,
which begins with <!DOCTYPE and ends with]>. The Document Type Declaration will
appear between the XML declaration and the start of the document itself (the document
or root element) and identify that section of the XML document as containing a
Document Type Definition. Following the Document Type Declaration (DOCTYPE), the
root element of the XML document is defined (in this case, message). The DTD tells us
that this document will have a single element, message, that will contain parsed character
data (#PCDATA).

Essentials of XML

PART I
70

Note

The Document Type Declaration should not be confused with the Document
Type Definition. These are two exclusive items. Also confusing is the acronym
DTD, which is only ever used in reference to the Document Type Definition. The
Document Type Declaration is the area of the XML document after the XML
declaration that begins with <!DOCTYPE and ends with]>. It actually encom-
passes the Document Type Definition. The Document Type Definition will be
contained within an opening bracket ([) and a closing bracket (]).

Now, let’s take a look at Listing 3.2 and see how this same DTD and XML document
would be joined if the DTD were external.

05 0672323419 CH03 3/15/04 11:16 AM Page 70

LISTING 3.2 An External DTD

<?xml version=”1.0”?>
<!DOCTYPE message SYSTEM “message.dtd”>
<message>
Let the good times roll!
</message>

In Listing 3.2 the DTD is contained in a separate file, message.dtd. The contents of
message.dtd are assumed to be the same as the contents of the DTD in Listing 3.1. The
keyword SYSTEM in the Document Type Declaration lets us know that the DTD is going
to be found in a separate file. A URL could have been used to define the location of the
DTD. For example, rather than message.dtd, the Document Type Declaration could have
specified something like ../DTD/message.dtd.

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
71

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

Note

The keyword SYSTEM used in a Document Type Declaration will always be indica-
tive of the Document Type Definition being contained in an external file.

Both of these examples show us a well-formed XML document. Additionally, because
both XML documents contain a single element, message, which contains only parsed
character data, both adhere to the DTD. Therefore, they are both also valid XML
documents.

A document that looks like what’s shown in Listing 3.3 would not be valid according to
the DTD in these examples.

LISTING 3.3 Document Not Valid According to Defined DTD

<?xml version=”1.0”?>
<!DOCTYPE message SYSTEM “message.dtd”>
<message>
<text>
Let the good times roll!
</text>
</message>

Even though this is a well-formed XML document, it is not valid. When this document is
validated against message.dtd, a flag will be raised because message.dtd does not
define an element named text.

05 0672323419 CH03 3/15/04 11:16 AM Page 71

Don’t worry if you do not completely understand what is going on at this point. As long
as you get the gist, everything will become very clear in the sections that follow.

Structure of a Document Type
Definition
The structure of a DTD consists of a Document Type Declaration, elements, attributes,
entities, and several other minor keywords. We will take a look at each of these topics, in
that order. As we progress from topic to topic, we will follow a mini case study about the
use of XML to store employee records by the Human Resources department of a ficti-
tious company.

Our coverage of the DTD structure shall begin with the Document Type Declaration.

The Document Type Declaration
In order to reference a DTD from an XML document, a Document Type Declaration
must be included in the XML document. Listings 3.1, 3.2, and 3.3 gave some examples
and brief explanations of using a Document Type Declaration to reference a DTD. There
may be one Document Type Declaration per XML document. The syntax is as follows:

<!DOCTYPE rootelement SYSTEM | PUBLIC DTDlocation [internalDTDelements] >

• The exclamation mark (!) is used to signify the beginning of the declaration.

• DOCTYPE is the keyword used to denote this as a Document Type Definition.

• rootelement is the name of the root element or document element of the XML
document.

• SYSTEM and PUBLIC are keywords used to designate that the DTD is contained in an
external document. Although the use of these keywords is optional, to reference an
external DTD you would have to use one or the other. The SYSTEM keyword is used
in tandem with a URL to locate the DTD. The PUBLIC keyword specifies some
public location that will usually be some application-specific resource reference.

• internalDTDelements are internal DTD declarations. These declarations will
always be placed within opening ([) and closing (]) brackets.

Essentials of XML

PART I
72

Note

This book typically uses the more common SYSTEM keyword when referencing
external DTDs.

05 0672323419 CH03 3/15/04 11:16 AM Page 72

It is possible for a Document Type Declaration to contain both an external DTD subset
and an internal DTD subset. In this situation, the internal declarations take precedence
over the external ones. In other words, if both the external and internal DTDs define a
rule for the same element, the rule of the internal element will be the one used. Consider
the Document Type Declaration fragment shown in Listing 3.4.

LISTING 3.4 Internal and External DTDs

<!DOCTYPE rootelement SYSTEM “http://www.myserver.com/mydtd.dtd”
[
<!ELEMENT element1 (element2,element3)>
<!ELEMENT element2 (#PCDATA)>
<!ELEMENT element3 (#PCDATA)>
]>

Here in Listing 3.4, we see that the Document Type Declaration references an external
DTD. There is also an internal subset of the DTD contained in the Document Type
Declaration. Any rules in the external DTD that apply to elements defined in the internal
DTD will be overridden by the rules of the internal DTD.

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
73

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

Note

You will also notice in Listing 3.4 that the Document Type Declaration is
spread out over several lines. Whitespace is unimportant in Document Type
Declarations as long as there is no whitespace on either side of the ! symbol.
Multiple lines are used for clarity.

Now that you have seen how to reference a DTD from an XML document, we will begin
our coverage of the items that make up the declarations in DTDs.

DTD Elements
All elements in a valid XML document are defined with an element declaration in the
DTD. An element declaration defines the name and all allowed contents of an element.
Element names must start with a letter or an underscore and may contain any combina-
tion of letters, numbers, underscores, dashes, and periods. Element names must never
start with the string “xml”. Colons should not be used in element names because they
are normally used to reference namespaces.

05 0672323419 CH03 3/15/04 11:16 AM Page 73

Each element in the DTD should be defined with the following syntax:

<!ELEMENT elementname rule >

• ELEMENT is the tag name that specifies that this is an element definition.

• elementname is the name of the element.

• rule is the definition to which the element’s data content must conform.

In a DTD, the elements are processed from the top down. A validating XML parser will
expect the order of the appearance of elements in the XML document to match the order
of elements defined in the DTD. Therefore, elements in a DTD should appear in the
order you want them to appear in an XML document. If the elements in an XML docu-
ment do not match the order of the DTD, the XML document will not be considered
valid by a validating parser.

Listing 3.5 demonstrates a DTD, contactlist.dtd, that defines the ordering of elements
for referencing XML documents.

LISTING 3.5 contactlist.dtd

<!ELEMENT contactlist (fullname, address, phone, email) >
<!ELEMENT fullname (#PCDATA)>
<!ELEMENT address (addressline1, addressline2)>
<!ELEMENT addressline1 (#PCDATA)>
<!ELEMENT addressline2 (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT email (#PCDATA)>

The first element in the DTD, contactlist, is the document element. The rule for this
element is that it contains (is the parent element of) the fullname, address, phone, and
email elements. The rule for the fullname element, the phone element, and the email
element is that each contains parsed character data (#PCDATA). This means that the ele-
ments will contain marked-up character data that the XML parser will interpret. The
address element has two child elements: addressline1 and addressline2. These two
children elements contain #PCDATA. This DTD defines an XML structure that is nested
two levels deep. The root element, contactlist, has four child elements. The address
element is, in turn, parent to two more elements. In order for an XML document that ref-
erences this DTD to be valid, it must be laid out in the same order, and it must have the
same depth of nesting.

The XML document in Listing 3.6 is a valid document because it follows the rules laid
out in Listing 3.5 for contactlist.dtd.

Essentials of XML

PART I
74

05 0672323419 CH03 3/15/04 11:16 AM Page 74

LISTING 3.6 contactlist.xml

<?xml version=”1.0”?>
<!DOCTYPE contactlist SYSTEM “contactlist.dtd”>
<contactlist>
<fullname>Bobby Soninlaw</fullname>
<address>
<addressline1>101 South Street</addressline1>
<addressline2>Apartment #2</addressline2>
</address>
<phone>(405) 555-1234</phone>
<email>bs@mail.com</email>
</contactlist>

The second line of this XML document is the Document Type Declaration that refer-
ences contactlist.dtd. This is a valid XML document because it is well formed and
complies with the structural definition laid out in the DTD.

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
75

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

Note

In Listing 3.6, the element name listed in the Document Type Declaration
matches the name of the root element of the XML document. If the element
name listed in the Document Type Declaration did not match the root element
of the XML document, the XML document would immediately be deemed
invalid and the XML parser would halt.

The element rules govern the types of data that may appear in an element.

DTD Element Rules
All data contained in an element must follow a set rule. As stated previously, the rule is
the definition to which the element’s data content must conform. There are two basic
types of rules that elements must fall into. The first type of rule deals with content. The
second type of rule deals with structure. First, we will look at element rules that deal
with content.

Content Rules
The content rules for .elements deal with the actual data that defined elements may con-
tain. These rules include the ANY rule, the EMPTY rule, and the #PCDATA rule.

05 0672323419 CH03 3/15/04 11:16 AM Page 75

The ANY Rule
An element may be defined. using the ANY rule. This rule is just what it sounds like: The
element may contain other elements and/or normal character data (just about anything as
long as it is well formed). An element using the ANY rule would appear as follows:

<!ELEMENT elementname ANY>

The drawback to this rule is that it is so wide open that it defeats the purpose of valida-
tion. A DTD that defines all its elements using the ANY rule will always be valid as long
as the XML is well formed. This really precludes any effective validation. The XML
fragments as shown in Listing 3.7 are all valid given the definition of elementname.

LISTING 3.7 XML Fragments Using the ANY Rule

<elementname>
This is valid content
</elementname>

<elementname>
<anotherelement>
This is more valid content
</anotherelement>
This is still valid content
</elementname>

<elementname>
<emptyelement />
<yetanotherelement>
This is still valid content!
</yetanotherelement>
Here is more valid content
</elementname>

You should see from this listing why it is not always a great idea to use the ANY rule. All
three fragments containing the element elementname are valid. There is, in effect, no val-
idation for this element. Use of the ANY rule should probably be limited to instances
where the XML data will be freeform text or other types of data that will be highly
variable and have difficulty conforming to a set structure.

The EMPTY Rule
This rule is the exact opposite of the ANY rule. An element that is defined with this rule
will contain no data. However, an element with the EMPTY rule could still contain attrib-
utes (more on attributes in a bit). The following element is an example of the EMPTY rule:

<!ELEMENT elementname EMPTY>

Essentials of XML

PART I
76

05 0672323419 CH03 3/15/04 11:16 AM Page 76

This concept is seen a lot in HTML. There are many tags such as the break tag (
)
and the paragraph tag (<p />) that follow this rule. Neither one of these tags contains
any data, but both are very important in HTML documents. The best example of an
empty tag used in HTML is the image tag (). Even though the image tag does not
contain any data, it does have attributes that describe the location and display of an
image for a Web browser.

In XML, the EMPTY rule might be used to define empty elements that contain diagnostic
information for the processing of data. Empty elements could also be created to hold
metadata describing the contents of the XML document for indexing purposes. Empty
elements could even be used to provide clues for applications that will render the data for
viewing (such as an empty “gender” tag, which designates an XML record as “male” or
“female”—male records could be rendered in blue, and female records could be rendered
in pink) .

The #PCDATA Rule
The #PCDATA rule indicates that parsed character data will be contained in the element.
Parsed character data is data that may contain normal markup and will be interpreted and
parsed by any XML parser accessing the document. The following element demonstrates
the #PCDATA rule:

<!ELEMENT elementname (#PCDATA)>

An element in an XML document that adheres to the #PCDATA rule might appear as
follows:

<data>
This is some parsed character data
</data>

It is possible in an element using the #PCDATA rule to use the CDATA keyword to prevent
the character data from being parsed. You can see an example of this in Listing 3.8.

LISTING 3.8 CDATA

<sample>
<data>
<![CDATA[<tag>This will not be parsed</tag>]]>
</data>
</sample>

All the data between <![CDATA[and]]> will be ignored by the parser and treated as nor-
mal characters (markup ignored).

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
77

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

05 0672323419 CH03 3/15/04 11:16 AM Page 77

Structure Rules
Whereas the content rules. deal with the actual content of the data contained in defined
elements, structure rules deal with how that data may be organized. There are two types
of structure rules we will look at here. The first is the “element only” rule. The second
rule is the “mixed” rule.

The “Element Only” Rule
The “element only” rule .specifies that only elements may appear as children of the cur-
rent element. The child element sequences should be separated by commas and listed in
the order they should appear. If there are to be options for which elements will appear,
the listed elements should be separated by the pipe symbol (|). The following element
definition demonstrates the “element only” rule:

<!ELEMENT elementname (element1, element2, element3)>

You can see here that a list of elements are expected to appear as child elements of ele-
mentname when the referencing XML document is parsed. All these child elements must
be present and in the specified order. Here is how an element that is listing a series of
options will appear:

<!ELEMENT elementname (element1 | element2)>

The element defined here will have a single child element: either element1 or element2.

The “Mixed” Rule
The “mixed” rule is used to help define elements that may have both character data
(#PCDATA) and child elements in the data they contain. A list of options or a sequential
list will be enclosed by parentheses. Options will be separated by the pipe symbol (|),
whereas sequential lists will be separated by commas. The following element is an
example of the “mixed” rule:

<!ELEMENT elementname (#PCDATA | childelement1 | childelement2)*>

In this example, the element may contain a mixture of character data and child elements.
The pipe symbol is used here to indicate that there is a choice between #PCDATA and each
of the child elements. However, the asterisk symbol (*) is added here to indicate that
each of the items within the parentheses may appear zero or more times (we will cover
the use of element symbols in the next section). This can be useful for describing data
sets that have optional values. Consider the following element definition:

Essentials of XML

PART I
78

05 0672323419 CH03 3/15/04 11:16 AM Page 78

<!ELEMENT Son (#PCDATA | Name | Age)*>

This definition defines an element, Son, for which there may be character data, elements,
or both. A man might have a son, but he might not. If there is no son, then normal char-
acter data (such as “N/A”) could be used to describe this condition. Alternatively, the
man might have an adopted son and would like to indicate this. Consider the XML frag-
ments shown in Listing 3.9 in relation to the definition for the element Son.

LISTING 3.9 The “Mixed” Rule

<Son>
N/A
</Son>

<Son>
Adopted Son
<Name>Bobby</Name>
<Age>12</Age>
</Son>

The first fragment contains only character data. The second fragment contains a mixture
of character data and the two defined child elements. Both fragments conform to the def-
inition and are valid.

Element Symbols
In addition to the normal rules that apply to element definitions, element symbols can be
used to control the occurrence of data. Table 3.1 shows the symbols that are available for
use in DTDs.

TABLE 3.1 Element Symbols

Symbol Definition

Asterisk (*) The data will appear zero or more times (0, 1, 2, …).
Here’s an example:
<!ELEMENT children (name*)>

In this example, the element children could have zero or
more occurrences of the child element name. This type of

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
79

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

Note

The asterisk symbol used in these examples indicates that an item may occur
zero or more times. Element symbols are covered in detail in Table 3.1.

05 0672323419 CH03 3/15/04 11:16 AM Page 79

TABLE 3.1 continued

Symbol Definition

rule would be useful on a form asking a person about his or
her children. It is possible that the person could have no
children or many children.

Comma (,) Provides separation of elements in a sequence. Here’s an
example:
<!ELEMENT address (street, city, state, zip)>

In this example, the element address will have four child
elements: street, city, state, and zip. Each of the child
elements must appear in the defined order in the XML
document.

Parentheses [()] The parentheses are used to contain the rule for an element.
Parentheses may also be used to group a sequence,
subsequence, or a set of alternatives in a rule. Here’s an
example:
<!ELEMENT address (street, city, (state |

province), zip)>

In this example, the parentheses enclose a sequence.
Additionally, a subsequence is nested within the sequence
by a second set of parentheses. The subsequence indicates
that there will be either a state or a province element in that
spot in the main sequence.

Pipe (|) Separates choices in a set of options. Here’s an example:
<!ELEMENT dessert (cake | pie)>

The element dessert will have one child element: either
cake or pie.

Plus sign (+) Signifies that the data must appear one or more times (1, 2,
3, …). Here’s an example:
<!ELEMENT appliances (refrigerator+)>

The appliances element will have one or more refrigerator
child elements. This assumes that every household has at
least one refrigerator.

Question mark (?) Data will appear either zero times or one time in the ele-
ment. Here’s an example:
<!ELEMENT employment (company?)>

The element employment will have either zero occurrences
or one occurrence of the child element company.

Essentials of XML

PART I
80

05 0672323419 CH03 3/15/04 11:16 AM Page 80

TABLE 3.1 continued

Symbol Definition

No symbol When no symbol is used (other than parentheses), this sig-
nifies that the data must appear once in the XML file.

Here’s an example:
<!ELEMENT contact (name)>

The element contact will have one child element: name.

Element symbols can be added to element definitions for another level of control over
the XML documents that are being validated against it. Consider the DTD in Listing
3.10, which makes very limited use of XML symbols.

LISTING 3.10 Limited Use of Symbols

<!ELEMENT contactlist (contact) >
<!ELEMENT contact (name, age, sex, address, city, state, zip, children) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT age (#PCDATA) >
<!ELEMENT sex (#PCDATA) >
<!ELEMENT address (#PCDATA) >
<!ELEMENT city (#PCDATA) >
<!ELEMENT state (#PCDATA) >
<!ELEMENT zip (#PCDATA) >
<!ELEMENT children (child) >
<!ELEMENT child (childname, childage, childsex) >
<!ELEMENT childname (#PCDATA) >
<!ELEMENT childage (#PCDATA) >
<!ELEMENT childsex (#PCDATA) >

You can see in Listing 3.10 that a contact record for a contactlist file is being laid out. It
is very straight forward and includes the basic address information you would expect to
see in this type of file. Information on the contact’s children is also included. This looks
like a well-laid-out, easy-to-use file format. However, there are several problems. What if
you are not sure about a contact’s address? What if the contact does not have children?
What if the user is a lady and you are afraid to ask her age? The way that this DTD is
laid out, it will be very difficult for a referencing XML document to be deemed valid if
any of this information is unknown.

Using element symbols, you can create a more flexible DTD that will take into account
the possibility that you might not always know all of a contact’s personal information.
Take a look at a similar DTD laid out in Listing 3.11.

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
81

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

05 0672323419 CH03 3/15/04 11:16 AM Page 81

LISTING 3.11 Broader Use of Symbols

<!ELEMENT contactlist (contact+) >
<!ELEMENT contact (name, age?, sex, address?, city?, state?, zip?, children?) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT age (#PCDATA) >
<!ELEMENT sex (#PCDATA) >
<!ELEMENT address (#PCDATA) >
<!ELEMENT city (#PCDATA) >
<!ELEMENT state (#PCDATA) >
<!ELEMENT zip (#PCDATA) >
<!ELEMENT children (child*) >
<!ELEMENT child (childname, childage?, childsex) >
<!ELEMENT childname (#PCDATA) >
<!ELEMENT childage (#PCDATA) >
<!ELEMENT childsex (#PCDATA) >

Listing 3.11 is much more flexible than Listing 3.10. There is still a single root element,
contactlist, which will contain one or more instances (+) of the element contact.
Under each contact element is a list of child elements that make up the description of
the contact record. It is assumed here that the name and sex of the contact will be known.
However, the definition indicates that there will be zero or one occurrence (?) of the age,
address, city, state, zip, and children elements. These elements are set for zero or
one occurrence because the definition is taking into account that this information might
not be known. Looking further down the listing, you see that the children element is
marked to have zero or more instances (*) of the child element. This is because a person
might have no children or many children (or we might not know how many children the
person has). Under the child element, it is assumed that childname and childsex infor-
mation will be known (if there is at least one child element). However, the childage
element is marked as zero or one (?), just in case it is unknown how old the child is.

You can easily see how Listing 3.11 is more flexible than Listing 3.10. Listing 3.11 takes
into account that much of the contact data could be missing or unknown. An XML docu-
ment being validated against the DTD in Listing 3.10 could still be validated and
accepted by a validating parser even though it might not have all the contact’s personal
data. However, an XML document being validated against the DTD in Listing 3.10
would be rejected as invalid if it did not include the children element.

Now that you have seen how DTDs define element declarations, let’s take a look at how
attributes are used in a mini case study.

Essentials of XML

PART I
82

05 0672323419 CH03 3/15/04 11:16 AM Page 82

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD
Validating XML with the Document Type Definition (DTD)

CHAPTER 3
83

Zippy Human Resources: XML for Employee Records, Part I

Now that you have seen how elements are defined in a DTD, you have enough
tools to follow along with a mini case study that shows how a company could
use XML in its Human Resources department.

The Human Resources department for a small but growing company, Zippy
Delivery Service, has decided that in order to make their employee data flexible
across all the applications used by the company, the employee data should be
stored in XML. The Zippy Human Resources department’s first task is to decide
on the fields to be included in the XML structure:

• Employee Name

• Position

• Age

• Sex

• Race

• Marital Status

• Address Line 1

• Address Line 2

• City

• State

• Zip Code

• Phone Number

• E-Mail Address

After determining which elements are needed, they decide to put together a
DTD in order to ensure that the structure of the employee records in the XML
data file never changes. Additionally, the decision is made that multiple
employee records should be stored in a single file. Because this is the case, they
need to declare a document (root) element to hold employee records and a par-
ent element for the elements making up each individual employee record. The
Human Resources department also realizes that some of the data might not be
applicable to all employees. Therefore, they need to use element symbols to
account for varying occurrences of data. They’ve come up with the following
DTD structure as the first draft:

Employees1.dtd
<!ELEMENT employees (employee+) >
<!ELEMENT employee (name, position, age, sex, race, m_status, address1,
address2?, city, state, zip, phone?, email?) >

05 0672323419 CH03 3/15/04 11:16 AM Page 83

Essentials of XML

PART I
84

<!ELEMENT name (#PCDATA) >
<!ELEMENT position (#PCDATA) >
<!ELEMENT age (#PCDATA) >
<!ELEMENT sex (#PCDATA) >
<!ELEMENT race (#PCDATA) >
<!ELEMENT m_status (#PCDATA) >
<!ELEMENT address1 (#PCDATA) >
<!ELEMENT address2 (#PCDATA) >
<!ELEMENT city (#PCDATA) >
<!ELEMENT state (#PCDATA) >
<!ELEMENT zip (#PCDATA) >
<!ELEMENT phone (#PCDATA) >
<!ELEMENT email (#PCDATA) >

The Human Resources department has decided that the document element
employees is required to have one or more (+) child elements (employee). The
employee element would be the container element for each individual
employee’s data. Out of the elements comprising the employee data, the
Human Resources department knows that not all employees have a second line
to their street address. Also, some employees do not have home telephone
numbers or e-mail addresses. Therefore, the elements address2, phone, and
email are marked to appear zero or one time in each record (?). The new DTD
structure is saved in a file named employees1.dtd (which, by the way, you can
download from the Sams Web site).

The first several employee records are then entered into an XML document,
called Employees1.xml:

<?xml version=”1.0”?>
<!DOCTYPE employees SYSTEM “employees1.dtd”>
<employees>
<employee>
<name>Bob Jones</name>
<position>Dispatcher</position>
<age>37</age>
<sex>Male</sex>
<race>African American</race>
<m_status>Married</m_status>
<address1>202 Carolina St.</address1>
<city>Oklahoma City</city>
<state>OK</state>
<zip>73114</zip>
<phone>4055554321</phone>
<email>bobjones@mail.com</email>
</employee>
<employee>
<name>Mary Parks</name>
<position>Delivery Person</position>

05 0672323419 CH03 3/15/04 11:16 AM Page 84

DTD Attributes
So far you have seen that it is possible to use intricate combinations of elements and
symbols to create complex element definitions. Now let’s take a look at how XML
attribute definitions can be added into this mix.

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
85

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

<age>19</age>
<sex>Female</sex>
<race>Caucasian</race>
<m_status>Single</m_status>
<address1>1015 Empire Blvd.</address1>
<address2>Apt. D3</address2>
<city>Oklahoma City</city>
<state>OK</state>
<zip>73107</zip>
<phone>4055559876</phone>
<email>maryparks@mail.com</email>
</employee>
<employee>
<name>Jimmy Griffin</name>
<position>Delivery Person</position>
<age>23</age>
<sex>Male</sex>
<race>African American</race>
<m_status>Single</m_status>
<address1>1720 Maple St.</address1>
<city>Oklahoma City</city>
<state>OK</state>
<zip>73107</zip>
<phone>4055556633</phone>
</employee>
</employees>

The XML document Employees1.xml (also available for download from the Sams
Web site) initially has three employee records entered into it. The Document
Type Declaration is entered after the XML declaration and before the document
element, employees, and it uses the SYSTEM keyword to denote that it is refer-
encing the DTD, employees1.dtd, externally.

The Human Resources department at Zippy Delivery Service feels that they are
off to a good start. They have defined a DTD, employees1.dtd, for their XML
data structure and have created an XML document, Employees1.xml (containing
three employee records), that is valid according to the DTD. However, you’ll find
out during the course of this chapter that the Human Resources department’s
DTD can be improved.

05 0672323419 CH03 3/15/04 11:16 AM Page 85

XML attributes are name/value pairs that are used as metadata to describe XML ele-
ments. XML attributes are very similar to HTML attributes. In HTML, src is an attribute
of the img tag, as shown in the following example:

In this example, width and height are also attributes of the img tag. This is very similar
to the markup in Listing 3.12, which demonstrates how an image element might be struc-
tured in XML.

LISTING 3.12 Attribute Use in XML

<image src=”images/” width=”10” height=”20”>
imagename.gif
</image>

In Listing 3.12, src, width, and height are presented as attributes of the XML element
image. This is very similar to the way that these attributes are used in HTML. The only
difference is that the src attribute merely contains the relative path of the image’s direc-
tory and not the actual name of the image file.

In Listing 3.12, the attributes width, height, and src are used as metadata to describe
certain aspects of the content of the image element. This is consistent with the normal
use of attributes. Attributes can also be used to provide additional information to further
identify or index an element or even give formatting information.

Attributes are also defined in DTDs. Attribute definitions are declared using the ATTLIST
declaration. An ATTLIST declaration will define one or more attributes for the element
that it is referencing.

Essentials of XML

PART I
86

Note

Attribute definitions do not follow the same “top-down” rule that element def-
initions do. However, it is still a good coding practice to list the attributes in the
order you would like them to appear in the XML document. Usually this means
listing the attributes directly after the element to which they refer.

Attribute list declarations in a DTD will have the following syntax:

<!ATTLIST elementname attributename type defaultbehavior defaultvalue>

• ATTLIST is the tag name that specifies that this definition will be for an attribute list.

• elementname is the name of the element that the attribute will be attached to.

05 0672323419 CH03 3/15/04 11:16 AM Page 86

• attributename is the actual name of the attribute.

• type indicates which of the 10 valid kinds of attributes this attribute definition will
be.

• defaultbehavior dictates whether the attribute will be required, optional, or fixed
in value. This setting determines how a validating parser should relate to this
attribute.

• defaultvalue is the value of the attribute if no value is explicitly set.

Take a look at Listing 3.13 for an example of how this declaration may be used.

LISTING 3.13 ATTLIST Declaration

<!ATTLIST name
sex CDATA #REQUIRED
age CDATA #IMPLIED
race CDATA #IMPLIED >

In Listing 3.13, an attribute list is declared. The name element is being referenced by the
declaration. Three attributes are defined; sex, age, and race. The three attributes are
character data (CDATA). Only one of the attributes, sex, is required (#REQUIRED). The
other two attributes, age and race, are optional (#IMPLIED). An XML element using the
attribute list declared here would appear as follows:

<name sex=”male” age=”30” race=”Caucasian”>Michael Qualls</name>

The name element contains the value “Michael Qualls”. It also has three attributes of
Michael Qualls: sex, age, and race. The attributes in Listing 3.13 are all character data
(CDATA). However, attributes actually have 10 possible data types.

Attribute Types
Before going over a more detailed example of using attributes in your DTDs, let’s first
review Table 3.2, which presents the 10 valid types of attributes that may be used in a
DTD. Then we will look at Table 3.3, which shows the default values for attributes.

TABLE 3.2 Attribute Types

Type Definition

CDATA Characterdata only. The attribute will contain no markup.
Here’s an example:
<ATTLIST box height CDATA ”0”>

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
87

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

05 0672323419 CH03 3/15/04 11:16 AM Page 87

TABLE 3.2 continued

Type Definition

In this example, an attribute, height, has been defined for
the element box. This attribute will contain character data
and have a default value of “0”.

ENTITY The name of an unparsed general entity that is declared in
the DTD but refers to some external data (such as an image
file). Here’s an example:
<!ATTLIST img src ENTITY #REQUIRED>

The src attribute is an ENTITY type that refers to some exter-
nal image file.

ENTITIES This is the same as the ENTITY type but represents multiple
values listed in sequential order, separated by whitespace.
Here’s an example:
<!ATTLIST imgs srcs ENTITIES #REQUIRED>

The value of the imgs element using the srcs attribute
would be something like img1.gif img2.gif img3.gif. This
is simply a list of image files separated by whitespace.

ID An attribute that uniquely identifies the element. The value
for this type of attribute must be unique within the XML
document. Each element may only have a single ID
attribute, and the value of the ID attribute must be a valid
XML name, meaning that it may not start with a numeric
digit (which precludes the use of a simple numbering sys-
tem for IDs). Here’s an example:
<!ATTLIST cog serial ID #REQUIRED>

Each cog element in the XML document will have a
required attribute, serial, that uniquely identifies it.

IDREF This is the value of an ID attribute of another element in the
document. It’s used to establish a relationship with other
tags when there is not necessarily a parent/child relation-
ship. Here’s an example:
<!ATTLIST person cousin IDREF #IMPLIED>

Each person element could have a cousin attribute that ref-
erences the value of the ID attribute of another element.

IDREFS This is the same as IDREF; however, it represents multiple
values listed in sequential order, separated by whitespace.

Essentials of XML

PART I
88

05 0672323419 CH03 3/15/04 11:16 AM Page 88

TABLE 3.2 continued

Type Definition

Here’s an example:
<!ATTLIST person cousins IDREFS #IMPLIED>

Each person element could have a cousins attribute
that contains references to the values of multiple ID
attributes of other elements.

NMTOKEN Restricts the value of the attribute to a valid XML name.
Here’s an example:
<!ATTLIST address country NMTOKEN “usa”>

Each address element will have a country attribute with a
default value of “usa”.

NMTOKENS This is the same as NMTOKENS; however, it represents multi-
ple values listed in sequential order, separated by white-
space. Here’s an example:
<!ATTLIST region states NMTOKENS “KS OK” >

Each region element will have a states attribute with a
default value of “KS OK”.

NOTATION This type refers to the name of a notation declared in the
DTD (more on notations later). It is used to identify the
format of non-XML data. An example would be using the
NOTATION type to refer to an external application that will
interact with the document. Here’s an example:
<!ATTLIST music play NOTATION “mplayer2.exe “>

In this example, the element music has an attribute, play,
that will hold the name of a notation that determines the
type of music player to use. The default value (notation) is
“mplayer2.exe “.

Enumerated This type is not an actual keyword the way the other types
are. It is actually a listing of possible values for the
attribute separated by pipe symbols (|). Here’s an example:
<!ATTLIST college grad (1|0) “1”>

The element college has an attribute, grad, that will
have a value of either “1” or “0” (with the default value
being “1”).

You saw during the coverage of the 10 valid attribute types that we used two preset
default behavior settings: #REQUIRED and #IMPLIED. There are four different default types
that may be used in an attribute definition, as detailed in Table 3.3.

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
89

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

05 0672323419 CH03 3/15/04 11:16 AM Page 89

TABLE 3.3 Default Value Types

Type Definition

#REQUIRED Indicates that the value of the attribute must be specified.
Here’s an example
<!ATTLIST season year CDATA #REQUIRED >

In this example, the element season has a character data
attribute, year, that is required.

#IMPLIED Indicates that the value of the attribute is optional. Here’s
an example:
<!ATTLIST field size CDATA #IMPLIED >

In this case, each field element may have a size attribute,
but it is not required.

#FIXED Indicates that the attribute is optional, but if it is present, it
must have a specified set value that cannot be changed.
Here’s an example:
<!ATTLIST bcc hidden #FIXED “true” >

Each bcc element has an attribute, hidden, that has a fixed
value of “true”.

Default This is not an actual default behavior type. The value of the
default is supplied in the DTD. Here’s an example:
<!ATTLIST children number CDATA “0”>

This represents that the children element has a number
attribute with a default value of “0”.

So far you have element (ELEMENT) declarations and attribute (ATTLIST) declarations
under your belt. You have seen that you can create some very complex hierarchical struc-
tures using elements and attributes. Next, we will take a look at a way to save some time
when building DTDs. DTD entities offer a way to store repetitive or large chunks of data
for quick reference. First, however, we are going to revisit our mini case study.

Essentials of XML

PART I
90

Zippy Human Resources: XML for Employee Records, Part II

This is the second part of our mini case study on the use of XML in the Human
Resources department at Zippy Delivery Service. You saw in Part I that the
Human Resources department was able to put together a DTD (Employees1.
dtd) and an XML document with some employee records (Employees1.xml).
The DTD was referenced from the XML file for purposes of validation.

05 0672323419 CH03 3/15/04 11:16 AM Page 90

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD
Validating XML with the Document Type Definition (DTD)

CHAPTER 3
91

Upon review of their DTD, the members of the Human Resources department
have decided that they are not quite satisfied. They feel that they have two
types of information about each employee: personal information and contact
information. They’ve decided that the personal information would be better
stored as attributes of the employee name element rather than as individual ele-
ments. Additionally, they’ve decided that they need an ID type of attribute for
each employee element in order to be able to quickly search the XML document.
The DTD, therefore, has been amended as follows (you can download the DTD
Employees2.dtd from the Sams Web site):

<!ELEMENT employees (employee+) >
<!ELEMENT employee (name, position, address1, address2?, city, state,
zip, phone?, email?) >
<!ATTLIST employee serial ID #REQUIRED >
<!ELEMENT name (#PCDATA) >
<!ATTLIST name
age CDATA #REQUIRED
sex CDATA #REQUIRED
race CDATA #IMPLIED
m_status CDATA #REQUIRED >
<!ELEMENT position (#PCDATA) >
<!ELEMENT address1 (#PCDATA) >
<!ELEMENT address2 (#PCDATA) >
<!ELEMENT city (#PCDATA) >
<!ELEMENT state (#PCDATA) >
<!ELEMENT zip (#PCDATA) >
<!ELEMENT phone (#PCDATA) >
<!ELEMENT email (#PCDATA) >

You can see that a new ID attribute, serial, has been added for the employee
element. The serial attribute is marked as required (#REQUIRED). The age, sex,
race, and m_status elements have been removed and changed to attributes of
the name element. Each of these attributes is character data (CDATA). Also, the
race attribute has been deemed optional (#IMPLIED).

The XML document has also been updated to reflect the new requirements of
the changed DTD (you can download XML document Employees2.xml from the
Sams Web site):

<?xml version=”1.0”?>
<!DOCTYPE employees SYSTEM “employees2.dtd”>
<employees>
<employee serial=”emp1”>
<name age=”37” sex=”Male” race=”African American” m_status=”Married”>
Bob Jones
</name>
<position>Dispatcher</position>
<address1>202 Carolina St.</address1>

05 0672323419 CH03 3/15/04 11:16 AM Page 91

DTD Entities
Entities in DTDs are storage units. They can also be considered placeholders. Entities are
special markups that contain content for insertion into the XML document. Usually this

Essentials of XML

PART I
92

<city>Oklahoma City</city>
<state>OK</state>
<zip>73114</zip>
<phone>4055554321</phone>
<email>bobjones@mail.com</email>
</employee>
<employee serial=”emp2”>
<name age=”19” sex=”Female” race=”Caucasian” m_status=”Single”>
Mary Parks
</name>
<position>Delivery Person</position>
<address1>1015 Empire Blvd.</address1>
<address2>Apt. D3</address2>
<city>Oklahoma City</city>
<state>OK</state>
<zip>73107</zip>
<phone>4055559876</phone>
<email>maryparks@mail.com</email>
</employee>
<employee serial=”emp3”>
<name age=”23” sex=”Male” race=”African American” m_status=”Single”>
Jimmy Griffin
</name>
<position>Delivery Person</position>
<address1>1720 Maple St.</address1>
<city>Oklahoma City</city>
<state>OK</state>
<zip>73107</zip>
<phone>4055556633</phone>
</employee>
</employees>

In order for the XML document to remain valid according to the DTD, a serial
attribute has been added for each employee element. Each serial attribute is
set to a unique value. The age, sex, race, and m_status elements have been
removed and added as attributes of the name element.

The Zippy Human Resources department now feels that they are getting pretty
close to having the DTD and XML structure they need in order to have an
effective solution for storing their employee records. However, as you’ll see in
Part III, there is still a bit more tweaking that can be done with the addition of
entities.

05 0672323419 CH03 3/15/04 11:16 AM Page 92

will be some type of information that is bulky or repetitive. Entities make this type of
information more easily handled because the DTD author can use them to indicate where
the information should be inserted in the XML document. This is much better than hav-
ing to retype the same information over and over.

An entity’s content could be well-formed XML, normal text, binary data, a database
record, and so on. The main purpose of an entity is to hold content, and there is virtually
no limit on the type of content an entity can hold.

The general syntax of an entity is as follows:

<!ENTITY entityname [SYSTEM | PUBLIC] entitycontent>

• ENTITY is the tag name that specifies that this definition will be for an entity.

• entityname is the name by which the entity will be referred in the XML docu-
ment.

• entitycontent is the actual contents of the entity—the data for which the entity is
serving as a placeholder.

• SYSTEM and PUBLIC are optional keywords. Either one can be added to the defini-
tion of an entity to indicate that the entity refers to external content.

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
93

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

Note

The keyword SYSTEM or PUBLIC used in an entity declaration will always be
indicative of the contents of the entity being contained in an external file.
Think of this as something like a pointer in C and C++. The entity is used as a
reference to an external source of data.

Note

Entity declarations do not follow the same “top-down” rule that element defin-
itions do. They may be listed anywhere in the body of the DTD. However, it is
good practice to list them first in the DTD as they may be referenced later in
the document.

Entities may either point to internal data or external data. Internal entities represent data
that is contained completely within the DTD. External entities point to content in another

05 0672323419 CH03 3/15/04 11:16 AM Page 93

location via a URL. External data could be anything from normal parsed text in another
file, to a graphics or audio file, to an Excel spreadsheet. The type of data to which an
external entity can refer is virtually unlimited.

An entity is referenced in an XML document by inserting the name of the entity prefixed
by & and suffixed by ;. When referenced in this manner, the content of the entity will be
placed into the XML document when the document is parsed and validated. Let’s take a
look at an example of how this works (see Listing 3.14).

LISTING 3.14 Using Internal Entities

<?xml version=”1.0”?>
<!DOCTYPE library [
<!ENTITY cpy “Copyright 2000”>
<!ELEMENT library (book+)>
<!ELEMENT book (title,author,copyright)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT copyright (#PCDATA)>
]>
<library>
<book>
<title>How to Win Friends</title>
<author>Joe Charisma</author>
<copyright>&cpy;</copyright>
</book>
<book>
<title>Make Money Fast</title>
<author>Jimmy QuickBuck</author>
<copyright>&cpy;</copyright>
</book>
</library>

Listing 3.14 uses an internal DTD. In the DTD, an entity called cpy is declared that con-
tains the content “Copyright 2000”. In the copyright element of the XML document,
this entity is referenced by using &cpy;. When this document is parsed, &cpy; will be
replaced with “Copyright 2000” in each instance in which it is used. Using the entity
&cpy; saves the XML document author from having to type in “Copyright 2000” over
and over. This is a fairly simple example, but imagine if the entity contained a string of
data that was several hundred characters long. It is much more convenient (and easier on
the fingers) to be able to reference a three- or four-character entity in an XML document
than to type in all that content.

Essentials of XML

PART I
94

05 0672323419 CH03 3/15/04 11:16 AM Page 94

Predefined Entities
There are five predefined entities, as shown in Table 3.4. These entities do not have
to be declared in the DTD. When an XML parser encounters these entities (unless they
are contained in a CDATA section), they will automatically be replaced with the content
they represent.

TABLE 3.4 Predefined Entities

Entity Content

& &

< <

> >

" “

' ‘

The XML fragment in Listing 3.15 demonstrates the use of a predefined entity.

LISTING 3.15 Using Predefined Entities

<icecream>
<flavor>Cherry Garcia</flavor>
<vendor>Ben & Jerry’s</vendor>
</icecream>

In this listing, the ampersand in “Ben & Jerry’s” is replaced with the predefined entity
for an ampersand (&) .

External Entities
External entities are used to reference external content. As stated previously, external
entities get their content by referencing it via a URL placed in the entitycontent por-
tion of the entity declaration. Either the SYSTEM keyword or the PUBLIC keyword is used
here to let the XML parser know that the content is external.

XML is incredibly flexible. External entities can contain references to almost any type of
data—even other XML documents. One well-formed XML document can contain
another well-formed XML document through the use of an external entity reference.
Taking this a step further, it can be easily extrapolated that a single XML document can
be made up of references to many small XML documents. When the document is parsed,
the XML parser will gather all the small XML documents, merging them into a whole.

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
95

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

05 0672323419 CH03 3/15/04 11:16 AM Page 95

The end-user application will only see one document and never know the difference. One
useful way to apply the principle of combining XML documents through the use of
external entities would be in an employee-tracking application, like the one shown in
Listing 3.16.

LISTING 3.16 Using External Entities

<?xml version=”1.0”?>
<!DOCTYPE employees [
<!ENTITY bob SYSTEM “http://srvr/emps/bob.xml”>
<!ENTITY nancy SYSTEM “http://srvr/emps/nancy.xml”>
<!ELEMENT employees (clerk)>
<!ELEMENT clerk (#PCDATA)>
]>
<employees>
<clerk>&bob;</clerk>
<clerk>&nancy;</clerk>
</employees>

In this listing, two external entity references are used to refer to XML documents outside
the current document that contain the employee data on “bob” (bob.xml) and “nancy”
(nancy.xml). The SYSTEM keyword is used here to let the XML parser know that this is
external content. In order to insert the external content into the XML document, the enti-
ties &bob; and &nancy; are used. It is useful to be able to contain the employee informa-
tion in a separate file and “import” it using an entity reference. This is because this same
information could be easily referenced by other XML documents, such as an employee
directory and a payroll application. Defining logical units of data and separating them
into multiple documents, as in this example, makes the data more extensible and reduces
the need to reproduce redundant data from document to document.

Essentials of XML

PART I
96

Caution

Use prejudice when splitting up your XML data into multiple documents.
Splitting up employee records into 100 different XML documents so that they
will have increased extensibility across multiple applications might be a good
idea. Taking the orders table from your order tracking database and splitting it
into 100,000 documents would be a horrible idea. External entities are parsed
at runtime. Could you imagine parsing thousands of entities that point to XML
documents at runtime? Applications would suddenly be forced to search
through 100,000 separate documents to find what they need instead of a single
indexed table. Performance would be destroyed. So, keep in mind that
although the approach mentioned here does have very applicable uses, it
should not represent an overall data storage solution.

05 0672323419 CH03 3/15/04 11:16 AM Page 96

Non-Text External Entities and Notations
Some external entities will contain non-text data, such as an image file. We do not want
the XML parser to attempt to parse these types of files. In order to stop the XML parser,
we use the NDATA keyword. Take a look at the following declaration:

<!ENTITY myimage SYSTEM “myimage.gif” NDATA gif>

The NDATA keyword is used to alert the parser that the entity content should be sent
unparsed to the output document.

The final part of the declaration, gif, is a reference to a notation. A notation is a special
declaration that identifies the format of non-text external data so that the XML applica-
tion will know how handle the data. Any time an external reference to non-text data is
used, a notation identifying the data must be included and referenced. Notations are
declared in the body of the DTD and have the following syntax:

<!NOTATION notationname [SYSTEM | PUBLIC] dataformat>

• ENTITY is the tag name that specifies that this definition will be for an entity.

• notationname is the name by which the notation will be referred in the XML doc-
ument.

• SYSTEM is a keyword that is added to the definition of the notation to indicate that
the format of external data is being defined. You could also use the keyword PUB-
LIC here instead of SYSTEM. However, using PUBLIC requires you to provide a URL
to the data format definition.

• dataformat is a reference to a MIME type, ISO standard, or some other location
that can provide a definition of the data being referenced.

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
97

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

Note

Notation declarations do not follow the same “top-down” rule that element
definitions do. They may be listed anywhere in the body of the DTD. However,
it is good practice to list them after the entity that references them in order to
increase clarity.

Listing 3.17 is an example of using notation declarations for non-text external entities.

05 0672323419 CH03 3/15/04 11:16 AM Page 97

LISTING 3.17 Using External Non-Text Entities

<!NOTATION gif SYSTEM “image/gif” >
<!ENTITY employeephoto SYSTEM “images/employees/MichaelQ.gif” NDATA gif >
<!ELEMENT employee (name, sex, title, years) >
<!ATTLIST employee pic ENTITY #IMPLIED >
…
<employee pic=”employeephoto”>
…
</employee>

In this example, an ENTITY type of attribute, pic, is defined for the element employee. In
the XML document, the pic attribute is given the value employeephoto, which is an ex-
ternal entity that serves as a placeholder for the GIF file MichaelQ.gif. In order to aid
the application process and display the GIF file, the external entity (using the NDATA
keyword) references the notation gif, which points to the MIME type for GIF files.

Parameter Entities
The final type of entity we will look at is the parameter entity, which is very similar to
the internal entity. The main difference between an internal entity and a parameter entity
is that a parameter entity may only be referenced inside the DTD. Parameter entities are
in effect entities specifically for DTDs.

Parameter entities can be useful when you have to use a lot of repetitive or lengthy text
in a DTD. Use the following syntax for parameter entities:

<!ENTITY % entityname entitycontent>

The syntax for a parameter entity is almost identical to the syntax for a normal, internal
entity. However, notice that in the syntax, after the declaration, there is a space, a percent
sign, and another space before entityname. This alerts the XML parser that this is a
parameter entity and will be used only in the DTD. These types of entities, when refer-
enced, should begin with % and end with ;. Listing 3.18 shows an example of this.

LISTING 3.18 Using Parameter Entities

<!ENTITY % pc “(#PCDATA)”>
<!ELEMENT name %pc;>
<!ELEMENT age %pc;>
<!ELEMENT weight %pc;>

In this listing, pc is used as a parameter entity to reference (#PCDATA). All entities in the
DTD that hold parsed character data use the entity reference %pc;. This saves the DTD

Essentials of XML

PART I
98

05 0672323419 CH03 3/15/04 11:16 AM Page 98

author from having to type #PCDATA over and over. This particular example is somewhat
trivial, but you can see where this can be extrapolated out to a situation where you have a
long character string that you do not want to have to retype.

We are almost finished. Having covered the use of element, attribute, and entity declara-
tions in DTDs, we have just a few more loose ends to tie up. In the next section, we will
look at the use of the IGNORE and INCLUDE directives. Then we will discuss the use of
comments in DTDs. In the final part of the chapter, we will look at the future of DTDs,
some possible shortcomings of DTDs, and a possible alternative for DTD validation.
Before moving on though, let’s pay one more quick visit to the Zippy Human Resources
department in our mini case study.

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
99

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

Zippy Human Resources: XML for Employee Records, Part III

This is the final part of the mini case study on the use of XML in the Human
Resources department at Zippy Delivery Service. In Part II, the Human Resources
department decided to change the structure of their DTD by moving the
employees’ personal data into attributes. This created a separation between
personal data and contact data (which remained stored in elements).

At this point, the Human Resources department felt pretty satisfied with their
work. Now, however, there are just a couple more minor areas where they feel
the DTD (Employees2.dtd) could be improved. They’ve decided that they need
to add several entities in order to speed the entry process for new records and
to cut down on having to retype redundant information. First, they’ve added an
entity for “Delivery Person”. This makes sense to them because all but a few of
the employees of Zippy Delivery Service are delivery people, and this will save
them from having to type it over and over. The second entity they’ve decided
to add is a parameter entity to give them a shortcut for entering #PCDATA type
elements.

Here’s the updated DTD (you can download Employees3.dtd from the Sams
Web site):

<!ENTITY dp “Delivery Person”>
<!ENTITY % pc “#PCDATA”>
<!ELEMENT employees (employee+) >
<!ELEMENT employee (name, position, address1, address2?, city, state,
zip, phone?, email?) >
<!ATTLIST employee serial ID #REQUIRED >
<!ELEMENT name (%pc;) >
<!ATTLIST name
age CDATA #REQUIRED
sex CDATA #REQUIRED

05 0672323419 CH03 3/15/04 11:16 AM Page 99

Essentials of XML

PART I
100

race CDATA #IMPLIED
m_status CDATA #REQUIRED >
<!ELEMENT position (%pc;) >
<!ELEMENT address1 (%pc;) >
<!ELEMENT address2 (%pc;) >
<!ELEMENT city (%pc;) >
<!ELEMENT state (%pc;) >
<!ELEMENT zip (%pc;) >
<!ELEMENT phone (%pc;) >
<!ELEMENT email (%pc;) >

In the new DTD, the entity dp is declared first. This entity is used to insert the
value “Delivery Person” into the XML document when it is referenced. Next, the
entity pc is declared. This is a parameter entity that holds the value “#PCDATA”
for insertion into the DTD when referenced.

The XML document Employees2.xml has been updated to reflect the addition of
the dp entity (the whole XML document is not listed because only a few lines
actually changed; data not shown here should be assumed to be the same as in
Parts I and II of this case study). Here’s the code for Employees3.xml (which you
can download from the Sams Web site):

<?xml version=”1.0”?>
<!DOCTYPE employees SYSTEM “employees3.dtd”>
<employees>
<employee serial=”emp1”>
<name age=”37” sex=”Male” race=”African American” m_status=”Married”>
Bob Jones
</name>
<position>Dispatcher</position>
…
</employee>
<employee serial=”emp2”>
<name age=”19” sex=”Female” race=”Caucasian” m_status=”Single”>
Mary Parks
</name>
<position>&dp;</position>
…
</employee>
<employee serial=”emp3”>
<name age=”23” sex=”Male” race=”African American” m_status=”Single”>
Jimmy Griffin
</name>
<position>&dp;</position>
…
</employee>
</employees>

05 0672323419 CH03 3/15/04 11:16 AM Page 100

More DTD Directives
Just a few more DTD keywords are left to cover. These are keywords that do not neatly
fit into any particular topic, so they’re lumped together here. These keywords are
INCLUDE and IGNORE, and they do just what their names suggest—they indicate pieces of
markup that should either be included in the validation process or ignored.

The IGNORE Keyword
When developing or updating a DTD, you may need to comment out parts of the DTD
that are not yet reflected in the XML documents that use the DTD. You could use a nor-
mal comment directive (which will be covered in the next section), or you can use an
IGNORE directive. The syntax for IGNORE is shown in Listing 3.19.

LISTING 3.19 Using IGNORE Directives

<![IGNORE
This is the part of the DTD ignored
]]>

You can choose to ignore elements, entities, or attributes. However, you must ignore
entire declarations. You may not attempt to ignore a part of a declaration. For example,
the following would be invalid:

<!ELEMENT Employee <![IGNORE (#PCDATA)]]> (Name, Address, Phone) >

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
101

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

For the first employee, Bob Jones, the dp entity was not used for his position
value because he is the company’s dispatcher. However, for Mary Parks and
Jimmy Griffin, the entity reference &dp; was inserted as the value for their
position elements because they are both delivery people. This entity reference
would also be used for any new employees added to the XML document that
are delivery people.

The DTD for Zippy Deliver Service’s Human Resources department is now com-
plete. The DTD contains all the information required. It takes account for infor-
mation that might not be applicable. The employees’ personal and contact
information has been logically separated between attributes and elements.
Also, entities have been added to serve as timesaving devices for future addi-
tions to the XML document. The Zippy Human Resource department has built
a DTD that will serve to validate their XML employee records effectively and
efficiently.

05 0672323419 CH03 3/15/04 11:16 AM Page 101

In this example, the DTD author has attempted to ignore the rule #PCDATA in the middle
of an element declaration. This is invalid and would trigger an error.

The INCLUDE Keyword
The INCLUDE directive marks declarations to be included in the document. It might seem
interesting that this keyword exists at all because not using an INCLUDE directive is the
same as using it! In the absence of the INCLUDE directive, all declarations (unless they
are commented out or enclosed in an IGNORE directive) will be included anyway. The
syntax for INCLUDE, as shown in Listing 3.20, is very similar to the syntax for the IGNORE
directive.

LISTING 3.20 Using INCLUDE Directives

<![INCLUDE
This is the part of the DTD included
]]>

The INCLUDE directive follows the same basic rules as the IGNORE directive. It may
enclose entire declarations but not pieces of declarations. The INCLUDE directive can be
useful when you’re in the process of developing a new DTD or adding to an existing
DTD. Sections of the DTD can be toggled between the INCLUDE directive and the IGNORE
directive in order to make it clear which sections are currently being used and which are
not. This can make the process of developing a new DTD easier, because you are able to
quickly “turn on” or “turn off” different sections of the DTD.

Essentials of XML

PART I
102

Note

If an INCLUDE directive is enclosed by an IGNORE directive, the INCLUDE directive
and its declarations will be ignored.

Comments Within a DTD
Comments can also be added to DTDs. Comments within a DTD are just like comments
in HTML and take the following syntax:

<!-- Everything between the opening tag and closing tag is a comment -->

As in HTML, comments in a DTD may not be nested. Comments may, however, span
multiple lines. Generally comments in a DTD are used to demarcate different sections
of the DTD or to help human readers understand different abbreviations used in the

05 0672323419 CH03 3/15/04 11:16 AM Page 102

declarations. Comments will be ignored by the XML parser during processing. Listing
3.21 shows how to insert comments into a DTD.

LISTING 3.21 Using Comments

<!-- This is a comment -->
<!ELEMENT rootelement (element1, element2)>
<!ELEMENT element1 (#PCDATA)>
<!-- This is another comment -->
<!ELEMENT element2 (#PCDATA)>
<!-- This is a comment
that spans multiple lines -->

Comments provide a useful way to explain the meaning of different elements, attribute
lists, and entities within the DTD. They can also be used to demarcate the beginning and
end of different sections in the DTD.

The DTD is a powerful tool for defining rules for XML documents to follow. DTDs have
had and will continue to have an important place in the XML world for some time to
come. However, DTDs are not perfect. As XML has expanded beyond a simple docu-
ment markup language, these limitations have become more apparent. XML is quickly
becoming the language of choice for describing more abstract types of data. DTDs are
hard-pressed to keep up. We will now take a look at some of the drawbacks to DTDs and
what future alternatives will be available.

DTD Drawbacks and Alternatives
Throughout this book, we will continue to document new growths, changes, and permu-
tations to XML as a technology to enhance data exchange, data structuring, e-commerce,
the Internet, and so on. As newer uses for XML come into being, the needs for validation
expand. XML is being used to describe the data structure of video files, audio files, and
Braille devices, among other things—not to mention the ever-growing plethora of alter-
native data devices such as cellular phones, handheld computers, televisions, and even
appliances. There are several drawbacks that limit the ability of DTDs to meet these
growing and changing validation needs.

First and foremost, DTDs are composed of non-XML syntax. Given that one of the cen-
tral tenets of XML is that it be totally extensible, it may not seem to make a lot of sense
that this is the case for DTDs. However, you must consider that XML is a child of
SGML, and in SGML, DTDs are the method used to validate documents. Therefore,
XML inherited DTDs from its parent. Although DTDs are effective at defining the

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
103

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

05 0672323419 CH03 3/15/04 11:16 AM Page 103

structure for document markup, as XML evolves, the fact that DTDS are not formed of
XML syntax and are nonextensible becomes constraining.

Additionally, there can only be a single DTD per document. It is true that there can be
internal and external subsets of DTDs, but there can only be a single DTD referenced. In
the modern programming world, we are used to being able to draw the programming
constructs we use from different modules or classes. If we applied this idea to DTDs, we
might expect to be able to use a DTD for customers, a separate DTD for inventory, and a
separate DTD for orders. However, this is not the case. All aspects of an XML document
must be within a single DTD. This limitation is similar to what programmers faced back
in the days of monolithic applications before object-oriented programming became a nor-
mal standard for application development. This leads into the next limitation.

DTDS are not object oriented. There is no inheritance in DTDs. As programmers, we
have gotten used to describing new objects based on the characteristics of existing
objects. One classic example is having Porsche, Ford, and Chevrolet classes that inherent
some characteristics from a base car class. DTDs have no capability to do this.

DTDs do not support namespaces very well. For a namespace to be used, the entire
namespace must be defined within the DTD. If there are more than one namespace,
each of them must be defined within the DTD. This totally defeats the purpose of name-
spaces—being able to define multiple namespaces from many different external sources.

Additionally, DTDs have weak data typing and no support for the XML DOM. DTDs
basically have one data type: the text string. There are a few restraints, such as the ele-
ment rules and attribute types covered in this chapter, but these are pretty weak consider-
ing the types of applications for which XML is now being used (especially in
e-commerce). The Document Object Model has become a powerful tool to manipulate
XML data; however, the DTD is totally cut off from the reach of the DOM.

Finally, and possibly most important from a security standpoint, is the ability of the
internal DTD subset to override the external DTD subset. An company could spend a
great deal of time and effort crafting a DTD to validate the XML data in its e-commerce
transactions only to have the settings in the DTD overridden by the internally defined
elements of a DTD. The implications on this from a transaction security standpoint
should be fairly clear.

So, what is to be done about the DTD? The DTD is still an effective mechanism for vali-
dating XML documents and will be so for a long time to come. It just does not “scale” to
meet the needs of the expanding XML world. At the time of this writing, the W3C orga-
nization has just recently finished the final touches on the recommendation for the XML

Essentials of XML

PART I
104

05 0672323419 CH03 3/15/04 11:16 AM Page 104

Schema, which is a new validation mechanism for XML that corrects all the shortcom-
ings of DTDs. XML Schema is a powerful and important technology for the future of
XML. The next chapter of this book will be devoted to covering the XML Schema.

Validating XML with the Document Type Definition (DTD)

CHAPTER 3
105

3

V
A

LID
A

TIN
G

X
M

L
W

ITH
TH

E
D

TD

Note

The W3C organization’s Web resources page for the XML Schema may be
viewed at http://www.w3.org/XML/Schema.

Summary
In this chapter, we have covered the Document Type Definition (DTD) and how it is
used to validate XML documents. Well-formed XML documents are documents that are
syntactically correct according to the syntax rules of XML. However, in order to be a
valid XML document, it must be validated against a DTD using a validating XML
parser. A DTD serves as a roadmap for defining what structure a valid XML document
should have.

We covered the following items in relation to using DTDs:

• A DTD may be internal to the XML document or external and referenced by the
XML document.

• A DTD is attached to an XML document through a Document Type Declaration. A
Document Type Declaration appears after the XML declaration and before the root
element of the XML document. The Document Type Declaration may include a
reference to an external DTD, encompass an internal DTD, or both.

• XML elements are declared and defined within the DTD. Elements are parsed
from the top down, and elements in the XML document should appear in the same
order they appear in the DTD. Element declarations have a specific set of rules
and symbols that may be used in their definitions.

• XML attributes are declared and defined within the DTD. Attributes are not
processed in a top-down fashion, but it is good programming practice to insert
them after the element they reference. Attribute declarations have a specific set of
types that may be used in their definitions.

• Entities are used in DTD as storage spaces or placeholders for data. Normally enti-
ties are used to store repetitive or bulky data for easy reference. There are four
types of entities: internal, predefined, external, and parameter. Notations are used
as references to help define the format of the external data.

05 0672323419 CH03 3/15/04 11:16 AM Page 105

• The IGNORE directive is used to indicate blocks of declarations that should not be
included when the document is processed.

• The INCLUDE directive is used to indicate blocks of declarations that should be
included when the document is processed. This directive is totally unnecessary to
the successful processing of a DTD.

• Comments may be included in DTDs. Comments in DTDs are used in exactly the
same way they are used in HTML.

• The DTD has several drawbacks that limit its scalability with respect to new and
future XML applications. The XML Schema is the new recommendation from the
W3C organization for XML validation. The XML Schema will be covered in detail
in the next chapter.

Throughout the chapter, we followed a mini case study in which the Human Resources
department for Zippy Delivery Service used XML to store employee records. The
Human Resources department required a DTD to ensure that all XML records were of a
uniform structure. To start, they built a simple DTD that was functional and worked.
However, they were able to expand upon and improve their DTD to coincide with the
introduction of new DTD topics in this chapter. Ultimately, they produced a DTD that
effectively defined all the needs of the Human Resources department and enabled them
to build a good roadmap for a valid XML document containing employee records.

Essentials of XML

PART I
106

05 0672323419 CH03 3/15/04 11:16 AM Page 106

IN THIS CHAPTER

• Introduction to the W3C XML Schema
Recommendation 108

• Creating XML Schemas 116

4
C

H
A

PT
ER

Creating XML
Schemas

06 0672323419 CH04 3/15/04 11:16 AM Page 107

Document Type Definitions have generated quite a few complaints since they were intro-
duced. As a result, the W3C set about creating a new standard for defining a document’s
structure. What the W3C created is something even more complex and flexible than
DTDs: the XML Schema Definition Language.

The XML Schema Definition Language solves a number of problems posed with
Document Type Definitions. For instance, because the language for specifying DTDs is
inherently different from the XML document it is describing, DTDs can be difficult to
read and understand. Another limitation of DTDs is the method in which data is handled.
Unfortunately, DTDs only support character data types: DTDs are unable to make a dis-
tinction between the various data types, such as numerics, dates, and so on. They are all
considered character data types. Probably the most important and notable drawback of
using DTDs is their inability to provide support for mixing elements from different docu-
ments stored in separate namespaces.

Schemas, while more complex than DTDs, also give an individual much more power and
control over how XML documents are validated. For instance, with the new W3C stan-
dard, a document definition can specify the data type of an element’s contents, the range
of values for elements, what the minimum as well as maximum number of times an ele-
ment may occur, annotations to schemas, and much more.

In this chapter, we’ll cover the following topics:

• The various XML data types

• How to define and declare an attribute

• How to define and declare simple as well as complex elements

• How to create an enumerated set of values

• How to specify various constraints

• The different facets for the various data types

• How to create groups of related elements and attributes

• How to “inherit” elements and attributes from other schemas

• How to define a schema for a sample purchase order XML document

• How to associate and link an XML schema with an XML document

Introduction to the W3C XML
Schema Recommendation
In May of 2001, the W3C finalized its recommendation for the XML Schema Definition
Language. This standard allows an author to define simple and complex elements and the

Essentials of XML

PART I
108

06 0672323419 CH04 3/15/04 11:16 AM Page 108

rules governing how those elements and their attributes may show up within an instance
document. The author has a large amount of control over how the structure of a conform-
ing XML document must be created. The author can apply various restrictions to the ele-
ments and attributes within the document, from specifying the length to specifying an
enumerated set of acceptable values for the element or attribute. With the XML Schema
Definition Language, an XML schema author possesses an incredible amount of control
over the conformance of an associated XML document to the specified schema. You can
find more information on the W3C at www.w3c.org. Additionally, the W3C XML
Schema recommendation is separated into three main documents:

• The XML Schema Primer (Part 0), which can be found at
http://www.w3c.org/TR/xmlschema-0/.

• The XML Schema Structures (Part 1), which can be found at
http://www.w3c.org/TR/xmlschema-1/.

• The XML Schema Data Types (Part 2), which can be found at
http://www.w3c.org/TR/xmlschema-2/.

You can find additional information on the XML Schema Definition Language at
http://www.w3c.org/XML/Schema.

Sample XML Document
The rest of this chapter is devoted to creating and understanding the XML schema for the
XML document shown in Listing 4.1, which details a purchase order for various items
that can commonly be found in a grocery store. This document allows one individual to
receive the shipment of the goods and an entirely different individual to pay for the pur-
chase. This document also contains specific information about the products ordered, such
as how much each product is, how many were ordered, and so on.

LISTING 4.1 PurchaseOrder.xml Contains a Sample Purchase Order for Common
Items Found in a Grocery Store

<PurchaseOrder Tax=”5.76” Total=”75.77”>

<ShippingInformation>
<Name>Dillon Larsen</Name>
<Address>
<Street>123 Jones Rd.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77381</Zip>

</Address>
<Method>USPS</Method>

Creating XML Schemas

CHAPTER 4
109

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 109

LISTING 4.1 continued

<DeliveryDate>2001-08-12</DeliveryDate>
</ShippingInformation>

<BillingInformation>
<Name>Madi Larsen</Name>
<Address>
<Street>123 Jones Rd.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77381</Zip>

</Address>
<PaymentMethod>Credit Card</PaymentMethod>
<BillingDate>2001-08-09</BillingDate>

</BillingInformation>

<Order SubTotal=”70.01” ItemsSold=”17”>
<Product Name=”Baby Swiss” Id=”702890” Price=”2.89”

➥ Quantity=”1”/>
<Product Name=”Hard Salami” Id=”302340” Price=”2.34”

➥ Quantity=”1”/>
<Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ Quantity=”1”/>
<Product Name=”Caesar Salad” Id=”991687” Price=”2.38”

➥ Quantity=”2”/>
<Product Name=”Chicken Strips” Id=”133382” Price=”2.50”

➥ Quantity=”1”/>
<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>
<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>
<Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ Quantity=”1”/>
<Product Name=”Jalapenos” Id=”101005” Price=”1.97”

➥ Quantity=”1”/>
<Product Name=”Tuna” Id=”000118” Price=”0.92”

➥ Quantity=”3”/>
<Product Name=”Mayonnaise” Id=”126860” Price=”1.98”

➥ Quantity=”1”/>
<Product Name=”Top Sirloin” Id=”290502” Price=”9.97”

➥ Quantity=”2”/>
<Product Name=”Soup” Id=”001254” Price=”1.33”

➥ Quantity=”1”/>
<Product Name=”Granola Bar” Id=”026460” Price=”2.14”

➥ Quantity=”2”/>
<Product Name=”Chocolate Milk” Id=”024620” Price=”1.58”

➥ Quantity=”2”/>
<Product Name=”Spaghetti” Id=”000265” Price=”1.98”

➥ Quantity=”1”/>

Essentials of XML

PART I
110

06 0672323419 CH04 3/15/04 11:16 AM Page 110

LISTING 4.1 continued

<Product Name=”Laundry Detergent” Id=”148202” Price=”8.82”
➥ Quantity=”1”/>
</Order>

</PurchaseOrder>

As you can see, Listing 4.1 represents a fairly small and simple order that could be
placed online. It contains the necessary information regarding how payment is to be
made, how the order is to be shipped, and on what day the order is to be delivered. The
preceding listing should by no means be construed as an all-inclusive document for an
online grocery store order; it has been constructed for use as an example within this book
only.

Until the XML Schema Definition Language recommendation was finalized, most
authors, in the face of ever-changing standards, decided to stick with a finalized standard
of DTDs. For the preceding listing, an author might construct the DTD shown in
Listing 4.2.

LISTING 4.2 PurchaseOrder.dtd Contains a Sample DTD for PurchaseOrder.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<!ELEMENT PurchaseOrder (ShippingInformation, BillingInformation, Order)>
<!ATTLIST PurchaseOrder
Tax CDATA #IMPLIED
Total CDATA #IMPLIED

>
<!ELEMENT ShippingInformation (Name, Address, (((BillingDate,
➥ PaymentMethod)) | ((DeliveryDate, Method))))>
<!ELEMENT BillingInformation (Name, Address, (((BillingDate,
➥ PaymentMethod)) | ((DeliveryDate, Method))))>
<!ELEMENT Order (Product+)>
<!ATTLIST Order
SubTotal CDATA #IMPLIED
ItemsSold CDATA #IMPLIED

>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (Street, City, State, Zip)>
<!ELEMENT BillingDate (#PCDATA)>
<!ELEMENT PaymentMethod (#PCDATA)>
<!ELEMENT DeliveryDate (#PCDATA)>
<!ELEMENT Method (#PCDATA)>
<!ELEMENT Product EMPTY>
<!ATTLIST Product
Name CDATA #IMPLIED
Id CDATA #IMPLIED

Creating XML Schemas

CHAPTER 4
111

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 111

LISTING 4.2 continued

Price CDATA #IMPLIED
Quantity CDATA #IMPLIED

>
<!ELEMENT Street (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT State (#PCDATA)>
<!ELEMENT Zip (#PCDATA)>

Schema for XML Document
So, now that you’ve seen the DTD for the XML document in Listing 4.1, what would the
comparative XML schema for it look like? Although the DTD in Listing 4.2 manages to
describe the XML document in Listing 4.1 in a total of 30 lines, creating an XML
schema is not quite so easy. Given the document in Listing 4.1, the XML schema for it is
shown in Listing 4.3.

LISTING 4.3 PurchaseOrder.xsd Contains the Schema Definition for
PurchaseOrder.xml

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:annotation>
<xsd:documentation>
Purchase Order schema for an online grocery store.

</xsd:documentation>
</xsd:annotation>

<xsd:element name=”PurchaseOrder” type=”PurchaseOrderType”/>

<xsd:complexType name=”PurchaseOrderType”>
<xsd:all>
<xsd:element name=”ShippingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”BillingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”Order” type=”OrderType”

➥ minOccurs=”1” maxOccurs=”1”/>
</xsd:all>
<xsd:attribute name=”Tax”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Total”>

Essentials of XML

PART I
112

06 0672323419 CH04 3/15/04 11:16 AM Page 112

LISTING 4.3 continued

<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

<xsd:group name=”ShippingInfoGroup”>
<xsd:all>
<xsd:element name=”DeliveryDate” type=”DateType”/>
<xsd:element name=”Method” type=”DeliveryMethodType”/>

</xsd:all>
</xsd:group>

<xsd:group name=”BillingInfoGroup”>
<xsd:all>
<xsd:element name=”BillingDate” type=”DateType”/>
<xsd:element name=”PaymentMethod” type=”PaymentMethodType”/>

</xsd:all>
</xsd:group>

<xsd:complexType name=”InfoType”>
<xsd:sequence>
<xsd:element name=”Name” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”Address” type=”AddressType” minOccurs=”1”

➥ maxOccurs=”1”/>
<xsd:choice minOccurs=”1” maxOccurs=”1”>
<xsd:group ref=”BillingInfoGroup”/>
<xsd:group ref=”ShippingInfoGroup”/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=”DateType”>
<xsd:restriction base=”xsd:date”/>

</xsd:simpleType>

<xsd:simpleType name=”DeliveryMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”USPS”/>
<xsd:enumeration value=”UPS”/>
<xsd:enumeration value=”FedEx”/>
<xsd:enumeration value=”DHL”/>
<xsd:enumeration value=”Other”/>

Creating XML Schemas

CHAPTER 4
113

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 113

LISTING 4.3 continued

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”PaymentMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Check”/>
<xsd:enumeration value=”Cash”/>
<xsd:enumeration value=”Credit Card”/>
<xsd:enumeration value=”Debit Card”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name=”AddressType”>
<xsd:all>
<xsd:element name=”Street” minOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”City” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”State” type=”StateType” minOccurs=”1”

➥ maxOccurs=”1”/>
<xsd:element name=”Zip” type=”ZipType” minOccurs=”1”

➥ maxOccurs=”1”/>
</xsd:all>

</xsd:complexType>

<xsd:simpleType name=”ZipType”>
<xsd:restriction base=”xsd:string”>
<xsd:minLength value=”5”/>
<xsd:maxLength value=”10”/>
<xsd:pattern value=”[0-9]{5}(-[0-9]{4})?”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”StateType”>
<xsd:restriction base=”xsd:string”>
<xsd:length value=”2”/>
<xsd:enumeration value=”AR”/>
<xsd:enumeration value=”LA”/>
<xsd:enumeration value=”MS”/>
<xsd:enumeration value=”OK”/>
<xsd:enumeration value=”TX”/>

Essentials of XML

PART I
114

06 0672323419 CH04 3/15/04 11:16 AM Page 114

LISTING 4.3 continued

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name=”OrderType”>
<xsd:sequence>
<xsd:element name=”Product” type=”ProductType”

➥ minOccurs=”1” maxOccurs=”unbounded”/>
</xsd:sequence>
<xsd:attribute name=”SubTotal”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”ItemsSold” type=”xsd:positiveInteger”/>

</xsd:complexType>

<xsd:complexType name=”ProductType”>
<xsd:attribute name=”Name” type=”xsd:string”/>
<xsd:attribute name=”Id” type=”xsd:positiveInteger”/>
<xsd:attribute name=”Price”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Quantity” type=”xsd:positiveInteger”/>

</xsd:complexType>

</xsd:schema>

Examining the preceding XML schema, you can see that defining a schema for a docu-
ment can become fairly complicated. However, for all the extra complexity involved, the
schema gives the author virtually limitless control over how an XML document can be
validated against it. For instance, you may notice the use of the <xsd:choice> element.
You’ll learn later in the “Model Groups” section of this chapter that this element can be
used to indicate when one of a group of elements or attributes may show up, but not all,
as is the case with the DeliveryDate and BillingDate attributes.

Also, notice the use of the xsd namespace. This namespace can be anything, but for con-
vention in this chapter, we’ll use xsd to indicate an XML Schema Definition Language
element.

Creating XML Schemas

CHAPTER 4
115

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 115

Creating XML Schemas
One of the first things that comes to mind for most people when authoring an XML
schema is the level of complexity that accompanies it. However, the example in Listing
4.3 demonstrates only a small portion of the power and flexibility within the XML
Schema Definition Language. Table 4.1 shows a complete list of every element the XML
Schema Definition Language supports.

TABLE 4.1 XML Schema Elements Supported by the W3C Standard

Element Name Description

All Indicates that the contained elements may
appear in any order within a parent element.

Any Indicates that any element within the
specified namespace may appear within the
parent element’s definition. If a type is
not specifically declared, this is the
default.

anyAttribute Indicates that any attribute within the
specified namespace may appear within the
parent element’s definition.

annotation Indicates an annotation to the schema.

Appinfo Indicates information that can be used by an
application.

Attribute Declares an occurrence of an attribute.

attributeGroup Defines a group of attributes that can be
included within a parent element.

Choice Indicates that only one contained element or
attribute may appear within a parent
element.

complexContent Defines restrictions and/or extensions to a
complexType.

complexType Defines a complex element’s construction.

documentation Indicates information to be read by an
individual.

Element Declares an occurrence of an element.

Extension Extends the contents of an element

Field Indicates a constraint for an element using XPath.

Essentials of XML

PART I
116

06 0672323419 CH04 3/15/04 11:16 AM Page 116

TABLE 4.1 continued

Element Name Description

Group Logically groups a set of elements to be
included together within another element
definition.

import Identifies a namespace whose schema elements
and attributes can be referenced within the
current schema.

include Indicates that the specified schema should
be included in the target namespace.

Key Indicates that an attribute or element value
is a key within the specified scope.

keyref Indicates that an attribute or element value
should correspond with those of the
specified key or unique element.

List Defines a simpleType element as a list of
values of a specified data type.

notation Contains a notation definition.

redefine Indicates that simple and complex types, as
well as groups and attribute groups from an
external schema, can be redefined.

restriction Defines a constraint for the specified
element.

schema Contains the schema definition.

selector Specifies an XPath expression that selects a
set of elements for an identity constraint.

sequence Indicates that the elements within the
specified group must appear in the exact
order they appear within the schema.

simpleContent Defines restrictions and/or extensions of a
simpleType element.

simpleType Defines a simple element type.

Union Defines a simpleType element as a collection
of values from specified simple data types.

unique Indicates that an attribute or element value
must be unique within the specified scope.

Creating XML Schemas

CHAPTER 4
117

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 117

Each of the elements in Table 4.1 has its own series of attributes and elements, including
a series of constraints that can be placed on each element.

Authoring an XML schema consists of declaring elements and attributes as well as the
“properties” of those elements and attributes. We will begin our look at authoring XML
schemas by working our way from the least-complex example to the most-complex
example. Because attributes may not contain other attributes or elements, we will start
there.

Declaring Attributes
Attributes in an XML document are contained by elements. To indicate that a complex
element has an attribute, use the <attribute> element of the XML Schema Definition
Language. For instance, if you look at the following section from the PurchaseOrder
schema, you can see the basics for declaring an attribute:

<xsd:complexType name=”ProductType”>
<xsd:attribute name=”Name” type=”xsd:string”/>
<xsd:attribute name=”Id” type=”xsd:positiveInteger”/>
<xsd:attribute name=”Price”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Quantity” type=”xsd:positiveInteger”/>

</xsd:complexType>

From this, you can see that when declaring an attribute, you must specify a type. This
type must be one of the simple types defined in Table 4.2.

TABLE 4.2 The Simple XML Data Types

Data Type Description

anyURI Represents a Uniform Resource Identifier
(URI).

base64Binary Represents Base-64-encoded binary data.

boolean Represents Boolean values (True and
False).

byte Represents an integer ranging from -128
to 127. This type is derived from short.

date Represents a date.

Essentials of XML

PART I
118

06 0672323419 CH04 3/15/04 11:16 AM Page 118

TABLE 4.2 continued

Data Type Description

dateTime Represents a specific time on a specific
date.

decimal Represents a variable-precision number.

double Represents a double-precision, 64-bit,
floating-point number.

duration Represents a duration of time.

ENTITIES Represents a set of values of the ENTITY
type.

ENTITY Represents the ENTITY attribute type in
XML 1.0. This type is derived from
NCName.

float Represents a single-precision, 32-bit,
floating-point number.

gDay Represents a recurring Gregorian day of
the month.

gMonth Represents a Gregorian month.

gMonthDay Represents a recurring Gregorian date.

gYear Represents a Gregorian year.

gYearMonth Represents a specific Gregorian month in
a specific Gregorian year.

hexBinary Represents hex-encoded binary data.

ID Represents the ID attribute type defined
in XML 1.0. This type is derived from
NCName.

IDREF Represents a reference to an element
with the specified ID attribute value.
This type is derived from NCName.

IDREFS Represents a set of values of IDREF
attribute types.

int Represents an integer with a range of
-2,147,483,648 to 2,147,483,647. This
type is derived from long.

integer Represents a sequence of decimal digits
with an optional leading sign (+ or -).
This type is derived from decimal.

Creating XML Schemas

CHAPTER 4
119

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 119

TABLE 4.2 continued

Data Type Description

language Represents natural language identifiers.
This type is derived from token.

long Represents an integer with a range of
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. This type
is derived from integer.

Name Represents a token that begins with a
letter, underscore, or colon and
continues with letters, digits, and
other characters. This type is derived
from token.

NCName Represents “noncolonized” names. This
type is derived from Name.

negativeInteger Represents an integer that is less than
zero. This type is derived from
nonPositiveInteger.

NMTOKEN Represents a set of letters, digits, and
other characters in any combination
with no restriction on the starting
character. This type is derived from
token.

NMTOKENS Represents a set of values of NMTOKEN
types.

nonNegativeInteger Represents an integer that is greater
than or equal to zero. This type is
derived from integer.

nonPositiveInteger Represents an integer that is less than
or equal to zero. This type is derived
from integer.

normalizedString Represents whitespace-normalized
strings. This type is derived from
string.

NOTATION Represents a set of QNames.

positiveInteger Represents an integer that is greater
than zero. This type is derived from
nonNegativeInteger.

Essentials of XML

PART I
120

06 0672323419 CH04 3/15/04 11:16 AM Page 120

TABLE 4.2 continued

Data Type Description

QName Represents a qualified name.

short Represents an integer with a value range
of -32,768 to 32,767. This type is
derived from int.

string Represents a character string.

time Represents a recurring instance of time.

token Represents tokenized strings. This type
is derived from normalizedString.

unsignedBtye Represents an integer with a value range
of 0 to 255. This type is derived from
unsignedShort.

unsignedInt Represents an integer with a value in
the range of 0 to 4,294,967,295. This
type is derived from unsignedLong.

unsignedLong Represents an integer with a value
in the range of 0 to
18,446,744,073,709,551,615.
This type is derived from
nonNegativeInteger.

unsignedShort Represents an integer with a value in
the range of 0 to 65,535. This type is
derived from unsignedInt.

The types in Table 4.2 can each be further categorized as either a “primitive” data type or
a “derived” data type. Here’s a list of the primitive data types:

• anyURI

• base64Binary

• Boolean

• date

• dateTime

• decimal

• double

• duration

Creating XML Schemas

CHAPTER 4
121

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 121

• float

• gDay

• gMonth

• gMonthDay

• gYear

• gYearMonth

• hexBinary

• NOTATION

• QName

• string

• time

The derived data types are “primitive” or other “derived” data types with restrictions
placed on them, such as integer, positiveInteger, and byte. Here’s a list of the
derived data types:

• byte

• ENTITIES

• ENTITY

• ID

• IDREF

• IDREFS

• int

• integer

• language

• long

• Name

• NCName

• negativeInteger

• NMTOKEN

• NMTOKENS

• nonNegativeInteger

• nonPositiveInteger

• short

Essentials of XML

PART I
122

06 0672323419 CH04 3/15/04 11:16 AM Page 122

• token

• unsignedByte

• unsignedInt

• unsignedLong

• unsignedShort

Creating XML Schemas

CHAPTER 4
123

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

Note

From the simple types specified in Table 4.2, you may notice what appears to
be a group of duplicate or unnecessary types, such as nonNegativeInteger and
positiveInteger. Aren’t those two types the same? No, they’re not. If you look
closely, you’ll see that nonNegativeInteger is an integer whose value is greater
than or equal to zero, whereas the positiveInteger type is an integer whose
value is greater than zero, which means a positiveInteger type cannot be zero.
Keep this in mind when deciding on the base data type for your elements and
attributes, because these small details can greatly influence their acceptable
value ranges.

Aside from defining the type of an attribute, the <attribute> element within the XML
Schema Definition Language contains attributes to assist in defining when an attribute is
optional, whether its values are fixed, what its default value is, and so on. Here’s the
basic syntax for the <attribute> element:

<attribute name=”” type=”” [use=””] [fixed=””] [default=””] [ref=””]/>

The use attribute can contain one of the following possible values:

• optional

• prohibited

• required

If the use attribute is set to required, the parent element must have the attribute; other-
wise, the document will be considered invalid. A value of optional indicates the
attribute may or may not occur in the document and the attribute may contain any value.
By assigning a value of prohibited to the use attribute, you can indicate that the
attribute may not appear at all within the parent element.

Specifying a value for the default attribute indicates that if the attribute does not appear
within the specified element of the XML document, it is assumed to have the value. A
value within the fixed attribute indicates the attribute has a constant value.

06 0672323419 CH04 3/15/04 11:16 AM Page 123

The ref attribute for the <attribute> element indicates that the attribute declaration
exists somewhere else within the schema. This allows complex attribute declarations to
be defined once and referenced when necessary. For instance, let’s say you’ve “inherited”
elements and attributes from another schema and would like to simply reuse one of the
attribute declarations within the current schema; this would provide the perfect opportu-
nity to take advantage of the ref attribute.

Just as attributes can be defined based on the simple data types included in the XML
Schema Definition Language, they can also be defined based on <simpleType> elements.
This can easily be accomplished by declaring an attribute that contains a <simpleType>
element, as the following example demonstrates:

<xsd:attribute name=”exampleattribute”>
<xsd:simpleType base=”string”>

<xsd:length value=”2”/>
</xsd:simpleType>

</xsd:attribute>

<xsd:complexType name=”exampleelement”>
<xsd:attribute ref=”exampleattribute”/>

</xsd:complexType>

From this example, you can see that the XML Schema Definition Language gives the
schema author a great deal of control over how attributes are validated. One of the won-
derful side effects of the XML Schema Definition Language is its similarity to object-
oriented programming. Consider each attribute definition and element definition to be a
class definition. These class definitions describe complex structures and behaviors among
various different classes, so each individual class definition, whether it’s a simple class or
complex class, encapsulates everything necessary to perform its job. The same holds true
for the declaration of attributes and elements within an XML document. Each item com-
pletely describes itself.

Essentials of XML

PART I
124

Caution

If you specify a value for the fixed attribute of the <attribute> element, the
resulting attribute must have the value specified for the attribute to be valid. If
you mean to indicate that the attribute should have a default value of some sort,
use the default attribute instead. It should be noted that the default and fixed
attributes are mutually exclusive of each other.

06 0672323419 CH04 3/15/04 11:16 AM Page 124

Declaring Elements
Elements within an XML schema can be declared using the <element> element from the
XML Schema Definition Language. If you look at the following example from Listing
4.3, you can see a simple element declaration using the XML Schema Definition
Language:

<xsd:element name=’PurchaseOrder’ type=’PurchaseOrderType’/>

<xsd:complexType name=”PurchaseOrderType”>
<xsd:all>
<xsd:element name=”ShippingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”BillingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”Order” type=”OrderType”

➥ minOccurs=”1” maxOccurs=”1”/>
</xsd:all>
<xsd:attribute name=”Tax”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Total”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

From this example, you can see that an element’s type may be defined elsewhere within
the schema. The location at which an element is defined determines certain characteris-
tics about its availability within the schema. For instance, an element defined as a child
of the <schema> element can be referenced anywhere within the schema document,
whereas an element that is defined when it is declared can only have that definition used
once. An element’s type can be defined with either a <complexType> element, a
<simpleType> element, a <complexContent> element, or a <simpleContent> element.
The validation requirements for the document will influence the choice for an element’s
type. For instance, going back our object-oriented analogy, let’s say you define a high-
level abstract class and then need to refine its definition for certain situations. In that
case, you would create a new class based on the existing one and change its definition as
needed. The <complexContent> and <simpleContent> elements work much the same

Creating XML Schemas

CHAPTER 4
125

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 125

way: They provide a way to extend or restrict the existing simple or complex type defini-
tion as needed by the specific instance of the element declaration.

The basic construction of an element declaration using the <element> element within the
XML Schema Definition Language is as follows:

<element name=”” [type=””] [abstract=””] [block=””]
➥ [default=””] [final=””] [fixed=””] [minOccurs=””]
➥ [maxOccurs=””] [nillable=””] [ref=””]
➥ [substitutionGroup=””]/>

From this, you can see that element declarations offer a myriad of possibilities to the
author. For instance, the abstract attribute indicates whether the element being declared
may show up directly within the XML document. If this attribute is true, the declared
element may not show up directly. Instead, this element must be referenced by another
element using the substitutionGroup attribute. This substitution works only if the ele-
ment utilizing the substitutionGroup attribute occurs directly beneath the <schema>
element. In other words, for one element declaration to be substituted for another, the
element using the substitutionGroup attribute must be a top-level element. Why would
anyone in his right mind declare an element as abstract? The answer is really quite sim-
ple. Let’s say you need to have multiple elements that have the same basic values speci-
fied for the attributes on the <element> element. A <complexType> element definition
does not allow for those attributes. So, rather than define and set those attribute values
for each element, you could make an “abstract” element declaration, set the values once,
and substitute the abstract element definition as needed.

Essentials of XML

PART I
126

Note

You may omit the type attribute from the <element> element, but you should
have either the ref attribute or the substitutionGroup attribute specified.

The type attribute indicates that the element should be based on a complexType,
simpleType, complexContent, or simpleContent element definition. By defining an
element’s structure using one of these other elements, the author can gain an incredible
amount of control over the element’s definition. We will cover these various element
definitions in the “Declaring Complex Elements” section and the “Declaring Simple
Types” section later in this chapter.

The block attribute prevents any element with the specified derivation type from being
used in place of the element. The block attribute may contain any of the following
values:

06 0672323419 CH04 3/15/04 11:16 AM Page 126

• #all

• extension

• restriction

• substitution

If the value #all is specified within the block attribute, no elements derived from this
element declaration may appear in place of this element. A value of extension prevents
any element whose definition has been derived by extension from appearing in place on
this element. If a value of restriction is assigned, an element derived by restriction
from this element declaration is prevented from appearing in place of this element.
Finally, a value of substitution indicates that an element derived through substitution
cannot be used in place of this element.

The default attribute may only be specified for an element based on a simpleType or
whose content is text only. This attribute assigns a default value to an element.

Creating XML Schemas

CHAPTER 4
127

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

Caution

You cannot specify a value for both a default attribute and a fixed attribute;
they are mutually exclusive. Also, if the element definition is based on a
simpleType, the value must be a valid type of the data type.

The minOccurs and maxOccurs attributes specify the minimum and maximum number of
times this element may appear within a valid XML document. Although you may explic-
itly set these attributes, they are not required. To indicate that an element’s appearance
within the parent element is optional, set the minOccurs attribute to 0. To indicate that
the element may occur an unlimited number of times within the parent element, set the
maxOccurs attribute to the string “unbounded”.

Caution

You may not specify the minOccurs attribute for an element whose parent
element is the <schema> element.

The nillable attribute indicates whether an explicit null value can be assigned to the
element. If this particular attribute is omitted, it is assumed to be false. If this attribute
has a value of true, the nil attribute for the element will be true. So what exactly does
this do for you, this nillable attribute? Well, let’s say you are writing an application

06 0672323419 CH04 3/15/04 11:16 AM Page 127

that uses a database that supports NULL values for fields and you are representing your
data as XML. Now let’s say you request the data from your database and convert it into
some XML grammar. How do you tell the difference between those elements that are
empty and those elements that are NULL? That’s where the nillable attribute comes
into play. By appending an attribute of nil to the element, you can tell whether it is
empty or is actually NULL.

Essentials of XML

PART I
128

Note

The nillable attribute applies only to an element’s contents and not the
attributes of the element.

The fixed attribute specifies that the element has a constant, predetermined value. This
attribute only applies to those elements whose type definitions are based on simpleType
or whose content is text only.

Declaring Complex Elements
Many times within an XML document, an element may contain child elements and/or
attributes. To indicate this within the XML Schema Definition Language, you’ll use the
<complexType> element. If you examine the following sample section from Listing 4.3,
you’ll see the basics used to define a complex element within an XML schema:

<xsd:complexType name=”PurchaseOrderType”>
<xsd:all>
<xsd:element name=”ShippingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”BillingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”Order” type=”OrderType”

➥ minOccurs=”1” maxOccurs=”1”/>
</xsd:all>
<xsd:attribute name=”Tax”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Total”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>

06 0672323419 CH04 3/15/04 11:16 AM Page 128

</xsd:simpleType>
</xsd:attribute>

</xsd:complexType>

The preceding sample section specifies the definition of PurchaseOrderType. This par-
ticular element contains three child elements—ShippingInformation,
BillingInformation, and Order—as well as two attributes: Tax and Total. You should
also notice the use of the maxOccurs and minOccurs attributes on the element declara-
tions. With a value of 1 indicated for both attributes, the element declarations specify that
they must occur one time within the PurchaseOrderType element.

The basic syntax for the <complexType> element is as follows:

<xsd:complexType name=’’ [abstract=’’] [base=’’] [block=’’]
➥ [final=’’] [mixed=’’]/>

The abstract attribute indicates whether an element may define its content directly from
this type definition or it must define its content from a type derived from this type defini-
tion. If this attribute is true, an element must define its content from a derived type defi-
nition. If this attribute is omitted or its value is false, an element may define its content
directly based on this type definition.

The base attribute specifies the data type for the element. This attribute may hold any
value from the included simple XML data types listed in Table 4.2.

The block attribute indicates what types of derivation are prevented for this element defi-
nition. This attribute can contain any of the following values:

• #all

• extension

• restriction

A value of #all prevents all complex types derived from this type definition from
being used in place of this type definition. A value of extension prevents complex type
definitions derived through extension from being used in place of this type definition.
Assigning a value of restriction prevents a complex type definition derived through
restriction from being used in place of this type definition. If this attribute is omitted,
any type definition derived from this type definition may be used in place of this type
definition.

The mixed attribute indicates whether character data is permitted to appear between the
child elements of this type definition. If this attribute is false or is omitted, no character
may appear. If the type definition contains a simpleContent type element, this value
must be false. If the complexContent element appears as a child element, the mixed

Creating XML Schemas

CHAPTER 4
129

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 129

attribute on the complexContent element can override the value specified in the current
type definition.

A <complexType> element in the XML Schema Definition Language may contain only
one of the following elements:

• all

• choice

• complexContent

• group

• sequence

• simpleContent

For a short description of these elements, refer back to Table 4.1.

Declaring Simple Types
Sometimes, it’s not necessary to declare a complex element type within an XML schema.
In these cases, you can use the <simpleType> element of the XML Schema Definition
Language. These element type definitions support an element based on the simple XML
data types listed in Table 4.2 or any simpleType declaration within the current schema.
For example, let’s take the following section from the PurchaseOrder schema in
Listing 4.3:

<xsd:simpleType name=”PaymentMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Check”/>
<xsd:enumeration value=”Cash”/>
<xsd:enumeration value=”Credit Card”/>
<xsd:enumeration value=”Debit Card”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

This type definition defines the PaymentMethodType element definition, which is based
on the string data type included in the XML Schema Definition Language. You may
notice the use of the <enumeration> element. This particular element is referred to as a
facet, which we’ll cover in the next section in this chapter.

The basic syntax for defining a simpleType element definition is as follows:

<xsd:simpleType name=’’>
<xsd:restriction base=’’/>

</xsd:simpleType>

Essentials of XML

PART I
130

06 0672323419 CH04 3/15/04 11:16 AM Page 130

The base attribute type may contain any simple XML data type listed in Table 4.2 or any
simpleType declared within the schema. Specifying the value of this attribute determines
the type of data it may contain. A simpleType may only contain a value; not other ele-
ments or attributes.

You may also notice the inclusion of the <restriction> element. This is probably the
most common method in which to declare types, and it helps to set more stringent
boundaries on the values an element or attribute based on this type definition may hold.
So, to indicate that a type definition’s value may hold only string values, you would
declare a type definition like the following:

<xsd:simpleType name=’mySimpleType’>
<xsd:restriction base=’xsd:string’/>

</xsd:simpleType>

Two other methods are available to an XML schema author to “refine” a simple type def-
inition: <list> and <union>. The <list> element allows an element or attribute based
on the type definition to contain a list of values of a specified simple data type. The
<union> element allows you to combine two or more simple type definitions to create a
collection of values.

Refining Simple Types Using Facets
To give greater control over the definition of elements and attributes, the W3C added
facets to the XML Schema Definition Language. A facet can only be specified for a
<simpleType> element, and it helps determine the set of values for a <simpleType> ele-
ment. For example, a facet may help determine the length or size that an element based
on the <simpleType> element may have, an enumeration of acceptable values, and so on.
Here’s a list of the facets included within the XML Schema Definition Language:

• enumeration

• fractionDigits

• length

• maxExclusive

• maxInclusive

• maxLength

• minExclusive

• minInclusive

• minLength

• pattern

Creating XML Schemas

CHAPTER 4
131

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 131

• totalDigits

• whiteSpace

The <enumeration> facet constrains the data type to the specified values. For each valid
value for a data type, another <enumeration> element must be defined. The following
sample section from Listing 4.3 demonstrates the use of the <enumeration> facet:

<xsd:simpleType name=”PaymentMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Check”/>
<xsd:enumeration value=”Cash”/>
<xsd:enumeration value=”Credit Card”/>
<xsd:enumeration value=”Debit Card”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

This example indicates that the only valid values for an element based on
PaymentMethodType are the following:

• Check

• Cash

• Credit Card

• Debit Card

• Other

The <fractionDigits> facet specifies the maximum number of decimal digits in the
fractional part. The value for this facet must be a nonNegativeInteger. This may sound
a bit confusing, but <fractionDigits> determines the number of decimal places allowed
to appear within the value for the data type. For example, look at the following attribute
declaration from Listing 4.3:

<xsd:attribute name=”SubTotal”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>

The <length> facet determines the number of units of length for the specified data type.
For instance, let’s examine the following sample section from the PurchaseOrder
schema in Listing 4.3:

<xsd:simpleType name=”StateType”>
<xsd:restriction base=”xsd:string”>

Essentials of XML

PART I
132

06 0672323419 CH04 3/15/04 11:16 AM Page 132

<xsd:length value=”2”/>
<xsd:enumeration value=”AR”/>
<xsd:enumeration value=”LA”/>
<xsd:enumeration value=”MS”/>
<xsd:enumeration value=”OK”/>
<xsd:enumeration value=”TX”/>

</xsd:restriction>
</xsd:simpleType>

The preceding sample section indicates that elements derived from the StateType type
definition have a string value of “2” (that is, two spaces in length). Furthermore, the
only acceptable values for elements derived from the StateType type definition are TX,
LA, MS, OK, and AR, as indicated by the <enumeration> elements.

The <maxExclusive> facet specifies the upper bound for the values that can be assigned
to the element or attribute. This facet ensures that all values are less than the value speci-
fied in this facet. The <maxInclusive> facet specifies the maximum value that can be
assigned to the element or attribute.

Creating XML Schemas

CHAPTER 4
133

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

Note

When specifying value-bounding facets, be sure the values assigned to those
facets are valid values for the type definition’s data type.

The <maxLength> and <minLength> facets specify the maximum and minimum lengths
for values in the type definition. Keep in mind that the values specified in these facets
are units of length that depend on the data type of the type definition’s value. Also,
remember these facets must have a nonNegativeInteger value assigned to them.

The <minExclusive> facet specifies the lower bound for the values that can be assigned
to the element or attribute. This facet ensures that all values are greater than the value
specified in this facet. The <minInclusive> facet specifies the minimum value that can
be assigned to the element or attribute.

The <pattern> facet applies a specific pattern that the type definition’s value must
match. This facet constrains the type definition’s data type to literals, which must match
the pattern specified. Furthermore, the value specified for a <pattern> facet must be a
regular expression. So what exactly qualifies as a regular expression? Put simply, a regu-
lar expression is composed of one or more “atoms” and optional quantifiers combined
together with the pipe character (|). For instance, let’s examine the following sample
section from Listing 4.3:

06 0672323419 CH04 3/15/04 11:16 AM Page 133

<xsd:simpleType name=”ZipType”>
<xsd:restriction base=”xsd:string”>
<xsd:minLength value=”5”/>
<xsd:maxLength value=”10”/>
<xsd:pattern value=”[0-9]{5}(-[0-9]{4})?”/>

</xsd:restriction>
</xsd:simpleType>

The preceding type definition is for a zip code. In this particular definition, we declare
that a valid zip code may only contain numbers 0 through 9; nothing else is allowed.
Furthermore, the value for the type definition may contain five numbers listed together;
then, if the additional four digits are included, the whole value is separated by a hyphen
(-) between the fifth and sixth digits.

Essentials of XML

PART I
134

Tip

The regular expressions for use with the <pattern> facet are, in essence, Perl reg-
ular expressions. More specifics on Perl regular expressions can be found at
http://www.cpan.org/doc/manual/html/pod/perlre.html.

The <totalDigits> facet specifies the maximum number of digits for a type definition’s
value. This value must be a positiveInteger value.

The <whiteSpace> facet specifies how whitespace is treated for the type definition’s
value. This particular facet can hold one of three values:

• collapse

• preserve

• replace

Specifying collapse indicates that all whitespace consisting of more than a single space
will be converted to a single space and that all leading and trailing blanks will be
removed. A value of preserve leaves the value as is. Assigning a value of replace
causes all tabs, line feeds, and carriage returns to be replaced with a single space.

Not all type definitions, however, support every facet. The type definition’s data type
determines which facets are available. Table 4.3 shows which data types will support
which facets.

06 0672323419 CH04 3/15/04 11:16 AM Page 134

TABLE 4.3 The Simple XML Data Types and Applicable Facets

Type Applicable Facets

anyURI enumeration, length, maxLength,
minLength, pattern, whiteSpace

base64Binary enumeration, length, maxLength,
minLength, pattern, whiteSpace

boolean pattern, whiteSpace

byte enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

date enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
whiteSpace

dateTime enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
whiteSpace

decimal enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

double enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
whiteSpace

duration enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern, whiteSpace

ENTITIES enumeration, length, maxLength,
minLength, whiteSpace

ENTITY enumeration, length, maxLength,
minLength, pattern, whiteSpace

float enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
whiteSpace

gDay enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
whiteSpace

Creating XML Schemas

CHAPTER 4
135

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 135

TABLE 4.3 continued

Type Applicable Facets

gMonth enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
whiteSpace

gMonthDay enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
whiteSpace

gYear enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
whiteSpace

gYearMonth enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
whiteSpace

hexBinary enumeration, length, maxLength,
minLength, pattern, whiteSpace

ID enumeration, length, maxLength,
minLength, pattern, whiteSpace

IDREF enumeration, length, maxLength,
minLength, pattern, whiteSpace

IDREFS enumeration, length, maxLength,
minLength, whiteSpace

int enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

integer enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

language enumeration, length, maxLength,
minLength, pattern, whiteSpace

long enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

Name enumeration, length, maxLength,
minLength, pattern, whiteSpace

Essentials of XML

PART I
136

06 0672323419 CH04 3/15/04 11:16 AM Page 136

TABLE 4.3 continued

Type Applicable Facets

NCName enumeration, length, maxLength,
minLength, pattern, whiteSpace

negativeInteger enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

NMTOKEN enumeration, length, maxLength,
minLength, pattern, whiteSpace

NMTOKENS enumeration, length, maxLength,
minLength, whiteSpace

nonNegativeInteger enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

nonPositiveInteger enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

normalizedString enumeration, length, maxLength,
minLength, pattern, whiteSpace

NOTATION enumeration, length, maxLength,
minLength, pattern, whiteSpace

positiveInteger enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

QName enumeration, length, maxLength,
minLength, pattern, whiteSpace

short enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

string enumeration, length, maxLength,
minLength, pattern, whiteSpace

Creating XML Schemas

CHAPTER 4
137

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 137

TABLE 4.3 continued

Type Applicable Facets

time enumeration, maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
whiteSpace

token enumeration, length, maxLength,
minLength, pattern, whiteSpace

unsignedBtye enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

unsignedInt enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

unsignedLong enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

unsignedShort enumeration, fractionDigits,
maxExclusive, maxInclusive,
minExclusive, minInclusive, pattern,
totalDigits, whiteSpace

Anonymous Type Declarations
Sometimes within an XML schema it may not be necessary to create a separate type def-
inition for an element or attribute. In such cases, you may use “anonymous” type decla-
rations. Let’s pull another sample section from the PurchaseOrder schema in Listing 4.3
and examine it:

<xsd:complexType name=”InfoType”>
<xsd:sequence>
<xsd:element name=”Name” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”Address” type=”AddressType” minOccurs=”1”

➥ maxOccurs=”1”/>

Essentials of XML

PART I
138

06 0672323419 CH04 3/15/04 11:16 AM Page 138

<xsd:choice minOccurs=”1” maxOccurs=”1”>
<xsd:group ref=”BillingInfoGroup”/>
<xsd:group ref=”ShippingInfoGroup”/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

This section defines the type definition for InfoType. If you look closely, you’ll see the
declaration of a <Name> element that does not have a type attribute specified. Instead, the
<element> element, itself, contains a <simpleType> element without a name attribute
specified. This is known as an “anonymous” type definition. If you’re only using this
type definition once, there is no need to go through the trouble of declaring and naming
it. However, anonymous type declarations are not limited to <simpleType> elements; you
can also create an anonymous type definition for a <complexType> element. For instance,
let’s look at the following example from Listing 4.3:

<xsd:complexType name=”OrderType”>
<xsd:sequence>
<xsd:element name=”Product” type=”ProductType”

➥ minOccurs=”1” maxOccurs=”unbounded”/>
</xsd:sequence>
<xsd:attribute name=”SubTotal”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”ItemsSold” type=”xsd:positiveInteger”/>

</xsd:complexType>

<xsd:complexType name=”ProductType”>
<xsd:attribute name=”Name” type=”xsd:string”/>
<xsd:attribute name=”Id” type=”xsd:positiveInteger”/>
<xsd:attribute name=”Price”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Quantity” type=”xsd:positiveInteger”/>

</xsd:complexType>

This example shows the type definition for elements based on OrderType. This type defi-
nition contains an element named Product, which is based on the ProductType type def-
inition. Because we only reference the ProductType type definition once, this would be a

Creating XML Schemas

CHAPTER 4
139

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 139

good candidate for which to use an anonymous type definition. Using an anonymous
type definition, the preceding example changes to the following:

<xsd:complexType name=”OrderType”>
<xsd:sequence>
<xsd:element name=”Product” minOccurs=”1” maxOccurs=”unbounded”>
<xsd:complexType>
<xsd:attribute name=”Name” type=”xsd:string”/>
<xsd:attribute name=”Id” type=”xsd:positiveInteger”/>
<xsd:attribute name=”Price”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Quantity” type=”xsd:positiveInteger”/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name=”SubTotal”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”ItemsSold” type=”xsd:positiveInteger”/>

</xsd:complexType>

You can see from this example that the only real change necessary was to move the
<complexType> element for the ProductType type definition to be contained by the
<element> declaration for Product.

Specifying Mixed Content for Elements
So far we have declared a variety of different elements in Listing 4.3. Some of the ele-
ments have text only, some contain elements only, and some contain elements and attrib-
utes. However, we have not specified, yet, how to mix the content of elements—that is,
mix text with child elements. One of the most overlooked attributes of the
<complexType> element is the mixed attribute. If this attribute is set to true, elements
based on this type definition can mix their contents with both text and child elements.
For instance, let’s examine the following sample XML document:

<Letter>
<Greeting>Dear Mr.<Name>John Smith</Name>.</Greeting>

Your order of <Quantity>1</Quantity> <Product>Big Screen TV
➥ </Product> has been shipped.
</Letter>

Essentials of XML

PART I
140

06 0672323419 CH04 3/15/04 11:16 AM Page 140

Notice the appearance of text among the child elements of <Letter>. The schema for
this XML document would appear as follows:

<xsd:element name=”Letter”>
<xsd:complexType mixed=”true”>

<xsd:element name=”Greeting”>
<xsd:complexType mixed=”true”>

<xsd:element name=”Name” type=”xsd:string”/>
</xsd:complexType>

</xsd:element>
<xsd:element name=”Quantity” type=”xsd:postiveInteger”/>
<xsd:element name=”Product” type=”xsd:string”/>

</xsd:complexType>
</xsd:element>

So what’s the point of having mixed content? Well, if you needed to uniquely identify
something within a paragraph or sentence, specifying an element as having mixed con-
tent might be useful. For one, you could easily format that one unique element differ-
ently from its parent element. You could also perform some special processing of that
element within an application. However, unless it is absolutely necessary to use mixed
content within an element, it is highly recommended that each element contain either text
or other elements (not both, because some undesirable side effects may arise). For
instance, in the preceding sample XML document, if you check the value of the text
property for the <Greeting> element using the XMLDOM provided by Microsoft, it
would contain this:

Dear Mr.John Smith,

Annotating Schemas
In a perfect world, everyone would be able to look at our XML schemas and automati-
cally know what everything is and why it shows up in particular places. Although a good
self-describing document can accomplish this to some extent with sensible element and
attribute names, the truth of the matter is that most people I’ve met—well, all of them
actually—are not mind readers. What may seem obvious to you may not be obvious to
others. For that very reason, it helps to document your schemas. Within the XML
Schema Definition Language, this can be accomplished using annotations. The XML
Schema Definition Language defines three new elements to add annotations to an XML
schema:

• <annotation>

• <appInfo>

• <documentation>

Creating XML Schemas

CHAPTER 4
141

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 141

The <annotation> element contains the <appInfo> and <documentation> elements. In
other words, you cannot use the <appInfo> and <documentation> elements by them-
selves—they must be contained within an <annotation> element. To see how this works,
let’s examine the following sample section from Listing 4.3:

<xsd:annotation>
<xsd:documentation>

Purchase order schema for an online grocery store.
</xsd:documentation>

</xsd:annotation>

In the preceding example, the <annotation> and <documentation> elements help to
identify the purpose of this particular XML schema. In Listing 4.3, the <annotation>
element appears as a child element of the <schema> element. However, the <annotation>
element can appear as a child of any elements listed in Table 4.2, with the exception of
the <documentation> and <appInfo> elements. Really, the only difference between the
two elements is the target audience. For the <documentation> element, the information it
contains is meant to be read by users, whereas the information contained within an
<appInfo> element is meant to be read and utilized by applications.

Model Groups
A model group, at least in terms of a schema definition, is a logically grouped set of ele-
ments. A model group within the XML Schema Definition Language consists of a “com-
positor” and a list of “particles” (or element declarations). A model group can be
constructed using one of the following XML Schema Definition elements:

• <all>

• <choice>

• <sequence>

You can declare a group of elements that should be logically associated together by using
the <group> element from the XML Schema Definition Language. Here’s the basic syn-
tax for the <group> element:

<group name=”” [maxOccurs=””] [minOccurs=””] [ref=””]>
.
.
.

</group>

By default, the maxOccurs and minOccurs attributes are set to 1. The ref attribute is used
after you have defined the <group> element and you wish to reference it, as the following
example shows:

Essentials of XML

PART I
142

06 0672323419 CH04 3/15/04 11:16 AM Page 142

<xsd:group name=”exampleGroup”>
<xsd:all>

<xsd:element name=”Element1” type=”xsd:string”/>
<xsd:element name=”Element2” type=”xsd:string”/>
<xsd:element name=”Element3” type=”xsd:string”/>

</xsd:all>
</xsd:group>

<xsd:element name=”ParentElement”>
<xsd:complexType>

<xsd:group ref=”exampleGroup”/>
</xsd:complexType>

</xsd:element>

All Groups
When the order in which child elements appear within their parent element is not impor-
tant, you may use an <all> element from the XML Schema Definition Language. The
<all> element indicates that the elements declared within it may appear in any order
within the parent element. For instance, let’s examine the InfoType type definition from
Listing 4.3:

<xsd:group name=”ShippingInfoGroup”>
<xsd:all>
<xsd:element name=”DeliveryDate” type=”DateType”/>
<xsd:element name=”Method” type=”DeliveryMethodType”/>

</xsd:all>
</xsd:group>

<xsd:group name=”BillingInfoGroup”>
<xsd:all>
<xsd:element name=”BillingDate” type=”DateType”/>
<xsd:element name=”PaymentMethod” type=”PaymentMethodType”/>

</xsd:all>
</xsd:group>

<xsd:complexType name=”InfoType”>
<xsd:sequence>
<xsd:element name=”Name” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”Address” type=”AddressType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:choice minOccurs=”1” maxOccurs=”1”>
<xsd:group ref=”BillingInfoGroup”/>
<xsd:group ref=”ShippingInfoGroup”/>

Creating XML Schemas

CHAPTER 4
143

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 143

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=”DateType”>
<xsd:restriction base=”xsd:date”/>

</xsd:simpleType>

<xsd:simpleType name=”DeliveryMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”USPS”/>
<xsd:enumeration value=”UPS”/>
<xsd:enumeration value=”FedEx”/>
<xsd:enumeration value=”DHL”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”PaymentMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Check”/>
<xsd:enumeration value=”Cash”/>
<xsd:enumeration value=”Credit Card”/>
<xsd:enumeration value=”Debit Card”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

Notice the occurrence of the <all> elements. In this particular case, either the
<DeliveryDate> and <Method> elements may appear in any order or the <BillingDate>
and <PaymentMethod> elements may appear in any order.

Choices
Sometimes you might want to declare that any one of a possible group of elements may
appear within an element, but not all of them. This is accomplished by using the
<choice> element of the XML Schema Definition Language. Let’s examine the follow-
ing sample section from Listing 4.3:

<xsd:complexType name=”PurchaseOrderType”>
<xsd:all>
<xsd:element name=”ShippingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”BillingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”Order” type=”OrderType” minOccurs=”1”

➥ maxOccurs=”1”/>
</xsd:all>
<xsd:attribute name=”Tax”>
<xsd:simpleType>

Essentials of XML

PART I
144

06 0672323419 CH04 3/15/04 11:16 AM Page 144

<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Total”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

<xsd:group name=”ShippingInfoGroup”>
<xsd:all>
<xsd:element name=”DeliveryDate” type=”DateType”/>
<xsd:element name=”Method” type=”DeliveryMethodType”/>

</xsd:all>
</xsd:group>

<xsd:group name=”BillingInfoGroup”>
<xsd:all>
<xsd:element name=”BillingDate” type=”DateType”/>
<xsd:element name=”PaymentMethod” type=”PaymentMethodType”/>

</xsd:all>
</xsd:group>

<xsd:complexType name=”InfoType”>
<xsd:sequence>
<xsd:element name=”Name” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”Address” type=”AddressType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:choice minOccurs=”1” maxOccurs=”1”>
<xsd:group ref=”BillingInfoGroup”/>
<xsd:group ref=”ShippingInfoGroup”/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=”DateType”>
<xsd:restriction base=”xsd:date”/>

</xsd:simpleType>

<xsd:simpleType name=”DeliveryMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”USPS”/>

Creating XML Schemas

CHAPTER 4
145

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 145

<xsd:enumeration value=”UPS”/>
<xsd:enumeration value=”FedEx”/>
<xsd:enumeration value=”DHL”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”PaymentMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Check”/>
<xsd:enumeration value=”Cash”/>
<xsd:enumeration value=”Credit Card”/>
<xsd:enumeration value=”Debit Card”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

In this case, because the information between the <ShippingInformation> and
<BillingInformation> elements is so similar, we only want to define that type defini-
tion once. However, because the two date elements—<DeliveryDate> and
<BillingDate>—could not appear in both places, we’ve decided to create a choice:
either the <DeliveryDate> element can appear within the element or the <BillingDate>
element can appear, but not both. Furthermore, you can specify the minimum and maxi-
mum number of times the selected item may appear within the parent element by using
the minOccurs and maxOccurs attributes of the <choice> element.

Essentials of XML

PART I
146

Note

Within a <group> or <complexType> element, the <choice> element may only
appear once. For any other valid XML Schema Definition Language element that
can contain the <choice> element, the <choice> element may appear an unlim-
ited number of times.

Sequences
The <sequence> element in the XML Schema Definition Language requires the elements
contained within it to appear in the same order in the parent element. For instance, let’s
examine the following sample section from Listing 4.3:

<xsd:complexType name=”PurchaseOrderType”>
<xsd:all>
<xsd:element name=”ShippingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”BillingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>

06 0672323419 CH04 3/15/04 11:16 AM Page 146

<xsd:element name=”Order” type=”OrderType” minOccurs=”1”
➥ maxOccurs=”1”/>
</xsd:all>
<xsd:attribute name=”Tax”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Total”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

According to this type definition, the <ShippingInformation>, <BillingInformation>,
and <Order> elements may appear within the <PurchaseOrder> element in any order.
If we want to indicate that the <ShippingInformation> element must appear first,
then the <BillingInformation> element, and then the <Order> element, we could do
the following:

<xsd:complexType name=”PurchaseOrderType”>
<xsd:sequence>
<xsd:element name=”ShippingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”BillingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”Order” type=”OrderType” minOccurs=”1”

➥ maxOccurs=”1”/>
</xsd:sequence>
<xsd:attribute name=”Tax”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Total”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

Creating XML Schemas

CHAPTER 4
147

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 147

Attribute Groups
Just as you can logically group a set of elements together using the <group>
element within the XML Schema Definition Language, you can create a logical
group of attributes to do the same thing. In this case, though, you will need to
use the <attributeGroup> element. Here’s the basic syntax for the
<attributeGroup> element:

<attributeGroup [name=””] [ref=””]>
<attribute …/>
<attribute …/>
.
.
.

</attributeGroup>

Following the preceding syntax, we could define a group of attributes that can be associ-
ated with one another, as the following example shows:

<xsd:attributeGroup name=”exampleGroup”>
<xsd:attribute name=”Attr1” type=”xsd:string”/>
<xsd:attribute name=”Attr2” type=”xsd:positiveInteger”/>
<xsd:attribute name=”Attr3” type=”xsd:date”/>

</xsd:attributeGroup>

<xsd:element name=”exampleElement”>
<xsd:complexType>

<xsd:attributeGroup ref=”exampleGroup”/>
</xsd:complexType>

</xsd:element>

The preceding example creates a group of attributes named exampleGroup. This group
consists of three attributes: Attr1, Attr2, and Attr3. Also, we’ve defined a complex ele-
ment named <exampleElement>, which then references the group of attributes. It is the
equivalent of the following:

<xsd:element name=”exampleElement”>
<xsd:complexType>

<xsd:attribute name=”Attr1” type=”xsd:string”/>
<xsd:attribute name=”Attr2” type=”xsd:positiveInteger”/>

Essentials of XML

PART I
148

Caution

Keep in mind that when you declare a <sequence> element, the elements you
place in it must appear in that exact order within the XML document being
validated.

06 0672323419 CH04 3/15/04 11:16 AM Page 148

<xsd:attribute name=”Attr3” type=”xsd:date”/>
</xsd:complexType>

</xsd:element>

Targeting Namespaces
You can view an XML schema as a collection of type definitions and element declara-
tions targeted for a specific namespace. Namespaces allow us to distinguish element dec-
larations and type definitions of one schema from another. We can assign an intended
namespace for an XML schema by using the targetNamespace attribute on the <schema>
element. By assigning a target namespace for the schema, we indicate that an XML doc-
ument whose elements are declared as belonging to the schema’s namespace should be
validated against the XML schema. We will discuss namespaces in Chapter 5, “The X-
Files: XPath, XPointer, and XLink.” For instance, we could indicate a target namespace
for our PurchaseOrder schema as indicated in Listing 4.4.

LISTING 4.4 PurchaseOrder1.xsd Contains the Schema Definition for
PurchaseOrder.xml with a Target Namespace

<xsd:schema targetNamespace=”http://www.eps-software.com/poschema”
➥ xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
➥ xmlns=”http://www.eps-software.com/poschema”
➥ elementFormDefault=”unqualified”
➥ attributeFormDefault=”unqualified”>

<xsd:annotation>
<xsd:documentation>
Purchase Order schema for an online grocery store.

</xsd:documentation>
</xsd:annotation>

<xsd:element name=”PurchaseOrder” type=”PurchaseOrderType”/>

<xsd:complexType name=”PurchaseOrderType”>
<xsd:all>
<xsd:element name=”ShippingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”BillingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”Order” type=”OrderType”

➥ minOccurs=”1” maxOccurs=”1”/>
</xsd:all>
<xsd:attribute name=”Tax”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>

Creating XML Schemas

CHAPTER 4
149

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 149

LISTING 4.4 continued

</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name=”Total”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

<xsd:group name=”ShippingInfoGroup”>
<xsd:all>
<xsd:element name=”DeliveryDate” type=”DateType”/>
<xsd:element name=”Method” type=”DeliveryMethodType”/>

</xsd:all>
</xsd:group>

<xsd:group name=”BillingInfoGroup”>
<xsd:all>
<xsd:element name=”BillingDate” type=”DateType”/>
<xsd:element name=”PaymentMethod” type=”PaymentMethodType”/>

</xsd:all>
</xsd:group>

<xsd:complexType name=”InfoType”>
<xsd:sequence>
<xsd:element name=”Name” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”Address” type=”AddressType” minOccurs=”1”

➥ maxOccurs=”1”/>
<xsd:choice minOccurs=”1” maxOccurs=”1”>
<xsd:group ref=”BillingInfoGroup”/>
<xsd:group ref=”ShippingInfoGroup”/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=”DateType”>
<xsd:restriction base=”xsd:date”/>

</xsd:simpleType>

<xsd:simpleType name=”DeliveryMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”USPS”/>
<xsd:enumeration value=”UPS”/>

Essentials of XML

PART I
150

06 0672323419 CH04 3/15/04 11:16 AM Page 150

LISTING 4.4 continued

<xsd:enumeration value=”FedEx”/>
<xsd:enumeration value=”DHL”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”PaymentMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Check”/>
<xsd:enumeration value=”Cash”/>
<xsd:enumeration value=”Credit Card”/>
<xsd:enumeration value=”Debit Card”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name=”AddressType”>
<xsd:all>
<xsd:element name=”Street” minOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”City” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”State” type=”StateType” minOccurs=”1”

➥ maxOccurs=”1”/>
<xsd:element name=”Zip” type=”ZipType” minOccurs=”1”

➥ maxOccurs=”1”/>
</xsd:all>

</xsd:complexType>

<xsd:simpleType name=”ZipType”>
<xsd:restriction base=”xsd:string”>
<xsd:minLength value=”5”/>
<xsd:maxLength value=”10”/>
<xsd:pattern value=”[0-9]{5}(-[0-9]{4})?”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”StateType”>
<xsd:restriction base=”xsd:string”>
<xsd:length value=”2”/>
<xsd:enumeration value=”AR”/>
<xsd:enumeration value=”LA”/>
<xsd:enumeration value=”MS”/>

Creating XML Schemas

CHAPTER 4
151

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 151

LISTING 4.4 continued

<xsd:enumeration value=”OK”/>
<xsd:enumeration value=”TX”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name=”OrderType”>
<xsd:sequence>
<xsd:element name=”Product” type=”ProductType”

➥ minOccurs=”1” maxOccurs=”unbounded”/>
</xsd:sequence>
<xsd:attribute name=”SubTotal”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”ItemsSold” type=”xsd:positiveInteger”/>

</xsd:complexType>

<xsd:complexType name=”ProductType”>
<xsd:attribute name=”Name” type=”xsd:string”/>
<xsd:attribute name=”Id” type=”xsd:positiveInteger”/>
<xsd:attribute name=”Price”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Quantity” type=”xsd:positiveInteger”/>

</xsd:complexType>

</xsd:schema>

Now that we’ve modified our schema file to specify a target namespace, how do we
associate the schema with the XML document? This can be accomplished using the
http://www.w3.org/2001/XMLSchema-instance namespace and specifying the schema
file’s location using the <schemaLocation> element defined within the namespace.
Typically, this namespace is given the prefix of xsi. We could then change our
PurchaseOrder XML document as indicated in Listing 4.5.

Essentials of XML

PART I
152

06 0672323419 CH04 3/15/04 11:16 AM Page 152

LISTING 4.5 PurchaseOrder1.xml Contains a Sample Purchase Order Based on the
PurchaseOrder1 Schema Definition in PurchaseOrder1.xsd

<po:PurchaseOrder xmlns:po=”http://www.eps-software.com/poschema”
➥ xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
➥ xsi:schemaLocation=”PurchaseOrder1.xsd”
➥ Tax=”5.76” Total=”75.77”>

<ShippingInformation>
<Method>USPS</Method>
<DeliveryDate>08/12/2001</DeliveryDate>
<Name>Dillon Larsen</Name>
<Address>
<Street>123 Jones Rd.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77381</Zip>

</Address>
</ShippingInformation>

<BillingInformation>
<PaymentMethod>Credit Card</PaymentMethod>
<BillingDate>08/09/2001</BillingDate>
<Name>Madi Larsen</Name>
<Address>
<Street>123 Jones Rd.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77381</Zip>

</Address>
</BillingInformation>

<Order SubTotal=”70.01” ItemsSold=”17”>
<Product Name=”Baby Swiss” Id=”702890” Price=”2.89”

➥ Quantity=”1”/>
<Product Name=”Hard Salami” Id=”302340” Price=”2.34”

➥ Quantity=”1”/>
<Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ Quantity=”1”/>
<Product Name=”Caesar Salad” Id=”991687” Price=”2.38”

➥ Quantity=”2”/>
<Product Name=”Chicken Strips” Id=”133382” Price=”2.50”

➥ Quantity=”1”/>
<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>
<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>
<Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ Quantity=”1”/>
<Product Name=”Jalapenos” Id=”101005” Price=”1.97”

➥ Quantity=”1”/>

Creating XML Schemas

CHAPTER 4
153

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 153

LISTING 4.5 continued

<Product Name=”Tuna” Id=”000118” Price=”0.92”
➥ Quantity=”3”/>

<Product Name=”Mayonnaise” Id=”126860” Price=”1.98”
➥ Quantity=”1”/>

<Product Name=”Top Sirloin” Id=”290502” Price=”9.97”
➥ Quantity=”2”/>

<Product Name=”Soup” Id=”001254” Price=”1.33”
➥ Quantity=”1”/>

<Product Name=”Granola Bar” Id=”026460” Price=”2.14”
➥ Quantity=”2”/>

<Product Name=”Chocolate Milk” Id=”024620” Price=”1.58”
➥ Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265” Price=”1.98”
➥ Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202” Price=”8.82”
➥ Quantity=”1”/>
</Order>

</po:PurchaseOrder>

By assigning a namespace to the <PurchaseOrder> element, we associate that element
with the global <PurchaseOrder> element declaration within our XML schema. Notice,
however, that the <PurchaseOrder> element is the only qualified element. If you
look back at our <schema> element from Listing 4.4, you’ll see two attributes:
elementFormDefault and attributeFormDefault. These attributes can possess one
of two values:

• qualified

• unqualified

If a value of unqualified is specified or the elementFormDefault and
attributeFormDefault attributes are omitted, the elements or attributes that are not
globally declared within the schema (those that are not children of the <schema> ele-
ment) do not require a prefix within the XML instance document. However, if a value of
qualified is specified, all elements and attributes must have a prefix associated with
them. For instance, we could make a change to our PurchaseOrder schema and specify
that the elementFormDefault and attributeFormDefault attributes have a value of
qualified, as shown in Listing 4.6.

LISTING 4.6 PurchaseOrder2.xsd Contains the Schema Definition for
PurchaseOrder.xml with a Target Namespace and Qualified Elements and Attributes

<xsd:schema targetNamespace=”http://www.eps-software.com/poschema”
➥ xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
➥ xmlns=”http://www.eps-software.com/poschema”

Essentials of XML

PART I
154

06 0672323419 CH04 3/15/04 11:16 AM Page 154

LISTING 4.6 continued

➥ elementFormDefault=”qualified”
➥ attributeFormDefault=”qualified”>

<xsd:annotation>
<xsd:documentation>
Purchase Order schema for an online grocery store.

</xsd:documentation>
</xsd:annotation>

<xsd:element name=”PurchaseOrder” type=”PurchaseOrderType”/>

<xsd:complexType name=”PurchaseOrderType”>
<xsd:all>
<xsd:element name=”ShippingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”BillingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”Order” type=”OrderType”

➥ minOccurs=”1” maxOccurs=”1”/>
</xsd:all>
<xsd:attribute name=”Tax”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Total”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

<xsd:group name=”ShippingInfoGroup”>
<xsd:all>
<xsd:element name=”DeliveryDate” type=”DateType”/>
<xsd:element name=”Method” type=”DeliveryMethodType”/>

</xsd:all>
</xsd:group>

<xsd:group name=”BillingInfoGroup”>
<xsd:all>
<xsd:element name=”BillingDate” type=”DateType”/>
<xsd:element name=”PaymentMethod” type=”PaymentMethodType”/>

</xsd:all>
</xsd:group>

Creating XML Schemas

CHAPTER 4
155

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 155

LISTING 4.6 continued

<xsd:complexType name=”InfoType”>
<xsd:sequence>
<xsd:element name=”Name” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”Address” type=”AddressType” minOccurs=”1”

➥ maxOccurs=”1”/>
<xsd:choice minOccurs=”1” maxOccurs=”1”>
<xsd:group ref=”BillingInfoGroup”/>
<xsd:group ref=”ShippingInfoGroup”/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=”DateType”>
<xsd:restriction base=”xsd:date”/>

</xsd:simpleType>

<xsd:simpleType name=”DeliveryMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”USPS”/>
<xsd:enumeration value=”UPS”/>
<xsd:enumeration value=”FedEx”/>
<xsd:enumeration value=”DHL”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”PaymentMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Check”/>
<xsd:enumeration value=”Cash”/>
<xsd:enumeration value=”Credit Card”/>
<xsd:enumeration value=”Debit Card”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name=”AddressType”>
<xsd:all>
<xsd:element name=”Street” minOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”City” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>

Essentials of XML

PART I
156

06 0672323419 CH04 3/15/04 11:16 AM Page 156

LISTING 4.6 continued

<xsd:restriction base=”xsd:string”/>
</xsd:simpleType>

</xsd:element>
<xsd:element name=”State” type=”StateType” minOccurs=”1”

➥ maxOccurs=”1”/>
<xsd:element name=”Zip” type=”ZipType” minOccurs=”1”

➥ maxOccurs=”1”/>
</xsd:all>

</xsd:complexType>

<xsd:simpleType name=”ZipType”>
<xsd:restriction base=”xsd:string”>
<xsd:minLength value=”5”/>
<xsd:maxLength value=”10”/>
<xsd:pattern value=”[0-9]{5}(-[0-9]{4})?”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”StateType”>
<xsd:restriction base=”xsd:string”>
<xsd:length value=”2”/>
<xsd:enumeration value=”AR”/>
<xsd:enumeration value=”LA”/>
<xsd:enumeration value=”MS”/>
<xsd:enumeration value=”OK”/>
<xsd:enumeration value=”TX”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name=”OrderType”>
<xsd:sequence>
<xsd:element name=”Product” type=”ProductType”

➥ minOccurs=”1” maxOccurs=”unbounded”/>
</xsd:sequence>
<xsd:attribute name=”SubTotal”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”ItemsSold” type=”xsd:positiveInteger”/>

</xsd:complexType>

<xsd:complexType name=”ProductType”>
<xsd:attribute name=”Name” type=”xsd:string”/>
<xsd:attribute name=”Id” type=”xsd:positiveInteger”/>
<xsd:attribute name=”Price”>
<xsd:simpleType>

Creating XML Schemas

CHAPTER 4
157

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 157

LISTING 4.6 continued

<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Quantity” type=”xsd:positiveInteger”/>

</xsd:complexType>

</xsd:schema>

Based on the PurchaseOrder schema in Listing 4.6, the new version of the
PurchaseOrder XML would appear as shown in Listing 4.7.

LISTING 4.7 PurchaseOrder2.xml Contains a Sample Purchase Order Based on the
PurchaseOrder2 Schema Definition in PurchaseOrder2.xsd

<po:PurchaseOrder xmlns:po=”http://www.eps-software.com/poschema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”purchaseorder2.xsd”
Tax=”5.76” Total=”75.77”>

<po:ShippingInformation>
<po:Method>USPS</po:Method>
<po:DeliveryDate>08/12/2001</po:DeliveryDate>
<po:Name>Dillon Larsen</po:Name>
<po:Address>

<po:Street>123 Jones Rd.</po:Street>
<po:City>Houston</po:City>
<po:State>TX</po:State>
<po:Zip>77381</po:Zip>

</po:Address>
</po:ShippingInformation>

<po:BillingInformation>
<po:PaymentMethod>Credit Card</po:PaymentMethod>
<po:BillingDate>08/09/2001</po:BillingDate>
<po:Name>Madi Larsen</po:Name>
<po:Address>

<po:Street>123 Jones Rd.</po:Street>
<po:City>Houston</po:City>
<po:State>TX</po:State>
<po:Zip>77381</po:Zip>

</po:Address>
</po:BillingInformation>

<po:Order SubTotal=”70.01” ItemsSold=”17”>
<po:Product Name=”Baby Swiss” Id=”702890” Price=”2.89” Quantity=”1”/>

Essentials of XML

PART I
158

06 0672323419 CH04 3/15/04 11:16 AM Page 158

LISTING 4.7 continued

<po:Product Name=”Hard Salami” Id=”302340” Price=”2.34” Quantity=”1”/>
<po:Product Name=”Turkey” Id=”905800” Price=”5.80” Quantity=”1”/>
<po:Product Name=”Caesar Salad” Id=”991687” Price=”2.38” Quantity=”2”/>
<po:Product Name=”Chicken Strips” Id=”133382” Price=”2.50” Quantity=”1”/>
<po:Product Name=”Bread” Id=”298678” Price=”1.08” Quantity=”1”/>
<po:Product Name=”Rolls” Id=”002399” Price=”2.24” Quantity=”1”/>
<po:Product Name=”Cereal” Id=”066510” Price=”2.18” Quantity=”1”/>
<po:Product Name=”Jalapenos” Id=”101005” Price=”1.97” Quantity=”1”/>
<po:Product Name=”Tuna” Id=”000118” Price=”0.92” Quantity=”3”/>
<po:Product Name=”Mayonnaise” Id=”126860” Price=”1.98” Quantity=”1”/>
<po:Product Name=”Top Sirloin” Id=”290502” Price=”9.97” Quantity=”2”/>
<po:Product Name=”Soup” Id=”001254” Price=”1.33” Quantity=”1”/>
<po:Product Name=”Granola Bar” Id=”026460” Price=”2.14” Quantity=”2”/>
<po:Product Name=”Chocolate Milk” Id=”024620” Price=”1.58” Quantity=”2”/>
<po:Product Name=”Spaghetti” Id=”000265” Price=”1.98” Quantity=”1”/>
<po:Product Name=”Laundry Detergent” Id=”148202” Price=”8.82”

➥ Quantity=”1”/>
</po:Order>

</po:PurchaseOrder>

Creating XML Schemas

CHAPTER 4
159

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

Note

Just because you may specify a value of qualified for elementFormDefault or
attributeFormDefault doesn’t mean the other attribute must be the same. You
could specify that elements within the schema must be “qualified,” but attributes
may be “unqualified,” and vice versa.

”Inheriting” from Other Schemas
As you can see from the XML schema in Listing 4.6, things can get rather complex
and long. Plus, you may wish, at times, to define a common piece for multiple XML
schemas and maintain and extend it separately from the individual schemas that need it.
For this reason, the W3C included the <include> and <import> elements in the XML
Schema Definition Language. Through the use of these elements, you can effectively
“inherit” elements and attributes from the referenced schema. For instance, if you look at
Listing 4.3, you can see the declaration of an <Address> element. We may want to use
this same element over and over again in multiple schemas. However, we wouldn’t want
to redefine this element in each schema. Instead, it would be nice to have that element
declaration and type definition within a separate document.

06 0672323419 CH04 3/15/04 11:16 AM Page 159

As long as the targetNamespace attribute on the <schema> element of both schemas
match, or the targetNamespace attribute for the <schema> element in the referenced
XML schema is empty, you can “inherit” any and all elements and attributes within the
XML schema using the <include> element. The <import> element doesn’t care what the
target namespace is in the referenced schema.

Going back Listing 4.3, we can separate out the <Address> element declaration (and
the various type definitions that go along with it) into its own schema, as shown in
Listing 4.8.

LISTING 4.8 Address.xsd Contains a Sample Address Schema Definition

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:annotation>
<xsd:documentation>
Address schema for a typical US address

</xsd:documentation>
</xsd:annotation>

<xsd:element name=”Address” type=”AddressType”/>

<xsd:complexType name=”AddressType”>
<xsd:all>
<xsd:element name=”Street” minOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”City” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”State” type=”StateType” minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”Zip” type=”ZipType” minOccurs=”1” maxOccurs=”1”/>

</xsd:all>
</xsd:complexType>

<xsd:simpleType name=”ZipType”>
<xsd:restriction base=”xsd:string”>
<xsd:minLength value=”5”/>
<xsd:maxLength value=”10”/>
<xsd:pattern value=”[0-9]{5}(-[0-9]{4})?”/>

</xsd:restriction>
</xsd:simpleType>

Essentials of XML

PART I
160

06 0672323419 CH04 3/15/04 11:16 AM Page 160

LISTING 4.8 continued

<xsd:simpleType name=”StateType”>
<xsd:restriction base=”xsd:string”>
<xsd:length value=”2”/>
<xsd:enumeration value=”AR”/>
<xsd:enumeration value=”LA”/>
<xsd:enumeration value=”MS”/>
<xsd:enumeration value=”OK”/>
<xsd:enumeration value=”TX”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Notice in the new Address schema that we did not specify a value for the
targetNamespace attribute. This will allow us to include the schema in a modified
version of the PurchaseOrder schema by using the <include> element as shown in
Listing 4.9.

LISTING 4.9 PurchaseOrder3.xsd Includes the Contents of Address.xsd

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:include schemaLocation=”Address.xsd”/>

<xsd:annotation>
<xsd:documentation>
Purchase Order schema for an online grocery store.

</xsd:documentation>
</xsd:annotation>

<xsd:element name=”PurchaseOrder” type=”PurchaseOrderType”/>

<xsd:complexType name=”PurchaseOrderType”>
<xsd:all>
<xsd:element name=”ShippingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”BillingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”Order” type=”OrderType” minOccurs=”1” maxOccurs=”1”/>

</xsd:all>
<xsd:attribute name=”Tax”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>

Creating XML Schemas

CHAPTER 4
161

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 161

LISTING 4.9 continued

<xsd:attribute name=”Total”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

<xsd:group name=”ShippingInfoGroup”>
<xsd:all>
<xsd:element name=”DeliveryDate” type=”DateType”/>
<xsd:element name=”Method” type=”DeliveryMethodType”/>

</xsd:all>
</xsd:group>

<xsd:group name=”BillingInfoGroup”>
<xsd:all>
<xsd:element name=”BillingDate” type=”DateType”/>
<xsd:element name=”PaymentMethod” type=”PaymentMethodType”/>

</xsd:all>
</xsd:group>

<xsd:complexType name=”InfoType”>
<xsd:sequence>
<xsd:element name=”Name” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element ref=”Address” minOccurs=”1” maxOccurs=”1”/>
<xsd:choice>
<xsd:group ref=”BillingInfoGroup”/>
<xsd:group ref=”ShippingInfoGroup”/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=”DateType”>
<xsd:restriction base=”xsd:date”/>

</xsd:simpleType>

<xsd:simpleType name=”DeliveryMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”USPS”/>
<xsd:enumeration value=”UPS”/>
<xsd:enumeration value=”FedEx”/>
<xsd:enumeration value=”DHL”/>
<xsd:enumeration value=”Other”/>

Essentials of XML

PART I
162

06 0672323419 CH04 3/15/04 11:16 AM Page 162

LISTING 4.9 continued

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”PaymentMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Check”/>
<xsd:enumeration value=”Cash”/>
<xsd:enumeration value=”Credit Card”/>
<xsd:enumeration value=”Debit Card”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name=”OrderType”>
<xsd:sequence>
<xsd:element name=”Product” type=”ProductType”

➥ minOccurs=”1” maxOccurs=”unbounded”/>
</xsd:sequence>
<xsd:attribute name=”SubTotal”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”ItemsSold” type=”xsd:positiveInteger”/>

</xsd:complexType>

<xsd:complexType name=”ProductType”>
<xsd:attribute name=”Name” type=”xsd:string”/>
<xsd:attribute name=”Id” type=”xsd:positiveInteger”/>
<xsd:attribute name=”Price”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Quantity” type=”xsd:positiveInteger”/>

</xsd:complexType>

</xsd:schema>

Because we did not explicitly declare a target namespace for the Address schema, we
can include it within the new PurchaseOrder schema. Because there is no reference to a
namespace, however, we can simply refer to the declared <Address> element in the
Address schema without having to qualify it. However, to prevent schemas from getting

Creating XML Schemas

CHAPTER 4
163

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 163

confused with other <Address> elements from other schemas, we may want to specify
a value for the targetNamespace attribute for our Address schema as shown in
Listing 4.10.

LISTING 4.10 Address1.xsd Modified to Specify a Target Namespace

<xsd:schema targetNamespace=http://www.eps-software.com/addressschema
➥ xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
➥ xmlns=”http://www.eps-software.com/addressschema”>

<xsd:annotation>
<xsd:documentation>
Address schema for a typical US address

</xsd:documentation>
</xsd:annotation>

<xsd:element name=”Address” type=”AddressType”/>

<xsd:complexType name=”AddressType”>
<xsd:all>
<xsd:element name=”Street” minOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”City” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”State” type=”StateType” minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”Zip” type=”ZipType” minOccurs=”1” maxOccurs=”1”/>

</xsd:all>
</xsd:complexType>

<xsd:simpleType name=”ZipType”>
<xsd:restriction base=”xsd:string”>
<xsd:minLength value=”5”/>
<xsd:maxLength value=”10”/>
<xsd:pattern value=”[0-9]{5}(-[0-9]{4})?”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”StateType”>
<xsd:restriction base=”xsd:string”>
<xsd:length value=”2”/>
<xsd:enumeration value=”AR”/>
<xsd:enumeration value=”LA”/>
<xsd:enumeration value=”MS”/>

Essentials of XML

PART I
164

06 0672323419 CH04 3/15/04 11:16 AM Page 164

LISTING 4.10 continued

<xsd:enumeration value=”OK”/>
<xsd:enumeration value=”TX”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Because we have just specified a target namespace for the Address schema, unless the
target namespace for the PurchaseOrder schema is the same, we can no longer use the
<include> element to “inherit” the element declarations from the Address schema.
However, we can use the <import> element to include the newly modified Address
schema as shown in Listing 4.11.

LISTING 4.11 PurchaseOrder4.xsd “Imports” the Contents of Address1.xsd

<xsd:schema xmlns:adr=”http://www.eps-software.com/addressschema”
➥ xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:import namespace=http://www.eps-software.com/addressschema
➥ schemaLocation=”Address1.xsd”/>

<xsd:annotation>
<xsd:documentation>
Purchase Order schema for an online grocery store.

</xsd:documentation>
</xsd:annotation>

<xsd:element name=”PurchaseOrder” type=”PurchaseOrderType”/>

<xsd:complexType name=”PurchaseOrderType”>
<xsd:all>
<xsd:element name=”ShippingInformation” type=”InfoType”/>
<xsd:element name=”BillingInformation” type=”InfoType”/>
<xsd:element name=”Order” type=”OrderType”/>

</xsd:all>
<xsd:attribute name=”Tax”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Total”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>

Creating XML Schemas

CHAPTER 4
165

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 165

LISTING 4.11 continued

</xsd:simpleType>
</xsd:attribute>

</xsd:complexType>

<xsd:group name=”ShippingInfoGroup”>
<xsd:all>
<xsd:element name=”DeliveryDate” type=”DateType”/>
<xsd:element name=”Method” type=”DeliveryMethodType”/>

</xsd:all>
</xsd:group>

<xsd:group name=”BillingInfoGroup”>
<xsd:all>
<xsd:element name=”BillingDate” type=”DateType”/>
<xsd:element name=”PaymentMethod” type=”PaymentMethodType”/>

</xsd:all>
</xsd:group>

<xsd:complexType name=”InfoType”>
<xsd:sequence>
<xsd:element name=”Name”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element ref=”adr:Address”/>
<xsd:choice>
<xsd:group ref=”BillingInfoGroup”/>
<xsd:group ref=”ShippingInfoGroup”/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=”DateType”>
<xsd:restriction base=”xsd:date”/>

</xsd:simpleType>

<xsd:simpleType name=”DeliveryMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”USPS”/>
<xsd:enumeration value=”UPS”/>
<xsd:enumeration value=”FedEx”/>
<xsd:enumeration value=”DHL”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”PaymentMethodType”>
<xsd:restriction base=”xsd:string”>

Essentials of XML

PART I
166

06 0672323419 CH04 3/15/04 11:16 AM Page 166

LISTING 4.11 continued

<xsd:enumeration value=”Check”/>
<xsd:enumeration value=”Cash”/>
<xsd:enumeration value=”Credit Card”/>
<xsd:enumeration value=”Debit Card”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name=”OrderType”>
<xsd:sequence>
<xsd:element name=”Product” type=”ProductType”

➥ maxOccurs=”unbounded”/>
</xsd:sequence>
<xsd:attribute name=”SubTotal”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”ItemsSold” type=”xsd:positiveInteger”/>

</xsd:complexType>

<xsd:complexType name=”ProductType”>
<xsd:attribute name=”Name” type=”xsd:string”/>
<xsd:attribute name=”Id” type=”xsd:positiveInteger”/>
<xsd:attribute name=”Price”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Quantity” type=”xsd:positiveInteger”/>

</xsd:complexType>

</xsd:schema>

You can see that the <import> element supports two attributes: namespace and
schemaLocation. You’ll also notice the declaration of the adr namespace within the
<schema> element. This namespace declaration is necessary for the <import> element to
work correctly. The namespace attribute on the <import> element refers to a namespace
that has been previously declared within the <schema> element.

Creating XML Schemas

CHAPTER 4
167

4

C
R

EA
TIN

G
X

M
L

S
C

H
EM

A
S

06 0672323419 CH04 3/15/04 11:16 AM Page 167

Summary
An XML schema consists of components, primarily elements, attributes, and type defini-
tions. These components are assembled within an XML schema to indicate whether an
XML document conforms to the schema specified. In May 2001, the W3C finalized its
recommendation for the XML Schema Definition Language, which provides the individ-
ual language elements needed to create an XML schema.

The XML Schema Definition Language provides a very powerful and flexible way in
which to validate XML documents. It includes everything from declaring elements and
attributes to “inheriting” elements from other schemas, from defining complex element
definitions to defining restrictions for even the simplest of data types. This gives the
XML schema author such control over specifying a valid construction for an XML docu-
ment that there is almost nothing that cannot be defined with an XML schema.

DTDs and XML schemas are two very different means to the same end: providing a
“roadmap” with which to validate XML documents. However, so much more detail can
be specified with an XML schema than with a DTD. Schemas support varying data types
and namespaces, and they allow the author to define the structure of an XML document
using XML syntax. DTDs are limited to character data types, provide no support for
namespaces, and define the structure of an XML document using a very archaic and
cumbersome standard. Because an XML schema is nothing more than an XML docu-
ment in itself, it can be loaded into an XML parser just like any other XML document
that allows applications to provide added functionality with a very common interface
through the XMLDOM.

Essentials of XML

PART I
168

Note

The major difference between the <include> and <import> elements within the
XML Schema Definition Language is that the <import> element allows you to
include schema components from schemas with different target namespaces,
which will allow you to use schema components from any schema.

06 0672323419 CH04 3/15/04 11:16 AM Page 168

IN THIS CHAPTER

• XPath 171

• XPointer 207

• XLink 215

5
C

H
A

PT
ER

The X-Files: XPath,
XPointer, and
XLink

07 0672323419 CH05 3/15/04 11:17 AM Page 169

Now that you have a decent understanding of what XML is, the next obvious question is
how can we find the pieces of information we desire. The answer is the XML Path
Language, or XPath. The XML Path Language provides a standard syntax for querying
an XML document for specific pieces of information. This syntax provides an indepen-
dent mechanism for “querying” or locating the desired elements or attributes within the
XML document.

XPath, itself, is a very powerful mechanism for finding the elements or attributes you
want to work with. Imagine if you had to traverse the hierarchy one element and one
attribute at a time and perform a conditional test to see whether the current element or
attribute matched the search criteria you specified. For small XML documents, you prob-
ably wouldn’t notice much. However, for larger XML documents, the speed issue imme-
diately appears. This is one of the reasons XPath was created—to reduce the amount of
time to find the elements and attributes desired by an author or developer.

XLink allows an XML document to specify a link from the current document to another
document in another location. This facilitates the dispersion and compartmentalization of
data much the same way a normalized database would. You could think of each docu-
ment as a table within a database and the XLink specification of each document as a
relation between the tables. This means instead of having to duplicate information among
the documents, you could specify information once and be able to access it via XLink.

XPointer expands on the functionality of XLink by building on the XPath specification
and identifying a node or node set to link to in the target document. This provides much
the same functionality as a foreign key within a table of a database. Because the informa-
tion within a normalized database exists in one location only, it becomes necessary to
relate to that information to prevent duplication of information. XPointers provide the
same functionality within a group of XML documents.

In this chapter, you will learn

• What namespaces are and how they can be useful within an XML document

• The relationship among XPath, XLink, and XPointer

• What XPath is and how it can be used to find the desired node(s) within
an XML document

• The syntax of an XPath expression

• How XPointer can be used to locate specific nodes within a related
XML document

• How XLink can be used to link various XML documents together

Essentials of XML

PART I
170

07 0672323419 CH05 3/15/04 11:17 AM Page 170

XPath
The XML Path Language (XPath) is a standard for creating expressions that can be used
to find specific pieces of information within an XML document. XPath expressions are
used by both XSLT (for which XPath provides the core functionality) and XPointer to
locate a set of nodes. To understand how XPath works, it helps to imagine an XML doc-
ument as a tree of nodes consisting of both elements and attributes. An XPath expression
can then be considered a sort of roadmap that indicates the branches of the tree to follow
and what limbs hold the information desired. The complete documentation for the XPath
recommendation can be found at http://www.w3c.org/TR/xpath.

XPath expressions have the ability to locate nodes based on the nodes’ type, name, or
value or by the relationship of the nodes to other nodes within the XML document. In
addition to being able to find nodes based on these criteria, an XPath expression can also
return any of the following:

• A node set

• A Boolean value

• A string value

• A numeric value

XML documents are, in essence, a hierarchical tree of nodes. Curiously, there is a simi-
larity between URLs and XPath expressions. Why? Quite simply, URLs represent a navi-
gation path of a hierarchical file system, and XPath expressions represent a navigation
path for a hierarchical tree of nodes.

Operators and Special Characters
XPath expressions are composed using a set of operators and special characters, each
with its own meaning. Table 5.1 lists the various operators and special characters used
within the XML Path Language.

TABLE 5.1 Operators and Special Characters for the XML Path Language

Operators and Special Characters Description

/ Selects the children from the node set on the left
side of this character

// Specifies that the matching node set should be
located at any level within the XML document

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
171

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 171

TABLE 5.1 continued

Operators and Special Characters Description

. Specifies the current context should be used

* A wildcard character that selects all elements or
attributes regardless of name

@ Selects an attribute

: Namespace separator

() Indicates a grouping within an XPath expression

[expression] Indicates a filter expression

[n] Indicates that the node with the specified index
should be selected

+ Addition operator

- Subtraction operator

div Division operator

* Multiplication operator

mod Returns the remainder of a division operation

Table 5.1 only provides a list of operators and special characters that can be used within
an XPath expression. However, the table does not indicate what the order of precedence
is. The priority for evaluating XPath expressions is as follows:

1. Grouping

2. Filters

3. Path operations

Essentials of XML

PART I
172

Note

Keep the precedence order in mind when constructing your XPath queries
because the results can be dramatically different when a grouping or filter is
applied within an expression.

XPath Syntax
The XML Path Language provides a declarative notation, termed a pattern, used to
select the desired set of nodes from XML documents. Each pattern describes a set of
matching nodes to select from a hierarchical XML document. Each pattern describes a

07 0672323419 CH05 3/15/04 11:17 AM Page 172

“navigation” path to the desired set of nodes similar to the Uniform Resource Identifier
(URI) syntax. However, instead of navigating a file system, the XML Path Language
navigates a hierarchical tree of nodes within an XML document.

Each “query” of an XML document occurs from a particular starting node that defines
the context for the query. The context for the query has a very large impact on the
results. For instance, the pattern that locates a node from the root of an XML document
will most likely be a very different pattern when looking for the same node from some-
where else in the hierarchy.

As mentioned earlier in this chapter, one possible result from performing an XPath query
is a node set, or a collection of nodes matching a specified search criteria. To receive
these results, a “location path” is needed to locate the result nodes. These location paths
select the resulting node set relative to the current context. A location path is, itself, made
up of one or more location steps. Each step is further comprised of three pieces:

• An axis

• A node test

• A predicate

Therefore, the basic syntax for an XPath expression would be something like this:

axis::node test[predicate]

Using this basic syntax and the XML document in Listing 5.1, we could locate all the
<c> nodes by using the following XPath expression:

/a/b/child::*

Alternatively, we could issue the following abbreviated version of the preceding
expression:

/a/b/c

All XPath expressions are dependant on the current context. The context is the current
location within the tree of nodes. Therefore, if we’re currently on the second element
within the XML document in Listing 5.1, we can select all the <c> elements contained
within that element by using the following XPath expression:

./c

This is what’s known as a “relative” XPath expression.

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
173

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 173

Axes
The axis portion of the location step identifies the hierarchical relationship for the
desired nodes from the current context. An axis for a location step could be any of the
items listed within Table 5.2.

TABLE 5.2 XPath Axes for a Location Step

Axis Description

ancestor Specifies that the query should locate the ancestors
of the current context node, which includes the par-
ent node, the parent’s parent node, and ultimately the
root node.

ancestor-or-self Indicates that in addition to the ancestors of the cur-
rent context node, the context node should also be
included in the resulting node set.

attribute Specifies that the attributes of the current context
node are desired.

child Specifies that the immediate children of the current
context node are desired.

descendant Specifies that in addition to the immediate children
of the current context node, the children’s children
are also desired.

descendant-or-self Indicates that in addition to the descendants of the
current context node, the current context node is also
desired.

following Specifies that nodes in the same document as the
current context node that appear after the current
context node should be selected.

following-sibling Specifies that all the following siblings of the current
context node should be selected.

namespace Specifies that all the nodes within the same name-
space as the current context node should be selected.

parent Selects the parent of the current context node.

preceding Selects the nodes within the document that appear
before the current context node.

preceding-sibling Selects the siblings of the current context node that
appear before the current context node.

self Selects the current context node.

Essentials of XML

PART I
174

07 0672323419 CH05 3/15/04 11:17 AM Page 174

All the axes in Table 5.2 depend on the context of the current node. This raises the ques-
tion, How do you know what the current context node is? The easiest way to explain this
is through example, so let’s use the XML document shown in Listing 5.1 as the basis for
the explanation of how the current context node is defined.

LISTING 5.1 Sample1.xml Contains a Simple XML Document

<a>

<c d=”Attrib 1”>Text 1</c>
<c d=”Attrib 2”>Text 2</c>
<c d=”Attrib 3”>Text 3</c>

<c d=”Attrib 4”>Text 4</c>
<c d=”Attrib 5”>Text 5</c>

<c d=”Attrib 6”>Text 6</c>
<c d=”Attrib 7”>Text 7</c>
<c d=”Attrib 8”>Text 8</c>
<c d=”Attrib 9”>Text 9</c>

<c d=”Attrib 10”>Text 10</c>
<c d=”Attrib 11”>Text 11</c>
<c d=”Attrib 12”>Text 12</c>

Using this sample XML document as a reference, and the following XPath query, we can
examine how the current context node is determined:

/a/b[1]/child::*]

The preceding XPath query consists of three location steps, the first of which is a. The
second location step in the XPath query is b[1], which selects the first element
within the <a> element. The final location step is child::*, which selects all (signified
by *) child elements of the first element contained within the <a> element. It is
important to understand that each location step has a different context node. For the first
location step, the current context node is the root of the XML document. It should be
noted that the node <a> is not the root of the XML document; it’s the first element within
the hierarchy, but the root of an XML document is denoted by “/” as the first character
within an XPath query. The context for the second location step is the node <a>. The
third location step has the first node as its context.

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
175

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 175

Now that you have a better understanding of how the context for an XPath query axis is
defined, we can look at the resulting node sets for the axes described in Table 5.2. Using
the XML document in Listing 5.1, Table 5.3 lists some XPath queries with the various
axes and the resulting node sets.

TABLE 5.3 XPath Queries and the Resulting Node Sets

XPath Query Resulting Node Set

a/b[1]/c[1]/ancestor::* <a>

<c d=”Attrib 1”>Text 1</c>

<c d=”Attrib 2”>Text 2</c>

<c d=”Attrib 3”>Text 3</c>

<c d=”Attrib 5”>Text 5</c>

<c d=”Attrib 6”>Text 6</c>

<c d=”Attrib 7”>Text 7</c>

<c d=”Attrib 8”>Text 8</c>

<c d=”Attrib 9”>Text 9</c>

<c d=”Attrib 10”>Text 10</c>

<c d=”Attrib 11”>Text 11</c>

<c d=”Attrib 12”>Text 12</c>

<c d=”Attrib 1”>Text 1</c>

<c d=”Attrib 2”>Text 2</c>

<c d=”Attrib 3”>Text 3</c>

a/b[1]/c[1]/ancestor-or-self::* <a>

<c d=”Attrib 1”>Text 1</c>

<c d=”Attrib 2”>Text 2</c>

<c d=”Attrib 3”>Text 3</c>

<c d=”Attrib 4”>Text 4</c>

Essentials of XML

PART I
176

07 0672323419 CH05 3/15/04 11:17 AM Page 176

TABLE 5.3 continued

XPath Query Resulting Node Set

<c d=”Attrib 5”>Text 5</c>

<c d=”Attrib 6”>Text 6</c>

<c d=”Attrib 7”>Text 7</c>

<c d=”Attrib 8”>Text 8</c>

<c d=”Attrib 9”>Text 9</c>

<c d=”Attrib 10”>Text 10</c>

<c d=”Attrib 11”>Text 11</c>

<c d=”Attrib 12”>Text 12</c>

<c d=”Attrib 1”>Text 1</c>

<c d=”Attrib 2”>Text 2</c>

<c d=”Attrib 3”>Text 3</c>

<c d=”Attrib 1”>Text 1</c>

a/b[1]/c[1]/attribute::* d=”Attrib 1”

a/b[1]/child::* <c d=”Attrib 1”>Text 1</c>

<c d=”Attrib 2”>Text 2</c>

<c d=”Attrib 3”>Text 3</c>

a/descendant::*

<c d=”Attrib 1”>Text 1</c>

<c d=”Attrib 2”>Text 2</c>

<c d=”Attrib 3”>Text 3</c>

<c d=”Attrib 1”>Text 1</c>

<c d=”Attrib 2”>Text 2</c>

<c d=”Attrib 3”>Text 3</c>

<c d=”Attrib 4”>Text 4</c>

<c d=”Attrib 5”>Text 5</c>

<c d=”Attrib 4”>Text 4</c>

<c d=”Attrib 5”>Text 5</c>

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
177

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 177

TABLE 5.3 continued

XPath Query Resulting Node Set

<c d=”Attrib 6”>Text 6</c>

<c d=”Attrib 7”>Text 7</c>

<c d=”Attrib 8”>Text 8</c>

<c d=”Attrib 9”>Text 9</c>

<c d=”Attrib 6”>Text 6</c>

<c d=”Attrib 7”>Text 7</c>

<c d=”Attrib 8”>Text 8</c>

<c d=”Attrib 9”>Text 9</c>

<c d=”Attrib 10”>Text 10</c>

<c d=”Attrib 11”>Text 11</c>

<c d=”Attrib 12”>Text 12</c>

<c d=”Attrib 10”>Text 10</c>

<c d=”Attrib 11”>Text 11</c>

<c d=”Attrib 12”>Text 12</c>

a/descendant-or-self::* <a>

<c d=”Attrib 1”>Text 1</c>

<c d=”Attrib 2”>Text 2</c>

<c d=”Attrib 3”>Text 3</c>

<c d=”Attrib 4”>Text 4</c>

<c d=”Attrib 5”>Text 5</c>

<c d=”Attrib 6”>Text 6</c>

<c d=”Attrib 7”>Text 7</c>

<c d=”Attrib 8”>Text 8</c>

<c d=”Attrib 9”>Text 9</c>

<c d=”Attrib 10”>Text 10</c>

<c d=”Attrib 11”>Text 11</c>

<c d=”Attrib 12”>Text 12</c>

Essentials of XML

PART I
178

07 0672323419 CH05 3/15/04 11:17 AM Page 178

TABLE 5.3 continued

XPath Query Resulting Node Set

<c d=”Attrib 1”>Text 1</c>

<c d=”Attrib 2”>Text 2</c>

<c d=”Attrib 3”>Text 3</c>

<c d=”Attrib 1”>Text 1</c>

<c d=”Attrib 2”>Text 2</c>

<c d=”Attrib 3”>Text 3</c>

<c d=”Attrib 4”>Text 4</c>

<c d=”Attrib 5”>Text 5</c>

<c d=”Attrib 4”>Text 4</c>

<c d=”Attrib 5”>Text 5</c>

<c d=”Attrib 6”>Text 6</c>

<c d=”Attrib 7”>Text 7</c>

<c d=”Attrib 8”>Text 8</c>

<c d=”Attrib 9”>Text 9</c>

<c d=”Attrib 6”>Text 6</c>

<c d=”Attrib 7”>Text 7</c>

<c d=”Attrib 8”>Text 8</c>

<c d=”Attrib 9”>Text 9</c>

<c d=”Attrib 10”>Text 10</c>

<c d=”Attrib 11”>Text 11</c>

<c d=”Attrib 12”>Text 12</c>

<c d=”Attrib 10”>Text 10</c>

<c d=”Attrib 11”>Text 11</c>

<c d=”Attrib 12”>Text 12</c>

a/b[1]/c[1]/following::* <c d=”Attrib 2”>Text 2</c>

<c d=”Attrib 3”>Text 3</c>

<c d=”Attrib 4”>Text 4</c>

<c d=”Attrib 5”>Text 5</c>

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
179

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 179

TABLE 5.3 continued

XPath Query Resulting Node Set

<c d=”Attrib 4”>Text 4</c>

<c d=”Attrib 5”>Text 5</c>

<c d=”Attrib 6”>Text 6</c>

<c d=”Attrib 7”>Text 7</c>

<c d=”Attrib 8”>Text 8</c>

<c d=”Attrib 9”>Text 9</c>

<c d=”Attrib 6”>Text 6</c>

<c d=”Attrib 7”>Text 7</c>

<c d=”Attrib 8”>Text 8</c>

<c d=”Attrib 9”>Text 9</c>

<c d=”Attrib 10”>Text 10</c>

<c d=”Attrib 11”>Text 11</c>

<c d=”Attrib 12”>Text 12</c>

<c d=”Attrib 10”>Text 10</c>

<c d=”Attrib 11”>Text 11</c>

<c d=”Attrib 12”>Text 12</c>

a/b[1]/c[1]/following-sibling::* <c d=”Attrib 2”>Text 2</c>

<c d=”Attrib 3”>Text 3</c>

a/b[1]/c[1]/parent::*

<c d=”Attrib 1”>Text 1</c>

<c d=”Attrib 2”>Text 2</c>

<c d=”Attrib 3”>Text 3</c>

a/b[1]/c[2]/preceding::* <c d=”Attrib 1”>Text 1</c>

a/b[1]/c[3]/preceding-sibling::* <c d=”Attrib 1”>Text 1</c>

<c d=”Attrib 2”>Text 2</c>

a/b[1]/c[1]/self::* <c d=”Attrib 1”>Text 1</c>

Essentials of XML

PART I
180

Note

For all the XPath expressions contained within this chapter, the corresponding
results are listed as they are returned by the Microsoft XML DOM version 3.
Some other DOM implementations may produce different results; it depends on

07 0672323419 CH05 3/15/04 11:17 AM Page 180

From the contents of Table 5.3, you can see what may be some strange results. However,
it’s important to remember that a resulting node set contains the entire hierarchy for the
nodes contained within the set. Keeping that in mind, the results for the XPath queries in
Table 5.3 begin to make more sense.

Node Tests
The node test portion of a location step indicates the type of node desired for the results.
Every axis has a principal node type: If an axis is an element, the principal node type is
element; otherwise, it is the type of node the axis can contain. For instance, if the axis is
attribute, the principal node type is attribute.

A node test may also contain a node name, or QName. In this case, a node with the speci-
fied name is sought, and if found, it’s returned in the node set. However, the nodes
selected in this manner must be the principal node type sought and have an expanded
name equal to the QName specified. This means that if the node belongs to a namespace,
the namespace must also be included in the node test for the node to be selected. For
instance, ancestor::div and ancestor::test:div will produce two entirely different
node sets. In this first case, only nodes that have no namespace specified and have a
name of div will be selected. In the second case, only those div nodes belonging to the
test namespace will be selected.

In addition to specifying an actual node name, other node tests are available to select the
desired nodes. Here’s a list of these node tests:

• comment()

• node()

• processing-instruction()

• text()

As you can see, a small number of node tests are available for use within a location step.
The comment() node test selects comment nodes from an XML document. The node()
node test selects a node of any type, whereas the text() node test selects those nodes

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
181

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

the interpretation of the XPath specifications and how that interpretation is
implemented as to what the resulting node set would be. However, you are not
limited to working with only one version of a DOM provided by one company.
You can test the XPath expressions by using the following URL:

http://www.fivesight.com/downloads/xpathtester.asp

07 0672323419 CH05 3/15/04 11:17 AM Page 181

that are text nodes. Special consideration should be given to the processing-instruc-
tion() node test, because this node test will accept a literal string parameter to specify
the name of a desired processing instruction.

Essentials of XML

PART I
182

Note

Most people believe that a document such as the one in Listing 5.1 contains 17
nodes. Although it’s true that the document does contain 17 nodes, those aren’t
the only nodes the document contains. Most people simply count the number
of elements within a document. However, each node that contains text also has
a text node associated with it. So, when a node test for text() is conducted, a
node set is returned with all the text nodes, but those nodes will not have a
name—they simply contain text. The node test for node() will return the
desired nodes, and if there are any elements that contain text, those text
nodes will also be returned in the node set.

Predicates
The predicate portion of a location step filters a node set on the specified axis to create a
new node set. Each node in the preliminary node set is evaluated against the predicate to
see whether it matches the filter criteria. If it does, the node ends up in the filtered node
set. Otherwise, it doesn’t.

A predicate may consist of a filter condition that is applied to an axis that either directs
the condition in a forward or reverse direction. A forward axis predicate contains the cur-
rent context node and nodes that follow the context node. A reverse axis predicate con-
tains the current context node and nodes that precede the context node.

A predicate within a location step may contain an expression that, when evaluated,
results in a Boolean (or logical) value that can be either True or False. For instance, if
the result of the expression is a number, such as in the expression /a/b[position()=2],
then the predicate [position()=2] is evaluated for each node in the axis to see whether
it is the second node, and if so, it returns True for the predicate. In fact, the expressions
for a predicate can get rather complex because you are not limited to one test condition
within a predicate—you may use the Boolean operators and and or. Using these two
operators, you can create very powerful filter conditions to find the desired node set.
Predicates may also consist of a variety of functions.

XPath predicates may, and most probably will, contain a Boolean comparison, as listed
in Table 5.4.

07 0672323419 CH05 3/15/04 11:17 AM Page 182

TABLE 5.4 Boolean Operators and Their Respective Descriptions

Boolean Operator Description

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

= Equal to

!= Not equal to

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
183

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

Caution

Remember that these Boolean operators may contain special characters that are
invalid within an XML document, such as an XSLT style sheet. In those cases, to
perform these Boolean operations, you would need to use an escape sequence,
such as < for < or > for >.

Note

Predicates within a location step can also contain other location steps. For
instance, using Listing 5.1, a predicate could be specified as //*[attribute::d],
which will return all the d attributes.

XPath Functions
XPath functions are used to evaluate XPath expressions and can be divided into one of
four main groups:

• Boolean

• Node set

• Number

• String

Each of these main groups contains a set of functions that deal with specific operations
needed with respect to the items covered. Table 5.5 lists each XPath function available as
well as the arguments accepted, the return type, and a brief description.

07 0672323419 CH05 3/15/04 11:17 AM Page 183

TABLE 5.5 XPath Functions as Recommended by the W3C

Type Syntax Return Type Description

Boolean boolean(object) Boolean Converts the argument
into a Boolean value

false() Boolean Returns False

lang(string) Boolean Returns True if the
xml:lang attribute of
the context node is the
same as the sublanguage
specified by the
argument

not(expression) Boolean Returns True if the
expression argument is
False

true() Boolean Returns True

Node set count(node-set) Number Returns the number of
nodes in the node set
argument

Document Node set Creates an XML document
(variant, from the variant
[node-set]) argument

id(object) Node set Returns a node set
based on the node’s
unique ID

key(name, value) Node set Returns a node set with
the specified key name
and value

last() Number Returns the context
size for the expression
evaluation context

local-name String Returns the
([node-set]) local part of the

expanded name of the
first node in the node
set

name([node-set]) String Returns the expanded
name of the first node
in the node set

Essentials of XML

PART I
184

07 0672323419 CH05 3/15/04 11:17 AM Page 184

TABLE 5.5 continued

Type Syntax Return Type Description

namespace-uri String Returns the name-
([node-set]) space URI for the

namespace of the first
node in the node set

position() Number Returns the index
number of the node
within the parent

Number ceiling(number) Number Returns the smallest
integer that is not
less than the argument

floor(number) Number Returns the largest
integer that is not
greater than the
argument

number(variant) Number Converts the argument
to a number

round(number) Number Returns the integer
closest in value to the
argument

sum(node-set) Number Sums the value of all
the nodes within the
node set after being
converted to a number

String concat(string, String Returns the con-
string, catenation of the
[string*]) string arguments

contains(string, Boolean Returns True if the
string) first string con-

tains the second

normalize- String Returns the string with
space() the whitespace removed

starts-with Boolean Returns True if
(string, string) the first string begins

with the second string

string(variant) String Converts the argument
into a string

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
185

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 185

TABLE 5.5 continued

Type Syntax Return Type Description

string-length Number Returns the
(string) length of the string

substring String Returns a
(string, start, substring of the
length) specified string

starting at the start
position indicated by
startpos of the length
specified by length

substring-after String Returns
(string, string) the substring of the

first string that
follows the first
occurrence of the
second string

substring-before String
chars, replace) Returns the substring

of the first string
that precedes the first
occurrence of the
second string

translate String Replaces
(string, the string specified in
chars, replace) chars within the

specified string with
the string specified in
replace.

As you can see in Table 5.5, a large number of functions are available that perform a
myriad of operations. These functions can be used within a location-step predicate to
help filter out undesired nodes. They also help in providing functionality that without
which would make the XPath language quite limiting.

XPath Examples
You have seen the basic construction of each piece of an XPath query, but in truth, it
helps to see the XPath expressions and the results for them. Therefore, to help with this

Essentials of XML

PART I
186

07 0672323419 CH05 3/15/04 11:17 AM Page 186

and to provide as many examples as possible, we will use the code in Listing 5.2, which
provides a good baseline sample XML document we can use for the XPath examples.

LISTING 5.2 Sample2.xml Provides the XML Document Against Which the Sample
XPath Expressions Will Be Evaluated

<PurchaseOrder Tax=”5.76” Total=”75.77”>

<ShippingInformation>
<Method>USPS</Method>
<DeliveryDate>08/12/2001</DeliveryDate>
<Name>Dillon Larsen</Name>
<Address>
<Street>123 Jones Rd.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77381</Zip>

</Address>
</ShippingInformation>

<BillingInformation>
<PaymentMethod>Credit Card</PaymentMethod>
<BillingDate>08/09/2001</BillingDate>
<Name>Madi Larsen</Name>
<Address>
<Street>123 Jones Rd.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77381</Zip>

</Address>
</BillingInformation>

<Order SubTotal=”70.01” ItemsSold=”17”>
<Product Name=”Baby Swiss” Id=”702890” Price=”2.89”

➥ Quantity=”1”/>
<Product Name=”Hard Salami” Id=”302340” Price=”2.34”

➥ Quantity=”1”/>
<Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ Quantity=”1”/>
<Product Name=”Caesar Salad” Id=”991687” Price=”2.38”

➥ Quantity=”2”/>
<Product Name=”Chicken Strips” Id=”133382” Price=”2.50”

➥ Quantity=”1”/>
<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>
<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>
<Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ Quantity=”1”/>

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
187

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 187

LISTING 5.2 continued

<Product Name=”Jalapenos” Id=”101005” Price=”1.97”
➥ Quantity=”1”/>

<Product Name=”Tuna” Id=”000118” Price=”0.92”
➥ Quantity=”3”/>

<Product Name=”Mayonnaise” Id=”126860” Price=”1.98”
➥ Quantity=”1”/>

<Product Name=”Top Sirloin” Id=”290502” Price=”9.97”
➥ Quantity=”2”/>

<Product Name=”Soup” Id=”001254” Price=”1.33”
➥ Quantity=”1”/>

<Product Name=”Granola Bar” Id=”026460” Price=”2.14”
➥ Quantity=”2”/>

<Product Name=”Chocolate Milk” Id=”024620” Price=”1.58”
➥ Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265” Price=”1.98”
➥ Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202” Price=”8.82”
➥ Quantity=”1”/>
</Order>

</PurchaseOrder>

As you can see, Listing 5.2 looks very similar to Listing 4.1. This is basically the same
sample XML document we used in Chapter 4, “Creating XML Schemas,” but it has been
slightly modified to perform as a better example for XPath queries. Using this sample
XML document, Table 5.6 contains sample XPath expressions and their respective
results.

TABLE 5.6 Sample XPath Queries and Their Results

Expression Results

/PurchaseOrder/child::Order <Order SubTotal=”70.01” ItemsSold=”17”>

<Product Name=”Baby Swiss” Id=”702890”

➥ Price=”2.89” Quantity=”1”/>

<Product Name=”Hard Salami” Id=”302340”

➥ Price=”2.34” Quantity=”1”/>

<Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ Quantity=”1”/>

<Product Name=”Caesar Salad” Id=”991687”

➥ Price=”2.38” Quantity=”2”/>

Essentials of XML

PART I
188

07 0672323419 CH05 3/15/04 11:17 AM Page 188

TABLE 5.6 continued

Expression Results

<Product Name=”Chicken Strips” Id=”133382”

➥ Price=”2.50” Quantity=”1”/>

<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>

<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>

<Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ Quantity=”1”/>

<Product Name=”Jalapenos” Id=”101005”

➥ Price=”1.97” Quantity=”1”/>

<Product Name=”Tuna” Id=”000118” Price=”0.92”

➥ Quantity=”3”/>

<Product Name=”Mayonnaise” Id=”126860”

➥ Price=”1.98” Quantity=”1”/>

<Product Name=”Top Sirloin” Id=”290502”

➥ Price=”9.97” Quantity=”2”/>

<Product Name=”Soup” Id=”001254” Price=”1.33”

➥ Quantity=”1”/>

<Product Name=”Granola Bar” Id=”026460”

➥ Price=”2.14” Quantity=”2”/>

<Product Name=”Chocolate Milk” Id=”024620”

➥ Price=”1.58” Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265”

➥ Price=”1.98” Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202”

➥ Price=”8.82” Quantity=”1”/>

</Order>

/PurchaseOrder/child::* <ShippingInformation>

<Method>USPS</Method>

<DeliveryDate>08/12/2001</DeliveryDate>

<Name>Dillon Larsen</Name>

<Address>

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
189

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 189

TABLE 5.6 continued

Expression Results

<Street>123 Jones Rd.</Street>

<City>Houston</City>

<State>TX</State>

<Zip>77381</Zip>

</Address>

</ShippingInformation>

<BillingInformation>

<PaymentMethod>Credit Card</PaymentMethod>

<BillingDate>08/09/2001</BillingDate>

<Name>Madi Larsen</Name>

<Address>

<Street>123 Jones Rd.</Street>

<City>Houston</City>

<State>TX</State>

<Zip>77381</Zip>

</Address>\

</BillingInformation>

<Order SubTotal=”70.01” ItemsSold=”17”>

<Product Name=”Baby Swiss” Id=”702890”

➥ Price=”2.89” Quantity=”1”/>

<Product Name=”Hard Salami” Id=”302340”

➥ Price=”2.34” Quantity=”1”/>

<Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ Quantity=”1”/>

<Product Name=”Caesar Salad” Id=”991687”

➥ Price=”2.38” Quantity=”2”/>

<Product Name=”Chicken Strips” Id=”133382”

➥ Price=”2.50” Quantity=”1”/>

<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>

<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>

Essentials of XML

PART I
190

07 0672323419 CH05 3/15/04 11:17 AM Page 190

TABLE 5.6 continued

Expression Results

<Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ Quantity=”1”/>

<Product Name=”Jalapenos” Id=”101005”

➥ Price=”1.97” Quantity=”1”/>

<Product Name=”Tuna” Id=”000118” Price=”0.92”

➥ Quantity=”3”/>

<Product Name=”Mayonnaise” Id=”126860”

➥ Price=”1.98” Quantity=”1”/>

<Product Name=”Top Sirloin” Id=”290502”

➥ Price=”9.97” Quantity=”2”/>

<Product Name=”Soup” Id=”001254” Price=”1.33”

➥ Quantity=”1”/>

<Product Name=”Granola Bar” Id=”026460”

➥ Price=”2.14” Quantity=”2”/>

<Product Name=”Chocolate Milk” Id=”024620”

➥ Price=”1.58” Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265”

➥ Price=”1.98” Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202”

➥ Price=”8.82” Quantity=”1”/>

</Order>

/PurchaseOrder/descendant USPS08/12/2001Dillon Larsen123 Jones

➥ ::text() ➥ Rd.HoustonTX77381 Credit Card08/09/2001Madi

➥ Larsen123 Jones Rd. HoustonTX77381

/PurchaseOrder/Order/ <Product Name=”Baby Swiss” Id=”702890” Price=”2.89”

➥ child::node() ➥ Quantity=”1”/>

<Product Name=”Hard Salami” Id=”302340”

➥ Price=”2.34” Quantity=”1”/>

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
191

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 191

TABLE 5.6 continued

Expression Results

<Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ Quantity=”1”/>

<Product Name=”Caesar Salad” Id=”991687”

➥ Price=”2.38” Quantity=”2”/>

<Product Name=”Chicken Strips” Id=”133382”

➥ Price=”2.50” Quantity=”1”/>

<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>

<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>

<Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ Quantity=”1”/>

<Product Name=”Jalapenos” Id=”101005” Price=”1.97”

➥ Quantity=”1”/>

<Product Name=”Tuna” Id=”000118” Price=”0.92”

➥ Quantity=”3”/>

<Product Name=”Mayonnaise” Id=”126860” Price=”1.98”

➥ Quantity=”1”/>

<Product Name=”Top Sirloin” Id=”290502”

➥ Price=”9.97” Quantity=”2”/>

<Product Name=”Soup” Id=”001254” Price=”1.33”

➥ Quantity=”1”/>

<Product Name=”Granola Bar” Id=”026460”

➥ Price=”2.14” Quantity=”2”/>

<Product Name=”Chocolate Milk” Id=”024620”

➥ Price=”1.58” Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265” Price=”1.98”

➥ Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202”

➥ Price=”8.82” Quantity=”1”/>

/PurchaseOrder/Order/Product/ Name=”Baby Swiss”Name=”Hard Salami”Name=”Turkey”

➥ attribute::Name ➥ Name=”Caesar Salad”Name=”Chicken Strips”

➥ Name=”Bread”Name=”Rolls”Name=”Cereal”

Essentials of XML

PART I
192

07 0672323419 CH05 3/15/04 11:17 AM Page 192

TABLE 5.6 continued

Expression Results

➥ Name=”Jalapenos”Name=”Tuna”Name=”Mayonnaise”

➥ Name=”Top Sirloin”Name=”Soup”Name=”Granola Bar”

➥ Name=”Chocolate Milk”Name=”Spaghetti”

➥ Name=”Laundry Detergent”

/PurchaseOrder/Order/Product/ Name=”Baby Swiss”Id=”702890”Price=”2.89”

➥ Quantity=”1”

➥ attribute::* ➥ Name=”Hard Salami”Id=”302340”Price=”2.34”

➥ Quantity=”1”Name=”Turkey”Id=”905800”Price=”5.80”

➥ Quantity=”1”Name=”Caesar Salad”Id=”991687”

➥ Price=”2.38”Quantity=”2”Name=”Chicken Strips”

➥ Id=”133382”Price=”2.50”Quantity=”1”Name=”Bread”

➥ Id=”298678”Price=”1.08”Quantity=”1”Name=”Rolls”

➥ Id=”002399”Price=”2.24”Quantity=”1”Name=”Cereal”

➥ Id=”066510”Price=”2.18”Quantity=”1”

➥ Name=”Jalapenos”Id=”101005”Price=”1.97”

➥ Quantity=”1”Name=”Tuna”Id=”000118”Price=”0.92”

➥ Quantity=”3”Name=”Mayonnaise”Id=”126860”

➥ Price=”1.98”Quantity=”1”Name=”Top Sirloin”

➥ Id=”290502”Price=”9.97”Quantity=”2”Name=”Soup”

➥ Id=”001254”Price=”1.33”Quantity=”1”

➥ Name=”Granola Bar”Id=”026460”Price=”2.14”

➥ Quantity=”2”Name=”Chocolate Milk”Id=”024620”

➥ Price=”1.58”Quantity=”2”Name=”Spaghetti”

➥ Id=”000265”Price=”1.98”Quantity=”1”

➥ Name=”Laundry Detergent”Id=”148202”Price=”8.82”

➥ Quantity=”1”/>

/PurchaseOrder/descendant <Name>Dillon Larsen</Name>

➥ ::Name <Name>Madi Larsen</Name>

//Product/ancestor::* <PurchaseOrder Tax=”5.76” Total=”75.77”>

<ShippingInformation>

<Method>USPS</Method>

<DeliveryDate>08/12/2001</DeliveryDate>

<Name>Dillon Larsen</Name>

<Address>

<Street>123 Jones Rd.</Street>

<City>Houston</City>

<State>TX</State>

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
193

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 193

TABLE 5.6 continued

Expression Results

<Zip>77381</Zip>

</Address>

</ShippingInformation>

<BillingInformation>

<PaymentMethod>Credit Card</PaymentMethod>

<BillingDate>08/09/2001</BillingDate>

<Name>Madi Larsen</Name>

<Address>

<Street>123 Jones Rd.</Street>

<City>Houston</City>

<State>TX</State>

<Zip>77381</Zip>

</Address>

</BillingInformation>

<Order SubTotal=”70.01” ItemsSold=”17”>

<Product Name=”Baby Swiss” Id=”702890”

➥ Price=”2.89” Quantity=”1”/>

<Product Name=”Hard Salami” Id=”302340”

➥ Price=”2.34” Quantity=”1”/>

<Product Name=”Turkey” Id=”905800”

➥ Price=”5.80” Quantity=”1”/>

<Product Name=”Caesar Salad” Id=”991687”

➥ Price=”2.38” Quantity=”2”/>

<Product Name=”Chicken Strips” Id=”133382”

➥ Price=”2.50” Quantity=”1”/>

<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>

<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>

<Product Name=”Cereal” Id=”066510”

➥ Price=”2.18” Quantity=”1”/>

Essentials of XML

PART I
194

07 0672323419 CH05 3/15/04 11:17 AM Page 194

TABLE 5.6 continued

Expression Results

<Product Name=”Jalapenos” Id=”101005”

➥ Price=”1.97” Quantity=”1”/>

<Product Name=”Tuna” Id=”000118” Price=”0.92”

➥ Quantity=”3”/>

<Product Name=”Mayonnaise” Id=”126860”

➥ Price=”1.98” Quantity=”1”/>

<Product Name=”Top Sirloin” Id=”290502”

➥ Price=”9.97” Quantity=”2”/>

<Product Name=”Soup” Id=”001254” Price=”1.33”

➥ Quantity=”1”/>

<Product Name=”Granola Bar” Id=”026460”

➥ Price=”2.14” Quantity=”2”/>

<Product Name=”Chocolate Milk” Id=”024620”

➥ Price=”1.58” Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265”

➥ Price=”1.98” Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202”

➥ Price=”8.82” Quantity=”1”/>

</Order>

</PurchaseOrder>

<Order SubTotal=”70.01” ItemsSold=”17”>

<Product Name=”Baby Swiss” Id=”702890”

➥ Price=”2.89” Quantity=”1”/>

<Product Name=”Hard Salami” Id=”302340”

➥ Price=”2.34” Quantity=”1”/>

<Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ Quantity=”1”/>

<Product Name=”Caesar Salad” Id=”991687”

➥ Price=”2.38” Quantity=”2”/>

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
195

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 195

TABLE 5.6 continued

Expression Results

<Product Name=”Chicken Strips” Id=”133382”

➥ Price=”2.50” Quantity=”1”/>

<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>

<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>

<Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ Quantity=”1”/>

<Product Name=”Jalapenos” Id=”101005”

➥ Price=”1.97” Quantity=”1”/>

<Product Name=”Tuna” Id=”000118” Price=”0.92”

➥ Quantity=”3”/>

<Product Name=”Mayonnaise” Id=”126860”

➥ Price=”1.98” Quantity=”1”/>

<Product Name=”Top Sirloin” Id=”290502”

➥ Price=”9.97” Quantity=”2”/>

<Product Name=”Soup” Id=”001254” Price=”1.33”

➥ Quantity=”1”/>

<Product Name=”Granola Bar” Id=”026460”

➥ Price=”2.14” Quantity=”2”/>

<Product Name=”Chocolate Milk” Id=”024620”

➥ Price=”1.58” Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265”

➥ Price=”1.98” Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202”

➥ Price=”8.82” Quantity=”1”/>

</Order>

//Name/ancestor:: <BillingInformation>

➥ BillingInformation <PaymentMethod>Credit Card</PaymentMethod>

<BillingDate>08/09/2001</BillingDate>

Essentials of XML

PART I
196

07 0672323419 CH05 3/15/04 11:17 AM Page 196

TABLE 5.6 continued

Expression Results

<Name>Madi Larsen</Name>

<Address>

<Street>123 Jones Rd.</Street>

<City>Houston</City>

<State>TX</State>

<Zip>77381</Zip>

</Address>

</BillingInformation>

//*/ancestor-or-self::Order <Order SubTotal=”70.01” ItemsSold=”17”>

<Product Name=”Baby Swiss” Id=”702890”

➥ Price=”2.89” Quantity=”1”/>

<Product Name=”Hard Salami” Id=”302340”

➥ Price=”2.34” Quantity=”1”/>

<Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ Quantity=”1”/>

<Product Name=”Caesar Salad” Id=”991687”

➥ Price=”2.38” Quantity=”2”/>

<Product Name=”Chicken Strips” Id=”133382”

➥ Price=”2.50” Quantity=”1”/>

<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>

<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>

<Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ Quantity=”1”/>

<Product Name=”Jalapenos” Id=”101005”

➥ Price=”1.97” Quantity=”1”/>

<Product Name=”Tuna” Id=”000118” Price=”0.92”

➥ Quantity=”3”/>

<Product Name=”Mayonnaise” Id=”126860”

➥ Price=”1.98” Quantity=”1”/>

<Product Name=”Top Sirloin” Id=”290502”

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
197

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 197

TABLE 5.6 continued

Expression Results

➥ Price=”9.97” Quantity=”2”/>

<Product Name=”Soup” Id=”001254” Price=”1.33”

➥ Quantity=”1”/>

<Product Name=”Granola Bar” Id=”026460”

➥ Price=”2.14” Quantity=”2”/>

<Product Name=”Chocolate Milk” Id=”024620”

➥ Price=”1.58” Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265”

➥ Price=”1.98” Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202”

➥ Price=”8.82” Quantity=”1”/>

</Order>

//*/descendant-or-self::Name <Name>Dillon Larsen</Name>

<Name>Madi Larsen</Name>

//*/self::Product <Product Name=”Baby Swiss” Id=”702890” Price=”2.89”

➥ Quantity=”1”/>

<Product Name=”Hard Salami” Id=”302340”

➥ Price=”2.34” Quantity=”1”/>

<Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ Quantity=”1”/>

<Product Name=”Caesar Salad” Id=”991687”

➥ Price=”2.38” Quantity=”2”/>

<Product Name=”Chicken Strips” Id=”133382”

➥ Price=”2.50” Quantity=”1”/>

<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>

<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>

<Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ Quantity=”1”/>

Essentials of XML

PART I
198

07 0672323419 CH05 3/15/04 11:17 AM Page 198

TABLE 5.6 continued

Expression Results

<Product Name=”Jalapenos” Id=”101005” Price=”1.97”

➥ Quantity=”1”/>

<Product Name=”Tuna” Id=”000118” Price=”0.92”

➥ Quantity=”3”/>

<Product Name=”Mayonnaise” Id=”126860” Price=”1.98”

➥ Quantity=”1”/>

<Product Name=”Top Sirloin” Id=”290502”

➥ Price=”9.97” Quantity=”2”/>

<Product Name=”Soup” Id=”001254” Price=”1.33”

➥ Quantity=”1”/>

<Product Name=”Granola Bar” Id=”026460”

➥ Price=”2.14” Quantity=”2”/>

<Product Name=”Chocolate Milk” Id=”024620”

➥ Price=”1.58” Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265” Price=”1.98”

➥ Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202”

➥ Price=”8.82” Quantity=”1”/>

/PurchaseOrder/child:: <Zip>77381</Zip>

➥ ShippingInformation/

➥ descendant::Zip

/PurchaseOrder/*/child::Name <Name>Dillon Larsen</Name>

<Name>Madi Larsen</Name>

/ <PurchaseOrder Tax=”5.76” Total=”75.77”>

<ShippingInformation>

<Method>USPS</Method>

<DeliveryDate>08/12/2001</DeliveryDate>

<Name>Dillon Larsen</Name>

<Address>

<Street>123 Jones Rd.</Street>

<City>Houston</City>

<State>TX</State>

<Zip>77381</Zip>

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
199

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 199

TABLE 5.6 continued

Expression Results

</Address>

</ShippingInformation>

<BillingInformation>

<PaymentMethod>Credit Card</PaymentMethod>

<BillingDate>08/09/2001</BillingDate>

<Name>Madi Larsen</Name>

<Address>

<Street>123 Jones Rd.</Street>

<City>Houston</City>

<State>TX</State>

<Zip>77381</Zip>

</Address>

</BillingInformation>

<Order SubTotal=”70.01” ItemsSold=”17”>

<Product Name=”Baby Swiss” Id=”702890”

➥ Price=”2.89” Quantity=”1”/>

<Product Name=”Hard Salami” Id=”302340”

➥ Price=”2.34” Quantity=”1”/>

<Product Name=”Turkey” Id=”905800”

➥ Price=”5.80” Quantity=”1”/>

<Product Name=”Caesar Salad” Id=”991687”

➥ Price=”2.38” Quantity=”2”/>

<Product Name=”Chicken Strips” Id=”133382”

➥ Price=”2.50” Quantity=”1”/>

<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>

<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>

<Product Name=”Cereal” Id=”066510”

➥ Price=”2.18” Quantity=”1”/>

Essentials of XML

PART I
200

07 0672323419 CH05 3/15/04 11:17 AM Page 200

TABLE 5.6 continued

Expression Results

<Product Name=”Jalapenos” Id=”101005”

➥ Price=”1.97” Quantity=”1”/>

<Product Name=”Tuna” Id=”000118” Price=”0.92”

➥ Quantity=”3”/>

<Product Name=”Mayonnaise” Id=”126860”

➥ Price=”1.98” Quantity=”1”/>

<Product Name=”Top Sirloin” Id=”290502”

➥ Price=”9.97” Quantity=”2”/>

<Product Name=”Soup” Id=”001254” Price=”1.33”

➥ Quantity=”1”/>

<Product Name=”Granola Bar” Id=”026460”

➥ Price=”2.14” Quantity=”2”/>

<Product Name=”Chocolate Milk” Id=”024620”

➥ Price=”1.58” Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265”

➥ Price=”1.98” Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202”

➥ Price=”8.82” Quantity=”1”/>

</Order>

</PurchaseOrder>

/descendant::Product <Product Name=”Baby Swiss”

Id=”702890” Price=”2.89”

➥ Quantity=”1”/>

<Product Name=”Hard Salami” Id=”302340”

➥ Price=”2.34” Quantity=”1”/>

<Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ Quantity=”1”/>

<Product Name=”Caesar Salad” Id=”991687”

➥ Price=”2.38” Quantity=”2”/>

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
201

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 201

TABLE 5.6 continued

Expression Results

<Product Name=”Chicken Strips” Id=”133382”

➥ Price=”2.50” Quantity=”1”/>

<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>

<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>

<Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ Quantity=”1”/>

<Product Name=”Jalapenos” Id=”101005” Price=”1.97”

➥ Quantity=”1”/>

<Product Name=”Tuna” Id=”000118” Price=”0.92”

➥ Quantity=”3”/>

<Product Name=”Mayonnaise” Id=”126860” Price=”1.98”

➥ Quantity=”1”/>

<Product Name=”Top Sirloin” Id=”290502”

➥ Price=”9.97” Quantity=”2”/>

<Product Name=”Soup” Id=”001254” Price=”1.33”

➥ Quantity=”1”/>

<Product Name=”Granola Bar” Id=”026460”

➥ Price=”2.14” Quantity=”2”/>

<Product Name=”Chocolate Milk” Id=”024620”

➥ Price=”1.58” Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265” Price=”1.98”

➥ Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202”

➥ Price=”8.82” Quantity=”1”/>

/descendant::Address/ <Zip>77381</Zip>

➥ child::Zip <Zip>77381</Zip>

/PurchaseOrder/Order/child:: Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ Product[position()=3] ➥ Quantity=”1”/> <

/PurchaseOrder/Order/child:: <Product Name=”Laundry Detergent” Id=”148202”

➥ Product[last()] ➥ Price=”8.82” Quantity=”1”/>

Essentials of XML

PART I
202

07 0672323419 CH05 3/15/04 11:17 AM Page 202

TABLE 5.6 continued

Expression Results

/PurchaseOrder/Order/child:: <Product Name=”Spaghetti” Id=”000265” Price=”1.98”

➥ Product[last()-1] ➥ Quantity=”1”/>

/PurchaseOrder/Order/child:: <Product Name=”Caesar Salad” Id=”991687”

➥ Product[position()>3] ➥ Price=”2.38” Quantity=”2”/>

<Product Name=”Chicken Strips” Id=”133382”

➥ Price=”2.50” Quantity=”1”/>

<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>

<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>

<Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ Quantity=”1”/>

<Product Name=”Jalapenos” Id=”101005” Price=”1.97”

➥ Quantity=”1”/>

<Product Name=”Tuna” Id=”000118” Price=”0.92”

➥ Quantity=”3”/>

<Product Name=”Mayonnaise” Id=”126860” Price=”1.98”

➥ Quantity=”1”/>

<Product Name=”Top Sirloin” Id=”290502”

➥ Price=”9.97” Quantity=”2”/>

<Product Name=”Soup” Id=”001254” Price=”1.33”

➥ Quantity=”1”/>

<Product Name=”Granola Bar” Id=”026460”

➥ Price=”2.14” Quantity=”2”/>

<Product Name=”Chocolate Milk” Id=”024620”

➥ Price=”1.58” Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265” Price=”1.98”

➥ Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202”

➥ Price=”8.82” Quantity=”1”/>

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
203

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 203

TABLE 5.6 continued

Expression Results

/PurchaseOrder/Order/Product/ <Product Name=”Chicken Strips” Id=”133382”

➥ following-sibling:: ➥ Price=”2.50” Quantity=”1”/>

➥ Product[position()>3] <Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>

<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>

<Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ Quantity=”1”/>

<Product Name=”Jalapenos” Id=”101005” Price=”1.97”

➥ Quantity=”1”/>

<Product Name=”Tuna” Id=”000118” Price=”0.92”

➥ Quantity=”3”/>

<Product Name=”Mayonnaise” Id=”126860” Price=”1.98”

➥ Quantity=”1”/>

<Product Name=”Top Sirloin” Id=”290502” Price=”9.97

➥ Quantity=”2”/>

<Product Name=”Soup” Id=”001254” Price=”1.33”

➥ Quantity=”1”/>

<Product Name=”Granola Bar” Id=”026460”

➥ Price=”2.14” Quantity=”2”/>

<Product Name=”Chocolate Milk” Id=”024620”

➥ Price=”1.58” Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265” Price=”1.98”

➥ Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202”

➥ Price=”8.82” Quantity=”1”/>

/PurchaseOrder/Order/Product <Product Name=”Baby Swiss” Id=”702890” Price=”2.89”

➥ [position()=4]/ ➥ Quantity=”1”/>

➥ preceding-sibling:: <Product Name=”Hard Salami” Id=”302340”

➥ Product ➥ Price=”2.34” Quantity=”1”/>

<Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ Quantity=”1”/>

Essentials of XML

PART I
204

07 0672323419 CH05 3/15/04 11:17 AM Page 204

TABLE 5.6 continued

Expression Results

/descendant::Product <Product Name=”Turkey” Id=”905800”

[position()=3] ➥ Price=”5.80” Quantity=”1”/>

/descendant::Product <Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ [attribute:: ➥ Quantity=”1”/>

➥ Name=”Turkey”]

/descendant::Product <Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ [attribute:: ➥ Quantity=”1”/>

➥ Price>”2.00”]

➥ [position()=7]

/PurchaseOrder/child::* <ShippingInformation>

➥ [self:: <Method>USPS</Method>

➥ ShippingInformation or <DeliveryDate>08/12/2001</DeliveryDate>

➥ self:: <Name>Dillon Larsen</Name>

➥ BillingInformation] <Address>

<Street>123 Jones Rd.</Street>

<City>Houston</City>

<State>TX</State>

<Zip>77381</Zip>

</Address>

</ShippingInformation>

<BillingInformation>

<PaymentMethod>Credit Card</PaymentMethod>

<BillingDate>08/09/2001</BillingDate>

<Name>Madi Larsen</Name>

<Address>

<Street>123 Jones Rd.</Street>

<City>Houston</City>

<State>TX</State>

<Zip>77381</Zip>

</Address>

</BillingInformation>

As you can see from the examples in Table 5.6, XPath expressions can get rather long
and complex. For this reason, an abbreviated syntax has also been introduced. Table 5.7
lists the XPath expressions and their respective abbreviations.

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
205

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 205

TABLE 5.7 XPath Expressions and Their Abbreviations

Expression Abbreviation

self::node() .

parent::node() ..

child::nodename nodename

attribute::nodename @nodename

descendant-or-self::node() //

Using the abbreviations in Table 5.7, the XPath expressions in Table 5.6 can be rewritten
as shown in Table 5.8.

TABLE 5.8 Abbreviated XPath Expressions from Table 5.6

Full Expression Abbreviated Expression

/PurchaseOrder/child::Order /PurchaseOrder/Order

/PurchaseOrder/child::* /PurchaseOrder/*

/PurchaseOrder/descendant::text() /PurchaseOrder//text()

/PurchaseOrder/Order/child::node() /PurchaseOrder/Order/node()

/PurchaseOrder/Order/Product/ /PurchaseOrder/Order/Product/@Name

➥ attribute::Name

/PurchaseOrder/Order/Product/ /PurchaseOrder/Order/Product/@*

➥ attribute::*

/PurchaseOrder/descendant::Name /PurchaseOrder//Name

//Product/ancestor::* //*[.//Product]

//Name/ancestor::BillingInformation //BillingInformation[.//Name]

//*/ancestor-or-self::Order N/A

//*/descendant-or-self::Name //Name

//*/self::Product //Product

/PurchaseOrder/child:: /PurchaseOrder/ShippingInformation//Zip

➥ ShippingInformation/

➥ descendant::Zip

/PurchaseOrder/*/child::Name PurchaseOrder/*/Name

/ /

/descendant::Product //Product

/descendant::Address/child::Zip //Address/Zip

Essentials of XML

PART I
206

07 0672323419 CH05 3/15/04 11:17 AM Page 206

TABLE 5.8 continued

Full Expression Abbreviated Expression

/PurchaseOrder/Order/child:: PurchaseOrder/Order/Product[3]

➥ Product[position()=3]

/PurchaseOrder/Order/child:: PurchaseOrder/Order/Product[last()]

➥ Product[last()]

/PurchaseOrder/Order/child:: PurchaseOrder/Order/Product[last()-1]

➥ Product[last()-1]

/PurchaseOrder/Order/child:: PurchaseOrder/Order/Product[position()>3]

➥ Product[position()>3]

/PurchaseOrder/Order/Product/ N/A
➥ following-sibling::

➥ Product[position()>3]

/PurchaseOrder/Order/Product N/A
➥ [position()=4]/

➥ preceding-sibling::

➥ Product

/descendant::Product[position()=3] //Product[3]

/descendant::Product //Product[@Name=”Turkey”]

➥ [attribute::Name=”Turkey”]

/descendant::Product //Product[@Price>”2.00”][7]

➥ [attribute::Price>”2.00”]

➥ [position()=7]

/PurchaseOrder/child::* /PurchaseOrder/ShippingInformation|

➥ [self::ShippingInformation ➥ BillingInformation

➥ or self::BillingInformation]

You can see from the examples in Table 5.8 that not every expression has an abbreviated
equivalent. For instance, the XPath expression /PurchaseOrder/Order/Product/fol-
lowing-sibling::Product[position()>3] has no abbreviated equivalent.

XPointer
The XML Pointer Language (XPointer), currently in the candidate recommendation stage
of the W3C approval process, builds on the XPath specification. An XPointer uses loca-
tion steps the same as XPath but with two major differences: Because an XPointer
describes a location within an external document, an XPointer can target a point within

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
207

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 207

that XML document or a range within the target XML document. You can find the
complete specification at http://www.w3.org/TR/xptr.

Because XPointer builds on the XPath specification, the location steps within an
XPointer are comprised of the same elements that make up XPath location steps. The
axes for XPointer are the same as the axes for XPath, as indicated in Table 5.2.

The node tests for an XPointer are, for the most part, the same as for an XPath node test.
However, in addition to the node tests already listed for XPath expressions, XPointer
provides two more important node tests:

• point()

• range()

These two additional node tests correspond to the new functionality added by XPointer.
For this new functionality to work correctly, the XPointer specification added the concept
of a location within an XML document. Within XPointer, a location can be an XPath
node, a point, or a range. A point can represent the location immediately before or after a
specified character or the location just before or just after a specified node. A range con-
sists of a start point and an endpoint and contains all XML information between those
two points. In fact, the XPointer specification extends the node types to include points
and ranges.

XPointer expressions also allow predicates to be specified as part of a location step in
much the same fashion XPath expressions allow for them. As with XPath expressions,
XPointer expressions have specific functions to deal with each specific predicate type.
However, the XPointer specification also adds an additional function named unique().
This new function indicates whether an XPointer expression selects a single location
rather than multiple locations or no locations at all.

For an XPath expression, the result from a location step is known as a node set; for
an XPointer expression, the result is known as a location set. To reduce the confusion,
the XPointer specification uses a different term for the results of an expression:
Because an XPointer expression can yield a result consisting of points or ranges, the idea
of the node set had to be extended to include these types. Therefore, to prevent
confusion, the results of an XPointer expression are referred to location sets. Four of the
functions that return location sets, id(), root(), here(), and origin(), have the differ-
ences noted in Table 5.9.

Essentials of XML

PART I
208

07 0672323419 CH05 3/15/04 11:17 AM Page 208

TABLE 5.9 Some XPointer Functions That Return Location Sets

Function Description

id() Selects all nodes with the specified ID

root() Selects the root element as the only location in a location
set

here() Selects the current element location in a location set

origin() Selects the current element location for a node using an
out-of-line link

The id() function works exactly the same as the id() function for an XPath expression.
The root() function works just like the / character—it indicates the root element of an
XML document.

The next two functions, here() and origin(), are interesting functions in their own
right. The here() function, as indicated, refers to the current element. Because an
XPointer expression can be located in a text node or in an attribute value, this function
could be used to refer to the current element rather than simply the current node. The
origin() function works much the same as the here() function, except that it refers to
the originating element. The key idea here is that the originating element does not need
to be located within the same document as the resulting location set.

Not every target for an XPointer must be a node. Targeting nodes works great when
you’re designing or utilizing an application that handles XML documents as node trees,
such as the XML DOM, but it doesn’t lend itself well to other application types. What
happens when the user desires a location at a particular point or a range within an XML
document that may cover various nodes and child nodes? This is where much of the
power behind XPointers surfaces.

Points
Many times a link from one XML document into another must locate a specific point
within the target document. XPointer points solve this problem for XML developers by
allowing a context node to be specified and an index position indicating how far from the
context node the desired point is. However, how do you know whether you’re referring to
the number of characters from the context node to locate the point or the number of
nodes from the context node? In truth, it all depends on which XPointer point type you
decide to use. Two different types of points can be represented using XPointer points:

• Node points

• Character points

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
209

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 209

Node points are location points in an XML document that are nodes that contain child
nodes. For these node points, the index position indicates after which child node to navi-
gate to. If 0 is specified for the index, the point is considered to be immediately before
any child nodes. A node point could be considered to be the gap between the child nodes
of a container node.

Essentials of XML

PART I
210

Note

When you’re specifying an index position for a node point, the index
position cannot be greater than the total number of child nodes contained by
the origin node.

When the origin node is a text node, the index position indicates the number of charac-
ters. These location points are referred to as character points. Because you are indicat-
ing the number of characters from the origin, the index specified must be an integer
greater than or equal to 0 and less than or equal to the total length of the text within the
text node. By specifying 0 for the index position in a character point, the point is consid-
ered to be immediately before the first character in the text string. For a character point,
the point, conceptually, represents the space between the characters of a text string.

Note

The index position for XPointer points indicates the number of units to move
from the origin. For instance, in a character point, an index of 3 means the
point is located immediately after the third character in the text string.

Now that you have a better understanding of the different types of points supported
within the XPointer Language, how do you indicate that you want a point within an
XPointer expression? By using a point identifier called start-point().

To understand better how XPointer points work, we will use the sample XML
document shown in Listing 5.3. This is a simple XML document containing a list of
names and addresses.

LISTING 5.3 Sample3.xml Contains a Small List of Names and Addresses

<People>

<Person>
<Name>Dillon Larsen</Name>

07 0672323419 CH05 3/15/04 11:17 AM Page 210

LISTING 5.3 continued

<Address>
<Street>123 Jones Rd.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77380</Zip>

</Address>
</Person>

<Person>
<Name>Madi Larsen</Name>
<Address>
<Street>456 Hickory Ln.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77069</Zip>

</Address>
</Person>

<Person>
<Name>John Doe</Name>
<Address>
<Street>214 Papes Way</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77301</Zip>

</Address>
</Person>

<Person>
<Name>John Smith</Name>
<Address>
<Street>522 Springwood Dr.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77069</Zip>

</Address>
</Person>

<Person>
<Name>Jane Smith</Name>
<Address>
<Street>522 Springwood Dr.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77069</Zip>

</Address>
</Person>

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
211

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 211

LISTING 5.3 continued

<Person>
<Name>Mark Boudreaux</Name>
<Address>
<Street>623 Fell St.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77380</Zip>

</Address>
</Person>

</People>

Using the sample XML document in Listing 5.3, you can more clearly understand the
ideas behind XPointer points and how they work, as shown in Table 5.10.

TABLE 5.10 Examples of XPointer Points and the Resulting Locations

XPointer Expression Location

/People/Person[1]/Name/text()/ Just after the l and just before the start-
point()[position()=4] o in Dillon

/People/Person[1]/Name/text()/ Just before the D in Dillon
start-point()[position()=0]

/People/Person[2]/Address/ Just before the <State> element in
start-point()[position()=2] the <Person> element for Madi Larsen

/People/Person[2]/Address/ Just before the <Street> element in
start-point()[position()=0] the <Person> element for Madi Larsen

From the examples in Table 5.10, you can see how the types of points behave and their
resulting locations.

Essentials of XML

PART I
212

Note

The XPointer Language specification does not distinguish between the endpoint
of one node and the start point of another. The conceptual space between each
node represents one point so that as one node ends, another begins, but both
share the same conceptual point.

07 0672323419 CH05 3/15/04 11:17 AM Page 212

Ranges
An XPointer range defines just that—a range consisting of a start point and an endpoint.
A range will contain the XML between the start point and endpoint but does not neces-
sarily have to consist of neat subtrees of an XML document. A range can extend over
multiple branches of an XML document. The only criterion is that the start point and
endpoint must be valid.

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
213

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

Note

A range can only be specified to contain an XML structure within the same doc-
ument. This means both the start point and endpoint must be within the XML
document. Furthermore, the start point cannot fall after the endpoint within an
XML document. However, the start point and endpoint can be the same point,
in which case the range is considered collapsed. If the container node for the
start point is a node type other than element, text, or root, the container node
of the endpoint must be the same node type. For instance, you can specify a
start point for a range using a processing instruction node as the container
node to the end of an element, but you cannot specify that the range covers
text from inside the processing instruction node to text outside that node.

Within the XPointer Language, a range can be specified by using the keyword to within
the XPointer expression in conjunction with the start-point() and end-point() func-
tions. For instance, the following expression specifies a range beginning at the first char-
acter in the <Name> element for Dillon Larsen and ending after the ninth character in the
<Name> element for Dillon Larsen:

/People/Person[1]/Name/text()start-point()[position()=0] to
➥ /People/Person[1]/Name/text()start-point()[position()=9]

In this example, two node points are used as the starting and ending points for the range.
The result is the string Dillon La. Table 5.11 lists the various range functions available.

TABLE 5.11 XPointer Range Functions

Function Description

end-point() Selects a location set consisting of the endpoints of the
desired location steps

range-inside() Selects the range(s) covering each location in the
location-set argument

07 0672323419 CH05 3/15/04 11:17 AM Page 213

TABLE 5.11 continued

Function Description

range-to() Selects a range that completely covers the locations within
the location-set argument

start-point() Selects a location set consisting of the start points of the
desired location steps

The XML Pointer Language also has the ability to perform basic string matching by
using a function named string-range(). This function returns a location set with one
range for every nonoverlapping match to the search string by performing a case-sensitive
search. The general syntax for string-range() is as follows:

string-range(location-set, string, [index, [length]])

The location-set argument for the string-range() function is any XPointer expres-
sion that would create a location set as its result—for instance, /, /People/Person,
/People/Person[1], and so on. The string argument contains the string searched for. It
does not matter, when you’re using the string-range() function, where this string
occurs; only that is does occur. By specifying the index and length arguments, you can
indicate the range you wish returned. For instance, to return the letters Ma from the Madi
Larsen <Name> element, you could pass an index value of 1 and a length value of 2.

Abbreviating XPointer Notation
When you’re creating XPointer expressions, generally elements will be referenced by ID
or by location. For just this reason, the XML Pointer Language added a few abbreviated
forms of reference. In addition to all the standard XPath abbreviations, XPointer goes
one step beyond that: XPointer allows you to remove the [and] characters from the
index position. Therefore, the expression

/People/Person[1]/Name[1]

becomes this:

1/1/1

Overall, it’s a much shorter expression. However, speaking from experience, this does
not tend to lend itself well to actual implementation. The reasoning behind this goes back
to what XML was designed for in the first place: to give meaning and structure to data.
By specifying the XPointer expression as 1/1/1, we lose all documentation regarding
what it is we’re looking for—we have to know, off the tops of our heads, that we’re

Essentials of XML

PART I
214

07 0672323419 CH05 3/15/04 11:17 AM Page 214

going to be selecting the first <Name> element of the first <Person> element of the
<People> element.

Although it’s perfectly acceptable to use the new abbreviated notation, consider this pos-
sible scenario: Your company asks you to link two documents together using XLinks and
XPointers. Two years later, you no longer work at that company and the company did not
have the foresight to document any of your work. The individual who inherits your work
must now perform some research on her own to figure out what exactly you were select-
ing using your abbreviated syntax. However, if you had used the abbreviated XPath ver-
sion, it makes that individual’s job a little easier—she knows, by virtue of the XPath
expression itself, that the first <Name> element of the first <Person> element beneath the
<People> element should be selected.

XLink
The anchor element, <a>, within HTML indicates a link to another resource on an
HTML page. This could be a location within the same document or a document located
elsewhere. In HTML terms, the anchor element creates a hyperlink to another location.
The hyperlink can either appear as straight text, a clickable image, or a combination of
both. Although HTML anchor elements contain a lot of functionality, they are still limit-
ing—they require the use of the anchor element (<a>) itself, and they basically sit there
waiting for someone to click them before navigating to the specified location.

The XML Linking Language, XLink, addresses and overcomes these limitations by
allowing a link to another document to be specified on any element within an XML
document. What’s more, those links to other documents can be much more complex
than the simple links supported by the HTML specification. You can find the complete
specification at http://www.w3.org/TR/xlink.

The XML Linking Language creates a link to another resource through the use of
attributes specified on elements, not through the actual elements themselves. The
XML Linking Language specification supports the attributes listed in Table 5.12.

TABLE 5.12 XLink Attributes

Attribute Description

xlink:type This attribute must be specified and
indicates what type of XLink is represented
or defined.

xlink:href This attribute contains the information
necessary to locate the desired resource.

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
215

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 215

TABLE 5.12 continued

Attribute Description

xlink:role This attribute describes the function of the
link between the current resource and
another.

xlink:arcrole This attributes describes the function of the
link between the current resource and
another.

xlink:title This attribute describes the meaning of the
link between the resources.

xlink:show This attribute indicates how the resource
linked to should be displayed.

xlink:actuate This attribute specifies when to load the
linked resource.

xlink:label This attribute is used to identify a name for
a target resource.

xlink:from This attribute identifies the starting
resource.

xlink:to This attribute identifies the ending
resource.

The xlink:type attribute must contain one of the following values:

• simple

• extended

• locator

• arc

• resource

• title

• none

A value of simple creates a simple link between resources. Indicating a value of
extended creates an extended link, which is discussed in the “Extended Links” section
later in this chapter. A value of locator creates a link that points to another resource.
A value of arc creates an arc with multiple resources and various traversal paths. A
resource value creates a link to indicate a specific resource. A value of title creates a
title link. By specifying a value of none for the xlink:type attribute, the parent element

Essentials of XML

PART I
216

07 0672323419 CH05 3/15/04 11:17 AM Page 216

has no XLink meaning, and no other XLink-related content or attributes have any rela-
tionship to the element. For all intents and purposes, a value of none removes the ability
to link to another resource from an element.

As indicated in Table 5.12, the xlink:href attribute supplies the location of the resource
to link to. This attribute is a URI reference that can be used to find the desired resource.
In a case where you wish to link to a specific area of the target resource, you may
optionally include an XPointer expression to specify a point or range within that docu-
ment with which to link.

The xlink:role attribute specifies the function of the link. However, you cannot use this
attribute with just any type of XLink. This attribute may only be used for the following
XLink types:

• extended

• simple

• locator

• resource

Similarly, the xlink:arcrole attribute may only be used with two types of XLinks:

• arc

• simple

The xlink:title attribute is completely optional and is provided for us to make some
sense of and document, in a way, what a particular link is. If the xlink:title attribute is
specified, it should contain a string describing the resource.

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
217

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

Note

The xlink:role, xlink:arcrole, and xlink:title attributes are classified
collectively as semantic attributes according to the XLink recommendation.

The xlink:show attribute is an optionally specified attribute for a link for the simple and
arc XLink types and will accept the following values:

• new

• replace

• embed

07 0672323419 CH05 3/15/04 11:17 AM Page 217

• other

• none

If a value of new is specified, the resource will be loaded into a new window. A value of
replace indicates that the resource should be loaded into the current window. Indicating
a value of embed will load the resource into the specified location and wrap the originat-
ing resource around it, as appropriate. This effect is similar to specifying an src attribute
on a tag in HTML. A value of other allows each application using XLinks to look
for other indications within the XML document to determine what needs to be done.
Specifying a value of none has essentially the same effect as specifying a value of other,
with the exception that the application is not expected to look for other indications as to
what to do to display the link.

The xlink:actuate attribute is used to indicate when the linked resource should be
loaded. This attribute will accept the following values:

• onLoad

• onRequest

• other

• none

A value of onLoad indicates that when the current resource is loading, the linked
resource should be loaded as well. Specifying a value of onRequest means the linked
document should only be loaded when some post-loading event triggers a message for
traversal. A value of other indicates, again, that the application should look for other
indications as to what the desired behavior is. Indicating a value of none specifies that
the application is free to handle the loading of the linked resource in whatever manner
seems appropriate.

Essentials of XML

PART I
218

Note

The xlink:show and xlink:actuate attributes are known as behavior attributes
within the XLink recommendation.

The xlink:label attribute is used to name resource and locator XLink types. This
value will end up being used as values within the xlink:from and xlink:to attributes to
indicate the starting and ending resources for an arc XLink type.

07 0672323419 CH05 3/15/04 11:17 AM Page 218

The XML Linking Language offers two major types of links: simple and extended.
Within XLink, a simple link is a convenient, shorthand notation by which to associate
two resources. These resources—one local and one remote—are connected by an arc,
always making a simple link an outbound link. An extended link associates any number
of resources together. Furthermore, those resources may be both local and remote.

Simple Links
A simple link combines the functionality provided by the different pieces available
through an extended link together into a shorthand notation. A simple link consists of an
xlink:type attribute with a value of simple and, optionally, an xlink:href attribute
with a specified value. A simple link may have any content, and even no content; it is up
to the application to provide some means to generate a traversal request for the link. If no
target resource is specified with the xlink:href attribute, the link is simply considered
“dead” and will not be traversable.

Simple links play multiple roles in linking documents. For instance, the simple link,
itself, acts as a resource XLink type for the local document. It is the combination of this
functionality that shortens the XLink definition for a simple link.

However, as stated earlier, simple links are just that—simple. They link exactly two
resources together: one local and one remote. Therefore, if something more complex
must be handled, an extended link is necessary.

Extended Links
Within the XML Linking Language, extended links give you the ability to specify rela-
tionships between an unlimited number of resources, both local and remote. In addition,
these links can involve multiple paths between the linked resources. Local resources are
part of the actual extended link, whereas remote resources identify external resources to
the link. An out-of-line link is created when there are no local resources at all for a link.
It is up to individual applications to decide how to handle extended links; there’s no
magic formula for this one.

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
219

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

Note

The xlink:label, xlink:from, and xlink:to attributes are known as traversal
attributes according to the XLink recommendation.

07 0672323419 CH05 3/15/04 11:17 AM Page 219

Understanding extended links can be rather frustrating. Therefore, let’s look at a sample
XML document that incorporates XLinks, as shown in Listing 5.4, to see how this all
works.

LISTING 5.4 Sample4.xml Contains a Modified Version of the Names List in
Sample3.xml

<People xmlns:xlink=”http://www.w3.org/1999/xlink”
➥ xlink:type=”extended” xlink:title=”Phone book”>

<Person>
<Name>Dillon Larsen</Name>
<Address>
<Street>123 Jones Rd.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77380</Zip>

</Address>
</Person>

<Person>
<Name>Madi Larsen</Name>
<Address>
<Street>456 Hickory Ln.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77069</Zip>

</Address>
</Person>

<Person>
<Name>John Doe</Name>
<Address>
<Street>214 Papes Way</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77301</Zip>

</Address>
</Person>

<Person xlink:type=”resource” xlink:label=”John”>
<Name>John Smith</Name>
<Spouse xlink:type=”resource” xlink:label=”JohnSpouse”>Jane Smith</Spouse>
<Address>
<Street>522 Springwood Dr.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77069</Zip>

Essentials of XML

PART I
220

07 0672323419 CH05 3/15/04 11:17 AM Page 220

LISTING 5.4 continued

</Address>
</Person>

<Person xlink:type=”resource” xlink:label=”Jane”>
<Name>Jane Smith</Name>
<Spouse xlink:type=”resource” xlink:label=”JaneSpouse”>John Smith</Spouse>
<Address>
<Street>522 Springwood Dr.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77069</Zip>

</Address>
</Person>

<Marriage xlink:type=”arc” xlink:from=”JohnSpouse”
➥ xlink:to=”Jane” xlink:actuate=”onRequest” xlink:show=”new”/>
<Marriage xlink:type=”arc” xlink:from=”JaneSpouse”

➥ xlink:to=”John” xlink:actuate=”onRequest” xlink:show=”new”/>

</People>

From Listing 5.4, you can see that we’ve slightly modified the XML document from
Listing 5.3. The difference here is that we’re specifying XLinks within this document.
Notice the addition of two new elements in Listing 5.4: <Spouse> and <Marriage>.

The basic idea here is that clicking the <Spouse> element will open up a new window
with the spousal information on it. So how would this occur? The actual mechanics are
up to the individual applications, but ideally, the <Marriage> element serves as an arc, or
navigation path, from the local resource, which could be Jane Smith or John Smith,
depending on which element you’re looking at, to another resource. The <Marriage> ele-
ment with the appropriate xlink:from attribute would be selected, and the application
would find where the destination resource is by looking in the xlink:to attribute. Then,
locating the element with that value in its xlink:label attribute, the application would
navigate there and open up that information in a new window.

Summary
In this chapter, we’ve covered how to find desired pieces of information within an XML
document using the XML Path Language and how to link XML documents together
using the XML Linking Language and the XML Pointer Language. XPath, XLink, and
XPointer, together, make up a set of protocols by which you can perform most any
function pertaining to XML documents. We can consider XPath to be a sort of query
language, whereas XLink and XPointer can be considered advanced forms of hyperlinks.

The X-Files: XPath, XPointer, and XLink

CHAPTER 5
221

5

X
F

ILES: X
P

A
TH,

X
P

O
IN

TER, &
X

L
IN

K

07 0672323419 CH05 3/15/04 11:17 AM Page 221

But what does it all mean? How can all this complicated mess be of some use to us? If
you look at the heart of all three of these specifications, they all involve some method of
locating information—whether it’s a standard method to find information within the cur-
rent XML document, or how to link various pieces of information within one XML doc-
ument to another, or even to find a location within an XML document. These
specifications empower us to find information. That’s the power behind them, and let’s
face it, that’s why most of us write applications to begin with—to manage information.
And you can’t manage information if you can’t find it to begin with.

Essentials of XML

PART I
222

07 0672323419 CH05 3/15/04 11:17 AM Page 222

IN THIS CHAPTER

• A Brief Review of XML Schemas 224

• Dead Formats: XDR, DSD,
and DCD 229

• Schema for Object-Oriented
XML (SOX) 240

• RELAX NG Schema 243

• Schematron 253

6
C

H
A

PT
ER

Defining XML
Using Alternate
Schema
Representations

08 0672323419 CH06 3/15/04 11:17 AM Page 223

Within the XML world, the XML Schema Definition Language is emerging as a sup-
ported standard for creating XML Schemas since its final recommendation given by the
W3C in May of 2001. However, it is not the only supported standard defining XML
schemas. Over time, while the W3C was busy refining its formal schema definition lan-
guage, the rest of the world created its own. For every markup language, there is proba-
bly one schema definition language. Depending on the technologies you’re used to
incorporating within your applications, you may be more familiar with some of these
alternate schema definition languages than others.

These alternate schema definition languages cover everything from being subsets of other
schema definition languages to serving a specialized purpose, as is the case with the
Schema for Object-Oriented XML (SOX) schema definition language, which is geared
for, you guessed it, object-oriented XML documents. We’ll take the rest of the chapter to
discuss these other formats, briefly, which include the following:

• XML Data Reduced (XDR) schemas

• Document Structure Definition (DSD) schemas

• Document Content Description (DCD) schemas

• Schema for Object-Oriented XML (SOX)

• RELAX NG

• Schematron

A chapter could be devoted to each of these alternate schema formats. However, this
chapter is meant to give you a brief overview of some of the other schema formats avail-
able. For each format, a URL is listed where you can find more information if needed.

A Brief Review of XML Schemas
To get an idea of how these various other schema definition languages might appear for
an XML document, let’s go back to our online grocery store sample XML document
from Chapter 4, “Creating XML Schemas,” which is shown in Listing 6.1.

LISTING 6.1 PurchaseOrder.xml Provides a Sample XML Document for an Online
Grocery Store Order

<PurchaseOrder Tax=”5.76” Total=”75.77”>

<ShippingInformation>
<Name>Dillon Larsen</Name>
<Address>
<Street>123 Jones Rd.</Street>

Essentials of XML

PART I
224

08 0672323419 CH06 3/15/04 11:17 AM Page 224

LISTING 6.1 continued

<City>Houston</City>
<State>TX</State>
<Zip>77381</Zip>

</Address>
<Method>USPS</Method>
<DeliveryDate>2001-08-12</DeliveryDate>

</ShippingInformation>

<BillingInformation>
<Name>Madi Larsen</Name>
<Address>
<Street>123 Jones Rd.</Street>
<City>Houston</City>
<State>TX</State>
<Zip>77381</Zip>

</Address>
<PaymentMethod>Credit Card</PaymentMethod>
<BillingDate>2001-08-09</BillingDate>

</BillingInformation>

<Order SubTotal=”70.01” ItemsSold=”17”>
<Product Name=”Baby Swiss” Id=”702890” Price=”2.89”

➥ Quantity=”1”/>
<Product Name=”Hard Salami” Id=”302340” Price=”2.34”

➥ Quantity=”1”/>
<Product Name=”Turkey” Id=”905800” Price=”5.80”

➥ Quantity=”1”/>
<Product Name=”Caesar Salad” Id=”991687” Price=”2.38”

➥ Quantity=”2”/>
<Product Name=”Chicken Strips” Id=”133382” Price=”2.50”

➥ Quantity=”1”/>
<Product Name=”Bread” Id=”298678” Price=”1.08”

➥ Quantity=”1”/>
<Product Name=”Rolls” Id=”002399” Price=”2.24”

➥ Quantity=”1”/>
<Product Name=”Cereal” Id=”066510” Price=”2.18”

➥ Quantity=”1”/>
<Product Name=”Jalapenos” Id=”101005” Price=”1.97”

➥ Quantity=”1”/>
<Product Name=”Tuna” Id=”000118” Price=”0.92”

➥ Quantity=”3”/>
<Product Name=”Mayonnaise” Id=”126860” Price=”1.98”

➥ Quantity=”1”/>
<Product Name=”Top Sirloin” Id=”290502” Price=”9.97”

➥ Quantity=”2”/>
<Product Name=”Soup” Id=”001254” Price=”1.33”

➥ Quantity=”1”/>
<Product Name=”Granola Bar” Id=”026460” Price=”2.14”

➥ Quantity=”2”/>

Defining XML Using Alternate Schema Representations

CHAPTER 6
225

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 225

LISTING 6.1 continued

<Product Name=”Chocolate Milk” Id=”024620” Price=”1.58”
➥ Quantity=”2”/>

<Product Name=”Spaghetti” Id=”000265” Price=”1.98”
➥ Quantity=”1”/>

<Product Name=”Laundry Detergent” Id=”148202” Price=”8.82”
➥ Quantity=”1”/>
</Order>

</PurchaseOrder>

As you can see, Listing 6.1 represents a fairly small and simple order that could be
placed online. It contains the information necessary regarding how payment is to be
made, how the order is to be shipped, and what day delivery should be. For comparison
purposes with the other schema formats discussed in the rest of this chapter, we’ll also
include the W3C schema for our sample XML document, as shown in Listing 6.2.

LISTING 6.2 PurchaseOrder.xsd Contains a W3C Schema for PurchaseOrder.xml

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:annotation>
<xsd:documentation>
Purchase Order schema for an online grocery store.

</xsd:documentation>
</xsd:annotation>

<xsd:element name=”PurchaseOrder” type=”PurchaseOrderType”/>

<xsd:complexType name=”PurchaseOrderType”>
<xsd:all>
<xsd:element name=”ShippingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”BillingInformation” type=”InfoType”

➥ minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”Order” type=”OrderType”

➥ minOccurs=”1” maxOccurs=”1”/>
</xsd:all>
<xsd:attribute name=”Tax”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Total”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>

Essentials of XML

PART I
226

08 0672323419 CH06 3/15/04 11:17 AM Page 226

LISTING 6.2 continued

<xsd:fractionDigits value=”2”/>
</xsd:restriction>

</xsd:simpleType>
</xsd:attribute>

</xsd:complexType>

<xsd:group name=”ShippingInfoGroup”>
<xsd:all>
<xsd:element name=”DeliveryDate” type=”DateType”/>
<xsd:element name=”Method” type=”DeliveryMethodType”/>

</xsd:all>
</xsd:group>

<xsd:group name=”BillingInfoGroup”>
<xsd:all>
<xsd:element name=”BillingDate” type=”DateType”/>
<xsd:element name=”PaymentMethod” type=”PaymentMethodType”/>

</xsd:all>
</xsd:group>

<xsd:complexType name=”InfoType”>
<xsd:sequence>
<xsd:element name=”Name” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”Address” type=”AddressType” minOccurs=”1”

➥ maxOccurs=”1”/>
<xsd:choice minOccurs=”1” maxOccurs=”1”>
<xsd:group ref=”BillingInfoGroup”/>
<xsd:group ref=”ShippingInfoGroup”/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=”DateType”>
<xsd:restriction base=”xsd:date”/>

</xsd:simpleType>

<xsd:simpleType name=”DeliveryMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”USPS”/>
<xsd:enumeration value=”UPS”/>
<xsd:enumeration value=”FedEx”/>
<xsd:enumeration value=”DHL”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

Defining XML Using Alternate Schema Representations

CHAPTER 6
227

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 227

LISTING 6.2 continued

<xsd:simpleType name=”PaymentMethodType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”Check”/>
<xsd:enumeration value=”Cash”/>
<xsd:enumeration value=”Credit Card”/>
<xsd:enumeration value=”Debit Card”/>
<xsd:enumeration value=”Other”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name=”AddressType”>
<xsd:all>
<xsd:element name=”Street” minOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”City” minOccurs=”1” maxOccurs=”1”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”State” type=”StateType” minOccurs=”1”

➥ maxOccurs=”1”/>
<xsd:element name=”Zip” type=”ZipType” minOccurs=”1”

➥ maxOccurs=”1”/>
</xsd:all>

</xsd:complexType>

<xsd:simpleType name=”ZipType”>
<xsd:restriction base=”xsd:string”>
<xsd:minLength value=”5”/>
<xsd:maxLength value=”10”/>
<xsd:pattern value=”[0-9]{5}(-[0-9]{4})?”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”StateType”>
<xsd:restriction base=”xsd:string”>
<xsd:length value=”2”/>
<xsd:enumeration value=”AR”/>
<xsd:enumeration value=”LA”/>
<xsd:enumeration value=”MS”/>
<xsd:enumeration value=”OK”/>
<xsd:enumeration value=”TX”/>

</xsd:restriction>
</xsd:simpleType>

Essentials of XML

PART I
228

08 0672323419 CH06 3/15/04 11:17 AM Page 228

LISTING 6.2 continued

<xsd:complexType name=”OrderType”>
<xsd:all>
<xsd:element name=”Product” type=”ProductType”

➥ minOccurs=”1” maxOccurs=”unbounded”/>
</xsd:all>
<xsd:attribute name=”SubTotal”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”ItemsSold” type=”xsd:positiveInteger”/>

</xsd:complexType>

<xsd:complexType name=”ProductType”>
<xsd:attribute name=”Name” type=”xsd:string”/>
<xsd:attribute name=”Id” type=”xsd:positiveInteger”/>
<xsd:attribute name=”Price”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”Quantity” type=”xsd:positiveInteger”/>

</xsd:complexType>

</xsd:schema>

For a more detailed explanation regarding the schema in the preceding listing, refer to
Chapter 4. As you can see from this listing, the XML Schema Definition Language can
get rather complex and very detailed. But what about some of the other schema formats
that have been proposed over time? We’ll take the rest of the chapter to discuss these
alternative schema formats and compare them against the XML Schema from the
preceding listing.

Dead Formats: XDR, DSD,
and DCD
Along the way to the final XML Schema recommendation given by the W3C, many
other schema formats were proposed. Some of these proposals gave the W3C ideas on
what needed to be included in an “all-inclusive” and robust schema definition language.

Defining XML Using Alternate Schema Representations

CHAPTER 6
229

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 229

For example, some of these proposals build or solve problems in other schema proposals.
There has been a long-recognized need to have way in which to define a schema for an
XML document using XML syntax. As a result, many proposals were created and sub-
mitted to the W3C, and you’ll see aspects from some of these proposals in the formal
recommendation by the W3C for the XML Schema Definition Language.

Still, some companies created their own versions because they needed an immediate
schema definition language and couldn’t wait for the W3C to complete its formal recom-
mendation on the XML Schema Definition Language. However, these formats, although
still supported by many systems, will most likely be phased out in favor of the new W3C
XML Schema Definition Language, and they are now considered inactive, on hold, or
outright “dead.” The major formats that we will concentrate on are the XML Data
Reduced, Document Structure Definition, and Document Content Description languages,
all of which helped to contribute to the formal XML Schema recommendation.

XML Data Reduced (XDR) Schema
In 1998, a proposal was created based on the XML-Data submission to the W3C called
XML Data Reduced (XDR). This proposal refined the ideas and concepts found in the
XML-Data submission down to a more manageable size in the hopes that faster progress
toward adopting a formal schema definition language would be made. The main purpose
of this proposal was to create a schema definition language by which elements and attrib-
utes of an XML document could be defined using XML syntax rather than using DTDs,
which were recognized as being inadequate. The proposal for XDR can be found at
http://www.ltg.ed.ac.uk/~ht/XMLData-Reduced.htm.

Going back to our online grocery store order example in Listing 6.1, the XDR schema
for that sample document could appear as shown in Listing 6.3. Note the use of the word
could. As there are many different ways to reach the same definition, this is one example
of how this schema might be defined; the details regarding how this schema is con-
structed could vary from author to author. For instance, the <AttributeType> elements
could be declared globally rather than locally. This doesn’t change the overall results of
this schema, however.

LISTING 6.3 PurchaseOrder.xdr Contains an XDR Schema for PurchaseOrder.xml

<Schema name=”Untitled-schema”
➥ xmlns=”urn:schemas-microsoft-com:xml-data”
➥ xmlns:dt=”urn:schemas-microsoft-com:datatypes”>

<ElementType name=”Address” model=”closed” content=”eltOnly”
➥ order=”seq”>

<element type=”Street” minOccurs=”1” maxOccurs=”1”/>

Essentials of XML

PART I
230

08 0672323419 CH06 3/15/04 11:17 AM Page 230

LISTING 6.3 continued

<element type=”City” minOccurs=”1” maxOccurs=”1”/>
<element type=”State” minOccurs=”1” maxOccurs=”1”/>
<element type=”Zip” minOccurs=”1” maxOccurs=”1”/>

</ElementType>

<ElementType name=”BillingDate” model=”closed”
➥ content=”textOnly” dt:type=”date”/>

<ElementType name=”BillingInformation” model=”closed”
➥ content=”eltOnly” order=”seq”>

<element type=”Name” minOccurs=”1” maxOccurs=”1”/>
<element type=”Address” minOccurs=”1” maxOccurs=”1”/>
<element type=”PaymentMethod” minOccurs=”1” maxOccurs=”1”/>
<element type=”BillingDate” minOccurs=”1” maxOccurs=”1”/>

</ElementType>

<ElementType name=”City” model=”closed” content=”textOnly”
➥ dt:type=”string”/>

<ElementType name=”DeliveryDate” model=”closed”
➥ content=”textOnly” dt:type=”date”/>

<ElementType name=”Method” model=”closed” content=”textOnly”
➥ dt:type=”string”/>

<ElementType name=”Name” model=”closed” content=”textOnly”
➥ dt:type=”string”/>

<ElementType name=”Order” model=”closed” content=”eltOnly”
➥ order=”seq”>

<AttributeType name=”SubTotal” dt:type=”fixed.14.4”
➥ required=”yes”/>

<AttributeType name=”ItemsSold” dt:type=”i1”
➥ required=”yes”/>

<attribute type=”SubTotal”/>
<attribute type=”ItemsSold”/>
<element type=”Product” minOccurs=”1” maxOccurs=”*”/>

</ElementType>

<ElementType name=”PaymentMethod” model=”closed”
➥ content=”textOnly” dt:type=”string”/>

<ElementType name=”Product” model=”closed” content=”empty”>
<AttributeType name=”Name” dt:type=”string” required=”yes”/>
<AttributeType name=”Id” dt:type=”string” required=”yes”/>
<AttributeType name=”Price” dt:type=”fixed.14.4”

➥ required=”yes”/>

Defining XML Using Alternate Schema Representations

CHAPTER 6
231

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 231

LISTING 6.3 continued

<AttributeType name=”Quantity” dt:type=”i1” required=”yes”/>

<attribute type=”Name”/>
<attribute type=”Id”/>
<attribute type=”Price”/>
<attribute type=”Quantity”/>

</ElementType>

<ElementType name=”PurchaseOrder” model=”closed”
➥ content=”eltOnly” order=”seq”>

<AttributeType name=”Tax” dt:type=”fixed.14.4”
➥ required=”yes”/>

<AttributeType name=”Total” dt:type=”fixed.14.4”
➥ required=”yes”/>

<AttributeType name=”xmlns” dt:type=”string”/>

<attribute type=”Tax”/>
<attribute type=”Total”/>
<attribute type=”xmlns”/>

<element type=”ShippingInformation” minOccurs=”1”
➥ maxOccurs=”1”/>

<element type=”BillingInformation” minOccurs=”1”
➥ maxOccurs=”1”/>

<element type=”Order” minOccurs=”1” maxOccurs=”1”/>
</ElementType>

<ElementType name=”ShippingInformation” model=”closed”
➥ content=”eltOnly” order=”seq”>

<element type=”Name” minOccurs=”1” maxOccurs=”1”/>
<element type=”Address” minOccurs=”1” maxOccurs=”1”/>
<element type=”Method” minOccurs=”1” maxOccurs=”1”/>
<element type=”DeliveryDate” minOccurs=”1” maxOccurs=”1”/>

</ElementType>

<ElementType name=”State” model=”closed” content=”textOnly”
➥ dt:type=”string”/>

<ElementType name=”Street” model=”closed” content=”textOnly”
➥ dt:type=”string”/>

<ElementType name=”Zip” model=”closed” content=”textOnly”
➥ dt:type=”i4”/>

</Schema>

So, what can you tell from Listing 6.3? Well, for one, you see many similarities between
an XDR schema and the W3C schema shown in Listing 6.2. Attributes are defined

Essentials of XML

PART I
232

08 0672323419 CH06 3/15/04 11:17 AM Page 232

separately and then declared within the element or elements in which they are needed.
Also, elements are defined separately and then placed inside the parent elements’ defini-
tions, as needed. Also, you can see that XDR supports an intrinsic set of data types simi-
lar to the ones supported by the W3C schema. As such, it makes sense then that some of
the standards developed for XML Data Reduced schemas made it into the final recom-
mendation by the W3C for the XML Schema Definition Language.

However, upon closer examination of Listings 6.2 and 6.3, we can quickly identify some
major differences. For one, there is one way in which to define all element definitions
within an XDR schema: the <ElementType> element. Whereas in the XSD schema, you
can choose between <complexType> and <simpleType>, depending on the content you
expect the element to hold. Also, you’ll notice that to include a declaration of some data
type in the XDR schema, you must use the type attribute from the urn:schemas-
microsoft-com:datatypes namespace. You’ll also notice that there’s no support for an
anonymous type declaration within an XDR schema: You must still create an
<ElementType> element to define the element’s contents, although you can declare it
within the parent element, in which case it is referred to as a local type definition. Lastly,
although you cannot tell simply from comparing the two schemas, an XDR schema does
not support inheriting elements and attributes from another schema.

Document Structure Description (DSD) Schema
In 1999, AT&T Labs in New Jersey and BRICS at the University of Aarhus, Denmark
collaborated to create the proposal for the Document Structure Description (DSD) lan-
guage. The DSD language came about from a need to describe XML documents to Web
programmers with a very limited background in computer science. The DSD language
was designed to further the W3C-sponsored XML technologies, such as XSL
Transformations (XSLT) and Cascading Style Sheets (CSS).

The benefit, at the time, was that DSD did not require specialized knowledge of XML or
SGML because the technology was based on general and familiar concepts that allowed
for stronger XML document descriptions than were possible with a DTD or the XML
Schema proposal as it existed at the time; remember, the XML Schema Definition
Language was not made into a formal recommendation until 2001. More complete
information on this schema format can be found at http://www.brics.dk/DSD/.

Looking back to our online grocery store order example in Listing 6.1, the DSD schema
for that sample document could appear as shown in Listing 6.4. (Note the use of the
word could.) Again, different authors may define the same structure for an XML
document slightly differently.

Defining XML Using Alternate Schema Representations

CHAPTER 6
233

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 233

LISTING 6.4 PurchaseOrder.dsd Contains a DSD Schema for PurchaseOrder.xml

<DSD IDRef=”PurchaseOrder” DSDVersion=”1.0”>

<Title>DSD for PurchaseOrder.xml</Title>
<Version>1.0</Version>
<Author>Travis Vandersypen</Author>

<ElementDef ID=”PurchaseOrder”>
<AttributeDecl Name=”Tax”>
<OneOrMore>
<CharRange Start=”0” End=”9”/>

</OneOrMore>
</AttributeDecl>

<AttributeDecl Name=”Total”>
<OneOrMore>
<CharRange Start=”0” End=”9”/>

</OneOrMore>
</AttributeDecl>

<OneOrMore>
<Sequence>
<Element IDRef=”ShippingInformationType”/>
<Element IDRef=”BillingInformationType”/>
<Element IDRef=”OrderType”/>

</Sequence>
</OneOrMore>

</ElementDef>

<ElementDef ID=”CityType” Name=”City”>
<Content>
<StringType/>

</Content>
</ElementDef>

<ElementDef ID=”StateType” Name=”State”>
<Content>
<StringType/>

</Content>
</ElementDef>

<ElementDef ID=”StreetType” Name=”Street”>
<Content>
<StringType/>

</Content>
</ElementDef>

<ElementDef ID=”ZipType” Name=”Zip”>
<Content>
<StringType/>

Essentials of XML

PART I
234

08 0672323419 CH06 3/15/04 11:17 AM Page 234

LISTING 6.4 continued

</Content>
</ElementDef>

<ElementDef ID=”AddressType” Name=”Address”>
<Sequence>
<Element IDRef=”StreetType”/>
<Element IDRef=”CityType”/>
<Element IDRef=”StateType”/>
<Element IDRef=”ZipType”/>

</Sequence>
</ElementDef>

<ElementDef ID=”BillingDateType” Name=”BillingDate”>
<Content>
<StringType/>

</Content>
</ElementDef>

<ElementDef ID=”PaymentMethodType” Name=”PaymentMethod”>
<Content>
<StringType/>

</Content>
</ElementDef>

<ElementDef ID=”BillingInformationType”
➥ Name=”BillingInformation”>

<Sequence>
<Element IDRef=”NameType”/>
<Element IDRef=”AddressType”/>
<Element IDRef=”PaymentMethodType”/>
<Element IDRef=”BillingDateType”/>

</Sequence>
</ElementDef>

<ElementDef ID=”DeliveryDateType” Name=”DeliveryDate”>
<Content>
<StringType/>

</Content>
</ElementDef>

<ElementDef ID=”DeliveryMethodType” Name=”Method”>
<Content>
<StringType/>

</Content>
</ElementDef>

<ElementDef ID=”NameType” Name=”Name”>
<Content>
<StringType/>

Defining XML Using Alternate Schema Representations

CHAPTER 6
235

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 235

LISTING 6.4 continued

</Content>
</ElementDef>

<ElementDef ID=”ShippingInformationType”
➥ Name=”ShippingInformation”>

<Sequence>
<Element IDRef=”NameType”/>
<Element IDRef=”AddressType”/>
<Element IDRef=”DeliveryMethodType”/>
<Element IDRef=”DeliveryDateType”/>

</Sequence>
</ElementDef>

<ElementDef ID=”OrderType” Name=”Order”>
<AttributeDecl Name=”SubTotal”>
<OneOrMore>
<CharRange Start=”0” End=”9”/>

</OneOrMore>
</AttributeDecl>

<AttributeDecl Name=”ItemsSold”>
<OneOrMore>
<CharRange Start=”0” End=”9”/>

</OneOrMore>
</AttributeDecl>

<OneOrMore>
<Element IDRef=”ProductType”/>

</OneOrMore>
</ElementDef>

<ElementDef ID=”ProductType” Name=”Product”>
<AttributeDecl IDRef=”Name”/>

<AttributeDecl Name=”Id”>
<OneOrMore>
<AnyChar/>

</OneOrMore>
</AttributeDecl>

<AttributeDecl Name=”Price”>
<OneOrMore>
<CharRange Start=”0” End=”9”/>

</OneOrMore>
</AttributeDecl>

<AttributeDecl Name=”Quantity”>
<OneOrMore>
<CharRange Start=”0” End=”9”/>

Essentials of XML

PART I
236

08 0672323419 CH06 3/15/04 11:17 AM Page 236

LISTING 6.4 continued

</OneOrMore>
</AttributeDecl>

</ElementDef>

</DSD>

You can see that the major difference in Listing 6.4 from the sample W3C schema in
Listing 6.2 is that cardinality can be expressed via special elements such as <OneOrMore>
and <ZeroOrMore>. Furthermore, strings have special element type definitions using the
<StringType> element, by which an author can specify that an element contains string
content. Again, however, you see the same basic trend with the W3C schema repeated
here: Elements have their definitions declared separately from where they are actually
used and placed within a parent element. Also, the DSD schema definition language
uses a grammar-based approach to indicate how conforming XML documents
should be structured.

Upon close inspection, though, you can see some major limitations with the DSD
language. For one, it makes the assumption that everything is a string data type.
Although that may be true in a sense, it’s rather limiting when you wish to represent
data that possesses a different data type other than string. For instance, does it make
sense to define an element or attribute that should contain a monetary value as some
string representation of that? Not really. And the DSD also does not provide support
for inheriting elements and attributes from other schemas.

Document Content Description (DCD) Schema
In 1998, IBM, Microsoft, and Textuality collaborated and created a proposal which was
then submitted to the W3C to create a new standard by which rules governing the struc-
ture and content of XML documents could be represented in an XML syntax. This
submission was titled the Document Content Description (DCD). The DCD standard
incorporates a subset of the XML-Data Submission and expresses it in a way consistent
with the W3C Resource Description Framework (RDF). The DCD standard was intended
to be a viable option to a DTD. However, with the formal recommendation of the XML
Schema Definition Language, this proposal, like so many others, has become obsolete.
The submission made to the W3C can be found at http://www.w3.org/TR/NOTE-dcd.

As an example of a Document Content Description schema, we’ll again use the online
grocery store example in Listing 6.1 as the sample document we’ll attempt to describe.
The resulting DCD schema is shown in Listing 6.5.

Defining XML Using Alternate Schema Representations

CHAPTER 6
237

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 237

LISTING 6.5 PurchaseOrder.dcd Contains a DCD Schema for PurchaseOrder.xml

<DCD xmlns:RDF=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>

<ElementDef Type=”Address” Root=”True” Content=”Closed”
➥ Model=”Elements”>

<Group RDF:Order=”Seq”>
<Element>Street</Element>
<Element>City</Element>
<Element>State</Element>
<Element>Zip</Element>

</Group>
</ElementDef>

<ElementDef Type=”BillingDate” Root=”True” Content=”Closed”
➥ Model Model=”Data” Datatype=”date”/>

<ElementDef Type=”BillingInformation” Root=”True”
➥ Model Content=”Closed” Model=”Elements”>

<Group RDF:Order=”Seq”>
<Element>Name</Element>
<Element>Address</Element>
<Element>PaymentMethod</Element>
<Element>BillingDate</Element>

</Group>
</ElementDef>

<ElementDef Type=”City” Root=”True” Content=”Closed”
➥ Model Model=”Data” Datatype=”string”/>

<ElementDef Type=”DeliveryDate” Root=”True” Content=”Closed”
➥ Model Model=”Data” Datatype=”date”/>

<ElementDef Type=”Method” Root=”True” Content=”Closed”
➥ Model Model=”Data” Datatype=”string”/>

<ElementDef Type=”Name” Root=”True” Content=”Closed”
➥ Model Model=”Data” Datatype=”string”/>

<ElementDef Type=”Order” Root=”True” Content=”Closed”
➥ Model Model=”Elements”>

<AttributeDef Name=”SubTotal” Datatype=”fixed.14.4”
➥ Model Occurs=”Required”/>

<AttributeDef Name=”ItemsSold” Datatype=”i1”
➥ Model Occurs=”Required”/>

<Group RDF:Order=”Seq” Occurs=”OneOrMore”>
<Element>Product</Element>

</Group>
</ElementDef>

Essentials of XML

PART I
238

08 0672323419 CH06 3/15/04 11:17 AM Page 238

LISTING 6.5 continued

<ElementDef Type=”PaymentMethod” Root=”True” Content=”Closed”
➥ Model Model=”Data” Datatype=”string”/>

<ElementDef Type=”Product” Root=”True” Content=”Closed”
➥ Model Model=”Empty”>

<AttributeDef Name=”Name” Datatype=”string”
➥ Model Occurs=”Required”/>

<AttributeDef Name=”Id” Datatype=”string”
➥ Model Occurs=”Required”/>

<AttributeDef Name=”Price” Datatype=”fixed.14.4”
➥ Model Occurs=”Required”/>

<AttributeDef Name=”Quantity” Datatype=”i1”
➥ Model Occurs=”Required”/>
</ElementDef>

<ElementDef Type=”PurchaseOrder” Root=”True” Content=”Closed”
➥ Model Model=”Elements”>

<AttributeDef Name=”Tax” Datatype=”fixed.14.4”
➥ Model Occurs=”Required”/>

<AttributeDef Name=”Total” Datatype=”fixed.14.4”
➥ Model Occurs=”Required”/>

<Group RDF:Order=”Seq”>
<Element>ShippingInformation</Element>
<Element>BillingInformation</Element>
<Element>Order</Element>

</Group>
</ElementDef>

<ElementDef Type=”ShippingInformation” Root=”True”
➥ Model Content=”Closed” Model=”Elements”>

<Group RDF:Order=”Seq”>
<Element>Name</Element>
<Element>Address</Element>
<Element>Method</Element>
<Element>DeliveryDate</Element>

</Group>
</ElementDef>

<ElementDef Type=”State” Root=”True” Content=”Closed”
➥ Model Model=”Data” Datatype=”string”/>

<ElementDef Type=”Street” Root=”True” Content=”Closed”
➥ Model Model=”Data” Datatype=”string”/>

<ElementDef Type=”Zip” Root=”True” Content=”Closed”
➥ Model Model=”Data” Datatype=”i4”/>
</DCD>

Defining XML Using Alternate Schema Representations

CHAPTER 6
239

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 239

From the schema definition in Listing 6.5, you can see that many similarities exist
among a DCD schema, an XDR schema, and a W3C XML Schema. All three have
demonstrated that element contents are defined separately and then referenced elsewhere,
where they are needed; the same goes for attributes. Plus, all three take the basic
approach of building from the smallest piece outward; that is to say that the simplest
pieces are defined and then compounded together as needed to create more complex
structures that can then be included in even more complex structures, and so on. All in
all, it’s very similar to the method in which a house would be built: The wood is acquired
and cut to the lengths needed, then the frame is built, and so on.

Again, though, if you take a closer look, you’ll see many important differences between
the W3C schema and the DCD schema. For instance, as with the XDR schema, every
element must have a separate type definition somewhere in the document. That means
every time you wish to use an element, you must separately define its type definition and
then declare that element where it will actually be used.

Schema for Object-Oriented
XML (SOX)
In 1997, Veo Systems Inc., submitted a note to the W3C concerning a new schema defin-
ition language referred to as the Schema for Object-Oriented XML (SOX). SOX was
developed primarily to assist in the development of large-scale, distributed electronic
commerce applications. SOX provides a better alternative to DTDs for the creation of
efficient software-development processes in distributed applications. SOX provides basic
data types that can be extended, inheritance for attributes and content models, a powerful
namespace mechanism, and documentation that can be embedded. Compared with
DTDs, the Schema for Object-Oriented XML decreases the complexity of supporting
interoperation among distributed applications by allowing various SOX processors to
crunch the schema file to produce varying outputs in an automated fashion.

The SOX schema definition language is a grammar-based language very similar to that
of the XML Schema Definition Language. Elements have “type” definitions and then are
placed within parent elements through a declaration statement. In the case of the SOX
schema definition language, the type definition comes in the form of the <elementtype>
element. This element contains the basic type definition for an element. By using the
<model> element within the <elementtype> element, a schema author can define the ele-
ments’ definitions using element declarations, choices, attribute declarations, and so on.
A sample SOX schema for Listing 6.1 is shown in Listing 6.6.

Essentials of XML

PART I
240

08 0672323419 CH06 3/15/04 11:17 AM Page 240

LISTING 6.6 PurchaseOrder.sox Contains a Sample SOX Schema for
PurchaseOrder.xml

<schema name=”PurchaseOrder”>

<elementtype name=”PurchaseOrder”>
<model>
<attdef name=”Tax” datatype=””/>
<attdef name=”Total” datatype=””/>

<sequence>
<element name=”ShippingInformation”/>
<element name=”BillingInformation”/>
<element name=”Order”/>

</sequence>
</model>

</elementtype>

<elementtype name=”ShippingInformation”>
<model>
<sequence>
<element name=”Name”/>
<element name=”Address”/>
<element name=”Method”/>
<element name=”DeliveryDate”/>

</sequence>
</model>

</elementtype>

<elementtype name=”BillingInformation”>
<model>
<sequence>
<element name=”Name”/>
<element name=”Address”/>
<element name=”PaymentMethod”/>
<element name=”BillingDate”/>

</sequence>
</model>

</elementtype>

<elementtype name=”Name”>
<model>
<string/>

</model>
</elementtype>

<elementtype name=”Method”>
<model>
<string/>

</model>
</elementtype>

Defining XML Using Alternate Schema Representations

CHAPTER 6
241

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 241

LISTING 6.6 continued

<elementtype name=”DeliveryDate”>
<model>
<string datatype=”date”/>

</model>
</elementtype>

<elementtype name=”PaymentMethod”>
<model>
<string/>

</model>
</elementtype>

<elementtype name=”DeliveryDate”>
<model>
<string datatype=”date”/>

</model>
</elementtype>

<elementtype name=”Address”>
<model>
<sequence>
<element name=”Street”/>
<element name=”City”/>
<element name=”State”/>
<element name=”Zip”/>

</sequence>
</model>

</elementtype>

<elementtype name=”Street”>
<model>
<string/>

</model>
</elementtype>

<elementtype name=”City”>
<model>
<string/>

</model>
</elementtype>

<elementtype name=”State”>
<model>
<string/>

</model>
</elementtype>

<elementtype name=”Zip”>
<model>

Essentials of XML

PART I
242

08 0672323419 CH06 3/15/04 11:17 AM Page 242

LISTING 6.6 continued

<string/>
</model>

</elementtype>

<elementtype name=”Order”>
<model>
<attdef name=”SubTotal” datatype=”number”/>
<attdef name=”ItemsSold” datatype=”int”/>
<sequence>
<element name=”Product” occurs=”+”/>

</sequence>
</model>

</elementtype>

<elementtype name=”Product”>
<model>
<empty/>
<attdef name=”Name” datatype=”string”/>
<attdef name=”Id” datatype=”string”/>
<attdef name=”Price” datatype = “number”/>
<attdef name=”Quantity” datatype=”number”/>

</model>
</elementtype>

</schema>

From Listing 6.6, you can tell that the SOX schema definition language contains many
similarities to the XML Schema Definition Language, XDR schemas, DCD schemas, and
DSD schemas. The <elementtype> element contains the type definition for an element,
which is then declared or referenced in other element type definitions.

The major difference between the W3C schema and the SOX schema is that in a SOX
schema, if you redefine an element’s type definition, any other element that makes a ref-
erence to the parent element type definition can also use the redefined or “subclassed”
type definition in its place.

RELAX NG Schema
RELAX NG is the combination of two schema definition languages: RELAX and TREX.
This schema definition language was proposed, in its current form at least, in August of
2001. On December 3rd of 2001, the specification committee proposed a formal version
1.0 for RELAX NG. You can find the current specification for RELAX NG at http://
www.oasis-open.org/committees/relax-ng/spec-20011203.html.

Defining XML Using Alternate Schema Representations

CHAPTER 6
243

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 243

One of the major advantages of the RELAX NG schema definition language over its pre-
decessors is the ability to specify data types and simultaneously use a simple definition
syntax to build a schema. However, before we explore the details for the RELAX NG
schema definition language, it’s important that you understand the sources for it: RELAX
and TREX.

RELAX
In March of 2000, because of how complex the XML Schema Definition Language was
getting, a new schema proposal was generated called Regular Language Description for
XML (RELAX). This new schema definition language promised to define RELAX gram-
mars using XML syntax, including the data types contained as part of the XML Schema
Definition Language, and to be aware of namespaces. According to the RELAX specifi-
cation, the RELAX schema definition language combines many features of DTDs with
the data types supported by the XML Schema Definition Language. The main idea, as
the XML Schema Definition Language was not a formal recommendation at the time
RELAX was proposed, was that RELAX schemas could be created using XML syntax
and then, when the formal recommendation came around for the XML Schema
Definition Language, the schemas created using RELAX could be easily migrated over
to the new XML schema standard recommended by the W3C.

The RELAX schema definition language, itself, consists of two parts: RELAX Core and
RELAX Namespace. RELAX Core allows schema authors to create XML schemas that
define elements and attributes for a single namespace, whereas RELAX Namespace
allows authors to develop schemas utilizing multiple namespaces. A sample RELAX
schema for the XML document in Listing 6.1 is shown in Listing 6.7.

LISTING 6.7 PurchaseOrder.rlx Contains a Sample RELAX Schema for
PurchaseOrder.xml

<module moduleVersion=”1.0” relaxCoreVersion=”1.0”
➥ targetNamespace=””
➥ xmlns=”http://www.xml.gr.jp/xmlns/relaxCore”>

<interface>
<export label=”PurchaseOrder”/>

</interface>

<elementRule role=”PurchaseOrder”>
<sequence>
<ref label=”ShippingInformation” occurs=”1”/>
<ref label=”BillingInformation” occurs=”1”/>
<ref label=”Order” occurs=”1”/>

</sequence>
</elementRule>

Essentials of XML

PART I
244

08 0672323419 CH06 3/15/04 11:17 AM Page 244

LISTING 6.7 continued

<elementRule role=”ShippingInformation”>
<sequence>
<ref label=”Name” occurs=”1”/>
<ref label=”Address” occurs=”1”/>
<ref label=”Method” occurs=”1”/>
<ref label=”DeliveryDate” occurs=”1”/>

</sequence>
</elementRule>

<elementRule role=”BillingInformation”>
<sequence>
<ref label=”Name” occurs=”1”/>
<ref label=”Address” occurs=”1”/>
<ref label=”PaymentMethod” occurs=”1”/>
<ref label=”BillingDate” occurs=”1”/>

</sequence>
</elementRule>

<elementRule role=”Order”>
<sequence>
<ref label=”Product” occurs=”*”/>

</sequence>
</elementRule>

<elementRule role=”Address”>
<sequence>
<ref label=”Street” occurs=”1”/>
<ref label=”City” occurs=”1”/>
<ref label=”State” occurs=”1”/>
<ref label=”Zip” occurs=”1”/>

</sequence>
</elementRule>

<elementRule role=”Street” type=”string”/>

<elementRule role=”City” type=”string”/>

<elementRule role=”State” type=”string”/>

<elementRule role=”Zip” type=”string”/>

<elementRule role=”Name” type=”string”/>

<elementRule role=”Product”>
<empty/>

</elementRule>

<elementRule role=”Method” type=”string”/>

<elementRule role=”DeliveryDate” type=”date”/>

Defining XML Using Alternate Schema Representations

CHAPTER 6
245

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 245

LISTING 6.7 continued

<elementRule role=”PaymentMethod” type=”string”/>

<elementRule role=”BillingDate” type=”date”/>

<tag name=”ShippingInformation”/>

<tag name=”BillingInformation”/>

<tag name=”Order”>
<attribute name=”SubTotal” type=”decimal”/>
<attribute name=”ItemsSold” type=”positiveInteger”/>

</tag>

<tag name=”Product”>
<attribute name=”Name” type=”string”/>
<attribute name=”Id” type=”string”/>
<attribute name=”Price” type=”decimal”/>
<attribute name=”Quantity” type=”positiveInteger”/>

</tag>

<tag name=”Name”/>

<tag name=”Street”/>

<tag name=”City”/>

<tag name=”State”/>

<tag name=”Zip”/>

<tag name=”Address”/>

<tag name=”Method”/>

<tag name=”PaymentMethod”/>

<tag name=”DeliveryDate”/>

<tag name=”BillingDate”/>

<tag name=”PurchaseOrder”>
<attribute Name=”Tax” type=”decimal”/>
<attribute Name=”Total” type=”decimal”/>

</tag>

</module>

The schema shown in Listing 6.7 may seem a bit strange, but once you understand the
grammar behind it, it becomes a very easily understandable schema. The basis for a

Essentials of XML

PART I
246

08 0672323419 CH06 3/15/04 11:17 AM Page 246

RELAX schema is that elements are defined using the <elementRule> element. This ele-
ment can then reference, using the <ref> element, other elements that have been defined
using the <elementRule> element. However, a separate element, <tag> with the same
name attribute value as the role attribute on the <elementRule> element contains the
attribute declarations for that element. Regardless of whether an element has attributes, it
must have a corresponding <tag> element. The jury is still out as to whether this separa-
tion of element declarations from attribute declarations causes more complication than a
regular DTD or XML Schema.

TREX
In the early part of 2001, another schema definition language proposal emerged, called
Tree Regular Expressions for XML (TREX). This schema definition language took the
approach of creating “patterns” by which to compare XML instance documents against
in order to decide conformity. These patterns represented an unordered collection of
attributes and an ordered sequence of elements. A sample TREX schema for the XML
document in Listing 6.1 is shown in Listing 6.8.

LISTING 6.8 PurchaseOrder.trex Contains a Sample TREX Schema for
PurchaseOrder.xml

<grammar>

<start>
<element name=”PurchaseOrder”>
<attribute Name=”Tax”>
<string/>

</attribute>

<attribute Name=”Total”>
<string/>

</attribute>

<element name=”ShippingInformation”>
<element name=”Name”>
<anyString/>

</element>

<ref name=”Address”/>

<element name=”Method”>
<anyString/>

</element>

<element name=”DeliveryDate”>
<anyString/>

Defining XML Using Alternate Schema Representations

CHAPTER 6
247

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 247

LISTING 6.8 continued

</element>
</element>

<element name=”BillingInformation”>
<element name=”Name”>
<anyString/>

</element>

<ref name=”Address”/>

<element name=”PaymentMethod”>
<anyString/>

</element>

<element name=”BillingDate”>
<anyString/>

</element>
</element>

<element name=”Order”>
<attribute name=”SubTotal”>
<anyString/>

</attribute>

<attribute name=”ItemsSold”>
<anyString/>

</attribute>

<oneOrMore>
<element name=”Product”>
<attribute name=”Name”>
<anyString/>

</attribute>

<attribute name=”Id”>
<anyString/>

</attribute>

<attribute name=”Price”>
<anyString/>

</attribute>

<attribute name=”Quantity”>
<anyString/>

</attribute>
</element>

</oneOrMore>
</element>

</element>

Essentials of XML

PART I
248

08 0672323419 CH06 3/15/04 11:17 AM Page 248

LISTING 6.8 continued

<define name=”Address”>
<element name=”Street”>
<anyString/>

</element>

<element name=”City”>
<anyString/>

</element>

<element name=”State”>
<anyString/>

</element>

<element name=”Zip”>
<anyString/>

</element>
</define>

</start>

</grammar>

The schema in Listing 6.8 is a little easier to understand than the RELAX schema listed
in Listing 6.7. Truly the TREX schema appears self-explanatory by defining an element’s
contents in the traditional hierarchical XML fashion so that it becomes very easy to
locate and understand what each element contains. However, the TREX schema defini-
tion language has a huge lack of support for any data types other than strings. This can
be a major limitation when you’re building an application.

Combining RELAX and TREX
The two different schemas we have just discussed, RELAX and TREX, each have their
advantages and disadvantages. RELAX supports the XML Schema data types, but TREX
does not; TREX treats content within elements and attributes as strings, the same as a
DTD. However, the syntax for TREX is much simpler to understand and implement. As a
result, the two schemas were merged into one: RELAX NG. This new schema proposal
combines the best of both worlds: support for the XML Schema data types and a simpli-
fied schema definition language. You can see the outcome of this combination of schema
definition languages in Listing 6.9.

Defining XML Using Alternate Schema Representations

CHAPTER 6
249

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 249

LISTING 6.9 PurchaseOrder.rlxng Contains a Sample RELAX NG Schema for
PurchaseOrder.xml

<grammar>

<start>
<element name=”PurchaseOrder”>
<attribute Name=”Tax”>
<data type=”decimal” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</attribute>

<attribute Name=”Total”>
<data type=”decimal” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</attribute>

<element name=”ShippingInformation”>
<element name=”Name”>
<data type=”string” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</element>

<ref name=”Address”/>

<element name=”Method”>
<data type=”string” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
<choice>
<value>USPS</value>
<value>UPS</value>
<value>FedEx</value>
<value>DHL</value>
<value>Other</value>

</choice>
</element>

<element name=”DeliveryDate”>
<data type=”date” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</element>

</element>

<element name=”BillingInformation”>
<element name=”Name”>
<data type=”string” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</element>

<ref name=”Address”/>

Essentials of XML

PART I
250

08 0672323419 CH06 3/15/04 11:17 AM Page 250

LISTING 6.9 continued

<element name=”PaymentMethod”>
<data type=”string” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
<choice>
<value>Check</value>
<value>Cash</value>
<value>Credit Card</value>
<value>Debit Card</value>
<value>Other</value>

</choice>
</element>

<element name=”BillingDate”>
<data type=”date” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</element>

</element>

<element name=”Order”>
<attribute name=”SubTotal”>
<data type=”decimal” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</attribute>

<attribute name=”ItemsSold”>
<data type=”positiveInteger” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</attribute>

<oneOrMore>
<element name=”Product”>
<attribute name=”Name”>
<data type=”string” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</attribute>

<attribute name=”Id”>
<data type=”string” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</attribute>

<attribute name=”Price”>
<data type=”decimal” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</attribute>

<attribute name=”Quantity”>
<data type=”positiveInteger” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>

Defining XML Using Alternate Schema Representations

CHAPTER 6
251

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 251

LISTING 6.9 continued

</attribute>
</element>

</oneOrMore>
</element>

</element>

<define name=”Address”>
<element name=”Street”>
<data type=”string” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</element>

<element name=”City”>
<data type=”string” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</element>

<element name=”State”>
<data type=”string” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</element>

<element name=”Zip”>
<data type=”string” datatypeLibrary=

➥ ”http://www.w3.org/2001/XMLSchema-datatypes”/>
</element>

</define>

</start>

</grammar>

You can see many similarities between the schema in Listing 6.9 and the TREX schema
in Listing 6.8. Most of the element definitions and grammar remain the same between
TREX and RELAX NG, but with one important addition: the <data> element. This is
probably the single biggest reason for the creation of RELAX NG. Previously in TREX,
a schema author was very limited in data type representation. Now, with the new <data>
element, the RELAX NG schemas can support data types other than strings. In addition,
due to the inclusion of the datatypelibrary attribute on the <data> element, the data
types do not necessarily have to belong to the XML Schema Definition Language; they
can come from anywhere.

By adopting the TREX-style schema definition, RELAX NG removes the cumbersome
language associated with the RELAX schema definition language. Now, rather than
having to specify both <elementRule> and <tag> elements to define an element’s
contents, you can accomplish everything within the <element> element.

Essentials of XML

PART I
252

08 0672323419 CH06 3/15/04 11:17 AM Page 252

So, what is it about Listing 6.9 that, without one necessarily knowing anything about the
RELAX NG language itself, makes it intuitive to understand? For one, now that cardinal-
ity is expressed using element definitions, it becomes very clear as to how many of a
particular element may appear within another. Remember that in the W3C schema rec-
ommendation, cardinality is expressed using the minOccurs and maxOccurs attributes.
However, at the same time, you can no longer specify, say, that an element must occur
between two to five times within another element, which is a major limiting factor in the
RELAX NG schema recommendation.

Schematron
Most of the schema definition languages we have explored to this point have been based
on grammatical structures. Now it’s time for a drastic change in direction and concept. A
new schema definition language titled Schematron has been introduced that has changed
the way of thinking about schemas entirely: Rather than basing them on some grammati-
cal structure, Schematron uses patterns to define schemas. By using patterns, Schematron
allows schema authors to represent various structures that would otherwise be difficult to
accomplish in a more traditional grammar-based schema definition language. By basing
its definition language on XPath and XSLT, Schematron’s learning curve drops sharply
compared to other schema definition languages. For more information on Schematron,
visit http://www.ascc.net/xml/resource/schematron/.

The general idea behind Schematron is to find a node set, typically elements, using
XPath expressions and check the node set against some other XPath expressions to see
whether they are true. A nice feature of the Schematron schema definition language is
that you can actually embed Schematron schemas inside the XML Schema Definition
Language’s <appinfo> element.

Currently in version 1.5, Schematron schemas may be created using what are termed
assertions, rules, patterns, and phases. Assertions within a Schematron schema are
simple declarative statements contained within an <assert> or <report> element. The
statement within an <assert> element is one that is expected to be true for an XML
document conforming to the schema being defined. A statement within the <report>
element, however, is one that is expected to be false for an XML document conforming
to the schema. So, to create an assertion statement you wish to show up when an element
does not have, say, a particular child element, you’d use an <assert> element, saying
something like “Element A must have an Element B.” Alternatively, you could use a
<report> element with a statement saying something like “Element B is missing from
Element A.”

Defining XML Using Alternate Schema Representations

CHAPTER 6
253

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 253

Each of the elements used for assertions within a Schematron schema make use of an
attribute called test. This attribute contains an XSLT pattern, which may combine one
or more XPath expressions using the or operator (|) to specify a condition that the asser-
tion must meet. In addition, each element may also contain the following three elements:

• <name>

• <emph>

•

The <name> element, when appearing in the statement for an assertion, is used to
indicate that the name of the context node should be inserted at the location where the
<name> element is. This removes the need to know the exact name of an element or
elements for which an assertion will fail or hold true. Also, you may optionally specify a
path attribute that contains an XPath expression to locate a specific node within the doc-
ument, allowing a different element or attribute to be used instead of the context node.
The <emph> element has been provided to allow for better formatting control so that ele-
ments within the assertion statement can have the same formatting as those within the
<name> element. The element performs exactly the same function as the
element within HTML.

Within a Schematron schema, a rule can be specified by using a <rule> element, which
can contain both <assert> and <report> elements. The <rule> element itself has a
context attribute that contains an XPath expression used to identify when the assertions
contained within the rule should be tested. The combination of the <rule>, <assert> and
<report> elements is the core behind the Schematron schema definition language.

Rules are grouped together using patterns, indicated by the <pattern> element. This
<pattern> element is the nearest equivalent to a type. Patterns may contain one or more
<rule> elements and may also contain a variety of attributes, including the following:

• name

• id

• fpi

• see

The name attribute allows you to specify text that can be easily read by humans, whereas
the id attribute assigns a unique ID to the <pattern> element. The fpi element, which
stands for Formal Public Identifier, allows an SGML Formal Public Identifier to be
attached to the <pattern> element. The see attribute allows you to specify a URL that
would give more documentation regarding the tests.

Essentials of XML

PART I
254

08 0672323419 CH06 3/15/04 11:17 AM Page 254

Now that you have a general understanding of the elements that comprise a Schematron
schema, let’s look at an example. Listing 6.10 shows a sample Schematron schema for
the sample XML document in Listing 6.1.

LISTING 6.10 PurchaseOrder.xst Contains a Sample Schematron Schema for
PurchaseOrder.xml

<schema>
<pattern name=”Sample”>
<rule context=”PurchaseOrder”>
<assert test=”@Tax”>The <name/> element must have a

➥ <emph>Tax</emph> attribute.</assert>

<assert test=”@Total”>The <name/> element must have a
➥ <emph>Total</emph> attribute.</assert>

</rule>

<rule context=”ShippingInformation”>
<assert test=”Name”>The <name/> element must have a

➥ <emph>Name</emph> element.</assert>

<assert test=”Address”>The <name/> element must have an
➥ <emph>Address</emph> element.</assert>

<assert test=”Method”>The <name/> element must have a
➥ <emph>Method</emph> element.</assert>

<assert test=”DeliveryDate”>The <name/> element must have a
➥ <emph>DeliveryDate</emph> element.</assert>

</rule>

<rule context=”BillingInformation”>
<assert test=”Name”>The <name/> element must have a

➥ <emph>Name</emph> element.</assert>

<assert test=”Address”>The <name/> element must have an
➥ <emph>Address</emph> element.</assert>

Defining XML Using Alternate Schema Representations

CHAPTER 6
255

6

D
EFIN

IN
G

X
M

L

Note

One important note to keep in mind is that a context node can only be used as
the context node for a rule one time. This means that the first rule that uses the
context node as its context node will be evaluated normally, but every other
rule that specifies the same context node will be skipped.

08 0672323419 CH06 3/15/04 11:17 AM Page 255

LISTING 6.10 continued

<assert test=”PaymentMethod”>The <name/> element must have a
➥ <emph>PaymentMethod</emph> element.</assert>

<assert test=”BillingDate”>The <name/> element must have a
➥ <emph>BillingDate</emph> element.</assert>

</rule>

<rule context=”Address”>
<assert test=”Street”>The <name/> element must have a

➥ <emph>Street</emph> element.</assert>

<assert test=”City”>The <name/> element must have a
➥ <emph>City</emph> element.</assert>

<assert test=”State”>The <name/> element must have a
➥ <emph>State</emph> element.</assert>

<assert test=”Zip”>The <name/> element must have a
➥ <emph>Zip</emph> element.</assert>

</rule>

<rule context=”Order”>
<assert test=”@SubTotal”>The <name/> element must have a

➥ <emph>SubTotal</emph> attribute.</assert>

<assert test=”@ItemsSold”>The <name/> element must have a
➥ <emph>ItemsSold</emph> attribute.</assert>

<assert test=”Product”>The <name/> element must have a
➥ <emph>Product</emph> element.</assert>

</rule>

<rule context=”Product”>
<assert test=”@Name”>The <name/> element must have a

➥ <emph>Name</emph> attribute.</assert>

<assert test=”@Id”>The <name/> element must have a
➥ <emph>Id</emph> attribute.</assert>

<assert test=”@Price”>The <name/> element must have a
➥ <emph>Price</emph> attribute.</assert>

<assert test=”@Quantity”>The <name/> element must have a
➥ <emph>Quantity</emph> attribute.</assert>

</rule>

</pattern>

</schema>

Essentials of XML

PART I
256

08 0672323419 CH06 3/15/04 11:17 AM Page 256

As you can tell from the code in Listing 6.10, there is a dramatic difference in complex-
ity between it and the schema listed in Listing 6.2. Using the Schematron definition lan-
guage, we have been able to efficiently describe the rules by which an XML document
can be verified against conformance in a fraction of the complexity of the formal XML
Schema Definition Language. Plus, now that we can actually see the schema created
using the Schematron definition language, we can easily see how effective the idea of
basing the schema on patterns can be compared with the very rigid and structured gram-
mar-based method.

Alternatively, the schema in Listing 6.10 could be written as shown in Listing 6.11 to
create messages that would indicate when an element or attribute is in compliance.

LISTING 6.11 PurchaseOrder2.xst Contains a Sample Schematron Schema for
PurchaseOrder.xml

<schema>
<pattern name=”Sample”>
<rule context=”PurchaseOrder”>
<report test=”@Tax”>The <name/> element has a

➥ <emph>Tax</emph> attribute.</report>

<report test=”@Total”>The <name/> element has a
➥ <emph>Total</emph> attribute.</report>

</rule>

<rule context=”ShippingInformation”>
<report test=”Name”>The <name/> element has a

➥ <emph>Name</emph> element.</report>

<report test=”Address”>The <name/> element has an
➥ <emph>Address</emph> element.</report>

<report test=”Method”>The <name/> element has a
➥ <emph>Method</emph> element.</report>

<report test=”DeliveryDate”>The <name/> element has a
➥ <emph>DeliveryDate</emph> element.</report>

</rule>

<rule context=”BillingInformation”>
<report test=”Name”>The <name/> element has a

➥ <emph>Name</emph> element.</report>

<report test=”Address”>The <name/> element has an
➥ <emph>Address</emph> element.</report>

<report test=”PaymentMethod”>The <name/> element has a
➥ <emph>PaymentMethod</emph> element.</report>

Defining XML Using Alternate Schema Representations

CHAPTER 6
257

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 257

LISTING 6.11 continued

<report test=”BillingDate”>The <name/> element has a
➥ <emph>BillingDate</emph> element.</report>

</rule>

<rule context=”Address”>
<report test=”Street”>The <name/> element has a

➥ <emph>Street</emph> element.</report>

<report test=”City”>The <name/> element has a
➥ <emph>City</emph> element.</report>

<report test=”State”>The <name/> element has a
➥ <emph>State</emph> element.</report>

<report test=”Zip”>The <name/> element has a
➥ <emph>Zip</emph> element.</report>

</rule>

<rule context=”Order”>
<report test=”@SubTotal”>The <name/> element has a

➥ <emph>SubTotal</emph> attribute.</report>

<report test=”@ItemsSold”>The <name/> element has a
➥ <emph>ItemsSold</emph> attribute.</report>

<report test=”Product”>The <name/> element has a
➥ <emph>Product</emph> element.</report>

</rule>

<rule context=”Product”>
<report test=”@Name”>The <name/> element has a

➥ <emph>Name</emph> attribute.</report>

<report test=”@Id”>The <name/> element has a
➥ <emph>Id</emph> attribute.</report>

<report test=”@Price”>The <name/> element has a
➥ <emph>Price</emph> attribute.</report>

<report test=”@Quantity”>The <name/> element has a
➥ <emph>Quantity</emph> attribute.</report>

</rule>

</pattern>

</schema>

Essentials of XML

PART I
258

08 0672323419 CH06 3/15/04 11:17 AM Page 258

The main difference between the schema in Listing 6.10 and the one in Listing 6.11 is
that the messages in the schema for Listing 6.10 will only show up in the output when
the test condition for the <assert> element fails. The messages in the schema in Listing
6.11 show up in the output when the test for the <report> element succeeds. The
examples shown in Listing 6.10 and Listing 6.11 could be further combined into one
schema so that output would be produced in either case, failure or success, as shown in
Listing 6.12.

LISTING 6.12 PurchaseOrder3.xst Contains a Schematron Schema for
PurchaseOrder.xml

<schema>
<pattern name=”Sample”>
<rule context=”PurchaseOrder”>
<assert test=”@Tax”>The <name/> element must have a

➥ <emph>Tax</emph> attribute.</assert>

<assert test=”@Total”>The <name/> element must have a
➥ <emph>Total</emph> attribute.</assert>

<report test=”@Tax”>The <name/> element has a
➥ <emph>Tax</emph> attribute.</report>

<report test=”@Total”>The <name/> element has a
➥ <emph>Total</emph> attribute.</report>

</rule>

<rule context=”ShippingInformation”>
<assert test=”Name”>The <name/> element must have a

➥ <emph>Name</emph> element.</assert>

<assert test=”Address”>The <name/> element must have an
➥ <emph>Address</emph> element.</assert>

<assert test=”Method”>The <name/> element must have a
➥ <emph>Method</emph> element.</assert>

<assert test=”DeliveryDate”>The <name/> element must have a
➥ <emph>DeliveryDate</emph> element.</assert>

<report test=”Name”>The <name/> element has a
➥ <emph>Name</emph> element.</report>

<report test=”Address”>The <name/> element has an
➥ <emph>Address</emph> element.</report>

<report test=”Method”>The <name/> element has a
➥ <emph>Method</emph> element.</report>

Defining XML Using Alternate Schema Representations

CHAPTER 6
259

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 259

LISTING 6.12 continued

<report test=”DeliveryDate”>The <name/> element has a
➥ <emph>DeliveryDate</emph> element.</report>

</rule>

<rule context=”BillingInformation”>
<assert test=”Name”>The <name/> element must have a

➥ <emph>Name</emph> element.</assert>

<assert test=”Address”>The <name/> element must have an
➥ <emph>Address</emph> element.</assert>

<assert test=”PaymentMethod”>The <name/> element must have a
➥ <emph>PaymentMethod</emph> element.</assert>

<assert test=”BillingDate”>The <name/> element must have a
➥ <emph>BillingDate</emph> element.</assert>

<report test=”Name”>The <name/> element has a
➥ <emph>Name</emph> element.</report>

<report test=”Address”>The <name/> element has an
➥ <emph>Address</emph> element.</report>

<report test=”PaymentMethod”>The <name/> element has a
➥ <emph>PaymentMethod</emph> element.</report>

<report test=”BillingDate”>The <name/> element has a
➥ <emph>BillingDate</emph> element.</report>

</rule>

<rule context=”Address”>
<assert test=”Street”>The <name/> element must have a

➥ <emph>Street</emph> element.</assert>

<assert test=”City”>The <name/> element must have a
➥ <emph>City</emph> element.</assert>

<assert test=”State”>The <name/> element must have a
➥ <emph>State</emph> element.</assert>

<assert test=”Zip”>The <name/> element must have a
➥ <emph>Zip</emph> element.</assert>

<report test=”Street”>The <name/> element has a
➥ <emph>Street</emph> element.</report>

<report test=”City”>The <name/> element has a
➥ <emph>City</emph> element.</report>

Essentials of XML

PART I
260

08 0672323419 CH06 3/15/04 11:17 AM Page 260

LISTING 6.12 continued

<report test=”State”>The <name/> element has a
➥ <emph>State</emph> element.</report>

<report test=”Zip”>The <name/> element has a
➥ <emph>Zip</emph> element.</report>

</rule>

<rule context=”Order”>
<assert test=”@SubTotal”>The <name/> element must have a

➥ <emph>SubTotal</emph> attribute.</assert>

<assert test=”@ItemsSold”>The <name/> element must have a
➥ <emph>ItemsSold</emph> attribute.</assert>

<assert test=”Product”>The <name/> element must have a
➥ <emph>Product</emph> element.</assert>

<report test=”@SubTotal”>The <name/> element has a
➥ <emph>SubTotal</emph> attribute.</report>

<report test=”@ItemsSold”>The <name/> element has a
➥ <emph>ItemsSold</emph> attribute.</report>

<report test=”Product”>The <name/> element has a
➥ <emph>Product</emph> element.</report>

</rule>

<rule context=”Product”>
<assert test=”@Name”>The <name/> element must have a

➥ <emph>Name</emph> attribute.</assert>

<assert test=”@Id”>The <name/> element must have a
➥ <emph>Id</emph> attribute.</assert>

<assert test=”@Price”>The <name/> element must have a
➥ <emph>Price</emph> attribute.</assert>

<assert test=”@Quantity”>The <name/> element must have a
➥ <emph>Quantity</emph> attribute.</assert>

<report test=”@Name”>The <name/> element has a
➥ <emph>Name</emph> attribute.</report>

<report test=”@Id”>The <name/> element has a
➥ <emph>Id</emph> attribute.</report>

<report test=”@Price”>The <name/> element has a
➥ <emph>Price</emph> attribute.</report>

Defining XML Using Alternate Schema Representations

CHAPTER 6
261

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 261

LISTING 6.12 continued

<report test=”@Quantity”>The <name/> element has a
➥ <emph>Quantity</emph> attribute.</report>

</rule>

</pattern>

</schema>

In the schema shown in Listing 6.12, an XML instance document would be evaluated
and a very detailed report of the level of its conformity could be generated by virtue of
having both <assert> and <report> elements within it. This allows applications to test
for either condition depending on what sort of process is being attempted. But why
would you ever want to use a pattern-based schema versus a grammar-based one? Well,
imagine our sample Purchase Order XML document in Listing 6.1. Using Schematron,
we could create a pattern that says the sum of all the prices times the quantities of the
<Product> elements within the <Order> element must equal the value of the SubTotal
attribute on the <Order> element.

Summary
In this chapter, we have explored a myriad of other schema definition languages, includ-
ing XDR, DSD, DCD, SOX, RELAX NG, and Schematron. For the most part, you can
see a striking similarity between these schema definition languages and the XML
Schema Definition Language. Elements are first defined and then declared; the same
goes for attributes. However, one schema language, Schematron, is drastically different.

You have seen that the formats that are now considered “dead” (XDR, DSD and DCD)
have contributed to the formal XML Schema Definition Language recommendation by
the W3C. You can see elements in each that show up within the formal recommendation,
such as the concepts of element and attribute type definitions as well as element and
attribute declarations.

The SOX schema definition language provides a more object-oriented approach to defin-
ing schemas, whereas RELAX NG provides a simpler approach to schema definitions
than what is capable within the W3C schema recommendation. The Schematron schema
definition language provides a completely different concept for defining schemas for
XML documents in that it uses patterns rather than grammar to validate XML instance
documents against the schema. This particular schema format raises some interesting
possibilities, especially because a schema defined using the XML Schema Definition

Essentials of XML

PART I
262

08 0672323419 CH06 3/15/04 11:17 AM Page 262

Language can contain a Schematron schema inside an <appinfo> element. This would
enable a schema author to define a schema using both a grammar-based and pattern-
based approach—the best of both worlds.

You should keep your eye on the RELAX NG and Schematron languages as more and
more companies become aware of them and begin to provide more and more support for
them. SOX will begin to take a more important role for those companies that wish to
enable the substitution of subclassed elements for a referenced superclass element.

Defining XML Using Alternate Schema Representations

CHAPTER 6
263

6

D
EFIN

IN
G

X
M

L

08 0672323419 CH06 3/15/04 11:17 AM Page 263

08 0672323419 CH06 3/15/04 11:17 AM Page 264

Building XML-Based
Applications PART

II
IN THIS PART

7 Parsing XML using Document Object Model 267

8 Parsing XML Using SAX 309

9 Transforming XML 345

10 Integrating XML with Databases 405

11 Formatting XML for the Web 439

12 Interactive Graphical Visualizations with SVG 499

13 XML and Content Management 545

14 Architecting Web Services 591

15 Web Services Building Blocks: SOAP 629

16 Web Services Building Blocks: WSDL and
UDDI 677

17 Leveraging XML in Visual Studio .NET 719

18 Using XML in the .NET Enterprise Servers 769

09 0672323419 Part 2 3/15/04 11:17 AM Page 265

09 0672323419 Part 2 3/15/04 11:17 AM Page 266

IN THIS CHAPTER

• What Is DOM, Anyway? 269

• What DOM Is Not 269

• Why Do I Need DOM? 270

• Disadvantages of Using DOM 270

• DOM Levels 271

• DOM Core 271

• DOM Traversal and Range 284

• Other DOM Implementations 291

• Java Architecture for XML Binding
(JAXB) 294

7
C

H
A

PT
ER

Parsing XML Using
Document Object
Model

10 0672323419 CH07 3/15/04 11:18 AM Page 267

Up to now, we have been talking about the basics of XML. You know what an XML doc-
ument looks like as well as the difference between well-formed and validated documents.
Also, we have looked at several schema representations. There are tools that you can use
to create XML documents and ways to exchange these documents with commercial soft-
ware, such as databases and word processors. But what if you want to work with XML
documents programmatically? How do you go about writing your own software that cre-
ates and reads an XML document?

As you know, XML is made up of human-readable text, so you can write your own code
to manipulate XML. As you can probably guess, lots of people want to do this, so there
are standard ways of working with XML. You don’t have to write a lot of the code your-
self. Two of the most common tools for working with XML are the Document Object
Model (DOM) and the Simple API for XML (SAX).

In this chapter, we will explore DOM and look at several examples. We will look at
JDOM, a Java-centric API that is similar to DOM. We will explore JAXB (or Java API
for XML) binding. This is an effective way to map Java objects to XML directly using
automatically generated classes. Finally, we will consider a real-world application of
DOM by building an XML data server.

Building XML-Based Applications

PART II
268

Note

Code examples in Java are used throughout this chapter. The source code is
available on the Sams Web site. In order to compile and execute the sample
code, you will need a Java 2 development environment and possibly a make
utility. You can use just about any Java 2 development environment, such as
the Software Development Kit (SDK), which is freely available from Sun
Microsystems (http://java.sun.com/j2se), or an integrated environment like
Borland JBuilder. Additional information, such as configuration hints, how to
compile and execute examples, and links to resources is included with the
source code. This information is contained in a file called faq.html in the source
code directory.

In addition, you will need supplemental class libraries for DOM, JDOM, and so
on. These libraries are all freely available for download at several sites on the
Internet. The download sites are listed in the text for each code example and
also listed in faq.html. Once a library is downloaded, simply follow the installa-
tion instructions available at the download site. Typically, installation simply
involves unpacking a zip file and adding the class library to your CLASSPATH. If
you still have difficulty, consult the documentation supplied with the class
libraries or Frequently Asked Questions (FAQs).

10 0672323419 CH07 3/15/04 11:18 AM Page 268

What Is DOM, Anyway?
The Document Object Model (DOM) provides a way of representing an XML document
in memory so that it can be manipulated by your software. DOM is a standard applica-
tion programming interface (API) that makes it easy for programmers to access elements
and delete, add, or edit content and attributes. DOM was proposed by the World Wide
Web Consortium (W3C) in August of 1997 in the User Interface Domain. The Activity
was eventually moved to the Architecture Domain in November of 2000. Here’s a good
place to start looking for DOM-related information:

http://www.w3.org/DOM

DOM by itself is just a specification for a set of interfaces defined by W3C. In fact, the
DOM interfaces are defined independent of any particular programming language. You
can write DOM code in just about any programming language, such as Java,
ECMAScript (a standardized version of JavaScript/JScript), or C++. There are DOM
APIs for each of these languages. W3C uses the Object Management Group’s (OMG)
Interface Definition Language (IDL) to define DOM in a language-neutral way.
Language-specific bindings, or DOM interfaces, exist for these languages. The DOM
specification itself includes bindings for Java and ECMAScript, but third parties have
defined bindings for many other languages.

Any number of organizations provide implementations in accordance with the DOM
specification. An implementation is a complete set of APIs for a given programming lan-
guage that supports the DOM specification. You might suspect that commercial software
vendors would sell DOM implementations, but it turns out that there are several open-
source and freely available implementations. These implementations are well docu-
mented and of high quality. They are commonly used in production software with very
good results. This is a result of a well-written specification by W3C. Due to the availabil-
ity of high-quality free implementations, few if any implementations are sold for profit.
We will look at some of these implementations along with sample code throughout this
chapter.

What DOM Is Not
From the preceding discussion, it might be clear to you what the DOM is, but it is also
important to highlight what the DOM is not. Here is a brief summary:

• DOM is not a mechanism for persisting, or storing, objects as XML documents.
Think of it the other way: DOM is an object model for representing XML docu-
ments in your code.

Parsing XML Using Document Object Model

CHAPTER 7
269

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 269

• DOM is not a set of data structures; rather it is an object model describing XML
documents.

• DOM does not specify what information in a document is relevant or how infor-
mation should be structured.

• DOM has nothing to do with COM, CORBA, or other technologies that include the
words object model.

Why Do I Need DOM?
The main reason for using DOM is to create or modify an XML document programmati-
cally. You can use DOM just to read an XML document, but as you will see in the next
chapter, SAX is often a better candidate for the read-only case. If you want to create a
document, you start by creating a root element and then add attributes, content, sub-ele-
ments, and so on. Once you are finished, you can write the document out to disk or send
it over a network. The output looks just like an XML document prepared in a text editor
or XML tool.

If you want to modify an existing XML document, you can read it in from a file or other
I/O source. The entire document is read into memory all at once, so you can change any
part of it at any time. The representation in memory is a tree structure that starts with a
root element that contains attributes, content, and sub-elements. You can traverse this
tree, search for a specific node, and change its attributes or data. You can also add attrib-
utes or elements anywhere in the tree, as long as you don’t violate the rules of a well-
formed document. Again, you can write the modified document back out to disk or to the
network.

It is possible to process XML documents using other, simpler techniques, such XSLT.
The problem is that XSLT is not always expressive enough to solve complex problems.
For example, let’s say you want to search for elements described by another element, in
the case of a master/detail relationship. This is difficult if not impossible to accomplish
with XSLT.

Learning to use DOM saves you considerable time by leveraging existing parsers.
Additionally, a standard interface makes it easy to change parsers in the event that an
improved implementation becomes available.

Disadvantages of Using DOM
Although DOM is a W3C specification with support for a variety of programming lan-
guages, it’s not necessarily the best solution for all problems. One of the big issues is

Building XML-Based Applications

PART II
270

10 0672323419 CH07 3/15/04 11:18 AM Page 270

that DOM can be memory intensive. As mentioned earlier, when an XML document is
loaded, the entire document is read in at once. A large document will require a large
amount of memory to represent it. Other parsing methods, such as SAX, don’t read
in the entire document, so they are better in terms of memory efficiency for some
applications.

Some have argued that the DOM API is too complex. Although this is somewhat subjec-
tive, it is true that DOM is not practical for small devices such as PDAs and cellular
phones. With the rapid proliferation of these devices and demand for greater functional-
ity, XML will very likely play a role in this market. In these cases, DOM as specified by
the W3C might not be the best way to go. Fortunately, there are smaller, simpler APIs for
XML manipulation that follow the spirit, if not the letter, of DOM. Some of these alter-
native APIs are discussed later in this chapter.

Of course, everything is relative. If you want to write a quick-and-dirty program without
the need for a lot of functionality, you might not require a sophisticated API at all. If all
you want to do is generate a relatively simple XML document, you can always write out
XML directly and avoid DOM entirely. However, as any veteran programmer knows, that
quick-and-dirty code you wrote the midnight before the demo somehow always finds its
way into production and becomes a maintenance nightmare!

DOM Levels
The DOM working group works on phases (or levels) of the specification. At the time of
this writing, three levels are in the works. The DOM Level 1 and Level 2 specifications
are W3C recommendations. This means that the specifications are final and can be
implemented without fear of things changing. Level 1 allows traversal of an XML docu-
ment as well as the manipulation of the content in that document. Level 2 extends Level
1 with additional features such as namespace support, events, ranges, and so on. Level 3
is currently a working draft. This means that it is under active development and subject
to change. Details of the developments can be found at the DOM working group Web
site (www.w3.org/DOM).

DOM Core
The DOM core is available in DOM Level 1 and beyond. It permits you to create and
manipulate XML documents in memory. As mentioned earlier, DOM is a tree structure
that represents elements, attributes, and content. As an example, let’s consider a simple
XML document, as shown in Listing 7.1.

Parsing XML Using Document Object Model

CHAPTER 7
271

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 271

LISTING 7.1 Simple XML Document

<purchase-order>
<customer>James Bond</customer>
<merchant>Spies R Us</merchant>
<items>

<item>Night vision camera</item>
<item>Vibrating massager</item>

</items>
</purchase-order>

Figure 7.1 shows a diagram of the tree structure representing the XML document from
Listing 7.1.

Building XML-Based Applications

PART II
272

Root node

purchase-order

Parent node

customer merchant

items

items

items

Child nodes

James Bond Spies R Us

Siblings

FIGURE 7.1
Tree structure.

As you can see, elements and text in the XML document are represented by nodes in the
tree structure. A node is an abstract concept that can take the form of an element,
attribute, text, or some other information.

Parents, Children, and Siblings
In formal computer science literature, lots of different terms are used to describe the
parts of a tree structure. You may have run into words such as root, branches, and leaves.
This is a bit abstract and doesn’t describe relationships very well, so the DOM specifica-
tion uses the words parents, children, and siblings to represent nodes and their relation-
ships to one another.

Parent nodes may have zero or more child nodes. Parent nodes themselves may be the
child nodes of another parent node. The ultimate parent of all nodes is, of course, the

10 0672323419 CH07 3/15/04 11:18 AM Page 272

root node. Siblings represent the child nodes of the same parent. These abstract descrip-
tions of nodes are mapped to elements, attributes, text, and other information in an XML
document.

DOM interfaces contain methods for obtaining the parent, children, and siblings of any
node. The root node has no parent, and there will be nodes that have no children or sib-
lings. After all, the tree has to start and end somewhere!

DOM Interfaces
As mentioned earlier, the DOM interfaces are defined in IDL so that they are language
neutral. The DOM specification goes into excruciating detail with respect to the inter-
faces. Of course, it must—what good is a spec if it is incomplete? A few fundamental
interfaces are the most important. If you understand how these interfaces work, you can
solve most problems without learning the entire spec inside and out.

The fundamental interfaces are listed in Table 7.1, along with a brief description of each.

TABLE 7.1 Fundamental Interfaces

Interface Description

Node The primary interface for the DOM. It can be an element,
attribute, text, and so on, and contains methods for travers-
ing a DOM tree.

NodeList An ordered collection of Nodes.

NamedNodeMap An unordered collection of Nodes that can be accessed by
name and used with attributes.

Document An Node representing an entire document. It contains the
root Node.

DocumentFragment A Node representing a piece of a document. It’s useful for
extracting or inserting a fragment into a document.

Element A Node representing an XML element.

Attr A Node representing an XML attribute.

CharacterData A Node representing character data.

Text A CharacterData node representing text.

Comment A CharacterData node representing a comment.

DOMException An exception raised upon failure of an operation.

DOMImplementation Methods for creating documents and determining whether
an implementation has certain features.

Parsing XML Using Document Object Model

CHAPTER 7
273

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 273

The diagram in Figure 7.2 shows the relationships among the interfaces described in
Table 7.1.

Building XML-Based Applications

PART II
274

CommentText

Node

DocumentFragment

Document Element Attr CharacterData

FIGURE 7.2
Interface
relationships.

A number of extended interfaces are not mandatory but may be available in some imple-
mentations. These interfaces are beyond DOM Level 1 and are discussed later in this
chapter. You can determine whether these interfaces are supported by calling the
hasFeature() method of the DOMImplementation interface. You can use the arguments
“XML” and “2.0” for the feature and version parameters of the hasFeature() method.
For a detailed explanation, refer to the DOM specification on the W3C Web site.

The extended interfaces are listed in Table 7.2, along with a brief description of each.

TABLE 7.2 Extended Interfaces

Interface Description

CDATASection Text representing CDATA

DocumentType A node representing document type

Notation A node with public and system IDs of a notation

Entity A node representing an entity that’s either parsed or
unparsed

EntityReference A node representing an entity reference

ProcessingInstruction A node representing an XML processing instruction

Java Bindings
The DOM working group supplies Java language bindings as part of the DOM specifica-
tion. The specification and Java language bindings are available at the W3C Web site.
These bindings are sets of Java source files containing Java interfaces, and they map
exactly to the DOM interfaces described earlier. The package org.w3c.dom contains the

10 0672323419 CH07 3/15/04 11:18 AM Page 274

Java interfaces but does not include a usable implementation. In order to make the inter-
faces do something useful, you will need an implementation, or a parser.

A number of DOM implementations are available for Java. Two of the most popular are
Java APIs for XML Processing (JAXP), developed by Sun Microsystems, and Xerces,
developed as part of the Apache XML project. Both JAXP and Xerces are freely avail-
able in source and binary (.class) form. JAXP is available on the Sun Web site at
http://java.sun.com/xml/xml_jaxp.html, and Xerces is available on the XML
Apache Web site at http://xml.apache.org/xerces2-j/index.html.

Walking Through an XML Document
Let’s look at an example in which we load an XML document from disk and print out
some of its contents. This example will help you understand how the API works and how
to traverse nodes in a number of ways. In the first example, we will print out just the ele-
ment names using getNodeName() from the Node interface. We will start from the root
and recursively print all child node names, indenting for clarity. The source code for
SimpleWalker.java is shown in Listing 7.2.

Parsing XML Using Document Object Model

CHAPTER 7
275

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

Note

Note that source code for all examples in this chapter are available on the Sams
Web site.

LISTING 7.2 SimpleWalker.java

package com.madhu.xml;

import java.io.*;

import org.w3c.dom.*;
import javax.xml.parsers.*;

public class SimpleWalker {
protected DocumentBuilder docBuilder;
protected Element root;

public SimpleWalker() throws Exception {
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
docBuilder = dbf.newDocumentBuilder();
DOMImplementation domImp = docBuilder.getDOMImplementation();
if (domImp.hasFeature(“XML”, “2.0”)) {

10 0672323419 CH07 3/15/04 11:18 AM Page 275

LISTING 7.2 continued

System.out.println(“Parser supports extended interfaces”);
}

}

public void parse(String fileName) throws Exception {
Document doc = docBuilder.parse(new FileInputStream(fileName));
root = doc.getDocumentElement();
System.out.println(“Root element is “ + root.getNodeName());

}

public void printAllElements() throws Exception {
printElement(“”, root);

}

public void printElement(String indent, Node aNode) {
System.out.println(indent + “<” + aNode.getNodeName() + “>”);
Node child = aNode.getFirstChild();
while (child != null) {

printElement(indent + “\t”, child);
child = child.getNextSibling();

}
System.out.println(indent + “</” + aNode.getNodeName() + “>”);

}

public static void main(String args[]) throws Exception {
SimpleWalker sw = new SimpleWalker();
sw.parse(args[0]);
sw.printAllElements();

}
}

Looking at the code, the first thing we need to do is import the necessary packages. We
need the DOM package, which is in org.w3c.dom, and we also need the javax.xml.
parsers package. The DOM package we know about, but the javax.xml.parsers pack-
age is different. It’s not part of the W3C DOM specification at all. It contains two critical
classes for DOM: DocumentBuilder and DocumentBuilderFactory. These classes are
needed because the DOM interfaces do not provide a way to load or create documents;
this is up to the implementation. The javax.xml.parsers package is part of Java API for
XML Processing (JAXP) and is defined through the Java Community Process (JCP JSR-
005). Details on JSR-005 can be found at http://jcp.org/jsr/detail/005.jsp.
Apache Xerces includes this package as part of the distribution. The classes in the
javax.xml.parsers package are implementation independent, so it is possible to write
application code that is completely separate from a particular DOM implementation. If
you find a better implementation tomorrow, you can plug it in without changing your
application code.

Building XML-Based Applications

PART II
276

10 0672323419 CH07 3/15/04 11:18 AM Page 276

Execution begins at the main method, which will create an instance of our SimpleWalker
class and call a couple of its methods to do the work. There are several methods in the
DocumentBuilder class (javax.xml.parsers package) for loading and parsing an
XML file. You can supply a java.io.File, an InputStream, or other source. We
will use FileInputStream to load our file, but first we need to get an instance of
DocumentBuilder, which is an abstract class, so we can’t create an instance directly.
That’s the job of DocumentBuilderFactory, which is also abstract, but it has a static fac-
tory method, newInstance(), that we can use to create a DocumentBuilder. From there
we can use one of the parse() methods to give us a Document object. Now we are totally
in the DOM world. We can also obtain a DOMImplementation to find out what features
our parser has. In this case, we are trying to find out whether extended interfaces are
supported.

Once we have a Document object, we can get the root element by calling the
getDocumentElement() method. It turns out that the Document object itself is a node, but
it’s not the root node. We must call getDocumentElement() to get the root.

The method printElement() in SimpleWalker does all the heavy lifting. It prints out the
node name and then iterates through the child nodes recursively. Indenting is added for
clarity. A sample XML file, library.xml, is used for testing and is shown in Listing 7.3.

LISTING 7.3 library.xml—Sample XML File

<?xml version=”1.0” encoding=”UTF-8”?>
<library>

<fiction>
<book>Moby Dick</book>
<book>The Last Trail</book>

</fiction>
<biography>

<book>The Last Lion, Winston Spencer Churchill</book>
</biography>

</library>

The example can be executed using the following command:

java SimpleWalker library.xml

The output is shown in Listing 7.4.

LISTING 7.4 Output from SimpleWalker

Parser supports extended interfaces
Root element is library
<library>

Parsing XML Using Document Object Model

CHAPTER 7
277

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 277

LISTING 7.4 continued

<#text>
</#text>
<fiction>

<#text>
</#text>
<book>

<#text>
</#text>

</book>
<#text>
</#text>
<book>

<#text>
</#text>

</book>
<#text>
</#text>

</fiction>
<#text>
</#text>
<biography>

<#text>
</#text>
<book>

<#text>
</#text>

</book>
<#text>
</#text>

</biography>
<#text>
</#text>

</library>

The output is mostly what we expect—all the element names are indented nicely to show
contained elements. However, what are all those <#text> elements? As mentioned
earlier, any text in an XML document becomes a child node in DOM. If we call
getNodeName() on a text node, we get #text, not the text itself. If we want to get the
text, we must determine whether we have a text node and then call getNodeValue().
We need only make a minor modification to the printElement() method, as shown in
Listing 7.5.

LISTING 7.5 Modified printElement() Method

public void printElement(String indent, Node aNode) {
if (aNode.getNodeType() == Node.TEXT_NODE) {

System.out.println(indent + aNode.getNodeValue());

Building XML-Based Applications

PART II
278

10 0672323419 CH07 3/15/04 11:18 AM Page 278

LISTING 7.5 continued

} else {
System.out.println(indent + “<” + aNode.getNodeName() + “>”);
Node child = aNode.getFirstChild();
while (child != null) {

printElement(indent + “\t”, child);
child = child.getNextSibling();

}
System.out.println(indent + “</” + aNode.getNodeName() + “>”);

}
}

As you can see, the modified method checks the node type and formats the output as
needed. The output after the modification is shown in Listing 7.6.

LISTING 7.6 Output After printElement() Modification

Parser supports extended interfaces
Root element is library
<library>

<fiction>

<book>
Moby Dick

</book>

<book>
The Last Trail

</book>

</fiction>

<biography>

<book>
The Last Lion, Winston Spencer Churchill

</book>

</biography>

</library>

Parsing XML Using Document Object Model

CHAPTER 7
279

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 279

Notice the extra blank lines before and after each element. That’s because the DOM
parser treats any whitespace between elements as text.

Depending on the type of node, we might need to use getNodeName(), getNodeValue(),
or maybe getAttributes(). Table 7.3 summarizes what each of the methods gives you,
depending on the interface type.

TABLE 7.3 Node Method Result Summary

Interface getNodeName() getNodeValue() getAttributes()

Attr Name of the Value of the attribute null

attribute

CDATASection #cdata-section Content of the null

CDATA section

Comment #comment Content of the null

comment

Document #document null null

DocumentFragment #document- null null

fragment

DocumentType Document type null null

name

Element Tag name null NamedNodeMap

Entity Entity name null

EntityReference Name of the entity null null

referenced

Notation Notation name null null

ProcessingInstruction Target Entire content null

excluding the target

Text #text Content of the text null

node

It’s important to note that attributes are not child nodes of elements. You must explicitly
call getAttributes() to obtain a NamedNodeMap containing the attributes. NamedNodeMap
is convenient for attributes because you can easily get a specific attribute by name or by
index (starting from 0).

Something else to keep in mind is that many of the methods can throw a DOMException
or some other exception. DOMException is a checked exception, meaning it must be
caught or thrown. In our simple example, we just throw all exceptions to the caller. If an

Building XML-Based Applications

PART II
280

10 0672323419 CH07 3/15/04 11:18 AM Page 280

exception gets to main, the Java Virtual Machine (JVM) will catch the exception, print
out a stack trace, and terminate the program. That’s okay for this simple case, but in
production you might want to handle exceptions yourself.

Creating an XML Document
In this example, we will create an XML document in memory, from scratch, and then
write it out to disk. You might do something like this if you have data from a non-XML
source, such as a database, and you want to create an XML document based on the data.
You could do this by just printing out raw tags and avoid DOM altogether. This will
work fine in many cases, but there are potential maintenance problems. First, you might
not generate well-formed XML due to coding errors. Second, it’s a lot more work!

For the data source, we will use the directory of the local disk. The XML document
produced will be a directory listing in XML. The source code for DocBuilder.java is
shown in Listing 7.7.

Parsing XML Using Document Object Model

CHAPTER 7
281

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

Note

Remember that source code for all examples in this chapter are available on the
Sams Web site.

LISTING 7.7 DocBuilder.java

package com.madhu.xml;

import java.io.*;

import org.w3c.dom.*;
import javax.xml.parsers.*;

public class DocBuilder {
protected DocumentBuilder docBuilder;
protected Element root;
protected Document doc;
protected PrintWriter writer;

public DocBuilder() throws Exception {
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
docBuilder = dbf.newDocumentBuilder();

}

public void buildDOM(String startDir) throws Exception {
doc = docBuilder.newDocument();
root = doc.createElement(“directory-listing”);

10 0672323419 CH07 3/15/04 11:18 AM Page 281

LISTING 7.7 continued

appendFile(root, new File(startDir));
doc.appendChild(root);

}

public void appendFile(Node parent, File aFile) throws Exception {
if (aFile.isDirectory()) {

Element dirElement = doc.createElement(“directory”);
dirElement.setAttribute(“name”, aFile.getName());
File[] files = aFile.listFiles();
int n = files.length;
for (int i=0; i<n; i+=1) {

appendFile(dirElement, files[i]);
}
parent.appendChild(dirElement);

} else {
Element fileElement = doc.createElement(“file”);
Text fileName = doc.createTextNode(aFile.getName());
fileElement.appendChild(fileName);
parent.appendChild(fileElement);

}
}

public void writeDOM(PrintWriter bw) throws Exception {
writer = bw;
writer.println(“<?xml version=\”1.0\” encoding=\”UTF-8\”?>”);
writeNode(“”, root);

}

public void writeNode(String indent, Node aNode) {
switch (aNode.getNodeType()) {

case Node.TEXT_NODE:
writer.println(indent + aNode.getNodeValue());
break;

case Node.ELEMENT_NODE:
writer.print(indent + “<” + aNode.getNodeName());
NamedNodeMap attrs = aNode.getAttributes();
int n = attrs.getLength();
for (int i=0; i<n; i+=1) {

Node attr = attrs.item(i);
writer.print(“ “ + attr.getNodeName() + “=\””);
writer.print(attr.getNodeValue() + “\””);

}
writer.println(“>”);
Node child = aNode.getFirstChild();
while (child != null) {

writeNode(indent + “\t”, child);
child = child.getNextSibling();

}

Building XML-Based Applications

PART II
282

10 0672323419 CH07 3/15/04 11:18 AM Page 282

LISTING 7.7 continued

writer.println(indent + “</” + aNode.getNodeName() + “>”);
break;

}
}

public static void main(String args[]) throws Exception {
DocBuilder db = new DocBuilder();
db.buildDOM(args[0]);
PrintWriter bw = new PrintWriter(

new FileWriter(args[1]));
db.writeDOM(bw);
bw.close();

}
}

To create an XML document, we use the DocumentBuilderFactory and the
DocumentBuilder interfaces as before. However, instead of calling parse() in
DocumentBuilder to create a Document object, we will call the newDocument() method.
This creates an empty Document object. Then we create elements and attributes as needed
and attach them appropriately.

The bulk of the work can be found in the methods buildDOM() and appendFile().
Directories and files are treated as elements. The name of a directory becomes an
attribute for a directory element, whereas the name of a file is added as a text child node
for a file element. A portion of the output from the program is shown in Listing 7.8.

LISTING 7.8 Partial Output from DocBuilder

<?xml version=”1.0” encoding=”UTF-8”?>
<directory-listing>

<directory name=”..”>
<directory name=”com”>

<directory name=”madhu”>
<directory name=”xml”>

<file>
DocBuilder.class

</file>
<file>

SimpleWalker.class
</file>

</directory>
</directory>

</directory>
<directory name=”test”>

<file>
Makefile

Parsing XML Using Document Object Model

CHAPTER 7
283

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 283

LISTING 7.8 continued

</file>
<file>

personal-schema.xml
</file>
<file>

personal.dtd
</file>
<file>

personal.xml
</file>
...

The Document interface contains the methods needed for creating any type of node.
Element nodes contain a method called setAttribute() that conveniently creates and
adds an attribute in one step. If an attribute with the same name already exists, its value
is replaced.

You’ll also notice that the code in the writeNode() method is improved over similar
code in SimpleWalker. It handles elements, text nodes, and attributes as well.

DOM Traversal and Range
Traversal and range are features added in DOM Level 2. They are supported by Apache
Xerces. You can determine whether traversal is supported by calling the hasFeature()
method of the DOMImplementation interface. For traversal, you can use the arguments
“Traversal” and “2.0” for the feature and version parameters of the hasFeature()
method.

Traversal
Traversal is a convenient way to walk through a DOM tree and select specific nodes.
This is useful when you want to find certain elements and perform operations on them.

Traversal Interfaces
The traversal interfaces are listed in Table 7.4, along with a brief description of each.

TABLE 7.4 Summary of Traversal Interfaces

Interface Description

NodeIterator Used to walk through nodes linearly. Represents a subtree
as a linear list.

Building XML-Based Applications

PART II
284

10 0672323419 CH07 3/15/04 11:18 AM Page 284

TABLE 7.4 continued

Interface Description

TreeWalker Represents a subtree as a tree view.

NodeFilter Can be used in conjunction with NodeIterator and
TreeWalker to select specific nodes.

DocumentTraversal Contains methods to create NodeIterator and
TreeWalker instances.

Traversal Example
Let’s look at an example in which traversal is used. Let’s say we want to print out just
the names of books in our library. One way to do this is to write code to iterate through
every node recursively and look for book elements. This will work, but we don’t need to
do all that work ourselves. Instead, we can use NodeIterator to iterate through all the
nodes and define a NodeFilter to select only the nodes with the name “book.” When we
find a book node, we can get the value of the text content and print it out.

There are two classes we need to define. The first one, IteratorApp.java, contains the
application code. The second one, NameNodeFilter.java, selects nodes with a given
name. The source code for IteratorApp.java is shown in Listing 7.9, and the source
code for NameNodeFilter.java is shown in Listing 7.10. Both source files must import
org.w3c.dom.traversal in order to reference the traversal interfaces.

LISTING 7.9 IteratorApp.java

package com.madhu.xml;

import java.io.*;

import org.w3c.dom.*;
import org.w3c.dom.traversal.*;
import javax.xml.parsers.*;

public class IteratorApp {
protected DocumentBuilder docBuilder;
protected Document document;
protected Element root;

public IteratorApp() throws Exception {
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
docBuilder = dbf.newDocumentBuilder();
DOMImplementation domImp = docBuilder.getDOMImplementation();
if (domImp.hasFeature(“Traversal”, “2.0”)) {

Parsing XML Using Document Object Model

CHAPTER 7
285

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 285

LISTING 7.9 continued

System.out.println(“Parser supports Traversal”);
}

}

public void parse(String fileName) throws Exception {
document = docBuilder.parse(new FileInputStream(fileName));
root = document.getDocumentElement();
System.out.println(“Root element is “ + root.getNodeName());

}

public void iterate() {
NodeIterator iter =
((DocumentTraversal)document).createNodeIterator(

root, NodeFilter.SHOW_ELEMENT,
new NameNodeFilter(“book”), true);

Node n = iter.nextNode();
while (n != null) {

System.out.println(n.getFirstChild().getNodeValue());
n = iter.nextNode();

}
}

public static void main(String args[]) throws Exception {
IteratorApp ia = new IteratorApp();
ia.parse(args[0]);
ia.iterate();

}
}

LISTING 7.10 NameNodeFilter.java

package com.madhu.xml;

import org.w3c.dom.*;
import org.w3c.dom.traversal.*;

public class NameNodeFilter implements NodeFilter {
protected String name;

public NameNodeFilter(String inName) {
name = inName;

}

public short acceptNode(Node n) {
if (n.getNodeName().equals(name)) {

return FILTER_ACCEPT;

Building XML-Based Applications

PART II
286

10 0672323419 CH07 3/15/04 11:18 AM Page 286

LISTING 7.10 continued

} else {
return FILTER_REJECT;

}
}

}

Looking at IteratorApp.java, you’ll see that the traversal code is found in the
iterate() method. We can create an instance of NodeIterator from the
DocumentTraversal interface. But how do we get an instance of a DocumentTraversal
interface? It turns out that if traversal is supported, the Document instance will also
implement DocumentTraversal. If you look carefully at the iterate() method, you
will see that the document is downcast into DocumentTraversal. The cast succeeds
because traversal is supported by our implementation (Xerces). If it wasn’t supported,
a ClassCastException would be raised at runtime.

The method for creating a NodeIterator is createNodeIterator(...), which accepts
four parameters: the root node, a flag determining which nodes to show, a possible
NodeFilter, and a flag determining whether entity references are to be expanded. In our
example, we start at the document root, because we want to search the entire document.
Constants in the NodeFilter interface define which nodes will be visible. You can
choose options such as elements, attributes, text, and so on. The NodeFilter is optional.
If you don’t want to use a NodeFilter, just supply “null” and no filter will be applied.

In our example, we define a node filter that looks for nodes with a given name. To define
a node filter, we need to implement NodeFilter and fill in one method: acceptNode().
As we iterate through nodes, the traversal API will call our acceptNode() method, which
can return either FILTER_ACCEPT, FILTER_REJECT, or FILTER_SKIP. For node iterators,
FILTER_REJECT and FILTER_SKIP do the same thing. The behavior is slightly different
for TreeWalker interfaces (refer to the documentation for the details). In our
acceptNode() method, we just compare the name of the node and return FILTER_ACCEPT
if the node name matches the name supplied when NameNodeFilter was created. We
created an instance of NameNodeFilter with the name “book,” so we should find only
book elements.

Going back to the iterate() method in the IteratorApp class, we can use a while loop
to go through the nodes. The method nextNode() will return null when we get to the end
of the list. Only element nodes with name “book” are returned. Once we find a book ele-
ment, we can obtain the text content node by calling getFirstChild() and then calling
getNodeValue() on that node. The input XML file is shown in Listing 7.11.

Parsing XML Using Document Object Model

CHAPTER 7
287

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 287

LISTING 7.11 library.xml—Input XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<library>

<fiction>
<book>Moby Dick</book>
<book>The Last Trail</book>

</fiction>
<biography>

<book>The Last Lion, Winston Spencer Churchill</book>
</biography>

</library>

Here’s the output from IteratorApp:

Parser supports MutationEvents
Root element is library
Moby Dick
The Last Trail
The Last Lion, Winston Spencer Churchill

The TreeWalker interface provides many of the same benefits as NodeIterator. The
main difference is that TreeWalker presents a tree-oriented view of the nodes instead of a
list-oriented view. An iterator allows you to move forward and backward, but a
TreeWalker interface allows you to also move to the parent of a node, to one of its chil-
dren, or to a sibling. The DOM specification explains this in greater detail.

Range
Range interfaces provide a convenient way to select, delete, extract, and insert content.
You can determine whether range is supported by calling the hasFeature(...) method
of the DOMImplementation interface. You can use the arguments “Range” and “2.0” for
feature and version. There are a number of applications for which the range interfaces are
useful.

A range consists of two boundary points corresponding to the start and the end of the
range. A boundary point’s position in a Document or DocumentFragment tree can be char-
acterized by a node and an offset. The node is the container of the boundary point and its
position. The container and its ancestors are the ancestor containers of the boundary
point and its position. The offset within the node is the offset of the boundary point and
its position. If the container is an Attr, Document, DocumentFragment, Element, or
EntityReference node, the offset is between its child nodes. If the container is a
CharacterData, Comment, or ProcessingInstruction node, the offset is between the
16-bit units of the UTF-16 encoded string contained by it.

Building XML-Based Applications

PART II
288

10 0672323419 CH07 3/15/04 11:18 AM Page 288

The boundary points of a range must have a common ancestor container that is either a
Document, DocumentFragment, or Attr node. That is, the content of a range must be
entirely within the subtree rooted by a single Document, DocumentFragment, or Attr
node. This common ancestor container is known as the root container of the range.
The tree rooted by the root container is known as the range’s context tree.

The container of a boundary point of a range must be an Element, Comment,
ProcessingInstruction, EntityReference, CDATASection, Document,
DocumentFragment, Attr, or Text node. None of the ancestor containers of the
boundary point of a range can be a DocumentType, Entity, or Notation node.

Range Interfaces
The range interfaces are listed in Table 7.5, along with a brief description of each.

TABLE 7.5 Summary of Range Interfaces

Interface Description

Range This interface describes a range and contains methods to
define, delete, insert content.

DocumentRange This interface creates a range.

Range Example
Let’s look at an example in which range is used. Let’s say we want to delete the first
child node under the root. One way to do this is to write code to iterate through every
node under the first child and remove it. However, we can accomplish the same operation
with less code using ranges.

The source code for RangeApp.java is shown in Listing 7.12. We must import org.w3c.
dom.range in order to refer to the range interfaces.

LISTING 7.12 RangeApp.java

package com.madhu.xml;

import java.io.*;

import org.w3c.dom.*;
import org.w3c.dom.ranges.*;
import javax.xml.parsers.*;

Parsing XML Using Document Object Model

CHAPTER 7
289

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 289

LISTING 7.12 continued

public class RangeApp {
protected DocumentBuilder docBuilder;
protected Document document;
protected Element root;

public RangeApp() throws Exception {
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
docBuilder = dbf.newDocumentBuilder();
DOMImplementation domImp = docBuilder.getDOMImplementation();
if (domImp.hasFeature(“Range”, “2.0”)) {

System.out.println(“Parser supports Range”);
}

}

public void parse(String fileName) throws Exception {
document = docBuilder.parse(new FileInputStream(fileName));
root = document.getDocumentElement();
System.out.println(“Root element is “ + root.getNodeName());

}

public void deleteRange() {
Range r = ((DocumentRange)document).createRange();
r.selectNodeContents(root.getFirstChild());
r.deleteContents();

}

public static void main(String args[]) throws Exception {
RangeApp ra = new RangeApp();
ra.parse(args[0]);
ra.deleteRange();

}
}

Looking at RangeApp.java, you’ll see that the traversal code is found in the
deleteRange() method. We can create an instance of a range from the DocumentRange
interface. We obtain a DocumentRange instance similar to the traversal example. If range
is supported, the Document instance will also implement DocumentRange. In the
deleteRange() method, you will see that the document is downcast into DocumentRange.
The cast succeeds because range is supported by our implementation (Xerces). If it
wasn’t supported, a ClassCastException would be raised at runtime.

The method for creating a range is createRange(), with no arguments. A number
of methods in the Range interface set the range. In the example, we used
selectNodeContents() to select all the content under the first child node under
he root. We can delete this content using deleteContents().

Building XML-Based Applications

PART II
290

10 0672323419 CH07 3/15/04 11:18 AM Page 290

Other DOM Implementations
For a variety of reasons, some have argued that DOM as specified by the W3C is not the
best way to go. One reason is that it’s too complex. In this case, JDOM has appeared as
an alternative. Another reason is that DOM takes too much memory and is not practical
for resource-constrained devices such as PDAs and cellular phones. For these applica-
tions, a number of DOM-like APIs have appeared. In this section, we’ll look at some of
these alternative implementations.

JDOM
JDOM is not an acronym. It was originally developed as an open-source API for XML
but has been accepted by the Java Community Process (JCP JSR-102). The home of
JDOM is www.jdom.org.

JDOM was designed specifically for Java. In contrast, DOM is purely an interface speci-
fication independent of any language. For example, a Java parser can leverage standard
Java types and collections, such as the String class and the Collections API. The goal of
W3C DOM is to be language independent, which works but can add a lot of unnecessary
complications. Here are some of the guiding principles of JDOM:

• JDOM should be straightforward for Java programmers.

• JDOM should support easy and efficient document modification.

• JDOM should hide the complexities of XML wherever possible, while remaining
true to the XML specification.

• JDOM should integrate with DOM and SAX.

• JDOM should be lightweight and fast.

• JDOM should solve 80 percent (or more) of Java/XML problems with 20 percent
(or less) of the effort when compare with DOM.

JDOM is a class-based API, whereas DOM is an interface-based API. There are classes
that encapsulate documents, elements, attributes, text, and so on. This simplifies usage by
minimizing downcasts. DOM is a strict hierarchy based on a node, which leads to lots of
downcasts. Downcasts add complexity to source code and also reduce performance.

JDOM does not parse XML by itself; rather, it can build JDOM objects from a DOM
tree or a SAX parser. In general, it is more efficient to use JDOM’s SAXBuilder class if
all you want to do is read XML from a file or stream.

Parsing XML Using Document Object Model

CHAPTER 7
291

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 291

JDOM Example
Let’s create an XML document using JDOM. The source code for JDOMCreate.java
appears in Listing 7.13.

LISTING 7.13 JDOMCreate.java

package com.madhu.xml;

import org.jdom.*;
import org.jdom.output.*;

public class JDOMCreate {
public static void main(String args[]) throws Exception {

Element root = new Element(“library”);
Document doc = new Document(root);
Element fiction = new Element(“fiction”);
Element book = new Element(“book”);
book.setAttribute(“author”, “Herman Melville”);
book.addContent(“Moby Dick”);
fiction.addContent(book);
root.addContent(fiction);
XMLOutputter outputter = new XMLOutputter(“\t”, true);
outputter.output(doc, System.out);

}
}

Most of the JDOM classes are in the org.jdom package. We only need the
org.jdom.output package in order to write the output using XMLOutputter. As adver-
tised, JDOM code is very simple. To create a document, all we need to do is create ele-
ments, using any of the Element class constructors. Once that is done, we can set
attributes and add content. The addContent() method is overridden, so you can add text
or elements using the same method. Notice that you must create the Document object

given a root element. This is done to make sure the document is always well formed.

Once the object graph representing our document is created, we can write it out to a
stream using the XMLOutputter class. In the example, we write the document to
System.out. We could write it to a file using FileOutputStream as well. The output
appears in Listing 7.14.

LISTING 7.14 JDOMCreate Output

<?xml version=”1.0” encoding=”UTF-8”?>
<library>

<fiction>

Building XML-Based Applications

PART II
292

10 0672323419 CH07 3/15/04 11:18 AM Page 292

LISTING 7.14 continued

<book author=”Herman Melville”>Moby Dick</book>
</fiction>

</library>

Notice the nice formatting of the output. Indenting and new lines make the document
look as if it was hand-edited. Formatting can be controlled through constructor parame-
ters of the XMLOutputter class. In the example, we specified a Tab character (\t) for
indenting and set new lines to true. This can be particularly handy if the XML docu-
ments you create are available for human consumption (which they often are).

Reading and parsing an XML document is even easier. As mentioned earlier, JDOM is
not meant to be a parser replacement. JDOM uses existing parsers to avoid reinventing
the wheel. If you have an existing DOM or SAX parser, you can use it with JDOM. The
JDOM distribution includes Apache Xerces, so you can be up and running right away.

The following example parses an XML document and then prints it out using
XMLOutputter. The source code for JDOMParse.java appears in Listing 7.15.

LISTING 7.15 JDOMParse.java

package com.madhu.xml;

import java.io.*;

import org.jdom.*;
import org.jdom.input.*;
import org.jdom.output.*;

public class JDOMParse {
public static void main(String args[]) throws Exception {

SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(new File(args[0]));
XMLOutputter outputter = new XMLOutputter(“\t”, true);
outputter.output(doc, System.out);

}
}

You can use either a DOM or SAX parser in order to parse a document and produce a
JDOM Document object. In practice, SAX parsers tend to be more efficient in terms of
memory because the entire document is not read in at once, as is the case with DOM.
The SAXBuilder class can build a document given a File object, InputStream, or a
number of other sources.

Parsing XML Using Document Object Model

CHAPTER 7
293

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 293

Small DOM-like Implementations
PDAs and cellular phones are rapidly becoming the terminals of choice for people on the
run. They are a lot easier to carry compared to a laptop. (Remember the “luggables” of
the mid-1980s? We’ve come a long way since then!)

With the availability of Java 2 Micro Edition (J2ME) and the wireless Web, XML is
becoming more important on these small devices. If you’re going to work with XML on
a PDA, something like DOM is a great help. Of course, a full-blown DOM implementa-
tion is too much for a PDA, but there are smaller, simpler alternatives, and you have
several solutions from which to choose.

NanoXML
NanoXML is a nonvalidating parser available at http://nanoxml.sourceforge.net. It
looks a lot like DOM, but it’s much smaller. Version 2.0 is about 33KB, but a light ver-
sion is available that’s less than 6KB! The API contains a class called XMLElement, which
is very similar to the Node interface found in DOM.

TinyXML
TinyXML is a nonvalidating parser available at
http://www.gibaradunn.srac.org/tiny/index.shtml. It’s primarily for reading in an
XML document, because it does not provide facilities to create a document. It’s
extremely simple, based primarily on one class, TinyParser, and one interface,
ParsedXML. All you need to do is call a static method in TinyParser to parse a stream,
file, or URL. This gives you an instance of a ParsedXML interface that has only seven
methods. The uncompressed class files are about 16KB.

kXML
kXML is a DOM-like parser in the spirit of JDOM. The primary difference is that it is
designed specifically for J2ME resource-constrained devices. kXML can be found at
http://www.kxml.org. kXML is probably the most sophisticated of the three small
parsers mentioned.

Java Architecture for XML
Binding (JAXB)
JAXB provides a means of automatically binding XML with Java objects. JAXB is being
developed through the Java Community Process (JCP) under JSR-31. The home of JAXB
is http://java.sun.com/xml/jaxb/index.html.

Building XML-Based Applications

PART II
294

10 0672323419 CH07 3/15/04 11:18 AM Page 294

JAXB can be considered a serialization mechanism from Java objects to XML.
Serialization is the process of converting an object in memory into a stream of data, and
vice versa. Serialization is a convenient way of storing objects on disk or sending them
over a network. Object serialization based on serializable and externalizable interfaces
performs a similar function but requires the developer to simply implement one of these
interfaces. In the case of JAXB, a set of binding classes is generated using a schema
compiler. The classes manage marshalling, meaning translating Java objects to XML and
back again. Here is a brief summary of some of benefits of JAXB:

• Valid data is guaranteed. Marshalling is based on a schema, which constrains the
structure of the XML.

• JAXB is faster and requires less memory when compared with DOM. DOM
includes a lot of functionality for manipulating arbitrary documents. JAXB
applications are specific to a given schema, so they can be more efficient.

• JAXB is relatively easy to use. All you need to do is supply a schema and generate
binding classes using a schema compiler. From there, reading, writing, and modify-
ing XML is simply a matter of a few method calls.

• JAXB applications are extensible. The generated classes can be used as is, or they
can be subclassed for reusability and added functionality.

Data Binding
If you think about it, a class and a schema perform similar functions. Classes describe
Java objects, whereas schemas describe XML documents. An object is an instance of a
class, and a document follows a schema. The diagram in Figure 7.3 illustrates the rela-
tionships between schemas, classes, documents, and objects.

Parsing XML Using Document Object Model

CHAPTER 7
295

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

Schema Classes

Document Objects

compile

unmarshal

marshal

fo
llo

w
s

in
st

an
ce

of

FIGURE 7.3
Binding
relationships.

If we have a schema, perhaps in the form of a DTD, we can automatically generate
classes that translate between objects and documents. Of course, in the real world, we
might want to customize some of the details of the generated classes. Fortunately, JAXB
provides facilities for customization through an optional binding schema.

10 0672323419 CH07 3/15/04 11:18 AM Page 295

One way to define a binding is to generate one Java class for every element in a schema.
If you don’t provide any extra information, this is basically what JAXB does. Attributes
within an element are mapped to String fields. Content within an element is a little
more complicated. Table 7.6 summarizes how the content is mapped within a Java class.

TABLE 7.6 Default Content Binding

Content Type Field Type

PCDATA String

Fixed number of elements References to sub-element types

Varying number of elements java.util.List

Any Can be defined using additional information described in a
binding schema

JAXB Example
Let’s look at an example using JAXB. A sample DTD is shown in Listing 7.16. We will
use this DTD as our schema for generating binding classes. As of this writing, the JAXB
schema compiler only accepts DTDs. In the future, other schema formats may be
accepted.

LISTING 7.16 library.dtd

<?xml version=”1.0” encoding=”US-ASCII”?>
<!ELEMENT library (fiction|biography|science)*>
<!ELEMENT fiction (book)+>
<!ELEMENT biography (book)+>
<!ELEMENT science (book)+>
<!ELEMENT book (#PCDATA)>
<!ATTLIST book author CDATA #REQUIRED>

This DTD describes a simple library with three categories of books: fiction, biography,
and science. Each of these categories can contain one or more book elements. Each book
element contains an author attribute, and the title will be defined in the content of the
book element. This isn’t necessarily a practical example, but it will give you a good idea
how JAXB works. It can be easily expanded as needed.

In order to generate binding classes, we need to run the schema compiler shipped with
JAXB. The schema compiler is itself written in Java and can be invoked like this:

java com.sun.tools.xjc.Main -d outdir -roots library library.dtd

Building XML-Based Applications

PART II
296

10 0672323419 CH07 3/15/04 11:18 AM Page 296

Of course, the schema compiler JAR file must be in your classpath (dropping the JAR
into your JDK/jre/lib/ext directory is the simplest way). The -d option specifies an
output directory for the generated classes. If it’s not included, the current directory is
used. The -roots option specifies a comma-separated list of root elements. This is
needed because DTDs don’t provide a way to define root elements. The last argument is
the filename of our DTD.

The schema compiler can also accept an optional binding schema. The binding schema is
an XML file with the extension .xjs. It can include information such as the root ele-
ments, names of classes and methods, which elements to bind to classes, types for attrib-
utes, and data conversions. If you specify a binding schema, you can avoid the -roots
option. If you don’t use a binding schema, you must supply the -roots option. There’s
quite a bit you can do with binding schemas, so it’s best to refer to the JAXB specifica-
tion to get it all. We will stick with the default bindings provided automatically with the
schema compiler. In many cases, this is good enough.

Once the schema compiler is run on our sample DTD, five Java source files are gener-
ated containing the classes that describe each of the elements in library.dtd. The code
for the root element, Library.java, is shown in Listing 7.17.

LISTING 7.17 Library.java

// imports not shown

public class Library
extends MarshallableRootElement
implements RootElement

{

private List _Content = PredicatedLists.createInvalidating(this,
new ContentPredicate(), new ArrayList());

private PredicatedLists.Predicate pred_Content = new ContentPredicate();

public List getContent() {
return _Content;

}

public void deleteContent() {
_Content = null;
invalidate();

}

public void emptyContent() {
_Content = PredicatedLists.createInvalidating(this,

pred_Content, new ArrayList());
}

Parsing XML Using Document Object Model

CHAPTER 7
297

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 297

LISTING 7.17 continued

public void validateThis()
throws LocalValidationException

{
}

public void validate(Validator v)
throws StructureValidationException

{
for (Iterator i = _Content.iterator(); i.hasNext();) {

v.validate(((ValidatableObject) i.next()));
}

}

public void marshal(Marshaller m)
throws IOException

{
XMLWriter w = m.writer();
w.start(“library”);
if (_Content.size()> 0) {

for (Iterator i = _Content.iterator(); i.hasNext();) {
m.marshal(((MarshallableObject) i.next()));

}
}
w.end(“library”);

}

public void unmarshal(Unmarshaller u)
throws UnmarshalException

{
XMLScanner xs = u.scanner();
Validator v = u.validator();
xs.takeStart(“library”);
while (xs.atAttribute()) {

String an = xs.takeAttributeName();
throw new InvalidAttributeException(an);

}
{

List l = PredicatedLists.create(this, pred_Content,
new ArrayList());

while ((xs.atStart(“fiction”)||xs.atStart(“biography”))||
xs.atStart(“science”)) {

l.add(((MarshallableObject) u.unmarshal()));
}
_Content = PredicatedLists.createInvalidating(this,

pred_Content, l);
}
xs.takeEnd(“library”);

}

Building XML-Based Applications

PART II
298

10 0672323419 CH07 3/15/04 11:18 AM Page 298

LISTING 7.17 continued

public static Library unmarshal(InputStream in)
throws UnmarshalException

{
return unmarshal(XMLScanner.open(in));

}

public static Library unmarshal(XMLScanner xs)
throws UnmarshalException

{
return unmarshal(xs, newDispatcher());

}

public static Library unmarshal(XMLScanner xs, Dispatcher d)
throws UnmarshalException

{
return ((Library) d.unmarshal(xs, (Library.class)));

}

public boolean equals(Object ob) {
if (this == ob) {

return true;
}
if (!(ob instanceof Library)) {

return false;
}
Library tob = ((Library) ob);
if (_Content!= null) {

if (tob._Content == null) {
return false;

}
if (!_Content.equals(tob._Content)) {

return false;
}

} else {
if (tob._Content!= null) {

return false;
}

}
return true;

}

public int hashCode() {
int h = 0;
h = ((127 *h)+((_Content!= null)?_Content.hashCode(): 0));
return h;

}

public String toString() {
StringBuffer sb = new StringBuffer(“<<library”);

Parsing XML Using Document Object Model

CHAPTER 7
299

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 299

LISTING 7.17 continued

if (_Content!= null) {
sb.append(“ content=”);
sb.append(_Content.toString());

}
sb.append(“>>”);
return sb.toString();

}

public static Dispatcher newDispatcher() {
return Biography.newDispatcher();

}

private static class ContentPredicate
implements PredicatedLists.Predicate

{
public void check(Object ob) {

if (!(ob instanceof MarshallableObject)) {
throw new InvalidContentObjectException(ob,

(MarshallableObject.class));
}

}
}

}

There is a field named _Content of type java.util.List. This object can contain any
number of elements—specifically, the categories of books in our library. A List object is
used for the content because we didn’t specify a particular type in a binding schema. In
this case, the schema compiler chose a List object because our library element can con-
tain a variable number of sub-elements. There are a few validation methods that can vali-
date this class and all content. The marshal() and unmarshal() methods read and write
XML to and from streams.

A simple application that exercises the generated classes is shown in Listing 7.18. This
application reads an XML file, adds another book element, validates the XML, and
writes all the content to a second XML file. This is typical of the kinds of applications
that can be developed with JAXB.

LISTING 7.18 LibraryApp.java

import java.io.*;
import java.util.*;
import javax.xml.bind.*;
import javax.xml.marshal.*;

Building XML-Based Applications

PART II
300

10 0672323419 CH07 3/15/04 11:18 AM Page 300

LISTING 7.18 continued

public class LibraryApp {
protected Library myLibrary;

public LibraryApp() {
myLibrary = new Library();

}

public static void main(String[] args) throws Exception {
LibraryApp la = new LibraryApp();

la.readXML(“library.xml”);
la.addBook();
la.validate();
la.writeXML(“new_library.xml”);

}

public void readXML(String fileName) throws Exception {
System.out.println(“Reading “ + fileName);
FileInputStream fIn = new FileInputStream(fileName);
try {

myLibrary = myLibrary.unmarshal(fIn);
} finally {

fIn.close();
}
System.out.println(myLibrary);

}

public void addBook() {
List entryList = myLibrary.getContent();
for (ListIterator i = entryList.listIterator(); i.hasNext();) {

Object element = i.next();
if (element instanceof Science) {

Book qmBook = new Book();
qmBook.setAuthor(“Eisberg, Resnick”);
qmBook.setContent(“Quantum Mechanics”);
Science sb = (Science) element;
List sl = sb.getBook();
sl.add(qmBook);
break;

}
}

}

public void validate() throws Exception {
myLibrary.validate();

}

public void writeXML(String fileName) throws Exception {
System.out.println(“Writing “ + fileName);

Parsing XML Using Document Object Model

CHAPTER 7
301

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 301

LISTING 7.18 continued

FileOutputStream fOut = new FileOutputStream(fileName);
try {

myLibrary.marshal(fOut);
} finally {

fOut.close();
}

}
}

The two imported packages of interest are javax.xml.bind and javax.xml.marshal.
The first one, javax.xml.bind, contains most of the classes for JAXB. The second pack-
age, javax.xml.marshal, contains a few classes needed for marshalling. These classes
were split into two packages because marshalling is not specific to XML. There could be
marshalling classes for all kinds of data bindings.

The readXML() method reads an XML file into a Library object using the unmarshal()
method. This could throw an UnmarshalException caused by invalid XML.

The addBook() method obtains a reference to the content of the Library object as a List
object. It then searches for a category of type science, creates a book object, and adds it
to the science category. Notice the setAuthor() method defined in the Book class. This
was also generated by the schema compiler.

The validate() method validates the Library object before it is written using the
writeXML() method. Validation is required if any of the objects describing our document
were modified. If validation is not done, an exception would be thrown by the marshal()
method.

As you can see, JAXB is fairly easy to use. A lot of functionality can be added automati-
cally by specifying a binding schema. As mentioned earlier, you might want to explore
binding schemas in detail to get the most out of JAXB.

Building XML-Based Applications

PART II
302

Case Study: Building an XML Data Server

Let’s take a look at a case study so you can see how DOM works in the real
world. We will build a Java servlet that accepts a SQL statement to query a
database and returns the results in the form of XML. This might seem like
overkill. Why not just connect to the database through ODBC or JDBC and
obtain a result set? Of course, you could do that, but there are firewall con-
straints and possibly the need for a persistent connection to the client. HTTP

10 0672323419 CH07 3/15/04 11:18 AM Page 302

Parsing XML Using Document Object Model

CHAPTER 7
303

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

is a simple protocol that any firewall will pass without complaining. HTTP is easy
to implement and easy to debug. Most importantly, it’s an open protocol with
wide industry support.

What we will end up with is something like an XML data server. Of course, com-
mercial-quality data servers do a lot more, such as manage scalability through
caching and load balancing. Even still, we can build an effective data server for
illustration purposes, and scalability can be addressed later.

A servlet accepts a request from a client and returns results in XML. The servlet
acts as the “glue” between the Internet and the database. Figure 7.4 illustrates
the operation of the servlet and database.

XMLServlet

Web server

JDOM

Database

FIGURE 7.4
Servlet operation.

It would be nice to automate as much of the XML generation as possible. What
we can do is use the column names of the database result set as the element
names of our XML output. We can use ResultSetMetaData from JDBC to give us
this information. The source code for our XML servlet is shown in Listing 7.19.

The complete source code is available on the Sams Web site. Our sample data-
base contains information from the 2000 CIA World Fact Book. In order to
experiment with XMLServlet, you will need a servlet engine such as Apache
Tomcat. Tomcat is freely available for download from
http://Jakarta.apache.org/tomcat. The download includes detailed installa-
tion instructions along with a number of examples. You can use almost any
database for testing. Any one of the sample databases supplied with Microsoft
Access will work well.

Sample output is shown in Listing 7.20.

LISTING 7.19 XMLServlet.java

package com.madhu.xml;

import java.io.*;
import java.util.*;
import java.sql.*;

10 0672323419 CH07 3/15/04 11:18 AM Page 303

Building XML-Based Applications

PART II
304

LISTING 7.19 continued

import javax.servlet.*;
import javax.servlet.http.*;

import org.jdom.*;
import org.jdom.output.*;

public class XMLServlet extends HttpServlet {
protected Connection connection;

public void init() {
try {

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
connection = DriverManager.getConnection(

“jdbc:odbc:worldfactbook”);
} catch (Exception e) {

e.printStackTrace();
}

}

public void doGet(HttpServletRequest request,
HttpServletResponse response) throws IOException {

ServletConfig config = getServletConfig();
PrintWriter out = response.getWriter();
response.setContentType(“text/xml”);
try {

String sql = request.getParameter(“sql”);
Statement stat = connection.createStatement();
ResultSet rs = stat.executeQuery(sql);
ResultSetMetaData rsMeta = rs.getMetaData();
int rowNumber = 1;
Element root = new Element(“resultset”);
root.setAttribute(“query”, sql);
while (rs.next()) {

Element row = new Element(“row”);
row.setAttribute(“index”, Integer.toString(rowNumber));
int nCols = rsMeta.getColumnCount();
for (int i=1; i<=nCols; i+=1) {

String colName = rsMeta.getColumnName(i);
Element column = new Element(colName);
column.addContent(rs.getString(i));
row.addContent(column);

}
root.addContent(row);
rowNumber += 1;

}

10 0672323419 CH07 3/15/04 11:18 AM Page 304

Parsing XML Using Document Object Model

CHAPTER 7
305

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

LISTING 7.19 continued

rs.close();
stat.close();

Document doc = new Document(root);

XMLOutputter outputter = new XMLOutputter(“\t”, true);
outputter.output(doc, out);

} catch (Exception e) {
e.printStackTrace(out);

}
}

}

LISTING 7.20 XMLServlet Sample Output

<?xml version=”1.0” encoding=”UTF-8”?>
<resultset query=”select * from people where country like ‘united%’”>

<row index=”1”>
<ID>220</ID>
<Country>United Arab Emirates</Country>
<Population>2369153.0</Population>
<GrowthRate>1.61</GrowthRate>
<BirthsPer1000>18.0</BirthsPer1000>
<DeathsPer1000>3.68</DeathsPer1000>
<NetMigrationPercent>1.82</NetMigrationPercent>
<NetMigration>43118.5846</NetMigration>
<InfantMortalityPer1000>17.17</InfantMortalityPer1000>
<TotalLifeExpectency>74.06</TotalLifeExpectency>
<MaleLifeExpectency>71.64</MaleLifeExpectency>
<FemaleLifeExpectency>76.61</FemaleLifeExpectency>
<TotalLiteracy>79.2</TotalLiteracy>
<MaleLiteracy>78.9</MaleLiteracy>
<FemalLiteracy>79.8</FemalLiteracy>

</row>
<row index=”2”>

<ID>221</ID>
<Country>United Kingdom</Country>
<Population>59511464.0</Population>
<GrowthRate>0.25</GrowthRate>
<BirthsPer1000>11.76</BirthsPer1000>
<DeathsPer1000>10.38</DeathsPer1000>
<NetMigrationPercent>1.07</NetMigrationPercent>
<NetMigration>636772.6648</NetMigration>
<InfantMortalityPer1000>5.63</InfantMortalityPer1000>

10 0672323419 CH07 3/15/04 11:18 AM Page 305

Building XML-Based Applications

PART II
306

LISTING 7.20 continued

<TotalLifeExpectency>77.66</TotalLifeExpectency>
<MaleLifeExpectency>74.97</MaleLifeExpectency>
<FemaleLifeExpectency>80.49</FemaleLifeExpectency>
<TotalLiteracy>99.0</TotalLiteracy>
<MaleLiteracy>0.0</MaleLiteracy>
<FemalLiteracy>0.0</FemalLiteracy>

</row>
<row index=”3”>

<ID>222</ID>
<Country>United States</Country>
<Population>275562673.0</Population>
<GrowthRate>0.91</GrowthRate>
<BirthsPer1000>14.2</BirthsPer1000>
<DeathsPer1000>8.7</DeathsPer1000>
<NetMigrationPercent>3.5</NetMigrationPercent>
<NetMigration>9644693.555</NetMigration>
<InfantMortalityPer1000>6.82</InfantMortalityPer1000>
<TotalLifeExpectency>77.12</TotalLifeExpectency>
<MaleLifeExpectency>74.24</MaleLifeExpectency>
<FemaleLifeExpectency>79.9</FemaleLifeExpectency>
<TotalLiteracy>97.0</TotalLiteracy>
<MaleLiteracy>97.0</MaleLiteracy>
<FemalLiteracy>97.0</FemalLiteracy>

</row>
</resultset>

As in any servlet, the bulk of the work is performed in the goGet() method. The
doGet() method will only be called in response to a GET request. If responses to
both GET and POST requests are necessary, you can override the service()
method instead.

The SQL query is supplied as part of the query string. We can obtain this string
using the getParameter() method while supplying the name of the parameter.
In our example, the parameter name is simply sql. Once we have the SQL, we
can issue standard JDBC calls to obtain a result set.

Now the interesting part begins. We will use JDOM to create the DOM tree. As
you saw earlier, JDOM can be easier to use when creating a document. The
result set is translated into a DOM tree by using the ResultSet column names as
element names. The column names are obtained through ResultSetMetaData.
The resulting DOM tree is written to the response output stream using
XMLOutputter.

10 0672323419 CH07 3/15/04 11:18 AM Page 306

Summary
Document Object Model (DOM) is a set of language-independent interfaces defined by
the W3C DOM working group. DOM parsers can be used to read, create, and modify
XML documents. At the time of this writing, DOM Level 1 and Level 2 are recom-
mended specifications, meaning they are available for use in production software. DOM
Level 3 is a working draft, meaning the specification is not yet ready for implementation.
The DOM specification includes Java language bindings described as Java interfaces. All
the specifications may be found at the DOM Web site (www.w3.org/DOM).

There are several freely available implementations of DOM Level 1 and Level 2. The
most common are JAXP from Sun Microsystems and Xerces from the Apache XML
group. JDOM is another popular variant that can be easier to use in some cases. Several
small DOM-like implementations are available for use in resource-constrained applica-
tions such as cell phones and PDAs.

JAXB provides yet another way to create and parse XML using an object model. JAXB
is defined by the Java Community Process and can be used to bind an XML schema into
Java classes. This can be more efficient when compared to DOM in many cases.

Parsing XML Using Document Object Model

CHAPTER 7
307

7

P
A

R
SIN

G
X

M
L

U
SIN

G
D

O
C

U
M

EN
T

O
B

JEC
T

M
O

D
EL

10 0672323419 CH07 3/15/04 11:18 AM Page 307

10 0672323419 CH07 3/15/04 11:18 AM Page 308

IN THIS CHAPTER

• What Is SAX, Anyway? 310

• What SAX Is Not 311

• Why Do I Need SAX? 311

• SAX vs. DOM 312

• Disadvantages 312

• SAX Versions 313

• SAX Basics 314

• Working with SAX 317

8
C

H
A

PT
ER

Parsing XML
Using SAX

11 0672323419 CH08 3/15/04 11:18 AM Page 309

In the last chapter, you saw how XML data could be parsed using the Document Object
Model (DOM). In this chapter, we will explore another tool for parsing XML—the
Simple API for XML (SAX). DOM can also be used for creating documents. Unlike
DOM, SAX can only be used for parsing existing documents. We will look at some of
the reasons why SAX is preferred for certain applications. We will explore several exam-
ples that demonstrate how the SAX API works, and finally we will look at a practical
example as a case study using SAX.

SAX has an interesting development history. Many of the APIs commonly used today
(even outside the XML community) have been developed through some kind of formal
process. A standards body, such as the W3C, is often involved. SAX, on the other hand,
was the result of collaboration by the members of the XML-DEV mailing list, principally
Dave Megginson. The home of SAX is Dave Megginson’s site: http://www.megginson.
com/SAX. The history of SAX can be found at http://www.megginson.com/SAX/SAX1/
history.html, and the XML-DEV mailing list is located at http://www.xml.org/xml/
xmldev.shtml.

Despite the lack of a formal standards body guiding the development of SAX, it has
rapidly become one of the most popular APIs for parsing XML. This is due, in part, to
the fact that it is available in the public domain, free of charge, in both source and binary
form. The copyright is probably the least restrictive of any available today. Unlike the
GNU Public License (GPL) and others, the SAX copyright is just one short paragraph:

SAX2 is Free!

I hereby abandon any property rights to SAX 2.0 (the Simple API for XML), and
release all of the SAX 2.0 source code, compiled code, and documentation con-
tained in this distribution into the Public Domain. SAX comes with NO WAR-
RANTY or guarantee of fitness for any purpose.

David Megginson, david@megginson.com

Basically, you can do whatever you want with SAX—there are no strings attached. Then
again, there is no formal support. Documentation is limited to the API and source code.
One might argue that you get what you pay for, but SAX has been around for several
years and the quality is quite high. As with any open-source software, if you run into a
problem, you can dive in and fix it yourself. In many cases, this is more effective than
high-priced technical support from a large corporation.

What Is SAX, Anyway?
SAX is an API that can be used to parse XML documents. A parser is a program that
reads data a character at a time and returns manageable pieces of data. For example, a

Building XML-Based Applications

PART II
310

11 0672323419 CH08 3/15/04 11:18 AM Page 310

parser for the English language might break up a document into paragraphs, words, and
punctuation. In the case of XML, the important pieces of data include elements, attrib-
utes, text, and so on. This is what SAX does.

SAX provides a framework for defining event listeners, or handlers. These handlers are
written by developers interested in parsing documents with a known structure. The han-
dlers are registered with the SAX framework in order to receive events. Events can
include start of document, start of element, end of element, and so on. The handlers con-
tain a number of methods that will be called in response to these events. Once the han-
dlers are defined and registered, an input source can be specified and parsing can begin.

What SAX Is Not
SAX by itself is just an API, and a number of implementations are available from many
of the familiar sources. The most commonly used parsers are Xerces from the Apache
XML project and Java API for XML Processing (JAXP) from Sun Microsystems. A good
list of parsers can be found at http://www.xmlsoftware.com.

SAX was originally developed in Java, but similar implementations are available in other
languages as well. There are implementations for Perl, Python, and C++, for example. You
can find more information at http://www.megginson.com/SAX/applications.html.

Why Do I Need SAX?
If you have an XML document, at some point you will need to read it programmatically.
Let’s say you want to pull out the text from a document or maybe look for attributes of
specific tags. You might be able to do some of the work using a tool or maybe XSLT, but
these solutions have their limitations. When you need to do something more complex,
you’ll have to write a program. That’s where SAX comes in.

If you are writing a tool or a standalone program to process XML, SAX is a good way to
do it. Many applications today can be customized using an XML file. These files have
replaced the traditional “properties” files for reasons of uniformity and richness of
expression. Instead of spending a lot of your time writing a parser to read XML files,
you might as well use SAX. As mentioned earlier, SAX is completely free, so it can be
embedded in a larger application without royalty fees or even copyright notices.

Some SAX parsers can validate a document against a Document Type Definition (DTD).
Validating parsers can also tell you specifically where validation has failed. You will see
an example demonstrating how to do that in this chapter.

Parsing XML Using SAX

CHAPTER 8
311

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

11 0672323419 CH08 3/15/04 11:18 AM Page 311

SAX vs. DOM
As you know, DOM is an in-memory tree structure of an XML document or document
fragment. DOM is a natural object model of an XML document, but it’s not always prac-
tical. Large documents can take up a lot of memory. This is overkill if all you want to do
is find a small piece of data in a very large document.

SAX is, in many ways, much simpler than DOM. There is no need to model every possi-
ble type of object that can be found in an XML document. This makes the API easy to
understand and easier to use. DOM contains many interfaces, each containing many
methods. SAX is comprised of a handful of classes and interfaces. SAX is a much lower-
level API when compared with DOM. For these reasons, SAX parsers tend to be smaller
than DOM implementations. In fact, many DOM implementations use SAX parsers
under the hood to read in XML documents.

SAX is an event-based API. Instead of loading an entire document into memory all at
once, SAX parsers read documents and notify a client program when elements, text,
comments, and other data of interest are found. SAX parsers send you events continu-
ously, telling you what was found next.

The DOM parses XML in space, whereas SAX parses XML in time. In essence, the
DOM parser hands you an entire document and allows you to traverse it any way you
like. This can take a lot of memory, so SAX can be significantly more efficient for large
documents. In fact, you can process documents larger than available system memory, but
this is not possible with DOM. SAX can also be faster, because you don’t have to wait
for the entire document to be loaded. This is especially valuable when reading data over
a network.

In some cases, you might want to build your own object model of an XML document
because DOM might not describe your specific document efficiently or in the way you
would like. You could solve the problem by loading a document using DOM and translat-
ing the DOM object model into your own object model. However, this can be very ineffi-
cient, so SAX is often a better solution.

Disadvantages
SAX is not a perfect solution for all problems. For instance, it can be a bit harder to visu-
alize compared to DOM because it is an event-driven model. SAX parsing is “single
pass,” so you can’t back up to an earlier part of the document any more than you can
back up from a serial data stream. Moreover, you have no random access at all. Handling
parent/child relationships can be more challenging as well.

Building XML-Based Applications

PART II
312

11 0672323419 CH08 3/15/04 11:18 AM Page 312

Another disadvantage is that the current SAX implementations are read-only parsers.
They do not provide the ability to manipulate a document or its structure (this feature
may be added in the future). DOM is the way to go if you want to manipulate a docu-
ment in memory.

There is no formal specification for SAX. The interfaces and behavior are defined through
existing code bases. This means there is no way to validate a SAX parser or to determine
whether it works correctly. In the words of Dave Megginson, “It’s more like English
Common Law rather than the heavily codified Civil Code of ISO or W3C specifications.”

Even considering these limitations, SAX does its job well. It’s lightweight, simple, and
easy to use. If all you want to do is read XML, SAX will probably do what you need.

SAX Versions
The first version, SAX 1.0, was released in May 1998. It provided the basic functional-
ity needed to read elements, attributes, text, and to manage errors. There was also some
DTD support. The details of SAX 1.0 can be found at http://www.megginson.com/SAX/
SAX1/index.html.

The current version, SAX 2.0, was released two years later in May 2000. Many of the
SAX 2.0 interfaces are departures from SAX 1.0. Older interfaces are included, but dep-
recated, for backward compatibility. Adapters are included for using SAX 1.0 parsers
with SAX 2.0, and vice versa. SAX 2.0 also includes support for namespaces and exten-
sibility through features and properties. Documentation is improved as well.

Parsing XML Using SAX

CHAPTER 8
313

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

Note

Code examples in Java are used throughout this chapter. The source code is avail-
able on the Sams Web site. In order to compile and execute the sample code, you
will need a Java 2 development environment and possibly a make utility. You can
use just about any Java 2 development environment, such as the Software
Development Kit (SDK) freely available from Sun Microsystems (http://java.
sun.com/j2se) or an integrated environment such as Borland JBuilder.

In addition, you will need supplemental class libraries for SAX. Most of the
examples use SAX 2.0 libraries available from Dave Megginson’s site.
Alternatively, Apache Xerces includes a SAX 2.0 parser. Xerces is available at
http://xml.apache.org. Once you’ve downloaded it, simply follow the installa-
tion instructions by unpacking a zip file and adding the class libraries to your
classpath. If you still have difficulty, consult the documentation supplied with
the class libraries or Frequently Asked Questions (FAQs) .

11 0672323419 CH08 3/15/04 11:18 AM Page 313

SAX Basics
To illustrate how SAX works, let’s say you have a simple document, like this one:

<?xml version=”1.0” encoding=”UTF-8”?>
<fiction>

<book author=”Herman Melville”>Moby Dick</book>
</fiction>

If you want to parse this document using SAX, you would build a content handler by
creating a Java class that implements the ContentHandler interface in the org.xml.sax
package. Convenience adapters are available that simplify some of this.

Once you have a content handler, you simply register it with a SAX XMLReader, set up
the input source, and start the parser. Next, the methods in your content handler will be
called when the parser encounters elements, text, and other data. Specifically, the events
generated by the preceding example will look something like this:

start document
start element: fiction
start element: book (including attributes)
characters: Moby Dick
end element: book
end element: fiction
end document

As you can see, the events reported follow the content of the document in a linear sequence.
There are a number of other events that might be generated in response to processing
instructions, errors, and comments. We will look at these in the examples that follow.

SAX Packages
The SAX 2.0 API is comprised of two standard packages and one extension package.
The standard packages are org.xml.sax and org.xml.helpers. The org.xml.sax pack-
age contains the basic classes, interfaces, and exceptions needed for parsing documents.
There, you will find most of the interfaces needed to create handlers for various types of
events. We will use many of these classes and interfaces in the sample code later in this
chapter. A summary of the org.xml.sax package is shown in Table 8.1.

TABLE 8.1 The org.xml.sax Package

Name Description

Interfaces

AttributeList Deprecated. This interface has been replaced by the SAX2
Attributes interface, which includes namespace support.

Building XML-Based Applications

PART II
314

11 0672323419 CH08 3/15/04 11:18 AM Page 314

TABLE 8.1 continued

Name Description

Attributes Interface for a list of XML attributes.

ContentHandler Receives notification of the logical content of a document.

DocumentHandler Deprecated. This interface has been replaced by the SAX2
ContentHandler interface, which includes namespace sup-
port.

DTDHandler Receives notification of basic DTD-related events.

EntityResolver Basic interface for resolving entities.

ErrorHandler Basic interface for SAX error handlers.

Locator Interface for associating a SAX event with a document
location.

Parser Deprecated. This interface has been replaced by the SAX2
XMLReader interface, which includes namespace support.

XMLFilter Interface for an XML filter.

XMLReader Interface for reading an XML document using callbacks.

Classes

HandlerBase Deprecated. This class works with the deprecated
DocumentHandler interface.

InputSource A single input source for an XML entity.

Exceptions

SAXException Encapsulates a general SAX error or warning.

SAXNotRecognizedException Exception class for an unrecognized identifier.

SAXNotSupportedException Exception class for an unsupported operation.

SAXParseException Encapsulates an XML parse error or warning.

The org.xml.sax.helpers package contains additional classes that can simplify some of
your coding and make it more portable. You will find a number of adapters that imple-
ment many of the handler interfaces, so you don’t need to fill in all the methods defined
in the interfaces. Factory classes provide a mechanism for obtaining a parser independent
of the implementation. We will use many of these classes and interfaces in the sample
code later in this chapter. A summary of the org.xml.sax.helpers package is shown in
Table 8.2.

Parsing XML Using SAX

CHAPTER 8
315

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

11 0672323419 CH08 3/15/04 11:18 AM Page 315

TABLE 8.2 The org.xml.sax.helpers Package

Class Description

AttributeListImpl Deprecated. This class implements a deprecated interface,
AttributeList that has been replaced by Attributes, which is
implemented in the AttributesImpl helper class.

AttributesImpl Default implementation of the Attributes interface.

DefaultHandler Default base class for SAX2 event handlers.

LocatorImpl Provides an optional convenience implementation of Locator.

NamespaceSupport Encapsulate namespace logic for use by SAX drivers.

ParserAdapter Adapts a SAX1 Parser as a SAX2 XMLReader.

ParserFactory Deprecated. This class works with the deprecated Parser interface.

XMLFilterImpl Base class for deriving an XML filter.

XMLReaderAdapter Adapts a SAX2 XMLReader as a SAX1 Parser.

XMLReaderFactory Factory for creating an XML reader.

The org.xml.sax.ext package is an extension that is not shipped with all implementa-
tions. It contains two handler interfaces for capturing declaration and lexical events. We
will use some of these classes and interfaces in the sample code later in this chapter. A
summary of the org.xml.sax.ext package is shown in Table 8.3.

TABLE 8.3 The org.xml.sax.ext Package

Interface Description

DeclHandler SAX2 extension handler for DTD declaration events

LexicalHandler SAX2 extension handler for lexical events

SAX Implementations
As mentioned earlier, a number of SAX implementations exist. SAX implementations
include all the underlying classes needed to parse documents. The SAX API by itself
does not include these underlying classes, so you will need to obtain an implementation.
You can find a list of implementations at http://www.megginson.com/SAX/applica-
tions.html. When looking for an implementation, you might want to consider several
factors, such as version support, validating/nonvalidating, DTD/XML Schema support,
and so on.

Building XML-Based Applications

PART II
316

11 0672323419 CH08 3/15/04 11:18 AM Page 316

As in the case of DOM, several high-quality free implementations exist, so cost is not an
issue. If you want to validate documents while parsing XML, you will need a validating
SAX implementation. Most validating implementations support DTDs, and some even
support XML Schema.

In terms of performance, there is not much hard data. You might have to do some bench-
marking yourself to determine whether it’s fast enough for you. For the examples in this
chapter, we will use Xerces, developed by the Apache XML group. Xerces is a validating
parser with full support for SAX 2.0. Xerces is very popular and widely regarded as a
high-quality parser. It is freely available at http://xml.apache.org.

Working with SAX
In this section, we will explore a series of examples. The examples will exercise different
parts of the SAX API to illustrate how they are used and demonstrate how they work.

Walking Through an XML Document
Let’s look at a simple example in which we read an XML document from disk and print
out some of the contents. This example will help you understand how the SAX API
works. In this example, we will print out just the element names and the text between the
elements. The source code for SAXDemo.java is shown in Listing 8.1.

LISTING 8.1 SAXDemo.java

package com.madhu.xml;

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import javax.xml.parsers.*;

public class SAXDemo extends DefaultHandler {
public void startDocument() {

System.out.println(“***Start of Document***”);

Parsing XML Using SAX

CHAPTER 8
317

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

Note

Like the other examples in this book, the source code for these examples is
available on the Sams Web site. Details on compiling and executing the exam-
ples is contained in a file called faq.html supplied with the download.

11 0672323419 CH08 3/15/04 11:18 AM Page 317

LISTING 8.1 continued

}

public void endDocument() {
System.out.println(“***End of Document***”);

}

public void startElement(String uri, String localName,
String qName, Attributes attributes) {

System.out.print(“<” + qName);
int n = attributes.getLength();
for (int i=0; i<n; i+=1) {

System.out.print(“ “ + attributes.getQName(i) +
“=’” + attributes.getValue(i) + “‘“);

}
System.out.println(“>”);

}

public void characters(char[] ch, int start, int length) {
System.out.println(new String(ch, start, length).trim());

}

public void endElement(String namespaceURI, String localName,
String qName) throws SAXException {

System.out.println(“</” + qName + “>”);
}

public static void main(String args[]) throws Exception {
if (args.length != 1) {

System.err.println(“Usage: java SAXDemo <xml-file>”);
System.exit(1);

}

SAXDemo handler = new SAXDemo();

SAXParserFactory factory = SAXParserFactory.newInstance();

SAXParser parser = factory.newSAXParser();
parser.parse(new File(args[0]), handler);

}
}

The first thing we need to do is import the necessary packages. For this example, we will
need the org.xml.sax package and the org.xml.helpers package. In addition, we have
imported the javax.xml.parsers package. This package is part of JAXP, defined by the
Java Community Process (JCP). Although this package is outside the scope of SAX proper,

Building XML-Based Applications

PART II
318

11 0672323419 CH08 3/15/04 11:18 AM Page 318

it is helpful in locating and creating a default SAX parser. It is not absolutely required, as
you will see in later examples, but it shows one of the recommended ways of creating a
SAX parser. This package is shipped with Xerces as well as JAXP from Sun Microsystems.

Our class extends DefaultHandler in order to capture events. DefaultHandler is a con-
venience adapter class defined in org.xml.sax.helpers. It implements four interfaces:
EntityResolver, DTDHandler, ContentHandler, and ErrorHandler. We could have
implemented ContentHandler alone, but then we would be required to fill in all the
methods of ContentHandler, even if we were not interested in all the events.
DefaultHandler defines empty stub methods for all these events. That way, we are free
to fill in only the methods we are interested in. All other events are discarded.

In order to register our handler, we can create a SAXParser instance and call its parse()
method with a file and handler instance. The code to do this is located in the main()
method of the example. This uses a factory class defined in JAXP. In later examples, we
will see other ways of creating a parser and registering handlers.

In the example, we have defined five methods: startDocument(), endDocument(),
startElement(), characters(), and endElement(). These methods will be called in
response to related events, and they are defined in the ContentHandler interface, along
with a number of others. Once the parse() method is called, our methods will be called
in response to events until the end of input is reached or an error occurs. Descriptions of
all the methods defined in ContentHandler are provided in Table 8.4.

TABLE 8.4 The ContentHandler Methods

Method Description

characters() Receives notification of character data

endDocument() Receives notification of the end of a document

endElement() Receives notification of the end of an element

endPrefixMapping() Ends the scope of a prefix-URI mapping

ignorableWhitespace() Receives notification of ignorable whitespace in element content

processingInstruction() Receives notification of a processing instruction

setDocumentLocator() Receives an object for locating the origin of SAX document
events

skippedEntity() Receives notification of a skipped entity

startDocument() Receives notification of the beginning of a document

startElement() Receives notification of the beginning of an element

startPrefixMapping() Begins the scope of a prefix-URI namespace mapping

Parsing XML Using SAX

CHAPTER 8
319

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

11 0672323419 CH08 3/15/04 11:18 AM Page 319

The startElement() and endElement() methods accept several arguments: namespace
URI, local name, qualified name, and attributes. The first three are defined depending on
whether namespaces are used. The characters() method provides an array of characters
and locations where valid characters are found in the array. This is done for performance
reasons. Typically, a String can be easily created, as shown earlier.

A sample XML document, library.xml, is used for testing and is shown in Listing 8.2.

LISTING 8.2 library.xml—Sample XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE library SYSTEM “library.dtd”>
<library>

<fiction>
<book author=”Herman Melville”>Moby Dick</book>
<book author=”Zane Grey”>The Last Trail</book>

</fiction>
<biography>

<book author=”William Manchester”>
The Last Lion, Winston Spencer Churchill

</book>
</biography>
<science>

<book author=”Hecht, Zajac”>Optics</book>
</science>

</library>

To execute SAXDemo, you can enter the following command:

java com.madhu.xml.SAXDemo library.xml

This command specifies that the input file, library.xml, is located in the current direc-
tory. The output of SAXDemo is shown in Listing 8.3. It shows beginning and end of docu-
ment events, elements, and text. Note that formatting such as tabs and spaces is lost. This
happens because text is trimmed of whitespace by calling the trim() method of the
String class.

LISTING 8.3 Output from SAXDemo

Start of Document
<library>
<fiction>
<book author=’Herman Melville’>
Moby Dick
</book>
<book author=’Zane Grey’>
The Last Trail

Building XML-Based Applications

PART II
320

11 0672323419 CH08 3/15/04 11:18 AM Page 320

LISTING 8.3 continued

</book>
</fiction>
<biography>
<book author=’William Manchester’>
The Last Lion, Winston Spencer Churchill
</book>
</biography>
<science>
<book author=’Hecht, Zajac’>
Optics
</book>
</science>
</library>
End of Document

Validation
SAX parsers come in two varieties: validating and nonvalidating. Validating parsers can
determine whether an XML document is valid based on a Document Type Definition
(DTD) or Schema.

The SAX parser shipped with Apache Xerces is a validating parser. In order to use vali-
dation, you must turn it on by setting the validation feature to true. If you attempt to
turn on validation with a nonvalidating parser, a SAXNotSupportedException will be
thrown. If the parser does not recognize the feature, a SAXNotRecognizedException will
be thrown. This helps in determining whether you mistyped the feature name.

In the following example, we will write a simple program to validate an XML document.
The document is expected to include a reference to its DTD, and the DTD is expected to
be accessible. In this example, the DTD will be located on the local hard drive in the
same directory as the document itself. SAX parsers are smart enough to understand
URLs, so if an HTTP URL is specified, the parser will go out to the network to get the
DTD. Later, you will see how this automatic resolution of DTDs can be controlled in our
code. The source code for SAXValidator.java is shown in Listing 8.4.

LISTING 8.4 SAXValidator.java

package com.madhu.xml;

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class SAXValidator extends DefaultHandler {

Parsing XML Using SAX

CHAPTER 8
321

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

11 0672323419 CH08 3/15/04 11:18 AM Page 321

LISTING 8.4 continued

private boolean valid;
private boolean wellFormed;

public SAXValidator() {
valid = true;
wellFormed = true;

}

public void startDocument() {
System.out.println(“***Start of Document***”);

}

public void endDocument() {
System.out.println(“***End of Document***”);

}

public void error(SAXParseException e) {
valid = false;

}

public void fatalError(SAXParseException e) {
wellFormed = false;

}

public void warning(SAXParseException e) {
valid = false;

}

public boolean isValid() {
return valid;

}

public boolean isWellFormed() {
return wellFormed;

}

public static void main(String args[]) throws Exception {
if (args.length != 1) {

System.err.println(“Usage: java SAXValidate <xml-file>”);
System.exit(1);

}

XMLReader parser = XMLReaderFactory.createXMLReader(
“org.apache.xerces.parsers.SAXParser”);

parser.setFeature(“http://xml.org/sax/features/validation”, true);

SAXValidator handler = new SAXValidator();
parser.setContentHandler(handler);

Building XML-Based Applications

PART II
322

11 0672323419 CH08 3/15/04 11:18 AM Page 322

LISTING 8.4 continued

parser.setErrorHandler(handler);

parser.parse(new InputSource(new FileReader(args[0])));
if (!handler.isWellFormed()) {

System.out.println(“Document is NOT well formed.”);
}
if (!handler.isValid()) {

System.out.println(“Document is NOT valid.”);
}
if (handler.isWellFormed() && handler.isValid()) {

System.out.println(“Document is well formed and valid.”);
}

}
}

In this example, we will avoid the use of JAXP classes in order to create a parser.
Instead, we will use XMLReaderFactory. This is needed to set features and properties. In
order to validate the document, we will enable validation by setting the feature
http://xml.org/sax/features/validation to true. We will register an error handler
in addition to a ContentHandler. Remember that DefaultHandler implements
ErrorHandler.

ErrorHandler contains three methods that can be used to determine whether a document is
well formed and valid. A summary of the ErrorHandler methods is provided in Table 8.5.

TABLE 8.5 The ErrorHandler Methods

Method Description

error() Receives notification of a recoverable error

fatalError() Receives notification of a nonrecoverable error

warning() Receives notification of a warning

Either error() or warning() will be called if the document is well formed but not valid
(that is, it violates the rules of the DTD), and fatalError() will be called if the docu-
ment is not well formed. In this example, we will set flags for different types of errors
and report the results when parsing is finished.

We will use an invalid XML document, invalid-library.xml, for testing. The docu-
ment and referenced DTD, library.dtd, is shown in Listings 8.5 and 8.6, respectively.
If you look closely, you will notice what is wrong with the document. If you can’t find
the problem, it will become clear in the next example.

Parsing XML Using SAX

CHAPTER 8
323

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

11 0672323419 CH08 3/15/04 11:18 AM Page 323

LISTING 8.5 invalid-library.xml—Invalid XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE library SYSTEM “library.dtd”>
<library>

<fictions>
<book author=”Herman Melville”>Moby Dick</book>
<book author=”Zane Grey”>The Last Trail</book>

</fictions>
<biography>

<book author=”William Manchester”>
The Last Lion, Winston Spencer Churchill

</book>
</biography>
<science>

<book author=”Hecht, Zajac”>Optics</book>
</science>

</library>

LISTING 8.6 library.dtd—DTD File

<?xml version=”1.0” encoding=”US-ASCII”?>
<!ELEMENT library (fiction|biography|science)*>
<!ELEMENT fiction (book)+>
<!ELEMENT biography (book)+>
<!ELEMENT science (book)+>
<!ELEMENT book (#PCDATA)>
<!ATTLIST book author CDATA #REQUIRED>

The output is shown in Listing 8.7.

LISTING 8.7 Output from SAXValidator

Start of Document
End of Document
Document is NOT valid.

A number of features are defined in SAX. A detailed list can be found at
http://www.megginson.com/SAX/Java/features.html. Features are enabled by calling
the setFeature() method with the feature name and the value true. Features are dis-
abled with the value false. Here is a brief summary of SAX 2.0 features:

• http://xml.org/sax/features/namespaces

true: Performs namespace processing.

Building XML-Based Applications

PART II
324

11 0672323419 CH08 3/15/04 11:18 AM Page 324

• http://xml.org/sax/features/namespace-prefixes

true: Reports the original prefixed names and attributes used for namespace decla-
rations.

• http://xml.org/sax/features/string-interning

true: All element names, prefixes, attribute names, namespace URIs, and local
names are internalized using java.lang.String.intern.

• http://xml.org/sax/features/validation

true: Reports all validation errors (implies external-general-entities and external-
parameter-entities).

• http://xml.org/sax/features/external-general-entities

true: Includes all external general (text) entities.

• http://xml.org/sax/features/external-parameter-entities

true: Includes all external parameter entities, including the external DTD subset.

Handling Errors
Did you figure out what was wrong with the XML document in the last example? Don’t
worry if you didn’t. We’ll write a program to tell us what’s wrong. The previous example
told us the document was not valid, but it didn’t tell us where or what was not valid. The
Locator interface can give us the parse position within a ContentHandler method. The
position information includes line number and column number. It is important to note
that the Locator object should not be used in any other methods, including
ErrorHandler methods. Fortunately, ErrorHandler methods supply a
SAXParseException object that can also give us position information.

The source code for SAXErrors.java is shown in Listing 8.8.

LISTING 8.8 SAXErrors.java

package com.madhu.xml;

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class SAXErrors extends DefaultHandler {
private Locator locator;

public void startDocument() {
System.out.println(“***Start of Document***”);

Parsing XML Using SAX

CHAPTER 8
325

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

11 0672323419 CH08 3/15/04 11:18 AM Page 325

LISTING 8.8 continued

}

public void endDocument() {
System.out.println(“***End of Document***”);

}

public void setDocumentLocator(Locator inLocator) {
System.out.println(“***Got Locator***”);
locator = inLocator;
int line = locator.getLineNumber();
int column = locator.getColumnNumber();
String publicID = locator.getPublicId();
String systemID = locator.getSystemId();

System.out.println(“Line “ + line + “, column “ + column);
if (publicID != null) {

System.out.println(“Public ID “ + publicID);
}
if (systemID != null) {

System.out.println(“System ID “ + systemID);
}

}

public void printLocation(SAXParseException e) {
int line = e.getLineNumber();
int column = e.getColumnNumber();
String publicID = e.getPublicId();
String systemID = e.getSystemId();

System.out.println(“Line “ + line + “, column “ + column);
if (publicID != null) {

System.out.println(“Public ID “ + publicID);
}
if (systemID != null) {

System.out.println(“System ID “ + systemID);
}

}

public void error(SAXParseException e) {
printLocation(e);
System.out.println(“Recoverable error: “ + e.getMessage());
Exception ex = e.getException();
if (ex != null) {

System.out.println(“Embedded exception: “ + ex.getMessage());
}

}

public void fatalError(SAXParseException e) {
printLocation(e);

Building XML-Based Applications

PART II
326

11 0672323419 CH08 3/15/04 11:18 AM Page 326

LISTING 8.8 continued

System.out.println(“Non-recoverable error: “ + e.getMessage());
Exception ex = e.getException();
if (ex != null) {

System.out.println(“Embedded exception: “ + ex.getMessage());
}

}

public void warning(SAXParseException e) {
printLocation(e);
System.out.println(“Warning: “ + e.getMessage());
Exception ex = e.getException();
if (ex != null) {

System.out.println(“Embedded exception: “ + ex.getMessage());
}

}

public static void main(String args[]) throws Exception {
if (args.length != 1) {

System.err.println(“Usage: java SAXErrors <xml-file>”);
System.exit(1);

}

XMLReader parser = XMLReaderFactory.createXMLReader(
“org.apache.xerces.parsers.SAXParser”);

parser.setFeature(“http://xml.org/sax/features/validation”, true);

SAXErrors handler = new SAXErrors();
parser.setContentHandler(handler);
parser.setErrorHandler(handler);

parser.parse(new InputSource(new FileReader(args[0])));
}

}

This example is very similar to the previous example, but the ContentHandler method
setDocumentLocator() is added to obtain a Locator instance. Detailed information is
printed in the error methods.

We will use the same invalid document and DTD from the previous example for testing.
The output is shown in Listing 8.9.

LISTING 8.9 Output from SAXErrors

Got Locator
Line 1, column 1
Start of Document

Parsing XML Using SAX

CHAPTER 8
327

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

11 0672323419 CH08 3/15/04 11:18 AM Page 327

LISTING 8.9 continued

Line 4, column 12
Recoverable error: Element type “fictions” must be declared.
Line 16, column 11
Recoverable error: The content of element type “library” must match
[ic:ccc]”(fiction|biography|science)*”.
End of Document

As expected, a validation error occurs at line 4. The fictions tag should be fiction.
Another error is encountered at the ending library tag. This is caused by the same error.

Entity References
SAX parsers will resolve entity references automatically. However, there are cases when
you might want to resolve an entity reference yourself. In the following example, we will
define an entity for hardcover books. It will be referenced as &hc; and defined in our
DTD. If we use an HTTP URL to define the entity, the SAX parser will go out to the
network to resolve it. What we want to do here is resolve the entity using a local file. We
can accomplish this using an EntityResolver. The source code for SAXEntity.java is
shown in Listing 8.10.

LISTING 8.10 SAXEntity.java

package com.madhu.xml;

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class SAXEntity extends DefaultHandler {
public SAXEntity() {
}

public void startDocument() {
System.out.println(“***Start of Document***”);

}

public void endDocument() {
System.out.println(“***End of Document***”);

}

public void startElement(String uri, String localName,
String qName, Attributes attributes) {

System.out.print(“<” + qName);

Building XML-Based Applications

PART II
328

11 0672323419 CH08 3/15/04 11:18 AM Page 328

LISTING 8.10 continued

int n = attributes.getLength();
for (int i=0; i<n; i+=1) {

System.out.print(“ “ + attributes.getQName(i) +
“=’” + attributes.getValue(i) + “‘“);

}
System.out.println(“>”);

}

public void characters(char[] ch, int start, int length) {
System.out.println(new String(ch, start, length).trim());

}

public void endElement(String namespaceURI, String localName,
String qName) throws SAXException {

System.out.println(“</” + qName + “>”);
}

public InputSource resolveEntity(String publicId, String systemId) {
try {

if (systemId.equals(“http://www.madhu.com/xml/hardcover.txt”)) {
return new InputSource(

new FileReader(“hardcover.txt”));
}

} catch (IOException e) {
}
return null; // for default behavior

}

public static void main(String args[]) throws Exception {
if (args.length != 1) {

System.err.println(“Usage: java SAXEntity <xml-file>”);
System.exit(1);

}

XMLReader parser = XMLReaderFactory.createXMLReader(
“org.apache.xerces.parsers.SAXParser”);

parser.setFeature(“http://xml.org/sax/features/validation”, true);

SAXEntity handler = new SAXEntity();
parser.setContentHandler(handler);
parser.setEntityResolver(handler);

parser.parse(new InputSource(new FileReader(args[0])));
}

}

Parsing XML Using SAX

CHAPTER 8
329

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

11 0672323419 CH08 3/15/04 11:18 AM Page 329

EntityResolver is also implemented by DefaultHandler. EntityResolver contains
only one method, resolveEntity(), which will be called with the system ID and public
ID, depending on how the entity is defined. Once we determine what the entity is, we
must return an InputSource pointing to where the entity resides.

InputSource is a class defined in package org.xml.sax. InputSource can be created
given an InputStream or Reader. If an entity with our ID is referenced, we will return an
InputSource pointing to a local file named hardcover.txt. In all other cases, null is
returned, meaning use the default behavior and resolve all other entities automatically.

We will use an XML document that uses the hardcover entity, entity-ref.xml, for test-
ing. The document and referenced DTD, library.dtd, is shown in Listings 8.11 and
8.12, respectively.

LISTING 8.11 entity-ref.xml—XML Document with Entity Reference

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE library SYSTEM “library.dtd”>
<library>

<fiction>
<book author=”Herman Melville”>Moby Dick</book>
<book author=”Zane Grey”>The Last Trail</book>

</fiction>
<biography>

<book author=”William Manchester”>
The Last Lion, Winston Spencer Churchill &hc;

</book>
</biography>
<science>

<book author=”Hecht, Zajac”>Optics &hc;</book>
</science>

</library>

LISTING 8.12 library.dtd—DTD with Entity Reference Definition

<?xml version=”1.0” encoding=”US-ASCII”?>
<!ELEMENT library (fiction|biography|science)*>
<!ELEMENT fiction (book)+>
<!ELEMENT biography (book)+>
<!ELEMENT science (book)+>
<!ELEMENT book (#PCDATA)>
<!ATTLIST book author CDATA #REQUIRED>
<!ENTITY hc SYSTEM “http://www.madhu.com/xml/hardcover.txt”>

The output is shown in Listing 8.13.

Building XML-Based Applications

PART II
330

11 0672323419 CH08 3/15/04 11:18 AM Page 330

LISTING 8.13 Output from SAXEntity

Start of Document
<library>
<fiction>
<book author=’Herman Melville’>
Moby Dick
</book>
<book author=’Zane Grey’>
The Last Trail
</book>
</fiction>
<biography>
<book author=’William Manchester’>
The Last Lion, Winston Spencer Churchill
(hardcover)

</book>
</biography>
<science>
<book author=’Hecht, Zajac’>
Optics
(hardcover)
</book>
</science>
</library>
End of Document

Parsers can skip entities if they are nonvalidating or if entity features are set to false. In
either case, the skippedEntity() method defined in ContentHandler will be called with
the name of the entity.

Lexical Events
You saw earlier how to capture basic events, such as elements and characters, but what
about comments, CDATA, and DTD references? We can receive these events as well using
an extension interface called LexicalHandler. LexicalHandler is part of the
org.xml.sax.ext package, which is not necessarily supported by all SAX implementa-
tions. Xerces, of course, provides support for the extension package.

The source code for SAXLexical.java is shown in Listing 8.14.

LISTING 8.14 SAXLexical.java

package com.madhu.xml;

import java.io.*;
import org.xml.sax.*;

Parsing XML Using SAX

CHAPTER 8
331

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

11 0672323419 CH08 3/15/04 11:18 AM Page 331

LISTING 8.14 continued

import org.xml.sax.ext.*;
import org.xml.sax.helpers.*;

public class SAXLexical extends DefaultHandler implements LexicalHandler {
public SAXLexical() {
}

public void startDocument() {
System.out.println(“***Start of Document***”);

}

public void endDocument() {
System.out.println(“***End of Document***”);

}

public void startElement(String uri, String localName,
String qName, Attributes attributes) {

System.out.print(“<” + qName);
int n = attributes.getLength();
for (int i=0; i<n; i+=1) {

System.out.print(“ “ + attributes.getQName(i) +
“=’” + attributes.getValue(i) + “‘“);

}
System.out.println(“>”);

}

public void characters(char[] ch, int start, int length) {
System.out.println(new String(ch, start, length).trim());

}

public void endElement(String namespaceURI, String localName,
String qName) throws SAXException {

System.out.println(“</” + qName + “>”);
}

public void startDTD(String name, String publicId,
String systemId) throws SAXException {

System.out.print(“*** Start DTD, name “ + name);
if (publicId != null) {

System.out.print(“ PUBLIC “ + publicId);
}
if (systemId != null) {

System.out.print(“ SYSTEM “ + systemId);
}
System.out.println(“ ***”);

}

Building XML-Based Applications

PART II
332

11 0672323419 CH08 3/15/04 11:18 AM Page 332

LISTING 8.14 continued

public void endDTD() throws SAXException {
System.out.println(“*** End DTD ***”);

}

public void startEntity(String name) throws SAXException {
System.out.println(“*** Start Entity “ + name + “ ***”);

}

public void endEntity(String name) throws SAXException {
System.out.println(“*** End Entity “ + name + “ ***”);

}

public void startCDATA() throws SAXException {
System.out.println(“*** Start CDATA ***”);

}

public void endCDATA() throws SAXException {
System.out.println(“*** End CDATA ***”);

}

public void comment(char[] ch, int start, int length)
throws SAXException {

System.out.println(“<!— “ +
new String(ch, start, length) + “ —>”);

}

public static void main(String args[]) throws Exception {
if (args.length != 1) {

System.err.println(“Usage: java SAXLexical <xml-file>”);
System.exit(1);

}

XMLReader parser = XMLReaderFactory.createXMLReader(
“org.apache.xerces.parsers.SAXParser”);

parser.setFeature(“http://xml.org/sax/features/validation”, true);

SAXLexical handler = new SAXLexical();
parser.setContentHandler(handler);
parser.setProperty(“http://xml.org/sax/properties/lexical-handler”,

handler);

parser.parse(new InputSource(new FileReader(args[0])));
}

}

Parsing XML Using SAX

CHAPTER 8
333

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

11 0672323419 CH08 3/15/04 11:18 AM Page 333

Notice that we are explicitly implementing LexicalHandler. This is necessary because
DefaultHandler does not implement LexicalHandler. We must fill in all methods of
LexicalHandler whether we are interested in them or not. That’s just the way interfaces
work. The methods for LexicalHandler are listed in Table 8.6.

TABLE 8.6 The LexicalHandler Methods

Method Description

comment() Reports an XML comment anywhere in the document

endCDATA() Reports the end of a CDATA section

endDTD() Reports the end of DTD declarations

endEntity() Reports the end of an entity

startCDATA() Reports the start of a CDATA section

startDTD() Reports the start of DTD declarations, if any

startEntity() Reports the beginning of some internal and external XML entities

In the main() method, notice that in order to register a lexical handler, we must call
setProperty(). This is different from the standard handlers because LexicalHandler is
an extension. If a method in the standard API includes a reference to LexicalHandler, it
will not compile unless the extension package is included. The setProperty() method
accepts a String property name and an Object property. This avoids the direct reference
to LexicalHandler in the API. The property, in this case, is the handler itself.

A sample XML document, comment.xml, is used for testing and is shown in Listing 8.15.

LISTING 8.15 comment.xml—Sample XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE library SYSTEM “library.dtd”>

<!— A short list of books in a library —>

<library>
<fiction>

<book author=”Herman Melville”>Moby Dick</book>
<book author=”Zane Grey”>The Last Trail</book>

</fiction>
<biography>

<book author=”William Manchester”>
The Last Lion, Winston Spencer Churchill

</book>
</biography>
<science>

Building XML-Based Applications

PART II
334

11 0672323419 CH08 3/15/04 11:18 AM Page 334

LISTING 8.15 continued

<book author=”Hecht, Zajac”>Optics</book>
</science>

</library>

The output is shown in Listing 8.16.

LISTING 8.16 Output from SAXLexical

Start of Document
*** Start DTD, name library SYSTEM library.dtd ***
*** Start Entity [dtd] ***
*** End Entity [dtd] ***
*** End DTD ***
<!— A short list of books in a library —>
<library>
<fiction>
<book author=’Herman Melville’>
Moby Dick
</book>
<book author=’Zane Grey’>
The Last Trail
</book>
</fiction>
<biography>
<book author=’William Manchester’>
The Last Lion, Winston Spencer Churchill
</book>
</biography>
<science>
<book author=’Hecht, Zajac’>
Optics
</book>
</science>
</library>
End of Document

Notice the DTD and entity references in the beginning and the comment immediately
following the DTD events.

Parsing XML Using SAX

CHAPTER 8
335

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

Case Study: Parsing Web Pages

Thus far, you have seen lots of examples of how to use SAX. Now let’s look at a
practical example where we can put it to use. The U.S. Census Bureau conducts
a survey of all residents and businesses in the U.S. every 10 years. The product

11 0672323419 CH08 3/15/04 11:18 AM Page 335

Building XML-Based Applications

PART II
336

of this survey is a vast quantity of information on everything from population
and salaries to retail sales and education. The information is primarily used by
the government for zoning and redistricting, but it has many uses in the private
sector as well.

Historically, the census was recorded on paper. In the late 1800s, it was pro-
jected that the population of the U.S. had grown to such a point that more
than 10 years would have been required to process and tabulate all the data!
As soon as the census data was tabulated, it would have become obsolete and a
new census would be required. The problem was solved by inventor Herman
Hollerith, who devised a scheme of punching holes in paper that could be tabu-
lated quickly using a machine. This was the first punch-card machine. Hollerith
founded the Tabulating Machine Company in 1896, which, after mergers and
acquisitions, grew into International Business Machines (IBM).

Because the census is conducted by the federal government and paid for by
public funds, the information is available to the public free of charge. In fact, it
is available on the U.S. Census Web site (probably stored in an IBM database!).
The problem is that the data is prepared for human consumption in HTML,
which is not easily digested by databases.

The census has a site dedicated to state and county quick facts. It can be found
at http://quickfacts.census.gov/qfd/index.html. This site contains just a
small portion of the data compiled by the Census Bureau, but it’s still a lot of
data! It would be useful to grab this data and reformat it so that it can be bulk-
loaded into a database. Once the data is in a database, we can perform inter-
esting queries on people, businesses, and geography.

This is where SAX fits in. What we need to do is write a program that parses
these Web pages and pulls out the important information. There are, in fact,
hundreds of pages of information, because there is data on every state and
every county in every state. For our case study, we will just collect the data for
each state. The program can easily be extended to collect data for each county
as well.

As you are probably aware, common HTML is usually not well formed. So it is
not possible to use standard SAX parsers such as Xerces. Fortunately, Anders
Kristensen has developed HTML Enabled XML Parser (HEX) for just this purpose.
HEX is a SAX 1.0 parser that accepts HTML and tolerates all its problems. HEX
can be found at http://www-uk.hpl.hp.com/people/sth/java/hex.html.

The Census Quick Facts Web pages are organized in a hierarchy. The home page
contains links to state pages, and each state page contains links to county

11 0672323419 CH08 3/15/04 11:18 AM Page 336

Parsing XML Using SAX

CHAPTER 8
337

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

pages. What we need to do is first parse the home page, grab the links for the
state pages, and then parse each state page. The home page and the state
pages are formatted differently, so there are different content handlers for
each. The source code for the main class, Spider.java, is shown in Listing 8. 17.

LISTING 8.17 Spider.java

package com.madhu.spider;

import java.io.*;
import java.util.*;
import java.net.*;

import org.xml.sax.*;
import hplb.xml.Tokenizer;

public class Spider {
private int numberOfStates;
private PrintWriter out;

public void process(String nStates, String outFile)
throws Exception {

numberOfStates = Integer.parseInt(nStates);
out = new PrintWriter(new FileWriter(outFile));
processUSA();
out.close();

}

public void processUSA() throws Exception {
USAHandler usa = new USAHandler();
Tokenizer t = new Tokenizer();
t.setDocumentHandler(usa);
t.setErrorHandler(usa);
URL u = new URL(“http://quickfacts.census.gov/qfd/index.html”);
InputStream is = u.openStream();
t.parse(is);
is.close();

int nStates = numberOfStates;
Iterator it = usa.getStateNames();
while (it.hasNext() && nStates— > 0) {

String state = (String) it.next();
String url = “http://quickfacts.census.gov” +

usa.getStateURI(state);
processState(state, url);

}

11 0672323419 CH08 3/15/04 11:18 AM Page 337

Building XML-Based Applications

PART II
338

LISTING 8.17 continued

}

public void processState(String state, String url)
throws Exception {

StateHandler st = new StateHandler();
Tokenizer t = new Tokenizer();
t.setDocumentHandler(st);
t.setErrorHandler(st);
URL u = new URL(url);
InputStream is = u.openStream();
t.parse(is);
is.close();

System.out.println(state);
out.print(“\”” + state + “\””);
ArrayList dataList = st.getDataList();
int n = dataList.size();
for (int i=0; i<n; i+=1) {

String[] data = (String[]) dataList.get(i);
out.print(“, \”” + data[1] + “\””);

}
out.println();

}

public static void main(String args[]) throws Exception {
if (args.length != 2) {

System.err.println(
“Usage: java Spider <# of states> <out-file>”);

System.exit(1);
}
Spider m = new Spider();
m.process(args[0], args[1]);

}
}

When compiling this code, make sure there are no other SAX class libraries in
your classpath. HEX includes classes in the same package as other SAX parsers,
so a name conflict might arise. Make certain that you have not placed Xerces or
other SAX APIs in your java/jre/lib/ext directory, because these classes are
automatically added to your classpath.

The API for HEX is slightly different from SAX, but the principles are the same.
Spider creates a Tokenizer (similar to XMLReader) and registers a handler,
USAHandler, for the home page. This handler grabs the names of each state and
the links to each state page.

11 0672323419 CH08 3/15/04 11:18 AM Page 338

Parsing XML Using SAX

CHAPTER 8
339

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

Once this is done, a StateHandler is registered and input is accepted from the
state Web pages. This is done for each state Web page. The output is stored in a
text file named as a command-line parameter.

The source code for USAHandler.java is shown in Listing 8.18.

LISTING 8.18 USAHandler.java

package com.madhu.spider;

import java.io.*;
import java.util.*;

import org.xml.sax.*;
import hplb.xml.Tokenizer;

public class USAHandler extends HandlerBase {
private HashMap linkMap;
private String actionURL;
private String stateParamName;
private boolean grabText;
private String statePage;
private String optionText;
private String url;

public USAHandler() {
linkMap = new HashMap(75);
grabText = false;

}

public void startElement(String name, AttributeMap atts) {
if (name.equalsIgnoreCase(“form”)) {

actionURL = atts.getValue(“ACTION”);
return;

}
if (name.equalsIgnoreCase(“SELECT”)) {

stateParamName = atts.getValue(“NAME”);
url = actionURL + “?” + stateParamName + “=”;
return;

}
if (name.equalsIgnoreCase(“OPTION”)) {

statePage = atts.getValue(“value”);
if (statePage == null) {

statePage = atts.getValue(“VALUE”);
}
grabText = true;
return;

}

11 0672323419 CH08 3/15/04 11:18 AM Page 339

Building XML-Based Applications

PART II
340

LISTING 8.18 continued

}

public void characters(char ch[], int start, int length)
throws Exception {

if (grabText) {
String text = new String(ch, start, length);
text = text.replace(‘\n’, ‘ ‘);
text = text.replace(‘\r’, ‘ ‘);
optionText = text.trim();
linkMap.put(optionText, statePage);

}
}

public void endElement(String name) {
grabText = false;

}

public void warning(String message, String systemID,
int line, int column) throws Exception {

// ignore errors
}

public Iterator getStateNames() {
return linkMap.keySet().iterator();

}

public String getStateURI(String state) {
String htmlPage = (String) linkMap.get(state);
if (htmlPage == null) {

return null;
}
return url + htmlPage;

}
}

The home page contains an HTML form with a drop-down list in a form for
each state. USAHandler grabs the ACTION attribute from the form, which is
needed to get the state pages. It also grabs the state names and values from
the drop-down list.

StateHandler does the real work of collecting the raw data. Each state Web page
contains three tables with information on people, businesses, and geography.
StateHandler grabs the data in each of these tables and puts it all in an array list.
Spider takes this list and pulls out the state data, formats it, and writes it out to a
file. The source code for StateHandler.java is shown in listing 8.19.

11 0672323419 CH08 3/15/04 11:18 AM Page 340

Parsing XML Using SAX

CHAPTER 8
341

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

LISTING 8.19 StateHandler.java

package com.madhu.spider;

import java.io.*;
import java.util.*;

import org.xml.sax.*;
import hplb.xml.Tokenizer;

public class StateHandler extends HandlerBase {
public static final int MAX_COLUMNS = 3;

private HashMap linkMap;
private ArrayList dataList;

private String actionURL;
private String countyParamName;
private String countyPage;
private String optionText;
private String url;

private boolean grabOptionText;
private boolean grabTable;
private String[] row;
private int columnIndex;

public StateHandler() {
linkMap = new HashMap(75);
dataList = new ArrayList(100);
grabOptionText = false;
row = new String[MAX_COLUMNS];
columnIndex = -1;
grabTable = false;

}

public void startElement(String name, AttributeMap atts) {
if (name.equalsIgnoreCase(“form”)) {

actionURL = atts.getValue(“ACTION”);
return;

}
if (name.equalsIgnoreCase(“SELECT”)) {

countyParamName = atts.getValue(“NAME”);
url = actionURL + “?” + countyParamName + “=”;
return;

}
if (name.equalsIgnoreCase(“OPTION”)) {

countyPage = atts.getValue(“value”);
if (countyPage == null) {

11 0672323419 CH08 3/15/04 11:18 AM Page 341

Building XML-Based Applications

PART II
342

LISTING 8.19 continued

countyPage = atts.getValue(“VALUE”);
}
grabOptionText = true;
return;

}
if (grabTable && name.equalsIgnoreCase(“TR”)) {

columnIndex = 0;
}

}

public void characters(char ch[], int start, int length)
throws Exception {

String text = new String(ch, start, length);
text = text.replace(‘\n’, ‘ ‘);
text = text.replace(‘\r’, ‘ ‘);
text = text.trim();
if (text.length() == 0) {

return;
}
if (grabOptionText) {

grabOptionText = false;
optionText = text;
linkMap.put(optionText, countyPage);

}
if (text.equals(“People QuickFacts”) ||

text.equals(“Business QuickFacts”) ||
text.equals(“Geography QuickFacts”)) {

grabTable = true;
}
if (columnIndex >= 0 && columnIndex < MAX_COLUMNS) {

row[columnIndex++] = text;
}
if (columnIndex == MAX_COLUMNS) {

columnIndex = -1;
dataList.add(row);
row = new String[MAX_COLUMNS];

}
}

public void endElement(String name) {
grabOptionText = false;
if (name.equalsIgnoreCase(“table”)) {

grabTable = false;
}

11 0672323419 CH08 3/15/04 11:18 AM Page 342

Parsing XML Using SAX

CHAPTER 8
343

8

P
A

R
SIN

G
X

M
L

U
SIN

G
SA

X

LISTING 8.19 continued

}

public void warning(String message, String systemID,
int line, int column) throws Exception {

// ignore errors
}

public Iterator getCountyNames() {
return linkMap.keySet().iterator();

}

public String getCountyURI(String state) {
String htmlPage = (String) linkMap.get(state);
if (htmlPage == null) {

return null;
}
return url + htmlPage;

}

public ArrayList getDataList() {
return dataList;

}
}

The program will take some time to run completely, depending on your
Internet connection. What comes out is a file with one row for each state con-
taining data on that state. The data is all quoted, so it can be easily bulk-loaded
into most databases.

As mentioned earlier, the program can be extended to collect information on
each county in every state. This is quite a bit of data, but it will contain a lot of
interesting information on specific regions of the U.S. To collect county informa-
tion, another handler, similar to StateHandler, can be created that parses data
from the county Web pages. Fortunately, StateHandler also grabs the links for
the counties, so a lot of the work is already done.

The output is shown in Listing 8.20. Note that the output is comma separated,
which is acceptable by any database. Many databases now accept XML as an
input format for bulk loading. XML format is also attractive for further process-
ing or reformatting using XSLT. The program can be easily modified to produce
valid XML by changing the print statements. Making other adjustments, such
as removing percent symbols and commas in large numbers, might be a good
idea also. These modifications are left as an exercise for you, the reader.

11 0672323419 CH08 3/15/04 11:18 AM Page 343

Summary
SAX is an easy-to-use API for parsing XML data. It’s available in source and binary
form free of charge. SAX has become one of the most popular tools for parsing XML
due to its ease of use and widespread availability.

Unlike DOM, SAX is an event-based parser. SAX reads XML serially and generates
events when elements, text, comments and other data are found. To use SAX, you
simply extend or implement the relevant handler (DefaultHandler will work in most
cases) and register it. Once this is done, the parser is pointed to an XML source and
parsing can begin.

The event-based parsing scheme used by SAX does not solve all problems. It is not pos-
sible to traverse a document at random or modify a document’s structure. Even still,
SAX solves a large class of XML parsing problems easily and efficiently.

Building XML-Based Applications

PART II
344

LISTING 8.20 Output from Spider

“Utah”, “2,233,169”, “29.6%”, “9.4%”, “32.2%”, “8.5%”, “89.2%”, “0.8%”,
“Maryland”, “5,296,486”, “10.8%”, “6.7%”, “25.6%”, “11.3%”, “64.0%”,
“New Mexico”, “1,819,046”, “20.1%”, “7.2%”, “28.0%”, “11.7%”, “66.8%”,
“North Carolina”, “8,049,313”, “21.4%”, “6.7%”, “24.4%”, “12.0%”,
“Washington”, “5,894,121”, “21.1%”, “6.7%”, “25.7%”, “11.2%”, “81.8%”,
. . .

11 0672323419 CH08 3/15/04 11:18 AM Page 344

IN THIS CHAPTER

• XSL Technologies 346

• XSLT for Document Publishing 347

• XSL for Business-to-Business (B2B)
Communication 371

• XSL Formatting Objects 377

• Web Application Integration: Java
Servlets, XSLT, and XSL-FO 399

9
C

H
A

PT
ER

Transforming XML
with XSL

12 0672323419 CH09 3/15/04 11:18 AM Page 345

XML is quickly becoming an integral component of enterprise applications. XML pro-
vides a vendor-independent, data-exchange mechanism used among applications or com-
panies. Within the same industry, standard XML vocabularies have been developed to
describe common business processes, such as purchase orders and parts requisition.
However, there are times when we’d like to convert XML data to a different format. For
example, if a supplier provides a list of parts as an XML document, we might like to
convert the XML document to use a different set of elements that are supported by our
internal applications. The XML Stylesheet Language (XSL) solves this problem of docu-
ment conversion.

This chapter contains complete examples that utilize the XSL technology for document
publishing and B2B communication.

XSL Technologies
XSL has two independent languages:

• The XSL Transformation Language (XSLT)

• The XSL Formatting Object Language (XSL-FO)

XSLT is used to convert an XML document to another format. XSL-FO provides a way
of describing the presentation of an XML document. Both technologies use a supporting
XML technology, XPath. XPath defines a standard mechanism for accessing elements
within a document. See Chapter 5, “The X-Files: XLink, XPath, and XPointer,” for more
information on XPath.

We’ll start with XSLT and cover the details of XSL-FO later in the chapter.

This chapter illustrates the practical features of XSLT that are commonly used on devel-
opment projects. If you would like to view the XLST specification, visit http://www.w3.
org/TR/xslt.

In this chapter, you will learn how to

• Create XSL style sheets

• Perform client-side XSLT processing with XSL-enabled browsers

• Perform server-side XSLT processing with Active Server Pages and JavaServer
Pages

• Retrieve data from XML documents using XSLT and XPath

• Convert XML documents to HTML

• Convert XML documents to other XML formats

Building XML-Based Applications

PART II
346

12 0672323419 CH09 3/15/04 11:18 AM Page 346

• Generate PDF documents with XSL-FO

• Integrate XSLT and XSL-FO with Java servlets

XSLT for Document Publishing
XSL technology has an important role in the field of document publishing. Imagine, for
example, that we have an XML document for a list of books. We would like to publish
this document in various formats. Using XSL, we can convert the book list to an HTML
file, PDF document, or other format. The key to this example is the XML document,
which serves as a single data source. By applying an XSL style sheet, we render a new
view of the data. The development of multiple style sheets allows us to have multiple
views of the same data. This approach provides a clean separation of the data (the XML
document) and the view (the XSL style sheet). We’ll implement the book list example in
this chapter.

We can also extend this example to support wireless Internet clients. A growing number of
mobile phones and PDAs support the Wireless Application Protocol (WAP). These WAP-
enabled devices contain a minibrowser for rendering Wireless Markup Language (WML)
documents. To support the wireless Internet clients, all we have to do is design an appro-
priate XSL style sheet to convert the XML document to WML. No modifications are
required to the original XML document. This process is illustrated in Figure 9.1.

Transforming XML with XSL

CHAPTER 9
347

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

HTML

PDF
XML

<booklist>
 ...
 ...
 ...
</booklist>

WML

FIGURE 9.1
Publishing docu-
ments with XSLT.

12 0672323419 CH09 3/15/04 11:18 AM Page 347

XSLT provides the mechanism for converting an XML document to another format. This
is accomplished by applying an XSLT style sheet to the XML document. The style sheet
contains conversion rules for accessing and transforming the input XML document to a
different output format. An XSLT processor is responsible for applying the rules defined
in the style sheet to the input XML document. The process is illustrated in Figure 9.2.

Building XML-Based Applications

PART II
348

XSLT
Processor

XML
Document

XML
Document

Output

XSL
Style Sheet

FIGURE 9.2
Sending data
to the XSLT
processor.

Later in the chapter, implementation details are provided on how to construct the XSL
style sheet and apply the conversion rules with an XSLT processor.

Note

All of the source code in this chapter is available at the Sams Web site. You can
download the code and extract it to a directory on your file system. The remain-
der of this chapter will use <install_dir> as the root location where you
installed the code. Here’s a description of the source code directories:

Directory Description

ch9_xsl\browser_demo Sample code for client-side XSLT
processing

ch9_xsl\public_html Sample code for server-side XSLT
processing (ASP and JSP)

ch9_xsl\public_html\WEB-INF Support files for JSP

ch9_xsl\b2b Sample code for B2B (covered later in
the chapter)

ch9_xsl\xsl_fo Sample code for XSL-FO (covered later
in the chapter)

12 0672323419 CH09 3/15/04 11:18 AM Page 348

Getting Started with XSLT
In the next example we’ll convert an XML document to an HTML document. The XML
document contains a list of books, as shown is Listing 9.1.

LISTING 9.1 <install_dir>\ch9_xsl\browser_demo\book.xml

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”book_view.xsl”?>

<book>
<author>Michael Daconta et al</author>
<title>XML Development with Java 2</title>
<category>Java</category>
<price currency=”USD”>44.99</price>
<summary>

XML Development with Java 2 provides the information
and techniques a Java developer will need to integrate
XML into Java-based applications.

</summary>
</book>

The desired output of the HTML table is shown in Figure 9.3.

Transforming XML with XSL

CHAPTER 9
349

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

FIGURE 9.3
Converting
book.xml to an
HTML table.

Creating the XML Document
The XML document, book.xml, contains elements for the author, title, price, summary,
and category. Listing 9.2 has the complete code for book.xml.

LISTING 9.2 <install_dir>\ch9_xsl\browser_demo\book.xml

<?xml version=”1.0”?>

<book>
<author>Michael Daconta et al</author>
<title>XML Development with Java 2</title>

12 0672323419 CH09 3/15/04 11:18 AM Page 349

LISTING 9.2 continued

<category>Java</category>
<price currency=”USD”>44.99</price>
<summary>

XML Development with Java 2 provides the information
and techniques a Java developer will need to integrate
XML into Java-based applications.

</summary>
</book>

In this example, we will apply the style sheet in a client-side Web browser. The XML
document makes a reference to a style sheet using the following code:

<?xml-stylesheet type=”text/xsl” href=”book_view.xsl”?>

Creating the XSL Style Sheet
The next step is to create the XSL style sheet. XSL style sheets are XML documents; as
a result, they must be well formed. An XSL style sheet has the following general struc-
ture:

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”URI” version=”1.0”>

<!--XSL-T CONVERSION RULES-->

</xsl:stylesheet>

The <xsl:stylesheet> element defines how the XSLT processor should process the cur-
rent XSL document. The xmlns attribute is the namespace definition. The XSL
Transformation engine reads the xmlns attribute and determines whether it supports the
given namespace. The xmlns attribute specifies the XSL prefix. All XSL elements and
types in the document use the prefix.

The xmlns attribute value contains a Uniform Resource Identifier (URI), which serves as
a generic method for identifying entities on the World Wide Web. It is important to note
that the XSLT processor will not connect to the URI; it simply compares the URI against
a collection of URIs that it supports.

The XSLT 1.0 specification defines the following URI for the XSL namespace:

http://www.w3.org/1999/XSL/Transform

The “1999” in the URI indicates the year the URI was allocated by the World Wide Web
Consortium (W3C). It does not relate to the version of XSLT that is being used. The
XSLT version reference is specified using the version attribute of the <xsl:stylesheet>
element. The version attribute is required.

Building XML-Based Applications

PART II
350

12 0672323419 CH09 3/15/04 11:18 AM Page 350

The XSL style sheet contains HTML text and XSL elements. The HTML text forms the
basis of the desired output page. The XSL elements are template rules for the XSLT
processor. A template is associated with a given element in the XML document. In our
example, a template is defined to match on the <book> element using the following code:

<xsl:template match=”/book”>

<!--static text and xsl rules -->

</xsl:template>

XSLT defines the <xsl:value-of> element for retrieving data from a XML document.
The <xsl:value-of> element contains a select attribute. This attribute value is the
name of the actual XML element you want to retrieve. For example, the following code
will retrieve the title of the book:

<xsl:value-of select=”title” />

Now let’s create the file book_view.xsl. This style sheet will create an HTML page that
contains information about the book, which is stored in the file book.xml. The style sheet
contains the basic format of an HTML page and uses XSL elements to retrieve the data.
Currently, the XSL elements are merely placeholders in the document. Once an XSL
processor accesses the XSL style sheet, the processor executes the XSL elements and
replaces them with the appropriate data from the XML document. Listing 9.3 contains
the complete code for book_view.xsl.

LISTING 9.3 <install_dir>\ch9_xsl\browser_demo\book_view.xsl

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:template match=”/book”>
<html><body>

Title: <xsl:value-of select=”title” />
<p/>
By: <xsl:value-of select=”author” />
<p/>
Cost: <xsl:value-of select=”price” />
<p/>
Category: <xsl:value-of select=”category” />
<p/>
Description
<p/>
<i><xsl:value-of select=”summary” /></i>

Transforming XML with XSL

CHAPTER 9
351

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:18 AM Page 351

LISTING 9.3 continued

</body></html>
</xsl:template>
</xsl:stylesheet>

The Missing Piece: The XSLT Processor
So far, we’ve developed the XML document and the XSL style sheet. Now we need an
XSLT processor to generate the output document, as shown in Figure 9.2.

XSLT processors are widely available. When you select an XSLT processor, you must
ensure that it is fully compliant with the XSLT 1.0 specification. Table 9.1 contains a list
of the most popular XSLT 1.0–compliant processors.

TABLE 9.1 XSLT 1.0 Processors

Company Product Web Site

Apache Xalan-J 1.2.2 xml.apache.org

Microsoft MS XML Parser 3.0 msdn.microsoft.com

Sun Microsystems JAXP 1.1 java.sun.com/xml

James Clark XT www.jclark.com/xml/

Many other XSLT processors are available at www.xslt.com. The main difference
between the various processors is the programming language supported. For example,
the parsers from Apache, Sun Microsystems, and James Clark provide a Java API. The
Microsoft parser provides an API for Visual Basic and Visual C++. The Apache parser
also provides a C++ API; however, development on the C++ version of Xalan has been
suspended.

Two techniques are available for performing the XSLT processing: client-side processing
and server-side processing.

Client-side XSLT processing commonly occurs in a Web browser. The Web browser
includes an XSLT processor and retrieves the XML document and XSL style sheet, as
shown in Figure 9.4.

The client-side technique offloads the XSLT processing to the client machine. This mini-
mizes the workload on the Web server. However, the disadvantage is that the Web
browser must provide XSLT support. At the time of this writing, Netscape Communi-
cator 6 and Microsoft Internet Explorer 6 support the XSLT 1.0 specification.

Building XML-Based Applications

PART II
352

12 0672323419 CH09 3/15/04 11:18 AM Page 352

Microsoft Internet Explorer 5.x has very limited support for XSLT 1.0. The previous ver-
sion of the Netscape browser, 4.x, provides no support for XSLT.

Transforming XML with XSL

CHAPTER 9
353

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

XSLT
Processor

XML
Document

XSL
Style Sheet

Web Server

Title: XML Development with Java 2
By: Michael Daconta et al
Cost: 44.99
Category: Java
Description
XML Development with Java 2
provides the info

Web BrowserFIGURE 9.4
Processing XSLT
in a Web browser.

Note

Microsoft Internet Explorer 5.x provides very limited support for XSLT 1.0. A num-
ber of XSLT elements are not supported, such as <xsl:sort>, <xsl:if>, and
<xsl:number>, among others. Also, the browsers use http://www.w3.org/TR/WD-
xsl for the XSL namespace. This is not compatible with the XSLT 1.0 specification.

Microsoft provides a service pack for IE 5.x that includes Microsoft XML Parser
3.0, which supports the XSLT 1.0 specification. This service pack is available at
http://msdn.microsoft.com.

However, it’s recommended that you upgrade to IE 6.0 because it is fully XSLT
1.0 compliant.

The exercises in this chapter assume that you have a browser that adheres to
the XSLT 1.0 specification.

The client-side technique is applicable when you’re deploying an application in a con-
trolled environment. For example, in a corporate environment, the system administrators
can install the latest version of the Web browser that conforms to the XSLT 1.0 specifica-
tion. Implementation details for client-side XSLT processing are provided later in this
chapter.

If you are deploying the application on an extranet or the Internet, you will probably
have little control over the type/version of browser installed on the client machines. If
this is the case, you should implement the server-side technique.

12 0672323419 CH09 3/15/04 11:18 AM Page 353

Server-side XSLT processing occurs on the Web server or application server. A server-
side process such as an Active Server Page (ASP), JavaServer Page (JSP), or Java servlet
will retrieve the XML document and XSL style sheet and pass them to an XSLT proces-
sor. The output of the XSLT processor is sent to the client Web browser for presentation.
The output is generally a markup language, such as HTML, that is understood by the
client browser. The application interaction is illustrated in Figure 9.5.

Building XML-Based Applications

PART II
354

XSLT
Processor

XML
Document

XSLT
Style Sheet

Web ServerWeb Browser

1

4

2

3

FIGURE 9.5
Processing XSLT
on the server side.

An advantage of the server-side technique is browser independence. As shown in the pre-
ceding figure, the output document is simply an HTML file. This technique supports the
older browser versions and makes the application more robust and versatile.
Implementation details are provided later in this chapter.

Also, by utilizing the server-side technique, the application can support a diverse collec-
tion of clients. The application can detect the user-agent, such as a WAP-enabled mobile
phone, and send back a document containing a Wireless Markup Language (WML) tag.
The WAP-enabled phone can render the content using the built-in WML mini-browser.

Implementing Client-Side XSLT Processing
In this section, we’ll implement client-side XSLT processing. As mentioned before, you
will need a browser that supports XSLT 1.0, such as Netscape Communicator 6 or
Microsoft Internet Explorer 6.

For client-side processing, the XML document requires a special processing instruction
to reference the XSL style sheet. The processing instruction is <?xml-stylesheet>, and
it has two attributes: type and href. The type attribute specifies the content type of the
document to be retrieved (in this case, text/xsl). The href attribute is a URL reference
to the style sheet. The href attribute supports absolute and relative URL references.

12 0672323419 CH09 3/15/04 11:18 AM Page 354

The following code example uses a relative URL reference for the style sheet
book_view.xsl:

<?xml-stylesheet type=”text/xsl” href=”book_view.xsl”?>

Listing 9.4 shows the updated version of the book.xml document. This version contains
the special processing instruction to reference an XSL style sheet.

LISTING 9.4 <install_dir>\ch9_xsl\browser_demo\book.xml

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”book_view.xsl”?>

<book>
<author>Michael Daconta et al</author>
<title>XML Development with Java 2</title>
<category>Java</category>
<price currency=”USD”>44.99</price>
<summary>

XML Development with Java 2 provides the information
and techniques a Java developer will need to integrate
XML into Java-based applications.

</summary>
</book>

No changes are required to the XSL style sheet. You only have to make sure the XSL
style sheet is accessible by the reference in the XML document. In this example, the
style sheet is located in the same directory as the XML document. Listing 9.5 contains
the style sheet.

LISTING 9.5 <install_dir>\ch9_xsl\browser_demo\book_view.xsl

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:template match=”/book”>
<html><body>

Title: <xsl:value-of select=”title” />
<p/>
By: <xsl:value-of select=”author” />
<p/>
Cost: <xsl:value-of select=”price” />
<p/>
Category: <xsl:value-of select=”category” />
<p/>
Description
<p/>

Transforming XML with XSL

CHAPTER 9
355

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:18 AM Page 355

LISTING 9.5 continued

<i><xsl:value-of select=”summary” /></i>

</body></html>
</xsl:template>
</xsl:stylesheet>

This example requires a browser that supports XSLT 1.0, such as Netscape
Communicator 6 or Microsoft Internet Explorer 6.

Start the Web browser and open the file <install_dir>\ch9_xsl\browser_demo\
book.xml. The XML document, book.xml, references the style sheet, book_view.xsl.
When the book.xml file is loaded in the browser, the style sheet is applied and the output
is rendered in the browser, as shown in Figure 9.6.

Building XML-Based Applications

PART II
356

FIGURE 9.6
XSLT rendered in
a Web browser.

Implementing Server-Side XSLT Processing
In this section, we’ll implement the server-side processing technique. A number of
server-side technologies are available, including Common Gateway Interface (CGI),
ColdFusion, Hypertext Processor (PHP), and so on. This chapter focuses on server-side
processing with Microsoft’s Active Server Pages (ASP) and Sun Microsystems’
JavaServer Pages (JSP).

12 0672323419 CH09 3/15/04 11:18 AM Page 356

ASP: Server-Side XSLT Processing
In order to develop using ASP, you will need the IIS Web server and the latest version of
the Microsoft XML parser. The required components are listed below.:

• Microsoft IIS Web Server 5.0. This version of IIS is included with Microsoft
Windows 2000 Professional. You can also use IIS 4.0 or Personal Web Server
(PWS); however, you will have to install the Windows NT Option Pack 4. Refer to
Microsoft’s Web site for details on adding ASP support to IIS 4.0 and PWS.

• Microsoft XML Parser 3.0. If you have IE 6 installed on your server machine, then
MS XML Parser 3.0 is included. The MS XML Parser 3.0 is also available as a
separate download from http://msdn.microsoft.com.

The setup instructions at the beginning of the chapter showed you how to download and
extract the source code. You have two options for publishing the source code on the IIS
server:

• Copy the files in <install_dir>\ch9_xsl\public_html to c:\Inetpub\wwwroot.

• Set up a virtual directory that points to <install_dir>\ch9_xsl\public_html

An ASP file accesses the Microsoft XML parser as a server object. The following ASP
code creates an input source for the XML document and XSL style sheet. Once the docu-
ments are loaded, the XML document is transformed based on the rules in the style
sheet. The output of the document is returned to the Web browser using the Response
server object. Listing 9.6 contains the file book_test.asp.

LISTING 9.6 <install_dir>\ch9_xsl\public_html\book_test.asp

<%@ Language=VBScript %>
<%
set xml = Server.CreateObject(“Microsoft.XMLDOM”)
xml.load(Server.MapPath(“book.xml”))

set xsl = Server.CreateObject(“Microsoft.XMLDOM”)
xsl.load(Server.MapPath(“book_view.xsl”))

Response.Write(xml.transformNode(xsl))
%>

You can test this example by starting the IIS server and then accessing the file
book_test.asp in a Web browser. For this example you can use any Web browser.
Remember that server-side processing is browser independent, so there is no requirement
for XSL in the browser. Figure 9.7 illustrates this concept by accessing the ASP file
using an older version of the Netscape Communicator browser, version 4.7.

Transforming XML with XSL

CHAPTER 9
357

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:18 AM Page 357

JSP: Server-Side XSLT Processing
Sun Microsystems provides a server-side technology that is very similar to ASP. Of
course, the server-side scripting is accomplished in Java. In order to perform the server-
side processing with JSP, you will need to install the Java Software Development Kit
(SDK) along with a compliant JSP server container. Here’s a list of required components:

• Sun Microsystems’ Software Development Kit (SDK) 1.3 (or higher). The SDK is
available at Sun’s Web site, http://java.sun.com/j2se. Follow the installation
instructions provided with the SDK.

• Apache Tomcat Server 4. Apache Tomcat 4 is the official reference implementation
for JSP 1.2 and Java Servlets 2.3. If your application server already supports JSP
1.1 or higher, there is no requirement to install Tomcat. Apache Tomcat 4 is avail-
able from the Apache Web site, http://jakarta.apache.org/tomcat. Follow the
installation instructions provided with the Tomcat server.

Once Tomcat 4 is installed, you need to add a new Web application that points to the
source code directory. This is accomplished by editing the file <tomcat_install_dir>\
conf\server.xml. Move to the section where the <Context> elements are listed and then
add the following entry:

<Context path=”/bookch9”
docBase=”<install_dir>/ch9_xsl/public_html”
debug=”0”
reloadable=”true” />

Building XML-Based Applications

PART II
358

FIGURE 9.7
A Web browser
rendering HTML.

12 0672323419 CH09 3/15/04 11:18 AM Page 358

Be sure to update <install_dir> with the installation directory for the book’s source
code. This configuration allows you to access the Web application named bookch9. This
Web application’s document base is located at <install_dir>\ch9_xsl\public_html.

Restart the Tomcat server to pick up the new configuration. By default, the Tomcat server
is listening on port 8080. You can access files for the bookch9 Web application using the
URL http://localhost:8080/bookch9/book_test.jsp.

This example makes use of a JSP custom tag for the XSLT processing. A JSP custom tag
is a special tag that is created by a developer. When the JSP server encounters the custom
tag, it executes the handler code associated with the tag. JSP custom tags are conceptu-
ally similar to ASP server objects. However, the custom action is represented in the JSP
page as a custom tag instead of scripting code.

The Apache <jakarta:apply> tag provides the XSLT processing. The JSP code example
shown in Listing 9.7 utilizes the <jakarta:apply> tag. This listing contains the file
book_test.jsp.

LISTING 9.7 <install_dir>\ch9_xsl\public_html\book_test.jsp

<%@ taglib uri=”http://jakarta.apache.org/taglibs/xsl-1.0” prefix=”jakarta” %>

<jakarta:apply xml=”book.xml” xsl=”book_view.xsl” />

The first line in this example informs the JSP server to use the tag library that is identi-
fied by the URI http://jakarta.apache.org/taglibs/xsl-1.0. This URI is defined in
the Web application’s deployment description. The URI is actually mapped to the file
jakarta-xsl.tld, located in the directory <install_dir>\ch9_xsl\public_html\WEB-
INF. The file jakarta-xsl.tld is the Tag Library Descriptor (TLD). The TLD file pro-
vides a description of the custom tags available in the class library. It also provides a
mapping between the custom tag name and the tag handler class. The tag handler class is
located in the directory <install_dir>\ch9_xsl\public_html\WEB-INF\lib.

The next line of code is the actual <jakarta:apply> tag. This tag has two attributes—
one defines the XML input source and the other defines the XSL style sheet. The results
of the XSLT process are returned to the Web browser.

To test this example, make sure the Tomcat server is running. In a Web browser, access
the JSP with the URL http://localhost:8080/bookch9/book_test.jsp. The output
should resemble Figure 9.7.

Transforming XML with XSL

CHAPTER 9
359

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:18 AM Page 359

Advanced Features of XSLT
The previous section covered the basics of XSLT processing. Now that you have the
required components for XSLT processing installed and configured, we’ll explore some
advanced XSLT concepts. In this section, you’ll learn how to loop over a collection of
XML elements, sort the elements, and perform conditional filtering on the data.

Looping
The XSLT element <xsl:for-each> is used for looping through a list of elements. This
is very useful when you have a collection of related items and you’d like to process them
in a sequential fashion. The <xsl:for-each> element is commonly used in the Web
development world to convert an XML document to an HTML table.

Here’s the syntax for <xsl:for-each>:

<xsl:for-each select=node-set-expression>
<!-- content -->

</xsl:for-each>

The <xsl:for-each> element has a required attribute: select. The value of the select
attribute is an expression. The expression contains an XPath expression for selecting the
appropriate elements from the list.

Let’s take the previous book.xml example one step further. Instead of describing a single
book, let’s create an XML document that contains a list of books. This could describe the
books available at an e-commerce site or a list of books available in your company’s
technical library. Listing 9.8 contains the file booklist.xml.

LISTING 9.8 <install_dir>\ch9_xsl\public_html\loop\booklist.xml

<?xml version=”1.0”?>
<booklist>

<book>
<author>Michael Daconta et al</author>
<title>XML Development with Java 2</title>
<category>Java</category>
<price currency=”USD”>37.99</price>

</book>
<book>

<author>Mark Grand</author>
<title>Patterns in Java</title>
<category>Java</category>
<price currency=”USD”>44.99</price>

</book>
<book>

<author>Richard Monson-Haefel</author>

Building XML-Based Applications

PART II
360

12 0672323419 CH09 3/15/04 11:18 AM Page 360

LISTING 9.8 continued

<title>Enterprise JavaBeans</title>
<category>Java</category>
<price currency=”USD”>34.95</price>

</book>
<book>

<author>Chad Darby et al</author>
<title>Professional Java E-Commerce</title>
<category>Java</category>
<price currency=”USD”>59.95</price>

</book>
<book>

<author>E. Lynn Harris</author>
<title>Any Way The Wind Blows</title>
<category>Fiction-Romance</category>
<price currency=”USD”>19.95</price>

</book>
<book>

<author>E. Lynn Harris</author>
<title>Invisible Life</title>
<category>Fiction-Romance</category>
<price currency=”USD”>16.95</price>

</book>
<book>

<author>E. Lynn Harris</author>
<title>And This Too Shall Pass</title>
<category>Fiction-Romance</category>
<price currency=”USD”>18.95</price>

</book>
<book>

<author>Tom Clancy</author>
<title>Executive Orders</title>
<category>Fiction-Thriller</category>
<price currency=”USD”>7.99</price>

</book>
<book>

<author>Tom Clancy</author>
<title>Hunt for Red October</title>
<category>Fiction-Thriller</category>
<price currency=”USD”>27.95</price>

</book>
<book>

<author>Tom Clancy</author>
<title>The Sum of All Fears</title>
<category>Fiction-Thriller</category>
<price currency=”USD”>7.99</price>

</book>
</booklist>

Transforming XML with XSL

CHAPTER 9
361

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:18 AM Page 361

Now, let’s design an XSL style sheet to convert the XML document to an HTML table.
The <xsl:for-each> element loops over a list of items. This example performs a loop
for each <book> element in the <booklist> element. This process is described in the
select attribute with the expression booklist/book. See the following code snippet:

<xsl:for-each select=”booklist/book” >
<!-- insert table rows and table data -->

</xsl:for-each>

Inside of the <xsl:for-each> element, the appropriate HTML elements are used for the
table rows and table data. To retrieve the data from the XML document, each table cell
uses the <xsl:value-of> element. Listing 9.9 contains the complete style sheet,
booklist_loop.xsl.

LISTING 9.9 <install_dir>\ch9_xsl\public_html\loop\booklist_loop.xsl

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:template match=”/”>
<html><body>
<h3>Looping Example</h3>
<hr></hr>
<table border=”1” cellpadding=”5”>

<tr>
<th>Author</th>
<th>Title</th>
<th>Category</th>
<th>Price</th>

</tr>

<!-- Perform loop for each book in the book list -->
<xsl:for-each select=”booklist/book” >

<tr>
<td> <xsl:value-of select=”author” /> </td>
<td> <xsl:value-of select=”title” /> </td>
<td> <xsl:value-of select=”category” /> </td>
<td> <xsl:value-of select=”price” /> </td>

</tr>
</xsl:for-each>

</table>

</body></html>
</xsl:template>
</xsl:stylesheet>

Building XML-Based Applications

PART II
362

12 0672323419 CH09 3/15/04 11:18 AM Page 362

You can test the server-side scripts using the techniques presented earlier in this chapter.
The test files are named booklist_test.jsp and booklist_test.asp. They are located
in the directory <install_dir>\ch9_xsl\public_html\loop.

The server-side scripts refer to the appropriate XML document and XSL style sheet.
Listing 9.10 contains the code for booklist_test.jsp.

LISTING 9.10 <install_dir>\ch9_xsl\public_html\loop\book_test.jsp

<%@ taglib uri=”http://jakarta.apache.org/taglibs/xsl-1.0” prefix=”jakarta” %>

<jakarta:apply xml=”/loop/booklist.xml” xsl=”/loop/booklist_loop.xsl” />

To view the test file, start the Tomcat server. In the Web browser, open http://
localhost:8080/bookch9/loop/booklist_test.jsp. Figure 9.8 shows the result.

Transforming XML with XSL

CHAPTER 9
363

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

FIGURE 9.8
The result of
applying the style
sheet to the XML
document.

You can also test this example using the client-side techniques described earlier in the
chapter by adding a reference to the XSL in the XML document.

12 0672323419 CH09 3/15/04 11:19 AM Page 363

Sorting
In XSLT, the <xsl:sort> element is used for sorting the XML data. It is possible to sort
based on a single key or multiple keys. The syntax for the <xsl:sort> element is shown
here:

<xsl:sort
select = string-expression
order = { “ascending” | “descending” }
data-type = { “text” | “number” }
case-order = {“upper-first” | “lower-first” }
lang = { nmtoken } />

The <xsl:sort> element is used in conjunction with the <xsl:for-each> element. For
example, the following code snippet sorts the book titles in alphabetical order:

<!-- Sort by the book title -->
<xsl:for-each select=”booklist/book” >

<xsl:sort select=”title” />
<!-- insert table rows and table data -->

</xsl:for-each>

Sort Order: Ascending or Descending?
By default, the information is sorted in ascending order. Set the order attribute to
descending for a descending sort. The following code snippet sorts the titles in descend-
ing order:

<!-- Sort by the book title, descending -->
<xsl:for-each select=”booklist/book”>

<xsl:sort select=”title” order=”descending”/>
<!-- insert table rows and table data -->

</xsl:for-each>

It is important to note that the <xsl:sort> element assumes that the sort key is a text
element. If you need to sort numerical data, you have to set the data-type attribute to
number. If you don’t set the data-type attribute, the XSLT processor will use the default
value, text. When sorting numerical data, the default value of text will not generate the
desired output. To demonstrate this point, let’s attempt to sort the books in booklist.xml
by price. The following code snippet purposefully omits the data-type attribute:

<xsl:for-each select=”booklist/book”>
<xsl:sort select=”price” />
<tr>

<td> <xsl:value-of select=”author” /> </td>
<td> <xsl:value-of select=”title” /> </td>
<td> <xsl:value-of select=”category” /> </td>
<td> <xsl:value-of select=”price” /> </td>

</tr>
</xsl:for-each>

Building XML-Based Applications

PART II
364

12 0672323419 CH09 3/15/04 11:19 AM Page 364

When applied to booklist.xml, this style sheet fragment generates the output in
Figure 9.9.

Transforming XML with XSL

CHAPTER 9
365

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

FIGURE 9.9
Incorrect sorting
of XML data by
price.

Notice that the prices are not sorted in an ascending order.

To achieve numerical sorting, you have to specify <xsl:sort select=”price” data-
type=”number” />. Listing 9.11 provides the correct usage of the <xsl:sort> element
for numerical sorting.

LISTING 9.11 <install_dir>\ch9_xsl\public_html\sort\booklist_sort.xsl

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:template match=”/”>
<html><body>
<h3>Sorting Example: By Price</h3>
<hr></hr>
<table border=”1” cellpadding=”5”>

<tr>
<th>Author</th>
<th>Title</th>
<th>Category</th>
<th>Price</th>

12 0672323419 CH09 3/15/04 11:19 AM Page 365

LISTING 9.11 continued

</tr>

<!-- Perform loop for each book in the book list -->
<xsl:for-each select=”booklist/book” >

<xsl:sort select=”price” order=”ascending” data-type=”number” />
<tr>

<td> <xsl:value-of select=”author” /> </td>
<td> <xsl:value-of select=”title” /> </td>
<td> <xsl:value-of select=”category” /> </td>
<td> <xsl:value-of select=”price” /> </td>

</tr>
</xsl:for-each>

</table>

</body></html>
</xsl:template>
</xsl:stylesheet>

When applied to booklist.xml, the revised style sheet generates the correct output, as
shown in Figure 9.10.

Building XML-Based Applications

PART II
366

FIGURE 9.10
XML data cor-
rectly sorted by
price.

12 0672323419 CH09 3/15/04 11:19 AM Page 366

Sorting by Case
The case-order attribute is used to specify whether uppercase or lowercase has prece-
dence during the sort. For example, if the case-order attribute is set to upper-case, then

a b A B

is sorted as follows:

A a B b

If the lower-case attribute value is applied, then

a b A B

is sorted like this:

a A b B

The case-order attribute should only be used when the data-type attribute is set to
text.

Sorting with Multiple Keys
In certain situations, you might want to sort using multiple keys. For example, you could
sort the books by category and then by price. This is accomplished by inserting multiple
<xsl:sort> elements within an <xsl:for-each> element. Listing 9.12 sorts by category
and then by price.

LISTING 9.12 <install_dir>\ch9_xsl\public_html\sort\booklist_sort_

categoryprice.xsl

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

Transforming XML with XSL

CHAPTER 9
367

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

Note

I’ve discovered a bug with the client-side XSLT implementation in Netscape 6.1.
Netscape 6.1 does not support numerical sorting with the <xsl:sort> element.
Even when explicitly set in the style sheet (using <xsl:sort select=”price”
data-type=”number” />), the Netscape browser does not sort the prices in
numerical order.

This bug is only encountered when using the client-side XSLT support in the
Netscape 6.1 browser. The server-side technique applies the transformation on
the server side, so this bug is never encountered. As a best practice, you should
apply the server-side technique whenever possible.

12 0672323419 CH09 3/15/04 11:19 AM Page 367

LISTING 9.12 continued

<xsl:template match=”/”>
<html><body>
<h3>Sorting Example: By Price</h3>
<hr></hr>
<table border=”1” cellpadding=”5”>

<tr>
<th>Author</th>
<th>Title</th>
<th>Category</th>
<th>Price</th>

</tr>

<!-- Perform loop for each book in the book list -->
<xsl:for-each select=”booklist/book” >

<xsl:sort select=”category” />
<xsl:sort select=”price” data-type=”number” />
<tr>

<td> <xsl:value-of select=”author” /> </td>
<td> <xsl:value-of select=”title” /> </td>
<td> <xsl:value-of select=”category” /> </td>
<td> <xsl:value-of select=”price” /> </td>

</tr>
</xsl:for-each>

</table>

</body></html>
</xsl:template>
</xsl:stylesheet>

When applied to booklist.xml, this style sheet generates the output shown in Figure
9.11. The implementation details are left as an exercise for you, the reader.

The server-side test scripts are available in the directory <install_dir>\ch9_xsl\pub-
lic_html\sort.

Conditionals
During an XSLT transformation, the style sheet can perform conditional tests on the data.
XSLT contains a very simple if-then conditional. The syntax for the <xsl:if> element
is shown here:

<xsl:if test=Boolean-expression>
<!-- content -->

</xsl:if>

The test attribute refers to a Boolean expression. If the Boolean expression evaluates to
true, the content within the <xsl:if> element is included in the output.

Building XML-Based Applications

PART II
368

12 0672323419 CH09 3/15/04 11:19 AM Page 368

The following code snippet performs a test for Fiction-Thriller books:

<xsl:for-each select=”booklist/book” >
<tr>

<xsl:if test=”category=’Fiction-Thriller’”>
<xsl:attribute name=”bgcolor”>red</xsl:attribute>

</xsl:if>
<td> <xsl:value-of select=”author” /> </td>
<td> <xsl:value-of select=”title” /> </td>
<td> <xsl:value-of select=”category” /> </td>
<td> <xsl:value-of select=”price” /> </td>

</tr>
</xsl:for-each>

If a Fiction-Thriller book is found, the background color of the row is set to red. In
this example, we’ve introduced a new XSLT element, <xsl:attribute>. The
<xsl:attribute> element creates a new attribute for the parent element. In this example,
the parent is the <tr> element. If the conditional is true, the <tr> element will have the
attribute bgcolor and its value set to red. The end result is <tr bgcolor=”red”>.

When applied to booklist.xml, the XSLT processor generates the output shown in
Figure 9.12. The server-side test scripts are available in the directory <install_dir>\
ch9_xsl\public_html\if.

Transforming XML with XSL

CHAPTER 9
369

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

FIGURE 9.11
Sorting XML data
with multiple sort
keys.

12 0672323419 CH09 3/15/04 11:19 AM Page 369

Filters
In relation to conditional tests, XSLT can also filter the data based on a given expression.
When data is selected using the <xsl:for-each> element, the expression can contain a
filter. For example, you can filter the data to contain only Java books. The following code
snippet performs the desired operation:

<xsl:for-each select=”booklist/book[category=’Java’]” >
<tr>

<td> <xsl:value-of select=”author” /> </td>
<td> <xsl:value-of select=”title” /> </td>
<td> <xsl:value-of select=”category” /> </td>
<td> <xsl:value-of select=”price” /> </td>

</tr>
</xsl:for-each>

Building XML-Based Applications

PART II
370

Note

Of course, the figure in the book is in black and white. However, the desired
output will be displayed on your color monitor.

FIGURE 9.12
Using conditionals
in XSLT.

12 0672323419 CH09 3/15/04 11:19 AM Page 370

XSL for Business-to-Business (B2B)
Communication
The previous section leveraged XSLT for document publishing. However, XSLT can also
be used in for B2B communication—the process of exchanging data between two differ-
ent companies. Developers can leverage XML to describe the data in a vendor-indepen-
dent fashion. In the ideal case, both companies will agree upon a standard vocabulary for
describing the data using a DTD or schema. The vocabulary is composed of the XML
element names used in the XML document. However, in certain cases one of the compa-
nies might like to use a different vocabulary. This is where XSL enters the picture.

The example in this section describes a B2B scenario between a training company, Hot
Shot Training, and a software development company, AcmeSoft. The computer training
company maintains a database for the students that have attended its courses. The train-
ing company has developed an XML application that produces the list of students for a
given class.

The management team at AcmeSoft would like to retrieve this list from the training com-
pany’s XML application. However, once the data is retrieved, AcmeSoft would like to
store the data in a different XML format using its own XML element names. The appli-
cation interaction is illustrated in Figure 9.13.

Transforming XML with XSL

CHAPTER 9
371

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

XSL
Style Sheet

4

3

1

2

AcmeSoftHot Shot Computer Training

XSLT
Processor

<trainingclass>
 ...
 ...
 ...
</trainingclass>

<employeelist>
 ...
 ...
 ...
</employeelist>

FIGURE 9.13
Converting XML
data in B2B
communication.

The XML application at the training company is accessible using the HTTP protocol.
The first step is to request the XML document from the training company. In step 2, the
XML document is retrieved. In step 3, the document is transformed using the supplied
XSLT style sheet. Finally, the desired output document is produced in step 4.

12 0672323419 CH09 3/15/04 11:19 AM Page 371

A sample output of the XML document is shown here:

<?xml version=”1.0”?>
<trainingclass>

<title>J2EE Essentials</title>
<start_date>24 Sep 2001</start_date>
<end_date>28 Sep 2001</end_date>
<location>Philadelphia, PA</location>

<student>
<first_name>Riley</first_name>
<last_name>Scott</last_name>
<email>riley@acmesoft.web</email>

</student>

<student>
<first_name>Torrance</first_name>
<last_name>Lee</last_name>
<email>torrance.lee@acmesoft.web</email>

</student>
</trainingclass>

The development team at AcmeSoft has a different collection of element names to
describe a training class. The desired output of the converted XML document for
AcmeSoft is shown here:

<?xml version=”1.0”?>
<employeelist>

<course_title>J2EE Essentials</course_title>
<course_date start=”24 Sep 2001” end=”28 Sep 2001” />
<location>Philadelphia, PA</location>

<employee>
<name>

<first>Riley</first>
<last>Scott</last>

</name>
<email>riley.scott@acmesoft.web</email>

</employee>

<employee>
<name>

<first>Torrance</first>
<last>Lee</last>

</name>
<email>torrance.lee@acmesoft.web</email>

</employee>
</employeelist>

Notice in both instances that the data is the same; it’s simply in a different format. The
format is different because of the element names used by AcmeSoft. In the context of

Building XML-Based Applications

PART II
372

12 0672323419 CH09 3/15/04 11:19 AM Page 372

AcmeSoft, there are no students on the payroll; instead, AcmeSoft has employees. Also,
the AcmeSoft team has a different approach for storing the class date. Finally, notice that
AcmeSoft uses a different structure for the employee name.

Therefore, a mechanism is needed to convert an XML document to another XML format.
XSLT offers a solution to this problem. An XSL style sheet can be developed to convert
the <trainingclass> document to the <employeelist> document. This approach will
not require any changes by the training company. The training company can continue to
publish XML documents for its training classes. The development team at AcmeSoft can
develop an XSL style sheet that contains the transformation rules. Once the style sheet is
developed, the XML document and style sheet can be passed to the XSLT processor,
which will generate the desired XML document for <employeelist>.

Creating the XSL Style Sheet
The XSL style sheet will contain the template for the <employeelist> document, and
the XSL elements will be leveraged to retrieve the data from the <trainingclass> docu-
ment. The transformation is fairly straightforward, except for one area. The training com-
pany describes the date for the class using the elements <start_date> and <end_date>,
as shown here:

<start_date>24 Sep 2001</start_date>
<end_date>28 Sep 2001</end_date>

AcmeSoft stores the date as a single element with two attributes for the start and end:

<course_date start=”24 Sep 2001” end=”28 Sep 2001” />

In this case, <xsl:attribute> can be used to create attributes for <course_date>:

<course_date>
<xsl:attribute name=”start”><xsl:value-of select=”start_date”/>

➥ </xsl:attribute>
<xsl:attribute name=”end”><xsl:value-of select=”end_date”/></xsl:attribute>
</course_date>

The <xsl:attribute> element creates attributes for the parent element. In this example,
the parent element is course_date. This transformation will result in the following code:

<course_date start=”24 Sep 2001” end=”28 Sep 2001” />

The complete code for the style sheet is shown in Listing 9.13.

LISTING 9.13 <install_dir>\ch9_xsl\public_html\b2b\train2employee.xsl

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

Transforming XML with XSL

CHAPTER 9
373

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:19 AM Page 373

LISTING 9.13 continued

<xsl:template match=”/trainingclass”>
<employeelist>

<course_title><xsl:value-of select=”title” /></course_title>

<!-- create attributes for the start and end course dates -->
<course_date>

<xsl:attribute name=”start”>
<xsl:value-of select=”start_date”/>

</xsl:attribute>
<xsl:attribute name=”end”>

<xsl:value-of select=”end_date”/>
</xsl:attribute>

</course_date>

<location><xsl:value-of select=”location” /></location>

<!-- Perform a loop for each student in the training class -->
<xsl:for-each select=”student”

<employee>
<name>

<first><xsl:value-of select=”first_name”/></first>
<last><xsl:value-of select=”last_name”/></last>

</name>
<email><xsl:value-of select=”email”/></email>

</employee>
</xsl:for-each>

</employeelist>
</xsl:template>
</xsl:stylesheet>

Using the XSLT Processor
So far in this chapter, we’ve used client-side and server-side techniques for XSLT pro-
cessing. The client-side technique utilized a Web browser that has support for XSLT. The
server-side technique leveraged server scripts developed in JSP and ASP. The JSP exam-
ples used a JSP custom tag for the XSLT processing, whereas the ASP examples lever-
aged the Microsoft XML server object.

For most B2B applications, the source XML document is retrieved by another applica-
tion. This may be a standalone application or a component of a larger B2B application.
In the case of a standalone application, the necessary code to perform the XSLT process-
ing needs to be developed. For example, a Visual Basic or Visual C++ application can
use the XSLT processor available with the Microsoft XML API. In a similar fashion, a

Building XML-Based Applications

PART II
374

12 0672323419 CH09 3/15/04 11:19 AM Page 374

Java application can use the XSLT processor available with the Apache Xalan API. The
Apache Xalan API is available at http://xml.apache.org.

Here’s the code for a standalone Java application that uses the Apache Xalan API (note
that the application accepts three command-line arguments—one each for the input XML
document, the XSL style sheet, and the name of the output file):

java XslTester <input XML> <input XSL> <output file>

The input XML document and the input XSL style sheet can be referenced using file-
names or URLs. Listing 9.14 contains the complete code for XslTester.java.

LISTING 9.14 <install_dir>\ch9_xsl\b2b\XslTester.java

import org.apache.xalan.xslt.*;

/**
* Usage: java XslTester <input XML> <input XSL> <output file>
*/
public class XslTester{

public static void main(String[] args) {

try {
// Verify the correct arguments are passed in
if (args.length != 3) {

System.out.println(“Usage: java XslTester <input XML> <input XSL>
➥ <output file>”);

System.exit(1);
}

System.out.println(“Processing: “ + args[0] + “ and “ + args[1]);

// Step 1: Get a reference to the XSLT Processor
XSLTProcessor myEngine = XSLTProcessorFactory.getProcessor();

// Step 2: Get the XML input document
XSLTInputSource xmlSource = new XSLTInputSource(args[0]);

// Step 3: Get the XSL style sheet
XSLTInputSource xslStylesheet = new XSLTInputSource(args[1]);

// Step 4: Setup the output target
XSLTResultTarget xmlOutput = new XSLTResultTarget(args[2]);

// Step 5: Now process it!
myEngine.process(xmlSource, xslStylesheet, xmlOutput);

Transforming XML with XSL

CHAPTER 9
375

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:19 AM Page 375

LISTING 9.14 continued

System.out.println(“Created => “ + args[2]);
System.out.println(“Done!”);

}
catch (Exception exc) {

exc.printStackTrace();
}

}
}

The first task of the main method is verifying the correct number of parameters. Next,
the application retrieves a reference to the XSLT processing engine using the factory
method XSLTProcessorFactory.getProcessor(). The application then retrieves the
input XML document and XSL style sheet based on the first two command-line argu-
ments. The result target for the XSLT translation is configured to use the filename sup-
plied as the third command-line argument. Finally, the XSLT processing engine is
invoked using the objects xmlSource, xslStylesheet, and xmlOutput.

Running the Example
This example requires the Java Development Kit version 1.3 or higher. Follow these
steps to test it:

1. Open an MS-DOS window.

2. Move to the directory <install_dir>\ch9_xsl\b2b\.

3. Set up the Java classpath by typing setpaths.

4. Execute the application by typing the following:

java XslTester trainingclass.xml train2employee.xsl testoutput.xml

5. View the testoutput.xml file in a text editor. Verify that your document resembles
this:

<?xml version=”1.0” encoding=”UTF-8”?>
<employeelist>

<course_title>J2EE Essentials</course_title>
<course_date start=”24 Sep 2001” end=”28 Sep 2001”/>
<location>Philadelphia, PA</location>
<employee>

<name>
<first>Riley</first>
<last>Scott</last>

</name>
<email>riley@acmesoft.web</email>

</employee>
<employee>

Building XML-Based Applications

PART II
376

12 0672323419 CH09 3/15/04 11:19 AM Page 376

<name>
<first>Torrance</first>
<last>Lee</last>

</name>
<email>torrance.lee@acmesoft.web</email>

</employee>
</employeelist>

The trainingclass.xml document is also available on the Web server at http://
localhost:8080/bookch9/hotshot/trainingclass.xml. The XslTester application
also supports a URL for the XML document and XSL style sheet. You can access the
trainingclass.xml document via the Web server by simply supplying the following
URL:

java XslTester http://localhost:8080/bookch9/hotshot/trainingclass.xml

train2employee.xsl testoutput.xml

This example demonstrates the technique used to retrieve an XML document and per-
form the XSLT conversion. Once the XML data is converted to the desired XML output,
the application can process it accordingly. For example, the application can use the SAX
and DOM APIs to parse the XML document and store the results in a database. By lever-
aging the SAX and DOM APIs, the application is very flexible in how it processes/stores
the converted XML document.

XSL Formatting Objects
The XSL technology is also composed of XSL Formatting Objects (XSL-FO). XSL-FO
was designed to assist with the printing and displaying of XML data. The main emphasis
is on the document layout and structure. This includes the dimensions of the output doc-
ument, including page headers, footers, and margins. XSL-FO also allows the developer
to define the formatting rules for the content, such as font, style, color, and positioning.
XSL-FO is a sophisticated version of Cascading Style Sheets (CSS). In fact, XSL-FO
borrows a lot of the terminology and elements from CSS.

XSL-FO documents are well-formed XML documents. An XSL-FO formatting engine
processes XSL-FO documents. You can use two techniques for creating XSL-FO docu-
ments. The first is to simply develop the XSL-FO file with the included data. The second
technique is to dynamically create the XSL-FO file using an XSLT translation.

XSL-FO Formatting Engines
The current W3C Candidate Recommendation for XSL-FO is 15 October 2001 and is
available at http://www.w3.org/TR/2001/REC-xsl-20011015. Many of the XSL-FO

Transforming XML with XSL

CHAPTER 9
377

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:19 AM Page 377

formatting engines implement a subset of the XSL-FO specification. Also, the browser
support for XSL-FO is nonexistent.

However, don’t be discouraged. Engines are available that allow you to experiment with
the basic features of XSL-FO. In fact, we’ll use the Apache XSL-FOP to generate PDF
documents from XML. Table 9.2 contains a list of XSL-FO formatting engines.

The source code distribution for this chapter includes the Apache XSL-FO formatting
engine. You have everything you need to run the examples. You can download additional
engines if you’d like to experiment with them.

TABLE 9.2 XSL-FO Formatting Engines

XSL-FO Engine Web Site

Apache XSL-FOP xml.apache.org

XEP www.renderx.com

iText www.lowagie.com/iText/

Unicorn www.unicorn-enterprises.com

The examples in this chapter are based Apache XSL-FOP version 0.20.1.

Building XML-Based Applications

PART II
378

Note

Directions for downloading the source code were given at the beginning of the
chapter. The initial download also includes the XSL-FO sample code. Here are
descriptions of the directories specific to the XSL-FO examples:

Directory Description

ch9_xsl\xsl_fo Sample code for XSL-FO

ch9_xsl\xsl_fo\lib Supporting JAR files

ch9_xsl\xsl_fo\dynamic Sample code to create XSL-FO from XSLT

ch9_xsl\xsl_fo\ezfop.war Web app archive for servlet demo

In this section, we will create a simple XSL-FO document. Once the document is cre-
ated, we will use the Apache XSL-FOP formatter to convert the document to a PDF file.
The application interaction is illustrated in Figure 9.14.

12 0672323419 CH09 3/15/04 11:19 AM Page 378

Basic Document Structure
An XML-FO document follows the syntax rules of XML; as a result, it is well formed.
XSL-FO elements use the following namespace:

http://www.w3.org/1999/XSL/Format

The following code snippet shows the basic document setup for XSL-FO:

<?xml version=”1.0” encoding=”utf-8”?>

<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>
<!-- layout master set -->
<!-- page masters: size and layout -->

<!-- page sequences and content -->
</fo:root>

The element <fo:root> is the root element for the XSL-FO document. An XSL-FO doc-
ument can contain the following components:

• Page master

• Page master set

• Page sequences

Page Master: <fo:page-master>
The page master describes the page size and layout. For example, we could use an
8.5×11-inch page or an A4 letter. The page master contains the dimensions for a page,
including width, height, and margins. The page master is similar to a slide master in
Microsoft PowerPoint. The components of the page master are shown in Figure 9.15.

The <fo:simple-page-master> element defines the layout of a page. The following
code snippet describes a U.S. letter:

<fo:simple-page-master master-name=”simple”
page-height=”11in”
page-width=”8.5in”
margin-top=”1in”
margin-bottom=”1in”
margin-left=”1.25in”
margin-right=”1.25in”>

</fo:simple-page-master>

Transforming XML with XSL

CHAPTER 9
379

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

XSL-FO
Formatter

PDFXSL-FOFIGURE 9.14
Apache XSL-FOP
generating PDF
documents.

12 0672323419 CH09 3/15/04 11:19 AM Page 379

Notice the attributes for <fo:simple-page-master>. The attributes define the height and
width of the page, along with the size of the margins. The dimensions in this example are
listed in inches (in). Table 9.3 lists the dimensions supported in XSL-FO.

TABLE 9.3 XSL-FO Dimensions

Unit Suffix Description

in Inches (1 inch equals 2.54 centimeters)

mm Millimeters

cm Centimeters

pt Points (1 point equals 1/72 inch)

pc Picas (1 pica equals 12 points)

em Font size of the relevant font

ex X-height of the relevant font

px Pixels

To set the page height to 210 millimeters, use the following syntax:

page-height=”210mm”

The <fo:simple-page-master> element can also be used to describe an A4 letter (height
210 mm and width 297 mm):

Building XML-Based Applications

PART II
380

margin-bottom

margin-top

page-width

m
argin-left

m
argin-right

page-height

FIGURE 9.15
Components of the
page master.

12 0672323419 CH09 3/15/04 11:19 AM Page 380

<fo:simple-page-master master-name=”A4-example”
page-height=”210mm”
page-width=”297mm”
margin-top=”0.5in”
margin-bottom=”0.5in”
margin-left=”0.5in”
margin-right=”0.5in”>

</fo:simple-page-master>

Each page is divided into five regions. Regions serve as containers for the document con-
tent. The regions are depicted below in Figure 9.16.

Transforming XML with XSL

CHAPTER 9
381

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

region-body

region-end

region-after

region-before

region-start

FIGURE 9.16
Five regions of a
page.

The region-before and region-after areas are commonly used for page headers and
footers. The region-body area is the center of the page and contains the main content.
The region-start and region-end sections are commonly used for left and right side-
bars, respectively. During the definition of a page master, you specify the size of the
regions using the following elements:

• <fo:region-before>

• <fo:region-after>

• <fo:region-body>

• <fo:region-start>

• <fo:region-end>

12 0672323419 CH09 3/15/04 11:19 AM Page 381

The following example defines the dimensions for <fo:region-body>, <fo:region-
before>, and <fo:region-after>:

<fo:simple-page-master master-name=”simple”
page-height=”11in”
page-width=”8.5in”>

<fo:region-body margin-top=”0.5in”/>
<fo:region-before extent=”0.5in”/>
<fo:region-after extent=”0.5in”/>

</fo:simple-page-master>

The extent attribute has a different meaning, depending on the region. For <fo:region-
end> and <fo:region-start>, the extent attribute specifies the width. For <fo:region-
before> and <fo:region-after>, it specifies the height.

Page Master Set: <fo:page-master-set>
A document can be composed of multiple pages, each with its own dimensions. The page
master set refers to the collection of page masters.

In the following code example, a page master set is defined that contains one page set:

<fo:layout-master-set>
<fo:simple-page-master master-name=”simple”

page-height=”11in”
page-width=”8.5in”
margin-top=”1in”
margin-bottom=”1in”
margin-left=”1.25in”
margin-right=”1.25in”>

<fo:region-body margin-top=”0.5in”/>
<fo:region-before extent=”3cm”/>
<fo:region-after extent=”1.5cm”/>

</fo:simple-page-master>
</fo:layout-master-set>

Let’s integrate the new elements into the basic document structure. Recall from earlier in
this section that an XSL-FO document has the following structure:

<?xml version=”1.0” encoding=”utf-8”?>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>
<!-- layout master set -->
<!-- page masters: size and layout -->

<!-- page sequences and content -->
</fo:root>

With the information provided thus far, we can fill in the blanks for the page master set.
The following code example contains a page master set with a simple page master:

Building XML-Based Applications

PART II
382

12 0672323419 CH09 3/15/04 11:19 AM Page 382

<?xml version=”1.0” encoding=”utf-8”?>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>
<!-- layout master set -->
<fo:layout-master-set>

<!-- page masters: size and layout -->
<fo:simple-page-master master-name=”simple”

page-height=”11in”
page-width=”8.5in”
margin-top=”1in”
margin-bottom=”1in”
margin-left=”1.25in”
margin-right=”1.25in”>

<fo:region-body margin-top=”0.5in”/>
<fo:region-before extent=”3cm”/>
<fo:region-after extent=”1.5cm”/>

</fo:simple-page-master>

</fo:layout-master-set>

<!-- page sequences and content -->
</fo:root>

Now that we have the page layout defined, we can start adding content with page
sequences.

Page Sequences: <fo:page-sequence>
A page sequence defines a series of printed pages. Each page sequence refers to a page
master for its dimensions. The page sequence contains the actual content for the document.

The <fo:page-sequence> element contains <fo:static-content> and <fo:flow> ele-
ments.

The <fo:static-content> element is used for page headers and footers. For example,
we can define a header for the company name and page number, and this information
will appear on every page.

The <fo:flow> element contains a collection of text blocks. The <fo:flow> element is
similar to a collection of paragraphs. A body of text is defined using the <fo:block> ele-
ment. The <fo:block> element is a child element of <fo:flow>. The <fo:block> ele-
ment contains free-flowing text that will wrap to the next line in a document if it
overflows.

In this example, we’ll use the <fo:flow> and <fo:block> elements to create a document
for a fictional company, Ez Books Online. The desired output for the document as a PDF
is shown in Figure 9.17.

Transforming XML with XSL

CHAPTER 9
383

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:19 AM Page 383

The following code fragment defines a page sequence. This sequence uses the simple
page master we defined earlier in this section. Also, the <fo:flow> element contains two
<fo:block> elements. Here’s the code:

<fo:page-sequence master-name=”simple”>

<fo:flow flow-name=”xsl-region-body”>

<!-- this defines a level 1 heading with orange background -->
<fo:block font-size=”18pt”

font-family=”sans-serif”
line-height=”24pt”
space-after.optimum=”15pt”
background-color=”orange”
color=”white”
text-align=”center”
padding-top=”3pt”>
Ez Books Online

</fo:block>

<!-- Paragraph that contains info about the company -->
<fo:block font-size=”12pt”

font-family=”sans-serif”
line-height=”15pt”
space-after.optimum=”14pt”
text-align=”justify”>

Welcome to Ez Books Online, the world’s smallest online book store.
Our company’s mission is to sell books on Java, Thrillers and Romance.
We have something for everyone...so we think. Feel free to browse our
catalog and if you find a book of interest then send us an e-mail.
Thanks for visiting!

</fo:block>

</fo:flow>
</fo:page-sequence>

Building XML-Based Applications

PART II
384

FIGURE 9.17
PDF document for
Ez Books Online.

12 0672323419 CH09 3/15/04 11:19 AM Page 384

The <fo:flow> element has to specify a region for its content. In this example, the content
is placed in the main body region.

The first <fo:block> element defines a heading with an orange background. Notice how
the content of each <fo:block> can be customized using font and line attributes.

The second <fo:block> element contains information about the company. The text for
<fo:block> is free flowing. The text will automatically wrap. Ample space is provided at
the end of the paragraph using the space-after.optimum attribute.

Now let’s integrate the new elements into the basic document structure. Recall from earlier
that an XSL-FO document has the following structure:

<?xml version=”1.0” encoding=”utf-8”?>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>
<!-- layout master set -->
<!-- page masters: size and layout -->

<!-- page sequences and content -->
</fo:root>

Listing 9.15 contains the additional code for the page sequence.

LISTING 9.15 <install_dir>\ch9_xsl\xsl_fo\simple.fo

<?xml version=”1.0” encoding=”utf-8”?>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>
<!-- layout master set -->
<fo:layout-master-set>

<!-- page masters: size and layout -->
<fo:simple-page-master master-name=”simple”

page-height=”11in”
page-width=”8.5in”
margin-top=”1in”
margin-bottom=”1in”
margin-left=”1.25in”
margin-right=”1.25in”>

<fo:region-body margin-top=”0.5in”/>
<fo:region-before extent=”3cm”/>
<fo:region-after extent=”1.5cm”/>

</fo:simple-page-master>

</fo:layout-master-set>

<!-- page sequences and content -->
<fo:page-sequence master-name=”simple”>

<fo:flow flow-name=”xsl-region-body”>

Transforming XML with XSL

CHAPTER 9
385

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:19 AM Page 385

LISTING 9.15 continued

<!-- this defines a level 1 heading with orange background -->
<fo:block font-size=”18pt”

font-family=”sans-serif”
line-height=”24pt”
space-after.optimum=”15pt”
background-color=”orange”
color=”white”
text-align=”center”
padding-top=”3pt”>
Ez Books Online

</fo:block>

<!-- Paragraph that contains info about the company -->
<fo:block font-size=”12pt”

font-family=”sans-serif”
line-height=”15pt”
space-after.optimum=”14pt”
text-align=”justify”>

Welcome to Ez Books Online, the world’s smallest online book store.
Our company’s mission is to sell books on Java, Thrillers and Romance.
We have something for everyone...so we think. Feel free to browse our
catalog and if you find a book of interest then send us an e-mail.
Thanks for visiting!

</fo:block>

</fo:flow>
</fo:page-sequence>

</fo:root>

Generating a PDF Document
Now that we have the XSL-FO document simple.fo, let’s convert it to a PDF file. In this
chapter, we are using the open-source Apache-FOP formatting engine. It is included in the
source code download for this chapter. Apache-FOP requires the Java Development Kit
from Sun Microsystems. The Adobe Acrobat Reader is required to view the PDF docu-
ments. The Acrobat Reader is freely available at http://www.adobe.com.

Follow these steps to generate a PDF document from simple.fo:

1. Open an MS-DOS window.

2. Move to the directory <install_dir>\ch9_xsl\xsl_fo\.

3. Set up the Java classpath by typing setpaths.

4. Execute Apache-FOP by typing fop simple.fo simple.pdf.

Building XML-Based Applications

PART II
386

12 0672323419 CH09 3/15/04 11:19 AM Page 386

The Apache-FOP formatter now reads the input file simple.fo and generates the
output file simple.pdf.

5. View the simple.pdf file in Adobe Acrobat Reader. Your screen should resemble
what’s shown in Figure 9.17.

Page Headers and Footers
The <fo:static-content> element defines content that should appear on every page.
The <fo:static-content> element is commonly used to set up page headers and
footers. The <fo:static-content> element is a component of <fo:page-sequence>.

In this example, we’ll define a page header that contains the company name and current
page number. We’ll also define a footer that lists the company’s Web site. This example
is also composed of multiple pages to illustrate the fact that the header and footer are
repeated on each page.

The header is defined using the following code fragment:

<!-- header -->
<fo:static-content flow-name=”xsl-region-before”>
<fo:block text-align=”end”

font-size=”10pt”
font-family=”serif”
line-height=”14pt” >

Ez Books Catalog - page <fo:page-number/>
</fo:block>

</fo:static-content>

The content for the header is placed in xsl-region-before, which is the top of the page
in this example. The <fo:block> element uses the text-align attribute to place the text
at the end of the region. This example uses the English language, so the text is right jus-
tified. The current page number is determined using the <fo:page-number> element.

The footer is defined using the following code fragment:

<!-- footer -->
<fo:static-content flow-name=”xsl-region-after”>
<fo:block text-align=”center”

font-size=”10pt”
font-family=”serif”
line-height=”14pt” >

Visit our website http://www.ezbooks.web
</fo:block>

</fo:static-content>

The footer content is placed at the bottom of the page in xsl-region-after. A message
containing the company’s Web site is listed in the footer.

Transforming XML with XSL

CHAPTER 9
387

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:19 AM Page 387

New pages are generated using <fo:block break-before=”page”>. The following code
fragment generates a page break before the content is rendered. The static content,
header, and footer will also appear on the new page. Here’s the code:

<!-- insert page break for second page -->
<fo:block break-before=”page”>
A page break is inserted before this block.
Notice we have the headers and footers
in place. This was accomplished with the
fo-static-content elements. We can continue
on...business as usual.
</fo:block>

Now that we’ve discussed the smaller pieces of this example, let’s pull it all together.
Listing 9.16 contains the complete code for header_footer.fo.

LISTING 9.16 <install_dir>\ch9_xsl\xsl_fo\header_footer.fo

<?xml version=”1.0” encoding=”utf-8”?>

<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>
<!-- layout information -->
<fo:simple-page-master master-name=”simple”

page-height=”11in”
page-width=”8.5in”
margin-top=”1in”
margin-bottom=”1in”
margin-left=”1.25in”
margin-right=”1.25in”>

<fo:region-body margin-top=”0.5in”/>
<fo:region-before extent=”0.5in”/>
<fo:region-after extent=”0.5in”/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-name=”simple”>
<!-- header -->
<fo:static-content flow-name=”xsl-region-before”>
<fo:block text-align=”end”

font-size=”10pt”
font-family=”serif”
line-height=”14pt” >

Ez Books Catalog - page <fo:page-number/>
</fo:block>

</fo:static-content>

<!-- footer -->
<fo:static-content flow-name=”xsl-region-after”>

Building XML-Based Applications

PART II
388

12 0672323419 CH09 3/15/04 11:19 AM Page 388

LISTING 9.16 continued

<fo:block text-align=”center”
font-size=”10pt”
font-family=”serif”
line-height=”14pt” >

Visit our website http://www.ezbooks.web
</fo:block>

</fo:static-content>

<!-- body -->
<fo:flow flow-name=”xsl-region-body”>

<!-- this defines a level 1 heading with orange background -->
<fo:block font-size=”18pt”

font-family=”sans-serif”
line-height=”24pt”
space-after.optimum=”15pt”
background-color=”orange”
color=”white”
text-align=”center”
padding-top=”3pt”>
Ez Books Online

</fo:block>

<!-- Paragraph that contains info about the company -->
<fo:block font-size=”12pt”

font-family=”sans-serif”
line-height=”15pt”
space-after.optimum=”14pt”
text-align=”justify”>

Welcome to Ez Books Online, the world’s smallest online book store.
Our company’s mission is to sell books on Java, Thrillers and Romance.
We have something for everyone...so we think. Feel free to browse our
catalog and if you find a book of interest then send us an e-mail.
Thanks for visiting!
</fo:block>

<!-- insert page break for second page -->
<fo:block break-before=”page”>

A page break is inserted before this block.
Notice we have the headers and footers in place.
This was accomplished with the fo-static-content elements.
We can continue on...business as usual.

</fo:block>

<!-- insert page break for third page -->
<fo:block break-before=”page”>

Information on our third page. Again...notice the page number is
incrementing for us...automagically. Wouldn’t it be great to generate
this XSL-FO page dynamically? Hold

Transforming XML with XSL

CHAPTER 9
389

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:19 AM Page 389

LISTING 9.16 continued

tight, dynamic demos are coming up!
</fo:block>

</fo:flow>

</fo:page-sequence>
</fo:root>

Notice that <fo:static-content> is a component of <fo:page-sequence>. Also,
<fo:static-content> has to be listed before any <fo:flow> elements. If not, the for-
matting engine will generate a parsing error.

You can generate the PDF document from header_footer.fo using the steps from the
previous section. Once you’ve set up the Java classpath, perform the conversion by typ-
ing the following:

fop header_footer.fo header_footer.pdf

The PDF document should resemble what’s shown in Figure 9.18. Navigate to the differ-
ent pages in the document to verify the existence of the header and footer.

Building XML-Based Applications

PART II
390

FIGURE 9.18
PDF document
with header and
footer.

Graphics
XSL-FO also allows for the insertion of external graphic images. The graphic formats
supported are dependent on the XSL-FO formatting engine. The Apache-FOP formatting
engine supports the popular graphics formats: GIF, JPEG, and BMP.

The following code fragment inserts the image smiley.jpg:

<fo:block text-align=”center”>
<fo:external-graphic src=”smiley.jpg” width=”200px” height=”200px”/>

</fo:block>

12 0672323419 CH09 3/15/04 11:19 AM Page 390

We can incorporate this image in a letter from the company president. Converting the file
<install_dir>\ch9_xsl\xsl_fo\graphic.fo to a PDF generates what’s shown in
Figure 9.19.

Transforming XML with XSL

CHAPTER 9
391

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

FIGURE 9.19
Inserting a
graphic image in
a PDF document.

Tables
XSL-FO has rich support for structuring tabular data. In fact, there are many similarities
between HTML tables and XSL-FO tables. Table 9.4 lists the HTML table elements with
their corresponding XSL-FO table elements.

TABLE 9.4 Comparing HTML Table Elements and XSL-FO Table Elements

HTML Element XSL-FO Element

TABLE fo:table-and-caption

Not applicable fo:table

CAPTION fo:table-caption

COL fo:table-column

COLGROUP Not applicable

TH fo:table-header

TBODY fo:table-body

TFOOT fo:table-footer

TD fo:table-cell

TR fo:table-row

12 0672323419 CH09 3/15/04 11:19 AM Page 391

In this example, we’ll create a table for our books. The desired output for the table is
shown in Figure 9.20.

Building XML-Based Applications

PART II
392

FIGURE 9.20
Creating a table
in a PDF
document.

The following code fragment defines the basic structure of the table:

<fo:table>
<!-- define column widths -->
<fo:table-column column-width=”120pt”/>
<fo:table-column column-width=”200pt”/>
<fo:table-column column-width=”80pt”/>

<fo:table-header>
<fo:table-row>

<fo:table-cell>
<fo:block font-weight=”bold”>Author</fo:block>

</fo:table-cell>

<fo:table-cell>
<fo:block font-weight=”bold”>Title</fo:block>

</fo:table-cell>

<fo:table-cell>
<fo:block font-weight=”bold”>Price (USD)</fo:block>

</fo:table-cell>
</fo:table-row>

</fo:table-header>

<!-- insert table body and rows here -->

</fo:table>

The column widths are specified using the <fo:table-column> element. Next, the table
headers are defined. In HTML, the table headers are automatically formatted using a
bold font. However, this is not the case in XSL-FO. If a bold font is desired for the table
heading, it must be set explicitly using the font-weight attribute.

12 0672323419 CH09 3/15/04 11:19 AM Page 392

The following code fragment inserts the table body and rows:

<fo:table-body>
<fo:table-row>

<fo:table-cell>
<fo:block>Michael Daconta</fo:block>

</fo:table-cell>
<fo:table-cell>

<fo:block>XML Development with Java 2</fo:block>
</fo:table-cell>

<fo:table-cell>
<fo:block>37.99</fo:block>

</fo:table-cell>
</fo:table-row>
<fo:table-row>

<fo:table-cell>
<fo:block>E. Lynn Harris</fo:block>

</fo:table-cell>
<fo:table-cell>

<fo:block>Any Way The Wind Blows</fo:block>
</fo:table-cell>

<fo:table-cell>
<fo:block>19.95</fo:block>

</fo:table-cell>
</fo:table-row>
<fo:table-row>

<fo:table-cell>
<fo:block>Tom Clancy</fo:block>

</fo:table-cell>
<fo:table-cell>

<fo:block>Executive Orders</fo:block>
</fo:table-cell>

<fo:table-cell>
<fo:block>7.99</fo:block>

</fo:table-cell>
</fo:table-row>

</fo:table-body>

As you can see, the table body is very similar to HTML. Simply replace the HTML table
elements with the appropriate XSL-FO elements. However, note that the table cell data
must be wrapped in an <fo:block> element.

Let’s pull it all together. Listing 9.17 contains the complete code for table.fo.

LISTING 9.17 <install_dir>\ch9_xsl\xsl_fo\table.fo

<?xml version=”1.0” encoding=”utf-8”?>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>
<!-- layout information -->

Transforming XML with XSL

CHAPTER 9
393

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:19 AM Page 393

LISTING 9.17 continued

<fo:simple-page-master master-name=”simple”
page-height=”11in”
page-width=”8.5in”
margin-top=”1in”
margin-bottom=”1in”
margin-left=”1.25in”
margin-right=”1.25in”>

<fo:region-body margin-top=”0.5in”/>
<fo:region-before extent=”3cm”/>
<fo:region-after extent=”1.5cm”/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-name=”simple”>

<fo:flow flow-name=”xsl-region-body”>

<!-- this defines a level 1 heading with orange background -->
<fo:block font-size=”18pt”

font-family=”sans-serif”
line-height=”24pt”
space-after.optimum=”15pt”
background-color=”orange”
color=”white”
text-align=”center”
padding-top=”3pt”>
Ez Books Online

</fo:block>

<!-- table start -->
<fo:table>

<!-- define column widths -->
<fo:table-column column-width=”120pt”/>
<fo:table-column column-width=”200pt”/>
<fo:table-column column-width=”80pt”/>

<fo:table-header>
<fo:table-row>

<fo:table-cell>
<fo:block font-weight=”bold”>Author</fo:block>

</fo:table-cell>
<fo:table-cell>

<fo:block font-weight=”bold”>Title</fo:block>
</fo:table-cell>

<fo:table-cell>
<fo:block font-weight=”bold”>Price

(USD)</fo:block>
</fo:table-cell>

Building XML-Based Applications

PART II
394

12 0672323419 CH09 3/15/04 11:19 AM Page 394

LISTING 9.17 continued

</fo:table-row>
</fo:table-header>

<fo:table-body>
<fo:table-row>

<fo:table-cell>
<fo:block>Michael Daconta</fo:block>

</fo:table-cell>
<fo:table-cell>

<fo:block>XML Development with Java 2</fo:block>
</fo:table-cell>

<fo:table-cell>
<fo:block>37.99</fo:block>

</fo:table-cell>
</fo:table-row>
<fo:table-row>

<fo:table-cell>
<fo:block>E. Lynn Harris</fo:block>

</fo:table-cell>
<fo:table-cell>

<fo:block>Any Way The Wind Blows</fo:block>
</fo:table-cell>

<fo:table-cell>
<fo:block>19.95</fo:block>

</fo:table-cell>
</fo:table-row>
<fo:table-row>

<fo:table-cell>
<fo:block>Tom Clancy</fo:block>

</fo:table-cell>
<fo:table-cell>

<fo:block>Executive Orders</fo:block>
</fo:table-cell>

<fo:table-cell>
<fo:block>7.99</fo:block>

</fo:table-cell>
</fo:table-row>

</fo:table-body> </fo:table>
<!-- table end -->

</fo:flow>
</fo:page-sequence>

</fo:root>

Converting the file <install_dir>\ch9_xsl\xsl_fo\table.fo to a PDF generates
what’s shown in Figure 9.20.

Transforming XML with XSL

CHAPTER 9
395

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:19 AM Page 395

Generating XSL-FO Tables Using XSLT
The previous example only listed three books. Imagine the size of the document if we
wanted to list 500 books. The document would be extremely large and verbose. In this
section, we’ll use XSLT to automatically generate the XSL-FO document.

The file, booklist.xml, contains a list of the books. We can develop an XSL style sheet
that will automatically construct the XSL-FO document. This process is illustrated in
Figure 9.21.

Building XML-Based Applications

PART II
396

XSL-FO
Formatter

XSLT
Processor

PDF

XML

XSL

XSL-FO

FIGURE 9.21
Generating
XSL-FO tables
with XSLT.

After reviewing the XSL-FO document for the book table, you can see that the dynamic
portion is the construction of each table row. We can use the element <xsl:for-each> to
loop over each book and build the table row. This is accomplished with the following
code:

<!-- Perform loop for each book in the book list -->
<xsl:for-each select=”booklist/book” >

<fo:table-row>
<fo:table-cell>[sr]

<fo:block><xsl:value-of select=”author” /></fo:block>
</fo:table-cell>

<fo:table-cell>
<fo:block><xsl:value-of select=”title” /></fo:block>

</fo:table-cell>
<fo:table-cell>

<fo:block><xsl:value-of select=”price” /></fo:block>
</fo:table-cell>

</fo:table-row>

</xsl:for-each>

As you can see, this example is very similar to constructing an HTML table with
XSLT. Instead of using the HTML table elements, we’re using the appropriate XSL-FO
table elements. Also, this example uses table borders via the values specified for the

12 0672323419 CH09 3/15/04 11:19 AM Page 396

border-style and border-width attributes. By leveraging XSLT and XSL-FO, we can
dynamically generate a PDF file based on an XML document.

Listing 9.18 contains the complete code for this example.

LISTING 9.18 <install_dir>\ch9_xsl\xsl_fo\dynamic\table\booklist_table.xsl

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:fo=”http://www.w3.org/1999/XSL/Format”
version=”1.0”>

<xsl:template match=”/”>

<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>
<!-- layout information -->
<fo:simple-page-master master-name=”simple”

page-height=”11in”
page-width=”8.5in”
margin-top=”1in”
margin-bottom=”2in”
margin-left=”1.25in”
margin-right=”1.25in”>

<fo:region-body margin-top=”0.5in”/>
<fo:region-before extent=”3cm”/>
<fo:region-after extent=”1.5cm”/>

</fo:simple-page-master>
</fo:layout-master-set>
<!-- end: defines page layout -->

<fo:page-sequence master-name=”simple”>

<fo:flow flow-name=”xsl-region-body”>

<!-- this defines a level 1 heading with orange background -->
<fo:block font-size=”18pt”

font-family=”sans-serif”
line-height=”24pt”
space-after.optimum=”15pt”
background-color=”orange”
color=”white”
text-align=”center”
padding-top=”3pt”>
Ez Books Online

</fo:block>

Transforming XML with XSL

CHAPTER 9
397

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:19 AM Page 397

LISTING 9.18 continued

<!-- table start -->
<fo:table border-style=”solid” border-width=”.1mm” >

<!-- define column widths -->
<fo:table-column column-width=”120pt”/>
<fo:table-column column-width=”200pt”/>
<fo:table-column column-width=”80pt”/>

<fo:table-header>
<fo:table-row >

<fo:table-cell border-style=”solid” border-width=”.1mm”>
<fo:block font-weight=”bold”>Author</fo:block>

</fo:table-cell>
<fo:table-cell border-style=”solid” border-width=”.1mm”>

<fo:block font-weight=”bold”>Title</fo:block>
</fo:table-cell>
<fo:table-cell border-style=”solid” border-width=”.1mm”>

<fo:block font-weight=”bold”>Price (USD)</fo:block>
</fo:table-cell>

</fo:table-row>
</fo:table-header>

<fo:table-body>
<!-- Perform loop for each book in the book list -->
<xsl:for-each select=”booklist/book” >

<fo:table-row>
<fo:table-cell border-style=”solid” border-width=”.1mm”>

<fo:block><xsl:value-of select=”author” /></fo:block>
</fo:table-cell>
<fo:table-cell border-style=”solid” border-width=”.1mm”>

<fo:block><xsl:value-of select=”title” /></fo:block>
</fo:table-cell>
<fo:table-cell border-style=”solid” border-width=”.1mm”>

<fo:block><xsl:value-of select=”price” /></fo:block>
</fo:table-cell>

</fo:table-row>

</xsl:for-each>
</fo:table-body>

</fo:table>
<!-- table end -->

</fo:flow>
</fo:page-sequence>

</fo:root>

</xsl:template>
</xsl:stylesheet>

Building XML-Based Applications

PART II
398

12 0672323419 CH09 3/15/04 11:19 AM Page 398

Generating a PDF Document
This example involves a two-step process. The first step involves XSLT processing the
booklist.xml document with booklist_table.xsl. The second step involves converting
the output of the XSLT conversion to a PDF file using XSL-FO.

The Apache-FOP product can perform both of these steps internally. All we have to do is
provide the XML document and XSL style sheet.

Follow these steps to generate the PDF document:

1. Open an MS-DOS window.

2. Move to the directory <install_dir>\ch9_xsl\xsl_fo\dynamic\table.

3. Set up the Java classpath by typing setpaths.

4. Execute Apache-FOP by typing the following:

fop -xml booklist.xml -xsl booklist_table.xsl dyntable.pdf

5. View the dyntable.pdf file in Adobe Acrobat Reader. Figure 9.22 shows what
your screen should look like.

Transforming XML with XSL

CHAPTER 9
399

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

FIGURE 9.22
Output of
dyntable.pdf.

Web Application Integration: Java
Servlets, XSLT, and XSL-FO
In this section, we will pull all the parts together and develop a Web application that inte-
grates Java servlets, XSLT, and XSL-FO. We will develop a Java servlet to pass an XML
document and XSL style sheet to the Apache-FOP formatting engine. The XML docu-
ment is booklist.xml. The XSL style sheet, booklist_table.xsl, contains the XSL-FO

12 0672323419 CH09 3/15/04 11:19 AM Page 399

template code to generate a table. The servlet will respond with the PDF document gen-
erated by the Apache-FOP formatting engine. The application interaction is shown in
Figure 9.23.

Building XML-Based Applications

PART II
400

XSL-FO
Formatter

EzFop
Servlet

XSLT
Processor

Web Browser

XML

XSL

PDF PDF

Apache FOP

Web ServerFIGURE 9.23
Web application
integration: Java
servlets, XSLT,
and XSL-FO.

Developing the Java Servlet
The Java servlet handles an HTTP GET request. The servlet sets up a reference to the files
booklist.xml and booklist_table.xsl. The Apache-FOP API provides access to the
Apache-FOP formatting engine via the class org.apache.fop.apps.Driver. The follow-
ing code creates an instance of the driver and sets the renderer to PDF:

// setup the driver for PDF
Driver driver = new Driver();
driver.setRenderer(Driver.RENDER_PDF);

Next, the servlet creates a file reference for the XML document and XSL style sheet.
Because the servlet is running in the context of a servlet engine, we need to retrieve the
real path to the Web application’s root (c:\foo\ch9_xsl\xsl_fo\public_html). The
XSLTInputHandler class transforms the XML document using the XSL style sheet, and
the resulting document is input for the Apache-FOP processing engine. This is accom-
plished in the following code fragment:

String appRoot = getServletContext().getRealPath(“/”);

String xmlFileName = “booklist.xml”;
String xslFileName = “booklist_table.xsl”;
File xmlFile = new File(appRoot + xmlFileName);
File xslFile = new File(appRoot + xslFileName);

12 0672323419 CH09 3/15/04 11:19 AM Page 400

// create an input handler for the XSLT transformation
XSLTInputHandler inputHandler = new XSLTInputHandler(xmlFile, xslFile);
XMLReader parser = inputHandler.getParser();

Now, we need to set up an output for the XSL-FO formatter process. We’ll use a
ByteArrayOutputStream object to serve as a temporary buffer. The XSL-FO processor
generates the PDF document using the following code:

// setup the output for XSL-FO formatter process
// temporarily place in a ByteArrayOutputStream
ByteArrayOutputStream out = new ByteArrayOutputStream();
driver.setOutputStream(out);

// Run the formatter based on the XSL-FO document
driver.render(parser, inputHandler.getInputSource());

Finally, we need to send the PDF document back to the Web browser. Recall from the
previous step that the document was placed in a temporary buffer. All we have to do is
access the content of the temporary buffer and send the content using the response. This
is accomplished in the following code:

// The out object has the result of the XSL-FO formatter process
// Retrieve the content from ByteArray
byte[] content = out.toByteArray();

// Setup the response for the web browser
response.setContentType(“application/pdf”);
response.setContentLength(content.length);

// Finally, send the result to the browser!
OutputStream outputToBrowser = response.getOutputStream();
outputToBrowser.write(content);
outputToBrowser.flush();

Listing 9.19 contains the complete code for the EzFopServlet.

LISTING 9.19 <install_dir>\ch9_xsl\xsl_fo\servlet_source\EzFopServlet.java

import java.io.File;
import java.io.OutputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.xml.sax.XMLReader;

Transforming XML with XSL

CHAPTER 9
401

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:19 AM Page 401

LISTING 9.19 continued

import org.apache.fop.apps.Driver;
import org.apache.fop.apps.XSLTInputHandler;

/**
* Example servlet to generate a PDF from an XSL-FO document
*/
public class EzFopServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

try {
// get the application root for this web app
String appRoot = getServletContext().getRealPath(“/”);

String xmlFileName = “booklist.xml”;
String xslFileName = “booklist_table.xsl”;
File xmlFile = new File(appRoot + xmlFileName);
File xslFile = new File(appRoot + xslFileName);

// diagnostic messages
System.out.println(“EzFopServlet: XSL-FO formatting:”);
System.out.println(“xml = “ + xmlFile);
System.out.println(“xsl = “ + xslFile + “\n\n”);

// setup the driver for PDF
Driver driver = new Driver();
driver.setRenderer(Driver.RENDER_PDF);

// create an input handler for the XSLT transformation
XSLTInputHandler inputHandler =

new XSLTInputHandler(xmlFile, xslFile);
XMLReader parser = inputHandler.getParser();

// setup the output for XSL-FO formatter process
// temporarily place in a ByteArrayOutputStream
ByteArrayOutputStream out = new ByteArrayOutputStream();
driver.setOutputStream(out);

// Run the formatter based on the XSL-FO document
driver.render(parser, inputHandler.getInputSource());

// The out object has the result of the XSL-FO formatter process
// Retrieve the content from ByteArray
byte[] content = out.toByteArray();

// Setup the response for the web browser
response.setContentType(“application/pdf”);
response.setContentLength(content.length);

Building XML-Based Applications

PART II
402

12 0672323419 CH09 3/15/04 11:19 AM Page 402

LISTING 9.19 continued

// Finally, send the result to the browser!
OutputStream outputToBrowser = response.getOutputStream();
outputToBrowser.write(content);
outputToBrowser.flush();

}
catch (Exception exc) {

log(exc.toString());
throw new ServletException(exc);

}
}

}

Testing the Example
This example is stored in a separate Web application archive (WAR) file, called
ezfop.war. The WAR file contains the compiled class for EzFopServlet. The
WAR file can be deployed on any JSP or servlet engine that supports the Servlet 2.3
API or JSP 1.2.

Follow these steps to deploy it on a Tomcat 4 server:

1. Copy the file <install_dir>\ch9_xsl\xsl_fo\ezfop.war to
<tomcat_install_dir>\webapps.

2. Restart the Tomcat server.

3. Access the ezfop Web application using http://localhost:8080/ezfop. Figure
9.23 shows what your screen should look like.

Summary
This chapter covered a lot of ground. We started out by discussing the role of XSL in
application development. In the realm of document publishing, XSL can be used to cre-
ate multiple views of the same XML document. This is accomplished by creating an
XSL style sheet that contains the template code for the view and the XSLT constructs for
retrieving the data. XSL also has a key role in the area of B2B communications. We can
easily convert XML documents to other XML formats using the XSL technology.

Next, we covered the implementation details for constructing XSL style sheets. We dis-
cussed the XSL elements used to retrieve XML data, loop over sequential data, and per-
form conditional tests and sorting of the XML data.

We also discussed the various techniques for performing the XSLT translation. If the
browser supports XSLT, you can leverage the client-side technique. This approach

Transforming XML with XSL

CHAPTER 9
403

9

T
R

A
N

SFO
R

M
IN

G
X

M
L W

ITH
X

SL

12 0672323419 CH09 3/15/04 11:19 AM Page 403

offloads the XSLT processing to the client machine. However, if you are in an environ-
ment where the XSLT browser support is unknown, you can apply the server-side strat-
egy. The server-side strategy is implemented with a server scripting language such as
Active Server Pages or JavaServer Pages. The server-side technique performs the XSLT
processing on the server, and the result is normally an HTML document that is widely
supported in Web browsers.

The XSL-FO language was explored for document publishing. In particular, we utilized
the Apache-FOP formatting engine to generate PDF documents from XSL-FO docu-
ments. By applying the XSLT technology, we were able to dynamically populate the
XSL-FO document with a list of books that were stored in a separate XML document.

The grand finale of the chapter was the integration of XSLT, XSL-FO, and Java servlets.
The resulting Web application consisted of a Java servlet that retrieved an XML docu-
ment and XSL style sheet. These documents were fed into the Apache-FOP formatting
engine to generate a PDF document directly back to the Web browser.

Using the techniques presented, you can create Web applications that transform XML on
the server side. This chapter covered the essential elements to jumpstart your XSLT and
XSL-FO projects. Good luck!

Building XML-Based Applications

PART II
404

12 0672323419 CH09 3/15/04 11:19 AM Page 404

IN THIS CHAPTER

• XML Database Solutions 407

• Modeling Databases in XML 409

10
C

H
A

PT
ER

Integrating XML
with Databases

13 0672323419 CH10 3/15/04 11:19 AM Page 405

Data is king! This statement is often made by IT professionals because a large percent-
age of their applications are data driven. With the emergence of XML as a technique for
describing data, the frequently asked question is, “How can we integrate XML with our
existing relational database?” In particular, developers need a solution to dynamically
generate XML documents using information stored in databases.

XML and database integration is important because XML provides a standard technique
to describe data. By leveraging XML, a company can convert its existing corporate data
into a format that is consumable by its trading partners. XML allows the development
team to define a set of custom tags specific to its industry. A trading partner can import
the XML data into its system using the given format. The trading partner also has the
option of converting the data to a different XML format using XSLT. XSLT is covered in
Chapter 9, “Transforming XML with XSL.”

In this chapter, you will learn how to

• Use XML as a database integration format

• Model databases in XML

• Leverage XML data binding with Java Architecture for XML Binding (JAXB)

• Create a data access object

• Generate XML documents with Java servlets

Building XML-Based Applications

PART II
406

Note

All the source code in this chapter is available at the Sams Web site. You can
download the code and extract it to a directory on your file system. For the
remainder of this chapter, I’ll use <install_dir> as the root location where
you’ve installed the code. The installation contains a number of directories.
Here’s a description of the source code directories (partial list):

Directory Description

ch10_xmldb\source_code Source code files

ch10_xmldb\public_html Web application root directory

ch10_xmldb \public_html\WEB-INF Web application support files

ch10_xmldb\lib JAXB JAR files

ch10_xmldb\data MS Access database used in the
chapter

13 0672323419 CH10 3/15/04 11:19 AM Page 406

XML Database Solutions
A large number of XML database solutions are available, and they generally come in two
flavors: database mapping and native XML support.

XML Database Mapping
The first type of XML database solution provides a mapping between the XML docu-
ment and the database fields. The system dynamically converts SQL result sets to XML
documents. Depending on the sophistication of the product, it may provide a graphical
tool to map the database fields to the desired XML elements. Other tools support a con-
figuration file that defines the mapping. These tools continue to store the information in
relational database management system (RDBMS) format. They simply provide an XML
conversion process that is normally implemented as a server-side Web application. This
solution is depicted in Figure 10.1.

Integrating XML with Databases

CHAPTER 10
407

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

<rental_property>
 <prop_id>1</prop_id>
 <name>The Meadows</name>
 <address>
 <street>251 Eisenhower Blvd</street>
 <city>Houston</city>
 <state>TX</state>
 <postal_code>77033</postal_code></address>
 <square_footage>500.0</square_footage>
 <bedrooms>1.0</bedrooms>
 <bath>1.0</bath>
 <price>600</price>
 <contact>
 <phone>555-555-1212</phone>
 <fax>555-555-1414</fax?
 </contact>
</rental_property>

XML Document Relational Database

Table

FIGURE 10.1
Mapping XML
documents to
database fields.

Table 10.1 contains a list of products that provide XML database mappings. Note that
this list is not exhaustive. Additional product offerings are available at www.xml.com.

TABLE 10.1 XML Database Mapping Products

Product Company Web Site

DB2 Extender IBM www.ibm.com

SQL Server 2000 Microsoft www.microsoft.com

Oracle 8i & 9i Oracle www.oracle.com

DataMirror DB/XML DataMirror www.datamirror.com

13 0672323419 CH10 3/15/04 11:19 AM Page 407

TABLE 10.1 continued

Product Company Web Site

webMethods webMethods www.webmethods.com

Excelon Excelon www.exceloncorp.com

Native XML Support
The second type of XML database solution actually stores the XML data in the docu-
ment in its native format. Each product uses its own proprietary serialization technique to
store the data. However, when the data is retrieved, it represents an XML document. This
solution is depicted in Figure 10.2.

Building XML-Based Applications

PART II
408

<rental_property>
 <prop_id>1</prop_id>
 <name>The Meadows</name>
 <address>
 <street>251 Eisenhower Blvd</street>
 <city>Houston</city>
 <state>TX</state>
 <postal_code>77033</postal_code></address>
 <square_footage>500.0</square_footage>
 <bedrooms>1.0</bedrooms>
 <bath>1.0</bath>
 <price>600</price>
 <contact>
 <phone>555-555-1212</phone>
 <fax>555-555-1414</fax?
 </contact>
</rental_property>

XML Document Native XML Database

XML Document

<xml> <xml>

<xml> <xml>

FIGURE 10.2
Native XML
databases.

Table 10.2 lists some of the products that provide native XML document support. See
www.xml.com for additional products.

TABLE 10.2 Native XML Database Products

Product Company Web Site

TEXTML IXIA Soft www.ixiasoft.com

Oracle 8i and 9i Oracle www.oracle.com

Excelon Excelon www.exceloncorp.com

dbXML dbXML Group www.dbxml.org

Tamino Software AG www.softwareag.com

Noted XML author Ronald Bourret maintains a list of XML database products that you
can visit at www.rpbourret.com/xml.

13 0672323419 CH10 3/15/04 11:19 AM Page 408

Modeling Databases in XML
In this section, you’ll learn how to model a database in XML using Java. When we
model a database, we provide an external representation of the database contents. For our
sample program, we’ll utilize a database that contains information on rental properties.
We’ll model the rental property database as an XML document. Figure 10.3 shows the
desired output.

Integrating XML with Databases

CHAPTER 10
409

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

<rental_property>
 <prop_id>1</prop_id>
 <name>The Meadows</name>
 <address>
 <street>251 Eisenhower Blvd</street>
 <city>Houston</city>
 <state>TX</state>
 <postal_code>77033</postal_code></address>
 <square_footage>500.0</square_footage>
 <bedrooms>1.0</bedrooms>
 <bath>1.0</bath>
 <price>600</price>
 <contact>
 <phone>555-555-1212</phone>
 <fax>555-555-1414</fax?
 </contact>
</rental_property>

XML Document Relational Database

Table

FIGURE 10.3
Desired output for
rental properties.

One possible solution is to use Java servlets and JDBC. Java servlets are server-side
components that reside in a Web server or application server. Java servlets are com-
monly used to handle requests from Web browsers using the HTTP protocol.

A key advantage to using servlets is the thin-client interface. The servlets handle the
request on the server side and respond by generating an HTML page dynamically. This
lowers the requirement on the client browser. The browser only has to provide support of
HTML. As a result, there is zero client-side administration.

In contrast, Java applets require the browser to support the correct version of the Java
Virtual Machine (JVM). This has been a thorny issue with the Java community since the
early days of applet development. If the browser doesn’t support Java, the applet will not
execute. Of course, there are a number of workarounds, such as the Java Plug-In and
Java Web Start. However, these technologies still require an initial installation on the
client machine—which can prove to be time consuming and error prone.

We can develop a servlet that uses JDBC. The servlet will make the appropriate query to
the database and use Java Database Connectivity (JDBC) API result set metadata to cre-
ate the elements. In fact, a servlet that performs this operation is presented in Chapter 7,
“Parsing XML Using Document Object Model.” This is a simple and elegant solution
because it leverages the result set metadata.

13 0672323419 CH10 3/15/04 11:19 AM Page 409

In this section, we’ll leverage the XML data binding features of Java Architecture for
XML Binding (JAXB). JAXB provides a framework for representing XML documents as
Java objects. Using the JAXB framework, we can guarantee that the documents
processed by our system are well formed. Also, we have the option of validating the
XML data against a schema.

In the JAXB framework, we can parse XML documents into a suitable Java object. This
technique is referred to as unmarshaling. The JAXB framework also provides the capa-
bility to generate XML documents from Java objects, which is referred to as marshaling.
The process is illustrated in the Figure 10.4.

Building XML-Based Applications

PART II
410

<xml>
document

<xml>
document

unmarshal marshal
Java Object

FIGURE 10.4
JAXB marshaling
and unmarshaling.

JAXB is easier to use and a more efficient technique for processing XML documents
than the SAX or DOM API. Using the SAX API, you have to create a custom content
handler for each XML document structure. Also, during the development of the content,
you have to create and manage your own state machine to keep track of your place in the
document. For very complex XML documents, the development process is very cumber-
some. Using JAXB, an application can parse an XML document by simply unmarshaling
the data from an input stream.

JAXB is similar to DOM in that we can create XML documents programmatically and
perform validation. However, the hindrance with DOM is the complex API. If we have
an XML tree, using the DOM API, we have to traverse through the tree to retrieve ele-
ments. However, with JAXB, we retrieve the data from the XML document by simply
calling a method on an object. JAXB allows us to define Java objects that map to XML
documents, so we can easily retrieve data. The JAXB framework also ensures the type
safety of the data.

See Chapter 7 for an introduction to JAXB. Also, detailed information on JAXB is avail-
able in the JAXB specification at java.sun.com/xml. This chapter assumes you under-
stand the basics of JAXB. We’ll apply JAXB in an enterprise application later in this
chapter.

JAXB Solution
In the JAXB solution, we will model the rental property database as an XML document.
First we need to review the database schema. After reviewing the schema, we will
develop our desired XML document based on an XML schema. After we have the XML

13 0672323419 CH10 3/15/04 11:19 AM Page 410

schema developed, we can create the JAXB binding schema. The JAXB binding schema
contains instructions on how to bind the XML schema to a Java class. We’ll take the
JAXB binding schema and generate the appropriate Java classes.

To summarize, we’ll follow these steps:

1. Review the database schema.

2. Construct the desired XML document.

3. Define a schema for the XML document.

4. Create the JAXB binding schema.

5. Generate the JAXB classes based on the schema.

6. Develop a Data Access Object (DAO).

7. Develop a servlet for HTTP access.

Figure 10.5 illustrates the application architecture. RentalXMLServlet communicates
with RentalDAO to retrieve information from the database. Once the information is
retrieved by RentalDAO, RentalXMLServlet generates an XML document.

Integrating XML with Databases

CHAPTER 10
411

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

<xml>
document

RentalXMLServlet RentalPropertyDAO
DatabaseFIGURE 10.5

The rental prop-
erty application
architecture.

Reviewing the Database Schema
We have an existing database for the rental properties. Table 10.3 contains the database
schema.

TABLE 10.3 Rental Property Database Schema

Field Type

prop_num NUMBER

name VARCHAR2

street_address VARCHAR2

city VARCHAR2

state VARCHAR2

zip_code VARCHAR2

size_sq NUMBER

bed_count NUMBER

13 0672323419 CH10 3/15/04 11:19 AM Page 411

TABLE 10.3 continued

Field Type

bath_count NUMBER

monthly_rent NUMBER

voice_phone VARCHAR2

fax_phone VARCHAR2

The source code for this chapter includes a sample MS Access database. The file is
located at <install_dir>\ch10_xmldb\data\rental_property.mdb.

Constructing the Desired XML Document
The desired output XML document describes the rental property. However, the XML
document does not use the exact field names listed in the database schema. Instead, the
XML document provides a custom mapping of the database fields to XML element
names. Table 10.4 contains the mapping.

TABLE 10.4 XML Database Mapping

Database Field XML Element Name

prop_num <prop_id>

name <name>

street_address <street>

city <city>

state <state>

zip_code <postal_code>

size_sq <square_footage>

bed_count <bedrooms>

bath_count <bath>

monthly_rent <price>

voice_phone <phone>

fax_phone <fax>

A rental property is described with a root element of <rental_property>, as shown in
the following code:

Building XML-Based Applications

PART II
412

13 0672323419 CH10 3/15/04 11:19 AM Page 412

<rental_property>
<prop_id>1</prop_id>
<name>The Meadows</name>
<address>

<street>251 Eisenhower Blvd</street>
<city>Houston</city>
<state>TX</state>
<postal_code>77033</postal_code>

</address>
<square_footage>500.0</square_footage>
<bedrooms>1.0</bedrooms>
<bath>1.0</bath>
<price>600</price>
<contact>

<phone>555-555-1212</phone>
<fax>555-555-1414</fax>

</contact>
</rental_property>

Notice how the <address> element contains the subelements <street>, <city>,
<state>, and <postal_code>. A similar approach is taken for the contact information.
The <contact> element contains the <phone> and <fax> elements for the voice number
and fax number, respectively.

In our system, we’ll normally work with a collection of rental properties. This collection
is modeled using a <rental_property_list> element, as shown here:

<rental_property_list>
<rental_property> … </rental_property>
<rental_property> … </rental_property>
… …

</rental_property_list>

Defining a Schema for the XML Document
Based on the desired document format, we can create a schema definition. In this sec-
tion, we will define the Document Type Definition (DTD). The DTD schema format was
chosen because JAXB 1.0 (early access) only supports DTDs. In the future, JAXB is sup-
posed to support the formal XML Schema definition.

Listing 10.1 contains the DTD for our rental property list.

LISTING 10.1 <install_dir>\ch10_xmldb\rental_property.dtd

<!ELEMENT rental_property_list (rental_property)*>
<!ELEMENT rental_property (prop_id, name, address, square_footage,
➥ bedrooms, bath, price, contact)>

Integrating XML with Databases

CHAPTER 10
413

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

13 0672323419 CH10 3/15/04 11:19 AM Page 413

LISTING 10.1 continued

<!ELEMENT prop_id (#PCDATA)>
<!ELEMENT name (#PCDATA)>

<!ELEMENT address (street, city, state, postal_code)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT postal_code (#PCDATA)>

<!ELEMENT square_footage (#PCDATA)>
<!ELEMENT bedrooms (#PCDATA)>
<!ELEMENT bath (#PCDATA)>
<!ELEMENT price (#PCDATA)>

<!ELEMENT contact (phone, fax)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT fax (#PCDATA)>

Creating the JAXB Binding Schema
Now that the DTD is defined for our document, we need to define the JAXB binding
schema. The JAXB binding schema is an XML document that contains instructions on
how to bind a DTD to a Java class.

Using the JAXB binding schema, we can define the names of the generated Java classes,
map element names to specific properties in the Java class, and provide the mapping
rules for attributes. The following code example informs the JAXB system that the ele-
ment <rental_property_list> should be mapped to a Java class and that it is the root
element for the XML document:

<element name=”rental_property_list” type=”class” root=”true”/>

There’s no requirement to define a mapping for every element in the XML document.
JAXB uses a default binding schema that will create properties in the Java class based on
the XML element name.

The binding schema also allows us to define a conversion rule for elements. For example,
the numerical data for the rental property, such as price, square footage, and number of
rooms, is always represented in the DTD as text data (#PCDATA). This is one of the limita-
tions of the DTD format. However, by using JAXB, we can specify that a given element

Building XML-Based Applications

PART II
414

13 0672323419 CH10 3/15/04 11:19 AM Page 414

should be converted to a Java primitive type or class. In the following code example,
we inform JAXB to convert the values of <square_footage>, <bedrooms>, and
<bath> to the double type; also, <price> is converted to an instance of the java.math.
BigDecimal class:

<element name=”square_footage” type=”value” convert=”double”/>
<element name=”bedrooms” type=”value” convert=”double”/>
<element name=”bath” type=”value” convert=”double”/>
<element name=”price” type=”value” convert=”BigDecimal”/>
<conversion name=”BigDecimal” type=”java.math.BigDecimal”/>

We can also use the binding schema to define enumerated types, constructors, and
interfaces. However, in the JAXB 1.0 early access version, constructors are not yet
implemented.

The binding schema includes a section for controlling the output of the generated Java
source code. For example, we can inform the system to use a given package name. The
following code defines the package name as xmlunleashed.ch10.jaxb:

<options package=”xmlunleashed.ch10.jaxb”/>

See the JAXB specification for details on the binding schema file format.

Now, let’s look at the JAXB binding schema file for our rental property example. The
schema files normally use the filename extension .xjs (for XML Java schema). Listing
10.2 contains the complete code for our JAXB binding schema, rental_property.xjs.

LISTING 10.2 <install_dir>\ch10_xmldb\rental_property.xjs

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<!DOCTYPE xml-java-binding-schema SYSTEM
➥ ”http://java.sun.com/dtd/jaxb/1.0-ea/xjs.dtd”>

<xml-java-binding-schema version=”1.0-ea”>
<options package=”xmlunleashed.ch10.jaxb”/>
<element name=”rental_property_list” type=”class” root=”true”>

<content property=”list”/>
</element>

<element name=”square_footage” type=”value” convert=”double”/>
<element name=”bedrooms” type=”value” convert=”double”/>
<element name=”bath” type=”value” convert=”double”/>
<element name=”price” type=”value” convert=”BigDecimal”/>

<conversion name=”BigDecimal” type=”java.math.BigDecimal”/>
</xml-java-binding-schema>

Integrating XML with Databases

CHAPTER 10
415

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

13 0672323419 CH10 3/15/04 11:19 AM Page 415

We pass our DTD (rental_property.dtd) and binding schema (rental_property.xjs)
to the JAXB schema compiler with the xjc command. The command should be entered
in the directory <install_dir>\ch10_xmldb\. Type everything on one line:

java com.sun.tools.xjc.Main rental_property.dtd
➥ rental_property.xjs -d source_code

This command generates source code in the source_code directory. The following files
are generated:

• RentalPropertyList.java. This file models the <rental_property_list> ele-
ment.

• RentalProperty.java. This file models the <rental_property> element.

• Address.java. This file models the <address> subelement.

• Contact.java. This file models the <contact> subelement.

Figure 10.7 contains the Unified Modeling Language (UML) diagram for the generated
Java classes.

Using the default schema-binding definition, the JAXB schema compiler generates a
property in the Java class for each XML element. In the event the XML element contains
subelements, the schema compiler will create a new class.

Listing 10.3 contains the partial source code for RentalProperty.java. Some of the
code and methods are not listed to preserve space.

Building XML-Based Applications

PART II
416

Class
Files

(.class)

javac

Source
Code
(.java)

DTD

Binding
Schema

schema compiler

FIGURE 10.6
Generating Java
classes with the
JAXB compiler.

Generating the JAXB Classes Based on Schemas
Now we are ready to generate the Java source files based on our schemas. JAXB pro-
vides a schema compiler for generating the Java source files. The schema compiler takes
as input the DTD and the JAXB binding schema. Figure 10.6 illustrates the process.

13 0672323419 CH10 3/15/04 11:19 AM Page 416

LISTING 10.3 <install_dir>\ch10_xmldb\source_code\xmlunleashed\ch10\jaxb\

RentalProperty.java

package xmlunleashed.ch10.jaxb;

import java.io.IOException;
import java.io.InputStream;
import java.math.BigDecimal;
import javax.xml.bind.ConversionException;
import javax.xml.bind.Dispatcher;
import javax.xml.bind.Element;
import javax.xml.bind.InvalidAttributeException;
import javax.xml.bind.LocalValidationException;
import javax.xml.bind.MarshallableObject;
import javax.xml.bind.Marshaller;
import javax.xml.bind.MissingContentException;
import javax.xml.bind.NoValueException;
import javax.xml.bind.StructureValidationException;
import javax.xml.bind.UnmarshalException;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.Validator;
import javax.xml.marshal.XMLScanner;
import javax.xml.marshal.XMLWriter;
import xmlunleashed.ch10.jaxb.Address;
import xmlunleashed.ch10.jaxb.Contact;

Integrating XML with Databases

CHAPTER 10
417

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

RentalProperty

+getPropId():String
+setProId(_PropId:String):void
+getName():String
+setname(_Name:String):void
+getAddress():Address+setAddress(_Address:Address):void
+getSquareFootage():double
+setSquareFootage(_SquareFootage:double):void
+hasSquareFootage():boolean
+deleteSquareFootage():void
+getBedrooms():double
+setBedrooms(_Bedrooms:double):void
+hasBedrooms():boolean
+deleteBedrooms():void
+getBath():double
+setBath(_Bath:double):void
+hasBath():boolean
+deleteBath():void
+getPrice():BigDecimal
+setPrice(_Price:BigDecimal):void
+getContact():Contact
+setContact(_Contact:Contact):void
+validateThis():void
+validate(v:Validator):void
+marshal(m:Marshaller):void
+unmarshal(u:Unmarshaller):void
+unmarshal(in:InputStream):RentalProperty
+unmarshal(xs:XMLScanner):RentalProperty
+unmarshal(xs:XMLScanner, d:Dispatcher):RentalProperty
+equals(ob:Object):boolean
+hashCode():int
+toString():String
+newDispatcher():Dispatcher

MarshallableObject
Element

Address

+getStreet():String
+setStreet(_Street:String):void
+getCity():String
+setCity(_City:String):void
+getState():String
+setState(_State:String):void
+getPostalCode():String
+setPostalCode(_PostalCode:String):void
+validateThis():void
+validate(v:Validator):void
+marshal(m:Marshaller):void
+unmarshal(u:Unmarshaller):void
+unmarshal(in:InputStream):Address
+unmarshal(xs:XMLScanner):Address
+unmarshal(xs:XMLScanner, d:Dispatcher):Address
+equals(ob:Object):boolean
+hashCode():int
+toString():String
+newDispatcher():Dispatcher

MarshallableObject
Element

RentalPropertyList

+getList():List
+deleteList():void
+emptyList():void
+validateThis():void
+validate(v:Validator):void
+marshal(m:Marshaller):void
+unmarshal(u:Unmarshaller):void
+unmarshal(in:InputStream):RentalPropertyList
+unmarshal(xs:XMLScanner):RentalPropertyList
+unmarshal(xs:XMLScanner, d:Dispatcher):RentalPropertyList
+equals(ob:Object):boolean
+hashCode():int
+toString():String
+newDispatcher():Dispatcher

MarshallableObject
RootElementContact

+getPhone():String
+setPhone(_Phone:String):void
+getFax():String
+setFax(_Fax:String):void
+validateThis():void
+validate(v:Validator):void
+marshal(m:Marshaller):void
+unmarshal(u:Unmarshaller):void
+unmarshal(in:InputStream):Contact
+unmarshal(xs:XMLScanner):Contact
+unmarshal(xs:XMLScanner, d:Dispatcher):Contact
+equals(ov:Object):boolean
+hashCode():int
+toString():String
+newDispatcher():Dispatcher

MarshallableObject
ElementFIGURE 10.7

Rental property
UML diagram.

13 0672323419 CH10 3/15/04 11:19 AM Page 417

LISTING 10.3 continued

public class RentalProperty
extends MarshallableObject
implements Element

{

private String _PropId;
private String _Name;
private Address _Address;
private double _SquareFootage;
private boolean has_SquareFootage = false;
private double _Bedrooms;
private boolean has_Bedrooms = false;
private double _Bath;
private boolean has_Bath = false;
private BigDecimal _Price;
private Contact _Contact;

public String getPropId() {
return _PropId;

}

public void setPropId(String _PropId) {
this._PropId = _PropId;
if (_PropId == null) {

invalidate();
}

}

public String getName() {
return _Name;

}

public void setName(String _Name) {
this._Name = _Name;
if (_Name == null) {

invalidate();
}

}

public Address getAddress() {
return _Address;

}

public void setAddress(Address _Address) {
this._Address = _Address;
if (_Address == null) {

invalidate();
}

}

Building XML-Based Applications

PART II
418

13 0672323419 CH10 3/15/04 11:19 AM Page 418

LISTING 10.3 continued

public void validateThis()
throws LocalValidationException

{
… …

}

public void marshal(Marshaller m)
throws IOException

{
// code to output the XML document

}

public void unmarshal(Unmarshaller u)
throws UnmarshalException

{
// code to read in the XML document

}
… …

}

The source code for RentalProperty.java contains private data members for the ele-
ments defined in <rental_property>. The public get/set methods provide access to the
properties. For example, to retrieve the name of the rental property from the Java object,
we call the getName() method. In the case of a nested element, such as address, we call
the getContact() method, which returns a Contact object. The Contact class is defined
in a similar manner with get/set methods for the properties.

Also, we can validate the object by calling the validateThis() method. Recall that this
source code was generated based on the DTD, so we can verify that the contents of the
object adheres to the grammar rules of the DTD. The validate() method is very useful
if the contents of the RentalProperty object are modified using the setter methods. It is
also useful if we construct a RentalProperty object from scratch.

Finally, the RentalProperty class contains methods to marshal and unmarshal the
content.

The source code for the remaining files is available in the source code download in the
directory <install_dir>\ch10_xmldb\source_code\xmlunleashed\ch10\jaxb. Feel
free to investigate these files’ contents.

Developing a Data Access Object (DAO)
A Data Access Object (DAO) provides access to the backend database. The goal of the
DAO design pattern is to provide a higher level of abstraction for database access. The

Integrating XML with Databases

CHAPTER 10
419

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

13 0672323419 CH10 3/15/04 11:19 AM Page 419

DAO encapsulates the complex JDBC and SQL calls. The DAO provides access to the
backend database via public methods. The DAO converts a result set to a collection of
objects. The objects model the data stored in the database. The application interaction
with a DAO is shown in Figure 10.8.

Building XML-Based Applications

PART II
420

DAOApplication
DB

SQL

Result
Set

method
call

list of
objects

FIGURE 10.8
Data Access
Object design
pattern.

By using a DAO, the implementation details of the database are hidden from the applica-
tion clients. The implementation details include the database schema and database ven-
dor. This follows closely with the design principle of encapsulation. A benefit of using
the DAO is improved application maintenance. If the database schema changes, such as a
column name being modified, we only have to update the DAO. No modifications are
required to the client programs. Also, if we decide to change the database implementa-
tion from Sybase to Oracle, modifications are only required to the DAO. The clients can
continue to use the DAO without any modification. The DAO design pattern is widely
used in the industry and is documented in Sun’s J2EE Patterns Catalog, found at
java.sun.com/j2ee.

In our solution, we’ll create a DAO called RentalPropertyDAO. This version of the DAO
will only provide the method getRentalProperties(). Later in the chapter, we’ll pro-
vide additional methods. The getRentalProperties() method submits a SQL query to
the database and converts the result set to a collection of JAXB RentalProperty objects.
This process is illustrated in Figure 10.9.

Application
DB

SQL

Result
Set

method
call

list of
objects

RentalPropertyDAO

DAO

+RentalPropertyDAO()
+RentalPropertyDAO(driverName:String, dbUrl:String, user:String, pass:String)
+getRentalProperties():RentalPropertyList

FIGURE 10.9
RentalPropertyDAO

interaction
diagram.

Let’s examine the components of the RentalPropertyDAO source code. The class defini-
tion and constructor for RentalPropertyDAO are shown here:

public class RentalPropertyDAO {

/**
* The database connection

13 0672323419 CH10 3/15/04 11:19 AM Page 420

*/
protected Connection myConn;

/**
* Constructor for DAO. Setup the database connection.

➥ * Use the default properties.
*/
public RentalPropertyDAO()

throws DAOException {
this(“sun.jdbc.odbc.JdbOdbcDriver”,

➥ ”jdbc:odbc:RentalPropertyDSN”,
➥ ”test”, “test”);

}

/**
* Constructor for DAO. Setup the database connection.
*/
public RentalPropertyDAO(String driverName, String dbUrl,

➥ String user, String pass)
throws DAOException {

try {
// Load the driver
log(“Loading driver: “ + driverName);
Class.forName(driverName);

// Get a connection
log(“Connecting to the database: “ + dbUrl);
log(“User id: “ + user);
myConn = DriverManager.getConnection (dbUrl, user, pass);

log(“DB connection successful at “ + new java.util.Date());
}
catch (Exception exc) {

throw new DAOException(exc);
}

}
…
}

The class RentalPropertyDAO defines a data member for a java.sql.Connection
object. This will serve as our connection to the database. For the sake of simplicity, we’re
using a single connection. We could also utilize a database connection pool to increase
the scalability of the application.

RentalPropertyDAO can be constructed by using the default constructor. In this case, the
DAO will use default properties for the JDBC driver name, the JDBC database URL, and
the user ID and password. This constructor shields the client code for knowing the details

Integrating XML with Databases

CHAPTER 10
421

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

13 0672323419 CH10 3/15/04 11:19 AM Page 421

of the database implementation. The typical JDBC steps are followed to load a database
driver and to obtain a connection to the database.

RentalPropertyDAO also provides a constructor, where the client program supplies the
appropriate JDBC parameters. This constructor provides flexibility and would be typi-
cally used in a distributed computing environment such as Remote Method Invocation
(RMI) or Enterprise JavaBeans (EJB). A remote server object would instantiate the DAO
using server-side parameters. The DAO would then be available remotely via a server-
side proxy interface. In this scenario, the client application would simply look up the
remote object and invoke its methods. The client object is not involved with the construc-
tion of the DAO and therefore is shielded from the implementation details of JDBC dri-
ver name, URL, and so on.

Once the RentalPropertyDAO Data Access Object is constructed, clients can retrieve data
from the database by calling the getRentalProperties()method. The code for
getRentalProperties() is shown here:

/**
* Get a list of rental properties from the database
*
* @return a list of RentalProperty objects
* @exception SQLException thrown for SQL errors
*/
public RentalPropertyList getRentalProperties() throws DAOException {

RentalPropertyList theRentalPropertyList = new RentalPropertyList();
List theList = theRentalPropertyList.getList();

try {
Statement myStmt = myConn.createStatement();

String rentalSql = “SELECT prop_num, name, street_address, “
➥ + “city, state, zip_code, “
➥ + “size, sq, bed_count, bath_count, “
➥ + “monthly_rent, voice_phone, “

+ “fax_phone FROM rental_properties”;

ResultSet myRs = myStmt.executeQuery(rentalSql);

RentalProperty tempProperty = null;

// build a collection of JAXB RentalProperty objects
while (myRs.next()) {

tempProperty = createRentalProperty(myRs);
theList.add(tempProperty);

}

// be sure to validate the new list

Building XML-Based Applications

PART II
422

13 0672323419 CH10 3/15/04 11:19 AM Page 422

theRentalPropertyList.validate();

myRs.close();
myStmt.close();

}
catch (Exception exc) {

throw new DAOException(exc);
}

return theRentalPropertyList;
}

This method queries the database and returns a collection of RentalProperty objects.

After the SQL is executed, the method processes the result set to build a collection of
RentalProperty objects. Because the early access version of JAXB does not support the
code generation of constructors, we’ve created a simple constructor method in
RentalPropertyDAO. The code for the createRentalProperty()method is shown here:

/**
* Create a JAXB RentalProperty object based on the result set.
* This method provides the mapping between database schema and object
*/
protected RentalProperty createRentalProperty(

➥ ResultSet theRs) throws DAOException {

RentalProperty theProperty = new RentalProperty();
Address theAddress = new Address();
Contact theContact = new Contact();

try {
// set the rental property number and name
theProperty.setPropId(theRs.getString(“prop_num”));
theProperty.setName(theRs.getString(“name”));

// set the address
theAddress.setStreet(theRs.getString(“street_address”));
theAddress.setCity(theRs.getString(“city”));
theAddress.setState(theRs.getString(“state”));
theAddress.setPostalCode(theRs.getString(“zip_code”));
theProperty.setAddress(theAddress);

// set the square footage, bedrooms, bath count and rent
theProperty.setSquareFootage(theRs.getDouble(“size_sq”));
theProperty.setBedrooms(theRs.getDouble(“bed_count”));
theProperty.setBath(theRs.getDouble(“bath_count”));
theProperty.setPrice(new BigDecimal(

➥ theRs.getDouble(“monthly_rent”)));

Integrating XML with Databases

CHAPTER 10
423

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

13 0672323419 CH10 3/15/04 11:19 AM Page 423

// set the contact information
theContact.setPhone(theRs.getString(“voice_phone”));
theContact.setFax(theRs.getString(“fax_phone”));
theProperty.setContact(theContact);

}
catch (SQLException exc) {

throw new DAOException(exc);
}

return theProperty;
}

The createRentalProperty()method creates an instance of a RentalProperty object
using the default constructor. It then populates the object based on information from the
result set. This method actually handles the mapping between the database fields and the
XML elements.

Listing 10.4 contains the complete code for RentalPropertyDAO.java.

LISTING 10.4 <install_dir>\ch10_xmldb\source_code\xmlunleashed\ch10\

RentalPropertyDAO.java

package xmlunleashed.ch10;

import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.ResultSet;
import java.sql.SQLException;

import java.math.BigDecimal;

import xmlunleashed.ch10.jaxb.RentalProperty;
import xmlunleashed.ch10.jaxb.RentalPropertyList;
import xmlunleashed.ch10.jaxb.Contact;
import xmlunleashed.ch10.jaxb.Address;

/**
* Data Access Object (DAO) for the rental_property database.

*
*/
public class RentalPropertyDAO {

/**
* The database connection
*/
protected Connection myConn;

Building XML-Based Applications

PART II
424

13 0672323419 CH10 3/15/04 11:19 AM Page 424

LISTING 10.4 continued

/**
* Constructor for DAO. Setup the database connection.
*/
public RentalPropertyDAO(String driverName, String dbUrl,

➥ String user, String pass)
throws DAOException {

try {
// Load the driver
log(“Loading driver: “ + driverName);
Class.forName(driverName);

// Get a connection
log(“Connecting to the database: “ + dbUrl);
log(“User id: “ + user);
myConn = DriverManager.getConnection (dbUrl, user, pass);

log(“DB connection successful at “ + new java.util.Date());
}
catch (Exception exc) {

throw new DAOException(exc);
}

}

/**
* Get a list of rental properties from the database
*
* @return a list of RentalProperty objects
* @exception SQLException thrown for SQL errors
*/
public RentalPropertyList getRentalProperties() throws DAOException {

RentalPropertyList theRentalPropertyList = new RentalPropertyList();
java.util.List theList = theRentalPropertyList.getList();

try {
Statement myStmt = myConn.createStatement();

String rentalSql = “SELECT prop_num, name, street_address, “
➥ + “city, state, zip_code, “
➥ + “size, sq, bed_count, bath_count, “
➥ + “monthly_rent, voice_phone, “
➥ + “fax_phone FROM rental_properties”;

ResultSet myRs = myStmt.executeQuery(rentalSql);

RentalProperty tempProperty = null;

Integrating XML with Databases

CHAPTER 10
425

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

13 0672323419 CH10 3/15/04 11:19 AM Page 425

LISTING 10.4 continued

// build a collection of JAXB RentalProperty objects
while (myRs.next()) {

tempProperty = createRentalProperty(myRs);
theList.add(tempProperty);

}

// be sure to validate the new list
theRentalPropertyList.validate();

myRs.close();
myStmt.close();

}
catch (Exception exc) {

throw new DAOException(exc);
}

return theRentalPropertyList;
}

/**
* Create a JAXB RentalProperty object based on the result set.
* This method provides the mapping between database schema and object
*/
protected RentalProperty createRentalProperty(

➥ ResultSet theRs) throws DAOException {

RentalProperty theProperty = new RentalProperty();
Address theAddress = new Address();
Contact theContact = new Contact();

try {
// set the rental property number and name
theProperty.setPropId(theRs.getString(“prop_num”));
theProperty.setName(theRs.getString(“name”));

// set the address
theAddress.setStreet(theRs.getString(“street_address”));
theAddress.setCity(theRs.getString(“city”));
theAddress.setState(theRs.getString(“state”));
theAddress.setPostalCode(theRs.getString(“zip_code”));
theProperty.setAddress(theAddress);

// set the square footage, bedrooms, bath count and rent
theProperty.setSquareFootage(theRs.getDouble(“size_sq”));
theProperty.setBedrooms(theRs.getDouble(“bed_count”));
theProperty.setBath(theRs.getDouble(“bath_count”));
theProperty.setPrice(new BigDecimal(

➥ theRs.getDouble(“monthly_rent”)));

Building XML-Based Applications

PART II
426

13 0672323419 CH10 3/15/04 11:19 AM Page 426

LISTING 10.4 continued

// set the contact information
theContact.setPhone(theRs.getString(“voice_phone”));
theContact.setFax(theRs.getString(“fax_phone”));
theProperty.setContact(theContact);

}
catch (SQLException exc) {

throw new DAOException(exc);
}

return theProperty;
}

/**
* Utility method for logging
*/
protected void log(Object message) {

System.out.println(“RentalPropertyDAO: “ + message);
}

}

Now that we have the DAO in place, a client program can easily retrieve information
from the database. The RentalPropertyList collection contains JAXB RentalProperty
objects. These objects are capable of producing an XML representation of their data
thanks to the JAXB support. The XML data is available by calling the marshal()
method.

Creating a Test Harness for RentalPropertyDAO
Before we move to the next section, let’s create a test harness for RentalPropertyDAO.
A test harness is a small program that tests the basic functionality of the application. If
designed properly, The test harness provides a way of producing predictable results
from an application.

The TestApp program will construct the RentalPropertyDAO Data Access Object
and then retrieve a list of RentalProperty objects by calling the method
getRentalPropertyList(). The XML data is displayed by calling the marshal()
method on RentalPropertyList.

Listing 10.5 contains the code for TestApp.java.

LISTING 10.5 <install_dir>\ch10_xmldb\source_code\TestApp.java

import xmlunleashed.ch10.RentalPropertyDAO;
import xmlunleashed.ch10.DAOException;

Integrating XML with Databases

CHAPTER 10
427

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

13 0672323419 CH10 3/15/04 11:19 AM Page 427

LISTING 10.5 continued

import xmlunleashed.ch10.jaxb.RentalPropertyList;

import java.io. IOException;

/**
* Test harness for the RentalPropertyDAO.

➥ * Retrieves a rental property list and displays the
* results to standard out.
*/
public class TestApp {

/**
* DAO data member
*/
protected RentalPropertyDAO myRentalDAO;

/**
* Constructs the RentalPropertyDAO
*/
public TestApp() throws DAOException {

myRentalDAO = new RentalPropertyDAO();
}

/**
* Retrieves a rental property list and displays the results to standard out
*/
public void process() throws DAOException, IOException {

// Get the list of rental properties
RentalPropertyList theList = myRentalDAO.getRentalProperties();

// Send the XML data to standard out.
theList.marshal(System.out);

}

/**
* Main routine. Constructs the test app and runs the process.
*/
public static void main(String[] args) {

try {
TestApp myApp = new TestApp();

myApp.process();
}
catch (Exception exc) {

exc.printStackTrace();
}

}
}

Building XML-Based Applications

PART II
428

13 0672323419 CH10 3/15/04 11:19 AM Page 428

When we run the test harness, it retrieves a collection of rental properties from the DAO.
The test harness then displays an XML document similar to this one:

<?xml version=”1.0” encoding=”UTF-8”?>

<rental_property_list>
<rental_property>
<prop_id>1</prop_id>
<name>The Meadows</name>
<address>

<street>251 Eisenhower Blvd</street>
<city>Houston</city>
<state>TX</state>
<postal_code>77033</postal_code>

</address>
<square_footage>500.0</square_footage>
<bedrooms>1.0</bedrooms>
<bath>1.0</bath>
<price>600</price>
<contact>

<phone>555-555-1212</phone>
<fax>555-555-1414</fax>

</contact>
</rental_property>

<rental_property>
…

</rental_property>
</rental_property_list>

Developing a Servlet for HTTP Access
At this point, we have constructed the RentalPropertyDAO Data Access Object. This
DAO is capable of retrieving information from a database and providing a collection of
objects. Thanks to the JAXB framework, these objects can be marshaled into XML.

Now we need to provide an HTTP interface for RentalPropertyDAO so that a Web
browser can interact with our system. Java servlets provides support for the HTTP proto-
col. If you are interested in Web-based interaction, you should also read about the Web
Services technology, which is covered later in this book.

In our solution, we’ll use a servlet to handle the requests to the DAO. In the servlet, we’ll
call the appropriate method and return the result as an XML document. Figure 10.10
depicts the application interaction.

Integrating XML with Databases

CHAPTER 10
429

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

13 0672323419 CH10 3/15/04 11:19 AM Page 429

The servlet is responsible for creating an instance of RentalPropertyDAO. The servlet
reads JDBC parameters from the web.xml configuration file and constructs
RentalPropertyDAO accordingly. An excerpt from the web.xml file is shown here (make
note of the definitions for the parameters driverName, dbUrl, user, and pass) :

<servlet>
<servlet-name>RentalXMLServlet</servlet-name>
<servlet-class>xmlunleashed.ch10.RentalXMLServlet</servlet-class>
<init-param>

<param-name>driverName</param-name>
<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>

</init-param>
<init-param>

<param-name>dbUrl</param-name>
<param-value>jdbc:odbc:RentalPropertyDSN</param-value>

</init-param>
<init-param>

<param-name>user</param-name>
<param-value>test</param-value>

</init-param>
<init-param>

<param-name>pass</param-name>
<param-value>test</param-value>

</init-param>
<load-on-startup/>

</servlet>

The servlet reads the parameters and constructs the RentalPropertyDAO Data Access
Object in the init() method. The code for the init() method is shown here:

/**
* Create an instance of the RentalPropertyDAO
*/
public void init() throws ServletException {

// retrieve database connection parameters
String dbUrl = getInitParameter(“dbUrl”);
String driverName = getInitParameter(“driverName”);
String user = getInitParameter(“user”);
String pass = getInitParameter(“pass”);

// create an instance of the RentalPropertyDAO
try {

Building XML-Based Applications

PART II
430

<xml>
document

RentalXMLServlet RentalPropertyDAO
DatabaseFIGURE 10.10

Servlet and DAO
interaction.

13 0672323419 CH10 3/15/04 11:19 AM Page 430

myRentalDAO = new RentalPropertyDAO(driverName, dbUrl, user, pass);
}
catch (Exception exc) {

log(exc.toString());
throw new ServletException(exc);

}
}

The servlet handles HTTP GET requests, so we have to override the doGet() method. In
this method, we set the content type of the response to text/xml. This informs the client
that we are returning XML-formatted text data. Next, we set up ServletOutputStream.
Then we retrieve a list of rental properties from RentalPropertyDAO. The list is then
marshaled to the ServletOutputStream object, out. Finally, the output stream is closed.
The code for the doGet() method is shown here:

/**
* Perform the following steps for GET requests.
*
*
* Retrieve a list of rental properties from RentalPropertyDAO
* Marshal the list as an XML document
*
*/
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

ServletOutputStream out = null;
RentalPropertyList theList = null;

try {
// Set the content type to text/xml
response.setContentType(“text/xml”);

// Retrieve the servlet output stream
out = response.getOutputStream();

// Retrieve a list of rental properties
theList = myRentalDAO.getRentalProperties();

// Marshal the list as an XML document
theList.marshal(out);

}
catch (DAOException exc) {

exc.getRootCause().printStackTrace();
throw new ServletException(exc.getRootCause());

}
catch (Exception exc) {

log(exc.toString());
exc.printStackTrace();
throw new ServletException(exc);

Integrating XML with Databases

CHAPTER 10
431

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

13 0672323419 CH10 3/15/04 11:19 AM Page 431

}
finally {

out.close();
}

}

Testing the Application
In order to test the application, you need to download and install the following important
components.

Here’s what’s required to test the application:

• Sun Microsystems’ Software Development Kit (SDK) 1.3 (or higher). The SDK is
available at Sun’s Web site, http://java.sun.com/j2se. Follow the installation
instructions provided with the SDK.

• Apache Tomcat Server 4. Apache Tomcat 4 is the official reference implementation
for JSP 1.2 and Java Servlets 2.3. If your application server already supports JSP
1.1 or higher, there’s no requirement to install Tomcat. Apache Tomcat 4 is avail-
able from the Apache Web site, http://jakarta.apache.org/tomcat. Follow the
installation instructions provided with the Tomcat server.

• Microsoft Internet Explorer 6 or Netscape 6. In this section, you will need a
browser that has client-side XML support. This is useful for viewing the raw XML
output of our servlet.

Building XML-Based Applications

PART II
432

Note

The Java SDK provides the compilation and runtime tools for the Java platform.
The Tomcat server is the servlet container. The servlet container provides an exe-
cution environment for the Java servlets. Finally, the Web browser is for viewing
the output of the servlets.

Once Tomcat 4 is installed, we need to add a new Web application that points to the
source code directory. This is accomplished by editing the file <tomcat_install_dir>\
conf\server.xml. Move to the section where the <Context> elements are listed and then
add the following entry:

<Context path=”/bookch10”
docBase=”<install_dir>/ch10_xmldb/public_html”
debug=”0”
reloadable=”true” />

13 0672323419 CH10 3/15/04 11:19 AM Page 432

Be sure to update <install_dir> with the installation directory for the book’s source code.
This configuration allows us to access the Web application named bookch10. This Web
application’s document base is located at <install_dir>\ch10_xmldb\public_html.

Now, restart the Tomcat server to pick up the new configuration. By default, the Tomcat
server is listening on port 8080. You can access files for the bookch10 Web application
using the following URL:

http://localhost:8080/bookch10/test.jsp

The file test.jsp should display a welcome message and the current date.

Next, follow these steps to compile the source code:

1. Open a Microsoft command prompt window.

2. Move to the source code directory by typing this:

cd <install_dir>\ch10_xmldb

This directory includes the batch file setpaths.bat. This file will place the follow-
ing JAR files in the classpath: lib\servlet.jar, lib\jaxb-rt-1.0-ea.jar, and
lib\jaxb-xjc-1.0-ea.jar.

3. Set up the classpath by typing the following:

setpaths.bat

4. Move to the source code directory by typing this:

cd source_code

5. Compile the code by typing this:

javac -d ..\public_html\WEB-INF\classes *.java

If you are accustomed to using ANT, note that this directory also contains a
build.xml file.

Now we need to set up an ODBC Data Source Name (DSN) for RentalPropertyDSN.
This DSN should point to the file <install_dir>\ch10_xmldb\data\rental_
property.mdb.

Now we need to test RentalXMLServlet. In a Web browser, open http://localhost:
8080/bookch10/RentalXMLServlet.

If you are using Microsoft Internet Explorer 6, you will see the XML content shown in
Figure 10.11.

Integrating XML with Databases

CHAPTER 10
433

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

13 0672323419 CH10 3/15/04 11:19 AM Page 433

If you are using Netscape 6, select the menu option View, Page Source. This will display
the raw XML output as shown in Figure 10.12.

Building XML-Based Applications

PART II
434

FIGURE 10.11
RentalXMLServlet

output in
Microsoft Internet
Explorer 6.

FIGURE 10.12
RentalXMLServlet

output in Netscape
Navigator 6.

13 0672323419 CH10 3/15/04 11:19 AM Page 434

Great! We’ve developed RentalXMLServlet to provide an HTTP interface to
RentalPropertyDAO. The end product is an XML model of the data stored in
the database.

Now we can take this one step further by applying a style sheet to the data.

Converting the XML Data to HTML with XSLT
We can leverage the functionality of XSLT to convert the XML data to HTML. In partic-
ular, we will convert the rental property list to an HTML table, as shown in Figure 10.13.

Integrating XML with Databases

CHAPTER 10
435

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

FIGURE 10.13
HTML table for
rental properties.

This section assumes you are familiar with XSLT. If not, then read Chapter 9.

The XSLT style sheet contains the HTML template along with the XSLT constructs to
retrieve the data. Our style sheet defines an HTML table with instructions to create a
table row for each rental property in the list. Listing 10.6 contains the code for
rental_view.xsl.

LISTING 10.6 <install_dir>\ch10_xmldb\public_html\rental_view.xsl

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=
➥ ”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

13 0672323419 CH10 3/15/04 11:19 AM Page 435

LISTING 10.6 continued

<xsl:template match=”/rental_property_list”>
<html><body>
<h3>Rental Properties</h3>
<hr></hr>
<table border=”1” cellpadding=”5”>

<tr>
<th>Name</th>
<th>Street</th>
<th>City, State</th>
<th>Square Footage</th>
<th>Bedrooms</th>
<th>Bath</th>
<th>Price</th>

</tr>

<!— Perform loop for each rental property in the list —>
<xsl:for-each select=”rental_property” >

<tr>
<td> <xsl:value-of select=”name” /> </td>
<td> <xsl:value-of select=”address/street” /> </td>
<td> <xsl:value-of select=”address/city” />,

➥ <xsl:value-of select=”address/state” /> </td>
<td> <xsl:value-of select=”square_footage” /> </td>
<td> <xsl:value-of select=”bedrooms” /> </td>
<td> <xsl:value-of select=”bath” /> </td>
<td> $ <xsl:value-of select=”price” /> </td>

</tr>
</xsl:for-each>

</table>

</body></html>
</xsl:template>
</xsl:stylesheet>

We’ll use the Apache-Jakarta custom tag, <jakarta:apply>, for XLST processing.
Instead of specifying an XML document by filename, we need to refer to
RentalXMLServlet. The <jakarta:apply> element supports the subelement
<jakarta:include>, which refers to an XML resource to include. This includes the
output of RentalXMLServlet. Listing 10.7 shows the code for rental_test.jsp.

LISTING 10.7 <install_dir>\ch10_xmldb\public_html\rental_view.jsp

<%@taglib uri=”http://jakarta.apache.org/taglibs/xsl-1.0” prefix=”jakarta” %>

<jakarta:apply xsl=”rental_view.xsl”>
<jakarta:include page=”/RentalXMLServlet”/>

</jakarta:apply>

Building XML-Based Applications

PART II
436

13 0672323419 CH10 3/15/04 11:19 AM Page 436

Testing the JSP Page
To test this example, make sure the Tomcat server is running. In a Web browser, access
the JSP page with the URL http://localhost:8080/bookch10/rental_view.jsp.

Your browser should resemble what’s shown in Figure 10.13 shown previously.

Summary
We started this chapter by reviewing commercial solutions for XML database integration.
These products provide a mapping between the database fields and XML documents.
Also, you learned that certain products bypass the relational database and store XML
documents in their native format.

The bulk of the chapter was dedicated to XML data binding with JAXB. In the rental
property example, we modeled a database as an XML document. This included the
development of a DTD and JAXB binding schema. We utilized the DTD and binding
schema to generate Java classes. The classes allowed us to quickly and easily map XML
documents to Java objects. This eliminated the need to use the SAX and DOM APIs,
which prove to be cumbersome for complex XML documents.

We also applied J2EE design patterns by developing a Data Access Object (DAO) for
the database interface. The DAO encapsulated the low-level SQL and JDBC code and
provided a public method to retrieve information from the database. The DAO leveraged
the JAXB framework by returning a collection of JAXB-aware objects. These objects
modeled our XML document structure.

A Java servlet was developed to provide HTTP access to our system. The servlet used
the DAO to retrieve a list of rental properties. The servlet then used the JAXB framework
to marshal the objects as an XML document. Finally, a JSP page converted the XML
data to an HTML table using an XSLT style sheet.

This technique can be easily extended for the development of B2B or B2C applications.
There is a large amount of synergy between JAXB and XML database integration.
This chapter has opened a treasure chest of knowledge. I challenge you to cash in on
the riches!

Integrating XML with Databases

CHAPTER 10
437

10

IN
TEG

R
A

TIN
G

X
M

L W
ITH

D
A

TA
B

A
SES

13 0672323419 CH10 3/15/04 11:19 AM Page 437

13 0672323419 CH10 3/15/04 11:19 AM Page 438

IN THIS CHAPTER

• A Brief History of DSSSL 440

• A Brief History of CSS 443

• XML Presentation Using CSS 448

• An Overview of XHTML 454

• An Overview of XForms 487

11
C

H
A

PT
ER

Formatting XML
for the Web

14 0672323419 CH11 3/15/04 11:20 AM Page 439

XML is a data structuring language. XML provides meaning for your data. However,
something that XML does not do is provide formatting for your data. There is no indica-
tion in an XML document or in the XML specification for how XML data should be dis-
played for human consumption. This is an important consideration. Although XML is
designed to be multiplatform compatible and easily consumable by machines across the
entire spectrum of operating systems, there is no indication of how XML should be con-
sumed by humans.

XML does, however, allow tags to be defined in a self-describing manner (this is indeed
recommended). When viewing the XML tag Dog, you can be fairly certain what the tag is
referring to. However, if the XML file gets large or the structure gets overly complicated
(such as a mathematical formula or a chemical element definition), the XML file might
not be easily legible to the human eye. Therefore, an easy way to format XML data is
needed so that humans can easily consume it.

In HTML, the structure and formatting for data are combined. Although HTML is very
effective at formatting data for appearing on the Web, HTML is, for all intents and pur-
poses, limited to the Web. XML has separated itself from formatting. This serves to make
XML far more flexible in terms of how it may be used and displayed. XML may have
formatting applied so that it appears in a desktop PC application, a handheld PC applica-
tion, a mainframe terminal, a Web browser, and so on.

This chapter focuses on several of the technologies used for formatting, delivering, and
gathering XML data on the Web. First, we’ll cover some of the history of data format-
ting, starting with a brief look at the Document Style Semantics and Specification
Language (DSSSL) and Cascading Style Sheets (CSS). You will see how CSS can be
used to provide some formatting for XML data. Then we will look at XHTML—a refor-
mulation of HTML into an XML application. Finally, we will briefly look into the future
by covering XForms, another XML application, which is the intended replacement for
HTML forms.

Before covering some of the newer technologies used for displaying XML on the Web,
we will take a look at some older data-formatting technologies: DSSSL and CSS. This
should give you a good overview of where we have come from so that you might better
understand where we are going.

A Brief History of DSSSL
Standard Generalized Markup Language (SGML) is a platform-independent (neutral),
application-independent, ISO-standardized metalanguage for structuring data. More
important, SGML is the mother of HTML and XML. HTML and XML are derivations or

Building XML-Based Applications

PART II
440

14 0672323419 CH11 3/15/04 11:20 AM Page 440

special applications of SGML. However, before the advent of HTML and XML, SGML
was the most prominent metalanguage describing the structure of data.

Formatting XML for the Web

CHAPTER 11
441

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

Note

This section is not intended to provide detailed coverage of SGML and DSSSL. If
you would like to do more in-depth research of SGML and DSSSL, an excellent
online resource is http://ourworld.compuserve.com/homepages/hoenicka_
markus/sgmlintro.html.

SGML was published as an international standard (ISO 8879) in 1986. SGML allows for
the creation of structured documents that describe data. The markup of data in SGML is
highly descriptive and defined using a Document Type Definition (DTD). It is com-
pletely data independent, which means that data coded in SGML is not dependent on
any specific display mechanism, platform, or software. Does this sound familiar? These
are some of the same features that XML has. Of course, because XML is a child
(descendent) of SGML, this should make perfect sense.

Although SGML does a good job describing and structuring data, it does nothing for
the formatting of data. In 1996, ISO approved the final draft of the Document Style
Semantics and Specification Language (DSSSL) for SGML documents. DSSSL’s spe-
cific purpose is to provide processing instructions for SGML documents. The two main
types of instructions that DSSSL provides have to do with transformations (transforming
a SGML document from one structure to another) and formatting or styles (applying
style sheets to SGML documents). We are going to be covering the DSSSL style
language here.

As is true for any style language, DSSSL defines syntax for how different elements in
a SGML document will be mapped to formatting objects for display. For example, a
SGML document might contain an element, X. A DSSSL style sheet could be applied
to the SGML document that maps the contents of the element X to a specific font size,
font weight, color, and so on. Listing 11.1 gives a very simple example of an SGML
document.

LISTING 11.1 Very Simple SGML Document

<!DOCTYPE Note [
<!ELEMENT Note - - (From, To, Subject, Body) >
<!ELEMENT From - - (#PCDATA) >
<!ELEMENT To - - (#PCDATA)>
<!ELEMENT Subject - - (#PCDATA)>

14 0672323419 CH11 3/15/04 11:20 AM Page 441

LISTING 11.1 continued

<!ELEMENT Body - - (#PCDATA)>
]>
<Note>
<From>Bob</From>
<To>Jenny</To>
<Subject>Hello Friend!</Subject>
<Body>Just thought I would drop you a line.</Body>
</Note>

You can see that, indeed, Listing 11.1 is an example of what a simple message structure
might look like in SGML. There is a document element, Note, which has four children:
From, To, Subject, and Body. There is a Document Type Declaration containing an inter-
nal DTD. It is interesting to note that in SGML, a DTD is always required. In the DTD
element declarations, there are two dashes (-) after each element name. The dashes sig-
nify whether opening and closing tags are required. A dash indicates a required tag,
whereas the letter o stands for optional (because XML always requires a closing tag,
this feature of the element definition was dropped from the XML DTD).

Although Listing 11.1 is complete and does accurately depict a “note” according to the
DTD, there is nothing that explains how the note should be displayed. In SGML, DSSSL
is the standard for defining the formatting. If a DSSSL style sheet were created for this
SGML document, it would appear something like what’s shown in Listing 11.2.

LISTING 11.2 DSSSL Style Sheet

<!DOCTYPE style-sheet public “-//James Clark//DTD DSSSL Style Sheet//EN” >
(element Note (make simple-page-sequence))
(element To
(make paragraph
font-family: arial
font-size: 15pt
font-weight: bold))
(element From
(make paragraph
font-family: arial
font-size: 15pt
font-weight: bold))
(element Subject
(make paragraph
font-family: arial
font-size: 13pt
font-weight: bold))
(element body
(make paragraph
font-family: arial
font-size: 12pt))

Building XML-Based Applications

PART II
442

14 0672323419 CH11 3/15/04 11:20 AM Page 442

The first thing you’ll notice in Listing 11.2 is that there is a Document Type Declaration.
In DSSSL, style sheets are very complicated; therefore, it is normal practice to reference
a larger, public style sheet from a style sheet you are creating. The public style sheet
defines the layout schemes. In this case, the publicly defined style sheet for rendering
HTML is being referenced. You can see that the remainder of the style sheet defines the
font, size, and weight of each of the elements in the SGML document. The settings in the
DSSSL style sheet override the settings in the referenced style sheet if both define styles
for the same elements.

Formatting XML for the Web

CHAPTER 11
443

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

Note

James Clark is the creator of the HTML DSSSL style sheet used as the public DTD
reference for the Document Type Declaration in Listing 11.2. It is considered to
be the standard for DSSSL-defined HTML. Clark is responsible for writing the
majority of the DSSSL standard and has worked extensively to help create and
expand the standards by which SGML and XML are used and applied. More
information about Clark’s work can be found at www.jclark.com.

The markup used in SGML and DSSSL should look fairly familiar to you. It is not that
different from the markup we see today in XML, XML DTDs, and CSS. In fact, SGML
and DSSSL work well and are still used today. A Web-enabled version of DSSSL, called
DSSSL-Online, has been produced. However, SGML and DSSSL are very complicated
technologies. Newer innovations in data metalanguages have introduced an easier-to-
follow syntax, tighter definitions, and superior implementations.

Next, we are going to review a more recent formatting option, Cascading Style Sheets.

A Brief History of CSS
In 1996, about the time the DSSSL standard was being finalized by the ISO, the W3C
organization was finalizing its own style language. On December 17, 1996, Cascading
Style Sheets Level 1 (CSS1) became an official W3C recommendation. CSS1 was intro-
duced with the intention of separating, as much as possible, the formatting (visual ren-
dering) from HTML-structured documents.

14 0672323419 CH11 3/15/04 11:20 AM Page 443

HTML, an SGML application, was originally introduced to simplify the visual rendering
of structured data for Web-enabled audiences. However, as vendors (especially Netscape
and Microsoft) introduced new versions of their Web browsers, more custom extensions
to HTML for rendering were introduced. Some features of HTML were adopted by the
Web browsers, whereas others were ignored or changed. The original intent of HTML
became increasingly splintered as the HTML implementations of competing Web
browsers became more and more incompatible. For this reason, CSS1 was an attempt to
separate much of the rendering (font sizes, colors, spacing, and so on) from HTML—that
is, to help remove the disparities between the Web browsers.

In addition to separating rendering from HTML, CSS1 is much simpler to implement
than DSSSL-Online, the Web version of DSSSL. CSS1 has a simpler, easier-to-under-
stand syntax. It allows for a much more granular control of layout and formatting. CSS1
was developed to be very flexible and maintainable through the use of separate style
sheets that can be referenced by many HTML pages simultaneously.

Building XML-Based Applications

PART II
444

Note

This section is not intended to provide detailed coverage of CSS. To learn more
about CSS, visit the W3C organization’s CSS resource page at http://www.w3c.
org/Style/CSS/.

Note

This overview of CSS will mainly deal with CSS Level 1. Although CSS Level 2 is
the most recent Cascading Style Sheet recommendation, at the time of writing,
only the newest versions of the most popular Web browsers support much of
CSS Level 2. Therefore, in order to reach the widest audience possible, CSS Level
1 will be covered in much more detail.

Listing 11.3 shows a very simple example of what a message might look like in a HTML
page (building upon the SGML message example in Listing 11.1). The code from this
listing, simplemessage.HTML, can be downloaded from the Sams Web site.

LISTING 11.3 Very Simple HTML Page

<html>
<head>
<title>Simple Message</title>

14 0672323419 CH11 3/15/04 11:20 AM Page 444

LISTING 11.3 continued

</head>
<body>
<h1>Note</h1>
<h2>From: Bob</h2>
<h2>To: Jenny</h2>
<h3>Subject: Hello Friend!</h3>
<h4>Just thought I would drop you a line.</h4>
</body>
</html>

Listing 11.3 has no special formatting applied to it. It is a simple HTML page that gives
no indication about the type of font, font size, colors, and so on that should be applied to
it when rendered in a Web browser. In this case, the formatting applied will be the
default settings associated with the HTML tags for a Web browser that loads the page.
Figure 11.1 shows how this page would be rendered using the default settings in Internet
Explorer 5.5.

Formatting XML for the Web

CHAPTER 11
445

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

FIGURE 11.1
Default Web
browser format-
ting is applied to
Listing 11.3.

You can see there is nothing fancy about the formatting for this page. However, it is pos-
sible to apply a CSS1 style sheet to this page to affect the rendering. Applying a style
sheet to the page will override the default formatting of the Web browser. Listing 11.4
shows a CSS1 style sheet that could be used to apply styles to the HTML page in Listing
11.3. The code for this listing, simplecss.CSS, can be downloaded from the Sams
Web site.

14 0672323419 CH11 3/15/04 11:20 AM Page 445

LISTING 11.4 Simple CSS1 Style Sheet

h1
{
font-family:verdana;
font-size:20px;
font-weight:bold;
color:#0000ff
}
h2
{
font-family:arial;
font-size:15px;
font-weight:bold;
color:#00ff00
}
h3
{
font-family:sans serif;
font-size:13px;
font-weight:bold;
color:#ff0000
}
h4
{
font-family:courier;
font-size:12px;
color:#000000
}

On the surface, a CSS1 style sheet is very similar to a DSSSL style sheet. However,
beyond some subtle syntax differences (CSS is a bit more straightforward), the big dif-
ference is that the CSS style sheet does not have a Document Type Declaration. This is
because the rules for applying and parsing CSS style sheets are built in to the Web
browser’s parsing engine. There is no need for a DTD in a CSS1 style sheet. This
removes a lot of the overhead inherent in DSSSL.

Only a single line of code must be added to the HTML page (from Listing 11.3) in order
to reference the style sheet in Listing 11.4. Listing 11.5 shows the updated HTML page.
The code for this listing, simplemessage_css.HTML, can be downloaded from the Sams
Web site.

LISTING 11.5 Very Simple HTML Page

<html>
<head>
<title>Simple Message</title>

Building XML-Based Applications

PART II
446

14 0672323419 CH11 3/15/04 11:20 AM Page 446

LISTING 11.5 continued

<!-- references the style sheet from Listing 11.4 -->
<link rel=”STYLESHEET” type=”text/css” href=”simplecss.css” />
</head>
<body>
<h1>Note</h1>
<h2>From: Bob</h2>
<h2>To: Jenny</h2>
<h3>Subject: Hello Friend!</h3>
<h4>Just thought I would drop you a line.</h4>
</body>
</html>

The only change from Listing 11.3 to Listing 11.5 is that the link element has been
added to the page right after the title element inside the head element. The link ele-
ment is an empty element with three attributes. The rel attribute establishes that the link
is for a style sheet. The type attribute establishes the MIME type for a CSS style sheet.
Finally, the href attribute is, of course, the URL for the style sheet. Now, when visited
by a Web browser, the page will be rendered using the settings found in the style sheet
that is referenced by the href attribute of the link element. Figure 11.2 shows how the
page in Listing 11.5 would appear in Internet Explorer 5.5.

Formatting XML for the Web

CHAPTER 11
447

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

FIGURE 11.2
Formatting is
applied to Listing
11.3 using the
Cascading Style
Sheet from
Listing 11.4.

Compare Figure 11.2 to Figure 11.1. It is easy to see that applying the CSS1 style sheet
from Listing 11.4 has radically affected the rendering of the HTML. Each of the

14 0672323419 CH11 3/15/04 11:20 AM Page 447

elements—<h1>, <h2>, <h3>, and <h4>—are rendered differently according to the
font-family, font-size, font-weight, and color settings from the style sheet.

Of course, this all becomes academic if Web browsers do not adopt W3C recommenda-
tions such as CSS1. In the last few years, the major Web browser vendors have finally
finished adding (almost) complete support for CSS1. The only problem with this is that
CSS2 is the newest recommendation for Cascading Style Sheets. CSS2 was ratified as a
W3C recommendation in May 1998. Since CSS2 was ratified in 1998, at the time of this
writing, only Opera 5 and Netscape 6 have broad support for CSS2. It is this lag in
adopting new CSS technology by the Web browser vendors that has been instrumental
in Web developers continuing to use older HTML formatting tags such as , <u>,
and <i>.

CSS is not only used to apply formatting to HTML. In the next section, we will cover
how CSS may be used to apply formatting to XML documents for display in Web
browsers.

XML Presentation Using CSS
Interestingly enough, CSS actually works better with XML than it does with HTML.
This is because XML has none of the problems that CSS was designed to correct—
namely the mingling of data structure and data formatting in HTML. Because XML
has no data formatting included in its specification, CSS works perfectly with XML.
Structure and formatting are totally separated. Listing 11.6 shows a style sheet that could
be used with an XML document to format XML data for display in a Web browser. The
code for this listing, notestyle.CSS, can be downloaded from the Sams Web site.

LISTING 11.6 CSS for an XML Document

<!-- This style sheet will be referenced as notestyle.css -->
Note
{
display: block
}
From, To
{
display:block;
font-family:verdana;
font-size:15px;
margin-bottom:5px
}
Subject
{
display:block;

Building XML-Based Applications

PART II
448

14 0672323419 CH11 3/15/04 11:20 AM Page 448

LISTING 11.6 continued

font-family:verdana;
font-size:13px;
font-weight:bold;
margin-bottom:10px
}
Body
{
display:block;
font-family:verdana;
font-size:12px
}

In this listing are five style selectors: Note, From, To, Subject, and Body. Each selector
listed represents the name of an XML element. The styles associated with each selector
will be applied to XML elements that have matching names (that is, styles associated
with the Note selector would be applied to an XML element with the name Note). Notice
that two of the selectors, From and To, are grouped by being listed in a sequence sepa-
rated by a comma. Selectors may be grouped this way to indicate that they will have the
same style settings.

A CSS style sheet may be attached to an XML document through the use of the special
XML processing instruction <?xml-stylesheet?>. There are two attributes to the xml-
stylesheet processing instruction: type and href. The type attribute sets the MIME
type for the CSS style sheet. Its value should always be text/css. The href attribute
gives the URL for the location of the CSS style sheet. Listing 11.7 demonstrates linking
the CSS style sheet from Listing 11.6 to an XML document. The code for this listing,
notestyle.XML, can be downloaded from the Sams Web site.

LISTING 11.7 Applying CSS to an XML Document

<?xml version=”1.0”?>
<!--
This is referencing the style sheet from Listing 11.6 –
we are calling it notestyle.css here
-->
<?xml-stylesheet type=”text/css” href=”notestyle.css”?>
<Note>
<From>From: Bob</From>
<To>To: Jenny</To>
<Subject>Subject: Hello Friend!</Subject>
<Body>Just thought I would drop you a line.</Body>
</Note>

Formatting XML for the Web

CHAPTER 11
449

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

14 0672323419 CH11 3/15/04 11:20 AM Page 449

In Listing 11.7, the href attribute of the xml-stylesheet processing instruction assumes
that the CSS style sheet is located in the same directory. The href attribute value could
also be a relative URL or an absolute URL. You can see that Listing 11.7 is very similar
to Listing 11.5, except that in this case the document is structured with XML rather than
HTML. Figure 11.3 shows how Listing 11.7 looks in Internet Explorer 5.5.

Building XML-Based Applications

PART II
450

FIGURE 11.3
Listing 11.7 is
formatted using
the Cascading
Style Sheet from
Listing 11.6.

The XML elements have been nicely formatted for display according to the rules of the
style sheet. This is a handy, easy way to make XML data viewable over the Web.
However, I am not advocating XML formatted with CSS to replace HTML. Only the
newest browsers have this capability; therefore, you should only use this approach when
you know that your target audience will be using a compatible Web browser. As you will
see in the next section, HTML has been reformulated into an XML application. This has
been done with the intention of making the use of XML for broader applications on the
Web an easier transition. Before we go on to our coverage of XHTML, however, let’s
take a look at one more way that CSS can be used with XML.

Note

If you are going to be using XML formatted with CSS for Web browser display,
you must make sure your audience is using at least Internet Explorer 4+,
Netscape Navigator 6+, or Opera 5+. At the time of writing, these are the only
browsers that support this capability well.

14 0672323419 CH11 3/15/04 11:20 AM Page 450

CSS also supports the use of “classes.” So far, we have seen CSS applied to specific ele-
ments. It is also possible to create a CSS class that can be applied to specific elements
and not others. This might be handy if you have a group of elements, each with the same
name that you wish to display, but you want the formatting to vary from element to ele-
ment (such as alternating background colors). Because the elements have the same name,
you will need a different way to alternate formatting. Listing 11.8 demonstrates how you
can accomplish this. The code for this listing, alternate.CSS, can be downloaded from
the Sams Web site.

LISTING 11.8 Alternating Styles with Classes

<!--This style sheet shall be referenced as alternate.css -->
Catalog
{
display:block
}
Item
{
display:block;
margin-bottom:5px
}
Item.Odd
{
background:#dcdcdc
}
Name
{
display:block;
font-family:verdana;
font-size:14px;
font-weight:bold
}
Description, Price
{
display:block;
font-family:arial;
font-size:12px
}

The CSS style sheet in this listing is similar to the CSS style sheet in Listing 11.6. The
difference (other than the different element names) is that there has been a class added.
You will notice that there is an Item selector and that a class called Odd has been added
for the Item selector. Item elements that specifically reference the Odd class will have the
style setting background:#dcdcdc applied to them. This class will give the effect of
being able to alternate the background color of the XML document referencing this style

Formatting XML for the Web

CHAPTER 11
451

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

14 0672323419 CH11 3/15/04 11:20 AM Page 451

sheet. Listing 11.9 is an XML document that references the style sheet in Listing 11.8.
The code for this listing, alternate.XML, can be downloaded from the Sams Web site.

LISTING 11.9 Referencing the Alternating Styles CSS Class

<?xml version=”1.0”?>
<!--
This is a reference to the style sheet in Listing 11.8
– It is referred to as alternate.css here
-->
<?xml-stylesheet type=”text/css” href=”alternate.css”?>
<!DOCTYPE Catalog [
<!ELEMENT Catalog (Item+) >
<!ELEMENT Item (Name,Description,Price) >
<!ATTLIST Item Class CDATA #IMPLIED >
<!ELEMENT Name (#PCDATA) >
<!ELEMENT Description (#PCDATA) >
<!ELEMENT Price (#PCDATA) >
]>
<Catalog>
<Item Class=”Odd”>
<Name>Gloves</Name>
<Description>10 oz. sparring gloves</Description>
<Price>$29.99</Price>
</Item>
<Item>
<Name>Head Gear</Name>
<Description>Padded foam head protection for sparring</Description>
<Price>$49.99</Price>
</Item>
<Item Class=”Odd”>
<Name>Speed Bag</Name>
<Description>5 lb. punching bag</Description>
<Price>$50.00</Price>
</Item>
<Item>
<Name>Heavy Bag</Name>
<Description>100 lb. punching bag</Description>
<Price>$109.95</Price>
</Item>
<Item Class=”Odd”>
<Name>Judo Dogi</Name>
<Description>Single weave Judo uniform</Description>
<Price>$59.95</Price>
</Item>
<Item>
<Name>Karate Dogi</Name>
<Description>Light weight karate uniform</Description>
<Price>$19.95</Price>
</Item>
</Catalog>

Building XML-Based Applications

PART II
452

14 0672323419 CH11 3/15/04 11:20 AM Page 452

This listing is a bit more complex than some of the listings we have looked at so far, but
if you break it down into pieces, you will see that it is very easy to follow. The second
line of the document is the processing instruction, xml-stylesheet, that references the
alternate.css style sheet. There is a DTD included in this listing that defines the struc-
ture of the XML document. This is included for the purpose of demonstrating how the
CSS class Odd (from Listing 11.8) will be referenced. In the DTD, the element Item has
an optional attribute defined, Class. When this attribute is included for the element Item
in the XML document and set to the value Odd, the style associated with the Odd class in
the style sheet will be applied to the element. Figure 11.4 shows how this XML docu-
ment will be rendered in Internet Explorer 5.5.

Formatting XML for the Web

CHAPTER 11
453

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

FIGURE 11.4
Formatting Listing
11.9 using the
Cascading Style
Sheet from
Listing 11.8.

In the XML document (from Listing 11.9), all the odd-numbered Item elements have the
optional attribute Class set to Odd. When rendered, this has the effect of making ever
other Item element have a silver background. This definitely makes it much easier to
quickly view the items in this catalog.

We have now seen a couple ways that CSS can be applied to XML. However, as I men-
tioned previously, don’t be too quick to jump on the XML bandwagon for displaying
your data on the Web! The Web browser vendors (and users) are still working on catch-
ing up. Unless you have a captive audience, such as in an intranet setting, using XML as
demonstrated here is probably not a good idea yet. In order to help ease along the transi-
tion to XML, the W3C organization has created XHTML—and that is what we will look
at next.

14 0672323419 CH11 3/15/04 11:20 AM Page 453

An Overview of XHTML
Someday the Web will be standardized. All Web pages will be completely cross-platform
compatible and will load faster. Also, work will get done more quickly (especially for us
Web developers). However, the standardization of the Web is still over the horizon, and
movement toward that goal is painfully slow. In order to help prepare for the future, the
W3C organization introduced XHTML 1.0 as an official recommendation on January 26,
2000. XHTML is a step toward the goal of standardizing markup for the Web. It is also a
step toward making the Web “XML compatible.” XHTML is an XML application.
XHTML is a reformulation of HTML into an XML application. Therefore, HTML is
made XML compatible and open to interaction with future XML technologies.

XHTML 1.0: The Transition
XHMTL 1.0 was introduced in order to serve as a bridge (or transition) from older tech-
nologies (such as the splintered and incompatible variations of HTML) to newer tech-
nologies (such as XML). XHTML 1.0 creates a markup that is compatible with older
Web browsers but also will be compatible as support is picked up for emerging technolo-
gies. XHTML 1.0 is very similar to HTML 4. Basically, it has simply taken HTML 4 and
reformulated it as an XML application.

Building XML-Based Applications

PART II
454

Note

The official XHTML 1.0 recommendation can be found at http://www.w3.org/
TR/xhtml1/.

Making HTML XML Compliant
The main goals of XHTML are to make documents XML compliant and to address the
incompatibilities of HTML in the major Web browsers. Once this compliance is
achieved, support will be ensured for XML technologies such as XSL, and pages will be
able to be parsed and edited with standard XML tools. Also, because XHTML 1.0 is so
close to HTML 4, existing Web pages can be updated to XHTML 1.0 compliance with
mostly only minor changes. Developers and Webmasters of sites consisting of hundreds
or thousands of pages should not break into a cold sweat at the thought of upgrading to
XHTML 1.0. It is really quite easy. Before going into the three variations (DTDs) of
XHTML 1.0, let’s take a look at Listings 11.10 and 11.11. These listings give you a

14 0672323419 CH11 3/15/04 11:20 AM Page 454

quick before-and-after picture of how a document would be upgraded from HTML to
XHTML 1.0 compliance. The code for this listing, beforexhtml.HTML, can be down-
loaded from the Sams Web site.

LISTING 11.10 Document Before XHTML 1.0 Compliance

<HTML>
<HEAD>
<TITLE>Sample HTML Page: Pre-XHTML 1.0 Conversion</TITLE>
</HEAD>
<BODY>
<H1>My Favorite Musical Groups</H1>
<P>

Dave Mathews Band
Beck
Offspring

<P>
<H4>Pretty eclectic tastes, ay?
</BODY>
</HTML>

Listing 11.10 is a pretty typical HTML document. You can see that the tags are capital-
ized and the <P>, , and <H4> tags are not closed with ending tags. However, despite
not being well formed, a Web browser will render this page with no problems. Listing
11.10, although okay for HTML, is wrong in XHTML 1.0. Listing 11.11 shows how
this page would be changed to be XHTML 1.0 compliant. The code for this listing,
afterxhtml.HTML, can be downloaded from the Sams Web site.

LISTING 11.11 Document After XHTML 1.0 Compliance

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Sample HTML Page: Post-XHTML 1.0 Conversion</title>
</head>
<body>
<h1>My Favorite Musical Groups</h1>
<p />

Dave Mathews Band
Beck
Offspring

Formatting XML for the Web

CHAPTER 11
455

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

14 0672323419 CH11 3/15/04 11:20 AM Page 455

LISTING 11.11 continued

<p />
<h4>Pretty eclectic tastes, ay?</h4>
</body>
</html>

The first thing you will notice in this listing is that a Document Type Declaration has
been added. The Document Type Declaration contains a public reference to the
Transitional DTD for XHTML 1.0 (this will be covered in detail in the next section).
Additionally, all the HTML tags have been set to lowercase according to XHTML rules.
HTML is notably lax about capitalization and will accept both lowercase and uppercase
tags (or even mixtures of both). XML (XHTML) is strict about requiring lowercase tag
names. Also, all the opening tags have been closed. The <p> tags are empty tags and
have had closing “/” symbols added. A closing tag could have been added (<p></p>);
however, it is easier to simply treat them like empty tags. This is the same rule for empty
tags in XML. The difference being that in XHTML, in order for these tags to display
properly in a Web browser, a space is inserted before the “/” symbol.

Listing 11.11 could potentially be displayed using any HTML extension, an XHTML
extension, or an XML extension (when viewed with Internet Explorer 5.5). However,
with the XML extension, the file may be verified for well-formedness and validated
against a DTD. This provides a clear picture of the use of XHTML as a bridge from
HTML to XML. Although Listing 11.10 and Listing 11.11 will be rendered by the
browser equally well with an HTML extension, only Listing 11.11 will be rendered with
an XML extension. This is because only Listing 11.11 is valid XML. XHTML is used to
make the HTML into valid XML.

There is no difference between how Listing 11.10 and 11.11 will be displayed in today’s
Web browsers. Figure 11.5 demonstrates how both Listing 11.10 and Listing 11.11
would be rendered in Internet Explorer 5.5.

The two renderings are exactly the same! The big difference is that Listing 11.11 is now
a well formed XHTML document. Listing 11.11 is compatible with XML technology
and may be fully integrated with future XML technology applications. What’s more, this
was all relatively painless to do! Certainly there will be varying degrees of work that
needs to be done on existing pages to make them compatible, but you can see that you
won’t ever have to scrap your whole Web site to achieve compatibility. More than likely
you will only have to make minor changes.

Specific syntax rules apply to XHTML in order to make a document well formed. We
will cover those rules in a moment, but first let’s take a look at the three variants, or
DTDs, that have been created for XHTML 1.0.

Building XML-Based Applications

PART II
456

14 0672323419 CH11 3/15/04 11:20 AM Page 456

Variants of XHTML
In order to conform to XHTML, a document must be validated against one of three
DTDs that have been defined for XHTML. These DTDs are reformulations of the DTDs
defined for HTML 4: Strict, Transitional, and Frameset.

Formatting XML for the Web

CHAPTER 11
457

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

FIGURE 11.5
Rendering of
Listings 11.10 and
11.11 in Internet
Explorer 5.5.

Note

If you are just beginning with your migration to XHTML for your existing Web
site, using the Transitional DTD would probably be the best choice because it
has the loosest restrictions. If you are building from scratch, it might not be a
bad idea to go ahead and use the Strict DTD. That way, you are ensured of the
highest level of compliance.

Strict DTD
A strictly conforming XHTML document that references the Strict DTD will have the
following Document Type Declaration:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

14 0672323419 CH11 3/15/04 11:20 AM Page 457

Adherence to the Strict DTD means that the XHTML document will have the following
characteristics:

• There will be a strict separation of presentation from structure. Style sheets are
used for formatting, and the XHTML markup is very clean and uncluttered. There
are no optional vendor-specific HTML extensions.

• The Document Type Definition must be present and placed before the <html>
element in the document.

• The root element of the document will be <html>.

• The <html> element will have the xmlns attribute in order to designate the
XHTML namespace.

• The document, of course, is valid according to the rules defined in the Strict DTD.

Building XML-Based Applications

PART II
458

Note

The namespace for XHMTL 1.0 that should be referenced by the xmlns attribute
of the root element <html> is http://www.w3.org/1999/xhtml.

Listing 11.12 gives a very simple example of an XHTML page that conforms to the
Strict DTD. The code for this listing, strictdtd.HTML, can be downloaded from the
Sams Web site.

LISTING 11.12 Strict DTD Reference

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Strict XHTML DTD Reference</title>
</head>
<body>
<h1>Strict XHTML DTD Reference</h1>
<table>
<tr>
<td>
This is a plain, vanilla page.
</td>
</tr>
<tr>
<td>

14 0672323419 CH11 3/15/04 11:20 AM Page 458

LISTING 11.12 continued

There are no special formatting elements included.
</td>
</tr>
<tr>
<td>
If any formatting is needed a CSS style sheet could be referenced.
</td>
</tr>
</table>
</body>
</html>

In this listing, no special formatting HTML elements are included. Additionally, this is,
according to XML rules, a well-formed document. Therefore, this page would be valid
according the Strict DTD. Any special formatting needed could be added by referencing
a CSS style sheet.

Formatting XML for the Web

CHAPTER 11
459

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

Note

The XHTML Strict DTD can be found at http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd.

The most important requirement for the Strict DTD is the separation of presentation and
structure. How many of your existing Web pages meet this requirement? How difficult
would it be to get your Web pages to meet this requirement? In most of your existing
Web pages, you will have an almost terminal mixture of presentation and structure in
your HTML. In order to comply with the Strict DTD, you would probably have to make
fairly extensive changes to your existing Web pages. In order to address this potential
problem, the Transitional DTD was created to be much more lenient in its rules. It is
much simpler to make an HTML page “Transitional compliant” than it is to make a page
“Strict compliant.” The Transitional DTD is covered next.

Transitional DTD
The Transitional DTD for XHTML has more loosely defined requirements than the Strict
DTD. As such, it is much easier to use with current Web browsers than the Strict DTD.
To be more specific, you have to make far fewer changes to your existing Web pages.
As long as the Transitional DTD is referenced from the Document Type Definition, the
HTML is well formed, and it follows the basic XHTML syntax rules (more on the syntax
rules in a moment), there should not be any problems.

14 0672323419 CH11 3/15/04 11:20 AM Page 459

A Document Type Declaration containing a reference to the Transitional DTD will
appear as follows:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

This DTD is also useful if you are using or have Web site visitors that use Web browsers
that do not support CSS style sheets. If you must support a lot of the formatting HTML
elements, such as , , <u>, and so on, due to the necessity of supporting Web
browsers that do not support CSS, then the Transitional DTD is your best bet to becom-
ing XHTML compliant. Listing 11.13 shows an XHTML page that uses a lot of format-
ting elements but is still valid because it references the Transitional DTD. The code for
this listing, transdtd.HTML, can be downloaded from the Sams Web site.

LISTING 11.13 Transitional DTD Reference

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Transitional XHTML DTD Reference</title>
</head>
<body>
<h1>
Transitional XHTML DTD Reference</h1>
<table>
<tr>
<td>
This page has
quite a bit of <u>formatting</u> added!</td>
</tr>
<tr>
<td>
Many
formatting elements are included.
</td>
</tr>
<tr>
<td>

Building XML-Based Applications

PART II
460

Note

The XHTML Transitional DTD can be found at http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd.

14 0672323419 CH11 3/15/04 11:20 AM Page 460

LISTING 11.13 continued

This type of formatting works for
<big>older browsers</big> that do not <small>support CSS</small>!

</td>
</tr>
</table>
</body>
</html>

Listing 11.13 includes many formatting elements. This is okay because these elements
are supported by the Transitional DTD for the purposes of backward compatibility. This
document is well formed, all elements are in lowercase, and attribute values are quoted.
This document is XHTML compliant, according to the Transitional DTD, and it will still
work with older Web browsers.

The third type of DTD that we will take a look at is the Frameset DTD.

Frameset DTD
The XHTML Frameset DTD is designed specifically to work with HTML frame pages.
Frame pages are pages in which the browser has been broken up into several semi-inde-
pendent navigable windows. Each frame, or window, will have its own content that is
maintained in a file separate from the content in the other windows. Normally, one frame
will contain navigation links and the other frame serves as the target for the link, loading
whatever content the link points to when clicked. A frame page might be useful if you
want to be able to load content from another Web site in one frame while keeping your
navigation links available in another window. In addition to the files that make up the
content for each of the frames, one main frame page “binds” the other frames together.
From this main page, you will reference the Frameset DTD. The Frameset DTD contains
rules that apply specifically to the special setup of a frame page. In order to reference the
XHTML Frameset DTD, use the following Document Type Declaration:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

Formatting XML for the Web

CHAPTER 11
461

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

Note

The XHTML Frameset DTD can be found at http://www.w3.org/TR/xhtml1/
DTD/xhtml1-frameset.dtd.

14 0672323419 CH11 3/15/04 11:20 AM Page 461

Any time you are splitting the Web browser page into two or more frames, you should
reference this DTD in order to be XHTML compliant.

Now that you have seen the DTDs that are used with XHTML 1.0, you probably have a
dozen or so questions dancing around in your head about the exact differences between
XHTML and HTML 4.

Syntax and Definitions
This section explains the syntax requirements for an XHTML document and the differ-
ences between XHTML and HTML 4.

XHTML Must Be Well Formed
As mentioned previously, according to XML syntax rules, all elements that are opened in
an XHTML document must be closed. This is a departure from HTML, where many
elements, such as <p> or , are not closed.

For example, the following would be okay for HTML but not XHTML:

<p>The paragraph element is not closed

In order to be okay for XHTML, the preceding example would have to look like this:

<p>The paragraph element is now closed</p>

For the opening paragraph element, <p>, a closing paragraph element, </p>,
has been added.

There are also many empty elements in HTML—the most notable being the ele-
ment. You will also see a lot of
 and <hr> elements in HTML. In XHTML, empty
elements are handled just as they are in XML. A slash character (/) is added before the
closing “>” symbol. The only difference in XHTML is that, in order to be compliant with
today’s Web browsers, a space must be added before the “/” symbol in the element. If
this is not done, the element will not be rendered properly. Therefore, the HTML ele-
ments ,
, and <hr> become ,
, <hr /> in XHTML. This rule
should be applied to any empty elements, not just the ones listed here.

Elements must be properly nested. In HTML, elements should be properly nested, but
Web browsers are pretty forgiving if they are not. Oftentimes, when looking at an HTML
page, you will see something like this:

<p>There elements are not properly nested!</p>

Building XML-Based Applications

PART II
462

14 0672323419 CH11 3/15/04 11:20 AM Page 462

Even though the <p> elements and the elements are overlapping and not properly
nested, most Web browsers will still properly render the page. In XHTML, this overlap-
ping must be corrected as follows

<p>There elements are properly nested!</p>

Here, you can see that the nesting has been corrected. The elements are properly
contained within the <p> elements.

All Elements and Attributes Must Be Lowercase
This is another departure from HTML. In HTML, elements can be uppercase, lowercase,
or even a mixture of cases. Therefore, the elements
,
, and
 would be
rendered identically in HTML. However, in XHTML, only
 would be correct.

The same rule goes for attribute names. In HTML, there are no case rules for attribute
names. In XHTML, attribute names must be lowercase.

Attribute Values Must Always Appear in Quotes
All attribute values must appear in quotes. Both string values and numeric values must
appear in quotes as well. In HTML, however, this is optional.

For example, HTML would allow the following:

<td colspan=4>

In XHTML, however, this must be rewritten as follows:

<td colspan=”4”>

Formatting XML for the Web

CHAPTER 11
463

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

Note

Values can appear in single quotes (colspan=’4’) or double quotes
(colspan=”4”). Either way is equally acceptable.

If there is a quote sign or double quote sign in your attribute value, you must use the
other quote sign to quote your attribute value. For example, if you have an attribute
called lastname, with the value O’Malley, then the attribute would be written
lastname=”O’Malley”. In this case, double quotes are used to delimit the value
because a single quote is contained in the value.

14 0672323419 CH11 3/15/04 11:20 AM Page 463

Attributes May Not Be Minimized
It is common to have attributes in HTML such as checked or nowrap that are minimized.
In XHTML, minimization of attributes is not allowed. Attribute/value pairs must be writ-
ten out in full.

In HTML, an attribute could be minimized as follows:

<td nowrap>

In XHTML, in order to be compliant with the Transitional DTD, this would be rewritten
like so:

<td nowrap=”nowrap”>

Building XML-Based Applications

PART II
464

Note

It is important to note that some of the implied HTML attributes are supported
in the Strict DTD and some are not. For example, checked is supported and
nowrap is not. The Transitional DTD supports both.

You simply take the minimized value in HTML and turn it into an attribute name/value
pair in XHTML.

Script and Style Elements Must Be Enclosed in CDATA Sections
In order to avoid the values of script and style elements being parsed by the XML parser,
you should enclose the values in CDATA sections. Listing 11.14 gives an example of this.

LISTING 11.14 Style Element in XHTML

<style>
<![CDATA[
Insert all of the pages style settings here
]]>
</style>

CDATA sections will be ignored by the XML parser and sent directly to the Web browser
for interpretation and rendering.

14 0672323419 CH11 3/15/04 11:20 AM Page 464

Element Identifier References Are to the id Attribute
In HTML, the name attribute and the id attribute are both used to identify specific ele-
ments. The id attribute in XHTML is an XML id type of attribute and therefore
uniquely identifies the element throughout the document. In XML, references to the
identifier for an element will be to the id attribute.

Formatting XML for the Web

CHAPTER 11
465

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

Note

If you prefer not to use CDATA sections in your XHTML pages, you can use exter-
nal script and style documents. Either method works and is really a choice of
personal preference.

Caution

Some current Web browsers do not yet support the id attribute. In order to
ensure forward and backward compatibility, always use both the id and name
attributes.

HTML 4 defines the name attribute for the elements a, applet, form, frame, iframe,
img, and map. In XHTML, the name attribute has been deprecated, or marked as outdated
by newer constructs, and will be completely removed in future releases. Until support is
actually dropped for the name attribute and all Web browsers begin using the id attribute
instead, both should be used. Listing 11.15 demonstrates this.

LISTING 11.15 Using the id and name Attributes

<frame id=”frame1” name=”frame1”>
Frame content goes here
</frame>

Here, the id attribute and the name attribute both have the same value: frame1. The id
attribute is included to provide an XHTML-valid identifier for this frame element. The
name attribute is also included to ensure that existing Web browsers uniquely recognize
the element.

You should be fairly comfortable with XHTML 1.0 by now. This would be a good time
to start our mini case study and see how a small Internet retailer would use XHTML 1.0
on their Web site.

14 0672323419 CH11 3/15/04 11:20 AM Page 465

Building XML-Based Applications

PART II
466

Coca Cabana Technology Shop Case Study: Building a Web Site for the
Future, Part I

XHTML 1.0 is a tremendous tool for helping Web site developers get their Web
sites quickly transitioned to XML compatibility. In this mini case study, we will
take a quick visit to the Coca Cabana Technology Shop to see how they made
their Web site XHTML 1.0 Transitional compliant.

The owners of Coca Cabana Technology Shop have always prided themselves on
being up to date on the latest technology for the computers they sell. However,
recently it was pointed out to them by one of their clients that although their
computers are great, their Web site is beginning to fall behind the times. The
owners decided that in order to keep up the appearance of being on top of
their industry, they would need to upgrade their Web site.

After a bit of research, they found out that XHTML, an XML application, would
better serve their e-commerce needs and move them to the cutting edge of
technology on the Web.

Because most of Coca Cabana Technology Shop’s business is over the Internet,
they decided that they better upgrade their Web site to XHTML 1.0 immedi-
ately. In order to achieve compatibility as quickly as possible, they went with
the XHTML 1.0 Transitional DTD.

The first step was to review the HTML code currently used to make up their
Web site (for expediency purposes, we are simply going to look at the home
page of Coca Cabana Technology Shop). Here’s the code for
Prexhtml_Home.html (which you can download from the Sams Web site):

<HTML>
<HEAD>
<TITLE>Welcome to Coca Cabana</TITLE>
<META name=”description” content=”Welcome to Coca Cabana, The best
technology
shop on the Web!”>
<META name=”keywords” content=”technology, web, internet, computers,
palm-tops, lap-tops, modems, hard drives”>
</HEAD>
<BODY BGCOLOR=”BEIGE”>
<BASEFONT FACE=”VERDANA” SIZE=”2”>
<H1>Welcome to Coca Cabana Technology Shop!</H1>
<H3>The best darn shop on the internet!</H3>
<P>
Here at Coca Cabana we pride ourselves on having the most up to date
technology at the best prices you will find anywhere.
<HR>
<TABLE BGCOLOR=”BLACK” CELLPADDING=”0” CELLSPACING=”1”
BORDER=”0” WIDTH=”100%”>

14 0672323419 CH11 3/15/04 11:20 AM Page 466

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

Formatting XML for the Web

CHAPTER 11
467

<TR>
<TD WIDTH=15% VALIGN=TOP BGCOLOR=TAN>

<!--
These links do not actually go anywhere - they are included for
demonstration purposes
-->
<H4>Site Links:</H4>

Home
Latest News
Catalog
Support
About us
</TD>
<TD VALIGN=”TOP”>
<TABLE BGCOLOR=”BLACK” CELLPADDING=”4” CELLSPACING=”0” WIDTH=”100%”>
<TR>
<TD BGCOLOR=”TEAL”>
<H2>Check out our laptop blowout!</H2>
Special selections from our award winning laptop line!

COCA PENTIUM III Laptop - $999.00
COCA PENTIUM II Laptop - $799.00
COCA PENTIUM Laptop - $599.00
</TD>
</TR>
<TR>
<TD BGCOLOR=KHAKI>
<H4>We have some other great specials that you should see!</H4>
The following low prices are always
available at Coca Cabana!

COCA PENTIUM III DESKTOP - $1299.00
COCA PALM-TOP - $299.00
COCA 10 GIGABYTE HARDDRIVES - $109.00
</TD>
</TR>
</TABLE>
</TD>
</TR>
</TABLE>
<HR>
<CENTER>Thanks for shopping at the Coca Cabana Technology
shop!
Please come again soon!
</BODY>
</HTML>

14 0672323419 CH11 3/15/04 11:20 AM Page 467

Building XML-Based Applications

PART II
468

What the owners of Coca Cabana Technology Shop discovered was that
although their Web site displayed on the Internet well, the HTML code making
up the page was not XHTML compliant and, in some cases, was down right
sloppy. Here’s a list of the major problems they found:

• The XHTML 1.0 specification dictates that element names and attribute
names should not be capitalized. This needs to be changed on the Coca
Cabana Technology Shop site.

• All attribute values must appear in quotes. Only some of the attribute val-
ues were quoted on the Coca Cabana Technology Shop site.

• All elements must have both opening and closing tags. Also, empty ele-
ments must have the slash character (/) before the closing “>”. This is also
a problem on the site.

• Finally, they found several instances of elements not properly nested.

In addition to these needed changes, they also have to make sure they add the
proper Document Type Declaration with a reference to the XHTML 1.0
Transitional DTD. The document that they came up with after making all the
necessary changes is shown in the following file, Postxhtml_Home.html (which
you can download from the Sams Web site):

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Welcome to Coca Cabana</title>
<meta name=”description” content=”Welcome to Coca Cabana, The best
technology shop on the Web!” />
<meta name=”keywords” content=”technology, web, internet, computers,
palm-tops, lap-tops, modems, hard drives” />
</head>
<body bgcolor=”BEIGE”>
<basefont face=”VERDANA” size=”2” />
<h1>Welcome to Coca Cabana Technology Shop!</h1>
<h3>The best darn shop on the internet!</h3>
<p>
Here at Coca Cabana we pride ourselves on having the most up to date
technology at the best prices you will find anywhere.
</p>
<hr />
<table bgcolor=”BLACK” cellpadding=”0” cellspacing=”1”
border=”0” width=”100%”>
<tr>

14 0672323419 CH11 3/15/04 11:20 AM Page 468

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

Formatting XML for the Web

CHAPTER 11
469

<td width=”15%” valign=”top” bgcolor=”TAN”>
<h4>Site Links:</h4>
<!--
These links do not actually go anywhere - they are included for
demonstration purposes
-->

Home
Latest News
Catalog
Support
About us

</td>
<td valign=”top”>
<table bgcolor=”BLACK” cellpadding=”4” cellspacing=”0” width=”100%”>
<tr>
<td bgcolor=”TEAL”>
<h2>Check out our lap top blowout!</h2>
Special selections from our award winning
laptop line!

COCA PENTIUM III Laptop –
$999.00
COCA PENTIUM II Laptop –
$799.00
COCA PENTIUM Laptop –
$599.00

</td>
</tr>
<tr>
<td bgcolor=”KHAKI”>
<h4>We have some other great specials that you should see!</h4>
<p>
The following low prices are always available at
Coca Cabana!
</p>

COCA PENTIUM III DESKTOP –
$1299.00
COCA PALM-TOP –
$299.00
COCA 10 GIGABYTE HARDDRIVES –
$109.00

</td>
</tr>

14 0672323419 CH11 3/15/04 11:20 AM Page 469

XHTML 1.1: Modularization
If the analogy of a bridge is used for XHTML 1.0, then possibly the analogy of an eleva-
tor could be used for XHTML 1.1. XHTML 1.0 creates a bridge to easily span the gap
between HTML 4 and XML 1.0 compliance. XHTML 1.1 creates an elevator for raising
the level of conformance of XHTML 1.0. Once a series of Web pages have become
XHTML 1.0 compliant, they are on the ground floor. There is nowhere to go but up!

On April 10, 2001 the Modularization of XHTML became an official W3C organization
recommendation.

Building XML-Based Applications

PART II
470

</table>
</td>
</tr>
</table>
<hr />
<center>Thanks for shopping at the Coca Cabana Technology
shop!
Please come again soon!</center>
</body>
</html>

After making all the necessary changes to ensure their Web site is XHTML 1.0
Transitional compliant, the owners of Coca Cabana Technology Shop decided to
add one more little touch to their home page. Just before the closing </body>
tag, they added the following five lines of code:

<p>
<img
src=”http://www.w3.org/Icons/valid-xhtml10”
alt=”Valid XHTML 1.0!” height=”31” width=”88” />
</p>

These lines of code add an image to the home page that, when clicked, redi-
rects visitors to a validator on the W3C organization’s Web site. This validator
checks to ensure that the referring Web page is made up of valid XHTML. Even
though the validator is not required for the page to actually be valid, They
thought this would be a neat touch to let visitors know that they are up with
the latest Web technology as well as the latest computer technology. Anyone
clicking the image would instantly know that his Web site is XHTML 1.0 valid.

Note

This section is not intended to provide complete coverage of the
Modularization of XHTML. It is recommended that you also take a look at

14 0672323419 CH11 3/15/04 11:20 AM Page 470

XHTML modularization is a dissection of XHTML 1.0 into a collection of abstract mod-
ules, with each module representing a specific type of XHTML functionality (such as an
abstract module for defining XHTML tables or an abstract module for defining XHTML
text formatting). Modules are implemented through the use of XML DTDs. XHTML
modularization allows different modules to be “mixed and matched” together within
XML DTDs in order to create XHTML subsets and extensions.

Formatting XML for the Web

CHAPTER 11
471

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

the official Modularization of XHTML recommendation found at http://www.
w3.org/TR/2001/REC-xhtml-modularization-20010410/.

Note

The Modularization of XHTML could be thought of in terms of breaking XHTML
1.0 (and, by extension, HTML 4) into class objects, similar to what is found in an
object-oriented programming (OOP) language. Think of each module as a class
object that can be referenced to add functionality to the DTDs you create. Each
module (class object) exposes a specific set of functionality that may be added
to your DTD (project). Of course, you don’t have to reference a module the
same way you reference a class object in OOP, but the analogy still should give
you an idea of how to think about XHTML modularization.

After making the Modularization of XHTML an official recommendation, the W3C
moved quickly and on May 31, 2001, XHTML 1.1 (module-based XHTML) also became
an official recommendation.

Note

The official XHTML 1.1 module-based XHTML recommendation can be found at
http://www.w3.org/TR/2001/REC-xhtml11-20010531/.

XHTML 1.1 is basically the reformulation of the XHTML 1.0 Strict DTD into a mod-
ule-based document type. This new module-based document type is designed to be
portable and easily applicable across a broad collection of clients and platforms. With
the advent of XHTML 1.1, end-user device vendors will be able to create DTDs that
specify specifically which XHTML modules their devices support. Each of the modules

14 0672323419 CH11 3/15/04 11:20 AM Page 471

will be consistent and conform with the Modularization of XHTML recommendation.
This ensures that although a vendor might only be using a subset of XHTML, the subset
will completely conform with XHTML 1.1. Compatibility will always be ensured.

In this section, we will take a quick rundown of the changes that have been made from
XHTML 1.0. We will then go into a more detailed look at modularization in XHTML
and its main areas of divergence from XHTML 1.0. Finally, in the subsection on syntax
and definitions, we will run down the modules that make up the Modularization of
XHTML and XHTML 1.1 document type.

Building XML-Based Applications

PART II
472

Caution

Before you get too excited about XHTML 1.1 and all the implications of
Modularized XHTML, be aware that application and browser support for
XHTML 1.1 is pretty much nonexistent at this point. XHTML 1.1 is covered here
mainly to show you where XHTML is going—not necessarily where it is cur-
rently. You could probably write an XHTML page that references the XHTML 1.1
DTD and get it to load in one of the newest Web browsers. However, unless you
are writing your own custom applications that will use XHTML 1.1, that is about
all you will get. Hopefully vendors will be fast to jump on the bandwagon and
we will see tons of cool implementations of Modularized XHTML very soon.

Changes from XHTML 1.0
As previously stated, XHTML 1.1 is basically a reformulation of the XHTML 1.0 Strict
DTD into a module-based document type. Many of the facilities available in other
XHTML 1.0 document types (Transitional and Frameset) are not available in XHTML
1.1. The same general rules for strict adherence from XHTML 1.0 apply in XHTML 1.1.

The main differences between an XHTML 1.0 Strict DTD and XHTML 1.1 (apart from
being defined in modules) are summarized here:

• All features that were deprecated have been completely removed in XHTML 1.1.
Most of the removed features dealt with layout and formatting. The goal here is as
much separation as possible between data structure and visual formatting. The
strategy is to rely on style sheets for presentation.

• For all elements, the lang attribute as been removed and replaced with the
xml:lang attribute.

14 0672323419 CH11 3/15/04 11:20 AM Page 472

• For the a and map elements, the name attribute has been removed and replaced with
the id attribute.

• The Ruby collection of elements has been added to the document type.

Formatting XML for the Web

CHAPTER 11
473

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

Note

The Ruby collection is derived from Ruby Annotation, which is another W3C
recommendation. It may be viewed at http://www.w3.org/TR/2001/REC-ruby-
20010531/. Ruby Annotation defines an XHTML module that specifies the
markup to be used for Ruby, which is a term used for a run of text that is
associated with another run of text (base text). Ruby text provides a short
annotation for the base text. Ruby is used frequently along with Japanese and
Chinese ideographs in order to provide alternate readings that have the same
meanings. The Ruby Annotation recommendation will make Ruby readily
available on the Web through XHTML markup.

Listing 11.14 demonstrates a simple example of a document that conforms to XHTML
1.1. The code for this listing, simplexhtml11.HTML, can be downloaded from the Sams
Web site.

LISTING 11.16 Simple XHTML 1.1 Document

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” >
<head>
<title>A Simple XHTML 1.1 Document</title>
</head>
<body>
<p>This document valid according to the XHTML 1.1 DTD.</p>
</body>
</html>

This listing is very similar to the ones you saw earlier in the section on XHTML 1.0.
The main difference is that the Document Type Declaration references the XHTML 1.1
DTD. Of course, the XHTML 1.1 DTD defines a stricter set of validation standards.
Notice also that the XML declaration is included. This is not strictly required but is
always highly recommended.

Now, let’s delve a bit further into XHTML modularization.

14 0672323419 CH11 3/15/04 11:20 AM Page 473

Modularization of XHTML
The Web is becoming more and more pervasive. It is creeping into almost every aspect of
our lives. The Web is on our cellular phones, handheld devices, automobiles, and televi-
sions. Soon it will be on our appliances. HTML has become the content language that is
most used by vendors developing new Web-enabled devices. However, the splintering of
HTML into different supported features across different vendors, combined with the
introduction of new extensions and the mingling of data structure and presentation, has
rendered HTML less than optimal for this purpose.

XHTML 1.0 was introduced in order to reformulate HTML 4 into an XML application.
This reformulation allows vendors to tap in to the ever-expanding myriad of XML tech-
nologies. However, XHTML 1.0 still defines a pretty broad markup. It encompasses basi-
cally all of HTML 4. Simpler devices have little use for (or are totally incapable of
using) much of what is available in XHTML 1.0. XHTML 1.0 is not necessarily cross-
platform compatible in its Transitional and Frameset DTDs. XHTML 1.0 is an XML
application, but it is not extensible.

The Modularization of XHTML makes XHTML extensible. XHTML has been broken
down into abstract modules. Each module represents a building block that can be com-
bined with other building blocks to create unique subsets of XHTML. This means that
content developers and vendors can define new document types comprised only of the
modules they require for their application or device. These new document types are still
fully conforming subsets of XHTML because they are derived directly from combina-
tions of XHTML modules.

To take this a step further, developers and vendors can actually create hybrid document
types that define their own element structure and still reference XHTML modules.
Developers and vendors can, in effect, create their own markup languages by combining
elements that they define with modules from XHTML.

Building XML-Based Applications

PART II
474

Note

An excellent reference/example for creating hybrid document types has been
put together by the W3C organization and can be found at http://www.w3.
org/MarkUp/Guide/xhtml-m12n-tutorial/.

XHTML Is Separated into Modules
XHTML 1.1 separates XHTML 1.0 into 20 different abstract modules. Table 11.1 shows
the modules that XHTML has been broken into.

14 0672323419 CH11 3/15/04 11:20 AM Page 474

TABLE 11.1 XHTML 1.1 Modules

Module Contained Elements

Structure Module body, head, html, title

Text Module abbr, acronym, address, blockquote, br, cite, code,
dfn, div, em, h1, h2, h3, h4, h5, h6, kbd, p, pre, q,
samp, span, strong, var

Hypertext Module A

List Module dl, dt, dd, ol, ul, li

Object Module object, param

Presentation Module b, big, hr, I, small, sub, sup, tt

Edit Module del, ins

Bidirectional Text Module Bdo

Forms Module button, fieldset, form, input, label, legend,
select, optgroup, option, textarea

Table Module caption, col, colgroup, table, tbody, td, tfoot, th,
thead, tr

Image Module Img

Client-side Image Map Module area, map

Server-side Image Map Module Attribute ismap on img

Intrinsic Events Module Events attributes

Meta-information Module Meta

Scripting Module noscript, script

Stylesheet Module style element

Style Attribute Module * style attribute

Link Module Link

Base Module Base

Ruby Module ruby, rbc, rb, rt, rp

* Marked as deprecated

There is one additional module that has been added to the recommendation. The
XHTML 1.1 DTD also uses the Ruby Annotation module. The Ruby Module and its
contents have been added to the end of Table 11.1

Any XHTML 1.1 document that is validated against the XHTML 1.1 DTD will not be
considered valid if it contains any element(s) not contained in one the modules listed in

Formatting XML for the Web

CHAPTER 11
475

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

14 0672323419 CH11 3/15/04 11:20 AM Page 475

Table 11.1 or in the Ruby Annotation Module. In the next section, we will expand on this
by covering strict conformance with XHTML 1.1.

Strict Conformance Is Required
Strict conformance of a document with XHTML 1.1 requires absolute adherence to the
following criteria:

• The document must conform to the definitions expressed in the XHTML 1.1 DTD.
The XHTML 1.1 DTD may be referenced using the following Document Type
Declaration:
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

• The root element of the document must be <html>.

• The <html> element must designate the XHTML namespace using the xmlns
attribute. The value of the attribute should always be
http://www.w3.org/1999/xhtml.

• The Document Type Declaration must be made prior to the root element.

Now that we have covered the specifics of strict conformance, let’s see exactly which of
XHTML 1.0’s features have been removed from XHTML 1.1.

Deprecated Features Have Been Removed
In XHTML 1.0, the name attribute of the a, applet, form, frame, iframe, img, and map
elements was deprecated. In XHTML 1.1, this attribute has been completely removed.

In addition to removing the deprecated features from XHTML 1.0, XHTML 1.1 removes
all the deprecated elements from HTML 4. The elements that were deprecated in HTML
4 are applet, basefont, center, dir, font, isindex, menu, s, strike, and u.

XHTML 1.1 attempts to make a clean break with much of the outdated features of
HTML and moves to separate structure from presentation. This is getting us closer to the
original intent of HTML. XHTML 1.1 will rely on style sheets for any special presenta-
tion formatting.

So far, we have covered XHTML 1.0, which reformulates HTML into an XML applica-
tion, and we have seen the Modularization of XHTML in our coverage of XHTML 1.1.
However, because XHTML 1.1 is virtually unsupported at this point, you might be won-
dering how alternative devices such as cellular phones and handheld devices are being
supported currently. In the next section, you’ll see how XHTML Basic was created in
order to provide an easy, stripped-down, modularized version of XHTML 1.0 for alterna-
tive devices.

Building XML-Based Applications

PART II
476

14 0672323419 CH11 3/15/04 11:20 AM Page 476

XHTML Basic
Based on the proposed recommendation (at the time) of the Modularization of XHTML,
XHTML Basic became a W3C recommendation on December 19, 2000. XHTML Basic
was based on a minimal set of XHTML modules in order to provide a subset of XHTML
for the purpose of delivering XML-conforming content to alternative devices such as
pagers, cellular phones, handheld devices, televisions, and so on. Most alternative
devices are characterized by their limited processing power, bandwidth, and screen sizes.
Therefore, a very streamlined markup is required in order to be able to provide content.
There’s just no room for any type of complex interpretation of detailed code, and
XHTML Basic was designed specifically to fit this need.

Formatting XML for the Web

CHAPTER 11
477

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

First, we are going to cover the recent history behind creating XHTML-based markup
for alternative devices. Then we will look at the supported HTML features found in
XHTML Basic. Finally, we will go over the modules that make up the XHTML Basic
document type.

XHTML for Alternative Devices
The two previously existing HTML subsets that are designed for alternative devices are
Compact HTML (CHTML) and Wireless Markup Language (WML). Both of these
markup languages have strengths and some weaknesses. CHTML is not a recognized
standard and is not XML compliant. However, it does have expanded support of colors,
animations, and other rich display features. WML is a standard that is recognized as part
of the Wireless Application Protocol, as implemented by the WAP Forum.

Note

The official XHTML Basic recommendation can be found at http://www.w3.org/
TR/xhtml-basic/.

Note

The WAP Forum is comprised of most of the world’s big mobile-computing com-
panies, including Nokia, Ericsson, Motorola, and Phone.com. The official WAP
Forum Web site can be found at http://www.wapforum.org/.

14 0672323419 CH11 3/15/04 11:20 AM Page 477

WML is also an XML 1.0 application. This, of course, means that WML is well formed,
may be validated, and is open to XML technology applications. However, WML is not
extensible. Although WML is an XML 1.0 application, it is defined with a fixed set of
tags and may not be expanded upon.

Even though WML and CHTML are competing languages, they do have several features
in common. They both support basic text features, hyperlinks and links to documents,
basic forms, basic tables, images, and meta-information. It was from these common fea-
tures that XHTML Basic was started. Both representatives of CHTML and WML took
part in the formulation of the XHTML Basic standard. Shortly after XHTML Basic was
approved as a recommendation, the WAP Forum announced that it would be adopting
XHTML Basic in its WAP 2.0 release. On July 31, 2001 the WAP Forum made its 2.0
specification public with WML reformulated as a modularized subset of XHTML. This
means that WML is now fully XHTML (and XHTML Basic) compatible. The idea of
XHTML for alternative devices is taking hold.

So, what XHTML features are actually supported in XHTML Basic? The next section
covers this topic.

Supported XHTML Features
The first thing that should be noted here is that XHTML Basic is extensible. This is an
important supported feature from the Modularization of XHTML. Even though very lim-
ited features are supported, it is possible for the XHTML Basic DTD to be expanded on
by referencing other XHTML modules. For example, the Scripting Module could be ref-
erenced to extend XHTML Basic to support scripting for alternative devices that are
powerful enough to allow script processing.

Building XML-Based Applications

PART II
478

Note

The exact XHTML modules and all the supported elements that make up XHTML
Basic will be listed in Table 11.2 in the next section, “The XHTML Basic
Document.”

Before going into the specifics of what is supported, let’s take a quick look at what is not
supported by XHTML Basic. The style element is not supported. This is because exter-
nal style sheets are the only supported style method (because many devices may not sup-
port style sheets at all). The script and noscript elements are not supported. Many
alternative devices have very limited processing power and attempting script processing
is simply not practical or possible. Additionally, because many of these simple devices

14 0672323419 CH11 3/15/04 11:20 AM Page 478

only display monospaced text, things like bidirectional text, boldfaced font, and other
text extension elements are not supported.

There are quite a few things that are not supported! So, what is supported? Let’s take a
look at the supported items now.

Text Support
Basic text formatting features are supported in XHTML Basic. These include simple
text-formatting markup such as paragraphs, breaks, lists, and headers. Listing 11.17 gives
an example of a simple XHTML Basic document using text formatting. The code for this
listing, xhtmlbasic.HTML, can be downloaded from the Sams Web site.

LISTING 11.17 Simple Text Formatting in XHTML Basic

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” >
<head>
<title>XHTML Basic text features</title>
</head>
<body>
<h3>Some supported text features</h3>
<p>The following list represents several of the
supported XHTML Basic text formatting.</p>

Lists
Paragraphs
Headings

</body>
</html>

Listing 11.17 is a very simple listing that demonstrates a valid XHTML Basic document.
The first line contains the XML declaration. Then the Document Type Declaration is
included and contains a public reference to the XHTML Basic DTD. The markup within
the document is limited to the html root element, head, title, body, h3, p, ul, and li.
You will find that this is very typical of an XHTML Basic document. They are simple
and streamlined, as their intended clients, alternative devices, require.

Hyperlinks and Linking to Documents
Both normal hyperlinks and the link element are supported in XHTML Basic. The
hyperlink is the most basic and central feature of linking content on the Web. Therefore,
it must be included.

Formatting XML for the Web

CHAPTER 11
479

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

14 0672323419 CH11 3/15/04 11:20 AM Page 479

The inclusion of the link element allows for the linking of external documents to the
Web page. This is also an important feature because it allows style sheets to be linked to
the document. In XHTML Basic external style sheets are the main media for providing
formatting to documents. Listing 11.18 provides a simple example of using a link ele-
ment and a hyperlink in an XHTML Basic document. The code for this listing, basi-
clink.HTML and mystylesheet.css, can be downloaded from the Sams Web site.

LISTING 11.18 Using Hyperlinks and the link Element in XHTML Basic

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” >
<head>
<title>XHTML Basic hyperlinks and link elements</title>
<link rel=”stylesheet” type=”text/css” href=”mystylesheet.css” />
</head>
<body>
<h3>XML Tutorial Web Sites</h3>
<p>Here are some good XML Web sites</p>

XML101.com
W3Schools.com
XHTMLguru.com

</body>
</html>

In this listing, we use the same type of text formatting features used in Listing 11.18.
However, now we have added a link element in order to link to an external style sheet,
and we have added hyperlinks to three really good XML tutorial sites. Notice in the link
element, because this is an empty element, that we have added “/” before the closing
“>”. This is consistent with the requirements of the XML 1.0 specification.

Table Support
Very basic tables are supported. Keep in mind that tables can be very difficult to display
on small devices. Therefore, you should use tables sparingly. Limit their use to display-
ing information that requires a tabular presentation. Avoid using tables for the entire page
layout. Listing 11.19 shows how a table might be used in XHTML Basic. The code for
this listing, basictables.HTML, can be downloaded from the Sams Web site.

LISTING 11.19 Using Tables in XHTML Basic

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”

Building XML-Based Applications

PART II
480

14 0672323419 CH11 3/15/04 11:20 AM Page 480

LISTING 11.19 continued

“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” >
<head>
<title>XHTML Basic tables</title>
<link rel=”stylesheet” type=”text/css” href=”mystylesheet.css” />
</head>
<body>
<h3>Today’s Weather Forecast</h3>
<table>
<tr><td>Current Temp</td><td>77 F</td></tr>
<tr><td>High Temp</td><td>85 F</td></tr>
<tr><td>Low Temp</td><td>72 F</td></tr>
</table>
</body>
</html>

This listing uses a very simple table structure to provide a layout for a weather forecast.
Only the table, tr, and td elements are used. You really should try to keep it this simple
due to the processing limitations and display limitations of the devices that will be load-
ing your XHTML Basic pages.

Formatting XML for the Web

CHAPTER 11
481

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

Caution

XHTML Basic (the Basic Tables Module) does not support the nesting of tables. If
you attempt to nest tables in your XHTML Basic pages, they will not be con-
forming (valid) documents.

Forms Support
Basic XHTML forms are supported. Similar to using tables in XHTML Basic, your use
of forms should be very limited. File and image input types are not supported. Listing
11.20 shows a simple form in XHTML Basic. The code for this listing, basicforms.
HTML, can be downloaded from the Sams Web site.

LISTING 11.20 Using Simple Forms in XHTML Basic

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” >
<head>
<title>XHTML Basic Forms</title>
</head>

14 0672323419 CH11 3/15/04 11:20 AM Page 481

LISTING 11.20 continued

<body>
<h3>Please enter your name and email address</h3>
<form method=”post” action=”anotherpage.asp”>
Name: <input type=”text” id=”txtName” name=”txtName” />

E-Mail Address: <input type=”text” id=”txtEMail” name=”txtEMail” />

<input type=”submit” value=”Submit” />
</form>
</body>
</html>

In this example, you can see that the form is kept very simple. Only two types of input
elements are used: text and submit. No special formatting is applied here either. In
many cases, in a normal HTML page, a form will be laid out with a table. In XHTML
Basic, as mentioned in the previous subsection, this would not be a good idea because it
takes undue processing to render the table. Finally, notice that the empty elements are
closed with the “/” symbol. At the end of this chapter, we will take a quick look at
XForms. XForms will represent a more robust means for supporting user input on alter-
nate devices in the future.

Style Sheet Support
The style element is not supported in XHTML Basic. The XHTML Basic recommenda-
tion supports linking to include external style sheets. This is preferred because an exter-
nal style sheet can be linked to and used by clients that support style sheets and ignored
by clients that do not support style sheets. In XHTML Basic, the div and span elements
may be used along with the class attribute to hook style information to the structure of
the document. Listing 11.18 showed you how to use a link element to include an exter-
nal style sheet. Listing 11.21 demonstrates using the div element to apply a style from
an external style sheet using a class attribute. The code for this listing, basicdiv.HTML,
can be downloaded from the Sams Web site.

LISTING 11.21 Using div to Apply Styles in XHTML Basic

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” >
<head>
<title>XHTML Basic Style</title>
<link rel=”stylesheet” type=”text/css” href=”mystylesheet.css” />
</head>
<body>

Building XML-Based Applications

PART II
482

14 0672323419 CH11 3/15/04 11:20 AM Page 482

LISTING 11.21 continued

<div class=”SectionTitle”>Applying Style</div>
<div class=”SectionContent”>This is a demonstration of adding
style to XHTML Basic</div>
</body>
</html>

In this listing is a link to an external style sheet: mystylesheet.css. In the body of the
document, two div elements are used to format the text. Each div element has a class
attribute that is used to reference a class in the style sheet (for the purposes of this exam-
ple, we are assuming that the style sheet contains the classes SectionTitle and
SectionContent). The appropriate formatting for each class will be applied to the text
contained within each div element. This is assuming that the device viewing this page
supports style sheets; otherwise, default formatting for that device will be applied.

Images Support
Yes, images are supported in XHTML Basic, but before you get too excited, think about
how slowly those huge, image-laden pages load on your desktop browser. Now think
about how that page would load on your handheld! Personally, I would recommend not
even using images in your XHTML Basic page. If you do decide to use images, use them
very sparingly and make them very small. In its WAP 2.0 specification, the WAP Forum
supports the use of pictograms, which are tiny images (such as the smiley faces you
often see on bulletin boards on the Internet) that can be used to convey some additional
meaning. According to the WAP forum, pictograms are supported in order to enhance
communication across language boundaries.

Now that we have gone over the main features supported in XHTML Basic, let’s take a
look at the exact modules supported in XHTML Basic and the criteria used for XHTML
Basic document conformance.

XHTML Basic Document
The XHTML Basic document type is composed of a set of XHTML modules. The
included modules are listed in Table 11.2.

Formatting XML for the Web

CHAPTER 11
483

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

Note

These XHTML modules are defined in the Modularization of XHTML, which
can be found at http://www.w3.org/TR/2001/REC-xhtml-modularization-
20010410/.

14 0672323419 CH11 3/15/04 11:20 AM Page 483

TABLE 11.2 XHTML Basic Modules

Module Contained Elements

Structure Module body, head, html, title

Text Module abbr, acronym, address, blockquote, br, cite, code,
dfn, div, em, h1, h2, h3, h4, h5, h6, kbd, p, pre, q,
samp, span, strong, var

Hypertext Module A

List Module dl, dt, dd, ol, ul, li

Basic Forms Module form, input, label, select, option, textarea

Basic Tables Module caption, table, td, th, tr

Image Module img

Object Module object, param

Metainformation Module meta

Link Module link

Base Module base

A document that meets the requirements of XHTML Basic is a strictly conforming docu-
ment. In order to be considered a strictly conforming document, the following criteria
must be met:

• The document must validate against the XHTML Basic DTD, which is comprised
of the modules listed in Table 11.2.

• The root element of the document must be <html>.

• The root element must have the xmlns attribute with a value of
http://www.w3.org/1999/xhtml.

• There must be a Document Type Declaration that references the XHTML Basic
DTD. The XHTML Basic DTD can be found in the following location:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”>

• The DTD subset must not be used to override any parameter entities in the DTD.

As long as these requirements are met, a document will be considered a conforming
document.

So far in this chapter we have looked at some background on electronic data by covering
DSSSL. Then we moved on to CSS and how they can be used to format HTML on the
Web. We then looked at how CSS can be used to display XML on the Web. Next, we

Building XML-Based Applications

PART II
484

14 0672323419 CH11 3/15/04 11:20 AM Page 484

spent quite a bit of time covering what is going to be one of the centerpieces of data
delivery and formatting on the Web in the future: XHTML. Before we wrap up this chap-
ter, we are going to look at one more emerging XML technology: XForms. XForms is an
XHTML-compatible application that is intended to replace HTML forms in the future.

Before going on to our coverage of XForms, however, let’s revisit Coca Cabana
Technology Shop and see how they applied XHTML Basic to their Web site.

Formatting XML for the Web

CHAPTER 11
485

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

Coca Cabana Technology Shop: Building a Web Site for the Future, Part II

During the course of their research on XHTML 1.0, the owners of Coca Cabana
Technology Shop realized that XHTML Basic was becoming an important
markup language for delivering content to alternative devices. In line with the
idea that they should be on the cutting edge with their Web site, they decided
that they needed to make a version of their site that would be easily accessible
to alternative devices.

Because XHTML Basic is such a simplified language and considering the limited
bandwidth and processing power that alternative devices possess, the Coca
Cabana Technology Shop owners decided that they would simply put together
an XHTML Basic page that advertises their specials. First, they reviewed the por-
tion of their home page that lists their specials. This is shown in the file
Postxhtml_Home.html, which you can download from the Sams Web site:

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<!-- Please note that this is only a partial listing of
Postxhtml_Home.html that was originally listed in part
one of this mini-case study
-->
…
<table bgcolor=”BLACK” cellpadding=”4” cellspacing=”0” width=”100%”>
<tr>
<td bgcolor=”TEAL”>
<h2>Check out our lap top blowout!</h2>
Special selections from out award
winning laptop line!

COCA PENTIUM III Laptop –
$999.00
COCA PENTIUM II Laptop –
$799.00
COCA PENTIUM Laptop –
$599.00

14 0672323419 CH11 3/15/04 11:20 AM Page 485

Building XML-Based Applications

PART II
486

</td>
</tr>
<tr>
<td bgcolor=”KHAKI”>
<h4>We have some other great specials that you should see!</h4>
<p>
The following low prices are always available at
Coca Cabana!
</p>

COCA PENTIUM III DESKTOP –
$1299.00
COCA PALM-TOP –
$299.00
COCA 10 GIGABYTE HARDDRIVES –
$109.00

</td>
</tr>
</table>
</td>
</tr>
</table>
…
</html>

One of the main things they realized after reviewing the specials listed on their
home page was that some of the markup was no longer supported by XHTML
Basic (such as the elements). These would need to be removed. Another
thing they noticed was that they used a nested table on their home page. Table
nesting is not supported in XHTML Basic. Also, the Document Type Declaration
would need to be updated to point to the XHTML Basic DTD. Taking these items
into consideration, they came up with the following XHTML Basic document,
Xhtmlbasic_home.html (which you can download from the Sams Web site):

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” >
<head>
<title>Welcome to Coca Cabana Technology Shop</title>
</head>
<body>
<h1>Welcome to Coca Cabana Technology Shop!</h1>
<h3>The best darn shop on the internet!</h3>
<h2>Check out our lap top blowout!</h2>

14 0672323419 CH11 3/15/04 11:20 AM Page 486

An Overview of XForms
One of the primary uses of the Web by businesses is to gather data from the visitors to
their Web sites. Forms provide a powerful mechanism for users to interact with Web
sites. HTML forms, and more recently XHTML forms, have been used for this purpose.
Currently, the W3C organization is working on the next generation of Web forms:
XForms. On August 28, 2001 the XForms 1.0 working draft was released.

Formatting XML for the Web

CHAPTER 11
487

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

COCA PENTIUM III Laptop - $999.00
COCA PENTIUM II Laptop - $799.00
COCA PENTIUM Laptop - $599.00

<h4>We have some other great specials that you should see!</h4>

COCA PENTIUM III DESKTOP - $1299.00
COCA PALM-TOP - $299.00
COCA 10 GIGABYTE HARDDRIVES - $109.00

<h5>Thank you!</h5>
</body>
</html>

You can see from the XHTML Basic version of the Coca Cabana Technology Shop
home page that it has been simplified a great deal. All unsupported elements
and attributes have been removed. Also, all table structures have been
removed. Removing the table structures makes the page easier to render for
alternative devices(although, consider that this would probably still be too
much to display on a cell phone—it is probably better suited for a handheld PC
display). The owners of Coca Cabana Technology Shop can now proudly say that
their Web site is accessible by alternative devices on the Internet.

Note

The official XForms 1.0 working draft can be found at http://www.w3.org/
TR/xforms/.

Even though XForms is only a working draft at this point, it is important to at least get a
good general understanding of XForms. XForms is going to be one of the vital technolo-
gies that drives the Web in the future.

14 0672323419 CH11 3/15/04 11:20 AM Page 487

Introduction to XForms
Forms were first introduced to the Web in 1993. Since then, forms have grown to be a
vital part of the user interaction with Web sites. More recently, HTML forms developers
have been able to start restructuring their forms to be XHTML compliant. This makes
forms XML 1.0 compatible; however, this does not really change any of the shortcom-
ings of old HTML forms. HTML forms fail to provide any separation of presentation
from data and logic. There are very limited facilities in HTML forms (short of doing a
bunch of script programming, which is not even supported in all browsers) for tracking
user input during form filling. XForms is being designed to solve these problems.

Next Generation of Web Forms
XForms provides the next logical step in the evolvement of forms on the Web. The XML
standard dictates that structure be separated from presentation. XForms as an XML
application accomplishes this.

Successor to HTML Forms
As stated, XForms is being designed to be the successor to HTML forms. Let’s take a
quick look at Listing 11.22, which shows a typical HTML form.

LISTING 11.22 Typical HTML Form

<html>
<head>
<title>Typical HTML Form</title>
</head>
<body>
<form action=”processexample.asp” method=”post”>
<p>Please enter your personal information:</p>
<table>
<tr>
<td>Name:</td>
<td><input type=”text” id=”txtName” name=”txtName”></td>
</tr>
<tr>
<td>Age:</td>
<td>
<select id=”cboAge” name=”cboAge”>
<option>Less than 18</option>
<option>18 - 35</option>
<option>Over 35</option>
</select>
</td>
</tr>

Building XML-Based Applications

PART II
488

14 0672323419 CH11 3/15/04 11:20 AM Page 488

LISTING 11.22 continued

<tr>
<td>Gender:</td>
<td>
<select id=”cboGender” name=”cboGender”>
<option>Male</option>
<option>Female</option>
</select>
</td>
</tr>
<tr>
<td colspan=”2”><input type=”submit” value=”Submit”></td>
</tr>
</table>
</form>
</body>
</html>

You can see that this is a regular HTML form typical of what you will find on most Web
sites. Presentation of the form is combined with the purpose of the form. Additionally,
there is no control over the data entered by the user prior to form submission. Figure
11.6 demonstrates how this form would be rendered in Internet Explorer 5.5.

Formatting XML for the Web

CHAPTER 11
489

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

FIGURE 11.6
Listing 11.22 ren-
dered in Internet
Explorer 5.5.

In XForms, there are separate sections used to describe the purpose of the form and the
presentation of the form. This provides a great advantage over HTML because XForms
makes no requirement of how the form should be presented. This makes XForms very

14 0672323419 CH11 3/15/04 11:20 AM Page 489

rich and flexible. XForms may just as easily be displayed using XHTML form controls
as WML form controls. This is because XForms does not predetermine the type of con-
trol that must be used to collect the data. XForms merely dictates the type of data that
should be collected. Listing 11.23 shows how the form in Listing 11.22 would be rewrit-
ten using XForms.

LISTING 11.23 XForms Web Form

<xform:input ref=”txtName”>
<xform:caption>Name</xform:caption>
</xform:input>
<xform:selectOne ref=”cboAge”>
<xform:caption>Age</xform:caption>
<xform:choices>
<xform:item value=”Less than 18”><xform:caption>Less than 18
</xform:caption></xform:item>
<xform:item value=”18 - 35”><xform:caption>18 - 35</xform:caption></xform:item>
<xform:item value=”Over 35”><xform:caption>Over 35</xform:caption></xform:item>
</xform:choices>
</xform:selectOne>
<xform:selectOne ref=”cboGender”>
<xform:caption>Gender</xform:caption>
<xform:choices>
<xform:item value=”Male”><xform:caption>Male</xform:caption></xform:item>
<xform:item value=”Female”><xform:caption>Female</xform:caption></xform:item>
</xform:choices>
</xform:selectOne>
<xform:submit>
<xform:caption>Submit<xform:caption>
</xform:submit>

You can immediately see in this listing that the user interface is not hard-coded to use
select boxes and text boxes, as is the case in the HTML form in Listing 11.22. The list-
ing merely specifies that the data that should be gathered. Different clients can render
the interface as appropriate. The id and name attributes have been replaced by the ref

attribute, which is an XML ID type of attribute that uniquely identifies the XForms
control.

Several other things should be noted about Listing 11.23. There is no form element. This
is not required in XForms. Also, when the form is submitted, the data will be submitted
as XML data. Data entered in this XForms form by a user might look like what appears
in Listing 11.24.

Building XML-Based Applications

PART II
490

14 0672323419 CH11 3/15/04 11:20 AM Page 490

LISTING 11.24 Submitted XForms Data

<Envelope>
<Body>
<txtName>Michael Qualls</txtName>
<cboAge>18 - 34</cboAge>
<cboGender>Male</cboGender>
</Body>
</Envelope>

XForms submits well-formed XML data. Once this data is received by the server, it may
be validated against a DTD by an XML parser.

Comparing Listing 11.23 with Listing 11.22 shows the very clear divergence of XForms
with HTML forms. Before we go on to look at the specific parts of XForms, let’s take a
quick look at the other ways that XForms differs from HTML forms.

Based on XML
XForms is, of course, an XML technology. This opens up XForms to using all the differ-
ent permutations of XML on the Web, such as XHTML, WML, and XSL. It appears that
XSL is going to be very important in relation to XForms. As stated, the XForms working
draft makes no requirements for how forms should be presented. XSL will be able to be
used to transform XForms documents to meet the presentation requirements of any
clients using the form.

Platform Neutral
XForms is platform neutral. As an XML technology, no specific requirements are made
in order to use XForms. XForms may be formatted for display as easily for handheld
devices, as for cellular phones, and as for desktop computers (within reason, of course;
the display limitations of some devices would have to be taken into account).

Works with XHTML
XForms may be displayed using XHTML. As a matter of fact, the W3C is working on a
DTD that combines XHTML 1.1 with XForms. Once integrated, XForms will not only
provide complete separation of purpose and presentation but will be completely modular-
ized. At the time of this writing, the DTD has not been completed.

XForms: Three Layers
XForms forms technology is split into three layers. These layers are purpose, presenta-
tion, and data. We will now look at each of these layers and see how they relate to the
overall design goals of XForms.

Formatting XML for the Web

CHAPTER 11
491

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

14 0672323419 CH11 3/15/04 11:20 AM Page 491

Purpose Layer
As has been stated several times previously, the purpose of the form and the presentation
of the form are separated in XForms. But what does this actually mean? As you saw in
Listing 11.22, the purpose and the presentation were combined in the HTML form. In
that listing, HTML form elements were hard-coded into the page. The presentation was
predetermined for any clients loading the page. When viewing Listing 11.23, you quickly
see that there is no defined presentation. The actual main form elements, referenced from
the XForms namespace, are input and selectOne. Both of these elements make their
purpose very clear. The input element expects some input from the user, and selectOne
allows the user to choose one of several defined options (the choices child element con-
tains the options available). However, although the purpose of the form is clear, there is
no indication of how the form should be displayed. It is left totally to the client to config-
ure the presentation.

Presentation Layer
The presentation layer of XForms is actually dependent on the client loading the XForms
document. An XForms document could be rendered in HTML, XHTML, or WML.
XForms could even be configured for delivery to an audio device or a Braille device.
This is one area where the presentation capabilities truly transcend the abilities of HTML
forms. The handicapped accessibility to XForms documents is greatly enhanced over the
abilities of more traditional forms of electronic data gathering.

Data Layer
It might seem odd to say that there is a data layer. The data is entered into the form fields
that are rendered by the client device. It would seem that data should be part of the pre-
sentation layer, or it might seem appropriate to make data part of the purpose layer
because the purpose layer defines the type of data being gathered. However, there is
indeed a data layer to XForms. You see, although data might be entered into the form
fields, there is another part of the XForms document that is actually tracking this data as
it is being entered: the data layer. There is actually an XForms construct placed within
the head element of the XForms document. Listing 11.25 shows what the data layer
might look like for the XForms form from Listing 11.23.

LISTING 11.25 XForms Data Layer

<xform:xform>
<xform:submitinfo action=”processexample.asp” method=”post” />
<xform:instance>
<personalinfo >
<txtName />

Building XML-Based Applications

PART II
492

14 0672323419 CH11 3/15/04 11:20 AM Page 492

LISTING 11.25 continued

<cboAge />
<cboGender />
</personalinfo>
</xform:instance>
</xform:xform>

Three elements in this listing have names that match the values of the ref attributes of
the form elements defined in Listing 11.23. These elements serve as placeholders for the
values entered into the form elements. These elements are wrapped inside of the wrapper
element personalinfo. The wrapper element may be of the author’s choosing. It is these
placeholders that give us the ability to perform instance tracking of the values users input
while filling out the form. This is the next factor that makes XForms superior to HTML
forms. We will now take a look at instance data tracking.

Instance Data Tracking
Instance data tracking gives the XForms author greater control over user input. As stated
previously, data submitted by an end user via an XForms document could be validated
against a DTD on the server. Using instance data tracking, it’s even possible to validate
user input during form entry—prior to form submission. Sure, this type of validation is
available in HTML if you want to write a bunch of JavaScript to track user entries, but
then you have to rewrite the JavaScript to achieve compatibility for each of the Web
browsers used to visit your Web site. No extra code is needed to write with XForms. This
will be a feature included with the XForms parser.

Tracks Partially Filled Forms
Listing 11.25 demonstrated the data layer in XForms. In order to use the data layer to
track form filling for partially filled forms, a namespace is created for the placeholder
elements in the data layer. Listing 11.26 demonstrates how a namespace could be refer-
enced for a XForms data layer in a document that is using a combination of XHTML and
XForms to create the form.

Formatting XML for the Web

CHAPTER 11
493

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

Caution

Please be aware that the next several examples of XForms instance data are not
technically valid. The Document Type Declaration references the XHTML 1.1
DTD, which does not yet include XForms elements. At time of writing the W3C
XForms Working Group is still in the process of developing the DTD for combin-
ing XHTML and XForms.

14 0672323419 CH11 3/15/04 11:20 AM Page 493

LISTING 11.26 XForms Data Instance Tracking—Namespace

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”>
<html xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xform=”http://www.w3.org/2001/08/xforms”
xmlns:info=”http://mydomain.example.com/personalinformation”xml:lang=”en”>
<head>
<title>Referencing a namespace for instance data tracking</title>
<xform:xform>
<xform:submitinfo action=”processexample.asp” method=”post” />
<xform:instance>
<info:personalinfo >
<info:txtName />
<info:cboAge />
<info:cboGender />
</info:personalinfo>
</xform:instance>
</xform:xform>
</head>
…
</html>

Listing 11.26 is not a complete document. It only includes the declaration statements, the
head element and its contents, and the root element, html. In the html element, three
namespace are referenced. The first two are for the XHTML and XForms namespaces.
The third is the namespace for placeholder elements. The namespace is referenced by
attaching the prefix “info:” to the wrapper element, personalinfo, and to the place-
holder elements, txtName, cboAge, and cboGender.

Now we are ready to start tracking partial form filling. We just need to connect the actual
form elements to the placeholder elements.

Connects with Form Elements
In order to connect our form elements with the placeholder elements in the XForms data
layer, we must reference the placeholder elements from the ref attribute of each of the
form elements. Listing 11.27 shows how the placeholder elements are referenced.

LISTING 11.27 Connecting with Form Elements

<xform:input ref=”info:personalinfo/info:txtName”>
<xform:caption>Name</xform:caption>
</xform:input>
<xform:selectOne ref=”info:personalinfo/info:cboAge”>
<xform:caption>Age</xform:caption>
<xform:choices>

Building XML-Based Applications

PART II
494

14 0672323419 CH11 3/15/04 11:20 AM Page 494

LISTING 11.27 continued

<xform:item value=”Less than 18”><xform:caption>Less than 18
</xform:caption></xform:item>
<xform:item value=”18 - 35”><xform:caption>18 - 35</xform:caption></xform:item>
<xform:item value=”Over 35”><xform:caption>Over 35</xform:caption></xform:item>
</xform:choices>
</xform:selectOne>
<xform:selectOne ref=”info:personalinfo/info:cboGender”>
<xform:caption>Gender</xform:caption>
<xform:choices>
<xform:item value=”Male”><xform:caption>Male</xform:caption></xform:item>
<xform:item value=”Female”><xform:caption>Female</xform:caption></xform:item>
</xform:choices>
</xform:selectOne>
<xform:submit>
<xform:caption>Submit<xform:caption>
</xform:submit>

Listing 11.27 is very similar to Listing 11.23. However, there is one major difference:
The value of the ref attribute for each form element has been updated to point to a
placeholder element.

Now the form elements are connected with the placeholder elements. During the form-
filling process, prior to form submission, the XForms parser will have access to the val-
ues that the end user is entering into the form elements.

Is XPath Based
In Listing 11.27, XPath statements were used as the values of the ref attributes to con-
nect the form elements with the placeholder elements. This is another example of how
using XForms, an XML application, will enable us to incorporate more XML technolo-
gies to complete our tasks.

Rich Data Type and Form Validation
XForms adopts the XML Schema data typing system. This enables the author to specify
the type of data that is expected to be entered into the form fields. From this, the XForms
parser can be used to enforce the proper data typing. A very simple example of how
validation and data typing can be used is demonstrated in Listing 11.28.

LISTING 11.28 Data Typing and Form Validation

<xform:xform>
…
<xform:bind ref=”info:personalinfo/info:txtName”
required=”true”

Formatting XML for the Web

CHAPTER 11
495

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

14 0672323419 CH11 3/15/04 11:20 AM Page 495

LISTING 11.28 continued

type=”xsd:string”
/>
<xform:bind ref=”info:personalinfo/info:cboAge”
required=”true”
type=”xsd:string”
/>
<xform:bind ref=”info:personalinfo/info:cgoGender”
required=”true”
type=”xsd:string”
/>
…
</xform:xform>

The XForms bind element is used to indicate that each of the form elements is required
and that the data type will be a character string. The ref attribute, once again, has its
value set to an XPath expression that points to the placeholder elements in the data layer.
Now the XForms parser can make sure that the required elements are present and that the
proper data types are entered.

Multiple Form Documents
Finally, it should be noted that XForms places no limitations on the number of forms per
document. When multiple forms share the same document, multiple xform elements will
be required. Each of the xform elements following the first xform element must have a
unique ID type of attribute so that it can be referenced uniquely from other parts of the
document. Additionally, when multiple xform elements are used, each of the form ele-
ments on the document will need an IDREF type of attribute, xform, along side its ref
attribute so that it can be associated with the proper xform element. Listing 11.29 shows
how an xform element would be referenced from a form element in a multiple-form
document.

LISTING 11.29 xform Element Reference from a Form Element

<xform:input ref=”txtEMailAddress” xform=”contactinfo”>
<xform:caption>Email Address</xform:caption>
</xform:input>
<xform:submit xform=”contactinfo”>
<xform:caption>Submit</xform:caption>
</xform:submit>

Building XML-Based Applications

PART II
496

14 0672323419 CH11 3/15/04 11:20 AM Page 496

In this listing, a new attribute, xform, has been added to the XForms input element and
submit element. The xform attribute is an IDREF that references the ID attribute for an
xform element defined elsewhere in the document. This establishes a clear relationship
between the form elements and the xform element in a multiple-form document.

Summary
In this chapter, we covered quite a bit of ground related to formatting and delivering
XML on the Web. We covered items ranging from the history of data formatting, to
cutting-edge XML formatting, to future cutting-edge XML formatting in the following
topics:

• DSSSL was developed in 1996 to provide transformations and layout rendering for
SGML, the wellspring of XML.

• Around the same time, the W3C organization released its recommendation for CSS
in order to provide layout guidelines for HTML. This was done in an attempt to
separate structure from presentation on the Web.

• CSS actually works better with XML to provide presentation. This is because
XML closely resembles the original intent of HTML—it’s a simple, straightfor-
ward delivery mechanism for content on the Internet that includes no special
embedded formatting instructions.

• XHTML 1.0 is the next generation of HTML on the Web. XHTML 1.0 is actually
HTML 4 reformulated as an XML application.

• In order to make XHTML truly extensible, the W3C organization modularized
XHTML. This recommendation splits XHTML into separate abstract modules,
each of which represents some specific functionality in XHTML.

• In order to provide XHTML-compliant content for alternative devices such as
handheld computers, cellular phones, and pagers, XHTML Basic was created.
XHTML Basic is a very simplified, modularized version of XHTML intended to
be easily processed by the limited resources of these alternative devices.

• XForms is the next generation of forms on the Web. Fully XML 1.0 compatible,
XForms will provide a separation of purpose and presentation. Also, XForms offers
instance data tracking, rich data typing, and validation. Although only a working
draft now, XForms when completed will offer a great improvement over current
forms technology.

Formatting XML for the Web

CHAPTER 11
497

11

F
O

R
M

A
TTIN

G
X

M
L FO

R
TH

E
W

EB

14 0672323419 CH11 3/15/04 11:20 AM Page 497

We also reviewed a mini case study in this chapter that demonstrated how XHTML 1.0
and XHTML Basic could be applied. Coca Cabana Technology Shop, a small technology
company, applied XHTML 1.0 to their Web site so that they would be XML compliant
and able to take advantage of future e-commerce advances. Also, they created an
XHTML Basic version of their Web site so that customers using alternative devices
would have easy access to the specials Coca Cabana Technology Shop advertises on the
Internet.

Building XML-Based Applications

PART II
498

14 0672323419 CH11 3/15/04 11:20 AM Page 498

IN THIS CHAPTER

• Vector Graphics to Complement
Bitmap Graphics 500

• SVG: An XML Standard for Vector
Graphics 503

• Creating an Interactive Graphical
Visualization 505

• SVG Structure and Elements 536

• Development Primer 541

• The Future of SVG 542

12
C

H
A

PT
ER

Interactive
Graphical
Visualizations
with SVG

15 0672323419 CH12 3/15/04 11:20 AM Page 499

In the information age, we are growing to depend on being able to quickly and accu-
rately identify relevant information and make good decisions based on it. Nowhere is this
more true than on the Internet, where there is a veritable sea of information we are only
beginning to harness the power of. An often quoted rule of thumb is that making a good
decision involves 90 percent presentation and only 10 percent interpretation. One of the
most effective ways of presenting information in a form that can be rapidly assimilated is
graphically—thus the saying, “A picture is worth a thousand words.” We are all familiar
with the bitmap GIF and JPEG images, which are already pervasive across the Internet.
Although bitmap graphics are powerful and appropriate for certain types of applications
(in particular, photographs), they are not appropriate for many of the uses for which they
are currently employed, due in part to primitive support for graphics in the early stages
of the growth of the Web. Vector graphics, on the other hand, is a powerful, well-estab-
lished type of graphical representation that is complementary to bitmap graphics. This
chapter introduces, discusses, and demonstrates how a new vector graphics language
called Scalable Vector Graphics (SVG) may be used to deliver powerful new interactive
business applications. This chapter shows how SVG, an XML vector graphics standard,
may be used to visualize and make sense of any type of XML content (for example, over
the Web). Beyond simply showing the ability to apply SVG as an alternative graphics
presentation language, this chapter shows how the power of SVG may be rapidly and
easily applied to visualize and make sense of a sea of XML data in a variety of XML
formats.

In this chapter you will learn

• The differences between bitmap and vector graphics and how they complement
each other

• The SVG implementation of vector graphics, including the standard, structure, and
elements

• How to develop interactive graphical applications that visualize XML data using
SVG

• About future SVG developments

Vector Graphics to Complement
Bitmap Graphics
This section presents bitmap and vector graphics and discusses how they complement
each other to deliver comprehensive graphics capabilities across a variety of applications.

Building XML-Based Applications

PART II
500

15 0672323419 CH12 3/15/04 11:20 AM Page 500

Bitmap Graphics
Bitmaps are made up of a rectangular matrix of pixels. These pixels are assigned integer
values that determine their state. The state of a pixel determines its shade of gray or color
in a grayscale or color bitmap image, respectively. For example, Figure 12.1 shows a
simple bitmap with a diagonal line composed of a set of dark pixels.

Interactive Graphical Visualizations with SVG

CHAPTER 12
501

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

FIGURE 12.1
Bitmap graphics
example.

Color bitmap images may be composed of multiple component bitmap images for each
of the primary colors—red, green and blue. Bitmap images are typically represented in
binary format and are not readily editable with text editors. There is typically a high cor-
relation between adjacent pixels in a bitmap image because nearby pixels typically have
similar intensities or colors. Consequently, a large amount of redundancy exists in bitmap
images, which typically makes bitmap images in their raw form inefficient graphical rep-
resentations. Therefore, uncompressed bitmap images can be relatively large in terms of
file sizes. Without degradation, “lossless” compression can typically achieve a compres-
sion factor of approximately two times. On the other hand, with degradation that is
insignificant to a human viewer at a normal viewing distance, “lossy” compression typi-
cally achieves a compression factor of up to 10 times. Bitmap graphics on the Web
include GIF and JPEG images for which there is broad support among Web browsers.
GIF bitmap images support “lossless” compression, whereas JPEG bitmap images sup-
port both “lossless” and “lossy” compression. Photos lend themselves well to representa-
tion in the bitmap graphical format.

Vector Graphics
Aside from photographs, many other applications lend themselves better to an alterna-
tive graphical representation, called vector graphics. In this representation, graphics are

15 0672323419 CH12 3/15/04 11:20 AM Page 501

composed of graphical primitives, including lines and text. For example, Figure 12.2
shows a simple vector graphics diagram with a diagonal line defined by its start and end-
points (sx,sy) and (ex,ey), respectively. This is the vector diagram equivalent of the
bitmap diagram shown previously in Figure 12.1.

Building XML-Based Applications

PART II
502

(sx, sy)

(ex, ey)
FIGURE 12.2
Vector graphics
example.

Vector graphics information is kept symbolic rather than in a flat pixel format. Vector
graphics files are typically represented in a text format, such as XML, and are therefore
easily editable using a simple text editor. Because information is kept symbolic in vector
graphics, these types of graphics may be easily manipulated. This makes them well
suited to interactive applications. Examples of manipulations that are easily achievable
with vector graphics include scaling, rotating, and panning. Furthermore, scaling does
not result in pixelation (or “blockiness”), as is the case with bitmap images, when one
zooms in too far. Instead of representing graphics in a flat, exhaustive format like bitmap
graphics, which without compression has the same size regardless of content, vector
graphics more efficiently represent graphics from graphical elements. Consequently, vec-
tor graphics may be very efficiently represented and are therefore easily stored and
downloaded. In a Web application, this leads to faster client response time, less network
and server load, and less storage requirement on the server side.

It is notoriously difficult to extract meaning from bitmap graphics. Vector graphics, on
the other hand, contain primitive elements, including text from which meaning may eas-
ily be extracted in an automated fashion. This is particularly true of XML-based vector
graphics formats, which not only leverage the power of vector graphics but also the
standard well-formed structure of XML that enables them to be processed efficiently,
robustly, and in an automated fashion. Bitmap graphics are difficult to reduce. In extract-
ing subsections of bitmap graphics, users are typically forced to use simple rectangular

15 0672323419 CH12 3/15/04 11:20 AM Page 502

cropping. On the other hand, you can easily reduce the vector graphic by identifying and
extracting the primitives that constitute the desired subsection of the graphic.

Raster displays, such as those used for televisions and computer monitors, are made up
of a matrix of pixels. Therefore, bitmap images may be readily displayed on them, in
some cases with subsampling or supersampling to change their size. Vector graphics, on
the other hand, don’t define the pixels to be displayed directly but rather how to compute
them from a set of primitive graphics elements, including lines and text, for example.

Complementary Bitmap and Vector Graphics
Photos are best represented in bitmap format, typically with either lossless or lossy com-
pression. Most other types of graphics are best represented as vector graphics. However,
due to the early Web browser support for bitmap formats (in particular, GIF and JPEG
formats), most Web content does not make use of vector graphics, even in applications
traditionally dominated by vector graphics (for example, mapping). A good example of
this are the map Web sites, such as MapBlast (www.mapblast.com) and MapQuest
(www.mapquest.com), that enable users to retrieve and view maps in bitmap format over
the Internet. Due to the use of bitmap graphics, a simple manipulation such as zooming
in on the map results in a new request to the server and a whole new image being down-
loaded. In contrast, the use of vector graphics in such applications would enable such
transformations to be achieved on the client side without further server requests. One of
the main reasons for the use of bitmap graphics in these types of applications is the lack
of vector graphics formats widely supported on the client side, such as by the major Web
browsers. SVG promises to address this issue by delivering the power of vector graphics
in a widely supported standard XML-based format that may be easily applied to power a
variety of interactive graphical applications on the Internet. Although the previous clear
distinction drawn between bitmap and vector graphics is convenient from a conceptual
standpoint, in practice they are not mutually exclusive. For example, vector graphics may
be composed of graphical primitives, including embedded bitmap image subcomponents.
On the Web and across all practical graphical applications, bitmap and vector graphics
will be used together as well as in combination with each other in various hybrid forms.

SVG: An XML Standard for
Vector Graphics
SVG is an XML-based vector graphics language for describing two-dimensional graph-
ics. It builds on well-established vector graphics concepts that are also implemented in
other popular vector formats, including Encapsulated Postscript (EPS) and Windows

Interactive Graphical Visualizations with SVG

CHAPTER 12
503

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 503

Meta File (WMF). However, SVG differs from other vector graphics formats in that it is
solidly based in XML standards. Aside from enabling the use of XML tools and tech-
nologies with SVG, this gives SVG the unique advantage of being particularly well
suited for visualizing XML data. There are three basic types of graphic objects in the
SVG language: vector graphic shapes (including lines, curves and shapes), images, and
text. These objects may be grouped, styled, and transformed. SVG graphics can be
dynamic, such as incorporating animation and interactivity, thus enabling them to change
in response to user input. Being an XML-based language, an SVG vector graphics dia-
gram is generally represented for visualization as a Document Object Model (DOM),
although it may be processed using other methods, such as Simple API for XML (SAX).
This DOM may be manipulated with scripting to change its presentation and make
it interactive. Conversely, SVG elements may trap user input events, including
onmouseover and onclick events, and then make scripting callbacks in response to the
se events. SVG graphics may be embedded in Web pages to create dynamic, interactive
vector graphic visualizations for Web applications, and they may also be printed in
documents formatted with XSL-formatted objects.

The SVG Standard
The SVG standard is overseen by the W3C (www.w3.org). The first draft of the specifica-
tion was released in February 1999. The latest W3C recommendation for the SVG 1.0
specification was released September 2001. The MIME content type for SVG is
image/svg+xml. SVG has wide industry support, both in terms of its development and
the provision of tools, APIs, and content. It is based on well-established, proven vector
graphics techniques but differs from its predecessors in that it is both well formed and
valid XML. The XML DTD may be found at the W3C. A key area in which SVG is
being applied is in Web pages, where it is rendered in a Web browser using a plug-in,
the most popular of which is currently the Adobe SVG Viewer (www.adobe.com).

XML Technologies Related to SVG
Aside from simply providing another vector graphics format, SVG brings significant
power to vector graphics in that it is an XML-based language. This enables users to
leverage other XML standards in delivering and enhancing SVG vector graphics. This
section briefly outlines various key XML technologies and how SVG relates to them:

• Document Type Definition (DTD). SVG is valid XML and therefore has its own
DTD that may be used to validate SVG documents. XML documents may be trans-
formed into SVG for vector graphics visualizations. These XML documents may
be validated with their own DTDs to ensure their validity prior to transformation
into SVG.

Building XML-Based Applications

PART II
504

15 0672323419 CH12 3/15/04 11:20 AM Page 504

• eXtensible Markup Language (XML). XML documents may contain content and
data that may be transformed into SVG vector graphics visualizations.

• eXtensible Stylesheet Language Transformations (XSLT). XSL documents may be
used to transform XML documents containing data into SVG documents that con-
tain vector graphics visualizations of the XML data. This usage pattern is similar to
the use of XSL in adding presentation information to XML for the generation of
XHTML Web pages, except in the case of SVG, where the output of the transfor-
mation is an SVG document rather than an XHTML document.

• eXtensible Hypertext Markup Language (XHTML). SVG documents may be
embedded in XHTML to deliver Web pages with dynamic and interactive vector
graphics.

• Cascading Style Sheets (CSS). SVG vector graphics may incorporate styles, such
as colors and fonts. It is often necessary to have consistent SVG styles across mul-
tiple SVG vector graphics—for example, on a business Web site with a well-
defined look and feel for marketing its brand. To do this in a manageable way, it is
desirable to consolidate style information in a central place referenced by all the
SVG diagrams. CSS may be used to consolidate style information that may then be
referenced from and incorporated into SVG vector graphics diagrams.

• ECMAScript and JavaScript. SVG vector graphics may be dynamic and interactive.
To define dynamic and interactive behavior of SVG diagrams, it is necessary to

provide executable logic. This is conveniently done in the form of scripts
(ECMAScript and JavaScript) that are associated with the SVG vector graphics
diagrams.

• XSL Formatting Objects (XSL-FO). In addition to XSLT, the other component of
XSL is XSL-FO, which adds precise formatting information to XML documents
(for example, for printing). These diagrams may incorporate embedded SVG vector
graphics diagrams.

• Synchronized Multimedia Integration Language (SMIL). Pronounced smile, this
XML language enables simple authoring of interactive audiovisual presentations
that may incorporate SVG vector graphics diagrams.

Creating an Interactive Graphical
Visualization
This section shows you how SVG goes beyond being just another vector graphics lan-
guage in that it provides a powerful tool to automatically visualize any XML data. This
tool provides a powerful new “window” that may be used to reveal the meaning of the

Interactive Graphical Visualizations with SVG

CHAPTER 12
505

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 505

data. Given the structure and meaning of an XML data source, this section shows how
XML tools may be used to automatically generate SVG visualizations that are dynamic,
interactive, and may be embedded in Web pages or formatted as documents for printing.
To illustrate the concepts presented here, we use a loan calculation example. The mean-
ing of this example is most concisely presented in the formula

m = p * (i / (1 – (1 + i)^(-t)))

where

• m is the monthly payment dollar amount on the loan.

• p is the principal dollar amount of the loan.

• i is the monthly interest rate on the loan, which is the same as the annual interest
rate divided by 12.

• t is the term of the loan in months, which is the same as the term of the loan in
years multiplied by 12.

Given p, i and t, we can calculate m and the monthly payments over the term of the loan.
For each monthly payment over the term of the loan, we can compute first the interest
and then the principal components of the payment using the formulas

mi = b * i
mp = m - mi

where

• mi is the interest component of the current monthly payment on the loan.

• b is the previous month’s principal outstanding balance of the loan.

• i is the monthly interest rate, as defined previously.

• mp is the principal component of the current monthly payment on the loan.

Given an XML data set that defines a loan, our task in this example will be to create an
SVG visualization that enables users to easily see the principal balance of the loan at any
point over the loan’s duration. Later in this chapter, you’ll see how interactive behavior
may be added to the SVG visualization that enables the user to determine for any
monthly payment the outstanding principal as well as the interest and principal compo-
nents of the monthly payment. You’ll also see how the SVG visualization may be further
enhanced to give the user the power to experiment with different “what-if” scenarios to
compare loan performances for different loan interest rates.

This example was chosen because it is meaningful and minimal, yet sufficient to illus-
trate the presented concepts. The same principles may be easily applied to generate either
alternative SVG visualizations of the same data or visualizations of completely different

Building XML-Based Applications

PART II
506

15 0672323419 CH12 3/15/04 11:20 AM Page 506

data. Note also that the presentation capabilities of SVG in terms of visual effects go way
beyond what is feasible to cover in this chapter. Near the end of this chapter, some excel-
lent URL references are given that you are encouraged to use as starting points to further
investigate some of the more advanced capabilities of SVG.

After a brief definition of the XML loan data structure, an XML document is presented
for a sample loan. We then prototype an SVG visualization of this data manually and
present the resulting SVG. The style information in this visualization is then abstracted
out into a separate document using CSS. The source XML data and corresponding sim-
plified SVG visualization are then used to define the source and target, respectively, in
order to develop an XSL transformation that may be used subsequently to automatically
visualize any XML loan. You’ll see how to embed the SVG visualization in Web pages
and enhance it with interactive behavior. Finally, you’ll learn how to embed a visualiza-
tion in a XSL-FO document (for example, for printing) .

Defining the Content DTD
The DTD that defines the valid structure of any XML loan document is shown in Listing
12.1. The root of the document is a loan element that has attributes to define the princi-
pal, the term in months, interest rate, and optionally the monthly payment (because this
can be derived from the former three attributes) of the loan. This root element contains a
payment child element for each monthly payment on the loan. Each payment element
contains attributes that define the index of the monthly payment over the lifetime of the
loan, the principal and interest components of the payment, as well as the outstanding
principal on the loan at the point of that payment.

LISTING 12.1 Loan.dtd—Sample Loan DTD

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!ELEMENT loan (payment+)>
<!ATTLIST loan principal CDATA #REQUIRED

termInMonths CDATA #REQUIRED
interestRate CDATA #REQUIRED
monthlyPayment CDATA #IMPLIED >

<!ELEMENT payment EMPTY>
<!ATTLIST payment monthIndex CDATA #REQUIRED

principalPayment CDATA #REQUIRED
interestPayment CDATA #REQUIRED
principalOutstanding CDATA #REQUIRED >

Interactive Graphical Visualizations with SVG

CHAPTER 12
507

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 507

Creating the XML Content
Listing 12.2 shows a sample XML loan document that is valid according to the DTD in
Listing 12.1. Because we created this sample XML loan document manually, we inten-
tionally simplified our task by making the term of the loan short—three months. Given
the principal, the term in months, and interest rate key loan criteria, we used the formulas
presented previously to compute the derived values in the document, including the
monthly payment amount and payment data points over the lifetime of the loan.

LISTING 12.2 3MonthLoan.xml--Sample Loan XML (Three Month)

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE loan SYSTEM “Loan.dtd”>

<loan principal=”10000.00” termInMonths=”3” interestRate=”30”
➥ monthlyPayment=”3501.37”>
<payment monthIndex=”0” principalOutstanding=”10000.00”

➥ principalPayment=”0.00” interestPayment=”0.00”/>
<payment monthIndex=”1” principalOutstanding=”6748.63”

➥ principalPayment=”3251.37” interestPayment=”250.00”/>
<payment monthIndex=”2” principalOutstanding=”3415.97”

➥ principalPayment=”3332.66” interestPayment=”168.72”/>
<payment monthIndex=”3” principalOutstanding=”0.00”

➥ principalPayment=”3415.97” interestPayment=”85.40”/>
</loan>

Creating an SVG Content Presentation
Prototype
Given the sample XML loan document in Listing 12.2, the next step is to create a sample
SVG visualization of this loan. Although given a thorough knowledge of SVG it is possi-
ble to create such a visualization manually, in practice the fastest and easiest way to cre-
ate such a visualization is to use a WYSIWYG (What You See Is What You Get) SVG
editor, such as JASC WebDraw (www.jasc.com). The XML document created using such
a tool may then be fine-tuned by hand to get the exact desired result. The coordinate sys-
tem used by SVG is shown in Figure 12.3. Note, in particular, the orientation of the y
axis so that a y coordinate of zero is at the “top” of the coordinate system and increases
downwards. The default units of this coordinate system, when no units are specified, are
pixels (px). SVG does, however, enable coordinates to be explicitly specified in a variety
of other units, including inches (in), millimeters (mm), and centimeters (cm). The unit of
a given measurement or coordinate can be specified explicitly by appending the associ-
ated two-letter suffix to the number.

Building XML-Based Applications

PART II
508

15 0672323419 CH12 3/15/04 11:20 AM Page 508

Listing 12.3 shows the prototype SVG document created for the XML loan document
shown in Listing 12.2 using JASC WebDraw editor (www.jasc.com). You are encouraged
to download and install WebDraw and then load the SVG in Listing 12.3 to get a hands-
on feeling for editing SVG.

LISTING 12.3 3MonthLoan.svg—Sample Loan SVG

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
➥ ”http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”485” height=”290”>
<rect x=”0” y=”0” width=”485” height=”290” stroke=”rgb(0,0,0)”

➥ stroke-width=”1” fill=”none”/>

<rect x=”68.5” y=”11.7” width=”384” height=”224” stroke=”rgb(0,0,0)”
➥ stroke-width=”3” fill=”none”/>

<line x1=”67” y1=”58.8” x2=”451” y2=”58.8” fill=”none” stroke=”rgb(0,0,0)”
➥ stroke-width=”1” stroke-opacity=”0.25”/>
<line x1=”67” y1=”103.6” x2=”451” y2=”103.6” fill=”none” stroke=”rgb(0,0,0)”

➥ stroke-width=”1” stroke-opacity=”0.25”/>
<line x1=”67” y1=”148.4” x2=”451” y2=”148.4” fill=”none” stroke=”rgb(0,0,0)”

➥ stroke-width=”1” stroke-opacity=”0.25”/>
<line x1=”67” y1=”193.2” x2=”451” y2=”193.2” fill=”none” stroke=”rgb(0,0,0)”

➥ stroke-width=”1” stroke-opacity=”0.25”/>
<line x1=”143.8” y1=”14” x2=”143.8” y2=”238” fill=”none” stroke=”rgb(0,0,0)”

➥ stroke-width=”1” stroke-opacity=”0.25”/>

Interactive Graphical Visualizations with SVG

CHAPTER 12
509

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

(0, 0) (w, 0)

(0, h) (w, h)

width (w)

he
ig

ht
 (

h)
SVG
View
Area

FIGURE 12.3
SVG coordinate
system.

15 0672323419 CH12 3/15/04 11:20 AM Page 509

LISTING 12.3 continued

<line x1=”220.6” y1=”14” x2=”220.6” y2=”238” fill=”none” stroke=”rgb(0,0,0)”
➥ stroke-width=”1” stroke-opacity=”0.25”/>
<line x1=”297.4” y1=”14” x2=”297.4” y2=”238” fill=”none” stroke=”rgb(0,0,0)”

➥ stroke-width=”1” stroke-opacity=”0.25”/>
<line x1=”374.2” y1=”14” x2=”374.2” y2=”238” fill=”none” stroke=”rgb(0,0,0)”

➥ stroke-width=”1” stroke-opacity=”0.25”/>

<text x=”10px” y=”155px” transform=”rotate(-90) translate(-220,-115)”
➥ fill=”rgb(0,0,0)” font-family=”Arial” font-size=”24”>Principal Dollars</text>
<text x=”227.08px” y=”283.289px” fill=”rgb(0,0,0)” font-size=”24”

➥ font-family=”Arial”>Month</text>
<text x=”67px” y=”258.072px” fill=”rgb(0,0,0)” font-family=”Arial”

➥ font-size=”12”>0</text>
<text x=”55px” y=”238px” fill=”rgb(0,0,0)” text-anchor=”end”

➥ font-family=”Arial” font-size=”12”>0.00</text>
<text x=”451px” y=”258.072px” fill=”rgb(0,0,0)” font-family=”Arial”

➥ font-size=”12”>3</text>
<text x=”55px” y=”14px” fill=”rgb(0,0,0)” text-anchor=”end”

➥ font-family=”Arial” font-size=”12”>10000.00</text>

<polyline fill=”none” stroke=”rgb(255,0,0)” stroke-width=”2”
➥ points=”68.5,11.7 196.5,85.87 324.5,160.53 452.5,235.7”/>

<circle cx=”68.5” cy=”11.7” r=”4” fill=”rgb(255,0,0)” stroke=”rgb(0,0,0)”
➥ stroke-width=”1”/>
<circle cx=”196.5” cy=”85.87” r=”4” fill=”rgb(255,0,0)” stroke=”rgb(0,0,0)”

➥ stroke-width=”1”/>
<circle cx=”324.5” cy=”160.53” r=”4” fill=”rgb(255,0,0)” stroke=”rgb(0,0,0)”

➥ stroke-width=”1”/>
<circle cx=”452.5” cy=”235.7” r=”4” fill=”rgb(255,0,0)” stroke=”rgb(0,0,0)”

➥ stroke-width=”1”/>
</svg>

Figure 12.4 shows a screenshot of the SVG loan prototype diagram that appears in
Listing 12.3. Key aspects of this SVG prototype are discussed subsequently.

The svg root element shown below contains the entire vector graphics diagram and
defines its width and height in pixels.

<svg width=”485” height=”290”>

The first child rect element shown below defines the bounding box or border of the
SVG diagram. This box is defined by its top-left corner x and y coordinates and its width
and height, all in pixels. The stroke of the rectangle indicates the color of the rectangle
outline, which in this case is black (red=0, blue=0, green=0), whereas stroke-width
indicates its line width, again in pixels. Because this is an outline of the diagram, fill is
set to none, making the rectangle transparent.

Building XML-Based Applications

PART II
510

15 0672323419 CH12 3/15/04 11:20 AM Page 510

<rect x=”0” y=”0” width=”485” height=”290” stroke=”rgb(0,0,0)”
➥ stroke-width=”1” fill=”none”/>

The second child rect element listed below defines a similar transparent rectangle with a
black border that’s 3 pixels in width, only this time the rectangle is serving as the bound-
ing box of the plot within the SVG view area, rather than the border for the SVG view
area, as before.

<rect x=”68.5” y=”11.7” width=”384” height=”224” stroke=”rgb(0,0,0)”
➥ stroke-width=”3” fill=”none”/>

The plot has a gray grid of lines as a background. The following line child element
defines one of those lines. The other lines of the matrix are defined similarly. Note that
the line is defined by its start coordinates, x1 and y1, together with its end coordinates,
x2 and y2. The fill, stroke, and stroke-width attributes define the style of the line in
the same way as for the rectangles defined previously. The stroke-opacity attribute
defines the opacity of the line, which is a number between 0.0 for invisible and 1.0 for
opaque (the default). Because we want the lines to be faded in the background of the plot
in this case, we set the stroke-opacity to 0.25.

<line x1=”67” y1=”58.8” x2=”451” y2=”58.8” fill=”none” stroke=”rgb(0,0,0)”
➥ stroke-width=”1” stroke-opacity=”0.25”/>

The text labels for the axes’ titles and values are specified with the text child elements,
the first of which is shown next. Others are defined similarly. Each text element has a
set of attributes that determines the positioning and style of the label, whereas its text
child element specifies the actual text for the label. Note that the text positioning is spec-
ified using the bottom-left x and y coordinates of the label. The transform element is
optionally specified to change the appearance of the text in some way. In this case, the
transform element serves to rotate the text label 90 degrees counterclockwise so that it

Interactive Graphical Visualizations with SVG

CHAPTER 12
511

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

FIGURE 12.4
Sample loan SVG
view.

15 0672323419 CH12 3/15/04 11:20 AM Page 511

reads upwards for the vertical axis of the plot and then translate the rotated text to move
it into position near the vertical axis of the plot.

<text x=”10px” y=”155px” transform=”rotate(-90) translate(-220,-115)”
➥ fill=”rgb(0,0,0)” font-family=”Arial” font-size=”24”>Principal Dollars</text>

The polyline child element shown below specifies a multisegment line in the vector dia-
gram. The endpoints of the line segments making up this polyline child element are
specified using the points attribute of this element. These points are x, y coordinates in
sequence, moving along the polyline segment from start to end. Note that this polyline
child element could also be represented as a set of line elements; however, this would
be much more verbose and slower to render for complex datasets.

<polyline fill=”none” stroke=”rgb(255,0,0)” stroke-width=”2”
➥ points=”68.5,11.7 196.5,85.87 324.5,160.53 452.5,235.7”/>

The data points of the plot that appear along the polyline are represented using circle
child elements. Each circle is specified by its center coordinates, cx and cy, together with
its radius, r. The fill, stroke, and stroke-width attributes define the style of the circle
in the same manner as for the rectangles discussed previously. Note that the circles in
this case are opaque and red in color. The first data point circle child element is shown
here (others are defined similarly) :

<circle cx=”68.5” cy=”11.7” r=”4” fill=”rgb(255,0,0)” stroke=”rgb(0,0,0)”
➥ stroke-width=”1”/>

SVG with Style Using CSS
From Listing 12.3, you can see that different vector graphics elements within the SVG
document share the same style attributes. This includes, for example, line elements for
the plot grid, text elements to label the plot axes, and circle elements for the plot data
points. Although it is valid to produce an SVG document as in Listing 12.3, in practice it
can lead to increased costs and errors due to the fact that if someone needs to make a
change to a style, multiple elements need to be edited. For example, if someone wanted
to change the style of the circle elements used for the data points in the plot, he would
have to edit each circle element in the SVG document. This problem is compounded by
the fact that content repositories, such as Web sites, often have a consistent style applied
across them. This means that if someone wanted to make a change to the style of SVG
diagrams embedded in the content, he would not only have to visit multiple elements
within each document, as outlined earlier, but also multiple documents across the reposi-
tory. Fortunately, CSS provides a way to centralize this style information so that it can be
shared both across elements within an SVG document as well as across different SVG
documents. Using CSS, it is possible to make global style changes across documents in a

Building XML-Based Applications

PART II
512

15 0672323419 CH12 3/15/04 11:20 AM Page 512

repository by simply editing one attribute value in a central CSS document. This central
CSS document is referenced by each SVG document and is used by the SVG viewer at
runtime to render the SVG document with the styles in the CSS document. Listing 12.4
shows the sample SVG loan document from Listing 12.3, only this time with CSS
applied.

LISTING 12.4 3MonthLoan_WithCss.svg—Sample Loan SVG with CSS

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
➥ ”http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<?xml-stylesheet href=”Loan.css” type=”text/css”?>
<svg width=”485” height=”290”>
<rect x=”0” y=”0” width=”485” height=”290” class=”border”/>

<rect x=”68.5” y=”11.7” width=”384” height=”224” class=”plotbox”/>

<line x1=”67” y1=”58.8” x2=”451” y2=”58.8” class=”axisvalue”/>
<line x1=”67” y1=”103.6” x2=”451” y2=”103.6” class=”axisvalue”/>
<line x1=”67” y1=”148.4” x2=”451” y2=”148.4” class=”axisvalue”/>
<line x1=”67” y1=”193.2” x2=”451” y2=”193.2” class=”axisvalue”/>
<line x1=”143.8” y1=”14” x2=”143.8” y2=”238” class=”axisvalue”/>
<line x1=”220.6” y1=”14” x2=”220.6” y2=”238” class=”axisvalue”/>
<line x1=”297.4” y1=”14” x2=”297.4” y2=”238” class=”axisvalue”/>
<line x1=”374.2” y1=”14” x2=”374.2” y2=”238” class=”axisvalue”/>

<text x=”10px” y=”155px” transform=”rotate(-90) translate(-220,-115)”
➥ class=”axis”>Principal Dollars</text>
<text x=”227.08px” y=”283.289px” class=”axis”>Month</text>
<text x=”67px” y=”258.072px” class=”axisvalue”>0</text>
<text x=”55px” y=”238px” class=”axisvalue” text-anchor=”end”>0.00</text>
<text x=”451px” y=”258.072px” class=”axisvalue”>3</text>
<text x=”55px” y=”14px” class=”axisvalue” text-anchor=”end”>10000.00</text>

<polyline class=”data” points=”68.5,11.7 196.5,85.87 324.5,160.53
➥ 452.5,235.7”/>

<circle cx=”68.5” cy=”11.7” r=”4” class=”datapoint”/>
<circle cx=”196.5” cy=”85.87” r=”4” class=”datapoint”/>
<circle cx=”324.5” cy=”160.53” r=”4” class=”datapoint”/>
<circle cx=”452.5” cy=”235.7” r=”4” class=”datapoint”/>

</svg>

The following line in the SVG document in Listing 12.4 references the CSS style sheet
on which it depends:

<?xml-stylesheet href=”Loan.css” type=”text/css”?>

Interactive Graphical Visualizations with SVG

CHAPTER 12
513

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 513

Listing 12.5 shows the CSS document to which the SVG document in Listing 12.4
refers. This CSS document contains style information used to render the SVG docu-
ment in Listing 12.4. At the top of the SVG document in Listing 12.4, the following
line appears:

<?xml-stylesheet href=”Loan.css” type=”text/css”?>

This line references the CSS document in Listing 12.5 and is used by the SVG viewer at
runtime to locate the CSS document with the required style information.

Various elements throughout the SVG document in Listing 12.4 make use of the style
information in the CSS style sheet in Listing 12.5 using the class attribute, for example,
as shown for the first SVG rect element:

<rect x=”0” y=”0” width=”485” height=”290” class=”border”/>

LISTING 12.5 Loan.css—Sample Loan CSS

rect.border
{
stroke:rgb(0,0,0);
stroke-width:1;
fill:none;
}

rect.plotbox
{
stroke:rgb(0,0,0);
stroke-width:3;
fill:none;
}

line.axisvalue
{
fill:none;
stroke:rgb(0,0,0);
stroke-width:1;
stroke-opacity:0.25;
}

text.axis
{
font-size:24;
font-family:Arial;
fill:rgb(0,0,0);
}

text.axisvalue
{

Building XML-Based Applications

PART II
514

15 0672323419 CH12 3/15/04 11:20 AM Page 514

LISTING 12.5 continued

font-size:12;
font-family:Arial;
fill:rgb(0,0,0);
}

circle.datapoint
{
fill:rgb(255,0,0);
stroke:rgb(0,0,0);
stroke-width:1;
}

circle.analysisDatapoint
{
fill:rgb(255,255,0);
stroke:rgb(0,0,0);
stroke-width:1;
}

polyline.data
{
fill:none;
stroke:rgb(255,0,0);
stroke-width:2;
}

polyline.analysisData
{
fill:none;
stroke:rgb(255,255,0);
stroke-width:2;
}

Elements in the SVG document in Listing 12.4 refer to style information in Listing 12.5.
For example, circle elements for plot data points in Listing 12.4 have class attributes
with values that are used to determine the specific style of information to use from the
CSS document in Listing 12.5. In the case of the circle elements, the class attribute
has the value datapoint. This value is used together with the type of the element (in this
case, circle) to create the key circle.datapoint, which is then used to locate the
required style information in the CSS document in Listing 12.5, as shown here:

circle.datapoint
{
fill:rgb(255,0,0);
stroke:rgb(0,0,0);
stroke-width:1;
}

Interactive Graphical Visualizations with SVG

CHAPTER 12
515

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 515

Notice the similarity of this information to the style information embedded in each of the
circle elements in the SVG document in Listing 12.3, as shown for the following cir-
cle elements in bold:

<circle cx=”68.5” cy=”11.7” r=”4” fill=”rgb(255,0,0)” stroke=”rgb(0,0,0)”
➥ stroke-width=”1”/>

For more information on CSS in general, see Chapter 11 “Formatting XML for the Web.”

Defining the XSL to Transform XML Content to
SVG Presentation
One of the advantages SVG has over other vector graphics formats is that it is both a
well-formed and valid XML format. This enables developers to leverage many other
powerful XML technologies to automatically create SVG visualizations. XSL is one such
technology that enables the creation of style sheets that, together with an XSLT engine,
automatically transform XML data into SVG presentations. Listing 12.6 shows an XSL
style sheet that transforms any XML loan document into an SVG loan visualization in
the format shown in Listing 12.4. Furthermore, the SVG result of this transformation
also uses the CSS document shown in Listing 12.5, so not only are we able to generate
SVG visualizations automatically for all loans, but we can do so with consistent and eas-
ily maintainable styles. Following Listing 12.6, some of the XSL aspects specifically
related to SVG are discussed. For more information on XSL, see Chapter 9,
“Transforming XML.”

Building XML-Based Applications

PART II
516

Tip

Before attempting to define XSL style sheets to transform XML data into SVG
presentations, it is a good idea that you first create some sample XML data and
a corresponding SVG presentation. Together, these serve as a source and target
for which the mapping may easily be defined. This is the reason the prototype
XML loan document in Listing 12.2 and the corresponding SVG visualization in
Listing 12.4 were created before attempting to define the XSL style sheet in
Listing 12.6. Although given the XML loan data structure, it is theoretically pos-
sible to define an XSL style sheet without first defining the prototype target
SVG visualization; however, in practice, this approach generally proves too diffi-
cult and error prone.

15 0672323419 CH12 3/15/04 11:20 AM Page 516

LISTING 12.6 Loan.xsl—Sample Loan XSL

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
➥ xmlns:xlink=”http://www.w3.org/1999/xlink”>

<xsl:output method=”xml” version=”1.0” encoding=”iso-8859-1” indent=”yes”
➥ doctype-public=”-//W3C//DTD SVG 1.0//EN” doctype-system=
➥ ”http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”/>

<xsl:param name=”plotTopLeftX”>68.5</xsl:param>
<xsl:param name=”plotTopLeftY”>11.7</xsl:param>
<xsl:param name=”plotWidth”>384</xsl:param>
<xsl:param name=”plotHeight”>224</xsl:param>

<xsl:template match=”/loan”>

<xsl:processing-instruction name=”xml-stylesheet”>href=”Loan.css”
➥ type=”text/css”</xsl:processing-instruction>

<svg width=”485” height=”290”>
<rect x=”0” y=”0” width=”485” height=”290” class=”border”/>

<rect x=”68.5” y=”11.7” width=”384” height=”224” class=”plotbox”/>

<line x1=”67” y1=”58.8” x2=”451” y2=”58.8” class=”axisvalue”/>
<line x1=”67” y1=”103.6” x2=”451” y2=”103.6” class=”axisvalue”/>
<line x1=”67” y1=”148.4” x2=”451” y2=”148.4” class=”axisvalue”/>
<line x1=”67” y1=”193.2” x2=”451” y2=”193.2” class=”axisvalue”/>
<line x1=”143.8” y1=”14” x2=”143.8” y2=”238” class=”axisvalue”/>
<line x1=”220.6” y1=”14” x2=”220.6” y2=”238” class=”axisvalue”/>
<line x1=”297.4” y1=”14” x2=”297.4” y2=”238” class=”axisvalue”/>
<line x1=”374.2” y1=”14” x2=”374.2” y2=”238” class=”axisvalue”/>

<text x=”10px” y=”155px” transform=”rotate(-90) translate(-220,-115)”
➥ class=”axis”>Principal Dollars</text>

<text x=”227.08px” y=”283.289px” class=”axis”>Month</text>
<text x=”67px” y=”258.072px” class=”axisvalue”>0</text>
<text x=”55px” y=”238px” text-anchor=”end” class=”axisvalue”>0.00</text>
<text x=”451px” y=”258.072px” class=”axisvalue”><xsl:value-of

➥ select=”@termInMonths”/></text>
<text x=”55px” y=”14px” text-anchor=”end” class=”axisvalue”><xsl:value-of

➥ select=”@principal”/></text>

<polyline class=”data”>
<xsl:attribute name=”points”>
<xsl:for-each select=”payment”>
<xsl:variable name=”paymentX”><xsl:value-of select=”(@monthIndex *

➥ $plotWidth div ../@termInMonths) + $plotTopLeftX”/></xsl:variable>

Interactive Graphical Visualizations with SVG

CHAPTER 12
517

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 517

LISTING 12.6 continued

<xsl:variable name=”paymentY”><xsl:value-of select=”$plotHeight * (1 -
➥ (@principalOutstanding div ../@principal)) + $plotTopLeftY”/>

➥ </xsl:variable>

<xsl:value-of select=”$paymentX”/>,<xsl:value-of
➥ select=”$paymentY”/><xsl:text> </xsl:text>

</xsl:for-each>
</xsl:attribute>

</polyline>

<xsl:for-each select=”payment”>
<xsl:variable name=”paymentX”><xsl:value-of select=”(@monthIndex *

➥ $plotWidth div ../@termInMonths) + $plotTopLeftX”/></xsl:variable>
<xsl:variable name=”paymentY”><xsl:value-of select=”$plotHeight * (1 -

➥ (@principalOutstanding div ../@principal)) + $plotTopLeftY”/>
➥ </xsl:variable>

<circle r=”4” class=”datapoint”>
<xsl:attribute name=”cx”><xsl:value-of select=”$paymentX”/>

➥ </xsl:attribute>
<xsl:attribute name=”cy”><xsl:value-of select=”$paymentY”/>

➥ </xsl:attribute>
</circle>

</xsl:for-each>
</svg>

</xsl:template>
</xsl:stylesheet>

To simplify the maintenance of the XSL, it is a good idea to put any constants at the top
of the document in the form of xsl:param variables, as shown here:

<xsl:param name=”plotTopLeftX”>68.5</xsl:param>

These constants are referred to from xsl:value-of elements elsewhere in the XSL. For
example, the following code shows how the value of the parameter named plotTopLeftX
is used in a formula to compute the value of a new XSL variable named paymentX:

<xsl:variable name=”paymentX”><xsl:value-of select=”(@monthIndex *
➥ $plotWidth div ../@termInMonths) + $plotTopLeftX”/></xsl:variable>

The CSS document in Listing 12.5 is referenced from the SVG result of the transforma-
tion using the following xsl:processing-instruction:

<xsl:processing-instruction name=”xml-stylesheet”>href=”Loan.css”
➥ type=”text/css”</xsl:processing-instruction>

Building XML-Based Applications

PART II
518

15 0672323419 CH12 3/15/04 11:20 AM Page 518

For each payment in the XML loan document being transformed with the XSL in
Listing 12.6, the following code adds a point to the polyline element used to visualize
the loan plot:

<polyline class=”data”>
<xsl:attribute name=”points”>
<xsl:for-each select=”payment”>
<xsl:variable name=”paymentX”><xsl:value-of select=”(@monthIndex *

➥ $plotWidth div ../@termInMonths) + $plotTopLeftX”/></xsl:variable>
<xsl:variable name=”paymentY”><xsl:value-of select=”$plotHeight * (1 -

➥ (@principalOutstanding div ../@principal)) + $plotTopLeftY”/>
➥ </xsl:variable>

<xsl:value-of select=”$paymentX”/>,<xsl:value-of
➥ select=”$paymentY”/><xsl:text> </xsl:text>

</xsl:for-each>
</xsl:attribute>

</polyline>

The formulas in this XSL use the location and dimensions of the loan plot, as defined in
the xsl:param elements earlier in the XSL document, together with a knowledge of the
SVG coordinate system shown in Figure 12.3 to determine the x and y coordinates of
each payment point and to store them in the variables paymentX and paymentY. The val-
ues of these variables are then output to the value of the points attribute of the SVG
polyline element.

Similarly, the following XSL code creates the SVG circle elements that represent each
of the payment data points in the loan plot:

<xsl:for-each select=”payment”>
<xsl:variable name=”paymentX”><xsl:value-of select=”(@monthIndex *

➥ $plotWidth div ../@termInMonths) + $plotTopLeftX”/></xsl:variable>
<xsl:variable name=”paymentY”><xsl:value-of select=”$plotHeight * (1 -

➥ (@principalOutstanding div ../@principal)) + $plotTopLeftY”/>
➥ </xsl:variable>

<circle r=”4” class=”datapoint”>
<xsl:attribute name=”cx”><xsl:value-of select=”$paymentX”/>

➥ </xsl:attribute>
<xsl:attribute name=”cy”><xsl:value-of select=”$paymentY”/>

➥ </xsl:attribute>
</circle>

</xsl:for-each>

Powering Web Pages with SVG
This section discusses how to embed SVG graphics in Web pages and then how to make
these graphics interactive in order to deliver interactive graphical visualizations over the
Web.

Interactive Graphical Visualizations with SVG

CHAPTER 12
519

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 519

Embedding SVG Graphics in Web Pages
Listing 12.7 shows an XHTML Web page with an embedded SVG diagram. To view
SVG diagrams, including the one in this example, in your Web browser you must first
install a plug-in capable of rendering SVG—for example, the SVG Viewer from Adobe
at www.adobe.com/svg/viewer/install.

LISTING 12.7 3MonthLoan.htm—Sample Loan XHTML

<html>
<head>
<title>Loan Visualization</title>

</head>
<body>
<embed src=”3MonthLoan_WithCss.svg” width=”485” height=”290”

➥ type=”image/svg-xml” border=”1”
➥ pluginspage=”http://www.adobe.com/svg/viewer/install/main.html” />
</body>

</html>

The key element in this Web page is the embed element, shown here:

<embed src=”3MonthLoan_WithCss.svg” width=”485” height=”290”
➥ type=”image/svg-xml” border=”1”
➥ pluginspage=”http://www.adobe.com/svg/viewer/install/main.html” />

The value of the src attribute of the embed element provides the URL for the SVG docu-
ment to embed in the Web page. In this case, the SVG document is in the same directory
on the Web content tree as the Web page in which it is embedded. The width and height
attributes, on the other hand, define the dimensions of the SVG embedded diagram. The
type attribute gives the MIME content type of the embedded SVG diagram (in this case,
image/svg-xml). The SVG diagram has a border of 1 pixel, as defined by the border
element. In the event that the Web browser viewing the Web page does not have the
capability to view documents of type image/svg-xml, the pluginspage attribute defines
the Web page on the Internet to which the Web browser user may go to get an appropri-
ate plug-in to view the embedded SVG document. In this case, the user is directed to the
Adobe Web site (www.adobe.com) to get the Adobe SVG Viewer Web browser plug-in.

Adding Interactive Behavior
Another key advantage of SVG over other vector graphics formats is the ability to add
interactive behavior to SVG diagrams. This section looks at a small cross section of
types of behavior that may be added to an SVG diagram to make it interactive, including
those listed here:

Building XML-Based Applications

PART II
520

15 0672323419 CH12 3/15/04 11:20 AM Page 520

• Scaling

• Panning

• Highlighting

• Descriptions

• Analysis

For each type of behavior, code snippets are given in this discussion. These snippets are
additions to the various documents already presented in this section in order to give them
the desired interactive behavior. The complete resulting documents created by adding all
the interactive behavior discussed here may be downloaded from the Web site resource
center for this book. Refer to these files to see how the code snippets in this section fit
into the overall loan application. You may also load the file named
120MonthLoan_Advanced.htm in your Web browser to try out the interactive behavior.
The complete documents with all the interactive behavior discussed in this section
include the following:

• 120MonthLoan.xml. An XML loan document for a 120-month loan

• Loan_Advanced.xsl. An XSL style sheet used to transform an XML loan docu-
ment to get an SVG visualization

• 120MonthLoan_Advanced.svg. An SVG visualization of a 120-month loan

• 120MonthLoan_Advanced.htm. An XHTML document with embedded SVG visual-
ization of a 120-month loan suitable for delivery over the Web

• 120MonthLoan_Advanced.xsl. An XSL-FO document with an embedded SVG
visualization of a 120-month loan suitable for printing

Interactive Graphical Visualizations with SVG

CHAPTER 12
521

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

Note

The advanced version of the XHTML contains elements that depend on the
source XML. Therefore, it would be created dynamically from an XSL transfor-
mation, in the same manner as the creation of the SVG. In other words, viewing
this XHTML Web page would result in two XSL transformations—the first for
the XHTML document and the second for the SVG embedded within it. The XSL
used to transform the source XML into the XHTML is a straightforward applica-
tion of the same concepts applied in the transformation to get the SVG, as dis-
cussed in this chapter.

15 0672323419 CH12 3/15/04 11:20 AM Page 521

Scaling
Scaling changes the zoom factor of the diagram. This enables the user to either zoom in
for a magnified look at a subset of the diagram or to zoom out for an overview of the
entire diagram. It is useful to enable the user to progressively change the zoom factor by
a fixed delta. To implement this, we first add a form with the following input fields to the
XHTML document in Listing 12.7:

<input type=”button” value=” - “ onclick=”scale(scaleFactor -
➥ scaleFactorDelta)” />

<input type=”button” value=” + “ onclick=”scale(scaleFactor +
➥ scaleFactorDelta)” />

It is also useful to enable the user to change the zoom factor directly to an explicitly
specified value, as shown here:

<input name=”scaleFactorTextField” type=”text” value=”1.0” size=”3” />
<input type=”button” value=”Ok” onclick=”scale(
➥ this.form.scaleFactorTextField.value)” />

These input fields catch the onclick event and make a JavaScript callback to the scale
function in response. The value passed to the scale function is the new zoom factor,
which is computed from two JavaScript variables also added to the same document and
shown here:

var scaleFactor = 1.0;
var scaleFactorDelta = 0.1;

The scaleFactor variable holds the value of the current scale factor, whereas the
scaleFactorDelta variable is the progressive change in the scale factor when the user is
zooming in or out.

The scale function implements the interactive scaling behavior, as shown here:

function scale(newScaleFactor) {
scaleFactor = newScaleFactor;
scaleFactorTextField.value = newScaleFactor;
updateSvgLoanPlot();

}

This function updates the current scale factor and reflects that value in the text field in
the XHTML GUI. It then updates the SVG diagram with a call to the following function:

function updateSvgLoanPlot() {
svgLoanPlot.setAttribute(“transform”, “scale(“ + scaleFactor + “)

➥ translate(“ + plotX + “,” + plotY + “)”);
}

Building XML-Based Applications

PART II
522

15 0672323419 CH12 3/15/04 11:20 AM Page 522

This function sets an attribute named transform on an element in the SVG DOM to a
value that contains a scale transformation with the new scale factor. This element corre-
sponds to the single child “group” element, named g, in the SVG DOM, as shown here:

<svg height=”290” width=”485” xmlns:xlink=”http://www.w3.org/1999/xlink”>
<g transform=”scale(1.0) translate(0,0)” id=”LoanPlot”>

...
</g>

</svg>

The g element groups all the vector graphics elements of the SVG loan plot. Therefore,
applying a scale transformation to this element causes the scale factor to be applied to
every element in the SVG diagram. The JavaScript variable svgLoanPlot, which corre-
sponds to the SVG g element discussed previously, is initialized when the Web page is
loaded, as shown here:

svgDoc = document.embeds[0].getSVGDocument();
svgLoanPlot = svgDoc.getElementById(“LoanPlot”);

Note that the ID of the g element is LoanPlot. Also, note how this is used to locate the
element in the SVG DOM. This technique may be used to locate other elements in the
DOM with different IDs as well. Figure 12.5 shows a screenshot of the SVG diagram
with a scale factor of 0.25 applied, causing a reduction in the size of the diagram to one
quarter its default size. It is also possible to scale subsections of the SVG diagram
through other vector graphic element groupings. Note that the default scale factor is 1.0,
corresponding to no scaling. This type of interactive behavior is particularly important in
SVG applications in the field of mapping. In these types of applications, the amount of
detail visible in the diagram is changed according to the level of magnification of the
diagram. For example, at the highest zoom factor, street names may not be shown
because they would be too small to be legible anyway and would obscure other higher-
level detail. For details of how to toggle the visibility of elements, see the upcoming sub-
section titled “Highlighting.” Note that other transformations are possible, including
rotations and translations, as discussed in the following subsection. For a complete list of
possible transformations, see the SVG specification at www.w3.org.

Panning
Panning involves the movement of all or part of the SVG diagram up, down, left, or right
(or some combination thereof). This type of interactive behavior is particularly useful in
combination with scaling, discussed previously. For example, on an SVG diagram where
the user has zoomed in for a detailed look at part of the diagram, panning may be used to
“move around” in order to look in detail at different parts of the SVG diagram. The fol-
lowing button controls may be added to the XHTML shown in Listing 12.7 in order to
enable the user to perform the panning:

Interactive Graphical Visualizations with SVG

CHAPTER 12
523

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 523

<input type=”button” value=” Up “ onclick=”pan(plotX, plotY - panDelta)” />
<input type=”button” value=” Left “ onclick=”pan(plotX - panDelta, plotY)” />
<input type=”button” value=” Zero “ onclick=”pan(0, 0)” />
<input type=”button” value=”Right” onclick=”pan(plotX + panDelta, plotY)” />
<input type=”button” value=”Down” onclick=”pan(plotX, plotY + panDelta)” />

Building XML-Based Applications

PART II
524

FIGURE 12.5
Scaled loan
visualization.

When the user clicks one of these buttons, the onclick event is caught and new x
and y coordinates for the translation are computed from the three JavaScript variables
shown here:

var plotX = 0;
var plotY = 0;
var panDelta = 25;

In this case, plotX and plotY values of 0 indicate no translation, and the SVG diagram is
in its original position, where it first renders. The variable panDelta is the change in pix-
els applied to either the plotX or the plotY coordinate for each step that the user pans.
Once the new values have been computed, a call is made to the JavaScript pan function,
shown here, to update the SVG diagram:

function pan(newPlotX, newPlotY) {
plotX = newPlotX;
plotY = newPlotY;
updateSvgLoanPlot();

}

Once the plotX and plotY coordinates have been updated, a call is made to the
updateSvgLoanPlot function, shown previously in the discussion on scaling behavior.
This changes the transformation applied to the SVG diagram to include the desired pan-
ning. Figure 12.6 shows the SVG loan visualization with a scale factor of 1.75 applied,
together with some panning, to show the first few data points of the plot.

15 0672323419 CH12 3/15/04 11:20 AM Page 524

Highlighting
In this discussion, highlighting behavior means toggling the visibility of SVG vector
graphics elements. In this example, we show how the circles representing the data points
in the plot may be toggled on or off so that they are either visible or invisible. A check-
box may be added to the XHTML in Listing 12.7, as shown here, to enable users to tog-
gle data points on or off:

<input type=”checkbox” name=”showDataPoints” value=”on” checked=”true”
➥ onclick=”setDataPointVisibility(this.form.showDataPoints.checked)” />

When the user either checks or unchecks this box, the onclick event is caught and the
JavaScript function setDataPointVisibility is invoked:

function setDataPointVisibility(showDataPoints) {
var visibility = “hidden”;
if(showDataPoints) {
visibility = “visible”;

}

for(var i = 0; i <= loanTermInMonths; ++i) {
svgPaymentDataPoint = svgDoc.getElementById(“Month” + i);
svgPaymentDataPoint.setAttribute(“visibility”, visibility);

}
}

Interactive Graphical Visualizations with SVG

CHAPTER 12
525

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

FIGURE 12.6
Scaled and
panned loan
visualization.

15 0672323419 CH12 3/15/04 11:20 AM Page 525

Just as the g (group) element was used in the previous discussions on scaling and pan-
ning, it can also be used for highlighting. Each of the data points represented by circle
elements in the SVG may be contained by a g element, as shown here:

<g onmousedown=”showPayment(0, 0.00, 0.00, 263.62, 10000.00)”>
<circle class=”datapoint” visibility=”visible” r=”4” id=”Month0” cx=”68.5”

➥ cy=”11.7”/>
</g>

The setDataPointVisibility function, shown previously, first determines whether the
data points are being turned on or off and stores the result in the visibility variable. It
then loops over each data point over the duration of the loan stored in the
loanTermInMonths variable, which is initialized when the Web page is loaded (in this
case, to the value 120). For each data point X, it looks up the g element with the ID
MonthX, as shown in the SVG for Month0. The function then sets the attribute named
visibility on this g element to either visible or hidden, depending on whether the
data points are being turned on or off, respectively. Figure 12.7 shows the SVG loan dia-
gram with all the data points turned off. This is another good example of how the SVG
DOM may be manipulated by JavaScript functions to provide interactive behavior. This
type of interactive behavior is particularly useful in SVG diagrams that include the con-
cept of layering (for example, maps where the user may want to either view or hide a
certain set of features in a layer, depending on how she is using the SVG diagram) .

Building XML-Based Applications

PART II
526

FIGURE 12.7
Loan visualization
with data points
off.

15 0672323419 CH12 3/15/04 11:20 AM Page 526

Descriptions
This type of interactive behavior involves the user selecting an element of the SVG dia-
gram to view more detailed information. To illustrate this concept with our loan example,
we will enable the user to select any loan payment data point on the plot to view details
for that payment, including the index of the month, the principal and interest components
of the payment, the total payment, and the balance of the outstanding principal at the
point of the payment. In this case, the event of the user clicking a component of the SVG
diagram is caught by the payment data point of the SVG diagram, as shown here:

<g onmousedown=”showPayment(1, 13.62, 250.00, 263.62, 9986.38)”>
<circle class=”datapoint” visibility=”visible” r=”4” id=”Month1” cx=”71.7”

➥ cy=”12.0”/>
</g>

The g element enclosing the circle element used to represent the data point has an
attribute, onmousedown, that traps a user click on the data point and calls the JavaScript
showPayment function, shown here, in response:

function showPayment(month, principalPayment, interestPayment, totalPayment,
➥ principalOutstanding) {
alert(“Month: “ + month + “\n” + “Principal Payment: $” + principalPayment

➥ + “\n” + “Interest Payment: $” + interestPayment + “\n”
➥ + “Total Payment: $” + totalPayment + “\n”
➥ + “Principal Outstanding: $” + principalOutstanding);
}

This function is in the XHTML document shown in Listing 12.7, in which the SVG dia-
gram is embedded. The arguments to this function are the values of the detailed informa-
tion for the data point. This function simply creates a JavaScript alert to show the
detailed information for the data point in a pop-up window, as shown in Figure 12.8.

This type of interactive behavior is very important in a broad range of visualizations for
which there may be a vast amount of associated information, but displaying it all at once
would lead to too much information for the user to assimilate. Enabling the user to inter-
actively request the specific information he is interested in helps the SVG visualization
stay clean and effective.

Analysis
In many interactive applications, the user is presented with information that she wishes to
analyze (for example, by testing a few “what-if” scenarios and immediately seeing the
effect). In our loan example, we illustrate this by enabling the user to specify an alterna-
tive interest rate for her loan and have the visualization plot a curve showing the perfor-
mance of the loan with the new interest rate, together with the original plot for

Interactive Graphical Visualizations with SVG

CHAPTER 12
527

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 527

The first input field, named comparisonInterestRateTextField, is the text field in
which the user types the new interest rate she wishes to try. The next input field is a but-
ton labeled Plot that the user clicks to initiate the plotting of the loan performance for
the new interest rate. Note that when the user selects this button, the form is not being
submitted to a server. Rather, the onclick event for the button is caught and the
JavaScript function named plot, which is embedded in the XHTML document contain-
ing the SVG diagram, is invoked with the value of the new test interest rate. The last
input in the form is another button, labeled Clear, that enables the user to clear a “what-
if” test case plot. Similarly, this button causes the JavaScript clearPlot function to be
invoked. The plot function is shown here:

function plot(interestRate) {
var monthlyInterestRate = (interestRate / 100.0) / 12.0;
var monthlyPayment = round(principal * (monthlyInterestRate / (1.0 -

➥ Math.pow(1.0 + monthlyInterestRate, -loanTermInMonths))));

Building XML-Based Applications

PART II
528

FIGURE 12.8
Loan visualization
with an informa-
tional pop-up
window.

comparison. The first step in this interaction is to acquire the new interest rate from the
user—for example, by adding the form input fields shown here to the XHTML docu-
ment shown in Listing 12.7:

<input name=”comparisonInterestRateTextField” type=”text” value=”10”
➥ size=”2” />%
<input type=”button” value=”Plot”
➥ onclick=”plot(comparisonInterestRateTextField.value)” />
<input type=”button” value=”Clear” onclick=”clearPlot()” />

15 0672323419 CH12 3/15/04 11:20 AM Page 528

var outstandingPrincipal = principal;
var dataPoints = “”;
for(var i = 0; i <= loanTermInMonths; ++i) {
var interestPayment = 0.00;
var principalPayment = 0.00;
if(i > 0) {
interestPayment = round(outstandingPrincipal * monthlyInterestRate);
principalPayment = round(monthlyPayment - interestPayment);

}
outstandingPrincipal = outstandingPrincipal - principalPayment;

testDataPointGroups[i].setAttribute(
“onmousedown”,
“alert(‘“ +
“Month: “ + i + “\\n” +
“Principal Payment: $” + principalPayment + “\\n” +
“Interest Payment: $” + interestPayment + “\\n” +
“Total Payment: $” + monthlyPayment + “\\n” +
“Principal Outstanding: $” + round(outstandingPrincipal) +
“‘)”);

var cx = plotTopLeftX + (i * (plotWidth / loanTermInMonths));
testDataPoints[i].setAttribute(“cx”, cx);

var cy = plotTopLeftY + (plotHeight - (plotHeight / principal) *
➥ outstandingPrincipal);

testDataPoints[i].setAttribute(“cy”, cy);

testDataPoints[i].setAttribute(“visibility”, “visible”);

dataPoints += “ “ + cx + “,” + cy;
}
testDataLine.setAttribute(“points”, dataPoints);
testDataLine.setAttribute(“visibility”, “visible”);

}

The first step in this function is to compute the monthly interest rate and loan payment
from the given annual interest rate using the formulas presented earlier in this chapter.
For each month in the term of the loan, this function computes the principal, interest, and
total monthly payments, rounded to the nearest cent, using the simple round function
shown here:

function round(x) {
return Math.round(x * 100.0) / 100.0;

}

The detailed information for each loan payment is then set in the SVG DOM in order to
show the loan performance for the new interest rate. In this case, the elements of the
DOM that are affected are stored in the testDataPointGroups array, which is initialized
when the Web page is first loaded, as shown here:

Interactive Graphical Visualizations with SVG

CHAPTER 12
529

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 529

testDataLine = svgDoc.createElement(“polyline”);
testDataLine.setAttribute(“class”, “analysisData”);
testDataLine.setAttribute(“visibility”, “hidden”);
svgLoanPlot.appendChild(testDataLine);

for(var i = 0; i <= loanTermInMonths; ++i) {
var testDataPoint = svgDoc.createElement(“circle”);
testDataPoint.setAttribute(“id”, “TestMonth” + i);
testDataPoint.setAttribute(“visibility”, “hidden”);
testDataPoint.setAttribute(“r”, “4”);
testDataPoint.setAttribute(“cx”, “10”);
testDataPoint.setAttribute(“cy”, “10”);
testDataPoint.setAttribute(“class”, “analysisDatapoint”);

var testDataPointGroup = svgDoc.createElement(“g”);
testDataPointGroup.appendChild(testDataPoint);

svgLoanPlot.appendChild(testDataPointGroup);

testDataPoints[i] = testDataPoint;
testDataPointGroups[i] = testDataPointGroup;

}

This initialization creates a new polyline element as well as a g element that encloses a
circle element for each loan payment data point. The attributes that are set on these ele-
ments are similar to those for the current loan interest rate already discussed, with the
important exception of the visibility attribute, which is set to a value of hidden to
ensure that the elements of the test plot are not visible until the user tries a “what-if” sce-
nario by specifying a new interest rate. Lastly, the new polyline and g elements are
appended as children of the svg root element node in the DOM that is represented by the
svgLoanPlot variable.

Building XML-Based Applications

PART II
530

Note

Before elements of the SVG DOM may be modified to reflect changes in the
SVG visualization required for interactive behavior, they first have to be located.
This is achieved by obtaining a reference to the elements in the SVG DOM, such
as by using the getElementById function discussed previously. Obtaining such
references can be done either once during initialization of the Web page or
each time the user does something interactive. Clearly the former is going to
lead to an interactive visualization that is faster and more responsive because
the logic does not have to hunt for the elements in the SVG DOM each time the
user does something that requires a change. Storing references to key elements
of the SVG DOM in JavaScript variables during initialization of the Web page—

15 0672323419 CH12 3/15/04 11:20 AM Page 530

Given the initialization of our testDataLine and testDataPointGroups variables, as
discussed earlier, the plot function listed previously modifies the attributes of these ele-
ments in order to show loan performance for any specified interest rate. In particular, the
cx and cy attributes of the circle elements, representing the coordinates of the center of
the circles, are modified to move the data points into the correct positions in the plot to
reflect the new interest rate. The visibility attribute of each circle is also set to a value
of visible to make its data point visible. Recall that the plot is composed not only of
data points but also a multisegment line represented as a polyline element in the SVG
DOM. Similarly, this element is created during initialization and is set during a call to
the plot function to reflect loan performance for a new interest rate. In this case, it is the
points and visibility attributes of the polyline element represented by the
testDataLine variable that are set to show the new multisegment line in the correct loca-
tion on the plot and make it visible, respectively.

To clear a test plot for a new interest rate, the user clicks the form button labeled Clear
(presented previously). This results in a callback to the clearPlot JavaScript function
listed here:

function clearPlot() {
testDataLine.setAttribute(“visibility”, “hidden”);
for(var i = 0; i <= loanTermInMonths; ++i) {
testDataPoints[i].setAttribute(“visibility”, “hidden”);

}
}

This function simply sets the values of the visibility attributes of each of the test data
point circles and the underlying multisegment lines to a value of hidden in order to make
them invisible. Figure 12.9 shows an SVG loan visualization with a plot of our default
30-percent interest rate, together with a plot for a test interest rate of 10 percent. In this
case, the user has clicked the test plot to get a pop-up window with detailed information
on one of the data points, as discussed previously.

Interactive Graphical Visualizations with SVG

CHAPTER 12
531

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

including the svgLoanPlot variable for the root svg element and the
testDataPointGroups and testDataLine variables for the elements representing
the test loan plot—and thereafter modifying these elements through their
JavaScript variable references leads to a significant performance enhancement
over hunting for each of these in the SVG DOM each time a modification is
required.

15 0672323419 CH12 3/15/04 11:20 AM Page 531

This important example shows that interactive SVG visualizations may be realized not
only by modifying attributes on existing elements in the SVG DOM, as shown previ-
ously, but also by adding new elements to the SVG DOM, as shown here. In fact, it is
also possible to delete elements of the SVG DOM, although doing this would have the
same visible effect as making the element invisible, as discussed previously. This exam-
ple also shows how the user may change the SVG visualization interactively in an arbi-
trary way in response to input to realize any kind of interactive behavior. This flexible
yet simple-to-use capability paves the way for powerful, new interactive visualizations
using SVG. The next few subsections outline some of the key advantages of using SVG
to add visualizations to content.

The Benefits of Web Pages Powered by SVG
SVG enables powerful and compelling visualizations to be created. This enables Web
pages to be more interactive and engaging for the user. Although in many cases it is pos-
sible to understand concepts through static information only, for many situations we
learn more rapidly by manipulating items and viewing responses to our actions. Such sit-
uations indicate good potential target applications for interactive SVG visualizations.

Faster Client Response Time
Many Web applications today are made pseudo-interactive through the use of
client/server interaction. In this case, when the user performs some action on a Web
page, the Web browser sends a request to the Web server to get another Web page that

Building XML-Based Applications

PART II
532

FIGURE 12.9
Loan visualization
with a test data
set plotted.

15 0672323419 CH12 3/15/04 11:20 AM Page 532

reflects the changes associated with the user action. In practice, this approach results in
unpredictable and frustrating application behavior, especially when the client/server
interaction is occurring over a network without any guarantee of quality of service—a
prime example of which is the Internet. In such cases, any user action is followed by a
frustrating wait while the updated Web page is loaded. In the case of SVG, however, it is
possible to realize true interactive behavior completely on the client side without any net-
work requests to the server after the initial loading of the Web page containing the visu-
alization. In practice, this leads to significantly faster client response time and more
user-friendly interactive content.

Reduced Server Load
Because content that is interactive completely on the client side (without server interac-
tion beyond initial loading) does not require subsequent server requests to deliver inter-
active behavior, there is less demand on the server. This enables both improved
performance for existing clients and improved ability to scale to service more clients.

Improved User Privacy
Many useful interactive applications involve the user entering and manipulating sensitive
information (for example, financial information associated with a loan).

Where applications are pseudo-interactive, as defined earlier, this information needs to be
exchanged with the server. Where the network connection between the client Web
browser and target Web server is secured with HTTPS, some assurance is given to users
that their sensitive information will not be compromised while in transit over the public,
untrusted Internet. However, in many of these applications, this assurance may not be
enough to engage users because they may not even want their sensitive information to
propagate to the target Web server, where they fear it will be compromised or used
against them (for marketing purposes, for example).

SVG, however, enables completely client-side interactive behavior that allows users to
enter and interact with their sensitive information totally on the client side with no need
to share this information with the server. This enables users to gain a better understand-
ing of their options and make decisions before opting to share their sensitive information,
such as in the case of a loan application.

SVG-To-Go with XSL-FO
HTML has excelled in delivering content reliably to a variety of Web browsers with dif-
ferent capabilities. It has achieved this to a large extent by carefully restricting the syntax
of the HTML language from specifying exactly how content should be displayed.
However, in some applications, such as printing apps, it is desirable to be able to specify

Interactive Graphical Visualizations with SVG

CHAPTER 12
533

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 533

exactly how content should be formatted. XSL-FO complements XSLT, as discussed ear-
lier in this chapter, in enabling the specification of the exact layout of content. An XSL-
FO document may be used, for example, both to transform content into other formats,
such as PDF, and to print content. Figure 12.10 shows a simple flow diagram of how
XSL-FO documents are created and used.

Building XML-Based Applications

PART II
534

Print

XML
Documents

XSL
Formatter

XSL
Stylesheets

XSL
Formatting

Object

XSLT

Display

FIGURE 12.10
XSL-FO flow
diagram.

SVG diagrams may be embedded in XSL-FO diagrams. For example, Listing 12.8 shows
an XSL-FO document with an embedded loan visualization.

LISTING 12.8 120MonthLoan_Advanced.xsl—Loan Visualization Document
with XSL-FO

<?xml version=”1.0” encoding=”UTF-8”?>

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:template match=”/”>

<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>
<fo:layout-master-set>
<fo:simple-page-master master-name=”Loan” page-width=”8.5in”

➥ page-height=”11.0in” margin=”1.6in”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

15 0672323419 CH12 3/15/04 11:20 AM Page 534

LISTING 12.8 continued

<fo:page-sequence master-name=”Loan”>
<fo:flow flow-name=”xsl-region-body”>

<fo:block font-size=”24pt” space-after=”0.25in”>
Loan

</fo:block>

<fo:block space-after=”0.25in”>
This loan is for $<xsl:value-of select=”loan/@principal”/> over a

➥ period of <xsl:value-of select=”loan/@termInMonths”/> months. The
➥ interest rate is <xsl:value-of select=”loan/@interestRate”/>% and the
➥ monthly payment is $<xsl:value-of select=”loan/@monthlyPayment”/>.

</fo:block>

<fo:block>
<fo:external-graphic content-width=”485px” content-height=”290px”

➥ src=”120MonthLoan_Advanced.svg”/>
</fo:block>

</fo:flow>
</fo:page-sequence>

</fo:root>
</xsl:template>

</xsl:stylesheet>

This XSL-FO example document, itself, contains information about the loan and, as in
the case of an SVG loan visualization, may also be generated using an XSLT transforma-
tion, where the source is the XML loan document. The key code from this document that
involves embedding the SVG visualization is the fo:external-graphic element, which
specifies the width and height of the SVG diagram in pixels, as well as the source file,
where the SVG document for the diagram may be found in the content-width,
content-height, and src attributes. For more information on XSL-FO, see Chapter 9.
Figure 12.11 shows the XSL-FO document in Listing 12.8 displayed using the Antenna
House XSL Formatter (www.antennahouse.com). Once this tool is started, you may load
both the XML document named 120MonthLoan.xml and the XML style sheet named
120MonthLoan_Advanced.xsl and then invoke the Run Formatter option of the tool to
view the results shown in Figure 12.11. Using this tool, the XSL-FO document may be
printed. Alternatively, this XSL-FO document may be converted into PDF format using
the Apache FOP engine (xml.apache.org/fop) .

Interactive Graphical Visualizations with SVG

CHAPTER 12
535

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 535

SVG Structure and Elements
A previous discussion has shown how to use SVG together with other XML technologies
to deliver an interactive graphical visualization and has illustrated these concepts with the
loan example. Although this discussion has already touched on the key SVG elements
and has shown the SVG structure implicitly, it is useful now to explicitly review the
overall structure and elements of the SVG language.

Structure
Figure 12.12 shows the high-level structure of an SVG document with the key elements
that are valid in such a document.

Elements
Table 12.1 lists the key elements of an SVG document, each with a brief description. For
more detailed coverage, see the SVG specification available from the W3C (www.w3.
org). For some elements references are made to the SMIL specification that may be
found at W3C (www.w3.org) .

Building XML-Based Applications

PART II
536

FIGURE 12.11
Loan visualization
with XSL-FO.

15 0672323419 CH12 3/15/04 11:20 AM Page 536

Interactive Graphical Visualizations with SVG

CHAPTER 12
537

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

desc

title

metadata

defs

path

rect

circle

ellipse

line

polyline

polygon

use

image

svg

g

view

switch

altGlyphDefsvg

script

style

symbol

marker

clipPath

mask

linearGradient

radialGradient

pattern

filter

cursor

font

animate

set

animateMotion

animateColor

animateTransform

color-profile

font-face

text

a

FIGURE 12.12
SVG document
high-level element
structure.

15 0672323419 CH12 3/15/04 11:20 AM Page 537

TABLE 12.1 SVG Key Elements

Element Description

a Analogous to HTML’s a element, this element is used to
indicate a hyperlink associated with the SVG elements that
are children of this element. When a child element is
clicked in the SVG visualization, the associated hyperlink
is loaded.

altGlyphDef Defines a candidate set of possible glyph substitutions.
Note that fonts consist of a set of glyphs and associated
information, such as font tables. This element provides
controls over the glyphs used to render particular
character data.

animate Used to animate a single property or attribute over time
in order to make SVG visualizations “live.” See also the
animate element in the SMIL specification.

animateColor Specifies a color transformation over time. See also the
animateColor element in the SMIL specification.

animateMotion Causes a referenced element to move along a specified
motion path. See also the animateMotion element in the
SMIL specification.

animateTransform Animates a transformation attribute on a target element.
This enables animation of an element consisting of transla-
tion (panning), scaling, rotation, and skewing, or any com-
bination thereof.

circle Defines a circle based on a center point and radius.

clipPath Defines a clipping path that may be used/referenced using a
clip-path property. A clipping path restricts the region to
which paint can be applied. Any parts of the diagram that lie
outside the region bounded by the currently active clipping
path are not drawn. You can think of this as a one-bit mask.

color-profile Enables a color profile to be defined. A color profile may
be used to build a transformation that corrects visual data
for viewing on a particular device.

cursor May be used to define a platform-independent custom cur-
sor. For example, you could create a PNG image with the
custom icon for a cursor and then reference this icon image
from a cursor element in an SVG document. A cursor
property may then be associated with an SVG element to
cause the cursor to change to the custom cursor when the
pointer moves over that element.

Building XML-Based Applications

PART II
538

15 0672323419 CH12 3/15/04 11:20 AM Page 538

TABLE 12.1 continued

Element Description

defs Elements in SVG may reference other elements—for
example, enabling a circle element to be filled with a lin-
ear gradient fill defined in a linearGradient element. In
this case, the circle element would reference the
linearGradient element. The defs element is used to
group elements that are referenced by other elements,
including, in this example, the linearGradient element.

desc Used to add accessibility to SVG elements by providing
text equivalents for graphics. Where descriptions are con-
cise, the title element is used. Otherwise, the desc ele-
ment is used. The text specified in a desc element is not
generally visible but may, for example, be delivered to a
user in aural form.

ellipse Used to define an ellipse with a center point and two radii.
The axes of the ellipse are aligned with the current coordi-
nate system. However, this element may be rotated using a
rotation transformation.

filter Can define a region on the canvas in which a given filter
effect applies.

font Defines an SVG font.

font-face Can be used to describe the characteristics of any font,
SVG or otherwise. See also the font element.

g Used to group and name collections of SVG elements.
These child elements may share attributes defined by the
parent g element. The g element may have an id attribute
that can be used, for example, to locate the element in the
SVG DOM.

image Specifies that the contents of a file are to be rendered
inside a rectangle on the SVG canvas. It may be used to
embed a bitmap image in an SVG diagram, including PNG,
GIF, or JPG images. This element may also be used to
embed an SVG subdiagram inside another.

line Defines a line segment that starts at one point and
ends at another.

linearGradient Defines a linear gradient, for example, in a fill.

Interactive Graphical Visualizations with SVG

CHAPTER 12
539

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 539

TABLE 12.1 continued

Element Description

marker Defines the graphics that are to be used to draw arrowheads
or polymarkers, for example, on a path, line, polyline, or
polygon element.

mask Used to define a mask that may be referenced from another
element using a mask property to change some aspect of
that element’s appearance.

metadata Used to identify the document-level metadata that may, in
turn, be used, for example, to locate the document.

path Defines a path that may be used to represent the outline of
a shape that can be filled, stroked, used as a clipping path,
or any combination thereof.

pattern Used to fill or stroke an object using a predefined graphic
object that may be replicated or tiled at fixed intervals in x
and y to cover an area being painted.

polygon Defines a closed shape consisting of a set of connected
straight-line segments.

polyline Defines a set of connected straight-line segments. Polylines
typically define open shapes. See the polygon element for
how to define a closed shape.

radialGradient Defines a radial gradient, for example, in a fill.

rect Defines a rectangle that is “axis aligned” with the current
coordinate system. Rectangles with rounded corners may
also be specified with this element.

script Equivalent to the script element in HTML, this element is
used to embed ECMAScript scripts in SVG documents.
Functions defined in a script element are visible within
the scope of the entire SVG document.

set Enables the value of an attribute to be set to a specified
value for a finite time interval. See also the set element in
the SMIL specification.

style Enables style sheets to be embedded directly in SVG con-
tent. This element has the same meaning as the style ele-
ment in HTML.

svg Root element of any SVG diagram. It may specify the
width, height, and origin of the coordinate system for the
SVG content.

Building XML-Based Applications

PART II
540

15 0672323419 CH12 3/15/04 11:20 AM Page 540

TABLE 12.1 continued

Element Description

switch May be used to evaluate characteristics of the user agent
being used. For example, to view the SVG content and then
to select appropriate SVG child content based on those
capabilities for rendering.

symbol Used to define a graphical template object that may be
instantiated with a use element.

text Used to define a graphics element consisting of text.

title Used to add accessibility to SVG elements by providing
text equivalents for graphics. Where descriptions are con-
cise, this element is used. Otherwise, the desc element is
used. The text specified in this element is not generally vis-
ible but may be shown, for example, in a pop-up “tool-tip”
form above a graphic element with which it is associated.

use Indicates that an instance of a referenced graphical object
(for example, defined with a symbol element) is to be cre-
ated at a specified location on the SVG canvas.

view Used to specify a predefined view on an SVG visualization.

Development Primer
This section discusses some resources that may be used to get started with SVG.

For a detailed list of resources for working with SVG, see the “Implementations” section
at the W3C site (w3.org/Graphics/SVG). Some of the key resources available for work-
ing with SVG are also listed next. The following tutorials provide great starting points
for learning SVG:

• Adobe. www.adobe.com/svg/tutorial/intro.html

• KevLinDev. www.kevlindev.com

To create your own SVG, you will need an editor. The following are examples of
WYSIWYG SVG editors:

• JASC WebDraw. www.jasc.com

• Amaya. www.w3.org/Amaya/Amaya.html

Interactive Graphical Visualizations with SVG

CHAPTER 12
541

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 541

Once you have created your SVG, you will need a viewer to render it for testing and
deployment. The following two tools are examples of SVG viewers:

• Adobe SVG Viewer. www.adobe.com/svg/viewer/install

• Batik. xml.apache.org/batik

For inspiration and examples to help you create your own vector graphics, see the SVG
used at the following Web sites:

• Adobe. www.adobe.com

• Corda. www.corda.com

• ArchitectureZone. www.architecturezone.trcinc.com

The Future of SVG
This section presents a few probable directions the future of SVG could take. When
you’re designing SVG systems with an intended lifespan of more than a few years, it is
prudent to review these future directions to ensure the system design is flexible enough
to accommodate probable changes.

Direct Web Browser Support for SVG
Currently, major Web browsers are enabled for SVG via plug-ins, most notably the
Adobe SVG Viewer. Gradually, SVG support will be added to the core capabilities of the
major Web browsers, and it will no longer be necessary to install plug-ins separately.
When this is achieved, vector graphics support will exist alongside bitmap graphics sup-
port currently available in Web browsers.

New SVG Applications
New SVG applications will appear across a variety of application domains, including
data visualization, games, and animation. The breadth of SVG applications will expand.

Expanding the Scope of SVG
Graphical applications that are currently realized using bitmap graphics will start using
vector graphics in the form of SVG. The scope of SVG use will expand and it will dis-
place the use of bitmap graphics in many areas, prime examples of which include map-
ping and GIS applications.

Building XML-Based Applications

PART II
542

15 0672323419 CH12 3/15/04 11:20 AM Page 542

Summary
SVG is a vector graphics language that is both well formed and valid XML. Whereas
bitmap graphics, such as GIF and JPG images, are appropriate for photos, SVG is appro-
priate for many other types of graphics. Many applications for which vector graphics are
much better suited are currently using bitmap graphics due mostly to previously lacking
Web browser support for vector graphics. SVG is much more than just another vector
graphics format because it is built on the XML standard. This enables the use of other
powerful XML tools and technologies with SVG. SVG may be used to create compelling
interactive visualizations that may be embedded in Web pages and can incorporate scal-
ing, panning, highlighting, descriptions, and analyze types of interactive behavior.
Furthermore, this interactive behavior can occur completely on the client side, thus lead-
ing to more interactive content, faster client response time, less server load, and
improved user privacy. SVG visualizations may also be embedded in XSL-FO documents
for conversion to other formats, such as PDF, or for printing. There is currently wide
industry support for the SVG standard, and a variety of mature tools are currently avail-
able for creating, viewing, printing, and manipulating SVG visualizations. New applica-
tions are appearing daily that demonstrate the power of SVG and stretch the limits of
what can be achieved with this versatile and easy-to-use vector graphics language.

Interactive Graphical Visualizations with SVG

CHAPTER 12
543

12

IN
TER

A
C

TIV
E

V
ISU

A
LIZA

TIO
N

S
W

ITH
SV

G

15 0672323419 CH12 3/15/04 11:20 AM Page 543

15 0672323419 CH12 3/15/04 11:20 AM Page 544

IN THIS CHAPTER

• What Is Web Content
Management? 546

• What Are the Components of a
Content-Management
Workflow? 547

• The Role of XML in Web Content
Management 552

• WebDAV Document Creation 553

• How to Design the XML Content
Environment 556

• The Role of Metadata (RDF and PRISM)
in Web Content Management 557

• Web Content Syndication with RSS
and ICE 566

• Selecting a Content-Management
Solution 588

13
C

H
A

PT
ER

XML and Content
Management

16 0672323419 CH13 3/15/04 11:21 AM Page 545

In the beginning, when all we had was HTML, the Internet was basically a publishing
channel. By the mid 1990s, the Internet had become a viable alternative to print media
for authors and publishers. In the late 1990s, as the sophistication of the Internet grew
and XML was deployed, a growing number of companies that were not publishers began
to use their Web sites to distribute/publish new forms of content. Everything from price
lists to contact/telephone lists, home pages, and fax numbers became Internet content.
Today, as the volume of content on the Internet continues to grow in size and types of
content, it has become clear that online publishing requires a solid Web content-manage-
ment solution and dynamic content distribution.

Web content management is generally defined as a combination of clearly defined roles,
formal processes, and a supporting system architecture used to produce, collaborate on,
maintain, publish, and distribute content on the Web. But what role should XML play in
a Web content-management solution? Are other standards critical as well? And how do
you select a Web content-management solution? In order to answer these questions, you
must understand the core technologies and processes of Web content management. That’s
the goal of this chapter.

In this chapter, you’ll learn:

• The definition of content management and the processes within the content-man-
agement workflow

• The XML-based components of a Web content-management system

• How to design the XML content environment

• WebDAV single-source, Web-based document creation

• The role of metadata (RDF and PRISM) for Web content management

• Content syndication with RSS and ICE

• Selecting a content-management system

What Is Web Content
Management?
Web content management, when reduced to the lowest common denominator, comes
down to the basics of working with content. By Web content, we mean any information
or data on the Web. We must identify the types of content we need to manage and how
content assets relate to one another. We must define the roles that need to be supported as
we work with content. We must identify formal processes required to enable managed
workflow based on these roles. Although we can probably enable Web content manage-

Building XML-Based Applications

PART II
546

16 0672323419 CH13 3/15/04 11:21 AM Page 546

ment with manual processes for small volumes of content, we will need a supporting sys-
tems architecture and Web content-management tools to handle content efficiently as the
volume and variability of content grows.

Web content management does not have an out-of-the-box definition or solution. In fact,
the definition of content management must be based on the characteristics of the content
and the business model. For some organizations, content management is a straightfor-
ward publishing process—from a database to the Web. Other organizations rely on
sophisticated content assembly that supports the automated, dynamic generation of a
Web site. In some organizations, content management is limited to managing text files.
In other organizations, content management requires structuring of large volumes of mul-
timedia collections based on metadata attached to each rich media asset. Some organiza-
tions are only concerned with the management of newly created content. Others must
consider management of legacy data as well. As you can see, Web content management
requires human understanding of the business process, content analysis, and system
design. Investment in information modeling and design are critical to the success of a
Web content-management solution.

What Are the Components of a
Content-Management Workflow?
The components of a content-management workflow, or event sequence, for the Web are
much like the components of traditional content-management workflow. Typically com-
ponents of Web content-management workflow include a content-input phase, a content-
repository phase, and a content-delivery phase shown in Figure 13.1. Because the
definition of content management differs based on the profile of the organization, its
business goals, and the content it must manage, the components within each phase of any
particular content-management workflow can vary as well.

Each component of content-management workflow has unique functionality and requires
specialized tools. Content is entered into the workflow in the content-input phase, stored
and maintained in the content-repository phase, and distributed in the content-delivery
phase. The following subsections describe each component/phase of content-manage-
ment workflow in greater detail.

Content-Input Phase
The content-input phase is the phase within the content-management workflow where
content is introduced into the content-management system. Content input may come
from one or more sources, as detailed in the following subsections.

XML and Content Management

CHAPTER 13
547

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

16 0672323419 CH13 3/15/04 11:21 AM Page 547

Original Creation
Original content creation occurs when content is authored by the organization and
imported into the content-management system. Such content can be created in a variety
of formats. For example, original content could be authored in a word processing system,
in a desktop publishing system, with an HTML authoring tool, or even with an SGML or
XML authoring tool. Original content may also be entered into a Web content-manage-
ment system through the use of database forms.

It is not critical that all original content created for the Web be created in a data standard
format, such as all content being required to conform to a particular XML tag set.
However, this does make delivery easier. If the intent is to dynamically assemble content
for Web delivery, it is critical that content be created in a delivery-neutral format. Often,
organizations prepare content for a particular product or delivery media, thus rendering it
relatively unusable in a dynamic content-assembly environment.

Building XML-Based Applications

PART II
548

Content Input

Content Repository

Content Delivery

• Creation

• Database import

• Legacy inclusion

• Storage

• Revision
 control

• Version control

• Component
 assembly

• Print rendition

• Web rendition

• WAP rendition

• Content
 Syndication

FIGURE 13.1
Components of
a Web content -
management
system.

Note

A delivery-neutral format requires that content be created in such a manner
that it can be effectively assembled in a variety of ways for a variety of media
types. Delivery-neutral content is authored (words/phrases) in a way that it can

16 0672323419 CH13 3/15/04 11:21 AM Page 548

Database Import
Although original content may be created directly in the content-management database
system, often content comes from external databases within the same organization or
from partner organizations. For example, content within an Enterprise Resource Planning
(ERP) system may be valuable to import into a Web content-management system. Here,
an import mechanism is a critical component of the Web content-management system.

Legacy Inclusion
Many times existing content is a critical ingredient for the Web. In this case, the content-
management solution must account for the inclusion of the existing, or legacy, content.
For example, a Web site for researching scientific journal articles requires the integration
of past (legacy) journal articles with each new journal article that is published. A major
issue is the data format of the legacy content and determining how that content can be
integrated with “new” data on an ongoing basis. If the legacy data format cannot be eas-
ily included and managed, data conversion into a more viable format must be considered.

Content-Repository Phase
The second component of Web content management is the content-repository phase. In
this phase, content that has been input is stored and managed.

At the heart of every Web content-management system is some sort of database or
mechanism for maintaining persistent Web content over time. End users require not
only the ability to store Web content but to track how and why it has been changed and
to be assured that they can access the most up-to-date version of the content. So, a
content-management database often has other features that you will find detailed in
the following subsections.

Storage
The basic function of any content repository is to store data. Different storage options are
available. For example, the database may be an inverted index, relational, or object ori-
ented. The data may be stored directly in the database, or the database may simply be
responsible for storing pointers to the data within some sort of file-storage system.

XML and Content Management

CHAPTER 13
549

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

stand as a logical unit and hence be assembled in a number of different ways.
Delivery-neutral content is also encoded in a standard, open data format so that
it can easily be presented in a number of media types.

16 0672323419 CH13 3/15/04 11:21 AM Page 549

Revision Control
Revision control is important when a body of content is divided into small, logical units
that may be worked on by a pool of authors, perhaps on different projects altogether.
Revision control, often known as check-out/check-in, provides the capability to track
when the content was last updated, who updated it, and why. Revision-control systems
often “lock” the content from being updated by a second author while the first author is
making updates.

Version Control
Version control enables end users to access a complete body of content that is valid at
either a point in time or by a defined version number. This differs from revision control
because it freezes all logical units in a body of content into a single unit that is valid
when considered as an entity.

Component Assembly
A final functionality of a content repository is the ability to automate the assembly con-
tent components from the content repository for final delivery. In some cases, this is as
simple as exporting the latest version of an entire document for delivery. In other cases,
this is far more sophisticated. For example, component assembly may involve analysis of
metadata associated with content assets to use as the basis for assembling content into a
highly customized view of the content for Web delivery.

Content-Delivery Phase
Once the content has been assembled for delivery into a document or product, it must
then be delivered. Content often comes to the final delivery in a variety of formats.
Content that is stored in a Web content repository is fragmented into content objects that
do not have a presentation interface for final delivery. Content may be stored as XML
that is not intended to be viewed directly. Alternatively, content may be stored as records
and fields of a database—again, not intended for direct viewing. Yet, in order to be pre-
sented, a common interface between the content and the end user must be set in place.
Typically, this involves employing transformation/rendering/presentation software.

If content is in a delivery-neutral format such as XML, presentation delivery should be
relatively straightforward. In addition, the ability to manage and control the delivery of
dynamic content to the Web is a growing component of the content-delivery phase. This
implies the application of automated Web publishing processes.

Building XML-Based Applications

PART II
550

16 0672323419 CH13 3/15/04 11:21 AM Page 550

Print Rendition
Even though we are concentrating on content management for the Web, many times print
delivery is also a consideration. This requirement is validated by the print support found
in the W3C XSL Recommendation (October 16, 2001). According to the W3C, “XSL
stylesheets are used to express how source content should be styled, laid out, and pagi-
nated onto a presentation medium such as a browser window, a pamphlet or a book.”
XSL 1.0 provides for the formatting of paged media that can drive professional printing
capabilities and functions from XML source documents. XSL 1.0 assumes that we want
to be able to specify how to format and render XML content in order to produce versions
for both Web and print media using a single style sheet language.

Web Rendition
Again, we need some sort of style sheet to produce output for the Web. Today, the most
common Web delivery mechanisms transform content into HTML so it can be delivered
to the broadest number of browsers. An alternative to HTML delivery, favored by those
that want/need page image rendition, is PDF, or Adobe’s Portable Document Format,
delivery for the Web.

WAP/Mobile Rendition
Accessibility of content anywhere, at any time, on any device is a trend in content deliv-
ery. The importance of new lightweight delivery devices was a clear focus of W3C stan-
dards development activity during 2000–2001. XHTML (a well-formed, modular, XML
version of HTML), along with the Wireless Markup Language (WML) has emerged as
delivery choices for Wireless Application Protocol (WAP) and mobile devices. Cascading
Style Sheets (CSS) now comes with a new Mobile Profile that specifically tailors style
sheet properties and values for mobile devices such as wireless phones.

In the page-rendition environment, tagged PDF technology now makes the automated
resizing and reflowing of PDF page images for WAP/mobile devices a reality.

Content Syndication
The classic definition of syndication is the delivery of a single body of content to multi-
ple end users, or subscribers. It began in the earliest days of the newspaper business
when news services distributed news stories to multiple local newspapers. Today, Web-
based content aggregation and content syndication make a compelling value proposition
for content consumers and for content suppliers alike. XML-enabled syndication mecha-
nisms address the need to automate reliable redistribution for both commercial and non-
commercial content.

XML and Content Management

CHAPTER 13
551

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

16 0672323419 CH13 3/15/04 11:21 AM Page 551

The Role of XML in Web Content
Management
Because each organization’s definition of Web content management is so personalized, it
is rare that a complete content-management solution can be purchased “out of the box.”
Usually, Web content-management solutions vendors spend a good deal of time cus-
tomizing their tools to meet customer requirements and integrating tools from a number
of vendors. Other content-management tools vendors simply provide low-level APIs and
let you do the rest!

Whether you are purchasing a content-management system or integrating your own, it is
important to realize the critical role XML can play in your Web content-management
solution. First, XML can enable the components of the content-management solution to
communicate and pass data from one to another. Second, application components within
the content-management system can themselves be XML based. These roles of XML in
Web content management are discussed in the following subsections.

XML to Integrate System Components
Perhaps the most important role XML can play in the success of a Web content-manage-
ment solution is when it is the “glue” used to integrate the applications that make up the
content-management solution. As you know, XML is a standard, neutral, data-encoding
format. Each component of a Web content-management system you purchase or a solu-
tion that you integrate yourself will be easier to plug and play if it is XML compliant.
This means that each application component uses XML as a nonproprietary data format
when it talks to other applications and that it uses XML when it passes data to another
application component.

XML-Based Application Components
XML can also serve as the basis for certain application components within the content-
management solution. The following content-management applications rely on XML
functionality:

• The creation of XML-encoded structured content

• The validation of XML content

• The automated transformation/rendition/presentation of content across a variety of
media

Building XML-Based Applications

PART II
552

16 0672323419 CH13 3/15/04 11:21 AM Page 552

• The attachment of metadata to facilitate the management, discovery, and assembly
of content

• Automated, reliable, secure content distribution over the Web

WebDAV Document Creation
WebDAV, the Web-based Distributed Authoring and Versioning protocol, was designed to
add interoperability and collaborative capabilities to the Internet. WebDAV is a set of
extensions to the HTTP protocol that allows users to collaboratively edit and manage
files on a remote Web server, as you can see in Figure 13.2. It is a specification of the
Internet Engineering Task Force (IETF). You can find the WebDAV specification at
http://www.ietf.org/html.charters/webdav-charter.html.

XML and Content Management

CHAPTER 13
553

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
TWeb Server with

WebDAV Volume

Internet

CollaboratorsFIGURE 13.2
WebDAV enables
collaborative
authoring using
the Internet.

WebDAV is a broad industry effort. Participants from Microsoft, Netscape, Novell, IBM,
and Xerox are among those who helped develop the base WebDAV protocol. You can
find out more about those who developed this specification at http://www.webdav.org.

The Role of WebDAV
Many believe that WebDAV will enable the original vision for the Web as a writeable,
collaborative medium. Others see WebDAV meeting goals that extend beyond collabora-
tion in Web page authoring. WebDAV may evolve into a network file system suitable for
the Internet, one that works on entire files at a time, with good performance in high-
latency environments. Others believe that WebDAV will become a protocol for manipu-
lating the contents of a document-management system via the Web. Perhaps the best
assessment is that WebDAV will support virtual enterprises, becoming the primary

16 0672323419 CH13 3/15/04 11:21 AM Page 553

protocol supporting a wide range of collaborative applications. So, WebDAV could even
be used to support remote software-development teams if you consider software develop-
ment an extension of authoring. In fact, because WebDAV is based on HTTP it provides
authoring support for Web resources of any media type—HTML, GIF, JPEG, and even
software.

WebDAV-Enabled Authoring Environments
Simply put, WebDAV allows teams creating any sort of content to use a remote Web
server as easily as if it were a local file server. This means that individuals separated by
great geographic distances can trade information, develop ideas, and create and edit con-
tent as if they were sharing a single office network. This all works by mounting a
WebDAV volume on a shared Web server. Everyone can then access files as they would
any other networked volume.

WebDAV provides the following editorial features:

• Locking. WebDAV enables concurrency control by providing exclusive and shared
write-locks to prevent file overwriting when two or more collaborators write to the
same resource. The duration of WebDAV locks is independent of any individual
network connection so that network connections may be disconnected arbitrarily.

• Metadata properties. The XML metadata properties of WebDAV provide storage
for arbitrary metadata, such as a list of authors for Web resources. These properties
can be set, deleted, and retrieved using the WebDAV protocol. DAV Searching and
Locating (DASL) provides searches based on these XML metadata property values
to locate Web resources.

• Namespace support. Web resources may need to be copied or moved as a Web site
evolves. WebDAV supports copy and move operations using namespaces.
Collections, similar to file system directories, may be created and listed.

The WebDAV community continues to extend WebDAV functionality in order to enable a
richer authoring environment. Proposed extensions to WebDAV include the following:

• Versioning and configuration management. Versioning support within WebDAV,
similar to that provided by Revision Control System (RCS) or Source Code
Control System (SCCS) will be the entry level of WebDAV functionality. The ver-
sioning level will support operations such as check-out, check-in, and retrieval of
the history list.

• Access control. WebDAV will provide the ability to set and clear access-control
lists. This will enable the management of collaborators remotely by adding or
deleting users from the list of collaborators on a single resource.

Building XML-Based Applications

PART II
554

16 0672323419 CH13 3/15/04 11:21 AM Page 554

WebDAV and XML
WebDAV is an XML vocabulary. The WebDAV XML tag set defines a number of
WebDAV methods for examining and maintaining Web content. In WebDAV, users and
groups are represented as principals. The ability to perform a given method on a resource
is controlled by one or more privileges assigned to a principal. For example, privileges
might give a principal the ability to update a collection of Web content. WebDAV sets up
an Access Control List (ACL) made up of Access Control Entries (ACEs), which define
what principals are to get what privileges for a specific resource.

In Listing 13.1, the principal identified by the URL http://www.foo.com/users/
dkennedy (that is, the user “dkennedy”) is granted read and write privileges.

LISTING 13.1 Example of WebDAV Syntax

<?xml version=”1.0” encoding=”utf-8” ?>
<D:acl xmlns:D=”DAV:”>
<D:ace>
<D:principal>
<D:href>http://www.foo.com/users/dkennedy</D:href>
</D:principal>
<D:grant>
<D:privilege><D:read/></D:privilege>
<D:privilege><D:write/></D:privilege>
</D:grant>
</D:ace>

XML and Content Management

CHAPTER 13
555

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

Note

WebDAV is an underlying protocol. It is like an enhanced remote file system.
Although a content-management system can be built on top of the WebDAV
protocol, it is important to recognize that WebDAV, by itself, is not a content-
management system. Likewise, WebDAV is not a workflow-management system,
but it could be used as the foundation for one.

Currently WebDAV is implemented in both open-source and commercial soft-
ware. For example, Kiwi is an open-source file system built on WebDAV that
was developed at Stanford University. Another open-source implementation
of WebDAV is the Jigsaw Java-based WebDAV server at http://www.w3.org/
Jigsaw/. Among the commercial products that include WebDAV implementa-
tions are Adobe Acrobat 5.0, Dreamweaver, and Microsoft Internet Explorer 5.0.
You can learn more about WebDAV-based products at http://www.webdav.org/
projects.

16 0672323419 CH13 3/15/04 11:21 AM Page 555

How to Design the XML Content
Environment
If you are building a Web content-management solution, you may consider coding the
textual content in XML. That certainly is not a requirement. However, one of the advan-
tages of coding content in XML is the promise that content can be recombined and
repurposed to create customized content deliverables.

Reusable Document Objects
If reuse is a major goal of coding content in XML, then the XML design should facilitate
reuse. Here, the design should focus on the creation of small documents that contain con-
cise topics. Because each piece of content can stand alone, it becomes a relatively easy
task to combine pieces of content in new ways.

It is important to understand how you intend to reuse content and then to design the
XML encoding and eventually the content storage to support that goal. Let’s suppose, for
example, that our content is scientific journals. What is the element of content reuse in
this scenario? At first, glance it is the articles. It makes little sense to reuse anything but a
complete article. Our XML encoding for the journal should enable each article to be a
small, reusable document.

But if we take a close look, we can imagine that two other elements within the article
might be reused as well. The first is the art. Photos and illustrations might have a reuse
value of their own. Likewise, tables that summarize findings in the article might have use
as an independent content object. What can we do in our XML design to support the spe-
cific reuse of these subelements.

Again, we must go back to the idea that each piece of reusable content is a small docu-
ment. This means that each figure and table in the journal article is its own little docu-
ment, is stored independently, and is called into this article or any other content-based
product when the product is assembled for delivery.

XML Document Design Principles
Many times users of XML-based content-management systems come from an SGML
background. Certainly conversion of data from SGML to XML is quite straightforward.
However, the straightforward conversion of SGML documents into XML documents may
not be the best design solution for data to be managed in a content-management system.
If your original DTD was designed for a monolithic document to drive a print product, it
most likely will not provide the functionality you want when you make an investment in
a content-management solution.

Building XML-Based Applications

PART II
556

16 0672323419 CH13 3/15/04 11:21 AM Page 556

Your content-management system will only be as flexible and versatile as the structures
you impose on it. If you simply convert your monolithic SGML into monolithic XML
(such as a large aircraft maintenance manual coded in compliance with ATA Spec 2100),
you will end up managing the content as a large document that has very little potential
for reuse in the future. Such large documents also have a huge impact on system
performance.

An alternate approach to designing a monolithic XML tag set is to create small docu-
ment definitions. Often times these small document definitions are based on an object
model for reuse. Let’s consider a scientific journal once more. In the days of SGML, we
would define a DTD for the whole journal. This would imply the journal issue, contain-
ing all articles are managed and used as a unit. A slightly better approach would be to
define a schema for the article. Then, we could call the article schema (and content
stored on an article basis) as appropriate to construct the journal. We would store and use
articles as independent information objects.

An even better approach would be to fragment the article into other useful objects or
small documents that themselves might be reused. Here, we could envision having a
schema for the journal that includes the schema for articles. The article schema might
include other small XML documents such as the abstract, the citation header information
for the article, the summary tables, and all graphics. Each of these content objects could
then be managed independently, providing the functionality expected when we decided
to use a content-management system.

XML and Content Management

CHAPTER 13
557

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

Note

You can learn more about the principles of XML document design in the book,
Information Architecture for the WWW (ISBN 1-56592-282-4).

The Role of Metadata (RDF and
PRISM) in Web Content
Management
A problem that everyone experiences, whether on the job or in one’s personal life, is
information overload. Let’s just consider your daily mail. If you are like me, each day
that you go to the mailbox, you cannot believe the amount of mail you receive. Usually I
pick up the mail after a hard day at work. I don’t have time to deal with each item that I

16 0672323419 CH13 3/15/04 11:21 AM Page 557

have received right at that time. So what do I do? I carefully place the mail on top of my
dining room table. By the weekend, I am suffering from information overload. There are
bills to pay, important items such as insurance policies to file, magazines that I should
read, and lots of junk mail to throw away. Fortunately, with just a few file folders, I can
divide my mail into these four categories and quickly be able to find what I want.

Now imagine the problems facing those whose job it is to create content. It might be a
magazine publisher or it might be a bank, an insurance company, or an electronics manu-
facturer. Very quickly these organizations discover the problems that information over-
load can bring. So don’t they do what I do with my mail? Simply divide the content into
neat categories and store it?

Well, the answer is, of course, that most content is far more complex than my mail.
There may be several different schemes that people could use to find the content they
need. Each piece of content has characteristics that are critical to its use and reuse. If I
am storing images, for example, I need to know not only the subject matter but also the
format and whether I have rights to use the images.

To effectively manage content, I need more than just a filing system. I need a way to
specify critical information about each item of content as well. What I need is metadata!

What Is Metadata?
One of the formal definitions of metadata is data about data. In this context, we can con-
sider metadata to be data about content. Consider an image. Data about the image is
what will enable me to discover and use the image. This data—the subject matter, the
photographer, the format, and the rights—is an example of metadata. Metadata gives us a
mechanism to associate lookup information (images about the Internet) with the content
we want to discover.

Building XML-Based Applications

PART II
558

Note

Metadata can be used to store other kinds of information than just look-up
information. For example, in a content-management system, metadata might
be used to track how many times an image has been used and where. In fact,
most content-management systems have their own internal metadata that
enables the system functionality!

Another place where metadata will be most useful is the Web. The Web is much like a
giant library. Instead of being made up of books, it is made up of resources such as e-
mail messages, images, and Web pages. Today, if you know the URL of what you want

16 0672323419 CH13 3/15/04 11:21 AM Page 558

to find, you can find it. However, if we had metadata about Web resources (much like the
metadata in a card catalog in a library) we could navigate the Web a lot more easily.

About the Resource Description Framework
The effective use of metadata among applications on the Web requires common conven-
tions about the semantics, syntax, and structure of metadata. In other words, it requires a
metadata specification standard. Such a standard must also allow for individual commu-
nities of use, to define their own semantics, or meaning, of metadata to address their par-
ticular needs.

It’s only natural that such a metadata specification was developed under the auspices
of the World Wide Web Consortium. This specification is known as the Resource
Description Framework (RDF), which is the result of a number of metadata commu-
nities bringing together their needs to provide a robust and flexible architecture for
supporting metadata on the Web. RDF is very much a collaborative work. It became a
W3C Recommendation in February 1999. An RDF Schema Model became a W3C
Recommendation in March of 2000. RDF relies on XML syntax as well as the W3C
syntax for URI.

The Resource Description Framework, as its name implies, is a framework for describing
and interchanging metadata. In particular, RDF focuses on Web resources. It should
come as no surprise that the world’s librarians had a great deal of input into the develop-
ment of RDF.

RDF Basics
RDF was designed based on the following basic concepts:

• Resource. All the world’s Web content is a resource, and a resource must have a
URI. Therefore, all the world’s Web pages, as well as individual elements within
these Web pages, are resources. A resource is the W3C home page,
http://www.w3.org/, for example.

• Property type. Resources have names and can be used as properties (for example,
subject or author). Typically, all we really care about is the name of the property
type, but a property type needs to be a resource so that it can have its own proper-
ties.

• Property. A property is the resource along with its property type and a value for
that property. For the resource http://www.idealliance.org/xmlfiles/
issue32/book.htm, the property type is subject, and the value of the property type
is XML Book Review.

XML and Content Management

CHAPTER 13
559

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

16 0672323419 CH13 3/15/04 11:21 AM Page 559

• Description. A collection of properties that describe the same resource as a
description. Taken together, the properties make up a metadata set that describes
the resource.

RDF provides a model for attaching metadata to Web resources. It also provides a syntax
so that it can be exchanged and used. That’s really all RDF provides and all RDF is. It is
simply a framework for defining metadata.

An RDF property can be represented as a directed labeled graph. Let’s refer to the prop-
erty “The subject of http://www.idealliance.org/xmlfiles/issue32/book.htm is
XML Book Review.” In Figure 13.3, you can see how resources are identified as nodes,
property types are defined as directed label arcs, and string values are quoted.

Building XML-Based Applications

PART II
560

Subject
“XML Book review”Web Resource 1

FIGURE 13.3
An example of an
RDF graph.

RDF does not come with any predefined property types or value sets of its own. The
metadata properties, property types, and values are left to the user to define according to
the function metadata is to serve. These sets of RDF metadata are called RDF vocabular-
ies. An example of an RDF vocabulary is Dublin Core. This is an initiative of the library
community to develop a simple resource description for discovery.

Note

Dublin Core is not named for Dublin, Ireland. Nor is it an acronym. Actually,
Dublin Core is named for Dublin, Ohio, home of the Online Computer Library
Center (OCLC), where the original metadata specification for library resources
was developed.

RDF is expressed in XML. Listing 13.2 represents “The subject of http://www.ideal-
liance.org/xmlfiles/issue32/book.htm is XML Book Review. The editor of
http://www.idealliance.org/xmlfiles/issue32/book.htm is Dianne Kennedy.” In
this example, we use XML namespaces to indicate the RDF namespace. We use the
IDEAlliance namespace to identify the XML Files tags unambiguously. You can see the
graph for this listing in Figure 13.4.

16 0672323419 CH13 3/15/04 11:21 AM Page 560

LISTING 13.2 Example of RDF Syntax

<?xml:namespace ns = “http://www.w3.org/RDF/RDF/” prefix =”RDF” ?>
<?xml:namespace ns = “http://idealliance.org/XMLFiles/” prefix = “XMLFiles” ?>
<RDF:RDF>
<RDF:Description RDF:HREF = “http://uri-of-Document-1”>
<XMLFiles:subject>XML Book Review</XMLFiles:subject>
<XMLFiles:publisher>IDEAlliance</ XMLFiles:publisher >
<XMLFiles:editor>Dianne Kennedy</XMLFiles:editor>

</RDF:Description>
</RDF:RDF>

XML and Content Management

CHAPTER 13
561

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

publisher

editor

subject

“IDEAlliance”

“Dianne Kennedy”

“XML Book Review”

Web Resource 1

FIGURE 13.4
An RDF graph for
a resource
description.

Why RDF and Not XML for Metadata?
XML can be used to model almost anything. It seems that we could just invent XML
tags to code metadata. So why isn’t XML the W3C recommended vehicle for metadata?

It turns out that the issue with using XML to represent metadata has to do with scalabil-
ity. Two problems exist when we try to represent metadata directly with XML according
to RDF specialists:

• Element order in an XML document is meaningful. In a metadata environment,
where all metadata properties are equal, this doesn’t make much sense. Who cares
whether the subject or the editor of an XML Files article is listed first or second.
And why take on the overhead of maintaining the correct order (XML modeling)
when it is not meaningful. This can be expensive in overhead and difficult to
implement.

• XML enables us to embed elements and entities within a description field (mixed
content). When you represent these mixed-content structures in computer memory,
you get data structures that mix hierarchical XML trees, graphs, and character
strings. These become difficult to handle when billions of metadata fields are
applied to Web resources.

Interestingly enough, even though XML by itself does not provide metadata functionality
that we require for the next generation of the Web, XML remains a necessary ingredient
for RDF interchange.

16 0672323419 CH13 3/15/04 11:21 AM Page 561

About XMP
XMP, Adobe’s eXtensible Metadata Platform, is a framework for adding metadata to
application files, databases, and content-management systems. Adobe announced XMP
as a “standard” in September of 2001. XMP is built on W3C standards but is not, itself, a
W3C standard. It is, however, an Adobe standard. As such, XMP will be implemented
across the Adobe family of products and will be intimately integrated into the PDF out-
put of Adobe publishing tools.

According to Adobe, the lack of standardized metadata has been a problem for the evolu-
tion of the Web. A standardized metadata framework is required for machines to be able
to read and understand metadata associated with content. Only when this happens can we
move toward automated content handling on the Web.

XMP is Adobe’s attempt to remedy the lack of a standardized metadata framework. XMP
relies on RDF to express metadata in XML. Within XMP, Adobe had defined its own
starter set of metadata tags called the XMP Schemas. This XMP set of metadata tags is
not a standard set of metadata tags; it is an Adobe set of metadata tags. Adobe is quick to
point out that the value of XMP is not in this XMP Schema but the fact that XMP sets up
a framework for applying metadata to content. According to Adobe, XMP can carry any
metadata vocabulary. For example, XMP can serve as a platform for PRISM metadata in
the publishing world. You can learn more about XMP at http://www.adobe.com/prod-
ucts/xmp/main.html.

About PRISM
PRISM is the Publishing Requirements for Industry Standard Metadata. It is an extensi-
ble XML metadata vocabulary designed to facilitate the multipurposing, aggregating, and
syndicating, personalizing, and postprocessing of any kind of content. PRISM is a stan-
dardized metadata vocabulary developed by publishers to describe all kinds of published
content. Examples of PRISM content types include advertisements, articles, books, cata-
logs, e-books, home pages, journals, magazines, news, interviews, and even cartoons.

Who Developed PRISM?
PRISM is hosted by IDEAlliance and sponsored by a group of companies such as
Adobe Systems, Vignette, Time Inc., McGraw-Hill, CMP, Artesia Technologies, Getty
Images, Interwoven, Kinecta, Netscape, and Quark. These companies all have a shared
business interest in creating and using a common metadata standard as a basic part of
their content infrastructures. The group consists of software developers as well as content
suppliers and consumers who are involved in content creation, consumption, manage-
ment, aggregation, and distribution, whether commercially or within intranet
and extranet frameworks.

Building XML-Based Applications

PART II
562

16 0672323419 CH13 3/15/04 11:21 AM Page 562

PRISM and Other Standards
When PRISM was developed, one of the goals was to build on existing metadata frame-
works and vocabularies. It is natural that PRISM recommends the use of both XML and
RDF as well as the Dublin Core metadata specification. It also makes extensive use of
XML namespaces as a mechanism to include these related metadata standards. You can
learn more about PRISM at http://www.prismstandard.org/.

PRISM metadata is expressed as an XML document, which begins with the standard
XML declaration:

<?xml version=”1.0”?>

A character encoding may be given if necessary. Because PRISM is an RDF vocabulary,
the next element in a PRISM document is just like the first statement of an RDF docu-
ment. The XML namespaces that you are using must be indicated as an attribute of RDF.
This is done by adding attributes beginning with xmlns:. Note that we define both the
RDF namespace and the namespace for Dublin Core because PRISM uses elements from
each. This is shown in Listing 13.3.

LISTING 13.3 PRISM Uses XML, RDF, XML Namespaces and Dublin Core as a Basis

<?xml version=”1.0” encoding=”UTF-8”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

XML and Content Management

CHAPTER 13
563

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

Tip

Namespaces are the primary extension mechanism for PRISM metadata. If you
want to add metadata fields from other metadata specifications, or even from
your own, just specify a namespace in the namespace declaration and add
metadata tags from that namespace. You can learn more about XML name-
spaces and how to use them at http://www.w3.org/TR/1999/REC-xml-names-
19990114/.

PRISM Elements
The goal of PRISM is to provide a framework for the interchange and preservation of
content and metadata. It therefore is made up of a collection of elements to describe
content and a set of controlled vocabularies listing values for the elements. The working
group has focused on defining metadata for the following purposes:

16 0672323419 CH13 3/15/04 11:21 AM Page 563

• To provide general-purpose descriptions of the content resource

• To specify the relationship of one resource to another

• To indicate rights and permissions

• To enable inline metadata within the resource itself

PRISM elements can be categorized by functional group. As you know, some PRISM
elements have been specifically defined within the PRISM specifications. Others have
been borrowed from Dublin Core metadata, see http://dublincore.org/. PRISM ele-
ments can be categorized as follows:

• General purpose. These elements, for the most part, have been borrowed from
Dublin Core. They include dc:identifier, dc:author, dc:contributor,
dc:title, dc:description, and dc:format.

• Provenance. These elements include dc:publisher, prism:distributor, and
dc:source.

• Timestamps. A number of timestamps have been developed as PRISM elements.
These include prism:creationtime, prism:pubicationtime, and prism:expire-
time.

• Subject descriptions. These elements describe the subject of a resource. These
include dc:subject, dc:description, prism:person, and prism:organization.

• Resource relationships. PRISM has added numerous metadata fields that enable us
to express relationships between content resources. These include prism:isPartOf,
prism:isBasedOn, and prism:isReferencedBy.

• Rights information. PRISM uses Dublin Core rights and has developed its own set
of rights metadata. This includes prism:copyright, prism:rightsAgent, and
prism:expirationTime.

In addition to the PRISM namespace metadata elements, PRISM has defined some spe-
cialized elements that are in specialized namespaces. These include the following:

• prl:. The prl: namespace stands for PRISM Rights Language. This set of meta-
data elements is specific to a portion of the PRISM specification known as the
rights language. Some examples of these tags are prl:industry and prl:usage.

• pim:. The pim: namespace stands for PRISM Inline Markup. These elements were
specifically designed to enable inline markup of organizations, locations, product
names, and personal names. Examples of these elements are pim:organization,
pim:location, and pim:person.

• pcv:. The pcv: namespace stands for PRISM Controlled Vocabulary. This name-
space provides a mechanism for describing and conveying all or a portion of a

Building XML-Based Applications

PART II
564

16 0672323419 CH13 3/15/04 11:21 AM Page 564

controlled vocabulary or authority file. This may be used to define entire new tax-
onomies. Examples of these metadata elements include pcv:broaderTerm,
pcv:narrowerTerm, and pcv:relatedTerm.

Using PRISM
PRISM descriptions are compliant with RDF, and they begin with the rdf:RDF element.
PRISM requires that resources have unique identifiers. In Listing 13.4, a photograph is
identified by a URI in the rdf:about attribute of the rdf:Description element. The
dc:identifier element can be used for other identifiers, such as International Standard
Book Numbers (ISBNs) or system-specific identifiers. In this example, the dc:identi-
fier element contains an asset ID for Cameramaster’s asset management system. In this
simple example of PRISM, only the basic Dublin Core elements dc:description,
dc:title, dc:creator, dc:contributor, and dc:format are used.

LISTING 13.4 Simple PRISM Description

<?xml version=”1.0” encoding=”UTF-8”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>
<rdf:Description rdf:about=”http://cameramasters.com/2001/08/IndianaDunes.jpg”>
<dc:identifier rdf:resource=”http://cameramasters.com/content/042249X”/>
<dc:description>Photograph taken at 2:00 PM on
➥ the beach at Indiana Dunes State Park
</dc:description>
<dc:title>Indiana Beach in Summer</dc:title>
<dc:creator>Darold Vredberg</dc:creator>
<dc:contributor>Michelle Leigh, lighting</dc:contributor>
<dc:format>image/tiff</dc:format>
</rdf:Description>
</rdf:RDF>

A PRISM description can either be simple or quite complex. Like determining the level
of XML tagging in content, one must ultimately consider the business application of
PRISM to decide how much metadata should be attached to any information asset. If, for
example, you have rights to all the content you want to track and manage, then including
complex rights metadata in your PRISM description would be inappropriate. If, however,
you routinely make use of content that has varying rights and permissions, specifying
this data in your PRISM description is critical.

Listing 13.5 shows a more complex use of PRISM metadata. Here, we have expanded
beyond the Dublin Core metadata set and are using PRISM metadata elements to
indicate that the photo is part of an article as well as to indicate the rights ownership
and management.

XML and Content Management

CHAPTER 13
565

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

16 0672323419 CH13 3/15/04 11:21 AM Page 565

LISTING 13.5 Simple PRISM Description

<?xml version=”1.0” encoding=”UTF-8”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>
<rdf:Description rdf:about=”http://cameramasters.com/2001/08/IndianaDunes.jpg”
➥ xmlns:pcv=”http://prismstandard.org/namespaces/pcv/1.0/”>
<dc:identifier rdf:resource=”http://cameramasters.com/content/042249X”/>
<dc:description>Photograph taken at 2:00 PM
➥ on the beach at Indiana Dunes State Park
</dc:description>
<prism:isPartOf rdf:resource=
➥ ”http://IndianaHome.com/2000/08/IndianaArticle.xml”/>
<dc:title>Indiana Beach in Summer</dc:title>
<dc:creator>Darold Vredberg</dc:creator>
<dc:contributor>Michelle Leigh, lighting</dc:contributor>
<dc:format>image/tiff</dc:format>
<prism:copyright>Copyright 2001, Indiana Home Publications. All
rights reserved.</prism:copyright>
<prism:rightsAgent>PhotoRights, Munster, IN</prism:rightsAgent>
</rdf:Description>
</rdf:RDF>

Web Content Syndication with
RSS and ICE
Not only does metadata play a critical role in the content-repository phase of content
management, but it plays an important role in the content-delivery phase as well. Content
delivery on the Web is often referred to as syndication.

In its simplest sense, syndication is the delivery of content from a content provider, or
syndicator, to a content consumer, or subscriber. Syndication may be a one-to-one rela-
tionship, but typically is a one-to-many relationship.

In the early days, syndicated content was distributed by wire services. Today,
the Web makes a perfect channel for almost instantaneous syndication for all kinds
of Web content.

Building XML-Based Applications

PART II
566

Note

Many early Web syndication models were built on custom software platforms.
But content syndicators soon found that ad-hoc syndication mechanisms were
not only expensive to develop but were more expensive to maintain and extend

16 0672323419 CH13 3/15/04 11:21 AM Page 566

Two standard content-syndication mechanisms have emerged since the late 1990s to
enable automated syndication on the Web. The first, RSS, emerged from the open-source
community as a simple mechanism to enable the syndication of headlines. This light-
weight syndication protocol is simple to use and inexpensive to implement. A second,
more robust syndication protocol, Information and Content Exchange (ICE), was devel-
oped by industry content-providers and software vendors. ICE was developed to auto-
mate the negotiation of subscription characteristics and to address the need to automate
the scheduled, reliable, secure redistribution of any content for publishers and for non-
commercial content providers.

RSS Content Syndication
RSS is a number of things to a number of different communities. RSS is an XML
vocabulary for describing a Web site that happens to be ideal for lightweight content
syndication. Today, RSS is one of the most widely used Web site XML applications.
Its popularity and wide use has uncovered utility in many more scenarios than originally
was anticipated by its creators. Therefore, RSS can also be thought of as a portal
content language, as a metadata syndication framework, and even as a content
syndication system.

You can see the model for RSS in Figure 13.5. Content providers embed RSS into their
HTML pages. These pointers are aggregated and then made available to a larger audience
through the aggregator portal.

XML and Content Management

CHAPTER 13
567

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

over time. Syndicators were limited by ad-hoc syndication systems because cus-
tom development was required for each subscriber added. Their syndication
network could not grow and be profitable following the ad-hoc model.

Lack of a standard Web-based syndication mechanism was troublesome for
those who wanted to aggregate content on Web sites or portals as well.
Aggregators found that they might need to have to implement a different con-
tent-handling mechanism for each relationship with a content syndicator that
they wanted to establish. Again, this was costly and did not enable aggregra-
tors to add or vary the content on their portals in an inexpensive or flexibly
fashion.

16 0672323419 CH13 3/15/04 11:21 AM Page 567

History of RSS
RSS was originally introduced in 1999 by Netscape as a channel description frame-
work for its My Netscape Network (MNN) portal (http://dmoz.org/Netscape/
My_Netscape_Network/). RSS is simply an XML application that provides a novel con-
tent-gathering mechanism that’s beneficial to Netscape, those providing content, and
those using the content on the Web. RSS enables content gathering by providing a simple
“snapshot in a document” for Web sites. This document enables Web sites to acquire an
audience through the presence of their content on the My Netscape portal. Also, RSS
gives users a centralized location into which content from their favorite Web sites flow to
enable a one-stop reading experience.

Building XML-Based Applications

PART II
568

(Syndicator)

Content Provider

Web Surfer

HTML

RSS

Web Portal

(Aggregator)

FIGURE 13.5
The RSS content
syndication
model.

Note

If you noticed that no acronym was given for RSS, that was not an oversight.
It is intentional. According to UserLand, one of the open-source developers
of RSS 0.91, “There is no consensus on what RSS stands for, so it’s not an
acronym, it’s a name.”

However, because we work in a world of acronyms, numerous ones have been
attached to RSS. The acronyms most commonly associated with RSS include the
following:

16 0672323419 CH13 3/15/04 11:21 AM Page 568

As a result of My Netscape Network, users soon found that RSS could be used as an
XML-based lightweight syndication format for headlines. Using RSS, headlines could be
taken outside the My Netscape Network site and used in other RSS-based portals.
Examples such as xmlTree (http://www.xmltree.com) began to cater to general subject
markets and to specialized vertical markets as well. RSS gained grassroots acceptance
and quickly became a viable option to ad-hoc syndication systems being developed by
commercial interests. RSS adoption has flourished because it provides for simple syndi-
cation without unnecessary complexity or bulk. Today, RSS feeds carry various content
types to thousands of Web sites, including CNET, CNN, Disney, Forbes, Motley Fool,
Wired, Red Herring, Salon, Slashdot, and ZDNet.

RSS Registries
In order for RSS to work, a mechanism for finding RSS feeds was needed. One solution
is the RSS registry. The first step toward establishing an RSS registry was Internet
Alchemy’s OCS format. This format provides a way of listing RSS channels that have
been made available on a Web site. As the number of RSS feeds grew, the next step was
the establishment of registries. XmlTree (http://www.xmltree.com) is a registry that
provides a facility for RSS content to be registered and classified for end use. UserLand
(http://my.userland.com) provides a registry facility as well.

RSS Shift Toward Syndication
If My Netscape Network was the first RSS portal, UserLand was the first RSS
aggregator. The main difference between My Netscape Network and UserLand is
archiving. My Netscape Network displays only the latest version of RSS channel feeds.
UserLand archives snapshots of content on a hourly basis. The revolutionary advance
that aggregators brought was the ability to decouple items from the parent channels. This
means that RSS can be presented as the intersection of simultaneous feeds from disparate
sources to focus on timeliness, not on the channel. Meerkat (http://www.oreillynet.
com/meerkat), an open wire service, presents items in reverse chronological order, but
also allows for filtering, grouping, sharing, and searching.

XML and Content Management

CHAPTER 13
569

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

• R(DF) Site Summary

• Rich Site Summary

• Really Simple Syndication

Rich Site Summary is the acronym favored by the RSS-DEV community.

16 0672323419 CH13 3/15/04 11:21 AM Page 569

The real shift of RSS toward syndication began when RSS 0.91 was released. In this ver-
sion, RSS dropped RDF and became a simple XML vocabulary. RSS 0.91 added new
item-level <description> tags that enabled RSS to clearly move into content syndica-
tion. The description field had a 500-character constraint. This enabled RSS to carry
more than a headline but still limited its ability to carry heavyweight content.

RSS V1.0
As use of RSS increased, the user audience began to voice a need for enhancements. The
item-level title and description elements were being overloaded with metadata and
HTML, as some tried to use RSS for more than what it was intended. Some people
began to insert unofficial ad-hoc elements to augment the metadata facilities within RSS
0.91. Therefore, we see the use of elements such as <category>, <date>, and <author>.
The evolution of RSS seemed to be inevitable. RSS needed a richer metadata framework
and a way to become extensible. But it also needed to be backward compatible so that
the entrenched user base could continue to work with RSS. The issue was how to make
this happen in a unified fashion.

It turns out that a new group, RSS-DEV, began to work on a new version of RSS that
met its requirements. This version of RSS moved ahead to include namespaces and bring
RSS back to RDF for metadata specification. RSS-DEV released RSS 1.0 in December
of 2000.

The original version of RSS (RSS 0.9+) is currently being maintained and advanced by
the open-source community working with UserLand. One of the goals of the RSS 0.9+
group is to advance RSS capabilities while maintaining its simplicity. According to Dave
Winer of UserLand, “Today, RSS is simple, largely because it only builds on XML 1.0
and does not use namespaces or schemas, and it isn’t a dialect of RDF. There’s a logical
route forward for RSS that says it should adapt to include all these concepts, but in doing
so it would become vastly more complex, and, at the content provider level, would buy
us almost nothing for the added complexity.”

This leaves us with a lack of clarity about what RSS is and which version of RSS we
should use. The reality is that some sites have a preference for one RSS version over the
other. Other sites support both versions of RSS. This is not too much different from the
browser wars between Netscape and Microsoft—and the implications for those trying to
use the “standard” are much the same! There has been talk of giving new names for each
different flavor of RSS, retaining RSS for 0.9+ and earlier, and giving RSS 1.0 a new
name. To date, there has not even been consensus among the communities on the name,
so for the moment, everyone continues to use “RSS” for both flavors of RSS.

Building XML-Based Applications

PART II
570

16 0672323419 CH13 3/15/04 11:21 AM Page 570

Using RSS
Three easy steps are required to use RSS on your Web site:

1. Create and maintain RSS files for your Web site.

2. Register your RSS files with an RSS aggregator.

3. Publish relevant RSS content from others on your site.

You’ll learn more about using RSS in this section.

Introduction to RSS Elements
Because RSS is an XML vocabulary, it follows the XML well-formedness rule that all
RSS elements must nest inside one root element. For RSS, that element is <rss>. RSS
has a single, required child element, <channel>. See Listing 13.6 for the XML element
declaration for RSS.

LISTING 13.6 Root Element Declaration in RSS .91 DTD

<!ELEMENT rss (channel)>
<!ATTLIST rss

version CDATA #REQUIRED><!--version must be filled in here!> -->

XML and Content Management

CHAPTER 13
571

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

Tip

If you want to access free software tools for RSS, you might consider joining the
RSS-DEV group at Yahoogroups. You can link to sample content for this group
at http://www.yahoogroups.com/groups/rss-dev/message/15.

Caution

Because there are two very different versions of RSS (RSS 0.9+ and RSS 1.0), it is
most important to specify the RSS version number as an attribute of <RSS>.

RSS is made up a rather simple set of elements and subelements. The basic layout of the
RSS file is as follows:

• XML declaration

• RSS root element

16 0672323419 CH13 3/15/04 11:21 AM Page 571

• Channel metadata

• Image listings (optional, you can list several)

• Item listings (one or more)

The channel element is made up of a number of channel metadata fields. In RSS .91,
these fields are predefined, and hence not extensible. Some fields within <channel> are
optional and others are required. Here’s a list of these fields:

• title. The title of the RSS channel. The title is how people identify your service.
The title of your channel should be the same as the title of your HTML Web site.
The maximum length is 100 characters. This field is required.

• link. A URL pointing to the Web site named in the <title> element. The maxi-
mum length is 500 characters. This field is required.

• description. A phrase that describes your channel—your channel’s positioning
statement. The maximum length is 500 characters. This field is required.

• language. Indicates the content language of the channel. This is intended to allow
aggregators to group all Spanish language sites, for example, on a single page. This
field is required (enumerated value selection in RSS specification).

• copyright. The copyright notice for content. The maximum length is 100. This
field is optional.

• managingEditor. The e-mail address of the managing editor of the channel. The
maximum length is 100. This field is optional.

• webmaster. The e-mail address of the Webmaster of the channel. The maximum
length is 100. This field is optional.

• rating. The PICS rating for the channel. The maximum length is 500. This field is
optional.

• pubDate. The publication date of the channel. It must conform to the date/time
standard (RFC 822). This field is optional.

• lastBuildDate. The last time the content of the channel was updated (RFC 822).
This field is optional.

• docs. The URL for the documentation for the coding of the RSS site. This field is
optional.

• textInput. Contains the required subelements <title>, <link>, <description>,
and <language> for each text input field. This field is optional.

• skipDays. Contains any number of <day> subelements, such as
<day>Friday</day>, that indicate days on which aggregrators may not read this
channel.

Building XML-Based Applications

PART II
572

16 0672323419 CH13 3/15/04 11:21 AM Page 572

• skipHours. Contains any number of <hour> subelements, such as <hour>14
</hour>, that indicate hours in GMT on which aggregrators may not read this
channel.

XML and Content Management

CHAPTER 13
573

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

Note

PICS stands for Platform for Internet Content Selection. This is a W3C
Specification that enables labels (metadata) to be associated with Internet
content. You can learn more about PICS at http://www.w3.org/PICS/.

In addition to the elements that give aggregrators information about the channel, the
channel element contains one or more <item> elements. Each <item> element is an item
of content, such as a news story. The <item> element is made up of three required
subelements designed to assist aggregrators.

• title. The title of the item. The title is how people identify the content within the
channel. The maximum length is 100 characters.

• link. A URL pointing to the Web page named in the item <title>. The maximum
length is 500 characters.

• description. A phrase that describes the item. The maximum length is 500
characters.

Finally, a channel may contain one or more images. The images contain the following
subelements, which enable aggregrators to locate and use images within the channel:

• title. The title of the image. The title is how people identify image. The maxi-
mum length is 100 characters. Required.

• url. A URL pointing to the image named in the <title> element. The maximum
length is 500 characters. Required.

• link. A URL pointing to the site where the image named in the <title> element
can be found. In practice, this should be the same as the URL of the channel. The
maximum length is 500 characters. Required.

• description. A phrase that describes the image. The maximum length is 500 char-
acters. Optional.

• height. Indicates the height of the image in pixels. The maximum value is 400; the
default value is 31. Optional.

• width. Indicates the width of the image in pixels. The maximum value is 144; the
default value is 88. Optional.

16 0672323419 CH13 3/15/04 11:21 AM Page 573

Creating Your Own RSS File
One of the easiest ways to create an RSS file for your Web content is to look at an exam-
ple and modify it to fit your needs. Therefore, let’s look at Listing 13.7.

LISTING 13.7 A Simple RSS File

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<rss version=”0.91”>
<channel>
<title>IDEAlliance</title>
<link>http://idealliance.org</link>
<description>XML Resources, XML Conferences,

➥ XML Tutorials, User-Driven XML Standards,
➥ XML Files Newsletter, XML Users Association
➥ </description>

<language>us-en</language>
<copyright>Copyright 2001, idealliance.org.</copyright>
<managingEditor>melledge@idealliance.org</managingEditor>
<webMaster>webmaster@idealliance.org</webMaster>

<item>
<title>XML Files: Monthly Newsletter</title>
<link>http://www.idealliance.org/whats_xml/whats_xml_xmlfiles.htm/</link>
<description>Monthly XML Newsletter. Highlights

➥ W3C standards development for the month,
➥ XML-related events, XML Book Review

➥ </description>
</item>
<item>
<title>XML Roadmap</title>
<link>http://www.idealliance.org/whats_xml/xmlroadmap/TOC/toc.htm</link>
<description>A roadmap to all XML related

➥ standards and vocabularies, completely
➥ indexed and hyperlinked.
➥ </description>

</item>
</channel>

</rss>

This RSS file is an example of RSS 0.91. It describes some content on the
IDEAlliance.org Web site. One image and two items have been included in the

Building XML-Based Applications

PART II
574

16 0672323419 CH13 3/15/04 11:21 AM Page 574

IDEAlliance RSS channel. The first item makes the XML Files monthly newsletter avail-
able for syndication. The second item makes the XML Roadmap available for syndica-
tion. Of course, you may add as many items and images as you want when you modify
this RSS file for your own uses.

XML and Content Management

CHAPTER 13
575

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

Note

IDEAlliance, or International Digital Enterprise Alliance, is a member organiza-
tion that promotes the development and use of user-driven standards for the
publishing industry. IDEAlliance (http://www.idealliance.org) is the host
organization for numerous XML-based e-business standards for publishing. In
addition, IDEAlliance serves as the host organization for both the ICE and PRISM
specifications.

Publishing Your RSS File
When you have created your own RSS file, put it somewhere on your Web server.
Remember that the value of your RSS file is only as good at the information in the file
itself. This means that you should update your RSS file every time you change the con-
tent on your Web site or when your Web site layout changes. If the RSS file is outdated,
it is of little value. Once you have created a baseline RSS file for your Web site, you may
want to consider writing scripts that will “read” your Web site and automatically update
fields within your RSS file.

Registering Your RSS File with RSS Aggregators
You have now created an RSS file and placed it on your site. How can you let others
know that you are making content available to them? Well, of course, you can notify oth-
ers using e-mail and listservs. However, the best approach is to register with one of the
services that posts RSS directories.

Each RSS directory has a slightly different method for registering. Some are automated,
and others are not. The major RSS directories include (in alphabetical order) http://
www.MoreOver.com, http://dmoz.org/Netscape/My_Netscape_Network, http://
My.UserLand.com, and http://www.xmlTree.com.

Registering with MoreOver.com
MoreOver.com offers a wide array of possibilities for content syndication. You can add
news channels to your own sites by stepping through a wizard on the MoreOver Web
site. You just have to select channels, specify their visual appearance, and the code will
be mailed to you for inclusion on your Web site.

16 0672323419 CH13 3/15/04 11:21 AM Page 575

Getting your content listed with MoreOver is time consuming because it does not have
an automated process. To register content, just send an e-mail to newssource@moreover.
com that includes a pointer to your RSS file. MoreOver evaluates each listing personally.
Your addition to MoreOver may take as long as three months, so be patient.

Registering with My Netscape
My Netscape publishes a huge collection of channels from organizations and individuals.
Examples of channels offered through My Netscape include the Weather Channel and
Nasdaq. My Netscape offers no support for publishing its channels anywhere else than
my.netscape.com.

In order to get your channel included in the listings at my.netscape.com, you must first
register with Netscape’s Netcenter at http://www.netscape.com. Only registered mem-
bers can submit a channel. Also, each registered member can submit only one RSS file of
8KB or less in size. You must have a valid e-mail address associated with your member-
ship in order to register your RSS channel.

You can then register at http://my.netscape.com. To register, you must read and agree
to the terms of use, enter the full URL of your RSS 0.91 file, and select an update fre-
quency for your channel (the interval at which you would like Netscape to retrieve your
RSS file). When My Netscape retrieves your RSS file, it will send you an e-mail to let
you know that you are now listed. It will also provide you with an “add this site” button
for your site that enables others to add your content to their site.

Registering with UserLand
UserLand also enables users to submit their RSS channels. UserLand divides between
frontend and backend: the Web interface for reading news is the frontend, whereas the
backend offers the same content in various formats, over different protocols. For exam-
ple, content may be XML offered over SOAP.

UserLand uses an aggregator tool to update its RSS listings. To list your channel, you
must first go to http://aggregator.userland.com and register. The UserLand aggrega-
tor reads all the registered XML files every hour and picks up all new items. It flows the
items out to the affiliate sites using XML-RPC.

Publishing RSS Content from Others on Your Site
Now that you have made your content available to others using RSS, you may want to
add content from the outside to your own Web site.

Building XML-Based Applications

PART II
576

16 0672323419 CH13 3/15/04 11:21 AM Page 576

My Netscape will be of limited use here. The channels on My Netscape are designed for
use on your own personalized interface at http://my.netscape.com. There, you can
build and customize your own page. But that is really the extent of this use of RSS.

Options for including content from UserLand are much more viable. Here, you will want
to go to http://backend.userland.com. Backend is an open technology that enables
you to build your own applications based on its content flow. Most content is archived in
XML form and is publicly accessible through HTTP.

MoreOver.com currently has over 250 publicly available free news categories. The
headlines of these free categories can be read at http://www.MoreOver.com. MoreOver
harvests news headline links from 1,500 online news sources and uses both human-
and computer-editing to produce the newsfeeds in various formats, such as Java-
Script and XML.

Content Syndication Using ICE
RSS is a simple mechanism for enabling the syndication of lightweight content. RSS was
designed to be simple to use and inexpensive to implement. Although RSS has proven
quite useful for the syndication of free content, RSS remains limited in its ability to
enforce business rules in the content syndication environment. To fill this role, a second,
more robust syndication protocol, Information and Content Exchange (ICE), was devel-
oped by industry content providers and software vendors. ICE was developed to auto-
mate the negotiation of subscription characteristics and to address the need to automate
scheduled, reliable, secure redistribution of any content for publishers and for non-com-
mercial content providers.

The History of ICE
On October 27, 1998, a press summit held in San Francisco announced the completion of
a new XML-based Web protocol called ICE. On October 28, W3C acknowledged the
submission of a Note on ICE. Today, the ICE protocol stands at version 1.1, and work on
a Web services version of ICE—ICE 2.0—has begun. ICE was initially designed to meet
the syndication requirements of Web content providers of all kinds. Today, ICE is impor-
tant to anyone who wants to distribute information on the Web according to controlled
business rules. ICE has been incorporated into many products, including Vignette,
Kinecta, Oracle, Interwoven, 3Path, HP Bluestone, and Active Data Exchange.

ICE provides support for the syndication process. The theory behind ICE is that all
online businesses have a syndication problem. Here, syndication is defined in a much
broader sense than just the distribution of published content. Certainly publishers want a
standard way to establish a reliable syndication business process. However, the truth is

XML and Content Management

CHAPTER 13
577

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

16 0672323419 CH13 3/15/04 11:21 AM Page 577

that all business partners need a reliable and accountable mechanism to exchange infor-
mation on a routine basis. What publishers as well as those involved in e-business must
do is establish online, networked information-based partnerships. Today, this process is
often ad hoc, fragile, error prone, and expensive. This cannot prevail as the predominant
Web model for syndication.

ICE provides us with a standard model that can be automated to support syndication for
all. The importance of adopting a standard interchange mechanism is that it will lower
costs of entry by eliminating the requirement to write customized scripts for each busi-
ness partner that is added to the value chain. This, in turn, will increase opportunity by
enabling a quick, inexpensive, and standard way to add new trading partners. The exis-
tence of a standard format for interoperating between business partners is critical.

ICE is not a file format but rather a bidirectional protocol designed specifically to sup-
port content dissemination on the Web. New opportunities created by ICE include the
following:

• The ability for publishers to generate new revenue streams from existing content

• The ability to lower cost of content exchange among networked trading partners

• The ability to expand distribution of information (increased market share and
increased revenue)

• The ability to create Internet Value Networks, not islands of information

ICE Authoring Group
The initial members of the ICE Authoring Group were Web pioneers who recognized
that they needed a standard protocol for interoperating. These pioneers included Con
O’Connell, Neil Webber, and Brad Husick from Vignette, Laird Popkin from News
America Digital Publishing, Rick Levine from Sun Microsystems, Doug Bayer from
Microsoft Corporation, Jay Brodsky from Chicago Tribune Media Services, Bruce Hunt
of Adobe Systems, Andy Werth from CNET, John Petrone from Preview Travel, Gord
Larose from ChannelWare, and Phil Gibson from National Semi-Conductor. The compa-
nies that developed ICE were evenly split between software vendors and users of tech-
nology, ensuring that it was a standard that met real user requirements. ICE is therefore
known as a user-driven technology standard. The ICE Authoring Group and all ICE
activities are hosted by IDEAlliance, the International Digital Enterprise Alliance.
IDEAlliance provides administrative support for the group and plays a major role in
helping to promote the adoption of the standard at conferences and summits.

You can learn more about ICE at its Web site, http://www.icestandard.org.

Building XML-Based Applications

PART II
578

16 0672323419 CH13 3/15/04 11:21 AM Page 578

The ICE Syndication Model
The ICE syndication model differs from the RSS syndication model because RSS
enables content providers to make their content free for use across the Web by anyone.
However, ICE is specifically designed to enable the managed, reliable, scheduled deliv-
ery of content in a business environment. RSS assumes that those using the content may
be unknown to the content provider. ICE, on the other hand, assumes that a business rela-
tionship has been established before ICE transactions begin. The business agreement can
involve personal discussions, legal review, and contracts, just as any business agreement
does. ICE transactions begin only after the business agreement has been established.

ICE Terminology
Before we begin to consider a step-by-step example to illustrate the ICE syndication
model, it will be helpful to review a few definitions:

• Syndicator. A content provider or aggregator. A content distributor.

• Subscriber. A content consumer or receiver.

• Subscription. An agreement between a subscriber and a syndicator for the delivery
of content according to the delivery policy and other parameters in the agreement.

• Catalog. A listing of ICE offerings. This is the listing of all content being offered
for subscriptions and the delivery terms for the content.

• ICE offer. A particular subscription offering found within the ICE catalog.

• Delivery policy. The terms of delivery for ICE content. The delivery policy can
include start date, stop date, mode (push or pull), delivery days, delivery times,
update mode, and delivery URL.

• Collection. The current content of a subscription.

XML and Content Management

CHAPTER 13
579

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

Caution

The ICE protocol manages and automates syndication relationships and the
managed, scheduled transfer of content. ICE should not be confused with
PRISM. They are not the same. PRISM provides an industry-standard metadata
vocabulary to describe content assets. This vocabulary can work with ICE to
automate content reuse and syndication processes, but it is not a syndication
protocol. PRISM is a discovery mechanism and enables us to select content that
will be syndicated using ICE. There is a natural synergy between ICE and PRISM.
ICE provides the protocol for syndication processes, and PRISM provides a
description of the resource being syndicated.

16 0672323419 CH13 3/15/04 11:21 AM Page 579

• ICE package. A delivery instance of commands to update a collection such as the
addition of content items.

• ICE payload. The XML document used by ICE to carry protocol information.
Examples include requests for packages, catalogs of subscription offers, usage
logs, and other management information.

ICE Usage Example
ICE is an XML protocol that defines the business rules and processes needed for reliable
content syndication among Web servers. Currently ICE uses HTTP as a transport layer.
ICE messages, coded in XML, always come in request/response pairs.

Two parties (Web servers) are involved in ICE transactions. The first is the syndicator.
The syndicator is the party that provides content—either its own or content it has aggre-
gated from other sources. The second party in ICE transactions is the subscriber. The
subscriber is the one who wants data from the syndicator. In ICE, certain messages are
reserved for the syndicator. Other messages are reserved for the subscriber—and some
messages can be used by either party.

Let’s look at a typical ICE scenario so you can follow the steps in the ICE syndication
process. In this scenario, a business relationship is established between the syndicator
and the subscriber. This process is done in person or by telephone. The subscriber
provides the syndicator with an identifier that will be used as the basis for automated
ICE transactions.

The next step is for the subscriber to select subscription content. The subscriber sends a
message to request a catalog that lists all content offers using the ice-get-catalog
request. Listing 13.8 shows the ice-get-catalog request message in XML.

LISTING 13.8 An ice-get-catalog Request

<?xml version=”1.0”?>
<!DOCTYPE ice-payload SYSTEM “http://www.icestandard.org/dtds/ICE1_1.dtd”>
<ice-payload payload-id=”PL-2000-08-24T22:10:33.901-DKennedy-423”

timestamp=”22:10:33,741” ice.version=”1.1”>
<ice-header>

<ice-sender sender-id=”4af37b30-2c35-11d2-be4a-204c4f4f5020”
name=”D Kennedy “ role=”subscriber”/>

<ice-user-agent>
IceBlock Systems ICE Processor, V7.0

</ice-user-agent>
</ice-header>
<ice-request request-id=”2000-08-24T22:10:33_RQ_DKennedyl_1888”>

<ice-get-catalog/>
</ice-request>

</ice-payload>

Building XML-Based Applications

PART II
580

16 0672323419 CH13 3/15/04 11:21 AM Page 580

At this point, the syndicator responds by delivering a catalog to the subscriber. Listing
13.9 shows the ice-response message in XML.

LISTING 13.9 ICE Catalog Response

<?xml version=”1.0” ?>
<!DOCTYPE ice-payload SYSTEM “http://www.icestandard.org/dtds/ICE1_1.dtd”>
<ice-payload payload-id=”PL-2000-08-24T22:10:45-XMLFiles-2761”

timestamp=”22:10:45,321”
location=”xmlfiles.idealliance.org”
ice.version=”1.1”>

<ice-header >
<ice-sender sender-id=”4a2180c9-9435-d00f-9317-204d974e3410”

name=”IDEAlliance” role=”syndicator”/>
<ice-user-agent>
Northstar Protocols ICE Processor, V17

</ice-user-agent>
</ice-header>
<ice-response response-id=”RSP-2000-07-21T02:03:45-XMLFiles-9876”>

<ice-code numeric=”200”
phrase=”OK”
message-id=”REQ-2000-07-21T02:02:23-DKennedy-345”/>

</ice-response>
<ice-catalog name=”XML Files 2001 Newsletters“

url=”http://xmlfiles.idealliance.org/offers/xmlfiles.html”>
<ice-contact name=”XML Files“>

For information please contact
Catalog Offers: Dianne Kennedy, 650-555-1212
Technical Support: David Steinhardt, 650-555-1313

</ice-contact>
<ice-offer product-name=”XMLFiles 2001 Newsletter”

offer-id=”XMLFiles-2001-V1-R1”
subscription-id=”ICE-NEW-SUBSCRIPTION”
expiration-date=”2001-12-30”
quantity=”12”>

<ice-delivery-policy stopdate=”2002-01-01”>
<ice-delivery-rule mode=”pull”

max-num-updates=”24”
min-num-updates=”12”
max-update-interval=”P2678400S”
min-update-interval=”P43200S”/>

<!-- max-num-updates is two per month,
min-num-updates is 12 per year,
max-update-interval is 31 days,
min-update-interval is 12 hours -->

</ice-delivery-policy>
</ice-offer>

</ice-catalog>
</ice-payload>

XML and Content Management

CHAPTER 13
581

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

16 0672323419 CH13 3/15/04 11:21 AM Page 581

ICE has functions that will enable the automated negotiations of any ICE offer. Suppose,
for example, an offer in the catalog is the content that the subscriber wants, but the deliv-
ery policy is not acceptable. The subscriber could use ICE messages to negotiate accept-
able delivery parameters.

When the subscriber is satisfied with the offer, acceptance for the offer is sent to the syn-
dicator. The syndicator will then verify that it accepts the subscription and provides the
subscriber with a subscription ID.

The next step is for the subscriber to request initial subscription content. The subscriber
uses ice-get-package with the current-state=”ICE-INITIAL” message (see Listing
13.10). The syndicator will provide the initial content for the subscription according to
the delivery policy for the subscription in response to this request.

LISTING 13.10 Example of an ice-get-package Message

<?xml version=”1.0”?>
<!DOCTYPE ice-payload SYSTEM “http://www.icestandard.org/dtds/ICE1_1.dtd”>
<ice-payload payload-id=”PL-2000-08-24T22:10:33.901-DKennedy-423”

timestamp=”22:10:33,741” ice.version=”1.1”>
<ice-header>

<ice-sender sender-id=”4af37b30-2c35-11d2-be4a-204c4f4f5020”
name=”D Kennedy “ role=”subscriber”/>

<ice-user-agent>
IceBlock Systems ICE Processor, V7.0

</ice-user-agent>
</ice-header>
<ice-request request-id=”2000-08-24T22:10:33_RQ_DKennedyl_1888”>

<ice-get-package current-state=”ICE-INITIAL” subscription-id=”1”/>
</ice-request>

</ice-payload>

Following the initial delivery of subscription content, new content will be delivered from
the syndicator to the subscriber according to the delivery policy of the subscription. The
content is contained within the ice-payload as an ice-package made up of one or more
ice-items. The ICE message may include any kind of content directly in the message
(that is, HTML, database records, XML, graphics, PDF, and so on). Typically, though,
the ICE item just sends a URL where the content is made available. The ICE message
itself can be thought of as an envelope for content and data about the content delivery.
When the ice message delivers content, it is always as an ice-response. You can see this
message flow in Figure 13.6.

Building XML-Based Applications

PART II
582

16 0672323419 CH13 3/15/04 11:21 AM Page 582

ICE Error Messages
One of the features of ICE that provides a great business advantage is the reliability of
content delivery. The ICE protocol is designed so that every request must have a match-
ing response. It is these request/response message pairs that enable us to verify and log
the receipt of content. The ICE specification has built in a number of ICE error message
codes that specifically support automation of syndication. These codes are used within
the ice-code element. Listing 13.11 shows how ice-code is used to indicate an error.

LISTING 13.11 Example of ice-code with Error Indication

<ice-response response-id=”REQ-2000-07-21T02:03:00-DKennedy-1873”>
<ice-code numeric=”331”

phrase=”Failure fetching external data”
message-id=”REQ-2000-07-21T02:02:23-XMLFiles-2397”>

Unable to obtain content from URL:
http://xmlfiles.idealliance.org/xmlfiles/xmlfiles2001.htm

</ice-code>
</ice-response>

XML and Content Management

CHAPTER 13
583

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

SubscriberSyndicator

Establish Business Agreement

Requests Subscripton Catalog

Sends Subscription Offer Catalog

Syndicator delivers content according to
delivery policy for the subscription

Subscriber Subscribes to Offer

Acknowledge Receipt

Syndicator Accepts Subscription

Syndicator’s
Content Management

System

Subscriber’s
Content Management

System

FIGURE 13.6
ICE enables mes-
saging between
the syndicator and
subscriber.

16 0672323419 CH13 3/15/04 11:21 AM Page 583

The following list shows some examples of ICE messages. The protocol has been devel-
oped based on use-case scenarios. Error messages are designed from these scenarios.
Here’s the list:

• 200 – OK. The operation successfully completed.

• 201 – Confirmed. The subscriber has successfully processed the package.

• 331 – Failure Fetching External Data.

• 401 – Incomplete/Cannot Parse. You couldn’t even get the parser started!

• 402 – Not Well Formed XML. Your XML tags didn’t balance.

• 404 – Broken Link. Content is not available at the specified link.

• 405 – Unrecognized Sender. Who are you?

• 406 – Unrecognized Subscription. You have to have a valid subscription ID.

• 407 – Unrecognized Operation. An operation in the package was not one that you
recognized.

• 408 – Unrecognized Operation Arguments. The attributes on the element were
unknown.

• 430 – Not Confirmed. A generic error indicating that the subscriber didn’t complete
processing.

• 501 – Temporary Responder Error. An “I’m too busy right now to do it” message.

• 603 – No More Confirmations To Send. When you’ve confirmed everything,
respond with this.

Building XML-Based Applications

PART II
584

Note

The ICE codes fall into seven categories. The 200 series codes are success codes,
such as OK. The 300 series codes are payload-level status codes. The 400 series
codes are request-level status codes. The 500 series codes are operational failure
codes, and the 600 series codes are pending state codes, where the subscriber is
expected to send something to the syndicator, or vice versa. The 700 series
codes are local use codes. These codes are reserved for use by the local ICE
implementation and must not ever be sent to another ICE processor over the
transport medium. Finally, the 900 series codes are experimental codes that
enable ICE implementers to experiment new facilities without fear of collision
with future versions of ICE codes.

16 0672323419 CH13 3/15/04 11:21 AM Page 584

ICE clearly contains many more features and imposes many disciplines on the process of
content syndication. Therefore, one may make the false assumption that using ICE is a
complex and expensive undertaking. It turns out that there are different levels of ICE
implementation and ICE conformance. However, actually setting up minimal ICE imple-
mentation is easy for anyone.

Simple ICE Syndication
Very simple ICE implementations can provide a basic ability to syndicate content, just as
RSS can. You would make syndicated material available in this way by following these steps:

1. Create content that you wish to syndicate. Place it on your Web site so that it will
be available. Suppose you put the new issue of XML Files at the following URL:

http://www.idealliance.org/xmlfiles/issue30/default.htm

2. Construct the following ICE message that describes the location of the content to
be syndicated:
<?xml version=”1.0”?>
<!DOCTYPE ice-package SYSTEM “http://www.icestandard.org/dtds/ICE1_1.dtd”>
<ice-package>
<ice-item-ref url=”http://www.idealliance.org/xmlfiles/issue30/default.htm”
item-id=”xmlfilesissue30”/>
</ice-package>

3. Now place the ICE package on your Web site, such as http://www.idealliance.
org/ice/xmlfiles.ice.

That’s all that is required of the syndicator. If you are the subscriber to content that is
posted using this simple ICE mechanism, you have two steps you must follow:

1. Obtain the URL for the ICE package on the Web site. You might receive this via
e-mail. Alternatively, it might be posted on the home page of the site.

2. Parse the ice-item-ref URLs out of the ICE package and either download the
content or reference it using the URL.

XML and Content Management

CHAPTER 13
585

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

Note

Note that in this simple scenario we are only using xmlfiles.ice to point to
content that is available for syndication. We are not establishing a business rela-
tionship, negotiating delivery policy, or enabling any sort of content control.
When used in this way, ICE and RSS are very comparable. Just as the RSS syndi-
cator must notify potential subscribers that content is available, the ICE syndica-
tor, in this simple scenario, will need to publicize the ICE location on the Web
site to enable subscribers to find the content for syndication.

16 0672323419 CH13 3/15/04 11:21 AM Page 585

Full ICE Compliance
If you intend to take advantage of the power of ICE to manage content according to busi-
ness rules, you will most likely need the full power of ICE and the full range of ICE
messaging at your disposal. This means that you will need to purchase a tool that pro-
vides ICE capabilities. Because ICE is a server-to-server messaging protocol, you can’t
really “see” ICE. However, you can look for it as a standard protocol supported by Web
content-management systems.

The ice-payload is the XML document used by ICE to carry protocol information, or
ice messages. The ice-payload is homogenous. This means that an ice-payload can
only carry one kind of message. The DTD for ICE, shown in Listing 13.12, shows that
the payload may carry one or more responses, one or more requests, but may never mix
requests with responses.

LISTING 13.12 The DTD for an ice-payload

<!ELEMENT ice-payload (ice-header, (ice-request+ | ice-response+ |
ice-unsolicited-now | ice-unsolicited-request+ |
ice-unsolicited-response+))

>
<!ATTLIST ice-payload

payload-id CDATA #REQUIRED
timestamp CDATA #REQUIRED
ice.version CDATA #REQUIRED >

There are many different kinds of ICE requests and ICE responses. The syndicator some-
times makes requests and sometimes gives responses. Likewise, the subscriber some-
times makes requests and other times makes responses. Do not just assume that the
subscriber is the requestor. That is not at all the case!

Here’s a list of the standard ICE requests that are supported within full ICE compliance
(as you can see, an automated tool to handle all messaging and track states of syndicated
content is a must for full ICE syndication support):

• ice-cancel. Cancels the subscription.

• ice-change-subscription. Changes the subscription.

• ice-code. Passes an ICE message code.

• ice-get-catalog. Requests for the syndicator to request an ICE catalog.

• ice-get-events. Returns an ICE events log.

• ice-get-package. Requests for the syndicator to return an ICE package.

• ice-get-sequence. Returns the current ICE subscription state.

Building XML-Based Applications

PART II
586

16 0672323419 CH13 3/15/04 11:21 AM Page 586

• ice-get-status. Returns the status of the subscription.

• ice-nop. Sends a no operation message. Used for debugging.

• ice-notify. Mechanism for sending a text message.

• ice-offer. The ICE subscription offer sent by Syndicator

• ice-package. The ICE package sent from syndicator to subscriber.

• ice-send-confirmations. Returns confirmation from the subscriber that a pack-
age has been received.

• ice-repair-item. Repairs a subscription collection by replacing missing items.

Enabling Content Management with ICE
ICE is designed to give both syndicators and subscribers the ability to manage their con-
tent. In the following simple example, the ice-access element specifies the span of time
that the URL will be available. This means the subscriber knows how long the link will
last. Also, the syndicator has made a commitment to provide it for a specific length of
time. Therefore, the duration of the content is now made explicit, meaning each party can
avoid the “404” broken link problem.

In Listing 13.13, you can see how we used ice-access-control to limit who may
access the content via login and password. A security notice is printed to indicate
that even though we are granting access for syndication, the copyright remains
with IDEAlliance.

LISTING 13.13 Using ice-access to Manage Content

<?xml version=”1.0”?>
<!DOCTYPE ice-package SYSTEM “http://www.icestandard.org/dtds/ICE1_1.dtd”>
<ice-package>
<ice-item-ref url=”http://www.idealliance.org/xmlfiles/issue30/default.htm”
item-id=”xmlfilesissue30” />
<ice-access>
<ice-access-window starttime=”2001-10-01T08:00:00”
➥ stoptime=”2001-10-31T017:00:00”/>
➥ <ice-access-control control-type=”password”
➥ user=”XMLFiles Subscriber” password=”xmlgo”>

2001 IDEAlliance, Inc. All Rights Reserved.
Use of the content in this item reference
implies acceptance of the use license at
http://www.idealliance.com/licenses/subscriber.html
including honoring all copyrights and trademarks.
You agree not to provide others with the
access control password above.</ice-access-control>

</ice-access>
</ice-package>

XML and Content Management

CHAPTER 13
587

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

16 0672323419 CH13 3/15/04 11:21 AM Page 587

Selecting a Content-Management
Solution
Because Web content management does not have an out-of-the-box definition, what one
looks for in selecting a content-management solution is difficult to specify. Clearly each
definition of content management must be based on the characteristics of the content and
the goals of the business model. Certain features of the content-management system may
be critical to your business model, whereas others are not. About 100 different compa-
nies sell content-management solutions or components. Some are XML based, and some
are not. Content-management solutions range from inexpensive desktop solutions to mil-
lion-dollar solutions.

So where do you start? What do you look for?

First, you should begin with business requirements. Today, justifying the investment in a
content-management solution must have clear benefits. Will the system save money for
the company? Will the system position your company to be more competitive? Will the
system position your company to develop new product offerings based on content reuse
or new kinds of content-based products?

When you have clear business requirements for the system, you will want to make a
decision about whether to purchase an integrated system or whether to integrate the sys-
tem yourself. You can try to determine whether any off-the-shelf system comes close to
meeting your business requirements. If it does, you should study the areas where the
integrated system does not meet your requirements. Can you live with these deficiencies?
Is it possible to customize the system to meet your requirements? What impact on your
business goals will these deficiencies have?

If you cannot select an off-the-shelf solution, you must then look at the options for inte-
grating your own custom system. You must also consider the capabilities of the informa-
tion technologies staff within your company. Are they capable of integrating a complex
system? Will you have to hire consultants to do the integration for you? You must under-
stand the components that could be integrated, weigh those against your business
requirements, and determine which components/functionalities are must-haves. Then you
must narrow the field. If you choose to integrate a system, always be aware of the cost.
At some point the cost may exceed the benefits that you seek!

Investigate the following features of any content-management solution (these features
can be critical):

• Standards based

• System performance

Building XML-Based Applications

PART II
588

16 0672323419 CH13 3/15/04 11:21 AM Page 588

• Scalability

• Cost of implementation

• The ability to provide ongoing support and services

Is the Solution Standards Based?
As you select a content-management solution, you should look for systems/components
that use XML and other Web standards for messaging, content coding, and metadata cod-
ing. These are likely to be most flexible and easier to integrate than proprietary solutions.
Always make this a priority.

System Performance
When selecting a content-management solution, you must always consider the perfor-
mance of the system. System performance can make a real difference in how positively
users view the new system. In addition, performance impacts real dollars and cents in
your business. How long do backups take? How quickly can content be assembled for
online delivery? How much downtime can be expected? When does the number of users
begin to affect the speed of the system? Ask vendors for benchmarks. Conduct them
yourself as part of your selection process.

Can the System Scale?
Before you select a content-management system, you should have some projections for
the growth you expect. Do you expect to add a significant number of new users? Do you
expect to increase the volume of the content on the system significantly? Do you expect
to add new kinds or configurations of content output from the system? And most impor-
tantly, can the system meet your future goals? Will it cost more money? How much?

Cost of Implementation
In selecting a content-management system, you must have a clear understanding of what
comes with the system and what must be added in order to implement the system as you
have specified. During the sales cycle, all things are possible. During the implementation
of the system, you might find hidden costs for which you had not budgeted. Must you
add new components to get the functionality you need? How much will this cost? Try to
understand all implementation costs up front.

Ongoing Support
Of course, once a system is installed, you will need to have ongoing support. A good
Web content-management system will not be implemented in a day or even a month. The

XML and Content Management

CHAPTER 13
589

13

X
M

L A
N

D
C

O
N

TEN
T

M
A

N
A

G
EM

EN
T

16 0672323419 CH13 3/15/04 11:21 AM Page 589

solutions provider will be your partner. Therefore, be sure you select a good one.
Content-management systems are mission critical, so you need the assurance of having a
good support and service team behind you. How many people are in the customer and
technical support teams for the system you have purchased? Is the company stable? Is
there an office nearby? Can the vendor support your investment over time?

Summary
As mention at the beginning of this chapter, Web content management can have many
different meanings and solutions, depending on the types of content you have and your
business goals. Despite the differences from solution to solution, Web content manage-
ment is typified by standard workflow steps. Components of Web content-management
workflow include a content-input phase, a content-repository phase, and a content-
delivery phase.

In this chapter, we have discussed the processes within the content-management work-
flow in detail. You have also learned that XML provides the best way to integrate the
components of the system. Basing a Web content-management solution on XML means
that it will be far easier to integrate software components and will help to ensure the
flexibility of your new content-management solution.

Building XML-Based Applications

PART II
590

16 0672323419 CH13 3/15/04 11:21 AM Page 590

IN THIS CHAPTER

• What Are Web Services? 592

• Business Motivations for Web
Services 593

• Technical Motivations for Web
Services 595

• The Service-Oriented Architecture
(SOA) 600

• Architecting Web Services 616

14
C

H
A

PT
ER

Architecting Web
Services

17 0672323419 CH14 3/15/04 11:21 AM Page 591

No topic in this book is getting more attention and pure hype than the area of Web
Services. Dozens of vendors, led by Microsoft and IBM, are pouring enormous resources
into developing Web Services frameworks as well as the tools to support them. Part of
the hype is unquestionably due to technology vendors’ need to sell new products (as well
as new versions of old products). However, the potential for Web Services goes far
beyond a straightforward economic need to innovate.

In fact, Web Services signal a paradigm shift in distributed computing. Web Services
have the potential to change the way distributed systems interact, which will fundamen-
tally affect the operation of the Internet. As a result, Web Services might form the back-
bone of a new global e-business infrastructure.

However, many economic and political battles remain to be fought before Web Services
can realize their enormous potential. Today, Web Services are on the bleeding edge, in
the hands of the technologists and a few early adopters. As with other paradigm shifts,
most of the work going on in the Web Services area involve new ways of solving old
problems. People still follow the old ways of thinking about distributed computing and e-
business frameworks. In order to break out of the old way of thinking and apply Web
Services to new problems, you must understand how the core technologies of Web
Services enable a new way of thinking about distributed computing. That’s the goal of
this chapter.

In this chapter, you’ll learn the following:

• The definition of Web Services and the Web Services model

• The business and technical motivations for the development of Web Services

• The definition and structure of the service-oriented architecture, which is analo-
gous to the now-familiar object-oriented architectures

• How to define and implement the service-oriented architecture’s four key func-
tional components: service implementation, publication, discovery, and invocation

• About current work in the areas of security and quality of service as well as the
composition of Web Services and conversations among Web Services

• How to approach the service-oriented architecture from different viewpoints

• How the Just-In-Time capabilities of the Web Services model can create a new par-
adigm for distributed computing

What Are Web Services?
Simply put, Web Services are loosely coupled, contracted components that communicate
via XML-based interfaces. Let’s take a closer look at this definition:

Building XML-Based Applications

PART II
592

17 0672323419 CH14 3/15/04 11:21 AM Page 592

• Loosely coupled means that Web Services and the programs that invoke them can
be changed independently of each other. Loose coupling also implies that Web
Services are platform independent.

• Contracted means that a Web Service’s behavior, its input and output parameters,
and how to bind to it are publicly available.

• A component is encapsulated code, which means that the implementation of each
component is hidden from outside the component. Each component’s functionality
is only known by the interface it exposes.

• Because all Web Services’ interfaces are built with XML, they all share the advan-
tages of XML: They have a human readable, text-based format that is firewall
friendly and self-describing. All Web Services are described using a standard XML
notation called its service description.

Put another way, Web Services are self-contained applications that can be described, pub-
lished, located, and invoked over the Internet (or any network, for that matter).

We will also talk extensively about the Web Services model of distributed computing,
which is the overall approach to distributed technology enabled by Web Services. Web
Services can be thought of merely as enabling a new remote procedure call (RPC) archi-
tecture, but the power of the technology goes far beyond what existing RPC architectures
can provide. These new capabilities are part of the Web Services model.

Business Motivations for
Web Services
The vision of global e-business largely remains unrealized. Executives dream about
seamless interactions both with other companies as well as e-marketplaces, but the tech-
nology lags behind the vision. Today’s information technology is still extraordinarily
complex and expensive. Even with standards such as Electronic Data Interchange (EDI),
Java 2 Enterprise Edition (J2EE), Common Object Request Broker Architecture
(CORBA), and Windows Distributed interNet Application (Windows DNA), communi-
cating between different corporate systems is still filled with hair-pulling detail work.

The business world needs more powerful techniques to scale business solutions without
increasing complexity to unmanageable levels. In addition, there is a clear need for open,
flexible, and dynamic solutions for enabling global e-business interactions among sys-
tems. The Web Services model promises to deliver these solutions by addressing com-
plexity and costs, providing a common language for B2B e-commerce, and enabling the
vision of a global e-marketplace.

Architecting Web Services

CHAPTER 14
593

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

17 0672323419 CH14 3/15/04 11:21 AM Page 593

Managing Complexity and IT Costs
In the early days of business computing, mainframes were large, complex, and expen-
sive, and so were the programs that ran on them. As these systems aged, it was often pro-
hibitively expensive to replace them, so programmers added functionality by adding
code, thus building layer upon layer of complexity.

Object-oriented programming arose in this environment as an answer to the problems
resulting from the ever-increasing complexity of the legacy systems. Modularity and
reusability were touted as the solutions to the problems of legacy programming.
Unfortunately, the promised gains generally did not materialize because of the complexi-
ties inherent in distributed systems.

Remote procedure call (RPC) architectures arose to address the problems that developed
when components on different systems needed to communicate with each other. The two
most successful RPC architectures, DCOM and CORBA, have gained widespread accep-
tance, but they are still too complex to provide convenient interoperability among differ-
ent systems.

The conventional view of complex systems is that complexity and power are directly cor-
related: Powerful systems are necessarily complex, and simple systems are necessarily of
limited use. However, current research on complex systems contradicts this conventional
wisdom. It is possible to build powerful systems with simple components (such as Web
Services) that are smart enough to organize themselves into large, powerful systems.
Such systems would retain the simplicity of their components as well as reduce the costs
inherent in large, complex systems. (A good place to learn about complex systems is at
http://www.brint.com/Systems.htm.)

Lingua Franca of B2B E-Commerce
Business to Business (B2B) e-commerce has been around for more than a decade in the
form of the Electronic Data Interchange (EDI). EDI is quite powerful and has gained
widespread acceptance but is limited by its semantic ambiguity. For example, a “quan-
tity” field in a given form may stand for number of boxes for one company but the num-
ber of pallets for another. People have to resolve each ambiguity manually, making EDI
useful primarily in a hub-and-spoke arrangement, where one large company can dictate
the meaning of each field to its suppliers.

When the Internet opened up the prospect of many-to-many e-commerce, it soon became
clear that there needed to be a way to agree upon a single business vocabulary for all par-
ticipants in each trading group. XML provided the basis for building such vocabularies
because of its inherent extensibility. However, XML’s greatest strength also proved to be

Building XML-Based Applications

PART II
594

17 0672323419 CH14 3/15/04 11:21 AM Page 594

a weakness, because its extensibility led to hundreds of different business vocabularies,
often with overlapping applicability.

The Web Services model addresses this Tower of Babel problem by providing for
dynamic service descriptions. Individual Web Services can describe their interfaces at
runtime, allowing for dynamic interpretation of the semantics of the XML that underlies
the messages Web Services send and receive.

Global E-Marketplace Vision
The overarching vision behind e-business is a world with global, seamless, automated
e-commerce. Each company’s systems should be able to locate and transact with other
companies’ systems automatically. Unfortunately, this vision is still far from becom-
ing a reality.

Today, integrating commerce systems from two companies requires preexisting business
and technical relationships between the companies. Only then can the technology teams
of the two companies get together and decide how they will communicate and handle
business transactions.

Business requires a way for companies to locate, identify, contact, and transact with
other companies around the world on a “just in time” basis—that is, without having to
establish a technical relationship beforehand.

Technical Motivations for
Web Services
The technical motivations for Web Services are far more complex than the business moti-
vations. Fundamentally, technologists are looking for the simplicity and flexibility
promised, but never delivered, by RPC architectures and object-oriented technologies.

Limitations of CORBA and DCOM
Programming has been performed on a computer-by-computer basis for much of the his-
tory of computing. Programs were discrete chunks of computer code that ran on individ-
ual computers. Even object-oriented programming originated in a single-computer
environment. This isolated computer mindset has been around so long that it pervades all
thinking about software.

Then along came networks, and technologists looked for ways to break up program func-
tionality onto multiple computers. Early communication protocols, such as the Network

Architecting Web Services

CHAPTER 14
595

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

17 0672323419 CH14 3/15/04 11:21 AM Page 595

File System for Unix and Microsoft’s Distributed Computing Environment, focused on
the network layer. These protocols, in turn, led to the development of wire protocols for
distributed computing—in particular, the Object Remote Procedure Call (ORPC) proto-
col for Microsoft’s DCOM and the Object Management Group’s Internet Inter-ORB
Protocol (IIOP) that underlies CORBA.

RPC architectures such as DCOM and CORBA enabled programs to be broken into dif-
ferent pieces running on different computers. Object-oriented techniques were particu-
larly suited to this distributed environment for a few reasons. First, objects maintained
their own discrete identities. Second, the code that handles the communication between
objects could be encapsulated into its own set of classes so that programmers working in
a distributed environment needn’t worry about how this communication worked.

However, programmers still had that isolated computer mindset, which colored both
DCOM’s and CORBA’s approach: Write your programs so that the remote computer
appears to be a part of your own computer. RPC architectures all involved marshalling a
piece of a program on one computer and shipping it to another system.

Building XML-Based Applications

PART II
596

Note

Marshalling means taking an object or other form of structured data and break-
ing it up so that it can be transmitted as a stream of bytes over a network in
such a way that the original object or data structure can be reassembled on the
other end. Another word for marshalling is serializing, and objects that can be
marshalled are described as serializable.

Unfortunately, both DCOM and CORBA share many of the same problems. DCOM is
expressly a Microsoft-only architecture, and although CORBA is intended to provide
cross-platform interoperability, in reality it is too complex and semantically ambiguous
to provide any level of interoperability without a large amount of manual integration
work. In addition, the specter of marshalling executable code and shipping it over the
Internet opens up a Pandora’s box of security concerns, such as viruses and worms.

Furthermore, each of these technologies handles key functionality in its own, proprietary
way. CORBA’s payload parameter value format is the Common Data Representation
(CDR) format, whereas DCOM uses the incompatible Network Data Representation
(NDR) format (Web Services use XML). Likewise, CORBA uses Interoperable Object
References (IORs) for endpoint naming, whereas DCOM uses OBJREFs (Web Services
use URIs, which are generalized URLs).

17 0672323419 CH14 3/15/04 11:21 AM Page 596

In addition, both CORBA and DCOM use binary wire protocols: the IIOP and ORPC,
respectively. Because these protocols are binary, they are not humanly readable, and
more significantly, they often have difficulties moving through firewalls. As a result,
these architectures are usually relegated to use within the enterprise rather than between
companies. (Web Services solve these problems with SOAP, to be covered in Chapter 15,
“Web Services Building Blocks: SOAP”.)

Problems with Business Modeling
Business modeling takes distributed computing with objects to its logical extreme, where
objects are rolled into business components that correspond to coarse-grained business
concepts or processes. A business component consists of all the software artifacts neces-
sary to implement a business concept (such as “customer” or “order”) as an autonomous,
reusable element of a distributed information system.

In essence, business modeling is a way to apply object-oriented principles to large, enter-
prise systems in a recursive manner, where component systems are made up of business
components, which in turn consist of individual distributed software components, which
in turn contain object classes. As companies’ use of technology matures, they move from
using structured programming to object-oriented architectures, as shown in Figure 14.1.

Architecting Web Services

CHAPTER 14
597

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

Distributed
Objects

Structured
Programming

J2EE, CORBA 3.0, DNA

OpenDoc, DCOM, CORBA 2.0

OOA/D, C++, etc.

Cobol, Pascal, etc. Time

Company IT
Maturity

Distributed
Components

Distibuted
Orientation

FIGURE 14.1
The evolution
of business
components.

By representing business concepts with systems of business components, business
modelers seek to achieve the following objectives:

• Limit complexity and costs by developing coarse-grained software units.

• Support high levels of reuse of business components.

17 0672323419 CH14 3/15/04 11:21 AM Page 597

• Speed up the development cycle by combining preexisting business components
and continuous integration.

• Deliver systems that can easily evolve.

• Allow different vendors to provide competing business components that serve the
same purpose, leading to a market in business components.

Unfortunately, large-scale business modeling has not widely achieved any of these
objectives, for several reasons, including the following:

• Business components in reality typically have complex, nonstandard interfaces,
which makes reuse and substitutability difficult to achieve.

• As systems of business components evolve into increasingly complex, compre-
hensive systems, it becomes very difficult to maintain the encapsulation of the
components. Ideally, each component is a black box that can be plugged into the
underlying framework; in reality, developers must spend time tweaking the internal
operations of the components.

• The business drivers behind the development of the business components lead to
custom development, which makes each component unique and custom in its own
right. Every company handles its business models differently, so every business
component is different.

The Web Services model can be thought of as the next step in the evolution of business
components. Whereas business components are large, recursively defined collections of
objects, Web Services should be relatively small, self-organizing components with well-
defined, dynamic interfaces.

Problems with Vendor Dependence
Early leaders in every nascent industry find that they must integrate their companies ver-
tically. For example, Standard Oil drilled the wells, transported the petroleum, refined it,
distributed it, and then ran the gas stations that sold it. It had to follow this business
model, because there were no other companies that could provide each of these services
at a low-enough cost or with adequate quality.

The same is true of the software industry. ERP systems were essential to companies’
operations, because the only cost-effective way to get all the operational components that
make up ERP systems to work together was to get them from the same company. If you
tried to cobble together accounting and manufacturing software back in 1995, you would
have found large variations in quality and extremely high integration costs.

Building XML-Based Applications

PART II
598

17 0672323419 CH14 3/15/04 11:21 AM Page 598

Simply put, the single main advantage to single-vendor distributed software solutions is
that they work. When the cost of integration is high, going with a single vendor will save
money. However, there are also several disadvantages to obtaining software from a single
vendor. The disadvantages are as follows:

• As the market matures, other vendors will offer individual packages that are of a
higher quality than the single vendor, making a “best-of-breed” approach more
attractive.

• The purchasing company’s business grows to depend on the business strategy of
the vendor. Shifts in strategic direction or business problems at the vendor can
filter down to the vendor’s customers (the “all-the-eggs-in-one-basket” problem).

• It is very difficult to integrate a “one-stop shop” vendor’s product with other ven-
dors’ products at other companies. As a result, a single vendor approach limits the
potential of e-business.

Taking a vendor-independent software strategy solves the problems of vendor depen-
dence but is only cost effective when certain conditions are met:

• A “best-of-breed” approach makes sense because the market is mature enough to
offer competing packages of sufficient quality.

• There is a broadly accepted integration framework that allows for inexpensive inte-
gration of different packages, both within companies and between companies.

The Web Services model has the potential to meet both of these conditions. In particular,
Web Services’ loose coupling is the key to flexible, inexpensive integration capabilities.

Reuse and Integration Goals
Software reuse has been a primary goal of object-oriented architectures but, like the Holy
Grail, has always been just out of reach. Creating objects and components to be reusable
takes more development time and design skill, and therefore more money up front.
However, conventional wisdom says that coding for reusability saves money in the long
run, so why isn’t coding for reusability more prevalent?

The problem is that the goal of software reuse presupposes a world with stable business
requirements, and such a world just doesn’t exist. Building a component so that it can
handle future situations different from the current ones tends to be wasted work, because
the future always brings surprises. Instead, it usually makes more sense to take an agile
approach to components and include only the functionality you need right now. Such an
approach keeps costs down and is more likely to meet the business requirements, but the
resulting component is rarely reusable.

Architecting Web Services

CHAPTER 14
599

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

17 0672323419 CH14 3/15/04 11:21 AM Page 599

Simple integration of software applications is likewise just out of reach. This problem is
especially onerous in the area of legacy integration. Today’s approach to integrating
legacy systems into component architectures is to create a “wrapper” for the legacy
system so that it will expose a standard interface that all the other components know how
to work with. What ends up happening is that getting that wrapper to work becomes the
major expense and takes the most time. Maybe 90 percent of your software is easy to
integrate, but the remaining 10 percent takes up most of your budget.c

The Service-Oriented Architecture
(SOA)
Web Services can be thought of as components that can be described, published, located,
and invoked over the Internet (or in general, any network). The true power of Web
Services, however, comes from the fact that all these activities can take place at runtime.
In essence, Web Services can figure out how to work with each other, without having
been designed to do so specifically.

In order for Web Services to be able to work well together, they must participate in a set
of shared organizing principles we call a service-oriented architecture (SOA). The term
service-oriented means that the architecture is described and organized to support Web
Services’ dynamic, automated description, publication, discovery, and use.

The SOA organizes Web Services into three basic roles: the service provider, the service
requester, and the service registry. The relationships among these three roles are shown
in Figure 14.2.

Building XML-Based Applications

PART II
600

Service provider

Service registry Service requester

Publish

Description

Find

Service
Bind

Client

FIGURE 14.2
Web Service roles
and relationships.

Service providers publish (and unpublish) their services to a service registry. Then, ser-
vice requesters can find the desired Web Services by searching for their descriptions at

17 0672323419 CH14 3/15/04 11:21 AM Page 600

the service registry. Once the requester locates the desired service, its client binds with
the service at the service provider and then invokes the service.

The SOA is responsible for describing and organizing the mechanisms and practices for
each of these actions. In addition, the SOA is responsible for describing how Web
Services can be combined into larger services.

Flexibility of E-Business Services
The ability of Web Services to discover, bind to, and invoke other services automatically
at runtime—what we call Just In Time (JIT) integration—is actually a tall order for any
component in a distributed system to fill. JIT integration presupposes that the SOA has
reached critical mass across the globe, where there is a sufficient number of Web
Services exposing their interfaces available for discovery and invocation. Furthermore,
how are we ever going to get to that global SOA if we don’t already have a mature set of
Web Services protocols that everyone agrees upon?

The fact of the matter is, there needs to be a way to bootstrap the SOA so that we can
build it piece by piece, even though the underlying protocols are still maturing.
Fortunately, this flexibility is built into the SOA, because although it would be really nice
for Web Services to support discovery, binding, and invocation at runtime, these features
are actually not required in order to use Web Services.

In fact, the SOA provides for a hierarchy of integration options, as shown in Figure 14.3.

Architecting Web Services

CHAPTER 14
601

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

Dynamic binding
to a static Service

at runtime

Hardwired binding
to Web Services at

design time

Discover and bind to
Web Services at

runtime (JIT
integration)

FIGURE 14.3
Hierarchy of
Web Services
integration
options.

At the lowest level, Web Services are “hardwired” at design time. This option essentially
mimics a tightly coupled distributed architecture such as a client/server or n-tier archi-
tecture. The developer handles the discovery manually and codes the interface to the
desired service into the service requester.

17 0672323419 CH14 3/15/04 11:21 AM Page 601

At the next level, the desired Web Service is also identified beforehand, but the service
requester is smart enough to bind to it dynamically at runtime. In this way, the service
requester can vary its request to the service provider, depending on the particular situa-
tion. In addition, the service provider can change its interface from time to time (say, as
part of a functionality upgrade), and service requesters will be able to adjust to the
change on-the-fly.

The third level indicates JIT integration to the service provider: The service requester can
search a registry dynamically for a provider and then bind to the one it selects. This is
the only level that requires the participation of a service registry.

Building XML-Based Applications

PART II
602

Tip

The hierarchy of Web Services integration options serves two important roles.
When the SOA is fully formed, this hierarchy will describe the different ways
that Web Services can interact, from the simplest to the most complex. In the
meantime, this hierarchy also describes what Web Services will be useful for, as
the SOA is in the process of being fleshed out. If you try to build Web Services
that support JIT integration today, you’ll likely be disappointed, because the
technologies that go into the service registries are still being defined (and there
aren’t that many services registered in today’s registries, anyway). However, it is
possible today to create Web Services that interact at the first two levels. The
first level can be thought of as a “training” level, because it doesn’t provide
much functionality beyond what more mature distributed architectures provide.
Creating Web Services at the second level, however, can provide a new level of
functionality beyond the existing architectures.

Lessons Learned from Object Orientation
There are several features an architecture must have to be considered object oriented
(OO). An OO architecture’s most important features are encapsulation, message sending,
and hierarchical inheritance. Of these, the organizing power of class hierarchies has
turned out to be the most useful feature of all, because class hierarchies allow the soft-
ware-development process itself to scale.

Architectures that share encapsulation and message sending, but not inheritance, are
referred to as object based. Object-based architectures are not nearly as powerful as
object-oriented ones, for several reasons. First, encapsulation tends to make an applica-
tion brittle, because an object’s internal functionality can be difficult to update without
breaking the system. Second, sending messages by exposing methods for remote objects

17 0672323419 CH14 3/15/04 11:21 AM Page 602

to call is inefficient: If a remote object has a number of requests for an object, it must
make a number of method calls, as opposed to one call that marshals all the requests.

Architecting Web Services

CHAPTER 14
603

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

Tip

One of the greatest performance advantages Web Services have over traditional
RPC architectures is that a service requester can marshal multiple parameters
into a single request, using the dynamic, hierarchical structure of XML. For com-
plex requests that contain a large number of parameters, this advantage can be
substantial, especially if the two systems are remote.

However, it is up to the architect and the Web Service developer to take advan-
tage of this capability. A Web Service could easily be designed to make requests
with single parameters, thus losing this performance advantage.

Note

A typical example of a service-based architecture would be one that included
Web-based data feeds—for example, a news headline service. Such a service sits
at a particular URL and receives parameters in an ordinary HTTP GET request.
Depending on the value of those parameters, it sends back the desired data.

A similar example that uses a service-oriented architecture would be a system
that negotiates contracts with various news services on-the-fly for individual
content feeds and then connects to the selected feeds dynamically at runtime.

The service-based architecture will continue to be quite useful but lacks the
power and flexibility of the Web Services model’s self-organization provided in
the service-oriented architecture example.

The important lesson that the SOA can learn from object-oriented architectures is that
the organizing power of the SOA is the key to its success: The way that Web Services
are published, located, invoked, and organized over the Internet is much more important
than the internal structure of the Web Services themselves, or the specifics of the mes-
sage protocols that enable the communication among services.

Architectures that focus on the details of how Web Services communicate, rather than what
they say to each other, are called service-based architectures (corresponding to the distinc-
tion between object-oriented and object-based architectures). Now, service-based archi-
tectures are still useful, but not nearly as powerful as the SOA in a global e-business
environment. Instead, service-based architectures are most useful within a single enterprise,
where a single architecture team can define and manage the semantics behind the services.

17 0672323419 CH14 3/15/04 11:21 AM Page 603

Key Functional Components
The SOA has four key functional components: service implementation, publication, dis-
covery, and invocation. This section introduces the architectural issues involved in each
of these functional components. In essence, we’ll provide a conceptual framework for the
various protocols and technologies detailed in Chapters 15, “Web Services Building
Blocks: SOAP,” and 16, “Web Services Building Blocks: WSDL and UDDI.”

Service Implementation
There are two basic approaches to building a Web Service: Build one from scratch, or
provide a wrapper to an existing application or service so that it exposes a Web Service
interface. As Web Services become more prevalent, developers will also have another set
of options: Creating a new service interface for an existing Web Service, or taking advan-
tage of an existing service interface to act as a skeleton for building or modifying a Web
Service. Combining the choice of service interface with the two basic approaches to
building a Web Service gives developers four methods for building Web Services:

• Develop a new Web Service and a new service interface. This “green field” method
gives the developer the most leeway and is the most straightforward of the different
methods. The best approach is simply to develop the Web Service as specified by
the business requirements, define its interface, and then publish the interface and
deploy the Web Service. This approach may be the most practical today, given the
lack of existing Web Services. However, it will be the most expensive option.

• Develop a new Web Service when there is an existing service interface. The best
method to use in this situation is a “top-down” approach. First, locate the existing
service interface by searching a registry of Web Services. Next, generate a service
implementation template, or skeleton, that contains all the methods and parameters
that the Web Service must support to be in compliance with the interface. Then,
develop the Web Service as before. This approach will become increasingly practi-
cal as useful Web Services become more prevalent in existing registries.

• Develop a new service interface for an existing application. You must develop a
Web Service wrapper for your existing application in this “bottom-up” method.
The wrapper then exposes the service interface. This approach will likely be the
least expensive but also the least flexible.

• Create a Web Service that wraps an existing application when you have an existing
service interface. This method is the most complex of the four, because you must
first find the service interface and then use it to generate the service implementa-
tion template (skeleton). You must then use this template to develop the wrapper
for the existing application.

Building XML-Based Applications

PART II
604

17 0672323419 CH14 3/15/04 11:21 AM Page 604

Once your Web Service is complete and has a well-defined service interface, the next
step is to publish your Web Service.

Publication
There are three steps to publishing a Web Service:

1. Author the Web Service description document. Written in the Web Services
Description Language (WSDL), this document describes what the Web Service
will do, where it can be found, and how to invoke it. (See Chapter 16 for a com-
plete discussion of WSDL.)

2. Publish the Web Service description document on a Web server so that it is accessi-
ble to your desired audience (typically the Internet or one company’s intranet, but
it might also be published to a private e-marketplace). It is also possible to “direct-
publish” the Web Service description to the service requester via e-mail, FTP, or
even sneakernet. Direct publication is only possible when the access to the Web
Service will be hardwired.

3. Publish the existence of your document in a Web Services registry using the
Universal Description, Discovery, and Integration (UDDI) specification, which
describes how Web Service registries are organized and how to work with them. A
key aspect to UDDI is the UDDI registry, which acts as a repository for informa-
tion about published Web Services (more about UDDI in Chapter 16). UDDI reg-
istries can be global, public registries, or they can be restricted to an individual
enterprise (for a single application or department or for an enterprise portal) or to a
closed group of companies (say, an e-marketplace or a partner catalog). WSDL and
UDDI will be covered in Chapter 16.

Discovery
Once your Web Service appears in a registry, any application can discover your service
and therefore locate the Web Service description document you published. UDDI reg-
istries support pattern queries for automated lookups and return the location of the
WSDL file for the desired service. Once you have obtained the location of this file in the
form of a Uniform Resource Indicator (URI), which is a generalization of the familiar
Uniform Resource Locator (URL), you are able to download the WSDL file itself.

Invocation
There are two steps to invoking a Web Service:

1. Author a client using the Simple Object Access Protocol (SOAP). The WSDL file
you downloaded contains the information you need to create a client using SOAP.

Architecting Web Services

CHAPTER 14
605

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

17 0672323419 CH14 3/15/04 11:21 AM Page 605

Because you are authoring clients on-the-fly based on information you found in the
Web Service description document, you are able to invoke the Web Service dynam-
ically at runtime. For more information on SOAP, see Chapter 15.

2. Make a SOAP call. Your client then creates a SOAP message describing what it
wants the remote Web Service to do and then sends it to the URI specified in the
WSDL document. Typically, the Web Service returns a SOAP message in the
format detailed in the Web Service description document.

Building XML-Based Applications

PART II
606

Note

The SOAP request/response exchange can be either synchronous or asynchro-
nous. Some SOAP requests do not require a response, and some SOAP notifica-
tions generated by Web Services do not require a request. These messages (
as well as others, such as error messages) are covered in Chapter 15: “Web
Services Building Blocks: SOAP.”

Just In Time Integration
Just as early object-oriented programming attempts looked a lot like the structural pro-
gramming that preceded it, much of the early work with Web Services and the SOA can
be expected to look like objects in OO architectures. However, just as programmers
learned the true power of OO architectures and went beyond the capabilities of structured
programming, so too will programmers learn the power of the SOA and go beyond what
was practical with the techniques that came before.

The JIT integration capabilities of the SOA provide new organizing principles for the
world of IT. Imagine an Internet full of Web Services: some globally available, and oth-
ers available on intranets or other closed networks. This global set of Web Services
grows and changes organically; the owner of each one determines what functionality the
service will have and what interface it exposes, as well as which registries to submit the
service to. In this global picture there is no master architect or executive committee who
is responsible for maintaining the system. Instead, there’s a set of simple, widely
accepted open protocols that everybody is welcome to share.

So, if you were wondering why Web Services are named as they are, here is the answer.
Sure, they run on HTTP, which means they drive on the same roads as the World
Wide Web. However, that’s not why they are “Web” Services. No, it’s the global self-
organizing power of technology based on simple, open protocols that puts the “Web”
into Web Services.

17 0672323419 CH14 3/15/04 11:21 AM Page 606

Semantic Issues and Taxonomies
Semantics refers to the meaning, in human and business terms, of a Web Service’s
actions and parameters. Semantics have always been a sticking point for any distributed
system. For example, EDI’s rigid approach to its document formats led to semantic ambi-
guities. Business partners who use EDI must have an ad hoc agreement on the semantics
of the fields in each document.

Object-oriented (OO) systems address the problem of semantics when the systems are
small, but ambiguity creeps in when OO systems are scaled up. In a small OO imple-
mentation, the naming conventions of the methods as well as their signatures (the para-
meters the methods take in different situations) often connote to the developer the
meaning of the methods and arguments. In a large-scale system, however, the semantics
of a given class cannot typically be deduced by its interface alone. The problem only gets
worse when many companies (possibly in different countries) attempt to participate in a
distributed e-business system.

The advent of XML did little to cut through the morass of semantic issues because of
XML’s inherent extensibility. Due to the fact that the meaning of given XML tags were
specified in an XML document’s DTD or schema, developers were welcome to create
their own sets of definitions, leading to a Tower of Babel situation.

Architecting Web Services

CHAPTER 14
607

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

Note

Different groups are attempting to solve the problems of semantic ambiguity.
Industry groups and standards organizations are attempting to formulate XML
schemata that provide the meaning of terms either within a particular vertical
industry (as RosettaNet is attempting to do with the electronics industry) or
across all of e-commerce (which is what the United Nations’ ebXML standard is
aiming to accomplish). RosettaNet can be found at http://www.rosettanet.org,
and you can find ebXML at http://www.ebxml.org. Both ebXML and RosettaNet
are covered in Chapter 20, “Implementing XML in E-Business.”

Other groups, loosely affiliated under the Semantic Web Community banner,
are trying to address the limitations of XML schemata by incorporating the
human context missing in XML-based approaches through the development of
ontologies. An ontology specifies a conceptualization of the objects, concepts,
and other entities that exist in some area of interest, as well as the relationships
among them. In other words, ontologies establish a joint terminology among
members of a particular community of interest. You can learn more about the
Semantic Web Community at http://www.semanticweb.org. You can also learn
more about the Semantic Web in Chapter 24, “Semantic Web.”

17 0672323419 CH14 3/15/04 11:21 AM Page 607

While the work on semantic issues is ongoing, some of the developments have been
incorporated into the Web Services arena in the form of taxonomies. A taxonomy is a
hierarchical representation of a set of concepts: Think of an area of interest (say, a verti-
cal market) organized like a Yahoo! directory. UDDI registries take advantage of tax-
onomies, which can either be based on standard classifications of businesses or custom
built to serve special purposes. The simplest taxonomy used in UDDI registries is
geographical: country followed by political division—for example, United States,
Massachusetts or United Kingdom, Wales.

Because XML is self-describing, a Web Services description can refer to any available
schema as the basis for the services it describes. If the description takes advantage of the
taxonomies that are available in the service registries that the service provider wishes to
use, however, then service requesters will be able to discover such services by looking up
terms that have meaning to the requester. Today, however, the use of taxonomies in
UDDI registries is still quite rudimentary.

Security and Quality of Service Issues
Up to this point, we have covered building, publishing, finding, and invoking Web
Services. Much of the nuts and bolts of the SOA is now in place. However, in order to
conduct e-business in the real world, a few features are missing. Most notably, there must
be a security infrastructure available for Web Services. Equally important is the need for
some way to guarantee different levels of quality of service for messages sent to and
from Web Services.

Security
Because Web Services typically run over HTTP and TCP/IP, many of the security
requirements for Web Services can be satisfied with the well-established Secure Sockets
Layer (SSL) protocol as well as the newer Internet Protocol Security (IPSec) protocol.
SSL applies specifically to point-to-point messages sent over HTTP, whereas IPSec
allows for the encryption of messages on the network layer. Are these two standards suf-
ficient for securing Web Services, or is there a need for a more sophisticated or complete
Web Services security layer?

There are four basic requirements that a Web Services security layer must provide:

• Confidentiality. The contents of the messages must not be available to unautho-
rized parties.

• Authentication. The sender of a message must be authorized to send a message,
and the recipient of the message must be able to confirm the identity of the sender
of the message.

Building XML-Based Applications

PART II
608

17 0672323419 CH14 3/15/04 11:21 AM Page 608

• Data integrity. The recipient of a message must be able to guarantee that the
message hasn’t been tampered with in transit.

• Nonrepudiation. The recipient of a message must be able to guarantee the circum-
stances surrounding the sending of the message (for example, the time the message
was sent and the fact that the sender sent only one copy of the message).

SSL and IPSec guarantee data integrity and confidentiality for messages that go from the
sender directly to the recipient, but they aren’t able to provide authentication or nonrepu-
diation. They are also unable to guarantee either data integrity or confidentiality if there
is a third-party intermediary in between the sender and the recipient. Because SOAP
messages are typically processed by intermediaries, SSL and IPSec are most useful if
there is a preexisting trust relationship among sender, recipient, and intermediary. In the
world of Web Services, however, this is unlikely to happen very often.

It is also possible to secure the messages to and from Web Services at the application
layer or via a secure network. These two approaches may work inside single enterprises
but will not work when multiple companies exchange Web Services messages. Instead, it
makes more sense to include security information as meta-information in the SOAP
header. The SOAP specification allows for such information but doesn’t actually specify
it. (More about SOAP headers in Chapter 15.) The security information to be sent in the
SOAP headers is some kind of asymmetric key message digest, as provided for by
authentication systems such as Kerberos and the Public Key Infrastructure (PKI).

Architecting Web Services

CHAPTER 14
609

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

Note

Several standards bodies are currently working on different asymmetric key sys-
tems for securing Web Services (and XML messages in general), including the
W3C (which is working on XML Digital Signatures, XML Encryption, and XML
Key Management Services) and OASIS, which is currently developing the
Security Assertion Markup Language (SAML) and the Extensible Access Control
Markup Language (XACML). The W3C can be found at http://www.w3c.org,
and OASIS is located at http://www.oasis-open.org. You can also learn about
Kerberos at http://web.mit.edu/kerberos/www/. There is no single source for
information about PKI, but a good starting point is at http://www.opengroup.
org/public/tech/security/pki/.

The problem with all asymmetric key systems is that they require the services of a trusted
third party. This third party must provide the ultimate authority to generate the keys as well
as provide a list of revoked key-generation authorities. All parties involved in secure inter-
actions among Web Services must agree upon this trusted third party beforehand.

17 0672323419 CH14 3/15/04 11:21 AM Page 609

An adequate Web Services security layer, therefore, should contain both IPSec or SSL
(in particular, HTTP over SSL, which is abbreviated HTTPS) for network security as
well as some kind of asymmetric key technology for XML message security. Until such
time as the asymmetric key technology issues have been resolved, SSL may be the best
security available, even though it does not provide authentication or nonrepudiation and
only works “point to point.”

Building XML-Based Applications

PART II
610

Caution

Web Services security is still a bleeding-edge topic. Work goes on in many
groups, trying to develop the best approaches to handling security. Today,
however, SSL affords the best security, in spite of its limitations.

The fact that asymmetric key solutions require a third party that is trusted by all
participants in an exchange of information provides a serious limitation on this
category of solution that no one has resolved at this time.

In addition to the security concerns that apply to the XML messages that go between
Web Services, there is also the question of how service registries should secure their sys-
tems. Depending on the situation, there are three access control models that Web Service
registries might follow:

• A promiscuous registry doesn’t authenticate the publishers or the requesters. Such
registries don’t make any claims about the correctness of the data in the registry or
the integrity of the participants. Although a promiscuous registry is the simplest
form of registry to set up, its usefulness is limited by its lack of access control.

• An authenticated registry authenticates both service requesters and service pub-
lishers. Because it knows the identities of the parties involved in the registry, it can
set up coarse-grained access control for specific categories of data within the reg-
istry. Typically, such a registry would require communication via SSL and might
also include support for XML Digital Signatures so that it can validate the XML
messages it receives.

• A fully authorized registry goes beyond the security offered by authenticated
registries by implementing a fine-grained authorization paradigm, allowing it to
secure individual data entries by storing access information for each one. Such a
registry would have to support a more complex management and administration
infrastructure in order to enforce such complex security. A fully authorized registry

17 0672323419 CH14 3/15/04 11:21 AM Page 610

might also act as a public key authority, providing the individual authority (often
called certificates) to both Web Services publishers and requesters necessary to
generate the asymmetric keys.

Quality of Service and Reliable Messaging
Quality of service (QoS) means different things at different layers. At the network layer,
QoS refers to the ability of the network to transmit information with the desired accuracy
and promptness. On the messaging layer, however, QoS refers to the reliability of the
messaging—that is, the ability of the infrastructure to deliver a message exactly once to
its intended recipient or to deliver a particular error message (typically to the sender) if
the message cannot be sent.

The sending of messages to and from Web Services will fall into three basic modes:

• Best effort. The service requester sends the request message, and neither the
requester nor the message infrastructure attempts a retransmission in the case of a
failure to deliver the message.

• At least once. The service requester continues to attempt to send the request until it
receives acknowledgment from the service provider that the message was received.
As a result, the service provider might receive more than one copy of the message.
If the request is a simple query, this duplication isn’t a major problem (although it
will contribute to network overhead). However, in other cases, each message may
need to carry a unique ID so that the service provider can recognize a duplicate
message. Along with its acknowledgment, the service provider either sends the
requested response or a “cannot process message” exception.

• Exactly once. The service requester makes its request, and the service provider
guarantees in its reply that the request has been executed (or it sends an error
message, if necessary). The “exactly once” mode of messaging requires an
endpoint manager at either end of the message to relay messages and guarantee
responses (which may simply be a timeout exception should the service provider
fail to respond). Endpoint managers also frequently support the queuing of
messages or more complex behaviors such as forwarding messages to other
ervice providers. The exactly once mode is only applicable when both endpoints
participate in the appropriate messaging infrastructure—for example, within an
enterprise or between two companies who have configured their joint messaging
infrastructure beforehand.

Architecting Web Services

CHAPTER 14
611

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

17 0672323419 CH14 3/15/04 11:21 AM Page 611

Although sophisticated messaging infrastructures are a possibility in such controlled situ-
ations, on the open Internet we must work within the constraints of HTTP. HTTP man-
dates a simple request/response mechanism with a set of standard error messages, but it
lacks most of the features of reliable messaging. This is an area where more work must
be done before business will be able to use Web Services over the Internet reliably.

Building XML-Based Applications

PART II
612

Note

A new protocol called the Web Services Endpoint Language (WSEL) is currently
under development. WSEL will provide a format for handling endpoint manage-
ment, including QoS, usage, and security characteristics, as well as contextual
information such as legal and cost issues.

Caution

Web Services QoS is also a bleeding-edge topic. Managed messaging infrastruc-
tures such as IBM’s MQ can provide QoS capabilities, but work on global Web
Services QoS is just getting underway.

Composition and Conversations
So far, we have been looking at Web Services as individual components: how to create,
find, publish and implement single services. However, for Web Services to be truly use-
ful in a global e-business environment, there must be a way to combine and coordinate
collections of Web Services so they can be used to support complex, real-world business
processes. The ability to use collections of Web Services falls into two general cate-
gories: composition of Web Services and conversations among Web Services.

Composition of Web Services
Composition essentially means combining multiple individual Web Services into larger
components that are themselves Web Services. Composition of Web Services falls into
two broad categories:

• Web Services can be combined within an enterprise in order to describe a business
process. In this case, the composition of the Web Services follows a particular
usage pattern.

17 0672323419 CH14 3/15/04 11:21 AM Page 612

• Web Services from multiple companies can be coordinated in order to describe
partner interactions. In this case, the composition of the Web Services follows a
particular interaction pattern.

In addition, Web Services can be composed recursively. A Web Service that is recur-
sively composed of other Web Services can itself be used as a component in further com-
positions of Web Services.

Naturally, it makes sense to describe the composition of Web Services with an open,
XML-based description language. This avenue of research is still very new, but the most
progress has been made by IBM with its Web Services Flow Language (WSFL). The
WSFL is an XML-based description language that describes both categories of Web
Services in the preceding list.

Architecting Web Services

CHAPTER 14
613

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

Caution

Yes, the WSFL is a bleeding-edge topic as well. IBM makes it very clear that
WSFL is its contribution to the discussion on Web Services composition and that
it will participate in ongoing standards discussions. Whether WSFL will become
an accepted standard, or how much it will change during the standards process,
is anybody’s guess.

In order to apply the WSFL, an enterprise would first identify a business process that it
wishes to implement with Web Services. Then it would take that business process and
identify the following:

• The component business processes (typically implemented in the form of existing
Web Services) that make up the larger process.

• The business rules that determine the sequence of steps that form the business
process.

• The flow of information that joins the individual process steps.

From these elements, the enterprise would create the WSFL flow model that defines the
overall structure of the business process.

Note

More information on IBM’s work on Web Services, including WSFL, can be
found at http://www-106.ibm.com/developerworks/webservices. Although
WSFL represents IBM’s contribution to the area of XML-based business process

17 0672323419 CH14 3/15/04 11:21 AM Page 613

Conversations Among Web Services
A conversation between two collaborating Web Services is a sequence of requests and
responses that is correlated into a particular group or unit of work. Conversations become
important when there is a need for transactional properties to apply to the sequence of
requests and responses.

The concept of a transaction is fundamental to the application of distributed computing.
Although database transaction models and transaction-processing (TP) monitor program-
ming models are typically sufficient in existing heterogeneous enterprise IT environ-
ments, the Web Services model requires a more flexible mechanism for handling
transactional capabilities such as atomicity, phased commits, and rollbacks. (See Chapter
15 for an in-depth discussion of transactional capabilities.) Some differences between the
two environments are as follows:

• Within enterprises, applications that support asynchronous messaging typically
assume a chained, multiple-transaction model when crossing different messaging
systems. Web Service collaborations, however, typically rely on asynchronous mes-
sages across enterprise boundaries and must support transactional capabilities in
the absence of a single messaging system.

• The TP monitor infrastructure that manages transactions in heterogeneous enter-
prise environments typically provides a single span of control for executing trans-
actions. Such systems must have sophisticated management and monitoring tools
to avoid problems with failures. Web Service collaborations across different enter-
prises, however, have multiple spans of control.

• The ability of Web Service requests to combine multiple method calls into a single
request, combined with the ability of Web Services to send and receive both syn-
chronous and asynchronous messages, means that multiple-company Web Service
collaborations will typically take much more time than the individual requests and
responses in traditional transactional environments.

Building XML-Based Applications

PART II
614

and workflow definition grammars, it is my no means the only one. Others
include the following:

• The ebXML Business Process Specification (see http://www.ebxml.org).

• The Business Process Modeling Language (http://www.bpmi.org).

• Microsoft’s XLANG, which is the proprietary grammar at the heart of the
BizTalk Server (at http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/
default.htm).

17 0672323419 CH14 3/15/04 11:21 AM Page 614

Because of these fundamental differences between traditional environments and the Web
Services model, transactions must be handled differently. We require a more incremental
approach to transactional capabilities, as follows:

• First, we need an activity service that specifies the operational context of a series
of requests. Included in this operational context are the duration of the activity, the
participants involved, and a description of the possible outcomes of the activity.

• Next, there is a need for a conversation service that provides request atomicity.
Request atomicity guarantees that a particular set of Web Service operations either
happen completely or not at all. The endpoint manager publishes the atomicity
capability to the participants.

• The conversation service must also correlate sequences of requests into a single
unit of work, by providing a structure for conversations that includes indications of
the beginning and end of the conversations as well as success and failure outcomes.
The conversation service must be able to accept a rollback command from either
participant, and then it must provide the semantics of the rollback command to
each participant.

Architecting Web Services

CHAPTER 14
615

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

Note

Hewlett-Packard has entered the Web Services fray by developing the Web
Services Conversation Language (WSCL), which allows for the defining of
business-level conversations or public processes supported by a Web Service.
In addition, WSCL specifies the documents being exchanged as well as the
sequence of the documents. However, WSCL does not (yet) describe how Web
Services conversations will handle transactions. (Learn more about Hewlett-
Packard’s work with Web Services at http://www.e-speak.hp.com.)

Caution

The WSCL is on the bleeding edge, as well. In addition, Hewlett-Packard has not
been as prominent a participant in the Web Services standards processes as IBM
and Microsoft, so there is a somewhat greater possibility that WSCL will not
become a standard compared to, say, WSFL.

17 0672323419 CH14 3/15/04 11:21 AM Page 615

Architecting Web Services
Software architects are at the vanguard of the software development lifecycle. If Web
Services truly represent a paradigm shift in how distributed computing is performed,
rather than merely an incremental improvement, it is up to the architects first to under-
stand this shift and then to communicate it to their teams as well as their management.

Software architecture is a broad, somewhat-vague discipline that includes elements of
design, abstraction, and aesthetics, as well as a more fundamental view of what really
works and what doesn’t. Architects touch upon the hardware, the network, the applica-
tions, and the interfaces as well as the users, the partners, and the marketplace. In order
to architect complex, multifaceted systems, including those made up of Web Services,
architects must exercise many ways of thinking and many ways of viewing the
problems before them.

One established model for how architects visualize the systems before them is the 4+1
View Model of Software Architecture, popularized by Philippe Kruchten of Rational
Software. Whereas the four blind men each touch the elephant in a different place and
therefore come to different understandings of it, the architect has clear vision, seeing the
elephant from all four views. As a result, the architect has a comprehensive picture
of the elephant.

This is the same with the 4+1 View Model. This model describes four distinct ways of
looking at the architecture for a system, plus a fifth view that overlaps the others, as
shown in Figure 14.4.

Building XML-Based Applications

PART II
616

Implementation
(Development or
Component) View

Logical (Design)
View

Process View
Deployment

(Physical) View

Use-Case View

End User
Functional Requirements

Programmers
Software Management

SOA Architects
JIT Integration of Web Services

System Engineering
Platforms

FIGURE 14.4
The 4+1 View
Model of Software
Architecture.

17 0672323419 CH14 3/15/04 11:21 AM Page 616

Each of the four main views takes the perspective of key stakeholders in the development
process. The fifth view, the Use-Case View, overlaps the other views and plays a special
role with regard to the architecture. This section approaches the Web Services model
from each of the four views, demonstrating the different ways architects should envision
Web Services. A discussion of the Use-Case View closes out the chapter.

Architecting Web Services

CHAPTER 14
617

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

Note

The 4+1 View Model of Software Architecture is introduced in The Rational
Unified Process by Philippe Kruchten (Addison Wesley Longman, Inc., 1999) and
covered more in depth in Software Architecture for Product Families by M.
Jazayeri, et al. (Addison Wesley Longman, Inc., 2000). You can also find a good
discussion of the model at http://www.rational.com/products/whitepapers/
350.jsp.

The Implementation Architectural View: The
Web Services Technology Stack
In general, the Implementation View (also called the Development or Component View)
describes the organization of the software artifacts and also addresses issues of software
management. The Implementation View of the SOA focuses on the Web Services
technology stack, as shown in Figure 14.5.

Figure 14.5 shows a conceptual Web Services technology stack, where each layer on the
left builds upon the capabilities of the layer beneath it. The vertical columns on the right
represent capabilities that the architect must address at every level of the stack.

The base stack includes those technologies necessary to create and invoke Web Services.
At the bottom is the network layer, which fundamentally allows Web Services to be
available to service requesters. Although HTTP is the de facto standard network protocol,
the architect may consider any of a number of other options, including SMTP (for e-
mail), FTP, IIOP, or messaging technologies such as MQ. Some of these choices are
request/response based, whereas others are message based; furthermore, some are syn-
chronous, whereas others are asynchronous. The architect may find that in a large sys-
tem, a combination of different network protocols is appropriate.

In the next two layers, SOAP is the XML-based messaging protocol that forms the basis
for all interactions with Web Services. When running on top of HTTP, SOAP messages
are simple POST operations with SOAP’s XML envelope as the payload. SOAP mes-
sages support the publish, find, and bind operations that form the basis of the SOA, as
shown previously in Figure 14.2. (SOAP is covered in depth in Chapter 15.)

17 0672323419 CH14 3/15/04 11:21 AM Page 617

On top of the SOAP layer comes three layers that together form the service description.
WSDL is the de facto standard for service descriptions, with the addition of the still-
tentative WSEL for endpoint descriptions. The service interface definition contains the
binding, portType, message, and type elements, which form the portion of the service
description that is reusable from one implementation to another. (These elements are
fully described in Chapter 16.)

The service implementation definition, however, contains those elements that are specific
to each implementation: the service and port elements. A third party (say, a standards
body) might specify the service interface definition for a particular type of Web Service,
leaving the service implementation definition up to each implementation team.

Next comes the endpoint description, which introduces semantics to the service descrip-
tions that apply to a particular implementation. Endpoint descriptions can contain secu-
rity, QoS, and management attributes that help to define the policies for each of these
vertical columns.

Once the architect has dealt with all the issues in the base stack, the Web Services
are essentially fully constructed. Next, the development team uses UDDI to publish
the services to a registry or another repository of information about available Web
Services. Once Web Services are published, UDDI can then be used to discover them
in the registries.

Building XML-Based Applications

PART II
618

Service Conversations (WSCL)

Service Composition (WSFL)

UDDI

Service Discovery

Service Publication

Service Description (WSDL)

Endpoint Description (WSEL)

Service Implementation Definition

Service Interface Definition

Wire Protocol (SOAP)

XML

Network (HTTP, SMTP, etc.)

S
ecurity

Q
uality of S

ervice

Transactions

M
anagem

ent

Base
Stack

FIGURE 14.5
The Web Services
technology stack.

17 0672323419 CH14 3/15/04 11:21 AM Page 618

Only when the architect has dealt with the issues of service publication and discovery
can he move on to the more complex issues regarding the interaction of multiple Web
Services. The two protocols shown in Figure 14.5, WSFL and WSCL, are still in
development, and it’s not clear how these layers will be handled in the future.

One important lesson to be gained from the Web Services stack is that security, QoS,
transactions, and service management each apply to every layer in the stack. The
architect must therefore consider the intersection of each vertical column with each
horizontal layer. For example, network security will likely be handled by HTTPS (SSL
over HTTP), but the security of individual messages may still need to be handled by
encrypted payloads and digital signatures, which are incorporated into the SOAP header.
Securing the base stack is relatively straightforward, because it is internal to the enter-
prise; securing Web Services involved in publication and discovery across the Internet is
another issue entirely.

QoS, as well, means different things at each layer. Network QoS involves network
uptime, packet delivery, and valid HTTP messages. Reliable messaging, however,
depends heavily on the capabilities of the endpoint manager, which uses WSEL
or another endpoint description language. Transactions depend on endpoint
descriptions, as well.

Transactions, in fact, must be handled on multiple levels of the service stack, because of
the complexity of handling rollbacks in a multi-enterprise Web Services environment. To
roll back a particular conversation, each operation within that conversation may need to
be reversed. Alternatively, there may need to be a way to remember the earlier state of
multiple systems in order to perform a rollback. In either case, there is no single span of
control managing the transactional environment. Transactions may be some of the most
intractable issues with Web Services today.

On top of all of these development and implementation concerns, the architect must also
think about the management of Web Services. Management of Web Services will likely
be handled by a management application, which may need to be built in-house. This
management application must be able to do the following:

• Determine the availability and health of the Web Services infrastructure, in-
cluding the network as well as the physical systems that support the execution of
the Web Services.

• Determine the availability and health of the internal Web Services themselves.
Web Services may need to be built with a management interface in order to support
this level of management.

Architecting Web Services

CHAPTER 14
619

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

17 0672323419 CH14 3/15/04 11:22 AM Page 619

• Determine the availability and health of the service registries. Some of these reg-
istries may be internal to the enterprise, allowing for direct access to their inner
workings, but other registries are external and may only expose a minimal interface
for external management.

• Determine the availability and health of external Web Services, once they are dis-
covered, attempt to invoke them. Again, these services are external and may not
provide a management interface.

• Control and configure all internal systems, including the infrastructure as well as
the Web Services themselves.

These management requirements emphasize the need for a standard way of building
management interfaces for Web Services (as well as the infrastructure that supports
them). In addition, there is clearly a need for a reporting and recovery process for pub-
licly available Web Services (either on the open Internet or available to specific business
partners). Partners should be able to access an interface that provides status reports on a
company’s services and infrastructure, without having to understand the details of how
the company manages its internal infrastructure.

Building XML-Based Applications

PART II
620

Caution

The work on standard management interfaces for Web Services is still very
much on the drawing board, although there are some technologies, such as the
Java Management Extensions (JMX), that can help to set a standard for the
more general, language-neutral environment of Web Services. The JMX home
page is at http://java.sun.com/products/JavaManagement/.

The Logical Architectural View: Composition of
Web Services
The Logical (or Design) Architectural View starts with the end user’s functional require-
ments and provides a top-down abstraction of the overall design of the system. In the
case of B2B functionality (say, in the case of processing a purchase order), the user
interface may be handled separately from the Web Services; therefore, the “end users” in
this case are the businesses themselves. In other cases, Web Services may provide func-
tionality to the user interface more directly.

In the B2B case, the functional requirements of a Web Services–based system will typi-
cally involve complex conversations among Web Services that participate in multi-step
business processes. In addition, the individual Web Services involved are likely to be

17 0672323419 CH14 3/15/04 11:22 AM Page 620

composed of component Web Services. As a result, an architect working from the
Logical View will likely be concerned with workflows of Web Services.

For example, let’s take the case of a buyer’s Web Service contacting a seller’s Web
Service to make a purchase. Figure 14.6 shows a possible (simplified) workflow for this
interaction.

Architecting Web Services

CHAPTER 14
621

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

Seller’s e-Commerce
Service

Buyer’s Purchasing
Service

Third Party
Credit Service

Credit Validation
Service

Accounting
Service

Public Workflow

Private Workflow

Inventory Management
Service

Pick
Service

Pack
Service

Ship
Service

ERP System

FIGURE 14.6
Simple
e-commerce
workflow.

This workflow consists of two separate workflows: a public workflow as well as one pri-
vate to the seller. From the buyer’s point of view, the seller is exposing a single public
Web Service that is composed of separate Web Services in succession.

The interfaces to the two public services are both written in WSDL. The buyer has
obtained the seller’s service description beforehand—either by looking it up in a registry
or through a prearranged relationship between the buyer and the seller. The buyer uses
the service description to build the SOAP messages it exchanges with the seller.

Once the seller receives a request from the buyer, a sequence of business processes
within the private workflow takes place. First, a credit-validation service sends a request

17 0672323419 CH14 3/15/04 11:22 AM Page 621

to a third-party, credit-checking Web Service, which it may have established a preexist-
ing relationship with. This third-party service is an example of an enabling service.
Depending on the response from the third-party service, the seller continues with the
e-commerce workflow or possibly sends a “credit rejected” response back to the buyer.
(The architect must consider both the “rejected” special case as well as how to handle
the situation where the third-party credit service is unavailable.) In a more general case,
it will likely not be necessary to query this service if the seller has an established
relationship with the buyer.

Once the buyer’s credit is approved, the internal credit-validation service sends a request
to the inventory-management service. This service is recursively constructed from indi-
vidual component services (three of which are shown for illustration purposes, but in
reality such services would be more complex). The architect must determine the interface
for the inventory-management service as well as detail the workflow that takes place
within the service.

The architect must work with several different elements in a complex workflow like this
one, including the following:

• The sequencing rules that describe how the Web Services interact over time.

• The information flows between each of the services (including the necessary data
mapping).

• The service providers responsible for executing each step. Is the inventory-manage-
ment service responsible for executing any of its internal steps, or are they taken
care of by the component services?

• The associations between activities in the workflow.

• The operations offered by each service provider.

The three component services within the inventory-management service may also repre-
sent applications that are not themselves Web Services. In such a case, the inventory-
management service is responsible for communicating with each component via a
preexisting framework, such as CORBA, DCOM, or J2EE.

Once the purchased item has been shipped (assuming there were no errors), the account-
ing service is responsible for interacting with the ERP system. This system is an example
of a component that is not itself a Web Service. Typically, the architect will call for a
wrapper that will present a Web Service interface to the rest of the system. In this case,
the accounting service may itself be that wrapper, in which case the links between it and
the ERP system would be implemented with the APIs provided by the ERP system.

Building XML-Based Applications

PART II
622

17 0672323419 CH14 3/15/04 11:22 AM Page 622

This simple example appears to be a synchronous system—that is, there is a single,
closed loop starting and ending at the buyer that every request follows to completion. In
reality, however, some of the processes will be synchronous whereas others will be asyn-
chronous. The inventory-management service will likely communicate with the buyer
through the public e-commerce service to determine whether or not the product is in
stock, and then the pick, pack, and ship process will take place asynchronously. As a
result, the architect must also consider how the buyer (as well as the seller) will be able
to monitor and control the asynchronous inventory service.

If this is a B2B example, then the buyer’s purchasing service likely ties into the
buyer’s enterprise systems as part of its supply chain management system. However,
in a Business to Consumer (B2C) situation, the buyer’s purchasing service might be
hosted on a B2C Web site. In this situation, the user context is a primary concern
of the architect.

User context is a critical part of all consumer (and generally, individual user) focused
Web Services, including Microsoft’s .NET My Services initiative as well as Sun’s
SunONE framework.

Architecting Web Services

CHAPTER 14
623

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

Note

.NET My Services (formerly codenamed Hailstorm) is Microsoft’s platform for
building user-centric XML-based Web Services. Learn more about .NET My
Services at http://www.microsoft.com/myservices/.

The Sun Open Net Environment (SunONE) is Sun’s standards-based software
vision, architecture, platform, and expertise for building and deploying Web
Services on demand. Learn more about SunONE at http://www.sun.com/sunone.

The user context contains information about the user as well as information about the
user’s session, including the following:

• Demographic information, credit card information, and so on

• The user’s physical location

• The user’s locale (the user’s language, currency, number format, and so on)

• The user’s security level and permissions

• Personalization information that pertains to the Web site the user is visiting,
including merchandise preferences, calendar information, buddy lists, and so on

17 0672323419 CH14 3/15/04 11:22 AM Page 623

The Deployment Architectural View: From
Application Servers to Peer-to-Peer
The Deployment (or Physical) Architectural View maps the software to its underlying
platforms, including the hardware, the network, and the supporting software platforms.
Today, Web Services are hosted on application server platforms such as IBM’s
WebSphere, BEA’s WebLogic, and Microsoft’s Windows 2000. There are many benefits
to building Web Services on top of platforms like these: They handle database access,
load balancing, scalability, and interface support as well as provide a familiar environ-
ment for dealing with hardware and network issues.

Building XML-Based Applications

PART II
624

Caution

User context issues are still under development, and there is not yet an estab-
lished procedure for handling them. Microsoft is taking a centralized server
approach to user context with its Passport Service, but there are prevalent
concerns about storing information this sensitive in a central repository. It may
make more sense to develop a distributed user context system that the users
themselves manage, but work on this topic is ongoing.

The home page for Microsoft HailStorm is at http://www.microsoft.com/
net/hailstorm.asp.

Information about SunONE, which includes work on user context, can be found
at http://www.sun.com/sunone/.

Tip

Working with a particular vendor’s platform typically requires the use of the
vendor’s tools. IBM provides the Web Services Toolkit for building Web Services,
in addition to its WebSphere Studio Application Developer product, which is
IBM’s updated VisualAge for Java offering. Microsoft also provides a full suite of
Web Service–creation tools as a part of its .NET offering. Many other vendors
are introducing Web Services tools as well, in addition to several open-source
contributions, including applications under the Apache banner. More informa-
tion about these tools can be found in Chapters 15 and 16.

Because Web Services typically exchange messages over HTTP, a Web server is typi-
cally the desired host for supporting a Web Service. Both the Microsoft and the J2EE
platforms share a similar developer model, as shown in Figure 14.7.

17 0672323419 CH14 3/15/04 11:22 AM Page 624

This model follows a traditional n-tier architecture, except that the Web server is also
responsible for sending and receiving the XML messages that form the Web Services
interface. The technology that supports Web Services is therefore already well under-
stood; the fundamental difference between Web Services and Web pages is that pages
are intended for humans to read, whereas Web Services expose an interface intended
for machines.

Running Web Services off of Web servers is not the only way to support the services,
however. It is also possible to build Web Services on a peer-to-peer (P2P) developer
model. P2P, popularized by the Napster music service, is a distributed architecture that
does not rely on central servers but rather distributes responsibility to systems (called
peers) in the network. Unfortunately, P2P technologies are every bit as new and bleeding
edge as Web Services, so only time will tell which P2P models will become established.
The self-organizing promise of Web Services does lend itself to P2P, but a lot of work
remains before we will see how this fascinating area will develop.

Architecting Web Services

CHAPTER 14
625

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

Web
Server Middleware

Web Service
requester

J2EE Approach

JSP/Servlets EJB Application
Server

JDBC

XML

over

HTTP

HTML

over

HTTP

ASP/ASP.NET
Business Facade

COM
Components

ODBC

Data tier

Microsoft Approach

User

Data
Access

FIGURE 14.7
Web Services
developer model.

Note

One pioneer in the area of P2P-based Web Services is Cambridge,
Massachusetts–based AVAKI (at http://www.avaki.com). AVAKI is building a
scalable middleware platform that combines distributed and P2P computing
capabilities. AVAKI’s middleware platform is based on JXTA, which is Sun
Microsystems’ new set of P2P protocols. AVAKI’s Peer Information Protocol is an
XML-based interface protocol that supports interactions with Web Services.
JXTA’s home page can be found at http://www.sun.com/jxta/.

17 0672323419 CH14 3/15/04 11:22 AM Page 625

The Process Architectural View:
Life in the Runtime
The Process Architectural View addresses all runtime issues, including processes, concur-
rency, and scalability. As the applications of Web Services move up the hierarchy of Web
Service integration options to JIT integration (as shown previously in Figure 14.3), the
Process Architectural View will take on increasing importance. In fact, the Process
Architectural View will be where the bulk of the SOA architect’s work will take place.

For example, let’s take another look at the simple e-commerce workflow in Figure 14.6.
If you just look at the figure, you might think that there’s nothing much new here; this
diagram could represent an e-commerce system based on a simple n-tier architecture.

The reason that the diagram doesn’t immediately demonstrate the power of the Web
Services model is that in the diagram, the buyer has already identified the seller, the
seller has already identified its third-party credit service, and the seller’s private work-
flow is already put in place. If all these statements are in fact true, then, yes, Web
Services has little to offer over traditional n-tier architectures. On the other hand, let’s
take a JIT approach, as shown in Figure 14.8.

Building XML-Based Applications

PART II
626

Pick
Service

Ship
Service

Pack
Service

Ship
Service

Pick
Service

Pack
Service

Pick
Service

Pack
Service

Ship
Service

Inventory Management
Service

Seller’s e-Commerce
ServiceBuyer’s Purchasing

Service

Credit Validation
Service

Third Party
Credit Service

Accounting
Service

Internal
UDDI

Registry

External
UDDI

Registry

ERP System

FIGURE 14.8
JIT e-commerce
workflow.

17 0672323419 CH14 3/15/04 11:22 AM Page 626

Figure 14.8 shows an e-commerce workflow much like the one in Figure 14.6, except
that multiple buyers have looked up the seller in a registry and have chosen to invoke the
seller’s e-commerce service. Likewise, the seller looks up third-party credit services in an
external registry and looks up pick, pack, and ship services in an internal registry. (As
before, these three services are used as examples rather than to indicate how inventory
management would actually take place.) The inventory-management service then selects
the internal components on-the-fly at runtime.

This example begs the following questions: What if the buyer sends an automatic query
to a registry, identifies and qualifies an appropriate seller on-the-fly, and negotiates the
purchase dynamically? What if the seller looks up a potentially different credit service
every time, given a changing set of criteria such a service might need to meet? Even
more significant, what if the seller’s inventory-management service dynamically selects
its pick, pack, and ship services at runtime, depending on supply chain issues such as
availability, price, and logistics?

Herein lies the power of Web Services. The architect must be able to plan and structure
processes where individual Web Services might be selected, queried, and invoked
dynamically at runtime. Therefore, the Process View is the most important, and yet the
least understood, of the architectural views of the SOA.

JIT integration also complicates scalability and redundancy issues. Many of these issues
can be handled by the underlying software platform that supports the Web Services.
However, with JIT integration, it is not necessarily possible to predict at design time
which Web Services will be invoked or what service implementations they will expose.
How do you plan for scalability and redundancy when you don’t even know whether a
particular component will be invoked at all?

Summary
It’s difficult to write a chapter about something as bleeding edge as Web Services. You
start the chapter with answers, and by the end, all you have are questions. Keep in mind,
however, that there are two main audiences for this chapter: People who wish to architect
Web Services, and people who wish to help define how Web Services should be archi-
tected. Of course, these two audiences overlap.

For those of you who wish to architect Web Services, you will need to tread lightly in
those areas that are still in development. Open technologies are defined more by mobs
than by committees: Everybody tries to get their particular way of doing something to be
accepted by the community at large. Some succeed, but most fail; even those who suc-
ceed often see their brainchild changed before the work is done.

Architecting Web Services

CHAPTER 14
627

14

A
R

C
H

ITEC
TIN

G
W

EB
S

ER
V

IC
ES

17 0672323419 CH14 3/15/04 11:22 AM Page 627

However, along with the risks of being an early adopter come the rewards. If you’re
building Web Services now, then chances are your company or institution is interested in
exploring technologies before they are fully defined. That will put you ahead of the game
as the technologies become better established.

And for those of you who read this chapter because you are interested in helping to
define how Web Services should be architected, I hope you have found some of the
material in this chapter to be controversial. There’s no way to write a chapter like this
and capture the prevailing wisdom, because there simply is no prevailing wisdom for
many of these issues. In addition, you are reading this at least six months after it was
written, and much will have changed in that interval. At the very least, I hope that I have
gotten you to think about the Web Services model in new ways. If I have done that, then
this chapter was successful.

Oh yes, you might be wondering why I haven’t yet talked about the fifth architectural
view: the Use-Case View. I saved this view for last for a reason. The Use-Case View is
meant to drive the discovery and the design of the architecture as well as to validate each
of the other views. The existence of use-cases, however, means that there already exists
business users who know what they want a Web Services architecture to do, and that’s
not the case at this time. Business users don’t even know what functionality is possible.

The functionality of Web Services today is understood in the context of existing solu-
tions, because that’s what people are familiar with. It is up to you as an early adopter to
understand how the Web Services model and the SOA can enable a new paradigm of
component technology. Only then will the capabilities of this new paradigm filter down
to the world of global e-business.

Building XML-Based Applications

PART II
628

17 0672323419 CH14 3/15/04 11:22 AM Page 628

IN THIS CHAPTER

• Introduction to SOAP 630

• Basic SOAP Syntax 634

• Sending SOAP Messages 650

• SOAP Implementations 655

• The Future of SOAP 668

15
C

H
A

PT
ER

Web Services
Building Blocks:
SOAP

18 0672323419 CH15 3/15/04 11:22 AM Page 629

The Simple Object Access Protocol (SOAP) is an XML-based messaging and remote
procedure call (RPC) specification that enables the exchange of information among dis-
tributed systems. Initially proposed by Microsoft, SOAP has established itself as the de
facto standard for an open, extensible, XML-based wire protocol.

SOAP has achieved its level of widespread acceptance for several reasons:

• It is an open specification, available for anyone to use.

• It is simple to write and is “human-readable.”

• It is extensible, taking advantage of the power of XML to enable loose coupling
between remote systems.

• It is a flexible protocol that is useful both in request/response and message pass-
ing/queuing architectures.

Even though SOAP has wide application in the distributed computing environment, prob-
ably its most significant role is as a building block for the Web Services model, intro-
duced in Chapter 14, “Architecting Web Services.”

In this chapter, you will learn

• The basics of SOAP syntax

• How to send and receive SOAP messages

• How to build SOAP implementations using industry-leading tools

• About advanced and bleeding-edge applications of SOAP

Introduction to SOAP
Basically, SOAP is a standard way of serializing the information needed to invoke
services located on remote systems so that the information can be sent over a network
(or “wire”) to the remote system, in a format the remote system can understand,
regardless of what platform the remote service runs on or what language it’s written in.
If you’re familiar with RPC architectures such as CORBA and DCOM, this description
of SOAP should sound familiar, because SOAP resembles the wire protocols underlying
both architectures: the Internet Inter-ORB Protocol (IIOP) that underlies CORBA
and Microsoft’s Distributed Component Object Model (DCOM) protocol, respectively.
In fact, SOAP can be thought of as a simplified XML-based replacement
for these protocols.

Building XML-Based Applications

PART II
630

18 0672323419 CH15 3/15/04 11:22 AM Page 630

Improved RPC
In order to understand SOAP’s context, it helps to put it in perspective relative to RPC
architectures in particular, and communications within distributed computing models in
general.

The two dominant communications models throughout the history of distributed comput-
ing have been message passing/queuing and request/response. With message passing, a
message sender can send a message at any time, and the messaging infrastructure is
responsible for delivering the message whenever it can, thus typically offering asynchro-
nous message delivery. With the request/response model, the message sender typically
must wait until it receives a response from the recipient, in what is an example of syn-
chronous message delivery. If the goal is to send data to a method hosted on a remote
system and wait for its response, the request/response model is a natural fit. Message
passing, however, is more appropriate when a response is not immediately required.

As a result, RPC architectures generally followed the synchronous request/response
model, and when object-oriented architectures came into widespread use, Object RPC
(ORPC) protocols such as CORBA’s IIOP and DCOM became dominant in the distrib-
uted computing arena. However, both CORBA/IIOP and DCOM have several problems,
including the following:

• Both CORBA and DCOM are single-vendor solutions. DCOM is expressly a
Microsoft solution, and although CORBA is intended to be cross-platform, in real-
ity it is typically only cost-effective when all the involved systems share a single
Object Request Broker (ORB) platform.

• Both CORBA and DCOM have different, proprietary characteristics. For example,
CORBA’s payload parameter value format is the Common Data Representation
(CDR), whereas DCOM’s is the incompatible Network Data Representation
(NDR). Likewise, CORBA uses Interoperable Object References (IORs) for end-
point naming, whereas DCOM uses OBJREFs.

Web Services Building Blocks: SOAP

CHAPTER 15
631

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

Note

As of this writing, the SOAP specification is at version 1.1, and all the SOAP in
this chapter refers to this version. A brief discussion of what’s expected in ver-
sion 1.2 comes at the end of the chapter. The official source for the SOAP speci-
fication is in a W3C note, which can be found at http://www.w3.org/TR/SOAP/.

18 0672323419 CH15 3/15/04 11:22 AM Page 631

• IIOP and DCOM are both binary protocols, which means they are not human-read-
able, and neither is firewall friendly. The firewall limitation in particular relegates
both architectures to use primarily within individual enterprises.

• Both CORBA and DCOM are tightly coupled, which means that a change in the
exposed methods of any distributed object requires programming changes in dis-
tributed objects that communicate with it. As a result, interfaces must be specified
at design time, and any changes required during runtime involve expensive, time-
consuming version upgrades.

Such is the environment that gave birth to SOAP. SOAP addresses each of these draw-
backs to existing ORPC architectures:

• SOAP is built with open technologies and is an open specification. Because SOAP
is built with XML and is itself managed by international standards bodies, SOAP is
a vendor-neutral protocol.

• It follows, then, that SOAP’s characteristics are also open. SOAP uses XML as its
payload parameter value format and uses URIs (which are like URLs; more about
URIs later) for endpoint naming. In addition, SOAP interfaces are described with
the Web Services Description Language (WSDL), which is also an open technol-
ogy. (More about WSDL in Chapter 16, “Web Services Building Blocks: WSDL
and UDDI.”)

• Because SOAP is based on XML, it is a text-based protocol. As a result, it is sim-
pler than CORBA and DCOM. SOAP messages are human-readable and firewall
friendly. SOAP messages are typically sent over HTTP, either over the standard
port, 80, or the standard SSL port, 443. Human-readability is valuable for develop-
ing and maintaining the software.

• SOAP is a loosely coupled protocol. Because SOAP takes advantage of XML’s
self-describing capabilities, SOAP messages (in conjunction with WSDL) can indi-
cate to their recipients their interface requirements. Therefore, it is possible to
change SOAP message interfaces at runtime, as long as the underlying architecture
supports just-in-time (JIT) integration. You can learn more about JIT integration in
Chapter 14.

In addition, SOAP works quite well in messaging as well as RPC architectures. Although
both CORBA and DCOM are inherently based on their request/response mechanisms,
the SOAP protocol supports asynchronous messages as well as one-way messages that
don’t come in request/response pairs.

Building XML-Based Applications

PART II
632

18 0672323419 CH15 3/15/04 11:22 AM Page 632

Improved Interoperability
If there is one phrase that strikes fear in the hearts of many a system integrator, it is
“DCOM-CORBA bridge.” Sure, DCOM and CORBA are technically interoperable via
such bridges, but in reality, the custom integration needed to make such bridges work in
real-world environments is extraordinarily expensive and time consuming. If such inte-
gration was just a matter of translating Network Data Representation (NDR) payloads to
Common Data Representation (CDR) payloads, for example, then integration wouldn’t
be as great an issue. The problem is, however, that DCOM and CORBA handle location
transparency in different ways.

Web Services Building Blocks: SOAP

CHAPTER 15
633

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

Note

Location transparency is one of the main design goals of both ORPC architec-
tures (as well as other architectures, such as Java RMI). Location transparency
means being able to hide the communication tasks between remote objects by
encapsulating them into classes so that a client object can access methods on a
server object as though those methods were local to the client. In essence, for a
client object to invoke a server object, it must request some executable code
from the server to be marshaled and sent over the wire to the client, where
it is unmarshaled.

Sending executable code over the network, naturally, opens a Pandora’s box of issues,
including security, flexibility, and the previously mentioned firewall unfriendliness. It is
clearly problematic to unmarshal an object written in one language into an object sup-
ported on a different platform. SOAP’s capabilities can help to resolve these issues with
location transparency.

SOAP, in essence, is the XML-based replacement for the object serialization techniques
used by the existing ORPC architectures. Using XML to structure the data serialization
provides a “neutral third party” between CORBA and DCOM (as well as other propri-
etary RPC architectures). CORBA-SOAP and DCOM-SOAP bridges are much simpler
to build and use than a CORBA-DCOM bridge, because they are simply XML interfaces
to existing objects.

Key Building Block for Web Services
SOAP provides an additional advantage over traditional ORPC architectures: Because
SOAP messages are self-describing, the method calls contained in a SOAP message can

18 0672323419 CH15 3/15/04 11:22 AM Page 633

vary each time the message is sent. In addition, it is possible to marshal several method
calls in a single SOAP message. With a traditional ORPC, each call to a remote method
must be handled as a separate roundtrip. A SOAP message, however, can be constructed
on-the-fly to send data to multiple methods. Used judiciously, this capability can more
than compensate for the slowness of SOAP’s text-based messages as compared to the
binary messages of CORBA and DCOM.

The ability of SOAP messages to be constructed on-the-fly is the linchpin of the Web
Services model. If you look at the Web Services stack in Figure 14.5, you’ll see that
SOAP is a key element in the foundation of Web Services. SOAP is ideally suited both
for messages between Web Services and for messages that other systems exchange with
Web Services. As explained in Chapter 14, the true power of Web Services lies in its JIT
capabilities, and it is SOAP’s extensibility—inherited from XML—that forms the basis
for Web Services’ new JIT paradigm.

Basic SOAP Syntax
Let’s take a closer look at the inner workings of SOAP. SOAP provides three
key capabilities:

• SOAP is a messaging framework, consisting of an outer Envelope element
that contains an optional Header element and a mandatory Body element.

• SOAP is an encoding format that describes how objects are encoded, serialized,
and then decoded when received.

• SOAP is an RPC mechanism that enables objects to call methods of
remote objects.

It is possible to use SOAP only as a messaging framework or as a messaging framework
and an encoding format. However, the most common use of SOAP as an encoding stan-
dard is to support its use as an RPC mechanism, as well.

SOAP Message Structure and Namespaces
Let’s start with a simple example of a message we might want to send—a request to the
server for a person’s phone number. We might have an interface (here, written in Java)
that would expose a method we might call to request the phone number:

public interface PhoneNumber
{
public String getPhoneNumber(String name);

}

Building XML-Based Applications

PART II
634

18 0672323419 CH15 3/15/04 11:22 AM Page 634

Let’s say, then, that instead of using CORBA or RMI, our client sends an XML-format-
ted request to the server. This XML might look like the following:

<?xml version=”1.0”?>
<PhoneNumber>
<getPhoneNumber>
<name>John Doe</name>

</getPhoneNumber>
</PhoneNumber>

Notice that the root node corresponds to the Java interface, and the method as well as its
parameter are nodes, too. We then use our client to create an HTTP request, and we put
the preceding XML in the body of an HTTP POST. We might expect a response from the
server that looks something like the following:

<?xml version=”1.0”?>
<PhoneNumber>
<getPhoneNumberResponse>
<thenumber>
<areacode>617</areacode>
<numberbody>555-1234</numberbody>

</thenumber>
</getPhoneNumberResponse>

</PhoneNumber>

The root node retains the name of the interface, but the method name has the word
“Response” appended to it, so the client can identify the correct response by appending
“Response” to the calling method name.

In general, constructing request and response messages like the preceding ones is a sim-
ple but limited approach. The biggest limitation is that the vocabulary that the client and
server use to exchange messages must be agreed upon beforehand. If there is a new
method or a new parameter, both the client and the server must reprogram their inter-
faces. In addition, in a complex message, there could easily be confusion if two methods
have parameters with the same name.

In order to resolve these limitations with such simple message formats, SOAP takes
advantage of XML namespaces. Let’s take a look at the same request message recast
in SOAP:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/1999/XMLSchema”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

Web Services Building Blocks: SOAP

CHAPTER 15
635

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 635

<SOAP-ENV:Header>
</SOAP-ENV:Header>

<SOAP-ENV:Body>
<ns:getPhoneNumber xmlns:ns=”PhoneNumber”>
<name xsi:type=”xsd:string”>John Doe</name>

</ns:getPhoneNumber>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Let’s break down this request and take a closer look. First of all, its root node is
Envelope, which has an optional Header section and a mandatory Body section. The
SOAP Envelope is then enclosed in the outer transport envelope, which might be HTTP,
SMTP, and so on. All SOAP messages are structured like this, as shown in Figure 15.1.

Building XML-Based Applications

PART II
636

Transport Envelope
(e.g. HTTP)

SOAP Envelope

SOAP Header

SOAP Body

FIGURE 15.1
SOAP message
structure.

Next, notice that the message takes full advantage of namespaces. Namespaces are a crit-
ically important part of SOAP (for more about namespaces, see Chapter 5, “The X-Files:
XPath, XPointer, and XLink”). Namespaces differentiate elements and attributes with
similar names, so they can both occupy the same document without confusion. In addi-
tion, namespaces are used for versioning so that the semantics of the XML tags can be
updated or modified. Most important, however, namespaces allow the SOAP messages to
be extensible: By referencing different namespaces, a SOAP message can extend its
semantic scope (in other words, talk about different things), and the receiver can interpret
the new message by referencing the same namespace.

You declare namespaces with the xmlns keyword. There are two forms of namespace
declarations: default declarations and explicit declarations. In our sample request, all the
declarations are explicit. Explicit declarations take the following form:

xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

The default declarations look like this:

xmlns=”SomeURI”

18 0672323419 CH15 3/15/04 11:22 AM Page 636

Explicit declarations begin with the xmlns keyword, followed by a colon and a shorthand
designation for the namespace. The SOAP-ENV namespace includes the <Envelope>,
<Header>, and <Body> structural elements as well as the encodingStyle attribute, found
at the URI http://schemas.xmlsoap.org/soap/envelope/, which is the standard
URL for the SOAP-ENV namespace. An explicit declaration is used when taking advantage
of a publicly available namespace, whereas default declarations are appropriate for
custom namespaces.

Web Services Building Blocks: SOAP

CHAPTER 15
637

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

Note

So, what are the differences among URLs, URIs, and URNs, anyway? A Uniform
Resource Identifier (URI) is nothing more than a formatted string that uniquely
identifies a resource. URIs come in two flavors: URLs and URNs. A Uniform
Resource Locator (URL) includes an encoding of the underlying protocol that is
used to locate the resource (the all-too-familiar “http://”), whereas a Uniform
Resource Name (URN) is location independent and therefore provides no infor-
mation about where to find the resource.

The syntax for HTTP URLs is as follows:

“http://” <host> [“:” <port>] [<path> [“?” <query>]]

Here, <host> is the IP address or fully qualified domain name of the server;
<port> is the TCP port number; <path> is the absolute path to the resource
being requested, and the optional <query> is the query string suffix.

The syntax for URNs is quite different:

“urn:” <NID> “:” <NSS>

Here, <NID> is the namespace identifier, and <NSS> is a namespace-specific
string. An example of a URN would be as follows:

urn:uuid:12345

In addition, the xsi namespace maps to http://www.w3.org/1999/XMLSchema-
instance, and xsd maps to http://www.w3.org/1999/XMLSchema. Both are also stan-
dard namespaces. The xsd namespace includes the attribute string.

The Envelope element also contains the attribute:

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

The encodingStyle attribute informs the server receiving the message about the way that
the message content is encoded, or serialized. The server needs this information to
decode the Body element; as a result, the SOAP message is self-describing.

18 0672323419 CH15 3/15/04 11:22 AM Page 637

The encodingStyle attribute defined by http://schemas.xmlsoap.org/soap/encod-
ing/ is the only one defined by the SOAP specification, but it is not actually mandatory.
An empty URI (“”) can be used as the encoding style to disable any serialization claims
from containing elements. In addition, you can select a more restrictive serialization rule
by extending the path of the encoding style URI. In this case, the URIs indicating the
serialization rules that you want to use must be written from most specific to least spe-
cific, as follows:

SOAP-ENV:encodingStyle=”http://mysite.com/soap/encoding/restricted
➥ http://mysite.com/soap/encoding/”

Next, let’s take a look at the Body element of our SOAP request. The interface name
PhoneNumber in the line

<ns:getPhoneNumber xmlns:ns=”PhoneNumber”>

is no longer a node name, as it was in our simplistic XML example. In our SOAP
request, PhoneNumber refers to the namespace ns. The line

<name xsi:type=”xsd:string”>John Doe</name>

contains the string “John Doe” as the value for the element name, which the server will
understand is the parameter for the getPhoneNumber method.

Now, let’s take a look at the server’s response message:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/1999/XMLSchema”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Body>
<getPhoneNumberResponse xmlns=”SomeURI”>
<areacode>617</areacode>
<numberbody>555-1234</numberbody>

</getPhoneNumberResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The response message shows an example of a namespace with a default declaration in
the following line:

<getPhoneNumberResponse xmlns=”SomeURI”>

In the case of a default declaration, the namespace found at SomeURI automatically
scopes that element and all its children. As a result, the <areacode> and <numberbody>
elements are defined in terms of the default namespace, instead of taking advantage of
the xsi or xsd namespaces.

Building XML-Based Applications

PART II
638

18 0672323419 CH15 3/15/04 11:22 AM Page 638

SOAP Envelope Element
The SOAP Envelope element is the mandatory top element of the XML document that
represents the SOAP message being sent. It may contain namespace declarations as well
as other attributes, which must be “namespace qualified.” The Envelope element may
also contain additional subelements, which must also be namespace qualified and follow
the Body element.

SOAP does not define a traditional versioning model (for example, 1.0, 1.1, 2.0, and so
on). Instead, SOAP handles the possibility of messages conforming to different versions
of the SOAP specification by the way it handles the namespace associated with the
Envelope element. This namespace, http://schemas.xmlsoap.org/soap/envelope/,
is required by all SOAP messages. If a SOAP application receives a message with a
different namespace, it must recognize this situation as a version error and discard the
message. If the underlying protocol requires a response (as with HTTP), the SOAP
application must respond with a VersionMismatch faultcode using the http://
schemas.xmlsoap.org/soap/envelope/ namespace. (More about faultcodes later in
the chapter.)

SOAP Header Element
The SOAP Header element is optional and is used for extending messages without any
sort of prior agreement between the two communicating parties. You might use the
Header element for authentication, transaction support, payment information, or other
capabilities that the SOAP specification doesn’t provide.

Let’s take a look at a typical Header element:

<SOAP-ENV:Header>
<t:Transaction xmlns:t=“myURI”

SOAP-ENV:mustUnderstand=“1”>
3

</t:Transaction>
</SOAP-ENV:Header>

The Header element is the first immediate child of the Envelope element, and child ele-
ments of the Header element are called header entries. In this example, the header entry
is the Transaction element. Header entries must be identified by their fully qualified
element names (in this case, xmlns:t=”myURI”, where the namespace URI is represented
by myURI, and the local name is t).

Web Services Building Blocks: SOAP

CHAPTER 15
639

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 639

The SOAP Header element may also optionally contain the following attributes:

• A SOAP encodingStyle attribute, which would indicate the serialization rules for
the header entries.

• A SOAP mustUnderstand attribute (as in our example), which indicates whether it
is optional or mandatory to process the header entry. This attribute is explained in
this section.

• A SOAP actor attribute, which indicates who is supposed to process the header
entry and how they are supposed to process it. The actor attribute is also explained
in more detail in this section.

The value of the mustUnderstand attribute is either 1, indicating that the recipient must
process the header entry, or 0, indicating that the header entry is optional. If this attribute
doesn’t appear, processing the header entry is assumed to be optional provide.

If the attribute is set to 1, the recipient must either process the semantics of the header
entry properly according to its URI or fail processing the message and return an error.
Therefore, if there is a change in the semantics associated with a header entry, setting
the mustUnderstand attribute to 1 guarantees that the recipient will process the new
semantics.

In the preceding example, the Transaction element is mandatory, as indicated by the
mustUnderstand attribute, and has a value of 3, indicating which transaction the current
message belongs to.

Building XML-Based Applications

PART II
640

Caution

Because the mustUnderstand attribute is optional, you would think that you
could avoid problems by not using it. However, the current Apache SOAP imple-
mentation doesn’t support the mustUnderstand attribute, and as a result,
Apache SOAP can’t understand some SOAP messages sent by the Microsoft
SOAP Toolkit, because that toolkit does send messages that use the
mustUnderstand attribute. In other words, both tools follow the SOAP spec (in
this instance, anyway), but they follow it in incompatible ways nevertheless.

The second optional header entry attribute is the actor attribute. The SOAP actor
attribute indicates the recipient of the header entry. If there are only two parties involved
in a message (namely, the sender and the recipient), the actor attribute is extraneous.
However, in many cases, intermediaries will process a SOAP message on its way from
the sender to the recipient. These intermediaries are typically interested in only part of

18 0672323419 CH15 3/15/04 11:22 AM Page 640

the SOAP message. For example, a firewall may check the Envelope element for allowed
URIs but may not be interested in the Body element.

If an intermediary receives a SOAP message and determines that part of the message is
for itself, it must remove that part of the message before sending on the rest. Of course,
the intermediary may also add to the message, as well. The actor attribute might be used
to indicate that part of the message is intended for a particular intermediary or possibly
for the final recipient. There is also a special URI:

http://schemas.xmlsoap.org/soap/actor/next

This URI can be used as the value for the actor attribute that indicates that the header
entry is intended for the next application down the line to process the message provide.

SOAP Body Element
The mandatory Body element is an immediate child of the Envelope element and must
immediately follow the Header element if a header is present. Each immediate child of
the Body element is called a body entry. The Body element is used to carry the payload of
the SOAP message, and there is a great deal of latitude in what you can place in the Body
element. Body entries are identified by their fully qualified element names. Typically, the
SOAP encodingStyle attribute is used to indicate the serialization rules for body enti-
ties, but this encoding style is not required.

The only Body entry explicitly defined in the SOAP specification is the Fault entry, used
for reporting errors. The Fault entry is explained later in the chapter.

Data Types
The SOAP specification allows for the use of custom encodings, but typically you are
likely to use the default encoding defined in http://schemas.xmlsoap.org/soap/
encoding/. If you use this encoding, you get to take advantage of its data model, which
is structured to be consistent with the data models of today’s popular programming
languages, including Java, Visual Basic, and C++.

First of all, the standard encoding provides for the terminology defined in Table 15.1.

TABLE 15.1 SOAP Terminology

Term Meaning

Value A string, the name of a measurement (including numbers,
dates, and so on), or a combination of such values.

Simple value A value that doesn’t have named parts.

Web Services Building Blocks: SOAP

CHAPTER 15
641

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 641

TABLE 15.1 continued

Term Meaning

Compound value An aggregate of values. For example, a complete street
address (number, street, city, state, and zip code) would be
a compound value. Arrays are also compound values.

Accessor A role name or ordinal that distinguishes a value within a
compound value. “Zip code” would be an accessor to the
street address value.

Array A compound value where the member values are distin-
guished solely by their ordinal position.

Struct A compound value where the necessarily unique accessor
name is the only distinction among member values.

Simple type A class of simple values. For example, string is a simple
type, whereas “this string” is a simple value that is an
instance of the simple type.

Compound type A class of compound values. Each instance of a particular
compound type would have to share the same accessors.

Locally scoped An accessor whose name is unique within a particular type
but not across all types. Locally scoped accessors must be
combined with the type name to be uniquely identified.

Universally scoped An accessor whose name is based (directly or indirectly)
on a URI and is therefore unique across all types.

Single-reference A value that can be referenced by only a single instance of
an accessor, as determined by the schema.

Multi-reference A value that could potentially be referenced by more than
one instance of an accessor, as determined by the schema.

Independent An element that appears at the top level of a serialization.

Embedded Any element that isn’t independent.

Next, the standard encoding provides for SOAP’s simple types, which are based on the
“Primitive Datatypes” section of the XML Schema specification. SOAP’s primitive data
types are described in Table 15.2.

TABLE 15.2 SOAP Primitive Data Types

Data Type Meaning

SOAP-ENC:string Any string of Unicode characters that are allowed in a
SOAP message.

Building XML-Based Applications

PART II
642

18 0672323419 CH15 3/15/04 11:22 AM Page 642

TABLE 15.2 continued

Data Type Meaning

SOAP-ENC:boolean true, false, 1, or 0.

SOAP-ENC:decimal A number such as 44.145629 or -0.32, with an arbitrary
size and precision.

SOAP-ENC:float The 4-byte IEEE-754 floating-point number that is closest
to the specified decimal string.

SOAP-ENC:double The 8-byte IEEE-754 floating-point number that is closest
to the specified decimal string.

SOAP-ENC:integer Any integer.

SOAP-ENC:positiveInteger An integer that is strictly greater than zero.

SOAP-ENC:nonPositiveInteger An integer that is less than or equal to zero.

SOAP-ENC:negativeInteger An integer that is strictly less than zero.

SOAP-ENC:nonNegativeInteger An integer that is greater than or equal to zero.

SOAP-ENC:long An integer between -9,223,372,036,854,775,808 and
+9,223,372,036,854,775,807.

SOAP-ENC:int An integer between -2,147,483,648 and 2,147,483,647.

SOAP-ENC:short An integer between -32,768 and 32,767.

SOAP-ENC:byte An integer between -128 and 127.

SOAP-ENC:unsignedLong An integer between 0 and 18,446,744,073,709,551,615.

SOAP-ENC:unsignedInt An integer between 0 and 429,496,729.

SOAP-ENC:unsignedShort An integer between 0 and 65,535.

SOAP-ENC:unsignedByte An integer between 0 and 255.

SOAP-ENC:duration A length of time given in the ISO 8601 extended format,
represented by PnYnMnDTnHnMnS (for example,
19951231T235959). The number of seconds can be a dec-
imal or an integer. All the other values must be non-nega-
tive integers.

SOAP-ENC:dateTime A particular moment of time on a particular day up to an
arbitrary fraction of a second in the ISO 8601 format,
which is CCYY-MM-DDThh:mm:ss (for example,
1995-12-31T23:59:59). Put on a Z suffix to indicate
coordinated universal time (UTC) or an offset from UTC.

SOAP-ENC:time A time of day in the ISO 8601 format: hh:mm:ss.sss. A
time zone specified as an offset from UTC may also be
added.

Web Services Building Blocks: SOAP

CHAPTER 15
643

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 643

TABLE 15.2 continued

Data Type Meaning

SOAP-ENC:date A particular date given in ISO 8601 format: YYYYMMDD

SOAP-ENC:gYearMonth A particular month in a particular year in the form YYYY-
MM.

SOAP-ENC:gYear A year in the Gregorian calendar ranging from 0001 up or
-0001 down. (There is no year zero.)

SOAP-ENC:gMonthDay A particular day of a particular month in the form MM-DD.

SOAP-ENC:gDay A particular day in the form DD.

SOAP-ENC:gMonth A particular month in the form MM.

SOAP-ENC:hexBinary Encoded hexadecimal binary data; each byte of the data is
replaced by the two hexadecimal digits that represent its
unsigned value.

SOAP-ENC:base64Binary Base-64 encoded binary data.

SOAP-ENC:anyURI An absolute or relative URI.

SOAP-ENC:QName An XML name such as SOAP-ENV:Body or Body, which
may have an optional prefix. However, nonprefixed names
must be in the default namespace.

SOAP-ENC:NOTATION The name of a notation declared in the current schema.

SOAP-ENC:normalizedString A string that does not contain any carriage return (\r),
linefeed (\n), or tab (\t) characters. Such strings are called
normalized.

SOAP-ENC:token A normalized string without any leading or trailing white-
space and no runs of consecutive whitespace characters.
Whitespace characters include the space itself, tabs, and so
on (as well as the three characters disallowed in all normal-
ized strings).

SOAP-ENC:language An RFC 1766 language identifier (the RFC 1766 standard
can be found at http://www.ietf.org/rfc/
rfc1766.txt).

SOAP-ENC:NMTOKEN An XML name token.

SOAP-ENC:NMTOKENS A whitespace-separated list of XML name tokens.

SOAP-ENC:Name An XML name.

SOAP-ENC:NCName An XML name that does not contain any colons.

SOAP-ENC:ID An NCName that is unique among other IDs in the same
document.

SOAP-ENC:IDREF An NCName used as an ID somewhere in the document.

Building XML-Based Applications

PART II
644

18 0672323419 CH15 3/15/04 11:22 AM Page 644

TABLE 15.2 continued

Data Type Meaning

SOAP-ENC:IDREFS A whitespace-separated list of IDREF elements.

SOAP-ENC:ENTITY An NCName that has been declared as an unparsed entity
(not yet implemented consistently).

SOAP-ENC:ENTITIES A whitespace-separated list of ENTITY names (also imple-
mented inconsistently) .

These data types can be used directly in SOAP elements:

<SOAP-ENC:int>47</SOAP-ENC:int>

In addition, the data types support the id and href attributes, allowing multiple refer-
ences to the same value:

<SOAP-ENC:string id=“mystr”>The string</SOAP-ENC:string>
<SOAP-ENC:string href=“#mystr”/>

Furthermore, if the attributes are defined within a schema, you might have the following
example:

<bodystring id=“mystr”>The string</bodystring>
<newstring href=”#newstring”/>

In this case, the schema would include the following fragments:

<element name=”bodystring” type=”SOAP-ENC:string”>
<element name=”newstring” type=”SOAP-ENC:string”>

The only difference between this approach and declaring an element to be of type
“xsd:string” is that “SOAP-ENC:string” allows for the id and href attributes.

Arrays
Arrays are examples of compound values, where the member values in an array are dis-
tinguished only by their ordinal value. Arrays can contain elements that are of any type,
including nested arrays. Here is an example of an array containing integers:

<SOAP-ENC:Array SOAP-ENC:arrayType=”xsd:int[2]”>
<SOAP-ENC:int>4</SOAP-ENC:int>
<SOAP-ENC:int>33</SOAP-ENC:int>

</SOAP-ENC:Array>

Alternately, the same array can be represented with the use of the schema, as follows:

<myIntegers SOAP-ENC:arrayType=”xsd:int[2]”>
<num>4</num>

Web Services Building Blocks: SOAP

CHAPTER 15
645

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 645

<num>33</num>
</myIntegers>

Here’s the corresponding schema fragment:

<element name=”myIntegers” type=”SOAP-ENC:Array”>

A third way of specifying types of member elements is with the xsi:type attribute in the
instance, as shown here:

<SOAP-ENC:Array SOAP-ENC:arrayType=”xsd:ur-type[3]”>
<item xsi:type=”xsd:int”>4</item>
<item xsi:type=”xsd:decimal”>3.456</item>
<item xsi:type=”xsd:string”>This is a string</item>

</SOAP-ENC:Array>

This example also shows how the types of the member elements of an array can vary.

It is also possible for arrays to be multidimensional. Here is an example of a two-dimen-
sional array:

<myStrings SOAP-ENC:arrayType=”xsd:string[2,3]”>
<str>Row 1 Column 1</str>
<str>Row 1 Column 2</str>
<str>Row 1 Column 3</str>
<str>Row 2 Column 1</str>
<str>Row 2 Column 2</str>
<str>Row 2 Column 3</str>

</myStrings>

Arrays may also have other arrays or other compound values as member elements.

Finally, the SOAP specification defines two additional types of arrays: partially transmit-
ted or varying arrays and sparse arrays. A partially transmitted array is an array that only
has some of its elements specified. The “SOAP-ENC:offset” attribute indicates when the
first specified element isn’t the array’s first element, as shown in the following example:

<SOAP-ENC:Array Type=”xsd:string[5]” SOAP-ENC:offset=”[2]”>
<str>The third element of the Array</str>
<str>The fourth element of the Array</str>

</SOAP-ENC:Array>

Building XML-Based Applications

PART II
646

Caution

Neither Apache SOAP 2.2 nor the Microsoft SOAP Toolkit 2.0 SP2 support partial
or sparse arrays. The Apache implementation doesn’t support multidimensional
arrays, either.

18 0672323419 CH15 3/15/04 11:22 AM Page 646

SOAP handles sparse arrays by defining a SOAP-ENC:position attribute that indicates a
member value’s position within an array, as shown in the following example:

<SOAP-ENC:Array Type=”xsd:string[5,5]”>
<str SOAP-ENC:position=”[1,2]”>Second row, third column</str>
<str SOAP-ENC:position=”[4,0]”>Fifth row, first column</str>

</SOAP-ENC:Array>

Structs
In addition to arrays, structs are also examples of compound values, where the member
values in a struct are identified by unique accessor names. A simple example of a struct
is given here:

<elt:Purchase>
<buyer>John Doe</buyer>
<item>Widget</item>
<count>2</count>
<cost>14.47</cost>

</elt:Purchase>

The following schema fragment describes the struct:

<element name=”Purchase”>
<complexType>
<element name=”buyer” type=”xsd:string”/>
<element name=”item” type=”xsd:string”/>
<element name=”count” type=”xsd:int”/>
<element name=”cost” type=”xsd:decimal”/>

</complexType>
</element>

With structs, the name of the element is unique and identifies the element. The order of
elements is irrelevant.

We can expand the preceding struct by giving the buyer element some child elements of
its own:

<elt:Purchase>
<buyer>
<name>John Doe</name>
<address>1 Web St.</address>

</buyer>
<item>Widget</item>
<count>2</count>
<cost>14.47</cost>

</elt:Purchase>

Web Services Building Blocks: SOAP

CHAPTER 15
647

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 647

This is the best way of handling nested elements when they are single-reference.
However, if the buyer element were multi-reference, which would be true in the case of
a purchase (because John Doe would hopefully be expected to make additional pur-
chases), then the following struct would be more appropriate:

<elt:Purchase>
<buyer href=”#Person-1”/>
<item>Widget</item>
<count>2</count>
<cost>14.47</cost>

</elt:Purchase>
<elt:Person id=”Person-1”>
<name>John Doe</name>
<address>1 Web St.</address>

</elt:Person>

In this example, “John Doe” is an example of an independent element, which represents
an instance of a type (in this case, Person) that is referred to by at least one multi-refer-
ence accessor (in this case, buyer). Such independent elements must be tagged with the
id attribute and must be unique within the SOAP message.

Both of the two struct examples would be described by the following schema fragment:

<element name=”Purchase” type=”tns:Purchase”>
<complexType name=”Purchase”>
<sequence minOccurs=”0” maxOccurs=”1”>
<element name=”buyer” type=”tns:Person”/>
<element name=”item” type=”xsd:string”/>
<element name=”count” type=”xsd:int”/>
<element name=”cost” type=”xsd:decimal”/>

</sequence>
<attribute name=”href” type=”uriReference”/>
<attribute name=”id” type=”ID”/>
<anyAttribute namespace=”##other”/>

</complexType>
</element>
<element name=”Person” base=”tns:Person”>
<complexType name=”Person”>
<element name=”name” type=”xsd:string”/>
<element name=”address” type=”xsd:string”/>

</complexType>
</element>

Note that the child elements of the sequence element might occur at most once, in which
case the href attribute would not occur.

The preceding examples cover the breadth of what can be done with structs, but there
are many different ways of building them. For example, it is also possible to nest

Building XML-Based Applications

PART II
648

18 0672323419 CH15 3/15/04 11:22 AM Page 648

multi-reference elements, for example, if a Person element might have more than one
address element. In addition, elements can themselves be compound values.

Faults
The SOAP Fault element carries error messages (typically in response messages) or
other status information. This element is optional, but if it is present, it must appear only
once as a body entry.

Here is an example of a SOAP response message with a Fault element:

<SOAP-ENV:Envelope xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>Unable to process message</faultstring>
<detail>
<dtl:faultDetail xmlns:dtl=”Some-URI”>
<message>Namespace mismatch</message>
<errorcode>47</errorcode>

</dtl:faultDetail>
</detail>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

First, notice that the Fault element has three child elements. There are a total of four
possible subelements to the Fault element:

• The faultcode element is mandatory and provides a mechanism for software
applications to find the fault. SOAP defines four faultcodes (provided in the fol-
lowing list).

• The faultstring element is also mandatory and provides a human-readable expla-
nation of the fault.

• The faultactor element is optional and is used when there are intermediaries in
the message path. It parallels the SOAP actor attribute (described earlier), provid-
ing a URI that indicates the source of the fault.

• The detail element carries error information related specifically to the Body ele-
ment and is mandatory if the message recipient could not process the Body element
of the original message. (Error information about header entries must be carried
within the Header element.) If the detail element is missing, the recipient of the
fault message knows that the fault occurred before the Body element was
processed.

• Other namespace-qualified Fault elements are also allowed.

Web Services Building Blocks: SOAP

CHAPTER 15
649

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 649

As mentioned in the preceding list, SOAP provides for four faultcodes:

• A VersionMismatch faultcode indicates that the recipient found an invalid name-
space for the SOAP Envelope element.

• The MustUnderstand faultcode indicates that a SOAP header entry with a
MustUnderstand attribute set to “1” was not understood (or not obeyed).

• The Client faultcode indicates a problem with the request message itself. The
problem might be malformed XML or missing information that is required by the
recipient.

• The Server class of faultcodes indicates that the recipient was unable to process
the message, but the problem was not directly caused by the request message. A
typical Server faultcode would result from the server application failing to obtain
required data from another system. The server may send a subsequent successful
response if the problem is resolved.

Sending SOAP messages
The primary motivation for developing the SOAP specification has been to find a way to
make RPC architectures simpler and less problematic. The problems with DCOM and
CORBA—vendor dependence, firewall unfriendliness, and unnecessary complexity—led
to the development of early XML-based RPC architectures, such as XML-RPC.

XML-RPC paved the way for SOAP. Although XML-RPC was a straightforward applica-
tion of XML, it did not take advantage of XML namespaces and was therefore not fully
extensible. For this reason, SOAP was originally thought of as a namespace-capable aug-
mentation to XML-RPC.

Building XML-Based Applications

PART II
650

Note

XML-RPC is a straightforward, simple set of implementations that enable dis-
parate software systems to interact over the Internet. It was pioneered by Dave
Winer of UserLand Software, who was also instrumental in the creation of
SOAP. Although XML-RPC has a devoted following, it is gradually being super-
seded by SOAP. You can learn more about XML-RPC at http://www.xml-
rpc.com/.

Even though SOAP is primarily intended to be used as part of an RPC architecture and
its heritage is firmly in the RPC camp, it nevertheless does not require a synchronous
request/response mechanism. In fact, SOAP supports four types of operations:

18 0672323419 CH15 3/15/04 11:22 AM Page 650

• A request-response operation, which is bidirectional. In this type of operation, the
server receives a message from the client and replies with a response message.

• A solicit-response operation, which is also bidirectional, except that the server
solicits a request from the client, who then responds, essentially putting the
response before the request.

• A one-way message sent from the client to the server with no response
message returned.

• A notification message sent from the server to the client.

In essence, the bidirectional messages are inverses of each other, as are the unidirectional
ones. In addition to these four basic operations, SOAP also supports the forwarding by
intermediaries, which can also be either unidirectional or bidirectional. Furthermore,
SOAP faults are only supported by bidirectional messages.

Because of SOAP’s flexibility regarding message type, in combination with the fact that
it is a text-based protocol, SOAP messages can go over any number of different proto-
cols: HTTP, SMTP, FTP, and so on. However, HTTP has become the predominant trans-
fer protocol for SOAP because of its request-response mechanism, its ubiquity, and its
familiarity. Nevertheless, it is still important to point out some asynchronous applications
of SOAP as well.

SOAP and HTTP
HTTP supports two request methods: GET and POST. The GET method sends its parame-
ters in the URL and is typically used to request Web pages from a Web server. The POST
method sends data to the server in a payload that comes after the HTTP header. Because
POST payloads can be of indefinite length, SOAP requests transmitted via HTTP are sent
as HTTP POST requests.

Here’s the format of a simple HTTP POST request that you might send when submitting a
form on a Web page:

POST /mypath HTTP/1.1
Host: 123.45.67.89
Content-Type: text/plain; charset=”utf-8”
Content-Length: 20

This is the payload.

The first line of the HTTP request contains the method, the URI of the recipient, and the
HTTP version. The second line contains the IP address of the sender. The third line spec-
ifies the MIME type and the character encoding of the request, and the fourth line tells
the server how many characters to expect in the payload. Following the fourth line is an

Web Services Building Blocks: SOAP

CHAPTER 15
651

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 651

extra carriage return/linefeed (required by the HTTP protocol) and then the payload
itself, which is arbitrary text.

Now, let’s take a look at an HTTP POST request that contains a simple SOAP message:

POST /mypath HTTP/1.1
Host: 123.45.67.89
Content-Type: text/xml
Content-Length: 300
SOAPMethodName: urn:mysite-com:PhoneNumber#getPhoneNumber

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
<SOAP-ENV:Body>
<ns:getPhoneNumber xmlns:ns=”PhoneNumber”>
<name>John Doe</name>

</ns:getPhoneNumber>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

In this request, the URI /mypath indicates the SOAP endpoint: It is up to the server to
translate this URI into the location of the application charged with accepting this request.
The Content-Type for all SOAP messages must be text/xml (as opposed to text/plain
for Web pages).

SOAP requests must also contain the additional SOAPMethodName HTTP header. This
header indicates the method that is to be called (in this case, the getPhoneNumber method
of the PhoneNumber class). This header is scoped by a URI using a # character as a
delimiter. The payload for this request is simply the SOAP Envelope element.

Now, let’s look at HTTP responses. In the case of a simple Web page, an HTTP response
looks like this:

HTTP/1.0 200 OK
Content-Type: text/plain; charset=”utf-8”
Content-Length: 38

<html><body>
617-555-6789
</body></html>

The first line of this response always contains the HTTP status code, which in this case is
200 (indicating success). Other failure codes include 400 Bad Request and the all-too-
familiar 404 Not Found. The second and third lines are analogous to the request, as is
the carriage return/linefeed. Finally, the server sends the payload, which in this case is
the HTML for a Web page that displays John Doe’s phone number.

Building XML-Based Applications

PART II
652

18 0672323419 CH15 3/15/04 11:22 AM Page 652

A SOAP response looks pretty much the way you would expect:

HTTP/1.0 200 OK
Content-Type: text/xml
Content-Length: 374

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Body>
<m:getPhoneNumberResponse xmlns:m=”urn:mysite-com:PhoneNumber”>
<areacode>617</areacode>
<numberbody>555-1234</numberbody>

</m:getPhoneNumberResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Note that the URN for the receiving class appears in the getPhoneNumberResponse ele-
ment, but there is no SOAPMethodName HTTP header. Such headers are only required for
HTTP requests and are not allowed in responses. In addition, if the server encounters an
error and returns a SOAP fault, the first line of the HTTP header would be this:

500 Internal Server Error

Header Extensions
HTTP is a mature protocol that was developed to support the connectionless, stateless
world of Web pages. However, HTTP’s inability to guarantee message delivery threat-
ened to constrain its usefulness in the world of Web Services. As a result, the HTTP
extension framework was developed to allow for additional functionality within the con-
fines of the HTTP specification.

Web Services Building Blocks: SOAP

CHAPTER 15
653

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

Note

HTTP header extensions are part of an experimental RFC at the W3C. You
can learn more about them at http://www.w3.org/Protocols/HTTP/ietf-
http-ext/.

Here is an example of an HTTP POST request that takes advantage of the HTTP exten-
sion framework:

M-POST /mypath HTTP/1.1
Host: 123.45.67.89
Content-Type: text/xml; charset=”utf-8”
Content-Length: 300

18 0672323419 CH15 3/15/04 11:22 AM Page 653

Man: “http://schemas.xmlsoap.org/soap/envelope/”; ns=01
01-SOAPAction: urn:mysite-com:PhoneNumber#getPhoneNumber

<SOAP-ENV:Envelope
...

The first line of the preceding request contains the M-POST method, where M indicates
mandatory. A mandatory HTTP request must include at least one mandatory extension
declaration, which uses either the Man or C-Man header field. (The C-Man header field is
used for “hop-by-hop” requests that can traverse one or more intermediaries.)

Building XML-Based Applications

PART II
654

Caution

Neither Apache SOAP 2.2 nor the Microsoft SOAP Toolkit 2.0 SP2 support the M-
POST method, although SOAP::Lite does.

In this example, the Man header request indicates the default Envelope namespace and
maps the header prefix 01 to the namespace. The next line then attaches this prefix to
the SOAPAction field.

The server’s response to this request (assuming there are no errors) appears as such:

HTTP/1.0 200 OK
Ext:
Content-Type: text/xml; charset=”utf-8”
Content-Length: 374

<SOAP-ENV:Envelope
...

The Ext: header (or C-Ext: header, in the case of a hop-by-hop response) simply indi-
cates that the mandatory extension declarations were fulfilled by the server.

SOAP and SMTP
The Simple Mail Transport Protocol (SMTP) is the established standard protocol for
sending e-mail messages. Because SOAP envelopes are nothing more than text mes-
sages, e-mailing them is elementary on the surface. However, there are several issues
that must be dealt with when using SMTP to send a message to an application.

A SOAP message sent via SMTP goes to a mailbox and waits for the server to act upon
it. The mailbox will be typically provided by a Post Office Protocol (POP3) server.
Therefore, in order for the server to access the SOAP message in a mailbox, the server

18 0672323419 CH15 3/15/04 11:22 AM Page 654

will typically use a POP3-to-HTTP bridge to post the incoming message to the process-
ing application, and then take the response and use an HTTP-to-SMTP bridge to send
it back to the client. The client must then poll its own POP3 mailbox in order to accept
the message.

Alternately, it is possible to custom-code a POP3-compliant application that can parse
SOAP messages directly as well as create the responses. Furthermore, because SMTP
is an asynchronous protocol, its best application may be for those SOAP messages
that are unidirectional.

Web Services Building Blocks: SOAP

CHAPTER 15
655

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

Caution

Apache SOAP 2.2 supports SMTP, but the Microsoft SOAP Toolkit 2.0 SP2 does
not. Neither the Apache nor Microsoft Toolkits support POP3 or any other trans-
port protocols for that matter (other than HTTP and HTTPS).

SOAP Implementations
As you have probably gathered by the cautions in this chapter, there are two leading
SOAP implementations available today: Microsoft’s SOAP Toolkit (currently at version
2.0 SP2) and Apache SOAP (now at version 2.2), which was originally created by IBM,
who donated it to the Apache Foundation. The Microsoft Toolkit supports all COM-
compliant languages—in particular, Visual Basic, and C#. The Apache implementation
uses Java.

However, several other SOAP implementations are available, as well. Table 15.3 lists
several of the most popular implementations.

TABLE 15.3 Some Popular SOAP Implementations

Vendor Languages Platforms Home Page

Microsoft Visual Basic, Windows http://msdn.Microsoft.com/soap

C#

Apache Java UNIX, http://xml.apache.org/soap

Windows

SOAP::Lite Perl UNIX, http://www.soaplite.com

Windows

18 0672323419 CH15 3/15/04 11:22 AM Page 655

TABLE 15.3 continued

Vendor Languages Platforms Home Page

Systinet C++, Java UNIX, http://www.systinet.com/

WASP Windows ➥ wasp_overview.html

GLUE Java UNIX, http://www.themindelectric.com/

Windows ➥ products/glue/glue.html

At this point in time, there are two main issues with the available SOAP implementa-
tions: First, how well do they support an overall Web Services implementation? Second,
how interoperable they are? The discussion of how well each of the leading SOAP
implementations supports Web Services appears in Chapter 16, in the discussion of
WSDL and UDDI. The question of interoperability among SOAP implementations is
also a critical issue for this nascent technology.

Microsoft SOAP Toolkit
The Microsoft SOAP Toolkit can be found at http://msdn.Microsoft.com/soap. You
must have the Visual Basic runtime files and the Windows Installer installed on your sys-
tem before you install the toolkit. The toolkit also requires Internet Explorer 5.0, or
higher, and will install MSXML 3.0 SP1 (if it isn’t already present). You will also need
Visual Basic or another development tool that can compile DLL files, if you will be cre-
ating your own.

The SOAP Toolkit contains the following elements:

• A client-side component that enables an application to invoke Web Services opera-
tions that are described by a WSDL document.

• A server-side component that maps those operations to COM object method calls.
These calls are described by the WSDL and Web Services Meta Language
(WSML) files.

• Marshaling and unmarshaling components.

• A WSDL/WSML document-generator tool.

In order to exchange SOAP messages, you must set up the SOAP server and the SOAP
client. The server requires a system running Internet Information Services (IIS). To set up
the server, you can either choose an Internet Server API (ISAPI) server or an Active
Server Pages (ASP) server as the listener. You then create an ActiveX DLL within
Microsoft Visual Basic that contains the actual server code (sample code comes with the
toolkit). Listing 15.1 shows a sample DLL that calculates a base rate or a replacement
cost, which you will need to compile with Visual Basic.

Building XML-Based Applications

PART II
656

18 0672323419 CH15 3/15/04 11:22 AM Page 656

LISTING 15.1 CalcRateBase.vbs—DLL File

Public Function CalcBaseRate(ByVal RawBaseRate As Double,
➥ ByVal RelativeFactor As Double, ByVal TerritoryFactor As Double) As Double

CalcBaseRate = RawBaseRate * RelativeFactor * TerritoryFactor
End Function

Public Function CalcReplacementCost(ByVal BaseRate As Double,
➥ ByVal ReplacementCostFactor As Double) As Double

CalcReplacementCost = BaseRate * ReplacementCostFactor
End Function

Public Function DisplayVersion() As String
DisplayVersion = “Version 1.0”

End Function

Run the SOAP Toolkit Wizard and name your service with the toolkit. Then select the
COM DLL file to analyze, as shown in Figure 15.2.

Web Services Building Blocks: SOAP

CHAPTER 15
657

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

FIGURE 15.2
Selecting a COM
DLL file.

Then select the services you would like to expose, as shown in Figure 15.3.

Next, create a virtual root using IIS and then create the WSDL file and the WSML files
that describe the Web Service. (More about WSDL and WSML in Chapter 16.)

Note

The WSML file provides the information that maps the Web Service, as
described in the WSDL file, to methods of the Server COM objects. WSML
is a Microsoft-only specification.

18 0672323419 CH15 3/15/04 11:22 AM Page 657

Listing 15.2 shows the WSDL file produced by the toolkit for our example.

LISTING 15.2 RateCalcSvc.wsdl—Generated WSDL File

<?xml version=’1.0’ encoding=’UTF-16’ ?>
<!— Generated 09/24/01 by Microsoft SOAP Toolkit

WSDL File Generator, Version 1.02.813.0 —>
<definitions name =’RateCalcSvc’ targetNamespace = ‘http://tempuri.org/wsdl/’

xmlns:wsdlns=’http://tempuri.org/wsdl/’
xmlns:typens=’http://tempuri.org/type’
xmlns:soap=’http://schemas.xmlsoap.org/wsdl/soap/’
xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:stk=’http://schemas.microsoft.com/soap-toolkit/wsdl-extension’
xmlns=’http://schemas.xmlsoap.org/wsdl/’>

<types>
<schema targetNamespace=’http://tempuri.org/type’
xmlns=’http://www.w3.org/2001/XMLSchema’
xmlns:SOAP-ENC=’http://schemas.xmlsoap.org/soap/encoding/’
xmlns:wsdl=’http://schemas.xmlsoap.org/wsdl/’
elementFormDefault=’qualified’>

</schema>
</types>
<message name=’Class1.CalcBaseRate’>
<part name=’RawBaseRate’ type=’xsd:float’/>
<part name=’RelativeFactor’ type=’xsd:float’/>
<part name=’TerritoryFactor’ type=’xsd:float’/>

</message>
<message name=’Class1.CalcBaseRateResponse’>
<part name=’Result’ type=’xsd:float’/>

</message>
<message name=’Class1.CalcReplacementCost’>
<part name=’BaseRate’ type=’xsd:float’/>
<part name=’ReplacementCostFactor’ type=’xsd:float’/>

Building XML-Based Applications

PART II
658

FIGURE 15.3
Exposing methods
in a Web Service.

18 0672323419 CH15 3/15/04 11:22 AM Page 658

LISTING 15.2 continued

</message>
<message name=’Class1.CalcReplacementCostResponse’>
<part name=’Result’ type=’xsd:float’/>

</message>
<message name=’Class1.DisplayVersion’>
</message>
<message name=’Class1.DisplayVersionResponse’>
<part name=’Result’ type=’xsd:string’/>

</message>
<portType name=’Class1SoapPort’>
<operation name=’CalcBaseRate’

parameterOrder=’RawBaseRate RelativeFactor TerritoryFactor’>
<input message=’wsdlns:Class1.CalcBaseRate’ />
<output message=’wsdlns:Class1.CalcBaseRateResponse’ />

</operation>
<operation name=’CalcReplacementCost’

parameterOrder=’BaseRate ReplacementCostFactor’>
<input message=’wsdlns:Class1.CalcReplacementCost’ />
<output message=’wsdlns:Class1.CalcReplacementCostResponse’ />

</operation>
<operation name=’DisplayVersion’ parameterOrder=’’>
<input message=’wsdlns:Class1.DisplayVersion’ />
<output message=’wsdlns:Class1.DisplayVersionResponse’ />

</operation>
</portType>
<binding name=’Class1SoapBinding’ type=’wsdlns:Class1SoapPort’ >
<stk:binding preferredEncoding=’UTF-16’/>
<soap:binding

style=’rpc’ transport=’http://schemas.xmlsoap.org/soap/http’ />
<operation name=’CalcBaseRate’ >
<soap:operation

soapAction=’http://tempuri.org/action/Class1.CalcBaseRate’ />
<input>
<soap:body use=’encoded’ namespace=’http://tempuri.org/message/’

encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’ />
</input>
<output>
<soap:body use=’encoded’ namespace=’http://tempuri.org/message/’

encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’ />
</output>

</operation>
<operation name=’CalcReplacementCost’ >
<soap:operation

soapAction=’http://tempuri.org/action/Class1.CalcReplacementCost’ />
<input>
<soap:body use=’encoded’ namespace=’http://tempuri.org/message/’

encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’ />
</input>
<output>

Web Services Building Blocks: SOAP

CHAPTER 15
659

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 659

LISTING 15.2 continued

<soap:body use=’encoded’ namespace=’http://tempuri.org/message/’
encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’ />

</output>
</operation>
<operation name=’DisplayVersion’ >
<soap:operation

soapAction=’http://tempuri.org/action/Class1.DisplayVersion’ />
<input>
<soap:body use=’encoded’ namespace=’http://tempuri.org/message/’

encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’ />
</input>
<output>
<soap:body use=’encoded’ namespace=’http://tempuri.org/message/’

encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’ />
</output>

</operation>
</binding>
<service name=’RateCalcSvc’ >
<port name=’Class1SoapPort’ binding=’wsdlns:Class1SoapBinding’ >
<soap: address location=’http://10.68.1.7/rates/RateCalcSvc.WSDL’ />

</port>
</service>

</definitions>

And Listing 15.3 shows the corresponding WSML.

LISTING 15.3 RateCalcSvc.wsml—Generated WSML File

<?xml version=’1.0’ encoding=’UTF-16’ ?>
<!— Generated 09/24/01 by Microsoft SOAP Toolkit

WSDL File Generator, Version 1.02.813.0 —>
<servicemapping name=’RateCalcSvc’>
<service name=’RateCalcSvc’>
<using PROGID=’Project1.Class1’ cachable=’0’ ID=’Class1Object’ />
<port name=’Class1SoapPort’>
<operation name=’CalcBaseRate’>
<execute uses=’Class1Object’ method=’CalcBaseRate’

dispID=’1610809344’>
<parameter callIndex=’1’ name=’RawBaseRate’

elementName=’RawBaseRate’ />
<parameter callIndex=’2’ name=’RelativeFactor’

elementName=’RelativeFactor’ />
<parameter callIndex=’3’ name=’TerritoryFactor’

elementName=’TerritoryFactor’ />
<parameter callIndex=’-1’ name=’retval’ elementName=’Result’ />

</execute>
</operation>
<operation name=’CalcReplacementCost’>

Building XML-Based Applications

PART II
660

18 0672323419 CH15 3/15/04 11:22 AM Page 660

LISTING 15.3 continued

<execute uses=’Class1Object’ method=’CalcReplacementCost’
dispID=’1610809345’>

<parameter callIndex=’1’ name=’BaseRate’ elementName=’BaseRate’ />
<parameter callIndex=’2’ name=’ReplacementCostFactor’

elementName=’ReplacementCostFactor’ />
<parameter callIndex=’-1’ name=’retval’ elementName=’Result’ />

</execute>
</operation>
<operation name=’DisplayVersion’>
<execute uses=’Class1Object’

method=’DisplayVersion’ dispID=’1610809346’>
<parameter callIndex=’-1’ name=’retval’ elementName=’Result’ />

</execute>
</operation>

</port>
</service>

</servicemapping>

Finally, create an ASP application to handle incoming SOAP requests.

To set up the client, write a Visual Basic Scripting Edition (VBScript) application that
calls the operations that your server provides. Listing 15.4 shows our sample client.

LISTING 15.4 SoapClient.vbs—Sample SOAP Client

Option Explicit

Dim soapClient,BaseRate, RelativityFactor, TerritoryFactor, AdjustedBase,
➥ ReplaceCost, ReplaceCostFactor, TotalCost
set soapclient = CreateObject(“MSSOAP.SoapClient”)
On Error Resume Next

Call soapclient.mssoapinit(“http://mysite.com/rates/RateCalcSvc.wsdl”,
➥ “RateCalcSvc”, “Class1SoapPort”)

if err <> 0 then
wscript.echo “Initialization Failed “ + err.description

else
wscript.echo “Initialization Successful “

end if
wscript.echo “”
wscript.echo “”

BaseRate = 303
RelativityFactor = .97
TerritoryFactor = 1.2
ReplaceCostFactor = .21
AdjustedBase = 0

Web Services Building Blocks: SOAP

CHAPTER 15
661

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 661

LISTING 15.4 continued

wscript.echo “Trying DisplayVersion()”
wscript.echo soapclient.DisplayVersion() : wscript.echo “”
if err <> 0 then
wscript.echo “ERRORS” : wscript.echo “”
wscript.echo “————————————————————” : wscript.echo “”
wscript.echo “General Error=” + err.description : wscript.echo “”
wscript.echo “faultcode=” + soapclient.faultcode : wscript.echo “”
wscript.echo “faultstring=” + soapclient.faultstring : wscript.echo “”
wscript.echo “faultactor=” + soapclient.faultactor : wscript.echo “”
wscript.echo “detail=” + soapclient.detail : wscript.echo “”

end if
wscript.echo “”

wscript.echo “Base Premium = “ + BaseRate : wscript.echo “”
wscript.echo “Trying CalcBaseRate()”
AdjustedBase =
➥ soapclient.CalcBaseRate(BaseRate,RelativityFactor,TerritoryFactor)
if err <> 0 then
wscript.echo “ERRORS” : wscript.echo “”
wscript.echo “————————————————————” : wscript.echo “”
wscript.echo “General Error=” + err.description : wscript.echo “”
wscript.echo “faultcode=” + soapclient.faultcode : wscript.echo “”
wscript.echo “faultstring=” + soapclient.faultstring : wscript.echo “”
wscript.echo “faultactor=” + soapclient.faultactor : wscript.echo “”
wscript.echo “detail=” + soapclient.detail : wscript.echo “”

end if
wscript.echo “Adjusted Base Premium = “ + Cstr(AdjustedBase) : wscript.echo “”
wscript.echo “”

wscript.echo “Trying CalcReplacementCost()”
ReplaceCost = soapclient.CalcReplacementCost(AdjustedBase, ReplaceCostFactor)
if err <> 0 then
wscript.echo “ERRORS” : wscript.echo “”
wscript.echo “————————————————————” : wscript.echo “”
wscript.echo “General Error=” + err.description : wscript.echo “”
wscript.echo “faultcode=” + soapclient.faultcode : wscript.echo “”
wscript.echo “faultstring=” + soapclient.faultstring : wscript.echo “”
wscript.echo “faultactor=” + soapclient.faultactor : wscript.echo “”
wscript.echo “detail=” + soapclient.detail : wscript.echo “”

end if
wscript.echo “Replacement Cost = “ + ReplaceCost : wscript.echo “”
wscript.echo “”

TotalCost = ReplaceCost + AdjustedBase
wscript.echo “Total Premium = “ + TotalCost : wscript.echo “”

set soapClient = nothing

The final step is simply to run the VBScript application.

Building XML-Based Applications

PART II
662

18 0672323419 CH15 3/15/04 11:22 AM Page 662

Apache SOAP
You can find the open-source Apache SOAP 2.2 at http://xml.apache.org/soap. You
will need to have the following tools installed on your system before you install Apache
SOAP:

• Java 1.1 or higher.

• Apache Jakarta Tomcat 3.2.1 Web server and servlet engine, available at
http://jakarta.apache.org/

• Apache Xerxes XML Parser 1.2.3, found at http://xml.apache.org/xerces-j/

• JavaMail (mail.jar), found at http://java.sun.com/products/javamail/, and
the JavaBeans Activation Framework (activation.jar), found at
http://java.sun.com/products/beans/glasgow/jaf.html

Once all the tools (including Apache SOAP) are installed and your CLASSPATH is cor-
rectly updated, you must configure Tomcat so that it can detect Apache SOAP. Edit the
file \jakarta-tomcat-3.2\conf\server.xml and put the following entry near the end of
the file:

<Context path=”/soap” docBase=”C:/soap-2_0/webapps/soap” reloadable=”true”>
</Context>

Next, launch Tomcat. You should see the output:

Starting tomcat. Check logs/tomcat.log for error messages

Now, point your browser to http://localhost/soap (including the port number, if you
have chosen a port other than 80) to launch the Apache SOAP system.

Next, we need to write a Web Service in Java. Listing 15.5 shows a sample service that
calculates a rate (in this case, returning the same value every time).

Web Services Building Blocks: SOAP

CHAPTER 15
663

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

Note

The SOAP Toolkit isn’t the only Microsoft implementation of the SOAP protocol.
SOAP is also an essential enabling technology for the BizTalk Framework, as of
version 2.0. BizTalk Framework XML documents may be transmitted as SOAP
messages and can even handle SOAP messages with attachments. Learn more
about BizTalk in Chapter 18, “Using XML in the .NET Enterprise Servers.”

18 0672323419 CH15 3/15/04 11:22 AM Page 663

LISTING 15.5 Exchange.java—Sample Web Service

public class Exchange
{
public float getRate(String BaseRate, String ReplacementCostFactor)
{
System.out.println(“getRate(“ + BaseRate +

“, “ + ReplacementCostFactor + “)”);
return 1234.56F;
}

}

Put the directory that contains the Exchange class on your CLASSPATH and compile it.
Restart Tomcat and run the admin client from your browser. From the admin client, click
Deploy, and you’ll see the screen shown in Figure 15.5.

Building XML-Based Applications

PART II
664

FIGURE 15.4
Starting the
Tomcat server.

FIGURE 15.5
Deploying a Web
Service.

Enter the necessary information, as shown in Figure 15.5, and click the Deploy button
again. If you have successfully deployed your Web Service, you should see the screen
shown in Figure 15.6.

18 0672323419 CH15 3/15/04 11:22 AM Page 664

Next, we must run our client application. Listing 15.6 shows a simple example of a Java
client.

LISTING 15.6 Client.java—Sample SOAP Client

import java.net.*;
import java.util.*;
import org.apache.soap.*;
import org.apache.soap.rpc.*;
public class Client

{
public static void main(String[] args) throws Exception
{
URL url = new URL(“http://localhost/soap/servlet/rpcrouter”);
String urn = “urn:demo1:exchange”;
Call call = new Call(); // prepare to invoke the Service
call.setTargetObjectURI(urn);
call.setMethodName(“getRate”);
call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC); // the default
Vector v = new Vector();
v.addElement(new Parameter(“BaseRate”, String.class, “12.34”, null));
v.addElement(new Parameter(“ReplacementCostFactor”, String.class,

➥ ”56.78”, null));
call.setParams(v);
try
{
System.out.println(“Service invoked:\n” + “ URL= “ +

url + “\n URN= “ + urn);
Response response = call.invoke(url, “”); // invoke the Service
if(!response.generatedFault())
{
Parameter r = response.getReturnValue(); // response was OK
System.out.println(“Result= “ + r.getValue());
}

Web Services Building Blocks: SOAP

CHAPTER 15
665

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

FIGURE 15.6
The URN of the
Web Service.

18 0672323419 CH15 3/15/04 11:22 AM Page 665

LISTING 15.6 continued

else
{
Fault f = response.getFault(); // error
System.err.println(“Fault= “ + f.getFaultCode() + “, “ +
f.getFaultString());

}
}

catch(SOAPException e) // error sending call
{
System.err.println(“SOAPException= “ + e.getFaultCode() + “, “ +
e.getMessage());

}
}

}

Compile and run the client, and you should see the following output:

Service invoked:
URL= http://localhost/soap/servlet/rpcrouter
URN= urn:demo1:exchange
Result= 1234.56

Finally, the output from the Tomcat server should include the following:

Processing SOAP request...
GetRate (12.34, 56.78)

We have successfully invoked our Web Service!

Interoperability Issues
Interoperability among different SOAP implementations is especially important, because,
well, interoperability is what Web Services are all about. What’s the point of having
loosely coupled services if they can only talk to systems that use the same implementa-
tion? The fact that interoperability is an issue at all is a symptom of the fact that Web
Services are still on the bleeding edge. This issue is currently a topic of much discussion,
and there is a good chance that the issue will be resolved in 2002.

The fundamental cause of most interoperability problems has to do with a single word:
may. When the SOAP specification says that a particular feature may be implemented, it
opens up the option that a particular vendor may choose not to implement the feature.
Another implementation, however, may use the feature, causing the two implementations
to be incompatible with each other.

Interoperability issues with SOAP implementations fall into three general categories:

Building XML-Based Applications

PART II
666

18 0672323419 CH15 3/15/04 11:22 AM Page 666

• Transport problems, namely those involving the HTTP SOAPAction header.

• XML issues, typically involving the Byte Order Mark.

• SOAP problems, involving the mustUnderstand attribute or other unevenly imple-
mented features of the specification.

Let’s look at each of these issues in turn.

First, as discussed earlier, the SOAPAction header is mandatory in SOAP messages that
go over HTTP. However, the SOAP specification allows for a null SOAPAction, which
appears like this:

SOAPAction:

However, Apache SOAP does not have any way of interpreting a null header value, caus-
ing messages that have null values to be incompatible with those SOAP messages that
have this header.

Second, there is the issue of the Byte Order Mark (BOM). A BOM is a nonprintable
character that indicates the order of the bytes in a two-byte character encoding (like those
for Japanese and Chinese). BOMs are required for two-byte encodings such as UTF-16,
but they serve little purpose (even though they are not forbidden) for single-byte encod-
ings such as UTF-8. Apache SOAP, for example, cannot interpret UTF-8-encoded SOAP
messages that have a BOM, even though many text editors (such as Notepad) automati-
cally place a BOM at the beginning of UTF-8-encoded text.

Finally, the third category of incompatibility issues has to do with inconsistent imple-
mentations of SOAP. Table 15.4 contains a reasonably comprehensive accounting of the
current state of SOAP feature support in the three leading SOAP implementations.

TABLE 15.4 SOAP Compatibility Matrix

MS SOAP
Apache SOAP SOAP::Lite Toolkit

Feature 2.2 0.51 2.0 SP2

Data Types

Custom encoding styles Yes No Limited

Arrays

Single dimensional Yes Yes Yes

Multidimensional No No Yes

Partial No No No

Sparse No No No

Web Services Building Blocks: SOAP

CHAPTER 15
667

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 667

TABLE 15.4 continued

MS SOAP
Apache SOAP SOAP::Lite Toolkit

Feature 2.2 0.51 2.0 SP2

Fault

Actor Limited Limited Limited

Complex detail Yes Yes Yes

XML schema data types Yes Yes Yes

Attributes

mustUnderstand Yes Limited Limited

actor Limited Limited Limited

root Yes Limited No

id/href Yes Yes Limited

HTTP

M-POST No Yes No

Object serialization Yes Yes Yes

UTF-8 support Yes Limited Yes

Transports

SMTP Yes Yes No

POP3 No Yes No

FTP No Limited No

TCP No Yes No

HTTP Yes Yes Yes

Attachments

SOAP attachments support Yes Limited No

Whenever a SOAP feature is not fully supported across different implementations, there
is always the possibility of a failure to exchange SOAP messages correctly. The fact that
relatively few rows in Table 15.4 contain only “Yes” is a clear indication of the immatu-
rity of the SOAP protocol.

The Future of SOAP
It should be clear at this point that SOAP is a work in progress. On the one hand, current
implementations are inconsistent in their support of the SOAP 1.1 specification. On the

Building XML-Based Applications

PART II
668

18 0672323419 CH15 3/15/04 11:22 AM Page 668

other hand, the current spec leaves much to be desired, as well. This section covers some
of the most critical features either missing in the 1.1 spec or poorly supported by the cur-
rent implementations.

SOAP with Attachments
At its core, SOAP consists of self-defining serialization rules that allow for the marshal-
ing and unmarshaling of objects into a simple text stream. SOAP’s focus on objects is
quite understandable—after all, it is the Simple Object Access Protocol. However, for
SOAP to be a truly useful wire protocol, it must be able to handle large binary objects
that don’t lend themselves to marshaling.

The SOAP Messages with Attachments specification (found at http://www.w3.org/TR/
SOAP-attachments) uses the MIME Multipart/Related mechanism for handling attach-
ments. This mechanism is the established protocol for handling e-mail attachments and is
therefore well accepted in the technical community. When the technical community
turned to the discussion of SOAP attachments using MIME, however, it had a problem:
How to handle such attachments without burdening the SOAP specification with addi-
tional elements? The answer was to construct the SOAP message package as a
Multipart/Related media type. In other words, a “SOAP message with attachments”
package is actually a MIME Multipart/Related message, where the SOAP Envelope is
one of the parts, instead of the MIME message being included in the SOAP Envelope.

Web Services Building Blocks: SOAP

CHAPTER 15
669

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

Note

The SOAP with Attachments specification uses the Multipart/Related MIME
media type, defined in RFC 2387, which can be found at http://www.ietf.org/
rfc/rfc2387.txt. It also uses the URI schemes found in RFC 2111 and RFC 2557,
found at http://www.ietf.org/rfc/rfc2111.txt and http://www.ietf.org/
rfc/rfc2557.txt, respectively.

Here is how to construct the SOAP message package:

1. Put the SOAP message in the root body part of the Multipart/Related structure. The
type parameter of the Multipart/Related media header will be the same as the
Content-Type header of the SOAP message, (that is, text/xml).

2. To reference a MIME part, it must have either a Content-ID MIME header or a
Content-Location MIME header.

18 0672323419 CH15 3/15/04 11:22 AM Page 669

3. To support HTTP, the Content-Type: Multipart/Related MIME header must
appear as a HTTP header, and there should be no other MIME headers that appear
as HTTP headers.

Let’s take a look at an example of an HTTP POST request that contains a SOAP
message package:

LISTING 15.7 Post.txt—Sample HTTP POST Request

POST /myPath.asp HTTP/1.1
Host: www.myServer.com
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
Âstart=”<myFile.xml@myClient.com>”
Content-Length: 1234567
SOAPAction: http://schemas.myServer.com/myMethod
Content-Description: This is the optional message description.

—MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <myFile.xml@myClient.com>

<?xml version=’1.0’ ?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>
<SOAP-ENV:Body>
<msg:myMsg id=”myMsgId”

xmlns:myMsg=”http://schemas.myServer.com/myMethod”>
<myJPEG href=”cid:myFile.jpeg@myClient.com”/>
</msg:myMsg>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

—MIME_boundary
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <myFile.jpeg@myClient.com>

Raw JPEG image...
—MIME_boundary—

Note that there is a reference to the JPEG image file myFile.jpeg in the SOAP
Body element.

SOAP Security
As discussed in Chapter 14, there are four basic requirements for secure message trans-
mission: confidentiality, authorization, data integrity, and nonrepudiation. Sending SOAP

Building XML-Based Applications

PART II
670

18 0672323419 CH15 3/15/04 11:22 AM Page 670

messages over SSL-secured connections such as HTTPS provides for confidentiality and
data integrity, but additional measures are required to ensure authorization and nonrepu-
diation, as well. The extension to SOAP that outlines a system for adding these security
requirements is the Digital Signature (DS) specification, which is currently a W3C Note
that can be found at http://www.w3.org/TR/SOAP-dsig.

The DS Note proposes a standard way to use the XML Digital Signature [XML-
Signature] syntax to sign SOAP messages by defining the <SOAP-SEC:Signature>
header entry. DS uses digital signatures to solve the problems of confidentiality, autho-
rization, and so on. This header entry is provided in the following namespace:

http://schemas.xmlsoap.org/soap/security/2000-12

Next, the DS Note provides for the SOAP-SEC:id global attribute, which enables the
<ds:Reference> element that is used to refer to the signed part of the SOAP Envelope.
For example, Listing 15.8 below shows a SOAP message with a signature header entry:

LISTING 15.8 Ds.xml—SOAP Message with Signature Header Entry

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP-ENV:Header>
<SOAP-SEC:Signature

xmlns:SOAP-SEC=”http://schemas.xmlsoap.org/soap/security/2000-12”
SOAP-ENV:actor=”some-URI”
SOAP-ENV:mustUnderstand=”1”>

<ds:Signature xmlns:ds=”http://www.w3.org/2000/09/xmldsig#”>
<ds:SignedInfo>
...Encryption algorithm information goes here
<ds:Reference URI=”#Body”>

...Encrypted digest goes here
</ds:Reference>

</ds:SignedInfo>
<ds:SignatureValue>HiuKjIHKJH=...</ds:SignatureValue>
</ds:Signature>

</SOAP-SEC:Signature>
</SOAP-ENV:Header>
<SOAP-ENV:Body
xmlns:SOAP-SEC=”http://schemas.xmlsoap.org/soap/security/2000-12”
SOAP-SEC:id=”Body”>

...Unencrypted SOAP message content goes here
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Note, first, that the <ds:Signature> element is part of the <SOAP-SEC:Signature>
header entry, and the URI attribute of the <ds:Reference> element refers to the
<SOAP-ENV:Body> element.

Web Services Building Blocks: SOAP

CHAPTER 15
671

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 671

SOAP Transactions
For a set of messages to be considered a successful transaction, it must pass the ACID
test. ACID is an acronym for the following:

• Atomicity. The set of messages in a transaction either all take place or none take
place. If one fails, every system involved must be returned to the state it was in
before the messages were sent (in other words, rolled back).

• Consistency. Transactions always operate on a consistent view of the data and
always leave the data in a consistent state when a transaction is complete. Instances
of data are considered to be consistent when they conform to the rules that apply to
them (for example, if money is being transferred from a checking account to a sav-
ings account, the money can never be in both accounts at the same time).

• Isolation. Transactions are not able to interfere with each other. If a system sup-
ports multiple threads of execution, each transaction is unaware of others going on
at the same time.

• Durability. Once a transaction is committed, its effects persist even if one or more of
the involved systems fail subsequent to the transaction. If there is a system failure in
the middle of a transaction, all involved systems roll back to their original state.

Database-management systems typically use a two-phase commit model to achieve the
ACID requirements. However, the environment that SOAP messages move in lacks much
of the infrastructure that databases rely on to execute transactions efficiently. SOAP mes-
sages may be asynchronous, potentially leaving a system in a locked or indeterminate
state for an extended period of time. SOAP messages may also involve intermediaries,
making two-phase commits impractical. In addition, SOAP messages are designed to
move among different platforms with no tightly coupled framework supporting them.

Building XML-Based Applications

PART II
672

Note

A two-phase commit contains two processes that typically occur in a fraction of
a second: the prepare phase, where the initiating database, acting as the coor-
dinator, requests that all the involved systems promise either to commit or roll
back the transaction, and the commit phase, where the distributed systems
respond that they are ready for the transaction, at which time the coordinator
instructs them to commit the transaction. If anything goes wrong, the coordina-
tor calls for all systems to roll back the transaction.

18 0672323419 CH15 3/15/04 11:22 AM Page 672

In order to address the limitations of the two-phase commit for SOAP messages, the
SOAP Chained Transactions (SOAP-CTX) model has been proposed. (You can find
SOAP-CTX at http://www.newtelligence.com/news/soapchaindetrans01.asp.)
SOAP-CTX is based on a four-phase commit model that allows for intermediaries as
well as for asynchronous messages. Here are the four phases in SOAP-CTX:

• Enlistment. The coordinator packages a batch of SOAP messages and marks them
for processing by individual participants. Each participant extracts the messages
intended for it and forwards the rest to the next participant.

• Commit preparation. Once the coordinator has received confirmation that each par-
ticipant is able to commit the transaction, it informs the first participant to begin
the commit process. The first participant then forwards the instruction up the chain
of participants. Once a participant receives the instruction, it enters a “commit
timeout” mode. If the execution command is not received before the mode times
out, the transaction is rolled back.

• Execution. A “go” command is relayed through the chain of participants. Each par-
ticipant that receives the “go” command enters a “rollback timeout” mode. If the
“clean up” command isn’t received before this timeout expires, the transaction is
likewise rolled back.

• Clean up. When the coordinator receives word that each participant has received
the “go” command, it issues the “clean up” command, which clears all the “roll-
back timeout” modes and completes the transaction.

Because the timeouts in the SOAP-CTX model can effectively be set to any value, this
model handles asynchronous messages well. However, each participant must still be able
to isolate transactions from one another. The SOAP-CTX model does not specify how
each participant is supposed to implement the model.

SOAP 1.2
As of this writing, the 1.2 spec is a W3C working draft (found at http://www.w3.org/
TR/soap12), but it may be accepted as the current version by the time you read this.
Fortunately, there are no fundamental changes in the spec from version 1.1 to 1.2.

The 1.2 SOAP specification improves upon version 1.1 in the following areas:

• Ambiguities resulting from the order of header entries has been fixed. In version
1.1, an error in one header entry might prevent the rest of a message from being
processed, thus leading to inconsistent behavior.

Web Services Building Blocks: SOAP

CHAPTER 15
673

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 673

• More explicit error messages with strong recommendations on how to handle them.

• The inclusion of the final W3C XML Schema release.

• Improvements in the use of namespaces, which will better resolve ambiguities
resulting from elements in different namespaces that share the same names.

• Improved envelope stability, which will improve interoperability among different
implementations.

So, the good news is, SOAP is reasonably complete, and there won’t be that much new
in the next version. The bad news? There is a new protocol under development that may
supersede SOAP altogether: the XML Protocol.

The XML Protocol
The new XML Protocol (XP) is a working draft that is still squarely on the drawing
board (at both the W3C as well as the IETF; find it at http://www.w3.org/2000/xp). XP
seeks to approach the same issues SOAP was designed to address, by starting with an
“abstract model” that separates business workflow from SOAP’s correlation of messages.
Although it is generally understood that XP may supersede SOAP, it still remains to be
seen whether there will be enough of a difference between the two to warrant such a
move. There is also the possibility that the work going into XP will simply become a
future version of SOAP.

The XP Working Group wants to include the following features in the specification:

• An envelope that allows for extensibility, evolvability, and a variety of different
types of intermediaries (gateways, proxies, and so on)

• Operating system–neutral conventions for handling RPCs

• A serialization mechanism based on XML Schema data types

• An HTTP transport mechanism (which will remain optional, because XP messages
can go over a variety of transport mechanisms)

If the preceding features look familiar, it’s no surprise; after all, SOAP currently offers
all these features, at least to some extent. That’s one of the reasons why the technical
community realizes that XP may not need to be distinct from SOAP at all. However, only
time will tell.

Building XML-Based Applications

PART II
674

18 0672323419 CH15 3/15/04 11:22 AM Page 674

Summary
There are books on the market today that say they’re just about SOAP. Unfortunately, all
of them are missing something: Either they really go into topics beyond SOAP, or they
don’t, but they should. It’s no mistake that this chapter is in the middle of this book,
because SOAP is nothing more than a building block.

SOAP by itself provides a way to exchange messages with Web Services, but it doesn’t
provide a way to find out what messages a Web Service might want to exchange. It also
doesn’t give you any way of finding Web Services or negotiating with them to establish a
relationship that will allow you to exchange messages with them. The good news is that
the technologies that provide these additional capabilities—WSDL and UDDI—are cov-
ered in Chapter 16.

Web Services Building Blocks: SOAP

CHAPTER 15
675

15

W
EB

S
ER

V
IC

ES
B

U
ILD

IN
G

B
LO

C
K

S:
SO

A
P

18 0672323419 CH15 3/15/04 11:22 AM Page 675

18 0672323419 CH15 3/15/04 11:22 AM Page 676

IN THIS CHAPTER

• Introduction to WSDL 678

• Basic WSDL Syntax 679

• SOAP Binding 685

• WSDL Implementations 688

• Introduction to UDDI 695

• The UDDI API 704

• Vendor Implementations 707

• The Future of UDDI 716

16
C

H
A

PT
ER

Web Services
Building Blocks:
WSDL and UDDI

19 0672323419 CH16 3/15/04 11:22 AM Page 677

The Web Services Description Language (WSDL) and Universal Description, Discovery,
and Integration (UDDI), along with SOAP, form the essential building blocks for Web
Services. Each one, taken separately, serves its own particular purposes, but taken
together, they provide the foundation for the just-in-time, Service-Oriented Architecture
detailed in Chapter 14, “Architecting Web Services.”

WSDL (often pronounced wiz-dill) is an XML-based format for describing Web Services.
It describes which operations Web Services can execute and the format of the messages
Web Services can send and receive. UDDI (pronounced, unfortunately, U-D-D-I) is a pro-
tocol that describes a standard way of setting up registries of Web Services, along with the
methods of querying such registries for information about the Web Services they contain.
Each UDDI registry’s response to a query contains a WSDL message, which instructs the
requester on how to interact with the desired Web Service. (Refer to Figure 14.2 in
Chapter 14 for a picture of how these operations fit together.)

In this chapter, you will learn

• The basics of WSDL syntax

• How WSDL and SOAP work together

• How to use popular WSDL implementations

• The elements of UDDI and how they work together

• How to use the UDDI API

• How to use UDDI implementations to interact with existing UDDI registries

• The future of UDDI

Introduction to WSDL
You can think of WSDL as the Empire Strikes Back of Web Services. SOAP forms the
foundation, UDDI gives you the payoff, but WSDL is essentially an intermediate tech-
nology that provides the missing link between the two. Nevertheless, it is a critical
technology in its own right, even though it doesn’t deserve its own chapter separate
from UDDI.

Building XML-Based Applications

PART II
678

Note

The WSDL standard is currently at version 1.1. The official source for the WSDL
standard is in a W3C Note, which can be found at http://www.w3.org/TR/wsdl.

19 0672323419 CH16 3/15/04 11:22 AM Page 678

As explained in Chapter 15, “Web Services Building Blocks: SOAP,” SOAP uses name-
spaces to create self-describing messages. Therefore, it should be possible for SOAP mes-
sages to provide the information needed to access the content of a message. However,
there is no way to determine the name and type of each function parameter using SOAP,
so you’re stuck in a catch-22: There’s no way to call a function with a SOAP message
unless you already know about the function.

In the early days of SOAP, as well as its precursor XML-RPC (touched upon in Chapter
15), several languages sprang up that addressed this missing piece of the SOAP puzzle,
including WebMethod’s Web Interface Definition Language (WIDL), Microsoft’s SOAP
Contract Language (SCL) and Discovery of Web Services (DISCO), and IBM’s Network
Accessible Service Specification Language (NASSL). Then the UDDI Consortium of
dozens of companies, headed up by IBM, Microsoft, and Ariba, began the process of
hammering out the UDDI specification. It was readily apparent that there needed to be
one language for describing Web Services—thus, WSDL was born, combining much of
the benefits of its predecessors.

Basic WSDL Syntax
A WSDL document can be thought of as a contract between a client and a server. It
describes what the Web Service can do, where it can be found, and how to invoke it.
Essentially, WSDL defines an XML grammar that describes Web Services (and in gen-
eral, any network service) as collections of communications endpoints (that is, the client
and the server) that are able to exchange messages with each other.

WSDL documents use the following elements:

• definitions. Associates the Web Service with its namespaces.

• types. A container for data type definitions, typically using a XML Schema
Definition (XSD) or possibly some other type system.

• message. An abstract, typed definition of the data contained in the message.

• operation. An abstract description of an action that the Web Service supports.

• portType. The set of operations supported by one or more endpoints.

• binding. A specification of the protocol and data format for a particular portType.

• port. An endpoint, defined in terms of a binding and its network address (typically
a URL). This is not a TCP/IP port, which is represented by a number.

• service. A collection of related endpoints.

The structure of a typical WSDL document is shown in Figure 16.1.

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
679

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

19 0672323419 CH16 3/15/04 11:22 AM Page 679

Let’s take a look at a simple WSDL document example and break it down into its com-
ponent elements:

<?xml version=”1.0”?>

<definitions name=”MyService”
targetNamespace=”http://mySite.com/myService.wsdl”
xmlns:tns=”http://mySite.com/myService.wsdl”
xmlns:xsd1=”http://mySite.com/myService.xsd”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<import namespace=”http:/mySite.com/myService/schemas”
location=”http:// mySite.com/myService/myNameSpace.xsd”/>

Building XML-Based Applications

PART II
680

operation

output

input

fault

types
schema

message
part

definitions

portType

operation

output

input

fault

binding

port

service

FIGURE 16.1
WSDL document
structure.

19 0672323419 CH16 3/15/04 11:22 AM Page 680

<types>
<schema targetNamespace=”http://mySite.com/myService.xsd”

xmlns=”http://www.w3.org/2000/10/XMLSchema”>
<element name=”MyRequest”>
...

</element>
</schema>

</types>

<message name=”GetMyInput”>
<part name=”body” element=”xsd1:MyRequest”/>

</message>

<message name=”GetMyOutput”>
<part name=”body” element=”xsd1:myParameter”/>

</message>

<portType name=”MyServicePortType”>
<operation name=”MyMethod”>
<input message=”tns:GetMyInput”/>
<output message=”tns:GetMyOutput”/>

</operation>
</portType>

<binding name=”MyServiceSoapBinding” type=”tns:MyServicePortType”>
<soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>

<operation name=”MyMethod”>
<soap:operation

soapAction=”http://mySite.com/MyMethod”/>
<input>
<soap:body use=”literal”/>

</input>
<output>
<soap:body use=”literal”/>

</output>
</operation>

</binding>

<service name=”MyService”>
<documentation>My first service</documentation>
<port name=”MyServicePort” binding=”tns:MyServiceBinding”>
<soap:address location=”http://mySite.com/myService”/>

</port>
</service>

</definitions>

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
681

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

19 0672323419 CH16 3/15/04 11:22 AM Page 681

The definitions Element and Namespaces
First, we have the definitions element:

<definitions name=”MyService”
targetNamespace=”http://mySite.com/myService.wsdl”
xmlns:tns=”http://mySite.com/myService.wsdl”
xmlns:xsd1=”http://mySite.com/myService.xsd”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns=”http://schemas.xmlsoap.org/wsdl/”>

Typically, this element defines a single Web Service, but it may define more than one.
The definitions element typically contains the following attributes:

• name. An optional attribute that describes the overall service.

• targetNamespace. A typically unique namespace that defines the logical name-
space that provides information about the service.

• xmlns:tns. An optional attribute that must be set to the same value as
targetNamespace. By scoping references between sections of the WSDL document
with the tns: prefix, one WSDL document can import another without running
into the problem of element name clashes.

• xmlns:xsd1. An example of a custom namespace that is used here to define terms
such as MyRequest and MyParameter.

• xmlns:soap and xmlns:xsd. Standard namespace definitions for SOAP-specific
information and data types.

• xmlns. The default WSDL namespace, which contains <definitions>, <message>,
<service>, and so on.

The types Element
The types element contains data type definitions that are required by the messages
described in the WSDL document:

<types>
<schema targetNamespace=”http://mySite.com/myService.xsd”

xmlns=”http://www.w3.org/2000/10/XMLSchema”>
<element name=”MyRequest”>
...

</element>
</schema>

</types>

In this example, we are using an optional custom schema to define our complex types as
well as a standard schema.

Building XML-Based Applications

PART II
682

19 0672323419 CH16 3/15/04 11:22 AM Page 682

The message and portType Elements
Within the definitions element is one or more message elements:

<message name=”GetMyInput”>
<part name=”body” element=”xsd1:MyRequest”/>

</message>

<message name=”GetMyOutput”>
<part name=”body” element=”xsd1:myParameter”/>

</message>

A message element is simply one piece of information that moves between the client and
server endpoints. Typical roundtrip remote method calls have two message elements—
one for the request, and the second for the response. Each message can have any number
of part child elements.

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
683

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

Note

Although most WSDL documents are used in RPC-style request/response pairs,
WSDL also supports one-way messages. WSDL supports the same four types of
operations that SOAP messages do (request-response, solicit-response, one-way,
and notification), as explained in Chapter 15.

The definitions element also contains the portType element:

<portType name=”MyServicePortType”>
<operation name=”MyMethod”>
<input message=”tns:GetMyInput”/>
<output message=”tns:GetMyOutput”/>

</operation>
</portType>

The portType element contains one or more operation elements, each of which describes
a specific message sequence. Each operation element corresponds to a message element.
The portType element corresponds to a class (or an interface), and the operation element
corresponds to one of its methods.

The binding Element
The binding element corresponds to a portType element implemented in a particular
protocol, namely SOAP. The type attribute ties the binding element to the portType ele-
ment. It is possible to use different protocols (such as CORBA or DCOM), or even more

19 0672323419 CH16 3/15/04 11:22 AM Page 683

than one protocol, in which case you would have more than one binding element. Here’s
an example:

<binding name=”MyServiceSoapBinding” type=”tns:MyServicePortType”>
<soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>

<operation name=”MyMethod”>
<soap:operation

soapAction=”http://mySite.com/MyMethod”/>
<input>
<soap:body use=”literal”/>

</input>
<output>
<soap:body use=”literal”/>

</output>
</operation>

</binding>

The service Element
The service element represents a collection of port elements, where each port repre-
sents the availability of a binding at a particular endpoint:

<service name=”MyService”>
<documentation>My first service</documentation>
<port name=”MyServicePort” binding=”tns:MyServiceBinding”>
<soap:address location=”http://mySite.com/myService”/>

</port>
</service>

The binding attribute of the port element ties it to the corresponding binding element
defined previously.

The documentation Element
You should also notice the documentation child element of the preceding service ele-
ment. This element essentially allows you to provide a human-readable comment and is
allowed in every other element as well.

The import Element
The import element is an optional element that allows you to break up a WSDL docu-
ment into multiple documents. When present, it must immediately follow the defini-
tions element. The following example imports a schema, but it is possible to import any
WSDL elements, including the definitions element, essentially allowing you to import
an entire WSDL document:

Building XML-Based Applications

PART II
684

19 0672323419 CH16 3/15/04 11:22 AM Page 684

<import namespace=”http:/mySite.com/myService/schemas”
location=”http:// mySite.com/myService/mySchema.xsd”/>

The import element is particularly useful for breaking up a WSDL document into inter-
face and implementation documents.

Extensibility Elements
Finally, we come to extensibility elements, which allow elements in a WSDL document
to represent specific technologies, including SOAP. They are typically used to specify
binding information. Extensibility elements are optional and can occur in most WSDL
document elements. Table 16.1 shows where extensibility elements can occur and why
each one is used.

TABLE 16.1 WSDL Extensibility Elements

Location Purpose

definitions Introduces additional information to the entire WSDL document

types Specifies a type system (other than XSD)

operation Provides protocol-specific information for both the input and output
message

input Provides protocol-specific information for the input message

output Provides protocol-specific information for the output message

binding Provides protocol-specific information that applies to all operations in
the bound portType element

port Specifies an address for the port

service Introduces additional information for the service

fault Provides protocol-specific information for the fault message

The next section contains several examples of how to use extensibility elements to bind
SOAP endpoints.

SOAP Binding
When using WSDL documents to describe Web Services that will exchange SOAP mes-
sages (that is, SOAP endpoints), you need to have a way to indicate within the WSDL
document all the necessary information about the SOAP messages that will be

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
685

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

19 0672323419 CH16 3/15/04 11:22 AM Page 685

exchanged. WSDL uses extensibility elements to provide this information. The SOAP
binding that is provided with WSDL supplies the following information:

• An indication that the WSDL binding is bound to the SOAP protocol.

• How to specify the address for the SOAP endpoints.

• For the HTTP binding of SOAP, the URI for the SOAPAction HTTP header
(explained in Chapter 15).

• A list of definitions for all Header elements in the SOAP Envelope.

• A way of specifying SOAP roots in XSD.

Let’s take a look at some examples of the SOAP binding in WSDL.

soap:binding, soap:operation, soap:header,
and soap:body
The following example shows a SOAP binding of a request/response operation over
HTTP:

<binding name=”MyServiceSoapBinding” type=”tns:MyServicePortType”>
<soap:binding style=”rpc”

transport=”http://schemas.xmlsoap.org/soap/http” />
<operation name=”MyMethod”>
<soap:operation SOAPAction=”http://mySite.com/MyMethod” style=”rpc” />
<input>
<soap:body use=”encoded” namespace=”http://mySite.com/myService”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” />
<soap:header message=”tns:MyMethod” part=”MyHeader” use=”literal”/>

</input>
<output>
<soap:body use=”encoded” namespace=”http://mySite.com/myService”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” />
</output>

</operation>
</binding>

Note that the style attribute of the soap:binding element is set to rpc. In the case of a
one-way operation over SMTP, for example, the style attribute would have a value of
document (and document is the default if the attribute is omitted). The transport
attribute (here, set to the URI of the HTTP binding in the SOAP specification) indicates
to which transport of SOAP this binding corresponds.

The soap:operation element includes the SOAPAction attribute, which specifies the
value of the SOAPAction header for this operation (required only for HTTP), as well as
the style attribute, which indicates either RPC messages (containing parameters and
return values) or documents.

Building XML-Based Applications

PART II
686

19 0672323419 CH16 3/15/04 11:23 AM Page 686

The soap:header and soap:body elements define how message parts appear in the
SOAP Header and Body elements, respectively. The soap:header and soap:body ele-
ments can each take up to four attributes:

• The optional parts attribute (not shown in our example) is used when parts of the
message may appear outside the SOAP Envelope, as is the case when the message
is in MIME multipart/related format. In that case, the value of the parts
attribute indicates which parts appear within the SOAP Envelope.

• The required use attribute indicates whether the message parts are encoded. If the
value of use is encoded, each message part references an abstract type using the
type attribute. In this case, the encoding is specified by the encodingStyle
attribute. The alternative to encoded is literal, which indicates that each part ref-
erences a concrete schema using the element attribute (for simple parts) or the
type attribute (for composite parts).

• The encodingStyle attribute’s values are lists of URIs, which represent encodings
used within the message, exactly like the corresponding attribute in the SOAP
specification (see Chapter 15).

• The namespace attribute (not shown in our example) is an input to the encoding
defined by the encodingStyle attribute.

soap:address, soap:fault, and
soap:headerfault
There are a few additional elements in the SOAP binding worth mentioning. First, the
soap:address element simply assigns a URI to a port:

<service name=”MyService”>
<port name=”MyServicePort” binding=”tns:MyServiceBinding”>
<soap:address location=”http://www.mySite.com/MyServiceURL/” />

</port>
</service>

The soap:fault element specifies the contents of the SOAP Fault element:

<fault>
<soap:fault name=”MyFault” use=”encoded”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
<http://schemas.xmlsoap.org/soap/encoding/>/>
</fault>

Finally, the soap:headerfault element follows the syntax of the soap:fault element
but refers to SOAP Fault in Header elements.

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
687

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

19 0672323419 CH16 3/15/04 11:23 AM Page 687

Other Bindings
In addition to the SOAP binding, the WSDL specification also provides for HTTP GET
and POST bindings as well as a MIME binding. We’re not going to cover how to use these
bindings in depth. However, an outline of the various elements that each binding uses is
provided in Table 16.2.

TABLE 16.2 Other WSDL Bindings

Element Example Purpose

HTTP

http:address <http:address Specifies the base URI for the
location=”mySite.com/” /> port

http:binding <http:binding verb=”GET” /> Indicates the use of HTTP

http:operation <http:operation Specifies a relative URI for the
location=”myMethod” /> operation

http:urlEncoded <http:urlEncoded /> Indicates the message parts are
encoded in the URL query

http: <http:urlReplacement /> Indicates the message parts are
urlReplacement encoded in the URL using a

replacement algorithm

MIME

mime:content <mime:content part=”img” Conveys information about a
type=”image/gif” /> MIME element

mime: <mime:multipartRelated> Aggregates an arbitrary set of
multipartRelated MIME-formatted parts into one

message

mime:mimeXml <mime:mimeXml part=”myXML” /> Specifies XML payloads that are
not SOAP payloads

In addition, the MIME binding allows the soap:body element as a MIME element. This
element will have a content type of text/xml.

WSDL Implementations
Because WSDL is a bridge technology in the sense that it bridges SOAP and UDDI,
you’re unlikely to find a WSDL toolkit that stands by itself. The two most popular
WSDL implementations, therefore, are parts of other toolkits:

Building XML-Based Applications

PART II
688

19 0672323419 CH16 3/15/04 11:23 AM Page 688

• The Microsoft SOAP Toolkit. This toolkit, covered in depth in Chapter 15, is pri-
marily aimed at developers who want to work with SOAP in a Microsoft environ-
ment, although it does support Microsoft’s UDDI implementation.

• The IBM Web Services Toolkit (WSTK). This toolkit provides WSDL support, sev-
eral security enhancements, UDDI integration, and support for the IBM WebSphere
application server. The WSTK also includes the open-source Web Services
Description Language for Java Toolkit (WSDL4J).

WSDL the Microsoft Way
First, refer to the section “The Microsoft SOAP Toolkit,” of Chapter 15 for a step-by-step
illustration of how to generate WSDL files with the Microsoft SOAP Toolkit. The result-
ing WSDL file is shown in Listing 15.2. This file is standard WSDL, and it’s generated
automatically, so there is little to say about the file itself. However, the Microsoft imple-
mentation requires another file to map the invoked Web Service operations to COM
object method calls. This additional file is expressed in the Web Services Markup
Language (WSML), which is Microsoft’s proprietary language for this particular pur-
pose. The Microsoft SOAP Toolkit generates WSML files automatically; see Listing 15.3
for an example.

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
689

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

Note

You can learn more about WSML at http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/soap/htm/soap_overview_72r0.asp.

WSDL the IBM Way
The WSTK runs on Linux or Windows 2000/NT 4 and requires a recent installation of
the Java Development Kit (JDK). Download the WSTK from http://www.alphaworks.
ibm.com/tech/webservicestoolkit. The version used for this book is 2.4, but IBM
warns developers to consider the toolkit to be alpha code.

The WSTK comes with several useful utilities, including the following:

• A limited version of IBM’s WebSphere Application Server, suitable for running
Web Services. It also supports the latest full version of WebSphere.

• Apache SOAP (which IBM originally produced and released as open source) and
AXIS, which is an open-source SOAP implementation.

• WSDL4J, the WSDL Toolkit for Java.

19 0672323419 CH16 3/15/04 11:23 AM Page 689

• The XML4J XML Parser, which includes the Apache Xerces Java-based
XML parser.

• LotusXSL-Java (based on Apache Xalan Java), which is an Extensible Style
Language Transformations (XSLT) processor for transforming XML documents
into HTML, text, or other XML document types.

• IBM UDDI4J, which is IBM’s UDDI Toolkit for Java (more about this part of the
WSTK later in the chapter), as well as a preview of IBM’s UDDI Registry software.

• A demo implementation of Reliable HTTP (HTTPR).

• A prototype implementation of the XML Key Information Service Specification
(X-KISS), which is part of the XML Key Management Specification (XKMS). X-
KISS is a protocol for a trust service (that is, a third-party key registry) that
resolves public key information contained in certain XML documents.

• A Web Services for Browser (WS4B) plug-in that provides programmatic access to
any UDDI node from a standard browser.

Building XML-Based Applications

PART II
690

Note

Reliable HTTP (HTTPR) is a transport-level protocol proposed by IBM that gives
HTTP the reliability of proprietary messaging systems such as IBM’s MQSeries.
HTTPR defines how metadata and application messages that indicate how to
add support for reliability at the transport level are encapsulated within the
payload of HTTP requests and responses. Learn more about HTTPR at
http://www-106.ibm.com/developerworks/webservices/library/ws-phtt.

The installation of the WSTK is straightforward, except that you must select a UDDI
registry for the toolkit to access. You can use the local one provided with the toolkit or
configure the toolkit to access a public registry. To use the WSTK, you must first have a
Java client that accesses a Web Service. The toolkit comes with a Java class that is sup-
posed to access a stock quote service provided by Nasdaq, but Nasdaq apparently no
longer provides this service. For our example, therefore, we wrote a simple client that
returns a placeholder instead of accessing a true Web Service, as shown in Listing 16.1.

LISTING 16.1 Demo Client Application MyClass.java

public class MyClass
{
public int MyMethod (String arg)
{
return 47;

19 0672323419 CH16 3/15/04 11:23 AM Page 690

LISTING 16.1 continued

}

public static void main (String[] args)
{
System.out.println(“output”);
}

}

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
691

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

Note

Source code files for all numbered listings in this chapter can be found on the
Sams Web site.

Next, we use the WSTK to generate the WSDL wrapper for our application. Launching
the toolkit takes you to the dialog box shown in Figure 16.2.

FIGURE 16.2
Selecting the ser-
vice creation type.

From here, select Java Class and click Next to get to the Java Class WSDL Generator
dialog box, as shown in Figure 16.3.

FIGURE 16.3
The Java class
WSDL generator.

19 0672323419 CH16 3/15/04 11:23 AM Page 691

Type in the necessary information about your client application and click Next to select
your wrapper class methods, as shown in Figure 16.4.

Building XML-Based Applications

PART II
692

FIGURE 16.4
Selecting methods
to wrap.

Select the methods in your application you wish to expose. Your methods shouldn’t have
red dots by them, or you will have to modify the WSDL manually to support complex
data types that the WSTK cannot handle.

Finally, click Next to confirm your selection, as shown in Figure 16.5.

FIGURE 16.5
Confirming the
creation of WSDL
files.

You will get an error message at this point if the WSDL generation tool is unable to wrap
the methods you have selected.

Clicking the Finish button will generate two WSDL files plus a deployment descriptor
file. The first file the toolkit generates is the WSDL service implementation description,
as shown in Listing 16.2.

LISTING 16.2 Generated File MyClass_Service.wsdl

<?xml version=”1.0” encoding=”UTF-8”?>

<definitions name=”MyClass_Service”

19 0672323419 CH16 3/15/04 11:23 AM Page 692

LISTING 16.2 continued

targetNamespace=”http://www.myclassservice.com/MyClass”
xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:interface=”http://www.myclassservice.com/MyClass-interface”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:types=”http://www.myclassservice.com/MyClass”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<import
location=”http://localhost:8080/wsdl/MyClass_Service-interface.wsdl”
namespace=”http://www.myclassservice.com/MyClass-interface”>

</import>

<service
name=”MyClass_Service”>

<documentation>IBM WSTK V2.4 generated
➥ service definition file</documentation>

<port
binding=”interface:MyClass_ServiceBinding”
name=”MyClass_ServicePort”>

<soap:address location=”http://localhost:8080/soap/servlet/rpcrouter”/>
</port>

</service>

</definitions>

Note that Listing 16.2 contains an import element and a service element, but no mes-
sage, portType, and binding elements. Instead, these elements are included in the ser-
vice interface file, which is imported via the import statement. The service interface file
is shown in Listing 16.3.

LISTING 16.3 Generated File MyClass_Service-interface.wsdl

<?xml version=”1.0” encoding=”UTF-8”?>

<definitions name=”MyClass_Service”
targetNamespace=”http://www.myclassservice.com/MyClass-interface”
xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tns=”http://www.myclassservice.com/MyClass-interface”
xmlns:types=”http://www.myclassservice.com/MyClass-interface/types/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<message name=”InMyMethodRequest”>
<part name=”meth1_inType1” type=”xsd:string”/>

</message>

<message name=”OutMyMethodResponse”>

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
693

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

19 0672323419 CH16 3/15/04 11:23 AM Page 693

LISTING 16.3 continued

<part name=”meth1_outType” type=”xsd:int”/>
</message>

<portType name=”MyClass_Service”>
<operation name=”MyMethod”>
<input message=”tns:InMyMethodRequest”/>
<output message=”tns:OutMyMethodResponse”/>

</operation>
</portType>

<binding name=”MyClass_ServiceBinding” type=”tns:MyClass_Service”>
<soap:binding style=”rpc”

transport=”http://schemas.xmlsoap.org/soap/http”/>
<operation name=”MyMethod”>
<soap:operation soapAction=”urn:myclass-service”/>
<input>
<soap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”urn:myclass-service”
use=”encoded”/>

</input>
<output>
<soap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”urn:myclass-service” use=”encoded”/>

</output>
</operation>

</binding>

</definitions>

By separating the service implementation from the service interface, the WSTK allows
the service to be changed without affecting the interface, thus providing for greater reuse
and flexibility. This approach is an example of good design that is allowed, but not
required, by the WSDL specification. The service interface document is created by a ser-
vice interface provider, whereas the service implementation document is put together by
the service provider. Although these two organizations may be the same entity, in prac-
tice they are typically different organizations.

In addition to the service and service interface files, the WSTK also produces a deploy-
ment descriptor file, as shown in Listing 16.4.

LISTING 16.4 Generated File DeploymentDescriptor.xml

<isd:service
xmlns:isd=”http://xml.apache.org/xml-soap/deployment”

Building XML-Based Applications

PART II
694

19 0672323419 CH16 3/15/04 11:23 AM Page 694

LISTING 16.4 continued

id=”urn:myclass-service”
checkMustUnderstands=”false”>

<isd:provider type=”java” scope=”Application” methods=”MyMethod”>
<isd:java class=”MyClass” static=”false”/>

</isd:provider>
</isd:service>

The deployment descriptor file correlates each service with its URI. The WSTK’s SOAP
engine contains a hashtable of services deployed on the server, and the deployment
descriptor provides the keys to the hashtable. The deployment descriptor serves a similar
purpose for the WSML file in the Microsoft implementation, where the deployment
descriptor provides a correlation to Java methods in each deployed service, whereas the
Microsoft SOAP Toolkit uses WSML to correlate to COM object method calls.

Once these three files are written, you have successfully deployed your Web Service, and
you should see the dialog box shown in Figure 16.6.

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
695

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

FIGURE 16.6
Service file
written.

Introduction to UDDI
If WSDL is The Empire Strikes Back, then UDDI is The Return of the Jedi, concluding
the chapters on Web Services. Universal Description, Discovery, and Integration (UDDI)
is a platform-independent, open framework for describing services, discovering busi-
nesses, and integrating business services using the Internet as well as public registries of
Web Services designed to store information about businesses and the services they offer.
UDDI is also a specification for building such registries as well as an application pro-
gramming interface (API) that exposes the functionality of the registries. Fundamentally,
UDDI provides for the publication and discovery of Web Services, which are the key
functional components of the Service-Oriented Architecture explained in Chapter 14,
“Architecting Web Services.”

The UDDI Consortium, established by hundreds of companies, emerged in response to a
series of challenges posed by the new Web Services model. These challenges included
the following:

• How do you discover Web Services?

• How should information about Web Services be categorized?

19 0672323419 CH16 3/15/04 11:23 AM Page 695

• How do you handle the global nature of Web Services? How do you provide for
localization?

• How can interoperability be provided, both in the discovery and invocation
mechanisms?

• How can you interact with the discovery and invocation mechanisms at runtime?

For UDDI to provide the foundation for Web Services registries, therefore, it had to serve
two primary roles within the Web Services model: Service publication and service dis-
covery (shown in Figure 14.2 in Chapter 14). The rest of this chapter addresses how
UDDI’s publication and discovery capabilities operate as well as how UDDI addresses
the listed challenges.

Building XML-Based Applications

PART II
696

Note

The home page for UDDI is at http://www.uddi.org. You can find specification
documents, articles, whitepapers, and more at this URL. UDDI version 1.0 is cur-
rently in use, and version 2.0 documents are now available on the site, as well.
This chapter covers functionality in UDDI 1.0, with a discussion on what is new
in version 2.0 at the end of the chapter.

UDDI Basics
Public UDDI registries are hosted by operator nodes, which are companies such as
Microsoft and IBM that have committed to running public UDDI nodes. The public reg-
istry system is loosely modeled after the Domain Name Service (DNS) system, in that
there are multiple registries responsible for synchronizing their data with each other.
Currently, each public UDDI node synchronizes with the others daily, but a more fre-
quent schedule is in the works.

Likewise, as is the case with the DNS system, UDDI registries are not repositories of
data; rather, in their roles as registries, they simply provide information on how to find
and invoke Web Services. Just as the DNS system provides for unique domain names,
UDDI relies on globally unique identifiers (GUIDs), which are URNs that uniquely iden-
tify the resources in each registry.

There are three levels of information available in each UDDI registry, which correspond
roughly to the features of a phone book:

• White pages. These pages provide listings of companies that can be queried by
name, text description, contact information, and known identifiers (like Dun and
Bradstreet’s DUNS numbers).

19 0672323419 CH16 3/15/04 11:23 AM Page 696

• Yellow pages. These pages allow for the looking up of companies by the kind
of services they offer, organized into established business categories (industry
codes, location, and products and services). These categories are organized
into taxonomies.

• Green pages. These pages provide information about how to interact with compa-
nies’ Web Services by exposing service descriptions and binding information.

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
697

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

Note

UDDI 1.0 supports three taxonomies:

• The North American Industry Classification System (NAICS), found at
http://www.naics.com.

• The Universal Standard Products and Services Codes (UNSPSC), located at
http://www.unspsc.org.

• The ISO 3166 Geographic Taxonomy, found at http://www.iso.ch.

UDDI 2.0 adds two more:

• The Standard Industrial Classifications (SIC), which has been superseded by
NAICS.

• The GeoWeb Geographic Classification (no longer available online).

Starting with UDDI 3.0, any number of different taxonomies are potentially
usable within UDDI registries.

By accessing the appropriate “pages,” a service requester can obtain answers to the fol-
lowing questions:

• For a given industry, what Web Services interfaces have been published?

• Which of those interfaces are based on WSDL?

• Which companies have created implementations based on one of those interfaces?

• Which Web Services in a particular category are available?

• How does one contact a company about accessing the Web Services it publishes?

• What are the specifics of binding to and invoking a given Web Service?

The Structure of UDDI
The XML schema that provides the structure of UDDI defines four core types of infor-
mation in a UDDI registry, as shown in Figure 16.7:

19 0672323419 CH16 3/15/04 11:23 AM Page 697

• Business information. Provided by the businessEntity element. The
businessEntity element supports the “white pages” and “yellow pages” taxonomies,
allowing for structured information about companies. This element is the top-level
information manager for the information in the registry about a particular business.

• Service information. Provided by the businessService element. This element
supports the “green pages” functionality. The businessService structure contains
a group of Web Services related to a category of services or possibly a business
process. Each businessService element contains one or more technical Web
Services descriptions, which describe how to find and bind to each of the Web
Services.

• Binding information. Provided by the bindingTemplate element, which is the ele-
ment contained within the businessService element that provides the information
needed to bind to and invoke a Web Service.”

• Specifications for services. Enclosed within each bindingTemplate element are
special elements that list references to information about specifications for ser-
vices. These elements, called tModel elements (from “technical models”), are
metadata about each specification, providing information on a specification’s name,
publishing organizations, and URLs to the specifications themselves. tModel ele-
ments have several uses within a UDDI registry, in particular, representing techni-
cal specifications for wire protocols (such as SOAP), interchange formats (WSDL),
and sequencing rules. Each specification registered as a tModel in a UDDI registry
receives a unique GUID.

Building XML-Based Applications

PART II
698

businessEntity

businessService

bindingTemplate

bindingTemplate

bindingTemplate

bindingTemplate

businessService

tModel

tModel

tModel

tModel

FIGURE 16.7
UDDI structure.

19 0672323419 CH16 3/15/04 11:23 AM Page 698

It is important to point out that UDDI actually has no direct support for WSDL—or any
other service description mechanism, for that matter. Instead, UDDI uses tModel ele-
ments to allow the specification of the service description mechanism to be flexible and
independent of any single description language. At this time, however, WSDL is cur-
rently the preferred description language for UDDI registries.

tModel Structure
Understanding tModel elements is critical to understanding how UDDI works, because
they form the basis of how UDDI deals with the meaning of the various specifications it
deals with. The concept of a tModel is necessarily somewhat nebulous, because tModel
elements consist of metadata (data about data). tModel elements provide a reference sys-
tem for UDDI registries that is based on abstraction (in other words, a tModel can define
just about anything).

The primary use for tModel elements within UDDI is to represent a technical specifica-
tion—for example, wire protocols (such as SOAP), interchange formats, and the like.
When two parties wish to communicate using a particular specification, they must share
a mutually agreed on technical identity for the specification they share. This technical
identity can be registered in a tModel. Once such a specification is uniquely defined in
this way, other parties can refer to it by referring to its unique tModel identifier, which is
called a tModelKey. tModelKey elements act as “technical fingerprints” that uniquely
designate individual specifications.”.

The other main use for tModel elements supports how UDDI handles its search capabil-
ity. Searching, of course, is an essential part of UDDI’s “find” capability. Searching is
provided for in UDDI with the use of two structures: identifierBag and categoryBag.
The identifierBag structure defines organizational identity. It consists of name/value
pairs that record and define identification numbers—for example, “DUNS number
12345” or “SS# 987-65-4321.” The categoryBag elements, on the other hand, are
name/value pairs that correlate specific taxonomy information—for example, “Florists
45311” (from the NAICS taxonomy), “Massachusetts US-MA” (from the ISO 3166
Geographic Taxonomy), or “Boston 516499” (from the GeoWeb taxonomy). A particular
florist in Boston, Massachusetts would possess all three of these categoryBag elements,
as well as each identifier’s supercategories. The tModel, then, is used to correlate differ-
ent levels of these hierarchies—for example, to express the relationship that Boston is
within Massachusetts, or that florists are retailers.

tModel elements have the structure shown in Figure 16.8.

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
699

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

19 0672323419 CH16 3/15/04 11:23 AM Page 699

The name element is the only required element, and it’s searchable, whereas the
description is not. The overviewDoc element references remote descriptions or other
instructions related to the tModel. Finally, the identifierBag and categoryBag elements
contain searchable name/value pairs that reference identification numbers and taxonomy
information, respectively. An example of a tModel is shown in the following section).

Publishing and Finding WSDL Descriptions in a
UDDI Registry
In order to understand how UDDI uses WSDL as a description language, you must be
clear on how WSDL documents are mapped to the UDDI structure. As discussed earlier,
WSDL documents can be organized as service implementation and service interface doc-
uments. (Listing 16.2 shows a WSDL service implementation document, and Listing
16.3 shows the corresponding WSDL service interface.) The service implementation doc-
ument maps to the UDDI businessService element, whereas the service interface docu-
ment maps to the tModel elements, as shown in Figure 16.9.”.

The first step in publishing a WSDL description in a UDDI registry is publishing the ser-
vice interface as a tModel in the registry. Here are the steps to follow to create the appro-
priate tModel:

1. Set the name field of the tModel to the targetNamespace attribute of the definitions
element in the interface document. This field is used to locate the appropriate tModel.

Building XML-Based Applications

PART II
700

overviewURL

keyedReference

keyedReference

identifierBag

keyedReference

keyedReference

categoryBag

description

name

overviewDoc

tModelFIGURE 16.8
Structure of a
tModel.

19 0672323419 CH16 3/15/04 11:23 AM Page 700

2. The description field of the tModel corresponds to the documentation element
of the interface document. This field can have a maximum of 256 characters.

3. Set the overviewURL field of the tModel to the URL and binding specification in
the interface document.

4. Set the categoryBag field of the tModel so that its keyed reference is uddi-
org:types and its keyValue is wsdlSpec. This defines the UDDI entry as a WSDL
service interface definition.

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
701

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

bindingTemplate

bindingTemplate

businessEntity

businessService

tModel

port

port

service

WSDL UDDI

import

Service implementation

Service interface

types

message

portType

binding

FIGURE 16.9
WSDL-to-UDDI
mapping.

For example, if we take the interface document in Listing 16.3, we build the tModel in
Listing 16.5.

LISTING 16.5 tModel.xml—A tModel Created from a WSDL Service Interface

<?xml version=”1.0”?>
<tModel tModelKey=””>
<name>http://www.myclassservice.com/MyClass-interface</name>

<description xml:lang=”en”>
Service interface definition for our demo Service.

</description>

19 0672323419 CH16 3/15/04 11:23 AM Page 701

LISTING 16.5 continued

<overviewDoc>
<description xml:lang=”en”>
WSDL Service Interface Document

</description>
<overviewURL>
http://www.myclassservice.com/MyClass-interface#MyClass_ServiceBinding

</overviewURL>
</overviewDoc>

<categoryBag>
<keyedReference tModelKey=”UUID:C1ACF26D-9672-4404-9D70-889DFDA9D9F8”

keyName=”uddi-org:types” keyValue=”wsdlSpec”/>
<keyedReference tModelKey=”UUID:DB77450D-9FA8-45D4-A7BC-9C8C7D998F8D”

keyName=”Sample Web Service”
keyValue=”12345678”/>

</categoryBag>
</tModel>

Next, we must create the businessService and bindingTemplate elements that corre-
spond to the WSDL service implementation document shown in Listing 16.2. The
businessService has the following fields.”:

• The name field of the businessService is set to the name attribute of the service
element in the implementation document.

• The description field of the businessService comes from the documentation
element in the implementation document.

The bindingTemplate has the following fields:

• The description field of the bindingTemplate comes from the first 256 charac-
ters of the documentation element of the port element, if it exists.

• The accessPoint field is set to the value of the location attribute of the exten-
sion element that is associated with the port element, in the case of a SOAP or
HTTP binding.

• The bindingTemplate contains one tModelInstanceInfo field for each tModel it
references.

• The overviewURL field directly references the service implementation document;
however, it is only used to provide human readability.

Putting these instructions together, we can build the UDDI businessService that corre-
sponds to the WSDL interface document in Listing 16.2. The businessService appears
in Listing 16.6.

Building XML-Based Applications

PART II
702

19 0672323419 CH16 3/15/04 11:23 AM Page 702

LISTING 16.6 businessService.xml—businessService and bindingTemplate
Elements Created from a WSDL Service Implementation

<businessService businessKey=”...” serviceKey=”...”>
<name>MyClass_Service</name>

<description xml:lang=”en”>
IBM WSTK V2.4 generated service definition file

</description>

<bindingTemplates>
<bindingTemplate bindingKey=”...” serviceKey=”...”>
<description></description>
<accessPoint URLType=”http”>
http://localhost:8080/soap/servlet/rpcrouter

</accessPoint>
<tModelInstanceDetails>
<tModelInstanceInfo tModelKey=”[tModel Key for Service Interface]”>
<instanceDetails>
<overviewURL>
http://localhost:8080/wsdl/MyClass_Service-interface.wsdl

</overviewURL>
</instanceDetails>

</tModelInstanceInfo>
</tModelInstanceDetails>

</bindingTemplate>
</bindingTemplates>

<categoryBag>
<keyedReference tModelKey=”UUID:DB77450D-9FA8-45D4-A7BC-3663DA8D8CFB”

keyName=”Sample Web Service”
keyValue=”84121801”/>

</categoryBag>
</businessService>

UDDI Invocation Model
Now that we can build a businessService and its various elements, let’s step through
the process for using a UDDI registry to find and invoke a Web Service.”:

1. You use the UDDI business registry to locate the businessEntity information that
was previously published by a company advertising a Web Service.

2. You either request more specific information about the businessService or
request the entire businessEntity structure. This structure contains the relevant
bindingTemplate information needed to connect to the service. You put this bind-
ing information into a cache.

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
703

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

19 0672323419 CH16 3/15/04 11:23 AM Page 703

3. You refer to the tModel key information in the bindingTemplate to obtain relevant
information on the specifications needed to invoke the desired Web Service, and
you use this information to write the program that will access the service.

4. The program invokes the Web Service using the bindingTemplate information that
has been cached.

5. If the call to the Web Service fails, refresh the bindingTemplate information. If
the new call succeeds, refresh the cache. Otherwise, keep trying.

By using cached binding information and taking a “retry on failure” approach, the UDDI
registry infrastructure is not burdened by unnecessary calls but rather allows for seamless
operation when binding information changes. This approach to scalability is quite similar
to the way the DNS system works.”

The UDDI API
The UDDI Programmer’s API Specification, found at http://www.uddi.org/pubs/
➥ ProgrammersAPI-V1.01-Open-20010327_2.pdf, is complete and easy to use. It’s also
the authoritative source of information on the API. Therefore, it’s of little value simply to
repeat the content from that document here. Instead, this section will cover the API func-
tions on a descriptive level in order to provide a broad introduction to the capabilities
within the API. Be sure to refer to the API Specification for complete details.

Inquiry API
The publicly available inquiry functions provided by the UDDI API fall into two cate-
gories: the find_xx group, which enables programs to find information in a UDDI reg-
istry, and the get_xx group, which is used to retrieve information once it is found.

The inquiry queries are as follows:

• find_binding. Locates specific bindings within a registered businessService and
returns a bindingDetail message that contains a bindingTemplate element’s
structure. If there are no matches, the returned bindingDetail will be empty. If an
error occurs, a dispositionReport structure will be returned in a SOAP Fault
element (SOAP Fault elements are covered in Chapter 15) .

• find_business. Locates information about one or more businesses and returns a
businessList message. Searches can be performed on name elements (or partial
name elements), identifierBag elements, categoryBag elements, tModelBag ele-
ments, or discoveryURL elements. tModelBag elements are collections of tModel

Building XML-Based Applications

PART II
704

19 0672323419 CH16 3/15/04 11:23 AM Page 704

elements that allow searches for compatible bindings. If there are no matches, an
empty businessList is returned. Errors are handled as they are with the
find_binding query.

• find_service. Locates specific services within a registered businessEntity and
returns a serviceList message. Searches can be performed on name elements (or
partial name elements), identifierBag elements, categoryBags elements, or
tModelBag elements. If there are no matches, an empty businessService structure
is returned. Errors are handled as they are with the find_binding query.

• find_tModel. Locates one or more tModel information structures and returns a
tModelList structure, which is a list of abbreviated information about tModel ele-
ments that match the search criteria. Search parameters, no match conditions, and
error conditions are handled the same as the preceding queries.

• get_bindingDetail. Gets the full runtime bindingTemplate information that can
be used to make one or more service requests by invoking the API of a registered
business. This query returns a bindingDetail message. It’s recommended that this
query only be used when the bindingDetail that is stored in the cache is no
longer valid.

• get_businessDetail. Gets the full businessEntity (identified by its
businessKey) information for one or more businesses and returns a
businessDetail message.

• get_businessDetailExt. Gets information about an extended businessEntity
(also identified by its businessKey) for one or more businesses and returns a
businessDetailExt message.

• get_serviceDetail. Gets full details for a given businessService structure (iden-
tified by its serviceKey) and returns a serviceDetail message.

• get_tModelDetail. Gets full details for a given tModel structure (identified by its
tModelKey) and returns a tModelDetail message.

Publication API
The messages within the publication API fall generally into two categories: delete_xx,
for deleting information from a registry, and save_xx, for inserting and updating infor-
mation. In addition, there are three messages that involve the security of information
within the registry.

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
705

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

19 0672323419 CH16 3/15/04 11:23 AM Page 705

The publication queries are as follows:

• delete_binding. Removes an existing bindingTemplate from the
bindingTemplates collection that is part of a specified businessService
structure. The bindingTemplate is identified by its bindingKey. If successful, a
dispositionReport with a single success indicator is returned (which is the case
for each of the delete_xx messages).

• delete_business. Deletes a business by deleting registered businessEntity struc-
tures from the registry. The businessEntity is identified by its businessKey).

• delete_service. Deletes an existing businessService structure from the
businessServices collection, which is part of a specified businessEntity. The
businessService is identified by its serviceKey).

• delete_tModel. Used to delete registered information about one or more tModel
structures. If there are any references to a tModel when this call is made, the
tModel will be marked as deleted, or hidden, instead of being physically removed.
Hidden tModel elements can still be accessed by their owner but are not returned
in search results (resulting from the find_tModel query). However, the details in a
hidden tModel are still accessible, so these should be nulled out with the
save_tModel call (detailed later), if the owner wishes the details to be deleted).

• discard_authToken. Informs an operator site that a previously provided authenti-
cation token is no longer valid. This message is only relevant if the operator site
caches the authToken elements).

• get_authToken. Requests an authentication token from an operator site (in other
words, requests a login). This message is optional for operator sites that have an
alternative means for handling authentication).

• get_registeredInfo. Requests a summary of the information currently managed
by a given individual (returning both businessEntity and tModel keys), as identi-
fied by their authentication token).

Building XML-Based Applications

PART II
706

Note

Other than requiring publication API calls to be authenticated and SSL-secured
over HTTPS, the UDDI specification does not regulate the security of the infor-
mation within a registry. Instead, it is up to each operator site to establish its
own security protocols. UDDI handles authentication by requiring an authenti-
cation token (authToken) to be sent as a parameter in each of these calls, which
the operator site must either validate or reject.

19 0672323419 CH16 3/15/04 11:23 AM Page 706

• save_binding. Registers a new bindingTemplate structure or updates an existing
bindingTemplate structure within one or more bindingTemplate structures. This
call controls the information about the technical capabilities exposed by a regis-
tered business).

• save_business. Registers a new businessEntity structure or updates an existing
businessEntity structure. This call has a broad scope in that it controls the overall
information about the entire business. The new or changed businessEntity can be
passed as a parameter, or one or more URLs to such structures can be passed
instead, in an uploadRegister structure).

• save_service. Adds or updates one or more businessService structures exposed
by a specified businessEntity. The businessService is passed as a parameter,
allowing this call to move a bindingTemplate from one businessService to
another, or a businessService from one businessEntity to another).

• save_tModel. Adds or updates one or more tModel structures. The parameters to
this call include either the tModel to be added or one or more URLs in an
uploadRegister that each point to a single tModel structure).

Vendor Implementations
The first two public UDDI registries to be made available (for both development and beta
production) are IBM’s (at http://www-3.ibm.com/services/uddi/) and Microsoft’s (at
http://uddi.microsoft.com). Both registries currently support UDDI 2.0, and both
operator sites host production and test registries. As a result, it is possible to interact with
both registries from either a Java or a Microsoft (Visual Basic or C#) platform.

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
707

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

Note

Most of the implementation work surrounding UDDI involves publishing, find-
ing, and binding to existing public UDDI registries. However, it is also possible to
build your own private UDDI registry. IBM is currently developing private UDDI
registry software, which is available at http://www.alphaworks.ibm.com/tech/
UDDIreg. You can also find open-source UDDI registry software based on Java,
called jUDDI, at http://www.juddi.org. On the Microsoft side, the Microsoft
UDDI SDK (discussed later) includes Microsoft UDDI Developer Edition, which is
a lightweight UDDI registry implementation built on the .NET Framework.

19 0672323419 CH16 3/15/04 11:23 AM Page 707

In this section, we will focus on using the inquiry and publication APIs to interact with
existing UDDI registries, starting with the Java platform.

UDDI4J (IBM)
UDDI4J is a Java-based implementation of the UDDI APIs written by IBM and released
as open source. The home page for UDDI4J is http://oss.software.ibm.com/
developerworks/projects/uddi4j, but the UDDI4J package is included in IBM’s Web
Services Toolkit (WSTK), which is available at http://www.alphaworks.ibm.com/
tech/webservicestoolkit. This section assumes you have installed a recent version
of Java as well as the WSTK.

The first example exercises the UDDI inquiry API. Our application, FindMyBusiness,
searches the IBM test registry for all companies whose names begin with the letter T.
The code for this example is provided in Listing 16.7.

LISTING 16.7 Inquiry API Application FindMyBusiness.java

import com.ibm.uddi.*;
import com.ibm.uddi.datatype.business.*;
import com.ibm.uddi.response.*;
import com.ibm.uddi.client.*;
import org.w3c.dom.Element;
import java.util.Vector;
import java.util.Properties;

public class FindMyBusiness
{
public static void main (String args[])
{
FindMyBusiness fmb = new FindMyBusiness ();
fmb.run();
System.exit(0);
}

public void run()
{
UDDIProxy proxy = new UDDIProxy();

try
{
proxy.setInquiryURL
(“http://www-3.ibm.com/services/uddi/testregistry/inquiryapi”);

}
catch (Exception e)
{
e.printStackTrace();

Building XML-Based Applications

PART II
708

19 0672323419 CH16 3/15/04 11:23 AM Page 708

LISTING 16.7 continued

}
try
{
BusinessList bl = proxy.find_business(“T”, null, 0);
Vector businessInfoVector =
bl.getBusinessInfos().getBusinessInfoVector();

for (int i = 0; i < businessInfoVector.size(); i++)
{
BusinessInfo bi = (BusinessInfo)businessInfoVector.elementAt(i);
System.out.println(bi.getNameString());
}

}
catch (UDDIException e)
{
DispositionReport dr = e.getDispositionReport();
if (dr!=null)
{
System.out.println (“UDDIException” +
“\n faultCode:” + e.getFaultCode() +
“\n operator:” + dr.getOperator() +
“\n generic:” + dr.getGeneric() +
“\n errno:” + dr.getErrno() +
“\n errCode:” + dr.getErrCode() +
“\n errInfoText:” + dr.getErrInfoText());

}
e.printStackTrace();
}

catch (Exception e)
{
e.printStackTrace();
}

}
}

First, we initialize the UDDI Proxy object in the following line:

UDDIProxy proxy = new UDDIProxy();

The UDDI Proxy object contains all the methods we’ll need to access the UDDI registry.
We then use the setInquiryURL method in the Proxy object to point to the proper reg-
istry. We could have pointed to IBM’s production registry, either of Microsoft’s reg-
istries, or another company’s registry. In addition, we can point to our own test registry,
if we have one running.

Next, we call the find_business method of the Proxy object in the following line:

BusinessList bl = proxy.find_business(“T”, null, 0);

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
709

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

19 0672323419 CH16 3/15/04 11:23 AM Page 709

This takes three arguments:

• The search parameter (here, the letter “T”)

• A FindQualifiers object (here, set to null)

• The number of matches to return (0 indicating all matches)

We then place the results of this call into a Vector object. If an exception occurs, a
UDDIException is thrown, which exposes a method that returns a DispositionReport
object.

Next, let’s utilize the publication API in the application SaveMyBusiness, which is shown
in Listing 16.8.

LISTING 16.8 Publish API Application SaveMyBusiness.java

import com.ibm.uddi.*;
import com.ibm.uddi.datatype.business.*;
import com.ibm.uddi.response.*;
import com.ibm.uddi.client.*;
import org.w3c.dom.Element;
import java.util.Vector;
import java.util.Properties;

public class SaveMyBusiness {
public static void main (String args[])
{
SaveMyBusiness smb = new SaveMyBusiness ();
smb.run();
System.exit(0);
}

public void run()
{
UDDIProxy proxy = new UDDIProxy();

try
{
proxy.setInquiryURL
(“http://www-3.ibm.com/services/uddi/testregistry/inquiryapi”);

proxy.setPublishURL
(“https://www-3.ibm.com/services/uddi/

➥ testregistry/protect/publishapi”);
}

catch (Exception e)
{
e.printStackTrace();
}

Building XML-Based Applications

PART II
710

19 0672323419 CH16 3/15/04 11:23 AM Page 710

LISTING 16.8 continued

try
{
System.out.println(“\nGet authtoken”);
AuthToken token = proxy.get_authToken(“userid”, “password”);
System.out.println(“Returned authToken:” + token.getAuthInfoString());
System.out.println(“\nSave ‘My Business’”);
Vector entities = new Vector();
BusinessEntity be = new BusinessEntity(“”, “My Business”);
entities.addElement(be);
BusinessDetail bd =
proxy.save_business(token.getAuthInfoString(), entities);

}
catch (UDDIException e)
{
DispositionReport dr = e.getDispositionReport();
if (dr!=null)
{
System.out.println (“UDDIException” +
“\n faultCode:” + e.getFaultCode() +
“\n operator:” + dr.getOperator() +
“\n generic:” + dr.getGeneric() +
“\n errno:” + dr.getErrno() +
“\n errCode:” + dr.getErrCode() +
“\n errInfoText:” + dr.getErrInfoText());

}
e.printStackTrace();
}

catch (Exception e)
{
e.printStackTrace();
}

}
}

In this example, we initialize the Proxy object and the InquiryURL object as before, but
now we also set the PublishURL object in the following line:

proxy.setPublishURL(”https://www-3.ibm.com/services/uddi/testregistry/
protect/publishapi”);

Recall that all publication API calls are conducted over HTTPS. Next, our application
must log in to the registry by sending its username and password and obtaining an autho-
rization token (AuthToken) in return:

AuthToken token = proxy.get_authToken(“userid”, “password”);

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
711

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

19 0672323419 CH16 3/15/04 11:23 AM Page 711

Next, we must create a new BusinessEntity object and populate it with the desired
properties. Here, we are only defining its name:

Vector entities = new Vector();
BusinessEntity be = new BusinessEntity(“”, “My Business”);
entities.addElement(be);

Finally, we pass our new BusinessEntity to the registry, along with our AuthToken:

BusinessDetail bd = proxy.save_business(token.getAuthInfoString(), entities);

This saves our BusinessEntity in the UDDI registry.

The Microsoft UDDI SDK
The Microsoft UDDI SDK is available at http://www.microsoft.com/downloads/
release.asp?ReleaseID=30880. The version used here is 1.5.2, which includes the
UDDI SDK for Visual Studio 6, the UDDI Developer Edition 1.5 (Beta), and the UDDI
.NET SDK (Beta) for Visual Studio .NET. To run the UDDI SDK, you will need the fol-
lowing Microsoft products:

• Windows 2000 Professional, Server, or Advanced Server

• Visual Studio .NET Beta 2

• SQL Server 2000 Desktop Engine (MSDE), Personal, Standard, or Enterprise
Edition

First, let’s go through a simple Visual Basic example that uses the inquiry API, again
looking for companies that begin with the letter T, as shown in Listing 16.9.

LISTING 16.9 Inquiry API Visual Basic Application FindMyBusiness.vb

Imports Microsoft.Uddi
Imports Microsoft.Uddi.Business
Imports Microsoft.Uddi.Binding
Imports Microsoft.Uddi.Service
Imports Microsoft.Uddi.ServiceType

Module SaveMyBusiness

Sub Main()
Dim myReq As New UDDIEnv.RequestManager
Dim reqEnv As New UDDIEnv.Envelope
Dim respEnv As UDDIEnv.Envelope
Dim inqMsg As New UDDI10.find_business
Dim inqRsp As New UDDI10.businessList
Dim res As UDDI10.businessInfo

Building XML-Based Applications

PART II
712

19 0672323419 CH16 3/15/04 11:23 AM Page 712

LISTING 16.9 continued

Set reqEnv.Plugin = inqMsg
inqMsg.Name = “T”
Set respEnv = myReq.UDDIRequest(reqEnv)
Set respEnv.Plugin = inqRsp
For Each res In inqRsp.businessInfos
Debug.Print res.Name

Next
End Sub

End Module

First, we declare objects from the UDDI SDK, including the request manager, as well as
envelopes and document objects for our request and response. Then we set up the request
document with the request envelope:

Set reqEnv.Plugin = inqMsg

Next, we set our search criteria:

inqMsg.Name = “T”

Then we send our request to the registry, obtaining a response envelope in return:

Set respEnv = myReq.UDDIRequest(reqEnv)

Then we add the document object to the envelope to read the response and loop through
the results:

Set respEnv.Plugin = inqRsp
For Each res In inqRsp.businessInfos
Debug.Print res.Name

Next

Next, we cover an example that uses the publication API to register a business in a reg-
istry. The example in Listing 16.10 uses the publication API by first building a tModel.

LISTING 16.10 Publish API Visual Basic Application SaveMyBusiness.vb

Imports Microsoft.Uddi
Imports Microsoft.Uddi.Business
Imports Microsoft.Uddi.Binding
Imports Microsoft.Uddi.Service
Imports Microsoft.Uddi.ServiceType

Module SaveMyBusiness

Sub Main()
Publish.Url = “https://test.uddi.microsoft.com/publish”

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
713

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

19 0672323419 CH16 3/15/04 11:23 AM Page 713

LISTING 16.10 continued

Publish.User = “username”
Publish.Password = “password”

Dim tm As New SaveTModel()
tm.TModels.Add()
tm.TModels(0).Name = “URN of tModel”
tm.TModels(0).Descriptions.Add(“en”, “Description of tModel”)
tm.TModels(0).OverviewDoc.OverviewURL = “URL of WSDL”
tm.TModels(0).CategoryBag.Add(“uddi-org:types”,
“wsdlSpec”, “uuid:c1acf26d-9672-4404-9d70-4863bc075ad9”)

Dim sTModelKey As String

Try
Dim td As New TModelDetail()
td = stm.Send()
sTModelKey = td.TModels(0).TModelKey

Catch ue As UddiException
Console.WriteLine(ue.Message)
Return

Catch e As Exception
Console.WriteLine(e.Message)
Return

End Try

Dim sb As New SaveBusiness()
sb.BusinessEntities.Add()
sb.BusinessEntities(0).Name = “My Business”
sb.BusinessEntities(0).Descriptions.Add
(“en”, “Description of My Business”)

sb.BusinessEntities(0).BusinessServices.Add()
sb.BusinessEntities(0).BusinessServices(0).Name = “My Business Service”
sb.BusinessEntities(0).BusinessServices(0).Descriptions.Add
(“en”, “Description of My Business Service”)

sb.BusinessEntities(0).BusinessServices(0).BindingTemplates.Add()
sb.BusinessEntities(0).BusinessServices(0).BindingTemplates(0).

➥ Descriptions.Add(“en”, “Description of Binding”)
sb.BusinessEntities(0).BusinessServices(0).BindingTemplates(0).

➥ AccessPoint.Text = “My Access Point”
sb.BusinessEntities(0).BusinessServices(0).BindingTemplates(0).

➥ AccessPoint.URLType = Microsoft.Uddi.Api.URLTypeEnum.Http

sb.BusinessEntities(0).BusinessServices(0).BindingTemplates(0).
➥ TModelInstanceDetail.TModelInstanceInfos.Add()

sb.BusinessEntities(0).BusinessServices(0).BindingTemplates(0).
➥ TModelInstanceDetail.TModelInstanceInfos(0).Descriptions.Add

(“en”, “Insert Description Here”)
sb.BusinessEntities(0).BusinessServices(0).BindingTemplates(0).

Building XML-Based Applications

PART II
714

19 0672323419 CH16 3/15/04 11:23 AM Page 714

LISTING 16.10 continued

➥ TModelInstanceDetail.TModelInstanceInfos(0).TModelKey = sTModelKey

Try
Dim bd As New BusinessDetail()
bd = sb.Send()
Console.WriteLine(bd)

Catch ue As UddiException
Console.WriteLine(ue.Message)
Return

Catch e As Exception
Console.WriteLine(e.Message)
Return

End Try

End Sub

End Module

First, we prepare to log in to the registry with the following lines:

Publish.Url = “https://test.uddi.microsoft.com/publish”
Publish.User = “username”
Publish.Password = “password”

Next, we must build a tModel in order to publish our WSDL files:

Dim tm As New SaveTModel()
tm.TModels.Add()
tm.TModels(0).Name = “URN of tModel”
tm.TModels(0).Descriptions.Add(“en”, “Description of tModel”)
tm.TModels(0).OverviewDoc.OverviewURL = “URL of WSDL”
tm.TModels(0).CategoryBag.Add(“uddi-org:types”,
“wsdlSpec”, “uuid:c1acf26d-9672-4404-9d70-4863bc075ad9”)

Dim sTModelKey As String

The CategoryBag.Add call is necessary for the proper categorization of the tModel.
Finally, we send the tModel to the registry:

Dim td As New TModelDetail()
td = stm.Send()
sTModelKey = td.TModels(0).TModelKey

If we are successful in saving our tModel to the registry, it will return a unique
tModelKey, which we use later to bind our Web Service. In the next step, we create our
business entry:

Dim sb As New SaveBusiness()
sb.BusinessEntities.Add()

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
715

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

19 0672323419 CH16 3/15/04 11:23 AM Page 715

sb.BusinessEntities(0).Name = “My Business”
sb.BusinessEntities(0).Descriptions.Add
(“en”, “Description of My Business”)

Then we create the BusinessService:

sb.BusinessEntities(0).BusinessServices.Add()
sb.BusinessEntities(0).BusinessServices(0).Name = “My Business Service”
sb.BusinessEntities(0).BusinessServices(0).Descriptions.Add
(“en”, “Description of My Business Service”)

Next, we create the BindingTemplate:

sb.BusinessEntities(0).BusinessServices(0).BindingTemplates.Add()
sb.BusinessEntities(0).BusinessServices(0).BindingTemplates(0).

➥ Descriptions.Add(“en”, “Description of Binding”)
sb.BusinessEntities(0).BusinessServices(0).BindingTemplates(0).

➥ AccessPoint.Text = “My Access Point”
sb.BusinessEntities(0).BusinessServices(0).BindingTemplates(0).

➥ AccessPoint.URLType = Microsoft.Uddi.Api.URLTypeEnum.Http

Finally, we create the tModelInstanceInfo:

sb.BusinessEntities(0).BusinessServices(0).BindingTemplates(0).
➥ TModelInstanceDetail.TModelInstanceInfos.Add()

sb.BusinessEntities(0).BusinessServices(0).BindingTemplates(0).
➥ TModelInstanceDetail.TModelInstanceInfos(0).Descriptions.Add

(“en”, “Insert Description Here”)
sb.BusinessEntities(0).BusinessServices(0).BindingTemplates(0).

➥ TModelInstanceDetail.TModelInstanceInfos(0).TModelKey = sTModelKey

Now we are ready to register our business with the UDDI registry:

Dim bd As New BusinessDetail()
bd = sb.Send()

The Future of UDDI
The companies that came together to establish UDDI realized that the specification
would need to go through several versions for it to be truly useful. Therefore, they laid
out a roadmap for at least the first three versions of UDDI:

• Version 1, released in September 2000, included three taxonomies and basic
descriptions of services as well as provided registration services for business units.

• Version 2, rolled out as a public draft in June 2001, adds additional taxonomies,
provides support for layered services, and is intended to provide registration ser-
vices for corporations with multiple divisions.

Building XML-Based Applications

PART II
716

19 0672323419 CH16 3/15/04 11:23 AM Page 716

• Version 3, now scheduled for a December 2001 release, adds support for custom
taxonomies and workflows and will provide registration services for a wide range
of associations.

Once version 3 is released, the UDDI Consortium intends to turn the project over
to a third-party standards body.

Because the version 2 specification is now available, it is possible to take a closer look.
Version 2 will enable the following:

• Descriptions of complex organizations. Businesses will now be able to describe
and publish their internal organizational structure, including their business units,
departments, divisions, and subsidiaries.

• Improved support for internationalization. Businesses will now have more flexibil-
ity in describing their business and services in multiple languages and locales.

• Additional categorization and identifier schemes. Businesses will now be able to use
additional industry-specific categories and identifiers to describe their businesses, pro-
viding additional vertical market support. It will be possible to validate these addi-
tional categories during registration through third parties such as industry associations.

• Richer searching options. Businesses will now be able to search registries using
more expressive query parameters, using more fields, and using more complex
combinations of fields.

Furthermore, there are some additional API calls in version 2 that support the new
notion of publisherAssertions. A publisherAssertion describes the relationship
between two specific registered businesses. New publication API messages include
add_publisherAssertions, set_publisherAssertions, and delete_
➥ publisherAssertions for managing publisherAssertions. The inquiry API adds
the get_publisherAssertions message as well as a find_relatedBusinesses
and a get_assertionStatusReport call.

So, assuming the technologies included in UDDI mature and companies worldwide are
able to publish their Web Services to the network of public UDDI registries, will UDDI
enable one global e-marketplace? Possibly, but it is likely that UDDI will find its best
use in other contexts. Here are some examples of how UDDI registries might participate
in the world of global commerce:

• Corporate registries that provide a central repository of information about a single
enterprise’s Web Services. Essentially, this is an intranet model of a UDDI registry.

• UDDI registries that form an integral part of a vendor’s enterprise offering. For
example, a CRM or ERP vendor might re-architect its offering as a collection of
loosely coupled Web Services, each registered in the package’s own UDDI registry.

Web Services Building Blocks: WSDL and UDDI

CHAPTER 16
717

16

W
EB

S
ERV

ICES
B

U
ILD

IN
G

B
LO

CK
S:

W
SD

L A
N

D
U

D
D

I

19 0672323419 CH16 3/15/04 11:23 AM Page 717

• An “extranet” application of a UDDI registry put up by one company for use by
itself and its business partners.

• Private e-marketplaces are likely candidates for hosting their own UDDI registries.
Each e-marketplace can qualify entries into the registry, providing a guarantee of
quality and financial stability to its members.

• Industry consortia or Better Business Bureau–type organizations may host their
own UDDI registries, offering either Web Services specific to particular vertical
markets or Web Services from companies that have undergone a particular approval
process.

• Finally, this list wouldn’t be complete without including the global, universally
available network of UDDI registries. Clearly, companies will be reluctant to
invoke Web Services listed in such a registry without either a preexisting relation-
ship with the Web Services provider or some kind of authentication or approval
provided beforehand by a third party.

So, how will UDDI be used in the future? Only time will tell. There is no question,
however, that the technology is positioned to provide value in many different business
situations.

Summary
As we climb up the Web Services technology stack shown in Figure 14.5, we get into
technologies that are less and less established. UDDI appears near the top of the stack,
indicating that as of today, this part of the Web Services puzzle is still mostly on the
drawing board. The public UDDI registries today are essentially toys for the technical
people to play with, so that organizations on the bleeding edge can both learn about the
new technologies and provide feedback to those people who are working on improving
the technologies in future versions.

Therefore, it is important to keep in mind that UDDI shouldn’t be avoided because it is
incomplete and immature; on the contrary, these are perfectly good reasons to become
involved. If you have read this chapter through to this point, you are likely one of the
individuals who can help push this nascent technology to the next level. If you have
learned anything from this chapter, it is hoped that you have learned that, above all else,
UDDI has great promise.

Building XML-Based Applications

PART II
718

19 0672323419 CH16 3/15/04 11:23 AM Page 718

IN THIS CHAPTER

• The .NET Strategy 720

• ADO.NET 722

• The System.Xml Namespace 758

17
C

H
A

PT
ER

Leveraging XML in
Visual Studio .NET

20 0672323419 CH17 3/15/04 11:23 AM Page 719

With the advent of the personal computer and the success of companies such as Microsoft,
we saw a fundamental shift in computing from mainframes to smaller personal computers.
Rather than having the software reside in one location, it was installed on each machine
that needed to run it. Recently, however, with the new push toward distributed environ-
ments, we’re seeing another shift. Applications are no longer constrained to being
installed on every machine that needs to run them. In fact, with the Internet, the ultimate
distributed environment, we’re finding more and more applications taking advantage of
distributed computing by having one global location from which to execute functionality.

Until now, Web development output has consisted of string concatenation to create
strings that would then be returned to the user. For those of us who are used to working
in object-oriented programming languages, this involved a huge shift in thinking. No
longer could we visually development our forms, buttons, and controls. We had to con-
struct a series of classes that created string output. The major drawback to this approach
is that you have to remember two styles of programming: one for the distributed applica-
tions and one for nondistributed applications. Now, with the introduction of Visual Studio
.NET, Microsoft promises to bridge that gap in such a way that one style will suffice for
both. In this chapter, we’ll cover

• Some basics on ADO.NET data providers

• Some basics on the DataSet class

• Some basics on the DataTable class

• Some basics on the DataRelation class

• Typed data sets

• Loading a data set from XML

• Writing XML from a data set

The .NET Strategy
For years, Microsoft has provided to developers a suite named Visual Studio that consists
of a visual development environment for various programming languages that Microsoft
produces. However, having the languages bundled together hasn’t meant that developers
can more easily use something written in another language. The only way in which to
accomplish this has been to create a COM object or an ActiveX control. This means that
although developers can use anything written in any language as a COM object, they are
pretty limited in how that object’s functionality can be extended.

Another major complaint by developers has been the nightmare involving different ver-
sions of various DLLs, often referred to as DLL hell. Basically, every new version of a
DLL cannot break a previous version’s functionality because one DLL might be refer-

Building XML-Based Applications

PART II
720

20 0672323419 CH17 3/15/04 11:23 AM Page 720

enced by many different applications, all of which could be expecting the DLL to pro-
vide different functionality. This has created a versioning nightmare for the providers of
those DLLs.

After many years of this, Microsoft has finally introduced a new version of Visual Studio
that promises to ease all these problems for developers. First and foremost is the concept
of the Common Language Runtime (CLR). The CLR provides a single set of runtime files
for use by every language within Visual Studio. In other words, if you write a Visual Basic
.NET application, your application will use the same runtime libraries as if you had writ-
ten the application in C#. This CLR allows for the inheritance of classes across languages.
For instance, you can define a class in Visual Basic .NET and inherit from it in a C#
application. Quite a nice feature—one that many of us have been requesting for years.

Visual Studio .NET also promises to ease the struggles created by DLL hell by having all
DLLs referenced within the application directory. This means you no longer have one
global repository for DLLs. Now, every DLL used by an application can be found within
the application directory.

Although this may seem like a step back, at first, you have to understand some of the
reasoning that went into this decision. Imagine a scenario in which you create an object
that uses early binding to bind to various methods of, say, a COM object. What happens
is that the early binding uses a pointer to an address for any methods and properties
accessed. Once you’re done coding your object, you package and ship it. Then, two
years down the road, one or more of your users install an application that uses a newer
version of the COM object you referenced for early binding in your object. If the authors
of that object weren’t careful, the pointer your object has to the addresses of the proper-
ties, events, and methods of the COM object may now be pointing to the wrong property,
event, or method, which will cause a major application malfunction. If, instead, your
object were to have a local copy of that same object, you wouldn’t have to worry about
that scenario unless someone specifically copied over the file.

Another interesting major feature of Visual Studio .NET is the framework included
within it. Until now, VB developers really haven’t been able to take advantage of classes
in the Microsoft Foundation Classes (MFC) the way in which C++ developers have been
able to. Although the Visual Studio .NET Framework is not the MFC, it does provide
something that Visual Basic developers have never really had: a complete application
framework. In fact, a concept that will be new to many Visual Basic developers is inheri-
tance. The inheritance that existed in previous versions of Visual Basic was not really
inheritance at all. Basically, VB developers were limited to defining a class and then cre-
ating instances of that class within their applications. Now, VB developers can take
advantage of the full power of inheritance by defining a class and then defining another
class based on that new class, and another subclass based on that class, and so on.

Leveraging XML in Visual Studio .NET

CHAPTER 17
721

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 721

Another major complaint that developers have had in the past is that, until now, they
could not create an Internet application using object-oriented programming because the
Internet was still basically reduced to a series of string concatenations to generate output
to the browser. Now, Microsoft has bridged that gap. The same programming you have
done in the past for Windows applications can be used, with slight modifications, to
develop Web-based applications. In fact, Microsoft has made the creation of Web Services
even easier than before. By having the IDE really do all the extra work in registering the
Web service, developers are now able to concentrate on providing the functionality rather
than on how they expose that functionality as a Web Service. Microsoft has also invested a
considerable amount of time and energy in making it simpler for you to take advantage of
Web Services. With the new IDE, you can simply add a reference to a Web Service to
your application and gain all the benefits of that service, just as if it were another class
within your application—you no longer have to worry about the necessary SOAP calls to
that Web service. Visual Studio .NET figures out those little details for you. All you have
to do is make a call to the Web Service, just as if it were another resource residing on the
local machine, pass in the necessary parameters, and store the results.

All in all, Visual Studio .NET promises to open up the door to a whole new level of
application design and functionality.

ADO.NET
In the past, Microsoft introduced its “universal” data access engine, ActiveX Data
Objects (ADO), which was based primarily on four objects: the Connection, the
RecordSet, the Command, and the Parameter objects. Although this system provided a
common method for data access using OLE DB data providers, it maintained a connec-
tion to the data store. In distributed applications, this became more and more of a limita-
tion. As a result, Microsoft created ADO.NET.

ADO.NET utilizes XML as a data-interchange mechanism between the data store and the
application. By taking advantage of XML for use as a data-transport mechanism,
ADO.NET is able to function under a disconnected environment, thus making distributed
applications easier to write. The core elements of the ADO.NET architecture are the data
set and the data provider. This architecture has been designed to separate data access
from data manipulation. How can it accomplish this? The answer is really quite
ingenious: The primary component for data manipulation is the data set. However, the
data set does not maintain a connection to the data store. As a result, the data set can be
processed without the need for a connection to the data store; the connection is main-
tained by the data provider components.

An entire book could be devoted to the intricacies and nuances for the entire data-access
strategy in Visual Studio .NET, but because this book is geared toward XML, this section

Building XML-Based Applications

PART II
722

20 0672323419 CH17 3/15/04 11:23 AM Page 722

will introduce the basic concepts necessary to understand how XML fits into ADO.NET.
As a result, this section will not cover ADO.NET in its entirety. For more information,
visit http://msdn.microsoft.com/vstudio/nextgen/technology/adoplus.asp.

The ADO.NET Data Provider
The ADO.NET data providers are comprised of components that facilitate connecting to
a data store, executing commands against that data store, and retrieving the results, which
can be processed by the data provider or can be placed into a data set. The ADO.NET
data provider consists of the following four components:

• Command

• Connection

• DataAdapter

• DataReader

The base versions of these components can be found in the System.Data namespace.
However, specialized versions can be found within the System.Data.SqlClient and
System.Data.OleDb namespaces. The differences between the two are very slight. The
System.Data.SqlClient namespace is optimized for access to a Microsoft SQL Server
database, whereas the System.Data.OleDb namespace can be used to access any OLE
DB–compliant database. Granted, the class names are different within the two name-
spaces, but the basic functionality remains the same.

Leveraging XML in Visual Studio .NET

CHAPTER 17
723

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

Note

For either of the .NET data providers to work, you must have Microsoft Data
Access Components (MDAC) 2.6 or later installed.

You should note that the System.Data.SqlClient namespace will only interact
with Microsoft SQL Server versions 7.0 or later. What do you do if you have an
earlier version of Microsoft SQL Server? You can still use the System.Data.OleDb
namespace.

Also, you should note that the System.Data.OleDb namespace does not work
with the OLE DB 2.5 interfaces (you must have MDAC 2.6 or later for this to
work correctly) and the System.Data.OleDb namespace does not work with the
OLE DB provider for ODBC (MSDASQL).

You can find more information about the Microsoft Data Access Components as
well as the latest version of the MDAC at http://www.microsoft.com/data/.

20 0672323419 CH17 3/15/04 11:23 AM Page 723

The System.Data.SqlClient Namespace
The classes within the System.Data.SqlClient namespace are optimized for access to
Microsoft SQL Server versions 7.0 or later. They consist of the following implementa-
tions of the key components of the .NET data providers:

• SqlCommand

• SqlConnection

• SqlDataAdapter

• SqlDataReader

In a normal programming scenario, a connection is made to the server using the
SqlConnection class, and the SqlDataAdapter class is used in conjunction with the
SqlConnection class to populate a DataSet class.

In its simplest form, the C# code would appear as follows:

string cConn = “Data Source=TRAVISNOTEBOOK\\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”;
System.Data.SqlClient.SqlConnection oConn = new
➥ System.Data.SqlClient.SqlConnection(cConn);

oConn.Open();

System.Data.SqlClient.SqlDataAdapter oDA = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers”, oConn);
System.Data.DataSet oDS = new System.Data.DataSet();

oDA.Fill(oDS,”Customers”);
oConn.Close();

Here’s how the VB .NET code would appear (also in its simplest form):

Dim cConn As string = “Data Source=
➥ TRAVISNOTEBOOK\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”
Dim oConn As System.Data.SqlClient.SqlConnection = new
➥ System.Data.SqlClient.SqlConnection(cConn)

oConn.Open();

Dim oDA As System.Data.SqlClient.SqlDataAdapter = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers”, oConn)
Dim oDS As System.Data.DataSet = new System.Data.DataSet()

oDA.Fill(oDS,”Customers”)
oConn.Close()

Building XML-Based Applications

PART II
724

20 0672323419 CH17 3/15/04 11:23 AM Page 724

These examples demonstrate how to create a connection to a Microsoft SQL Server 2000
database and how to use SqlDataAdapter to populate a DataSet object.

Leveraging XML in Visual Studio .NET

CHAPTER 17
725

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

Note

One point deserves special attention here: The preceding code contains an
explicit call to the Close() method of the SqlConnection object. Unless you
explicitly call this method or the Dispose()method, the connection to the server
will not be closed.

A DataSet object keeps the entire result set in memory, which for larger applications or
larger result sets might not be the most optimal method of data retrieval. For this reason,
Microsoft has included the SqlDataReader and SqlCommand classes. Using these classes
in conjunction with each other allows an application to load one record at the time into
memory. This means that at any given point in time, the application is using only enough
resources to keep that one record in memory, whereas DataSet would use whatever
resources it needed to keep all the records in memory. This may not be a big issue when
you’re dealing with a result set of 1,000 or so records, but when you’re dealing with
10,000 or more, the memory problems quickly become apparent. For instance, let’s say
each record takes 100 bytes of memory. First of all, you’re looking at somewhere
around 100,000 bytes to keep the first DataSet object in memory. Second, you’re
looking at 1,000,000 bytes. That’s a big difference—and that’s just for one DataSet
object; that’s not counting the other objects that exist in the application to perform the
actual processing and business logic needed. If you were to use the SqlDataReader
class, no matter what, you’d only use 100 bytes at any given time, and 100 bytes versus
1,000,000 bytes is a big difference when you’re talking about memory management and
resource availability.

To populate a SqlDataReader class, you could write C# code as follows:

string cConn = “Data Source=TRAVISNOTEBOOK\\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”;
System.Data.SqlClient.SqlConnection oConn = new
➥ System.Data.SqlClient.SqlConnection(cConn);

oConn.Open();

System.Data.SqlClient.SqlCommand oCommand = new
➥ System.Data.SqlClient.SqlCommand(
➥ ”Select * From Customers”, oConn);
System.Data.SqlClient.SqlDataReader oDR =
➥ oCommand.ExecuteReader();

20 0672323419 CH17 3/15/04 11:23 AM Page 725

.

.

.
oDR.Close();
oConn.Close();

For VB .NET, the code would appear as this:

Dim cConn As string = “Data Source=
➥ TRAVISNOTEBOOK\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”
Dim oConn As System.Data.SqlClient.SqlConnection = new
➥ System.Data.SqlClient.SqlConnection(cConn)

oConn.Open();

Dim oCommand As System.Data.SqlClient.SqlCommand = new
➥ System.Data.SqlClient.SqlCommand(
➥ ”Select * From Customers”, oConn)
Dim oDR As System.Data.SqlClient.SqlDataReader =
➥ oCommand.ExecuteReader()
.
.
.
oDR.Close()
oConn.Close()

The drawback to using the SqlDataReader class is that it must maintain a constant con-
nection to the data store. Once the data reader has been populated, you can move to the
next record by calling the Read() method on the data reader. Also, once the data reader
has been created, no other operations can be performed using the Connection object: It’s
too busy servicing the requests from the data reader to be of any use to any other objects.
Therefore, until you call the Close() method on the data reader, the Connection object
used for the data reader will be unable to process requests from other sources.

Building XML-Based Applications

PART II
726

Note

You cannot directly instantiate a SqlDataReader object by using the new key-
word. Instead, you must create it by calling the ExecuteReader() method on
the SqlCommand object.

The System.Data.OleDb Namespace
The classes within the System.Data.OleDb namespace provide data-access mechanisms
to an OLE DB–compliant database and consist of the following implementations of the
key components of the .NET data providers:

20 0672323419 CH17 3/15/04 11:23 AM Page 726

• OleDbCommand

• OleDbConnection

• OleDbDataAdapter

• OleDbDataReader

Just as with the classes provided in the System.Data.OleDb namespace, in a normal pro-
gramming scenario, a connection is made to the server using the OleDbConnection class,
and the OleDbDataAdapter class is used in conjunction with the OleDbConnection class
to populate a DataSet class.

In its simplest form, the C# code would appear as follows:

string cConn = “Provider=SQLOLEDB;Data Source=
➥ TRAVISNOTEBOOK\\SQL2000;Initial Catalog=Northwind;
➥ Integrated Security=SSPI;”;
System.Data.OleDb.OleDbConnection oConn = new
➥ System.Data.OleDb.OleDbConnection(cConn);

oConn.Open();

System.Data.OleDb.OleDbDataAdapter oDA = new
➥ System.Data.OleDb.OleDbDataAdapter(
➥ ”Select * From Customers”, oConn);
System.Data.DataSet oDS = new System.Data.DataSet();

oDA.Fill(oDS,”Customers”);
oConn.Close();

For VB .NET, the code would appear as this:

Dim cConn As string = “Provider=SQLOLEDB;Data Source=
➥ TRAVISNOTEBOOK\SQL2000;Initial Catalog=Northwind;
➥ Integrated Security=SSPI;”
Dim oConn As System.Data.OleDb.OleDbConnection = new
➥ System.Data.OleDb.OleDbConnection(cConn)

oConn.Open();

Dim oDA As System.Data.OleDb.OleDbDataAdapter = new
➥ System.Data.OleDb.OleDbDataAdapter(
➥ ”Select * From Customers”, oConn)
Dim oDS As System.Data.DataSet = new System.Data.DataSet()

oDA.Fill(oDS,”Customers”)
oConn.Close()

These examples demonstrate how to create a connection to a Microsoft SQL Server 2000
database and how to use OleDbDataAdapter to populate a DataSet object.

Leveraging XML in Visual Studio .NET

CHAPTER 17
727

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 727

As for implementing OleDbDataReader, the C# code would appear as follows:

string cConn = “Provider=SQLOLEDB;Data Source=
➥ TRAVISNOTEBOOK\\SQL2000;Initial Catalog=Northwind;
➥ Integrated Security=SSPI;”;
System.Data.OleDb.OleDbConnection oConn = new
➥ System.Data.OleDb.OleDbConnection(cConn);

oConn.Open();

System.Data.OleDb.OleDbCommand oCommand = new
➥ System.Data.OleDb.OleDbCommand(
➥ ”Select * From Customers”, oConn);
System.Data.OleDb.OleDbDataReader oDR = oCommand.ExecuteReader();
.
.
.
oDR.Close();
oConn.Close();

Here’s the code for VB .NET:

Dim cConn As string = “Provider=SQLOLEDB;Data Source=
➥ TRAVISNOTEBOOK\SQL2000;Initial Catalog=Northwind;
➥ Integrated Security=SSPI;”
Dim oConn As System.Data.OleDb.OleDbConnection = new
➥ System.Data.OleDb.OleDbConnection(cConn)

oConn.Open();

Dim oCommand As System.Data.OleDb.OleDbCommand = new
➥ System.Data.OleDb.OleDbCommand(
➥ ”Select * From Customers”, oConn)
Dim oDR As System.Data.OleDb.OleDbDataReader = oCommand.ExecuteReader()
.
.
.
oDR.Close()
oConn.Close()

Building XML-Based Applications

PART II
728

Note

Notice the explicit call to the Close() method of the OleDbConnection
object. Remember, just as with the SqlConnection class, unless you explicitly
call this method or the Dispose() method, the connection to the server will
not be closed.

20 0672323419 CH17 3/15/04 11:23 AM Page 728

Just as with SqlDataReader, the drawback to using OleDbDataReader is that it must
maintain a constant connection to the data store. Once the OleDbDataReader object has
been populated, you can move to the next record by calling the Read() method on
OleDbDataReader. Also, once the OleDbDataReader object has been created, no other
operations can be performed using the OleDbConnection object; it’s too busy servicing
the requests from the data reader to be of any use to any other objects. Therefore, until
you call the Close() method on OleDbDataReader, the OleDbConnection object used for
OleDbDataReader will be unable to process requests from other sources.

Leveraging XML in Visual Studio .NET

CHAPTER 17
729

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

Note

You cannot directly instantiate an OleDbDataReader object by using the new key-
word. Instead, you must create it by calling the ExecuteReader() method on
the OleDbCommand object.

The ADO.NET DataSet Class
The DataSet class within the ADO.NET architecture is the core component for providing
data access in a distributed and disconnected environment. One of the largest limitations
in ADO is the lack of support for having multiple tables and such within a record set.
You have to shape a single record set in ADO in order to build a hierarchical record set.
However, ADO.NET is leaps and bounds ahead of Microsoft’s first attempt at universal
data access. Within ADO.NET, you have a sort of miniature database called a data set.
No longer are you limited to having one table—you can have as many as desired. Plus,
you can create relations between those tables and, furthermore, those tables can have
constraints. All this is available through the DataSet class in the ADO.NET architecture.

A data set within .NET contains zero or more tables and zero or more constraints, which
are accessed via DataTableCollection and DataRelationCollection, respectively.
DataTableCollection contains zero or more DataTable objects, whereas
DataRelationCollection contains zero or more DataRelation objects.

Note

Notice the use of the terminology “zero or more” for how many DataTable
objects a data set may contain. Why is it “zero or more” and not just “one or
more”? The answer is, until you use a data adapter, whether it’s
SqlDataAdapter or OleDbAdapter, to populate the data set, the data set will
remain empty.

20 0672323419 CH17 3/15/04 11:23 AM Page 729

The DataSet class has a series of public instance properties that influence the way the
DataSet instance behaves. Two of the biggest improvements in ADO.NET are the
Tables and Relations collections. Table 17.1 lists some of the public instance properties
available for the DataSet class.

TABLE 17.1 Some of the Public Instance Properties for the DataSet Class
and Their Descriptions

Name Description

CaseSensitive Gets or sets a value indicating whether string comparisons
within a DataTable object are case sensitive

DataSetName Maintains the name of the DataSet object

EnforceConstraints Indicates whether constraint rules are followed when
attempting an update operation

ExtendedProperties Retrieves the collection of custom user information

HasErrors Indicates whether there are errors within one or more rows
within the DataSet object

Namespace Specifies the namespace for the DataSet object

Prefix Specifies the prefix to use for the namespace for the
DataSet object

Relations A reference to a DataRelationCollection object

Tables A reference to a DataTableCollection object

The DataSet class also includes a set of public instance methods to help the developer
manipulate the data returned from the data store in a variety of ways. Table 17.2 lists
some of the public instance methods available for the DataSet class.

TABLE 17.2 Some of the Public Instance Methods for the DataSet Class
and Their Descriptions

Name Description

AcceptChanges Commits the changes made to the DataSet object since it
was loaded or since the last time AcceptChanges was called

BeginInit Initializes the DataSet object for use by a form or another
component

Clear Removes all rows from all tables within the DataSet object,
effectively “clearing” it of all data

Building XML-Based Applications

PART II
730

20 0672323419 CH17 3/15/04 11:23 AM Page 730

TABLE 17.2 continued

Name Description

Clone Creates a duplicate DataSet object containing the same
structure, including all DataTable schemas, relations, and
constraints, minus the data

Copy Creates a duplicate DataSet object containing the structure
and the data from the original DataSet object

EndInit Ends the initialization of the DataSet object

Equals Determines whether two object instances are equal

GetChanges Gets a copy of the DataSet object containing the changes
made since it was loaded or since the last time
AcceptChanges was called

GetXml Gets an XML document representing the data stored within
the DataSet object

GetXmlSchema Gets the XML schema for the structure in the DataSet
object

HasChanges Determines whether changes have been made to the data
within the DataSet object

InferXmlSchema Infers the XML schema from the specified TextReader
object or file into the DataSet object

Merge Merges the current DataSet object with another DataSet
object

ReadXml Reads the XML schema and associated data into the
DataSet object

ReadXmlSchema Reads the XML schema into the DataSet object

RejectChanges Reverts all changes made to the data within the DataSet
object since it was loaded or since the last time
AcceptChanges was called

Reset Resets the DataSet object to its original state

ToString Creates a string representation of the DataSet object

WriteXml Writes the data and the associated XML schema for the
DataSet object

WriteXmlSchema Writes the XML schema for the DataSet object

Leveraging XML in Visual Studio .NET

CHAPTER 17
731

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 731

The DataTable Class
The DataTable class within ADO.NET represents a single, in-memory representation of
a relational result set. The DataTable class can be found and referenced from the
System.Data namespace. Data tables can be created by using a data adapter to “fill” a
data set, or they can be created manually.

Here’s the C# code for creating a data table manually:

System.Data.DataSet oDS = new DataSet();
System.Data.DataTable oTable = oDS.Tables.Add(“Orders”);

oTable.Columns.Add(“OrderID”, typeof(System.Int32));
oTable.Columns.Add(“OrderQuantity”, typeof(System.Int32));
oTable.Columns.Add(“CustID”, typeof(System.Int32));

Here’s the code for VB .NET:

Dim oDS As System.Data.DataSet = new DataSet()
Dim oTable As System.Data.DataTable = oDS.Tables.Add(“Orders”)

oTable.Columns.Add(“OrderID”, typeof(System.Int32))
oTable.Columns.Add(“OrderQuantity”, typeof(System.Int32))
oTable.Columns.Add(“CustID”, typeof(System.Int32))

The preceding code examples create a new DataSet object and manually add a new table
called Orders to the data set. Then, three columns are added to the Orders data table. All
in all, this is a rather simple example of how to manually create a DataTable object and
add it to a DataSet object.

A DataTable object consists of a collection of columns, constraints, and rows. The
columns represent the fields within the result set, whereas the rows represent the individ-
ual rows of data within the result set. The constraints maintain a collection of the rules
the result set must follow. Table 17.3 lists some the public instance properties for the
DataTable class.

TABLE 17.3 Some of the Public Instance Properties for the DataTable Class

Name Description

CaseSensitive Specifies whether string comparisons within the table are
case-sensitive

ChildRelations A reference to a DataRelationCollection object for the
child relations for the current DataTable object

Columns A reference to a DataColumnCollection object for the
columns for the current DataTable object

Building XML-Based Applications

PART II
732

20 0672323419 CH17 3/15/04 11:23 AM Page 732

TABLE 17.3 continued

Name Description

DataSet A reference to the DataSet object to which this DataTable
object belongs

DefaultView A reference to a DataView object for this DataTable object

DisplayExpression Specifies the expression that returns a value used to repre-
sent the DataTable object in the UI

ExtendedProperties Maintains a collection of the user information

HasErrors Indicates whether the DataTable object has an error within
it

MinimumCapacity Specifies the initial starting size for the current table

Namespace Specifies the namespace used in the XML document that
represents this table

ParentRelations A reference to a DataRelationCollection object for all
parent relations for the current DataTable object

Prefix The prefix to use for the namespace specified

PrimaryKey Specifies an array of columns to use as the primary key for
the DataTable object

Rows A reference to a DataRowCollection object containing all
the rows for the result set used by the DataTable object

TableName Specifies the name of the DataTable object

Just as the DataSet class contains a series of public instance methods to help with the
overall manipulation of data, the DataTable class contains a series of methods designed
to help with the manipulation of data within a single table. Table 17.4 lists some of the
public instance methods for the DataTable class.

TABLE 17.4 Some of the Public Instance Methods for the DataTable Class

Name Description

AcceptChanges Commits the changes since the DataTable object was
loaded or since the last time AcceptChanges was called

BeginInit Initializes the DataTable object

BeginLoadData Turns off notifications, indexes, and constraints when load-
ing data

Clear Clears all data from the DataTable object

Clone Creates a copy of the structure of the DataTable object

Leveraging XML in Visual Studio .NET

CHAPTER 17
733

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 733

TABLE 17.4 continued

Name Description

Compute Computes how many rows match the given filter criteria

Copy Creates a copy of the DataTable object, complete with data

EndInit Ends the initialization of the DataTable object

EndLoadData Turns off notifications, indexes, and constraints when
loading data

GetChanges Gets a copy of the DataTable object containing the changes
that have been made since it was loaded or since the last
time AcceptChanges was called

GetErrors Gets an array of DataRow objects that have errors in them

ImportRow Copies a DataRow object into the DataTable object

LoadDataRow Finds and updates a specific DataRow object

NewRow Creates a new DataRow object for the DataTable object

RejectChanges Reverts all changes made since the DataTable object was
loaded or since the last time AcceptChanges was called

Select Creates an array of DataRow objects matching a given
criteria

ToString Returns the TableName object and the DisplayExpression
object as a string

The DataRelation Class
Most database engines use a series of relations to organize information contained in vari-
ous tables. They allow the database to store the information that can be logically grouped
together in one place, thus reducing the amount of duplicate information in the database.
This ultimately speeds up data access and operations performed against the data. It also
allows information stored in one table to be related to a series of other tables.

Since a DataSet object can be considered its own personal little database, it’s important
for the DataSet object to support a key concept of relational databases: table relation-
ships. The DataSet class can support multiple DataTable objects, and in some cases, you
may need to relate two or more of those DataTable objects together. This is where the
DataRelation class comes in. This class manages a DataTable object’s relationship with
another DataTable object by creating that relationship between two DataColumn objects.

The following code shows a simple example of how to establish a relationship between
two tables within a DataSet object using C#:

Building XML-Based Applications

PART II
734

20 0672323419 CH17 3/15/04 11:23 AM Page 734

System.Data.DataColumn oParentColumn;
System.Data.DataColumn oChildColumn;
oParentColumn = oDS.Tables[“Customers”].Columns[“CustomerID”];
oChildColumn = oDS.Tables[“Orders”].Columns[“CustomerID”];

System.Data.DataRelation oRelation =
➥ new System.Data.DataRelation(“CustomerOrders”,
➥ oParentColumn, oChildColumn);
oDS.Relations.Add(oRelation);

Here’s the code for VB .NET:

Dim oParentColumn As System.Data.DataColumn
Dim oChildColumn As System.Data.DataColumn
oParentColumn = oDS.Tables(“Customers”).Columns(“CustomerID”);
oChildColumn = oDS.Tables(“Orders”).Columns(“CustomerID”);

Dim oRelation As System.Data.DataRelation =
➥ new System.Data.DataRelation(“CustomerOrders”,
➥ oParentColumn, oChildColumn)
oDS.Relations.Add(oRelation)

The preceding code assumes the existence of a DataSet object that has two DataTable
objects in it: one for the Customers table, which has a CustomerID field in it, and one
for the Orders table, which also has a CustomerID field in it. The code then grabs a
reference to the two DataColumn objects to be related, creates a new DataRelation
object, and then adds the new DataRelation object to the Relations collection on
the DataSet object.

Alternatively, these examples could be written in C# as follows:

System.Data.DataRelation oRelation = oDS.Relations.Add(
➥ ”CustomerOrders”, oDS.Tables[“Customers”].Columns[
➥ ”CustomerID”], oDS.Tables[“Orders”].Columns[“CustomerID”]);

Here’s the code for VB .NET:

Dim oRelation As System.Data.DataRelation = oDS.Relations.Add(
➥ ”CustomerOrders”, oDS.Tables(“Customers”).Columns(
➥ ”CustomerID”), oDS.Tables(“Orders”).Columns(“CustomerID”));

In this case, we are using the Add() method of the Relations collection on the DataSet
object to accomplish this task in a much shorter form.

Table 17.5 lists some public instance properties available in the DataRelation class.

Leveraging XML in Visual Studio .NET

CHAPTER 17
735

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 735

TABLE 17.5 Some of the Public Instance Properties Available for the
DataRelation Class

Name Description

ChildColumns Holds a reference to the child DataColumn objects for the
child table

ChildKeyConstraint Holds a reference to the ForeignKeyConstraint object for
the child table

ChildTable Holds a reference to the child DataTable object

DataSet Holds a reference to the DataSet object

ExtendedProperties Gets the collection that stores customized properties

Nested Specifies whether the DataRelation objects are nested

ParentColumns Holds a reference to the parent DataColumn objects for the
parent table

ParentKeyConstraint Holds a reference to the UniqueConstraint object in the
parent table

ParentTable Holds a reference to the parent DataTable object

RelationName Specifies the name of the DataRelation object

The only methods available on the DataRelation class are the ones available on every
object within the .NET framework, although the ToString method has been overridden.
Again, because every class in the .NET Framework inherits, ultimately, from Object,
every class will have at a minimum the following four methods listed in Table 17.6. In
the case of the DataRelation class, the ToString method returns the value of the
RelationName property.

Building XML-Based Applications

PART II
736

Note

The DataColumn objects used to specify the relationship between two DataTable
objects must be of the same type. In other words, if column A of the first table
is an Integer type, then column A of the second table must also be an Integer
type.

20 0672323419 CH17 3/15/04 11:23 AM Page 736

TABLE 17.6 Some of the Public Instance Methods Available for the
DataRelation Class

Name Description

Equals Determines whether two objects instances are equal

GetHashCode Serves as a hash function for a particular type

GetType Gets the type of the current instance

ToString Gets the string representation of the instance

The DataView Class
The DataView class is provided within the ADO.NET Framework to allow for the filter-
ing and sorting of a data table by using a basic for SQL syntax. This provides an inter-
face of Web Forms and Windows Forms for which controls may be bound. For instance,
you could have a DataTable object that contains an entire set of data and a DataView
object that provides a small subset of that data. This prevents having to make another
roundtrip to the server to get that information.

The following C# code shows a simple method for creating a custom view of the data
within the Customers data table for all customers within the city of Berlin.

System.Data.DataTable oTable = oDS.Tables[“Customers”];
System.Data.DataView oView = new System.Data.DataView(oTable);

oView.RowFilter = “City=’Berlin’”;

Here’s the code for VB .NET:

Dim oTable As System.Data.DataTable = oDS.Tables(“Customers”)
Dim oView As System.Data.DataView = new System.Data.DataView(oTable)

oView.RowFilter = “City=’Berlin’”

Because the DataView class represents a subset of data contained within a DataTable
class, the DataView has a set of properties, events, and methods specialized in dealing
with subsets of data. Table 17.7 lists some of the public instance properties available on
the DataView class.

TABLE 17.7 Some of the Public Instance Properties Available on the DataView Class

Name Description

AllowDelete Specifies whether delete operations are allowed

AllowEdit Specifies whether edit operations are allowed

Leveraging XML in Visual Studio .NET

CHAPTER 17
737

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 737

TABLE 17.7 continued

Name Description

AllowNew Specifies whether new rows may be created

ApplyDefaultSort Specifies whether the default sort should be used

Count Indicates the number of records in the DataView object that
meet the filter criteria

Item Returns a row of data from a specified table

RowFilter Specifies the filter expression that rows must meet to be
included in the DataView object

RowStateFilter Specifies the row state that rows must meet to be included
in the DataView object

Sort Specifies one or more columns by which to sort the rows
within the DataView object

Table Specifies the DataTable object for the DataView object

In addition to the inherited methods mentioned in Table 17.6, the DataView class has
some methods for performing actions against a particular filtered or sorted subset of data
contained in a DataTable class instance. Table 17.8 lists some of the public instance
methods available on the DataView class.

TABLE 17.8 Some of the Public Instance Methods Available on the DataView Class

Name Description

AddNew Adds a new row to the DataView object

BeginInit Starts the initialization of the DataView object

Delete Deletes a row at the specified index

Dispose Disposes of the resources used by the DataView object

EndInit Ends the initialization on the DataView object

Find Finds the row in the DataView object that meets the speci-
fied primary key value

GetEnumerator Indicates the enumerator used for the DataView object

XML Within ADO.NET
XML is at the core of the functionality provided by the ADO.NET architecture. It allows
developers to more easily access data in a distributed/disconnected environment. The

Building XML-Based Applications

PART II
738

20 0672323419 CH17 3/15/04 11:23 AM Page 738

XML support within the ADO.NET architecture is immense, and the majority of it can
be found within the functionality provided and included with the DataSet class.

Data sets can be created directly from XML documents or streams, allowing a hierarchi-
cal set of data to be loaded and accessed in a relational manner. The data sets can then
create XML documents representing the data in a hierarchical fashion and use XML as a
transport mechanism to allow data sets to be easily transported via HTTP. In fact, if, for
example, a Web service returns a DataSet object, for anything other than another .NET
application, this will be returned as a DiffGram, which is explained later in this chapter.
However, if a .NET application uses that same Web service, .NET is smart enough to
“dehydrate” the DataSet object into XML for transport via HTTP and then “rehydrate”
the DiffGram into a DataSet object on the other side, thereby simplifying data access
and allowing the developer to concentrate on more important tasks, such as what to do
with that data once it’s returned.

The support for XML within ADO.NET doesn’t stop there. In fact, it gets better. A
developer can create “typed” data sets using XSD schemas to create a mapping between
the data store and the data set. ADO.NET then uses these maps when accessing and
updating information in the data store.

Typed Data Sets
Typed data sets within ADO.NET provide a sort of string-typing mechanism for data
access. By creating this string typing, you can access the tables and columns within the
data set by name rather than through collection-based methods. Another added benefit to
using typed data sets is the ability of Intellisense to provide autocomplete features for
tables and columns contained in the data set.

So, how do you create a typed data set? To illustrate this, we’ll use the Northwind data-
base included in SQL Server 2000 to create a sample typed data set for the Customers
table. This example assumes you’ve either created a new project in VS .NET or have
opened an existing one for which you’d like to create a typed data set. Once there, go
to the Solution Explorer, right-click the main project solution item, and then select
Add, Add New Item. This will bring up the Add New Item dialog box, as shown in
Figure 17.1.

Select the Data Set item on the right side of the dialog box and enter a name for the XSD
schema. For this example, we’ll use the filename CustomersDataSet.xsd. Once you
have entered the filename, click the Open button. This will take you back to the design
area shown in Figure 17.2.

Leveraging XML in Visual Studio .NET

CHAPTER 17
739

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 739

Now, you need to open a connection to your data store. To accomplish this, from the
main menu, select Tools, Connect To Database, which will bring up the Data Link
Properties dialog box shown in Figure 17.3.

Using this dialog box, you will need to enter your connection information, such as the
instance of SQL Server to connect to, how to log in to the data store, and what database
to open. For our purposes, we’ll use the Northwind database. Once, you’ve entered the
information needed to open the connection, you can test the connection before commit-
ting the information by clicking the Test Connection button. Once you’re confident of the
connection information, you can open the connection by clicking the OK button.

Building XML-Based Applications

PART II
740

FIGURE 17.1
The Add New Item
dialog box.

FIGURE 17.2
The Visual Studio
.NET IDE after
you’ve chosen
to create a data
set item.

20 0672323419 CH17 3/15/04 11:23 AM Page 740

From here, you can navigate through Server Explorer to drag and drop items from your
data store into the data set design area. For the purposes of our demonstration, select the
Customers table and drag and drop it into the design area for the data set. Once you’ve
completed this, your design area should look similar to Figure 17.4.

Leveraging XML in Visual Studio .NET

CHAPTER 17
741

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

FIGURE 17.3
The Data Link
Properties
dialog box.

FIGURE 17.4
The data set
design area after
you’ve dragged
and dropped the
Customers table
from the
Northwind data-
base in the Server
Explorer.

You can now move this graphical item around on the design area, add or remove other
tables, add or remove columns from the Customers table, and change the data types for

20 0672323419 CH17 3/15/04 11:23 AM Page 741

each column. Once you have modified the data set definition, you can view the XML
generated for it by clicking the XML button in the design area. Your screen should now
appear similar to Figure 17.5.

Building XML-Based Applications

PART II
742

FIGURE 17.5
The XML view of
the data set.

The actual XSD schema generated is shown in Listing 17.1.

LISTING 17.1 CustomersDataSet.xsd Contains the Information to Create a Typed
Data Set for the Customers Table

<?xml version=”1.0” encoding=”utf-8” ?>
<xsd:schema id=”CustomersDataSet” targetNamespace=
➥ ”http://tempuri.org/Customers.xsd”
➥ elementFormDefault=”qualified”
➥ xmlns=”http://tempuri.org/Customers.xsd”
➥ xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
➥ xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>
<xsd:element name=”Customers” msdata:IsDataSet=”true”>
<xsd:complexType>
<xsd:choice maxOccurs=”unbounded”>
<xsd:element name=”Customers”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”CustomerID” type=”xsd:string” />
<xsd:element name=”CompanyName” type=”xsd:string”

➥ minOccurs=”0” />
<xsd:element name=”ContactName” type=”xsd:string”

➥ minOccurs=”0” />

20 0672323419 CH17 3/15/04 11:23 AM Page 742

LISTING 17.1 continued

<xsd:element name=”ContactTitle” type=”xsd:string”
➥ minOccurs=”0” />

<xsd:element name=”Address” type=”xsd:string”
➥ minOccurs=”0” />

<xsd:element name=”City” type=”xsd:string”
➥ minOccurs=”0” />

<xsd:element name=”Region” type=”xsd:string”
➥ minOccurs=”0” />

<xsd:element name=”PostalCode” type=”xsd:string”
➥ minOccurs=”0” />

<xsd:element name=”Country” type=”xsd:string”
➥ minOccurs=”0” />

<xsd:element name=”Phone” type=”xsd:string”
➥ minOccurs=”0” />

<xsd:element name=”Fax” type=”xsd:string”
➥ minOccurs=”0” />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:choice>

</xsd:complexType>
<xsd:unique name=”CustomersKey1” msdata:PrimaryKey=”true”>
<xsd:selector xpath=”.//Customers” />
<xsd:field xpath=”CustomerID” />

</xsd:unique>
</xsd:element>

</xsd:schema>

Now that we’ve modified and adjusted the data set’s XSD schema, we can generate the
typed data set by selecting (assuming you installed Visual Studio .NET in its default
location) Start, Programs, Microsoft Visual Studio .NET 7.0, Visual Studio .NET Tools,
Visual Studio .NET Command Prompt. This will bring up the Visual Studio .NET com-
mand prompt. By default, this will show up in the root directory. You will need to change
this to your project’s directory. In this example, we’ll use C:\Documents and Settings\
Travis.TRAVISNOTEBOOK\My Documents\Visual Studio Projects\DevConADODemo\.
Once you’re in your project directory, you can run a command-line program called
xsd.exe to create your typed data set. The basic syntax for this program is shown here:

xsd /d /l:Language SchemaFileName [/n:NamespaceName]

The /d directive indicates that the program should create a typed data set. The /l direc-
tive specifies the language to use—for instance, /l:CS indicates that the data set should
be generated in C#. Next, SchemaFileName is the name for your XSD schema file, and
the /n directive allows you to specify a namespace to be generated for the typed data set,

Leveraging XML in Visual Studio .NET

CHAPTER 17
743

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 743

which will allow you to include that namespace within your applications. Figure 17.6
shows the command prompt for Visual Studio .NET with the full xsd command entered.

Building XML-Based Applications

PART II
744

FIGURE 17.6
The full xsd.exe
command entered
at the command
line.

Once this command has successfully executed, it will create a file with the same name,
CustomersDataSet, with a .cs extension for C#. We can then go back into the Visual
Studio .NET Solution Explorer, right-click the project, and then select Add, Add
Existing Item. This will bring up the Add Existing Item dialog box. From here, you can
select the file generated by the xsd.exe program and click the Open button to add it to
the project, as shown in Figure 17.7.

FIGURE 17.7
The Add Existing
Item dialog box
displays the new
file generated
by the xsd.exe
command-line
program.

This will add the file to your project, and you can then begin to use the newly created
typed data set in your application. If you decide to generate a namespace, using the /n
option, for your typed data set, as was done in the example, you can include it in your
application by referencing that namespace as shown in the following code for C#:

using CustomersDataSet;

20 0672323419 CH17 3/15/04 11:23 AM Page 744

Here’s the code for VB .NET:

Imports CustomersDataSet

Leveraging XML in Visual Studio .NET

CHAPTER 17
745

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

Note

Remember that you do not have to include the newly created namespace in
your application. You can still create all the objects contained within the name-
space by specifying the namespace when you declare your variables.

Now you can create strongly typed variables based on your data set—in this example,
CustomersDataSet. As mentioned before, one of the biggest benefits to using typed data
sets is the use of Intellisense when accessing members from your typed data set, as
shown in Figure 17.8.

FIGURE 17.8
Using Intellisense
for accessing
members of a
typed data set.

From Figure 17.8, you can see that we can directly access the Customers data table via a
property on the CustomersDataSet object itself. In data sets that are not typed, you had
to access the data table from the Tables collection on the DataSet object.

The following C# code demonstrates how to create the typed data set and sets the
captions for the CustomerID and CompanyName columns:

20 0672323419 CH17 3/15/04 11:23 AM Page 745

string cConn = “Data Source=TRAVISNOTEBOOK\\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”;
System.Data.SqlClient.SqlConnection oConn = new
➥ System.Data.SqlClient.SqlConnection(cConn);

oConn.Open();

System.Data.SqlClient.SqlDataAdapter oDA = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers”, oConn);
CustomersDataSet.CustomersDataSet oDS = new
➥ CustomersDataSet.CustomersDataSet();

oDA.Fill(oDS,”Customers”);
oConn.Close();

oDS.Customers.CustomerIDColumn.Caption = “Customer Id”;
oDS.Customers.CompanyNameColumn.Caption = “Company Name”;

Here’s the code for VB .NET:

Dim cConn As string = “Data Source=
➥ TRAVISNOTEBOOK\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”
Dim oConn As System.Data.SqlClient.SqlConnection = new
➥ System.Data.SqlClient.SqlConnection(cConn)

oConn.Open();

Dim oDA As System.Data.SqlClient.SqlDataAdapter = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers”, oConn)
Dim oDS As CustomersDataSet.CustomersDataSet = new
➥ CustomersDataSet.CustomersDataSet()

oDA.Fill(oDS,”Customers”)
oConn.Close()

oDS.Customers.CustomerIDColumn.Caption = “Customer Id”
oDS.Customers.CompanyNameColumn.Caption = “Company Name”

As you can see from the preceding code, we create the connection string to our
SQL Server Northwind database, create the SqlDataAdapter object, create the
CustomersDataSet object, use the SqlDataAdapter object to fill the typed
CustomersDataSet object, close the connection to the database, and then set the
column captions.

Building XML-Based Applications

PART II
746

20 0672323419 CH17 3/15/04 11:23 AM Page 746

Loading an XML Document into a Data Set
XML is starting to play a bigger and bigger role in today’s business world, and as a
result, today’s applications need to be able to perform extraordinary tasks based on XML
documents or even XML fragments. Microsoft recognizes the importance of XML within
today’s industries and has attempted to integrate support for XML within its newest tech-
nologies, including Visual Studio .NET and the various .NET Enterprise server applica-
tions that will be discussed in Chapter 18, “Using XML in the .NET Enterprise Servers.”

Because XML is the key technology that enables data sets to function, it’s really a rather
trivial task to load an XML document into a DataSet object. Why would you ever need
to do this? Sometimes it may be easier to access an XML document in a relational man-
ner rather than a hierarchical one. For these cases, Microsoft has included the ability to
load XML documents directly into DataSet objects by calling the ReadXml() method.
This method accepts two parameters. The first parameter is the XML source, and a sec-
ond (optional) parameter indicates how the XML document should be loaded into the
DataSet object.

The following C# code demonstrates a simple example of loading an XML file called
Customers1.xml into a DataSet object:

System.Data.DataSet oDS = new System.Data.DataSet();
oDS.ReadXml(“http://localhost/sql2000/template/customers1.xml”);

Here’s the code for VB .NET:

Dim oDS As System.Data.DataSet = new System.Data.DataSet();
oDS.ReadXml(“http://localhost/sql2000/template/customers1.xml”);

Notice that the second parameter isn’t used in the preceding examples. By not explicitly
passing an optional, second parameter, we leave it up to .NET to decide the best way to
create the DataSet object from the given XML document. Also, the first parameter itself
can be an XML stream, an XML document, or an XmlReader object because the
ReadXml() method is overloaded. This gives you, the developer, added flexibility in
application design by allowing you to load XML into a data set from multiple sources.

Leveraging XML in Visual Studio .NET

CHAPTER 17
747

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

Note

It should be noted that if you load an XML document into a DataSet object that
already has data, unless the source XML document is a DiffGram, Visual Studio
.NET will not “merge” the XML document into the data set. To accomplish that,
you’ll have to load the XML document into a new DataSet object and call the
Merge() method on the existing DataSet object to merge the two together.

20 0672323419 CH17 3/15/04 11:23 AM Page 747

Writing an XML Document from a DataSet Object
Just as you can load an XML document into a DataSet object to represent hierarchical
data as relational data, you can create an XML document from a DataSet object, thereby
allowing yourself to represent relational data in a hierarchical fashion. The XML can be
retrieved from the data set as a string, an XML file, an XML stream, or an XMLWriter
object, depending on whether you call the GetXml method or the WriteXml method. The
GetXml method always returns an XML string, whereas the WriteXml method allows you
to specify whether you want to create a file, write the XML to a stream, or write it to an
XMLWriter object. It just depends on which output you desire. If you want the XML as a
string, you can call the GetXml() method on the DataSet object, as shown in the follow-
ing C# code:

string cConn = “Data Source=TRAVISNOTEBOOK\\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”;
System.Data.SqlClient.SqlConnection oConn = new
➥ System.Data.SqlClient.SqlConnection(cConn);

oConn.Open();

System.Data.SqlClient.SqlDataAdapter oDA = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers”, oConn);
System.Data.DataSet oDS = new System.Data.DataSet();

oDA.Fill(oDS,”Customers”);
oConn.Close();

string cXml;
cXml = oDS.GetXml();

Here’s the code for VB .NET:

Dim cConn As string = “Data Source=
➥ TRAVISNOTEBOOK\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”
Dim oConn As System.Data.SqlClient.SqlConnection = new
➥ System.Data.SqlClient.SqlConnection(cConn)

oConn.Open();

Dim oDA As System.Data.SqlClient.SqlDataAdapter = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers”, oConn)
Dim oDS As System.Data.DataSet = new System.Data.DataSet()

oDA.Fill(oDS,”Customers”)
oConn.Close()

Building XML-Based Applications

PART II
748

20 0672323419 CH17 3/15/04 11:23 AM Page 748

Dim cXml As string
cXml = oDS.GetXml()

From these examples, you can see that we create a connection string, open a connection
to the database, create a SqlDataAdapter object, use the SqlDataAdapter object to fill
the data set, close the connection to the database, and finally get the XML string for the
data set. However, there is one limitation to this method: The GetXml() method only
returns an XML string that represents the data within the data set, not the XML schema
for it. To retrieve the XML schema, call the GetXmlSchema()method on the DataSet
object, as shown in the following C# code:

string cConn = “Data Source=TRAVISNOTEBOOK\\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”;
System.Data.SqlClient.SqlConnection oConn = new
➥ System.Data.SqlClient.SqlConnection(cConn);

oConn.Open();

System.Data.SqlClient.SqlDataAdapter oDA = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers”, oConn);
System.Data.DataSet oDS = new System.Data.DataSet();

oDA.Fill(oDS,”Customers”);
oConn.Close();

string cXmlSchema;
cXmlSchema = oDS.GetXmlSchema();

Here’s the code for VB .NET:

Dim cConn As string = “Data Source=
➥ TRAVISNOTEBOOK\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”
Dim oConn As System.Data.SqlClient.SqlConnection = new
➥ System.Data.SqlClient.SqlConnection(cConn)

oConn.Open();

Dim oDA As System.Data.SqlClient.SqlDataAdapter = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers”, oConn)
Dim oDS As System.Data.DataSet = new System.Data.DataSet()

oDA.Fill(oDS,”Customers”)
oConn.Close()

Dim cXmlSchema As string
cXmlSchema = oDS.GetXmlSchema()

Leveraging XML in Visual Studio .NET

CHAPTER 17
749

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 749

These examples are the same as the ones for returning the XML string representation,
except that instead of calling the GetXml() method to return the XML string for the data
in the data set, we call the GetXmlSchema() method to return the XML schema for the
data in the data set.

Persisting a DataSet as an XML File
Sometimes, however, you may wish to create an actual XML file with both the data and
the schema information in it at the same time, or you may even wish to reduce the num-
ber of steps required to create an XML document file. In this case, you can call the
WriteXml() method to immediately create an XML document file containing just the
data, the data and the schema information, or a third type of XML document used exten-
sively by ADO.NET—a DiffGram.

The following C# code demonstrates how to write an XML document with only the data
based upon the data in the dataset:

string cConn = “Data Source=TRAVISNOTEBOOK\\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”;
System.Data.SqlClient.SqlConnection oConn = new
➥ System.Data.SqlClient.SqlConnection(cConn);

oConn.Open();

System.Data.SqlClient.SqlDataAdapter oDA = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers Where CustomerID Like
➥ ’A%’”, oConn);
System.Data.DataSet oDS = new System.Data.DataSet();

oDA.Fill(oDS,”Customers”);
oConn.Close();

oDS.WriteXml(“c:\Customers.xml”,
➥ System.Data.XmlWriteMode.IgnoreSchema);

Here’s the code for VB .NET:

Dim cConn As string = “Data Source=
➥ TRAVISNOTEBOOK\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”
Dim oConn As System.Data.SqlClient.SqlConnection = new
➥ System.Data.SqlClient.SqlConnection(cConn)

oConn.Open();

Building XML-Based Applications

PART II
750

20 0672323419 CH17 3/15/04 11:23 AM Page 750

Dim oDA As System.Data.SqlClient.SqlDataAdapter = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers Where CustomerID Like
➥ ’A%’”, oConn)
Dim oDS As System.Data.DataSet = new System.Data.DataSet()

oDA.Fill(oDS,”Customers”)
oConn.Close()

oDS.WriteXml(“c:\Customers.xml”,
➥ System.Data.XmlWriteMode.IgnoreSchema)

The preceding examples create an output file called Customers.xml in the root directory
of C, as shown in Listing 17.2.

LISTING 17.2 Customers.xml Contains the XML Output from Calling WriteXml on the
Data Set Without Including Schema Information

<?xml version=”1.0” standalone=”yes”?>
<NewDataSet>
<Customers>
<CustomerID>ALFKI</CustomerID>
<CompanyName>Alfreds Futterkiste

➥ </CompanyName>
<ContactName>Maria Anders</ContactName>
<ContactTitle>Sales Representative</ContactTitle>
<Address>Obere Str. 57</Address>
<City>Test</City>
<PostalCode>12209</PostalCode>
<Country>Germany</Country>
<Phone>030-0074321</Phone>
<Fax>030-0076545</Fax>

</Customers>
<Customers>
<CustomerID>ANATR</CustomerID>
<CompanyName>Ana Trujillo Emparedados y helados

➥ </CompanyName>
<ContactName>Ana Trujillo</ContactName>
<ContactTitle>Owner</ContactTitle>
<Address>Avda. de la Constitución 2222</Address>
<City>México D.F.</City>
<PostalCode>05021</PostalCode>
<Country>Mexico</Country>
<Phone>(5) 555-4729</Phone>
<Fax>(5) 555-3745</Fax>

</Customers>
<Customers>
<CustomerID>ANTON</CustomerID>
<CompanyName>Antonio Moreno Taquería

➥ </CompanyName>

Leveraging XML in Visual Studio .NET

CHAPTER 17
751

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 751

LISTING 17.2 continued

<ContactName>Antonio Moreno</ContactName>
<ContactTitle>Owner</ContactTitle>
<Address>Mataderos 2312</Address>
<City>México D.F.</City>
<PostalCode>05023</PostalCode>
<Country>Mexico</Country>
<Phone>(5) 555-3932</Phone>

</Customers>
<Customers>
<CustomerID>AROUT</CustomerID>
<CompanyName>Around the Horn</CompanyName>
<ContactName>Thomas Hardy</ContactName>
<ContactTitle>Sales Representative</ContactTitle>
<Address>120 Hanover Sq.</Address>
<City>London</City>
<PostalCode>WA1 1DP</PostalCode>
<Country>UK</Country>
<Phone>(171) 555-7788</Phone>
<Fax>(171) 555-6750</Fax>

</Customers>
</NewDataSet>

The following C# code shows you how to create an XML file from a data set that
includes the data and the schema information:

string cConn = “Data Source=TRAVISNOTEBOOK\\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”;
System.Data.SqlClient.SqlConnection oConn = new
➥ System.Data.SqlClient.SqlConnection(cConn);

oConn.Open();

System.Data.SqlClient.SqlDataAdapter oDA = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers Where CustomerID Like
➥ ’A%’”, oConn);
System.Data.DataSet oDS = new System.Data.DataSet();

oDA.Fill(oDS,”Customers”);
oConn.Close();

oDS.WriteXml(“c:\CustomersWithSchema.xml”,
➥ System.Data.XmlWriteMode.WriteSchema);

Here’s the code for VB .NET:

Dim cConn As string = “Data Source=
➥ TRAVISNOTEBOOK\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”

Building XML-Based Applications

PART II
752

20 0672323419 CH17 3/15/04 11:23 AM Page 752

Dim oConn As System.Data.SqlClient.SqlConnection = new
➥ System.Data.SqlClient.SqlConnection(cConn)

oConn.Open();

Dim oDA As System.Data.SqlClient.SqlDataAdapter = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers Where CustomerID Like
➥ ’A%’”, oConn)
Dim oDS As System.Data.DataSet = new System.Data.DataSet()

oDA.Fill(oDS,”Customers”)
oConn.Close()

oDS.WriteXml(“c:\CustomersWithSchema.xml”,
➥ System.Data.XmlWriteMode.WriteSchema)

The preceding examples create an XML file in the root directory of C called
CustomersWithSchema.xml that includes the data and the schema information for
it, as shown in Listing 17.3.

LISTING 17.3 CustomersWithSchema.xml Contains the Data and the Schema
Information for the Data Set

<?xml version=”1.0” standalone=”yes”?>
<NewDataSet>
<xsd:schema id=”NewDataSet” targetNamespace=”” xmlns=””

➥ xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
➥ xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>

<xsd:element name=”NewDataSet” msdata:IsDataSet=”true”>
<xsd:complexType>
<xsd:choice maxOccurs=”unbounded”>
<xsd:element name=”Customers”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”CustomerID” type=”xsd:string”

➥ minOccurs=”0” />
<xsd:element name=”CompanyName” type=”xsd:string”

➥ minOccurs=”0” />
<xsd:element name=”ContactName” type=”xsd:string”

➥ minOccurs=”0” />
<xsd:element name=”ContactTitle” type=”xsd:string”

➥ minOccurs=”0” />
<xsd:element name=”Address” type=”xsd:string”

➥ minOccurs=”0” />
<xsd:element name=”City” type=”xsd:string”

➥ minOccurs=”0” />
<xsd:element name=”Region” type=”xsd:string”

➥ minOccurs=”0” />

Leveraging XML in Visual Studio .NET

CHAPTER 17
753

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 753

LISTING 17.3 continued

<xsd:element name=”PostalCode” type=”xsd:string”
➥ minOccurs=”0” />

<xsd:element name=”Country” type=”xsd:string”
➥ minOccurs=”0” />

<xsd:element name=”Phone” type=”xsd:string”
➥ minOccurs=”0” />

<xsd:element name=”Fax” type=”xsd:string”
➥ minOccurs=”0” />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:choice>

</xsd:complexType>
</xsd:element>

</xsd:schema>
<Customers>
<CustomerID>AAAAA</CustomerID>
<CompanyName>Test updategram</CompanyName>
<ContactName>Test update</ContactName>
<Address>Test</Address>
<City>Test</City>
<Phone>Test</Phone>

</Customers>
<Customers>
<CustomerID>ALFKI</CustomerID>
<CompanyName>Alfreds Futterkiste

➥ </CompanyName>
<ContactName>Maria Anders</ContactName>
<ContactTitle>Sales Representative</ContactTitle>
<Address>Obere Str. 57</Address>
<City>Test</City>
<PostalCode>12209</PostalCode>
<Country>Germany</Country>
<Phone>030-0074321</Phone>
<Fax>030-0076545</Fax>

</Customers>
<Customers>
<CustomerID>ANATR</CustomerID>
<CompanyName>Ana Trujillo Emparedados y helados

➥ </CompanyName>
<ContactName>Ana Trujillo</ContactName>
<ContactTitle>Owner</ContactTitle>
<Address>Avda. de la Constitución 2222</Address>
<City>México D.F.</City>
<PostalCode>05021</PostalCode>
<Country>Mexico</Country>
<Phone>(5) 555-4729</Phone>
<Fax>(5) 555-3745</Fax>

</Customers>

Building XML-Based Applications

PART II
754

20 0672323419 CH17 3/15/04 11:23 AM Page 754

LISTING 17.3 continued

<Customers>
<CustomerID>ANTON</CustomerID>
<CompanyName>Antonio Moreno Taquería

➥ </CompanyName>
<ContactName>Antonio Moreno</ContactName>
<ContactTitle>Owner</ContactTitle>
<Address>Mataderos 2312</Address>
<City>México D.F.</City>
<PostalCode>05023</PostalCode>
<Country>Mexico</Country>
<Phone>(5) 555-3932</Phone>

</Customers>
<Customers>
<CustomerID>AROUT</CustomerID>
<CompanyName>Around the Horn</CompanyName>
<ContactName>Thomas Hardy</ContactName>
<ContactTitle>Sales Representative</ContactTitle>
<Address>120 Hanover Sq.</Address>
<City>London</City>
<PostalCode>WA1 1DP</PostalCode>
<Country>UK</Country>
<Phone>(171) 555-7788</Phone>
<Fax>(171) 555-6750</Fax>

</Customers>
</NewDataSet>

Representing the DataSet as a DiffGram
In addition to creating a standard XML file with or without the schema information
included, as mentioned earlier in this section, a third option is available to you: You can
create a DiffGram. A DiffGram is a special form of XML file used by ADO.NET that
includes original values, current values, and a unique identifier for every record.

The following C# code shows you how to create a DiffGram from a data set:

string cConn = “Data Source=TRAVISNOTEBOOK\\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”;
System.Data.SqlClient.SqlConnection oConn = new
➥ System.Data.SqlClient.SqlConnection(cConn);

oConn.Open();

System.Data.SqlClient.SqlDataAdapter oDA = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers Where CustomerID Like
➥ ’A%’”, oConn);
System.Data.DataSet oDS = new System.Data.DataSet();

Leveraging XML in Visual Studio .NET

CHAPTER 17
755

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 755

oDA.Fill(oDS,”Customers”);
oConn.Close();

oDS.WriteXml(“c:\CustomersDiffGram.xml”,
➥ System.Data.XmlWriteMode.DiffGram);

Here’s the code for VB .NET:

Dim cConn As string = “Data Source=
➥ TRAVISNOTEBOOK\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”
Dim oConn As System.Data.SqlClient.SqlConnection = new
➥ System.Data.SqlClient.SqlConnection(cConn)

oConn.Open();

Dim oDA As System.Data.SqlClient.SqlDataAdapter = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers Where CustomerID Like
➥ ’A%’”, oConn)
Dim oDS As System.Data.DataSet = new System.Data.DataSet()

oDA.Fill(oDS,”Customers”)
oConn.Close()

oDS.WriteXml(“c:\CustomersDiffGram.xml”,
➥ System.Data.XmlWriteMode.DiffGram)

The preceding examples create a DiffGram called CustomersDiffGram.xml in the root
directory of C, as shown in Listing 17.4.

LISTING 17.4 CustomersDiffGram.xml Contains a DiffGram for the Data Set

<?xml version=”1.0” standalone=”yes”?>
<diffgr:diffgram xmlns:msdata=
➥ ”urn:schemas-microsoft-com:xml-msdata” xmlns:diffgr=
➥ ”urn:schemas-microsoft-com:xml-diffgram-v1”>
<NewDataSet>
<Customers diffgr:id=”Customers1” msdata:rowOrder=”0”>
<CustomerID>AAAAA</CustomerID>
<CompanyName>Test updategram</CompanyName>
<ContactName>Test update</ContactName>
<Address>Test</Address>
<City>Test</City>
<Phone>Test</Phone>

</Customers>
<Customers diffgr:id=”Customers2” msdata:rowOrder=”1”>
<CustomerID>ALFKI</CustomerID>
<CompanyName>Alfreds Futterkiste

➥ </CompanyName>

Building XML-Based Applications

PART II
756

20 0672323419 CH17 3/15/04 11:23 AM Page 756

LISTING 17.4 continued

<ContactName>Maria Anders</ContactName>
<ContactTitle>Sales Representative</ContactTitle>
<Address>Obere Str. 57</Address>
<City>Test</City>
<PostalCode>12209</PostalCode>
<Country>Germany</Country>
<Phone>030-0074321</Phone>
<Fax>030-0076545</Fax>

</Customers>
<Customers diffgr:id=”Customers3” msdata:rowOrder=”2”>
<CustomerID>ANATR</CustomerID>
<CompanyName>Ana Trujillo Emparedados y helados

➥ </CompanyName>
<ContactName>Ana Trujillo</ContactName>
<ContactTitle>Owner</ContactTitle>
<Address>Avda. de la Constitución 2222</Address>
<City>México D.F.</City>
<PostalCode>05021</PostalCode>
<Country>Mexico</Country>
<Phone>(5) 555-4729</Phone>
<Fax>(5) 555-3745</Fax>

</Customers>
<Customers diffgr:id=”Customers4” msdata:rowOrder=”3”>
<CustomerID>ANTON</CustomerID>
<CompanyName>Antonio Moreno Taquería

➥ </CompanyName>
<ContactName>Antonio Moreno</ContactName>
<ContactTitle>Owner</ContactTitle>
<Address>Mataderos 2312</Address>
<City>México D.F.</City>
<PostalCode>05023</PostalCode>
<Country>Mexico</Country>
<Phone>(5) 555-3932</Phone>

</Customers>
<Customers diffgr:id=”Customers5” msdata:rowOrder=”4”>
<CustomerID>AROUT</CustomerID>
<CompanyName>Around the Horn</CompanyName>
<ContactName>Thomas Hardy</ContactName>
<ContactTitle>Sales Representative</ContactTitle>
<Address>120 Hanover Sq.</Address>
<City>London</City>
<PostalCode>WA1 1DP</PostalCode>
<Country>UK</Country>
<Phone>(171) 555-7788</Phone>
<Fax>(171) 555-6750</Fax>

</Customers>
</NewDataSet>

</diffgr:diffgram>

Leveraging XML in Visual Studio .NET

CHAPTER 17
757

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 757

You can see from Listing 17.4 that a DiffGram is really just another XML grammar. The
major item to notice is that each <Customers> element has a unique diffgr:id attribute.
This allows the DataSet to resolve changes made to individual rows and fields in the var-
ious DataTable objects in the DataSet.

The System.Xml Namespace
XML within the .NET framework is a key component, and as such, Microsoft has pro-
vided a comprehensive set of classes to perform all sorts of tasks related to the opera-
tions dealing with XML. Everything from reading and writing XML, to parsing XML, to
validating XML, to performing transformations on XML, and more can be found within
the classes provided by the .NET framework.

The System.Xml namespace within the Visual Studio .NET Framework provides the set
of classes necessary to perform everything from simple to complex operations on XML
data. The following classes may be found within the System.Xml namespace:

• XmlDocument

• XmlNode

• XmlNodeList

• XmlNamedNodeMap

• XmlDataDocument

• XmlWriter

• XmlTextWriter

• XmlReader

• XmlTextReader

In addition to these classes, the System.Xml namespace contains a set of child name-
spaces that contain other classes to perform more specialized operations:

• System.Xml.Schema

• System.Xml.Serialization

• System.Xml.XPath

• System.Xml.Xsl

These namespaces, as you can probably guess by their names, provide classes to deal
with specific operations or provide specific functionality related to schemas, serializa-
tion, XPath expressions, and XSLT transformations.

Building XML-Based Applications

PART II
758

20 0672323419 CH17 3/15/04 11:23 AM Page 758

The XmlDocument Class
The XmlDocument class found in the System.Xml namespace is a .NET implementation of
the core W3C Document Object Model (DOM), levels 1 and 2. Because this particular
class is nothing more than another DOM for XML, we’ll forego spending a lot of time
going over how to use it, because Chapter 7, “Parsing XML Using Document Object
Model,” has already done a good job of teaching you how to use a DOM object. Instead,
what we’ll do here is list the various members of the XmlDocument class, such as the pub-
lic instance properties of the XmlDocument class, as shown in Table 17.9.

TABLE 17.9 Some of the Public Instance Properties of the XmlDocument Class

Name Description

Attributes Holds a reference to an XmlAttributeCollection object

BaseURI Indicates the base URI of the current node

ChildNodes Holds a reference to an XmlNodeList object

DocumentElement The root XmlElement for the document

DocumentType Holds a reference to the DOCTYPE node within the document

FirstChild Holds a reference to the first child node of the current node

HasChildNodes Indicates whether the current node has any child nodes

Implementation Holds a reference to the XmlImplementation object for the
current document

InnerText Specifies the concatenated values of the current node and
all its children

InnerXml Specifies the XML fragment of the children of the
current node

IsReadOnly Indicates whether the current node is read-only

Item Returns the specified child element

LastChild Holds a reference to the last child of the current node

LocalName Indicates the local name of the current node

Name Indicates the qualified name of the current node

NamespaceURI Indicates the namespace URI for the current node

NameTable Holds a reference to the XmlNameTable object associated
with this implementation

NextSibling Holds a reference to the next node following the
current node

NodeType Indicates the type of node

Leveraging XML in Visual Studio .NET

CHAPTER 17
759

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 759

TABLE 17.9 continued

Name Description

OuterXml Returns the XML fragment of the current node and its
child nodes

OwnerDocument Holds a reference to the XmlDocument object for the
current node

ParentNode Holds a reference to the parent node of the current node

Prefix Specifies the namespace prefix for the current node

PreserveWhitespace Specifies whether whitespace should be preserved

PreviousSibling Holds a reference to the node immediately preceding the
current node

Value Specifies the value of the current node

XmlResolver Sets the XmlResolver object to use for resolving external
resources

Chapter 7 covered the XML Document Object Model (DOM) in detail. Microsoft, ever
striving to merge a defined “standard” and its vision of a “standard,” hasn’t forgotten
how important the DOM is to developers. However, rather than simply use the current
COM implementation of the DOM, Microsoft has decided to include a specialized class
in the .NET Framework that is a DOM implementation that will run in the managed
environment of the CLR. Table 17.10 lists the public instance methods available for the
XmlDocument class.

TABLE 17.10 Some of the Public Instance Methods of the XmlDocument Class

Name Description

AppendChild Adds the specified node to the end of the child node of the
current node

Clone Creates a duplicate of the current node

CloneNode Creates a duplicate of the current node

CreateAttribute Creates an XmlAttribute object with the specified name

CreateCDataSection Creates an XmlCDataSection object containing the
specified data

CreateComment Creates an XmlComment object containing the specified data

CreateDocumentFragment Creates an XmlDocumentFragment object

CreateDocumentType Creates an XmlDocumentType object

Building XML-Based Applications

PART II
760

20 0672323419 CH17 3/15/04 11:23 AM Page 760

TABLE 17.10 continued

Name Description

CreateElement Creates an XmlElement object

CreateEntityReference Creates an XmlEntityReference object with the
specified name

CreateNavigator Creates an XPathNavigator object for navigating
this object

CreateNode Creates an XmlNode object

CreateProcessingInstruction Creates an XmlProcessingInstruction object with the
specified name and data

CreateSignificantWhitespace Creates an XmlSignificantWhitespace object

CreateTextNode Creates an XmlText object with the specified text

CreateWhitespace Creates an XmlWhitespace object

CreateXmlDeclaration Creates an XmlDeclaration object with the specified values

Equals Determines whether two object instances are equal

GetElementById Gets the XmlElement object with the specified ID

GetElementsByTagName Returns an XmlNodeList object containing a list of all
descendant elements that match the specified name

GetEnumerator Provides support for the for-each style iteration over the
nodes in the specified node

GetNamespaceOfPrefix Looks up the closest xmlns declaration for the given prefix
that is in scope for the current node and returns the name-
space URI in the declaration

GetPrefixOfNamespace Looks up the closest xmlns declaration for the given name-
space URI that is in scope for the current node and returns
the prefix defined in that declaration

GetType Gets the type of the current instance

ImportNode Imports a node from another document into the
current document

InsertAfter Inserts a node immediately after the specified node

InsertBefore Inserts a node immediately before the specified node

Load Loads the specified XML data

LoadXml Loads the XML document from the specified string

Leveraging XML in Visual Studio .NET

CHAPTER 17
761

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 761

TABLE 17.10 continued

Name Description

Normalize Puts all XmlText nodes in the full depth of the subtree
underneath the current node into a “normal” form, where
only markup separates XmlText nodes (that is, there are no
adjacent XmlText nodes)

PrependChild Adds the specified node to the beginning of the child nodes
for the current node

ReadNode Creates an XmlNode object based on the information in an
XmlReader object

RemoveAll Removes all the children and/or attributes of the
current node

RemoveChild Removes the specified child node

ReplaceChild Replaces the specified child node with another node

Save Saves the XML document to the specified location

SelectNodes Selects a list of nodes matching the XPath expression

SelectSingleNode Selects the first node that matches the XPath expression

Supports Tests whether the DOM implementation implements a
specific feature

ToString Returns a string that represents the current object

WriteContentTo Saves all the children of the XmlDocument node to the
specified XmlWriter object

WriteTo Saves the XmlDocument node to the specified
XmlWriter object

The XmlDataDocument Class
You’ve already seen how you can load hierarchical XML data into a data set so that you
can access the information in a relational manner. You’ve also seen how you can create
hierarchical XML data from a data set that can then be loaded into an XmlDocument
object from which you can perform operations on that XML. However, the steps neces-
sary to perform these tasks are less than ideal. Wouldn’t it be great if you could simply
load the information contained within a data set directly into a DOM object from which
you could perform data manipulations? Believe it or not, within Visual Studio .NET,
you can.

The Visual Studio .NET Framework provides a class that allows you to do just that. The
XML framework and the ADO.NET Framework provide a unified programming model

Building XML-Based Applications

PART II
762

20 0672323419 CH17 3/15/04 11:23 AM Page 762

to access XML as well as relational data. The XmlDataDocument class within the XML
framework provides the necessary bridge between ADO.NET and the XML framework.
Table 17.11 lists some of the public instance properties of the XmlDataDocument class.

TABLE 17.11 Some of the Public Instance Properties Available on the
XmlDataDocument Class

Name Description

Attributes Holds a reference to an XmlAttributeCollection object

BaseURI Indicates the base URI of the current node

ChildNodes Holds a reference to an XmlNodeList object

DataSet Holds a reference to the data set that provides the relational
data for the XmlDataDocument object

DocumentElement The root XmlElement for the document

DocumentType Holds a reference to the DOCTYPE node within the document

FirstChild Holds a reference to the first child node of the current node

HasChildNodes Indicates whether the current node has any child nodes

Implementation Holds a reference to the XmlImplementation object for the
current document

InnerText Specifies the concatenated values of the current node and
all its children

InnerXml Specifies the XML fragment of the children of the
current node

IsReadOnly Indicates whether the current node is read-only

Item Returns the specified child element

LastChild Holds a reference to the last child of the current node

LocalName Indicates the local name of the current node

Name Indicates the qualified name of the current node

NamespaceURI Indicates the namespace URI for the current node

NameTable Holds a reference to the XmlNameTable object associated
with this implementation

NextSibling Holds a reference to the next node following the
current node

NodeType Indicates the type of node

OuterXml Returns the XML fragment of the current node and its
child nodes

Leveraging XML in Visual Studio .NET

CHAPTER 17
763

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 763

TABLE 17.11 continued

Name Description

OwnerDocument Holds a reference to the XmlDataDocument object for the
current node

ParentNode Holds a reference to the parent node of the current node

Prefix Specifies the namespace prefix for the current node

PreserveWhitespace Specifies whether whitespace should be preserved

PreviousSibling Holds a reference to the node immediately preceding the
current node

Value Specifies the value of the current node

XmlResolver Sets the XmlResolver object to use for resolving external
resources

Because XmlDataDocument is a subclass of the XmlDocument class, it inherits all the prop-
erties, events, and methods from the XmlDocument class. However, the XmlDataDocument
class provides some additional methods that help manage relational data as hierarchical
data. Table 17.12 lists some of the public instance methods available for the
XmlDataDocument class.

TABLE 17.12 Some of the Public Instance Methods Available of the
XmlDataDocument Class

Name Description

AppendChild Adds the specified node to the end of the child node of the
current node.

Clone Creates a duplicate of the current node.

CloneNode Creates a duplicate of the current node.

CreateAttribute Creates an XmlAttribute object with the specified name.

CreateCDataSection Creates an XmlCDataSection object containing the
specified data.

CreateComment Creates an XmlComment object containing the specified data.

CreateDocumentFragment Creates an XmlDocumentFragment object.

CreateDocumentType Creates an XmlDocumentType object.

CreateElement Creates an XmlElement object.

CreateEntityReference This method is not supported by the XmlDataDocument
class. If it’s called, an exception will be thrown.

Building XML-Based Applications

PART II
764

20 0672323419 CH17 3/15/04 11:23 AM Page 764

TABLE 17.12 continued

Name Description

CreateNavigator Creates an XPathNavigator object for navigating
this object.

CreateNode Creates an XmlNode object.

CreateProcessingInstruction Creates an XmlProcessingInstruction object with the
specified name and data.

CreateSignificantWhitespace Creates an XmlSignificantWhitespace object.

CreateTextNode Creates an XmlText object with the specified text.

CreateWhitespace Creates an XmlWhitespace object.

CreateXmlDeclaration Creates an XmlDeclaration object with the
specified values.

Equals Determines whether two object instances are equal.

GetElementById This method is not supported by the XmlDataDocument
class. If it’s called, an exception will be thrown.

GetElementFromRow Returns the XmlElement object associated with the specified
DataRow object.

GetElementsByTagName Returns an XmlNodeList object containing a list of all the
descendant elements that match the specified name.

GetEnumerator Provides support for the for-each style iteration over the
nodes in the specified node.

GetNamespaceOfPrefix Looks up the closest xmlns declaration for the given prefix
that is in scope for the current node and returns the name-
space URI in the declaration.

GetPrefixOfNamespace Looks up the closest xmlns declaration for the given name-
space URI that is in scope for the current node and returns
the prefix defined in that declaration.

GetRowFromElement Returns the DataRow object for the specified
XmlElement object.

GetType Gets the type of the current instance.

ImportNode Imports a node from another document into the
current document.

InsertAfter Inserts a node immediately after the specified node.

InsertBefore Inserts a node immediately before the specified node.

Load Loads the specified XML data and synchronizes the
XmlDataDocument object with the data set.

Leveraging XML in Visual Studio .NET

CHAPTER 17
765

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 765

TABLE 17.12 continued

Name Description

LoadXml Loads the XML document from the specified string.

Normalize Puts all XmlText nodes in the full depth of the subtree
underneath the current node into a “normal” form, where
only markup separates XmlText nodes (in other words,
there are no adjacent XmlText nodes).

PrependChild Adds the specified node to the beginning of the child nodes
for the current node.

ReadNode Creates an XmlNode object based on the information in an
XmlReader object.

RemoveAll Removes all the children and/or attributes of the
current node.

RemoveChild Removes the specified child node.

ReplaceChild Replaces the specified child node with another node.

Save Saves the XML document to the specified location.

SelectNodes Selects a list of nodes matching the XPath expression.

SelectSingleNode Selects the first node that matches the XPath expression.

Supports Tests whether the DOM implementation implements a
specific feature.

ToString Returns a string that represents the current object.

WriteContentTo Saves all the children of the XmlDocument node to the speci-
fied XmlWriter object.

WriteTo Saves the XmlDocument node to the specified
XmlWriter object.

You can see from Tables 17.11 and 17.12 that in addition to the properties and methods
found in the XmlDocument class, the XmlDataDocument class has a few specialized prop-
erties and methods that integrate the XmlDocument class with the DataSet class.

The following C# code demonstrates how to create an XmlDataDocument object from a
given data set:

string cConn = “Data Source=TRAVISNOTEBOOK\\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”;
System.Data.SqlClient.SqlConnection oConn = new
➥ System.Data.SqlClient.SqlConnection(cConn);

oConn.Open();

Building XML-Based Applications

PART II
766

20 0672323419 CH17 3/15/04 11:23 AM Page 766

System.Data.SqlClient.SqlDataAdapter oDA = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers Where CustomerID Like
➥ ’A%’”, oConn);
System.Data.DataSet oDS = new System.Data.DataSet();

oDA.Fill(oDS,”Customers”);
oConn.Close();

System.Xml.XmlDataDoument oXML =
➥ new System.Xml.XmlDataDocument(oDS);

Here’s the code for VB .NET:

Dim cConn As string = “Data Source=
➥ TRAVISNOTEBOOK\SQL2000;Integrated
➥ Security=SSPI;Initial Catalog=Northwind”
Dim oConn As System.Data.SqlClient.SqlConnection = new
➥ System.Data.SqlClient.SqlConnection(cConn)

oConn.Open();

Dim oDA As System.Data.SqlClient.SqlDataAdapter = new
➥ System.Data.SqlClient.SqlDataAdapter(
➥ ”Select * From Customers Where CustomerID Like
➥ ’A%’”, oConn)
Dim oDS As System.Data.DataSet = new System.Data.DataSet()

oDA.Fill(oDS,”Customers”)
oConn.Close()

Dim oXML As System.Xml.XmlDataDocument =
➥ new System.Xml.XmlDataDocument(oDS)

Basically, the preceding code loads the relational data into a DataSet object, and then
we use that DataSet object as a parameter that is passed to the constructor of the
XmlDataDocument object. At this point, Visual Studio .NET does something intriguing:
You may modify and manipulate the data in either object—the DataSet object or the
XmlDataDocument object—and the changes will be reflected in the other object. This
means you still have one data source you may modify, but you have two different
objects that allow you to do so, and each object picks up on the changes made in
the other object.

Summary
The future of development using Microsoft products is beginning to change. The lan-
guages that we use to write our applications must be able to reduce the amount of work

Leveraging XML in Visual Studio .NET

CHAPTER 17
767

17

L
EV

ER
A

G
IN

G
X

M
L

IN
V

ISU
A

L
S

TU
D

IO
.N

ET

20 0672323419 CH17 3/15/04 11:23 AM Page 767

for us as the demands of our applications become increasingly more complex. Microsoft
has answered this call with Visual Studio .NET by providing the Common Language
Runtime, which every language within Visual Studio .NET can take advantage of, by
providing increased support for Web services, and by revolutionizing Web development.

.NET promises to make developers more productive by allowing them to concentrate
on the more important tasks of writing the actual business functionality needed within
their applications, rather than worrying about how to get one portion of their applications
to interface with something else. Microsoft has gone through great pains to incorporate
XML into the .NET Framework as much as possible because it recognizes that XML
is becoming an increasingly accepted standard for messaging, data representation,
and more.

Building XML-Based Applications

PART II
768

20 0672323419 CH17 3/15/04 11:23 AM Page 768

IN THIS CHAPTER

• BizTalk 770

• SQL Server 2000 776

18
C

H
A

PT
ER

Using XML in the
.NET Enterprise
Servers

21 0672323419 CH18 3/15/04 11:24 AM Page 769

Microsoft has invested a considerable amount of time and energy into creating a com-
plete series of components that will easily integrate together to solve many of the prob-
lems currently faced by businesses. In addition to Visual Studio .NET, Microsoft
produces a set of “enterprise servers”: BizTalk Server 2000 and SQL Server 2000, both
of which are designed to “Web-enable” various enterprise aspects of companies.
Everything from Business-to-Business communication and Business-to-Consumer com-
munication to publishing real-time data on the Web. In addition, the .NET Enterprise
Servers are designed to help build, deploy, and manage these Web-enabling solutions.

BizTalk Server is geared toward handling Business-to-Business (B2B) communication in
an automated fashion, whereas SQL Server 2000 is Microsoft’s answer to a database
management system that handles scalability. In this chapter, you’ll learn

• About the basic concepts of BizTalk Server 2000

• How to route documents in BizTalk Server 2000

• About the new For XML clause in SQL Server 2000

• How to query SQL Server 2000 using a URL query

• How to query SQL Server 2000 using a template query

• How to create annotated XSD schemas

• How to query SQL Server 2000 using an XPath query

• How to create XML updategrams

• How to submit XML updategrams to SQL Server 2000

BizTalk
Microsoft BizTalk Server 2000 is one of the .NET Enterprise Servers that makes
Business-to-Business (B2B) communication happen. Many times, a single company can
no longer provide everything to its customers. For instance, a bookstore may need to rely
on a shipping partner to ship a book that a customer orders. In the past, these sorts of sit-
uations have been handled either by hand or by very complex automation routines that
would provide this information to the partner in a “nightly dump” or similar manner.
With the growing sophistication of today’s applications, we need the ability to send these
notifications in a more timely manner. This is what’s known as business-to-business com-
munication; it’s the idea that one business relies on an outside partner to accomplish cer-
tain tasks and notifications of what’s expected to be sent to the partner company. BizTalk
Server is, in essence, a routing service that receives and routes B2B messages in a very
efficient and flexible way. BizTalk Server 2000 allows you to set up business relation-
ships with a large number of partnering organizations (which may all be using different

Building XML-Based Applications

PART II
770

21 0672323419 CH18 3/15/04 11:24 AM Page 770

standards), define the standards used by your business partners, and the map between the
various standards with which you deal.

The BizTalk Management Desk can be considered the “BizTalk control center.” This is
where a typical BizTalk user would go to set up organizations, agreements, document
formats, mapping and routing information, and so on. However, before we can discuss
some of the more advanced management capabilities with BizTalk Server 2000, we first
need to explore the basic items that make BizTalk Server 2000 tick.

Organizations
Organizations are the cornerstones of all BizTalk scenarios. Organizations simply are
business partners. There’s always a “home” organization (that’s you) and at least one
other organization with which the home organization does business.

Setting up organizations is easy. You can create a new organization through the File,
New menu. An organization typically has little more than a name that identifies it.
However, you can specify as many additional identifiers as you want. You can choose
between standard identifiers, such as Dun & Bradstreet (DUNS) numbers, or you can set
up custom identifiers.

Ports
A port can be considered the routing destination of a message, which can be an organiza-
tion, as mentioned earlier, or an application, as you’ll learn later in this chapter. Ports
do not necessarily reference business partners, because there can be ports for routing
messages or documents internally or for routing messages to the home organization.
For instance, imagine a scenario in which Company B places an order with Company
A (the home organization). That order is received and then routed to the home organiza-
tion for processing.

You can create a new port from the File menu by choosing File, New, Port. When you’re
defining a port, one of the first settings that needs to be specified is the application name
and the primary transport mechanism. The transport address specifies the mechanism and
the destination to be used for the document. Here are the available mechanisms:

• HTTP and HTTPS

• SMTP

• File

• Message Queues

• Application Integrator Components

• Loopback

Using XML in the .NET Enterprise Servers

CHAPTER 18
771

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 771

By specifying HTTP and HTTPS as the routing mechanism, you indicate that BizTalk
needs to route the document to a Web server. A value of SMTP tells BizTalk to route the
document as an e-mail, whereas a value of File signals to the BizTalk Server to route the
document to a local file. Identifying a routing mechanism of Message Queues tells the
BizTalk Server to invoke Microsoft Message Queuing Services when routing a docu-
ment. The value Application Integrator Components lets you route documents to custom
destinations, and the value Loopback let’s you route the document/message back into the
BizTalk Routing Services.

Frequently, you will encounter a scenario in which you must route a document or mes-
sage to another organization. In this case, you’ll need to specify the destination organiza-
tion and the transport mechanism to use to route the document or message. Additionally,
you can also set up security and encryption information as well as some other advanced
settings. Okay, so now you know how to route a document once it’s in the BizTalk sys-
tem. However, you do not know how to get a document from an external source into the
system in the first place. This is done through channels. Every port needs to have at least
one channel in order to be useful. When you’re creating a new port, BizTalk automati-
cally asks you to create a new channel for the port (unless you deselect that option in the
last step of the wizard) .

Channels
Channels route a message from an organization or application to the assigned port.
During this process, the document may actually be converted or mapped from one stan-
dard into another standard. When setting up a port, you are automatically asked by the
wizard to create a channel. Alternatively, you can right-click a port in the Management
Desk and select New Channel, From an Organization, which also launches the Channel
Properties Wizard.

To create a new channel, you’ll need to specify a source organization, the type of
“inbound” document to route, and the type of “outbound” document to create. This
allows you to say, in essence, that you expect to receive a certain type of document and
you need to route this document to a certain port in a particular format. If the inbound
and outbound documents are different, the incoming document needs to be converted, or
mapped. (We will discuss document maps later in this chapter.)

Document types have to be defined in BizTalk using schemas, which allows you to
accept a business partner’s document format as long as it is well defined and valid.
However, just because you can accommodate a business partner’s document format
doesn’t mean you have to use that format internally. In fact, you may have your own
standard for the same document type.

Building XML-Based Applications

PART II
772

21 0672323419 CH18 3/15/04 11:24 AM Page 772

Applications
In BizTalk, applications are not necessarily programs or components. They are simply
sets of logically connected transactions. Applications are defined in the home organiza-
tion’s Organization definition. To create a new application, simply click the New button
in the Applications page or the Organization Properties dialog box, specify a name, and
you’re finished.

Document Definitions
Document definitions comprise another important building block for BizTalk systems.
All messages that are routed through BizTalk have to be defined, which is done using
XML schemas. Document definitions can be very simple, specifying only a couple of
fields in a document, or they can be very complex, defining field types and lengths and
even BizTalk routing information.

Microsoft BizTalk Server 2000 provides a tool to create document definitions called the
Document Editor. The BizTalk Document Editor is basically a schema editor with some
special features for BizTalk. When you create a new document, the Document Editor
allows you to base the new document on a template or to start with a blank document.
You can then proceed to add new records and fields. By default, records are the equiva-
lent of tags, and fields equate to attributes. However, you can change that and actually
turn a field into a tag by changing the Type setting in the Declaration page. The major
difference between records and fields is that records can have subrecords and fields as
child items, whereas fields cannot. The editor basically gives you all the freedom XML
schemas provide. You can set the data type, valid values, minimum and maximum con-
tent length, default values, whether a field or record is optional or required, the number
of times a tag can occur, and much more.

In addition, the Document Editor can handle BizTalk-specific settings, such as routing
information. BizTalk-specific information is specified in the Dictionary page. All this
information is handled under the BizTalk namespace. You can add your own namespaces
to provide information specific to your document format. Simply click the Namespace
page to do so.

BizTalk document definitions can be stored as regular files on your hard drive or in a
WebDAV repository.

Using XML in the .NET Enterprise Servers

CHAPTER 18
773

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 773

Document Maps
Document maps define how one document type is to be converted into another and are
created using the BizTalk Mapper. To create a new map, select File, New from the menu
bar and then select the source document definition and the destination document defini-
tion. This opens both document formats and displays them in the BizTalk Mapper. You
can now start mapping documents, field by field, using simple drag-and-drop operations.
The map is complete once all the fields in the destination receive a value from the
source. This information is stored in a WebDAV repository or the local hard drive, where
it can be referenced from BizTalk Server.

Building XML-Based Applications

PART II
774

Note

The BizTalk Document Editor can handle other formats besides XML. To switch
to a different format, click the main document node, select the Reference page,
and change the setting for Standard.

Note

Several fields from the source document type can be mapped to multiple fields
in the destination document.

Also, not all the fields are necessarily straight maps. Some of them may need to use
“functoids.” These are the little boxes you see in the center of a map. The number of
available functoids is large and ranges from simple string manipulation and mathemati-
cal functions to scientific calculations and even scripts.

WebDAV
Web-based Distributed Authoring and Versioning (WebDAV) is an extension to the
HTTP protocol that allows users to collaboratively edit and manage files on remote Web
servers and provides standard ways to handle issues such as locking and access control.

WebDAV is an open standard that is used by many companies, including Netscape,
Novell, Xerox, Microsoft, and others. Microsoft Office 2000 represents one of the most
popular implementations of the WebDAV standard for office collaboration.

Microsoft BizTalk Server 2000 uses WebDAV for authoring document definitions and
maps (although you can also save these documents on your hard drive without using
WebDAV).

21 0672323419 CH18 3/15/04 11:24 AM Page 774

For more information on WebDAV, refer back to Chapter 13, “XML and Content
Management,” or visit www.webdav.org.

Distribution Lists
Distribution lists allow you to route messages to several organizations at once, which is
useful for distributing information such as price lists and catalogs. Regular ports always
map to one and only one organization. A distribution list, though, is linked to an infinite
number of ports that will receive the routed message. All these ports need to have a spec-
ified destination.

Using XML in the .NET Enterprise Servers

CHAPTER 18
775

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

Note

A message routed to distribution lists cannot have routing information embed-
ded within it. That just wouldn’t make sense because the destination could be
different for every port. Therefore, keep in mind that distribution lists cannot
accept self-routing documents.

A distribution list is linked to a channel, just like ports are usually linked to channels,
only this time, the distribution list spreads the information to a number of ports.

Submitting Documents
Now that you have a basic understanding of BizTalk Server and its most important com-
ponents, features, and tools, it’s time to submit your first document. To start, we’ll do so
using Visual Basic code.

Communication with BizTalk is handled through a COM-based interface, thus making
document submission a simple process. Let’s assume we want to route an XML docu-
ment containing an order into BizTalk so we can process the order. We would take the
XML document we wish to submit to BizTalk and, within a method in a Visual Basic
object, write something like the following:

DIM loBT AS Object
DIM lvResult AS String

SET loBT = CREATEOBJECT(“BizTalk.Interchange”)
lvResult = loBT.Submit 1,SourceDocument, DocumentType,
➥ ”Organization Name”, NameOfSourceOrganization,
➥ ”Organization Name”,”Home Organization”

21 0672323419 CH18 3/15/04 11:24 AM Page 775

As you can see, the code is rather simple and straightforward. We create an instance of
the BizTalk.Interchange object and call the Submit() method, passing in the content of
the source document (our XML document containing our orders). In this example, we
are manually routing the document, which means we pass information about the docu-
ment format as well as the source and destination organizations. Parameter 3 specifies
the document type that has to be set up in the BizTalk Management Desk. Parameters 4
and 5 specify the source organization identifier and the actual name or the source organi-
zation. Parameters 6 and 7 do the same for the destination organization.

Assuming the XML document is valid according to the schema we set up, BizTalk
Server will find a channel/port pair that matches the document type as well as the
defined organizations.

In addition to explicitly specifying the source and destination organizations in the Submit
method, the XML document itself can contain routing information. Such documents are
known as self-routing documents. Self-routing documents contain information about the
source organization, destination organization, document type, and organization identi-
fiers. Basically, self-routing documents enable you to call the Submit() method and pass
only the first two parameters. All this information has to be identified in the document
definition to indicate to BizTalk Server where that information can be found. This is
done using the Dictionary tab in the Document Editor.

Depending on the submitted message, the routing information can be contained in the
actual message (this is typically the case in BizTalk Framework–compliant messages) or
in an envelope.

When you’re submitting a self-routing document, the basic steps are the same as with
manually routed documents (discussed earlier), with the difference being that only the
first two parameters are passed to the Submit() method.

SQL Server 2000
With the advent of XML and the increasing requirements for distributed applications in
today’s marketplace, a larger demand has been placed on the developer to provide mes-
saging and data in an XML format. Providing data in XML format, until now, has con-
sisted of querying data in the form of a cursor or ADO record set and using a conversion
routine to convert the data into XML format. Now with the new features in SQL Server
2000, this task can be accomplished with minimal effort, which allows the developer to
concentrate on the more important task of writing the business logic.

Building XML-Based Applications

PART II
776

21 0672323419 CH18 3/15/04 11:24 AM Page 776

SQL Server 2000 allows the developer to query SQL Server data and receive that data in
XML format through the use of a special clause: FOR XML. This clause provides three dif-
ferent options by which SQL Server can return data in XML format: AUTO, RAW, and
EXPLICIT.

Issuing the SQL SELECT command with FOR XML AUTO will return the result set in XML
format, with each record having a node whose tag name is the same as the table name on
which the query was performed. Each node will have attributes equal to the field names
specified in the query with values equal to the values of the fields within the table. Using
the FOR XML RAW clause will return XML in which each record is represented by a node
whose tag name is “row” and whose attributes are the fields from the query. The last
option, FOR XML EXPLICIT, uses queries written in a specific format to return the XML
in a specific format. However, these options are only available from within the SQL
Server Query Analyzer or by accessing SQL server through a URL.

In this chapter, we will be using Web Release 2 for SQL Server 2000.

Configuring IIS
Before you can utilize the new XML support within SQL Server 2000, you must first
configure it. Simply click Start, Programs, Microsoft SQL Server XML Tools, Configure
IIS Support—Web Release 2. This will launch the configuration utility necessary to pro-
vide XML support within SQL Server 2000, as shown in Figure 18.1.

Using XML in the .NET Enterprise Servers

CHAPTER 18
777

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

FIGURE 18.1
The IIS Virtual
Directory
Management
Console is where
you can adminis-
ter the XML
support for SQL
Server.

Once you have the IIS Virtual Directory Management for SQL Server page open, drill
down in the tree on the left side of the screen until you get to the Default Web Site node
or the Web site from which you wish to access SQL Server 2000. On the right side of

21 0672323419 CH18 3/15/04 11:24 AM Page 777

the screen, right-click and select New, Virtual Directory. This will bring up the New
Virtual Directory Properties dialog box, where you enter information regarding how
SQL Server 2000 should be configured to run when accessed from a URL, as shown in
Figure 18.2.

Building XML-Based Applications

PART II
778

FIGURE 18.2
The General page
of the Virtual
Directory Prop-
erties dialog box.

On the “General” page, you will be required to give the new virtual directory a name
and provide the physical path on the hard drive associated with this virtual directory.
This first page determines how you may access SQL Server via HTTP. For instance, in
the case of Default Web Site, if you enter a virtual directory name of SQL2000, you
could access it via HTTP as http://localhost/sql2000.

The “Security” page, shown in Figure 18.3, is where you indicate how you wish to log
in to SQL Server 2000.

The “Data Source” page, shown in Figure 18.4, allows you to specify the SQL Server
installation to use and the database name to access.

The “Settings” page, shown in Figure 18.5, allows you to indicate the different types of
queries that can be run: URL queries, template queries, and/or XPath queries, as well as
whether HTTP POSTs are allowed.

21 0672323419 CH18 3/15/04 11:24 AM Page 778

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

Using XML in the .NET Enterprise Servers

CHAPTER 18
779

FIGURE 18.3
The Security page
of the Virtual
Directory Prop-
erties dialog box.

FIGURE 18.4
The Data Source
page of the Virtual
Directory Prop-
erties dialog box.

The “Virtual Names” page allows you to map various special virtual directories to your
main SQL Server virtual directory. If you want to execute template queries, you’ll need
to at least create a template virtual directory here. If you want to use XPath queries,
you’ll need to create a schema virtual directory as well. Figure 18.6 shows you the
“Virtual Names” page of the dialog box, whereas Figure 18.7 shows you the Virtual
Name Configuration dialog box.

21 0672323419 CH18 3/15/04 11:24 AM Page 779

Building XML-Based Applications

PART II
780

FIGURE 18.5
The Settings page
of the Virtual
Directory Prop-
erties dialog box.

FIGURE 18.6
The Virtual Names
page of the Virtual
Directory Prop-
erties dialog box.

21 0672323419 CH18 3/15/04 11:24 AM Page 780

There’s one “Advanced” page on the dialog box for advanced configuration options. This
page allows you to specify the SQL ISAPI DLL to use for the virtual directory as well as
whether various items in memory, such as templates, schemas, and XSLT style sheets,
should be cached. Figure 18.8 shows this final page.

Using XML in the .NET Enterprise Servers

CHAPTER 18
781

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

FIGURE 18.7
The Virtual Name
Configuration dia-
log box.

FIGURE 18.8
The Advanced
page of the Virtual
Directory Prop-
erties dialog box.

21 0672323419 CH18 3/15/04 11:24 AM Page 781

Once you’ve configured IIS to support XML for SQL Server 2000, you can begin access-
ing your new virtual directory via HTTP in the form of URL queries, template queries,
and XPath queries.

URL Queries
The easiest way in which to test or become familiar with URL queries in SQL Server is
to open Microsoft’s Internet Explorer and enter queries into the address space available.
It is important to keep in mind that the XML string returned by SQL Server 2000 is not
well-formed XML; rather, it is an XML fragment. This is because there is no single root
node from which all other nodes are children. However, a parameter can be passed along
with the query itself to specify the root node, which will eliminate this problem by wrap-
ping the returned XML string with the node specified.

For instance, the query

SELECT * FROM Customers

as a URL query looks like this:

http://localhost/sql2000?sql=Select+*+From+Customers+Where+
➥ CustomerID+Like+’A%25’+For+XML+Auto&Root=Results

The preceding URL query returns all the records in the Customers table that have a
CustomerID that begins with the letter A, wrapped with a root node called Results, as
shown in Listing 18.1.

LISTING 18.1 The Output Returned from SQL Server 2000 for All Customers with a
CustomerID beginning with A

<?xml version=”1.0”?>

<Results>
<Customers CustomerID=”ALFKI” CompanyName=”Alfreds

➥ Futterkiste” ContactName=”Maria Anders” ContactTitle=
➥ ”Sales Representative” Address=”Obere Str. 57” City=
➥ ”Test” PostalCode=”12209” Country=”Germany” Phone=
➥ ”030-0074321” Fax=”030-0076545”/>
<Customers CustomerID=”ANATR” CompanyName=”Ana Trujillo

➥ Emparedados y helados” ContactName=”Ana Trujillo”
➥ ContactTitle=”Owner” Address=”Avda. de la Constitución
➥ 2222” City=”México D.F.” PostalCode=”05021” Country=
➥ ”Mexico” Phone=”(5) 555-4729” Fax=”(5) 555-3745”/>
<Customers CustomerID=”ANTON” CompanyName=”Antonio Moreno

➥ Taquería” ContactName=”Antonio Moreno” ContactTitle=
➥ ”Owner” Address=”Mataderos 2312” City=”México D.F.”
➥ PostalCode=”05023” Country=”Mexico” Phone=”(5) 555-3932”/>

Building XML-Based Applications

PART II
782

21 0672323419 CH18 3/15/04 11:24 AM Page 782

LISTING 18.1 continued

<Customers CustomerID=”AROUT” CompanyName=”Around the Horn”
➥ ContactName=”Thomas Hardy” ContactTitle=”Sales
➥ Representative” Address=”120 Hanover Sq.” City=”London”
➥ PostalCode=”WA1 1DP” Country=”UK” Phone=”(171) 555-7788”
➥ Fax=”(171) 555-6750”/>
</Results>

In this example, each record is represented by a node called Customers whose attributes
are the fields within the Customers table. The URL query used to return these results
uses the For XML Auto clause. The Auto portion indicates to SQL ISAPI that it should
produce an XML string with the specified table as the main element and that it should
include the fields as attributes.

The For XML Raw clause will produce a slightly different XML grammar from the one
created by For XML Auto.

For instance, the following URL query returns all records in the Customers table that
have a CustomerID that begins with the letter A, wrapped in a root node called Results:

http://localhost/sql2000?sql=Select+*+From+Customers+Where+
➥ CustomerID+Like+’A%25’+For+XML+Raw&Root=Results

The main difference here is that every record is represented by a tag named “row,” as
shown in Listing 18.2.

LISTING 18.2 Results Returned from SQL Server 2000 for All Customers with a
CustomerID beginning with A Using the For XML Raw Clause

<?xml version=”1.0”?>

<Results>
<row CustomerID=”ALFKI” CompanyName=”Alfreds Futterkiste”

➥ ContactName=”Maria Anders” ContactTitle=”Sales
➥ Representative” Address=”Obere Str. 57” City=”Test”
➥ PostalCode=”12209” Country=”Germany” Phone=”030-0074321”
➥ Fax=”030-0076545”/>
<row CustomerID=”ANATR” CompanyName=”Ana Trujillo Emparedados

➥ y helados” ContactName=”Ana Trujillo” ContactTitle=
➥ ”Owner” Address=”Avda. de la Constitución 2222”
➥ City=”México D.F.” PostalCode=”05021” Country=”Mexico”
➥ Phone=”(5) 555-4729” Fax=”(5) 555-3745”/>
<row CustomerID=”ANTON” CompanyName=”Antonio Moreno Taquería”

➥ ContactName=”Antonio Moreno” ContactTitle=”Owner”
➥ Address=”Mataderos 2312” City=”México D.F.” PostalCode=
➥ ”05023” Country=”Mexico” Phone=”(5) 555-3932”/>

Using XML in the .NET Enterprise Servers

CHAPTER 18
783

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 783

LISTING 18.2 continued

<row CustomerID=”AROUT” CompanyName=”Around the Horn”
➥ ContactName=”Thomas Hardy” ContactTitle=”Sales
➥ Representative” Address=”120 Hanover Sq.” City=”London”
➥ PostalCode=”WA1 1DP” Country=”UK” Phone=”(171) 555-7788”
➥ Fax=”(171) 555-6750”/>
</Results>

Both versions of the returned XML appear very similar to the way in which ADO stores
and loads record sets in XML format. However, this may not always coincide with the
grammar of XML that is expected within an application. For this reason, another parame-
ter, xsl, can be included with the URL to specify an XSLT style sheet to use to trans-
form the native XML grammar given by SQL Server 2000 into the expected grammar.
Let’s look at the following example of an XSLT style sheet called Customers1.xsl,
which, in this case, resides in the root of the virtual directory SQL2000, as shown in
Listing 18.3.

LISTING 18.3 Customers1.xsl Contains an XSLT Transformation for Use with Results
Returned from SQL Server 2000

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
➥ version=”1.0”>
<xsl:template match=”/”>

<CUSTOMERS>
<xsl:for-each select=”results/customers”>

<CUSTOMER>
<CUSTOMERID><xsl:value-of select=”@CustomerID”/></CUSTOMERID>
<COMPANY><xsl:value-of select=”@CompanyName”/></COMPANY>
<CONTACT><xsl:value-of select=”@ContactName”/></CONTACT>
<ADDRESS><xsl:value-of select=”@Address”/></ADDRESS>
<CITY><xsl:value-of select=”@City”/></CITY>
<PHONE><xsl:value-of select=”@Phone”/></PHONE>

</CUSTOMER>

</xsl:for-each>
</CUSTOMERS>

</xsl:template>
</xsl:stylesheet>

Building XML-Based Applications

PART II
784

21 0672323419 CH18 3/15/04 11:24 AM Page 784

As an example, the URL query

http://localhost/sql2000?sql=Select+*+From+Customers+Where+
➥ +CustomerID+Like+’A%25’+For+XML+Auto&Root=Results&xsl=
➥ Customers1.xsl

produces the results shown in Listing 18.4.

LISTING 18.4 Results Returned from SQL Server 2000 Using the Customers1.xsl Style
Sheet to Transform the Native Results

<?xml version=”1.0”?>

<CUSTOMERS>
<CUSTOMER>
<CUSTOMERID>ALFKI</CUSTOMERID>
<COMPANY>Alfreds Futterkiste</COMPANY>
<CONTACT>Maria Anders</CONTACT>
<ADDRESS>Obere Str. 57</ADDRESS>
<CITY>Test</CITY>
<PHONE>030-0074321</PHONE>

</CUSTOMER>
<CUSTOMER>
<CUSTOMERID>ANATR</CUSTOMERID>
<COMPANY>Ana Trujillo Emparedados y helados</COMPANY>
<CONTACT>Ana Trujillo</CONTACT>
<ADDRESS>Avda. de la Constitución 2222</ADDRESS>
<CITY>México D.F.</CITY>
<PHONE>(5) 555-4729</PHONE>

</CUSTOMER>
<CUSTOMER>
<CUSTOMERID>ANTON</CUSTOMERID>
<COMPANY>Antonio Moreno Taquería</COMPANY>
<CONTACT>Antonio Moreno</CONTACT>
<ADDRESS>Mataderos 2312</ADDRESS>
<CITY>México D.F.</CITY>
<PHONE>(5) 555-3932</PHONE>

</CUSTOMER>
<CUSTOMER>
<CUSTOMERID>AROUT</CUSTOMERID>
<COMPANY>Around the Horn</COMPANY>
<CONTACT>Thomas Hardy</CONTACT>
<ADDRESS>120 Hanover Sq.</ADDRESS>
<CITY>London</CITY>
<PHONE>(171) 555-7788</PHONE>

</CUSTOMER>
</CUSTOMERS>

Using XML in the .NET Enterprise Servers

CHAPTER 18
785

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 785

In this case, our query is executed first, and then the XSLT style sheet is applied to per-
form the transformation.

Knowing that an XSLT style sheet can be applied to the result set, using another parame-
ter (contenttype) will return the output in HTML format. Using the style sheet in
Listing 18.5, coupled with the contenttype parameter, indicates that the resulting XML
grammar should be interpreted as HTML.

LISTING 18.5 Customers2.xsl Contains an XSLT Transformation to Convert the
Results into an HTML Table

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
➥ version=”1.0”>
<xsl:template match=”/”>

<TABLE width=”100%”>
<TR bgcolor=”moccasin”>
<TD valign=”top”>Customer Id</TD>
<TD valign=”top”>Company</TD>
<TD valign=”top”>Contact</TD>
<TD valign=”top”>Address</TD>
<TD valign=”top”>City</TD>
<TD valign=”top”>Phone</TD>

</TR>

<xsl:for-each select=”Results/Customers”>

<TR bgcolor=”white”>
<TD valign=”top”><xsl:value-of select=”@CustomerID”/></TD>
<TD valign=”top”><xsl:value-of select=”@CompanyName”/></TD>
<TD valign=”top”><xsl:value-of select=”@ContactName”/></TD>
<TD valign=”top”><xsl:value-of select=”@Address”/></TD>
<TD valign=”top”><xsl:value-of select=”@City”/></TD>
<TD valign=”top”><xsl:value-of select=”@Phone”/></TD>

</TR>

</xsl:for-each>

</TABLE>

</xsl:template>
</xsl:stylesheet>

Because we’ve specified that the content type should be text/HTML, a browser will be
sure to interpret the resulting XML as HTML and display the results appropriately. In
our case, by specifying the URL query

Building XML-Based Applications

PART II
786

21 0672323419 CH18 3/15/04 11:24 AM Page 786

http://localhost/sql2000?sql=Select+*+From+Customers+Where+
➥ +CustomerID+Like+’A%25’+For+XML+Auto&Root=Results&xsl=
➥ Customers2.xsl&ContentType=text.html

we get the result set in Listing 18.6.

LISTING 18.6 The Results from Applying the Customers2.xsl Style Sheet to the
Results Returned from SQL Server 2000

<?xml version=”1.0”?>

<TABLE width=”100%”>
<TR bgcolor=”moccasin”>
<TD valign=”top”>Customer Id</TD>
<TD valign=”top”>Company</TD>
<TD valign=”top”>Contact</TD>
<TD valign=”top”>Address</TD>
<TD valign=”top”>City</TD>
<TD valign=”top”>Phone</TD>

</TR>
<TR bgcolor=”white”>
<TD valign=”top”>ALFKI</TD>
<TD valign=”top”>Alfreds Futterkiste</TD>
<TD valign=”top”>Maria Anders</TD>
<TD valign=”top”>Obere Str. 57</TD>
<TD valign=”top”>Test</TD>
<TD valign=”top”>030-0074321</TD>

</TR>
<TR bgcolor=”white”>
<TD valign=”top”>ANATR</TD>
<TD valign=”top”>Ana Trujillo Emparedados y helados</TD>
<TD valign=”top”>Ana Trujillo</TD>
<TD valign=”top”>Avda. de la Constitución 2222</TD>
<TD valign=”top”>México D.F.</TD>
<TD valign=”top”>(5) 555-4729</TD>

</TR>
<TR bgcolor=”white”>
<TD valign=”top”>ANTON</TD>
<TD valign=”top”>Antonio Moreno Taquería</TD>
<TD valign=”top”>Antonio Moreno</TD>
<TD valign=”top”>Mataderos 2312</TD>
<TD valign=”top”>México D.F.</TD>
<TD valign=”top”>(5) 555-3932</TD>

</TR>
<TR bgcolor=”white”>
<TD valign=”top”>AROUT</TD>
<TD valign=”top”>Around the Horn</TD>
<TD valign=”top”>Thomas Hardy</TD>

Using XML in the .NET Enterprise Servers

CHAPTER 18
787

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 787

LISTING 18.6 continued

<TD valign=”top”>120 Hanover Sq.</TD>
<TD valign=”top”>London</TD>
<TD valign=”top”>(171) 555-7788</TD>

</TR>
</TABLE>

It is up to the individual browser to figure out how to display the resulting HTML. Also,
some browsers, such as Internet Explorer version 6.0, will automatically interpret the
resulting XML as HTML and display it appropriately even without the contenttype
parameter being explicitly specified.

Template Queries
Another method of retrieving XML result sets from SQL Server 2000 is to template
queries. These are XML files that tell SQL Server how to run queries, what the root node
will be, what XSLT style sheet to apply, and so on. These files eliminate the need to
specify a SELECT statement at the URL level.

In this case, our query (Select * From Customers), written as a template query, would
appear as shown in Listing 18.7.

LISTING 18.7 Customers1.xml Contains a Template Query to Return All Customers
from SQL Server 2000 Whose CustomerID Begins with A

<Results xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<sql:query>
Select * From Customers Where CustomerID Like ‘A%’ For XML Auto

</sql:query>
</Results>

Also, it returns the result set shown in Listing 18.8.

LISTING 18.8 The Results Returned from Navigating to the Customers1.xml
Template Query

<?xml version=”1.0”?>

<Results>
<Customers CustomerID=”ALFKI” CompanyName=”Alfreds

➥ Futterkiste” ContactName=”Maria Anders” ContactTitle=
➥ ”Sales Representative” Address=”Obere Str. 57” City=
➥ ”Test” PostalCode=”12209” Country=”Germany” Phone=
➥ ”030-0074321” Fax=”030-0076545”/>

Building XML-Based Applications

PART II
788

21 0672323419 CH18 3/15/04 11:24 AM Page 788

LISTING 18.8 continued

<Customers CustomerID=”ANATR” CompanyName=”Ana Trujillo
➥ Emparedados y helados” ContactName=”Ana Trujillo”
➥ ContactTitle=”Owner” Address=”Avda. de la Constitución
➥ 2222” City=”México D.F.” PostalCode=”05021” Country=
➥ ”Mexico” Phone=”(5) 555-4729” Fax=”(5) 555-3745”/>
<Customers CustomerID=”ANTON” CompanyName=”Antonio Moreno

➥ Taquería” ContactName=”Antonio Moreno” ContactTitle=
➥ ”Owner” Address=”Mataderos 2312” City=”México D.F.”
➥ PostalCode=”05023” Country=”Mexico” Phone=”(5) 555-3932”/>
<Customers CustomerID=”AROUT” CompanyName=”Around the Horn”

➥ ContactName=”Thomas Hardy” ContactTitle=”Sales
➥ Representative” Address=”120 Hanover Sq.” City=”London”
➥ PostalCode=”WA1 1DP” Country=”UK” Phone=”(171) 555-7788”
➥ Fax=”(171) 555-6750”/>
</Results>

To run this query, save the template as Customers1.xml and store it in the template vir-
tual directory beneath the main SQL Server 2000 virtual directory. Then, simply navigate
to http://localhost/sql2000/template/customers1.xml, which returns the XML in
the native SQL Server format.

Now let’s replace the keyword AUTO with RAW in our template query, as shown in
Listing 18.9.

LISTING 18.9 Customers2.xml Contains the Revised Query

<Results xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<sql:query>
Select * From Customers Where CustomerID Like ‘A%’ For XML Raw

</sql:query>
</Results>

Here’s the result:

<?xml version=”1.0”?>

<Results>
<row CustomerID=”ALFKI” CompanyName=”Alfreds Futterkiste”

➥ ContactName=”Maria Anders” ContactTitle=”Sales
➥ Representative” Address=”Obere Str. 57” City=”Test”
➥ PostalCode=”12209” Country=”Germany” Phone=”030-0074321”
➥ Fax=”030-0076545”/>
<row CustomerID=”ANATR” CompanyName=”Ana Trujillo Emparedados

➥ y helados” ContactName=”Ana Trujillo” ContactTitle=
➥ ”Owner” Address=”Avda. de la Constitución 2222”
➥ City=”México D.F.” PostalCode=”05021” Country=”Mexico”
➥ Phone=”(5) 555-4729” Fax=”(5) 555-3745”/>

Using XML in the .NET Enterprise Servers

CHAPTER 18
789

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 789

LISTING 18.9 continued

<row CustomerID=”ANTON” CompanyName=”Antonio Moreno Taquería”
➥ ContactName=”Antonio Moreno” ContactTitle=”Owner”
➥ Address=”Mataderos 2312” City=”México D.F.” PostalCode=
➥ ”05023” Country=”Mexico” Phone=”(5) 555-3932”/>
<row CustomerID=”AROUT” CompanyName=”Around the Horn”

➥ ContactName=”Thomas Hardy” ContactTitle=”Sales
➥ Representative” Address=”120 Hanover Sq.” City=”London”
➥ PostalCode=”WA1 1DP” Country=”UK” Phone=”(171) 555-7788”
➥ Fax=”(171) 555-6750”/>
</Results>

To apply a style sheet to the result set, the template query would appear as shown in
Listing 18.10.

LISTING 18.10 Customers3.xml Contains the Query to Execute and the Location of
Style Sheet to Use to Transform the Results

<Results xmlns:sql=”urn:schemas-microsoft-com:xml-sql”
➥ sql:xsl=’../Customers1.xsl’>
<sql:query>
Select * From Customers Where CustomerID Like ‘A%’ For XML Auto

</sql:query>
</Results>

This returns the results shown in Listing 18.11.

LISTING 18.11 The Results from Navigating to the Customers3.xml Template QUERY

<?xml version=”1.0”?>

<CUSTOMERS>
<CUSTOMER>
<CUSTOMERID>ALFKI</CUSTOMERID>
<COMPANY>Alfreds Futterkiste</COMPANY>
<CONTACT>Maria Anders</CONTACT>
<ADDRESS>Obere Str. 57</ADDRESS>
<CITY>Test</CITY>
<PHONE>030-0074321</PHONE>

</CUSTOMER>
<CUSTOMER>
<CUSTOMERID>ANATR</CUSTOMERID>
<COMPANY>Ana Trujillo Emparedados y helados</COMPANY>
<CONTACT>Ana Trujillo</CONTACT>
<ADDRESS>Avda. de la Constitución 2222</ADDRESS>
<CITY>México D.F.</CITY>
<PHONE>(5) 555-4729</PHONE>

Building XML-Based Applications

PART II
790

21 0672323419 CH18 3/15/04 11:24 AM Page 790

LISTING 18.11 continued

</CUSTOMER>
<CUSTOMER>
<CUSTOMERID>ANTON</CUSTOMERID>
<COMPANY>Antonio Moreno Taquería</COMPANY>
<CONTACT>Antonio Moreno</CONTACT>
<ADDRESS>Mataderos 2312</ADDRESS>
<CITY>México D.F.</CITY>
<PHONE>(5) 555-3932</PHONE>

</CUSTOMER>
<CUSTOMER>
<CUSTOMERID>AROUT</CUSTOMERID>
<COMPANY>Around the Horn</COMPANY>
<CONTACT>Thomas Hardy</CONTACT>
<ADDRESS>120 Hanover Sq.</ADDRESS>
<CITY>London</CITY>
<PHONE>(171) 555-7788</PHONE>

</CUSTOMER>
</CUSTOMERS>

As is the case with URL queries, you can format the final results to be displayed in
HTML. In this case, simply change Customers1.xsl to Customers2.xsl. The result is
the HTML table created earlier, as shown in Listing 18.12.

LISTING 18.12 The Results from Using the Customers2.xsl Style Sheet Instead in the
Customers3.xml Template Query

<?xml version=”1.0”?>

<TABLE width=”100%”>
<TR bgcolor=”moccasin”>
<TD valign=”top”>Customer Id</TD>
<TD valign=”top”>Company</TD>
<TD valign=”top”>Contact</TD>
<TD valign=”top”>Address</TD>
<TD valign=”top”>City</TD>
<TD valign=”top”>Phone</TD>

</TR>
<TR bgcolor=”white”>
<TD valign=”top”>ALFKI</TD>
<TD valign=”top”>Alfreds Futterkiste</TD>
<TD valign=”top”>Maria Anders</TD>
<TD valign=”top”>Obere Str. 57</TD>
<TD valign=”top”>Test</TD>
<TD valign=”top”>030-0074321</TD>

</TR>
<TR bgcolor=”white”>
<TD valign=”top”>ANATR</TD>

Using XML in the .NET Enterprise Servers

CHAPTER 18
791

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 791

LISTING 18.12 continued

<TD valign=”top”>Ana Trujillo Emparedados y helados</TD>
<TD valign=”top”>Ana Trujillo</TD>
<TD valign=”top”>Avda. de la Constitución 2222</TD>
<TD valign=”top”>México D.F.</TD>
<TD valign=”top”>(5) 555-4729</TD>

</TR>
<TR bgcolor=”white”>
<TD valign=”top”>ANTON</TD>
<TD valign=”top”>Antonio Moreno Taquería</TD>
<TD valign=”top”>Antonio Moreno</TD>
<TD valign=”top”>Mataderos 2312</TD>
<TD valign=”top”>México D.F.</TD>
<TD valign=”top”>(5) 555-3932</TD>

</TR>
<TR bgcolor=”white”>
<TD valign=”top”>AROUT</TD>
<TD valign=”top”>Around the Horn</TD>
<TD valign=”top”>Thomas Hardy</TD>
<TD valign=”top”>120 Hanover Sq.</TD>
<TD valign=”top”>London</TD>
<TD valign=”top”>(171) 555-7788</TD>

</TR>
</TABLE>

Template queries can also accept parameters to help filter the result set. Specifying that
we only want the customers whose CustomerID begins with the letter A is kind of short
sighted. It would make a lot more sense to allow the value of the CustomerID to vary.
Therefore, the template file could be rewritten as shown in Listing 18.13.

LISTING 18.13 Customers4.xml Contains a Parameterized Template QUERY

<Results xmlns:sql=”urn:schemas-microsoft-com:xml-sql” >
<sql:header>
<sql:param name=’CustomerId’>%</sql:param>

</sql:header>
<sql:query>
Select * From Customers Where CustomerID Like @CustomerId For XML Auto

</sql:query>
</Results>

In this example, we specify that the template query will accept one parameter,
CustomerId, and that this parameter has a default value of %, which, in conjunction with
the query, will return all records from the Customers table. To execute this query, we just
provide the following URL:

http://localhost/sql2000/template/customers.xml?CustomerId=A%25

Building XML-Based Applications

PART II
792

21 0672323419 CH18 3/15/04 11:24 AM Page 792

Now we can return any number of records from the Customers table. For instance, if we
supply the URL

http://localhost/sql2000/template/customers.xml?CustomerId=B%25

we’d get the result set shown in Listing 18.14.

LISTING 18.14 The Results from Navigating to the Customers4.xml Template Query

<Results xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>

<Customers CustomerID=”BERGS” CompanyName=”Berglunds snabbköp”
➥ ContactName=”Christina Berglund” ContactTitle=
➥ ”Order Administrator” Address=”Berguvsvägen 8” City=
➥ ”Luleå” PostalCode=”S-958 22” Country=”Sweden” Phone=
➥ ”0921-12 34 65” Fax=”0921-12 34 67”/>
<Customers CustomerID=”BLAUS” CompanyName=”Blauer See

➥ Delikatessen” ContactName=”Hanna Moos” ContactTitle=
➥ ”Sales Representative” Address=”Forsterstr. 57” City=
➥ ”Mannheim” PostalCode=”68306” Country=”Germany” Phone=
➥ ”0621-08460” Fax=”0621-08924”/>
<Customers CustomerID=”BLONP” CompanyName=”Blondesddsl père

➥ et fils” ContactName=”Frédérique Citeaux” ContactTitle=
➥ ”Marketing Manager” Address=”24, place Kléber” City=
➥ ”Strasbourg” PostalCode=”67000” Country=”France” Phone=
➥ ”88.60.15.31” Fax=”88.60.15.32”/>
<Customers CustomerID=”BOLID” CompanyName=”Bólido Comidas

➥ preparadas” ContactName=”Martín Sommer” ContactTitle=
➥ ”Owner” Address=”C/ Araquil, 67” City=”Madrid”
➥ PostalCode=”28023” Country=”Spain” Phone=
➥ ”(91) 555 22 82” Fax=”(91) 555 91 99”/>
<Customers CustomerID=”BONAP” CompanyName=”Bon app’” ContactName=
➥ ”Laurence Lebihan” ContactTitle=”Owner” Address=
➥ ”12, rue des Bouchers” City=”Marseille” PostalCode=
➥ ”13008” Country=”France” Phone=”91.24.45.40” Fax=
➥ ”91.24.45.41”/>
<Customers CustomerID=”BOTTM” CompanyName=”Bottom-Dollar

➥ Markets” ContactName=”Elizabeth Lincoln” ContactTitle=
➥ ”Accounting Manager” Address=”23 Tsawassen Blvd.” City=
➥ ”Tsawassen” Region=”BC” PostalCode=”T2F 8M4” Country=
➥ ”Canada” Phone=”(604) 555-4729” Fax=”(604) 555-3745”/>
<Customers CustomerID=”BSBEV” CompanyName=”B’s Beverages”

➥ ContactName=”Victoria Ashworth” ContactTitle=”Sales
➥ Representative” Address=”Fauntleroy Circus” City=
➥ ”London” PostalCode=”EC2 5NT” Country=”UK” Phone=
➥ ”(171) 555-1212”/>

</Results>

Using XML in the .NET Enterprise Servers

CHAPTER 18
793

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 793

XPath Queries
Previously, when SQL Server 2000 initially shipped at the beginning of 2001, support
had not been included for annotated XSD schemas. Therefore, everyone was forced to
create annotated XDR schemas. However, with Web Release 2 for SQL Server 2000,
support for creating annotated XSD schemas has been added. Although annotated XDR
schemas are still supported for backward compatibility, the XDR schemas will most
likely be phased out in favor of the XSD schemas.

Two basic attributes and one basic element are needed to author annotated XSD schemas.
The attributes needed are sql:field and sql:relation. The element is sql:relation-
ship. The sql:relation attribute is used to map an element to a table. This has the
effect of creating one XML element for every record in the table. The sql:field
attribute is used to map a particular attribute or node value to a field from the related
table. The sql:relationship element is used to relate elements within the XML docu-
ment to other elements. It defines the two tables and the join condition necessary to
relate them together.

Using those attributes and elements, an annotated XSD schema can be authored to return
data from SQL Server 2000 in a specific format. The only required attribute is
sql:relation. This attribute refers to a table or view in the database and can be placed
on an element in the XSD schema. The schema shown in Listing 18.15 is a simple exam-
ple of using an sql:relation attribute in an annotated XSD schema for the Customers
table in the Northwind database.

LISTING 18.15 Customers1.xsd Contains an Annotated XSD Schema for Customers
Within the Northwind Database

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
➥ xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>
<xsd:element name=”CUSTOMER” sql:relation=”Customers”>
<xsd:complexType>
<xsd:attribute name=”CustomerID” type=”xsd:string”/>
<xsd:attribute name=”CompanyName” type=”xsd:string”/>
<xsd:attribute name=”ContactName” type=”xsd:string”/>
<xsd:attribute name=”Address” type=”xsd:string”/>
<xsd:attribute name=”City” type=”xsd:string”/>
<xsd:attribute name=”Phone” type=”xsd:string”/>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Building XML-Based Applications

PART II
794

21 0672323419 CH18 3/15/04 11:24 AM Page 794

Because the sql:relation attribute is specified on an xsd:element element within our
schema, the relation is inherited by all elements and attributes contained within the ele-
ment declaration. This means we do not need to specify the sql:relation attribute on
every <element> or <attribute> element within our schema. Because we defined our
attribute names exactly how they exist in the Northwind database, we don’t need to use
the sql:field attribute. Keep in mind that XML is case sensitive. Therefore, the
attribute names defined earlier must match exactly with the field names defined in the
database for this XSD schema to work. This schema, when used for an XPath query for
all customers within the City of London, returns an XML document whose structure
matches that of the one defined in the schema, as shown here:

<?xml version=”1.0”?>

<Results>
<CUSTOMER City=”London” CompanyName=”Around the Horn”

➥ CustomerID=”AROUT” Address=”120 Hanover Sq.”
➥ ContactName=”Thomas Hardy” Phone=”(171) 555-7788”/>
<CUSTOMER City=”London” CompanyName=”B’s Beverages”

➥ CustomerID=”BSBEV” Address=”Fauntleroy Circus”
➥ ContactName=”Victoria Ashworth” Phone=”(171) 555-1212”/>
<CUSTOMER City=”London” CompanyName=”Consolidated Holdings”

➥ CustomerID=”CONSH” Address=”Berkeley Gardens 12 Brewery”
➥ ContactName=”Elizabeth Brown” Phone=”(171) 555-2282”/>
<CUSTOMER City=”London” CompanyName=”Eastern Connection”

➥ CustomerID=”EASTC” Address=”35 King George” ContactName=
➥ ”Ann Devon” Phone=”(171) 555-0297”/>
<CUSTOMER City=”London” CompanyName=”North/South” CustomerID=

➥ ”NORTS” Address=”South House 300 Queensbridge”
➥ ContactName=”Simon Crowther” Phone=”(171) 555-7733”/>
<CUSTOMER City=”London” CompanyName=”Seven Seas Imports”

➥ CustomerID=”SEVES” Address=”90 Wadhurst Rd.”
➥ ContactName=”Hari Kumar” Phone=”(171) 555-1717”/>
</Results>

The sql:field attribute may be used in conjunction with the sql:relation attribute to
create elements or attributes that do not exactly match their definitions in the database, as
demonstrated by the annotated XSD schema shown in Listing 18.16.

LISTING 18.16 Customers2.xsd Demonstrates How Fields from the Database Are
Mapped to Attributes Within the Output XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”
➥ xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<xsd:element name=”CUSTOMER” sql:relation=”Customers”>
<xsd:complexType>
<xsd:attribute name=”Id” type=”xsd:string” sql:field=”CustomerID”/>

Using XML in the .NET Enterprise Servers

CHAPTER 18
795

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 795

LISTING 18.16 continued

<xsd:attribute name=”Company” type=”xsd:string” sql:field=”CompanyName”/>
<xsd:attribute name=”Contact” type=”xsd:string” sql:field=”ContactName”/>
<xsd:attribute name=”Address” type=”xsd:string”/>
<xsd:attribute name=”City” type=”xsd:string”/>
<xsd:attribute name=”Phone” type=”xsd:string”/>

</xsd:complexType>
</xsd:element>

</xsd:schema>

When the schema in Listing 18.16 is used in the same XPath query, it will return the
following XML result set:

<?xml version=”1.0”?>

<Results>
<CUSTOMER City=”London” Id=”AROUT” Company=”Around the Horn”

➥ Address=”120 Hanover Sq.” Phone=”(171) 555-7788”
➥ Contact=”Thomas Hardy”/>
<CUSTOMER City=”London” Id=”BSBEV” Company=”B’s Beverages”

➥ Address=”Fauntleroy Circus” Phone=”(171) 555-1212”
➥ Contact=”Victoria Ashworth”/>
<CUSTOMER City=”London” Id=”CONSH” Company=”Consolidated

➥ Holdings” Address=”Berkeley Gardens 12 Brewery”
➥ Phone=”(171) 555-2282” Contact=”Elizabeth Brown”/>
<CUSTOMER City=”London” Id=”EASTC” Company=”Eastern Connection”

➥ Address=”35 King George” Phone=”(171) 555-0297”
➥ Contact=”Ann Devon”/>
<CUSTOMER City=”London” Id=”NORTS” Company=”North/South”

➥ Address=”South House 300 Queensbridge” Phone=
➥ ”(171) 555-7733” Contact=”Simon Crowther”/>
<CUSTOMER City=”London” Id=”SEVES” Company=”Seven Seas Imports”

➥ Address=”90 Wadhurst Rd.” Phone=”(171) 555-1717”
➥ Contact=”Hari Kumar”/>
</Results>

Now let’s say we don’t like having the fields mapped to attributes. Instead, we could use
the schema in Listing 18.17 to produce an XML document with elements for the fields in
the Customers table.

LISTING 18.17 Customers3.xsd Demonstrates How Fields from the Database Can Be
Mapped to Elements Within the Output XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
➥ xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>
<xsd:element name=”CUSTOMER” sql:relation=”Customers”>
<xsd:complexType>

Building XML-Based Applications

PART II
796

21 0672323419 CH18 3/15/04 11:24 AM Page 796

LISTING 18.17 continued

<xsd:all>
<xsd:element name=”CUSTOMERID” type=”xsd:string”

➥ sql:field=”CustomerID”/>
<xsd:element name=”COMPANY” type=”xsd:string”

➥ sql:field=”CompanyName”/>
<xsd:element name=”CONTACT” type=”xsd:string”

➥ sql:field=”ContactName”/>
<xsd:element name=”ADDRESS” type=”xsd:string”

➥ sql:field=”Address”/>
<xsd:element name=”CITY” type=”xsd:string”

➥ sql:field=”City”/>
<xsd:element name=”PHONE” type=”xsd:string”

➥ sql:field=”Phone”/>
</xsd:all>

</xsd:complexType>
</xsd:element>

</xsd:schema>

If we use the preceding annotated XSD schema in the same XPath query as before, the
XML shown in Listing 18.18 is returned by SQL Server 2000.

LISTING 18.18 The Resulting XML Document from Executing an XPath Query
Against the Customers3.xsd Schema

<?xml version=”1.0”?>

<Results>
<CUSTOMER>
<CUSTOMERID>AROUT</CUSTOMERID>
<COMPANY>Around the Horn</COMPANY>
<CONTACT>Thomas Hardy</CONTACT>
<ADDRESS>120 Hanover Sq.</ADDRESS>
<CITY>London</CITY>
<PHONE>(171) 555-7788</PHONE>

</CUSTOMER>
<CUSTOMER>
<CUSTOMERID>BSBEV</CUSTOMERID>
<COMPANY>B’s Beverages</COMPANY>
<CONTACT>Victoria Ashworth</CONTACT>
<ADDRESS>Fauntleroy Circus</ADDRESS>
<CITY>London</CITY>
<PHONE>(171) 555-1212</PHONE>

</CUSTOMER>
<CUSTOMER>
<CUSTOMERID>CONSH</CUSTOMERID>
<COMPANY>Consolidated Holdings</COMPANY>
<CONTACT>Elizabeth Brown</CONTACT>

Using XML in the .NET Enterprise Servers

CHAPTER 18
797

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 797

LISTING 18.18 continued

<ADDRESS>Berkeley Gardens 12 Brewery</ADDRESS>
<CITY>London</CITY>
<PHONE>(171) 555-2282</PHONE>

</CUSTOMER>
<CUSTOMER>
<CUSTOMERID>EASTC</CUSTOMERID>
<COMPANY>Eastern Connection</COMPANY>
<CONTACT>Ann Devon</CONTACT>
<ADDRESS>35 King George</ADDRESS>
<CITY>London</CITY>
<PHONE>(171) 555-0297</PHONE>

</CUSTOMER>
<CUSTOMER>
<CUSTOMERID>NORTS</CUSTOMERID>
<COMPANY>North/South</COMPANY>
<CONTACT>Simon Crowther</CONTACT>
<ADDRESS>South House 300 Queensbridge</ADDRESS>
<CITY>London</CITY>
<PHONE>(171) 555-7733</PHONE>

</CUSTOMER>
<CUSTOMER>
<CUSTOMERID>SEVES</CUSTOMERID>
<COMPANY>Seven Seas Imports</COMPANY>
<CONTACT>Hari Kumar</CONTACT>
<ADDRESS>90 Wadhurst Rd.</ADDRESS>
<CITY>London</CITY>
<PHONE>(171) 555-1717</PHONE>

</CUSTOMER>
</Results>

In addition to using the sql:relation and sql:field attributes, we can use the
sql:relationship element, which must be used within the <xsd:appinfo> element, to
produce nested XML documents in which elements may contain related child elements.
Four attributes of the sql:relationship element must be specified: parent, parent-
key, child, and child-key. The parent attribute specifies the parent table, and the par-
ent-key attribute specifies the key on the parent table to use to relate it to a child table.
The child attribute specifies the child table, and the child-key attribute specifies the
key on the child table used to relate it to the parent table. When these four attributes are
used in conjunction with the sql:relationship element, SQL Server 2000 is able to
relate and nest XML elements using the values specified in the attributes of the
sql:relationship element, as shown in the annotated XSD schema in Listing 18.19.

Building XML-Based Applications

PART II
798

21 0672323419 CH18 3/15/04 11:24 AM Page 798

LISTING 18.19 Customers4.xsd Demonstrates How to Create a Relationship Between
Two Tables

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”
➥ xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<xsd:element name=”CUSTOMER” sql:relation=”Customers”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”CUSTOMERID” type=”xsd:string”

➥ sql:field=”CustomerID”/>
<xsd:element name=”COMPANY” type=”xsd:string”

➥ sql:field=”CompanyName”/>
<xsd:element name=”CONTACT” type=”xsd:string”

➥ sql:field=”ContactName”/>
<xsd:element name=”ADDRESS” type=”xsd:string”

➥ sql:field=”Address”/>
<xsd:element name=”CITY” type=”xsd:string”

➥ sql:field=”City”/>
<xsd:element name=”PHONE” type=”xsd:string”

➥ sql:field=”Phone”/>

<xsd:element name=”ORDER” maxOccurs=”unbounded”
➥ sql:relation=”Orders”>

<xsd:annotation>
<xsd:appinfo>
<sql:relationship parent=”Customers” parent-key=

➥ ”CustomerID” child=”Orders” child-key=”CustomerID”/>
</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>
<xsd:sequence>
<xsd:element name=”ORDERID” type=”xsd:integer”

➥ sql:field=”OrderID”/>
<xsd:element name=”ORDERDATE” type=”xsd:date”

➥ sql:field=”OrderDate”/>

<xsd:element name=”DETAILS” maxOccurs=”unbounded”
➥ sql:relation=”[Order Details]”>

<xsd:annotation>
<xsd:appinfo>
<sql:relationship parent=”Orders” parent-key=

➥ ”OrderID” child=”[Order Details]” child-key=”OrderID”/>
</xsd:appinfo>

</xsd:annotation>

Using XML in the .NET Enterprise Servers

CHAPTER 18
799

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 799

LISTING 18.19 continued

<xsd:complexType>
<xsd:sequence>
<xsd:element name=”ORDERID” type=

➥ ”xsd:integer” sql:field=”OrderID”/>
<xsd:element name=”PRODUCTID” type=

➥ ”xsd:integer” sql:field=”ProductID”/>
<xsd:element name=”UNITPRICE” sql:field=

➥ ”UnitPrice”>
<xsd:simpleType>
<xsd:restriction base=”xsd:decimal”>
<xsd:fractionDigits value=”2”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name=”QUANTITY” type=

➥ ”xsd:positiveInteger” sql:field=”Quantity”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Performing an XPath query for the customer with the CustomerID ALFKI against
the preceding annotated XSD schema will produce the following result shown in
Listing 18.20.

LISTING 18.20 The Results from an XPath Query Against Customers4.xsd

<?xml version=”1.0”?>

<Results>
<CUSTOMER>
<CUSTOMERID>ALFKI</CUSTOMERID>
<COMPANY>Alfreds Futterkiste</COMPANY>
<CONTACT>Maria Anders</CONTACT>
<ADDRESS>Obere Str. 57</ADDRESS>
<CITY>Test</CITY>
<PHONE>030-0074321</PHONE>
<ORDER>
<ORDERID>10643</ORDERID>
<ORDERDATE>1997-08-25</ORDERDATE>
<DETAILS>

Building XML-Based Applications

PART II
800

21 0672323419 CH18 3/15/04 11:24 AM Page 800

LISTING 18.20 continued

<ORDERID>10643</ORDERID>
<PRODUCTID>28</PRODUCTID>
<UNITPRICE>45.6</UNITPRICE>
<QUANTITY>15</QUANTITY>

</DETAILS>
<DETAILS>
<ORDERID>10643</ORDERID>
<PRODUCTID>39</PRODUCTID>
<UNITPRICE>18</UNITPRICE>
<QUANTITY>21</QUANTITY>

</DETAILS>
<DETAILS>
<ORDERID>10643</ORDERID>
<PRODUCTID>46</PRODUCTID>
<UNITPRICE>12</UNITPRICE>
<QUANTITY>2</QUANTITY>

</DETAILS>
</ORDER>
<ORDER>
<ORDERID>10692</ORDERID>
<ORDERDATE>1997-10-03</ORDERDATE>
<DETAILS>
<ORDERID>10692</ORDERID>
<PRODUCTID>63</PRODUCTID>
<UNITPRICE>43.9</UNITPRICE>
<QUANTITY>20</QUANTITY>

</DETAILS>
</ORDER>
<ORDER>
<ORDERID>10702</ORDERID>
<ORDERDATE>1997-10-13</ORDERDATE>
<DETAILS>
<ORDERID>10702</ORDERID>
<PRODUCTID>3</PRODUCTID>
<UNITPRICE>10</UNITPRICE>
<QUANTITY>6</QUANTITY>

</DETAILS>
<DETAILS>
<ORDERID>10702</ORDERID>
<PRODUCTID>76</PRODUCTID>
<UNITPRICE>18</UNITPRICE>
<QUANTITY>15</QUANTITY>

</DETAILS>
</ORDER>
<ORDER>
<ORDERID>10835</ORDERID>
<ORDERDATE>1998-01-15</ORDERDATE>
<DETAILS>
<ORDERID>10835</ORDERID>

Using XML in the .NET Enterprise Servers

CHAPTER 18
801

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 801

LISTING 18.20 continued

<PRODUCTID>59</PRODUCTID>
<UNITPRICE>55</UNITPRICE>
<QUANTITY>15</QUANTITY>

</DETAILS>
<DETAILS>
<ORDERID>10835</ORDERID>
<PRODUCTID>77</PRODUCTID>
<UNITPRICE>13</UNITPRICE>
<QUANTITY>2</QUANTITY>

</DETAILS>
</ORDER>
<ORDER>
<ORDERID>10952</ORDERID>
<ORDERDATE>1998-03-16</ORDERDATE>
<DETAILS>
<ORDERID>10952</ORDERID>
<PRODUCTID>6</PRODUCTID>
<UNITPRICE>25</UNITPRICE>
<QUANTITY>16</QUANTITY>

</DETAILS>
<DETAILS>
<ORDERID>10952</ORDERID>
<PRODUCTID>28</PRODUCTID>
<UNITPRICE>45.6</UNITPRICE>
<QUANTITY>2</QUANTITY>

</DETAILS>
</ORDER>
<ORDER>
<ORDERID>11011</ORDERID>
<ORDERDATE>1998-04-09</ORDERDATE>
<DETAILS>
<ORDERID>11011</ORDERID>
<PRODUCTID>58</PRODUCTID>
<UNITPRICE>13.25</UNITPRICE>
<QUANTITY>40</QUANTITY>

</DETAILS>
<DETAILS>
<ORDERID>11011</ORDERID>
<PRODUCTID>71</PRODUCTID>
<UNITPRICE>21.5</UNITPRICE>
<QUANTITY>20</QUANTITY>

</DETAILS>
</ORDER>

</CUSTOMER>
</Results>

Building XML-Based Applications

PART II
802

21 0672323419 CH18 3/15/04 11:24 AM Page 802

But wait, why is there so much interest in creating annotated XSD schemas?
Unfortunately, these files have to exist to perform an XPath query. Basically, to
perform an XPath query, the syntax is as follows:

http://servername/sqlvirtualdirectory/schemavirtualdirectory/
➥ schemafilename/Xpathexpression?Root=RootNodeName

Because we’ve already covered the syntax for XPath expressions in Chapter 4,
“Creating XML Schemas,” we will not go over it again here. The main difference you
need to keep in mind is the exclusion of the root element within the expression because
it is not defined within the schema. For instance, the following XPath query would
result in an error:

http://localhost/sql2000/schema/customers.xsd/Results/CUSTOMER?
➥ Root=Results

Instead, you need to write this XPath query as follows:

http://localhost/sql2000/schema/customers.xsd/CUSTOMER?Root=Results

XML Updategrams
Rather than having to code multiple stored procedures to handle the inserting, updating,
and deleting of records within a database, you can use XML updategrams instead. These
XML documents are posted to SQL Server’s virtual directory and are intercepted by the
SQL ISAPI extension. By using various elements within an XML updategram, SQL
Server can modify the data in the database accordingly.

The basic premise behind an XML updategram is that it behaves the same as a template
and uses a snapshot of information, both before and after changes are made to the XML
fragment, to determine how SQL Server must proceed. By using a combination of
<sync> elements, which mark the beginning and end of a transaction, and <before> and
<after> elements, SQL Server can determine whether a new record is being created or
an existing record is being modified or deleted.

The <before> element identifies what the database’s existing state is. The <after>
element tells what the database’s new state will be. The <sync> element indicates
what a transaction encompasses. It contains one or more <before> and <after>
elements, and all the pairs within a <sync> element will be executed as one transaction.
Therefore, either everything within a <sync> element will be performed, or nothing
will be performed.

Using XML in the .NET Enterprise Servers

CHAPTER 18
803

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 803

Here’s the basic structure of an XML updategram:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync [mapping-schema= “XDRSchemaFile.xml”]>
<updg:before>

...
</updg:before>
<updg:after>

...
</updg:after>

</updg:sync>
</ROOT>

Note the inclusion of the updategram namespace: urn:schemas-microsoft-com:xml-
updategram. This namespace is required for XML updategrams. However, the actual
namespace you decide to use within your updategrams is completely up to you. For
instance, the following is also a perfectly valid XML updategram structure:

<ROOT xmlns:eps=”urn:schemas-microsoft-com:xml-updategram”>
<eps:sync [mapping-schema=”XDRSchemaFile.xml”]>
<eps:before>

...
</eps:before>
<eps:after>

...
</eps:after>

</eps:sync>
</ROOT>

An XML updategram determines what function to perform based on the contents of the
<before> and <after> elements, which is outlined as follows:

• If a record’s XML definition appears only in the <before> element with no corre-
sponding definition in the <after> element, the XML updategram performs a
delete operation.

• If a record’s XML appears only in the <after> element with no corresponding
XML in the <before> element, an insert operation is performed.

• If the XML for a record appears in the <before> element and has a corresponding
definition in the <after> element, an update operation is performed. In this case,
the updategram updates the record instance to the values specified in the <after>
element.

Mapping the XML to the Database
An XML updategram can map the XML back into the database either implicitly or
explicitly. In other words, specifying the XDR schema in the updategram is optional as
long as you follow a few simple rules. First and foremost, remember that you must use

Building XML-Based Applications

PART II
804

21 0672323419 CH18 3/15/04 11:24 AM Page 804

FOR XML AUTO or FOR XML AUTO,ELEMENTS in order to use the default mapping that SQL
ISAPI provides.

In simple insert, update, and delete scenarios, implicit mapping may be enough to per-
form the necessary operation on the given XML fragment. SQL ISAPI will attempt to
map the elements and attributes back to the database in a fashion that’s similar to how it
maps the database to an XML fragment using FOR XML AUTO. The key for this approach
to work, however, is that each element, which represents a table, must be named the
same as the table name. Remember, XML is case sensitive. Also, each element or
attribute that represents a field must be named likewise. For instance, the following XML
updategram will insert a new customer into the Customers table of the Northwind data-
base:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >

<updg:before>
</updg:before>
<updg:after>

<Customers CustomerID=”TEST” CompanyName=”Test insert comp.”/>
</updg:after>

</updg:sync>
</ROOT>

By examining the preceding XML updategram, you can see how SQL Server identifies
how it must behave. Given this XML updategram, SQL ISAPI sees that there is nothing
in the <before> element that corresponds to anything in the <after> element, so it deter-
mines that an insert operation must be performed. SQL ISAPI also examines the contents
of the <after> element and determines from the existence of the <Customers> element
that a new record will be inserted into the Customers table. Furthermore, SQL ISAPI
realizes that two fields will have values specified for them—CustomerID and
CompanyName—based on the occurrence of attributes with those names.

For complex mappings, you can explicitly identify an annotated XSD schema to use in
order to map the elements and attributes back to the appropriate tables and fields in the
database. Each transaction unit, identified by a <sync> element, can have its own map-
ping schema to use to map elements and attributes back into the database.

Implicit Mapping in Updategrams
An element-centric updategram is comprised of elements that contain subelements. The
elements map to a table in the database, and the subelements map to fields within that
table. Therefore, to use element-centric mapping, we need an XML document that looks
something like this:

Using XML in the .NET Enterprise Servers

CHAPTER 18
805

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 805

<Customers>
<CustomerID>TEST</CustomerID>
<CompanyName>Test insert comp</CompanyName>

</Customers>

In this case, to perform an insert operation, we would construct the following
updategram:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >

<updg:after>
<Customers>

<CustomerID>TEST</CustomerID>
<CompanyName>Test insert comp</CompanyName>

</Customers>
</updg:after>

</updg:sync>
</ROOT>

Building XML-Based Applications

PART II
806

Note

Although, this time, there is no <before> element, the updategram will still
work. That’s because for an insert operation, there is no corresponding informa-
tion for the record; therefore, the <before> element is optional. The same holds
true for a delete operation. Because there will not be any corresponding infor-
mation after the deletion, the <after> element can be omitted.

For attribute-centric mappings, the table element contains attributes that map to fields
within the table. Therefore, the previous example could be represented in an attribute-
centric approach by using an XML document, like this:

<Customers CustomerID=”TEST” CompanyName=”Test insert comp”/>

An XML updategram like this one would also be used:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >

<updg:after>
<Customers CustomerID=”TEST” CompanyName=”Test insert comp”/>

</updg:after>
</updg:sync>

</ROOT>

Interestingly enough, a combination of element-centric and attribute-centric mappings
can be used. As long as the elements and attributes map back into the database using the
default mapping provided by FOR XML AUTO, the two approaches can be mixed. For
instance, imagine the following XML document:

21 0672323419 CH18 3/15/04 11:24 AM Page 806

<Customers CustomerID=”Test”>
<CompanyName>Test insert comp</CompanyName>

</Customers>

This record could be inserted into SQL Server by using an XML updategram like the
following:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >

<updg:after>
<Customers CustomerID=”TEST”>

<CompanyName>Test insert comp</CompanyName>
</Customers>

</updg:after>
</updg:sync>

</ROOT>

Explicit Mapping in Updategrams
In the case of complex mappings, an annotated XSD schema can be specified for each
transaction the XML updategram performs by specifying the name of the corresponding
XDR schema in the mapping-schema attribute of the <sync> element. By doing this,
explicit mapping is chosen, and every element and attribute of the XML document must
map to the elements and attributes within the specified XSD schema. For example, in a
simple case, an annotated XSD schema could contain the following:

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
➥ xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:element name=”CUSTOMER” sql:relation=”Customers”>
<xsd:complexType>

<xsd:attribute name=”CustomerID” type=”xsd:string”/>
<xsd:attribute name=”CompanyName” type=”xsd:string”/>
<xsd:attribute name=”ContactName” type=”xsd:string”/>
<xsd:attribute name=”Address” type=”xsd:string”/>
<xsd:attribute name=”City” type=”xsd:string”/>
<xsd:attribute name=”Phone” type=”xsd:string”/>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Using this schema, an XML document like the following could be placed into an XML
updategram:

<CUSTOMER CustomerID=”TEST” CompanyName=”Test insert comp”
➥ ContactName=”Test contact” Address=”Some address”
➥ City=”Unknown” Phone=”9999999”/>

To insert this XML document into the Customers table of the Northwind database, we
need to post an updategram like the following to the SQL Server virtual directory:

Using XML in the .NET Enterprise Servers

CHAPTER 18
807

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 807

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync mapping-schema=”SampleSchema1.xml”>

<updg:after>
<CUSTOMER CustomerID=”TEST” CompanyName=

➥ ”Test insert comp” ContactName=”Test contact” Address=
➥ ”Some address” City=”Unknown” Phone=”9999999”/>

</updg:after>
</updg:sync>

</ROOT>

However, the XSD schemas and the corresponding XML documents that will be inserted
can get quite complex. For instance, the XSD schema shown in Listing 18.19, maps
fields and tables from the Northwind database into a hierarchical XML document.

Based on the schema in Listing 18.19, an XML document like the following could be
placed into an XML updategram:

<CUSTOMER>
<CUSTOMERID>TEST</CUSTOMERID>
<COMPANY>Test insert comp</COMPANY>
<CONTACT>Test contact</CONTACT>
<ADDRESS>Test address</ADDRESS>
<CITY>Test city</CITY>
<PHONE>9999999</PHONE>
<ORDER updg:at-identity=”OrderId”>

<ORDERDATE>2001-07-23</ORDERDATE>
<DETAILS>

<ORDERID></ORDERID>
<PRODUCTID>28</PRODUCTID>
<UNITPRICE>45.6</UNITPRICE>
<QUANTITY>15</QUANTITY>

</DETAILS>
</ORDER>

</CUSTOMER>

Given this XML document, the information could be inserted by creating the XML
updategram shown in Listing 18.21.

LISTING 18.21 A Sample XML Updategram Using a Mapping Schema

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync mapping-schema=”../Schema/Customers4.xsd”>

<updg:after>
<CUSTOMER>

<CUSTOMERID>TEST</CUSTOMERID>
<COMPANY>Test insert comp</COMPANY>
<CONTACT>Test contact</CONTACT>
<ADDRESS>Test address</ADDRESS>
<CITY>Test city</CITY>
<PHONE>9999999</PHONE>

Building XML-Based Applications

PART II
808

21 0672323419 CH18 3/15/04 11:24 AM Page 808

LISTING 18.21 continued

<ORDER updg:at-identity=”OrderId”>
<ORDERDATE>2001-07-23</ORDERDATE>
<DETAILS>

<ORDERID>OrderId</ORDERID>
<PRODUCTID>28</PRODUCTID>
<UNITPRICE>45.6</UNITPRICE>
<QUANTITY>15</QUANTITY>

</DETAILS>
</ORDER>

</CUSTOMER>
</updg:after>

</updg:sync>
</ROOT>

This example uses a new attribute for the updategram: at-identity. This attribute cap-
tures the identity value for the identity column of the referenced table and stores it in the
specified variable for later use in the updategram, as shown in the <ORDERID> element
contained in the <DETAILS> element.

NULL Handling in Updategrams
NULL fields in SQL Server are not returned in the XML document. However, it is some-
times useful to set a field to NULL. Using updategrams, this can be accomplished by
using the nullvalue attribute on a <sync> element. When the nullvalue attribute is
specified in an <sync> element, SQL ISAPI can determine that when it encounters the
specified string, it should insert NULL into the field. For instance, to insert a NULL
value into the CompanyName field of the Customers table in the Northwind database, we
could use the following XML updategram:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync updg:nullvalue=”.NULL.” >

<updg:before>
<Customers CustomerID=”ALFKI”/>

</updg:before>
<updg:after>
<Customers CustomerID=”ALFKI” CompanyName=”.NULL.” />

</updg:after>
</updg:sync>

</ROOT>

When SQL ISAPI encounters the .NULL. value in the CompanyName attribute, it inserts
NULL into the CompanyName field.

Using XML in the .NET Enterprise Servers

CHAPTER 18
809

18

U
SIN

G
X

M
L

.N
ET E

N
TER

PR
ISE

S
ER

V
ER

S

21 0672323419 CH18 3/15/04 11:24 AM Page 809

Executing Updategrams
Knowing how XML updategrams function is one thing, but how do we get SQL ISAPI to
perform the necessary operations? Quite simply, we can post the updategram to the SQL
Server virtual directory. This can be accomplished using an HTML page or the XMLHTTP
COM object available in MSXML2. For instance, we could use the following code in
Visual Basic to post an XML updategram to a SQL Server virtual directory called local-
host/sql2000:

Dim loPost As New MSXML2.xmlHttp
Dim loXML As New MSXML2.DOMDocument

loXML.Async=.F.
loXML.loadXML MyUpdateGram

‘ Post the template.
loPost.Open “POST”, “http://localhost/sql2000”, False
loPost.setRequestHeader “Content-type”, “text/xml”
loPost.send loXML

We can then query the ResponseText property of the XMLHTTP object to find out whether
an error occurred and what the result was.

Summary
XML is quickly becoming the preferred method of passing information, not only for the
Internet, but also across applications, and even within the same application. Until now,
developers have been forced to create their own routines to automate messaging and to
convert data contained within a database into XML.

Now, with BizTalk Server 2000 and SQL Server 2000, much of these tasks can be han-
dled in a more efficient manner. That leaves the developer with more time to perform the
important tasks of programming, by not having to worry about writing automated mes-
saging systems or documenting routing systems and by not having to write conversion
routines to convert relational data into XML. What else can be said, except that the
future looks bright.

Building XML-Based Applications

PART II
810

21 0672323419 CH18 3/15/04 11:24 AM Page 810

Applied XML
PART

III
IN THIS PART

19 Understanding XML Standards 813

20 Implementing XML in e-Business 847

21 Delivering Wireless and Voice Services
with XML 889

22 Applied XML in Vertical Industry 941

22 0672323419 Part 3 3/15/04 11:24 AM Page 811

22 0672323419 Part 3 3/15/04 11:24 AM Page 812

IN THIS CHAPTER

• Standards and Vocabularies 814

• Standards Organizations: Who Is
Creating the Standards? 820

• Standards Stack Layers 834

• Standards Stack Aspects 839

• Community Vocabularies Layer 842

19
C

H
A

PT
ER

Understanding
XML Standards

23 0672323419 CH19 3/15/04 11:24 AM Page 813

So far, you have heard all about XML and the various components that make up the tech-
nology. Already you’ve been immersed in an alphabet soup of acronyms and abbrevia-
tions—XML, XSL, XPath, XLink, DOM, and SAX—and this is just the tip of the
iceberg. There are literally hundreds of XML-based specifications and standards that
leverage these “core” XML specifications. How can we identify these various initiatives
and keep them separated in our minds from other initiatives and specifications?

In many different technology practices, a common metaphor has been used to identify
the wide set of specifications and standards that impact that particular technology seg-
ment. This metaphor is called the standards stack, because it not only shows the various
specifications and standards but also how they interrelate. This metaphor, which is more
visual rather than logical, helps to separate and identify the key specifications worth
tracking and those that are tangential to the problem being solved.

In this chapter, we will examine standards stacks and explore the stack that is most rele-
vant to the XML universe. In particular, you will learn

• What exactly an XML standard is

• What organizations are involved in standards setting

• What the standards stack is

• What the horizontal “layers” in the XML standards stack are

• What the vertical “aspects” to the XML standards stack are

• What convergence is happening in the XML standards space

Standards and Vocabularies
At the XML ’99 conference, Steve McVey of Sterling Commerce remarked, “XML is
very flexible. Everyone can do their own thing, and, by golly, everyone is!” The increas-
ing prevalence and use of XML as a key, important business tool has resulted in its use in
every nook and cranny where data is consumed and produced. In the case of business
and industry, its use has spurred the development of document structures and markup ele-
ments specific to industries, industry segments, and individual businesses. These speci-
fied document structures and markup elements are known as vocabularies. Just as in the
English sense of the word, a vocabulary is a set of agreed-upon language constructs that
mean the same things to all parties using them. In many ways, vocabularies that are
defined within user communities and have a well-defined mechanisms for their mainte-
nance are called standards. But this usage of the term standard is somewhat controver-
sial. Many consider a standard to be one that has been in use by a large population for a

Applied XML

PART III
814

23 0672323419 CH19 3/15/04 11:24 AM Page 814

given number of years, whereas others consider a standard to be a well-defined specifica-
tion that addresses the needs of a wide user base. Despite the definition, the net result of
the widespread use of XML has resulted in hundreds of industry vocabularies, specifica-
tions, and standards.

Understanding XML Standards

CHAPTER 19
815

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

The Definition of “Standard” as Excerpted from the American Heritage
Dictionary

Noun: 1. A flag, banner, or ensign, especially: a. The ensign of a chief of state,
nation, or city. b. A long, tapering flag bearing heraldic devices distinctive of a
person or corporation. c. An emblem or flag of an army, raised on a pole to
indicate the rallying point in battle. d. The colors of a mounted or motorized
military unit.

2a. An acknowledged measure of comparison for quantitative or qualitative
value; a criterion. b. An object that under specified conditions defines, repre-
sents, or records the magnitude of a unit.

3. The set proportion by weight of gold or silver to alloy metal prescribed for
use in coinage.

4. The commodity or commodities used to back a monetary system.

5. Something, such as a practice or a product, that is widely recognized or
employed, especially because of its excellence.

6a. A degree or level of requirement, excellence, or attainment. b. A require-
ment of moral conduct. Often used in the plural.

7. Chiefly British. A grade level in elementary schools.

8. A pedestal, stand, or base.

9. Botany. a. The large upper petal of the flower of a pea or related plant. b.
One of the narrow upright petals of an iris. Also called banner, vexillum.

10. A shrub or small tree that through grafting or training has a single stem of
limited height with a crown of leaves and flowers at its apex.

11. Music. A composition that is continually used in repertoires.

Adjective: 1. Serving as or conforming to a standard of measurement or value.

2. Widely recognized or employed as a model of authority or excellence: a stan-
dard reference work.

3. Acceptable but of less than top quality: a standard grade of beef.

4. Normal, familiar, or usual: the standard excuse.

5. Commonly used or supplied: standard car equipment.

6. Linguistics. Conforming to established educated usage in speech or writing.

23 0672323419 CH19 3/15/04 11:24 AM Page 815

So, what exactly is an XML standard? This question is answered in two parts. The first
concerns the nature of a standard itself. Some will take issue with the term standard
when what may really be meant is initiative, application, or recommendation. Each of
these terms has definite validity and good reasons why it should be used instead of the
marshmallow-soft, inaccurate term standard. However, the lesser of all evils demands
that some expression be chosen. Inaccurate as it is, various forces have compelled the use
of the term standard when agreement is really what is meant. For the purposes of this
chapter, a standard is considered to be an agreement among multiple parties about the
definition, representation, or use of data and/or the technology used to exchange data. If
the chosen term still offends you, the reader, we encourage a mental “search and replace”
for standard with whatever term you find most appropriate.

Basically, standards are really about one thing: getting agreement. A standard represents
a codified representation of an agreement on how to perform a process or implement a
technology. For horizontal technologies, a standard represents an agreement on the repre-
sentation or implementation of a technology. For example, in the United States, electrical
outlets are 120 volts AC at 60 Hz using a particular outlet shape, whereas in the United
Kingdom, electrical outlets are 220 volts AC at 50 Hz using a different outlet shape. On
the other hand, vertical or business standards represent an agreement on a particular

Applied XML

PART III
816

Etymology: Middle English, from Old French estandard, rallying place, probably
from Frankish *standhard : *standan, to stand.

As you can tell from this dictionary excerpt, there are many, somewhat conflict-
ing definitions of the word standard. Therefore, it is no surprise that technolo-
gists and business wonks cannot agree on what constitutes an XML “standard.”
However, the terms in italics represent some of the better definitions of what a
standard is in the context of our discussion. To many, commonly accepted prac-
tices or products have earned “de facto” standard status. This includes the
Windows platform, the metric system, and even the width of railroad tracks (see
the sidebar later in this discussion). However, the use of the term excellence in
the preceding definition has oft been questioned when used in combination
with the word standard. Therefore, the more lenient definition of a commonly
used or supplied technology has been applied. However, some XML specifica-
tions have yet to be adopted or even produced. How can the term standard
apply to these specifications, then? Perhaps we can seek solace in the original
definition of the word standard as derived from the Old French: rallying point.
These efforts seek not to be known as pervasive and common but to serve as a
rallying point for those in the industry to agree on terms, processes, and other
conditions that may never have been possible in the past.

23 0672323419 CH19 3/15/04 11:24 AM Page 816

business process or methodology. For example, the United States legal system uses a spe-
cific language and process for the conduct of its operations and processes, whereas other
legal systems use different languages and processes.

The second part of the answer to the preceding question is that the basis of all the stan-
dards mentioned in this document is that they define an XML tag set, document type def-
inition (DTD), or a fragment thereof. Standards that do not comprise a definition of
XML tags, DTDs, or their interchange are not covered in this chapter.

The types of entities that are creating standards are almost as wide and varying as the
number of standards themselves, but they generally fall into one of the following
categories:

• Governmental bodies

• International or nongovernmental formal standards bodies

• Vertical industry consortia

• Ad-hoc groups of companies

• Individual companies

• Academic institutions

• Individuals

Many equate standards with the individuals or organizations that create them. The reason
for this is that the quality of a standard is dependent on the process that created it.
Standards organizations differ on many areas that will determine how completely a
specification is developed, and to what extent it will be used. These areas include the
following:

• The level of enforcement

• The definition process

• The management process

• The number and nature of participants

Clearly, the level of enforcement of a standard depends on whether a governmental body
or a group of companies has developed the specification in question. Many standards that
are government created and regulated are enforced for practical, safety, or regulatory rea-
sons and as a result have the force of law to back them up. However, governmental and
many international standards have a more rigorous, rigid process by which they are
defined and agreed to, whereas industry consortia and smaller company efforts are a
more fluid and rapid process. In addition, as the standards efforts get smaller in scope,
the nature of their management and the size of their participation becomes more “closed”
and proprietary in scope.

Understanding XML Standards

CHAPTER 19
817

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

23 0672323419 CH19 3/15/04 11:24 AM Page 817

What Is an Open Standard?
Many standards, whether created by industry, government, or individual companies, are
touted as being “open” standards that can be adopted by the industry or market as a
whole. Of course, this implies that open is a positive term, but what does it really mean?
Some describe a technology or specification as “open” if they mean that it isn’t propri-
etary. In that sense, the word is being used as an opposite to the word proprietary, which
many consider to be pejorative. To many, proprietary means closed to outside develop-
ment and viewing, closed minded, not customer centric, and slow to change. This is sim-
ply not the case with most proprietary standards, and so we must consider a different
definition for open.

However, we are describing here not only specifications and standards that are “out in
the open” and can be viewed in their entirety by all interested parties but also an “open
process.” An open process means that the forces and efforts that are employed in the cre-
ation of the specification itself are open. Meetings are publicized, held outside the con-
fines of a single dominant company, and voting processes for modifications to the
specification are well understood. Most importantly, any party that is interested in con-
tributing and can bring resources to bear on a certain problem should be allowed to con-
tribute in a truly “open” process. Although W3C and other organizations follow this
open-process model, not all other XML specifications and “standards” do.

Another good definition of openness comes not in the definition of the specification but
in the manner with which it is used. XML’s “openness” means that it can be created by
Corporation A’s tools and processed by Corporation B, C, or D’s tools or open-source
applications and tools—or it can be created and processed in any combination of differ-
ent tools and applications by different or competing tools vendors. For vendors of soft-
ware applications who use “open” XML protocols and standards, this means that their
software can be replaced. This is primarily an advantage to the consumer, who has
increased choice in who and how they choose to have their problems addressed.
However, this is also an advantage for the software vendor in that it can develop open
interfaces that keep its software applications always current and open for modification. In
addition, no company can do everything well. The adoption of open standards allows
companies to “play well” with each other in the space and reinforce their own products’
best features.

The Standards-Creation Process
The work that is done by standards committees falls into one of two camps: the least
common denominator (LCD) or the greatest common denominator (GCD). As a result of
the constant tug-of-war present in standards working groups, final specifications are a

Applied XML

PART III
818

23 0672323419 CH19 3/15/04 11:24 AM Page 818

compromise of one of two sorts. In LCD specifications, the specification reflects all the
elements that could be agreed upon by all parties. If this means that a specification with
60 elements was whittled down to only 10, then the result is the lowest common denomi-
nator with which all parties can agree. Another variation on this is that the specification
contains all the suggestions of all the parties. This means that everyone at least has some
of his or her suggestions embodied in the final result. This “greatest common denomina-
tor” approach results in a fat, bloated specification that is too large for everyone and not
specific for anyone. LCD approaches result in specifications that are customized with
add-ons that are often proprietary and company specific. GCD approaches result in spec-
ifications that are partially implemented on a selective basis with companies at odds over
which parts of the specification they will choose to implement. Either solution is a poor
choice for the implementing company.

One of the features of XML is that it is extremely easy to create a new document format.
As a result, the proliferation of XML formats and standards is tremendous. Likewise, the
potential for duplication of labor and competing standards is very high. These conflicting
standards then require users to map between data formats as they cross industries or
competing standards adoption. In the end, competing standards makes it a headache for
everyone in the industry to adopt XML, and this is a potential barrier to long-term XML
adoption.

With all this in mind, is technology even a consideration in developing standards, or is it
just an excuse to get companies and industries together to agree on issues they may never
have agreed on in the past? It is quite likely that XML is merely just a crutch for indus-
tries to lean on while they agree on a universal representation for a particular business
process or technology representation.

Understanding XML Standards

CHAPTER 19
819

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

Note

Here is an excerpt from an e-mail from Randolph J. Herber, originally from an
unknown source, but widely circulated on the Internet, regarding the develop-
ment and persistence of standards:

The U.S. standard railroad gauge (width between the two rails) is 4 feet, 8.5
inches. That’s an exceedingly odd number.

Why was that gauge used? Because that’s the way they built them in England,
and the U.S. railroads were built by English expatriates.

Why did the English build them like that? Because the first rail lines were built
by the same people who built the pre-railroad tramways, and that’s the gauge
they used.

23 0672323419 CH19 3/15/04 11:24 AM Page 819

Standards Organizations: Who Is
Creating the Standards?
As mentioned earlier, it is almost as important to identify who is creating a given specifi-
cation as detailing the specification itself. The organization that is producing the standard
provides key signals about the quality, prospects of adoption, and longevity of the given

Applied XML

PART III
820

Why did “they” use that gauge then? Because the people who built the
tramways used the same jigs and tools that they used for building wagons
which used that wheel spacing.

Why did the wagons have that particular odd wheel spacing? Well, if they tried
to use any other spacing, the wagon wheels would break on some of the old,
long distance roads in England, because that’s the spacing of the wheel ruts.

So who built those old rutted roads? The first long distance roads in Europe
(and England) were built by Imperial Rome for their legions. The roads have
been used ever since.

And the ruts in the roads? Roman war chariots first formed the initial ruts,
which everyone else had to match for fear of destroying their wagon wheels.
Since the chariots were made for (or by) Imperial Rome, they were all alike in
the matter of wheel spacing. The United States standard railroad gauge of 4
feet, 8.5 inches derives from the original specification for a Roman chariot. So
the next time you are handed a specification and wonder what horse’s ass came
up with it, you may be exactly right, because the Imperial Roman war chariots
were made just wide enough to accommodate the back ends of two war horses.
Thus, we have the answer to the original question.

There’s an interesting extension to the story about railroad gauges and horses’
behinds. When we see a space shuttle sitting on its launch pad, there are two
big booster rockets attached to the sides of the main fuel tank. These are solid
rocket boosters, or SRBs. The SRBs are made by Thiokol at their factory in Utah.
The engineers who designed the SRBs might have preferred to make them a bit
fatter, but the SRBs had to be shipped by train from the factory to the launch
site.

The railroad line from the factory had to run through a tunnel in the moun-
tains. The SRBs had to fit through that tunnel. The tunnel is slightly wider than
the railroad track, and the railroad track is about as wide as two horses’
behinds. So, the major design feature of what is arguably the world’s most
advanced transportation system was determined over two thousand years ago
by the width of a horse’s behind!

23 0672323419 CH19 3/15/04 11:24 AM Page 820

specification. In fact, different organizations proposing the very same specification
could meet drastically different challenges as they attempt to bring the specification to
“market.”

That’s right, the word market can be applied in the context of discussing specifications
and standards. After all, a specification is just words on a piece of paper or text in an
electronic document. The specification needs to be adopted, used, and pulled in different
directions by users of different needs before it can be considered to be a “standard.”
Therefore, a wide range of specifications-writing bodies have different amounts of influ-
ence and pull in the market. This section discusses the various institutions that are creat-
ing XML-based specifications and how they are influencing how XML specifications are
being created today.

The World Wide Web Consortium (W3C)
In the XML world, the World Wide Web Consortium (W3C) is the preeminent standards-
setting body. Hosted by the Laboratory for Computer Science at MIT, by INRIA and
Keio University with support from DARPA, and by the European Commission, the W3C
cut its teeth originally on the Hypertext Markup Language (HTML) and has maintained
its position as the foremost standards-setting body for markup language ever since.

Founded by Tim Berners-Lee (the same individual who founded the Web itself) in
October 1994, the W3C is focused on developing standards for the interoperability and
technical evolution of the Web. To underscore this goal, the W3C has produced an
impressive number of specifications, totaling over 35 in just five years that are in wide-
spread use throughout the globe. The W3C has amassed support from a wide array of
corporations, academic institutions, governmental and nongovernmental bodies, and pri-
vate individuals. To say that its word is the gold currency of the industry is an understate-
ment. In the words of the organization, W3C’s technology specifications help make the
Web a “robust, scalable, and adaptive infrastructure for a world of information.”

To meet these needs, the W3C has a core set of goals that drive its specification develop-
ment and direction. First and foremost is its commitment to universal access of Web
functionality for all different cultures, educations, abilities, material resources, delivery
platforms, and physical limitations. This goal is very much in sync with the design
goals for HTML as well as XML. A second goal of the organization is to develop an
environment called the “Semantic Web” that allows users to maximize their use of Web
resources. Finally, the third part of its “three-legged stool” of goals is to develop a “Web
of Trust” that helps to guide the development of the Web in consideration of the legal,
commercial, and social issues raised by this technology.

Understanding XML Standards

CHAPTER 19
821

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

23 0672323419 CH19 3/15/04 11:24 AM Page 821

The W3C promotes its mission to the millions of people using its specifications by solic-
iting feedback from its member organizations as well as the Web community at large.
The W3C then utilizes this feedback to create Web technologies and specifications that
can be published to the community as recommendations, which is the W3C non-politi-
cally charged word for standard. The technological framework is based on three central
principles: interoperability, evolution, and decentralization. The interoperability principle
requires that the various specifications must be able to work with each other and any two
systems that comply to the specification should be able to communicate with each other.
The evolution principle requires that specifications be able to change as the environment
for the technology likewise changes. This latter principle addresses the fact that Internet
technologies change at lightning speed, requiring specifications that can likewise stay up-
to-date and relevant. The final principle centers on the fact that the Web is a decentraliz-
ing force, not having a central control authority or bottleneck. W3C standards must be
able to scale to global proportions while simultaneously preventing bottlenecks, errors, or
dependencies on central control mechanisms.

The W3C accomplishes its task through the use of working groups, interest groups, and
coordination groups, which serve as the main specification generating documentation and
communication activities of the organization. These groups are divided into five domains
that facilitate these activities: the Architecture domain, which focuses on underlying
“core” Web architectures, the Document Formats domain, which works on presentation-
level specifications, the Interaction domain, which aims to improve user interaction and
document creation on the Web, the Technology and Society domain, which seeks to syn-
chronize technological developments with social, legal, and public policy concerns, and
the Web Accessibility Initiative (WAI), which aims to improve the usability of the Web
by individuals with disabilities. In addition, the Technical Architecture Group (TAG) was
created in July of 2001 to provide a means for guiding, documenting, and synchronizing
architectural issues as they appear in cross-technology environments. TAG will be impor-
tant as the use of W3C technologies continues to proliferate.

Guided by these design principles, mission statements, and goals, the W3C organization
has published dozens of recommendations and proposals at various states of development
and approval. Table 19.1 shows some of these key specifications.

TABLE 19.1 W3C Recommendations as of October 2001

Recommendation Description

Hypertext Markup Language (HTML) HTML forms the core protocol for almost all
Web functionality today. Currently at version 4.0,
HTML will soon be superceded by its XML-
based cousin, XHTML.

Applied XML

PART III
822

23 0672323419 CH19 3/15/04 11:24 AM Page 822

TABLE 19.1 W3C Recommendations as of October 2001

Recommendation Description

Cascading Style Sheets (CSS) CSS applies style and robust design capabilities
to HTML, and early on, XML.

PNG and WebCGM Two of W3C’s specifications for graphics on the
Web.

Document Object Model (DOM) DOM provides an application programming
interface (API) to structured languages such as
XML and HTML.

Extensible Markup Language (XML) XML, the reason why this book exists, is the
powerful structured language that is making
aves. The XML initiative ncludes the related pec-
ifications XPath, Link, XPointer, XSL, and
Forms.

MathML MathML is a structured language for the
communication of mathematical information.

Synchronized Multimedia SMIL allows authors toIntegration Language
(SMIL) create synchronized multimedia presentations

on the Web.

Web Accessibility Guidelines The Web Accessibility Initiative has published
two recommendations to promote access to the
Web for people with disabilities.

Platform for Internet PICS describes a mechanism for content
Content Selection (PICS) selection and filtering—in particular for filtering

inappropriate material for minors.

Resource Description RDF provides a metadata model and framework
Framework (RDF) upon which a Semantic Web can be built.

Understanding XML Standards

CHAPTER 19
823

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

Note

You can find out more about the W3C by visiting its Web site at http://www.
w3.org.

The Internet Engineering Task Force (IETF)
Before the W3C even existed, the Internet Engineering Task Force (IETF) was the main
source of technical specifications and policies for the Internet. First convening in 1986,

23 0672323419 CH19 3/15/04 11:24 AM Page 823

the IETF has been creating the fundamental protocols and technologies that have been
powering the Internet since it has been an ongoing concern.

Despite the wealth of specifications created by the IETF, it isn’t a formal standards body
per se. The IETF is a large, open, international community of network designers, opera-
tors, vendors, and researchers concerned with the evolution of the Internet architecture
and the smooth operation of the Internet, but it doesn’t have a formalized membership or
organizational structure. It is formed as a loosely self-organized group of people who
contribute their resources to solving various problems in the Internet space, but it doesn’t
operate as a corporation with directors, members, and dues. This simplistic structure has
allowed the IETF to focus on one thing: the development and promotion of technical
specifications for the Internet.

The group’s core of the operations focuses on identifying and proposing solutions to
important technical problems faced by the Internet community, specifying protocols to
solve these problems, making recommendations for the adoption and standardization of
those protocols, facilitating technology transfer for those protocols, and providing a
forum for the exchange of information between the various participants in the adoption
process.

Because the organization is a loose collection of voluntary contributors, the format for
specifications generation is through IETF meetings and periodic gatherings. Anyone may
register and attend these meetings because there are no formal membership processes.
The IETF is nominally managed by the Internet Society (ISOC), but in a very much
hands-off manner. The process of IETF standardization is managed by the Internet
Engineering Steering Group (IESG). The IESG manages the output of the IETF working
groups as well as helps to form and dissolve IETF working groups.

The IETF focuses on eight key areas of protocol development: application-level proto-
cols, Internet protocols for routing packets and the Domain Name Service (DNS), opera-
tional and network-management protocols, routing protocols, security protocols,
transport services, user services, and other general protocols.

IETF standards are published as ”Request for Comments” (RFCs), although many of
them carry much the same weight as general standards. There are, in fact, six kinds of
RFCs: proposed standards, draft standards, Internet standards (or “full standards”),
experimental protocols, informational documents, and historical standards. Every RFC
first starts out as an Internet Draft (I-D). I-Ds can be written by any working group mem-
ber; therefore, you can always tell a person who doesn’t understand the IETF due to his
bragging about publishing an Internet Draft (when it in fact takes no significant effort).
Internet Drafts are tentative documents that are meant for readers to comment on, and
they automatically expire after six months. Once an I-D is published, it is reviewed by

Applied XML

PART III
824

23 0672323419 CH19 3/15/04 11:24 AM Page 824

other members of the various working groups and then is escorted through the standards
process by various IETF and IESG members. Finally, once the draft has been approved
by all parties, it becomes an RFC. Only the first three of the RFC classes (proposed,
draft, and full) are considered to be actual standards within the IETF. Examples of IETF
RFCs are shown in Table 19.2.

TABLE 19.2 Some IETF RFCs

RFC Description

Hypertext Transfer Protocol Protocol for communicating between Web
(HTTP; RFC 1945) servers and browsers.

Simple Mail Transfer Protocol Protocol for exchanging e-mail messages
(SMTP; RFC 876)

File Transfer Protocol Mechanism for transferring binary and
(FTP; RFC 959) ASCII files over the Internet

Blocks Extensible Exchange An application protocol framework for
Protocol (BEEP; RFC 3080) connection-oriented, asynchronous request/

response
interactions

WebDAV (RFC 2518) Extensions to HTTP that enable remote
collaborative authoring of Web resources

The registry system for the various IETF activities is managed by the Internet Assigned
Numbers Authority (IANA). The IANA keeps track of the various protocol items as they
are updated and managed. This includes such items as TCP port numbers and MIME
types. Historically, IANA has also been the manager of the root of the Domain Name
System (DNS), but this responsibility was passed to the Internet Corporation for
Assigned Names and Numbers (ICANN) as the domain name market exploded with
demand and swamped IANA’s capability and authority.

Much of the IETF RFCs form the basis for XML and HTML standards, including the
HTTP, SMTP, and FTP protocols as well as ongoing efforts based in XML to standardize
various intermachine communication efforts.

Understanding XML Standards

CHAPTER 19
825

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

Note

You can find out more about the IETF by visiting its Web site at http://www.
ietf.org.

23 0672323419 CH19 3/15/04 11:24 AM Page 825

The Organization for the Advancement of
Structured Information Standards (OASIS)
Another major standards-setting organization is the Organization for the Advancement
of Structured Information Standards (OASIS), a nonprofit, international consortium of
individuals, corporations, and organizations focused on building interoperable industry
specifications based on public standards such as XML and SGML. Originally known
as SGML Open, OASIS has its roots in the SGML language and was a consortium of
small software vendors and large customers devoted to developing guidelines for inter-
operability among SGML products. As XML grew in popularity, it became obvious
that OASIS’s guidance and expertise in standards setting was needed in this new era
of specification proliferation.

Today, OASIS has over 170 organizational members and is focused on simplifying
interbusiness communications processes for all businesses. It does this by fostering
communities of interest that are concerned with solving problems in a specific domain
of expertise through open discussion and debate. OASIS as an organization doesn’t set
any standards or write specifications (its constituent Technical Committee members do);
instead, it creates an open forum where its members can discuss market needs and direc-
tions as well as recommend guidelines for product interoperability. OASIS then consoli-
dates, coordinates, and disseminates this information to its member organizations for
approval and adoption.

Therefore, OASIS functions more like a community rather than an official standards
body, such as the W3C or the collection of technicians that represent the IETF. OASIS
has a simple membership and participation model: organizations and individuals who are
members can participate in the standards definition and approval process. As a result, any
group of at least three OASIS members can be authorized to create a community for
development of a specific industry or community specification. These groups then form
the core of the Technical Committee (TC), which can result in the production of specifi-
cations to be reviewed by the OASIS membership or the Internet community in general.
Once a specification (known as a committee specification) is created by a TC group, at
least three implementations of the specification must be created for approval of the
OASIS membership. After a minimum of 10 percent of the membership has approved the
specification, it becomes a formal specification under the OASIS umbrella, although
users can make use of the specification before it becomes a formal OASIS standard.

In this manner, OASIS provides a central rallying point for the different types of techni-
cal specifications surrounding the structured languages of XML, SGML, and HTML.
OASIS has only the following goals that TCs must meet as they develop specifications:

Applied XML

PART III
826

23 0672323419 CH19 3/15/04 11:24 AM Page 826

• They should be open to all OASIS members and casual observers.

• There should be a formal audit trail of work conducted in the TC.

• The specification development and voting process will be conducted in a
democratic manner.

• The process should be flexible in the way that users can utilize the specification
and the deliverables that are produced.

• The efforts should be scalable and language neutral to support the widest
audience possible.

Because TCs are created by OASIS members, OASIS itself doesn’t start any specifica-
tion projects and doesn’t have a technical agenda of its own. However, OASIS has the
most interest in XML- and SGML-based projects that foster interoperability, vertical
industry convergence, and cross-industry standards. A current list, as of October 2001, of
OASIS projects is provided in Table 19.3.

TABLE 19.3 OASIS Technical Committees

Specification Description

Access Control Markup Language Defines a core schema and corresponding
namespace for the expression of authorization
policies in XML.

Business Transactions Develops technology for business transactions
on the Internet.

Conformance, XML Conformance, and Various interoperability and conformance
XSLT Conformance technical committees.

Customer Information Quality Delivers XML standards for customer
profile/information management to the
industry.

Directory Services The Directory Services Markup Language
(DSML) bridges the world of directory
services with the world of XML.

DocBook DocBook is a DTD (both SGML and XML
versions are available) that is particularly well
suited to books and papers about computer
hardware and software.

ebXML A global XML-based set of technologies for
business-to-business communication, integra-
tion, and commerce.

Understanding XML Standards

CHAPTER 19
827

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

23 0672323419 CH19 3/15/04 11:24 AM Page 827

TABLE 19.3 continued

Specification Description

Election and Voter Services Develops a standard for the structured inter-
change of data among hardware, software, and
service providers who engage in any aspect of
providing election or voter services to public
or private organizations.

HumanMarkup A specification for the conveyance of human
characteristics through XML.

RELAX NG The purpose of this committee is to create a
specification for a schema language for XML
based on the TREX proposal.

Web Services Component Creates an XML- and Web Services–centric
Model (WSCM) component model for interactive Web

applications.

Universal Business Language Produces a synthesis of existing XML busi-
ness libraries to develop a coordinated set of
XML grammatical components that will allow
trading partners to unambiguously identify
the business documents to be exchanged in a
particular business context.

Applied XML

PART III
828

Note

You can find out more about OASIS by visiting its Web site at http://www.
oasis-open.org.

Governmental Bodies
Governments are also getting into the game of producing specifications for XML. This
shouldn’t seem all that amazing because governmental as well as nongovernmental orga-
nizations (NGOs) that are affiliated with official processes have long been in the practice
of setting standards for acceptable communications. Many of these specifications are
produced as a way of meeting various regulations for trade, safety, policy, or other rea-
sons, rather than meeting a technological need. As a result, the specifications tend to be
very rigorous and enforced.

In the XML space, two major governmental standards organizations stick out: the United
Nations and the International Organization for Standardization (ISO). The United

23 0672323419 CH19 3/15/04 11:24 AM Page 828

Nations (UN) has long been in the process of building specifications for facilitating inter-
national commerce. The United Nations Centre for Trade Facilitation and Electronic
Business, more commonly known as UN/CEFACT, is a UN-sponsored organization
whose mission is to improve the ability of businesses and organizations to trade products
and services in an effective and friction-free manner.

Founded in 1996, UN/CEFACT was created to respond to the rapidly changing techno-
logical environment and the need to officially recognize specific contributions to the
global trade network. UN/CEFACT realized that progress needed to be made in reducing
the amount of cumbersome and time-consuming paperwork, formalities, and procedures
encountered by small and medium-sized businesses in their day-to-day trade. In the
1970s, the UN facilitated the development of a worldwide EDI message format and has
since leveraged its experience, interest, and power in helping to craft the ebXML specifi-
cation in conjunction with OASIS.

The International Organization for Standardization (ISO), whose name is derived from
the Greek word isos and is not an acronym, isn’t really a governmental body, but it forms
the basis upon which many governmental regulations are based. ISO specifications are
numbered and can cover anything from manufacturing and quality management
processes, such as ISO 9001, to setting the size of metric screw threads. ISO is made up
of an international federation of 140 national standards-setting bodies, and it operates in
a very formal manner.

With over 12,000 standards comprising 300,000 pages of documentation, ISO develops
its standards in a formal manner that aims at achieving widespread adoption and consen-
sus. The standardization process is very structured, requiring specification candidates to
first submit their proposals to their national standards bodies, which in turn propose these
items for consideration of ISO as a whole. The process then follows a regimented series
of steps for project definition, specification, and approval, requiring the consent of 75
percent of all voting members. As a result, it is no surprise that ISO standards can be
several years in the making but have long-lasting effects. ISO has begun to specify
XML-based standards that will surely be used for many years to come.

Understanding XML Standards

CHAPTER 19
829

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

Note

You can find out more about UN/CEFACT by visiting its Web site at http://www.
unece.org/cefact/index.htm.

You can find out more about ISO by visiting its Web site at http://www.iso.ch.

23 0672323419 CH19 3/15/04 11:24 AM Page 829

Of course, there are many other governmental and affiliated standards-setting organiza-
tions besides UN/CEFACT and ISO. Governments will always be the best place to estab-
lish a standard that can be enforced by law, regulation, and established guidelines of
conduct.

Industry Consortia
Another source of standardization and technical specification is in formal groupings of
vendors that share some aspect of their business in common. These consortia usually
center around industry verticals, such as insurance, electronic components, and apparel,
but can also be horizontal consortia, focusing on business requirements such as retail,
manufacturing, and human resources. In any case, these groups are usually established to
formalize the business processes and relevant standards for their industries.
Technological automation and innovation forced many of these groups to come up with
relevant electronic encodings for their products and services that can be shared within
their industry.

A natural outgrowth of these organizations has been the development of industry-specific
or horizontally applied XML-based vocabularies. Experience has shown that the vast
majority of implementations of any technology will be in these vertical industries. After
all, the implementation of technology in a specific industry is where the “rubber meets
the road.” Businesses of all shapes and sizes fall into a number of industry classifications
and types, and there is no way that a particular specification can meet the different, and
often diverging, needs of these various industries.

Examples of industry consortia include the Computing Technology Industry Association
(CompTIA), focusing on the electronic component and information technology indus-
tries, ACORD, which solves problems for the insurance industry, and Health Level Seven
(HL7), which focuses on similar problems for the healthcare industry.

Chapter 22, “Applied XML in Vertical Industry,” covers information on these vertical
industry standards and specifications in considerable detail, including more detail on the
ACORD and HL7 efforts.

Birds-of-a-Feather Vendor Groupings
A less formal, but nonetheless effective, grouping of organizations can be thought of as
the “birds-of-a-feather” vendor grouping. Such vendors come together when a specific
problem needs to be solved. In these cases, the borders and differences between different
industries may be blurred as the problem that needs to be solved becomes increasingly
more critical to everyone’s success. Alternatively, it just may be that a certain technologi-
cal issue needs to be standardized before it can be put to use in any particular industry.

Applied XML

PART III
830

23 0672323419 CH19 3/15/04 11:24 AM Page 830

Whatever the root cause, the need to solve a given problem will motivate different orga-
nizations to come together to provide a technical specification to solve the problem.

Good examples of this loose organization of companies are the SyncML and Universal
Description, Discovery, and Integration (UDDI) efforts. In the case of SyncML, vendors
in the various mobile, wireless, computing, and portability industries got together to pro-
duce a single specification for synchronizing data between their various devices, systems,
and platforms. UDDI’s main objective was to produce a practical and quickly imple-
mented central repository for Web Services components and descriptions. In both cases,
the groups never existed prior to this point, and may not exist in the long term. Instead,
the goal to produce a specification and solve a specific need drew them together.

The main issue in these problem-centric groupings of organizations is that their longevity
and ability to enforce their respective specifications beyond the initial grouping of cus-
tomers is in question. Because the firms get together for a specific reason, once the rea-
son has been addressed, the group’s need to exist comes into question. Another point of
contention with these sorts of organizations is that they are often somewhat closed in
their membership and solicitation of general feedback and scrutiny. For the firms that
participate in these endeavors, their goal is to solve a problem, not serve as a standards
body. Of course, in effect, these groups are standards bodies in what they are producing.

Individuals and Organizations
The final set of standards-setting and specification-creating bodies includes single com-
panies and individuals. Vendors of all types of products and services are constantly being
motivated to improve their products and services in a manner that is competitively advan-
tageous. Many of them are looking to XML as a means for providing this capability.
Some are also looking at XML as a way to provide extensibility and flexibility to their
product while simultaneously providing an open API that users can interact with.

These needs are motivating the creation of single-vendor standards, which are really
specifications created by large and small companies alike that have been published to the
community at large for its usage. The most typical of these single-vendor standards are
those published by the large software and technology companies Microsoft and Sun
Microsystems. Each of these vendors has produced XML and other specifications that
are being used by millions of users worldwide. Some would argue that the single-vendor
standards are the ones more frequently in use, whereas some of the other consortia and
standards body–driven specifications languish for years without any adoption. Of course,
the major downside to this approach is that the specifications are rarely open for general
review, comment, and improvement. Rather, users must rely on the vendors to continue
to enhance, maintain, and document their specifications to the required level.

Understanding XML Standards

CHAPTER 19
831

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

23 0672323419 CH19 3/15/04 11:24 AM Page 831

Also, motivated individuals have been creating XML specifications, such as ChessML,
for general adoption by the general user community. These individuals are mainly moti-
vated by simple needs or the desire to share their knowledge, and many of their resultant
specifications are not widely adopted. Rather, they have been used to form a starting
point or “straw man” proposal for the generation of specifications by larger and more
well-funded standards organizations.

The Standards Stack
Given the number of specifications created by the diverse set of standards-setting
and specification-creating bodies, as mentioned previously, it is important for us to
be able to identify which standards solve which set of problems and which are in possi-
ble competition or conflict with each other. This categorization of standards is commonly
done throughout many technology segments and usually takes the form of a visual
representation model called a stack. As the visual metaphor suggests, a standards stack
is much like a stack of pancakes: Each layer is a separately defined entity, but the
various layers depend on each other for their technology and interoperability. The higher
in the stack one goes, the more technology and specifications each layer is dependent
on or references.

One of the most common standards stacks in use is the International Standard
Organization’s Open System Interconnect (ISO/OSI) network layer model. Shown in
Figure 19.1, the OSI model shows how the various network protocols and technologies,
such as Ethernet, TCP, and HTTP, relate to each other and compare to other specifica-
tions on the stack.

The OSI network model is in frequent use by many that use or create network protocol
specifications. In a similar vein, as the use and proliferation of XML specifications grow,
a similar stack needs to be created. However, there is one major difference between the
OSI model and the need for modeling XML specifications. Network protocols have a
fairly simplistic set of dependencies. Technology at one layer depends on the technology
of the lower levels. Yet, this strict layering doesn’t exist in the XML world. Rather, there
are some aspects of XML specifications that exhibit layering behavior, whereas others
can be applied to multiple layers in the stack. As a result, the network model has a two-
part rendition that can be seen in Figure 19.2.

Applied XML

PART III
832

23 0672323419 CH19 3/15/04 11:24 AM Page 832

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

Understanding XML Standards

CHAPTER 19
833

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

FIGURE 19.1
The OSI network
model.

Community Specifications

Business Process Layer

Services Layer

Messaging Layer

Transport Layer

XML Base Architecture

Q
uery A

spect

S
ecurity A

spect

P
resentation A

spect

S
em

antics A
spect

FIGURE 19.2
The XML stan-
dards stack.

23 0672323419 CH19 3/15/04 11:24 AM Page 833

As shown in this figure, the standards stack consists of many portions and can be divided
into four main components:

• XML base architecture

• Technology layers

• Cross-layer aspects

• Community (vertical) specifications

As will be further detailed in the later sections, these various components aim to help
users identify which part of the XML standards playing field they are standing on as well
as provide a different set of specifications that solve different needs.

Standards Stack Layers
As detailed previously, the XML standards stack consists of a few horizontal layers,
with each layer dependent on the layer below it, and a few horizontal aspects that can be
applied to multiple layers. Even though the aspects can be applied to multiple XML stan-
dards stack layers, they too are dependent on at least one layer for their operation and
technical completion.

Message-Oriented Protocols Versus
Document-Oriented Specifications
When looking at the XML standards stack, you’ll notice that one thing immediately
stands out: Half of the diagram is “sideways.” This can be interpreted in a number of
ways, but most important of these is the very nature of how XML is being used.

As you have countless times been informed, XML is just a document format. There is
nothing specific about XML that dictates in what context it can be used, how it is to be
exchanged, or even how it is to be presented to the user. As a result, there are many uses
for XML. In general, the uses for XML fall into two different camps: message-oriented
protocols and document-oriented specifications. These two camps differ in their approach
toward using XML and the requirements put upon the language.

Message-oriented protocols are focused at facilitating communication between two par-
ties. They invariably involve a dialogue that has an initiating party and a responding
party. Sometimes these conversations occur in a synchronous manner (parties open and
maintain connections that are serviced until completion) or in an asynchronous manner
(parties have an ongoing conversation with no real beginning or end). Typically, specifi-
cations targeted at meeting messaging needs are called protocols, because they specify a

Applied XML

PART III
834

23 0672323419 CH19 3/15/04 11:24 AM Page 834

proper means of interaction between systems and users. Protocols also have a distinct set
of layers in their architecture. One given protocol might depend on another layer for
proper interaction with a system. As such, the message-oriented needs for XML are rep-
resented by the layer hierarchy shown at the right side of the diagram.

Document-oriented specifications are a different beast. They consider XML to be a way
to represent information that may or may not be transmitted between users. The trans-
mission aspect of XML is irrelevant to document-oriented specifications, just as the
specifics of document representation are irrelevant to message-oriented protocols.
Document-oriented specifications care specifically about how an XML document is rep-
resented or the information contained within the document is applied. As a result, docu-
ment-oriented specifications can be applied to any XML document—and more
specifically to any level of the message-oriented protocol stack. Due to the orthogonal
nature of message-oriented protocols, it is represented by vertical bars that span the mes-
sage-oriented protocol layers.

Because the XML base architecture forms a basis for all XML documents regardless
of intent, and community specifications rely on both message- and document-oriented
specifications for their operation, these two portions of the stack cut across both
usage domains.

XML Base Architecture
All XML specifications share one thing in common: the use of XML. This seemingly
circular reasoning is intended to establish the baseline for all specifications, namely the
W3C XML Recommendation. This recommendation forms the base for all XML specifi-
cations; therefore, this layer in the XML standards stack is known as the XML Base
Architecture layer.

Of course, a layer can’t consist of just a single specification or protocol. First, we must
acknowledge that the current release of the XML Recommendation, namely version 1.0,
will most likely change and mutate over the course of its existence. As a result, the base
won’t consist of just one specification, but perhaps two or more that different specifica-
tions at higher levels in the stack may depend on. For example, when version 2.0 is
released, perhaps some specifications will make use of it, whereas others will still
depend on version 1.0. However, the greater reason for the existence of this layer in the
stack is the fact that XML is surrounded by a host of other specifications that extend its
reach into different technological areas. Many of these extend the “core” of what XML is
and therefore represents additional specifications at this layer. For example, XML
Schema, XLink, XPath, and DOM all represent additions to the base XML specification
that enrich the language and provide support for the various upper levels of the hierarchy.
As such, those are included in this layer.

Understanding XML Standards

CHAPTER 19
835

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

23 0672323419 CH19 3/15/04 11:24 AM Page 835

So, what is the definition for the technologies that are included in this layer? We can
define specifications and technologies in the XML Base Architecture layer as “those
standards, specifications, protocols, and technologies that form a basis for the representa-
tion of XML documents for all parties and uses, regardless of industry, context, or
usage.” Therefore, it is clear that XML Schema falls into this layer, whereas XHTML,
which is a presentational specification, does not.

XML Transport Layer
Because XML is just a data representation technology, it doesn’t physically go any-
where. It needs to be transported from place to place in order for it to provide value to
any set of parties in communication with each other—unless of course the XML docu-
ments are meant only to be stored and not exchanged. Traditionally and most typically,
XML sits at a fairly high level in the OSI network model, usually at the Presentation and
Application layers, so it can take advantage of many of the existing network protocols
to get from point A to point B. Typically, XML documents are sent via the Hypertext
Transfer Protocol (HTTP), Simple Mail Transfer Protocol(SMTP), or the File
Transfer Protocol (FTP).

Despite this, there have been a number of efforts to utilize XML itself as a means for
facilitating point-to-point communications, either by replacing some of the aforemen-
tioned protocols or by augmenting them for better transfer of XML documents. Because
these use XML as their document format, it makes sense for the Transport layer to be
above the XML Base Architecture layer, but more appropriately, all message-based pro-
tocols rely on a Transport layer for documents to be transmitted between communicating
parties. One can simply use XML-based or non-XML-based protocols in the Transport
layer, and it will be obvious that non-XML-based protocols don’t depend on XML for
their operation.

Some of these XML-based transport efforts include the Blocks Extensible Exchange
Protocol (BEEP or BXXP) and Jabber. Both aim to use XML as a means for defining
messaging transport protocols or as a framework for exchange of messages in a
networked environment.

XML Messaging Layer
The Messaging layer of the XML standards stack is where much of the work happens in
packaging XML documents for transmission between communicating parties. Although
the Transport layer takes care of the actual message transmission, information is first
needed to determine who is to receive the message, how it should be handled, and what
to do in the eventuality of transmission failures. Many specification efforts call this layer

Applied XML

PART III
836

23 0672323419 CH19 3/15/04 11:24 AM Page 836

the Transport, Routing, and Packaging (TRP) layer, although they aren’t really specify-
ing the transport mechanism per se but rather all the requirements needed by a transport
protocol to handle the job effectively.

There are many components to the Messaging layer and issues that need to be taken into
account when packaging and routing messages. Think of the Messaging layer as an enve-
lope that surrounds the content to be transported. On a mail envelope, there are a few key
features: a delivery address, a return address, postage, a postmark, and a physical enve-
lope that keeps the contents away from prying eyes. These metaphors are quite relevant
in the Messaging layer.

In the same manner that an envelope has a sending address and a return address, the
Messaging layer specifies who is to receive the given content and who originated the
content. This allows messages to be routed from place to place in a predictable fashion.
However, the Messaging layer is more complex than the postal mail analogy in that
many messaging specifications allow users to also specify intermediaries that can store
and forward messages. Regardless of the technology used, this addressing or routing
information is extremely important in the Messaging layer.

Postal mail also contains postage and a postmark. The direct analogy to this in the
Messaging layer is the ability to specify transaction and nonrepudiation rules.
Transaction rules dictate in what order the given message is to be processed, dependen-
cies on other messages for processing, and timeouts for attempting to transmit to the
receiving parties. This ensures that only the appropriate number of messages are
processed in the correct order by the recipient. Nonrepudiation rules help ensure that a
given message was in fact received by the other communicating party. Without a way of
knowing whether the message was received and processed, it would be impossible to
determine whether it just disappeared into the “ether.” These features of transaction con-
trol and nonrepudiation help to ensure that message delivery is a reliable affair.

Finally, there is the issue of the envelope itself. The envelope serves two major purposes:
to package the contents for delivery and to protect the contents from unauthorized
access. Without the envelope, XML documents are just a loose assortment of metadata
tags. The envelope provides a means for collecting and identifying these tags as a distinct
data entity. In addition, the envelope can encrypt or otherwise restrict access to the con-
tents contained within, in much the same way postal mail security envelopes protect their
content from prying eyes.

Examples of XML messaging specifications include the Simple Object Access Protocol
(SOAP), ebXML’s Transport, Routing, and Packaging (TRP) layer, and the RosettaNet
Implementation Framework (RNIF). The W3C is also working on a specification, called
the XML Protocol, that will extend concepts provided in SOAP. Each of these Message

Understanding XML Standards

CHAPTER 19
837

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

23 0672323419 CH19 3/15/04 11:24 AM Page 837

layer protocols solve the aforementioned problems, but in their own way. This difference
in implementation can cause problems in interoperability. For example, if we all wrote
our addresses in different ways on an envelope, the Postal Service would be unable to
deliver our mail. The same can be said for different Message layer specifications. It is
important to consider the interoperability of these specifications as they come into more
widespread use.

Services Layer
Once we have addressed the issues of transporting and packaging XML documents for
shipment across a network, the next layer involves ascribing some functionality to these
various intersystem communications. This is where the Services layer fits. The term ser-
vices, in this context, describes a set of exposed application functionalities that can be
accessed by machines in a distributed manner. Such functionality can take the form of
actual application code or simply messages communicated between systems in the
process of accomplishing some task. In either case, the Services layer addresses the spec-
ifications needed to accomplish these tasks.

The most common phrase heard nowadays with regard to services is loosely coupled.
Systems that communicate using XML and Messaging layer protocols can exchange
information without having to know too much about how the other system plans to
process that information. Such systems are known as loosely coupled systems.
The word coupled denotes that the two systems are connected to each other in
some fashion, whereas the term loosely means that they are connected in the least
restrictive of manners.

Services layer specifications accomplish this goal of providing loosely coupled systems
by encapsulating system functionality in a manner that exposes required inputs and out-
puts while abstracting processing methodology. The best example of Services layer func-
tionality is the Web Services Description Language (WSDL). WSDL forms a core
component of the overall Web Services architecture that leverages SOAP as its routing
and packaging layer. Because Services layer specifications expose application functional-
ity while masking application processes, it is important for systems to understand the
inputs and outputs required by the specific Services layer component. Protocols such as
WSDL specify these things while also helping systems understand the data requirements
of these inputs and outputs, error processing requirements, and general data handling.

Process Layer
Once application logic and functionality has been encapsulated and defined in the
Services layer, turning that functionality into coordinated action is the responsibility of

Applied XML

PART III
838

23 0672323419 CH19 3/15/04 11:24 AM Page 838

specifications in the Process layer. Process layer specifications concentrate on organizing
individual functionality components into larger applications that aim to solve an overall
business problem or meet a usage goal. In the same manner that software applications
are a sum of their objects and program components, XML-based applications are the sum
of their Service layer components.

Some of the key parts of turning functionality into action include the ability to wire ser-
vice components together with workflow and logic. Process layer specifications aim to
provide a mechanism to identify when certain pieces of functionality should be executed,
the proper branching for evaluation of functionality results, and when various processes
begin and end. The workflow behind an application helps to tie these disparate compo-
nents into a cohesive system that embeds the logic of human-based systems into a
machine-based exchange. Workflows also allow human interaction to occur at various
points in the machine-to-machine dialogue.

Speaking of dialogue, the main goal of Process layer specifications is to organize these
transactions into larger dialogues that represent an actual business function, rather than
an application function. For example, a Process layer may embody a “Purchase Goods”
process, which in turn actuality consists of many individual transaction-based functions
such as “Request Product Availability,” “Place Product Order,” “Submit Purchase Order,”
and “Process Invoice.”

Process layer specifications include RosettaNet Partner Interface Processes (PIPs), the
Business Process Markup Language (BPML), and various workflow specifications.

Standards Stack Aspects
Whereas message-oriented protocols follow a very structured, regimented layer scheme,
document-oriented specifications have no layering structure to them. Rather, these
specifications can be applied to any level of the message-passing stack as well as the
community vocabularies in the level above. As such, rather than having layers, the docu-
ment-oriented specification’s portion of the XML standards stack merely has “aspects”
that are applied when they are needed.

In general, there are at least four major categories of document-oriented specification:

• Presentation specifications. These specifications detail how XML should be
presented or modified in presentation for usability.

• Security specifications. These specifications provide a level of protection of XML
information.

Understanding XML Standards

CHAPTER 19
839

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

23 0672323419 CH19 3/15/04 11:24 AM Page 839

• Query specifications. These specifications assist in locating XML resources.

• Semantics specifications. These specifications help to apply meaning and context to
XML documents.

Presentation Aspect
One of the major document-oriented specifications aspects involves those specifications
that define how XML documents should be presented to the user. These presentation
aspects help to transform any XML document on any layer of the XML standards stack
into a form that can be visually understood and processed by humans. The goal of speci-
fications in this stack is not to focus on machine processing of XML documents but
rather on the human factor in using XML. Presentation specifications include the format-
ting of documents for display as well as the addition of graphical, multimedia, and tim-
ing elements.

Usability and information portability also are major factors addressed by presentation
aspect specifications. Usability specifications focus on making information easier to use
and access by users of all types. These specifications aim to meet the needs of those who
are physically handicapped as well as to help to make information generally more acces-
sible to all. Form technology and text-to-speech specifications are good examples of
usability-focused presentation aspect specifications. Information portability specifications
aim to make the information contained within more accessible to different devices, form
factors, and systems. With the increased usage of cell phones, PDAs, and memory-con-
strained devices, various presentation aspect specifications have been created to enable
the widest distribution of content as possible.

Major presentation aspect specifications include XHTML, XForms, and Scalable Vector
Graphics (SVG), among others.

Security Aspect
With the increased distribution of content and sensitive data comes the need to protect
that information. However, security is a catch-all word that actually embodies many
different concepts around protecting information, all of which can be applied to XML
documents.

The first level of security is the protection of information from prying eyes. Encryption
specifications help to alleviate these concerns by masking XML data and preventing it
from being used, viewed, or processed by parties that are not privy to the information.
Encryption specifications make use of widely available techniques for protecting data,
including advanced private-key protection mechanisms. Therefore, the strongest of
protection technology can be used and applied to XML data.

Applied XML

PART III
840

23 0672323419 CH19 3/15/04 11:24 AM Page 840

Authentication provides another level of security to XML documents. Even though you
may be able to decrypt an XML document, it is important for an application to verify
that you are who you say you are. Numerous compromises in security occur when unau-
thorized users abscond data and make use of keys they should never have had access to.
A variety of authentication specifications have been created to address this need.

A further level of security is provided by authorization and permission specifications that
attempt to identify which resources a valid user has access to. These authorization speci-
fications indicate the specific resources, information, or other digital assets a user can use
and the restrictions on that use. These specifications include not only the assignment of
user controls but also controls on the content to be exchanged to the user to prevent
unauthorized duplication and use. Known as Digital Rights Management (DRM)
specifications, these limits on the use of intellectual property are becoming increasingly
popular in this era of the digital asset.

A final level of security is applied by privacy specifications that aim to make sure
that those who are entitled to information don’t intentionally or inadvertently spread
the information to parties who aren’t entitled to it. Increasingly, users are worried
that their personal and private information will be shared with parties they have no
intention of sharing their information with. Privacy specifications, and especially the
Platform for Privacy Preferences (P3P), are aimed at giving users control of how their
data will be used, shared, and stored. In this manner, all aspects of information security
can be ensured.

Query Aspect
Another universal need for information, especially the richly structured information
contained with XML, involves the ability to locate and make proper use of data. As is
necessary in most database and data storage systems, the ability to query information is
as important as the ability to store and represent that data. Query specifications are
responsible for retrieving information and tagging it for proper identification and return.

A number of major XML specifications exist that help in the tagging of XML
documents with metadata needed to assist in their proper retrieval. In addition, many
proposals and specifications have been created to specify a language for the global query
of these documents.

Semantics Aspect
Because XML allows users the ability to create any vocabulary and structure of their
choosing, the main challenge is in synchronizing these vocabularies with other, incom-
patible representations. In addition, it has become important for machines to understand

Understanding XML Standards

CHAPTER 19
841

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

23 0672323419 CH19 3/15/04 11:24 AM Page 841

not only the literal encoding of documents but the intent and context of the human who
created them. There is nothing that prevents different organizations from calling the same
data element different things. Also, there is nothing that prevents these very same users
from using the same name to mean entirely different things. For example, the meaning of
the word title denotes different things to those in the publishing and insurance industries.
Another major problem is the fact that different languages and cultures have different
names for the same item. It is important for our representation of information to cross
these conceptual, semantic, and language boundaries.

A major initiative called the Semantic Web is squarely focused on addressing these prob-
lems and producing specifications that add a contextual, or semantic, layer to the way we
represent information in XML. The semantics aspect applies these specifications to all
levels and layers of the XML standards stack. The immediate application of these speci-
fications is to simplify and enable users to make better, more relevant searches for con-
tent. Many search engine responses to user inquiries result in large amounts of irrelevant
information. To a machine, the information may seem relevant, but to a user the context
of those responses is entirely inadequate. Besides, we should be able to search for a term
in any language of our choice and have the results still be relevant to us even if it is pre-
sented in a different language.

A larger and more ambitious implementation of semantic aspect specifications is for
machines and systems to make intelligent guesses as to our intent for the use of informa-
tion and to retrieve data sources in an “educated” manner. In this vein, the Semantic Web
approaches the goals of artificial intelligence as much as it solves needs for the XML
user community. As semantic aspect specifications are developed, they will no doubt be
applied to all levels of the XML standards stack.

Community Vocabularies Layer
As you’ve probably noticed, we’ve spoken about every part of the XML standards stack
except for one: the Community Vocabularies layer. On top of all these various layers and
aspects sits the Community Vocabularies layer. This is the layer where all the industry-
specific implementations and problem-oriented specifications are created. In effect,
this is where the “rubber meets the road.” Community vocabularies, which can be
vertical industry specifications and standards or cross-industry specifications, make
use of all or some of the aforementioned technologies and specification layers to
accomplish their goals.

Applied XML

PART III
842

23 0672323419 CH19 3/15/04 11:24 AM Page 842

Community vocabularies specify the actual metadata and information that represents how
a given user community plans to make use of XML. These community vocabularies may
represent a need in an industry, such as insurance or electronic component manufactur-
ing, or a horizontal user community, such as online gaming or data warehousing. In any
case, the vocabularies define the specifics of data interchange that can then be repre-
sented using Process layer specifications, utilizing Service layer components, packaged
into Message layer messages, transmitted over Transport layer protocols, and utilizing
any combination of security, presentation, query, and semantics aspects. Thus, the com-
munity vocabulary forms the top layer.

Although community vocabularies represent the absolute top of the XML standards
stack, they often are some of the first specifications to be developed. The reason
for this is quite simple: Some need motivated the desire to implement XML in the
first place! In many cases, this was a desire to communicate between industry partici-
pants, such as in the financial services, manufacturing, or healthcare arenas. However,
when it came time to implement these specifications, the various specification-writing
bodies realized that some of their required pieces of functionality, as represented by the
messaging-oriented protocol or document-oriented specification stack, didn’t exist. The
result was that industry-specific vocabularies had to define specifications that were of a
more general nature. For example, the ACORD specification had many Message layer
components defined in its early days. As layers of the XML stack become increasingly
more developed, the breadth of individual community vocabulary specifications become
increasingly more narrow.

However, while the scope of community vocabularies may be increasingly more focused
as other layers of the stack become more developed, the number of community vocabu-
laries are proliferating. There’s a vast number of vertical industries and horizontal user
communities that desire to define their own, specific XML vocabularies for interchange.
In fact, the entire XML standards stack in actuality looks more like an upside-down
pyramid when viewed from the perspective of how many different specifications there
are in a given level. Whereas there are hundreds, if not thousands, of individual commu-
nity vocabulary specifications at the top level, there are very few specifications at the
XML Base Architecture layer, and the number increases as we move up the XML
specification food chain. One may say that document-oriented specifications remain
steady in number, but it can still be argued that the number of document-oriented specifi-
cations is greater than the number XML base architecture specifications and less than
the number of community vocabulary implementations. Therefore, we have an inverse
pyramid of usage, as shown in Figure 19.3, that helps to make our XML standards
stack model even more accurate.

Understanding XML Standards

CHAPTER 19
843

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

23 0672323419 CH19 3/15/04 11:24 AM Page 843

Summary
As you have seen, the use of XML is pervading every nook and cranny where data and
information are present. In the process of using XML, we have expressed a need to stan-
dardize and produce specifications to be shared with others. This need to standardize has
resulted in an explosion of standards created by a wealth of different standards bodies
and organizations. The resultant population of standards now needs to be categorized and
segmented so we can better understand how the various specifications contribute to our
needs and compete with each other.

The best metaphor for visually understanding how the various standards and specifica-
tions interact with each other is through the standards “stack.” As illustrated in this
chapter, the stack provides a means for understanding how different specifications
relate to one another. The stack helps us understand which specifications may be
dependent on or competitive with others. The standards stack also helps technology
developers realize what technological areas have been implemented and which areas
have yet to be addressed.

Applied XML

PART III
844

Community Vocabularie
s Community Vocabularies

D
ocum

ent-O
riented S

pecifications M
es

sa
ge

-O
ri

en
te

d
P

ro
to

co
ls

XML Base Architecture

FIGURE 19.3
XML standards
stack “pyramid.”

23 0672323419 CH19 3/15/04 11:24 AM Page 844

With the large number of standards and specifications, there is no doubt that a consolida-
tion is due to occur in the next few months or years ahead. However, as history has
taught us well, even as certain areas consolidate and present a more limited set of well-
defined specifications, other areas of need will continue to expand and flourish.
Wherever there are humans, there will be disagreement. And wherever there is disagree-
ment, there will be a need to reach some sort of consensus. The XML specification and
standards reflect this need to come to agreement and represent the agreement in a techni-
cal format that can be understood by machines as well as humans.

Understanding XML Standards

CHAPTER 19
845

19

U
N

D
ER

STA
N

D
IN

G
X

M
L

S
TA

N
D

A
R

D
S

23 0672323419 CH19 3/15/04 11:24 AM Page 845

23 0672323419 CH19 3/15/04 11:24 AM Page 846

IN THIS CHAPTER

• What Is the Supply Chain? 848

• Electronic Data Interchange (EDI) 853

• E-Business and the Internet-Enabled
Supply Chain 856

• Different Types of B2B
Interaction 859

• Components of E-Business
XML Systems 861

• Enterprise Integration 862

• CommerceNet eCo Framework 866

• XML/EDI 870

• ebXML 872

• RosettaNet 883

20
C

H
A

PT
ER

Implementing
XML in E-Business

24 0672323419 CH20 3/15/04 11:25 AM Page 847

As you have seen from previous chapters in this book, XML can be applied in many
ways to solve a variety of problems. However, some of the most important problems that
XML is being applied to today are to solve critical business communication issues. Many
attempts in the past, such as Electronic Data Interchange (EDI), have only had limited
success in attempting to electronically connect the different parts of a business organiza-
tion. XML plans to change this track record by introducing business-specific functional-
ity aimed squarely at solving the business needs of all industries and all firms, large and
small alike.

Yet there are many parts to the business equation. Enabling business collaboration and
communication is a complex endeavor with many lessons to be learned from past experi-
ences. As a result, successful implementations of e-business technologies and specifica-
tions require proper application of experience learned from past e-business endeavors in
order to create stronger, more robust trading capabilities.

This chapter of the book explores these concepts and, in particular, helps you to learn

• What the “supply chain” is

• What exactly “e-Business” is

• What the various components of XML-based e-business standards and
technologies are

• What has been attempted with EDI

• About the CommerceNet model for e-business communication

• About the XML/EDI hybrid approach

• About the ebXML approach

• About the RosettaNet approach

What Is the Supply Chain?
Before we can spend time talking about how XML facilitates commerce of all types, we
first need to identify the ecosystem about which we are speaking. Commercial activity
occurs within a well-defined system known as the supply chain, which consists of partic-
ipants that are interrelated in much the same way that different species are related in a
food chain. The supply chain, in effect, is comprised of the interactions between parties
that are required to produce products or services and deliver them to customers. Figure
20.1 illustrates a supply chain that may be used for a manufacturing organization. For
individual companies and industries, various portions of the supply chain may exist that
may not exist for other companies and industries.

Applied XML

PART III
848

24 0672323419 CH20 3/15/04 11:25 AM Page 848

The supply chain has evolved to become a focal point for automation and electronically
enabled processes. Because so many parties are involved in the process of getting a prod-
uct from a company to its customers, optimizing the efficiency, lowering the cost, and
increasing the return on investment (ROI) for each of the portions of the supply chain is
a major goal of most supply chain management (SCM) techniques and technologies.
SCM preceded the development of the Internet and XML by many years—and in some
cases decades. As such, supply chain management concepts are not tied directly to
Internet-centric modes of thought. In fact, the classical definition of SCM (as detailed on
http://www.stanford.edu/~jlmayer/Article-Webpage.htm) is a “set of approaches
utilized to efficiently integrate suppliers and clients (comprised of stores, retailers,
wholesalers, warehouses, and manufacturers) so merchandise is produced and distributed
at the right quantities, to the right locations, and at the right time, in order to minimize
system-wide costs while satisfying service level requests.”

The concept of the supply chain rapidly evolved shortly after the beginning of World War
II. Prior to then, manufacturing and supply processes were mostly paper-based processes
that linearly connected manufacturers, warehouses, wholesalers, retailers, and consumers.
Some manufacturing processes were relatively straightforward, whereas others were
hopelessly complex nightmares involving up to two dozen tiers of interaction. Each of
these layers of interaction required people and paper trails. Compounding this problem,
the linear nature of these processes made communication between arbitrary points on the
network a time- and cost-intensive process. It was obvious that for the economy to be
mobilized from a Depression-era inefficient system to a highly organized, efficient
wartime manufacturing machine, vast changes needed to occur.

Implementing XML in E-Business

CHAPTER 20
849

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

CustomerLogistics

Customer

Customer

Distribution

Resellers

Manufacturer

$

Financing

Warehousing
Supplier

Supplier

Supplier

FIGURE 20.1
The supply chain.

24 0672323419 CH20 3/15/04 11:25 AM Page 849

Old-style, multitier, linear supply chains had obvious inefficiencies that masked inven-
tory, supply, and other production problems in independent layers of operation. An effi-
cient supply chain would have to simplify and enable the flow of critical supply
information between different points on the chain. World War II introduced a concept
known as operations research and management science that helped to provide conceptual
solutions to these problems. Originally, operations research was targeted at moving mili-
tary goods and material to war fronts from supply factories at home. Obviously, effi-
ciency was a primary concern.

Prior to the widespread use of computing and networking power to solve these problems,
an interim solution known as cross-docking became a predominant method for optimiz-
ing efficiency. This method involved the manufacturing of products from multiple plants
and shipping them to multiple distribution centers. These centers, in turn, distributed the
products to multiple retail and outlet stores. This process reduced the dependency on
warehousing and reduced the time in which manufactured goods reached their end desti-
nations. Cross-docking results in the invention of a number of techniques and technolo-
gies still in use today, such as the stock keeping unit (SKU), which provides a numerical
identifier for produced goods. The use of the SKU in combination with the newly devel-
oped barcode helped to enable electronic sorting and management of stock within a
cross-docking facility.

This increasing automation of the portions of the supply chain allowed suppliers and
consumers to gain increasing levels of awareness of the efficiencies in the supply chain
process. Products could be tracked, via their SKU, from the time they’re produced at
numerous suppliers to the time they arrive at end-user locations. This increase in automa-
tion also allowed the chain to become less linear in nature. With a unifying means for
identifying and sorting goods, multiple suppliers, distribution centers, and retail outlets
could be used to reach the customer. The use of computers also reduced the need for
paper to be the means for tracking these movements of goods and services.

Reducing supply costs has dramatic impact on the profitability of a business. In particu-
lar, supply chain efficiencies enable the following:

• Improved product margins (the profit per unit produced)

• Increased manufacturing throughput and productivity

• Better return on assets (net income after expenses)

• Shorter time to market for developed goods

• Better customer and supply chain relationships

The development of a supply chain is a fluid and constantly changing process. Supply
chains are established upon the production of new products and services. Contracts are

Applied XML

PART III
850

24 0672323419 CH20 3/15/04 11:25 AM Page 850

negotiated and put in place to arrange the supply of parts and materials. Management
forecasts of demand and customer orders drive the creation of production plans. As parts
are manufactured by various suppliers, inventory is managed. Agreements are signed
with various sales and marketing channels, such as retail stores, to deliver these goods to
the end customers. As sales are made, these channels deliver their forecasts and actual
sales to help further streamline the product manufacturing and supply process.

These days, most products are complex in nature. Each finished product is assembled
from parts and materials, which in turn are made of parts and materials, and so on, down
to the most basic of parts and materials. Airplanes, automobiles, computers, and even
tennis shoes are composed of dozens to millions of parts. Optimizing the supply chain to
make sure that the right parts arrive in the right quantities at the right time is of extreme
importance. The core unit of this aggregation of products into a final product is known as
a bill of materials (BOM). The BOM identifies the constituent parts in a finished prod-
uct. Any delays, production difficulties, or quality issues in constituent parts will delay
production of the whole product.

Nowadays, the supply chain is more of a “web.” Each manufacturer of finished goods
has relationships with dozens or hundreds of suppliers, each of which have relationships
with dozens or hundreds of manufacturing customers. These interrelationships have
enabled the use of dynamic supply agreements that allow companies to constantly be on
the lookout for better relationships and deals. The increasing globalization of business
has resulted in suppliers existing anywhere in the world, covering many different coun-
tries, languages, and time zones. This globalization has added challenges and pressures
in the effort to optimize supply chains.

The supply chain itself applies to two different ways of conducting business:

• Business to Consumer (B2C)

• Business to Business (B2B)

Business to Consumer (B2C)
All products have to get to customers at one point or another. In some cases, the con-
sumers are actual individual consumers rather than business entities. Individual cus-
tomers are a well-defined group of buyers that have long been the objects of marketing,
advertising, and other targeted selling activities. Many of the early developments on the
Internet were focused at helping businesses directly sell their goods to customers. This
model of selling directly to individual end users of goods is known as Business to
Consumer (B2C) sales processes.

Implementing XML in E-Business

CHAPTER 20
851

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 851

The promise of B2C commerce is that it eliminates the “middlemen” and expenses of
going through multiple distribution and sales channels before reaching the end customer.
Of course, with the greater direct connection to the customer comes increased marketing,
sales, and support costs that would otherwise be borne by various other elements in the
channel. The most well-known B2C companies include Amazon.com, Buy.com, and
other such direct-to-customer companies that provide services such as online banking,
travel, online auctions, health information, and real estate.

Other than the increased complexity and potential cost in dealing with customers on a
direct basis using B2C (or dot-com), a company implementing B2C techniques faces the
danger of channel conflict, or disintermediation. This occurs when a manufacturer or ser-
vice provider bypasses a reseller or salesperson and starts selling directly to the cus-
tomer. This has been increasingly the case in such commodity industries as travel,
banking, and electronic goods. However, disintermediation of the channel can seriously
backfire, upsetting long-term relationships with dealers, distributors, and retailers.

Business to Business (B2B)
The other main source of customers for a business is other businesses. Transacting with
other businesses as customers is a comparably much larger market than selling directly to
end users. The Business to Business (B2B) market is estimated at over 10 times the size
of comparable B2C markets. However, selling to businesses involves many differences
and complexities that are not present in traditional B2C sales environments.

Of course, the major difference between B2C and B2B commerce is that the customers
are different—B2B customers are other companies, whereas B2C customers are individ-
uals. However, a more important difference between the two business goals is that B2B
transactions are more complex and involved than the comparatively simpler B2C transac-
tions. Selling to another business involves negotiating prices, sales terms, credit, delivery,
and product specifications. Business buyers need to be approved in advance and their
business needs to follow allowable parameters. Companies selling to other businesses
also need to simplify and, in many causes, automate their purchasing interactions so that
processes can be as smooth as possible. Whereas B2C transactions are made for the ben-
efit of individuals, B2B transactions are for the most part important purchases for daily
operations and the production of manufactured goods. Business-to-business activity is an
online as well as offline phenomenon, although the term B2B has primarily been used to
describe solely online transactions.

Applied XML

PART III
852

24 0672323419 CH20 3/15/04 11:25 AM Page 852

Electronic Data Interchange (EDI)
One of the first major attempts to electronically enable the supply chain was the develop-
ment of the Electronic Data Interchange (EDI) specification. Although computers had
been introduced into the supply chain since almost the first year they had been commer-
cially available, processes and methods were far from standard. In addition, these sys-
tems needed an effective way of communicating between disparate points in the supply
chain. Using telecommunications, companies could transmit data electronically over reg-
ular telephone lines or private networks and have the resultant data inputted directly into
their trading partners’ business applications.

However, this means of computer telecommunications only solved part of the problem in
tying together the parts of the supply chain. These early electronic interchanges were
based on proprietary formats agreed to in advance between trading partners. As the num-
ber of trading partners increased, it became increasingly more difficult to exchange data
in a reliable manner. Estimates suggest that 70 percent of all computer input has previ-
ously been output from another computer. Each reentry of data is a potential source of
error. It has also been estimated that the cost of processing an electronic requisition can
be one tenth the cost of handling its paper equivalent. Therefore, a standard format for
the exchange of data was needed. Work began in the 1960s as a cooperative effort
between industry groups mainly in the transportation sector to produce such a standard
format. In 1968 the United States Transportation Data Coordinating Committee (TDCC)
was formed to coordinate the development of translation rules among four existing sets
of industry-specific standards. It evolved to become the EDI specification in the 1970s,
gaining first national and then international standard status in subsequent years. The
stated goals of the EDI format were as follows:

• To reduce the labor-intensive tasks of exchanging data, including data reentry

• To be hardware independent and unambiguous in message content so that these
messages could be used by trading partners of all types

• To provide a reliable means for the delivery of transactions and messages

One of the major features EDI has enabled is a concept called vendor-managed inventory
(VMI). The concept around VMI is to shift the responsibility for analyzing sales and for
deciding when the buyer will receive new product to the seller rather than the buyer.
Using raw sales data sent by the buyer in EDI format, the seller is enabled to make judg-
ments as to which products should be produced for sale. In this manner, risks and
responsibilities are shifted from the buyer to the seller.

Implementing XML in E-Business

CHAPTER 20
853

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 853

There are two primary syntaxes for EDI: The Accredited Standards Committee (ASC)
X12, used mainly in North America, and the Electronic Data Interchange For
Administration, Commerce, and Transport (EDIFACT), used in Europe and Asia.

EDI has historically used a standardized, secure, and reliable electronic transmission
medium, originally known as the value-added network (VAN), to transmit individual EDI
messages between participants in the supply chain process. The VAN provides a common
connection point for participants by means of electronic mailboxes. The VAN functions
in much the same way as a post office, providing not only a means to get messages from
point to point, but also providing a means to guarantee that a message is received in a
secure and robust manner. EDI participants dial in to a VAN, deposit all their outbound
EDI messages, and simultaneously pick up any EDI messages destined for them.

VANs provide basic services, such as message tracking, that record whether and when
messages arrive, are transferred, and are picked up. Faults and disputes can easily be
resolved by referring to VAN audit trails. VANs also have the capability to deal with
a wide variety of different computers and communication protocols. In effect, the
VAN serves as an intermediary that helps to assist in the communication process by
serving as a standard, neutral transportation layer—much the same role that the
Internet plays today.

Although the VAN is considered by many to be an outdated mode for transportation of
EDI messages, it nonetheless is in widespread use. There have been many efforts to
move EDI transmission to the Internet, based on its capability for delivering messages at
a relative low cost and with simplicity. However, many companies still rely on the VAN
for reliable, robust, and secure transmission of their documents. Perhaps that may change
in the future, but the VAN will have long-lasting influence as long as EDI remains in use.

EDI messages are text-based, positional, structured messages that are arranged into trans-
action sets. Each transaction set represents an exchange between supply chain partners in
order to execute some business process. As a result, transaction sets are very focused in
nature. The X12 Release 3030 contains 161 transaction sets. Many of them are quite spe-
cific; some are shown in Table 20.1.

TABLE 20.1 Sample EDI Transaction Sets

Transaction Set Description

130 Student educational record (transcript)

810 Invoice

819 Operating expense statement

820 Payment-order/remit-advice

Applied XML

PART III
854

24 0672323419 CH20 3/15/04 11:25 AM Page 854

TABLE 20.1 continued

Transaction Set Description

822 Customer account analysis

823 Lockbox

830 Planning schedule

832 Price/sales catalog

837 Healthcare claim

840 Request for quotation

843 Response to request for quote

844 Product transfer account adjust

845 Price authorization acknowledgment

846 Inventory inquiry

849 Response to product transfer

850 Purchase order

855 Purchase order acknowledgment

856 Ship notice/manifest

860 Purchase order change

861 Receiving advice

862 Shipping schedule

863 Report of test results

865 Purchase order change acknowledgment

867 Product transfer and resale report

869 Order status inquiry

870 Order status report

997 Functional acknowledgment

EDI transactions are processed by a well-choreographed set of software applications and
systems. EDI software packages perform two fundamental tasks: encoding data into the
EDI format and subsequently decoding response messages. Major components of this
system include “translators” to go between EDI and non-EDI systems, “mappers” to
associate differing versions of EDI transaction sets, connection software to facilitate
and enable the use of VAN or Internet-based transfers, and internal software integration
applications.

Implementing XML in E-Business

CHAPTER 20
855

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 855

Despite the lofty goals of EDI, many of its core benefits have not come without costs and
challenges. EDI systems aren’t inexpensive to set up. Most EDI “hub” implementations
average over $1 million to set up, whereas individual “spokes” require an investment
averaging over $45,000—and these are just the primary implementation costs.
Maintenance and ongoing services easily double this figure. In addition, systems take
between several days to months before trading partners are up and running.

EDI systems also suffer from a shortage of skilled laborers who have the knowledge and
education to support these systems, as well as the inability and unwillingness of trading
partners to locate and hire these resources to manage their own implementations. In addi-
tion, EDI’s long legacy has given it the sense of being an “old” technology whose time
as come to be replaced by the “newer, better” thing. However, perhaps the largest chal-
lenge to EDI is its history of implementation. Traditional EDI implementations could
only enlist 20 percent of a company’s trading partners, which may account for a signifi-
cant volume but still not enable a company to take full advantage of an electronically
enabled supply chain. After all, these companies still have to support paper processes for
these non-EDI-enabled partners.

E-Business and the Internet-
Enabled Supply Chain
The advent of the Internet, XML, and online mechanisms have provided solutions to
some of the problems of EDI. The low cost of Internet systems has spurred many compa-
nies to look at the technology as a means to lower the bar of entry into dynamic supply
chain trading for small- and medium-sized companies. The net effect is to change the lin-
ear, somewhat-rigid supply chain into a flexible, Internet-based web of trading partners.
In an e-business system, the center of operations is an informational hub that serves as a
central point where multiple organizations can interact to pursue supply chain interac-
tions. Transactional information is received, processed, and then forwarded to other
nodes in the supply chain web.

Before we can talk about these solutions, we should first define what we mean by e-busi-
ness. The basic definition of e-business is the marriage of traditional supply chain man-
agement techniques with Internet and Web technologies. E-business applications make
extensive use of Internet technologies throughout all nodes in a supply chain operation.
However, e-business is not a monolithic block of technology. In fact, it is comprised of
three major components:

Applied XML

PART III
856

24 0672323419 CH20 3/15/04 11:25 AM Page 856

• E-commerce

• E-procurement

• E-collaboration

The Internet has changed all the rules, from servicing customers to licensing and
installing applications.

E-Commerce
E-Commerce is not a concept that was invented with the Web. Rather, it has been around
as long as there have been electronic means for exchanging commercial transactions.
Electronic Data Interchange (EDI) has been around since the late 1960s and has been in
use to exchange supply, shipping, and purchase information. However, in the context in
which we are using the term here, e-commerce is just a piece of the overall e-business
puzzle. It encapsulates the actual electronic transactions that take place within an organi-
zation without touching on relating processes that must occur around the transaction.
Typically, e-commerce relates to individual transactions and not overall processes that
are more general in nature.

The definition of e-commerce has been somewhat of a moving target, and at one point it
encapsulated all forms of electronic business and commerce. However, as the term e-
business emerged, e-commerce as a term was relegated to the point-of-sale and direct
transactions that occur in an overall e-business environment. A typical e-commerce sce-
nario is a customer placing an order for a product, which results in a series of transac-
tions that occur to fill the product order and ship the product to the end-user destination.
Therefore, e-commerce encapsulates the following concepts:

• Executing transaction requests and orders by customers

• Tying customer orders to business processes within an organization

• Order tracking

• Order error tracking and management

• Logging and auditing of commerce data

The e in e-commerce obviously stands for electronic, which necessarily means that
commerce is transacted over networks and through computer and digital systems. The
term e-commerce also applies to all intercompany and intracompany functions, including
finance, sales, marketing, and manufacturing. E-Commerce can therefore cover transac-
tions that occur via the Web, e-mail, EDI, file transfer, fax, teleconferencing, or interac-
tion with a remote computer, and it can cover all forms of electronic business, including
transferring electronic funds, using smart cards and digital cash, and doing business over
digital networks.

Implementing XML in E-Business

CHAPTER 20
857

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 857

The need for an organization to fill customer service and support requirements is also
handled by e-commerce. Servicing customers by means of help desks, self-guiding sup-
port centers, knowledge databases, and interactive technical support with live agents is a
key component of any e-commerce system. Companies that aim to directly serve their
customers should also aim to satisfy their customer-support needs through these same
systems.

E-Procurement
Whereas e-commerce usually refers to point transactions and purchases by individuals or
organizations, e-procurement refers to processes by which a manufacturer obtains prod-
ucts from suppliers for its daily operations. By necessity, e-procurement transactions are
enormous in quantity and value and therefore require a greater level of process control,
workflow, and documentation. Typical procurement solutions cover all steps of the pro-
curement process, ranging from supply order to acquisition and payment.

Due to its enormous volume and value, e-procurement is a sweet spot for many online
B2B systems. E-Procurement has also been a target for aggregations of buyers and sell-
ers—known as a marketplace—to achieve great economies of scale. These marketplaces
allow industries to make large-scale purchasing and selling decisions across all partici-
pants in a given supply chain. Instead of working solely with local and large parts deal-
ers, manufacturers and suppliers potentially can access a competitive, global market
through electronically enabled marketplace e-procurement systems.

E-Collaboration
The final aspect of e-business systems is the ability to share information among supply
chain participants in a process known as e-collaboration. E-Collaboration enables infor-
mation sharing, collaborative planning, and collaborative product development. These
systems store qualitative and quantitative information regarding supply chain processes
and serve as a means to share critical supply and process information with other partici-
pants in a supply chain. These systems allow purchase orders, sales orders, invoices,
checks, and other business documents to be shared within a well-defined community
access area.

As mentioned earlier, a key area of e-collaboration is collaborative planning, which
assists in group decision making in a cost-effective manner by considering different
participants in the supply chain. Collaborative planning shares sales forecasts, production
quotas, and replenishment plans that allow all parts of the extended organization to
jointly reduce inventory costs and raise customer service levels. This collaborative
decision-making process therefore leverages all available knowledge to make intelligent
decisions on behalf of the whole chain.

Applied XML

PART III
858

24 0672323419 CH20 3/15/04 11:25 AM Page 858

E-collaboration also enables new product development by squeezing product delivery
cycles and increasing development efficiency. By providing a common community for
information exchange, these solutions enable real-time communication among engineers,
product developers, and customer service representatives to provide feedback on the cre-
ation of new products. This process also allows users to make quick decisions on
changes to suppliers and manufacturers.

Different Types of B2B Interaction
Not all models for business-to-business interaction are the same. As the technologies and
mechanisms for e-business evolve, so too do the models for B2B business. In particular,
B2B business models are migrating from long-term one-to-one relationships to rapidly
changing and fluid many-to-many relationships. Rather than establishing fixed relation-
ships with a set of identified supply chain partners, there has been an increasing trend
towards fluid and in some cases spontaneous supply chain partnering. This section
describes the various types of B2B relationships enabled by e-business systems.

First, it is important to identify the roles that parties play in B2B e-commerce. In general,
they fall along four main types, with organizations playing multiple roles at different
parts in the chain:

• Buyers. Customers such as individuals and businesses that purchase goods and ser-
vices from suppliers. In the context of e-business, these buyers use electronic pro-
curement systems.

• Suppliers. Businesses that market and sell goods or services to buyers directly or
indirectly through sales and distribution channels. These suppliers use electronic
procurements systems and marketplaces to sell their goods.

• Marketplaces. Third-party organizations that connect multiple buyers with multiple
suppliers in an electronic market that allows for the arbitrary pairing of supplier
product with buyer demand with a combination of services such as payment,
credit, and logistics.

• Service providers. Third-party organizations that provide buyers, sellers, and
marketplaces with services to facilitate commerce such as payment, credit,
and logistics.

Direct Partnership
The simplest and most immediate form of supply chain relationship is the direct partner-
ship. When suppliers and buyers are strategic to each other’s needs, strong direct rela-
tionships are formed. Each business inherently and intimately knows the other’s business

Implementing XML in E-Business

CHAPTER 20
859

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 859

needs, and thus electronic systems can be crafted around these requirements. Due to the
intimate nature of the relationship, parties can take advantage of automated reordering
through Electronic Data Interchange or the Internet, as well as vendor-managed inven-
tory services. The supplier may even take on the burden of monitoring material levels at
the buyer’s sites. Although simple in nature and setup, direct partnerships require a large
amount of trust and are very difficult to scale to any large number of partners. As such,
direct partnerships are relegated to simple and direct relationships in industries that are
critical and trust centric, such as munitions.

Multiparty Procurement
The predominant means for working with suppliers is through a multiple-party system
using electronic procurement methods. As opposed to a direct partnership, multiple-party
procurement is a more hands-off relationship with suppliers that allows a vendor to
abstract elements of the working relationship without having to become intimately tied to
its suppliers’ businesses. However, these relationships are not completely fluid, because
they involve long-term commitments and investments on behalf of both parties. Products
in this channel arrangement are frequently supplied from multiple supplier locations to a
single customer location. The primary challenge is in electronically enabling a significant
enough population of suppliers so that costs may be reduced and efficiencies increased.

Agents and Distributors
Many products aren’t directly transacted between buyer and seller but rather flow
through intermediary channels that serve to add value. There are two primary categories
of supplier channel: stocked and stockless. Stocked channels carry inventory and are
responsible for making sure enough product is carried on-hand to meet buyer demand.
Stockless channels provide value-add to the sales process without carrying inventory.
This value-add includes sales, marketing, and service support to assist a company in
“extending its enterprise” without having to carry the burden of inventory.

Stocked agents and distributors typically need to maintain a sufficient quantity of inven-
tory for stocked items to meet delivery lead-time requirements. These channels then can
actually rapidly assemble many small orders as they arrive from the buyer. These chan-
nels also make use of automated picking using sophisticated materials-handling systems.
Due to the additional information and timing requirements, the addition of these parties
in a supply chain greatly adds to the complexity of the overall solution.

Applied XML

PART III
860

24 0672323419 CH20 3/15/04 11:25 AM Page 860

Exchanges, Auctions, and Digital
Transaction Hubs
A new and increasing form of B2B commerce involves the use of a “marketplace,” which
provides a single location where multiple buyers and sellers can accumulate their eco-
nomic interests for the improvement of the overall sales process. Currently, marketplaces
are a relatively new phenomenon, and transaction volumes are still very low among the
majority of B2B marketplaces. However, as the Internet becomes more predominant in
supply chains, there will no doubt be a turn of attention toward these efficiency-improv-
ing methods.

So-called “fulfillment e-marketplaces” help buyers locate sellers, and vice versa. They
accomplish this by providing mechanisms such as dynamic partner discovery, exchanges,
auctions, and reverse auctions that aim to set prices and establish relationships between
trading parties. In general, marketplaces can be either public or private. Public market-
places are open to any carrier or shipper that wishes to participate, whereas private mar-
ketplaces are restricted solely to member providers and users. Public marketplaces are
“buying clubs,” whereas private marketplaces are usually community sites aimed at
attracting a focused group of commerce participants.

As opposed to arranging new partnerships between suppliers and buyers, which is the
focus of the aforementioned “exchanges and auctions,” digital transaction hubs are
focused on reducing the cost of integration between buyers and sellers. In these
transaction hubs, the relationships between suppliers and buyers are already established;
they routinely buy and sell product from one another. These hubs let participants
outsource noncore fulfillment activities and other services to achieve better efficiencies.

This also allows service providers to interact with a single point of integration to work
with multiple supply chain parties and therefore can offer value-added services, such as
inventory, transportation, and supply chain management, at lower costs and greater
economies of scale.

Components of E-Business
XML Systems
E-business systems aren’t monolithic structures. They are comprised of major segments
of functionality that help to contribute to an overall solution for supply chain interac-
tions. Because e-business in an Internet context, (especially using XML) is very new, not
all components are necessarily implemented by all organizations. However, a complete e-
business system needs to be comprised of the following elements:

Implementing XML in E-Business

CHAPTER 20
861

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 861

• Enterprise and back-end integration

• Various network and foundational layers

• Messaging in a transport, routing, and packaging context

• Registries and/or repositories

• Data dictionaries

• Process and workflow

• Trading Partner Agreements

• Business vocabularies

Enterprise Integration
Because e-business systems are a core part of any business enterprise that interacts with
suppliers and trading partners, they cannot exist outside of and be disconnected from
enterprise back-end systems. As a result, e-business systems need to be tied to various
back-end systems, including the following:

• Customer Relationship Management (CRM) systems

• Enterprise Resource Planning (ERP) systems

• Asset- and inventory-tracking systems

• Point-of-sale systems

• Warehousing, shipping, and logistics systems

• Financial and accounting systems

• Marketing, sales, and customer service systems

Enterprise integration provides connection hooks into these various systems by means of
APIs, Enterprise Application Integration (EAI), file transfer, or other shared messaging
techniques. Integration is a two-way street, meaning that e-business systems can extract
data from these various knowledge repositories as well as enter data into them. In the
process of this bidirectional interchange, these systems apply business logic processing
and translation among different formats. Enterprise integration therefore provides a gate-
way to the back-end systems from which results are communicated to other processes in
the chain.

Fundamental Network and Platform Layers
In order for much of these e-business processes to happen, various technology, network,
and protocol layers need to exist. These various layers cover the following fundamentals
for e-business exchange:

Applied XML

PART III
862

24 0672323419 CH20 3/15/04 11:25 AM Page 862

• Partner connection and document transport

• Security

• Development platform and tools

First, it is necessary for e-business messages to be transported between points and for
business partners to physically get “connected” to a network. In the EDI model, the VAN
handles these issues, plus many others covered by other segments of e-business technol-
ogy. In this case, e-business messages are generally transported over well-known and
popular Internet transport protocols, including the Hypertext Transfer Protocol (HTTP),
Simple Mail Transfer Protocol (SMTP), and File Transfer Protocol (FTP). Each of these
protocols provides different messages for asynchronous publishing of data, subscription
to supply chains, message queuing, and synchronous request/response messaging mod-
els. Due to widespread adoption, a plethora of tools and techniques exist for proper and
low-cost use of these transport mechanisms. Therefore, this component of e-business
functionality provides a means for messages to “get on the wire.”

Additional security layers are applied to these fundamental transport protocols to provide
security of different levels, including these:

• Encryption

• Authentication

• Authorization and permissions

• Privacy

Encryption is commonly handled by the use of Secure Sockets Layer (SSL) over HTTP
or SMTP, and authentication can be handled by means of digital certificates.
Authorization and privacy layers are more proprietary in nature and are just not being
solved in a standard, open manner. In general, e-business transactions need these security
technologies and protocols in order for the relationships to be trusted.

This set of foundation components also provides some management capability of e-busi-
ness systems to help discover the availability, existence, and condition of e-business sys-
tems. These components manage the quality of services for the overall system to ensure a
consistent delivery of supply chain interactions.

Finally, the fundamental network components of e-business systems are the development
tools and platforms for the construction of e-business systems, such as those powered by
Web Services. Microsoft, Sun, HP, Oracle, and IBM all offer a number of e-business-
enabling systems that can be built on to offer the rich functionality required. This portion
of e-business functionality defines APIs that serve to connect e-business transaction sys-
tems with the back-end systems.

Implementing XML in E-Business

CHAPTER 20
863

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 863

Messaging (Transport, Routing, and Packaging)
Just having a transport protocol is not enough to provide business-level, robust, and reli-
able communications between trading partners. EDI VANs have historically provided a
number of other major features that have enabled partners to reliably conduct business
with each other. As a result, the messaging layer, consisting of transport, routing, and
packaging components, is the core to e-business systems.

Messaging systems provide a standardized message and envelope structure that serves to
identify endpoints (and optionally intermediaries) in a given e-business transaction, spec-
ify how long messages are to be resent before timeout, and provide transaction controls
and nonrepudiation (which helps to guarantee that messages are received by the end
user). These components provide a certain level of session management and transaction
coordination in a loosely coupled environment.

Messaging components also record sessions and other parameters that control reliable
and secured messaging, among other features. As a result, messaging components serve
as a basis for all e-business communications between parties.

Registry and Repository
E-Business services and capabilities are stored within repositories and registries—two
terms whose meaning is often interchanged. Similar to the service offered by Universal
Description, Discovery, and Integration (UDDI), registries and repositories serve as a
central location where e-business services can be stored and later retrieved to dynami-
cally discover business partners and their various capabilities, services, and business
terms and conditions.

Data Dictionaries
Many portions of B2B information exchange require common knowledge of the vocabu-
lary and acceptable items to be used within that vocabulary. These definitions of accept-
able vocabulary usage can be found within a structure known as a data dictionary. These
entities contain data structures, data types, constraints, and code lists of all the items nec-
essary to compose valid business documents. In general, dictionaries specify the structure
and semantics for particular business process documents.

Process and Workflow
Much of what differentiates e-business from simple e-commerce and individual transac-
tional information is its ability to string multiple transactions into an overall business
process to be executed. Many business process components, such as the “purchase

Applied XML

PART III
864

24 0672323419 CH20 3/15/04 11:25 AM Page 864

order,” are in fact composed of multiple individual transactions that must be executed in
a particular order and with a given accepted workflow. In many e-business systems, these
larger processes and workflows can be specified and exchanged in advance. Business
processes can also be modeled with various technologies and those models shared to help
craft the actual execution of e-business transactions.

Some business processes are applicable to a broad range of businesses, regardless of the
vertical industry or locale, and despite specific characteristics of the business. These
processes include many common business activities, such as invoicing, request for quote
(RFQ), collaborative product development, purchasing, supply chain execution, and man-
ufacturing. These general-purpose processes are defined so that they may be reused by
other industries and businesses to achieve manageability and economies of scale. Other
business processes are more specific to individual industries or organizations. These, too,
may be defined as modifications to the generalized business processes or as new compos-
ites or sequences of established processes and workflow. Such examples include specific
purchase order methodology, taxes, and production requirements.

Trading Partner Agreements
In the paper world, in order to execute any supply chain interaction, a contract must
exist. This contract stipulates the terms and conditions of sale and the production of
goods. In order to maintain a sense of legality and accountability, a similar process
must exist in the electronic world. In e-business, this electronic form is known as a
Trading Partner Agreement (TPA). The TPA includes a profile of a business partner’s
contractual agreement for transaction as well as its e-business system infrastructure and
usage of protocols.

However, TPAs can be time consuming to negotiate and sign because they inevitably
require businesses to use lawyers in the business process. They can sometimes raise
thorny, intractable issues, and so some organizations may decide to forego TPAs because
their costs appear to outweigh the benefits. Some TPAs and e-business systems, however,
allow their users to prepare partial TPAs that, for example, send a declaratory letter to a
trading partner asserting the company’s position and policy on the issues that would oth-
erwise be in the TPA.

Business Vocabulary
Much of the heavy lifting in an e-business system is actually accomplished in the actual
document that describes a specific transaction. Of course, such transactions vary in dis-
tinct ways among different businesses, industries, geographies, and markets. As a result,
business vocabularies have been defined by standards bodies of all sorts covering various

Implementing XML in E-Business

CHAPTER 20
865

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 865

business needs. These vocabularies are then used to construct the actual business content
of a message. This message can contain product, finance, employee, or other business
information. The actual terms to be used in the vocabulary are described by the data dic-
tionary defined earlier in this section. Examples of business vocabularies include Health
Level Seven (HL7) for the healthcare industry, ACORD for the insurance industry, the
Open Travel Alliance (OTA) for the travel industry, and the Extensible Business
Reporting Language (XBRL) for a variety of financial exchange needs.

Vocabularies are where the “rubber meets the road” in e-business transactions and
include industry or supply chain–specific technical terms, properties, values, and taxo-
nomic structures that are used to conduct commerce. In essence, it is the actual payload
of a business transaction.

CommerceNet eCo Framework
Given the preceding definition of the various components of an e-business system, there
are a variety of models to show how these various components interact to comprise a
complete e-business system. One of the most accepted models for e-business interaction
is the CommerceNet eCo Framework for e-business architectures.

The eCo Framework provides an architectural framework that enables businesses to
dynamically discover each other on the Internet and interactively determine how they can
do business with each other. The main goal of the eCo Framework, as defined in 1998, is
to bring e-commerce and e-business processes from a systematic, technical level to a
business level by providing a means for businesses to present accurate and stable
interfaces to their partners in a loosely coupled manner, abstracting possible changes in
an organization’s internal processes, organization, or technology implementation. This
allows potential trading partners in an e-business process to only describe what they do
instead of agreeing on what they do or how they will do it.

The eCo Framework consists of an architecture and a set of semantic recommendations
that serve to describe e-business systems in seven essential layers that answer the follow-
ing critical business and systems issues:

• The location of other businesses and trading partners

• Determining whether partners want to do business with each other and how they
can participate within a market

• The discovery of the services they offer

• The kinds of interactions to expect

• The protocols that will be accepted

Applied XML

PART III
866

24 0672323419 CH20 3/15/04 11:25 AM Page 866

• General issues that would prevent or allow systems to communicate

• Application interfaces

• Determining what modifications need to be implemented to ensure interoperability
between systems

• Required information to exchange

The eCo Framework also provides guidelines and recommendations for creating e-busi-
ness-focused semantic types and definitions to assist in automated processing. In addi-
tion, this semantic recommendation provides a means through which information on
e-commerce systems can be communicated, a method for querying that information, and
a definition of the structure that will be used to return that information.

Therefore, the eCo Framework is more of a business-level framework rather than a tech-
nical specification. The framework defined allows businesses to publicly define and
expose their XML-encoded descriptions of their e-business systems in order to allow
potential trading partners to get the information they need to enable interoperability. In
order for this information exchange to occur between trading partners, a common under-
standing is needed of the basic components that make up an e-business environment and
how those components relate as well as a common means for exposing information about
these components.

Many subsequent efforts, such as Web Services, have borrowed from the eCo Framework
in order to structure and guide their work. It is important to note that the eCo Framework
is a theoretical guide and approach to e-business systems and not a specific implementa-
tion, per se. As such, it is up to efforts such as Web Services in the application-to-appli-
cation realm and ebXML in the business-to-business realm to turn theoretical probability
into practical reality.

The basic structure of the eCo Framework is outlined at http://eco.commerce.net/
how/index.cfm and is shown in Figure 20.2.

The architecture is related as a layered “stack” that represents a typical e-business envi-
ronment. Each layer is dependent on the layer beneath it. In the case of the eCo
Framework, the layers are defined separately through “type registries” that define some
aspect of information about the e-business environment and enable trading partners to
obtain information at each layer of offered services for potential use.

As in other models, the Network layer describes the physical networks (in our case,
Internet) that contain various marketplaces, or “markets,” for supply chain interaction.
Each market in the network is an independent aggregation of parties that are made up of
one or more businesses described in the Businesses layer of the eCo Architecture. The

Implementing XML in E-Business

CHAPTER 20
867

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 867

Market layer is responsible for business aggregation and identification, such as a busi-
ness’s location and other related information. A business can participate in multiple mar-
kets, and vice versa.

Applied XML

PART III
868

eCo ARCHITECTURE

TYPE REGISTRIES ARCHITECTURAL LAYERS

MARKET TYPE REGISTRY

BUSINESS
ROLLS

BUSINESS
TYPES

SERVICE
TYPES

MARKET
TYPES

MESSAGE
CONTAINER

TYPES

INTERACTION
TYPES

INTERACTION TYPE REGISTRY

SERVICE TYPE REGISTRY

DOCUMENT
TYPES

DOCUMENT TYPE REGISTRY

INFORMATION
ITEM TYPES

INFO. ITEM TYPE REGISTRY

BUSINESS TYPE REGISTRY

NETWORKS

MARKETS

BUSINESSES

SERVICES

INTERACTIONS

DOCUMENTS

INFORMATION
ITEMS

CONTAIN

WHERE

PROVIDE AND USE

WHICH CONDUCT

THAT EXCHANGE

CONTAINING

MESSAGE CONTAINERS

FIGURE 20.2
eCo Framework
architecture struc-
ture (copyright
CommerceNet).

The Services layer provides a means for businesses to describe the types of business ser-
vices they offer, the required interfaces, and other information needed to actually make
use of a particular business service, such as product ordering, payment, catalogs, or any
other specific business process. These processes have their interfaces described in this
Services layer. Some of these services may be defined in a standard manner within an
industry or may be specific to an individual company. Services may be comprised of

24 0672323419 CH20 3/15/04 11:25 AM Page 868

“subservices” that are also described in this layer. There also may be dependencies or
invocations of other services in order for a given service to complete its execution.

The relationships and interactions between services are described in the Interactions
layer, which describes the sequence, events, “choreography,” and types of interactions
allowed between service and process components. Each of these interactions contains a
set of documents needed to actually perform the interaction or services request. Services
are composed of a set of document exchanges that can be defined in the context of
“interactions.” Interactions are framed in a request/response mechanism that is event dri-
ven when a party requests a particular document from another. These documents are
defined in the Documents layer of the eCo Architecture. The documents are the actual
units of business dialog and interchange, which are composed of atomic elements
described in the Information Items layer. Finally, we arrive at individual data elements
and attributes that comprise each type of document used by an interaction. These data
elements may be defined by industries and standards organizations, independently
defined by businesses themselves, or a combination of both of these possibilities.

The eCo Architecture also defines a mechanism to query and access the actual informa-
tion and properties described at each layer. This query mechanism allows trading part-
ners to obtain information about a particular implementation of that layer and use that
information to determine the extent to which it can interoperate with the other party. By
examining all the layers implemented by a fully eCo-compliant system, prospective trad-
ing partners can make intelligent decisions about their interoperability with the system.

In addition to the architecture and mechanisms for querying that architecture, the eCo
Framework defines “type registries” that are associated with each layer of the architec-
ture and describe the various document and element type components in an e-business
system. Type registries allow hierarchies of definitions to be asserted within a system,
determine the equivalency of types in the same registry, and determine the relationships
that exist between types. For example, a market for automotive parts might be further
refined by breaking it down into markets for engines, tires, and so on. Registries also
expose their interfaces in the same way that layers do so that their information can be
accurately queried. As a difference with the previous definition of registries and reposito-
ries, these eCo registries are only used to store type information and not business docu-
ments, data dictionaries, or service descriptions. Each layer in the architecture is defined
by referencing type definitions in one or more registries, with the notable exception of
the Network layer. For example, businesses can type themselves by referencing a busi-
ness registry, and documents can type themselves in a documents registry.

In this manner, a comprehensive architecture can be defined to enable the automatic
interaction of business parties as required by e-business systems.

Implementing XML in E-Business

CHAPTER 20
869

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 869

XML/EDI
One of the first steps in attempting to get closer to an XML-based means for e-business
interchange is the XML/EDI effort. This effort, in effect, is a combination of the best
practices and technologies learned from EDI with the benefits that XML provides.

A lot of time and effort was put into making traditional EDI a success. Consequently, a
lot of best practices and business process know-how was inserted into EDI specifications,
software, and implementations. The desire to uproot these systems and replace them with
completely redesigned ones makes some implementers hesitate, at best. However, the set-
backs and challenges of EDI implementation have also thrown a wrench into many EDI
rollouts. Therefore, a halfway solution must be found that can improve EDI with new
technology while not throwing it completely out.

It is in this spirit that XML/EDI was created. The vision for XML/EDI is to allow orga-
nizations to deploy a system that allows each trading partner to exchange e-business
information using XML and Internet technologies, leveraging not just the old structures
of EDI data but also process control templates and business rules as well. XML/EDI
consists of five major components:

• XML base specification

• EDI transaction sets

• Templates for process logic

• A global repository and reference dictionary

• Agents and implementation methods

These five components are combined to provide an e-business system that delivers e-
business data as well as processes logic. By doing so, XML/EDI hopes to address the
following list of requirements and solutions to the typical “ailments” of EDI:

• Reduce the cost of doing business

• Reduce the cost of entry into e-business

• Provide low-cost, easily implemented tools

• Improve data integration and accessibility

Applied XML

PART III
870

Note

For more information on the eCo Framework, visit the CommerceNet site at
http://www.commercenet.com/.

24 0672323419 CH20 3/15/04 11:25 AM Page 870

• Maintain appropriate security and control

• Utilize technology that can be extended and maintained with little adverse business
impact

• Integrate with today’s systems

• Utilize open standards

• Provide a successor to X12/EDIFACT and interoperability for XML syntaxes

• Be globally deployable and maintainable

It doesn’t take much effort to simply encode EDI transaction sets into XML. Therefore,
the real work and benefit is in encapsulating the various business processes, logic, and
value-add that EDI provides beyond simple document encodings. XML/EDI has added
the concepts of using process templates, the XML/EDI repository, and software agents as
means to providing these benefits. Figure 20.3 illustrates the interaction of the five major
components of XML/EDI. As you can see, XML and EDI are separate technologies,
whereas the others are contained within the auspices of XML/EDI.

Implementing XML in E-Business

CHAPTER 20
871

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

EDI Transaction Sets XML Document Structure

Process Templates Software Agents

Global Repository

FIGURE 20.3
XML/EDI
components.

Process templates are built using XML and express work requirements throughout the
system. They describe and control business context and process definitions that enable
trading partners and users of the system to locate the correct components they need. As

24 0672323419 CH20 3/15/04 11:25 AM Page 871

has been defined earlier, the XML/EDI repository provides a mechanism for users to
define and look up meanings for the definitions of various e-business entities. As a result,
described interfaces can be automatically searched and identified. The repository system
provides a semantic foundation for e-business transactions while simultaneously enabling
software agents to identify and reference business document entries.

In this regard, software agents serve several key functions and requirements. They are
applied to process templates and interpret the results in order to determine work to be
performed, and they interact with entries and definitions in the repository to apply and
integrate the appropriate data per each business task. They accomplish this by searching
the business repository and attaching the right template for processing.

The XML/EDI Initiative was started in 1997 mainly as a “grass-roots initiative” to pro-
mote the use of XML for e-business. Since then, the vision for XML-powered e-business
has strongly gained ground, and the need to evangelize this vision has significantly
decreased. As such, many of the concepts within XML/EDI have subsequently been used
to form the foundation of the ebXML and UDDI work. Therefore, there isn’t an over-
whelming number of actual XML/EDI implementations, but rather the vision itself has
helped craft the industry. For ongoing development efforts in XML-powered e-business,
we need to look toward the work in ebXML, RosettaNet, and other such efforts.

Applied XML

PART III
872

Note

You can find more information about XML/EDI at the XML/EDI Group Web site
at http://www.xmlEDI-group.org/.

ebXML
One of the major projects targeted at solving some of these e-business problems for
small, medium, and large organizations is the e-business XML (ebXML) project, a joint
project from UN/CEFACT and OASIS. EbXML is aimed squarely at making e-business
transactions accessible to all businesses, including the smallest of business organizations.

EbXML was created in 1999 as a joint partnership by UN/CEFACT and OASIS in order
to replace or augment existing EDI standards. The group saw the main challenge as
being able to deliver the same value large organizations realized in the EDI specification
to small- and medium-sized enterprises (SME). The ebXML group saw its main goal as
producing an XML-based standard that would accelerate e-business deployment, reduce
cost, be easy to support, and support worldwide business needs. It is for this reason that
many say that ebXML “supports anyone, anywhere to do business with anyone else over

24 0672323419 CH20 3/15/04 11:25 AM Page 872

the Internet.” The specification intends for companies of all sizes to be able to dynami-
cally locate each other via the Internet in order to conduct business through XML-based
electronic messages.

The ebXML effort has been developed in an open environment, and as a result participa-
tion is free and open to anyone. The specification was also designed to be complimentary
with existing standards and technical specifications such as UN/EDIFACT, ASC X12,
and others. The goal was not to reinvent the wheel in e-business but rather to apply what
was learned there to SMEs. The final result is a “plug-and-play” architecture that allows
modular and incremental use of ebXML technologies by those interested. The end intent
is that vendors will build applications that support these open standards that are afford-
able, easily developed, and available even for the smallest of organizations. The promise
of ebXML is the ability to fulfill all business communication needs, but as we all know,
ambition and end result sometimes do not meet.

The ebXML framework was developed as part of an intense, global effort that lasted only
18 months. As part of this process, UN/CEFACT was involved because it is one of only
four international bodies that can enact legally binding standards. UN/CEFACT has pre-
viously lent its weight to the development and standardization of the global EDI format
known as UN/EDIFACT. The final specification was delivered in May of 2001 in Vienna,
Austria. At this event, a proof of concept demonstration was shown in which over two
dozen companies and organizations demonstrated their implementations of ebXML.

The ebXML specification is comprised of three main infrastructure components and sev-
eral other supporting technologies focused on such issues as document creation and busi-
ness process definition. These architecture components are designed so they may be
independently and modularly implemented. The ebXML infrastructure components
include the following:

• Collaborative Protocol Profile (CPP)

• Core components

• Registry and repository

• Messaging

• Business process modeling

Needless to say, ebXML utilizes XML for the definition of all messages, process models,
and supporting content. However, ebXML may transport any type of data, such as binary
content or EDI transactions. It is notable that ebXML expresses trading partner agree-
ments and business service interfaces in XML as well. The only major non-XML

Implementing XML in E-Business

CHAPTER 20
873

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 873

component of the architecture is the common business process models, which utilize
established modeling standards such as the Unified Modeling Language (UML), the
results of which are stored in a global registry.

It should be noted that there are not one but rather two ebXML architectures. One of
these architectures describes the software components of the technical infrastructure and
is known as a product architecture. The other architecture is focused on systems analysis
and development and is known as a process architecture. The actualization of these dif-
ferent architecture models is realized in the Business Operational View (BOV) and
Functional Service View (FSV), which are described later in this chapter.

Also, the ebXML architecture has been constructed in a way that its various components
and sections, as described earlier, can be used independently and without dependency.
This loosely related nature of the systems allows users to pick and choose those aspects
of ebXML that are best suited to their operations without unnecessary baggage in sup-
porting components they are not interested in.

Overview of ebXML Process
The process followed in the ebXML model can be simply described as two companies—
Company A and Company B—that desire to conduct business in a trading partner
relationship. First, the originating trading partner, Company A, looks up industry specifi-
cations and business processes and builds a local implementation. The company then cre-
ates a profile for its business, known as the Collaborative Protocol Profile (CPP), and
registers it with the registry. Company A might wish to contribute new business
processes to the registry or simply reference available ones. The CPP contains all the
information necessary for potential trading partners to determine which business roles
Company A is interested in, and which technologies and protocols it can engage in for
these various roles.

After Company A registers itself in the registry, a prospective trading partner, Company
B, can search the repository for Company A’s CPP and check to make sure that its profile
is compatible with Company B’s requirements. The next step is that a Collaboration
Protocol Agreement (CPA) is automatically negotiated between parties based on the con-
formance of the CPPs as well as associated protocols and other standards and recommen-
dations. The final result is that the two organizations can now conduct business. The
transactions are encoded in business messages that are encapsulated in ebXML message
envelopes and conducted according to industry needs. The ebXML process is illustrated
in Figure 20.4.

Applied XML

PART III
874

24 0672323419 CH20 3/15/04 11:25 AM Page 874

Collaborative Protocol Profile
The Collaboration Protocol Profile (CPP) describes a company’s message-exchange
capabilities, business processes, and business collaborations in a standardized and
portable manner. The business processes that are described indicate how trading partners
are to interact with the company. A business collaboration describes both “ends” of a
B2B transaction, meaning that in a typical buyer-seller scenario, the CPP describes the
selling process and semantics of the seller as well as the buying process and semantics of
the buyer. The resulting CPP is stored with a registry to later be located and searched.

The Collaboration Protocol Agreement (CPA) is an addition to this model that describes
the exact requirements and mechanisms for the transactions that two companies perform
with each other. The CPA is formed by combining the CPPs of the two organizations and
can be manually formed or automatically generated depending on the commerce transac-
tion scenario. The CPA therefore becomes a binding contract that describes the terms and

Implementing XML in E-Business

CHAPTER 20
875

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

Company B

Company A

R
eq

ue
st

 In
du

st
ry

 P
ro

ce
ss

 D
et

ai
ls

Build Local Implementation

Download ebXML Components

Query Company A Profile

Register Im
plem

entation Details and Com
pany A Profile

A
gr

ee
 o

n
Tr

ad
in

g
P

ar
tn

er
 A

gr
ee

m
en

t

XML

Specifications,
Business Processes,

and Scenarios

ebXML Registry

1
5

4

3

6

2

Transact Business

FIGURE 20.4
The ebXML
process (courtesy
ebXML).

24 0672323419 CH20 3/15/04 11:25 AM Page 875

conditions for individual collaborations. The CPA is the actual implementation of a CPP
by virtue of agreement on given terms. For example, if a CPP indicates that some prop-
erty can be utilized in a transaction, the CPA will state that the given property will be
used in a given commerce exchange.

The CPP specifies such properties as the contact information of an organization,
supported network and file transport protocols, specific network addresses, security
implementations, and business process specifications.

Applied XML

PART III
876

Note

The CPA and CPP specifications and examples can be found at the following
sites:

http://www.ebXML.org/specs/cpa-example.xml

http://www.ebXML.org/specs/cpp-example.xml

http://www.ebXML.org/specs/ebCCP.pdf

Core Components
An important part of the ebXML architecture is the specification of a set of ebXML
schemas that contain formats for different types of shared business data such as dates,
monetary amounts, tax formats, account owners, exchange contracts, and other specifica-
tions. These schemas are known as core components and are shared across all industries
and user communities. The core components are meant to be the basic “atoms” of infor-
mation used in business messages and are also known as common business objects in
other e-business specifications. The schemas also provide a means to enable extensibility
so that different types of information in different industries, geographies, or individual
organizations can represent the same information in different ways.

In addition, ebXML describes a “core library” that defines a standard set of parts that
will, in turn, be used by other ebXML elements. This library can contain such items as
core processes that are referenced by more specific business processes.

Registry and Repository
The ebXML registry is a central storage facility that stores the data required for ebXML
to interact with organizations and their profiles. The registry stores a variety of business-
related information, including the core components, CPPs, business process and informa-
tion meta models, and related documents or fragments, including Web Services

24 0672323419 CH20 3/15/04 11:25 AM Page 876

documents, Java files, and even multimedia documents. The registry is the place where
ebXML-participating businesses go before and during the conducting of electronic busi-
ness transactions. Basically, when a business wants to start an ebXML relationship with
another business, it queries a registry in order to locate a suitable partner and to find
information about requirements for dealing with that partner.

The registry contains a set of query capabilities that allows users to search for relevant
documents and potential business partners. Technologies such as the Java APIs for XML
Registries (JAXR) can be used to query ebXML registries. In addition, the ebXML reg-
istry has a relationship with the more Web Services–centric Universal Description,
Discovery and Integration (UDDI) registry.

UDDI was developed as a joint project co-sponsored by IBM, Microsoft, and Ariba and
announced in September 2000. The main difference between the ebXML registry and
UDDI’s is that the ebXML registry is a local container for actual business information
itself that can be of any type of content, including CPP, schemas, commonly used XML
components, as well as Web Services, whereas the UDDI registry is mainly meant to be a
global source of Web Services–related content. The UDDI registry system contains three
types of information: white, yellow, and green pages. White pages store information
about companies’ organizational profiles, including their names and key services. Yellow
pages categorize these organizations by industry standard codes or by physical geograph-
ical location. Green pages provide a mechanism for companies to store their actual ser-
vices interfaces that allow them to interface with other organizations. It is quite feasible,
however, for business partners to first search UDDI registries that could result in refer-
ences to a CPP stored in an ebXML registry. Therefore, this becomes a two-step process,
leveraging the benefits of both systems.

Originally, the ebXML registry was going to be a fully distributed, networked set of
interacting registries that would provide transparent interaction to any ebXML-compliant
registry through interfacing with a single source, but time constraints lead to the specifi-
cation of just a single registry. Instead, the group now leverages its partnership with
UDDI, as mentioned earlier.

In many cases, the terms registry and repository are used interchangeably, but in truth,
the two perform different functions. The registry provides the interface and access mech-
anism, information model, and reference system implementation, whereas the repository
provides the actual, physical information store.

Messaging
Messages specified by ebXML are sent between partners by means of the messaging
architecture, which provides an “envelope” encapsulating a message with all necessary

Implementing XML in E-Business

CHAPTER 20
877

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 877

transmission semantics, including asynchronous or synchronous communications modes,
transaction control, security, and reliability settings. The messaging service provides the
means for the system to exchange a “payload,” which may or may not be an actual
ebXML business document. In addition to the enveloping and transmission capabilities,
an ebXML message can specify routing instructions to ensure that a given party receives
the document. EbXML messages utilize SOAP as the actual mechanism for message
passing and extend the SOAP protocol via additional functionality to support attach-
ments, security, and reliable delivery. The actual transport protocol, such as HTTP,
SMTP, or FTP, is left to the user to implement.

Business Process and Information Modeling
As with all e-business systems, most of the intelligence in a system is stored not in the
actual XML-encoded messages but in the business processes that surround the docu-
ments. Business process information includes transaction requirements, workflow and
document processing, collaboration, and data encapsulation, among other related things.
These business process documents describe how a business functions internally and how
other organizations can appropriately interface with the company. As systems move from
being human based to being machine automated, the appropriate electronic rendition of
these processes is of utmost importance.

Business processes are formally described in ebXML by the Business Process Speci-
fication Schema (BPSS) and may also be modeled in UML. The BPSS describes all
the activities that a business is interested in engaging in with its partners.

Using an XML DTD, BPSS provides a definition of an XML document that describes
the way an organization does business. The CPA and CPP deal specifically with the tech-
nical and integration needs and aspects of a business but don’t specifically deal with the
business processes and workflow inherent in a company. Rather, the BPSS specifically
handles modeling around the roles, specification of business document usage, general
processes, workflow and document flow, security and legal aspects, transactions,
acknowledgments, and overall status. The BPSS can then be used to create applications
that automatically configure the system based on the specific business details of a
trading partner.

In addition, users can use the UN/CEFACT Modeling Methodology (UMM), which uti-
lizes UML, as a means to model ebXML business processes. UMM is an implementation
of UML that specifically deals with methods for performing business and information
modeling in the context of an e-business system. The model prescribes the specific items
and their relationships that are to be produced from modeling analysis. The BPSS itself
is just a subset of the UMM information model. To simplify the process, ebXML has

Applied XML

PART III
878

24 0672323419 CH20 3/15/04 11:25 AM Page 878

produced simple “worksheets” that can enable nontechnical users to create information
necessary for BPSS without performing full UMM modeling. These business process
analysis worksheets and guidelines assist nontechnical analysts with the process of gath-
ering the required data to describe a business process. In addition, ebXML has also pro-
duce a predefined catalog of common business processes that can be reused by more
specific BPSS definitions. The group has produced a set of e-commerce patterns that are
examples of common business patterns, a methodology for discovering core components
in preexisting business documents or new processes, a set of standard naming conven-
tions based on ISO 11179, and catalogs of core components and context drivers to assist
in helping users to extend and build definitions of business messages.

The business process specification DTD declaration can be found in Listing 20.1.

LISTING 20.1 ProcessSpecification DTD Declaration (Courtesy of ebXML.org)

<!ELEMENT ProcessSpecification
(Documentation*,
(Include* | DocumentSpecification* |
ProcessSpecification* | Package |
BinaryCollaboration | BusinessTransaction |
MultiPartyCollaboration)*)>

<!ATTLIST ProcessSpecification
name ID #REQUIRED
version CDATA #REQUIRED
uuid CDATA #REQUIRED >

As you can see, the ebXML process specification contains a root element called
ProcessSpecification, which may contain references to other process or document
specifications or other information. Each process specification has a globally unique
identifier called “uuid” as well as a name and version that is specific to the model being
represented. Within the process specification is a defined set of collaborations that are
either MultiPartyCollaboration elements or BinaryCollaboration elements. These
collaborations play roles for the transacting business parties. Listing 20.2 shows an
excerpt of a sample package of collaborations.

LISTING 20.2 A Package of Collaborations (Courtesy of ebXML.org)

<Package name=”Ordering”>
<!— First the overall MultiParty Collaboration —>
<MultiPartyCollaboration name=”DropShip”>
<BusinessPartnerRole name=”Customer”>
<Performs authorizedRole=”requestor”/>
<Performs authorizedRole=”buyer”/>
<Transition fromBusinessState=”Catalog Request”

Implementing XML in E-Business

CHAPTER 20
879

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 879

LISTING 20.2 continued

toBusinessState=”Create Order”/>
</BusinessPartnerRole>
<BusinessPartnerRole name=”Retailer”>
<Performs authorizedRole=”provider”/>
<Performs authorizedRole=”seller”/>
<Performs authorizedRole=”Creditor”/>
<Performs authorizedRole=”buyer”/>
<Performs authorizedRole=”Payee”/>

...
<BinaryCollaboration name=”Request Catalog”>
<AuthorizedRole name=”requestor”/>
<AuthorizedRole name=”provider”/>
<BusinessTransactionActivity name=”Catalog Request”

businessTransaction=”Catalog Request”
fromAuthorizedRole=”requestor”
toAuthorizedRole=”provider”/>

</BinaryCollaboration>

Business Messages
The final element of ebXML architecture is the actual business messages themselves.
These documents contain the business-level information that is sent as part of the e-busi-
ness communication. The business message is wrapped in a number of layers as per the
previous description. Business messages are wrapped within ebXML message envelopes,
which in turn are wrapped in SOAP messages that are communicated via HTTP, SMTP,
FTP, or some other protocol. The business message is simply considered to be a “pay-
load” for the ebXML system.

Proof of Concept Demonstration
In order to verify that the concepts within the ebXML specification meet real-world
requirements, a simultaneous effort to produce a “proof of concept” has been initiated by
the group. The workgroup has demonstrated its progress at each quarterly ebXML meet-
ing and has shown how the various components are integrated. Feedback is given to each
ebXML working group on problems, challenges, and features discovered in the imple-
mentation. Resulting standards then reflect the results of the Proof of Concept team. The
end result is to create a specification that is real-world tested (to some degree) and meets
the needs of facilitating the implementation of cost effective e-business systems for
SMEs. At the last meeting of the working group in May 2001, more than two dozen ven-
dors participated in the Proof of Concept demonstration—and many of these participants
are software vendors who no doubt will be releasing products based on ebXML.

Applied XML

PART III
880

24 0672323419 CH20 3/15/04 11:25 AM Page 880

More on ebXML Architecture
As mentioned earlier, there are really two different architectural views of ebXML. We
have spent much time covering the technical architecture of ebXML but have not really
spent much time with the conceptual thinking behind the initiative. It is important to
realize that the teams responsible for the architecture approached the specification from a
business workflow point of view. This resulted in the creation and selection of business
components and objects that would be common to businesses across multiple industries,
geographies, and markets. These objects, such as location, party, and address, would be
designed not only to meet the specific needs of the various technical groups but also to
be reused in multiple, unexpected ways in the future. In this manner, ebXML could be a
constantly updated specification that unites cross-industry e-business needs with a stan-
dard technical definition.

The ebXML architectural model is a two-part conceptual model whose origin is in the
OpenEDI group of UN/CEFACT. The first part of this model is the Business Operational
View (BOV), which deals with the semantics of e-business data exchanges. This view of
the model deals with the various operational requirements, agreements, and business
obligations and requirements for an e-business exchange that applies to ebXML trading
partners. Figure 20.5 illustrates the BOV.

Implementing XML in E-Business

CHAPTER 20
881

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

Core Components &
Core Processes

Lexicon

Business Objects &
Business Processes

Library

Business Knowledge

Analysis Artifacts Design Artifacts

Collaboration Diagrams

Sate Diagrams

Final Class
Diagrams

Activity DiagramsRequirements Artifacts

Use Cases Diagrams

Use Cases Diagrams
Sequence Diagrams

Conceptual Class
Diagrams

Business Process and Information Models

FIGURE 20.5
The Business
Operational View
(courtesy of
ebXML.org).

The second part of the model is the Functional Service View (FSV), which deals more
with the various deployment services and needs of ebXML. It deals with the stages in

24 0672323419 CH20 3/15/04 11:25 AM Page 881

which ebXML systems are developed and deployed. The execution of the FSV consists
of implementation, discovery and deployment, and runtime phases. The implementation
phase is concerned with developing and creating ebXML-compliant systems and infra-
structures. The discovery and deployment phase deals with the various aspects of discov-
ering ebXML resources that can be manually or automatically configured for use in
an ebXML system. Finally, the runtime phase deals with the actual execution and
physical aspects of e-business exchange in a real-world ebXML scenario between
trading partners.

In addition to these phases, it is important to note that the FSV has a specific focus on
the information technology (IT) requirements for the implementation of a successful
ebXML system. These various IT aspects include the following:

• Capabilities for implementation, discovery, deployment, and runtime scenarios

• Data-transfer infrastructure interfaces

• User application interfaces

• Protocols for interoperation of XML vocabulary deployments from different
organizations

The registry serves as the means for actually delivering the BOV and FSV, because it
provides a set of integral services for enabling the sharing of information, business
processes, and related e-business data between ebXML trading partners. The FSV is
shown below in Figure 20.6.

Future Development and Maintenance
As per the original stated objectives of the group, the ebXML effort was officially closed
at the May 2001 meeting of ebXML in Vienna, Austria. The ongoing development and
maintenance of the infrastructure of ebXML has officially been handed to the OASIS
group, whereas the document definition, process discovery, and process definition com-
ponents were moved to a group operating under the auspices of UN/CEFACT. In order to
make sure that these two groups stay in sync, a formal coordinating committee was
formed with frequent exchanges of progress.

Participation in ebXML is very high at the moment and consists of almost every large
software vendor and XML-consuming organization currently in the market. Many associ-
ations, government standards bodies, and other groups are also members or otherwise
affiliated with ebXML. Backers include a large number of high-tech, manufacturing,
logistics, finance, and other companies of many different industries. Many standards
groups are also working with ebXML, including the National Institute of Standards and
Technology (NIST), W3C, and RosettaNet.

Applied XML

PART III
882

24 0672323419 CH20 3/15/04 11:25 AM Page 882

RosettaNet
Named after the famed Rosetta Stone that helped in the understanding of ancient lan-
guages, RosettaNet not only seeks to standardize the grammar and language for
Information Technology (IT) vendors to participate in e-business transactions but also to
specify the business processes in which they take place. RosettaNet has gained much
attention from the heavyweights and over 400 participants in the IT industry, many of
which are also members of ebXML and other efforts. RosettaNet was formed in 1998 as
an independent IT and electronic components–focused industry consortium formed by
leading manufacturers, suppliers, distributors, and resellers. Its main goal is to produce
an e-business specification for the industry that optimizes supply chain interactions. The
result is a comprehensive set of standards and guidelines for an automated, Internet-
based exchange of business information and transactions between trading partners.
RosettaNet was an early proponent of defining B2B process standards in addition to sim-
plifying business data formats, and perhaps their work has influenced the direction that
other formats such as ebXML are headed. In essence, the group is focused on enabling
businesses to conduct dynamic trade by means of providing flexible trading networks,
improving operational efficiency, and presenting new business opportunities. An illustra-
tion of RosettaNet’s role in e-business is shown in Figure 20.7, which references the eCo
Framework as well.

Implementing XML in E-Business

CHAPTER 20
883

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

Business Process and Information Models

UML to XML conversion

eb XML metamodel XML content

Registration Registration

Registry

Registry Service
Interface

Retrieval of Profiles & new or
updated ebXML Models

Retrieval of Profiles & new or
updated ebXML Models

Retrieval of Profiles & new or
updated ebXML Models

Registration

Build Build

Registration

Internal
Business App Implementers

Shrink-wrapped
Application

Business Service
Interface

Business Service
Interface

TPA

Payload

TPP Derives

TPP Governs

TPP TPP

FIGURE 20.6
The Functional
Service View
(courtesy of
ebXML.org).

24 0672323419 CH20 3/15/04 11:25 AM Page 883

The main components of the RosettaNet e-business architecture consist of the following:

• Data dictionaries

• Partner Interface Processes (PIPs)

• The RosettaNet Implementation Framework (RNIF)

• Business process modeling and analysis

These components are described in the following subsections.

Data Dictionaries
The goal of RosettaNet dictionaries is to eliminate or reduce semantic confusion in sup-
ply chains due to differently defined terminology. There are actually two RosettaNet dic-
tionaries: the Business Dictionary and Technical Dictionary. The RosettaNet Business
Dictionary defines a common set of properties and data elements for describing business
properties for specific industries. This includes definitions of catalog properties, partner
properties, and business transaction properties.

Applied XML

PART III
884

Telephone

Business Process

DIALOG PIP

Grammar

Words

Alphabet

Sound

e-Commerce Application

Framework

e-Business Process

Dictionary

XML

Internet

R
o

settaN
et

Human-to-Human
Business
Exchange

Partner-to-Partner
e-Business
Exchange

FIGURE 20.7
RosettaNet value
proposition
(courtesy of
RosettaNet).

24 0672323419 CH20 3/15/04 11:25 AM Page 884

The Technical Dictionary specifies common properties for IT products. The main goal is
to simplify the process of locating and comparing the pricing and availability of similar
products from multiple vendors. Dictionaries are applied on a per-industry basis, such as
the Information Technologies Technical Dictionary or the Electronic Components
Technical Dictionary.

Partner Interface Processes (PIP)
RosettaNet Partner Interface Processes (PIPs) control and coordinate the exchange of
messages between internal IT systems and trading partners to support specific business-
to-business processes. They are individual dialogs that contain the specific sequence of
steps required to complete B2B processes such as catalog management, order manage-
ment, inventory management, and customer service and support. Each PIP specification
includes a business document that contains the required vocabulary, business process,
and choreography of the message dialog. The PIPs also define the specific information
exchange and transactions each step in the business process triggers. PIPs are grouped
according to core processes known as clusters. These clusters include Administration,
Partner, Product and Service Review, Product Introduction, Order Management,
Inventory Management, Marketing Information Management, Service and Support, and
Manufacturing. Table 20.2 provides a sample listing of PIPs dating from mid-2001.

TABLE 20.2 Examples of RosettaNet PIPs

PIP Description

PIPlB1 Manage product information subscription

PIP2A1 Distribute new product information

PIP2A2 Query new product information

PIP2A5 Query technical information

PIP2A8 Distribute product SKU

PIP3A2 Query price and availability

PIP3A3 Transfer shopping cart

PIP3A4 Manage purchase order

PIP3A5 Query order status

PIP3A6 Distribute order status

The RosettaNet Implementation Framework
The RosettaNet Implementation Framework (RNIF) provides a structure for intersystem
communication, messaging, transaction control, and response mechanisms as well as the

Implementing XML in E-Business

CHAPTER 20
885

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

24 0672323419 CH20 3/15/04 11:25 AM Page 885

implementation guidelines for creating components that facilitate the execution of PIPs.
The RNIF core specification outlines the protocols used for the reliable, secure, quick
and efficient exchange of PIPs and related business process information.

The RNIF is defined through the use of PIP implementation and message guidelines.
These define the vocabulary, structure, and allowable data elements as well as values and
value types for each message exchanged in a PIP. The message guidelines are composed
of three major parts: the preamble header, service header, and service content. These are
all packaged for transport as MIME messages that are packed, validated, and transmitted
between RosettaNet participants through server-to-server transfers or transfers through an
intermediate human-controlled browser.

Business Process Modeling and Analysis
Although the dictionaries, PIPs, and RNIF form the core of the RosettaNet specification,
supporting business process modeling and analysis activities surround them in a layer of
additional capabilities. The business process modeling involves a number of activities
around identification and quantification of the various elements of a business process and
the possible reengineering of those processes to simplify their implementation. It
involves the creation of an “as-is” model of current business processes and generic “to-
be” processes to be modeled in the RosettaNet architecture. A “blueprint” is created from
the “to-be” model that identifies all the partner roles, interactions, and interfaces required
to execute a business process. This includes specifications for PIP services, transactions,
and messages. A PIP protocol is then created from the blueprint that results in a valid
XML document based on the data dictionaries and RNIF.

Future of RosettaNet
A key element in this vision is a shift in strategy from being focused on providing a cer-
tain number of business process definition documents known as Partner Interface
Processes (PIPs) to an e-business “ecosystem” that focuses more on proof-of-concept
implementations, small subsets of existing PIPs, and implementation with a limited set of
trading partners. Ten production milestones have been created that are meant to reflect
real-world implementations and full-fledged tests of the capabilities of the RosettaNet
specifications. Each of these milestones consists of a small ecosystem of companies
committed to implementing a particular business process scenario, in a production or
nontest capacity, by a certain date. Each milestone deals with different, specific problems
within a supply chain. For example, in the Electronic Components industry, 15 compa-
nies are committed to implementing a closed-loop “Design Win Management” process
by December 2001. Cisco’s iHub project is committed to implementing 24 PIPs that

Applied XML

PART III
886

24 0672323419 CH20 3/15/04 11:25 AM Page 886

provide greater supply and demand chain visibility by the third quarter of 2001. Each of
these milestones is committed to tackling different business process scenarios and con-
sists of three phases of implementation with a steadily increasing number of trading part-
ners at each phase. Some of these processes will result in implementation of RosettaNet
PIPs, whereas others will result in the creation of new processes to be defined by
RosettaNet.

RosettaNet claims that each implementation of a “delivery-win” PIP saves each partici-
pant over $400,000 per trading partner. Rather than producing a laundry list of require-
ments, the organization is focused on an engagement model that stipulates that it can
only focus on work that is supported by a significant number of board members. When
these board members indicate that they want to attack a particular problem, RosettaNet
then assigns resources and ramps up its work activities as quickly as possible. RosettaNet
has announced another major milestone—the implementation of RosettaNet Basic, which
is aimed at bringing the middle-tier of trading partners into the loop. This is done by
greatly simplifying the process of implementing a RosettaNet solution, providing greater
involvement of software developers and OEMs, and requiring large trading partners to
perform RosettaNet-based exchanges with at first hundreds and then thousands of trading
partners. RosettaNet Basic milestones are focused on defining use-cases and implementa-
tion guides, working with solution providers to specify a target price and implementation
methodology, and encouraging solution providers to produce a series of product offerings
based on the RosettaNet Basic requirements. RosettaNet and these solution providers
will then market this offering to mid-tier trading companies.

RosettaNet is also flexing its international muscles by aiming to have a group of six
Japanese companies and 60 of their trading partners communicating using RosettaNet
specifications. Later, this same group will expand its scope to over a thousand trading
partners. RosettaNet has also announced its support of the ebXML effort as well as sup-
port for the use of UDDI registries and repositories. In particular, RosettaNet is support-
ing the ebXML messaging service in its RosettaNet Implementation Framework (RNIF).

Implementing XML in E-Business

CHAPTER 20
887

20

IM
PLEM

EN
TIN

G
X

M
L IN

E-B
U

SIN
ESS

Note

For more information on RosettaNet, visit the RosettaNet Web site at http://
www.rosettanet.org.

24 0672323419 CH20 3/15/04 11:25 AM Page 887

Summary
As you have seen, the world of e-business and supply chain management is quite
involved. There are many steps to the various processes that enable companies to more
efficiently communicate with their trading partners, suppliers, and customers of all types.
As you have seen countless times before, XML provides a coherent, effective, and effi-
cient solution to these various problems and has provided a number of improvements
beyond technologies such as EDI that have attempted to solve these problems in the past.

Such XML standards and robust specifications, including ebXML and RosettaNet, have
provided users with a framework by which they can reliably exchange e-business infor-
mation and transact efficiently in a supply chain. The advent of these frameworks and
their hopeful widespread use will no doubt herald an era when even the smallest business
operation can effectively communicate online with its customers, suppliers, and partners.

Applied XML

PART III
888

24 0672323419 CH20 3/15/04 11:25 AM Page 888

IN THIS CHAPTER

• The Vision of Ubiquitous
Computing 891

• Key Technologies 892

• Wireless Applications with WAP
and WML 896

• Voice Applications with
VoiceXML 919

21
C

H
A

PT
ER

Delivering
Wireless and Voice
Services with XML

25 0672323419 CH21 3/15/04 11:25 AM Page 889

Of all the applications of XML discussed in this book, wireless and voice services are
two of the most complex and problematic, and yet they are also the most promising.
Both technologies play critical roles in many vendors’ multiple touchpoint visions, from
IBM’s Pervasive Computing to AOL Time Warner’s AOL Anywhere. Such vendors envi-
sion the Internet as a global enabler of communication among both business and con-
sumer users anywhere, at any time. Such visions require that users are able to access
Internet-based applications via multiple devices, including traditional telephones, mobile
telephones, wireless PDAs, pagers, and whatever other devices are over the horizon.

The technology required to bring this vision of the ubiquitous Internet to life, however,
has been unexpectedly challenging. Voice-recognition software, the key to voice services,
is only just now maturing. The wireless world has also been struggling with its immatu-
rity; wireless technology is characterized by competing communications protocols,
inconsistent user interfaces, and confused, disillusioned users.

Unfortunately, the advantages of XML only apply to a relatively small portion of the
issues surrounding wireless and voice services. XML can provide a simple way to format
and translate data between the various interfaces and the back-office applications that
talk to them. In addition, the XML-based technologies of XSL and XSLT are well suited
to translating interface-neutral content for the wide variety of user interfaces. However,
XML cannot improve voice recognition or solve the problem of incompatible wireless
communication protocols. Therefore, it is important to read this chapter with a wary eye.
Using the technologies described here is easier said than done.

In this chapter, you will learn

• What wireless and voice services are and how to incorporate them into a Web
application architecture

• The application architecture for wireless services based on the Wireless
Application Protocol (WAP) and how it fits into a multiclient Web application
architecture

• How to develop applications using the Wireless Markup Language (WML), includ-
ing an overview of the WML language and a development primer

• The application architecture for a VoiceXML service and how it fits into the
multiclient Web application architecture, including an overview of the VoiceXML
language.

Applied XML

PART III
890

25 0672323419 CH21 3/15/04 11:25 AM Page 890

The Vision of Ubiquitous
Computing
Three essential elements make up the vision of ubiquitous computing:

• Anywhere access. Users are able to access desired services from any location,
using whatever access device is convenient and appropriate for their current situa-
tion, including desktop computer, landline or mobile telephone, PDA, pager, public
Internet terminal, and so on.

• Parallel and complementary modes of access. Parallel modes of access give users
more options regarding when, where, and how they access a given service. An
example of parallel modes of access would be a map and directions service that
may be accessed via a standard PC Web browser or on a Web phone while the user
is traveling. In this case, both modes of access have merits and are beneficial to the
user under different circumstances. On the other hand, with complementary modes
of access, a service is made accessible via a variety of modes that work together to
deliver the service. For example, complementary modes of access would be found
in a phonebook service where users can most efficiently create and manage their
contact information using a desktop PC but access this information most efficiently
via a Web phone.

• Presentation-neutral application middleware. As shown in Figure 21.1, different
devices use different communication infrastructures, but they all access the same
application on the back-office server. It is essential, therefore, for the applications
running on that server to be “presentation neutral.” Separate devices that are dedi-
cated to supporting their corresponding interfaces best handle the formatting of
data for presentation. XML and XSL provide excellent tools for implementing pre-
sentation-neutral middleware.

Figure 21.1 shows four separate access devices using different communication infrastruc-
tures to access a common application. A desktop user may use the standard Internet tech-
nologies of TCP/IP and HTTP to access the Internet directly. Alternately, a wireless
PDA, two-way pager, or mobile phone user may use one of many wireless communica-
tion infrastructures to access the Internet via a WAP gateway. The mobile phone might
also call into a VoiceXML gateway to interact with the common application via voice,
which is also possible from a landline phone.

Delivering Wireless and Voice Services with XML

CHAPTER 21
891

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 891

Key Technologies
Ubiquitous computing is divided into two complementary modes of communication, sim-
ply because we have both eyes and ears. On the one hand, remote devices must display a
graphical user interface that allows the user to communicate via the Internet. On the
other hand, some devices must accept spoken commands and respond audibly—what
might be called an audible user interface. In many ways, each mode of communication
must be discussed separately. However, because of the requirement of presentation neu-
trality, there must be a core technology—based on XML—that’s shared by the various
communication modes.

Wireless Services: WAP and WML
The Wireless Application Protocol (WAP) is a specification for the delivery and presenta-
tion of information and telephony services via wireless networks on mobile phones,
which are also called Web phones, as well as other wireless terminals. The current ver-
sion of the WAP specification is 1.2.1, which is overseen by the WAP Forum, and is
backed by major industry players, including Openwave, IBM, Sprint, Cingular, Ericsson,
Motorola, and Nokia.

Applied XML

PART III
892

Landline
telephone

Mobile phone/
Web phone/

pager

Wireless
PDA

Desktop
computer

WAP
Gateway

VoiceXML
Server

Application
Server/

Web
Server

Phone
Network Internet

Wireless communication
infrastructure

(cellular, PCS, pager, etc.)

FIGURE 21.1
The ubiquitous
computing
multiclient Web
application
architecture.

25 0672323419 CH21 3/15/04 11:25 AM Page 892

WAP 1.2.1 uses the Wireless Markup Language (WML), an XML derivative modeled
after HTML, for tagging content for presentation on mobile handsets. The version of
WML that corresponds to WAP 1.2.1 is WML1, which, like HTML, suffers from a lack
of extensibility. Although WAP has been endorsed by over 90 percent of the world’s
handset manufacturers, its adoption has been spotty, due to several problems—inadequate
security, low-quality applications, ineffective business models, poor usability, and incon-
sistent implementations across different handset models. The upcoming WAP 2.0 specifi-
cation, on the other hand, addresses most of the issues with WAP 1.2.1 and WML1.

Delivering Wireless and Voice Services with XML

CHAPTER 21
893

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

Note

The WAP Forum can be found at http://www.wapforum.org. The 1.2.1 specifica-
tion can be found at http://www.wapforum.org/what/technical_1_2_1.htm.

Note

The W3C (at http://www.w3.org) is guiding the WML 2.0 specification, which
can also be found at the WAP Forum (http://www.wapforum.org/what/
technical.htm). For a more extensive treatment of WAP and WML, please see
the book WAP Development with WML and WMLScript by Ben Forta (Sams
Publishing, 2000).

The WAP 2.0 specification includes the following features:

• Direct support for TCP and HTTP. WAP 1.2.1 provided for the Wireless Session
Protocol (WSP) and the Wireless Transaction Protocol (WTP), which had to be
converted to TCP and HTTP at the WAP gateway. WAP 2.0 allows for HTTP and
TCP at the handset and is also backward compatible with WAP 1.2.1.

• The Wireless Application Environment (WAE). WAE provides for the interaction
between WAP-based Web applications and wireless devices containing a WAP
browser (called a microbrowser).

• WAP 2.0 addresses the unique characteristics of wireless devices. These include
small screens, limited battery life and memory, as well as user interface considera-
tions such as one-finger navigation.

• The updated WML2 markup language converges with the Extensible Hypertext
Markup Language Basic (XHTML Basic). The Compact Hypertext Markup
Language (cHTML), the format used for the i-Mode service widely used in Japan,
also converges with XHTML Basic. XHTML Basic is a core subset of the

25 0672323419 CH21 3/15/04 11:25 AM Page 893

Extensible Hypertext Markup Language (XHTML), which is appropriate for wire-
less devices.

• WAP 2.0 supports two additional “mobile friendly” technologies. These include
the Composite Capabilities/Preference Profiles (CC/PP) framework for describing
user preferences and device capabilities as well as the Cascading Style Sheets
(CSS) Mobile Profile, which provides a subset of CSS version 2 targeted at mobile
devices. (CC/PP can be found at http://www.w3.org/Mobile/CCPP, and the CSS
Mobile Profile is located at http://www.w3.org/TR/css-mobile).

• Support for WMLScript. Also part of the WML specification is WMLScript, a sub-
set of ECMAScript (the standards-based extension of JavaScript). WMLScript may
be used to create and embed scripts in WML content (for client-side validation, for
example). The WMLScript specification is part of the WML 2.0 specification.

• Support for WAP Push. This allows content to be sent to devices by server-based
applications, allowing applications to send alerts to WAP devices without requiring
them to poll the server.

Voice Services: VoiceXML
The other key technology behind ubiquitous computing is VoiceXML. Many of the popu-
lar Web services have interfaces that require minimal input and provide concise, high-
value text-based output. Voice applications strive to deliver services such as stock quotes,
weather, driving reports, and so on over any telephone. Such applications accept both
voice and Dual-Tone Multiple Frequency (DTMF, commonly called Touchtone) key-
presses for input and synthesized speech or prerecorded audio playback for output.
VoiceXML is a XML-based markup language specification that allows Web sites to
deliver voice-based services over telephones to users. To access such a service, a user
calls a number with his telephone and connects to a voice portal running on a VoiceXML
server (refer to Figure 21.1). The voice portal, driven by VoiceXML, in turn interacts
over the Internet with the application that delivers the service to the user.

There are several reasons why a company may want to make a Web application accessi-
ble via voice:

• Voice access is very low cost. Users already have phones and phone service, so there
is no initial cost to purchase a device or a special service for this mode of access.

• Users are also familiar and comfortable with telephones, and telephones are glob-
ally available. One of the most vexing problems facing wireless data services
today is availability. By using the telephone as the client device to access voice ser-
vices, companies can maximize coverage and availability with minimal additional
infrastructure cost.

Applied XML

PART III
894

25 0672323419 CH21 3/15/04 11:25 AM Page 894

• Voice access enables eyes and hands-free operation. This makes voice access the
only suitable choice in many situations, such as driving a car. Wireless PDAs, two-
way pagers, and Web phones all require at least one hand and the user’s eyes.

• For companies that are already using Interactive Voice Response (IVR) systems,
they have the incentive to move to voice portals driven by VoiceXML in order to
consolidate all their services, thus reducing costs. Traditional IVR systems are
closed, proprietary systems, making it difficult for companies to build presentation-
neutral applications.

Delivering Wireless and Voice Services with XML

CHAPTER 21
895

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

Note

The VoiceXML specification can be found at http://www.voicexml.org. The
specification has recently been released to the W3C, where it can be found at
http://www.w3.org/Voice. For a more extensive treatment of VoiceXML, see
the book Voice Application Development with VoiceXML, by Rick Beasley, Mike
Farley, John O’Reilly, and Leon Squire (Sams Publishing, 2001).

VoiceXML is a relatively straightforward XML-based language. VoiceXML’s features
include the following:

• Interaction dialogs, including <menu> and <form>, which provide for user input

• Audio output, tagged with <prompt>, which provides either text-to-speech (TTS) or
prerecorded audio streams

• Audio input, including speech recognition and Touchtone capabilities

• Presentation logic, including basic control flow commands as well as ECMAScript
client-side scripting

• Event handling, including bad input, help, and error conditions

• Basic connection control, including call transfer, bridging, and disconnect

Building a VoiceXML application, however, is far more complex than the VoiceXML
language itself. Creating a VoiceXML application involves the following steps:

• Designing the voice application and developing it with VoiceXML tools.

• Tuning the endpoint parameters to improve comprehension and speech quality.

• Tuning the grammars and parameters for the Automatic Speech Recognition (ASR)
capability, essentially training the application to understand all relevant speech
utterances.

25 0672323419 CH21 3/15/04 11:25 AM Page 895

• Setting up the VoiceXML generator, interpreter, and platform to provide the
required availability, scalability, and redundancy to the application.

• Establishing a rigorous test suite and conducting thorough quality assurance.

As with wireless services, there’s more to voice services than meets the eye. ASR is the
weak link in any voice service, and even with a well-trained ASR system, there are still
many steps to creating a functional XML-based interactive voice service. Furthermore,
with wireless services, the current WAP specification is sorely lacking in usability and
functionality, and even when the WAP 2.0 specification becomes established, developers
are still faced with issues of backward compatibility, multiple communication protocols,
and a seemingly never-ending variety of handset configurations. So, now that you’ve
been suitably warned, let’s proceed with the rest of the chapter.

The rest of the chapter addresses WML and VoiceXML by showing you how to use XSL
style sheets to produce WML and VoiceXML from existing XML documents. The trans-
formation examples will help you understand how to develop in WML and VoiceXML.

Wireless Applications with WAP
and WML
This section discusses how to use a multiclient XML/XSL-based architecture to deliver
Web applications to Web phones using WML. It presents the WML application architec-
ture, which is used as a framework to introduce each of the components that collaborate
to deliver WML Web applications. The phonebook business service is then presented as a
sample business service to illustrate the delivery concepts and how to develop XML,
XSL, and WML content to drive the multiclient architecture so that WML Web phones
may access it.

A WML Application Architecture
The WML architecture consists of a number of major user and system components that
together contribute to a system for human interaction with applications via telephony
devices. Figure 21.2 shows the overall WML application architecture that is discussed in
this section.

Here’s a list of the components:

• Mobile user. The user of a WML-enabled Web phone.

• Web phone. A wireless phone equipped with a WML-compatible browser.

• Base station. A cellular base station in a wireless network that handles both voice
and wireless data connections.

Applied XML

PART III
896

25 0672323419 CH21 3/15/04 11:25 AM Page 896

• Telecommunications infrastructure. The telecommunications provider’s infrastruc-
ture for routing and managing telephone connections.

• Phone. A standard landline phone used by the phone user to receive a voice call in
this example.

Delivering Wireless and Voice Services with XML

CHAPTER 21
897

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

WAP
Gateway

Multiclient
Pull

Architecture

Te
le

co
m

m
un

ic
at

io
ns

 In
fr

as
tr

uc
tu

re

In
te

rn
et

Base
Station

Phone

Web
Phone

Phone
User

Mobile
User

WTAI
(Voice)

WML
HTTP(S)

WTLS
(Data)

(Voice)

FIGURE 21.2
WML application
architecture.

*Note

Although a standard landline phone is being shown in this example, any type of
telephone, including another wireless phone may receive such a voice call.

• Phone user. A user of a standard phone who is talking with the mobile user on a
standard voice call initiated from a WML session.

• WAP gateway. A wireless system gateway that interfaces the WML browser
to the Internet.

• Multiclient pull architecture. The architecture that delivers Web applications to a
variety of different types of clients. The architecture is described as “pull” because
when the mobile user issues a request, he waits while the request is being
processed until the response is received.

WML Applications
Just because access to wireless and telephony-based services is enabled by technologies
such as WAP and WML, it doesn’t mean this is appropriate in all circumstances. It is
important to realize what advantages and disadvantages these new technologies offer

25 0672323419 CH21 3/15/04 11:25 AM Page 897

users and developers, and consequentially which business applications are most appropri-
ate for use in this environment. As a result, it is important to review some of these bene-
fits and challenges to adoption.

Advantages
Web phone access to wireless services has the following specific advantages:

• Familiarity. Phones are familiar and available to people, in contrast with other
wireless devices, including wireless PDAs and two-way pagers.

• Multifunction client devices. Web phones can be used for wireless data as well as
voice calls, although not concurrently.

• Low cost. Many users already have phones capable of accessing Web applications
and simply need to activate this feature in their associated service plan.

Limitations
Mainly the technology’s relative immaturity and the issues surrounding the combination
of previously unrelated technologies evidence the limitations of this mode of access. In
particular, the challenges include the following:

• Significant security holes in the WAP protocol

• Challenges to user experience due to different input paradigms

• Not eyes and hands free

• Small, monochrome user interface

• Inconsistent WML support

Security Holes in WAP
As a WAP gateway interfaces WML requests and responses, there is a point at which the
request and supporting information is unencrypted, thus opening a potential security hole
in the WAP architecture.

For most WML applications, this hole is not an issue because the providers that maintain
the WAP gateway provide adequate security around the gateway so that this hole is not
exposed for would-be attackers to access.

However, the next release of WAP, version 2.0, has been updated to overcome this
security hole.

Challenges to User Experience Due to Different Input
Paradigms
Web phones use methods of input that are unfamiliar to PC users:

Applied XML

PART III
898

25 0672323419 CH21 3/15/04 11:25 AM Page 898

• Alphanumeric input using the telephone keypad to enter individual characters

• Alpha entry using the “T9” system, which “guesses” at the user’s intent as she
presses keypad buttons

• Scrolling and “clicking” using unfamiliar handset-specific buttons

Not Eyes and Hands Free
Web phones require at least one hand as well as the attention of the user’s eyes to operate
them. This issue limits the usability of Web phones for wireless data access while dri-
ving, walking, or engaging in other activities that require the user’s full attention.

Small Monochrome Screen
A typical Web phone screen is approximately 1×1 inch square and either is monochrome
or has a few grayscale levels at most, thus effectively limiting the visual output of the
phone to text or primitive icons only. This size of screen generally permits typically 4
lines of 15 characters per line and varies by Web phone model.

Inconsistent WML Support
Some inconsistency exists in the behavior across different models of Web phones.
This is due in part to inconsistent or incomplete implementations of the WAP/WML
specification or the introduction in some phones of proprietary features not supported
by all phones.

The Profile of a Successful WML Application
Despite the aforementioned challenges, a number of forward-looking enterprises have
embarked on the creation of WML-based applications, and some with a reasonable
amount of success. As a result, a few characteristics of a successful WML application are
outlined here to give the tentative WML application creator some insight into the types
of business services that lend themselves well to this mode of access:

• Concise input. (Selecting options from a list is preferable to keying in text input.)

• Navigation requires a minimal number of steps (fewer than 10 is a starting
rule of thumb).

• Concise text output.

• Sparing use of icon graphics.

• Retrieves volatile information that is important to the user.

• Information is required outside of business hours or away from the office.

Delivering Wireless and Voice Services with XML

CHAPTER 21
899

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 899

Example: A Wireless Phonebook Service
with WML
Regardless of the limitations of WML, there are many reasons to at least dive in and give
the technology a try. The following example uses a phonebook service to illustrate WML
access to business Web applications. The concepts discussed here are applicable to WML
Web applications in general. This example is a common one—a user accesses a company
phonebook, looks up a contact, and then calls the contact via the phone device.

Usage Scenario
This usage scenario outlines the chronological sequence of steps required to realize
the goal:

• The user accesses the phonebook service to get a list of contact groups.

• The user selects a group to view a list of its contacts.

• The user selects a contact to view the details of that contact, including phone numbers.

• The user selects a phone number to call that contact.

Collaborations
The first three steps in the usage scenario each involve a separate type of request to the
multiclient architecture, whereas the last step involves the Web phone using WTAI to ini-
tiate a voice call directly to a phone number retrieved from the phonebook service. To
support the steps, the phonebook service retrieves data, selects the proper XSL style
sheet, and transforms the data into WML for delivery to the gateway. For a diagram of
the architecture that is applicable for these collaborations, refer to Figure 21.1 earlier in
this chapter.

Developing the Content
This section discusses how to develop the content required to power the WML phone-
book service. This content is presented in the order of the steps of the usage scenario
outlined previously.

Accessing the Service to Get a List of Contact Groups
The user first enters the URL of the phonebook service into the Web phone using one of
the two Web phone text-entry methods discussed previously. Here’s an example:

https://www.MyDomain.com/servlet/Phonebook

Here, www.MyDomain.com is the domain of the business Web site providing the phone-
book service.

Applied XML

PART III
900

25 0672323419 CH21 3/15/04 11:25 AM Page 900

The XML that is returned by the data component in response to this request appears in
Listing 21.1.

LISTING 21.1 Phonebook_Empty.xml—Phonebook Service XML Empty Response

<?xml version=”1.0” encoding=”UTF-8”?>

<phonebook name=”XYZ Inc” group=”None”/>

This XML response conveys the name of the phonebook as “XYZ Inc” and the group as
“None” to indicate that this phonebook XML document contains no contacts.

The XSL style sheet used by the phonebook view component to transform this XML
response into WML is shown in Listing 21.2. The purpose of the style sheet is to trans-
form the XML business data in the phonebook application so the data can be delivered as
WML. If you need more information about using and developing with XSL, refer to
Chapter 9, “Transforming XML with XSL.”

LISTING 21.2 GetListOfContactGroups_WML.xsl—The XSL Used by the Phonebook
View to Transform the XML into a WML List of Contact Groups

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:param name=”servlet” select=”’undefined’”/>
<xsl:template match=”/”>
<xsl:text disable-output-escaping=”yes”>
<![CDATA[<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

➥ ”http://www.wapforum.org/DTD/wml_1.1.xml”>]]>
</xsl:text>
<wml>
<card id=”SelectGroup”>
<do type=”accept” label=”OK”>
<go method=”get”>
<xsl:attribute name=”href”><xsl:value-of select=”$servlet”/>

➥ </xsl:attribute>
<postfield name=”mode” value=”selectContact”/>
<postfield name=”group” value=”$group”/>

</go>
</do>
<p>
<xsl:value-of select=”phonebook/@name”/>
<select name=”group”>
<option>All</option>
<option>[A-C]</option>
<option>[D-F]</option>
<option>[G-I]</option>
<option>[J-L]</option>

Delivering Wireless and Voice Services with XML

CHAPTER 21
901

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 901

LISTING 21.2 continued

<option>[M-O]</option>
<option>[P-S]</option>
<option>[T-V]</option>
<option>[W-Z]</option>

</select>
</p>

</card>
</wml>

</xsl:template>
</xsl:stylesheet>

When the XML in Listing 21.1 is transformed using the XSL in Listing 21.2, it results in
the WML response shown in Listing 21.3.

LISTING 21.3 ListOfContactGroups.wml—The WML Response for a List of Contact
Groups

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”
➥ ”http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card id=”SelectGroup”>
<do label=”OK” type=”accept”>
<go method=”get” href=”/servlet/Phonebook”>
<postfield value=”selectContact” name=”mode”/>
<postfield value=”$group” name=”group”/>

</go>
</do>
<p>
XYZ Inc
<select name=”group”>
<option>All</option>
<option>[A-C]</option>
<option>[D-F]</option>
<option>[G-I]</option>
<option>[J-L]</option>
<option>[M-O]</option>
<option>[P-S]</option>
<option>[T-V]</option>
<option>[W-Z]</option>

</select>
</p>

</card>
</wml>

Applied XML

PART III
902

25 0672323419 CH21 3/15/04 11:25 AM Page 902

The output listing illustrates these characteristics of WML:

• The <wml> root element common to WML documents.

• The card-based paradigm. This WML document has a single card, as specified by
the card element.

• The <do> element, to define and accept user input. This example specifies a soft
menu at the base of the Web phone screen that will have the label OK and the type
accept, meaning that when the user presses the key associated with the OK label,
the Web phone will accept and submit the input.

• The <go> element, to define the submission method and arguments. The example
uses HTTP GET. The first argument sets the parameter with the name mode to the
value selectContact, informing the phonebook view that the request is intended
to get the WML page required to select a particular contact of the phonebook. The
second argument sets the parameter with the name group to the value of the local
WML variable named group.

• The <p> element, which controls output display on the Web phone screen.

• The element that indicates the enclosed text should be displayed in bold font to
serve as a title for the phonebook being displayed.

• <select> element, which presents a list of options for the user. When the user
selects an option, the form enclosed by the go element is submitted. In this case,
the user is selecting the group containing the first letter of the last name of the con-
tact she wishes to call.

When this WML is loaded into a Web phone, the screen appears as shown in Figure 21.3.

Selecting a Group to View a List of Its Contacts
Next, the user needs to select a group to view its contacts. In this example, we select the
group [A-C] and submit the request by pressing OK. The ensuing collaborations generate
the XML response in Listing 21.4.

LISTING 21.4 Phonebook_a2c.xml—The Phonebook Service XML Response for
Contacts in a Selected Group

<?xml version=”1.0” encoding=”UTF-8”?>

<phonebook name=”XYZ Inc” group=”a2c”>
<contact id=”e5678”>
<name>
<firstname>Joe</firstname>
<lastname>Ashworth</lastname>

</name>
<phone type=”Work”>

Delivering Wireless and Voice Services with XML

CHAPTER 21
903

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 903

LISTING 21.4 continued

<areacode>813</areacode>
<number>9816084</number>
<extension>4373</extension>

</phone>
<phone type=”Home”>
<areacode>813</areacode>
<number>3472341</number>

</phone>
</contact>
<contact id=”e9921”>
<name>
<firstname>Bill</firstname>
<lastname>Currie</lastname>

</name>
<phone type=”Work”>
<areacode>813</areacode>
<number>2367856</number>
<extension>4373</extension>

</phone>
<phone type=”Mobile”>
<areacode>813</areacode>
<number>9835646</number>

</phone>
</contact>

</phonebook>

Applied XML

PART III
904

FIGURE 21.3
The Web phone
emulator view of
the WML response
for a list of con-
tact groups.
Openwave
UP.SDK 4.1 used
for emulator.
(Image of UP.SDK
courtesy
Openwave
Systems Inc.)

25 0672323419 CH21 3/15/04 11:25 AM Page 904

The XSL used to transform Listing 21.4 is shown in Listing 21.5.

LISTING 21.5 GetListOfContacts_WML.xsl—The XSL Used by the Phonebook View
to Transform the XML into a WML List of Contacts in a Group

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:param name=”servlet” select=”’undefined’”/>
<xsl:param name=”group” select=”’undefined’”/>
<xsl:template match=”/”>
<xsl:text disable-output-escaping=”yes”>
<![CDATA[<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

➥ ”http://www.wapforum.org/DTD/wml_1.1.xml”>]]>
</xsl:text>
<wml>
<card id=”SelectContact”>
<do type=”accept” label=”OK”>
<go method=”get”>
<xsl:attribute name=”href”><xsl:value-of select=”$servlet”/>

➥ </xsl:attribute>
<postfield name=”mode” value=”selectNumber”/>
<postfield name=”group” value=”$group”/>
<postfield name=”contact” value=”$contact”/>

</go>
</do>
<p>
<xsl:value-of select=”phonebook/@name”/> -

➥ <xsl:value-of select=”$group”/>
<select name=”contact”>
<xsl:for-each select=”phonebook/contact”>
<option>
<xsl:attribute name=”value”><xsl:value-of select=”@id”/>

➥ </xsl:attribute>
<xsl:value-of select=”name/firstname”/><xsl:text> </xsl:text>

➥ <xsl:value-of select=”name/lastname”/>
</option>

</xsl:for-each>
<option><xsl:attribute name=”onpick”><xsl:value-of

➥ select=”$servlet”/>?mode=selectGroup</xsl:attribute>[Back]</option>
</select>

</p>
</card>

</wml>
</xsl:template>

</xsl:stylesheet>

The WML that is generated as a result of transforming the XML in Listing 21.4 with the
XSL in Listing 21.5 is shown in Listing 21.6.

Delivering Wireless and Voice Services with XML

CHAPTER 21
905

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 905

LISTING 21.6 ListOfContacts.wml—The WML Response for a List of Contacts in a
Group

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”
➥ ”http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card id=”SelectContact”>
<do label=”OK” type=”accept”>
<go method=”get” href=”/servlet/Phonebook”>
<postfield value=”selectNumber” name=”mode”/>
<postfield value=”$group” name=”group”/>
<postfield value=”$contact” name=”contact”/>

</go>
</do>
<p>
XYZ Inc - [A-C]
<select name=”contact”>
<option value=”e5678”>Joe Ashworth</option>
<option value=”e9921”>Bill Currie</option>
<option onpick=”/servlet/Phonebook?mode=selectGroup”>[Back]</option>

</select>
</p>

</card>
</wml>

As in the previous request, this output contains a single WML card element:

<card id=”SelectContact”>

This card contains two child elements: do and p. The function of these elements is the
same as discussed for the previous request, except in this case the form submitted by the
go child element of the do element includes mode, group, and contact parameters:

<go method=”get” href=”/servlet/Phonebook”>
<postfield value=”selectNumber” name=”mode”/>
<postfield value=”$group” name=”group”/>
<postfield value=”$contact” name=”contact”/>
</go>

The mode parameter is set to the value selectNumber, indicating that the request is to get
a WML view showing details of a contact, including phone numbers, that enables the
user to select a number to call. The group parameter is set with the value [A-C] passed
from the previous request. Lastly, the contact parameter is set to the employee ID of the
contact selected in the selection list.

The display on the Web phone for this card includes a bold line at the top with the text
XYZ Inc - [A-C]:

XYZ Inc - [A-C]

Applied XML

PART III
906

25 0672323419 CH21 3/15/04 11:25 AM Page 906

A selection list follows that assigns the value of the option selected to the variable
named contact:

<select name=”contact”>

Two options for contacts in the list correspond to the two contact elements in the
source XML:

<option value=”e5678”>Joe Ashworth</option>
<option value=”e9921”>Bill Currie</option>

The last option in the selection list appears on the Web phone screen as the text [Back],
informing the user that selecting this option causes the phonebook service to go back to
the previous step:

<option onpick=”/servlet/Phonebook?mode=selectGroup”>[Back]</option>

This option enables users to drill down into a contact group to look at the contacts in that
group and then navigate back to the list of contact groups to look at contacts in other
contact groups.

When this WML is loaded into a Web phone, the screen appears as shown in Figure 21.4.

Delivering Wireless and Voice Services with XML

CHAPTER 21
907

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

FIGURE 21.4
Web phone emula-
tor view of WML
response for list of
contacts in group.
Openwave
UP.SDK 4.1 used
for emulator.
(Image of UP.SDK
courtesy
Openwave
Systems Inc.)

25 0672323419 CH21 3/15/04 11:25 AM Page 907

Selecting a Contact to View Its Details
In this step, the user selects a contact from the list in order to see the details of that con-
tact. In this example, the mobile user selects the contact with the name Bill Currie. The
XML response to this request from the phonebook data servlet is shown in Listing 21.7.

LISTING 21.7 Phonebook_e9921.xml—The Phonebook Service XML Response for
Contact Details

<?xml version=”1.0” encoding=”UTF-8”?>

<phonebook name=”XYZ Inc” group=”e9921”>
<contact id=”e9921”>
<name>
<firstname>Bill</firstname>
<lastname>Currie</lastname>

</name>
<phone type=”Work”>
<areacode>813</areacode>
<number>2367856</number>
<extension>4373</extension>

</phone>
<phone type=”Mobile”>
<areacode>813</areacode>
<number>9835646</number>

</phone>
</contact>

</phonebook>

Note in this XML that the group attribute of the phonebook element has the value e9921,
indicating that this particular XML document contains the phonebook details for only
one contact. The contact is Bill Currie, and two phone numbers are listed: a work phone
number and mobile phone number. The XSL used to transform this XML is shown in
Listing 21.8.

LISTING 21.8 GetContactDetails_WML.xsl—The XSL Used by the Phonebook View
to Transform the XML into WML Contact Details

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:param name=”servlet” select=”’undefined’”/>
<xsl:param name=”group” select=”’undefined’”/>
<xsl:template match=”/”>
<xsl:text disable-output-escaping=”yes”>
<![CDATA[<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

➥ ”http://www.wapforum.org/DTD/wml_1.1.xml”>]]>
</xsl:text>

Applied XML

PART III
908

25 0672323419 CH21 3/15/04 11:25 AM Page 908

LISTING 21.8 continued

<wml>
<card id=”SelectNumber”>
<do type=”accept” label=”Call”>
<go href=”wtai://wp/mc;$(number)”/>

</do>
<p>
<xsl:for-each select=”phonebook/contact[1]”>
XYZ Inc - <xsl:for-each select=”name”>

<xsl:value-of select=”firstname”/>
<xsl:text> </xsl:text>
<xsl:value-of select=”lastname”/>

</xsl:for-each>

<select name=”number”>
<xsl:for-each select=”phone”>
<option>
<xsl:attribute name=”value”><xsl:value-of select=”areacode”/>

➥ <xsl:value-of select=”number”/></xsl:attribute>
<xsl:value-of select=”@type”/>
<xsl:text> - </xsl:text>
<xsl:value-of select=”areacode”/>
<xsl:text> </xsl:text>
<xsl:value-of select=”number”/>

</option>
</xsl:for-each>
<option>
<xsl:attribute name=”onpick”><xsl:value-of select=”$servlet”/>

➥ ?mode=selectContact&group=<xsl:value-of select=”$group”/>
➥ </xsl:attribute>[Back]</option>

</select>
</xsl:for-each>

</p>
</card>

</wml>
</xsl:template>

</xsl:stylesheet>

The WML that is generated as a result of transforming the XML in Listing 21.7 with the
XSL in Listing 21.8 is shown in Listing 21.9.

Delivering Wireless and Voice Services with XML

CHAPTER 21
909

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 909

LISTING 21.9 ContactDetails.wml—The WML Response for Contact Details

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”
➥ ”http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card id=”SelectNumber”>
<do label=”Call” type=”accept”>
<go href=”wtai://wp/mc;$(number)”/>

</do>
<p>
XYZ Inc - Bill Currie
<select name=”number”>
<option value=”8132367856”>Work - 813 2367856</option>
<option value=”8139835646”>Mobile - 813 9835646</option>
<option onpick=”/servlet/Phonebook?mode=selectContact&group=[A-C]”>

➥ [Back]</option>
</select>

</p>
</card>

</wml>

This WML is again similar to other previously presented WML documents, with a few
differences highlighted here. The soft menu at the bottom of the Web phone screen is
assigned the label “Call” to indicate that the user is not only making a phone number
selection but is also initiating a call to that number:

<do label=”Call” type=”accept”>

The URL to which the Web phone navigates once the phone number selection is made
uses the WTAI interface in the Web phone to initiate a voice call, as indicated by the pro-
tocol of the URL, “wtai”. The wp part of this URL specifies that the WTAIPublic func-
tion library is to be used, and the mc part specifies that the makeCall function in the
WTAIPublic library is to be invoked. Lastly, the $(number) part of the URL passes the
phone number, including the area code, as an argument to the makeCall function. The
value of this number variable is set just prior to navigating to this URL when the user
selects a phone number in the selection list in the same WML card:

<go href=”wtai://wp/mc;$(number)”/>

Applied XML

PART III
910

25 0672323419 CH21 3/15/04 11:25 AM Page 910

Delivering Wireless and Voice Services with XML

CHAPTER 21
911

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
LFIGURE 21.5

The Web phone
emulator view of
the WML response
for contact
details. Openwave
UP.SDK 4.1 used
for emulator.
(Image of UP.SDK
courtesy
Openwave
Systems Inc.)

For more information on the WTAI syntax and other available functions, see the WTAI
specification at the WAP Forum (Wapforum.org).

When this WML is loaded into a Web phone, the screen appears as shown in Figure 21.5.

Selecting a Phone Number to Call a Contact
When the user navigates to a phone number and presses the “Call” button, the
WAP/WML wireless data connection from the Web phone is dropped and a voice
connection through the public telephone network is established by the WTAI
makeCall function.

25 0672323419 CH21 3/15/04 11:25 AM Page 911

WML Structure and Elements
This section briefly reviews the key elements of WML, including all the elements used in
the preceding example. For a complete, detailed WML specification, see the WAP Forum
(www.wapforum.org).

Figure 21.6 shows a high-level graphical view of the structure of a WML document.
This view was derived from the WML 1.1 DTD (www.wapforum.org/DTD/wml_
1.1.xml).

Applied XML

PART III
912

access

meta

head

card

postfield

setvar

go

template

setvarprev

wml

noop

setvarrefresh

postfield

setvar

go

setvarprev

noop

setvarrefresh

do

onevent

FIGURE 21.6
A high-level
graphical view of
the structure of a
WML document.

25 0672323419 CH21 3/15/04 11:25 AM Page 912

Delivering Wireless and Voice Services with XML

CHAPTER 21
913

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
Lcard

table

select

input

tr

anchor

optgroup

do

timer

onevent

do

em

big

small

br

img

p

strong

fieldset

option

td

a

u

i

b

FIGURE 21.6
continued

25 0672323419 CH21 3/15/04 11:25 AM Page 913

Table 21.1 provides descriptions of the various elements of WML.

TABLE 21.1 WML Elements with Descriptions

Element Description

a Short form of the anchor element.

access Specifies access control information for the entire WML deck.

anchor Specifies a hyperlink. This is the same as the shorter form element named a.

b Renders child text with a bold font.

big Renders child text with a large font.

br Establishes the beginning of a new line.

card A WML deck contains a collection of cards, the details of which are contained
by these elements. There are a variety of card types, each specifying a different
mode of user interaction—for example, some cards simply display information,
whereas others get user input either using an option list or text input.

do Provides a general mechanism for the user to act on the parent card when it is
currently visible to the user. The representation of this element in the user
interface is device dependent. For example, a do element may be visible as a
soft menu on the bottom of the screen of the phone that may be activated by
the user pressing the associated soft menu key. Alternatively, a do element
could map to a voice-activated command sequence.

em Renders child text with emphasis.

fieldset Enables the grouping of related fields and text.

go Declares a task to navigate to a URI. This URI may specify either another card
in the current deck or some other static or dynamic WML deck on the Internet.
When this task is executed, the target of the URI is loaded and displayed.

head Contains information for the deck in general, including metadata and access-
control information.

i Renders child text with an italic font.

img Specifies an image is to be included in the text flow.

input Specifies a text-entry object to get user input.

meta Contains generic meta-information relating to the WML deck. This meta-
information is in the form of name/value property pairs.

noop Specifies that nothing should be done (“no operation”).

onevent Binds a task to a particular intrinsic event for the immediately enclosing ele-
ment. For example, the onenterforward and onenterbackward intrinsic events
may be specified at both the deck and card levels.

optgroup Groups related options within a selection list into a hierarchy.

Applied XML

PART III
914

25 0672323419 CH21 3/15/04 11:25 AM Page 914

TABLE 21.1 continued

Element Description

option Specifies a single choice or option in a set of options associated with
a user selection.

p Contains presentation information for the card.

postfield Specifies a property name/value pair for submission to a server during a
URI request.

prev Declares a “go back” task, indicating navigation to the previous URI on the
history stack.

refresh Declares a refresh task, indicating an update of the user agent context as
specified by the setvar elements.

select Lets the user provide input by picking from a number of enclosed options.

setvar Specifies the variable to set in the current browser context as a result of
executing a task.

small Renders child text with a small font.

strong Renders child text with strong emphasis.

table Specifies a table in a card’s presentation.

template Declares a template for cards in the deck. Event bindings specified inside this
element apply to all cards within the deck. However, a card element may
override these bindings.

timer Declares a card timer, providing a way to measure inactive or idle time.

td Specifies a cell of a table.

tr Specifies a row of a table.

u Renders child text with an underline.

wml Defines a deck and encloses all information and cards within the deck.

WMLScript
WMLScript is a script language used to provide programmatic control of mobile devices.
WML is an extended subset of ECMAScript (formerly known as JavaScript), which has
been modified to better support low-bandwidth communication and thin clients. For
example, client-side scripting can be used to check the validity of user input, thus
enabling errors or omissions to be detected prior to incurring the cost of a network
request. This has benefits for both the client and server. The client experiences a faster
response time and lower wireless network usage and associated cost. The server, on the
other hand, experiences fewer bad or invalid requests, thus improving its signal-to-noise

Delivering Wireless and Voice Services with XML

CHAPTER 21
915

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 915

ratio and enabling it to scale to handle more clients. WMLScript can also enable the user
to access facilities on the device—for example, in order to store a phone number in an
address book on the device.

Applied XML

PART III
916

Note

WMLScript is not supported on some older Web phones. It is prudent to check
the models of phones used by the intended end users and verify that they sup-
port WMLScript before using this feature in applications.

Development Primer
This section provides some general tips and outlines common pitfalls in WAP/WML ser-
vice development. It also provides some references to complement those already made in
the previous discussion to assist you with getting started in WML development.

Focusing WML Responses
WAP/WML services impose restrictions on the length of content returned in a single
response. Some limits are as low as 512 bytes. Although some systems have a higher
limit on the length of the content (rather than the length of content per card), the 512
figure serves a lowest-common denominator with which systems should conform.
Consequently, it is necessary to focus information delivered to the client. For example,
this can be achieved through a multistep hierarchical search, such as that used in the
phonebook example presented previously. When responses exceed the limit, the mobile
device typically returns an error rather than the subset of content that falls within the
limit. Therefore, it is desirable to stay well within this limit because straying outside will
cause a fatal application error.

Caching WML Responses
WAP gateways may cache WML responses. Sometimes, a user may expect a given
request made previously to cause a hit on the business Web site, but this might not be the
case due to the cached responses. This can be confusing and frustrating during develop-
ment, testing, and demonstrations. Most Web phones provide a menu option to flush the
cache and, in effect, force a request to hit the target business Web site.

Setting the WML MIME Content Type
In order for a Web server to serve a static WML page with the correct MIME content
type, it must be configured to associate the *.wml extension with the MIME content type

25 0672323419 CH21 3/15/04 11:25 AM Page 916

text/vnd.wap.wml. Failing to make this configuration will cause an error if a Web phone
tries to access content via that Web server. Similarly, the *.wmls extension for WMLScript
documents should be associated with the MIME content type text/vnd.wap.wmlscript.
If BMP or WBMP images are used in WML content, the *.bmp and *.wbmp extensions
should be associated with the image/bmp and image/vnd.wap.wbmp MIME content types,
respectively.

Testing Usability
There is no substitute for extensive usability testing during the conceptual and prototyp-
ing phase of development to help identify subtle but potentially fatal usability issues.
Where end users may not yet have Web phones or a service being tested is not yet live,
it may be possible to conduct some preliminary usability testing with Web phone emula-
tors, such as UP.SDK, as discussed previously in this section. However, there is no
substitute for the real testing that should incorporate the real Web phones and live
wireless network.

Getting Started
The Openwave Developer Program (developer.openwave.com) provides downloads of
SDKs that may be used to start HDML and WML development and testing. This site also
provides excellent training material and reference documentation as well as forums for
the developer community.

For J2ME-enabled Web phones and other handheld devices, KBrowser from 4thpass
(www.4thpass.com) is a microbrowser capable of accessing WML and WMLScript
services.

Future WAP/WML Developments
Any system intended to live for more than a few years should be designed with sufficient
flexibility to accommodate future changes. Although all changes cannot be anticipated,
there are some that can. These expected future developments should be used to stress-test
any design to ensure that it can adapt to meet future changes.

WML 2 and XHTML Basic
In WAP 2.0, WML converges with the core of XHTML, known as XHTML Basic, a stan-
dard overseen by the W3C. WML 2.0 is a markup language that extends the syntax and
semantics of XHTML Basic and CSS Mobile Profile with the unique semantics of WML
1.0. HDML and cHTML (Compact HTML) are also both converging to XHTML Basic.
XHTML is designed for Web clients such as mobile phones, PDAs, pagers, and set-top

Delivering Wireless and Voice Services with XML

CHAPTER 21
917

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 917

boxes that cannot handle the full XHTML markup language. One of the goals of
XHTML Basic is to be a common markup language understood by a variety of Web
clients. This promises to simplify the development of content for multiclient architec-
tures. However, even in the event that XHTML Basic is wildly successful in becoming
the de facto standard markup language for mobile devices in the long term, separate XSL
transformations in a multiclient XML/XSL-based architecture will still be required for
each client type (for example, to tailor content for different device capabilities).

3G Wireless Networks
Third-generation packet-based wireless networks promise to deliver higher rates, concur-
rent voice and wireless data services, and “always-on” wireless connectivity with data
rates up to 2Mbps. These higher bandwidths and simultaneous voice and data channels
promise to deliver more powerful multimedia services and a richer, more interactive user
experience. When these more powerful networks are available and the number of clients
capable of using them becomes significant, demand on multiclient architectures deliver-
ing Web applications to these clients will increase. Therefore, when you’re designing
multiclient architectures, it is wise to build into them the ability to scale to meet this
future growth in demand.

Multimode
Currently, wireless services do not support voice and wireless data concurrently.
However, as wireless networks, devices, and markup languages evolve and become avail-
able, wireless data and voice services will converge to enable future multimode services.
For example, this will enable wireless data services, such as those currently driven by
WML, to work in parallel with voice services, such as those currently driven by
VoiceXML, in a hybrid multimode service. At the markup language level, the
Synchronized Multimedia Integration Language (SMIL, pronounced smile) is a new stan-
dard overseen by the W3C that promises to provide a way to coordinate such hybrid or
multimode services. SMIL is an XML-based markup language and may be easily gener-
ated from the multiclient XML/XSL-based architecture presented in this discussion,
enabling it to easily adapt to deliver these new hybrid multimode services when client
devices become able to handle them.

Wi-Fi (IEEE 802.1lb) and Bluetooth
Wi-Fi (standards.ieee.org/wireless) and Bluetooth (www.bluetooth.com) are both
short-range wireless networks that promise to deliver Web applications to a variety of
mobile devices, including PDAs and laptops in particular. Because these networks do not
specify content types or markup languages to be used at the application level, they will
not have a direct impact on multiclient XML/XSL-based architectures.

Applied XML

PART III
918

25 0672323419 CH21 3/15/04 11:25 AM Page 918

Voice Applications with VoiceXML
This section shows how to deliver VoiceXML Web applications from a multiclient
XML/XSL-based architecture. The section includes information about the following:

• Voice portals and VoiceXML

• VoiceXML application architecture

• Advantages and limitations of voice access to Web applications

• An example of the phonebook business service used to illustrate service delivery
with VoiceXML

Voice Portals and VoiceXML
Voice portals, specifically portals that support VoiceXML, contain the hardware and soft-
ware required to interface the public telecommunications network to VoiceXML services
on the Internet.

VoiceXML Application Input
Voice portals accept input from telephones in the form of voice and touchtones. In order
to use voice input, voice portals need to be able to perform speech recognition.
Application software can then act on the recognized input. Speech recognition is depen-
dent on application grammars that tell the portal which sounds represent valid input.
Because most VoiceXML applications need to be speaker independent, they are usually
more accurate with smaller grammars.

Voice portals contain the software and hardware needed to recognize touchtone input.
Touchtone input is useful for login and other input that must be very accurately recog-
nized. It is also a more robust alternative to voice in noisy caller environments that can
confuse speech recognition software.

VoiceXML Application Output
Voice portals deliver two kinds of output: synthesized speech and audio playback.

Speech synthesis, also known as TTS (text-to-speech), is the process of producing auto-
mated speech from words in text format. TTS is useful for services that output dynamic
results. TTS is also useful while developing, testing, and refining a voice Web service
because it may be changed rapidly at low cost.

Audio playback involves simply playing back a prerecorded audio file over the telephone.
This mode of output has a lower computational cost and is therefore more suitable for sta-
tic content and content that needs to be delivered in a more natural-sounding voice.

Delivering Wireless and Voice Services with XML

CHAPTER 21
919

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 919

A VoiceXML Application Architecture
The various components of the voice application architecture are illustrated in Figure
21.7 and include the following:

• Mobile user. This is a user who wants to access voice Web applications.

• Web phone. This is a mobile phone being used to make telephone calls to voice
Web applications.

• Base station. The cellular base station in the wireless network interacts with the
Web phone via wireless network protocols.

• Phone user. This is a user with a standard landline phone accessing voice Web
applications delivered via the voice portal.

• Phone. This is a standard landline phone connected to the telecommunications
infrastructure.

• Telecommunications infrastructure. This is the global telephone network that
enables any telephone to access voice Web applications via the voice portal.

• Voice portal. This is the hardware and software gateway through which users can
access voice Web applications.

• Multiclient pull architecture. This is the XML/XSL-based architecture capable of
delivering Web applications to multiple types of clients, including VoiceXML. This
component is a pull architecture because clients make requests and then wait for a
server response.

Applied XML

PART III
920

Voice
Portal

Multiclient
Pull

Architecture

Te
le

co
m

m
un

ic
at

io
ns

 In
fr

as
tr

uc
tu

re

In
te

rn
et

Base
Station

Phone

Web
Phone

Phone
User

Mobile
User

Voice
DTMF

VoiceXML
HTTP(S)

Voice
DTMF

FIGURE 21.7
Voice application
architecture.

25 0672323419 CH21 3/15/04 11:25 AM Page 920

Voice Portal Architecture
The components of the voice portal architecture are illustrated in Figure 21.8 and include
the following:

• Communications Interface Hardware. Specialized boards that interface the voice
portal with the telephone system and the Internet.

• VoiceXML interpreter and controller. The VoiceXML “browser” component that
interfaces the telephone user and the VoiceXML application. It retrieves VoiceXML
pages from the business Web site, interprets them, and executes them to control the
voice Web service dialog.

• Text-to-speech. Converts text to speech and delivers it to the telephone user via the
telephony hardware.

• Audio playback. Plays prerecorded audio for the telephone user via the telephony
hardware.

• DTMF (touchtone). Receives and interprets touchtone signals from the telephone user.

• Speech recognition. This is the input module responsible for interpreting speech
input received from the telephone user.

• Audio recording. This is the input module that receives audio from the telephone
user and records it.

Delivering Wireless and Voice Services with XML

CHAPTER 21
921

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

Voice Portal
Voice Browser

Output Modules

Text to
Speech

Audio
Playback

Input Modules

V
oi

ce
X

M
L

In
te

rp
re

te
r

an
d

C
on

tr
ol

le
r

C
om

m
un

ic
at

io
ns

In
te

rf
ac

e
H

ar
dw

ar
e

DTMF
(TouchTone)

Speech
Recognition

Audio
Recording

FIGURE 21.8
Voice portal inter-
nal architecture.

25 0672323419 CH21 3/15/04 11:25 AM Page 921

Advantages and Limitations of VoiceXML
Applications
To understand what kinds of Web applications may be effectively delivered via voice
over telephones, it is useful to review the advantages and limitations of this mode of
access. In addition to the advantages outlined previously in this chapter for mobile access
in general, here are some specific advantages of voice access:

• Low cost. Users already have telephones and service plans, so there is typically no
extra initial or sustained cost associated with accessing voice Web applications.

• High availability through pervasive coverage. The global telephone network is the
most pervasive network there is. Leveraging this network to deliver voice Web
applications maximizes service access and availability.

• Eyes- and hands-free operation. Through appropriate hands-free headsets, tele-
phones enable eyes- and hands-free operation, a requirement for many consumer
and business situations.

• Telephones are familiar tools. Telephones are familiar to users, so there is less of
an intimidation factor involved in using voice Web applications.

Here are some of the limitations of VoiceXML applications that you should consider
when planning and designing voice Web applications:

• Audio only. Voice Web applications may deliver audio only. This makes voice Web
applications unsuitable for services that require visual output.

• New user interface paradigm. Voice Web applications are a relatively new mode of
access to the Internet. This makes the design and development as well as the use of
these new services more challenging. As a result, usability testing and personaliza-
tion are important to VoiceXML service development.

• IVR stigma. Many new users equate voice Web applications with rigid prompt/
response Interactive Voice Response (IVR) systems. VoiceXML applications must
overcome this perception before they will be accepted into mainstream use.

The Profile of a Successful VoiceXML
Application
A few characteristics of a successful VoiceXML application are outlined in the following
list to give you some insight into the types of business services that lend themselves well
to this mode of access:

• Concise input (voice or touchtone only)

• Concise audio output

Applied XML

PART III
922

25 0672323419 CH21 3/15/04 11:25 AM Page 922

• High-value urgent information that is required as soon as it is available

• Information required outside of business hours or the office

• Services required at multiple locations

• Services required where users need to have eyes- and hands-free operation

Example: A Voice Phonebook Service
with VoiceXML
In this example, a phonebook business service is used to illustrate VoiceXML access to
Web applications.

The goal of this sample service is for the user to retrieve a telephone number for a con-
tact and place a call to that contact.

Usage Scenario
This usage scenario outlines the chronological sequence of steps required to realize
the goal:

• Access the phonebook service to get a list of contact groups.

• Select a group to view a list of its contacts.

• Select a contact to view the details of that contact.

• Select a phone number and call the contact.

Collaboration
Each of the first three steps in the usage scenario result in a request from the voice
portal over the Internet using HTTP to the multiclient architecture running on the busi-
ness Web site.

The last step, on the other hand, simply results in the voice portal transferring the user’s
call to the phone number of the contact he has selected to call.

The phonebook service retrieves data, selects an XSL style sheet, and transforms the
XML to VoiceXML for delivery to the voice portal. The voice portal then interprets and
executes the VoiceXML in order to conduct the voice phonebook Web service dialog
with the end user over his telephone.

Developing the Content
This section reviews the content required to drive the multiclient XML/XSL-based
architecture to deliver the voice phonebook Web service, as discussed in the previous
usage scenario.

Delivering Wireless and Voice Services with XML

CHAPTER 21
923

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 923

Accessing the Service to Get a List of Contact Groups
Users access VoiceXML applications by dialing a telephone number that connects them
to the voice portal. For this example, we will assume a user has dialed the telephone
number the voice portal associates with the phonebook service.

When a user calls the number, the voice portal loads the VoiceXML from the URL asso-
ciated with the phone number:

https://www.MyDomain.com/Phonebook.vxml

Applied XML

PART III
924

Note

In order to shorten the voice application startup time, a voice portal can store
the initial VoiceXML page. This enables the voice portal to execute the dialog
without waiting for a response from the service URL.

In this case, www.MyDomain.com is the domain of the business Web site providing the
phonebook service. The VoiceXML that is loaded from the initial URL is shown in
Listing 21.10.

LISTING 21.10 Phonebook.vxml—The Initial VoiceXML for the Phonebook Service

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE vxml PUBLIC “-//Tellme Networks//Voice Markup Language 1.0//EN”
➥ ”http://resources.tellme.com/toolbox/vxml-tellme.dtd”>
<vxml application=”Phonebook.vxml”>
<form id=”Introduction”>
<block>
<audio>Welcome to the X Y Z corporation phone book.</audio>
<goto next=”/servlet/Phonebook?mode=selectGroup”/>

</block>
</form>

</vxml>

The first line of the document indicates that the VoiceXML is XML 1.0 compliant and
has a UTF-8 character encoding:

<?xml version=”1.0” encoding=”UTF-8”?>

The next line indicates the document type (recall that in this example the VoiceXML is
hosted by the Tellme Networks voice portal):

<!DOCTYPE vxml PUBLIC “-//Tellme Networks//Voice Markup Language 1.0//EN”
➥ ”http://resources.tellme.com/toolbox/vxml-tellme.dtd”>

25 0672323419 CH21 3/15/04 11:25 AM Page 924

The root element of this document is the vxml element, which has an attribute named
application that specifies that this VoiceXML document belongs to the
Phonebook.vxml application:

<vxml application=”Phonebook.vxml”>

Different VoiceXML documents that belong to the same voice application specify the
same value for this attribute. This is known as the application scope of the VoiceXML
service and is the highest-level scope in a hierarchy of scopes possible in a VoiceXML
service. VoiceXML documents within the same scope may share the same grammars.
The form element has an id attribute with the value Introduction:

<form id=”Introduction”>

VoiceXML documents may contain multiple forms. The id attribute of any given form
may be used to navigate to that form from either within the same VoiceXML document
or from another VoiceXML document. This form element, in turn, contains a single child
block element.

The block element contains an audio element that is converted to speech as an introduc-
tion to the phonebook service:

<block>
<audio>Welcome to the X Y Z corporation phone book.</audio>
<goto next=”/servlet/Phonebook?mode=selectGroup”/>
</block>

After this introduction, the voice portal executes the other child goto element. This ele-
ment instructs the voice portal to navigate to the next VoiceXML document in the service
that may be loaded from the URL /servlet/Phonebook?mode=selectGroup.

The goto element causes the voice portal to send a request for a dynamically generated
VoiceXML document from the multiclient architecture. The phonebook data responds to
this request by generating the same XML response as in the case of the WML Web
phone client, as shown in Listing 21.1 earlier in this chapter.

The phonebook view component identifies the client as a VoiceXML browser and loads
the XSL style sheet shown in Listing 21.11.

LISTING 21.11 GetListOfContactGroups_VXML.xsl—The XSL Used by the Phonebook
View to Transform XML into a VoiceXML List of Contact Groups

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:param name=”servlet” select=”’undefined’”/>
<xsl:template match=”/”>

Delivering Wireless and Voice Services with XML

CHAPTER 21
925

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 925

LISTING 21.11 continued

<xsl:text disable-output-escaping=”yes”>
<![CDATA[<!DOCTYPE vxml PUBLIC “-//Tellme Networks//Voice Markup Language

➥ 1.0//EN” “http://resources.tellme.com/toolbox/vxml-tellme.dtd”>]]>
</xsl:text>
<vxml application=”Phonebook.vxml”>
<menu id=”SelectGroup”>
<prompt>Please select the key on your phone with the initial of the

➥ last name of the person to call.</prompt>
<choice dtmf=”1”><xsl:attribute name=”next”><xsl:value-of

➥ select=”$servlet”/>?mode=selectContact&group=All</xsl:attribute>
➥ all</choice>

<choice dtmf=”2”><xsl:attribute name=”next”><xsl:value-of
➥ select=”$servlet”/>?mode=selectContact&group=[A-C]</xsl:attribute>
➥ (a to c)</choice>

<choice dtmf=”3”><xsl:attribute name=”next”><xsl:value-of
➥ select=”$servlet”/>?mode=selectContact&group=[D-F]</xsl:attribute>
➥ (d to f)</choice>

<choice dtmf=”4”><xsl:attribute name=”next”><xsl:value-of
➥ select=”$servlet”/>?mode=selectContact&group=[G-I]</xsl:attribute>
➥ (g to i)</choice>

<choice dtmf=”5”><xsl:attribute name=”next”><xsl:value-of
➥ select=”$servlet”/>?mode=selectContact&group=[J-L]</xsl:attribute>
➥ (j to l)</choice>

<choice dtmf=”6”><xsl:attribute name=”next”><xsl:value-of
➥ select=”$servlet”/>?mode=selectContact&group=[M-O]</xsl:attribute>
➥ (m to o)</choice>

<choice dtmf=”7”><xsl:attribute name=”next”><xsl:value-of
➥ select=”$servlet”/>?mode=selectContact&group=[P-S]</xsl:attribute>
➥ (p to s)</choice>

<choice dtmf=”8”><xsl:attribute name=”next”><xsl:value-of
➥ select=”$servlet”/>?mode=selectContact&group=[T-V]</xsl:attribute>
➥ (t to v)</choice>

<choice dtmf=”9”><xsl:attribute name=”next”><xsl:value-of
➥ select=”$servlet”/>?mode=selectContact&group=[W-Z]</xsl:attribute>
➥ (w to z)</choice>

<catch event=”nomatch noinput help”>
<reprompt/>

</catch>
</menu>

</vxml>
</xsl:template>

</xsl:stylesheet>

The VoiceXML that is generated by transforming the XML in Listing 21.1 using the
XSL in Listing 21.11 appears in Listing 21.12.

Applied XML

PART III
926

25 0672323419 CH21 3/15/04 11:25 AM Page 926

LISTING 21.12 ListOfContactGroups.vxml—The VoiceXML Response for a List of
Contact Groups

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE vxml PUBLIC “-//Tellme Networks//Voice Markup Language 1.0//EN”
➥ ”http://resources.tellme.com/toolbox/vxml-tellme.dtd”>
<vxml application=”Phonebook.vxml”>
<menu id=”SelectGroup”>
<prompt>Please select the key on your phone with the initial of the last

➥ name of the person to call.</prompt>
<choice dtmf=”1” next=”/servlet/Phonebook?mode=selectContact&group=

➥ All”>all</choice>
<choice dtmf=”2” next=”/servlet/Phonebook?mode=selectContact&group=

➥ [A-C]”>(a to c)</choice>
<choice dtmf=”3” next=”/servlet/Phonebook?mode=selectContact&group=

➥ [D-F]”>(d to f)</choice>
<choice dtmf=”4” next=”/servlet/Phonebook?mode=selectContact&group=

➥ [G-I]”>(g to i)</choice>
<choice dtmf=”5” next=”/servlet/Phonebook?mode=selectContact&group=

➥ [J-L]”>(j to l)</choice>
<choice dtmf=”6” next=”/servlet/Phonebook?mode=selectContact&group=

➥ [M-O]”>(m to o)</choice>
<choice dtmf=”7” next=”/servlet/Phonebook?mode=selectContact&group=

➥ [P-S]”>(p to s)</choice>
<choice dtmf=”8” next=”/servlet/Phonebook?mode=selectContact&group=

➥ [T-V]”>(t to v)</choice>
<choice dtmf=”9” next=”/servlet/Phonebook?mode=selectContact&group=

➥ [W-Z]”>(w to z)</choice>
<catch event=”nomatch noinput help”>
<reprompt/>

</catch>
</menu>

</vxml>

This VoiceXML is similar to the VoiceXML discussed for the previous step, with some
differences discussed here. The vxml root element contains one child menu element that
prompts the user for some input and then interprets the response. The id attribute of the
menu element has the value SelectGroup:

<menu id=”SelectGroup”>

VoiceXML documents may contain multiple menu elements. This id attribute may be
used to navigate to menus either within the same VoiceXML document or in a different
VoiceXML document.

The prompt child element contains text that is converted into speech by the text-to-
speech output module of the voice portal; this indicates to the user what input is required
to proceed to the next step in the dialog:

Delivering Wireless and Voice Services with XML

CHAPTER 21
927

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 927

<prompt>Please select the key on your phone with the initial of the last name
➥ of the person to call.</prompt>

After the prompt element is a range of choice elements, each one representing a valid
option in the user’s response to the previous prompt for input. In the following XSL snip-
pet, the dtmf attribute of the choice element specifies that this option may be selected by
pressing the touchtone key labeled “2” on the phone:

<choice dtmf=”2” next=”/servlet/Phonebook?mode=selectContact&group=
➥ [A-C]”>(a to c)</choice>

Alternatively, the text child of the choice element—in this case, with the value (a to
c)—indicates that the user may say “a to c” to select this option. The next attribute of
this element indicates the URL that the voice portal should navigate to when the user
selects this option. In this case, the URL is the phonebook servlet with the HTTP GET
argument mode with the value selectContact, indicating that the response should enable
the user to select a particular contact from the contact group named [A-C], as specified
by the other HTTP GET argument, named group.

The catch child element of the menu element indicates to the voice portal that certain
events should be caught and handled as specified in the content of this element. The
event attribute specifies that the events for nomatch, noinput, or help should be caught
when the user provides invalid input, no input, or asks for “help,” respectively.

The reprompt child element of the catch element indicates to the voice portal that when
any of these events are caught, the action taken should be to prompt the user for the input
again, as described previously, and then wait for another input selection:

<catch event=”nomatch noinput help”>
<reprompt/>
</catch>

In a production application, these events would typically be handled separately and in a
more user friendly manner.

Selecting a Group to View a List of Its Contacts
Next, the user selects option number 2, corresponding to contacts with last names having
initials in the range [A-C]. The XML generated by the phonebook data component in
response to this request is the same as for the WML Web phone client (refer back to
Listing 21.4).

The phonebook view uses the style sheet shown in Listing 21.13 to transform the results.

Applied XML

PART III
928

25 0672323419 CH21 3/15/04 11:25 AM Page 928

LISTING 21.13 GetListOfContacts_VXML.xsl—The XSL Used by the Phonebook View
to Transform the XML into a VoiceXML List of Contacts in a Group

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:param name=”servlet” select=”’undefined’”/>
<xsl:param name=”group” select=”’undefined’”/>
<xsl:param name=”lcletters” select=”’abcdefghijklmnopqrstuvwxyz’”/>
<xsl:param name=”ucletters” select=”’ABCDEFGHIJKLMNOPQRSTUVWXYZ’”/>
<xsl:template match=”/”>
<xsl:text disable-output-escaping=”yes”>
<![CDATA[<!DOCTYPE vxml PUBLIC “-//Tellme Networks//Voice Markup Language

➥ 1.0//EN” “http://resources.tellme.com/toolbox/vxml-tellme.dtd”>]]>
</xsl:text>
<vxml application=”Phonebook.vxml”>
<menu id=”SelectContact”>
<prompt>Got <xsl:value-of select=”count(phonebook/contact)”/>

➥ contacts. Please say the name of the contact you wish to call.</prompt>
<xsl:for-each select=”phonebook/contact”>
<choice><xsl:attribute name=”next”><xsl:value-of select=”$servlet”/>

➥ ?mode=selectNumber&group=<xsl:value-of select=”$group”/>&
➥ contact=<xsl:value-of select=”@id”/></xsl:attribute>(
➥ <xsl:value-of select=”translate(name/firstname,$ucletters,
➥ $lcletters)”/><xsl:text> </xsl:text><xsl:value-of select=”translate(
➥ name/lastname,$ucletters,$lcletters)”/>)</choice>

</xsl:for-each>
<catch event=”nomatch noinput help”>
<reprompt/>

</catch>
</menu>

</vxml>
</xsl:template>

</xsl:stylesheet>

The VoiceXML that results from this transformation is shown in Listing 21.14.

LISTING 21.14 ListOfContacts.vxml—The VoiceXML Response for a List of Contacts
in a Group

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE vxml PUBLIC “-//Tellme Networks//Voice Markup Language 1.0//EN”
➥ ”http://resources.tellme.com/toolbox/vxml-tellme.dtd”>
<vxml application=”Phonebook.vxml”>
<menu id=”SelectContact”>
<prompt>Got 2 contacts. Please say the name of the contact you wish to

➥ call.</prompt>
<choice next=”/servlet/Phonebook?mode=selectNumber&group=[A-C]&

➥ contact=e5678”>(joe ashworth)</choice>
<choice next=”/servlet/Phonebook?mode=selectNumber&group=[A-C]&

➥ contact=e9921”>(bill currie)</choice>

Delivering Wireless and Voice Services with XML

CHAPTER 21
929

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 929

LISTING 21.14 continued

<catch event=”nomatch noinput help”>
<reprompt/>

</catch>
</menu>

</vxml>

In this case DTMF options for the choice elements are not available. The effect of this is
that the user is required to say the name of the contact to select it. It is possible to enable
DTMF selection if the service requires it.

Each choice element’s next attribute points to the URL the voice portal should load and
execute if the user selects it. The URL is composed of the location of the phonebook
view component followed by mode, group, and contact arguments in HTTP GET syntax.
The contact argument is assigned the value of the id attribute of the associated contact
element in the source XML being transformed. This lowercase name that is the text child
value of the choice element is effectively the grammar that indicates to the voice portal
what the user will say to select this option.

The choice element illustrates a few characteristics of grammars:

• VoiceXML grammars are required to be in lowercase.

• The first and last names are separated by a space to indicate to the voice portal that
the name is two words rather than one. This has bearing on the sounds the voice
portal will expect when the user speaks this option.

• The phrase is enclosed in parentheses to indicate to the voice portal that the user
needs to speak the first name followed by the last name for this option to be
selected.

Selecting a Contact to View the Details of That Contact
We will assume that the user has selected Bill Currie in the previous step. In this step,
the user gets Bill Currie’s telephone numbers and selects one to call him. The XML gen-
erated by the phonebook data component in response to this request is the same as in the
case of the WML Web phone, as shown previously in Listing 21.7. The XSL used to
transform this XML into VoiceXML is shown in Listing 21.15.

LISTING 21.15 GetContactDetails_VXML.xsl—The XSL Used by the Phonebook View
to Transform the XML into VoiceXML Contact Details

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:param name=”servlet” select=”’undefined’”/>

Applied XML

PART III
930

25 0672323419 CH21 3/15/04 11:25 AM Page 930

LISTING 21.15 continued

<xsl:param name=”group” select=”’undefined’”/>
<xsl:param name=”lcletters” select=”’abcdefghijklmnopqrstuvwxyz’”/>
<xsl:param name=”ucletters” select=”’ABCDEFGHIJKLMNOPQRSTUVWXYZ’”/>
<xsl:template match=”/”>
<xsl:text disable-output-escaping=”yes”>
<![CDATA[<!DOCTYPE vxml PUBLIC “-//Tellme Networks//Voice Markup Language

➥ 1.0//EN” “http://resources.tellme.com/toolbox/vxml-tellme.dtd”>]]>
</xsl:text>
<vxml application=”Phonebook.vxml”>
<xsl:for-each select=”phonebook/contact[1]”>
<menu id=”SelectNumber”>
<prompt>There are <xsl:value-of select=”count(phone)”/> phone numbers

➥ for <xsl:value-of select=”name/firstname”/><xsl:text> </xsl:text>
➥ <xsl:value-of select=”name/lastname”/>. Please select from the
➥ following options:

<xsl:for-each select=”phone”>
<xsl:value-of select=”translate(@type,$ucletters,$lcletters)”/>

➥ <xsl:text> </xsl:text>
</xsl:for-each>
.

</prompt>
<xsl:for-each select=”phone”>
<choice><xsl:attribute name=”next”>#Call<xsl:value-of

➥ select=”@type”/></xsl:attribute><xsl:value-of
➥ select=”translate(@type,$ucletters,$lcletters)”/></choice>

</xsl:for-each>
<catch event=”nomatch noinput help”>
<reprompt/>

</catch>
</menu>
<xsl:for-each select=”phone”>
<form id=”CallHome”>
<xsl:attribute name=”id”>Call<xsl:value-of select=”@type”/>

➥ </xsl:attribute>
<block>
<audio>Transferring call to Bill Currie at the <xsl:value-of

➥ select=”@type”/> phone number.</audio>
</block>
<transfer>
<xsl:attribute name=”dest”><xsl:value-of select=”areacode”/>

➥ <xsl:value-of select=”number”/></xsl:attribute>
</transfer>

</form>
</xsl:for-each>

</xsl:for-each>
</vxml>

</xsl:template>
</xsl:stylesheet>

Delivering Wireless and Voice Services with XML

CHAPTER 21
931

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 931

The VoiceXML that results from this transformation is shown in Listing 21.16.

LISTING 21.16 ContactDetails.vxml—The VoiceXML Response for Contact Details

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE vxml PUBLIC “-//Tellme Networks//Voice Markup Language 1.0//EN”
➥ ”http://resources.tellme.com/toolbox/vxml-tellme.dtd”>
<vxml application=”Phonebook.vxml”>
<menu id=”SelectNumber”>
<prompt>There are 2 phone numbers for Bill Currie. Please select from the

➥ following options: work mobile.</prompt>
<choice next=”#CallWork”>work</choice>
<choice next=”#CallMobile”>mobile</choice>
<catch event=”nomatch noinput help”>
<reprompt/>

</catch>
</menu>
<form id=”CallWork”>
<block>
<audio>Transferring call to Bill Currie at the Work phone number.</audio>

</block>
<transfer dest=”8132367856”/>

</form>
<form id=”CallMobile”>
<block>
<audio>Transferring call to Bill Currie at the Mobile phone

➥ number.</audio>
</block>
<transfer dest=”8139835646”/>

</form>
</vxml>

This VoiceXML has one menu element, which enables the user to select the phone num-
ber to call, and two form elements—one for each phone number for the given contact.
Each of the form elements serves to transfer the caller to the associated number. The val-
ues of the next attributes of the choice elements in the menu element are local URLs,
each one pointing to a form element in the same VoiceXML document with an id
attribute that has a value the same as the part of the URL after the # character. Key ele-
ments used in this form are the transfer elements that, when executed by the voice por-
tal, cause it to transfer the caller to the given number. Here’s the code:

<transfer dest=”8132367856”/>

Selecting a Phone Number to Call That Contact
When the user hears the output of Listing 21.16, he says “work” in order to call Bill
Currie at his work phone number. Control passes to the form in the same VoiceXML that

Applied XML

PART III
932

25 0672323419 CH21 3/15/04 11:25 AM Page 932

has an id attribute with the value CallWork. The user is then notified that his call is
being transferred. The call is then transferred to the number 813-236-7856. The user
hears the call being transferred and then makes a connection with Bill Currie at his work
number when he picks up the phone.

VoiceXML Structure and Elements
This section briefly reviews the key elements of VoiceXML, including all the elements
used in the preceding example. For a complete detailed VoiceXML specification, see the
VoiceXML Forum (www.voicexml.org).

Figure 21.9 shows a high-level graphical view of the main structure of a VoiceXML doc-
ument. This view was derived from the VoiceXML 1.0 DTD (www.voicexml.org/
voicexml1-0.dtd).

Delivering Wireless and Voice Services with XML

CHAPTER 21
933

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

link

form

meta

property

script

var

vxml

menu

error

nomatch

noinput

help

catchFIGURE 21.9
A high-level
graphical view
of the structure
of a VoiceXML
document.

25 0672323419 CH21 3/15/04 11:25 AM Page 933

Applied XML

PART III
934

link

dtmf

grammar

object

property

var

form

field

block

transfer

subdialog

record

initial

filled

error

nomatch

noinput

help

catch

FIGURE 21.9
continued

25 0672323419 CH21 3/15/04 11:25 AM Page 934

Table 21.2 provides descriptions of the elements shown in this figure.

TABLE 21.2 VoiceXML Elements with Descriptions

Element Description

assign Assigns a value to a variable that exists in the state maintained by the voice
portal for the caller’s session.

audio Outputs some audio. The output can be either a prerecorded audio clip (for
example, in the form of a WAV file) or in the form of synthesized speech gen-
erated from the text child of this element.

block A container of procedural statements executed in sequence from first to last.

break Inserts a pause in the speech output of a duration in milliseconds specified
using an attribute.

catch Catches an event either always or on some specified condition.

choice Defines a menu item, including both the touchtone or speech input that may
be used to select the choice and the URL to transfer control to upon selection
of the choice.

clear Resets one or more form item variables by setting their values to undefined.

disconnect Disconnects a session, causing the voice portal to hang up the call from the user.

Delivering Wireless and Voice Services with XML

CHAPTER 21
935

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

prompt

property

menu

error

nomatch

noinput

help

catch

choice

enumerate

audio

value

FIGURE 21.9
continued

25 0672323419 CH21 3/15/04 11:25 AM Page 935

TABLE 21.2 continued

Element Description

div Specifies that the enclosed text is of a particular type (for example, a sentence
or paragraph).

dtmf Specifies a touchtone key grammar that serves as a set of valid phone key
input options.

else Used optionally in combination with if elements in conditional logic that may
depend, for example, on the value of a variable.

elseif Used optionally in combination with if elements in conditional logic that may
depend, for example, on the value of a variable.

emp Indicates that the enclosed text should be spoken with emphasis.

enumerate Shorthand for automatically enumerating the choices available in a menu.

error Catches an error event. Shorthand for a specific type of catch element that
catches events of the error type.

exit Exits a session by terminating all loaded VoiceXML documents and returning
control to the interpreter.

field Declares an input field in a form to get a user selection.

filled An action executed when a user provides recognized input for a field.

form A dialog for presenting information and collecting data from user input.

goto Transfers execution to another form, dialog, or document.

grammar Encloses a speech-recognition grammar that consists of a set of valid spoken
inputs and the associated values that describe each option.

help Catches a help event. Shorthand for a specific type of catch element that
catches events of the help type.

if Encloses conditional logic that may be executed, depending on the value of a
variable, for example.

initial Declares initial logic upon entry into a (mixed-initiative) form. In a mixed-
initiative form, both the caller and the voice portal direct the conversation.

link Specifies a transition common to all dialogs in the link’s scope.

menu A dialog for prompting the user and enabling her to select from a range
of choices.

meta Enables specification of data about the document.

noinput Catches a noinput event (an event that occurs when no response is received
from the user when expected).

Applied XML

PART III
936

25 0672323419 CH21 3/15/04 11:25 AM Page 936

TABLE 21.2 continued

Element Description

nomatch Catches a nomatch event (an event that occurs when a response is received
from the user but is not recognized as valid).

object Invokes a platform-specific object with parameters (for example, a speaker-
verification object).

option Specifies an option in a field, including the DTMF and/or speech required for
the user to select the option as well as the value to assign to the field variable
when the selection is made. Similar to the choice element for menus.

param Used to specify name/value parameter pairs that are passed into object or
subdialog.

prompt Outputs synthesized speech or prerecorded audio to the user and then waits for
a user response.

property Sets the value of a property that controls the platform behavior (for example,
timeouts).

pros Specifies prosodic information about the enclosed text.

record Records an audio sample and stores it in a field item variable.

reprompt Plays a field prompt again (for example, when a field is revisited after a
nomatch or noinput event).

return Returns from a subdialog. This is similar in concept to a return from a func-
tion call in procedural logic.

sayas Specifies how a word or phrase should be spoken. This enables finer control
over the text-to-speech output.

script Specifies a block of ECMAScript client-side scripting logic that will run on
the voice portal.

subdialog Invokes another dialog as a subdialog of the current one. This is similar in
concept to a function call in procedural logic. It returns an ECMAScript object
as the result of the subdialog.

submit Submits values to the business Web site providing the voice Web applications.

throw Throws an event that may be either a predefined event or an application-
specific event.

transfer Transfers the caller to another telephone number.

value Inserts the value of an expression in a prompt (for example, a variable value).

var Declares a variable and optionally assigns it a value.

vxml The top-level root element in each VoiceXML document.

Delivering Wireless and Voice Services with XML

CHAPTER 21
937

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 937

Development Primer
This primer provides important strategies for designing voice Web applications with
VoiceXML.

Applied XML

PART III
938

Note

For more detailed information on developing VoiceXML applications, see Voice
Application Development with VoiceXML (also from Sams publishing) on this
subject.

Tips and Pitfalls for VoiceXML Development
The following subsections cover a few common tips and pitfalls concerning the develop-
ment of VoiceXML services.

Usability Testing and Setting Expectations
Voice portals driven by VoiceXML represent a new paradigm in delivering Web applica-
tions to users. In order to win user acceptance and be successful in meeting business
needs, voice Web applications must be thoroughly tested not only for functionally but
also from a usability standpoint. Engaging end users early and often for usability testing
also helps set their expectations for the final service, thus easing their acceptance of the
deployed result.

Voice Service Robustness
Voice Web service interfaces are limited to audio interaction with the user. The user’s
ability to detect and correct problems with a voice Web service is therefore relatively
limited when compared, for example, to a visual interface such as a Web browser.
Consequently, in order to ensure that voice Web applications are robust enough to meet
the needs of mission-critical enterprise systems, they must be able to gracefully handle a
range of exceptions and error conditions. This includes, in particular, missing or invalid
user input, help requests from users, and various system errors (for example, problems
with the network connectivity between the voice portal and the business Web site deliver-
ing the voice Web applications).

Getting Started
A growing number of voice portals on the Web provide excellent services for developing,
testing, and hosting deployed voice Web applications. These include but are not limited
to the following:

25 0672323419 CH21 3/15/04 11:25 AM Page 938

• Tellme Networks (www.tellme.com)

• BeVocal (www.bevocal.com)

• VoiceGenie (voicegenie.com)

• Voxeo (www.voxeo.com)

Future VoiceXML Developments
Any system intended to live for more than a few years should be designed with sufficient
flexibility to accommodate future changes. Although all changes cannot be anticipated,
some can. These expected future developments should be used to stress-test any design
to ensure that it can adapt to meet future changes.

Mainstream Use of Voice-Over-IP (VoIP)
In addition to telephones, Voice-over-IP (VoIP) can also be used to access voice Web
applications via voice portals. In this case, the client side is a PC with speakers and a
microphone, for example, and is connected to the voice portal over the Internet. As VoIP
becomes a more popular method of communication, voice portals will seamlessly
adapt to this new method of accessing voice Web applications. From the multiclient
architecture standpoint, there will be no apparent difference between telephone clients
or Voice-over-IP clients, except perhaps in the lack of a caller’s phone number in the
voice portal session.

Multimode Voice and Data Services
With new wireless networks that enable concurrent voice and data, new services will
emerge that present hybrid voice and data interfaces×for example, interfaces that enable
users to ask for directions and have the directions returned in a list that is cached on the
client so that users can refer to it step by step. SMIL is a standard overseen by the W3C
that’s an XML markup language that promises to coordinate such multimedia interfaces.
SMIL may be easily generated from the multiclient XML/XSL-based architecture,
enabling it to seamlessly adapt to deliver these new hybrid multimode services when
they appear.

Advanced Voice Processing on the Client Side
As telephone and other types of clients gain more computational power, there will be a
shift as more of the voice-processing capability goes to the client side. With this trend,
we can expect to see such clients start accepting content that drives their voice capabili-
ties, just as VoiceXML drives voice portals today. This is good in that it reduces the load
on the voice portal while improving the client response time. More voice handling on the

Delivering Wireless and Voice Services with XML

CHAPTER 21
939

21

W
IR

ELESS
A

N
D

V
O

IC
E

S
ER

V
IC

ES
W

ITH
X

M
L

25 0672323419 CH21 3/15/04 11:25 AM Page 939

client side also enables greater client privacy for certain applications because the audio
does not have to propagate over a network to be interpreted. This trend can already be
seen in the new advanced voice command functionality that is appearing in some higher-
end mobile phones as well as in navigation systems appearing in cars.

Summary
To enable businesses to remain competitive, future Web service architectures need to be
flexible, extensible, and facilitate the rapid addition of new client types and business Web
applications. At the same time, these services need to be personalized to improve their
usability. Furthermore, future architectures for Web applications cannot be dedicated to a
single client type or mode of access. Rather, in order to maximize business investments
in Web applications, maximize the potential user base, and empower the end user with
more options, such Web applications architectures must have the flexibility to support
multiple types of clients concurrently, including both voice and wireless clients in addi-
tion to Web browsers and external servers in a business extranet.

Such multiclient architectures modes of access will work either in parallel with each
other when they present equivalent alternatives for the user, or they may be complemen-
tary choices when a service is delivered with multiple modes of access working together.
XML and XSL are powerful technologies that enable the clean separation of content
from presentation, and together with supporting tools and technologies they provide a
solid foundation on which to build future multiclient architectures. WML provides a
powerful markup language for the delivery of Web applications to Web-enabled phones
and other mobile devices, whereas VoiceXML provides an equivalent markup language
for the delivery of these services to telephones via voice portals. Web applications deliv-
ered using a multiclient XML/XSL-based architecture enable the same Web applications
to be delivered concurrently to both Web phones with WML as well as telephones via
voice portals driven by VoiceXML.

Applied XML

PART III
940

25 0672323419 CH21 3/15/04 11:25 AM Page 940

IN THIS CHAPTER

• The Vertical Industries 943

• Professional Services Standards 944

• Manufacturing 977

• Scientific and Engineering 984

• Print, Media, and Entertainment 989

• A Final Note: XML Standards
Adoption 992

22
C

H
A

PT
ER

Applied XML in
Vertical Industry

26 0672323419 CH22 3/15/04 11:26 AM Page 941

The majority of this book has dealt with what XML is, the various technologies that
enrich the language, and how to implement XML in a variety of application scenarios.
However, we have not yet talked about the myriad of ways that XML is actually being
used and applied in different business scenarios. The actual, real-world implementation
of XML is where the “rubber meets the road.” Without widespread usage and adoption of
XML, it is merely an abstract technology with lots of promise but little delivery. The
“proof is in the pudding” when many businesses in different industries make use of XML
in their day-to-day operations or in other business-critical capacities.

You may even be reading this book to gain a better understanding of how XML can ben-
efit and improve the operations of your particular business or industry. As such, the vast
majority of this book has addressed the technologies necessary for these implementa-
tions, but what remains are specific examples and advice for industry-specific implemen-
tations of XML technologies. This chapter will get you well on your way towards under-
standing how XML has benefited and impacted a variety of industries, ranging from
manufacturing and health care to government and entertainment industries. In addition,
for those readers who are now becoming familiar with XML from a technical viewpoint,
this chapter provides real-world implementations of XML so that you can apply your
technical skills to “nontechnical” industries and provide a quick return-on-investment
(ROI) for your skills. In general, this chapter turns XML “promise” into XML “reality.”

In this chapter, you will learn about

• The widespread use and adoption of XML by multiple industries

• How vertical industries approach the use of XML and create industry vocabularies

• The use of XML for document storage, manufacturing, process control, modeling,
and messaging and communication

• Professional services’ use of XML as applied to financial services, health care,
insurance, legal, travel, and human resources industries

• Scientific and engineering use of XML and XML-based standards in the biotech,
chemical, mathematical, and artificial intelligence industries

• The use of XML and relevant standards in the print, media, and entertainment
industries

• The use of XML in manufacturing and supply chains in different industries

• Government, academic, and public-sector industry use of XML

Applied XML

PART III
942

26 0672323419 CH22 3/15/04 11:26 AM Page 942

The Vertical Industries
Before we can launch into a discussion of the different vertical industries, we must
answer the question, What exactly is a vertical industry? The term vertical is used to
define any user community that has a specific and focused set of needs that differ from
other “parallel” industries. Horizontal technologies (or industries) are those that span all
industries and don’t apply to any particular industry specifically. In the context of our
discussion, a vertical industry is a separately identifiable user community that bases its
vocabularies on the horizontal technologies represented by XML. Figure 22.1 illustrates
this concept.

Applied XML in Vertical Industry

CHAPTER 22
943

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

Finance Manufacturing Health Care Biotech • • • •
Other Vertical

Industry

XML Technologies

FIGURE 22.1
Structure of
standards.

According to research conducted by ZapThink, an XML industry analyst firm, there are
over 450 XML vocabularies publicly announced in various registries and reference
sources as of October 2001. This number has grown from around 120 in February 2000
and 250 in August 2000. It seems as though the pace of new XML schema development
is certainly not slowing. Approximately 70 percent of these vocabularies are vertical
industry applications, with the remainder split between horizontal applications and
general XML technologies and frameworks.

Note

You can view the vertical industry XML vocabulary listings mentioned earlier by
visiting ZapThink’s Web site at http://www.zapthink.com/.

26 0672323419 CH22 3/15/04 11:26 AM Page 943

Of course, the definition of vertical industries and horizontal technologies is a fuzzy art,
at best, and many would argue that certain vertical industries are really horizontal indus-
tries, and vice versa. In fact, within our discussion of vertical industries, there are really
two types of vertical industry markets:

• Purely vertical industries, such as electronic components

• “Horizontal” verticals, which are industries that in turn span multiple other
industries. Good examples of this include shipping, human resources, and in
many cases finance.

In addition, the vertical industry groups themselves clump into “birds of a feather” verti-
cals that, while serving distinct user communities, share so many features in common
that solutions for one user group will usually be applicable to the second user group. For
example, the “manufacturing” industry is really a set of very distinct user communities,
but solutions for any user group would generally result in applicable solutions for
another. In that case, our discussion of the manufacturing vertical will usually be
applicable to all birds of that feather.

In our discussions, we will group these two different types of vertical markets together
and illustrate how they, in turn, make use of truly horizontal XML technologies.

Professional Services Standards
The use of XML is inextricably linked to the desire for people to communicate. Whereas
some XML efforts focus on the communication between machines and devices, the focus
of “professional services” standards is to enable the communication and processes of
people. Professional services are those industries whose primary asset and product are
people. There really is no “professional services” industry per se, but rather a collection
of individual industries that together all share a number of things in common. Namely,
they deal with people, provide services on a pay-per-service or on a pay-per-time basis,
and require the management of time, people, and resources. In addition, professional ser-
vices firms tend to call their customers and partners different things, including patients,
clients, retainers, agents, brokers, and employees. Despite the differences in what they
call things, they share many of their data models in common.

This section outlines what some of these professional services industries are doing with
XML and some of the XML standards efforts that have been produced to meet the needs
of these user groups.

Applied XML

PART III
944

26 0672323419 CH22 3/15/04 11:26 AM Page 944

Finance and Accounting
The finance industries of banking, accounting, securities trading, research and reporting,
and economics have always needed timely, accurate, and critical access to information.
As such, they have always been early implementers of electronic document exchanges.
Automatic Teller Machines (ATMs) have implemented early forms of electronic com-
merce since the late 1970s. However, XML now allows for lower cost of delivery for this
information; therefore, both existing and new standards are being created for the delivery
of financial-related information. Of course, in this particular industry, security and time-
sensitiveness are the key issues that XML standards must resolve.

The Extensible Business Reporting Language (XBRL)
One of the most important financial activities within a corporation is the reporting of
financial or business data. Reporting of financial data happens throughout a business
organization and even external to it. Business units, divisions, entire corporations, sub-
sidiaries, partners, regulatory agencies, and the government all require financial reports
of one sort or another. The strong need for this sort of business reporting is met with an
equally strong challenge in the difficulty to share financial data across disparate systems.
Typically, many systems in an organization store financial and related business informa-
tion—accounting systems, supply-chain systems, Customer Relationship Management
(CRM), sales and marketing, Enterprise Resource Planning (ERP), asset and inventory
management, and human resources systems are just a few such repositories of financial
and business data. Figure 22.2 illustrates the complex universe of financial reporting sys-
tems and interactions. The challenge is therefore great to have all these systems transmit
their data in a common format that can then be aggregated for the purpose of creating
consolidated balance sheets, reports of income, financial statements, financial informa-
tion, nonfinancial information, regulatory filings, such as annual and quarterly financial
statements, and other data necessary for the daily operation of the business and compli-
ance with regulations.

The Extensible Business Reporting Language (XBRL) solves this problem by providing
software vendors, programmers, and end users who adopt it a means to enhance the cre-
ation, exchange, and comparison of business reporting information. The primary users of
the XBRL specification are those responsible for the preparation of financial informa-
tion, intermediaries in those preparation and distribution processes, end users of business
report information, as well as vendors who supply software and services to the previous
user types. The overall intention is to balance the needs of these groups, creating a prod-
uct that provides benefits to all groups. Although XBRL represents a new methodology
for data information exchange, its goal is to facilitate current business reporting practice,
not to change or set new accounting standards. The general goals of the format can be
seen in Figure 22.3 and Figure 22.4.

Applied XML in Vertical Industry

CHAPTER 22
945

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 945

XBRL provides users with a standard format in which to prepare, exchange, extract, and
compare financial reports that can be subsequently presented in a variety of ways. The
specification also facilitates the ability to “drill down” to detailed information, authorita-
tive literature, audit information, and accounting working papers. XBRL instance docu-
ments transmit a set of financial facts. There is no constraint on how much or how little
information these documents can contain. For example, an XBRL document can contain

Applied XML

PART III
946

Tax
Agencies

Credit
Agencies One-way,

External

Two-way,
interaction

Two-way,
interaction

General
Public

via Web

LendersRegulatory
Agencies

Investor
Community

Aggregators (Edgar-Online, Reuters, S&P, etc.)

Compiling Standard
External Reports:
• Financial Statements
• Regulatory Reports
• Tax filings

Company Web
Page Postings

Internal Users:
• Transfers between Systems
• Standard Reporting
• Ad Hoc Analyses

G/L packages ERP CRM

Transaction Creation (eC & non eC)

Internal Transfer of Financial Information

A Complex Information Supply Chain (Systems)

Note: Represents transactions of financial information under situations that currently exist.
These transactions could create other possibilities for companies

• Financial
Statements

* Tax Filings
* Regulatory

Filings
* Voluntary

Filings
(e.g., credit
bureaus)

* A/R & A/P
* Ad Hoc Elected

Financial
Information

Financial
Information

• Order Creation
• A/R Processing
• Delivery Information

• G/L Packages
* ERP
* Middleware
* CRM
* Data

Transformation
* Web based
* Tax
* Audit Work

Papers
* Data

Repackagers

Software

Suppliers
• Order Creation
• A/R Billing
• Delivery Information

Customers

FIGURE 22.2
Business reporting
systems.

XBRL

Accounting
System

Printed
Financials

Regulatory
Filings

Web Site

Tax
Returns

Bank
Filings

Other
Sources of
Information

XBRL: Multiple Outputs from a Single SpecificationFIGURE 22.3
XBRL: Multiple
outputs from
a single
specification.

26 0672323419 CH22 3/15/04 11:26 AM Page 946

XBRL is not a single standard but rather a suite of many related standards. The specifica-
tion is composed of a global specification that contains “taxonomies” or dependent stan-
dards that meet the requirements of specific user communities. The reason for this
structure is quite necessary. In part, the reasons are geographic and political: The United
States has a different kind of accounting system than the United Kingdom or Germany.
These countries each have different policy standards and regulatory requirements.
However, even within a country such as the United States, the way that health care com-
panies report financial data is different from how banks report their data to the Federal
Deposit Insurance Corporation (FDIC). Even the meaning of the term cash is different in
various countries and industries. To further emphasize the need for local taxonomies,
within industries and geographies, such as United States banking, there are different
users who demand different kinds of reports. The tax administrator, controller, and
investor relations officer all deal with different report requirements. Therefore, XBRL
provides a mechanism not only to unify data exchange but also to bring together these
various communities. In that manner, XBRL is actually two languages: one for financial
“facts” that are standardized and one for financial “concepts” that are defined by
communities.

Those that read the XBRL specification will find an interesting set of words used fre-
quently, including taxonomy, item, and tuple. Many of these definitions are different
from how other groups define these terms, so a careful reading of the definitions is nec-
essary for a complete understanding of the specification. XBRL defines a taxonomy as an
XML Schema instance that defines new elements that correspond to concepts referenced
in XBRL documents. XBRL taxonomies can be regarded as extensions of the XML

Applied XML in Vertical Industry

CHAPTER 22
947

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

XBRL

Investors

Other
Parties

Printed
Financials

Regulatory
Filings

Web Site

Tax
Returns

Bank
Filings

FIGURE 22.4
XBRL:
Aggregating
sources for
common needs.

just a single item of financial information, such as what the cost of goods sold was for
last quarter.

26 0672323419 CH22 3/15/04 11:26 AM Page 947

Schema utilizing XML Link–based information. An important taxonomy utilized in
many XBRL implementations is the set of elements that correspond to well-defined
concepts within the U.S. Generally Accepted Accounting Principles (GAAP) applied to
Commercial and Industrial (C&I) companies. That taxonomy includes concepts of
“Accounts Receivable Trade, Gross,” “Allowance for Doubtful Accounts,” and “Accounts
Receivable Trade, Net.” An item corresponds to a fact that is usually, but not necessarily,
a numeric fact being reported with respect to a given period of time about a given busi-
ness entity. For example, company XYZQ’s revenue of $7 million for the year 1998 is a
numeric item, whereas a paragraph of text describing the principles of consolidation used
to combine reports from the subsidiaries of XYZQ is a nonnumeric item. Tuples join
these facts into logical groups so that they can be understood. The combination of the
name, age, and compensation of a director of a company is an example of a tuple. On a
similar note, an XBRL group is a less strictly combined set of related items that can
appear in any order and can be interspersed among other text and elements in any XML
document. Using the notion of the group, the specification avoids the direct creation of
an XBRL document type. Rather, XBRL items can be embedded in any well-formed
XML document, such as a press release or business document.

Within an XBRL document, there can be any number of XBRL items that refer to any
number of taxonomies, although each individual item can itself only refer to only one
taxonomy. Taxonomies can be composed together to extend other taxonomies. For exam-
ple, the Financial Reporting for Commercial and Industrial Companies and U.S. GAAP
taxonomies can be extended to include the term physician salaries, which extends the
concept “expenses” that already exists there.

An XBRL taxonomy document is a valid instance of an XML Schema document. In fact,
two XBRL schemas are imported by a taxonomy: the XBRL instance document schema,
which defines abstract elements such as item and tuple, and the XBRL datatype schema,
which defines XBRL standard data types, such as “monetary.” See Listing 22.1 for a
sample XBRL taxonomy definition and Listing 22.2 for a sample XBRL instance.

LISTING 22.1 XBRL Sample Taxonomy Element

<element name=”statements.accountantsReport” type=”string”>
<annotation>
<documentation>Report(s) issued by independent accountant or

internal accountant. If two reports are issued, two accountant
report sections should appear</documentation>

<appinfo>
<xbrl:rollup to=”statements” weight=”0” order=”3” />
<xbrl:label xml:lang=”en”>Accountant’s Report</xbrl:label>
<xbrl:reference name=”SAS” number=”58” chapter=”” paragraph=””

subparagraph=”” />

Applied XML

PART III
948

26 0672323419 CH22 3/15/04 11:26 AM Page 948

LISTING 22.1 continued

</appinfo>
</annotation>
</element>

LISTING 22.2 XBRL Sample Instance (Truncated for Brevity)

<?xml version=”1.0” encoding=”utf-8”?>
<group

xmlns=”http://www.xbrl.org/core/xbrl-2000-07-31”
xmlns:ci=”http://www.xbrl.org/us/gaap/ci/2000-07-31”
xmlns:gpsi=”http://www.xbrl.org/us/gaap/ci/2000-07-31/sample”
xmlns:csh=”http://www.xbrlSolutions.com/labels”
id=”XXXXXXXXXX-AB”
entity=”NASDAQ:GPSI”
period=”1999-05-31”
schemaLocation=”http://www.xbrl.org/us/gaap/ci/2000-07-31
http://www.xbrl.org/us/gaap/ci/2000-07-31/us-gaap-ci-2000-07-31.xsd
http://www.xbrl.org/us/gaap/ci/2000-07-31/sample
http://www.xbrl.org/us/gaap/ci/2000-07-31/sample/gpsi-custom-2000-07-31.xsd”

scaleFactor=”3”
precision=”9”
type=”statements”
unit=”ISO4217:USD”
decimalPattern=”#.#”
formatName=””>

…
<!--Revenues -->
<group type=”ci:grossProfit.salesRevenueNet”>

<group type=”ci:salesRevenueGross.goods”>
<label href=”xpointer(..)” xml:lang=”en”>License</label>

<item id=”IS-001” period=”P1Y/1999-05-31”>79685</item>
<item id=”IS-002” period=”P1Y/1998-05-31”>52949</item>
<item id=”IS-003” period=”P1Y/1997-05-31”>35919</item>

</group>
<group type=”ci:salesRevenueGross.services”>
<label href=”xpointer(..)” xml:lang=”en”>Service</label>

<item id=”IS-004” period=”P1Y/1999-05-31”>55222</item>
<item id=”IS-005” period=”P1Y/1998-05-31”>32710</item>
<item id=”IS-006” period=”P1Y/1997-05-31”>21201</item>

</group>

<label href=”xpointer(..)” xml:lang=”en”>Total revenues</label>
<item id=”IS-007” period=”P1Y/1999-05-31”>134907</item>

Applied XML in Vertical Industry

CHAPTER 22
949

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 949

LISTING 22.2 continued

<item id=”IS-008” period=”P1Y/1998-05-31”>85659</item>
<item id=”IS-009” period=”P1Y/1997-05-31”>57120</item>

</group>
…
<!-- End of document group -->
</group>

Applied XML

PART III
950

Note

The complete sample code for XBRL can be found in the example with the file-
name xbrlsample.xml. The file can be downloaded from the Sams Web site.

The results of this document are shown in Figure 22.5.

FIGURE 22.5
XBRL sample
instance.

As you may have noticed, critical information is being contained and exchanged within
XBRL. You would think that security would be a primary concern, but it’s not even a
consideration. The primary reason for this is that the group working with and managing
the XBRL effort believes that other groups will solve this problem in a more complete

26 0672323419 CH22 3/15/04 11:26 AM Page 950

and widely adopted manner. Therefore, XBRL will leverage those specifications when
they become available.

XBRL is becoming increasingly widely supported. Its presence has spread the globe and
has gotten support from such major establishments as the Securities Exchange
Commission (SEC), the International Accounting Standards Board (IASB), and the
International Federation of Accountants (IFACT). Every company and every industry in
the world will soon use XBRL. As of October 2001, about 20 countries are getting
involved with XBRL-based information exchange. In addition, the XBRL specification is
increasingly working with other standards efforts to be the de facto standard for financial
reporting within those other standards efforts. XBRL has formed connections with such
notable standards as Health Level Seven (HL7), RosettaNet, Research Information
Exchange Markup Language (RIXML), Investor Research Markup Language (IRML),
and other efforts. Even though financial services users use XBRL, it is not exclusively
about financial services. Users of the specification include government agencies, pharma-
ceutical companies, and manufacturing companies. Part of the reason for XBRL’s wide-
spread adoption is its rigorous requirements for working group members. Any group that
wants to become an XBRL working group member must commit significant financial,
technical, and public relations resources, as well as commit to incorporating XBRL in all
of its financial reporting applications, both internal and external. These requirements
ensure that the specification isn’t merely given lip service.

Applied XML in Vertical Industry

CHAPTER 22
951

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

Note

You can view the XBRL specification by visiting the XBRL Web site at
www.xbrl.org.

Interactive Financial Exchange (IFX)
One of the most intensive uses of information in the financial sector is the exchange of
transactional financial data. Transactional data is the day-to-day, minute-to-minute
exchange of individual financial information such as funds transfers, stock purchases,
credit inquiries, and other such information vital to a working economy. Given the vast
quantity and importance of this data, it is no wonder that XML is increasingly being
used to simplify and enhance the exchange of this information.

In particular, the Interactive Financial Exchange (IFX) specification provides a robust,
scalable framework for the exchange of financial data and instructions. Even though
the current implementation of IFX is in the XML format, the core specification is

26 0672323419 CH22 3/15/04 11:26 AM Page 951

independent of a particular representational technology. Participating in the definition of
this format are major financial players, service providers, and information technology
vendors. IFX builds on previous industry experience, including the Open Financial
Exchange (OFX) and GOLD specifications, which are currently implemented by finan-
cial institutions and service providers to enable electronic exchange of financial data
between them and their customers. IFX didn’t start out as an XML specification but
rather as a generalized business messaging specification for financial transactions. It just
was that XML was able to meet its needs before any other representational technology.
Work on IFX has been going on for about four years. The IFX Forum is an open-mem-
bership, nonprofit corporation founded to maintain and facilitate the development of the
IFX specifications. Current IFX Forum members include Microsoft, Checkfree, Bank of
America, Wells Fargo, Citigroup, and Avalon.

Specifically, the IFX specification enables the exchange of online financial services
information. The activities supported by IFX include bank, brokerage, mutual fund, and
credit card statement downloads as well as electronic funds transfers, including recurring
transfers, individual and recurring consumer and business payments, transaction history,
current holdings, balances, and electronic bill presentment and payment. These transac-
tions occur between a broad range of user types, known as service providers, including
banks, brokerage houses, insurance companies, merchants, payment and bill processors,
financial advisors, and government agencies.

The IFX specification also provides a certain amount of transaction and security robust-
ness, as is necessary for the nature of the documents being exchanged. These features
assure users that IFX messages are reliably executed, the information supplied is correct,
and the results can be used for communicating and executing important financial transac-
tions. IFX provides an suite of security options for further protecting the integrity of
financial transactions. These security features include authentication of the parties
involved, encryption of data, integrity of the information being exchanged, as well as
robust protocols for error recovery.

The IFX specification is an XML messaging protocol that has two key parts: the infra-
structure for sending financial messages and the specific content of those messages. The
infrastructure concerns interparty communication within and outside company walls and
provides common data elements and security. The specific content is focused on loans
and credit, electronic bill presentment, and business and consumer banking needs.

IFX is a “message-oriented” standard in that the documents are used in a request/
response mechanism. Clients send IFX message “requests” to servers that understand the
format, which in turn return IFX message “responses” back to the client. As such, the
IFX specification functions as a protocol that can be used in either batch or interactive

Applied XML

PART III
952

26 0672323419 CH22 3/15/04 11:26 AM Page 952

communication styles. However, IFX is also transport neutral, supporting HTTP, SMTP,
FTP, or any emergent protocol for exchange. IFX applies a single authentication context
to multiple requests in order to reduce the overhead of user authentication. With an inter-
national focus, IFX supports multiple currencies, country-specific extensions, and differ-
ent forms of encoding, such as Unicode.

IFX can be transmitted in an asynchronous or synchronous mode. This means that IFX
messages can be sent without keeping the connection open for a response, or the connec-
tion session can wait for the transaction to be completed before terminating. This feature
allows IFX servers the ability to complete a response at a later time. Sample IFX
messages can be seen in Listings 22.3 and 22.4.

LISTING 22.3 Sample IFX Request Message

POST http://www.CSP.com/IFX.cgi HTTP/1.0
User-Agent:MyApp 5.0
Content-Type: text/xml
Content-Length: 1032

<?xml version=”1.0” encoding=”UTF-8” ?>
<?ifx version=”1.0.1” oldfileuid=”00000000-0000…” newfileuid=”00000000-0000…” ?>

<!DOCTYPE IFX PUBLIC “-//IFX//DTD IFX1.0.1//EN”
“http://www.ifxforum.org/IFX1.0.1/xml/ifx.dtd”
[private markup]>
<IFX>” \>

... IFX requests ...
</IFX>

LISTING 22.4 Sample IFX Response Message

HTTP 1.0 200 OK
Content-Type: text/xml
Content-Length: 8732

<?xml version=”1.0” encoding=”UTF-8” ?>
<?ifx version=”1.0.1” oldfileuid=”00000000-0000…” newfileuid=”00000000-0000…” ?>

<!DOCTYPE IFX PUBLIC “-//IFX//DTD IFX1.0.1//EN”
“http://www.ifxforum.org/IFX1.0.1/xml/ifx.dtd”
[private markup]>

<IFX>” \>
<Status>passed</Status>
<AcctId>1234567890</AcctId>
</IFX>

Applied XML in Vertical Industry

CHAPTER 22
953

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 953

As you probably noticed, this message and the previous message are very similar. This is
intentional. IFX request and response messages are relatively symmetric documents that
can be exchanged by any party in a financial transaction.

IFX actually consists of a number of separate message types that address different needs.
Table 22.1 lists some of those message types and the sorts of messages they describe.

TABLE 22.1 Sample IFX Message Types

Message Type Description

Debit and credit messages Authorize, commit, and reverse debits and credits for use in
self-service, point-of-sale, and other applications that
involve debiting or crediting an account.

Deposit account statement inquiry Balance and transaction reporting as required in a corporate
environment.

Single payment add Business-to-business payment transactions.

The IFX framework is made up of implementation rules. Two communicating parties use
the self-discovery features of IFX to exchange information about what they can and can’t
support for transactions. For example, a bill-presentment client needs to interact with a
server that handles payments.

Subsequent development on the IFX specification has concentrated on adding substantial
support for additional features, such as business-to-business and ATM transactions,
including credit, debit, and management of “value media,” such as stamps, dollar bills,
and tickets. In general, the IFX specification is adding capabilities to support richer
forms and types of payment that can be individually transmitted or conglomerated for
payment in an aggregated fashion, such as payroll transactions.

IFX is also working in the loan credit application space and working with the insurance
vertical industry standard, ACORD. In its next major v2.0 release, the IFX Forum is seri-
ously considering how to better incorporate Web Services, and thinking about using
SOAP as a transport mechanism.

Applied XML

PART III
954

Note

Find out more by visiting the IFX Web site at http://www.ifxforum.org/.

26 0672323419 CH22 3/15/04 11:26 AM Page 954

Insurance
Insurance is one of the most heavily paper document–dominated industries around. The
need to document the entire insurance process, from customer acquisition to claims ful-
fillment (and everything in between), practically eclipses every other industry with the
exception of perhaps health care. As such, the need to simplify the storage and exchange
of this information has motivated groups to create industry standards, using XML as a
possible base for these efforts. In this section, we focus on one of the major insurance
industry XML efforts.

Association for Cooperative Operations Research and
Development (ACORD)
The insurance business is driven by data, and the Property & Casualty (P&C) business
is no exception. In the drive to utilize the Internet as a means for real-time exchange of
insurance information between producers, carriers, rating bureaus, and service providers,
the Association for Cooperative Operations Research and Development (ACORD) cre-
ated an XML format for defining message-oriented P&C transactions. Leveraging the
existing Interactive Financial Exchange (IFX) specification as a “base protocol,” ACORD
is defining an insurance industry format that contains transactions for Personal and
Commercial Lines, Surety, Claims, and Accounting transactions. As a result, most of the
business message structure, data types, and documentation conventions were borrowed
from the IFX specification.

The organization was actually formed in 1970 for the development and promotion of
standards for the insurance industry. ACORD’s first XML standard to pass approval was
its ACORD Property and Casualty and Surety (P&C and Surety) specification, developed
in late 1998 and approved in 2000. ACORD’s follow-up to this was the development of
the ACORD Life insurance standard known as XMLife. A key aspect of the ACORD
standards is its dependence on the IFX standard and its support of the e-business stan-
dardization effort ebXML. It also extends Automation Level 3, an EDI standard adopted
in the insurance industry.

ACORD specifies all the aspects of the insurance lifecycle, from customer acquisition to
claims fulfillment. These are divided along the lines of Property and Casualty, Life, and
Surety insurance. ACORD specifies a very large and thick Document Type Definition
(DTD) around the vocabulary and exchange mechanisms designed to meet these needs.

Due to its longevity and reputation,ACORD has the support of over 1,000 insurance car-
riers and groups, 25,000 agencies, the majority of software services and vendors, many
nonprofit organizations, and the CPCU society. This, combined with its excellent work in
the form of its XMLife and Property and Casualty standardization efforts, contribute to

Applied XML in Vertical Industry

CHAPTER 22
955

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 955

its excellent chances of success in surviving any battles with conflicting insurance
industry standardization efforts.

For security, ACORD relies on channel-level encryption, such as SSL or SMIME, for
privacy and data integrity. ACORD contains built-in mechanisms for authentication of
user parties and transactions but does not provide any mechanism to protect privacy and
guarantee data integrity between endpoints. As a result, the implementation relies on
channel-level facilities for this functionality. Because ACORD follows the same architec-
ture structure of IFX, it supports batch and interactive styles of communication and is
application protocol independent, supporting HTTP, FTP, SMTP, or emerging protocols
for transport.

The ACORD Global Standards Strategy Committee has also announced a project called
“eMerge” that aims to integrate existing ACORD standards into a single common stan-
dard. The goal is to facilitate more effective and efficient movement of data between
insurance trading partners. This project is an evolution of the XML standards that
ACORD has supported since 1998. This new and evolving format will develop a single
view of financial services by partnering with other standards bodies globally in an effort
to facilitate straight-through processing (STP). Increasingly, the lines between insurance
and the other financial services sectors are becoming blurred by virtue of increasingly
shared data and implementations. Adoption of a common data-exchange structure will
simplify and streamline data transfer both internal and external to an enterprise.

Major ACORD members involved in crafting the standards include such insurance and
software industry vendors as Channelpoint, IBM, Manulife Financial, Marsh Inc.,
MetLife, Microsoft, Oracle, Principal Financial Group, SAFECO, Silverlake Software,
The Hartford, Travelers, TowerStreet, and ZeBU.

Applied XML

PART III
956

Note

Find out more by visiting the ACORD Web site at http://www.acord.org/.

Health Care
Besides insurance, health care is the most heavily document-dominated industry. Every
aspect of the care of patients must be documented, from patient acquisition and appoint-
ments, to specific treatment and payment. Therefore, many groups have emerged to solve
the various documentation challenges associated with health care. In this section, we
feature a few of those health care–related industry standards.

26 0672323419 CH22 3/15/04 11:26 AM Page 956

Much of the recent activity in XML-enabling health care can be attributed to one motiva-
tor: The Health Insurance Portability & Accountability Act (HIPAA) of 1996. This one
law, also known as the Kennedy-Kassebaum Act, seeks to make major changes to the
way medical information is stored and exchanged. It mandates that health care efficiency
must be improved by standardizing electronic data interchange, and information must be
maintained with the strictest confidentiality and security through the setting and enforce-
ment of standards. In particular, HIPAA calls for the standardization of electronic patient
health, administrative, and financial data, the establishment of unique health identifiers
for individuals, employers, health plans, and health care providers, and the setting of
security standards to protect the confidentiality and integrity of “individually identifiable
health information,” past, present, or future. And this all needs to be implemented by
October 16, 2002 for the first part, and April 14, 2003 for the second. Otherwise, penal-
ties up to $250,000 will apply!

XML is perfectly suited to providing all the requirements of HIPAA in a manner that
also simplifies the requirements for integration with the tons of legacy systems that
medical establishments have in place. Sounds like XML to the rescue. Of course, there
are also lots of reasons besides HIPAA why XML should be implemented in the health
care space, including platform neutrality, prevalence of tools, greatly reduced cost, a
large set of skilled XML labor, and positive buzz—but none of these exerts as much
pressure as HIPAA.

A few major standards hope to solve this problem, which is generally known as
Electronic Patient Records (EPR). The front leader in this category is the Health Level
Seven (HL7) standard. HL7 originally was a non-XML standard but is rapidly becoming
a major influence in the XML space with its next standards release. HL7 specifies a
health care industry–specific format that covers the needs for EPR, prescriptions, and
medical insurance filings as well as medical imaging needs. Its next major release, v3.0,
plans to support XML natively and has considerable backing.

For those who are interested in medical record XML standards but can’t wait for the
HL7 release, there are a number of other efforts by organizations aiming to “fill the gap”
in meeting HIPAA requirements. These include the CISTERN specification, which builds
upon HL7’s prior releases. DocScope and Xchart are other private efforts to tackle the
EPR problem.

In general, a growing body of work is being pursued in creating XML formats specifi-
cally for the health care industry, and especially the medical records industry. For more
information, check out the “Healthcare” listing in the “XML in Industry” section of the
www.xml.org Web site.

Applied XML in Vertical Industry

CHAPTER 22
957

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 957

Health Level Seven (HL7)
Health Level Seven, whose name refers to the top level (the application level) of the
International Standards Organization’s (ISO) communications model for Open Systems
Interconnection (OSI), is an American National Standards Institute (ANSI) approved
Standards Developing Organization (SDO) focused on the health care arena. SDOs pro-
duce standards for a wide variety of domain areas in the health care space, ranging from
pharmaceutical, medical devices, imaging, and insurance. The HL7 SDO focuses on
standards for clinical and administrative data. More specifically, HL7 produces standards
for the exchange, management, and integration of data that supports clinical patient care
and the management, delivery, and evaluation of health care services. The goal of the
Ann Arbor, Michigan–based nonprofit organization is to service its members, which
include providers, vendors, payers, consultants, government groups, and others who have
an interest in the development and advancement of clinical and administrative standards
for health care. HL7 is also international in scope, with applications in Australia, Canada,
China, Finland, Germany, India, Japan, Korea, The Netherlands, New Zealand, Southern
Africa, Switzerland, and the United Kingdom.

The application level of the OSI model isn’t concerned with the lower-level aspects of
data communication (such as transport and routing) but rather addresses application data
definition, exchange, error checking, security checks, participant identification, availabil-
ity checks, and data structure.

Created in 1989, HL7 has been standardizing clinical and administrative data for health
care, utilizing an EDI-like messaging specification. However, its latest release is a full-
scale movement to XML. The most widely adopted of its specifications is patient and
financial administration, which solves specific transactional issues such as admitting new
patients to a hospital. HL7 solves the major problem of sharing this patient data with all
the systems in a hospital that need to know about new patients. This standardization,
widely used for patient administration, certain kinds of laboratory data, and to some
extent for clinical observations, results in a high level of penetration by HL7 in the
industry. Over 90 percent of U.S. hospitals use some portion of the HL7 standard, which
is the highest adoption of any specification in health care. However, the scope and focus
of the specification still leaves a lot of room for standardization. The specification was
started so many years ago and was built up by accretion. The result was so broad based
that it became difficult to add new functionality in the 1990s. As a result, the HL7 man-
aging organization realized that it needed to go back and rethink the whole approach. It
needed a more coherent model, and XML was the answer.

The HL7 created the Reference Implementation Model (RIM), which resulted in a grand
simplification of the messages based on XML. The group working on the specification

Applied XML

PART III
958

26 0672323419 CH22 3/15/04 11:26 AM Page 958

was looking at the fact that despite the best efforts of HL7, and despite intensive work to
computerize patient records, the effort to move from paper-based to computer-based sys-
tems had stalled. About 85 percent of clinical information was still paper based.
Therefore, even if hospitals used document management systems, the results were
printed, and most still used paper, rather than the electronic form. The group realized that
the attempt to computerize info relied on a highly regularized, normalized data model
that did not fit clinical practice and the way doctors think of the clinical encounter. The
various doctors looking at XML saw a means to create a new approach to standardizing
clinical information that took advantage of the sparsely populated tree structure of XML.
The result was a models-based approach using the RIM, a product of seven years of
work in the industry. The final product was HL7 v3.0, a new version by number, but a
completely new product in reality.

Because some countries have mandated the use of HL7 by law, there was good reason to
maintain the old HL7 interfaces. Therefore, the organization took a scaled approach for
gently moving the space from the EDI-like syntax of v2.4 to the XML-based v3.0. This
resulted in three major products and versions of the HL7 specification:

• An informative specification called “v2.XML” that created an XML expression for
the current generation of HL7 specs.

• The clinical document architecture (CDA), approved in November 2000, which
took the new approach to standardizing clinical information using the ability of
XML but didn’t produce a formal version of the HL7 standard.

• The formal HL7 v3.0, which is a complete set of clinical messages that overlap the
functionality of v2.0 but is derived from the RIM information model.

While contributing to v3.0, the CDA is not formally part of any specification. Instead, it
helps users make the mental transition to the new way of doing things. The CDA is based
on the RIM and uses HL7 methodology for deriving XML from a UML object model.
The core component of information is what a physician is willing to sign. The model
combines the concept of a persistent information unit, the concept of wholeness, and a
signature to create an integrity-based system. As a result, the final specification is very
elementary, almost like XHTML in its model, with a few other features related to the
information model of clinical content. Listing 22.5 shows the CDA document hierarchy.

LISTING 22.5 CDA Document Hierarchy (from the HL7 Web Site)

CDA Level One
CDA Level Two

Level Two :: Progress Note
Level Two :: Cardiology Progress Note
Level Two :: Endocrinology Progress Note

Applied XML in Vertical Industry

CHAPTER 22
959

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 959

LISTING 22.5 continued

Level Two :: Diabetes Mellitus Progress Note
CDA Level Three

Level Three :: Progress Note
Level Three :: Cardiology Progress Note
Level Three :: Endocrinology Progress Note
Level Three :: Diabetes Mellitus Progress Note

HL7 version 3.0 encapsulates all the functionality of previous versions but uses the new
reference model and architecture for its representation. It also allows multiple representa-
tions of the expression, not limiting itself to XML. For example, one can express HL7
3.0 in IDL and ASN as well. The current functionality of HL7 is covered in Table 22.2.

TABLE 22.2 HL7 Functionality

Functionality Definition

Control Message definitions and interchange protocols

Patient administration Admit, discharge, transfer, and demographics

Order entry Orders for clinical services and observations, pharmacy,
dietary, and supplies

Query Rules applying to queries and to their responses

Financial management Patient accounting and charges

Observation reporting Observation report messages

Master files Health care application master files

Medical records/ Document management
information management services and resources

Scheduling Appointment scheduling and resources

Patient referral Primary care referral messages

Patient care Problem-oriented records

Laboratory automation Equipment status, specimen status, equipment inventory,
equipment comment, equipment response, equipment noti-
fication, equipment test code settings, and equipment
logs/service

Application management Application control–level requests and transmission of
application management information

Personnel management Professional affiliations, educational details, language
detail, practitioner organization unit, practitioner detail, and
staff identification

Applied XML

PART III
960

26 0672323419 CH22 3/15/04 11:26 AM Page 960

Listing 22.6 shows a sample HL7 CDA XML document excerpt.

LISTING 22.6 Sample HL7 CDA XML Document (Excerpt)

<?xml version=”1.0”?>
<!DOCTYPE levelone PUBLIC “-//HL7//DTD CDA Level One 1.0//EN” >

<levelone>
<clinical_document_header>
<id EX=”a123” RT=”2.16.840.1.113883.3.933”/>
<set_id EX=”B” RT=”2.16.840.1.113883.3.933”/>
<version_nbr V=”2”/>
<document_type_cd V=”11488-4” S=”2.16.840.1.113883.6.1”
DN=”Consultation note”/>

<origination_dttm V=”2000-04-07”/>
<confidentiality_cd ID=”CONF1” V=”N” S=”2.16.840.1.113883.5.1xxx”/>
<confidentiality_cd ID=”CONF2” V=”R” S=”2.16.840.1.113883.5.1xxx”/>
<document_relationship>
<document_relationship.type_cd V=”RPLC”/>
<related_document>
<id EX=”a234” RT=”2.16.840.1.113883.3.933”/>
<set_id EX=”B” RT=”2.16.840.1.113883.3.933”/>
<version_nbr V=”1”/>

</related_document>
</document_relationship>
<fulfills_order>
<fulfills_order.type_cd V=”FLFS”/>
<order><id EX=”x23ABC” RT=”2.16.840.1.113883.3.933”/></order>
<order><id EX=”x42CDE” RT=”2.16.840.1.113883.3.933”/></order>

</fulfills_order>
<patient_encounter>
<id EX=”KPENC1332” RT=”2.16.840.1.113883.3.933”/>
<practice_setting_cd V=”GIM”
S=”2.16.840.1.113883.5.1xxx” DN=”General internal medicine clinic”/>

<encounter_tmr V=”2000-04-07”/>
<service_location>
<id EX=”KXLPa123” RT=”2.16.840.1.113883.3.933”/>
<addr>
<HNR V=”970”/>
<STR V=”Post St”/>
<DIR V=”NE”/>
<CTY V=”Alameda”/>
<STA V=”CA”/>
<ZIP V=”94501”/>

</addr>
</service_location>

</patient_encounter>
</clinical_document_header>
<body confidentiality=”CONF1”>
<section>
<caption>

Applied XML in Vertical Industry

CHAPTER 22
961

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 961

LISTING 22.6 continued

<caption_cd V=”8684-3” S=”2.16.840.1.113883.6.1”/>
History of Present Illness

</caption>
<paragraph>
<content>
Henry Levin, the 7th is a 67 year old male referred for further
asthma management. Onset of asthma in his teens. He was hospitalized
twice last year, and already twice this year. He has not been able to
be weaned off steroids for the past several months.

</content>
</paragraph>

</section>
<section>
<caption>
<caption_cd V=”1234-X” S=”2.16.840.1.113883.6.1”/>Plan

</caption>
<list>
<item><content>Complete PFTs with lung volumes.</content></item>
<item><content>Chem-7</content></item>
<item>
<content>
Provide educational material on inhaler usage and
peak flow self-monitoring.

</content>
</item>
<item>
<content>Decrease prednisone to 20qOD alternating with

18qOD.</content>
</item>
<item><content>Hydrocortisone cream to finger BID.</content></item>
<item><content>RTC 1 week.</content></item>

</list>
</section>

</body>
</levelone>

Applied XML

PART III
962

Note

A complete HL7 sample file, called hl7cdasample.xml, can be downloaded from
the Sams Web site.

The complete version of this file is shown in a Web browser in Figure 22.6.

26 0672323419 CH22 3/15/04 11:26 AM Page 962

Due to HIPAA’s high visibility in the health care arena, HL7 has become significantly
involved with HIPAA implementation as well as legislation. It has produced an adden-
dum to the HIPAA specification to specifically enable certain aspects of the HIPAA-
mandated electronic transmission of patient records. Future projects will include Home
Health, Skilled Nursing Facility, Durable Medical Equipment (DME), End Stage Renal
Disease (ESRD), and Preauthorization and Referrals.

Applied XML in Vertical Industry

CHAPTER 22
963

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

FIGURE 22.6
Visual representa-
tion of the HL7
CDA file.

Note

You can find out more by visiting the HL7 Web site at http://www.hl7.org/.

Legal Industry XML Standards
The judicial system has made good use of XML in the past few years. This section cov-
ers one of the more notable legal industry–focused standards that helps to simplify the
process of exchanging information in the context of law interpretation and litigation.

Legal XML
Even lawyers need XML. The need to file court papers, exchange documents with other
legal authorities and clients, and generally simplify life has resulted in the development

26 0672323419 CH22 3/15/04 11:26 AM Page 963

of XML vocabularies focused on the legal profession. A number of these efforts com-
bined to result in the Legal XML initiative, whose mission is to develop open, nonpropri-
etary standards for legal documents and associated applications.

Legal XML began in November 1998 and rapidly grew to over 870 participants by 2001.
It is made up of roughly 50 percent private legal companies, 25 percent government insti-
tutions, and 25 percent academic or nonprofit organizations, with a mostly United
States–based population that is increasingly developing its presence in Australia, Canada,
and Europe. Despite the novelty of applying XML to the legal profession, the “Legal
XML” idea is actually quite dated. Soon after Charles F. Goldfarb, who himself was a
lawyer, developed SGML, Alan Asay, a brilliant lawyer and technologist, created civil
and criminal SGML Document Type Definitions (DTDs) for the Utah state courts. It only
took the continued development of these original SGML documents, combined with the
proliferation of the Internet and XML, to make Legal XML happen.

The issue of what is considered to be a “legal” document is an interesting one.
Theoretically, almost every electronic document can be categorized as “legal,” because
the law is concerned with the exchange of day-to-day documents in the context of
business as well as interpersonal interaction. However, this scope is too wide for any
organization to build a credible standards base. Therefore, the Legal XML group has
sought to address the legal documents that are of most importance and the need for
standardization.

The domain of Legal XML documents is divided into various subdomains by virtue of
their horizontal or vertical application. In this context, vertical describes specific legal
document domains, such as public law (including legislation, bills, and statutes), private
law (including contracts and wills), court filings, transcripts, judicial decisions, and pub-
lications (including legal books and law journals). Horizontal vocabulary describes gen-
eral information of relevance to most legal documents, such as citations, general names
and addresses, and general document structure, such as tables, outlines, paragraphs, and
signatures. Legal XML standardizes these various horizontal and vertical vocabulary
structures as well as coordinates their efforts within the larger legal community.

The Legal XML effort is divided into workgroups that focus on either horizontal or verti-
cal domains, such as court filings and transcripts. These workgroups then develop speci-
fications that define the actual technical XML standards. An additional two groups,
called “Legal” and “Horizontal,” then synchronize and harmonize the work of these vari-
ous groups to make sure no redundant or contradictory work is done. As of this writing,
Legal XML has not yet produced a final, “recommended” standard. However, the group
has published its first proposed standard in the “Court Filing” area. The general approach
that Legal XML takes to its work is the Greatest Common Denominator (GCD)

Applied XML

PART III
964

26 0672323419 CH22 3/15/04 11:26 AM Page 964

approach, which solicits feedback from the community at large and then includes as
many of those features as possible, making many of them optional. The discussion on the
merits of this approach is discussed earlier in this chapter.

The Court Filing document describes the information required for electronic court filing
and the structure of that information. It doesn’t include any information that regards the
actual content of the pleading, such as contracts, orders, or judgments. As such, the first
proposed specification is somewhat basic, but it illustrates well the goals of the Legal
XML group. The architecture makes use of a three-tier application model that uses three
cooperating applications: the client (consisting of an application on the user’s desk,
called the Electronic Filing Provider [EFP]), the server (also known as the Electronic
Filing Manager [EFM]), and the Case Management System.

The document specifies a LegalEnvelope element that is the root element of the Legal
XML document. The LegalEnvelope element identifies the type of message and
routing information as well as indicates the contents contained within. Within the
LegalEnvelope element is a Legal entity that in the case of this proposal contains a
CourtFiling element that specifies individual Filing elements. A sample of a Court
Filing Subsequent Filing can be found in Listing 22.7.

LISTING 22.7 Legal XML Court Filing Example (LegalEnvelope omitted for brevity; it
doesn’t validate because it’s an excerpt)

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE LegalEnvelope SYSTEM “LegalEnvelope.dtd”>
<!-- Creation date and time: 10-Mar-00 22:36Z -->
<LegalEnvelope Version=”1.0”>

...
<CourtFiling>
<Filing>
<Actors>

<Actor ID=”J01”>
<Title>Presiding Judge</Title>
<Name ID=”Ref01.n1”>

<Person>
<FullName>Margret Marly Jefferson</FullName>

<FirstName>Margret</FirstName>
<MiddleName>Marly</MiddleName>

<LastName>Jefferson</LastName>
</Person>

</Name>
<Role>

<RoleName>Presiding Judge</RoleName>
</Role>

</Actor>
</Actors>

Applied XML in Vertical Industry

CHAPTER 22
965

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 965

LISTING 22.7 continued

<FilingInformation ID=”Ref01.1”>
<SpecialHandling/>
<CourtInformation>

<Location ID=”D1116”/>
</CourtInformation>
<CaseInformation>

<FullCaseNumber>D1116-CR-99-218</FullCaseNumber>
<CaseTitle>State v. Onereallybadman</CaseTitle>
<CaseCategory>criminal</CaseCategory>
<CaseYear>1999</CaseYear>

</CaseInformation>
</FilingInformation>
<LeadDocument ID=”Ref01.1.d1”>

<DocumentInformation>
An Actor is by reference to an Actor in the Filing Actors list.

<Actors>
<Actor ID=”Ref01.n1.1” Reference=”Ref01.n1”/>
</Actors>
<Submitted>
<DateTime>
<Date>20000202</Date>
<Time>18:36Z</Time>

</DateTime>
</Submitted>
<DocumentDescription>

<DocumentTitle>
Order for Pre-Trial Hearing has been scheduled

</DocumentTitle>
<DocumentType DocumentCode=”8251”>

ORD: PRE-TRIAL/SCHEDULED
</DocumentType>

</DocumentDescription>
</DocumentInformation>
This document content shows a document residing on the web as the input .

<DocumentContent ID=”Ref01.1.d1.dc” MimeType=”application/pdf”
href=”ftp://nowhere.com/JudgeJefferson/cr/99/218/Orders/PretrialHearing.pdf”/>

<Attachment ID=”Ref01.1.d1.a1”>
An attachment to the lead document.

<AttachmentDocumentInformation>
<Submitted>
<DateTime>

<Date>20000202</Date>
<Time>18:36Z</Time>

</DateTime>
</Submitted>

<DocumentDescription>
<DocumentTitle>Attached text</DocumentTitle>
<DocumentType>Text</DocumentType>

</DocumentDescription>

Applied XML

PART III
966

26 0672323419 CH22 3/15/04 11:26 AM Page 966

LISTING 22.7 continued

</AttachmentDocumentInformation>
This shows text as the document content.

<DocumentContent ID=”Ref01.1.d1.a1.dc” MimeType=”application/text”>
The attached image file provides new information in this case.
</DocumentContent>

This is an attachment to an attachment.
<Attachment ID=”Ref01.1.d1.a1.a1”>

<AttachmentDocumentInformation>
<Submitted>
<DateTime>
<Date>20000202</Date>
<Time>18:36Z</Time>

</DateTime>
</Submitted>
<DocumentDescription>

<DocumentTitle>Attached image</DocumentTitle>
<DocumentType>image</DocumentType>

</DocumentDescription>
</AttachmentDocumentInformation>

This shows a BLOB as the document content.
<DocumentContent ID=”Ref01.1.d1.a1.a1.dc” Size=”8191”
MimeType=”image/jpeg” ContentEncoding=”Base64”>jk075pfb3205hafnbci ...
asfawrq2357c=rqttpbc</DocumentContent>
</Attachment>
</Attachment>

</LeadDocument>
</Filing>
</CourtFiling>
</Legal>
</LegalEnvelope>

Legal XML is a small but growing effort and is using its clout to promote its standards
efforts. It also uses partnerships with existing organizations, such as the Joint Technology
Committee of COSCA/NACM, the National Court Reporters Association, SEARCH, the
California Administrative Office of the Courts, and LEXML, to help develop and promote
its standards. Other XML efforts on the legal front include UELP, XCI, National Center
for State Courts/Lexis, Washington State Bar XML Study Committee, Joint Technology
Committee of COSCA and NACM, National Conference of State Legislatures, and Legal
Electronic Data Exchange Standard (LEDES) for time and billing.

Applied XML in Vertical Industry

CHAPTER 22
967

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

Note

You can find out more by visiting the Legal XML Web site at http://www.
legalxml.org/.

26 0672323419 CH22 3/15/04 11:26 AM Page 967

Real Estate
With all the information required for the successful purchase or lease of real estate prop-
erty, there’s no doubt that XML standards will have a significant impact on this industry.
The range of solutions required for the real estate industry ranges from the electronic
exchange of property information to mortgage and financial transaction data. This section
covers one of the more notable standards relating to mortgage and real estate finance.

Mortgage Industry Standards Maintenance
Organization (MISMO)
Much of the paperwork and documentation in the real estate industry actually revolves
around the mortgage, credit, and loan processes rather than in locating and describing
real estate property listings. The process for purchasing a home through a credit agency
is both rigorous and paper ridden. However, the Mortgage Industry Standards
Maintenance Organization (MISMO), under the auspices of the Mortgage Bankers
Association (MBA), is seeking to simplify this task by providing a single repository of
XML DTDs for use in real estate finance transactions from origination through servicing.

The mechanism for these automated transactions is quite simple in comparison. For
example, one company will send a standard MISMO Credit Request to another partici-
pating company that, in turn, responds with a standard MISMO Credit Response. These
transactions include all data that each company requires to process the exchange.
MISMO has defined three deliverables to accomplish these goals. The first deliverable is
a mortgage data dictionary. This dictionary includes the data elements present in MISMO
Standard transactions. The dictionary also contains corresponding definitions, XML tag
names, data requirements, and sources for the definitions of the supplied terms. The sec-
ond deliverable for MISMO is an XML architecture that leverages the Web as its trans-
port. The final deliverable is a relational data model that is provided to explain the
relationships between the defined data elements and the necessity of those elements in a
particular transaction.

MISMO set out to standardize information regarding loan data that is sent between two
organizations and is relevant to a specific point in time and can span multiple transac-
tions between trading partners. However, the intention of the specification is not to pro-
vide a means for archival of loan data, although companies can archive the files as they
are sent back and forth within the industry. Specifically, the data structures were not
designed with archival in mind, but rather stateful data relevant to a particular instance in
a transaction between organizations. Key elements of functionality in the specification
include credit reporting, loan boarding, applications, service orders, underwriting, and
supporting activities.

Applied XML

PART III
968

26 0672323419 CH22 3/15/04 11:26 AM Page 968

The overall MISMO information architecture consists of four levels that define the scope
of various data elements and processes. The top level consists of common element types
that define data entities, such as a person’s name or the name of a city, and can be used
in more than one part of the MISMO architecture. The mechanism for the definition of
these common elements is through a global DTD. The second level consists of DTDs
maintained by an editorial committee of domain experts that corresponds to the message
type defined by that DTD. For example, the underwriting DTD is designed to serve the
needs of underwriting activities, and it is under the editorial control of a committee of
underwriting experts. Data types are inherited from the top level when there is a match or
are defined when there isn’t such a match. An editorial committee similarly controls the
top-level, common meta-DTD to ensure consistency. The third level consists of a
MISMO Union DTD that provides a means for MISMO messages to contain any number
of any of the message types defined by committees in the second level. The MISMO
Union, therefore, inherits all of the committee architectures of the other levels and gath-
ers all the data for the industry in a single DTD for general release. The Union DTD can
also be used as a source from which other DTDs may be derived, such as a Credit
Reporting DTD or a Service Request DTD, or to create a DTD for the entire mortgage
industry. The fourth and final level of the model consists of extensions to the MISMO
Union that are contributed by other mortgage industry players, in order to serve their
specific needs or the needs of their partners. MISMO calls this the application transla-
tion layer (ATL).

MISMO has published specifications that support mortgage insurance application, mort-
gage insurance loan boarding, bulk pricing, real estate services, credit reporting, and
underwriting process areas. The specifications are freely available for industry imple-
mentation via the MISMO Web site.

Applied XML in Vertical Industry

CHAPTER 22
969

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

Note

Find out more by visiting the MISMO Web site at http://www.mismo.org/.

Business Administration and Human
Resources (HR)
As a relative latecomer to the XML game, the needs of business management and human
resources (HR) should not be neglected in their needs to exchange information with
regards to employees, business operations, and other needs in the discourse of business

26 0672323419 CH22 3/15/04 11:26 AM Page 969

information. In this section, we will explore HR-XML, a standard covering administra-
tive and HR-related needs that aims to improve efficiency and hence reduce the cost of
managing an effective organization.

Human Resources XML (HR-XML)
Paperwork is the day-to-day rigor that comes part and parcel with being part of a human
resources (HR) organization. Simplifying these daily chores using XML is an almost
obvious “Ah Ha!” However, despite the fact that the industry has a single name, there is
nothing common about the way human resources is done from company to company,
especially crossing geographic and industry boundaries. Yet, a human resources XML
known simply as HR-XML aims to eliminate these paper processes by eliminating the
lengthy “discovery” periods typical of setting up internal and external company transac-
tions today.

The HR-XML Consortium is an independent, nonprofit association dedicated to the
development and promotion of XML-enabled human resources–related data exchanges.
The stated mission of the HR-XML Consortium (which is located at http://www.hr-
xml.org/channels/about.htm) is to “spare employers and vendors the risk and expense
of having to negotiate and agree upon data interchange mechanisms on an ad-hoc basis.”
HR-XML actually consists of a number of related but separate working groups that
address the different problem areas in HR. The Recruiting and Staffing Workgroup’s
mission is to define XML vocabularies that enable recruiting and staffing transactions
among employers, staffing companies, application vendors, job boards, and job seekers.
The first fruits of its labor was the development of the Staffing Exchange Protocol (SEP),
which enables the posting of job or position opportunities to job boards and other recruit-
ing and sourcing venues and the return of job seeker, or candidate, data related to those
postings. SEP supports the updating and recalling of job postings, the supplying of con-
tact information for a job candidate (where only partial information initially was sup-
plied), and the supplying of employer feedback to job seeker suppliers on postings that
have been filled. The Cross-Process Objects (CPO) Workgroup aims to develop a com-
mon vocabulary and data model for HR as well as developing schemas for common HR
objects used across the consortium’s domain-specific workgroups, such as Person and
Job objects.

The Payroll Workgroup is developing schemas to support a comprehensive range of
interfaces into and out of payroll, including one-way integration from HR and Benefits
systems to Payroll systems. The workgroup also has a draft schema designed to support
the export of defined benefits and 401(k) plan participant data from payroll systems to
third-party administrators. The Benefit Enrollment Workgroup is developing a universal
schema for communicating employee benefit enrollment information between employers

Applied XML

PART III
970

26 0672323419 CH22 3/15/04 11:26 AM Page 970

and insurance carriers, managed care organizations, and third-party administrators. Some
of the immediate problems that the organization plans to address are enrollment in
health, dental, vision, life, 401(k), and other types of benefit programs and ensuring that
benefits enrollment specifications can map to the EDI transaction sets mandated by the
federal Health Insurance Portability Protection Act (HIPAA). The Technical Steering
Committee has developed a “Provisional Envelope Specification” that aims to provide a
temporary specification for how HR-XML messages are transmitted, but it is expected
that as other messaging protocols such as ebXML are widely adopted, HR-XML will
become compliant.

With over 100 member organizations, clear focus, and advanced development of its XML
vocabulary, the HR-XML Consortium is well poised to make an impact on the HR indus-
try and its use of XML. It does, however, face some challenges in getting the many dif-
ferent participants in the HR process using the standard, and the adoption issue is its
primary challenge. However, in March 2001, over 24 major organizations involved in HR
document exchange committed to using and adopting the HR-XML Consortium stan-
dards as part of their day-to-day document exchange.

Applied XML in Vertical Industry

CHAPTER 22
971

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

Note

Find out more by visiting the HR-XML Web site at http://www.hr-xml.org/.

Travel and Hospitality
With the volume of information that is available nowadays for travel and leisure services,
the need to enable the fairly arcane reservation and scheduling systems in place in the
travel and hospitality industries has become more urgent. XML has been provided as a
technology capable of meeting these next-generation needs.

Like the manufacturing, health care, and other industries using EDI, the travel industry
has been previously dominated by older data formats and mechanisms that have
attempted to solve similar problems in data exchange. In the case of the travel industry,
the systems that have been widespread are Global Distribution Systems (GDSs). The
goal of GDSs is to centralize, consolidate, and deliver travel supplier information for the
online booking of reservations. The primary users of GDSs are travel agencies, but in the
past few years a number of consumer-focused GDSs have been increasingly available
over the Web. GDSs currently present information only on the companies that subscribe
to their services and supply data to them, and the format is as arcane and inflexible as

26 0672323419 CH22 3/15/04 11:26 AM Page 971

EDI is for the manufacturing industry. Therefore, there is movement afoot to replace the
GDS systems with an XML-based mechanism to extend the functionality of those
systems.

Open Travel Alliance (OTA)
The hospitality and travel industries are undergoing rapid change in this wired era, and
XML is helping along the way. While data formats and standards have long been a staple
of the airline, hotel, and car-rental organizations, never before have these various compo-
nents of the travel industry gotten together and agreed on any one common format.
Evolving from the continuing work and effort of the Hospitality Industry Technology
Integration Standards (HITIS), the Open Travel Alliance (OTA) aims to solve this
critical problem.

The OTA was created in May 1999 as a means for generating a set of standards for the
hospitality and travel industries. The OTA organization is a consortium of suppliers in
many different sectors of the travel industry, including air, car rental, hotel, travel agen-
cies, and tour operators, as well as related companies that provide distribution and tech-
nology support to the industry.

OTA’s first deliverable is an XML-based specification that covers the various needs of
airline, hotel, car, and entertainment facilities. The OTA effort is an outgrowth of work
that has been going on for many years in HITIS. HITIS was mainly focused on the
development of standard specifications for internal processes such as Point of Sale
(POS), reservation, and Property Management Systems (PMS). However, HITIS was not
really focused on standardizing systems to communicate externally with other properties,
suppliers, partners, and customers. As such, HITIS focused “inside the property,” and the
OTA was created to solve the needs of standardizing “outside the property.” The OTA
effort, launched at first independently of HITIS, soon merged with the OTA effort as
HITIS began to consider XML as a means for its internal specifications.

The first year of OTA specifications extended the HITIS standards and delivered a hand-
ful of transactions that had been partially defined as part of HITIS. However, in the past
few months, OTA has been very active in the development of industry-specific vocabu-
laries that can give industry players, as well as tools and software vendors, the opportu-
nity to create solutions based on the OTA approach.

The OTA is comprised of five working groups focusing on each of the different sectors
of the market: air, car, hotel, leisure supplier, and nonsupplier, as well as an interoper-
ability committee to ensure consistency. Each industry group is defining transactions that
are unique to its industry, and the infrastructure group is trying to define the elements
that all these industries share in common. Although they’re all operating under the

Applied XML

PART III
972

26 0672323419 CH22 3/15/04 11:26 AM Page 972

auspices of OTA, in reality each industry group is working independently and progress-
ing at its own rate. In the hotel industry group, most of the major hotels and chains are
represented: Cendant, Bass, Marriott, Sheraton, Hilton, and many others. A few of these
chains, such as Cendant and Bass, had people assigned to HITIS group prior to their
involvement in OTA. Therefore, many of these firms had a vested interest in continued
standards development. All the participants in the hotel group are very active, making
substantial progress on the development of various hotel industry vocabularies and mes-
sages. The group meets face to face at least three or four times per year in addition to
numerous conference calls between meetings.

The OTA specification is a message-oriented protocol that specifies requests and
responses for various industry-specific actions. The major features in the hotel portion of
the OTA specification include the ability to create, modify, and cancel reservations as
well as create and pass rate information, detailed and complete rate structures, booking
rules, price availability and applicability, room and property availability, and requests for
generic availability within a certain geographic area across multiple properties. The latest
OTA version, v4.0, is an integration of HITIS into OTA. The end result will be that con-
tinued development will be under the watch of OTA, rather than HITIS. Of the two orga-
nizations, OTA is most likely to exist in the long run.

There is continual discussion within the group about how OTA can interact with other
standards efforts and identify how other standards groups and industries are defining
similar vocabularies. However, it seems that getting the various industry groups within
OTA to communicate and converge their standards efforts is not easy either. One of the
big issues within OTA is getting internal agreement—never mind competing standards—
on vocabulary and processes among the air, hotel, car, and related industries. To solve
this issue, there are big efforts within OTA to normalize what each of the groups are pro-
ducing and to ensure a level of cohesiveness throughout all the specifications. Currently,
OTA has not integrated with other standards efforts, but as internal agreement occurs,
there is no doubt that the organization will look to other standards groups to integrate,
converge, and/or leverage its efforts.

On other fronts, however, OTA is working well with other standards groups. The organi-
zation is looking to tie itself more closely with the ebXML specification as a means for
transporting industry messages in a standard manner. The infrastructure committee
within the OTA is planning to use ebXML as a transport layer, wrapping its OTA mes-
sages within MIME wrappers as a means for transporting, routing, and packaging indus-
try messages. In the hotel industry, the prevalent vocabularies have been defined by two
organizations in particular: the Hotel Electronic Distribution Network Association
(HEDNA) and the Hospitality Industry Technology Integration Standards (HITIS).

Applied XML in Vertical Industry

CHAPTER 22
973

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 973

The HITIS standards leveraged previous efforts of the Windows Hospitality Interface
Specifications (WHIS) for its base documents in the development of its standards. The
OTA specifications, originally based in part on the WHIS and HEDNA development,
have recently merged with HITIS efforts, thus combining many of the best efforts of
previous generations.

The latest OTA specification, known as OTA 2001A, is actually divided into two parts:
the OTA Infrastructure and the Profile Specification. The OTA Infrastructure section
defines how OTA documents are exchanged in a secure and reliable manner between
trading partners. The OTA 2001A Infrastructure specifies a request/response mechanism
for transmitting messages and can support both synchronous and asynchronous messag-
ing capability. The OTA Infrastructure makes use of the ebXML header and a modified
version of the manifest part of that header document for transport, routing, and packag-
ing. In addition, the OTA Infrastructure supports four basic message types: Create, Read,
Update, and Delete. Each of these operations are applied to the profile that is described
later in this section. Although Create, Read, and Delete operations apply to a document
as a whole, the Update method utilizes XPath to enable partial record updating. In addi-
tion to these, the OTA 2001A Infrastructure has well-defined security features, including
authentication, encryption, confidentiality, message integrity, and a separated control
mechanism for altering these security features. The OTA Infrastructure specification only
allows for a connection to one trading partner per message, but it supports multiple pay-
loads that may include different operations or batch operations in one message.

The Profile Specification is the content that is transmitted in the OTA Infrastructure and
specifies a common customer “profile” that individual travelers and organizations can fill
out once and exchange among various travel services over the Internet. A profile is a
standard vocabulary that communicates data about the identity of a person or company as
well as the person’s or company’s contacts and various “affiliations,” including loyalty
programs, forms of payment, travel documents, and detailed travel preferences. Profiles
allow users to define collections of travel preferences in terms of specific travel plans and
experiences, which can also include preferences for various air, hotel, car, rail, and other
travel services. Preferences can be simply defined or contain more complex condition-
based choices and dependencies. The profile not only identifies an individual or company
but also affiliated persons, such as family members, companions, or business colleagues,
as well as affiliated agencies, such as travel agencies, travel clubs, or employers. Profiles
are identified by a globally unique identifier, comprised of an identifying string in com-
bination with a URL that specifies the location of the identifier.

Due to the sensitivity of travel information, the OTA 2001A specification contains
strict privacy requirements that have also been detailed in previous versions of the

Applied XML

PART III
974

26 0672323419 CH22 3/15/04 11:26 AM Page 974

specification. These privacy preferences allow customers and companies to indicate the
data that can be shared with other parties. Various attributes specified with this privacy
information indicate whether the data may be shared for the synchronization of system
information, such as keeping all copies of the profile on remote sites identical with the
original, shared for marketing purposes, or not shared at all.

Prior to any exchange of information, the parties engage in a conversation to determine
the capabilities of each other’s systems and their support for different transport protocols,
security, and required fields. This is accomplished using nonversioned discovery mes-
sages. To deal with the situation of identifying trading partners, the OTA 2001A specifi-
cation supports a simple trading partner model, or exclusive trading partner agreement,
that involves linking one requestor to one supplier. Although OTA supports the dynamic
discovery of trading partners and their capabilities, there is currently no capability to
determine whether a proper contract exists or to verify the validity of the trading partner;
therefore, the feature remains unsupported. The issue of dynamic partner discovery will
no doubt be addressed in future specification releases or in conjunction with other
standards efforts.

The Open Travel Alliance is one of the more successful and notable XML-based vertical
industry standards currently in existence. Part of its positive publicity is due to the focus
of the standard and its acceptance of existing efforts that have attempted to produce spec-
ifications relevant to the travel industries. In particular, it has gained the support of other
travel and hospitality industry groups such as the Hotel Electronic Distribution Network
Association (HEDNA) and the American Hotel & Motel Association (AH&MA), devel-
opers of the Hospitality Industry Technology Integration Standards (HITIS). This support
has allowed OTA to excel in many capacities as far as standards development and adop-
tion. OTA has recruited some of the most notable travel industry organizations, ranging
from businesses such as United and Marriott, to industry associations such as AH&MA
and HEDNA.

Their recent merger of efforts with HITIS (read the HITIS specification, available on the
OTA Web site) continues to bolster its credibility within the industry and possibility for
widespread adoption success. The true measure of success will come when the major
Global Distribution Systems such as Sabre and Worldspan choose to use OTA as their
primary means of communication instead of the more arcane ResTeletype (a 64-character
code system) and UN/EDIFACT (an EDI-based protocol) systems. Some of the major
GDS providers are part of the OTA effort, which seems to bode well for their future
success. A sample OTA XML file excerpt can be found in Listing 22.8.

Applied XML in Vertical Industry

CHAPTER 22
975

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 975

LISTING 22.8 Sample OTA XML File Excerpt

<Profile>
<Customer>
<PersonName NameType=”Default”>
<NameTitle>Mr.</NameTitle>
<GivenName>George</GivenName>
<MiddleName>A.</MiddleName>
<SurName>Smith</SurName>

</PersonName>
<TelephoneInfo PhoneTech=”Voice” PhoneUse=”Work”>
<Telephone>
<AreaCityCode>253</AreaCityCode>
<PhoneNumber>813-8698</PhoneNumber>

</Telephone>
</TelephoneInfo>
<PaymentForm>
...
</PaymentForm>
<Address>
<StreetNmbr POBox=”4321-01”>1200 Yakima St</StreetNmbr>
<BldgRoom>Suite 800</BldgRoom>
<CityName>Seattle</CityName>
<StateProv PostalCode=”98108”>WA</StateProv>
<CountryName>USA</CountryName>

</Address>
<RelatedTraveler Relation=”Child”>
<PersonName>
<GivenName>Devin</GivenName>
<MiddleName>R.</MiddleName>
<SurName>Smith</SurName>

</PersonName>
</RelatedTraveler>
<RelatedTraveler Relation=”Child”>
<PersonName>
<GivenName>Amy</GivenName>
<MiddleName>E.</MiddleName>
<SurName>Smith</SurName>

</PersonName>
</RelatedTraveler>
<RelatedTraveler Relation=”Child”>
<PersonName>
<GivenName>Alfred</GivenName>
<MiddleName>E.</MiddleName>
<SurName>Newman</SurName>

</PersonName>
</RelatedTraveler>

</Customer>
</Profile>

Applied XML

PART III
976

26 0672323419 CH22 3/15/04 11:26 AM Page 976

Manufacturing
Businesses of all shapes and sizes have been impacted by the constant need to
delivery more products or services at lower costs and greater margins. Businesses
face pressures of time, competition, lack of resources, and, of course, greater revenue.
Although these are the typical, everyday problems that businesses will deal with as long
as there is a market, XML technologies and standards have attempted to solve some of
these problems.

Once the general business issues are addressed, issues more specific to an industry or
particular business remain. For example, how do utility companies communicate their
billing needs to their customers? How do construction companies share planning and
material requirements documents? There are also applications for XML in the manufac-
turing industries to provide functionality for data interchange between ordering systems
and shop-floor scheduling systems, enabling machine and equipment communication,
providing standardized bills of material as well as pack-and-ship systems, and simplify-
ing software configuration.

Because Chapter 20, “Implementing XML in E-Business,” deals with e-business stan-
dards, how does this section overlap with what we have dedicated an entire chapter to?
The answer is simple: Manufacturing involves more than just supply-chain operations.
E-Business specifications just cover the business part of manufacturing; we have to deal
with the actual manufacturing process itself. Even before there was a formal supply
chain to speak of, there were processes that resulted in the fabrication of products from
raw materials. As the factory became an automated workplace, the need for paper and
processes surely followed. It’s these automation, assembly, factory, and associated
processes that are moving from paper to electronic formats, and XML is empowering
this revolution.

However, despite this focus on manufacturing, there aren’t many shop floor and factory
XML standards that have garnered widespread attention and adoption, so we’ll focus
on what it takes to get products from point A to point B (otherwise known as shipping
and logistics).

Applied XML in Vertical Industry

CHAPTER 22
977

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

Note

Find out more by visiting theOTA Web site at http://www.opentravel.org/.

26 0672323419 CH22 3/15/04 11:26 AM Page 977

Shipping and Logistics
As mentioned, many of the issues in producing product have to do with getting the man-
ufactured product from one location to another. In many cases, we are talking about ship-
ping, but more generally these activities are called logistics. Transporting goods in many
ways is a horizontal industry, because it crosses so many industry boundaries. After all,
products as diverse as running shoes, waterbeds, and automobiles all need to be trans-
ported. However, transportation and logistics are usually considered vertical industries
because they have very domain-specific vocabularies and business processes.

The goal of shipping and logistics standards is to provide a common base for communi-
cating shipping instructions, bills of lading, packaging, routing, and related logistic infor-
mation. It would be unreasonable to assume that every industry that touches logistics
should create identical vocabularies, so many logistics-focused vendors have come
together to create standards that can be shared with other industry and standards organi-
zations—and XML is the language of choice for enabling these possibilities.

TranXML
Originally formed as part of the transportation giant Union Pacific, Transentric branched
off on its own in mid-2000 as an organization focused on solving the technological prob-
lems faced in the transportation, shipping, and logistics industries. Leveraging its 20
years of experience in developing semantic repositories for logistics and transportation
needs, Transentric has developed an open, cross-vertical specification called TranXML
for standardizing the way that transportation information is sent between customers and
freight carriers.

In many ways, one can look at transportation as a “horizontal industry” that is applicable
to multiple vertical industries. Industries as diverse as petroleum, automotive, computer
manufacturing, textiles, and agriculture all rely on transportation as the means to get their
products to market. Therefore, they have usually created vocabularies to express the vari-
ous needs in describing transportation, shipping, and logistics information. Much of this
information is the same, regardless of the industry being described. As such, transporta-
tion companies such as Transentric have sought to bring some order to the chaos by pro-
viding a single cross-industry definition of transportation needs. In standardizing this
format, TranXML hopes to provide the benefit of cost savings and efficiency to the
“small mom and pop” organizations. Also, TranXML serves an important role in
enabling internal communication, interapplication integration, and communication with
the systems of other trading partners.

Rather than creating a new semantic representation of this information, Transentric
sought to leverage its years of experience in EDI and present a format that is easily

Applied XML

PART III
978

26 0672323419 CH22 3/15/04 11:26 AM Page 978

exchanged with this format. EDI use is widespread in the transportation industry, and
requiring a new format that uproots the existing technology would cause unnecessary
difficulty in gaining acceptance and adoption. The TranXML specification therefore
mirrors many of the existing X12 EDI specifications and uses an architecture that
accepts EDI messages at one end, converts to an “XEDI” specification by means of an
XML Solut-ions XML transformation tool, and results in a native XML format well
suited to EDI integration. This EDI approach uses qualifiers as attributes, thus keeping
compliance checking similar to X12. However, the EDI “conversion” only gets one
halfway there, since it represents a simple transformation. The real added value of the
TranXML group is that it uses its domain knowledge and expertise to transform these
EDI-based elements into native XML code that differs based on interpretation of X12
standards. For example, equipment, name, and invoice structures are particular to
individual industries and organizations.

In April 2001, Transentric released eight TranXML schemas in support of its standards
effort. These support applications such as load tendering, delivery, freight billing, recon-
ciliation, scheduling/forecasting, and equipment ordering. Specifically, the schemas cor-
respond to rail bills of lading, car location messaging, motor carrier bills of lading and
load tender, shipment status and weight, terminal operations and intermodal ramp activ-
ity, and a dictionary for transportation terms and attributes. The next release of additional
schemas will include rail waybills, car handling, shipper car orders, switch lists, advance
shipping notices, and warehouse stock, shipping, and inventory.

One of the benefits of a single cross-industry transportation description such as
TranXML is that it provides an easy and inexpensive way to implement new trading part-
ner relationships, because it leverages EDI and provides a neutral format that enables
both carrier and shipper legacy systems to exchange data. Because the format requires
some of the capabilities of EDI, it has taken advantage of XML Schema, which provides
more advanced grouping, data typing, attribute capabilities, and inheritance capabilities.
Developed as an open standard, TranXML is designed to be vendor neutral, and licenses
will be available free of charge.

Because the interest in transportation vocabularies, especially track and tracing function-
ality, is widespread among many industries, Transentric sought to form a neutral, inde-
pendent organization for the promotion and continued development of the TranXML
format. The mission of TranXML.org is to provide a neutral, cross-industry forum for the
development of collaborative logistics supply-chain XML vocabularies and functions.

The collaborative effort will encourage participation by carriers, shippers, and third par-
ties. TranXML.org also meets its goals by forming relationships with other standards

Applied XML in Vertical Industry

CHAPTER 22
979

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 979

organizations, such as the Chemical Industry Data Exchange (CIDX), RosettaNet, and
the Joint Core Components group of ASC X12 and UN/EDIFACT. The important consid-
eration is that a critical mass of carrier adoption (rail, ocean, motor, and air) is needed.

The group is working with other industries that share synergies due to shared transporta-
tion needs. For example, ChemXML is heavily drawn from X12 and EDIFACT directo-
ries and would also benefit from a TranXML relationship. TranXML has adopted the
ebXML framework for transport, routing, packing, and security. It would like to work
closely with the JCC but have some concerns about interest and overlap. Despite these
concerns, TranXML is working to get involved with the JCC repository and ensure
proper expertise in this domain area. RosettaNet also provides an opportunity to gain
from a TranXML relationship, because its schemas provide only the basics for trans-
portation and logistics need.

TranXML is a focused, detailed effort that is sure to gain adoption and attention by the
industry as soon as the various vertical industry specification efforts realize that trans-
portation, logistics, and shipping are not their core competencies. It is hoped that the
TranXML.org group can promote its efforts and continue development to the extent that
other specification efforts leverage its work. After all, it makes no sense to reinvent the
wheel in transportation—that’s where it was invented in the first place.

Applied XML

PART III
980

Note

For more information about TranXML, visit the Transentric Web site at http://
www.transentric.com/products/commerce/tranxml.asp.

Architecture and Construction
The folks who are responsible for the creation of buildings, namely architects and the
construction industry, are remarkably high tech for a seemingly low-tech industry.
Building plans, layouts, and materials must be documented and stored. Daily operations,
schedules, and dependencies must be tracked. The hundreds, if not thousands, of workers
need to be coordinated and efficiently used. If anything, construction and architecture
have just as much need for up-to-date information logistics as do traffic controllers and
financial traders.

Architecture, Engineering, and Construction
XML (aecXML)
Planning, engineering, and constructing buildings is a very labor- and paper-intensive
process. The amount of paperwork needed to build anything, from a simple single-family

26 0672323419 CH22 3/15/04 11:26 AM Page 980

residence to the most complicated of structures, is tremendous. Architecture, engineering,
and construction (AEC) data sets are usually quite large and typically involve many types
of unstructured, interrelated data that is created and used by many types of users and
software applications. At any time in a project cycle, users such as the owner or operator
of the subject facility, architects, designers, engineers, project managers, contractors,
estimators, consultants, suppliers, product manufacturers, and government regulatory
agencies may utilize the information for different reasons. Many of these participants are
small to medium-sized companies and are only involved in small roles in the project for
short periods of time, commonly working on multiple projects simultaneously. It is no
surprise, then, that so many different systems of varying qualities are being used within
the industry. It’s important to solve this problem, because the industry generates hun-
dreds of thousands of transactions worldwide and has annual expenditures in the trillions
of dollars.

However, in every aspect of the building creation and operation process, the Internet and
XML are making significant inroads. This means that proposals, design, estimating,
scheduling, construction, ordering, and purchasing are being automated and simplified by
way of XML-based standards, such as those enabled by International Alliance for
Interoperability’s (IAI) aecXML. The IAI-adopted aecXML provides a means for com-
municating information between participants involved in designing, constructing, and
operating buildings, plants, infrastructures, and facilities. Applications, organizations, and
individuals using the aecXML schema can coordinate and synchronize related project
information among suppliers and purchasers of equipment, materials, supplies, parts, and
services based on that technical information.

The initiative began in August 1999 as an independent effort by Bentley Systems and
was soon moved to the administrative domain of the industry consortium International
Alliance for Interoperability. As of October 2001, there are seven working groups, and
over 600 interested participants are involved in the development of aecXML. The main
principle behind the creation of the format is that project information can be entered
once and reused where necessary, across organizational, geographical, and technological
boundaries. In today’s project-management processes, information is commonly reen-
tered many times by many people, due to differences in the way that data is stored and
represented, especially as projects pass from phase to phase and as new participants
become involved in the project. As paper-based reports, specifications, and product cata-
logs are replaced by their electronic equivalents, searches for product information, speci-
fications, and pricing and availability will be conducted, taking advantage of the Internet.
This means that regulatory rules, requirements and guidelines, project submissions, and
the review and approval processes will be automated similar to how other processes have
been enabled using XML.

Applied XML in Vertical Industry

CHAPTER 22
981

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 981

aecXML is an XML-based vocabulary used to represent and communicate information
across the AEC industries. This information covers resources such as projects, docu-
ments, materials, parts, organizations, professionals, and activities such as proposals,
design, estimating, scheduling, and construction. Some examples of this information
include the following:

• Documents such as Request for Proposal (RFP), Request for Quotation (RFQ),
Request for Information (RFI), drawings, specifications, addenda, bulletins, change
orders, contracts, building codes, and purchase orders

• Building components such as catalog items, custom manufactured items, assem-
blies, and materials

• Projects such as design, construction, decommissioning, operations and mainte-
nance, and facilities management

• Professional services and resources such as engineers, architects, contractors, sup-
pliers, and specialties

• Organizations such as standards bodies and government agencies

• Software such as computer-aided design (CAD), estimating, project management,
scheduling, and document management

However, aecXML is not intended to be a native file format because many of the
applications used to support these needs have their own valuable file formats. Rather,
aecXML will simply be a file-exchange mechanism using XML as its strength.
The aecXML group envisions a utility within a software program that provides the
option “Save as aecXML.” This utility would export necessary information in the
aecXML schema.

One of the key aspects of the format is the aecXML Framework, which includes a set of
XML schemas to describe information specific to the information exchanges between par-
ticipants involved in designing, constructing, and operating buildings, plants, infrastruc-
tures, and facilities. The aecXML Framework provides the AEC industry with common
business interfaces and defines both the data to be exchanged among AEC participants
and the processes ruling the exchange of that data. The Framework is composed of several
components, including Common Object Schemas (COS), Domain Specific Schemas
(DSS), Business Process Schemas (BPS), and the Implementation Framework (IF).

The COS serves as a component library that’s composed of many reusable schema
objects that are common to multiple AEC business domains. These objects, such as
global elements, global attributes, complex types, and simple types are reused in different
places of AEC business information exchange. There are two types of common objects:

Applied XML

PART III
982

26 0672323419 CH22 3/15/04 11:26 AM Page 982

non-AEC-specific and AEC-specific objects. AEC-specific objects are objects that have
content specific to the AEC industry, whereas non-AEC-specific objects are objects can
apply to any industry. Examples of AEC-specific objects are Project, Contractor, and
BuildingComponent, whereas examples of non-AEC-specific objects are Name, Email,
Address, and Person. The aecXML format defines some of these non-AEC-specific
objects but plans to leverage objects from other formats, such as xCBL, as they become
available. AEC-specific objects are derived from many sources, including IAI’s Industry
Foundation Classes (IFC), which are object models that allow for the exchange of
dynamic information among platforms and applications serving the AEC community.

The aecXML Domain Specific Schemas (DSS) are sets of schemas built on the aecXML
COS to describe static AEC information, whereas dynamic information such as business
processes are defined in the BPS. These can be either an individual piece of business
information or a natural grouping of AEC business components. Examples of DSS
include objects such as ChangeOrder, which can be used to define the document flow of
change order information within the BPS as RequestForChangeOrder,
ApprovedChangeOrder, and CompletedChangeOrder. The DSS are operated through
domains such as Project Management, Design, Schedule, and Plant. Each of these
domains owns one or more schema namespaces that contain multiple schemas.

As stated in the aecXML specification, “the COS define the letters of the alphabet, the
DSS define nouns, and the BPS define verbs.” The BPS encapsulate the exchange of
business data between AEC participants during the project life cycle. The aecXML BPS
are sets of schemas that describe AEC industry-specific business processes, including the
query of information, the business transaction, and the communication messages. The
BPS describe detailed interactions and their respective activities between AEC partici-
pants, identify which data needs to be present to ensure requirements of both parties are
being met, and choreograph AEC business documents with process interfaces. Examples
of BPS include Send an Invoice, Submit a Purchase Order, Request for Information, and
Request for Change Order.

The Implementation Framework provides a messaging framework for the exchange of
aecXML messages. The IF supports the use of multiple different messaging framework
standards such as ebXML, RosettaNet, and BizTalk. As a specification, aecXML is trans-
port neutral and is not developing its own IF, rather relying on the preceding methods for
transporting aecXML documents.

The aecXML initiative comprises constituents from industry, government, and research
communities as well as end users. Since its inception, more than 600 organizations
have expressed interest in this initiative on six continents. These organizations include
architects, engineers, contractors, owner/operators, estimators, consultants, materials
suppliers, and building product manufacturers.

Applied XML in Vertical Industry

CHAPTER 22
983

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 983

Scientific and Engineering
In the early 1990s, the Internet was being used, not by mainly commercial entities
but by scientific and educational establishments. The foundation technologies for the
Web—the Hypertext Transfer Protocol (HTTP) and the Hypertext Markup Language
(HTML)—were created not for the sake of online e-commerce but to exchange research
papers in the field of physics. Therefore, it makes complete sense that XML would be a
hotbed of activity by those in various scientific, mathematic, and engineering fields.
This section touches on two standards that have leveraged XML as their means of
document exchange.

Biotech
The rapid increase in the use and exchange of data in the biological fields has demanded
a better way for representing, storing, and exchanging this information. The use of infor-
mation in biology has spawned its own field of study, bioinformatics, and the recent
explosion in genetics research has likewise required an increasing amount of attention in
standardizing information storage and exchange. To this end, XML has provided the
technology to meet many of these needs.

Bioinformatic Sequence Markup Language (BSML)
Just as in every industry that has large data requirements, the bioinformatics industry has
the challenge of integrating large quantities of heterogeneous information gathered from
different sources and distributed locally and over the Internet. A bioinformatic sequence
is the visual encoding of strings of nucleotides, the chemical makeup of our DNA.
Individual nucleotides, such as adenosine, cytosine, guanine, taurine, and uracil, are
encoded as “acgtu,” respectively. A sequence is an arbitrarily long string of these charac-
ters that corresponds to a particular encoding of genetic material. As researchers expand
their knowledge of a particular organism’s genetic structure, the exchange of these
strings of genetic encoding becomes increasingly more important. As is the case almost
everywhere that data is present, XML can facilitate the discovery process by enabling the
researchers to integrate and annotate these sequences. XML also enables the integration

Applied XML

PART III
984

Note

To find out more about aecXML, visit the aecXML Web site at http://ww.
aecxml.org.

26 0672323419 CH22 3/15/04 11:26 AM Page 984

of this “genomic” information with related, or “extragenomic,” information such as liter-
ature, images, and documents that support the particular genetic information being
researched.

Developed by the National Human Genome Research Institute (NHGRI) and promoted
by LabBook, Inc., the Bioinformatic Sequence Markup Language (BSML) is a proposed
XML standard for the communication of bioinformatics data. The BSML standard is
divided into two logical parts: Definitions and Display. The Definitions section encodes
the bioinformatic data, including sequences, sets, sequence features, analytical outputs,
relationships, and annotations. The optional Display section encodes information for
graphic representation of the bioinformatic data. Multiple users can simultaneously
access the same data and examine different links, files, and sequence views without hav-
ing to make alterations to source documents. In addition, BSML allows users to include
multiple annotations such as documents, tables, charts, and sequence features and graphs
aligned to sequence maps. Although the specification of BSML doesn’t require any spe-
cific browser or graphical interpretation technology, LabBook provides for a viewer that
is tailored around the BSML application. In addition, LabBook develops and provides
freely available tools that help create and manipulate BSML files.

The BSML specification’s main goal is to represent genetic sequences and their graphic
display properties. In particular, the specification describes the features of genetic
sequences, represents relationships among sequences and their features, defines graphic
objects that represent sequence features and relationships, provides representation of the
relationships between sequences and source documents (such as sequence and genetic
marker databases), and defines methods for storing and transmitting encoded sequence
and graphic information. Listing 22.9 shows a sample BSML XML instance.

LISTING 22.9 Sample BSML Instance

<!DOCTYPE Bsml SYSTEM “bsml.dtd”>
<Bsml>
<Definitions>
<Sequences>
<Sequence id=”SEQ1” title=”ECRPOBC” seq-type=”dna” units=”bp”

length=”12337” shape=”linear” strands=”2”>
</Sequence>
</Sequences>
</Definitions>
<Display>
<Page>
<View id=”VEW1” seqref=”SEQ1”>
</View>
</Page>
</Display>
</Bsml>

Applied XML in Vertical Industry

CHAPTER 22
985

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 985

Even though LabBook has wrapped commercial products around the standard, BSML
remains in the public domain and is supported by the LabBook efforts.

Applied XML

PART III
986

Note

To find out more about BSML, visit LabBook’s BSML Web site at http://www.
labbook.com/products/xmlbsml.asp.

Chemistry
In the same vein as biological information, chemistry and materials information also
needs to be exchanged. This is especially vital in the various pharmaceutical, materials
processing, plastics, petroleum, and other industries that rely on accurate chemical infor-
mation to perform their tasks adequately. However, like any other industry, the processes
have been formerly dominated by paper rather than electronic interchange. Various
chemistry industry specifications, such as the Chemical Markup Language covered next,
hope to change this by providing a deep level of specification for chemical properties as
well as the required vocabularies for defining chemical industry interchange.

Chemical Markup Language
The foundations of the Chemical Markup Language (CML, or more officially known as
XML-CML) can be traced all the way back to the original days of HTML, when the
Internet was frequented mainly by academics rather than individuals and corporations.
The original concept was to provide a platform-neutral means of exchanging information
regarding chemical compositions. Originally formatted as an SGML DTD, CML began
pursuing the XML direction soon after the language’s development in 1996.
Subsequently, CML became one of the first acknowledged domain-specific DTDs pub-
lished for XML.

CML itself doesn’t cover the entire spectrum of possibilities in the chemical industry.
Rather, it focuses on representing molecules, which the CML Web site defines as “dis-
crete entities representable by a formula and usually a connection table.” CML further
specifies a hierarchy for compound molecules, such as clathrates and macromolecules,
reactions, and macromolecular structures/sequences. In addition, CML “has no specific
support for physicochemical concepts but can support labeled numeric data types of sev-
eral sorts, which can cover a wide range of requirements. It allows quantities and proper-
ties to be specifically attached to molecules, atoms, or bonds.”

In many respects, CML forms a common basis for most chemical-domain XML vocabu-
laries in much the same way that MathML forms the basis for many mathematical and

26 0672323419 CH22 3/15/04 11:26 AM Page 986

scientific-domain XML vocabularies. CML also makes use of and leverages a number of
other XML specifications, including Resource Description Framework (RDF), XHTML,
SVG, PlotML, MathML, Dublin Core, and XML Schema, as its schema base.

CML supports spectra and other instrumental output, crystallography, organic and inor-
ganic molecules, physicochemical quantities (including units), MO calculations, macro-
molecules (such as sequence protein and ligand), molecular hyperglossaries (including
text and molecules), and hyperlinks. CML accomplishes this by specifying a core set of
elements, such as molecule (to describe a connected set of atoms), bond, which describes
a link between atoms within a molecule, atomArray and bondArray, which provide con-
tainers for atoms and bonds, and electron, which provides details of electrons in atoms,
bonds, and molecules. Also specified are macromolecular, reaction, crystallography, and
formula elements to describe the interaction of these various core elements.
Macromolecular elements include sequence, to describe a macromolecular sequence, and
feature, which describes features in a sequence. Reaction elements are specified by
means of reaction, which describes a reaction that contains molecules and links
between them. Crystallography and formulas are described by crystal and formula,
which describe crystallographic unit cell and symmetry in fractional coordinates for
atoms and provide a container for the representation of arbitrary chemical formulas using
a text string with a convention attribute.

LISTING 22.10 Sample CML Document

<molecule convention=”MDLMol” id=”adrenalin” title=”EPINEPHRINE”>
<date day=”22” month=”11” year=”1995”>
</date>
<atomArray>
<atom id=”a1”>
<string builtin=”elementType”>C</string>
<float builtin=”x2”>-0.2969</float>
<float builtin=”y2”>0.8979</float>

</atom>
<atom id=”a2”>
<string builtin=”elementType”>C</string>
<float builtin=”x2”>-0.2969</float>
<float builtin=”y2”>-0.6121</float>

</atom>
<atom id=”a14”>
<string builtin=”elementType”>H</string>
<float builtin=”x2”>2.144</float>
<float builtin=”y2”>2.8844</float>

</atom>
</atomArray>
<bondArray>
<bond id=”b1”>

Applied XML in Vertical Industry

CHAPTER 22
987

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 987

LISTING 22.10 continued

<string builtin=”atomRef”>a1</string>
<string builtin=”atomRef”>a2</string>
<string builtin=”order”>1</string>

</bond>
<bond id=”b2”>
<string builtin=”atomRef”>a1</string>
<string builtin=”atomRef”>a3</string>
<string builtin=”order”>2</string>

</bond>
<bond id=”b14”>
<string builtin=”atomRef”>a4</string
<string builtin=”atomRef”>a14</string>
<string builtin=”order”>1</string>
<string builtin=”stereo”>H</string>

</bond>
</bondArray>

</molecule>
<reaction title=”Diels-Alder cycloaddition”

id=”simple_rxn_1” convention=”stepwise”> <string title=”description”>
Simple example of a A + B -> C reaction. See source for further information.

</string>
<float title=”yield” units=”%”>88</float>
<string title=”notes”>taken from Vollhardt and Schore</string>
<list title=”reactionStep” id=”simple_s_1”>
<string title=”description”>cycloaddition</string>
<float title=”yield” convention=”%”>88</float>
<string title=”notes”>one step</string>
<link title=”reactant” href=”simple_mol_reactant1” id=”simple_lk_1”/>
<link title=”reactant” href=”simple_mol_reactant2” id=”simple_lk_2”/>
<link title=”reagent” id=”simple_lk_3”>
<integer title=”index”>1</integer>
<string title=”solvent”>Acetonitrile</string>
<string title=”temperature” convention=”degC”>100</string>
<string title=”duration” convention=”hours”>3</string>
<string title=”notes”>reflux</string>
</link>
<link title=”reagent” id=”simple_lk_4”>
<integer title=”index”>2</integer>
<string title=”notes”>workup</string>
</link>
<link title=”product” href=”simple_mol_product” id=”simple_lk_5”/>
<!-- also catalyst, intermediate, transition state as needed -->
</list>
</reaction>

Applied XML

PART III
988

26 0672323419 CH22 3/15/04 11:26 AM Page 988

Print, Media, and Entertainment
The pervasiveness, applicability, and extensibility of XML has even impacted the
fairly innocuous arena of general entertainment. Playing games, watching movies, and
general entertainment is made even more enjoyable and intelligently enabled by XML
technology.

NewsML
The news industry is dominated by one thing: content. In fact, there really is no separa-
tion of news from content, and as such the issues around content management are really
the same as the issues around the creation and distribution of news. In the past, editorial
environments would produce content to support various news products, which would
require the content to be tailored to each format. Where there is data, especially docu-
ment and structured data such what’s present in the news industry, there is XML. In fact,
there’s a plethora of news- and content-related specifications that are squarely targeted at
solving the needs of this space. In particular, the NewsML format, created initially by
Reuters and supported by the International Press Telecommunications Council (IPTC), is
a specification created for the definition, creation, exchange, and packaging of news arti-
cles and related content. NewsML further compliments and extends another IPTC stan-
dards effort, the News Industry Text Format (NITF), which specifies the content of news
articles. Once you have the kind of rich format that NewsML provides, you can build
news products for different user groups without creating lots of the reengineering needed
for mixing different blends of news. Typical uses of NewsML include uses in and among
editorial systems, between news agencies and their customers, between publishers and
news aggregators, and between news service providers and end users.

The main functionality of NewsML falls along the following areas: providing neutrality
of news format and media type, easier development of news items, collections of news
items into larger news “stories,” named relationships between news items, divisions of
news stories into structures consisting of parts and named relationships between parts,
alternative representations of those parts, explicit inclusion, inclusion by reference and
exclusion of parts and alternatives, and attachment of metadata from standard and non-
standard schemes. In addition, NewsML provides for strong versioning support, support
for multiple display methods, and adaptation to delivery environments.

Applied XML in Vertical Industry

CHAPTER 22
989

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

Note

To find out more about CML, visit http://www.xml-cml.org/.

26 0672323419 CH22 3/15/04 11:26 AM Page 989

As such, NewsML can be considered to be a “container” for news items. As the
NewsML Web site states, “NewsML makes no assumption about the media type, format,
or encoding of news. NewsML provides a structure within which news objects, of what-
ever type, relate to each other. NewsML can equally represent text, video, audio, graph-
ics, and photos. NewsML takes the view that any medium can be the main part of a news
item and that objects of all other types can fulfill secondary, tertiary, and other roles in
respect of the main part. Hence, NewsML allows for the representation of simple textual
stories, textual stories with primary and secondary photos, the evening TV news—with
embedded individual reports, and so on.” An architecture diagram of the NewsML format
is shown in Figure 22.7.

Applied XML

PART III
990

NewsEnvelope

Catalog

TopicSet

NewsML

NewsItem

TransmissionId

SentFrom

SentTo

DateAndTime

NewsService

Identification

Catalog

Continent

NewsManagement

NewsComponent

ContentItem

NewsService

Update

NewsProduct

Comment

Catalog

MediaType

Format

MimeType

Characteristcs

Notation

DataContent

Encoding

Party

Comment

Party

Comment

InsertBefore

InsertAfter

Replace

Encoding

DataContent

SizeInBytes

PublicIdentifier

RevisionId

NewsItemId

DateId

ProviderId

NewsIdentifier

NameLabel

DateLabel

Label

Property

LabelType

LabelText

Delete

Priority

FIGURE 22.7
NewsML
architecture.

Because news stories develop over time, NewsML supports versioning and allows for the
development of textual stories using takes. In addition, NewsML supports the attachment
of components of news stories that can be available later to existing news story compo-
nents. Another major feature of NewsML is the collection of news elements into a
greater “story” that contains a variety of components that have the same “journalistic

26 0672323419 CH22 3/15/04 11:26 AM Page 990

intent.” To support this capability, NewsML allows the construction of relationships
between news items and collections of news items, such as “see also,” “related news,”
and “for more detail,” so that these entities can exist in a web of such named relation-
ships. The NewsML format also supports the authentication and signature of metadata
and news item content because the value of news content, and its associated metadata, is
highly dependent on its reliability.

The architecture of a NewsML document consists of components and named relation-
ships between components. Most news items contain a “main” part and some number of
secondary and tertiary parts that complement the main part in various ways. This could
take the form of a textual main part and photos as secondary parts. In addition, news
items themselves can be related to other news items so that a news item can be a compo-
nent of another, and individual component can be represented in different ways so that
users can select which version they wish to use or is most appropriate to their delivery
environment. For example, part of a news item might be available in HTML, RTF, and
PDF versions, with photos available at different resolutions and color depths utilizing the
GIF or JPEG file format. This methodology also allows news items to be transmitted in
print, on the Web, or over wireless delivery protocols because NewsML doesn’t describe
layout semantics. Each part of a news item and the news item as a whole can contain
metadata that describes physical properties of the parts, information about the construc-
tion of the parts, such as author, publisher, and owner, and information about the content,
such as the topic, category, and importance. Although NewsML provides the facility to
describe news items, it doesn’t specify any particular vocabulary for doing so and thus
allows individual organizations to choose their metadata format.

NewsML can add as much information as needed for defining context that individuals
can use to better locate and make use of news items. NewsML also gives users the
opportunity to receive and aggregate news items from different vendors with similar
metadata. Although the packaging features of NewsML are usable internally to produce
what users might see on a Web page, it’s the metadata that allows users to link stories
with their real meanings.

NewsML is a document format and not a messaging protocol, so it can be delivered
using other messaging or content-management messaging schemes such as SOAP, RSS,
and ICE. An example of a NewsML file can be found in Listing 2.11.

LISTING 22.11 Sample NewsML File

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE NewsML PUBLIC “urn:newsml:iptc.org:20001006:NewsMLv1.0:1”

“./DTD/NewsMLv1.0.dtd”>
<?xml-stylesheet type=”text/xsl” href=”./stylesheets/IPTCNewsML.xsl”?>

Applied XML in Vertical Industry

CHAPTER 22
991

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 991

LISTING 22.11 continued

<NewsML>
<Catalog Href=”./catalog/mycatalog.xml”/>
<NewsEnvelope>
<DateAndTime>20001006</DateAndTime>
</NewsEnvelope>
<NewsItem>
<Identification>
<NewsIdentifier>
<ProviderId>iptc.org</ProviderId>
<DateId>20001006</DateId>
<NewsItemId>SportsResultSample</NewsItemId>
<RevisionId PreviousRevision=”0” Update=”N”>1</RevisionId>
<PublicIdentifier>

urn:newsml:iptc.org:20001006:SportsResultSample:1
</PublicIdentifier>

</NewsIdentifier>
</Identification>
<NewsManagement>
<NewsItemType FormalName=”News” Scheme=”NewsItemType”/>
<FirstCreated>20001006</FirstCreated>
<ThisRevisionCreated>20001006</ThisRevisionCreated>
<Status FormalName=”Usable” Scheme=”IptcStatus”/>
</NewsManagement>
<NewsComponent>
<ContentItem>
<DataContent><![CDATA[<FootballResult><Hteam>Arsenal</Hteam>

<Hscore>1</Hscore><Ateam>Chelsea</Ateam><Ascore>2</Ascore></FootballResult>]]>
</DataContent>

</ContentItem>
</NewsComponent>
</NewsItem>
</NewsML>

Applied XML

PART III
992

Note

To find out more about NewsML, visit the Web site at http://www.newsml.org/.

A Final Note: XML Standards
Adoption
Of course, with all these specifications, recommendations, standards, and initiatives
being proposed, there is no guarantee that any of them—as well developed, well inten-
tioned, and well positioned as they may be—will be adopted. The primary challenge in

26 0672323419 CH22 3/15/04 11:26 AM Page 992

XML is getting individuals and companies to actually use these formats. After all, these
specifications are just text documents and XML files that represent a recommendation
for the way things should be done in a particular industry or with a particular technology.

Many in various industries claim that these standards are repeating the errors of the past.
In effect, the various groups are reengineering processes and vocabularies that were
attempted with technologies and methodologies that had different or limited levels of
success. Some say that members of the various working groups don’t have enough expe-
rience to define the standards for their industries or the communities in general.
However, there are others that say that standards and specifications have a life of their
own—those that are worthwhile to adopt will be adopted, whereas others will simply fall
by the wayside. The long-term adoption and success of these standards depends entirely
on one thing: their usefulness.

Summary
As you have seen, XML has a very wide and broad application with every possible
industry and market segment. Wherever there is the need for data representation and
exchange, there will be XML. Will it be applicable in every scenario and every use case?
Of course not, but it will definitely find a place to exist in every vertical industry and
horizontal application that is relevant.

One of the things we can learn from such a widespread use and adoption of XML is that
there is nothing specific about XML that restricts its use to a particular need of an indus-
try or market segment. Whereas other data formats such as EDI and SGML may have
been more appropriate for certain uses (EDI was never a good format for representing
the structure of documents, and SGML was never good at representing e-business trans-
actions), XML has no similar setbacks and misgivings. If anything, XML provides the
“DNA” that allows it to be mutated into different solutions by different communities.

In this chapter, you have seen just a sample of what is currently available in the way of
XML standards. In fact, over 450 such vocabularies exist as of October 2001, and these
are only the ones that are publicly announced. For sure, there are thousands of private or
proprietary implementations of XML that further expand the boundaries of what can be
done with the language. It is up to you, the reader of this book, to make the most use of
XML as one can within the confines of your industry. In the process, make use of the
industry specifications, standards, and vocabularies that are within your grasp. By doing
so, you not only meet your needs but help to further establish XML as a viable means for
communicating business-relevant information.

Applied XML in Vertical Industry

CHAPTER 22
993

22

A
PPLIED

X
M

L IN
V

ER
TIC

A
L

IN
D

U
STRY

26 0672323419 CH22 3/15/04 11:26 AM Page 993

26 0672323419 CH22 3/15/04 11:26 AM Page 994

The Semantic Web
PART

IV
IN THIS PART

23 RDF for Information Owners 997

24 The Semantic Web for Information Owners 1039

27 0672323419 Part 4 3/15/04 11:26 AM Page 995

27 0672323419 Part 4 3/15/04 11:26 AM Page 996

IN THIS CHAPTER

• Basics of the Resource Description
Framework 998

• The RDF Family of
Specifications 1001

• The RDF Data Model 1005

• RDF Schema 1028

• Working with the Angle
Brackets 1035

23
C

H
A

PT
ER

RDF for
Information
Owners

28 0672323419 CH23 3/15/04 11:27 AM Page 997

The Resource Description Framework (RDF) gives information owners a way of express-
ing meaning on the Web that machines can understand (and humans will, ultimately,
profit from). This chapter explains how RDF expresses machine-understandable meaning
using its data model; the next chapter, on the Semantic Web, will show some of the good
things that RDF makes happen. So, if you want the business case for RDF applications,
skip ahead to Chapter 24, “The Semantic Web for Information Owners.” If mastery of
RDF syntax and semantics is what you’re after, read on.

RDF is spelled out in a family of W3C specifications. Like many families, though, the
RDF family members are not all quite at the same level of maturity, and not all of them
agree with each other all the time. Therefore, to help you avoid the pitfall of spending a
lot of time on parts of RDF that are either obsolete or immature, we’ll first go through
the specifications, giving extra attention to open issues and resources that will keep your
expertise current.

RDF’s data model gives RDF its power to express machine-understandable meaning, and
that’s what we’ll look at next. Because the RDF data model is a graph, we’ll study just
enough graph theory to deal with that formalism and get through the model. Then, we’ll
go through the data model in detail, showing the RDF graph in both pictorial and XML
syntax, all in ready-reference form. Then we’ll do the same thing for RDF schema, and
you’ll see how RDF schema’s class hierarchy allows the meaning of RDF instances to be
constrained and validated.

Finally, we’ll look at some angle bracket–type issues in handling RDF, such as how to
embed RDF in Web pages, and so on.

Therefore, by the time you finish this chapter, your expertise will extend beyond the
basics of RDF to

• The RDF family of specifications

• Issues with the specs and where to go to resolve them

• The RDF data model (and a little graph theory)

• What RDF schema validates and how it does so

• XML and pictorial RDF syntax

Basics of the Resource Description
Framework
We often hear that XML tags add meaning to documents. And this is true, but it’s mean-
ing that only humans can intuit. For example, given the XML markup

The Semantic Web

PART IV
998

28 0672323419 CH23 3/15/04 11:27 AM Page 998

<person name=”Jane”>
<sells product=”books”/>
</person>

a human might use the intuitive tag names and attribute name/value pairs to infer that
“Jane sells books” (among other things that people may do), but this is a leap of faith
that a machine cannot make. True, the content models in a DTD or schema can enforce
that sells nests within person, but it does not tell us anything about why the nesting
takes place.

RDF for Information Owners

CHAPTER 23
999

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

Note

RDF builds on XML terminology without changing it, so when you see element,
tag, attribute, DTD, and other XML terms in this chapter, they have the same
meanings as in the other chapters of this book.

Similarly, given the preceding markup, an XSLT style sheet could transform it into the
following string:

“Jane sells books”

However, to the computer, this is just a string like many other strings. In the end, the
computer has no power to do anything with the string other than display it. In particular,
it can’t make any logical connection between the string “Jane sells this book” and the
string “My human wants to buy this book” and make the purchase. Such strings have
meaning only to humans.

Tip

Uniform Resource Identifiers (URIs) tend to be quite long and cluttered with
delimiters, slashes, and protocols like HTTP. To cut the clutter and also to make
it easier for the code examples to serve as copy-and-paste templates, all URIs in
this chapter will be represented as a string in square brackets, like this:

[uri]

You’ll see this in Listing 23.1.

What we need is to go beyond the notion of a content model to a “meaning model,”
which is what the RDF data model provides. Listing 23.1 gives us the markup for the

28 0672323419 CH23 3/15/04 11:27 AM Page 999

RDF statement that has the meaning “Jane sells books,” where “Jane” is in RDF’s sub-
ject position, “sells” is in the predicate position, and “books” is in the object position. In
this way, we use markup technology to tell the computer where the meaning is. Note that
“[Jane]” and “[books]” are URIs, and sells is a name in the “[my]” namespace; you’ll
see why later.

LISTING 23.1 A Simple Statement in RDF

<rdf:Description about=”[Jane]” xmlns:my=”[my]”>
<my:sells rdf:resource=”[books]”/>

The idea here is just as simple as when a teacher draws a subject/verb/object diagram on
the chalkboard in grade school, as shown in Figure 23.1. If you want your sentence to
mean anything, you have to put the words in the right order—and you and your listener
have to know what the order is.

The Semantic Web

PART IV
1000

��������

������� ��	�
�����

���� ��� �

���

FIGURE 23.1
Grade school
grammar for a
subject/predicate/
object statement.

What the teacher’s syntax production does for students, in chalk, the RDF data model
does for machines, in bits and bytes. Now let’s look a bit more deeply into the three
words that comprise RDF: resource, description, and framework.

Why resource? A resource is anything that has identity (Jane, for example). How do
resources get identity? Through being identified by Uniform Resource Identifiers (URIs).
Therefore, that which has identity is a resource, and that which is a resource has identity!

If you look back to Listing 23.1, you will see that both the subject and the object of the
RDF statement are resources, because they are identified by URIs.

Not all resources (for example, Jane) are retrievable across a network. A URI can iden-
tify a Web page, of course, but also a printed book, a government agency, a human being,
or an abstract concept.

Why description? A description is really just a container; it is a bucket for one or more
statements. This idea, too, is pretty much straight from the grade school dictionary. If I

28 0672323419 CH23 3/15/04 11:27 AM Page 1000

Why a framework? Natural languages such as English and Esperanto permit speakers to
generate infinite numbers of sentences, to invent new words, and to give new meanings
to old words, all based on a reasonably small set of rules. These rules comprise the
framework of the language. In the same way, RDF sets rules that will enable humans and
machines to make and understand infinite numbers of statements whose subjects and
objects are resources.

The RDF Family of Specifications
Now that you understand the basic idea behind RDF, let’s look at the family of RDF
specifications in detail, noting their differing authority as well as where the interests of
information owners are impacted. When we’re done, you’ll understand the maturity of
the different parts of the RDF specification.

Core Specifications
RDF builds on two companion specifications. The model and syntax specification
defines the triple in which RDF statements are made; the schema specification describes
how to use RDF to build RDF vocabularies (collections of resources that can be used as
predicates—the verbs in RDF statements).

RDF for Information Owners

CHAPTER 23
1001

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

Note

We’ll look at the notion of statements (also known as triples) in detail
in this chapter when we discuss the RDF data model. For now, notice
how many specifications must work together to weave statements into
the Semantic Web: XML, of course, but also RDF, the “vocabularies”
(the actual subjects and objects of sentences, to be defined by the RDF
schema), and the URIs that link the Web pages together. In the next
chapter, you will see that such sentences (or statements) can be general-
ized as the notion of a conversation. We will identify such conversations
as the fundamental value proposition of the Semantic Web.

ask Jane’s friend (or maybe even her computer) for a description of Jane, I expect to get
back a number of statements, one of which might be that “Jane sells books.”

28 0672323419 CH23 3/15/04 11:27 AM Page 1001

Recent Working Drafts and Notes
RDF is a very dynamic set of specifications, in part because of W3C’s working draft/can-
didate recommendation/recommendation publication cycle, which encourages midcourse
corrections based on implementation experience. Indeed, although institutionally W3C
may be likened to a cathedral, in action (at least, in RDF) it may seem that the bazaar
development model prevails, with all manner of goods on show or openly spilling amid a
cacophony of raised voices: logicians, priests, and so on. In the sidebar, you will see the
places to go to keep on top of RDF as it evolves.

Now, why are all these specifications of anything other than academic interest? In a
word, interoperability.

RDF is not about my semantic site, my semantic department, or even my semantic enter-
prise. It is about the Semantic Web: It is a general solution for making statements that all
machines (not just some machines) and all humans (not just some humans) can under-
stand. Just as the strength of HTML is that it is simple and can be displayed anywhere,
RDF’s strength is that it can be (or should be) understood everywhere. It is (or should be)
a lingua franca.

If RDF statements are not interoperable—that is, if they are not understood in the same
way by all processors—then it’s hard to see how the Semantic Web can come to be.
Suppose that two processors have different understandings of a statement about a drug
dosage? Or a statement in an aircraft repair manual? Or, if you are an information owner,
your data? Mars Explorer crashed because one processor thought a measurement was in
metric units, and a second processor thought the same measurement was in English units.
On the Semantic Web, the impact of interoperability failure could come as lethal drug
dosages, crashed airplanes, or corrupted data.

The Semantic Web

PART IV
1002

Note

Here are the Web sites for the RDF core specifications:

• Resource Description Framework (RDF) Model and Syntax Specification
(REC); http://www.w3.org/TR/1999/REC-rdf-syntax-19990222 [RDFMS]

• Resource Description Framework (RDF) Schema Specification 1.0 (CR);
http://www.w3.org/TR/2000/CR-rdf-schema-20000327 [RDFS]

These core RDF specifications, in turn, build upon W3C’s XML and
Namespaces Recommendations, covered elsewhere in this book.

28 0672323419 CH23 3/15/04 11:27 AM Page 1002

First, let’s take a look at URIs, URLs, and URNs. What is not addressed by URIs, URLs,
and URNs is more critical than what is. The issue: Whether it is okay for URIs not to
identify resources that can be retrieved over a network (for example, the person Jane).
This issue is categorized as “unresolved.”

Therefore, RDF’s use of URIs, and the broader Web’s use of URIs, may not be interoper-
able. Therefore, there is some uncertainty about whether the following application areas
are in scope for RDF, because they would depend on URIs for resources that cannot be
retrieved over a network:

• Government archives on physical media (for example, “reel/frame” numbers
at the United States Patent and Trademark Office)

• Legal citations to volume, reporter, and page

• Warehouse applications

• Help lines (where the resource is a human’s expertise)

• Disembodied concepts

RDF for Information Owners

CHAPTER 23
1003

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

Note

Here are the recent notes and working drafts that seem most significant for
interoperability issues at the time of this writing (October 2001):

• RDF Core Working Group, RDF Issue Tracking, http://www.w3.org/2000/
03/rdf-tracking/.

• URIs, URLs, and URNs: Clarifications and Recommendations 1.0, Report
from the Joint W3C/IETF URI Planning Interest Group, W3C Note, 21
September 2001, http://www.w3.org/TR/2001/NOTE-uri-clarification-
20010921/.

• Dave Beckett, Refactoring RDF/XML Syntax, W3C Working Draft, 06
September 2001, http://www.w3.org/TR/2001/WD-rdf-syntax-grammar-
20010906/.

• Patrick Hayes, RDF Model Theory, W3C Working Draft, 25 September
2001, http://www.w3.org/TR/2001/WD-rdf-mt-20010925/.

• Art Barstow, Dave Beckett, RDF Test Cases, W3C Working Draft 12
September 2001 http://www.w3.org/TR/2001/WD-rdf-testcases-
20010912/.

These activities are coordinated by the RDF Core Working Group:

• www.w3c.org/2001/sw/RDFCore

28 0672323419 CH23 3/15/04 11:27 AM Page 1003

Next, Refactoring RDF/XML Syntax raises further interoperability concerns. It summa-
rizes the effects of reports from implementers. As it turns out, different RDF implemen-
tations, given the same markup, generate different graphs (instances of the RDF data
model). Hence, the specification is ambiguous.

RDF Model Theory addresses interoperability concerns. It is an effort to enhance RDF’s
precision by respecifying the RDF data model using techniques for defining the seman-
tics of statements that are more precise than the text of the existing specifications.

RDF Test Cases provide a way of testing and possibly allaying interoperability concerns.
It is a draft set of machine-processable test cases corresponding to technical issues
addressed by the [RDF] WG, again based on W3C’s issues-tracking document, to which
we now turn.

RDF Issue Tracking categorizes open issues in two ways:

• Under consideration

• Not yet under consideration

Here is a small selection of the issues that are under consideration as of this writing.

• rdfs-xml-schema-datatypes. The RDF schema spec should consider using XML
Schema data types in examples and/or in some formal specification of the mapping
of these data types into the RDF model.

• rdfms-literal-is-xml-structure. A literal containing XML markup should be treated
as markup.

Here is a small selection of the issues that are on the list to be considered, but are not yet
being considered:

• rdfms-resource-semantics. What is a resource? How do resources relate to other
concepts such as URI and entity?

• rdfms-identity-of-statements. Does the RDF model allow more than one statement
with the same triple of subject/predicate/object?

• rdf-equivalent-representations. RDFMS employs several syntactic representations
when describing the RDF abstract model. Are they truly equivalent?

Most of these issues raise interoperability concerns for owners of RDF information. For
example, rdfms-formal-grammar, by making the description of the data model and its
XML representation more rigorous, should have the effect of making implementations
more consistent. Similarly for rdfs-xml-schema-datatype: Why should RDF’s integers or
dates not be interoperable with XML schema’s? rdfms-resource-semantics raises the lack
of consistency between URIs, URLs, and URNs and RFC2396, noted earlier.

The Semantic Web

PART IV
1004

28 0672323419 CH23 3/15/04 11:27 AM Page 1004

Finally, those philosophical bugbears—identity and equivalence—are wakened from
hibernation by rdfms-identity-of-statements and rdf-equivalent-representations. For the
first issue, the question is whether “Subject has an object” and “Subject has an object”
are two statements, when processed by an RDF engine, or one. For the second, you will
see shortly that there are several ways to represent the RDF data model in syntax. Are
these representations truly equivalent? How could we be certain? Here again, these ques-
tions raise interoperability issues, because different RDF implementations could make
different assumptions on these points.

Making the Case for RDF Investment
Finally, the $64,000 question: Assuming that avoiding reconversion of RDF data is a
requirement, when should information owners and developers feel comfortable in making
significant investments in RDF implementations?

This will depend on individual cases, of course. However, some general guidelines can
be laid down. First, the interoperability issues of significance to the information owner
and potential clients should be closed out at W3C. Monitor the RDF Issue Tracking site
on this point. Second, there should be some W3C-recommended declarative specification
for mechanically checking the validity of RDF instances—for example, a W3C XML
schema or XML DTD. Third, there should be test cases for checking RDF processors.
Monitor the RDF Test Cases site on this point. This site has test cases only for technical
issues, not a test suite for RDF processing in general. If W3C does not create such a
suite, perhaps some institution such as the National Institute for Standards (NIST) will.

The fundamental RDF value proposition (conversations) remains unaffected by any con-
cern raised by these glances at the innards of the W3C issues-tracking process. You now
have the background to assess the RDF data model in detail.

The RDF Data Model
The RDF data model is a graph: a mathematical construct that connects nodes and arcs
in tinker toy–like fashion. Many find the fundamental simplicity of graphs very appeal-
ing. In this section, you will learn just enough graph theory to understand the basic math-
ematical characteristics of the RDF graph. As a developer, you will find this useful in
selecting and tailoring graph algorithms for processing the RDF graph.

You will see that the RDF graph is a collection of statements (or triples). We will look at
issues of representing RDF statements in syntax and go through the construction rules
that allow an RDF graph to be created from XML syntax. We will conclude the chapter

RDF for Information Owners

CHAPTER 23
1005

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

28 0672323419 CH23 3/15/04 11:27 AM Page 1005

by summarizing how XML elements and attributes are assembled to create a representa-
tion of the graph for interchange.

Just Enough Graph Theory
The one-minute graph theorist would say that there are only two fundamental graph con-
structs:

• Nodes

• Arcs

Arcs may have labels and may be directed (such as a one-way street). Figure 23.2 shows
the basic parts of graph, where “Jane” and “books” are nodes connected with a directed
arc whose label is “sells.”

The Semantic Web

PART IV
1006

Jane
sells

books

Arc

Label on arc
Direction of arc

Nodes

FIGURE 23.2
Basic parts of a
graph.

A graph data model can be very powerful. Graph structures are used for many large-scale
modeling tasks, including air traffic control, enterprise resource allocation, and so forth.
Graphs can model both object-oriented and relational database systems, and they can be
formalized mathematically. Therefore, it is possible (or at least should be possible) to
assess the structures of RDF graphs mathematically and prove that some graphs are “bet-
ter” than others, at least according to some formal criterion. These formal properties are
useful for a data model to have, as we know from the power that relational algebra has
given the relational model.

Graph literature is vast. Mainstream graph theory, accessible to the nonspecialist, seems
to focus more on pleasing symmetries and visual elegance, but “real Web” graphs, such
as the RDF graph, lack those characteristics. Figure 23.3 shows the sort of graph that
seems of interest to academics.

The Web—a set of connections (arcs) between resources (nodes) that we must model in
RDF to create the Semantic Web—lacks such symmetry. That said, we have already
listed two formal characteristics of the RDF graph that a specialist would recognize:

• Directed

• Labeled

28 0672323419 CH23 3/15/04 11:27 AM Page 1006

The one-minute graph theorist would add that RDF graphs are distinguished by the char-
acteristics they lack as much as by the characteristics they possess. RDF graphs have the
following characteristics:

• Complete. That is, all <IT>Not complete</IT> two nodes have an arc running
between them. As you’ll learn in the next section, RDF demands triples—two
nodes connected by a labeled arc—and nothing less than triples. The elegant five-
pointed star shown in Figure 23.3 is complete. A square, with its corners consid-
ered nodes and its sides arcs, is not complete, but a square with a corner-to-corner
× would be.

• Not connected. It is not always possible to reach any node from any other node.
(The sets of resources for two RDF triples might disjoint.)

• Not symmetrical. That is, an RDF graph is not like a triangle, a square, a star, or a
buckyball; it is more like a model railroad track or the net.

In addition, the RDF graph is:

• Cyclic.

Figure 23.4 shows a cycle from node C to node D to node E and back to node C. In addi-
tion, the figure illustrates the other formal characteristics we have just discussed. The
graph is complete. However, it is not connected: Nodes F and G can only be reached
from each other, not from any of the other nodes in the graph. What’s more, the graph
isn’t symmetrical around the vertical axis from x to y.

RDF for Information Owners

CHAPTER 23
1007

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

FIGURE 23.3
A graph that’s not
much like the Web.

A.

B.

C. D.

E.
x

y

F. G.

FIGURE 23.4
A graph that’s
much more like
the Web.

28 0672323419 CH23 3/15/04 11:27 AM Page 1007

The RDF Graph
The RDF graph is the data model of RDF. It is a mathematical construct—a collection of
triples—whose characteristics define the expectations of developers and information
owners when RDF information is processed. Any RDF document should generate the
same graph when processed by any RDF processor; that is the operational definition of
interoperability.

The RDF Statement
An RDF statement is often called a triple because it has three parts, as you’ll recall from
the earlier blackboard discussion:

• Subject

• Predicate

• Object

We now ask, in RDF, what are subjects, predicates, and objects? The answer: They are
all resources, uniquely identified on the Web by URIs. The exceptions to this answer are
string literals and “anonymous nodes” (to be treated later in this chapter), which are
resources but are not uniquely identified, except possibly by an RDF application for its
own internal purposes.

The Semantic Web

PART IV
1008

Note

RDF has an alternative triplet of names for subject, predicate, and object. We
could also say that the subject resource has a property (the predicate) whose
value is the object.

In this and the next chapter, we are going to stick with the terms subject, predi-
cate, and object because they suggest the natural connection between state-
ments seen as sentences in a grammar and statements seen as propositions in
some form of logic. This connection will provide the basis for conversations on
the Semantic Web, as you’ll see in the next chapter.

Finally, subject, predicate, and object are implicitly ordered: At least for
speakers of the English language, subjects naturally come first, predi-
cates in the middle, and objects at the end. Therefore, the directed
nature of the RDF graph becomes intuitive. Jane, the subject, is always
first, isn’t she?

As you saw in our blackboard example, an RDF statement is like a simplified sentence in
a natural language like English. Figure 23.5 shows the sentence “Jane sells books” in the

28 0672323419 CH23 3/15/04 11:27 AM Page 1008

form of an RDF graph. Jane (a nonretrievable resource represented by the URI [Jane])
is the subject node of the statement. Books (nonretrievable and represented by [books])
is the object node of the statement. Sells ([sells]) is the predicate, and it labels the arc
between the subject and object. Because arcs in RDF are directed, running from subject
to object, we always know which node is the subject and which node is the object.

RDF for Information Owners

CHAPTER 23
1009

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

[sells]
[books][Jane]

FIGURE 23.5
A single statement
in the RDF graph.

Now that you know that subjects, objects, and predicates are all resources on the Web
and are uniquely identified, you can see that many statements (indeed, an infinite number
of statements) can be made about any resource, and that any resource can be a subject or
an object (or a predicate). Figure 23.6 shows the flexibility of the RDF graph, as it shows
how to connect three statements: “Jane sells books,” “books enrich publishers,” and
“publishers pay Jane.” The figure shows that resources that are subjects in one statement
can be objects in another, and vice versa.

[Jane]
[sells]

[books]

[pays] [enrich]

[publisher]

FIGURE 23.6
Multiple con-
nected statements
in the RDF graph.

Figure 23.7 shows that we can even make statements about statements—in this case,
“‘Jane sells books’ exemplifies a statement.” This capability is called reification. Here are
two examples of reification that show why it is useful:

• “John says that ‘Jane sells books.’”

• “Morgoth the Vile says that ‘Jane sells books.’”

Suppose I trust John: The reified statement “Jane sells books” is likely to be true, and I
might go on to investigate the books she sells. Suppose I do not trust Morgoth: The rei-
fied statement is likely to be false, and I probably wouldn’t invest the time to work out
its implications. (This is a small example of the “web of trust,” discussed in Chapter 24.)

28 0672323419 CH23 3/15/04 11:27 AM Page 1009

Further, if RDF were not able to make statements about statements through reification, it
would not be able to document or assert that its own statements are RDF statements, a
strange limitation indeed. We’ll look at reification in some detail later in this section.

The Semantic Web

PART IV
1010

[Jane]
[sells]

[books]
[exemplifies]

Model of a statement

[statement]

FIGURE 23.7
Statements about
statements in the
RDF graph.

To sum up: RDF triples (or statements) have subjects, predicates, and objects. Subjects,
predicates, and objects are all resources, uniquely identified by URIs (except, again, for
literals and anonymous nodes). Resources can participate in an infinite number of state-
ments. Furthermore, we can make statements about (models of) statements. Before turn-
ing to the data model of RDF, which formalizes these relationships and provides the
mathematical formalism to which all RDF notations must conform, we need to look at
RDF syntax, because we will need to represent the model in syntax.

Caution

Strictly speaking, we do not make statements about statements in RDF but
rather statements about models of statements, known as higher-order state-
ments. That is what the dashed line around the issues in Figure 23.7 indicates.
Reification will be examined in detail in “Constructing the RDF Graph from XML
Syntax,” where we will go through the complete inventory of RDF triples, show-
ing how they are constructed in both pictorial and XML syntax.

Issues in RDF Syntax
RDF has a single data model, but the specification allows the model to be represented in
several ways:

• Pictorially, in nodes and arcs diagrams

• Via XML serialization (which can be “abbreviated”)

• Via curly brace serialization

Typically, graph-based modeling languages and data models have at least two syntactic
representations. Conceptual graphs and the Unified Modeling Language (UML) both

28 0672323419 CH23 3/15/04 11:27 AM Page 1010

have a graphical and a serialized, linear notation, for example, as do most textbooks on
graph theory. The compact, pictorial representation is used for communication between
humans (authors, reviewers, and clients). The linear notation is used to interchange mod-
els between systems; the graphical notation is deconstructed into the linear notation by
the sender and reconstituted into the pictorial notation by the receiver. The process of
deconstruction and reconstitution works because the linear and graphical notations are
formally equivalent. RDF is typical in this regard.

RDF for Information Owners

CHAPTER 23
1011

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

Caution

It is not completely clear that RDF’s several linear and graphical notations are
equivalent; see the discussion of the open issue rdf-equivalent-representations
in “Recent Working Drafts and Notes,” earlier. Because this means that differ-
ent RDF processors could reconstitute different graphs from the same markup
(or vice versa), an interoperability concern is raised.

However, RDF’s XML syntax exhibits atypical features. First, there is no W3C XML
schema (or even XML DTD) to which RDF instances must conform. Some implementers
(that is, those outside the “RDF community” who are not necessarily true believers)
believe that the lack of a clear syntax specification makes implementing the spec (at least
interoperably) virtually impossible. (Later in this chapter, Table 23.2 attempts to suma-
rize RDF syntax.)

Second, RDF makes heavy use of a technique called abbreviation, where verbose and
less-verbose versions of the XML are deemed to represent the RDF graph in the same
way. (This is shown later in the chapter in Figure 23.15.)

Note

To some, RDF’s profusion of syntaxes and use of abbreviation is a case
of reinventing a square wheel. In SGML 10 years ago, any number of
“variant concrete syntaxes” and forms of markup “minimization” were
possible. Ultimately, the editors of XML 1.0, in a classic addition-by-sub-
traction design decision, removed such esoterica from SGML in the
name of simplicity, implementation, and widespread adoption—goals
achieved beyond the wildest dreams of the early proponents of “SGML
on the Web.” Maybe the RDF community could take a tip from this
experience when thinking about syntax.

28 0672323419 CH23 3/15/04 11:27 AM Page 1011

In this chapter, we will use the pictorial and XML syntax for examples. RDF is about
statements, and the pictorial notation represents statements effectively. Even though the
XML syntax is not particularly stable, it is likely to be understood by the many readers
who will encounter it in other publications by the RDF community and when they’re cre-
ating their own documents.

For completeness, here is the curly braces serialization of an RDF statement (“triple”):

{my:myPredicate,[mySubject],[myObject]}

In this notation, subjects, predicates, and objects are determined by order, not graphical
images or angle brackets. Notice, too, that in curly braces notation, the predicate comes
first, unlike the XML serialization and the pictorial notation.

Now that you understand how to represent RDF statements in both pictorial and XML
syntax, we can now exhibit the formal data model of RDF.

The RDF Data Model
This section shows how the concepts of the RDF data model are classified, how these
elements map to XML syntax, and how some “convenience” XML syntax enables the
mapping of XML syntax to the RDF data model.

There are 10 concepts in the RDF formal model, as listed here:

• RDF:Alt

• RDF:Bag

• RDF:Object

• RDF:Predicate

• RDF:Seq

• RDF:Statement

• RDF:Subject

• RDF:Type

• literal

• ord

We’ll discuss the meaning of each concept in turn. Most of them you are already familiar
with. For example, RDF:Subject, RDF:Predicate, and RDF:Object are indeed the three
parts of the RDF triple, and RDF:Statement is that triple (or statement).

The new concepts are RDF:Alt, RDF:Bag, and RDF:Seq. These concepts are called con-
tainers. Their names bear a suspicious resemblance to the old-time SGML Abstract
Syntax content model connectors—ALT, AND, and SEQ—and indeed the semantics are

The Semantic Web

PART IV
1012

28 0672323419 CH23 3/15/04 11:27 AM Page 1012

similar. Each container concept represents a collection of subjects or objects, where the
items in the collection have the following characteristics:

• Mutually exclusive. RDF:Alt (alternate). Like a content model with an OR (|) con-
nector, one of the alternatives must be chosen.

• Unordered. RDF:Bag (collection). Like a content model with an AND (&) connector,
the order in which the members of the bag are serialized is not significant. (A bag
is a collection rather than a set, because detecting duplicate members of the collec-
tion is considered to be a validation function.)

• Ordered. RDF:Seq (sequence). Like a content model with a SEQ (,) connector, the
order in which the members of the bag are serialized is significant.

The ord data model concept gives us, as you’ll see later when we construct containers, a
way to refer to a container’s individual members.

Finally, the literal data model concept enables data (in XML, #PCDATA) to be incorpo-
rated into the RDF graph. The data is treated as primitive and is not interpreted in any
way, even if it contains XML markup characters.

These 10 data model concepts are sorted into three buckets (object types):

• Properties

• Resources

• Literals

In this case, properties is a subset of resources.

You already know what resources and literals are. A property is just a predicate. In
object-oriented (OO) design, resources correspond to objects and properties correspond
to instance variables.

How do these object types map to the RDF triple? The RDF data model maps them
as follows:

• Subject. RDF:Alt, RDF:Bag, RDF:Seq, and RDF:Statement (resource object type)

• Predicate. RDF:Object, RDF:Predicate, RDF:Subject, and RDF:Type (property
object type)

• Object. RDF:Alt, RDF:Bag, RDF:Seq, RDF:Statement, literal, and ord (resource
and literal object type)

How does the data model affect the nature of the statements we can make in RDF? First,
objects of the type Statement can be the subjects and objects of sentences, but not the
predicates of statements. For example, we cannot say “The man ‘The man bit the dog’ the

RDF for Information Owners

CHAPTER 23
1013

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

28 0672323419 CH23 3/15/04 11:27 AM Page 1013

dog,” if indeed we would ever want to. Second, objects of the type Object, Predicate,
Subject, or Type can be predicates in statements but cannot be subjects or objects.
Finally, objects of type literal (data) can be the object of a statement but never the sub-
ject—that is, what the statement is “about.” If you hear the idea expressed that RDF is
about metadata (data about data), not data, this is the formal expression of that notion.

We now turn to mapping object types in the data model to XML elements. As it turns
out, the following types all map directly to RDF XML elements: To create the RDF tag
name, replace the string “RDF” in the concept name with the RDF namespace prefix, so
RDF:Alt becomes rdf:Alt, for example.

The string “RDF” in the concept name is replaced in the tag name with the RDF name-
space qualifier, except for RDF:Type, which maps to an attribute (this mapping is implicit
in RDFMS but made explicit in RDFS):

• RDF:Alt

• RDF:Bag

• RDF:Object

• RDF:Predicate

• RDF:Seq

• RDF:Statement

• RDF:Subject

• RDF:Type

So far, we’ve been working top-down from the RDF data model to the RDF XML syn-
tax. Working bottom-up from the formal grammar in the specification, we find the fol-
lowing XML convenience constructs:

• rdf:about

• rdf:Description

• rdf:ID

• rdf:li

• rdf:resource

These utility constructs comprise the scaffolding that is discarded when RDF XML syn-
tax is processed into an RDF graph. The details of this process are given in the next sec-
tion, “Constructing the RDF Graph from XML Syntax.”

Tables 23.1, 23.2, and 23.3 summarize the relationships just described between data
model object types, XML elements that map to these object types, and the utility XML
constructs, respectively.

The Semantic Web

PART IV
1014

28 0672323419 CH23 3/15/04 11:27 AM Page 1014

TABLE 23.1 Combining Data Model Elements into Statements

Subject Predicate Object
Resources Properties * Resources/Literals

RDF:Alt RDF:Object RDF:Alt

RDF:Bag RDF:Subject RDF:Bag

RDF:Seq RDF:Predicate RDF:Seq

RDF:Statement RDF:Type RDF:Statement

ord

literal

* Properties are a subset of resources.

TABLE 23.2 Mapping Data Model Elements to XML Syntax

Data Model XML String XML Element XML Attribute
Element

RDF:Alt rdf:Alt •

RDF:Bag rdf:Bag •

RDF:Object rdf:object •

RDF:Predicate rdf:predicate •

RDF:Seq rdf:Seq •

RDF:Statement rdf:statement •

RDF:Subject rdf:subject •

RDF:Type rdf:type •

literal #PCDATA

ord RDF:_n elements

TABLE 23.3 Utility XML Constructs

XML String XML Element XML Attribute

rdf:about •

rdf:Description •

rdf:ID •

rdf:li •

rdf:resource •

RDF for Information Owners

CHAPTER 23
1015

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

28 0672323419 CH23 3/15/04 11:27 AM Page 1015

Constructing the RDF Graph from XML Syntax
This section provides pictorial and XML serialization representations for all the state-
ment constructions specified in RDFMS.

Figure 23.8 summarizes the conventions we will use in the pictorial syntax for RDF.
There are two kinds of nodes: circles (for nodes that represent resources) and rectangles
(for nodes that represent literals). Nodes that do not represent resources (so-called anony-
mous nodes) are empty circles.

The Semantic Web

PART IV
1016

[mySubject] [myObject]

[my]:myPredicate

resources

resource nodes
literal node

anonymous node

Literal

FIGURE 23.8
Pictorial syntax
for RDF data
model.

Listing 23.2 is the XML serialization of the pictorial statement in Figure 23.8. Notice the
one-to-one equivalence between the pictorial and XML representations of the model. The
description element with the value of its about attribute is equivalent to the subject
node. The tag name my:myPredicate is equivalent to the predicate label on the arc that
connects subject to object (when the namespace prefix is not expanded). The value of the
rdf:resource attribute, [myObject], is equivalent to the object node.

LISTING 23.2 Pictorial Syntax for RDF Data Model Serialized as XML

<rdf:Description about=”[mySubject]” xmlns:my=”[NS]”>
<my:myPredicate rdf:resource=”[myObject]”/>

The XML serialization examples use three conventions, in addition to the conventions for
showing URIs introduced earlier in this chapter. First, XML IDs and string literals are
bold. Second, XML covered previously in the table and not repeated will be indicated
with a bold ellipsis (...).

28 0672323419 CH23 3/15/04 11:27 AM Page 1016

Finally, in the pictorial examples, namespace prefixes are replaced by the URIs to which
they map when processed—in this instance, my to [NS]. This underscores the fact that
namespaces are resources too.

Figure 23.9 shows the RDF statements that are reconstituted from the serialized children
of rdf:Description. At the left, we see the RDF graph that is created by XML markup
on the right.

RDF for Information Owners

CHAPTER 23
1017

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

[mySubject] xx
[NS]:myPredicate <my:myPredicate rdf:parseType=“literal”>

xx
</my:myPredicate>

(B)

[mySubject] [myObject]
[NS]:myPredicate

<my:myPredicate rdf:resource=“[myObject]”/>

(C)

[mySubject]
[NS]:myPredicate <rdf:Description>

...
</rdf:Description>

(F)

[mySubject] [myDesc]
[NS]:myPredicate <rdf:Description about=“[myDesc]”>

...
</rdf:Description>

(E)

[mySubject] [altID]
[NS]:myPredicate

<rdf:alt id=“altID”>
...
</rdf:alt>
</rdf:Description>

(G)

[myID]
[NS]:myPredicate <rdf:Description id=“myID”>

...
</rdf:Description>

(H)

[NS]:myPredicate

<rdf:Description>
<my:myPredicate>
...
</my:myPredicate>
</rdf:Description>
</rdf:RDF>

(I)

[mySubject] myLiteral
[NS]:myPredicate

<rdf:RDF xmlns:my=[NS]”>
<rdf:Description about=“[mySubject]”>
<my:myPredicate>
myLiteral
</my:myPredicate>

(A)

[mySubject] myID
[NS]:myPredicate <rdf:Description id=“myID”>

...
</rdf:Description>

(D)

...

...

FIGURE 23.9
Statement
production 1:
description.

The subjects of the statements are created in three ways: as a node whose resource is
identified by the URI in the value of the rdf:Description element’s about attribute
(statements A through G), as a node whose resource is identified by the value of the

28 0672323419 CH23 3/15/04 11:27 AM Page 1017

rdf:Description element’s id attribute (statement I), and as an anonymous node,
because the rdf:Description element has neither an about nor an id attribute.

The predicates of all the statements are created by expanding the namespace-qualified
tag name (generic identifier) of the child element of rdf:Description, as in statements
A through C. In the examples, the namespace prefix my in the markup is replaced by its
namespace name [NS] in the graph, as given in the xmlns:my namespace declaration on
the rdf:RDF element in production A. (The predicates for statements D through J are cre-
ated as described earlier and are replaced in the markup by ellipses on the right side.)

When the child element of rdf:Description is not an RDF element, the objects for all
the statements are created as nodes either from the #PCDATA contained in the predicate
element (in the example, my:myPredicate), as in statement A; from XML markup con-
tained in the predicate element when the predicate’s rdf:parseType attribute has a value
of literal, as in statement B; or from the resource identified by the URI in the value of
the predicate element’s rdf:resource attribute, as in statement C.

When the child element is an RDF element, it may be another rdf:Description element,
as in statements D through F. As mentioned earlier, the resource of the object node may
be identified with an ID (statement D), with the about attribute (statement E), or as
anonymous (statement F).

The child element may also be an RDF container element; the object of the statement
becomes the resource identified by the value of the id attribute of that container, as in
statement G.

The objects and predicates in statements H and I are created as described earlier and are
therefore replaced by ellipses on both the graph and markup sides.

Figure 23.10 shows how a single subject can be distributed over several objects in the
graph using the aboutEach attribute.

There are two statements in Figure 23.10, although they both have the same subject
([mySubject]) and predicate ([myPredicate]), derived respectively from the
rdf:Description and my:myPredicate elements, as shown previously in Figure 23.9.

The objects in the statements are created as nodes from the children of the RDF con-
tainer element whose ID is the value of the aboutEach attribute on the containing
rdf:Description element.

Figure 23.11 shows the RDF statements that are created in the graph when a serialized
RDF container is reconstituted (rdf:Seq is used, but the same applies to rdf:Alt and
rdf:Bag). The productions are parallel to Figure 23.9, with the container in place of
rdf:Description and the list items in place of the predicate elements.

The Semantic Web

PART IV
1018

28 0672323419 CH23 3/15/04 11:27 AM Page 1018

The subject of each statement is a node whose resource is the container element itself,
identified by the value of its id attribute.

The predicates of each statement are nodes whose resources are the rdf:li elements,
identified by their sequence within the XML markup, in the form RDF:_1, RDF:_2, up to
RDF:_n, where n the number of list items, as generated by the RDF processor.

When the child element of the container element is not an RDF element, the objects for
all the statements are created as nodes either from the #PCDATA contained in the predicate
element (in the example, rdf:li), as in statement A; from XML markup contained in the
predicate element when the predicate’s rdf:parseType attribute has a value of literal,
as in statement B; or from the resource identified by the URI in the value of the predicate
element’s rdf:resource attribute, as in statement C.

When the child element is an RDF element, it may be an rdf:Description element, as
in statements D through F. As mentioned earlier, the resource of the object node may be
identified with an ID (statement D), with the about attribute (statement E), or as anony-
mous (statement F).

The child element may also be an RDF container element; the object of the statement
becomes the resource identified by the value of the id attribute of that container, as in
statement G.

The objects and predicates in statements H and I are created as described earlier and are
therefore replaced by ellipses on both the graph and markup sides.

RDF for Information Owners

CHAPTER 23
1019

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

[mySubject]
[NS]:myPredicate

<rdf:RDF>
<rdf:Description about=“mySubject”
 aboutEach="myBag">
<my:myMetaPredicate>
...
</my:myPredicate>
</rdf:Description>
<rdf:Bag ID=“myBag”>
<rdf:li resource=“[this]”/>
<rdf:li resource=“[that]”/>
</rdf:Bag>
</rdf:RDF>

[this]

[that]

[NS]:myPredicate

FIGURE 23.10
Statement produc-
tion 2: distributed
referents.

28 0672323419 CH23 3/15/04 11:27 AM Page 1019

Figure 23.12 shows the RDF statements that are created in the graph when the
aboutEachPrefix feature is used on an rdf:Description element in the markup.

The subject of the statements is reconstituted from a serialized rdf:Description ele-
ment, as shown previously in Figure 23.9. The predicate of the statements is reconsti-
tuted as for any serialized rdf:Description element, again as in Figure 23.9.

The Semantic Web

PART IV
1020

[mySeq] myLiteral

<rdf:Seq>
<rdf:li>
myLiteral
</rdf:li>

(A)

RDF:n

[mySeq] xx
<rdf:li rdf:parseType=“literal”>
xx
</rdf:li>

(B)
RDF:n

[mySeq] <rdf:li resource=[r1]”/>
</rdf:Seq>

(C)
RDF:n

[mySeq]

<rdf:li>
<rdf:Description id=“myID”>
...
</rdf:Description>
</rdf:li>

(D)
RDF:n

[mySeq]

<rdf:li/>
<rdf:Description about=“[myDesc]”>
...
</rdf:Description>
</rdf:li>

(E)
RDF:n

[mySeq]

<rdf:li/>
<rdf:Description>
...
</rdf:Description>
</rdf:li>

(F)
RDF:n

[mySeq]

<rdf:li/>
<rdf:alt id=“altID”>
...
</rdf:alt>
</rdf:li>
</rdf:Seq>

(G)
RDF:n

[mySeq]
<rdf:Seq id=“myID”>
...
</rdf:Seq>

(H)
RDF:n

<rdf:Seq>
...
</rdf:Seq>

</rdf:Description>
</rdf:RDF>

(I)
RDF:n

[r1]

[myID]

[myDesc]

[altID]

...

...

FIGURE 23.11
Statement produc-
tion 3: containers.

28 0672323419 CH23 3/15/04 11:27 AM Page 1020

The objects of the statements are created as nodes from resources whose identifiers
begin with the character string that is the value of the aboutEachPrefix prefix on the
rdf:Description element. In Figure 23.12, the prefix is [my]. Therefore, the resources
[my]/foo.xml, [my]/bar.xml, and [my]/baz.xml are objects of the statements, and the
resources [other]/foo.xml and [other]/bar.xml are not objects.

Figure 23.13 shows how the same graph can be reconstituted from serialized
rdf:Description elements that use attributes rather than element content for their sub-
ject and object resources.

Compare statement A with statement C in Figure 23.9. Whereas Figure 23.9 uses an ele-
ment, my:myPredicate, for its predicate and the attribute value of its rdf:resource
attribute for its object; statement A in Figure 23.13 uses the my:myPredicate attribute
right in the rdf:Description element for the predicate and uses the value of that
attribute for its object.

RDF for Information Owners

CHAPTER 23
1021

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

[mySubject]
[NS]:myPredicate

<rdf:RDF xmlns:my="[NS]”>
<rdf:Description
 about=“[mySubject]”
 aboutEachPrefix=“[my]”>
<my:myPredicate/>
</rdf:Description>

<rdf:Description about=“[my]/foo.xml”/>
...
<rdf:Description about=“[my]/bar.xml”/>
...
<rdf:Description about=“[other]/foo.xml”/>
...
<rdf:Description about=“[other]/bar.xml”/>
...
<rdf:Description about=“[my]/baz.xml”/>
</rdf:RDF>

[my]/bar.xml

[my]/baz.xml

[NS]:myPredicate

[my]/foo.xml

[NS]:myPredicate

FIGURE 23.12
Statement produc-
tion 4: containers
defined by a URI
pattern.

28 0672323419 CH23 3/15/04 11:27 AM Page 1021

Now compare statement B with statement A in Figure 23.9. Here again, the predicate
serialized from a my:myPredicate element in Figure 23.9 is reconstituted from the serial-
ized attribute of the same name in statement B in Figure 23.13. Also, the reconstituted
object is not the value of an rdf:resource attribute but rather the value of the
my:myPredicate attribute.

Finally, compare statement C with the distributed referent in Figure 23.10. Again,
whereas Figure 23.10 uses an element (my:myPredicate) for the predicate, statement C
in Figure 23.13 uses an attribute (my:myPredicate) on rdf:Description. Also, whereas
Figure 23.10 uses the value of an rdf:resource attribute for the object, statement C uses
the value of an attribute (my:myPredicate).

Figure 23.14 shows the graph that is constructed by embedding a namespace-qualified
XML element inside an rdf:Description element. The subject is taken from the value

The Semantic Web

PART IV
1022

[mySubject]
[NS]:myPredicate

<rdf:Description
 about=“mySubject”
 aboutEach=“[myBag]”
 my:myPredicate=“[foo]”/>
<rdf:Bag ID=“myBag”>
<rdf:li resource=“[this]”/>
<rdf:li resource=“[that]”/>
</rdf:Bag>

[this]

[that]

[NS]:myPredicate

[mySubject]
[NS]:myPredicate

[my object]

[mySubject]
[NS]:myPredicate

myLiteral

<rdf:RDF mlns:my=“[NS]”>
<rdf:Description
about=“[mySubject]”
my:myPredicate=“[myobject]"/>

<rdf:Description id=“myDesc”
my:myPredicate=“myLiteral”/>

(A)

(B)

(C)

FIGURE 23.13
Statement produc-
tion 5: element
and attribute
equivalence in
description.

28 0672323419 CH23 3/15/04 11:27 AM Page 1022

of the rdf:Description element’s about attribute. The predicate is RDF:type, and the
object is the embedded XML element.

RDF for Information Owners

CHAPTER 23
1023

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

[mySubject]
<rdf:RDF xmlns:my=“[NS]”>
<rdf:Description about=“[mySubject]”>
<my:myType>
</my:myType>
</rdf:RDF>RDF:type

[NS]:myType

FIGURE 23.14
Statement produc-
tion 6: typed node
as descriptions.

Figure 23.15 shows the graph reconstituted from ordinary XML elements and attributes,
where the tag and attribute names are “namespace qualified” within an RDF description
element.

[parent]

<rdf:RDF xmlns:my=“[NS]”>
<rdf:Description id=“parent”>
<my:myPredicate
 rdf:resource=“[myObject]”
 my:myAttribute=“[myValue]”/>
</rdf:Description>
</rdf:RDF>

[myObject]

[NS]:myPredicate

[NS]:myAttribute

[myValue]

FIGURE 23.15
Statement
production 7:
RDF statements
from namespace-
qualified XML
elements.

The subject of statement A is the node reconstituted from the serialized parent
rdf:Description element. The predicate of the statement is reconstituted from the
namespace-qualified tag name of the child element. The object is reconstituted from the
value of the rdf:resource attribute on that child element.

Statement B is a complete statement reconstituted from the child element itself. The sub-
ject of the statement is reconstituted from the value of the rdf:resource attribute. The
predicate of the statement is reconstituted from another qualified attribute name on the
child element (here, my:myAttribute). The object of the statement is reconstituted from
the value of that attribute name (my:myAttribute).

In effect, then, any XML element can be caused to constitute RDF statements, as long as
it uses namespace-qualified names in its element and attribute names.

Reification
Figure 23.16 shows the process of RDF reification: making a statement about a model of
a statement.

28 0672323419 CH23 3/15/04 11:27 AM Page 1023

Why would we make a statement about a model of a statement instead of a statement
about a statement? First, we avoid problems of recursion. Second, we avoid problems
with data integrity in any store of RDF statements we might have. Suppose that we have
a store of RDF statements, all of which are true. We then wish to make this statement:
“The statement ‘blue is the same as green’ is false.” If we kept the statement “blue is the
same as green” in our store of true statements, we lose our data integrity. We could, of
course, make a separate store for statements that are false, but who would want to main-
tain such a system? The upshot is that we want to be able to make statements about
hypothetical statements—statements that would act just like statements if only we made
them. That way, our store of true statements remains uncorrupted.

The answer, as mentioned previously, is to make statements about models of statements
(that is, hypothetical statements). Figure 23.16 shows how to do this. In Figure 23.16,
Statement A is a statement about a model of statement C. Again, when we build a model
of statement C, we say that we “reify” it. (Statement C has a dotted line around it to
show that a reified statement may be purely hypothetical, such as “blue is the same as
green.”)

The Semantic Web

PART IV
1024

[mySelf]

<rdf:RDF xmlns:rdf="[RDF]"xmlns:my="[NS]">
<rdf:Description about="[mySelf"]>
<my:myMetaPredicate rdf:resource="[myStatement]"/>
</rdf:Description>
<rdf:Statement>
<rdf:subject resource="[mySubject]"/>
<rdf:predicate resource="[myPredicate]"/>
<rdf:object>
<rdf:Description about="[myObject]"/>
</rdf:object>
<rdf:type resource="[rdf:statement]"/>
</rdf:Statement>
</rdf:RDF

[myStatement]

[NS]:myMetaPredicate

[RDF]:statement

[myPredicate]

[mySubject] [myObject]

[RDF]:type

[RDF]:subject
[RDF]:predicate

[RDF]:object

A.

B.

C.

FIGURE 23.16
Statement
production 8:
reifications.

28 0672323419 CH23 3/15/04 11:27 AM Page 1024

First, we construct a normal RDF statement using a description element, as detailed in
Figure 23.9.

The subject of statement A is a node from the [myself] resource, which is the value of
the about attribute of the rdf:Description element. ([mySelf] is the “reifier” of the
hypothetical statement B.)

The predicate of statement A takes the expanded namespace-qualified tag name (here,
my:myMetaPredicate).

The object of statement A (here, [myStatement]) is constituted by the value of the
rdf:resource attribute on the predicate element.

The object of statement A—the resource [myStatement] (at B)—represents our state-
ment model. Now, let’s build that model. We know that statements have subjects, predi-
cates, and objects. Therefore, we need to say that one predicate of [myStatement] is that
it is a type of statement, a second predicate is that it has a subject, a third that it has an
object, and a fourth that it has a predicate.

Therefore, one predicate of [myStatement] is that its [RDF]:type is [RDF]:Statement. A
second predicate of [myStatement] is that it has an [RDF]:subject, the resource
[mySubject].

A third predicate of [myStatement] is that it has an [RDF]:predicate, the resource
[myPredicate], and a fourth predicate of [myStatement] is that it has an [RDF]:object,
the resource [myObject].

Because statement B has all the predicates that a nonhypothetical statement has, RDF can
treat it as a statement. (If it walks like a duck....)

RDF XML Syntax Summary
Tables 23.4 and 23.5 supply what is missing from the RDF specification—something
approaching a DTD. Table 23.4 gives the attributes that RDF elements may have; Table
23.5 lists their content models.

In Table 23.4, the RDF elements label rows, and the RDF attributes label columns. An
element that may have an attribute has a bullet (•) in its cell. For example,
rdf:Description may have an id attribute or an rdf:about attribute.

RDF for Information Owners

CHAPTER 23
1025

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

28 0672323419 CH23 3/15/04 11:27 AM Page 1025

The Semantic Web

PART IV
1026

TA
B

LE
2
3
.4

R
D

F
X

M
L

Sy
n

ta
x:

 E
le

m
en

ts
 a

n
d

 A
tt

ri
b

u
te

s

X
M

L
 E

le
m

en
t

X
M

L
 A

tt
ri

bu
te

s[
1]

ab
o

u
t

ab
o

u
t

q
N

am
e

p
ar

se

id
ab

o
u

t
➥

Ea
ch

Pr
ef

ix
➥

Ea
ch

ty
p

e
b

ag
ID

ty
p

e
at

tr
ib

u
te

re
so

u
rc

e
➥

Ty
p

e[
2]

_n

<
rd

f:
R

D
F>

<
rd

f:
D

es
cr

ip
tio

n>
•

•
•

•
•

•
•

ty
pe

d
no

de

•
•

•
•

•
•

(q
N

am
e)

<
rd

f:
Se

q>
•

•

<
rd

f:
A

lt>
•

•

<
rd

f.
B

ag
>

•
•

<
rd

f:
li>

•
•

•

<
rd

f:
ty

pe
>

•
•

•
•

•

<
rd

f:
pr

ed
ic

at
e>

•
•

•
•

•

<
rd

f:
su

bj
ec

t>
•

•
•

•
•

<
rd

f:
ob

je
ct

>
•

•
•

•
•

<
rd

f:
st

at
em

en
t>

•
•

•
•

•

[1
]

A
ll

 t
he

 a
tt

ri
bu

te
 n

am
es

 e
xc

ep
t

fo
r

ID
 a

nd
 I

D
R

E
F

 a
re

 q
ua

li
fie

d
w

it
h

th
e

r d
f:

na
m

es
pa

ce
 p

re
fix

.
[2

]
Pe

rm
it

te
d

va
lu

es
 a

re
 “

L
it

er
al

”
an

d
“

R
es

ou
rc

e”
[3

]
T

he
 <

co
de

>
ID

<
/c

od
e>

 a
nd

 <
co

de
>

 a
bo

ut
<

/c
od

e>
 a

tt
ri

b u
te

s
ar

e
m

ut
ua

ll
y

ex
cl

us
iv

e.
 N

ot
 a

ll
 a

tt
ri

bu
te

s
ca

n
be

 u
se

d
w

it
h

el
em

en
t

co
nt

en
t:
b
a
g
I
D

an
d
r
e
s
o
u
r
c
e
.

28 0672323419 CH23 3/15/04 11:27 AM Page 1026

In Table 23.5, the RDF elements are on the left and their permitted content are on the
right. For example, an rdf:Seq element can contain rdf:li elements.

TABLE 23.5 RDF XML Syntax: Permitted Content

XML Element Permitted Content

rdf:RDF rdf:Description rdf:Alt rdf:Seq rdf:Bag rdf:type rdf:predi-

cate rdf:subject rdf:object typed node

rdf:Description rdf:type rdf:predicate rdf:subject rdf:object “qname”

Typed node “qname” rdf:type rdf:predicate rdf:subject rdf:object

rdf:Seq rdf:li

rdf:Alt rdf:li

rdf:Bag rdf:li

rdf:li string well-formed XML rdf:Description rdf:Alt rdf:Seq
rdf:Bag rdf:predicate rdf:subject rdf:object typed node

rdf:type string rdf:Description rdf:Alt rdf:Seq rdf:Bag rdf:type
rdf:predicate rdf:subject rdf:object

rdf:predicate string rdf:Description rdf:Alt rdf:Seq rdf:Bag rdf:type
rdf:predicate rdf:subject rdf:object

rdf:subject string rdf:Description rdf:Alt rdf:Seq rdf:Bag rdf:type
rdf:predicate rdf:subject rdf:object

rdf:object string rdf:Description rdf:Alt rdf:Seq rdf:Bag rdf:type
rdf:predicate rdf:subject rdf:object

rdf:statement rdf:subject rdf:predicate rdf:object

RDF for Information Owners

CHAPTER 23
1027

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

Note

Here are the XML namespace declarations for RDF:

• rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

• rdfs: http://www.w3.org/2000/01/rdf-schema#

In this chapter, for readability, we show the first namespace as [RDF],
and the second as [RDFS] when expanding these URIs.

28 0672323419 CH23 3/15/04 11:27 AM Page 1027

RDF Schema
Historically, RDF grew out of the need to specify a general-purpose mapping between
specific bibliographic solutions using particular vocabularies. Here are some examples:

• The W3C Platform for Internet Content Selection (PICS)

• The Dublin Core (simple bibliographic data for Web pages)

• Site maps, subject taxonomies, thesauruses, and library classification systems

• The W3C Platform for Privacy Protection (P3P)

In this section, we look at how to use RDF schema to constrain, validate, document, and
extend RDF vocabularies using the RDF typing system.

Validity in RDF Schema
RDF schema meets its requirement for generality by being a vocabulary for vocabularies
(just as XML and SGML are languages for defining languages). We might imagine our
teacher, still at the blackboard, being asked, “How do I know that this statement makes
sense, even if all the words are in the right place?” She might answer, “Because some
words can only be used with other words. Jane can sell books, but books can’t sell Jane.”

In RDF-speak, unlike general usage, a vocabulary is not just a list of words. Rather, an
RDF vocabulary may be said to define:

• Subject validity (which predicates go with which subjects)

• Object validity (which predicates go with which objects)

For example, in the “Jane sells books” examples, we have a set of resources: [Jane],
[sells], and [books]. If we define a schema against which to check this statement,
[Jane] could be the subject in a statement where [sells] is the predicate. This is sub-
ject validity. Likewise [books] could be the object in a statement where [sells] is the
predicate (and [Jane] could not). That is object validity.

RDF schema can define a vocabulary that accomplishes these validity constraints through
what is called its typing system.

The RDFS Typing System
To “connect the dots” in the RDF typing system, we need to cover two concepts:

• rdf:type

• rdfs:subclassOf

The Semantic Web

PART IV
1028

28 0672323419 CH23 3/15/04 11:27 AM Page 1028

rdf:type enables class/instance statements to be made. When a resource has a type, the
resource is the object in a statement where the predicate is [rdf:type] and the subject is
the type. Figure 23.17 shows an RDF statement that says that [Rover] is a type of [dog].
Rover can also be said to be an instance of the class dog, and every statement about the
class of dogs can be made about Rover. However, instances are unique: There is only one
Rover—this Rover.

RDF for Information Owners

CHAPTER 23
1029

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

[dog] [Rover]

Legend
rdfs:subClassOf
rdf:type

FIGURE 23.17
Example of RDF
type concept.

rdfs:subclassOf enables subset/superset statements to be made. The class is the super-
set; the subclass is the subset. When a resource is a subclass, the resource is the object in
a statement where the predicate is rdfs:subClassOf and the subject is an RDF class.
Figure 23.18 shows that the class [dog] is a subclass of the class [animal] and that
[animal] is a subclass of [living being]. You can also see that, in RDF, a class may be
a subclass of more than one class; the class of dogs may also be a subset of the class of
[companion]—a “companion animal” being (often) a pet.

[living being] [animal]

Legend
rdfs:subClassOf
rdf:type

[dog]

[companion]

FIGURE 23.18
Example of the
RDF subclass
concept.

Class relations are said to be transitive. If class [dog] is a subclass of the broader class
[animal], and [animal] is a subclass of [living being], then [dog] is also implicitly a
subclass of [living being]. Figure 23.19 shows this relationship: There are not only
arcs A and B between [living being] and [animal], and between [animal] and [dog],
but also arc C, drawn explicitly between [living being] and [dog]. However, although

28 0672323419 CH23 3/15/04 11:27 AM Page 1029

such implicit arcs are present in the RDF graph, we generally simplify the pictorial repre-
sentation of class relations to keep the graph less cluttered by leaving them out. A human
can trace the class relations upward or downward, if necessary.

The Semantic Web

PART IV
1030

[living being] [animal]

Legend
rdfs:subClassOf
rdf:type

[dog]

A. B.

C.

FIGURE 23.19
Example of
transitivity in the
RDF subclass
concept.

We will look at more subtleties of classes, subclasses, and typing later when we look in
more detail at the RDF hierarchy.

We now have what we need for an overview of the RDF class hierarchy. All the
predicates in the RDFS typing system are either rdfs:subClassOf or rdf:type, as is
shown in Figure 23.20. (The single exception to this rule is a use of rdfs:subproperty,
discussed later.) The 16 RDF schema resources are divided into the following
six categories:

• Validation

• Core

• Hierarchy

• Documentation

• Schema control

• Extensibility

Also, each schema resource is represented by a node.

We will discuss these categories and their resources, in order, in the remainder of this
section (although validation concepts are divided into two parts).

Validation
We’ll start with validation—even though it is nearer the bottom of the RDF class hierar-
chy than the top—because that’s the operation many information owners will want to
perform on their data, just as they want a database schema to control the quality of their

28 0672323419 CH23 3/15/04 11:27 AM Page 1030

RDBMS and they want an XML DTD or XML schema to provide some level of quality
assurance for their data. Recall that there are two forms of schema validation in RDF:
object validity and subject validity. rdfs:domain handles subject validity; rdfs:range
handles object validity.

RDF for Information Owners

CHAPTER 23
1031

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

rdfs:Resource

rdfs:Property

rdfs:comment

rdfs:label

rdfs:seeAlso

rdfs:isDefinedBy

rdfs:subClassOf

rdfs:subProperyOf

rdfs:type

rdfs:Class

rdfs:Literal

rdfs:range

rdfs:domain

rdfs:ConstraintProperty

rdfs:ContainerMembershipProperty

rdfs:ConstraintResource

Legend
rdfs:subClassOf
rdf:type
rdf:subPropertyOf

core class

validation

hierachy

documentation

schema control

extensiblility

FIGURE 23.20
Class hierarchy
for RDF schema
showing types and
subclasses.

rdfs:domain

rdfs:domain is a type of rdfs:ConstraintProperty. It constrains the classes of subjects
(resources) for which the property is a valid predicate. If a property has no domain, it can
be the predicate of any subject. A property may have more than one range. If a property
has more than one rdfs:domain constraint, it may be the predicate of subjects that are
subclasses of any one or all of the specified classes.

The range and domain of the rdfs:domain concept are specified only in a comment, so
there is no pictorial representation of rdfs:domain.

28 0672323419 CH23 3/15/04 11:27 AM Page 1031

rdfs:range

rdfs:range is a type of rdfs:ConstraintProperty. It constrains the classes of objects
(resources) for which the property is a valid predicate. A property doesn’t have to have a
range. If so, the property can be used as an object in any statement. However, when
imposed, the constrains of rdfs:range are stronger than those imposed by rdfs:domain.
First, a property can have only one range. Second, the domain (subject) of an
rdfs:range predicate must be an rdf:property, and its range (object) must be an
rdfs:Class.

Core
Now that you understand the key concern of information owners—validation—let’s
move to the top of the RDF class hierarchy.

rdfs:Resource

rdfs:Resource is the root of the RDF class hierarchy (refer back to Figure 23.8). All
things described by RDF expressions—all nodes and labels in the RDF graph—are
instances of rdfs:Resource. rdfs:Resource is also a class. In fact, rdfs:Resource is a
type of rdfs:Class, and rdfs:Class is a subclass of rdfs:Resource. (Remember, the
RDF graph permits cycles!)

rdf:property

rdf:property represents the subset of RDF resources that are properties (see Table
23.1). rdf:property is a type of rdfs:Class and a subclass of rdfs:Resource.
rdf:property has the “rdf” namespace prefix, rather than the “rdfs” prefix, because the
RDF model has implicit properties, even if it lacks a schema.

rdf:type

As you have seen, rdf:type indicates that a resource is an instance of a specified class.
That class must be an instance of rfds:Class or a subclass of rdfs:Class. This state-
ment is true for the resource that is known as rdfs:Class, which is a type of itself. (The
RDF graph, again, permits loops.)

Like rdf:property, rdf:type has the “rdf” namespace prefix, rather than the “rdfs”
prefix, because the RDF model has implicit types, even if it lacks a schema.

Class Hierarchy
The class hierarchy in RDF is set up by with rdfs:class, rdfs:subClassOf, and
rdfs:subPropertyOf (and rdf:type, which we’ve already looked at). Let’s look at these
three elements.

The Semantic Web

PART IV
1032

28 0672323419 CH23 3/15/04 11:27 AM Page 1032

rdfs:Class

As you have seen, rdfs:Class is both a type of resource and a subclass of itself.
However, RDF classes are both like and unlike classes as OO programmers may think of
them. RDF classes are like OO classes in that, through transitivity, they can specify
broad-to-specific categories such as “living being to animal to dog.” RDF classes are
unlike OO classes, first, because they have no methods—they don’t do anything.
(Markup never does.) Second, RDF classes could be called extrinsic rather intrinsic.
Instead of defining a class in terms of features intrinsic to its instances, an RDF schema
will define predicates in terms of the classes of subject or object to which they may be
applied, extrinsically. (This allows testing for subject and object validity.)

Theoretically, URIs representing HTML documents, dogs, books, databases, and abstract
concepts could all be members of the same class—the class of things that can be repre-
sented by RDF.

rdfs:subClassOf

rdfs:subClassOf is a type of rdf:property. It specifies a subset/superset relation
between classes—a relation that is transitive, as you have seen. Only instances of the
type rdfs:Class may have an rdfs:type property whose value is rdfs:Class.
Importantly, a class can never be declared to be a subclass of itself or any of its own sub-
classes. (The RDF Schema specification cannot express this constraint formally, though
it is expressed in prose.) Therefore, although the RDF graph may contain cycles, the
class/subclass inheritance hierarchy that is a subgraph of the RDF graph remains a tree,
whose nodes are only instances of rdfs:Class. Finally, RDF (unlike most object-ori-
ented programming languages) permits multiple inheritance—that is, a class may be a
subclass of several classes. (It could hardly be otherwise, because the Semantic Web
must permit arbitrary combinations of RDF statements taken from multiple systems, each
of which may have its own inheritance hierarchy.)

rdfs:subPropertyOf

rdfs:subProperty is a type of rdf:property. It enables properties to be specialized—a
process similar to inheritance, except for properties instead of classes. Like the
subClassOf predicate, subPropertyOf is transitive and forms a hierarchy that is a proper
tree, like rdfs:subClassOf. Multiple specializations are also permitted.

Documentation
Documentation allows human-readable text to be attached to a resource, either as a label
or a comment. Because the content of the documentation elements is only data, not state-
ments, it does not affect the RDF graph in any way and therefore does not enable
machine understanding of the resource.

RDF for Information Owners

CHAPTER 23
1033

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

28 0672323419 CH23 3/15/04 11:27 AM Page 1033

rdfs:label

rdfs:label provides for a human-readable representation of a URI, perhaps for display.
The domain (subject) of a label predicate must be an rdfs:resource. The range (object)
must an rdf:literal.

rdfs:comment

rdfs:comment permits human-readable documentation to be associated with a resource.
The domain (subject) of a comment predicate must be an rdfs:resource. The range
(object) must an rdf:literal.

rdfs:seeAlso

rdfs:seeAlso is a cross-reference that gives more information about a resource. The
nature of the information provided is not defined. The domain (subject) and range
(object) of an rdfs:seeAlso predicate must both be rdfs:resource elements.

Schema Control
rdfs:isDefinedBy is a subproperty of rdfs:seeAlso. It’s URI is meant to be the address
of the RDF Schema for the subject resource. The domain (subject) and range (object) of
an rdfs:isDefinedBy predicate must both be rdfs:resource elements.

General Constraints
We now turn to the issue of constraints in general (that is, beyond the constraints on
domain and range, discussed earlier). At this point, there’s one caveat: Because markup
doesn’t do anything, RDFS doesn’t say what an application must do if a constraint is vio-
lated. That is up to the application.

rdfs:ConstraintProperty

rdfs:ConstraintProperty is a subclass of both rdfs:ConstraintResource and
rdf:property. Both rdfs:domain and rdfs:range are instances of it.

Extensibility
rdfs:ConstraintResource is a type of rdfs:Class and a type of rdfs:Resource. It is
present in the model so that other constraint properties besides domain and range may be
subclassed from it.

Non-Model Validation
This type of validation is called “non-model” because expressing the notion that a literal
should be checked for being a literal or that the auto-generated counter for container

The Semantic Web

PART IV
1034

28 0672323419 CH23 3/15/04 11:27 AM Page 1034

children should be derived from the actual number of children is something the RDF
engine would have to do, not the data model.

rdfs:literal

rdfs:literal is a type of rdfs:Class. An rdfs:literal can contain atomic values such
as textual strings. The XML lang attribute can be used to express the fact that a literal is
in a human language, but this information does not become a statement in the graph.

rdfs:ContainerMembershipProperty

rdfs:ContainerMemberShip is a type of rdfs:class and subclass of rdf:property. Its
members are the properties _1, _2, _3, and so on (the order in which the children of a
container appear in the container, under the ord component of the data model).

Working with the Angle Brackets
This section provides a few techniques that the RDF community has found useful in
RDF’s brief history.

Here is a way to add RDF to HTML: Put it inside the HEAD element in the HTML page.
Be sure to add the RDF namespace declarations so that an RDF processor can make use
of the RDF markup, as shown in Listing 23.3.

LISTING 23.3 Embedding RDF into HTML

<HTML>
<HEAD>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:my=”[mySchema]”>
<rdf:Description rdf:about=”[URI of the enclosing HTML document]”>
<my:RDF1=”data”>
<my:RDF2=”data”>
</rdf:Description>
</rdf:RDF>
</HEAD>
...
</HTML>

Of course, you can substitute a more well-known URI for [mySchema] (for example,
Dublin Core at http://purl.org/dc/elements/1.0/Creator).

If all fails, make the RDF a separate document and use an HTML LINK element with the
URI of the document as the value for the href attribute and meta as the value of the rel
attribute, as shown in Listing 23.4.

RDF for Information Owners

CHAPTER 23
1035

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

28 0672323419 CH23 3/15/04 11:27 AM Page 1035

LISTING 23.4 Embedding RDF into HTML

<LINK rel=”meta” href=”[myRDFdocument]”>

Summary
The Shakers sang, “‘Tis a joy to be simple. ‘Tis a joy to be free.” How simple is RDF?
And how free?

RDF is made from very few components. The RDF graph uses only three components:
nodes, arcs, and labels on the arcs. An RDF statement has only three parts: subjects,
predicates, and objects. What’s more, if there were an RDF DTD or schema, it would
declare only 11 elements.

Furthermore, RDF packs some punch despite its simplicity. It can be incorporated into
any HTML document. Normal XML elements, when incorporated in RDF, become mag-
ically capable of making RDF statements.

Finally, there is the typing system that elegantly defines RDF in terms of RDF, itself, but
is also a lightweight method of classifying all the resources on the Web.

And yet, there are times when it seems that RDF was designed by architects of the “more
is more” school. There are times when, indeed, “less is more,” and RDF is one of them.
RDF’s progress is hampered by the dense undergrowth of three (to date) different syntac-
tical representations. Furthermore, RDF’s notation for expressing element syntax in the
form of attributes is tricky, but it flies in the face of SGML’s bad experience with such
tricks. The lack of a DTD or a schema makes validation harder than it needs to be for
developers and information owners. Finally, RDF’ers seem to have a deep need to say
the same thing in at least two different ways. In this chapter, we have tried to use the ter-
minology of subject, predicate, and object consistently, but as briefly noted, there is an
different, parallel set of terminology that speaks of named properties and values. Just as
the syntactical representations may not be truly interoperable for machines, the termi-
nologies might not be for humans. Many academics from many disciplines participate in
the RDF community, and this makes conflation of conceptual vocabularies even more of
a constant danger.

Therefore, the seeming simplicity of RDF presents a paradox. The simple graph, the sim-
ple data model, and the simple markup have enticed many developers to work with RDF.
Yet, different interpretations of the syntaxes, as well as different readings of the vocabu-
laries, have ensured that their work doesn’t reconstitute the same RDF graph from the
same markup. What’s more, if interoperability is not achieved, RDF won’t scale to the
World Wide Web.

The Semantic Web

PART IV
1036

28 0672323419 CH23 3/15/04 11:27 AM Page 1036

How free is RDF? It is, after all, the apple of the eye for the director of the W3C, and as
everyone knows, the Semantic Web is the “next big thing.” However, RDF is dependent
on a number of other specifications, not all of them under W3C control. In particular, the
clash of understanding between URIs as understood in RDF and as understood in the
world of ordinary Web practice as governed by the IETF is worrisome, because if RDF
and the installed base clash, it is not necessarily RDF that will win.

Nor is RDF now free from competition. The pragmatic William James once referred to
truth as “the cash value of an idea.” Well, giant software firms are investing in markup
technologies that will enable anything to be bought and sold on the Web (including, I
assume, ideas in the form of intellectual property). If these projects succeed—if indeed
the only reason to make statements on the Web is to buy and sell resources—then what
reason is there for RDF, simple though it may be?

Furthermore, RDF is no longer free of its own history. If fundamental questions need to
be asked, will the community be able to ask them? For example, a reified triple is really
a quad (refer back to Figure 23.16). Is this just happenstance, or is there a deep, pattern-
language-type issue that needs to be addressed? Some semantics experts think so. Others
complain that RDF is too simple; that it lacks the powers for inferencing that would
enable developers to drive agents with it.

All of this serves to bring us back to the usual question: When and why does it make
sense to invest in RDF technology? And that brings us to the usual answer: Look to your
opportunity costs. If you are an information owner, investing in RDF now brings the cer-
tainty of rework later, because the specification is not particularly stable, and the RDF
generated by different RDF software does not interoperate. If you are a developer, you
may wish to begin work on RDF tools immediately so that when the specifications do
mature and the RDF documents are interoperable, you can seize opportunities at once. If
you are an RDF evangelist, you can take courage from the diligent and open efforts of
W3C and the RDF community to address the interoperability issues with the spec and
move forward rapidly to making RDF the foundation of the Semantic Web.

RDF for Information Owners

CHAPTER 23
1037

23

R
D

F FO
R

IN
FO

R
M

A
TIO

N
O

W
N

ER
S

28 0672323419 CH23 3/15/04 11:27 AM Page 1037

28 0672323419 CH23 3/15/04 11:27 AM Page 1038

IN THIS CHAPTER

• Precursors of the Semantic Web 1041

• Architecture of the Semantic
Web 1044

• How Do Semantics Get into the
Semantic Web? 1063

24
C

H
A

PT
ER

The Semantic Web
for Information
Owners

29 0672323419 CH24 3/15/04 11:33 AM Page 1039

What is the Semantic Web? Recall the fable of the blind men and the elephant, where the
blind man grappling the elephant’s leg said, “An elephant is like a temple pillar! The
blind man who lifted the elephant’s trunk said, “An elephant is a snake,” and the blind
man who was brushed by the elephant’s flapping ear said, “An elephant has fronds like a
palm tree!” In speaking of something of the scale and scope of the Semantic Web, we are
like those blind men, and the Web is like that elephant, except that the Semantic Web is
an elephant under construction.

Therefore, we must understand the Semantic Web under conditions of uncertainty. First,
we’ll look at the ancestry of the Semantic Web, where you will see the two main lineages
from which the Semantic Web inherits concepts: bibliography and knowledge representa-
tion. Some of these ancestors are still alive today and meeting requirements, giving us
confidence that the fundamentals of the Semantic Web are sound.

Then, we’ll look at the seven-layer architecture of the Semantic Web, as listed here:

• Unicode and URIs

• XML, XML Schema, and XML Namespaces

• RDF, RDF Schema, and Topic Maps

• Ontologies

• Logic

• Proof

• Trust

The Semantic Web

PART IV
1040

Note

Here is the W3C Web site for the Semantic Web activity:

http://www.w3c.org/2001/sw/

When the Semantic Web is constructed, its central value proposition will be conversa-
tions between people and machines. For example, take the following English sentence:

Buy me a hardcover copy of Jane’s book, in Chinese, if available for
less than $39.95.

If this sentence is expressed using RDF statements and vocabularies (see Chapter 23,
“RDF for Information Owners”), both machines and humans will be able to understand
it. Furthermore, the machine (using the Ontology and Logic layers) will be able to draw
inferences from the statement—and make further statements. For example, if the book is

29 0672323419 CH24 3/15/04 11:33 AM Page 1040

not available at the right price, the machine will be able to suggest an alternative book to
the human as well as understand the human’s answer. Also, if the human doesn’t under-
stand how the computer came to the conclusions it did, the computer’s logic can be
exposed by the Proof layer. Finally, if asking the computer for proof all the time is just
too time-consuming, one can ask trusted and more tractable humans (or agents or
machines) what they feel. We collect all these question and answer interactions under
the heading of conversation—realizing that this could end up making machines seem
more human than we expect them to seem today. In fact, conversation is what puts the
semantics in the Semantic Web.

Precursors of the Semantic Web
Bibliography is the art of designing “finding aids” for collections of information. The
standard bibliographic model enables a user to find anything, anywhere. Two of the most
influential electronic implementations of the bibliographic model are Project Xanadu and
the HyTime international standard (ISO 10744). These are the two main precursors of the
Semantic Web, which is also an implementation of the bibliographic model.

Project Xanadu
Xanadu would have been the creation of the visionary Ted Nelson, coiner of the term
hypertext nonsequential writing. Nonsequential writing is simple: It’s what we do when
we throw together chunks of bulleted content in PowerPoint and later put them in the
correct order with the appropiate indents.. Of course, Nelson’s vision was a little bit big-
ger than that. Imagine, first, that the relationships between bullet points are not expressed
implicitly by sequence and indentation but explicitly in the form of an information over-
lay that links the bullet points. Second, imagine that each bullet point is on the Internet;
and third, that each bullet point has a copyright owner who receives royalties in the form
of an instantaneous micropayment every time his bulleted point (or even some characters
inside it, according to a patented addressing scheme) is used in someone else’s presenta-
tion. Finally, imagine that there’s a worldwide franchise operation, a “Dunkin’ Data” of
sorts, that manages copyright issues and micropayments. Now imagine developing such a
system before the Internet, before the word processor, before the personal computer, and
when the GOTO statement was not yet universally considered harmful. That was Xanadu.
“In Xanadu did Kubla Khan, A stately pleasure-dome decree….”

Xanadu was not, it should be noted, vaporware. A lot of labor went into its development;
its release date simply slipped, slipped, and slipped into the indefinite future. Xanadu’s
legacy has both positive and negative aspects. On the bright side, Xanadu was the con-
ceptual pioneer for software that implemented the standard bibliographic model. It set

The Semantic Web for Information Owners

CHAPTER 24
1041

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

29 0672323419 CH24 3/15/04 11:33 AM Page 1041

the bar, at least conceptually, for all subsequent hypertext systems, including the
Semantic Web. Furthermore, if Xanadu didn’t have all the answers, at least it posed many
of the questions that still vex us today: How do we handle rights in an electronic publish-
ing environment? How do we manage links, in particular when the endpoints of the link
may change or vanish? How do we address into multiple data formats? None of these
questions have definitive answers today. It may be a miracle that the Web works without
solving any of these posers. However, it is likely that at least one of the questions—How
do we handle rights in a global electronic publishing environment?—will have to be
answered before the Semantic Web can reach its “full potential.” (Semantics, after all, are
a form of intellectual property.)

Xanadu also pointed out a major pitfall that other hypertext systems avoided. Xanadu
was conceived as a complete business system; it was to be franchised. Subsequent
attempts to implement the standard bibliographic model avoided this pitfall. Both
HyTime (discussed later) and Web specifications generally are open and public docu-
ments that any business may take advantage of for free. Furthermore, many of the foun-
dational technologies of the Web are open sourced. Therefore, Xanadu’s franchise
business model seems to be an evolutionary dead end.

The Semantic Web

PART IV
1042

Note

Here is the Xanadu web site:

http://www.xanadu.com

This is quite an irony, because the remaining cadre of Xanadu true believers
regards the Web as irremediably broken.

Here’s a Web site for a program that uses Xanadu-style links:

http://www.gzigzag.org/

HyTime
HyTime (ISO 10744) implemented the bibliographic model (find anything, anywhere)
on the scale suitable for extremely large information owners (such as government agen-
cies and manufacturing concerns). Because its addressing model enables the addressing
of arbitrary chunks of information and their presentation in arbitrary order, it is also a
hypertext system.

29 0672323419 CH24 3/15/04 11:33 AM Page 1042

HyTime is the oft-unacknowledged intellectual precursor of at least three of the founda-
tional technologies of the Semantic Web shown in this chapter and in Chapter 23. It built
the foundation for links as information overlays, used graphs as a data model, and
enabled semantic links.

First, HyTime was the first markup technology to treat links as an information overlay
and to advocate that they be separately stored, rather than embedded within their source
or target documents (as in HTML a elements). We see this architectural decision carried
through in the W3C XLink, XPointer, and XPath specifications (covered elsewhere in
this book). This architecture is also used both by RDF and the XTM effort (XML Topic
Maps, covered later in this chapter), both of which specify lightweight information over-
lays above sets of resources, rather than being embedded within the resources.

Second, HyTime was the first markup technology to use graphs as a data model. (The
graph data model of RDF, and graphs generally, are discussed in Chapter 23.) This was
the famous Grove Paradigm, where Grove stands for Graph Representation of Property
Values. HyTime faced the problem of addressing into representations of data structures in
many formats, not just XML, and without being dependent on any particular program-
ming paradigm (such as object orientation). As it turned out, the formal properties of
graphs were fit for the purpose of representing most data structures. SGML and HyTime
itself were described using Groves, and techniques were developed to describe other data
formats. Both RDF and XTM topic maps faced the problem of representing a data model
for their interchange syntax (or, in the case of RDF, syntaxes) and adopted a graph for-
malism for the same reason.

Third, HyTime was the first markup technology to implement semantic links—links
where the semantics of the link endpoints could be more sophisticated and explicit than
the simple and implicit “source” and “target” semantics of vanilla HTML. Here again
there is a clean line of inheritance to W3C specifications through XLink, but the RDF
statement can be perceived as nothing but a semantic link with three endpoints: the sub-
ject, the object, and the predicate.

HyTime is sometimes reviled for being too big and too complicated. It is certainly not in
the mainstream of Web development. However, where the problems are big and complex,
HyTime still finds a ready welcome, particularly in truly humongous technical documen-
tation projects for aircraft and/or weapons systems, where its stability, power, and robust-
ness really shine. For example, both the European and U.S. standards for Interactive
Electronic Technical Manuals (IETMs) are specified in HyTime.

The Semantic Web for Information Owners

CHAPTER 24
1043

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

29 0672323419 CH24 3/15/04 11:33 AM Page 1043

Architecture of the Semantic Web
W3C has described a seven-layer architecture for the Semantic Web, from the bottom
to the top:

• Unicode and URIs

• XML, XML Schema, and XML Namespaces

• RDF, RDF Schema, and Topic Maps

• Ontologies

• Logic

• Proof

• Trust

As you can see, these layers move from the very concrete to the abstract, even ethereal.
Most people have seen a URI (layer 1), but few (maybe none) have thought through what
trust might mean, let alone how it might be specified so that it can be processed by
machines. The bottom three layers are well specified enough that some issues can be
raised with them—particularly at the interfaces of the layers. The top four layers are (like
our elephant) very much under construction. This section describes the seven layers.
Needless to say, there is a lot more detail in the concrete layers than in the blue-sky
thinking at the top.

The Semantic Web

PART IV
1044

Note

Here is the Web site for the HyTime specification:

http://www.ornl.gov/sgml/wg8/docs/n1920/html/n1920.html

Here is a reader’s guide to the standard:

http://www.hytime.org/papers/htguide.html

Here is the Web site for AECMA 100D, an IETM that uses HyTime constructs:

http://www.aecma.org/Publications/Spec1000d/1000d.htm

Note

Here is a Web site that illustrates the seven layers of the Semantic Web:

http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

29 0672323419 CH24 3/15/04 11:33 AM Page 1044

Unicode and URIs
At the lowest layer of the Semantic Web are specifications for the characters used by
documents on the Semantic Web (Unicode) and for identifying documents (URIs).
Because URIs are made from characters, we’ll look at characters first.

Unicode
In the beginning, there was ASCII, and that was good. When the World Wide Web
was starting out, that is. The original HTML specifications used the SGML Reference
Concrete Syntax, which boiled down to using ASCII (the American Standard Code
for Information Interchange), and the browser manufacturers followed along. They
used the SGML entity facility to map characters that were not included in the ASCII
character set, such as curly quotes, bullets, and so forth, using (whether or not they
knew it) the famous ISO entity sets with which so many consultants were able to pad
their deliverables.

ASCII was good because it was a very successful standard (or vice versa). It was
totally transparent and portable—as long as you used the Western European alphabet
nd didn’t need any accented characters. If you needed accents (in French, for example)
or Cyrillic, Greek, or Hebrew characters, then the SGML entity system became more
than a little verbose. (Imagine using β whenever you wanted to write � throughout
an entire document!) However, if you used a nonalphabetic writing system, ASCII was
totally unhelpful.

Enter Asian character sets, which are often nonalphabetic and run to many thousands of
characters. After all, WWW doesn’t stand for Western-European Wide Web—it stands for
World Wide Web. What to do?

The answer was to build a bigger code space. ASCII, at maximum, provides for 256
characters—barely enough for English, and far too few for even one Asian character set,
and absurdly small when Chinese, Japanese, Hangul, Thai, their many historical varia-
tions, as well as all the other Asian characters sets (including Khmer and Vietnamese) are
taken into account.

Unicode built the bigger code space. (One reason for XML’s worldwide success is that it
uses Unicode in the form of UTF-8.) Unicode is, essentially, a giant code table. It maps
characters, which are abstract entities (such as “LATIN CHARACTER CAPITAL A,” a
Japanese Hiragana syllable, or a Chinese ideogram), to code points, which are unique
numeric values (“U+0041” for Latin “A”), to byte serializations or encodings. Rendering
engines, in turn, map byte serializations to visual representations of characters (such as
capital “A” in the font Garamond), called glyphs. Unicode does not standardize glyphs.

The Semantic Web for Information Owners

CHAPTER 24
1045

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

29 0672323419 CH24 3/15/04 11:33 AM Page 1045

There are three Unicode encodings: UTF-32, with one 32-bit code unit per one code
point; UTF-16, with one or two 16-bit code units per code point; and UTF-8, with
one to four 8-bit code units per code point. UTF-8 is the subset of Unicode in which
XML documents are encoded. It aims to preserve the characteristics of ASCII so that
file systems, parsers, and other software that rely on ASCII remain backward compatible
with Unicode.

As already mentioned, Unicode is required by XML. Other languages and specifications
that require Unicode are Java, ECMAScript (JavaScript), LDAP, and CORBA 3.0.
Companies that have adopted Unicode include Apple, HP, IBM, Microsoft, Oracle, SAP,
Sun, Sybase, Unisys, and other industry leaders. It is supported in all modern browsers,
numerous products, and most operating systems. Therefore, if you’re a developer writing
on a platform that doesn’t handle Unicode or an information owner making the assump-
tion that all characters are ASCII, take a hard look at your assumptions. Importantly,
Unicode “guarantees” that no characters will be removed or reinterpreted in ways that
are incompatible with the existing standard.

Up until now, we’ve been using the word Unicode for the standard that solves our code
space problem. In fact, there are two standards:

• Unicode

• ISO 10646

Unicode is a semicommercial effort; ISO 10646 is an international standard. Fortunately,
in 1991 both efforts decided that the world didn’t need two competing solutions for the
code space problem and agreed to keep their code tables in sync with each other and
coordinate future extensions. They have kept their agreement. All characters are at the
same positions in the code tables and have the same names in Unicode and ISO 10646.

Are there differences between Unicode and ISO 10646? Yes. ISO 10646 is focused
mainly on its code tables. Unicode also gives information relevant to implementers, par-
ticularly for implementers of high-end composition systems. It provides rendering algo-
rithms for scripts (such as Arabic), mixing bidirectional text (such as Latin left-to-right
text and Hebrew right-to-left text), sorting and string comparisons, and so forth.
However, ISO 10646 has more complete coverage of Chinese, Japanese, and Korean
sample glyphs.

Are there differences between Unicode and ISO 10646 that affect the Semantic Web
directly? Again, yes, and again the answer turns on code space.

The Semantic Web

PART IV
1046

29 0672323419 CH24 3/15/04 11:33 AM Page 1046

First, there are some differences between the XML view of the world at W3C and
the Unicode view of the world. For example, W3C does not consider some Unicode
characters suitable for XML. W3C feels it is better to use the HTML
 tag or some
other markup equivalent than to use Unicode line and paragraph separators. Other issues
arise when Unicode characters are specified to handle functions that are handled, or bet-
ter handled, by markup. Examples here include list item marker characters (better han-
dled with a style sheet), bidirectional text (specified in HTML 4.0), object replacement
(better handled with an HTML src attribute or equivalent), and others.

The Semantic Web for Information Owners

CHAPTER 24
1047

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

Note

Here’s the W3C site for XML and Unicode issues:

http://www.w3.org/TR/unicode-xml/

Potential users of Unicode also have issues with it, especially Chinese/Japanese/Korean/
Vietnamese (CKJV) users. Character set issues in general, and East Asian character
sets in particular, are extremely intricate and culturally bound. (There is one, possibly
apocryphal, story of country representatives feuding over whom would be “first” in
the code table.)

Some CKJV issues are process issues. Due to the large number of Asian character
sets, and the huge numbers of ideographs within each set, some sets and Unicode
does not cover many characters. Unicode 3.0 has almost 28,000 ideographic charac-
ters. However, by some estimates, there are 160,000 ideographs yet to be standard-
ized. Even if this estimate is high, given that the Unicode process, like any standards
process, is by nature slow, some CKJV users are bound to remain skeptical of
Unicode for some time.

Some of these skeptics will, of course, be classical scholars who study works that
use characters or character sets that are no longer widely used. However, here we
should consider that these works may have great cultural significance. How would
English writers and speakers feel if the Unicode process had not yet standardized
on the characters used to represent the works of Shakespeare or the New Testa-
ment in Greek?

29 0672323419 CH24 3/15/04 11:33 AM Page 1047

URIs
Unicode is the first part of level 1 of the Semantic Web; the URI is the second part. Now,
URIs are made out of characters, so the issues of internationalizing character sets, as we
just discussed, potentially impact URI interoperability. Furthermore, URIs pose interest-
ing technical and philosophical issues in their own right (known as the identification
problem). So, let’s look at URIs and their impact on the Semantic Web in detail.

On the second day, Tim Berners-Lee created the Uniform Resource Locator (URL). It,
too, was good. Having in mind the overarching goal of creating a system whereby scien-
tists could communicate their results, he sought to create an addressing system that could
be scribbled on a cocktail napkin in a bar; in this he succeeded. URLs are definitely

The Semantic Web

PART IV
1048

Note

Here are the Web sites for Unicode, ISO 10646-1, and the Internet Engineering
Task Force (IETF), respectively:

http://www.unicode.org/

http://www.iso.ch

http://www.ietf.org/rfc/rfc2279.txt

The normative editions of Unicode and ISO 10646 (http://www.iso.org) are
available in book form:

• The Unicode Consortium (Editor). The Unicode Standard, Version 3.0.
Addison-Wesley, 2000.

• ISO/IEC 10646-1:2000, Information Technology—Universal Multiple-Octet
Coded Character Set (UCS)—Part 1: Architecture and Basic Multilingual
Plane.

• ISO/IEC 10646-2:2001, Information Technology—Universal Multiple-Octet
Coded Character Set (UCS)—Part 2: Supplementary Planes. (Available in
English only.)

Here is where to find information on UTF-8:

• The Unicode Standard, Chapter 8

• ISO 10646, Annex D

• http://www.ietf.org/rfc/rfc2279.txt

Hobbits, elves, dwarves, and wizards may be interested in the following tongue-
in-cheek proposal to put J.R.R. Tolkien’s Tengwar character set into Unicode:

http://anubis.dkuug.dk/jtc1/sc2/wg2/docs/n1641/n1641.htm

29 0672323419 CH24 3/15/04 11:33 AM Page 1048

human readable, as opposed to the multiline incantations and arcane sequences of digits
that preceded the URL.

Let’s process a URL, just to get the terminology clear. Here is a sample (fake) URL:

http://jane.books.com/hardbacks/chinese

If you typed this into your browser (and the URL weren’t fake) here is what would hap-
pen: The browser would divide the URL into scheme, domain name, and path name, and
then resolve the result.

First, the browser would split the URL on the scheme (before the :// part). That scheme
tells the browser how and to whom to delegate locating a resource. (This “how and to
whom” is called a transfer protocol; HTTP is an example.) Next, the browser looks for a
“top-level domain” in the URL (here, .com) and, reading backwards, passes the domain
name jane.books.com to a Domain Name System (DNS) router, which interprets the
string and connects the browser to the jane.books.com server. Finally, Jane’s server
resolves the remaining path name into a Web page, and returns that document to the
browser, which displays it.

So far, so good. The URL certainly works. But today, we have transitioned from the
notion of a URL that locates to a URI that identifies, and in that transition some prob-
lems have arisen:

• The internationalization problem (a scalability problem)

• The privatization problem (a scalability problem)

• The terminology problem (a semantic problem)

• The identity problem (a semantic problem)

Let’s turn to the internationalization problem first. Again, character set issues raise their
ugly heads. On the one hand, URIs are to be 7-bit ASCII (as specified in RFC 2396). On
the other hand, we have URIs embedded in XML documents that not only are UTF-8
Unicode but may contain XML general entities such as &. What to do? The answer:
Perform a mini data conversion effort on-the-fly in the browser, in which the general
entities in the URL sequence are converted to Unicode characters, and the resulting

The Semantic Web for Information Owners

CHAPTER 24
1049

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

29 0672323419 CH24 3/15/04 11:33 AM Page 1049

sequence is converted to UTF-8. In that sequence, each UTF-8 character is used if it cor-
responds to a 7-bit ASCII character. Otherwise, it is escaped into hex, and written like
%hh, where h is one of the two 7-bit ASCII characters making the hexadecimal number in
the Unicode code table for the desired character in UTF-8.

In this process, the original use-case behind URLs—human readability—has been left far
behind. A netizen in the world’s largest emerging market and oldest continuous commer-
cial civilization (that is, a Chinese person) who wished to scribble a URI on a cocktail
napkin would see nothing but a morass of percent signs (even assuming that all his char-
acters were in UTF-8)! Furthermore, if he wanted to use his URI for marketing and print
it on a billboard (like Western firms do), which version of his URL would he use? The
one in the characters his customers could read, or the one that they saw in the browser’s
address box after conversion to UTF-8? Our Chinese netizen can’t use his own character
set for his own URI! This is the internationalization problem for URLs in a nutshell.

Enter the second problem: the privatization problem. Because there is a market for inter-
nationalized domain names, at least one registry service (a service that ensures the
uniqueness and hence the value of domain names as assets) has opened an international-
ized domain service intended to “catalyze” the work of the Internet Engineering Task
Force (IETF) in writing the specifications for internationalized domain names. Well and
good, but what will happen if the catalysis fails? Will the registries decide to deny their
customers services, or will they fragment the World Wide Web by introducing domain
names that are not universally resolvable?

These problems would seem simple enough to resolve, at least in theory (just like
Unicode—make a bigger name space). Enter problem three: Not all the people who are
charged with resolving these problems use the same terminology. One key nonstandard-
ized piece of terminology, at least in the world of URIs, is the term URI reference.

Recall from earlier the sample URI

http://jane.books.com/hardbacks/chinese

which addresses an entire document. What if we only want to address a fragment of that
document? We would use a URI reference, which would look like this:

http://jane.books.com/hardbacks/chinese#id42

Here, id42, in an XML document, would be the ID of an XML element, or fragment
identifier. However, although the W3C world uses the term URI reference in RDF for the
combination of a URI and a fragment identifier, this term is not recognized in the IETF
world where URIs are defined. The impact? Think back to internationalization for a

The Semantic Web

PART IV
1050

29 0672323419 CH24 3/15/04 11:33 AM Page 1050

moment—URIs, being in the scope of IETF efforts, are 7-bit ASCII, but fragment
identifiers, being outside IETF, are not! Our Chinese entrepreneur, still trying to write
a legal URI reference on his dampening cocktail napkin, would end up with percent
signs everywhere up to the hash mark, and then nice, readable (to him) characters after
the hash mark.

The Semantic Web for Information Owners

CHAPTER 24
1051

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

Caution

As of this writing, neither W3C nor IETF has decided how one recognizes ID
attributes in a well-formed XML document that lacks a DTD or W3C schema to
define the attributes that have values of type ID.

Finally, we have the identity problem. Between the original definition of URLs in RFC
1630 and their standardization in RDF 2396, URLs became a subset of URIs; what was
location became a subset of identification. But what is it, exactly, that URIs identify?

Now, the change to URIs was motivated by the perfectly reasonable desire to solve the
huge infrastructure problem that locations on the Web, like it or not, change. If the path
name portion of the URL represents a real path to a real document on a real machine, the
URL will break if the document is renamed or moved, if the machine gets a new domain
name, or if the machine is down. The concept of a URI introduced a level of indirection,
in that the identifier may remain stable, even if the path name of the document (its loca-
tion) changes. Of course, it turns out that most of this indirection can be managed at the
file-system level by the server, and so URI, which was supposed to turn into an umbrella
concept for other UR*s, such as URC (Uniform Resource Citation) and URN (Uniform
Resource Name), really turned into a fancier name for a URL.

However, there is a crucial semantic difference between a URL and a URI. Because the
conceptual association between the URI and a physical file has been severed, the URI
became free to identify anything, including resources that are not available on the Net,
such as physical books, the person Jane, and abstract ideas. RDF uses URI references in
just this way (see Chapter 23).

However, let’s put ourselves in the place of a browser and server once more. When
we-the-browser are given a URI reference, how do we know, from the URI alone
(which is all we do know about) whether the URI is a document to display or an identifi-
cation of a nonretrievable resource such as the person Jane or the concept of love? Using
the HTTP protocol, how do we-the-server distinguish between a URI that identifies the
person Jane and an Error 404? In Zen terms, how do we distinguish the pointing finger
from the moon?

29 0672323419 CH24 3/15/04 11:33 AM Page 1051

The answer is that now we can’t. As of this writing, there is no standard way to distin-
guish between URIs that have failed to retrieve resources and URIs that are not meant to
retrieve resources at all. Today, the Semantic Web suffers from one of the most basic
confusions possible: between the identity of a thing and the thing itself. There are at least
two alternative solutions: URIs could change to include such a semantic, and the seman-
tic could be handled at a higher layer above URIs.

The Semantic Web

PART IV
1052

Note

Here are the Web sites for the URI specifications:

http://www.ietf.org/rfc/rfc1630.txt

http://www.ietf.org/rfc/rfc2396.txt

Here is a Web site that provides design guidelines for URIs:

http://www.w3.org/Provider/Style/URI.html

Here is a Web site on issues of identity on the Semantic Web:

http://www.w3.org/2001/03/identification-problem/

XML Specifications
XML, XML namespaces, and XML Schema are covered elsewhere in this book. In this
section, we will focus on one XML specification, XML Topic Maps (XTM), that
addresses the issues that bubble up to the middle layers of the Semantic Web architecture
from the Unicode and URI layers. As you’ll recall, two of those issues are international-
ization and identity.

First, we’ll briefly describe XTM topic maps. Then we’ll compare and contrast the topic
approach to the problem with the RDF approach.

Note

Here are the Web sites for the topic map specifications:

http://www.topicmaps.org (for the XTM specification)

http://www.topicmaps.net (for the data model)

The ISO standard from which the XTM specification was derived can be
found here:

http://www.ornl.gov/sgml/sc34/document/0058.htm

Note that further work on the data model is proceeding under the aegis of ISO.

29 0672323419 CH24 3/15/04 11:33 AM Page 1052

Topic maps are a bibliographic solution. They were originally designed to provide an
interchange syntax for finding aids such as indexes, thesauruses, glossaries, and tax-
onomies. Like most solutions that involve bibliographic issues (see the discussions of
DDC and AECMA 1000D), topic maps evolved into a solution for modeling relations
between information resources. Topic maps were evolved rapidly by the members of a
small team working closely together.

Topic maps create associations among topics, which are electronic proxies for subjects
(subjects being subject matter—stuff people talk about). Subjects can be addressable (a
Web page) or nonaddressable (the person Jane or the concept of love). Users are encour-
aged to develop and use Published Subject Indicators (PSIs) for their nonaddressable
subjects. Unlike RDF, the topic map data model has a number of “pre-reified” constructs
optimized for modeling; these constructs include the topic basename associations, where
a topic can be given a label within a scope.

Topic maps address the internationalization problem in a way that RDF labels and com-
ments do not. In topic maps, basenames that can be scoped by human languages are built
in to the data model. Therefore, a topic map information overlay can be adjusted to give
topics names that are appropriate to the user, whether the user’s preference is for English,
French, or Chinese. Because RDF labels and comments use the XML lang attribute,
which is not part of the RDF data model, RDF solutions must use ad-hoc solutions for a
function that topic maps build in.

Topic maps address the identity problem that bubbles up from URIs. RDF has no built-in
way to distinguish between resources that fail to be retrieved (such as a document on a
downed server) and resources that can never be retrieved (such as the concept love).
Topic maps, by explicitly distinguishing in their XML markup between addressable (that
is, retrievable) and nonaddressable subjects, solves the identity problem.

Ontology
Ontology (like semantics) is another one of those words that, having been appropriated
by the software community, has gained new meanings. In philosophy, ontology is the
study of being; a formal account of what exists. For the Web, ontology combines
taxonomy with inference rules. A taxonomy is a system that classifies things that
exist, often in the form of a tree. For example, the taxonomy of the animal kingdom
descends from order through kingdom, phylum, class, order, family, genus, and species.
Because animals are classified on the basis of their physical characteristics, we make
inferences: If all members of the genus fish have gills, and a trout is a fish, then trout
have gills.

The Semantic Web for Information Owners

CHAPTER 24
1053

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

29 0672323419 CH24 3/15/04 11:33 AM Page 1053

Ontologists also have a notion of an ontological commitment—that being the ontology
we choose to make the basis of our inferences. For example, assume we must choose
between a universe that is Euclidean, where the geometry of space is flat, and a universe
that is Riemannian, where it is curved. This ontological commitment will affect our
inferencing rules: If the universe is flat, parallel lines will never meet. If it is curved, par-
allel lines will meet.

Pragmatically, ontologies exist just so communities of interest can use them to share
commitments. A large part of the library community, for example, has made an ontologi-
cal commitment to the Dewey Decimal Classification (DDC).

However, the boundaries of the twin notions “taxonomy” and “inferencing rules” are just
a bit fuzzy. After all, a DTD could be seen as a classification system for element types in
markup languages, and a DTD enables inferencing rules for instances of those types in
its content models. Even a URI can be viewed as a taxonomy of URLs, URCs, URNs,
and so forth.

Fortunately, the W3C has formed an ontology working group, so we may hope for a
more precise approach. This will be necessary for the Semantic Web, because without
ontologies to allow communities of interest to agree formally on the meaning of XML
namespaces, there is no possibility of creating meaning that machines can understand,
because the predicates of RDF statements are implemented with namespaces.

The Semantic Web

PART IV
1054

Note

Here’s the home page of the newly charted W3C ontology working group:

http://www.w3.org/2001/sw/WebOnt/

There are many existing ontologies the Semantic Web could leverage. Two of the most
important are DDC and MeSH (Medical Subject Headings). There are also many meta-
ontologies: ontology languages to create ontologies. Three of the most important are
Cyc, Conceptual Graphs, and OIL. Let’s look at these ontologies in detail. Next, we’ll
look at the meta-ontologies.

DDC
DDC is the numerical classification scheme that one sees on the spines of paper books
in libraries. Of course, because DDC classifies the content of books, it could just as well
be used online—for example, as an ontology in the Semantic Web.

29 0672323419 CH24 3/15/04 11:33 AM Page 1054

Devised by Melvil Dewey in 1873, DDC uses a taxonomy of Arabic numerals separated
by dots to create classifications based on subject matter. For example, 500 represents nat-
ural sciences and mathematics in general, 530 represents physics, and 531 classical
mechanics. (The addressing system of the HyTime-compliant specification AECMA
1000D uses the same numbering principles, but for a taxonomy of part-whole relation-
ships for aircraft assemblies and subassemblies.)

An interesting artifact of the numbering systems are that short numbers are higher in the
taxonomic hierarchy than long ones, because the more specific the subject matter, the
more digits are required to describe it. DDC therefore implies inferencing rules, as well
as a taxonomy, and is therefore a first-class ontology.

The Semantic Web for Information Owners

CHAPTER 24
1055

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

Note

Here is the Web site for DDC:
http://www.oclc.org/oclc/fp/index.htm

MeSH
MeSH is an ontology, too, but organized quite differently from DDC. It is a controlled
vocabulary thesaurus, where (as in the writer’s tool Roget’s) terms are associated with
links such as synonym, antonym, homonym, and so forth. (Chapter 23 shows how such
associations could be represented in RDF with the terms as nodes connected with
labeled arcs: True and false would be two words connected by an arc labeled “antonym,”
for example.)

MeSH terms can be organized both alphabetically and in a conceptual hierarchy. In the
former, ankle would follow anatomy; in the latter, ankle would be a narrower subject
under the broader subject anatomy. Therefore, there are multiple points of entry into the
MeSH ontology; this is a general characteristic of information overlays such as RDF and
topic maps. Like DDC, MeSH’s hierarchy implies inferencing rules, and MeSH is there-
fore a first-class ontology.

Conceptual Graphs
Conceptual Graphs (CG) is a language in which ontologies can be created. It uses graph
structures to express meaning in a way that humans can read and machines can process.
CGs are similar to RDF when considered as syntax, in that they can be represented both
graphically and textually. Here is an example of CG syntax in text form:

29 0672323419 CH24 3/15/04 11:33 AM Page 1055

[Go]-
(Agnt)->[Person: Joe]
(Dest)->[City: Manhattan]
(Inst)->[Train].

The words in square brackets ([Go])are concepts; the words in parentheses ((Dest)) are
relations. Arcs that connect relations to concepts are shown as arrows (->). The preced-
ing CG statement translates to “Joe is going to Manhattan by train.” The essential con-
cept—the verb—is [Go]; the individual [person: Joe] is an (Agent) that can perform
actions such as [Go]ing to the individual [City:Manhattan] in an (Inst)rumental rela-
tion with a [Train].

CG enables the definition of taxonomies in the form of relations between concepts. CG
also supports inferencing rules in the form of First Order Logic (FOL), which we will
briefly cover when we examine the next layer of the Semantic Web.

The Semantic Web

PART IV
1056

Note

Here is the Web site for CG:
http://users.bestweb.net/~sowa/cg/index.htm

Cyc
Cyc (pronounced psych), like CG, is an ontology and an ontology definition language,
but its approach is completely different. Cyc intends to realize the artificial intelligence
(AI) dream of enabling machines to use common-sense reasoning. However, instead of
working from the top down (the classical AI approach), with the hierarchy’s root and the
axioms for inferencing rules, Cyc works from the bottom up. The Cyc project collects
and formalizes common-sense rules (over one million so far) and allows common-sense
conclusions to emerge from the interactions between the rules.

For example, a common sense rule is, “If it rains, take an umbrella.” Or so it would
seem. In fact, this rule can be heavily qualified by contextual rules, which also need to
be entered. (For example, the rule presumes that the agent who may or may not take the
umbrella is sane, not dead, not quadriplegic, not on the planet Venus, and so on.)

Fortunately, after 17 years of development, enough rules have been collected to allow
Cyc to be productized and a significant portion of the rules base made public. It may be
that Semantic Web developers will consider that this particular wheel need not be rein-
vented; if so, they will find Murray Altheim’s XML version of Cyc a useful tool.

29 0672323419 CH24 3/15/04 11:33 AM Page 1056

OIL
Ontology Inferencing Layer (OIL) is our last ontology definition language. Rather than
create an FOL-enabled syntax from the top down (like CG) or a vast inferencing system
from the bottom up (like Cyc), OIL is a layer on top of the W3C RDF specification (see
Chapter 23).

OIL (not yet a W3C effort, although cited there inherits concepts from three communi-
ties. First, the AI community supplies OIL with the notion of “frames with slots,” or, in
object-oriented (OO) terms, with classes that have attributes. Second, the knowledge rep-
resentation community brings the notions of concepts and roles in description logic,
which OIL maps to the notions of classes and attributes, respectively. Description logic
(unlike the OO notation) has well-understood mathematical properties that enable infer-
encing rules. Finally, the markup technology community brings XML syntax and the
RDF modeling primitives (instanceOf and subClassOf). OIL extends RDF to create a
full-fledged modeling language.

Here is an example of OIL syntax:

class-def Book
slot-def Price
domain Product
class-def Janes Book
subclass-of Book
slot-constraint PublishedBy
has-value “Janes Publisher”

This is a typical OO class hierarchy. Because Jane’s book is a subclass of book, it inher-
its the properties of book (such as price). Whether the OO hierarchy is necessary or suffi-
cient to create an ontology seems an open question: neither CG nor Cyc are considered
OO technologies.

The Semantic Web for Information Owners

CHAPTER 24
1057

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

Note

Here’s the Web site for Cyc:

http://www.cyc.com

Murray Altheim has translated the Upper Cyc ontology into XML syntax using
XTM topic maps. Here is the site:

http://www.doctypes.org/cyc/cyc-xtm-20010227.html

29 0672323419 CH24 3/15/04 11:33 AM Page 1057

Logic
If RDF provides for a statement using a simple subject/object/predicate model, we can
think of First Order Logic (FOL) in the Logic layer as enhancing RDF statements with
richer syntax and more semantic power, within a world or universe of discourse specified
by the ontological commitments made in the Ontological layer. (If our ontological com-
mitment is to the DDC, we will reason from different premises than we would if our
commitment was to MeSH, Cyc, or DAML.)

FOL statements are richer syntactically than RDF statements because they can use con-
structs that are like natural language conjunctions (Boolean operators, such as “and”) and
demonstratives (variables, such as “this”). FOL statements are more powerful because
they can explicitly assert what is true—part or all of a world (the quantifiers, such as
“there exists”). Other forms of logic may coexist with FOL on the Logic layer of the
Semantic Web, but FOL provides a baseline functionality.

FOL typically uses a formal notation of its own (called Peano notation), but in this sec-
tion, for accessibility, we’ll just use English-like phrases in italic. For the existential
quantifier ∃ , for example, we will write the words there exists.

Briefly, here are the informal synthesis of the key concepts in FOL. We will elaborate the
statement “Roses are red” in our examples.

The following concepts are defined by the user:

• Constants. Individuals in the world (resources, such as “rose”).

• Functions. Mapping resource to resource (properties, such as
“color-of(rose) = red”).

• Relations. Mapping resources to truth values (true and false).

These concepts are supplied by FOL itself:

• Variable symbols. x and y.

• Boolean values. True and false.

• Conjunction. Rose is red, and violet is blue.

The Semantic Web

PART IV
1058

Note

Here is the Web site for OIL:

http://www.ontoknowledge.org/oil/

29 0672323419 CH24 3/15/04 11:33 AM Page 1058

• Disjunction. Rose is red, or rose is yellow.

• Negation. Rose is not blue.

• Inference. If rose is red, then violet is blue.

• Equivalence. Rose is red if and only if sugar is sweet.

There are two kinds of quantifiers:

• Universal. For all x.

• Existential. There is an x.

FOL also has assembly rules building up sentences from terms and atoms:

1. A term (denoting a resource) is a constant symbol, a variable symbol, or a function
of n terms.

2. An atom (which has a truth value) is either a relation of n terms or two atoms con-
nected with and or or.

3. A sentence is an atom, or, if S is a sentence and x is a variable, then a sentence is
preceded by an existential quantifier: There exists an x such that x is S. (Note that
the existential quantifier implicitly apples only within our world.)

A well-formed formula (WFF) is a sentence with all variables “bound” by universal or
existential quantifiers. For example, “There is a rose such that roses are red” has “rose”
as a universally quantified variable, but not “red.”

Notice that rules 1 through 3 are recursive: Terms are defined in terms of, well, terms,
atoms in terms of atoms, and sentences in terms of sentences. We’ll use this characteris-
tic to break the following example into its components.

Now, why on earth would these rules matter to the Semantic Web? Let’s take the sen-
tence with which we began this chapter:

Buy me a hard-cover copy of Jane’s book, in Chinese, if available for
less than $39.95.

This is a pretty complicated sentence, and a machine might well wish to break it down
into its component parts. Those parts turn out to be easily expressible in FOL.

First, let’s replace “Jane’s book” with the variable book and make that variable explicit
where the rules of English (unlike the rules of logic) allow it to be implicit:

Buy me a hard-cover copy of book, in Chinese, if book is available for
less than $39.95.

The Semantic Web for Information Owners

CHAPTER 24
1059

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

29 0672323419 CH24 3/15/04 11:33 AM Page 1059

Now, because the definition of “sentence” is recursive, let’s break this sentence down
into sentences. The English is deceptive—it looks like we are saying “There is a hard-
cover copy of book”, but, in fact, because we can’t buy the book if it doesn’t exist, we’ll
translate the phrase to a relation, because a relation has a truth value. We’ll also assign
each sentence to a constant:

A := book (hard-cover)

B := book (Chinese)

X := book (available)

Y := book (price, < $39.95)

Now, because sentences are atoms, and atoms can be connected with Booleans, we can
construct the following inference:

If ((A and B) and (X and Y)) then…

This means that we will purchase Jane’s book only if it is available, in Chinese, in a
hard-cover version, and at the right price. Notice that all the sentences can be easily rep-
resented by RDF statements (as shown in Chapter 23), but the FOL variables abstract
away from the RDF syntax, which shows the layered design of the Semantic Web in
action to a good effect.

But how to express the imperative “Buy me the book”? First, we need to make a
little more explicit what is implicit. How would we represent the purchase? With the
following sentence:

P := book (purchased)

Our sentence now reads like so:

If ((A and B) and (X and Y)) then P.

As it turns out, we have now represented a transaction in FOL. But as you know, an
entire transaction has a truth value, because it takes place in the time between the “if”
and “then”: The last copy of Jane’s book might be sold, in which case we would want to
roll back the credit card purchase statement in P. Can we represent this in FOL? For con-
venience, we would put our transaction sentence into a variable:

T := if ((A and B) and (X and Y)) then P.

However, all we really need to do is assert:

T

Why? A sentence is an atom, and atoms have truth values. Therefore, if T is true, our
Semantic Web–aware system should commit the transaction. Otherwise, it should not.

The Semantic Web

PART IV
1060

29 0672323419 CH24 3/15/04 11:33 AM Page 1060

Proof
The Logic layer provides a language for describing the truth or falsity of statements we
might make in a universe of discourse. But suppose we want to question the conclusions of
the Logic layer? We would get the Proof layer to expose the steps in the reasoning that led
the Logic layer to make the inference it did. For example, the truth of the FOL relation

Book (Chinese)

might be proved by exhibiting the value “Mandarin” in the book title’s XML lang
attribute.

The vision is that once an XML-based interchange syntax for proofs is developed,
Semantic Web users (whether machine or human) will begin to exchange proofs as well
as to mix and match them—and in a process akin to evolutionary programming, good
proofs will drive out bad ones.

If the Logic layer of the Semantic Web enters uncharted territory, the Proof layer enters
the whitespace on the map. There are no W3C specifications in process for it. The closest
implementation experiences to the Proof layer seem to fall into two disciplines:

• Formal methods for proving programs correct

• Automated theorem proving

Neither technology has gained broad acceptance, although both have been used with suc-
cess on extremely large-scale projects. Automated theorem proving is used in hardware
verification by chip manufacturers, for example.

The Semantic Web for Information Owners

CHAPTER 24
1061

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

Note

An excellent resource for understanding the mathematical background of the
technologies that enable the Semantic Web can be found at John Sowa’s site:

http://users.bestweb.net/~sowa/misc/mathw.htm

Note

Here’s a useful Web site on formal methods in software development:

http://www.afm.sbu.ac.uk/

Z (pronounced zed) is a well-known language for formal program specification
based on set theory and FOL. Here’s the Web site for Z:

http://www.afm.sbu.ac.uk/z/

29 0672323419 CH24 3/15/04 11:33 AM Page 1061

Trust
If the Proof layer enters the whitespace of the Semantic Web’s conceptual map, the Trust
layer is deep within it. Remember, again, that the Logic layer provides a language for
describing the truth or falsity about statements we might make in a universe of discourse.
Suppose, again, that we don’t trust the conclusions of the Logic layer, but we don’t have
the time or the inclination to run a proof. What to do? In the physical world, we might
ask a friend whose judgment we trust whether she trusts the Logic layer to come to the
right conclusion on the facts given to it. On the Semantic Web, we ask a network of
friends the same question. This is the notion of a “web of trust.”

The Semantic Web

PART IV
1062

Note

A site that shows the “web of trust” built by PGP (Pretty Good Privacy) users
who have exchanged digital signatures can be found here:

http://bcn.boulder.co.us/~neal/pgpstat/

The Annotea project enables any resource to be annotated with comments,
notes, reviews, warnings, cautions, notes, and so on in the form of an informa-
tion overlay. The Annotea project will innovate web-of-trust Semantic Web
applications by combining these annotations with XML digital signatures.

Here is the Web site for Annotea:
http://www.w3.org/2001/Annotea/

Digital Signatures

In the architecture of the Semantic Web, digital signatures are involved in the
RDF and RDF Schema, Ontology, Logic, and Proof layers. Digital signatures are
worthy of a book in their own right, so we will only briefly summarize them
here. Thinking back to the example of purchasing Jane’s book in Chinese, you
would probably want the following assurances:

• That the publisher to whom you sent the price of the book was the real
publisher and not some fly-by-night operation

• That the inferencing engine that told you the book was in pinyin was not
a hacker

• That the shipping arrangements were made with a reputable shipper

29 0672323419 CH24 3/15/04 11:33 AM Page 1062

How Do Semantics Get into the
Semantic Web?
No one would ever say that the Semantic Web is the world’s largest artificial intelligence
project—that would be political and marketing suicide. Nor would anyone ever point out
that when the AI bubble burst, a lot of its practitioners moved into the field of bibliogra-
phy, since bibliography involves building models of worlds, a project familiar to them,
because a world view is one thing an AI would need in its “mind” to be or at least seem,
well, “intelligent.” Nor that both RDF and topic maps have their roots in building biblio-
graphic worlds. Not even that many technologies in widespread use today (such as full-
text search and semantic networks) started out as pieces in the great AI puzzle. So I will
refrain from saying any of those things.

Nevertheless, I will say that the Semantic Web certainly partakes of the AI nature.
Let’s start with the notion that the fundamental value proposition of the Semantic Web
is a conversation. Why? Because that is what a collection of statements (the RDF

The Semantic Web for Information Owners

CHAPTER 24
1063

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

The problem is the same in each case: the publisher, inferencing engine, and
shipper need to be authenticated in some way. This is what digital signatures
do. They are encrypted chunks of data with which Semantic Web users can ver-
ify that information comes from a trusted source. I, for example, can sign all my
RDF statements with my signature so that people know these are my RDF state-
ments and only mine.

There are some beginnings of digital signatures today, in the form of Always
Trust Content check boxes from this or that manufacturer. in the web of trust,
levels of trust will be gradated, so we can give 100 percent of our trust to a few
friends in a web of trust, 1 percent of our trust to the statements of a denizen
of a chat room, and other levels in between.

Here is the W3C site for digital signatures:

http://www.w3.org/Signature/

This site lists current and past versions of proposals and software that conforms
to the specs.

Also, a wonderful science fiction novel on encryption issues, including digital
signatures, is Neal Stephenson’s Cryptonomicon (HarperCollins, 2000).

29 0672323419 CH24 3/15/04 11:33 AM Page 1063

subject/predicate/object structure, or the topic map association) can be. Let’s take our
book order example once more:

Buy me a hard-cover copy of Jane’s book, in Chinese, if available for less
than $39.95.

Remember that we translated this sentence into FOL, and you saw how a machine that
understands FOL (as represented in RDF, for example) could act upon that logic to pur-
chase Jane’s book. (Because accurate machine translation of idiomatic English is a long
way off, we’ll assume that the human user communicated to the machine through an
interface of some kind; for example, a GUI that assembles the FOL sentences, or an
Englishized version of FOL syntax that users can just type in.)

Now suppose one of the FOL relations, such as

Book (Chinese)

is not true. Now, the whole sentence is not true. What should the publisher do? One
option, of course, would be to roll back the transaction and tell the customer to come
back another day. A better option is for the publisher to have a smart Semantic
Web–based system with additional relations in it. For example,

script (Chinese, Traditional Characters)

script (Chinese, Simplified Characters)

where traditional characters are Chinese ideographs, and the simplified characters are
Chinese written using Latin characters, are both true. Therefore, when the original FOL
constant, Chinese, is replaced by the constant Traditional Characters or Simplified
Characters, the FOL statement representing the preconditions for the transaction becomes
true and the transaction can proceed—or rather, it could, if the user authorizes it. The
Semantic Web–based system tells the user the following information:

Your book is not available in Chinese.

Your book is available in Chinese traditional characters.

Your book is available in Chinese simplified characters.

The system displays the books, and the user can add the books to her shopping cart in
the usual way—or engage in further conversation with the system. (Topic maps have the
potential for exactly the same sort of human/machine interaction; because humans are
the ultimate arbiters of subject identity, any topic map system worth its salt must engage
in conversation with the user whenever issues of subject identity come into question.)

The key concept is conversation. The user has stated something to the machine, the
machine has responded to the user with more statements, and the cycle may persist

The Semantic Web

PART IV
1064

29 0672323419 CH24 3/15/04 11:33 AM Page 1064

indefinitely (like many conversations do). Naturally, I won’t remind you here of a classic
AI project, Eliza, where the machine imitated a not-very-insightful psychiatrist by pars-
ing the user’s input, transforming it, and writing it back out to the user.

User: I feel curiously oppressed, Doctor.

Eliza: Can you tell me what you mean by “oppressed”?

User: You’re the doctor, why don’t you tell me?

Eliza: Can you tell me what you mean by “why”?

And so on and so forth. Interestingly, some patients reported gaining relief from these
“conversations.” Most Eliza sites would be “sticky”—although a Freudian Eliza site,
where the analyst is expected to be entirely silent, probably would not be.

The Semantic Web for Information Owners

CHAPTER 24
1065

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

Note

Topic maps have a community of interest devoted to ideas of conversation as
applied to computer-assisted learning. Here’s a good Web site for ideas on this
subject:

http://www.thinkalong.com

And here’s a good Web site to see practice in this area:

http://www.CollegeUnits.com/courses.html

The latter site represents knowledge in the form of a graph structure, reminis-
cent both of the RDF and topic map data models, and of John Sowa’s concep-
tual graphs.

Now let’s put the notion of conversation on hold for just a moment and ask the seem-
ingly unrelated question, “What do we mean by semantic?” Some place semantics under
the curse of the S-words, where words such as syntax, semiotics, signify, sign (as well as
standard and specification) generate endless religious controversies about their true
meaning. I prefer to use the markup community’s definition of semantics:

Semantics is that upon which people do not agree.

Alternatively, one could use the programming community’s definition:

Semantics is that which enables my program.

Then again, one could use the layperson’s definition:

Semantics has to do with the meaning of words.

29 0672323419 CH24 3/15/04 11:33 AM Page 1065

Markup/people; programs/machines. The cultural (if not, necessarily) technical
dichotomies persist. The markup community’s definition can at least be operational. But
are there any factors that all the definitions have in common? Yes. It takes two to make
semantics. This is equivalent to Wittgenstein’s apothegm that there are no private lan-
guages. A word that I make up in my head, and use only in my head, can’t be said to
have meaning. It is also equivalent to saying that meaning, whatever it may be, can be
found in conversations. (If the patient’s conversations with Eliza had been without mean-
ing, doubtless no placebo effect would have occurred.)

This concept locates both meaning and semantics in the conversations occurring on the
Semantic Web; conversations over a network are what make the Web “semantic.” Now,
no one would ever say that this means that the Semantic Web, if successful, would be a
large-scale implementation of AI. That’s science fiction stuff, probably wrong, and cer-
tainly suicidal from a professional standpoint. So, I won’t say that the famous Turing
Test boils down to having a conversation, and if we can have conversations with
Semantic Web–enabled machines, then they (and we, for that matter) have passed the
Turing Test.

Granted, Turing’s imitation game is still pretty easy for a human to win; one simply
poses a question whose answer would be “obvious” to a human but not to a machine:
The conversation breaks down because the bounds of the machine’s microworld over-
flow, and the machine fails to imitate a human successfully. The way to avoid any thera-
peutic benefit from a conversation with Eliza is to feed Eliza gibberish. Garbage in,
garbage out applies to machines, although not necessarily to humans. And humans have
all kinds of garbage readily available for conversation, including lies, jokes, irony, para-
dox, rhetoric, and everything represented by the S-words.

Nevertheless, to say that the machines of the Semantic Web won’t be able to have every kind
of conversation with humans is not to say that their conversations with us (and with each
other) will not be meaningful, or that the Semantic Web fails the Turing Test definitively. (In
fact, I never said it took the test, because that would have involved mentioning AI.) After all,
there are people who cannot—cannot because their brain structure does not permit them to
do so—appreciate jokes, irony, paradox, or rhetoric. They might fail the Turing Test. Are
their conversations therefore not meaningful? Are they then not fully human?

The Semantic Web

PART IV
1066

Note

Alan Turing’s original article on the Turing Test (or the Imitation Game) can be
found at the following Web site:

http://cogprints.soton.ac.uk/abs/comp/199807017

29 0672323419 CH24 3/15/04 11:33 AM Page 1066

Summary
So, you’ve seen the historical precursors of the Semantic Web, each of which imple-
mented the standard bibliographic model: the doomed but valiant Project Xanadu as well
as the vilified but influential ISO standard HyTime.

We’ve looked at the seven layers in the Semantic Web. It’s more-fragile-than-we-think
foundations in URIs and Unicode, and the problems those foundational technologies
cause for higher layers, in terms of internationalization and identity. We’ve looked at
ontologies, where users select the vocabularies in which they will make ontological com-
mitments and converse with the Semantic Web. We’ve looked at how logic will deter-
mine the truth value of statements made using those vocabularies. We’ve seen how the
Proof layer will empower users to check the results of the Logic layer.

Finally, we’ve seen how humans (and machines) can build a web of trust so that the labo-
rious processes of logic and proof can be replaced with a little help from our friends—
machine or human. This is the conversation that humans and machines can have: the
Semantic Web.

The Semantic Web for Information Owners

CHAPTER 24
1067

24

S
EM

A
N

TIC
W

EB
FO

R
IN

FO
R

M
A

TIO
N

O
W

N
ER

S

For an interesting discussion of a highly intelligent human who might not play
the Imitation Game successfully, see Temple Grandin’s Thinking in Pictures and
Other Reports from My Life with Autism (Doubleday, 1995.)

Searle’s “Chinese Room Argument” is a refutation of the Turing Test:
http://www.cogsci.soton.ac.uk/bbs/Archive/bbs.searle2.html

29 0672323419 CH24 3/15/04 11:33 AM Page 1067

29 0672323419 CH24 3/15/04 11:33 AM Page 1068

Appendix
PART

V
IN THIS PART

A XML 1.0 Specification 1071

30 0672323419 Part 5 3/15/04 11:27 AM Page 1069

30 0672323419 Part 5 3/15/04 11:27 AM Page 1070

IN THIS APPENDIX
• Abstract 1073
• Status of This Document 1073
• Table of Contents 1074
• Appendices 1076
• 1 Introduction 1076
• 2 Documents 1079
• 3 Logical Structures 1091
• 4 Physical Structures 1102
• 5 Conformance 1115
• 6 Notation 1116
• A References 1118
• B Character Classes 1120
• C XML and SGML (Non-

Normative) 1125
• D Expansion of Entity and Character

References (Non-Normative) 1126
• E Deterministic Content Models

(Non-Normative) 1127
• F Autodetection of Character

Encodings (Non-Normative) 1128
• G W3C XML Working Group

(Non-Normative) 1131
• H W3C XML Core Group

(Non-Normative) 1131

• I Production Notes
(Non-Normative) 1132

A
A

PP
EN

D
IX

Extensible Markup
Language (XML) 1.0
(Second Edition)
Specification

31 0672323419 App A 3/15/04 11:28 AM Page 1071

This appendix is taken from the W3C Recommendation 6 October 2000 that is available
at http://www.w3.org/TR/REC-xml.

Copyright © 2000 W3C® (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.

Previous versions:

http://www.w3.org/TR/2000/WD-xml-2e-20000814

http://www.w3.org/TR/1998/REC-xml-19980210

Editors:

Tim Bray, Textuality and Netscape <tbray@textuality.com>

Jean Paoli, Microsoft <jeanpa@microsoft.com>

C. M. Sperberg-McQueen, University of Illinois at Chicago and Text Encoding Initiative
<cmsmcq@uic.edu>

Eve Maler, Sun Microsystems, Inc. <eve.maler@east.sun.com> - Second Edition

Copyright Notice

No right to create modifications or derivatives of W3C documents is granted pursuant to
this license. However, if additional requirements (documented in the Copyright FAQ) are
satisfied, the right to create modifications or derivatives is sometimes granted by the
W3C to individuals complying with those requirements.

THIS DOCUMENT IS PROVIDED “AS IS,” AND COPYRIGHT HOLDERS MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR
THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CON-
TENTS THEREOF.

Appendix

PART V
1072

31 0672323419 App A 3/15/04 11:28 AM Page 1072

The name and trademarks of copyright holders may NOT be used in advertising or pub-
licity pertaining to this document or its contents without specific, written prior permis-
sion. Title to copyright in this document will at all times remain with copyright holders.

Abstract
The Extensible Markup Language (XML) is a subset of SGML that is completely
described in this document. Its goal is to enable generic SGML to be served, received,
and processed on the Web in the way that is now possible with HTML. XML has been
designed for ease of implementation and for interoperability with both SGML and
HTML.

Status of This Document
This document has been reviewed by W3C Members and other interested parties and has
been endorsed by the Director as a W3C Recommendation. It is a stable document and
may be used as reference material or cited as a normative reference from another docu-
ment. W3C’s role in making the Recommendation is to draw attention to the specifica-
tion and to promote its widespread deployment. This enhances the functionality and
interoperability of the Web.

This document specifies a syntax created by subsetting an existing, widely used interna-
tional text processing standard (Standard Generalized Markup Language, ISO 8879:1986
as amended and corrected) for use on the World Wide Web. It is a product of the W3C
XML Activity, details of which can be found at http://www.w3.org/XML. The English
version of this specification is the only normative version. However, for translations of
this document, see http://www.w3.org/XML/#trans. A list of current W3C
Recommendations and other technical documents can be found at
http://www.w3.org/TR.

This second edition is not a new version of XML (first published 10 February 1998); it
merely incorporates the changes dictated by the first-edition errata (available at
http://www.w3.org/XML/xml-19980210-errata) as a convenience to readers. The errata
list for this second edition is available at http://www.w3.org/XML/xml-V10-2e-errata.

Please report errors in this document to xml-editor@w3.org; archives are available.

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1073

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1073

Table of Contents
1 Introduction

1.1 Origin and Goals

1.2 Terminology

2 Documents

2.1 Well-Formed XML Documents

2.2 Characters

2.3 Common Syntactic Constructs

2.4 Character Data and Markup

2.5 Comments

2.6 Processing Instructions

2.7 CDATA Sections

2.8 Prolog and Document Type Declaration

2.9 Standalone Document Declaration

2.10 White Space Handling

2.11 End-of-Line Handling

2.12 Language Identification

3 Logical Structures

3.1 Start-Tags, End-Tags, and Empty-Element Tags

3.2 Element Type Declarations

3.2.1 Element Content

3.2.2 Mixed Content

Appendix

PART V
1074

Note

C. M. Sperberg-McQueen’s affiliation has changed since the publication of the
first edition. He is now at the World Wide Web Consortium, and can be con-
tacted at cmsmcq@w3.org.

31 0672323419 App A 3/15/04 11:28 AM Page 1074

3.3 Attribute-List Declarations

3.3.1 Attribute Types

3.3.2 Attribute Defaults

3.3.3 Attribute-Value Normalization

3.4 Conditional Sections

4 Physical Structures

4.1 Character and Entity References

4.2 Entity Declarations

4.2.1 Internal Entities

4.2.2 External Entities

4.3 Parsed Entities

4.3.1 The Text Declaration

4.3.2 Well-Formed Parsed Entities

4.3.3 Character Encoding in Entities

4.4 XML Processor Treatment of Entities and References

4.4.1 Not Recognized

4.4.2 Included

4.4.3 Included If Validating

4.4.4 Forbidden

4.4.5 Included in Literal

4.4.6 Notify

4.4.7 Bypassed

4.4.8 Included as PE

4.5 Construction of Internal Entity Replacement Text

4.6 Predefined Entities

4.7 Notation Declarations

4.8 Document Entity

5 Conformance

5.1 Validating and Non-Validating Processors

5.2 Using XML Processors

6 Notation

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1075

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1075

Appendices
A References

A.1 Normative References

A.2 Other References

B Character Classes

C XML and SGML (Non-Normative)

D Expansion of Entity and Character References (Non-Normative)

E Deterministic Content Models (Non-Normative)

F Autodetection of Character Encodings (Non-Normative)

F.1 Detection Without External Encoding Information

F.2 Priorities in the Presence of External Encoding Information

G W3C XML Working Group (Non-Normative)

H W3C XML Core Group (Non-Normative)

I Production Notes (Non-Normative)

1 Introduction
Extensible Markup Language, abbreviated XML, describes a class of data objects called
XML documents and partially describes the behavior of computer programs which
process them. XML is an application profile or restricted form of SGML, the Standard
Generalized Markup Language [ISO 8879]. By construction, XML documents are con-
forming SGML documents.

XML documents are made up of storage units called entities, which contain either parsed
or unparsed data. Parsed data is made up of characters, some of which form character
data, and some of which form markup. Markup encodes a description of the document’s
storage layout and logical structure. XML provides a mechanism to impose constraints
on the storage layout and logical structure.

[Definition: A software module called an XML processor is used to read XML docu-
ments and provide access to their content and structure.] [Definition: It is assumed that
an XML processor is doing its work on behalf of another module, called the application.]
This specification describes the required behavior of an XML processor in terms of how
it must read XML data and the information it must provide to the application.

Appendix

PART V
1076

31 0672323419 App A 3/15/04 11:28 AM Page 1076

1.1 Origin and Goals
XML was developed by an XML Working Group (originally known as the SGML
Editorial Review Board) formed under the auspices of the World Wide Web Consortium
(W3C) in 1996. It was chaired by Jon Bosak of Sun Microsystems with the active partic-
ipation of an XML Special Interest Group (previously known as the SGML Working
Group) also organized by the W3C. The membership of the XML Working Group is
given in an appendix. Dan Connolly served as the WG’s contact with the W3C.

The design goals for XML are:

• XML shall be straightforwardly usable over the Internet.

• XML shall support a wide variety of applications.

• XML shall be compatible with SGML.

• It shall be easy to write programs which process XML documents.

• The number of optional features in XML is to be kept to the absolute minimum,
ideally zero.

• XML documents should be human-legible and reasonably clear.

• The XML design should be prepared quickly.

• The design of XML shall be formal and concise.

• XML documents shall be easy to create.

• Terseness in XML markup is of minimal importance.

This specification, together with associated standards (Unicode and ISO/IEC 10646 for
characters, Internet RFC 1766 for language identification tags, ISO 639 for language
name codes, and ISO 3166 for country name codes), provides all the information neces-
sary to understand XML Version 1.0 and construct computer programs to process it.

This version of the XML specification may be distributed freely, as long as all text and
legal notices remain intact.

1.2 Terminology
The terminology used to describe XML documents is defined in the body of this specifi-
cation. The terms defined in the following list are used in building those definitions and
in describing the actions of an XML processor:

may

[Definition: Conforming documents and XML processors are permitted to but need not
behave as described.]

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1077

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1077

must

[Definition: Conforming documents and XML processors are required to behave as
described; otherwise they are in error.]

error

[Definition: A violation of the rules of this specification; results are undefined.
Conforming software may detect and report an error and may recover from it.]

fatal error

[Definition: An error which a conforming XML processor must detect and report to the
application. After encountering a fatal error, the processor may continue processing the
data to search for further errors and may report such errors to the application. In order to
support correction of errors, the processor may make unprocessed data from the docu-
ment (with intermingled character data and markup) available to the application. Once a
fatal error is detected, however, the processor must not continue normal processing (i.e.,
it must not continue to pass character data and information about the document’s logical
structure to the application in the normal way).]

at user option

[Definition: Conforming software may or must (depending on the modal verb in the sen-
tence) behave as described; if it does, it must provide users a means to enable or disable
the behavior described.]

validity constraint

[Definition: A rule which applies to all valid XML documents. Violations of validity con-
straints are errors; they must, at user option, be reported by validating XML processors.]

well-formedness constraint

[Definition: A rule which applies to all well-formed XML documents. Violations of well-
formedness constraints are fatal errors.]

match

[Definition: (Of strings or names:) Two strings or names being compared must be identi-
cal. Characters with multiple possible representations in ISO/IEC 10646 (e.g. characters
with both precomposed and base+diacritic forms) match only if they have the same repre-
sentation in both strings. No case folding is performed. (Of strings and rules in the gram-
mar:) A string matches a grammatical production if it belongs to the language generated
by that production. (Of content and content models:) An element matches its declaration
when it conforms in the fashion described in the constraint [VC: Element Valid].]

Appendix

PART V
1078

31 0672323419 App A 3/15/04 11:28 AM Page 1078

for compatibility

[Definition: Marks a sentence describing a feature of XML included solely to ensure that
XML remains compatible with SGML.]

for interoperability

[Definition: Marks a sentence describing a non-binding recommendation included to
increase the chances that XML documents can be processed by the existing installed
base of SGML processors which predate the WebSGML Adaptations Annex to ISO
8879.]

2 Documents
[Definition: A data object is an XML document if it is well-formed, as defined in this
specification. A well-formed XML document may in addition be valid if it meets certain
further constraints.]

Each XML document has both a logical and a physical structure. Physically, the docu-
ment is composed of units called entities. An entity may refer to other entities to cause
their inclusion in the document. A document begins in a “root” or document entity.
Logically, the document is composed of declarations, elements, comments, character ref-
erences, and processing instructions, all of which are indicated in the document by
explicit markup. The logical and physical structures must nest properly, as described in
4.3.2 Well-Formed Parsed Entities.

2.1 Well-Formed XML Documents
[Definition: A textual object is a well-formed XML document if:]

• Taken as a whole, it matches the production labeled document.

• It meets all the well-formedness constraints given in this specification.

• Each of the parsed entities which is referenced directly or indirectly within the
document is well-formed.

Document

[1] document ::= prolog element Misc*

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1079

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1079

Matching the document production implies that:

• It contains one or more elements.

• [Definition: There is exactly one element, called the root, or document element, no
part of which appears in the content of any other element.] For all other elements,
if the start-tag is in the content of another element, the end-tag is in the content of
the same element. More simply stated, the elements, delimited by start- and end-
tags, nest properly within each other.

• [Definition: As a consequence of this, for each non-root element C in the docu-
ment, there is one other element P in the document such that C is in the content of
P, but is not in the content of any other element that is in the content of P. P is
referred to as the parent of C, and C as a child of P.]

2.2 Characters
[Definition: A parsed entity contains text, a sequence of characters, which may represent
markup or character data.] [Definition: A character is an atomic unit of text as specified
by ISO/IEC 10646 [ISO/IEC 10646] (see also [ISO/IEC 10646-2000]). Legal characters
are tab, carriage return, line feed, and the legal characters of Unicode and ISO/IEC
10646. The versions of these standards cited in A.1 Normative References were current
at the time this document was prepared. New characters may be added to these standards
by amendments or new editions. Consequently, XML processors must accept any charac-
ter in the range specified for Char. The use of “compatibility characters”, as defined in
section 6.8 of [Unicode] (see also D21 in section 3.6 of [Unicode3]), is discouraged.]

Character Range

[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] |
➥ [#x10000-#x10FFFF] /* any Unicode character, excluding the surrogate blocks,
FFFE, and FFFF. */

The mechanism for encoding character code points into bit patterns may vary from entity
to entity. All XML processors must accept the UTF-8 and UTF-16 encodings of 10646;
the mechanisms for signaling which of the two is in use, or for bringing other encodings
into play, are discussed later, in 4.3.3 Character Encoding in Entities.

2.3 Common Syntactic Constructs
This section defines some symbols used widely in the grammar.

S (white space) consists of one or more space (#x20) characters, carriage returns, line
feeds, or tabs.

Appendix

PART V
1080

31 0672323419 App A 3/15/04 11:28 AM Page 1080

White Space

[3] S ::= (#x20 | #x9 | #xD | #xA)+

Characters are classified for convenience as letters, digits, or other characters. A letter
consists of an alphabetic or syllabic base character or an ideographic character. Full defi-
nitions of the specific characters in each class are given in B Character Classes.

[Definition: A Name is a token beginning with a letter or one of a few punctuation char-
acters, and continuing with letters, digits, hyphens, underscores, colons, or full stops,
together known as name characters.] Names beginning with the string “xml”, or any
string which would match ((‘X’|’x’) (‘M’|’m’) (‘L’|’l’)), are reserved for standardization
in this or future versions of this specification.

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1081

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

Note

The Namespaces in XML Recommendation [XML Names] assigns a meaning to
names containing colon characters. Therefore, authors should not use the colon
in XML names except for namespace purposes, but XML processors must accept
the colon as a name character.

An Nmtoken (name token) is any mixture of name characters.

Names and Tokens

[4] NameChar ::= Letter | Digit | ‘.’ | ‘-’ | ‘_’ | ‘:’ | CombiningChar
➥ | Extender
[5] Name ::= (Letter | ‘_’ | ‘:’) (NameChar)*
[6] Names ::= Name (S Name)*
[7] Nmtoken ::= (NameChar)+
[8] Nmtokens ::= Nmtoken (S Nmtoken)*

Literal data is any quoted string not containing the quotation mark used as a delimiter for
that string. Literals are used for specifying the content of internal entities (EntityValue),
the values of attributes (AttValue), and external identifiers (SystemLiteral). Note that a
SystemLiteral can be parsed without scanning for markup.

Literals

[9] EntityValue ::= ‘“‘ ([^%&”] | PEReference | Reference)* ‘“‘
➥ | “‘“ ([^%&’] | PEReference | Reference)* “‘“
[10] AttValue ::= ‘“‘ ([^<&”] | Reference)* ‘“‘
| “‘“ ([^<&’] | Reference)* “‘“

31 0672323419 App A 3/15/04 11:28 AM Page 1081

[11] SystemLiteral ::= (‘“‘ [^”]* ‘“‘) | (“‘“ [^’]* “‘“)
[12] PubidLiteral ::= ‘“‘ PubidChar* ‘“‘ | “‘“ (PubidChar - “‘“)* “‘“
[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] | [-
➥ ’()+,./:=?;!*#@$_%]

Appendix

PART V
1082

Note

Although the EntityValue production allows the definition of an entity consist-
ing of a single explicit < in the literal (e.g., <!ENTITY mylt “<”>), it is strongly
advised to avoid this practice since any reference to that entity will cause a well-
formedness error.

2.4 Character Data and Markup
Text consists of intermingled character data and markup. [Definition: Markup takes the
form of start-tags, end-tags, empty-element tags, entity references, character references,
comments, CDATA section delimiters, document type declarations, processing instruc-
tions, XML declarations, text declarations, and any white space that is at the top level of
the document entity (that is, outside the document element and not inside any other
markup).]

[Definition: All text that is not markup constitutes the character data of the document.]

The ampersand character (&) and the left angle bracket (<) may appear in their literal
form only when used as markup delimiters, or within a comment, a processing instruc-
tion, or a CDATA section. If they are needed elsewhere, they must be escaped using
either numeric character references or the strings “&” and “<” respectively. The
right angle bracket (>) may be represented using the string “>”, and must, for com-
patibility, be escaped using “>” or a character reference when it appears in the string
“]]>” in content, when that string is not marking the end of a CDATA section.

In the content of elements, character data is any string of characters which does not con-
tain the start-delimiter of any markup. In a CDATA section, character data is any string
of characters not including the CDATA-section-close delimiter, “]]>”.

To allow attribute values to contain both single and double quotes, the apostrophe or sin-
gle-quote character (‘) may be represented as “'”, and the double-quote character
(“) as “"”.

31 0672323419 App A 3/15/04 11:28 AM Page 1082

Character Data

[14] CharData ::= [^<&]* - ([^<&]* ‘]]>’ [^<&]*)

2.5 Comments
[Definition: Comments may appear anywhere in a document outside other markup; in
addition, they may appear within the document type declaration at places allowed by the
grammar. They are not part of the document’s character data; an XML processor may,
but need not, make it possible for an application to retrieve the text of comments. For
compatibility, the string “—” (double-hyphen) must not occur within comments.]
Parameter entity references are not recognized within comments.

Comments

[15] Comment ::= ‘<!--’ ((Char - ‘-’) | (‘-’ (Char - ‘-’)))* ‘-->’

An example of a comment:

<!-- declarations for <head> & <body> -->

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1083

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

Note

Note that the grammar does not allow a comment ending in —->. The follow-
ing example is not well-formed.

<!-- B+, B, or B--->

2.6 Processing Instructions
[Definition: Processing instructions (PIs) allow documents to contain instructions for
applications.]

Processing Instructions

[16] PI ::= ‘<?’ PITarget (S (Char* - (Char* ‘?>’ Char*)))? ‘?>’
[17] PITarget ::= Name - ((‘X’ | ‘x’) (‘M’ | ‘m’) (‘L’ | ‘l’))

PIs are not part of the document’s character data, but must be passed through to the
application. The PI begins with a target (PITarget) used to identify the application to
which the instruction is directed. The target names “XML”, “xml”, and so on are
reserved for standardization in this or future versions of this specification. The XML

31 0672323419 App A 3/15/04 11:28 AM Page 1083

Notation mechanism may be used for formal declaration of PI targets. Parameter entity
references are not recognized within processing instructions.

2.7 CDATA Sections
[Definition: CDATA sections may occur anywhere character data may occur; they are
used to escape blocks of text containing characters which would otherwise be recognized
as markup. CDATA sections begin with the string “<![CDATA[“ and end with the string
“]]>”:]

CDATA Sections

[18] CDSect ::= CDStart CData CDEnd
[19] CDStart ::= ‘<![CDATA[‘
[20] CData ::= (Char* - (Char* ‘]]>’ Char*))
[21] CDEnd ::= ‘]]>’

Within a CDATA section, only the CDEnd string is recognized as markup, so that left
angle brackets and ampersands may occur in their literal form; they need not (and can-
not) be escaped using “<” and “&”. CDATA sections cannot nest.

An example of a CDATA section, in which “<greeting>” and “</greeting>” are recog-
nized as character data, not markup:

<![CDATA[<greeting>Hello, world!</greeting>]]>

2.8 Prolog and Document Type Declaration
[Definition: XML documents should begin with an XML declaration which specifies the
version of XML being used.] For example, the following is a complete XML document,
well-formed but not valid:

<?xml version=”1.0”?> <greeting>Hello, world!</greeting>

and so is this:

<greeting>Hello, world!</greeting>

The version number “1.0” should be used to indicate conformance to this version of this
specification; it is an error for a document to use the value “1.0” if it does not conform to
this version of this specification. It is the intent of the XML working group to give later
versions of this specification numbers other than “1.0”, but this intent does not indicate a
commitment to produce any future versions of XML, nor if any are produced, to use any
particular numbering scheme. Since future versions are not ruled out, this construct is
provided as a means to allow the possibility of automatic version recognition, should it

Appendix

PART V
1084

31 0672323419 App A 3/15/04 11:28 AM Page 1084

become necessary. Processors may signal an error if they receive documents labeled with
versions they do not support.

The function of the markup in an XML document is to describe its storage and logical
structure and to associate attribute-value pairs with its logical structures. XML provides a
mechanism, the document type declaration, to define constraints on the logical structure
and to support the use of predefined storage units. [Definition: An XML document is
valid if it has an associated document type declaration and if the document complies with
the constraints expressed in it.]

The document type declaration must appear before the first element in the document.

Prolog

[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?
[23] XMLDecl ::= ‘<?xml’ VersionInfo EncodingDecl? SDDecl? S? ‘?>’
[24] VersionInfo ::= S ‘version’ Eq (“‘“ VersionNum “‘“ | ‘“‘
➥ VersionNum ‘“‘)/* */
[25] Eq ::= S? ‘=’ S?
[26] VersionNum ::= ([a-zA-Z0-9_.:] | ‘-’)+
[27] Misc ::= Comment | PI | S

[Definition: The XML document type declaration contains or points to markup declara-
tions that provide a grammar for a class of documents. This grammar is known as a doc-
ument type definition, or DTD. The document type declaration can point to an external
subset (a special kind of external entity) containing markup declarations, or can contain
the markup declarations directly in an internal subset, or can do both. The DTD for a
document consists of both subsets taken together.]

[Definition: A markup declaration is an element type declaration, an attribute-list decla-
ration, an entity declaration, or a notation declaration.] These declarations may be con-
tained in whole or in part within parameter entities, as described in the well-formedness
and validity constraints below. For further information, see 4 Physical Structures.

Document Type Definition

[28] doctypedecl ::= ‘<!DOCTYPE’ S Name (S ExternalID)? S?
(‘[‘ (markupdecl | DeclSep)* ‘]’ S?)? ‘>’ [VC: Root Element Type]

[WFC: External Subset]
/* */

[28a] DeclSep ::= PEReference | S [WFC: PE Between Declarations]
/* */

[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl |
NotationDecl | PI | Comment [VC: Proper Declaration/PE Nesting]

[WFC: PEs in Internal Subset]

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1085

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1085

Note that it is possible to construct a well-formed document containing a doctypedecl
that neither points to an external subset nor contains an internal subset.

The markup declarations may be made up in whole or in part of the replacement text of
parameter entities. The productions later in this specification for individual nonterminals
(elementdecl, AttlistDecl, and so on) describe the declarations after all the parameter
entities have been included.

Parameter entity references are recognized anywhere in the DTD (internal and external
subsets and external parameter entities), except in literals, processing instructions, com-
ments, and the contents of ignored conditional sections (see 3.4 Conditional Sections).
They are also recognized in entity value literals. The use of parameter entities in the
internal subset is restricted as described below.

Validity constraint: Root Element Type

The Name in the document type declaration must match the element type of the root
element.

Validity constraint: Proper Declaration/PE Nesting

Parameter-entity replacement text must be properly nested with markup declarations.
That is to say, if either the first character or the last character of a markup declaration
(markupdecl above) is contained in the replacement text for a parameter-entity reference,
both must be contained in the same replacement text.

Well-formedness constraint: PEs in Internal Subset

In the internal DTD subset, parameter-entity references can occur only where markup
declarations can occur, not within markup declarations. (This does not apply to refer-
ences that occur in external parameter entities or to the external subset.)

Well-formedness constraint: External Subset

The external subset, if any, must match the production for extSubset.

Well-formedness constraint: PE Between Declarations

The replacement text of a parameter entity reference in a DeclSep must match the
production extSubsetDecl.

Like the internal subset, the external subset and any external parameter entities refer-
enced in a DeclSep must consist of a series of complete markup declarations of the types
allowed by the non-terminal symbol markupdecl, interspersed with white space or para-
meter-entity references. However, portions of the contents of the external subset or of

Appendix

PART V
1086

31 0672323419 App A 3/15/04 11:28 AM Page 1086

these external parameter entities may conditionally be ignored by using the conditional
section construct; this is not allowed in the internal subset.

External Subset

[30] extSubset ::= TextDecl? extSubsetDecl
[31] extSubsetDecl ::= (markupdecl | conditionalSect | DeclSep)* /* */

The external subset and external parameter entities also differ from the internal subset in
that in them, parameter-entity references are permitted within markup declarations, not
only between markup declarations.

An example of an XML document with a document type declaration:

<?xml version=”1.0”?> <!DOCTYPE greeting SYSTEM “hello.dtd”> <greeting>Hello,

world!</greeting>

The system identifier “hello.dtd” gives the address (a URI reference) of a DTD for the
document.

The declarations can also be given locally, as in this example:

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE greeting [
<!ELEMENT greeting (#PCDATA)>

]>
<greeting>Hello, world!</greeting>

If both the external and internal subsets are used, the internal subset is considered to
occur before the external subset. This has the effect that entity and attribute-list declara-
tions in the internal subset take precedence over those in the external subset.

2.9 Standalone Document Declaration
Markup declarations can affect the content of the document, as passed from an XML
processor to an application; examples are attribute defaults and entity declarations. The
standalone document declaration, which may appear as a component of the XML decla-
ration, signals whether or not there are such declarations which appear external to the
document entity or in parameter entities. [Definition: An external markup declaration is
defined as a markup declaration occurring in the external subset or in a parameter entity
(external or internal, the latter being included because non-validating processors are not
required to read them).]

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1087

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1087

Standalone Document Declaration

[32] SDDecl ::= S ‘standalone’ Eq ((“‘“ (‘yes’ | ‘no’) “‘“) | (‘“‘
(‘yes’ | ‘no’)
➥ ’”’)) [VC:Standalone Document Declaration]

In a standalone document declaration, the value “yes” indicates that there are no external
markup declarations which affect the information passed from the XML processor to the
application. The value “no” indicates that there are or may be such external markup dec-
larations. Note that the standalone document declaration only denotes the presence of
external declarations; the presence, in a document, of references to external entities,
when those entities are internally declared, does not change its standalone status.

If there are no external markup declarations, the standalone document declaration has no
meaning. If there are external markup declarations but there is no standalone document
declaration, the value “no” is assumed.

Any XML document for which standalone=”no” holds can be converted algorithmically
to a standalone document, which may be desirable for some network delivery applica-
tions.

Validity constraint: Standalone Document Declaration

The standalone document declaration must have the value “no” if any external markup
declarations contain declarations of:

• attributes with default values, if elements to which these attributes apply appear in
the document without specifications of values for these attributes, or

• entities (other than amp, lt, gt, apos, quot), if references to those entities appear in
the document, or

• attributes with values subject to normalization, where the attribute appears in the
document with a value which will change as a result of normalization, or

• element types with element content, if white space occurs directly within any
instance of those types.

An example XML declaration with a standalone document declaration:

<?xml version=”1.0” standalone=’yes’?>

2.10 White Space Handling
In editing XML documents, it is often convenient to use “white space” (spaces, tabs, and
blank lines) to set apart the markup for greater readability. Such white space is typically
not intended for inclusion in the delivered version of the document. On the other hand,
“significant” white space that should be preserved in the delivered version is common,
for example in poetry and source code.

Appendix

PART V
1088

31 0672323419 App A 3/15/04 11:28 AM Page 1088

An XML processor must always pass all characters in a document that are not markup
through to the application. A validating XML processor must also inform the application
which of these characters constitute white space appearing in element content.

A special attribute named xml:space may be attached to an element to signal an intention
that in that element, white space should be preserved by applications. In valid docu-
ments, this attribute, like any other, must be declared if it is used. When declared, it must
be given as an enumerated type whose values are one or both of “default” and “pre-
serve”. For example:

<!ATTLIST poem xml:space (default|preserve) ‘preserve’>

<!-- -->
<!ATTLIST pre xml:space (preserve) #FIXED ‘preserve’>

The value “default” signals that applications’ default white-space processing modes are
acceptable for this element; the value “preserve” indicates the intent that applications
preserve all the white space. This declared intent is considered to apply to all elements
within the content of the element where it is specified, unless overriden with another
instance of the xml:space attribute.

The root element of any document is considered to have signaled no intentions as regards
application space handling, unless it provides a value for this attribute or the attribute is
declared with a default value.

2.11 End-of-Line Handling
XML parsed entities are often stored in computer files which, for editing convenience,
are organized into lines. These lines are typically separated by some combination of the
characters carriage-return (#xD) and line-feed (#xA).

To simplify the tasks of applications, the characters passed to an application by the XML
processor must be as if the XML processor normalized all line breaks in external parsed
entities (including the document entity) on input, before parsing, by translating both the
two-character sequence #xD #xA and any #xD that is not followed by #xA to a single
#xA character.

2.12 Language Identification
In document processing, it is often useful to identify the natural or formal language in
which the content is written. A special attribute named xml:lang may be inserted in docu-
ments to specify the language used in the contents and attribute values of any element in
an XML document. In valid documents, this attribute, like any other, must be declared if

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1089

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1089

it is used. The values of the attribute are language identifiers as defined by [IETF RFC
1766], Tags for the Identification of Languages, or its successor on the IETF
Standards Track.

Appendix

PART V
1090

Note

[IETF RFC 1766] tags are constructed from two-letter language codes as defined
by [ISO 639], from two-letter country codes as defined by [ISO 3166], or from
language identifiers registered with the Internet Assigned Numbers Authority
[IANA-LANGCODES]. It is expected that the successor to [IETF RFC 1766] will
introduce three-letter language codes for languages not presently covered by
[ISO 639].

Warning

(Productions 33 through 38 have been removed.)

For example:

<p xml:lang=”en”>The quick brown fox jumps over the lazy dog.</p>
<p xml:lang=”en-GB”>What colour is it?</p>
<p xml:lang=”en-US”>What color is it?</p>
<sp who=”Faust” desc=’leise’ xml:lang=”de”>
<l>Habe nun, ach! Philosophie,</l>
<l>Juristerei, und Medizin</l>
<l>und leider auch Theologie</l>
<l>durchaus studiert mit heißem Bemüh’n.</l>

</sp>

The intent declared with xml:lang is considered to apply to all attributes and content of
the element where it is specified, unless overridden with an instance of xml:lang on
another element within that content.

A simple declaration for xml:lang might take the form

xml:lang NMTOKEN #IMPLIED

but specific default values may also be given, if appropriate. In a collection of French
poems for English students, with glosses and notes in English, the xml:lang attribute
might be declared this way:

<!ATTLIST poem xml:lang NMTOKEN ‘fr’>
<!ATTLIST gloss xml:lang NMTOKEN ‘en’>
<!ATTLIST note xml:lang NMTOKEN ‘en’>

31 0672323419 App A 3/15/04 11:28 AM Page 1090

3 Logical Structures
[Definition: Each XML document contains one or more elements, the boundaries of
which are either delimited by start-tags and end-tags, or, for empty elements, by an
empty-element tag. Each element has a type, identified by name, sometimes called its
“generic identifier” (GI), and may have a set of attribute specifications.] Each attribute
specification has a name and a value.

Element

[39] element ::= EmptyElemTag
| STag content ETag [WFC: Element Type Match]
[VC: Element Valid]

This specification does not constrain the semantics, use, or (beyond syntax) names of the
element types and attributes, except that names beginning with a match to
((‘X’|’x’)(‘M’|’m’)(‘L’|’l’)) are reserved for standardization in this or future ver-
sions of this specification.

Well-formedness constraint: Element Type Match

The Name in an element’s end-tag must match the element type in the start-tag.

Validity constraint: Element Valid

An element is valid if there is a declaration matching elementdecl where the Name
matches the element type, and one of the following holds:

• The declaration matches EMPTY and the element has no content.

• The declaration matches children and the sequence of child elements belongs to the
language generated by the regular expression in the content model, with optional
white space (characters matching the nonterminal S) between the start-tag and the
first child element, between child elements, or between the last child element and
the end-tag. Note that a CDATA section containing only white space does not
match the nonterminal S, and hence cannot appear in these positions.

• The declaration matches Mixed and the content consists of character data and child
elements whose types match names in the content model.

• The declaration matches ANY, and the types of any child elements have been
declared.

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1091

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1091

3.1 Start-Tags, End-Tags, and Empty-
Element Tags
[Definition: The beginning of every non-empty XML element is marked by a start-tag.]

Start-tag

[40] STag ::= ‘<’ Name (S Attribute)* S? ‘>’ [WFC: Unique Att Spec]
[41] Attribute ::= Name Eq AttValue [VC: Attribute Value Type]

[WFC: No External Entity References]
[WFC: No < in Attribute Values]

The Name in the start- and end-tags gives the element’s type. [Definition: The Name-
AttValue pairs are referred to as the attribute specifications of the element], [Definition:
with the Name in each pair referred to as the attribute name] and [Definition: the content
of the AttValue (the text between the ‘ or “ delimiters) as the attribute value.]Note that
the order of attribute specifications in a start-tag or empty-element tag is not significant.

Well-formedness constraint: Unique Att Spec

No attribute name may appear more than once in the same start-tag or empty-element
tag.

Validity constraint: Attribute Value Type

The attribute must have been declared; the value must be of the type declared for it. (For
attribute types, see 3.3 Attribute-List Declarations.)

Well-formedness constraint: No External Entity References

Attribute values cannot contain direct or indirect entity references to external entities.

Well-formedness constraint: No < in Attribute Values

The replacement text of any entity referred to directly or indirectly in an attribute value
must not contain a <.

An example of a start-tag:

<termdef id=”dt-dog” term=”dog”>

[Definition: The end of every element that begins with a start-tag must be marked by an
end-tag containing a name that echoes the element’s type as given in the start-tag:]

Appendix

PART V
1092

31 0672323419 App A 3/15/04 11:28 AM Page 1092

End-tag

[42] ETag ::= ‘</’ Name S? ‘>’

An example of an end-tag:

</termdef>

[Definition: The text between the start-tag and end-tag is called the element’s content:]

Content of Elements

[43] content ::= CharData? ((element | Reference | CDSect | PI |
➥ Comment) CharData?)* /* */

[Definition: An element with no content is said to be empty.] The representation of an
empty element is either a start-tag immediately followed by an end-tag, or an empty-
element tag. [Definition: An empty-element tag takes a special form:]

Tags for Empty Elements

[44] EmptyElemTag ::= ‘<’ Name (S Attribute)* S? ‘/>’ [WFC: Unique Att

➥ Spec]

Empty-element tags may be used for any element which has no content, whether or not it
is declared using the keyword EMPTY. For interoperability, the empty-element tag
should be used, and should only be used, for elements which are declared EMPTY.

Examples of empty elements:

<IMG align=”left”
src=”http://www.w3.org/Icons/WWW/w3c_home” />

</br>

3.2 Element Type Declarations
The element structure of an XML document may, for validation purposes, be constrained
using element type and attribute-list declarations. An element type declaration constrains
the element’s content.

Element type declarations often constrain which element types can appear as children of
the element. At user option, an XML processor may issue a warning when a declaration
mentions an element type for which no declaration is provided, but this is not an error.

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1093

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1093

[Definition: An element type declaration takes the form:]

Element Type Declaration

[45] elementdecl ::= ‘<!ELEMENT’ S Name S contentspec S? ‘>’ [VC:
Unique Element Type Declaration]
[46] contentspec ::= ‘EMPTY’ | ‘ANY’ | Mixed | children

where the Name gives the element type being declared.

Validity constraint: Unique Element Type Declaration

No element type may be declared more than once.

Examples of element type declarations:

<!ELEMENT br EMPTY>
<!ELEMENT p (#PCDATA|emph)* >
<!ELEMENT %name.para; %content.para; >
<!ELEMENT container ANY>

3.2.1 Element Content
[Definition: An element type has element content when elements of that type must con-
tain only child elements (no character data), optionally separated by white space (charac-
ters matching the nonterminal S).][Definition: In this case, the constraint includes a
content model, a simple grammar governing the allowed types of the child elements and
the order in which they are allowed to appear.] The grammar is built on content particles
(cps), which consist of names, choice lists of content particles, or sequence lists of con-
tent particles:

Element-content Models

[47] children ::= (choice | seq) (‘?’ | ‘*’ | ‘+’)?
[48] cp ::= (Name | choice | seq) (‘?’ | ‘*’ | ‘+’)?
[49] choice ::= ‘(‘ S? cp (S? ‘|’ S? cp)+ S? ‘)’ /* */

/* */
[VC: Proper Group/PE Nesting]

[50] seq ::= ‘(‘ S? cp (S? ‘,’ S? cp)* S? ‘)’ /* */
[VC: Proper Group/PE Nesting]

where each Name is the type of an element which may appear as a child. Any content
particle in a choice list may appear in the element content at the location where the
choice list appears in the grammar; content particles occurring in a sequence list must
each appear in the element content in the order given in the list. The optional character
following a name or list governs whether the element or the content particles in the list

Appendix

PART V
1094

31 0672323419 App A 3/15/04 11:28 AM Page 1094

may occur one or more (+), zero or more (*), or zero or one times (?). The absence
of such an operator means that the element or content particle must appear exactly
once. This syntax and meaning are identical to those used in the productions in this
specification.

The content of an element matches a content model if and only if it is possible to trace
out a path through the content model, obeying the sequence, choice, and repetition opera-
tors and matching each element in the content against an element type in the content
model. For compatibility, it is an error if an element in the document can match more
than one occurrence of an element type in the content model. For more information, see
E Deterministic Content Models.

Validity constraint: Proper Group/PE Nesting

Parameter-entity replacement text must be properly nested with parenthesized groups.
That is to say, if either of the opening or closing parentheses in a choice, seq, or Mixed
construct is contained in the replacement text for a parameter entity, both must be con-
tained in the same replacement text.

For interoperability, if a parameter-entity reference appears in a choice, seq, or Mixed
construct, its replacement text should contain at least one non-blank character, and nei-
ther the first nor last non-blank character of the replacement text should be a connector
(| or ,).

Examples of element-content models:

<!ELEMENT spec (front, body, back?)>
<!ELEMENT div1 (head, (p | list | note)*, div2*)>
<!ELEMENT dictionary-body (%div.mix; | %dict.mix;)*>

3.2.2 Mixed Content
[Definition: An element type has mixed content when elements of that type may contain
character data, optionally interspersed with child elements.] In this case, the types of the
child elements may be constrained, but not their order or their number of occurrences:

Mixed-content Declaration

[51] Mixed ::= ‘(‘ S? ‘#PCDATA’ (S? ‘|’ S? Name)* S? ‘)*’
| ‘(‘ S? ‘#PCDATA’ S? ‘)’ [VC: Proper Group/PE Nesting]
[VC: No Duplicate Types]

where the Names give the types of elements that may appear as children. The keyword
#PCDATA derives historically from the term “parsed character data.”

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1095

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1095

Validity constraint: No Duplicate Types

The same name must not appear more than once in a single mixed-content declaration.

Examples of mixed content declarations:

<!ELEMENT p (#PCDATA|a|ul|b|i|em)*>
<!ELEMENT p (#PCDATA | %font; | %phrase; | %special; | %form;)* >
<!ELEMENT b (#PCDATA)>

3.3 Attribute-List Declarations
Attributes are used to associate name-value pairs with elements. Attribute specifications
may appear only within start-tags and empty-element tags; thus, the productions used to
recognize them appear in 3.1 Start-Tags, End-Tags, and Empty-Element Tags. Attribute-
list declarations may be used:

• To define the set of attributes pertaining to a given element type.

• To establish type constraints for these attributes.

• To provide default values for attributes.

[Definition: Attribute-list declarations specify the name, data type, and default value (if
any) of each attribute associated with a given element type:]

Attribute-list Declaration

[52] AttlistDecl ::= ‘<!ATTLIST’ S Name AttDef* S? ‘>’
[53] AttDef ::= S Name S AttType S DefaultDecl

The Name in the AttlistDecl rule is the type of an element. At user option, an XML
processor may issue a warning if attributes are declared for an element type not itself
declared, but this is not an error. The Name in the AttDef rule is the name of the
attribute.

When more than one AttlistDecl is provided for a given element type, the contents of
all those provided are merged. When more than one definition is provided for the same
attribute of a given element type, the first declaration is binding and later declarations are
ignored. For interoperability, writers of DTDs may choose to provide at most one
attribute-list declaration for a given element type, at most one attribute definition for a
given attribute name in an attribute-list declaration, and at least one attribute definition in
each attribute-list declaration. For interoperability, an XML processor may at user option
issue a warning when more than one attribute-list declaration is provided for a given ele-
ment type, or more than one attribute definition is provided for a given attribute, but this
is not an error.

Appendix

PART V
1096

31 0672323419 App A 3/15/04 11:28 AM Page 1096

3.3.1 Attribute Types
XML attribute types are of three kinds: a string type, a set of tokenized types, and enu-
merated types. The string type may take any literal string as a value; the tokenized types
have varying lexical and semantic constraints. The validity constraints noted in the gram-
mar are applied after the attribute value has been normalized as described in 3.3
Attribute-List Declarations.

Attribute Types

[54] AttType ::= StringType | TokenizedType | EnumeratedType
[55] StringType ::= ‘CDATA’
[56] TokenizedType ::= ‘ID’ [VC: ID]

[VC: One ID per Element Type]
[VC: ID Attribute Default]
| ‘IDREF’ [VC: IDREF]
| ‘IDREFS’ [VC: IDREF]
| ‘ENTITY’ [VC: Entity Name]
| ‘ENTITIES’ [VC: Entity Name]
| ‘NMTOKEN’ [VC: Name Token]
| ‘NMTOKENS’ [VC: Name Token]

Validity constraint: ID

Values of type ID must match the Name production. A name must not appear more than
once in an XML document as a value of this type; i.e., ID values must uniquely identify
the elements which bear them.

Validity constraint: One ID per Element Type

No element type may have more than one ID attribute specified.

Validity constraint: ID Attribute Default

An ID attribute must have a declared default of #IMPLIED or #REQUIRED.

Validity constraint: IDREF

Values of type IDREF must match the Name production, and values of type IDREFS must
match Names; each Name must match the value of an ID attribute on some element in
the XML document; i.e. IDREF values must match the value of some ID attribute.

Validity constraint: Entity Name

Values of type ENTITY must match the Name production, values of type ENTITIES must
match Names; each Name must match the name of an unparsed entity declared in the
DTD.

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1097

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1097

Validity constraint: Name Token

Values of type NMTOKEN must match the Nmtoken production; values of type NMTOKENS
must match Nmtokens.

[Definition: Enumerated attributes can take one of a list of values provided in the decla-
ration]. There are two kinds of enumerated types:

Enumerated Attribute Types

[57] EnumeratedType ::= NotationType | Enumeration
[58] NotationType ::= ‘NOTATION’ S ‘(‘ S? Name (S? ‘|’ S? Name)* S? ‘)’
[VC: Notation Attributes]

[VC: One Notation Per Element Type]
[VC: No Notation on Empty Element]

[59] Enumeration ::= ‘(‘ S? Nmtoken (S? ‘|’ S? Nmtoken)* S? ‘)’
[VC: Enumeration]

A NOTATION attribute identifies a notation, declared in the DTD with associated system
and/or public identifiers, to be used in interpreting the element to which the attribute is
attached.

Validity constraint: Notation Attributes

Values of this type must match one of the notation names included in the declaration; all
notation names in the declaration must be declared.

Validity constraint: One Notation Per Element Type

No element type may have more than one NOTATION attribute specified.

Validity constraint: No Notation on Empty Element

For compatibility, an attribute of type NOTATION must not be declared on an element
declared EMPTY.

Validity constraint: Enumeration

Values of this type must match one of the Nmtoken tokens in the declaration.

For interoperability, the same Nmtoken should not occur more than once in the enumer-
ated attribute types of a single element type.

3.3.2 Attribute Defaults
An attribute declaration provides information on whether the attribute’s presence is
required, and if not, how an XML processor should react if a declared attribute is absent
in a document.

Appendix

PART V
1098

31 0672323419 App A 3/15/04 11:28 AM Page 1098

Attribute Defaults

[60] DefaultDecl ::= ‘#REQUIRED’ | ‘#IMPLIED’
| ((‘#FIXED’ S)? AttValue) [VC: Required Attribute]
[VC: Attribute Default Legal]
[WFC: No < in Attribute Values]
[VC: Fixed Attribute Default]

In an attribute declaration, #REQUIRED means that the attribute must always be pro-
vided, #IMPLIED that no default value is provided. [Definition: If the declaration is nei-
ther #REQUIRED nor #IMPLIED, then the AttValue value contains the declared default
value; the #FIXED keyword states that the attribute must always have the default value.
If a default value is declared, when an XML processor encounters an omitted attribute, it
is to behave as though the attribute were present with the declared default value.]

Validity constraint: Required Attribute

If the default declaration is the keyword #REQUIRED, then the attribute must be speci-
fied for all elements of the type in the attribute-list declaration.

Validity constraint: Attribute Default Legal

The declared default value must meet the lexical constraints of the declared attribute
type.

Validity constraint: Fixed Attribute Default

If an attribute has a default value declared with the #FIXED keyword, instances of that
attribute must match the default value.

Examples of attribute-list declarations:

<!ATTLIST termdef
id ID #REQUIRED
name CDATA #IMPLIED>

<!ATTLIST list
type (bullets|ordered|glossary) “ordered”>

<!ATTLIST form
method CDATA #FIXED “POST”>

3.3.3 Attribute-Value Normalization
Before the value of an attribute is passed to the application or checked for validity, the
XML processor must normalize the attribute value by applying the algorithm below, or
by using some other method such that the value passed to the application is the same as
that produced by the algorithm.

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1099

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1099

• All line breaks must have been normalized on input to #xA as described in 2.11
End-of-Line Handling, so the rest of this algorithm operates on text normalized in
this way.

• Begin with a normalized value consisting of the empty string.

• For each character, entity reference, or character reference in the unnormalized
attribute value, beginning with the first and continuing to the last, do the following:

• For a character reference, append the referenced character to the normalized value.

• For an entity reference, recursively apply step 3 of this algorithm to the replace-
ment text of the entity.

• For a white space character (#x20, #xD, #xA, #x9), append a space character
(#x20) to the normalized value.

• For another character, append the character to the normalized value.

If the attribute type is not CDATA, then the XML processor must further process the
normalized attribute value by discarding any leading and trailing space (#x20) characters,
and by replacing sequences of space (#x20) characters by a single space (#x20)
character.

Note that if the unnormalized attribute value contains a character reference to a white
space character other than space (#x20), the normalized value contains the referenced
character itself (#xD, #xA or #x9). This contrasts with the case where the unnormalized
value contains a white space character (not a reference), which is replaced with a space
character (#x20) in the normalized value and also contrasts with the case where the
unnormalized value contains an entity reference whose replacement text contains a white
space character; being recursively processed, the white space character is replaced with a
space character (#x20) in the normalized value.

All attributes for which no declaration has been read should be treated by a non-validat-
ing processor as if declared CDATA.

Following are examples of attribute normalization. Given the following declarations:

<!ENTITY d “”>
<!ENTITY a “
”>
<!ENTITY da “
”>

the attribute specifications in the left column below would be normalized to the character
sequences of the middle column if the attribute a is declared NMTOKENS and to those
of the right columns if a is declared CDATA.

Appendix

PART V
1100

31 0672323419 App A 3/15/04 11:28 AM Page 1100

Attribute specification a is NMTOKENS a is CDATA

a=” x y z #x20 #x20 x y z

xyz”

a=”&d;&d;A&a;&a;B&da;” A #x20 B #x20 #x20 A
#x20 #x20 B
#x20 #x20

a=“A

 #xD #xD A #xD #xD A #xA #xA B #xD
B
” #xA #xA B #xD

#xD#xA

Note that the last example is invalid (but well-formed) if a is declared to be of type
NMTOKENS.

3.4 Conditional Sections
[Definition: Conditional sections are portions of the document type declaration external
subset which are included in, or excluded from, the logical structure of the DTD based
on the keyword which governs them.]

Conditional Section

[61] conditionalSect ::= includeSect | ignoreSect
[62] includeSect ::= ‘<![‘ S? ‘INCLUDE’ S?
‘[‘ extSubsetDecl ‘]]>’ /* */

[VC: Proper Conditional Section/PE Nesting]
[63] ignoreSect ::= ‘<![‘ S? ‘IGNORE’ S?
‘[‘ ignoreSectContents* ‘]]>’ /* */

[VC: Proper Conditional Section/PE Nesting]
[64] ignoreSectContents ::=
Ignore (‘<![‘ ignoreSectContents ‘]]>’ Ignore)*
[65] Ignore ::= Char* - (Char* (‘<![‘ | ‘]]>’) Char*)

Validity constraint: Proper Conditional Section/PE Nesting

If any of the “<![“, “[“, or “]]>” of a conditional section is contained in the replacement
text for a parameter-entity reference, all of them must be contained in the same replace-
ment text.

Like the internal and external DTD subsets, a conditional section may contain one or
more complete declarations, comments, processing instructions, or nested conditional
sections, intermingled with white space.

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1101

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1101

If the keyword of the conditional section is INCLUDE, then the contents of the condi-
tional section are part of the DTD. If the keyword of the conditional section is IGNORE,
then the contents of the conditional section are not logically part of the DTD. If a condi-
tional section with a keyword of INCLUDE occurs within a larger conditional section
with a keyword of IGNORE, both the outer and the inner conditional sections are
ignored. The contents of an ignored conditional section are parsed by ignoring all charac-
ters after the “[“ following the keyword, except conditional section starts “<![“ and ends
“]]>”, until the matching conditional section end is found. Parameter entity references
are not recognized in this process.

If the keyword of the conditional section is a parameter-entity reference, the parameter
entity must be replaced by its content before the processor decides whether to include or
ignore the conditional section.

An example:

<!ENTITY % draft ‘INCLUDE’ >
<!ENTITY % final ‘IGNORE’ >

<![%draft;[
<!ELEMENT book (comments*, title, body, supplements?)>
]]>
<![%final;[
<!ELEMENT book (title, body, supplements?)>
]]>

4 Physical Structures
[Definition: An XML document may consist of one or many storage units. These are
called entities; they all have content and are all (except for the document entity and the
external DTD subset) identified by entity name.] Each XML document has one entity
called the document entity, which serves as the starting point for the XML processor and
may contain the whole document.

Entities may be either parsed or unparsed. [Definition: A parsed entity’s contents
are referred to as its replacement text; this text is considered an integral part of the
document.]

[Definition: An unparsed entity is a resource whose contents may or may not be text, and
if text, may be other than XML. Each unparsed entity has an associated notation, identi-
fied by name. Beyond a requirement that an XML processor make the identifiers for the
entity and notation available to the application, XML places no constraints on the con-
tents of unparsed entities.]

Appendix

PART V
1102

31 0672323419 App A 3/15/04 11:28 AM Page 1102

Parsed entities are invoked by name using entity references; unparsed entities by name,
given in the value of ENTITY or ENTITIES attributes.

[Definition: General entities are entities for use within the document content. In this
specification, general entities are sometimes referred to with the unqualified term entity
when this leads to no ambiguity.] [Definition: Parameter entities are parsed entities for
use within the DTD.] These two types of entities use different forms of reference and are
recognized in different contexts. Furthermore, they occupy different namespaces; a para-
meter entity and a general entity with the same name are two distinct entities.

4.1 Character and Entity References
[Definition: A character reference refers to a specific character in the ISO/IEC 10646
character set, for example one not directly accessible from available input devices.]

Character Reference

[66] CharRef ::= ‘&#’ [0-9]+ ‘;’
| ‘&#x’ [0-9a-fA-F]+ ‘;’ [WFC: Legal Character]

Well-formedness constraint: Legal Character

Characters referred to using character references must match the production for Char.

If the character reference begins with “&#x”, the digits and letters up to the terminating ;
provide a hexadecimal representation of the character’s code point in ISO/IEC 10646. If
it begins just with “&#”, the digits up to the terminating ; provide a decimal representa-
tion of the character’s code point.

[Definition: An entity reference refers to the content of a named entity.] [Definition:
References to parsed general entities use ampersand (&) and semicolon (;) as delimiters.]
[Definition: Parameter-entity references use percent-sign (%) and semicolon (;) as
delimiters.]

Entity Reference

[67] Reference ::= EntityRef | CharRef
[68] EntityRef ::= ‘&’ Name ‘;’ [WFC: Entity Declared]

[VC: Entity Declared]
[WFC: Parsed Entity]
[WFC: No Recursion]

[69] PEReference ::= ‘%’ Name ‘;’ [VC: Entity Declared]
[WFC: No Recursion]
[WFC: In DTD]

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1103

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1103

Well-formedness constraint: Entity Declared

In a document without any DTD, a document with only an internal DTD subset which
contains no parameter entity references, or a document with “standalone=’yes’”, for an
entity reference that does not occur within the external subset or a parameter entity, the
Name given in the entity reference must match that in an entity declaration that does not
occur within the external subset or a parameter entity, except that well-formed docu-
ments need not declare any of the following entities: amp, lt, gt, apos, quot. The declara-
tion of a general entity must precede any reference to it which appears in a default value
in an attribute-list declaration.

Note that if entities are declared in the external subset or in external parameter entities, a
non-validating processor is not obligated to read and process their declarations; for such
documents, the rule that an entity must be declared is a well-formedness constraint only
if standalone=’yes’.

Validity constraint: Entity Declared

In a document with an external subset or external parameter entities with
“standalone=’no’”, the Name given in the entity reference must match that in an entity
declaration. For interoperability, valid documents should declare the entities amp, lt, gt,
apos, quot, in the form specified in 4.6 Predefined Entities. The declaration of a parame-
ter entity must precede any reference to it. Similarly, the declaration of a general entity
must precede any attribute-list declaration containing a default value with a direct or
indirect reference to that general entity.

Well-formedness constraint: Parsed Entity

An entity reference must not contain the name of an unparsed entity. Unparsed entities
may be referred to only in attribute values declared to be of type ENTITY or ENTITIES.

Well-formedness constraint: No Recursion

A parsed entity must not contain a recursive reference to itself, either directly or
indirectly.

Well-formedness constraint: In DTD

Parameter-entity references may only appear in the DTD.

Examples of character and entity references:

Type <key>less-than</key> (<) to save options.
This document was prepared on &docdate; and
is classified &security-level;.

Appendix

PART V
1104

31 0672323419 App A 3/15/04 11:28 AM Page 1104

Example of a parameter-entity reference:

<!-- declare the parameter entity “ISOLat2”... -->
<!ENTITY % ISOLat2

SYSTEM “http://www.xml.com/iso/isolat2-xml.entities” >
<!-- ... now reference it. -->
%ISOLat2;

4.2 Entity Declarations
[Definition: Entities are declared thus:]

Entity Declaration

[70] EntityDecl ::= GEDecl | PEDecl
[71] GEDecl ::= ‘<!ENTITY’ S Name S EntityDef S? ‘>’
[72] PEDecl ::= ‘<!ENTITY’ S ‘%’ S Name S PEDef S? ‘>’
[73] EntityDef ::= EntityValue | (ExternalID NDataDecl?)
[74] PEDef ::= EntityValue | ExternalID

The Name identifies the entity in an entity reference or, in the case of an unparsed entity,
in the value of an ENTITY or ENTITIES attribute. If the same entity is declared more
than once, the first declaration encountered is binding; at user option, an XML processor
may issue a warning if entities are declared multiple times.

4.2.1 Internal Entities
[Definition: If the entity definition is an EntityValue, the defined entity is called an inter-
nal entity. There is no separate physical storage object, and the content of the entity is
given in the declaration.] Note that some processing of entity and character references in
the literal entity value may be required to produce the correct replacement text: see 4.5
Construction of Internal Entity Replacement Text.

An internal entity is a parsed entity.

Example of an internal entity declaration:

<!ENTITY Pub-Status “This is a pre-release of the
specification.”>

4.2.2 External Entities
[Definition: If the entity is not internal, it is an external entity, declared as follows:]

External Entity Declaration

[75] ExternalID ::= ‘SYSTEM’ S SystemLiteral
| ‘PUBLIC’ S PubidLiteral S SystemLiteral

[76] NDataDecl ::= S ‘NDATA’ S Name [VC: Notation Declared]

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1105

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1105

If the NDataDecl is present, this is a general unparsed entity; otherwise it is a
parsed entity.

Validity constraint: Notation Declared

The Name must match the declared name of a notation.

[Definition: The SystemLiteral is called the entity’s system identifier. It is a URI refer-
ence (as defined in [IETF RFC 2396], updated by [IETF RFC 2732]), meant to be deref-
erenced to obtain input for the XML processor to construct the entity’s replacement text.]
It is an error for a fragment identifier (beginning with a # character) to be part of a sys-
tem identifier. Unless otherwise provided by information outside the scope of this speci-
fication (e.g. a special XML element type defined by a particular DTD, or a processing
instruction defined by a particular application specification), relative URIs are relative to
the location of the resource within which the entity declaration occurs. A URI might thus
be relative to the document entity, to the entity containing the external DTD subset, or to
some other external parameter entity.

URI references require encoding and escaping of certain characters. The disallowed char-
acters include all non-ASCII characters, plus the excluded characters listed in Section 2.4
of [IETF RFC 2396], except for the number sign (#) and percent sign (%) characters and
the square bracket characters re-allowed in [IETF RFC 2732]. Disallowed characters
must be escaped as follows:

Each disallowed character is converted to UTF-8 [IETF RFC 2279] as one or more bytes.

Any octets corresponding to a disallowed character are escaped with the URI escaping
mechanism (that is, converted to %HH, where HH is the hexadecimal notation of the
byte value).

The original character is replaced by the resulting character sequence.

[Definition: In addition to a system identifier, an external identifier may include a public
identifier.] An XML processor attempting to retrieve the entity’s content may use the
public identifier to try to generate an alternative URI reference. If the processor is unable
to do so, it must use the URI reference specified in the system literal. Before a match is
attempted, all strings of white space in the public identifier must be normalized to single
space characters (#x20), and leading and trailing white space must be removed.

Examples of external entity declarations:

<!ENTITY open-hatch
SYSTEM “http://www.textuality.com/boilerplate/OpenHatch.xml”>

<!ENTITY open-hatch
PUBLIC “-//Textuality//TEXT Standard open-hatch boilerplate//EN”

Appendix

PART V
1106

31 0672323419 App A 3/15/04 11:28 AM Page 1106

“http://www.textuality.com/boilerplate/OpenHatch.xml”>
<!ENTITY hatch-pic

SYSTEM “../grafix/OpenHatch.gif”
NDATA gif >

4.3 Parsed Entities
4.3.1 The Text Declaration
External parsed entities should each begin with a text declaration.

Text Declaration

[77] TextDecl ::= ‘<?xml’ VersionInfo? EncodingDecl S? ‘?>’

The text declaration must be provided literally, not by reference to a parsed entity. No
text declaration may appear at any position other than the beginning of an external
parsed entity. The text declaration in an external parsed entity is not considered part of its
replacement text.

4.3.2 Well-Formed Parsed Entities
The document entity is well-formed if it matches the production labeled document. An
external general parsed entity is well-formed if it matches the production labeled
extParsedEnt. All external parameter entities are well-formed by definition.

Well-Formed External Parsed Entity

[78] extParsedEnt ::= TextDecl? content

An internal general parsed entity is well-formed if its replacement text matches the pro-
duction labeled content. All internal parameter entities are well-formed by definition.

A consequence of well-formedness in entities is that the logical and physical structures
in an XML document are properly nested; no start-tag, end-tag, empty-element tag, ele-
ment, comment, processing instruction, character reference, or entity reference can begin
in one entity and end in another.

4.3.3 Character Encoding in Entities
Each external parsed entity in an XML document may use a different encoding for its
characters. All XML processors must be able to read entities in both the UTF-8 and
UTF-16 encodings. The terms “UTF-8” and “UTF-16” in this specification do not apply
to character encodings with any other labels, even if the encodings or labels are very
similar to UTF-8 or UTF-16.

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1107

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1107

Entities encoded in UTF-16 must begin with the Byte Order Mark described by Annex F
of [ISO/IEC 10646], Annex H of [ISO/IEC 10646-2000], section 2.4 of [Unicode], and
section 2.7 of [Unicode3] (the ZERO WIDTH NO-BREAK SPACE character, #xFEFF).
This is an encoding signature, not part of either the markup or the character data of the
XML document. XML processors must be able to use this character to differentiate
between UTF-8 and UTF-16 encoded documents.

Although an XML processor is required to read only entities in the UTF-8 and UTF-16
encodings, it is recognized that other encodings are used around the world, and it may be
desired for XML processors to read entities that use them. In the absence of external
character encoding information (such as MIME headers), parsed entities which are stored
in an encoding other than UTF-8 or UTF-16 must begin with a text declaration (see 4.3.1
The Text Declaration) containing an encoding declaration:

Encoding Declaration

[80] EncodingDecl ::=
S ‘encoding’ Eq (‘“‘ EncName ‘“‘ | “‘“ EncName “‘“)
[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | ‘-’)*
/* Encoding name contains only Latin characters */

In the document entity, the encoding declaration is part of the XML declaration. The
EncName is the name of the encoding used.

In an encoding declaration, the values “UTF-8”, “UTF-16”, “ISO-10646-UCS-2”, and
“ISO-10646-UCS-4” should be used for the various encodings and transformations of
Unicode / ISO/IEC 10646, the values “ISO-8859-1”, “ISO-8859-2”, ... “ISO-8859-n”
(where n is the part number) should be used for the parts of ISO 8859, and the values
“ISO-2022-JP”, “Shift_JIS”, and “EUC-JP” should be used for the various encoded
forms of JIS X-0208-1997. It is recommended that character encodings registered (as
charsets) with the Internet Assigned Numbers Authority [IANA-CHARSETS], other than
those just listed, be referred to using their registered names; other encodings should use
names starting with an “x-” prefix. XML processors should match character encoding
names in a case-insensitive way and should either interpret an IANA-registered name as
the encoding registered at IANA for that name or treat it as unknown (processors are, of
course, not required to support all IANA-registered encodings).

In the absence of information provided by an external transport protocol (e.g. HTTP or
MIME), it is an error for an entity including an encoding declaration to be presented to
the XML processor in an encoding other than that named in the declaration, or for an
entity which begins with neither a Byte Order Mark nor an encoding declaration to use

Appendix

PART V
1108

31 0672323419 App A 3/15/04 11:28 AM Page 1108

an encoding other than UTF-8. Note that since ASCII is a subset of UTF-8, ordinary
ASCII entities do not strictly need an encoding declaration.

It is a fatal error for a TextDecl to occur other than at the beginning of an external entity.

It is a fatal error when an XML processor encounters an entity with an encoding that it is
unable to process. It is a fatal error if an XML entity is determined (via default, encoding
declaration, or higher-level protocol) to be in a certain encoding but contains octet
sequences that are not legal in that encoding. It is also a fatal error if an XML entity con-
tains no encoding declaration and its content is not legal UTF-8 or UTF-16.

Examples of text declarations containing encoding declarations:

<?xml encoding=’UTF-8’?>
<?xml encoding=’EUC-JP’?>

4.4 XML Processor Treatment of Entities and
References
The table below summarizes the contexts in which character references, entity refer-
ences, and invocations of unparsed entities might appear and the required behavior of an
XML processor in each case. The labels in the leftmost column describe the recognition
context:

Reference in Content

as a reference anywhere after the start-tag and before the end-tag of an element; corre-
sponds to the nonterminal content.

Reference in Attribute Value

as a reference within either the value of an attribute in a start-tag, or a default value in an
attribute declaration; corresponds to the nonterminal AttValue.

Occurs as Attribute Value

as a Name, not a reference, appearing either as the value of an attribute which has been
declared as type ENTITY, or as one of the space-separated tokens in the value of an
attribute which has been dclared as type ENTITIES.

Reference in Entity Value

as a reference within a parameter or internal entity’s literal entity value in the entity’s
declaration; corresponds to the nonterminal EntityValue.

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1109

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1109

Reference in DTD

as a reference within either the internal or external subsets of the DTD, but outside of an
EntityValue, AttValue, PI, Comment, SystemLiteral, PubidLiteral, or the contents of an
ignored conditional section (see 3.4 Conditional Sections).

Entity Type

External
Internal Parsed

Parameter General General Unparsed Character

Reference Not Included Included Forbidden Included
in Recognized if
Content valdiating

Reference Value Not Included Forbidden Forbidden Included
in recognized in literal
Attribute

Occurs Value Not Forbidden Forbidden Notify Not
as recognized recognized
Attribute

Reference Included Bypassed Bypassed Forbidden Included
in Entity in literal
Value

Reference Included Forbidden Forbidden Forbidden Forbidden
in DTD as PE

4.4.1 Not Recognized
Outside the DTD, the % character has no special significance; thus, what would be para-
meter entity references in the DTD are not recognized as markup in content. Similarly,
the names of unparsed entities are not recognized except when they appear in the value
of an appropriately declared attribute.

4.4.2 Included
[Definition: An entity is included when its replacement text is retrieved and processed, in
place of the reference itself, as though it were part of the document at the location the

Appendix

PART V
1110

31 0672323419 App A 3/15/04 11:28 AM Page 1110

reference was recognized.] The replacement text may contain both character data and
(except for parameter entities) markup, which must be recognized in the usual way. (The
string “AT&T;” expands to “AT&T;” and the remaining ampersand is not recognized
as an entity-reference delimiter.) A character reference is included when the indicated
character is processed in place of the reference itself.

4.4.3 Included If Validating
When an XML processor recognizes a reference to a parsed entity, in order to validate
the document, the processor must include its replacement text. If the entity is external,
and the processor is not attempting to validate the XML document, the processor may,
but need not, include the entity’s replacement text. If a non-validating processor does not
include the replacement text, it must inform the application that it recognized, but did not
read, the entity.

This rule is based on the recognition that the automatic inclusion provided by the SGML
and XML entity mechanism, primarily designed to support modularity in authoring, is
not necessarily appropriate for other applications, in particular document browsing.
Browsers, for example, when encountering an external parsed entity reference, might
choose to provide a visual indication of the entity’s presence and retrieve it for display
only on demand.

4.4.4 Forbidden
The following are forbidden, and constitute fatal errors:

• the appearance of a reference to an unparsed entity.

• the appearance of any character or general-entity reference in the DTD except
within an EntityValue or AttValue.

• a reference to an external entity in an attribute value.

4.4.5 Included in Literal
When an entity reference appears in an attribute value, or a parameter entity reference
appears in a literal entity value, its replacement text is processed in place of the reference
itself as though it were part of the document at the location the reference was recognized,
except that a single or double quote character in the replacement text is always treated as
a normal data character and will not terminate the literal. For example, this is well-
formed:

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1111

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1111

<!-- -->
<!ENTITY % YN ‘“Yes”’ >
<!ENTITY WhatHeSaid “He said %YN;” >

while this is not:

<!ENTITY EndAttr “27’” >
<element attribute=’a-&EndAttr;>

4.4.6 Notify
When the name of an unparsed entity appears as a token in the value of an attribute of
declared type ENTITY or ENTITIES, a validating processor must inform the application
of the system and public (if any) identifiers for both the entity and its associated nota-
tion.

4.4.7 Bypassed
When a general entity reference appears in the EntityValue in an entity declaration, it is
bypassed and left as is.

4.4.8 Included as PE
Just as with external parsed entities, parameter entities need only be included if
validating. When a parameter-entity reference is recognized in the DTD and included, its
replacement text is enlarged by the attachment of one leading and one following space
(#x20) character; the intent is to constrain the replacement text of parameter entities to
contain an integral number of grammatical tokens in the DTD. This behavior does not
apply to parameter entity references within entity values; these are described in 4.4.5
Included in Literal.

4.5 Construction of Internal Entity
Replacement Text
In discussing the treatment of internal entities, it is useful to distinguish two forms of the
entity’s value. [Definition: The literal entity value is the quoted string actually present in
the entity declaration, corresponding to the non-terminal EntityValue.] [Definition: The
replacement text is the content of the entity, after replacement of character references and
parameter-entity references.]

The literal entity value as given in an internal entity declaration (EntityValue) may con-
tain character, parameter-entity, and general-entity references. Such references must be

Appendix

PART V
1112

31 0672323419 App A 3/15/04 11:28 AM Page 1112

contained entirely within the literal entity value. The actual replacement text that is
included as described above must contain the replacement text of any parameter entities
referred to, and must contain the character referred to, in place of any character refer-
ences in the literal entity value; however, general-entity references must be left as-is,
unexpanded. For example, given the following declarations:

<!ENTITY % pub “Éditions Gallimard” >
<!ENTITY rights “All rights reserved” >
<!ENTITY book “La Peste: Albert Camus,
© 1947 %pub;. &rights;” >

then the replacement text for the entity “book” is:

La Peste: Albert Camus,
© 1947 Éditions Gallimard. &rights;

The general-entity reference “&rights;” would be expanded should the reference
“&book;” appear in the document’s content or an attribute value.

These simple rules may have complex interactions; for a detailed discussion of a difficult
example, see D Expansion of Entity and Character References.

4.6 Predefined Entities
[Definition: Entity and character references can both be used to escape the left angle
bracket, ampersand, and other delimiters. A set of general entities (amp, lt, gt, apos,
quot) is specified for this purpose. Numeric character references may also be used; they
are expanded immediately when recognized and must be treated as character data, so the
numeric character references “<” and “&” may be used to escape < and &
when they occur in character data.]

All XML processors must recognize these entities whether they are declared or not. For
interoperability, valid XML documents should declare these entities, like any others,
before using them. If the entities lt or amp are declared, they must be declared as internal
entities whose replacement text is a character reference to the respective character (less-
than sign or ampersand) being escaped; the double escaping is required for these entities
so that references to them produce a well-formed result. If the entities gt, apos, or quot
are declared, they must be declared as internal entities whose replacement text is the sin-
gle character being escaped (or a character reference to that character; the double escap-
ing here is unnecessary but harmless). For example:

<!ENTITY lt “&#60;”>
<!ENTITY gt “>”>

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1113

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1113

<!ENTITY amp “&#38;”>
<!ENTITY apos “'”>
<!ENTITY quot “"”>

4.7 Notation Declarations
[Definition: Notations identify by name the format of unparsed entities, the format of
elements which bear a notation attribute, or the application to which a processing instruc-
tion is addressed.]

[Definition: Notation declarations provide a name for the notation, for use in entity and
attribute-list declarations and in attribute specifications, and an external identifier for the
notation which may allow an XML processor or its client application to locate a helper
application capable of processing data in the given notation.]

Notation Declarations

[82] NotationDecl ::= ‘<!NOTATION’ S Name S (ExternalID | PublicID) S?
➥ ‘>’
[VC: Unique Notation Name]
[83] PublicID ::= ‘PUBLIC’ S PubidLiteral

Validity constraint: Unique Notation Name

Only one notation declaration can declare a given Name.

XML processors must provide applications with the name and external identifier(s) of
any notation declared and referred to in an attribute value, attribute definition, or entity
declaration. They may additionally resolve the external identifier into the system identi-
fier, file name, or other information needed to allow the application to call a processor
for data in the notation described. (It is not an error, however, for XML documents to
declare and refer to notations for which notation-specific applications are not available
on the system where the XML processor or application is running.)

4.8 Document Entity
[Definition: The document entity serves as the root of the entity tree and a starting-point
for an XML processor.] This specification does not specify how the document entity is to
be located by an XML processor; unlike other entities, the document entity has no name
and might well appear on a processor input stream without any identification at all.

Appendix

PART V
1114

31 0672323419 App A 3/15/04 11:28 AM Page 1114

5 Conformance
5.1 Validating and Non-Validating Processors
Conforming XML processors fall into two classes: validating and non-validating.

Validating and non-validating processors alike must report violations of this specifica-
tion’s well-formedness constraints in the content of the document entity and any other
parsed entities that they read.

[Definition: Validating processors must, at user option, report violations of the con-
straints expressed by the declarations in the DTD, and failures to fulfill the validity
constraints given in this specification.] To accomplish this, validating XML processors
must read and process the entire DTD and all external parsed entities referenced in the
document.

Non-validating processors are required to check only the document entity, including the
entire internal DTD subset, for well-formedness. [Definition: While they are not required
to check the document for validity, they are required to process all the declarations they
read in the internal DTD subset and in any parameter entity that they read, up to the first
reference to a parameter entity that they do not read; that is to say, they must use the
information in those declarations to normalize attribute values, include the replacement
text of internal entities, and supply default attribute values.] Except when
standalone=”yes”, they must not process entity declarations or attribute-list declarations
encountered after a reference to a parameter entity that is not read, since the entity may
have contained overriding declarations.

5.2 Using XML Processors
The behavior of a validating XML processor is highly predictable; it must read every
piece of a document and report all well-formedness and validity violations. Less is
required of a non-validating processor; it need not read any part of the document other
than the document entity. This has two effects that may be important to users of XML
processors:

Certain well-formedness errors, specifically those that require reading external entities,
may not be detected by a non-validating processor. Examples include the constraints
entitled Entity Declared, Parsed Entity, and No Recursion, as well as some of the cases
described as forbidden in 4.4 XML Processor Treatment of Entities and References.

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1115

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1115

The information passed from the processor to the application may vary, depending
on whether the processor reads parameter and external entities. For example, a non-
alidating processor may not normalize attribute values, include the replacement text of
internal entities, or supply default attribute values, where doing so depends on having
read declarations in external or parameter entities.

For maximum reliability in interoperating between different XML processors, applica-
tions which use non-validating processors should not rely on any behaviors not required
of such processors. Applications which require facilities such as the use of default attrib-
utes or internal entities which are declared in external entities should use validating XML
processors.

6 Notation
The formal grammar of XML is given in this specification using a simple Extended
Backus-Naur Form (EBNF) notation. Each rule in the grammar defines one symbol, in
the form

symbol ::= expression

Symbols are written with an initial capital letter if they are the start symbol of a regular
language, otherwise with an initial lower case letter. Literal strings are quoted.

Within the expression on the right-hand side of a rule, the following expressions are used
to match strings of one or more characters:

#xN

where N is a hexadecimal integer, the expression matches the character in ISO/IEC
10646 whose canonical (UCS-4) code value, when interpreted as an unsigned binary
number, has the value indicated. The number of leading zeros in the #xN form is
insignificant; the number of leading zeros in the corresponding code value is governed by
the character encoding in use and is not significant for XML.

[a-zA-Z], [#xN-#xN]

matches any Char with a value in the range(s) indicated (inclusive).

[abc], [#xN#xN#xN]

matches any Char with a value among the characters enumerated. Enumerations and
ranges can be mixed in one set of brackets.

[^a-z], [^#xN-#xN]

Appendix

PART V
1116

31 0672323419 App A 3/15/04 11:28 AM Page 1116

matches any Char with a value outside the range indicated.

[^abc], [^#xN#xN#xN]

matches any Char with a value not among the characters given. Enumerations and ranges
of forbidden values can be mixed in one set of brackets.

“string”

matches a literal string matching that given inside the double quotes.

‘string’

matches a literal string matching that given inside the single quotes.

These symbols may be combined to match more complex patterns as follows, where A
and B represent simple expressions:

(expression)

expression is treated as a unit and may be combined as described in this list.

A?

matches A or nothing; optional A.

A B

matches A followed by B. This operator has higher precedence than alternation; thus A B
| C D is identical to (A B) | (C D).

A | B

matches A or B but not both.

A - B

matches any string that matches A but does not match B.

A+

matches one or more occurrences of A.Concatenation has higher precedence than alterna-
tion; thus A+ | B+ is identical to (A+) | (B+).

A*

matches zero or more occurrences of A. Concatenation has higher precedence than alter-
nation; thus A* | B* is identical to (A*) | (B*).

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1117

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1117

Other notations used in the productions are:

/* ... */

comment.

[wfc: ...]

well-formedness constraint; this identifies by name a constraint on well-formed docu-
ments associated with a production.

[vc: ...]

validity constraint; this identifies by name a constraint on valid documents associated
with a production.

A References
A.1 Normative References
IANA-CHARSETS

(Internet Assigned Numbers Authority) Official Names for Character Sets, ed. Keld
Simonsen et al. See ftp://ftp.isi.edu/in-notes/iana/assignments/charac-
ter-sets. IETF RFC 1766

IETF (Internet Engineering Task Force). RFC 1766: Tags for the Identification of
Languages, ed. H. Alvestrand. 1995. (See
http://www.ietf.org/rfc/rfc1766.txt.) ISO/IEC 10646

ISO (International Organization for Standardization). ISO/IEC 10646-1993 .
Information technology — Universal Multiple-Octet Coded Character Set (UCS) —
Part 1: Architecture and Basic Multilingual Plane. [Geneva]: International
Organization for Standardization, 1993 (plus amendments AM 1 through AM 7).
ISO/IEC 10646-2000

ISO (International Organization for Standardization). ISO/IEC 10646-1:2000.
Information technology — Universal Multiple-Octet Coded Character Set (UCS) —
Part 1: Architecture and Basic Multilingual Plane. [Geneva]: International
Organization for Standardization, 2000. Unicode

The Unicode Consortium. The Unicode Standard, Version 2.0. Reading, Mass.:
Addison-Wesley Developers Press, 1996. Unicode3

The Unicode Consortium. The Unicode Standard, Version 3.0. Reading, Mass.:
Addison-Wesley Developers Press, 2000. ISBN 0-201-61633-5.

Appendix

PART V
1118

31 0672323419 App A 3/15/04 11:28 AM Page 1118

A.2 Other References
Aho/Ullman

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Reading: Addison-Wesley, 1986, rpt. corr. 1988. Berners-
Lee et al.

Berners-Lee, T., R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI):
Generic Syntax and Semantics. 1997. (Work in progress; see updates to RFC1738.)
Brüggemann-Klein

Brüggemann-Klein, Anne. Formal Models in Document Processing.
Habilitationsschrift. Faculty of Mathematics at the University of Freiburg, 1993.
(See ftp://ftp.informatik.uni-
freiburg.de/documents/papers/brueggem/habil.ps.) Brüggemann-Klein and
Wood

Brüggemann-Klein, Anne, and Derick Wood. Deterministic Regular Languages.
Universität Freiburg, Institut für Informatik, Bericht 38, Oktober 1991. Extended
abstract in A. Finkel, M. Jantzen, Hrsg., STACS 1992, S. 173-184. Springer-Verlag,
Berlin 1992. Lecture Notes in Computer Science 577. Full version titled One-
Unambiguous Regular Languages in Information and Computation 140 (2): 229-
253, February 1998. Clark

James Clark. Comparison of SGML and XML. See http://www.w3.org/TR/NOTE-
sgml-xml-971215. IANA-LANGCODES

(Internet Assigned Numbers Authority) Registry of Language Tags, ed. Keld
Simonsen et al. (See http://www.isi.edu/in-notes/iana/assignments/lan-
guages/.) IETF RFC2141

IETF (Internet Engineering Task Force). RFC 2141: URN Syntax, ed. R. Moats.
1997. (See http://www.ietf.org/rfc/rfc2141.txt.) IETF RFC 2279

IETF (Internet Engineering Task Force). RFC 2279: UTF-8, a transformation for-
mat of ISO 10646, ed. F. Yergeau, 1998. (See
http://www.ietf.org/rfc/rfc2279.txt.) IETF RFC 2376

IETF (Internet Engineering Task Force). RFC 2376: XML Media Types. ed. E.
Whitehead, M. Murata. 1998. (See http://www.ietf.org/rfc/rfc2376.txt.)
IETF RFC 2396

IETF (Internet Engineering Task Force). RFC 2396: Uniform Resource Identifiers
(URI): Generic Syntax. T. Berners-Lee, R. Fielding, L. Masinter. 1998. (See
http://www.ietf.org/rfc/rfc2396.txt.) IETF RFC 2732

IETF (Internet Engineering Task Force). RFC 2732: Format for Literal IPv6
Addresses in URL’s. R. Hinden, B. Carpenter, L. Masinter. 1999. (See
http://www.ietf.org/rfc/rfc2732.txt.) IETF RFC 2781

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1119

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1119

IETF (Internet Engineering Task Force). RFC 2781: UTF-16, an encoding of ISO
10646, ed. P. Hoffman, F. Yergeau. 2000. (See http://www.ietf.org/rfc/
rfc2781.txt.) ISO 639

(International Organization for Standardization). ISO 639:1988 . Code for the rep-
resentation of names of languages. [Geneva]: International Organization for
Standardization, 1988. ISO 3166

(International Organization for Standardization). ISO 3166-1:1997 . Codes for the
representation of names of countries and their subdivisions — Part 1: Country
codes [Geneva]: International Organization for Standardization, 1997. ISO 8879

ISO (International Organization for Standardization). ISO 8879:1986. Information
processing — Text and Office Systems — Standard Generalized Markup Language
(SGML). First edition — 1986-10-15. [Geneva]: International Organization for
Standardization, 1986. ISO/IEC 10744

ISO (International Organization for Standardization). ISO/IEC 10744-1992 .
Information technology — Hypermedia/Time-based Structuring Language
(HyTime). [Geneva]: International Organization for Standardization, 1992.
Extended Facilities Annexe. [Geneva]: International Organization for
Standardization, 1996. WEBSGML

ISO (International Organization for Standardization). ISO 8879:1986 TC2.
Information technology — Document Description and Processing Languages.
[Geneva]: International Organization for Standardization, 1998. (See http://
www.sgmlsource.com/8879rev/n0029.htm.) XML Names

Tim Bray, Dave Hollander, and Andrew Layman, editors. Namespaces in XML.
Textuality, Hewlett-Packard, and Microsoft. World Wide Web Consortium, 1999.
(See http://www.w3.org/TR/REC-xml-names/.)

B Character Classes
Following the characteristics defined in the Unicode standard, characters are classed as
base characters (among others, these contain the alphabetic characters of the Latin alpha-
bet), ideographic characters, and combining characters (among others, this class contains
most diacritics) Digits and extenders are also distinguished.

Characters

[84] Letter ::= BaseChar| Ideographic

[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A] | [#x00C0

#x00D6] | [#x00D8-#x00F6] | [#x00F8-#x00FF] |

Appendix

PART V
1120

31 0672323419 App A 3/15/04 11:28 AM Page 1120

[#x0100-#x0131] | [#x0134-#x013E] | [#x0141-

#x0148] | [#x014A-#x017E] | [#x0180-#x01C3] |

[#x01CD-#x01F0] | [#x01F4-#x01F5] | [#x01FA-

#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1] |

#x0386 | [#x0388-#x038A] | #x038C | [#x038E-

#x03A1] | [#x03A3-#x03CE] | [#x03D0-#x03D6] |

#x03DA | #x03DC | #x03DE | #x03E0 | [#x03E2-

#x03F3] | [#x0401-#x040C] | [#x040E-#x044F] |

[#x0451-#x045C] | [#x045E-#x0481] | [#x0490-

#x04C4] | [#x04C7-#x04C8] | [#x04CB-#x04CC] |

[#x04D0-#x04EB] | [#x04EE-#x04F5] | [#x04F8-

#x04F9] | [#x0531-#x0556] | #x0559 | [#x0561-

#x0586] | [#x05D0-#x05EA] | [#x05F0-#x05F2] |

[#x0621-#x063A] | [#x0641-#x064A] | [#x0671-

#x06B7] | [#x06BA-#x06BE] | [#x06C0-#x06CE] |

[#x06D0-#x06D3] | #x06D5 | [#x06E5-#x06E6] |

[#x0905-#x0939] | #x093D | [#x0958-#x0961] |

[#x0985-#x098C] | [#x098F-#x0990] | [#x0993-

#x09A8] | [#x09AA-#x09B0] | #x09B2 | [#x09B6-

#x09B9] | [#x09DC-#x09DD] | [#x09DF-#x09E1] |

[#x09F0-#x09F1] | [#x0A05-#x0A0A] | [#x0A0F-

#x0A10] | [#x0A13-#x0A28] | [#x0A2A-#x0A30] |

[#x0A32-#x0A33] | [#x0A35-#x0A36] | [#x0A38-

#x0A39] | [#x0A59-#x0A5C] | #x0A5E | [#x0A72-

#x0A74] | [#x0A85-#x0A8B] | #x0A8D | [#x0A8F-

#x0A91] | [#x0A93-#x0AA8] | [#x0AAA-#x0AB0] |

[#x0AB2-#x0AB3] | [#x0AB5-#x0AB9] | #x0ABD |

#x0AE0 | [#x0B05-#x0B0C] | [#x0B0F-#x0B10] |

[#x0B13-#x0B28] | [#x0B2A-#x0B30] | [#x0B32-

#x0B33] | [#x0B36-#x0B39] | #x0B3D | [#x0B5C-

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1121

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1121

#x0B5D] | [#x0B5F-#x0B61] | [#x0B85-#x0B8A] |

[#x0B8E-#x0B90] | [#x0B92-#x0B95] | [#x0B99

#x0B9A] | #x0B9C | [#x0B9E-#x0B9F] | [#x0BA3-

#x0BA4] | [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5] |

[#x0BB7-#x0BB9] | [#x0C05-#x0C0C] | [#x0C0E-

#x0C10] | [#x0C12-#x0C28] | [#x0C2A-#x0C33] |

[#x0C35-#x0C39] | [#x0C60-#x0C61] | [#x0C85-

#x0C8C] | [#x0C8E-#x0C90] | [#x0C92-#x0CA8] |

[#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] | #x0CDE |

[#x0CE0-#x0CE1] | [#x0D05-#x0D0C] | [#x0D0E-

#x0D10] | [#x0D12-#x0D28] | [#x0D2A-#x0D39] |

[#x0D60-#x0D61] | [#x0E01-#x0E2E] | #x0E30 |

[#x0E32-#x0E33] | [#x0E40-#x0E45] | [#x0E81-

#x0E82] | #x0E84 | [#x0E87-#x0E88] | #x0E8A |

#x0E8D | [#x0E94-#x0E97] | [#x0E99-#x0E9F] |

[#x0EA1-#x0EA3] | #x0EA5 | #x0EA7 | [#x0EAA-

#x0EAB] | [#x0EAD-#x0EAE] | #x0EB0 | [#x0EB2-

#x0EB3] | #x0EBD | [#x0EC0-#x0EC4] | [#x0F40-

#x0F47] | [#x0F49-#x0F69] | [#x10A0-#x10C5] |

[#x10D0-#x10F6] | #x1100 | [#x1102-#x1103] |

[#x1105-#x1107] | #x1109 | [#x110B-#x110C] |

[#x110E-#x1112] | #x113C | #x113E | #x1140 |

#x114C | #x114E | #x1150 | [#x1154-#x1155] |

#x1159 | [#x115F-#x1161] | #x1163 | #x1165 |

#x1167 | #x1169 | [#x116D-#x116E] | [#x1172-

#x1173] | #x1175 | #x119E | #x11A8 | #x11AB |

[#x11AE-#x11AF] | [#x11B7-#x11B8] | #x11BA |

[#x11BC-#x11C2] | #x11EB | #x11F0 | #x11F9 |

Appendix

PART V
1122

31 0672323419 App A 3/15/04 11:28 AM Page 1122

[#x1E00-#x1E9B] | [#x1EA0-#x1EF9] | [#x1F00-

#x1F15] | [#x1F18-#x1F1D] | [#x1F20-#x1F45] |

[#x1F48-#x1F4D] | [#x1F50-#x1F57] | #x1F59 |

#x1F5B | #x1F5D | [#x1F5F-#x1F7D] | [#x1F80-

#x1FB4] | [#x1FB6-#x1FBC] | #x1FBE | [#x1FC2-

#x1FC4] | [#x1FC6-#x1FCC] | [#x1FD0-#x1FD3] |

[#x1FD6-#x1FDB] | [#x1FE0-#x1FEC] | [#x1FF2-

#x1FF4] | [#x1FF6-#x1FFC] | #x2126 | [#x212A-

#x212B] | #x212E | [#x2180-#x2182] | [#x3041-

#x3094] | [#x30A1-#x30FA] | [#x3105-#x312C] |

[#xAC00-#xD7A3]

[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007 | [#x3021-
#x3029]

[87] CombiningChar (::= [#x0300-#x0345] | [#x0360-#x036) 1] |
[#x0483-#x0486] | [#x0591-#x05A1] | [#x05A3-
#x05B9] | [#x05BB-#x05BD] | #x05BF | [#x05C1-
#x05C2] | #x05C4 | [#x064B-#x0652] | #x0670 |
[#x06D6-#x06DC] | [#x06DD-#x06DF] | [#x06E0-
#x06E4] | [#x06E7-#x06E8] | [#x06EA-#x06ED] |
[#x0901-#x0903] | #x093C | [#x093E-#x094C] |
#x094D | [#x0951-#x0954] | [#x0962-#x0963] |
[#x0981-#x0983] | #x09BC | #x09BE | #x09BF |
[#x09C0-#x09C4] | [#x09C7-#x09C8] | [#x09CB-
#x09CD] | #x09D7 | [#x09E2-#x09E3] | #x0A02 |
#x0A3C | #x0A3E | #x0A3F | [#x0A40-#x0A42] |
[#x0A47-#x0A48] | [#x0A4B-#x0A4D] | [#x0A70-
#x0A71] | [#x0A81-#x0A83] | #x0ABC | [#x0ABE-
#x0AC5] | [#x0AC7-#x0AC9] | [#x0ACB-#x0ACD] |

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1123

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1123

[#x0B01-#x0B03] | #x0B3C | [#x0B3E-#x0B43] |
[#x0B47-#x0B48] | [#x0B4B-#x0B4D] | [#x0B56-
#x0B57] | [#x0B82-#x0B83] | [#x0BBE-#x0BC2] |
[#x0BC6-#x0BC8] | [#x0BCA-#x0BCD] | #x0BD7 |
[#x0C01-#x0C03] | [#x0C3E-#x0C44] | [#x0C46-
#x0C48] | [#x0C4A-#x0C4D] | [#x0C55-#x0C56] |
[#x0C82-#x0C83] | [#x0CBE-#x0CC4] | [#x0CC6-
#x0CC8] | [#x0CCA-#x0CCD] | [#x0CD5-#x0CD6] |
[#x0D02-#x0D03] | [#x0D3E-#x0D43] | [#x0D46-
#x0D48] | [#x0D4A-#x0D4D] | #x0D57 | #x0E31 |
[#x0E34-#x0E3A] | [#x0E47-#x0E4E] | #x0EB1 |
[#x0EB4-#x0EB9] | [#x0EBB-#x0EBC] | [#x0EC8-
#x0ECD] | [#x0F18-#x0F19] | #x0F35 | #x0F37 |
#x0F39 | #x0F3E | #x0F3F | [#x0F71-#x0F84] |
[#x0F86-#x0F8B] | [#x0F90-#x0F95] | #x0F97 |
[#x0F99-#x0FAD] | [#x0FB1-#x0FB7] | #x0FB9 |
[#x20D0-#x20DC] | #x20E1 | [#x302A-#x302F] |
#x3099 | #x309A

[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669] | [#x06F0-
#x06F9] | [#x0966-#x096F] | [#x09E6-#x09EF] |
[#x0A66-#x0A6F] | [#x0AE6-#x0AEF] | [#x0B66-
#x0B6F] | [#x0BE7-#x0BEF] | [#x0C66-#x0C6F] |
[#x0CE6-#x0CEF] | [#x0D66-#x0D6F] | [#x0E50-
#x0E59] | [#x0ED0-#x0ED9] | [#x0F20-#x0F29]

[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387 | #x0640 |
#x0E46 | #x0EC6 | #x3005 | [#x3031-#x3035] |
[#x309D-#x309E] | [#x30FC-#x30FE]

Appendix

PART V
1124

31 0672323419 App A 3/15/04 11:28 AM Page 1124

The character classes defined here can be derived from the Unicode 2.0 character data-
base as follows:

Name start characters must have one of the categories Ll, Lu, Lo, Lt, Nl.

Name characters other than Name-start characters must have one of the categories Mc,
Me, Mn, Lm, or Nd.

Characters in the compatibility area (i.e. with character code greater than #xF900 and
less than #xFFFE) are not allowed in XML names.

Characters which have a font or compatibility decomposition (i.e. those with a “compati-
bility formatting tag” in field 5 of the database — marked by field 5 beginning with a
“<”) are not allowed.

The following characters are treated as name-start characters rather than name characters,
because the property file classifies them as Alphabetic: [#x02BB-#x02C1], #x0559,
#x06E5, #x06E6.

Characters #x20DD-#x20E0 are excluded (in accordance with Unicode 2.0, section
5.14).

Character #x00B7 is classified as an extender, because the property list so identifies it.

Character #x0387 is added as a name character, because #x00B7 is its canonical equiva-
lent.

Characters ‘:’ and ‘_’ are allowed as name-start characters.

Characters ‘-’ and ‘.’ are allowed as name characters.

C XML and SGML (Non-Normative)
XML is designed to be a subset of SGML, in that every XML document should also be a
conforming SGML document. For a detailed comparison of the additional restrictions
that XML places on documents beyond those of SGML, see [Clark].

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1125

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1125

D Expansion of Entity and
Character References (Non-
Normative)
This appendix contains some examples illustrating the sequence of entity- and character-
reference recognition and expansion, as specified in 4.4 XML Processor Treatment of
Entities and References.

If the DTD contains the declaration

<!ENTITY example “<p>An ampersand (&#38;) may be escaped
numerically (&#38;#38;) or with a general entity
(&amp;).</p>” >

then the XML processor will recognize the character references when it parses the entity
declaration, and resolve them before storing the following string as the value of the entity
“example”:

<p>An ampersand (&) may be escaped
numerically (&#38;) or with a general entity
(&amp;).</p>

A reference in the document to “&example;” will cause the text to be reparsed, at which
time the start- and end-tags of the p element will be recognized and the three references
will be recognized and expanded, resulting in a p element with the following content (all
data, no delimiters or markup):

An ampersand (&) may be escaped
numerically (&) or with a general entity
(&).

A more complex example will illustrate the rules and their effects fully. In the following
example, the line numbers are solely for reference.

1 <?xml version=’1.0’?>
2 <!DOCTYPE test [
3 <!ELEMENT test (#PCDATA) >
4 <!ENTITY % xx ‘%zz;’>
5 <!ENTITY % zz ‘<!ENTITY tricky “error-prone” >’ >
6 %xx;
7]>
8 <test>This sample shows a &tricky; method.</test>

Appendix

PART V
1126

31 0672323419 App A 3/15/04 11:28 AM Page 1126

This produces the following:

• in line 4, the reference to character 37 is expanded immediately, and the parameter
entity “xx” is stored in the symbol table with the value “%zz;”. Since the replace-
ment text is not rescanned, the reference to parameter entity “zz” is not recognized.
(And it would be an error if it were, since “zz” is not yet declared.)

• in line 5, the character reference “<” is expanded immediately and the para-
meter entity “zz” is stored with the replacement text “<!ENTITY tricky “error-
prone” >”, which is a well-formed entity declaration.

• in line 6, the reference to “xx” is recognized, and the replacement text of “xx”
(namely “%zz;”) is parsed. The reference to “zz” is recognized in its turn, and its
replacement text (“<!ENTITY tricky “error-prone” >”) is parsed. The general
entity “tricky” has now been declared, with the replacement text “error-prone”.

• in line 8, the reference to the general entity “tricky” is recognized, and it is
expanded, so the full content of the test element is the self-describing (and ungram-
matical) string This sample shows a error-prone method.

E Deterministic Content Models
(Non-Normative)
As noted in 3.2.1 Element Content, it is required that content models in element type
declarations be deterministic. This requirement is for compatibility with SGML (which
calls deterministic content models “unambiguous”); XML processors built using SGML
systems may flag non-deterministic content models as errors.

For example, the content model ((b, c) | (b, d)) is non-deterministic, because given an
initial b the XML processor cannot know which b in the model is being matched without
looking ahead to see which element follows the b. In this case, the two references to b
can be collapsed into a single reference, making the model read (b, (c | d)). An initial b
now clearly matches only a single name in the content model. The processor doesn’t
need to look ahead to see what follows; either c or d would be accepted.

More formally: a finite state automaton may be constructed from the content model using
the standard algorithms, e.g. algorithm 3.5 in section 3.9 of Aho, Sethi, and Ullman
[Aho/Ullman]. In many such algorithms, a follow set is constructed for each position in
the regular expression (i.e., each leaf node in the syntax tree for the regular expression);
if any position has a follow set in which more than one following position is labeled with
the same element type name, then the content model is in error and may be reported as
an error.

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1127

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1127

Algorithms exist which allow many but not all non-deterministic content models to be
reduced automatically to equivalent deterministic models; see Brüggemann-Klein 1991
[Brüggemann-Klein].

F Autodetection of Character
Encodings (Non-Normative)
The XML encoding declaration functions as an internal label on each entity, indicating
which character encoding is in use. Before an XML processor can read the internal label,
however, it apparently has to know what character encoding is in use—which is what the
internal label is trying to indicate. In the general case, this is a hopeless situation. It is
not entirely hopeless in XML, however, because XML limits the general case in two
ways: each implementation is assumed to support only a finite set of character encod-
ings, and the XML encoding declaration is restricted in position and content in order to
make it feasible to autodetect the character encoding in use in each entity in normal
cases. Also, in many cases other sources of information are available in addition to the
XML data stream itself. Two cases may be distinguished, depending on whether the
XML entity is presented to the processor without, or with, any accompanying (external)
information. We consider the first case first.

F.1 Detection Without External Encoding
Information
Because each XML entity not accompanied by external encoding information and not in
UTF-8 or UTF-16 encoding must begin with an XML encoding declaration, in which the
first characters must be ‘<?xml’, any conforming processor can detect, after two to four
octets of input, which of the following cases apply. In reading this list, it may help to
know that in UCS-4, ‘<’ is “#x0000003C” and ‘?’ is “#x0000003F”, and the Byte Order
Mark required of UTF-16 data streams is “#xFEFF”. The notation ## is used to denote
any byte value except that two consecutive ##s cannot be both 00.

With a Byte Order Mark:

00 00 FE FF UCS-4, big-endian machine (1234 order)

FF FE 00 00 UCS-4, little-endian machine (4321 order)

00 00 FF FE UCS-4, unusual octet order (2143)

FE FF 00 00 UCS-4, unusual octet order (3412)

Appendix

PART V
1128

31 0672323419 App A 3/15/04 11:28 AM Page 1128

FE FF ## ## UTF-16, big-endian

FF FE ## ## UTF-16, little-endian

EF BB BF UTF-8

Without a Byte Order Mark:

00 00 00 3C UCS-4 or other encoding with a 32-bit code unit and ASCII characters
3C 00 00 00 encoded as ASCII values, in respectively big-endian (1234), little-
00 00 3C 00 endian (4321) and two unusual byte orders(2143 and 3412). The
00 3C 00 00 encoding declaration must be read to determine which of UCS-4 or

other supported 32-bit encodings applies.

00 3C 00 3F UTF-16BE or big-endian ISO-10646-UCS-2 or other encoding with a 16-
bit code unit in big-endian order and ASCII characters encoded as ASCII
values (the encoding declaration must be read to determine which)

3C 00 3F 00 UTF-16LE or little-endian ISO-10646-UCS-2 or other encoding with a
16-bit code unit in little-endian order and ASCII characters encoded as
ASCII values (the encoding declaration must be read to determine
which)

3C 3F 78 6D UTF-8, ISO 646, ASCII, some part of ISO 8859, Shift-JIS, EUC, or any
other 7-bit, 8-bit, or mixed-width encoding which ensures that the char-
acters of ASCII have their normal positions, width, and values; the
actual encoding declaration must be read to detect which of these
applies, but since all of these encodings use the same bit patterns for the
relevant ASCII characters, the encoding declaration itself may be read
reliably

4C 6F A7 94 EBCDIC (in some flavor; the full encoding declaration must be read to
tell which code page is in use)

Other UTF-8 without an encoding declaration, or else the data stream is misla-
beled (lacking a required encoding declaration), corrupt, fragmentary, or
enclosed in a wrapper of some kind

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1129

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

Note:

In cases above which do not require reading the encoding declaration to deter-
mine the encoding, section 4.3.3 still requires that the encoding declaration, if
present, be read and that the encoding name be checked to match the actual
encoding of the entity. Also, it is possible that new character encodings will be
invented that will make it necessary to use the encoding declaration to deter-
mine the encoding, in cases where this is not required at present.

31 0672323419 App A 3/15/04 11:28 AM Page 1129

F.2 Priorities in the Presence of External
Encoding Information
The second possible case occurs when the XML entity is accompanied by encoding
information, as in some file systems and some network protocols. When multiple sources
of information are available, their relative priority and the preferred method of handling
conflict should be specified as part of the higher-level protocol used to deliver XML. In
particular, please refer to [IETF RFC 2376] or its successor, which defines the text/xml
and application/xml MIME types and provides some useful guidance. In the interests of
interoperability, however, the following rule is recommended.

• If an XML entity is in a file, the Byte-Order Mark and encoding declaration are
used (if present) to determine the character encoding.

Appendix

PART V
1130

This level of autodetection is enough to read the XML encoding declaration and
parse the character-encoding identifier, which is still necessary to distinguish the
individual members of each family of encodings (e.g. to tell UTF-8 from 8859,
and the parts of 8859 from each other, or to distinguish the specific EBCDIC
code page in use, and so on).

Because the contents of the encoding declaration are restricted to characters
from the ASCII repertoire (however encoded), a processor can reliably read the
entire encoding declaration as soon as it has detected which family of encod-
ings is in use. Since in practice, all widely used character encodings fall into one
of the categories above, the XML encoding declaration allows reasonably reli-
able in-band labeling of character encodings, even when external sources of
information at the operating-system or transport-protocol level are unreliable.
Character encodings such as UTF-7 that make overloaded usage of ASCII-valued
bytes may fail to be reliably detected.

Once the processor has detected the character encoding in use, it can act appro-
priately, whether by invoking a separate input routine for each case, or by call-
ing the proper conversion function on each character of input.

Like any self-labeling system, the XML encoding declaration will not work if any
software changes the entity’s character set or encoding without updating the
encoding declaration. Implementors of character-encoding routines should be
careful to ensure the accuracy of the internal and external information used to
label the entity.

31 0672323419 App A 3/15/04 11:28 AM Page 1130

G W3C XML Working Group (Non-
Normative)
This specification was prepared and approved for publication by the W3C XML Working
Group (WG). WG approval of this specification does not necessarily imply that all WG
members voted for its approval. The current and former members of the XML WG are:

• Jon Bosak, Sun (Chair)

• James Clark (Technical Lead)

• Tim Bray, Textuality and Netscape (XML Co-editor)

• Jean Paoli, Microsoft (XML Co-editor)

• C. M. Sperberg-McQueen, U. of Ill. (XML Co-editor)

• Dan Connolly, W3C (W3C Liaison)

• Paula Angerstein, Texcel

• Steve DeRose, INSO

• Dave Hollander, HP

• Eliot Kimber, ISOGEN

• Eve Maler, ArborText

• Tom Magliery, NCSA

• Murray Maloney, SoftQuad, Grif SA, Muzmo and Veo Systems

• MURATA Makoto (FAMILY Given), Fuji Xerox Information Systems

• Joel Nava, Adobe

• Conleth O’Connell, Vignette

• Peter Sharpe, SoftQuad

• John Tigue, DataChannel

H W3C XML Core Group
(Non-Normative)
The second edition of this specification was prepared by the W3C XML Core Working
Group (WG). The members of the WG at the time of publication of this edition were:

• Paula Angerstein, Vignette

• Daniel Austin, Ask Jeeves

Extensible Markup Language (XML) 1.0 (Second Edition) Specification

APPENDIX A
1131

A

X
M

L 1.0
(S

EC
O

N
D

E
D

ITIO
N)

S
PEC

IFIC
A

TIO
N

31 0672323419 App A 3/15/04 11:28 AM Page 1131

• Tim Boland

• Allen Brown, Microsoft

• Dan Connolly, W3C (Staff Contact)

• John Cowan, Reuters Limited

• John Evdemon, XMLSolutions Corporation

• Paul Grosso, Arbortext (Co-Chair)

• Arnaud Le Hors, IBM (Co-Chair)

• Eve Maler, Sun Microsystems (Second Edition Editor)

• Jonathan Marsh, Microsoft

• MURATA Makoto (FAMILY Given), IBM

• Mark Needleman, Data Research Associates

• David Orchard, Jamcracker

• Lew Shannon, NCR

• Richard Tobin, University of Edinburgh

• Daniel Veillard, W3C

• Dan Vint, Lexica

• Norman Walsh, Sun Microsystems

• François Yergeau, Alis Technologies (Errata List Editor)

• Kongyi Zhou, Oracle

I Production Notes
(Non-Normative)
This Second Edition was encoded in the XMLspec DTD (which has documentation
available). The HTML versions were produced with a combination of the xmlspec.xsl,
diffspec.xsl, and REC-xml-2e.xsl XSLT stylesheets. The PDF version was produced
with the html2ps facility and a distiller program.

Appendix

PART V
1132

31 0672323419 App A 3/15/04 11:28 AM Page 1132

INDEX

32 0672323419 Index 3/15/04 11:28 AM Page 1133

SYMBOLS
3G wireless networks, 918
4+1 View Model (software

architecture), 616-617
Deployment Architectural

View, 624-625
Implementation Architectural

View, 617-620
Logical Architectural View,

620-623
Process Architectural View,

626-627
resources, 617

<a> element, 215
<after> element, 804
<all> element, 143
<allattributeGroup> element,

148
& (ampersand), 38, 1082
<asset> element, 253
(*) asterisk, 79
<attribute> element

specifying attribute values,
124

XML Schema Definition
Language, 123

 element, 903
<before> element, 804
<channel> element, 572

fields, 572-573
subelements, 573

% character, 1110
<choice> element, 144
(,) comma, 80
<do> element, 903
<emph> element, 254
<enumeration> facet, 132
(=) equal to operator, 183
#FIXED attribute, 90
<fo:block> element, 383-386
<fo:flow> element, 383-386
<fo:page-master> element,

379
<fo:page-master-set> ele-

ment, 382-383
<fo:page-sequence> element,

383-384
<fo:root> element, 379
<fo:simple-page-master> ele-

ment, 380-382
<fo:static-content> element,

387-390
<fpi> element, 254
<fractionDigits> facet, 132

3G wireless networks
1134

<go> element, 903
<group> element, 142
(<) greater than angle brack-

ets, 38
(<) greater than operator,

183
(<=) greater than or equal to

operator, 183
<id> element, 254
<IFX>, 953
#IMPLIED attribute, 90
<import> element, 167
<item> element, 573
<length> facet, 132
(<) less than operator, 183
(<=) less than or equal to

operator, 183
<maxLength> facet, 133
<minExclusive> facet, 133
<minLength> facet, 133
<name> element, 254
.NET, 721-722
.NET Framework, 721
.NET My Services, 623
(!=) not equal to operator,

183
<pattern> element, 254
<pattern> facet, 133
#PCDATA rule (elements), 77
(+) plus sign, 80
(|) pipe, 80
(?) question mark, 80
<report> element, 253
#REQUIRED attribute, 90
<rule> element, 254
(;) semicolon, 38
<schema> element,

targetNamespace attribute,
149

<see> element, 254
<select> element, 903
/ (slash), 462
 element, 254
[] (square brackets), 1056
<totalDigits> facet, 134
<whiteSpace> facet, 134
<wml> root element, 903
<xsl:attribute> element, 369
<xsl:for-each> element,

360-363
filters, 370
select attribute, 360

<xsl:if> element, 368-369
<xsl:sort> element, 364-366

A
a element, 538, 914
abbreviations, 1011

expressions (XPath), 206-207
XPointer notations, 214-215

acceptNode() method, 287
access control (WebDAV), 554
access element, 914
accessor, 641
accounting professional ser-

vices, 945
IFX (Interactive Financial

Language), 951-954
XBRL (Extensible Business

Reporting Language),
945-951

Accredited Standards
Committee (ASC), 18

ACORD (Association for
Cooperative Operations
Research and
Development), 955-956

channel-level encryption, 956
Support, 955

ACORD Global Standards
Strategy Committee, 956

ACORD Web site, 956
Active Server Pages (ASP),

356
ActiveX Data Objects (ADO),

722
activity services, 615
actor attribute, 640-641
addBook() method, 302
ADO (ActiveX Data Objects),

722
ADO.NET, 722

data providers, 723
DataRelation class, 734-735

public instance methods,
736-737

public instance properties,
735-736

DataSet class, 724, 729-730
public instance methods,

730-731
public instance properties,

730
DataTable class, 732

public instance methods,
733-734

public instance properties,
732-733

32 0672323419 Index 3/15/04 11:28 AM Page 1134

ASP
1135

DataView class, 737-738
public instance methods,

738
public instance properties,

737-738
typed data sets, 739-746

loading XML documents
into, 747

viewing XML, 741
writing XML documents,

748-750
XML support, 738-739

ADO.NET Web site, 723
Adobe Acrobat Reader Web

site, 386
Adobe SVG Viewer Web site,

504, 542
Adobe Web site, 541-542
Adobe XMP (XMP), 562
adopting XML standards,

992-993
addresses, URIs, 1050
advantages

RELAX schemas, 249-253
TREK schemas, 249-253
XML, 20

databases and flat files,
comparing, 25-26

EDI, comparing, 24-25
editing, 21
extensibility, 27-28
HTML, comparing, 23
parsers, 21
processing information, 22
protocols, 21
reading/writing, 22
SGML, comparing, 23
user ease, 22
validity checking, 20-21

AEC industry, 983
AEC-specific objects, 983
aecXML (architecture, engi-

neering, and construction
XML), 980-983

COS, 982-983
IAI, 981

aecXML Framework, 982
aecXML Web site, 984
afterxhtml.HTML file, 455-

456
agents, 860
agreements, defined, 816
Aho/Ullman (references),

1119
AI (artificial intelligence)

Cyc, 1056
Semantic Web, 1063-1066
Turing Test, 1066

alternate.CSS file, 451
alternate.XML file, 452
altGlyphDef element, 538
Amaya Web site, 541
American National Standards

Institute (ANSI), 18, 958
ampersand (&), 38
analysis (SVG), 521, 527-532
ancestor axis, 174
ancestor-or-self axis, 174
anchor element, 914
angle brackets, 1035
animate element, 538
animateColor element, 538
animateMotion element, 538
animateTransform element,

538
Annotea (Web site), 1062
annotating schemas, 141
anonymous type declara-

tions, 138-139
ANSI (American National

Standards Institute), 18,
958

Antenna House XSL
Formatter Web site, 535

ANY rule (elements), 76
anywhere access (ubiquitous

computing), 891
Apache FOP Web site, 535
Apache SOAP, 640
Apache Web site, 275, 378
Apache Xerces Web site, 313
APIs

event-based, 312
inquiry, 708

Visual Basic, 712
publication, 710, 713, 716

appendFile() method, 283
application integrator com-

ponents (port mechanisms),
771

application listings. See list-
ings

application translation layer
(ATL), 969

applications
BizTalk, 773
voice portals, 919
VoiceXML, 895, 919

advantages, 922
architecture, 920
development, 938
future considerations, 939
limitations, 922
structure and elements,

933, 935
successful, 922
voice phonebook service

example, 923-932

WAP
development, 916
future applications,

917-918
web-of-trust Semantic Web,

1062
wireless. See wireless applica-

tions
WML

responses, 916
testing usability, 917

applying style, 61-62
architecture

ebXML project, 881
eCo Framework, 867
manufacturing, 980-983
MISMO, 969
NewsML, 990-991
Semantic Web, 1040, 1044

Conceptual Graphs, 1055
Digital signatures, 1062
Logic layer, 1058-1060
ontologies, 1054-1057
Proof layer, 1061
Trust Layer, 1062
Unicode, 1045-1047
URIs, 1048-1050
XTM (XML Topic Maps),

1052-1053
software architecture, 616-617

Deployment Architectural
View, 624-625

Implementation
Architectural View,
617-620

Logical Architectural View,
620-623

Process Architectural
View, 626-627

resources, 617
ubiquitous computing multi-

client Web applications, 892
voice portals, 921
VoiceXML applications, 920
WAP applications, 897

architecture, engineering,
and construction XML. See
aecXML

ArchitectureZone Web site,
542

array, defined, 641
arrays, 645
ASC (Accredited Standards

Committee), 18
ASP (Active Server Pages),

356
server-side XSLT processing,

357

32 0672323419 Index 3/15/04 11:28 AM Page 1135

assign element
1136

assign element, 935
Association for Cooperative

Operations Research and
Development. See ACORD

asterisk (*), 79
asymmetric key systems,

609-610
asynchronous messaging,

631
asynchronous transmissions

(IFX), 953
ATL (application translation

layer), 969
Atoms (FOL), 1059
Attr interface, 273
attribute axis, 174
attribute groups, 148
attribute-list declarations,

1096
attribute-value normaliza-

tion, 1099
AttributeList interface, 314
AttributeListImpl class, 316
attributes

<import> element, 167
actor, 641
case-order, 367
declaring, XML schemas, 118
defaults, 1098
defining, 124
DTDs, 85-87

default values, 90-92
syntax, 86-87
types, 87-89

encodingStyle, 687
Header elements, 640
href, 354
inheritance, 160
mapping-schema, 807
mustUnderstand, 640
namespace, 687
parts, 687
select, 360
sql:field, 795
sql:relation, 794-795
transport, 686
type, 354
types, 1097

enumerated, 1098
use, 687
values

declaring entities, 56
entity references, 56
quoting, 55
tags, 55

vector graphics (SVG), 512
WSDL definitions, 682

XHTML (Extensible
Hypertext Markup
Language)

id, 465
minimized attributes, 464
name, 465
quotation marks, 463

XLink, 215
xlink:actuate, 216, 218
xlink:arcrole, 216-217
xlink:from, 216
xlink:href, 215
xlink:label, 216, 218
xlink:role, 216-217
xlink:show, 216-217
xlink:title, 216
xlink:to, 216
xlink:type, 215-216

XML markup, 45
elements, comparing,

46-47
XPath queries, 794-803

Attributes interface, 315
AttributesImpl class, 316
auctions, 861
audible user interface, 892
audio element, 935
authenticated registries, 610
authentication, Web

Services, 608
autodetection of character

encodings, 1128-1130
AVAKI, 625
axes, XPath expression syn-

tax, 174-175

B
b element, 914
B2B (Business to Business),

371, 770, 852
business collaboration, 875
data dictionaries, 864
e-commerce, Web services,

594-595
types of, 859
XSL, 371-373

B2C (Business to Consumer),
851

background. See history
BaseChar character classes,

1120
basicdiv.HTML file, 482-483
basicforms.HTML file,

481-482
basiclink.HTML file, 480

basictables.HTML file, 480-
481

Batik Web site, 542
beforexhtml.HTML file, 455
Benefit Enrollment

Workgroup, 970
benefits. See advantages
Berners-Lee, Tim, 1048
big element, 914
bill of materials (BOM), 851
bindings

defined, 269
HTTP GET, 688
HTTP POST, 688
Java bindings, 274-275
JAXB (Java Architecture for

XML Binding), 295-296
JAXB schemas, 414-415
MIME, 688
WSDL, 679, 684, 688

bindingTemplate fields, 702
Bioinformatic Sequence

Markup Language. See
BSML

biotechnology, 984
BSML, 984-986

files, 985
birds-of-a-feather vendor

grouping, XML standards,
830-831

bitmap graphics, 500-503
color, 501
Internet access, 503

BizTalk
applications, 773
channels, 772
distribution lists, 775
document definitions, 773
document maps, 774
documents, submitting,

775-776
organizations, 771
ports, 771

routing mechanisms, 772
WebDAV, 774-775

BizTalk Document Editor, 773
BizTalk Management Desk,

771
BizTalk Mapper, 774
BizTalk Server, 770
BizTalk Server 2000, 770-771

Document Editor, 773
block attribute, 126
block element, 935
Bluetooth, 918
Body elements, 641
body entries, 641
BOM (bill of materials), 851

32 0672323419 Index 3/15/04 11:28 AM Page 1136

classes
1137

books
Rational Unified Process, The,

617
Software Architecture for

Product Families, 617
Boolean functions (XPath),

184
Boolean operator (XPath),

183
(!=) not equal to, 183
(<) greater than, 183
(<) less than, 183
(=) equal to, 183

boundary points (ranges),
288-289

BOV (Business Operational
View), 881

BPS (Business Process
Schemas), 982-983

BPSS (Business Process
Specification Schema), 878

br element, 914
break element, 935
bridges, DCOM-CORBA, 633
browsers

URIs, 1051
WAP, 893

BSML (Bioinformatic
Sequence Markup
Language), 984-985

files, 985
instances, 985
specifications, 985

BSML Web site, 986
buildDOM() method, 283
building Web Services,

604-605
business administration, pro-

fessional services, 969
business data, reporting, 945
business modeling, limita-

tions of, 597-598
business motivations for

Web Services, 593
B2B e-commerce, 594-595
complexity and IT costs, 594
global e-marketplace vision,

595
Business Operational View

(BOV), 881
Business Process Modeling

Language, 614
Business Process Schemas

(BPS), 982-983
Business Process

Specification Schema, 878

business rules, 613
Business to Business. See B2B
Business to Business (B2B)

e-commerce, Web Services,
594-595

Business to Consumer (B2C),
851

businesses
advantages of Web Services,

593
B2B e-commerce, 594-595
complexity and IT costs,

594
global e-marketplace

vision, 595
business modeling, limitations

of, 597-598
vendor dependence problems,

598-599
businessService, creating,

702
buyers (B2B), 859

C
capabilities, SOAP, 634
card element, 914
Cascading Style Sheets. See

CSS
case sensitive tags, 54
case sensitivity, XHTML

(Extensible Hypertext
Markup Language), 463

case-order attribute, 367
catalog, defined, 579
catch element, 935
categoryBag, 699
CDA (clinical document archi-

tecture, 959
CDATA (character data), 49

XML markup, 49-50
CDATA attribute, 87
CDATA sections, 1084

XHTML, 464
CDATASection interface, 274
CGI (Common Gateway

Interface), 356
CGs, Semantic Web architec-

ture, 1055
channel element, 572-573
channel-level encryption

(ACORD), 956
channels, 772

creating, 772
mapped documents, 772

character data. See CDATA
character points, 209-210
character range, 1080
CharacterData interface, 273
characters

character classes, 1120, 1123
CKJV, 1047
encoding

autodetection of,
1128-1130

parsed entities, 1108
XPath expressions, 171

characters() method, 319
check-in/check-out (revision

control), 550
Chemical Markup Language.

See CML
child axis, 174
child elements as RDF con-

tainer element, 1019
child nodes (DOM), 272-273
Chinese Room Argument,

1067
choice element, 935
choosing content-manage-

ment solutions, 588-589
cost, 589
standards based, 589
support, 589
system performances, 589
system scale, 589

circle element, 538
CKJV characters, 1047
Clark, James, 443
classes

AttributeListImpl (SAX 2.0),
316

AttributesImpl (SAX 2.0), 316
CSS (Cascading Style Sheets),

451-453
DefaultHandler (SAX 2.0),

316
HandlerBase (SAX 2.0), 315
InputSource (SAX 2.0), 315
JAXB schemas, 416, 418-419
LocatorImpl(SAX 2.0), 316
NamespaceSupport(SAX 2.0),

316
ParserAdapter (SAX 2.0), 316
ParserFactory (SAX 2.0), 316
RDF schema, 1031-1034
XMLFilterImpl (SAX 2.0),

316
XMLReaderAdapter(SAX

2.0), 316
XMLReaderFactory (SAX

2.0), 316

32 0672323419 Index 3/15/04 11:28 AM Page 1137

clear element
1138

clear element, 935
client-side processing,

352-356
clinical document architec-

ture. See CDA
clipPath element, 538
Close() method, 725-726, 728
closed content models, 51
closed tags, 53
CLR (Common Language

Runtime), 721
CML (Chemical Markup

Language), 986
CML Web site, 989
Coca Cabana Technology

Shop case study, XHTML
(Extensible Hypertext
Markup Language), 466

home page with XHTML,
468-470

home page without XHTML,
466-467

XHTML Basic document,
485-487

code
comments, 1083
Unicode, Semantic Web archi-

tecture, 1045
code listings. See listings
Collaboration Protocol

Agreement (CPA), 875
Collaboration Protocol Profile

(CPP), 875
collections, defined, 579
color bitmap graphics, 501
color-profile element, 538
COM (Component Object

Model), 11, 30
CombiningChara character

classes, 1123
comma (,), 80
Comment interface, 273
comment() node test, 181
comments, 1083

DTDs, 102-103
XML markup, internal, 48

CommerceNet eCo
Framework, 866

committees, OASIS, 827-828
Common Gateway Interface

(CGI), 356
Common Language Runtime

(CLR), 721
Common Object Request

Broker Architecture
(CORBA), 11, 595-597

Common Objects Schemas
(COS), 982-983

communicating, B2B (XSL),
371-373

communications models, 631
Community Vocabularies

layer, 842-843
comparing

attributes and elements, 46-47
databases and flat files

(XML), 25-26
DOM and SAX, 312
e-business and e-commerce,

29
EDI and XML, 24

cost savings, 24
database formats, 25
Internet use, 24
syntax, 25
validity checking, 24

HTML and XML, 23
HTML and XSL-FO tables,

391-395
RDF and XML, 561
SGML and XML, 23

compatibility, character class-
es, 1125

complex elements
declaring, 128-129
syntax, 129

compliance (ICE), 586-587
complimentary modes of

access, 891
component assembly (Web),

550
component business process-

es, 613
Component Object Model

(COM), 11, 30
components

aecXML Framework, 982
defined, 593
DTD, 42-43
e-business systems, 861
ebXML project, 873
stacks, 834
Web content-management

(XML), 552-553
Web content-management

flow, 547
component assembly, 550
content syndication, 551
content-delivery phase,

550
content-input phase, 547
content-repository phase,

549

data storage, 549
delivery neutral format,

548
legacy inclusion, 549
mobile rendition, 551
original content creation,

548-549
print rendition, 551
revision control, 550
version control, 550
WAP, 551
Web rendition, 551
XML, 552-553

XML document declarations,
40-41

composition of Web Services,
612-613

compound type, 641
compound value, 641
concepts, 1056

RDF data model, 1012
characteristics, 1013

conditional sections, 1101
conditionals, 368
confidentiality of Web

Services, 608
configuring (IIS), 777-778,

782
conformance, processors,

1115
consortia, XML standards,

830
constants, FOL, 1058
construction, manufacturing,

980-983
containers, 1012

ranges, 289
content

element rules, 75-77
#PCDATA rule, 77
ANY rule, 76
EMPTY rule, 76-77

elements, 1094
ICE, 587
mixed, 1095
vector graphics (SVG),

508-512
Web, 546-547

choosing solutions,
588-589

component assembly, 550
components, 547
content syndication, 551
content-delivery phase,

550
content-input phase, 547
content-repository phase,

549

32 0672323419 Index 3/15/04 11:28 AM Page 1138

data formatting
1139

data storage, 549
database import, 549
delivery neutral format,

548
ICE, 577-587
ICE Authoring Group,

578-579
legacy inclusion, 549
metadata, 557-567
mobile rendition, 551
original content creation,

548-549
print rendition, 551
revision control, 550
RSS, 567-576
version control, 550
WAP, 551
Web rendition, 551
XML, 552-553

XML, 556
design, 556-557
reusable document objects,

556
XML markup, 50

content handlers, 314
content management, 29-30
content models, XML

markup, 51-52
closed models, 51
mixed models, 52
open models, 51

content syndication
RSS, 567-570
Web, 551, 566-567

content-delivery phase
(Web), 550

content-input phase (Web),
547

content-repository phase
(Web), 549

ContentHandler interface,
314-315, 319

contexts (user), 623-624
convenience constructs, 1014
conversation, 1064
conversation services, 615
conversations between Web

Services, 614-615
activity services, 615
conversation services, 615
transactions, 614
WSCL (Web Services

Conversation Language),
615

converting
XML data to HTML with

XSLT, 435-436
XSLT documents, 349

copyright (SAX), 310
CORBA (Common Object

Request Broker
Architecture), 11

limitations of, 595-597
CORBA/IIOP, 631
Corda Web site, 542
COS (Common Objects

Schemas), 982-983
costs

content-management solu-
tions, 589

EDI and XML, comparing, 24
CPA (Collaboration Protocol

Agreement), 875
CPP (Collaboration Protocol

Profile), 875
createNodeIterator() method,

287
createRange() method, 290
createRentalProperties()

method, 423-426
creating

businessService, 702
channels, 772
messages, request/response,

635
tModels, 700, 702
XML documents, 349

DOM (Document Object
Model), 281-284

XSL style sheets, 350-351,
373-374

CRM (Customer Relationship
Management), 30

cross-docking, 850
Cross-Project Objects (CPO)

Workgroup, 970
CSS (Cascading Style Sheets),

505
applying to XML documents,

448-450
classes, 451-453
history of, 443-444
Mobile Profile, 551
simple example, 448

HTML page, 444-447
style sheet, 445-446

SVG, 505
vector graphics (SVG),

512-516
W3C CSS resource page, 444
W3C recommendations, 823

cursor element, 538
Customer Relationship

Management (CRM), 30
Cyc, 1056-1057

D
DAO, 419

RentalPropertyDAO, 420-427
test harness, 427-429

servlets for http access, 429-
432

data, reporting
business, 945
financial, 945

Data Access Object. See DAO
data binding. See binding
data dictionaries

e-business systems, 864
RosettaNet, 884

data formatting
CSS (Cascading Style Sheets)

applying to XML docu-
ments, 448-450

classes, 451-453
history of, 443-444
simple example, 444-448
W3C CSS resource page,

444
DSSSL (Document Style

Semantics and Specification
Language), 440

online resources, 441
style sheets, 442-443

XForms, 487-488
data types, 495-496
form validation, 495-496
instance data tracking,

493-495
layers, 491-493
multiple form documents,

496-497
platform neutrality, 491
relationship with XML,

491
sample Web form, 489-490
submitted form data,

490-491
W3C working draft, 487
XHMTL compatibility, 491

XHTML (Extensible
Hypertext Markup
Language), 454

attribute values, 463
case sensitivity, 463
CDATA sections, 464
Coca Cabana Technology

Shop case study,
466-470, 485-487

DTDs (document type defi-
nitions), 457-462

id attribute, 465
minimization of attributes,

464

32 0672323419 Index 3/15/04 11:28 AM Page 1139

data formatting
1140

modularization, 470-472,
474-476

name attribute, 465
quotation marks, 463
version 1.0, 454
version 1.1, 472-473
well-formed documents,

462-463
XHTML Basic, 477-485
XML compliance, 454-456

data integrity, Web Services,
609

Data Interchange Standards
Association. See DISA

data layer (XForms), 492-493
Data Link Properties dialog

box, 740
data models

RDF, 998, 1005
affecting statements, 1013
combining elements into

statements, 1015
concepts, 1012-1013
graphs, 1006-1008
pictorial syntax, 1016
XML constructs, 1015

data providers, ADO.NET, 723
data servers, 302-303

XMLServlet.java output, 305-
306

XMLServlet.java source code,
303-305

data sets
loading XML documents into,

747
typed, ADO.NET, 739-746
writing XML documents,

748-750
Data Source Name (DSN),

233-237
data tracking (XForms), 493

partially filled forms, 493-494
placeholder elements, 494-495
XPath, 495

data types
derived, XML schemas, 122
DTDs, 104
facets, 135
primitive, 642-645

XML schemas, 121
XForms, 495-496
XML schemas

anonymous declarations,
138-139

declaring simple types,
130

refining simple types, 131,
133-134

database formats, comparing
EDI and XML, 25

database import (Web), 549
database mapping, 407-408
database solutions, 407

mapping, 407-408
support, 408

databases
flat files, comparing (XML),

25-26
modeling, 409-410

DTDs, 413-414
JAXB solution, 410-411
mapping, 412-413
schemas, 411-412

DataMirror Web site, 407
DataRelation class, 734-735

public instance methods,
736-737

public instance properties,
735-736

DataSet class, 724, 729-730
public instance methods,

730-731
public instance properties, 730

DataSet object, 747-750
DiffGrams, 755-758
persisting as XML files,

750-755
DataTable class, 732

public instance methods, 733-
734

public instance properties,
732-733

DataView class, 737-738
public instance methods, 738
public instance properties,

737-738
dbXML Web site, 408
DCD (Document Content

Description), 237-240
DCOM, 631
DCOM-CORBA bridges,

633\DDC, 1054
dead formats (schemas),

229-230
declarations, 1084

attribute-list, 1096
defined, 40
document type, 1087
element type, 1093
encoding, 1108
entity, 1105

external, 1105-1106
internal, 1105

markup, 1085

mixed-content, 1095
namespace, 636
notation, 1114
notations, 97
standalone document, 1087
XML document type, 1085
XML documents, 40

components, 40-41
validity, 41

declaring
attributes, XML schemas, 118
complex elements, XML

schemas, 128
data types, anonymous,

138-139
elements, XML schemas,

125-127
namespaces, 60

default namespaces, 60
elements, 60-61

DeclHandler interface, 316
DEFAULT attribute, 90
default declarations, 636
default namespaces, declar-

ing, 60
default values, attributes,

90-92
DefaultHandler class, 316
definitions

agreements, 816
attributes, 124
catalo, 579
collections, 579
ICE offer, 579
ICE package, 580
ICE payload, 580
logistics, 978
market, 821
metadata, 558-559
open standards, 818
openness, 818
patterns, 172
profiles, 974
schemas, 413
security, 840
services, 838
stacks, 832
standards, 815-816
subscribers, 579
subscriptions, 579
syndication, 551, 566
syndicators, 579
test harness, 427
WSDL, 679, 682
XML schema, 112, 115

32 0672323419 Index 3/15/04 11:28 AM Page 1140

documents
1141

defs element, 539
deleteRange() method, 290
delimiters (XML), 37-38
delivery policies

defined, 579
syndicators, 579

Deployment Architectural
View (software architec-
ture), 624-625

deployment descriptor files,
694

deprecated features
(XHTML), 476

derived data types, XML
schemas, 122

desc element, 539
descendant axis, 174
descendant-or-self axis, 174
description (RDF), 560
descriptions (SVG), 521, 527,

1000
WSDL, publishing, 700

design (XML), 556-557
deterministic content mod-

els, 1127
developers (XML), 11
Dewey, Melvil, 1055
dialog boxes

Data Link Properties, 740
Virtual Directory Properties,

778
Advanced page, 781
Data Source page, 778
General page, 778
Security page, 778
Settings page, 778
Virtual Names page, 779

Virtual Name Configuration,
779

DiffGrams, 755-758
Digital Rights Management

(DRM), 841
digital signatures, Semantic

Web architecture, 1062
digital transaction hubs, 861
dimensions (XSL-FO), 380
direct partnerships, 859
directives (DTDs), 101-102
DISA (Data Interchange

Standards Association), 18
disadvantages

DTDs, 103
data typing, 104
namespaces, 104
object-orientation, 104

security, 104
singular DTDs, 104
syntax, 103

XML, 26
file formatting, 27
memory sizes, 26-27
security, 27
validation, 27

DISCO (Discovery of Web
Services), 679

disconnect element, 935
discovery, Web Services, 605
Discovery of Web Services

(DISCO), 679
Dispose() method, 725, 728
distributed computing, 30
distribution lists (BizTalk),

775
distributors, 860
div element, 936
do element, 914
DocBuilder.java

output, 283-284
source code, 281-283

DOCTYPE (Document Type
Declaration), 41-43

DTDs, 73-75
syntax, 72

Document Content
Description (DCD), 237-240

document definitions
(BizTalk), 773

Document Editor (BizTalk),
773

document entities, 1114
Document interface, 273
document maps (BizTalk),

774
Document Object Model. See

DOM
Document Structure

Description (DSD), 233-237
Document Style Semantics

and Specification Language
(DSSSL), 440

online resources, 441
style sheets, 442-443

Document Type Declaration
(DOCTYPE), 41-43

DTDs, 73, 75
syntax, 72

document-oriented specifica-
tions, 834-835, 839

presentation aspect, 840
query aspect, 841
security aspect, 840-841
semantics aspect, 841-842

documentation (WSDL), 684
DocumentFragment inter-

face, 273
DocumentHandler interface,

315
DocumentRange interface,

289
documents. See also forms

BizTalk, submitting, 775-776
converting XML to HTML

(XSLT), 349
creating, DOM (Document

Object Model), 281-284
formatting. See formatting

data
implementation, 685
interface, 685
parsing, 275

getAttributes() method,
280-281

getNodeName() method,
280-281

getNodeValue() method,
280-281

library.xml file, 277
printElement() method,

278
SimpleWalker.java output,

277-279
SimpleWalker.java source

code, 275-277
publishing (XSLT), 347-348
XHTML (Extensible

Hypertext Markup
Language), XHTML Basic,
484-485

XML, 1079
attribute-list declarations,

1096
CDATA sections, 1084
character data and

markup, 1082
character references, 1103
characters, 1080
comments, 1083
conditional sections, 1101
creating, 349
declarations, 1084
document type declara-

tions, 1087
element type declarations,

1093
entity declarations,

1105-1106
language identification,

1089
logical structure, 1091
parsed entities, 1107-1108

32 0672323419 Index 3/15/04 11:28 AM Page 1141

documents
1142

physical structures, 1102
processing instructions,

1083
standalone document dec-

laration, 1087
syntactic constructs, 1080
terminology, 1078
well-formed, 1079
white space, 1089

DocumentTraversal interface,
285

DocumentType interface, 274
doGet() method, 306, 431
DOM (Document Object

Model), 22, 64
parsers, 22
SAX, comparing, 312
W3C recommendations, 823

DOM (Document Object
Model), 268-269, 271-272

advantages, 270
alternatives to

kXML, 294
NanoXML, 294
TinyXML, 294

bindings
defined, 269
Java bindings, 274-275

child nodes, 272-273
creating XML documents

DocBuilder.java output,
283-284

DocBuilder.java source
code, 281-283

defined, 269
disadvantages, 270-271
implementations, 269

JDOM, 291-293
interfaces, 273-274

Attr, 273
CDATASection, 274
CharacterData, 273
Comment, 273
Document, 273
DocumentFragment, 273
DocumentRange, 289
DocumentTraversal, 285
DocumentType, 274
DOMException, 273
DOMImplementation, 273
Element, 273
Entity, 274
EntityReference, 274
NamedNodeMap, 273
Node, 273
NodeFilter, 285
NodeIterator, 284

NodeList, 273
Notation, 274
ProcessingInstruction, 274
Range, 289
Text, 273
TreeWalker, 285

JDOM, Web site, 291
levels, 271
limitations, 269-270
limitations of, 595-597
parent nodes, 272-273
parsing XML documents, 275

getAttributes() method,
280-281

getNodeName() method,
280-281

getNodeValue() method,
280-281

library.xml file, 277
printElement() method,

278
SimpleWalker.java output,

277-279
SimpleWalker.java source

code, 275-277
ranges, 288

boundary points, 288-289
containers, 289
example, 289-290
interfaces, 289

root nodes, 273
sibling nodes, 272-273
traversal, 284

defined, 284
example, 285-287
interfaces, 284-285
IteratorApp output, 288

XML data server, 302-303
XMLServlet.java output,

305-306
XMLServlet.java source

code, 303-305
Domain Specific Schemas

(DSS), 982-983
DOMException interface, 273
DOMImplementation inter-

face, 273
downloading SDKs, 917
DRM (Digital Rights

Management), 841
DSD (Document Structure

Description), 233-237
DSD schema Web site, 233
DSN (Data Source Name), 433
DSS (Domain Specific

Schemas), 982-983

DSSSL (Document Style
Semantics and Specification
Language), 440

online resources, 441
style sheets, 442-443

DTDHandler interface, 315
DTDs (Document Type

Declarations), 8, 14, 41-42,
68, 321, 413, 457, 504, 1086.
See also XML Schema
Definition Language

components, 42-43
disadvantages, 103

data typing, 104
namespaces, 104
object-orientation, 104
security, 104
singular DTDs, 104
syntax, 103

external, 70-72
Frameset DTD, 461-462
functions, 68-70
internal, 70
limitations, 108
purchase order example, 111
schemas, 413
Strict DTD, 457-459
structure, 72

attributes, 85-92
comments, 102-103
directives, 101-102
Document Type

Declaration, 72-73
elements, 73-85
entities, 92-101

SVG, 504
Transitional DTD, 459-461
vector graphics (SVG), 507
XML markup, 50

dtmf element, 936
Dublin Core Web site, 564

E
e-business, 28-29, 848

B2B, 852
types of, 859

B2C, 852
business collaboration, 875
e-collaboration, 858
e-commerce, 857
e-procurement, 858
exchanges, auctions, and digi-

tal transaction hubs, 861

32 0672323419 Index 3/15/04 11:28 AM Page 1142

elements
1143

Internet-enabled supply
chains, 856

supply chains
agents and distributors,

860
direct partnerships, 859
multiparty procurement,

860
XML systems

business vocabulary, 866
components of, 861
data dictionaries, 864
ebXML project, 873-882
eCo Framework, 866-869
integration, 862
messaging, 864, 878
models of, 866
network and platform lay-

ers, 863
registry and repository,

864
RosettaNet, 883-887
trading partner agree-

ments, 865
transaction flow, 865
XML/EDI effort, 870-872

e-collaboration, 858
e-commerce, 28-29

agents and distributors, 860
EDI, 853

challenges, 856
transaction sets, 854
VANs, 854
VMI, 853

history, 857
supply chains, 849-850

globalization, 851
history of, 849
Internet-enabled, 856

e-procurement, 858
multiparty procurement, 860

EBNF (Extended Backus-Naur
Form) notation, 1116-1117

ebXML project
architecture, 881
business messages, 880
business processes, 878
Collaboration Protocol Profile

(CPP), 875
core components, 876
framework, 873
future development and main-

tenance, 882
infrastructure components,

873
messaging, 878
process overview, 874

ProcessSpecification element,
879

proof of concept, 880
registry, 876
UMM modeling, 879

ebXML standard, 607, 614
ECMAScript, 505

WML, 915
eCo Framework

(CommerceNet), 866
architecture, 867
query mechanism, 869
type registeries, 869

EDI (Electronic Data
Interchange), 10, 848, 853

challenges, 856
history, 16
transaction sets, 854
VANs, 854
VMI, 853
XML, comparing, 24

cost savings, 24
database formats, 25
Internet use, 24
syntax, 25
validity, 24

EDIFACT (Electronic Data
Interchange for
Administration, Commerce,
and Transport), 18

editing XML documents, 21
Electronic Data Interchange.

See EDI
Electronic Data Interchange

for Administration,
Commerce, and Transport
(EDIFACT), 18

Electronic Patient Records
(EPR), 957

Element interface, 273
element only rule, 78
elements

<a>, 215
<after>, 804
<asset>, 253
<before>, 804
<channel>, 573
<emph>, 254
<fo:block> element, 383-386
<fo:flow> element, 383-386
<fo:static-content>, 387-390
<fpi>, 254
<group>, 142
<id>, 254
<item>, 573
<name>, 254

<pattern>, 254
<report>, 253
<rule>, 254
<see>, 254
, 254
<xsl:attribute>, 369
<xsl:for-each>, 360-363
<xsl:for-each>, 370
<xsl:if>, 368-369
<xsl:sort>, 364-366
a, 538
altGlyphDef, 538
animate, 538
animateColor, 538
animateMotion, 538
animateTransform, 538
assigning namespaces to, 154
attribute groups, 148
binding (WSDL), 684
block attribute, 126
Body, 641
channel, 572-573
circle, 538
clipPath, 538
closed tags, 53
color-profile, 538
complex, 128
content models, 1094
cursor, 538
declaring, XML schemas,

125-127
definitions (WSDL), 682
defs, 539
desc, 539
documentation (WSDL), 684
DTDs, 73-85
ellipse, 539
embed, 520
empty, 44, 1093
Envelope, 639

Body, 641
extensibility, 685
filter, 539
font, 539
font=face, 539
g, 539
Header, 639-641
header entries, 639
ice-access, 587
ice-code, 583
ice-get-catalog, 580
ice-get-package, 582
ice-package, 582
ice-payload, 582, 586
ice-response, 581
image, 539
import (WSDL), 684

32 0672323419 Index 3/15/04 11:28 AM Page 1143

elements
1144

inheritance, 160
items, 573
LegalEnvelope, 965
line, 539
linearGradient, 539
marker, 540
mask, 540
matched, 44
message (WSDL), 683
metadata, 540
model groups, 142

<all>, 143
<choice>, 144
<sequence>, 146

namespaces, 58-59
declaring, 60-61
element differences, 59

path, 540
pattern, 540
polygon, 540
polyline, 540
portType (WSDL), 683
PRISM, 563-565

general purpose, 564
namespaces, 564-565
provenance, 564
resource relationships, 564
rights information, 564
subject descriptions, 564
timestamps, 564

radialGradient, 540
rect, 540
root, 54
RSS, 571-573
rules, 75

content, 75-77
structure, 75, 78-79

script, 540
service (WSDL), 684
set, 540
soap:address, 687
soap:binding, 686
soap:body, 687
soap:fault, 687
soap:header, 687
soap:headerfault, 687
soap:operation, 686
specifying mixed content for,

140
specifying types of, 646
style, 540
SVG, 536, 538-541
switch, 541
symbol, 541
symbols, 79-85

asterisk (*), 79

comma (,), 80
no symbols, 81
pipe (|), 80
plus sign (+), 80
question mark (?), 80

text, 541
title, 541
tModel, 699
type declarations, 1093
types (WSDL), 682
use, 541
view, 541
VoiceXML, 933, 935
WML, 914-915
WSDL, 679
XML markup, 43

attributes, comparing,
46-47

naming, 44-45
nesting, 44

XPath queries, 794-803
XSL-FO, 379

ellipse element, 539
else element, 936
elseif element, 936
em element, 914
embed element, 520
embedded elements, 642
embedding, RDF into HTML,

1035
emp element, 936
empty elements, 44, 1093
EMPTY rule (elements), 76-77
enabling services, 622
Encapsulated Postscript

(EPS), 503
encoding

character, autodetection of,
1128-1130

parsed entities, 1108
encoding declarations, 1108
encodingStyle attribute, 640,

687
encryption, 863
end-of-line handling, 1089
end-point() function, 213
end-tags, 1093
endDocument() method, 319
endElement() method, 319
endpoint managers, 611
endPrefixMapping() method,

319
engineering, professional

services, 984
biotech, 984-986
chemistry, 986-988

engines (XSL-FO), 377-378
Enterprise Resource Planning

(ERP), 30
entities

declaring, attributes, 56
document, 1114
DTDs, 92

external, 93-96
internal, 93-94
non-text external, 97-98
parameter , 98-101
predefined, 95
syntax, 93

forbidden, 1111
included, 1111
included if validating, 1111
included in literal, 1111
internal, replacement text,

1112-1113
not recognized, 1110
notation declarations, 1114
parsed, 1107

character encoding, 1108
well-formed, 1107

predefined, 1113
references, 1103
SAX parsers, 328-331
XML processor treatment of,

1109-1111
XML standards, 817

ENTITY attribute, 88
entity declarations, 1105

external, 1105-1106
internal, 1105

Entity interface, 274
entity references

attributes, 56
XML markup, 47-48

external, 48
internal, 48

EntityReference interface,
274

EntityResolver interface, 315
enumerate element, 936
ENUMERATED attribute, 89
enumerated attribute types,

1098
Envelope element, 639
Envelope elements, Body,

641
EPR (Electronic Patient

Records), 957
EPS (Encapsulated

Postscript), 503
ERP (Enterprise Resource

Planning), 30

32 0672323419 Index 3/15/04 11:28 AM Page 1144

formatting data
1145

error element, 936
error handlers, SAX parsers,

323-328
error messages (ICE), 583-585
error() method, 323
ErrorHandler methods, 323
ErrorHandler interface, 315
errors

fatal, 1078
well-formedness, 1115

event-based APIs, 312
events, lexical (SAX), 331-344
Excelon Web site, 408
exceptions

SAXException (SAX 2.0),
315

SAXNotRecognizedException
(SAX 2.0), 315

SAXNotSupportedException
(SAX 2.0), 315

SAXParseException (SAX
2.0), 315

exchanges, 861
ExecuteReader() method,

726, 729
executing, XML update-

grams, 810
existential quantifiers (FOL),

1059
exit element, 936
explicit declarations, 636
explicit mapping, 807-809
expression results (XPath),

186-190, 198
abbreviations, 206-207

expressions
XPath, 171

operators, 171
order of precedence,

172-173
special characters, 171
syntax, 172-175, 181-190,

198, 206-207
XPointer, 208

location sets, 208-209
Extended Backus-Naur Form

(EBNF) notation, 1116-1117
extended links (XLink),

219-221
extensibility, 37, 1034

XML documents, 27-28
extensibility elements, 685

exchanging SOAP messages,
686

locations of, 685

Extensible Business
Reporting Language. See
XBRL

eXtensible Hypertext Markup
Language. See XHTML

Extensible Markup
Language. See XML

eXtensible Metadata
Platform. See XMP

eXtensible Stylesheet
Language Transformations.
See XSLT

external DTDs, 70-72
Document Type Declaration,

73
external encoding informa-

tion, 1130
external entities, 48

DTDs, 93-96
external entity declarations,

1105-1106

F
facets, 131-134

<enumeration>, 132
<fractionDigits>, 132
<length>, 132
<maxLength>, 133
<minExclusive>, 133
<minLength>, 133
<pattern>, 133
<totalDigits>, 134
<whiteSpace>, 134
corresponding XML data

types, 135
fatal errors, 1078
fatalError() method, 323
Fault entry, 641
features (SOAP), 630
field element, 936
fields

<channel> element, 572-573
bindingTemplate, 702

fieldset element, 914
file formatting, XML docu-

ments, 27
files. See also listings

deployment descriptor, 694
port mechanisms, 771
RSS, 574-575

registering with
MoreOver.com, 575

registering with My
Netscape, 576

registering with RSS
aggregators, 575

registering with UserLand,
576

WSDL, generating, 691
WSDL service interface, 693

filled element, 936
filter element, 539
filters, 370
finances (professional ser-

vices), 945
IFX (Interactive Financial

Language), 951-954
XBRL (Extensible Business

Reporting Language),
945-951

financial considerations,
investing in RDF, 1005

financial data, reporting, 945
First Order Logic (FOL),

1058-1059
flat files, comparing databas-

es, 25-26
flexibility of e-business ser-

vices, 601-602
flow of information, 622
FOL (First Order Logic),

1058-1059
following axis, 174
following-sibling axis, 174
font element, 539
font-face element, 539
footers (page), 387-390
forbidden entities, 1111
form element, 936
formats

schemas, 229-230
DCD, 237-240
DSD, 233-237
RELAX, 244-247, 249-253
RELAX NG, 243
Schematron, 253-262
SOX, 240-243
TREK, 247-253
XDR, 230-233

XBRL, 946
formatting data

CSS (Cascading Style Sheets)
applying to XML docu-

ments, 448-450
classes, 451-453
history of, 443-444
simple example, 444-448
W3C CSS resource page,

444

32 0672323419 Index 3/15/04 11:28 AM Page 1145

formatting data
1146

DSSSL (Document Style
Semantics and Specification
Language), 440

online resources, 441
style sheets, 442-443

XForms, 487-488
data types, 495-496
form validation, 495-496
instance data tracking,

493-495
layers, 491-493
multiple form documents,

496-497
platform neutrality, 491
relationship with XML,

491
sample Web form, 489-490
submitted form data,

490-491
W3C working draft, 487
XHMTL compatibility, 491

XHTML (Extensible
Hypertext Markup
Language), 454

attribute values, 463
case sensitivity, 463
CDATA sections, 464
Coca Cabana Technology

Shop case study,
466-470, 485-487

DTDs (document type defi-
nitions), 457-462

id attribute, 465
minimization of attributes,

464
modularization, 470-472,

474-476
name attribute, 465
quotation marks, 463
version 1.0, 454
version 1.1, 472-473
well-formed documents,

462-463
XHTML Basic, 477-485
XML compliance, 454-456

XML files, 27
XSL objects, 377
XSL-FO engines, 377-378

forms
HTML (Hypertext Markup

Language), 488-489
XForms, 487-488

data types, 495-496
form validation, 495-496
instance data tracking,

493-495

layers, 491-493
multiple form documents,

496-497
platform neutrality, 491
relationship with XML,

491
sample form, 489-490
submitted form data,

490-491
XHMTL compatibility, 491

XHTML (Extensible
Hypertext Markup
Language) Basic, 481-482

Fragment identifiers, 1050
Frameset DTD (document

type definition), 461-462
framework (JAXB), 410
FSV (Functional Service

View), 881
fulfillment e-marketplaces,

861
fully authorized registries,

610
Functional Service View

(FSV), 881
functionality

HL7, 960
NewsML, 989

functions
DTDs, 68-70
end-point(), 213
here(), 208
id(), 208
origin(), 208
plot, 528
range-inside(), 213
range-to(), 214
root(), 208
SAX, 311, 314
SAX 2.0, 324
scale, 522
setDataPointVisibility, 525
start-point(), 214
string-range(), 214
XML updategrams, 804
XPointer ranges, 213-214

functions (XPath), 183
Boolean, 184
Node sets, 184-185
Number, 185
String, 185-186

functions (XPointer), 208-209
future-proof (data

exchange), 22

G
g element, 539
GCD (greatest common

denominator), 818-820
general purpose elements

(PRISM), 564
Generalized Markup

Language (GML), 13
generating

Jave servlets, 400-403
PDF documents, 399
WSDL files, 691

GeoWeb Geographic
Classification, 697

getAttributes() method,
280-281

getFirstChild() method, 287
getNodeName() method,

280-281
getNodeValue() method,

280-281, 287
getParameter() method, 306
getRentalProperties()

method, 420, 422
GetXml() method, 748-750
GetXmlSchema() method,

749-750
global e-marketplace vision,

Web Services, 595
globally unique identifies

(GUIDs), 696
GML (Generalized Markup

Language), 13
go element, 914
goals

OASIS, 826
W3C, 821

goGet() method, 306
goto element, 936
government XML standards,

828
birds—of-a-feather vendor

grouping, 830-831
individuals, 831-832
industry consortia, 830
ISO, 828-830
United Nations (UN), 828-830

grammar element, 936
graphics, 390-391

bitmap, 500-503
color, 501
Internet access, 503

vector, 500-503
CSS, 512-516
DTDs, 507
embedding graphics in

Web pages, 520

32 0672323419 Index 3/15/04 11:28 AM Page 1146

ICE offer
1147

interactive behavior,
520-532

Internet access, 503
style attributes, 512
SVG, 504-507, 536,

538-541
SVG content presentation

prototype, 508-512
XML content, 508
XML standards, 503
XSL, 516-519

XHTML (Extensible
Hypertext Markup
Language) Basic, 483

graphs
RDF, constructing form XML

syntax, 1016
RDF data model, 1006-1008

characteristics, 1007
greater than angle brackets

(<), 38
greatest common denomina-

tor (GCD), 818-820
green pages, UDDI (Universal

Description, Discovery, and
Integration), 697

Grove Paradigm, 1043
GUIDs (globally unique iden-

tifiers, 696

H
Hailstorm. See .NET My

Services
HandlerBase class, 315
head element, 914
Header element, 639-641
Header elements, attributes,

640
actor, 640-641
encodingStyle, 640
mustUnderstand, 640

header entries, 639
headers (page), 387-390
health care professional ser-

vices, 956-957
HL7, 958-962

Health Insurance Portability
& Accountability. See HIPAA

Health Level Seven. See HL7
help element, 936
here() function, 208
HEX (HTML Enabled XML

Parser), 336
HEX Web site, 336
hierarchy, 37

highlighting (SVG), 521,
525-526

HIPAA (Health Insurance
Portability &
Accountability), 957

HL7, 963
history

CSS (Cascading Style Sheets),
443-444

EDI, 16
HTML, 15-19
ICE, 577-578
RSS, 568-569
Semantic Web, 1041-1042
SGML, 11-14
XML, 19-20

HITIS (Hospitality Industry
Technology Integration),
972-973

HL7 (Health Level Seven),
957-962

functionality, 960
HIPAA, 963
specifications, 959

HL7 CDA XML sample docu-
ment, 961-962

HL7 v3.0, 959-960
HL7 Web site, 963
horizontal legal XML docu-

ments, 964
horizontal verticals, 944
hospitality professional ser-

vices, 971-972
OTA, 972-976

Hospitality Industry
Technology Integration
Standards (HITIS), 972-973

HR (human resources), 969
HR-XML (human resources

XML), 970
workgroups, 970-971

Benefit Enrollment
Workgroup, 970

Cross-Process Objects
(CPO) Workgroup, 970

Payroll Workgroup, 970
Recruiting and Staffing

Workgroup, 970
HR-XML Consortium, 970
HR-XML Web site, 971
href attribute, 354
HTML (Hypertext Markup

Language), 11. See also
XHTML (Extensible
Hypertext Markup
Language)

converting XML with XSLT,
435-436

embedding RDF into, 1035

history, 15-19
sample form, 488-489
W3C recommendations, 822
XML, comparing, 23
XSL-FO, comparing table

elements, 391-395
HTML Enabled XML Parser

(HEX), 336
HTML tables, template

queries (SQL Server 2000),
791-792

HTTP, 771
http (DAO), 429-432
HTTP GET bindings, 688
HTTP POST bindings, 688
HTTPR (reliable HTTP), 690
HTTPS, 771
human resources (HR), 969
human resources XML. See

HR-XML
hyperlinks, XHTML

(Extensible Hypertext
Markup Language) Basic,
479-480

Hypertext Markup Language.
See HTML

Hypertext Markup Language.
See HTML

Hypertext Processor. See PHP
HyTime, 1042

I
i element, 914
IAI (International Alliance

Interoperability), 981
IANA (Internet Assigned

Numbers Authority), 825
IANA-CHARSETS, 1118
IBM Web Services Toolkit

(WSTK), 689
IBM Web site, 407

Web Services page, 613
ICE (Information and Content

Exchange), 577
compliance, 586-587
content-management, 587
error messages, 583-585
history, 577-578
requests, 586-587
syndication, 585
syndication model, 579
terminology, 579-580
usage, 580-582

ICE Authoring Group,
578-579

ICE offer, defined, 579

32 0672323419 Index 3/15/04 11:28 AM Page 1147

ICE package
1148

ICE package, defined, 580
ICE payload, defined, 580
ICE Web site, 578
ice-access element, 587
ice-code element, 583
ice-get-catalog element, 580
ice-get-package element, 582
ice-package element, 582
ice-payload element, 582,

586
ice-response element, 581
ID attribute, 88
id attribute (XHTML), 465
id() function, 208
IDEAlliance Web site, 575
identifierBag, 699
identity

resources, 1000
Semantic Web, URIs, 1052

ideographic character classes,
1123

IDREF attribute, 88
IETF (Internet Engineering

Task Force), 823-824, 1048
RFCs, 824-825

IETF Web site, 825, 1048
IF (Implementation

Framework), 982
if element, 936
IFX (Interactive Financial

Exchange), 951-954
asynchronous transmissions,

953
message types, 954
OFX (Open Financial

Exchange), 952
specifications, 952
standards, 952
synchronous transmissions,

953
IFX Forum, 952
IFX Web site, 954
ignorableWhitespace()

method, 319
IGNORE keywords, 101-102
IIOP (Internet Inter-ORB

Protocol), 630
IIS, configuring, 777-778, 782
IIS Virtual Directory

Management, 777
image element, 539
images, XHTML (Extensible

Hypertext Markup
Language) Basic, 483

img element, 914
Implementation Architectural

View (software architec-
ture), 617-620

implementation documents,
685

Implementation Framework
(IF), 982

implementations
SAX, 316-317
WSDL, 688-695

implementations (DOM), 269
implicit mapping, 805-807
import (WSDL), 684
INCLUDE keywords, 101-102
included entities, 1111
independent elements, 642
index position (XPointer),

210
industries, vertical, 943-944
industry consortia, XML stan-

dards, 830
Information and Content

Exchange. See ICE
information flow, 622
Information Technology (IT),

883
inheritance, XML schemas,

160
initial element, 936
input element, 914
InputSource class, 315
inquiry APIs, 708
inquiry functions (UDDI API),

704
inquiry queries

find binding, 704
find business, 705
find service, 705
find tModel, 705
get bindingDetail, 705
get businessDetail, 705
get businessDetailExt, 705
get serviceDetail, 705
get tModelDetail, 705
UDDI API, 704-705

installing WSTK, 690
instance data tracking,

XForms, 493
partially filled forms, 493-494
placeholder elements, 494-495
XPath, 495

instances, BSML, 985
instant messaging, 31
insurance professional ser-

vices, 955-956
integrating, software,

599-600
integration (e-business sys-

tems), 862

interactive, SVG graphics,
520-532

analysis, 521, 527-532
descriptions, 521, 527
highlighting, 521, 525-526
panning, 521, 523-524
scaling, 521-523

Interactive Financial
Exchange. See IFX

interactive visualization, vec-
tor graphics (SVG), 505-507,
536, 538-541

interface documents, 685
interfaces

AttributeList (SAX 2.0), 314
Attributes (SAX 2.0), 315
ContentHandler, 314, 319
ContentHandler (SAX 2.0),

315
DeclHandler (SAX 2.0), 316
DocumentHandler (SAX 2.0),

315
DTDHandler (SAX 2.0), 315
EntityResolver (SAX 2.0),

315
ErrorHandler (SAX 2.0), 315
LexicalHandler, 331-344
LexicalHandler (SAX 2.0),

316
Locator (SAX 2.0), 315
Parser (SAX 2.0), 315
XMLFilter (SAX 2.0), 315
XMLReader (SAX 2.0), 315

interfaces (DOM), 273-274
Attr, 273
CDATASection, 274
CharacterData, 273
Comment, 273
Document, 273
DocumentFragment, 273
DocumentRange, 289
DocumentTraversal, 285
DocumentType, 274
DOMException, 273
DOMImplementation, 273
Element, 273
Entity, 274
EntityReference, 274
NamedNodeMap, 273
Node, 273
NodeFilter, 285
NodeIterator, 284
NodeList, 273
Notation, 274
ProcessingInstruction, 274
Range, 289
Text, 273
TreeWalker, 285

32 0672323419 Index 3/15/04 11:28 AM Page 1148

JXTA
1149

internal DTDs, 70
Document Type Declarations,

73
internal entities, 48

DTDs, 93-94
replacement text, 1112-1113

internal entity declarations,
1105

International Alliance for
Interoperability. See IAI

international languages
(XML), 65

Unicode standard, 65-66
International Organization

for Standardization. See
ISO

International Standard
Organization’s Open
System Interconnect. See
ISO/OSI

International Standards
Organization. See ISO

Internationalization, topic
maps, 1053

Internet
bitmap graphics access, 503
e-collaboration, 858
e-commerce, 857
e-procurement, 858
EDI and XML, comparing, 24
supply chains, 856

Internet Assigned Numbers
Authority. See IANA

Internet Engineering Task
Force. See IETF

Internet Inter-ORB Protocol
(IIOP), 630

interoperability (RDF), 1002,
1004

invoking Web Services,
605-606, 703

ISO (International Standards
Organization), 958

overview, 829-830
ISO 3166 Geographic

Taxonomy, 697
ISO Web site, 829
ISO/OSI (International

Standard Organization’s
Open System Interconnect),
832-834

IT (Information Technology),
883

iTech Web site, 378
item element, 573
items, 947-948
iterate() method, 287

IteratorApp.java
output, 288
source code, 285-286

IXIA Web site, 408

J
JASC WebDraw Web site,

508, 541
Java

bindings, 274-275
JAXB (Java Architecture for

XML Binding), 294
benefits, 295
data binding, 295-296
example, 296-302
marshalling, 295
serialization, 295
Web sites, 294

JAXP (Java APIs for XML
Processing), 275

JMX (Java Management
Extensions), 620

SDK (Software Development
Kit), 268

Java API for XML Processing.
See JAXP

Java APIs for XML Processing
(JAXP), 275

Java Architecture for XML
Binding. See JAXB

Java Architecture for XML
Binding. See JAXB

Java Database Connectivity
(JDBC), 409

Java Development Kit ver-
sion 1.3, XSLT processing,
376-377

Java Management
Extensions (JMX), 620

Java servlets, generating,
400-403

Java Virtual Machine (JVM),
409

JavaScript, 505
JavaServer Pages. See JSP
JAXB (Java Architecture for

XML Binding), 275, 294,
311, 410

benefits, 295
data binding, 295-296
database schemas, 411-412

example
addBook() method, 302
library.dtd, 296
Library.java, 297-300
LibraryApp.java, 300-302
readXML() method, 302
schema compiler, 296
validate() method, 302

framework, 410
marshaling, 295, 410
schemas

binding, 414-415
classes, 416-419
DAO, 419-429
servlets for http access,

429-432
testing applications,

432-435
serialization, 295
solution, 410-411
unmarshaling, 410
Web sites, 294

JAXB Web site, 410
JDBC (Java Database

Connectivity), 409
JDOM, 291

example
JDOMCreate.java output,

292-293
JDOMCreate.java source

code, 292
JDOMParse.java, 293

principles, 291
Web site, 291

JDOMCreate.java
output, 292-293
source code, 292

JDOMParse.java, 293
Jigsaw Java-based WebDAV

Web site, 555
JIT (just-in-time) integration,

606
JMX (Java Management

Extensions), 620
JSP (JavaServer Pages), 356

server-side XSLT processing,
358-359

JSP Web site, 437
just-in-time (JIT) integration,

606
JVM (Java Virtual Machine),

409
JXTA, 625

32 0672323419 Index 3/15/04 11:28 AM Page 1149

KevLinDev Web site
1150

K
KevLinDev Web site, 541
keys

asymmetric key systems,
609-610

sorting, 367-368
keywords

IGNORE, 101-102
INCLUDE, 101-102
NDATA, 97
PUBLIC, 93-95
SYSTEM, 93-96
xmlns, 636

Kruchten, Philippe, 616
kXML, 294

L
languages, 32

markup, 37
Unicode requirements, 1046
VoiceXML, 895
Web, 32
XML, international, 65
XSL, 346

LaTeX, 12
layers

eCo Framework, 868
Semantic Web, 1044
stacks, 834

Community Vocabularies
layer, 842-843

Process layer, 838-839
Services layer, 838
XML Base Architecture

layer, 835-836
XML Messaging layer,

836-838
XML Transport layer, 836

XForms, 491
data layer, 492-493
presentation layer, 492
purpose layer, 492

LCD (least common denomi-
nator), 818-820

least common denominator
(LCD), 818-820

legacy inclusion (Web), 549
legal XML standards profes-

sional services, 963-964
horizontal, 964
vertical, 964
workgroups, 964-967

Legal XML Web site, 967
LegalEnvelope element, 965
less than angle brackets (>),

38
letter character classes, 1120
levels, MISMO architecture,

969
levels (DOM), 271
lexical events (SAX), 331-344
LexicalHandler interface, 316,

331-344
methods, 334

library.dtd, 296
Library.java, 297
library.xml, 287
LibraryApp.java, 300-302
limitations

RELAX, 249-253
TREK schemas, 249-253
WML wireless applications,

898
line element, 539
linearGradient element, 539
link element, 936
linking documents, 57-58
links

semantic, 1043
XLink

extended, 219-221
simple, 219

listings
afterxhtml.HTML, 455-456
alternate.CSS, 451
alternate.XML, 452
ASP, 357
attribute quoting, 55
attributes, 45

ATTLIST declaration, 87
basicdiv.HTML, 482-483
basicforms.HTML, 481-482
basiclink.HTML, 480
basictables.HTML, 480-481
beforexhtml.HTML, 455
BSML, 985
CDA documents, hierarchy,

959
CML documents, 987
comment.xml, sample XML

document, 334
converting XML to HTML

documents><install_dir, 349
CSS, SVG, 514-515
data sets

data and schema informa-
tion, 753-755

DiffGrams, 756-757
XML output, 751-752

DCD schemas, 238-239
DocBuilder.java output,

283-284
DocBuilder.java source code,

281-283
DSD schemas, 234-237
DSSSL (Document Style

Semantics and Specification
Language) style sheet, 442

DTDs
attributes, 86
comments, 103
components, 42

xml, 75
contactlist.dtd, 74
content, 507
entities, external, 96
entities, internal, 94
entities, non-text, 98
entities, parameter, 98
entities, predefined, 95
external, 71
external and internal, 73
IGNORE directives, 101
INCLUDE directives, 102
internal, 70
invalid, 71

EDI, 17
elements

ANY rule, 76
CDATA, 77
mixed rule, 79
sorting with multiple keys,

367
sorting, 365
symbols, 79, 81-82

entity-ref.xml, XML docu-
ment with entity reference,
330

HL7 CDA XML document,
961-962

HTML, 15
HTML pages, book view.xsl,

351
ICE

catalog response, 581
DTD for ice-payload ele-

ment, 586
ice-access element, 587
ice-code with error indica-

tion, 583
ice-get-catalog request,

580
ice-get-package request,

582
IFX, request messages, 953
IteratorApp.java, 285-286

32 0672323419 Index 3/15/04 11:28 AM Page 1150

listings
1151

Java servlets, generating,
401-403

JDOMCreate.java output,
292-293

JDOMCreate.java source
code, 292

JDOMParse.java, 293
LaTeX, 12-13
legal XML, court filings,

965-967
library.dtd, 296
Library.java, 297-300
library.xml, 277, 288
library.xml sample XML doc-

ument, 320
LibraryApp.java, 300-302
mystylesheet.css, 480
NameNodeFilter.java, 286-287
namespaces, 58
NewsML files, 991
notestyle.CSS, 448-449
notestyle.XML, 449
OTA XML files, 976
page sequences, 385-386
PI example, 49
Postxhtml_Home.html file,

468-470
Prexhtml_Home.html file,

466-467
printElement() method, 278
PRISM

descriptions, 565-566
namespaces, 563

RangeApp.java, 289-290
RDF, syntax, 561
RELAX NG schemas, 250
RELAX schemas, 244
root elements, 55
RSS

files, 574
root element declarations,

571
sample CDATA, 49
sample comments, 48
SAXDemo output, 320-321
SAXDemo.java source code,

317-318
SAXEntity output, 331
SAXEntity.java source code,

328
SAXErrors output, 327
SAXErrors.java source code,

325
SAXLexical output, 335
SAXLexical.java source code,

331-333
SAXValidator output, 324

SAXValidator.java source
code, 321

schemas, 224-226
W3C schema, 226-229

Schematron schema, 255-262
SGML (Standard Generalized

Markup Language) docu-
ment, 14, 441-442

simple XML documents, 39,
272

simplecss.CSS, 446
simplemessage.HTML,

444-445
simplemessage_css.HTML,

446-447
SimpleWalker.java output,

277-279
SimpleWalker.java source

code, 275-276
simplexhtml11.HTML, 473
smaple entity references, 47
SOX schemas, 241-243
Spider output, 344
Spider.java, 337
SQL Server 2000

parameterized template
queries, 792

queries to execute, 790
results, 783
results from navigating,

790-792
results from navigating to

template queries, 793
revised queries, 789-790
style sheets, 785
style sheets converting to

results, 787-788
template queries, 788-789
URL queries, 782
XSLT transformation, 784
XSLT transformation con-

verting results, 786
StateHandler.java source code,

341-343
strictdtd.HTML, 458-459
SVG

content presentation proto-
type, 509-510

CSS, 513
graphics in Web pages,

520
tables

HTML and XSL-FO,
394-395

HTML and XSL-
FO><install_dir, 393

XSL-FO using XSLT,
397-398

XSL-FO using
XSLT><install_dir, 397

transdtd.HTML, 460-461
TREK schemas, 247
typed data sets, 742-743
typical HTML form, 488-489
USAHandler.java source code,

339-340
valid XML declarations, 41
WebDAV, syntax, 555
whitespace, 52-53
WML, 902

XML responses, 903
XSL transformation, 901

XBRL
instances, 949-950
taxonomy element, 948

XDR schema, 230-232
XForms

data layer, 492-493
data typing and form vali-

dation, 495-496
instance data tracking,

494
placeholder elements,

494-495
submitted data, 491
Web form, 490
xform element reference,

496
XHTML id and name attribut-

es, 465
XHTML style element, 464
xhtmlbasic.HTML, 479
Xhtmlbasic_home.html,

486-487
XLink, extended links, 220
XML as self-describing lan-

guages, 38
XML documents

book.xml, 349
booklist.xml, 360-361

XML
documentsbooklist_loop.xsl,
362

XML updategrams, 808
XMLServlet.java output,

305-306
XMLServlet.java source code,

303-305
XPath queries

output XML documents,
795-798

tables, 799-802
XML result set, 796
XSD Schema, 794-795

32 0672323419 Index 3/15/04 11:28 AM Page 1151

listings
1152

XPointer, points, 210
XSL

phonebook wireless appli-
cation example, 905

transforming XML data
into SVG presentations,
517-518

XSL style sheets, 355,
373-374

book.xml, 355
XSL-FO, loan visualizations,

535
XSLT processors, 375

literal data model concept,
1013

literals, 1081
locally scoped accessors, 642
location sets, 208-209
location set functions, Node

sets, 184
location steps

expression results, 186-190,
198

abbreviations, 206-207
functions, 183

Boolean, 184
Node sets, 185
Number, 185
String, 185-186

node tests, 181-182
predicates, 182

Boolean operators,
182-183

location transparency, 633
Locator interface, 315
LocatorImpl class, 316
locking (WebDAV), 554
logic, FOL, 1059-1060
Logic layer, Semantic Web

architecture, 1058-1060
Logical Architectural View

(software architecture),
620-623

logical structure (XML docu-
ments), 1091

logistics, defined, 978
loopback (port mechanisms),

771
looping, 360-363
loose coupling, 593
loosely coupled (data

exchange), 22
loosely coupled services, 838

M
Machines, AI, 1066
managing

content, 29-30
white space, 1089

manufacturing professional
services, 977

architecture, 980-983
construction, 980-983
logistics, 978-980
shipping, 978-980

MapBlast Web site, 503
mapped documents, 772
mapping

database, 412-413
databases, 407-408
XML updategrams, 804-805

attribute-centric update-
grams, 806

element-centric update-
grams, 805-807

mapping explicitly,
807-809

mapping-schema attribute,
807

MapQuest Web site, 503
marker element, 540
market, defined, 821
marketplaces (B2B), 859
markup (XML documents), 43

attributes, 45
CDATA, 49-50
comments, 48
content, 50
DTDs, 50
elements, 43-45
entity references, 47-48
PIs, 49

markup declarations, 1085
markup languages, 37
markup text, 37
marshaling, 295, 410

defined, 596
mask element, 540
matched elements, 44
MathML, W3C recommenda-

tions, 823
maxOccurs attribute, 127
MDAC (Microsoft Data

Access Components), 723
MDAC Web site, 723
meaning models, 999

mechanisms, ports, 771
application integrator compo-

nents, 771
files, 771
HTTP, 771
HTTPS, 771
loopback, 771
message queues, 771
routing, 772
SMTP, 771

media professional services,
989

NewsML, 989-992
memory, XML documents,

26-27
menu element, 936
MeSH, 1055
message (WSDL), 683
message passing/queuing

model, 631
message queues (port mech-

anisms), 771
message types (IFX), 954
message-oriented protocols,

834-835, 839
messages

one-way (WSDL), 683
request/response, 635
self-describing, 634
serialization, 637
SOAP

structure of, 636
Web services, 634

WSDL, 679
messaging

asynchronous, 631
e-business systems, 864
ebXML project, 878
synchronous, 631
using SOAP, 634

meta element, 914, 936
metadata, 37, 557-558

content syndication, 566-567
defined, 558-559
PRISM, 562-563

elements, 563-565
namespaces, 563
usage, 565-566

RDF, 559-560
comparing to XML, 561
description, 560
properties, 559
property type, 559
resources, 559
XMP, 562

XMP, 562

32 0672323419 Index 3/15/04 11:28 AM Page 1152

namespaces
1153

metadata element, 540
metadata properties

(WebDAV), 554
methods

acceptNode(), 287
addBook(), 302
appendFile(), 283
buildDOM(), 283
characters(), 319
Close(), 725-728
ContentHandler interface, 319
createNodeIterator(), 287
createRange(), 290
createRentalProperties(),

423-426
deleteRange(), 290
Dispose(), 725, 728
doGet(), 306, 431
endDocument(), 319
endElement(), 319
endPrefixMapping(), 319
error(), 323
ErrorHandler, 323
ExecuteReader(), 726, 729
fatalError(), 323
getAttributes(), 280-281
getFirstChild(), 287
getNodeName(), 280-281
getNodeValue(), 280-281, 287
getParameter(), 306
getRentalProperties(), 420,

422
GetXml(), 748-750
GetXmlSchema(), 749-750
goGet(), 306
ignorableWhitespace(), 319
iterate(), 287
LexicalHandler interface, 334

comment(), 334
endCData(), 334
endDTD(), 334
endEntity(), 334
startCData(), 334
startDTD(), 334
startEntity(), 334

newDocument(), 283
parse(), 283
printElement(), 278
processingInstruction(), 319
Read(), 726
readXML(), 302, 747
selectNodeContents(), 290
skippedEntity(), 319
startDocument(), 319
startDocumentLocator(), 319
startElement(), 319
startPrefixMapping(), 319
Submit(), 776

validate(), 302
warning(), 323
wrapping, 692
WriteXml, 748
WriteXml(), 750-755

MFC (Microsoft Foundation
Classes), 721

microbrowsers, 893
Microsoft Data Access

Components (MDAC), 723
Microsoft Foundation Classes

(MFC), 721
Microsoft Service Pack Web

site, 353
Microsoft SOAP Toolkit, 689
Microsoft UDDI SDK, 712
Microsoft Visual Studio. See

Visual Studio
Microsoft Web site, 407
MIME bindings, 688
MISMO (Mortgage Industry

Standards Maintenance
Organization), 968

architecture, 969
ATL (application translation

layer), 969
specifications, 969
transactions, 968

MISMO Web site, 969
mission (W3C), 822
mixed content models, 52
mixed rule, 78-79
mixed-content declarations,

1095
MNN (My Netscape

Network), 569-570
Mobile Profile, 551
mobile rendition (Web), 551
model groups (schemas), 142

<all> element, 143
<choice> element, 144
<sequence> element, 146

modeling, databases,
409-410

DTDs, 413-414
JAXB solution, 410-411
mapping, 412-413
schemas, 411-412

models
e-business systems, 866
meaning, 999
OSI, 958

modularization (XHTML),
470-474. See also XHTML
Basic

deprecated features, 476
list of modules, 474-476
strict conformance, 476
W3C recommendation, 470

MoreOver.com, registering
RSS files, 575

MoreOver.com Web site,
576-577

Mortgage Industry Standards
Maintenance Organization.
See MISMO

multi-reference values, 642
multimode voice and data

services, 939
multimode wireless services,

918
multiparty procurement, 860
multiple form documents

(XForms), 496-497
mustUnderstand attribute,

640
My Netscape Network

(MNN), 569-570
registering RSS files, 576

My Netscape Network (MNN)
Web site, 568, 577

My Services (.NET), 623
mystylesheet.css file, 480

N
name attribute, 682
name attribute (XHTML), 465
NamedNodeMap interface,

273
NameNodeFilter.java,

286-287
namespace attribute, 687
namespace axis, 174
namespace qualified, 639
namespace support

(WebDAV), 554
namespaces, 58, 636

assigning to elements, 154
declarations, 636
declaring, default namespaces

60
DTDs, 104
elements, 58-59

declaring, 60-61
element differences, 59

PRISM, 563
scope, 61
System.Data.OleDb, 723, 726

OleDbCommand class,
727

OleDbConnection class,
727, 729

OleDbDataAdapter class,
727

OleDbDataReader class,
727-729

32 0672323419 Index 3/15/04 11:28 AM Page 1153

namespaces
1154

System.Data.SqlClient,
723-724

SqlCommand class,
724-725

SqlConnection class, 724
SqlDataAdapter class,

724-725
SqlDataReader class,

724-726
System.Xml, 758

XmlDataDocument class,
758, 762-767

XmlDocument class,
758-762

XmlNamedNodeMap class,
758

XmlNode class, 758
XmlNodeList class, 758
XmlReader class, 758
XmlTextReader class, 758
XmlTextWriter class, 758
XmlWriter class, 758

targeting (XML schemas),
149, 152, 154

NamespaceSupport class, 316
naming elements, 44-45
NanoXML, 294
NASSL (Network Accessible

Service Specification
Language), 679

NDATA keyword, 97
Nelson, Ted, 1041
nesting, elements, 44
Netscape. See My Netscape
Netscape Netcenter Web site,

576
Network Accessible Service

Specification Language
(NASSL), 679

networks (VANs), 854
newDocument() method, 283
NewsML, 989-990

architecture, 990-991
functionality, 989
specifications, 989

NewsML Web site, 992
nillable attribute, 127
Nmtoken, 1081
NMTOKEN attribute, 89
Node interface, 273
node points, 209
Node set functions (XPath),

184-185
node tests, 181-182
node tests (XPointer), 208
node() node test, 181
NodeFilter interface, 285

NodeIterator interface, 284
NodeList interface, 273
nodes, UDDI (Universal

Description, Discovery, and
Integration), 696

nodes (DOM)
children, 272-273
defined, 272
parents, 272-273
root, 273
siblings, 272-273

noinput element, 936
nomatch element, 937
non-AEC-specific objects, 983
non-text external entities

(DTDs), 97-98
non-validating XML proces-

sors, 1115
nonrepudiation, Web

Services, 609
nonsequential writing, 1041
nonvalidating parsers, 63

kXML, 294
NanoXML, 294
TinyXML, 294

noop element, 914
normalized strings, 644
North American Industry

Classification System
(NAICS), 697

not recognized entities, 1110
notation

EBNF, 1116-1117
Peano, 1058

NOTATION attribute, 89
notation declarations, 1114
Notation interface, 274
notations (DTDs), 97-98
notestyle.CSS file, 448-449
notestyle.XML file, 449
NULL fields, XML update-

grams, 809
Number functions (XPath),

185

O
OASIS (Organization for the

Advancement of Structured
Information Standards), 826

ebXML project, 872
goals, 826
overview, 826
technical committees, 827-828

OASIS Web site, 828
object element, 937
Object RPC (ORPC) protocols,

631
object-based architectures,

602
object-oriented programming

(OOP), 602-603
objects, 1008. See also DOM

(Document Object Model)
DataSet, 747-750

DiffGrams, 755-758
mapping types in the RDF

data model to XML
elements, 1014

Proxy, 709
initializing, 711

Vector, 710
XSL, formatting, 377

OFX (Open Financial
Exchange), 952

OIL (Ontology Inferencing
Layer), 1057

OleDBCommand class, 727
OleDBConnection class, 727,

729
OleDBDataAdapter class, 727
OleDBDataReader class,

727-729
one-way messages (WSDL),

683
onevent element, 914
ontologies, 32, 607, 1053

Cyc, 1056
DDC, 1054
MeSH, 1055
OIL, 1057
Semantic Web Architecture,

1054-1057
Ontology Inferencing Layer

(OIL), 1057
OOP (object-oriented pro-

gramming), 602-603
open content models, 51
Open Financial Exchange

(OFX), 952
open software, 10
open standards, defined, 818
open systems, 10
Open Systems

Interconnection (OSI), 958
Open Travel Alliance. See

OTA
openness, defined, 818
Openwave Developer

Program, 917

32 0672323419 Index 3/15/04 11:28 AM Page 1154

PIPs
1155

operation (WSDL), 679
operations research and

management science, 850
operator nodes, 696
operators

Boolean (XPath), 183
(!=) not equal to, 183
(<) greater than, 183
(<=) greater than or equal

to, 183
(<) less than, 183
(<=) less than or equal to,

183
(=) equal to, 183

XPath expressions, 171
optgroup element, 914
option element, 915, 937
Oracle Web site, 407-408
ord data model concept,

1013
order

sorting, 364-366
by case, 367
with multiple keys,

367-368
XPath expressions, 172-173

org.xml.helpers package, 314
classes, 316

org.xml.sax package, 314
classes, 315
interfaces, 314-315

org.xml.sax.ext package,
interfaces, 316

Organization for the
Advancement of Structured
Information Standards. See
OASIS

organizations
BizTalk, 771
XML standards, 817, 821-823

birds-of-a-feather vendor
grouping, 830-831

governmental bodies,
828-830

IETF, 823-825
individuals, 831-832
industry consortia, 830
OASIS, 826-828

origin() function, 208
ORPC (Object RPC) protocols,

631
CORBA/IIOP, 631
DCOM, 631

OSI (Open Systems
Interconnections), 958

OSI network model, 832, 834

OTA (Open Travel Alliance),
972-973

specifications, 972-974
standards, 973-974
versions, 973
workgroups, 972

OTA 2001A, 974
specifications, 974-975

OTA Infrastructure, 974
OTA Web site, 977
overview

ISO, 829-830
OASIS, 826
W3C, 821

P
p element, 915
P2P (peer-to-peer networks),

31
page footers, 387-390
page headers, 387-390
page sequences, 383-384
panning (SVG), 521, 523-524
parallel modes of access, 891
param element, 937
parameter entities (DTDs),

98-101
parameter-entity references,

1112
parameters, template queries

(SQL Server 2000), 792-793
parent axis, 174
parent nodes (DOM), 272-273
parentheses [()], 80
parse() method, 283
parsed entities, 1107

character encoding, 1108
well-formed, 1107

Parser interface, 315
ParserAdapter class, 316
parsers, 62, 310. See also

DOM (Document Object
Model)

DOM, 22
kXML, 294
NanoXML, 294
nonvalidating, 63
SAX

entity references, 328-331
validating, 321-328

SGML and XML, comparing,
23

TinyXML, 294
validating, 63
XML documents, 21

parsing XML documents, 275
getAttributes() method,

280-281
getNodeName() method,

280-281
getNodeValue() method,

280-281
library.xml file, 277
printElement() method, 278
SimpleWalker.java output,

277-279
SimpleWalker.java source

code, 275-277
partially filled forms

(XForms), 493-494
Partner Interface Processes

(PIPs), 885
partnerships (direct), 859
parts attribute, 687
path element, 540
pattern element, 540
patterns

defined, 172
Schematron, 254

Payroll Workgroup, 970
PDF tables, 392-393
PDF documents

generating, 399
graphics, inserting, 390-391

PDF files, converting XSL-FO
documents to, 386-387

Peano notation, 1058
peer-to-peer networks (P2P),

31
peers, 625
performance, content-man-

agement solutions, 589
Perl, regular expressions, 134
persisting, DataSet object as

XML files, 750-755
PGP (Pretty Good Privacy),

1062
PHP (Hypertext Processor),

356
physical structures (XML doc-

uments), 1102
character references, 1103
entity declarations, 1105

external, 1105-1106
internal, 1105

PI targets, 49
PICS (Platform for Internet

Content Selection), 573, 823
W3C recommendations, 823

PICS Web site, 573
pipe (|), 80
PIPs (Partner Interface

Processes), 885

32 0672323419 Index 3/15/04 11:28 AM Page 1155

Pls
1156

PIs (Processing Instructions),
49

placeholder element
(XForms), 494-495

Platform for Internet
Content. See PICS

Platform for Internet Content
Selection. See PICS

plot function, 528
plus sign (+), 80
PNG, W3C recommendations,

823
point() node tests, 208
points (XPointer), 209-212

character, 209
index position, 210
node, 209

polygon element, 540
polyline element, 540
port (WSDL), 679
portals, voice, 919

architecture, 921
list of, 938

ports, 771
mechanisms, 771

application integrator
components, 771

files, 771
HTTP, 771
HTTPS, 771
loopback, 771
message queues, 771
routing, 772
SMTP, 771

PortType (WSDL), 679, 683
postfield element, 915
Postxhtml_Home.html file,

468-470
preceding axis, 174
preceding-sibling axis, 174
predefined entities, 1113

DTDs, 95
predicates, 182, 1008

Boolean operators, 182-183
creating, 1018

presentation aspect, 840
presentation layer (XForms),

492
presentation-neutral applica-

tion middleware, 891
Pretty Good Privacy (PGP),

1062
prev element, 915
Prexhtml_Home.html file,

466-467
primitive data types, 642-645

XML schemas, 121

print professional services,
989

NewsML, 989-992
print rendition (Web), 551
printElement() method, 278
PRISM (Publishing

Requirements for Industry
Standard Metadata), 562

elements, 563-565
general purpose, 564
namespaces, 564-565
provenance, 564
resource relationships, 564
rights information, 564
subject descriptions, 564
timestamps, 564

namespaces, 563
standards, 563
usage, 565-566

PRISM Web site, 563
Process Architectural View

(software architecture),
626-627

Process layer, 838-839
processes, component busi-

ness processes, 613
processing

XML, loosely coupled, 22
XML documents, 62
XML information, future-

proof, 22
Processing Instructions (PIs),

49
processing-instruction() node

test, 181
ProcessingInstruction inter-

face, 274
processingInstruction()

method, 319
processors

XML
use of, 1115
validating/non-validating,

1115
XSLT, 352, 374-376

client-side processing,
352-356

Java Development Kit ver-
sion 1.3, 377

server-side processing,
352-357

professional services, 944
business administration, 969
engineering, 984

biotech, 984-986
chemistry, 986-988

finance and accounting, 945
IFX (Interactive Financial

Language), 951-954
XBRL (Extensible Business

Reporting Language),
945, 947-951

health insurance, 956-957
HL7, 958-962

hospitality, 971-972
OTA, 972-976

HR, 969
HR-XML, 970-971
insurance, 955-956
legal XML standards, 963-964

horizontal, 964
vertical, 964
workgroups, 964-967

manufacturing, 977
architecture, 980-983
construction, 980-983
logistics, 978-980
shipping, 978-980

media, 989-992
print, 989-992
real estate, MISMO 968
scientific, 984

biotech, 984-986
chemistry, 986-988

travel, 971-972
OTA, 972-976

professional services stan-
dards, 944

Profile Specification (OTA),
974

profiles, defined, 974
program listings. See listings,

293
Project Xanadu, 1041-1042
prologs, 1084-1085
promiscuous registries, 610
prompt element, 937
proof, 1061
Proof layer, Semantic Web

architecture, 1061
properties (RDF), 559
property element, 937
property type (RDF), 559
proprietary standards, 818
pros element, 937
protocols

Object RPC (ORPC), 631
RPC (remote procedure call),

594
vendor-neutral, 632
Web Services, 678
XML documents, 21

32 0672323419 Index 3/15/04 11:28 AM Page 1156

rdfs:literal
1157

provenance elements
(PRISM), 564

Proxy objects, 709
initializing, 711

PSIs (Published Subject
Indicators), 1053

PUBLIC keyword, 93-95
publication APIs, 705, 710,

713, 716
publication queries

delete binding, 706
delete business, 706
delete service, 706
delete tModel, 706
discard authToken, 706
get authToken, 706
get registeredInfo, 706
save binding, 707
save business, 707
save service, 707
save tModel, 707

Published Subject Indicators
(PSIs), 1053

publisherAssertions, 717
publishing

documents (XSLT), 347-348
RSS, 575-576
Web Services, 605

Publishing Requirements for
Industry Standard
Metadata. See PRISM

purpose layer (XForms), 492

Q
QoS (quality of service), Web

Services, 611-612
quantifiers, FOL, 1059
queries

inquiry, 704
publication, 706
template (SQL Server 2000),

788
HTML tables, 791-792
parameters, 792-793
running, 789-790
style sheets, 790-791

URL (SQL Server 2000),
782-788

XPath
location steps, 175
resulting node sets, 176

XPath (SQL Server 2000),
794-795

attributes, 794-803
elements, 794-803

query aspect, 841
querying, Web Services reg-

istries, 678
question mark (?), 80
quotation marks (“), XHTML

(Extensible Hypertext
Markup Language), 463

quoting, attributes, 55

R
radialGradient element, 540
Range interface, 289
range() node tests, 208
range-inside() function, 213
range-to() function, 214
RangeApp.java, 289-290
ranges

XPointer, 213
functions, 213-214
string matching, 214

DOM, 288
boundary points, 288-289
containers, 289
example, 289-290
interfaces, 289

Rational Unified Process,
The, 617

RDBMS (relational database
management system), 28

RDF (Resource Description
Framework), 559-560, 823,
998

abbreviation, 1011
angle brackets, 1035
child elements, 1019
comparing to XML, 561
Core Working Group, 1003
data model, 998, 1005

affecting statements, 1013
combining elements into

statements, 1015
concepts, 1012-1013
graphs, 1006-1007
pictorial syntax, 1016
XML constructs, 1015

description, 560
embedding into HTML, 1035
framework, 1001
graphs

constructing from XML
syntax, 1016

triples, 1008

interoperability, 1002-1004
justification for investment in,

1005
overview, 999
properties, 559
property type, 559
RDF Issue Tracking, 1004
RDF Model Theory, 1004
RDF Test Cases, 1004
Refactoring RDF/XML Syntax,

1004
reification, 1023-1025
resources, 559

identity, 1000
specifications

core, 1001
working drafts and notes,

1002-1004
statements, 1000

creating, 1018, 1021
interoperability, 1002
parts of, 1019
pictorial notation, 1012
reification, 1009-1010

subclass concept, 1029
syntax, 1010
URIs, 1003
W3C recommendations, 823
XML, 560

convenience constructs,
1014

XML syntax
content model, 1027
summary, 1025

RDF Issue Tracking, 1004
RDF Model and Syntax

Specification, 1002
RDF Model Theory, 1004
RDF schema, 1028

class hierarchy, 1031-1034
typing system, 1029
validity, 1028

RDF Schema Specification
1.0, 1002

RDF Test Cases, 1004
RDF:Alt, 1013
RDF:Bag, 1013
rdf:property, 1032
RDF:Seq, 1013
rdfs:Class, 1033
rdfs:comment, 1034
rdfs:constraintProperty, 1034
rdfs:ContainerMembership-

Property, 1035
rdfs:label, 1034
rdfs:literal, 1035

32 0672323419 Index 3/15/04 11:28 AM Page 1157

rdfs:range
1158

rdfs:range, 1032
rdfs:seeAlso, 1034
rdfs:subClassOf, 1033
rdfs:subPropertyOf, 1033
Read() method, 726
reading XML documents, 22,

62
readXML() method, 302, 747
real estate professional ser-

vices, 968
record element, 937
Recruiting and Staffing

Workgroup, 970
rect element, 540
ref:type, 1032
Refactoring RDF/XML

Syntax(italics), 1004
Reference Implementation

Model (RIM), 958
references

expansion, 1125-1127
parameter-entity, 1112
URIs, 1050
XML processor treatment of,

1109-1111
refresh element, 915
refs:domain, 1031
refs:Resource, 1032
regions (XSL-FO), 381-382
registering

RSS files with MoreOver.com,
575

RSS files with My Netscape,
576

RSS files with RSS aggrega-
tors, 575

RSS files with UserLand, 576
registering businesses with

the UDDI registry, 716
registries

authenticated registries, 610
deleting information from,

705
fully authorized registries, 610
inserting information in, 705
promiscuous registries, 610
RSS, 569
UDDI, 707
UDDI (Universal Description,

Discovery, and Integration),
696

updating information in, 705
Web Services, 678

registry
e-business systems, 864
ebXML project, 876

Regular Language
Description for XML. See
RELAX

reification, 1009-1010
RDF statements, 1023-1025

relational database manage-
ment system (RDBMS), 28

RELAX (Regular Language
Description for XML),
244-247

advantages, 249-253
limitations, 249-253

RELAX NG, 243
RELAX NG Web site, 243
reliable HTTP (HTTPR), 690
remote procedure calls (RPC),

30, 594
RentalPropertyDAO, 420-427

test harness, 427-429
RentalPropertyDSN, 433
replacement text, internal

entities, 1112-1113
reporting

business data, 945
financial data, 945

repository (e-business sys-
tems), 864

ebXML project, 877
XML/EDI effort, 872

reprompt element, 937
Request for Comments

(RFCs), 824-825
request/response messages,

creating, 635
request/response model, 631
requests (ICE), 586-587
Resource Description

Framework. See RDF
resource relationships ele-
ments (PRISM), 564
resources

identity, 1000
RDF, 559
SVG, 541-542

responses (WML), 916
return element, 937
reusable document objects

(XML), 556
reusing software, 599-600
revision control (Web), 550
RFCs (Request for

Comments), 824-825
rich-text format (RTF), 12
rights information elements

(PRISM), 564

RIM (Reference
Implementation Model),
958

RNIF (RosettaNet
Implementation
Framework), 886

roles (WebDAV), 553-554
root elements, 54
root nodes (DOM), 273
root() function, 208
RosettaNet, 607, 883

business process modeling and
analysis, 886

data dictionaries, 884
future considerations, 887
implementation framework

(RNIF), 886
Partner Interface Processes

(PIPs), 885
Web site, 887

routing, port mechanisms,
772

RPC (remote procedure calls),
30, 594

RPC architectures, 631-634
RSS

aggregators, registering RSS
files, 575

content syndication, 567-570
elements, 571-573
files, 574-575

registering with
MoreOver.com, 575

registering with My
Netscape, 576

registering with RSS
aggregators, 575

registering with UserLand,
576

history, 568-569
publishing, 575-576
registries, 569
usage, 571
versions, 570

RSS V1.0, 570
RTF (rich-text format), 12
Ruby, 473
rules

business rules, 613
elements, 75

content, 75-77
structure, 75, 78-79

Schematron, 254
patterns, 254

sequencing rules, 622
XML structure, 53-56

running template queries
(SQL Server 2000), 789-790

32 0672323419 Index 3/15/04 11:28 AM Page 1158

Semantic Web
1159

S
SAX, 64-65

content handlers, 314
copyright, 310
defined, 310
disadvantages, 312-313
DOM, comparing, 312
functions, 311, 314
implementations, 316-317
lexical events, 331-344
limitations, 311
parsers

entity references, 328-331
validating, 321-328

versions, 313
XML documents, 317-318

ContentHandler interface,
319-320

library.xml, 320
SAXDemo, 320-321

SAX 1.0, 313
SAX 1.0 Web site, 313
SAX 2.0 features, 324
SAX 2.0, 313

org.xml.helpers package, 314
classes, 316

org.xml.sax package, 314
classes, 315
interfaces, 314-315

org.xml.sax.ext package, inter-
faces, 316

SAX Web site, 310, 324
SAXException exception, 315
SAXNotRecognizedException

exception, 315
SAXNotSupportedException

exception, 315
SAXParseException excep-

tion, 315
sayas element, 937
SBML Editorial Review Board,

1077
scale function, 522
scaling (SVG), 521-523
Schema for Object-Oriented

XML (SOX), 240-243
schemas, 108, 224-229

<import> element, 167
annotating, 141
anonymous type declarations,

138-139
attribute groups, 148
creating, 116

data types
applicable facets, 135-138
declaring simple types,

130
database, 411-412
declaring

attributes, 118
complex elements, 128-129
elements, 125-127
simple types, 130

defining, 115, 413-414
derived data types, 122
DTDs, 413
elements supported by the

W3C standard, 116
example XML document, 109
formats, 229-230

DCD, 237-240
DSD, 233-237
RELAX, 244-253
RELAX NG, 243
Schematron, 253-262
SOX, 240-243
TREK, 247-253
XDR, 230-233

inheriting from other schemas,
159, 161, 165

JAXB
binding, 414-415
classes, 416, 418-419
DAO, 419-429
servlets for http access,

429-432
testing applications,

432-433, 435
model groups, 142

<all> element, 143
<choice> element, 144
<sequence> element, 146

primitive data types, 121
purchase order example, 112
RDF, 1028

class hierarchy, 1031-1034
typing system, 1029
validity, 1028

refining simple types, 131,
133-134

simple XML data types, 118
specifying attribute values,

123
specifying mixed content for

elements, 140
targeting namespaces, 149,

152, 154, 163
Schematron, 253-262

rules, 254

schemes, 1049
DDC, 1054

scientific professional ser-
vices, 984

biotech, 984-986
chemistry, 986-988

SCL (SOAP Contract
Language), 679

SCM (supply chain manage-
ment), 849

scope, namespaces, 61
script element, 540, 937
scripts (SVG), 505
SDK (Software Development

Kit), 268, 313
SDO (Standards Developing

Organization), 958
searching

categoryBag, 699
identifierBag, 699

security
defined, 840
DTDs, 104
e-business systems, 863
Web Services, 608-611

asymmetric key systems,
609-610

authentication, 608
confidentiality, 608
data integrity, 609
nonrepudiation, 609
registries, 610-611

XML documents, 27
security aspect, 840-841
select attribute, 360
SELECT command (SQL), 777
select element, 915
selectNodeContents()

method, 290
self axis, 174
self-describing messages, 634
semantic links, 1043
Semantic Web, 32, 1040

AI, 1063-1066
architecture, 1040, 1044

Conceptual Graphs, 1055
digital signatures, 1062
Logic layer, 1058-1060
ontologies, 1054-1057
Proof layer, 1061
Trust layer, 1062
Unicode, 1045-1047
URIs, 1048-1050
XTM (XML Topic Maps),

1052-1053

32 0672323419 Index 3/15/04 11:28 AM Page 1159

Semantic Web
1160

conversation, 1065
identity, 1052
overview, 1041
precursors, 1041-1042
RDF, 1002

Semantic Web Community
Web site, 607

semantics
ebXML standard, 607, 614
ontologies, 607
RosettaNet, 607
Semantic Web Community

Web site, 607
Web Services, 607-608

semantics aspect, 841-842
semicolon (;), 38
sentences (FOL), 1059
SEP (Staffing Exchange

Protocol), 970
sequencing rules, 622
serialization, 295, 637
serialization rules,

encodingStyle attribute,
641

server-side processing,
352-356

ASP, 357
JSP, 358-359

servers (XML data servers),
302-303

XMLServlet.java output,
305-306

XMLServlet.java source code,
303-305

service (WSDL), 684
service descriptions, 593
service interface providers,

694
service providers, 622, 694

(B2B), 859
service-based architectures,

603
service-oriented architecture

(SOA), 600-601. See also
Web Services

services
defined, 838
loosely coupled, 838
Web Services, 592. See also

software architecture
advantages, 603
asymmetric key systems,

609-610
authentication, 608
building, 604-605

business advantages,
593-595

composition, 612-613
conversations between,

614-615
data integrity, 609
defined, 592-593
discovery, 605
flexibility, 601-602
integration options,

601-602
invoking, 605-606
JIT (just-in-time) integra-

tion, 606
loose coupling, 593
nonrepudiation, 609
OOP (object-oriented pro-

gramming), 602-603
publishing, 605
QoS (quality of service),

611-612
registries, 610-611
security, 608-611
semantic issues, 607-608
service descriptions, 593
SOA (service-oriented

architecture), 600-601
taxonomies, 607-608
technical advantages,

595-600
WSEL (Web Services

Endpoint Language),
612

Services layer, 838
servlets, http access, 429-432
set element, 540
setDataPointVisibility func-

tion, 525
setDocumentLocator()

method, 319
setting up Web Services reg-

istries, 678
setvar element, 915
SGML (Standard Generalized

Markup Language), 10,
440-441

expansion of entity and char-
acter references, 1125-1127

history, 11-14
online resources, 441
simple SGML document,

441-442
XML, comparing, 23

shipping, 978
sibling nodes (DOM), 272-273

simple links (XLink), 219
Simple Object Access

Protocol. See SOAP
simple type, defined, 641
simple value, defined, 641
simple XML documents,

38-39
simplecss.CSS file, 446
simplemessage.HTML file,

444-445
simplemessage_css.HTML

file, 446-447
SimpleWalker.java

output, 277-279
source code, 275-276

simplexhtml11.HTML file, 473
single-reference values,

defined, 642
skippedEntity() method, 319
slash (/), 462
small element, 915
SME (small and medium-

sized enterprises), 872
SMIL (Synchronized

Multimedia Integration
Language), 505

SVG, 505
W3C recommendations, 823

SMTP, 771
SOA (service-oriented archi-

tecture), 600-601. See also
Web Services

SOAP (Simple Object Access
Protocol), 630

Apache, 640
benefits versus ORPC, 632
capabilities, 634
features, 630
introduction to, 630
messages, exchanging, 686
messaging, 634
primitive data types, 642-645
terminology, 641-642

SOAP binding, 686-688
SOAP Contract Language

(SCL), 679
SOAP message, structure of,

636
SOAP specifications, 631
soap:address element, 687
soap:binding element, 686
soap:body element, 687
soap:fault element, 687
soap:header element, 687
soap:headerfault element,

687

32 0672323419 Index 3/15/04 11:28 AM Page 1160

standards
1161

soap:operation element, 686
software

architecture, 616-617
Deployment Architectural

View, 624-625
Implementation

Architectural View,
617-620

Logical Architectural View,
620-623

Process Architectural
View, 626-627

resources, 617
integrating, 599-600
open, 10
Project Xanadu, 1042
reusing, 599-600
validity-checking, 21

Software AG Web site, 408
Software Architecture for

Product Families (italic), 617
Software Development Kit

(SDK), 268
Software Development Kit

(SDK) Web site, 313
solutions (database), 407

mapping, 407-408
support, 408

sorting, 364
sort order, 364-366

sorting by case, 367
sorting with multiple keys,

367-368
source code listings. See list-

ings
SOX (Schema for Object-

Oriented XML), 240-243
specifications. See also stan-

dards
BSML, 985
CPA, 876
CPP, 876
ebXML, 873
EDI, 853
GCD, 818-820
HL7, 959
HyTime, 1044
IFX, 952
LCD, 818-820
MISMO, 969
NewsML, 989
OTA, 972-974
OTA 2001A, 974-975
RDF, 998

core, 1001
working drafts and notes,

1002-1004

SOAP, 631
TranXML, 979
UDDI, 679
UDDI Programmer’s API, 704
VoiceXML, 895
W3C, 822-823

CSS, 823
DOM, 823
HTML, 822
MathML, 823
PICS, 823
PNG, 823
RDF, 823
SMIL, 823
Web Accessibility

Initiative, 823
WebCGM, 823
XML, 823

WAP, 893
WML 2.0, 893
XBRL, 947
XML standards, 821-823

birds-of-a-feather vendor
grouping, 830-831

governmental bodies,
828-830

IETF, 823-825
individuals, 831-832
industry consortia, 830
OASIS, 826-828
stacks, 832, 834-843

XTM, 1052
Sperberg-McQueen, C. M.,

1074
SQL Server 2000, 776-777

IIS, configuring, 777-778, 782
template queries, 788

HTML tables, 791-792
parameters, 792-793
running, 789-790
style sheets, 790-791

URL queries, 782-788
XML updategrams, 803

executing, 810
functions, 804
mapping XML explicitly,

807-809
mapping XML implicitly,

805-807
mapping XML to databas-

es, 804-805
NULL fields, 809
structure, 804

XPath queries, 794-795
attributes, 794-803
elements, 794-803

SQL Server Query Analyzer,
777

sql:field attribute, 795
sql:relation attribute,

794-795
SqlCommand class, 724-725
SqlConnection class, 724
SqlDataAdapter class,

724-725
SqlDataReader class, 724-726
stacks, 832

components, 834
defined, 832
document-oriented specifica-

tions, 834-835, 839
presentation aspect, 840
query aspect, 841
security aspect, 840-841
semantics aspect, 841-842

ISO/OSI, 832-834
layers, 834

Community Vocabularies
layer, 842-843

Process layer, 838-839
Services layer, 838
XML Base Architecture

layer, 835-836
XML Messaging layer,

836-838
XML Transport layer, 836

message-oriented protocols,
834-835, 839

Staffing Exchange Protocol
(SEP), 970

Standard Generalized
Markup Language. See
SGML

Standard Industrial
Classifications (SIC), 697

standards. See also specifica-
tions

defined, 815-816
IFX, 952
OTA, 973-974
PRISM, 563
proprietary, 818
vector graphics, 503-504
WSDL, 678
XBRL, 947
XML, 814-817

adopting, 992-993
entity types, 817
LCD specifications,

818-820
open standards, 818
organizations, 817,

821-832
stacks, 832-843

32 0672323419 Index 3/15/04 11:28 AM Page 1161

standards based content-management solutions
1162

standards based content-
management solutions, 589

Standards Developing
Organization (SDO), 958

start-point() function, 214
start-pointer() point identifi-

er, 210
start-tags, 1092
startDocument() method, 319
startElement() method, 319
startPrefixMapping()

method, 319
statements

combining elements into,
1015

descriptions, 1000
FOL, 1058
RDF, 1000, 1008

affect of the RDF data
model, 1013

creating, 1018, 1021
interoperability, 1002
parts of, 1019
pictorial notation, 1012

reification, 1009-1010,
1023-1025

triples, 1001
storage, Web data, 549
strict conformance (XHTML),

476
Strict DTD (document type

definition), 457-459
strictdtd.HTML file, 458-459
String functions (XPath),

185-186
string matching (XPointer),

214
string-range() function, 214
strings, normalized, 644
strong element, 915
struct, defined, 641
structure

DTDs, 72
attributes, 85-92
comments, 102-103
directives, 101-102
Document Type

Declaration, 72-73
elements, 73-85
entities, 92-101

element rules, 75, 78
element only rule, 78
mixed rule, 78-79

physical (XML documents),
1102

character references, 1103
entity declarations,

1105-1106

SVG, 536
tModel, 699-700
UDDI (Universal Description,

Discovery, and Integration),
697-698

VoiceXML, 933
XML

documents, 39-40, 1091
rules, 53-56
updategrams, 804

style, applying, 61-62
style element, 540
style sheets

CSS (Cascading Style Sheets)
applying to XML docu-

ments, 448-450
classes, 451-453
history of, 443-444
simple example, 444-448
W3C CSS resource page,

444
DSSSL (Document Style

Semantics and Specification
Language), 442-443

template queries (SQL Server
2000), 790-791

XHTML (Extensible
Hypertext Markup
Language) Basic, 482-483

XSL, creating, 350-351,
373-374

subdialog element, 937
subject descriptions elements

(PRISM), 564
subjects, 1008

creating, 1017
submit element, 937
Submit() method, 776
submitting documents

(BizTalk), 775-776
subscribers, 551, 566

defined, 579
subscriptions, defined, 579
Sun Microsystems Web site,

268
JAXP (Java APIs for XML

Processing) page, 275
JMX (Java Management

Extensions) page, 620
JXTA page, 625

Sun Open Net Environment
(SunONE), 623

SunONE (Sun Open Net
Environment), 623

suppliers (B2B), 859

supply chains, 848-850
agents and distributors, 860
direct partnerships, 859
EDI, 853

challenges, 856
transaction sets, 854
VANs, 854
VMI, 853

exchanges, auction, and digital
transaction hubs, 861

globalization, 851
history, 849
Internet-enabled, 856
multiparty procurement, 860
SCM, 849

support
ACORD, 955
ADO.NET and XML, 738-739
content-management solu-

tions, 589
database solutions, 408
XBRL, 951

SVG
CSS, 505
DTDs, 504
scripts, 505
SMIL, 505
vector graphics, 503-504

CSS, 512-516
DTD content, 507
elements, 536, 538-541
future technology, 542
graphics in Web pages,

520
interactive behavior,

520-532
interactive visualization,

505-507
resources, 541-542
standards, 504
structure, 536
style attributes, 512
SVG content presentation

prototype, 508-512
XML content, 508
XML technologies,

504-505
XSL, 516-519

Web page visualizations, 532
client response time,

532-533
server loads, 533
user privacy, 533
XSL-FO diagrams, 533,

535

32 0672323419 Index 3/15/04 11:28 AM Page 1162

Text interface
1163

XMHTL, 505
XML, 505
XSL-FO, 505
XSLT, 505

svg element, 540
switch element, 541
symbol element, 541
symbols, elements, 79-85

asterisk (*), 79
comma (,), 80
no symbols, 81
parentheses [()], 80
pipe (|), 80
plus sign (+), 80
question mark (?), 80

Synchronized Multimedia
Integration Language. See
SMIL

synchronous messaging, 631
synchronous transmissions

(IFX), 953
syndication

content
RSS, 567-570
Web, 566-567

defined, 551, 566
ICE, 585
ICE model, 579

syndicators, 566
defined, 579

syntax
complex elements, 129
Document Type Declaration,

72
DTD entities, 93
DTDs, 103

attributes, 86-87
elements, 74

EDI and XML, comparing, 25
OIL, 1057
RDF, 1010, 1025
WSDL, 679-685
XML, 36-37
XPath expressions, 172

axes, 174-175
functions, 183-190, 198,

206-207
node tests, 181-182
predicates, 182-183

syntax listings. See listings
SYSTEM keyword, 93, 95-96
system scale content-man-

agement solutions, 589
System.Data.OleDb name-

space, 723, 726

OleDbCommand class, 727
OleDbConnection class,

727-729
OleDbDataAdapter class, 727
OleDbDataReader class,

727-729
System.Data.SqlClient name-

space, 723-724
SqlCommand class, 724-725
SqlConnection class, 724
SqlDataAdapter class,

724-725
SqlDataReader class, 724-726

System.Xml namespace, 758
XmlDataDocument class, 758,

762-767
public instance methods,

764-766
public instance properties,

763-764
XmlDocument class, 758-759

public instance methods,
760-762

public instance properties,
759-760

XmlNamedNodeMap class,
758

XmlNode class, 758
XmlNodeList class, 758
XmlReader class, 758
XmlTextReader class, 758
XmlTextWriter class, 758
XmlWriter class, 758

systems, open, 10

T
table element, 915
tables

HTML and XSL-FO, compar-
ing, 391-395

XHTML (Extensible
Hypertext Markup
Language) Basic, 480-481

XSL-FO (XSLT), 396-398
tags

attributes, 55
case sensitive, 54
closed, 53
end-tags, 1093
start-tags, 1092

targeting namespaces, 149,
163

targetNamespace attribute,
149, 682

taxonomies, 947-950
Web Services, 607-608

td element, 915
TDCC (Transportation Data

Coordinating Committee),
16

technical motivations for
Web Services, 595

business modeling, 597-598
CORBA limitations, 595-597
DOM limitations, 595-597
software integration, 599-600
software reuse, 599-600
vendor independence, 598-599

technologies
instant messaging, 31
P2P, 31
SVG, 542

new applications, 542
Web browser support, 542

XML, 10-11, 28
e-business, 28-29
e-commerce, 28-29
SVG, 504-505

template element, 915
template queries (SQL Server

2000), 788
HTML tables, 791-792
parameters, 792-793
running, 789-790
style sheets, 790-791

templates (XML/EDI effort),
871

terminology (XML docu-
ments), 1078

ICE, 579-580
SOAP, 641-642

Terms (FOL), 1059
test harness

defined, 427
RentalPropertyDAO, 427-429

testing
application usability, 917
VoiceXML application usabil-

ity, 938
text

markup, 37
XHTML (Extensible

Hypertext Markup
Language) Basic, 479

XML, 37
text element, 541
Text interface, 273

32 0672323419 Index 3/15/04 11:28 AM Page 1163

text() node test
1164

text() node test, 181
throw element, 937
timer element, 915
timestamps elements

(PRISM), 564
TinyXML, 294
title element, 541
tModel

creating, 700-702
structure, 699-700

tModel element, 699
tokens, 1081
topic maps, 32, 1053

conversation, 1065
tr element, 915
tracking data (XForms), 493

partially filled forms, 493-494
placeholder elements, 494-495
XPath, 495

transaction sets (EDI), 854
transactions, 614

e-business systems, 865
MISMO, 968

transdtd.HTML file, 460-461
Transentric, 978-979
transfer element, 937
transforming XML content to

SVG presentations, 516-519
Transitional DTD (document

type definition), 459-461
transitivity, 1029
transmissions (IFX)

asynchronous, 953
synchronous, 953

transport attribute, 686
Transportation Data

Coordinating Committee
(TDCC), 16

TranXML, 978-980
specifications, 979

TranXML Web site, 980
TranXML.org, 979
travel professional services,

971-972
OTA, 972-976

traversal (DOM), 284
defined, 284
example, 285

IteratorApp output, 288
IteratorApp.java, 285-286
library.xml, 287
NameNodeFilter.java,

286-287
interfaces, 284-285

TreeWalker interface, 285

TREK, 247-249
advantages, 249-253
limitations, 249-253

triples, 1001, 1008
characteristics, 1010

troff, 12
troubleshooting, VoiceXML

development, 938
Trust layer, Semantic Web

architecture, 1062
tuples, 947-948
Turing Test, 1066
type attribute, 354
type content (RDF), 1029
type registeries (eCo

Framework), 869
typed data sets (ADO.NET),

739-746
loading XML documents into,

747
viewing XML, 741
writing XML documents,

748-750
types

attributes
default values, 90-92
DTDs, 87-89

WSDL, 679, 682

U
u element, 915
ubiquitous computing

key technologies, 892
multiclient Web application

architecture, 892
visions of, 891
VoiceXML, 894

applications, 895
specification, 895

WML, 893
UDDI (Universal Description,

Discovery, and Integration),
678, 695-704, 877

capabilities
discovery, 696
publication, 696

future of, 716-718
globally unique identifies

(GUIDs), 696
green pages, 697
home page, 696
nodes, 696
proxy objects, 709

registries, 696, 707, 716
structure, 697-698
taxonomies, 697
using WSDL, 700
white pages, 696
yellow pages, 697

UDDI (Universal Description,
Discovery, and Integration)
Consortium, 695

UDDI 1.0, 697
UDDI 2.0, 697
UDDI API, 704

inquiry functions, 704
inquiry queries, 704-705

UDDI Programmer’s API spec-
ification, 704

UDDI specification, 679
UDDI4J home page, 708
UML (Unified Modeling

Language), 416, 1010
UMM (UN/CEFACT Modeling

Methodology), 879
UN (United Nations), 828-830
UN/CEFACT, ebXML project,

872
UN/CEFACT Modeling

Methodology (UMM), 879
Unicode

character classes, 1120, 1123
difficulties using, 1047
ISO 10646, 1046
languages requiring, 1046
Semantic Web architecture,

1045-1047
Web site, 1048

Unicode standard, 65-66
Unicorn Web site, 378
Unified Modeling Language

(UML), 416, 1010
Uniform Resource Citation

(URC), 1051
Uniform Resource Identifier

(URI). See URIs
United Nations (UN), XML

standards, 828-830
Universal Description,

Discovery and Integration
registery. See UDDI

Universal Standard Products
and Services Codes
(USPSC), 697

universally scoped accessors,
defined, 642

unmarshaling, 410
unparsed entities, 645
URI references, 1106

32 0672323419 Index 3/15/04 11:28 AM Page 1164

Visualization
1165

URIs (Universal Resource
Identifiers)

combined with fragment iden-
tifiers, 1050

RDF, 1003
resource identity, 1000
Semantic Web architecture,

1048-1050
URLs (comparison), 1051
versus URLs, 637
versus URNs, 637

URL queries (SQL Server
2000), 782-788

URLs (Universal Resource
Locators)

identity problem, 1051
URIs (comparison), 1051
versus URIs, 637
versus URNs, 637

URNs (Uniform Resource
Names)

versus URIs, 637
versus URLs, 637

usage
ICE, 580-582
PRISM, 565-566
RSS, 571

use attribute, 687
use element, 541
user authentication, Web

Services, 608
user contexts, 623-624
UserLand, registering RSS

files, 576
UserLand Web site, 577
users

user contexts, 623-624
XML, 22

UTF-8, 1046
UTF-31, 1046
utilities (WSTK), 689

V
validate() method, 302
validating

parsers, 63
SAX parsers, 321-328

error handlers, 323
XML, 68

DTDs, 68-72
validating forms (XForms),

495-496

validating XML processors,
1115

validation
general constraints, 1034
non-model, 1034

validity, 56-57
RDF schema, 1028
XML document declarations,

41
XML documents, 20-21, 24,

27
validity constraint, 1078

standalone document declara-
tions, 1088

validity-checking software,
21

value, defined, 641
value element, 937
value-added networks

(VANs), 854
values, attributes

declaring entities, 56
entity references, 56
quoting, 55
tags, 55

VANs (value-added network),
854

var element, 937
vector graphics, 500-503

Internet access, 503
SVG, 503-504

content presentation proto-
type, 508-512

CSS, 512-516
DTD content, 507
elements, 536-541
future technology, 542
graphics in Web pages,

520
interactive behavior,

520-532
interactive visualization,

505-507
resources, 541-542
standards, 504
structure, 536
style attributes, 512
XML content, 508
XML technologies,

504-505
XSL, 516-519

Vector objects, 710
vendor dependence prob-

lems, 598-599

vendor-managed inventory
(VMI), 853

vendor-neutral protocols, 632
version control (Web), 550
versioning and configuration

management (WebDAV),
554

versions
OTA, 973
RSS, 570
SAX, 313
XHTML, 521

vertical industries, 943-944
vertical legal XML docu-

ments, 964
view element, 541
views, software architecture,

616-617
Deployment Architectural

View, 624-625
Implementation Architectural

View, 617-620
Logical Architectural View,

620-623
Process Architectural View,

626-627
Virtual Directory Properties

dialog box, 778
Advanced page, 781
Data Source page, 778
General page, 778
Security page, 778
Settings page, 778
Virtual Names page, 779

Virtual Name Configuration
dialog box, 779

Visual Basic, inquiry APIs, 712
Visual Basic .NET, 721
Visual Studio, 712. See also

.NET
Visual Studio .NET. See .NET
visualization

SVG, 505-507
elements, 536-541
future technology, 542
resources, 541-542
structure, 536

SVG Web pages, 532
client response time, 532-

533
server loads, 533
user privacy, 533
XSL-FO diagrams, 533,

535

32 0672323419 Index 3/15/04 11:28 AM Page 1165

VMI
1166

VMI (vendor-managed inven-
tory), 853

vocabularies (e-business sys-
tems), 866

XML, 814-817
vocabulary, RDF schema,

1028
voice portals, 919

architecture, 921
list of, 938

voice services, 890
multimode, 939
voice phonebook service

example, 923
VoiceXML, 894

Voice-Over-IP (VoIP), 939
VoiceXML, 894, 919

applications, 895
advantages, 922
input/output, 919
limitations, 922
successful, 922
voice phonebook service

example, 923-932
architecture, 920
development, 938
future considerations, 939
specification, 895
structure and elements, 933
VoiceSML Forum, 933

VoIP (Voice-Over-IP), 939
vxml element, 937

W
W3C (World Wide Web

Consortium), 12
goals, 821
mission, 822
ontology working group, 1054
overview, 821
related groups, 822
Semantic Web, 32
SOAP specifications, 631
specifications, 822-823

CSS, 823
DOM, 823
HTML, 822
MathML, 823
PICS, 823
PNG, 823
RDF, 823
SMIL, 823

Web Accessibility
Initiative, 823

WebCGM, 823
XML, 823

VoiceXML, 895
WML 2.0 specification, 893
XML Core Group, 1131
XML Schema Definition

Language, 108
XML Working Group, 1131

W3C (World Wide Web
Consortium) Web site

CSS (Cascading Style Sheets)
resource page, 444

Frameset DTD page, 461
hybrid document types tutori-

al, 474
module-based XHTML rec-

ommendation, 471
Ruby Annotation, 473
Strict DTD page, 459
SVG specifications, 536
SVG standards, 504
Transitional DTD page, 460
XHTML 1.0 recommendation,

454
XHTML Basic recommenda-

tion, 477
XHTML Frameset DTD, 461
XHTML modularization rec-

ommendation, 470
XHTML Strict DTD, 459
XHTML Traditional DTD,

460
XML 1.0, 68
XML Schemas, 105

W3C Recommendation 6
October 2000, 1072

WAE (Wireless Application
Environment), 893

WAP (Wireless Application
Protocol), 347, 551, 892

development, 916
future considerations, 917-918
WAP 2.0 specification, 893
WAP Forum, 893
wireless applications, 896, 912

WAP Forum Web site, 477
warning() method, 323
Web

content management, 546-547
choosing solutions,

588-589
component assembly, 550
components, 547

content syndication, 551
content-delivery phase,

550
content-input phase, 547
content-repository phase,

549
data storage, 549
database import, 549
delivery neutral format,

548
ICE, 577-587
ICE Authoring Group,

578-579
legacy inclusion, 549
metadata, 557-567
mobile rendition, 551
original content creation,

548-549
print rendition, 551
revision control, 550
RSS, 567-576
version control, 550
WAP, 551
Web rendition, 551
XML, 552-553

languages, 32
Semantic Web, 32
subjects, objects, and predi-

cates, 1009
Web Accessibility Initiative,

W3C recommendations, 823
Web browsers (SVG), 542
Web Interface Definition

Language (WIDL), 679
Web pages, SVG visualiza-

tions, 532
client response time, 532-533
server loads, 533
user privacy, 533
XSL-FO diagrams, 533-535

Web rendition, 551
Web services, 30-31, 592
Web Services

advantages, 603
building, 604-605
business advantages, 593

B2B e-commerce, 594-595
complexity and IT costs,

594
global e-marketplace

vision, 595
composition, 612-613
conversations between,

614-615
activity services, 615
conversation services, 615
transactions, 614

32 0672323419 Index 3/15/04 11:28 AM Page 1166

Web sites
1167

WSCL (Web Services
Conversation Language),
615

defined, 592-593
discovery, 605
distributed computing, 30
finding, 703
flexibility, 601-602
integration options, 601-602
invoking, 605-606, 703
JIT (just-in-time) integration,

606
loose coupling, 593
OOP (object-oriented pro-

gramming), 602-603
publishing, 605
QoS (quality of service),

611-612
RPC, 30
security, 608-611

asymmetric key systems,
609-610

authentication, 608
confidentiality, 608
data integrity, 609
nonrepudiation, 609
registries, 610-611

semantic issues, 607-608
service descriptions, 593
SOA (service-oriented archi-

tecture), 600-601
software architecture, 616-617

Deployment Architectural
View, 624-625

Implementation
Architectural View,
617-620

Logical Architectural View,
620-623

Process Architectural
View, 626-627

resources, 617
taxonomies, 607-608
technical advantages, 595

business modeling,
597-598

CORBA limitations,
595-597

DOM limitations, 595-597
software integration,

599-600
software reuse, 599
vendor independence,

598-599
WSEL (Web Services

Endpoint Language), 612

Web Services Conversation
Language (WSCL), 615

Web Services Description
Language. See WSDL

Web Services Endpoint
Language (WSEL), 612

Web sites
ACORD, 956
ADO.NET, 723
Adobe, 541-542
Adobe Acrobat Reader, 386
Adobe SVG Viewer, 504, 542
aecXML, 984
Amaya, 541
Annotea, 1062
Antenna House XSL

Formatter, 535
Apache, 275, 378
Apache FOP, 535
Apache Xerces, 313
ArchitectureZone, 542
AVAKI, 625
Batik, 542
Bluetooth, 918
BSML, 986
Business Process Modeling

Language, 614
Chinese Room Argument,

1067
Clark, James, 443
CML, 989
conversation, 1065
Corda, 542
Cyc, 1057
DataMirror, 407
dbXML, 408
DOM (Document Object

Model), 269
DSD schemas, 233
Dublin Core, 564
ebXML Business Process

Specification, 614
ebXML standard, 607
Excelon, 408
HEX, 336
HL7, 963
HR-XML, 971
HyTime specification, 1044
IBM, 407

Web Services page, 613
ICE, 578
IDEAlliance, 575
IETF, 825
IFX, 954
ISO, 829

ISO 10646-1, 1048
iText, 378
IXIA, 408
JASC WebDraw, 508, 541
JAXB, 410
JAXB (Java Architecture for

XML Binding), 294
JDOM, 291
Jigsaw Java-based WebDAV,

555
JSP, 437
KevLinDev, 541
kXML, 294
Legal XML, 967
MapBlast, 503
MapQuest, 503
MDAC, 723
Microsoft, 407
Microsoft service packs, 353
MISMO, 969
MoreOver.com, 576-577
My Netscape, 577
My Netscape Network

(MNN), 568
NanoXML, 294
.NET My Services, 623
Netscape Netcenter, 576
NewsML, 992
OASIS, 828
Openwave Developer

Program, 917
Oracle, 407-408
OTA, 977
PICS, 573
PRISM, 563
RDF Model and Syntax

Specification, 1002
RDF Schema Specification,

1002
RELAX NG, 243
RosettaNet, 607, 887
SAX, 310
SAX 1.0, 313
SAX 2.0 features, 324-325
SAX features, 324
Semantic Web Community,

607
Semantic Web resrouces, 1040
Software AG, 408
Software Development Kit

(SDK), 313
Sun Microsystems, 268

JAXP (Java APIs for XML
Processing) page, 275

JMX (Java Management
Extensions) page, 620

JXTA page, 625

32 0672323419 Index 3/15/04 11:28 AM Page 1167

Web sites
1168

SunONE (Sun Open Net
Environment), 623

TinyXML, 294
TranXML, 980
Turing Text, 1066
Unicode, 1048
Unicorn, 378
URI specifications, 1052
UserLand, 577
VoiceXML Forum, 933
VoiceXML specification, 895
W3C, 12, 32, 823

SVG specifications, 536
SVG standards, 504
XML 1.0, 68
XML Schemas, 105

W3C (World Wide Web
Consortium)

CSS (Cascading Style
Sheets) resource page,
444

Frameset DTD page, 461
hybrid document types

tutorial, 474
module-based XHTML

recommendation, 471
Ruby Annotation, 473
Strict DTD page, 459
Transitional DTD page,

460
XHTML 1.0 recommenda-

tion, 454
XHTML Basic recommen-

dation, 477
XHTML Frameset DTD,

461
XHTML modularization

recommendation, 470
XHTML Strict DTD, 459
XHTML Traditional DTD,

460
W3C Recommendation 6

October 2000, 1073
WAP Forum, 477, 893
WebDAV, 553, 775
webMethods, 408
Xanada, 1042
XBRL, 951
XEP, 378
Xerces, 317
XLANG, 614
XML 1.0, 68
XML database mappings, 407
XML document support, 408
XML history, 20

XML namespaces, 563
XML software, 311
xmlTree, 569
XMP, 562
XPath, 171
XSL-FO W3C Candidate

Recommendation, 377
XSLT, 346
XSLT processors, 352
XTM specifications, 1052
Yahoogroups, 571
ZapThink, 943

Web-based Distributed
Authoring and Versioning.
See WebDAV

WebCGM, W3C recommenda-
tions, 823

WebDAV (Web-based
Distributed Authoring and
Versioning), 553, 774

access control, 554
BizTalk, 774-775
locking, 554
metadata properties, 554
namespace support, 554
roles, 553-554
shared Web servers, 554
versioning and configuration

management, 554
XML, 555

WebDAV Web site, 553, 775
WebMethod, Web Interface

Definition Language
(WIDL), 679

WebMethod Web site, 408
web-of-trust Semantic Web

applications, 1062
well-formed documents, 56

XHTML (Extensible
Hypertext Markup
Language), 462-463

well-formed formula (WFF),
1059

well-formed parsed entities,
1107

well-formed XML documents,
1079

well-formedness constraints,
1078

well-formedness errors, 1115
white pages, UDDI (Universal

Description, Discovery, and
Integration), 696

whitespace, 52-53, 1081
dealing with, 1089

Wi-Fi, 918
Windows Meta File (WMF),

504
Wireless Application

Environment (WAE), 893
Wireless Application

Protocol. See WAP
wireless applications

WAP, 896, 912
WML, 896

advantages, 897
architecture, 897
development, 916
future considerations,

917-918
limitations, 898-899
phonebook service exam-

ple, 900-902, 906,
908-910

structure and elements,
912

successful applications,
899

WMLScript, 915
Wireless Markup Language.

See WML
wireless services, 890

3G wireless networks, 918
multimode, 918

WMF (Windows Meta File),
504

WML (Wireless Markup
Language), 347, 551, 893

applications, testing usability,
917

development, 916
elements, 914-915
evolution, 915
future considerations, 917-918
responses, 916
wireless applications, 896

advantages, 897
architecture, 897
limitations, 898-899
phonebook service exam-

ple, 900-902, 906,
908-910

structure and elements,
912

successful applications,
899

WMLScript, 915
WML Core Group, 1131
wml element, 915
WMLScript, 894, 915-916

32 0672323419 Index 3/15/04 11:28 AM Page 1168

xhtmlbasic.HTML file
1169

workflow, e-business sys-
tems, 865

workgroups
HR-XML, 970-971

Benefit Enrollment
Workgroup, 970

Cross-Project Objects
(CPO) Workgroup, 970

Payroll Workgroup, 970
Recruiting and Staffing

Workgroup, 970
legal XML standards, 964-967
OTA, 972

World Wide Web
Consortium. See W3C

wrapping, methods, 692
WriteXml method, 748
WriteXml() method, 750-755
writing XML documents, 22
WSCL (Web Services

Conversation Language),
615

WSDL
bindings, 688
definitions, attributes, 682
descriptions, 700
documents, typical structure,

679
elements, 679

binding, 679, 684
definitions, 679, 682
documentation, 684
import, 684
message, 679, 683
operation, 679
port, 679
portType, 679, 683
service, 679, 684
types, 679, 682

file, 691-692
implementations, 688-695
one-way messages, 683
syntax, 679-685

WSDL (Web Services
Description Language), 678

WSDL documents
breaking up into implementa-

tion, 685
breaking up into interface, 685

WSDL generator, 691
WSDL service implementa-

tion description, 692
WSDL service interface files,

693
WSDL standard, 678

WSEL (Web Services
Endpoint Language), 612

WSTK, 689
installing, 690
utilities, 689

WSTK (IBM Web Services
Toolkit), 689

X-Z
Xanadu, 1041-1042
XBRL (Extensible Business

Reporting Language), 945
formats, 946
specifications, 947
standards, 947
support, 951

XBRL Web site, 951
XDR (XML Data Reduced),

230-233
XEP Web site, 378
Xerces, 275
Xerces Web site, 313, 317
XForms, 487-488

data types, 495-496
form validation, 495-496
instance data tracking, 493

partially filled forms,
493-494

placeholder elements,
494-495

XPath, 495
layers, 491

data layer, 492-493
presentation layer, 492
purpose layer, 492

multiple form documents,
496-497

platform neutrality, 491
relationship with XML, 491
sample Web form, 489-490
submitted form data, 490-491
W3C working draft, 487
XHMTL compatibility, 491

XHTML (Extensible Hypertext
Markup Language), 454,
505

attribute values, 463
case sensitivity, 463
CDATA sections, 464
Coca Cabana Technology

Shop case study, 466
home page with XHTML,

468-470

home page without
XHTML, 466-467

XHTML Basic document,
485-487

DTDs (document type defini-
tions), 457

Frameset DTD, 461-462
Strict DTD, 457-459
Transitional DTD,

459-461
id attribute, 465
minimization of attributes, 464
modularization, 470-474

deprecated features, 476
list of modules, 474-476
strict conformance, 476
W3C recommendation,

470
name attribute, 465
quotation marks, 463
SVG, 505
version 1.0, 454
version 1.1, 472-473
versions, 521
well-formed documents,

462-463
XHTML Basic, 477

alternative devices,
477-478

documents, 484-485
forms, 481-482
hyperlinks, 479-480
images, 483
modules, 483-484
style sheets, 482-483
supported XHTML fea-

tures, 478-479
tables, 480-481
text formatting, 479

XML compliance, 454-456
XHTML Basic, 477, 917

alternative devices, 477-478
documents, 484-485
forms, 481-482
hyperlinks, 479-480
images, 483
modules, 483-484
style sheets, 482-483
supported XHTML features,

478-479
tables, 480-481
text formatting, 479
W3C recommendation, 477

xhtmlbasic.HTML file, 479

32 0672323419 Index 3/15/04 11:28 AM Page 1169

Xhtmlbasic_home.html file
1170

Xhtmlbasic_home.html file,
486-487

XLANG, 614
XLink (XML Linking

Language), 215
attributes, 215

xlink:actuate, 216-218
xlink:arcrole, 216-217
xlink:from, 216
xlink:href, 215
xlink:label, 216, 218
xlink:role, 216-217
xlink:show, 216-217
xlink:title, 216
xlink:to, 216
xlink:type, 215-216

extended links, 219-221
simple links, 219

xlink:actuate attribute,
216-218

none value, 218
onLoad value, 218
onRequest value, 218
other value, 218

xlink:arcrole attribute,
216-217

xlink:from attribute, 216
xlink:href attribute, 215
xlink:label attribute, 216, 218
xlink:role attribute, 216-217

extended value, 217
locator value, 217
resource value, 217
simple value, 217

xlink:show attribute, 216-217
embed value, 217
new value, 217
none value, 218
other value, 218
replace value, 217

xlink:title attribute, 216
xlink:to attribute, 216
xlink:type attribute, 215-216

arc value, 216
extended value, 216
locator value, 216
none value, 216
resource value, 216
simple value, 216
title value, 216

XML (Extensible Markup
Language), 8, 505

advantages, 20
databases and flat files,

comparing, 25-26
EDI, comparing, 24-25

editing, 21
extensibility, 27-28
HTML, comparing, 23
parsers, 21
processing information, 22
protocols, 21
reading/writing, 22
SGML, comparing, 23
user ease, 22
validity checking, 20-21

attributes
attribute-value normaliza-

tion, 1099
defaults, 1098
types, 1097

character encoding, autodetec-
tion of, 1128-1130

comparing to RDF, 561
content-management, 556

design, 556-557
reusable document objects,

556
delimiters, 37-38
design goals, 1077
deterministic content models,

1127
developers, 11
disadvantages, 26

file formatting, 27
memory sizes, 26-27
security, 27
validation, 27

documents, 1079
attribute-list declarations,

1096
CDATA sections, 1084
character data and

markup, 1082
character references, 1103
characters, 1080
comments, 1083
conditional sections, 1101
declarations, 1084
document type declara-

tions, 1087
element type declarations,

1093
entity declaration,

1105-1106
language identification,

1089
logical structure, 1091
parsed entities, 1107-1108
physical structures, 1102
processing instructions,

1083

standalone document dec-
laration, 1087

syntactic constructs, 1080
terminology, 1077
well-formed, 1079
whitespace, 1089

e-business systems
business vocabulary, 866
components of, 861
data dictionaries, 864
ebXML project, 873-882
eCo Framework, 866-867,

869
integration, 862
messaging, 864, 878
models of, 866
network and platform lay-

ers, 863
registry and repository,

864
RosettaNet, 883-887
trading partner agreement,

865
transaction flow, 865
XML/EDI effort, 870-872

EBNF notation, 1116-1117
files, persisting DataSet

object, 750-755
history, 19-20, 1077
languages, international, 65
overview, 1076
popularity, 9
RDF, 560, 999

convenience constructs,
1014

syntax, 1011
syntax summary, 1025

SGML, expansion of entity
and character references,
1125-1127

standards, 814-817
adopting, 992-993
entity types, 817
LCD specifications,

818-820
open standards, 818
organization, 821, 823
organizations, 817,

821-832
stacks, 832, 834-843

structure, rules, 53-56
SVG, 505
syntax, 36-37
technologies, 10-11, 28

e-business, 28-29
e-commerce, 28-29

32 0672323419 Index 3/15/04 11:28 AM Page 1170

XmlDataDocument class
1171

validating, 68
DTDs, 68-72

vocabularies, 814-817
voice, 890
VoiceXML. See VoiceXML
W3C recommendations, 823
Web content management,

552-553
WebDAV, 555
wireless, 890
XTM. See XTM

XML 1.0, W3C
Recommendation 5 October
2000, 1072

XML 1.0 Web site, 68
XML Base Architecture layer,

835-836
XML content, vector graph-

ics, 508
XML Data Reduced (XDR),

230-233
XML database mappings

Web site, 407
XML document

processing, 62
reading, 62

XML document support Web
site, 408

XML document type declara-
tions, 1085-1087

XML documents
content models, 51-52

closed models, 51
mixed models, 52
open models, 51

creating, 349
declarations, 40

components, 40-41
validity, 41

elements supported by the
W3C XML schema stan-
dard, 116

linking, 57-58
markup, 43

attributes, 45
CDATA, 49-50
comments, 48
content, 50
DTDs, 50
elements, 43-45
entity references, 47-48
PIs, 49

root elements, 54

SAX, 317-318
ContentHandler interface,

319-320
library.xml, 320
SAXDemo, 320-321

simple, 38-39
structure, 39-40
validity, 56-57
well-formed, 56
XML schema example, 109

XML history Web site, 20
XML Linking Language. See

XLink
XML Messaging layer,

836-838
XML namespaces, 635
XML namespaces Web site,

563
XML Path Language. See

XPath
XML Pointer Language. See

XPointer
XML processors

entities and references,
1109-1111

use of, 1115
validating/non-validating,

1115
XML schema

<import> element, 167
annotating, 141
anonymous type declarations,

138-139
attribute groups, 148
creating, 116
data types

applicable facets, 135-138
declaring simple types,

130
declaring attributes, 118
declaring complex elements,

128-129
declaring elements, 125-127
declaring simple types, 130
defining, 115
derived data types, 122
elements supported by the

W3C standard, 116
example XML document, 109
inheriting from other schemas,

159, 161, 165
model groups, 142

<all> element, 143
<choice> element, 144
<sequence> element, 146

primitive data types, 121
purchase order example, 112
refining simple types, 131-134
simple XML data types, 118
specifying attribute values,

123
specifying mixed content for

elements, 140
targeting namespaces, 149,

152, 154, 163
XML Schema Definition

Language, 108
<attribute> element, 123
annotations, 141
complex elements, 130
facets, 131-134
W3C recommendation, 108

XML Schemas Web site, 105
XML software Web site, 311
XML standards

professional services, legal,
963-967

vector graphics, 503-504
XML Stylesheet Language.

See XSL
XML technologies, vector

graphics (SVG), 504-505
XML text, 37
XML Transport layer, 836
XML updategrams (SQL

Server 2000), 803
executing, 810
functions, 804
mapping XML to databases,

804-805
attribute-centric update-

grams, 806
element-centric update-

grams, 805-807
explicit mapping, 807-809
mapping explicitly,

807-809
NULL fields, 809
structure, 804

XML Working Group (W3C),
1131

XML-FO documents, 379
XML/EDI effort, 870-872
XmlDataDocument class, 758,

762-767
public instance methods,

764-766
public instance properties,

763-764

32 0672323419 Index 3/15/04 11:28 AM Page 1171

XmlDocument class
1172

XmlDocument class, 758-759
public instance methods,

760-762
public instance properties,

759-760
XMLFilter interface, 315
XMLFilterImpl class, 316
XmlNamedNodeMap class,

758
XmlNode class, 758
XmlNodeList class, 758
xmlns attribute, 682
xmlns keyword, 636
xmlns:soap attribute, 682
xmlns:tns attribute, 682
xmlns:xsdl attribute, 682
XmlReader class, 758
XMLReader interface, 315
XMLReaderAdapter class, 316
XMLReaderFactory class, 316
XMLServlet.java

output, 305-306
source code, 303-305

XmlTextReader class, 758
XmlTextWriter class, 758
xmlTree Web site, 569
XmlWriter class, 758
XMP (eXtensible Metadata

Platform), 562
XMP Schemas, 562
XMP Web site, 562
XPath (XML Path Language),

171, 495
expressions, 171

operators, 171
order of precedence,

172-173
special characters, 171
syntax, 172-175, 181-190,

198, 206-207
queries

location steps, 175
resulting node sets, 176

XPath queries (SQL Server
2000), 794-795

attributes, 794-803
elements, 794-803

XPath Web site, 171
XPointer (XML Pointer

Language), 207
abbreviating notation, 214-215
expressions, 208

location sets, 208-209
node tests, 208

points, 209-212
character, 209
index position, 210
node, 209

ranges, 213
functions, 213-214
string matching, 214

XSD schema, mapping,
807-809

XSL (XML Stylesheet
Language), 346

B2B, 371-373
languages, 346
objects, formatting, 377
vector graphics (SVG),

516-519
XSL Formatting Object

Language. See XSL-FO
XSL style sheet, creating,

350-351, 373-374
XSL Transformation

Language. See XSLT
XSL-FO (XSL Formatting

Object Language), 346
<fo:static-content> element,

387-390
converting to PDF files,

386-387
dimensions, 380
elements, 379

<fo:page-master> ele-
ment, 379

<fo:page-master-set> ele-
ment, 382-383

<fo:page-sequence> ele-
ment, 383-384

<fo:root> element, 379
<fo:simple-page-master>

element, 380-382
engines, formatting, 377-378
graphics, 390-391
regions, 381-382
SVG, 505
SVG diagrams, embedding,

533, 535
tables, 391-395

XSLT, 396-398
XSL-FO W3C Candidate

Recommendation Web site,
377

XSLT (eXtensible Stylesheet
Language Transformations),
346-348, 505

converting XML to HTML,
435-436

document conversion, 349
document publishing, 347-348
processors, 352, 374-376

client-side processing,
352-356

Java Development Kit ver-
sion 1.3, 377

server-side processing,
352, 354, 356-357

SVG, 505
XSL-FO tables, 396-398

XSLT processor Web site, 352
XSLT Web site, 346
XTM (XML Topic Maps), 1052

conversation, 1065
Semantic Web architecture,

1052-1053

Yahoogroups Web site, 571
yellow pages, UDDI

(Universal Description,
Discovery, and Integration),
697

ZapThink Web site, 943

32 0672323419 Index 3/15/04 11:28 AM Page 1172

