THE EXPERT'S VOICE® IN OPEN SOURCE

Pro
PHP XML and
Web Services

Muazter working with XML and Wb servioes wsing PHP

Robert Richards

ApPress:

Pro PHP XML and
Web Services

Robert Richards

Apress’

Pro PHP XML and Web Services
Copyright © 2006 by Robert Richards

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-633-3

ISBN-10: 1-59059-633-1

Library of Congress Cataloging-in-Publication data is available upon request.
Printed and bound in the United States of America 9 8 7 6 54 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Matt Wade

Technical Reviewers: Christian Stocker, Adam Trachtenberg

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Matt Wade

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole LeClerc

Copy Editor: Kim Wimpsett

Assistant Production Director: Kari Brooks-Copony

Production Editor: Kelly Gunther

Compositor: Linda Weidemann, Wolf Creek Press

Proofreader: Nancy Sixsmith

Indexer: Jan Wright

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.

This book is dedicated to my wife and best friend, Julie.
Thank you for your patience, support, and encouragement
at the times I most needed it.

Contents

About the AUTNOr iX
About the Technical ReViewers X
ACKNOWIBAgMENTS Xi
INtroducCtion Xii
CHAPTER 1 Introduction to XML and Web Services..................... 1
Exploring the History of XML.............. 2

Using XML intheRealWorld oo i, 4

Introducing Service Oriented Architecture and Web Services 9

Defining Common Terms and ACronymscoovvvinenn... 14

ConCIUSION 14

CHAPTER2 XML Structure................................oooiiiiii.. 15
Introducing Characters............. i 15

Understanding Basic Layout 18

Understanding Basic Syntax 20

UsSing NamespacesSoovinr i 29

Using IDs, IDREF/IDREFS, and xml:id 36

Using xml:spaceand xml:lang ..., 41

Understanding XML Base..................... 42

ConcCluSioN 43

CHAPTER 3 Validation........................ 45
Introducing Validation..................l 45

Introducing Document Type Definitions. 46

Using XML Schemas............. i, 71

USing RELAXNG 100

CONCIUSION ... 121

CHAPTER 4 XPath, XPointer, XInclude, and the Future................ 123
Introducing XPath 123

Introducing XPointer 146

iv

CONTENTS

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

Introducing XInclude 151
Examiningthe Future of XMLl 157
CoNCIUSIONo 161
PHPand XML... 163
Introducing XMLinPHP S 163
Configuring libxml Support 167
Introducing Encoding 168
Figuring Out the libxml2 Version. 172
Introducing Parser Options ... 173
Introducing PHP Streams.co i, 174
Performing Error Handling ol 177
CoNCIUSION 179
Document Object Model (DOM) 181
Introducingthe DOM. 181
Using the DOM Extension.cooi it 188
Performing Validation 214
Using XPath 216
Extending Classes. ... 219
Common Questions, Misconceptions, and Problems 223
Migrating from domxml to the DOM Extension 228
Seeing Some DOM Examples ..., 230
CoNCIUSION 237
SimpleXML 239
Introducing SimpleXML 239
Using SimpleXML 239
Using Namespaces in SimpleXML 258
Using XPath 260
Seeing Some ExamplesinAction............................L 262
CoNCIUSION 268
Simple APl for XML (SAX) 269
Introducing SAX 269
Using the xml Extension..............o i, 270

Migratingfrom PHP4to PHP 5. 300

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CONTENTS

Seeing Some ExamplesinAction.................. ... 306
ConCIUSION 310
XMLReader ... 311
Introducing XMLReader 311
Using XMLReader ... 314
Exportingto DOM Objects ... 328
Dealing with Namespaces.................. ..o, 328
Performing Validation 333
Seeing Some ExamplesinAction.................. ... 335
CoNCIUSION 340

Extensible Stylesheet Language Transformations

(XSLT) 341
Introducing XSLand XSLT i 341
Introducing the XSL Extension. ...t 387
Using the XSL Extension. 390
Using Parametersin XSL i 393
Calling PHP Functionsfrom XSL................ ...t 395
Seeing Some ExamplesinAction................... 399
ConCluSIONo 408
Effective and Efficient Processing........................ 409
Looking at the Pros and Cons of Parsers 409
Optimizing Parsing and Processingcccovevivinn... 426
Combining Technologies. i 433
CoNCIUSION 439
XML Security ... 441
Introducing XML Security. 441
Introducing Basic Security. ... 442
Introducing Enterprise Security. 448
Introducing Canonical XMLl 449
Introducing Exclusive XML Canonicalization........................ 456
Introducing XML Signatures 460
Introducing XML Encryption.l 474

CONCIUSION . ..ttt e 489

v

vi

CONTENTS

CHAPTER 13

CHAPTER 14

CHAPTER 15

CHAPTER 16

CHAPTER 17

PEARand XML ... 491
WhatIsSPEAR? 491
USINg PEAR. 492
Using PEAR and XML Togethert 493
CoNCIUSION ... 519
Content Syndication: RSS and Atom...................... 521
Understanding the Evolution of RSS and Atom. 521
Introducing RSS 1.0: RDF Site Summary 523
Introducing RSS 2.0: Really Simple Syndication 534
Introducing Atom 1.0 ... 542
ChoosingaFormat i i 550
Seeing Some ExamplesinAction..................., 551
UsingPEARXML_RSS 563
CONCIUSION 566
Web Distributed Data Exchange (WDDX) 567
IntroducingWDDX 567
Understanding the Structure of WDDX. 569
USiNgWDDX 576
Seeing Some ExamplesinAction................... 583
Using PEAR XML_WDDX. 589
CoNCIUSION 593
XML-RPC ... 595
Introducing XML-RPCo 595
Exploring the XML-RPC Structure. 596
UsingxmlrpcinPHP 608
Using XML_RPCInPEAR, 622
Seeing Some ExamplesinAction.................... ... 629
CoNCIUSION ... o 631
Representational State Transfer (REST).................. 633
Introducing REST 633
Introducing REST Web Servicescooiiiit 634
Creatinga RESTWeb Service, 639

Introducing the Yahoo Web Services 646

CHAPTER 18

CHAPTER 19

CHAPTER 20

CHAPTER 21

CONTENTS
Introducing the Amazon Web Services. 660
CONCIUSION 672
SOAP .. 673
Introducing the Web Services Description Language (WSDL) 673
Introducing SOAP. 696
Using the SOAP Extension ...t 706
USINgPEARSOAP 734
Seeing Some ExamplesinAction.............. ...l 735
CoNCIUSION 750
Universal Description, Discovery, and

Integration (UDDI).. 751
Introducing UDDI 751
Introducing Data Structures.l 753
Introducing the SOAPAPI.o 764
Accessing the SAP UDDI Registry viaSOAP 768
CoNClUSION 780
PEAR and Web Services 781
Using Services_Amazon.cooiiririiiiianiaan... 781
Using Services_Delicious. ... 785
Using Services_Ebay 786
Using Services_Google. ... 786
Using Services_Technoratit 789
Using Services_Weather 793
Using Services_Webservicel 797
Using Services_Yahooc.oviiiiiii i, 802
USing SOAP. 806
UsingUDDI 807
USing XML_RPC. 808
CONCIUSION. . ..o 809
Other XML Technologies and Extensions................. 811
Using XMLWriter 811
Using SDO XML Data Access Servicecooovvevni... 820

Introducing Asynchronous JavaScript Technology and XML (Ajax). 826

vii

viii

CONTENTS

APPENDIX A

APPENDIX B

APPENDIX C

Introducing Wireless Application Protocol (WAP) 830
ConCIUSION 838
XML Schema Built-in Data Types Reference............. 839
Type Definition. 839
Primitive Types. ... 839
Derived TYPeS. . ..ottt 841
ExtensionAPIs ...l 845
XMl . 845
XMl 847
XMLReader.o 849
SimpleXML 852
DOM. .. 854
XS, 866
SOAP . 867
XMLWrer . . 871
Features and ChangesinPHP6....................... ... 875
XMEEXEENSION. 875
XMLReader Extension. i 876
SimpleXMLExtension. ... 879
DOMEXIENSION.\ 883
.. 889

About the Author

ROB RICHARDS, currently an independent contractor, has worked in vari-
ous fields including medical information, telecommunications, media,
and e-learning. Having been exposed to XML since its inception, he has
used the technology for various projects throughout his career; his most
extensive work with XML was within the e-learning space. He helped cre-
ate a proprietary XML-based application server that used XML for data

: publishing, defining application business logic, and data querying. He
was also the lead engineer for the company’s involvement in the Shareable Content Object
Reference Model (SCORM), which is used for Web-based learning and was established by the
Department of Defense through its Advanced Distributed Learning (ADL) initiative.

After becoming the latest casualty of the dot-com implosion in 2001, Rob got his first
taste of PHP and began contributing code to the domxml extension in 2002. Since then, he
has become one of the authors of the DOM extension for PHP 5; he also contributes to the
other XML-based extensions and authored the XMLReader and XMLWriter extensions. Also,
on occasion, he contributes bug fixes to the libxml2 project for bugs found during the devel-
opment of these extensions.

About the Technical Reviewers

CHRISTIAN STOCKER is one of the developers of numerous XML extensions in PHP and has
been involved in developing PHP since version 4.1.

In addition, he has been a speaker for many international conferences (ApacheCon, PHP
Conference, and OSCOM) and actively takes part in the open source community. He’s also the
author of the German book PHP de Luxe, recently republished in its second edition.

In his day job, he is the CEO of Bitflux GmbH, a Web development company specializing
in XML/XSLT, PHP, and Ajax and based in Zurich, Switzerland.

ADAM TRACHTENBERG is the senior manager of platform evangelism at eBay, where he
preaches the gospel of the eBay platform to developers and businesspeople around the globe.
Before eBay, Adam cofounded and served as vice president for development at two compa-
nies, Student.com and TVGrid.com. At both firms, he led the front- and middle-end Web site
design and development. Adam began using PHP in 1997; he is the author of Upgrading to
PHP 5 (O’Reilly, 2004) and the coauthor of PHP Cookbook (O’Reilly, 2002). He lives in San
Francisco, blogs at http://www.trachtenberg.com, and has a bachelor’s degree and a master’s
degree from Columbia University.

Acknowledgments

I would like to thank both Christian Stocker and Adam Trachtenberg for taking time out of
their busy schedules to perform technical reviews of this book. The comments and feedback
were invaluable to its completion. I also cannot forget to mention all the contributions from
all the PHP developers who wrote and contributed to the various XML extensions in PHP 5,
as well as Daniel Veillard and the maintainers of the libxml2 and libxslt libraries. Without all
the hard work of these people, it is uncertain what the state of XML would be in PHP. I would
also like to thank Matt Wade, Kylie Johnston, Kim Wimpsett, and the rest of the staff at Apress
for making this book possible.

On a more personal note, a special thanks goes out to my family: my parents, Brian and
Lillian; my wife, Julie; and her parents, Tony and Val. You all encouraged me during the entire
book process and kept me going when things got difficult.

Xi

Xii

Introduction

XML and its associated technologies have been around for many years. Although some
support has been available, it has not always been easy to work with XML using PHP. This

all changed with the release of PHP 5. The inclusion of a variety of XML processors provides

a developer with an arsenal of tools to tackle virtually any type of challenge involving XML.
PHP 5 also went the extra step with the creation of the SOAP extension, providing native SOAP
client and server support and allowing a developer to quickly and easily consume or create
Web services.

With all these tools now available, PHP has become a more viable solution to implement
applications that involve XML and Web services. The problem is that it is often difficult for a
developer to understand how to begin using any of these tools. Not only do you need to under-
stand the APIs of these extensions, but you also need to know which extension to use. On top of
all this, you also need to understand the specifications for the different XML technologies.

This book takes a different approach than most on this subject. Pro PHP XML and Web
Services provides an in-depth and comprehensive look at not only the tools available with
PHP but also the specifications for a variety of XML-based tools. An understanding of the
specifications is often critical when developing an XML-based application. After all, a tool is
only good as your understanding of what you can do with it. However, the problem with the
specifications is that they tend to be overly complex. For this reason, I will explain them in
easy-to-understand language and include complete examples. Specifically, I take the con-
cepts from the technical specifications and show how to adapt them to real-world use in PHP
by covering the APIs and areas of functionality and showing examples of their usage.

Regardless of whether you are a novice or a more advanced developer in the area of XML,
the material presented in this book will get you developing XML-based applications in PHP
faster, and it will demonstrate how to maximize your usage of the XML tools now supported
in PHP.

Who This Book Is For

This book is for developers of all skill levels looking to use XML in PHP. I explain the XML
technologies and PHP extensions in easy-to-understand terms and examples. This will allow
developers new to XML or Web services to start coding right away instead of spending count-
less hours deciphering the often-cryptic specifications and documentation. Developers already
proficient in XML will find techniques and information about interoperability, optimization,
and undocumented features of some of the XML-based extensions in order to maximize the
effectiveness of an XML or Web service-based application they may be writing.

INTRODUCTION

How This Book Is Structured

For you to get the most out of XML and Web services in PHP, this book is really grouped into
three sections. The first section contains terminology and technical information about XML.
This includes the concepts and structure of an XML document, validation, and other XML
technologies commonly used. The chapters covering this information are based on various
specifications. These specifications often use cryptic language and are difficult to understand,
so I distill the information in clear terms.

The next group of chapters covers how to parse and manipulate XML documents using
some of the extensions in PHP. I explain each extension and its API in detail with real-world
examples to help reenforce the concepts covered. I also compare and contrast the extensions,
providing you with some insight about where a particular extension excels and how it may not
be the correct one to use in a particular situation.

The last group of chapters covers Web services. Although only a single native Web service
extension exists in PHP (SOAP), I will provide in-depth coverage of additional technologies using
the extensions from earlier chapters. In addition, I will cover how to integrate with the Yahoo,
Google, Amazon, and eBay Web services.

Specifically, the chapters break down as follows:

Chapter 1, “Introduction to XML and Web Services™ This chapter provides some back-
ground information about XML and Web services. In addition, the chapter defines what
these terms mean, explains the history of how they came about, and shows some exam-
ples of how XML is used in the real world.

Chapter 2, “XML Structure” The XML 1.0 specification defines what XML is and the
structure of documents but uses language that is not always so straightforward. This
chapter explains the structure of an XML document in simple terms and provides some
lucid examples. In addition, this chapter introduces some terminology used throughout
the book.

Chapter 3, “Validation™ This chapter explains the use of validation in XML using
Document Type Definitions (DTDs), XML Schemas, and RELAX NG.

Chapter 4, “XPath, XPointer, XInclude, and the Future” The focus of this chapter is
explaining how to write XPath expressions to query an XML document. You can use
XPath with a few of the PHP extensions, and XPath serves as the foundation for XSLT
in Chapter 10. The chapter also explains both XPointer and XInclude, which allow for
more advanced XML processing.

Chapter 5, “PHP and XML This chapter introduces the new XML support in PHP 5.
It explains much of the functionality shared by the XML-based extensions, such as
parser options, error handling, PHP streams, and document encoding.

Chapter 6, “Document Object Model (DOM)”: This chapter provides an in-depth look at
using the DOM extension and shows how it is used to manipulate an XML document.

Chapter 7, “SimpleXML” The SimpleXML extension provides a simple interface for
working with XML documents. This chapter explains how to use the extension to
access virtually any type of XML document, including more complex ones that use
namespaces.

xiii

Xiv

INTRODUCTION

Chapter 8, “Simple API for XML (SAX)”: This chapter explains how to work with the xml
extension and covers issues you may encounter when migrating an application that uses
this extension from PHP 4 to PHP 5.

Chapter 9, “XMLReader” The XMLReader extension is a lightweight parser and an alter-
native to the xml extension covered in Chapter 8. This chapter explains and demonstrates
how to process an XML document using this extension.

Chapter 10, “Extensible Stylesheet Language Transformation (XSLT)”: You can transform
XML documents using XSLT. This chapter begins by explaining the XSLT specification
in easy-to-understand terms. Then, this chapter shows how to use the XSL extension in
PHP to perform transformations.

Chapter 11, “Effective and Efficient Processing”™ With a number of different extensions that
can be used to work with XML in PHP, it is often difficult to decide which one to use. This
chapter explains the differences between the extensions and continues with tips and
tricks that can be used to optimally work with XML in PHP.

Chapter 12, “XML Security” Data integrity and data security are topics that every devel-
oper must be concerned with when writing applications. In this chapter, you will learn
how to work with digital signatures and encryption as they pertain to XML.

Chapter 13, “PEAR and XML" The PHP Extension and Application Repository (PEAR)
is a collection of software that can be used when writing an application. This chapter
introduces PEAR and explores some of the XML packages it provides.

Chapter 14, “Content Syndication: RSS and Atom”: Content syndication has become
popular with the explosion of weblogs (blogs). This chapter examines the three formats
that are used to syndicate data and shows how to create and consume syndicated feeds
using the PHP extensions.

Chapter 15, “Web Distributed Data Exchange (WDDX)”: This chapter explains what WDDX
is and how you can use the wddx extension to exchange data between systems.

Chapter 16, “XML-RPC”: This chapter examines the structure and exchange of XML-RPC
documents. You will then learn about the xmlrpc extension and how you can use it to
communicate with remote systems.

Chapter 17, “Representational State Transfer (REST)”. Representational State Transfer
(REST) is a simple method to create and consume Web services. I demonstrate how to
create and consume REST-based services. In particular, you will see how to consume
some real services from both Yahoo and Amazon.

Chapter 18, “SOAP”. SOAP allows for the creation of complex Web services. The speci-
fications involved are also quite complex. In this chapter, I show examples of both the
Web Services Description Language (WSDL) specification and the SOAP specification.
Using this knowledge, you will see how to use the SOAP extension in PHP using real-
world examples from eBay and Google.

Chapter 19, “Universal Description, Discovery, and Integration (UDDI)”: UDDI is a technol-
ogy meant to make working with Web services easier. This chapter shows how you can use
PHP to access and maintain records in a UDDI registry.

INTRODUCTION

Chapter 20, “PEAR and Web Services™: Chapter 13 introduces PEAR and its XML packages;
this chapter introduces you to some packages that you can use to create and consume
a variety of Web services.

Chapter 21, “Other XML Technologies and Extensions™ There are too many XML-based
technologies to cover in a single book. In this chapter, I will introduce you to the XML-
Writer and SDO XML Data Access Service extensions as well as show how to work with
Ajax and Wireless Application Protocol (WAP) using PHP.

Prerequisites

Although the general information about XML and the different specifications pertain to any
version of PHP, the tools and extensions covered in this book require PHP 5 or higher. For the
greatest functionality, it is highly suggested that you use PHP 5.1 or higher because of the
many enhancements and additional functionality in this release.

Downloading the Code

All the code featured in this book is available for download at the book’s Web page, which you
can find in the Source Code section at http://www.apress.com.

Contacting the Authors

You can contact the author at rrichards@php.net.

Xv

CHAPTER 1

Introduction to XML and
Web Services

The Extensible Markup Language (XML) is a simple, platform-independent standard for
describing data within a structured format. XML is not a language but instead a metalanguage
that allows you to create markup languages. In layman’s terms, it allows data to be tagged
using descriptive names so both humans and computer applications can understand the
meaning of different pieces of data.

For example, reading the following structure, it is easy to understand what this data means:

<state>
<name>Maine</name>
<capitol>Augusta</capitol>
<animal>Moose</animal>
<bird>Chickadee</bird>
<tree>White Pine</tree>
</state>

The state capitol of Maine is Augusta. The state animal is the moose, the state bird is the
chickadee, and the state tree is the white pine. Although no officially named standard markup
language was used for this example, it is still a well-formed XML document. XML offers the
freedom of defining your own language to describe your data as needed.

With these new languages, the number of applications (ranging from document publishing
applications to distributed applications) and the number of people and businesses adopting
XML continue to grow. One of the most visible XML-based technologies today is the Web serv-
ice technology, where Web-based applications are able to communicate in a standardized,
platform-neutral way over the Internet. As you may have guessed, this is a big reason why XML
and Web services have become buzzwords. With almost 30 years of history leading up to its cre-
ation, XML may just be what the original pioneers behind generalized markup envisioned.

This chapter will cover XML and Web services, beginning with the history of XML and
including the introduction of Web services. By the end of this chapter, you should have an idea
of the problems XML was initially meant to solve and how it has evolved to what it is today.

Note Throughout this chapter, you may encounter terms and technologies you don’t know. | don’t explain
these terms in detail here because you can find more detailed information in the later, relevant chapters.

CHAPTER 1 " INTRODUCTION TO XML AND WEB SERVICES

Exploring the History of XML

Regardless of your personal opinion of XML, everyone has at least heard of it. Not everyone,
however, knows the origins of XML, and it is helpful to understand at least the basics of its
evolution. Imagine you're attending a company party, and someone from management (it’s
even worse when they’re not from the information technology [IT] group) decides to ask you
about XML because they have been hearing all about it in meetings. After covering the history
of XML, you'll be certain to be left alone the rest of the night. Seriously, though, understanding
how and why XML was conceived will provide an understanding of the problems it was origi-
nally meant to solve, which ultimately can aid in determining whether you should use it and
how you can use it to solve current problems.

Generalized Markup Language

XML can trace its roots all the way back to 1969. Charles E Goldfarb, previously a practicing
attorney, accepted a position at IBM that involved integrating information systems with legal
practices. The project involved integrating text editing, information retrieving, and document
rendering. The problem at hand was that each application required different markup. Gold-
farb, along with Ed Mosher and Ray Lorie, began what was to be eventually known as the
Generalized Markup Language (GML). The name was actually created based on the initials

of Goldfarb, Mosher, and Lorie, and from here the term markup language was coined.

The purpose of GML was to describe the structure of a document using tags, allowing for
the retrieval of different parts of the text while separating document formatting from its content.
This way the same document could easily be used amongst different applications and systems.
These different systems would then use their own processing commands based upon the tags
encountered within the document. Another important aspect was the introduction of Docu-
ment Type Definitions (DTDs). GML was officially named in 1973.

Standard Generalized Markup Language

In 1978, Goldfarb joined the American National Standards Institute (ANSI) and worked on a
project based on GML to be known as the Standard Generalized Markup Language (SGML).
While GML was a proprietary IBM format, SGML was developed by many people and groups
and aimed to standardize textual representation and manipulation in documents in a plat-
form- and vendor-neutral, open format. SGML is not really a language in the sense most
people think of languages but rather defines how to create a markup language, so it is really
a metalanguage.

The first working draft of SGML was published in 1980 and continued to evolve, being
released as a recommendation for an industry standard in 1983. In 1986, the International
Organization for Standardization (ISO) published it as an international standard.

Although adopted by some large organizations, such as the U.S. Department of Defense
(DOD), the U.S. Internal Revenue Service (IRS), and the Association of American Publishers
(AAP), SGML was extremely complex, which ultimately prevented its widespread adoption.
Most companies did not have the time or resources to leverage SGML in their business activi-
ties. However, some people say using SGML reduces a product’s time to market, because in
the long run less time is spent on application integration and day-to-day editing. This may
be true, but the upfront cost in time is typically too great for smaller companies that cannot
afford to dedicate enough resources to this.

CHAPTER 1 ©" INTRODUCTION TO XML AND WEB SERVICES

The complexity of SGML and the time-to-market paradigm of using it play significant
roles in the history of XML and ultimately led to its creation. The following are a few notable
concepts of SGML that are relevant in the evolution of XML (and are further elaborated on
later in the book):

* A document is defined structurally by a DTD.

¢ Named elements, also referred to as markup tags, defined within the DTD comprise
the document.

¢ Entities, which are named parts of the document and consist of a name and a value,
can perform substitutions within the document.

Hypertext Markup Language

Many of you may not remember the Internet before the World Wide Web was created. In those
days, Gopher was a common technology used to access documents on the Internet. It was
extremely primitive compared to what everyone uses today, but back then it allowed people
to access documents and in most cases search for documents from all over the globe.

In 1989, while working at CERN, the European Particle Physics Laboratory, Tim Berners-
Lee came up with an idea that would allow documents on the Internet to cross-reference each
other. In basic terms, a document could link to other documents, including specific text within
the documents. The language used to create these documents was Hypertext Markup Language
(HTML). In 1990, the Web was born with the first live HTML document on the Internet.

HTML was based on SGML and added some features such as hyperlinking and anchors.
Specifically created for the Internet, HTML featured a small set of tags and was designed for
displaying content, causing it and the Web to quickly gain widespread adoption. Its features,
however, were also its major limitations. Because it is simple, its tag set is not extendable. The
tags also have no meaning to anything other than the application, such as a browser, that ren-
ders the document.

Extensible Markup Language

The technology started to come full circle in 1996. With SGML being considered too complicated
and HTML too limited, the next logical step was taken. The World Wide Web Consortium (W3C)
formed a committee to combine the flexibility and power of SGML with the simplicity and ease
of use of HTML, which resulted in XML. Finally in February 1998, XML 1.0 was released as a W3C
recommendation. Again, it was originally intended for electronic publishing, but little did they
anticipate the reaching effects XML would have. The design goals were as follows:

e XML shall be straightforwardly usable over the Internet.
e XML shall support a wide variety of applications.

e XML shall be compatible with SGML.

It shall be easy to write programs that process XML documents.

* The number of optional features in XML is to be kept to the absolute minimum, ideally
zZero.

CHAPTER 1 " INTRODUCTION TO XML AND WEB SERVICES

e XML documents should be human legible and reasonably clear.
¢ The XML design should be prepared quickly.

* The design of XML shall be formal and concise.

* XML documents shall be easy to create.

¢ Terseness in XML markup is of minimal importance.

To understand how simple XML can be, consider that an example of a complete well-formed
XML document can be as simple as <mydocument/>. (I'll cover the syntax and structure of XML
in Chapter 2.)

Using XML in the Real World

Once hitting the streets, XML became the flavor of the day. Its use started spreading like wild-
fire. Personally, I attribute this to its timing. It was the age of the “dot-com,” where companies
were popping up like weeds and XML was being applied to everything. Although this may be
grossly overstated because many companies—especially the larger, well-founded ones—were
using XML sparingly and judicially, the vast majority of these start-up companies tried apply-
ing XML to virtually every situation. My opinions on this matter not only originate from
personal experience but also from acquaintances who experienced the same situation.

I can remember, while working at one company, word came down from management that
we had to incorporate XML into our development. XML didn’t particularly fit and better tech-
nologies existed, but it was out of our control, so we did it. To this day, I can only speculate on
why we received this mandate. It could have been that everyone was talking about the tech-
nology, and someone in management questioned why it wasn't being used or thought it would
make sense to use the technology so that, when the company was discussed amongst poten-
tial venture capitalists, management could throw out the XML word to sound more attractive.
In any event, XML is a useful technology, when used correctly. Everyone needs to remember
XML is not the Holy Grail but is just another technology that can get the job done. In fact, this
is important to remember when dealing with any technology!

Once the Internet bubble started deflating and companies, at least ones that survived,
began re-evaluating their business and technology, it appears they also began using technology
more prudently. You will always encounter the XML zealots who have to use XML for everything
and claim it can replace most other technologies; you will also encounter those on the other
end of the spectrum who contend XML is just a fad and will soon die. Reality, however, paints
a different picture. XML is alive and doing well, just no longer plastered everywhere and being
touted as the second coming. Before you start mumbling something about Web services under
your breath (I'll address them shortly), let’s focus on some of the areas XML has some real use,
because this is the heart of the matter at hand. I'll break the discussion down into four general
areas:

 Standardized data description
e Publishing
* Data storage and retrieval

* Distributed computing

CHAPTER 1 ©" INTRODUCTION TO XML AND WEB SERVICES

In most cases, the same XML data is used within more than one of these areas, which is
one of its original design goals as well as why it became so popular.

Standardized Data Description

Standardized data description is not technically an application of XML but rather its heart and
soul. It is the backbone of XML-based applications. Take, for example, the following document:

<RobR>
<Rob>Hello World</Rob>
</RobR>

This is a well-formed XML document in a language I just created; however, it is pretty much
useless to anyone but myself, which is fine as long as I am the only one who needs to use the data.
It does not work this way in the real world, however.

Companies, organizations, and even industries formally define languages as standards,
meaning everyone must use the set of defined rules without deviation. This ensures data can be
shared and easily understood by any human or machine that uses the defined language. If you
were to search the Web for GML, trying to locate information about the Generalized Markup Lan-
guage, you may be surprised at the results. You will get an abundance of information covering the
Geography Markup Language and Geotech-XML, and if you are lucky, you might find several sites
that actually concern the Generalized Markup Language. In fact, try a search on ML prefixed by
almost any random character or two, and odds are you will find some sort of XML-based markup
language. The following are just a few examples of publicly defined standardized languages.

Mathematical Markup Language

Mathematical Markup Language (MathML) is a standard, developed by the W3C, that defines
a universally consistent manner to describe mathematics for use on the Web. It actually has
two parts, consisting of presentation tags and content tags. The presentation tags in Listing 1-1,
obviously, are for presentation in a browser, and the content tags in Listing 1-2 describe the
meaning of an expression, which can then also be used in automated processes.

Listing 1-1. Presentation Tags Expressing 1+2

<math xmlns="http://www.w3.0rg/1998/Math/MathmML" >
<mi>1</mi>
<mo>+</mo>
<mi>2</mi>

</math>

Listing 1-2. Content Tags Expressing 1+2

<math xmlns="http://www.w3.0rg/1998/Math/MathML" >
<apply>
<plus/>
<cn>1</cn>
<cn>2</cn>
</apply>
</math>

CHAPTER 1 " INTRODUCTION TO XML AND WEB SERVICES

Extensible Business Reporting Language

Extensible Business Reporting Language (XBRL) is an open and international standard for
describing business and financial data. This language is not as simple and short as MathML,
so you can find real examples of this at Reuters (http://www.reuters.com) and Microsoft
(http://www.microsoft.com). Each of these companies offers financial reports, available to the
public, in XBRL format. It is also noteworthy that the Committee of European Banking Super-
visors (CEBS), the U.S. Securities and Exchange Commission, and the United Kingdom are
among some of the early adopters of this technology.

Publishing

Publishing is an obvious application of XML. Looking at XML:s history, this was the primary
factor driving the development of generalized markup languages. Publishing involves taking
the data content and transforming it for presentation. The presentation may take any form
understandable to a user or program, such as Portable Document Format (PDF), HTML, or
even another markup language.

Publishing to Different Formats

XML offers the flexibility to present the same content in multiple formats. Envision an applica-
tion where the data needs to be sent to aWeb browser in HTML format as well as to a wireless
device understanding the Wireless Markup Language (WML). The same data content can be
transformed into each of these markup languages using Extensible Stylesheet Language Trans-
formations (XSLT), which is covered in depth in Chapter 10.

Content Syndication

You might remember Microsoft’s Active Channels from many years ago. The Channel Defini-
tion Format (CFD) was the first Web syndication technology based on the push method. (The
push method basically meant the server was pushing this content down your throat.) If you
are lucky enough to not have been online during the Microsoft/Netscape technology wars
back then, you are probably more familiar with the current-day RSS or ATOM (these acronyms
will be explained in Chapter 14). These are much more friendly because the client machine
pulls the data if and when you want it. This data is then loaded into some type of parser, which
then processes the data, usually for display.

Content Management Systems

A content management system (CMS) is a system used for creating, editing, organizing,
searching, and publishing content. You can put XML to good use within a CMS (though it is
not required, and many CMS systems you may encounter do not use any XML at all). For
those that do employ XML, its use may fall into a few of the previously mentioned areas.
Using a CMS for a Web site as an example, the minimal it would do is transform the XML con-
tent into HTML. As the site design changes or the business focus changes, you would have no
need to modify the content. You might need to make some changes to style sheets for output,

CHAPTER 1 ©" INTRODUCTION TO XML AND WEB SERVICES

but you could leave the core content alone. Compare this to having content just embedded
within an HTML page. Although you could use Cascading Style Sheets (CSS) for some design
changes, moving content around within the layout would require some large cut-and-paste
operations. This leads right into content-editing issues.

Even for small companies and organizations, copy changes to HTML-only pages are not
all that simple. Normally the changes are coming from those who are not involved in the tech-
nical aspects of the Web site. This leads to the request for changes having to go through the
proper channels until a designer actually makes the changes. In addition, the changes, after
being made to the HTML, usually have to be double-checked and approved before they can
move into the production system. While this may not seem all that difficult, imagine the impli-
cations when dealing on a larger scale, such as in big corporations or global organizations.
Basically, it becomes a management nightmare. As you may infer from this, not only is the
publishing of the data playing a role in the problem but the editing of the content is also
contributing to the problem.

The final content used in the output typically consists of many smaller pieces of content,
with some content even referencing and possibly including other chunks of content. Systems
dealing with this often have a built-in editor where each person or group is in control of their
own pieces of content, which are managed by the CMS. When dealing with XML-based con-
tent, the editor will help ensure valid syntax is used so the user does not require knowledge of
XML. As content is added or edited, no longer is a large process needed to publish any of the
changes. The content may still need to go through an approval process, but the ones involved
would include only those who specifically deal with the site content. The CMS would take care
of publishing these changes, again by processing all the content involved, which may include
adding any referenced subcontent pieces and transforming the content into the appropriate
layout. This would effectively take an IT department out of the process, because the IT team
would no longer be needed to manually update copy, resulting in an increase in productivity.

Data Storage and Retrieval

The data storage, search, and retrieval area is another where XML is used. For simplicity’s sake,
as well as that it aids in the understanding of this area, I will break this topic down into two
distinct areas. On a small scale, you can use an XML document as a cross-platform database.
Looking at the much larger picture, systems dealing with large amounts of XML content need
ways to store this data so it can easily be searched, modified, and retrieved. Though related in
some small way, the applications of these two examples differ significantly.

An XML Document As a Database

Many instances exist where data needs to be stored and retrieved, but conventional databases
are overkill or simply cannot be used. For example, desktop applications need to load and
save user settings. In many cases, simple text files (or in the case of some Windows applica-
tions, the registry) are used for storing the data. Typical text files use a layout consisting of a
section identifier followed by name/value pairs that correspond to specific settings within the
application. Listing 1-3 shows an example of this.

CHAPTER 1 " INTRODUCTION TO XML AND WEB SERVICES

Listing 1-3. Configuration File Example (Text File Format)

[General]
Version=1.0
Country=United States

[Menu]
Background=212 226 217
FontColor=0 0 0

An application would read this file and set its internal parameters accordingly. An alter-
nate approach would be to use XML for this, as shown in Listing 1-4.

Listing 1-4. Configuration File Example (XML Format)

<Application>
<General>
<Version>1.0</Version>
<Country>United States</Country>
</General>
<Menu>
<Background>212 226 217</Background>
<FontColor>0 0 0</FontColor>
</Menu>
</Application>

Using XML in this manner is mainly a personal preference. As demonstrated in the
example, it is a bit more verbose than a simple text file, but in certain cases it can also add
some benefit. A large configuration file could easily be broken up into smaller files, with the
possibility of certain files residing on a network. An application could use an XML parser to
load the main configuration file, reassemble the entire configuration file, and load the set-
tings into the application. Sharing a configuration file amongst applications is also easier.
Common settings could live within one level of the document, and application-specific set-
tings could live within their own respective levels in the hierarchy. Again, this is just an
alternative way to handle configuration files but can be found in some applications on the
market today.

Native XML Databases

Recently, native XML databases have begun to gain traction in the marketplace. A native XML
database (NXD) specializes in XML storage, focuses on document storage, and uses XPath to
query data. Historically, XML has been stored in relational databases in a few ways. A binary
large object (BLOB) field could store the entire document in the field. Documents could also
be stored on the file system with the database used to locate the documents. A document
could also be mapped to a database, where an element could be represented by a table and
attributes, and nested elements could be represented by fields within the table.

CHAPTER 1 ©" INTRODUCTION TO XML AND WEB SERVICES

Take, for example, Microsoft’s SQL Server 2000. The database could be queried using the
following hypothetical Structured Query Language (SQL), which would output the record in
XML format:

Select user_id AS ID, user_name AS NAME from Users User where user_id=1 FOR XML AUTO

<Users>
<User ID="1" NAME="Rob" />
</Users>

As demonstrated, the fields are returned as attributes of the User element within the docu-
ment. Inserts and updates to the table, however, are still accomplished using standard INSERT
and UPDATE SQL commands with field name/value pairs. An NXD, on the other hand, uses XML
technologies such as XPath and the Document Object Model (DOM) to create and manipulate
documents within the database. For systems and companies utilizing XML-based content,
NXDs may make sense because they offer common XML syntax for data access and deal with
documents in their native formats. Relational databases, however, have also made strides in
this area; many are beginning to include advanced XML features. These “XML-enabled” data-
bases still provide their core relational model but also add many of the features of an NXD,
such as native XML storage, which will preserve the infoset and XPath or XQuery querying.

It is yet to be seen, however, whether these new XML-enabled databases will make native
XML databases obsolete or just position the native ones to target XML-focused organizations
with no real needs for relational data.

Distributed Computing

Distributed computing is not a new technology. Ever since computers were hooked into net-
works, systems have been working together and sharing tasks with other systems. With the
introduction of the Internet came a much larger distributed network that could be leveraged.
XML brings a common technology that can easily be used by all systems to take advantage of
this area. The next section focuses on Web services and goes into greater detail on this matter.

Introducing Service Oriented Architecture and
Web Services

Systems integration is one thing that virtually every IT department has had to deal with, from
management down to the single developer. Whether a common platform was required or the
same tool sets were needed, integration was never a simple task in the past and was usually
costly in both time and money. Service Oriented Architecture (SOA) is a concept where none
of these issues matters. It takes the approach that interacting systems should not be tightly
bound to each other, thus promoting independence and reusability of services.

Using object-oriented programming in PHP 5 as an example, say you build an application
using objects. The classes for the objects were well thought out, so each performs operations
for specific areas of functionality. Another area of the company is working on a separate appli-
cation and ends up needing to access functionality from the first application. On top of that,

10

CHAPTER 1 " INTRODUCTION TO XML AND WEB SERVICES

this new application isn’t even written using PHP so cannot reuse any code natively. The brute-
force method would be to have this new application duplicate the logic the PHP application does.
This, however, presents problems if the logic were to change in the PHP application. The other
application would need to also change its logic or face the problem that it no longer works cor-
rectly, which could lead to a variety of problems within the company, including data corruption.

Using SOA, the PHP application can expose the functionality of its classes via a service.
Through a common protocol and descriptive messaging, the other application can access the
functionality of the PHP application. For example, a daemon, which is a process waiting for
invocation to perform a task, is written in PHP and run via the PHP command-line interpreter
(CLI). The daemon accepts connections via Transmission Control Protocol/Internet Protocol
(TCP/IP) and processes requests based on the messages it receives, which are written in some
company-standardized text language. This text language describes the class to access, the
function to call, the arguments, and their values needed by the function. The outside applica-
tion then connects to the daemon, sends its message, and receives some response. Because
the task was an external process, the calling application does not care how it was done, just
that it was performed.

Although generic in its description and not going into specifics, the previous scenario
should give you some sense of what SOA is. The inception of the Web service technology,
which is a specific implementation of SOA, has brought new steam to the SOA concept. XML
as a common message format using standard Internet protocols, such as Hypertext Transfer
Protocol (HTTP) and HTTP Secure (HTTPS), has sparked new interest in this type of architec-
ture, because using these standards is simple, is universally supported, and does not require
anyone to reinvent the wheel.

The term Web services has to be one of the most confusing and controversial terms ever.
In extremely general terms, Web services are a form of distributed computing using XML in
their communications. Shortly, it will become clearer why I've left this so vague. Before
attempting to define Web services, some background of how they came about is in order.

Evolution of Web Services

Tracing the roots of Web services, it seems XML-RPC—which is Remote Procedure Call (RPC)
over HTTP via XML—is the obvious starting point. XML-RPC was a fork of the early, still in
development, SOAP specification. A general misconception was that XML-RPC was the origin
of SOAP and that SOAP was actually built upon XML-RPC. According to Dave Winer, “Before
folklore becomes reality, XML-RPC was originally, privately called SOAP, when Don Box and

I were working with Bob Atkinson and Mohsen Al-Ghosein at Microsoft, in early 1998.” It
sounds like Microsoft was taking too long with internal politics so XML-RPC split from SOAP
and was released to the masses.

These technologies, XML-RPC and SOAB are just another form of distributed computing
and use XML for the encoding, which allows for greater interoperability. You may have heard
the Web service technology is a replacement for distributed object technologies, such as Dis-
tributed Component Object Model (DCOM), Common Object Request Broker Architecture
(CORBA), or Remote Method Invocation (RMI). You can probably find arguments both for and
against this. The Web service technology, however, is not a replacement for these technologies
and isn't even the same as them. Similarities do exist, but XML is just another tool to build dis-
tributed systems.

CHAPTER 1 ©" INTRODUCTION TO XML AND WEB SERVICES

The Definition of Web Services

If you asked ten people to define the term Web services, you are likely to get ten different answers.
This term has no single definition. Even the standards authorities cannot agree on what this term
means. Before presenting you with what I consider to be aWeb service, let’s first examine some
definitions you may encounter.

The W3C created the Web Services Architecture Working Group to advise and create architec-
tural documents in the area of Web services. After a bit of searching to find out what happened to
this group, I found that it appears the group could not even agree on the definition of a Web serv-
ice, ultimately spelling the end of this group over some time. The closest definition I could find is
from the latest Working Group Note dated February 11, 2004:

A Web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed by
its description using SOAP messages, typically conveyed using HTTP with an XML seriali-
zation in conjunction with other Web-related standards.

W3C Web Services Architecture Working Group

In addition, the Web Services Interoperability Organization (WS-I) conveniently does not
state any definition for Web services; rather, the group defines requirements for the interoper-
ability of Web services, which must be adhered to for an application to be granted conformance.
(The WS-Iis not a standards body but a collection of the larger corporations considered “lead-
ers” in the Web service arena.) A definition that can be inferred from reading the specifications is
that a Web service consists of Web Services Description Language (WSDL), SOAP, and Universal
Description, Discovery, and Integration (UDDI). This is pretty much in line with what you would
be told if you were to ask a Web service purist to define Web service.

Personally, I do not agree with such strict definitions of the term. I prefer to define a Web
service as an application that is accessed across the Internet using standard Internet protocols
and that uses XML as its messaging format. It would be one thing if the term were defined from
the beginning, but in my opinion, it is too late for an industry or organization to come up with
any formal, standard definition that places limits on what a Web service is or what it comprises.

Note Throughout this book, the term Web service will refer to any application that is accessed across the
Internet using standard Internet protocols and that uses XML as its messaging format.

The companies pushing WSDL, SOAP, and UDDI as the backbone of Web services are the
same ones that have invested heavily in these technologies over the years. It is in their best
interests to push these as standards to at least recoup some of the cost they have incurred.
Based on those strict guidelines, Representational State Transfer (REST) is not even considered
aWeb service, although most people think of REST-based services as such. You almost get the

11

12

CHAPTER 1 " INTRODUCTION TO XML AND WEB SERVICES

feeling that unless you are using WSDL, SOAP, and UDD], you are doing it wrong. <SARCASM>As
developers, we all know there is only ever a single solution to a problem, and everything else is
just plain wrong </SARCASM >. See, I told you basic XML was not difficult. I bet those of you who
have never even seen XML before fully understood that.

Web Services in the Real World

It may be easier to come to some understanding of the term Web services by looking at a few
places it is currently used on the Internet. Some big Internet companies, which you are proba-
bly already familiar with, offer Web services so you can tie your application into their systems.
A few of the services, which are also covered within this book through examples, are Yahoo,
Google, Amazon, and eBay.

Yahoo Web Services

The Yahoo Web service, which uses REST, provides an application to use Yahoo's search engine
to find images, businesses, news, and video on the Internet. You must register for the service
to obtain an application ID that is used in the requests. You can obtain this ID via http://
developer.yahoo.net/; its use is limited to the terms of service on the Yahoo Web site. (The
following example does not require registration because it is just using the demo mode.)

Consider a hypothetical application that needs to search on terms and display the
results it finds on the Internet to a user. Prior to these public Web services, many people
would have their application perform a request to the search engine the same way a
browser would do it. The result would be that the application would receive a nice HTML
page, which then the developer would have to somehow parse to gather the correct infor-
mation. This was not all that easy, and if the resulting HTML layout changed or if the content
the application expected to be there for identification purposes changed, the application
would need to be modified to work again. This is considered screen scraping, and some
Web sites frown upon this method.

Using the Yahoo application programming interface (API), a search for the term XML is
now very simple, and the results are easy to integrate into an application. Using a browser,
enter the following location: http://api.search.yahoo.com/WebSearchService/V1/
webSearch?appid=YahooDemo&query=xml&results=2. The result should be an XML document
that is easily parsed and contains two results. Compare that with what is normally returned
when searching from a browser: http://search.yahoo.com/search?p=xml&sm=Yahoo%21+
Search&fr=FP-tab-web-t&toggle=1.

The first two results from the normal browser search are the same as the results returned
from the Web service. The format is completely different. The Web service returns the infor-
mation in XML, which allows for easy application integration, and the normal browser search
is returned in HTML for presentation.

You can find working examples of using the Yahoo Web service and using REST in
Chapter 17.

Google Web APIs

Google also offers a wide range of Web services, including searches as well as integration with
many of their other services such as AdWords and Blogger. You can find a complete list of the

CHAPTER 1 ©" INTRODUCTION TO XML AND WEB SERVICES

services at http://www.google.com/apis/index.html. Registration is required to obtain a
license key and access the Web services. Accessing the Web Search API is different from the
previous Yahoo Web service example. Google uses SOAP rather than REST, though the concept
is the same as Yahoo. XML is used in communications so an application can be easily inte-
grated. You can find examples of integrating with Google via SOAP in Chapter 18.

A more advanced Web service is the AdWords API. AdWords is Google’s cost-per-click
advertising service. Using the API, an application can hook directly into the AdWords server,
allowing for remote management of accounts and campaigns. For example, the application
can manage the keywords, ad text, and the Uniform Resource Locator (URL) of a running
advertisement.

Amazon E-commerce Service (ECS)

Amazon provides access to its products and to its e-commerce functionality through its
E-commerce Service (ECS). The service is accessible using either REST or SOAP, which offers
more flexibility to developers because they can use the technology they’re most comfortable
using. Registration is required to obtain a subscription ID for accessing the service. You will
need to navigate to the Web service page from http://www.amazon.com for more information.

The service provides access to product information, including descriptions, images, and
customer reviews, as well as search capabilities such as wish list searches. On top of the normal
functionality you would expect, you can also access remote shopping carts. Putting all these
services together, a site dedicated to some specific topic—for example, dogs—could dynami-
cally add products from Amazon involving dogs to their site and offer the ability to add items
to the cart that is eventually sent to Amazon for the checkout process. Prior to this capability,
it was common to see a product on a Web site linked directly to Amazon for purchase. Using
the service, the user could remain on the developer’s site and continue adding products until
they are ready to check out.

Refer to Chapter 17 for examples of accessing the Amazon services using REST.

eBay

eBay offers a developer program, at http://developer.ebay.com/, allowing an application to
tap into its platform using eBay’s XML API, REST, or SOAP. Registration is required, and a free
individual license is available. The REST API is quite limited in functionality compared to the
other two APIs. Using REST, only publicly available information is available to be accessed so
is currently limited to searching listings. The other APIs, however, offer an extensive collection
of functionality. Virtually anything you can do via a browser can now be automated through
an application. For example, an application could integrate with a current inventory and sales
system. This not only reduces the amount of time spent manually handling transactions and
keying them into a system and offers a seamless user interface (UI) for a sales system, but it
also allows eBay transactions to be integrated with an inventory system to maintain a real-
time inventory.

For more information regarding the SOAP API and an example usage, refer to Chapter 18,
which covers SOAP.

13

14

CHAPTER 1 " INTRODUCTION TO XML AND WEB SERVICES

Defining Common Terms and Acronyms

XML is one of those technologies where you just cannot escape acronyms, and throughout
this book, you will encounter many. Table 1-1 is a quick guide to some of the more commonly
used terms and acronyms.

Table 1-1. XML-Related Terms

Term Definition

URI Uniform Resource Identifier. An address to locate a resource on a network (for example,
http://www.example.com).

URL Uniform Resource Locator. URLs are subsets of URIs but today are considered synony-
mous with URIs.

W3C World Wide Web Consortium (http://www.w3.0rg/). An international consortium devel-
oping Web standards.

OASIS Organization for the Advancement of Structured Information Standards
(http://www.oasis-open.org/). An international consortium developing various stan-
dards.

ANSI American National Standards Institute (http://www.ansi.org/). A private organization
that creates standards for the computer and communications industries.

ISO International Organization for Standardization (http://www.iso.org/). An international
standards organization consisting of national standards bodies from around the world.

DTD Document Type Definition. This is used within an XML document primarily for
validation.

Parser A processor that reads and breaks up XML documents. Validating parser can validate
documents based on at least DTDs.

DOM Document Object Model. See Chapter 6 for more information.
SAX Simple API for XML. See Chapter 8 for more information.
XSLT Extensible Stylesheet Language Transformations. See Chapter 10 for more information.

XPath A language for addressing parts of an XML document.
REST Representational State Transfer. See Chapter 17 for more information.

SOAP This once stood for Simple Object Access Protocol. As of SOAP 1.2, though, this is no
longer considered an acronym. See Chapter 18 for more information.

Conclusion

XML is a flexible tool that can solve a wide range of problems. It is not meant to replace all
your existing technology practices. Looking at the history of XML, it clearly indicates that XML
came about to solve a particular problem. This is something to always remember when con-
sidering using XML. That being said, XML does offer many possibilities, which were difficult
and cumbersome to develop and deploy in the past. The Web service technology is one of
those things.

Now that you have a basic idea of what things are and where they came from, an under-
standing of XML documents is the next step needed to begin developing your own XML
applications and services. The next chapter will explain document structure and basic syntax
so you can begin creating your own XML documents.

CHAPTER 2

XML Structure

Reading and understanding the W3C specifications can be a difficult and daunting task. This
chapter explains XML structures in an easy-to-understand way. This information is based on
the third edition of the WC3’s XML 1.0 specification. I did not use the XML 1.1 specification as
a basis for this chapter in order to ensure the greatest compatibility amongst parsers and appli-
cations. In other words, the XML 1.0 specification is compatible with XML 1.1, but the reverse
is not true.

This chapter will cover the basics for understanding and building an XML document. It
begins with some fundamental concepts of XML; using these concepts, I'll break down the
structure of a document and explain the syntax for document composition. Once you have
a basic understanding of document structure, I'll introduce additional features such as
namespaces and IDs. By the end of this chapter, you should be armed with enough knowl-
edge not only to build XML documents but also to at least understand some of the more
complex documents you may encounter. Although I'll present some information about
DTDs, Chapter 3 provides more in-depth coverage.

Introducing Characters

XML uses most of the characters within the Unicode character set. The specification actually
refers to the ISO 10646 character set, but usually you will find these two used interchangeably,
because the two character sets are kept in sync. Unicode, a 32-bit character set, provides a
standard and universal character set by assigning a unique number to every character. This
way, by using Unicode, data is the same without regard to language or country. The two Uni-
code formats, which all parsers must accept, are UTF-8 and UTF-16, although you can use
other character encodings as long as they comply with Unicode.

Character References

Characters cannot always be represented in their literal formats. Also, sometimes certain
characters in their literal forms are invalid to use because they violate the XML specification,
which depends upon the type of markup being used at the time. Character references repre-
sent the literal forms using their numeric equivalents. You can express character references
in two ways: using decimal notation or hexadecimal notation. For example:

¢ The character A in decimal format is A.

¢ The character Ain hexadecimal format is 8x41;.

15

16

CHAPTER 2 ©© XML STRUCTURE

The only constraint for the character to be considered well-formed is that it conforms to
the rules for valid characters, which are expressed in hexadecimal format and include the fol-
lowing range of characters:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#XE000-#xFFFD] | [#x10000-#x10FFFF]

Whitespace

Throughout this chapter, you will encounter the term whitespace. Whitespace, as used within
XML, consists of one or more of the following characters (expressed in hexadecimal): #x20
(space), #x9 (tab), #xD (carriage return), or #xA (line feed). By default, whitespace is significant
within an XML document. In most cases, it is up to the application to determine how it wants
to handle whitespace. As you will see later in this chapter in the section “Using xml:space and
xml:lang,” xml:space is a way to force an application to preserve whitespace.

Names

The term name, as used within this chapter for explaining XML syntax, defines the valid
sequence of characters that you can use. A name begins with an alphabetical character, an
underscore, or a colon and is followed by any combination of alphanumeric characters, peri-
ods, hyphens, underscores, and colons, as well as a few additional characters defined by
CombiningChar and Extender within the XML specification.

Names beginning with the case-insensitive xml are also reserved by the current and future
XML specifications. For example, names already in use include xmlns and xml. Basically, it is
not wise to use a name beginning with those three letters. It is also not good practice to use
colons in names. Although you will find people using them, especially when using the DOM
and not using namespace-aware functionality, using colons can lead to problems when not
used for namespace purposes. Table 2-1 shows some example names.

Table 2-1. Example Names

Valid Names Invalid Names
automobile1 lautomobile
_automobile +automobile
:automobile (automobile
my.automobile .automobile
my: automobile @automobile
Character Data

Markup consists of XML declarations, document type declarations, elements, entity references,
character references, comments, processing instructions (PIs), CDATA section delimiters, text
declarations, and any whitespace outside the document element and not contained within other
markup. An example of whitespace that is considered markup is the line feed used between the
prolog and the body. Character data, simply, is everything else that is not markup. It is the actual
content of the document, which is being described and structured by the markup.

CHAPTER 2 ©° XML STRUCTURE

A few characters require special attention:
¢ Less-than sign (<)

e Ampersand (&)

* Greater-than sign (>)

¢ Double quote (")

* Single quote (')

Except when used for markup delimiters or within a comment, PI, or CDATA section,

& and < can never be used directly. The > character must never be used when creating a string
containing]]> within content and not being used at that time to close a CDATA section. The
double and single quote characters must never be used in literal form within an attribute value.
Attribute values may be enclosed within either double or single quotes, so to avoid potential
conflicts, those characters are not allowed within the value. All these characters, according to
their particular rule sets, must be represented using either the numeric character references
or the entity references, as shown in Table 2-2.

Note The entity references for these special characters do not need to be defined in a DTD because they
are automatically built into the parser.

Table 2-2. Special Character Representations

Character Reference Character Reference

Character (Decimal) (Hexadecimal) Entity Reference
< < < <

& & & &

> > > dgt;

" < < <

' ' ' '

Case Sensitivity

XML is case-sensitive. You must be careful when writing markup to ensure that you use case
correctly. An element that has a start tag in all lowercase must have an end tag that is also in
all lowercase. This also is important to remember when using attributes. The attribute a is
not the same as the attribute A. It is a good idea to be consistent with case within a docu-
ment. All attributes should use the same case; lowercase is commonly used for attributes.
Element names should also be consistent. The common methods for case in elements
names are using all lowercase, using all uppercase, or using uppercase for the first letter

of a word and using lowercase for the rest of the word. For example:

17

18 CHAPTER 2 ©© XML STRUCTURE

<document>
<MyElement>content here</MyElement>
<MYELEMENT>content here</MYELEMENT>
<myelement a="1" b="2" />
<!-- The following is well-formed,
but it is not good to mix attribute cases -->
<myelement a="1" A="2" />
<!-- The following is invalid because of mismatching start and end tags -->
<MYELEMENT>content here </myelement>
</document>

Understanding Basic Layout

An XML document describes content and must be well-formed, as defined in the WC3’s XML
specifications. The bare minimum for a well-formed document is a single element that is prop-
erly started and terminated. This element is called the root or document element. It serves as the
container for any content. A document’s layout consists of an optional prolog; a document body,
which consists of the document element and everything it contains; and an optional epilog.

Prolog

A prolog provides information about the document. A prolog may consist of the following (in
this order): an XML declaration; any number of comments, PIs, or whitespace; a document type
declaration; and then again any number of comments, PIs, or whitespace. Though not required,
an XML declaration is highly recommended. You can find information about comments and PIs
in the section “Understanding Basic Syntax.” Listing 2-1 shows an example prolog.

Listing 2-1. Example Prolog

<?xml version="1.0"?>

<!--The previous line contains the XML declaration -->

<!--The following document type declaration contains no subsets -->
<IDOCTYPE foo [

1>

<!--This is the end of the prolog -->

The prolog in Listing 2-1 takes the form of an XML declaration, two comments, a docu-
ment type declaration, and another comment.

XML Declaration

The XML declaration, the first line in Listing 2-1, provides information about the version of
the XML specification used for document construction, the encoding of the document, and
whether the document is self-contained or requires an external DTD. The basic rules for com-
position of the declaration are that it must begin with <?xml, it must contain the version, and
it must end with ?>. Documents containing no XML declaration are treated as if the version

CHAPTER 2 ©° XML STRUCTURE

were specified as 1.0. When using an XML declaration, it must be the first line of the docu-
ment. No whitespace is allowed before the XML declaration. Listing 2-2 shows an example
XML declaration.

Listing 2-2. Example XML Declaration

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

Version

The version information (version), which is mandatory when using an XML declaration, indi-
cates to which XML specification the document conforms. The major difference between the
two specifications, XML 1.0 and XML 1.1, is the allowed characters. XML 1.1 allows flexibility and
supports the changes to the Unicode standards. The rationale behind creating a new version
rather than modifying the XML 1.0 specification was to avoid breaking existing XML parsers.
Parsers that support XML 1.0 are not required to support XML 1.1, but those that support XML
1.1 arerequired to support XML 1.0. With respect to the XML declaration, the version either can
be 1.0, as in version="1.0" (as shown in Listing 2-2), or can be 1.1, as in version="1.1".

Encoding

The encoding declaration (encoding), which is not required in the XML declaration, indicates
the character encoding used within the document. Encodings include, but are not limited to,
UTF-8, UTF-16, ISO-8859-1, and ISO-2022-JP. It is recommended that the character sets used
are ones registered with the Internet Assigned Numbers Authority (IANA). When encoding is
omitted and not specified by other means, such as byte order mark (BOM) or external proto-
col, the XML document must use either UTF-8 or UTF-16 encoding. Although Listing 2-2
explicitly sets the encoding to UTF-8, this is not needed because UTF-8 is supported by default.

Stand-alone

The stand-alone declaration (standalone), also not required within the XML declaration, indi-
cates whether the document requires outside resources, such as an external DTD. The value
yes means the document is self-contained, and the value no indicates that external resources
may be required. Documents that do not include a stand-alone declaration within the XML
declaration, yet do include external resources, automatically assume the value of no.

Document Type Declaration

The document type declaration (DOCTYPE) provides the DTD for the document. It may include
an internal subset, which means declarations would be declared directly within the DOCTYPE,
and/or include an external subset, which means it could include declarations from an external
source. The internal and external subsets collectively are the DTD for the document. Chapter 3
covers DTDs in detail. Listing 2-3, Listing 2-4, and Listing 2-5 show some example DTDs.

Listing 2-3. Document Type Declaration with External Subset

<!DOCTYPE foo SYSTEM "foo.dtd">

19

20

CHAPTER 2 ©© XML STRUCTURE

Listing 2-4. Document Type Declaration with Internal Subset

<IDOCTYPE foo [
CIELEMENT foo (#PCDATA)>

1>

Listing 2-5. Document Type Declaration with Internal and External Subset

<IDOCTYPE foo SYSTEM "foo.dtd" [
<!ELEMENT foo (#PCDATA)>

1>

Body

The body of an XML document consists of the document element and its content. In the sim-
plest case, the body can be a single, empty element. You may have heard the term document
tree before; this term is synonymous with the body. The document element is the base of the
tree and branches out through elements contained within the document element. The section
“Understanding Basic Syntax” covers the basic building blocks of the body. Listing 2-6 shows
an example of a document body:.

Listing 2-6. Example of an XML Document Body

<root>

<element1>Some Content</elementi>

<element2 attri="attribute value">More Content</element2>
</root>

Epilog
If you are referring to the XML specifications, you will not find a reference to the epilog. Within

the XML specifications, the epilog is equivalent to the Misc* portion of the document defini-
tion as defined using the Extended Backus-Naur Form (EBNF) notation. For example:

document ::= prolog element Misc*

The epilog refers to the markup following the close of the body. It can contain comments,
PIs, and whitespace. Epilogs are not mandatory and, other than possibly containing white-
space, are not very common. Many parsers will not even parse past the closing tag of the
document element. Because of this limitation, a possible use for the epilog is to add some
comments for someone reading the XML document. This type of usage of an epilog causes
no problems if a parser does not read it.

Understanding Basic Syntax

XML syntax is actually pretty simple. Many people get away with documents consisting of
only elements and text content. These documents tend to have a simple structure with simple
data, but isn't that the whole point of XML in the first place? Once you begin working with

CHAPTER 2 ©° XML STRUCTURE

more complex documents, such as those involving namespaces and content that is not just
valid plain text, you may start to get a little intimidated. I know the first time I ever encoun-
tered a schema, I felt a little overwhelmed.

After reading the following sections, you should understand at least the basics of XML
documents and be able to understand documents used in some XML techniques such as vali-
dation using schemas, SOAP, and RELAX NG. Some documents may seem impossible to ever
understand, but armed with the basic knowledge in this chapter, you should be able to find
your way.

Elements

Elements are the foundation of a document, and at least one is required for a well-formed doc-
ument. An element consists of a start tag, an end tag, and content, which is everything between
the start and end tags. Elements with no content are the exception to this rule because the ele-
ment may consist of a single empty-element tag.

Start Tags

Start tags consist of <, the name, any number of attributes, and then >. Name refers to a valid,
legal name as explained within the “Characters” section.
This shows an element start tag named MyNode having one attribute:

<MyNode atti="first attribute">

End Tags

End tags take the form of </", Name, ">, where Name is the same as the starting tag. The end
tag for the previous example would be as follows:

</MyNode>

Element Content

Content may consist of character data, elements, references, CDATA sections, PIs, and com-
ments. Everything contained within the element’s start and end tags is considered to be an
element’s content. For example:

<myElement>
<nestedElement>content of nestedElement</nestedElement>
</myElement>

Breaking this document down, the element name nestedElement contains a string of char-
acter data. The document element myElement contains content consisting of whitespace (a line
feed and then a tab), followed the element nestedElement and its content, followed by more
whitespace (line feed).

Empty-Element Tags

Elements without content can appear in the form of a start tag directly followed by an end tag
(as well as without any whitespace). To simplify expressing this, you can use an empty-element
tag. Empty-element tags take the form of <", Name, "/>. For example:

21

22

CHAPTER 2 ©© XML STRUCTURE

<!-- start and end tags without content -->
<myElement></myElement>

<!-- empty-element tag -->
<myElement/>

<!-- start and end tags WITH content -->
<myElement> </myElement>

Notice that the last example does contain content. Even though it’s only a single space,
the element contains content. Every character, including whitespace, is considered content.

Element Hierarchy

The most important point to remember when dealing with XML is that it must be well-formed.
This may be redundant information, but if you are coming from the HTML world, it can be easy
to forget. It’s easy to get away with malformed documents when writing HTML, especially
because not all tags are required to be closed. Take the HTML document shown in Listing 2-7,
for example.

Listing 2-7. HTML Example

<HTML><BODY>
<P>This is all in <I>Italics and this is Bold</I>

New line here</P>
<form name="myform" method="post" action="mypage.php">
<table width="100%" border="0">
<tr valign="top">
<td>Name: <input type="text" name="name" value=""></td>
</tr>
<tr>
<td><input type="submit" name="submit" value="Submit">
</form>
</td>
</tr>
</table>
</BODY></HTML>

The document in Listing 2-7 is not well-formed at all. The simplest piece to identify is
that the BR tag is opened and never closed. Within the P tag, the hierarchy is completely bro-
ken. Beginning with the I tag, you'll see some text followed by an opening B tag. Using XML
rules, you would expect the B tag to be closed prior to the I tag, but as illustrated, the I tag is
actually closed first and then the B tag is closed. If you have ever wondered why XML tends to
be illustrated in an indented format, well, the answer might be much clearer now. Not only is
the document easier for human readability, it also is easier to find problems in malformed
documents.

The hierarchy of tags is completely invalid in Listing 2-7. Not only is there a problem with
the B and I tags, but also the opening and closing form and table tags do not nest correctly.
When writing HTML, it’s all about presentation in the browser. A problem many UI designers

CHAPTER 2 ©° XML STRUCTURE

ran into years ago, before the days of CSS, was related to forms and tables. Depending upon
the placement of the form and table tags, additional whitespace would appear in the rendered
page within a Web browser. To remove the additional whitespace, designers would open forms
prior to the table tag and close them before closing the table. Web browsers, being forgiving,
would render the output correctly without the extra whitespace even though the syntax of the
document was not actually correct. As far as XML is concerned, that type of document is not
well-formed and will not parse. Elements must be properly nested, which means they must

be opened and closed within the same scope. In Listing 2-7, the table tag is opened within the
scope of the form tag but closed after the form tag has been closed. Even though it may render
when viewed in a browser, the structure is broken and flawed because the form tag should not
be closed until all tags residing within its scope have been properly terminated.

Each time an element tag (start, end, or empty element) is encountered, you should
insert a line feed and a certain number of indents. Typically for each level of the tree you
descend (each time you encounter an element start tag), you should indent one more time
than you did the previous time. When ascending the tree (each time an element’s end tag is
encountered), you should index one less time than previously. Because an empty-element
tag serves both purposes, it can be ignored. If you tried to do this with the example from List-
ing 2-7, you just could not do it. Using whitespace for formatting also makes it pretty easy to
spot where it is broken as well:

<HTML>
<BODY>
<P>This is in
<I>Italics and this is
Bold
</I>

New Line here
</P>
<form name="myform" method="post" action="mypage.php">
<table width="100%" border="0">
<tr valign="top">
<td>Name:
<input type="text" name="name" value="">
</td>
</tr>
<tr>
<td>
<input type="submit" name="submit" value="Submit">
</form>
</td>
</tr>
</table>
</BODY>
</HTML>

Although this document has several issues, the most obvious problem should jump out at
you. The indenting is completely off between the closing table tag and the closing BODY tag.

23

24

CHAPTER 2 ©© XML STRUCTURE

This clearly indicates something is wrong with the document. The document in Listing 2-8
applies the rules for XML elements to the document from Listing 2-7 to produce a well-formed
XML document.

Listing 2-8. HTML Example Using Well-Formed XML

<HTML>
<BODY>
<P>This is in
<I>Italics and this is
Bold
</I>

</P>
<form name="myform" method="post" action="mypage.php">
<table width="100%" border="0">
<tr valign="top">
<td>Name:
<input type="text" name="name" value="" />
</td>
</tr>
<tr>
<td>
<input type="submit" name="submit" value="Submit" />
</td>
</tr>
</table>
</form>
</BODY>
</HTML>

This might also give you an inclination of why Extensible HTML (XHTML) was created.
XHTML s a stricter version of HTML that not only can be processed by a browser but, because
it is XML compliant, can also be processed by applications.

Attributes

You can think of attributes as properties of an element, similar to properties of an object.
You might be shaking your head right now completely disagreeing with me. You are 100 per-
cent correct, but for a simple document and to give at least a basic idea of what they are, I
will use that analogy for now. Attributes can exist within element start tags and empty-ele-
ment tags. In no case may they appear in an element end tag. Attributes take the form of
name/value pairs using the following syntax: Name="Value" or Name="'Value'. You can sur-
round values with either double or single quotes. However, you must use the same type of
quotes to encapsulate the attribute’s value. It also is perfectly acceptable to use one style of
quotes for one attribute and another style for a different attribute. The attribute name must
conform to the constraints defined by the term name earlier in this chapter. Also, attributes

CHAPTER 2 ©° XML STRUCTURE

within an element must be uniquely named, meaning an element cannot contain more than
one attribute with the same name. Listing 2-9 shows an invalid attribute usage.

Listing 2-9. Invalid Attribute Usage

</Car color="black">
<Car color="black" color='white' />

Attributes also have no specified order within the element, so the following two examples
are identical, even though the order and quoting are different:

<Car make="Ford" color="black" />
<Car color="black" make='Ford"' />

Attribute Values

Attributes must also have a value, even if the value is empty. Again, referring to HTML, you
may be accustomed to seeing lone attribute names such as <HR size="5" noshade> or <frame
name="xxx" scrolling="NO" noresize>. Notice that noshade and noresize have no defined val-
ues. These are not well-formed XML and to be made conformant must be written as <HR size="5"
noshade="noshade"> and <frame name="xxx" scrolling="NO" noresize="noresize">, which
now makes them XHTML and XML compliant. In cases where an attribute value is empty and
there are no rules for any default values, such as those for converting HTML to XHTML, you
would write an attribute as such: attrname="".

Attribute values can also not contain unescaped < or & characters. Also, you should use
escaped characters for double and single quotes. Although it might be OK to use a literal
single quote character within an attribute value that is encapsulated by double quotes
(though in this case double quote characters must be escaped), it is not good practice and
highly discouraged.

Suppose you wanted to add some attributes to the element Car with the following
name/value pairs:

* color: Black and white

* owner: Rob’s

e score: Less than 5

You would write this as follows:

<Car color="black & white" owner="Rob's" score="81t; 5" />

Attribute Use

The use of attributes, unless specifically required such as through a DTD, is really a choice left
to the document author. You will find opinions on attribute use running the full spectrum, with
some saying you should never use attributes. When considering whether you should use an
attribute or whether it should be a child element, you have a few facts to consider. If you can
answer “yes” to any of the following questions, then you should use an element rather than

an attribute:

25

26

CHAPTER 2 ©© XML STRUCTURE

* Could multiple values apply to an element?

* Is a DTD requiring the attribute being used?

¢ Is the data essential to the document and not just an instruction for an application?
¢ Is the value complex data or difficult to understand?

¢ Does the value need to be extensible for potential future use?

If the questions aren’t applicable, then it comes down to personal preference. One point
to always remember is that the document should end up being easily understood by a human
and not just meant for electronic processing. With this in mind, you have to ask yourself which
of the following is easier to understand. This is the first choice:

<Car make='Ford' color='black' year='1990' model="Escort' />
and this is the second choice:

<Car>
<make>Ford</make>
<color>black</color>
<year>1990</year>
<model>Escort</model>
</Car>

CDATA

CDATA sections allow the use of all valid Unicode characters in their literal forms. The CDATA
contents bypass parsing so are great to use when trying to include content containing markup
that should be taken in its literal form and not processed as part of the document. CDATA sec-
tions begin with <! [CDATA[, which is followed by your content, and end with]]>, like so:

<![CDATA[..content here ..]]>

The only invalid content in this example is the literal string]]>. As you may have guessed,
using]]»> indicates the close of the CDATA section. To represent this string, you would need to
use]]8gt;.

For example, if you were writing an article about using XML and were using XML as the
document structure, CDATA sections would allow you to embed your examples without
requiring any character escaping. Listing 2-10 shows an example without a CDATA section,
and Listing 2-11 shows an example with one.

Listing 2-10. Example Without a CDATA Section

<document>
<title>Example of an XML</title>
<example>
<xml version="1.0"?8gt;
&1t;documentdgt;
this &amp; that
&1t;/documentdgt;
</example>
</document>

CHAPTER 2 ©° XML STRUCTURE

Listing 2-11. Example Using CDATA Section

<document>
<title>Example of an XML</title>
<example><![CDATA[
<xml version="1.0">
<document>
this & that
</document>
11></example>
</document>

Clearly, the document in Listing 2-11 is much easier to read than the one in Listing 2-10.
If editing a document by hand, it is also easier to write because you don’t need to be con-
cerned with figuring out what the correct entities to use are.

Because of the flexibility of CDATA sections, you may have heard or read somewhere that
CDATA is great to use for binary data. In its native form, this is not true. You have no guarantee
that the binary data will not contain the characters]]>. For this reason, binary data that must
be encoded should use a format such as Base64. Now, if Base64 is used for encoding, a CDATA
section is not even necessary, and it could be embedded directly as an element’s content. This
is because Base64 does not use any of the characters that would be deemed illegal for element
content.

Comments

You can use comments to add notes to a document. This is comparable to a developer adding
comments to source code. They do not affect the document but can be used to add some notes
or information for someone reading it. For this reason, parsers are not required to parse com-
ments, although most will allow access to the content. This is what a comment looks like:

<!-- This is a comment -->

Comments consist of the initial <! --, the actual text for the comment, and finally the
closing - ->. Be aware of the following stipulations when using comments:

¢ The content for a comment must not contain --.
* A comment may not end with -.

Other than those conditions, comments can contain any other characters.

Comments may also occur anywhere after the XML declaration as long as they are not
contained within markup. Listing 2-12 shows some valid comments, and Listing 2-13 shows
some invalid ones.

Listing 2-12. Valid Comments

<!-- The <Car> elements do not contain all known automobiles -->
<!-- This is valid as a whitespace follows the last "-" character - -->
<!-- Don't forget to escape the & character when used as element content -->

27

28

CHAPTER 2 ©© XML STRUCTURE

Listing 2-13. Invalid Comments

<!-- Comments take the form of <!-- This is a comment --> within a document -->
<!-- This comment is invalid as it ends with three "-" characters. --->
<Car <!-- Invalid because it resides within the element start tag -->>

Processing Instructions

XML is purely concerned with document content. A PI allows application-specific instructions
to be passed with the document to indicate to the application how it should be processed. The
PI takes the form of <?, which is followed by the target (which must be a valid name) and white-
space, then takes the actual instruction, and closes with ?>, like so:

<?target instructions ?>

The target indicates the application that the instruction targets. You might already be
familiar with this syntax from PHP:

<?php echo "Hello World"; ?>

This syntax is a PI. The PI target is php, and the instruction is echo "Hello World";.Ifyou
were creating an XHTML document and embedding PHP code, this would constitute a well-
formed XML document.

Another case you may have already encountered is the association of style sheets with an
XML document. Many XML editors will add the following PI so they can easily perform XSL
transformations on the XML you may be editing:

<?xml-stylesheet type="text/xsl" href="mystylesheet.xsl"?>

Entity References

You have already encountered some of the built-in entity references (8amp;, &1t;, >, 8apos;,
and ") throughout this chapter. Just as characters can be represented using numeric
character references, entity references are used to reference strings, which are defined in the
DTD. They take the form of & which is followed by a legal name, and they terminate with a
semicolon. You are probably familiar with the concept from HTML:

<P> Copyright © 2002</P>

The entity reference © is defined in the HTML DTD and represents the copyright
symbol. Entity references cannot just be used blindly, however. The document must pro-
vide a meaning to an entity reference. For instance, if you were looking at a document that
contained <p>&myref;<p>, the entity reference &myref; has absolutely no meaning to you or
may mean something completely different to you than to me. You can use DTDs to define
an entity reference. It is mandatory that any entity reference, other than those that are built
in, must be defined. Looking at an HTML page, you may notice the DOCTYPE tag at the top
of the page. The contents depend upon the type of HTML you are writing. For instance,
-//W3C//DTD HTML 4.01 Transitional//EN refers to the DTD http://www.w3.0rg/TR/
html4/loose.dtd. This file contains a reference to http://www.w3.org/TR/html4/
HTML1at1.ent. If you looked at the contents of this file, you will notice that the entity copy
is defined as <!ENTITY copy CDATA © -- copyright sign, U+00A9 ISOnum -->.

CHAPTER 2 ©° XML STRUCTURE

The entity reference, when used within the document, then is able to take its “meaning”
from the definition. This is further explained in Chapter 3.

General Entity Declaration

Entity declarations may be either general or parameter entity declarations. Entity declarations
will be covered in more depth in Chapter 3, though general entities have some bearing to this
discussion with respect to entity references. The common use of general entities is to declare
the text replacement value for entity references. General entities are commonly referred to as
entities unless used in a context where that name would be ambiguous; therefore, for the sake
of this section, entities will refer to general entities.

Entities are defined within the DTD, which is part of the prolog. Suppose you had the
string "This is replacement text", which you want to use many times within the document.
You could create an entity with a legal name, in this case "replaceit":

<?xml version="1.0"?>
<IDOCTYPE foo [

<IENTITY replaceit "This is replacement text">
1>

<foo>8replaceit;</foo>

If this document were loaded into a parser that was substituting entities, which means it
is replacing the entity reference (&replaceit;) with the text string defined in the entity decla-
ration, the results would look something like this:

<?xml version="1.0"?>
<IDOCTYPE foo [

<IENTITY replaceit "This is replacement text">
1>

<foo>This is replacement text</foo>

Using Namespaces

Documents can become quite complex. They can consist of your own XML as well as XML
from outside sources. Element and attribute names can start overlapping, which then makes
the names ambiguous. How do you determine whether the name comes from your data or
from an outside source? Looking at the document, you would have to guess what the elements
and attributes mean depending on the context. Unfortunately, applications processing the
XML typically don’t understand context, so the document would no longer have the correct
meaning. Namespaces solve this potential problem.

Namespaces are collections of names identified by URIs. They are not part of the XML spec-
ification but have their own specification that applies to XML. Through the use of namespaces,
names within a document are able to retain their original meanings even when combined with
another document that contains some of the same names with completely different meanings.

Assume you are building a document that includes customer information as well as items
they have ordered, and assume your customer records look like the following:

29

30

CHAPTER 2 ©© XML STRUCTURE

<Customer>
<Name>John Smith</Name>
<Number>12345</Number>
</Customer>

The items ordered by the customer take the form of the following structure:

<Items>
<Item>
<Name>Book</Name>
<Number>11111</Number>
</Item>
</Items>

Combining these into a single document would result in the following:

<Order>
<Customer>
<Name>John Smith</Name>
<Number>12345</Number>
</Customer>
<Items>
<Item>
<Name>Book< /Name>
<Number>11111</Number>
</Item>
</Items>
</Order>

Unless you read the pieces of the document in context, the elements Name and Number are
ambiguous. Does Number refer to the customer number or an item number? Right now the only
way you can tell is that if you are within an item, then Number must refer to an item number;
otherwise, it refers to a customer number. This is just a simple case, but it does get worse, such
as when elements appear within the same scope. In any event, using namespaces uniquely
identifies the elements and attributes, so there is no need for guesswork or trying to figure out
the context. Take the following document, for instance. Separate namespaces have been cre-
ated for Customer and Item data. Just by looking at the element names, you can easily
distinguish to what the data refers.

<Order xmlns:cus="http://www.example.com/Customer"
xmlns:item="http://www.example.com/Item">
<cus:Customer>
<cus:Name>John Smith</cus:Name>
<cus:Number>12345</cus:Number>
</cus:Customer>
<item:Items>
<item:Item>
<item:Name>Book</item:Name>
<item:Number>11111</item:Number>
</item:Item>
</item:Items>
</0rder>

CHAPTER 2 ©° XML STRUCTURE

Defining Namespaces

Looking at the previous example, you may have already determined that xmlns:cus="http://
www . example.com/Customer” is a namespace definition. Usually, and I stress usually, this is not
the case; namespaces are created using a special prefixed attribute name and a UR], like so:

xmlns:prefix="URI"

Based on this definition, prefix refers to the namespace prefix you want to use through-
out your document to associate certain elements and attributes to a namespace name (URI).
In this example, the Number element within the Customer element becomes cus :Number, and the
Number element within the Item element becomes item:Number. Now, the XML clearly distin-
guishes between the meanings of these two elements. You have removed any ambiguity from
the document.

These new names being used in the elements are called qualified names, also referred to
as QNames. They can be broken down into two parts, separated by a colon: the prefix and the
local name. When using namespaced elements, the start and end tags now must contain the
qualified name. Again, an exception to this exists, which you will come to in the “Default
Namespace” section.

The significant portion of the namespace declaration is the URI (the namespace name).
Once bound to a node or element, this will never change. The prefix, however, is not guaran-
teed. By manipulating the tree, such as moving elements around using the DOV, it is possible
a namespace collision may occur. This frequently happens when a namespace defined lower
in the tree declares a namespace and uses a prefix, which was used in one of its ancestors. By
moving some element as a child of this other element, the prefixes would collide because they
refer to two different URIs. It is perfectly valid for the prefix to automatically be changed to
one that would not conflict. This is covered in more detail in the section “Namespace Scope.”

Elements containing the namespace definition are not part of the namespace unless pre-
fixed. Listing 2-14 shows the Order element within a namespace, because it is prefixed with
ord, as specified in the namespace definition. The Order element in Listing 2-15 is not in any
namespace even though a namespace is being defined.

Listing 2-14. Element Order Within the http://www.example.com/Order Namespace

<ord:Order xmlns:ord="http://www.example.com/Order" />

Listing 2-15. Element Order Not Within the http://www.example.com/Order Namespace
<Order xmlns:ord="http://www.example.com/Order" />

Namespaces are not required for every element and attribute within a document. You need
to remember that namespaces remove ambiguity when there are, or there could be, overlapping
names. Looking at the example, the only two elements that require namespacing are Name and
Number. It would have been perfectly valid to not put all other elements into namespaces.

Namespaces can also apply to attributes as well:

<cus:Customer cus:cid="12345" />

The attribute cid, with the cus prefix, falls within the http://www.example.com/Customer
namespace.

31

32

CHAPTER 2 ©© XML STRUCTURE

Default Namespaces

All rules have exceptions. If you remember from the previous section that namespaces take
the form of prefix:name, well here is the exception: default namespaces allow a namespace
to be defined that causes all elements, unless explicitly set to a namespace, to automatically
be assigned to the default namespace, like so:

<Order xmlns="http://www.example.com/Order" />

You may think that the Order element is not associated with any namespace. This, how-
ever, is wrong. Default namespaces apply to the element they are defined on as well as to all
elements, but not to attributes contained in the defining element, unless already associated
with a namespace using the QName approach.

Caution Default namespaces do not affect attributes. Unless explicitly set to a namespace with a prefix,
attributes do not belong to any namespace. This is extremely important to remember when working with
many of the XML technologies, not just the ones within PHP. This knowledge may save you many hours and
days of trying to debug an XML-based project.

Let’s return to a simplified version of the order structure:

<Order xmlns="http://www.example.com/Order"
xmlns:item="http://www.example.com/Item">
<Items>
<Item itid="12345">
<item:Name>Book</item:Name>
<item:Number>11111</item:Number>
</Item>
</Items>
</Order>

This structure contains two namespaces. One is http: //www.example.com/Item, which is ref-
erenced by the prefix item, and the other, http://www.example.com/Order, is a default namespace.
Based on the structure, the elements Name and Number belong to the http://www.example.com/Item
namespace because they are using QNames with the item prefix. The elements Order, Items, and
Itemall belong to the http://www.example.com/Order namespace, because they are not explicitly
set to any namespace so inherit the default namespace. Lastly, the attribute itid does not belong
to any namespace. It is not explicitly set and hence doesn’'t use a QName, and as you remember,
attributes do not inherit the default namespace.

If possible, I recommend avoiding default namespaces and using QNames with name-
spaces. As documents become more complex, they become much more difficult to read and
understand. Default namespaces do not easily stand out, and when adding namespace scope
to the equation, they can become quite confusing to follow. Using qualified names also will
help avoid the confusion that sometimes happens with attributes; many people have been
bitten by the fact that attributes do not inherit the default namespace and have spent a great
deal of time trying to find the bugs in their XML.

CHAPTER 2 ©° XML STRUCTURE

Reserved Prefixes and Namespace Names

By default, XML processors are required to define two namespaces with associated prefixes by
default:

* The prefix xml is bound to http://www.w3.0rg/XML/1998/namespace. You can use this
namespace to define things such as ID attributes (xml:id) and languages (xml:1lang).

 The prefix xmlns is bound to http://www.w3.0rg/2000/xmlns/. You can use this name-
space to declare XML namespaces.

These namespaces may not be bound by using any other prefix except those defined.
Within a document, the prefix xmlns must never be declared. The xml prefix, on the other
hand, may be declared, although it’s not necessary. If declared, though, it must be bound to
the http://www.w3.0rg/XML/1998/namespace namespace.

Prefixes should also not begin with the characters xml. Prefixes that begin with these
characters are reserved for future specifications. However, a processor will not treat the use
of these as a fatal error, but documents that do use prefixes with these characters may possi-
bly not be valid in the future if a specific prefix ends up being used in any currently undefined
specifications.

Namespace Scope

Up until now, you have looked only at namespaces defined in the document element. You
can declare namespaces by using any element in the document. So what happens when you
encounter additional namespaces? Consider the following document:

<Order xmlns:cus="http://www.example.com/Customer"
xmlns:item="http://www.example.com/Item"
xmlns="http://www.example.com/Order">
<cus:Customers>
<Customer xmlns:cus="http://www.example.com/GENERIC Customer">
<cus:Name>John Smith</cus:Name>
<cus:Number>12345</cus:Number>
</Customer>
<cus:Count>1</cus:Count>
</cus:Customers>
<item:Items>
<item1:Item xmlns:itemi="http://www.example.com/GENERIC Item">
<itemi1:Name>Book</item1:Name>
<item1:Number>11111</item1:Number>
</itemi:Item>
<Item xmlns:item="http://www.example.com/GENERIC Item">
<item:Name>Software</item:Name>
<item:Number>22222</item:Number>
</Item>
</item:Items>
<GeneralInfo xmlns="http://www.example.com/General">
<Name>General Information</Name>
<Number>33333</Number>
</GeneralInfo>
</Order>

33

34

CHAPTER 2 ©© XML STRUCTURE

It’s time to play the “Which namespace am I in?” game. You may have been curious why
I suggested avoiding using default namespaces if possible. This document is not highly com-
plex because it is quite small and has only a few levels, but it takes namespace use to the
extreme—almost to the level of abuse. It should help you to not only understand namespace
scoping but also to understand why default namespaces can cause a document to become
confusing to read.

What namespace is the item:Name element in?

At first glance, you might say http://www.example.com/Item because that is the namespace
defined on the Order element using the item prefix. This, however, is wrong. The element is
actually in the http://www.example.com/GENERIC_Item namespace.

To fully understand how the namespace/element associations are made, you should walk
through the document tree and examine the elements. Beginning with the document element,
three namespaces are defined:

* cus is associated with http://www.example.com/Customer.
» itemis associated with http://www.example.com/Item.
* http://www.example.com/Order is a default namespace.

The element cus:Customers is in the http://www.example.com/Customer namespace. This
should be obvious, as you have encountered no other namespace definitions. Descending
into the content, you encounter the Customer element. This element belongs to the http://
www . example.com/Order namespace. Because it has no prefix and is not defining a default
namespace, it inherits the current in-scope default namespace. The element does, however,
define a new namespace, http://www.example.com/GENERIC Customer, and it associates the
prefix cus with it. This prefix used to be associated with http://www.example.com/Customer,
but for any elements or attributes using this prefix within the contents of the Customer ele-
ment, it now refers to http://www.example.com/GENERIC Customer. This means cus:Name and
cus :Number, which are children of Customer, are both in the http://www.example.com/
GENERIC Customer namespace.

As you exit from the Customer element, the http://www.example.com/GENERIC_Customer
namespace associated with the cus prefix goes out of scope. These were defined on the Customer
element, which is now closed, so the definition ceases to exist. However, cus is now in scope
from its definition on the Order element. When you encounter the next element, cus:Count,
it belongs to the http://www.example.com/Customer namespace because of the scoping rules.
Moving back up the tree, you can safely ignore the cus:Customers closing element. Because
the element did not define any namespaces, it does not alter anything.

The item:Items element is the next element encountered. No changes exist in name-
space, so it is bound to the http://www.example.com/Item namespace as defined on the Order
element. Its child element, item1:Item, defines the http://www.example.com/GENERIC Item
namespace with the item1 prefix. As this element is also prefixed with item1, it ends up in the
http://www.example.com/Item/1 namespace, which it is defining. Both of its children,
item1:Name and item1:Number, will belong to the same http://www.example.com/GENERIC Item
namespace defined on their parent.

Entering the second Item element, the namespace http://www.example.com/GENERIC Item
is once again defined but associated with the item prefix. This changes the scope of the prefix
so that all the elements contained within Item and using the prefix item will now be bound to
http://www.example.com/GENERIC_Itemrather than to the one defined on the Order element.

CHAPTER 2 ©° XML STRUCTURE

The Item element itself has no prefix so is bound to the default namespace, which currently is
http://www.example.com/Order. With the newly defined item prefix, both the children elements,
item:Name and item:Number, belong to http://www.example.com/GENERIC Item. Upon leaving
the last Item element, the item prefix loses scope, but since it was defined before in an ances-
tor element (Order), item again refers to the http://www.example.com/Item namespace.

The next element hit is the GeneralInfo element. This demonstrates how it might be con-
fusing to use default namespaces. This element resides in the default namespace. It, however,
is also defining a default namespace. The question now arises—to which default namespace
does it belong?

Remember the section “Default Namespaces”? Elements defining a default namespace, and
not bound to any namespace, will be bound to the default namespace they’re defining. To answer
the original question then, GeneralInfo is bound to http://www.example.com/General. This also
means all elements contained within GeneralInfo will now use http://www.example.com/General
as the default namespace. So with that information, there is no way to trick you by asking you
what the namespace for the child Name and Number elements are. Of course, they are bound to
http://www.example.com/General. When a parser encounters the GeneralInfo closing tag, the
default namespace defined on that element falls out of scope, and http://www.example.com/Order
comes back into scope as the default namespace of the document.

It’s a good thing this was a simple document. Just imagine how hard it would have been to
explain a large and complex document. Here are a few tips for writing XML documents:

¢ If you don’t need namespaces, don’t use them.
* If you have the choice, use QNames rather than default namespaces.
¢ Attributes are not bound to default namespaces.

¢ DTDs and namespaces are not all that compatible and can lead to invalid documents.

Namespaces and Attribute Uniqueness

Back in the “Attributes” section, you learned attributes must be unique for an element. Name-
spaces add a little twist to this. Attributes names must still be unique, where the name consists
of the prefix and local name for a namespaced attribute, but they must also not have the same
local name and prefixes that are bound to the same namespace.

In the following example, although the attribute names, a1:z and a2:z, are unique, they
are both bound to the same namespace, http://www.example.com/a, which means this is an
invalid document:

<x xmlns:al="http://www.example.com/a" xmlns:a2="http://www.example.com/a">
<y al:z="1" a2:z="2" />
<Ix>

The following attributes are perfectly legal. The attribute a1:z is bound to http://
www . example.com/al, and a2:z is bound to http://www.example.com/a2.

<x xmlns:al="http://www.example.com/a1" xmlns:a2="http://www.example.com/a2">
<y al:z="1" a2:z="2" />
/x>

35

36

CHAPTER 2 ©© XML STRUCTURE

The following example may throw you a bit. Default namespaces do not apply to attrib-
utes, so these attributes are unique. Their names are unique because the qualified names are
used for comparison, and no duplicate namespace exists. Attribute a:z is bound to
http://www.example.com/a, and attribute a is not in any namespace.

<x xmlns:a="http://www.example.com/a" xmlns="http://www.example.com/a">
<y a:z="1" z="2" />
</X>

Note The remainder of the examples in this chapter that use DTDs are well-formed documents but are
not valid. If loading them into a parser, make sure you disable validation; otherwise, validation errors will
occur. For more information, see Chapter 3.

Using IDs, IDREF/IDREFS, and xml:id

When dealing with documents, it is often useful to be able to uniquely identify elements and
be able to easily locate them. Attribute IDs serve this same purpose. When applied to an ele-
ment, which can have at most a single ID (though this is not the case when using xml:id), the
value of the attribute on the element serves as the unique identifier for the element. An IDREF,
on the other hand, allows elements to reference these unique elements.

At first glance, you may be wondering what purpose the ID and IDREF instances actually
serve. Of course, they uniquely identify an element, but what advantage does that offer to you?
Before answering that question, I'll cover how you construct them. You can create an attribute
ID in two ways. The first is through an attribute declaration (ATTLIST) in a DTD. (Chapter 3
covers DTDs in depth; in this chapter, I'll explain ATTLIST and its makeup in regard to IDs.)
On February 8, 2004, the W3C released the xml1:1id specification as a candidate recommenda-
tion. This provides a mechanism to define IDs without requiring a DTD. Since this is relatively
new, I will begin with the ATTLIST method and then return to xml:id.

Defining IDs Using a DTD

Earlier, when discussing the prolog of the document, I touched upon the document type decla-
ration and where it is defined. Similar to Listing 2-4, you can use an internal subset to declare
the attribute. Defining attributes takes the following form:

<IATTLIST element name attribute name attribute type attribute default >

In this case, attribute type is the ID. Attribute types, as well as the entire ATTLIST definition,
are fully explained in Chapter 3, so for now, just take this at face value. You also, for now, will use
#REQUIRED for attribute default. This just means every element with the name element name is
required to have the ID attribute named attribute name defined.

Consider the XML document in Listing 2-16, which could serve as a course list for a school.

CHAPTER 2 ©° XML STRUCTURE

Listing 2-16. Course Listing

<Courses>
<Course id="1">
<Title>Spanish I</Title>
<Description>Introduction to Spanish</Description>
</Course>
<Course id="2">
<Title>French I</Title>
<Description>Introduction to French</Description>
</Course>
<Course id="3">
<Title>French II</Title>
<Description>Intermediate French</Description>
</Course>
</Courses>

Does this document contain IDs used to uniquely identify elements and for ID lookups?

The answer is no. However, it may appear to do so; since the attribute name is id and the
values of the attributes are unique, the attributes within the document are just plain, everyday
attributes. This is a problem many people frequently encounter, and I have fielded many bug
reports claiming that IDs are not working properly in a document. The fact is, just creating an
attribute with the name ID does not make it an ID. IDs can actually be named anything you
like, assuming it is a legal XML name. The document must somehow be told that the attribute
is of type ID. There is also a caveat about the allowed values for attribute IDs. The values must
follow the rules for legal XML names. So within the previous example, the value 1 is invalid
because names cannot begin with a number.

Caution An attribute with the name ID is not automatically an ID. You must make the document aware
that an attribute is of type ID. Once identified, the values of the attribute IDs must conform to the rules
defined by legal XML names and so may not begin with a number.

Listing 2-17 shows how to rewrite the document so it can use IDs.

Listing 2-17. New Course Listing

<!DOCTYPE Courses [
<IATTLIST Course cid ID #REQUIRED>
1>
<Courses>
<Course cid="c1">
<Title>Spanish I</Title>
<Description>Introduction to Spanish</Description>
</Course>

37

38

CHAPTER 2 ©© XML STRUCTURE

<Course cid="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>
</Course>
<Course cid="c3">
<Title>French II</Title>
<Description>Intermediate French</Description>
</Course>
</Courses>

Comparing the documents from Listing 2-16 and Listing 2-17, you will notice that I added a
document type declaration and I named the attributes cid. I changed the name to illustrate that
you can use any valid names for IDs and not just id. I added the ATTLIST declaration to define the
attributes named cid when applied to elements named Course of type ID and to define that
the attribute is required for all Course elements. You may also notice that the values for the
attributes have changed. With respect to the rules surrounding the attribute value, I prefixed
the numeric values with the letter ¢ so they conform to the rules for legal XML names.

After the document in Listing 2-17 has been parsed, you will end up with two Course elements
that are uniquely identified by the value of the cid attribute. Now I can answer the original
question of what purpose they serve. The answer really depends upon what you are doing. For
instance, if you were to load the document under the DOM, using the DOM Document object,
you could retrieve specific elements by calling the getElementById() method. Passing in the
unique value as the parameter to the method, such as c2, the Course element that contains
information on French I would be returned. Distinct elements could also be returned using
XPath queries, such as those used in XSL. IDs can also be referenced within a document, which
brings us to IDREF.

IDREF

An IDREF is a method that allows an element to reference another element. It is basically a
pointer from one element to another. Taking the course list in Listing 2-17, how could you
expand it to add course prerequisite information? One way to do this would be to duplicate
the course information for the prerequisites, as shown in Listing 2-18.

Listing 2-18. Course Listing with Prerequisites

<IDOCTYPE Courses [
<IATTLIST Course cid ID #REQUIRED>
1>
<Courses>
<Course cid="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>
</Course>
<Course cid="c3">
<Title>French II</Title>
<Description>Intermediate French</Description>
<pre-requisite>

CHAPTER 2 ©° XML STRUCTURE

<Pcourse>
<Title>French I</Title>
<Description>Introduction to French</Description>
</Pcourse>
</pre-requisite>
</Course>
</Courses>

This is not an efficient way of handling data. The element name Course could not be used
for the prerequisite. Course elements require the ID attribute cid, but for this document, the
prerequisites should not be IDs. This could be handled by changing the attribute type in the
ATTLIST, covered in Chapter 3, but this still requires duplicating the content for the French I
course. No correlation within the document exists that says the Course element containing
French I in the prerequisites is the same as the Course element identified by c2.

Modifying the document in Listing 2-18, you can add an IDREF, as shown in Listing 2-19.
For now, the document continues to use Pcourse for the element name.

Listing 2-19. Course Listing with Prerequisites Using IDREF

<IDOCTYPE Courses [
<!ATTLIST Course cid ID #REQUIRED>
<!ATTLIST Pcourse cref IDREF #REQUIRED>
>
<Courses>
<Course cid="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>
</Course>
<Course cid="c3">
<Title>French II</Title>
<Description>Intermediate French</Description>
<pre-requisite>
<Pcourse cref="c2" />
</pre-requisite>
</Course>
</Courses>

Pcourse no longer contains all the additional baggage and redundant data. The IDREF, cref,
now refers to the Course element identified by c2. The document no longer contains redundant
data, making it more compact as well as easier to read. In addition, you can reuse the content.
Imagine how long the document would be if you created an entire school course list, along with
all prerequisites, without using IDs and IDREF.

IDREFS

Sometimes an element will need to reference more than one ID of the same element type. For
example, in Listing 2-19, it would be much easier if the pre-requisite element could reference
the courses directly, rather than adding child elements for the courses. Multiple attributes of

39

40

CHAPTER 2 ©© XML STRUCTURE

the same name are not allowed for an element, so you must use IDREFS to perform this feat, as
shown in Listing 2-20.

Listing 2-20. Course Listing with Prerequisites Using IDREFS<!DOCTYPE Courses [
<IATTLIST Course cid ID #REQUIRED>
<IATTLIST pre-requisite cref IDREFS #REQUIRED>
1>
<Courses>
<Course cid="c1">
<Title>Basic Languages</Title>
<Description>Introduction to Languages</Description>
</Course>
<Course cid="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>
</Course>
<Course cid="c3">
<Title>French II</Title>
<Description>Intermediate French</Description>
<pre-requisite cref="c1 c2" />
</Course>
</Courses>

You will notice that the element pre-requisite now contains a single attribute, cref, with
the value c1 c2. The value of the IDREFS attribute is a whitespace-delimited list of IDREF. This
means cref is a pointer to both the Course element identified by c1 and the Course element
identified by c2.

Using xml:id
In 2004, the W3C released the xml:id specification as a recommendation. Using xml: id within

a document allows you to create IDs without requiring a DTD. This is a much easier method
than creating attribute declarations, though the two have a few differences:

* The values for xml:id must conform to legal namespace names. This is almost identical
to regular IDs, except a colon is not a valid character for the value.

* When defined in a DTD, though not a requirement to do so, xml:id mustbe defined as
an ID. The attribute type for xml:id cannot be modified to another type.

Re-creating the course list from Listing 2-17, using xml : id rather than declaring attributes
of type ID, the document would look as follows:

<Courses>
<Course xml:id="c1">
<Title>Spanish I</Title>
<Description>Introduction to Spanish</Description>
</Course>

CHAPTER 2 ©° XML STRUCTURE

<Course xml:id="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>
</Course>
<Course xml:id="c3">
<Title>French II</Title>
<Description>Intermediate French</Description>
</Course>
</Courses>

To use an IDREF, however, the IDREF still must be declared in the DTD. So, re-creating the
document in Listing 2-18 using xm1:id and IDREF, the document would take this form:

<IDOCTYPE Courses [
<IATTLIST Pcourse cref IDREF #REQUIRED>
1>
<Courses>
<Course xml:id="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>
</Course>
<Course xml:id="c3">
<Title>French II</Title>
<Description>Intermediate French</Description>
<pre-requisite>
<Pcourse cref="c2" />
</pre-requisite>
</Course>
</Courses>

You don’t need to do anything else to handle IDs using xml:id. As I said before, it is simple
to use and is great when you don’t want to deal with DTDs. One less thing to complicate the
document is always better!

Using xml:space and xml:lang

Two special attributes that are part of the XML specification can provide additional informa-
tion to a document about how certain things should be processed: xml:space and xml:lang.
These are not like PIs, which are application specific. These attributes, being part of the XML
specification, are meant to be handled by any application. When using these attributes within
a document to be validated, you must define attribute declarations for these attributes within
the DTD; otherwise, validation errors may occur.

41

42

CHAPTER 2 ©© XML STRUCTURE

xml:space

This attribute specifies to an application how it should handle whitespace. The valid values
are preserve and default. When set to default, the application handles whitespace as it
normally does. A value of preserve instructs the application that it must preserve all white-
space within the context of the element on which the attribute is set. For example:

<Description xml:space="preserve">
<a>This
is
<c>the</c>
<d>description</d>
</Description>

The value of preserve should instruct the application to preserve the whitespace within
the description content. If this were set to default, the application may or may not preserve
whitespace. It would depend upon its default behavior.

xml:lang

The xml:1lang attribute can specify the language used for the content within an element. The
values can come from the ISO standard 639, denoted by the IANA prefix i-, or from private
sources, denoted by the prefix x-. For example:

<docu xml:lang="en">
<p xml:lang="fr">Bonjour monde en francais </p>
<p xml:lang="de">Hallo Welt auf Deutsch<p>
<p>Hello World in English</p>

</docu>

The document illustrates “Hello World” in French (xml:lang="fr"), German (xml:lang="de"),
and English. The p tag for English has no xml:lang attribute because it is in the scope of the docu
element, which is set to xml:1lang="en". Therefore, unless overridden, the default content of the
docu element is in English.

Understanding XML Base

Unlike xml:space and xml:1lang, XML Base is not part of the XML specification. It has its own
specification from the W3C. The xml:base attribute specifies a base URI on an element, which
is used to resolve relative URIs used within the scope of the element. The use of xml:base may
also be stacked. By this I mean that within the scope of an element defining an xml:base, an
element may define a relative URI as its xml :base. This would effectively set the base URI within
the context of this subelement as the path of this new base, relative to the ancestor base URI.
XML Base is primarily used for XLink to describe linking between resources. You may also
see it used in other contexts, such as with XInclude and XSLT. The following is a document that
uses XInclude to illustrate how xml :base can define base URIs for the XInclude documents:

CHAPTER 2 ©° XML STRUCTURE

<example xmlns:xi="http://www.w3.0rg/2001/XInclude">
<para xml:base="http://www.example.com/">
<xi:include href="example.xml" />
<p2 xml:base="examples/">
<xi:include href="examplel.xml" />
</p2>
<p3>
<xi:include href="examples/examplel.xml" />
</p3>
</para>
</example>

Within the para element, the base URI is set to http://www.example.com/. Everything within
the scope of this element will now use this URI as the base for any relative URL As you descend
into the child elements, the first xi:include points to example.xml. This will resolve to http://
www.example.com/example.xml when included in the document.

Moving to the p2 element, xml:base is set to examples/. This is a relative URI, so for all
practicality, it inherits the base of the encapsulating element’s URI (http://www.example.com/)
and sets the base relative to this. The base is now http://www.example.com/examples/ for the
p2 element and everything within its scope. When the xi:xinclude element is reached within
this element, the file example1.xml will resolve to http://www.example.com/examples/
examplel.xml when included.

Continuing to navigate the document, you reach the end of p2. The base that was set
falls out of scope, which means the base set by the para element, http://www.example.com/,
becomes the active base again. Upon reaching the xi:include within the p3 element, the file
examples/examplel.xml, being relative, uses the base URI from para and resolves to http://
www . example.com/examples/example1.xml when included. This is the same file that p2 had
included, just using relative pathing a little differently based upon the scope of xml:base
within the document.

Conclusion

This chapter covered the basic structure, syntax, and a few other areas of XML that will help
you understand documents, regardless of their complexity. Although a few more complex
aspects of XML exist, you should be well on your way to creating well-formed XML docu-
ments with the basics presented here. The next chapter will introduce you to validating with
DTDs, XML Schemas, and RELAX NG. What you have learned in this chapter will be invalu-
able to you throughout the rest of this book.

43

CHAPTER 3

Validation

By now, you have most likely heard that all XML documents must be well-formed but that
documents are not required to be valid. This chapter will explain what it means for a docu-
ment to be valid and will show how to create valid documents. I will cover DTDs, XML
Schemas, and Relax NG in depth and discuss the differences between them.

Introducing Validation

A well-formed document is one that is written using legal XML syntax and structure according
to the XML specification. A valid document is one that is well-formed and conforms to a
structure outlined in a DTD or schema. You can think of this as a database schema. A table
definition defines the fields and their data types, lengths, and defaults. Using primary and
foreign keys, you can also define a database structure. If someone tries to insert data that
does not fit the model, they’ll get an error.

Validation in XML works in almost the same way. The schema defines how an XML docu-
ment must look. It can define the order of elements in the document, what child elements are
valid for particular elements, and what type of content particular elements can have. You can
apply similar constraints to other pieces of an XML document.

If you were receiving XML from some undefined source and were expecting a document
that looked like the following one, you would use validation to ensure the document conforms
to your expectations. The system you are processing the documents with must have the docu-
ment in this format; otherwise, it will cause an error. Therefore, validating the document prior
to processing is essential in this case.

<question number="1">
<query>Is this XML?</query>
<answer>true</answer>
</question>

Validation allows you to describe a document in generic terms. You know that this exam-
ple’s document element must be the element question. The question element must have a
number attribute that can have an integer for its value. Here you don’t care what the specific
value is, just that the value is an integer. The question element must also contain two ele-
ments, query and answer, in that order. No other content is allowed for the question element.
The query element cannot have any attributes and can have only text content. You don't care
what the text is, just that there is text and no XML markup. The answer element cannot have
any attributes and must contain true or false. Validation allows you to take this verbal

45

46

CHAPTER 3 " VALIDATION

description of the constraints placed on a document, write the description in a schema using
the schema’s grammar (the language it uses to describe a document), and then perform auto-
mated validation of the document. You will be able to determine whether the document
conforms to your expectations before actually sending the document to be processed.

Introducing Document Type Definitions

Chapter 2 briefly touched on DTDs in respect to ID, IDREF, and IDREFS. These are just a small
aspect of DTDs. The main purpose of a DTD is to perform document validation. Although
other methods to perform document validation exist, DTDs are part of the XML 1.0 specifica-
tion so have been around for some time now. Before getting under the hood of a DTD, though,
you need to back up and re-examine document type declarations, mentioned in Chapter 2.

Document Type Declarations

The document type declaration is not a DTD but is the declaration to declare a DTD. It can
include an internal subset, an external subset, or both. These subsets together make up the
document’s DTD. The difference between an internal and external subset is, as their names
imply, that an external subset is a subset that is not defined within the document. The docu-
ment must access the subset from an external resource, such as from the file system or the
network. An internal subset is defined directly within the document. You may be wondering
why two different subsets exist. External subsets allow documents to share common DTDs.
If you were working at a large company, for example, you might have a standard DTD for doc-
uments created within the company. Rather than having to define the same DTD within each
document, documents can reference a common standard DTD via an external subset. As
mentioned in Chapter 2, a declaration looks like the following:

<IDOCTYPE document_element definitions>

The document_element is the root, or document element, of the body of the XML document,
and definitions is the internal and/or external subsets. The document type declaration must
contain the document_element and at least an internal or external subset declaring the element;
otherwise, the document type declaration is not written properly and has no DTD to validate
against. In the following sections, you'll examine external subsets and how they are declared.

External Subsets

External subsets are accessed through external IDs. The external ID includes a system iden-
tifier and possibly a public identifier, which serve to locate the external subset. The system
literal is a URI that provides the specific location of the subset. Note that the URI cannot be
a fragment (which is a URI using the # character to point to a specific portion of a document).
You may be more familiar with this when using anchors in HTML. Public identifiers allow the
use of some other identifier, which your parser would then translate to a URIL. When using
public identifiers, a system identifier is also required in the event the parser is unable to resolve
the public identifier.

Listing 3-1 illustrates how to use both system and public identifiers. You denote system
identifiers, when not used with a public identifier, by using the keyword SYSTEM. You denote

CHAPTER 3 " VALIDATION

a public identifier by using the PUBLIC keyword. Normally, unless the document is used inter-
nally, public identifiers are rarely used. This is because anyone outside your organization
would not understand what the public identifier was referring to or even how to resolve it.

Listing 3-1. System and Public Identifiers

<!-- Using System Identifier --»

<IDOCTYPE courses SYSTEM "http://www.example.com/courses.dtd">

<!-- Using Public Identifier --»

<IDOCTYPE courses PUBLIC "-//Example//Courses DTD//EN"
"http://www.example.com/courses.dtd">

The external subset contains the markup that makes up the DTD. It consists of an optional
text declaration followed by the external subset declarations. Chapter 2 didn't cover text decla-
rations, as they pertain only to external entities; I'll cover them next.

Text Declaration

You are already familiar with the syntax for text declarations. They are similar to XML decla-
rations of documents; however, the standalone declaration is not valid, version is optional,
and encoding is required. It is also recommended that you use a text declaration for external
entities. A text declaration primarily indicates the encoding of the external entity, which is
necessary when the entity uses a different encoding than the main XML document. The
examples in Listing 3-2 illustrate the two possible structures of a text declaration, where

the only difference is the use of the optional version attribute.

Listing 3-2. Text Declaration

<l-- Text declaration without version -->
<?xml encoding="IS0-8859-1" ?>

<l-- Text declaration with version -->
<?xml version="1.0" encoding="IS0-8859-1" ?>

External Subset Declaration

The external subset declaration is where the actual grammar for the DTD resides. It consists of
one or many markup declarations, conditional sections, and declaration separators. I'll cover all
these in depth in upcoming sections; markup declarations and declaration separators, which are
explained later in the chapter in the “Parameter Entities” section, are common to both exter-
nal and internal subsets, and conditional sections are specific to external subsets and external
parameter entities. Listing 3-3 shows an example, which is explained in more detail through-
out this chapter, for the courses.dtd file from Listing 3-1.

47

48

CHAPTER 3 " VALIDATION

Listing 3-3. External Subset

<?xml encoding="I5S0-8859-1"?>

<!ELEMENT courses (course+)>

<IELEMENT course (title, description, pre-requisite*)>
<!ATTLIST course cid ID #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT pre-requisite EMPTY>

<IATTLIST pre-requisite cref IDREFS #REQUIRED>

If you refer to the previous chapter, this external subset looks fairly similar to describing
the structure of the document body. Note that the case has changed on the elements—they
are now all lowercase. If you lowercased all the elements in the IDREF example, you could use
this external subset as the DTD for courses.dtd.

Internal Subset

An internal subset consists of the grammar for the DTD defined directly within the document.
Within the document type declaration, the internal subset is enclosed within the characters [
and]. When used with an external subset, the internal subset is defined right after the external
subset. Although defined last, any declarations defined in the internal subset take precedence
over definitions from the external subset. Basically, you can use an internal subset to override
an external subset.

If you refer to the external subset declaration section in Listing 3-3—specifically to the
markup used to define the contents of the course.dtd file as well as Listing 3-1—you could
rewrite the document type using an internal subset as follows:

<!DOCTYPE courses [
<!ELEMENT courses (course+)>
<!ELEMENT course (title, description, pre-requisite*)>
<IATTLIST course cid ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<VELEMENT description (#PCDATA)>
<IELEMENT pre-requisite EMPTY>
<IATTLIST pre-requisite cref IDREFS #REQUIRED>

1>

But, as previously mentioned, using internal subsets is restrictive because they cannot
be shared. It’s best to use an external subset. According to this DTD, pre-requisite elements
contain attributes but must be empty. What happens, however, if this document will contain
content within the pre-requisite element but the external subset is being used for the docu-
ment? This is where the internal subset really comes in handy. Using the external subset in
Listing 3-3, you can override the element declaration for the pre-requisite element in an
internal subset, as shown in Listing 3-4.

CHAPTER 3 " VALIDATION

Listing 3-4. Overriding Prerequisite Declaration Using Internal Subset

<IDOCTYPE courses SYSTEM "http://www.example.com/courses.dtd" [
<IELEMENT pre-requisite (#PCDATA)>

1>

If you notice the bold code in Listing 3-4, the definition of the pre-requisite element
now allows data. This differs from Listing 3-3, where it is defined as EMPTY in the external
subset. The declaration within the internal subset takes precedence in definitions, so a doc-
ument written according to this new DTD (Listing 3-4) would allow certain content within
the pre-requisite element.

Markup Declarations

So far you have seen how to declare internal and external subsets as well as what they look
like, but now it’s time to look at all the markup they contain. Markup declarations declare ele-
ments types, attribute lists, entities, and notations. They can also take the form of PIs and
comments; although these do not actually declare anything for the document, they can be
used for application instructions or author notes, as described in Chapter 2. When writing
declarations, you will encounter a few wildcards, which can be used in your grammar. Before
examining element declarations, you’ll learn more about the wildcards.

Wildcards

A grammar, within a declaration, is written through expressions. Wildcards determine group-
ing as well as the number of matches. This is similar to using wildcards when writing regular
expressions. For those of you unfamiliar with regular expressions, they are a syntax used to
write rules and perform pattern matches against strings. Just as you could write the expression
[A-Z]+in a regular expression, which would match one or more characters in the range of A-Z,
you could use similar functionality when writing declaration rules. Within the declaration, an
expression can be an element type or element name. The following list shows some of the
basic wildcards that can be used, where expression could be as simple as an element name:

» ?:The expression is optional (expression?).

* expressionl expression2: Matches an expressioni followed by expression2.

* |: Matches either expression (expressionl | expression2).

e -: Matches the first expression but not the second (expressionl - expression2).
* +: Matches one or more occurrences of the expression (expression+).

* *:Matches zero or more occurrences of the expression (expression*).

¢ (expression): The expression within the parentheses is treated as a single unit.

For example, if you wanted to match on the logic that element1 must be followed by
one or more element2 or that it should match on zero or more element3 elements or a single
element4, the expression would look like this:

(element1 element2+) | (element3* | element4)

49

50

CHAPTER 3 " VALIDATION

Notice that element1 and element2 are within parentheses and so are element3 and
element4. The parentheses will take each of the two expressions as a whole and match on
either one of them, because of the | character.

You will see more examples of writing expressions and what they translate to as you take
a closer look at the declarations within a DTD.

Element Type Declaration

In this chapter, you have encountered examples of element type declarations many times. These
have been the markup that begins with <!ELEMENT followed by whitespace. They define an ele-
ment and what is valid for its content. Element type declarations take the following form:

<IELEMENT element_name contentspec>

The element_name is exactly what it implies. It is the name of the element you are defin-
ing. The contentspec defines what type of content, if any, is valid for the element. It can take
the value EMPTY or ANY or may be a content model of the type mixed or child. EMPTY simply
implies the element cannot contain content. Within the document, the element must be an
empty-element tag or must be a start and end tag with nothing in between, not even white-
space. ANY implies that any type of content, including none at all, is allowed. You can use this
when you have no specific rules for an element. It doesn’t matter if there are child elements
or what their names are, and it doesn’t matter what other content may appear, as long as the
content follows the rules for allowable content in the XML specification. Using the pre-
requisite element as an example, in the external subset it is empty; and in the internal
subset, you want to allow any type of content, so it takes the following forms:

<!-- declaration from external subset requiring the element to be empty -->
<!ELEMENT pre-requisite EMPTY>
<!-- declaration from internal subset allowing any content for element -->

<IELEMENT pre-requisite ANY>

Mixed and child content model types are not as simple, as these are user-written rules to
which the element content must conform.

Child Content Model

An element that can contain only child elements and no other content, excluding insignificant
whitespace, follows the child content model. As mentioned in Chapter 2, whitespace is typically
significant and consists of spaces, tabs, carriage returns, and line feeds. When dealing with vali-
dation, this whitespace is considered insignificant when it’s not used with any other text. This
means you can't use any other type of text besides these whitespace characters directly within
the element’s content. When thinking of element content in these terms, the text content would
include text, which is in the immediate scope of the element being defined. Text contained
within any of the child elements of this element would be validated according to the declara-
tions of the child elements. An element following this model would look like the following:

CHAPTER 3 " VALIDATION

<course>
<title>French II</title>
<description>Intermediate French</description>
<pre-requisite>
. some type of content
</pre-requisite>
</course>

You may remember this structure from Chapter 2. It is a fragment from the courses docu-
ment. Notice that the course element contains no text, other than the insignificant whitespace,
but has three child elements. Also, the pre-requisite element is not a required element because
not all courses have prerequisites. You could now write the element declaration for the course
element as follows:

<JELEMENT course (title, description, pre-requisite*)>

The content specification, which defines the data content, for this declaration is (title,
description, pre-requisite*).This is a sequence list, denoted by the list of elements sepa-
rated by commas. A sequence list accepts other types than just elements, but in this case, under
the child content model, no other types are allowed. Using a list means that each of the types
used must appear in a document in the exact order they are specified in the sequence list.
Based upon the wildcard used in the expression, the content specification would translate to
a course element that may contain only the child element’s title, description, and any number,
including zero pre-requisite elements. These elements must appear in this order within a
course element. Therefore, the following fragment would not be valid according to this
declaration:

<course>
<description>Intermediate French</description>
<title>French II</title>

</course>

This document has no pre-requisite element, but that is perfectly fine. The definition
indicates that zero or more pre-requisite elements are considered valid, denoted by pre-
requisite* in the declaration. The problem with this document is that according to the
declaration, title must come before the description element, which is not the case here.
To allow both ordering schemes, the declaration would need to define the two cases as
follows:

<IELEMENT course (((title, description) | (description, title)), pre-requisite*)>

Notice the use of parentheses. Following the order of precedence, the course element
must contain either title followed by description ordescription followed by title. Either
of these variants then must be followed by zero or more pre-requisite elements.

Expanding upon the course element, you can add some new information to a course,
which will provide more information on the course being offered. It can take the form of
a URL or embedded text, but not both. Say you decide to add two more possible elements,
course_url and course_info, to the course element. The document could look like any of
the following:

51

52

CHAPTER 3 " VALIDATION

<!-- course without course info and course url -->
<course>
<description>Intermediate French</description>
<title>French II</title>
</course>
<!-- course with course url -->
<course>
<title>French II</title>
<description>Intermediate French</description>
<course url>http://www.example.com/french.html</course url>
</course>
<!-- course with course_info -->
<course>
<title>French II</title>
<description>Intermediate French</description>
<course_info>This is miscellaneous info on French II</course_info>
</course>

Although the pre-requisite element does not appear in any of these fragments, it is still
valid (it was omitted for brevity). Enforcement of element order has also been reinstituted, so
description must follow title. Listing 3-5 shows how you would write the new declaration.

Listing 3-5. New course Element Declaration
<!ELEMENT course (title, description, (course url | course_info)?, pre-requisite*)>

Breaking down this grammar, course must contain title followed by description. The
description element then can be followed by a single, optional course_url orcourse_info
element, but not both. Regardless of whether one of these elements exists as a child, the last
element in the order would be zero or more pre-requisite elements. Based on these rules,
the following fragment is invalid:

<course>
<title>French II</title>
<description>Intermediate French</description>
<course_info>This is miscellaneous info on French II</course_info>
<course url>http://www.example.com/french.html</course url>
</course>

The course element cannot, according to the declaration, contain both the course_info
and course_url elements.

So far, you have looked at child elements only as an element’s content. Using what you've
learned up to now, you'll see content that can include a mix of text and other element types.

Mixed Content Model

Many times the child content model is too strict for a document. You might want to add com-
ments, PIs, or even text within an element’s content. Depending upon your expression, mixed
content allows for PCDATA, which stands for parsed character data, and possibly child elements.

CHAPTER 3 " VALIDATION

Recall from Chapter 2 that you must escape special characters such as < and & when using
them within parsed text sections. PCDATA is such a section. It can, however, contain nonparsed
character sections, such as comments, CDATA, and PIs. The simplest form of mixed content is
text-only content.

Text-only content means that an element contains no child elements, and its content is
pure text, including comments, CDATA, and PI sections. Examining the course element in this
chapter, examples of elements containing pure text are the title, description, and course info
elements. Referring to Listing 3-3, the external subset, you will notice that title and description
have been declared as follows:

<IELEMENT title (#PCDATA)>
<IELEMENT description (#PCDATA)>

Declaring the course_info is the same. The following element will have no child elements,
but CDATA content may be desired:

<!-- Declaration of course info -->
<!ELEMENT course_info (#PCDATA)>
<!-- example of course info content allowed based on declaration -->
<course_info><![CDATA[

Trip available to Corsica & Ile-de-France.

GPA < 3.0 requires instructor permission.

1>

Trip coordinators will be Mr. Smith & Mr. Jones.

<!-- Need to check scheduling -->
</course_info>

Pure text content may suffice for a majority of the elements within a document, but some-
times you'll need both text and child elements. In cases like these, you'll need to mix PCDATA
with the child elements.

In Listing 3-4, pre-requisite has been defined as #PCDATA. This is so that you can add
comments to the content. However, when writing this document, this definition ends up
being too restrictive. Sometimes not only are some courses required, but also instructor
approval is required. To indicate whether prior approval is required before being able to take
the course, you need to add an optional element, instructor_approval, as a child element
to the pre-requisite element. It has also been determined that when this new element is
missing, no prior approval is required. With this new element, however, the pre-requisite
element may now look like this:

<pre-requisite cref="1">
<!-- This prerequisite may not be required next semester -->
<instructor approval>Y</instructor approval>
</pre-requisite>

The new declaration for pre-requisite is as follows:
<!ELEMENT pre-requisite (#PCDATA | instructor approval)*>

Notice that when mixing content, you use the | character as well as the * character. These
are required per the specifications, which means you are unable to use strict element ordering

53

54

CHAPTER 3 " VALIDATION

in mixed content. For example, if you added a child element to the pre-requisite element—
say you were adding an element for the required next semester flag called req_next_sem—you
would just add it as part of the OR expression.

This means that the pre-requisite element may contain zero or more #PCDATA (text con-
tent), instructor_approval elements, and/or req_next_sem elements and may appear in any
order. For example:

<!ELEMENT pre-requisite (#PCDATA | instructor approval | req next sem)*>

As you may infer from the translation, mixed content may not be a good idea to use
when validation is a major concern for a document. Using the declaration, you could end up
with a pre-requisite element that has multiple instructor_approval elements or multiple
req_next_sem elements that may even contain conflicting values. Consider the pre-requisite
element in Listing 3-6; it is valid according to the declaration but is not what is intended to
be valid.

Listing 3-6. Valid pre-requisite Element and Conflicting Data

<pre-requisite cref="c1" >
<!-- This prerequisite may not be required next semester -->
<req_next_sem>N</req_next_sem>
<instructor approval>Y</instructor approval>
<instructor approval>N</instructor approval>
<req_next_sem>Y</req_next_sem>

</pre-requisite>

Caution Although it is much easier to declare elements using the mixed content model, you must be
careful when using it. You lose much of the stricter control that you get when using child content, which can
lead to documents that are valid according to the DTD but contain conflicting content that is not valid for
processes you may be using the document with.

Entity Declaration

Before moving to declaring attributes, which is the next logical step, it is important to under-
stand entities. Entities are not only declared but can also be used within other declarations.
Although an area more difficult than most of the others, the following sections cover entities,
including the different types and how they are declared. As you read this chapter, you will
encounter entity usage within other declarations, so I will now help clarify questions that
may arise from their usage.

Entities are simply references to data regardless of whether the data is a simple string or
from an external location. Rather than having to include the same block of data repetitively
throughout a document, you can use a simple entity instead. They can reduce the overall
physical size of a document, and you can use them to quickly change data and have the
changes reflected throughout a document. You will encounter two types of entities: general

CHAPTER 3 " VALIDATION

entities and parameter entities. Before examining the declarations of entities, a brief refresher
on entity references is in order.

Entity References

As mentioned in Chapter 2, entity references reference the content of a declared entity. They
can reference general entities or parameter entities, both of which are examined in the follow-
ing sections. A parsed general entity reference, usually just called an entity reference, takes the
form of &name;, and a parameter entity reference takes the form of %name;. The name in each case
is the name of an entity declared in the DTD. You have already encountered some of the built-
in ones, such as & and &1t ;, which refer to & and <, respectively. Unparsed general entities,
used with the ENTITY attribute type (which is the only place they can be used), take no special
form and are referenced directly by name.

General Entities

General entities come in three flavors: internal parsed entities, external parsed entities, and
unparsed entities, which are always external. Parsed entities define replacement text. Unparsed
entities, being external to the document, are resources containing data. The data can be of any
type such as text, including non-XML text and binary text.

Parsed Entities As previously mentioned, you use parsed entities for replacing text within a

document. They can be either internal, which are declared within the internal subset, or exter-

nal, which point to an external subset. The easiest one to start with is an internal parsed entity.
You can declare an internal parsed entity in an internal subset in the following manner:

<IENTITY name "replacement">

The name must be a legal name as defined in Chapter 2. The replacement must be well-
formed XML. This means replacement can include entity references, character references, and
parameter entity references. When using references within the value, circular references are
not legal. It is incorrect to include an entity reference pointing to the entity being defined, as
well as to include an entity reference pointing to an entity that may include the entity being
defined in its replacement. All the entity declarations within Listing 3-7 are invalid because
of circular references.

Listing 3-7. Circular Entity References

<!-- Entity references cannot be circular -->
<!ENTITY myentity "Some replacement text &secondentity;">
<!ENTITY secondentity "Expanded with &myentity;">

You may think that the entities declared in Listing 3-7 are not valid because the
myentity declaration is using the &secondentity; reference before secondentity has been
declared. However, this is perfectly legal. The only time the ordering of an entity declaration
is important is when using an entity reference within the value of an attribute-list declara-
tion. In this case, the entity mustbe declared before the attribute-list declaration. The
reason these declarations are invalid is that they are circular. The myentity declaration

55

56

CHAPTER 3 " VALIDATION

is using an entity reference to secondentity, and secondentity is using an entity reference
right back to myentity. This ends up in an infinite loop scenario.

Caution The ordering of a general entity declaration is significant when using the entity reference as a
default value within an attribute-list declaration. You must declare the entity declaration before the attribute-
list declaration. In all other cases, you can declare entities in any order.

Listing 3-8 illustrates the proper usage of entity references within content.

Listing 3-8. Valid Entity Reference Usage Within Content

<IENTITY myentity "Some replacement text">

<!-- Entity defined using references within content -->

<IENTITY secondentity "Expanded with &myentity; & char A: A">
<!-- Entity Reference Usage -->
<myelement>&secondentity;</myelement>

When the &secondentity; reference is expanded within the myelement element, it would
look like this:

<myelement>Expanded with Some replacement text 8amp; char A: A</myelement>

Content can also come from external resources rather than from text included directly
within the DTD. In this case, you must use an external parsed entity.

You declare external parsed entities similarly to how you declare the external subset on
the DOCTYPE:

<IENTITY name SYSTEM "URI">
<IENTITY name PUBLIC "publicID" "URI">

name is the same as name for an internal parsed entity and follows the same rules. Taking the
myentity from Listing 3-8 and changing it to an external parsed entity, the text "Some replace-
ment text" would reside within a file, called foo.txt. The resulting declarations would now look
like this:

<IENTITY myentity SYSTEM "foo.txt">

<!-- Entity defined using references within content -->

<IENTITY secondentity "Expanded with &myentity; & char A: A">
<!-- Entity Reference Usage -->
<myelement>&secondentity;</myelement>

Once &secondentity; is expanded, the myelement element would again look like this:
<myelement>Expanded with Some replacement text & char A: A</myelement>

One thing to remember about the foo. txt file is that it should contain a text declaration
like in Listing 3-2. This sets the encoding of the content within this external file.

CHAPTER 3 " VALIDATION

Unparsed Entities Unparsed entities are external entities that can contain any type of data. The
data need not be XML, and it doesn’t even need to be text. These entities are used for attrib-
utes of type ENTITY or ENTITIES. Earlier, an entity named myimage was defined and referenced
a GIF image file. You can declare unparsed entities in one of two ways:

<IENTITY name SYSTEM "URI" NDATA notation>
<IENTITY name PUBLIC "publicID" "URI" NDATA notation>

These are quite similar to the declarations of external parsed entities. The name is used
for the same purpose and follows the same rules. The difference comes from the use of the
last two parameters. The NDATA keyword indicates that this entity is an unparsed entity. The
last parameter, notation, is a reference to a notation declared in the DTD and must match
the notation name it is referencing. Refer to the section “ENTITY/ENTITIES” later in this
chapter for an example of how an unparsed entity is used and its relationship to NOTATION
and ATTLIST.

Parameter Entities

Parameter entities are similar to general entities in the respect that they are also used for
replacement. Parameter entities, however, are used only within a DTD. They allow for the
replacement of grammar. The caveat is that parameter entities, although they can be
declared within external and internal subsets, cannot be referenced within markup in the
internal subset. I will return to this point in a moment. These entities may also be internal
or external, with their declarations taking the following form:

<IENTITY % name "entity value">
<IENTITY % name SYSTEM "URI">
<IENTITY % name PUBLIC "publicID" "URI">

Because these may appear in markup only in an external subset, first look at the grammar
within the foo.dtd file, as shown in Listing 3-9.

Listing 3-9. External Subset Defined in File foo.dtd

<?xml encoding="I15S0-8859-1"?>

<IENTITY % pc "(#PCDATA)">

<IELEMENT courses (course+)>

<!ELEMENT course (title, description, pre-requisite*)>
<!ATTLIST course cid ID #REQUIRED>

<IELEMENT title %pc;>

<IELEMENT description %pc;>

<IELEMENT pre-requisite EMPTY>

<IATTLIST pre-requisite cref IDREFS #REQUIRED>

You will notice the first declaration after the text declaration is the parameter entity pc.
The replacement text is (PCDATA). The element declarations for title and description both
use the parameter entity reference %pc; where the contentspec would go. Based on the substi-
tution, it is equivalent to writing them as follows:

57

58

CHAPTER 3 " VALIDATION

<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>

Aslong as you're using the parameter entity references within an external subset, you can
use them as text replacements for any of the grammar. You can also modify the cref attribute-
list declaration to use a parameter entity reference, like so:

<IENTITY % IDREFREQ "IDREFS #REQUIRED">
<IATTLIST pre-requisite cref %IDREFREQ;>

Using parameter entities in these cases really depends upon how often you might need
to repeat the same grammar as well as how readable you would like the document to be.
Using short names to save some keystrokes may also cause the document to be hard to
decipher. And this would just get worse as the document became more complex.

You can also use parameter entities within the internal subset. Although I said you
couldn’t use it within markup in the internal subset, you won’t use it in that way. Consider the
possibility that you write a document that includes a shared external subset; in fact, say you're
using the one from Listing 3-9 called foo.dtd. Then, say you need to include another external
subset, the file foo2.dtd in Listing 3-10, to be part of the DTD; however, you cannot modify
foo.dtd and just copy the declarations into the file, because it is shared.

Listing 3-10. External Subset from File foo2.dtd

<?xml encoding="IS0-8859-1"?>
<!ELEMENT instructor approval (#PCDATA)>
<IELEMENT req next sem (#PCDATA)>

This is a scenario where it is possible to use a parameter entity reference within the inter-
nal subset. For example:

<IDOCTYPE courses SYSTEM "foo.dtd" [
<!ENTITY % foo2 SYSTEM "foo2.dtd">
%ftoo2;

1>

The parameter entity foo2 refers to the external subset foo2.dtd. The parameter entity ref-
erence %f002; is not within any markup so is perfectly valid. This is equivalent to writing the
following:

<IDOCTYPE courses SYSTEM "dtddef.dtd" [
<IENTITY % foo2 SYSTEM "dtddef2.dtd">
<!ELEMENT instructor approval (#PCDATA)>
<!ELEMENT req_next_sem (#PCDATA)>

1>

The only issue you may run into is that by having used the parameter entity reference
within the internal subset, everything declared within the external subset referenced by the
parameter entity is now considered part of the internal subset. This may cause problems if you
are overriding some declarations. In this case, ordering within the internal subset is important;
another way is to use a general external subset file for the DOCTYPE and use parameter entities

CHAPTER 3 " VALIDATION

and references within the general file to include the other external subsets, foo.dtd and
foo2.dtd. In this case, you may end up with a file such as general.dtd that looks like this:

<!ENTITY % foo SYSTEM "dtddef.dtd">
%foo;

<!ENTITY % foo2 SYSTEM "dtddef2.dtd">
%foo2;

You could then modify the DOCTYPE to the following:
<IDOCTYPE courses SYSTEM "general.dtd">

This would allow you to keep all external subsets truly external and leave the internal
subset for your own personal declarations.

Parameter entity references, when used in this fashion outside of markup, are called
declaration separators.

Attribute-List Declaration

You have already encountered attribute-list declarations when using ID/IDREF/IDREFS in
Chapter 2. Those cases are just a small piece of functionality provided by using attribute-list
declarations. Within the scope of validation, the declarations specify the name, type, and any
default value for attributes associated with an element. A declaration takes the following form:

<IATTLIST element name att definition*>

This is similar to the declaration of an element, although two names are required. The
element_name is the name of the element to which this attribute-list declaration applies.
The att_definition includes the name of the attribute being defined as well as the rules
for the attribute.

Note the * in the definition. You can define multiple attributes within a single attrib-
ute-list declaration. If the same attribute is defined multiple times within the declaration,
the first definition encountered is the binding one, and the rest are ignored. Depending
upon the options used for the parser, which you will see in later chapters when using the
PHP extensions, sometimes you’'ll get warnings. Defining an attribute multiple times for an
element is not an error though may result in a warning from the parser. Declaring multiple
attribute-list declarations for an element is also not an error, because you may prefer to
define one attribute per attribute-list declaration for an element, though that may also
result in a warning for a parser. Just keep in mind that these are warnings and not errors
and can be controlled by the parser.

The att_definition is the grammar for defining the rules for an attribute. It can be
broken down into Name AttType DefaultDecl, where Name is the name of the attribute being
defined, AttType is the type of attribute, and DefaultDecl is the rule for the default value.
Referring to Listing 2-17 from Chapter 2, when the notion of an ID was introduced, you may
recall the declaration <!ATTLIST Course cid ID #REQUIRED>. Breaking this declaration down
now makes much more sense. Course refers to the attribute element_name, cid refers to the
attribute Name, ID is the attribute AttType, and #REQUIRED is the attribute DefaultDecl. Let’s
take a closer look at the AttType and DefaultDecl attributes.

59

60

CHAPTER 3 " VALIDATION

Attribute Defaults

The attribute default (DefaultDecl) indicates any default value for an attribute as well as
whether an attribute is required and how it should be handled if it’s not. DefaultDecl may take
one of four forms: #REQUIRED, #IMPLIED, #FIXED plus a default value, or just a default value.
During the course of examining attribute defaults, you'll see the attribute type (AttType) set

to CDATA. I'll explain this in more detail in the “Attribute Types” section, but for now using the
CDATA type means that the attribute is a character type; therefore, its value must be a literal
string. For example, within the fragment in Listing 3-11, the attribute make has the string value
"Ford".

Listing 3-11. Example Element with themake Attribute
<Car make='Ford' />
#REQUIRED Attributes with the #REQUIRED default are exactly that. The attribute is required for

every element within a document for which the attribute is defined. In the case of the Car ele-
ment in Listing 3-11, you could define the attribute-list declaration as follows:

<IATTLIST Car make CDATA #REQUIRED>

Based on this declaration, the fragments in Listing 3-12 illustrate both valid and invalid
structures, though the elements themselves are well-formed.
Listing 3-12. Examples of Valid and Invalid Attributes Defined As #REQUIRED

<!-- Valid attribute because it exists and contains a string value -->
<Car make='Ford' />

<!-- Valid attribute because it exists and contains empty string value -->
<Car make="" />

<!-- Invalid attribute because it does not exist on the Car element --»>
<Car />

#IMPLIED Attributes with the #IMPLIED default means no default value is specified and the
attribute is optional on the element for which it is defined. Returning to the Car element in
Listing 3-11, you can change the attribute-list declaration so that make is an optional attribute,
as illustrated in Listing 3-13.

Listing 3-13. Attribute-List Declaration Using the #IMPLIED Default
<IATTLIST Car make CDATA #IMPLIED>

Comparing the elements from Listing 3-12 to those in Listing 3-14, you will notice that by
declaring the attribute as #IMPLIED, all fragments are now valid.

CHAPTER 3 " VALIDATION

Listing 3-14. Examples of Valid Attributes Defined As #IMPLIED

<!-- Valid attribute because it exists and contains a string value -->
<Car make='Ford' />

<!-- Valid attribute because it exists and contains empty string value -->
<Car make="" />

<!-- Valid attribute even though it does not exist on the Car element -->
<Car />

#FIXED Attributes with the #FIXED default require a default value within the attribute-list decla-
ration. These types of attributes have values that must be identical to the value specified by the
default value. The good thing, though, is that it is optional to add the attribute to the element.
When the attribute is not specifically added, the parser will automatically provide the default
value specified in the declaration.

Using the Car element from Listing 3-11 and building upon the ATTLIST attribute from
Listing 3-13, you may also want to limit the scope to automobiles manufactured in 2002,
where the attribute year indicates the manufacturing year for the auto. To enforce this rule,
you can write the attribute-list declaration as demonstrated in Listing 3-15.

Listing 3-15. Combined Attribute-List Declaration for the make and year Attributes

<IATTLIST Car
make CDATA #IMPLIED
year CDATA #FIXED "2002">

This declaration combines the rule for the make attribute with the new rule for the year
attribute into a single declaration. You could also write the declaration like so:

<IATTLIST Car make CDATA #IMPLIED>
<IATTLIST Car year CDATA #FIXED "2002">

Based upon the declaration in Listing 3-15, the following illustrates some valid and invalid
fragments:

<!-- Valid with unspecified attribute year defaulting to fixed value of "2002" -->
<Car make='Ford' />

<!-- Valid as attribute year is "2002" which is the same as the fixed value -->
<Car make='Ford' year="2002" />

<!-- Invalid as year is "2003" which IS NOT the same as the fixed value -->
<Car make='Ford' year="2003" />

Default Value So far, you have looked at requiring attributes, making them optional, and
restricting attributes. The last case offers a bit more flexibility because it allows for optional

61

62

CHAPTER 3 " VALIDATION

attributes, such as using #IMPLIED, but also adds default values, similar to using #FIXED, when
attributes are not specified. Unlike using #FIXED, however, the attribute is not restricted to the
default value. The default value is used only when the attribute is missing from the element.
Taking the declaration from Listing 3-15 and changing the year to default to "2002" but not
restricting it to that value, you would have this new declaration:

<IATTLIST Car
make CDATA #IMPLIED
year CDATA "2002">

With this new declaration, you can update the valid and invalid fragment list:

<!-- Valid with unspecified attribute year defaulting to value of "2002" -->
<Car make='Ford' />

<!-- Valid with value of year being "2002"-->
<Car make='Ford' year="2002" />

<!-- Valid with value of year being "2003" -->
<Car make='Ford' year="2003" />

Now that you understand an attribute’s default types, you can examine the attribute types
in some detail.

Attribute Types

Attribute types (AttType) simply define the type of attribute. An attribute can be a string type
(CDATA), enumerated type, or tokenized type. The easiest to begin with is the string type, which
was used within the previous “Attributes Defaults” section.

CDATA Type The CDATA type simply means the attribute has character data content. The vast
majority of attributes fall into this type. As mentioned in Chapter 2, you must escape the char-
acters < and & when using them literally. Character and entity references are also valid content
for an attribute default value, although unless using the built-in entity references, such as &1t;
and &, the entity (which was covered earlier in this chapter) cannot be an external entity
reference. In simple terms, if the attribute-list declaration is within the internal subset, then
the entity must be declared within the internal subset; otherwise, the entity may be declared
in the internal subset or the same external subset as the attribute-list declaration. From read-
ing Chapter 2 and from seeing the earlier examples in this chapter, which used the CDATA
type, you should have a basic understanding of how to use character data with attributes.
Here, however, I will demonstrate how to use entity references when declaring attribute lists.
The following listings, Listing 3-16 and Listing 3-17, are examples of how attribute-list declara-
tions interact with entity declarations.

CHAPTER 3 " VALIDATION

Listing 3-16. External Subset Defining coursedata Entity Using ext.dtd Filename

<?xml version="1.0" ?>

<!ENTITY coursedata "Some Course Data">

<!ENTITY moredata "More Course Data">

<!-- ATTLIST IS valid as moredata is declared in this subset -->
<IATTLIST courses mcdata CDATA "8moredata;">

<l-- ATTLIST IS valid as evenmoredata is declared in internal subset -->
<!ATTLIST courses emcdata CDATA "8evenmoredata;">

Listing 3-17. Invalid ATTLIST Declaration in Internal Subset Referencing External Entity

<IDOCTYPE courses SYSTEM "ext.dtd" [

<IELEMENT courses ANY>

<!-- ATTLIST is invalid as it references the external entity from Listing 3-16 -->
<!ATTLIST courses somedata CDATA "&coursedata;">

<!ENTITY evenmoredata "More Course Data">

<!-- ATTLIST IS valid as evenmoredata is declared in this subset -->

<IATTLIST courses evenmcdata CDATA "&evenmoredata;">

1>

The CDATA type is probably the easiest and most often used attribute type. The only
real complexity may come when using entities, which are covered later in this chapter in
the “ENTITY/ENTITIES” section. For now, though, you will examine the attribute’s enumer-
ated type.

Enumerated Type Enumerated types allows you to define certain values that are valid for an
attribute. Any value set for the attribute, which is not in the defined list within the declaration,
is considered invalid. Returning to the course element from the courses document, you can
add an attribute named iscurrent. This attribute indicates whether the content has been
updated. Say the values Y and N are the only acceptable values you want for the attribute value.
Therefore, you could write a declaration as follows:

<IATTLIST course iscurrent (Y | N) #REQUIRED>

By this definition, iscurrent is required and must have the value Y or N, so the following
illustrates how to use the iscurrent attribute with the course element:

<course iscurrent="Y" />
<course iscurrent="N" />

<!-- The following are invalid because XML is case-sensitive -->

non

<course iscurrent="y" />

non

<course iscurrent="n" />

This might be fine if you wrote the DTD before you had some data, but in this case, you
already have course data in XML format. Someone could manually fix all the course elements
within the document, but a much easier approach is to just use a default value based on one

63

64

CHAPTER 3 " VALIDATION

of the listed values. Since this attribute is new to the document, you can assume that the
default will be N, indicating that any course element without this attribute is to be considered
as not having been updated. For example:

<IATTLIST course iscurrent (Y | N) "N">
Based on this new declaration, the following are all valid:

<course iscurrent="Y" />

<course iscurrent="N" />

<!-- following course element uses default value of "N" for iscurrent attribute -->
<course />

Caution XML is case-sensitive. When using an enumerated type, you must be careful, because the
attribute value must match one of the values defined within the attribute type. For example, the value Y
is notthe same as the value y.

Notations, which are covered later in this chapter in the section “Notation Declaration,”
are also of the enumerated type. An attribute of this type must match one of the notations
listed, and the mutation must have been declared in the DTD. This is an example of the
declaration:

<IATTLIST image type NOTATION (gif|jpg) "gif">

An image attribute within a document using this declaration could have the value gif or
jpg, where the default value, if not set on the image element, is gif. Furthermore, gif and jpg
must also be declared as notations within the DTD. Please refer to the “Notation Declaration”
section for information about notations.

ID/IDREF/IDREFS Chapter 2 covered these types in detail, along with examples. You should note,
however, attributes of type ID must use the #REQUIRED or #IMPLIED default within their declara-
tions (because of the nature of attribute IDs). To summarize their functionality, an ID uniquely
identifies an element, and IDREF and IDREFS reference an element identified by an attribute of
the ID type. Their declarations, from Chapter 2, take the following form:

<IATTLIST Course cid ID #REQUIRED>
<IATTLIST Pcourse cref IDREF #REQUIRED>
<IATTLIST pre-requisite cref IDREFS #REQUIRED>

NMTOKEN/NMTOKENS Up until now, you have seen that the CDATA type allows virtually any
value for an attribute, assuming the value is legal for an attribute. Enumerated types restrict
attribute values to one of a given list. An NMTOKEN offers a little more restriction than CDATA
and much less than an enumeration. The value for an NMTOKEN is restricted to the characters
that make up a name, as defined in Chapter 2. You have no restriction, however, on the first

CHAPTER 3 " VALIDATION

character like you have with a name. To put it simply, an NMTOKEN is similar to CDATA, except
values containing whitespace, certain punctuation, character references, and entity references
are not valid. The use of whitespace has an exception. The value of an attribute is first normal-
ized before validity checks are performed on it. Leading and trailing whitespace is removed
during normalization, so att=" value " would validate the same for an NMTOKEN as
att="value". Attributes of this type are defined as follows:

<IATTLIST course code NMTOKEN "default value">

This declaration defines the attribute code on the course element with a default value of
default_value. Based on this declaration, Listing 3-18 illustrates valid and invalid usage.

Listing 3-18. Valid and Invalid NMTOKEN Type Usage

<!-- Valid NMTOKEN type usage -->
<course code=" 123 " />
<course code="123" />

<!-- Invalid NMTOKEN usage -->

<course code=" 123" />

<!-- The / character is not valid for NMTOKEN -->

<course code="1/2/3" />

<!-- The character references are not valid for NMTOKEN -->
<course code="1#x20" />

<!-- Entity references (&) are not valid for NMTOKEN -->
<courses code=" 18amp;2&3 " />

If the attribute had been declared a CDATA type, all examples would have been valid.

An NMTOKEN allows for the value of an attribute to contain more than one NMTOKEN sepa-
rated by whitespace. This, in simple terms, just means that by defining an attribute as an
NMTOKEN type, whitespace characters become valid within the attribute value. In reality, the
attribute value consists of multiple NMTOKEN values. By changing the declaration used for
Listing 3-18 to the following:

<IATTLIST course code NMTOKENS "default value">

the example <course code=" 1 2 3 " />isnow valid.

ENTITY/ENTITIES The last tokenized attribute types are ENTITY and ENTITIES. These types refer-
ence unparsed entities within a document. You have already been introduced to entities in the
“Entity Declaration” section, but a quick synopsis of an unparsed entity is that an unparsed
entity is an external entity, such as a remote file, that contains non-XML data.

Consider what is involved in adding an image to an XML document. The first thing that
may come to mind is using a CDATA section. This has issues, however. The binary data may
contain invalid characters such as]]>. You may then decide to Base64 encode the image and
use the encoded data as content. This would work; however, not only does the size of your
document increase, but you would also need to include information for the image, such as

65

66

CHAPTER 3 " VALIDATION

how it should be handled. Another option would be to use an attribute of type ENTITY to refer-
ence the image, such as declared in Listing 3-19.

Listing 3-19. Astribute Type ENTITY Declaration

<INOTATION GIF SYSTEM "image/gif">
<IENTITY myimage SYSTEM "mypicture.gif" NDATA GIF>
<IATTLIST image imgsrc ENTITY #REQUIRED>

To use an ENTITY type, you must declare the entity, myimage; also, because it is an unparsed
entity, you must declare a NOTATION, GIF, and associate it with the entity. Based on these decla-
rations, Listing 3-20 illustrates the usage of the unparsed entity.

Listing 3-20. Usage of Unparsed Entity Reference
<image imgsrc="myimage" />

The attribute value must be one of the unparsed entities defined in the DTD. In this case,
this uses myimage, which refers to the file mypicture.gif.

The attribute type ENTITIES is just a whitespace-separated list of entities. It is similar to
the NMTOKEN/NMTOKENS relationship. For example:

<INOTATION GIF SYSTEM "image/gif">

<IENTITY myimage SYSTEM "mypicture.gif" NDATA GIF>
<IENTITY yourimage SYSTEM "yourpicture.gif" NDATA GIF>
<IATTLIST courses imgsrc ENTITIES #REQUIRED>

An example for the ENTITIES type based on these declarations is as follows:
<image imgsrc="myimage yourimage" />

Before you get too excited and think you can change all your image references to use this
format, you need to understand the ramifications. Using attribute entities in this manner works
well for traditional publishing. Everything is within a controlled environment. On the Web,
however, you have little control over the client side. The actual MIME type for a file is usually
determined by the Web server and sent to the client. If you were to call the file mypicture.gif,
the file could actually be a JPG, and the Web server might send you MIME type information for
a JPG rather than a GIE Based on the declarations you have here, however, you are setting the
handling of the unparsed entity within the notation declaration. So, in short, most people find
using attribute entities and notations in a Web environment not a good idea, but in reality, it
really depends upon how you are using and what you are using them to do.

Notation Declaration

A notation indicates how data should be processed. Typically, notations identify the format

of unparsed entities and elements bearing a NOTATION type attribute. You can use the provided
external identifier to provide the location of a helper application that is able to process the
noted data. Do you remember the use of the NOTATION type for an attribute? The notation pro-
vided an identifier of image/gif. Based on this MIME type, an application could call the

CHAPTER 3 " VALIDATION

program associated with the image/gif MIME type to handle the image data. You declare
notations as you would declare the external subset on the DOCTYPE:

<INOTATION name SYSTEM "URI">
<INOTATION name PUBLIC "publicID">
<INOTATION name PUBLIC "publicID" "URI">

The name portion of the notation declaration must be a valid name as defined in Chapter 2.
Using the previous declaration, <!NOTATION GIF SYSTEM "image/gif">, you have declared a
notation named GIF with a system identifier of image/gif. In a controlled environment, you
might rather want to specifically identify an application to handle the data. Suppose all desk-
tops in an organization were clones of each other and locked down to prevent modification,
and an application called GIFProcessor existed in /usr/local/bin on all systems. You could
then modify the notation to <INOTATION GIF SYSTEM "/usr/local/bin/GIFProcessor”>.If the
image/gif MIME type were associated with this program, then these two declarations would
be equivalent. If the MIME type were set to something else, then using a specified application
rather than a MIME type would ensure that the data was handled correctly.

Now that you have a better idea of what a notation is, you need to revisit the NOTATION
type within an attribute-list declaration. Remember, the notation type is an enumerated type.
Enumerated types mean that the allowed values for attributes must be specified within the
attribute-list declaration. When used in this case, the notation provides information for the
element. For example, suppose an image is embedded directly within an XML document. It
has been Base64 encoded so that it can live within the content of an element. Using a notation
attribute, you can associate a handler for the element contents with the element. For example:

<INOTATION BASE64 SYSTEM "location of base64 handler">
<IATTLIST embededdata enctype NOTATION (BASE64) #REQUIRED>

<!-- example of enctype attribute on embededdata element -->
<embededdata enctype="BASE64">Some Base64 embedded data</embededdata>

Because this is an enumerated type, you could use multiple notations for the attribute-list
declaration. You will now add a handler for UUencode:

<INOTATION BASE64 SYSTEM "location of base64 handler">
<INOTATION UUENCODE SYSTEM "location of UUencode handler">
<IATTLIST embededdata enctype NOTATION (BASE64 | UUENCODE) #REQUIRED>

<!-- example of enctype attribute on embededdata element -->
<embededdata enctype="BASE64">Some Base64 embedded data</embededdata>
<embededdata enctype="UUENCODE">Some UUencoded embedded data</embededdata>

As illustrated, the enctype attribute may now use either BASE64 or UUENCODE notations
for its value. Any other value, as well as not associating the attribute with the embededdata
element, is deemed invalid because of the #REQUIRED default.

Notations are also required when using unparsed entities. Please refer to the ENTITY
attribute type and the section “Unparsed Entities” within this chapter for more information.
Notations are declared as described in this section, and their usage is similar to the NOTATION
attribute type. The only difference is the applicable XML structure.

67

68

CHAPTER 3 " VALIDATION

Conditional Sections

You use conditional sections to selectively include and exclude sections of a DTD; you can use
them only within an external subset. You may be wondering why you would need such func-
tionality. You may need this functionality for several reasons. Consider publishing from the
traditional sense.

A document may be a draft, or it may be the finalized version. When it is still a draft,
additional information, such as user notes and comments attached to paragraphs, may be
considered valid for the document. Certainly when the document is ready to be published
in its finalized state, these must not appear in the final version. Of course, you could always
define two completely separate DTDs for the document, but then each must be managed,
and the document must be altered to reference the correct one depending upon the state.

A much simpler way would to use the same external subset with conditional sections
encapsulating the appropriate sections for the current state of the document.

Another possible scenario is working on a shared external subset that is currently in
production. If you have had to debug applications in a live environment before, then this is
a similar case. The original code must be left unaltered because it is currently running, but
you need to alter and test code at the same time. You possibly can use if/else blocks based on
your terminal ID (yes, terminals still do exist, as I know from experience) or IP address, assum-
ing you have a dedicated IP addresses at your workstation and are not behind a firewall. Using
conditional sections will allow the subset to continue working for everyone else except you,
giving you the time you need to fix or alter it without disrupting anyone else’s productivity.

This should give you a basic idea on why you might need conditional sections, and by
now you are probably on the edge of your seat, waiting in anticipation on how to use these
sections. You can define conditional sections in one of two ways, depending upon whether
you want a section included or ignored:

<! IGNORE [
declarations

11

<![INCLUDE [
declarations

11

Within the INCLUDE and IGNORE blocks, declarations refers to any declaration you want
included or suppressed. So you might have a subset list the one in Listing 3-21.

Listing 3-21. Example Using Conditional Sections in course.dtd

<?xml encoding="IS0-8859-1"?>

<!ELEMENT courses (course+)>

<!ELEMENT course (title, description, pre-requisite*)>
<IATTLIST course cid ID #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<IELEMENT pre-requisite ANY>

CHAPTER 3 " VALIDATION

<![INCLUDE [
<IATTLIST pre-requisite cref IDREFS #REQUIRED>
<IELEMENT instructor approval EMPTY>
<!ELEMENT req_next_sem (#PCDATA)>

1

<![IGNORE [
<IATTLIST pre-requisite cref CDATA #IMPLIED>
<IELEMENT instructor approval ANY>
<IELEMENT req_next_sem ANY>

11

This may not look very useful because INCLUDE and IGNORE are both hard-coded into the
subset, but it should give you the basic idea. Everything within the INCLUDE section will be
used for validation, and everything within the IGNORE section is ignored. When using condi-
tional sections, parameter entities are your friends. Remember that you can use them within
the DTD to replace a grammar. You can modify the course.dtd file to use parameter entities,
as shown in Listing 3-22.

Listing 3-22. Conditional Sections in course.dtd Using Parameter Entities in course.dtd

<?xml encoding="IS0-8859-1"?>
<IENTITY % livedata "INCLUDE">
<IENTITY % debugdata "IGNORE">
<IELEMENT courses (course+)>
<!ELEMENT course (title, description, pre-requisite*)>
<!ATTLIST course cid ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<JELEMENT pre-requisite ANY>
<I[%livedata; |
<IATTLIST pre-requisite cref IDREFS #REQUIRED>
<IELEMENT instructor approval EMPTY>
<!ELEMENT req_next_sem (#PCDATA)>
1
<![%debugdata; [
<IATTLIST pre-requisite cref CDATA #IMPLIED>
<IELEMENT instructor_approval ANY>
<!ELEMENT req_next_sem ANY>

1

This code adds the parameter entities livedata and debugdata to the subset. The previously
hard-coded text INCLUDE and IGNORE have also been removed and replaced with the parameter
entity references for these new entities. Anyone now using this subset will be using the declara-
tions in Listing 3-23.

69

70

CHAPTER 3 " VALIDATION

Listing 3-23. Declarations Used by Default Within course.dtd

<IATTLIST pre-requisite cref IDREFS #REQUIRED>
<!ELEMENT instructor approval EMPTY>
<IELEMENT req_next sem (#PCDATA)>

Within the working document, you can override the 1ivedata and debugdata entity
declarations within the internal subset:

<IDOCTYPE courses SYSTEM "course.dtd" [
<!ENTITY % livedata "IGNORE">
<IENTITY % debugdata "INCLUDE">

1>

While everyone else uses the declarations listed in Listing 3-23, this document will be
using this:

<IATTLIST pre-requisite cref CDATA #IMPLIED>
<VELEMENT instructor approval ANY>
<IELEMENT req_next_sem ANY>

The last point to discuss on the topic of conditional sections is nesting. It is perfectly valid
to nest sections within each other. Everything within an IGNORE section is completely ignored.
Basically, once the parser sees an IGNORE, it skips to the closing marker for that particular sec-
tion. For INCLUDE sections, everything is included except any IGNORE sections. A section written
like this:

<![INCLUDE [
<IATTLIST pre-requisite cref IDREFS #REQUIRED>
<![IGNORE [
<IELEMENT instructor approval EMPTY>
11>
<!ELEMENT req_next sem (#PCDATA)>
11

could have just as well been written like this:

<! INCLUDE [
<IATTLIST pre-requisite cref IDREFS #REQUIRED>
<!ELEMENT req_next_sem (#PCDATA)>

11>

Though basic, this should give you the idea of how nesting works. Through the use of
parameter entities, it can get quite complex.

You should now be well on your way to validating documents using a DTD. This is just
one of the possible ways to perform validation. The next section will cover XML Schemas and
their role in validation.

CHAPTER 3 " VALIDATION

Using XML Schemas

You probably have realized by now that although DTDs can be useful to validate a document,
they also have limitations. Take, for instance, text content. You can declare an element allow-
ing PCDATA, such as <!|ELEMENT element (#PCDATA)>, but you can’t enforce what the acceptable
content is. Other than the element name and possibly using attributes, you can’'t determine
the exact type of text content that exists within the element. XML Schemas were developed to
overcome many of the shortcomings of DTDs. They are designed to be extensible, to support
data types, to be easy to write using XML syntax, to support namespaces, and to allow for user-
derived data types. XML Schemas are a standard from the W3C so are widely available. The
following sections will cover XML Schemas including their construction and how to write them.
Because of the extensive amount of information on XML Schemas, not everything will be cov-
ered, but after reading the following sections, you should have enough information to at least
understand an XML Schema and begin building your own.

Introducing XML Schemas

You may have looked at some tutorials or even the specifications for XML Schemas, and you
may still be completely confused about how to use them. If, on the other hand, you are already
familiar with XML Schemas and are able to build at least basic ones, then this section may not
contain any information new to you. Advanced features of schemas are out of the scope of this
section. My primary goal is to offer you a simple breakdown of structure and syntax as well as
basic concepts surrounding schemas. With this in mind, I'll show you how to build your first
schema.

Using slightly modified data, you will compose a schema for the courses document in
Listing 3-24. The approach is not going to be top-down, but rather inside-out. You will under-
stand the reasoning as you build it. Schemas are usually located in an external file with the
.xsd extension. Unless otherwise indicated, it is safe to assume that the schema I'm showing
how to build is in a file called courses.xsd.

Note Unless otherwise indicated, the schema being built will be residing in a file called course. xsd.
The term schema used in this section refers to a schema being built using XML Schemas unless other-
wise noted.

Listing 3-24. Courses Document

<courses>
<course cid="c1">
<title>Basic Languages</title>
<description>Introduction to Languages</description>
<credits>1.5¢/credits>
<lastmodified>2004-09-01T11:13:01</lastmodified>
</course>

!

72 CHAPTER 3 " VALIDATION

<course cid="c2">
<title>French I</title>
<description>Introduction to French</description>
<credits>3.0</credits>
<lastmodified>2005-06-01T14:21:37</lastmodified>
</course>
<course cid="c3">
<title>French II</title>
<description>Intermediate French</description>
<credits>3.0</credits>
<lastmodified>2005-03-12T15:45:44</lastmodified>
<pre-requisite cref="c1" req_next sem="true">
<instructor approval>false</instructor approval>
</pre-requisite>
<pre-requisite cref="c2" req_next sem="false">
<instructor approval>true</instructor approval>
</pre-requisite>
</course>
</courses>

Schema Elements

The beginning of every schema is the schema element. The courses document is not using
namespaces, which will be explained later, so the basic structure begins as follows:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
</xsd:schema>

The schema element is the root of the document. The prefix xsd will denote the namespace
http://www.w3.0rg/2001/XMLSchema. This prefix indicates that the XML within the schema is
from the W3C XML Schemas namespace. You can use any prefix you like, though xsd is the most
common. Additional attributes are available for the schema element, but for now, you will use the
most basic structure.

Note Throughout the discussion of XML Schemas, the xsd prefix refers to the http: //www.w3.org/
2001/XMLSchema namespace.

Simple Types

Simple types are components that contain only text. They cannot be broken down any further.
Elements without attributes and children elements, as well as attributes, are composed of
simple types. An attribute cannot be broken down any further than its value, which is text
content. An element that had child elements would be able to be broken down further into

its child elements so would not be defined by a simple type, but rather a complex type.

CHAPTER 3 " VALIDATION

Let’s start building a schema based on some of the simple type elements: title,
description, credits, and datelastmodified. You could declare these elements, in their
simplest forms, as follows:

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="datelastmodified" type="xsd:dateTime"/>

Breaking the first one of these down, the element name element comes from the XML
Schema namespace, because it is used to declare an element. If you recall, you associated the
sd prefix with that name, so element is prefixed with xsd. The value of the name attribute, in this
case title, is the name of the element you are declaring. The value of the type attribute is the
data type for the element. In this case, the title element is to hold a string. You will notice
that every type attribute is coming from the XML Schema namespace, noted by the xsd prefix.
Because you are starting simple, you are using built-in types.

Built-in types are data types defined within the XML Schema specification. These types
are either primitive types, meaning they exist on their own and are not derivatives of other
data types, or derived types, which means they are built from another data type. Other user-
derived types are data types derived by the schema author. This means the author can create
their own data type, which is based on other existing data types. Continuing to build the
schema, you know that attributes are also composed of simple types. For example:

<xsd:attribute name="cid" type="xsd:ID"/>
<xsd:attribute name="cref" type="xsd:IDREF"/>
<xsd:attribute name="req_next_sem" type="xsd:boolean" />

The declaration for attributes, in this current case, is the same as the element declara-
tions. The element name attribute indicates an attribute is being declared and is prefixed by
xsd because it comes from the XML Schema namespace. The value of the name attribute is the
name of the attribute you are declaring, and the type is the data type. Notice the declarations
for the cid and cref attributes.

The data types, ID and IDREF, are both built-in derived types. The base type for a derived
type is the data type from which the derived type was derived. Sound confusing? Well, it’s
really not. The base type for ID and IDREF is NCName, because they both are derived from the
NCName type. This type is also a derived type having a base type of name. The name type in turn
is derived from the token type, which in turn is derived from the normalizedString type. You
finally get down to the primitive type; the base type for normalizedString is string, which,
being a primitive type, is the lowest denominator.

You now have all the simple types for the document declared, so how do you build the
rest of the schema? Looking at the document in Listing 3-24, the remainder of the document
contains everything you have declared to this point. As they can be broken down, they are
declared with complex types. You can find a list of all built-in data types in Appendix A.

Complex Types

Within the document in Listing 3-24, you have elements containing child elements as well as
elements with attributes. These cannot be declared with a simple type. Take, for example, the

73

74

CHAPTER 3 " VALIDATION

pre-requisite element. This element contains two attributes, cref and req_next_sem, as well
as the child element instructor _approval. Listing 3-25 shows the declaration for this element.

Listing 3-25. Element Declaration for pre-requisite

<xsd:element name="pre-requisite" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="instructor_approval” type="xsd:boolean"/>
</xsd:sequence>
<xsd:attribute name="cref" type="xsd:IDREF"/>
<xsd:attribute name="req next_sem" type="xsd:boolean"/>
</xsd:complexType>
</xsd:element>

Let’s examine the element declaration. You will notice two new attributes, minOccurs and
maxOccurs. These attributes control the number of times this element may occur within its
parent element. The element pre-requisite is not required to be a child element of the course
element, so its minOccurs is set to 0. On the other end of the spectrum, there can be any num-
ber of these elements within the course element. Since you do not have an exact number, the
value unbounded translates to unspecified. This gives you an unlimited number of times this
element may occur within a course element. These attributes must be either a non-negative
integer or the value unbounded. When the attribute is not present on the element, it defaults
to the value 1.

You should also notice that this element does not have a type attribute. It is not a simple
type, and you are not using named types, which allow the reuse of content models. The type
is defined within the context of the declaration. The child element xsd: complexType indicates
this element is a complex type, and the rules are encapsulated within the child elements on
the xsd:complexType element.

The next child element encountered is xsd: sequence. This element indicates the elements
declared within the scope of this element must appear in the order in which they are declared.
Even though there is only a single child element, it still must be present. You could have used
other indicators, such as <choice />, butI'll discuss those later in the section. Within the
xsd:sequence element, you come to the instructor_approval element, which you should
already be familiar with because it was defined in the “Simple Types” section.

Upon exiting the xsd: sequence element, you hit the attribute declarations, which were
also declared in the “Simple Types” section. The ordering here is important. All attribute dec-
larations must come last within a complexType element. I'll discuss this in further detail later
in the “Attributes” section, but for now it is important to at least understand a basic schema.

Now that the pre-requisite element is declared, you can learn how to declare the course
element. You have already declared all elements contained within this element, either as sim-
ple types or a complex type, so you are slowing making your way up the tree:

<xsd:element name="course" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>

CHAPTER 3 " VALIDATION

<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="lastmodified" type="xsd:dateTime"/>
<!-- declaration for pre-requisite in Listing 3-25 goes here -->
</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>
</xsd:complexType>
</xsd:element>

Just like the pre-requisite declaration in Listing 3-25, the course declaration is following
the same rules, including the number of times this element may appear as a child element
within the course element. Again, this is a complex type, noted by the xsd: complexType element,
and is defined within the scope of the declaration. This time, however, multiple elements reside
within the xsd: sequence element. The elements, when appearing within the XML document,
must follow the order title, description, credits, lastmodified, and pre-requisite. Note that
the declaration for pre-requisite in Listing 3-25 was left out for brevity. When you finish con-
structing the schema, it will be laid out for you in its entirety. For now the missing declaration
is noted by an XML comment.

If you recall the rules regarding minOccurs and maxOccurs, they default to 1 when not present
on an element. By omission, each of the element declarations within the xsd: sequence element
must appear exactly one time in the order specified. The only exception is the pre-requisite
element. Although it still must obey the element ordering, it is not required to appear as a
child element because those attributes were explicitly set on its declaration.

The final piece is to build the declaration for the courses element, which is the root of the
XML document. If you have been following along, you should have no problem with the last
piece of the puzzle. Listing 3-26 shows the entire schema, including the courses element dec-
laration, which would constitute the contents of the courses.xsd file. With this schema, the
course document from Listing 3-24 is perfectly valid.

Listing 3-26. XML Schema for the Courses Document

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="courses">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="course"” minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="lastmodified" type="xsd:dateTime"/>
<xsd:element name="pre-requisite" minOccurs="0"
maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="instructor approval”
type="xsd:boolean"/>

75

76

CHAPTER 3 " VALIDATION

</xsd:sequence>
<xsd:attribute name="cref" type="xsd:IDREF"/>
<xsd:attribute name="req next sem" type="xsd:boolean"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

You probably now understand why you took the inside-out approach rather than a top-
down approach for this introduction to XML Schemas. Up to this point, I have not covered all
the basic syntax and functionality, but you should now have a good working knowledge to
start taking a more in-depth look at them.

Understanding the Structure

So far I've only touched on XML Schema structures a bit. An interesting aspect of schemas

is that virtually all XML Schema elements (meaning the elements in general such as
xsd:attribute, xsd:element, and xsd: complexType) will accept any attributes outside the XML
Schema namespace. For example, if you have a namespace declared as xmlns:foo="http://
www . example.com/foo" within the schema, you can add arbitrary attributes to schema ele-
ments. (I'll cover namespaces in detail later in the “Namespaces” section.) For example:

<xsd:attribute name="att1" type="xsd:string" foo:myatt="this is my attribute" />

It is perfectly valid to add a foo:myatt attribute. Though not affecting validation, you may
want some additional information within your schema for some other reason. You cannot, how-
ever, add attributes from the xsd namespace that do not belong on an element. For example:

<!-- The following is an ILLEGAL use of xsd:boolean as an attribute -->
<xsd:attribute name="att1" type="xsd:string" xsd:boolean="invalid" />

Elements

You can perform other tasks with elements than just those shown earlier in the chapter.
Elements may have default content or NULL values. This may be substituted and may be
grouped.

Default Content

Recall the attribute-list declaration in a DTD. Attributes can specify default as well as fixed
values. Using XML Schemas, you can do the same to elements. The defaulted or fixed content
is a string, so the data type for an element must support this type of content. For example:

CHAPTER 3 " VALIDATION

<xsd:element name="myelement" default="some text" />
<xsd:element name="secondelement" fixed="fixed text" />

When the element myelement is used in a document and is empty, the content is auto-
matically set to some text. The element secondelement behaves the same way, but if it already
contains content, the content must match the string set by the fixed attribute; otherwise, it is
not valid. Elements may use either default or fixed, but not both.

NULL Value

Comparing XML data to data from a database, you can't easily distinguish between an empty
string and a NULL value. You could devise your own XML structure to add support for this, or
you could do it through an XML Schema. Element declarations include the attribute nillable.
It is a Boolean, with a default value of false, used to indicate whether an empty element is
NULL. For example:

<element name="mydata" nillable="true" />

Using this attribute also requires the use of the http://www.w3.0rg/2001/
XMLSchema-instance namespace in the XML document. Assuming the prefix xsi was set for
this namespace within the XML document, the element mydata could appear as follows:

<mydata xsi:nill="true"></mydata>

Element Substitution

Schemas allow for element name substitutions. Take the case where a company has an office
in the United States and one in France. The office in the United States creates most of their
XML documents in English, and the office in France uses French for theirs. A shared schema
could allow element names from either language:

<xsd:element name="street" type="xsd:string" />
<xsd:element name="rue" substitutionGroup="street" >

<xs:element name="name" type="xs:string"/>
<xs:element name="nom" substitutionGroup="name"/>

<xsd:complexType name="infoType">
<xsd:sequence>
<xsd:element ref="name"/>
<xsd:element ref="street"/>
</xsd:sequence>
</xsd:complexType>

<xs:element name="address" type="infoType"/>
<xs:element name="adresse" substitutionGroup="address"/>

Notice the elements with the substitutionGroup attribute. These element declarations
are not defining anything other than a name and a substitionGroup, which refers to another
element declaration. This allows element names to be used interchangeably and mean the

77

78

CHAPTER 3 " VALIDATION

same thing. For instance, the element rue is the same as the element street. Based on these
declarations, the following two documents are both valid:

<address>
<name />
<street />
</address>

<adresse>
<nom />
<rue />

</adresse>

Element Groups

The sequence element you have seen used earlier in the chapter, such as within Listing 3-26, is
a form of grouping. It is an unnamed local group. Groups may also be choice or all. A sequence,
as you already know, means the elements must appear in that exact sequence. A choice means
that a certain number determined by the maxOccurs and minOccurs attributes, which both
default to 1, may be selected. Using all allows the elements to appear in any order, although all
the elements must be present within the content of a parent element. When you create named
groups, you can share them so you don’t need to define local groups. You can just reference the
named group. Take the case of an address. A document may have a shipping address as well as
a billing address. In most cases, the elements required are the same. You could create a named
group and share between the two, as follows:

<xsd:group name="Address">
<xsd:sequence>
<xsd:element name="street" />
<xsd:element name="city" />
<xsd:element name="state" />
<xsd:element name="zipcode" />
</xsd:sequence>
</xsd:group>

<xsd:element name="BillingAddress">
<xsd:sequence>
<xsd:group ref="Address" />
</xsd:sequence>
</xsd:element>

<xsd:element name="ShippingAddress">
<xsd:sequence>
<xsd:element name="attention" type="xsd:string" />
<xsd:group ref="Address" />
</xsd:sequence>
</xsd:element>

CHAPTER 3 " VALIDATION 79

The xsd:group element is laid out similarly to the xsd:element elements. Notice within
the xsd:sequence elements for the element declarations that the xsd:group element does not
include a name attribute, but rather a ref attribute. This attribute instructs the XML Schema to
reference the group named Address. The ShippingAddress declaration also shows how you can
use a group as well as declare additional elements.

Attributes

I've shown only simple attribute declarations up until this point. You can set additional pieces
of information when declaring attributes, such as attribute defaults used in a DTD. You can
also group and reference attributes when declaring an element. Groupings make it simple to
define a set of attributes common to many different elements.

Attribute Declaration

An attribute declaration has three attributes that handle setting these values. The default
attribute takes a string value to set a default value for an attribute if the attribute is not set on
an element. The fixed attribute sets a fixed string value for an attribute. The last attribute, use,
determines how to use the attribute. The possible values for the use attribute are optional,
which is also the default; required; and prohibited. The prohibited value is one you probably
don’t know. It does not have a corresponding counterpart in a DTD. This value means that the
attribute cannot be used. For example:

<xsd:attribute name="att1" type="xsd:integer" default="1" use="required" />
<xsd:attribute name="att2" type="xsd:string" fixed="fixed val" use="optional" />
<xsd:attribute name="att3" type="xsd:string" use="optional" />

You must never use the attributes fixed and default at the same time. These conflict with
each other and will cause an error in the schema.

Attribute Groups

You can group attributes just as you can group elements. You may run into cases where you
have a set of attributes applicable to a few difference elements. You may also want to group
attributes just to make the schema easier to read. You group attributes by using the
attributeGroup element:

<xsd:attributeGroup name="moveattributes">
<xsd:attribute name="moveID" type="xsd:ID" use="required" />
<xsd:attribute name="stars" type="xsd:integer" />
<xsd:attribute name="rating" type="xsd:string" use="required" />
</xsd:attributeGroup>

<xsd:element name="Movie">
<xsd:complexType>
<xsd:attributeGroup ref="movieattributes" />
</xsd:complexType>
</xsd:element>

You can use the attributeGroup element in the same way as you used a group element for
elements. The attribute ref references the xsd:attributeGroup element named movieattributes.

80

CHAPTER 3 " VALIDATION

User-Derived Types

So far, you have seen how to use some built-in simple types. XML Schemas are extensible,
which allows you to define your own data types by deriving a type from a simple type. Take, for
example, the declaration for the credits element in Listing 3-26. It is a decimal data type, so
the values it can take are pretty much endless. Say you want to limit the possible values to 0,
0.5,1.0,1.5,2.0,2.5,3.0, 3.5, and 4. You can't use a built-in type directly, so you must create
your own that will be derived from the decimal data type, as shown in Listing 3-27.

Listing 3-27. Enumeration Facet for CreditType

<xsd:simpleType name="CreditType">
<xsd:restriction base="xsd:decimal">
<xsd:enumeration value="0" />

<xsd:enumeration value="0.5" />
<xsd:enumeration value="1.0" />
<xsd:enumeration value="1.5" />
<xsd:enumeration value="2.0" />
<xsd:enumeration value="2.5" />
<xsd:enumeration value="3.0" />
<xsd:enumeration value="3.5" />
<xsd:enumeration value="4.0" />

</xsd:restriction>
</xsd:simpleType>

The xsd:simpleType element has been given a name, CreditType, this time. Rather than
being contained within an element declaration, this definition can live as a child of the schema
element and be referenced directly by the type attribute of the element that wants to use this
data type. The xsd:restriction element is how user-derived types are defined. These types are
created through restrictions on existing types. In this case, the existing type is xsd:decimal, as
indicated by the base attribute. The restriction being placed on it is an enumeration of accept-
able values, as indicated by the use of the xsd:enumeration elements. The value of the value
attribute sets an acceptable value for the content when used in an XML document. Based on
this definition, you can modify the credits element to use this new data type:

<xsd:element name="credits" type="CreditType"/>

The value for the type attribute is CreditType, which is the name of the derived type you
created. It is not prefixed by xsd because this type is not part of the XML Schema specification.
Rather, this definition is a user-derived type, so the schema knows to not look within its built-in
types. You could use this type with an attribute declaration, such as <xsd:attribute name="foo"
type="CreditType"/>.

enumeration is just one of the constraining facets that is available. Constraining facet just
means it can be used to restrict values for a data type. The availability of constraining facets is
determined by the data type being derived. Not all facets are applicable to every data type. You
can use 11 other facets.

CHAPTER 3 " VALIDATION

length/minLength/maxLength

All three of these can limit the length of a data type. Using length restricts data to be exactly
the number of units set, and minLength and maxLength restrict data to be at least minLength
and/or no more than maxLength. The term units is used as the base data type and determines
what constitutes a unit. For instance, a string type consists of characters, so a unit is a charac-
ter. List types, which you haven't come to yet, consist of items, so a unit in that case is an item.
Suppose data for the title element of a course is coming from a database. The field is set to
VARCHAR(255), and the application handling the data enforces that it must have at least five
characters. You can create a type that would also enforce this within the XML document:

<xsd:simpleType name="TitleType">
<xsd:restriction base="xsd:string">
<xsd:minLength value="5" />
<xsd:maxLength value="255" />
</xsd:restriction>
</xsd:simpleType>

The new declaration for the title element would be as follows:
<xsd:element name="title" type="TitleType"/>

If, for some reason, the data were corrupted and a title came in as <title>Bas</title>,
it would be caught when validated against the schema.

pattern

pattern restricts a value to one matching a regular expression. A simple case for this would be
validating an email address:

<xsd:simpleType name="EmailType">
<xsd:restriction base="xsd:string">
<xsd:pattern
value="([_a-z0-9-1+)(\.[_a-z0-9-]+)*@([a-20-9-]+) (\.[a-20-9-]+)*(\.[a-z]{2,4}1)" />
</xsd:restriction>
</xsd:simpleType>

The xsd:pattern element is wrapping within the example. You have to deal with some
whitespace issues when physically inserting a line feed and then trying to match against a
value.

whiteSpace

AwhiteSpace element is used in a similar manner as xml : space from Chapter 2, though it pro-
vides functionality. Using the whiteSpace facet, the values can be preserve, replace, or collapse.
Values preserving whitespace leaves it intact. Values replacing whitespace will convert #x9 (tab),
#xA (line feed), and #xD (carriage return) into #x20 (spaces). Values collapsing whitespace will first
process the value using replace and then convert all contiguous sequences of #x20 (spaces) into
a single #x20. Leading and trailing spaces are also removed from the value. The following exam-
ple is defined within the context of an element declaration to illustrate that these definitions
need not be named:

81

82

CHAPTER 3 " VALIDATION

<xsd:element name="description">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:whiteSpace value="collapse" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

minInclusive /maxInclusive/minExclusive/maxExclusive

These facets set either inclusive or exclusive bounds for values. inclusive means the value
must belong within the range, and exclusive means the value must belong outside the range.
Though not required to do so, normally the minInclusive and maxInclusive facets are used
together to define a range. You could define a range from 1 to 10, as in Listing 3-28.

Listing 3-28. Defining Ranges

<xsd:simpleType name="oneToTen">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>

You could also represent this with the following:

<xsd:simpleType name="oneToTenII">
<xsd:restriction base="xsd:integer">
<xsd:minExclusive value="0"/>
<xsd:maxExclusive value="11"/>
</xsd:restriction>
</xsd:simpleType>

You could also define a type for integers greater than ten:

<xsd:simpleType name="greaterThanTen">
<xsd:restriction base="xsd:integer">
<xsd:minExclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>

totalDigits/fractionDigits

These allow you to set the number of digits allowed. The totalDigits facet indicates the maxi-
mum total number of digits, and fractionDigits indicates the maximum number of decimal
places. When used together, fractionDigits can never have a value greater than the number
of totalDigits. Also, if defining a type with a base type that includes these, the values may not
be greater than defined in the base type. For example:

CHAPTER 3 " VALIDATION

<xsd:simpleType name="Digits">
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="3"/>
<xsd:fractionDigits value="2"/>
</xsd:restriction>
</xsd:simpleType>

This definition would allow numbers such as 1.11, 1.0, 1.1, and 1. The total number of
digits never exceeds three, and the number of decimal places never exceeds two.

More Simple Types

So far, you have seen how to use some built-in simple types as well as create user-derived types.
XML Schemas offer two additional varieties of simple types. They are the 1ist and union data

types.

List Type

Alist type is similar to NMTOKENS as used in a DTD for an attribute declaration. The value contains
tokens separated by whitespace. In fact, NMTOKENS is a built-in derived data type for schemas. List
types are more restrictive than NMTOKENS, though. The tokens are restricted to certain values that
you define. Using the CreditType definition created in Listing 3-27, you can create a data type
that will accept multiple values that conform to the CreditType definition and be separated by
whitespace:

<xsd:simpleType name="Credits">
<xsd:1list itemType="CreditType" />
</xsd:simpleType>

The xsd:1ist element takes the attribute itemType, which names the data type that defined
the acceptable values. Based on this definition and an element named creditlist, which is
declared with this type, it could take the following form:

<creditlist>1.0 1.5 2.0</creditlist>

Union Type

Union types enable values to be provided from multiple data types rather than just a single data
type. If you were to define a type that was restricted to a single alpha character (A though Z) such
as this:

<xsd:simpleType name="AtoZ">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]"/>
</xsd:restriction>
</xsd:simpleType>

then you could join this via a union with the oneToTen type defined in Listing 3-28:

83

84

CHAPTER 3 " VALIDATION

<xsd:simpleType name="MyUnion">
<xsd:union memberTypes="AtoZ oneToTen" />
</xsd:simpleType>

The xsd:union element takes the attribute membexrTypes, which is a whitespace-delimited
list of data types to combine. In this case, you are using the AtoZ and oneToTen types. An ele-
ment declared with this type—for instance, myunionvals—could look like the following:

<myunionvals>A 1 I 9</myunionvals>

Complex Types and Content

Within the earlier discussion of XML Schemas, you saw how to use a complex type when
declaring elements. You have yet to look at complex content as well as the built-in complex
data type within the XML Schema specification. This is the anyType data type.

Any/Empty

As mentioned earlier, ANY and EMPTY either allow anything as element content (ANY) or allow
nothing for element content (EMPTY). The equivalent data type using XML Schemas for ANY is
the anyType data type:

<xsd:element name="description" type="xsd:anyType" />

By this declaration, the element description is completely unrestrained. It can consist of
any type of content and any type of child elements. The elements any and anyAttribute also
exist, which you can use to provide similar functionality in a more limited scope:

<xsd:element name="myelement">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="definedelement" type="xsd:string"/>
<xsd:any minOccurs="0"/>
</xsd:sequence>
<xsd:anyAttribute processContents="skip" />
</xsd:complexType>
</xsd:element>

This syntax should look familiar to you. It is a declaration for the myelement element con-
taining child elements, as noted by the xsd:sequence element. The new element within the
sequence, xsd:any, indicates that after a definedelement element any element may appear.
The element need not even be declared within the schema. The minOccurs attribute indicates
there could be zero or one element. The maximum value is from the default value for
maxOccurs, which was not explicitly set.

The xsd:anyAttribute element allows any number of attributes for the element without
restricting which ones are allowable. The attribute processContents does allow for some level
of control over attribute availability. The value skip, as used in the declaration, allows for any
attribute, even ones that have not been defined in the schema. A value of strict, which is also
the default value if processContents is omitted, will allow only those attributes that have been
declared in the schema. The third possible value is 1ax. This value means that if an attribute is

CHAPTER 3 " VALIDATION

used and has been declared in the schema, then it must be valid according to its declaration.
If the attribute has not been declared, then you just allow it and continue.

Empty elements are not as easily defined as the anyType ones. There is no built-in data
type, so you must create one:

<xsd:element name="myemptyelement">
<xsd:complexType />
</xsd:element>

This declaration is extremely restrictive. Absolutely no content or attributes are allowed.
You can expand upon this to allow some attributes and use a little more formal syntax in the
process:

<xsd:element name="myemptyelement">
<xsd:complexType>
<xsd:complexContent>
<xsd:restriction base="xsd:anyType">
<xsd:attribute name="myattribute" type="xsd:string" />
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

This declaration is a bit more formal. You should notice the xsd:complexContent element
as well as its restrictions. I wanted to throw this out there because I will be covering complex,
or mixed, content next. You could just as easily have written this as follows:

<xsd:element name="myemptyelement">
<xsd:complexType>
<xsd:attribute name="myattribute" type="xsd:string" />
</xsd:complexType>
</xsd:element>

Mixed Content

You may run into cases where you need to allow mixed content within an element. For
example:

<note>A meeting is scheduled on <meetingdate>2005-06-03</meetingdate> at
<meetingtime>15:00:00</meetingtime>.</note>

The note element contains a mixture of text and child elements. Listing 3-29 illustrates
a possible definition for this.

Listing 3-29. Using Mixed Content

<xsd:complexType name="meetingNote" mixed="true">
<xsd:all>
<xsd:element name="meetingdate" type="xsd:date"/>
<xsd:element name="meetingtime" type="xsd:time"/>
</xsd:all>

85

86

CHAPTER 3 " VALIDATION

<xsd:attribute name="enabled" type="xsd:boolean" default="true" />
</xsd:complexType>
<xsd:element name="note" type="meetingNote" />

The attribute mixed is a Boolean, defaulting to false, which specifies whether text is
allowed within the content. To this point, the attribute has not appeared on any of the
complexType definitions; thus, the elements using the complex data type have allowed only
element and/or attributes. The attribute pertains only to the element using the type. It does
not affect elements declared within the element’s content. For example, the declaration of
the meetingNote element is of mixed content, mixed="true". The elements declared as child
elements, such as meetingdate, base their allowable content on the data type specified in
their own declaration. In the case of meetingdate, the type is xsd:date, so text content is
allowed.

You may also have noticed the use of the xsd:all element. This is an anonymous element
group since it is local to the meetingNote definition and has no name. A sequence would not
have been a good option to use in this case because the ordering of the meetingdate and
meetingtime elements could not be determined ahead of time. It was a better decision to use
xsd:all, which enforces that the elements must appear within the note content but in no
specified order.

Complex Content

Complex content allows you to restrict or extend a complex type. You have already seen how
restrictions work, so now I will show how to use complexContent to extend a complex type.
Suppose you wanted to extend the meetingNote definition in Listing 3-29 and allow an addi-
tional element for the location, called meetinglLocation. Unfortunately, you can't do this. The
base type meetingNote is using xsd:all. This element will not allow you to extend the type and
add another element to the mix. You would either have to rewrite the definition and force
sequencing or create a new data type. In this case, this is how you would rewrite the definition
using sequence:

<xsd:complexType name="meetingNote" mixed="true">
<xsd:sequence>
<xsd:element name="meetingdate" type="xsd:date"/>
<xsd:element name="meetingtime" type="xsd:time"/>
</xsd:sequence>
<xsd:attribute name="enabled" type="xsd:boolean" value="true" />
</xsd:complexType>

The xsd:all element has been removed and replaced with xsd: sequence. These elements
must not show up in the exact order though may be intermixed with text content because of
the mixed="true" attribute. An attribute named enabled has also been declared as a Boolean
with a default value of true. You can now extend this definition:

<xsd:element name="extendedNote">
<xsd:complexType>
<xsd:complexContent mixed="true">
<xsd:extension base="meetingNote">
<xsd:sequence>
<xsd:element name="meetinglocation" type="xsd:string" />

CHAPTER 3 " VALIDATION

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

An element extendedNote has been declared with a complex type that is extending the
meetingNote definition. It is required to set the mixed attribute on the xsd: complexContent
element; otherwise, it would default to false and override the setting from the meetingNote
definition.

The xsd:extension element is where the extension begins. As with user-derived types, the
base attribute sets the base type you are using. All you want to do is add an element to the def-
inition, which is handled the same way elements are declared as children. You use the normal
xsd: sequence followed by the element declaration. Because this is an extension, this new type,
which again is anonymous and being defined within the scope of the extendedNote declara-
tion, inherits the definition of the meetingNote. The new element meetinglocation is added to
the end of the sequence group. Based on this definition, you could write an extendedNote as
follows:

<extendedNote enabled="false">
A meeting is scheduled on <meetingdate>2005-06-03</meetingdate> at
<meetingtime>15:00:00</meetingtime>
in the <meetinglocation>Green Room</meetinglocation>.
</extendedNote>

The enabled attribute was explicitly set just to illustrate that all the previous declarations
set for meetingNote still apply to the complex data type set within extendedNote. If the value for
the attribute were set to anything other than a Boolean value, validation would fail.

Notations

Notation elements within schemas are the same as notation declarations within a DTD. They
are helpers to indicate how data should be processed. Their declarations are also similar to
those in a DTD. Take a look at the following as a comparison:

<!-- Notations declared in DTD -->
<INOTATION GIF SYSTEM "gifviewer.exe">
<INOTATION GIF PUBLIC "image/gif" "gifviewer.exe">

<!-- Notations in XML Schemas. GIF only lowercased for consistency in schema -->
<xsd:notation name="gif" system="gifviewer.exe">
<xsd:notation name="gif" public=" image/gif " system="gifviewer.exe">

Using one of the notation declarations for an XML Schema, you could declare an element
with the attribute imagetype, which is a notation type but limited to gif or jpeg:

<xsd:element name="image">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:hexBinary">

87

88

CHAPTER 3 " VALIDATION

<xsd:attribute name="imagetype">
<xsd:simpleType>
<xsd:restriction base="xsd:NOTATION">
<xsd:enumeration value="jpeg"/>
<xsd:enumeration value="gif"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>

The image element would take the following form:

<image imagetype="gif">

<!-- content here in hexBinary as defined in schema -->
</image>
Annotations

Annotations are notes and instructions within a schema. They have no effect on document
validity and are used to supply either some documentation for the schema or some informa-
tion for computer processing:

<xsd:annotation></xsd:annotation>

How an annotation element is used within a schema is determined by the child elements.
It may contain documentation elements, which are used to provide schema documentation,
and/or appinfo elements, which can provide computer-processing information. For example:

<!-- simple documentation -->
<xsd:annotation>

<xsd:documentation>This is our master schema</xsd:documentation>
</xsd:annotation>

<!-- Processing information with supplied documentation -->
<xsd:annotation>
<xsd:documentation>Process the function here</xsd:documentation>
<xsd:appinfo>
$user->update(userID, name);
</xsd:appinfo>
</xsd:annotation>

The appinfo element does nothing magical. It does not automatically call the function but
is only an indicator with instructions contained within the content—much like a PI. The bur-
den still falls on you to perform any processing, if you want.

CHAPTER 3 " VALIDATION 89

Global and Local Scope

When using a DTD, the root element is declared in the DOCTYPE declaration to specify the start-
ing element of the document. XML Schemas do not have this concept. Schemas have the
concept of global and local scope. All definitions and declarations, which are direct child ele-
ments of the schema element, are in the global scope. Elements in this respect refer to XML
elements in general and notto xsd:elements. The rest of the declarations and definitions are
local to whichever element contains them. All elements, referring to the xsd:element elements
within the schema, declared within the global scope can be used as a root element. Unlike a
DTD, XML Schemas have the ability to validate multiple documents since any globally scoped
element declaration can be used as the root.

The schema in Listing 3-26 contains one element in the global scope. The declaration for
the courses element is the only piece of the schema in the global scope because it is the only
child of the xsd:schema element. Listing 3-30 illustrates a modified version of the schema in
Listing 3-26. Most of the course child element declarations have been omitted for brevity.

Listing 3-30. Element Declarations in Global Scope

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="courses">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="course" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="course">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>
</xsd:complexType>
</xsd:element>

</xsd:schema>

The schema in Listing 3-30 has two elements, courses and course, that have been declared
in the global scope. The courses element may have a course child element, but in this case,
instead of course being declared within the courses scope, it is declared in the global scope. The
minOccurs and maxOccurs attributes have been removed from the declaration. These attributes
have no meaning unless used within a local scope. As a result, the courses declaration contains
areference to the course declaration: <xsd:element ref="course" minOccurs="0"
maxOccurs="unbounded" />.The value of the ref attribute is the name of the declaration, where
the referred declaration lives in the global scope. In this case, the value is course, so the schema

90

CHAPTER 3 " VALIDATION

knows to look in the global scope for the declaration. It is also on this element that the minOccurs
and maxOccurs attributes are relevant because they fall within the local scope of complexType def-
inition for the courses declaration.

Documents to be validated using the schema in Listing 3-30 may now have either courses
or course as the root element. The following are a few documents that will validate against the
schema:

<!-- Document with a an empty courses element as root -->
<course />
<!-- Document with a course element as root -->
<course>

<title>French I</title>
</course>
<!-- Document with a courses element as root and a course child element -->
<courses>

<course>

<title>Spanish I</title>

</course>

</courses>

XML Schemas offer much more flexibility than a DTD in this respect. A single schema
may possibly be able to replace multiple external subsets. All declarations, not just element
declarations, may be declared in global scope and used in this manner. It would be perfectly
legal to declare an attribute in global scope and reference the global declaration when attach-
ing an attribute to an element.

Contrary to the courses and course declarations, title has been declared in the local
scope of the course declaration. It cannot be reused; thus, it would be illegal to have a decla-
ration containing ref="title".

Scope is also not limited to just declarations. DTDs are also affected by their scope. This
is why definitions, such as those created through by using a complexType, can have names.
Named definitions live in the global scope so they can be shared throughout the schema. Defi-
nitions in a local scope are not shared and thus do not require a name, as the name is pretty
much meaningless.

Examples you have seen so far containing named complexType definitions are actually
defining these in the global scope. The examples have been only small code snippets, so you
may not even have been aware of this. So what exactly does a full schema look like when shar-
ing definitions? Listing 3-31 builds on Listing 3-30 to define a complex data type named
courseType.

Listing 3-31. complexType Defined in Global Scope

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

CHAPTER 3 " VALIDATION

<xsd:element name="courses">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="course" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="course" type="courseType"/>

<xsd:complexType name="courseType">
<xsd:sequence>
<xsd:element name="title" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>
</xsd:complexType>

</xsd:schema>

The complexType definition, which was defined in the local scope in Listing 3-30, has been
given the name courseType and moved into the global scope in Listing 3-31. The attributes
minOccurs and maxOccurs have also been added to the title declaration. These are not needed,
as the values set are the default values already, but have been added to illustrate how to use the
attributes when within a local scope on an xsd:element and when not referencing a global ele-
ment declaration. Definitions are not like declarations, because a definition becomes a data
type within the schema and is used the same way as built-in data types. Notice the declaration
for the course element in Listing 3-31. It now contains a type attribute with a courseType value.
When a course element is validated within a document, it will validate according to the defini-
tion of courseType defined in the global scope.

Include

Schemas can become quite large in size, which makes them difficult to read. Many different
groups may also manage different sections of a schema. XML documents can contain aggre-
gated data, such as one group handling data related to courses with another group handling
data related to instructors. In a case like this, the group managing course data would want to
control the sections of the schema pertaining to course data, and the other group would want
to control the section pertaining to instructor data. Within a DTD, you would accomplish this
with external subsets. You could combine the subsets to form a single DTD. One method of
doing this with XML Schemas is by using the include element.

You can use include elements to create a single schema from multiple schemas within a
single namespace. You will use the import element when working across namespaces. You will
learn more about namespaces in schemas and about using import in the next sections. For now
let’s look at the schemas in Listings 3-32, 3-33, and 3-34. The first two, Listings 3-32 and 3-33,
are stand-alone schemas used to validate a course element and an instructor element. Sup-
pose you need to create a document combining data and would like to reuse these existing
schemas. Listing 3-34 illustrates a schema created from the course.xsd and instructor.xsd
schemas.

91

92

CHAPTER 3 " VALIDATION

Listing 3-32. Course Schema course.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="course">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="lastmodified" type="xsd:dateTime"/>
</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>
</xsd:complexType>
</xsd:element>

</xsd:schema>

Listing 3-33. Instructor Schema instructor.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="title" type="xsd:string" />

<xsd:element name="instructor">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name" type="xsd:string" />
<xsd:element ref="title" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

Listing 3-34. Courses and Instructors Schema Using an Include

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:include schemalocation="course.xsd" />
<xsd:include schemalocation="instructor.xsd" />

CHAPTER 3 " VALIDATION

<xsd:element name="courses">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="course" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="instructors">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="instructor" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="list">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="courses" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="instructors" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

The value of the schemaLocation attribute on the two xsd: include elements in Listing 3-34
is the URI for the schema to be included. The first element includes course.xsd and refers to
the code in Listing 3-32. The second include pulls the schema from the instructor.xsd file,
which refers to the code in Listing 3-33. Using include elements, your main schema may pull
declarations and definitions from remote files, just as if those files were part of your main
schema. You can see examples of using the remote files through the element declarations
within the xsd: sequence elements. The element is referring to, through use of the ref attribute,
declarations from both the included schemas. You may also notice the additional title ele-
ment declaration in Listing 3-33. This element is declared in the global scope but is not used
even though the course element declaration uses a title element. The title element declared
within the course element is in local scope and thus takes precedence over a global scoped
declaration. The title declaration in global scope was just a demonstration to show that
including schemas does not change the scoping rules of declarations and definitions.

Note XML Schema includes are used when all schemas do not use namespaces or are all in the same
single namespace. To use schemas in different namespaces, you must use the import element.

93

94

CHAPTER 3 " VALIDATION

Namespaces

You now know how to combine schemas into a single schema. One thing I haven’t addressed,
however, is what happens if the same globally named definition or declaration appears in
multiple schemas. During the development of XML Schemas, this limitation in DTDs was
addressed by namespaces. XML Schemas support namespaces that can get around this prob-
lem. This section will show how to use namespaces in schemas and will introduce some new
attributes in the process.

Listing 3-32 shows the schemas for the course data. If you were in charge of managing
the course data and its schema, you may want to ensure that your schema, if combined into
another schema, remains intact and that your declarations and definitions never conflict with
other schemas. Listing 3-35 is a modified version of the course schema in that it introduces
namespaces into the schema. The local complex type definition for the course element has
also been broken out and defined as a named type in the global scope.

Listing 3-35. Namespaced Course Schema course.xsd

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:cs="http://www.example.com/Course"
targetNamespace="http://www.example.com/Course"
elementFormDefault="unqualified"
attributeFormDefault="unqualified">

<xsd:complexType name="courseType">
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="lastmodified" type="xsd:dateTime"/>
</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>
</xsd:complexType>

<xsd:element name="course" type="cs:courseType" />

</xsd:schema>

Notice the new schema element. Three new attributes have been added as well as a new
namespace declaration.

Unqualified Locals The value of the targetNamespace attribute indicates the namespace in which
the global declarations and definitions reside. In this case, the courseType definition and the
course element declaration reside in the http://www.example.com/Course namespace. A name-
space declaration was also added to associate the prefix cs with this namespace. This prefix
within the schema indicates the specific data type or declaration to use. You may not have
realized this, but you have been working with namespaced data types all along. Every time
you have used one of the built-in data types, they have been prefixed with xsd. According to

CHAPTER 3 " VALIDATION

the namespace declaration on the schema element, this prefix refers to the XML Schema
(http://www.w3.0rg/2001/XMLSchema). Looking at the course element declaration in Listing 3-
35, the type is cs:courseType. This informs the schema to look for the courseType definition
within the http://www.example.com/Course namespace. This definition is found within the
schema that has the targetNamespace of http://www.example.com/Course. In its current form
and usage, this may not look very useful. You own this schema and are not including any other
schemas, so you shouldn't have any problems. Namespaces become useful, however, when
others begin to use your schemas, which will be demonstrated later in the “Import” section.

Elements and attributes used within the XML document that have declarations in the
global scope must reside in the targetNamespace of the schema so that when the document is
validated, the schema knows where to look for the rules for the element. Again, this is only for
global declarations. The remaining two attributes you have not seen handle the local elements
and attributes. The elementFormDefault and attributeFormDefault attributes affect the quali-
fication of local elements and attributes within the XML document that uses this schema. The
values, in Listing 3-35, are both set to unqualified. This is already the default value for both of
the attributes so could have been left out in a real-world situation. This value informs the
schema that local elements and attributes do not have to be qualified. That is, they do not
have to be within a namespace in the XML document. Let’s take a look at a document that
uses the schema from Listing 3-35:

<?xml version="1.0"?>

<c:course xmlns:c="http://www.example.com/Course" cid="c3">
<title>French II</title>
<description>Intermediate French</description>
<credits>3.0</credits>
<lastmodified>2005-03-12T15:45:44</lastmodified>

</c:course>

The course element associates the prefix c with the namespace http://www.example.com/
Course. This namespace is the same as the targetNamespace of the schema. The element, being
the document element, must come from the global scope of a schema, and because the
schema is using namespaces, the course element must reside in this namespace. For this
reason, it is written as c:course. The local elements and attributes do not reside in any name-
space, which is perfectly legal. The schemas set the elementFormDefault and
attributeFormDefault attributes to unqualified, so none is needed. In case you are wondering
why the root must be within a namespace but local elements and attributes do not, I will
explain this.

When a document is being validated, it must know where to look for the declaration. The
root element must be a declared in the global scope of a document; otherwise, the schema will
not know where to find it. The declaration of the root element resides in the targetNamespace,
so within the document, it must be in the same namespace. As long as child elements and
attributes are declared within the scope of the root element declaration, and not declared in
the global scope and just referenced, the schema does not have to search for the declarations,
and namespaces are not needed for them.

Qualified Locals Using the value of qualified for the elementFormDefault and/or
attributeFormDefault attributes requires the XML document to place elements and attrib-
utes within the targetNamespace of the schema in order to be valid. For example:

95

96

CHAPTER 3 " VALIDATION

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:cs="http://www.example.com/Course"
targetNamespace="http://www.example.com/Course"
elementFormDefault="qualified"
attributeFormDefault="qualified">

<xsd:complexType name="courseType">
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="lastmodified" type="xsd:dateTime"/>
</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>
</xsd:complexType>

<xsd:element name="course" type="cs:courseType" />

</xsd:schema>

Based on this new schema, the document validated against Listing 3-35 will no longer val-
idate. Elements and attributes must be qualified. The new document would look like this:

<?xml version="1.0"?>

<c:course xmlns:c="http://www.example.com/Course" c:cid="c3">
<c:title>French II</c:title>
<c:description>Intermediate French</c:description>
<c:credits>3.0</c:credits>
<c:lastmodified>2005-03-12T15:45:44</c:lastmodified>

</c:course>

The http://www.example.com/Course namespace must be prefixed because of the attrib-
ute. Default namespaces do not apply to attributes. You can override the elementFormDefault
and attributeFormDefault, which would allow the use of a default namespace, by using a local
form attribute.

You can use the form attribute on element and attribute declarations to override the
default settings in the schema element. Using this on the declaration of the cid attribute, the
XML document could use a default namespace and eliminate the need for prefixes:

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:cs="http://www.example.com/Course"
targetNamespace="http://www.example.com/Course"
elementFormDefault="qualified"
attributeFormDefault="qualified">

CHAPTER 3 " VALIDATION

<xsd:complexType name="courseType">
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="lastmodified" type="xsd:dateTime"/>
</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID" form="unqualified"/>
</xsd:complexType>

<xsd:element name="course" type="cs:courseType" />

</xsd:schema>

Note that the attribute declaration for cid sets an additional attribute, form, to
unqualified. This overrides the attributeFormDefault attribute, set to qualified, for this
declaration only. Using this schema, you could now use a default namespace such as the
following:

<?xml version="1.0"?>

<course xmlns="http://www.example.com/Course" cid="c3">
<title>French II</title>
<description>Intermediate French</description>
<credits>3.0</credits>
<lastmodified>2005-03-12T15:45:44</lastmodified>

</course>

All elements fall under the default namespace, including the document element, and the
cid attribute may be unqualified, making this document valid according to the schema.

Import

You now know how to work with a namespace schema, as well as that the include element
cannot be used with multiple namespaced schemas. The import element instructs the schema
that referenced schemas are using namespaces. Listing 3-36 contains a modified instructor
schema based on the schema in Listing 3-33. It is using unqualified elements and attributes
because the elementFormDefault and attributeFormDefault attributes are not specified and
because unqualified is the default value.

Listing 3-36. Namespaced Instructor Schema instructor.xsd

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:ins="http://www.example.com/Instructor"
targetNamespace="http://www.example.com/Instructor">

<xsd:element name="title" type="xsd:string" />

97

98 CHAPTER 3 " VALIDATION

<xsd:element name="instructor">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name" type="xsd:string" />
<xsd:element ref="ins:title" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

Listing 3-37 is a schema modified from the one in Listing 3-34 to use new namespaced

schemas. The reference to the course.xsd file is the one from Listing 3-35.

Listing 3-37. Courses and Instructors Schema Using Import

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:c="http://www.example.com/Course"
xmlns:in="http://www.example.com/Instructor">

<xsd:import namespace="http://www.example.com/Course"
schemalocation="course.xsd" />

<xsd:import namespace="http://www.example.com/Instructor"
schemalocation="instructor.xsd" />

<xsd:element name="courses">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="c:course" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="instructors">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="in:instructor" minOccurs="0" maxOccurs="unbounded"
</xsd:sequence>
</xsd:complexType>
</xsd:element>

/>

CHAPTER 3 " VALIDATION

<xsd:element name="list">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="courses" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="instructors" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

The only changes you will notice are the addition of two namespace declarations on the
schema element, the change from include elements to import elements, and the use of quali-
fied element references.

The namespace declarations have been added so you can associate prefixes with name-
spaces to be used for the elements referred to in the value of the ref attributes. A targetNamespace
has not been added to this schema, although one could be. Adding a targetNamespace to this
schema could affect the import elements, which will be explained shortly.

The import elements, in Listing 3-37, have two attributes. You are familiar with the
schemalocation attribute because this was used for the import element. This attribute is not
required but is usually provided. It indicates the location of the schema to import. When not
included, it is up to the processor to be able to determine the location of the schema. The
namespace attribute indicates the namespace of the schema being imported.

A few rules surround the use of this attribute. If the main schema file has a targetNamespace,
then the value of the namespace attribute cannot be the same namespace. When import ele-
ments do not have a namespace attribute, you must specify a targetNamespace on the schema
element of the schema doing the importing. In the case of Listing 3-37, the schema does not
contain a targetNamespace attribute, so there is no limitation in this regard to the namespace
attribute. Additional rules do, however, apply to the namespace attribute in respect to the
schema being imported.

The namespace attribute must match the targetNamespace of the schema being imported.
If the namespace attribute is not present, then the schema being imported must not have a
targetNamespace. In Listing 3-37, the course.xsd and instructor.xsd files are being imported.
The namespace for the course.xsd import is http://www.example.com/Course, which matches
the targetNamespace in Listing 3-35. The namespace for the instructor.xsd importis http://
www . example.com/Instructor, which matches the targetNamespace in Listing 3-36. Based on
the rules just explained, the schema in Listing 3-37 is correct in the usage of the namespace
attributes.

Putting namespaces and import all together, the following illustrates a document written
according to the schema in Listing 3-37:

<list xmlns:c="http://www.example.com/Course"
xmlns:ins="http://www.example.com/Instructor">
<courses>
<c:course cid="c3">
<title>French II</title>
<description>Intermediate French</description>

99

100 CHAPTER 3 " VALIDATION

<credits>3.0</credits>
<lastmodified>2005-03-12T15:45:44</lastmodified>
</c:course>
</courses>
<instructors>
<ins:instructor>
<name>John Smith</name>
<ins:title>Professor</ins:title>
</ins:instructor>
</instructors>
</list>

The list, courses, and instructors elements require no namespacing. There is no
targetNamespace for the master schema. The course element resides in the http://
www . example.com/Course namespace, but its children require no namespaces. According to
the courses.xsd schema, the elements and attributes may be unqualified. Only the course
element is required to be namespaced because the element declaration resides in the global
namespace. The instructor element, as well as its child title element, is namespaced. Both
of these elements are declared within the global scope of the instructor.xsd file, but the
name element is not. Lastly, the namespaces attached to elements, which are namespaced,
match the targetNamespace of the schema from which the element declaration was made.

As you have seen so far, schemas can get complex. You have many different aspects to
take into account, such as scope, namespaces, include, and import. All these factors, although
contributing to the complexity, also open the door to great possibilities in flexibility and gran-
ularity when defining a document’s structure. XML Schemas have great extensibility—not
only using user-derived data types but also from the nested include and import possibilities.
XML Schemas are just one alternative to using a DTD.

In the next section, you'll look at Relax NG and how to utilize it for validation.

Using RELAX NG

RELAX NG is another alternative to DTDs and XML Schemas. It is a schema specification by
OASIS that offers the extensibility of XML Schemas but is simple to use. RELAX NG can be
written in compact syntax or XML syntax. Compact syntax is out of the scope of this book,
as it is not currently supported in any of the PHP extensions. The following sections will deal
strictly with the XML syntax used to create RELAX NG schemas per the OASIS Committee
Specification dated December 3, 2001 (http://relaxng.org/spec-20011203.html).

Note Unless explicitly noted, the term schema in this section refers to a RELAX NG schema and not an
XML Schema.

RELAX NG is based on patterns. In terms of an XML Schema, an element declaration is
a form of pattern. It defines an element with a given name. When written in RELAX NG gram-

CHAPTER 3 " VALIDATION

mar, this particular element in an XML document, when encountered, would match the pattern
in the RELAX NG schema. This may sound a little confusing at first but is simple in reality.

Introducing RELAX NG

Just as was done with XML Schemas, I'll show first how to build a schema with RELAX NG and
then explain the process in more detail. I'll use the document in Listing 3-24 to show how to
build a RELAX NG schema. The schema will be written to the file course.rng. This time, rather
than an inside-out approach, it will be top-down. These schemas, as they are pattern-based,
take a descriptive approach. Analyzing the document in Listing 3-24, you will start with the
document element, courses, as it is the first element in the tree. Thinking about it descrip-
tively, you can say you have an element named courses:

<?xml version="1.0" encoding="utf-8" ?>
<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">
</element>

This looks similar to XML Schemas in a way. The namespace http://relaxng.org/ns/
structure/1.0 is the namespace for RELAX NG schemas. It works the same way as setting the
namespace for XML Schemas in the schema element. In this case, however, it is not prefixed.

It is perfectly valid to associate a prefix with the namespace, but make sure if you do that all
elements are set to that namespace. RELAX NG handles namespaces differently than XML
Schemas, so more often than not you will see the RELAX NG namespace set as a default name-
space rather than with an associating prefix. This element ends up as the root of the schema,
which also is different from XML Schemas (which require the schema element).

Moving to the courses child elements, you come to the course element. You know that text,
other than the insignificant whitespace, is not allowed as direct content of the courses element.
The only allowable content is zero or more course elements. So, following this description, you
can continue writing the schema:

<?xml version="1.0" encoding="utf-8" ?>
<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">
<zeroOrMore>
<element name="course">
<empty/>
</element>
</zeroOrMore>
</element>

The element named courses can have zero or more, zeroOrMore, child elements named
course. The element pattern for course contains an additional child. This is so the schema will
be valid. Element patterns cannot be empty, so <element name="course" /> is not correct. The
empty element means a course element must be empty and may not contain text or child ele-
ments. This will be removed shortly, so for now it is just a placeholder while keeping the
schema correct.

Continuing through the document, you must first address the cid attribute, which is
required for the course element:

101

102 CHAPTER 3 " VALIDATION

<?xml version="1.0" encoding="utf-8" ?>
<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">
<zeroOrMore>
<element name="course"
datatypelibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">
<attribute name="cid">
<data type="ID"/>
</attribute>
<empty/>
</element>
</zeroOrMore>
</element>

You are probably thinking this is a lot of code just to add an attribute of type ID; you may
also be wondering why there is a reference to XML Schemas. I'll explain data types throughout
this section as well as their relation to patterns, but for now I will say that RELAX NG has two
built-in data types, which are string and token. It does allow you to use externally defined
data types, such as the ones from XML Schemas. You do this by using the datatypelLibrary
attribute. This attribute could have been specified on the attribute element for cid, but rather,
it was defined on the element for course. RELAX NG will use whatever datatypelibrary isin
scope, which means if one is not set on the current element, it will search in the hierarchy of
the element patterns. Once a datatypelibrary is in scope, the data type is set using the data
element. The type attribute specifies the ID data type from the XML Schema data types, which
ishttp://www.w3.0rg/2001/XMLSchema-datatypes. This effectively sets the attribute named
cid to type ID. Now you can start dealing with the child elements of the course element and
remove the empty element being used as a placeholder.

Moving along, you come to the title element. You define this just like the other element,
except in this case it contains text content. The same holds true for the description element,
so you will add the pattern for this at the same time:

<?xml version="1.0" encoding="utf-8" ?>
<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">
<zeroOrMore>
<element name="course"
datatypelLibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">
<attribute name="cid">
<data type="ID"/>
</attribute>
<element name="title">
<text/>
</element>
<element name="description">
<text/>
</element>
</element>
</zeroOrMore>
</element>

CHAPTER 3 " VALIDATION

In this example, the title and description definitions both use the text pattern. As long
as the content of the elements is empty or text (which includes comments, CDATA, and PIs),
the element is valid. You could have also used the string data type here, but I recommend the
text pattern in this case. I'll discuss the differences between the two later in this section.

The next elements are credits and lastmodified. Using XML Schemas, their data types are
decimal and dateTime. The decimal data type ensures the content of credits is always and only a
decimal, and dateTime ensures the content of lastmodified conforms to the dateTime data type.
You define their patterns in the same way you define the pattern for the attribute cid:

<element name="credits">
<data type="decimal"/>

</element>

<element name="lastmodified">
<data type="dateTime"/>

</element>

The entire schema was not included here, as you should have an idea of where these
pieces should go. They are required elements in an ordered list of elements and go directly
after the description element.

Moving to the element following lastmodified, you come to the pre-requisite element.
This element is not required but may appear zero or more times. You write the definition the
same way you added the course definition. You need to use the zeroOrMore pattern. Defining
the rest of the contents for the pre-requisite element should now be fairly easy to figure out
yourself, so the entire RELAX NG schema, for the courses document in Listing 3-24, is pre-
sented in Listing 3-38.

Listing 3-38. RELAX NG Schema for Courses Document

<?xml version="1.0" encoding="utf-8" ?>
<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">
<zeroOrMore>
<element name="course"
datatypelibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">
<attribute name="cid">
<data type="ID"/>
</attribute>
<element name="title">
<text/>
</element>
<element name="description">
<text/>
</element>
<element name="credits">
<data type="decimal"/>
</element>
<element name="lastmodified">
<data type="dateTime"/>
</element>

103

104

CHAPTER 3 " VALIDATION

<zeroOrMore>
<element name="pre-requisite">
<attribute name="cref">
<data type="IDREF"/>
</attribute>
<attribute name="req next sem">
<data type="boolean"/>
</attribute>
<element name="instructor approval">
<data type="boolean"/>
</element>
</element>
</zeroOrMore>
</element>
</zeroOrMore>
</element>

Although the ability to use XML Schema data types, which you learned about in the previ-
ous section, helped make this section much shorter than when building an XML Schema for
the same set of data, you must admit the syntax for RELAX NG is also much simpler. Reading
the schema in Listing 3-38, you'll see it’s straightforward. The majority of the grammar is
element-based with few or no attributes. The next section will take a more in-depth look at
RELAX NG, its patterns, and its grammar.

Understanding the Structure

Now that you have some familiarity with a RELAX NG schema, you can take a more in-depth
look at using patterns and creating more complex schemas. I'll touch on many new concepts.
The first pattern I will cover is a nameClass. It may not make total sense to you initially but will
become much clearer as you see how it is used within this section.

Note All RELAX NG examples are assumed to be in the http://relaxng.org/ns/structure/1.0
namespace if not explicitly set within the example.

nameClass/exceptNameClass

A nameClass is a pattern that matches a name, where the name may be the name of an ele-
ment or attribute. The exceptNameClass is not really its own pattern but a case for the except
pattern. You can use the pattern in conjunction with the nameClass pattern, so I'll discuss it
in that context here. You have seen so far that you can define an element using the grammar
<element name="ename">. This would cause RELAX NG to match on the element named ename
in the XML document. Using a nameClass, you could also write it as follows:

CHAPTER 3 " VALIDATION

<element>
<name>ename</name>
<empty/>
</element>

This syntax also applies to attributes. In most cases, it is much simpler to just use the name
attribute on the element. Sometimes, however, using the nameClass can be useful. The empty
element has been added as a placeholder because no pattern for content has been defined.

The XML Schema has the any element to allow any element as a child element. RELAX NG
uses anyName within an element or attribute pattern. It translates to match the element or
attribute on any name value. So, for example, to allow any element to be matched, you could
write the following:

<element>
<anyName />
<empty/>

</element>

You can use exceptNameClass with anyName to explicitly disallow certain elements from
matching. To match any element except the element’s named title, you could write it as follows:

<element>
<anyName>
<except>
<name>title</name>
</except>
</anyName>
<empty/>
</element>

The except pattern is used here within the content of the anyName element. When used
within a nameClass, it is called exceptNameClass. It functions exactly as it is named. It defines
the exceptions for the current pattern. In this case, you are matching on any element name
and would like to exclude elements named title from the match. To add an element that
should be excluded from the match, you add a name element as a child element of the except
element. The exceptNameClass also pertains to namespaces, which I'll discuss later in the sec-
tion “Namespaces.”

Another nameClass, which is also used within patterns, is choice. You can use choice to
allow for one of the choices to be matched on, like so:

<element>
<choice>
<name>title</name>
<name>description</name>
</choice>
<empty/>
</element>

Based on this pattern, a match would be made against a title element or a description
element, but not both.

105

106

CHAPTER 3 " VALIDATION

Patterns

The majority of RELAX NG patterns use more patterns as their content. Looking at the previ-
ous example, the content of the element pattern is the choice pattern and the empty pattern.
The empty pattern does not have content, but the choice pattern contains two name patterns,
which in this case are the nameClass patterns. The following sections will examine many of the
patterns used to write a RELAX NG schema.

Choice

The choice pattern allows for any one of the patterns within the choice element content. You
have seen this used within the nameClass to allow an element to match against one of the two
nameClass patterns listed. This pattern has much greater use than just nameClass. For example:

<element name="food">
<attribute name="group">
<choice>
<value>meat</value>
<value>fruit</value>
<value>dairy</value>
<value>grain</value>
</choice>
</attribute>
<text/>
</element>

Here, the valid value for the group attribute may be meat, fruit, dairy, or grain. Anything
else is not valid for this attribute.

You can use this pattern anywhere you would like to allow a match based on one of any
number of patterns. In the previous example, you were within the context of an attribute defi-
nition, so choice was set to allow for matching on one of the specified attribute values. You
could have easily used it to match on a selection of attributes, elements, or content as well.
The thing to remember is that the choice pattern contains any number of patterns where one
must be matched.

Optional

The optional pattern indicates the pattern it contains is optional. This means it either must
match the pattern or must not exist. If something exists that doesn’t match the indicated pat-
tern, then the document is not valid. For example:

<element name="course">
<optional>
<element name="pre-requisite">
<text/>
</element>
</optional>
</element>

This pattern allows the course element to either have a pre-requisite child element or
have empty content. You could have written this as follows:

CHAPTER 3 " VALIDATION

<element name="course">
<choice>
<element name="pre-requisite">
<text/>
</element>
<empty/>
</choice>
</element>

Using the optional pattern not only reduces the schema by a line because the empty
pattern is not needed, but you can also use it with virtually any pattern.

Group

The power and simplicity of patterns should be fairly obvious by now. One question you may
have at this point is when building definitions, how can a group of patterns be considered a
single pattern for matching? The answer is simple. Use the group pattern. This pattern allows
you to add as many patterns within the group element. These patterns together constitute a
single pattern when using the group element. Take, for example, the choice pattern. You would
like the content of an element to match both the elements title and description, in that
order, or just plain-text content. For example:

<element name="course">
<choice>
<group>
<element name="title">
<text/>
</element>
<element name="description">
<text/>
</element>
</group>
<text/>
</choice>
</element>

You can see that the content for choice is the group pattern and the text pattern. Using
the rules for choice, it must match one of these two patterns. The group pattern is a more com-
plex pattern, though. Its pattern translates to matching both a title element with text content
followed a description element with text content. These two patterns are taken as a single
unit when matching on the choice pattern.

Mixed

Earlier I showed how to mix text and child elements within content. That mixing, however,
was an ordered mix. It was done using the text pattern and the element pattern. Although in
many cases the ordering of elements is known, the placement of text is not. You could always
add a text pattern between every single element pattern, but that gets cumbersome. You can
use the mixed pattern to simplify this:

107

108

CHAPTER 3 " VALIDATION

<element name="course">
<mixed>
<element name="title">
<text/>
</element>
<element name="description">
<text/>
</element>
</mixed>
</element>

Using the mixed pattern, this code defines a title and a description element, which must
appear in that order. The mixed pattern allows text content to appear before and after each one
of the elements. The XML document could look like the following:

<course>
some text
<title/>
more text
<description/>
even more text
</course>

Because of its nature, the mixed pattern is used only for element content. It is not valid to
have mixed content anywhere else in an XML document.

Interleave

The closest you have come so far to variable ordering has been the mixed pattern. That pattern
involves the ordering of text content only, which is not useful when dealing with nontext pat-
terns. The interleave pattern is the pattern to use when ordering should not be taken into
account:

<element name="course">
<interleave>
<element name="title">
<text/>
</element>
<element name="description">
<text/>
</element>
<text/>
</interleave>
</element>

This example probably looks familiar to you. The mixed example has been changed to use
the interleave pattern. The text pattern has been added as a child of the interleave element
so that the content may contain any number of text blocks interspersed with a title element
and a description element. These two elements may also appear in any order. There still must
be one and only one title element and one and only one description element. The XML doc-
ument could now look like this:

CHAPTER 3 " VALIDATION

<course>
some text
<description/>
even more text
<title/>
more text
</course>

ZeroOrMore/oneOrMore

When a pattern must be matched at least zero or one times and may be repeated any number
of times, you can use the zeroOrMore and oneOrMore patterns. The content of the courses ele-
ment, from Listing 3-38, can be empty or contain any number of course elements:

<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">
<zeroOrMore>
<element name="course">
<text/>
</element>
</zeroOrMore>
</element>

If at least one course element were required, you would use the oneOrMore pattern. Con-
sider a document that consisted of a document element named document that could contain
any number of title and author elements. These elements may also appear in any order.
From the previous pattern, you know you must use the interleave pattern so elements can
appear in any order. Both elements are not required in the document, but at least one of them
must appear as a child element of the document element. One way to accomplish this is using
the choice pattern. The choice will make sure that at least one of the element patterns match.
This still leaves you with only a single element. You must apply the oneOrMore pattern so that
multiple choices may be selected. For example:

<element name="document" xmlns="http://relaxng.org/ns/structure/1.0">
<oneOrMore>
<interleave>
<mixed>
<choice>
<element name="title">
<text/>
</element>
<element name="author">
<text/>
</element>
</choice>
</mixed>
</interleave>
</oneOrMore>
</element>

109

110

CHAPTER 3 " VALIDATION

Even though this may seem like a complicated pattern, it is actually simple. Reading the
definition from top-down, you know that the element named document can have content con-
taining one or more, in any order, title elements and/or author elements, which may also be
mixed with text content. The mixed pattern was added within the interleave, and the text
pattern was removed from the choice pattern to ensure that at least one element is required
while still allowing for text content to be mixed in the document content.

List

The list pattern is similar to the NMTOKENS data type. It will match the patterns defined as its
contents where the tokens are separated by whitespace:

<element name="course" xmlns="http://relaxng.org/ns/structure/1.0"
datatypelibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">
<attribute name="code">
<list>
<data type="integer" />
<data type="integer" />
<data type="integer" />
</list>
</attribute>
<empty/>
</element>

This schema defines the value of the code attribute to consist of exactly three integers
separated by whitespace. A document based on this schema could look like this:

<course code=" 12 3 4" />

Lists are used with patterns that can provide a distinct value, such as a data type or attrib-
ute value:

<element name="food" xmlns="http://relaxng.org/ns/structure/1.0">
<attribute name="group">
<list>
<oneOrMore>
<choice>
<value>meat</value>
<value>fruit</value>
<value>dairy</value>
<value>grain</value>
</choice>
</oneOrMore>
</list>
</attribute>
<text/>
</element>

CHAPTER 3 " VALIDATION

The element food must have a group attribute with a value consisting of one or more of
the possible values separated by whitespace. A document validating against this schema could
be as follows:

<food group="dairy grain">Milk and Bread</food>

Elements

You have seen two ways to define an element. One uses the name attribute, and the other uses
a nameClass. In both cases, the actual content of the element, when instantiated in an XML
document, must also be defined as a pattern. The nameClass section used the empty pattern,
which means the content of the element must be empty. You have also seen that the text pat-
tern indicates that the element can contain only text. I mentioned that you could also use the
string data type, so let’s take a look at the differences.

Text Pattern vs. String Data Type Specifying an element with content matching the text pattern
and defining the element to be of the string data type may seem like they function in the same
way. In their simplest forms they do. The following examples are pretty much equivalent:

<!-- element using text pattern -->
<element>

<anyName/>

<text/>
</element>

<!-- element using string data type -->
<element>

<anyName/>

<data type="string" />
</element>

In this case, the two definitions allow the same content. It is preferable to use the text
pattern, because it’s a native RELAX NG pattern.

The type of schema you are writing helps drive the decision for which to use as well. If, in
the future, you need to expand the element to allow for mixed content, you could easily do it
using the text pattern with other patterns. By setting the data type to string, the content is
fixed to only text content. If the schema being designed were to be used to validate data that is
coming from a database, string is probably the better choice. Using the data type, you could
explicitly set the minimum and maximum lengths so that it would match the constraints you
use for the data in the database.

<element>
<anyName />
<data type="string">
<param name="maxLength">25</param>
</data>
</element>

111

112

CHAPTER 3 " VALIDATION

A param element has been added as a child of the data element. The param set is the maxLength
attribute for the string data type from XML Schemas. This would enforce the text content to be
no more than 25 characters in length. The text pattern does not have this notion. It just cares that
the content contains only text.

On the flip side, the string data type now introduces limitations that prevent further
extensibility. The element needs to allow for either text content or a child element. With a data
type, you are stuck. You need to rewrite the definition. If you have used the text pattern, then
you could just extend it:

<element>
<anyName />
<choice>
<text/>
<element>
<anyName/>
<empty/>
</element>
</choice>
</element>

In this case, a choice was added, allowing the content to be either text or any empty ele-
ment. When deciding which method to use, you should consider what the schema needs to
validate. If you need strong data typing, such as in the case of enforcing data from a database,
then you should probably use the string data type. If the text were just content, then the text
pattern would be the best choice. In most cases, the text pattern is more commonly used over
a string data type.

Content Content for an element must be defined, even if the element must be empty. Empty
content when pattern matching means the element has no content and no attributes. Ele-
ments that have no content but do have attributes are able to get around having to define
content. When the attribute pattern is included within the element pattern, unless otherwise
set, the content for an element is considered to match the empty pattern. For example:

<element name="course">
<empty />
</element>

<element name="course">
<attribute name="cid" />
</element>

This is all legal syntax. The first case explicitly sets the content to empty so would match
a course element that has no attributes and is empty. The second case assumes the content is
empty but not required to be stated in the definition because an attribute has been defined.
This would match on a course element with the attribute cid and empty content.

Although the text pattern does not offer much in limiting the textual content of an ele-
ment, the value pattern can define allowable content. Take an element named number, where
the content is text and must be a number from 1 to 3:

CHAPTER 3 " VALIDATION

<element name="number">
<choice>
<value>1</value>
<value>2</value>
<value>3</value>
</choice>
</element>

A valid element for this would be <number>2</number>; <number>5</number> would not
be valid.

Throughout the RELAX NG section, you have encountered many ways to define the con-
tent of an element. The important point to remember is that element content is defined by
patterns. To finish off the section on content, I will leave you with a different version of the
1 to 3 content:

<element name="number" xmlns="http://relaxng.org/ns/structure/1.0"
datatypelibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">
<data type="integer">
<param name="minInclusive">1</param>
<param name="maxInclusive">3</param>
</data>
</element>

Attributes

Using the attribute pattern is similar to using the element pattern. The differences are allow-
able content and ordering. When defining an attribute, the content must use patterns that
result in a concrete value. Patterns such as zeroOrMore and oneOrMore, unless used with a 1ist
pattern, will not work with the value pattern. Attributes cannot have multiple values. Using a
list is an exception because a list consists of multiple values combined by whitespace separa-
tors to make a single value in the instantiated document. Ordering is also not important when
using attribute patterns. Elements match based on the order of their definitions, so the
interleave pattern needs to be used to allow random ordering. You can define attributes,

on the other hand, in any order and validate them in any order.

Default Type When defining an attribute that has text content with no further constraints, you
can define the attribute simply with just the name attribute:
<attribute name="attname" />

Unlike the element pattern, the attribute pattern defaults to the text pattern for its con-
tent. An equivalent, but unnecessary, way to write the definition is as follows:

<attribute name="attname">
<text/>
</attribute>

It is much easier to just write a single line and save some typing.

113

114

CHAPTER 3 " VALIDATION

Value Pattern The value pattern offers the ability to provide more control over attribute values
than using the text pattern. Using this pattern, not only can specific values be matched upon,
but also the type of the acceptable value can also be enforced. Suppose you had an attribute
called priority, which should have only the values 1 through 3. You can set the acceptable
values using the value pattern for the attribute definition:

<attribute name="priority">
<choice>
<value type="integer">1</value>
<value type="integer">2</value>
<value type="integer">3</value>
</choice>
</attribute>

You use the choice pattern so that the attribute value can match against one of the con-
tained value patterns. The value pattern provides an acceptable value for the instantiated
attribute’s value, so based on the patterns, the attribute value must match the value 1, 2, or 3.
The type attribute, which may be omitted because it’s not really necessary, is just enforcing
that the values specified are integer types.

Data Types You can also specify attribute values by data types without specifying a specific
value. This is something you have become acquainted with already throughout the RELAX NG
section. Data types allow the use of the built-in data types from XML Schemas to be used to
validate attributes. If the priority attribute from the previous example could be any integer
number, it would be written using the data pattern rather than using the value pattern. For
example:

<attribute name="priority">
<data type="integer" />
</attribute>

You can limit the value the attribute can have to 1, 2, and 3 by leveraging XML Schema
components applicable to the data type being used. In this case, the integer data type may
indicate the minInclusive and maxInclusive values. These are passed using the param element
within the data element content:

<attribute name="priority">
<data type="integer">
<param name="minInclusive">1</param>
<param name="maxInclusive">3</param>
</data>
</attribute>

Just as is the case with elements, attributes and their values are matched with patterns. If
you can write a pattern that will ultimately result in a legal value for an attribute, then the pat-
tern should work, no matter how complicated it may seem.

CHAPTER 3 " VALIDATION

Namespaces

Namespaces are handled much differently in RELAX NG than in XML Schemas. In RELAX NG,
namespaces are handled by using an ns attribute. Using real namespaces in the schema, those
defined by xmlns provide a way to add information in the schema, which is ignored by RELAX
NG. All elements and attributes within the schema (which are not in the RELAX NG name-
space, http://relaxng.org/ns/structure/1.0), are ignored:

<element name="course" xmlns="http://relaxng.org/ns/structure/1.0"
xmlns:priv="http://www.example.com/Private>
<zeroOrMore>
<element name="title" priv:myattribute="I am ignored">
<text/>
</element>
<!-- The following element is ignored -->
<priv:element name="title">
<!-- this looks like a dupe but this element is ignored -->
<!-- ignore name attribute - attributes dono' inherit default namespace -->
</priv:element>
</zeroOrMore>
</element>

By specifying a namespace outside the RELAX NG namespace, you can add any type of
content to the schema. From user notes to custom elements and attributes that you can use in
other ways, such as processing the schema as straight XML, they are all ignored when being
processed by the RELAX NG processor.

Now that you know that normal namespace usage is not how validation with namespaces
is done, you will look at how to handle validation with namespaced documents.

Unqualified Names

Validating namespaced documents is quite easy. The element and attribute patterns can use
the ns attribute to specify the namespace that an element or attribute must reside in:

<element name="course" ns="http://www.example.com/course">
<text/>
</element>

Based on this definition, matches will be made against these elements:

<course xmlns="http://www.example.com/course" />
<c:course xmlns:c="http://www.example.com/course" />

but not these elements:

<course />
<course xmlns="http://www.example.com/other" />

Setting the ns value to an empty string is the same as not including the ns attribute at all.
<element name="course" ns="">is equivalent to <element name="course">.

115

116

CHAPTER 3 " VALIDATION

The namespace set by the ns value on an element definition is inherited by all child ele-
ments. You don’'t need to add an ns attribute to every element within the scope of the defining
element. It may be overridden by a child element, which would set the namespace to the new
value within the scope of the element providing the new definition. This is one reason to use
the ns attribute with an empty string. When in a namespace scope, you may need to change
the namespace including using no namespace:

<element name="course" ns="http://www.example.com/course">
<element name="pre-requisite">
<attribute name="req next sem" ns="http://www.example.com/course">
<data type="boolean"/>
</attribute>
<empty/>
</element>
<element name="instructor approval” ns="">
<data type="boolean"/>
</element>
</element>

The definition for the course element will match a course element within the http://
www . example.com/course namespace. The namespace matching is inherited by the pre-requisite
element, so in the XML document a pre-requisite element must also reside in this name-
space. You will notice that the namespace had to be added to the attribute definition as well.
If you recall, attributes do not inherit default namespaces, so in order to match against the
attribute req_next sum within the namespace, it must be explicitly defined on the attribute
definition. The instructor_approval definition is not in a namespace in the XML document,
so for the definition, you must remove the namespace match by setting the ns value to the
empty string. It will not work just leaving off the ns attribute as you saw with the pre-requisite
element, because the namespace would be inherited from the course definition. An XML
document conforming to this schema would look like this:

<c:course xmlns:c="http://www.example.com/course">
<c:pre-requisite c:req next sem="true">
<instructor_approval>true</instructor approval>
</c:course>

Qualified Names

Using qualified names makes it much easier to write schemas for namespaced documents.
This is the one case where the true use of namespaces is not ignored by the RELAX NG proces-
sor. Rewriting the definition using qualified names rather than ns attributes, the schema
would look like this:

<element name="c:course" xmlns:c="http://www.example.com/course">
<element name="c:pre-requisite">
<attribute name="c:req_next_sem">
<data type="boolean"/>
</attribute>

CHAPTER 3 " VALIDATION

<empty/>
</element>
<element name="instructor approval">
<data type="boolean"/>
</element>
</element>

This code associates the namespace http://www.example.com/course with the prefix c.
Within the element and attribute definitions, the value for the name attribute has been prefixed
with c. The processor will now match on the name being in the namespace associated with the
prefix c. Also notice that the definition for the instructor approval element no longer needs to
set the ns attribute. There is no namespace in scope, because the ns attribute has not been used
within the schema, so it effectively will match only against an instructor approval element
that is not in any namespace.

If using both unqualified and qualified names, the qualified name takes precedence over
the namespace that is in scope from an ns attribute value. A qualified name would be similar
to setting an explicit ns attribute for that element except using the qualified name does not
affect namespace scope. Whichever namespace may be in scope before using a qualified
name continues to stay in scope for children on the definition using the qualified name.

Defines and Grammar

Defines in RELAX NG are like using user-derived named types in XML Schemas. Using a
define, you can give a pattern a name that then can be referred to within your schema. For
simple schemas, this may not offer much advantage but simplifies things when using a com-
plex pattern that needs to be used in many places.

To name a pattern, the schema changes structure a bit from what you have come accus-
tomed to so far. A grammar element is needed that encapsulates the schema. You may think of
this as having to use the schema element in an XML Schema. Within the grammar element, a
start element is used, which indicates the start pattern to match an XML document against.
The content of the start element would be the top of the schemas you have been exploring
earlier in this chapter. If you take the original schema from Listing 3-38 and place it within a
grammar element, it would look like this:

<?xml version="1.0" encoding="utf-8" ?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">
<start>
<element name="courses">
<zeroOrMore>
<element name="course"
datatypelibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">
<attribute name="cid">
<data type="ID"/>
</attribute>
<element name="title">
<text/>
</element>

117

118

CHAPTER 3 " VALIDATION

<element name="description">
<text/>
</element>
<element name="credits">
<data type="decimal"/>
</element>
<element name="lastmodified">
<data type="dateTime"/>
</element>
<zeroOrMore>
<element name="pre-requisite">
<attribute name="cref">
<data type="IDREF"/>
</attribute>
<attribute name="req_next sem">
<data type="boolean"/>
</attribute>
<element name="instructor approval">
<data type="boolean"/>
</element>
</element>
</zeroOrMore>
</element>
</zeroOrMore>
</element>
</start>
</grammar>

All you had to do was place the entire schema within the <grammar><start></start>
</grammar> tags and move the RELAX NG namespace to the grammar element. Remember that
RELAX NG ignores everything not in its namespace, so if the namespace declaration is not
moved, the entire schema is ignored.

Although no repetitive patterns in reality exist that would make sense moving to a define,
I will show how to create a named pattern for the patterns contained within the course defini-
tion. This would allow future use in the event a new type of course element were introduced
that was not an extension of course but instead a distinct type of course that had the same
internal definition:

<?xml version="1.0" encoding="utf-8" ?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">
<start>
<element name="courses">
<zeroOrMore>
<element name="course">
<ref name="courseContent" />
</element>
</zeroOrMore>
</element>
</start>

CHAPTER 3 " VALIDATION

<define name="courseContent"”
datatypelibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">
<attribute name="cid">
<data type="ID"/>
</attribute>
<element name="title">
<text/>
</element>
<element name="description">
<text/>
</element>
<element name="credits">
<data type="decimal"/>
</element>
<element name="lastmodified">
<data type="dateTime"/>
</element>
<zeroOrMore>
<element name="pre-requisite">
<attribute name="cref">
<data type="IDREF"/>
</attribute>
<attribute name="req next sem">
<data type="boolean"/>
</attribute>
<element name="instructor approval">
<data type="boolean"/>
</element>
</element>
</zeroOrMore>
</define>

</grammar>

The start element now contains only a small piece of the actual pattern to match against.
The bulk has been moved to the define element named courseContent. The definition of the
course element now just has to use a ref element to refer to the pattern named courseContent.
You probably notice that the datatypelibrary attribute no longer resides on the course defini-
tion. No data types are used within the scope of the element anymore, just a ref element. The
data types are now in the scope of the define element, so the attribute needs to be moved there.
It also would have been perfectly fine to move the datatypelLibrary attribute to the grammar ele-
ment as well. Since the define attribute is within the scope of the grammar element, it would
inherit the library.

External Patterns

The last piece of RELAX NG I will cover deals with accessing external patterns. You have seen
how to do similar things with DTDs, using external references, as well as with XML Schemas,
using include and import. Relax NG uses an externalRef element to accomplish this:

119

120

CHAPTER 3 " VALIDATION

<externalRef href="URI" />

This element takes a single href attribute. The value of this element is a URI pointing to
the location of the RELAX NG grammar file to use. The file being referenced must begin with
the grammar tag and indicate the start of the pattern within a start tag. You could take the pre-
vious example using the define and move the define into its own file. The main schema would
be short and simple:

<?xml version="1.0" encoding="utf-8" ?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">
<start>
<element name="courses">
<zeroOrMore>
<element name="course">
<externalRef href="coursecontent.rng" />
</element>
</zeroOrMore>
</element>
</start>
</grammar>

The ref element has been changed to an externalRef element with the href pointing
to the file coursecontent.rng. The contents of the coursecontent.rng file would contain the
following:

<?xml version="1.0" encoding="utf-8" ?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">
<start>
<ref name="courseContent" />
</start>

<define name="courseContent"
datatypelibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">
<attribute name="cid">
<data type="ID"/>
</attribute>
<element name="title">
<text/>
</element>
<!-- Additional patterns omitted for brevity -->
</define>

</grammar>

The define in the coursecontent.rng file was left intact and a start tag was added, which
instructs RELAX NG to begin with the named define courseContent. The define could have
also been removed and the contents placed directly within a group tag, which in turn could
then be placed within the start tag, but this was written in this manner to illustrate using a
ref element within the start tag. A group element would have been needed had this been

CHAPTER 3 " VALIDATION

done because a start element may contain only a single element. The group element would
be used to take the patterns as a whole. This also would mean that the datatypelLibrary would
have to have been moved to the group element so that all the contained patterns would have
access to it.

Caution A start element can have only a single element. If your patterns are not contained with a single
element, you must either use a named define or use a group element to encapsulate them.

RELAX NG Summary

Although I've provided a lot of information about RELAX NG (which should be plenty to get
you started using it for validation), I have not covered certain areas. Some are not applicable
to using RELAX NG in PHP 5, and others are just out of the scope of this book. For further
information on RELAX NG, you can find the full specifications and a tutorial at http://
www.relaxing.org/.

Conclusion

This chapter covered how to validate documents using DTDs, XML Schemas, and RELAX NG.
You should now know what validation is and be comfortable with analyzing and writing at
least basic schemas after reading this chapter for the first time. It may take longer, and some
practice, for you to write more complex schemas, but the information presented in this chap-
ter should be enough to get you through the majority of them.

The next chapter will cover XPath, XPointer, XInclude, and some additional emerging
querying technologies.

121

CHAPTER 4

XPath, XPointer, Xinclude, and
the Future

Examining and constructing XML documents should be simple for you by now. Retrieving
information from these documents is one of the biggest steps I haven't covered yet. Chapters 5
and 6 will demonstrate how to navigate XML documents, how to retrieve information from
documents, and how to transform documents for presentation. This chapter will introduce you
to some of the foundations and concepts that will help you later. The technologies covered here
include querying XML using XPath and XPointer and reusing and processing external content
through XInclude. I'll also cover some upcoming technologies, such as XQuery and XPath 2.0,
that may eventually supercede some of the current technologies.

Introducing XPath

XPath is a language used to locate and retrieve information from an XML tree using expres-
sions. The language not only can be used by itself, but it also plays a role when using XSLT and
XPointer. The following sections will introduce you to XPath as well as cover how to write XPath
expressions. This coverage will also serve as a foundation for the concepts in the “Introducing
XPointer” section and in Chapter 10, which will cover XSLT. The information in this chapter
pertains to the XPath 1.0 specification from the W3C (http://www.w3.0rg/TR/xpath).

Concepts

Before jumping right into working with XPath expressions, you need to understand some
basic concepts. This coverage will serve as the foundation for understanding and building
expressions. Specifically, I'll cover the data model and location paths, and throughout the
upcoming sections, I'll use the document in Listing 4-1 as reference. This document may look
familiar from previous chapters. I have added the namespace http://www.example.com/title
and associated it with the prefix t to illustrate some of the namespace features of XPath.

123

124

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Listing 4-1. Course Document

<IDOCTYPE courses [
<!ATTLIST course cid ID #REQUIRED>
<IATTLIST pre-requisite cref IDREF #REQUIRED>
>
<!-- A small course document -->
<courses xmlns:t="http://www.example.com/title">
<course cid="c1">
<t:title>Basic Languages</t:title>
<description>Introduction to Languages</description>
</course>
<course cid="c2">
<t:title>French I</t:title>
<description>Introduction to French</description>
</course>
<course cid="c3">
<t:title>French II</t:title>
<description>Intermediate French</description>
<pre-requisite cref="c2" />
<?php print "Hello World"; ?>
<?phpx Another PI Node ?>
</course>
</courses>

Data Model

XPath views an XML document as an XML tree. The tree is broken down into nodes consisting
of aroot node, element nodes, attribute nodes, text nodes, namespace nodes, comment nodes,
and PI nodes. When using XPath, the xml declaration and document type declaration are com-
pletely ignored. In other words, they are not considered part of the tree. This includes all
comment and PI nodes that may occur within the document type declaration. XPath doesn’t
contain any references, because all entity references are expanded and all character references
are resolved.

Every node has a string value that may be part of the node or may be computed based on
the string values of the descendant nodes. Some nodes also have an expanded name, which
consists of the local name and the namespace URI. As you remember from Chapter 2, name-
spaces are applicable to elements and attributes. Namespace nodes fall into the same category
as attributes, so you could reason that the element nodes, attribute nodes, and namespace
nodes would have expanded names, and the rest of the nodes would not. When comparing
expanded names from two nodes, the prefix does not matter. Expanded names are equal as
long as the local name and the namespace URI are the same. Nodes with the same name and
not residing in any namespace would then be considered as having the same expanded name.
The local names are the same, and both have empty namespace URIs.

XPath also follows document ordering. This means most nodes are ordered as they appear
within the hierarchy of the tree. The exceptions are attribute and namespace nodes. Name-
space nodes always come before attribute nodes, and within their subgroups, the namespace

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

nodes and attributes nodes can appear in any order. The namespace and attributes nodes,
however, come before the children of the element.

Every node also has a parent node, except the root node. It is impossible for the root node
to have a parent, because it is the start of the tree. The parent for element, comment, and PI
nodes are either the root node or an element node, depending upon where the node exists
within the tree. The rest of the nodes will have an element node as parents because these
remaining nodes cannot live outside the document element. Although every node, except the
root node, has exactly one parent, element nodes can have a number of descendants. Descen-
dant nodes are nodes other than attribute and namespace nodes that live within the scope of
the element.

Root Node

Conceptually, you can consider the root node to be the encompassing document. Do not con-
fuse this with the document element, which is the top-level element of the document. The
root node is the base of the tree, with branches that can consist of comments, PIs, and the
document element. Because the XML must be well-formed, you will have, at a minimum, the
document element. Comments and PIs can live on the same level as the document element,
so without a root node, you would have no way to access those nodes.

This node has no expanded name. The root node, being a conceptual node in the tree,
cannot be assigned a name or namespace and thus cannot have an expanded name. Its string
value, on the other hand, consists of a concatenation of all the text nodes’ descendants as they
appear in the document order. Thinking of the text node parents and document order, the value
consists of the concatenation of the values of all text nodes, because they appear in the hierar-
chy within the document element.

Element Nodes

Every element within the document has an element node, and every document must have at
least one element, the document element. The expanded name of an element node consists
of its local name and its namespace URI The string value for this node is a concatenation of
all descendant text nodes. In the case of the document element, the string value will be the
same as the string value of the root node. Unique IDs also come into play with element nodes,
as you will see later in the “Expressions and Predicates” section. You can also find more infor-
mation on IDs in Chapter 2.

Attribute Nodes

Attribute nodes are associated with element nodes. The element node is the parent of the attrib-
ute node, but the attribute node is not a child of the element node. The location of an attribute
node is determined by where it has been explicitly defined or is automatically defaulted from a
DTD. Attributes that are inherited, such as xml:1ang and xml:space, are considered attributes
only from the element that defined these attributes, even though the attribute may affect chil-
dren of the element.

The expanded name of an attribute contains the same pieces as an element. It is a combi-
nation of the local name and the namespace URI. The string value, however, is different from
an element. For an attribute node, the string value is the normalized value of the attribute.
Take, for example, the following element: <element att1=" 1 " />.The string value for the

125

126

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

att1 attribute node is 1. The value has been normalized, so the leading and trailing spaces
have been removed.

As you will see in the “Namespace Nodes” section, attributes that declare namespaces are
not attribute nodes. These nodes are actually namespace nodes and are handled differently
than attribute nodes.

In the following example, the attribute p is not an attribute node, but rather a namespace
node, because it is declaring the namespace http://www.example.com:

<element xmlns:p="http://www.example.com" />

Text Nodes

Text nodes are groups of character data (or blocks of text content). Do not confuse text content
in XPath terms with what you have read in previous chapters. Comments and PIs are their own
node types in XPath, and text nodes consist of CDATA and pure string text content. When using
CDATA, text nodes contain only the values of the CDATA. The markup tags <! [CDATA[and]]>
are not included in a text node, so the string value of <! [CDATA[Hello World]]>isHello World.
If you are reading the XPath specification, you may notice that it says text nodes never have
other text nodes as siblings. In the pure sense of XPath, this is correct, but when used with
PHP 5 extensions, such as the DOM extension or the SimpleXML extension, you may run into
cases where text nodes have other text nodes as siblings. This is perfectly legal because this is
based on using DOM XPath. It should also be obvious that text nodes are children of element
nodes and do not have expanded names. Namespaces do not apply to text content, and text
nodes are not given names.

Namespace Nodes

Namespace nodes are associated with elements and consist of all namespaces that are in scope
for an element. This is important to remember. This includes not just namespaces declared on
the element but all namespaces in scope for the element. Another important point is that the
xml prefix is implicitly declared for a document, so a document not declaring any namespaces
will still have at least one namespace. For example:

<mydoc xmlns:p="http://www.example.com/mydoc">
<myelement />
</mydoc>

In this example, within the context of the mydoc element, you have two namespace nodes:
the implicit one for the xml prefix and the one declared with the prefix p. Because the prefix p
is defining a namespace, it is a namespace node and not an attribute. Although the element
itself is not in the http://www.example.com/mydoc namespace, this namespace was still declared
within the context of the element. Looking at the myelement element, you may guess that it has
zero namespace nodes, or maybe you remembered that it is in the scope of the implicit xml
prefix and guessed that it has one namespace node. Either way, you are incorrect. The myelement
element, even though it is not in a namespace, is not only in the scope of the xm1 prefix but
also in the scope of the http://www.example.com/mydoc namespace. So within the context of
the myelement element, you have two namespace nodes.

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Namespace nodes have expanded names. The local part is the prefix for the element, and
the namespace URI is always NULL. You may be curious why this has a NULL namespace URIL
The URI is actually the string value of a namespace node.

Comment Nodes

Every comment within a document has a corresponding comment node, excluding comments
within the document type declaration (because this is ignored). Comment nodes do not have
an expanded name and are children of either the root node or the element nodes. The string
value of a comment node is the text value, which consists of all the characters between the
<!--and --> markup. For example, the string value of <!-- This is a comment -->is

This is a comment.

Processing Instruction Nodes

Similar to comment nodes, every PI, except those in the document type declaration, has a
corresponding processing instruction node. P nodes do have an expanded name, however. The
expanded name consists of a NULL namespace and the target as the local part. The string value of
a processing instruction node is the text value following the target and excluding the closing ?>
markup. For example, the string value of <?php print "Hello World";?>isprint "Hello World";.

Location Paths

Location paths are paths used to locate a single node or group of nodes, called a node set,
within a given XML document. Locations can be absolute or relative. Absolute paths begin
with /, indicating that the path is beginning at the root node, and are followed by a relative
path. Relative paths are relative to the current context, which is the current location you are at
in the document. This is comparable to working on a file system. Consider a directory struc-
ture such as /usr/local/1ib. This is an absolute path, because / indicates the top level of the
file system. The next directory, ust, is a relative path, because it is relative to the current posi-
tion, which is the top of the file system. You would now be positioned in the usr directory, so
local, the next location, is relative to usz. If you were already located within the usr dir, you
could use a relative path, local/lib, to move to the 1ib directory. XPath location paths work
in a similar fashion. Relative paths in XPath are broken into steps separated by /. Compared to
the absolute path for the file system example, you would have three steps: usr, local, and 1ib.
This is just an analogy, but the concept is similar.

Each XPath step consists of three parts: axes, node tests, and zero or more predicates. The
syntax is axis: :node_test[predicates]. The combination of axis and node_test results in an
initial node set that is further filtered by any predicates in the order they appear. You'll now
examine the three parts to see how you can find nodes within an XML document.

Axes

An axis specifies the relationship between the context node, which is the current location in
the tree, and the nodes to be selected. The location of the nodes to be selected, in the specified
step, is determined by the axis relative to the context node. You can specify 13 axes, as shown
in Table 4-1.

127

128

CHAPTER 4

Table 4-1. XPath Axes

XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Axis

Description

ancestor
ancestor-or-self
attribute

child

descendant

descendant-or-self
following
following-sibling
namespace

parent

preceding
preceding-sibling

self

Selects the ancestors of the context node. The parent of the current node
and all nodes higher in the tree, such as grandparents and their parents,
will be selected.

Selects the ancestors of the context node as well as the current node.

Selects the attributes of the context node, which, unless the current node is
an element, will be empty.

Selects the immediate children of the context node.

Selects all nodes within the scope of the context node, such as child nodes
and grandchildren. Attributes and namespace nodes are not included in
the node set.

Selects the descendant nodes as well as the context node.

Selects all nodes, except attribute and namespace nodes, following the
context node in document order while excluding the descendants of the
context node.

Selects all sibling nodes that follow the context node. If the current node is
an attribute or namespace node, no nodes are selected.

Selects all namespaces of the context node, which, unless the current node
is an element node, will be empty.

Selects the parent of the context node.

Selects all nodes that precede the context node, excluding ancestors,
attributes, and namespace nodes. This axis basically selects all the nodes of
the preceding siblings and their descendants.

Selects all preceding siblings of the context node. If this context node is an
attribute or namespace node, then no nodes are selected.

Selects only the context node.

An axis alone is not enough to define a step, as the actual nodes to be selected still have not
been indicated. It does define a principal node type indicating the type of nodes that can be con-
tained. For example, the attribute axis has a principal node type of attribute. This axis will
contain attribute nodes. The namespace axis has a principal node type of namespace, because it will
contain namespace nodes. The other axes have principal node types of element. Although they
can contain other types, such as comment nodes or PI nodes, the primary type is element. This
means unless explicitly indicated through the node test, the node set will consist of elements.

Node Tests

A node test identifies the actual nodes to be selected from the specified axis. It can be either a
name test or a node type test.

Name Tests A name testidentifies nodes by name that are of the primary node types of the axis.
A name test has three forms. It can be a QName, the special character *, or NCName : *.

A QName selects nodes of the primary node type that have expanded names equal to the
expanded name of the QName. Using Listing 4-1 as an example, you can select all the descrip-
tion nodes with the following path:

/child: :courses/descendant: :description

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 129

Examining this path, you can see it begins with /. This means the location is absolute and
starts at the root node. The first step in the path is child: : courses. The current context at this
point is the root node. Within this context, the axis is child, and the node test is a name test
with a QName of courses. The document contains two child nodes, the comment and the courses
node. As you recall, XPath ignores the document type declaration. A name test is being used,
so only nodes of the primary node type, which is an element when using the child axis, will be
tested. The expanded name of the courses element, which is courses, is tested against that of
the supplied QName, which is also courses. Being that they are equal, the first step in the path
results in the document element, courses.

The next step in the path is descendant: :description. At this point, the courses element
is the context node from the previous step. Breaking up this step, the selected nodes will come
from the descendants of the courses node that match the description QName. From Table 4-1,
you can see that the descendant axis will select all the nodes within the scope of the context node.
The results of the full XPath expression will be a node set containing the three description ele-
ments from the document:

<description>Introduction to Languages</description>
<description>Introduction to French</description>
<description>Intermediate French</description>

An easier way to write this would be /descendant: :description. There really was no need
for the first step in the original path other than for illustration purposes. To select the title
elements, you need to take into account the namespace. The QName for the title elements
is t:title. To match these, the path could be something along the lines of
/descendant::t:title.

You also must take namespace scope into account. When using the prefix in the name test,
the prefix refers to the prefix associated with the namespace that is in scope of the context node.
If one of the course elements looked like the following:

<course cid="c2" xmlns:q="http://www.example.com/title">
<q:title>French IV</q:title>
<description>Advanced French</description>

</course>

then the title element contained here would also be returned from the /descendant::t:title
path. The prefix t defined on the document element is associated with the same namespace
as the prefix q defined on this local course element. Changing the prefix association will also
affect the selected results. Listing 4-2 shows the new course element.

Listing 4-2. New course Element

<course cid="c2" xmlns:t="http://www.example.com/DIFFERENT">
<t:title>French IV</t:title>
<description>Advanced French</description>

</course>

The title element in Listing 4-2 is no longer in the http://www.example.com/title name-
space. The path /descendant: :t:title is really selecting all title elements that reside in the
http://www.example.com/title namespace. The title element in Listing 4-2, although having

130

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

the same prefix, resides in the http://www.example.com/DIFFERENT namespace so would not
be selected from the XPath query.

A names test can also be the * character. This wildcard can match any QName of the pri-
mary node type. This time, select all attributes from all the course elements, like so:

/descendant::course/attribute::*

The first step in this path selects every course element in the document. Using the
descendant axis in the context of the root node selects every element node, because an ele-
ment is the primary node type of descendant that matches the QName course. The last step
uses the course elements as the context and selects every attribute node. Because the match
is based on *, there are no restrictions of the QName from the attribute nodes.

The last name test takes the form of NCName: *. This test is a combination of the QName
and * tests. It allows nodes to be selected based on namespace only. NCName is the prefix of
anamespace in scope at the current context, and * indicates to match all local names. In
Listing 4-1, all the elements within the http://www.example.com/title namespace could be
returned by the path /child: :courses/descendant: :t:*. Every title element in the document
would be selected, because these are the only elements within the specified namespace. The
element from Listing 4-2 would not match, because the title element in that case is not in
the namespace on which you are searching.

Node Type Test A node type test selects specific node types from the axis. The primary node
type of the axis is not taken into account. As long as the node type is valid for the axis, then the
nodes will be selected. For example, valid child nodes for the root node are comments, ele-
ments, and processing instructions. Valid child nodes for an element, however, are comments,
elements, processing instructions, and text. Valid node type tests are comment (), text(),
processing-instruction(), processing-instruction('name'), and node(). No specific ele-
ment node test exists. The reason for this is that an element is already the primary node type
for an axis from which an element node can be selected. For this reason, the * character for
the test serves the same purpose.

Using the document in Listing 4-1, you could select the comment node using the path
/child:comment(). You can select all the children, including text nodes (which is the insignifi-
cant whitespace), of the courses element using /child: : courses/child: :node(). This path will
select seven nodes (consisting of four text nodes, line feeds, and tabs) that are intermixed with
the three course element nodes.

Selecting PIs works the same way. The path /child: :courses/descendant: :w»
processing-instruction() will select both PIs within the last course element, and the path
/child::courses/descendant: :processing-instruction('php") will select only the PI with
the target php.

Predicates

Predicates filter the node set from the combined axis and node test. They are expressions that
are evaluated for each node in the node set and return a Boolean. Each node in the node set
that evaluates to TRUE from the expression is included in the node set; those that evaluate to
FALSE are excluded. More than a single predicate is allowed, and you can combine them using
Boolean operators. I'll explain predicates in more detail later in this chapter in the section
“Expressions and Predicates.”

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Abbreviated Syntax

Some abbreviated syntax is available for a few of the axis and node test combinations. (I'll
explain the abbreviated syntax for some predicates in the “Expressions and Predicates” sec-
tion.) Table 4-2 lists some of the syntax available within XPath.

Table 4-2. Abbreviated Syntax

Axis and Node Test Abbreviated Syntax
attribute: :QName @QName
attribute::* @*

child: :QName OName

child::* *

child: :nodetype() nodetype()

descendant-or-self: :node()/ // (This would be an empty step in the path.)
parent: :node()
self::node()

Taking all the paths you have encountered so far in this chapter, you can write their
equivalents using abbreviated syntax. Listing 4-3 shows the comparable paths. The first path
uses full syntax, and its corresponding abbreviated path follows it on the next line.

Listing 4-3. Full Paths and Corresponding Abbreviated Paths

/child: :courses/descendant: :description
/courses//description

/descendant: :description
//description

/descendant::t:title
//t:title

/descendant: :course/attribute::*
//course/@*

/child::courses/descendant::t:*
/courses//t:*

/child:comment()
/comment ()

/child: :courses/child: :node()
/courses/node()

131

132

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

/child: :courses/descendant: :processing-instruction()
/courses//processing-instruction()

/child: :courses/descendant: :processing-instruction('php")
/courses//processing-instruction('php")

Even with these simple paths, the abbreviated syntax is useful. It is even handier once you
begin writing complex paths and expressions.

Expressions and Predicates

Expressions open up the full power of XPath to you. Up to this point, you have worked with
just location paths, which can also be used as expressions, containing only axes and node
tests. Expressions allow you to create fine-tuned, complex filters via predicates, as well as to
retrieve data other than just node sets from XML documents. When writing expressions, you
can use some XPath operators, as listed in Table 4-3.

Table 4-3. XPath Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

div Division

mod Modulus

= Equal

I= Not equal

< Less than

<= Less than or equal to
> Greater than

>= Greater than or equal to
and Boolean “and”

or Boolean “or”

| Union

The XML document in Listing 4-4 contains a listing of produce broken down into fruits
and vegetables. I will use this document throughout the following sections to illustrate how to
use expressions in XPath.

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Listing 4-4. Produce Document

<?xml version="1.0"?>
<produce>
<vegetables>
<vegetable unit="pound">
<name>tomatoes</name>
<price>2.99</price>
</vegetable>
<vegetable unit="pound">
<name>string beans</name>
<price>3.99</price>
</vegetable>
<vegetable unit="each" specials="discount">
<name>lettuce</name>
<price>0.99</price>
</vegetable>
</vegetables>
<fruits>
<fruit unit="pound" specials="sale">
<name>apples</name>
<price>1.99</price>
</fruit>
<fruit unit="pound">
<name>bananas</name>
<price>3.99</price>
</fruit>
<fruit unit="pint">
<name>strawberries</name>
<price>4.99</price>
<time>seasonal</time>
</fruit>
</fruits>
</produce>

Basic Filtering

Simple node sets and value comparisons are the easiest place to begin understanding expres-
sions. Since you should be comfortable with the basics of location paths and node selections
at this point, you will now look at how you can use node sets as expressions within a predicate.

Node Sets

Based on the document in Listing 4-4, you can select the elements containing the attribute

specials with the following expression:

//*[@specials]

133

134

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

The path, excluding the predicate, selects all elements within the document. The predi-
cate filters these nodes based on the criteria of having an attribute named specials. @specials
evaluates to TRUE if the attribute node exists and FALSE if it doesn’t. This is how the evaluation
of node sets as expressions work. If the node set within the expression contains at least one
node, then it is TRUE. If you think of this in terms of a SQL query, it would be similar to saying,
“Select all elements from the document where the element contains the attribute named
specials.” The equivalent method to writing the expression using the full syntax is
/descendant-or-self::node()/*[attribute::specials].

The node set used for filtering is not limited to just using attribute nodes. For example,
how could you select the elements containing a child element named time? Looking at the
document, you know only one element, fruit, has a child element named time. Although you
know what the document currently looks like, assume that any of the elements might contain
this attribute. The first step is to write a location path that selects all the elements:

/1*

Now that every element is to be selected, each node in the node set needs to be tested for
having a child element named time:

//*[time]

This is similar to filtering based on an attribute. In this case, however, you don’'t need
an axis within the predicate. The location path //* is the abbreviated syntax for
/descendant-or-self::node()/*. Based on this path and the last *, the primary node type is
element. Within the predicate, you just give the element name time, which is the abbreviation
for child: :time. The equivalent full syntax is /descendant-or-self: :node()/*[child::time].
Each of these expressions will ultimately select the single fruit element in the document
containing the time element.

The expression does not need to be just a simple axis and node test. You can also use
location paths. In this case, you must take into account the context of the node being tested.
Searching for time elements that have a parent element named fruit requires filtering based
on the name of a relative node. In this case, you must test the parent node. The first step, as
always, is to write the location path for the nodes to select:

//time

The next step is to filter this node set using a predicate. Nodes must be filtered on the
condition that they have a parent node named fruit:

//time[../self: :fruit]

The predicate here uses the relative location . ., which means “move to the parent of the
context node.” The context node, remember, is the node currently being tested at the time.
Each node in the node set would be tested, so each node would be in context at some point
or another while applying the predicate. The next step in the path selects self, which points
to the parent of a time element from the original node set and matches against the name
fruit. In simple terms, the expression breaks down to select all time elements that have a
parent, and the parent (the self in the predicate) has the name fruit. And in case you are
wondering, you could have written this much more simply by just using the following:

//time[parent::fruit]

This, however, wouldn’'t have been as fun to explain.

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Value Comparisons

In many cases, node selection isn't dependant upon the structure of the document but
upon values within the document. When comparing node sets to numbers, the string value
of the node is converted to a number and compared to the number. A string comparison is
performed using the string value of the node against the string. These conversions are
automatic, but you can also call functions, which I'll explain later in the “XPath Functions”
section, to do the conversion.

String Comparisons

The first example for expressions using node sets selected all the elements that contained
the specials attribute. If this attribute could have only a single value and was not present
when it did not pertain to the element, the expression would be fine. In Listing 4-4, two ele-
ments contain the specials attribute, and the value is different for each of them. Refining
the node selection, only elements containing the attribute specials and having the value
sale should be selected:

//*¥[@specials="sale"]
This will select a single fruit element:

<fruit unit="pound" specials="sale">
<name>apples</name>
<price>1.99</price>

</fruit>

You can achieve the same results by selecting all elements containing a specials attribute
node that has a value not equal to discount:

//*[@specials != "discount"]

You can also perform comparisons on elements. The string value of an element is the
content of the text nodes of all descendants concatenated together. You must be careful when
performing comparisons with element nodes, because you must be sure you have taken this
into account. This example selects elements that contain the child element name containing
the text lettuce:

//*[name="1ettuce"]

The predicate used to filter the node set in this case is name="1ettuce". As you probably
recall from earlier examples, you do not need an axis in this predicate. The primary node type
is an element node, and the child axis is already implied. This expression is the same as writ-
ing //*[child: :name="1ettuce"]. The comparison taking place within the predicate is against
the node set containing the child element name with the string lettuce. The element node is
converted to a string, and in Listing 4-4, all name elements have only text content. It is the text
content that is compared to the string lettuce. This expression results in the selection of a sin-
gle vegetable element:

<vegetable unit="each" specials="discount">
<name>lettuce</name>
<price>0.99</price>

</vegetable>

135

136

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Numeric Comparisons

Numeric comparisons are similar to string comparisons, except in this instance the value of
the element or attribute is converted to a number rather than a string. Within the document,
each one of the fruit and vegetable elements contains the child element price. When writing
expressions, say you would like to test price numerically rather than textually. For this exam-
ple, all fruit and vegetable elements that have a price greater than 1.99 will be selected:

//*[price > 1.99]

This expression selects the two vegetable elements and the two fruit elements having
prices greater than 1.99. Similarly, you can select the elements with a price less than or equal
to 1.99:

//*[price <= 1.99]

Advanced Filtering

With the basic concepts of filtering behind you, you can start diving into the fun stuff. The
expressions to this point have been basic and unoptimized. The following sections will show
more complex expressions as well as explain ways to optimize them. Optimization is impor-
tant, because it helps reduce the amount of processing that needs to take place, which in turn
results in faster execution time. Before getting to that, though, I'll touch on XPath built-in
functions, which can be useful when writing expressions.

XPath Functions

XPath implements a core library of functions you can use to evaluate expressions. The func-
tions are broken up into specific areas. These areas include node set, string, Boolean, and
number functions. Tables 4-4, 4-5, 4-6, and 4-7 describe the functions for each area.

Note In the following tables, optional parameters are enclosed in brackets, []. A parameter that is not
required, yet can be repeated any number of times, is followed by *. An object parameter can be a node set,
Boolean, number, or string.

Table 4-4. XPath Node Set Functions

Function Description

last() Returns the number of items in the node set.

position() Returns the one-based index of the context node.

count(node-set) Returns the number of nodes in the node set.

id(object) Selects elements based on their IDs. If object is a node set, then each

of the string values of the nodes are supplied as arguments to the id
function. A string parameter may be a whitespace-separated list of
strings.

CHAPTER 4

XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Function

Description

local-name([node-set])

Returns the local-name portion of the expanded name for the first

node of the node-set in document order. If node-set is empty or the
first node does not have an expanded name, an empty string is
returned. If node-set is omitted, the context node is used as the
parameter value.

namespace-uri([node-set])

Returns the namespace URI of the expanded name for the first node

of the node-set in document order. If node-set is empty or the first
node does not have an expanded name, an empty string is returned.
If node-set is omitted, the context node is used as the parameter

value.

name([node-set])

Returns the QName for the first node of the node-set in document

order. If node-set is empty or the first node does not have an
expanded name, an empty string is returned. If node-set is omitted,
the context node is used as the parameter value.

Table 4-5. XPath String Functions

Function

Description

string([object])

concat(string, string, string*)

starts-with(string1, string2)
contains(string1, string2)

substring-before(string1, string2)

substring-after(string1, string2)

substring(string, start [,length])

string-length([string])

normalize-space([string])

translate(string1, string2, string3)

Converts object to a string. If object is omitted, the
context node is used as the parameter value.

Returns the concatenation of the string parameters.

Returns Boolean TRUE if string1 starts with string2 and
otherwise FALSE.

Returns Boolean TRUE if string1 contains string2 and
otherwise FALSE.

Returns string from string1 that precedes the begin-
ning of the substring, string2, found in string1. If not
found, an empty string is returned.

Returns string from string1 that follows the end of the
first substring, string2, found in string1. If not found,
an empty string is returned.

Returns the substring found in string beginning at the
one-based position start with a length of Iength. If
length is not supplied, all characters to the end of string
are returned.

Returns the number of characters in string. If string is
not supplied, the string value of the context node is
used as the argument.

Returns the normalized string of string. If string is not
supplied, the string value of the context node is used as
the argument.

Translates the characters in string1 matching those in
string2 into characters from string3. For example,
translate('abcdefgh', 'aceg', 'ACE") resultsin
AbCdEfh. The g is removed because it is a character to
match and because a corresponding character in
string3 does not exist.

137

138

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Table 4-6. XPath Boolean Functions

Function Description

boolean(object) Returns the Boolean value of objects. A number is TRUE unless it is a positive
zero, a negative zero, or NaN. Node sets are TRUE unless empty. Strings are TRUE
unless empty.

not(boolean) Returns the opposite of the Boolean passed in. TRUE becomes FALSE, and FALSE
becomes TRUE.

true() Returns TRUE.

false() Returns FALSE.

lang(string) Returns a Boolean indicating whether the specified xml: 1ang identified by the

lang parameter is within the scope of the context node.

Table 4-7. XPath Number Functions

Function Description

number (object) Converts object to a number. Boolean TRUE is converted to 1 and FALSE to 0.
A string having a numeric value (all numeric) will convert to a numeric;
otherwise, it will convert to NaN. A node set is converted to a string, which
is then converted to a number.

sum(node-set) Returns the sum of each node, converted to a number, in the node-set.
floor(number) Returns the largest integer not greater than number.

ceiling(number) Returns the smallest integer not less than number.

round(number) Returns the closest integer to number.

Throughout this chapter, I'll use many of the functions in Tables 4-4, 4-5, 4-6, and 4-7
within the examples because it is easier to understand their use and functionality within some
context. With everything that has been covered up to now, you can begin looking at more com-
plex expressions and optimization.

XPath Optimization

Some people consider optimization to be an art form. XPath can require a lot of processor
power depending upon the size of the document, its structure, and the expressions you write.
XPath works on a document loaded into memory, so when the document is large, not only do
you have the overhead of this large document in memory but you must also consider the pro-
cessing involved to select the nodes for which you are looking. Pretty much every query,
meaning the location paths and expressions, written to this point have searched all the nodes
in a document. They have used the // notation, which means they are searching the root node
and all its descendants, and have filtered the node sets from there.

The document in Listing 4-5 is a condensed document that in theory would have many
book, magazine, and cd elements along with much more content for these elements. I will use
this document to illustrate some basic optimization throughout this chapter as you encounter
more and more advanced documents.

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Listing 4-5. Abbreviated Store Document

<store>
<books>
<book>
<name>Cannery Row</name>
</book>
<!-- Many book elements -->
</books>
<magazines>
<magazine>
<title>fdsfsd</title>
</magazine>
<!-- Many magazine elements -->
</magazines>
<cds>
<!-- cd elements -->
</cds>
</store>

If you wanted to select all the book elements in the document, you might first just write
the following expression:

//book

The problem with this expression is that the node set to be filtered contains every ele-
ment in the document. This is a big waste of resources, because the name of every element
in the document will have to be tested against book. This includes all the magazine and cd ele-
ments as well. You have an idea of the structure of the document and know that book elements
reside within the books element, so specifying a more precise path can cut down processing
significantly.

This is a much more precise query:

/store/books/book

Using this query, the expression first filters all books elements that are children of the root
element. Additional filtering from this resulting set then takes place by matching all the child
elements of the resulting books elements that are named book. Because you have already
excluded the magazines and cds subtrees with the second step in the path, you have cut the
processing down by two-thirds. The amount of time and processing saved really depends
upon how many magazine and cd elements exist in the document, but you may have just saved
yourself a good deal of time because you can use your system resources for other tasks. You
will encounter more optimizations as you read about complex expressions and functions next.

Complex Expressions and Documents

You can now start putting all the topics in this chapter together. The following sections will
cover everything you have encountered to create complex queries. I'll use the document in
Listing 4-6 as the document from which to make selections.

139

140 CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Listing 4-6. Expanded Store Document

<store xmlns="http://www.example.com/store" xmlns:bk="http://www.example.com/book"
xmlns:mag="http://www.example.com/magazine">
<books>
<rare>
<bk:book gty="4">
<bk:name>Cannery Row</bk:name>
<bk:price>400.00</bk:price>
<bk:pubdate>1945-01-01</bk:pubdate>
<bk:authors>
<bk:author>Steinbeck, John</bk:author>
</bk:authors>
<bk:edition>1</bk:edition>
<bk:signed>true</bk:signed>
</bk:book>
<bk:book qty="1">
<bk:name>The Raven and Other Poems</bk:name>
<bk:price>100000.00</bk:price>
<bk:pubdate>1845-01-01</bk:pubdate>
<bk:authors>
<bk:author>Poe, Edgar Allan</bk:author>
</bk:authors>
<bk:edition>1</bk:edition>
<bk:signed>true</bk:signed>
</bk:book>
</rare>
<classics>
<bk:book qty="25">
<bk:name>Grapes of Wrath</bk:name>
<bk:price>12.99</bk:price>
<bk:pubdate>2002-01-01</bk:pubdate>
<bk:authors>
<bk:author>Steinbeck, John</bk:author>
</bk:authors>
</bk:book>
<bk:book qty="25" xmlns:bk="http://www.example.com/classicbook">
<bk:name>0f Mice and Men</bk:name>
<bk:price>9.99</bk:price>
<bk:pubdate>1993-09-01</bk:pubdate>
<bk:authors>
<bk:author>Steinbeck, John</bk:author>
</bk:authors>
</bk:book>
</classics>

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

<classics xmlns="http://www.example.com/ExteralClassics">
<book qty="33">
<name>To Kill a Mockingbird</name>
<price>10.99</price>
<pubdate>2002-03-01</pubdate>
<author>Lee, Harper</author>
</book>
</classics>
</books>
<magazines>
<mag:magazine qty="75">
<mag:title>fdsfsd</mag:title>
<mag:issue>2005-11-01</mag:issue>
<mag:price>2.99</mag:price>
<mag:publisher>fsdfdsfsd</mag:publisher>
</mag:magazine>
<mag:magazine qty="5">
<mag:title>fdsfsd</mag:title>
<mag:issue>2002-10-01</mag:issue>
<mag:price>2.99</mag:price>
<mag:publisher>fsdfdsfsd</mag:publisher>
</mag:magazine>

</magazines>
<cds>
<!-- (D elements go here -->
</cds>
</store>

Dealing with Namespaces As before, you will start by selecting all book elements, using an
unoptimized query, from the document. Even if you remembered that this document is using
namespaces, you might be tempted to write this:

//bk:book

This has a few things wrong with it. The first is that the resulting node set will be missing
two book elements. Look closely at the last two book elements. The first one redefines the bk pre-
fix association, so this element is no longer in the http://www.example.com/book namespace.
The last one is using the default namespace from its parent classics element that defines the
namespace http://www.example.com/ExteralClassics. If you recall, node selection by name is
by the QName, so you must take into account the namespace of the element. To ensure only
book elements are retrieved and you don’t have to worry about the namespace, you should
write the expression as follows:

//*[local-name() = "book"]

The expression now checks only the local name of the element, matches against book, and
returns all five book elements. This still has another issue, though. Based on how this is writ-
ten, the node set to be filtered contains every element in the document. This is a big waste of

141

142

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

resources, because the local name of every element in the document will have to be tested
against book. This includes all the magazine elements as well. You have an idea of the structure
of the document and know that book elements reside within the books element, so you can
optimize this query.

You might be tempted to write the following query:

/store/books/*[local-name() = "book"]

Don't be surprised when your results come up empty. The unprefixed elements in the
document fall under the default namespace http://www.example.com/store. So, how can you
write optimized queries that get around the issue that you have no prefix to use? Most tech-
nologies employing XPath offer ways to register namespaces and associated prefixes. You can
then use these prefixes for matching QNames. You will see how to do this with regard to the
DOM extension in Chapter 6, with regard to the SimpleXML extension in Chapter 7, and with
regard to the XSL extension in Chapter 10. For now, I will just show how to write queries that
can perform selections without external help.

Note Defaulted namespaces are not as easily dealt with in XPath as those using prefixes. Most XML
technologies employing XPath offer ways to associate prefixes with namespaces that then can be used to
query XML documents. You will see how to use this technique with regard to the DOM extension in Chapter 6,
with regard to the SimpleXML extension in Chapter 7, and with regard to the XSL extension in Chapter 10.

The first step to take is to break the path up and think about how you could find the store
element. The immediate idea that may come to mind is to use the same technique you used to
filter for the book elements:

/*[local-name() = "store"]

This would work but can be written much simpler and not require the additional filtering
step:

/%

As mentioned with axes as well as with default node types, * is the abbreviation for
child: :*, and the default node type is an element node. XML documents can contain only
a single document element, and the current location is the root node. Deductively, you can
reason that matching every child element of the root node is the same as selecting the docu-
ment element.

The next step in the path is to select the books element, which is also in the default name-
space. In this case, it is perfectly fine to use the local name test, /*/*[local-name() = "books"].
If you know the exact structure of the document, you can also specify the books element by
location:

/*/*[position()=1]

/*/*[position() < 2]
/*/*[1]

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

All these queries are equivalent. The predicate is filtering based on the position of the
node within the node set returned from /*/*. If you can be certain, usually from a DTD or
schema, that the first child element of the store element is the books element, then each of
the expressions filters for the node that is the first node in document order in the node set.
The last expression uses the single numeric 1. A single numeric as an expression is the
abbreviation for writing position()=[number].

Tip You can abbreviate the expression [position()=x] as simply [x]. Using a number alone is equiva-
lent to calling the position() function.

Within the books element, the books are contained within parent elements that describe the
types. At this point, the types are of no concern, so this step will take the form of *. The last step
is to select the book elements. I have already presented the expression for this; you use a check
on the local name. Combining all the steps, you could write queries of the following forms:

Ak
Ak
Ak
Ak

local-name() = "books"]/*/*[local-name()="book"]
position()=1]/*/*[1local-name()="book"]
position() < 2]/*/*[local-name()="book"]
1]/*/*[local-name()="book"]

— e —

Each of these queries will result in the selection of the five book elements.

This raises an interesting question. You may know the structure of the document, but
how could you select only book elements within the http://www.example.com/classicbook
namespace? In Listing 4-6, the book element within this namespace has redefined the bk pre-
fix, so using the QName with a prefix of bk is not an option. The prefix bk will be associated
with the http://www.example.com/book namespace because of scoping. You aren’t using any
technologies at this point that allow you to register a namespace and prefix, so that is also
not viable. One way to accomplish this is to test the actual namespace on the element:

/*/*[1]/*/*[namespace-uri()="http://www.example.com/classicbook"]

Rather than testing for the local name of the element, you can test the actual URI of the
namespace. This example assumes no other elements on the same document level as the book
elements exist and reside in the same namespace. If this is a possibility, the predicate can
include the check of the local name:

[local-name()="book" and namespace-uri()="http://www.example.com/classicbook"]

In this case, it first makes sure the element has a local name of book and, if that is TRUE,
checks whether the namespace URI is http://www.example.com/classicbook. You can also
optimize this expression. Once an expression returns FALSE, no further filtering takes place for
the current node. In the case of the books element, you can safely assume that the majority of
the child elements are book elements. Most of them, however, would not be in the namespace
being searched. Checking the namespace URI first would eliminate almost every check for the
local name of the node. So, an optimized predicate would be as follows:

[namespace-uri()="http://www.example.com/classicbook" and local-name()="book"]

143

144

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Comparisons I demonstrated simple comparisons earlier in this chapter, but that was before
the introduction of functions. This section will provide a more in-depth look at expressions
performing comparisons as well as calculations. I'll continue to use the document in Listing 4-6
as the document being queried.

Performing a search based on a date may seem like a daunting task. Within the document,
the element pubdate is using the format YYYY-MM-DD, which also conforms to the XML
Schema date type. Unfortunately, XPath does not offer any date functions, so these values are
treated as strings. However, string functions are available that can be manipulated to accom-
plish the task at hand. So, how do you go about selecting all books and magazines published
in 20022

You will need substring functions to split the date apart. It is a given, because the dates
conform to the XML Schema date type, that the first four characters are the year, so using the
substring function, the starting position is 1 and the length is 4:

/*/*[1]/*/*[*[local-name()="pubdate" and substring(., 1, 4)="2002"]]

No, you are not going cross-eyed. This is really a valid XPath query. The initial path should
look familiar to you. The path /*/*[1]/*/* is within the books subtree because you are using
the first position, and it selects all element nodes on the level at which the book elements reside.
Within the document, this selects all book elements, because no other types of elements are on
this level within the books subtree. The predicate is where you may get a little bug-eyed.

Breaking the predicate, [*[local-name()="pubdate" and substring(., 1, 4)="2002"]],
into pieces, the first * indicates that the filter takes place on all child elements of the current
node set. The current node set, in this case, consists of all the book elements. That leaves
another predicate: [local-name()="pubdate" and substring(., 1, 4)="2002"]. This predicate
is performed on all the child elements of the current node set. The first test is to see whether
the local name matches pubdate. If this returns TRUE, then you know the current node being
run against this filter is a pubdate element. You can then check the string value of this element
using the substring function to see whether the first four characters match 2002. The reason
the first parameter is . (a period) is that the context node itself or the current node is being
passed as an argument to the function. You can also write the substring function as
substring(self::*, 1, 4) orsubstring(child::text(), 1, 4).An element has a string value
that consists of all text nodes within its contents and the contents of its children. Passing in
the context node, which must be a pubdate element since it passed the first check, will effec-
tively pass in the text containing the date being searched. This query may have looked
complicated but, once broken out, should be easy to understand.

Well, you have selected all the book elements, but the query is supposed to also return all
the magazine elements published in 2002. You face a few problems: the elements do not live on
the same level within the document, the names of the elements being returned are not the
same, the element names containing the dates are not the same, and they also live in different
subtrees. For starters, the magazine elements that have an issue date in 2002 will be selected:

/*/*[2]/*[*[local-name()="1issue" and substring(., 1, 4)="2002"]]

This query is almost the same as the query for the book elements. The differences here are
that the magazine subtree is being traversed (indicated by the /*/*[2] portion of the path), the
steps are not as deep (notice there is a /* removed from the path), and the local name test is
now performed against the string issue. The query is broken down the same way the previous
book selection was broken down.

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

This still hasn't selected all the nodes you originally wanted. The node set is supposed to
contain both book and magazine elements. Right now, you have two distinct queries. One selects
the book elements, and the other selects the magazine elements. An easy way at this point to get
the desired results is to use the union operator. This operator joins node sets together. If you
thought the previous queries were overwhelming, take a look at how to use a union with the
two queries:

/*/*%[1]/*/*[*[Llocal-name()="pubdate" and substring(., 1, 4)="2002"]] |
/*/*%[2]/*[*[1ocal-name()="1issue" and substring(., 1, 4)="2002"]]

This query is actually a single line. It joins the first query, selecting the book elements, with
the second query, selecting the magazine elements using |, which is the union operator.

If you're using XML, you probably tend to be more on the daring side. You must be able to
write a query without using the union operator that will select all the elements in one shot,
right? A simplified way is to write this:

/7*¥[*[(Local-name()="pubdate" or local-name()="issue") and
substring(., 1, 4)="2002"]]

This again doesn'’t fit on a single line, but in the XML world you can ignore insignificant
whitespace. This query checks every element in the document to see whether it has a child
element with the local name pubdate or issue. If either of these is TRUE, then it checks the
substring of the string value for that child element:

/*/*[1local-name()="books" or local-name()="magazines"]
/7*¥[*[(local-name()="pubdate" or local-name()="issue"
and substring(., 1, 4)="2002"]]

This is another one-liner broken into multiple lines. This is an optimized version of the
previous query. The previous query selected every element in the document. In this revised ver-
sion, it specifies to select only from the books or magazine subtree. The document in Listing 4-6
has a cds tree, which could contain any number of cd elements. Rather than checking those,
because only book and magazine elements are to be returned, the two subtrees are explicitly set
in the path. Within those subtrees, on the other hand, every element is checked. You will notice
the use of // after the predicate for the books and magazines elements. That again is the abbrevi-
ation for descendants-or-self: :node(), where node() is the element because of the axis.

The following queries are alternative ways to write this query. Each is specific to the docu-
ment in Listing 4-6. If you added types, such as dvds elements, they may not work.

/* Using position of element */
/*/*[position() < 3]//*[*[(local-name()="pubdate" or local-name()="issue"
and substring(., 1, 4)="2002"]]

/* Checking for != cds */
/*/*[local-name() != "cds"]//*[*[(local-name()="pubdate" or local-name()="issue"
and substring(., 1, 4)="2002"]]

These queries all select the same node sets. Since I've already covered everything you
need to break these queries down, I will leave it up to you to figure out how they work.

145

146

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Calculations Using functions within XPath allows some calculations to be performed. Calcula-
tions and functions are typically reserved for use in a predicate. It is possible, though, for XPath
to return results other than node sets.

Using Listing 4-6, you can obtain the sum of all price elements. For these examples, brevity
over optimization will be the factor for writing the expressions. For example:

sum(//*[local-name()="price"])

This will return the value 100439.95. This will also retrieve the total number of price ele-
ments, indicating the number of items in the store:

count(//*[local-name()="price"])

This returns the value 7. Using these two results, you can obtain the average item price,
which will be rounded:

round(sum(//*[local-name()="price"]) / count(//*[local-name()="price"]))

The resulting value for the rounded average price is 14349.

Using calculations to return non-node sets in XPath is pretty limited. For example, you simply
cannot calculate the worth of inventory on hand. This involves taking the sum of (price * qty) for
each item. The sum function takes a node set as an argument, so you have no way to perform this
mathematically.

You can also perform calculations within the predicate. For some strange reason, your work-
flow requires that every other book element needs to be selected for processing:

//*[1local-name()="book" and position() mod 2 = 1]

The position of the book element is tested to find out whether it is odd or even. You can
do this through the position() mod 2 piece of the predicate. The operator mod returns the
remainder from a truncating division, so the value 1 means the position is odd. This query
returns every other book element in the document starting with the first one encountered.

XPath Summary

You can use XPath locate and retrieve information from a document. As you have seen, it is
simple to use yet offers the ability for advanced and complex querying. In Chapters 6, 7, and
10, which cover the PHP 5 XML extensions, you will be exposed to more XPath techniques.
You will not only use it through the extensions but also as the foundation of XSLT.

Introducing XPointer

XPointer is a W3C specification, though still a working draft, used for fragment identification
for URI references. It is an extension of XPath so uses the same syntax to address the internal
structure of an XML document using a URI. You must perform character escaping for XPointer
expressions depending upon the content of the expression. This means that if XPointer is used
within a UR], it must follow the same escaping rules a URI follows; for instance, you must escape
a space to %20. When used within an XML document, it must follow the escaping rules for XML.
For example, XPath uses quotes around string values. XPointer, when embedded within a doc-
ument, must have the quotes escaped, such as using 8quot;.

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

XPointer and XPath Expressions

XPointer, being an extension of XPath, uses the XPath syntax. This section will not attempt to
cover the full XPath syntax, because I explained this earlier. I will use the document in Listing 4-4
to show how to reimplement the XPath expressions here using XPointer. There is little new infor-
mation in this section because writing XPointer expressions is a simple as this:

xpointer(xpath_expression)

Taking a few of the example XPath expressions, the equivalent versions in XPointer are as
follows:

/* Select all elements containing the attribute names specials */
xpointer(//*[@specials])

/* Select all time elements having a parent named fruit */
xpointer(//time[../self::fruit])

/* Select all elements with a child element named price having a value > 1.99 */
xpointer(//*[price > 1.99])

XPointer is really as easy as that.

When used with a UR], the xpointer part is the document fragment portion of the URIL.
For example, suppose the produce document from Listing 4-4 was a file located at http://
www . example.com/produce.xml. The desired result is to retrieve all elements that contain the
specials attribute, which was the first example listed previously. For example:

http://www.example.com/produce.xmlixpointer(//*[@specials])

The URL is broken down into two components: the base URL, which is http://
www.example.com/produce.xml, and the document fragment, xpointer(//*[@specials]).In
essence, the full URL is equivalent to saying, “Using the produce.xml file located at http://
www . example.com, return all elements containing a specials attribute from the document.”

As you will see in later sections of this chapter, you don't always need full URLs because
you can imply them by other means; therefore, simply using the xpointer (xpath_expression)
syntax may be enough. It is also worthy to note that XPointer is most often used when employ-
ing XInclude, which will be covered in the “Introducing XInclude” section, and XSL, which will
be covered in Chapter 10. You will also see XPointer used in conjunction with XLink. I have
included a brief introduction to XLink, but this technology is really out of the scope of this book.
Currently, XLink is not supported by libxml2, the underlying XML library used within PHP 5,
and no future plans exist to support it.

Stacking XPointer Expressions

Another nice feature of XPointer is the ability to stack expressions. If the first expression fails,
then the following expression runs. You can add expressions to be processed only if the pre-
ceding expression has failed. Continuing to use the data from Listing 4-4, XPointer will first
attempt to retrieve all elements with the attribute specials having the value BADVALUE. This
document doesn’t have any of these attributes with that value, so the expression fails, and
the second expression is processed:

147

148

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

xpointer(//*[@specials="BADVALUE"])xpointer(//*[@specials])

The results of this will be all elements containing the attribute specials because of the
failure of the first expression.

The following example returns the same results as the previous example. The expression
xpointer(//*[@specials]) resulted in returning data, so the last expression, xpointer(//*),
is never executed.

xpointer(//*[@specials="BADVALUE"])xpointer(//*[@specials])xpointer(//*)

XPointer and Namespaces

When I discussed namespaces with regard to XPath, one of problems encountered was deal-
ing with default namespaces in documents. I mentioned that some technologies offer ways to
register namespaces and prefixes to be used within the XPath queries. XPointer is one of the
technologies providing functionality for this. For example:

<produce xmlns="http://www.example.com/produce">
<vegetable>tomato</vegetable>
<vegetable>lettuce</vegetable>
<fruit>apple</fruit>

</produce>

Given this document containing a default namespace of http://www.example.com/
produce, all vegetable elements need to be retrieved. Using XPath, you would need to test
either the local names of the elements or the namespace uri for the elements:

/*/*[@local-name()="vegetable"]

XPointer adds the ability to register namespaces to be used for the XPointer expressions
in the following form:

xmlns(prefix=URI)

prefix is the prefix to associate with the namespace URI identified by URI. Using this
notation, the XPointer expression would be as follows:

xmlns(veg=http://www.example.com/produce)xpointer(//veg:vegetable)

Just as the XPointer expressions can be stacked, so can the namespace registrations
(the following code has been split over two lines because of length):

xmlns (veg=http://www.example.com)xmlns(fr="http://www.example.com/fruit)
xpointer(//veg:vegetable)

In the event the same prefix is defined multiple times, the rightmost definition is the one
used. An example of this is when you define the prefix veg multiple times. For example:

xmlns (veg=http://www.example.com)xmlns(veg="http://www.example.com/fruit)

This causes veg to be associated with the namespace http://www.example.com/fruit.

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

XPointer Extending XPath

At first glance, it may seem that XPointer is just an XPointer function taking an XPath expres-
sion as an argument. For the most part it is, but it also extends XPath to offer some additional
functionality. XPath introduces some additional concepts such as locations, location types,
location sets, points, and ranges. It adds some functions that can be used under XPointer. The
following sections are not a complete, in-depth examination of XPointer and its extended
functionality. At the current time, XPointer is still a working draft, and not all functionality is
implemented in libxml. All XPath topics covered to this point are fully supported, however.

Location, Location Types, and Location Sets

The basic unit within XPath is the node, and a document is a tree of nodes. XPointer general-
izes this and uses the concept of a location. A location not only includes nodes, from the XPath
point of view, but also includes points and ranges, which I will explain shortly. A location type
is a node type, point type, or range type. Location sets are generalized node sets. They not only
include nodes, but they also include points and ranges.

Points and Ranges

Points and ranges represent non-node locations, but they are considered to be two additional
node types that can be used when writing expressions. A point can represent the position pre-
ceding or following an element node as well as a location preceding any individual character
within a text node, comment, attribute value, or PI. It is defined by a container node and an
index, which is a non-negative integer. The index, unlike an XPath position, is zero-based. Points
do not have expanded names and have empty string values.

A range, defined by starting and ending points, contains all the XML structure in between.
Just as a point is just some position within a document, a range can contain partial pieces of
nodes. Ranges for nodes—other than element, text, and root nodes—must have the same con-
tainer node for the starting and ending points. For example, a range with a starting point inside
a comment node must have an ending point within the comment node. The ending point can-
not extend past the comment node.

Functions

XPointer adds some new functions to those already available from XPath. You can use these
functions to deal with ranges, location sets, and pointers, which are not part of XPath.

range-to
This is the syntax for range-to:
location-set range-to(location-set)

This function returns a range consisting of a starting point from the context and an
ending point determined from the location set passed in as the parameter.

The following example would return a range from the starting point for the element
identified by the ID chap1 to the ending point of the element identified by the ID chap2:

xpointer(id("chap1")/range-to(id("chap2")))

149

150

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Given the following document:

<book>
<chapter xml:id="chap1">
<!-- chapter data -->
</chapter>
<chapter xml:id="chap2">
<!-- chapter data -->
</chapter>
</book>

everything between the opening chapter tag with the xml:id="chap1" and the closing chapter
tag with the xml:id="chap2" would be selected.

string-range

This is the syntax for string-range:

location-set string-range(location-set, string, position?, length?)

This function returns a set of ranges where the string value of the location-set matches
the string parameter:

The position parameter is optional and indicates the starting point of the range being
returned relative to the matched string. The default value, when not specified, is 1, meaning
that the starting point of the range will be the point preceding the character of the matched
string.

This finds all occurrences of the string Joe in name elements:
xpointer(string-range(//name,"Joe"))

This selects the character e from the first occurrence of the string Joe:

xpointer(string-range(/,"Joe",2,1)[position()=1])

range
This is the syntax for range:
location-set range(location-set)
This function returns a location set composed of the ranges for each location of the
location-set input parameter:
range-inside
This is the syntax for range-inside:
location-set range-inside(location-set)

This function returns a location set composed of the ranges contained within each location
of the location-set input parameter. A location, which is a range, returns the range itself. Other
locations use the location as the container node and return the range within the container.

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

start-point

This is the syntax for start-point:
location-set start-point(location-set)

This function returns a location set composed of all the starting points for each location of the
location-set input parameter. For example, start-point(//chapter) would return a set of points
immediately following the opening tag of a chapter element, and start-point(chapter[1]) would
return a single point located after the opening tag of the first chapter element.

end-point
This is the syntax for end-point:
location-set end-point(location-set)

This function returns a location set composed of all the ending points for each location of
the location-set input parameter:

here

This is the syntax for here:
location-set here()

This function is valid only when being interpreted within an XML document or external
parsed parameter. It returns a location-set composed of a single member, which is the node
that contains the expression being evaluated. For a text node within an element node, the ele-
ment node is returned.

origin
This is the syntax for origin:
location-set origin()

This function is applicable only when using XLink. It returns a location-set that locates
the element from where the traversal began:

XPointer Summary

XPointer has not yet achieved recommendation status from the W3C. It has actually been
broken up into several specifications. Using XPath syntax should be safe without having to
anticipate any changes. This syntax is fully supported in libxml and the PHP 5 extensions
where XPointer is applicable. The extended functionality presented here may change over
time, and currently the extended functionality is not fully supported in libxml.

Introducing Xinclude

XInclude is aW3C specification for including external documents, fragments, and other con-
tent within an XML document. This technology differs from the use of external entities in many
ways. External entities are processed while a document is parsing. XInclude is independent of

151

152

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

parsing. It occurs when instructed by the user of the document, which can occur while parsing,
after the fact, or even not at all. External entities also must be defined in a DTD. XInclude does
not require a DTD to work within a document. This allows it to work independently of valida-
tion. Failure to load an external entity normally results in a failure to load the base document.
XInclude, on the other hand, offers the ability to provide alternatives in the event the remote
data cannot be loaded. Using a fallback mechanism allows the base document to load success-
fully even though a remote source may be unavailable. The following sections will explain the
syntax used to employ XInclude as well as how you can use it within an XML document.

XInclude defines the namespace http://www.w3.0rg/2001/XInclude. Although you can
associate any prefix with this namespace, the typical prefix used is xi. This namespace contains
two elements, include and fallback. Within the following sections, the xi prefix will refer to the
http://www.w3.0rg/2001/XInclude namespace, so the elements will appear as xi:include and
xi:fallback. Listing 4-7 is a small portion of the courses XML document. This document
resides in the file courses.xml, and I will use it in the following sections for illustration.

Listing 4-7. Small XML Course Document for the File courses.xml

<?xml version="1.0" ?>
<courses>
<course xml:id="c1">
<title>Basic Languages</title>
<description>Introduction to Languages</description>
</course>
<course xml:id="c2">
<title>French I</title>
<description>Introduction to French</description>
</course>
</courses>

xizinclude
The xi:include element defines the location of the entity to include as well as any additional

information that may be needed to parse the entity when including. This element takes the
following form:

<xi:include href="URI" parser="value" xpointer="xpointerexp" encoding="EncName"
accept="value" accept-language="value" />

xi:include attributes

Although the attributes are optional, many of the requirements for attributes are dependant
upon each other.

href

The value of the href attribute specifies the URI of the resource to include. This is an optional
attribute. When omitted or set to an empty string (href=""), the location references the same
document.

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

parser

The parser attribute specifies how the included resource should be parsed. The possible values
are xml and text. When omitted, the default value of xml is used to parse the include. The value
xml indicates that the resource should be included as parsed XML and merged into the document.
The value text indicates that the resource should be included as text content. When including
text, escaping will be performed on the contents of the resource to ensure proper text content.
For instance, if an XML document were included using text parsing, characters such as < and >
would be included using their escaped values, &1t; and 8gt;.

xpointer

This attribute specifies an XPointer expression to be evaluated on the included document.
This will allow the include to limit or specify portions of the external xml resource to include.
The xpointer attribute is valid only when the parser attribute value is xml, either through
omission or explicitly set. Using the xpointer attribute when the parser value is text will
result in an error. When the xpointer attribute is omitted, the href attribute must be present.

encoding

The encoding attribute specifies the encoding of a text resource. It is applicable only when the
parse attribute is set to text. When parsing XML, the encoding is handled through the normal
XML encoding methods. There is no built-in mechanism to specify encoding on non-XML
resources, so you can set an encoding name, as defined by the acceptable XML encoding names,
as the value of this attribute for this purpose.

accept

The accept attribute is used for content negotiation while retrieving the resource. When fetch-
ing a resource through HTTP, the value of this attribute is added to the HTTP request as an
Accept header.

accept-language

This attribute is also used for content negotiation. Similar to the accept attribute, the value of
the accept-language attribute is added to the HTTP request as an Accept-Language header.

Using xizinclude

The xi:include element is easy to add to a document. Using the external file courses.xml in
Listing 4-7, you can construct a document that can include the contents of that file just as if
the remote document were contained within the base document:

<?xml version="1.0" ?>

<academic xmlns:xi="http://www.w3.0rg/2001/XInclude">
<xi:include href="courses.xml" parse="xml" />

</academic>

Processing the XInclude within this document results in the following output:

153

154 CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.0rg/2001/XInclude">
<courses>
<course xml:id="c1">
<title>Basic Languages</title>
<description>Introduction to Languages</description>
</course>
<course xml:id="c2">
<title>French I</title>
<description>Introduction to French</description>
</course>
</courses>
</academic>

T used the value xml for the parse attribute in this case, so the resource was processed and
included as XML. You could also include the resource as text, which will not parse but will
escape characters:

<?xml version="1.0"?>

<academic xmlns:xi="http://www.w3.0rg/2001/XInclude">
<xi:include href="xi.xml" parse="text" />

</academic>.

Processing the XInclude this time produces something along these lines:

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.0rg/2001/XInclude">
&1t; ?xml version="1.0" ?>&i#xD;
&1t;coursesdgt;
&1t;course xml:id="c1">
<titledgt;Basic Languages</titledgt;
&1t;descriptiondgt;Introduction to Languages</descriptiondgt;&ixD;
&1t; /coursedgt;&ixD;
&1t;course xml:id="c2">
<titledgt;French I≪/titledgt;&i#xD;
&1t;descriptiondgt;Introduction to French</descriptiondgt;&ixD;
&1t; /coursedgt;&ixD;
&1t;/coursesdgt;
</academic>

Even the XML declaration from the courses.xml file is included this time. XInclude
was instructed by the parse attribute not to process the resource as XML but to include it
as text. The XML declaration has no meaning as plain text and is added to the document.
You most likely have noticed that all characters have also been escaped, including much
of the whitespace.

If you notice the attributes within the courses.xml file for the course elements, they are
defined as xml:1id attributes, which automatically convert the attributes to type ID. Using the
xpointer attribute with the xi:include element, you can select a single course with the ID of
the element:

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

<?xml version="1.0" ?>
<academic xmlns:xi="http://www.w3.0rg/2001/XInclude">

<xi:include href="courses.xml" parse="xml" xpointer="xpointer(id('c1'))"/>
</academic>

The function id() takes a string argument, which must be surrounded by quotes. This
appears within an attribute whose value is enclosed in double quotes. For this reason, I used
single quotes to encapsulate the string c1. When the attribute value is enclosed by single quotes,
the string needs to be encapsulated by double quotes, like xpointer="xpointer(id("c1"))". This
returns the course element identified by the ID c1 from the courses.xml document. When
included, the resulting document looks like this:

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.0rg/2001/XInclude">
<course xml:id="c1">
<title>Basic Languages</title>
<description>Introduction to Languages</description>
</course>
</academic>

Including documents, text, and fragments is a straightforward and simple process. All that
is required is the addition of an include element, which resides in the http://www.w3.0rg/
2001/XInclude namespace, and the location of the resource to be included. Within this section
you have come to know this as the xi:include element. XInclude also offers a form of error
handling, which is covered next, in the event you encounter a problem with the xinclude.

xi:fallback

Sometimes an XInclude may fail. It could be because of a problem accessing the remote
resource or a possibly invalid selection of data. Normally this would cause an error in process-
ing. XInclude offers a way to handle this and use other functionality in the event of an error.
You do this using the xi:fallback element.

The fallback element is referenced here using xi:fallback. It falls under the same rules as the
xi:include element in respect to the namespace. It must reside within the http://www.w3.org/
2001/XInclude namespace, which for this chapter has been associated with the xi prefix. This ele-
ment lives as a child of the xi:include element and has no attributes. When an error occurs from
the xi:include element, the contents of the xi:fallback element are used for replacement.

Sometimes a network may be unavailable, or an Internet connection goes down. It is also
possible that the filename of the remote resource was mistyped in the xi:xinclude href attrib-
ute. Each of these would cause the include to fail. Take the case of an invalid href:

<?xml version="1.0" ?>

<academic xmlns:xi="http://www.w3.0rg/2001/XInclude">
<xi:include href="coursesBAD.xml" parse="xml" />

</academic>

This href is pointing to coursesBAD.xml, which is a file that does not exist. Processing the
xinclude will result in at a minimum a parser warning and possibly an unrecoverable parser

155

156

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

error. To prevent this from happening, the document could add an xi:fallback element to
handle an unexpected case:

<?xml version="1.0" ?>
<academic xmlns:xi="http://www.w3.0rg/2001/XInclude">
<xi:include href="coursesBAD.xml" parse="xml">
<xi:fallback>
External Resource Problem
</xi:fallback>
</xi:include>
</academic>

Processing this document results in the following:

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.0rg/2001/XInclude">

External Resource Problem

</academic>

The contents of xi:fallback were added to the document including the whitespace, such
as the line feeds. It is also possible to replace an error condition with no content. You do this
simply using an empty xi:fallback element:

<?xml version="1.0" ?>
<academic xmlns:xi="http://www.w3.0rg/2001/XInclude">
<xi:include href="coursesBAD.xml" parse="xml">
<xi:fallback />
</xi:include>
</academic>

The resulting document in this case is as follows:

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.0rg/2001/XInclude">

</academic>

The academic element still contains the insignificant whitespace from the base document,
which is why a blank line appears in the output.

You can also perform error handling in cases where an XPointer expression may fail. Using
the xpointer attribute, the course element identified by the ID c6 is to be selected from the doc-
ument. Looking at the document in Listing 4-7, you already know that no element with this ID
exists and expect it to fail:

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.0rg/2001/XInclude">
<xi:include href="courses.xml" parse="xml" xpointer="xpointer(id('c6'))"/>
<xi:fallback>Element not found</xi:fallback>
</xi:include>
</academic>

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

As expected, the element is not found, resulting in an error and the following document:

<?xml version="1.0"?>

<academic xmlns:xi="http://www.w3.0rg/2001/XInclude">
Element not found

</academic>

XInclude Summary

XInclude can be a useful technology to employ. Documents can be smaller in size as well as
reused. You can overcome many of the issues with external entities using this method as well
as the added ability to fall back to another case in the event of a failure. You can now handle
fatal errors, preventing the complete stoppage of processing. In addition, you don’t have to
load external resources during initial parsing. If the resources are not needed at the time, the
xincludes do not need to be processed, which not only keeps the document smaller but also
reduces the processing time.

Examining the Future of XML

Some new technologies are on the horizon in the XML realm. Though not yet standards, these
technologies are already being used in many commercialized products. The following sections
cover these technologies; I'll also provide an overview of XLink, which although not a new
technology is one that does not have as widespread use or support as the technologies already
covered.

Introducing XLink

Although XLink has been a W3C standard for many years now—since June 2001 (http://
www.w3.0rg/TR/x1ink)—this chapter will not provide an in-depth examination of this technol-
ogy. It is primarily a UI-based technology, and currently neither PHP nor libxml has native
support for XLink. You can create documents containing XLink elements by using extensions
such as the DOM extension (which will be covered in Chapter 6), but no XLink processing
abilities are offered. You may find some newer browsers beginning to support XLink, but unless
you are within a controlled environment, it is not recommended to use XLink for a public site.

XLink is for creating and describing links between resources. In terms of HTML, it would
be the equivalent to the anchor tag, , on steroids. XLink lives within the
http://www.w3.0rg/1999/x1ink namespace. For the purposes of this section, the prefix x1ink
will be associated with this namespace. XLink allows any element to become a link. This is a
big difference from HTML, where the only link is the anchor element. Listing 4-8 illustrates a
sample document using XLink.

157

158

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

Listing 4-8. XML Document Using XLink

<?xml version="1.0" encoding="IS0-8859-1"?>
<resources xmlns:xlink="http://www.w3.0rg/1999/x1ink">
<resource>
<description xlink:type="simple"
xlink:href="http://www.w3.0rg/TR/xpath/" xlink:show="new">
XPath 1.0 Specification
</description>
</resource>
<resource>
<description xlink:type="simple"
xlink:href="http://www.w3.0rg/TR/x1ink/" xlink:show="replace">
XLink Specification
</description>
</resource>
</resources>

Within the document, you should first notice the declaration of the XLink namespace
associated with the x1ink prefix. The description elements within this document are using
x1link attributes, which define link behavior. Many more XLink attributes exist than the ones
used here, but those are out of the scope of this book. The following sections will only briefly
cover the type, href, and show attributes.

type Attribute

The type attribute specifies the type of link the element represents. This attribute is manda-
tory for an element using x1ink. The possible values for this attribute are simple, extended,
locator, arc, resource, title, and none. The only two values I'll explain here are simple and
none, because the remaining values require much more in-depth knowledge of XLink than that
provided in this chapter. Using the value none, the element has no XLink meaning. All x1ink
attributes are skipped, and the element is processed as a normal XML element. The value
simple represents a simple link similar to an HTML anchor tag. The remaining values offer
more extended functionality.

href Attribute

The href attribute provides the location for an XLink application to find the remote resource.
Its value is a URI, and it works similarly to an href tag on an HTML anchor element.

show Attribute

The show attribute indicates where the link should be opened for presentation. Its value may
be one of new, replace, embed, other, or none. This attribute is similar to the target attribute for
an anchor tag but provides some additional values. The value of new will open the resource in a
new window or frame. This is equivalent to a target attribute with the value blank. The value
replace, which is also the default value when not set, will replace the current window or frame
with the content. Its HTML target equivalent is _self. The value embed will embed the contents
of the resource within the document. This value is similar to using an image tag, IMG, in HTML.

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

The value other does not offer any direction for presenting the resource content but indicates
to an XLink application that it should look for other markup for possible instructions. The last
value, none, is similar to other. It offers no direction for presenting the resource and means
that no other markup may exist to offer direction for an application.

XLink Summary

This has been an extremely brief look at the XLink technology. It has been around for quite a
while, and some people think it will revolutionize Internet browsing. XLink has been a recom-
mended specification for more than four years now, and I don’t know about you, but I personally
don’t have a browser that supports it yet. As far as applications using XLink, I haven’t yet come
across any, although they must exist. If you are interested in further information on XLink and
features not covered here, I suggest you read the specification at http://www.w3.org/TR/x1ink/.

Introducing XQuery, XPath 2.0, and XSLT 2.0

XPath 2.0 is the new generation of XPath. It serves as the foundation for XQuery and XSLT 2.0.
These technologies are still in the working draft phase from the W3C. You can find the specifi-
cations at http://www.w3.0rg/TR/xpath20/, http://www.w3.0rg/XML/Query, and http://
www.w3.0rg/TR/xs1t20/.

This section will introduce you to XPath 2.0. XQuery is almost synonymous with XPath 2.0
at this point, but XSLT 2.0 is out of the scope of this book. Although some of the larger database
vendors support XQuery, PHP 5 and libxml do not support these technologies natively at this
time (and there is currently no planned support). You may find, however, third-party extensions
providing support for these technologies, possibly an extension for a database. For these rea-
sons, I'll present only a brief introduction to XPath 2.0.

Like XPath 1.0, XPath 2.0 serves to address nodes within an XML tree. It is meant to be used
within a host language, such as XQuery and XSLT 2.0, and not as a stand-alone language. A
background on XPath 2.0 should suffice in the event you ever encounter XQuery or XSLT 2.0.

XPath 2.0 contains the same node types as 1.0, though the terminology for a root node has
changed to document node. XPath 2.0 uses the concept of a sequence. Everything is a sequence,
including numbers and strings. For example, a single number would be a sequence with a sin-
gle number, and a string would be considered a sequence with a single string. A node would be
a sequence containing one node. In terms of XPath 1.0, a node set would be a sequence of
nodes. Listing 4-9 shows a simplified version of the store document from Listing 4-6.

Listing 4-9. Simplified Store Document

<store>

<book qty="25">
<name>Grapes of Wrath</name>
<price>12.99</price>

</book>

<magazine qty="75">
<title>fdsfsd</title>
<issue>2005-11-01</issue>
<price>2.99</price>

</magazine>

159

160 CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

<book qty="25">
<name>0f Mice and Men</name>
<price>9.99</price>

</book>

<magazine qty="5">
<title>fdsfsd</title>
<issue>2002-10-01</issue>
<price>2.99</price>

</magazine>

</store>

Using XPath 1.0, you can retrieve all book and magazine elements with the following:
/store/*[self::book or self::magazine]

This query would return all the book and magazine elements in document order, which
means you would have a node set that contained a book element, a magazine element, a book
element, and finally a magazine element.

Under XPath 2.0, you could modify the query to retrieve all book elements followed by all
magazine elements, followed again by all book elements. This type of query is not possible
under XPath 1.0, because a node set could never contain the same element more than once.
For example:

(/store/book, /store/magazine, /store/book)

This expression is a sequence, where a comma separates each query. The first query
retrieves all book elements, the second query retrieves all magazine elements, and the last query
retrieves all book elements again. The result would be a sequence containing the nodes in the
order just detailed.

As you saw when performing calculations using XPath 1.0, you had no way to generate the
total value of inventory on hand. This is now possible using XPath 2.0. Sequences are iterable.
It is similar to being able to perform a foreach in PHP:

for $x in /store/* return $x/@qty * $x/price

This expression, after every iteration has been performed, will return a sequence contain-
ing the value of qty*price for each element in the store. The sequence returned would be
(324.75, 224.25, 249.75, 14.95).You could then use this sequence within the sum function.
The sum function in XPath 2.0 takes a sequence, not a node set:

sum(for $x in /store/* return $x/@qty * $x/price)

The end result would be 833.7, which is the value of the inventory on hand within the
store.
Another nice addition is if/then/else. The specification’s example looks like this:

if ($widget1/unit-cost < $widget2/unit-cost)
then $widget1
else $widget2

If my interpretation is correct, then you could calculate the total value on hand for items
with a quantity greater than 25 with the following:

CHAPTER 4 © XPATH, XPOINTER, XINCLUDE, AND THE FUTURE

sum(for $x in /store/* return if($x/@qty > 25) then $x/@qty * $x/price else 0)
You could, of course, have performed this in a much simpler manner:
sum(for $x in /store/*[@qty > 25] return $x/@qty * $x/price)

The last portion of XPath 2.0 I will cover is quantified expressions. These expressions allow
a test against a sequence and return TRUE or FALSE depending upon the quantifier used and
whether every item in the sequence evaluates to TRUE or only some do. For example, to test
whether everyitem in the store has a price of 12.99, you could use the following expression:

every $x in /store/*/price satisfies $x = 12.99

This expression returns FALSE. The price for the items varies, and only one item has a
price of 12.99. You could modify the expression using the some quantifier, which returns TRUE
if any of the price elements have a value of 12.99:

some $x in /store/*/price satisfies $x = 12.99

This expression returns TRUE, because a book element exists that has a price equal to 12.99.

As you can see, XPath 2.0 is extremely more powerful than XPath 1.0. This brief introduction
has only touched the surface of what is contained within XPath 2.0. Many additional functions
and keywords perform tasks such as casting, instance-of checking, and schema data typing.

In time, these technologies may be available for use with libxml and PHP, but as I have
mentioned, there is currently no planned support. By the time you are reading this, things
may have changed, but unless the specifications become recommendations soon, I highly
doubt it.

Conclusion

The primary focus of this chapter was on XPath 1.0, XPointer, and XInclude. The material
presented should give you enough information about the concepts and actual use of these
technologies to utilize them in PHP. Future chapters will build upon what you have learned
here and provide you with ways to use this information in the PHP 5 programming environ-
ment. You also learned about XPath 2.0 in this chapter. Although PHP doesn’t support XPath
2.0, XQuery, or XSLT 2.0, you may encounter an extension at a future date that uses one of
these technologies.

Using everything you have learned to this point, it is time to begin exploring how to use
XML in PHP 5. The next chapter will introduce you to some functionality that is common to
the XML-based extensions in PHP.

161

CHAPTER 5

PHP and XML

The latest version of PHP, PHP 5, introduces several new features and enhancements to the
PHP language. PHP 5 introduced a new object model, exceptions, and new database support
such as MySQLi and SQLite, and it makes major strides in the areas of XML and Web services.
This chapter will introduce you to the new XML-based extensions, their founding library, and
the basic functionality common to the PHP 5 XML extensions.

Introducing XML in PHP 5

Native XML support in PHP 4 was limited to certain basic technologies. The xml extension
supported SAX, the domxml extension provided tree support as well as some XSLT support,
and the xslt extension also provided XSLT support. With respect to Web services and data
exchange, the wddx extension supported distributed data exchange, and xmlrpc supported
XML-based remote procedure calls. Although this seems like a decent list of technologies, a
fundamental problem was that each was its own distinct extension using its own underlying
library. The extensions just did not work together, and to use all the extensions, you had to
install all the necessary libraries.

The shortcomings of XML in PHP 4 caused much frustration for those using it. All this
XML technology was available, but it would not work together. So, while PHP 5 was still in its
early stages of development, a discussion began that would ultimately shape the future of
XML in PHP 5. The developers decided to rework and rewrite the XML-based extensions to
provide the greatest functionality and flexibility as possible.

libxml2 in PHP 5

The central library decided upon for the core of the XML extensions is libxml2, which you can
find at http://www.xmlsoft.org. This library supports many of XML-related standards, includ-
ing the XML, Namespaces, XML Schemas, Relax NG, XPath, and XInclude specifications—just
to name a few. It was chosen for its vast XML support, which means additional technologies
can be implemented in PHP, and it is one of the fastest parsers; also, it is actively maintained
and widely used. Its sibling, the libxslt library, which is dependent upon libxml2 and also
located at http://www.xmlsoft.org, handles XSL within PHP 5.

Both of these libraries, being actively maintained, continue to evolve by providing fixes
to bugs and enhanced feature sets. To provide the best XML support possible, it is sometimes
necessary to require newer versions of these two libraries in order to build PHP. Such is the
case with PHP 5.1. The current minimum requirements for libxml2 and libxslt within PHP

163

164

CHAPTER 5 ' PHP AND XML

are libxml2 2.5.10 and libxslt 1.0.18 under PHP 5.0.x and libxml2 2.6.11 and libxslt 1.0.18 under
PHP 5.1.x. Although minimum requirements for these libraries have been established, it is
always a good idea to keep your libraries current. The bugs fixed in the latest versions alone
will enhance and ensure proper XML support within the PHP extensions. Some extensions
also provide new or additional functionality available only with newer libxml?2 libraries.

Tip Keeping your libxmI2 and libxslt libraries current ensures you have the latest bug fixes, but it also
means, for some PHP 5 extensions, you'll get additional functionality not found in earlier versions. Keep in
mind that this does not mean your application will behave exactly as it did before an upgrade. Both libraries
follow the XML specifications, so a fix in either library to conform to specifications may adversely affect any
expected output. In cases such as this, it is advantageous to correct the problem in the application rather
than rely on old library behavior that might not have been correct in the first place.

Core XML Extensions

Many XML extensions and packages exist for PHB, which will be mentioned later in this book.
If you are a PHP Extension and Application Repository (PEAR) fan, you have not been forgot-
ten. I have intentionally omitted discussing PEAR at this point because Chapter 13 is dedicated
to PEAR and XML. I will limit the current scope of this chapter to an introduction of the exten-
sions bundled with core PHP 5.

Tree-Based Parsers

Tree-based parsers allow you to construct or load existing XML documents so you can navi-
gate or modify them. To do this, the entire XML document is created or loaded into memory
as a tree. Given that the entire document must reside in memory, you need to consider your
memory constraints when using these technologies. These parsers also tend to initially be
slower for this same reason. Once in memory, however, these parsers offer the fastest access
to data within a document compared to other types of parsers.

Under PHP 4, domxml was the only native tree-based parser available. PHP 5 introduced
the new parsers DOM and SimpleXML. If you are unfamiliar with these parsers, then you may
be wondering why you need two. You will get an idea from the following descriptions; and
after reading Chapters 6, 7, and 11, you will have the full picture.

SimpleXML Extension

Using the new functionality offered by PHP 5, SimpleXML provides an extremely simple and
lightweight tool to manipulate XML documents. Compared to the DOM extension, SimpleXML
has an easy-to-learn API because you can view the document as a tree of objects, where objects
are synonymous with element nodes. Accessing a child element is as simple as using the child
element’s name as a property of an object. You can access attributes similarly to how you access
an array. To a limited extent, SimpleXML also allows for content editing. You can find further
information about SimpleXML in Chapter 7, which details this extension and offers examples
on usage.

CHAPTER 5 PHP AND XML

DOM Extension

The DOM extension is the PHP 5 replacement for domxml, which is now supported only under
PHP 4. The DOM extension was created to address many of the shortcomings of domxml while
also adhering to the W3C DOM specifications. Unlike SimpleXML, it has a large and complex API.
This, however, is the price you pay for functionality. The DOM extension allows you to access all
node types, allows you to create and modify complex documents, and gives you advanced navi-
gation and functionality. An advantage to this extension, if you are coming from another language
that incorporates a DOM-compliant parser, is that the API should already be familiar to you and
easy to begin using under PHP. The next chapter covers this extension in detail.

Streaming Parsers

Unlike a tree-based parser, a streams-based parser does not load the entire document into
memory, so memory usage and requirements remain at a minimum. Only small pieces of the
document are available for processing at a time. PHP 5 offers both a push parser via the xml
extension and a pull parser via the XMLReader extension. These parsers do not allow for docu-
ment editing and offer little to no navigational capabilities, because they are forward-only
streams. The minor exception to this is XMLReader.

xml Extension

The xml extension is the familiar SAX-based tool from PHP 4. Within PHP 5, a libxml compati-
bility layer has been added as the default library, eliminating the need for expat, although it
may still be built using expat. SAX offers event-based parsing. Functions, known as handlers,
are assigned to events, such as when the beginning or end of an element is encountered, and
data is sent to the functions for processing. This is known as a push parser because you are not
in control of the data sent to your functions. Upon the commencement of parsing, reading of
the XML document begins. As events are triggered, your handler is executed with the data
whether or not you are interested in the actual data. This continues until you halt the parser,

a fatal error occurs, or it reaches the end of the document. Chapter 8 covers the xml extension
API and offers examples.

XMLReader Extension

The XMLReader extension takes a different approach than the xml extension. It works as a
forward-only cursor on the XML document, stopping at each node in the document. The user
controls the progress through the document as well as decides whether any information should
be retrieved from the current node pointed at by the cursor. It is for these reasons XMLReader is
called a pull parser. The ease of use, because of a small AP, gives it some advantages over the
xml extension; in addition, XMLReader offers faster processing without an increase in memory
usage, offers streaming validation using DTDs or RELAX NG, offers support for namespaces,
offers support for xml:base and xml:id, and provides interoperability with the other PHP exten-
sions. Chapter 9 gives you an in-depth look at XMLReader and its usage.

Note XMLReader is available for PHP 5.0 as a PHP Extension Community Library (PECL) extension.
As of PHP 5.1, XMLReader is available as a core extension.

165

166

CHAPTER 5 ' PHP AND XML

XSL Extension

XSL is an XML-based style sheet language and the language used to transform XML documents
into other XML documents. Chapter 10 covers XSLT in more depth, but a quick example is when
you take an XML document and create an XHTML document from select data within the origi-
nal XML document.

Just as the XSLT support from the domxml extension has been removed in PHP 5, so
has the xslt extension. Along with the new DOM extension, PHP 5 offers a new XSL exten-
sion to work alongside it. This time, the DOM and XSL extensions not integrated into a
single extension, but XSL is its own entity (though still dependant upon DOM). A new fea-
ture, present in the XSL extension, is the ability to execute PHP and use the resulting data
within the transformation.

Data Exchange and Web Services

Using XML for exchanging data and integrating systems has become a hot topic of conversa-
tion. PHP 5 includes three native extensions in this area: wddx, xmlrpc, and SOAP. While both
the wddx and xmlrpc extensions have been around since the PHP 4 days, the new native SOAP
extension was created exclusively for PHP 5.

wddx Extension

Web Distributed Data Exchange (WDDX) offers the ability to serialize data and their native
types into platform-neutral XML. This XML can then be transmitted to another system that
can unserialize the data into its own native data types. No specific transport agent is defined
for this technology, because you can use any Internet protocol. WDDX is strictly for serializing
and unserializing data. Unlike the XML-RPC or SOAP technologies, WDDX doesn’t attempt to
define methods for calling remote functions. The wddx extension, which will be covered in
Chapter 15, is the tool for utilizing the WDDX technology.

xmlrpc Extension

As you read in Chapter 1, XML-RPC was one of the early Web services. It is similar to WDDX
in that data and their types are serialized and unserialized into/from XML, but it goes beyond
this. XML-RPC defines HTTP as its transport agent and includes the mechanism for calling
remote functions, which are also transported via an XML document. The xmlrpc extension,
which will be covered in Chapter 15, is the extension supporting XML-RPC in PHP 5.

SOAP Extension

Native SOAP support in PHP 5 was a major advancement for the XML-based technologies. Prior
to its inception, the alternatives were implementations written in PHP, such as PEAR::SOAP and
NuSOAP Although those are viable alternatives, the biggest advantage to native support written
in C is the great improvement in speed as well as the extension being considered the standard
SOAP implementation for PHP. You can find detailed information about the SOAP extension
and its usage in Chapter 18.

CHAPTER 5 PHP AND XML

libxml Extension

The libxml extension in PHP 5 is not your typical extension. It does not offer any type of spe-
cific XML technology. This extension serves as the center of common functionality shared
across all XML-based extensions and uses libxml2 as its backend. This includes functionality
exposed to PHP developers as well as those developing extensions using libxml2 as their
library. Within PHP 5.0.x, the only user functionality you could control was stream contexts.
You may ask why this is important. Later in the “Introducing PHP Streams” section, I will
explain the relationship of PHP streams and XML. After PHP 5.0 was originally rolled out, one
of the biggest issues developers brought up about using the extensions concerned the way
error handling was implemented in XML. PHP 5.1 introduced new error handling that could
be controlled and accessed through the libxml extension. I'll also discuss error handling for
both PHP 5.0 and 5.1 later in the “Performing Error Handling” section.

Configuring libxml Support

By default the libxml extension is enabled. Using Windows, libxml?2 is built into PHP. You do
not need to worry about the 1ibxml2.d11 file as you did under PHP 4. Disabling this extension
causes all extensions based on libxml to be disabled as well. You disable this and the other
extensions simply by adding the following directive to your configure directive:

--disable-1ibxml

Because you are reading this book on PHP 5 and XML, I highly doubt this is something
you would want to do. But it may be possible you still want the extensions coming from PHP 4
S0 you can continue to use expat. You can do this using the following:

--with-libexpat-dir= /path_to_libexpat

This directive takes priority over the configure directive for libxml, and if used, the exten-
sions xml, wddx, and xmlrpc will be built using expat support rather than libxml2 support.

Note Unless you are encountering problems using the lioxmi2 library with the xml, wddx, and/or xmlrpc
extensions, using libxmI2 is highly recommended. Not only does it offer a performance boost, but it also has
a greater number of active developers who can provide support in the event of any problems with extensions.

The libxml extension is enabled by default, but if it is disabled (because running some
packaged version has changed the code shipped from the http://www.php.net site), you can
enable it with this:

--enable-1ibxml

You can specify the location of the libxml2 libraries through a configuration directive. If
you cannot determine the location by running configure, or if you would like to specify a dif-
ferent location such as testing a different version of libxml2, you can set the path using the
following:

167

168

CHAPTER 5 ' PHP AND XML

--with-1libxml-dir=/path to libxml config

This directive looks for the file /path_to libxml config/bin/xml2-config.

In many cases, you will not have to worry about changing or including any directives for
libxml. The default configure included with PHP 5 works right out of the box for most systems,
but this will depend upon your operating system. You can find installation help in the PHP
manual as well as many places on the Internet. Now that you have your system up and run-
ning with libxml support, it’s time to look at what libxml extension and libxml2 support means
with respect to using any of the XML-based extensions.

Introducing Encoding

Internationalization is something encountered frequently when dealing with XML and when
working on the Internet in general. Those new to XML often run into problems when dealing
with documents not based on the ANSI encoding or the UTF-8 encoding. Basic knowledge of
Unicode is highly suggested, because you will need to understand what it means for a string
to be encoded and why it is important to know what encoding is used.

Parsers are required to support UTF-8 and UTF-16 at a minimum. The libxmlI2 library
supports a few additional encodings natively, and when built with iconv support (http://
www. gnu.org/software/libiconv/), it can support all encodings supported by iconv. The iconv
library provides functionality for conversions between different encodings. You may already
be familiar with this through the PHP iconv extension. Table 5-1 lists the base encodings sup-
ported by the libxml2 library. This is not an exhaustive list of available encoding names
because many encodings are aliases to many of these character sets.

Table 5-1. Base Default Encodings Supported in libxml2

Character Set Encoding
UTE-8 UTF-8
UTF-16 UTF-16
UTF-16 Big Endian UTF-16BE
UTF-16 Little Endian UTF-16LE
ISO-8859-1 150-8859-1
ASCII ASCII
US_ASCII US_ASCII
HTML HTML

The last character set listed, HTML, is a special encoding within libxml2. It is used for out-
put only and includes predefined HTML entities. For regular XML use, you should ignore this
encoding; Chapter 10 will demonstrate its use.

Encoding Detection

As you have seen in earlier chapters, you specify the document encoding in the XML declara-
tion. For documents without a specified encoding, libxml2 attempts to detect the encoding

CHAPTER 5 PHP AND XML

based on the first few characters of the document or a byte order mark (BOM). A BOM is
a sequence of bytes at the beginning of a data stream and can indicate the encoding form
used. Table 5-2 lists the byte sequences and their corresponding encodings.

Table 5-2. Byte Order Mark and Encodings

Byte Encoding
FE FF UTF-16BE
FF FE UTF-16LE

EF BB BF UTF-8

Documents without a specified encoding or BOM in the data stream can also have their
encoding detected based on the first few characters of the XML or test declaration. The encod-
ing will be able to be detected only if a declaration exists. Table 5-3 lists the sequence of
characters by their hexadecimal values and the corresponding encodings.

Table 5-3. No BOM and Corresponding Encodings

Character Encoding
000000 3C 150-10646-UCS-4
3C 000000 1S0-10646-UCS-4
00 00 3C 00 150-10646-UCS-4
003C 0000 1S0-10646-UCS-4
3C3F 786D UTF-8

4C 6F A7 94 EBCDIC

3C003F 00 UTF-16LE

003C 00 3F UTF-16BE

It may be evident now why XML declarations are recommended. Specifying an encoding not
only eliminates the need for a parser to attempt to autodetect the encoding of the document, but
it also makes it evident to someone looking at the document. In the event the encoding is not
present in the declaration and is unable to be detected, libxml2 will use UTF-8 for the encoding,
which is also the encoding it stores documents as internally. For instance, Listing 5-1 uses French
characters and ISO-8859-1 encoding, although not explicitly specified.

Listing 5-1. XML Document with French with No Encoding Defined

<doc>
<élément>contenu d'élément</élément>
</doc>

In this example, I didn’t add any BOMs to the data stream, and no XML declaration exists.
The parser cannot determine encoding, so it uses UTF-8 as a fallback. This presents a prob-
lem. The document is not proper UTF-8 encoding and thus fails when the parser attempts
to load it. Trying to actually load this document results in the following libxmlI2 error:

169

170

CHAPTER 5 ' PHP AND XML

Input is not proper UTF-8, indicate encoding !

Now that you know this fails, you can try using an XML declaration, as demonstrated in
Listing 5-2, but still not specify encoding. This will at least give libxml2 a chance to try to auto-
detect the encoding used.

Listing 5-2. XML Document with French and XML Declaration but No Encoding

<?xml version="1.0"?>
<doc>

<élément>contenu d'élément</élément>
</doc>

This isn't surprising—the parser encounters the same error. The parser detected the XML
declaration but detected it as UTF-8. So, the parser used the same encoding regardless of
whether you specified the XML declaration. If you saved the document in Listing 5-2 as a file
in UTF-16 format, the autodetection would have at least noticed this and tried loading it using
UTF-16 as the encoding.

For the last try to get this document to load properly, set the encoding attribute on the
XML declaration, as illustrated in Listing 5-3.

Listing 5-3. XML Document with French and Encoding Specified

<?xml version="1.0" encoding="IS0-8859-1"?>
<doc>

<élément>contenu d'élément</élément>
</doc>

This time it finally loads without an error. The encoding you needed in this case was
150-8859-1, which allows the use of the French characters within the document. If you now
instructed the parser to dump the document to the standard console, you might not expect
to see what it outputs:

<?xml version="1.0" encoding="ISO-8859-1"?>
<doc>

<"1’ment>contenu d' "1 'ment</ 1 ment>
</doc>

You need to remember that your console may not be able to display all characters cor-
rectly. This output is from a console that doesn’t support the ISO-8859-1 character set. The
output is actually correct; it just doesn’t look correct. The document was sent to a file, rather
than to the standard output, so the contents of the file should be identical to the document in
Listing 5-3. This leads to the next topic of discussion, internal storage of an XML document
within libxml2.

Internal Encoding

Regardless of the encoding specified for a document, the encoding is stored internally within
libxml2 in UTF-8 format. You may be wondering why you need to care about how internal
data is encoded. This is actually important to understand when using any of the XML-based

CHAPTER 5 PHP AND XML

extensions within PHP 5. The information contained within this section may save you count-
less hours of beating your head against the wall.

Once a document is loaded into the parser, you should completely ignore that an encod-
ing may have been specified for the document. The document is stored and processed using
UTF-8 encoding. Virtually all interaction with a parser or data from the parser must be per-
formed using UTF-8 encoded data. Note that in a few instances this does not hold true, and
as you read the later chapters covering the specific extensions, you will learn about the spe-
cific cases.

Caution Documents are internally stored using UTF-8 encoding. Interaction with XML data in these
cases must be performed using UTF-8 data. You may need to perform encoding conversions using an
extension such as iconv or mbstring in order to avoid a corruption of data.

The iconv and mbstring extensions in PHP are your friends. When dealing with data that
is not UTF-8 compliant, you need to perform conversions. These extensions allow you to con-
vert data to and from UTF-8 based on virtually any encoding you need to use. Say you need to
add a new element with the content contenu d'élément to a document. Although you haven’t
gotten there yet, this example will use the DOM extension. Listing 5-4 illustrates how to use
iconv and mbstring in order to perform encoding conversions. Because I have not covered the
DOM extension yet, I have omitted the bulk of the code needed for processing.

Listing 5-4. Encoding and Decoding Using iconv and mbstring

<?php
$isostring = "contenu d'élément";

/* Conversions from ISO-8859-1 to UTF-8 */
$utf8string = iconv("IS0-8859-1", "UTF-8", $isostring);
$uft8string2 = mb_convert encoding($isostring, "UTF-8", "IS0-8859-1");

/* Additional DOM code here */

$newelement = new DOMElement('newelement', $ utf8string);
$newelement2 = new DOMElement('newelement2', $ utf8string2);
/* Additional DOM code here */

/* Retrieve the content from newelement set above */
$value = $newelement->nodeValue;

/* Conversions from UTF-8 to ISO-8859-1 */

$isostringl = iconv("UTF-8", "IS0-8859-1", $value);

$isostring2 = mb_convert encoding($value, "ISO-8859-1", "UTF-8");
>

The original data you began with, contenu d'élément, is stored in the variable $isostring.
This data is in I50-8859-1 encoding, but in order to interact with the DOM extension, which is

17

172

CHAPTER 5 ' PHP AND XML

based on libxml2, you need to convert $isostring to UTF-8. The code in Listing 5-4 illustrates
how to perform this conversion using both iconv and mbstring (but you need to use only one).
Be aware of the ordering of arguments for the functions. From the PHP manual, the prototypes
for these functions are as follows:

string mb_convert encoding (string str, string to_encoding [, mixed from encoding])
string iconv (string in charset, string out charset, string str)

After performing the conversions, the strings using UTF-8 encoding, $utf8string and
$utf8string2, are then used as values for the content of the DOMElement objects. Naturally these
elements are added to the document within the omitted code. When reading the content of
these objects, the reverse conversions are performed and stored in $isostringl and $isostring2.
These strings will contain the same string as the original $isostring variable.

Whether you need to worry about internal encoding depends upon the character set of
the data you are using. In many cases, you will be using the UTF-8 and ASCII character sets,
and in these cases you do not need any conversions. When working with documents contain-
ing language-specific data or when working with internationalization and XML, you must deal
with encoding properly.

Figuring Out the libxml2 Version

In some cases, the version of libxml2 used determines whether you can use certain functionality
within an extension. For example, namespace support within the xml extension is functional
only when running libxml2 2.6.x. Although 2.6.0 is the minimum version for PHP 5.1, PHP 5.0
can use XML functionality with at least 2.5.10. Attempting to use namespace support through
the xml_parser create ns function when running PHP 5.0 with a 2.5.x version of libxmI2 results
in an error message, “Please upgrade to libxml2 2.6.” You may also find that other extensions
require other minimum versions to utilize certain functionality and methods.

This can make writing software difficult, because it is impossible to guess what version
someone else may be running. Luckily, you can retrieve the version of libxml2 and use it pro-
grammatically. The libxml extension offers two constants for this purpose: LIBXML_VERSION
and LIBXML_DOTTED_VERSION. LIBXML_VERSION is a numeric value indicating the major, minor,
and micro version. LIBXML_DOTTED_VERSION indicates the same information but in dotted nota-
tion. Using these notations, libxml2 version 2.6.19 would result in the following:

/* 2.6.19 using LIBXML_VERSION */
20619

/* 2.6.19 using LIBXML DOTTED VERSION */
2.6.19

Using this programmatically with the xml_parser create ns function as an example,
you could test whether the functionality is supported and provide an alternative in the
event it is not:

<?php

CHAPTER 5 PHP AND XML

if (LIBXML_VERSION >= 20600) {
$xml = xml_parser create ns(..);

} else {

$xml = xml parser create(..);

}

>

Introducing Parser Options

As of PHP 5.1, the libxml extension contains new constraints that you can use in the DOM and
SimpleXML extensions to control parser behavior. The parser uses these constants, listed in
Table 5-4, at the time of document load to offer finer control over how the parser loads and
parses the document.

Table 5-4. Parser Option Constants

Constant

Description

LIBXML_NOENT
LIBXML_DTDLOAD
LIBXML_DTDATTR

LIBXML_DTDVALID
LIBXML_NOERROR
LIBXML_NOWARNING
LIBXML_NOBLANKS
LIBXML_XINCLUDE
LIBXML_NSCLEAN

LIBXML_NOCDATA

LIBXML_NONET

Substitutes entities found within the document with their replacement
content.

Loads any external subsets but does not perform validation. This flag also
ensures that IDs set in a DTD are created within the document.

Creates attributes within the document for any attributes defaulted through
a DTD.

Loads subsets and validates a document while parsing.
Suppresses errors from libxml2 that may occur while parsing.
Surprises warnings from libxml2 that may occur while parsing.
Removes all insignificant whitespace within the document.
Performs all XIncludes found within the document.

Removes redundant namespace declarations found while parsing the
document.

Merges CDATA nodes into text nodes. A document using CDATA sections will
be created with no CDATA nodes, because these will now be converted into
plain-text nodes. This flag is useful when loading a document to be used for
an XSL transformation.

Disables network access when loading documents. You can use this flag to
increase security from untrusted documents so resources cannot be fetched
from the network.

You can combine flags when parsing. For example, you can load a document that vali-
dates and suppresses all warnings while parsing using the following options:

LIBXML DTDVALID | LIBXML NOWARNING

These options would be passed as a single parameter to the function or method accepting
a libxml parser option. I will demonstrate how to use these flags within the specific extensions
in their respective chapters. Note the use of flags when working with XSL. CDATA sections

173

174

CHAPTER 5 ' PHP AND XML

often make working in XSL difficult; specifically, certain XSL functions do not work correctly
when a document contains CDATA sections, because the functions are specific to text nodes.
Entities are also typically substituted within the XML document being transformed.

Tip When parsing a document to be used within an XSL transformation, it is recommended that you use
the flags LIBXML_NOENT and LIBXML _NOCDATA to avoid any potential problems with calls made upon the
XML document from the XSL style sheet.

If you are still using PHP 5.0.x, these options are not available. Under this version, the DOM
extension does provide a few properties that can be used for controlling the parser, but they do
not include all the options listed in Table 5-4. SimpleXML, on the other hand, does not offer any
additional functionality to control the parser during document loading. The interoperability
within PHP 5 may be useful in this case, assuming the DOM extension has been built, because
you can load a document via the DOM extension and manipulate it using SimpleXML.

Tip Under PHP 5.0.x, limited parser options are available, even when manipulating the tree using
SimpleXML. Documents can be loaded using the DOM extension and a few of the document properties that
control the parser; and through the interoperability of the extensions, you can manipulate the resulting tree
using SimpleXML.

Introducing PHP Streams

Resource input/output (I/0) for XML has completely changed with PHP 5. Under PHP 4,
XML-based extensions used their native I/O mechanisms for the input and output of resources.
If you recall from the domxml extension, the only protocols available would be specified as file,
http, and, as an input-only protocol, ftp. The old xslt extension would allow support for addi-
tional I/0O handlers, but it was not all that easy to accomplish because programmers had to deal
with setting handlers and adding the functionality to make this work.

PHP 5 is much different. Built-in PHP streams support now serves as the foundation for
I/0 handling within the XML-based extensions. The advantages of this are numerous for both
developers and system administrators. The advantages include the following:

* Built-in support for numerous protocols as well as user-defined streams
* Consistent I/0 handling

» Support for PHP file security checks

Protocols

PHP includes many protocols, and the XML extensions by default have access to them all. No
longer are the extensions limited to the protocols defined within their base libraries. Files can

CHAPTER 5 PHP AND XML

now be accessed not only from the file system but also via http, https, ftp, ftps, PHPI/0O
streams, z1ib, compress.z1lib, and compress.bzip2. Prior to using PHP streams, unsupported
protocols needed to have the file loaded into a string using PHP functions and that data sent
to the extension to be processed as an in-memory string. This could get quite cumbersome for
large documents. Not only did you have the overhead of the entire document loaded into
memory for a tree parser, but the document was loaded in its string representation as well.
You ended up getting penalized twice this way.

XML extensions can now take advantage of user-defined streams. If you are familiar with
the streams functionality within PHP, you probably know that user-defined streams can be
registered and used natively through the functions supporting stream usage. So, if you would
like to define your own protocol—for example, xyz://—that uses your own defined I/0 func-
tionality, once registered, the XML extensions would have direct access to it.

Consistent I/0 Handling

Using domxml in the past created a pathing issue. Depending upon whether PHP was run via
the command line or an Apache module, as well as depending upon the operating system it
was executing under, the base directory for files that an XML document accessed was not the
same. For example, if your XML document contained relative paths for external entities or
even for the location of XIncludes, the base directory did not always end up being the direc-
tory you assumed it would be. This problem even manifested itself depending upon the version
of Apache being used. For instance, using Apache 2 under Windows, the base directory for an
XML file sometimes ended up being the directory where the Apache binary lived.

This problem caused many headaches. It was difficult for developers to write cross-
platform code. The domxml extension was eventually was fixed in some regard through
workarounds, but it still exhibits some differences between operating systems. The move to
PHP stream-based I/0O now removes this problem. Pathing using streams is universal. The
base directory will not change if your code is run from the command line or as a module
under Apache—or even under a different operating system.

PHP File Security Support

Another advantage to using PHP streams comes from the built-in support for Safe Mode,
which includes the open_basedir and allow_url_fopen php.ini options. These settings are
typically employed in a shared server setting. Through the php.ini settings, a system adminis-
trator can control different aspects of file access. Prior to PHP 5, XML-based extensions used
their internal I/O functionality based upon their base libraries. These libraries, having no con-
cept of PHP streams, bypassed all the security settings.

By default, Safe Mode checks the user ID of the running script against the user ID of the
file to be accessed. You can also relax the check using safe_mode_gid to compare group IDs as
well. If the checks failed, access to the file would be denied. Accessing files using any of the
XML extensions now follows the same rules, thus adding security checks when the extensions
are accessible on the server.

The open_basedir setting allows directories to be set, limiting file access to only those
within the specified directories and their subdirectories. The value for the setting is actually
a prefix and not a directory. For example, a setting with the value /usr/inc would also match
the directory /usr/include. To limit access to only the /usr/inc directory, the value would

175

176

CHAPTER 5 ' PHP AND XML

need to include the trailing slash using /usr/inc/. This setting, independent from the Safe Mode
settings, also will affect how files can be accessed using the extensions.

The last setting, allow_url fopen, can be used to limit network access. When this setting is
disabled, the XML parsers will not be allowed to open or save to any remote resource using pro-
tocols such as HTTB, HTTPS, and FTP. The local file system is still available for access, but those
network resources are denied. Used in conjunction with the Safe Mode and open_basedir set-
tings, access to resources can be locked down quite effectively.

Stream Context

Stream contexts are parameters and options that can modify the behavior of a stream. Many
of the stream-enabled functions within PHP accept a stream context as a parameter. The XML
functions are not included in this because stream usage is almost invisible from an API per-
spective. The libxml extension includes the function 1ibxml_set streams context that you
can use for this purpose.

You can create a context with the regular PHP Streams API. You can find full documentation
for this API in the PHP user manual. You then set the context using 1ibxml_set streams_context;
the context remains active for the entire duration of the script. Consider accessing a remote XML
resource, located at http://www.example.com/test.xml, while sitting behind a proxy server located
athttp://www.example.net:4444. Listing 5-5 illustrates the contents of the remote documents.

Listing 5-56. Contents of test.xml and testxinclude.xml

/* Contents of test.xml */

<test xmlns:xi="http://www.w3.0rg/2001/XInclude">
<xi:include href="testxinclude.xml" parse="xml" />

</test>

/* Contents of testxinclude.xml */
<testinclude>Included Content</testinclude>

The first task you must perform is to create the stream context:

<?php

$opts = array(
"http'=>array(
"proxy'=>"tcp://www.example.net:4444",
'request_fulluri'=>TRUE
)

)s

$context = stream context create($opts);
?>

In this case, the proxy server is requiring a full URI to serve the request, which requires
the additional request_fulluri option set to TRUE. The next steps require setting the context
with the libxml extension:

libxml set streams context($context);

CHAPTER 5 PHP AND XML

With the context set, the parser can now request the XML resource as it normally would.
This example uses the DOM extension:

$dom = DOMDocument::1load("http://www.example.com/test.xml");

The parser pulls the XML resource using the proxy set by the context. Notice that the doc-
ument contains an XInclude using a relative path. It should retrieve this resource from http://
www . example.xom/testinclude.xml. When the XInclude operation is performed via the DOM
extension, the proxy continues to service the requests.

Performing Error Handling

With the first release of PHP 5, many people were excited about the addition of advanced XML
functionality. The largest complaint was in regard to error handling using the XML functions.
Errors using XML not only are issued from PHP for user errors but also from libxml?2 itself to
indicate XML errors, such as when a malformed document is being parsed. Errors from libxml2
range from simple warnings, which in many cases can be safely ignored, to fatal errors, which
may cause a PHP error to also be issued if the operation completely fails.

Both the SOAP and DOM extensions offer exceptions, but at least in the DOM exten-
sion’s case the exceptions were limited to those defined in the specifications. Errors deriving
directly from libxml2 were issued as E_WARNINGS and E_NOTICES depending upon the severity
of the error. Typically developers did not care about these errors. They just cared whether
the operation failed or succeeded. For those who did care about the errors, they had no way
to determine that the errors were XML-specific. So, adding a user error handler might be
fine, but it still did not indicate that the error was XML-specific.

To get around this problem, many developers started suppressing the errors and just
checking return values. For example, you can load a document using SimpleXML from a string
using the simplexml load string function:

$sxe = simplexml load string('<root>');
print $sxe->asXML();

Loading a malformed document results in an error. This is an invalid document because
it contains a single start element with no end element. A typical error from PHP 5 would be an
E_WARNING containing the message “Entity: line 1: parser error: Premature end of data in tag
root line 1,” followed by an error indicating that the developer was trying to call a member
function from a nonobject. The load failed, and $sxe was never created. To avoid this error,
the code was often changed to this:

if ($sxe = @simplexml load string('<root>')) {
print $sxe->asXML();
}

The error has been suppressed, and the print statement is executed only if $sxe exists.
This is all well and good, but all errors indicating the reason of failure have now been lost.

The complaints from developers did not go unnoticed. Things changed with PHP 5.1. For
backward compatibility reasons, the error-handling behavior was left intact and is the default
behavior. Additional error handling was added that allows XML errors to be suppressed while

177

178 CHAPTER 5 ' PHP AND XML

also providing a mechanism for them to be accessed after the fact. The additional functions
available from the libxml extensions that can access the new error-handling functionality
include the following:

bool libxml_use_internal errors ([bool use_errors])
void libxml_clear errors (void)

LibXMLError 1libxml get last error (void)

array libxml_get errors (void)

The function 1ibxml _use internal errors is the central function, which turns on and off
the new internal error handler. The optional use_errors parameter, which defaults to FALSE,
indicates whether you should enable the internal error handler. The return value from the func-
tion contains the old value prior to calling the function. When in use, the 1ibxml _clear_ errors
function, which takes no parameters and does not return a value, will clear all stored errors.

Errors issued from the libxml2 library are stored internally on a first-in, first-out (FIFO)
basis. This means the first error in will be the first error out and will be accessed through
a LibXMLError object. A LibXMLError object has no methods and has only the properties
listed in Table 5-5.

Table 5-5. LibXMLExrror Object Properties

Property Type Description

level int Indicates the severity of the error. It is one of the levels defined by the
libxml extension that includes LIBXML _ERR_NONE, LIBXML ERR_WARNING,
LIBXML_ERR_ERROR, and LIBXML_ERR_FATAL.

code int The error code from libxml2.

column int The column number if available from within the document the error
occurred.

line int The line number if available from within the document the error
occurred.

message string The textual representation of the error.

file string The filename, if available, of the XML document containing the error.

Not every property will be populated within a LibXMLError object. Certain values cannot
always be determined, such as file when parsing a string containing an XML document.

You can access the errors through the 1ibxml_get last_error and 1ibxml_get_errors
functions. The 1ibxml_get last_error function returns the last LibXMLError object reported.
This function is useful only if the last reported error is desired. One thing to note is that even
when the new internal error handling is not enabled, this function is still available to access
the last error issued from libxml2. The 1ibxml_get errors function returns an array of
LibXMLError objects, starting with the first error issued and ending with the latest error. Modi-
fying the SimpleXML code previously used, you can now suppress the error output while still
having access to the XML errors:

CHAPTER 5 PHP AND XML

1libxml use internal errors (TRUE);

if ($sxe = simplexml load string('<root>')) {
print $sxe->asXML();

}

/* Was an error produced? */

if ($lasterror = libxml get last error()) {
/* Dump the last error reported */
var_dump($lasterror);

/* Get all errors as an array, loop through them, and dump the output */
$arerrors = libxml get errors();
foreach ($arerrors as $error) {

var_dump($error);

}

/* Clear out the internal errors since they are no longer needed */
libxml clear errors();

The code represented here assumes that this is the entire script or, if not, that internal errors
have already been cleared. The test for errors was simply done using the 1ibxml get last error
function. If anything was returned, then you know some type of error condition occurred. The
check was not done using 1libxml_get errors, because this function will always return an array,
even when empty. If you used this function, you would need to execute the count function to
find out whether there was at least one error in the array.

Conclusion

This chapter provided some background on the XML-related extensions in general, including
the underlying libxmlI2 library. More important, however, is the common functionality from
the libxml extension covered in this chapter. This functionality is not exclusive to any single
extension but comes with any extension based on the libxml2 library. The libxml extension is
arequired extension, built statically within PHP, when using any of the XML extensions built
with libxml2. libxmlI2 provides constants for use when parsing and provides access to the
streams context when needed, and as of PHP 5.1, it handles and provides access to the new
XML error-handling functionality.

With the knowledge of XML, many of its technologies, and the core libxml extension
behind you, it is time to start looking at the parsers available in PHP 5. The first of these
parsers is the tree-based DOM extension.

179

CHAPTER 6

Document Object Model (DOM)

This chapter is the starting point to put everything covered to this point to practical usage.
You will be introduced to the DOM and its implementation in PHP 5. By the end of this chap-
ter, you should have an understanding of what the DOM is and how to write code using the DOM
extension. The examples within this chapter will build upon each other and form the founda-
tion for the examples toward the end of this chapter.

Introducing the DOM

The DOM is a set of interfaces for accessing and modifying documents. It is a standard, but it’s
actually broken down into many different specifications. The W3C governs the specifications,
which are located at http://www.w3.0rg/DOM/. The core functionality of the DOM is broken
down into Level 1, Level 2, and Level 3; each level offers increased functionality, which in turn
increases each API’s size.

Note The material in this chapter assumes a basic knowledge of object-oriented programming (OOP).
You can find information about OOP in articles and documentation published by Zend Technology (http://
www . zend . com), which is the company that created the engine behind PHP 5 and the PHP manual.

Understanding the DOM Tree

Under the DOM, a document is manipulated as a tree broken down into nodes. This means
the entire document is loaded or is built in memory, where the tree is broken down into
smaller units all derived from a node. Nodes are the primary data type, and all other node
types are derived from nodes. This breakdown is similar to how you view a document using
XPath, although the DOM has a greater number of node types. The following are the node
types in the DOM:

e Attr: Attribute node
¢ (DATASection: CDATA section node
¢ Comment: Comment node

* DocumentFragment: Document fragment node 181

182 CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

* Document: Document node

* DocumentType: Document type node

e Element: Element node

* Entity: Entity node

* EntityReference: Entity reference node
* Notation: Notation node

* ProcessingInstruction: PI node

e Text: Text node

Each node type corresponds to a DOM object. In addition to these DOM objects, objects
exist that do not inherit from a node object, such as NodeList, NameNodeMap, DOMImplementation,
DOMException, and CharacterData. CharacterData is a special type of object in this list. It actu-
ally inherits from a node object but is not a direct DOM object. It provides some additional
functionality from which a text node inherits. In addition to the objects and interfaces listed
previously, the DOM provides some other interfaces, especially in Core Level 3, but I will not
cover them because they have no bearing on the DOM implementation in PHP 5.

The document, represented as a tree, allows for traversal in all directions. Every type of
node can be accessed, and the functionality available depends upon the type of node. Because
every node type inherits from the base Node interface, all functionality derived from the node
base type is accessible, although certain functionality applies only to certain node types. For
example, the Node interface includes a read-only nodeValue property that returns the value of
the node. Document and entity reference nodes are at least two types of nodes that have no
value and that return NULL for this property.

The following is a simple XML document:

<?xml version="1.0" ?>

<root>
<child att1="Att1 value">Child Contents</child>
<!-- This is a comment --»>

</root>

Once loaded into the DOM extension, the XML document now is represented through
DOM objects, as illustrated in Figure 6-1.

Remember, when loaded, unless otherwise instructed, insignificant whitespaces such as
line feeds and tabs are also included in the DOM tree as text nodes. The reason why this bit
of information is important is that these additional text nodes will affect how you navigate the
tree. For instance, the children of the root node include these text nodes. Those new to XML
and the DOM extension often overlook this little fact; however, assuming that the children of
the root element in this example contain only the element child and the comment is incorrect.

Note Insignificant whitespaces within a document are created as text nodes and, unless otherwise
instructed, must be taken into account when navigating and manipulating the document tree.

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

DOMDocument
nodeName: #domdocument

I— DOMElement

nodeName: root

DOMText
nodeName: #text

DOMElement > DOMALtr

nodeName: child nodeName: att1

DOMText DOMText
nodeValue: Child Contents nodeValue: Att1 value

DOMText
nodeName: #text

DOMComment
nodeValue: This is a comment

DOMText
nodeName: #text

Figure 6-1. DOM object view of a document tree

Node Objects

Node objects are just representations of the XML structure you are already familiar with from
Chapter 2. They are considered to be the node objects that make up the actual structure of the
document. The objects allow the structure to be navigated and manipulated. For instance, an
element within a document is accessed via the Element interface. This interface offers proper-
ties and methods that allow the underlying element node to be read from, written to, and moved.
You can also use these interfaces to create new nodes and insert them into a document. This
will become much more clearer to you once you reach the “Using the DOM Extension” section.

183

184

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

Additional Objects

Other interfaces within DOM provide additional functionality that relates to the nodes but
does not have a direct correlation to a specific node type. The objects that fall under this
category are CharacterData, NodeList, NameNodeMap, DOMImplementation, and DOMException.

CharacterData

The CharacterData interface extends from the Node interface but does not correspond directly
to any specific node type within the document. This interface actually is used as the base type
for text and comment nodes in order to provide some additional functionality for dealing with
textual content.

NodelList

ANodelist is a collection of ordered nodes accessed by index starting at position 0. An object

of this type is often returned from DOM methods that can return more than a single node. It is
important to know that these objects are live. In simple terms, modifications within the docu-
ment tree are reflected in these objects. For example, if you had an instance of a NodeList object
containing the children of a certain element, all changes to the children would be reflected in
the instantiated NodelList object. If a child were removed, then it would no longer be contained
within the NodelList, and this would also affect the indexing of the NodeList. You will encounter
examples and issues related to this in the “Using the DOM Extension” section.

NameNodeMap

A NameNodeMap is similar to a NodelList, except in that the collection can be accessed via item
name as well as via index. The difference in the indexing is that these objects have no specific
ordering for the objects they contain because the most important aspects of the contained
objects are the names. These collections are also live, so the same issues surrounding a NodeList
are applicable to a NameNodeMap. You will see plenty of examples of this throughout this chapter.

Caution NodeList and NameNodeMap objects are live collections. Modifications made to the document
tree are reflected within these collections and may affect iterating and indexing when using any of these
object types.

DOMException

As you read in the previous chapter, error handling takes place in a few ways; this depends
upon the version of PHP 5 you are running. The DOM extension is only one of the exceptions
to the norm. Certain cases and methods within the DOM extension throw a DOMException
when an error is encountered.

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

DOMImplementation

A DOMImplementation objectis used to perform functionality independently of a document.
Within PHP 5, its primary use is to create a DOMDocumentType node or a new document con-
taining a DOMDocumentType node.

Understanding the DOM Extension in PHP 5

The domxml extension in PHP 4 has been plagued with issues for quite some time. An ever-
changing API (which has finally been stabilized), an inefficient use of memory, and threading
problems eventually led to the creation of a new DOM extension for PHP 5. Creating a stable
and efficient parser, as well as learning from the problems of the domxml extension in order
not to make the same ones again, were the initial goals.

Birth of the DOM Extension

From the start, the new extension was developed according to the DOM specifications, and
it adhered to the proper naming conventions. This allowed the creation of a stable API right
from the beginning that will not be consistently changing (though may be added to in the
event of future changes to the DOM specifications). Using the features of the new engine
within PHP 5, the DOM extension was created as an object-oriented API and was able to
implement an improved memory-handling scheme; this allowed for better memory man-
agement and control of documents and related objects. The new DOM extension has also
addressed the problems the domxml extension had with threading. The threading problems
typically were encountered when running in a Windows environment using the Internet
Server API (ISAPI) under the Internet Information Services (IIS) web server.

I'll cover memory management in the DOM extension in more detail later in this chapter
when dealing with the DOM classes and objects in the “Using the DOM Extension” section.
A brief overview of this change, however, relates to the use of reference counters. Within PHP 4,
domxml would not release any memory for a document until a script was complete. A free()
function was added toward the later part of PHP 4 to domxml, but it has to be used carefully
because it cannot handle all cases. Under PHP 5, a reference counter is maintained for a docu-
ment. As long as objects related to this document have not been destroyed, either by going out
of scope or by manually calling unset() on them, the XML document remains in memory. Once
all objects referencing the document have been destroyed, the XML document is automati-
cally released from memory. When working with many documents or repeatedly loading
documents to perform operations on, memory is handled in a much cleaner fashion than
under domxml in PHP 4 and uses system resources better. Although this feature arose from
requests in domxml, it finally can be taken advantage of in the DOM under PHP 5.

General Information on the API

The DOM extension in PHP 5 implements almost the entire API for Core Level 2 as well as
much functionality from Core Level 3. Some additional functionality extending the specifi-
cations has also been added for the convenience of PHP developers. The DOM interfaces
defined within the DOM specifications are implemented as classes by the DOM extension.
Table 6-1 lists the classes implemented by the DOM extension in PHP 5. The Class column
refers to the class name used within the DOM extension. The Base Class column refers to

185

186 CHAPTER 6

DOCUMENT OBJECT MODEL (DOM)

the base class from which this class is derived. The DOM Interface column indicates the inter-
face from the W3C DOM specification used for this class.

Table 6-1. Classes Implemented in the DOM Extension

Class Base Class

DOM Interface

Description

DOMException

DOMImplementation

DOMNode

DOMNameSpaceNode

DOMDocumentFragment DOMNode

DOMDocument DOMNode

DOMNodeList

DOMNamedNodeMap

DOMCharacterData DOMNode

DOMException

DOMImplementation

Node

DOMFragment

Document

Nodelist

NameNodeMap

CharacterData

Certain methods within the DOM API not
only issue PHP errors and those related to
general XML issues from libxmlI2, but in
certain cases a DOMException is thrown. I'll
illustrate some cases within this chapter,
and Appendix B documents all cases within
the APIL.

This is generally used when creating a doc-
ument from scratch with a DocumentType.

This serves as the base class for most of the
classes in the DOM API and provides com-
mon functionality. It cannot be used as a
stand-alone class.

This class is not defined in the DOM speci-
fications. Namespace declarations are not
handled as ordinary nodes in the DOM
extension. When a namespace declaration
is returned as a node, such as when
accessed using XPath, a DOMNameSpaceNode
is returned. This class implements a subset
of the DOMNode functionality.

This is used to extract a portion of the tree
or create lightweight documents. It can
consist of nodes that by themselves would
not be well-formed XML. A document frag-
ment is useful when wanting to move
portions of the tree around or even append
some new XML into a tree.

This class represents the entire XML or
HTML document. It serves as the root node
for the tree, which means the tree begins
with this and only this node. Everything
within the document is contained within
this node.

As previously mentioned, it is a container
for ordered nodes accessed by a zero-based
index. This collection is live.

This class is a container for unordered
nodes generally accessed by name but may
also be accessed by a zero-based index.
This collection is live.

This class adds some functionality for
accessing character data. It serves as a base
class for other classes and is useless if
instantiated directly.

CHAPTER 6

DOCUMENT OBJECT MODEL (DOM) 187

Class

Base Class

DOM Interface

Description

DOMAttr

DOMComment
DOMElement
DOMText
DOMCDATASection

DOMDocumentType

DOMNotation

DOMEntity

DOMEntityReference

DOMProcessingInstruction

DOMXPath

DOMNode

DOMCharacterData

DOMNode

DOMCharacterData

DOMText

DOMNode

DOMNode

DOMNode

DOMNode

DOMNode

Attr

Comment
Element

Text
CDATASection

DocumentType

Notation

Entity

EntityReference

ProcessingInstruction

This class represents an
attribute node. The DOM
extension does not con-
sider attributes to be part
of the tree because they
are not child nodes. They
are treated as properties of
elements.

This class represents com-
ments within a document.

This class represents an
element node.

This class represents a text
node.

This class represents a
CDATA node.

This class represents the
DocumentType for the doc-
ument. Objects of this
type are read-only.

This class represents a
notation declared in the
DTD. Objects of this type
are read-only.

This class represents an
entity in the document.
Objects of this type are
read-only.

This class represents
entity references within
the document. Objects of
this type are read-only.

This class represents a PI
within the document.

This class is an add-on to
the DOM extension. It is
used to provide XPath
functionality within the
DOM extension.

You can instantiate objects within PHP 5 using the keyword new. The specifications sug-
gest using factory methods for object creation of node-type objects, because nodes must be
associated with documents. These methods live within the DOMDocument class and are used to
create nodes associated with the document, such as the method createElement. Although the
DOM extension does follow this through the implementation of the factory methods, it also
implements constructors for the node type classes, which allows for the direct creation of
these objects. Objects of this type, until associated with a document, are limited in function-
ality. For example, an element created using $element = new DOMElement('myelement'); may
not have children appended to it until it is associated with a document. Any attempts to

188

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

perform an action such as $node = $element->appendChild(..) will result in a DOMException
indicating the node is read-only. As you read this chapter, you will encounter both the use of
the factory methods and the use of constructors, as well as why one is sometimes preferable
over the other and the merits of each method.

You must be aware of encoding. As you read in the previous chapter, the tree is internally
stored as UTF-8. You must interact with the tree using data that is UTF-8—-compatible. Data
that cannot be handled via native UTF-8 encoding must be converted using one of the string
conversion functions available in PHP 5. This applies for both reading and writing data. In cer-
tain special cases, the DOM extension can automatically detect encoding and handle the data
appropriately, such as when loading or saving a document. In all other cases, you must take
care to encode and decode data properly when manipulating the tree.

Caution When manipulating data within a tree, you must ensure that the data is properly encoded and
decoded. All data is stored internally in UTF-8 format, and the DOM extension does not typically perform
automatic conversion. You can find more information on encoding in Chapter 5.

Using the DOM Extension

The DOM extension is a large API. This chapter will cover the concepts and much of its func-
tionality. You can find information about the entire API in Appendix B. The initial step when
dealing with the DOM extension is to create or load a document. The document is the core
for XML because it serves as the root of the tree for the DOM extension.

Understanding the Document

The DOMDocument class is the starting point for all applications using the DOM extension. This
class not only serves to create, load, and save XML documents but also contains the factory
methods for creating other node type objects. The constructor for this object takes the follow-
ing form:

__construct([string version], [string encoding])

Both the version and encoding parameters are optional and serve to indicate the version
of the XML specification used for the document and to indicate the encoding used for the
document itself. You can instantiate an empty document using the new keyword:

$dom = new DOMDocument('1.0');

This creates an empty DOMDocument object, $dom, using the XML 1.0 specification and no
specified encoding. This is equivalent to the following XML declaration:

<?xml version="1.0"?>

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

The version parameter, unlike the encoding parameter, has a default value of 1.0, so this
parameter could realistically have been omitted from the object instantiation call. Likewise,
an encoding value may also be passed as an argument, such as I5S0-8859-1. When using the
encoding parameter, the use of the version parameter is required. The code
$dom = new DOMDocument('1.0', 'IS0-8859-1"); would result in an XML declaration of
<?xml version="1.0" encoding="IS0-8859-1"?>.

In both cases, the result is the same. The object $dom has been instantiated from the
DOMDocument class as an empty document. Using this object, a tree can either be manually
created using the DOM API or be loaded from an XML document. You can load a document
from a string containing the XML or from a remote resource. No matter which method is used
to load the data, loading is one of the special cases where data does not necessarily need to
be converted to UTF-8. Using one of the methods from Chapter 5, such as using an encoding
parameter in the XML, using a BOM, or even detecting the first few characters, the DOM
extension usually can detect the encoding of the document and load it appropriately. In the
event that none of the methods is in use or autodetection fails, the data must be converted
to UTF-8 prior to loading. Typically, the encoding is set within an XML declaration, especially
when using non-ASCII characters, so you rarely will need to convert it manually. This is also
the reason why using XML and text declarations is highly recommended and in some cases
required.

Using the instantiated object, $dom, you can build the tree using load() to load from a
string and using 1loadXML() to load from a resource. Depending upon which method you use,
you need either a string containing the XML document or a URI pointing to the resource for
the first parameter. When using PHP 5.1 and higher, both methods also accept a second
optional parameter containing any parser options (covered in Chapter 5) that provide
instructions to the parser about how the tree should be built. For example:

$xmldata = '<?xml version="1.0"?>
<root>

<child>contents</child>
</root>"';

$dom->loadXML ($xmldata, LIBXML NOBLANKS);

Given an already instantiated DOMDocument and the string $xmldata containing the XML
document to load, the loadXML() method populates the tree while also removing all blanks,
which are the insignificant whitespaces. This would have been the equivalent of setting
$xmldata to the string <?xml version="1.0"?><root><child>contents</child></root> and
loading the string without any parser options. The differences between the two strings are
the line feeds, tabs, and spaces, which are removed in the first case because of the use of
the parser option LIBXML_NOBLANKS, and their positions within the document.

The load() method works in the same way as the loadXML() method, except a URI is
passed as the first parameter. As you probably recall from Chapter 5, you use PHP streams
when loading URISs, allowing for more than the typical file and http protocols to be used.
If the contents of the $xmldata string from the previous example were contained within
the file xmldata.xml, you could build the tree in the following ways depending upon
where the file was located:

189

190

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

/* File located in current script directory */
$dom->load('xmldata.xml', LIBXML NOBLANKS);

/* File loaded using absolute path */
$dom->load('file:///tmp/xmldata.xml"', LIBXML NOBLANKS);

/* File loaded from http://www.example.com/xmldata.xml */
$dom->1load('http://www.example.com/xmldata.xml', LIBXML NOBLANKS);

A DOMDocument object does not always need to be instantiated to load a tree. These meth-
ods may also be called statically, which will load data into a tree and return the newly created
DOMDocument object at the same time. The following examples illustrate how to use the meth-
ods statically, which results in the same tree structure for the $dom objects as previously shown.
(I've removed the XML declaration for brevity.)

/* Load from string */
$dom = DOMDocument::loadXML('<root><child>contents</child></root>");

/* Load from URI */
$dom = DOMDocument::load('xmldata.xml', LIBXML NOBLANKS);

You may be wondering why you wouldn’t always use the static methods, because instanti-
ating the object first requires an additional step just to load data. The primary reason for this
is when using the DOM extension under PHP 5.0, the parser options are not available to be
passed as a second argument to these functions. A small subset of the parser options, however,
is also available as properties of a DOMDocument object. When you use these properties, you
must set them prior to calling the load functions, which require an already instantiated object.
For example, the equivalent to the LIBXML_NOBLANKS option is the preservelhiteSpace property:

/* Removing blanks under PHP 5.0 */
$dom = new DOMDocument();
$dom->preserveWhiteSpace = FALSE;
$dom->1load('xmldata.xml"');

When you use both properties and parser options, the parser options take precedence
over the properties. This means in any instance where a property is set and a parser option
conflicting with a set property is passed, the parser will follow the instructions from the parser
option. For example:

$dom = new DOMDocument();
$dom->preservehWhiteSpace = TRUE;
$dom->load('xmldata.xml', LIBXML NOBLANKS);

In this case, the $dom object will load the file, with LIBXML_NOBLANKS taking precedence
over the preservelhiteSpace property, stripping out the line feeds just as if the
preservehWhiteSpace property were never set.

The DOMDocument class is not limited to loading just XML data. Unless you are writing
Web pages using XHTML (HTML typically does not conform to the XML constraints), errors
will result if trying to load one of these documents using the XML load methods. Two corre-
sponding load functions do exist, however, that allow HTML documents to be loaded into

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

a tree, which can then be manipulated the same way as an XML-based tree. The methods are
loadHTML() and loadHTMLFile(). Each of these methods takes exactly one parameter, either
the string containing the HTML or a URI used to locate and load the HTML. Unlike their XML
equivalents, these methods do not accept parser options as a second parameter. For example:

/* Load the file http://www.example.com/index.html */
$dom = new DOMDocument();
$dom->loadHTMLFile("'http://www.example.com/index.html");

/* Loading statically */
$dom = DOMDocument: :loadHTMLFile('http://www.example.com/index.html");

Now that you have a document containing a tree, you will see how to output the contents
of the tree. The output may be as a string or to a URI, such as a file. The methods are similar to
those used to load the data. To output as XML, you'll use the function saveXML() to output the
contents to a string and the function save() to output to a URI.

The saveXML() method accepts one optional node parameter. The node parameter must
be an object derived from the DOMNode class and must be from the same document as the
DOMDocument object from which the method is being called. When this parameter is not pres-
ent, the entire document is serialized to a string. Using the $dom object created when loading
a document with the LIBXML_NOBLANKS option, you can serialize the document. For example:

$output = $dom->saveXML();

This would set $output to a string containing <root><child>contents</child></root>.
If a DOMElement object existed called $child that represented the element child in the docu-
ment, this object could be passed as a parameter to the method to output just the element.
For example:

$output = $dom->saveXML($child);

This would result in the string <child>contents</child>.

The save() method also accepts a single parameter. This parameter sets the URI to which
the document is to be serialized. The return value for this method is the number of bytes writ-
ten to the URL Unlike the saveXML method, a single node cannot be serialized to a URL:

$bytes = $dom->save('output.xml);

This snippet of code saves the document to the file output.xml and returns the number
of bytes written to the variable $bytes. Running this code, you might be surprised to see
$bytes equal to 58. Whether a document was loaded with an XML declaration or the version
and encoding parameters were passed when creating a document, an XML declaration is pres-
ent when serializing the document with at least the version parameter, defaulting to 1.0, set.

Documents manually created or loaded with the LIBXML_NOBLANKS option typically do not
contain text nodes containing whitespace. When serialized, the output generated is not easily
human readable because the output is all strung together. You can use the formatProperty on
the DOMDocument class to “prettify” the output. Setting this property to TRUE prior to serializa-
tion causes the parser to add line feeds and indentations where appropriate. For example:

$dom->formatOutput = TRUE;
print $dom->saveXML();

191

192

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

This code results in the following output:

<?xml version="1.0"?>
<root>

<child>content</child>
</root>

Just as with the load functionality, you can also save a document in HTML format. The
methods saveHTML() and saveHTMLFile() perform this operation. The method saveHTML ()
takes no parameters and returns the output as a string. The saveHTMLFile() method takes a
single parameter, the URI, and returns the number of bytes written. The output is normally
not XML-compliant because it is true HTML and not XHTML. Assuming the object $htmldoc
contains a tree to be serialized into HTML, the following examples illustrate how to use the
methods to serialize HTML:

/* Serialize document to a string in HTML format */
$html = $htmldoc->saveHTML();

/* Serialize document to file index.html in HTML format */
$bytes = $htmldoc->saveHTMLFile('index.html");

You have spent much time examining the simple operations of instantiating, loading,
and saving DOMDocument objects. Understanding the basic operations of the DOMDocument class
is important because this class serves as the foundation for all operations within the DOM
extension. Nearly everything in the DOM extension is derived from and associated with a
document, as you will further examine when exploring the other aspects of the DOM exten-
sion throughout this chapter. With these basic concepts of the DOMDocument behind you, you
can learn about navigating an existing tree.

Navigating the Tree

Compared to other tree-based parsers (in PHP 5, the SimpleXML extension is the only other
native tree-based extension), one of the DOM extension’s strengths is its rich navigation sup-
port. This strength can also be a weakness because this rich support results in a large number
of methods and properties; this leads to a large API to learn and understand. The document in
Listing 6-1 is in DocBook format. DocBook is a system for writing documentation in XML format.
I will use the example document in Listing 6-1 throughout the following sections to illustrate
how to navigate a document tree.

Listing 6-1. Example Document Using DocBook Format

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//0ASIS//DTD DocBook XML V4.1.2//EN"
"http://www.0asis-open.org/docbook/xml/4.1.2/docbookx.dtd">
<book lang="en>
<bookinfo>
<title>DOM in PHP 5</title>

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

<author>
<firstname>Rob</firstname>
<surname>Richards</surname>
</author>
<copyright>
<year>2005</year>
<holder>Rob Richards</holder>
</copyright>
</bookinfo>
<preface>
<title>The DOM Tree</title>
<para>An example DOM Tree using DocBook.</para>
</preface>
<chapter id="navigation">
<title>Navigating The Tree</title>
<para>The document element is accessed from the
<emphasis>documentElement</emphasis> property, which is available from any class
derived from DOMNode</para>
<para>The document node is also accessible using the
<emphasis>ownerDocument</emphasis> property, also derived from the DOMNode
class.</para>
</chapter>
</book>

This first step you need to take is to load the document into a DOMDocument object. I will
show how to load the document in Listing 6-1 from the file mydocbook . xml. For now, the docu-
ment will be loaded with the default options. This means the DTD is notloaded and the id
attribute within the document is a regular attribute and not an ID type. For example:

$dom = new DOMDocument();
$dom->1oad('mydocbook.xml");

Navigation all begins with a DOMDocument object. These objects have no attributes; they
have only child nodes. At a minimum, all XML documents must have a document element,
but as mentioned in previous chapters, a document can also have a DTD and any number of
comment and PI nodes. You can access these nodes using any of the many child properties
and methods available from the base DOMNode class. The body of the document is the most
commonly accessed and modified portion of the tree. Before examining how to access child
nodes, which will be covered later in the “Moving Within the Tree” section, you will first see
how to easily access the body.

Understanding the Document Element

The document element, like the document node, is a focal point in an XML document. Being
the root of the body for the document, it is a node with a fixed position—the entry point for
the body and universally accessible. Objects derived from the DOMNode class are able to access
the documentElement property, which returns the document element as a DOMElement to also
navigate back to the document element.

193

194

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

The document element from Listing 6-1 is the book element. Using the DOMDocument
object, $dom, you can retrieve the book element with the documentElement property:

$root = $dom->documentElement;

This call returns a DOMElement object, which is the book element node, and sets it to the
variable $root. Armed with the document element, you can now explore the rest of the body.

Accessing Basic Node Information

Before going too much further, it is useful to take a brief look at how to access basic node
information. Three of the most basic pieces of information often used within the DOM exten-
sion are the type of node, the name of the node, and the value of the node. Knowing the
structure of a document is not a requirement when using the DOM extension, so many times
you will need these pieces of information when writing applications in PHP. The properties
within the next sections are all from the base DOMNode class. Although all classes derived from
the DOMNode class may call these properties, not all properties return useful information for all
types of nodes. In some cases, the return value may even be NULL when the called property is
not applicable for the node.

Node Type

In many cases when using the DOM extension, a node will be returned but you won't know
what type of node it is. In these instances, you can check the type of node using the nodeType
property. This property returns an integer corresponding to one of the built-in constants for
node types:

$type = $root->nodeType;
print $type;

This code prints the number 1, which corresponds to the XML_ELEMENT_NODE constant.
You can find the complete list of node type constants in Appendix B, and in a moment you
will be introduced to a few more.

Node Name

The name of a node is generally applicable to element and attribute nodes. All nodes have
names, but unlike elements and attributes that actually have specific names, most other
nodes have generalized names corresponding to the type of node. The property used to
access the node name is nodeName:

print $dom->nodeName."\n";
print $root->nodeName."\n";

This code illustrates the difference of the node name for a document node and an element
node. The document node, $dom, returns the value #document. The element node, $root, on the
other hand, returns the tag name for the element, book. If this returned the node name of a text
node, the value would be #text. As you can see, the node name for the text node is nondescrip-
tive and offers no additional information that could have just as easily been obtained from the
node type. A few additional node types exist that do have specific names, such as entities,

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

entity references, notations, document type definitions, and PIs. Although a few of these may
be useful to you, elements and attributes are still the most commonly used nodes with this

property.

Node Value

The property nodeValue offers access to the contents of certain nodes. Nodes having values are
attributes, CDATA sections, comments, PIs, and text. This is according to the specification. For
convenience, the DOM implementation in PHP 5 allows you to access this property by element
node as well:

print $dom->nodeValue."\n";
print $root->nodeValue."\n";

In the first call, the node value for the document node is accessed. The property is not valid
for document nodes, and NULL is returned with only a line feed printed. In the second call, the
nodeValue of the document element is printed. As mentioned, this property is not valid accord-
ing to the DOM specifications. To make things a little easier, the DOM extension in PHP 5 does
allow this property for an element and returns a concatenation of all text nodes within the scope
of the element. The output is a bit long, but the abbreviated output looks like the following:

DOM in PHP 5

Rob
Richards

2005
/* Rest of Output Omitted for Brevity */

When the document was initially loaded, whitespaces were not removed from the docu-
ment. These whitespaces, being text nodes, are also concatenated and included as part of the
output, resulting in the previous formatting.

Using the Properties Together

The nodeType, nodeName, and nodeValue properties are often useful and used together when writ-
ing code where logic is conditional based on the specifics of the node being tested. Consider the
following code, which can be used as a function. A node, referenced by $node, is tested; based on
criteria of these properties, certain actions are taken.

switch ($node->nodeType) {
case XML _ELEMENT NODE:
print "Element Tag Name: ".$node->nodeName;
if ($node->nodeName == "book") {
/* We may want the lang attribute */

}

195

196

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

break;
case XML _ATTRIBUTE_NODE:
print "Attribute Name: ".$node->nodeName."\n";
print "Attribute Value: ".$node->nodeValue."\n";
if ($node->nodeName == "lang") {
/* Do something with the language */
}
break;
case XML_TEXT NODE:
case XML _CDATA SECTION_NODE:
print "Content: ".$node->nodeValue."\n";
break;
default:
print "Other Node Names: ".$node->nodeName."\n";

This code uses a switch statement to perform certain actions based on the node type of
the node passed in. Depending upon the type, actions then take place based on the name and
possible value of the node. This is a simplified case but should give you an idea of how these
properties can be useful. As you become more familiar with other aspects of tree navigation,
you will revisit and modify this code.

Moving Within the Tree

At this point, you are still situated on the document element with the $root object. You can
navigate to most other node types by accessing children. Attribute nodes are an exception to
this. These are treated as properties of element nodes, which will be covered in the “Accessing
Attributes” section. Movement, however, is not restricted to descending into the tree. As you
will see, accessing siblings, accessing parents, and even directly accessing the document node
are all possible.

Accessing Children

Child nodes are those that are direct descendants of the current node. Simply put, all nodes
living exactly one level beneath the current node are children. For example, an element node
may have mixed content consisting of, but not limited to, a comment, a text node, and some
additional element nodes. An attribute node contains a single child node, which is a text node
holding the value for the attribute. Document nodes can contain comment nodes, PIs, a docu-
ment type, and a single element node as children. The type of children possible depends upon
the type of the current node. You can perform a quick check to see whether a node has child
nodes with the hasChildNodes () method, which returns a Boolean indicating whether child
nodes are present on the current node.

All child nodes can be returned as a DOMNodeList using the childNodes property. An object
of the DOMNodeList class is an iterable object. You can access it using the item property to
retrieve a specific node from the list or even the iterator functions in PHP, such as foreach:

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

if ($root->hasChildNodes()) {
$children = $root->childNodes;
foreach($children as $node) {
print $node->nodeName."\n";

}

This code retrieves the children of the document element, iterating through the resulting
DOMNodeList object using foreach, and prints the name of each node. The output from this is
as follows:

#text
bookinfo
#text
preface
#text
chapter
#text

The book element contains three child elements but also is interspersed with whitespace.
This whitespace was not removed when the document was loaded, resulting in the previous
text nodes being created in the tree. Using this property, you can see why the nodeType prop-
erty can come in handy. Unless you need to take some specific action with the whitespace,
more often than not you will ignore it when navigating the tree. For example:

foreach($children as $node) {
if ($node->nodeType != XML TEXT NODE) {
print $node->nodeName."\n";

}

Here the text nodes have been skipped, resulting in the following output:

bookinfo
preface
chapter

You can also access a subtree directly using the firstChild and lastChild properties.
Rather than having to retrieve the entire collection of children, these properties are quick
ways to access the start or end of the subtree:

$first = $root->firstChild;
$last = $root->lastChild;

The variable $first contains the DOMText object that is the first child beneath the book ele-
ment and prior to the bookinfo element. The variable $1ast contains the DOMText object that is
the last child of book and that contains the line feed after the closing chapter tag. Currently
being whitespace, these nodes can be ignored for now. So where does this get you? you may
ask. You can also move laterally by accessing node siblings, which you will learn about now.

197

198

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

Accessing Siblings

Sibling nodes are those residing on the same level as the current node. For example, all nodes
within the $children DOMNodelist object are siblings of each other. They all live on the same
level and have the same parent. You move laterally within a subtree using the nextSibling and
previousSibling properties.

Using the $first object created in the previous section, you can access the sibling nodes
using the nextSibling property:

$node = $first;
while($node) {
if ($node->nodeType == XML ELEMENT NODE) {
print $node->nodeName."\n";

}

$node = $node->nextSibling;

This gives you the same results as when iterating $children and printing only element
tag names:

bookinfo
preface
chapter

The previousSibling property allows navigation to be performed in reverse:

$node = $last;
while($node) {
if ($node->nodeType == XML _ELEMENT NODE) {
print $node->nodeName."\n";

}
$node = $node->previousSibling;
}
The output this time is as follows:
chapter
preface
bookinfo

Accessing Parents and Using ownerDocument

Nodes can also perform ascending movement within a tree. Every node within a document
has a parent with the exception of the document node. A parent is the direct ancestor of the
current node; hence, a document node cannot have a parent node because it is the root node
for the entire document. You can access the parent using the parentNode property:

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

do {
$node = $first;
while($node) {
if (! $node->parentNode->isSameNode($root)) {
print "ERROR: Parent Node Test FAILED";
break 2;
}
$node = $node->nextSibling;
}
print "All parent node tests PASSED";
} while(0);

Using the code from the nextSibling example, the parentNode for each of the nodes,
including the text nodes, is returned and tested against the document element, $root, using
the isSameNode () method. This example uses object dereferencing features from PHP 5 and
is equivalent to writing the following:

$parent = $node->parentNode;
if (! $parent->isSameNode($root)) {

The isSameNode () method tests the current node against the node passed as an argument
to determine whether they are the same node. By “same node,” I mean the nodes must be the
same node within the document. This is not the same as saying the nodes are equivalent;
equivalent nodes must just have the same names and content but do not have to be the same
node with the same position in the document. As you can see from the resulting A11 parent
node tests PASSED message, the parent node for these is the document element, $root.

Nodes have direct access to their associated document through the ownerDocument prop-
erty. Although the body is accessible using the documentElement property, the document node
is still an important node even when not needing or using a DTD. Later in this chapter, in the
“Document Nodes” section, you will learn how to use the document node object for factory
methods. This node provides much of the functionality used when creating and editing docu-
ments and is accessed frequently in applications. For example:

$node = $root->ownerDocument;
print $node->nodeName."\n";

The code prints the value #document, because the document node is returned from the
property. To verify this, you can execute the following code using the isSameNode () method:

if ($dom->isSameNode($node))
print "TRUE";

Accessing Specific Elements

You can also access specific elements by tag names. When you need to access specific ele-
ments within the scope of the current node, you can use the methods getElementsByTagName()
and getElementsByTagNameNS(). Element nodes can be contained only within document

199

200

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

nodes and element nodes; thus, these methods are available only when the current node is
based on a DOMDocument or DOMElement class. For example, from the document node, $dom,
you can retrieve all title elements within the document using the getElementsByTagName()
method:

$elements = $dom->getElementsByTagName("title");
$length = $elements->length;
for ($x=0;$x < $length;$x++) {
print "Element Value: ".$elements->item($x)->nodeValue."\n";

}

This code retrieves a DOMNodelList object, $elements, containing all title elements within
the scope of the document node, $dom. Being the document node, this returns all elements
named title within the entire document. The collection is iterated using a for loop based
on length, indicating the number of nodes within the collection. length is the total number
of elements, and the collection uses a zero-based index, so no items are at an index equal to
or greater than the length. Using dereferencing (available in PHP 5), the element at the current
index, $x, is retrieved, and the nodeValue for the node is printed. The output from this opera-
tion is as follows:

Element Value: DOM in PHP 5
Element Value: The DOM Tree
Element Value: Navigating The Tree

You can pass the special value * for the tag name argument. This is a wildcard used to
match any element name. For example:

$preface = $root->getElementsByTagName("preface");
$elements = $preface->item(0)->getElementsByTagName("*");
$length = $elements->length;
for ($x=0;$x < $length;$x++) {
print "Element Name: ".$elements->item($x)->nodeName."\n";
print "Element Value: ".$elements->item($x)->nodeValue."\n";

From the document element, $root, all preface elements within its scope are retrieved
as a DOMNodeL1ist object, $preface. No length test is performed, because you already know that
an element exists in the document (although it is a good habit to test the return values prior
to using them). Again, dereferencing is used; the first element in the DOMNodeList is retrieved,
and immediately in the same line of code, getElementsByTageName("*") is called on the node.
All elements within the scope of the preface element are returned and set to the $elements
variable. You can access this collection the same way as before: by using a for loop. This time
the node name is also printed with its value, because you have no way to know exactly what
elements are returned when using the wildcard. The resulting output is as follows:

Element Name: title

Element Value: The DOM Tree

Element Name: para

Element Value: An example DOM Tree using DocBook.

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

When working with namespaced documents, the getElementsByTagNameNS() method
allows elements in specified namespaces to be returned. The example document in this chap-
ter does not contain namespaces, so I cannot give a specific example at this time. The method
differs from the non-namespaced method in that it takes two arguments. The first is the name-
space URI, and the second is the local name of the element, which is the same as the tag name
for the previous method. Just like the name parameter, the namespace URI parameter also accepts
the * wildcard. Using the wildcard results in retrieving all elements in any namespace, but they
must be in a namespace with the name determined from the second parameter, which can
also be a wildcard. For example:

$result = $dom->getElementsByTagNameNS("*", "*");

The resulting DOMNodelList, $result, will contain every element in the document that is
within any namespace.

Accessing Attributes

Attributes inherit the same methods and properties from the DOMNode class as other node types,
but they are not accessed in the same manner as other nodes in a document. As you have seen
so far, nodes are traversed through children of nodes. Attributes are different because they are
not children of elements, which is the only node type from which attributes may reside; rather,
attributes, conceptually, are properties of elements. You access them through their own set of
properties and methods.

Collections of Attributes

Just like you can check and access children, you can check attributes with the hasAttributes()
method and access them with the attributes property. Both of these are defined on the DOMNode
class and are safe to use with all node types, although an object of DOMElement will be the only
class type that can return useful data:

if ($root->hasAttributes()) {
$attributes = $root->attributes;
foreach($attributes as $attr) {
print "Attribute Name: ".$attr->nodeName."\n";
print "Attribute Value: ".$attr->nodeValue."\n";

If attributes exist on the $root object, tested using the hasAttributes() method, a
DOMNamedNodeMap object, $attributes, is returned from the attributes property. This object
is iterated in the same way the DOMNodel ist is iterated. The resulting output for this code is
as follows:

Attribute Name: lang
Attribute Value: en

One of the differences with the node map is that attributes can be accessed directly by
name rather than just a position. For example:

201

202

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

$attr = $attributes->getNamedItem("lang");
print "Attribute Name: ".$attr->nodeName."\n";
print "Attribute Value: ".$attr->nodeValue."\n";

The document element contains only a single element, so the previous code returns the
same results as the code iterating the attributes. This time, the lang attribute was accessed
directly from the node map rather than iterating the entire map. Just like a DOMNodelList, the
position could also have been used to access the attribute. Using a DOMNamedNodeMap, however,
the items are unordered, so you have no guarantee that an item at a certain position is the
item for which you are looking. For example:

if ($attributes->length > 0) {
$attr = $attributes->item(0);
print "Attribute Name: ".$attr->nodeName."\n";
print "Attribute Value: ".$attr->nodeValue."\n";

This code outputs the same results as before. The difference here is the test for the length
of the DOMNamedNodeMap, which returns the number of items in the collection, and the use of
the item() method to access the item at the zero-based index. Passing in the value of 0 for the
argument returns the first item in the list, which is the lang attribute.

Individual Attributes

Attributes do not have to be accessed through a DOMNamedNodeMap. The DOMElement class offers
attribute-specific methods that you can use to access specific attributes. The method used
depends upon whether just the value of the attribute or the entire attribute node needs to be
returned. It also depends upon whether namespaces are in use. You can access attributes
using the getAttribute(), getAttributeNode(), getAttributeNS(), and getAttributeNodeNS()
methods. For example:

/* Access lang attribute value directly */
print "Attribute Value: ".$root->getAttribute("lang")."\n";

/* Return the lang attribute node and access the returned attribute node */
$attr = $root->getAttributeNode("lang");
print "Attribute Value: ".$attr->nodeValue."\n";

The previous two pieces of code print the same results but perform the operations differ-
ently. The first snippet returns the value of the named attribute, lang, and prints the value.
The second block of code retrieves the attribute node named lang and prints the value from
the returned node.

Although the document in Listing 6-1 is not using namespaces, the namespace-aware
methods can be used:

print "Attribute Value: ".$root->getAttributeNS(NULL, "lang")."\n";
$attr = $root->getAttributeNodeNS(NULL, "lang");
print "Attribute Value: ".$attr->nodeValue."\n";

The first argument for these methods is the namespace URI for the attribute being
accessed. Your attributes do not live in any namespaces, so by passing NULL, you access the

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

attributes normally. It is the same as accessing attributes that do not live in any namespace.
If the attributes were associated with a namespace, the results from the methods would be
empty unless the appropriate namespace URI were passed as the first parameter.

Declaring Namespaces

Namespace declarations are handled as attributes within the DOM extension and as such are
created using the namespace’s attribute methods. The prefix xmlns is bound to the http://
www.w3.0rg/2000/xmlns/ namespace as defined in the XML 1.1 specification from the W3C
(http://www.w3.0rg/TR/xml-names11/). For example:

$doc = DOMDocument::loadXML('<root/>");
$root = $doc->documentElement;

$root->setAttributeNS('http://www.w3.0rg/2000/xmlns/",
"xmlns:exa', 'http://www.example.com/example');
$root->appendChild(new DOMElement('exa:child', 'content’,
"http://www.example.com/example'));
$doc->formatOutput = TRUE;
print $doc->saveXML();

Using the setAttributeNS() method, a namespace that contains the prefix exa and is
bound to http://www.example.com/example is declared. The namespace for the xmlns prefix
is used as the namespace URI in this method, and the value of the attribute is the namespace
that will be created. To declare a namespace, it is mandatory that the namespace URI parame-
ter be the value http://www.w3.0rg/200/xmlns/; otherwise, the DOM extension will not know
that a namespace is supposed to be created and a normal attribute will result. The following
line illustrates how to append a new element bound to this newly created namespace, which
results in the following document upon serialization:

<?xml version="1.0"?>

<root xmlns:exa="http://www.example.com/example">
<exa:child>content</exa:child>

</root>

Creating and Editing a Tree

The DOM extension’s biggest strength comes from its functionality for creating and editing
trees. As you will see with the other XML technologies, none comes close to the capabilities
the DOM extension offers in this respect. Unless you are a hard-core XML developer or inte-
grator, you may end up using only a quarter of the offered functionality yet still encounter

no shortcomings with the small subset of functionality used. Within the following sections,
you will begin by creating the document in Listing 6-1 from scratch and then work on editing
the result.

Document Nodes

Earlier in this chapter, you saw many different methods for creating a DOMDocument object.
The document being created contains a document type declaration, so you will use the
DOMImplementation class to create the DOMDocument object; this allows you to create a

203

204

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

DOMDocType object that can be passed as a parameter to create a document with a subset.
This class allows static method calls, so in this case, you have no need to instantiate an object.
For example:

$doctype = DOMImplementation:: createDocumentType("book",
"-//0ASIS//DTD DocBook XML V4.1.2//EN",
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd");

$dom = DOMImplementation:: createDocument(NULL, "book", $doctype);

The first step is creating a DOMDoctType object, because it is needed when creating the
document. You do this using the createDocumentType() method and passing the name for
the document declaration, which, as you recall from Chapter 2, must match the name of the
document element, the public identifier, and finally the system identifier. If the declaration
is a system identifier, you pass NULL for the public identifier argument. The final step is to cre-
ate the document using the createDocument () method. The first argument is the namespace
for the document element. In this case, the document is not using namespaces, and you use
NULL. The remaining parameters are the name of the document element, which will be created
when the method returns, and the DOMDocType object, $doctype, that was created in the previ-
ous line. Upon executing this code, the DOMDocument object, $dom, will contain the document
node with a DTD and the document element created.

At this point, if the tree were output using a method such as saveXML(), you would notice
that the encoding is missing. Using the DOMImplementation class to create the document does
not offer a way to set the version or encoding. The version at least defaults to 1.0. You can set
the encoding using the encoding property of the document:

$dom->encoding = "UTF-8";

This property does not affect how you create the document. Data that is not conformant
to the internal UTF-8 encoding of the tree still needs to be converted to UTF-8. Upon output
of the tree, however, the data is converted to the proper encoding set by this property.

Element Nodes

You can create, insert, and remove element nodes from a tree, but you cannot (unlike with
most other nodes) edit their contents. Whether they are just text or combinations of other
nodes, in order to edit them, you must access the child nodes or attributes. The next sections
will take you through how to create, insert, and remove element nodes in a document.

Creating Elements

You have two ways to create element nodes. One is to use the factory methods from the
DOMDocument object, and the other is direct instantiation. According to the specification,
nodes must be associated with a document. The factory methods follow this rule. As you
will see following the factory methods, the DOM extension allows direct instantiation of
DOMElement objects, which results in element nodes with no tree association. This exists not
only for convenience during development, but as discussed later in this chapter, it also
allows for limited functionality of extending the DOM classes.

As previously mentioned, the DOMDocument object is a focal object when using the DOM
extension. You can create a new element associated to the current document using the factory
methods createElement() and createElementNS(). The document that has been created to this

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

point contains a DTD and the document element node book. Ignoring the attribute for now,
the next node to be created is the bookinfo element, which is the first child element of book.
For example:

$bookinfo = $dom->createElement("bookinfo");

This piece of code returns a DOMElement object, $bookinfo, with the name bookinfo. The
createElement method takes one mandatory parameter and one optional parameter. The first
parameter is the qualified name of the element to be created, which in this case is bookinfo.
The second optional parameter is the value of the element. In the event the element node will
contain text content, you can do this at the same time the element is created. In actuality, a
text node is created and appended as a child of the element being created. For instance, the
first child of the bookinfo element is a title element, consisting of only text:

$bititle = $dom->createElement("title", "DOM in PHP 5");

With these two lines of code, you have created two new objects. The variable $bookinfo
holds the DOMElement object for the bookinfo node, and the variable $bititle holds the
DOMElement object for a title node. This $bititle node also has a child text node, with the
contents DOM in PHP 5. For now they exist as stand-alone nodes. They are associated with
the current document but are not within the tree at this point. Before inserting these nodes,
it is helpful to look at other ways to create element nodes.

You can also create elements within a namespace. The document being created here
does not use namespaces, but you could still use the createElementNS() method:

$biauthor = $dom->createElementNS(NULL, "author");

This method requires two mandatory parameters and accepts a third parameter, which
is an optional value parameter. The first parameter is the namespace URI. In this case, nodes
are not within any namespace, so NULL is passed. The second parameter is the qualified name
of the element. As you probably recall, this consists of the prefix and the local name. For
example, you could create an element named trash in the http://www.example.com/trash
namespace. The prefix tr will also be associated with this element:

$trash = $dom->createElementNS("http://www.example.com/trash", "tr:trash");

When the $trash object is inserted into a tree, the element will be associated with the
prefix, and if needed, the namespace declaration will be created within the document. If pos-
sible, however, an existing namespace declaration within scope at the insertion point will be
used. This may result in a change to the prefix, which is not incorrect, because the namespace
itself is the important aspect here and not the prefix. I will illustrate how to do this in the
examples in the “Building an XSL Template” example toward the end of this chapter.

You can also directly instantiate elements using the new keyword. The firstname and
surname elements, which will be the children of the bookinfo element, will be created using
the new keyword. The constructor for the DOMElement class takes the same parameters as the
createElement () method. The first required parameter is the name of the elements, and
the second is an optional value for the element:

$firstname = new DOMElement("firstname", "Rob");
$surname = new DOMElement("surname", "Richards");

205

206

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

These two new elements, unlike the previous created elements, are not associated with a
document and are read-only. Until they are associated with a document, they can be inserted
into a tree, but no children, other than any text nodes that may have been created during
instantiation, can be appended to these elements.

When creating elements, you have a possibility of a DOMException being thrown. The name
of the element is checked to ensure that it is valid. In the event the check fails, the object is not
created and a DOMException indicating that invalid characters were used may be thrown. For
example, the name 123 is used when trying to instantiate a DOMElement object:

try {
$test = new DOMElement("123");
} catch (DOMException $e) {
var_dump($e);

}

According to the XML specification, names cannot start with a numeric, which results in
a DOMException being thrown.

As previously mentioned, the constructor can take a third parameter indicating the URI
for the namespace of the element. When this is passed, the first argument, being a qualified
name, will split the name parameter into any prefix and local name values. Without the third
parameter being used, the name passed is used as the local name even if it contains a colon:

$nsElement = new DOMElement("nse:myelement”, NULL, "http://www.example.com/ns");

This instantiates a DOMElement object with the myelement element prefixed with nse and
living in the http://www.example.com/ns namespace. A value can be passed for the content,
but in this case, NULL is passed, and the element is created without any children.

Inserting Elements

With a few elements currently created, they need to be inserted into the tree. The methods
for appending and inserting nodes come from the DOMNode class and thus are not specific to
element nodes; in other words, they can be called from other node types as well. Currently,
the document contains only a single document element. Using the document node, $dom, the
document element will be retrieved and the bookinfo element appended:

$dom->documentElement->appendChild($bookinfo);

The appendChild() method takes a node to be appended as a child of the current node
for a parameter and returns the node appended. The node is appended as the last child of
the current node’s children. In this case, the book element currently has no children, so the
bookinfo is added as the first child. Also, you already have a handle on the node being
inserted, so you have no need to capture the return value.

This method, like the other insertion methods, may throw a DOMException. The possible
cases for an exception are a hierarchy error, when the node being appended already exists in
the tree and is a parent of the current node; a wrong document error, when the node being
appended is associated with a document other than the current nodes document; and lastly
a “no modification allowed” error, when the current node is read-only. One point to note
about a hierarchy error is that it is not considered an error to append a node without an asso-
ciated document to a node with a document because the appended node will become part of

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

the tree and automatically be associated with the document. In cases where the current node
is not associated with a document, a “no modification allowed” error is issued, because these
nodes are read-only.

Before appending the author element, $biauthor, into the tree, you can append the
firstname and surname nodes to the author element. Remember, $biauthor was created with
an association to the document, so the firstname and surname elements, once appended, will
inherit this association:

$biauthor->appendChild($surname);
$biauthor->insertBefore($firstname, $surname);

The first line should look familiar because it was used to append the bookinfo element.
The second line uses a new method, insertBefore(). It works similarly to appendChild(), but
the second argument, which must be a child node of the current node, is used as a reference
point to insert the new node before. This code is the same as writing the following:

$biauthor->appendChild($firstname);
$biauthor->appendChild($surname);

You will typically use insertBefore() when trying to insert elements in the middle of a list
of child nodes, but it’s used in the example to show how it works. With the author element
complete with content, you can now insert it into the document:

$bookinfo->appendChild($biauthor);

If you look at the output now, you will see the document beginning to take shape. The
document may look odd because it is all strung together without any line feeds, so you can
beautify the output using the formatOutput property:

$dom->formatOutput = TRUE;
print $dom->saveXML();

Well, it looks like the title element was omitted and needs to be inserted. In this case,
insertBefore() is definitely appropriate. The title node is supposed to come before the
author element, which is already in the tree:

$bookinfo->insertBefore($bititle, $biauthor);

You can deal with the remainder of the elements for the tree later because you already
have enough information to create them. For now, you'll move on to dealing with attribute
nodes.

Attribute Nodes

You can handle attribute nodes, as well as specific attribute functionality from the DOMElement
class, in a similar fashion to element nodes. You can create them using factory methods from
the DOMDocument class by directly instantiating them, and you can create them using methods
from a DOMElement object. You can also insert and remove them using the methods from the
DOMNode class as well as methods from a DOMElement object.

Equivalent methods for attribute creation exist for a DOMDocument object as for element
creation. Currently (though this may change in future version of PHP), you cannot create

207

208

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

attributes with values using the factory methods. The only parameter is a name (or in the case
of using namespaces, a namespace URI and a name):

/* Equivalent methods for creation of lang attribute */
$lang = $dom->createAttribute("lang");
$lang = $dom->createAttributeNS(NULL, "lang");

Both of these lines of code result in the creation of a DOMAttr object named lang. Using
these methods, you need to specify a value, which you can do using the nodeValue property
from the DOMNode class or using the value property from the DOMAttr class:

/* Equivalent calls to set the value for the lang attribute to "en" */

$lang->nodeValue = "en";

$lang->value = "en";

You can also create attributes with values at the same time using the new keyword. Again,
these nodes will not be associated with a document:

$lang = new DOMAttr("lang", "en");

Using any of these methods to create an attribute requires the attribute to be inserted
into the tree. Using methods already covered, you could add it doing this:

/* Equivalent methods for inserting an attribute */
$bookinfo->appendChild($lang);
$bookinfo->insertBefore($lang, NULL);

The last method uses insertBefore() with the reference node parameter being NULL. When
NULL is passed as the reference node, the function works in the same way as appendChild(). The
node is inserted as the last node.

Note Attributes are not children of element nodes. When using the appending child functions, such as
appendChild(), the attribute is not appended as a child but instead appended in the attribute property list
of the element.

You can also add attribute nodes using the setAttributeNode() and setAttributeNodeNS()
methods from the DOMElement class. These methods take a single DOMAttr object as a parameter.
These methods will first check whether an attribute with the same name—and in the case of
setAttributeNodeNS(), the same name and namespace—exists. Then, if it exists, these methods
remove the attribute and replace it with the new attribute. These methods return NULL if no
attribute was replaced or return the replaced attribute. For example:

/* Equivalent calls for this document as no namespaces are being used */
$oldlang = $bookinfo->setAttributeNode($lang);
$oldlang = $bookinfo->setAttributeNodeNS($lang);

You can also create attributes without ever having to directly create a DOMAttr object. The
DOMElement class includes the methods setAttribute() and setAttributeNS(). These methods

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

are the counterparts to the getAttribute() and getAttributeNS() methods you encountered
earlier when navigating the tree. Both of the set methods create an attribute based on the name
and value, passed as parameters, and return the newly created DOMAttr object. Just like all the
other namespace functions, getAttributeNS() accepts a namespace URI as a parameter and

uses a qualified name as an argument:

/* Equivalent calls to create the lang attribute with value "en" */
$bookinfo->setAttribute("lang", "en");
$bookinfo->setAttributeNS(NULL, "lang", "en");

Caution When creating an attribute with an entity reference as a value, you must create a DOMAttr
object and set the value manually. The value argument for the constructor of a DOMAttr and for the
setAttribute() and setAttributeNS() methods is simple text that is not parsed and treated as
literal text.

Text Nodes

Text nodes are simple nodes, because they cannot have child nodes or attributes. In other
words, they simply contain text content. This does not mean they offer little functionality,
though. You can use the text nodes to set content as well as perform string functions. You
create and insert them in the same manner as element nodes. You can create them either
using a factory method from a DOMDocument object or using the new keyword. You can insert
them using the normal appendChild() and insertBefore() methods.

Creating and Inserting Text Nodes

You use a DOMDocument object to create a text node with the createTextNode() method. A data
parameter is required that specifies the content, or value, for the text node. Instantiating a
DOMText object with the new keyword does not require a value, because the default is to create
a text node with empty content. For example:

/* Equivalent creation of DOMText objects */
$yeartxt = $dom->createTextNode("2005");
$yeartxt = new DOMText("2005");

The text node created, whichever method you decide to use, will be used as the content
for the yet-to-be-created year element, which will be the child of a yet-to-be-created copyright
element. While inserting these nodes, this also creates the holder element. For example:

/* Create and Append a copyright element */
$copyright = $bookinfo->appendChild(new DOMElement("copyright"));

In one line, a new copyright element is instantiated using the new keyword and is
appended to the bookinfo element. You might have wondered why the return values mattered
before because all examples previously used instantiated objects when appending nodes. In
this case, the $copyright variable, upon the method returning, will contain the newly created
DOMElement object that contains the copyright element. For example:

209

210

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

/* Create year element */
$year = $dom->createElement("year");

/* Append text node to set content */
$year->appendChild($yeartxt);
$copyright->appendChild($year);

After creating the year element, the DOMText object, previously created, is appended as
content. Once this is done, the year element is appended to the copyright element. For
example:

/* Append a newly created holder element with content "Rob Richards" */
$copyright->appendChild(new DOMElement("holder", "Rob Richards"));

Again, a single line of code performs multiple operations. A new DOMElement object is
created with the name holder and the value Rob Richards. This element is appended to the
copyright element.

Manipulating Text

The DOMText class derives from the DOMCharacterData class. Methods exist in both classes that
can manipulate text on DOMText objects. For example, take the following piece of code, which
includes the appropriate output that will print after the colon in each of the comments:

/* If content is not whitespace then ... */

if (! $yeartxt->isElementContentWhitespace()) {
/* Print substring at offset 1 and length 2: 00 */
print $yeartxt->substringData(1,2)."\n";

/* Append the string -2006 to the content and print output: 2005-2006 */
$yeartxt->appendData("-2006");
print $yeartxt->nodeValue."\n";

/* Delete content at offset 4 with length of 5 and print output: 2005 */
$yeartxt->deleteData(4,5);
print $yeartxt->nodeValue."\n";

/* Insert string "ABC" at offset 1 and print output: 2ABCOO5 */
$yeartxt->insertData(1, "ABC");
print $yeartxt->nodeValue."\n";

/* Replace content at ofset 1 with length of 3 with an empty string: 2005 */
$yeartxt->replaceData(1, 3, "");
print $yeartxt->nodeValue."\n";

At this point the tree is really starting to take shape. The output at this point—using
formatting, of course—looks like this:

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//0ASIS//DTD DocBook XML V4.1.2//EN"
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd">
<book>
<bookinfo lang="en">
<title>DOM in PHP 5<¢/title>
<author>
<firstname>Rob</firstname>
<surname>Richards</surname>
</author>
<copyright>
<year>2005</year>
<holder>Rob Richards</holder>
</copyright>
</bookinfo>
</book>

The serialized tree looks almost exactly like the tree in Listing 6-1. This is good because
that is the goal you are working toward. The only missing pieces are the preface and chapter
subtrees. This will be left as an exercise for you to finish because I have already covered every-
thing you need to complete the tree.

Other Node Types

The node types covered to this point are the most frequently used, which is why I have given
them much greater emphasis. You can create and insert the remaining node types in the same
manner as the previous nodes. Because the complete API is included in Appendix B, I will
show how to create the remaining nodes through code:

/* Create a DOMDocumentFragment */
$frag = $dom->createDocumentFragment();
$frag = new DOMDocumentFragment();

/* Create DOMComment */

$comment = $dom->createComment("this is a comment");
$comment = new DOMComment("this is a comment");

/* Results in <!-- this is a comment --> */

/* Create DOMCDATASection */

$cdata = $dom->createCDATASection("<html></html");
$cdata = new DOMCDATASection("<html></html");

/* Results in <![CDATA[<html></html]]> */

/* Create DOMProcessingInstruction */

$pi = $dom->createProcessingInstruction("php", "echo 'Hello World';");
$pi = new DOMProcessingInstruction("php", "echo 'Hello World';");

/* Results in <?php echo 'Hello World';?> */

211

212

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

/* Create DOMEntityReference */

$entityref = $dom->createEntityReference("1t");
$entityref = new DOMEntityReference("1t");

/* Results in &1t; */

Outside the methods inherited from the DOMNode class, the DOMDocumentFragment class is
the only class with additional functionality. This functionality is only a single method and
available only in PHP 5.1 and higher. Rather than having to build a fragment manually by
appending nodes, you can use the method appendXML() to create a fragment from string
data. Take the case of building a fragment manually versus building it from a string:

$frag = $dom->createDocumentFragment();
$frag->appendChild(new DOMElement("node1", "nodel value"));
$frag->appendChild(new DOMElement("node2", "node2 value"));

It would have been so much easier to append the data as a string. You had no need to
manually create the DOMElement objects because the appropriate nodes are automatically
created through the appendXML () method:

$frag = $dom->createDocumentFragment();
$frag->appendXML("<nodel>nodel value</nodel><node2>node2 value</node2>");

Note When appending a DOMDocumentFragment object into a tree, only the children on the fragment are
added. The DOMDocumentFragment object that is left after an append will be empty because the nodes have
been removed and inserted into the tree.

Removing and Replacing Nodes

The last piece of editing a document is removing and replacing nodes in a tree. Some of
the methods encountered so far will perform this type of functionality. Take, for instance, the
setAttributeNode() method. When a node with the same name exists on the element, the old
attribute is removed and replaced with the new attribute node, and the old attribute is returned.
The same functionality can happen with other node types using the replaceChild() method.
Sometimes, however, you want just to remove a node. In this case, you can use the
removeChild() method.

Given the following document loaded into a DOMDocument object:

$doc = DOMDocument::loadXML('<?xml version="1.0"?>
<root>

<child1>child1 content</child1>

<child2>child2 content</child2>

<child3>child3 content</child3>
</root>");

the element child2 needs to be removed from this document, and child3 needs to be replaced
with the element newchild. The first step is to get access to each of these nodes. To reduce the

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

number of steps, I will show how to retrieve the elements using the getElementsByTagName ()
method:

$root = $doc->documentElement;
$child2 = $root->getElementsByTagName("child2")->item(0);
$child3 = $root->getElementsByTagName("child3")->item(0);

The first step is to remove the $child object:
$root->removeChild($child2);
If you look at the serialized tree now, you would see this:

<?xml version="1.0"?>
<root>
<childi>child1l content</childi>

<child3>child3 content</child3>
</root>

The whitespaces are left in the document, causing the blank line in the output. The
$child3 object is still in scope so can now be replaced with a new element. This also will be
condensed using the new keyword for the new element:

$oldchild = $root->replaceChild(new DOMElement("newchild", "new content"), $child3);

In this case, the new element is being created inline. Unfortunately, using the new keyword
here does not give direct access to the newly created node. This method returns the node being
removed from the tree. The resulting serialized tree is as follows:

<?xml version="1.0"?>
<root>
<child1>child1l content</child1>

<newchild>new content</newchild>
</root>

Wrapping up this section, you might want to remove those whitespaces within the root
element children. I have already covered everything you need to know in order to do this.
One way is to use the following piece of code:

$children = $root->childNodes;
for ($x=$children->length; $x--; $x>=0) {
$node = $children->item($x);
if ($node->nodeType == XML_TEXT NODE 8& $node-> isElementContentWhitespace()) {
$root->removeChild($node);

}

You have many ways to accomplish this task. One question you may have is why the itera-
tion was performed from last to first. Based on how this code was written, DOMNodeList objects
are being used. These are live collections resulting in changes of indexes when nodes are

213

214

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

added or removed. For now, I will let you think about this and possibly come up with the
answer. Have no worries if you are unsure of why the code was written in this manner, because
I answer this question in depth in the section “Common Questions, Misconceptions, and
Problems.”

Performing Validation

Chapter 3 covered three methods of validating XML documents. You can use each of these
methods with the DOM extension to perform validation. As shown in the previous chapter, you
can invoke and perform validation using DTDs during parsing by using the LIBXML_DTDVALID
constant with either of the load options. It is not always the case that a document would need
to be validated at the time of being parsed, and the bigger issue is that only DTDs can currently
be used, leaving XML Schemas and RELAX NG unaccounted for. The DOMDocument class imple-
ments the accessor methods to perform validation after an XML document has been loaded.

Validating with DTDs

You must load DTDs prior to trying to validate against them within the DOM extension. Loading
a document with the LIBXML_DTDLOAD parser option will load an external DTD but not perform
validation at parse time. With a DOMDocument object instantiated and containing a loaded DTD,
validation is as simple as calling the validate() method.

This method returns TRUE or FALSE, indicating the validity state of the document. Errors
and warnings from libxml can be issued from this method call and should be handled appro-
priately, either by using a user error handler, allowing the printing of the errors; by using error
suppression; or by using the new error handling available in PHP 5.1.

$dom = DOMDocument::loadXML('<?xml version="1.0"?>
<!DOCTYPE courses [
<!ELEMENT courses (course+)>
<!ELEMENT course (title)>
<IELEMENT title (#PCDATA)>
1>
<courses>
<course>
<title>Algebra</title>
</course>
</courses>');

The variable $dom, after running this code, is a DOMDocument object containing an internal
subset. Internal subsets do not require any parameters instructing a DTD to be loaded because
they are internal. It has not been validated, because the parser was not instructed to validate it.
At this point, you may want to find out whether the document is valid, and you can easily do
this with the validate() method:

$isvalid = $dom->validate();
var_dump($isvalid);

The result of this is bool (true), which indicates the document is valid.

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

It becomes more difficult when building a document manually containing a DTD and
performing validation. Internal subsets cannot be created with the DOM extension manually.
You can create external subsets using methods from the DOMImplementation class, but these
still are not loaded into memory. In these instances, a document should be serialized, reloaded,
and then validated in order for validation to work properly.

Validating with XML Schemas

Validation with XML Schemas is a bit different than working with DTDs. The schema is not
loaded at parse time like internal and external subsets are. Associating an XML schema with
an XML document is not even performed until validation is ready to be performed. An advan-
tage of this is that it removes the need for any type of document serialization.

You can specify XML Schemas either through a string containing the schema or through
a URI pointing to the location of the schema. The DOMDocument class implements the methods
schemaValidate() and schemaValidateSource() to load a schema and validate it against the cur-
rent document at the same time. Each takes a single parameter. The method schemaValidate()
accepts a string containing the URI of the schema; schemaValidateSource() takes a string
containing the XML of the schema itself. These methods return the same results as validating
against a DTD. A Boolean is returned, and errors from libxml are possible. Each must be han-
dled appropriately. For example:

$dom = DOMDocument::loadXML('<?xml version="1.0"?>
<courses>
<course>
<title>Algebra</title>
</course>
</courses>');

$schema = '<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="courses">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="course" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>";

$isvalid = $dom->schemaValidateSource($schema);
var_dump($isvalid);

215

216

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

This example loads a scaled-down XML Schema from Chapter 3 into the string $schema.
The method schemaValidateSource() is called on the DOMDocument object, $dom, to be validated.
In this case, the document validates and returns the Boolean, TRUE, identified by the $isvalid
variable.

Validating with RELAX NG

Validation using RELAX NG works in the same manner as validating with an XML Schema. It
offers the same advantage in that the schema is associated at the time of validation, and docu-
ment serialization is not required. Other than using RELAX NG for the schema and a minor
difference in method names, the parameters, return values, and error issuance is the same as
when using XML Schemas. The methods used with RELAX NG validation are relaxNGVali-
date() and relaxNGValidateSource(). The first method takes a URI, and the latter takes a
string containing the XML for the RELAX NG schema. For example:

$schema = '<?xml version="1.0" encoding="utf-8" ?>
<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">
<zeroOrMore>
<element name="course">
<element name="title">
<text/>
</element>
</element>
</zeroOrMore>
</element>";

$isvalid = $dom->relaxNGValidateSource($schema);
var_dump($isvalid);

Using the DOMDocument object, $dom, from the XML Schema example, the RELAX NG
schema (in serialized form and set to the $schema variable) is validated against the document
using the relaxNGValidateSource() method. Just like the other validation methods, this docu-
ment successfully validates and returns the Boolean TRUE to the $isvalid variable.

Using XPath

The DOMXPath class in the DOM extension offers access to the underlying tree using XPath
expressions, as examined in Chapter 4. This class is simple to use because it has minimal
methods yet allows for complex expression. When running under PHP 5.0, a DOMNodeList con-
taining nodes is the only return type available using the query() method. For PHP 5.1 and
higher, the evaluate() method allows for a greater number of return types.

Instantiating DOMXPath

No factory methods exist for creating a DOMXPath object. DOMXPath is not part of the core DOM
specification and exists solely to provide XPath support with the DOM extension. You can cre-
ate a DOMXPath object using the new keyword, passing the DOMDocument object to be used with

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

XPath as the sole parameter. Using the DOMDocument object $dom, created from the document in
Listing 6-1, you can instantiate a DOMXPath object:

$domxpath = new DOMXPath($dom);

This object has no built-in properties and, depending upon the version of PHP, imple-
ments at most three methods.

Using the query() Method

The query() method is available in all versions of PHP 5. It retrieves nodes from a tree using
XPath expressions. No matter what expression is used, even those that return no nodes, a
DOMNodelist object is returned. In the event the expression returns no nodes, as either a result
of no matching nodes or a different return type, the resulting DOMNodelist is empty. This
method takes one required parameter, the XPath expression as a string, and an optional sec-
ond parameter, an object derived from the DOMNode class, which would be used as the context
for the XPath expression. For example, you can query for the author node in the document
with the expression /book/bookinfo/author:

$list = $domxpath->query("/book/bookinfo/author");
$author = $1list->item(0);

Examining the $author variable, you will see it refers to the author element in the docu-
ment. You could then use this node as the context parameter to access the surname node:

$list = $domxpath->query("surname", $author);
$surname = $list->item(0);

If you tried to return the contents of the surname element as a string via an XPath expres-
sion, you will see that a DOMNodeList object is returned but is empty:

$list = $domxpath->query("string('/book/bookinfo/author/surname')");
var_dump($list);
print "Number of Nodes Returned: ".$list->length."\n";

The var_dump of the $1ist variable clearly shows that the object is a DOMNodeList. The list
after that illustrates that the number of nodes contained, from the length property, is 0.

Using the evaluate() Method

PHP 5.1 added a method, evaluate(), so that additional types supported by XPath could be
returned. This method takes the same parameters as the query method(): an object derived
from a DOMNode class followed by an optional context parameter. Using this method, you would
write the same expression to return the contents of the surname element as a string, as follows:

$1list = $domxpath->evaluate("string(/book/bookinfo/author/surname)");
var_dump($list);

The output for the var_dump in this case is much different. A DOMNodeList is not returned
in this case. Instead a string is returned:

string(8) "Richards"

217

218

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

With this new method, return values can be of type Boolean, Integer, String, Null, or
DOMNodel ist. It all depends upon the expression used. For instance, an expression could per-
form a calculation on the year element, such as adding one year and returning the numeric
value:

$newyear = $domxpath->evaluate("number(/book/bookinfo/copyright/year) + 1");
var_dump($newyear);

You can use this method, also being able to return a DOMNodelList, as a replacement for
the query() method. For backward compatibility, query() was left untouched, returning only
a DOMNodel ist, with support for new additional types added to the evaluate() method:

$list = $domxpath->evaluate("/book/bookinfo/author");
$author = $list->item(0);
print $author->nodeName."\n";

This code is almost identical to the code using the query() method, but it uses the
evaluate() method. Examining the $author variable, you will see it is identical to the $author
variable previously returned from the query() method.

Using XPath and Namespaces

In Chapter 4, I showed the functionality for dealing with namespaces in XPath. I also pointed
out the problem with default namespaces. Without prefixes, it is harder to differentiate or write
expressions based on namespaces. You can use the helper method, registerNamespace(), on a
DOMXPath object to associate a prefix with a namespace, which can then be used in an expres-
sion. In Chapter 4, you saw a document containing many different book elements—some in

no namespace, some prefixed and within a namespace, and some in a default namespace.
One such book element within the default namespace looks like this:

<classics xmlns="http://www.example.com/ExternalClassics">
<book qty="33">
<name>To Kill a Mockingbird</name>
<price>10.99</price>
<pubdate>2002-03-01</pubdate>
<author>Lee, Harper</author>
</book>
</classics>

It tends to be easier when writing expressions to be able to use a prefix when dealing with
namespaced nodes. In this case, you can use the registerNamespace() method:

$domxpath->registerNamespace("ec”, " http://www.example.com/ExternalClassics");

Prior to executing an expression, if the namespace http://www.example.com/
ExternalClassics and the prefix ec are registered with the DOMXPath class, you can use
the prefix within an expression to access namespaced nodes.

It is important to understand that when performing a query or evaluation with an XPath
object, some automatic namespace registration takes place. Prefixed namespaces within the
scope of the context node are automatically registered and can be used within an expression.
When a context node is not supplied, prefixed namespaces on the document element are

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

automatically registered. For example, had the namespace from the classics node been associ-
ated with a prefix and no context node supplied when performing a query, its prefix would
automatically be available to be used in an expression. However, had any namespaces been
declared within the children of the element, they would not have been registered because the
context node, the classics element, is not within the scope of those namespaces and would
need to be manually registered. It is also important to understand that when namespaces are
automatically registered, the prefixes closest to the context take precedence over the same
prefixes declared higher up in the tree. It is all about scope here.

If you loaded the previous snippet into a DOMDocument object, $xd, and treated it as a com-
plete document, rather than just a piece of the document from Chapter 4, you could then access
the price element with the newly registered namespace:

$xp = new DOMXPath($xd);

$xp->registerNamespace("ec", "http://www.example.com/ExternalClassics");
$list = $xp->evaluate("/ec:classics/ec:book/ec:price");
var_dump($list->item(0)->nodeName);

Namespaces are not dependant upon the prefix. The important aspect is the actual name-
space. When registering a prefix to use with a namespace, it is crucial to choose unique names.
A prefix that is automatically registered will take priority over one manually registered on the
DOMXPath object. Scope comes into play in this case. To avoid potential conflicts, it is best to use
prefixes that are guaranteed not to be used within a document.

Extending Classes

One of the nice features of the DOM extension is the ability to extend the core classes. Under
PHP 4 and the domxml extension, this functionality was impossible to achieve. With the capa-
bilities from the new Zend Engine in PHP 5, this has finally become a reality in DOM. This
feature has its limits, which will be explained within this section.

You can extend one of the DOM classes in the same manner as extending any other class
within PHP 5. You define a class using the extends keyword:

class customDoc extends DOMDocument {}

$mydoc = new customDoc();
print $mydoc->saveXML();

In this case, other than creating a new class type extending the DOMDocument class, you
have not defined any custom constructor or additional methods and properties. The methods
and properties from the DOMDocument class, though, are inherited and, as shown by the last
print statement, are invoked just as if you were using a DOMDocument object.

You can also override the constructor and methods as well as add custom methods and
properties. You must remember a few points when extending the DOM classes:

* Overriding the constructor requires the parent constructor to be called.
* Properties built into the DOM classes cannot be overridden.
* Methods built into the DOM classes can be overridden.

 The life span of an extended object is that of the object itself.

219

220

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

Other than these points, extended DOM classes work in the same manner as regular
objects and extended objects.

Overriding the Constructor

A subclass can override the constructor of a base class by defining its own constructor. When
using the DOM classes, you must invoke the parent constructor within the extended class’s
constructor, or an instantiated object will not be usable with the DOM extension. For example:

class customDoc extends DOMDocument {
function _ construct($rootName, $rootValue = "") {
parent:: construct();
if (! empty($rootName)) {
$element = $this->appendChild(new DOMElement ($rootName, $rootValue));
}

}

$myc = new customDoc("root", "content");
print $myc->saveXML();

The class customDoc is defined and extends the DOMDocument class. A constructor for this
class is also defined that accepts the variables $rootName for the document element and
$rootValue, which is passed when text content is to be created for the document element
when this class is instantiated.

When an object of the customDoc type is instantiated, this new constructor is used. The
first thing that takes place is the constructor for the parent class, DOMDocument, is called. This
parent constructor mustbe called prior to using any of the DOM functionality with this class;
otherwise, $this will not have been properly initialized, and the DOM methods will fail. Once
this is completed, you can use the appendChild() method to set the document element within
the tree. The output of this code results in the following:

<?xml version="1.0"?>
<root>content</root>

Understanding That Properties Cannot Be Overridden

Properties of a base DOM class cannot be overridden. They can be defined in the subclass
definition but are silently ignored, and the built-in properties are used. This is a big difference
between the constructor and the methods defined in DOM, because those can both be over-
ridden. For example:

class customDoc extends DOMDocument {
public $nodeName = "customDoc";

}

$myc = new customDoc();
print $myc->nodeName;

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

This piece of code defines the property nodeName within the customDoc definition. The
nodeName property is also defined in the DOMNode class, which is inherited by the DOMDocument
class. Looking at the code, you might expect customDoc to be printed, but in actuality #document
is printed. Some people may consider this behavior to be an issue, but it has worked this way
from the beginning, will not be changing, and can easily be worked around by using different
property names.

Overriding Built-in Methods

You can override DOM class methods, unlike the properties, through user-implemented
methods. PHP is a typeless language and does not allow casting an object to a specific class.
The method createElement () from the DOMDocument class returns only an object that is a
DOMElement class type. Of course, you can instantiate different classes that extend a DOMElement
using the new keyword; you might want the createElement () method to return some other
class type as well. For example:

class customElement extends DOMElement { }

class customDoc extends DOMDocument {
function createElement($name, $value) {
$custom = new customElement($name, $value);
return $custom;

}

$myc = new customDoc();
$myelement = $myc->createElement("myname”, "myvalue");
if ($myelement instanceof customElement) {

print "This is a customElement";

}

This code implements a custom createElement() method that returns an element of the
customElement class type rather than a DOMElement class. It works well in that the test using
the instanceof operator results in the text This is a customElement being printed. The only
issue with this code is that the new element is not associated with a document, which occurs
through the use of the native createElement() method. Eventually the adoptNode() method
will be implemented, allowing the node to be associated with a document, but until that time,
the node exists without a document associated until inserted into a tree.

Understanding Object Lifetime and Scope

Scope and object lifetime are features many people struggle with when using extended classes
within the DOM extension. It is important to understand that DOM objects are not nodes
within the tree. This is confusing because accessing the object directly affects the underlying
node in the tree, but the object is just an “accessor” to the underlying node. This being said,
when an object is instantiated, either by using new or by accessing a node within a tree, the
object itself is not part of any tree or subtree, just the internal node.

221

222

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

Just as in most other languages, objects have a lifetime and are eventually destroyed. Once
an object goes out of scope and no references to this object exist, it is destroyed. The same rules
pertain to objects from the DOM extension. This is where much confusion comes into play.
When no object is currently referencing an underlying node and the node is accessed, a new
object is created based on the pertinent built-in DOM class. By “pertinent,” I mean that the
DOM class type that pertains to the specific node type is instantiated.

You may be wondering why all this matters. Using subclasses with the DOM extension
does not guarantee that the original class used to create a node will be the type of class of the
object returned when the node is accessed later in a script. Consider the effects of using the
unset () function on an instantiated subclassed object:

class customElement extends DOMElement { }
$doc = new DOMDocument();

$myelement = $doc->appendChild(new customElement("custom", "element"));
print get_class($myelement)."\n";

unset($myelement);

$myelement = $doc->documentElement;
print get_class($myelement)."\n";

This code initially defines the class customElement that does not override anything from
the DOMElement class. A DOMDocument object is instantiated, and a new customElement is
appended. This new element is returned as a customElement object and set to the $myelement
variable. The output of the first get_class() function is customElement and clearly shows that
the object associated with this node is of the customElement type.

Unset() is then called on the $myelement variable; because no other references exist for
this object, the object is destroyed. The element node that was previously appended as the
document element is then accessed with the documentElement property, and the resulting
object is set to the $myelement variable. Examining the output of the last get_class() function
call reveals that this object is of the DOMElement class and not the customElement class.

Caution Objects based on extended DOM classes have a life span and once destroyed no longer associ-
ate the extended class type with the underlying XML node in the tree. Accessing a node after the object has
been destroyed results in an object based on a DOM built-in class type and not the extended class type.

This is the limitation I previously mentioned about extending DOM classes. How your
code is written will determine whether an object based on an extended class will be returned
or whether it will be based on a built-in DOM class when accessing a node. You must think
about scope carefully when using extended classes. For example:

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

class customElement extends DOMElement { }

class customDoc extends DOMDocument {
function addRoot($name, $value) {
if (! $this->documentElement) {
$custom = new customElement($name, $value);
return $this->appendChild($custom);

}
return NULL;

}

$dom = new customDoc();
$dom->addRoot ("root", "content");
$myelement = $dom->documentElement;
print get class($myelement)."\n";

This piece of code creates a customDoc object and adds a document element using the
addRoot () method. The method returns the newly created object or NULL if a document ele-
ment already exists. Within the script, however, the return value is not captured, and when
the get_class() is called on the $myelement object, DOMElement is printed.

You can make a slight change to the code and capture the return value:

$myelement = $dom->addRoot("root", "content");
$myelement = $dom->documentElement;
print get class($myelement)."\n";

In this case, get_class() returns customElement. Upon returning from the addRoot ()
method, the object is captured and set to the $myelement variable. Previously, even though
the resulting element was being returned, it was not captured, and the customElement object
created was immediately destroyed. With this object destroyed, accessing the documentElement
property resulted in a new object associated with the node being created. This new object,
being created automatically from a node access, ends up being based on the DOMElement class.
The updated code keeps the $myelement object in scope, so when the documentElement prop-
erty is accessed, it returns the object already associated with the node, which is of the
customElement class.

Common Questions, Misconceptions,
and Problems

The DOM specification is quite lengthy and not always easy to interpret. It is common to
expect a certain result just to find out that the actual result is not even close to your expecta-
tion. This also holds true even with DOM interaction within PHP. The following sections will
explore many of the common questions, misconceptions, and problems people encounter
using the DOM extension and will provide some insight into methods you can employ to
achieve your desired results.

223

224

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

DOM Objects and PHP Sessions

The most frequently encountered “problem” developers have when using the DOM extension
concerns storing DOM objects in session. Let me just say that DOM objects cannot be natively
stored in session. This doesn’t mean it is impossible to store an XML document in session, just
that some additional coding is required to perform this action.

Storing data in session requires serialization. DOM objects natively cannot be serialized
using PHP functions such as serialize() or the automatic serialization that is performed when
storing data to a session without losing data. This is because of the reliance on the underlying
libxml2 library and because the DOM classes do not implement the magic sleep() and wakeup()
methods. Your first reaction to this might be the question, why aren't those methods imple-
mented? The answer is simple. You have two ways to serialize a document: to a string or to a file.
Because of the size of XML documents, in many cases they are stored on the file system rather
than as a string in memory, so these specific methods were never implemented and left to the
user to handle in whatever manner they like.

Working around this is not all that difficult; in fact, you can deal with this in a couple of
ways. The first method is extremely simple and can be performed in the same number of lines
of code as you would need when storing or fetching a DOM object from a session:

$_SESSION['domobj'] = $dom->saveXML();

Rather than storing the DOMDocument object, $dom, in session, the tree is serialized by the
saveXML() method, which is then stored in session. For example:

$dom = DOMDocument: :1oadXML($ SESSION['domobj']);

When the DOM object needs to the restored from session, a new DOMDocument is created
from the serialized tree in session.

Another method you can use is to extend the DOMDocument class and implement the
sleep() and wakeup() methods:

class customDoc extends DOMDocument() {
private $serializedDoc = NULL;

function _ sleep() {
$this->serializedDoc = $this->saveXML();
return array("serializedDoc");

}

function _ wakeup() {
if (! empty($this->serializedDoc)) {
$this->loadXML($this->serializedDoc);
$this->serializedDoc = NULL;

The customDoc class extends the DOMDocument class and implements the magic methods.
Once instantiated (in this case $doc will be used), the object can be easily stored and retrieved
from session as a normal object:

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

/* Store in session */
$_SESSION['domobj'] = $doc;

/* Retrieve from session */
$doc = $ SESSION['domobj'];

Using an extended class in this case allows for the object to be serialized and stored as
desired. For instance, rather than storing the document as a string in memory, it could be saved
as a file in the sleep() method and restored during wakeup().

Removing Nodes While Iterating Skips Nodes

Another issue often arises when iterating through a DOMNodeList or DOMNamedNodeMap and
removing nodes. Nodes are often skipped during such operation. For example, when trying to
remove all children from an element, the first thing someone may think of is to grab all chil-
dren, iterate through the DOMNodelList, and remove the node from the document. For example:

$children = $element->childNodes;
foreach($children as $node) {
$element->removeChild($node);

}

This code does not work as expected, and child nodes are still left within $element.
Both DOMNodelList and DOMNamedNodeMap are live collections. Additions and subtractions of
nodes within a tree can directly affect the nodes contained with the collections as well as
their indexes within the collection. In the previous code snippet, once a node is removed,
all nodes that follow it within the collection automatically have their index reduced by 1.
The results of this code would end up removing every other node in the collection, starting
with the first node.

You can work around this issue by removing nodes in reverse order or performing a loop
while $element still has children:

/* Removal Based on Index */

$length = $children->length;

for($x=$length-1; $x >= 0; $x--) {
$element->removeChild($children->item($x));

}

/* Removal based on children */
while ($element->hasChildNodes()) {
$element->removeChild($element->firstChild);

}

You can use many different techniques to do this. The first method illustrated shows how
you can perform the iteration without regard to the type of node within the collection. It is
possible that you have to change the actual code used for removal, because the code used here
is specific to removing child nodes. The second example performs the same task as the first
example, but instead no collections are used. As long as $element has children, the loop will
be processed and continue to remove the first child of $element.

225

226

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

The XML Tree Contains Garbled Characters

No matter how much encodings are stressed, people often forget that data is internally stored

in UTF-8 encoding. Other than during the loading and saving of an XML document, data that

is not compatible with UTF-8 must be encoded or decoded when accessing or modifying con-
tent. Chapter 5 explains this in detail as well as covers the methods you can employ to handle

data correctly when interacting with the XML-based extensions in PHP 5.

Extended Class Not Being Returned When Accessing Node

This has to be the most often encountered issue when using extended classes, which is why it
is mentioned here even though it has already been covered in this chapter. If you run into this
issue, refer to the “Object Lifetime and Scope Within the Extending Classes” section for an in-
depth examination of the topic. To reiterate, though, objects refer to nodes within a tree and
have a lifetime completely separate from the node. Object destruction follows the same rules
as all other objects in PHP 5:

class customElement extends DOMElement{}

function addelement($doc, $name) {
$doc->appendChild(new customElement($name));

}

$doc = new DOMDocument();

addElement($doc, "root");

$element = $doc->documentElement;

print get class($element)."\n";

This results in DOMElement being printed for output. If a node is referenced by an object
subclassed from a built-in DOM class and is destroyed, subsequent access to the node will
return an object based on the corresponding DOM class for the node. The extended class will
not be used for new object creation. The object of the customElement type is appended into the
tree but never returned, so it is destroyed. Accessing the documentElement property ends up
returning a DOMElement object, because the node no longer has an associated object. You must
take object scope and lifetime into account when extending DOM objects.

Unable to Retrieve Elements by ID

The method getElementById() will return NULL when an element with the specific ID is not
found. Even though you might think the ID is valid in the document and that a DOMElement
should be returned, a common misconception may result in NULL being returned.

Attributes for elements are using the name ID but are not recognized as ID attributes. The
name ID is not special in XML. Just because an attribute uses this name does not automatically
turn it into an ID attribute. To create IDs, you must define attributes in a DTD as IDs. The DTD, if
external, must also be processed while loading the document. Once the DTD has been loaded
and the document processed, elements will then be able to be accessed by their IDs.

In a couple of special cases, this does not hold true. The qualified attribute name xml:id is
one of these cases. Attributes with this name are handled as ID attributes and do not require a
DTD. Currently, these attributes are recognized and set up as IDs only when a document is
loaded. Work is taking place within the libxml2 library to support appending attributes with

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

this name that also automatically result in IDs, but as of libxml2 2.6.20, this has yet to be
implemented.

Another special case is the setIdAttribute() methods. These methods have not yet been
implemented at the time of writing but are on the to-do list for the DOM extension so may or
may not be available by the time you read this. These methods will allow already existing
attributes to be set and unset as ID attributes without needing a DTD or schema.

Loading Document Issues Entity Errors

By definition, an XML document must be well-formed. Entity errors and warnings are issued
when a document uses entity references and the entities are not defined in a DTD. The most
common problem encountered deals with the use of the & character:

<root>this & that</root>

This, contrary to what many believe, is not a legal XML document. Unless & is contained
within a CDATA section, it cannot be used alone for text content. Within text content, it must
be escaped and can be written as this:

<root>this & that </root>

When trying to load a document containing a stand-alone & within text content, you have
two options. You can either convert it to the appropriate entity reference or completely disre-
gard the document. The problem with the latter is that for some reason, this issue gets reported
as a bug because the document being loaded is coming from a remote source, such as an RSS
feed. In a case like that, your best bet is to contact the owner of the document and let them
know their XML is not legal.

Added DTD Not Recognized

A DTD manually added to a document using append and insert operations is not handled
by the document as a regular DTD. DTDs are parsed and set up appropriately while a docu-
ment is being parsed. Adding one later, unless creating the DTD and document using the
DOMImplementation methods, requires the document to be serialized and reloaded in order
for the DTD to be read correctly.

Unable to Access Elements in Default Namespace Using XPath

One of the biggest issues encountered when using XPath concerns selecting elements in the
default namespace. No prefixes are associated with the namespace, and the elements cannot
be selected just by using their names. Although you can hack together an expression to get
access to these elements, the easiest method is to manually register the default namespace
with some prefix. This then allows you to call the elements using the newly associated prefix
and element name. Refer to the “Using XPath and Namespaces” section in this chapter for
additional information.

227

228

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

Migrating from domxml to the DOM Extension

As long as the code from domxml is not from an extremely old version of PHP 4, migrating
from code written for domxml to the DOM extension is not difficult. The reason for the
problems from older PHP 4 versions is because of the changes made within the domxml
extension. Around the time PHP 4.3 was rolled out, domxml was updated to implement
most of the functionality using W3C-compliant methods according to the specifications,
and the older functionality was depreciated. This section will show how to migrate from
the PHP 4.3-compliant implementation of domxml because prior versions will need a
complete review and many code changes to work with the DOM extension in PHP 5.

Compliance with the specifications makes migration a much easier task. The first task
is to identify any classes created using the new keyword. Although many of the classes use
the same name in the DOM extension, a few differ. Table 6-2 lists the classes from domxml
that have different names or are not implemented in the DOM extension.

Table 6-2. Class Equivalents in the domxml and DOM Extensions

domxml Class Name DOM Class Name

DOMAttribute DOMAttr

DOMCdata DOMCdataSection
DOMEntityRef DOMEntityReference

DOMP1 DOMProcessingInstruction
DOMParser

All other classes in domxml map directly to the same class names in the DOM exten-
sion. If you have read the source code, you might also wonder about the domdtd and
domnamespacenode classes. These are no longer relevant within domxml and have been
intentionally omitted from Table 6-2.

The next step in the process is to modify method names used with the objects. In the
majority of the cases, all that is required is capitalizing the first character after an underscore
and removing the underscore from the method name. Take, for example, the method
get elements by tagname(), which is from the DOMElement class in domxml. Following the
rules just defined, the corresponding method within the DOM extension is
getElementsByTagName().

With the methods converted, the next step is to look at the methods that are implemented
differently in the DOM extension as well as methods in domxml that are now true properties
in DOM. Table 6-3 lists many, but not all, methods within domxml that are now properties in
the DOM extension.

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

Table 6-3. Methods in domxml and the Corresponding DOM Extension Properties

domxml Method DOM Property
DOMAttribute->name() DOMAttr->name
DOMAttribute->value() DOMAttr->value
DOMAttribute->set value() DOMAttr->value
DOMDocument->doctype() DOMDocument->doctype
DOMDocument->document_element() DOMDocument->documentElement
DOMNode->node_name() DOMNode->nodeName
DOMNode->node_value() DOMNode->nodeValue

Many additional methods must be converted, but similarly to converting methods, all
that is required for most methods is changing some character cases and removing the under-
scores and parentheses. In some instances, such as set_value(), you must do a little more
because the method is writing data, but the number of cases this affects is much smaller than
the number of writable properties in DOM.

The most difficult step in the process is converting methods existing in domxml that have
completely different names or implementations in DOM. Two that you will definitely encounter
deal with loading and saving data:

/* Opening a file under domxml in PHP 4 */
$doc = domxml open file('filename.xml');

/* Opening a file under DOM in PHP 5 */
$doc = DOMDocument->load('filename.xml");

The implementations are completely different in both of these cases. The same thing
occurs when saving data. Consider the case when outputting data with a specified encoding in
domxml and the difference when performing the same operation using the DOM extension:

/* Output data with IS0-8859-1 encoding using domxml */
print $doc->dump_mem(TRUE, "ISO-8859-1");

/* Output data with ISO-8859-1 encoding using DOM */
$doc->formatOutput = TRUE;

$doc->encoding = "ISO-8859-1";

print $doc->saveXML();

You must modify some other methods to work correctly under the DOM extension in
PHP 5, but the load and save methods are two of the most commonly ones encountered.

Without having to completely recode applications using domxml yet run them under
PHP 5, you can use wrapper code. Such code already exists, such as that found at http://
alexandre.alapetite.net/doc-alex/domxml-php4-php5/. Personally, I have not used this code;
instead, I found it quick and easy to simply modify existing code using the domxml extension
to code using the new DOM extension. If you do not have the time or are still leery about
changing code, this may be a viable option.

229

230

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

The last option for migration is to recode applications using domxml to use code that
is compliant with the DOM extension in PHP 5. I expect you may have a quizzical look on
your face right now. You can write wrapper classes in PHP that mimic the behavior of the
DOM extension in PHP 5 but are built using the functionality in the domxml extension to
ease eventual migration. This way when the upgrade to PHP 5 happens, your code would
need no modification. Well, it might need a little. Unfortunately, code for this no longer
exists so must be written from scratch. A few years ago, during the initial development
stages of the DOM extension, some code surfaced on the Internet that did just this. At the
time it was not 100 percent functional, but was a good start. The site that offered this code
is no longer reachable; it may have just been lost in the black void somewhere.

Seeing Some DOM Examples

The DOM extension is a large API, and finding an example using the entire API is not very
realistic. I have demonstrated many of the features and concepts in small code snippets
throughout this chapter. The following sections introduce two different examples that show
some of the more frequently used functionality within the API. The first example will create
a template XML document, based on an XML document describing its structure, that will
be used in a SimpleXML example in Chapter 7. The second example will demonstrate how
to create an XSL template using namespaces; you could use this template to process a docu-
ment with the XSL extension, which will be covered in Chapter 10. You can find additional
examples, as well as demonstrations of advanced functionality, in later chapters within

this book.

Building a Portable Application Description Template

The Portable Application Description (PAD) is a specification designed by the Association

of Shareware Professionals (ASP); you can find it at http://www.asp-shareware.org/pad/.

It is a standard format allowing authors of shareware software to provide information such

as company and contact information, support information, software information, and
licensing in a common format that can be leveraged not only by end users looking for more
information about a piece of software but also by online libraries building content and search
engines. You can find more information about this topic in Chapter 7.

This example will create an XML template that is used in Chapter 7 to create the actual
PAD document for an application. The structure of a PAD document is defined by another
XML document, http://www.padspec.org/pad_spec.xml. I will show how to use the DOM
extension to dynamically build the template document for SimpleXML from this PAD
specification file:

<?php

/* Path to PAD specification File */

$location = "http://www.padspec.org/pad spec.xml";

/* Default PAD version - Version is read from Spec File */
$padVersion = "2.01";

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

function setPADInfo($doc, $version) {

}

$node = $doc->documentElement;

$node = $node->appendChild(new DOMElement("MASTER PAD VERSION INFO"));
$node->appendChild(new DOMElement("MASTER PAD VERSION", $version));
$node->appendChild(new DOMElement("MASTER PAD EDITOR", "PHP"));
$node->appendChild(new DOMElement("MASTER PAD INFO", "http://www.padspec.org/"));

function createField($doc, $node, $name) {

if

if ($node == NULL) {
$node = $doc->documentElement;
if (! $node) {
$node = $doc->appendChild(new DOMElement($name));
}

return $node;
}
foreach ($node->childNodes AS $child) {
if ($child->nodeName == $name) {
return $child;
}

}
return $node->appendChild(new DOMElement($name));

($dom = DOMDocument::load($location)) {
$padSet = FALSE;

/* Create the new template output tree */
$template = new DOMDocument("1.0", "UTF-8");

$xpath = new DOMXPath($dom);
/* Find PAD Version element */
$verNode = $xpath->query("PAD Spec Version");
if ($verNode 88 $verNode->length == 1) {
/* Retrieve template version */
$padVersion = $verNode->item(0)->nodeValue;

}

/* Query and loop through all elements named Field */

$fields = $xpath->query("//Field");

foreach ($fields as $field) {
/* Retrieve element named Path within current Field element */
$path = $xpath->query("Path", $field);

if ($path->length == 1) {
$node = NULL;

231

232

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

/* Get value of Path element */
$xmlnodes = trim($path->item(0)->nodevValue);

/* Split Path by / separator */
$arPath = explode("/", $xmlnodes);

/* Loop through path to create specified element
Parent elements are created as needed based on Path */
foreach ($arPath AS $key=>$value) {
/* IF PAD information not set and Field refers to
PAD information then create it */
if (! $padSet && $value == "MASTER_PAD VERSION INFO") {
setPADInfo($template, $padVersion);
$padSet = TRUE;
break;

}

/* Path begins with parent so returned $node is
parent for next node within local foreach loop */
$node=createField($template, $node, $value);

}

/* Save the generated XML Tree to padtemplate.xml file */
$template->formatOutput = TRUE;
print $template->save("padtemplate.xml");

}

>

The script initially initializes two variables: $1ocation, which points to the location of
the PAD XML definition file, and $padVersion, which sets the version of the definition file
in the unlikely event it cannot be obtained from the definition file. Rather than a hard-coded
location, the definition file can be retrieved and stored locally, in which case the location
should be updated to the localized path. Skipping over the two functions for now, the defini-
tion file is loaded into a DOMDocument, $dom. This tree reads the definition from which the
PAD template is dynamically created.

Take alook at the actual definition file, in particular the Company Name element; it is
defined as follows:

<PAD_Spec>
<PAD_Spec_Version>2.01</PAD Spec Version>
<Fields>
<Field>
<Name>Company_Name</Name>
<Path>XML_DIZ INFO/Company Info/Company Name</Path>
<Title>Company name</Title>

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

<ShortDescription>Company name or, if no company name, author
name</ShortDescription>
<RegExDocumentation>Text string 2-40 characters</RegExDocumentation>
<RegEx>"[*81t;\x09]{2,40}\Z</RegEx>
</Field>
</Fields>
</PAD_Spec_Version>
</PAD_Spec>

Each PAD element is defined in such a manner within a Field element in the definition
file. The child elements define the different aspects of the particular field. For example:

* Name: The name of PAD element within XML document

* Path: The location of the element within the tree

e Title: A descriptive title for the element

* ShortDescription: A short description of the element

* RegExDocumentation: A description of the regular expression

* RegEx: The regular expression used to validate the contents of the element

Most of these fields are self-explanatory. The Path element may give rise to some ques-
tions, though. This field defines the location of the specified element within the tree. Using the
Path for the Company_Name element, XML_DIZ_INFO/Company_Info/Company_Name, the element
within the document is as follows:

<XML_DIZ INFO>
<Company_Info>
<Company_Name/>
</Company_Info>
</XML_DIZ_INFO>

With the definition file loaded, a new document, $template, is created that will hold the
created PAD template. It is initially created as an empty document using new DOMDocument ().
The first step is to retrieve the PAD version from the definition file. Here, XPath is used. Rather
than trying to walk through the tree and manually locate the element, the document is queried
for the PAD_Spec_Version element. Queries return DOMNodeList objects even when empty,
unless an error has occurred. As long as one is returned and it contains a node, $padVersion
is set from the contents of the node, overriding the default initially set up at the beginning of
the script. At this point, all initialization steps have been completed, and the actual building
of the PAD XML template can commence.

Each Field element represents an element within the PAD document template, so building
the template begins with retrieving a DOMNodeList containing all Field elements using XPath.
Again, it is much faster and easier to manage getting these using XPath rather than manually
walking the tree. Using the DOMNodeList, $fields, the script can iterate through each of the
contained Field elements and process them within the foreach loop.

233

234

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

The Path element is then retrieved using XPath and the current Field element, $field,
as the context. This will give you the full location of the element within the PAD template
document. The Path is then split into an array based on the separator, /, resulting in an array,
$arPath, containing the entire tree hierarchy for the current element. The array is then iterated
to create the structure within the template.

One exception applies when building the template, and that deals with the versioning
information for the PAD file. The MASTER_PAD_VERSION INFO element within the template con-
tains the version number of the definition file and some additional information concerning
how the file is created. When encountered, the setPADInfo() function is called, creating this
information as an element and its children beneath the document element. This function is
straightforward because it appends and then encapsulates the MASTER_PAD_VERSION INFO ele-
ment, and finally it continues to append the additional elements to this newly created node.
The real work is performed for the rest of the Field elements from the specification document
using the createField() function.

Notice that for each iteration of the DOMNodeList containing the Field elements, $fields,
$node is set to NULL. During the iteration of the array, $arPath, containing the broken up path,
$node is not only passed in as an argument to createField() but also receives the returned
value from the function. This function takes three parameters: $doc, which is the DOMDocument
being built and corresponds to $template in this case; $node, which is the parent node for the
element being created; and finally $name, which is the name of the element being created.

When the parent node, $node, is passed as NULL, it signals the top of the tree. The function
grabs the document element from the document and creates it if it doesn't exist. The method
appendChild() is used to append a nonexistent node. This method also returns the newly
appended node, which gets set to $node. In either instance, $node is returned to the script
pointing to the document element.

Within the foreach of $arPath, $node is updated with the return value from createField().
The next iteration then passes the previous $node to the createField() function, forcing it to
append any element created to this node. Assuming $node is not NULL in this case, the function
first checks to make sure the element has not already been created and appended. If it has, it
returns the existing element; otherwise, it creates, appends, and returns the new element. The
check simply takes place by iterating through the child nodes of the passed-in parent, $node,
and testing the node name against the name of the element to be created, $name.

The script processes each of the Field elements from the specification file this way.
Upon completion, the DOMDocument object, $template, contains an XML tree conforming to
the PAD specifications. The last step is to save the template to some location so that it can
be used in the next chapter. The formatting performed by $template->formatOutput = TRUE;
is not necessary but makes the final output much more readable through indenting and
adding line feeds.

Note Note the location of the final output document. It is used in the example for SimpleXML as the input
document and is required to execute the example in the next chapter.

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

Building an XSL Template

As you will see in Chapter 10, the XSL extension works with and requires the DOM extension.
XSL loads both the style sheet and the document through the use of a DOMDocument object. In
many cases, the style sheet is a file loaded into a DOMDocument object, but it is possible to create
a properly namespaced style sheet manually using the DOM API. This example will cover the
process of building a simple style sheet that can be used by the XSL processor. An XML docu-
ment containing sites and URLSs needs to be transformed and displayed in an HTML page.
The document containing the data looks like the following:

<sites>
<site>
<name>Libxml</name>
<url>http://www.xmlsoft.org</url>
</site>
<site>
<name>W3C DOM Level 3 Specifications</name>
<url>www.w3.org/TR/DOM-Level-3-Core/</url>
</site>
</sites>

Without going into the details of the XSLT language, which is covered in Chapter 10,
I will show how to build a template using the DOM extension. XSL templates depend upon
proper namespacing. Normally templates are loaded into a DOM document from a file and
processed by XSL. Elements within the tree, assuming the template is written correctly, are
already properly namespaced internally. Building a tree manually, on the other hand,
requires elements to be properly namespaced, or the template will not work properly when
passed to XSL. The namespace used within XSL and the example is http://www.w3.01g/
1999/XSL/Transtorm. To make this more manageable to code with, the namespace is set
to the variable $xslns in the following code, and $xslns is used when the namespace is
needed:

<?php
/* Set the xsl namespace url for re-use */
$xslns = "http://www.w3.0rg/1999/XSL/Transform";

/* Create the document for the style sheet */
$stylesheet = new domDocument;

/* Create the stylesheet node */

$root = $stylesheet->createElementNS($xslns, "xsl:stylesheet");
$stylesheet->appendChild($root);

$root->setAttribute("version", "1.0");

/* Create the output method node */

$output = $stylesheet->createElementNS($xslns, "xsl:output");
$output->setAttribute("method", "html");
$root->appendChild($output);

235

236 CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

/* Create the main template that matches on the document element */
$template= $stylesheet->createElementNS($xslns, "xsl:template");
$template->setAttribute("match", "/");
$root->appendChild($template);

$html = $template->appendChild(new domElement("html"));
$body = $html->appendChild(new domElement("body"));

/* Call another template matching on /sites/site elements */

$subtemplate = $stylesheet->createElementNS($xslns, "xsl:apply-templates");
$body->appendChild($subtemplate);

$subtemplate->setAttribute("select", "/sites/site");

/* Create the template for matching /sites/site elements */
$template= $stylesheet->createElementNS($xslns, "xsl:template");
$template->setAttribute("match", "/sites/site");
$root->appendChild($template);

$paragraph = $template->appendChild(new domElement("p"));

/* Get the value of the name */

$xslvalueof = $stylesheet->createElementNS($xslns, "xsl:value-of");
$xslvalueof->setAttribute("select”, "./name");
$paragraph->appendChild($xslvalueof);

/* Add a colon in the final output separating name and url */
$paragraph->appendChild(new domText(" : "));

/* Get the value of the url */

$xslvalueof = $stylesheet->createElementNS($xslns, "xsl:value-of");
$xslvalueof->setAttribute("select", "./url");
$paragraph->appendChild($xslvalueof);

/* Output the stylesheet using formatting */
$stylesheet->formatOutput = TRUE;

print $stylesheet->saveXML();

>

Other than the XSL syntax, the example is straightforward. The XSL-specific language
is created using elements prefixed with xs1 and within the XSL namespace. Generic output is
created using non-namespaced DOM functionality. Upon executing this script, the newly cre-
ated style sheet is printed to output:

CHAPTER 6 ' DOCUMENT OBJECT MODEL (DOM)

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="html"/>
<xsl:template match="/">
<html>
<body>
<xsl:apply-templates select="/sites/site"/>
</body>
</html>
</xsl:template>
<xsl:template match="/sites/site">
<p><xsl:value-of select="./name"/> : <xsl:value-of select="./url"/></p>
</xsl:template>
</xsl:stylesheet>

This document does not look like anything special. Elements have qualified names, and
anamespace is defined on the xs1:stylesheet element. Internally, however, because the
namespace functionality was used when creating the elements, they are properly associated
with the namespace correctly.

Try creating the stylesheet node using the createElement() method:

$root = $stylesheet->createElement("xsl:stylesheet");

This method is not namespace-aware and creates the element with the local name
xsl:stylesheet. The output of the script looks the same as when createElementNS() was used,
but internally it is very different. If the final style sheet, $stylesheet, is directly passed to the
XSL processor in the same script, it will result in an error. The element xs1:stylesheet will not
be within the XSL namespace and thus have no meaning to the XSL processor. On the other
hand, if the style sheet is first serialized and then reloaded, it will work correctly. During the
loading of the serialized style sheet, the namespaces will be correctly associated internally
to the elements.

Caution When working with documents in memory, documents built manually may differ while being
built from their serialized version. Namespace-aware methods properly associate namespaces to elements
and attributes while in memory. Using non-namespace aware methods may result in the same output when
serialized, but until the document is serialized and reloaded, the namespaces are not properly associated
with elements or attributes.

Conclusion

The DOM extension is the implementation of the DOM specification, defined by the W3C, in
PHP 5. It is the heavyweight XML processor in that it allows virtually complete access to read,
create, and modify an XML document. This functionality does come at a cost, however. It has

237

238

CHAPTER 6 ©* DOCUMENT OBJECT MODEL (DOM)

alarge API and is memory-hungry. Being based upon specifications, the API will not be chang-
ing, unlike its predecessor domxml, and many resources are available to understand the DOM
extension. Memory usage completely depends upon the size of the document, because the
DOM extension is tree-based and the tree must reside in memory.

This chapter introduced you to the DOM extension by providing some background, some
explanations of many of the features found within the API, and some common issues encoun-
tered using the extension. The material presented here is more than enough for even those
unfamiliar with this technology to begin using this extension.

The next chapter deals with the other tree-based parser in PHP 5, SimpleXML. Though
not as feature-rich with regard to tree access and modifications, the simplicity SimpleXML
offers more than makes up for this pitfall. And because of the interoperability in PHP 5, you
have the best of both worlds available to you because you can use the two extensions together.
One can pick up the slack for the other.

CHAPTER 7

SimpleXML

The SimpleXML extension is another tree-based parser available in PHP 5. The previous
chapter introduced the DOM extension, which had an extensive API and allowed for complete
control and manipulation of an XML document. SimpleXML takes a different approach to
handling the tree; it has a much smaller API and handles elements and attributes more intu-
itively. This chapter will cover SimpleXML and explain why you need this second tree parser,
how you use it, and what you can do with it.

Introducing SimpleXML

The SimpleXML extension was created to provide an easy, intuitive way to process XML docu-
ments. After reading the previous chapter, you might be overwhelmed by the size of the DOM
extension’s API and all the different aspects you need to understand. You might be saying, there
has to be an easier way to deal with XML! SimpleXML is the answer to your pleas.

In many cases, documents are not overly complex and all you care about are the elements,
attributes, and text content of nodes. Documents such as these tend to be configuration or data
files not consisting of mixed content. (You can find an explanation of mixed content in Chapter 3.)
You might view the rest of the nodes in the document as excess baggage. Therefore, using the
DOM extension’s API may be overkill with all its different class types and its slew of methods that
you will never use. By contrast, the SimpleXML extension has a single class type, three functions,
and six class methods. Compare that to the uncountable number of classes and methods within
the DOM extension, and you might get an idea of why this is called SimpleXML.

Using SimpleXML

The SimpleXMLElement class is the central class for all operations within this extension. You can
create an object of this class by using the new keyword, by using the simplexml load file()
function, or by using the simplexml load string() function. (I will cover a fourth method for
creating a SimpleXMLElement object that involves importing DOM objects later in the “Using
DOM Interoperability” section.) I will use the document in Listing 7-1 to illustrate much of the
functionality of SimpleXML throughout this chapter. I will refer to this XML document as
sxml.xml.

239

240 CHAPTER 7 = SIMPLEXML

Listing 7-1. Example Document Using DocBook Format: Filename sxml.xml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE book PUBLIC "-//0ASIS//DTD DocBook XML V4.1.2//EN"
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd">
<book lang="en">
<bookinfo>
<title>SimpleXML in PHP 5</title>
<author>
<firstname>Rob</firstname>
<surname>Richards</surname>
</author>
<copyright>
<year»>2005</year>
<holder>Rob Richards</holder>
</copyright>
</bookinfo>
<preface>
<title>Using SimpleXML</title>
<para>An example DOM Tree using DocBook.</para>
</preface>
<chapter id="navigation">
<title>Accessing Elements</title>
<para>Elements are accessed as properties</para>
<para>
<! [CDATA[
<?php
$data = '<?xml version="1.0"?>
<root>content</root>"';

$sxe = simplexml load string($data);
var_dump($sxe);
>
1>
</para>
</chapter>
</book>

Creating a SimpleXMLElement Object

The new keyword allows a SimpleXMLElement to be directly instantiated using an XML docu-
ment within a string as its data source:

$xml = "<root><nodel>content</node1></root>";
$sxe = new SimpleXMLElement($xml);

You can obtain the same results using simplexml load string():

$xml = "<root><nodel>content</nodel></root>";
$sxe = simplexml load string($xml);

CHAPTER 7 ©@ SIMPLEXML

So, why do you need both methods? The function simplexml load string() offers more
functionality than illustrated, such as the ability to control parser options. When this addi-
tional functionality is not needed, it comes down to personal preference. Before going into
more details, let’s instantiate an object using simplexml load file():

$sxe = simplexml load file("filename.xml");

Both the simplexml_load_string() and simplexml_load_file() functions take one manda-
tory parameter, either a string containing the data or a URI locating the data (as already shown),
as well as optional parameters. The prototype for simplexml_load_file, which is the same for
simplexml load_string other than the first parameter, is as follows:

/* Prototype for PHP 5.0 */
simplexml load file(string data [, string class name])

/* Prototype for PHP 5.1 */
simplexml load file(string data [, string class name [, int options]])

I will cover the parameter class_name in the later section “Extending the SimpleXMLElement
Class.” PHP 5.1 has a third, optional parameter that allows parser options, which control the pars-
ing of the tree. Chapter 5 covered these parser options, and Chapter 6 also mentioned them when
covering how to load DOM documents. I will demonstrate how to use these parameters through-
out this chapter.

Saving XML Data

Just like the DOM extension, SimpleXML offers a method to output XML content. Using the
asXML() method, you can output a document or subtree to a string or a file. The actual output
depends upon the node from which this method is called. When called from the document
element, which is the element returned from the initial load functions, the entire document is
output. This includes the XML declaration, the prolog, the body, and any epilog the document
may contain. When called from any other node within the tree, the entire node and any sub-
tree are output. For example:

$xml = "<root><nodel>content</node1></root>";
$sxe = new SimpleXMLElement($xml);
print $sxe->asXML();

<?xml version="1.0"?>
<root><nodel>content</nodel></root>

In this instance, the asXML() method is called from the document element, $sxe. When no
parameter is passed to this method, the results are returned as a string. Optionally, you can
pass a filename, which causes SimpleXML to save the XML to the named file:

$xml = "<root><nodel>content</nodel></root>";
$sxe = new SimpleXMLElement($xml);
$sxe->asXML('filename.xml");

241

242

CHAPTER 7 = SIMPLEXML

Because you have yet to learn about navigating the tree, I will not explain how to call this
method using a node from within the tree for now. You can find examples of its usage through-
out this chapter.

Accessing Element Nodes

Unlike under the DOM extension, where you needed to check child elements to find a specific
one, SimpleXML offers direct access to specified elements by name. Not only will this save time
coding, but also it can boost performance. Consider navigating a large document using a struc-
ture already known to you. Using the DOM extension—unless you use XPath, that is—you need
to loop through children and check node names to find certain nodes. Finding certain nodes
using SimpleXML is as easy as accessing a parent element using the node name—it requires
just one line of code compared to many.

Accessing Elements

The document element is the object returned when a document is first loaded into SimpleXML.
You access all other elements of the tree by element name as properties of SimpleXMLElement
objects. The following example uses the document sxml.xml from Listing 7-1 for its data:

<?php
$book = simplexml_load file('sxml.xml');

/* Access the bookinfo child element of the book element */
$bookinfo = $book->bookinfo;

/* Access the title child element from the bookinfo element */
$title = $bookinfo->title;
>

As you can see from this piece of code, the objects refer to the elements within the docu-
ment. Accessing a child element is as simple as returning the object from the parent object by
using the name of the child element you would like to access. Compare this code to what you
would need to write using the DOM extension. Without using XPath, your code may be similar
to the following:

$dom = new DOMDocument();
$dom->->load (' sxml.xml"');
$book = $dom->documentElement;
foreach($book->childNodes as $node) {
if ($node->nodeName == "bookinfo") {
foreach($node->childNodes as $child) {
if ($child->nodeName == "title") {
$node = $child;
break 2;

CHAPTER 7 ©@ SIMPLEXML

if ($node) {
$title = $node;
}

What took only three lines of code, excluding the comments and blank lines, takes 15
lines of code using the DOM extension. And all that the code needs to do is navigate to the
title element, so imagine how much additional code you would need to deal with an entire
document.

Accessing Content

From the previous section, you know that accessing elements returns SimpleXMLElement
objects. You can use these same objects to access the content. It all depends upon how you
use the objects. For example:

<?php

$book = simplexml load file('sxml.xml');
$bookinfo = $book->bookinfo;

$title = $bookinfo->title;

/* Object examined with var dump */
var_dump($title);

/* Using print with element containing text-only content */
print "Title: ".$title."\n";

$author = $bookinfo->author;

/* Object examined with var dump */
var_dump($author);

/* Using print with element containing child elements */
print "Author: ".$author."\n";
>

This accesses and examines two SimpleXMLElement objects, $author and $title. The dif-
ference between the two is that the author element contains child elements while the title
element contains only a text node. When this script runs, the output looks like the following:

object(SimpleXMLElement)#4 (1) {
[0]=>
string(18) "SimpleXML in PHP 5"

}
Title: SimpleXML in PHP 5

243

244

CHAPTER 7 = SIMPLEXML

object(SimpleXMLElement)#6 (2) {
["firstname"]=>
string(3) "Rob"
["surname"]=>
string(8) "Richards"

}
Author:

Examining the output from the var_dump() function of the $title variable, you can see
itis a SimpleXMLElement whose text content is SimpleXML in PHP 5.The 0 index, in this case,
denotes the text content of the element. This is because the element has no child elements
and only text content. As a result of this, when the print statement is used with the object,
the text content is returned as a string.

The next element broken out is the author element. The output in this case is very differ-
ent. The author element contains two child elements. Looking at the output of the var_dump()
method, you will see these elements shown as properties, firstname and surname, of the
object. The values of these properties are the content contained by each element. However,
when this object is used with the print statement, a string containing spaces and line feeds
is returned.

This exercise has taught you a few features of how SimpleXML behaves:

* You can use SimpleXMLElement objects containing text-only content—that is, the current
element has no child elements—as a string to access the text. In most cases, the cast is
performed automatically, but in other cases an explicit cast must be performed. For
example, using the title element, a string can be returned via $titlecontent = (string)
$title.

* SimpleXMLElement objects having child elements return a concatenation of all immedi-
ate child text nodes but not the content of any child elements. An examination of the
string returned by the author element, var_dump((string)$author);, shows a string 27
characters in length that contains spaces and line feeds. Neither of the child elements,
firstname or surname, nor their content is returned in the string.

To understand the last point, take a look at the following code:

$doc = new SimpleXMLElement('<root>some<childi>subtext</child1>thing</root>");
print $doc;

The document element, root, contains mixed content. The first child is a text node contain-
ing the text some. The next child is the child1 element that has only the text content subtext. The
last child node is another text node with the content thing. The result of the print statement is
the text something. The child1 element and its content were completely skipped. Also, notice
that the output does not contain any spaces or line feeds. The previous example using the author
element did contain these because the element contained whitespace within its content, which
could have been removed when the document was being parsed using the LIBXML_NOBLANKS
parser option.

CHAPTER 7 ©@ SIMPLEXML

Using Iterable Objects

The elements presented to this point have been straightforward. No element has been
repeated within the children of any of the accessed elements. Looking closely at the document
in Listing 7-1, you might have noticed that the chapter element contains two para elements,
and you might be wondering how to access these elements. The answer is simple. In most
cases, SimpleXMLElement objects are iterable.

When accessing an element using the name of the element as a property, the object is not
really a single node accessor. The object is really a collection of all child nodes with the name
supplied through the property. The collection is seamless, as you may have noticed, because
accessing the object directly actually means you are accessing the first element node in the
collection. Up to now the collections have contained only a single node, so you would not
even notice that the object could be iterated or accessed as a collection unless you already
were aware of this.

Using the material just presented, let’s access the para elements and print the contents:

$book = simplexml load file('sxml.xml');
$para = $book->chapter->para;
print $para."\n";

foreach($para AS $node) {
print $node."\n";

}

Rather than requiring multiple lines of code to gain access to the para elements, everything
takes place in a single line using overloading. The variable $para now contains the collection of
para elements. As you can see from the results of the print statement, which prints Elements
are accessed as properties, using the object works off the first element in the collection. To
prove that this object is really a collection and the object can be iterated, look at the output
from the foreach loop. Each para element is accessed in document order and its contents
printed. The resulting output of the foreach loop is as follows:

Elements are accessed as properties

<?php
$data = '<?xml version="1.0"?>
<root>content</root>"';

$sxe = simplexml load string($data);
var_dump($sxe);
>

The content of the CDATA node from the second para element is treated as plain-text
content. All the insignificant whitespace is included in the text.

Having to loop through all the elements is not always practical. In many cases, you may
be interested only in a specific element in the collection. The good news is that you can do
this. You can access the collection through a zero-based index to retrieve a specific element
in the collection. For instance, the first para element is easily accessed because, being the first

245

246

CHAPTER 7 = SIMPLEXML

element in the collection, it is the default element accessed when not performing iteration
and not locating a specific element in the collection. However, in this case, that element
doesn’t contain anything useful because you need the content of the CDATA node contained
within the second para element. Rather than wasting cycles looping through the collection
and having to manually count the elements in order to stop at the second one, you can access
the second para element directly using the index 1. For example:

$book = simplexml_load file('sxml.xml');
$para = $book->chapter->para[1];
print "Content: ".$para."\n";

foreach($para AS $node) {
print "Iter Content: ".$node."\n";

}

Notice the change in the second line. The para object is accessed with [1]. This indicates
that the second element, because it is zero-based, should be returned. The result of the print
statement on this object verifies that the second para element was retrieved successfully:

Content:

<?php
$data = '<?xml version="1.0"?>
<root>content</root>";

$sxe = simplexml load string($data);
var_dump($sxe);
>

The failure of the foreach loop to print any output may have you a little confused. Earlier
I mentioned that in most cases SimpleXMLElement objects are iterable. This is a case where they
are not. Because of the element being retrieved using an index, SimpleXML knows you are
looking for one specific element and not a collection of elements. The returned object in this
case cannot be iterated.

Caution Accessing a SimpleXMLElement object using an index results in an object that cannot be
iterated because it represents a single element and not a collection of possible elements.

Accessing Unknown Elements

Knowing the structure of a document is helpful when using SimpleXML. You can navigate to
elements just using the element names as properties. However, this has one problem I have
not addressed yet. What happens when you do not know the structure of a document ahead
of time?

Because it is not a given that you already know the structure, the SimpleXMLElement class
implements the children() method that returns an iterable SimpleXMLElement object, which

CHAPTER 7 ©@ SIMPLEXML

allows you to iterate through all the child elements of an element. This object works the same
as the other objects you have seen so far, except the elements in the collection are not limited
to specific named elements, but rather include all immediate child elements. For example:

$book = simplexml_load file('sxml.xml');
$author = $book->bookinfo->author;
$children = $author->children();

foreach($children AS $child) {
print $child."\n";
}

Taking the author element, consider the possibility that the elements in Listing 7-1 are not
required and that any element can be added on the fly. You have no guarantee that the name
of the child elements will be known ahead of time. The previous code accesses the $author
object using the children() method and returns the SimpleXMLElement object to the $children
variable. The resulting output from the print statement in the foreach loop is as follows:

Rob
Richards

The text Rob is from the firstname element, and the text Richards is from the surname
element. In this case, though, you did not need to know the element names. You could also
access the children by index. The code print $children[1]; would print just Richards.

This presents an interesting issue. You can access elements without knowing their names,
but how can you determine the name of an element? Unfortunately, you cannot do this using
SimpleXML alone. Let’s take a look at possible ways to get this missing information.

Understanding PHP Object Functions

Properties of a SimpleXMLElement object are dynamic. That is, the properties depend upon the
instance of the object and not the class itself. Within PHP, it is possible to retrieve object prop-
erties using the get_object vars() function. Rather than using the children() method on the
$author object, you can return an array of the properties and values instead:

$props = get object vars($author);
foreach ($props AS $name=>$value) {
print $name.": ".$value."\n";

}

The output is similar to that when using the children() method, except in this case the
name of the element is also available:

firstname: Rob
surname: Richards

This was a simple case. The child elements contained text content only, so the array con-
tained the property names and strings for the values. When used on an element containing
child elements, on the other hand, the values will be SimpleXMLElement objects:

247

248 CHAPTER 7 = SIMPLEXML

$props = get object vars($book->bookinfo);
var_dump($props);

The results from using the get_object vars() function of the bookinfo element is much
different from the previous array returned:

array(3) {
["title"]=>
string(18) "SimpleXML in PHP 5"
["author"]=>
object(SimpleXMLElement)#6 (2) {
["firstname"]=>
string(3) "Rob"
["surname"]=>
string(8) "Richards"
}
["copyright"]=>
object(SimpleXMLElement)#7 (2) {
["year"]=>
string(4) "2005"
["holder"]=>
string(12) "Rob Richards"
}
}

The array contains not only string values but also SimpleXMLElement objects, as shown
with the author and copyright properties:

function processValue($name, $value, $level) {

if (is_object($value)) {
print str repeat (" ", $level);
print $name."\n";
processSXEObject($value, $level + 1);

} else if (is_array($value)) {
foreach($value as $node) {

processValue($name, $node, $level);

}

} else {
print str repeat (" ", $level);
print $name.": ".$value."\n";

}

CHAPTER 7 ©@ SIMPLEXML 249

function processSXEObject($sxe, $level) {
$props = get object vars($sxe);
if (count($props) == 0) {
print str repeat (" ", $level);
print "Special Content: ".$sxe."\n";
return;
}
foreach ($props AS $name=>$value) {
processValue($name, $value, $level);
}
}

$book = simplexml load file('sxml.xml');
processSXEObject ($book, 0);

Other than calling the load function and using the special handling of strings in SimpleXML,
you do not need any additional methods from SimpleXML to process the tree in Listing 7-1. The
code shown prints every element name, indenting using spaces for the level within the tree, and
prints any text content the elements may have. It doesn't handle mixed content, which I will leave
as an exercise for you to implement if you like. The output of this code is as follows:

bookinfo
title: SimpleXML in PHP 5
author
firstname: Rob
surname: Richards
copyright
year: 2005
holder: Rob Richards
preface
title: Using SimpleXML
para: An example DOM Tree using DocBook.
chapter
title: Acessing Elements
para: Elements are accessed as properties
para
Special Content:

<?php
$data = '<?xml version="1.0"?>
<root>content</root>"';

$sxe = simplexml load string($data);
var_dump($sxe);
?>

The case for special content was added to handle the CDATA node. Currently an element
containing a CDATA child is not handled the same way as an element containing just text

250 CHAPTER 7 = SIMPLEXML

node children. This functionality may change in future versions of PHP; however, as of PHP
5.1, just be aware of this.

Using DOM Interoperability

Another method of handling unknown elements is to use DOM interoperability. You can
import nodes into the DOM extension and access them using DOM properties and methods.
Returning to the original code accessing the author element using the children() method,
you can easily extract the name of the node using the DOM extension:

$book = simplexml_load file('sxml.xml');
$author = $book->bookinfo->author;
$children = $author->children();

foreach($children AS $child) {
/* Import node into DOM, and get nodeName */
$element = dom_import_simplexml($child);
$name = $element->nodeName;
print $name.": ".$child."\n";

}

As you can clearly see, this is much cleaner and easier to deal with than using the
get object vars() function. Importing nodes into the DOM extension does not result in
copies of nodes but direct access to the node imported. Not only does this allow the use of
DOM functionality with SimpleXMLElement objects, but it also doesn't impose any performance
penalty either. The drawback of this is that the DOM extension must be available to take
advantage of this feature. (Even though it is enabled by default, it is possible to disable the
DOM extension.)

Modifying Content

Just like navigation is easy to work with in SimpleXML, so is content modification. Using
SimpleXML, you cannot add new elements to the tree, but you can change and remove exist-
ing ones. To add a new element, the interoperability with the DOM extension comes into play:

$xml = "<root><nodel>content</nodel></root>";

$sxe = new SimpleXMLElement($xml);

$dom = dom_import simplexml($sxe);
$dom->appendChild(new DOMElement("node2", "content2"));
print $sxe->asXML();

<?xml version="1.0"?>
<root><nodel>content</nodel><node2>content2</node2></root>

Editing Content

You can edit nodes and content natively using SimpleXML. When working with elements that
exist multiple times as a child of another element, you must ensure you are modifying the
correct element. When indexes are not used to indicate a specific element to edit and when

CHAPTER 7 ©@ SIMPLEXML

multiple elements with the name exist, a warning is issued indicating that the multiple elements
exist and the modification cannot be performed.

Elements with Text Content

The following example attempts to modify the content of a para element within the document.
The problem is that multiple para elements exist, and SimpleXML does not know which one of
them should be modified.

$book = simplexml load file('sxml.xml');
/* Modify an unspecified para element where multiple para elements exist */
$book->chapter->para = "Removed CDATA";

Warning: main() [/phpmanual/function.main.html]: Cannot assign to an array of nodes
(duplicate subnodes or attr detected)

You must specify the index of the para element to be edited:

$book = simplexml load file('sxml.xml');
$book->chapter->para[1] = "Removed CDATA";
print $book->chapter->asXML();

<chapter id="navigation">
<title>Acessing Elements</title>
<para>Elements are accessed as properties</para>
<para>Removed CDATA</para>
</chapter>

In this case, the content of the second para element is changed to Removed CDATA. The
method asXML() is used in this case from the chapter object. When used from an element that
is not the document element, only the element and its subtree are returned.

Indexes are not required when a single element with the name exists. In the following
code, the content of the title element is changed, as well as the second para element:

$book = simplexml load file('sxml.xml');
$book->chapter->title = "New Title";
$book->chapter->para[1] = "Removed CDATA";
print $book->chapter->asXxmL();

<chapter id="navigation">
<title>New Title</title>
<para>Elements are accessed as properties</para>
<para>Removed CDATA</para>
</chapter>

Unless you are absolutely sure about the structure of the document, using indexes to
modify elements is highly suggested. It is much safer to modify the title element using the

251

252

CHAPTER 7 = SIMPLEXML

code $book->chapter->title[0] = "New Title";, because the first title element is specifically
identified by the use of [0].

Elements with Subtrees You can edit elements containing subtrees, or child elements, in the
same manner as those with text content. The subtree, however, is removed from the document
and replaced with the text content. Not only will any objects pointing to elements within the
subtree become invalid, but as you recall from earlier in the chapter, you cannot add elements
using SimpleXML natively. The string containing the content to be used for replacement, even
if it contains XML, will be escaped and used as strictly text content. Let’s look at two cases of
replacing the content of the chapter element with different data and the results of any objects
pointing to child elements:

$book = simplexml load file('sxml.xml');
$cholder = $book->bookinfo->copyright->holder;
print $cholder->asXML()."\n";

$book->bookinfo = "No Book Info";

print $book->bookinfo->asXML()."\n";

print $cholder->asXML()."\n";

<holder>Rob Richards</holder>
<bookinfo>No Book Info</bookinfo>

Warning: SimpleXMLElement::asXML() [/phpmanual/function.asXML.html]: Node no
longer exists in N:\CVS Projects\php5\Debug TS\booksxe.php on line 7

Initially, the holder element is retrieved from the document and set to the $cholder vari-
able. The XML for this element is printed and shown in the first line of the results. The bookinfo
element contains a subtree that includes the title, author, and copyright elements. The con-
tent of this element is then changed to the simple text string No Book Info.When printed, the
child elements have clearly been removed and the content replaced with the text, which is
shown in the second line of the results. Upon trying to access the $cholder variable again to
print its XML content, a warning is issued. This variable is still a SimpleXMLElement object, but
the underlying node from the tree was destroyed when the content was changed for the
bookinfo element.

The next case will use XML data for the replacement text. The content for the copyright
element will be replaced with the string <title>SimpleXML in PHP 5</title>, like so:

$book = simplexml load file('sxml.xml');
$book->bookinfo = "<title>SimpleXML in PHP 5</title>";
print $book->bookinfo->asXML()."\n";

You may be surprised by the output. If you thought all child elements for bookinfo would
be removed and a new title element created as a child of bookinfo, you would be mistaken.

<bookinfo>8lt;titledgt;SimpleXML in PHP 5&1t;/titledgt;</bookinfo>

The child elements are removed from the bookinfo element, but the XML data is escaped
and set as text-only content.

CHAPTER 7 ©@ SIMPLEXML

Tip Remember, SimpleXML will not add elements to a tree. Using the interoperability of the XML-related
extensions in PHP 5, you must use the DOM extension to create and append new elements to a tree being
accessed by SimpleXML.

To replace the subtree with another subtree, you can use the DOM extension:

$book = simplexml load file('sxml.xml');
$bookinfo = dom_import simplexml($book->bookinfo);

/* Remove all child elements of the bookinfo element */

while ($bookinfo->firstChild) {
$bookinfo->removeChild($bookinfo->firstChild);

}

$bookinfo->appendChild(new DOMElement("title", "SimpleXML in PHP 5"));

print $book->bookinfo->asXML()."\n";

<bookinfo>
<title>SimpleXML in PHP 5<¢/title>
</bookinfo>

Removing Elements

You can remove elements from a tree using SimpleXML. You do this using the unset () func-
tion built into PHP. The argument for unset () must be an overloaded SimpleXMLElement,
accessing the element to remove by the property. For example, removing the title element
from the chapter node takes place through the following code:

$book = simplexml load file('sxml.xml');
$book->chapter->para[1] = "Removed CDATA";
unset($book->chapter->title);

print $book->chapter->asXmML();

The second para element was modified just to shorten the final output because it originally
contained the CDATA node from Listing 7-1. Notice the third line using the unset () function.
The parameter passed is $book->chapter->title. Itis important that title is used as a property
when making this call; otherwise, the node will not be removed:

<chapter id="navigation">
<para>Elements are accessed as properties</para>

<para>Removed CDATA</para>
</chapter>

Compare these results with those using unset() on a lone SimpleXMLElement object that
refers to the title element:

253

254

CHAPTER 7 ©@ SIMPLEXML

$book = simplexml load file('sxml.xml');
$book->chapter->para[1] = "Removed CDATA";
$title = $book->chapter->title;
unset($title);

print $book->chapter->asXmL();

<chapter id="navigation">
<title>Acessing Elements</title>
<para>Elements are accessed as properties</para>
<para>Removed CDATA</para>
</chapter>

The title element was not removed. All unset () did in this case was unset the variable
$title and not actually remove the title element from the tree.

An issue to be aware of when removing elements is that specific elements cannot be iden-
tified for removal. This at least is the current behavior in PHP 5.0 and 5.1. Using an index will
notresult in the removal of the element:

$book = simplexml load file('sxml.xml');
$book->chapter->para[1] = "Removed CDATA";
unset($book->chapter->title[0]);

print $book->chapter->asXML();

<chapter id="navigation">
<title>Acessing Elements</title>
<para>Elements are accessed as properties</para>
<para>Removed CDATA</para>
</chapter>

This causes a little problem. What happens when you need to remove the para elements?
If all para child elements of the chapter element are to be removed, then you do not have a
problem. The unset () function will remove all elements matching the property name:

$book = simplexml_load file('sxml.xml');
unset($book->chapter->para);
print $book->chapter->asXML();

<chapter id="navigation">
<title>Acessing Elements</title>

</chapter>

The para elements have been removed from the tree, but that still leaves an issue when
only one of the para elements needs to be removed. Again, it’s back to interoperability with
the DOM extension:

CHAPTER 7 ©@ SIMPLEXML

$book = simplexml load file('sxml.xml');
$chapter = dom_import simplexml($book->chapter);
$node = $chapter->lastChild;
while($node) {
if ($node->nodeName == "para") {
$chapter->removeChild($node);
$node = NULL;
break;
}
$node = $node->previousSibling;

}
print $book->chapter->asXmL();

<chapter id="navigation">
<title>Acessing Elements</title>
<para>Elements are accessed as properties</para>

</chapter>

Although the current version DOM must be used in this case, the behavior of unset () with
SimpleXML may change in future versions to allow indexes to be used. This will make coding
with SimpleXML a bit easier, and it will remove another reliance on the DOM extension when
performing modifications on a document using SimpleXML.

Accessing Attributes

Accessing an attribute is similar to accessing a specific element in a document. Rather than
using a numeric index to specify an element, you use the name of the attribute for the index.
Attributes are uniquely named, meaning that any element having two or more elements with
the same name is not well-formed XML. I will cover this a bit more in the “Namespaces in
SimpleXML” section because it is possible to have two attributes with the same local name as
long as they live in different namespaces. The information covered in the following sections,
though, deals only with accessing non-namespaced attributes.

Reading Attributes

The following code prints the value for the lang attribute that resides on the document ele-
ment, book. In this case, you do not need to worry about identifying the correct element since
the document can contain only a single document element.

$book = simplexml load file('sxml.xml');
print $book['lang'];

The following piece of code uses the numeric index to specifically identify a chapter ele-
ment, even though only one exists. It is not really needed here but illustrates how you would
deal with multiple elements and attribute access. It then prints the value of the id attribute
on this node, which results in navigation.

255

256

CHAPTER 7 ©@ SIMPLEXML

$book = simplexml load file('sxml.xml');
print $book->chapter[o]['id'];

You can also access attributes when you don’t know the attribute names. The method
attributes() works just like the children() method, except in this case it returns an iterable
object containing the attributes for an element:

$book = simplexml_load file('sxml.xml');

foreach($book->chapter->attributes() AS $attribute) {
print $attribute."\n";

}

The foreach loops through all attributes of the chapter element, with each attribute set to
the variable $attribute as the loop is executed. The chapter element contains only a single
attribute, id, so the loop is executed only once and the value navigation is printed. You can
obtain additional information using DOM functionality, just as when using elements:

$book = simplexml load file('sxml.xml');
foreach($book->chapter->attributes() AS $attribute) {
$att = dom_import simplexml($attribute);
print $att->nodeName."\n";
print $attribute."\n";

id
navigation

Writing to Attributes

Modifying the content of an attribute works the same way as modifying an element. You just
set the attribute to a string, which in turn changes the attribute value:

$book = simplexml load file('sxml.xml');
$book['lang'] = "es";
print $book['lang'];

The lang attribute is changed from en to es, as shown in the results from the print
statement.

A difference with writing to attributes and writing to elements is that new attributes can
be created using SimpleXML:

$book = simplexml load file('sxml.xml');
$book->bookinfo->author->firstname["prefix"] = "Mr.";
print $book->bookinfo->author->asXML();

<author>
<firstname prefix="Mr.">Rob</firstname>
<surname>Richards</surname>
</author>

CHAPTER 7 ©@ SIMPLEXML

When an attribute is being written to and does not exist on the element, the attribute is
automatically created with the content specified by the string to which it is being set. In this
instance, the firstname element originally contained no attributes. Writing the string Mr. to
an attribute named prefix, the prefix attribute was created on the firstname element and its
value set to the value of the supplied string.

Removing Attributes

Again, you can use the function unset() to remove attributes from elements, just as you
remove elements from the tree:

$book = simplexml load file('sxml.xml');
$book->bookinfo->author->firstname["prefix"] = "Mr.";
print $book->bookinfo->author->firstname->asXML()."\n\n";

unset ($book->bookinfo->author->firstname["prefix"]);
print $book->bookinfo->author->firstname->asXML();

<firstname prefix="Mr.">Rob</firstname>

<firstname>Rob</firstname>

After adding the prefix attribute and printing the XML data from the firstname element,
the code continues, removes this newly added attribute, and again prints the updated XML
data from the firstname element.

Extending the SimpleXMLElement Class

You can extend the SimpleXMLElement class just as you would any other class:

class mySXE extends SimpleXMLElement {
function appendChild($name, $content) {
$dom = dom_import simplexml($this);
$dom->appendChild($dom->ownerDocument->createElement($name, $content));

A big difference with extended classes in SimpleXML from those in the DOM extension is
that once an object using the extended class has been instantiated, all objects returned from
the SimpleXML methods will use the extended class type.

Looking at the class definition, you can see that the method appendChild() has been
added. This allows for an easy way to append child nodes in SimpleXML:

$sxe = new mySXE("<root><nodel></nodel></root>");
$sxe->node1->appendChild("node2", "content");
print $sxe->asXML();

<?xml version="1.0"?>
<root><nodel><node2>content</node2></nodel></root>

257

258

CHAPTER 7 = SIMPLEXML

The initial $sxe object was created using the new keyword with the extended class. As
shown in the second line, the object returned from the node1 property was created using the
extended class. Once the initial object based on a SimpleXMLElement class is created, all objects
will be created using the same class.

The new keyword is nice to use when working with XML contained in a string, but it
doesn’t help much when the data resides in a file. As mentioned in the earlier “Creating a
SimpleXMLElement Object” section, the load functions take an optional class_name parame-
ter. This parameter indicates the class to use for creating the initial object. Using the mySXE
class, you can load data from either a string or a file and have the ability to use the custom
appendChild() method:

$sxe = simplexml load string("<root><nodel></nodei></root>", "mySXE");
$sxe->nodel->appendChild("node2", "content");
print $sxe->asXML();

The result of this is the same as the results using the new keyword.

Using Namespaces in SimpleXML

Dealing with namespaced documents using SimpleXML is a bit different from handling
documents without namespaces. Listing 7-2 contains the document from Listing 7-1 modified
to use namespaces.

Listing 7-2. Modified Document Using Namespaces: Filename sxmlns . xml

<?xml version="1.0" encoding="UTF-8"?>
<book ns2:lang="en" xmlns:nsi="http://www.example.com/ns1"
xmlns:ns2="http://www.example.com/ns2">
<ns1:bookinfo>
<title>SimpleXML in PHP 5</title>
<nsil:author>
<nsi:firstname>Rob</nsi:firstname>
<surname>Richards</surname>
</nsl:author>
<copyright>
<year»>2005</year>
<holder>Rob Richards</holder>
</copyright>
</ns1:bookinfo>
</book>

If you tried to access this document using the normal methods for accessing elements
and attributes, you would find out that nothing works. For example:

$book = simplexml load file('sxmlns.xml');
print $book["lang"]."\n";
print $book->bookinfo->title."\n";

This code prints nothing but two blank lines.

CHAPTER 7 ©@ SIMPLEXML

To initially access namespaced nodes, you must use the methods children() and
attributes(). Not only are these methods used to access nodes without using their names,
but these methods also accept a namespace URI as a parameter, which must be supplied to
retrieve namespaced nodes from these methods. I have good news. Once a SimpleXMLElement
object is returned from either of these methods, you can then access the elements and attrib-
utes residing in the supplied namespace as normal elements and attributes. For example, you
can rewrite the previous piece of code to print valid output:

$book = simplexml load file('sxmlns.xml');
/* Retrieve all attributes in the http://www.example.com/ns2 namespace */
$bookatts = $book->attributes("http://www.example.com/ns2");

print $bookatts["lang"]."\n";

/* Retrieve all elements in the http://www.example.com/ns1 namespace */
$bookns = $book->children("http://www.example.com/ns1");
$bookinfo = $bookns->bookinfo;

/* Reset namespace to access non-namespaced elements */
$nonsbkinfo = $bookinfo->children();
print $nonsbkinfo->title."\n";

The children() and attributes() methods basically act as filters. When no parameter
or NULL is passed as the parameter, nodes residing in no namespace are retrieved; otherwise,
nodes that reside in the specified namespace are retrieved. Until reset, the specified name-
space remains in effect and is inherited by the child nodes. For instance, using the $bookinfo
object, which has been set to the http://www.example.com/ns1 namespace, the firstname from
the author element can be printed by print $bookinfo->author->firstname. All elements reside
in the same namespace, so you have no need to alter the namespace set by the children()
method when creating the $bookinfo object.

Default namespaces work differently than prefixed namespaces do. The document in
Listing 7-3 is a modified version of the document from Listing 7-2. All prefixed namespaces
have been removed, and only a single default namespace, http://www.example.com/ns1, has
been added.

Listing 7-3. Modified Document Using Default Namespace: Filename sxmlns2.xml

<?xml version="1.0" encoding="UTF-8"?>
<book lang="en">
<bookinfo xmlns="http://www.example.com/ns1">
<title>SimpleXML in PHP 5¢/title>
<author>
<firstname>Rob</firstname>
<surname>Richards</surname>
</author>

259

260

CHAPTER 7 = SIMPLEXML

<copyright>
<year»>2005</year>
<holder>Rob Richards</holder>
</copyright>
</bookinfo>
</book>

After playing around with namespaces using the document from Listing 7-2, you proba-
bly are trying the same code used with the last document. The only change you made most
likely is removing the use of the attributes() method since the attribute in this document is
not in a namespace. The results are also what you probably expected. It works correctly, and
the content of the title element was printed.

Now for the kicker: all that code is not necessary to print the title element. In fact, you
can do it using the code first tried in the namespace section that did not work with prefixed
namespaces:

$book = simplexml_load file('sxmlns2.xml');
print $book["lang"]."\n";
print $book->bookinfo->title."\n";

Elements in the default namespace work the same as elements not in any namespace.
In fact, they can also work the same as elements that are in prefixed namespaces. Does this
sound a little strange? I am not exactly sure how this came to be. It may have been by design or
left over from the changes made to namespace handling in SimpleXML prior to the initial PHP
5.0 launch, but in any event, you can write code in either fashion, for non-namespaced docu-
ments or for namespaced documents, when elements reside in a default namespace.

Using XPath

XPath in SimpleXML is easy to use but is limited to returning elements and attributes. Because
of how SimpleXML works, queries that normally return text nodes return the text node’s parent
node. You can use the xpath() method to query a document and return an array containing all
relevant nodes from the XPath query:

$book = simplexml load file('sxml.xml');
$arAuthor = $book->xpath("/book/bookinfo/author/*");
foreach($arAuthor AS $node) {

print $node."\n";

}

Rob
Richards

Using the document in Listing 7-1, the child elements of the author element are queried
and returned as an array to the $arAuthor variable. This query results in the array returning the
firstname and surname elements, which are printed as you move through the array in the
foreach loop.

CHAPTER 7 ©@ SIMPLEXML

The next example will query for the text node, which will be the content, of the firstname
element:

$book = simplexml load file('sxml.xml');
$arAuthor = $book->xpath("/book/bookinfo/author/firstname/child: :text()");
foreach($arAuthor AS $node) {

print $node."\n";

}

Of course, the result from the print statement is Rob. There is only a single text node after
all. The $node object, however, is really the firstname element. You can check this by either
importing it to the DOM extension or checking the class type of the object, which will be
SimpleXMLElement.

If you have read Chapter 4 and Chapter 6, you already know there is an issue when
dealing with documents using default namespaces and XPath. Just like the DOM extension,
SimpleXML offers a method to register namespaces and associated prefixes:
registerXPathNamespace(). This method works the same way and even takes the same
parameters as the method in the DOM extension. The first parameter is the prefix, and the
second parameter is the namespace URL

Caution The method registerXPathNamespace is available only in PHP 5.1+. To perform XPath
queries dealing with default namespaces in PHP 5.0.x, you will need to leverage the XPath functionality in
the DOM extension or write XPath queries in such a way that the qualifiers bypass any namespace checks.
Refer to Chapters 4 and 6 for additional information.

Using the document in Listing 7-3, retrieving the firstname element requires the
use of namespaces. The namespaced elements reside in a default namespace, so the
registerXPathNamespace() method will be used to register a prefix that can be used in the
XPath expression:

$book = simplexml load file('sxmlns2.xml');
$book->registerXPathNamespace("sxe", "http://www.example.com/ns1");
if ($arAuthor = $book->xpath("/book/sxe:bookinfo/sxe:author/sxe:firstname")) {
foreach($arAuthor AS $node) {
print $node."\n";

}

The prefix sxe is registered and associated with the namespace http://www.example.com/
ns1. The query is executed, and the resulting variable is tested to make sure that nodes were
returned. In the event no nodes result from the query, the method xpath() returns FALSE
rather than an array. In some cases, an empty array is returned and occurs when nodes are
returned, but they are not a valid type under SimpleXML. For instance, a query that results in
a PI node is valid in XPath, but the node type is not supported in SimpleXML. In this case, an
empty array is returned, indicating that the query was successful but no usable nodes are
available.

261

262

CHAPTER 7 = SIMPLEXML

Seeing Some Examples in Action

Throughout this chapter you have seen how to work with SimpleXML using known documents
and have seen a few ways of even dealing with unknown document structures. You can find
additional examples of using SimpleXML in later chapters such as Chapter 14, which covers
RSS, and Chapter 17, which covers REST. For a different type of example, I will show how to
generate a PAD XML file.

PAD is a specification designed by the ASP; you can find it at http://www.asp-shareware.org/
pad/. It is a standard format allowing authors of shareware software to provide information such
as company and contact information, support information, software information, and licensing
in a common format that may be leveraged not only by users looking for more information about
a piece of software but also by online libraries building content and search engines.

Applications to generate PAD files already exist, but in this case, you will build your own
Web-based generator using PHP and SimpleXML. As you have read in this chapter, SimpleXML
does not provide the capability to create documents. I will show how to use a template for the
PAD document that was created in Chapter 6 with the DOM extension. Using the generated
template and the PAD specification file, located at http://www.padspec.org/pad_spec.xml, you
will see how to use SimpleXML to build not only the final PAD document but also a good por-
tion of the input portion of the UI for this application.

What sets this example apart from those you have already seen is that other than the base
information, consisting of three fields, the entire application will be built dynamically—with
no knowledge of the PAD structure—using the XML-based PAD specification. This does have
a few drawbacks. The Ul is not clean as field lengths, and required fields and lookups are not
easily determined. The specification does include regular expressions for each field that this
application uses to validate input, so although no attempt has been made to use them
because creating the Ul is out of scope for this example, it may be possible to leverage them
when building the UL With the background and explanation of what is being built out of the
way, it’s time to create the application.

Note This example requires the PAD template generated by the DOM extension in the examples from
Chapter 6. No validation other than specific field checks using the regular expression provided by the PAD
specification is taking place. In its raw state, it is not secure and should be used only in a controlled
environment.

Listing 7-4 contains the entire code used to build the application. Much of the general
PHP usage in this example could be coded in many different ways, but for the sake of this
example the most important areas are those dealing with SimpleXML usage. This application
has been designed to work under a Web server running PHP.

CHAPTER 7

Listing 7-4. PAD Generator Application

<html>

<body>

<?php

/* BEGINNGING OF USER VARIABLES */

/* Location of PAD Specification File */
$padspec = "http://www.padspec.org/pad_spec.xml";

/* Location of PAD Template Generated by DOM */
$padtemplate = "padtemplate.xml";

/* Name of PAD File to Save Results to */
$savefile = "padout.xml";
/* END OF USER VARIABLES */

SIMPLEXML

/* Output field name/values for input and preview based on state of $bPreview */

function printDisplay($sxe, $sxetemplate, $bPreview) {
$section = "";
/* Loop through the Field nodes of the specification */
foreach ($sxe->Fields->Field as $field) {
/* Get the node path used in the template */
$arPath = explode("/", trim($field->Path));
array_shift($arPath);
/* Skip MASTER PAD VERSION INFO nodes.
Values for these are set by template generator */
if ($arPath[0] != "MASTER_PAD VERSION INFO") {
if ($arPath[0] != $section) {
$section = $arPath[o0];
print "

[TR TR]

<p>".str_replace("_"," ", $section)."</p>";

}

$input_value = getStoredValue($sxetemplate, $arPath);
array_shift($arPath);
print "\n".$field->Title.': ';
if ($bPreview) {
print $input_value."
";
} else {
$input_name = $section;

/* Generate the field name using named-based keys for an array */

foreach ($arPath AS $key=>$value) {
$input_name .= "[$value]";

}

print '<input type="text" name="'.$input_name.

value="".$input_value."'">
";

"

[Nl

263

264 CHAPTER 7 = SIMPLEXML

/* Retrieve text content for node from working template */
function getStoredValue($sxe, $arPath) {
if ($sxe) {
/* Loop through node path to find SimpleXML element from working template */
foreach($arPath AS $key=>$value) {
$sxe = $sxe->$value;

}

return (string)$sxe;
}
return "";

}

/* Set the text content for a node from working template */
function setValue($sxe, $field, $value) {
if (is_array($value)) {
/* Loop through node path to find SimpleXML element from working template */
foreach ($value AS $fieldname=>$fieldvalue) {
setValue($sxe->$field, $fieldname, $fieldvalue);
}
} else {
/* Encode the value to ensure content will be valid XML */
$sxe->$field = htmlentities($value);
}
}

/* Validate fields in working template using the RegEx defined in specification */
function validatePAD($spec, $template) {
$arRet = array();
foreach ($spec->Fields->Field as $field) {
$arPath = explode("/", trim($field->Path));
array_shift($arPath);
if ($arPath[0] != "MASTER PAD VERSION INFO") {
$sxe = $template;
$regex = "/".trim($field->RegEx)."/";
foreach($arPath AS $key=>$value) {
$sxe = $sxe->$value;

if (! $sxe) {
break;
}
}
if ($sxe) {

$value = (string)$sxe;

if (! preg match($regex, $value)) {
/* Capture fields failing validation for later display */
$arRet[] = array($field->Title, $field->RegExDocumentation);

}
}

/* Return array containing any captured errors */

return $arRet;

}

/* Initial states for application variables */
$sxetemplate = NULL;

$bPreview = FALSE;

$bError = FALSE;

$bSave = FALSE;

/* BEGIN ACTUAL PROCESSING */
if ($sxe = simplexml load file($padspec)) {

CHAPTER 7 ©@ SIMPLEXML

if (isset($_POST['Save']) || isset($ POST['Preview']) || isset($ POST['Edit'])) {
/* Working template in hidden field is Base64 encoded and must be decoded */
$sxetemplate = new SimpleXMLElement(base64 decode($ POST['ptemplate']));
/* Loop through $ POST vars. vars that are arrays are PAD fields to be set */

foreach($_POST AS $name=>$value) {
if (is_array($value)) {

setValue($sxetemplate, $name, $value);

}

}
if (isset($_POST['Save'])) {

/* Save finalized working template to file */

$sxetemplate->asXML($savefile);
$bSave = TRUE;

} elseif (isset($ POST['Preview'])) {
/* Validate the working template */

$arRet = validatePAD($sxe, $sxetemplate);

if (count($arRet) > 0) {
$bError = TRUE;
print "ERRORS FOUND
";

/* Print out errors returned from validatePAD() */

foreach ($arRet AS $key=>$value) {
print $value[0]."

}
} else {

: ".$value[1]."
";

/* Working template was validated so allow data to be previewed */

$bPreview = TRUE;

} else {

265

266

CHAPTER 7 = SIMPLEXML

/* Initial entry point so load the PAD template created from DOM */
$sxetemplate = simplexml load file($padtemplate);

/* If in working state display the working template for editing or preview */
if (! $bSave) {
print '<form method="POST">';
/* Base64-encoded working template to allow XML to be passed
in hidden field */
print '<input type="hidden" name="ptemplate" value="'.
base64 encode($sxetemplate->asXML())."'">";
printDisplay($sxe, $sxetemplate, $bPreview);
print '

 8 8nbsp; ".
'<input type="Submit" name="Preview" value="Preview and Validate PAD">';
if (!$bError 8&% isset($ POST['Preview'])) {
/* Working template is valid and in preview mode.
Allow additional editing or final Save */
print ' 8 .
"<input type="Submit" name="Edit" value="Edit PAD">';
print ' 8 .
"<input type="Submit" name="Save" value="Save PAD">';
}
print '</form>

' ;
} else {
/* Final PAD file has been saved - Just print message */
print "PAD File Saved as $savefile";
}
} else {
/* Application unable to retrieve the specification file - Error */
print "Unable to load PAD Specification File";
}
>
</body>
</html>

The important areas to look at within this application are the user variables and the
defined functions. The remainder of the application just pieces it all together. You must set
three user variables. The default values will work just as well, but you can change them with
respect to your current setup. These are the three user variables:

$padspec: Location of PAD specification file. By default it pulls from
http://www.padspec.org, but you can have it reside locally; in that case, modify the value
to point to your local copy.

$padtemplate: Location of the PAD template generated by the DOM extension in Chapter 6.
$savefile: Location to save the final generated PAD file to when done.

The specification file is used in every step of the process, so the first thing the application
does is have SimpleXML load it. Initially, none of the POST variables is set, and SimpleXML is

CHAPTER 7 ©@ SIMPLEXML

called on again to load the empty template created by the DOM extension. This is performed
only once when the application begins because the template is then passed in

$_POST['ptemplate']. Being XML data, it is Base64-encoded within the form and Base64-
decoded before being used.

The function printDisplay() takes three parameters. The first is the SimpleXMLElement
containing the specification file. The second is the SimpleXMLElement containing the working
template. The last parameter is a Boolean used for state. When in a preview state, the system
generates display data only; otherwise, it displays editable fields. Being a standardized format,
the application loops through the ->Fields->Field elements assuming they always exist. The
Field element contains all the information for each node in the template document, includ-
ing its location in the tree, which is stored in the Path child element. The Path, taking the form
of a string such as XML_DIZ INFO/Company Info/Company Name, is split into an array based on
the / character, and the first element is removed. You do not need this element because it is
the document element, which is already represented by the SimpleXMLElement holding the
specification document.

The first element breaks the display output into sections on the screen, skipping all fields
that contain the node MASTER_PAD_VERSION INFO.The information for this node and its children
is already provided within the template file. The application then generates the appropriate
input tags or displays content based on the state of the application. When input fields are gen-
erated, the name of the field corresponds to the location of the element within the document.
For example, if you used XML_DIZ INFO/Company Info/Company Name as the Path, the name
within the form would be Company Info[Company Name].Values for the fields are pulled from
the getStoredValue() function. This is where it gets interesting with SimpleXML usage.

The array containing the elements of the path is iterated. Each time, the variable $sxe,
which originally contained the working template, is changed to be the child element of its
current element using the $value variable, which is the name of the subnode. Examining a
path from the specification file, such as XML_DIZ INFO/Company Info/Company Name, the cor-
responding array, after removing the first element, would be array('Company Info',

"Company Name"). This corresponds to the following XML fragment:

<XML_DIZ_INFO>
<Company_Info>
<Company_Name />
</Company_Info>
</XML_DIZ_INFO>

Iterating through the array and setting $sxe each time are the equivalent of manually cod-
ing this:

$sxe
$sxe

$sxe->Company_Info;
$sxe->Company_Name;

You can navigate to the correct node using the information from the specification file
without needing to know the document structure of the template file. Once iteration of the
foreach is finished, the variable $sxe is cast to a string, which is the text content of the node
the application is looking for, and is then returned to the application.

When the data is submitted from the UI to the application, the function setValue()
is called. As you probably recall, the name of the input fields indicate arrays, such as
Company_Info[Company Name].No other named fields that are arrays are used in the

267

268

CHAPTER 7 = SIMPLEXML

application, so it assumes all incoming arrays contain locations and values for the PAD tem-
plate. The setValue() function is recursive. As long as the value of the array is another array,
the function calls itself with the $sxe variable pointing to the field name passed into the func-
tion, the new field name, and the new field value. Once the incoming value is no longer an
array, it is set as the value of the new field passed to the function of the $sxe object passed into
the function. The value is also encoded using htmlentities() to ensure the data will be prop-
erly escaped. For instance, a value containing the & character needs it converted to its entity
format, &.

The last use of SimpleXML worth mentioning in this application is within the validatePAD()
function. PAD contains a RegEx field within each Field node of the specification. This field
defines the regular expression the data needs to conform to in order to be considered valid.
The same technique is used to loop through the specification file to find the RegEx node and
the Path node, as you have seen in other functions in this application. The correct element is
also navigated to within the template using similar techniques. Once you've gathered all the
information, you can test the regular expression against the value of the $sxe element from
the working template.

This example illustrated how you can use XML and SimpleXML to generate an application
including its UI, data storage, and validation rules using a real-world case. If you are a current
shareware author, you may already be familiar with the PAD format. Using techniques within
this application, you should have no problems writing your own application to generate your
PAD files. In any case, this example has shown that even though SimpleXML has a simple API
and certain limitations, you can use it for some complex applications, even when you don’t
know the document structure.

Conclusion

The SimpleXML extension provides easy access to XML documents using a tree-based structure.
The ease of use also results in certain limitations. As you have seen, elements cannot be created;
only elements, attributes, and their content are accessible, and only limited information about
anode is available. This chapter covered the SimpleXML extension by demonstrating its ease of
use as well as its limitations. The chapter also discussed methods of dealing with these limita-
tions, such as using the interoperability with the DOM extension and in certain cases with
built-in PHP object functions.

The material presented here provides an in-depth explanation of SimpleXML and its
functionality; the examples should provide you with enough information to begin using
SimpleXML in your everyday coding.

The next chapter will introduce how to parse streamed XML data using the XMLReader
extension. Processing XML data using streams is different from what you have dealt with to
this point because unlike the tree parsers, DOM and SimpleXML, only portions of the docu-
ment live in memory at a time.

CHAPTER 8

Simple API for XML (SAX)

The extensions covered up until now have dealt with XML in a hierarchical structure
residing in memory. They are tree-based parsers that allow you to move throughout the
tree as well as modify the XML document. This chapter will introduce you to stream-based
parsers and, in particular, the Simple API for XML (SAX). Through examples and a look at
the changes in this extension from PHP 4 to PHP 5, you will be well equipped to write or
possibly fix code using SAX.

Introducing SAX

In general terms, SAX is a streams-based parser. Chunks of data are streamed through the
parser and processed. As the parser needs more data, it releases the current chunk of data and
grabs more chunks, which are then also processed. This continues until either there is no more
data to process or the process itself is stopped before reaching the end of the data. Unlike tree
parsers, stream-based parsers interact with an application during parsing and do not persist
the information in the XML document. Once the parsing is done, the XML processing is done.
This differs greatly compared to the SimpleXML or DOM extension; in those cases, the parsing
builds an in-memory tree; then, once done, interaction with the tree begins, and the applica-
tion can manipulate the XML.

Background

SAX is just one of the stream-based parsers in PHP 5. What sets it apart from the other stream-
based parsers is that it is an event-based, or push, parser. Originally developed in 1998 for use
under Java, SAX is not based on any formal specification like the DOM extension is, although
many DOM parsers are built using SAX. The goal of SAX was to provide a simple way to process
XML utilizing the least amount of system resources. Its simplicity of use and its lightweight
nature made this parser extremely popular early on and was one of the driving factors of why
itis implemented in one form or another in other programming languages.

269

270

CHAPTER 8 = SIMPLE APl FOR XML (SAX)

Event-Based/Push Parser

So, what is an event-based, or push, parser? Well, I'm glad you asked that question. An event-
based parser interacts with an application when specific events occur during the parsing of
the XML document. Such an event may be the start or the end of an element or may be an
encounter with a PI within the document. When an event occurs, the parser notifies the
application and provides any pertinent information.

In other words, the parser pushes the information to the application. The application
is not requesting the data when it needs it, but rather it initially registers functions with the
parser for the different events it would like notification for, which are then executed upon
notification. Think of it in terms of a mailing list to which you can subscribe. All you need to
do is register with the mailing list, and from then on, every time a new message is received
from the list, the message is automatically sent to you. You do not need to keep checking the
mailing list to see whether it contains any new messages.

SAX in PHP

The xml extension, which is the SAX handler in PHP, has been the primary XML handler since
PHP 3. It has been the most stable extension and thus is widely used when dealing with XML.
The expat library, http://expat.sourceforge.net/, initially served as the underlying parser for
this extension. With the advent of PHP 5 and its use of the libxml2 library, a compatibility layer
was written and made the default option. This means that by default, libxml2 now serves as
the XML parsing library for the xml extension in PHP 5 and later, though the extension can
also be built with the depreciated expat library.

Enabled by default, it can be disabled in the PHP build through the --disable-xml
configuration switch. (But then again, if you wanted to do this, you probably would not be
reading this chapter!) You may have reasons for building this with the expat library, such as
compatibility problems with your code or application. I will address some of these issues in
the section “Migrating from PHP 4 to PHP 5.” If this is the case, you can use the configure
switch --with-1libexpat-dir=DIR with expat rather than libxml2. This is depreciated and
should be used only in such cases where things may be broken and cannot be resolved
using the libxml2 library.

One other change for this extension from PHP 4 to PHP 5 is the default encoding.
Originally, the default encoding used for output from this extension was IS0-8859-1. With
the change to libxml2, the default encoding has changed in PHP 5.0.2 and later to UTF-8. This
is true no matter which library you use to build the extension. If any existing code being
upgraded to PHP 5 happens to require I150-8859-1 as the default encoding, this is quickly and
easily resolved, as you will see in the next section. Other than the potential migration issues,
this chapter exclusively deals with the xml extension built using libxml?2.

Using the xml Extension

Working with the xml extension is easy and straightforward. Once you have set up the parser
and parsing begins, all your code is automatically executed. You do not need to do anything
until the parsing has finished. The steps to use this extension are as follows:

6.
7.

CHAPTER 8 = SIMPLE API FOR XML (SAX)

Define functions to handle events.

Create the parser.

Set any parser options.

Register the handlers (the functions you defined to handle events) with the parser.
Begin parsing.

Perform error checking.

Free the parser.

Listing 8-1 contains a small example of using this extension, following the previous steps.
I have used comments in the application to indicate the different steps.

Listing 8-1. Sample Application Using the xml Extension

<?php

/* XML data to be parsed */

$xml = '<root>

<element1 a="b">Hello World</element1>
<element2/>

</root>"';

/* start element handler function */

function startElement($parser, $name, $attribs) {
print "<$name";
foreach ($attribs AS $attName=>$attValue) {

}

print " $attName=".'"'.$attvalue.'"';

print ">";

}

/* end element handler function */
function endElement($parser, $name) {
print "</$name>";

}

/* cdata handler function */
function chandler($parser, $data) {
print $data;

}

/* Create parser */
$xml _parser = xml parser create();

27

272

CHAPTER 8 = SIMPLE APl FOR XML (SAX)

/* Set parser options */
xml parser set option ($xml parser, XML OPTION CASE FOLDING, 0);

/* Register handlers */
xml_set element handler($xml parser, "startElement", "endElement");
xml_set character data_handler ($xml parser, "chandler");

/* Parse XML */
if (!xml_parse($xml parser, $xml, 1)) {
/* Gather Error information */
die(sprintf("XML error: %s at line %d",
xml_error string(xml get error code($xml parser)),
xml get current line number($xml parser)));

/* Free parser */
xml_parser free($xml parser);
>

To begin examining this extension, you will skip the first step. It is quite difficult to
attempt to write event-handling functions without even knowing what the events are and
what parameters the functions need. Once the parser has been created and any parse options
set, you will return to writing the handler functions. Listing 8-1 may also offer some insight
into these functions prior to reaching the “Event Handlers” section.

The Parser

The parser is the focal point of this extension. Every built-in function for xml, other than the
ones creating it and two encoding/decoding functions, requires the parser to be passed as

a parameter. The parser, when created, takes the form of a resource within PHP 5, just as in
PHP 4. The API was left unchanged, unlike the domxml extension, leaving the parser as a
resource rather than adding an OOP interface. This not only allows no coding changes when
moving from PHP 4 to PHP 5, but the extension already implements a way to use objects with
the parser, which is discussed later in this chapter in the “Using Objects and Methods” section.

Creating the Parser

You create the parser using the function xml_parser create(), which takes an optional
parameter specifying the output encoding to use. Input encoding is automatically detected
using either the encoding specified by the document or a BOM. When neither is detected,
UTF-8 encoded input is assumed. Upon successful creation of the parser, it is returned to the
application as a resource; otherwise, this function returns NULL. For example:

if ($xml_parser = xml _parser create()) {
/* Insert code here */

}

Upon successfully executing this code, the variable $xml_parser contains the resource
that will be used in the rest of the function calls within this extension.

CHAPTER 8 = SIMPLE API FOR XML (SAX)

Setting the Parser Options

After you have created the parser, you can set the parser options. These options differ from
those discussed in Chapter 5, which are used by the DOM and SimpleXML extensions. The
xml extension defines only four options that can be used while parsing an XML document.
Table 8-1 describes the available options, as well as their default values when not specified
for the parser.

Table 8-1. Parser Options

Option Description

XML_OPTION_TARGET_ENCODING Sets the encoding to use when the parser passes the xml infor-
mation to the function handlers. The available encodings are
US-ASCII, IS0-8859-1, and UTF-8, with the default being either
the encoding set when the parser was created or UTF-8 when not
specified.

XML_OPTION_SKIP_WHITE Skips values that are entirely ignorable whitespaces. These values
will not be passed to your function handlers. The default value is
0, which means pass whitespace to the functions.

XML _OPTION SKIP_ TAGSTART Skips a certain number of characters from the beginning of a start
tag. The default value is 0 to not skip any characters.

XML_OPTION CASE FOLDING Determines whether element tag names are passed as all upper-
case or left as is. The default value is 1 to use uppercase for all tag
names. The default setting tends to be a bit controversial. XML is
case-sensitive, and the default setting is to case fold characters.
For example, an element named FOO is not the same as an element
named Foo.

You can set and retrieve options using the xml_parser set option() and
xml _parser get option() functions. The prototypes for these functions are as follows:

(bool) xml parser set option (resource parser, int option, mixed value)
(mixed)xml parser get option (resource parser, int option)

Using these functions, you can check the case folding and change it in the event the
value was not changed from the default:

if (xml _parser get option($xml parser, XML OPTION CASE FOLDING)) {
xml _parser set option ($xml parser, XML OPTION CASE FOLDING, 0);

}

This code tests the parser ($xml_parser, which was previously created) to see whether
the XML_OPTION_CASE_FOLDING option is enabled. If enabled, which in this case it would be
since the default parser is being used, the code disables this option by setting its value to 0.
You use the other options in the same way even though XML_OPTION_TARGET_ENCODING takes
and returns a string (US-ASCII, IS0-8859-1, or UTF-8) for the value.

273

274

CHAPTER 8 = SIMPLE APl FOR XML (SAX)

Caution The parser options XML _OPTION_SKIP_TAGSTART and XML _OPTION SKIP WHITE are
used only when parsing into a structure. Regular parsing is not affected by these options. The option
XML_OPTION SKIP_WHITE may not always exhibit consistent behavior in PHP 5. Please refer to the
section “Migrating from PHP 4 to PHP 5” for more information.

Event Handlers

Event handlers are user-based functions registered with the parser that the XML data is
pushed to when an event occurs. If you look at the code in Listing 8-1, you will notice the
functions startElement(), endElement(), and chandler(). These functions are the user-
defined handlers and are registered with the parser using the xml_set_element handler()
and xml_set character data handler() functions from the xml extension. Many other
events are also issued during parsing, so let’s take a look at each of these and how to write
handlers.

Element Events

Two events occur with elements within a document. The first event occurs when the parser
encounters an opening element tag, and the second occurs when the closing element tag
is encountered. Handlers for both of these are registered at the same time using the
xml_set element handler() function. This function takes three parameters: the parser
resource, a string identifying the start element handler function, and a string identifying
the end element handler function.

Start Element Handler

The function set for the start element handler executes every time an element is encountered
in the document. The prototype for this function is as follows:

start_element_handler(resource parser, string name, array attribs)

When an element is encountered, the element name, along with an array containing all
attributes for the element, is passed to the function. When no attributes are defined, the array
is empty; otherwise, the array consists of all name/value pairs for the attributes of the element.
For example, within a document, the parser reaches the following element:

<element atti="value1" att2="value2" />

In the following code, a start element handler named startElement has been defined and
registered with the parser:

function startElement($parser, $element name, $attribs) {
print "Element Name: $element_name\n";
foreach ($attribs AS $att_name=>$att_value) {
print " Attribute: $att_name = $att_value\n";

}

CHAPTER 8 = SIMPLE API FOR XML (SAX)

When the element is reached within the document, the parser issues an event, and the
startElement function is executed. The following results are then displayed:

Element Name: element
Attribute: att1 = valuel
Attribute: att2 = value2

End Element Handler

The end element handler works in conjunction with the start element handler. Upon the
parser reaching the end of an element, the end element handler is executed. This time, how-
ever, only the element name is passed to the function. The prototype for this function is as
follows:

end_element_handler(resource parser, string name)

Using the function for the start element handler, an end element handler will be added.
This time, since both functions will be defined, the code will also register the handlers:

function endElement($parser, $name) {
print "END Element Name: $name\n";

}

xml_set element handler($xml parser, "startElement", 'endElement');
The complete output with the end handler being called looks like this:

Element Name: element
Attribute: att1 = valuel
Attribute: att2 = value2

END Element Name: element

Caution The documentation states that setting either of these handlers to an empty string or NULL will
cause the specific handler not to be used. At least up to and including PHP 5.1, a warning is issued when the
parser reaches such a handler stating that it is unable to call the handler.

Character Data Handler

Character data events are issued when text content, CDATA sections, and in certain cases enti-
ties are encountered in the XML stream. Text content is strictly text content within an element
in this case. It differs from the conventional text node when the document is viewed as a tree
because text nodes can live as children of other nodes, such as comment nodes and PI nodes.
You can set a character data handler using the xml_set_character_data_handler() function.
Its prototype is as follows:

bool xml set character data_handler(resource parser, callback handler)

275

276

CHAPTER 8 = SIMPLE APl FOR XML (SAX)

The prototype for the user-defined handler for this function is as follows:

handler(resource parser, string data)

Caution As you will see in the following sections, character data can be broken up into multiple events,
resulting in multiple calls to a character data handler. This is not only dependant upon the content of the data
but also upon how lines are terminated because additional character data events may be issued when using
\r\n (Windows style) as line feeds compared to just using \n (Unix style).

In the following sections, you will see how this handler deals with different types of data.

Handling Text Content

Text content is character data content for an element. As it is processed, character data events
are issued from the parser, and the handler, if set, is executed. In its simplest case, as in the fol-
lowing example, the text content for the element named root is Hello World:

<root>Hello World</root>

When encountered during processing, this string is passed to the handler for further user
processing:

function characterData($parser, $data) {
print "Data: $data END Data\n";

}

xml set character data _handler($xml parser, "characterData");
When the text is processed, the output from the handler is as follows:

Data: Hello World END Data

Whitespace also results in the handler being called, as shown in the following code. Remem-
ber, the parser option XML_OPTION_SKIP WHITE is useless unless parsing the XML into a structure,
which is explained in the “Parsing a Document” section.

$xmldata ="<root>\n<child/></root>";

A document containing this string contains an ignorable whitespace, \n, between the
opening root tag and the empty-element tag child. When the parser processes the data, this
whitespace will be sent to the characterData() function:

Data:
END Data

The handler can be called multiple times when processing text content. The content can
be chunked and passed to the $data parameter in sequential calls. This occurs from the use of

CHAPTER 8 = SIMPLE API FOR XML (SAX)

differing terminations of lines. Take the case of using Unix-style line terminations. These con-
sist of just a linefeed (\n), like so:

$xmldata ="<root>Hello \nWorld</root>";

By using the string contained in $xmldata for the XML data to be processed and running
it with the characterData() handler previously defined, you can see that the text content is
called only once with the entire content sent to the $data parameter at once:

Data: Hello
World END Data

In this next instance, Windows-style line feeds (\r\n) are used to terminate lines:
$xmldata ="<root>Hello \r\nWorld</root>";
This time, the content is broken up into multiple events, and the handler is called twice:

Data: Hello END Data
Data:
World END Data

The first event results in just the string "Hello " being passed to the $data parameter.
Following the processing, the handler is called again with the string "\nWorld". You might be
wondering what happened to \r. The line breaks have been normalized according to the XML
specifications.

Note Per the XML specifications, parsers must normalize line breaks. Windows-style line breaks (\r\n)
are normalized to a single \n. Also, any carriage return (\r) not followed by a line feed (\n) is translated into
a line feed.

The bottom line is that character data can be processed by multiple calls to the handler
rather than a single call passing all the data at once. The “Migrating from PHP 4 to PHP 5” sec-
tion will cover this a bit more, since it is different from the behavior in PHP 4. Line breaks are
just one place this occurs. In certain cases, this also occurs when using entities, which will be
covered shortly.

Handling CDATA Sections

CDATA sections are handled in a similar fashion to text content but currently exhibit a little
different behavior with respect to line endings. This is another area that is covered in the
“Migrating from PHP 4 to PHP 5” section of this chapter. Using the same functions defined in
the previous section for text content, you can change the XML data to move the text content
into a CDATA section block, as follows:

$xmldata = "<root><![CDATA[Hello World]]></root>";

277

278

CHAPTER 8 ' SIMPLE API FOR XML (SAX)

The resulting output is the same as when the text was used directly as content:
Data: Hello World END Data

Adding the line feed within the text also produces the same results as demonstrated with
the text content:

$xmldata = "<root><![CDATA[Hello \nWorld]]></root>";

Data: Hello
World END Data

Using a carriage return, however, exhibits different behavior from what was shown when
used within text content:

$xmldata = "<root><![CDATA[Hello \r\nWorld]]></root>";

Data: Hello
World END Data

In this case, only a single event was fired. The text was not broken up into multiple sections.
The data is also different in this case. If you remember, when the string "Hello \r\nWorld" was
used as text content, the data was passed as "Hello " and "\nWorld". The carriage return was
never sent to the handler. Inspecting the data sent to the handler when the full string is used
within a CDATA section, the whole string, including the carriage return, is passed to the $data
parameter. This may be a bug in libxmI2 and may change in future releases, but with at least
libxml2 2.6.20, the behavior is as I have described.

Handling Entities

In certain cases, entity references will be expanded and sent to the character data handler.
In other cases, if defined, entity references will be sent directly to the default handler without
being expanded. The first case to look at is the predefined, internal entities.

Per the specifications, the parser implements five predefined entities. They are explained
in more detailed in Chapter 2 (and listed in Listing 2-2). When a character data handler is set,
these predefined entities automatically are expanded, and their values are sent to the charac-
ter data handler when encountered. I will use the same functions as defined within the text
content section to demonstrate character data handling with entities:

$xmldata = "<root>Hello & World</root>";

Data: Hello END Data
Data: & END Data
Data: World END Data

The first thing you will probably notice is that three events were triggered for the text con-
tent containing the entity ∓. Encountering an entity reference within a document creates

CHAPTER 8 = SIMPLE API FOR XML (SAX)

an event. In this case, the parser was processing the character data "Hello ". Upon reaching
&, the parser issued the event for "Hello ".The entity reference is then processed alone,
which in this case results in another issue of a character data event. Once handled, the parser
continues processing the text content.

Note Entity references are handled alone and result in a separate event. When used within text content,
this may result in multiple calls to the character data handler.

You probably also notice the resulting text on the second line of output. The entity refer-
ence has been expanded, and the actual text for the reference has been sent to the character
data handler. In this case, 8amp; refers to the character 8 and the & sent as the $data parameter.

The last cases depend upon whether a default handler has been set. For all other entity
references, other than external entity references that have their own handlers, the character
data handler is called only when a default handler has not been defined. Just like predefined
entities, when passed to the character handler, the entity references are expanded. If a default
handler exists, the entity references are not expanded and passed to the handler in their native
states. I will cover this in more detail in the “Default Handler” section.

Processing Instruction Handler

PIs within XML data have their own handlers, which are set using the
xml_set_processing_instruction_handler() function. When the parser encounters a PI,
an event is issued, and if the handler has been set, it will be executed. For example:

/* Prototype for setting PI handler */
bool xml set processing instruction handler(resource parser, callback handler)
/* Prototype for user PI handler function */

handler(resource parser, string target, string data)

Data for a processing instruction is sent as a single block. Unlike character data, only
a single event is issued per PI:

$xmldata = "<root><?php echo 'Hello World'; ?></root>";

Using the previous XML data and the following handler, when the instruction is encoun-
tered, the function will print the strings from the $target and $data parameters:

function PIHandler($parser, $target, $data) {
print "PI: $target - $data END PI\n";

}

PI: echo 'Hello World'; END PI

279

280

CHAPTER 8 = SIMPLE APl FOR XML (SAX)

External Entity Reference Handler

As you recall from Chapter 3, external entities are defined in a DTD and are used to refer to
some XML outside the document. Depending upon the type, they can include a public ID
and/or system ID used to locate the resource:

/* Examples of External Entities */
<IENTITY extname SYSTEM "http://www.example.com/extname">
<IENTITY extname PUBLIC "localname" "http://www.example.com/extname">

Within a document, you can reference them using an external entity reference:
<root>8extname;</root>

Upon encountering the external entity reference, the parser will execute the external
entity reference handler, if set, using the xml_set _external entity ref handler() function:

/* Prototype for xml_set external entity ref handler */
bool xml set external entity ref handler(resource parser, callback handler)

/* Prototype for handler */
handler(resource parser, string open_entity names,
string base, string system id, string public_id)

Before seeing this functionality in action, you need to be aware of a few issues. The
current behavior of these parameters for PHP 5 (at least up to and including PHP 5.1) is that
open_entity names is only the name of the entity reference. Contrary to the documentation,
no list of entities exists. Only the name of the entity reference is passed. When using entity
references that reference other entities, PHP 5 has an issue, which will be covered in the
“Migrating from PHP 4 to PHP 5” section in detail.

Taking these factors into account, the external XML in Listing 8-2, which would live in
the file external.xml, will be referenced by the partial document in Listing 8-3. The parser
will then process the document in Listing 8-3.

Listing 8-2. External XML in File external.xml

<?xml version="1.0"?>

<external element>
Hello World!

</external element>

Listing 8-3. XML Document to Be Processed

<?xml version='1.0"'?>
<IDOCTYPE root SYSTEM "http://www.example.com/dtd" [
<IENTITY myEntity SYSTEM "external.xml">
1>
<root>
<element1>Internal XML Data</element1>
dmyEntity;
</root>

CHAPTER 8 = SIMPLE API FOR XML (SAX)

The first step you need to take is to write and register the function to handle the external
entity:

function extEntRefHandler($parser, $openEntityNames, $base, $systemId, $publicId) {
if ($systemId) {
if (is_readable($systemId)) {
print file get contents ($systemId);
return TRUE;
}
}

return false;

}

xml_set_external entity ref handler($xml_parser, "extEntRefHandler");

When the parser encounters the external entity reference, 8myEntity;, the
extEntRefHandler function is executed. Since the entity declaration is defined as SYSTEM,
the variable $publicId will be passed as FALSE. The function ensures that the URL defined
by $systemId is readable, which in this case is the local file external.xml, and then just prints
the contents of the file.

If you have looked at the examples within the PHP documentation, you may notice that
the external entity reference handler creates a new parser and parses the data located at the
URL from $systemId. According to the XML specifications, the external data must be valid
XML, and processing the data with a new parser is perfectly valid and in most cases the
desired functionality.

Declaration Handlers

Currently, the extension allows for two specific declaration handlers to be set. You can handle
both notation declarations and unparsed entity declarations through their respective han-
dlers. I have grouped them in this section because unparsed entity declarations rely on
notation declarations.

Caution For both the user handlers in this section, the public_id and system_id parameters are
reversed when using PHP 5 prior to the release of PHP 5.1. This has been fixed for PHP 5.1, so this section
is based on the fixed syntax.

The first step in using these handlers is to look at their prototypes:

/* Set handler prototypes */
bool xml set notation decl handler(resource parser, callback note_handler)
bool xml set unparsed entity decl handler(resource parser, callback ued handler)

281

282

CHAPTER 8 = SIMPLE APl FOR XML (SAX)

/* User function handler prototypes */

note_handler(resource parser, string notation name, string base, string system id,
string public_id)

ued_handler(resource parser, string entity name, string base, string system id,
string public_id, string notation_name)

These handlers operate on declaration statements within a DTD. This means these would
be processed prior to any processing within the body of the document. This example uses a
simplified document; it contains a DTD declaring a notation and an unparsed entity as well
as an empty document element:

<?xml version='1.0'?>

<IDOCTYPE root SYSTEM "http://www.example.com/dtd" [
<INOTATION GIF SYSTEM "image/gif">

<IENTITY myimage SYSTEM "mypicture.gif" NDATA GIF>
1>

<root/>
Again, you need to define and register these handlers with the parser:

/* Define handlers */
function upehandler($parser, $name, $base, $systemId, $publicId, $notation name) {
print "\n---- Unparser Entity Handler ---\n";
var_dump($name);
var_dump($base);
var_dump($systemld);
var_dump($publicld);
var_dump($notation_name);

}

function notehandler($parser, $name, $base, $systemId, $publicId) {
print "\n--- Notation Declaration Handler ---\n";
var_dump($name);
var_dump($base);
var_dump($systemld);
var_dump($publicld);

}

/* Register Handlers */
xml_set unparsed entity decl handler($xml parser, "upehandler");
xml_set notation_decl handler($xml parser, "notehandler");

When the notation and unparsed entity declaration are encountered, the respective
function is executed and in this case just dumps each of the parameter variables passed to
the function. When the document is parsed, the output using these functions is as follows:

CHAPTER 8 = SIMPLE API FOR XML (SAX)

--- Notation Declaration Handler ---
string(3) "GIF"

bool(false)

string(9) "image/gif"

bool(false)

---- Unparser Entity Handler ---
string(7) "myimage"

bool(false)

string(13) "mypicture.gif"
bool(false)

string(3) "GIF"

Default Handler

The intended use of the default handler is to process all other markup that is not handled
using any other callback. This handler may not work exactly as expected when running code
under PHP 5 that was written for PHP 4. I will cover this in more detail in the section “Migrat-
ing from PHP 4 to PHP 5.”

Caution Code written for PHP 4 using a default handler may not work as expected under PHP 5. Please
refer to the section “Migrating from PHP 4 to PHP 5.”

When you use the default handler, you will encounter two issues. The first is dealing with
comment tags. When the parser encounters a comment, the entire comment, including the
starting and ending tags, is sent to the default handler:

function defaultHandler($parser, $data) {
print "DEFAULT: $data END_DEFAULT\n";

}

xml_set default handler($xml parser, "defaultHandler");

Using the following XML data, when the comment tag is processed, the default handler
will display the following results:

<root><!-- Hello World --></root>

DEFAULT: <!-- Hello World --> END_DEFAULT

Entities, depending upon type, will also use the default handler when registered. Data
passed to the default handler is different from that passed when a character data handler is
present. If you recall, when a character data handler is registered, all predefined entities will

283

284

CHAPTER 8 = SIMPLE APl FOR XML (SAX)

always be sent to that handler with their data expanded. Other entities, except external entity
references, will try to use the default handler first and fall back to the character data handler
only when a default handler is not present. The data passed to the default handler, however,
is not the expanded entity. The entity reference itself is passed. For example:

<IDOCTYPE root SYSTEM "http://www.example.com/dtd" [
<IENTITY myEntity "Entity Text">
1>

<root><e1>8myEntity;</e1><e2>&</e2></root>

To see the difference between using a character data handler and a default handler, the
previous XML document will be processed with only a character data handler registered:

function characterData($parser, $data) {
print "DATA: $data END _DATA\n";

}

xml_set_character_data_handler($xml_parser, "characterData");
Upon processing, the output is as follows:

DATA: Entity Text END_DATA
DATA: & END_DATA

Both entities have been expanded, and the strings Entity Text and & have been passed
to the $data parameter of the character data handler. Using the same code, you can register
a default handler:

function defaultHandler($parser, $data) {
print "DEFAULT: $data END_DEFAULT\n";

}

xml_set_default_handler($xml_parser, "defaultHandler");
This time the results are a bit different:

DEFAULT: &myEntity; END_DEFAULT
DATA: & END_DATA

The default handler is used to process the user-defined entity. It is passed without being
expanded, passing the raw &myEntity;, to the default handler. The predefined entity refer-
ence, &, on the other hand, is handled by the character data handler, as you can see by
the output.

These are currently the only instances when the default handler is used. When using
PHP 4 or when building with the expat library, everything not handled by any other handler
is processed by the default handler. At this time, it is unknown how the default handler will be
used in PHP 5, and it is also possible new functionality may be written to support handling of
other data using the xml extension.

CHAPTER 8 = SIMPLE API FOR XML (SAX)

Parsing a Document

This chapter has so far explained what the parser is, how you create it, and how to write and
register handlers. The code used to this point has shown expected results when a document
is processed but has not explained how to process a document. It is important to understand
these previous steps prior to processing a document, because they are all required before the
processing begins. I will now cover the actual processing, which includes parsing the docu-
ment, handling error conditions, handling additional functionality within the xml extension,
and releasing the parser.

Parsing Data

Unlike the other XML-based extensions, the xml extension parses only string data. Files con-
taining XML must be read and sent to the parser as strings. This doesn’'t mean, however, that
all the data must be sent at once. Remember, SAX works on streaming data. The function used
to parse the data is xml_parse(), with its prototype being as follows:

int xml _parse(resource parser, string data [, bool is final])

The first parameter, parser, is the resource you have been working with throughout the
chapter. The second parameter, data, is the data to be processed. The last optional parameter,
is final, is a flag indicating whether the data being passed also ends the data stream. Let’s
examine the use of the last two parameters.

Taking the simplest code from the text content section, you can write the complete code,
as shown here:

<?php
$xmldata = "<root>Hello World</root>";

function cData($parser, $data) {
print "Data: $data END Data\n";

}

$xml parser = xml parser create();
xml _set character data _handler($xml parser, "cData");
if (Ixml _parse($xml parser, $xmldata, true)) {
print "ERROR";
}

>

The variable $xmldata, which is passed to xml_parse(), contains a complete XML docu-
ment. No other data is needed for the document, so TRUE is passed for the is_final parameter.
The xml_parse() function returns an integer indicating success or failure. A value of 1 indi-
cates success, and a value of 0 indicates an error. The “Handling Errors” section shows how
to deal with errors.

285

286

CHAPTER 8 ' SIMPLE API FOR XML (SAX)

Chunked Data

The is_final parameter is extremely important to use to have the document parse correctly.
The parser works on chunked data, so unless it knows when all available data has been sent, it
cannot determine whether a well-formed document is being processed. Consider the follow-
ing snippet of code where the cData handler from the previous example is being used and has
already been registered on the created parser, $xml_parser:

$xmldata = "<root>Hello World";

if (!xml_parse($xml parser, $xmldata, FALSE)) {
print "ERROR";

}

You might expect ERROR to be printed because the XML is not well-formed. Instead, noth-
ing is output when the script is run. In this case, though, the is final flagis set to FALSE. The
parser is sitting in a state expecting more data. Without additional data or the knowledge that
the data it has received is the final piece of data, the parser has no way of knowing a problem
exists. Changing the is_final parameter to TRUE results in much different output:

if (!xml _parse($xml parser, $xmldata, TRUE)) {
print "ERROR";

}

Data: Hello World END Data
ERROR

In this case, the parser knows it has all the data it needs to process and not only executes
the cData function but also ends in an error state.

Let’s now look at trying to process the full document broken up into chunks. You have
seen that when is_final is FALSE, the parser waits for more data. Sending the remaining data
and setting the is_final flag to TRUE should then allow the parser to continue processing the
document:

$xmldata = "<root>Hello World";
$xmldata2 = "</root>";

print "Initial Parse\n";
if (!xml_parse($xml parser, $xmldata, FALSE)) {
print "ERROR 1";

}

print "Final Parse\n";
if (!xml_parse($xml parser, $xmldata2, TRUE)) {
print "ERROR 2";

}

Initial Parse
Final Parse
Data: Hello World END Data

CHAPTER 8 = SIMPLE API FOR XML (SAX)

The first call to xml_parse() sends the initial chunk of data, $xmldata, and passes FALSE
to is_final. From the results, it is clear that nothing noticeable has happened because
nothing has been printed. The last call to xml_parse() sends the remaining chunk of data,
$xmldata2, but this time it sets is_final to TRUE. The parser knows that all data has been sub-
mitted and is able to call the cData handler with the text content, and it knows that the entire
document is well-formed.

File Data

Data coming from a file is typically read in chunks, unless loaded using the file get contents()
function. In many cases, XML documents are quite large, and loading the entire contents of the
file into a string at one time just does not make any sense, especially because of the amount of
memory this would require. Using the file external.xml from Listing 8-2, the following PHP file
system functions will read chunks of data at a time and process the contents:

$handle = fopen("external.xml", "r");
$x= 0;
while ($data = fread($handle, 20)) {
$x++;
print "$x\n";
if (Ixml parse($xml parser, $data, feof($handle))) {
print "ERROR";
}

}
fclose($handle);

In this case, the file external.xml is opened and data read in 20 bytes at a time. Each time
the bytes are read, they are processed. The variable $x is printed to show the number of times
xml_parse() is called. The results of the feof () function, which tests for the end of file, is passed
asthe is_final flag. The function feof() will return FALSE until the last piece of data is read in
the while statement. At this point, the last time xm1_parse() is called, the value of the function
will be TRUE. When all is said and done, the final results are as follows:

1
2
3
4
Data:
Hello World! END Data

Data:
END Data

You may have an idea of why this code shows an extra call to the cData function. Itis a
result of a carriage return in the external.xml file. The important thing to notice is that the file
was read, and parsing took place for the first 80 bytes of the file prior to any output. This is just
because of the location of the text content and because only character data is being handled
in this example. In a typical application, it is not usually only the last pieces read from the doc-
ument that cause the output. If you added an element handler to the code, you would see that
the element is handled after 60 bytes have been read.

287

288

CHAPTER 8 = SIMPLE APl FOR XML (SAX)

Parsing into Structures

This extension also includes a function to parse XML data into an array structure of the docu-
ment. Structures are created using the xml_parse into struct() function. Using this function
requires no handlers to be implemented or registered, although they could be; in that case,
both your handlers would be processed and a final structure would be available when done.
The prototype for this function is as follows:

int xml parse into struct(resource parser, string data,
array &values [, array &index])

Note One point to be aware of when using this function is that the data parameter must contain the
complete XML data to be processed. Unlike the xm1_parse() function that uses the is final parameter,
this function requires all data to be sent at once in a single string.

The new parameters, values and index, return the structures for the XML data. The value
parameter must always be passed to this function. It results in an array containing the struc-
ture of the document in document order. It contains information such as tag name, level
within the tree starting at 1, type of tag, attributes, and in some cases value. For example:

$xmldata = "<root><el att1="1'>text</el></root>";
xml_parse_into_struct($xml_parser, $xmldata, $values, $index);
var_dump($values);

This piece of code assumes $xml_parser has already been created and case folding has
been disabled:

array(3) {

[0]=>

array(3) {
["tag"]->
string(4) "root"
["type"]=>
string(4) "open"
["level"]=>
int(1)

}

[1]=>

array(5) {
["tag"]=>
string(2) "e1"
["type"]=>
string(8) "complete
["level"]=>
int(2)

CHAPTER 8 = SIMPLE API FOR XML (SAX) 289

["attributes"]=>
array(1) {
["att1"]=>
string(1) "1"
}
["value"]=>
string(4) "text"
}
[2]=>
array(3) {
["tag"]=>
string(4) "root"
["type"]=>
string(5) "close"
["level"]=>
int(1)

As you can see, this little document produces a lot of output. Each element is accessed
by a numeric key in the topmost array. The key represents the order the specific element was
encountered within the document. The elements are then represented by a subarray with
associative keys. The elements are as follows:

* tag: Tag name of the element.

* type: Type of tag. The value can be open, indicating an opening tag; complete, indicating
that the tag is complete and contains no child elements; or close, indicating the tagis a
closing tag.

¢ level:The level within the document. This value starts at 1 and is incremented by 1
as each subtree is traversed. The level then decrements as the subtree is ascended.

* value: The concatenation of all direct child text content. Only data that would be
passed to a character data handler when a default handler is set is present here.

e attributes: An array containing all attributes of the element. The keys of this array
consist of the name of the attributes with the values being the corresponding attribute
value.

When the option index parameter is passed, the return value is an array pointing to the
locations of the element tags within the value array. This means you now have a map you can
use to locate specific elements within the other array. Accessing an element by name in the
index array returns an array of indexes corresponding to the indexes of the opening and clos-
ing tags in the value array. In the case of a complete tag, the array contains only a single index
because the opening and closing tag are the same. The result from processing
var_dump($index); is as follows:

290 CHAPTER 8 ' SIMPLE API FOR XML (SAX)

array(2) {
["root"]=>
array(2) {
[0]=>
int(0)
[1]=>
int(2)
}
["e1"]=>
array(1) {
[0]=>
int(1)
}
}

Reading this array, you can find the root element at indexes 0 and 2 within the values array
and the el element at index 1. You can access the closing root element using $values[2]. This
means the tag name and type should correspond to the closing root element. For example:

print $values[2]['tag']."\n";
print $values[2]['type']."\n";

root
close

The xml_parse into struct() function is where the options XML_OPTION SKIP TAGSTART
and XML_OPTION_SKIP_WHITE come into play. These options are used only when building a
structure and do not affect data passed to user-defined handler functions. For example:

$xmldata = "<root>Content: & ' End Content</root>";

xml parser set option ($xml parser, XML OPTION CASE FOLDING, 0);
xml _parser set option ($xml parser, XML OPTION SKIP WHITE, 1);

xml parser set option ($xml parser, XML OPTION SKIP TAGSTART , 1);
xml _parse into struct($xml parser, $xmldata, $values, $index);
var_dump($values);

array(1) {

[0]=>

array(4) {
["tag"]=>
string(3) "oot"
["type"]=>
string(8) "complete
["level"]=>
int(1)
["value"]=>
string(23) "Content: &' End Content"

CHAPTER 8 = SIMPLE API FOR XML (SAX)

The first thing to notice is the value of the tag key, oot. This is referring to the element root
from the complete XML document. The option XML_OPTION SKIP TAGSTART was set to 1, which,
when parsed into a structure, removes the first character of the name of the element tag. The
purpose of this option is a bit unknown. My only guess is that prior to supporting the parsing
of documents containing namespaces, this option would allow a prefix and the colon to be
removed. The only problem with this is that the document must use the same prefixed name-
space throughout, or all prefixes must be the same number of characters. The next thing to
notice is the value of the value key. XML_OPTION_SKIP WHITE removes a data parameter that is
passed to a character data handler consisting of entirely whitespaces, currently spaces, tabs,
and line feeds, in the xml extension. The data is modified only for the value of the structure
and not when passed to user-defined character data handlers.

You might wonder why the space between the & and ' characters was removed, because
the value is a single string. Remember that character data can be split and sent to the handler
in chunks. In this case, when an entity is encountered, the entity is handled as a separate
chunk. If the calls to the character data handler were broken down into the substrings sent, it
would look like the following. Note the strings are in quotes to show the spaces in the strings.

e “Content:”
° “&”

° “wo»

* “'”

¢ “End Content”

The only string containing all whitespace is the space listed between 8amp; and 8apos;.
This string was removed because of the setting for the XML_OPTION_SKIP_WHITE option.

Parsing Information

Byte index, column number, and line number are three pieces of information available
while parsing a document. You will also see these again in the “Migrating from PHP 4 to
PHP 5” section because these functions have a few quirks. The functions for these pieces
of information are xml_get_current_byte index(), xml_get_current_column_number(), and
xml_get current_line_number(). Each of these functions takes a parser as the parameter
and returns either an integer containing the respective data or FALSE if the parser is not
valid.

All handler functions are passed the parser as the first parameter. Using this parameter,
these functions can be called within user-defined handler functions and not only in the main
body of the script where the parse function is called. For example:

<?php

function startElement($parser, $data) {
print "TAG: $data\n";
print "Bytes: ".xml get current byte index($parser)."\n";
print "Column: ".xml get current column number($parser)."\n";
print "Line: ".xml_get current_line number($parser)."\n\n";

291

292

CHAPTER 8 = SIMPLE APl FOR XML (SAX)

function endElement($parser, $data) { }
$xmldata = "<root><el attl='1'>text</el></root>";

$xml _parser = xml parser create();

xml _parser set option ($xml parser, XML OPTION CASE FOLDING, 0);
xml_set element handler($xml parser, "startElement", "endElement");
xml _parse($xml parser, $xmldata, true);

?>

In this example, every time a starting element tag is encountered, the tag name, the cur-
rent byte index, the column number of the XML document, and the line number within the
document are printed:

TAG: root
Bytes: 5
Column: 6
Line: 1

TAG: el
Bytes: 18
Column: 15
Line: 1

The bytes and column information may not be exactly what you were expecting if you
first ran this code using PHP 4.x. I will cover this, like much of the other functionality, in the
“Migrating from PHP 4 to PHP 5” section. What you can determine, though, is that the number
of bytes read is the number of bytes prior to the > marker for the element’s opening tag. The
column number, on the other hand, is not very accurate. This is an issue with libxml so