

Robert Richards

Pro PHP XML and
Web Services

6331_FM_final.qxd 2/16/06 4:16 PM Page i

Pro PHP XML and Web Services

Copyright © 2006 by Robert Richards

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-633-3

ISBN-10: 1-59059-633-1

Library of Congress Cataloging-in-Publication data is available upon request.

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Matt Wade
Technical Reviewers: Christian Stocker, Adam Trachtenberg
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Matt Wade

Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Gunther
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: Nancy Sixsmith
Indexer: Jan Wright
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

This book is dedicated to my wife and best friend, Julie.
Thank you for your patience, support, and encouragement

at the times I most needed it.

6331_FM_final.qxd 2/16/06 4:16 PM Page ii

Contents

About the Author . ix

About the Technical Reviewers . x

Acknowledgments . xi

Introduction . xii

■CHAPTER 1 Introduction to XML and Web Services . 1

Exploring the History of XML . 2

Using XML in the Real World . 4

Introducing Service Oriented Architecture and Web Services 9

Defining Common Terms and Acronyms . 14

Conclusion . 14

■CHAPTER 2 XML Structure . 15

Introducing Characters . 15

Understanding Basic Layout . 18

Understanding Basic Syntax . 20

Using Namespaces . 29

Using IDs, IDREF/IDREFS, and xml:id . 36

Using xml:space and xml:lang . 41

Understanding XML Base. 42

Conclusion . 43

■CHAPTER 3 Validation . 45

Introducing Validation . 45

Introducing Document Type Definitions . 46

Using XML Schemas . 71

Using RELAX NG . 100

Conclusion . 121

■CHAPTER 4 XPath, XPointer, XInclude, and the Future 123

Introducing XPath . 123

Introducing XPointer . 146
iii

6331_FM_final.qxd 2/16/06 4:16 PM Page iii

Introducing XInclude . 151

Examining the Future of XML . 157

Conclusion . 161

■CHAPTER 5 PHP and XML . 163

Introducing XML in PHP 5 . 163

Configuring libxml Support . 167

Introducing Encoding . 168

Figuring Out the libxml2 Version . 172

Introducing Parser Options . 173

Introducing PHP Streams . 174

Performing Error Handling . 177

Conclusion . 179

■CHAPTER 6 Document Object Model (DOM) . 181

Introducing the DOM. 181

Using the DOM Extension. 188

Performing Validation . 214

Using XPath . 216

Extending Classes . 219

Common Questions, Misconceptions, and Problems 223

Migrating from domxml to the DOM Extension . 228

Seeing Some DOM Examples . 230

Conclusion . 237

■CHAPTER 7 SimpleXML . 239

Introducing SimpleXML . 239

Using SimpleXML . 239

Using Namespaces in SimpleXML . 258

Using XPath . 260

Seeing Some Examples in Action . 262

Conclusion . 268

■CHAPTER 8 Simple API for XML (SAX) . 269

Introducing SAX . 269

Using the xml Extension . 270

Migrating from PHP 4 to PHP 5 . 300

■CONTENTSiv

6331_FM_final.qxd 2/16/06 4:16 PM Page iv

Seeing Some Examples in Action . 306

Conclusion . 310

■CHAPTER 9 XMLReader . 311

Introducing XMLReader . 311

Using XMLReader . 314

Exporting to DOM Objects . 328

Dealing with Namespaces . 328

Performing Validation . 333

Seeing Some Examples in Action . 335

Conclusion . 340

■CHAPTER 10 Extensible Stylesheet Language Transformations
(XSLT) . 341

Introducing XSL and XSLT . 341

Introducing the XSL Extension. 387

Using the XSL Extension. 390

Using Parameters in XSL . 393

Calling PHP Functions from XSL . 395

Seeing Some Examples in Action . 399

Conclusion . 408

■CHAPTER 11 Effective and Efficient Processing . 409

Looking at the Pros and Cons of Parsers . 409

Optimizing Parsing and Processing . 426

Combining Technologies. 433

Conclusion . 439

■CHAPTER 12 XML Security . 441

Introducing XML Security . 441

Introducing Basic Security . 442

Introducing Enterprise Security. 448

Introducing Canonical XML . 449

Introducing Exclusive XML Canonicalization. 456

Introducing XML Signatures . 460

Introducing XML Encryption. 474

Conclusion . 489

■CONTENTS v

6331_FM_final.qxd 2/16/06 4:16 PM Page v

■CHAPTER 13 PEAR and XML . 491

What Is PEAR? . 491

Using PEAR . 492

Using PEAR and XML Together . 493

Conclusion . 519

■CHAPTER 14 Content Syndication: RSS and Atom . 521

Understanding the Evolution of RSS and Atom. 521

Introducing RSS 1.0: RDF Site Summary . 523

Introducing RSS 2.0: Really Simple Syndication . 534

Introducing Atom 1.0 . 542

Choosing a Format . 550

Seeing Some Examples in Action . 551

Using PEAR XML_RSS . 563

Conclusion . 566

■CHAPTER 15 Web Distributed Data Exchange (WDDX) 567

Introducing WDDX . 567

Understanding the Structure of WDDX. 569

Using WDDX . 576

Seeing Some Examples in Action . 583

Using PEAR XML_WDDX. 589

Conclusion . 593

■CHAPTER 16 XML-RPC . 595

Introducing XML-RPC . 595

Exploring the XML-RPC Structure. 596

Using xmlrpc in PHP . 608

Using XML_RPC in PEAR . 622

Seeing Some Examples in Action . 629

Conclusion . 631

■CHAPTER 17 Representational State Transfer (REST) 633

Introducing REST . 633

Introducing REST Web Services . 634

Creating a REST Web Service . 639

Introducing the Yahoo Web Services . 646

■CONTENTSvi

6331_FM_final.qxd 2/16/06 4:16 PM Page vi

Introducing the Amazon Web Services. 660

Conclusion . 672

■CHAPTER 18 SOAP . 673

Introducing the Web Services Description Language (WSDL) 673

Introducing SOAP. 696

Using the SOAP Extension . 706

Using PEAR SOAP . 734

Seeing Some Examples in Action . 735

Conclusion . 750

■CHAPTER 19 Universal Description, Discovery, and
Integration (UDDI) . 751

Introducing UDDI . 751

Introducing Data Structures. 753

Introducing the SOAP API . 764

Accessing the SAP UDDI Registry via SOAP . 768

Conclusion . 780

■CHAPTER 20 PEAR and Web Services . 781

Using Services_Amazon. 781

Using Services_Delicious. 785

Using Services_Ebay . 786

Using Services_Google. 786

Using Services_Technorati . 789

Using Services_Weather . 793

Using Services_Webservice . 797

Using Services_Yahoo . 802

Using SOAP. 806

Using UDDI . 807

Using XML_RPC. 808

Conclusion . 809

■CHAPTER 21 Other XML Technologies and Extensions 811

Using XMLWriter . 811

Using SDO XML Data Access Service . 820

Introducing Asynchronous JavaScript Technology and XML (Ajax) 826

■CONTENTS vii

6331_FM_final.qxd 2/16/06 4:16 PM Page vii

Introducing Wireless Application Protocol (WAP) . 830

Conclusion . 838

■APPENDIX A XML Schema Built-in Data Types Reference 839

Type Definition . 839

Primitive Types. 839

Derived Types. 841

■APPENDIX B Extension APIs . 845

libxml . 845

xml . 847

XMLReader . 849

SimpleXML . 852

DOM. 854

XSL. 866

SOAP . 867

XMLWriter . 871

■APPENDIX C Features and Changes in PHP 6 . 875

xml Extension. 875

XMLReader Extension. 876

SimpleXML Extension . 879

DOM Extension. 883

■INDEX . 889

■CONTENTSviii

6331_FM_final.qxd 2/16/06 4:16 PM Page viii

About the Author

■ROB RICHARDS, currently an independent contractor, has worked in vari-
ous fields including medical information, telecommunications, media,
and e-learning. Having been exposed to XML since its inception, he has
used the technology for various projects throughout his career; his most
extensive work with XML was within the e-learning space. He helped cre-
ate a proprietary XML-based application server that used XML for data
publishing, defining application business logic, and data querying. He

was also the lead engineer for the company’s involvement in the Shareable Content Object
Reference Model (SCORM), which is used for Web-based learning and was established by the
Department of Defense through its Advanced Distributed Learning (ADL) initiative.

After becoming the latest casualty of the dot-com implosion in 2001, Rob got his first
taste of PHP and began contributing code to the domxml extension in 2002. Since then, he
has become one of the authors of the DOM extension for PHP 5; he also contributes to the
other XML-based extensions and authored the XMLReader and XMLWriter extensions. Also,
on occasion, he contributes bug fixes to the libxml2 project for bugs found during the devel-
opment of these extensions.

ix

6331_FM_final.qxd 2/16/06 4:16 PM Page ix

About the Technical Reviewers

■CHRISTIAN STOCKER is one of the developers of numerous XML extensions in PHP and has
been involved in developing PHP since version 4.1.

In addition, he has been a speaker for many international conferences (ApacheCon, PHP
Conference, and OSCOM) and actively takes part in the open source community. He’s also the
author of the German book PHP de Luxe, recently republished in its second edition.

In his day job, he is the CEO of Bitflux GmbH, a Web development company specializing
in XML/XSLT, PHP, and Ajax and based in Zurich, Switzerland.

■ADAM TRACHTENBERG is the senior manager of platform evangelism at eBay, where he
preaches the gospel of the eBay platform to developers and businesspeople around the globe.
Before eBay, Adam cofounded and served as vice president for development at two compa-
nies, Student.com and TVGrid.com. At both firms, he led the front- and middle-end Web site
design and development. Adam began using PHP in 1997; he is the author of Upgrading to
PHP 5 (O’Reilly, 2004) and the coauthor of PHP Cookbook (O’Reilly, 2002). He lives in San
Francisco, blogs at http://www.trachtenberg.com, and has a bachelor’s degree and a master’s
degree from Columbia University.

x

6331_FM_final.qxd 2/16/06 4:16 PM Page x

Acknowledgments

I would like to thank both Christian Stocker and Adam Trachtenberg for taking time out of
their busy schedules to perform technical reviews of this book. The comments and feedback
were invaluable to its completion. I also cannot forget to mention all the contributions from
all the PHP developers who wrote and contributed to the various XML extensions in PHP 5,
as well as Daniel Veillard and the maintainers of the libxml2 and libxslt libraries. Without all
the hard work of these people, it is uncertain what the state of XML would be in PHP. I would
also like to thank Matt Wade, Kylie Johnston, Kim Wimpsett, and the rest of the staff at Apress
for making this book possible.

On a more personal note, a special thanks goes out to my family: my parents, Brian and
Lillian; my wife, Julie; and her parents, Tony and Val. You all encouraged me during the entire
book process and kept me going when things got difficult.

xi

6331_FM_final.qxd 2/16/06 4:16 PM Page xi

Introduction

XML and its associated technologies have been around for many years. Although some
support has been available, it has not always been easy to work with XML using PHP. This
all changed with the release of PHP 5. The inclusion of a variety of XML processors provides
a developer with an arsenal of tools to tackle virtually any type of challenge involving XML.
PHP 5 also went the extra step with the creation of the SOAP extension, providing native SOAP
client and server support and allowing a developer to quickly and easily consume or create
Web services.

With all these tools now available, PHP has become a more viable solution to implement
applications that involve XML and Web services. The problem is that it is often difficult for a
developer to understand how to begin using any of these tools. Not only do you need to under-
stand the APIs of these extensions, but you also need to know which extension to use. On top of
all this, you also need to understand the specifications for the different XML technologies.

This book takes a different approach than most on this subject. Pro PHP XML and Web
Services provides an in-depth and comprehensive look at not only the tools available with
PHP but also the specifications for a variety of XML-based tools. An understanding of the
specifications is often critical when developing an XML-based application. After all, a tool is
only good as your understanding of what you can do with it. However, the problem with the
specifications is that they tend to be overly complex. For this reason, I will explain them in
easy-to-understand language and include complete examples. Specifically, I take the con-
cepts from the technical specifications and show how to adapt them to real-world use in PHP
by covering the APIs and areas of functionality and showing examples of their usage.

Regardless of whether you are a novice or a more advanced developer in the area of XML,
the material presented in this book will get you developing XML-based applications in PHP
faster, and it will demonstrate how to maximize your usage of the XML tools now supported
in PHP.

Who This Book Is For
This book is for developers of all skill levels looking to use XML in PHP. I explain the XML
technologies and PHP extensions in easy-to-understand terms and examples. This will allow
developers new to XML or Web services to start coding right away instead of spending count-
less hours deciphering the often-cryptic specifications and documentation. Developers already
proficient in XML will find techniques and information about interoperability, optimization,
and undocumented features of some of the XML-based extensions in order to maximize the
effectiveness of an XML or Web service–based application they may be writing.

xii

6331_FM_final.qxd 2/16/06 4:16 PM Page xii

How This Book Is Structured
For you to get the most out of XML and Web services in PHP, this book is really grouped into
three sections. The first section contains terminology and technical information about XML.
This includes the concepts and structure of an XML document, validation, and other XML
technologies commonly used. The chapters covering this information are based on various
specifications. These specifications often use cryptic language and are difficult to understand,
so I distill the information in clear terms.

The next group of chapters covers how to parse and manipulate XML documents using
some of the extensions in PHP. I explain each extension and its API in detail with real-world
examples to help reenforce the concepts covered. I also compare and contrast the extensions,
providing you with some insight about where a particular extension excels and how it may not
be the correct one to use in a particular situation.

The last group of chapters covers Web services. Although only a single native Web service
extension exists in PHP (SOAP), I will provide in-depth coverage of additional technologies using
the extensions from earlier chapters. In addition, I will cover how to integrate with the Yahoo,
Google, Amazon, and eBay Web services.

Specifically, the chapters break down as follows:

Chapter 1, “Introduction to XML and Web Services”: This chapter provides some back-
ground information about XML and Web services. In addition, the chapter defines what
these terms mean, explains the history of how they came about, and shows some exam-
ples of how XML is used in the real world.

Chapter 2, “XML Structure”: The XML 1.0 specification defines what XML is and the
structure of documents but uses language that is not always so straightforward. This
chapter explains the structure of an XML document in simple terms and provides some
lucid examples. In addition, this chapter introduces some terminology used throughout
the book.

Chapter 3, “Validation”: This chapter explains the use of validation in XML using
Document Type Definitions (DTDs), XML Schemas, and RELAX NG.

Chapter 4, “XPath, XPointer, XInclude, and the Future”: The focus of this chapter is
explaining how to write XPath expressions to query an XML document. You can use
XPath with a few of the PHP extensions, and XPath serves as the foundation for XSLT
in Chapter 10. The chapter also explains both XPointer and XInclude, which allow for
more advanced XML processing.

Chapter 5, “PHP and XML”: This chapter introduces the new XML support in PHP 5.
It explains much of the functionality shared by the XML-based extensions, such as
parser options, error handling, PHP streams, and document encoding.

Chapter 6, “Document Object Model (DOM)”: This chapter provides an in-depth look at
using the DOM extension and shows how it is used to manipulate an XML document.

Chapter 7, “SimpleXML”: The SimpleXML extension provides a simple interface for
working with XML documents. This chapter explains how to use the extension to
access virtually any type of XML document, including more complex ones that use
namespaces.

■INTRODUCTION xiii

6331_FM_final.qxd 2/16/06 4:16 PM Page xiii

Chapter 8, “Simple API for XML (SAX)”: This chapter explains how to work with the xml
extension and covers issues you may encounter when migrating an application that uses
this extension from PHP 4 to PHP 5.

Chapter 9, “XMLReader”: The XMLReader extension is a lightweight parser and an alter-
native to the xml extension covered in Chapter 8. This chapter explains and demonstrates
how to process an XML document using this extension.

Chapter 10, “Extensible Stylesheet Language Transformation (XSLT)”: You can transform
XML documents using XSLT. This chapter begins by explaining the XSLT specification
in easy-to-understand terms. Then, this chapter shows how to use the XSL extension in
PHP to perform transformations.

Chapter 11, “Effective and Efficient Processing”: With a number of different extensions that
can be used to work with XML in PHP, it is often difficult to decide which one to use. This
chapter explains the differences between the extensions and continues with tips and
tricks that can be used to optimally work with XML in PHP.

Chapter 12, “XML Security”: Data integrity and data security are topics that every devel-
oper must be concerned with when writing applications. In this chapter, you will learn
how to work with digital signatures and encryption as they pertain to XML.

Chapter 13, “PEAR and XML”: The PHP Extension and Application Repository (PEAR)
is a collection of software that can be used when writing an application. This chapter
introduces PEAR and explores some of the XML packages it provides.

Chapter 14, “Content Syndication: RSS and Atom”: Content syndication has become
popular with the explosion of weblogs (blogs). This chapter examines the three formats
that are used to syndicate data and shows how to create and consume syndicated feeds
using the PHP extensions.

Chapter 15, “Web Distributed Data Exchange (WDDX)”: This chapter explains what WDDX
is and how you can use the wddx extension to exchange data between systems.

Chapter 16, “XML-RPC”: This chapter examines the structure and exchange of XML-RPC
documents. You will then learn about the xmlrpc extension and how you can use it to
communicate with remote systems.

Chapter 17, “Representational State Transfer (REST)”: Representational State Transfer
(REST) is a simple method to create and consume Web services. I demonstrate how to
create and consume REST-based services. In particular, you will see how to consume
some real services from both Yahoo and Amazon.

Chapter 18, “SOAP”: SOAP allows for the creation of complex Web services. The speci-
fications involved are also quite complex. In this chapter, I show examples of both the
Web Services Description Language (WSDL) specification and the SOAP specification.
Using this knowledge, you will see how to use the SOAP extension in PHP using real-
world examples from eBay and Google.

Chapter 19, “Universal Description, Discovery, and Integration (UDDI)”: UDDI is a technol-
ogy meant to make working with Web services easier. This chapter shows how you can use
PHP to access and maintain records in a UDDI registry.

■INTRODUCTIONxiv

6331_FM_final.qxd 2/16/06 4:16 PM Page xiv

Chapter 20, “PEAR and Web Services”: Chapter 13 introduces PEAR and its XML packages;
this chapter introduces you to some packages that you can use to create and consume
a variety of Web services.

Chapter 21, “Other XML Technologies and Extensions”: There are too many XML-based
technologies to cover in a single book. In this chapter, I will introduce you to the XML-
Writer and SDO XML Data Access Service extensions as well as show how to work with
Ajax and Wireless Application Protocol (WAP) using PHP.

Prerequisites
Although the general information about XML and the different specifications pertain to any
version of PHP, the tools and extensions covered in this book require PHP 5 or higher. For the
greatest functionality, it is highly suggested that you use PHP 5.1 or higher because of the
many enhancements and additional functionality in this release.

Downloading the Code
All the code featured in this book is available for download at the book’s Web page, which you
can find in the Source Code section at http://www.apress.com.

Contacting the Authors
You can contact the author at rrichards@php.net.

■INTRODUCTION xv

6331_FM_final.qxd 2/16/06 4:16 PM Page xv

6331_FM_final.qxd 2/16/06 4:16 PM Page xvi

Introduction to XML and
Web Services

The Extensible Markup Language (XML) is a simple, platform-independent standard for
describing data within a structured format. XML is not a language but instead a metalanguage
that allows you to create markup languages. In layman’s terms, it allows data to be tagged
using descriptive names so both humans and computer applications can understand the
meaning of different pieces of data.

For example, reading the following structure, it is easy to understand what this data means:

<state>
<name>Maine</name>
<capitol>Augusta</capitol>
<animal>Moose</animal>
<bird>Chickadee</bird>
<tree>White Pine</tree>

</state>

The state capitol of Maine is Augusta. The state animal is the moose, the state bird is the
chickadee, and the state tree is the white pine. Although no officially named standard markup
language was used for this example, it is still a well-formed XML document. XML offers the
freedom of defining your own language to describe your data as needed.

With these new languages, the number of applications (ranging from document publishing
applications to distributed applications) and the number of people and businesses adopting
XML continue to grow. One of the most visible XML-based technologies today is the Web serv-
ice technology, where Web-based applications are able to communicate in a standardized,
platform-neutral way over the Internet. As you may have guessed, this is a big reason why XML
and Web services have become buzzwords. With almost 30 years of history leading up to its cre-
ation, XML may just be what the original pioneers behind generalized markup envisioned.

This chapter will cover XML and Web services, beginning with the history of XML and
including the introduction of Web services. By the end of this chapter, you should have an idea
of the problems XML was initially meant to solve and how it has evolved to what it is today.

■Note Throughout this chapter, you may encounter terms and technologies you don’t know. I don’t explain
these terms in detail here because you can find more detailed information in the later, relevant chapters.

1

C H A P T E R 1

■ ■ ■

6331_c01_final.qxd 2/16/06 5:10 PM Page 1

Exploring the History of XML
Regardless of your personal opinion of XML, everyone has at least heard of it. Not everyone,
however, knows the origins of XML, and it is helpful to understand at least the basics of its
evolution. Imagine you’re attending a company party, and someone from management (it’s
even worse when they’re not from the information technology [IT] group) decides to ask you
about XML because they have been hearing all about it in meetings. After covering the history
of XML, you’ll be certain to be left alone the rest of the night. Seriously, though, understanding
how and why XML was conceived will provide an understanding of the problems it was origi-
nally meant to solve, which ultimately can aid in determining whether you should use it and
how you can use it to solve current problems.

Generalized Markup Language
XML can trace its roots all the way back to 1969. Charles F. Goldfarb, previously a practicing
attorney, accepted a position at IBM that involved integrating information systems with legal
practices. The project involved integrating text editing, information retrieving, and document
rendering. The problem at hand was that each application required different markup. Gold-
farb, along with Ed Mosher and Ray Lorie, began what was to be eventually known as the
Generalized Markup Language (GML). The name was actually created based on the initials
of Goldfarb, Mosher, and Lorie, and from here the term markup language was coined.

The purpose of GML was to describe the structure of a document using tags, allowing for
the retrieval of different parts of the text while separating document formatting from its content.
This way the same document could easily be used amongst different applications and systems.
These different systems would then use their own processing commands based upon the tags
encountered within the document. Another important aspect was the introduction of Docu-
ment Type Definitions (DTDs). GML was officially named in 1973.

Standard Generalized Markup Language
In 1978, Goldfarb joined the American National Standards Institute (ANSI) and worked on a
project based on GML to be known as the Standard Generalized Markup Language (SGML).
While GML was a proprietary IBM format, SGML was developed by many people and groups
and aimed to standardize textual representation and manipulation in documents in a plat-
form- and vendor-neutral, open format. SGML is not really a language in the sense most
people think of languages but rather defines how to create a markup language, so it is really
a metalanguage.

The first working draft of SGML was published in 1980 and continued to evolve, being
released as a recommendation for an industry standard in 1983. In 1986, the International
Organization for Standardization (ISO) published it as an international standard.

Although adopted by some large organizations, such as the U.S. Department of Defense
(DOD), the U.S. Internal Revenue Service (IRS), and the Association of American Publishers
(AAP), SGML was extremely complex, which ultimately prevented its widespread adoption.
Most companies did not have the time or resources to leverage SGML in their business activi-
ties. However, some people say using SGML reduces a product’s time to market, because in
the long run less time is spent on application integration and day-to-day editing. This may
be true, but the upfront cost in time is typically too great for smaller companies that cannot
afford to dedicate enough resources to this.

CHAPTER 1 ■ INTRODUCTION TO XML AND WEB SERVICES2

6331_c01_final.qxd 2/16/06 5:10 PM Page 2

The complexity of SGML and the time-to-market paradigm of using it play significant
roles in the history of XML and ultimately led to its creation. The following are a few notable
concepts of SGML that are relevant in the evolution of XML (and are further elaborated on
later in the book):

• A document is defined structurally by a DTD.

• Named elements, also referred to as markup tags, defined within the DTD comprise
the document.

• Entities, which are named parts of the document and consist of a name and a value,
can perform substitutions within the document.

Hypertext Markup Language
Many of you may not remember the Internet before the World Wide Web was created. In those
days, Gopher was a common technology used to access documents on the Internet. It was
extremely primitive compared to what everyone uses today, but back then it allowed people
to access documents and in most cases search for documents from all over the globe.

In 1989, while working at CERN, the European Particle Physics Laboratory, Tim Berners-
Lee came up with an idea that would allow documents on the Internet to cross-reference each
other. In basic terms, a document could link to other documents, including specific text within
the documents. The language used to create these documents was Hypertext Markup Language
(HTML). In 1990, the Web was born with the first live HTML document on the Internet.

HTML was based on SGML and added some features such as hyperlinking and anchors.
Specifically created for the Internet, HTML featured a small set of tags and was designed for
displaying content, causing it and the Web to quickly gain widespread adoption. Its features,
however, were also its major limitations. Because it is simple, its tag set is not extendable. The
tags also have no meaning to anything other than the application, such as a browser, that ren-
ders the document.

Extensible Markup Language
The technology started to come full circle in 1996. With SGML being considered too complicated
and HTML too limited, the next logical step was taken. The World Wide Web Consortium (W3C)
formed a committee to combine the flexibility and power of SGML with the simplicity and ease
of use of HTML, which resulted in XML. Finally in February 1998, XML 1.0 was released as a W3C
recommendation. Again, it was originally intended for electronic publishing, but little did they
anticipate the reaching effects XML would have. The design goals were as follows:

• XML shall be straightforwardly usable over the Internet.

• XML shall support a wide variety of applications.

• XML shall be compatible with SGML.

• It shall be easy to write programs that process XML documents.

• The number of optional features in XML is to be kept to the absolute minimum, ideally
zero.

CHAPTER 1 ■ INTRODUCTION TO XML AND WEB SERVICES 3

6331_c01_final.qxd 2/16/06 5:10 PM Page 3

• XML documents should be human legible and reasonably clear.

• The XML design should be prepared quickly.

• The design of XML shall be formal and concise.

• XML documents shall be easy to create.

• Terseness in XML markup is of minimal importance.

To understand how simple XML can be, consider that an example of a complete well-formed
XML document can be as simple as <mydocument/>. (I’ll cover the syntax and structure of XML
in Chapter 2.)

Using XML in the Real World
Once hitting the streets, XML became the flavor of the day. Its use started spreading like wild-
fire. Personally, I attribute this to its timing. It was the age of the “dot-com,” where companies
were popping up like weeds and XML was being applied to everything. Although this may be
grossly overstated because many companies—especially the larger, well-founded ones—were
using XML sparingly and judicially, the vast majority of these start-up companies tried apply-
ing XML to virtually every situation. My opinions on this matter not only originate from
personal experience but also from acquaintances who experienced the same situation.

I can remember, while working at one company, word came down from management that
we had to incorporate XML into our development. XML didn’t particularly fit and better tech-
nologies existed, but it was out of our control, so we did it. To this day, I can only speculate on
why we received this mandate. It could have been that everyone was talking about the tech-
nology, and someone in management questioned why it wasn’t being used or thought it would
make sense to use the technology so that, when the company was discussed amongst poten-
tial venture capitalists, management could throw out the XML word to sound more attractive.
In any event, XML is a useful technology, when used correctly. Everyone needs to remember
XML is not the Holy Grail but is just another technology that can get the job done. In fact, this
is important to remember when dealing with any technology!

Once the Internet bubble started deflating and companies, at least ones that survived,
began re-evaluating their business and technology, it appears they also began using technology
more prudently. You will always encounter the XML zealots who have to use XML for everything
and claim it can replace most other technologies; you will also encounter those on the other
end of the spectrum who contend XML is just a fad and will soon die. Reality, however, paints
a different picture. XML is alive and doing well, just no longer plastered everywhere and being
touted as the second coming. Before you start mumbling something about Web services under
your breath (I’ll address them shortly), let’s focus on some of the areas XML has some real use,
because this is the heart of the matter at hand. I’ll break the discussion down into four general
areas:

• Standardized data description

• Publishing

• Data storage and retrieval

• Distributed computing

CHAPTER 1 ■ INTRODUCTION TO XML AND WEB SERVICES4

6331_c01_final.qxd 2/16/06 5:10 PM Page 4

In most cases, the same XML data is used within more than one of these areas, which is
one of its original design goals as well as why it became so popular.

Standardized Data Description
Standardized data description is not technically an application of XML but rather its heart and
soul. It is the backbone of XML-based applications. Take, for example, the following document:

<RobR>
<Rob>Hello World</Rob>

</RobR>

This is a well-formed XML document in a language I just created; however, it is pretty much
useless to anyone but myself, which is fine as long as I am the only one who needs to use the data.
It does not work this way in the real world, however.

Companies, organizations, and even industries formally define languages as standards,
meaning everyone must use the set of defined rules without deviation. This ensures data can be
shared and easily understood by any human or machine that uses the defined language. If you
were to search the Web for GML, trying to locate information about the Generalized Markup Lan-
guage, you may be surprised at the results. You will get an abundance of information covering the
Geography Markup Language and Geotech-XML, and if you are lucky, you might find several sites
that actually concern the Generalized Markup Language. In fact, try a search on ML prefixed by
almost any random character or two, and odds are you will find some sort of XML-based markup
language. The following are just a few examples of publicly defined standardized languages.

Mathematical Markup Language
Mathematical Markup Language (MathML) is a standard, developed by the W3C, that defines
a universally consistent manner to describe mathematics for use on the Web. It actually has
two parts, consisting of presentation tags and content tags. The presentation tags in Listing 1-1,
obviously, are for presentation in a browser, and the content tags in Listing 1-2 describe the
meaning of an expression, which can then also be used in automated processes.

Listing 1-1. Presentation Tags Expressing 1+2

<math xmlns="http://www.w3.org/1998/Math/MathML" >
<mi>1</mi>
<mo>+</mo>
<mi>2</mi>

</math>

Listing 1-2. Content Tags Expressing 1+2

<math xmlns="http://www.w3.org/1998/Math/MathML" >
<apply>

<plus/>
<cn>1</cn>
<cn>2</cn>

</apply>
</math>

CHAPTER 1 ■ INTRODUCTION TO XML AND WEB SERVICES 5

6331_c01_final.qxd 2/16/06 5:10 PM Page 5

Extensible Business Reporting Language
Extensible Business Reporting Language (XBRL) is an open and international standard for
describing business and financial data. This language is not as simple and short as MathML,
so you can find real examples of this at Reuters (http://www.reuters.com) and Microsoft
(http://www.microsoft.com). Each of these companies offers financial reports, available to the
public, in XBRL format. It is also noteworthy that the Committee of European Banking Super-
visors (CEBS), the U.S. Securities and Exchange Commission, and the United Kingdom are
among some of the early adopters of this technology.

Publishing
Publishing is an obvious application of XML. Looking at XML’s history, this was the primary
factor driving the development of generalized markup languages. Publishing involves taking
the data content and transforming it for presentation. The presentation may take any form
understandable to a user or program, such as Portable Document Format (PDF), HTML, or
even another markup language.

Publishing to Different Formats
XML offers the flexibility to present the same content in multiple formats. Envision an applica-
tion where the data needs to be sent to a Web browser in HTML format as well as to a wireless
device understanding the Wireless Markup Language (WML). The same data content can be
transformed into each of these markup languages using Extensible Stylesheet Language Trans-
formations (XSLT), which is covered in depth in Chapter 10.

Content Syndication
You might remember Microsoft’s Active Channels from many years ago. The Channel Defini-
tion Format (CFD) was the first Web syndication technology based on the push method. (The
push method basically meant the server was pushing this content down your throat.) If you
are lucky enough to not have been online during the Microsoft/Netscape technology wars
back then, you are probably more familiar with the current-day RSS or ATOM (these acronyms
will be explained in Chapter 14). These are much more friendly because the client machine
pulls the data if and when you want it. This data is then loaded into some type of parser, which
then processes the data, usually for display.

Content Management Systems
A content management system (CMS) is a system used for creating, editing, organizing,
searching, and publishing content. You can put XML to good use within a CMS (though it is
not required, and many CMS systems you may encounter do not use any XML at all). For
those that do employ XML, its use may fall into a few of the previously mentioned areas.
Using a CMS for a Web site as an example, the minimal it would do is transform the XML con-
tent into HTML. As the site design changes or the business focus changes, you would have no
need to modify the content. You might need to make some changes to style sheets for output,

CHAPTER 1 ■ INTRODUCTION TO XML AND WEB SERVICES6

6331_c01_final.qxd 2/16/06 5:10 PM Page 6

but you could leave the core content alone. Compare this to having content just embedded
within an HTML page. Although you could use Cascading Style Sheets (CSS) for some design
changes, moving content around within the layout would require some large cut-and-paste
operations. This leads right into content-editing issues.

Even for small companies and organizations, copy changes to HTML-only pages are not
all that simple. Normally the changes are coming from those who are not involved in the tech-
nical aspects of the Web site. This leads to the request for changes having to go through the
proper channels until a designer actually makes the changes. In addition, the changes, after
being made to the HTML, usually have to be double-checked and approved before they can
move into the production system. While this may not seem all that difficult, imagine the impli-
cations when dealing on a larger scale, such as in big corporations or global organizations.
Basically, it becomes a management nightmare. As you may infer from this, not only is the
publishing of the data playing a role in the problem but the editing of the content is also
contributing to the problem.

The final content used in the output typically consists of many smaller pieces of content,
with some content even referencing and possibly including other chunks of content. Systems
dealing with this often have a built-in editor where each person or group is in control of their
own pieces of content, which are managed by the CMS. When dealing with XML-based con-
tent, the editor will help ensure valid syntax is used so the user does not require knowledge of
XML. As content is added or edited, no longer is a large process needed to publish any of the
changes. The content may still need to go through an approval process, but the ones involved
would include only those who specifically deal with the site content. The CMS would take care
of publishing these changes, again by processing all the content involved, which may include
adding any referenced subcontent pieces and transforming the content into the appropriate
layout. This would effectively take an IT department out of the process, because the IT team
would no longer be needed to manually update copy, resulting in an increase in productivity.

Data Storage and Retrieval
The data storage, search, and retrieval area is another where XML is used. For simplicity’s sake,
as well as that it aids in the understanding of this area, I will break this topic down into two
distinct areas. On a small scale, you can use an XML document as a cross-platform database.
Looking at the much larger picture, systems dealing with large amounts of XML content need
ways to store this data so it can easily be searched, modified, and retrieved. Though related in
some small way, the applications of these two examples differ significantly.

An XML Document As a Database
Many instances exist where data needs to be stored and retrieved, but conventional databases
are overkill or simply cannot be used. For example, desktop applications need to load and
save user settings. In many cases, simple text files (or in the case of some Windows applica-
tions, the registry) are used for storing the data. Typical text files use a layout consisting of a
section identifier followed by name/value pairs that correspond to specific settings within the
application. Listing 1-3 shows an example of this.

CHAPTER 1 ■ INTRODUCTION TO XML AND WEB SERVICES 7

6331_c01_final.qxd 2/16/06 5:10 PM Page 7

Listing 1-3. Configuration File Example (Text File Format)

[General]
Version=1.0
Country=United States

[Menu]
Background=212 226 217
FontColor=0 0 0

An application would read this file and set its internal parameters accordingly. An alter-
nate approach would be to use XML for this, as shown in Listing 1-4.

Listing 1-4. Configuration File Example (XML Format)

<Application>
<General>

<Version>1.0</Version>
<Country>United States</Country>

</General>
<Menu>

<Background>212 226 217</Background>
<FontColor>0 0 0</FontColor>

</Menu>
</Application>

Using XML in this manner is mainly a personal preference. As demonstrated in the
example, it is a bit more verbose than a simple text file, but in certain cases it can also add
some benefit. A large configuration file could easily be broken up into smaller files, with the
possibility of certain files residing on a network. An application could use an XML parser to
load the main configuration file, reassemble the entire configuration file, and load the set-
tings into the application. Sharing a configuration file amongst applications is also easier.
Common settings could live within one level of the document, and application-specific set-
tings could live within their own respective levels in the hierarchy. Again, this is just an
alternative way to handle configuration files but can be found in some applications on the
market today.

Native XML Databases
Recently, native XML databases have begun to gain traction in the marketplace. A native XML
database (NXD) specializes in XML storage, focuses on document storage, and uses XPath to
query data. Historically, XML has been stored in relational databases in a few ways. A binary
large object (BLOB) field could store the entire document in the field. Documents could also
be stored on the file system with the database used to locate the documents. A document
could also be mapped to a database, where an element could be represented by a table and
attributes, and nested elements could be represented by fields within the table.

CHAPTER 1 ■ INTRODUCTION TO XML AND WEB SERVICES8

6331_c01_final.qxd 2/16/06 5:10 PM Page 8

Take, for example, Microsoft’s SQL Server 2000. The database could be queried using the
following hypothetical Structured Query Language (SQL), which would output the record in
XML format:

Select user_id AS ID, user_name AS NAME from Users User where user_id=1 FOR XML AUTO

<Users>
<User ID="1" NAME="Rob" />

</Users>

As demonstrated, the fields are returned as attributes of the User element within the docu-
ment. Inserts and updates to the table, however, are still accomplished using standard INSERT
and UPDATE SQL commands with field name/value pairs. An NXD, on the other hand, uses XML
technologies such as XPath and the Document Object Model (DOM) to create and manipulate
documents within the database. For systems and companies utilizing XML-based content,
NXDs may make sense because they offer common XML syntax for data access and deal with
documents in their native formats. Relational databases, however, have also made strides in
this area; many are beginning to include advanced XML features. These “XML-enabled” data-
bases still provide their core relational model but also add many of the features of an NXD,
such as native XML storage, which will preserve the infoset and XPath or XQuery querying.
It is yet to be seen, however, whether these new XML-enabled databases will make native
XML databases obsolete or just position the native ones to target XML-focused organizations
with no real needs for relational data.

Distributed Computing
Distributed computing is not a new technology. Ever since computers were hooked into net-
works, systems have been working together and sharing tasks with other systems. With the
introduction of the Internet came a much larger distributed network that could be leveraged.
XML brings a common technology that can easily be used by all systems to take advantage of
this area. The next section focuses on Web services and goes into greater detail on this matter.

Introducing Service Oriented Architecture and
Web Services
Systems integration is one thing that virtually every IT department has had to deal with, from
management down to the single developer. Whether a common platform was required or the
same tool sets were needed, integration was never a simple task in the past and was usually
costly in both time and money. Service Oriented Architecture (SOA) is a concept where none
of these issues matters. It takes the approach that interacting systems should not be tightly
bound to each other, thus promoting independence and reusability of services.

Using object-oriented programming in PHP 5 as an example, say you build an application
using objects. The classes for the objects were well thought out, so each performs operations
for specific areas of functionality. Another area of the company is working on a separate appli-
cation and ends up needing to access functionality from the first application. On top of that,

CHAPTER 1 ■ INTRODUCTION TO XML AND WEB SERVICES 9

6331_c01_final.qxd 2/16/06 5:10 PM Page 9

this new application isn’t even written using PHP so cannot reuse any code natively. The brute-
force method would be to have this new application duplicate the logic the PHP application does.
This, however, presents problems if the logic were to change in the PHP application. The other
application would need to also change its logic or face the problem that it no longer works cor-
rectly, which could lead to a variety of problems within the company, including data corruption.

Using SOA, the PHP application can expose the functionality of its classes via a service.
Through a common protocol and descriptive messaging, the other application can access the
functionality of the PHP application. For example, a daemon, which is a process waiting for
invocation to perform a task, is written in PHP and run via the PHP command-line interpreter
(CLI). The daemon accepts connections via Transmission Control Protocol/Internet Protocol
(TCP/IP) and processes requests based on the messages it receives, which are written in some
company-standardized text language. This text language describes the class to access, the
function to call, the arguments, and their values needed by the function. The outside applica-
tion then connects to the daemon, sends its message, and receives some response. Because
the task was an external process, the calling application does not care how it was done, just
that it was performed.

Although generic in its description and not going into specifics, the previous scenario
should give you some sense of what SOA is. The inception of the Web service technology,
which is a specific implementation of SOA, has brought new steam to the SOA concept. XML
as a common message format using standard Internet protocols, such as Hypertext Transfer
Protocol (HTTP) and HTTP Secure (HTTPS), has sparked new interest in this type of architec-
ture, because using these standards is simple, is universally supported, and does not require
anyone to reinvent the wheel.

The term Web services has to be one of the most confusing and controversial terms ever.
In extremely general terms, Web services are a form of distributed computing using XML in
their communications. Shortly, it will become clearer why I’ve left this so vague. Before
attempting to define Web services, some background of how they came about is in order.

Evolution of Web Services
Tracing the roots of Web services, it seems XML-RPC—which is Remote Procedure Call (RPC)
over HTTP via XML—is the obvious starting point. XML-RPC was a fork of the early, still in
development, SOAP specification. A general misconception was that XML-RPC was the origin
of SOAP and that SOAP was actually built upon XML-RPC. According to Dave Winer, “Before
folklore becomes reality, XML-RPC was originally, privately called SOAP, when Don Box and
I were working with Bob Atkinson and Mohsen Al-Ghosein at Microsoft, in early 1998.” It
sounds like Microsoft was taking too long with internal politics so XML-RPC split from SOAP
and was released to the masses.

These technologies, XML-RPC and SOAP, are just another form of distributed computing
and use XML for the encoding, which allows for greater interoperability. You may have heard
the Web service technology is a replacement for distributed object technologies, such as Dis-
tributed Component Object Model (DCOM), Common Object Request Broker Architecture
(CORBA), or Remote Method Invocation (RMI). You can probably find arguments both for and
against this. The Web service technology, however, is not a replacement for these technologies
and isn’t even the same as them. Similarities do exist, but XML is just another tool to build dis-
tributed systems.

CHAPTER 1 ■ INTRODUCTION TO XML AND WEB SERVICES10

6331_c01_final.qxd 2/16/06 5:10 PM Page 10

The Definition of Web Services
If you asked ten people to define the term Web services, you are likely to get ten different answers.
This term has no single definition. Even the standards authorities cannot agree on what this term
means. Before presenting you with what I consider to be a Web service, let’s first examine some
definitions you may encounter.

The W3C created the Web Services Architecture Working Group to advise and create architec-
tural documents in the area of Web services. After a bit of searching to find out what happened to
this group, I found that it appears the group could not even agree on the definition of a Web serv-
ice, ultimately spelling the end of this group over some time. The closest definition I could find is
from the latest Working Group Note dated February 11, 2004:

A Web service is a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable format

(specifically WSDL). Other systems interact with the Web service in a manner prescribed by

its description using SOAP messages, typically conveyed using HTTP with an XML seriali-

zation in conjunction with other Web-related standards.

W3C Web Services Architecture Working Group

In addition, the Web Services Interoperability Organization (WS-I) conveniently does not
state any definition for Web services; rather, the group defines requirements for the interoper-
ability of Web services, which must be adhered to for an application to be granted conformance.
(The WS-I is not a standards body but a collection of the larger corporations considered “lead-
ers” in the Web service arena.) A definition that can be inferred from reading the specifications is
that a Web service consists of Web Services Description Language (WSDL), SOAP, and Universal
Description, Discovery, and Integration (UDDI). This is pretty much in line with what you would
be told if you were to ask a Web service purist to define Web service.

Personally, I do not agree with such strict definitions of the term. I prefer to define a Web
service as an application that is accessed across the Internet using standard Internet protocols
and that uses XML as its messaging format. It would be one thing if the term were defined from
the beginning, but in my opinion, it is too late for an industry or organization to come up with
any formal, standard definition that places limits on what a Web service is or what it comprises.

■Note Throughout this book, the term Web service will refer to any application that is accessed across the
Internet using standard Internet protocols and that uses XML as its messaging format.

The companies pushing WSDL, SOAP, and UDDI as the backbone of Web services are the
same ones that have invested heavily in these technologies over the years. It is in their best
interests to push these as standards to at least recoup some of the cost they have incurred.
Based on those strict guidelines, Representational State Transfer (REST) is not even considered
a Web service, although most people think of REST-based services as such. You almost get the

CHAPTER 1 ■ INTRODUCTION TO XML AND WEB SERVICES 11

6331_c01_final.qxd 2/16/06 5:10 PM Page 11

feeling that unless you are using WSDL, SOAP, and UDDI, you are doing it wrong. <SARCASM>As
developers, we all know there is only ever a single solution to a problem, and everything else is
just plain wrong </SARCASM >. See, I told you basic XML was not difficult. I bet those of you who
have never even seen XML before fully understood that.

Web Services in the Real World
It may be easier to come to some understanding of the term Web services by looking at a few
places it is currently used on the Internet. Some big Internet companies, which you are proba-
bly already familiar with, offer Web services so you can tie your application into their systems.
A few of the services, which are also covered within this book through examples, are Yahoo,
Google, Amazon, and eBay.

Yahoo Web Services
The Yahoo Web service, which uses REST, provides an application to use Yahoo’s search engine
to find images, businesses, news, and video on the Internet. You must register for the service
to obtain an application ID that is used in the requests. You can obtain this ID via http://
developer.yahoo.net/; its use is limited to the terms of service on the Yahoo Web site. (The
following example does not require registration because it is just using the demo mode.)

Consider a hypothetical application that needs to search on terms and display the
results it finds on the Internet to a user. Prior to these public Web services, many people
would have their application perform a request to the search engine the same way a
browser would do it. The result would be that the application would receive a nice HTML
page, which then the developer would have to somehow parse to gather the correct infor-
mation. This was not all that easy, and if the resulting HTML layout changed or if the content
the application expected to be there for identification purposes changed, the application
would need to be modified to work again. This is considered screen scraping, and some
Web sites frown upon this method.

Using the Yahoo application programming interface (API), a search for the term XML is
now very simple, and the results are easy to integrate into an application. Using a browser,
enter the following location: http://api.search.yahoo.com/WebSearchService/V1/
webSearch?appid=YahooDemo&query=xml&results=2. The result should be an XML document
that is easily parsed and contains two results. Compare that with what is normally returned
when searching from a browser: http://search.yahoo.com/search?p=xml&sm=Yahoo%21+
Search&fr=FP-tab-web-t&toggle=1.

The first two results from the normal browser search are the same as the results returned
from the Web service. The format is completely different. The Web service returns the infor-
mation in XML, which allows for easy application integration, and the normal browser search
is returned in HTML for presentation.

You can find working examples of using the Yahoo Web service and using REST in
Chapter 17.

Google Web APIs
Google also offers a wide range of Web services, including searches as well as integration with
many of their other services such as AdWords and Blogger. You can find a complete list of the

CHAPTER 1 ■ INTRODUCTION TO XML AND WEB SERVICES12

6331_c01_final.qxd 2/16/06 5:10 PM Page 12

services at http://www.google.com/apis/index.html. Registration is required to obtain a
license key and access the Web services. Accessing the Web Search API is different from the
previous Yahoo Web service example. Google uses SOAP rather than REST, though the concept
is the same as Yahoo. XML is used in communications so an application can be easily inte-
grated. You can find examples of integrating with Google via SOAP in Chapter 18.

A more advanced Web service is the AdWords API. AdWords is Google’s cost-per-click
advertising service. Using the API, an application can hook directly into the AdWords server,
allowing for remote management of accounts and campaigns. For example, the application
can manage the keywords, ad text, and the Uniform Resource Locator (URL) of a running
advertisement.

Amazon E-commerce Service (ECS)
Amazon provides access to its products and to its e-commerce functionality through its
E-commerce Service (ECS). The service is accessible using either REST or SOAP, which offers
more flexibility to developers because they can use the technology they’re most comfortable
using. Registration is required to obtain a subscription ID for accessing the service. You will
need to navigate to the Web service page from http://www.amazon.com for more information.

The service provides access to product information, including descriptions, images, and
customer reviews, as well as search capabilities such as wish list searches. On top of the normal
functionality you would expect, you can also access remote shopping carts. Putting all these
services together, a site dedicated to some specific topic—for example, dogs—could dynami-
cally add products from Amazon involving dogs to their site and offer the ability to add items
to the cart that is eventually sent to Amazon for the checkout process. Prior to this capability,
it was common to see a product on a Web site linked directly to Amazon for purchase. Using
the service, the user could remain on the developer’s site and continue adding products until
they are ready to check out.

Refer to Chapter 17 for examples of accessing the Amazon services using REST.

eBay
eBay offers a developer program, at http://developer.ebay.com/, allowing an application to
tap into its platform using eBay’s XML API, REST, or SOAP. Registration is required, and a free
individual license is available. The REST API is quite limited in functionality compared to the
other two APIs. Using REST, only publicly available information is available to be accessed so
is currently limited to searching listings. The other APIs, however, offer an extensive collection
of functionality. Virtually anything you can do via a browser can now be automated through
an application. For example, an application could integrate with a current inventory and sales
system. This not only reduces the amount of time spent manually handling transactions and
keying them into a system and offers a seamless user interface (UI) for a sales system, but it
also allows eBay transactions to be integrated with an inventory system to maintain a real-
time inventory.

For more information regarding the SOAP API and an example usage, refer to Chapter 18,
which covers SOAP.

CHAPTER 1 ■ INTRODUCTION TO XML AND WEB SERVICES 13

6331_c01_final.qxd 2/16/06 5:10 PM Page 13

Defining Common Terms and Acronyms
XML is one of those technologies where you just cannot escape acronyms, and throughout
this book, you will encounter many. Table 1-1 is a quick guide to some of the more commonly
used terms and acronyms.

Table 1-1. XML-Related Terms

Term Definition

URI Uniform Resource Identifier. An address to locate a resource on a network (for example,
http://www.example.com).

URL Uniform Resource Locator. URLs are subsets of URIs but today are considered synony-
mous with URIs.

W3C World Wide Web Consortium (http://www.w3.org/). An international consortium devel-
oping Web standards.

OASIS Organization for the Advancement of Structured Information Standards
(http://www.oasis-open.org/). An international consortium developing various stan-
dards.

ANSI American National Standards Institute (http://www.ansi.org/). A private organization
that creates standards for the computer and communications industries.

ISO International Organization for Standardization (http://www.iso.org/). An international
standards organization consisting of national standards bodies from around the world.

DTD Document Type Definition. This is used within an XML document primarily for
validation.

Parser A processor that reads and breaks up XML documents. Validating parser can validate
documents based on at least DTDs.

DOM Document Object Model. See Chapter 6 for more information.

SAX Simple API for XML. See Chapter 8 for more information.

XSLT Extensible Stylesheet Language Transformations. See Chapter 10 for more information.

XPath A language for addressing parts of an XML document.

REST Representational State Transfer. See Chapter 17 for more information.

SOAP This once stood for Simple Object Access Protocol. As of SOAP 1.2, though, this is no
longer considered an acronym. See Chapter 18 for more information.

Conclusion
XML is a flexible tool that can solve a wide range of problems. It is not meant to replace all
your existing technology practices. Looking at the history of XML, it clearly indicates that XML
came about to solve a particular problem. This is something to always remember when con-
sidering using XML. That being said, XML does offer many possibilities, which were difficult
and cumbersome to develop and deploy in the past. The Web service technology is one of
those things.

Now that you have a basic idea of what things are and where they came from, an under-
standing of XML documents is the next step needed to begin developing your own XML
applications and services. The next chapter will explain document structure and basic syntax
so you can begin creating your own XML documents.

CHAPTER 1 ■ INTRODUCTION TO XML AND WEB SERVICES14

6331_c01_final.qxd 2/16/06 5:10 PM Page 14

XML Structure

Reading and understanding the W3C specifications can be a difficult and daunting task. This
chapter explains XML structures in an easy-to-understand way. This information is based on
the third edition of the WC3’s XML 1.0 specification. I did not use the XML 1.1 specification as
a basis for this chapter in order to ensure the greatest compatibility amongst parsers and appli-
cations. In other words, the XML 1.0 specification is compatible with XML 1.1, but the reverse
is not true.

This chapter will cover the basics for understanding and building an XML document. It
begins with some fundamental concepts of XML; using these concepts, I’ll break down the
structure of a document and explain the syntax for document composition. Once you have
a basic understanding of document structure, I’ll introduce additional features such as
namespaces and IDs. By the end of this chapter, you should be armed with enough knowl-
edge not only to build XML documents but also to at least understand some of the more
complex documents you may encounter. Although I’ll present some information about
DTDs, Chapter 3 provides more in-depth coverage.

Introducing Characters
XML uses most of the characters within the Unicode character set. The specification actually
refers to the ISO 10646 character set, but usually you will find these two used interchangeably,
because the two character sets are kept in sync. Unicode, a 32-bit character set, provides a
standard and universal character set by assigning a unique number to every character. This
way, by using Unicode, data is the same without regard to language or country. The two Uni-
code formats, which all parsers must accept, are UTF-8 and UTF-16, although you can use
other character encodings as long as they comply with Unicode.

Character References
Characters cannot always be represented in their literal formats. Also, sometimes certain
characters in their literal forms are invalid to use because they violate the XML specification,
which depends upon the type of markup being used at the time. Character references repre-
sent the literal forms using their numeric equivalents. You can express character references
in two ways: using decimal notation or hexadecimal notation. For example:

• The character A in decimal format is A.

• The character A in hexadecimal format is &x41;.
15

C H A P T E R 2

■ ■ ■

6331_c02_final.qxd 2/16/06 5:08 PM Page 15

The only constraint for the character to be considered well-formed is that it conforms to
the rules for valid characters, which are expressed in hexadecimal format and include the fol-
lowing range of characters:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

Whitespace
Throughout this chapter, you will encounter the term whitespace. Whitespace, as used within
XML, consists of one or more of the following characters (expressed in hexadecimal): #x20
(space), #x9 (tab), #xD (carriage return), or #xA (line feed). By default, whitespace is significant
within an XML document. In most cases, it is up to the application to determine how it wants
to handle whitespace. As you will see later in this chapter in the section “Using xml:space and
xml:lang,” xml:space is a way to force an application to preserve whitespace.

Names
The term name, as used within this chapter for explaining XML syntax, defines the valid
sequence of characters that you can use. A name begins with an alphabetical character, an
underscore, or a colon and is followed by any combination of alphanumeric characters, peri-
ods, hyphens, underscores, and colons, as well as a few additional characters defined by
CombiningChar and Extender within the XML specification.

Names beginning with the case-insensitive xml are also reserved by the current and future
XML specifications. For example, names already in use include xmlns and xml. Basically, it is
not wise to use a name beginning with those three letters. It is also not good practice to use
colons in names. Although you will find people using them, especially when using the DOM
and not using namespace-aware functionality, using colons can lead to problems when not
used for namespace purposes. Table 2-1 shows some example names.

Table 2-1. Example Names

Valid Names Invalid Names

automobile1 1automobile

_automobile +automobile

:automobile (automobile

my.automobile .automobile

my:_automobile @automobile

Character Data
Markup consists of XML declarations, document type declarations, elements, entity references,
character references, comments, processing instructions (PIs), CDATA section delimiters, text
declarations, and any whitespace outside the document element and not contained within other
markup. An example of whitespace that is considered markup is the line feed used between the
prolog and the body. Character data, simply, is everything else that is not markup. It is the actual
content of the document, which is being described and structured by the markup.

CHAPTER 2 ■ XML STRUCTURE16

6331_c02_final.qxd 2/16/06 5:08 PM Page 16

A few characters require special attention:

• Less-than sign (<)

• Ampersand (&)

• Greater-than sign (>)

• Double quote (")

• Single quote (')

Except when used for markup delimiters or within a comment, PI, or CDATA section,
& and < can never be used directly. The > character must never be used when creating a string
containing]]> within content and not being used at that time to close a CDATA section. The
double and single quote characters must never be used in literal form within an attribute value.
Attribute values may be enclosed within either double or single quotes, so to avoid potential
conflicts, those characters are not allowed within the value. All these characters, according to
their particular rule sets, must be represented using either the numeric character references
or the entity references, as shown in Table 2-2.

■Note The entity references for these special characters do not need to be defined in a DTD because they
are automatically built into the parser.

Table 2-2. Special Character Representations

Character Reference Character Reference
Character (Decimal) (Hexadecimal) Entity Reference

< < < <

& & & &

> > > >

" < < <

' ' ' '

Case Sensitivity
XML is case-sensitive. You must be careful when writing markup to ensure that you use case
correctly. An element that has a start tag in all lowercase must have an end tag that is also in
all lowercase. This also is important to remember when using attributes. The attribute a is
not the same as the attribute A. It is a good idea to be consistent with case within a docu-
ment. All attributes should use the same case; lowercase is commonly used for attributes.
Element names should also be consistent. The common methods for case in elements
names are using all lowercase, using all uppercase, or using uppercase for the first letter
of a word and using lowercase for the rest of the word. For example:

CHAPTER 2 ■ XML STRUCTURE 17

6331_c02_final.qxd 2/16/06 5:08 PM Page 17

<document>
<MyElement>content here</MyElement>
<MYELEMENT>content here</MYELEMENT>
<myelement a="1" b="2" />
<!-- The following is well-formed,

but it is not good to mix attribute cases -->
<myelement a="1" A="2" />
<!-- The following is invalid because of mismatching start and end tags -->
<MYELEMENT>content here </myelement>

</document>

Understanding Basic Layout
An XML document describes content and must be well-formed, as defined in the WC3’s XML
specifications. The bare minimum for a well-formed document is a single element that is prop-
erly started and terminated. This element is called the root or document element. It serves as the
container for any content. A document’s layout consists of an optional prolog; a document body,
which consists of the document element and everything it contains; and an optional epilog.

Prolog
A prolog provides information about the document. A prolog may consist of the following (in
this order): an XML declaration; any number of comments, PIs, or whitespace; a document type
declaration; and then again any number of comments, PIs, or whitespace. Though not required,
an XML declaration is highly recommended. You can find information about comments and PIs
in the section “Understanding Basic Syntax.” Listing 2-1 shows an example prolog.

Listing 2-1. Example Prolog

<?xml version="1.0"?>
<!--The previous line contains the XML declaration -->
<!--The following document type declaration contains no subsets -->
<!DOCTYPE foo [
]>
<!--This is the end of the prolog -->

The prolog in Listing 2-1 takes the form of an XML declaration, two comments, a docu-
ment type declaration, and another comment.

XML Declaration
The XML declaration, the first line in Listing 2-1, provides information about the version of
the XML specification used for document construction, the encoding of the document, and
whether the document is self-contained or requires an external DTD. The basic rules for com-
position of the declaration are that it must begin with <?xml, it must contain the version, and
it must end with ?>. Documents containing no XML declaration are treated as if the version

CHAPTER 2 ■ XML STRUCTURE18

6331_c02_final.qxd 2/16/06 5:08 PM Page 18

were specified as 1.0. When using an XML declaration, it must be the first line of the docu-
ment. No whitespace is allowed before the XML declaration. Listing 2-2 shows an example
XML declaration.

Listing 2-2. Example XML Declaration

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

Version

The version information (version), which is mandatory when using an XML declaration, indi-
cates to which XML specification the document conforms. The major difference between the
two specifications, XML 1.0 and XML 1.1, is the allowed characters. XML 1.1 allows flexibility and
supports the changes to the Unicode standards. The rationale behind creating a new version
rather than modifying the XML 1.0 specification was to avoid breaking existing XML parsers.
Parsers that support XML 1.0 are not required to support XML 1.1, but those that support XML
1.1 are required to support XML 1.0. With respect to the XML declaration, the version either can
be 1.0, as in version="1.0" (as shown in Listing 2-2), or can be 1.1, as in version="1.1".

Encoding

The encoding declaration (encoding), which is not required in the XML declaration, indicates
the character encoding used within the document. Encodings include, but are not limited to,
UTF-8, UTF-16, ISO-8859-1, and ISO-2022-JP. It is recommended that the character sets used
are ones registered with the Internet Assigned Numbers Authority (IANA). When encoding is
omitted and not specified by other means, such as byte order mark (BOM) or external proto-
col, the XML document must use either UTF-8 or UTF-16 encoding. Although Listing 2-2
explicitly sets the encoding to UTF-8, this is not needed because UTF-8 is supported by default.

Stand-alone

The stand-alone declaration (standalone), also not required within the XML declaration, indi-
cates whether the document requires outside resources, such as an external DTD. The value
yes means the document is self-contained, and the value no indicates that external resources
may be required. Documents that do not include a stand-alone declaration within the XML
declaration, yet do include external resources, automatically assume the value of no.

Document Type Declaration
The document type declaration (DOCTYPE) provides the DTD for the document. It may include
an internal subset, which means declarations would be declared directly within the DOCTYPE,
and/or include an external subset, which means it could include declarations from an external
source. The internal and external subsets collectively are the DTD for the document. Chapter 3
covers DTDs in detail. Listing 2-3, Listing 2-4, and Listing 2-5 show some example DTDs.

Listing 2-3. Document Type Declaration with External Subset

<!DOCTYPE foo SYSTEM "foo.dtd">

CHAPTER 2 ■ XML STRUCTURE 19

6331_c02_final.qxd 2/16/06 5:08 PM Page 19

Listing 2-4. Document Type Declaration with Internal Subset

<!DOCTYPE foo [
<!ELEMENT foo (#PCDATA)>

]>

Listing 2-5. Document Type Declaration with Internal and External Subset

<!DOCTYPE foo SYSTEM "foo.dtd" [
<!ELEMENT foo (#PCDATA)>

]>

Body
The body of an XML document consists of the document element and its content. In the sim-
plest case, the body can be a single, empty element. You may have heard the term document
tree before; this term is synonymous with the body. The document element is the base of the
tree and branches out through elements contained within the document element. The section
“Understanding Basic Syntax” covers the basic building blocks of the body. Listing 2-6 shows
an example of a document body.

Listing 2-6. Example of an XML Document Body

<root>
<element1>Some Content</element1>
<element2 attr1="attribute value">More Content</element2>

</root>

Epilog
If you are referring to the XML specifications, you will not find a reference to the epilog. Within
the XML specifications, the epilog is equivalent to the Misc* portion of the document defini-
tion as defined using the Extended Backus-Naur Form (EBNF) notation. For example:

document ::= prolog element Misc*

The epilog refers to the markup following the close of the body. It can contain comments,
PIs, and whitespace. Epilogs are not mandatory and, other than possibly containing white-
space, are not very common. Many parsers will not even parse past the closing tag of the
document element. Because of this limitation, a possible use for the epilog is to add some
comments for someone reading the XML document. This type of usage of an epilog causes
no problems if a parser does not read it.

Understanding Basic Syntax
XML syntax is actually pretty simple. Many people get away with documents consisting of
only elements and text content. These documents tend to have a simple structure with simple
data, but isn’t that the whole point of XML in the first place? Once you begin working with

CHAPTER 2 ■ XML STRUCTURE20

6331_c02_final.qxd 2/16/06 5:08 PM Page 20

more complex documents, such as those involving namespaces and content that is not just
valid plain text, you may start to get a little intimidated. I know the first time I ever encoun-
tered a schema, I felt a little overwhelmed.

After reading the following sections, you should understand at least the basics of XML
documents and be able to understand documents used in some XML techniques such as vali-
dation using schemas, SOAP, and RELAX NG. Some documents may seem impossible to ever
understand, but armed with the basic knowledge in this chapter, you should be able to find
your way.

Elements
Elements are the foundation of a document, and at least one is required for a well-formed doc-
ument. An element consists of a start tag, an end tag, and content, which is everything between
the start and end tags. Elements with no content are the exception to this rule because the ele-
ment may consist of a single empty-element tag.

Start Tags
Start tags consist of <, the name, any number of attributes, and then >. Name refers to a valid,
legal name as explained within the “Characters” section.

This shows an element start tag named MyNode having one attribute:

<MyNode att1="first attribute">

End Tags
End tags take the form of </", Name, ">, where Name is the same as the starting tag. The end
tag for the previous example would be as follows:

</MyNode>

Element Content
Content may consist of character data, elements, references, CDATA sections, PIs, and com-
ments. Everything contained within the element’s start and end tags is considered to be an
element’s content. For example:

<myElement>
<nestedElement>content of nestedElement</nestedElement>

</myElement>

Breaking this document down, the element name nestedElement contains a string of char-
acter data. The document element myElement contains content consisting of whitespace (a line
feed and then a tab), followed the element nestedElement and its content, followed by more
whitespace (line feed).

Empty-Element Tags
Elements without content can appear in the form of a start tag directly followed by an end tag
(as well as without any whitespace). To simplify expressing this, you can use an empty-element
tag. Empty-element tags take the form of <", Name, "/>. For example:

CHAPTER 2 ■ XML STRUCTURE 21

6331_c02_final.qxd 2/16/06 5:08 PM Page 21

<!-- start and end tags without content -->
<myElement></myElement>

<!-- empty-element tag -->
<myElement/>

<!-- start and end tags WITH content -->
<myElement> </myElement>

Notice that the last example does contain content. Even though it’s only a single space,
the element contains content. Every character, including whitespace, is considered content.

Element Hierarchy
The most important point to remember when dealing with XML is that it must be well-formed.
This may be redundant information, but if you are coming from the HTML world, it can be easy
to forget. It’s easy to get away with malformed documents when writing HTML, especially
because not all tags are required to be closed. Take the HTML document shown in Listing 2-7,
for example.

Listing 2-7. HTML Example

<HTML><BODY>
<P>This is all in <I>Italics and this is Bold</I>

New line here</P>
<form name="myform" method="post" action="mypage.php">

<table width="100%" border="0">
<tr valign="top">

<td>Name: <input type="text" name="name" value=""></td>
</tr>
<tr>

<td><input type="submit" name="submit" value="Submit">
</form>

</td>
</tr>

</table>
</BODY></HTML>

The document in Listing 2-7 is not well-formed at all. The simplest piece to identify is
that the BR tag is opened and never closed. Within the P tag, the hierarchy is completely bro-
ken. Beginning with the I tag, you’ll see some text followed by an opening B tag. Using XML
rules, you would expect the B tag to be closed prior to the I tag, but as illustrated, the I tag is
actually closed first and then the B tag is closed. If you have ever wondered why XML tends to
be illustrated in an indented format, well, the answer might be much clearer now. Not only is
the document easier for human readability, it also is easier to find problems in malformed
documents.

The hierarchy of tags is completely invalid in Listing 2-7. Not only is there a problem with
the B and I tags, but also the opening and closing form and table tags do not nest correctly.
When writing HTML, it’s all about presentation in the browser. A problem many UI designers

CHAPTER 2 ■ XML STRUCTURE22

6331_c02_final.qxd 2/16/06 5:08 PM Page 22

ran into years ago, before the days of CSS, was related to forms and tables. Depending upon
the placement of the form and table tags, additional whitespace would appear in the rendered
page within a Web browser. To remove the additional whitespace, designers would open forms
prior to the table tag and close them before closing the table. Web browsers, being forgiving,
would render the output correctly without the extra whitespace even though the syntax of the
document was not actually correct. As far as XML is concerned, that type of document is not
well-formed and will not parse. Elements must be properly nested, which means they must
be opened and closed within the same scope. In Listing 2-7, the table tag is opened within the
scope of the form tag but closed after the form tag has been closed. Even though it may render
when viewed in a browser, the structure is broken and flawed because the form tag should not
be closed until all tags residing within its scope have been properly terminated.

Each time an element tag (start, end, or empty element) is encountered, you should
insert a line feed and a certain number of indents. Typically for each level of the tree you
descend (each time you encounter an element start tag), you should indent one more time
than you did the previous time. When ascending the tree (each time an element’s end tag is
encountered), you should index one less time than previously. Because an empty-element
tag serves both purposes, it can be ignored. If you tried to do this with the example from List-
ing 2-7, you just could not do it. Using whitespace for formatting also makes it pretty easy to
spot where it is broken as well:

<HTML>
<BODY>

<P>This is in
<I>Italics and this is

Bold
</I>

New Line here

</P>
<form name="myform" method="post" action="mypage.php">

<table width="100%" border="0">
<tr valign="top">

<td>Name:
<input type="text" name="name" value="">
</td>

</tr>
<tr>

<td>
<input type="submit" name="submit" value="Submit">
</form>

</td>
</tr>

</table>
</BODY>

</HTML>

Although this document has several issues, the most obvious problem should jump out at
you. The indenting is completely off between the closing table tag and the closing BODY tag.

CHAPTER 2 ■ XML STRUCTURE 23

6331_c02_final.qxd 2/16/06 5:08 PM Page 23

This clearly indicates something is wrong with the document. The document in Listing 2-8
applies the rules for XML elements to the document from Listing 2-7 to produce a well-formed
XML document.

Listing 2-8. HTML Example Using Well-Formed XML

<HTML>
<BODY>

<P>This is in
<I>Italics and this is

Bold
</I>

</P>
<form name="myform" method="post" action="mypage.php">

<table width="100%" border="0">
<tr valign="top">

<td>Name:
<input type="text" name="name" value="" />

</td>
</tr>
<tr>

<td>
<input type="submit" name="submit" value="Submit" />

</td>
</tr>

</table>
</form>

</BODY>
</HTML>

This might also give you an inclination of why Extensible HTML (XHTML) was created.
XHTML is a stricter version of HTML that not only can be processed by a browser but, because
it is XML compliant, can also be processed by applications.

Attributes
You can think of attributes as properties of an element, similar to properties of an object.
You might be shaking your head right now completely disagreeing with me. You are 100 per-
cent correct, but for a simple document and to give at least a basic idea of what they are, I
will use that analogy for now. Attributes can exist within element start tags and empty-ele-
ment tags. In no case may they appear in an element end tag. Attributes take the form of
name/value pairs using the following syntax: Name="Value" or Name='Value'. You can sur-
round values with either double or single quotes. However, you must use the same type of
quotes to encapsulate the attribute’s value. It also is perfectly acceptable to use one style of
quotes for one attribute and another style for a different attribute. The attribute name must
conform to the constraints defined by the term name earlier in this chapter. Also, attributes

CHAPTER 2 ■ XML STRUCTURE24

6331_c02_final.qxd 2/16/06 5:08 PM Page 24

within an element must be uniquely named, meaning an element cannot contain more than
one attribute with the same name. Listing 2-9 shows an invalid attribute usage.

Listing 2-9. Invalid Attribute Usage

</Car color="black">
<Car color="black" color='white' />

Attributes also have no specified order within the element, so the following two examples
are identical, even though the order and quoting are different:

<Car make="Ford" color="black" />
<Car color="black" make='Ford' />

Attribute Values
Attributes must also have a value, even if the value is empty. Again, referring to HTML, you
may be accustomed to seeing lone attribute names such as <HR size="5" noshade> or <frame
name="xxx" scrolling="NO" noresize>. Notice that noshade and noresize have no defined val-
ues. These are not well-formed XML and to be made conformant must be written as <HR size="5"
noshade="noshade"> and <frame name="xxx" scrolling="NO" noresize="noresize">, which
now makes them XHTML and XML compliant. In cases where an attribute value is empty and
there are no rules for any default values, such as those for converting HTML to XHTML, you
would write an attribute as such: attrname="".

Attribute values can also not contain unescaped < or & characters. Also, you should use
escaped characters for double and single quotes. Although it might be OK to use a literal
single quote character within an attribute value that is encapsulated by double quotes
(though in this case double quote characters must be escaped), it is not good practice and
highly discouraged.

Suppose you wanted to add some attributes to the element Car with the following
name/value pairs:

• color: Black and white

• owner: Rob’s

• score: Less than 5

You would write this as follows:

<Car color="black & white" owner="Rob's" score="< 5" />

Attribute Use
The use of attributes, unless specifically required such as through a DTD, is really a choice left
to the document author. You will find opinions on attribute use running the full spectrum, with
some saying you should never use attributes. When considering whether you should use an
attribute or whether it should be a child element, you have a few facts to consider. If you can
answer “yes” to any of the following questions, then you should use an element rather than
an attribute:

CHAPTER 2 ■ XML STRUCTURE 25

6331_c02_final.qxd 2/16/06 5:08 PM Page 25

• Could multiple values apply to an element?

• Is a DTD requiring the attribute being used?

• Is the data essential to the document and not just an instruction for an application?

• Is the value complex data or difficult to understand?

• Does the value need to be extensible for potential future use?

If the questions aren’t applicable, then it comes down to personal preference. One point
to always remember is that the document should end up being easily understood by a human
and not just meant for electronic processing. With this in mind, you have to ask yourself which
of the following is easier to understand. This is the first choice:

<Car make='Ford' color='black' year='1990' model='Escort' />

and this is the second choice:

<Car>
<make>Ford</make>
<color>black</color>
<year>1990</year>
<model>Escort</model>

</Car>

CDATA
CDATA sections allow the use of all valid Unicode characters in their literal forms. The CDATA
contents bypass parsing so are great to use when trying to include content containing markup
that should be taken in its literal form and not processed as part of the document. CDATA sec-
tions begin with <![CDATA[, which is followed by your content, and end with]]>, like so:

<![CDATA[..content here ..]]>

The only invalid content in this example is the literal string]]>. As you may have guessed,
using]]> indicates the close of the CDATA section. To represent this string, you would need to
use]]>.

For example, if you were writing an article about using XML and were using XML as the
document structure, CDATA sections would allow you to embed your examples without
requiring any character escaping. Listing 2-10 shows an example without a CDATA section,
and Listing 2-11 shows an example with one.

Listing 2-10. Example Without a CDATA Section

<document>
<title>Example of an XML</title>
<example>

<xml version="1.0"?>
<document>
this &amp; that
</document>

</example>
</document>

CHAPTER 2 ■ XML STRUCTURE26

6331_c02_final.qxd 2/16/06 5:08 PM Page 26

Listing 2-11. Example Using CDATA Section

<document>
<title>Example of an XML</title>
<example><![CDATA[

<xml version="1.0">
<document>

this & that
</document>

]]></example>
</document>

Clearly, the document in Listing 2-11 is much easier to read than the one in Listing 2-10.
If editing a document by hand, it is also easier to write because you don’t need to be con-
cerned with figuring out what the correct entities to use are.

Because of the flexibility of CDATA sections, you may have heard or read somewhere that
CDATA is great to use for binary data. In its native form, this is not true. You have no guarantee
that the binary data will not contain the characters]]>. For this reason, binary data that must
be encoded should use a format such as Base64. Now, if Base64 is used for encoding, a CDATA
section is not even necessary, and it could be embedded directly as an element’s content. This
is because Base64 does not use any of the characters that would be deemed illegal for element
content.

Comments
You can use comments to add notes to a document. This is comparable to a developer adding
comments to source code. They do not affect the document but can be used to add some notes
or information for someone reading it. For this reason, parsers are not required to parse com-
ments, although most will allow access to the content. This is what a comment looks like:

<!-- This is a comment -->

Comments consist of the initial <!--, the actual text for the comment, and finally the
closing -->. Be aware of the following stipulations when using comments:

• The content for a comment must not contain --.

• A comment may not end with -.

Other than those conditions, comments can contain any other characters.
Comments may also occur anywhere after the XML declaration as long as they are not

contained within markup. Listing 2-12 shows some valid comments, and Listing 2-13 shows
some invalid ones.

Listing 2-12. Valid Comments

<!-- The <Car> elements do not contain all known automobiles -->
<!-- This is valid as a whitespace follows the last "-" character - -->
<!-- Don't forget to escape the & character when used as element content -->

CHAPTER 2 ■ XML STRUCTURE 27

6331_c02_final.qxd 2/16/06 5:08 PM Page 27

Listing 2-13. Invalid Comments

<!-- Comments take the form of <!-- This is a comment --> within a document -->
<!-- This comment is invalid as it ends with three "-" characters. --->
<Car <!-- Invalid because it resides within the element start tag -->>

Processing Instructions
XML is purely concerned with document content. A PI allows application-specific instructions
to be passed with the document to indicate to the application how it should be processed. The
PI takes the form of <?, which is followed by the target (which must be a valid name) and white-
space, then takes the actual instruction, and closes with ?>, like so:

<?target instructions ?>

The target indicates the application that the instruction targets. You might already be
familiar with this syntax from PHP:

<?php echo "Hello World"; ?>

This syntax is a PI. The PI target is php, and the instruction is echo "Hello World";. If you
were creating an XHTML document and embedding PHP code, this would constitute a well-
formed XML document.

Another case you may have already encountered is the association of style sheets with an
XML document. Many XML editors will add the following PI so they can easily perform XSL
transformations on the XML you may be editing:

<?xml-stylesheet type="text/xsl" href="mystylesheet.xsl"?>

Entity References
You have already encountered some of the built-in entity references (&, <, >, ',
and ") throughout this chapter. Just as characters can be represented using numeric
character references, entity references are used to reference strings, which are defined in the
DTD. They take the form of &, which is followed by a legal name, and they terminate with a
semicolon. You are probably familiar with the concept from HTML:

<P> Copyright © 2002</P>

The entity reference © is defined in the HTML DTD and represents the copyright
symbol. Entity references cannot just be used blindly, however. The document must pro-
vide a meaning to an entity reference. For instance, if you were looking at a document that
contained <p>&myref;<p>, the entity reference &myref; has absolutely no meaning to you or
may mean something completely different to you than to me. You can use DTDs to define
an entity reference. It is mandatory that any entity reference, other than those that are built
in, must be defined. Looking at an HTML page, you may notice the DOCTYPE tag at the top
of the page. The contents depend upon the type of HTML you are writing. For instance,
-//W3C//DTD HTML 4.01 Transitional//EN refers to the DTD http://www.w3.org/TR/
html4/loose.dtd. This file contains a reference to http://www.w3.org/TR/html4/
HTMLlat1.ent. If you looked at the contents of this file, you will notice that the entity copy
is defined as <!ENTITY copy CDATA © -- copyright sign, U+00A9 ISOnum -->.

CHAPTER 2 ■ XML STRUCTURE28

6331_c02_final.qxd 2/16/06 5:08 PM Page 28

The entity reference, when used within the document, then is able to take its “meaning”
from the definition. This is further explained in Chapter 3.

General Entity Declaration
Entity declarations may be either general or parameter entity declarations. Entity declarations
will be covered in more depth in Chapter 3, though general entities have some bearing to this
discussion with respect to entity references. The common use of general entities is to declare
the text replacement value for entity references. General entities are commonly referred to as
entities unless used in a context where that name would be ambiguous; therefore, for the sake
of this section, entities will refer to general entities.

Entities are defined within the DTD, which is part of the prolog. Suppose you had the
string "This is replacement text", which you want to use many times within the document.
You could create an entity with a legal name, in this case "replaceit":

<?xml version="1.0"?>
<!DOCTYPE foo [

<!ENTITY replaceit "This is replacement text">
]>
<foo>&replaceit;</foo>

If this document were loaded into a parser that was substituting entities, which means it
is replacing the entity reference (&replaceit;) with the text string defined in the entity decla-
ration, the results would look something like this:

<?xml version="1.0"?>
<!DOCTYPE foo [

<!ENTITY replaceit "This is replacement text">
]>
<foo>This is replacement text</foo>

Using Namespaces
Documents can become quite complex. They can consist of your own XML as well as XML
from outside sources. Element and attribute names can start overlapping, which then makes
the names ambiguous. How do you determine whether the name comes from your data or
from an outside source? Looking at the document, you would have to guess what the elements
and attributes mean depending on the context. Unfortunately, applications processing the
XML typically don’t understand context, so the document would no longer have the correct
meaning. Namespaces solve this potential problem.

Namespaces are collections of names identified by URIs. They are not part of the XML spec-
ification but have their own specification that applies to XML. Through the use of namespaces,
names within a document are able to retain their original meanings even when combined with
another document that contains some of the same names with completely different meanings.

Assume you are building a document that includes customer information as well as items
they have ordered, and assume your customer records look like the following:

CHAPTER 2 ■ XML STRUCTURE 29

6331_c02_final.qxd 2/16/06 5:08 PM Page 29

<Customer>
<Name>John Smith</Name>
<Number>12345</Number>

</Customer>

The items ordered by the customer take the form of the following structure:

<Items>
<Item>

<Name>Book</Name>
<Number>11111</Number>

</Item>
</Items>

Combining these into a single document would result in the following:

<Order>
<Customer>

<Name>John Smith</Name>
<Number>12345</Number>

</Customer>
<Items>

<Item>
<Name>Book</Name>
<Number>11111</Number>

</Item>
</Items>

</Order>

Unless you read the pieces of the document in context, the elements Name and Number are
ambiguous. Does Number refer to the customer number or an item number? Right now the only
way you can tell is that if you are within an item, then Number must refer to an item number;
otherwise, it refers to a customer number. This is just a simple case, but it does get worse, such
as when elements appear within the same scope. In any event, using namespaces uniquely
identifies the elements and attributes, so there is no need for guesswork or trying to figure out
the context. Take the following document, for instance. Separate namespaces have been cre-
ated for Customer and Item data. Just by looking at the element names, you can easily
distinguish to what the data refers.

<Order xmlns:cus="http://www.example.com/Customer"
xmlns:item="http://www.example.com/Item">

<cus:Customer>
<cus:Name>John Smith</cus:Name>

<cus:Number>12345</cus:Number>
</cus:Customer>
<item:Items>

<item:Item>
<item:Name>Book</item:Name>
<item:Number>11111</item:Number>

</item:Item>
</item:Items>

</Order>

CHAPTER 2 ■ XML STRUCTURE30

6331_c02_final.qxd 2/16/06 5:08 PM Page 30

Defining Namespaces
Looking at the previous example, you may have already determined that xmlns:cus="http://
www.example.com/Customer" is a namespace definition. Usually, and I stress usually, this is not
the case; namespaces are created using a special prefixed attribute name and a URI, like so:

xmlns:prefix="URI"

Based on this definition, prefix refers to the namespace prefix you want to use through-
out your document to associate certain elements and attributes to a namespace name (URI).
In this example, the Number element within the Customer element becomes cus:Number, and the
Number element within the Item element becomes item:Number. Now, the XML clearly distin-
guishes between the meanings of these two elements. You have removed any ambiguity from
the document.

These new names being used in the elements are called qualified names, also referred to
as QNames. They can be broken down into two parts, separated by a colon: the prefix and the
local name. When using namespaced elements, the start and end tags now must contain the
qualified name. Again, an exception to this exists, which you will come to in the “Default
Namespace” section.

The significant portion of the namespace declaration is the URI (the namespace name).
Once bound to a node or element, this will never change. The prefix, however, is not guaran-
teed. By manipulating the tree, such as moving elements around using the DOM, it is possible
a namespace collision may occur. This frequently happens when a namespace defined lower
in the tree declares a namespace and uses a prefix, which was used in one of its ancestors. By
moving some element as a child of this other element, the prefixes would collide because they
refer to two different URIs. It is perfectly valid for the prefix to automatically be changed to
one that would not conflict. This is covered in more detail in the section “Namespace Scope.”

Elements containing the namespace definition are not part of the namespace unless pre-
fixed. Listing 2-14 shows the Order element within a namespace, because it is prefixed with
ord, as specified in the namespace definition. The Order element in Listing 2-15 is not in any
namespace even though a namespace is being defined.

Listing 2-14. Element Order Within the http://www.example.com/Order Namespace

<ord:Order xmlns:ord="http://www.example.com/Order" />

Listing 2-15. Element Order Not Within the http://www.example.com/Order Namespace

<Order xmlns:ord="http://www.example.com/Order" />

Namespaces are not required for every element and attribute within a document. You need
to remember that namespaces remove ambiguity when there are, or there could be, overlapping
names. Looking at the example, the only two elements that require namespacing are Name and
Number. It would have been perfectly valid to not put all other elements into namespaces.

Namespaces can also apply to attributes as well:

<cus:Customer cus:cid="12345" />

The attribute cid, with the cus prefix, falls within the http://www.example.com/Customer
namespace.

CHAPTER 2 ■ XML STRUCTURE 31

6331_c02_final.qxd 2/16/06 5:08 PM Page 31

Default Namespaces
All rules have exceptions. If you remember from the previous section that namespaces take
the form of prefix:name, well here is the exception: default namespaces allow a namespace
to be defined that causes all elements, unless explicitly set to a namespace, to automatically
be assigned to the default namespace, like so:

<Order xmlns="http://www.example.com/Order" />

You may think that the Order element is not associated with any namespace. This, how-
ever, is wrong. Default namespaces apply to the element they are defined on as well as to all
elements, but not to attributes contained in the defining element, unless already associated
with a namespace using the QName approach.

■Caution Default namespaces do not affect attributes. Unless explicitly set to a namespace with a prefix,
attributes do not belong to any namespace. This is extremely important to remember when working with
many of the XML technologies, not just the ones within PHP. This knowledge may save you many hours and
days of trying to debug an XML-based project.

Let’s return to a simplified version of the order structure:

<Order xmlns="http://www.example.com/Order"
xmlns:item="http://www.example.com/Item">

<Items>
<Item itid="12345">

<item:Name>Book</item:Name>
<item:Number>11111</item:Number>

</Item>
</Items>

</Order>

This structure contains two namespaces. One is http://www.example.com/Item, which is ref-
erenced by the prefix item, and the other, http://www.example.com/Order, is a default namespace.
Based on the structure, the elements Name and Number belong to the http://www.example.com/Item
namespace because they are using QNames with the item prefix. The elements Order, Items, and
Item all belong to the http://www.example.com/Order namespace, because they are not explicitly
set to any namespace so inherit the default namespace. Lastly, the attribute itid does not belong
to any namespace. It is not explicitly set and hence doesn’t use a QName, and as you remember,
attributes do not inherit the default namespace.

If possible, I recommend avoiding default namespaces and using QNames with name-
spaces. As documents become more complex, they become much more difficult to read and
understand. Default namespaces do not easily stand out, and when adding namespace scope
to the equation, they can become quite confusing to follow. Using qualified names also will
help avoid the confusion that sometimes happens with attributes; many people have been
bitten by the fact that attributes do not inherit the default namespace and have spent a great
deal of time trying to find the bugs in their XML.

CHAPTER 2 ■ XML STRUCTURE32

6331_c02_final.qxd 2/16/06 5:08 PM Page 32

Reserved Prefixes and Namespace Names
By default, XML processors are required to define two namespaces with associated prefixes by
default:

• The prefix xml is bound to http://www.w3.org/XML/1998/namespace. You can use this
namespace to define things such as ID attributes (xml:id) and languages (xml:lang).

• The prefix xmlns is bound to http://www.w3.org/2000/xmlns/. You can use this name-
space to declare XML namespaces.

These namespaces may not be bound by using any other prefix except those defined.
Within a document, the prefix xmlns must never be declared. The xml prefix, on the other
hand, may be declared, although it’s not necessary. If declared, though, it must be bound to
the http://www.w3.org/XML/1998/namespace namespace.

Prefixes should also not begin with the characters xml. Prefixes that begin with these
characters are reserved for future specifications. However, a processor will not treat the use
of these as a fatal error, but documents that do use prefixes with these characters may possi-
bly not be valid in the future if a specific prefix ends up being used in any currently undefined
specifications.

Namespace Scope
Up until now, you have looked only at namespaces defined in the document element. You
can declare namespaces by using any element in the document. So what happens when you
encounter additional namespaces? Consider the following document:

<Order xmlns:cus="http://www.example.com/Customer"
xmlns:item="http://www.example.com/Item"
xmlns="http://www.example.com/Order">

<cus:Customers>
<Customer xmlns:cus="http://www.example.com/GENERIC_Customer">

<cus:Name>John Smith</cus:Name>
<cus:Number>12345</cus:Number>

</Customer>
<cus:Count>1</cus:Count>

</cus:Customers>
<item:Items>

<item1:Item xmlns:item1="http://www.example.com/GENERIC_Item">
<item1:Name>Book</item1:Name>
<item1:Number>11111</item1:Number>

</item1:Item>
<Item xmlns:item="http://www.example.com/GENERIC_Item">

<item:Name>Software</item:Name>
<item:Number>22222</item:Number>

</Item>
</item:Items>
<GeneralInfo xmlns="http://www.example.com/General">

<Name>General Information</Name>
<Number>33333</Number>

</GeneralInfo>
</Order>

CHAPTER 2 ■ XML STRUCTURE 33

6331_c02_final.qxd 2/16/06 5:08 PM Page 33

It’s time to play the “Which namespace am I in?” game. You may have been curious why
I suggested avoiding using default namespaces if possible. This document is not highly com-
plex because it is quite small and has only a few levels, but it takes namespace use to the
extreme—almost to the level of abuse. It should help you to not only understand namespace
scoping but also to understand why default namespaces can cause a document to become
confusing to read.

What namespace is the item:Name element in?
At first glance, you might say http://www.example.com/Item because that is the namespace

defined on the Order element using the item prefix. This, however, is wrong. The element is
actually in the http://www.example.com/GENERIC_Item namespace.

To fully understand how the namespace/element associations are made, you should walk
through the document tree and examine the elements. Beginning with the document element,
three namespaces are defined:

• cus is associated with http://www.example.com/Customer.

• item is associated with http://www.example.com/Item.

• http://www.example.com/Order is a default namespace.

The element cus:Customers is in the http://www.example.com/Customer namespace. This
should be obvious, as you have encountered no other namespace definitions. Descending
into the content, you encounter the Customer element. This element belongs to the http://
www.example.com/Order namespace. Because it has no prefix and is not defining a default
namespace, it inherits the current in-scope default namespace. The element does, however,
define a new namespace, http://www.example.com/GENERIC_Customer, and it associates the
prefix cus with it. This prefix used to be associated with http://www.example.com/Customer,
but for any elements or attributes using this prefix within the contents of the Customer ele-
ment, it now refers to http://www.example.com/GENERIC_Customer. This means cus:Name and
cus:Number, which are children of Customer, are both in the http://www.example.com/
GENERIC_Customer namespace.

As you exit from the Customer element, the http://www.example.com/GENERIC_Customer
namespace associated with the cus prefix goes out of scope. These were defined on the Customer
element, which is now closed, so the definition ceases to exist. However, cus is now in scope
from its definition on the Order element. When you encounter the next element, cus:Count,
it belongs to the http://www.example.com/Customer namespace because of the scoping rules.
Moving back up the tree, you can safely ignore the cus:Customers closing element. Because
the element did not define any namespaces, it does not alter anything.

The item:Items element is the next element encountered. No changes exist in name-
space, so it is bound to the http://www.example.com/Item namespace as defined on the Order
element. Its child element, item1:Item, defines the http://www.example.com/GENERIC_Item
namespace with the item1 prefix. As this element is also prefixed with item1, it ends up in the
http://www.example.com/Item/1 namespace, which it is defining. Both of its children,
item1:Name and item1:Number, will belong to the same http://www.example.com/GENERIC_Item
namespace defined on their parent.

Entering the second Item element, the namespace http://www.example.com/GENERIC_Item
is once again defined but associated with the item prefix. This changes the scope of the prefix
so that all the elements contained within Item and using the prefix item will now be bound to
http://www.example.com/GENERIC_Item rather than to the one defined on the Order element.

CHAPTER 2 ■ XML STRUCTURE34

6331_c02_final.qxd 2/16/06 5:08 PM Page 34

The Item element itself has no prefix so is bound to the default namespace, which currently is
http://www.example.com/Order. With the newly defined item prefix, both the children elements,
item:Name and item:Number, belong to http://www.example.com/GENERIC_Item. Upon leaving
the last Item element, the item prefix loses scope, but since it was defined before in an ances-
tor element (Order), item again refers to the http://www.example.com/Item namespace.

The next element hit is the GeneralInfo element. This demonstrates how it might be con-
fusing to use default namespaces. This element resides in the default namespace. It, however,
is also defining a default namespace. The question now arises—to which default namespace
does it belong?

Remember the section “Default Namespaces”? Elements defining a default namespace, and
not bound to any namespace, will be bound to the default namespace they’re defining. To answer
the original question then, GeneralInfo is bound to http://www.example.com/General. This also
means all elements contained within GeneralInfo will now use http://www.example.com/General
as the default namespace. So with that information, there is no way to trick you by asking you
what the namespace for the child Name and Number elements are. Of course, they are bound to
http://www.example.com/General. When a parser encounters the GeneralInfo closing tag, the
default namespace defined on that element falls out of scope, and http://www.example.com/Order
comes back into scope as the default namespace of the document.

It’s a good thing this was a simple document. Just imagine how hard it would have been to
explain a large and complex document. Here are a few tips for writing XML documents:

• If you don’t need namespaces, don’t use them.

• If you have the choice, use QNames rather than default namespaces.

• Attributes are not bound to default namespaces.

• DTDs and namespaces are not all that compatible and can lead to invalid documents.

Namespaces and Attribute Uniqueness
Back in the “Attributes” section, you learned attributes must be unique for an element. Name-
spaces add a little twist to this. Attributes names must still be unique, where the name consists
of the prefix and local name for a namespaced attribute, but they must also not have the same
local name and prefixes that are bound to the same namespace.

In the following example, although the attribute names, a1:z and a2:z, are unique, they
are both bound to the same namespace, http://www.example.com/a, which means this is an
invalid document:

<x xmlns:a1="http://www.example.com/a" xmlns:a2="http://www.example.com/a">
<y a1:z="1" a2:z="2" />

</x>

The following attributes are perfectly legal. The attribute a1:z is bound to http://
www.example.com/a1, and a2:z is bound to http://www.example.com/a2.

<x xmlns:a1="http://www.example.com/a1" xmlns:a2="http://www.example.com/a2">
<y a1:z="1" a2:z="2" />

</x>

CHAPTER 2 ■ XML STRUCTURE 35

6331_c02_final.qxd 2/16/06 5:08 PM Page 35

The following example may throw you a bit. Default namespaces do not apply to attrib-
utes, so these attributes are unique. Their names are unique because the qualified names are
used for comparison, and no duplicate namespace exists. Attribute a:z is bound to
http://www.example.com/a, and attribute a is not in any namespace.

<x xmlns:a="http://www.example.com/a" xmlns="http://www.example.com/a">
<y a:z="1" z="2" />

</x>

■Note The remainder of the examples in this chapter that use DTDs are well-formed documents but are
not valid. If loading them into a parser, make sure you disable validation; otherwise, validation errors will
occur. For more information, see Chapter 3.

Using IDs, IDREF/IDREFS, and xml:id
When dealing with documents, it is often useful to be able to uniquely identify elements and
be able to easily locate them. Attribute IDs serve this same purpose. When applied to an ele-
ment, which can have at most a single ID (though this is not the case when using xml:id), the
value of the attribute on the element serves as the unique identifier for the element. An IDREF,
on the other hand, allows elements to reference these unique elements.

At first glance, you may be wondering what purpose the ID and IDREF instances actually
serve. Of course, they uniquely identify an element, but what advantage does that offer to you?
Before answering that question, I’ll cover how you construct them. You can create an attribute
ID in two ways. The first is through an attribute declaration (ATTLIST) in a DTD. (Chapter 3
covers DTDs in depth; in this chapter, I’ll explain ATTLIST and its makeup in regard to IDs.)
On February 8, 2004, the W3C released the xml:id specification as a candidate recommenda-
tion. This provides a mechanism to define IDs without requiring a DTD. Since this is relatively
new, I will begin with the ATTLIST method and then return to xml:id.

Defining IDs Using a DTD
Earlier, when discussing the prolog of the document, I touched upon the document type decla-
ration and where it is defined. Similar to Listing 2-4, you can use an internal subset to declare
the attribute. Defining attributes takes the following form:

<!ATTLIST element_name attribute_name attribute_type attribute_default >

In this case, attribute_type is the ID. Attribute types, as well as the entire ATTLIST definition,
are fully explained in Chapter 3, so for now, just take this at face value. You also, for now, will use
#REQUIRED for attribute_default. This just means every element with the name element_name is
required to have the ID attribute named attribute_name defined.

Consider the XML document in Listing 2-16, which could serve as a course list for a school.

CHAPTER 2 ■ XML STRUCTURE36

6331_c02_final.qxd 2/16/06 5:08 PM Page 36

Listing 2-16. Course Listing

<Courses>
<Course id="1">

<Title>Spanish I</Title>
<Description>Introduction to Spanish</Description>

</Course>
<Course id="2">

<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course id="3">

<Title>French II</Title>
<Description>Intermediate French</Description>

</Course>
</Courses>

Does this document contain IDs used to uniquely identify elements and for ID lookups?
The answer is no. However, it may appear to do so; since the attribute name is id and the

values of the attributes are unique, the attributes within the document are just plain, everyday
attributes. This is a problem many people frequently encounter, and I have fielded many bug
reports claiming that IDs are not working properly in a document. The fact is, just creating an
attribute with the name ID does not make it an ID. IDs can actually be named anything you
like, assuming it is a legal XML name. The document must somehow be told that the attribute
is of type ID. There is also a caveat about the allowed values for attribute IDs. The values must
follow the rules for legal XML names. So within the previous example, the value 1 is invalid
because names cannot begin with a number.

■Caution An attribute with the name ID is not automatically an ID. You must make the document aware
that an attribute is of type ID. Once identified, the values of the attribute IDs must conform to the rules
defined by legal XML names and so may not begin with a number.

Listing 2-17 shows how to rewrite the document so it can use IDs.

Listing 2-17. New Course Listing

<!DOCTYPE Courses [
<!ATTLIST Course cid ID #REQUIRED>

]>
<Courses>

<Course cid="c1">
<Title>Spanish I</Title>
<Description>Introduction to Spanish</Description>

</Course>

CHAPTER 2 ■ XML STRUCTURE 37

6331_c02_final.qxd 2/16/06 5:08 PM Page 37

<Course cid="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course cid="c3">

<Title>French II</Title>
<Description>Intermediate French</Description>

</Course>
</Courses>

Comparing the documents from Listing 2-16 and Listing 2-17, you will notice that I added a
document type declaration and I named the attributes cid. I changed the name to illustrate that
you can use any valid names for IDs and not just id. I added the ATTLIST declaration to define the
attributes named cid when applied to elements named Course of type ID and to define that
the attribute is required for all Course elements. You may also notice that the values for the
attributes have changed. With respect to the rules surrounding the attribute value, I prefixed
the numeric values with the letter c so they conform to the rules for legal XML names.

After the document in Listing 2-17 has been parsed, you will end up with two Course elements
that are uniquely identified by the value of the cid attribute. Now I can answer the original
question of what purpose they serve. The answer really depends upon what you are doing. For
instance, if you were to load the document under the DOM, using the DOM Document object,
you could retrieve specific elements by calling the getElementById() method. Passing in the
unique value as the parameter to the method, such as c2, the Course element that contains
information on French I would be returned. Distinct elements could also be returned using
XPath queries, such as those used in XSL. IDs can also be referenced within a document, which
brings us to IDREF.

IDREF
An IDREF is a method that allows an element to reference another element. It is basically a
pointer from one element to another. Taking the course list in Listing 2-17, how could you
expand it to add course prerequisite information? One way to do this would be to duplicate
the course information for the prerequisites, as shown in Listing 2-18.

Listing 2-18. Course Listing with Prerequisites

<!DOCTYPE Courses [
<!ATTLIST Course cid ID #REQUIRED>

]>
<Courses>

<Course cid="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course cid="c3">

<Title>French II</Title>
<Description>Intermediate French</Description>
<pre-requisite>

CHAPTER 2 ■ XML STRUCTURE38

6331_c02_final.qxd 2/16/06 5:08 PM Page 38

<Pcourse>
<Title>French I</Title>
<Description>Introduction to French</Description>

</Pcourse>
</pre-requisite>

</Course>
</Courses>

This is not an efficient way of handling data. The element name Course could not be used
for the prerequisite. Course elements require the ID attribute cid, but for this document, the
prerequisites should not be IDs. This could be handled by changing the attribute_type in the
ATTLIST, covered in Chapter 3, but this still requires duplicating the content for the French I
course. No correlation within the document exists that says the Course element containing
French I in the prerequisites is the same as the Course element identified by c2.

Modifying the document in Listing 2-18, you can add an IDREF, as shown in Listing 2-19.
For now, the document continues to use Pcourse for the element name.

Listing 2-19. Course Listing with Prerequisites Using IDREF

<!DOCTYPE Courses [
<!ATTLIST Course cid ID #REQUIRED>
<!ATTLIST Pcourse cref IDREF #REQUIRED>

]>
<Courses>

<Course cid="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course cid="c3">

<Title>French II</Title>
<Description>Intermediate French</Description>
<pre-requisite>

<Pcourse cref="c2" />
</pre-requisite>

</Course>
</Courses>

Pcourse no longer contains all the additional baggage and redundant data. The IDREF, cref,
now refers to the Course element identified by c2. The document no longer contains redundant
data, making it more compact as well as easier to read. In addition, you can reuse the content.
Imagine how long the document would be if you created an entire school course list, along with
all prerequisites, without using IDs and IDREF.

IDREFS
Sometimes an element will need to reference more than one ID of the same element type. For
example, in Listing 2-19, it would be much easier if the pre-requisite element could reference
the courses directly, rather than adding child elements for the courses. Multiple attributes of

CHAPTER 2 ■ XML STRUCTURE 39

6331_c02_final.qxd 2/16/06 5:08 PM Page 39

the same name are not allowed for an element, so you must use IDREFS to perform this feat, as
shown in Listing 2-20.

Listing 2-20. Course Listing with Prerequisites Using IDREFS<!DOCTYPE Courses [
<!ATTLIST Course cid ID #REQUIRED>
<!ATTLIST pre-requisite cref IDREFS #REQUIRED>

]>
<Courses>

<Course cid="c1">
<Title>Basic Languages</Title>
<Description>Introduction to Languages</Description>

</Course>
<Course cid="c2">

<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course cid="c3">

<Title>French II</Title>
<Description>Intermediate French</Description>
<pre-requisite cref="c1 c2" />

</Course>
</Courses>

You will notice that the element pre-requisite now contains a single attribute, cref, with
the value c1 c2. The value of the IDREFS attribute is a whitespace-delimited list of IDREF. This
means cref is a pointer to both the Course element identified by c1 and the Course element
identified by c2.

Using xml:id
In 2004, the W3C released the xml:id specification as a recommendation. Using xml:id within
a document allows you to create IDs without requiring a DTD. This is a much easier method
than creating attribute declarations, though the two have a few differences:

• The values for xml:id must conform to legal namespace names. This is almost identical
to regular IDs, except a colon is not a valid character for the value.

• When defined in a DTD, though not a requirement to do so, xml:id must be defined as
an ID. The attribute type for xml:id cannot be modified to another type.

Re-creating the course list from Listing 2-17, using xml:id rather than declaring attributes
of type ID, the document would look as follows:

<Courses>
<Course xml:id="c1">

<Title>Spanish I</Title>
<Description>Introduction to Spanish</Description>

</Course>

CHAPTER 2 ■ XML STRUCTURE40

6331_c02_final.qxd 2/16/06 5:08 PM Page 40

<Course xml:id="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course xml:id="c3">

<Title>French II</Title>
<Description>Intermediate French</Description>

</Course>
</Courses>

To use an IDREF, however, the IDREF still must be declared in the DTD. So, re-creating the
document in Listing 2-18 using xml:id and IDREF, the document would take this form:

<!DOCTYPE Courses [
<!ATTLIST Pcourse cref IDREF #REQUIRED>

]>
<Courses>

<Course xml:id="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course xml:id="c3">

<Title>French II</Title>
<Description>Intermediate French</Description>
<pre-requisite>

<Pcourse cref="c2" />
</pre-requisite>

</Course>
</Courses>

You don’t need to do anything else to handle IDs using xml:id. As I said before, it is simple
to use and is great when you don’t want to deal with DTDs. One less thing to complicate the
document is always better!

Using xml:space and xml:lang
Two special attributes that are part of the XML specification can provide additional informa-
tion to a document about how certain things should be processed: xml:space and xml:lang.
These are not like PIs, which are application specific. These attributes, being part of the XML
specification, are meant to be handled by any application. When using these attributes within
a document to be validated, you must define attribute declarations for these attributes within
the DTD; otherwise, validation errors may occur.

CHAPTER 2 ■ XML STRUCTURE 41

6331_c02_final.qxd 2/16/06 5:08 PM Page 41

xml:space
This attribute specifies to an application how it should handle whitespace. The valid values
are preserve and default. When set to default, the application handles whitespace as it
normally does. A value of preserve instructs the application that it must preserve all white-
space within the context of the element on which the attribute is set. For example:

<Description xml:space="preserve">
<a>This

is
<c>the</c>

<d>description</d>
</Description>

The value of preserve should instruct the application to preserve the whitespace within
the description content. If this were set to default, the application may or may not preserve
whitespace. It would depend upon its default behavior.

xml:lang
The xml:lang attribute can specify the language used for the content within an element. The
values can come from the ISO standard 639, denoted by the IANA prefix i-, or from private
sources, denoted by the prefix x-. For example:

<docu xml:lang="en">
<p xml:lang="fr">Bonjour monde en français </p>
<p xml:lang="de">Hallo Welt auf Deutsch<p>
<p>Hello World in English</p>

</docu>

The document illustrates “Hello World” in French (xml:lang="fr"), German (xml:lang="de"),
and English. The p tag for English has no xml:lang attribute because it is in the scope of the docu
element, which is set to xml:lang="en". Therefore, unless overridden, the default content of the
docu element is in English.

Understanding XML Base
Unlike xml:space and xml:lang, XML Base is not part of the XML specification. It has its own
specification from the W3C. The xml:base attribute specifies a base URI on an element, which
is used to resolve relative URIs used within the scope of the element. The use of xml:base may
also be stacked. By this I mean that within the scope of an element defining an xml:base, an
element may define a relative URI as its xml:base. This would effectively set the base URI within
the context of this subelement as the path of this new base, relative to the ancestor base URI.

XML Base is primarily used for XLink to describe linking between resources. You may also
see it used in other contexts, such as with XInclude and XSLT. The following is a document that
uses XInclude to illustrate how xml:base can define base URIs for the XInclude documents:

CHAPTER 2 ■ XML STRUCTURE42

6331_c02_final.qxd 2/16/06 5:08 PM Page 42

<example xmlns:xi="http://www.w3.org/2001/XInclude">
<para xml:base="http://www.example.com/">

<xi:include href="example.xml" />
<p2 xml:base="examples/">

<xi:include href="example1.xml" />
</p2>
<p3>

<xi:include href="examples/example1.xml" />
</p3>

</para>
</example>

Within the para element, the base URI is set to http://www.example.com/. Everything within
the scope of this element will now use this URI as the base for any relative URI. As you descend
into the child elements, the first xi:include points to example.xml. This will resolve to http://
www.example.com/example.xml when included in the document.

Moving to the p2 element, xml:base is set to examples/. This is a relative URI, so for all
practicality, it inherits the base of the encapsulating element’s URI (http://www.example.com/)
and sets the base relative to this. The base is now http://www.example.com/examples/ for the
p2 element and everything within its scope. When the xi:xinclude element is reached within
this element, the file example1.xml will resolve to http://www.example.com/examples/
example1.xml when included.

Continuing to navigate the document, you reach the end of p2. The base that was set
falls out of scope, which means the base set by the para element, http://www.example.com/,
becomes the active base again. Upon reaching the xi:include within the p3 element, the file
examples/example1.xml, being relative, uses the base URI from para and resolves to http://
www.example.com/examples/example1.xml when included. This is the same file that p2 had
included, just using relative pathing a little differently based upon the scope of xml:base
within the document.

Conclusion
This chapter covered the basic structure, syntax, and a few other areas of XML that will help
you understand documents, regardless of their complexity. Although a few more complex
aspects of XML exist, you should be well on your way to creating well-formed XML docu-
ments with the basics presented here. The next chapter will introduce you to validating with
DTDs, XML Schemas, and RELAX NG. What you have learned in this chapter will be invalu-
able to you throughout the rest of this book.

CHAPTER 2 ■ XML STRUCTURE 43

6331_c02_final.qxd 2/16/06 5:08 PM Page 43

6331_c02_final.qxd 2/16/06 5:08 PM Page 44

Validation

By now, you have most likely heard that all XML documents must be well-formed but that
documents are not required to be valid. This chapter will explain what it means for a docu-
ment to be valid and will show how to create valid documents. I will cover DTDs, XML
Schemas, and Relax NG in depth and discuss the differences between them.

Introducing Validation
A well-formed document is one that is written using legal XML syntax and structure according
to the XML specification. A valid document is one that is well-formed and conforms to a
structure outlined in a DTD or schema. You can think of this as a database schema. A table
definition defines the fields and their data types, lengths, and defaults. Using primary and
foreign keys, you can also define a database structure. If someone tries to insert data that
does not fit the model, they’ll get an error.

Validation in XML works in almost the same way. The schema defines how an XML docu-
ment must look. It can define the order of elements in the document, what child elements are
valid for particular elements, and what type of content particular elements can have. You can
apply similar constraints to other pieces of an XML document.

If you were receiving XML from some undefined source and were expecting a document
that looked like the following one, you would use validation to ensure the document conforms
to your expectations. The system you are processing the documents with must have the docu-
ment in this format; otherwise, it will cause an error. Therefore, validating the document prior
to processing is essential in this case.

<question number="1">
<query>Is this XML?</query>
<answer>true</answer>

</question>

Validation allows you to describe a document in generic terms. You know that this exam-
ple’s document element must be the element question. The question element must have a
number attribute that can have an integer for its value. Here you don’t care what the specific
value is, just that the value is an integer. The question element must also contain two ele-
ments, query and answer, in that order. No other content is allowed for the question element.
The query element cannot have any attributes and can have only text content. You don’t care
what the text is, just that there is text and no XML markup. The answer element cannot have
any attributes and must contain true or false. Validation allows you to take this verbal

45

C H A P T E R 3

■ ■ ■

6331_c03_final.qxd 2/16/06 5:04 PM Page 45

description of the constraints placed on a document, write the description in a schema using
the schema’s grammar (the language it uses to describe a document), and then perform auto-
mated validation of the document. You will be able to determine whether the document
conforms to your expectations before actually sending the document to be processed.

Introducing Document Type Definitions
Chapter 2 briefly touched on DTDs in respect to ID, IDREF, and IDREFS. These are just a small
aspect of DTDs. The main purpose of a DTD is to perform document validation. Although
other methods to perform document validation exist, DTDs are part of the XML 1.0 specifica-
tion so have been around for some time now. Before getting under the hood of a DTD, though,
you need to back up and re-examine document type declarations, mentioned in Chapter 2.

Document Type Declarations
The document type declaration is not a DTD but is the declaration to declare a DTD. It can
include an internal subset, an external subset, or both. These subsets together make up the
document’s DTD. The difference between an internal and external subset is, as their names
imply, that an external subset is a subset that is not defined within the document. The docu-
ment must access the subset from an external resource, such as from the file system or the
network. An internal subset is defined directly within the document. You may be wondering
why two different subsets exist. External subsets allow documents to share common DTDs.
If you were working at a large company, for example, you might have a standard DTD for doc-
uments created within the company. Rather than having to define the same DTD within each
document, documents can reference a common standard DTD via an external subset. As
mentioned in Chapter 2, a declaration looks like the following:

<!DOCTYPE document_element definitions>

The document_element is the root, or document element, of the body of the XML document,
and definitions is the internal and/or external subsets. The document type declaration must
contain the document_element and at least an internal or external subset declaring the element;
otherwise, the document type declaration is not written properly and has no DTD to validate
against. In the following sections, you’ll examine external subsets and how they are declared.

External Subsets
External subsets are accessed through external IDs. The external ID includes a system iden-
tifier and possibly a public identifier, which serve to locate the external subset. The system
literal is a URI that provides the specific location of the subset. Note that the URI cannot be
a fragment (which is a URI using the # character to point to a specific portion of a document).
You may be more familiar with this when using anchors in HTML. Public identifiers allow the
use of some other identifier, which your parser would then translate to a URI. When using
public identifiers, a system identifier is also required in the event the parser is unable to resolve
the public identifier.

Listing 3-1 illustrates how to use both system and public identifiers. You denote system
identifiers, when not used with a public identifier, by using the keyword SYSTEM. You denote

CHAPTER 3 ■ VALIDATION46

6331_c03_final.qxd 2/16/06 5:04 PM Page 46

a public identifier by using the PUBLIC keyword. Normally, unless the document is used inter-
nally, public identifiers are rarely used. This is because anyone outside your organization
would not understand what the public identifier was referring to or even how to resolve it.

Listing 3-1. System and Public Identifiers

<!-- Using System Identifier -->
<!DOCTYPE courses SYSTEM "http://www.example.com/courses.dtd">
<!-- Using Public Identifier -->
<!DOCTYPE courses PUBLIC "-//Example//Courses DTD//EN"

"http://www.example.com/courses.dtd">

The external subset contains the markup that makes up the DTD. It consists of an optional
text declaration followed by the external subset declarations. Chapter 2 didn’t cover text decla-
rations, as they pertain only to external entities; I’ll cover them next.

Text Declaration

You are already familiar with the syntax for text declarations. They are similar to XML decla-
rations of documents; however, the standalone declaration is not valid, version is optional,
and encoding is required. It is also recommended that you use a text declaration for external
entities. A text declaration primarily indicates the encoding of the external entity, which is
necessary when the entity uses a different encoding than the main XML document. The
examples in Listing 3-2 illustrate the two possible structures of a text declaration, where
the only difference is the use of the optional version attribute.

Listing 3-2. Text Declaration

<!-- Text declaration without version -->
<?xml encoding="ISO-8859-1" ?>

<!-- Text declaration with version -->
<?xml version="1.0" encoding="ISO-8859-1" ?>

External Subset Declaration

The external subset declaration is where the actual grammar for the DTD resides. It consists of
one or many markup declarations, conditional sections, and declaration separators. I’ll cover all
these in depth in upcoming sections; markup declarations and declaration separators, which are
explained later in the chapter in the “Parameter Entities” section, are common to both exter-
nal and internal subsets, and conditional sections are specific to external subsets and external
parameter entities. Listing 3-3 shows an example, which is explained in more detail through-
out this chapter, for the courses.dtd file from Listing 3-1.

CHAPTER 3 ■ VALIDATION 47

6331_c03_final.qxd 2/16/06 5:04 PM Page 47

Listing 3-3. External Subset

<?xml encoding="ISO-8859-1"?>
<!ELEMENT courses (course+)>
<!ELEMENT course (title, description, pre-requisite*)>
<!ATTLIST course cid ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT pre-requisite EMPTY>
<!ATTLIST pre-requisite cref IDREFS #REQUIRED>

If you refer to the previous chapter, this external subset looks fairly similar to describing
the structure of the document body. Note that the case has changed on the elements—they
are now all lowercase. If you lowercased all the elements in the IDREF example, you could use
this external subset as the DTD for courses.dtd.

Internal Subset
An internal subset consists of the grammar for the DTD defined directly within the document.
Within the document type declaration, the internal subset is enclosed within the characters [
and]. When used with an external subset, the internal subset is defined right after the external
subset. Although defined last, any declarations defined in the internal subset take precedence
over definitions from the external subset. Basically, you can use an internal subset to override
an external subset.

If you refer to the external subset declaration section in Listing 3-3—specifically to the
markup used to define the contents of the course.dtd file as well as Listing 3-1—you could
rewrite the document type using an internal subset as follows:

<!DOCTYPE courses [
<!ELEMENT courses (course+)>
<!ELEMENT course (title, description, pre-requisite*)>
<!ATTLIST course cid ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT pre-requisite EMPTY>
<!ATTLIST pre-requisite cref IDREFS #REQUIRED>

]>

But, as previously mentioned, using internal subsets is restrictive because they cannot
be shared. It’s best to use an external subset. According to this DTD, pre-requisite elements
contain attributes but must be empty. What happens, however, if this document will contain
content within the pre-requisite element but the external subset is being used for the docu-
ment? This is where the internal subset really comes in handy. Using the external subset in
Listing 3-3, you can override the element declaration for the pre-requisite element in an
internal subset, as shown in Listing 3-4.

CHAPTER 3 ■ VALIDATION48

6331_c03_final.qxd 2/16/06 5:04 PM Page 48

a7df286b67d5474c38564ca07557573a

Listing 3-4. Overriding Prerequisite Declaration Using Internal Subset

<!DOCTYPE courses SYSTEM "http://www.example.com/courses.dtd" [
<!ELEMENT pre-requisite (#PCDATA)>

]>

If you notice the bold code in Listing 3-4, the definition of the pre-requisite element
now allows data. This differs from Listing 3-3, where it is defined as EMPTY in the external
subset. The declaration within the internal subset takes precedence in definitions, so a doc-
ument written according to this new DTD (Listing 3-4) would allow certain content within
the pre-requisite element.

Markup Declarations
So far you have seen how to declare internal and external subsets as well as what they look
like, but now it’s time to look at all the markup they contain. Markup declarations declare ele-
ments types, attribute lists, entities, and notations. They can also take the form of PIs and
comments; although these do not actually declare anything for the document, they can be
used for application instructions or author notes, as described in Chapter 2. When writing
declarations, you will encounter a few wildcards, which can be used in your grammar. Before
examining element declarations, you’ll learn more about the wildcards.

Wildcards
A grammar, within a declaration, is written through expressions. Wildcards determine group-
ing as well as the number of matches. This is similar to using wildcards when writing regular
expressions. For those of you unfamiliar with regular expressions, they are a syntax used to
write rules and perform pattern matches against strings. Just as you could write the expression
[A-Z]+ in a regular expression, which would match one or more characters in the range of A–Z,
you could use similar functionality when writing declaration rules. Within the declaration, an
expression can be an element type or element name. The following list shows some of the
basic wildcards that can be used, where expression could be as simple as an element name:

• ?: The expression is optional (expression?).

• expression1 expression2: Matches an expression1 followed by expression2.

• |: Matches either expression (expression1 | expression2).

• -: Matches the first expression but not the second (expression1 - expression2).

• +: Matches one or more occurrences of the expression (expression+).

• *: Matches zero or more occurrences of the expression (expression*).

• (expression): The expression within the parentheses is treated as a single unit.

For example, if you wanted to match on the logic that element1 must be followed by
one or more element2 or that it should match on zero or more element3 elements or a single
element4, the expression would look like this:

(element1 element2+) | (element3* | element4)

CHAPTER 3 ■ VALIDATION 49

6331_c03_final.qxd 2/16/06 5:04 PM Page 49

Notice that element1 and element2 are within parentheses and so are element3 and
element4. The parentheses will take each of the two expressions as a whole and match on
either one of them, because of the | character.

You will see more examples of writing expressions and what they translate to as you take
a closer look at the declarations within a DTD.

Element Type Declaration
In this chapter, you have encountered examples of element type declarations many times. These
have been the markup that begins with <!ELEMENT followed by whitespace. They define an ele-
ment and what is valid for its content. Element type declarations take the following form:

<!ELEMENT element_name contentspec>

The element_name is exactly what it implies. It is the name of the element you are defin-
ing. The contentspec defines what type of content, if any, is valid for the element. It can take
the value EMPTY or ANY or may be a content model of the type mixed or child. EMPTY simply
implies the element cannot contain content. Within the document, the element must be an
empty-element tag or must be a start and end tag with nothing in between, not even white-
space. ANY implies that any type of content, including none at all, is allowed. You can use this
when you have no specific rules for an element. It doesn’t matter if there are child elements
or what their names are, and it doesn’t matter what other content may appear, as long as the
content follows the rules for allowable content in the XML specification. Using the pre-
requisite element as an example, in the external subset it is empty; and in the internal
subset, you want to allow any type of content, so it takes the following forms:

<!-- declaration from external subset requiring the element to be empty -->
<!ELEMENT pre-requisite EMPTY>
<!-- declaration from internal subset allowing any content for element -->
<!ELEMENT pre-requisite ANY>

Mixed and child content model types are not as simple, as these are user-written rules to
which the element content must conform.

Child Content Model

An element that can contain only child elements and no other content, excluding insignificant
whitespace, follows the child content model. As mentioned in Chapter 2, whitespace is typically
significant and consists of spaces, tabs, carriage returns, and line feeds. When dealing with vali-
dation, this whitespace is considered insignificant when it’s not used with any other text. This
means you can’t use any other type of text besides these whitespace characters directly within
the element’s content. When thinking of element content in these terms, the text content would
include text, which is in the immediate scope of the element being defined. Text contained
within any of the child elements of this element would be validated according to the declara-
tions of the child elements. An element following this model would look like the following:

CHAPTER 3 ■ VALIDATION50

6331_c03_final.qxd 2/16/06 5:04 PM Page 50

<course>
<title>French II</title>
<description>Intermediate French</description>
<pre-requisite>

... some type of content
</pre-requisite>

</course>

You may remember this structure from Chapter 2. It is a fragment from the courses docu-
ment. Notice that the course element contains no text, other than the insignificant whitespace,
but has three child elements. Also, the pre-requisite element is not a required element because
not all courses have prerequisites. You could now write the element declaration for the course
element as follows:

<!ELEMENT course (title, description, pre-requisite*)>

The content specification, which defines the data content, for this declaration is (title,
description, pre-requisite*). This is a sequence list, denoted by the list of elements sepa-
rated by commas. A sequence list accepts other types than just elements, but in this case, under
the child content model, no other types are allowed. Using a list means that each of the types
used must appear in a document in the exact order they are specified in the sequence list.
Based upon the wildcard used in the expression, the content specification would translate to
a course element that may contain only the child element’s title, description, and any number,
including zero pre-requisite elements. These elements must appear in this order within a
course element. Therefore, the following fragment would not be valid according to this
declaration:

<course>
<description>Intermediate French</description>
<title>French II</title>

</course>

This document has no pre-requisite element, but that is perfectly fine. The definition
indicates that zero or more pre-requisite elements are considered valid, denoted by pre-
requisite* in the declaration. The problem with this document is that according to the
declaration, title must come before the description element, which is not the case here.
To allow both ordering schemes, the declaration would need to define the two cases as
follows:

<!ELEMENT course (((title, description) | (description, title)), pre-requisite*)>

Notice the use of parentheses. Following the order of precedence, the course element
must contain either title followed by description or description followed by title. Either
of these variants then must be followed by zero or more pre-requisite elements.

Expanding upon the course element, you can add some new information to a course,
which will provide more information on the course being offered. It can take the form of
a URL or embedded text, but not both. Say you decide to add two more possible elements,
course_url and course_info, to the course element. The document could look like any of
the following:

CHAPTER 3 ■ VALIDATION 51

6331_c03_final.qxd 2/16/06 5:04 PM Page 51

<!-- course without course_info and course_url -->
<course>

<description>Intermediate French</description>
<title>French II</title>

</course>
<!-- course with course_url -->
<course>

<title>French II</title>
<description>Intermediate French</description>
<course_url>http://www.example.com/french.html</course_url>

</course>
<!-- course with course_info -->
<course>

<title>French II</title>
<description>Intermediate French</description>
<course_info>This is miscellaneous info on French II</course_info>

</course>

Although the pre-requisite element does not appear in any of these fragments, it is still
valid (it was omitted for brevity). Enforcement of element order has also been reinstituted, so
description must follow title. Listing 3-5 shows how you would write the new declaration.

Listing 3-5. New course Element Declaration

<!ELEMENT course (title, description, (course_url | course_info)?, pre-requisite*)>

Breaking down this grammar, course must contain title followed by description. The
description element then can be followed by a single, optional course_url or course_info
element, but not both. Regardless of whether one of these elements exists as a child, the last
element in the order would be zero or more pre-requisite elements. Based on these rules,
the following fragment is invalid:

<course>
<title>French II</title>
<description>Intermediate French</description>
<course_info>This is miscellaneous info on French II</course_info>
<course_url>http://www.example.com/french.html</course_url>

</course>

The course element cannot, according to the declaration, contain both the course_info
and course_url elements.

So far, you have looked at child elements only as an element’s content. Using what you’ve
learned up to now, you’ll see content that can include a mix of text and other element types.

Mixed Content Model

Many times the child content model is too strict for a document. You might want to add com-
ments, PIs, or even text within an element’s content. Depending upon your expression, mixed
content allows for PCDATA, which stands for parsed character data, and possibly child elements.

CHAPTER 3 ■ VALIDATION52

6331_c03_final.qxd 2/16/06 5:04 PM Page 52

Recall from Chapter 2 that you must escape special characters such as < and & when using
them within parsed text sections. PCDATA is such a section. It can, however, contain nonparsed
character sections, such as comments, CDATA, and PIs. The simplest form of mixed content is
text-only content.

Text-only content means that an element contains no child elements, and its content is
pure text, including comments, CDATA, and PI sections. Examining the course element in this
chapter, examples of elements containing pure text are the title, description, and course_info
elements. Referring to Listing 3-3, the external subset, you will notice that title and description
have been declared as follows:

<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>

Declaring the course_info is the same. The following element will have no child elements,
but CDATA content may be desired:

<!-- Declaration of course info -->
<!ELEMENT course_info (#PCDATA)>
<!-- example of course_info content allowed based on declaration -->
<course_info><![CDATA[

Trip available to Corsica & Ile-de-France.
GPA < 3.0 requires instructor permission.
]]>
Trip coordinators will be Mr. Smith & Mr. Jones.
<!-- Need to check scheduling -->

</course_info>

Pure text content may suffice for a majority of the elements within a document, but some-
times you’ll need both text and child elements. In cases like these, you’ll need to mix PCDATA
with the child elements.

In Listing 3-4, pre-requisite has been defined as #PCDATA. This is so that you can add
comments to the content. However, when writing this document, this definition ends up
being too restrictive. Sometimes not only are some courses required, but also instructor
approval is required. To indicate whether prior approval is required before being able to take
the course, you need to add an optional element, instructor_approval, as a child element
to the pre-requisite element. It has also been determined that when this new element is
missing, no prior approval is required. With this new element, however, the pre-requisite
element may now look like this:

<pre-requisite cref="1">
<!-- This prerequisite may not be required next semester -->
<instructor_approval>Y</instructor_approval>

</pre-requisite>

The new declaration for pre-requisite is as follows:

<!ELEMENT pre-requisite (#PCDATA | instructor_approval)*>

Notice that when mixing content, you use the | character as well as the * character. These
are required per the specifications, which means you are unable to use strict element ordering

CHAPTER 3 ■ VALIDATION 53

6331_c03_final.qxd 2/16/06 5:04 PM Page 53

in mixed content. For example, if you added a child element to the pre-requisite element—
say you were adding an element for the required next semester flag called req_next_sem—you
would just add it as part of the OR expression.

This means that the pre-requisite element may contain zero or more #PCDATA (text con-
tent), instructor_approval elements, and/or req_next_sem elements and may appear in any
order. For example:

<!ELEMENT pre-requisite (#PCDATA | instructor_approval | req_next_sem)*>

As you may infer from the translation, mixed content may not be a good idea to use
when validation is a major concern for a document. Using the declaration, you could end up
with a pre-requisite element that has multiple instructor_approval elements or multiple
req_next_sem elements that may even contain conflicting values. Consider the pre-requisite
element in Listing 3-6; it is valid according to the declaration but is not what is intended to
be valid.

Listing 3-6. Valid pre-requisite Element and Conflicting Data

<pre-requisite cref="c1" >
<!-- This prerequisite may not be required next semester -->
<req_next_sem>N</req_next_sem>
<instructor_approval>Y</instructor_approval>
<instructor_approval>N</instructor_approval>
<req_next_sem>Y</req_next_sem>

</pre-requisite>

■Caution Although it is much easier to declare elements using the mixed content model, you must be
careful when using it. You lose much of the stricter control that you get when using child content, which can
lead to documents that are valid according to the DTD but contain conflicting content that is not valid for
processes you may be using the document with.

Entity Declaration
Before moving to declaring attributes, which is the next logical step, it is important to under-
stand entities. Entities are not only declared but can also be used within other declarations.
Although an area more difficult than most of the others, the following sections cover entities,
including the different types and how they are declared. As you read this chapter, you will
encounter entity usage within other declarations, so I will now help clarify questions that
may arise from their usage.

Entities are simply references to data regardless of whether the data is a simple string or
from an external location. Rather than having to include the same block of data repetitively
throughout a document, you can use a simple entity instead. They can reduce the overall
physical size of a document, and you can use them to quickly change data and have the
changes reflected throughout a document. You will encounter two types of entities: general

CHAPTER 3 ■ VALIDATION54

6331_c03_final.qxd 2/16/06 5:04 PM Page 54

entities and parameter entities. Before examining the declarations of entities, a brief refresher
on entity references is in order.

Entity References

As mentioned in Chapter 2, entity references reference the content of a declared entity. They
can reference general entities or parameter entities, both of which are examined in the follow-
ing sections. A parsed general entity reference, usually just called an entity reference, takes the
form of &name;, and a parameter entity reference takes the form of %name;. The name in each case
is the name of an entity declared in the DTD. You have already encountered some of the built-
in ones, such as & and <, which refer to & and <, respectively. Unparsed general entities,
used with the ENTITY attribute type (which is the only place they can be used), take no special
form and are referenced directly by name.

General Entities

General entities come in three flavors: internal parsed entities, external parsed entities, and
unparsed entities, which are always external. Parsed entities define replacement text. Unparsed
entities, being external to the document, are resources containing data. The data can be of any
type such as text, including non-XML text and binary text.

Parsed Entities As previously mentioned, you use parsed entities for replacing text within a
document. They can be either internal, which are declared within the internal subset, or exter-
nal, which point to an external subset. The easiest one to start with is an internal parsed entity.

You can declare an internal parsed entity in an internal subset in the following manner:

<!ENTITY name "replacement">

The name must be a legal name as defined in Chapter 2. The replacement must be well-
formed XML. This means replacement can include entity references, character references, and
parameter entity references. When using references within the value, circular references are
not legal. It is incorrect to include an entity reference pointing to the entity being defined, as
well as to include an entity reference pointing to an entity that may include the entity being
defined in its replacement. All the entity declarations within Listing 3-7 are invalid because
of circular references.

Listing 3-7. Circular Entity References

<!-- Entity references cannot be circular -->
<!ENTITY myentity "Some replacement text &secondentity;">
<!ENTITY secondentity "Expanded with &myentity;">

You may think that the entities declared in Listing 3-7 are not valid because the
myentity declaration is using the &secondentity; reference before secondentity has been
declared. However, this is perfectly legal. The only time the ordering of an entity declaration
is important is when using an entity reference within the value of an attribute-list declara-
tion. In this case, the entity must be declared before the attribute-list declaration. The
reason these declarations are invalid is that they are circular. The myentity declaration

CHAPTER 3 ■ VALIDATION 55

6331_c03_final.qxd 2/16/06 5:04 PM Page 55

is using an entity reference to secondentity, and secondentity is using an entity reference
right back to myentity. This ends up in an infinite loop scenario.

■Caution The ordering of a general entity declaration is significant when using the entity reference as a
default value within an attribute-list declaration. You must declare the entity declaration before the attribute-
list declaration. In all other cases, you can declare entities in any order.

Listing 3-8 illustrates the proper usage of entity references within content.

Listing 3-8. Valid Entity Reference Usage Within Content

<!ENTITY myentity "Some replacement text">
<!-- Entity defined using references within content -->
<!ENTITY secondentity "Expanded with &myentity; & char A: A">
<!-- Entity Reference Usage -->
<myelement>&secondentity;</myelement>

When the &secondentity; reference is expanded within the myelement element, it would
look like this:

<myelement>Expanded with Some replacement text & char A: A</myelement>

Content can also come from external resources rather than from text included directly
within the DTD. In this case, you must use an external parsed entity.

You declare external parsed entities similarly to how you declare the external subset on
the DOCTYPE:

<!ENTITY name SYSTEM "URI">
<!ENTITY name PUBLIC "publicID" "URI">

name is the same as name for an internal parsed entity and follows the same rules. Taking the
myentity from Listing 3-8 and changing it to an external parsed entity, the text "Some replace-
ment text" would reside within a file, called foo.txt. The resulting declarations would now look
like this:

<!ENTITY myentity SYSTEM "foo.txt">
<!-- Entity defined using references within content -->
<!ENTITY secondentity "Expanded with &myentity; & char A: A">
<!-- Entity Reference Usage -->
<myelement>&secondentity;</myelement>

Once &secondentity; is expanded, the myelement element would again look like this:

<myelement>Expanded with Some replacement text & char A: A</myelement>

One thing to remember about the foo.txt file is that it should contain a text declaration
like in Listing 3-2. This sets the encoding of the content within this external file.

CHAPTER 3 ■ VALIDATION56

6331_c03_final.qxd 2/16/06 5:04 PM Page 56

Unparsed Entities Unparsed entities are external entities that can contain any type of data. The
data need not be XML, and it doesn’t even need to be text. These entities are used for attrib-
utes of type ENTITY or ENTITIES. Earlier, an entity named myimage was defined and referenced
a GIF image file. You can declare unparsed entities in one of two ways:

<!ENTITY name SYSTEM "URI" NDATA notation>
<!ENTITY name PUBLIC "publicID" "URI" NDATA notation>

These are quite similar to the declarations of external parsed entities. The name is used
for the same purpose and follows the same rules. The difference comes from the use of the
last two parameters. The NDATA keyword indicates that this entity is an unparsed entity. The
last parameter, notation, is a reference to a notation declared in the DTD and must match
the notation name it is referencing. Refer to the section “ENTITY/ENTITIES” later in this
chapter for an example of how an unparsed entity is used and its relationship to NOTATION
and ATTLIST.

Parameter Entities

Parameter entities are similar to general entities in the respect that they are also used for
replacement. Parameter entities, however, are used only within a DTD. They allow for the
replacement of grammar. The caveat is that parameter entities, although they can be
declared within external and internal subsets, cannot be referenced within markup in the
internal subset. I will return to this point in a moment. These entities may also be internal
or external, with their declarations taking the following form:

<!ENTITY % name "entity_value">
<!ENTITY % name SYSTEM "URI">
<!ENTITY % name PUBLIC "publicID" "URI">

Because these may appear in markup only in an external subset, first look at the grammar
within the foo.dtd file, as shown in Listing 3-9.

Listing 3-9. External Subset Defined in File foo.dtd

<?xml encoding="ISO-8859-1"?>
<!ENTITY % pc "(#PCDATA)">
<!ELEMENT courses (course+)>
<!ELEMENT course (title, description, pre-requisite*)>
<!ATTLIST course cid ID #REQUIRED>
<!ELEMENT title %pc;>
<!ELEMENT description %pc;>
<!ELEMENT pre-requisite EMPTY>
<!ATTLIST pre-requisite cref IDREFS #REQUIRED>

You will notice the first declaration after the text declaration is the parameter entity pc.
The replacement text is (PCDATA). The element declarations for title and description both
use the parameter entity reference %pc; where the contentspec would go. Based on the substi-
tution, it is equivalent to writing them as follows:

CHAPTER 3 ■ VALIDATION 57

6331_c03_final.qxd 2/16/06 5:04 PM Page 57

<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>

As long as you’re using the parameter entity references within an external subset, you can
use them as text replacements for any of the grammar. You can also modify the cref attribute-
list declaration to use a parameter entity reference, like so:

<!ENTITY % IDREFREQ "IDREFS #REQUIRED">
<!ATTLIST pre-requisite cref %IDREFREQ;>

Using parameter entities in these cases really depends upon how often you might need
to repeat the same grammar as well as how readable you would like the document to be.
Using short names to save some keystrokes may also cause the document to be hard to
decipher. And this would just get worse as the document became more complex.

You can also use parameter entities within the internal subset. Although I said you
couldn’t use it within markup in the internal subset, you won’t use it in that way. Consider the
possibility that you write a document that includes a shared external subset; in fact, say you’re
using the one from Listing 3-9 called foo.dtd. Then, say you need to include another external
subset, the file foo2.dtd in Listing 3-10, to be part of the DTD; however, you cannot modify
foo.dtd and just copy the declarations into the file, because it is shared.

Listing 3-10. External Subset from File foo2.dtd

<?xml encoding="ISO-8859-1"?>
<!ELEMENT instructor_approval (#PCDATA)>
<!ELEMENT req_next_sem (#PCDATA)>

This is a scenario where it is possible to use a parameter entity reference within the inter-
nal subset. For example:

<!DOCTYPE courses SYSTEM "foo.dtd" [
<!ENTITY % foo2 SYSTEM "foo2.dtd">
%foo2;

]>

The parameter entity foo2 refers to the external subset foo2.dtd. The parameter entity ref-
erence %foo2; is not within any markup so is perfectly valid. This is equivalent to writing the
following:

<!DOCTYPE courses SYSTEM "dtddef.dtd" [
<!ENTITY % foo2 SYSTEM "dtddef2.dtd">
<!ELEMENT instructor_approval (#PCDATA)>
<!ELEMENT req_next_sem (#PCDATA)>

]>

The only issue you may run into is that by having used the parameter entity reference
within the internal subset, everything declared within the external subset referenced by the
parameter entity is now considered part of the internal subset. This may cause problems if you
are overriding some declarations. In this case, ordering within the internal subset is important;
another way is to use a general external subset file for the DOCTYPE and use parameter entities

CHAPTER 3 ■ VALIDATION58

6331_c03_final.qxd 2/16/06 5:04 PM Page 58

and references within the general file to include the other external subsets, foo.dtd and
foo2.dtd. In this case, you may end up with a file such as general.dtd that looks like this:

<!ENTITY % foo SYSTEM "dtddef.dtd">
%foo;
<!ENTITY % foo2 SYSTEM "dtddef2.dtd">
%foo2;

You could then modify the DOCTYPE to the following:

<!DOCTYPE courses SYSTEM "general.dtd">

This would allow you to keep all external subsets truly external and leave the internal
subset for your own personal declarations.

Parameter entity references, when used in this fashion outside of markup, are called
declaration separators.

Attribute-List Declaration
You have already encountered attribute-list declarations when using ID/IDREF/IDREFS in
Chapter 2. Those cases are just a small piece of functionality provided by using attribute-list
declarations. Within the scope of validation, the declarations specify the name, type, and any
default value for attributes associated with an element. A declaration takes the following form:

<!ATTLIST element_name att_definition*>

This is similar to the declaration of an element, although two names are required. The
element_name is the name of the element to which this attribute-list declaration applies.
The att_definition includes the name of the attribute being defined as well as the rules
for the attribute.

Note the * in the definition. You can define multiple attributes within a single attrib-
ute-list declaration. If the same attribute is defined multiple times within the declaration,
the first definition encountered is the binding one, and the rest are ignored. Depending
upon the options used for the parser, which you will see in later chapters when using the
PHP extensions, sometimes you’ll get warnings. Defining an attribute multiple times for an
element is not an error though may result in a warning from the parser. Declaring multiple
attribute-list declarations for an element is also not an error, because you may prefer to
define one attribute per attribute-list declaration for an element, though that may also
result in a warning for a parser. Just keep in mind that these are warnings and not errors
and can be controlled by the parser.

The att_definition is the grammar for defining the rules for an attribute. It can be
broken down into Name AttType DefaultDecl, where Name is the name of the attribute being
defined, AttType is the type of attribute, and DefaultDecl is the rule for the default value.
Referring to Listing 2-17 from Chapter 2, when the notion of an ID was introduced, you may
recall the declaration <!ATTLIST Course cid ID #REQUIRED>. Breaking this declaration down
now makes much more sense. Course refers to the attribute element_name, cid refers to the
attribute Name, ID is the attribute AttType, and #REQUIRED is the attribute DefaultDecl. Let’s
take a closer look at the AttType and DefaultDecl attributes.

CHAPTER 3 ■ VALIDATION 59

6331_c03_final.qxd 2/16/06 5:04 PM Page 59

Attribute Defaults

The attribute default (DefaultDecl) indicates any default value for an attribute as well as
whether an attribute is required and how it should be handled if it’s not. DefaultDecl may take
one of four forms: #REQUIRED, #IMPLIED, #FIXED plus a default value, or just a default value.
During the course of examining attribute defaults, you’ll see the attribute type (AttType) set
to CDATA. I’ll explain this in more detail in the “Attribute Types” section, but for now using the
CDATA type means that the attribute is a character type; therefore, its value must be a literal
string. For example, within the fragment in Listing 3-11, the attribute make has the string value
"Ford".

Listing 3-11. Example Element with the make Attribute

<Car make='Ford' />

#REQUIRED Attributes with the #REQUIRED default are exactly that. The attribute is required for
every element within a document for which the attribute is defined. In the case of the Car ele-
ment in Listing 3-11, you could define the attribute-list declaration as follows:

<!ATTLIST Car make CDATA #REQUIRED>

Based on this declaration, the fragments in Listing 3-12 illustrate both valid and invalid
structures, though the elements themselves are well-formed.

Listing 3-12. Examples of Valid and Invalid Attributes Defined As #REQUIRED

<!-- Valid attribute because it exists and contains a string value -->
<Car make='Ford' />

<!-- Valid attribute because it exists and contains empty string value -->
<Car make='' />

<!-- Invalid attribute because it does not exist on the Car element -->
<Car />

#IMPLIED Attributes with the #IMPLIED default means no default value is specified and the
attribute is optional on the element for which it is defined. Returning to the Car element in
Listing 3-11, you can change the attribute-list declaration so that make is an optional attribute,
as illustrated in Listing 3-13.

Listing 3-13. Attribute-List Declaration Using the #IMPLIED Default

<!ATTLIST Car make CDATA #IMPLIED>

Comparing the elements from Listing 3-12 to those in Listing 3-14, you will notice that by
declaring the attribute as #IMPLIED, all fragments are now valid.

CHAPTER 3 ■ VALIDATION60

6331_c03_final.qxd 2/16/06 5:04 PM Page 60

Listing 3-14. Examples of Valid Attributes Defined As #IMPLIED

<!-- Valid attribute because it exists and contains a string value -->
<Car make='Ford' />

<!-- Valid attribute because it exists and contains empty string value -->
<Car make='' />

<!-- Valid attribute even though it does not exist on the Car element -->
<Car />

#FIXED Attributes with the #FIXED default require a default value within the attribute-list decla-
ration. These types of attributes have values that must be identical to the value specified by the
default value. The good thing, though, is that it is optional to add the attribute to the element.
When the attribute is not specifically added, the parser will automatically provide the default
value specified in the declaration.

Using the Car element from Listing 3-11 and building upon the ATTLIST attribute from
Listing 3-13, you may also want to limit the scope to automobiles manufactured in 2002,
where the attribute year indicates the manufacturing year for the auto. To enforce this rule,
you can write the attribute-list declaration as demonstrated in Listing 3-15.

Listing 3-15. Combined Attribute-List Declaration for the make and year Attributes

<!ATTLIST Car
make CDATA #IMPLIED
year CDATA #FIXED "2002">

This declaration combines the rule for the make attribute with the new rule for the year
attribute into a single declaration. You could also write the declaration like so:

<!ATTLIST Car make CDATA #IMPLIED>
<!ATTLIST Car year CDATA #FIXED "2002">

Based upon the declaration in Listing 3-15, the following illustrates some valid and invalid
fragments:

<!-- Valid with unspecified attribute year defaulting to fixed value of "2002" -->
<Car make='Ford' />

<!-- Valid as attribute year is "2002" which is the same as the fixed value -->
<Car make='Ford' year="2002" />

<!-- Invalid as year is "2003" which IS NOT the same as the fixed value -->
<Car make='Ford' year="2003" />

Default Value So far, you have looked at requiring attributes, making them optional, and
restricting attributes. The last case offers a bit more flexibility because it allows for optional

CHAPTER 3 ■ VALIDATION 61

6331_c03_final.qxd 2/16/06 5:04 PM Page 61

attributes, such as using #IMPLIED, but also adds default values, similar to using #FIXED, when
attributes are not specified. Unlike using #FIXED, however, the attribute is not restricted to the
default value. The default value is used only when the attribute is missing from the element.
Taking the declaration from Listing 3-15 and changing the year to default to "2002" but not
restricting it to that value, you would have this new declaration:

<!ATTLIST Car
make CDATA #IMPLIED
year CDATA "2002">

With this new declaration, you can update the valid and invalid fragment list:

<!-- Valid with unspecified attribute year defaulting to value of "2002" -->
<Car make='Ford' />

<!-- Valid with value of year being "2002"-->
<Car make='Ford' year="2002" />

<!-- Valid with value of year being "2003" -->
<Car make='Ford' year="2003" />

Now that you understand an attribute’s default types, you can examine the attribute types
in some detail.

Attribute Types

Attribute types (AttType) simply define the type of attribute. An attribute can be a string type
(CDATA), enumerated type, or tokenized type. The easiest to begin with is the string type, which
was used within the previous “Attributes Defaults” section.

CDATA Type The CDATA type simply means the attribute has character data content. The vast
majority of attributes fall into this type. As mentioned in Chapter 2, you must escape the char-
acters < and & when using them literally. Character and entity references are also valid content
for an attribute default value, although unless using the built-in entity references, such as <
and &, the entity (which was covered earlier in this chapter) cannot be an external entity
reference. In simple terms, if the attribute-list declaration is within the internal subset, then
the entity must be declared within the internal subset; otherwise, the entity may be declared
in the internal subset or the same external subset as the attribute-list declaration. From read-
ing Chapter 2 and from seeing the earlier examples in this chapter, which used the CDATA
type, you should have a basic understanding of how to use character data with attributes.
Here, however, I will demonstrate how to use entity references when declaring attribute lists.
The following listings, Listing 3-16 and Listing 3-17, are examples of how attribute-list declara-
tions interact with entity declarations.

CHAPTER 3 ■ VALIDATION62

6331_c03_final.qxd 2/16/06 5:04 PM Page 62

Listing 3-16. External Subset Defining coursedata Entity Using ext.dtd Filename

<?xml version="1.0" ?>
<!ENTITY coursedata "Some Course Data">
<!ENTITY moredata "More Course Data">
<!-- ATTLIST IS valid as moredata is declared in this subset -->
<!ATTLIST courses mcdata CDATA "&moredata;">
<!-- ATTLIST IS valid as evenmoredata is declared in internal subset -->
<!ATTLIST courses emcdata CDATA "&evenmoredata;">

Listing 3-17. Invalid ATTLIST Declaration in Internal Subset Referencing External Entity

<!DOCTYPE courses SYSTEM "ext.dtd" [
<!ELEMENT courses ANY>
<!-- ATTLIST is invalid as it references the external entity from Listing 3-16 -->
<!ATTLIST courses somedata CDATA "&coursedata;">
<!ENTITY evenmoredata "More Course Data">
<!-- ATTLIST IS valid as evenmoredata is declared in this subset -->
<!ATTLIST courses evenmcdata CDATA "&evenmoredata;">
]>

The CDATA type is probably the easiest and most often used attribute type. The only
real complexity may come when using entities, which are covered later in this chapter in
the “ENTITY/ENTITIES” section. For now, though, you will examine the attribute’s enumer-
ated type.

Enumerated Type Enumerated types allows you to define certain values that are valid for an
attribute. Any value set for the attribute, which is not in the defined list within the declaration,
is considered invalid. Returning to the course element from the courses document, you can
add an attribute named iscurrent. This attribute indicates whether the content has been
updated. Say the values Y and N are the only acceptable values you want for the attribute value.
Therefore, you could write a declaration as follows:

<!ATTLIST course iscurrent (Y | N) #REQUIRED>

By this definition, iscurrent is required and must have the value Y or N, so the following
illustrates how to use the iscurrent attribute with the course element:

<course iscurrent="Y" />
<course iscurrent="N" />

<!-- The following are invalid because XML is case-sensitive -->
<course iscurrent="y" />
<course iscurrent="n" />

This might be fine if you wrote the DTD before you had some data, but in this case, you
already have course data in XML format. Someone could manually fix all the course elements
within the document, but a much easier approach is to just use a default value based on one

CHAPTER 3 ■ VALIDATION 63

6331_c03_final.qxd 2/16/06 5:04 PM Page 63

of the listed values. Since this attribute is new to the document, you can assume that the
default will be N, indicating that any course element without this attribute is to be considered
as not having been updated. For example:

<!ATTLIST course iscurrent (Y | N) "N">

Based on this new declaration, the following are all valid:

<course iscurrent="Y" />
<course iscurrent="N" />
<!-- following course element uses default value of "N" for iscurrent attribute -->
<course />

■Caution XML is case-sensitive. When using an enumerated type, you must be careful, because the
attribute value must match one of the values defined within the attribute type. For example, the value Y
is not the same as the value y.

Notations, which are covered later in this chapter in the section “Notation Declaration,”
are also of the enumerated type. An attribute of this type must match one of the notations
listed, and the mutation must have been declared in the DTD. This is an example of the
declaration:

<!ATTLIST image type NOTATION (gif|jpg) "gif">

An image attribute within a document using this declaration could have the value gif or
jpg, where the default value, if not set on the image element, is gif. Furthermore, gif and jpg
must also be declared as notations within the DTD. Please refer to the “Notation Declaration”
section for information about notations.

ID/IDREF/IDREFS Chapter 2 covered these types in detail, along with examples. You should note,
however, attributes of type ID must use the #REQUIRED or #IMPLIED default within their declara-
tions (because of the nature of attribute IDs). To summarize their functionality, an ID uniquely
identifies an element, and IDREF and IDREFS reference an element identified by an attribute of
the ID type. Their declarations, from Chapter 2, take the following form:

<!ATTLIST Course cid ID #REQUIRED>
<!ATTLIST Pcourse cref IDREF #REQUIRED>
<!ATTLIST pre-requisite cref IDREFS #REQUIRED>

NMTOKEN/NMTOKENS Up until now, you have seen that the CDATA type allows virtually any
value for an attribute, assuming the value is legal for an attribute. Enumerated types restrict
attribute values to one of a given list. An NMTOKEN offers a little more restriction than CDATA
and much less than an enumeration. The value for an NMTOKEN is restricted to the characters
that make up a name, as defined in Chapter 2. You have no restriction, however, on the first

CHAPTER 3 ■ VALIDATION64

6331_c03_final.qxd 2/16/06 5:04 PM Page 64

character like you have with a name. To put it simply, an NMTOKEN is similar to CDATA, except
values containing whitespace, certain punctuation, character references, and entity references
are not valid. The use of whitespace has an exception. The value of an attribute is first normal-
ized before validity checks are performed on it. Leading and trailing whitespace is removed
during normalization, so att=" value " would validate the same for an NMTOKEN as
att="value". Attributes of this type are defined as follows:

<!ATTLIST course code NMTOKEN "default_value">

This declaration defines the attribute code on the course element with a default value of
default_value. Based on this declaration, Listing 3-18 illustrates valid and invalid usage.

Listing 3-18. Valid and Invalid NMTOKEN Type Usage

<!-- Valid NMTOKEN type usage -->
<course code=" 123 " />
<course code="123" />

<!-- Invalid NMTOKEN usage -->
<course code=" 1 2 3 " />
<!-- The / character is not valid for NMTOKEN -->
<course code="1/2/3" />
<!-- The character references are not valid for NMTOKEN -->
<course code="1#x20" />
<!-- Entity references (&) are not valid for NMTOKEN -->
<courses code=" 1&2&3 " />

If the attribute had been declared a CDATA type, all examples would have been valid.
An NMTOKEN allows for the value of an attribute to contain more than one NMTOKEN sepa-

rated by whitespace. This, in simple terms, just means that by defining an attribute as an
NMTOKEN type, whitespace characters become valid within the attribute value. In reality, the
attribute value consists of multiple NMTOKEN values. By changing the declaration used for
Listing 3-18 to the following:

<!ATTLIST course code NMTOKENS "default_value">

the example <course code=" 1 2 3 " /> is now valid.

ENTITY/ENTITIES The last tokenized attribute types are ENTITY and ENTITIES. These types refer-
ence unparsed entities within a document. You have already been introduced to entities in the
“Entity Declaration” section, but a quick synopsis of an unparsed entity is that an unparsed
entity is an external entity, such as a remote file, that contains non-XML data.

Consider what is involved in adding an image to an XML document. The first thing that
may come to mind is using a CDATA section. This has issues, however. The binary data may
contain invalid characters such as]]>. You may then decide to Base64 encode the image and
use the encoded data as content. This would work; however, not only does the size of your
document increase, but you would also need to include information for the image, such as

CHAPTER 3 ■ VALIDATION 65

6331_c03_final.qxd 2/16/06 5:04 PM Page 65

how it should be handled. Another option would be to use an attribute of type ENTITY to refer-
ence the image, such as declared in Listing 3-19.

Listing 3-19. Attribute Type ENTITY Declaration

<!NOTATION GIF SYSTEM "image/gif">
<!ENTITY myimage SYSTEM "mypicture.gif" NDATA GIF>
<!ATTLIST image imgsrc ENTITY #REQUIRED>

To use an ENTITY type, you must declare the entity, myimage; also, because it is an unparsed
entity, you must declare a NOTATION, GIF, and associate it with the entity. Based on these decla-
rations, Listing 3-20 illustrates the usage of the unparsed entity.

Listing 3-20. Usage of Unparsed Entity Reference

<image imgsrc="myimage" />

The attribute value must be one of the unparsed entities defined in the DTD. In this case,
this uses myimage, which refers to the file mypicture.gif.

The attribute type ENTITIES is just a whitespace-separated list of entities. It is similar to
the NMTOKEN/NMTOKENS relationship. For example:

<!NOTATION GIF SYSTEM "image/gif">
<!ENTITY myimage SYSTEM "mypicture.gif" NDATA GIF>
<!ENTITY yourimage SYSTEM "yourpicture.gif" NDATA GIF>
<!ATTLIST courses imgsrc ENTITIES #REQUIRED>

An example for the ENTITIES type based on these declarations is as follows:

<image imgsrc="myimage yourimage" />

Before you get too excited and think you can change all your image references to use this
format, you need to understand the ramifications. Using attribute entities in this manner works
well for traditional publishing. Everything is within a controlled environment. On the Web,
however, you have little control over the client side. The actual MIME type for a file is usually
determined by the Web server and sent to the client. If you were to call the file mypicture.gif,
the file could actually be a JPG, and the Web server might send you MIME type information for
a JPG rather than a GIF. Based on the declarations you have here, however, you are setting the
handling of the unparsed entity within the notation declaration. So, in short, most people find
using attribute entities and notations in a Web environment not a good idea, but in reality, it
really depends upon how you are using and what you are using them to do.

Notation Declaration
A notation indicates how data should be processed. Typically, notations identify the format
of unparsed entities and elements bearing a NOTATION type attribute. You can use the provided
external identifier to provide the location of a helper application that is able to process the
noted data. Do you remember the use of the NOTATION type for an attribute? The notation pro-
vided an identifier of image/gif. Based on this MIME type, an application could call the

CHAPTER 3 ■ VALIDATION66

6331_c03_final.qxd 2/16/06 5:04 PM Page 66

program associated with the image/gif MIME type to handle the image data. You declare
notations as you would declare the external subset on the DOCTYPE:

<!NOTATION name SYSTEM "URI">
<!NOTATION name PUBLIC "publicID">
<!NOTATION name PUBLIC "publicID" "URI">

The name portion of the notation declaration must be a valid name as defined in Chapter 2.
Using the previous declaration, <!NOTATION GIF SYSTEM "image/gif">, you have declared a
notation named GIF with a system identifier of image/gif. In a controlled environment, you
might rather want to specifically identify an application to handle the data. Suppose all desk-
tops in an organization were clones of each other and locked down to prevent modification,
and an application called GIFProcessor existed in /usr/local/bin on all systems. You could
then modify the notation to <!NOTATION GIF SYSTEM "/usr/local/bin/GIFProcessor">. If the
image/gif MIME type were associated with this program, then these two declarations would
be equivalent. If the MIME type were set to something else, then using a specified application
rather than a MIME type would ensure that the data was handled correctly.

Now that you have a better idea of what a notation is, you need to revisit the NOTATION
type within an attribute-list declaration. Remember, the notation type is an enumerated type.
Enumerated types mean that the allowed values for attributes must be specified within the
attribute-list declaration. When used in this case, the notation provides information for the
element. For example, suppose an image is embedded directly within an XML document. It
has been Base64 encoded so that it can live within the content of an element. Using a notation
attribute, you can associate a handler for the element contents with the element. For example:

<!NOTATION BASE64 SYSTEM "location of base64 handler">
<!ATTLIST embededdata enctype NOTATION (BASE64) #REQUIRED>

<!-- example of enctype attribute on embededdata element -->
<embededdata enctype="BASE64">Some Base64 embedded data</embededdata>

Because this is an enumerated type, you could use multiple notations for the attribute-list
declaration. You will now add a handler for UUencode:

<!NOTATION BASE64 SYSTEM "location of base64 handler">
<!NOTATION UUENCODE SYSTEM "location of UUencode handler">
<!ATTLIST embededdata enctype NOTATION (BASE64 | UUENCODE) #REQUIRED>

<!-- example of enctype attribute on embededdata element -->
<embededdata enctype="BASE64">Some Base64 embedded data</embededdata>
<embededdata enctype="UUENCODE">Some UUencoded embedded data</embededdata>

As illustrated, the enctype attribute may now use either BASE64 or UUENCODE notations
for its value. Any other value, as well as not associating the attribute with the embededdata
element, is deemed invalid because of the #REQUIRED default.

Notations are also required when using unparsed entities. Please refer to the ENTITY
attribute type and the section “Unparsed Entities” within this chapter for more information.
Notations are declared as described in this section, and their usage is similar to the NOTATION
attribute type. The only difference is the applicable XML structure.

CHAPTER 3 ■ VALIDATION 67

6331_c03_final.qxd 2/16/06 5:04 PM Page 67

Conditional Sections
You use conditional sections to selectively include and exclude sections of a DTD; you can use
them only within an external subset. You may be wondering why you would need such func-
tionality. You may need this functionality for several reasons. Consider publishing from the
traditional sense.

A document may be a draft, or it may be the finalized version. When it is still a draft,
additional information, such as user notes and comments attached to paragraphs, may be
considered valid for the document. Certainly when the document is ready to be published
in its finalized state, these must not appear in the final version. Of course, you could always
define two completely separate DTDs for the document, but then each must be managed,
and the document must be altered to reference the correct one depending upon the state.
A much simpler way would to use the same external subset with conditional sections
encapsulating the appropriate sections for the current state of the document.

Another possible scenario is working on a shared external subset that is currently in
production. If you have had to debug applications in a live environment before, then this is
a similar case. The original code must be left unaltered because it is currently running, but
you need to alter and test code at the same time. You possibly can use if/else blocks based on
your terminal ID (yes, terminals still do exist, as I know from experience) or IP address, assum-
ing you have a dedicated IP addresses at your workstation and are not behind a firewall. Using
conditional sections will allow the subset to continue working for everyone else except you,
giving you the time you need to fix or alter it without disrupting anyone else’s productivity.

This should give you a basic idea on why you might need conditional sections, and by
now you are probably on the edge of your seat, waiting in anticipation on how to use these
sections. You can define conditional sections in one of two ways, depending upon whether
you want a section included or ignored:

<![IGNORE [
declarations

]]>

<![INCLUDE [
declarations

]]>

Within the INCLUDE and IGNORE blocks, declarations refers to any declaration you want
included or suppressed. So you might have a subset list the one in Listing 3-21.

Listing 3-21. Example Using Conditional Sections in course.dtd

<?xml encoding="ISO-8859-1"?>
<!ELEMENT courses (course+)>
<!ELEMENT course (title, description, pre-requisite*)>
<!ATTLIST course cid ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT pre-requisite ANY>

CHAPTER 3 ■ VALIDATION68

6331_c03_final.qxd 2/16/06 5:04 PM Page 68

<![INCLUDE [
<!ATTLIST pre-requisite cref IDREFS #REQUIRED>
<!ELEMENT instructor_approval EMPTY>
<!ELEMENT req_next_sem (#PCDATA)>

]]>
<![IGNORE [

<!ATTLIST pre-requisite cref CDATA #IMPLIED>
<!ELEMENT instructor_approval ANY>
<!ELEMENT req_next_sem ANY>

]]>

This may not look very useful because INCLUDE and IGNORE are both hard-coded into the
subset, but it should give you the basic idea. Everything within the INCLUDE section will be
used for validation, and everything within the IGNORE section is ignored. When using condi-
tional sections, parameter entities are your friends. Remember that you can use them within
the DTD to replace a grammar. You can modify the course.dtd file to use parameter entities,
as shown in Listing 3-22.

Listing 3-22. Conditional Sections in course.dtd Using Parameter Entities in course.dtd

<?xml encoding="ISO-8859-1"?>
<!ENTITY % livedata "INCLUDE">
<!ENTITY % debugdata "IGNORE">
<!ELEMENT courses (course+)>
<!ELEMENT course (title, description, pre-requisite*)>
<!ATTLIST course cid ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT pre-requisite ANY>
<![%livedata; [

<!ATTLIST pre-requisite cref IDREFS #REQUIRED>
<!ELEMENT instructor_approval EMPTY>
<!ELEMENT req_next_sem (#PCDATA)>

]]>
<![%debugdata; [

<!ATTLIST pre-requisite cref CDATA #IMPLIED>
<!ELEMENT instructor_approval ANY>
<!ELEMENT req_next_sem ANY>

]]>

This code adds the parameter entities livedata and debugdata to the subset. The previously
hard-coded text INCLUDE and IGNORE have also been removed and replaced with the parameter
entity references for these new entities. Anyone now using this subset will be using the declara-
tions in Listing 3-23.

CHAPTER 3 ■ VALIDATION 69

6331_c03_final.qxd 2/16/06 5:04 PM Page 69

Listing 3-23. Declarations Used by Default Within course.dtd

<!ATTLIST pre-requisite cref IDREFS #REQUIRED>
<!ELEMENT instructor_approval EMPTY>
<!ELEMENT req_next_sem (#PCDATA)>

Within the working document, you can override the livedata and debugdata entity
declarations within the internal subset:

<!DOCTYPE courses SYSTEM "course.dtd" [
<!ENTITY % livedata "IGNORE">
<!ENTITY % debugdata "INCLUDE">

]>

While everyone else uses the declarations listed in Listing 3-23, this document will be
using this:

<!ATTLIST pre-requisite cref CDATA #IMPLIED>
<!ELEMENT instructor_approval ANY>
<!ELEMENT req_next_sem ANY>

The last point to discuss on the topic of conditional sections is nesting. It is perfectly valid
to nest sections within each other. Everything within an IGNORE section is completely ignored.
Basically, once the parser sees an IGNORE, it skips to the closing marker for that particular sec-
tion. For INCLUDE sections, everything is included except any IGNORE sections. A section written
like this:

<![INCLUDE [
<!ATTLIST pre-requisite cref IDREFS #REQUIRED>
<![IGNORE [

<!ELEMENT instructor_approval EMPTY>
]]>
<!ELEMENT req_next_sem (#PCDATA)>

]]>

could have just as well been written like this:

<![INCLUDE [
<!ATTLIST pre-requisite cref IDREFS #REQUIRED>
<!ELEMENT req_next_sem (#PCDATA)>

]]>

Though basic, this should give you the idea of how nesting works. Through the use of
parameter entities, it can get quite complex.

You should now be well on your way to validating documents using a DTD. This is just
one of the possible ways to perform validation. The next section will cover XML Schemas and
their role in validation.

CHAPTER 3 ■ VALIDATION70

6331_c03_final.qxd 2/16/06 5:04 PM Page 70

Using XML Schemas
You probably have realized by now that although DTDs can be useful to validate a document,
they also have limitations. Take, for instance, text content. You can declare an element allow-
ing PCDATA, such as <!ELEMENT element (#PCDATA)>, but you can’t enforce what the acceptable
content is. Other than the element name and possibly using attributes, you can’t determine
the exact type of text content that exists within the element. XML Schemas were developed to
overcome many of the shortcomings of DTDs. They are designed to be extensible, to support
data types, to be easy to write using XML syntax, to support namespaces, and to allow for user-
derived data types. XML Schemas are a standard from the W3C so are widely available. The
following sections will cover XML Schemas including their construction and how to write them.
Because of the extensive amount of information on XML Schemas, not everything will be cov-
ered, but after reading the following sections, you should have enough information to at least
understand an XML Schema and begin building your own.

Introducing XML Schemas
You may have looked at some tutorials or even the specifications for XML Schemas, and you
may still be completely confused about how to use them. If, on the other hand, you are already
familiar with XML Schemas and are able to build at least basic ones, then this section may not
contain any information new to you. Advanced features of schemas are out of the scope of this
section. My primary goal is to offer you a simple breakdown of structure and syntax as well as
basic concepts surrounding schemas. With this in mind, I’ll show you how to build your first
schema.

Using slightly modified data, you will compose a schema for the courses document in
Listing 3-24. The approach is not going to be top-down, but rather inside-out. You will under-
stand the reasoning as you build it. Schemas are usually located in an external file with the
.xsd extension. Unless otherwise indicated, it is safe to assume that the schema I’m showing
how to build is in a file called courses.xsd.

■Note Unless otherwise indicated, the schema being built will be residing in a file called course.xsd.
The term schema used in this section refers to a schema being built using XML Schemas unless other-
wise noted.

Listing 3-24. Courses Document

<courses>
<course cid="c1">

<title>Basic Languages</title>
<description>Introduction to Languages</description>
<credits>1.5</credits>
<lastmodified>2004-09-01T11:13:01</lastmodified>

</course>

CHAPTER 3 ■ VALIDATION 71

6331_c03_final.qxd 2/16/06 5:04 PM Page 71

<course cid="c2">
<title>French I</title>
<description>Introduction to French</description>
<credits>3.0</credits>
<lastmodified>2005-06-01T14:21:37</lastmodified>

</course>
<course cid="c3">

<title>French II</title>
<description>Intermediate French</description>
<credits>3.0</credits>
<lastmodified>2005-03-12T15:45:44</lastmodified>
<pre-requisite cref="c1" req_next_sem="true">

<instructor_approval>false</instructor_approval>
</pre-requisite>
<pre-requisite cref="c2" req_next_sem="false">

<instructor_approval>true</instructor_approval>
</pre-requisite>

</course>
</courses>

Schema Elements
The beginning of every schema is the schema element. The courses document is not using
namespaces, which will be explained later, so the basic structure begins as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
</xsd:schema>

The schema element is the root of the document. The prefix xsd will denote the namespace
http://www.w3.org/2001/XMLSchema. This prefix indicates that the XML within the schema is
from the W3C XML Schemas namespace. You can use any prefix you like, though xsd is the most
common. Additional attributes are available for the schema element, but for now, you will use the
most basic structure.

■Note Throughout the discussion of XML Schemas, the xsd prefix refers to the http://www.w3.org/
2001/XMLSchema namespace.

Simple Types
Simple types are components that contain only text. They cannot be broken down any further.
Elements without attributes and children elements, as well as attributes, are composed of
simple types. An attribute cannot be broken down any further than its value, which is text
content. An element that had child elements would be able to be broken down further into
its child elements so would not be defined by a simple type, but rather a complex type.

CHAPTER 3 ■ VALIDATION72

6331_c03_final.qxd 2/16/06 5:04 PM Page 72

Let’s start building a schema based on some of the simple type elements: title,
description, credits, and datelastmodified. You could declare these elements, in their
simplest forms, as follows:

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="datelastmodified" type="xsd:dateTime"/>

Breaking the first one of these down, the element name element comes from the XML
Schema namespace, because it is used to declare an element. If you recall, you associated the
sd prefix with that name, so element is prefixed with xsd. The value of the name attribute, in this
case title, is the name of the element you are declaring. The value of the type attribute is the
data type for the element. In this case, the title element is to hold a string. You will notice
that every type attribute is coming from the XML Schema namespace, noted by the xsd prefix.
Because you are starting simple, you are using built-in types.

Built-in types are data types defined within the XML Schema specification. These types
are either primitive types, meaning they exist on their own and are not derivatives of other
data types, or derived types, which means they are built from another data type. Other user-
derived types are data types derived by the schema author. This means the author can create
their own data type, which is based on other existing data types. Continuing to build the
schema, you know that attributes are also composed of simple types. For example:

<xsd:attribute name="cid" type="xsd:ID"/>
<xsd:attribute name="cref" type="xsd:IDREF"/>
<xsd:attribute name="req_next_sem" type="xsd:boolean" />

The declaration for attributes, in this current case, is the same as the element declara-
tions. The element name attribute indicates an attribute is being declared and is prefixed by
xsd because it comes from the XML Schema namespace. The value of the name attribute is the
name of the attribute you are declaring, and the type is the data type. Notice the declarations
for the cid and cref attributes.

The data types, ID and IDREF, are both built-in derived types. The base type for a derived
type is the data type from which the derived type was derived. Sound confusing? Well, it’s
really not. The base type for ID and IDREF is NCName, because they both are derived from the
NCName type. This type is also a derived type having a base type of name. The name type in turn
is derived from the token type, which in turn is derived from the normalizedString type. You
finally get down to the primitive type; the base type for normalizedString is string, which,
being a primitive type, is the lowest denominator.

You now have all the simple types for the document declared, so how do you build the
rest of the schema? Looking at the document in Listing 3-24, the remainder of the document
contains everything you have declared to this point. As they can be broken down, they are
declared with complex types. You can find a list of all built-in data types in Appendix A.

Complex Types
Within the document in Listing 3-24, you have elements containing child elements as well as
elements with attributes. These cannot be declared with a simple type. Take, for example, the

CHAPTER 3 ■ VALIDATION 73

6331_c03_final.qxd 2/16/06 5:04 PM Page 73

pre-requisite element. This element contains two attributes, cref and req_next_sem, as well
as the child element instructor_approval. Listing 3-25 shows the declaration for this element.

Listing 3-25. Element Declaration for pre-requisite

<xsd:element name="pre-requisite" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="instructor_approval" type="xsd:boolean"/>

</xsd:sequence>
<xsd:attribute name="cref" type="xsd:IDREF"/>
<xsd:attribute name="req_next_sem" type="xsd:boolean"/>

</xsd:complexType>
</xsd:element>

Let’s examine the element declaration. You will notice two new attributes, minOccurs and
maxOccurs. These attributes control the number of times this element may occur within its
parent element. The element pre-requisite is not required to be a child element of the course
element, so its minOccurs is set to 0. On the other end of the spectrum, there can be any num-
ber of these elements within the course element. Since you do not have an exact number, the
value unbounded translates to unspecified. This gives you an unlimited number of times this
element may occur within a course element. These attributes must be either a non-negative
integer or the value unbounded. When the attribute is not present on the element, it defaults
to the value 1.

You should also notice that this element does not have a type attribute. It is not a simple
type, and you are not using named types, which allow the reuse of content models. The type
is defined within the context of the declaration. The child element xsd:complexType indicates
this element is a complex type, and the rules are encapsulated within the child elements on
the xsd:complexType element.

The next child element encountered is xsd:sequence. This element indicates the elements
declared within the scope of this element must appear in the order in which they are declared.
Even though there is only a single child element, it still must be present. You could have used
other indicators, such as <choice />, but I’ll discuss those later in the section. Within the
xsd:sequence element, you come to the instructor_approval element, which you should
already be familiar with because it was defined in the “Simple Types” section.

Upon exiting the xsd:sequence element, you hit the attribute declarations, which were
also declared in the “Simple Types” section. The ordering here is important. All attribute dec-
larations must come last within a complexType element. I’ll discuss this in further detail later
in the “Attributes” section, but for now it is important to at least understand a basic schema.

Now that the pre-requisite element is declared, you can learn how to declare the course
element. You have already declared all elements contained within this element, either as sim-
ple types or a complex type, so you are slowing making your way up the tree:

<xsd:element name="course" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>

CHAPTER 3 ■ VALIDATION74

6331_c03_final.qxd 2/16/06 5:04 PM Page 74

<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="lastmodified" type="xsd:dateTime"/>
<!-- declaration for pre-requisite in Listing 3-25 goes here -->

</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>

</xsd:complexType>
</xsd:element>

Just like the pre-requisite declaration in Listing 3-25, the course declaration is following
the same rules, including the number of times this element may appear as a child element
within the course element. Again, this is a complex type, noted by the xsd:complexType element,
and is defined within the scope of the declaration. This time, however, multiple elements reside
within the xsd:sequence element. The elements, when appearing within the XML document,
must follow the order title, description, credits, lastmodified, and pre-requisite. Note that
the declaration for pre-requisite in Listing 3-25 was left out for brevity. When you finish con-
structing the schema, it will be laid out for you in its entirety. For now the missing declaration
is noted by an XML comment.

If you recall the rules regarding minOccurs and maxOccurs, they default to 1 when not present
on an element. By omission, each of the element declarations within the xsd:sequence element
must appear exactly one time in the order specified. The only exception is the pre-requisite
element. Although it still must obey the element ordering, it is not required to appear as a
child element because those attributes were explicitly set on its declaration.

The final piece is to build the declaration for the courses element, which is the root of the
XML document. If you have been following along, you should have no problem with the last
piece of the puzzle. Listing 3-26 shows the entire schema, including the courses element dec-
laration, which would constitute the contents of the courses.xsd file. With this schema, the
course document from Listing 3-24 is perfectly valid.

Listing 3-26. XML Schema for the Courses Document

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="courses">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="course" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="lastmodified" type="xsd:dateTime"/>
<xsd:element name="pre-requisite" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="instructor_approval"

type="xsd:boolean"/>

CHAPTER 3 ■ VALIDATION 75

6331_c03_final.qxd 2/16/06 5:04 PM Page 75

</xsd:sequence>
<xsd:attribute name="cref" type="xsd:IDREF"/>
<xsd:attribute name="req_next_sem" type="xsd:boolean"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

You probably now understand why you took the inside-out approach rather than a top-
down approach for this introduction to XML Schemas. Up to this point, I have not covered all
the basic syntax and functionality, but you should now have a good working knowledge to
start taking a more in-depth look at them.

Understanding the Structure
So far I’ve only touched on XML Schema structures a bit. An interesting aspect of schemas
is that virtually all XML Schema elements (meaning the elements in general such as
xsd:attribute, xsd:element, and xsd:complexType) will accept any attributes outside the XML
Schema namespace. For example, if you have a namespace declared as xmlns:foo="http://
www.example.com/foo" within the schema, you can add arbitrary attributes to schema ele-
ments. (I’ll cover namespaces in detail later in the “Namespaces” section.) For example:

<xsd:attribute name="att1" type="xsd:string" foo:myatt="this is my attribute" />

It is perfectly valid to add a foo:myatt attribute. Though not affecting validation, you may
want some additional information within your schema for some other reason. You cannot, how-
ever, add attributes from the xsd namespace that do not belong on an element. For example:

<!-- The following is an ILLEGAL use of xsd:boolean as an attribute -->
<xsd:attribute name="att1" type="xsd:string" xsd:boolean="invalid" />

Elements
You can perform other tasks with elements than just those shown earlier in the chapter.
Elements may have default content or NULL values. This may be substituted and may be
grouped.

Default Content

Recall the attribute-list declaration in a DTD. Attributes can specify default as well as fixed
values. Using XML Schemas, you can do the same to elements. The defaulted or fixed content
is a string, so the data type for an element must support this type of content. For example:

CHAPTER 3 ■ VALIDATION76

6331_c03_final.qxd 2/16/06 5:04 PM Page 76

<xsd:element name="myelement" default="some text" />
<xsd:element name="secondelement" fixed="fixed text" />

When the element myelement is used in a document and is empty, the content is auto-
matically set to some text. The element secondelement behaves the same way, but if it already
contains content, the content must match the string set by the fixed attribute; otherwise, it is
not valid. Elements may use either default or fixed, but not both.

NULL Value

Comparing XML data to data from a database, you can’t easily distinguish between an empty
string and a NULL value. You could devise your own XML structure to add support for this, or
you could do it through an XML Schema. Element declarations include the attribute nillable.
It is a Boolean, with a default value of false, used to indicate whether an empty element is
NULL. For example:

<element name="mydata" nillable="true" />

Using this attribute also requires the use of the http://www.w3.org/2001/
XMLSchema-instance namespace in the XML document. Assuming the prefix xsi was set for
this namespace within the XML document, the element mydata could appear as follows:

<mydata xsi:nill="true"></mydata>

Element Substitution

Schemas allow for element name substitutions. Take the case where a company has an office
in the United States and one in France. The office in the United States creates most of their
XML documents in English, and the office in France uses French for theirs. A shared schema
could allow element names from either language:

<xsd:element name="street" type="xsd:string" />
<xsd:element name="rue" substitutionGroup="street" >

<xs:element name="name" type="xs:string"/>
<xs:element name="nom" substitutionGroup="name"/>

<xsd:complexType name="infoType">
<xsd:sequence>

<xsd:element ref="name"/>
<xsd:element ref="street"/>

</xsd:sequence>
</xsd:complexType>

<xs:element name="address" type="infoType"/>
<xs:element name="adresse" substitutionGroup="address"/>

Notice the elements with the substitutionGroup attribute. These element declarations
are not defining anything other than a name and a substitionGroup, which refers to another
element declaration. This allows element names to be used interchangeably and mean the

CHAPTER 3 ■ VALIDATION 77

6331_c03_final.qxd 2/16/06 5:04 PM Page 77

same thing. For instance, the element rue is the same as the element street. Based on these
declarations, the following two documents are both valid:

<address>
<name />
<street />

</address>

<adresse>
<nom />
<rue />

</adresse>

Element Groups

The sequence element you have seen used earlier in the chapter, such as within Listing 3-26, is
a form of grouping. It is an unnamed local group. Groups may also be choice or all. A sequence,
as you already know, means the elements must appear in that exact sequence. A choice means
that a certain number determined by the maxOccurs and minOccurs attributes, which both
default to 1, may be selected. Using all allows the elements to appear in any order, although all
the elements must be present within the content of a parent element. When you create named
groups, you can share them so you don’t need to define local groups. You can just reference the
named group. Take the case of an address. A document may have a shipping address as well as
a billing address. In most cases, the elements required are the same. You could create a named
group and share between the two, as follows:

<xsd:group name="Address">
<xsd:sequence>

<xsd:element name="street" />
<xsd:element name="city" />
<xsd:element name="state" />
<xsd:element name="zipcode" />

</xsd:sequence>
</xsd:group>

<xsd:element name="BillingAddress">
<xsd:sequence>

<xsd:group ref="Address" />
</xsd:sequence>

</xsd:element>

<xsd:element name="ShippingAddress">
<xsd:sequence>

<xsd:element name="attention" type="xsd:string" />
<xsd:group ref="Address" />

</xsd:sequence>
</xsd:element>

CHAPTER 3 ■ VALIDATION78

6331_c03_final.qxd 2/16/06 5:04 PM Page 78

The xsd:group element is laid out similarly to the xsd:element elements. Notice within
the xsd:sequence elements for the element declarations that the xsd:group element does not
include a name attribute, but rather a ref attribute. This attribute instructs the XML Schema to
reference the group named Address. The ShippingAddress declaration also shows how you can
use a group as well as declare additional elements.

Attributes
I’ve shown only simple attribute declarations up until this point. You can set additional pieces
of information when declaring attributes, such as attribute defaults used in a DTD. You can
also group and reference attributes when declaring an element. Groupings make it simple to
define a set of attributes common to many different elements.

Attribute Declaration

An attribute declaration has three attributes that handle setting these values. The default
attribute takes a string value to set a default value for an attribute if the attribute is not set on
an element. The fixed attribute sets a fixed string value for an attribute. The last attribute, use,
determines how to use the attribute. The possible values for the use attribute are optional,
which is also the default; required; and prohibited. The prohibited value is one you probably
don’t know. It does not have a corresponding counterpart in a DTD. This value means that the
attribute cannot be used. For example:

<xsd:attribute name="att1" type="xsd:integer" default="1" use="required" />
<xsd:attribute name="att2" type="xsd:string" fixed="fixed val" use="optional" />
<xsd:attribute name="att3" type="xsd:string" use="optional" />

You must never use the attributes fixed and default at the same time. These conflict with
each other and will cause an error in the schema.

Attribute Groups

You can group attributes just as you can group elements. You may run into cases where you
have a set of attributes applicable to a few difference elements. You may also want to group
attributes just to make the schema easier to read. You group attributes by using the
attributeGroup element:

<xsd:attributeGroup name="moveattributes">
<xsd:attribute name="moveID" type="xsd:ID" use="required" />
<xsd:attribute name="stars" type="xsd:integer" />
<xsd:attribute name="rating" type="xsd:string" use="required" />

</xsd:attributeGroup>

<xsd:element name="Movie">
<xsd:complexType>

<xsd:attributeGroup ref="movieattributes" />
</xsd:complexType>

</xsd:element>

You can use the attributeGroup element in the same way as you used a group element for
elements. The attribute ref references the xsd:attributeGroup element named movieattributes.

CHAPTER 3 ■ VALIDATION 79

6331_c03_final.qxd 2/16/06 5:04 PM Page 79

User-Derived Types
So far, you have seen how to use some built-in simple types. XML Schemas are extensible,
which allows you to define your own data types by deriving a type from a simple type. Take, for
example, the declaration for the credits element in Listing 3-26. It is a decimal data type, so
the values it can take are pretty much endless. Say you want to limit the possible values to 0,
0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4. You can’t use a built-in type directly, so you must create
your own that will be derived from the decimal data type, as shown in Listing 3-27.

Listing 3-27. Enumeration Facet for CreditType

<xsd:simpleType name="CreditType">
<xsd:restriction base="xsd:decimal">

<xsd:enumeration value="0" />
<xsd:enumeration value="0.5" />
<xsd:enumeration value="1.0" />
<xsd:enumeration value="1.5" />
<xsd:enumeration value="2.0" />
<xsd:enumeration value="2.5" />
<xsd:enumeration value="3.0" />
<xsd:enumeration value="3.5" />
<xsd:enumeration value="4.0" />

</xsd:restriction>
</xsd:simpleType>

The xsd:simpleType element has been given a name, CreditType, this time. Rather than
being contained within an element declaration, this definition can live as a child of the schema
element and be referenced directly by the type attribute of the element that wants to use this
data type. The xsd:restriction element is how user-derived types are defined. These types are
created through restrictions on existing types. In this case, the existing type is xsd:decimal, as
indicated by the base attribute. The restriction being placed on it is an enumeration of accept-
able values, as indicated by the use of the xsd:enumeration elements. The value of the value
attribute sets an acceptable value for the content when used in an XML document. Based on
this definition, you can modify the credits element to use this new data type:

<xsd:element name="credits" type="CreditType"/>

The value for the type attribute is CreditType, which is the name of the derived type you
created. It is not prefixed by xsd because this type is not part of the XML Schema specification.
Rather, this definition is a user-derived type, so the schema knows to not look within its built-in
types. You could use this type with an attribute declaration, such as <xsd:attribute name="foo"
type="CreditType"/>.

enumeration is just one of the constraining facets that is available. Constraining facet just
means it can be used to restrict values for a data type. The availability of constraining facets is
determined by the data type being derived. Not all facets are applicable to every data type. You
can use 11 other facets.

CHAPTER 3 ■ VALIDATION80

6331_c03_final.qxd 2/16/06 5:04 PM Page 80

length/minLength/maxLength

All three of these can limit the length of a data type. Using length restricts data to be exactly
the number of units set, and minLength and maxLength restrict data to be at least minLength
and/or no more than maxLength. The term units is used as the base data type and determines
what constitutes a unit. For instance, a string type consists of characters, so a unit is a charac-
ter. List types, which you haven’t come to yet, consist of items, so a unit in that case is an item.
Suppose data for the title element of a course is coming from a database. The field is set to
VARCHAR(255), and the application handling the data enforces that it must have at least five
characters. You can create a type that would also enforce this within the XML document:

<xsd:simpleType name="TitleType">
<xsd:restriction base="xsd:string">

<xsd:minLength value="5" />
<xsd:maxLength value="255" />

</xsd:restriction>
</xsd:simpleType>

The new declaration for the title element would be as follows:

<xsd:element name="title" type="TitleType"/>

If, for some reason, the data were corrupted and a title came in as <title>Bas</title>,
it would be caught when validated against the schema.

pattern

pattern restricts a value to one matching a regular expression. A simple case for this would be
validating an email address:

<xsd:simpleType name="EmailType">
<xsd:restriction base="xsd:string">
<xsd:pattern

value="([_a-z0-9-]+)(\.[_a-z0-9-]+)*@([a-z0-9-]+)(\.[a-z0-9-]+)*(\.[a-z]{2,4})" />
</xsd:restriction>

</xsd:simpleType>

The xsd:pattern element is wrapping within the example. You have to deal with some
whitespace issues when physically inserting a line feed and then trying to match against a
value.

whiteSpace

A whiteSpace element is used in a similar manner as xml:space from Chapter 2, though it pro-
vides functionality. Using the whiteSpace facet, the values can be preserve, replace, or collapse.
Values preserving whitespace leaves it intact. Values replacing whitespace will convert #x9 (tab),
#xA (line feed), and #xD (carriage return) into #x20 (spaces). Values collapsing whitespace will first
process the value using replace and then convert all contiguous sequences of #x20 (spaces) into
a single #x20. Leading and trailing spaces are also removed from the value. The following exam-
ple is defined within the context of an element declaration to illustrate that these definitions
need not be named:

CHAPTER 3 ■ VALIDATION 81

6331_c03_final.qxd 2/16/06 5:04 PM Page 81

<xsd:element name="description">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:whiteSpace value="collapse" />

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

minInclusive /maxInclusive/minExclusive/maxExclusive

These facets set either inclusive or exclusive bounds for values. inclusive means the value
must belong within the range, and exclusive means the value must belong outside the range.
Though not required to do so, normally the minInclusive and maxInclusive facets are used
together to define a range. You could define a range from 1 to 10, as in Listing 3-28.

Listing 3-28. Defining Ranges

<xsd:simpleType name="oneToTen">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="10"/>

</xsd:restriction>
</xsd:simpleType>

You could also represent this with the following:

<xsd:simpleType name="oneToTenII">
<xsd:restriction base="xsd:integer">
<xsd:minExclusive value="0"/>
<xsd:maxExclusive value="11"/>

</xsd:restriction>
</xsd:simpleType>

You could also define a type for integers greater than ten:

<xsd:simpleType name="greaterThanTen">
<xsd:restriction base="xsd:integer">
<xsd:minExclusive value="10"/>

</xsd:restriction>
</xsd:simpleType>

totalDigits/fractionDigits

These allow you to set the number of digits allowed. The totalDigits facet indicates the maxi-
mum total number of digits, and fractionDigits indicates the maximum number of decimal
places. When used together, fractionDigits can never have a value greater than the number
of totalDigits. Also, if defining a type with a base type that includes these, the values may not
be greater than defined in the base type. For example:

CHAPTER 3 ■ VALIDATION82

6331_c03_final.qxd 2/16/06 5:04 PM Page 82

<xsd:simpleType name="Digits">
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="3"/>
<xsd:fractionDigits value="2"/>

</xsd:restriction>
</xsd:simpleType>

This definition would allow numbers such as 1.11, 1.0, 1.1, and 1. The total number of
digits never exceeds three, and the number of decimal places never exceeds two.

More Simple Types
So far, you have seen how to use some built-in simple types as well as create user-derived types.
XML Schemas offer two additional varieties of simple types. They are the list and union data
types.

List Type

A list type is similar to NMTOKENS as used in a DTD for an attribute declaration. The value contains
tokens separated by whitespace. In fact, NMTOKENS is a built-in derived data type for schemas. List
types are more restrictive than NMTOKENS, though. The tokens are restricted to certain values that
you define. Using the CreditType definition created in Listing 3-27, you can create a data type
that will accept multiple values that conform to the CreditType definition and be separated by
whitespace:

<xsd:simpleType name="Credits">
<xsd:list itemType="CreditType" />

</xsd:simpleType>

The xsd:list element takes the attribute itemType, which names the data type that defined
the acceptable values. Based on this definition and an element named creditlist, which is
declared with this type, it could take the following form:

<creditlist>1.0 1.5 2.0</creditlist>

Union Type

Union types enable values to be provided from multiple data types rather than just a single data
type. If you were to define a type that was restricted to a single alpha character (A though Z) such
as this:

<xsd:simpleType name="AtoZ">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]"/>

</xsd:restriction>
</xsd:simpleType>

then you could join this via a union with the oneToTen type defined in Listing 3-28:

CHAPTER 3 ■ VALIDATION 83

6331_c03_final.qxd 2/16/06 5:04 PM Page 83

<xsd:simpleType name="MyUnion">
<xsd:union memberTypes="AtoZ oneToTen" />

</xsd:simpleType>

The xsd:union element takes the attribute memberTypes, which is a whitespace-delimited
list of data types to combine. In this case, you are using the AtoZ and oneToTen types. An ele-
ment declared with this type—for instance, myunionvals—could look like the following:

<myunionvals>A 1 I 9</myunionvals>

Complex Types and Content
Within the earlier discussion of XML Schemas, you saw how to use a complex type when
declaring elements. You have yet to look at complex content as well as the built-in complex
data type within the XML Schema specification. This is the anyType data type.

Any/Empty

As mentioned earlier, ANY and EMPTY either allow anything as element content (ANY) or allow
nothing for element content (EMPTY). The equivalent data type using XML Schemas for ANY is
the anyType data type:

<xsd:element name="description" type="xsd:anyType" />

By this declaration, the element description is completely unrestrained. It can consist of
any type of content and any type of child elements. The elements any and anyAttribute also
exist, which you can use to provide similar functionality in a more limited scope:

<xsd:element name="myelement">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="definedelement" type="xsd:string"/>
<xsd:any minOccurs="0"/>

</xsd:sequence>
<xsd:anyAttribute processContents="skip" />

</xsd:complexType>
</xsd:element>

This syntax should look familiar to you. It is a declaration for the myelement element con-
taining child elements, as noted by the xsd:sequence element. The new element within the
sequence, xsd:any, indicates that after a definedelement element any element may appear.
The element need not even be declared within the schema. The minOccurs attribute indicates
there could be zero or one element. The maximum value is from the default value for
maxOccurs, which was not explicitly set.

The xsd:anyAttribute element allows any number of attributes for the element without
restricting which ones are allowable. The attribute processContents does allow for some level
of control over attribute availability. The value skip, as used in the declaration, allows for any
attribute, even ones that have not been defined in the schema. A value of strict, which is also
the default value if processContents is omitted, will allow only those attributes that have been
declared in the schema. The third possible value is lax. This value means that if an attribute is

CHAPTER 3 ■ VALIDATION84

6331_c03_final.qxd 2/16/06 5:04 PM Page 84

used and has been declared in the schema, then it must be valid according to its declaration.
If the attribute has not been declared, then you just allow it and continue.

Empty elements are not as easily defined as the anyType ones. There is no built-in data
type, so you must create one:

<xsd:element name="myemptyelement">
<xsd:complexType />

</xsd:element>

This declaration is extremely restrictive. Absolutely no content or attributes are allowed.
You can expand upon this to allow some attributes and use a little more formal syntax in the
process:

<xsd:element name="myemptyelement">
<xsd:complexType>

<xsd:complexContent>
<xsd:restriction base="xsd:anyType">

<xsd:attribute name="myattribute" type="xsd:string" />
</xsd:restriction>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>

This declaration is a bit more formal. You should notice the xsd:complexContent element
as well as its restrictions. I wanted to throw this out there because I will be covering complex,
or mixed, content next. You could just as easily have written this as follows:

<xsd:element name="myemptyelement">
<xsd:complexType>

<xsd:attribute name="myattribute" type="xsd:string" />
</xsd:complexType>

</xsd:element>

Mixed Content

You may run into cases where you need to allow mixed content within an element. For
example:

<note>A meeting is scheduled on <meetingdate>2005-06-03</meetingdate> at
<meetingtime>15:00:00</meetingtime>.</note>

The note element contains a mixture of text and child elements. Listing 3-29 illustrates
a possible definition for this.

Listing 3-29. Using Mixed Content

<xsd:complexType name="meetingNote" mixed="true">
<xsd:all>

<xsd:element name="meetingdate" type="xsd:date"/>
<xsd:element name="meetingtime" type="xsd:time"/>

</xsd:all>

CHAPTER 3 ■ VALIDATION 85

6331_c03_final.qxd 2/16/06 5:04 PM Page 85

<xsd:attribute name="enabled" type="xsd:boolean" default="true" />
</xsd:complexType>
<xsd:element name="note" type="meetingNote" />

The attribute mixed is a Boolean, defaulting to false, which specifies whether text is
allowed within the content. To this point, the attribute has not appeared on any of the
complexType definitions; thus, the elements using the complex data type have allowed only
element and/or attributes. The attribute pertains only to the element using the type. It does
not affect elements declared within the element’s content. For example, the declaration of
the meetingNote element is of mixed content, mixed="true". The elements declared as child
elements, such as meetingdate, base their allowable content on the data type specified in
their own declaration. In the case of meetingdate, the type is xsd:date, so text content is
allowed.

You may also have noticed the use of the xsd:all element. This is an anonymous element
group since it is local to the meetingNote definition and has no name. A sequence would not
have been a good option to use in this case because the ordering of the meetingdate and
meetingtime elements could not be determined ahead of time. It was a better decision to use
xsd:all, which enforces that the elements must appear within the note content but in no
specified order.

Complex Content

Complex content allows you to restrict or extend a complex type. You have already seen how
restrictions work, so now I will show how to use complexContent to extend a complex type.
Suppose you wanted to extend the meetingNote definition in Listing 3-29 and allow an addi-
tional element for the location, called meetingLocation. Unfortunately, you can’t do this. The
base type meetingNote is using xsd:all. This element will not allow you to extend the type and
add another element to the mix. You would either have to rewrite the definition and force
sequencing or create a new data type. In this case, this is how you would rewrite the definition
using sequence:

<xsd:complexType name="meetingNote" mixed="true">
<xsd:sequence>

<xsd:element name="meetingdate" type="xsd:date"/>
<xsd:element name="meetingtime" type="xsd:time"/>

</xsd:sequence>
<xsd:attribute name="enabled" type="xsd:boolean" value="true" />

</xsd:complexType>

The xsd:all element has been removed and replaced with xsd:sequence. These elements
must not show up in the exact order though may be intermixed with text content because of
the mixed="true" attribute. An attribute named enabled has also been declared as a Boolean
with a default value of true. You can now extend this definition:

<xsd:element name="extendedNote">
<xsd:complexType>

<xsd:complexContent mixed="true">
<xsd:extension base="meetingNote">

<xsd:sequence>
<xsd:element name="meetingLocation" type="xsd:string" />

CHAPTER 3 ■ VALIDATION86

6331_c03_final.qxd 2/16/06 5:04 PM Page 86

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>

An element extendedNote has been declared with a complex type that is extending the
meetingNote definition. It is required to set the mixed attribute on the xsd:complexContent
element; otherwise, it would default to false and override the setting from the meetingNote
definition.

The xsd:extension element is where the extension begins. As with user-derived types, the
base attribute sets the base type you are using. All you want to do is add an element to the def-
inition, which is handled the same way elements are declared as children. You use the normal
xsd:sequence followed by the element declaration. Because this is an extension, this new type,
which again is anonymous and being defined within the scope of the extendedNote declara-
tion, inherits the definition of the meetingNote. The new element meetingLocation is added to
the end of the sequence group. Based on this definition, you could write an extendedNote as
follows:

<extendedNote enabled="false">
A meeting is scheduled on <meetingdate>2005-06-03</meetingdate> at
<meetingtime>15:00:00</meetingtime>
in the <meetingLocation>Green Room</meetingLocation>.

</extendedNote>

The enabled attribute was explicitly set just to illustrate that all the previous declarations
set for meetingNote still apply to the complex data type set within extendedNote. If the value for
the attribute were set to anything other than a Boolean value, validation would fail.

Notations

Notation elements within schemas are the same as notation declarations within a DTD. They
are helpers to indicate how data should be processed. Their declarations are also similar to
those in a DTD. Take a look at the following as a comparison:

<!-- Notations declared in DTD -->
<!NOTATION GIF SYSTEM "gifviewer.exe">
<!NOTATION GIF PUBLIC "image/gif" "gifviewer.exe">

<!-- Notations in XML Schemas. GIF only lowercased for consistency in schema -->
<xsd:notation name="gif" system="gifviewer.exe">
<xsd:notation name="gif" public=" image/gif " system="gifviewer.exe">

Using one of the notation declarations for an XML Schema, you could declare an element
with the attribute imagetype, which is a notation type but limited to gif or jpeg:

<xsd:element name="image">
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:hexBinary">

CHAPTER 3 ■ VALIDATION 87

6331_c03_final.qxd 2/16/06 5:04 PM Page 87

<xsd:attribute name="imagetype">
<xsd:simpleType>

<xsd:restriction base="xsd:NOTATION">
<xsd:enumeration value="jpeg"/>
<xsd:enumeration value="gif"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>

The image element would take the following form:

<image imagetype="gif">
<!-- content here in hexBinary as defined in schema -->

</image>

Annotations

Annotations are notes and instructions within a schema. They have no effect on document
validity and are used to supply either some documentation for the schema or some informa-
tion for computer processing:

<xsd:annotation></xsd:annotation>

How an annotation element is used within a schema is determined by the child elements.
It may contain documentation elements, which are used to provide schema documentation,
and/or appinfo elements, which can provide computer-processing information. For example:

<!-- simple documentation -->
<xsd:annotation>

<xsd:documentation>This is our master schema</xsd:documentation>
</xsd:annotation>

<!-- Processing information with supplied documentation -->
<xsd:annotation>

<xsd:documentation>Process the function here</xsd:documentation>
<xsd:appinfo>

$user->update(userID, name);
</xsd:appinfo>

</xsd:annotation>

The appinfo element does nothing magical. It does not automatically call the function but
is only an indicator with instructions contained within the content—much like a PI. The bur-
den still falls on you to perform any processing, if you want.

CHAPTER 3 ■ VALIDATION88

6331_c03_final.qxd 2/16/06 5:04 PM Page 88

Global and Local Scope

When using a DTD, the root element is declared in the DOCTYPE declaration to specify the start-
ing element of the document. XML Schemas do not have this concept. Schemas have the
concept of global and local scope. All definitions and declarations, which are direct child ele-
ments of the schema element, are in the global scope. Elements in this respect refer to XML
elements in general and not to xsd:elements. The rest of the declarations and definitions are
local to whichever element contains them. All elements, referring to the xsd:element elements
within the schema, declared within the global scope can be used as a root element. Unlike a
DTD, XML Schemas have the ability to validate multiple documents since any globally scoped
element declaration can be used as the root.

The schema in Listing 3-26 contains one element in the global scope. The declaration for
the courses element is the only piece of the schema in the global scope because it is the only
child of the xsd:schema element. Listing 3-30 illustrates a modified version of the schema in
Listing 3-26. Most of the course child element declarations have been omitted for brevity.

Listing 3-30. Element Declarations in Global Scope

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="courses">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="course" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="course">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>

</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>

</xsd:complexType>
</xsd:element>

</xsd:schema>

The schema in Listing 3-30 has two elements, courses and course, that have been declared
in the global scope. The courses element may have a course child element, but in this case,
instead of course being declared within the courses scope, it is declared in the global scope. The
minOccurs and maxOccurs attributes have been removed from the declaration. These attributes
have no meaning unless used within a local scope. As a result, the courses declaration contains
a reference to the course declaration: <xsd:element ref="course" minOccurs="0"
maxOccurs="unbounded" />. The value of the ref attribute is the name of the declaration, where
the referred declaration lives in the global scope. In this case, the value is course, so the schema

CHAPTER 3 ■ VALIDATION 89

6331_c03_final.qxd 2/16/06 5:04 PM Page 89

knows to look in the global scope for the declaration. It is also on this element that the minOccurs
and maxOccurs attributes are relevant because they fall within the local scope of complexType def-
inition for the courses declaration.

Documents to be validated using the schema in Listing 3-30 may now have either courses
or course as the root element. The following are a few documents that will validate against the
schema:

<!-- Document with a an empty courses element as root -->
<course />

<!-- Document with a course element as root -->
<course>

<title>French I</title>
</course>

<!-- Document with a courses element as root and a course child element -->
<courses>

<course>
<title>Spanish I</title>

</course>
</courses>

XML Schemas offer much more flexibility than a DTD in this respect. A single schema
may possibly be able to replace multiple external subsets. All declarations, not just element
declarations, may be declared in global scope and used in this manner. It would be perfectly
legal to declare an attribute in global scope and reference the global declaration when attach-
ing an attribute to an element.

Contrary to the courses and course declarations, title has been declared in the local
scope of the course declaration. It cannot be reused; thus, it would be illegal to have a decla-
ration containing ref="title".

Scope is also not limited to just declarations. DTDs are also affected by their scope. This
is why definitions, such as those created through by using a complexType, can have names.
Named definitions live in the global scope so they can be shared throughout the schema. Defi-
nitions in a local scope are not shared and thus do not require a name, as the name is pretty
much meaningless.

Examples you have seen so far containing named complexType definitions are actually
defining these in the global scope. The examples have been only small code snippets, so you
may not even have been aware of this. So what exactly does a full schema look like when shar-
ing definitions? Listing 3-31 builds on Listing 3-30 to define a complex data type named
courseType.

Listing 3-31. complexType Defined in Global Scope

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

CHAPTER 3 ■ VALIDATION90

6331_c03_final.qxd 2/16/06 5:04 PM Page 90

<xsd:element name="courses">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="course" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="course" type="courseType"/>

<xsd:complexType name="courseType">
<xsd:sequence>

<xsd:element name="title" type="xsd:string" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>

</xsd:complexType>

</xsd:schema>

The complexType definition, which was defined in the local scope in Listing 3-30, has been
given the name courseType and moved into the global scope in Listing 3-31. The attributes
minOccurs and maxOccurs have also been added to the title declaration. These are not needed,
as the values set are the default values already, but have been added to illustrate how to use the
attributes when within a local scope on an xsd:element and when not referencing a global ele-
ment declaration. Definitions are not like declarations, because a definition becomes a data
type within the schema and is used the same way as built-in data types. Notice the declaration
for the course element in Listing 3-31. It now contains a type attribute with a courseType value.
When a course element is validated within a document, it will validate according to the defini-
tion of courseType defined in the global scope.

Include

Schemas can become quite large in size, which makes them difficult to read. Many different
groups may also manage different sections of a schema. XML documents can contain aggre-
gated data, such as one group handling data related to courses with another group handling
data related to instructors. In a case like this, the group managing course data would want to
control the sections of the schema pertaining to course data, and the other group would want
to control the section pertaining to instructor data. Within a DTD, you would accomplish this
with external subsets. You could combine the subsets to form a single DTD. One method of
doing this with XML Schemas is by using the include element.

You can use include elements to create a single schema from multiple schemas within a
single namespace. You will use the import element when working across namespaces. You will
learn more about namespaces in schemas and about using import in the next sections. For now
let’s look at the schemas in Listings 3-32, 3-33, and 3-34. The first two, Listings 3-32 and 3-33,
are stand-alone schemas used to validate a course element and an instructor element. Sup-
pose you need to create a document combining data and would like to reuse these existing
schemas. Listing 3-34 illustrates a schema created from the course.xsd and instructor.xsd
schemas.

CHAPTER 3 ■ VALIDATION 91

6331_c03_final.qxd 2/16/06 5:04 PM Page 91

Listing 3-32. Course Schema course.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="course">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="lastmodified" type="xsd:dateTime"/>

</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Listing 3-33. Instructor Schema instructor.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="title" type="xsd:string" />

<xsd:element name="instructor">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="name" type="xsd:string" />
<xsd:element ref="title" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 3-34. Courses and Instructors Schema Using an Include

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:include schemaLocation="course.xsd" />
<xsd:include schemaLocation="instructor.xsd" />

CHAPTER 3 ■ VALIDATION92

6331_c03_final.qxd 2/16/06 5:04 PM Page 92

<xsd:element name="courses">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="course" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="instructors">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="instructor" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="list">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="courses" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="instructors" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>

The value of the schemaLocation attribute on the two xsd:include elements in Listing 3-34
is the URI for the schema to be included. The first element includes course.xsd and refers to
the code in Listing 3-32. The second include pulls the schema from the instructor.xsd file,
which refers to the code in Listing 3-33. Using include elements, your main schema may pull
declarations and definitions from remote files, just as if those files were part of your main
schema. You can see examples of using the remote files through the element declarations
within the xsd:sequence elements. The element is referring to, through use of the ref attribute,
declarations from both the included schemas. You may also notice the additional title ele-
ment declaration in Listing 3-33. This element is declared in the global scope but is not used
even though the course element declaration uses a title element. The title element declared
within the course element is in local scope and thus takes precedence over a global scoped
declaration. The title declaration in global scope was just a demonstration to show that
including schemas does not change the scoping rules of declarations and definitions.

■Note XML Schema includes are used when all schemas do not use namespaces or are all in the same
single namespace. To use schemas in different namespaces, you must use the import element.

CHAPTER 3 ■ VALIDATION 93

6331_c03_final.qxd 2/16/06 5:04 PM Page 93

Namespaces

You now know how to combine schemas into a single schema. One thing I haven’t addressed,
however, is what happens if the same globally named definition or declaration appears in
multiple schemas. During the development of XML Schemas, this limitation in DTDs was
addressed by namespaces. XML Schemas support namespaces that can get around this prob-
lem. This section will show how to use namespaces in schemas and will introduce some new
attributes in the process.

Listing 3-32 shows the schemas for the course data. If you were in charge of managing
the course data and its schema, you may want to ensure that your schema, if combined into
another schema, remains intact and that your declarations and definitions never conflict with
other schemas. Listing 3-35 is a modified version of the course schema in that it introduces
namespaces into the schema. The local complex type definition for the course element has
also been broken out and defined as a named type in the global scope.

Listing 3-35. Namespaced Course Schema course.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:cs="http://www.example.com/Course"
targetNamespace="http://www.example.com/Course"
elementFormDefault="unqualified"
attributeFormDefault="unqualified">

<xsd:complexType name="courseType">
<xsd:sequence>

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="lastmodified" type="xsd:dateTime"/>

</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>

</xsd:complexType>

<xsd:element name="course" type="cs:courseType" />

</xsd:schema>

Notice the new schema element. Three new attributes have been added as well as a new
namespace declaration.

Unqualified Locals The value of the targetNamespace attribute indicates the namespace in which
the global declarations and definitions reside. In this case, the courseType definition and the
course element declaration reside in the http://www.example.com/Course namespace. A name-
space declaration was also added to associate the prefix cs with this namespace. This prefix
within the schema indicates the specific data type or declaration to use. You may not have
realized this, but you have been working with namespaced data types all along. Every time
you have used one of the built-in data types, they have been prefixed with xsd. According to

CHAPTER 3 ■ VALIDATION94

6331_c03_final.qxd 2/16/06 5:04 PM Page 94

the namespace declaration on the schema element, this prefix refers to the XML Schema
(http://www.w3.org/2001/XMLSchema). Looking at the course element declaration in Listing 3-
35, the type is cs:courseType. This informs the schema to look for the courseType definition
within the http://www.example.com/Course namespace. This definition is found within the
schema that has the targetNamespace of http://www.example.com/Course. In its current form
and usage, this may not look very useful. You own this schema and are not including any other
schemas, so you shouldn’t have any problems. Namespaces become useful, however, when
others begin to use your schemas, which will be demonstrated later in the “Import” section.

Elements and attributes used within the XML document that have declarations in the
global scope must reside in the targetNamespace of the schema so that when the document is
validated, the schema knows where to look for the rules for the element. Again, this is only for
global declarations. The remaining two attributes you have not seen handle the local elements
and attributes. The elementFormDefault and attributeFormDefault attributes affect the quali-
fication of local elements and attributes within the XML document that uses this schema. The
values, in Listing 3-35, are both set to unqualified. This is already the default value for both of
the attributes so could have been left out in a real-world situation. This value informs the
schema that local elements and attributes do not have to be qualified. That is, they do not
have to be within a namespace in the XML document. Let’s take a look at a document that
uses the schema from Listing 3-35:

<?xml version="1.0"?>
<c:course xmlns:c="http://www.example.com/Course" cid="c3">

<title>French II</title>
<description>Intermediate French</description>
<credits>3.0</credits>
<lastmodified>2005-03-12T15:45:44</lastmodified>

</c:course>

The course element associates the prefix c with the namespace http://www.example.com/
Course. This namespace is the same as the targetNamespace of the schema. The element, being
the document element, must come from the global scope of a schema, and because the
schema is using namespaces, the course element must reside in this namespace. For this
reason, it is written as c:course. The local elements and attributes do not reside in any name-
space, which is perfectly legal. The schemas set the elementFormDefault and
attributeFormDefault attributes to unqualified, so none is needed. In case you are wondering
why the root must be within a namespace but local elements and attributes do not, I will
explain this.

When a document is being validated, it must know where to look for the declaration. The
root element must be a declared in the global scope of a document; otherwise, the schema will
not know where to find it. The declaration of the root element resides in the targetNamespace,
so within the document, it must be in the same namespace. As long as child elements and
attributes are declared within the scope of the root element declaration, and not declared in
the global scope and just referenced, the schema does not have to search for the declarations,
and namespaces are not needed for them.

Qualified Locals Using the value of qualified for the elementFormDefault and/or
attributeFormDefault attributes requires the XML document to place elements and attrib-
utes within the targetNamespace of the schema in order to be valid. For example:

CHAPTER 3 ■ VALIDATION 95

6331_c03_final.qxd 2/16/06 5:04 PM Page 95

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:cs="http://www.example.com/Course"
targetNamespace="http://www.example.com/Course"
elementFormDefault="qualified"
attributeFormDefault="qualified">

<xsd:complexType name="courseType">
<xsd:sequence>

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="lastmodified" type="xsd:dateTime"/>

</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>

</xsd:complexType>

<xsd:element name="course" type="cs:courseType" />

</xsd:schema>

Based on this new schema, the document validated against Listing 3-35 will no longer val-
idate. Elements and attributes must be qualified. The new document would look like this:

<?xml version="1.0"?>
<c:course xmlns:c="http://www.example.com/Course" c:cid="c3">

<c:title>French II</c:title>
<c:description>Intermediate French</c:description>
<c:credits>3.0</c:credits>
<c:lastmodified>2005-03-12T15:45:44</c:lastmodified>

</c:course>

The http://www.example.com/Course namespace must be prefixed because of the attrib-
ute. Default namespaces do not apply to attributes. You can override the elementFormDefault
and attributeFormDefault, which would allow the use of a default namespace, by using a local
form attribute.

You can use the form attribute on element and attribute declarations to override the
default settings in the schema element. Using this on the declaration of the cid attribute, the
XML document could use a default namespace and eliminate the need for prefixes:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:cs="http://www.example.com/Course"
targetNamespace="http://www.example.com/Course"
elementFormDefault="qualified"
attributeFormDefault="qualified">

CHAPTER 3 ■ VALIDATION96

6331_c03_final.qxd 2/16/06 5:04 PM Page 96

<xsd:complexType name="courseType">
<xsd:sequence>

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="lastmodified" type="xsd:dateTime"/>

</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID" form="unqualified"/>

</xsd:complexType>

<xsd:element name="course" type="cs:courseType" />

</xsd:schema>

Note that the attribute declaration for cid sets an additional attribute, form, to
unqualified. This overrides the attributeFormDefault attribute, set to qualified, for this
declaration only. Using this schema, you could now use a default namespace such as the
following:

<?xml version="1.0"?>
<course xmlns="http://www.example.com/Course" cid="c3">

<title>French II</title>
<description>Intermediate French</description>
<credits>3.0</credits>
<lastmodified>2005-03-12T15:45:44</lastmodified>

</course>

All elements fall under the default namespace, including the document element, and the
cid attribute may be unqualified, making this document valid according to the schema.

Import

You now know how to work with a namespace schema, as well as that the include element
cannot be used with multiple namespaced schemas. The import element instructs the schema
that referenced schemas are using namespaces. Listing 3-36 contains a modified instructor
schema based on the schema in Listing 3-33. It is using unqualified elements and attributes
because the elementFormDefault and attributeFormDefault attributes are not specified and
because unqualified is the default value.

Listing 3-36. Namespaced Instructor Schema instructor.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ins="http://www.example.com/Instructor"
targetNamespace="http://www.example.com/Instructor">

<xsd:element name="title" type="xsd:string" />

CHAPTER 3 ■ VALIDATION 97

6331_c03_final.qxd 2/16/06 5:04 PM Page 97

<xsd:element name="instructor">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="name" type="xsd:string" />
<xsd:element ref="ins:title" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>

Listing 3-37 is a schema modified from the one in Listing 3-34 to use new namespaced
schemas. The reference to the course.xsd file is the one from Listing 3-35.

Listing 3-37. Courses and Instructors Schema Using Import

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:c="http://www.example.com/Course"
xmlns:in="http://www.example.com/Instructor">

<xsd:import namespace="http://www.example.com/Course"
schemaLocation="course.xsd" />

<xsd:import namespace="http://www.example.com/Instructor"
schemaLocation="instructor.xsd" />

<xsd:element name="courses">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="c:course" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="instructors">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="in:instructor" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

CHAPTER 3 ■ VALIDATION98

6331_c03_final.qxd 2/16/06 5:04 PM Page 98

<xsd:element name="list">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="courses" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="instructors" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>

The only changes you will notice are the addition of two namespace declarations on the
schema element, the change from include elements to import elements, and the use of quali-
fied element references.

The namespace declarations have been added so you can associate prefixes with name-
spaces to be used for the elements referred to in the value of the ref attributes. A targetNamespace
has not been added to this schema, although one could be. Adding a targetNamespace to this
schema could affect the import elements, which will be explained shortly.

The import elements, in Listing 3-37, have two attributes. You are familiar with the
schemaLocation attribute because this was used for the import element. This attribute is not
required but is usually provided. It indicates the location of the schema to import. When not
included, it is up to the processor to be able to determine the location of the schema. The
namespace attribute indicates the namespace of the schema being imported.

A few rules surround the use of this attribute. If the main schema file has a targetNamespace,
then the value of the namespace attribute cannot be the same namespace. When import ele-
ments do not have a namespace attribute, you must specify a targetNamespace on the schema
element of the schema doing the importing. In the case of Listing 3-37, the schema does not
contain a targetNamespace attribute, so there is no limitation in this regard to the namespace
attribute. Additional rules do, however, apply to the namespace attribute in respect to the
schema being imported.

The namespace attribute must match the targetNamespace of the schema being imported.
If the namespace attribute is not present, then the schema being imported must not have a
targetNamespace. In Listing 3-37, the course.xsd and instructor.xsd files are being imported.
The namespace for the course.xsd import is http://www.example.com/Course, which matches
the targetNamespace in Listing 3-35. The namespace for the instructor.xsd import is http://
www.example.com/Instructor, which matches the targetNamespace in Listing 3-36. Based on
the rules just explained, the schema in Listing 3-37 is correct in the usage of the namespace
attributes.

Putting namespaces and import all together, the following illustrates a document written
according to the schema in Listing 3-37:

<list xmlns:c="http://www.example.com/Course"
xmlns:ins="http://www.example.com/Instructor">

<courses>
<c:course cid="c3">

<title>French II</title>
<description>Intermediate French</description>

CHAPTER 3 ■ VALIDATION 99

6331_c03_final.qxd 2/16/06 5:04 PM Page 99

<credits>3.0</credits>
<lastmodified>2005-03-12T15:45:44</lastmodified>

</c:course>
</courses>
<instructors>

<ins:instructor>
<name>John Smith</name>
<ins:title>Professor</ins:title>

</ins:instructor>
</instructors>

</list>

The list, courses, and instructors elements require no namespacing. There is no
targetNamespace for the master schema. The course element resides in the http://
www.example.com/Course namespace, but its children require no namespaces. According to
the courses.xsd schema, the elements and attributes may be unqualified. Only the course
element is required to be namespaced because the element declaration resides in the global
namespace. The instructor element, as well as its child title element, is namespaced. Both
of these elements are declared within the global scope of the instructor.xsd file, but the
name element is not. Lastly, the namespaces attached to elements, which are namespaced,
match the targetNamespace of the schema from which the element declaration was made.

As you have seen so far, schemas can get complex. You have many different aspects to
take into account, such as scope, namespaces, include, and import. All these factors, although
contributing to the complexity, also open the door to great possibilities in flexibility and gran-
ularity when defining a document’s structure. XML Schemas have great extensibility—not
only using user-derived data types but also from the nested include and import possibilities.
XML Schemas are just one alternative to using a DTD.

In the next section, you’ll look at Relax NG and how to utilize it for validation.

Using RELAX NG
RELAX NG is another alternative to DTDs and XML Schemas. It is a schema specification by
OASIS that offers the extensibility of XML Schemas but is simple to use. RELAX NG can be
written in compact syntax or XML syntax. Compact syntax is out of the scope of this book,
as it is not currently supported in any of the PHP extensions. The following sections will deal
strictly with the XML syntax used to create RELAX NG schemas per the OASIS Committee
Specification dated December 3, 2001 (http://relaxng.org/spec-20011203.html).

■Note Unless explicitly noted, the term schema in this section refers to a RELAX NG schema and not an
XML Schema.

RELAX NG is based on patterns. In terms of an XML Schema, an element declaration is
a form of pattern. It defines an element with a given name. When written in RELAX NG gram-

CHAPTER 3 ■ VALIDATION100

6331_c03_final.qxd 2/16/06 5:04 PM Page 100

mar, this particular element in an XML document, when encountered, would match the pattern
in the RELAX NG schema. This may sound a little confusing at first but is simple in reality.

Introducing RELAX NG
Just as was done with XML Schemas, I’ll show first how to build a schema with RELAX NG and
then explain the process in more detail. I’ll use the document in Listing 3-24 to show how to
build a RELAX NG schema. The schema will be written to the file course.rng. This time, rather
than an inside-out approach, it will be top-down. These schemas, as they are pattern-based,
take a descriptive approach. Analyzing the document in Listing 3-24, you will start with the
document element, courses, as it is the first element in the tree. Thinking about it descrip-
tively, you can say you have an element named courses:

<?xml version="1.0" encoding="utf-8" ?>
<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">
</element>

This looks similar to XML Schemas in a way. The namespace http://relaxng.org/ns/
structure/1.0 is the namespace for RELAX NG schemas. It works the same way as setting the
namespace for XML Schemas in the schema element. In this case, however, it is not prefixed.
It is perfectly valid to associate a prefix with the namespace, but make sure if you do that all
elements are set to that namespace. RELAX NG handles namespaces differently than XML
Schemas, so more often than not you will see the RELAX NG namespace set as a default name-
space rather than with an associating prefix. This element ends up as the root of the schema,
which also is different from XML Schemas (which require the schema element).

Moving to the courses child elements, you come to the course element. You know that text,
other than the insignificant whitespace, is not allowed as direct content of the courses element.
The only allowable content is zero or more course elements. So, following this description, you
can continue writing the schema:

<?xml version="1.0" encoding="utf-8" ?>
<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">

<zeroOrMore>
<element name="course">

<empty/>
</element>

</zeroOrMore>
</element>

The element named courses can have zero or more, zeroOrMore, child elements named
course. The element pattern for course contains an additional child. This is so the schema will
be valid. Element patterns cannot be empty, so <element name="course" /> is not correct. The
empty element means a course element must be empty and may not contain text or child ele-
ments. This will be removed shortly, so for now it is just a placeholder while keeping the
schema correct.

Continuing through the document, you must first address the cid attribute, which is
required for the course element:

CHAPTER 3 ■ VALIDATION 101

6331_c03_final.qxd 2/16/06 5:04 PM Page 101

<?xml version="1.0" encoding="utf-8" ?>
<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">

<zeroOrMore>
<element name="course"

datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
<attribute name="cid">

<data type="ID"/>
</attribute>
<empty/>

</element>
</zeroOrMore>

</element>

You are probably thinking this is a lot of code just to add an attribute of type ID; you may
also be wondering why there is a reference to XML Schemas. I’ll explain data types throughout
this section as well as their relation to patterns, but for now I will say that RELAX NG has two
built-in data types, which are string and token. It does allow you to use externally defined
data types, such as the ones from XML Schemas. You do this by using the datatypeLibrary
attribute. This attribute could have been specified on the attribute element for cid, but rather,
it was defined on the element for course. RELAX NG will use whatever datatypeLibrary is in
scope, which means if one is not set on the current element, it will search in the hierarchy of
the element patterns. Once a datatypeLibrary is in scope, the data type is set using the data
element. The type attribute specifies the ID data type from the XML Schema data types, which
is http://www.w3.org/2001/XMLSchema-datatypes. This effectively sets the attribute named
cid to type ID. Now you can start dealing with the child elements of the course element and
remove the empty element being used as a placeholder.

Moving along, you come to the title element. You define this just like the other element,
except in this case it contains text content. The same holds true for the description element,
so you will add the pattern for this at the same time:

<?xml version="1.0" encoding="utf-8" ?>
<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">

<zeroOrMore>
<element name="course"

datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
<attribute name="cid">

<data type="ID"/>
</attribute>
<element name="title">

<text/>
</element>
<element name="description">

<text/>
</element>

</element>
</zeroOrMore>

</element>

CHAPTER 3 ■ VALIDATION102

6331_c03_final.qxd 2/16/06 5:04 PM Page 102

In this example, the title and description definitions both use the text pattern. As long
as the content of the elements is empty or text (which includes comments, CDATA, and PIs),
the element is valid. You could have also used the string data type here, but I recommend the
text pattern in this case. I’ll discuss the differences between the two later in this section.

The next elements are credits and lastmodified. Using XML Schemas, their data types are
decimal and dateTime. The decimal data type ensures the content of credits is always and only a
decimal, and dateTime ensures the content of lastmodified conforms to the dateTime data type.
You define their patterns in the same way you define the pattern for the attribute cid:

<element name="credits">
<data type="decimal"/>

</element>
<element name="lastmodified">

<data type="dateTime"/>
</element>

The entire schema was not included here, as you should have an idea of where these
pieces should go. They are required elements in an ordered list of elements and go directly
after the description element.

Moving to the element following lastmodified, you come to the pre-requisite element.
This element is not required but may appear zero or more times. You write the definition the
same way you added the course definition. You need to use the zeroOrMore pattern. Defining
the rest of the contents for the pre-requisite element should now be fairly easy to figure out
yourself, so the entire RELAX NG schema, for the courses document in Listing 3-24, is pre-
sented in Listing 3-38.

Listing 3-38. RELAX NG Schema for Courses Document

<?xml version="1.0" encoding="utf-8" ?>
<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">

<zeroOrMore>
<element name="course"

datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
<attribute name="cid">

<data type="ID"/>
</attribute>
<element name="title">

<text/>
</element>
<element name="description">

<text/>
</element>
<element name="credits">

<data type="decimal"/>
</element>
<element name="lastmodified">

<data type="dateTime"/>
</element>

CHAPTER 3 ■ VALIDATION 103

6331_c03_final.qxd 2/16/06 5:04 PM Page 103

<zeroOrMore>
<element name="pre-requisite">

<attribute name="cref">
<data type="IDREF"/>

</attribute>
<attribute name="req_next_sem">

<data type="boolean"/>
</attribute>
<element name="instructor_approval">

<data type="boolean"/>
</element>

</element>
</zeroOrMore>

</element>
</zeroOrMore>

</element>

Although the ability to use XML Schema data types, which you learned about in the previ-
ous section, helped make this section much shorter than when building an XML Schema for
the same set of data, you must admit the syntax for RELAX NG is also much simpler. Reading
the schema in Listing 3-38, you’ll see it’s straightforward. The majority of the grammar is
element-based with few or no attributes. The next section will take a more in-depth look at
RELAX NG, its patterns, and its grammar.

Understanding the Structure
Now that you have some familiarity with a RELAX NG schema, you can take a more in-depth
look at using patterns and creating more complex schemas. I’ll touch on many new concepts.
The first pattern I will cover is a nameClass. It may not make total sense to you initially but will
become much clearer as you see how it is used within this section.

■Note All RELAX NG examples are assumed to be in the http://relaxng.org/ns/structure/1.0
namespace if not explicitly set within the example.

nameClass/exceptNameClass
A nameClass is a pattern that matches a name, where the name may be the name of an ele-
ment or attribute. The exceptNameClass is not really its own pattern but a case for the except
pattern. You can use the pattern in conjunction with the nameClass pattern, so I’ll discuss it
in that context here. You have seen so far that you can define an element using the grammar
<element name="ename">. This would cause RELAX NG to match on the element named ename
in the XML document. Using a nameClass, you could also write it as follows:

CHAPTER 3 ■ VALIDATION104

6331_c03_final.qxd 2/16/06 5:04 PM Page 104

<element>
<name>ename</name>
<empty/>

</element>

This syntax also applies to attributes. In most cases, it is much simpler to just use the name
attribute on the element. Sometimes, however, using the nameClass can be useful. The empty
element has been added as a placeholder because no pattern for content has been defined.

The XML Schema has the any element to allow any element as a child element. RELAX NG
uses anyName within an element or attribute pattern. It translates to match the element or
attribute on any name value. So, for example, to allow any element to be matched, you could
write the following:

<element>
<anyName />
<empty/>

</element>

You can use exceptNameClass with anyName to explicitly disallow certain elements from
matching. To match any element except the element’s named title, you could write it as follows:

<element>
<anyName>

<except>
<name>title</name>

</except>
</anyName>
<empty/>

</element>

The except pattern is used here within the content of the anyName element. When used
within a nameClass, it is called exceptNameClass. It functions exactly as it is named. It defines
the exceptions for the current pattern. In this case, you are matching on any element name
and would like to exclude elements named title from the match. To add an element that
should be excluded from the match, you add a name element as a child element of the except
element. The exceptNameClass also pertains to namespaces, which I’ll discuss later in the sec-
tion “Namespaces.”

Another nameClass, which is also used within patterns, is choice. You can use choice to
allow for one of the choices to be matched on, like so:

<element>
<choice>

<name>title</name>
<name>description</name>

</choice>
<empty/>

</element>

Based on this pattern, a match would be made against a title element or a description
element, but not both.

CHAPTER 3 ■ VALIDATION 105

6331_c03_final.qxd 2/16/06 5:04 PM Page 105

Patterns
The majority of RELAX NG patterns use more patterns as their content. Looking at the previ-
ous example, the content of the element pattern is the choice pattern and the empty pattern.
The empty pattern does not have content, but the choice pattern contains two name patterns,
which in this case are the nameClass patterns. The following sections will examine many of the
patterns used to write a RELAX NG schema.

Choice

The choice pattern allows for any one of the patterns within the choice element content. You
have seen this used within the nameClass to allow an element to match against one of the two
nameClass patterns listed. This pattern has much greater use than just nameClass. For example:

<element name="food">
<attribute name="group">

<choice>
<value>meat</value>
<value>fruit</value>
<value>dairy</value>
<value>grain</value>

</choice>
</attribute>
<text/>

</element>

Here, the valid value for the group attribute may be meat, fruit, dairy, or grain. Anything
else is not valid for this attribute.

You can use this pattern anywhere you would like to allow a match based on one of any
number of patterns. In the previous example, you were within the context of an attribute defi-
nition, so choice was set to allow for matching on one of the specified attribute values. You
could have easily used it to match on a selection of attributes, elements, or content as well.
The thing to remember is that the choice pattern contains any number of patterns where one
must be matched.

Optional

The optional pattern indicates the pattern it contains is optional. This means it either must
match the pattern or must not exist. If something exists that doesn’t match the indicated pat-
tern, then the document is not valid. For example:

<element name="course">
<optional>

<element name="pre-requisite">
<text/>

</element>
</optional>

</element>

This pattern allows the course element to either have a pre-requisite child element or
have empty content. You could have written this as follows:

CHAPTER 3 ■ VALIDATION106

6331_c03_final.qxd 2/16/06 5:04 PM Page 106

<element name="course">
<choice>

<element name="pre-requisite">
<text/>

</element>
<empty/>

</choice>
</element>

Using the optional pattern not only reduces the schema by a line because the empty
pattern is not needed, but you can also use it with virtually any pattern.

Group

The power and simplicity of patterns should be fairly obvious by now. One question you may
have at this point is when building definitions, how can a group of patterns be considered a
single pattern for matching? The answer is simple. Use the group pattern. This pattern allows
you to add as many patterns within the group element. These patterns together constitute a
single pattern when using the group element. Take, for example, the choice pattern. You would
like the content of an element to match both the elements title and description, in that
order, or just plain-text content. For example:

<element name="course">
<choice>

<group>
<element name="title">

<text/>
</element>
<element name="description">

<text/>
</element>

</group>
<text/>

</choice>
</element>

You can see that the content for choice is the group pattern and the text pattern. Using
the rules for choice, it must match one of these two patterns. The group pattern is a more com-
plex pattern, though. Its pattern translates to matching both a title element with text content
followed a description element with text content. These two patterns are taken as a single
unit when matching on the choice pattern.

Mixed

Earlier I showed how to mix text and child elements within content. That mixing, however,
was an ordered mix. It was done using the text pattern and the element pattern. Although in
many cases the ordering of elements is known, the placement of text is not. You could always
add a text pattern between every single element pattern, but that gets cumbersome. You can
use the mixed pattern to simplify this:

CHAPTER 3 ■ VALIDATION 107

6331_c03_final.qxd 2/16/06 5:04 PM Page 107

<element name="course">
<mixed>

<element name="title">
<text/>

</element>
<element name="description">

<text/>
</element>

</mixed>
</element>

Using the mixed pattern, this code defines a title and a description element, which must
appear in that order. The mixed pattern allows text content to appear before and after each one
of the elements. The XML document could look like the following:

<course>
some text
<title/>
more text
<description/>
even more text

</course>

Because of its nature, the mixed pattern is used only for element content. It is not valid to
have mixed content anywhere else in an XML document.

Interleave

The closest you have come so far to variable ordering has been the mixed pattern. That pattern
involves the ordering of text content only, which is not useful when dealing with nontext pat-
terns. The interleave pattern is the pattern to use when ordering should not be taken into
account:

<element name="course">
<interleave>

<element name="title">
<text/>

</element>
<element name="description">

<text/>
</element>
<text/>

</interleave>
</element>

This example probably looks familiar to you. The mixed example has been changed to use
the interleave pattern. The text pattern has been added as a child of the interleave element
so that the content may contain any number of text blocks interspersed with a title element
and a description element. These two elements may also appear in any order. There still must
be one and only one title element and one and only one description element. The XML doc-
ument could now look like this:

CHAPTER 3 ■ VALIDATION108

6331_c03_final.qxd 2/16/06 5:04 PM Page 108

<course>
some text
<description/>
even more text
<title/>
more text

</course>

ZeroOrMore/oneOrMore

When a pattern must be matched at least zero or one times and may be repeated any number
of times, you can use the zeroOrMore and oneOrMore patterns. The content of the courses ele-
ment, from Listing 3-38, can be empty or contain any number of course elements:

<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">
<zeroOrMore>

<element name="course">
<text/>

</element>
</zeroOrMore>

</element>

If at least one course element were required, you would use the oneOrMore pattern. Con-
sider a document that consisted of a document element named document that could contain
any number of title and author elements. These elements may also appear in any order.
From the previous pattern, you know you must use the interleave pattern so elements can
appear in any order. Both elements are not required in the document, but at least one of them
must appear as a child element of the document element. One way to accomplish this is using
the choice pattern. The choice will make sure that at least one of the element patterns match.
This still leaves you with only a single element. You must apply the oneOrMore pattern so that
multiple choices may be selected. For example:

<element name="document" xmlns="http://relaxng.org/ns/structure/1.0">
<oneOrMore>

<interleave>
<mixed>

<choice>
<element name="title">

<text/>
</element>
<element name="author">

<text/>
</element>

</choice>
</mixed>

</interleave>
</oneOrMore>

</element>

CHAPTER 3 ■ VALIDATION 109

6331_c03_final.qxd 2/16/06 5:04 PM Page 109

Even though this may seem like a complicated pattern, it is actually simple. Reading the
definition from top-down, you know that the element named document can have content con-
taining one or more, in any order, title elements and/or author elements, which may also be
mixed with text content. The mixed pattern was added within the interleave, and the text
pattern was removed from the choice pattern to ensure that at least one element is required
while still allowing for text content to be mixed in the document content.

List

The list pattern is similar to the NMTOKENS data type. It will match the patterns defined as its
contents where the tokens are separated by whitespace:

<element name="course" xmlns="http://relaxng.org/ns/structure/1.0"
datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

<attribute name="code">
<list>

<data type="integer" />
<data type="integer" />
<data type="integer" />

</list>
</attribute>
<empty/>

</element>

This schema defines the value of the code attribute to consist of exactly three integers
separated by whitespace. A document based on this schema could look like this:

<course code=" 1 2 3 4" />

Lists are used with patterns that can provide a distinct value, such as a data type or attrib-
ute value:

<element name="food" xmlns="http://relaxng.org/ns/structure/1.0">
<attribute name="group">

<list>
<oneOrMore>

<choice>
<value>meat</value>
<value>fruit</value>
<value>dairy</value>
<value>grain</value>

</choice>
</oneOrMore>

</list>
</attribute>
<text/>

</element>

CHAPTER 3 ■ VALIDATION110

6331_c03_final.qxd 2/16/06 5:04 PM Page 110

The element food must have a group attribute with a value consisting of one or more of
the possible values separated by whitespace. A document validating against this schema could
be as follows:

<food group="dairy grain">Milk and Bread</food>

Elements

You have seen two ways to define an element. One uses the name attribute, and the other uses
a nameClass. In both cases, the actual content of the element, when instantiated in an XML
document, must also be defined as a pattern. The nameClass section used the empty pattern,
which means the content of the element must be empty. You have also seen that the text pat-
tern indicates that the element can contain only text. I mentioned that you could also use the
string data type, so let’s take a look at the differences.

Text Pattern vs. String Data Type Specifying an element with content matching the text pattern
and defining the element to be of the string data type may seem like they function in the same
way. In their simplest forms they do. The following examples are pretty much equivalent:

<!-- element using text pattern -->
<element>

<anyName/>
<text/>

</element>

<!-- element using string data type -->
<element>

<anyName/>
<data type="string" />

</element>

In this case, the two definitions allow the same content. It is preferable to use the text
pattern, because it’s a native RELAX NG pattern.

The type of schema you are writing helps drive the decision for which to use as well. If, in
the future, you need to expand the element to allow for mixed content, you could easily do it
using the text pattern with other patterns. By setting the data type to string, the content is
fixed to only text content. If the schema being designed were to be used to validate data that is
coming from a database, string is probably the better choice. Using the data type, you could
explicitly set the minimum and maximum lengths so that it would match the constraints you
use for the data in the database.

<element>
<anyName />
<data type="string">

<param name="maxLength">25</param>
</data>

</element>

CHAPTER 3 ■ VALIDATION 111

6331_c03_final.qxd 2/16/06 5:04 PM Page 111

A param element has been added as a child of the data element. The param set is the maxLength
attribute for the string data type from XML Schemas. This would enforce the text content to be
no more than 25 characters in length. The text pattern does not have this notion. It just cares that
the content contains only text.

On the flip side, the string data type now introduces limitations that prevent further
extensibility. The element needs to allow for either text content or a child element. With a data
type, you are stuck. You need to rewrite the definition. If you have used the text pattern, then
you could just extend it:

<element>
<anyName />
<choice>

<text/>
<element>

<anyName/>
<empty/>

</element>
</choice>

</element>

In this case, a choice was added, allowing the content to be either text or any empty ele-
ment. When deciding which method to use, you should consider what the schema needs to
validate. If you need strong data typing, such as in the case of enforcing data from a database,
then you should probably use the string data type. If the text were just content, then the text
pattern would be the best choice. In most cases, the text pattern is more commonly used over
a string data type.

Content Content for an element must be defined, even if the element must be empty. Empty
content when pattern matching means the element has no content and no attributes. Ele-
ments that have no content but do have attributes are able to get around having to define
content. When the attribute pattern is included within the element pattern, unless otherwise
set, the content for an element is considered to match the empty pattern. For example:

<element name="course">
<empty />

</element>

<element name="course">
<attribute name="cid" />

</element>

This is all legal syntax. The first case explicitly sets the content to empty so would match
a course element that has no attributes and is empty. The second case assumes the content is
empty but not required to be stated in the definition because an attribute has been defined.
This would match on a course element with the attribute cid and empty content.

Although the text pattern does not offer much in limiting the textual content of an ele-
ment, the value pattern can define allowable content. Take an element named number, where
the content is text and must be a number from 1 to 3:

CHAPTER 3 ■ VALIDATION112

6331_c03_final.qxd 2/16/06 5:04 PM Page 112

<element name="number">
<choice>

<value>1</value>
<value>2</value>
<value>3</value>

</choice>
</element>

A valid element for this would be <number>2</number>; <number>5</number> would not
be valid.

Throughout the RELAX NG section, you have encountered many ways to define the con-
tent of an element. The important point to remember is that element content is defined by
patterns. To finish off the section on content, I will leave you with a different version of the
1 to 3 content:

<element name="number" xmlns="http://relaxng.org/ns/structure/1.0"
datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

<data type="integer">
<param name="minInclusive">1</param>
<param name="maxInclusive">3</param>

</data>
</element>

Attributes

Using the attribute pattern is similar to using the element pattern. The differences are allow-
able content and ordering. When defining an attribute, the content must use patterns that
result in a concrete value. Patterns such as zeroOrMore and oneOrMore, unless used with a list
pattern, will not work with the value pattern. Attributes cannot have multiple values. Using a
list is an exception because a list consists of multiple values combined by whitespace separa-
tors to make a single value in the instantiated document. Ordering is also not important when
using attribute patterns. Elements match based on the order of their definitions, so the
interleave pattern needs to be used to allow random ordering. You can define attributes,
on the other hand, in any order and validate them in any order.

Default Type When defining an attribute that has text content with no further constraints, you
can define the attribute simply with just the name attribute:

<attribute name="attname" />

Unlike the element pattern, the attribute pattern defaults to the text pattern for its con-
tent. An equivalent, but unnecessary, way to write the definition is as follows:

<attribute name="attname">
<text/>

</attribute>

It is much easier to just write a single line and save some typing.

CHAPTER 3 ■ VALIDATION 113

6331_c03_final.qxd 2/16/06 5:04 PM Page 113

Value Pattern The value pattern offers the ability to provide more control over attribute values
than using the text pattern. Using this pattern, not only can specific values be matched upon,
but also the type of the acceptable value can also be enforced. Suppose you had an attribute
called priority, which should have only the values 1 through 3. You can set the acceptable
values using the value pattern for the attribute definition:

<attribute name="priority">
<choice>

<value type="integer">1</value>
<value type="integer">2</value>
<value type="integer">3</value>

</choice>
</attribute>

You use the choice pattern so that the attribute value can match against one of the con-
tained value patterns. The value pattern provides an acceptable value for the instantiated
attribute’s value, so based on the patterns, the attribute value must match the value 1, 2, or 3.
The type attribute, which may be omitted because it’s not really necessary, is just enforcing
that the values specified are integer types.

Data Types You can also specify attribute values by data types without specifying a specific
value. This is something you have become acquainted with already throughout the RELAX NG
section. Data types allow the use of the built-in data types from XML Schemas to be used to
validate attributes. If the priority attribute from the previous example could be any integer
number, it would be written using the data pattern rather than using the value pattern. For
example:

<attribute name="priority">
<data type="integer" />

</attribute>

You can limit the value the attribute can have to 1, 2, and 3 by leveraging XML Schema
components applicable to the data type being used. In this case, the integer data type may
indicate the minInclusive and maxInclusive values. These are passed using the param element
within the data element content:

<attribute name="priority">
<data type="integer">

<param name="minInclusive">1</param>
<param name="maxInclusive">3</param>

</data>
</attribute>

Just as is the case with elements, attributes and their values are matched with patterns. If
you can write a pattern that will ultimately result in a legal value for an attribute, then the pat-
tern should work, no matter how complicated it may seem.

CHAPTER 3 ■ VALIDATION114

6331_c03_final.qxd 2/16/06 5:04 PM Page 114

Namespaces
Namespaces are handled much differently in RELAX NG than in XML Schemas. In RELAX NG,
namespaces are handled by using an ns attribute. Using real namespaces in the schema, those
defined by xmlns provide a way to add information in the schema, which is ignored by RELAX
NG. All elements and attributes within the schema (which are not in the RELAX NG name-
space, http://relaxng.org/ns/structure/1.0), are ignored:

<element name="course" xmlns="http://relaxng.org/ns/structure/1.0"
xmlns:priv="http://www.example.com/Private>

<zeroOrMore>
<element name="title" priv:myattribute="I am ignored">

<text/>
</element>
<!-- The following element is ignored -->
<priv:element name="title">

<!-- this looks like a dupe but this element is ignored -->
<!-- ignore name attribute - attributes dono' inherit default namespace -->

</priv:element>
</zeroOrMore>

</element>

By specifying a namespace outside the RELAX NG namespace, you can add any type of
content to the schema. From user notes to custom elements and attributes that you can use in
other ways, such as processing the schema as straight XML, they are all ignored when being
processed by the RELAX NG processor.

Now that you know that normal namespace usage is not how validation with namespaces
is done, you will look at how to handle validation with namespaced documents.

Unqualified Names

Validating namespaced documents is quite easy. The element and attribute patterns can use
the ns attribute to specify the namespace that an element or attribute must reside in:

<element name="course" ns="http://www.example.com/course">
<text/>

</element>

Based on this definition, matches will be made against these elements:

<course xmlns="http://www.example.com/course" />
<c:course xmlns:c="http://www.example.com/course" />

but not these elements:

<course />
<course xmlns="http://www.example.com/other" />

Setting the ns value to an empty string is the same as not including the ns attribute at all.
<element name="course" ns=""> is equivalent to <element name="course">.

CHAPTER 3 ■ VALIDATION 115

6331_c03_final.qxd 2/16/06 5:04 PM Page 115

The namespace set by the ns value on an element definition is inherited by all child ele-
ments. You don’t need to add an ns attribute to every element within the scope of the defining
element. It may be overridden by a child element, which would set the namespace to the new
value within the scope of the element providing the new definition. This is one reason to use
the ns attribute with an empty string. When in a namespace scope, you may need to change
the namespace including using no namespace:

<element name="course" ns="http://www.example.com/course">
<element name="pre-requisite">

<attribute name="req_next_sem" ns="http://www.example.com/course">
<data type="boolean"/>

</attribute>
<empty/>

</element>
<element name="instructor_approval" ns="">

<data type="boolean"/>
</element>

</element>

The definition for the course element will match a course element within the http://
www.example.com/course namespace. The namespace matching is inherited by the pre-requisite
element, so in the XML document a pre-requisite element must also reside in this name-
space. You will notice that the namespace had to be added to the attribute definition as well.
If you recall, attributes do not inherit default namespaces, so in order to match against the
attribute req_next_sum within the namespace, it must be explicitly defined on the attribute
definition. The instructor_approval definition is not in a namespace in the XML document,
so for the definition, you must remove the namespace match by setting the ns value to the
empty string. It will not work just leaving off the ns attribute as you saw with the pre-requisite
element, because the namespace would be inherited from the course definition. An XML
document conforming to this schema would look like this:

<c:course xmlns:c="http://www.example.com/course">
<c:pre-requisite c:req_next_sem="true">
<instructor_approval>true</instructor_approval>

</c:course>

Qualified Names

Using qualified names makes it much easier to write schemas for namespaced documents.
This is the one case where the true use of namespaces is not ignored by the RELAX NG proces-
sor. Rewriting the definition using qualified names rather than ns attributes, the schema
would look like this:

<element name="c:course" xmlns:c="http://www.example.com/course">
<element name="c:pre-requisite">

<attribute name="c:req_next_sem">
<data type="boolean"/>

</attribute>

CHAPTER 3 ■ VALIDATION116

6331_c03_final.qxd 2/16/06 5:04 PM Page 116

<empty/>
</element>
<element name="instructor_approval">

<data type="boolean"/>
</element>

</element>

This code associates the namespace http://www.example.com/course with the prefix c.
Within the element and attribute definitions, the value for the name attribute has been prefixed
with c. The processor will now match on the name being in the namespace associated with the
prefix c. Also notice that the definition for the instructor_approval element no longer needs to
set the ns attribute. There is no namespace in scope, because the ns attribute has not been used
within the schema, so it effectively will match only against an instructor_approval element
that is not in any namespace.

If using both unqualified and qualified names, the qualified name takes precedence over
the namespace that is in scope from an ns attribute value. A qualified name would be similar
to setting an explicit ns attribute for that element except using the qualified name does not
affect namespace scope. Whichever namespace may be in scope before using a qualified
name continues to stay in scope for children on the definition using the qualified name.

Defines and Grammar
Defines in RELAX NG are like using user-derived named types in XML Schemas. Using a
define, you can give a pattern a name that then can be referred to within your schema. For
simple schemas, this may not offer much advantage but simplifies things when using a com-
plex pattern that needs to be used in many places.

To name a pattern, the schema changes structure a bit from what you have come accus-
tomed to so far. A grammar element is needed that encapsulates the schema. You may think of
this as having to use the schema element in an XML Schema. Within the grammar element, a
start element is used, which indicates the start pattern to match an XML document against.
The content of the start element would be the top of the schemas you have been exploring
earlier in this chapter. If you take the original schema from Listing 3-38 and place it within a
grammar element, it would look like this:

<?xml version="1.0" encoding="utf-8" ?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
<element name="courses">

<zeroOrMore>
<element name="course"

datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
<attribute name="cid">

<data type="ID"/>
</attribute>
<element name="title">

<text/>
</element>

CHAPTER 3 ■ VALIDATION 117

6331_c03_final.qxd 2/16/06 5:04 PM Page 117

<element name="description">
<text/>

</element>
<element name="credits">

<data type="decimal"/>
</element>
<element name="lastmodified">

<data type="dateTime"/>
</element>
<zeroOrMore>

<element name="pre-requisite">
<attribute name="cref">

<data type="IDREF"/>
</attribute>
<attribute name="req_next_sem">

<data type="boolean"/>
</attribute>
<element name="instructor_approval">

<data type="boolean"/>
</element>

</element>
</zeroOrMore>

</element>
</zeroOrMore>

</element>
</start>

</grammar>

All you had to do was place the entire schema within the <grammar><start></start>
</grammar> tags and move the RELAX NG namespace to the grammar element. Remember that
RELAX NG ignores everything not in its namespace, so if the namespace declaration is not
moved, the entire schema is ignored.

Although no repetitive patterns in reality exist that would make sense moving to a define,
I will show how to create a named pattern for the patterns contained within the course defini-
tion. This would allow future use in the event a new type of course element were introduced
that was not an extension of course but instead a distinct type of course that had the same
internal definition:

<?xml version="1.0" encoding="utf-8" ?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
<element name="courses">

<zeroOrMore>
<element name="course">

<ref name="courseContent" />
</element>

</zeroOrMore>
</element>

</start>

CHAPTER 3 ■ VALIDATION118

6331_c03_final.qxd 2/16/06 5:04 PM Page 118

<define name="courseContent"
datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

<attribute name="cid">
<data type="ID"/>

</attribute>
<element name="title">

<text/>
</element>
<element name="description">

<text/>
</element>
<element name="credits">

<data type="decimal"/>
</element>
<element name="lastmodified">

<data type="dateTime"/>
</element>
<zeroOrMore>

<element name="pre-requisite">
<attribute name="cref">

<data type="IDREF"/>
</attribute>
<attribute name="req_next_sem">

<data type="boolean"/>
</attribute>
<element name="instructor_approval">

<data type="boolean"/>
</element>

</element>
</zeroOrMore>

</define>

</grammar>

The start element now contains only a small piece of the actual pattern to match against.
The bulk has been moved to the define element named courseContent. The definition of the
course element now just has to use a ref element to refer to the pattern named courseContent.
You probably notice that the datatypeLibrary attribute no longer resides on the course defini-
tion. No data types are used within the scope of the element anymore, just a ref element. The
data types are now in the scope of the define element, so the attribute needs to be moved there.
It also would have been perfectly fine to move the datatypeLibrary attribute to the grammar ele-
ment as well. Since the define attribute is within the scope of the grammar element, it would
inherit the library.

External Patterns
The last piece of RELAX NG I will cover deals with accessing external patterns. You have seen
how to do similar things with DTDs, using external references, as well as with XML Schemas,
using include and import. Relax NG uses an externalRef element to accomplish this:

CHAPTER 3 ■ VALIDATION 119

6331_c03_final.qxd 2/16/06 5:04 PM Page 119

<externalRef href="URI" />

This element takes a single href attribute. The value of this element is a URI pointing to
the location of the RELAX NG grammar file to use. The file being referenced must begin with
the grammar tag and indicate the start of the pattern within a start tag. You could take the pre-
vious example using the define and move the define into its own file. The main schema would
be short and simple:

<?xml version="1.0" encoding="utf-8" ?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
<element name="courses">

<zeroOrMore>
<element name="course">

<externalRef href="coursecontent.rng" />
</element>

</zeroOrMore>
</element>

</start>
</grammar>

The ref element has been changed to an externalRef element with the href pointing
to the file coursecontent.rng. The contents of the coursecontent.rng file would contain the
following:

<?xml version="1.0" encoding="utf-8" ?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
<ref name="courseContent" />

</start>

<define name="courseContent"
datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

<attribute name="cid">
<data type="ID"/>

</attribute>
<element name="title">

<text/>
</element>
<!-- Additional patterns omitted for brevity -->

</define>

</grammar>

The define in the coursecontent.rng file was left intact and a start tag was added, which
instructs RELAX NG to begin with the named define courseContent. The define could have
also been removed and the contents placed directly within a group tag, which in turn could
then be placed within the start tag, but this was written in this manner to illustrate using a
ref element within the start tag. A group element would have been needed had this been

CHAPTER 3 ■ VALIDATION120

6331_c03_final.qxd 2/16/06 5:04 PM Page 120

done because a start element may contain only a single element. The group element would
be used to take the patterns as a whole. This also would mean that the datatypeLibrary would
have to have been moved to the group element so that all the contained patterns would have
access to it.

■Caution A start element can have only a single element. If your patterns are not contained with a single
element, you must either use a named define or use a group element to encapsulate them.

RELAX NG Summary
Although I’ve provided a lot of information about RELAX NG (which should be plenty to get
you started using it for validation), I have not covered certain areas. Some are not applicable
to using RELAX NG in PHP 5, and others are just out of the scope of this book. For further
information on RELAX NG, you can find the full specifications and a tutorial at http://
www.relaxing.org/.

Conclusion
This chapter covered how to validate documents using DTDs, XML Schemas, and RELAX NG.
You should now know what validation is and be comfortable with analyzing and writing at
least basic schemas after reading this chapter for the first time. It may take longer, and some
practice, for you to write more complex schemas, but the information presented in this chap-
ter should be enough to get you through the majority of them.

The next chapter will cover XPath, XPointer, XInclude, and some additional emerging
querying technologies.

CHAPTER 3 ■ VALIDATION 121

6331_c03_final.qxd 2/16/06 5:04 PM Page 121

6331_c03_final.qxd 2/16/06 5:04 PM Page 122

XPath, XPointer, XInclude, and
the Future

Examining and constructing XML documents should be simple for you by now. Retrieving
information from these documents is one of the biggest steps I haven’t covered yet. Chapters 5
and 6 will demonstrate how to navigate XML documents, how to retrieve information from
documents, and how to transform documents for presentation. This chapter will introduce you
to some of the foundations and concepts that will help you later. The technologies covered here
include querying XML using XPath and XPointer and reusing and processing external content
through XInclude. I’ll also cover some upcoming technologies, such as XQuery and XPath 2.0,
that may eventually supercede some of the current technologies.

Introducing XPath
XPath is a language used to locate and retrieve information from an XML tree using expres-
sions. The language not only can be used by itself, but it also plays a role when using XSLT and
XPointer. The following sections will introduce you to XPath as well as cover how to write XPath
expressions. This coverage will also serve as a foundation for the concepts in the “Introducing
XPointer” section and in Chapter 10, which will cover XSLT. The information in this chapter
pertains to the XPath 1.0 specification from the W3C (http://www.w3.org/TR/xpath).

Concepts
Before jumping right into working with XPath expressions, you need to understand some
basic concepts. This coverage will serve as the foundation for understanding and building
expressions. Specifically, I’ll cover the data model and location paths, and throughout the
upcoming sections, I’ll use the document in Listing 4-1 as reference. This document may look
familiar from previous chapters. I have added the namespace http://www.example.com/title
and associated it with the prefix t to illustrate some of the namespace features of XPath.

123

C H A P T E R 4

■ ■ ■

6331_c04_final.qxd 2/16/06 5:00 PM Page 123

Listing 4-1. Course Document

<!DOCTYPE courses [
<!ATTLIST course cid ID #REQUIRED>
<!ATTLIST pre-requisite cref IDREF #REQUIRED>

]>
<!-- A small course document -->
<courses xmlns:t="http://www.example.com/title">

<course cid="c1">
<t:title>Basic Languages</t:title>
<description>Introduction to Languages</description>

</course>
<course cid="c2">

<t:title>French I</t:title>
<description>Introduction to French</description>

</course>
<course cid="c3">

<t:title>French II</t:title>
<description>Intermediate French</description>
<pre-requisite cref="c2" />
<?php print "Hello World"; ?>
<?phpx Another PI Node ?>

</course>
</courses>

Data Model
XPath views an XML document as an XML tree. The tree is broken down into nodes consisting
of a root node, element nodes, attribute nodes, text nodes, namespace nodes, comment nodes,
and PI nodes. When using XPath, the xml declaration and document type declaration are com-
pletely ignored. In other words, they are not considered part of the tree. This includes all
comment and PI nodes that may occur within the document type declaration. XPath doesn’t
contain any references, because all entity references are expanded and all character references
are resolved.

Every node has a string value that may be part of the node or may be computed based on
the string values of the descendant nodes. Some nodes also have an expanded name, which
consists of the local name and the namespace URI. As you remember from Chapter 2, name-
spaces are applicable to elements and attributes. Namespace nodes fall into the same category
as attributes, so you could reason that the element nodes, attribute nodes, and namespace
nodes would have expanded names, and the rest of the nodes would not. When comparing
expanded names from two nodes, the prefix does not matter. Expanded names are equal as
long as the local name and the namespace URI are the same. Nodes with the same name and
not residing in any namespace would then be considered as having the same expanded name.
The local names are the same, and both have empty namespace URIs.

XPath also follows document ordering. This means most nodes are ordered as they appear
within the hierarchy of the tree. The exceptions are attribute and namespace nodes. Name-
space nodes always come before attribute nodes, and within their subgroups, the namespace

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE124

6331_c04_final.qxd 2/16/06 5:00 PM Page 124

nodes and attributes nodes can appear in any order. The namespace and attributes nodes,
however, come before the children of the element.

Every node also has a parent node, except the root node. It is impossible for the root node
to have a parent, because it is the start of the tree. The parent for element, comment, and PI
nodes are either the root node or an element node, depending upon where the node exists
within the tree. The rest of the nodes will have an element node as parents because these
remaining nodes cannot live outside the document element. Although every node, except the
root node, has exactly one parent, element nodes can have a number of descendants. Descen-
dant nodes are nodes other than attribute and namespace nodes that live within the scope of
the element.

Root Node

Conceptually, you can consider the root node to be the encompassing document. Do not con-
fuse this with the document element, which is the top-level element of the document. The
root node is the base of the tree, with branches that can consist of comments, PIs, and the
document element. Because the XML must be well-formed, you will have, at a minimum, the
document element. Comments and PIs can live on the same level as the document element,
so without a root node, you would have no way to access those nodes.

This node has no expanded name. The root node, being a conceptual node in the tree,
cannot be assigned a name or namespace and thus cannot have an expanded name. Its string
value, on the other hand, consists of a concatenation of all the text nodes’ descendants as they
appear in the document order. Thinking of the text node parents and document order, the value
consists of the concatenation of the values of all text nodes, because they appear in the hierar-
chy within the document element.

Element Nodes

Every element within the document has an element node, and every document must have at
least one element, the document element. The expanded name of an element node consists
of its local name and its namespace URI. The string value for this node is a concatenation of
all descendant text nodes. In the case of the document element, the string value will be the
same as the string value of the root node. Unique IDs also come into play with element nodes,
as you will see later in the “Expressions and Predicates” section. You can also find more infor-
mation on IDs in Chapter 2.

Attribute Nodes

Attribute nodes are associated with element nodes. The element node is the parent of the attrib-
ute node, but the attribute node is not a child of the element node. The location of an attribute
node is determined by where it has been explicitly defined or is automatically defaulted from a
DTD. Attributes that are inherited, such as xml:lang and xml:space, are considered attributes
only from the element that defined these attributes, even though the attribute may affect chil-
dren of the element.

The expanded name of an attribute contains the same pieces as an element. It is a combi-
nation of the local name and the namespace URI. The string value, however, is different from
an element. For an attribute node, the string value is the normalized value of the attribute.
Take, for example, the following element: <element att1=" 1 " />. The string value for the

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 125

6331_c04_final.qxd 2/16/06 5:00 PM Page 125

att1 attribute node is 1. The value has been normalized, so the leading and trailing spaces
have been removed.

As you will see in the “Namespace Nodes” section, attributes that declare namespaces are
not attribute nodes. These nodes are actually namespace nodes and are handled differently
than attribute nodes.

In the following example, the attribute p is not an attribute node, but rather a namespace
node, because it is declaring the namespace http://www.example.com:

<element xmlns:p="http://www.example.com" />

Text Nodes

Text nodes are groups of character data (or blocks of text content). Do not confuse text content
in XPath terms with what you have read in previous chapters. Comments and PIs are their own
node types in XPath, and text nodes consist of CDATA and pure string text content. When using
CDATA, text nodes contain only the values of the CDATA. The markup tags <![CDATA[and]]>
are not included in a text node, so the string value of <![CDATA[Hello World]]> is Hello World.
If you are reading the XPath specification, you may notice that it says text nodes never have
other text nodes as siblings. In the pure sense of XPath, this is correct, but when used with
PHP 5 extensions, such as the DOM extension or the SimpleXML extension, you may run into
cases where text nodes have other text nodes as siblings. This is perfectly legal because this is
based on using DOM XPath. It should also be obvious that text nodes are children of element
nodes and do not have expanded names. Namespaces do not apply to text content, and text
nodes are not given names.

Namespace Nodes

Namespace nodes are associated with elements and consist of all namespaces that are in scope
for an element. This is important to remember. This includes not just namespaces declared on
the element but all namespaces in scope for the element. Another important point is that the
xml prefix is implicitly declared for a document, so a document not declaring any namespaces
will still have at least one namespace. For example:

<mydoc xmlns:p="http://www.example.com/mydoc">
<myelement />

</mydoc>

In this example, within the context of the mydoc element, you have two namespace nodes:
the implicit one for the xml prefix and the one declared with the prefix p. Because the prefix p
is defining a namespace, it is a namespace node and not an attribute. Although the element
itself is not in the http://www.example.com/mydoc namespace, this namespace was still declared
within the context of the element. Looking at the myelement element, you may guess that it has
zero namespace nodes, or maybe you remembered that it is in the scope of the implicit xml
prefix and guessed that it has one namespace node. Either way, you are incorrect. The myelement
element, even though it is not in a namespace, is not only in the scope of the xml prefix but
also in the scope of the http://www.example.com/mydoc namespace. So within the context of
the myelement element, you have two namespace nodes.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE126

6331_c04_final.qxd 2/16/06 5:00 PM Page 126

Namespace nodes have expanded names. The local part is the prefix for the element, and
the namespace URI is always NULL. You may be curious why this has a NULL namespace URI.
The URI is actually the string value of a namespace node.

Comment Nodes

Every comment within a document has a corresponding comment node, excluding comments
within the document type declaration (because this is ignored). Comment nodes do not have
an expanded name and are children of either the root node or the element nodes. The string
value of a comment node is the text value, which consists of all the characters between the
<!-- and --> markup. For example, the string value of <!-- This is a comment --> is
This is a comment.

Processing Instruction Nodes

Similar to comment nodes, every PI, except those in the document type declaration, has a
corresponding processing instruction node. PI nodes do have an expanded name, however. The
expanded name consists of a NULL namespace and the target as the local part. The string value of
a processing instruction node is the text value following the target and excluding the closing ?>
markup. For example, the string value of <?php print "Hello World";?> is print "Hello World";.

Location Paths
Location paths are paths used to locate a single node or group of nodes, called a node set,
within a given XML document. Locations can be absolute or relative. Absolute paths begin
with /, indicating that the path is beginning at the root node, and are followed by a relative
path. Relative paths are relative to the current context, which is the current location you are at
in the document. This is comparable to working on a file system. Consider a directory struc-
ture such as /usr/local/lib. This is an absolute path, because / indicates the top level of the
file system. The next directory, usr, is a relative path, because it is relative to the current posi-
tion, which is the top of the file system. You would now be positioned in the usr directory, so
local, the next location, is relative to usr. If you were already located within the usr dir, you
could use a relative path, local/lib, to move to the lib directory. XPath location paths work
in a similar fashion. Relative paths in XPath are broken into steps separated by /. Compared to
the absolute path for the file system example, you would have three steps: usr, local, and lib.
This is just an analogy, but the concept is similar.

Each XPath step consists of three parts: axes, node tests, and zero or more predicates. The
syntax is axis::node_test[predicates]. The combination of axis and node_test results in an
initial node set that is further filtered by any predicates in the order they appear. You’ll now
examine the three parts to see how you can find nodes within an XML document.

Axes

An axis specifies the relationship between the context node, which is the current location in
the tree, and the nodes to be selected. The location of the nodes to be selected, in the specified
step, is determined by the axis relative to the context node. You can specify 13 axes, as shown
in Table 4-1.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 127

6331_c04_final.qxd 2/16/06 5:00 PM Page 127

Table 4-1. XPath Axes

Axis Description

ancestor Selects the ancestors of the context node. The parent of the current node
and all nodes higher in the tree, such as grandparents and their parents,
will be selected.

ancestor-or-self Selects the ancestors of the context node as well as the current node.

attribute Selects the attributes of the context node, which, unless the current node is
an element, will be empty.

child Selects the immediate children of the context node.

descendant Selects all nodes within the scope of the context node, such as child nodes
and grandchildren. Attributes and namespace nodes are not included in
the node set.

descendant-or-self Selects the descendant nodes as well as the context node.

following Selects all nodes, except attribute and namespace nodes, following the
context node in document order while excluding the descendants of the
context node.

following-sibling Selects all sibling nodes that follow the context node. If the current node is
an attribute or namespace node, no nodes are selected.

namespace Selects all namespaces of the context node, which, unless the current node
is an element node, will be empty.

parent Selects the parent of the context node.

preceding Selects all nodes that precede the context node, excluding ancestors,
attributes, and namespace nodes. This axis basically selects all the nodes of
the preceding siblings and their descendants.

preceding-sibling Selects all preceding siblings of the context node. If this context node is an
attribute or namespace node, then no nodes are selected.

self Selects only the context node.

An axis alone is not enough to define a step, as the actual nodes to be selected still have not
been indicated. It does define a principal node type indicating the type of nodes that can be con-
tained. For example, the attribute axis has a principal node type of attribute. This axis will
contain attribute nodes. The namespace axis has a principal node type of namespace, because it will
contain namespace nodes. The other axes have principal node types of element. Although they
can contain other types, such as comment nodes or PI nodes, the primary type is element. This
means unless explicitly indicated through the node test, the node set will consist of elements.

Node Tests

A node test identifies the actual nodes to be selected from the specified axis. It can be either a
name test or a node type test.

Name Tests A name test identifies nodes by name that are of the primary node types of the axis.
A name test has three forms. It can be a QName, the special character *, or NCName:*.

A QName selects nodes of the primary node type that have expanded names equal to the
expanded name of the QName. Using Listing 4-1 as an example, you can select all the descrip-
tion nodes with the following path:

/child::courses/descendant::description

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE128

6331_c04_final.qxd 2/16/06 5:00 PM Page 128

Examining this path, you can see it begins with /. This means the location is absolute and
starts at the root node. The first step in the path is child::courses. The current context at this
point is the root node. Within this context, the axis is child, and the node test is a name test
with a QName of courses. The document contains two child nodes, the comment and the courses
node. As you recall, XPath ignores the document type declaration. A name test is being used,
so only nodes of the primary node type, which is an element when using the child axis, will be
tested. The expanded name of the courses element, which is courses, is tested against that of
the supplied QName, which is also courses. Being that they are equal, the first step in the path
results in the document element, courses.

The next step in the path is descendant::description. At this point, the courses element
is the context node from the previous step. Breaking up this step, the selected nodes will come
from the descendants of the courses node that match the description QName. From Table 4-1,
you can see that the descendant axis will select all the nodes within the scope of the context node.
The results of the full XPath expression will be a node set containing the three description ele-
ments from the document:

<description>Introduction to Languages</description>
<description>Introduction to French</description>
<description>Intermediate French</description>

An easier way to write this would be /descendant::description. There really was no need
for the first step in the original path other than for illustration purposes. To select the title
elements, you need to take into account the namespace. The QName for the title elements
is t:title. To match these, the path could be something along the lines of
/descendant::t:title.

You also must take namespace scope into account. When using the prefix in the name test,
the prefix refers to the prefix associated with the namespace that is in scope of the context node.
If one of the course elements looked like the following:

<course cid="c2" xmlns:q="http://www.example.com/title">
<q:title>French IV</q:title>
<description>Advanced French</description>

</course>

then the title element contained here would also be returned from the /descendant::t:title
path. The prefix t defined on the document element is associated with the same namespace
as the prefix q defined on this local course element. Changing the prefix association will also
affect the selected results. Listing 4-2 shows the new course element.

Listing 4-2. New course Element

<course cid="c2" xmlns:t="http://www.example.com/DIFFERENT">
<t:title>French IV</t:title>
<description>Advanced French</description>

</course>

The title element in Listing 4-2 is no longer in the http://www.example.com/title name-
space. The path /descendant::t:title is really selecting all title elements that reside in the
http://www.example.com/title namespace. The title element in Listing 4-2, although having

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 129

6331_c04_final.qxd 2/16/06 5:00 PM Page 129

the same prefix, resides in the http://www.example.com/DIFFERENT namespace so would not
be selected from the XPath query.

A names test can also be the * character. This wildcard can match any QName of the pri-
mary node type. This time, select all attributes from all the course elements, like so:

/descendant::course/attribute::*

The first step in this path selects every course element in the document. Using the
descendant axis in the context of the root node selects every element node, because an ele-
ment is the primary node type of descendant that matches the QName course. The last step
uses the course elements as the context and selects every attribute node. Because the match
is based on *, there are no restrictions of the QName from the attribute nodes.

The last name test takes the form of NCName:*. This test is a combination of the QName
and * tests. It allows nodes to be selected based on namespace only. NCName is the prefix of
a namespace in scope at the current context, and * indicates to match all local names. In
Listing 4-1, all the elements within the http://www.example.com/title namespace could be
returned by the path /child::courses/descendant::t:*. Every title element in the document
would be selected, because these are the only elements within the specified namespace. The
element from Listing 4-2 would not match, because the title element in that case is not in
the namespace on which you are searching.

Node Type Test A node type test selects specific node types from the axis. The primary node
type of the axis is not taken into account. As long as the node type is valid for the axis, then the
nodes will be selected. For example, valid child nodes for the root node are comments, ele-
ments, and processing instructions. Valid child nodes for an element, however, are comments,
elements, processing instructions, and text. Valid node type tests are comment(), text(),
processing-instruction(), processing-instruction('name'), and node(). No specific ele-
ment node test exists. The reason for this is that an element is already the primary node type
for an axis from which an element node can be selected. For this reason, the * character for
the test serves the same purpose.

Using the document in Listing 4-1, you could select the comment node using the path
/child:comment(). You can select all the children, including text nodes (which is the insignifi-
cant whitespace), of the courses element using /child::courses/child::node(). This path will
select seven nodes (consisting of four text nodes, line feeds, and tabs) that are intermixed with
the three course element nodes.

Selecting PIs works the same way. The path /child::courses/descendant::➥

processing-instruction() will select both PIs within the last course element, and the path
/child::courses/descendant::processing-instruction('php') will select only the PI with
the target php.

Predicates

Predicates filter the node set from the combined axis and node test. They are expressions that
are evaluated for each node in the node set and return a Boolean. Each node in the node set
that evaluates to TRUE from the expression is included in the node set; those that evaluate to
FALSE are excluded. More than a single predicate is allowed, and you can combine them using
Boolean operators. I’ll explain predicates in more detail later in this chapter in the section
“Expressions and Predicates.”

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE130

6331_c04_final.qxd 2/16/06 5:00 PM Page 130

Abbreviated Syntax

Some abbreviated syntax is available for a few of the axis and node test combinations. (I’ll
explain the abbreviated syntax for some predicates in the “Expressions and Predicates” sec-
tion.) Table 4-2 lists some of the syntax available within XPath.

Table 4-2. Abbreviated Syntax

Axis and Node Test Abbreviated Syntax

attribute::QName @QName

attribute::* @*

child::QName QName

child::* *

child::nodetype() nodetype()

descendant-or-self::node()/ // (This would be an empty step in the path.)

parent::node() ..

self::node() .

Taking all the paths you have encountered so far in this chapter, you can write their
equivalents using abbreviated syntax. Listing 4-3 shows the comparable paths. The first path
uses full syntax, and its corresponding abbreviated path follows it on the next line.

Listing 4-3. Full Paths and Corresponding Abbreviated Paths

/child::courses/descendant::description
/courses//description

/descendant::description
//description

/descendant::t:title
//t:title

/descendant::course/attribute::*
//course/@*

/child::courses/descendant::t:*
/courses//t:*

/child:comment()
/comment()

/child::courses/child::node()
/courses/node()

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 131

6331_c04_final.qxd 2/16/06 5:00 PM Page 131

/child::courses/descendant::processing-instruction()
/courses//processing-instruction()

/child::courses/descendant::processing-instruction('php')
/courses//processing-instruction('php')

Even with these simple paths, the abbreviated syntax is useful. It is even handier once you
begin writing complex paths and expressions.

Expressions and Predicates
Expressions open up the full power of XPath to you. Up to this point, you have worked with
just location paths, which can also be used as expressions, containing only axes and node
tests. Expressions allow you to create fine-tuned, complex filters via predicates, as well as to
retrieve data other than just node sets from XML documents. When writing expressions, you
can use some XPath operators, as listed in Table 4-3.

Table 4-3. XPath Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

div Division

mod Modulus

= Equal

!= Not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

and Boolean “and”

or Boolean “or”

| Union

The XML document in Listing 4-4 contains a listing of produce broken down into fruits
and vegetables. I will use this document throughout the following sections to illustrate how to
use expressions in XPath.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE132

6331_c04_final.qxd 2/16/06 5:00 PM Page 132

Listing 4-4. Produce Document

<?xml version="1.0"?>
<produce>

<vegetables>
<vegetable unit="pound">

<name>tomatoes</name>
<price>2.99</price>

</vegetable>
<vegetable unit="pound">

<name>string beans</name>
<price>3.99</price>

</vegetable>
<vegetable unit="each" specials="discount">

<name>lettuce</name>
<price>0.99</price>

</vegetable>
</vegetables>
<fruits>

<fruit unit="pound" specials="sale">
<name>apples</name>
<price>1.99</price>

</fruit>
<fruit unit="pound">

<name>bananas</name>
<price>3.99</price>

</fruit>
<fruit unit="pint">

<name>strawberries</name>
<price>4.99</price>
<time>seasonal</time>

</fruit>
</fruits>

</produce>

Basic Filtering
Simple node sets and value comparisons are the easiest place to begin understanding expres-
sions. Since you should be comfortable with the basics of location paths and node selections
at this point, you will now look at how you can use node sets as expressions within a predicate.

Node Sets

Based on the document in Listing 4-4, you can select the elements containing the attribute
specials with the following expression:

//*[@specials]

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 133

6331_c04_final.qxd 2/16/06 5:00 PM Page 133

The path, excluding the predicate, selects all elements within the document. The predi-
cate filters these nodes based on the criteria of having an attribute named specials. @specials
evaluates to TRUE if the attribute node exists and FALSE if it doesn’t. This is how the evaluation
of node sets as expressions work. If the node set within the expression contains at least one
node, then it is TRUE. If you think of this in terms of a SQL query, it would be similar to saying,
“Select all elements from the document where the element contains the attribute named
specials.” The equivalent method to writing the expression using the full syntax is
/descendant-or-self::node()/*[attribute::specials].

The node set used for filtering is not limited to just using attribute nodes. For example,
how could you select the elements containing a child element named time? Looking at the
document, you know only one element, fruit, has a child element named time. Although you
know what the document currently looks like, assume that any of the elements might contain
this attribute. The first step is to write a location path that selects all the elements:

//*

Now that every element is to be selected, each node in the node set needs to be tested for
having a child element named time:

//*[time]

This is similar to filtering based on an attribute. In this case, however, you don’t need
an axis within the predicate. The location path //* is the abbreviated syntax for
/descendant-or-self::node()/*. Based on this path and the last *, the primary node type is
element. Within the predicate, you just give the element name time, which is the abbreviation
for child::time. The equivalent full syntax is /descendant-or-self::node()/*[child::time].
Each of these expressions will ultimately select the single fruit element in the document
containing the time element.

The expression does not need to be just a simple axis and node test. You can also use
location paths. In this case, you must take into account the context of the node being tested.
Searching for time elements that have a parent element named fruit requires filtering based
on the name of a relative node. In this case, you must test the parent node. The first step, as
always, is to write the location path for the nodes to select:

//time

The next step is to filter this node set using a predicate. Nodes must be filtered on the
condition that they have a parent node named fruit:

//time[../self::fruit]

The predicate here uses the relative location .., which means “move to the parent of the
context node.” The context node, remember, is the node currently being tested at the time.
Each node in the node set would be tested, so each node would be in context at some point
or another while applying the predicate. The next step in the path selects self, which points
to the parent of a time element from the original node set and matches against the name
fruit. In simple terms, the expression breaks down to select all time elements that have a
parent, and the parent (the self in the predicate) has the name fruit. And in case you are
wondering, you could have written this much more simply by just using the following:

//time[parent::fruit]

This, however, wouldn’t have been as fun to explain.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE134

6331_c04_final.qxd 2/16/06 5:00 PM Page 134

Value Comparisons
In many cases, node selection isn’t dependant upon the structure of the document but
upon values within the document. When comparing node sets to numbers, the string value
of the node is converted to a number and compared to the number. A string comparison is
performed using the string value of the node against the string. These conversions are
automatic, but you can also call functions, which I’ll explain later in the “XPath Functions”
section, to do the conversion.

String Comparisons

The first example for expressions using node sets selected all the elements that contained
the specials attribute. If this attribute could have only a single value and was not present
when it did not pertain to the element, the expression would be fine. In Listing 4-4, two ele-
ments contain the specials attribute, and the value is different for each of them. Refining
the node selection, only elements containing the attribute specials and having the value
sale should be selected:

//*[@specials="sale"]

This will select a single fruit element:

<fruit unit="pound" specials="sale">
<name>apples</name>
<price>1.99</price>

</fruit>

You can achieve the same results by selecting all elements containing a specials attribute
node that has a value not equal to discount:

//*[@specials != "discount"]

You can also perform comparisons on elements. The string value of an element is the
content of the text nodes of all descendants concatenated together. You must be careful when
performing comparisons with element nodes, because you must be sure you have taken this
into account. This example selects elements that contain the child element name containing
the text lettuce:

//*[name="lettuce"]

The predicate used to filter the node set in this case is name="lettuce". As you probably
recall from earlier examples, you do not need an axis in this predicate. The primary node type
is an element node, and the child axis is already implied. This expression is the same as writ-
ing //*[child::name="lettuce"]. The comparison taking place within the predicate is against
the node set containing the child element name with the string lettuce. The element node is
converted to a string, and in Listing 4-4, all name elements have only text content. It is the text
content that is compared to the string lettuce. This expression results in the selection of a sin-
gle vegetable element:

<vegetable unit="each" specials="discount">
<name>lettuce</name>
<price>0.99</price>

</vegetable>

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 135

6331_c04_final.qxd 2/16/06 5:00 PM Page 135

Numeric Comparisons

Numeric comparisons are similar to string comparisons, except in this instance the value of
the element or attribute is converted to a number rather than a string. Within the document,
each one of the fruit and vegetable elements contains the child element price. When writing
expressions, say you would like to test price numerically rather than textually. For this exam-
ple, all fruit and vegetable elements that have a price greater than 1.99 will be selected:

//*[price > 1.99]

This expression selects the two vegetable elements and the two fruit elements having
prices greater than 1.99. Similarly, you can select the elements with a price less than or equal
to 1.99:

//*[price <= 1.99]

Advanced Filtering
With the basic concepts of filtering behind you, you can start diving into the fun stuff. The
expressions to this point have been basic and unoptimized. The following sections will show
more complex expressions as well as explain ways to optimize them. Optimization is impor-
tant, because it helps reduce the amount of processing that needs to take place, which in turn
results in faster execution time. Before getting to that, though, I’ll touch on XPath built-in
functions, which can be useful when writing expressions.

XPath Functions

XPath implements a core library of functions you can use to evaluate expressions. The func-
tions are broken up into specific areas. These areas include node set, string, Boolean, and
number functions. Tables 4-4, 4-5, 4-6, and 4-7 describe the functions for each area.

■Note In the following tables, optional parameters are enclosed in brackets, []. A parameter that is not
required, yet can be repeated any number of times, is followed by *. An object parameter can be a node set,
Boolean, number, or string.

Table 4-4. XPath Node Set Functions

Function Description

last() Returns the number of items in the node set.

position() Returns the one-based index of the context node.

count(node-set) Returns the number of nodes in the node set.

id(object) Selects elements based on their IDs. If object is a node set, then each
of the string values of the nodes are supplied as arguments to the id
function. A string parameter may be a whitespace-separated list of
strings.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE136

6331_c04_final.qxd 2/16/06 5:01 PM Page 136

Function Description

local-name([node-set]) Returns the local-name portion of the expanded name for the first
node of the node-set in document order. If node-set is empty or the
first node does not have an expanded name, an empty string is
returned. If node-set is omitted, the context node is used as the
parameter value.

namespace-uri([node-set]) Returns the namespace URI of the expanded name for the first node
of the node-set in document order. If node-set is empty or the first
node does not have an expanded name, an empty string is returned.
If node-set is omitted, the context node is used as the parameter
value.

name([node-set]) Returns the QName for the first node of the node-set in document
order. If node-set is empty or the first node does not have an
expanded name, an empty string is returned. If node-set is omitted,
the context node is used as the parameter value.

Table 4-5. XPath String Functions

Function Description

string([object]) Converts object to a string. If object is omitted, the
context node is used as the parameter value.

concat(string, string, string*) Returns the concatenation of the string parameters.

starts-with(string1, string2) Returns Boolean TRUE if string1 starts with string2 and
otherwise FALSE.

contains(string1, string2) Returns Boolean TRUE if string1 contains string2 and
otherwise FALSE.

substring-before(string1, string2) Returns string from string1 that precedes the begin-
ning of the substring, string2, found in string1. If not
found, an empty string is returned.

substring-after(string1, string2) Returns string from string1 that follows the end of the
first substring, string2, found in string1. If not found,
an empty string is returned.

substring(string, start [,length]) Returns the substring found in string beginning at the
one-based position start with a length of length. If
length is not supplied, all characters to the end of string
are returned.

string-length([string]) Returns the number of characters in string. If string is
not supplied, the string value of the context node is
used as the argument.

normalize-space([string]) Returns the normalized string of string. If string is not
supplied, the string value of the context node is used as
the argument.

translate(string1, string2, string3) Translates the characters in string1 matching those in
string2 into characters from string3. For example,
translate('abcdefgh', 'aceg', 'ACE') results in
AbCdEfh. The g is removed because it is a character to
match and because a corresponding character in
string3 does not exist.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 137

6331_c04_final.qxd 2/16/06 5:01 PM Page 137

Table 4-6. XPath Boolean Functions

Function Description

boolean(object) Returns the Boolean value of objects. A number is TRUE unless it is a positive
zero, a negative zero, or NaN. Node sets are TRUE unless empty. Strings are TRUE
unless empty.

not(boolean) Returns the opposite of the Boolean passed in. TRUE becomes FALSE, and FALSE
becomes TRUE.

true() Returns TRUE.

false() Returns FALSE.

lang(string) Returns a Boolean indicating whether the specified xml:lang identified by the
lang parameter is within the scope of the context node.

Table 4-7. XPath Number Functions

Function Description

number(object) Converts object to a number. Boolean TRUE is converted to 1 and FALSE to 0.
A string having a numeric value (all numeric) will convert to a numeric;
otherwise, it will convert to NaN. A node set is converted to a string, which
is then converted to a number.

sum(node-set) Returns the sum of each node, converted to a number, in the node-set.

floor(number) Returns the largest integer not greater than number.

ceiling(number) Returns the smallest integer not less than number.

round(number) Returns the closest integer to number.

Throughout this chapter, I’ll use many of the functions in Tables 4-4, 4-5, 4-6, and 4-7
within the examples because it is easier to understand their use and functionality within some
context. With everything that has been covered up to now, you can begin looking at more com-
plex expressions and optimization.

XPath Optimization

Some people consider optimization to be an art form. XPath can require a lot of processor
power depending upon the size of the document, its structure, and the expressions you write.
XPath works on a document loaded into memory, so when the document is large, not only do
you have the overhead of this large document in memory but you must also consider the pro-
cessing involved to select the nodes for which you are looking. Pretty much every query,
meaning the location paths and expressions, written to this point have searched all the nodes
in a document. They have used the // notation, which means they are searching the root node
and all its descendants, and have filtered the node sets from there.

The document in Listing 4-5 is a condensed document that in theory would have many
book, magazine, and cd elements along with much more content for these elements. I will use
this document to illustrate some basic optimization throughout this chapter as you encounter
more and more advanced documents.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE138

6331_c04_final.qxd 2/16/06 5:01 PM Page 138

Listing 4-5. Abbreviated Store Document

<store>
<books>

<book>
<name>Cannery Row</name>

</book>
<!-- Many book elements -->

</books>
<magazines>

<magazine>
<title>fdsfsd</title>

</magazine>
<!-- Many magazine elements -->

</magazines>
<cds>

<!-- cd elements -->
</cds>

</store>

If you wanted to select all the book elements in the document, you might first just write
the following expression:

//book

The problem with this expression is that the node set to be filtered contains every ele-
ment in the document. This is a big waste of resources, because the name of every element
in the document will have to be tested against book. This includes all the magazine and cd ele-
ments as well. You have an idea of the structure of the document and know that book elements
reside within the books element, so specifying a more precise path can cut down processing
significantly.

This is a much more precise query:

/store/books/book

Using this query, the expression first filters all books elements that are children of the root
element. Additional filtering from this resulting set then takes place by matching all the child
elements of the resulting books elements that are named book. Because you have already
excluded the magazines and cds subtrees with the second step in the path, you have cut the
processing down by two-thirds. The amount of time and processing saved really depends
upon how many magazine and cd elements exist in the document, but you may have just saved
yourself a good deal of time because you can use your system resources for other tasks. You
will encounter more optimizations as you read about complex expressions and functions next.

Complex Expressions and Documents

You can now start putting all the topics in this chapter together. The following sections will
cover everything you have encountered to create complex queries. I’ll use the document in
Listing 4-6 as the document from which to make selections.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 139

6331_c04_final.qxd 2/16/06 5:01 PM Page 139

Listing 4-6. Expanded Store Document

<store xmlns="http://www.example.com/store" xmlns:bk="http://www.example.com/book"
xmlns:mag="http://www.example.com/magazine">

<books>
<rare>

<bk:book qty="4">
<bk:name>Cannery Row</bk:name>
<bk:price>400.00</bk:price>
<bk:pubdate>1945-01-01</bk:pubdate>
<bk:authors>

<bk:author>Steinbeck, John</bk:author>
</bk:authors>
<bk:edition>1</bk:edition>
<bk:signed>true</bk:signed>

</bk:book>
<bk:book qty="1">

<bk:name>The Raven and Other Poems</bk:name>
<bk:price>100000.00</bk:price>
<bk:pubdate>1845-01-01</bk:pubdate>
<bk:authors>

<bk:author>Poe, Edgar Allan</bk:author>
</bk:authors>
<bk:edition>1</bk:edition>
<bk:signed>true</bk:signed>

</bk:book>
</rare>
<classics>

<bk:book qty="25">
<bk:name>Grapes of Wrath</bk:name>
<bk:price>12.99</bk:price>
<bk:pubdate>2002-01-01</bk:pubdate>
<bk:authors>

<bk:author>Steinbeck, John</bk:author>
</bk:authors>

</bk:book>
<bk:book qty="25" xmlns:bk="http://www.example.com/classicbook">

<bk:name>Of Mice and Men</bk:name>
<bk:price>9.99</bk:price>
<bk:pubdate>1993-09-01</bk:pubdate>
<bk:authors>

<bk:author>Steinbeck, John</bk:author>
</bk:authors>

</bk:book>
</classics>

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE140

6331_c04_final.qxd 2/16/06 5:01 PM Page 140

<classics xmlns="http://www.example.com/ExteralClassics">
<book qty="33">

<name>To Kill a Mockingbird</name>
<price>10.99</price>
<pubdate>2002-03-01</pubdate>
<author>Lee, Harper</author>

</book>
</classics>

</books>
<magazines>

<mag:magazine qty="75">
<mag:title>fdsfsd</mag:title>
<mag:issue>2005-11-01</mag:issue>
<mag:price>2.99</mag:price>
<mag:publisher>fsdfdsfsd</mag:publisher>

</mag:magazine>
<mag:magazine qty="5">

<mag:title>fdsfsd</mag:title>
<mag:issue>2002-10-01</mag:issue>
<mag:price>2.99</mag:price>
<mag:publisher>fsdfdsfsd</mag:publisher>

</mag:magazine>
</magazines>
<cds>

<!-- CD elements go here -->
</cds>

</store>

Dealing with Namespaces As before, you will start by selecting all book elements, using an
unoptimized query, from the document. Even if you remembered that this document is using
namespaces, you might be tempted to write this:

//bk:book

This has a few things wrong with it. The first is that the resulting node set will be missing
two book elements. Look closely at the last two book elements. The first one redefines the bk pre-
fix association, so this element is no longer in the http://www.example.com/book namespace.
The last one is using the default namespace from its parent classics element that defines the
namespace http://www.example.com/ExteralClassics. If you recall, node selection by name is
by the QName, so you must take into account the namespace of the element. To ensure only
book elements are retrieved and you don’t have to worry about the namespace, you should
write the expression as follows:

//*[local-name() = "book"]

The expression now checks only the local name of the element, matches against book, and
returns all five book elements. This still has another issue, though. Based on how this is writ-
ten, the node set to be filtered contains every element in the document. This is a big waste of

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 141

6331_c04_final.qxd 2/16/06 5:01 PM Page 141

resources, because the local name of every element in the document will have to be tested
against book. This includes all the magazine elements as well. You have an idea of the structure
of the document and know that book elements reside within the books element, so you can
optimize this query.

You might be tempted to write the following query:

/store/books/*[local-name() = "book"]

Don’t be surprised when your results come up empty. The unprefixed elements in the
document fall under the default namespace http://www.example.com/store. So, how can you
write optimized queries that get around the issue that you have no prefix to use? Most tech-
nologies employing XPath offer ways to register namespaces and associated prefixes. You can
then use these prefixes for matching QNames. You will see how to do this with regard to the
DOM extension in Chapter 6, with regard to the SimpleXML extension in Chapter 7, and with
regard to the XSL extension in Chapter 10. For now, I will just show how to write queries that
can perform selections without external help.

■Note Defaulted namespaces are not as easily dealt with in XPath as those using prefixes. Most XML
technologies employing XPath offer ways to associate prefixes with namespaces that then can be used to
query XML documents. You will see how to use this technique with regard to the DOM extension in Chapter 6,
with regard to the SimpleXML extension in Chapter 7, and with regard to the XSL extension in Chapter 10.

The first step to take is to break the path up and think about how you could find the store
element. The immediate idea that may come to mind is to use the same technique you used to
filter for the book elements:

/*[local-name() = "store"]

This would work but can be written much simpler and not require the additional filtering
step:

/*

As mentioned with axes as well as with default node types, * is the abbreviation for
child::*, and the default node type is an element node. XML documents can contain only
a single document element, and the current location is the root node. Deductively, you can
reason that matching every child element of the root node is the same as selecting the docu-
ment element.

The next step in the path is to select the books element, which is also in the default name-
space. In this case, it is perfectly fine to use the local name test, /*/*[local-name() = "books"].
If you know the exact structure of the document, you can also specify the books element by
location:

/*/*[position()=1]
/*/*[position() < 2]
/*/*[1]

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE142

6331_c04_final.qxd 2/16/06 5:01 PM Page 142

All these queries are equivalent. The predicate is filtering based on the position of the
node within the node set returned from /*/*. If you can be certain, usually from a DTD or
schema, that the first child element of the store element is the books element, then each of
the expressions filters for the node that is the first node in document order in the node set.
The last expression uses the single numeric 1. A single numeric as an expression is the
abbreviation for writing position()=[number].

■Tip You can abbreviate the expression [position()=x] as simply [x]. Using a number alone is equiva-
lent to calling the position() function.

Within the books element, the books are contained within parent elements that describe the
types. At this point, the types are of no concern, so this step will take the form of *. The last step
is to select the book elements. I have already presented the expression for this; you use a check
on the local name. Combining all the steps, you could write queries of the following forms:

/*/*[local-name() = "books"]/*/*[local-name()="book"]
/*/*[position()=1]/*/*[local-name()="book"]
/*/*[position() < 2]/*/*[local-name()="book"]
/*/*[1]/*/*[local-name()="book"]

Each of these queries will result in the selection of the five book elements.
This raises an interesting question. You may know the structure of the document, but

how could you select only book elements within the http://www.example.com/classicbook
namespace? In Listing 4-6, the book element within this namespace has redefined the bk pre-
fix, so using the QName with a prefix of bk is not an option. The prefix bk will be associated
with the http://www.example.com/book namespace because of scoping. You aren’t using any
technologies at this point that allow you to register a namespace and prefix, so that is also
not viable. One way to accomplish this is to test the actual namespace on the element:

/*/*[1]/*/*[namespace-uri()="http://www.example.com/classicbook"]

Rather than testing for the local name of the element, you can test the actual URI of the
namespace. This example assumes no other elements on the same document level as the book
elements exist and reside in the same namespace. If this is a possibility, the predicate can
include the check of the local name:

[local-name()="book" and namespace-uri()="http://www.example.com/classicbook"]

In this case, it first makes sure the element has a local name of book and, if that is TRUE,
checks whether the namespace URI is http://www.example.com/classicbook. You can also
optimize this expression. Once an expression returns FALSE, no further filtering takes place for
the current node. In the case of the books element, you can safely assume that the majority of
the child elements are book elements. Most of them, however, would not be in the namespace
being searched. Checking the namespace URI first would eliminate almost every check for the
local name of the node. So, an optimized predicate would be as follows:

[namespace-uri()="http://www.example.com/classicbook" and local-name()="book"]

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 143

6331_c04_final.qxd 2/16/06 5:01 PM Page 143

Comparisons I demonstrated simple comparisons earlier in this chapter, but that was before
the introduction of functions. This section will provide a more in-depth look at expressions
performing comparisons as well as calculations. I’ll continue to use the document in Listing 4-6
as the document being queried.

Performing a search based on a date may seem like a daunting task. Within the document,
the element pubdate is using the format YYYY-MM-DD, which also conforms to the XML
Schema date type. Unfortunately, XPath does not offer any date functions, so these values are
treated as strings. However, string functions are available that can be manipulated to accom-
plish the task at hand. So, how do you go about selecting all books and magazines published
in 2002?

You will need substring functions to split the date apart. It is a given, because the dates
conform to the XML Schema date type, that the first four characters are the year, so using the
substring function, the starting position is 1 and the length is 4:

/*/*[1]/*/*[*[local-name()="pubdate" and substring(., 1, 4)="2002"]]

No, you are not going cross-eyed. This is really a valid XPath query. The initial path should
look familiar to you. The path /*/*[1]/*/* is within the books subtree because you are using
the first position, and it selects all element nodes on the level at which the book elements reside.
Within the document, this selects all book elements, because no other types of elements are on
this level within the books subtree. The predicate is where you may get a little bug-eyed.

Breaking the predicate, [*[local-name()="pubdate" and substring(., 1, 4)="2002"]],
into pieces, the first * indicates that the filter takes place on all child elements of the current
node set. The current node set, in this case, consists of all the book elements. That leaves
another predicate: [local-name()="pubdate" and substring(., 1, 4)="2002"]. This predicate
is performed on all the child elements of the current node set. The first test is to see whether
the local name matches pubdate. If this returns TRUE, then you know the current node being
run against this filter is a pubdate element. You can then check the string value of this element
using the substring function to see whether the first four characters match 2002. The reason
the first parameter is . (a period) is that the context node itself or the current node is being
passed as an argument to the function. You can also write the substring function as
substring(self::*, 1, 4) or substring(child::text(), 1, 4). An element has a string value
that consists of all text nodes within its contents and the contents of its children. Passing in
the context node, which must be a pubdate element since it passed the first check, will effec-
tively pass in the text containing the date being searched. This query may have looked
complicated but, once broken out, should be easy to understand.

Well, you have selected all the book elements, but the query is supposed to also return all
the magazine elements published in 2002. You face a few problems: the elements do not live on
the same level within the document, the names of the elements being returned are not the
same, the element names containing the dates are not the same, and they also live in different
subtrees. For starters, the magazine elements that have an issue date in 2002 will be selected:

/*/*[2]/*[*[local-name()="issue" and substring(., 1, 4)="2002"]]

This query is almost the same as the query for the book elements. The differences here are
that the magazine subtree is being traversed (indicated by the /*/*[2] portion of the path), the
steps are not as deep (notice there is a /* removed from the path), and the local name test is
now performed against the string issue. The query is broken down the same way the previous
book selection was broken down.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE144

6331_c04_final.qxd 2/16/06 5:01 PM Page 144

This still hasn’t selected all the nodes you originally wanted. The node set is supposed to
contain both book and magazine elements. Right now, you have two distinct queries. One selects
the book elements, and the other selects the magazine elements. An easy way at this point to get
the desired results is to use the union operator. This operator joins node sets together. If you
thought the previous queries were overwhelming, take a look at how to use a union with the
two queries:

/*/*[1]/*/*[*[local-name()="pubdate" and substring(., 1, 4)="2002"]] |
/*/*[2]/*[*[local-name()="issue" and substring(., 1, 4)="2002"]]

This query is actually a single line. It joins the first query, selecting the book elements, with
the second query, selecting the magazine elements using |, which is the union operator.

If you’re using XML, you probably tend to be more on the daring side. You must be able to
write a query without using the union operator that will select all the elements in one shot,
right? A simplified way is to write this:

//*[*[(local-name()="pubdate" or local-name()="issue") and
substring(., 1, 4)="2002"]]

This again doesn’t fit on a single line, but in the XML world you can ignore insignificant
whitespace. This query checks every element in the document to see whether it has a child
element with the local name pubdate or issue. If either of these is TRUE, then it checks the
substring of the string value for that child element:

/*/*[local-name()="books" or local-name()="magazines"]
//*[*[(local-name()="pubdate" or local-name()="issue")

and substring(., 1, 4)="2002"]]

This is another one-liner broken into multiple lines. This is an optimized version of the
previous query. The previous query selected every element in the document. In this revised ver-
sion, it specifies to select only from the books or magazine subtree. The document in Listing 4-6
has a cds tree, which could contain any number of cd elements. Rather than checking those,
because only book and magazine elements are to be returned, the two subtrees are explicitly set
in the path. Within those subtrees, on the other hand, every element is checked. You will notice
the use of // after the predicate for the books and magazines elements. That again is the abbrevi-
ation for descendants-or-self::node(), where node() is the element because of the axis.

The following queries are alternative ways to write this query. Each is specific to the docu-
ment in Listing 4-6. If you added types, such as dvds elements, they may not work.

/* Using position of element */
/*/*[position() < 3]//*[*[(local-name()="pubdate" or local-name()="issue")

and substring(., 1, 4)="2002"]]

/* Checking for != cds */
/*/*[local-name() != "cds"]//*[*[(local-name()="pubdate" or local-name()="issue")

and substring(., 1, 4)="2002"]]

These queries all select the same node sets. Since I’ve already covered everything you
need to break these queries down, I will leave it up to you to figure out how they work.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 145

6331_c04_final.qxd 2/16/06 5:01 PM Page 145

Calculations Using functions within XPath allows some calculations to be performed. Calcula-
tions and functions are typically reserved for use in a predicate. It is possible, though, for XPath
to return results other than node sets.

Using Listing 4-6, you can obtain the sum of all price elements. For these examples, brevity
over optimization will be the factor for writing the expressions. For example:

sum(//*[local-name()="price"])

This will return the value 100439.95. This will also retrieve the total number of price ele-
ments, indicating the number of items in the store:

count(//*[local-name()="price"])

This returns the value 7. Using these two results, you can obtain the average item price,
which will be rounded:

round(sum(//*[local-name()="price"]) / count(//*[local-name()="price"]))

The resulting value for the rounded average price is 14349.
Using calculations to return non-node sets in XPath is pretty limited. For example, you simply

cannot calculate the worth of inventory on hand. This involves taking the sum of (price * qty) for
each item. The sum function takes a node set as an argument, so you have no way to perform this
mathematically.

You can also perform calculations within the predicate. For some strange reason, your work-
flow requires that every other book element needs to be selected for processing:

//*[local-name()="book" and position() mod 2 = 1]

The position of the book element is tested to find out whether it is odd or even. You can
do this through the position() mod 2 piece of the predicate. The operator mod returns the
remainder from a truncating division, so the value 1 means the position is odd. This query
returns every other book element in the document starting with the first one encountered.

XPath Summary
You can use XPath locate and retrieve information from a document. As you have seen, it is
simple to use yet offers the ability for advanced and complex querying. In Chapters 6, 7, and
10, which cover the PHP 5 XML extensions, you will be exposed to more XPath techniques.
You will not only use it through the extensions but also as the foundation of XSLT.

Introducing XPointer
XPointer is a W3C specification, though still a working draft, used for fragment identification
for URI references. It is an extension of XPath so uses the same syntax to address the internal
structure of an XML document using a URI. You must perform character escaping for XPointer
expressions depending upon the content of the expression. This means that if XPointer is used
within a URI, it must follow the same escaping rules a URI follows; for instance, you must escape
a space to %20. When used within an XML document, it must follow the escaping rules for XML.
For example, XPath uses quotes around string values. XPointer, when embedded within a doc-
ument, must have the quotes escaped, such as using ".

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE146

6331_c04_final.qxd 2/16/06 5:01 PM Page 146

XPointer and XPath Expressions
XPointer, being an extension of XPath, uses the XPath syntax. This section will not attempt to
cover the full XPath syntax, because I explained this earlier. I will use the document in Listing 4-4
to show how to reimplement the XPath expressions here using XPointer. There is little new infor-
mation in this section because writing XPointer expressions is a simple as this:

xpointer(xpath_expression)

Taking a few of the example XPath expressions, the equivalent versions in XPointer are as
follows:

/* Select all elements containing the attribute names specials */
xpointer(//*[@specials])

/* Select all time elements having a parent named fruit */
xpointer(//time[../self::fruit])

/* Select all elements with a child element named price having a value > 1.99 */
xpointer(//*[price > 1.99])

XPointer is really as easy as that.
When used with a URI, the xpointer part is the document fragment portion of the URI.

For example, suppose the produce document from Listing 4-4 was a file located at http://
www.example.com/produce.xml. The desired result is to retrieve all elements that contain the
specials attribute, which was the first example listed previously. For example:

http://www.example.com/produce.xml#xpointer(//*[@specials])

The URL is broken down into two components: the base URL, which is http://
www.example.com/produce.xml, and the document fragment, xpointer(//*[@specials]). In
essence, the full URL is equivalent to saying, “Using the produce.xml file located at http://
www.example.com, return all elements containing a specials attribute from the document.”

As you will see in later sections of this chapter, you don’t always need full URLs because
you can imply them by other means; therefore, simply using the xpointer(xpath_expression)
syntax may be enough. It is also worthy to note that XPointer is most often used when employ-
ing XInclude, which will be covered in the “Introducing XInclude” section, and XSL, which will
be covered in Chapter 10. You will also see XPointer used in conjunction with XLink. I have
included a brief introduction to XLink, but this technology is really out of the scope of this book.
Currently, XLink is not supported by libxml2, the underlying XML library used within PHP 5,
and no future plans exist to support it.

Stacking XPointer Expressions
Another nice feature of XPointer is the ability to stack expressions. If the first expression fails,
then the following expression runs. You can add expressions to be processed only if the pre-
ceding expression has failed. Continuing to use the data from Listing 4-4, XPointer will first
attempt to retrieve all elements with the attribute specials having the value BADVALUE. This
document doesn’t have any of these attributes with that value, so the expression fails, and
the second expression is processed:

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 147

6331_c04_final.qxd 2/16/06 5:01 PM Page 147

xpointer(//*[@specials="BADVALUE"])xpointer(//*[@specials])

The results of this will be all elements containing the attribute specials because of the
failure of the first expression.

The following example returns the same results as the previous example. The expression
xpointer(//*[@specials]) resulted in returning data, so the last expression, xpointer(//*),
is never executed.

xpointer(//*[@specials="BADVALUE"])xpointer(//*[@specials])xpointer(//*)

XPointer and Namespaces
When I discussed namespaces with regard to XPath, one of problems encountered was deal-
ing with default namespaces in documents. I mentioned that some technologies offer ways to
register namespaces and prefixes to be used within the XPath queries. XPointer is one of the
technologies providing functionality for this. For example:

<produce xmlns="http://www.example.com/produce">
<vegetable>tomato</vegetable>
<vegetable>lettuce</vegetable>
<fruit>apple</fruit>

</produce>

Given this document containing a default namespace of http://www.example.com/
produce, all vegetable elements need to be retrieved. Using XPath, you would need to test
either the local names of the elements or the namespace uri for the elements:

/*/*[@local-name()="vegetable"]

XPointer adds the ability to register namespaces to be used for the XPointer expressions
in the following form:

xmlns(prefix=URI)

prefix is the prefix to associate with the namespace URI identified by URI. Using this
notation, the XPointer expression would be as follows:

xmlns(veg=http://www.example.com/produce)xpointer(//veg:vegetable)

Just as the XPointer expressions can be stacked, so can the namespace registrations
(the following code has been split over two lines because of length):

xmlns(veg=http://www.example.com)xmlns(fr="http://www.example.com/fruit)
xpointer(//veg:vegetable)

In the event the same prefix is defined multiple times, the rightmost definition is the one
used. An example of this is when you define the prefix veg multiple times. For example:

xmlns(veg=http://www.example.com)xmlns(veg="http://www.example.com/fruit)

This causes veg to be associated with the namespace http://www.example.com/fruit.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE148

6331_c04_final.qxd 2/16/06 5:01 PM Page 148

XPointer Extending XPath
At first glance, it may seem that XPointer is just an XPointer function taking an XPath expres-
sion as an argument. For the most part it is, but it also extends XPath to offer some additional
functionality. XPath introduces some additional concepts such as locations, location types,
location sets, points, and ranges. It adds some functions that can be used under XPointer. The
following sections are not a complete, in-depth examination of XPointer and its extended
functionality. At the current time, XPointer is still a working draft, and not all functionality is
implemented in libxml. All XPath topics covered to this point are fully supported, however.

Location, Location Types, and Location Sets
The basic unit within XPath is the node, and a document is a tree of nodes. XPointer general-
izes this and uses the concept of a location. A location not only includes nodes, from the XPath
point of view, but also includes points and ranges, which I will explain shortly. A location type
is a node type, point type, or range type. Location sets are generalized node sets. They not only
include nodes, but they also include points and ranges.

Points and Ranges
Points and ranges represent non-node locations, but they are considered to be two additional
node types that can be used when writing expressions. A point can represent the position pre-
ceding or following an element node as well as a location preceding any individual character
within a text node, comment, attribute value, or PI. It is defined by a container node and an
index, which is a non-negative integer. The index, unlike an XPath position, is zero-based. Points
do not have expanded names and have empty string values.

A range, defined by starting and ending points, contains all the XML structure in between.
Just as a point is just some position within a document, a range can contain partial pieces of
nodes. Ranges for nodes—other than element, text, and root nodes—must have the same con-
tainer node for the starting and ending points. For example, a range with a starting point inside
a comment node must have an ending point within the comment node. The ending point can-
not extend past the comment node.

Functions
XPointer adds some new functions to those already available from XPath. You can use these
functions to deal with ranges, location sets, and pointers, which are not part of XPath.

range-to

This is the syntax for range-to:

location-set range-to(location-set)

This function returns a range consisting of a starting point from the context and an
ending point determined from the location set passed in as the parameter.

The following example would return a range from the starting point for the element
identified by the ID chap1 to the ending point of the element identified by the ID chap2:

xpointer(id("chap1")/range-to(id("chap2")))

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 149

6331_c04_final.qxd 2/16/06 5:01 PM Page 149

Given the following document:

<book>
<chapter xml:id="chap1">

<!-- chapter data -->
</chapter>
<chapter xml:id="chap2">

<!-- chapter data -->
</chapter>

</book>

everything between the opening chapter tag with the xml:id="chap1" and the closing chapter
tag with the xml:id="chap2" would be selected.

string-range

This is the syntax for string-range:

location-set string-range(location-set, string, position?, length?)

This function returns a set of ranges where the string value of the location-set matches
the string parameter:

The position parameter is optional and indicates the starting point of the range being
returned relative to the matched string. The default value, when not specified, is 1, meaning
that the starting point of the range will be the point preceding the character of the matched
string.

This finds all occurrences of the string Joe in name elements:

xpointer(string-range(//name,"Joe"))

This selects the character e from the first occurrence of the string Joe:

xpointer(string-range(/,"Joe",2,1)[position()=1])

range

This is the syntax for range:

location-set range(location-set)

This function returns a location set composed of the ranges for each location of the
location-set input parameter:

range-inside

This is the syntax for range-inside:

location-set range-inside(location-set)

This function returns a location set composed of the ranges contained within each location
of the location-set input parameter. A location, which is a range, returns the range itself. Other
locations use the location as the container node and return the range within the container.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE150

6331_c04_final.qxd 2/16/06 5:01 PM Page 150

start-point

This is the syntax for start-point:

location-set start-point(location-set)

This function returns a location set composed of all the starting points for each location of the
location-set input parameter. For example, start-point(//chapter) would return a set of points
immediately following the opening tag of a chapter element, and start-point(chapter[1]) would
return a single point located after the opening tag of the first chapter element.

end-point

This is the syntax for end-point:

location-set end-point(location-set)

This function returns a location set composed of all the ending points for each location of
the location-set input parameter:

here

This is the syntax for here:

location-set here()

This function is valid only when being interpreted within an XML document or external
parsed parameter. It returns a location-set composed of a single member, which is the node
that contains the expression being evaluated. For a text node within an element node, the ele-
ment node is returned.

origin

This is the syntax for origin:

location-set origin()

This function is applicable only when using XLink. It returns a location-set that locates
the element from where the traversal began:

XPointer Summary
XPointer has not yet achieved recommendation status from the W3C. It has actually been
broken up into several specifications. Using XPath syntax should be safe without having to
anticipate any changes. This syntax is fully supported in libxml and the PHP 5 extensions
where XPointer is applicable. The extended functionality presented here may change over
time, and currently the extended functionality is not fully supported in libxml.

Introducing XInclude
XInclude is a W3C specification for including external documents, fragments, and other con-
tent within an XML document. This technology differs from the use of external entities in many
ways. External entities are processed while a document is parsing. XInclude is independent of

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 151

6331_c04_final.qxd 2/16/06 5:01 PM Page 151

parsing. It occurs when instructed by the user of the document, which can occur while parsing,
after the fact, or even not at all. External entities also must be defined in a DTD. XInclude does
not require a DTD to work within a document. This allows it to work independently of valida-
tion. Failure to load an external entity normally results in a failure to load the base document.
XInclude, on the other hand, offers the ability to provide alternatives in the event the remote
data cannot be loaded. Using a fallback mechanism allows the base document to load success-
fully even though a remote source may be unavailable. The following sections will explain the
syntax used to employ XInclude as well as how you can use it within an XML document.

XInclude defines the namespace http://www.w3.org/2001/XInclude. Although you can
associate any prefix with this namespace, the typical prefix used is xi. This namespace contains
two elements, include and fallback. Within the following sections, the xi prefix will refer to the
http://www.w3.org/2001/XInclude namespace, so the elements will appear as xi:include and
xi:fallback. Listing 4-7 is a small portion of the courses XML document. This document
resides in the file courses.xml, and I will use it in the following sections for illustration.

Listing 4-7. Small XML Course Document for the File courses.xml

<?xml version="1.0" ?>
<courses>

<course xml:id="c1">
<title>Basic Languages</title>
<description>Introduction to Languages</description>

</course>
<course xml:id="c2">

<title>French I</title>
<description>Introduction to French</description>

</course>
</courses>

xi:include
The xi:include element defines the location of the entity to include as well as any additional
information that may be needed to parse the entity when including. This element takes the
following form:

<xi:include href="URI" parser="value" xpointer="xpointerexp" encoding="EncName"
accept="value" accept-language="value" />

xi:include attributes
Although the attributes are optional, many of the requirements for attributes are dependant
upon each other.

href

The value of the href attribute specifies the URI of the resource to include. This is an optional
attribute. When omitted or set to an empty string (href=""), the location references the same
document.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE152

6331_c04_final.qxd 2/16/06 5:01 PM Page 152

parser

The parser attribute specifies how the included resource should be parsed. The possible values
are xml and text. When omitted, the default value of xml is used to parse the include. The value
xml indicates that the resource should be included as parsed XML and merged into the document.
The value text indicates that the resource should be included as text content. When including
text, escaping will be performed on the contents of the resource to ensure proper text content.
For instance, if an XML document were included using text parsing, characters such as < and >
would be included using their escaped values, < and >.

xpointer

This attribute specifies an XPointer expression to be evaluated on the included document.
This will allow the include to limit or specify portions of the external xml resource to include.
The xpointer attribute is valid only when the parser attribute value is xml, either through
omission or explicitly set. Using the xpointer attribute when the parser value is text will
result in an error. When the xpointer attribute is omitted, the href attribute must be present.

encoding

The encoding attribute specifies the encoding of a text resource. It is applicable only when the
parse attribute is set to text. When parsing XML, the encoding is handled through the normal
XML encoding methods. There is no built-in mechanism to specify encoding on non-XML
resources, so you can set an encoding name, as defined by the acceptable XML encoding names,
as the value of this attribute for this purpose.

accept

The accept attribute is used for content negotiation while retrieving the resource. When fetch-
ing a resource through HTTP, the value of this attribute is added to the HTTP request as an
Accept header.

accept-language

This attribute is also used for content negotiation. Similar to the accept attribute, the value of
the accept-language attribute is added to the HTTP request as an Accept-Language header.

Using xi:include
The xi:include element is easy to add to a document. Using the external file courses.xml in
Listing 4-7, you can construct a document that can include the contents of that file just as if
the remote document were contained within the base document:

<?xml version="1.0" ?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="courses.xml" parse="xml" />
</academic>

Processing the XInclude within this document results in the following output:

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 153

6331_c04_final.qxd 2/16/06 5:01 PM Page 153

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

<courses>
<course xml:id="c1">

<title>Basic Languages</title>
<description>Introduction to Languages</description>

</course>
<course xml:id="c2">

<title>French I</title>
<description>Introduction to French</description>

</course>
</courses>

</academic>

I used the value xml for the parse attribute in this case, so the resource was processed and
included as XML. You could also include the resource as text, which will not parse but will
escape characters:

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="xi.xml" parse="text" />
</academic>.

Processing the XInclude this time produces something along these lines:

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

<?xml version="1.0" ?>
<courses>

<course xml:id="c1">
<title>Basic Languages</title>
<description>Introduction to Languages</description>

</course>
<course xml:id="c2">

<title>French I</title>
<description>Introduction to French</description>

</course>
</courses>
</academic>

Even the XML declaration from the courses.xml file is included this time. XInclude
was instructed by the parse attribute not to process the resource as XML but to include it
as text. The XML declaration has no meaning as plain text and is added to the document.
You most likely have noticed that all characters have also been escaped, including much
of the whitespace.

If you notice the attributes within the courses.xml file for the course elements, they are
defined as xml:id attributes, which automatically convert the attributes to type ID. Using the
xpointer attribute with the xi:include element, you can select a single course with the ID of
the element:

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE154

6331_c04_final.qxd 2/16/06 5:01 PM Page 154

<?xml version="1.0" ?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="courses.xml" parse="xml" xpointer="xpointer(id('c1'))"/>
</academic>

The function id() takes a string argument, which must be surrounded by quotes. This
appears within an attribute whose value is enclosed in double quotes. For this reason, I used
single quotes to encapsulate the string c1. When the attribute value is enclosed by single quotes,
the string needs to be encapsulated by double quotes, like xpointer='xpointer(id("c1"))'. This
returns the course element identified by the ID c1 from the courses.xml document. When
included, the resulting document looks like this:

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

<course xml:id="c1">
<title>Basic Languages</title>
<description>Introduction to Languages</description>

</course>
</academic>

Including documents, text, and fragments is a straightforward and simple process. All that
is required is the addition of an include element, which resides in the http://www.w3.org/
2001/XInclude namespace, and the location of the resource to be included. Within this section
you have come to know this as the xi:include element. XInclude also offers a form of error
handling, which is covered next, in the event you encounter a problem with the xinclude.

xi:fallback
Sometimes an XInclude may fail. It could be because of a problem accessing the remote
resource or a possibly invalid selection of data. Normally this would cause an error in process-
ing. XInclude offers a way to handle this and use other functionality in the event of an error.
You do this using the xi:fallback element.

The fallback element is referenced here using xi:fallback. It falls under the same rules as the
xi:include element in respect to the namespace. It must reside within the http://www.w3.org/
2001/XInclude namespace, which for this chapter has been associated with the xi prefix. This ele-
ment lives as a child of the xi:include element and has no attributes. When an error occurs from
the xi:include element, the contents of the xi:fallback element are used for replacement.

Sometimes a network may be unavailable, or an Internet connection goes down. It is also
possible that the filename of the remote resource was mistyped in the xi:xinclude href attrib-
ute. Each of these would cause the include to fail. Take the case of an invalid href:

<?xml version="1.0" ?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="coursesBAD.xml" parse="xml" />
</academic>

This href is pointing to coursesBAD.xml, which is a file that does not exist. Processing the
xinclude will result in at a minimum a parser warning and possibly an unrecoverable parser

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 155

6331_c04_final.qxd 2/16/06 5:01 PM Page 155

error. To prevent this from happening, the document could add an xi:fallback element to
handle an unexpected case:

<?xml version="1.0" ?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="coursesBAD.xml" parse="xml">
<xi:fallback>

External Resource Problem
</xi:fallback>

</xi:include>
</academic>

Processing this document results in the following:

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

External Resource Problem

</academic>

The contents of xi:fallback were added to the document including the whitespace, such
as the line feeds. It is also possible to replace an error condition with no content. You do this
simply using an empty xi:fallback element:

<?xml version="1.0" ?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="coursesBAD.xml" parse="xml">
<xi:fallback />

</xi:include>
</academic>

The resulting document in this case is as follows:

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

</academic>

The academic element still contains the insignificant whitespace from the base document,
which is why a blank line appears in the output.

You can also perform error handling in cases where an XPointer expression may fail. Using
the xpointer attribute, the course element identified by the ID c6 is to be selected from the doc-
ument. Looking at the document in Listing 4-7, you already know that no element with this ID
exists and expect it to fail:

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="courses.xml" parse="xml" xpointer="xpointer(id('c6'))"/>
<xi:fallback>Element not found</xi:fallback>

</xi:include>
</academic>

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE156

6331_c04_final.qxd 2/16/06 5:01 PM Page 156

As expected, the element is not found, resulting in an error and the following document:

<?xml version="1.0"?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

Element not found
</academic>

XInclude Summary
XInclude can be a useful technology to employ. Documents can be smaller in size as well as
reused. You can overcome many of the issues with external entities using this method as well
as the added ability to fall back to another case in the event of a failure. You can now handle
fatal errors, preventing the complete stoppage of processing. In addition, you don’t have to
load external resources during initial parsing. If the resources are not needed at the time, the
xincludes do not need to be processed, which not only keeps the document smaller but also
reduces the processing time.

Examining the Future of XML
Some new technologies are on the horizon in the XML realm. Though not yet standards, these
technologies are already being used in many commercialized products. The following sections
cover these technologies; I’ll also provide an overview of XLink, which although not a new
technology is one that does not have as widespread use or support as the technologies already
covered.

Introducing XLink
Although XLink has been a W3C standard for many years now—since June 2001 (http://
www.w3.org/TR/xlink)—this chapter will not provide an in-depth examination of this technol-
ogy. It is primarily a UI-based technology, and currently neither PHP nor libxml has native
support for XLink. You can create documents containing XLink elements by using extensions
such as the DOM extension (which will be covered in Chapter 6), but no XLink processing
abilities are offered. You may find some newer browsers beginning to support XLink, but unless
you are within a controlled environment, it is not recommended to use XLink for a public site.

XLink is for creating and describing links between resources. In terms of HTML, it would
be the equivalent to the anchor tag, , on steroids. XLink lives within the
http://www.w3.org/1999/xlink namespace. For the purposes of this section, the prefix xlink
will be associated with this namespace. XLink allows any element to become a link. This is a
big difference from HTML, where the only link is the anchor element. Listing 4-8 illustrates a
sample document using XLink.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 157

6331_c04_final.qxd 2/16/06 5:01 PM Page 157

Listing 4-8. XML Document Using XLink

<?xml version="1.0" encoding="ISO-8859-1"?>
<resources xmlns:xlink="http://www.w3.org/1999/xlink">

<resource>
<description xlink:type="simple"

xlink:href="http://www.w3.org/TR/xpath/" xlink:show="new">
XPath 1.0 Specification

</description>
</resource>
<resource>

<description xlink:type="simple"
xlink:href="http://www.w3.org/TR/xlink/" xlink:show="replace">

XLink Specification
</description>

</resource>
</resources>

Within the document, you should first notice the declaration of the XLink namespace
associated with the xlink prefix. The description elements within this document are using
xlink attributes, which define link behavior. Many more XLink attributes exist than the ones
used here, but those are out of the scope of this book. The following sections will only briefly
cover the type, href, and show attributes.

type Attribute
The type attribute specifies the type of link the element represents. This attribute is manda-
tory for an element using xlink. The possible values for this attribute are simple, extended,
locator, arc, resource, title, and none. The only two values I’ll explain here are simple and
none, because the remaining values require much more in-depth knowledge of XLink than that
provided in this chapter. Using the value none, the element has no XLink meaning. All xlink
attributes are skipped, and the element is processed as a normal XML element. The value
simple represents a simple link similar to an HTML anchor tag. The remaining values offer
more extended functionality.

href Attribute
The href attribute provides the location for an XLink application to find the remote resource.
Its value is a URI, and it works similarly to an href tag on an HTML anchor element.

show Attribute
The show attribute indicates where the link should be opened for presentation. Its value may
be one of new, replace, embed, other, or none. This attribute is similar to the target attribute for
an anchor tag but provides some additional values. The value of new will open the resource in a
new window or frame. This is equivalent to a target attribute with the value _blank. The value
replace, which is also the default value when not set, will replace the current window or frame
with the content. Its HTML target equivalent is _self. The value embed will embed the contents
of the resource within the document. This value is similar to using an image tag, IMG, in HTML.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE158

6331_c04_final.qxd 2/16/06 5:01 PM Page 158

The value other does not offer any direction for presenting the resource content but indicates
to an XLink application that it should look for other markup for possible instructions. The last
value, none, is similar to other. It offers no direction for presenting the resource and means
that no other markup may exist to offer direction for an application.

XLink Summary
This has been an extremely brief look at the XLink technology. It has been around for quite a
while, and some people think it will revolutionize Internet browsing. XLink has been a recom-
mended specification for more than four years now, and I don’t know about you, but I personally
don’t have a browser that supports it yet. As far as applications using XLink, I haven’t yet come
across any, although they must exist. If you are interested in further information on XLink and
features not covered here, I suggest you read the specification at http://www.w3.org/TR/xlink/.

Introducing XQuery, XPath 2.0, and XSLT 2.0
XPath 2.0 is the new generation of XPath. It serves as the foundation for XQuery and XSLT 2.0.
These technologies are still in the working draft phase from the W3C. You can find the specifi-
cations at http://www.w3.org/TR/xpath20/, http://www.w3.org/XML/Query, and http://
www.w3.org/TR/xslt20/.

This section will introduce you to XPath 2.0. XQuery is almost synonymous with XPath 2.0
at this point, but XSLT 2.0 is out of the scope of this book. Although some of the larger database
vendors support XQuery, PHP 5 and libxml do not support these technologies natively at this
time (and there is currently no planned support). You may find, however, third-party extensions
providing support for these technologies, possibly an extension for a database. For these rea-
sons, I’ll present only a brief introduction to XPath 2.0.

Like XPath 1.0, XPath 2.0 serves to address nodes within an XML tree. It is meant to be used
within a host language, such as XQuery and XSLT 2.0, and not as a stand-alone language. A
background on XPath 2.0 should suffice in the event you ever encounter XQuery or XSLT 2.0.

XPath 2.0 contains the same node types as 1.0, though the terminology for a root node has
changed to document node. XPath 2.0 uses the concept of a sequence. Everything is a sequence,
including numbers and strings. For example, a single number would be a sequence with a sin-
gle number, and a string would be considered a sequence with a single string. A node would be
a sequence containing one node. In terms of XPath 1.0, a node set would be a sequence of
nodes. Listing 4-9 shows a simplified version of the store document from Listing 4-6.

Listing 4-9. Simplified Store Document

<store>
<book qty="25">

<name>Grapes of Wrath</name>
<price>12.99</price>

</book>
<magazine qty="75">

<title>fdsfsd</title>
<issue>2005-11-01</issue>
<price>2.99</price>

</magazine>

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 159

6331_c04_final.qxd 2/16/06 5:01 PM Page 159

<book qty="25">
<name>Of Mice and Men</name>
<price>9.99</price>

</book>
<magazine qty="5">

<title>fdsfsd</title>
<issue>2002-10-01</issue>
<price>2.99</price>

</magazine>
</store>

Using XPath 1.0, you can retrieve all book and magazine elements with the following:

/store/*[self::book or self::magazine]

This query would return all the book and magazine elements in document order, which
means you would have a node set that contained a book element, a magazine element, a book
element, and finally a magazine element.

Under XPath 2.0, you could modify the query to retrieve all book elements followed by all
magazine elements, followed again by all book elements. This type of query is not possible
under XPath 1.0, because a node set could never contain the same element more than once.
For example:

(/store/book, /store/magazine, /store/book)

This expression is a sequence, where a comma separates each query. The first query
retrieves all book elements, the second query retrieves all magazine elements, and the last query
retrieves all book elements again. The result would be a sequence containing the nodes in the
order just detailed.

As you saw when performing calculations using XPath 1.0, you had no way to generate the
total value of inventory on hand. This is now possible using XPath 2.0. Sequences are iterable.
It is similar to being able to perform a foreach in PHP:

for $x in /store/* return $x/@qty * $x/price

This expression, after every iteration has been performed, will return a sequence contain-
ing the value of qty*price for each element in the store. The sequence returned would be
(324.75, 224.25, 249.75, 14.95). You could then use this sequence within the sum function.
The sum function in XPath 2.0 takes a sequence, not a node set:

sum(for $x in /store/* return $x/@qty * $x/price)

The end result would be 833.7, which is the value of the inventory on hand within the
store.

Another nice addition is if/then/else. The specification’s example looks like this:

if ($widget1/unit-cost < $widget2/unit-cost)
then $widget1
else $widget2

If my interpretation is correct, then you could calculate the total value on hand for items
with a quantity greater than 25 with the following:

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE160

6331_c04_final.qxd 2/16/06 5:01 PM Page 160

sum(for $x in /store/* return if($x/@qty > 25) then $x/@qty * $x/price else 0)

You could, of course, have performed this in a much simpler manner:

sum(for $x in /store/*[@qty > 25] return $x/@qty * $x/price)

The last portion of XPath 2.0 I will cover is quantified expressions. These expressions allow
a test against a sequence and return TRUE or FALSE depending upon the quantifier used and
whether every item in the sequence evaluates to TRUE or only some do. For example, to test
whether every item in the store has a price of 12.99, you could use the following expression:

every $x in /store/*/price satisfies $x = 12.99

This expression returns FALSE. The price for the items varies, and only one item has a
price of 12.99. You could modify the expression using the some quantifier, which returns TRUE
if any of the price elements have a value of 12.99:

some $x in /store/*/price satisfies $x = 12.99

This expression returns TRUE, because a book element exists that has a price equal to 12.99.
As you can see, XPath 2.0 is extremely more powerful than XPath 1.0. This brief introduction

has only touched the surface of what is contained within XPath 2.0. Many additional functions
and keywords perform tasks such as casting, instance-of checking, and schema data typing.

In time, these technologies may be available for use with libxml and PHP, but as I have
mentioned, there is currently no planned support. By the time you are reading this, things
may have changed, but unless the specifications become recommendations soon, I highly
doubt it.

Conclusion
The primary focus of this chapter was on XPath 1.0, XPointer, and XInclude. The material
presented should give you enough information about the concepts and actual use of these
technologies to utilize them in PHP. Future chapters will build upon what you have learned
here and provide you with ways to use this information in the PHP 5 programming environ-
ment. You also learned about XPath 2.0 in this chapter. Although PHP doesn’t support XPath
2.0, XQuery, or XSLT 2.0, you may encounter an extension at a future date that uses one of
these technologies.

Using everything you have learned to this point, it is time to begin exploring how to use
XML in PHP 5. The next chapter will introduce you to some functionality that is common to
the XML-based extensions in PHP.

CHAPTER 4 ■ XPATH, XPOINTER, XINCLUDE, AND THE FUTURE 161

6331_c04_final.qxd 2/16/06 5:01 PM Page 161

6331_c04_final.qxd 2/16/06 5:01 PM Page 162

PHP and XML

The latest version of PHP, PHP 5, introduces several new features and enhancements to the
PHP language. PHP 5 introduced a new object model, exceptions, and new database support
such as MySQLi and SQLite, and it makes major strides in the areas of XML and Web services.
This chapter will introduce you to the new XML-based extensions, their founding library, and
the basic functionality common to the PHP 5 XML extensions.

Introducing XML in PHP 5
Native XML support in PHP 4 was limited to certain basic technologies. The xml extension
supported SAX, the domxml extension provided tree support as well as some XSLT support,
and the xslt extension also provided XSLT support. With respect to Web services and data
exchange, the wddx extension supported distributed data exchange, and xmlrpc supported
XML-based remote procedure calls. Although this seems like a decent list of technologies, a
fundamental problem was that each was its own distinct extension using its own underlying
library. The extensions just did not work together, and to use all the extensions, you had to
install all the necessary libraries.

The shortcomings of XML in PHP 4 caused much frustration for those using it. All this
XML technology was available, but it would not work together. So, while PHP 5 was still in its
early stages of development, a discussion began that would ultimately shape the future of
XML in PHP 5. The developers decided to rework and rewrite the XML-based extensions to
provide the greatest functionality and flexibility as possible.

libxml2 in PHP 5
The central library decided upon for the core of the XML extensions is libxml2, which you can
find at http://www.xmlsoft.org. This library supports many of XML-related standards, includ-
ing the XML, Namespaces, XML Schemas, Relax NG, XPath, and XInclude specifications—just
to name a few. It was chosen for its vast XML support, which means additional technologies
can be implemented in PHP, and it is one of the fastest parsers; also, it is actively maintained
and widely used. Its sibling, the libxslt library, which is dependent upon libxml2 and also
located at http://www.xmlsoft.org, handles XSL within PHP 5.

Both of these libraries, being actively maintained, continue to evolve by providing fixes
to bugs and enhanced feature sets. To provide the best XML support possible, it is sometimes
necessary to require newer versions of these two libraries in order to build PHP. Such is the
case with PHP 5.1. The current minimum requirements for libxml2 and libxslt within PHP

163

C H A P T E R 5

■ ■ ■

6331_c05_final.qxd 2/16/06 4:58 PM Page 163

are libxml2 2.5.10 and libxslt 1.0.18 under PHP 5.0.x and libxml2 2.6.11 and libxslt 1.0.18 under
PHP 5.1.x. Although minimum requirements for these libraries have been established, it is
always a good idea to keep your libraries current. The bugs fixed in the latest versions alone
will enhance and ensure proper XML support within the PHP extensions. Some extensions
also provide new or additional functionality available only with newer libxml2 libraries.

■Tip Keeping your libxml2 and libxslt libraries current ensures you have the latest bug fixes, but it also
means, for some PHP 5 extensions, you’ll get additional functionality not found in earlier versions. Keep in
mind that this does not mean your application will behave exactly as it did before an upgrade. Both libraries
follow the XML specifications, so a fix in either library to conform to specifications may adversely affect any
expected output. In cases such as this, it is advantageous to correct the problem in the application rather
than rely on old library behavior that might not have been correct in the first place.

Core XML Extensions
Many XML extensions and packages exist for PHP, which will be mentioned later in this book.
If you are a PHP Extension and Application Repository (PEAR) fan, you have not been forgot-
ten. I have intentionally omitted discussing PEAR at this point because Chapter 13 is dedicated
to PEAR and XML. I will limit the current scope of this chapter to an introduction of the exten-
sions bundled with core PHP 5.

Tree-Based Parsers
Tree-based parsers allow you to construct or load existing XML documents so you can navi-
gate or modify them. To do this, the entire XML document is created or loaded into memory
as a tree. Given that the entire document must reside in memory, you need to consider your
memory constraints when using these technologies. These parsers also tend to initially be
slower for this same reason. Once in memory, however, these parsers offer the fastest access
to data within a document compared to other types of parsers.

Under PHP 4, domxml was the only native tree-based parser available. PHP 5 introduced
the new parsers DOM and SimpleXML. If you are unfamiliar with these parsers, then you may
be wondering why you need two. You will get an idea from the following descriptions; and
after reading Chapters 6, 7, and 11, you will have the full picture.

SimpleXML Extension

Using the new functionality offered by PHP 5, SimpleXML provides an extremely simple and
lightweight tool to manipulate XML documents. Compared to the DOM extension, SimpleXML
has an easy-to-learn API because you can view the document as a tree of objects, where objects
are synonymous with element nodes. Accessing a child element is as simple as using the child
element’s name as a property of an object. You can access attributes similarly to how you access
an array. To a limited extent, SimpleXML also allows for content editing. You can find further
information about SimpleXML in Chapter 7, which details this extension and offers examples
on usage.

CHAPTER 5 ■ PHP AND XML164

6331_c05_final.qxd 2/16/06 4:58 PM Page 164

DOM Extension

The DOM extension is the PHP 5 replacement for domxml, which is now supported only under
PHP 4. The DOM extension was created to address many of the shortcomings of domxml while
also adhering to the W3C DOM specifications. Unlike SimpleXML, it has a large and complex API.
This, however, is the price you pay for functionality. The DOM extension allows you to access all
node types, allows you to create and modify complex documents, and gives you advanced navi-
gation and functionality. An advantage to this extension, if you are coming from another language
that incorporates a DOM-compliant parser, is that the API should already be familiar to you and
easy to begin using under PHP. The next chapter covers this extension in detail.

Streaming Parsers
Unlike a tree-based parser, a streams-based parser does not load the entire document into
memory, so memory usage and requirements remain at a minimum. Only small pieces of the
document are available for processing at a time. PHP 5 offers both a push parser via the xml
extension and a pull parser via the XMLReader extension. These parsers do not allow for docu-
ment editing and offer little to no navigational capabilities, because they are forward-only
streams. The minor exception to this is XMLReader.

xml Extension

The xml extension is the familiar SAX-based tool from PHP 4. Within PHP 5, a libxml compati-
bility layer has been added as the default library, eliminating the need for expat, although it
may still be built using expat. SAX offers event-based parsing. Functions, known as handlers,
are assigned to events, such as when the beginning or end of an element is encountered, and
data is sent to the functions for processing. This is known as a push parser because you are not
in control of the data sent to your functions. Upon the commencement of parsing, reading of
the XML document begins. As events are triggered, your handler is executed with the data
whether or not you are interested in the actual data. This continues until you halt the parser,
a fatal error occurs, or it reaches the end of the document. Chapter 8 covers the xml extension
API and offers examples.

XMLReader Extension

The XMLReader extension takes a different approach than the xml extension. It works as a
forward-only cursor on the XML document, stopping at each node in the document. The user
controls the progress through the document as well as decides whether any information should
be retrieved from the current node pointed at by the cursor. It is for these reasons XMLReader is
called a pull parser. The ease of use, because of a small API, gives it some advantages over the
xml extension; in addition, XMLReader offers faster processing without an increase in memory
usage, offers streaming validation using DTDs or RELAX NG, offers support for namespaces,
offers support for xml:base and xml:id, and provides interoperability with the other PHP exten-
sions. Chapter 9 gives you an in-depth look at XMLReader and its usage.

■Note XMLReader is available for PHP 5.0 as a PHP Extension Community Library (PECL) extension.
As of PHP 5.1, XMLReader is available as a core extension.

CHAPTER 5 ■ PHP AND XML 165

6331_c05_final.qxd 2/16/06 4:58 PM Page 165

XSL Extension
XSL is an XML-based style sheet language and the language used to transform XML documents
into other XML documents. Chapter 10 covers XSLT in more depth, but a quick example is when
you take an XML document and create an XHTML document from select data within the origi-
nal XML document.

Just as the XSLT support from the domxml extension has been removed in PHP 5, so
has the xslt extension. Along with the new DOM extension, PHP 5 offers a new XSL exten-
sion to work alongside it. This time, the DOM and XSL extensions not integrated into a
single extension, but XSL is its own entity (though still dependant upon DOM). A new fea-
ture, present in the XSL extension, is the ability to execute PHP and use the resulting data
within the transformation.

Data Exchange and Web Services
Using XML for exchanging data and integrating systems has become a hot topic of conversa-
tion. PHP 5 includes three native extensions in this area: wddx, xmlrpc, and SOAP. While both
the wddx and xmlrpc extensions have been around since the PHP 4 days, the new native SOAP
extension was created exclusively for PHP 5.

wddx Extension

Web Distributed Data Exchange (WDDX) offers the ability to serialize data and their native
types into platform-neutral XML. This XML can then be transmitted to another system that
can unserialize the data into its own native data types. No specific transport agent is defined
for this technology, because you can use any Internet protocol. WDDX is strictly for serializing
and unserializing data. Unlike the XML-RPC or SOAP technologies, WDDX doesn’t attempt to
define methods for calling remote functions. The wddx extension, which will be covered in
Chapter 15, is the tool for utilizing the WDDX technology.

xmlrpc Extension

As you read in Chapter 1, XML-RPC was one of the early Web services. It is similar to WDDX
in that data and their types are serialized and unserialized into/from XML, but it goes beyond
this. XML-RPC defines HTTP as its transport agent and includes the mechanism for calling
remote functions, which are also transported via an XML document. The xmlrpc extension,
which will be covered in Chapter 15, is the extension supporting XML-RPC in PHP 5.

SOAP Extension

Native SOAP support in PHP 5 was a major advancement for the XML-based technologies. Prior
to its inception, the alternatives were implementations written in PHP, such as PEAR::SOAP and
NuSOAP. Although those are viable alternatives, the biggest advantage to native support written
in C is the great improvement in speed as well as the extension being considered the standard
SOAP implementation for PHP. You can find detailed information about the SOAP extension
and its usage in Chapter 18.

CHAPTER 5 ■ PHP AND XML166

6331_c05_final.qxd 2/16/06 4:58 PM Page 166

libxml Extension
The libxml extension in PHP 5 is not your typical extension. It does not offer any type of spe-
cific XML technology. This extension serves as the center of common functionality shared
across all XML-based extensions and uses libxml2 as its backend. This includes functionality
exposed to PHP developers as well as those developing extensions using libxml2 as their
library. Within PHP 5.0.x, the only user functionality you could control was stream contexts.
You may ask why this is important. Later in the “Introducing PHP Streams” section, I will
explain the relationship of PHP streams and XML. After PHP 5.0 was originally rolled out, one
of the biggest issues developers brought up about using the extensions concerned the way
error handling was implemented in XML. PHP 5.1 introduced new error handling that could
be controlled and accessed through the libxml extension. I’ll also discuss error handling for
both PHP 5.0 and 5.1 later in the “Performing Error Handling” section.

Configuring libxml Support
By default the libxml extension is enabled. Using Windows, libxml2 is built into PHP. You do
not need to worry about the libxml2.dll file as you did under PHP 4. Disabling this extension
causes all extensions based on libxml to be disabled as well. You disable this and the other
extensions simply by adding the following directive to your configure directive:

--disable-libxml

Because you are reading this book on PHP 5 and XML, I highly doubt this is something
you would want to do. But it may be possible you still want the extensions coming from PHP 4
so you can continue to use expat. You can do this using the following:

--with-libexpat-dir= /path_to_libexpat

This directive takes priority over the configure directive for libxml, and if used, the exten-
sions xml, wddx, and xmlrpc will be built using expat support rather than libxml2 support.

■Note Unless you are encountering problems using the libxml2 library with the xml, wddx, and/or xmlrpc
extensions, using libxml2 is highly recommended. Not only does it offer a performance boost, but it also has
a greater number of active developers who can provide support in the event of any problems with extensions.

The libxml extension is enabled by default, but if it is disabled (because running some
packaged version has changed the code shipped from the http://www.php.net site), you can
enable it with this:

--enable-libxml

You can specify the location of the libxml2 libraries through a configuration directive. If
you cannot determine the location by running configure, or if you would like to specify a dif-
ferent location such as testing a different version of libxml2, you can set the path using the
following:

CHAPTER 5 ■ PHP AND XML 167

6331_c05_final.qxd 2/16/06 4:58 PM Page 167

--with-libxml-dir=/path_to_libxml_config

This directive looks for the file /path_to_libxml_config/bin/xml2-config.
In many cases, you will not have to worry about changing or including any directives for

libxml. The default configure included with PHP 5 works right out of the box for most systems,
but this will depend upon your operating system. You can find installation help in the PHP
manual as well as many places on the Internet. Now that you have your system up and run-
ning with libxml support, it’s time to look at what libxml extension and libxml2 support means
with respect to using any of the XML-based extensions.

Introducing Encoding
Internationalization is something encountered frequently when dealing with XML and when
working on the Internet in general. Those new to XML often run into problems when dealing
with documents not based on the ANSI encoding or the UTF-8 encoding. Basic knowledge of
Unicode is highly suggested, because you will need to understand what it means for a string
to be encoded and why it is important to know what encoding is used.

Parsers are required to support UTF-8 and UTF-16 at a minimum. The libxml2 library
supports a few additional encodings natively, and when built with iconv support (http://
www.gnu.org/software/libiconv/), it can support all encodings supported by iconv. The iconv
library provides functionality for conversions between different encodings. You may already
be familiar with this through the PHP iconv extension. Table 5-1 lists the base encodings sup-
ported by the libxml2 library. This is not an exhaustive list of available encoding names
because many encodings are aliases to many of these character sets.

Table 5-1. Base Default Encodings Supported in libxml2

Character Set Encoding

UTF-8 UTF-8

UTF-16 UTF-16

UTF-16 Big Endian UTF-16BE

UTF-16 Little Endian UTF-16LE

ISO-8859-1 ISO-8859-1

ASCII ASCII

US_ASCII US_ASCII

HTML HTML

The last character set listed, HTML, is a special encoding within libxml2. It is used for out-
put only and includes predefined HTML entities. For regular XML use, you should ignore this
encoding; Chapter 10 will demonstrate its use.

Encoding Detection
As you have seen in earlier chapters, you specify the document encoding in the XML declara-
tion. For documents without a specified encoding, libxml2 attempts to detect the encoding

CHAPTER 5 ■ PHP AND XML168

6331_c05_final.qxd 2/16/06 4:58 PM Page 168

based on the first few characters of the document or a byte order mark (BOM). A BOM is
a sequence of bytes at the beginning of a data stream and can indicate the encoding form
used. Table 5-2 lists the byte sequences and their corresponding encodings.

Table 5-2. Byte Order Mark and Encodings

Byte Encoding

FE FF UTF-16BE

FF FE UTF-16LE

EF BB BF UTF-8

Documents without a specified encoding or BOM in the data stream can also have their
encoding detected based on the first few characters of the XML or test declaration. The encod-
ing will be able to be detected only if a declaration exists. Table 5-3 lists the sequence of
characters by their hexadecimal values and the corresponding encodings.

Table 5-3. No BOM and Corresponding Encodings

Character Encoding

00 00 00 3C ISO-10646-UCS-4

3C 00 00 00 ISO-10646-UCS-4

00 00 3C 00 ISO-10646-UCS-4

00 3C 00 00 ISO-10646-UCS-4

3C 3F 78 6D UTF-8

4C 6F A7 94 EBCDIC

3C 00 3F 00 UTF-16LE

00 3C 00 3F UTF-16BE

It may be evident now why XML declarations are recommended. Specifying an encoding not
only eliminates the need for a parser to attempt to autodetect the encoding of the document, but
it also makes it evident to someone looking at the document. In the event the encoding is not
present in the declaration and is unable to be detected, libxml2 will use UTF-8 for the encoding,
which is also the encoding it stores documents as internally. For instance, Listing 5-1 uses French
characters and ISO-8859-1 encoding, although not explicitly specified.

Listing 5-1. XML Document with French with No Encoding Defined

<doc>
<élément>contenu d'élément</élément>

</doc>

In this example, I didn’t add any BOMs to the data stream, and no XML declaration exists.
The parser cannot determine encoding, so it uses UTF-8 as a fallback. This presents a prob-
lem. The document is not proper UTF-8 encoding and thus fails when the parser attempts
to load it. Trying to actually load this document results in the following libxml2 error:

CHAPTER 5 ■ PHP AND XML 169

6331_c05_final.qxd 2/16/06 4:58 PM Page 169

Input is not proper UTF-8, indicate encoding !

Now that you know this fails, you can try using an XML declaration, as demonstrated in
Listing 5-2, but still not specify encoding. This will at least give libxml2 a chance to try to auto-
detect the encoding used.

Listing 5-2. XML Document with French and XML Declaration but No Encoding

<?xml version="1.0"?>
<doc>

<élément>contenu d'élément</élément>
</doc>

This isn’t surprising—the parser encounters the same error. The parser detected the XML
declaration but detected it as UTF-8. So, the parser used the same encoding regardless of
whether you specified the XML declaration. If you saved the document in Listing 5-2 as a file
in UTF-16 format, the autodetection would have at least noticed this and tried loading it using
UTF-16 as the encoding.

For the last try to get this document to load properly, set the encoding attribute on the
XML declaration, as illustrated in Listing 5-3.

Listing 5-3. XML Document with French and Encoding Specified

<?xml version="1.0" encoding="ISO-8859-1"?>
<doc>

<élément>contenu d'élément</élément>
</doc>

This time it finally loads without an error. The encoding you needed in this case was
ISO-8859-1, which allows the use of the French characters within the document. If you now
instructed the parser to dump the document to the standard console, you might not expect
to see what it outputs:

<?xml version="1.0" encoding="ISO-8859-1"?>
<doc>

<´l´ment>contenu d'´l´ment</´l´ment>
</doc>

You need to remember that your console may not be able to display all characters cor-
rectly. This output is from a console that doesn’t support the ISO-8859-1 character set. The
output is actually correct; it just doesn’t look correct. The document was sent to a file, rather
than to the standard output, so the contents of the file should be identical to the document in
Listing 5-3. This leads to the next topic of discussion, internal storage of an XML document
within libxml2.

Internal Encoding
Regardless of the encoding specified for a document, the encoding is stored internally within
libxml2 in UTF-8 format. You may be wondering why you need to care about how internal
data is encoded. This is actually important to understand when using any of the XML-based

CHAPTER 5 ■ PHP AND XML170

6331_c05_final.qxd 2/16/06 4:58 PM Page 170

extensions within PHP 5. The information contained within this section may save you count-
less hours of beating your head against the wall.

Once a document is loaded into the parser, you should completely ignore that an encod-
ing may have been specified for the document. The document is stored and processed using
UTF-8 encoding. Virtually all interaction with a parser or data from the parser must be per-
formed using UTF-8 encoded data. Note that in a few instances this does not hold true, and
as you read the later chapters covering the specific extensions, you will learn about the spe-
cific cases.

■Caution Documents are internally stored using UTF-8 encoding. Interaction with XML data in these
cases must be performed using UTF-8 data. You may need to perform encoding conversions using an
extension such as iconv or mbstring in order to avoid a corruption of data.

The iconv and mbstring extensions in PHP are your friends. When dealing with data that
is not UTF-8 compliant, you need to perform conversions. These extensions allow you to con-
vert data to and from UTF-8 based on virtually any encoding you need to use. Say you need to
add a new element with the content contenu d'élément to a document. Although you haven’t
gotten there yet, this example will use the DOM extension. Listing 5-4 illustrates how to use
iconv and mbstring in order to perform encoding conversions. Because I have not covered the
DOM extension yet, I have omitted the bulk of the code needed for processing.

Listing 5-4. Encoding and Decoding Using iconv and mbstring

<?php
$isostring = "contenu d'élément";

/* Conversions from ISO-8859-1 to UTF-8 */
$utf8string = iconv("ISO-8859-1", "UTF-8", $isostring);
$uft8string2 = mb_convert_encoding($isostring, "UTF-8", "ISO-8859-1");

/* Additional DOM code here */
$newelement = new DOMElement('newelement', $ utf8string);
$newelement2 = new DOMElement('newelement2', $ utf8string2);
/* Additional DOM code here */

/* Retrieve the content from newelement set above */
$value = $newelement->nodeValue;

/* Conversions from UTF-8 to ISO-8859-1 */
$isostring1 = iconv("UTF-8", "ISO-8859-1", $value);
$isostring2 = mb_convert_encoding($value, "ISO-8859-1", "UTF-8");
?>

The original data you began with, contenu d'élément, is stored in the variable $isostring.
This data is in ISO-8859-1 encoding, but in order to interact with the DOM extension, which is

CHAPTER 5 ■ PHP AND XML 171

6331_c05_final.qxd 2/16/06 4:58 PM Page 171

based on libxml2, you need to convert $isostring to UTF-8. The code in Listing 5-4 illustrates
how to perform this conversion using both iconv and mbstring (but you need to use only one).
Be aware of the ordering of arguments for the functions. From the PHP manual, the prototypes
for these functions are as follows:

string mb_convert_encoding (string str, string to_encoding [, mixed from_encoding])
string iconv (string in_charset, string out_charset, string str)

After performing the conversions, the strings using UTF-8 encoding, $utf8string and
$utf8string2, are then used as values for the content of the DOMElement objects. Naturally these
elements are added to the document within the omitted code. When reading the content of
these objects, the reverse conversions are performed and stored in $isostring1 and $isostring2.
These strings will contain the same string as the original $isostring variable.

Whether you need to worry about internal encoding depends upon the character set of
the data you are using. In many cases, you will be using the UTF-8 and ASCII character sets,
and in these cases you do not need any conversions. When working with documents contain-
ing language-specific data or when working with internationalization and XML, you must deal
with encoding properly.

Figuring Out the libxml2 Version
In some cases, the version of libxml2 used determines whether you can use certain functionality
within an extension. For example, namespace support within the xml extension is functional
only when running libxml2 2.6.x. Although 2.6.0 is the minimum version for PHP 5.1, PHP 5.0
can use XML functionality with at least 2.5.10. Attempting to use namespace support through
the xml_parser_create_ns function when running PHP 5.0 with a 2.5.x version of libxml2 results
in an error message, “Please upgrade to libxml2 2.6.” You may also find that other extensions
require other minimum versions to utilize certain functionality and methods.

This can make writing software difficult, because it is impossible to guess what version
someone else may be running. Luckily, you can retrieve the version of libxml2 and use it pro-
grammatically. The libxml extension offers two constants for this purpose: LIBXML_VERSION
and LIBXML_DOTTED_VERSION. LIBXML_VERSION is a numeric value indicating the major, minor,
and micro version. LIBXML_DOTTED_VERSION indicates the same information but in dotted nota-
tion. Using these notations, libxml2 version 2.6.19 would result in the following:

/* 2.6.19 using LIBXML_VERSION */
20619

/* 2.6.19 using LIBXML_DOTTED_VERSION */
2.6.19

Using this programmatically with the xml_parser_create_ns function as an example,
you could test whether the functionality is supported and provide an alternative in the
event it is not:

CHAPTER 5 ■ PHP AND XML172

6331_c05_final.qxd 2/16/06 4:58 PM Page 172

<?php
if (LIBXML_VERSION >= 20600) {

$xml = xml_parser_create_ns(…);
} else {

$xml = xml_parser_create(…);
}
?>

Introducing Parser Options
As of PHP 5.1, the libxml extension contains new constraints that you can use in the DOM and
SimpleXML extensions to control parser behavior. The parser uses these constants, listed in
Table 5-4, at the time of document load to offer finer control over how the parser loads and
parses the document.

Table 5-4. Parser Option Constants

Constant Description

LIBXML_NOENT Substitutes entities found within the document with their replacement
content.

LIBXML_DTDLOAD Loads any external subsets but does not perform validation. This flag also
ensures that IDs set in a DTD are created within the document.

LIBXML_DTDATTR Creates attributes within the document for any attributes defaulted through
a DTD.

LIBXML_DTDVALID Loads subsets and validates a document while parsing.

LIBXML_NOERROR Suppresses errors from libxml2 that may occur while parsing.

LIBXML_NOWARNING Surprises warnings from libxml2 that may occur while parsing.

LIBXML_NOBLANKS Removes all insignificant whitespace within the document.

LIBXML_XINCLUDE Performs all XIncludes found within the document.

LIBXML_NSCLEAN Removes redundant namespace declarations found while parsing the
document.

LIBXML_NOCDATA Merges CDATA nodes into text nodes. A document using CDATA sections will
be created with no CDATA nodes, because these will now be converted into
plain-text nodes. This flag is useful when loading a document to be used for
an XSL transformation.

LIBXML_NONET Disables network access when loading documents. You can use this flag to
increase security from untrusted documents so resources cannot be fetched
from the network.

You can combine flags when parsing. For example, you can load a document that vali-
dates and suppresses all warnings while parsing using the following options:

LIBXML_DTDVALID | LIBXML_NOWARNING

These options would be passed as a single parameter to the function or method accepting
a libxml parser option. I will demonstrate how to use these flags within the specific extensions
in their respective chapters. Note the use of flags when working with XSL. CDATA sections

CHAPTER 5 ■ PHP AND XML 173

6331_c05_final.qxd 2/16/06 4:58 PM Page 173

often make working in XSL difficult; specifically, certain XSL functions do not work correctly
when a document contains CDATA sections, because the functions are specific to text nodes.
Entities are also typically substituted within the XML document being transformed.

■Tip When parsing a document to be used within an XSL transformation, it is recommended that you use
the flags LIBXML_NOENT and LIBXML _NOCDATA to avoid any potential problems with calls made upon the
XML document from the XSL style sheet.

If you are still using PHP 5.0.x, these options are not available. Under this version, the DOM
extension does provide a few properties that can be used for controlling the parser, but they do
not include all the options listed in Table 5-4. SimpleXML, on the other hand, does not offer any
additional functionality to control the parser during document loading. The interoperability
within PHP 5 may be useful in this case, assuming the DOM extension has been built, because
you can load a document via the DOM extension and manipulate it using SimpleXML.

■Tip Under PHP 5.0.x, limited parser options are available, even when manipulating the tree using
SimpleXML. Documents can be loaded using the DOM extension and a few of the document properties that
control the parser; and through the interoperability of the extensions, you can manipulate the resulting tree
using SimpleXML.

Introducing PHP Streams
Resource input/output (I/O) for XML has completely changed with PHP 5. Under PHP 4,
XML-based extensions used their native I/O mechanisms for the input and output of resources.
If you recall from the domxml extension, the only protocols available would be specified as file,
http, and, as an input-only protocol, ftp. The old xslt extension would allow support for addi-
tional I/O handlers, but it was not all that easy to accomplish because programmers had to deal
with setting handlers and adding the functionality to make this work.

PHP 5 is much different. Built-in PHP streams support now serves as the foundation for
I/O handling within the XML-based extensions. The advantages of this are numerous for both
developers and system administrators. The advantages include the following:

• Built-in support for numerous protocols as well as user-defined streams

• Consistent I/O handling

• Support for PHP file security checks

Protocols
PHP includes many protocols, and the XML extensions by default have access to them all. No
longer are the extensions limited to the protocols defined within their base libraries. Files can

CHAPTER 5 ■ PHP AND XML174

6331_c05_final.qxd 2/16/06 4:58 PM Page 174

now be accessed not only from the file system but also via http, https, ftp, ftps, PHP I/O
streams, zlib, compress.zlib, and compress.bzip2. Prior to using PHP streams, unsupported
protocols needed to have the file loaded into a string using PHP functions and that data sent
to the extension to be processed as an in-memory string. This could get quite cumbersome for
large documents. Not only did you have the overhead of the entire document loaded into
memory for a tree parser, but the document was loaded in its string representation as well.
You ended up getting penalized twice this way.

XML extensions can now take advantage of user-defined streams. If you are familiar with
the streams functionality within PHP, you probably know that user-defined streams can be
registered and used natively through the functions supporting stream usage. So, if you would
like to define your own protocol—for example, xyz://—that uses your own defined I/O func-
tionality, once registered, the XML extensions would have direct access to it.

Consistent I/O Handling
Using domxml in the past created a pathing issue. Depending upon whether PHP was run via
the command line or an Apache module, as well as depending upon the operating system it
was executing under, the base directory for files that an XML document accessed was not the
same. For example, if your XML document contained relative paths for external entities or
even for the location of XIncludes, the base directory did not always end up being the direc-
tory you assumed it would be. This problem even manifested itself depending upon the version
of Apache being used. For instance, using Apache 2 under Windows, the base directory for an
XML file sometimes ended up being the directory where the Apache binary lived.

This problem caused many headaches. It was difficult for developers to write cross-
platform code. The domxml extension was eventually was fixed in some regard through
workarounds, but it still exhibits some differences between operating systems. The move to
PHP stream-based I/O now removes this problem. Pathing using streams is universal. The
base directory will not change if your code is run from the command line or as a module
under Apache—or even under a different operating system.

PHP File Security Support
Another advantage to using PHP streams comes from the built-in support for Safe Mode,
which includes the open_basedir and allow_url_fopen php.ini options. These settings are
typically employed in a shared server setting. Through the php.ini settings, a system adminis-
trator can control different aspects of file access. Prior to PHP 5, XML-based extensions used
their internal I/O functionality based upon their base libraries. These libraries, having no con-
cept of PHP streams, bypassed all the security settings.

By default, Safe Mode checks the user ID of the running script against the user ID of the
file to be accessed. You can also relax the check using safe_mode_gid to compare group IDs as
well. If the checks failed, access to the file would be denied. Accessing files using any of the
XML extensions now follows the same rules, thus adding security checks when the extensions
are accessible on the server.

The open_basedir setting allows directories to be set, limiting file access to only those
within the specified directories and their subdirectories. The value for the setting is actually
a prefix and not a directory. For example, a setting with the value /usr/inc would also match
the directory /usr/include. To limit access to only the /usr/inc directory, the value would

CHAPTER 5 ■ PHP AND XML 175

6331_c05_final.qxd 2/16/06 4:58 PM Page 175

need to include the trailing slash using /usr/inc/. This setting, independent from the Safe Mode
settings, also will affect how files can be accessed using the extensions.

The last setting, allow_url_fopen, can be used to limit network access. When this setting is
disabled, the XML parsers will not be allowed to open or save to any remote resource using pro-
tocols such as HTTP, HTTPS, and FTP. The local file system is still available for access, but those
network resources are denied. Used in conjunction with the Safe Mode and open_basedir set-
tings, access to resources can be locked down quite effectively.

Stream Context
Stream contexts are parameters and options that can modify the behavior of a stream. Many
of the stream-enabled functions within PHP accept a stream context as a parameter. The XML
functions are not included in this because stream usage is almost invisible from an API per-
spective. The libxml extension includes the function libxml_set_streams_context that you
can use for this purpose.

You can create a context with the regular PHP Streams API. You can find full documentation
for this API in the PHP user manual. You then set the context using libxml_set_streams_context;
the context remains active for the entire duration of the script. Consider accessing a remote XML
resource, located at http://www.example.com/test.xml, while sitting behind a proxy server located
at http://www.example.net:4444. Listing 5-5 illustrates the contents of the remote documents.

Listing 5-5. Contents of test.xml and testxinclude.xml

/* Contents of test.xml */
<test xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="testxinclude.xml" parse="xml" />
</test>

/* Contents of testxinclude.xml */
<testinclude>Included Content</testinclude>

The first task you must perform is to create the stream context:

<?php
$opts = array(

'http'=>array(
'proxy'=>"tcp://www.example.net:4444",
'request_fulluri'=>TRUE
)

);

$context = stream_context_create($opts);
?>

In this case, the proxy server is requiring a full URI to serve the request, which requires
the additional request_fulluri option set to TRUE. The next steps require setting the context
with the libxml extension:

libxml_set_streams_context($context);

CHAPTER 5 ■ PHP AND XML176

6331_c05_final.qxd 2/16/06 4:58 PM Page 176

With the context set, the parser can now request the XML resource as it normally would.
This example uses the DOM extension:

$dom = DOMDocument::load('http://www.example.com/test.xml');

The parser pulls the XML resource using the proxy set by the context. Notice that the doc-
ument contains an XInclude using a relative path. It should retrieve this resource from http://
www.example.xom/testinclude.xml. When the XInclude operation is performed via the DOM
extension, the proxy continues to service the requests.

Performing Error Handling
With the first release of PHP 5, many people were excited about the addition of advanced XML
functionality. The largest complaint was in regard to error handling using the XML functions.
Errors using XML not only are issued from PHP for user errors but also from libxml2 itself to
indicate XML errors, such as when a malformed document is being parsed. Errors from libxml2
range from simple warnings, which in many cases can be safely ignored, to fatal errors, which
may cause a PHP error to also be issued if the operation completely fails.

Both the SOAP and DOM extensions offer exceptions, but at least in the DOM exten-
sion’s case the exceptions were limited to those defined in the specifications. Errors deriving
directly from libxml2 were issued as E_WARNINGS and E_NOTICES depending upon the severity
of the error. Typically developers did not care about these errors. They just cared whether
the operation failed or succeeded. For those who did care about the errors, they had no way
to determine that the errors were XML-specific. So, adding a user error handler might be
fine, but it still did not indicate that the error was XML-specific.

To get around this problem, many developers started suppressing the errors and just
checking return values. For example, you can load a document using SimpleXML from a string
using the simplexml_load_string function:

$sxe = simplexml_load_string('<root>');
print $sxe->asXML();

Loading a malformed document results in an error. This is an invalid document because
it contains a single start element with no end element. A typical error from PHP 5 would be an
E_WARNING containing the message “Entity: line 1: parser error: Premature end of data in tag
root line 1,” followed by an error indicating that the developer was trying to call a member
function from a nonobject. The load failed, and $sxe was never created. To avoid this error,
the code was often changed to this:

if ($sxe = @simplexml_load_string('<root>')) {
print $sxe->asXML();

}

The error has been suppressed, and the print statement is executed only if $sxe exists.
This is all well and good, but all errors indicating the reason of failure have now been lost.

The complaints from developers did not go unnoticed. Things changed with PHP 5.1. For
backward compatibility reasons, the error-handling behavior was left intact and is the default
behavior. Additional error handling was added that allows XML errors to be suppressed while

CHAPTER 5 ■ PHP AND XML 177

6331_c05_final.qxd 2/16/06 4:58 PM Page 177

also providing a mechanism for them to be accessed after the fact. The additional functions
available from the libxml extensions that can access the new error-handling functionality
include the following:

bool libxml_use_internal_errors ([bool use_errors])
void libxml_clear_errors (void)
LibXMLError libxml_get_last_error (void)
array libxml_get_errors (void)

The function libxml_use_internal_errors is the central function, which turns on and off
the new internal error handler. The optional use_errors parameter, which defaults to FALSE,
indicates whether you should enable the internal error handler. The return value from the func-
tion contains the old value prior to calling the function. When in use, the libxml_clear_errors
function, which takes no parameters and does not return a value, will clear all stored errors.

Errors issued from the libxml2 library are stored internally on a first-in, first-out (FIFO)
basis. This means the first error in will be the first error out and will be accessed through
a LibXMLError object. A LibXMLError object has no methods and has only the properties
listed in Table 5-5.

Table 5-5. LibXMLError Object Properties

Property Type Description

level int Indicates the severity of the error. It is one of the levels defined by the
libxml extension that includes LIBXML_ERR_NONE, LIBXML_ERR_WARNING,
LIBXML_ERR_ERROR, and LIBXML_ERR_FATAL.

code int The error code from libxml2.

column int The column number if available from within the document the error
occurred.

line int The line number if available from within the document the error
occurred.

message string The textual representation of the error.

file string The filename, if available, of the XML document containing the error.

Not every property will be populated within a LibXMLError object. Certain values cannot
always be determined, such as file when parsing a string containing an XML document.

You can access the errors through the libxml_get_last_error and libxml_get_errors
functions. The libxml_get_last_error function returns the last LibXMLError object reported.
This function is useful only if the last reported error is desired. One thing to note is that even
when the new internal error handling is not enabled, this function is still available to access
the last error issued from libxml2. The libxml_get_errors function returns an array of
LibXMLError objects, starting with the first error issued and ending with the latest error. Modi-
fying the SimpleXML code previously used, you can now suppress the error output while still
having access to the XML errors:

CHAPTER 5 ■ PHP AND XML178

6331_c05_final.qxd 2/16/06 4:58 PM Page 178

libxml_use_internal_errors (TRUE);
if ($sxe = simplexml_load_string('<root>')) {

print $sxe->asXML();
}
/* Was an error produced? */
if ($lasterror = libxml_get_last_error()) {

/* Dump the last error reported */
var_dump($lasterror);

/* Get all errors as an array, loop through them, and dump the output */
$arerrors = libxml_get_errors();
foreach ($arerrors as $error) {

var_dump($error);
}

/* Clear out the internal errors since they are no longer needed */
libxml_clear_errors();

}

The code represented here assumes that this is the entire script or, if not, that internal errors
have already been cleared. The test for errors was simply done using the libxml_get_last_error
function. If anything was returned, then you know some type of error condition occurred. The
check was not done using libxml_get_errors, because this function will always return an array,
even when empty. If you used this function, you would need to execute the count function to
find out whether there was at least one error in the array.

Conclusion
This chapter provided some background on the XML-related extensions in general, including
the underlying libxml2 library. More important, however, is the common functionality from
the libxml extension covered in this chapter. This functionality is not exclusive to any single
extension but comes with any extension based on the libxml2 library. The libxml extension is
a required extension, built statically within PHP, when using any of the XML extensions built
with libxml2. libxml2 provides constants for use when parsing and provides access to the
streams context when needed, and as of PHP 5.1, it handles and provides access to the new
XML error-handling functionality.

With the knowledge of XML, many of its technologies, and the core libxml extension
behind you, it is time to start looking at the parsers available in PHP 5. The first of these
parsers is the tree-based DOM extension.

CHAPTER 5 ■ PHP AND XML 179

6331_c05_final.qxd 2/16/06 4:58 PM Page 179

6331_c05_final.qxd 2/16/06 4:58 PM Page 180

Document Object Model (DOM)

This chapter is the starting point to put everything covered to this point to practical usage.
You will be introduced to the DOM and its implementation in PHP 5. By the end of this chap-
ter, you should have an understanding of what the DOM is and how to write code using the DOM
extension. The examples within this chapter will build upon each other and form the founda-
tion for the examples toward the end of this chapter.

Introducing the DOM
The DOM is a set of interfaces for accessing and modifying documents. It is a standard, but it’s
actually broken down into many different specifications. The W3C governs the specifications,
which are located at http://www.w3.org/DOM/. The core functionality of the DOM is broken
down into Level 1, Level 2, and Level 3; each level offers increased functionality, which in turn
increases each API’s size.

■Note The material in this chapter assumes a basic knowledge of object-oriented programming (OOP).
You can find information about OOP in articles and documentation published by Zend Technology (http://
www.zend.com), which is the company that created the engine behind PHP 5 and the PHP manual.

Understanding the DOM Tree
Under the DOM, a document is manipulated as a tree broken down into nodes. This means
the entire document is loaded or is built in memory, where the tree is broken down into
smaller units all derived from a node. Nodes are the primary data type, and all other node
types are derived from nodes. This breakdown is similar to how you view a document using
XPath, although the DOM has a greater number of node types. The following are the node
types in the DOM:

• Attr: Attribute node

• CDATASection: CDATA section node

• Comment: Comment node

• DocumentFragment: Document fragment node 181

C H A P T E R 6

■ ■ ■

6331_c06_final.qxd 2/16/06 9:22 PM Page 181

• Document: Document node

• DocumentType: Document type node

• Element: Element node

• Entity: Entity node

• EntityReference: Entity reference node

• Notation: Notation node

• ProcessingInstruction: PI node

• Text: Text node

Each node type corresponds to a DOM object. In addition to these DOM objects, objects
exist that do not inherit from a node object, such as NodeList, NameNodeMap, DOMImplementation,
DOMException, and CharacterData. CharacterData is a special type of object in this list. It actu-
ally inherits from a node object but is not a direct DOM object. It provides some additional
functionality from which a text node inherits. In addition to the objects and interfaces listed
previously, the DOM provides some other interfaces, especially in Core Level 3, but I will not
cover them because they have no bearing on the DOM implementation in PHP 5.

The document, represented as a tree, allows for traversal in all directions. Every type of
node can be accessed, and the functionality available depends upon the type of node. Because
every node type inherits from the base Node interface, all functionality derived from the node
base type is accessible, although certain functionality applies only to certain node types. For
example, the Node interface includes a read-only nodeValue property that returns the value of
the node. Document and entity reference nodes are at least two types of nodes that have no
value and that return NULL for this property.

The following is a simple XML document:

<?xml version="1.0" ?>
<root>

<child att1="Att1 value">Child Contents</child>
<!-- This is a comment -->

</root>

Once loaded into the DOM extension, the XML document now is represented through
DOM objects, as illustrated in Figure 6-1.

Remember, when loaded, unless otherwise instructed, insignificant whitespaces such as
line feeds and tabs are also included in the DOM tree as text nodes. The reason why this bit
of information is important is that these additional text nodes will affect how you navigate the
tree. For instance, the children of the root node include these text nodes. Those new to XML
and the DOM extension often overlook this little fact; however, assuming that the children of
the root element in this example contain only the element child and the comment is incorrect.

■Note Insignificant whitespaces within a document are created as text nodes and, unless otherwise
instructed, must be taken into account when navigating and manipulating the document tree.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)182

6331_c06_final.qxd 2/16/06 9:22 PM Page 182

Node Objects
Node objects are just representations of the XML structure you are already familiar with from
Chapter 2. They are considered to be the node objects that make up the actual structure of the
document. The objects allow the structure to be navigated and manipulated. For instance, an
element within a document is accessed via the Element interface. This interface offers proper-
ties and methods that allow the underlying element node to be read from, written to, and moved.
You can also use these interfaces to create new nodes and insert them into a document. This
will become much more clearer to you once you reach the “Using the DOM Extension” section.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 183

Figure 6-1. DOM object view of a document tree

6331_c06_final.qxd 2/16/06 9:22 PM Page 183

Additional Objects
Other interfaces within DOM provide additional functionality that relates to the nodes but
does not have a direct correlation to a specific node type. The objects that fall under this
category are CharacterData, NodeList, NameNodeMap, DOMImplementation, and DOMException.

CharacterData

The CharacterData interface extends from the Node interface but does not correspond directly
to any specific node type within the document. This interface actually is used as the base type
for text and comment nodes in order to provide some additional functionality for dealing with
textual content.

NodeList

A NodeList is a collection of ordered nodes accessed by index starting at position 0. An object
of this type is often returned from DOM methods that can return more than a single node. It is
important to know that these objects are live. In simple terms, modifications within the docu-
ment tree are reflected in these objects. For example, if you had an instance of a NodeList object
containing the children of a certain element, all changes to the children would be reflected in
the instantiated NodeList object. If a child were removed, then it would no longer be contained
within the NodeList, and this would also affect the indexing of the NodeList. You will encounter
examples and issues related to this in the “Using the DOM Extension” section.

NameNodeMap

A NameNodeMap is similar to a NodeList, except in that the collection can be accessed via item
name as well as via index. The difference in the indexing is that these objects have no specific
ordering for the objects they contain because the most important aspects of the contained
objects are the names. These collections are also live, so the same issues surrounding a NodeList
are applicable to a NameNodeMap. You will see plenty of examples of this throughout this chapter.

■Caution NodeList and NameNodeMap objects are live collections. Modifications made to the document
tree are reflected within these collections and may affect iterating and indexing when using any of these
object types.

DOMException

As you read in the previous chapter, error handling takes place in a few ways; this depends
upon the version of PHP 5 you are running. The DOM extension is only one of the exceptions
to the norm. Certain cases and methods within the DOM extension throw a DOMException
when an error is encountered.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)184

6331_c06_final.qxd 2/16/06 9:22 PM Page 184

DOMImplementation

A DOMImplementation object is used to perform functionality independently of a document.
Within PHP 5, its primary use is to create a DOMDocumentType node or a new document con-
taining a DOMDocumentType node.

Understanding the DOM Extension in PHP 5
The domxml extension in PHP 4 has been plagued with issues for quite some time. An ever-
changing API (which has finally been stabilized), an inefficient use of memory, and threading
problems eventually led to the creation of a new DOM extension for PHP 5. Creating a stable
and efficient parser, as well as learning from the problems of the domxml extension in order
not to make the same ones again, were the initial goals.

Birth of the DOM Extension
From the start, the new extension was developed according to the DOM specifications, and
it adhered to the proper naming conventions. This allowed the creation of a stable API right
from the beginning that will not be consistently changing (though may be added to in the
event of future changes to the DOM specifications). Using the features of the new engine
within PHP 5, the DOM extension was created as an object-oriented API and was able to
implement an improved memory-handling scheme; this allowed for better memory man-
agement and control of documents and related objects. The new DOM extension has also
addressed the problems the domxml extension had with threading. The threading problems
typically were encountered when running in a Windows environment using the Internet
Server API (ISAPI) under the Internet Information Services (IIS) web server.

I’ll cover memory management in the DOM extension in more detail later in this chapter
when dealing with the DOM classes and objects in the “Using the DOM Extension” section.
A brief overview of this change, however, relates to the use of reference counters. Within PHP 4,
domxml would not release any memory for a document until a script was complete. A free()
function was added toward the later part of PHP 4 to domxml, but it has to be used carefully
because it cannot handle all cases. Under PHP 5, a reference counter is maintained for a docu-
ment. As long as objects related to this document have not been destroyed, either by going out
of scope or by manually calling unset() on them, the XML document remains in memory. Once
all objects referencing the document have been destroyed, the XML document is automati-
cally released from memory. When working with many documents or repeatedly loading
documents to perform operations on, memory is handled in a much cleaner fashion than
under domxml in PHP 4 and uses system resources better. Although this feature arose from
requests in domxml, it finally can be taken advantage of in the DOM under PHP 5.

General Information on the API
The DOM extension in PHP 5 implements almost the entire API for Core Level 2 as well as
much functionality from Core Level 3. Some additional functionality extending the specifi-
cations has also been added for the convenience of PHP developers. The DOM interfaces
defined within the DOM specifications are implemented as classes by the DOM extension.
Table 6-1 lists the classes implemented by the DOM extension in PHP 5. The Class column
refers to the class name used within the DOM extension. The Base Class column refers to

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 185

6331_c06_final.qxd 2/16/06 9:22 PM Page 185

the base class from which this class is derived. The DOM Interface column indicates the inter-
face from the W3C DOM specification used for this class.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)186

Table 6-1. Classes Implemented in the DOM Extension

Class Base Class DOM Interface Description

DOMException DOMException Certain methods within the DOM API not
only issue PHP errors and those related to
general XML issues from libxml2, but in
certain cases a DOMException is thrown. I’ll
illustrate some cases within this chapter,
and Appendix B documents all cases within
the API.

DOMImplementation DOMImplementation This is generally used when creating a doc-
ument from scratch with a DocumentType.

DOMNode Node This serves as the base class for most of the
classes in the DOM API and provides com-
mon functionality. It cannot be used as a
stand-alone class.

DOMNameSpaceNode This class is not defined in the DOM speci-
fications. Namespace declarations are not
handled as ordinary nodes in the DOM
extension. When a namespace declaration
is returned as a node, such as when
accessed using XPath, a DOMNameSpaceNode
is returned. This class implements a subset
of the DOMNode functionality.

DOMDocumentFragment DOMNode DOMFragment This is used to extract a portion of the tree
or create lightweight documents. It can
consist of nodes that by themselves would
not be well-formed XML. A document frag-
ment is useful when wanting to move
portions of the tree around or even append
some new XML into a tree.

DOMDocument DOMNode Document This class represents the entire XML or
HTML document. It serves as the root node
for the tree, which means the tree begins
with this and only this node. Everything
within the document is contained within
this node.

DOMNodeList NodeList As previously mentioned, it is a container
for ordered nodes accessed by a zero-based
index. This collection is live.

DOMNamedNodeMap NameNodeMap This class is a container for unordered
nodes generally accessed by name but may
also be accessed by a zero-based index.
This collection is live.

DOMCharacterData DOMNode CharacterData This class adds some functionality for
accessing character data. It serves as a base
class for other classes and is useless if
instantiated directly.

6331_c06_final.qxd 2/16/06 9:22 PM Page 186

Class Base Class DOM Interface Description

DOMAttr DOMNode Attr This class represents an
attribute node. The DOM
extension does not con-
sider attributes to be part
of the tree because they
are not child nodes. They
are treated as properties of
elements.

DOMComment DOMCharacterData Comment This class represents com-
ments within a document.

DOMElement DOMNode Element This class represents an
element node.

DOMText DOMCharacterData Text This class represents a text
node.

DOMCDATASection DOMText CDATASection This class represents a
CDATA node.

DOMDocumentType DOMNode DocumentType This class represents the
DocumentType for the doc-
ument. Objects of this
type are read-only.

DOMNotation DOMNode Notation This class represents a
notation declared in the
DTD. Objects of this type
are read-only.

DOMEntity DOMNode Entity This class represents an
entity in the document.
Objects of this type are
read-only.

DOMEntityReference DOMNode EntityReference This class represents
entity references within
the document. Objects of
this type are read-only.

DOMProcessingInstruction DOMNode ProcessingInstruction This class represents a PI
within the document.

DOMXPath This class is an add-on to
the DOM extension. It is
used to provide XPath
functionality within the
DOM extension.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 187

You can instantiate objects within PHP 5 using the keyword new. The specifications sug-
gest using factory methods for object creation of node-type objects, because nodes must be
associated with documents. These methods live within the DOMDocument class and are used to
create nodes associated with the document, such as the method createElement. Although the
DOM extension does follow this through the implementation of the factory methods, it also
implements constructors for the node type classes, which allows for the direct creation of
these objects. Objects of this type, until associated with a document, are limited in function-
ality. For example, an element created using $element = new DOMElement('myelement'); may
not have children appended to it until it is associated with a document. Any attempts to

6331_c06_final.qxd 2/16/06 9:22 PM Page 187

perform an action such as $node = $element->appendChild(…) will result in a DOMException
indicating the node is read-only. As you read this chapter, you will encounter both the use of
the factory methods and the use of constructors, as well as why one is sometimes preferable
over the other and the merits of each method.

You must be aware of encoding. As you read in the previous chapter, the tree is internally
stored as UTF-8. You must interact with the tree using data that is UTF-8–compatible. Data
that cannot be handled via native UTF-8 encoding must be converted using one of the string
conversion functions available in PHP 5. This applies for both reading and writing data. In cer-
tain special cases, the DOM extension can automatically detect encoding and handle the data
appropriately, such as when loading or saving a document. In all other cases, you must take
care to encode and decode data properly when manipulating the tree.

■Caution When manipulating data within a tree, you must ensure that the data is properly encoded and
decoded. All data is stored internally in UTF-8 format, and the DOM extension does not typically perform
automatic conversion. You can find more information on encoding in Chapter 5.

Using the DOM Extension
The DOM extension is a large API. This chapter will cover the concepts and much of its func-
tionality. You can find information about the entire API in Appendix B. The initial step when
dealing with the DOM extension is to create or load a document. The document is the core
for XML because it serves as the root of the tree for the DOM extension.

Understanding the Document
The DOMDocument class is the starting point for all applications using the DOM extension. This
class not only serves to create, load, and save XML documents but also contains the factory
methods for creating other node type objects. The constructor for this object takes the follow-
ing form:

__construct([string version], [string encoding])

Both the version and encoding parameters are optional and serve to indicate the version
of the XML specification used for the document and to indicate the encoding used for the
document itself. You can instantiate an empty document using the new keyword:

$dom = new DOMDocument('1.0');

This creates an empty DOMDocument object, $dom, using the XML 1.0 specification and no
specified encoding. This is equivalent to the following XML declaration:

<?xml version="1.0"?>

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)188

6331_c06_final.qxd 2/16/06 9:22 PM Page 188

The version parameter, unlike the encoding parameter, has a default value of 1.0, so this
parameter could realistically have been omitted from the object instantiation call. Likewise,
an encoding value may also be passed as an argument, such as ISO-8859-1. When using the
encoding parameter, the use of the version parameter is required. The code
$dom = new DOMDocument('1.0', 'ISO-8859-1'); would result in an XML declaration of
<?xml version="1.0" encoding="ISO-8859-1"?>.

In both cases, the result is the same. The object $dom has been instantiated from the
DOMDocument class as an empty document. Using this object, a tree can either be manually
created using the DOM API or be loaded from an XML document. You can load a document
from a string containing the XML or from a remote resource. No matter which method is used
to load the data, loading is one of the special cases where data does not necessarily need to
be converted to UTF-8. Using one of the methods from Chapter 5, such as using an encoding
parameter in the XML, using a BOM, or even detecting the first few characters, the DOM
extension usually can detect the encoding of the document and load it appropriately. In the
event that none of the methods is in use or autodetection fails, the data must be converted
to UTF-8 prior to loading. Typically, the encoding is set within an XML declaration, especially
when using non-ASCII characters, so you rarely will need to convert it manually. This is also
the reason why using XML and text declarations is highly recommended and in some cases
required.

Using the instantiated object, $dom, you can build the tree using load() to load from a
string and using loadXML() to load from a resource. Depending upon which method you use,
you need either a string containing the XML document or a URI pointing to the resource for
the first parameter. When using PHP 5.1 and higher, both methods also accept a second
optional parameter containing any parser options (covered in Chapter 5) that provide
instructions to the parser about how the tree should be built. For example:

$xmldata = '<?xml version="1.0"?>
<root>

<child>contents</child>
</root>';

$dom->loadXML($xmldata, LIBXML_NOBLANKS);

Given an already instantiated DOMDocument and the string $xmldata containing the XML
document to load, the loadXML() method populates the tree while also removing all blanks,
which are the insignificant whitespaces. This would have been the equivalent of setting
$xmldata to the string <?xml version="1.0"?><root><child>contents</child></root> and
loading the string without any parser options. The differences between the two strings are
the line feeds, tabs, and spaces, which are removed in the first case because of the use of
the parser option LIBXML_NOBLANKS, and their positions within the document.

The load() method works in the same way as the loadXML() method, except a URI is
passed as the first parameter. As you probably recall from Chapter 5, you use PHP streams
when loading URIs, allowing for more than the typical file and http protocols to be used.
If the contents of the $xmldata string from the previous example were contained within
the file xmldata.xml, you could build the tree in the following ways depending upon
where the file was located:

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 189

6331_c06_final.qxd 2/16/06 9:22 PM Page 189

/* File located in current script directory */
$dom->load('xmldata.xml', LIBXML_NOBLANKS);

/* File loaded using absolute path */
$dom->load('file:///tmp/xmldata.xml', LIBXML_NOBLANKS);

/* File loaded from http://www.example.com/xmldata.xml */
$dom->load('http://www.example.com/xmldata.xml', LIBXML_NOBLANKS);

A DOMDocument object does not always need to be instantiated to load a tree. These meth-
ods may also be called statically, which will load data into a tree and return the newly created
DOMDocument object at the same time. The following examples illustrate how to use the meth-
ods statically, which results in the same tree structure for the $dom objects as previously shown.
(I’ve removed the XML declaration for brevity.)

/* Load from string */
$dom = DOMDocument::loadXML('<root><child>contents</child></root>');

/* Load from URI */
$dom = DOMDocument::load('xmldata.xml', LIBXML_NOBLANKS);

You may be wondering why you wouldn’t always use the static methods, because instanti-
ating the object first requires an additional step just to load data. The primary reason for this
is when using the DOM extension under PHP 5.0, the parser options are not available to be
passed as a second argument to these functions. A small subset of the parser options, however,
is also available as properties of a DOMDocument object. When you use these properties, you
must set them prior to calling the load functions, which require an already instantiated object.
For example, the equivalent to the LIBXML_NOBLANKS option is the preserveWhiteSpace property:

/* Removing blanks under PHP 5.0 */
$dom = new DOMDocument();
$dom->preserveWhiteSpace = FALSE;
$dom->load('xmldata.xml');

When you use both properties and parser options, the parser options take precedence
over the properties. This means in any instance where a property is set and a parser option
conflicting with a set property is passed, the parser will follow the instructions from the parser
option. For example:

$dom = new DOMDocument();
$dom->preserveWhiteSpace = TRUE;
$dom->load('xmldata.xml', LIBXML_NOBLANKS);

In this case, the $dom object will load the file, with LIBXML_NOBLANKS taking precedence
over the preserveWhiteSpace property, stripping out the line feeds just as if the
preserveWhiteSpace property were never set.

The DOMDocument class is not limited to loading just XML data. Unless you are writing
Web pages using XHTML (HTML typically does not conform to the XML constraints), errors
will result if trying to load one of these documents using the XML load methods. Two corre-
sponding load functions do exist, however, that allow HTML documents to be loaded into

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)190

6331_c06_final.qxd 2/16/06 9:22 PM Page 190

a tree, which can then be manipulated the same way as an XML-based tree. The methods are
loadHTML() and loadHTMLFile(). Each of these methods takes exactly one parameter, either
the string containing the HTML or a URI used to locate and load the HTML. Unlike their XML
equivalents, these methods do not accept parser options as a second parameter. For example:

/* Load the file http://www.example.com/index.html */
$dom = new DOMDocument();
$dom->loadHTMLFile('http://www.example.com/index.html');

/* Loading statically */
$dom = DOMDocument::loadHTMLFile('http://www.example.com/index.html');

Now that you have a document containing a tree, you will see how to output the contents
of the tree. The output may be as a string or to a URI, such as a file. The methods are similar to
those used to load the data. To output as XML, you’ll use the function saveXML() to output the
contents to a string and the function save() to output to a URI.

The saveXML() method accepts one optional node parameter. The node parameter must
be an object derived from the DOMNode class and must be from the same document as the
DOMDocument object from which the method is being called. When this parameter is not pres-
ent, the entire document is serialized to a string. Using the $dom object created when loading
a document with the LIBXML_NOBLANKS option, you can serialize the document. For example:

$output = $dom->saveXML();

This would set $output to a string containing <root><child>contents</child></root>.
If a DOMElement object existed called $child that represented the element child in the docu-
ment, this object could be passed as a parameter to the method to output just the element.
For example:

$output = $dom->saveXML($child);

This would result in the string <child>contents</child>.
The save() method also accepts a single parameter. This parameter sets the URI to which

the document is to be serialized. The return value for this method is the number of bytes writ-
ten to the URI. Unlike the saveXML method, a single node cannot be serialized to a URI:

$bytes = $dom->save('output.xml);

This snippet of code saves the document to the file output.xml and returns the number
of bytes written to the variable $bytes. Running this code, you might be surprised to see
$bytes equal to 58. Whether a document was loaded with an XML declaration or the version
and encoding parameters were passed when creating a document, an XML declaration is pres-
ent when serializing the document with at least the version parameter, defaulting to 1.0, set.

Documents manually created or loaded with the LIBXML_NOBLANKS option typically do not
contain text nodes containing whitespace. When serialized, the output generated is not easily
human readable because the output is all strung together. You can use the formatProperty on
the DOMDocument class to “prettify” the output. Setting this property to TRUE prior to serializa-
tion causes the parser to add line feeds and indentations where appropriate. For example:

$dom->formatOutput = TRUE;
print $dom->saveXML();

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 191

6331_c06_final.qxd 2/16/06 9:22 PM Page 191

This code results in the following output:

<?xml version="1.0"?>
<root>
<child>content</child>

</root>

Just as with the load functionality, you can also save a document in HTML format. The
methods saveHTML() and saveHTMLFile() perform this operation. The method saveHTML()
takes no parameters and returns the output as a string. The saveHTMLFile() method takes a
single parameter, the URI, and returns the number of bytes written. The output is normally
not XML-compliant because it is true HTML and not XHTML. Assuming the object $htmldoc
contains a tree to be serialized into HTML, the following examples illustrate how to use the
methods to serialize HTML:

/* Serialize document to a string in HTML format */
$html = $htmldoc->saveHTML();

/* Serialize document to file index.html in HTML format */
$bytes = $htmldoc->saveHTMLFile('index.html');

You have spent much time examining the simple operations of instantiating, loading,
and saving DOMDocument objects. Understanding the basic operations of the DOMDocument class
is important because this class serves as the foundation for all operations within the DOM
extension. Nearly everything in the DOM extension is derived from and associated with a
document, as you will further examine when exploring the other aspects of the DOM exten-
sion throughout this chapter. With these basic concepts of the DOMDocument behind you, you
can learn about navigating an existing tree.

Navigating the Tree
Compared to other tree-based parsers (in PHP 5, the SimpleXML extension is the only other
native tree-based extension), one of the DOM extension’s strengths is its rich navigation sup-
port. This strength can also be a weakness because this rich support results in a large number
of methods and properties; this leads to a large API to learn and understand. The document in
Listing 6-1 is in DocBook format. DocBook is a system for writing documentation in XML format.
I will use the example document in Listing 6-1 throughout the following sections to illustrate
how to navigate a document tree.

Listing 6-1. Example Document Using DocBook Format

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"

"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd">
<book lang="en>

<bookinfo>
<title>DOM in PHP 5</title>

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)192

6331_c06_final.qxd 2/16/06 9:22 PM Page 192

<author>
<firstname>Rob</firstname>
<surname>Richards</surname>

</author>
<copyright>

<year>2005</year>
<holder>Rob Richards</holder>

</copyright>
</bookinfo>
<preface>

<title>The DOM Tree</title>
<para>An example DOM Tree using DocBook.</para>

</preface>
<chapter id="navigation">

<title>Navigating The Tree</title>
<para>The document element is accessed from the

<emphasis>documentElement</emphasis> property, which is available from any class
derived from DOMNode</para>

<para>The document node is also accessible using the
<emphasis>ownerDocument</emphasis> property, also derived from the DOMNode
class.</para>
</chapter>

</book>

This first step you need to take is to load the document into a DOMDocument object. I will
show how to load the document in Listing 6-1 from the file mydocbook.xml. For now, the docu-
ment will be loaded with the default options. This means the DTD is not loaded and the id
attribute within the document is a regular attribute and not an ID type. For example:

$dom = new DOMDocument();
$dom->load('mydocbook.xml');

Navigation all begins with a DOMDocument object. These objects have no attributes; they
have only child nodes. At a minimum, all XML documents must have a document element,
but as mentioned in previous chapters, a document can also have a DTD and any number of
comment and PI nodes. You can access these nodes using any of the many child properties
and methods available from the base DOMNode class. The body of the document is the most
commonly accessed and modified portion of the tree. Before examining how to access child
nodes, which will be covered later in the “Moving Within the Tree” section, you will first see
how to easily access the body.

Understanding the Document Element
The document element, like the document node, is a focal point in an XML document. Being
the root of the body for the document, it is a node with a fixed position—the entry point for
the body and universally accessible. Objects derived from the DOMNode class are able to access
the documentElement property, which returns the document element as a DOMElement to also
navigate back to the document element.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 193

6331_c06_final.qxd 2/16/06 9:22 PM Page 193

The document element from Listing 6-1 is the book element. Using the DOMDocument
object, $dom, you can retrieve the book element with the documentElement property:

$root = $dom->documentElement;

This call returns a DOMElement object, which is the book element node, and sets it to the
variable $root. Armed with the document element, you can now explore the rest of the body.

Accessing Basic Node Information
Before going too much further, it is useful to take a brief look at how to access basic node
information. Three of the most basic pieces of information often used within the DOM exten-
sion are the type of node, the name of the node, and the value of the node. Knowing the
structure of a document is not a requirement when using the DOM extension, so many times
you will need these pieces of information when writing applications in PHP. The properties
within the next sections are all from the base DOMNode class. Although all classes derived from
the DOMNode class may call these properties, not all properties return useful information for all
types of nodes. In some cases, the return value may even be NULL when the called property is
not applicable for the node.

Node Type

In many cases when using the DOM extension, a node will be returned but you won’t know
what type of node it is. In these instances, you can check the type of node using the nodeType
property. This property returns an integer corresponding to one of the built-in constants for
node types:

$type = $root->nodeType;
print $type;

This code prints the number 1, which corresponds to the XML_ELEMENT_NODE constant.
You can find the complete list of node type constants in Appendix B, and in a moment you
will be introduced to a few more.

Node Name

The name of a node is generally applicable to element and attribute nodes. All nodes have
names, but unlike elements and attributes that actually have specific names, most other
nodes have generalized names corresponding to the type of node. The property used to
access the node name is nodeName:

print $dom->nodeName."\n";
print $root->nodeName."\n";

This code illustrates the difference of the node name for a document node and an element
node. The document node, $dom, returns the value #document. The element node, $root, on the
other hand, returns the tag name for the element, book. If this returned the node name of a text
node, the value would be #text. As you can see, the node name for the text node is nondescrip-
tive and offers no additional information that could have just as easily been obtained from the
node type. A few additional node types exist that do have specific names, such as entities,

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)194

6331_c06_final.qxd 2/16/06 9:22 PM Page 194

entity references, notations, document type definitions, and PIs. Although a few of these may
be useful to you, elements and attributes are still the most commonly used nodes with this
property.

Node Value

The property nodeValue offers access to the contents of certain nodes. Nodes having values are
attributes, CDATA sections, comments, PIs, and text. This is according to the specification. For
convenience, the DOM implementation in PHP 5 allows you to access this property by element
node as well:

print $dom->nodeValue."\n";
print $root->nodeValue."\n";

In the first call, the node value for the document node is accessed. The property is not valid
for document nodes, and NULL is returned with only a line feed printed. In the second call, the
nodeValue of the document element is printed. As mentioned, this property is not valid accord-
ing to the DOM specifications. To make things a little easier, the DOM extension in PHP 5 does
allow this property for an element and returns a concatenation of all text nodes within the scope
of the element. The output is a bit long, but the abbreviated output looks like the following:

DOM in PHP 5

Rob
Richards

2005
/* Rest of Output Omitted for Brevity */

When the document was initially loaded, whitespaces were not removed from the docu-
ment. These whitespaces, being text nodes, are also concatenated and included as part of the
output, resulting in the previous formatting.

Using the Properties Together

The nodeType, nodeName, and nodeValue properties are often useful and used together when writ-
ing code where logic is conditional based on the specifics of the node being tested. Consider the
following code, which can be used as a function. A node, referenced by $node, is tested; based on
criteria of these properties, certain actions are taken.

switch ($node->nodeType) {
case XML_ELEMENT_NODE:

print "Element Tag Name: ".$node->nodeName;
if ($node->nodeName == "book") {

/* We may want the lang attribute */
}

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 195

6331_c06_final.qxd 2/16/06 9:22 PM Page 195

break;
case XML_ATTRIBUTE_NODE:

print "Attribute Name: ".$node->nodeName."\n";
print "Attribute Value: ".$node->nodeValue."\n";
if ($node->nodeName == "lang") {

/* Do something with the language */
}
break;

case XML_TEXT_NODE:
case XML_CDATA_SECTION_NODE:

print "Content: ".$node->nodeValue."\n";
break;

default:
print "Other Node Names: ".$node->nodeName."\n";

}

This code uses a switch statement to perform certain actions based on the node type of
the node passed in. Depending upon the type, actions then take place based on the name and
possible value of the node. This is a simplified case but should give you an idea of how these
properties can be useful. As you become more familiar with other aspects of tree navigation,
you will revisit and modify this code.

Moving Within the Tree
At this point, you are still situated on the document element with the $root object. You can
navigate to most other node types by accessing children. Attribute nodes are an exception to
this. These are treated as properties of element nodes, which will be covered in the “Accessing
Attributes” section. Movement, however, is not restricted to descending into the tree. As you
will see, accessing siblings, accessing parents, and even directly accessing the document node
are all possible.

Accessing Children

Child nodes are those that are direct descendants of the current node. Simply put, all nodes
living exactly one level beneath the current node are children. For example, an element node
may have mixed content consisting of, but not limited to, a comment, a text node, and some
additional element nodes. An attribute node contains a single child node, which is a text node
holding the value for the attribute. Document nodes can contain comment nodes, PIs, a docu-
ment type, and a single element node as children. The type of children possible depends upon
the type of the current node. You can perform a quick check to see whether a node has child
nodes with the hasChildNodes() method, which returns a Boolean indicating whether child
nodes are present on the current node.

All child nodes can be returned as a DOMNodeList using the childNodes property. An object
of the DOMNodeList class is an iterable object. You can access it using the item property to
retrieve a specific node from the list or even the iterator functions in PHP, such as foreach:

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)196

6331_c06_final.qxd 2/16/06 9:22 PM Page 196

if ($root->hasChildNodes()) {
$children = $root->childNodes;
foreach($children as $node) {

print $node->nodeName."\n";
}

}

This code retrieves the children of the document element, iterating through the resulting
DOMNodeList object using foreach, and prints the name of each node. The output from this is
as follows:

#text
bookinfo
#text
preface
#text
chapter
#text

The book element contains three child elements but also is interspersed with whitespace.
This whitespace was not removed when the document was loaded, resulting in the previous
text nodes being created in the tree. Using this property, you can see why the nodeType prop-
erty can come in handy. Unless you need to take some specific action with the whitespace,
more often than not you will ignore it when navigating the tree. For example:

foreach($children as $node) {
if ($node->nodeType != XML_TEXT_NODE) {

print $node->nodeName."\n";
}

}

Here the text nodes have been skipped, resulting in the following output:

bookinfo
preface
chapter

You can also access a subtree directly using the firstChild and lastChild properties.
Rather than having to retrieve the entire collection of children, these properties are quick
ways to access the start or end of the subtree:

$first = $root->firstChild;
$last = $root->lastChild;

The variable $first contains the DOMText object that is the first child beneath the book ele-
ment and prior to the bookinfo element. The variable $last contains the DOMText object that is
the last child of book and that contains the line feed after the closing chapter tag. Currently
being whitespace, these nodes can be ignored for now. So where does this get you? you may
ask. You can also move laterally by accessing node siblings, which you will learn about now.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 197

6331_c06_final.qxd 2/16/06 9:22 PM Page 197

Accessing Siblings

Sibling nodes are those residing on the same level as the current node. For example, all nodes
within the $children DOMNodeList object are siblings of each other. They all live on the same
level and have the same parent. You move laterally within a subtree using the nextSibling and
previousSibling properties.

Using the $first object created in the previous section, you can access the sibling nodes
using the nextSibling property:

$node = $first;
while($node) {

if ($node->nodeType == XML_ELEMENT_NODE) {
print $node->nodeName."\n";

}
$node = $node->nextSibling;

}

This gives you the same results as when iterating $children and printing only element
tag names:

bookinfo
preface
chapter

The previousSibling property allows navigation to be performed in reverse:

$node = $last;
while($node) {

if ($node->nodeType == XML_ELEMENT_NODE) {
print $node->nodeName."\n";

}
$node = $node->previousSibling;

}

The output this time is as follows:

chapter
preface
bookinfo

Accessing Parents and Using ownerDocument

Nodes can also perform ascending movement within a tree. Every node within a document
has a parent with the exception of the document node. A parent is the direct ancestor of the
current node; hence, a document node cannot have a parent node because it is the root node
for the entire document. You can access the parent using the parentNode property:

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)198

6331_c06_final.qxd 2/16/06 9:22 PM Page 198

do {
$node = $first;
while($node) {

if (! $node->parentNode->isSameNode($root)) {
print "ERROR: Parent Node Test FAILED";
break 2;

}
$node = $node->nextSibling;

}
print "All parent node tests PASSED";

} while(0);

Using the code from the nextSibling example, the parentNode for each of the nodes,
including the text nodes, is returned and tested against the document element, $root, using
the isSameNode() method. This example uses object dereferencing features from PHP 5 and
is equivalent to writing the following:

$parent = $node->parentNode;
if (! $parent->isSameNode($root)) {
...

The isSameNode() method tests the current node against the node passed as an argument
to determine whether they are the same node. By “same node,” I mean the nodes must be the
same node within the document. This is not the same as saying the nodes are equivalent;
equivalent nodes must just have the same names and content but do not have to be the same
node with the same position in the document. As you can see from the resulting All parent
node tests PASSED message, the parent node for these is the document element, $root.

Nodes have direct access to their associated document through the ownerDocument prop-
erty. Although the body is accessible using the documentElement property, the document node
is still an important node even when not needing or using a DTD. Later in this chapter, in the
“Document Nodes” section, you will learn how to use the document node object for factory
methods. This node provides much of the functionality used when creating and editing docu-
ments and is accessed frequently in applications. For example:

$node = $root->ownerDocument;
print $node->nodeName."\n";

The code prints the value #document, because the document node is returned from the
property. To verify this, you can execute the following code using the isSameNode() method:

if ($dom->isSameNode($node))
print "TRUE";

Accessing Specific Elements

You can also access specific elements by tag names. When you need to access specific ele-
ments within the scope of the current node, you can use the methods getElementsByTagName()
and getElementsByTagNameNS(). Element nodes can be contained only within document

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 199

6331_c06_final.qxd 2/16/06 9:22 PM Page 199

nodes and element nodes; thus, these methods are available only when the current node is
based on a DOMDocument or DOMElement class. For example, from the document node, $dom,
you can retrieve all title elements within the document using the getElementsByTagName()
method:

$elements = $dom->getElementsByTagName("title");
$length = $elements->length;
for ($x=0;$x < $length;$x++) {

print "Element Value: ".$elements->item($x)->nodeValue."\n";
}

This code retrieves a DOMNodeList object, $elements, containing all title elements within
the scope of the document node, $dom. Being the document node, this returns all elements
named title within the entire document. The collection is iterated using a for loop based
on length, indicating the number of nodes within the collection. length is the total number
of elements, and the collection uses a zero-based index, so no items are at an index equal to
or greater than the length. Using dereferencing (available in PHP 5), the element at the current
index, $x, is retrieved, and the nodeValue for the node is printed. The output from this opera-
tion is as follows:

Element Value: DOM in PHP 5
Element Value: The DOM Tree
Element Value: Navigating The Tree

You can pass the special value * for the tag name argument. This is a wildcard used to
match any element name. For example:

$preface = $root->getElementsByTagName("preface");
$elements = $preface->item(0)->getElementsByTagName("*");
$length = $elements->length;
for ($x=0;$x < $length;$x++) {

print "Element Name: ".$elements->item($x)->nodeName."\n";
print "Element Value: ".$elements->item($x)->nodeValue."\n";

}

From the document element, $root, all preface elements within its scope are retrieved
as a DOMNodeList object, $preface. No length test is performed, because you already know that
an element exists in the document (although it is a good habit to test the return values prior
to using them). Again, dereferencing is used; the first element in the DOMNodeList is retrieved,
and immediately in the same line of code, getElementsByTageName("*") is called on the node.
All elements within the scope of the preface element are returned and set to the $elements
variable. You can access this collection the same way as before: by using a for loop. This time
the node name is also printed with its value, because you have no way to know exactly what
elements are returned when using the wildcard. The resulting output is as follows:

Element Name: title
Element Value: The DOM Tree
Element Name: para
Element Value: An example DOM Tree using DocBook.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)200

6331_c06_final.qxd 2/16/06 9:22 PM Page 200

When working with namespaced documents, the getElementsByTagNameNS() method
allows elements in specified namespaces to be returned. The example document in this chap-
ter does not contain namespaces, so I cannot give a specific example at this time. The method
differs from the non-namespaced method in that it takes two arguments. The first is the name-
space URI, and the second is the local name of the element, which is the same as the tag name
for the previous method. Just like the name parameter, the namespace URI parameter also accepts
the * wildcard. Using the wildcard results in retrieving all elements in any namespace, but they
must be in a namespace with the name determined from the second parameter, which can
also be a wildcard. For example:

$result = $dom->getElementsByTagNameNS("*", "*");

The resulting DOMNodeList, $result, will contain every element in the document that is
within any namespace.

Accessing Attributes

Attributes inherit the same methods and properties from the DOMNode class as other node types,
but they are not accessed in the same manner as other nodes in a document. As you have seen
so far, nodes are traversed through children of nodes. Attributes are different because they are
not children of elements, which is the only node type from which attributes may reside; rather,
attributes, conceptually, are properties of elements. You access them through their own set of
properties and methods.

Collections of Attributes
Just like you can check and access children, you can check attributes with the hasAttributes()
method and access them with the attributes property. Both of these are defined on the DOMNode
class and are safe to use with all node types, although an object of DOMElement will be the only
class type that can return useful data:

if ($root->hasAttributes()) {
$attributes = $root->attributes;
foreach($attributes as $attr) {

print "Attribute Name: ".$attr->nodeName."\n";
print "Attribute Value: ".$attr->nodeValue."\n";

}
}

If attributes exist on the $root object, tested using the hasAttributes() method, a
DOMNamedNodeMap object, $attributes, is returned from the attributes property. This object
is iterated in the same way the DOMNodeList is iterated. The resulting output for this code is
as follows:

Attribute Name: lang
Attribute Value: en

One of the differences with the node map is that attributes can be accessed directly by
name rather than just a position. For example:

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 201

6331_c06_final.qxd 2/16/06 9:22 PM Page 201

$attr = $attributes->getNamedItem("lang");
print "Attribute Name: ".$attr->nodeName."\n";
print "Attribute Value: ".$attr->nodeValue."\n";

The document element contains only a single element, so the previous code returns the
same results as the code iterating the attributes. This time, the lang attribute was accessed
directly from the node map rather than iterating the entire map. Just like a DOMNodeList, the
position could also have been used to access the attribute. Using a DOMNamedNodeMap, however,
the items are unordered, so you have no guarantee that an item at a certain position is the
item for which you are looking. For example:

if ($attributes->length > 0) {
$attr = $attributes->item(0);
print "Attribute Name: ".$attr->nodeName."\n";
print "Attribute Value: ".$attr->nodeValue."\n";

}

This code outputs the same results as before. The difference here is the test for the length
of the DOMNamedNodeMap, which returns the number of items in the collection, and the use of
the item() method to access the item at the zero-based index. Passing in the value of 0 for the
argument returns the first item in the list, which is the lang attribute.

Individual Attributes
Attributes do not have to be accessed through a DOMNamedNodeMap. The DOMElement class offers
attribute-specific methods that you can use to access specific attributes. The method used
depends upon whether just the value of the attribute or the entire attribute node needs to be
returned. It also depends upon whether namespaces are in use. You can access attributes
using the getAttribute(), getAttributeNode(), getAttributeNS(), and getAttributeNodeNS()
methods. For example:

/* Access lang attribute value directly */
print "Attribute Value: ".$root->getAttribute("lang")."\n";

/* Return the lang attribute node and access the returned attribute node */
$attr = $root->getAttributeNode("lang");
print "Attribute Value: ".$attr->nodeValue."\n";

The previous two pieces of code print the same results but perform the operations differ-
ently. The first snippet returns the value of the named attribute, lang, and prints the value.
The second block of code retrieves the attribute node named lang and prints the value from
the returned node.

Although the document in Listing 6-1 is not using namespaces, the namespace-aware
methods can be used:

print "Attribute Value: ".$root->getAttributeNS(NULL, "lang")."\n";
$attr = $root->getAttributeNodeNS(NULL, "lang");
print "Attribute Value: ".$attr->nodeValue."\n";

The first argument for these methods is the namespace URI for the attribute being
accessed. Your attributes do not live in any namespaces, so by passing NULL, you access the

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)202

6331_c06_final.qxd 2/16/06 9:22 PM Page 202

attributes normally. It is the same as accessing attributes that do not live in any namespace.
If the attributes were associated with a namespace, the results from the methods would be
empty unless the appropriate namespace URI were passed as the first parameter.

Declaring Namespaces
Namespace declarations are handled as attributes within the DOM extension and as such are
created using the namespace’s attribute methods. The prefix xmlns is bound to the http://
www.w3.org/2000/xmlns/ namespace as defined in the XML 1.1 specification from the W3C
(http://www.w3.org/TR/xml-names11/). For example:

$doc = DOMDocument::loadXML('<root/>');
$root = $doc->documentElement;

$root->setAttributeNS('http://www.w3.org/2000/xmlns/',
'xmlns:exa','http://www.example.com/example');

$root->appendChild(new DOMElement('exa:child', 'content',
'http://www.example.com/example'));

$doc->formatOutput = TRUE;
print $doc->saveXML();

Using the setAttributeNS() method, a namespace that contains the prefix exa and is
bound to http://www.example.com/example is declared. The namespace for the xmlns prefix
is used as the namespace URI in this method, and the value of the attribute is the namespace
that will be created. To declare a namespace, it is mandatory that the namespace URI parame-
ter be the value http://www.w3.org/200/xmlns/; otherwise, the DOM extension will not know
that a namespace is supposed to be created and a normal attribute will result. The following
line illustrates how to append a new element bound to this newly created namespace, which
results in the following document upon serialization:

<?xml version="1.0"?>
<root xmlns:exa="http://www.example.com/example">
<exa:child>content</exa:child>

</root>

Creating and Editing a Tree
The DOM extension’s biggest strength comes from its functionality for creating and editing
trees. As you will see with the other XML technologies, none comes close to the capabilities
the DOM extension offers in this respect. Unless you are a hard-core XML developer or inte-
grator, you may end up using only a quarter of the offered functionality yet still encounter
no shortcomings with the small subset of functionality used. Within the following sections,
you will begin by creating the document in Listing 6-1 from scratch and then work on editing
the result.

Document Nodes
Earlier in this chapter, you saw many different methods for creating a DOMDocument object.
The document being created contains a document type declaration, so you will use the
DOMImplementation class to create the DOMDocument object; this allows you to create a

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 203

6331_c06_final.qxd 2/16/06 9:22 PM Page 203

DOMDocType object that can be passed as a parameter to create a document with a subset.
This class allows static method calls, so in this case, you have no need to instantiate an object.
For example:

$doctype = DOMImplementation:: createDocumentType("book",
"-//OASIS//DTD DocBook XML V4.1.2//EN",
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd");

$dom = DOMImplementation:: createDocument(NULL, "book", $doctype);

The first step is creating a DOMDoctType object, because it is needed when creating the
document. You do this using the createDocumentType() method and passing the name for
the document declaration, which, as you recall from Chapter 2, must match the name of the
document element, the public identifier, and finally the system identifier. If the declaration
is a system identifier, you pass NULL for the public identifier argument. The final step is to cre-
ate the document using the createDocument() method. The first argument is the namespace
for the document element. In this case, the document is not using namespaces, and you use
NULL. The remaining parameters are the name of the document element, which will be created
when the method returns, and the DOMDocType object, $doctype, that was created in the previ-
ous line. Upon executing this code, the DOMDocument object, $dom, will contain the document
node with a DTD and the document element created.

At this point, if the tree were output using a method such as saveXML(), you would notice
that the encoding is missing. Using the DOMImplementation class to create the document does
not offer a way to set the version or encoding. The version at least defaults to 1.0. You can set
the encoding using the encoding property of the document:

$dom->encoding = "UTF-8";

This property does not affect how you create the document. Data that is not conformant
to the internal UTF-8 encoding of the tree still needs to be converted to UTF-8. Upon output
of the tree, however, the data is converted to the proper encoding set by this property.

Element Nodes
You can create, insert, and remove element nodes from a tree, but you cannot (unlike with
most other nodes) edit their contents. Whether they are just text or combinations of other
nodes, in order to edit them, you must access the child nodes or attributes. The next sections
will take you through how to create, insert, and remove element nodes in a document.

Creating Elements

You have two ways to create element nodes. One is to use the factory methods from the
DOMDocument object, and the other is direct instantiation. According to the specification,
nodes must be associated with a document. The factory methods follow this rule. As you
will see following the factory methods, the DOM extension allows direct instantiation of
DOMElement objects, which results in element nodes with no tree association. This exists not
only for convenience during development, but as discussed later in this chapter, it also
allows for limited functionality of extending the DOM classes.

As previously mentioned, the DOMDocument object is a focal object when using the DOM
extension. You can create a new element associated to the current document using the factory
methods createElement() and createElementNS(). The document that has been created to this

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)204

6331_c06_final.qxd 2/16/06 9:22 PM Page 204

point contains a DTD and the document element node book. Ignoring the attribute for now,
the next node to be created is the bookinfo element, which is the first child element of book.
For example:

$bookinfo = $dom->createElement("bookinfo");

This piece of code returns a DOMElement object, $bookinfo, with the name bookinfo. The
createElement method takes one mandatory parameter and one optional parameter. The first
parameter is the qualified name of the element to be created, which in this case is bookinfo.
The second optional parameter is the value of the element. In the event the element node will
contain text content, you can do this at the same time the element is created. In actuality, a
text node is created and appended as a child of the element being created. For instance, the
first child of the bookinfo element is a title element, consisting of only text:

$bititle = $dom->createElement("title", "DOM in PHP 5");

With these two lines of code, you have created two new objects. The variable $bookinfo
holds the DOMElement object for the bookinfo node, and the variable $bititle holds the
DOMElement object for a title node. This $bititle node also has a child text node, with the
contents DOM in PHP 5. For now they exist as stand-alone nodes. They are associated with
the current document but are not within the tree at this point. Before inserting these nodes,
it is helpful to look at other ways to create element nodes.

You can also create elements within a namespace. The document being created here
does not use namespaces, but you could still use the createElementNS() method:

$biauthor = $dom->createElementNS(NULL, "author");

This method requires two mandatory parameters and accepts a third parameter, which
is an optional value parameter. The first parameter is the namespace URI. In this case, nodes
are not within any namespace, so NULL is passed. The second parameter is the qualified name
of the element. As you probably recall, this consists of the prefix and the local name. For
example, you could create an element named trash in the http://www.example.com/trash
namespace. The prefix tr will also be associated with this element:

$trash = $dom->createElementNS("http://www.example.com/trash", "tr:trash");

When the $trash object is inserted into a tree, the element will be associated with the
prefix, and if needed, the namespace declaration will be created within the document. If pos-
sible, however, an existing namespace declaration within scope at the insertion point will be
used. This may result in a change to the prefix, which is not incorrect, because the namespace
itself is the important aspect here and not the prefix. I will illustrate how to do this in the
examples in the “Building an XSL Template” example toward the end of this chapter.

You can also directly instantiate elements using the new keyword. The firstname and
surname elements, which will be the children of the bookinfo element, will be created using
the new keyword. The constructor for the DOMElement class takes the same parameters as the
createElement() method. The first required parameter is the name of the elements, and
the second is an optional value for the element:

$firstname = new DOMElement("firstname", "Rob");
$surname = new DOMElement("surname", "Richards");

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 205

6331_c06_final.qxd 2/16/06 9:22 PM Page 205

These two new elements, unlike the previous created elements, are not associated with a
document and are read-only. Until they are associated with a document, they can be inserted
into a tree, but no children, other than any text nodes that may have been created during
instantiation, can be appended to these elements.

When creating elements, you have a possibility of a DOMException being thrown. The name
of the element is checked to ensure that it is valid. In the event the check fails, the object is not
created and a DOMException indicating that invalid characters were used may be thrown. For
example, the name 123 is used when trying to instantiate a DOMElement object:

try {
$test = new DOMElement("123");

} catch (DOMException $e) {
var_dump($e);

}

According to the XML specification, names cannot start with a numeric, which results in
a DOMException being thrown.

As previously mentioned, the constructor can take a third parameter indicating the URI
for the namespace of the element. When this is passed, the first argument, being a qualified
name, will split the name parameter into any prefix and local name values. Without the third
parameter being used, the name passed is used as the local name even if it contains a colon:

$nsElement = new DOMElement("nse:myelement", NULL, "http://www.example.com/ns");

This instantiates a DOMElement object with the myelement element prefixed with nse and
living in the http://www.example.com/ns namespace. A value can be passed for the content,
but in this case, NULL is passed, and the element is created without any children.

Inserting Elements

With a few elements currently created, they need to be inserted into the tree. The methods
for appending and inserting nodes come from the DOMNode class and thus are not specific to
element nodes; in other words, they can be called from other node types as well. Currently,
the document contains only a single document element. Using the document node, $dom, the
document element will be retrieved and the bookinfo element appended:

$dom->documentElement->appendChild($bookinfo);

The appendChild() method takes a node to be appended as a child of the current node
for a parameter and returns the node appended. The node is appended as the last child of
the current node’s children. In this case, the book element currently has no children, so the
bookinfo is added as the first child. Also, you already have a handle on the node being
inserted, so you have no need to capture the return value.

This method, like the other insertion methods, may throw a DOMException. The possible
cases for an exception are a hierarchy error, when the node being appended already exists in
the tree and is a parent of the current node; a wrong document error, when the node being
appended is associated with a document other than the current nodes document; and lastly
a “no modification allowed” error, when the current node is read-only. One point to note
about a hierarchy error is that it is not considered an error to append a node without an asso-
ciated document to a node with a document because the appended node will become part of

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)206

6331_c06_final.qxd 2/16/06 9:22 PM Page 206

the tree and automatically be associated with the document. In cases where the current node
is not associated with a document, a “no modification allowed” error is issued, because these
nodes are read-only.

Before appending the author element, $biauthor, into the tree, you can append the
firstname and surname nodes to the author element. Remember, $biauthor was created with
an association to the document, so the firstname and surname elements, once appended, will
inherit this association:

$biauthor->appendChild($surname);
$biauthor->insertBefore($firstname, $surname);

The first line should look familiar because it was used to append the bookinfo element.
The second line uses a new method, insertBefore(). It works similarly to appendChild(), but
the second argument, which must be a child node of the current node, is used as a reference
point to insert the new node before. This code is the same as writing the following:

$biauthor->appendChild($firstname);
$biauthor->appendChild($surname);

You will typically use insertBefore() when trying to insert elements in the middle of a list
of child nodes, but it’s used in the example to show how it works. With the author element
complete with content, you can now insert it into the document:

$bookinfo->appendChild($biauthor);

If you look at the output now, you will see the document beginning to take shape. The
document may look odd because it is all strung together without any line feeds, so you can
beautify the output using the formatOutput property:

$dom->formatOutput = TRUE;
print $dom->saveXML();

Well, it looks like the title element was omitted and needs to be inserted. In this case,
insertBefore() is definitely appropriate. The title node is supposed to come before the
author element, which is already in the tree:

$bookinfo->insertBefore($bititle, $biauthor);

You can deal with the remainder of the elements for the tree later because you already
have enough information to create them. For now, you’ll move on to dealing with attribute
nodes.

Attribute Nodes
You can handle attribute nodes, as well as specific attribute functionality from the DOMElement
class, in a similar fashion to element nodes. You can create them using factory methods from
the DOMDocument class by directly instantiating them, and you can create them using methods
from a DOMElement object. You can also insert and remove them using the methods from the
DOMNode class as well as methods from a DOMElement object.

Equivalent methods for attribute creation exist for a DOMDocument object as for element
creation. Currently (though this may change in future version of PHP), you cannot create

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 207

6331_c06_final.qxd 2/16/06 9:22 PM Page 207

attributes with values using the factory methods. The only parameter is a name (or in the case
of using namespaces, a namespace URI and a name):

/* Equivalent methods for creation of lang attribute */
$lang = $dom->createAttribute("lang");
$lang = $dom->createAttributeNS(NULL, "lang");

Both of these lines of code result in the creation of a DOMAttr object named lang. Using
these methods, you need to specify a value, which you can do using the nodeValue property
from the DOMNode class or using the value property from the DOMAttr class:

/* Equivalent calls to set the value for the lang attribute to "en" */
$lang->nodeValue = "en";
$lang->value = "en";

You can also create attributes with values at the same time using the new keyword. Again,
these nodes will not be associated with a document:

$lang = new DOMAttr("lang", "en");

Using any of these methods to create an attribute requires the attribute to be inserted
into the tree. Using methods already covered, you could add it doing this:

/* Equivalent methods for inserting an attribute */
$bookinfo->appendChild($lang);
$bookinfo->insertBefore($lang, NULL);

The last method uses insertBefore() with the reference node parameter being NULL. When
NULL is passed as the reference node, the function works in the same way as appendChild(). The
node is inserted as the last node.

■Note Attributes are not children of element nodes. When using the appending child functions, such as
appendChild(), the attribute is not appended as a child but instead appended in the attribute property list
of the element.

You can also add attribute nodes using the setAttributeNode() and setAttributeNodeNS()
methods from the DOMElement class. These methods take a single DOMAttr object as a parameter.
These methods will first check whether an attribute with the same name—and in the case of
setAttributeNodeNS(), the same name and namespace—exists. Then, if it exists, these methods
remove the attribute and replace it with the new attribute. These methods return NULL if no
attribute was replaced or return the replaced attribute. For example:

/* Equivalent calls for this document as no namespaces are being used */
$oldlang = $bookinfo->setAttributeNode($lang);
$oldlang = $bookinfo->setAttributeNodeNS($lang);

You can also create attributes without ever having to directly create a DOMAttr object. The
DOMElement class includes the methods setAttribute() and setAttributeNS(). These methods

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)208

6331_c06_final.qxd 2/16/06 9:22 PM Page 208

are the counterparts to the getAttribute() and getAttributeNS() methods you encountered
earlier when navigating the tree. Both of the set methods create an attribute based on the name
and value, passed as parameters, and return the newly created DOMAttr object. Just like all the
other namespace functions, getAttributeNS() accepts a namespace URI as a parameter and
uses a qualified name as an argument:

/* Equivalent calls to create the lang attribute with value "en" */
$bookinfo->setAttribute("lang", "en");
$bookinfo->setAttributeNS(NULL, "lang", "en");

■Caution When creating an attribute with an entity reference as a value, you must create a DOMAttr
object and set the value manually. The value argument for the constructor of a DOMAttr and for the
setAttribute() and setAttributeNS() methods is simple text that is not parsed and treated as
literal text.

Text Nodes
Text nodes are simple nodes, because they cannot have child nodes or attributes. In other
words, they simply contain text content. This does not mean they offer little functionality,
though. You can use the text nodes to set content as well as perform string functions. You
create and insert them in the same manner as element nodes. You can create them either
using a factory method from a DOMDocument object or using the new keyword. You can insert
them using the normal appendChild() and insertBefore() methods.

Creating and Inserting Text Nodes

You use a DOMDocument object to create a text node with the createTextNode() method. A data
parameter is required that specifies the content, or value, for the text node. Instantiating a
DOMText object with the new keyword does not require a value, because the default is to create
a text node with empty content. For example:

/* Equivalent creation of DOMText objects */
$yeartxt = $dom->createTextNode("2005");
$yeartxt = new DOMText("2005");

The text node created, whichever method you decide to use, will be used as the content
for the yet-to-be-created year element, which will be the child of a yet-to-be-created copyright
element. While inserting these nodes, this also creates the holder element. For example:

/* Create and Append a copyright element */
$copyright = $bookinfo->appendChild(new DOMElement("copyright"));

In one line, a new copyright element is instantiated using the new keyword and is
appended to the bookinfo element. You might have wondered why the return values mattered
before because all examples previously used instantiated objects when appending nodes. In
this case, the $copyright variable, upon the method returning, will contain the newly created
DOMElement object that contains the copyright element. For example:

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 209

6331_c06_final.qxd 2/16/06 9:22 PM Page 209

/* Create year element */
$year = $dom->createElement("year");

/* Append text node to set content */
$year->appendChild($yeartxt);
$copyright->appendChild($year);

After creating the year element, the DOMText object, previously created, is appended as
content. Once this is done, the year element is appended to the copyright element. For
example:

/* Append a newly created holder element with content "Rob Richards" */
$copyright->appendChild(new DOMElement("holder", "Rob Richards"));

Again, a single line of code performs multiple operations. A new DOMElement object is
created with the name holder and the value Rob Richards. This element is appended to the
copyright element.

Manipulating Text

The DOMText class derives from the DOMCharacterData class. Methods exist in both classes that
can manipulate text on DOMText objects. For example, take the following piece of code, which
includes the appropriate output that will print after the colon in each of the comments:

/* If content is not whitespace then ... */
if (! $yeartxt->isElementContentWhitespace()) {

/* Print substring at offset 1 and length 2: 00 */
print $yeartxt->substringData(1,2)."\n";

/* Append the string -2006 to the content and print output: 2005-2006 */
$yeartxt->appendData("-2006");
print $yeartxt->nodeValue."\n";

/* Delete content at offset 4 with length of 5 and print output: 2005 */
$yeartxt->deleteData(4,5);
print $yeartxt->nodeValue."\n";

/* Insert string "ABC" at offset 1 and print output: 2ABC005 */
$yeartxt->insertData(1, "ABC");
print $yeartxt->nodeValue."\n";

/* Replace content at ofset 1 with length of 3 with an empty string: 2005 */
$yeartxt->replaceData(1, 3, "");
print $yeartxt->nodeValue."\n";

}

At this point the tree is really starting to take shape. The output at this point—using
formatting, of course—looks like this:

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)210

6331_c06_final.qxd 2/16/06 9:22 PM Page 210

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"

"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd">
<book>
<bookinfo lang="en">
<title>DOM in PHP 5</title>
<author>
<firstname>Rob</firstname>
<surname>Richards</surname>

</author>
<copyright>
<year>2005</year>
<holder>Rob Richards</holder>

</copyright>
</bookinfo>

</book>

The serialized tree looks almost exactly like the tree in Listing 6-1. This is good because
that is the goal you are working toward. The only missing pieces are the preface and chapter
subtrees. This will be left as an exercise for you to finish because I have already covered every-
thing you need to complete the tree.

Other Node Types
The node types covered to this point are the most frequently used, which is why I have given
them much greater emphasis. You can create and insert the remaining node types in the same
manner as the previous nodes. Because the complete API is included in Appendix B, I will
show how to create the remaining nodes through code:

/* Create a DOMDocumentFragment */
$frag = $dom->createDocumentFragment();
$frag = new DOMDocumentFragment();

/* Create DOMComment */
$comment = $dom->createComment("this is a comment");
$comment = new DOMComment("this is a comment");
/* Results in <!-- this is a comment --> */

/* Create DOMCDATASection */
$cdata = $dom->createCDATASection("<html></html");
$cdata = new DOMCDATASection("<html></html");
/* Results in <![CDATA[<html></html]]> */

/* Create DOMProcessingInstruction */
$pi = $dom->createProcessingInstruction("php", "echo 'Hello World';");
$pi = new DOMProcessingInstruction("php", "echo 'Hello World';");
/* Results in <?php echo 'Hello World';?> */

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 211

6331_c06_final.qxd 2/16/06 9:22 PM Page 211

/* Create DOMEntityReference */
$entityref = $dom->createEntityReference("lt");
$entityref = new DOMEntityReference("lt");
/* Results in < */

Outside the methods inherited from the DOMNode class, the DOMDocumentFragment class is
the only class with additional functionality. This functionality is only a single method and
available only in PHP 5.1 and higher. Rather than having to build a fragment manually by
appending nodes, you can use the method appendXML() to create a fragment from string
data. Take the case of building a fragment manually versus building it from a string:

$frag = $dom->createDocumentFragment();
$frag->appendChild(new DOMElement("node1", "node1 value"));
$frag->appendChild(new DOMElement("node2", "node2 value"));

It would have been so much easier to append the data as a string. You had no need to
manually create the DOMElement objects because the appropriate nodes are automatically
created through the appendXML() method:

$frag = $dom->createDocumentFragment();
$frag->appendXML("<node1>node1 value</node1><node2>node2 value</node2>");

■Note When appending a DOMDocumentFragment object into a tree, only the children on the fragment are
added. The DOMDocumentFragment object that is left after an append will be empty because the nodes have
been removed and inserted into the tree.

Removing and Replacing Nodes
The last piece of editing a document is removing and replacing nodes in a tree. Some of
the methods encountered so far will perform this type of functionality. Take, for instance, the
setAttributeNode() method. When a node with the same name exists on the element, the old
attribute is removed and replaced with the new attribute node, and the old attribute is returned.
The same functionality can happen with other node types using the replaceChild() method.
Sometimes, however, you want just to remove a node. In this case, you can use the
removeChild() method.

Given the following document loaded into a DOMDocument object:

$doc = DOMDocument::loadXML('<?xml version="1.0"?>
<root>

<child1>child1 content</child1>
<child2>child2 content</child2>
<child3>child3 content</child3>

</root>');

the element child2 needs to be removed from this document, and child3 needs to be replaced
with the element newchild. The first step is to get access to each of these nodes. To reduce the

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)212

6331_c06_final.qxd 2/16/06 9:22 PM Page 212

number of steps, I will show how to retrieve the elements using the getElementsByTagName()
method:

$root = $doc->documentElement;
$child2 = $root->getElementsByTagName("child2")->item(0);
$child3 = $root->getElementsByTagName("child3")->item(0);

The first step is to remove the $child object:

$root->removeChild($child2);

If you look at the serialized tree now, you would see this:

<?xml version="1.0"?>
<root>

<child1>child1 content</child1>

<child3>child3 content</child3>
</root>

The whitespaces are left in the document, causing the blank line in the output. The
$child3 object is still in scope so can now be replaced with a new element. This also will be
condensed using the new keyword for the new element:

$oldchild = $root->replaceChild(new DOMElement("newchild", "new content"), $child3);

In this case, the new element is being created inline. Unfortunately, using the new keyword
here does not give direct access to the newly created node. This method returns the node being
removed from the tree. The resulting serialized tree is as follows:

<?xml version="1.0"?>
<root>

<child1>child1 content</child1>

<newchild>new content</newchild>
</root>

Wrapping up this section, you might want to remove those whitespaces within the root
element children. I have already covered everything you need to know in order to do this.
One way is to use the following piece of code:

$children = $root->childNodes;
for ($x=$children->length; $x--; $x>=0) {

$node = $children->item($x);
if ($node->nodeType == XML_TEXT_NODE && $node-> isElementContentWhitespace()) {

$root->removeChild($node);
}

}

You have many ways to accomplish this task. One question you may have is why the itera-
tion was performed from last to first. Based on how this code was written, DOMNodeList objects
are being used. These are live collections resulting in changes of indexes when nodes are

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 213

6331_c06_final.qxd 2/16/06 9:22 PM Page 213

added or removed. For now, I will let you think about this and possibly come up with the
answer. Have no worries if you are unsure of why the code was written in this manner, because
I answer this question in depth in the section “Common Questions, Misconceptions, and
Problems.”

Performing Validation
Chapter 3 covered three methods of validating XML documents. You can use each of these
methods with the DOM extension to perform validation. As shown in the previous chapter, you
can invoke and perform validation using DTDs during parsing by using the LIBXML_DTDVALID
constant with either of the load options. It is not always the case that a document would need
to be validated at the time of being parsed, and the bigger issue is that only DTDs can currently
be used, leaving XML Schemas and RELAX NG unaccounted for. The DOMDocument class imple-
ments the accessor methods to perform validation after an XML document has been loaded.

Validating with DTDs
You must load DTDs prior to trying to validate against them within the DOM extension. Loading
a document with the LIBXML_DTDLOAD parser option will load an external DTD but not perform
validation at parse time. With a DOMDocument object instantiated and containing a loaded DTD,
validation is as simple as calling the validate() method.

This method returns TRUE or FALSE, indicating the validity state of the document. Errors
and warnings from libxml can be issued from this method call and should be handled appro-
priately, either by using a user error handler, allowing the printing of the errors; by using error
suppression; or by using the new error handling available in PHP 5.1.

$dom = DOMDocument::loadXML('<?xml version="1.0"?>
<!DOCTYPE courses [

<!ELEMENT courses (course+)>
<!ELEMENT course (title)>
<!ELEMENT title (#PCDATA)>

]>
<courses>

<course>
<title>Algebra</title>

</course>
</courses>');

The variable $dom, after running this code, is a DOMDocument object containing an internal
subset. Internal subsets do not require any parameters instructing a DTD to be loaded because
they are internal. It has not been validated, because the parser was not instructed to validate it.
At this point, you may want to find out whether the document is valid, and you can easily do
this with the validate() method:

$isvalid = $dom->validate();
var_dump($isvalid);

The result of this is bool(true), which indicates the document is valid.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)214

6331_c06_final.qxd 2/16/06 9:22 PM Page 214

It becomes more difficult when building a document manually containing a DTD and
performing validation. Internal subsets cannot be created with the DOM extension manually.
You can create external subsets using methods from the DOMImplementation class, but these
still are not loaded into memory. In these instances, a document should be serialized, reloaded,
and then validated in order for validation to work properly.

Validating with XML Schemas
Validation with XML Schemas is a bit different than working with DTDs. The schema is not
loaded at parse time like internal and external subsets are. Associating an XML schema with
an XML document is not even performed until validation is ready to be performed. An advan-
tage of this is that it removes the need for any type of document serialization.

You can specify XML Schemas either through a string containing the schema or through
a URI pointing to the location of the schema. The DOMDocument class implements the methods
schemaValidate() and schemaValidateSource() to load a schema and validate it against the cur-
rent document at the same time. Each takes a single parameter. The method schemaValidate()
accepts a string containing the URI of the schema; schemaValidateSource() takes a string
containing the XML of the schema itself. These methods return the same results as validating
against a DTD. A Boolean is returned, and errors from libxml are possible. Each must be han-
dled appropriately. For example:

$dom = DOMDocument::loadXML('<?xml version="1.0"?>
<courses>

<course>
<title>Algebra</title>

</course>
</courses>');

$schema = '<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="courses">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="course" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>';

$isvalid = $dom->schemaValidateSource($schema);
var_dump($isvalid);

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 215

6331_c06_final.qxd 2/16/06 9:22 PM Page 215

This example loads a scaled-down XML Schema from Chapter 3 into the string $schema.
The method schemaValidateSource() is called on the DOMDocument object, $dom, to be validated.
In this case, the document validates and returns the Boolean, TRUE, identified by the $isvalid
variable.

Validating with RELAX NG
Validation using RELAX NG works in the same manner as validating with an XML Schema. It
offers the same advantage in that the schema is associated at the time of validation, and docu-
ment serialization is not required. Other than using RELAX NG for the schema and a minor
difference in method names, the parameters, return values, and error issuance is the same as
when using XML Schemas. The methods used with RELAX NG validation are relaxNGVali-
date() and relaxNGValidateSource(). The first method takes a URI, and the latter takes a
string containing the XML for the RELAX NG schema. For example:

$schema = '<?xml version="1.0" encoding="utf-8" ?>
<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">

<zeroOrMore>
<element name="course">

<element name="title">
<text/>

</element>
</element>

</zeroOrMore>
</element>';

$isvalid = $dom->relaxNGValidateSource($schema);
var_dump($isvalid);

Using the DOMDocument object, $dom, from the XML Schema example, the RELAX NG
schema (in serialized form and set to the $schema variable) is validated against the document
using the relaxNGValidateSource() method. Just like the other validation methods, this docu-
ment successfully validates and returns the Boolean TRUE to the $isvalid variable.

Using XPath
The DOMXPath class in the DOM extension offers access to the underlying tree using XPath
expressions, as examined in Chapter 4. This class is simple to use because it has minimal
methods yet allows for complex expression. When running under PHP 5.0, a DOMNodeList con-
taining nodes is the only return type available using the query() method. For PHP 5.1 and
higher, the evaluate() method allows for a greater number of return types.

Instantiating DOMXPath
No factory methods exist for creating a DOMXPath object. DOMXPath is not part of the core DOM
specification and exists solely to provide XPath support with the DOM extension. You can cre-
ate a DOMXPath object using the new keyword, passing the DOMDocument object to be used with

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)216

6331_c06_final.qxd 2/16/06 9:22 PM Page 216

XPath as the sole parameter. Using the DOMDocument object $dom, created from the document in
Listing 6-1, you can instantiate a DOMXPath object:

$domxpath = new DOMXPath($dom);

This object has no built-in properties and, depending upon the version of PHP, imple-
ments at most three methods.

Using the query() Method
The query() method is available in all versions of PHP 5. It retrieves nodes from a tree using
XPath expressions. No matter what expression is used, even those that return no nodes, a
DOMNodelist object is returned. In the event the expression returns no nodes, as either a result
of no matching nodes or a different return type, the resulting DOMNodelist is empty. This
method takes one required parameter, the XPath expression as a string, and an optional sec-
ond parameter, an object derived from the DOMNode class, which would be used as the context
for the XPath expression. For example, you can query for the author node in the document
with the expression /book/bookinfo/author:

$list = $domxpath->query("/book/bookinfo/author");
$author = $list->item(0);

Examining the $author variable, you will see it refers to the author element in the docu-
ment. You could then use this node as the context parameter to access the surname node:

$list = $domxpath->query("surname", $author);
$surname = $list->item(0);

If you tried to return the contents of the surname element as a string via an XPath expres-
sion, you will see that a DOMNodeList object is returned but is empty:

$list = $domxpath->query("string('/book/bookinfo/author/surname')");
var_dump($list);
print "Number of Nodes Returned: ".$list->length."\n";

The var_dump of the $list variable clearly shows that the object is a DOMNodeList. The list
after that illustrates that the number of nodes contained, from the length property, is 0.

Using the evaluate() Method
PHP 5.1 added a method, evaluate(), so that additional types supported by XPath could be
returned. This method takes the same parameters as the query method(): an object derived
from a DOMNode class followed by an optional context parameter. Using this method, you would
write the same expression to return the contents of the surname element as a string, as follows:

$list = $domxpath->evaluate("string(/book/bookinfo/author/surname)");
var_dump($list);

The output for the var_dump in this case is much different. A DOMNodeList is not returned
in this case. Instead a string is returned:

string(8) "Richards"

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 217

6331_c06_final.qxd 2/16/06 9:22 PM Page 217

With this new method, return values can be of type Boolean, Integer, String, Null, or
DOMNodeList. It all depends upon the expression used. For instance, an expression could per-
form a calculation on the year element, such as adding one year and returning the numeric
value:

$newyear = $domxpath->evaluate("number(/book/bookinfo/copyright/year) + 1");
var_dump($newyear);

You can use this method, also being able to return a DOMNodeList, as a replacement for
the query() method. For backward compatibility, query() was left untouched, returning only
a DOMNodeList, with support for new additional types added to the evaluate() method:

$list = $domxpath->evaluate("/book/bookinfo/author");
$author = $list->item(0);
print $author->nodeName."\n";

This code is almost identical to the code using the query() method, but it uses the
evaluate() method. Examining the $author variable, you will see it is identical to the $author
variable previously returned from the query() method.

Using XPath and Namespaces
In Chapter 4, I showed the functionality for dealing with namespaces in XPath. I also pointed
out the problem with default namespaces. Without prefixes, it is harder to differentiate or write
expressions based on namespaces. You can use the helper method, registerNamespace(), on a
DOMXPath object to associate a prefix with a namespace, which can then be used in an expres-
sion. In Chapter 4, you saw a document containing many different book elements—some in
no namespace, some prefixed and within a namespace, and some in a default namespace.
One such book element within the default namespace looks like this:

<classics xmlns="http://www.example.com/ExternalClassics">
<book qty="33">

<name>To Kill a Mockingbird</name>
<price>10.99</price>
<pubdate>2002-03-01</pubdate>
<author>Lee, Harper</author>

</book>
</classics>

It tends to be easier when writing expressions to be able to use a prefix when dealing with
namespaced nodes. In this case, you can use the registerNamespace() method:

$domxpath->registerNamespace("ec", " http://www.example.com/ExternalClassics");

Prior to executing an expression, if the namespace http://www.example.com/
ExternalClassics and the prefix ec are registered with the DOMXPath class, you can use
the prefix within an expression to access namespaced nodes.

It is important to understand that when performing a query or evaluation with an XPath
object, some automatic namespace registration takes place. Prefixed namespaces within the
scope of the context node are automatically registered and can be used within an expression.
When a context node is not supplied, prefixed namespaces on the document element are

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)218

6331_c06_final.qxd 2/16/06 9:22 PM Page 218

automatically registered. For example, had the namespace from the classics node been associ-
ated with a prefix and no context node supplied when performing a query, its prefix would
automatically be available to be used in an expression. However, had any namespaces been
declared within the children of the element, they would not have been registered because the
context node, the classics element, is not within the scope of those namespaces and would
need to be manually registered. It is also important to understand that when namespaces are
automatically registered, the prefixes closest to the context take precedence over the same
prefixes declared higher up in the tree. It is all about scope here.

If you loaded the previous snippet into a DOMDocument object, $xd, and treated it as a com-
plete document, rather than just a piece of the document from Chapter 4, you could then access
the price element with the newly registered namespace:

$xp = new DOMXPath($xd);
$xp->registerNamespace("ec", "http://www.example.com/ExternalClassics");
$list = $xp->evaluate("/ec:classics/ec:book/ec:price");
var_dump($list->item(0)->nodeName);

Namespaces are not dependant upon the prefix. The important aspect is the actual name-
space. When registering a prefix to use with a namespace, it is crucial to choose unique names.
A prefix that is automatically registered will take priority over one manually registered on the
DOMXPath object. Scope comes into play in this case. To avoid potential conflicts, it is best to use
prefixes that are guaranteed not to be used within a document.

Extending Classes
One of the nice features of the DOM extension is the ability to extend the core classes. Under
PHP 4 and the domxml extension, this functionality was impossible to achieve. With the capa-
bilities from the new Zend Engine in PHP 5, this has finally become a reality in DOM. This
feature has its limits, which will be explained within this section.

You can extend one of the DOM classes in the same manner as extending any other class
within PHP 5. You define a class using the extends keyword:

class customDoc extends DOMDocument {}

$mydoc = new customDoc();
print $mydoc->saveXML();

In this case, other than creating a new class type extending the DOMDocument class, you
have not defined any custom constructor or additional methods and properties. The methods
and properties from the DOMDocument class, though, are inherited and, as shown by the last
print statement, are invoked just as if you were using a DOMDocument object.

You can also override the constructor and methods as well as add custom methods and
properties. You must remember a few points when extending the DOM classes:

• Overriding the constructor requires the parent constructor to be called.

• Properties built into the DOM classes cannot be overridden.

• Methods built into the DOM classes can be overridden.

• The life span of an extended object is that of the object itself.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 219

6331_c06_final.qxd 2/16/06 9:22 PM Page 219

Other than these points, extended DOM classes work in the same manner as regular
objects and extended objects.

Overriding the Constructor
A subclass can override the constructor of a base class by defining its own constructor. When
using the DOM classes, you must invoke the parent constructor within the extended class’s
constructor, or an instantiated object will not be usable with the DOM extension. For example:

class customDoc extends DOMDocument {
function __construct($rootName, $rootValue = "") {

parent::__construct();
if (! empty($rootName)) {

$element = $this->appendChild(new DOMElement($rootName, $rootValue));
}

}
}

$myc = new customDoc("root", "content");
print $myc->saveXML();

The class customDoc is defined and extends the DOMDocument class. A constructor for this
class is also defined that accepts the variables $rootName for the document element and
$rootValue, which is passed when text content is to be created for the document element
when this class is instantiated.

When an object of the customDoc type is instantiated, this new constructor is used. The
first thing that takes place is the constructor for the parent class, DOMDocument, is called. This
parent constructor must be called prior to using any of the DOM functionality with this class;
otherwise, $this will not have been properly initialized, and the DOM methods will fail. Once
this is completed, you can use the appendChild() method to set the document element within
the tree. The output of this code results in the following:

<?xml version="1.0"?>
<root>content</root>

Understanding That Properties Cannot Be Overridden
Properties of a base DOM class cannot be overridden. They can be defined in the subclass
definition but are silently ignored, and the built-in properties are used. This is a big difference
between the constructor and the methods defined in DOM, because those can both be over-
ridden. For example:

class customDoc extends DOMDocument {
public $nodeName = "customDoc";

}

$myc = new customDoc();
print $myc->nodeName;

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)220

6331_c06_final.qxd 2/16/06 9:22 PM Page 220

This piece of code defines the property nodeName within the customDoc definition. The
nodeName property is also defined in the DOMNode class, which is inherited by the DOMDocument
class. Looking at the code, you might expect customDoc to be printed, but in actuality #document
is printed. Some people may consider this behavior to be an issue, but it has worked this way
from the beginning, will not be changing, and can easily be worked around by using different
property names.

Overriding Built-in Methods
You can override DOM class methods, unlike the properties, through user-implemented
methods. PHP is a typeless language and does not allow casting an object to a specific class.
The method createElement() from the DOMDocument class returns only an object that is a
DOMElement class type. Of course, you can instantiate different classes that extend a DOMElement
using the new keyword; you might want the createElement() method to return some other
class type as well. For example:

class customElement extends DOMElement { }

class customDoc extends DOMDocument {
function createElement($name, $value) {

$custom = new customElement($name, $value);
return $custom;

}
}

$myc = new customDoc();
$myelement = $myc->createElement("myname", "myvalue");
if ($myelement instanceof customElement) {

print "This is a customElement";
}

This code implements a custom createElement() method that returns an element of the
customElement class type rather than a DOMElement class. It works well in that the test using
the instanceof operator results in the text This is a customElement being printed. The only
issue with this code is that the new element is not associated with a document, which occurs
through the use of the native createElement() method. Eventually the adoptNode() method
will be implemented, allowing the node to be associated with a document, but until that time,
the node exists without a document associated until inserted into a tree.

Understanding Object Lifetime and Scope
Scope and object lifetime are features many people struggle with when using extended classes
within the DOM extension. It is important to understand that DOM objects are not nodes
within the tree. This is confusing because accessing the object directly affects the underlying
node in the tree, but the object is just an “accessor” to the underlying node. This being said,
when an object is instantiated, either by using new or by accessing a node within a tree, the
object itself is not part of any tree or subtree, just the internal node.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 221

6331_c06_final.qxd 2/16/06 9:22 PM Page 221

Just as in most other languages, objects have a lifetime and are eventually destroyed. Once
an object goes out of scope and no references to this object exist, it is destroyed. The same rules
pertain to objects from the DOM extension. This is where much confusion comes into play.
When no object is currently referencing an underlying node and the node is accessed, a new
object is created based on the pertinent built-in DOM class. By “pertinent,” I mean that the
DOM class type that pertains to the specific node type is instantiated.

You may be wondering why all this matters. Using subclasses with the DOM extension
does not guarantee that the original class used to create a node will be the type of class of the
object returned when the node is accessed later in a script. Consider the effects of using the
unset() function on an instantiated subclassed object:

class customElement extends DOMElement { }

$doc = new DOMDocument();

$myelement = $doc->appendChild(new customElement("custom", "element"));
print get_class($myelement)."\n";

unset($myelement);

$myelement = $doc->documentElement;
print get_class($myelement)."\n";

This code initially defines the class customElement that does not override anything from
the DOMElement class. A DOMDocument object is instantiated, and a new customElement is
appended. This new element is returned as a customElement object and set to the $myelement
variable. The output of the first get_class() function is customElement and clearly shows that
the object associated with this node is of the customElement type.

Unset() is then called on the $myelement variable; because no other references exist for
this object, the object is destroyed. The element node that was previously appended as the
document element is then accessed with the documentElement property, and the resulting
object is set to the $myelement variable. Examining the output of the last get_class() function
call reveals that this object is of the DOMElement class and not the customElement class.

■Caution Objects based on extended DOM classes have a life span and once destroyed no longer associ-
ate the extended class type with the underlying XML node in the tree. Accessing a node after the object has
been destroyed results in an object based on a DOM built-in class type and not the extended class type.

This is the limitation I previously mentioned about extending DOM classes. How your
code is written will determine whether an object based on an extended class will be returned
or whether it will be based on a built-in DOM class when accessing a node. You must think
about scope carefully when using extended classes. For example:

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)222

6331_c06_final.qxd 2/16/06 9:22 PM Page 222

class customElement extends DOMElement { }

class customDoc extends DOMDocument {
function addRoot($name, $value) {

if (! $this->documentElement) {
$custom = new customElement($name, $value);
return $this->appendChild($custom);

}
return NULL;

}
}

$dom = new customDoc();
$dom->addRoot("root", "content");
$myelement = $dom->documentElement;
print get_class($myelement)."\n";

This piece of code creates a customDoc object and adds a document element using the
addRoot() method. The method returns the newly created object or NULL if a document ele-
ment already exists. Within the script, however, the return value is not captured, and when
the get_class() is called on the $myelement object, DOMElement is printed.

You can make a slight change to the code and capture the return value:

$myelement = $dom->addRoot("root", "content");
$myelement = $dom->documentElement;
print get_class($myelement)."\n";

In this case, get_class() returns customElement. Upon returning from the addRoot()
method, the object is captured and set to the $myelement variable. Previously, even though
the resulting element was being returned, it was not captured, and the customElement object
created was immediately destroyed. With this object destroyed, accessing the documentElement
property resulted in a new object associated with the node being created. This new object,
being created automatically from a node access, ends up being based on the DOMElement class.
The updated code keeps the $myelement object in scope, so when the documentElement prop-
erty is accessed, it returns the object already associated with the node, which is of the
customElement class.

Common Questions, Misconceptions,
and Problems
The DOM specification is quite lengthy and not always easy to interpret. It is common to
expect a certain result just to find out that the actual result is not even close to your expecta-
tion. This also holds true even with DOM interaction within PHP. The following sections will
explore many of the common questions, misconceptions, and problems people encounter
using the DOM extension and will provide some insight into methods you can employ to
achieve your desired results.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 223

6331_c06_final.qxd 2/16/06 9:22 PM Page 223

DOM Objects and PHP Sessions
The most frequently encountered “problem” developers have when using the DOM extension
concerns storing DOM objects in session. Let me just say that DOM objects cannot be natively
stored in session. This doesn’t mean it is impossible to store an XML document in session, just
that some additional coding is required to perform this action.

Storing data in session requires serialization. DOM objects natively cannot be serialized
using PHP functions such as serialize() or the automatic serialization that is performed when
storing data to a session without losing data. This is because of the reliance on the underlying
libxml2 library and because the DOM classes do not implement the magic sleep() and wakeup()
methods. Your first reaction to this might be the question, why aren’t those methods imple-
mented? The answer is simple. You have two ways to serialize a document: to a string or to a file.
Because of the size of XML documents, in many cases they are stored on the file system rather
than as a string in memory, so these specific methods were never implemented and left to the
user to handle in whatever manner they like.

Working around this is not all that difficult; in fact, you can deal with this in a couple of
ways. The first method is extremely simple and can be performed in the same number of lines
of code as you would need when storing or fetching a DOM object from a session:

$_SESSION['domobj'] = $dom->saveXML();

Rather than storing the DOMDocument object, $dom, in session, the tree is serialized by the
saveXML() method, which is then stored in session. For example:

$dom = DOMDocument::loadXML($_SESSION['domobj']);

When the DOM object needs to the restored from session, a new DOMDocument is created
from the serialized tree in session.

Another method you can use is to extend the DOMDocument class and implement the
sleep() and wakeup() methods:

class customDoc extends DOMDocument() {
private $serializedDoc = NULL;

function __sleep() {
$this->serializedDoc = $this->saveXML();
return array("serializedDoc");

}

function __wakeup() {
if (! empty($this->serializedDoc)) {

$this->loadXML($this->serializedDoc);
$this->serializedDoc = NULL;

}
}

}

The customDoc class extends the DOMDocument class and implements the magic methods.
Once instantiated (in this case $doc will be used), the object can be easily stored and retrieved
from session as a normal object:

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)224

6331_c06_final.qxd 2/16/06 9:22 PM Page 224

/* Store in session */
$_SESSION['domobj'] = $doc;

/* Retrieve from session */
$doc = $_SESSION['domobj'];

Using an extended class in this case allows for the object to be serialized and stored as
desired. For instance, rather than storing the document as a string in memory, it could be saved
as a file in the sleep() method and restored during wakeup().

Removing Nodes While Iterating Skips Nodes
Another issue often arises when iterating through a DOMNodeList or DOMNamedNodeMap and
removing nodes. Nodes are often skipped during such operation. For example, when trying to
remove all children from an element, the first thing someone may think of is to grab all chil-
dren, iterate through the DOMNodeList, and remove the node from the document. For example:

$children = $element->childNodes;
foreach($children as $node) {

$element->removeChild($node);
}

This code does not work as expected, and child nodes are still left within $element.
Both DOMNodeList and DOMNamedNodeMap are live collections. Additions and subtractions of
nodes within a tree can directly affect the nodes contained with the collections as well as
their indexes within the collection. In the previous code snippet, once a node is removed,
all nodes that follow it within the collection automatically have their index reduced by 1.
The results of this code would end up removing every other node in the collection, starting
with the first node.

You can work around this issue by removing nodes in reverse order or performing a loop
while $element still has children:

/* Removal Based on Index */
$length = $children->length;
for($x=$length-1; $x >= 0; $x--) {

$element->removeChild($children->item($x));
}

/* Removal based on children */
while ($element->hasChildNodes()) {

$element->removeChild($element->firstChild);
}

You can use many different techniques to do this. The first method illustrated shows how
you can perform the iteration without regard to the type of node within the collection. It is
possible that you have to change the actual code used for removal, because the code used here
is specific to removing child nodes. The second example performs the same task as the first
example, but instead no collections are used. As long as $element has children, the loop will
be processed and continue to remove the first child of $element.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 225

6331_c06_final.qxd 2/16/06 9:22 PM Page 225

The XML Tree Contains Garbled Characters
No matter how much encodings are stressed, people often forget that data is internally stored
in UTF-8 encoding. Other than during the loading and saving of an XML document, data that
is not compatible with UTF-8 must be encoded or decoded when accessing or modifying con-
tent. Chapter 5 explains this in detail as well as covers the methods you can employ to handle
data correctly when interacting with the XML-based extensions in PHP 5.

Extended Class Not Being Returned When Accessing Node
This has to be the most often encountered issue when using extended classes, which is why it
is mentioned here even though it has already been covered in this chapter. If you run into this
issue, refer to the “Object Lifetime and Scope Within the Extending Classes” section for an in-
depth examination of the topic. To reiterate, though, objects refer to nodes within a tree and
have a lifetime completely separate from the node. Object destruction follows the same rules
as all other objects in PHP 5:

class customElement extends DOMElement{}
function addElement($doc, $name) {

$doc->appendChild(new customElement($name));
}
$doc = new DOMDocument();
addElement($doc, "root");
$element = $doc->documentElement;
print get_class($element)."\n";

This results in DOMElement being printed for output. If a node is referenced by an object
subclassed from a built-in DOM class and is destroyed, subsequent access to the node will
return an object based on the corresponding DOM class for the node. The extended class will
not be used for new object creation. The object of the customElement type is appended into the
tree but never returned, so it is destroyed. Accessing the documentElement property ends up
returning a DOMElement object, because the node no longer has an associated object. You must
take object scope and lifetime into account when extending DOM objects.

Unable to Retrieve Elements by ID
The method getElementById() will return NULL when an element with the specific ID is not
found. Even though you might think the ID is valid in the document and that a DOMElement
should be returned, a common misconception may result in NULL being returned.

Attributes for elements are using the name ID but are not recognized as ID attributes. The
name ID is not special in XML. Just because an attribute uses this name does not automatically
turn it into an ID attribute. To create IDs, you must define attributes in a DTD as IDs. The DTD, if
external, must also be processed while loading the document. Once the DTD has been loaded
and the document processed, elements will then be able to be accessed by their IDs.

In a couple of special cases, this does not hold true. The qualified attribute name xml:id is
one of these cases. Attributes with this name are handled as ID attributes and do not require a
DTD. Currently, these attributes are recognized and set up as IDs only when a document is
loaded. Work is taking place within the libxml2 library to support appending attributes with

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)226

6331_c06_final.qxd 2/16/06 9:22 PM Page 226

this name that also automatically result in IDs, but as of libxml2 2.6.20, this has yet to be
implemented.

Another special case is the setIdAttribute() methods. These methods have not yet been
implemented at the time of writing but are on the to-do list for the DOM extension so may or
may not be available by the time you read this. These methods will allow already existing
attributes to be set and unset as ID attributes without needing a DTD or schema.

Loading Document Issues Entity Errors
By definition, an XML document must be well-formed. Entity errors and warnings are issued
when a document uses entity references and the entities are not defined in a DTD. The most
common problem encountered deals with the use of the & character:

<root>this & that</root>

This, contrary to what many believe, is not a legal XML document. Unless & is contained
within a CDATA section, it cannot be used alone for text content. Within text content, it must
be escaped and can be written as this:

<root>this & that </root>

When trying to load a document containing a stand-alone & within text content, you have
two options. You can either convert it to the appropriate entity reference or completely disre-
gard the document. The problem with the latter is that for some reason, this issue gets reported
as a bug because the document being loaded is coming from a remote source, such as an RSS
feed. In a case like that, your best bet is to contact the owner of the document and let them
know their XML is not legal.

Added DTD Not Recognized
A DTD manually added to a document using append and insert operations is not handled
by the document as a regular DTD. DTDs are parsed and set up appropriately while a docu-
ment is being parsed. Adding one later, unless creating the DTD and document using the
DOMImplementation methods, requires the document to be serialized and reloaded in order
for the DTD to be read correctly.

Unable to Access Elements in Default Namespace Using XPath
One of the biggest issues encountered when using XPath concerns selecting elements in the
default namespace. No prefixes are associated with the namespace, and the elements cannot
be selected just by using their names. Although you can hack together an expression to get
access to these elements, the easiest method is to manually register the default namespace
with some prefix. This then allows you to call the elements using the newly associated prefix
and element name. Refer to the “Using XPath and Namespaces” section in this chapter for
additional information.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 227

6331_c06_final.qxd 2/16/06 9:22 PM Page 227

Migrating from domxml to the DOM Extension
As long as the code from domxml is not from an extremely old version of PHP 4, migrating
from code written for domxml to the DOM extension is not difficult. The reason for the
problems from older PHP 4 versions is because of the changes made within the domxml
extension. Around the time PHP 4.3 was rolled out, domxml was updated to implement
most of the functionality using W3C-compliant methods according to the specifications,
and the older functionality was depreciated. This section will show how to migrate from
the PHP 4.3–compliant implementation of domxml because prior versions will need a
complete review and many code changes to work with the DOM extension in PHP 5.

Compliance with the specifications makes migration a much easier task. The first task
is to identify any classes created using the new keyword. Although many of the classes use
the same name in the DOM extension, a few differ. Table 6-2 lists the classes from domxml
that have different names or are not implemented in the DOM extension.

Table 6-2. Class Equivalents in the domxml and DOM Extensions

domxml Class Name DOM Class Name

DOMAttribute DOMAttr

DOMCdata DOMCdataSection

DOMEntityRef DOMEntityReference

DOMPi DOMProcessingInstruction

DOMParser

All other classes in domxml map directly to the same class names in the DOM exten-
sion. If you have read the source code, you might also wonder about the domdtd and
domnamespacenode classes. These are no longer relevant within domxml and have been
intentionally omitted from Table 6-2.

The next step in the process is to modify method names used with the objects. In the
majority of the cases, all that is required is capitalizing the first character after an underscore
and removing the underscore from the method name. Take, for example, the method
get_elements_by_tagname(), which is from the DOMElement class in domxml. Following the
rules just defined, the corresponding method within the DOM extension is
getElementsByTagName().

With the methods converted, the next step is to look at the methods that are implemented
differently in the DOM extension as well as methods in domxml that are now true properties
in DOM. Table 6-3 lists many, but not all, methods within domxml that are now properties in
the DOM extension.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)228

6331_c06_final.qxd 2/16/06 9:22 PM Page 228

Table 6-3. Methods in domxml and the Corresponding DOM Extension Properties

domxml Method DOM Property

DOMAttribute->name() DOMAttr->name

DOMAttribute->value() DOMAttr->value

DOMAttribute->set_value() DOMAttr->value

DOMDocument->doctype() DOMDocument->doctype

DOMDocument->document_element() DOMDocument->documentElement

DOMNode->node_name() DOMNode->nodeName

DOMNode->node_value() DOMNode->nodeValue

Many additional methods must be converted, but similarly to converting methods, all
that is required for most methods is changing some character cases and removing the under-
scores and parentheses. In some instances, such as set_value(), you must do a little more
because the method is writing data, but the number of cases this affects is much smaller than
the number of writable properties in DOM.

The most difficult step in the process is converting methods existing in domxml that have
completely different names or implementations in DOM. Two that you will definitely encounter
deal with loading and saving data:

/* Opening a file under domxml in PHP 4 */
$doc = domxml_open_file('filename.xml');

/* Opening a file under DOM in PHP 5 */
$doc = DOMDocument->load('filename.xml');

The implementations are completely different in both of these cases. The same thing
occurs when saving data. Consider the case when outputting data with a specified encoding in
domxml and the difference when performing the same operation using the DOM extension:

/* Output data with ISO-8859-1 encoding using domxml */
print $doc->dump_mem(TRUE, "ISO-8859-1");

/* Output data with ISO-8859-1 encoding using DOM */
$doc->formatOutput = TRUE;
$doc->encoding = "ISO-8859-1";
print $doc->saveXML();

You must modify some other methods to work correctly under the DOM extension in
PHP 5, but the load and save methods are two of the most commonly ones encountered.

Without having to completely recode applications using domxml yet run them under
PHP 5, you can use wrapper code. Such code already exists, such as that found at http://
alexandre.alapetite.net/doc-alex/domxml-php4-php5/. Personally, I have not used this code;
instead, I found it quick and easy to simply modify existing code using the domxml extension
to code using the new DOM extension. If you do not have the time or are still leery about
changing code, this may be a viable option.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 229

6331_c06_final.qxd 2/16/06 9:22 PM Page 229

The last option for migration is to recode applications using domxml to use code that
is compliant with the DOM extension in PHP 5. I expect you may have a quizzical look on
your face right now. You can write wrapper classes in PHP that mimic the behavior of the
DOM extension in PHP 5 but are built using the functionality in the domxml extension to
ease eventual migration. This way when the upgrade to PHP 5 happens, your code would
need no modification. Well, it might need a little. Unfortunately, code for this no longer
exists so must be written from scratch. A few years ago, during the initial development
stages of the DOM extension, some code surfaced on the Internet that did just this. At the
time it was not 100 percent functional, but was a good start. The site that offered this code
is no longer reachable; it may have just been lost in the black void somewhere.

Seeing Some DOM Examples
The DOM extension is a large API, and finding an example using the entire API is not very
realistic. I have demonstrated many of the features and concepts in small code snippets
throughout this chapter. The following sections introduce two different examples that show
some of the more frequently used functionality within the API. The first example will create
a template XML document, based on an XML document describing its structure, that will
be used in a SimpleXML example in Chapter 7. The second example will demonstrate how
to create an XSL template using namespaces; you could use this template to process a docu-
ment with the XSL extension, which will be covered in Chapter 10. You can find additional
examples, as well as demonstrations of advanced functionality, in later chapters within
this book.

Building a Portable Application Description Template
The Portable Application Description (PAD) is a specification designed by the Association
of Shareware Professionals (ASP); you can find it at http://www.asp-shareware.org/pad/.
It is a standard format allowing authors of shareware software to provide information such
as company and contact information, support information, software information, and
licensing in a common format that can be leveraged not only by end users looking for more
information about a piece of software but also by online libraries building content and search
engines. You can find more information about this topic in Chapter 7.

This example will create an XML template that is used in Chapter 7 to create the actual
PAD document for an application. The structure of a PAD document is defined by another
XML document, http://www.padspec.org/pad_spec.xml. I will show how to use the DOM
extension to dynamically build the template document for SimpleXML from this PAD
specification file:

<?php
/* Path to PAD specification File */
$location = "http://www.padspec.org/pad_spec.xml";
/* Default PAD version - Version is read from Spec File */
$padVersion = "2.01";

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)230

6331_c06_final.qxd 2/16/06 9:22 PM Page 230

function setPADInfo($doc, $version) {
$node = $doc->documentElement;
$node = $node->appendChild(new DOMElement("MASTER_PAD_VERSION_INFO"));
$node->appendChild(new DOMElement("MASTER_PAD_VERSION", $version));
$node->appendChild(new DOMElement("MASTER_PAD_EDITOR", "PHP"));
$node->appendChild(new DOMElement("MASTER_PAD_INFO", "http://www.padspec.org/"));

}

function createField($doc, $node, $name) {
if ($node == NULL) {

$node = $doc->documentElement;
if (! $node) {

$node = $doc->appendChild(new DOMElement($name));
}
return $node;

}
foreach ($node->childNodes AS $child) {

if ($child->nodeName == $name) {
return $child;

}
}
return $node->appendChild(new DOMElement($name));

}

if ($dom = DOMDocument::load($location)) {
$padSet = FALSE;
/* Create the new template output tree */
$template = new DOMDocument("1.0", "UTF-8");

$xpath = new DOMXPath($dom);
/* Find PAD Version element */
$verNode = $xpath->query("PAD_Spec_Version");
if ($verNode && $verNode->length == 1) {

/* Retrieve template version */
$padVersion = $verNode->item(0)->nodeValue;

}

/* Query and loop through all elements named Field */
$fields = $xpath->query("//Field");
foreach ($fields as $field) {

/* Retrieve element named Path within current Field element */
$path = $xpath->query("Path", $field);

if ($path->length == 1) {
$node = NULL;

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 231

6331_c06_final.qxd 2/16/06 9:22 PM Page 231

/* Get value of Path element */
$xmlnodes = trim($path->item(0)->nodeValue);

/* Split Path by / separator */
$arPath = explode("/", $xmlnodes);

/* Loop through path to create specified element
Parent elements are created as needed based on Path */

foreach ($arPath AS $key=>$value) {
/* IF PAD information not set and Field refers to

PAD information then create it */
if (! $padSet && $value == "MASTER_PAD_VERSION_INFO") {

setPADInfo($template, $padVersion);
$padSet = TRUE;
break;

}

/* Path begins with parent so returned $node is
parent for next node within local foreach loop */

$node=createField($template, $node, $value);
}

}
}

/* Save the generated XML Tree to padtemplate.xml file */
$template->formatOutput = TRUE;
print $template->save("padtemplate.xml");

}
?>

The script initially initializes two variables: $location, which points to the location of
the PAD XML definition file, and $padVersion, which sets the version of the definition file
in the unlikely event it cannot be obtained from the definition file. Rather than a hard-coded
location, the definition file can be retrieved and stored locally, in which case the location
should be updated to the localized path. Skipping over the two functions for now, the defini-
tion file is loaded into a DOMDocument, $dom. This tree reads the definition from which the
PAD template is dynamically created.

Take a look at the actual definition file, in particular the Company_Name element; it is
defined as follows:

<PAD_Spec>
<PAD_Spec_Version>2.01</PAD_Spec_Version>

<Fields>
<Field>

<Name>Company_Name</Name>
<Path>XML_DIZ_INFO/Company_Info/Company_Name</Path>
<Title>Company name</Title>

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)232

6331_c06_final.qxd 2/16/06 9:22 PM Page 232

<ShortDescription>Company name or, if no company name, author
name</ShortDescription>

<RegExDocumentation>Text string 2-40 characters</RegExDocumentation>
<RegEx>^[^<\x09]{2,40}\Z</RegEx>

</Field>
</Fields>

</PAD_Spec_Version>
</PAD_Spec>

Each PAD element is defined in such a manner within a Field element in the definition
file. The child elements define the different aspects of the particular field. For example:

• Name: The name of PAD element within XML document

• Path: The location of the element within the tree

• Title: A descriptive title for the element

• ShortDescription: A short description of the element

• RegExDocumentation: A description of the regular expression

• RegEx: The regular expression used to validate the contents of the element

Most of these fields are self-explanatory. The Path element may give rise to some ques-
tions, though. This field defines the location of the specified element within the tree. Using the
Path for the Company_Name element, XML_DIZ_INFO/Company_Info/Company_Name, the element
within the document is as follows:

<XML_DIZ_INFO>
<Company_Info>

<Company_Name/>
</Company_Info>

</XML_DIZ_INFO>

With the definition file loaded, a new document, $template, is created that will hold the
created PAD template. It is initially created as an empty document using new DOMDocument().
The first step is to retrieve the PAD version from the definition file. Here, XPath is used. Rather
than trying to walk through the tree and manually locate the element, the document is queried
for the PAD_Spec_Version element. Queries return DOMNodeList objects even when empty,
unless an error has occurred. As long as one is returned and it contains a node, $padVersion
is set from the contents of the node, overriding the default initially set up at the beginning of
the script. At this point, all initialization steps have been completed, and the actual building
of the PAD XML template can commence.

Each Field element represents an element within the PAD document template, so building
the template begins with retrieving a DOMNodeList containing all Field elements using XPath.
Again, it is much faster and easier to manage getting these using XPath rather than manually
walking the tree. Using the DOMNodeList, $fields, the script can iterate through each of the
contained Field elements and process them within the foreach loop.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 233

6331_c06_final.qxd 2/16/06 9:22 PM Page 233

The Path element is then retrieved using XPath and the current Field element, $field,
as the context. This will give you the full location of the element within the PAD template
document. The Path is then split into an array based on the separator, /, resulting in an array,
$arPath, containing the entire tree hierarchy for the current element. The array is then iterated
to create the structure within the template.

One exception applies when building the template, and that deals with the versioning
information for the PAD file. The MASTER_PAD_VERSION_INFO element within the template con-
tains the version number of the definition file and some additional information concerning
how the file is created. When encountered, the setPADInfo() function is called, creating this
information as an element and its children beneath the document element. This function is
straightforward because it appends and then encapsulates the MASTER_PAD_VERSION_INFO ele-
ment, and finally it continues to append the additional elements to this newly created node.
The real work is performed for the rest of the Field elements from the specification document
using the createField() function.

Notice that for each iteration of the DOMNodeList containing the Field elements, $fields,
$node is set to NULL. During the iteration of the array, $arPath, containing the broken up path,
$node is not only passed in as an argument to createField() but also receives the returned
value from the function. This function takes three parameters: $doc, which is the DOMDocument
being built and corresponds to $template in this case; $node, which is the parent node for the
element being created; and finally $name, which is the name of the element being created.

When the parent node, $node, is passed as NULL, it signals the top of the tree. The function
grabs the document element from the document and creates it if it doesn’t exist. The method
appendChild() is used to append a nonexistent node. This method also returns the newly
appended node, which gets set to $node. In either instance, $node is returned to the script
pointing to the document element.

Within the foreach of $arPath, $node is updated with the return value from createField().
The next iteration then passes the previous $node to the createField() function, forcing it to
append any element created to this node. Assuming $node is not NULL in this case, the function
first checks to make sure the element has not already been created and appended. If it has, it
returns the existing element; otherwise, it creates, appends, and returns the new element. The
check simply takes place by iterating through the child nodes of the passed-in parent, $node,
and testing the node name against the name of the element to be created, $name.

The script processes each of the Field elements from the specification file this way.
Upon completion, the DOMDocument object, $template, contains an XML tree conforming to
the PAD specifications. The last step is to save the template to some location so that it can
be used in the next chapter. The formatting performed by $template->formatOutput = TRUE;
is not necessary but makes the final output much more readable through indenting and
adding line feeds.

■Note Note the location of the final output document. It is used in the example for SimpleXML as the input
document and is required to execute the example in the next chapter.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)234

6331_c06_final.qxd 2/16/06 9:22 PM Page 234

Building an XSL Template
As you will see in Chapter 10, the XSL extension works with and requires the DOM extension.
XSL loads both the style sheet and the document through the use of a DOMDocument object. In
many cases, the style sheet is a file loaded into a DOMDocument object, but it is possible to create
a properly namespaced style sheet manually using the DOM API. This example will cover the
process of building a simple style sheet that can be used by the XSL processor. An XML docu-
ment containing sites and URLs needs to be transformed and displayed in an HTML page.
The document containing the data looks like the following:

<sites>
<site>

<name>Libxml</name>
<url>http://www.xmlsoft.org</url>

</site>
<site>

<name>W3C DOM Level 3 Specifications</name>
<url>www.w3.org/TR/DOM-Level-3-Core/</url>

</site>
</sites>

Without going into the details of the XSLT language, which is covered in Chapter 10,
I will show how to build a template using the DOM extension. XSL templates depend upon
proper namespacing. Normally templates are loaded into a DOM document from a file and
processed by XSL. Elements within the tree, assuming the template is written correctly, are
already properly namespaced internally. Building a tree manually, on the other hand,
requires elements to be properly namespaced, or the template will not work properly when
passed to XSL. The namespace used within XSL and the example is http://www.w3.org/
1999/XSL/Transform. To make this more manageable to code with, the namespace is set
to the variable $xslns in the following code, and $xslns is used when the namespace is
needed:

<?php
/* Set the xsl namespace url for re-use */
$xslns = "http://www.w3.org/1999/XSL/Transform";

/* Create the document for the style sheet */
$stylesheet = new domDocument;

/* Create the stylesheet node */
$root = $stylesheet->createElementNS($xslns, "xsl:stylesheet");
$stylesheet->appendChild($root);
$root->setAttribute("version", "1.0");

/* Create the output method node */
$output = $stylesheet->createElementNS($xslns, "xsl:output");
$output->setAttribute("method", "html");
$root->appendChild($output);

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 235

6331_c06_final.qxd 2/16/06 9:22 PM Page 235

/* Create the main template that matches on the document element */
$template= $stylesheet->createElementNS($xslns, "xsl:template");
$template->setAttribute("match", "/");
$root->appendChild($template);

$html = $template->appendChild(new domElement("html"));
$body = $html->appendChild(new domElement("body"));

/* Call another template matching on /sites/site elements */
$subtemplate = $stylesheet->createElementNS($xslns, "xsl:apply-templates");
$body->appendChild($subtemplate);
$subtemplate->setAttribute("select", "/sites/site");

/* Create the template for matching /sites/site elements */
$template= $stylesheet->createElementNS($xslns, "xsl:template");
$template->setAttribute("match", "/sites/site");
$root->appendChild($template);

$paragraph = $template->appendChild(new domElement("p"));

/* Get the value of the name */
$xslvalueof = $stylesheet->createElementNS($xslns, "xsl:value-of");
$xslvalueof->setAttribute("select", "./name");
$paragraph->appendChild($xslvalueof);

/* Add a colon in the final output separating name and url */
$paragraph->appendChild(new domText(" : "));

/* Get the value of the url */
$xslvalueof = $stylesheet->createElementNS($xslns, "xsl:value-of");
$xslvalueof->setAttribute("select", "./url");
$paragraph->appendChild($xslvalueof);

/* Output the stylesheet using formatting */
$stylesheet->formatOutput = TRUE;
print $stylesheet->saveXML();
?>

Other than the XSL syntax, the example is straightforward. The XSL-specific language
is created using elements prefixed with xsl and within the XSL namespace. Generic output is
created using non-namespaced DOM functionality. Upon executing this script, the newly cre-
ated style sheet is printed to output:

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)236

6331_c06_final.qxd 2/16/06 9:22 PM Page 236

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="html"/>
<xsl:template match="/">
<html>
<body>
<xsl:apply-templates select="/sites/site"/>

</body>
</html>

</xsl:template>
<xsl:template match="/sites/site">
<p><xsl:value-of select="./name"/> : <xsl:value-of select="./url"/></p>

</xsl:template>
</xsl:stylesheet>

This document does not look like anything special. Elements have qualified names, and
a namespace is defined on the xsl:stylesheet element. Internally, however, because the
namespace functionality was used when creating the elements, they are properly associated
with the namespace correctly.

Try creating the stylesheet node using the createElement() method:

$root = $stylesheet->createElement("xsl:stylesheet");

This method is not namespace-aware and creates the element with the local name
xsl:stylesheet. The output of the script looks the same as when createElementNS() was used,
but internally it is very different. If the final style sheet, $stylesheet, is directly passed to the
XSL processor in the same script, it will result in an error. The element xsl:stylesheet will not
be within the XSL namespace and thus have no meaning to the XSL processor. On the other
hand, if the style sheet is first serialized and then reloaded, it will work correctly. During the
loading of the serialized style sheet, the namespaces will be correctly associated internally
to the elements.

■Caution When working with documents in memory, documents built manually may differ while being
built from their serialized version. Namespace-aware methods properly associate namespaces to elements
and attributes while in memory. Using non-namespace aware methods may result in the same output when
serialized, but until the document is serialized and reloaded, the namespaces are not properly associated
with elements or attributes.

Conclusion
The DOM extension is the implementation of the DOM specification, defined by the W3C, in
PHP 5. It is the heavyweight XML processor in that it allows virtually complete access to read,
create, and modify an XML document. This functionality does come at a cost, however. It has

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM) 237

6331_c06_final.qxd 2/16/06 9:22 PM Page 237

a large API and is memory-hungry. Being based upon specifications, the API will not be chang-
ing, unlike its predecessor domxml, and many resources are available to understand the DOM
extension. Memory usage completely depends upon the size of the document, because the
DOM extension is tree-based and the tree must reside in memory.

This chapter introduced you to the DOM extension by providing some background, some
explanations of many of the features found within the API, and some common issues encoun-
tered using the extension. The material presented here is more than enough for even those
unfamiliar with this technology to begin using this extension.

The next chapter deals with the other tree-based parser in PHP 5, SimpleXML. Though
not as feature-rich with regard to tree access and modifications, the simplicity SimpleXML
offers more than makes up for this pitfall. And because of the interoperability in PHP 5, you
have the best of both worlds available to you because you can use the two extensions together.
One can pick up the slack for the other.

CHAPTER 6 ■ DOCUMENT OBJECT MODEL (DOM)238

6331_c06_final.qxd 2/16/06 9:22 PM Page 238

SimpleXML

The SimpleXML extension is another tree-based parser available in PHP 5. The previous
chapter introduced the DOM extension, which had an extensive API and allowed for complete
control and manipulation of an XML document. SimpleXML takes a different approach to
handling the tree; it has a much smaller API and handles elements and attributes more intu-
itively. This chapter will cover SimpleXML and explain why you need this second tree parser,
how you use it, and what you can do with it.

Introducing SimpleXML
The SimpleXML extension was created to provide an easy, intuitive way to process XML docu-
ments. After reading the previous chapter, you might be overwhelmed by the size of the DOM
extension’s API and all the different aspects you need to understand. You might be saying, there
has to be an easier way to deal with XML! SimpleXML is the answer to your pleas.

In many cases, documents are not overly complex and all you care about are the elements,
attributes, and text content of nodes. Documents such as these tend to be configuration or data
files not consisting of mixed content. (You can find an explanation of mixed content in Chapter 3.)
You might view the rest of the nodes in the document as excess baggage. Therefore, using the
DOM extension’s API may be overkill with all its different class types and its slew of methods that
you will never use. By contrast, the SimpleXML extension has a single class type, three functions,
and six class methods. Compare that to the uncountable number of classes and methods within
the DOM extension, and you might get an idea of why this is called SimpleXML.

Using SimpleXML
The SimpleXMLElement class is the central class for all operations within this extension. You can
create an object of this class by using the new keyword, by using the simplexml_load_file()
function, or by using the simplexml_load_string() function. (I will cover a fourth method for
creating a SimpleXMLElement object that involves importing DOM objects later in the “Using
DOM Interoperability” section.) I will use the document in Listing 7-1 to illustrate much of the
functionality of SimpleXML throughout this chapter. I will refer to this XML document as
sxml.xml.

239

C H A P T E R 7

■ ■ ■

6331_c07_final.qxd 2/16/06 4:51 PM Page 239

Listing 7-1. Example Document Using DocBook Format: Filename sxml.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"

"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd">
<book lang="en">

<bookinfo>
<title>SimpleXML in PHP 5</title>
<author>

<firstname>Rob</firstname>
<surname>Richards</surname>

</author>
<copyright>

<year>2005</year>
<holder>Rob Richards</holder>

</copyright>
</bookinfo>
<preface>

<title>Using SimpleXML</title>
<para>An example DOM Tree using DocBook.</para>

</preface>
<chapter id="navigation">

<title>Accessing Elements</title>
<para>Elements are accessed as properties</para>
<para>

<![CDATA[
<?php
$data = '<?xml version="1.0"?>
<root>content</root>';

$sxe = simplexml_load_string($data);
var_dump($sxe);
?>

]]>
</para>

</chapter>
</book>

Creating a SimpleXMLElement Object
The new keyword allows a SimpleXMLElement to be directly instantiated using an XML docu-
ment within a string as its data source:

$xml = "<root><node1>content</node1></root>";
$sxe = new SimpleXMLElement($xml);

You can obtain the same results using simplexml_load_string():

$xml = "<root><node1>content</node1></root>";
$sxe = simplexml_load_string($xml);

CHAPTER 7 ■ SIMPLEXML240

6331_c07_final.qxd 2/16/06 4:51 PM Page 240

So, why do you need both methods? The function simplexml_load_string() offers more
functionality than illustrated, such as the ability to control parser options. When this addi-
tional functionality is not needed, it comes down to personal preference. Before going into
more details, let’s instantiate an object using simplexml_load_file():

$sxe = simplexml_load_file("filename.xml");

Both the simplexml_load_string() and simplexml_load_file() functions take one manda-
tory parameter, either a string containing the data or a URI locating the data (as already shown),
as well as optional parameters. The prototype for simplexml_load_file, which is the same for
simplexml_load_string other than the first parameter, is as follows:

/* Prototype for PHP 5.0 */
simplexml_load_file(string data [, string class_name])

/* Prototype for PHP 5.1 */
simplexml_load_file(string data [, string class_name [, int options]])

I will cover the parameter class_name in the later section “Extending the SimpleXMLElement
Class.” PHP 5.1 has a third, optional parameter that allows parser options, which control the pars-
ing of the tree. Chapter 5 covered these parser options, and Chapter 6 also mentioned them when
covering how to load DOM documents. I will demonstrate how to use these parameters through-
out this chapter.

Saving XML Data
Just like the DOM extension, SimpleXML offers a method to output XML content. Using the
asXML() method, you can output a document or subtree to a string or a file. The actual output
depends upon the node from which this method is called. When called from the document
element, which is the element returned from the initial load functions, the entire document is
output. This includes the XML declaration, the prolog, the body, and any epilog the document
may contain. When called from any other node within the tree, the entire node and any sub-
tree are output. For example:

$xml = "<root><node1>content</node1></root>";
$sxe = new SimpleXMLElement($xml);
print $sxe->asXML();

<?xml version="1.0"?>
<root><node1>content</node1></root>

In this instance, the asXML() method is called from the document element, $sxe. When no
parameter is passed to this method, the results are returned as a string. Optionally, you can
pass a filename, which causes SimpleXML to save the XML to the named file:

$xml = "<root><node1>content</node1></root>";
$sxe = new SimpleXMLElement($xml);
$sxe->asXML('filename.xml');

CHAPTER 7 ■ SIMPLEXML 241

6331_c07_final.qxd 2/16/06 4:51 PM Page 241

Because you have yet to learn about navigating the tree, I will not explain how to call this
method using a node from within the tree for now. You can find examples of its usage through-
out this chapter.

Accessing Element Nodes
Unlike under the DOM extension, where you needed to check child elements to find a specific
one, SimpleXML offers direct access to specified elements by name. Not only will this save time
coding, but also it can boost performance. Consider navigating a large document using a struc-
ture already known to you. Using the DOM extension—unless you use XPath, that is—you need
to loop through children and check node names to find certain nodes. Finding certain nodes
using SimpleXML is as easy as accessing a parent element using the node name—it requires
just one line of code compared to many.

Accessing Elements
The document element is the object returned when a document is first loaded into SimpleXML.
You access all other elements of the tree by element name as properties of SimpleXMLElement
objects. The following example uses the document sxml.xml from Listing 7-1 for its data:

<?php
$book = simplexml_load_file('sxml.xml');

/* Access the bookinfo child element of the book element */
$bookinfo = $book->bookinfo;

/* Access the title child element from the bookinfo element */
$title = $bookinfo->title;
?>

As you can see from this piece of code, the objects refer to the elements within the docu-
ment. Accessing a child element is as simple as returning the object from the parent object by
using the name of the child element you would like to access. Compare this code to what you
would need to write using the DOM extension. Without using XPath, your code may be similar
to the following:

$dom = new DOMDocument();
$dom->->load('sxml.xml');
$book = $dom->documentElement;
foreach($book->childNodes as $node) {

if ($node->nodeName == "bookinfo") {
foreach($node->childNodes as $child) {

if ($child->nodeName == "title") {
$node = $child;
break 2;

}
}

}
}

CHAPTER 7 ■ SIMPLEXML242

6331_c07_final.qxd 2/16/06 4:51 PM Page 242

if ($node) {
$title = $node;

}

What took only three lines of code, excluding the comments and blank lines, takes 15
lines of code using the DOM extension. And all that the code needs to do is navigate to the
title element, so imagine how much additional code you would need to deal with an entire
document.

Accessing Content
From the previous section, you know that accessing elements returns SimpleXMLElement
objects. You can use these same objects to access the content. It all depends upon how you
use the objects. For example:

<?php
$book = simplexml_load_file('sxml.xml');
$bookinfo = $book->bookinfo;
$title = $bookinfo->title;

/* Object examined with var_dump */
var_dump($title);

/* Using print with element containing text-only content */
print "Title: ".$title."\n";

$author = $bookinfo->author;

/* Object examined with var_dump */
var_dump($author);

/* Using print with element containing child elements */
print "Author: ".$author."\n";
?>

This accesses and examines two SimpleXMLElement objects, $author and $title. The dif-
ference between the two is that the author element contains child elements while the title
element contains only a text node. When this script runs, the output looks like the following:

object(SimpleXMLElement)#4 (1) {
[0]=>
string(18) "SimpleXML in PHP 5"

}
Title: SimpleXML in PHP 5

CHAPTER 7 ■ SIMPLEXML 243

6331_c07_final.qxd 2/16/06 4:51 PM Page 243

object(SimpleXMLElement)#6 (2) {
["firstname"]=>
string(3) "Rob"
["surname"]=>
string(8) "Richards"

}
Author:

Examining the output from the var_dump() function of the $title variable, you can see
it is a SimpleXMLElement whose text content is SimpleXML in PHP 5. The 0 index, in this case,
denotes the text content of the element. This is because the element has no child elements
and only text content. As a result of this, when the print statement is used with the object,
the text content is returned as a string.

The next element broken out is the author element. The output in this case is very differ-
ent. The author element contains two child elements. Looking at the output of the var_dump()
method, you will see these elements shown as properties, firstname and surname, of the
object. The values of these properties are the content contained by each element. However,
when this object is used with the print statement, a string containing spaces and line feeds
is returned.

This exercise has taught you a few features of how SimpleXML behaves:

• You can use SimpleXMLElement objects containing text-only content—that is, the current
element has no child elements—as a string to access the text. In most cases, the cast is
performed automatically, but in other cases an explicit cast must be performed. For
example, using the title element, a string can be returned via $titlecontent = (string)
$title.

• SimpleXMLElement objects having child elements return a concatenation of all immedi-
ate child text nodes but not the content of any child elements. An examination of the
string returned by the author element, var_dump((string)$author);, shows a string 27
characters in length that contains spaces and line feeds. Neither of the child elements,
firstname or surname, nor their content is returned in the string.

To understand the last point, take a look at the following code:

$doc = new SimpleXMLElement('<root>some<child1>subtext</child1>thing</root>');
print $doc;

The document element, root, contains mixed content. The first child is a text node contain-
ing the text some. The next child is the child1 element that has only the text content subtext. The
last child node is another text node with the content thing. The result of the print statement is
the text something. The child1 element and its content were completely skipped. Also, notice
that the output does not contain any spaces or line feeds. The previous example using the author
element did contain these because the element contained whitespace within its content, which
could have been removed when the document was being parsed using the LIBXML_NOBLANKS
parser option.

CHAPTER 7 ■ SIMPLEXML244

6331_c07_final.qxd 2/16/06 4:51 PM Page 244

Using Iterable Objects
The elements presented to this point have been straightforward. No element has been
repeated within the children of any of the accessed elements. Looking closely at the document
in Listing 7-1, you might have noticed that the chapter element contains two para elements,
and you might be wondering how to access these elements. The answer is simple. In most
cases, SimpleXMLElement objects are iterable.

When accessing an element using the name of the element as a property, the object is not
really a single node accessor. The object is really a collection of all child nodes with the name
supplied through the property. The collection is seamless, as you may have noticed, because
accessing the object directly actually means you are accessing the first element node in the
collection. Up to now the collections have contained only a single node, so you would not
even notice that the object could be iterated or accessed as a collection unless you already
were aware of this.

Using the material just presented, let’s access the para elements and print the contents:

$book = simplexml_load_file('sxml.xml');
$para = $book->chapter->para;
print $para."\n";

foreach($para AS $node) {
print $node."\n";

}

Rather than requiring multiple lines of code to gain access to the para elements, everything
takes place in a single line using overloading. The variable $para now contains the collection of
para elements. As you can see from the results of the print statement, which prints Elements
are accessed as properties, using the object works off the first element in the collection. To
prove that this object is really a collection and the object can be iterated, look at the output
from the foreach loop. Each para element is accessed in document order and its contents
printed. The resulting output of the foreach loop is as follows:

Elements are accessed as properties

<?php
$data = '<?xml version="1.0"?>
<root>content</root>';

$sxe = simplexml_load_string($data);
var_dump($sxe);
?>

The content of the CDATA node from the second para element is treated as plain-text
content. All the insignificant whitespace is included in the text.

Having to loop through all the elements is not always practical. In many cases, you may
be interested only in a specific element in the collection. The good news is that you can do
this. You can access the collection through a zero-based index to retrieve a specific element
in the collection. For instance, the first para element is easily accessed because, being the first

CHAPTER 7 ■ SIMPLEXML 245

6331_c07_final.qxd 2/16/06 4:51 PM Page 245

element in the collection, it is the default element accessed when not performing iteration
and not locating a specific element in the collection. However, in this case, that element
doesn’t contain anything useful because you need the content of the CDATA node contained
within the second para element. Rather than wasting cycles looping through the collection
and having to manually count the elements in order to stop at the second one, you can access
the second para element directly using the index 1. For example:

$book = simplexml_load_file('sxml.xml');
$para = $book->chapter->para[1];
print "Content: ".$para."\n";

foreach($para AS $node) {
print "Iter Content: ".$node."\n";

}

Notice the change in the second line. The para object is accessed with [1]. This indicates
that the second element, because it is zero-based, should be returned. The result of the print
statement on this object verifies that the second para element was retrieved successfully:

Content:

<?php
$data = '<?xml version="1.0"?>
<root>content</root>';

$sxe = simplexml_load_string($data);
var_dump($sxe);
?>

The failure of the foreach loop to print any output may have you a little confused. Earlier
I mentioned that in most cases SimpleXMLElement objects are iterable. This is a case where they
are not. Because of the element being retrieved using an index, SimpleXML knows you are
looking for one specific element and not a collection of elements. The returned object in this
case cannot be iterated.

■Caution Accessing a SimpleXMLElement object using an index results in an object that cannot be
iterated because it represents a single element and not a collection of possible elements.

Accessing Unknown Elements
Knowing the structure of a document is helpful when using SimpleXML. You can navigate to
elements just using the element names as properties. However, this has one problem I have
not addressed yet. What happens when you do not know the structure of a document ahead
of time?

Because it is not a given that you already know the structure, the SimpleXMLElement class
implements the children() method that returns an iterable SimpleXMLElement object, which

CHAPTER 7 ■ SIMPLEXML246

6331_c07_final.qxd 2/16/06 4:51 PM Page 246

allows you to iterate through all the child elements of an element. This object works the same
as the other objects you have seen so far, except the elements in the collection are not limited
to specific named elements, but rather include all immediate child elements. For example:

$book = simplexml_load_file('sxml.xml');
$author = $book->bookinfo->author;
$children = $author->children();

foreach($children AS $child) {
print $child."\n";

}

Taking the author element, consider the possibility that the elements in Listing 7-1 are not
required and that any element can be added on the fly. You have no guarantee that the name
of the child elements will be known ahead of time. The previous code accesses the $author
object using the children() method and returns the SimpleXMLElement object to the $children
variable. The resulting output from the print statement in the foreach loop is as follows:

Rob
Richards

The text Rob is from the firstname element, and the text Richards is from the surname
element. In this case, though, you did not need to know the element names. You could also
access the children by index. The code print $children[1]; would print just Richards.

This presents an interesting issue. You can access elements without knowing their names,
but how can you determine the name of an element? Unfortunately, you cannot do this using
SimpleXML alone. Let’s take a look at possible ways to get this missing information.

Understanding PHP Object Functions

Properties of a SimpleXMLElement object are dynamic. That is, the properties depend upon the
instance of the object and not the class itself. Within PHP, it is possible to retrieve object prop-
erties using the get_object_vars() function. Rather than using the children() method on the
$author object, you can return an array of the properties and values instead:

$props = get_object_vars($author);
foreach ($props AS $name=>$value) {

print $name.": ".$value."\n";
}

The output is similar to that when using the children() method, except in this case the
name of the element is also available:

firstname: Rob
surname: Richards

This was a simple case. The child elements contained text content only, so the array con-
tained the property names and strings for the values. When used on an element containing
child elements, on the other hand, the values will be SimpleXMLElement objects:

CHAPTER 7 ■ SIMPLEXML 247

6331_c07_final.qxd 2/16/06 4:51 PM Page 247

$props = get_object_vars($book->bookinfo);
var_dump($props);

The results from using the get_object_vars() function of the bookinfo element is much
different from the previous array returned:

array(3) {
["title"]=>
string(18) "SimpleXML in PHP 5"
["author"]=>
object(SimpleXMLElement)#6 (2) {
["firstname"]=>
string(3) "Rob"
["surname"]=>
string(8) "Richards"

}
["copyright"]=>
object(SimpleXMLElement)#7 (2) {
["year"]=>
string(4) "2005"
["holder"]=>
string(12) "Rob Richards"

}
}

The array contains not only string values but also SimpleXMLElement objects, as shown
with the author and copyright properties:

function processValue($name, $value, $level) {
if (is_object($value)) {

print str_repeat (" ", $level);
print $name."\n";
processSXEObject($value, $level + 1);

} else if (is_array($value)) {
foreach($value as $node) {

processValue($name, $node, $level);
}

} else {
print str_repeat (" ", $level);
print $name.": ".$value."\n";

}
}

CHAPTER 7 ■ SIMPLEXML248

6331_c07_final.qxd 2/16/06 4:51 PM Page 248

function processSXEObject($sxe, $level) {
$props = get_object_vars($sxe);
if (count($props) == 0) {

print str_repeat (" ", $level);
print "Special Content: ".$sxe."\n";
return;

}
foreach ($props AS $name=>$value) {

processValue($name, $value, $level);
}

}

$book = simplexml_load_file('sxml.xml');
processSXEObject($book, 0);

Other than calling the load function and using the special handling of strings in SimpleXML,
you do not need any additional methods from SimpleXML to process the tree in Listing 7-1. The
code shown prints every element name, indenting using spaces for the level within the tree, and
prints any text content the elements may have. It doesn’t handle mixed content, which I will leave
as an exercise for you to implement if you like. The output of this code is as follows:

bookinfo
title: SimpleXML in PHP 5
author
firstname: Rob
surname: Richards
copyright
year: 2005
holder: Rob Richards

preface
title: Using SimpleXML
para: An example DOM Tree using DocBook.
chapter
title: Acessing Elements
para: Elements are accessed as properties
para
Special Content:

<?php
$data = '<?xml version="1.0"?>
<root>content</root>';

$sxe = simplexml_load_string($data);
var_dump($sxe);
?>

The case for special content was added to handle the CDATA node. Currently an element
containing a CDATA child is not handled the same way as an element containing just text

CHAPTER 7 ■ SIMPLEXML 249

6331_c07_final.qxd 2/16/06 4:51 PM Page 249

node children. This functionality may change in future versions of PHP; however, as of PHP
5.1, just be aware of this.

Using DOM Interoperability

Another method of handling unknown elements is to use DOM interoperability. You can
import nodes into the DOM extension and access them using DOM properties and methods.
Returning to the original code accessing the author element using the children() method,
you can easily extract the name of the node using the DOM extension:

$book = simplexml_load_file('sxml.xml');
$author = $book->bookinfo->author;
$children = $author->children();

foreach($children AS $child) {
/* Import node into DOM, and get nodeName */
$element = dom_import_simplexml($child);
$name = $element->nodeName;
print $name.": ".$child."\n";

}

As you can clearly see, this is much cleaner and easier to deal with than using the
get_object_vars() function. Importing nodes into the DOM extension does not result in
copies of nodes but direct access to the node imported. Not only does this allow the use of
DOM functionality with SimpleXMLElement objects, but it also doesn’t impose any performance
penalty either. The drawback of this is that the DOM extension must be available to take
advantage of this feature. (Even though it is enabled by default, it is possible to disable the
DOM extension.)

Modifying Content
Just like navigation is easy to work with in SimpleXML, so is content modification. Using
SimpleXML, you cannot add new elements to the tree, but you can change and remove exist-
ing ones. To add a new element, the interoperability with the DOM extension comes into play:

$xml = "<root><node1>content</node1></root>";
$sxe = new SimpleXMLElement($xml);
$dom = dom_import_simplexml($sxe);
$dom->appendChild(new DOMElement("node2", "content2"));
print $sxe->asXML();

<?xml version="1.0"?>
<root><node1>content</node1><node2>content2</node2></root>

Editing Content

You can edit nodes and content natively using SimpleXML. When working with elements that
exist multiple times as a child of another element, you must ensure you are modifying the
correct element. When indexes are not used to indicate a specific element to edit and when

CHAPTER 7 ■ SIMPLEXML250

6331_c07_final.qxd 2/16/06 4:51 PM Page 250

multiple elements with the name exist, a warning is issued indicating that the multiple elements
exist and the modification cannot be performed.

Elements with Text Content
The following example attempts to modify the content of a para element within the document.
The problem is that multiple para elements exist, and SimpleXML does not know which one of
them should be modified.

$book = simplexml_load_file('sxml.xml');
/* Modify an unspecified para element where multiple para elements exist */
$book->chapter->para = "Removed CDATA";

Warning: main() [/phpmanual/function.main.html]: Cannot assign to an array of nodes
(duplicate subnodes or attr detected)

You must specify the index of the para element to be edited:

$book = simplexml_load_file('sxml.xml');
$book->chapter->para[1] = "Removed CDATA";
print $book->chapter->asXML();

<chapter id="navigation">
<title>Acessing Elements</title>
<para>Elements are accessed as properties</para>
<para>Removed CDATA</para>

</chapter>

In this case, the content of the second para element is changed to Removed CDATA. The
method asXML() is used in this case from the chapter object. When used from an element that
is not the document element, only the element and its subtree are returned.

Indexes are not required when a single element with the name exists. In the following
code, the content of the title element is changed, as well as the second para element:

$book = simplexml_load_file('sxml.xml');
$book->chapter->title = "New Title";
$book->chapter->para[1] = "Removed CDATA";
print $book->chapter->asXML();

<chapter id="navigation">
<title>New Title</title>
<para>Elements are accessed as properties</para>
<para>Removed CDATA</para>

</chapter>

Unless you are absolutely sure about the structure of the document, using indexes to
modify elements is highly suggested. It is much safer to modify the title element using the

CHAPTER 7 ■ SIMPLEXML 251

6331_c07_final.qxd 2/16/06 4:51 PM Page 251

code $book->chapter->title[0] = "New Title";, because the first title element is specifically
identified by the use of [0].

Elements with Subtrees You can edit elements containing subtrees, or child elements, in the
same manner as those with text content. The subtree, however, is removed from the document
and replaced with the text content. Not only will any objects pointing to elements within the
subtree become invalid, but as you recall from earlier in the chapter, you cannot add elements
using SimpleXML natively. The string containing the content to be used for replacement, even
if it contains XML, will be escaped and used as strictly text content. Let’s look at two cases of
replacing the content of the chapter element with different data and the results of any objects
pointing to child elements:

$book = simplexml_load_file('sxml.xml');
$cholder = $book->bookinfo->copyright->holder;
print $cholder->asXML()."\n";
$book->bookinfo = "No Book Info";
print $book->bookinfo->asXML()."\n";
print $cholder->asXML()."\n";

<holder>Rob Richards</holder>
<bookinfo>No Book Info</bookinfo>

Warning: SimpleXMLElement::asXML() [/phpmanual/function.asXML.html]: Node no
longer exists in N:\CVS Projects\php5\Debug_TS\booksxe.php on line 7

Initially, the holder element is retrieved from the document and set to the $cholder vari-
able. The XML for this element is printed and shown in the first line of the results. The bookinfo
element contains a subtree that includes the title, author, and copyright elements. The con-
tent of this element is then changed to the simple text string No Book Info. When printed, the
child elements have clearly been removed and the content replaced with the text, which is
shown in the second line of the results. Upon trying to access the $cholder variable again to
print its XML content, a warning is issued. This variable is still a SimpleXMLElement object, but
the underlying node from the tree was destroyed when the content was changed for the
bookinfo element.

The next case will use XML data for the replacement text. The content for the copyright
element will be replaced with the string <title>SimpleXML in PHP 5</title>, like so:

$book = simplexml_load_file('sxml.xml');
$book->bookinfo = "<title>SimpleXML in PHP 5</title>";
print $book->bookinfo->asXML()."\n";

You may be surprised by the output. If you thought all child elements for bookinfo would
be removed and a new title element created as a child of bookinfo, you would be mistaken.

<bookinfo><title>SimpleXML in PHP 5</title></bookinfo>

The child elements are removed from the bookinfo element, but the XML data is escaped
and set as text-only content.

CHAPTER 7 ■ SIMPLEXML252

6331_c07_final.qxd 2/16/06 4:51 PM Page 252

■Tip Remember, SimpleXML will not add elements to a tree. Using the interoperability of the XML-related
extensions in PHP 5, you must use the DOM extension to create and append new elements to a tree being
accessed by SimpleXML.

To replace the subtree with another subtree, you can use the DOM extension:

$book = simplexml_load_file('sxml.xml');
$bookinfo = dom_import_simplexml($book->bookinfo);

/* Remove all child elements of the bookinfo element */
while ($bookinfo->firstChild) {

$bookinfo->removeChild($bookinfo->firstChild);
}
$bookinfo->appendChild(new DOMElement("title", "SimpleXML in PHP 5"));
print $book->bookinfo->asXML()."\n";

<bookinfo>
<title>SimpleXML in PHP 5</title>

</bookinfo>

Removing Elements

You can remove elements from a tree using SimpleXML. You do this using the unset() func-
tion built into PHP. The argument for unset() must be an overloaded SimpleXMLElement,
accessing the element to remove by the property. For example, removing the title element
from the chapter node takes place through the following code:

$book = simplexml_load_file('sxml.xml');
$book->chapter->para[1] = "Removed CDATA";
unset($book->chapter->title);
print $book->chapter->asXML();

The second para element was modified just to shorten the final output because it originally
contained the CDATA node from Listing 7-1. Notice the third line using the unset() function.
The parameter passed is $book->chapter->title. It is important that title is used as a property
when making this call; otherwise, the node will not be removed:

<chapter id="navigation">

<para>Elements are accessed as properties</para>
<para>Removed CDATA</para>

</chapter>

Compare these results with those using unset() on a lone SimpleXMLElement object that
refers to the title element:

CHAPTER 7 ■ SIMPLEXML 253

6331_c07_final.qxd 2/16/06 4:51 PM Page 253

$book = simplexml_load_file('sxml.xml');
$book->chapter->para[1] = "Removed CDATA";
$title = $book->chapter->title;
unset($title);
print $book->chapter->asXML();

<chapter id="navigation">
<title>Acessing Elements</title>
<para>Elements are accessed as properties</para>
<para>Removed CDATA</para>

</chapter>

The title element was not removed. All unset() did in this case was unset the variable
$title and not actually remove the title element from the tree.

An issue to be aware of when removing elements is that specific elements cannot be iden-
tified for removal. This at least is the current behavior in PHP 5.0 and 5.1. Using an index will
not result in the removal of the element:

$book = simplexml_load_file('sxml.xml');
$book->chapter->para[1] = "Removed CDATA";
unset($book->chapter->title[0]);
print $book->chapter->asXML();

<chapter id="navigation">
<title>Acessing Elements</title>
<para>Elements are accessed as properties</para>
<para>Removed CDATA</para>

</chapter>

This causes a little problem. What happens when you need to remove the para elements?
If all para child elements of the chapter element are to be removed, then you do not have a
problem. The unset() function will remove all elements matching the property name:

$book = simplexml_load_file('sxml.xml');
unset($book->chapter->para);
print $book->chapter->asXML();

<chapter id="navigation">
<title>Acessing Elements</title>

</chapter>

The para elements have been removed from the tree, but that still leaves an issue when
only one of the para elements needs to be removed. Again, it’s back to interoperability with
the DOM extension:

CHAPTER 7 ■ SIMPLEXML254

6331_c07_final.qxd 2/16/06 4:51 PM Page 254

$book = simplexml_load_file('sxml.xml');
$chapter = dom_import_simplexml($book->chapter);
$node = $chapter->lastChild;
while($node) {

if ($node->nodeName == "para") {
$chapter->removeChild($node);
$node = NULL;
break;

}
$node = $node->previousSibling;

}
print $book->chapter->asXML();

<chapter id="navigation">
<title>Acessing Elements</title>
<para>Elements are accessed as properties</para>

</chapter>

Although the current version DOM must be used in this case, the behavior of unset() with
SimpleXML may change in future versions to allow indexes to be used. This will make coding
with SimpleXML a bit easier, and it will remove another reliance on the DOM extension when
performing modifications on a document using SimpleXML.

Accessing Attributes
Accessing an attribute is similar to accessing a specific element in a document. Rather than
using a numeric index to specify an element, you use the name of the attribute for the index.
Attributes are uniquely named, meaning that any element having two or more elements with
the same name is not well-formed XML. I will cover this a bit more in the “Namespaces in
SimpleXML” section because it is possible to have two attributes with the same local name as
long as they live in different namespaces. The information covered in the following sections,
though, deals only with accessing non-namespaced attributes.

Reading Attributes
The following code prints the value for the lang attribute that resides on the document ele-
ment, book. In this case, you do not need to worry about identifying the correct element since
the document can contain only a single document element.

$book = simplexml_load_file('sxml.xml');
print $book['lang'];

The following piece of code uses the numeric index to specifically identify a chapter ele-
ment, even though only one exists. It is not really needed here but illustrates how you would
deal with multiple elements and attribute access. It then prints the value of the id attribute
on this node, which results in navigation.

CHAPTER 7 ■ SIMPLEXML 255

6331_c07_final.qxd 2/16/06 4:51 PM Page 255

$book = simplexml_load_file('sxml.xml');
print $book->chapter[0]['id'];

You can also access attributes when you don’t know the attribute names. The method
attributes() works just like the children() method, except in this case it returns an iterable
object containing the attributes for an element:

$book = simplexml_load_file('sxml.xml');
foreach($book->chapter->attributes() AS $attribute) {

print $attribute."\n";
}

The foreach loops through all attributes of the chapter element, with each attribute set to
the variable $attribute as the loop is executed. The chapter element contains only a single
attribute, id, so the loop is executed only once and the value navigation is printed. You can
obtain additional information using DOM functionality, just as when using elements:

$book = simplexml_load_file('sxml.xml');
foreach($book->chapter->attributes() AS $attribute) {

$att = dom_import_simplexml($attribute);
print $att->nodeName."\n";
print $attribute."\n";

}

id
navigation

Writing to Attributes
Modifying the content of an attribute works the same way as modifying an element. You just
set the attribute to a string, which in turn changes the attribute value:

$book = simplexml_load_file('sxml.xml');
$book['lang'] = "es";
print $book['lang'];

The lang attribute is changed from en to es, as shown in the results from the print
statement.

A difference with writing to attributes and writing to elements is that new attributes can
be created using SimpleXML:

$book = simplexml_load_file('sxml.xml');
$book->bookinfo->author->firstname["prefix"] = "Mr.";
print $book->bookinfo->author->asXML();

<author>
<firstname prefix="Mr.">Rob</firstname>
<surname>Richards</surname>

</author>

CHAPTER 7 ■ SIMPLEXML256

6331_c07_final.qxd 2/16/06 4:51 PM Page 256

When an attribute is being written to and does not exist on the element, the attribute is
automatically created with the content specified by the string to which it is being set. In this
instance, the firstname element originally contained no attributes. Writing the string Mr. to
an attribute named prefix, the prefix attribute was created on the firstname element and its
value set to the value of the supplied string.

Removing Attributes
Again, you can use the function unset() to remove attributes from elements, just as you
remove elements from the tree:

$book = simplexml_load_file('sxml.xml');
$book->bookinfo->author->firstname["prefix"] = "Mr.";
print $book->bookinfo->author->firstname->asXML()."\n\n";

unset($book->bookinfo->author->firstname["prefix"]);
print $book->bookinfo->author->firstname->asXML();

<firstname prefix="Mr.">Rob</firstname>

<firstname>Rob</firstname>

After adding the prefix attribute and printing the XML data from the firstname element,
the code continues, removes this newly added attribute, and again prints the updated XML
data from the firstname element.

Extending the SimpleXMLElement Class
You can extend the SimpleXMLElement class just as you would any other class:

class mySXE extends SimpleXMLElement {
function appendChild($name, $content) {

$dom = dom_import_simplexml($this);
$dom->appendChild($dom->ownerDocument->createElement($name, $content));

}
}

A big difference with extended classes in SimpleXML from those in the DOM extension is
that once an object using the extended class has been instantiated, all objects returned from
the SimpleXML methods will use the extended class type.

Looking at the class definition, you can see that the method appendChild() has been
added. This allows for an easy way to append child nodes in SimpleXML:

$sxe = new mySXE("<root><node1></node1></root>");
$sxe->node1->appendChild("node2", "content");
print $sxe->asXML();

<?xml version="1.0"?>
<root><node1><node2>content</node2></node1></root>

CHAPTER 7 ■ SIMPLEXML 257

6331_c07_final.qxd 2/16/06 4:51 PM Page 257

The initial $sxe object was created using the new keyword with the extended class. As
shown in the second line, the object returned from the node1 property was created using the
extended class. Once the initial object based on a SimpleXMLElement class is created, all objects
will be created using the same class.

The new keyword is nice to use when working with XML contained in a string, but it
doesn’t help much when the data resides in a file. As mentioned in the earlier “Creating a
SimpleXMLElement Object” section, the load functions take an optional class_name parame-
ter. This parameter indicates the class to use for creating the initial object. Using the mySXE
class, you can load data from either a string or a file and have the ability to use the custom
appendChild() method:

$sxe = simplexml_load_string("<root><node1></node1></root>", "mySXE");
$sxe->node1->appendChild("node2", "content");
print $sxe->asXML();

The result of this is the same as the results using the new keyword.

Using Namespaces in SimpleXML
Dealing with namespaced documents using SimpleXML is a bit different from handling
documents without namespaces. Listing 7-2 contains the document from Listing 7-1 modified
to use namespaces.

Listing 7-2. Modified Document Using Namespaces: Filename sxmlns.xml

<?xml version="1.0" encoding="UTF-8"?>
<book ns2:lang="en" xmlns:ns1="http://www.example.com/ns1"

xmlns:ns2="http://www.example.com/ns2">
<ns1:bookinfo>

<title>SimpleXML in PHP 5</title>
<ns1:author>

<ns1:firstname>Rob</ns1:firstname>
<surname>Richards</surname>

</ns1:author>
<copyright>

<year>2005</year>
<holder>Rob Richards</holder>

</copyright>
</ns1:bookinfo>

</book>

If you tried to access this document using the normal methods for accessing elements
and attributes, you would find out that nothing works. For example:

$book = simplexml_load_file('sxmlns.xml');
print $book["lang"]."\n";
print $book->bookinfo->title."\n";

This code prints nothing but two blank lines.

CHAPTER 7 ■ SIMPLEXML258

6331_c07_final.qxd 2/16/06 4:51 PM Page 258

To initially access namespaced nodes, you must use the methods children() and
attributes(). Not only are these methods used to access nodes without using their names,
but these methods also accept a namespace URI as a parameter, which must be supplied to
retrieve namespaced nodes from these methods. I have good news. Once a SimpleXMLElement
object is returned from either of these methods, you can then access the elements and attrib-
utes residing in the supplied namespace as normal elements and attributes. For example, you
can rewrite the previous piece of code to print valid output:

$book = simplexml_load_file('sxmlns.xml');
/* Retrieve all attributes in the http://www.example.com/ns2 namespace */
$bookatts = $book->attributes("http://www.example.com/ns2");

print $bookatts["lang"]."\n";

/* Retrieve all elements in the http://www.example.com/ns1 namespace */
$bookns = $book->children("http://www.example.com/ns1");
$bookinfo = $bookns->bookinfo;

/* Reset namespace to access non-namespaced elements */
$nonsbkinfo = $bookinfo->children();
print $nonsbkinfo->title."\n";

The children() and attributes() methods basically act as filters. When no parameter
or NULL is passed as the parameter, nodes residing in no namespace are retrieved; otherwise,
nodes that reside in the specified namespace are retrieved. Until reset, the specified name-
space remains in effect and is inherited by the child nodes. For instance, using the $bookinfo
object, which has been set to the http://www.example.com/ns1 namespace, the firstname from
the author element can be printed by print $bookinfo->author->firstname. All elements reside
in the same namespace, so you have no need to alter the namespace set by the children()
method when creating the $bookinfo object.

Default namespaces work differently than prefixed namespaces do. The document in
Listing 7-3 is a modified version of the document from Listing 7-2. All prefixed namespaces
have been removed, and only a single default namespace, http://www.example.com/ns1, has
been added.

Listing 7-3. Modified Document Using Default Namespace: Filename sxmlns2.xml

<?xml version="1.0" encoding="UTF-8"?>
<book lang="en">

<bookinfo xmlns="http://www.example.com/ns1">
<title>SimpleXML in PHP 5</title>
<author>

<firstname>Rob</firstname>
<surname>Richards</surname>

</author>

CHAPTER 7 ■ SIMPLEXML 259

6331_c07_final.qxd 2/16/06 4:51 PM Page 259

<copyright>
<year>2005</year>
<holder>Rob Richards</holder>

</copyright>
</bookinfo>

</book>

After playing around with namespaces using the document from Listing 7-2, you proba-
bly are trying the same code used with the last document. The only change you made most
likely is removing the use of the attributes() method since the attribute in this document is
not in a namespace. The results are also what you probably expected. It works correctly, and
the content of the title element was printed.

Now for the kicker: all that code is not necessary to print the title element. In fact, you
can do it using the code first tried in the namespace section that did not work with prefixed
namespaces:

$book = simplexml_load_file('sxmlns2.xml');
print $book["lang"]."\n";
print $book->bookinfo->title."\n";

Elements in the default namespace work the same as elements not in any namespace.
In fact, they can also work the same as elements that are in prefixed namespaces. Does this
sound a little strange? I am not exactly sure how this came to be. It may have been by design or
left over from the changes made to namespace handling in SimpleXML prior to the initial PHP
5.0 launch, but in any event, you can write code in either fashion, for non-namespaced docu-
ments or for namespaced documents, when elements reside in a default namespace.

Using XPath
XPath in SimpleXML is easy to use but is limited to returning elements and attributes. Because
of how SimpleXML works, queries that normally return text nodes return the text node’s parent
node. You can use the xpath() method to query a document and return an array containing all
relevant nodes from the XPath query:

$book = simplexml_load_file('sxml.xml');
$arAuthor = $book->xpath("/book/bookinfo/author/*");
foreach($arAuthor AS $node) {

print $node."\n";
}

Rob
Richards

Using the document in Listing 7-1, the child elements of the author element are queried
and returned as an array to the $arAuthor variable. This query results in the array returning the
firstname and surname elements, which are printed as you move through the array in the
foreach loop.

CHAPTER 7 ■ SIMPLEXML260

6331_c07_final.qxd 2/16/06 4:51 PM Page 260

The next example will query for the text node, which will be the content, of the firstname
element:

$book = simplexml_load_file('sxml.xml');
$arAuthor = $book->xpath("/book/bookinfo/author/firstname/child::text()");
foreach($arAuthor AS $node) {

print $node."\n";
}

Of course, the result from the print statement is Rob. There is only a single text node after
all. The $node object, however, is really the firstname element. You can check this by either
importing it to the DOM extension or checking the class type of the object, which will be
SimpleXMLElement.

If you have read Chapter 4 and Chapter 6, you already know there is an issue when
dealing with documents using default namespaces and XPath. Just like the DOM extension,
SimpleXML offers a method to register namespaces and associated prefixes:
registerXPathNamespace(). This method works the same way and even takes the same
parameters as the method in the DOM extension. The first parameter is the prefix, and the
second parameter is the namespace URI.

■Caution The method registerXPathNamespace is available only in PHP 5.1+. To perform XPath
queries dealing with default namespaces in PHP 5.0.x, you will need to leverage the XPath functionality in
the DOM extension or write XPath queries in such a way that the qualifiers bypass any namespace checks.
Refer to Chapters 4 and 6 for additional information.

Using the document in Listing 7-3, retrieving the firstname element requires the
use of namespaces. The namespaced elements reside in a default namespace, so the
registerXPathNamespace() method will be used to register a prefix that can be used in the
XPath expression:

$book = simplexml_load_file('sxmlns2.xml');
$book->registerXPathNamespace("sxe", "http://www.example.com/ns1");
if ($arAuthor = $book->xpath("/book/sxe:bookinfo/sxe:author/sxe:firstname")) {

foreach($arAuthor AS $node) {
print $node."\n";

}
}

The prefix sxe is registered and associated with the namespace http://www.example.com/
ns1. The query is executed, and the resulting variable is tested to make sure that nodes were
returned. In the event no nodes result from the query, the method xpath() returns FALSE
rather than an array. In some cases, an empty array is returned and occurs when nodes are
returned, but they are not a valid type under SimpleXML. For instance, a query that results in
a PI node is valid in XPath, but the node type is not supported in SimpleXML. In this case, an
empty array is returned, indicating that the query was successful but no usable nodes are
available.

CHAPTER 7 ■ SIMPLEXML 261

6331_c07_final.qxd 2/16/06 4:51 PM Page 261

Seeing Some Examples in Action
Throughout this chapter you have seen how to work with SimpleXML using known documents
and have seen a few ways of even dealing with unknown document structures. You can find
additional examples of using SimpleXML in later chapters such as Chapter 14, which covers
RSS, and Chapter 17, which covers REST. For a different type of example, I will show how to
generate a PAD XML file.

PAD is a specification designed by the ASP; you can find it at http://www.asp-shareware.org/
pad/. It is a standard format allowing authors of shareware software to provide information such
as company and contact information, support information, software information, and licensing
in a common format that may be leveraged not only by users looking for more information about
a piece of software but also by online libraries building content and search engines.

Applications to generate PAD files already exist, but in this case, you will build your own
Web-based generator using PHP and SimpleXML. As you have read in this chapter, SimpleXML
does not provide the capability to create documents. I will show how to use a template for the
PAD document that was created in Chapter 6 with the DOM extension. Using the generated
template and the PAD specification file, located at http://www.padspec.org/pad_spec.xml, you
will see how to use SimpleXML to build not only the final PAD document but also a good por-
tion of the input portion of the UI for this application.

What sets this example apart from those you have already seen is that other than the base
information, consisting of three fields, the entire application will be built dynamically—with
no knowledge of the PAD structure—using the XML-based PAD specification. This does have
a few drawbacks. The UI is not clean as field lengths, and required fields and lookups are not
easily determined. The specification does include regular expressions for each field that this
application uses to validate input, so although no attempt has been made to use them
because creating the UI is out of scope for this example, it may be possible to leverage them
when building the UI. With the background and explanation of what is being built out of the
way, it’s time to create the application.

■Note This example requires the PAD template generated by the DOM extension in the examples from
Chapter 6. No validation other than specific field checks using the regular expression provided by the PAD
specification is taking place. In its raw state, it is not secure and should be used only in a controlled
environment.

Listing 7-4 contains the entire code used to build the application. Much of the general
PHP usage in this example could be coded in many different ways, but for the sake of this
example the most important areas are those dealing with SimpleXML usage. This application
has been designed to work under a Web server running PHP.

CHAPTER 7 ■ SIMPLEXML262

6331_c07_final.qxd 2/16/06 4:51 PM Page 262

Listing 7-4. PAD Generator Application

<html>
<body>
<?php
/* BEGINNGING OF USER VARIABLES */
/* Location of PAD Specification File */
$padspec = "http://www.padspec.org/pad_spec.xml";

/* Location of PAD Template Generated by DOM */
$padtemplate = "padtemplate.xml";

/* Name of PAD File to Save Results to */
$savefile = "padout.xml";
/* END OF USER VARIABLES */

/* Output field name/values for input and preview based on state of $bPreview */
function printDisplay($sxe, $sxetemplate, $bPreview) {

$section = "";
/* Loop through the Field nodes of the specification */
foreach ($sxe->Fields->Field as $field) {

/* Get the node path used in the template */
$arPath = explode("/", trim($field->Path));
array_shift($arPath);
/* Skip MASTER_PAD_VERSION_INFO nodes.

Values for these are set by template generator */
if ($arPath[0] != "MASTER_PAD_VERSION_INFO") {

if ($arPath[0] != $section) {
$section = $arPath[0];
print "<p>".str_replace("_"," ", $section)."</p>";

}
$input_value = getStoredValue($sxetemplate, $arPath);
array_shift($arPath);
print "\n".$field->Title.': ';
if ($bPreview) {

print $input_value."
";
} else {

$input_name = $section;
/* Generate the field name using named-based keys for an array */
foreach ($arPath AS $key=>$value) {

$input_name .= "[$value]";
}
print '<input type="text" name="'.$input_name.

'" value="'.$input_value.'">
';
}

}
}

}

CHAPTER 7 ■ SIMPLEXML 263

6331_c07_final.qxd 2/16/06 4:51 PM Page 263

/* Retrieve text content for node from working template */
function getStoredValue($sxe, $arPath) {
if ($sxe) {

/* Loop through node path to find SimpleXML element from working template */
foreach($arPath AS $key=>$value) {

$sxe = $sxe->$value;
}
return (string)$sxe;

}
return "";

}

/* Set the text content for a node from working template */
function setValue($sxe, $field, $value) {

if (is_array($value)) {
/* Loop through node path to find SimpleXML element from working template */
foreach ($value AS $fieldname=>$fieldvalue) {

setValue($sxe->$field, $fieldname, $fieldvalue);
}

} else {
/* Encode the value to ensure content will be valid XML */
$sxe->$field = htmlentities($value);

}
}

/* Validate fields in working template using the RegEx defined in specification */
function validatePAD($spec, $template) {

$arRet = array();
foreach ($spec->Fields->Field as $field) {

$arPath = explode("/", trim($field->Path));
array_shift($arPath);
if ($arPath[0] != "MASTER_PAD_VERSION_INFO") {

$sxe = $template;
$regex = "/".trim($field->RegEx)."/";
foreach($arPath AS $key=>$value) {

$sxe = $sxe->$value;
if (! $sxe) {

break;
}

}
if ($sxe) {

$value = (string)$sxe;
if (! preg_match($regex, $value)) {

/* Capture fields failing validation for later display */
$arRet[] = array($field->Title, $field->RegExDocumentation);

CHAPTER 7 ■ SIMPLEXML264

6331_c07_final.qxd 2/16/06 4:51 PM Page 264

}
}

}
}
/* Return array containing any captured errors */
return $arRet;

}

/* Initial states for application variables */
$sxetemplate = NULL;
$bPreview = FALSE;
$bError = FALSE;
$bSave = FALSE;

/* BEGIN ACTUAL PROCESSING */
if ($sxe = simplexml_load_file($padspec)) {

if (isset($_POST['Save']) || isset($_POST['Preview']) || isset($_POST['Edit'])) {
/* Working template in hidden field is Base64 encoded and must be decoded */
$sxetemplate = new SimpleXMLElement(base64_decode($_POST['ptemplate']));
/* Loop through $_POST vars. vars that are arrays are PAD fields to be set */
foreach($_POST AS $name=>$value) {

if (is_array($value)) {
setValue($sxetemplate, $name, $value);

}
}
if (isset($_POST['Save'])) {

/* Save finalized working template to file */
$sxetemplate->asXML($savefile);
$bSave = TRUE;

} elseif (isset($_POST['Preview'])) {
/* Validate the working template */
$arRet = validatePAD($sxe, $sxetemplate);
if (count($arRet) > 0) {

$bError = TRUE;
print "ERRORS FOUND
";
/* Print out errors returned from validatePAD() */
foreach ($arRet AS $key=>$value) {

print $value[0].": ".$value[1]."
";
}

} else {
/* Working template was validated so allow data to be previewed */
$bPreview = TRUE;

}
}

} else {

CHAPTER 7 ■ SIMPLEXML 265

6331_c07_final.qxd 2/16/06 4:51 PM Page 265

/* Initial entry point so load the PAD template created from DOM */
$sxetemplate = simplexml_load_file($padtemplate);

}
/* If in working state display the working template for editing or preview */
if (! $bSave) {

print '<form method="POST">';
/* Base64-encoded working template to allow XML to be passed

in hidden field */
print '<input type="hidden" name="ptemplate" value="'.

base64_encode($sxetemplate->asXML()).'">';
printDisplay($sxe, $sxetemplate, $bPreview);
print '

 '.

'<input type="Submit" name="Preview" value="Preview and Validate PAD">';
if (!$bError && isset($_POST['Preview'])) {

/* Working template is valid and in preview mode.
Allow additional editing or final Save */

print ' '.
'<input type="Submit" name="Edit" value="Edit PAD">';

print ' '.
'<input type="Submit" name="Save" value="Save PAD">';

}
print '</form>

' ;

} else {
/* Final PAD file has been saved - Just print message */
print "PAD File Saved as $savefile";

}
} else {

/* Application unable to retrieve the specification file - Error */
print "Unable to load PAD Specification File";

}
?>
</body>
</html>

The important areas to look at within this application are the user variables and the
defined functions. The remainder of the application just pieces it all together. You must set
three user variables. The default values will work just as well, but you can change them with
respect to your current setup. These are the three user variables:

$padspec: Location of PAD specification file. By default it pulls from
http://www.padspec.org, but you can have it reside locally; in that case, modify the value
to point to your local copy.

$padtemplate: Location of the PAD template generated by the DOM extension in Chapter 6.

$savefile: Location to save the final generated PAD file to when done.

The specification file is used in every step of the process, so the first thing the application
does is have SimpleXML load it. Initially, none of the POST variables is set, and SimpleXML is

CHAPTER 7 ■ SIMPLEXML266

6331_c07_final.qxd 2/16/06 4:51 PM Page 266

called on again to load the empty template created by the DOM extension. This is performed
only once when the application begins because the template is then passed in
$_POST['ptemplate']. Being XML data, it is Base64-encoded within the form and Base64-
decoded before being used.

The function printDisplay() takes three parameters. The first is the SimpleXMLElement
containing the specification file. The second is the SimpleXMLElement containing the working
template. The last parameter is a Boolean used for state. When in a preview state, the system
generates display data only; otherwise, it displays editable fields. Being a standardized format,
the application loops through the ->Fields->Field elements assuming they always exist. The
Field element contains all the information for each node in the template document, includ-
ing its location in the tree, which is stored in the Path child element. The Path, taking the form
of a string such as XML_DIZ_INFO/Company_Info/Company_Name, is split into an array based on
the / character, and the first element is removed. You do not need this element because it is
the document element, which is already represented by the SimpleXMLElement holding the
specification document.

The first element breaks the display output into sections on the screen, skipping all fields
that contain the node MASTER_PAD_VERSION_INFO. The information for this node and its children
is already provided within the template file. The application then generates the appropriate
input tags or displays content based on the state of the application. When input fields are gen-
erated, the name of the field corresponds to the location of the element within the document.
For example, if you used XML_DIZ_INFO/Company_Info/Company_Name as the Path, the name
within the form would be Company_Info[Company_Name]. Values for the fields are pulled from
the getStoredValue() function. This is where it gets interesting with SimpleXML usage.

The array containing the elements of the path is iterated. Each time, the variable $sxe,
which originally contained the working template, is changed to be the child element of its
current element using the $value variable, which is the name of the subnode. Examining a
path from the specification file, such as XML_DIZ_INFO/Company_Info/Company_Name, the cor-
responding array, after removing the first element, would be array('Company_Info',
'Company_Name'). This corresponds to the following XML fragment:

<XML_DIZ_INFO>
<Company_Info>

<Company_Name />
</Company_Info>

</XML_DIZ_INFO>

Iterating through the array and setting $sxe each time are the equivalent of manually cod-
ing this:

$sxe = $sxe->Company_Info;
$sxe = $sxe->Company_Name;

You can navigate to the correct node using the information from the specification file
without needing to know the document structure of the template file. Once iteration of the
foreach is finished, the variable $sxe is cast to a string, which is the text content of the node
the application is looking for, and is then returned to the application.

When the data is submitted from the UI to the application, the function setValue()
is called. As you probably recall, the name of the input fields indicate arrays, such as
Company_Info[Company_Name]. No other named fields that are arrays are used in the

CHAPTER 7 ■ SIMPLEXML 267

6331_c07_final.qxd 2/16/06 4:51 PM Page 267

application, so it assumes all incoming arrays contain locations and values for the PAD tem-
plate. The setValue() function is recursive. As long as the value of the array is another array,
the function calls itself with the $sxe variable pointing to the field name passed into the func-
tion, the new field name, and the new field value. Once the incoming value is no longer an
array, it is set as the value of the new field passed to the function of the $sxe object passed into
the function. The value is also encoded using htmlentities() to ensure the data will be prop-
erly escaped. For instance, a value containing the & character needs it converted to its entity
format, &.

The last use of SimpleXML worth mentioning in this application is within the validatePAD()
function. PAD contains a RegEx field within each Field node of the specification. This field
defines the regular expression the data needs to conform to in order to be considered valid.
The same technique is used to loop through the specification file to find the RegEx node and
the Path node, as you have seen in other functions in this application. The correct element is
also navigated to within the template using similar techniques. Once you’ve gathered all the
information, you can test the regular expression against the value of the $sxe element from
the working template.

This example illustrated how you can use XML and SimpleXML to generate an application
including its UI, data storage, and validation rules using a real-world case. If you are a current
shareware author, you may already be familiar with the PAD format. Using techniques within
this application, you should have no problems writing your own application to generate your
PAD files. In any case, this example has shown that even though SimpleXML has a simple API
and certain limitations, you can use it for some complex applications, even when you don’t
know the document structure.

Conclusion
The SimpleXML extension provides easy access to XML documents using a tree-based structure.
The ease of use also results in certain limitations. As you have seen, elements cannot be created;
only elements, attributes, and their content are accessible, and only limited information about
a node is available. This chapter covered the SimpleXML extension by demonstrating its ease of
use as well as its limitations. The chapter also discussed methods of dealing with these limita-
tions, such as using the interoperability with the DOM extension and in certain cases with
built-in PHP object functions.

The material presented here provides an in-depth explanation of SimpleXML and its
functionality; the examples should provide you with enough information to begin using
SimpleXML in your everyday coding.

The next chapter will introduce how to parse streamed XML data using the XMLReader
extension. Processing XML data using streams is different from what you have dealt with to
this point because unlike the tree parsers, DOM and SimpleXML, only portions of the docu-
ment live in memory at a time.

CHAPTER 7 ■ SIMPLEXML268

6331_c07_final.qxd 2/16/06 4:51 PM Page 268

Simple API for XML (SAX)

The extensions covered up until now have dealt with XML in a hierarchical structure
residing in memory. They are tree-based parsers that allow you to move throughout the
tree as well as modify the XML document. This chapter will introduce you to stream-based
parsers and, in particular, the Simple API for XML (SAX). Through examples and a look at
the changes in this extension from PHP 4 to PHP 5, you will be well equipped to write or
possibly fix code using SAX.

Introducing SAX
In general terms, SAX is a streams-based parser. Chunks of data are streamed through the
parser and processed. As the parser needs more data, it releases the current chunk of data and
grabs more chunks, which are then also processed. This continues until either there is no more
data to process or the process itself is stopped before reaching the end of the data. Unlike tree
parsers, stream-based parsers interact with an application during parsing and do not persist
the information in the XML document. Once the parsing is done, the XML processing is done.
This differs greatly compared to the SimpleXML or DOM extension; in those cases, the parsing
builds an in-memory tree; then, once done, interaction with the tree begins, and the applica-
tion can manipulate the XML.

Background
SAX is just one of the stream-based parsers in PHP 5. What sets it apart from the other stream-
based parsers is that it is an event-based, or push, parser. Originally developed in 1998 for use
under Java, SAX is not based on any formal specification like the DOM extension is, although
many DOM parsers are built using SAX. The goal of SAX was to provide a simple way to process
XML utilizing the least amount of system resources. Its simplicity of use and its lightweight
nature made this parser extremely popular early on and was one of the driving factors of why
it is implemented in one form or another in other programming languages.

269

C H A P T E R 8

■ ■ ■

6331_c08_final.qxd 2/16/06 4:48 PM Page 269

Event-Based/Push Parser
So, what is an event-based, or push, parser? Well, I’m glad you asked that question. An event-
based parser interacts with an application when specific events occur during the parsing of
the XML document. Such an event may be the start or the end of an element or may be an
encounter with a PI within the document. When an event occurs, the parser notifies the
application and provides any pertinent information.

In other words, the parser pushes the information to the application. The application
is not requesting the data when it needs it, but rather it initially registers functions with the
parser for the different events it would like notification for, which are then executed upon
notification. Think of it in terms of a mailing list to which you can subscribe. All you need to
do is register with the mailing list, and from then on, every time a new message is received
from the list, the message is automatically sent to you. You do not need to keep checking the
mailing list to see whether it contains any new messages.

SAX in PHP
The xml extension, which is the SAX handler in PHP, has been the primary XML handler since
PHP 3. It has been the most stable extension and thus is widely used when dealing with XML.
The expat library, http://expat.sourceforge.net/, initially served as the underlying parser for
this extension. With the advent of PHP 5 and its use of the libxml2 library, a compatibility layer
was written and made the default option. This means that by default, libxml2 now serves as
the XML parsing library for the xml extension in PHP 5 and later, though the extension can
also be built with the depreciated expat library.

Enabled by default, it can be disabled in the PHP build through the --disable-xml
configuration switch. (But then again, if you wanted to do this, you probably would not be
reading this chapter!) You may have reasons for building this with the expat library, such as
compatibility problems with your code or application. I will address some of these issues in
the section “Migrating from PHP 4 to PHP 5.” If this is the case, you can use the configure
switch --with-libexpat-dir=DIR with expat rather than libxml2. This is depreciated and
should be used only in such cases where things may be broken and cannot be resolved
using the libxml2 library.

One other change for this extension from PHP 4 to PHP 5 is the default encoding.
Originally, the default encoding used for output from this extension was ISO-8859-1. With
the change to libxml2, the default encoding has changed in PHP 5.0.2 and later to UTF-8. This
is true no matter which library you use to build the extension. If any existing code being
upgraded to PHP 5 happens to require IISO-8859-1 as the default encoding, this is quickly and
easily resolved, as you will see in the next section. Other than the potential migration issues,
this chapter exclusively deals with the xml extension built using libxml2.

Using the xml Extension
Working with the xml extension is easy and straightforward. Once you have set up the parser
and parsing begins, all your code is automatically executed. You do not need to do anything
until the parsing has finished. The steps to use this extension are as follows:

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)270

6331_c08_final.qxd 2/16/06 4:48 PM Page 270

1. Define functions to handle events.

2. Create the parser.

3. Set any parser options.

4. Register the handlers (the functions you defined to handle events) with the parser.

5. Begin parsing.

6. Perform error checking.

7. Free the parser.

Listing 8-1 contains a small example of using this extension, following the previous steps.
I have used comments in the application to indicate the different steps.

Listing 8-1. Sample Application Using the xml Extension

<?php
/* XML data to be parsed */
$xml = '<root>
<element1 a="b">Hello World</element1>
<element2/>
</root>';

/* start element handler function */
function startElement($parser, $name, $attribs) {

print "<$name";
foreach ($attribs AS $attName=>$attValue) {

print " $attName=".'"'.$attValue.'"';
}
print ">";

}

/* end element handler function */
function endElement($parser, $name) {

print "</$name>";
}

/* cdata handler function */
function chandler($parser, $data) {
print $data;

}

/* Create parser */
$xml_parser = xml_parser_create();

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 271

6331_c08_final.qxd 2/16/06 4:48 PM Page 271

/* Set parser options */
xml_parser_set_option ($xml_parser, XML_OPTION_CASE_FOLDING, 0);

/* Register handlers */
xml_set_element_handler($xml_parser, "startElement", "endElement");
xml_set_character_data_handler ($xml_parser, "chandler");

/* Parse XML */
if (!xml_parse($xml_parser, $xml, 1)) {

/* Gather Error information */
die(sprintf("XML error: %s at line %d",
xml_error_string(xml_get_error_code($xml_parser)),
xml_get_current_line_number($xml_parser)));

}

/* Free parser */
xml_parser_free($xml_parser);
?>

To begin examining this extension, you will skip the first step. It is quite difficult to
attempt to write event-handling functions without even knowing what the events are and
what parameters the functions need. Once the parser has been created and any parse options
set, you will return to writing the handler functions. Listing 8-1 may also offer some insight
into these functions prior to reaching the “Event Handlers” section.

The Parser
The parser is the focal point of this extension. Every built-in function for xml, other than the
ones creating it and two encoding/decoding functions, requires the parser to be passed as
a parameter. The parser, when created, takes the form of a resource within PHP 5, just as in
PHP 4. The API was left unchanged, unlike the domxml extension, leaving the parser as a
resource rather than adding an OOP interface. This not only allows no coding changes when
moving from PHP 4 to PHP 5, but the extension already implements a way to use objects with
the parser, which is discussed later in this chapter in the “Using Objects and Methods” section.

Creating the Parser
You create the parser using the function xml_parser_create(), which takes an optional
parameter specifying the output encoding to use. Input encoding is automatically detected
using either the encoding specified by the document or a BOM. When neither is detected,
UTF-8 encoded input is assumed. Upon successful creation of the parser, it is returned to the
application as a resource; otherwise, this function returns NULL. For example:

if ($xml_parser = xml_parser_create()) {
/* Insert code here */

}

Upon successfully executing this code, the variable $xml_parser contains the resource
that will be used in the rest of the function calls within this extension.

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)272

6331_c08_final.qxd 2/16/06 4:48 PM Page 272

Setting the Parser Options
After you have created the parser, you can set the parser options. These options differ from
those discussed in Chapter 5, which are used by the DOM and SimpleXML extensions. The
xml extension defines only four options that can be used while parsing an XML document.
Table 8-1 describes the available options, as well as their default values when not specified
for the parser.

Table 8-1. Parser Options

Option Description

XML_OPTION_TARGET_ENCODING Sets the encoding to use when the parser passes the xml infor-
mation to the function handlers. The available encodings are
US-ASCII, ISO-8859-1, and UTF-8, with the default being either
the encoding set when the parser was created or UTF-8 when not
specified.

XML_OPTION_SKIP_WHITE Skips values that are entirely ignorable whitespaces. These values
will not be passed to your function handlers. The default value is
0, which means pass whitespace to the functions.

XML_OPTION_SKIP_TAGSTART Skips a certain number of characters from the beginning of a start
tag. The default value is 0 to not skip any characters.

XML_OPTION_CASE_FOLDING Determines whether element tag names are passed as all upper-
case or left as is. The default value is 1 to use uppercase for all tag
names. The default setting tends to be a bit controversial. XML is
case-sensitive, and the default setting is to case fold characters.
For example, an element named FOO is not the same as an element
named Foo.

You can set and retrieve options using the xml_parser_set_option() and
xml_parser_get_option() functions. The prototypes for these functions are as follows:

(bool) xml_parser_set_option (resource parser, int option, mixed value)
(mixed)xml_parser_get_option (resource parser, int option)

Using these functions, you can check the case folding and change it in the event the
value was not changed from the default:

if (xml_parser_get_option($xml_parser, XML_OPTION_CASE_FOLDING)) {
xml_parser_set_option ($xml_parser, XML_OPTION_CASE_FOLDING, 0);

}

This code tests the parser ($xml_parser, which was previously created) to see whether
the XML_OPTION_CASE_FOLDING option is enabled. If enabled, which in this case it would be
since the default parser is being used, the code disables this option by setting its value to 0.
You use the other options in the same way even though XML_OPTION_TARGET_ENCODING takes
and returns a string (US-ASCII, ISO-8859-1, or UTF-8) for the value.

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 273

6331_c08_final.qxd 2/16/06 4:48 PM Page 273

■Caution The parser options XML_OPTION_SKIP_TAGSTART and XML_OPTION_SKIP_WHITE are
used only when parsing into a structure. Regular parsing is not affected by these options. The option
XML_OPTION_SKIP_WHITE may not always exhibit consistent behavior in PHP 5. Please refer to the
section “Migrating from PHP 4 to PHP 5” for more information.

Event Handlers
Event handlers are user-based functions registered with the parser that the XML data is
pushed to when an event occurs. If you look at the code in Listing 8-1, you will notice the
functions startElement(), endElement(), and chandler(). These functions are the user-
defined handlers and are registered with the parser using the xml_set_element_handler()
and xml_set_character_data_handler() functions from the xml extension. Many other
events are also issued during parsing, so let’s take a look at each of these and how to write
handlers.

Element Events
Two events occur with elements within a document. The first event occurs when the parser
encounters an opening element tag, and the second occurs when the closing element tag
is encountered. Handlers for both of these are registered at the same time using the
xml_set_element_handler() function. This function takes three parameters: the parser
resource, a string identifying the start element handler function, and a string identifying
the end element handler function.

Start Element Handler

The function set for the start element handler executes every time an element is encountered
in the document. The prototype for this function is as follows:

start_element_handler(resource parser, string name, array attribs)

When an element is encountered, the element name, along with an array containing all
attributes for the element, is passed to the function. When no attributes are defined, the array
is empty; otherwise, the array consists of all name/value pairs for the attributes of the element.
For example, within a document, the parser reaches the following element:

<element att1="value1" att2="value2" />

In the following code, a start element handler named startElement has been defined and
registered with the parser:

function startElement($parser, $element_name, $attribs) {
print "Element Name: $element_name\n";
foreach ($attribs AS $att_name=>$att_value) {

print " Attribute: $att_name = $att_value\n";
}

}

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)274

6331_c08_final.qxd 2/16/06 4:48 PM Page 274

When the element is reached within the document, the parser issues an event, and the
startElement function is executed. The following results are then displayed:

Element Name: element
Attribute: att1 = value1
Attribute: att2 = value2

End Element Handler

The end element handler works in conjunction with the start element handler. Upon the
parser reaching the end of an element, the end element handler is executed. This time, how-
ever, only the element name is passed to the function. The prototype for this function is as
follows:

end_element_handler(resource parser, string name)

Using the function for the start element handler, an end element handler will be added.
This time, since both functions will be defined, the code will also register the handlers:

function endElement($parser, $name) {
print "END Element Name: $name\n";

}

xml_set_element_handler($xml_parser, "startElement", 'endElement');

The complete output with the end handler being called looks like this:

Element Name: element
Attribute: att1 = value1
Attribute: att2 = value2

END Element Name: element

■Caution The documentation states that setting either of these handlers to an empty string or NULL will
cause the specific handler not to be used. At least up to and including PHP 5.1, a warning is issued when the
parser reaches such a handler stating that it is unable to call the handler.

Character Data Handler
Character data events are issued when text content, CDATA sections, and in certain cases enti-
ties are encountered in the XML stream. Text content is strictly text content within an element
in this case. It differs from the conventional text node when the document is viewed as a tree
because text nodes can live as children of other nodes, such as comment nodes and PI nodes.
You can set a character data handler using the xml_set_character_data_handler() function.
Its prototype is as follows:

bool xml_set_character_data_handler(resource parser, callback handler)

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 275

6331_c08_final.qxd 2/16/06 4:48 PM Page 275

The prototype for the user-defined handler for this function is as follows:

handler(resource parser, string data)

■Caution As you will see in the following sections, character data can be broken up into multiple events,
resulting in multiple calls to a character data handler. This is not only dependant upon the content of the data
but also upon how lines are terminated because additional character data events may be issued when using
\r\n (Windows style) as line feeds compared to just using \n (Unix style).

In the following sections, you will see how this handler deals with different types of data.

Handling Text Content

Text content is character data content for an element. As it is processed, character data events
are issued from the parser, and the handler, if set, is executed. In its simplest case, as in the fol-
lowing example, the text content for the element named root is Hello World:

<root>Hello World</root>

When encountered during processing, this string is passed to the handler for further user
processing:

function characterData($parser, $data) {
print "Data: $data END Data\n";

}

xml_set_character_data_handler($xml_parser, "characterData");

When the text is processed, the output from the handler is as follows:

Data: Hello World END Data

Whitespace also results in the handler being called, as shown in the following code. Remem-
ber, the parser option XML_OPTION_SKIP_WHITE is useless unless parsing the XML into a structure,
which is explained in the “Parsing a Document” section.

$xmldata ="<root>\n<child/></root>";

A document containing this string contains an ignorable whitespace, \n, between the
opening root tag and the empty-element tag child. When the parser processes the data, this
whitespace will be sent to the characterData() function:

Data:
END Data

The handler can be called multiple times when processing text content. The content can
be chunked and passed to the $data parameter in sequential calls. This occurs from the use of

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)276

6331_c08_final.qxd 2/16/06 4:48 PM Page 276

differing terminations of lines. Take the case of using Unix-style line terminations. These con-
sist of just a linefeed (\n), like so:

$xmldata ="<root>Hello \nWorld</root>";

By using the string contained in $xmldata for the XML data to be processed and running
it with the characterData() handler previously defined, you can see that the text content is
called only once with the entire content sent to the $data parameter at once:

Data: Hello
World END Data

In this next instance, Windows-style line feeds (\r\n) are used to terminate lines:

$xmldata ="<root>Hello \r\nWorld</root>";

This time, the content is broken up into multiple events, and the handler is called twice:

Data: Hello END Data
Data:
World END Data

The first event results in just the string "Hello " being passed to the $data parameter.
Following the processing, the handler is called again with the string "\nWorld". You might be
wondering what happened to \r. The line breaks have been normalized according to the XML
specifications.

■Note Per the XML specifications, parsers must normalize line breaks. Windows-style line breaks (\r\n)
are normalized to a single \n. Also, any carriage return (\r) not followed by a line feed (\n) is translated into
a line feed.

The bottom line is that character data can be processed by multiple calls to the handler
rather than a single call passing all the data at once. The “Migrating from PHP 4 to PHP 5” sec-
tion will cover this a bit more, since it is different from the behavior in PHP 4. Line breaks are
just one place this occurs. In certain cases, this also occurs when using entities, which will be
covered shortly.

Handling CDATA Sections

CDATA sections are handled in a similar fashion to text content but currently exhibit a little
different behavior with respect to line endings. This is another area that is covered in the
“Migrating from PHP 4 to PHP 5” section of this chapter. Using the same functions defined in
the previous section for text content, you can change the XML data to move the text content
into a CDATA section block, as follows:

$xmldata = "<root><![CDATA[Hello World]]></root>";

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 277

6331_c08_final.qxd 2/16/06 4:48 PM Page 277

The resulting output is the same as when the text was used directly as content:

Data: Hello World END Data

Adding the line feed within the text also produces the same results as demonstrated with
the text content:

$xmldata = "<root><![CDATA[Hello \nWorld]]></root>";

Data: Hello
World END Data

Using a carriage return, however, exhibits different behavior from what was shown when
used within text content:

$xmldata = "<root><![CDATA[Hello \r\nWorld]]></root>";

Data: Hello
World END Data

In this case, only a single event was fired. The text was not broken up into multiple sections.
The data is also different in this case. If you remember, when the string "Hello \r\nWorld" was
used as text content, the data was passed as "Hello " and "\nWorld". The carriage return was
never sent to the handler. Inspecting the data sent to the handler when the full string is used
within a CDATA section, the whole string, including the carriage return, is passed to the $data
parameter. This may be a bug in libxml2 and may change in future releases, but with at least
libxml2 2.6.20, the behavior is as I have described.

Handling Entities

In certain cases, entity references will be expanded and sent to the character data handler.
In other cases, if defined, entity references will be sent directly to the default handler without
being expanded. The first case to look at is the predefined, internal entities.

Per the specifications, the parser implements five predefined entities. They are explained
in more detailed in Chapter 2 (and listed in Listing 2-2). When a character data handler is set,
these predefined entities automatically are expanded, and their values are sent to the charac-
ter data handler when encountered. I will use the same functions as defined within the text
content section to demonstrate character data handling with entities:

$xmldata = "<root>Hello & World</root>";

Data: Hello END Data
Data: & END Data
Data: World END Data

The first thing you will probably notice is that three events were triggered for the text con-
tent containing the entity &. Encountering an entity reference within a document creates

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)278

6331_c08_final.qxd 2/16/06 4:48 PM Page 278

an event. In this case, the parser was processing the character data "Hello ". Upon reaching
&, the parser issued the event for "Hello ". The entity reference is then processed alone,
which in this case results in another issue of a character data event. Once handled, the parser
continues processing the text content.

■Note Entity references are handled alone and result in a separate event. When used within text content,
this may result in multiple calls to the character data handler.

You probably also notice the resulting text on the second line of output. The entity refer-
ence has been expanded, and the actual text for the reference has been sent to the character
data handler. In this case, & refers to the character & and the & sent as the $data parameter.

The last cases depend upon whether a default handler has been set. For all other entity
references, other than external entity references that have their own handlers, the character
data handler is called only when a default handler has not been defined. Just like predefined
entities, when passed to the character handler, the entity references are expanded. If a default
handler exists, the entity references are not expanded and passed to the handler in their native
states. I will cover this in more detail in the “Default Handler” section.

Processing Instruction Handler
PIs within XML data have their own handlers, which are set using the
xml_set_processing_instruction_handler() function. When the parser encounters a PI,
an event is issued, and if the handler has been set, it will be executed. For example:

/* Prototype for setting PI handler */
bool xml_set_processing_instruction_handler(resource parser, callback handler)

/* Prototype for user PI handler function */
handler(resource parser, string target, string data)

Data for a processing instruction is sent as a single block. Unlike character data, only
a single event is issued per PI:

$xmldata = "<root><?php echo 'Hello World'; ?></root>";

Using the previous XML data and the following handler, when the instruction is encoun-
tered, the function will print the strings from the $target and $data parameters:

function PIHandler($parser, $target, $data) {
print "PI: $target - $data END PI\n";

}

PI: echo 'Hello World'; END PI

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 279

6331_c08_final.qxd 2/16/06 4:48 PM Page 279

External Entity Reference Handler
As you recall from Chapter 3, external entities are defined in a DTD and are used to refer to
some XML outside the document. Depending upon the type, they can include a public ID
and/or system ID used to locate the resource:

/* Examples of External Entities */
<!ENTITY extname SYSTEM "http://www.example.com/extname">
<!ENTITY extname PUBLIC "localname" "http://www.example.com/extname">

Within a document, you can reference them using an external entity reference:

<root>&extname;</root>

Upon encountering the external entity reference, the parser will execute the external
entity reference handler, if set, using the xml_set_external_entity_ref_handler() function:

/* Prototype for xml_set_external_entity_ref_handler */
bool xml_set_external_entity_ref_handler(resource parser, callback handler)

/* Prototype for handler */
handler(resource parser, string open_entity_names,

string base, string system_id, string public_id)

Before seeing this functionality in action, you need to be aware of a few issues. The
current behavior of these parameters for PHP 5 (at least up to and including PHP 5.1) is that
open_entity_names is only the name of the entity reference. Contrary to the documentation,
no list of entities exists. Only the name of the entity reference is passed. When using entity
references that reference other entities, PHP 5 has an issue, which will be covered in the
“Migrating from PHP 4 to PHP 5” section in detail.

Taking these factors into account, the external XML in Listing 8-2, which would live in
the file external.xml, will be referenced by the partial document in Listing 8-3. The parser
will then process the document in Listing 8-3.

Listing 8-2. External XML in File external.xml

<?xml version="1.0"?>
<external_element>

Hello World!
</external_element>

Listing 8-3. XML Document to Be Processed

<?xml version='1.0'?>
<!DOCTYPE root SYSTEM "http://www.example.com/dtd" [
<!ENTITY myEntity SYSTEM "external.xml">
]>
<root>

<element1>Internal XML Data</element1>
&myEntity;

</root>

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)280

6331_c08_final.qxd 2/16/06 4:48 PM Page 280

The first step you need to take is to write and register the function to handle the external
entity:

function extEntRefHandler($parser, $openEntityNames, $base, $systemId, $publicId) {
if ($systemId) {

if (is_readable($systemId)) {
print file_get_contents ($systemId);
return TRUE;

}
}
return false;

}

xml_set_external_entity_ref_handler($xml_parser, "extEntRefHandler");

When the parser encounters the external entity reference, &myEntity;, the
extEntRefHandler function is executed. Since the entity declaration is defined as SYSTEM,
the variable $publicId will be passed as FALSE. The function ensures that the URL defined
by $systemId is readable, which in this case is the local file external.xml, and then just prints
the contents of the file.

If you have looked at the examples within the PHP documentation, you may notice that
the external entity reference handler creates a new parser and parses the data located at the
URL from $systemId. According to the XML specifications, the external data must be valid
XML, and processing the data with a new parser is perfectly valid and in most cases the
desired functionality.

Declaration Handlers
Currently, the extension allows for two specific declaration handlers to be set. You can handle
both notation declarations and unparsed entity declarations through their respective han-
dlers. I have grouped them in this section because unparsed entity declarations rely on
notation declarations.

■Caution For both the user handlers in this section, the public_id and system_id parameters are
reversed when using PHP 5 prior to the release of PHP 5.1. This has been fixed for PHP 5.1, so this section
is based on the fixed syntax.

The first step in using these handlers is to look at their prototypes:

/* Set handler prototypes */
bool xml_set_notation_decl_handler(resource parser, callback note_handler)
bool xml_set_unparsed_entity_decl_handler(resource parser, callback ued_handler)

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 281

6331_c08_final.qxd 2/16/06 4:48 PM Page 281

/* User function handler prototypes */
note_handler(resource parser, string notation_name, string base, string system_id,

string public_id)
ued_handler(resource parser, string entity_name, string base, string system_id,

string public_id, string notation_name)

These handlers operate on declaration statements within a DTD. This means these would
be processed prior to any processing within the body of the document. This example uses a
simplified document; it contains a DTD declaring a notation and an unparsed entity as well
as an empty document element:

<?xml version='1.0'?>
<!DOCTYPE root SYSTEM "http://www.example.com/dtd" [
<!NOTATION GIF SYSTEM "image/gif">
<!ENTITY myimage SYSTEM "mypicture.gif" NDATA GIF>
]>
<root/>

Again, you need to define and register these handlers with the parser:

/* Define handlers */
function upehandler($parser, $name, $base, $systemId, $publicId, $notation_name) {

print "\n---- Unparser Entity Handler ---\n";
var_dump($name);
var_dump($base);
var_dump($systemId);
var_dump($publicId);
var_dump($notation_name);

}

function notehandler($parser, $name, $base, $systemId, $publicId) {
print "\n--- Notation Declaration Handler ---\n";
var_dump($name);
var_dump($base);
var_dump($systemId);
var_dump($publicId);

}

/* Register Handlers */
xml_set_unparsed_entity_decl_handler($xml_parser, "upehandler");
xml_set_notation_decl_handler($xml_parser, "notehandler");

When the notation and unparsed entity declaration are encountered, the respective
function is executed and in this case just dumps each of the parameter variables passed to
the function. When the document is parsed, the output using these functions is as follows:

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)282

6331_c08_final.qxd 2/16/06 4:48 PM Page 282

--- Notation Declaration Handler ---
string(3) "GIF"
bool(false)
string(9) "image/gif"
bool(false)

---- Unparser Entity Handler ---
string(7) "myimage"
bool(false)
string(13) "mypicture.gif"
bool(false)
string(3) "GIF"

Default Handler
The intended use of the default handler is to process all other markup that is not handled
using any other callback. This handler may not work exactly as expected when running code
under PHP 5 that was written for PHP 4. I will cover this in more detail in the section “Migrat-
ing from PHP 4 to PHP 5.”

■Caution Code written for PHP 4 using a default handler may not work as expected under PHP 5. Please
refer to the section “Migrating from PHP 4 to PHP 5.”

When you use the default handler, you will encounter two issues. The first is dealing with
comment tags. When the parser encounters a comment, the entire comment, including the
starting and ending tags, is sent to the default handler:

function defaultHandler($parser, $data) {
print "DEFAULT: $data END_DEFAULT\n";

}

xml_set_default_handler($xml_parser, "defaultHandler");

Using the following XML data, when the comment tag is processed, the default handler
will display the following results:

<root><!-- Hello World --></root>

DEFAULT: <!-- Hello World --> END_DEFAULT

Entities, depending upon type, will also use the default handler when registered. Data
passed to the default handler is different from that passed when a character data handler is
present. If you recall, when a character data handler is registered, all predefined entities will

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 283

6331_c08_final.qxd 2/16/06 4:48 PM Page 283

always be sent to that handler with their data expanded. Other entities, except external entity
references, will try to use the default handler first and fall back to the character data handler
only when a default handler is not present. The data passed to the default handler, however,
is not the expanded entity. The entity reference itself is passed. For example:

<!DOCTYPE root SYSTEM "http://www.example.com/dtd" [
<!ENTITY myEntity "Entity Text">

]>
<root><e1>&myEntity;</e1><e2>&</e2></root>

To see the difference between using a character data handler and a default handler, the
previous XML document will be processed with only a character data handler registered:

function characterData($parser, $data) {
print "DATA: $data END_DATA\n";

}

xml_set_character_data_handler($xml_parser, "characterData");

Upon processing, the output is as follows:

DATA: Entity Text END_DATA
DATA: & END_DATA

Both entities have been expanded, and the strings Entity Text and & have been passed
to the $data parameter of the character data handler. Using the same code, you can register
a default handler:

function defaultHandler($parser, $data) {
print "DEFAULT: $data END_DEFAULT\n";

}

xml_set_default_handler($xml_parser, "defaultHandler");

This time the results are a bit different:

DEFAULT: &myEntity; END_DEFAULT
DATA: & END_DATA

The default handler is used to process the user-defined entity. It is passed without being
expanded, passing the raw &myEntity;, to the default handler. The predefined entity refer-
ence, &, on the other hand, is handled by the character data handler, as you can see by
the output.

These are currently the only instances when the default handler is used. When using
PHP 4 or when building with the expat library, everything not handled by any other handler
is processed by the default handler. At this time, it is unknown how the default handler will be
used in PHP 5, and it is also possible new functionality may be written to support handling of
other data using the xml extension.

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)284

6331_c08_final.qxd 2/16/06 4:48 PM Page 284

Parsing a Document
This chapter has so far explained what the parser is, how you create it, and how to write and
register handlers. The code used to this point has shown expected results when a document
is processed but has not explained how to process a document. It is important to understand
these previous steps prior to processing a document, because they are all required before the
processing begins. I will now cover the actual processing, which includes parsing the docu-
ment, handling error conditions, handling additional functionality within the xml extension,
and releasing the parser.

Parsing Data
Unlike the other XML-based extensions, the xml extension parses only string data. Files con-
taining XML must be read and sent to the parser as strings. This doesn’t mean, however, that
all the data must be sent at once. Remember, SAX works on streaming data. The function used
to parse the data is xml_parse(), with its prototype being as follows:

int xml_parse(resource parser, string data [, bool is_final])

The first parameter, parser, is the resource you have been working with throughout the
chapter. The second parameter, data, is the data to be processed. The last optional parameter,
is_final, is a flag indicating whether the data being passed also ends the data stream. Let’s
examine the use of the last two parameters.

Taking the simplest code from the text content section, you can write the complete code,
as shown here:

<?php
$xmldata = "<root>Hello World</root>";

function cData($parser, $data) {
print "Data: $data END Data\n";

}

$xml_parser = xml_parser_create();
xml_set_character_data_handler($xml_parser, "cData");
if (!xml_parse($xml_parser, $xmldata, true)) {

print "ERROR";
}
?>

The variable $xmldata, which is passed to xml_parse(), contains a complete XML docu-
ment. No other data is needed for the document, so TRUE is passed for the is_final parameter.
The xml_parse() function returns an integer indicating success or failure. A value of 1 indi-
cates success, and a value of 0 indicates an error. The “Handling Errors” section shows how
to deal with errors.

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 285

6331_c08_final.qxd 2/16/06 4:48 PM Page 285

Chunked Data

The is_final parameter is extremely important to use to have the document parse correctly.
The parser works on chunked data, so unless it knows when all available data has been sent, it
cannot determine whether a well-formed document is being processed. Consider the follow-
ing snippet of code where the cData handler from the previous example is being used and has
already been registered on the created parser, $xml_parser:

$xmldata = "<root>Hello World";
if (!xml_parse($xml_parser, $xmldata, FALSE)) {

print "ERROR";
}

You might expect ERROR to be printed because the XML is not well-formed. Instead, noth-
ing is output when the script is run. In this case, though, the is_final flag is set to FALSE. The
parser is sitting in a state expecting more data. Without additional data or the knowledge that
the data it has received is the final piece of data, the parser has no way of knowing a problem
exists. Changing the is_final parameter to TRUE results in much different output:

if (!xml_parse($xml_parser, $xmldata, TRUE)) {
print "ERROR";

}

Data: Hello World END Data
ERROR

In this case, the parser knows it has all the data it needs to process and not only executes
the cData function but also ends in an error state.

Let’s now look at trying to process the full document broken up into chunks. You have
seen that when is_final is FALSE, the parser waits for more data. Sending the remaining data
and setting the is_final flag to TRUE should then allow the parser to continue processing the
document:

$xmldata = "<root>Hello World";
$xmldata2 = "</root>";

print "Initial Parse\n";
if (!xml_parse($xml_parser, $xmldata, FALSE)) {

print "ERROR 1";
}

print "Final Parse\n";
if (!xml_parse($xml_parser, $xmldata2, TRUE)) {

print "ERROR 2";
}

Initial Parse
Final Parse
Data: Hello World END Data

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)286

6331_c08_final.qxd 2/16/06 4:48 PM Page 286

The first call to xml_parse() sends the initial chunk of data, $xmldata, and passes FALSE
to is_final. From the results, it is clear that nothing noticeable has happened because
nothing has been printed. The last call to xml_parse() sends the remaining chunk of data,
$xmldata2, but this time it sets is_final to TRUE. The parser knows that all data has been sub-
mitted and is able to call the cData handler with the text content, and it knows that the entire
document is well-formed.

File Data

Data coming from a file is typically read in chunks, unless loaded using the file_get_contents()
function. In many cases, XML documents are quite large, and loading the entire contents of the
file into a string at one time just does not make any sense, especially because of the amount of
memory this would require. Using the file external.xml from Listing 8-2, the following PHP file
system functions will read chunks of data at a time and process the contents:

$handle = fopen("external.xml", "r");
$x= 0;
while ($data = fread($handle, 20)) {

$x++;
print "$x\n";
if (!xml_parse($xml_parser, $data, feof($handle))) {

print "ERROR";
}

}
fclose($handle);

In this case, the file external.xml is opened and data read in 20 bytes at a time. Each time
the bytes are read, they are processed. The variable $x is printed to show the number of times
xml_parse() is called. The results of the feof() function, which tests for the end of file, is passed
as the is_final flag. The function feof() will return FALSE until the last piece of data is read in
the while statement. At this point, the last time xml_parse() is called, the value of the function
will be TRUE. When all is said and done, the final results are as follows:

1
2
3
4
Data:

Hello World! END Data
Data:
END Data

You may have an idea of why this code shows an extra call to the cData function. It is a
result of a carriage return in the external.xml file. The important thing to notice is that the file
was read, and parsing took place for the first 80 bytes of the file prior to any output. This is just
because of the location of the text content and because only character data is being handled
in this example. In a typical application, it is not usually only the last pieces read from the doc-
ument that cause the output. If you added an element handler to the code, you would see that
the element is handled after 60 bytes have been read.

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 287

6331_c08_final.qxd 2/16/06 4:48 PM Page 287

Parsing into Structures

This extension also includes a function to parse XML data into an array structure of the docu-
ment. Structures are created using the xml_parse_into_struct() function. Using this function
requires no handlers to be implemented or registered, although they could be; in that case,
both your handlers would be processed and a final structure would be available when done.
The prototype for this function is as follows:

int xml_parse_into_struct(resource parser, string data,
array &values [, array &index])

■Note One point to be aware of when using this function is that the data parameter must contain the
complete XML data to be processed. Unlike the xml_parse() function that uses the is_final parameter,
this function requires all data to be sent at once in a single string.

The new parameters, values and index, return the structures for the XML data. The value
parameter must always be passed to this function. It results in an array containing the struc-
ture of the document in document order. It contains information such as tag name, level
within the tree starting at 1, type of tag, attributes, and in some cases value. For example:

$xmldata = "<root><e1 att1='1'>text</e1></root>";
xml_parse_into_struct($xml_parser, $xmldata, $values, $index);
var_dump($values);

This piece of code assumes $xml_parser has already been created and case folding has
been disabled:

array(3) {
[0]=>
array(3) {
["tag"]=>
string(4) "root"
["type"]=>
string(4) "open"
["level"]=>
int(1)

}
[1]=>
array(5) {
["tag"]=>
string(2) "e1"
["type"]=>
string(8) "complete"
["level"]=>
int(2)

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)288

6331_c08_final.qxd 2/16/06 4:48 PM Page 288

["attributes"]=>
array(1) {
["att1"]=>
string(1) "1"

}
["value"]=>
string(4) "text"

}
[2]=>
array(3) {
["tag"]=>
string(4) "root"
["type"]=>
string(5) "close"
["level"]=>
int(1)

}
}

As you can see, this little document produces a lot of output. Each element is accessed
by a numeric key in the topmost array. The key represents the order the specific element was
encountered within the document. The elements are then represented by a subarray with
associative keys. The elements are as follows:

• tag: Tag name of the element.

• type: Type of tag. The value can be open, indicating an opening tag; complete, indicating
that the tag is complete and contains no child elements; or close, indicating the tag is a
closing tag.

• level: The level within the document. This value starts at 1 and is incremented by 1
as each subtree is traversed. The level then decrements as the subtree is ascended.

• value: The concatenation of all direct child text content. Only data that would be
passed to a character data handler when a default handler is set is present here.

• attributes: An array containing all attributes of the element. The keys of this array
consist of the name of the attributes with the values being the corresponding attribute
value.

When the option index parameter is passed, the return value is an array pointing to the
locations of the element tags within the value array. This means you now have a map you can
use to locate specific elements within the other array. Accessing an element by name in the
index array returns an array of indexes corresponding to the indexes of the opening and clos-
ing tags in the value array. In the case of a complete tag, the array contains only a single index
because the opening and closing tag are the same. The result from processing
var_dump($index); is as follows:

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 289

6331_c08_final.qxd 2/16/06 4:48 PM Page 289

array(2) {
["root"]=>
array(2) {
[0]=>
int(0)
[1]=>
int(2)

}
["e1"]=>
array(1) {
[0]=>
int(1)

}
}

Reading this array, you can find the root element at indexes 0 and 2 within the values array
and the e1 element at index 1. You can access the closing root element using $values[2]. This
means the tag name and type should correspond to the closing root element. For example:

print $values[2]['tag']."\n";
print $values[2]['type']."\n";

root
close

The xml_parse_into_struct() function is where the options XML_OPTION_SKIP_TAGSTART
and XML_OPTION_SKIP_WHITE come into play. These options are used only when building a
structure and do not affect data passed to user-defined handler functions. For example:

$xmldata = "<root>Content: & ' End Content</root>";
xml_parser_set_option ($xml_parser, XML_OPTION_CASE_FOLDING, 0);
xml_parser_set_option ($xml_parser, XML_OPTION_SKIP_WHITE, 1);
xml_parser_set_option ($xml_parser, XML_OPTION_SKIP_TAGSTART , 1);
xml_parse_into_struct($xml_parser, $xmldata, $values, $index);
var_dump($values);

array(1) {
[0]=>
array(4) {
["tag"]=>
string(3) "oot"
["type"]=>
string(8) "complete"
["level"]=>
int(1)
["value"]=>
string(23) "Content: &' End Content"

}
}

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)290

6331_c08_final.qxd 2/16/06 4:48 PM Page 290

The first thing to notice is the value of the tag key, oot. This is referring to the element root
from the complete XML document. The option XML_OPTION_SKIP_TAGSTART was set to 1, which,
when parsed into a structure, removes the first character of the name of the element tag. The
purpose of this option is a bit unknown. My only guess is that prior to supporting the parsing
of documents containing namespaces, this option would allow a prefix and the colon to be
removed. The only problem with this is that the document must use the same prefixed name-
space throughout, or all prefixes must be the same number of characters. The next thing to
notice is the value of the value key. XML_OPTION_SKIP_WHITE removes a data parameter that is
passed to a character data handler consisting of entirely whitespaces, currently spaces, tabs,
and line feeds, in the xml extension. The data is modified only for the value of the structure
and not when passed to user-defined character data handlers.

You might wonder why the space between the & and ' characters was removed, because
the value is a single string. Remember that character data can be split and sent to the handler
in chunks. In this case, when an entity is encountered, the entity is handled as a separate
chunk. If the calls to the character data handler were broken down into the substrings sent, it
would look like the following. Note the strings are in quotes to show the spaces in the strings.

• “Content: ”

• “&”

• “ ”

• “'”

• “ End Content”

The only string containing all whitespace is the space listed between & and '.
This string was removed because of the setting for the XML_OPTION_SKIP_WHITE option.

Parsing Information
Byte index, column number, and line number are three pieces of information available
while parsing a document. You will also see these again in the “Migrating from PHP 4 to
PHP 5” section because these functions have a few quirks. The functions for these pieces
of information are xml_get_current_byte_index(), xml_get_current_column_number(), and
xml_get_current_line_number(). Each of these functions takes a parser as the parameter
and returns either an integer containing the respective data or FALSE if the parser is not
valid.

All handler functions are passed the parser as the first parameter. Using this parameter,
these functions can be called within user-defined handler functions and not only in the main
body of the script where the parse function is called. For example:

<?php
function startElement($parser, $data) {

print "TAG: $data\n";
print "Bytes: ".xml_get_current_byte_index($parser)."\n";
print "Column: ".xml_get_current_column_number($parser)."\n";
print "Line: ".xml_get_current_line_number($parser)."\n\n";

}

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 291

6331_c08_final.qxd 2/16/06 4:48 PM Page 291

function endElement($parser, $data) { }

$xmldata = "<root><e1 att1='1'>text</e1></root>";

$xml_parser = xml_parser_create();
xml_parser_set_option ($xml_parser, XML_OPTION_CASE_FOLDING, 0);
xml_set_element_handler($xml_parser, "startElement", "endElement");
xml_parse($xml_parser, $xmldata, true);
?>

In this example, every time a starting element tag is encountered, the tag name, the cur-
rent byte index, the column number of the XML document, and the line number within the
document are printed:

TAG: root
Bytes: 5
Column: 6
Line: 1

TAG: e1
Bytes: 18
Column: 15
Line: 1

The bytes and column information may not be exactly what you were expecting if you
first ran this code using PHP 4.x. I will cover this, like much of the other functionality, in the
“Migrating from PHP 4 to PHP 5” section. What you can determine, though, is that the number
of bytes read is the number of bytes prior to the > marker for the element’s opening tag. The
column number, on the other hand, is not very accurate. This is an issue with libxml so may
change with newer releases of the library.

Handling Errors
Both the XML parse functions return an integer or return FALSE when an invalid parser is
passed, indicating any possible error conditions. A return value of 1 indicates successful pars-
ing, and a value of 0 indicates an error has occurred. Upon an error condition, you can obtain
the error information through the xml_get_error_code() and xml_error_string() functions:

$xmldata = "<root>";
$xml_parser = xml_parser_create();
if (! xml_parse($xml_parser, $xmldata, true)) {

$code = xml_get_error_code($xml_parser);
print xml_error_string($code);

}

This tests the return value of the xml_parse function. When 0, indicating an error condi-
tion, is returned, the if statement evaluates to TRUE and runs the error-handling code.

The first step is getting hold of the actual error code. The parser is passed as the parame-
ter to the xml_get_error_code() function that returns an integer corresponding to the actual

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)292

6331_c08_final.qxd 2/16/06 4:48 PM Page 292

error code. With this code, the xml_error_string() function is then executed and returns the
error message for the corresponding error code. In this case, the script will print the message
Invalid document end.

PHP 5.1 introduced new XML error handling when using libxml2. The new error handling
does not even need to be enabled using the libxml_use_internal_errors() function in order
to access the last error issued from libxml. The last error is always available from the
libxml_get_last_error() function. You can change the previous code to grab any
LibXMLError object that may be present upon error, like so:

if (! xml_parse($xml_parser, $xmldata, true)) {
$xmlError = libxml_get_last_error();
var_dump($xmlError);

}

object(LibXMLError)#1 (6) {
["level"]=>
int(3)
["code"]=>
int(5)
["column"]=>
int(7)
["message"]=>
string(41) "Extra content at the end of the document"
["file"]=>
string(0) ""
["line"]=>
int(1)

}

As you clearly see, the information using this error is much richer than retrieving just
code and an error message. The level (indicating the severity of the error), the column, the
line, and the filename are also available. The message, although the code is the same as
the code returned using xml_get_error_code(), is different within the LibXMLError object.
This is because the message from this object is directly from the libxml2 library. The message
returned from the xml_error_string() function is defined within the PHP xml extension. You
can use either methodology to retrieve information. It all depends upon what information
you need and your coding style.

UTF-8 Encoding and Decoding
When dealing with ISO-8859-1 encoded data, this extension provides two functions used to
convert to and from UTF-8. They are utf8_encode() and utf8_decode(), as shown in the follow-
ing code. As you should know by now, libxml stores data in UTF-8 encoding. These functions
are here just for convenience since they deal only with converting between ISO-8859-1 and
UTF-8. You should typically use other extensions, such as iconv and mbstring, because they
support a much broader range of encoding schemes.

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 293

6331_c08_final.qxd 2/16/06 4:48 PM Page 293

<?php
$encodedstring = "contenu d'élément";
print $encodedstring."\n";
$utf8string = utf8_encode($encodedstring);
print $utf8string."\n";
$isostring = utf8_decode($utf8string);
print $isostring."\n";
if ($encodedstring == $isostring) {

print "Same String";
}
?>

The output you will see from this code depends upon the system on which you are
running it. The results I receive from running this in my terminal window are as follows:

contenu d'.l.ment
contenu d'..l..ment
contenu d'.l.ment
Same String

The periods you see in the previous results are because of encoding—because the
character cannot be displayed. The results you see when executing this code may differ, but
the comparison of the $encodedstring and $isostring variables show they are equal.

Releasing the Parser
The parser is a resource and is automatically freed when the script finishes execution. Some-
times you may want to explicitly free the parser and all its associated memory. You can do this
using the xml_parser_free() function. It simply takes a single parameter, and the parser returns
TRUE upon successful destruction of the parser or FALSE in the event the variable passed in is not
a valid parser. For example:

xml_parser_free($xml_parser);

■Caution Trying to free the parser within a user-defined handler function will cause a crash in versions of
PHP 5 prior to PHP 5.1. This has also been fixed in PHP 4.4 for those who may be running multiple versions.

Working with Namespaces
Documents containing namespaces will parse fine using normal parsing methods; however,
you may lose important information. Consider the following document and the data passed to
the handler functions. Note that case folding is unchanged, which results in using the default
of uppercase names.

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)294

6331_c08_final.qxd 2/16/06 4:48 PM Page 294

function startElement($parser, $data, $attrs) {
print "Tag Name: $data\n";
foreach ($attrs AS $name=>$value) {

print " Att Name: $name\n";
print " Att Value: $value\n";

}
}

function endElement($parser, $data) { }

$xmldata = "<a:root xmlns:a='http://www.example.com/a'>
<a:e1 a:att1='1' /></a:root>";

$xml_parser = xml_parser_create();
xml_set_element_handler($xml_parser, "startElement", "endElement");
xml_parse($xml_parser, $xmldata, true);

Tag Name: A:ROOT
Att Name: XMLNS:A
Att Value: http://www.example.com/a

Tag Name: A:E1
Att Name: A:ATT1
Att Value: 1

Element and attribute names are passed with the prefixes and local names. The name-
space declaration is handled as a normal attribute. This has a few problems. First, you have
no way to determine the actual namespace an element or attribute is associated with. Second,
the elements and attributes, although they look like they reside in a namespace from the
passed data, in reality do not. The namespace declaration is passed as a normal attribute,
and the prefixes are just an illusion.

To better show the problem, the following document uses a default namespace:

$xmldata = "<root xmlns='http://www.example.com/a'>
<e1 att1='1' /></root>";

Tag Name: ROOT
Att Name: XMLNS
Att Value: http://www.example.com/a

Tag Name: E1
Att Name: ATT1
Att Value: 1

Any possible namespace information is completely lost. It may be possible to hack
together a script to test attribute names for xmlns and track namespaces as well as associated
prefixes, but that is just unrealistic. The good news is that the extension provides a way to deal
with namespaced documents.

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 295

6331_c08_final.qxd 2/16/06 4:48 PM Page 295

■Note Namespace support requires libxml2 2.6.0 and higher. Although PHP versions 5.1 and higher
already meet this requirement, it is possible when running PHP 5.0 that a namespace-aware SAX parser
will be unavailable.

The function xml_parser_create_ns() creates a namespace-aware parser. It takes two
optional parameters. The first is encoding, which is the same as the encoding parameter for
the xml_parser_create() function. The second parameter is the separator. This is a string,
which should be user-identifiable because it is used to separate the namespace from the tag
name. I will return to this parameter in a moment. The first step to take is to see the differ-
ence that using xml_parser_create_ns() makes. Using the code for namespaces and the
document using prefixed namespaces, the only change in the following code is in how the
parser is created:

$xml_parser = xml_parser_create_ns();

Tag Name: HTTP://WWW.EXAMPLE.COM/A:ROOT
Tag Name: HTTP://WWW.EXAMPLE.COM/A:E1

Att Name: HTTP://WWW.EXAMPLE.COM/A:ATT1
Att Value: 1

The output is clearly different from the previous output. Rather than a namespace prefix,
the elements and attributes are prefixed with the namespace. Within a user handler, the names
can be split based on the colon so the actual namespace is accessible. This is much easier than
trying to play with prefixes and trying to track namespace declarations. Now, regarding the
namespace declaration, it is no longer passed as an attribute. It hasn’t just disappeared on you,
but before looking at that, let’s return to the creation of the parser and the separator parameter.

The colon is a valid character to use within the name of a tag, though its use within the
name is highly discouraged, as explained in Chapter 2. You might also want to have the name-
space easily identifiable from the local name of the tag. The separator parameter provides this
accessibility. Rather than a colon, the string passed as the separator parameter will be used to
prefix the namespace with the local name. For example, you could use @ if you like:

$xml_parser = xml_parser_create_ns(NULL, "@");

Tag Name: HTTP://WWW.EXAMPLE.COM/A@ROOT
Tag Name: HTTP://WWW.EXAMPLE.COM/A@E1

Att Name: HTTP://WWW.EXAMPLE.COM/A@ATT1
Att Value: 1

You could now extract the namespaces and names by splitting the string on the @ character.

■Note Any length string can be passed for the separator parameter, but only the first character will be used.

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)296

6331_c08_final.qxd 2/16/06 4:48 PM Page 296

Let’s return to the namespace declaration. When parsing with a namespace-aware parser,
the namespace declaration is not passed as an attribute. Instead, the namespace declaration
handler is used and is registered using the xml_set_start_namespace_decl_handler() function.
Another migration issue crops up here. The function xml_set_end_namespace_decl_handler()
is not used under PHP 5. The functions for dealing with namespace declarations take the fol-
lowing forms:

/* Prototypes */
xml_set_end_namespace_decl_handler(resource parser, callback handler)
handler(resource parser, string prefix, string uri)

Any time a namespace declaration is encountered during processing, the namespace dec-
laration handler, if defined and registered, is executed. So let’s go ahead and add a namespace
handler to the code:

function nsHandler($parser, $prefix, $uri) {
print "Prefix: $prefix\n";
print "URI: $uri\n";

}

xml_set_start_namespace_decl_handler($xml_parser, "nsHandler");

Prefix: a
URI: http://www.example.com/a
Tag Name: HTTP://WWW.EXAMPLE.COM/A@ROOT
Tag Name: HTTP://WWW.EXAMPLE.COM/A@E1

Att Name: HTTP://WWW.EXAMPLE.COM/A@ATT1
Att Value: 1

The output shows that the namespace declaration is processed prior to the element tag
on which it is defined. Just in case you were interested in tracking the prefixes, they would be
available prior to the start element handler being called.

Using Objects and Methods
Handlers are not required to be just functions. You can also use object methods to handle
events. Two ways exist to register object methods as handlers, and each requires an already
instantiated object. When every handler is a method of the same object, you can use the func-
tion xml_set_object(), with the rest of the functionality covered up to now being unchanged.
You can also register specific methods from an object directly using handler registration func-
tions. This allows multiple objects to be used for different events.

Using xml_set_object()
Other than defining the class, writing the handlers as methods of the class, and registering an
instantiated object of this class with the parser, using this API is no different from what you
have seen so far. The xml_set_object() function takes the parser and the instantiated object
to be used for handling events as parameters. Handlers are registered in the same way. Only

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 297

6331_c08_final.qxd 2/16/06 4:48 PM Page 297

the name of the function, in this case the method, is set with the handler. Parsing then is per-
formed in a normal fashion, except now the object methods will be called. For example:

<?php

class cXML {
public $eCount = 0;
public $cCount = 0;

function startElement($parser, $data, $attrs) {
print "Tag Name: $data\n";
$this->eCount++;

}

function endElement($parser, $data) { }

function characterData($parser, $data) {
print "DATA: $data END_DATA\n";
$this->cCount++;

}
}

$xmldata = "<root:a><e1 att1='1'>text</e1></root>";

$xml_parser = xml_parser_create();

/* Create and register Object */
$objXML = new cXML();
xml_set_object($xml_parser, $objXML);

xml_set_element_handler($xml_parser, "startElement", "endElement");
xml_set_character_data_handler($xml_parser, "characterData");
xml_parse($xml_parser, $xmldata, true);

print "\nNumber of Elements: ".$objXML->eCount."\n";
print "Number of Times Character Data Handler Called: ".$objXML->cCount;
?>

Tag Name: ROOT
Tag Name: E1
DATA: text END_DATA

Number of Elements: 2
Number of Times Character Data Handler Called: 1

The code looks only a little different from what you have seen already. The only changes are
a class definition and two lines of code that instantiate the object and register it with the parser.

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)298

6331_c08_final.qxd 2/16/06 4:48 PM Page 298

Using Handler Registration
It is not always desirable to have all the handlers belonging to a single object or even to objects
from the same class. The handler parameter for the registration functions not only accepts a
string identifying the function, or as in the previous section a method call, but also accepts an
array containing an object and a method to use as the handler from the object.

The following example will use the same class definition and XML document from the
previous example. This time, however, two objects will be instantiated, each handling the pro-
cessing of different portions of the document.

$xml_parser = xml_parser_create();

$objXMLElement = new cXML();
$objXMLChar = new cXML();

xml_set_element_handler($xml_parser, array($objXMLElement, "startElement"),
array($objXMLElement, "endElement"));

xml_set_character_data_handler($xml_parser, array($objXMLChar, "characterData"));
/*******
When uncommenting this block, make sure the previous line of code is commented out

xml_set_character_data_handler($xml_parser, "characterData");
xml_set_object($xml_parser, $objXMLChar);
*******/
xml_parse($xml_parser, $xmldata, true);
print "\n--- objXMLElement ---\n";
print "\nNumber of Elements: ".$objXMLElement->eCount."\n";
print "Number of Times Character Data Handler Called: ".$objXMLElement->cCount."\n";

print "\n--- objXMLChar ---\n";
print "Number of Elements: ".$objXMLChar->eCount."\n";
print "Number of Times Character Data Handler Called: ".$objXMLChar->cCount;

If you look closely at this code, two objects, $objXMLElement and $objXMLChar, are instanti-
ated from the xCML class. The element handlers are registered using arrays containing the
$objXMLElement object and its startElement() and endElement() methods. The character data
handler, on the other hand, is registered with the array containing the $objXMLChar object and
its characterData() method. When executed, the results show that the $objXMLElement object
had its startElement() method called twice while the $objXMLChar object had its
characterData() method called once.

Tag Name: ROOT
Tag Name: E1
DATA: text END_DATA

--- objXMLElement ---

Number of Elements: 2
Number of Times Character Data Handler Called: 0

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 299

6331_c08_final.qxd 2/16/06 4:48 PM Page 299

--- objXMLChar ---
Number of Elements: 0
Number of Times Character Data Handler Called: 1

The block of code commented out, at least in this case, results in the same output if it
were used rather than the line above it that registered the character data handler. When the
xml_set_object() method is used, any method not specifically registered with an associated
object will default to the object registered with xml_set_object(). As you might have guessed,
you have a lot of possibilities when using objects and the xml extension. For instance, the
“Seeing Some Examples in Action” section demonstrates a combination of building a DOM
document and using the xml extension and the DOM classes.

Migrating from PHP 4 to PHP 5
As you might have guessed, you might encounter a few issues while migrating code using the
xml extension from PHP 4 to PHP 5. The following sections identify what you might be able to
expect in terms of problems, possible workarounds, and potential improvements to these issues.

Encoding
As of PHP 5.0.2, the default encoding has changed from ISO-8859-1 to UTF-8. This mainly
affects output, which is the target encoding, from the extension, because libxml2 will autode-
tect the encoding of the document when parsing. This has caused at least a few people some
problems, because they were expecting the output to be ISO-8859-1 encoded and in actuality
got UTF-8 encoded data.

This is not difficult to resolve, though. You can set the target encoding at the time the
parser is created or through the use of the XML_OPTION_TARGET_ENCODING option. When migrat-
ing code from PHP 4 or even from any version before PHP 5.0.2, if you have not set the target
encoding and have no idea whether you need to, the safest thing to do is add a target encoding
of ISO-8859-1 to your script. At least in this case, you will get the same output as you did under
PHP 4. You need to use only one of the following methods:

/* Setting target encoding during parser creation */
$xml_parser = xml_parser_create('ISO-8859-1');
$xml_parser = xml_parser_create_ns('ISO-8859-1');

/* Setting target encoding using option after parser has been created */
xml_parser_set_option ($xml_parser, XML_OPTION_TARGET_ENCODING, 'ISO-8859-1');

Some good news exists in light of all this. The encoding of the source document is auto-
matically detected. It is highly suggested that the document contain an XML declaration with
the encoding declaration. When the document is being parsed, the encoding specified in the
encoding declaration will be used to read the characters in the document. You might have read
that the source encoding must be ISO-8859-1, US-ASCII, or UTF-8, but the encoding can be any
encoding supported by libxml2, which includes many more options than just the three listed.

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)300

6331_c08_final.qxd 2/16/06 4:48 PM Page 300

Character Data Handling
Handling character data events is another area that has caused many developers a headache
or two. Many developers have coded their applications expecting that character data will
behave in a certain manner when being sent to the handler. By this I mean that content can
be split and sent to the handler, and many developers have come to think that it is acceptable
to assume that data is split the same way every time. Whether or not this always worked in an
application under PHP 4 and started causing problems when the code was migrated to PHP 5,
the underlying assumption is incorrect; in other words, the application was not coded cor-
rectly in the first place. SAX works on streaming data. You cannot assume that character data
will not be broken up and sent to the character data handler in chunks; in addition, it is wrong
to think that the data will be sent in the same chunks every time.

Line breaks are one area where data is guaranteed to be chunked differently using PHP 5
than when using PHP 4. For example, under PHP 4, you might have code such as the following
that expects line feeds within content to cause data to be chunked. In this example, data sent
to the characterData handler will be printed surrounded by brackets []:

function characterData($parser, $data) {
print "[$data]";

}

function startElement($parser, $data, $attrs) {
print "<$data>";

}

function endElement($parser, $data) {
print "</$data>";

}

$xmldata = "<root>this \n that</root>";
$xml_parser = xml_parser_create();
xml_parser_set_option ($xml_parser, XML_OPTION_CASE_FOLDING, 0);
xml_set_element_handler($xml_parser, "startElement", "endElement");
xml_set_character_data_handler($xml_parser, "characterData");
xml_parse($xml_parser, $xmldata, true);

The output when run under PHP 4.x looks like this:

<root>[this][
][that]</root>

The line feed caused the data to be sent in three parts to the characterData() function.
When run under PHP 5, the output is much different:

<root>[this
that]<root>

In this case, the data was not split up but rather sent as a single string to the characterData
handler. Any application that begins to have problems after migration because of this issue is
coded incorrectly. The only way to resolve this issue is to fix the application code.

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 301

6331_c08_final.qxd 2/16/06 4:48 PM Page 301

Default Handler
The default handler is definitely a problem when migrating from PHP 4 to PHP 5. Unfortu-
nately, this problem has no current workarounds. I will first explain what the default handler
is meant to handle. Under PHP 4, the default handler processes anything within a document
not handled by any other handler. For example, the default handler processes the XML decla-
ration, element declarations, and attribute declarations. Using PHP 5, the default handler
does not currently process any of these. The following code demonstrates how to use the
default handler under PHP 4 and under PHP 5:

<?php
function defaultData($parser, $data) {

print "$data";
}

function startElement($parser, $data, $attrs) {
print "<$data>";

}

function endElement($parser, $data) {
print "</$data>";

}

$xmldata = '<?xml version="1.0"?>
<!DOCTYPE root SYSTEM "http://www.example.com/dtd" [

<!ENTITY myEntity "Entity Text">
<!ELEMENT root (e1, e2)>
<!ELEMENT e1 ANY>
<!ELEMENT e2 ANY>

]>
<root><e1>&myEntity;</e1><e2/></root>';
$xml_parser = xml_parser_create();
xml_parser_set_option ($xml_parser, XML_OPTION_CASE_FOLDING, 0);
xml_set_element_handler($xml_parser, "startElement", "endElement");
xml_set_default_handler($xml_parser, "defaultData");
xml_parse($xml_parser, $xmldata, true);
?>

Running this code under PHP 4, you get the following output:

<?xml version="1.0"?>
<!DOCTYPE root SYSTEM "http://www.example.com/dtd" [

<!ENTITY myEntity "Entity Text">
<!ELEMENT root (e1, e2)>
<!ELEMENT e1 ANY>
<!ELEMENT e2 ANY>

]>
<root><e1>&myEntity;</e1><e2></e2></root>

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)302

6331_c08_final.qxd 2/16/06 4:48 PM Page 302

The same code run under PHP 5 produces much different results:

<root><e1>&myEntity;</e1><e2></e2></root>

The entire prolog of the document is missing.
As I mentioned, this is definitely a problem, and no simple workaround exists. It is possible

that in future versions of PHP 5 it may be fixed or new functionality will be added to support
capturing this data. Currently, however, PHP 5.1 does not contain any solutions to this issue.
If this information is vital to your application, you might want to think about building the xml
extension using expat rather than the default libxml2 library.

Parser Information
Byte index and column number are two pieces of information that will not only be different
from values obtained running code under PHP 4 but also not be considerably valuable when
running under PHP 5. The following example examines the information returned when pro-
cessing a CDATA section. For brevity, empty data passed to the characterData() function is
ignored and not processed:

<?php
function printInfo($parser, $output) {

printf($output,
xml_get_current_line_number($parser),
xml_get_current_column_number($parser),
xml_get_current_byte_index($parser));

}

function characterData($parser, $data) {
if (trim($data) == "") return;

print "Data: $data END Data\n";
printInfo($parser, "at line %d, col %d (byte %d)\n");

}

$xmldata ='<?xml version="1.0" encoding="iso-8859-1" ?>
<data>
<![CDATA[
multi
line
CDATA
block
]]>
</data>';
$xml_parser = xml_parser_create();
xml_set_character_data_handler($xml_parser, "characterData");
xml_parse($xml_parser, $xmldata, true);
?>

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 303

6331_c08_final.qxd 2/16/06 4:48 PM Page 303

The following is the output from PHP 4 or PHP 5 using the expat library:

Data: multi END Data
at line 4, col 0 (byte 65)
Data: line END Data
at line 5, col 0 (byte 72)
Data: CDATA END Data
at line 6, col 0 (byte 79)
Data: block END Data
at line 7, col 0 (byte 86)

If you have been using this functionality under PHP 4, the output most likely looks famil-
iar. Columns start at 0 and indicate the starting position of the currently handled data. Line
numbers indicate the current line number of the data being processed. Bytes indicate the
number of bytes processed up until the start of the data being processed. The output from
PHP 5 is much different:

Data:
multi
line
CDATA
block
END Data
at line 3, col 10 (byte 22)

Although the data was sent as a single block, the last line is informative, especially when
compared to the last line from the PHP 4 output.

The line numbers here are different because of how the data was chunked. Under PHP 4,
empty data chunks are not processed, and the first character within the CDATA section is a
line feed. This is not displayed in the PHP 4 example but corresponds to line number 3. Com-
pared to the output under PHP 5, the line numbers match correctly. Under PHP 5, the line
number, indicating the starting line of the data being processed, is 3, which corresponds to
the starting line number the initial line feed is on.

The column number is a different story. In each case in the PHP 4 output, the column
number is 0. This is correct because the data being processed begins at column position 0
every time according to the output. Under PHP 5, however, the column number is 10. This
also is correct in this case. Remember, the column number is the starting column for the data
being processed, and with libxml2, the starting column position is 1. The data being
processed begins directly after the opening CDATA tag. Counting the columns for <![CDATA[,
where columns 1 starts before the first <, the line break starts at column 10. I use the term
line break here rather than line feed because under Windows your data may contain carriage
returns. Although in this instance the column number is correct, you may run into other
cases where it is not. One such case occurs when processing starting element tags containing
attributes and/or namespace declarations.

The last piece of information, the byte index, is way off under PHP 5. The number of bytes
from PHP 4 is 86, which includes the XML declaration and all data prior to the closing] for the
CDATA section. Line breaks are counted as single line feeds here. The count of 22 under PHP 5
is not even close to this number. The XML declaration alone is 46 bytes. Currently, the byte

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)304

6331_c08_final.qxd 2/16/06 4:48 PM Page 304

count is useless information when running under PHP 5. If your application relies on this to
be accurate, it is highly recommended you build this extension with expat rather than libxml2.

Entities
Basic entity processing works just as well under PHP 5 as it did under PHP 4. Issues begin to sur-
face when entities reference other entities. As long as the entities are not being expanded or the
expanded entities do not contain additional entity references, migration will not be an issue. In
the event an entity being expanded does contain an entity reference, the encapsulated entity ref-
erence is included as character data in an unexpanded form. This then also leads to a difference
when using the external entity reference handler.

An entity reference referencing an external entity reference, once expanded, will not han-
dle the contained external entity reference, and the external entity reference handler will not
be executed. For example:

<?php
function extEntRefHandler($parser, $openEntityNames, $base, $systemId, $publicId) {

var_dump($openEntityNames);
var_dump($systemId);
return TRUE;

}

$xml_parser = xml_parser_create();
xml_parser_set_option($xml_parser, XML_OPTION_CASE_FOLDING, 0);
xml_set_external_entity_ref_handler($xml_parser, "extEntRefHandler");

$data = '<?xml version="1.0"?>
<!DOCTYPE root SYSTEM "/just/a/test.dtd" [
<!ENTITY systemEntity PUBLIC "aa" "xmltest2.xml">
<!ENTITY testEntity "&systemEntity;">
]>
<root>

&testEntity;
</root>';

xml_parse($xml_parser, $data, TRUE);
xml_parser_free($xml_parser);
?>

The document used in this scenario uses the entity reference &testEntity; within the
document. This entity reference contains the entity reference &systemEntity, which in fact is
an external entity reference. When the code is executed and the &testEntity; entity reference
encountered, one would expect the external entity handler to be executed because of the ref-
erence to the external entity reference. In fact, under PHP 4, it does. For example:

string(23) "systemEntity?testEntity"
string(12) "xmltest2.xml"

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 305

6331_c08_final.qxd 2/16/06 4:48 PM Page 305

The parameters $openEntityNames and $systemId are dumped to the output. As you can
clearly see, the $openEntityNames variable contains both of the entities in the stack. The first
entity reference encountered was &testEntity;, which contained &systemEntity;. Although
the external entity reference handler is executed for the &systmEntity; entity reference, it is
initially called by the use of the &testEntity; entity reference in the document.

Running the same code under PHP 5 results in no output. The external entity reference han-
dler is never executed. When the entity reference &testEntity; is encountered in the document,
in this case it may be expanded, but no further expansion is performed. Its contents are cur-
rently handled as pure character data. This also explains why the parameter $openEntityNames
is never a list of entities. Because entity references do not expand entity references they may
contain, there is never a stack of entity references to pass. The external entity reference handler
will be called only when an external entity reference is used directly within a document.

Seeing Some Examples in Action
I have already provided many small examples throughout this chapter, but it is a good idea for
you to see a full example of working with this extension. While thinking about the best way to
demonstrate the use of SAX, I remembered that many DOM parsers are built upon SAX. This
example will create a DOM parser using this extension yet leverage the DOM API for the tree
creation. I realize this may be pointless since DOM already builds a tree from data, but you
could also modify the example with custom objects or containers to create a DOM parser
without the use of the DOM extension. This example also utilizes much of the functionality
within the xml extension, making it an interesting example all around.

Here’s the code:

class cXML extends DOMDocument {
private $currentNode = NULL;
public $separator = ":";

public function __construct() {
parent::__construct();
$this->currentNode = $this;

}

function startElement($parser, $data, $attrs) {
try {

$nsElement = explode($this->separator, $data);
if (count($nsElement) > 1) {

$uri = array_shift($nsElement);
$name = implode($this->separator, $nsElement);
$node = $this->createElementNS($uri, $name);

} else {
$node = $this->createElement($data);

}

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)306

6331_c08_final.qxd 2/16/06 4:48 PM Page 306

$this->currentNode = $this->currentNode->appendChild($node);
foreach ($attrs AS $name=>$value) {

$nsAttribute = explode($this->separator, $name);
if (count($nsAttribute) > 1) {

$uri = array_shift($nsAttribute);
$name = implode($this->separator, $nsAttribute);
$node = $this->currentNode->setAttributeNS($uri, $name, $value);

} else {
$this->currentNode->setAttribute($name, $value);

}
}

} catch (DOMException $e) {
throw $e;

}
}

function endElement($parser, $data) {
$this->currentNode = $this->currentNode->parentNode;

}

function characterData($parser, $data) {
try {

$this->currentNode->appendChild(new DOMText($data));
} catch (DOMException $e) {

throw $e;
}

}

function PIHandler($parser, $target, $data) {
$node = $this->createProcessingInstruction($target, $data);
$this->currentNode->appendChild($node);

}
}

The first step is to define the class that will be used to handle the events. In this case, only
the class extends the DOMDocument class. Not only is it kind of neat to be able to use an extended
DOM object within the xml parser, but also in this case since the DOM API is being used to cre-
ate the tree, it offers direct access to the DOMDocument object within the handler events.

Two properties are first defined. The private $currentNode property is used within the
methods to keep a handle on the current element in scope. The public $separator property
is used for namespaced documents, so the separator used by the xml parser is known and can
be used to extract information. The use of these will become clearer as the methods are bro-
ken down.

The constructor sets up the initial environment here. When the object is instantiated,
the currentNode property needs to be set to point to the instantiated object. At this point, any-
thing that happens as a result of parsing the XML data will be performed within the scope of

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 307

6331_c08_final.qxd 2/16/06 4:48 PM Page 307

the DOMDocument. Before looking at the startElement() and endElement() methods, let’s jump
down to the PIHandler() method.

PIs are valid prior to the document element, so it is a nice and simple method to start
with. The xml parser passes the target and data for a PI to the handler. All that is performed
in this method is that a new PI node is created and appended to the node specified by the
currentNode property. As I said, this is a simple starting point.

The startElement() method is a bit more complex. This example code was created to
be able to process and create namespaced documents. This is where the separator property
comes into play. The extension prefixes local names with the full namespace separated by
a user-definable character. Many namespaces, such as URLs, contain the colon character, so
something else will be used. The property just allows the character to be set rather than hard-
coded into the class definition, allowing for a bit more flexibility.

The first thing the startElement() method does is explode the tag name being passed in
from the xml parser. As long as the separator in use is not contained in any namespaces, the
resulting array will either contain a single value, indicating that the element is not in a name-
space, or contain two values indicating that the element, whose local name is now in index 1
of the array, is in a namespace, which I identified by index 0 of the array.

If no namespace exists, a new element node is created normally. If a namespace does exist,
the namespace is extracted from the array, and the tag name is built by imploding the new array.
The implode() function is called in the event the separator character being used also is part of
the tag name. The local name for the element would need to be put back together. Once the
namespace and local name are pieced back together, a namespaced element node is created.
The new node is then appended as a child of the node referenced by the currentNode property,
and currentNode is set to this new element. Once a start tag is encountered, the scope moves
down a level into the subtree.

Attributes are then handled next. The xml parser passes an array of name/value pairs to the
startElement() method holding all the attributes for the element. Namespaces are handled in
the same fashion as elements, and the rest of the code should be easy to dissect. The only differ-
ence is how attribute nodes are created and appended, which is out of the scope of this chapter;
you find can more information about this in Chapter 6.

Just like the start tag moving the scope down a level into the subtree, an ending tag will
move the scope up one level. The endElement() method just changes the scope to the parent of
the node referenced by the currentNode property. Any processing that occurs after an ending tag
occurs on the parent of the node that just ended. Any time the startElement() method is called,
a corresponding endElement() method will be called. This is even true for empty-element tags.
A tag like <element1 /> will issue both the start element event and the end element event.

The last method for this class is the characterData() method. This method will handle the
character data events. Anything being handled by this is created as a text node within the tree.
It is currently not possible to determine what type of data it is because this method handles
character data, CDATA, and entity references. The text node is just added as a child of the node
referenced by the currentNode property.

That defines everything currently within the class. It is not complete and will not work
with all documents. For example, prefixes for namespaces are lost, which results in problems
because namespaces are being created as default namespaces in every instance. Also, name-
spaced attributes will not work correctly either. As mentioned, because of the current state
of the character data handler, everything sent there is created as a text node. If you have the
desire to do so, expanding upon this example will provide you with some great experience of

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)308

6331_c08_final.qxd 2/16/06 4:48 PM Page 308

working with XML and the xml extension. You have the option to continue using the DOM
API, which will also give you more exposure to the DOM extension, or create your own custom
tree handling routines, which will allow you to work with a DOM-like API without the need for
the DOM extension. The latter has been done before, such as with the XML_Tree class; you can
find this example in the PEAR repository and referenced later in Chapter 13. For example:

$xml_parser = xml_parser_create_ns(NULL, "@");

$objXMLDoc = new cXML();
$objXMLDoc->separator = "@";

xml_set_object($xml_parser, $objXMLDoc);
xml_parser_set_option ($xml_parser, XML_OPTION_CASE_FOLDING, 0);
xml_set_element_handler($xml_parser, "startElement", "endElement");
xml_set_character_data_handler($xml_parser, "characterData");
xml_set_processing_instruction_handler($xml_parser, "PIHandler");

/* The following can be changed to any XML document */
$xmldata = "<root><element1>text</element1><e2>text<e3>more</e3>text</e2></root>";

try {
if (! xml_parse($xml_parser, $xmldata, true)) {

$xmlError = libxml_get_last_error();
var_dump($xmlError);

}
} catch (DOMException $e) {

var_dump($e);
}

xml_parser_free($xml_parser);

print $objXMLDoc->saveXML();

The remainder of this example is straightforward. A namespace-aware parser is created
using the default encoding and using @ for the namespace separator. The object for event han-
dling is created, and its separator property is set to the separator used for the parser. The object
is then registered with the parser, and its methods are registered to handle events. The case
folding option is disabled, leaving the tag names in their native case rather than forcing them
all to uppercase.

This example hard-codes an XML document set in the $xmldata variable. Parsing is then
performed all at once. Feel free to try different documents and even stream chunks of the doc-
ument; the results should be the same. This example uses try/catch blocks because it uses the
DOM extension. The parser will throw exceptions in certain cases, so this just ensures they are
caught and handled properly.

To recap, this demonstrates how to use the xml extension in a semi-real-world case; I say
this because using the DOM API is pointless unless only certain pieces of the document were
actually to be built. It may also help with many of the concepts of XML. If you have little to no

CHAPTER 8 ■ SIMPLE API FOR XML (SAX) 309

6331_c08_final.qxd 2/16/06 4:48 PM Page 309

experience using XML, some of these concepts may be new to you. Being able to see the con-
struction of XML from both a stream parsing view and a tree-based view makes it a bit easier
to understand how you put everything together. This example is far from complete and prone
to error when using namespaced documents. Fixing the issues and possibly creating a tree
structure without using the DOM API is an exercise I will leave up to you.

Conclusion
This chapter has taken a hard look at the xml extension in PHP 5. Through examples and expla-
nations, the API should be fairly clear to you. I have identified many issues you may encounter
when migrating from PHP 4 to PHP 5, offering some guidance on how to work around the issues;
other examples may leave you with no choice but to recode your application or build the xml
extension with expat. It all depends on how XML-extensive the documents you are processing
are and what information is critical to the operation of the application.

This chapter introduced you to stream-based parsing and what that means in terms of
parsing. It not only offers fast parsing, but it also requires a low amount of system resources.
The only issues you may have are the compatibility issues between this extension in PHP 4
and PHP 5.

The next chapter will introduce you to a new stream-based parser, XMLReader. I recom-
mend you read through that chapter carefully; it offers many improvements over parsing with
SAX. In fact, many developers who have tried XMLReader prefer it to the xml extension and
have rewritten code to take advantage of the new extension. That decision is left up to you,
but do not rush to any decision until you have at least read the next chapter.

CHAPTER 8 ■ SIMPLE API FOR XML (SAX)310

6331_c08_final.qxd 2/16/06 4:48 PM Page 310

XMLReader

XMLReader is a new stream-based parser in the PHP 5 lineup. If you skipped the previous
chapter on the xml extension and do not know what a stream-based parser is, it may be bene-
ficial to at least review that chapter because it explains in more detail what a stream-based
parser is and how it works.

This chapter will introduce you to the XMLReader extension, explain the reasons for the
existence of yet another stream-based parser, and show how to use this extension. The chap-
ter will show how to use the API through short examples, with a complete example toward the
end of this chapter. You can find additional examples of using this API in other chapters of this
book, such as Chapter 14, which covers RDF, and Chapter 17, which covers REST. By the end
of this chapter, you should understand what XMLReader is, know what its advantages and dis-
advantages are, and have a working knowledge of how to use the API in your everyday coding.

■Caution Constants have been moved to class constants in PHP 5.1. This differs from PECL version 1.0.1
where constants are regular constants. The examples in this book use class constants to maintain compati-
bility with the PHP releases.

Introducing XMLReader
The XMLReader extension is an object-oriented API that uses the libxml2 implementation,
which in turn is based on the C# implementation of the XmlTextReader API (http://
dotgnu.org/pnetlib-doc/System/Xml/XmlTextReader.html). The XMLReader extension is
a forward-only, stream-based parser, but unlike SAX, it is a pull rather than a push parser.
As you move through a document, the parser’s cursor positions itself on the different nodes,
allowing you to access information from the current node. It offers many advantages over the
xml extension, including additional functionality. As of PHP 5.1, this extension is part of the
core PHP code base and can be built using the following configuration option:

--with-xmlreader

If you are still using PHP 5.0.x, the XMLReader extension is available from the PECL
repository at http://pecl.php.net/package/xmlReader. You can install it using the PEAR
installer or build it by adding it to your PHP source tree. Refer to the PHP manual for further
information about building extensions.

311

C H A P T E R 9

■ ■ ■

6331_c09_final.qxd 2/16/06 4:45 PM Page 311

Push vs. Pull Parser
The previous chapter introduced you to stream-based parsing and the xml extension in par-
ticular. It explained that a push parser, in simple terms, pushes the data to your application
while the XML is being parsed. The parser basically controls the flow of your application.
A pull parser works much differently. It still operates on chunks of data at a time, providing
a low memory footprint, but the application is in control of what data it wants and when the
data is read from the stream. A pull parser allows you to free yourself from the control a push
parser has over your application.

You can think of the difference between the two in terms of watching television. A push
parser is like watching television without a digital video recorder. You are sitting there watching
a show, and the commercials come on. If you are interested in anything in the commercials,
you have to sit there and watch them, deciding which ones you like and which ones you don’t.
You can’t get up and grab a snack, or you might miss something. You are not in control of the
commercials. They, speaking in terms of a push parser, are pushed to your television, and you
can’t skip them, because you might want to watch one and can’t pause them.

A pull parser, on the other hand, is like watching television with a digital video recorder
(without the rewind feature, of course). By using the play, pause, and fast-forward buttons on
the remote, you control the shows and commercials you watch. The current stream of XML
data is comparable to the buffer of the digital video recorder. Like in the previous scenario, the
commercials come on. Again, you might be interested in one of them. This time, you hit
the pause button and grab something to eat. You return and decide you don’t want to watch the
commercial, so you fast-forward to the next one or even skip the next one. The push parser
lets you control the movement of the parser, which is when data is read. When it stops at the
point indicated, you can do anything you like in your code. The parser won’t start reading
more data until you tell it to do so. Your code could even stop reading the XML data and move
on to something else. With a push parser, you really have no escape. Your application must
read and act on everything in the buffer until all the data in the current stream has been read.
It wouldn’t be until the next xml_parse() call that you could safely stop reading XML data and
have your application do something else.

This analogy may be a little over the top, but it should give you the idea. When using
a pull parser, you are in control of the processing and of when data should be read. You are
not at the mercy of the parser. As you will see in this chapter, this has many advantages over
the traditional pull parser model, not to mention is much easier to use.

Advantages Over the xml Extension
If you followed along with the previous section, comparing a push and pull parser to watching
television without and with a digital video recorder, you may already have realized one of the
advantages of XMLReader over the xml extension. With the XMLReader extension, you control
when the data should be accessed. This is just one of the many benefits of this extension. Other
advantages include better namespace support, streaming validation support, a simple API,
and potentially faster processing.

Namespace Support
From the examples in the previous chapter, you have most likely realized that processing
namespaced documents is a real headache. The tag name is sent to the handler in the form

CHAPTER 9 ■ XMLREADER312

6331_c09_final.qxd 2/16/06 4:45 PM Page 312

of the namespace URI, the separator, and the local name of the element concatenated
together. It is up to you, as the developer, to split these based on the separator character just
to get access to the name of the element. This doesn’t even take into account what it requires to
access the prefix, if any, of the element. The same goes for attributes.

Accessing namespace information is much simpler using XMLReader. Once the parser
is positioned on an element, you can use the object properties to access both the URI and the
prefix for the element. The API also allows access to both the local name and the qualified
name of the element. No more jumping through hoops—the information is available in a
simple-to-use manner. You can find more details and examples later in the “Dealing with
Namespaces” section.

Validation
If you want to perform validation, either by using RELAX NG or by using XML Schemas, you
are pretty much out of luck with the xml extension. It will simply parse an XML document
without regard to document validity. XMLReader adds the ability to validate a document while
parsing. The API supports currently only RELAX NG, but with additions to the libxml2 library
released in libxml2-2.6.20, PHP 5.2 should have XML Schema support. You can find further
details and examples in the “Performing Validation” section.

Simple API
The xml extension does not have an overly extensive or complicated API. You write handler
functions and register them with the parser, and off it goes to do its thing. This sounds simple,
right? Well it is, but unless you have used the extension before, XMLReader is much easier to
use and understand. In fact, you can implement the majority of the xml extension’s API using
the XMLReader API with one method and two or three object properties. The XMLReader API
is much larger than the xml API (though still very compact), but many of the properties and
methods offer information not obtainable from the xml extension. In addition, XMLReader
offers advanced functionality that is not available using the xml extension.

Faster Processing
SAX parsing, which is what the xml extension does, should offer the fastest processing of XML
data. Using PHP, however, this is typically not true. The numbers are close, but XMLReader can
offer faster processing than the xml extension. Because you, as the developer, are in control of
the parsing, data will be accessed only when needed. The xml extension, on the other hand,
passes data around every time a registered event occurs. If the data from the event is not
needed, it still is passed from the libxml2 library through the extension and finally to your
handler. This data, to reach and be handled by the handler function, must also be converted
into PHP usable data, such as the strings in PHP you already know.

XMLReader, on the other hand, allows you to move through the document, passing the
minimal amount of data. When you reach a point of interest, you then request the specific
data you want. Consider when the xml extension reaches the start of an element containing
attributes. After testing the element tag name, the parser determines it can skip this element.
The parser, though, has already processed all the attributes, packaged them, and sent them
along as a parameter to the handler. With XMLReader, you request the attributes, so these are

CHAPTER 9 ■ XMLREADER 313

6331_c09_final.qxd 2/16/06 4:45 PM Page 313

not processed until you need or want them. It is small details like these that give XMLReader
better performance. Just think of what you would need to do with namespaced documents.

Chapter 11 will return to this issue. Within that chapter, you’ll compare all the different
parser extensions in PHP 5, with respect to their speeds, using different methods and using
different sets of data. You will find hard numbers comparing the processing speeds using the
xml extension and using XMLReader, so you will be able to judge for yourself.

Advanced Feature Set
Validation is one feature available using XMLReader and not the xml extension. Advanced
namespace support in XMLReader is another. One of the best features of XMLReader, in my
opinion, is the ability to be able to determine the type of node. Using the xml extension, in
many cases the same handler handles different node types. For example, the character data
handler takes care of text content and CDATA sections. You have no way to know what type
of character data you are handling at the time. Text content is much different from CDATA,
because CDATA can contain characters that are illegal to use as text content. This may affect
how you need to handle the data.

Using the XMLReader API, you can easily access the type of node the parser is positioned
on through a property from the object. Every type of node is available, so it is simple to process
different types of data. A quick summary of some of the other features include the depth with
the tree, the number of attributes held by an element, the exporting of nodes to the DOM
extension, and the parser control while loading a document. This is just a subset of additional
features, but these are some of the more important ones. Throughout this chapter, you will
examine these features and see examples of them, so don’t worry if you don’t fully understand
everything presented so far.

Using XMLReader
XMLReader is an object-oriented API. If you couldn’t tell by now, I happen to be a bit partial
to OOP when dealing with XML APIs. I find it a bit more manageable to deal with documents
in this manner. The steps you need to take to process a document are short and simple:

1. Create the XMLReader object.

2. Set any parser options not already set.

3. Parse the document.

Creating the XMLReader Object
You can directly instantiate, or create, the XMLReader object using some methods statically. In
this manner, it is similar to creating a DOMDocument object. The techniques aren’t very different
from each other. Calling the methods statically to create the object saves a line of code. You
can directly instantiate the object in the same manner you normally create objects using the
new keyword:

$objReader = new XMLReader();

The constructor takes no arguments and results in an object of type XMLReader.

CHAPTER 9 ■ XMLREADER314

6331_c09_final.qxd 2/16/06 4:45 PM Page 314

This doesn’t get you too far, though. The object is useless until it has a data stream. Data
can be read from a string or directly from a file. This is an advantage over the SAX implemen-
tation. Using the xml extension, it is up to you to read the data from a file and then pass it to
the parser. Here, the reader can take a URI and pull directly from it. The methods used in these
cases are open() and XML():

/* method prototypes */
boolean XMLReader::open(string URI)
boolean XMLReader::XML(string source)

The open() method is used to read data from a URI, which is specified by the URI param-
eter. The XML() method reads data from a string containing the document in memory, which
is specified by the source parameter. Both methods return a Boolean indicating success or
failure:

/* Set string data to read */
$data = '<root>my document</root>';
$objReader->XML($data);

/* Set URI pointing to document to parse */
$objReader->open('http://www.example.com/doc.xml');

You can also call these methods statically. This eliminates the need to first instantiate the
XMLReader object:

/* Create object and set string data to read */
$data = '<root>my document</root>';
$objReader = XMLReader::XML($data);

/* Create object and set URI pointing to document to parse */
$objReader = XMLReader:: open('http://www.example.com/doc.xml');

Creating the object first and then setting the input or doing it all at once using static
methods is clearly up to you. You can save a few additional processing cycles by calling the
methods statically, but unless this is critical to you, either way works just as well.

■Note Throughout this chapter, the instantiated XMLReader object will simply be referred to as the reader.

One thing that is not currently possible using XMLReader but can be done using the xml
extension is parsing an in-memory document that is broken up into multiple strings. For exam-
ple, you can make multiple calls to xml_parse() where each call contains only a portion of the
document to process. When using string data under XMLReader, the string must contain the
entire document to be processed. This is something that may be expanded on in a future ver-
sion, but for now when parsing large documents, using a file or stream and using the open()
method are your best bets for keeping memory usage low. These do get processed via chunks
of data without needing all the data to be residing in memory at one time.

CHAPTER 9 ■ XMLREADER 315

6331_c09_final.qxd 2/16/06 4:45 PM Page 315

Setting Parser Properties
Once you have created the reader and set the input, you can set parser properties to further
control how the document is parsed. You must set these properties after setting the input; oth-
erwise, an error will be returned. XMLReader uses different parser options than the DOM and
SimpleXML extensions, because of the libxml2 API. It was not possible to combine them into
a single set of PHP constants. Table 9-1 describes the parser properties, which are basically a
subset of the other libxml parser options from Chapter 5 for XMLReader.

■Caution You must set parser properties after setting the input data on the XMLReader object. Any
attempts to set these properties prior to setting the input will fail and either return FALSE or return an error
message.

Table 9-1. XMLReader Parser Properties

Property Value Description

XMLREADER_DEFAULTATTRS 2 Forces the creation of default attributes within the docu-
ment as defined in a DTD. With the current state of the
XMLReader API in libxml2, default attributes are not
available unless directly accessed by name. You can find
a further explanation of this in the “Attributes” section
later in this chapter.

XMLREADER_LOADDTD 1 Loads the DTD but does not validate the document.

XMLREADER_SUBST_ENTITIES 4 Substitutes entity references with their replaced content.
Entity references will not be generated within the document.

XMLREADER_VALIDATE 3 Loads the DTD and validates the document based on the
DTD while parsing.

You access parser properties through the getParserProperty() and setParserProperty()
methods:

/* Method prototypes */
boolean XMLReader::getParserProperty(int property)
boolean XMLReader::setParserProperty(int property, boolean value)

The property parameter is one of the properties listed in Table 9-1. The value parameter
for the setParserProperty() method is a Boolean indicating whether the specified property
is enabled or disabled. The default value for all properties is FALSE. Both methods return a
Boolean indicating whether the call succeeded or failed.

■Note Some parser properties may not be changed after the initial read of the input data. For instance,
a DTD may not be loaded after the reading of the data has already begun.

CHAPTER 9 ■ XMLREADER316

6331_c09_final.qxd 2/16/06 4:45 PM Page 316

The following piece of code tests the value of the XMLREADER_SUBST_ENTITIES property. If
the current value is FALSE, it then sets it to TRUE. It is a bit redundant and used only to illustrate
both methods at once. When setting the value for a parser property, any existing value is over-
written, causing the getParserProperty() call in the following code snippet to be unnecessary:

if (! $objReader->getParserProperty(XMLREADER_SUBST_ENTITIES)) {
$objReader->setParserProperty(XMLREADER_SUBST_ENTITIES, TRUE);

}

Parsing the Document
Now that the reader is finally prepared, you can begin to parse the document. XMLReader
is kind of a hybrid parser. The document is represented as nodes, just like with DOM and
SimpleXML, but processed in a manner similar to the xml extension. Parsing the document
consists of stopping at nodes along the way where the type of node encountered depends
upon the method to position the parser. When performing a normal read with the reader,
the parser will stop at all nodes except for attributes. You can access attributes differently
than all other node types within a document. For this reason, attributes have their own sec-
tion, “Attributes,” which deals the functionality available to deal with them. Table 9-2, for
PHP 5.1 and higher, and Table 9-3, when using PECL version 1.0.1, describe the constants
used for the node types you may encounter when using XMLReader.

Table 9-2. XMLReader Node Type Constants

Node Type Value Description

XMLREADER::NONE 0 No current node present. This type is encoun-
tered prior to the first read and after the entire
document has been processed.

XMLREADER::ELEMENT 1 Element node. This type signals the starting tag
of an element.

XMLREADER::ATTRIBUTE 2 Attribute node.

XMLREADER::TEXT 3 Text node.

XMLREADER::CDATA 4 CDATA section node.

XMLREADER::ENTITY_REF 5 Entity reference node.

XMLREADER::ENTITY 6 Entity node.

XMLREADER::PI 7 PI node.

XMLREADER::COMMENT 8 Comment node.

XMLREADER::DOC 9 Document node.

XMLREADER::DOC_TYPE 10 Document type node.

XMLREADER::DOC_FRAGMENT 11 Document fragment node.

XMLREADER::NOTATION 12 Notation node.

XMLREADER::WHITESPACE 13 Insignificant whitespace. This type of node is a
result of being whitespace and within the scope
of a node defining xml:space with the value of
default.

Continued

CHAPTER 9 ■ XMLREADER 317

6331_c09_final.qxd 2/16/06 4:45 PM Page 317

Table 9-2. Continued

Node Type Value Description

XMLREADER::SIGNIFICANT_WHITESPACE 14 Significant whitespace. This is whitespace that
either is being preserved from a node defining
xml:space with the value of preserve or not in
the scope of xml:space at all.

XMLREADER::END_ELEMENT 15 End element tag.

XMLREADER::END_ENTITY 16 End entity tag.

XMLREADER::XML_DECLARATION 17 XML declaration.

Table 9-3. XMLReader Node Type Constants for PECL Version 1.0.1

Node Type Value Description

XMLREADER_NONE 0 No current node present. This type is encoun-
tered prior to the first read and after the entire
document has been processed.

XMLREADER_ELEMENT 1 Element node. This type signals the starting tag
of an element.

XMLREADER_ATTRIBUTE 2 Attribute node.

XMLREADER_TEXT 3 Text node.

XMLREADER_CDATA 4 CDATA section node.

XMLREADER_ENTITY_REF 5 Entity reference node.

XMLREADER_ENTITY 6 Entity node.

XMLREADER_PI 7 PI node.

XMLREADER_COMMENT 8 Comment node.

XMLREADER_DOC 9 Document node.

XMLREADER_DOC_TYPE 10 Document type node.

XMLREADER_DOC_FRAGMENT 11 Document fragment node.

XMLREADER_NOTATION 12 Notation node.

XMLREADER_WHITESPACE 13 Insignificant whitespace. This type of node is a
result of being whitespace and within the scope
of a node defining xml:space with the value of
default.

XMLREADER_SIGNIFICANT_WHITESPACE 14 Significant whitespace. This is whitespace that
either is being preserved from a node defining
xml:space with the value of preserve or is not in
the scope of xml:space at all.

XMLREADER_END_ELEMENT 15 End element tag.

XMLREADER_END_ENTITY 16 End entity tag.

XMLREADER_XML_DECLARATION 17 XML declaration.

Not every node type listed in Table 9-2 is currently used. Some may be left over from older
libxml2 code, and some may be for future use. For instance, it is doubtful that you will ever run
into the node types XMLREADER_ENTITY, XMLREADER_END_ENTITY, and XMLREADER_XML_DECLARATION.

CHAPTER 9 ■ XMLREADER318

6331_c09_final.qxd 2/16/06 4:45 PM Page 318

I will not say “never” here, because it is possible they may be used in a future version of libxml2;
it is for this reason they are exposed through the XMLReader interface. It would be difficult to
deal with node types that get implemented in the libxml2 API but are not exposed through the
XMLReader extension, even though the constant has been available in older libxml2 versions.

I will use the document in Listing 9-1 within this chapter unless indicated otherwise. It
represents the contents of an XML document within the file named reader.xml.

Listing 9-1. Contents of File reader.xml

<?xml version='1.0'?>
<!DOCTYPE chapter [
<!ELEMENT chapter (title, para, section)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT para ANY>
<!ATTLIST para name CDATA "default">
<!ELEMENT section ANY>
<!ATTLIST section id ID #REQUIRED>
]>
<chapter>

<title>XMLReader</title>
<para>

First Paragraph
</para>
<section id="about">

<title>About this Document</title>
<para>

<!-- this is a comment -->
<?php echo 'Hi! This is PHP version ' . phpversion(); ?>

</para>
</section>

</chapter>

Moving Through the Document
Unless you need access to attributes, moving through the document involves only two meth-
ods. These methods are read() and next(). In fact, you can access the entire document using
only the read() method. Using the document from Listing 9-1, the reader will move to each
node within the document and record the number of nodes accessed:

<?php
$objReader = XMLReader::open('reader.xml');
$count = 0;
while ($objReader->read()) {

$count++;
}
print "Nodes Accessed: $count\n";
?>

CHAPTER 9 ■ XMLREADER 319

6331_c09_final.qxd 2/16/06 4:45 PM Page 319

The result of this example is the text Nodes Accessed: 28. Now I will explain what just
happened and what 28 represents.

The read() method instructs the parser to move to the next node in the document, in
document order. Once setting the input, think of the parser as being positioned on a docu-
ment node. This is a concept from the tree parsers, but remember, XMLReader is a hybrid so
the same concepts apply. Each time the read() method is called, the parser moves to the next
node in the document, returning TRUE or FALSE. A return value of FALSE indicates that move-
ment has failed, normally signaling that the end of the data stream has been reached. When
using a well-formed document, this means the parser has reached the end of the document.
Because of the construction of this method, you can access every node, except the attribute
nodes, using the read() method within a while loop. Once the method returns FALSE, the end
of the document has been reached, and execution moves to the next line of code following
the end of the while block.

The initial read moves the cursor to the document type node. The XML declaration
is skipped in this case. This is one of the cases where a node type is defined,
XMLREADER_XML_DECLARATION, but it is not currently in use. No node types are available for
the contents of the document type declaration, so the following read skips to the next node
after it closes. If you are thinking that the next node encountered is an XMLREADER_ELEMENT
node, representing the opening chapter tag, you are incorrect. The next node is actually
the line breaks, which are XMLREADER_ SIGNIFICANT_WHITESPACE nodes.

With this in mind, you can count the total number of nodes in the document. The num-
ber should total 28 because that is what the code indicated it would be:

• XMLREADER_DOC_TYPE: 1

• XMLREADER_ SIGNIFICANT_WHITESPACE: 11

• XMLREADER_ELEMENT: 6

• XMLREADER_END_ELEMENT: 6

• XMLREADER_TEXT: 2

• XMLREADER_COMMENT: 1

• XMLREADER_PI: 1

And lo and behold, the total number of nodes in the document is 28. You might have come
up with 29, but the line breaks within the first para element are actually part of the text content.
Not to worry—I had to count a couple of times because my total kept coming out to 29.

The next() method is a little different from read(). It works on elements and moves the
cursor much differently than the read() method does. Before trying to understand what it is
exactly and how it works, it is necessary to understand the type of information available each
time the cursor is positioned on a node. Once you understand how to use and access node
information, you will revisit the next() method.

Node Information
You access information for the current node through properties of the reader. All XMLReader
properties are read-only. Remember, it’s called XMLReader for a reason. Table 9-4 describes
the properties and descriptions.

CHAPTER 9 ■ XMLREADER320

6331_c09_final.qxd 2/16/06 4:45 PM Page 320

Table 9-4. XMLReader Object Properties

Property Return Type Description

attributeCount int The number of attributes when positioned on an element
node. All other nodes return a value of 0.

baseURI string The base URI for the current node.

depth int The number of levels deep within the document tree. The
depth begins at zero, so all nodes within the top-level scope
of the document, such as the document element start and
end tags, return a depth of 0.

hasAttributes bool A Boolean indicating the presence of attributes on the cur-
rent node. This property will return FALSE for all node types
other than XMLREADER_ELEMENT.

hasValue bool A Boolean indicating whether the current node, based on its
type, can have a value. This does not mean that the current
node actually has a value.

isDefault bool A Boolean indicating whether the attribute was generated
from the default value in a DTD. Currently this property is
not implemented in libxml2 and always returns FALSE.

isEmptyElement bool A Boolean indicating whether the current element is empty
or FALSE in all other cases. An empty element is considered
to be an empty-element tag only. <a /> will return TRUE, and
<a> will return FALSE.

localName string The local name of the current node.

name string The qualified name of the current node.

namespaceURI string The namespace URI in which the current node resides.

nodeType int An integer representing a node type from Table 9-2 for the
current node.

prefix string The prefix associated with the namespace for the current
node.

value string The value for the current node or empty string when no
value or node type cannot have a value.

xmlLang string The xml:lang in scope for the current node.

Comparing the difference between parsing with the xml extension and XMLReader
clearly shows how much easier XMLReader is to use. The following code demonstrates what
is involved to parse the reader.xml file and print element tags and character data:

<?php
function startElement($parser, $data, $attrs) {

print "<".$data.">";
}

function endElement($parser, $data) {
print $data;

}

CHAPTER 9 ■ XMLREADER 321

6331_c09_final.qxd 2/16/06 4:45 PM Page 321

function characterData($parser, $data) {
print $data;

}

$xml_parser = xml_parser_create();
xml_parser_set_option ($xml_parser, XML_OPTION_CASE_FOLDING, 0);
xml_set_element_handler($xml_parser, "startElement", "endElement");
xml_set_character_data_handler($xml_parser, "characterData");
$handle = fopen("reader.xml", "r");
while ($data = fread($handle, 4096)) {

if (!xml_parse($xml_parser, $data, feof($handle))) {
break;

}
}
fclose($handle);
?>

<chapter>
<title>XMLReader</title>
<para>

First Paragraph
</para>
<section>

<title>About this Document</title>
<para>

</para>
</section>

</chapter>

You can get the same output using XMLReader, which not only is much easier to read but
takes fewer lines of coding:

<?php
$objReader = XMLReader::open('reader.xml');
while ($objReader->read()) {

switch ($objReader->nodeType) {
case XMLREADER_ELEMENT:

print "<".$objReader->localName.">";
break;

case XMLREADER_END_ELEMENT:
print "</".$objReader->localName.">";
break;

CHAPTER 9 ■ XMLREADER322

6331_c09_final.qxd 2/16/06 4:45 PM Page 322

case XMLREADER_TEXT:
case XMLREADER_CDATA:
case XMLREADER_WHITESPACE:
case XMLREADER_SIGNIFICANT_WHITESPACE:

print $objReader->value;
}

}
?>

Notice the last four case statements. XMLReader offers greater information for the data
encountered in the document. While the reader sends all text and CDATA to the character data
handler, each type of node, including whitespace, could be handled differently. In this case,
you wanted the same behavior, so all text content is handled the same way. Try removing the
whitespace types from the list of cases. The only line breaks in the output would be the line
breaks that are part of the First Paragraph text node.

The next() Method
When processing a document, it is not always the case that you need to access every single
node. In fact, it is sometimes desirable to bypass an entire subtree and move to the next sib-
ling node. The next() method provides this ability. When called, this method positions the
cursor on the next node in the document, bypassing any subtree that may exist for the current
node. This means only sibling nodes and nodes following the current node parent’s starting
tag will be accessed. For example:

<?php
$objReader = XMLReader::open('reader.xml');
/* Find the title element */
while ($objReader->read()) {

if ($objReader->nodeType == XMLREADER_ELEMENT
&& $objReader->localName == "title") {
break;

}
}

/* find the section element that is a sibling of title */
while ($objReader->next()) {

if ($objReader->nodeType == XMLREADER_ELEMENT
&& $objReader->localName == "section") {
break;

}
}

/* Descend into subtree of section element */
$objReader->read();
/* First whitespace node is skipped */

CHAPTER 9 ■ XMLREADER 323

6331_c09_final.qxd 2/16/06 4:45 PM Page 323

$depth = $objReader->depth;
while ($objReader->next()) {

/* If depth is less than initial depth, cursor is out of the subtree */
if ($objReader->depth < $depth) {

print "\n**** Ascending rest of tree\n";
print "Current Node: ".$objReader->localName;
print " Type: ".$objReader->nodeType." Depth: ".$objReader->depth."\n";
break;

}
print "Current Node: ".$objReader->localName;
print " Type: ".$objReader->nodeType." Depth: ".$objReader->depth."\n";

}
?>

The code is a bit longer than it needs to be since the section node could have been ini-
tially searched for rather than the first title element node, but this example shows a couple
ways of using the next() method.

The purpose of the first while block should be evident. The reader is moving to each node
in the document until it encounters the first element start tag with the name title. Instead of
using the read() method, the next() method is called, so from the title element node, the
cursor moves to each sibling of this node until it encounters the section element node.

If you look at the document in Listing 9-1 again, you should notice the first child node
for the section element is a significant whitespace. The cursor is positioned on this node
using the read() method, but no processing or testing of the node is performed. Normally,
unless you know the exact contents of the document being processed, this is not a good idea.
For all you know, the document might not have any whitespaces, and the first child could be
an important node type for the application. This is not the case here, so the lone call to the
read() method is used to just move the cursor into the subtree of the section element.

The current depth within the document is now stored in the $depth variable, and the pro-
cessing begins to see what nodes are actually encountered when calling next(). If you think
about it, with the cursor positioned on the first text node (which is the significant whitespace),
the siblings of this node are the title element, a text node that is whitespace, the para element,
and another text node that is whitespace. Executing the code prints the following:

Current Node: title Type: 1 Depth: 2
Current Node: #text Type: 14 Depth: 2
Current Node: para Type: 1 Depth: 2
Current Node: #text Type: 14 Depth: 2

**** Ascending rest of tree
Current Node: section Type: 15 Depth: 1

The first four lines of output are exactly as expected: the two element nodes interspersed
with significant whitespace nodes.

The next part of the output might throw you a bit. While accessing the sibling nodes, no
end element nodes were encountered. When working with siblings, there is no need for the
cursor to be positioned on the element end tag. The element nodes are encountered during
the next() call, and positioning on the end tag would serve no purpose other than be a waste

CHAPTER 9 ■ XMLREADER324

6331_c09_final.qxd 2/16/06 4:45 PM Page 324

of your time. When the end of a subtree has been reached, on the other hand, positioning back
on the parent element node through its end tag can be useful. You may need to perform addi-
tional processing with the element based on some information obtained from its subtree. This
explains why the last next() performed in the code results in the cursor being positioned on
the end tag of the section element. Had processing not been stopped, the end tag for the chapter
element would also have been reached.

This method also can take an optional parameter. You can supply the local name for the next
node to position. The same rules apply using this parameter as when not using it, but the cursor
will skip any nodes with a local name not matching the localname parameter. For instance, you
could change the while loop that produced the previous output to stop only at the para element
node:

while ($objReader->next("para")) {
/* If depth is less than initial depth, cursor is out of the subtree */
if ($objReader->depth < $depth) {

print "\n**** Ascending rest of tree\n";
print "Current Node: ".$objReader->localName;
print " Type: ".$objReader->nodeType." Depth: ".$objReader->depth."\n";
break;

}
print "Current Node: ".$objReader->localName;
print " Type: ".$objReader->nodeType." Depth: ".$objReader->depth."\n";

}

Current Node: para Type: 1 Depth: 2

The localname parameter is not limited to elements. All node types have names, and these
can be passed to the next() method as well. Try changing the localname parameter from para
to #text in the while loop; your output should look like this:

Current Node: #text Type: 14 Depth: 2
Current Node: #text Type: 14 Depth: 2

**** Ascending rest of tree
Current Node: #text Type: 14 Depth: 1

Accessing Attributes
You access attributes differently than all other nodes in a document. As you saw earlier in the
“Moving Through the Document” section, read() did not stop on any attributes. Attributes are
accessible only when positioned on an element node, with either the XMLREADER_ELEMENT node
type or the XMLREADER_END_ELEMENT node type. From the list of properties, it is already evident
that attributes exist and you can retrieve the number of attributes, but to physically access the
attributes themselves involves using additional methods. You have two ways to retrieve infor-
mation for attributes. You can retrieve attribute values while the cursor is positioned on an
element, or you can move the cursor to specific attributes. The following subsections will use
a different document to demonstrate the different methods.

$data = '<root att1="att1 value" att2="att2 value" att3="att3 value" />';

CHAPTER 9 ■ XMLREADER 325

6331_c09_final.qxd 2/16/06 4:45 PM Page 325

Retrieving Attribute Values

You can retrieve attribute values using the getAttribute(), getAttributeNo(), and
getAttributeNS() methods. I will discuss the latter method in the “Dealing with Namespaces”
section. The difference between the remaining two methods is that getAttribute() takes a
qualified name for its parameter while getAttributeNo() takes a zero-based index, identifying
the position of the attribute in relative to the element, for its parameter:

$objReader = XMLReader::XML($data);
$objReader->read();
if ($objReader->nodeType == XMLREADER_ELEMENT && $objReader->hasAttributes) {

print "att1: ".$objReader->getAttribute("att1")."\n";
print "att2: ".$objReader->getAttribute("att2")."\n";
print "att3: ".$objReader->getAttribute("att3")."\n";
for ($x=0;$x < $objReader->attributeCount; $x++) {

print "Attr Index $x: ".$objReader->getAttributeNo($x)."\n";
}

}

att1: att1 value
att2: att2 value
att3: att3 value
Attr Index 0: att1 value
Attr Index 1: att2 value
Attr Index 2: att3 value

The results print the attribute value based on name. The last three lines of the results are
from the for loop. The for loop executes its body one less time than the number of attributes
on the element. The method getAttributeNo() works off a zero-based index, so the first attrib-
ute is at index 0. Each iteration through the loop prints the current attribute value based on the
index $x and increments $x until it is equal to the number of attributes held on the element.

Moving to Attributes

The problem with using the methods to retrieve attribute values from an element node is that
you don’t always know the attribute names. Or, the attributes live in namespaces, and you are
unsure of the qualified names of the attributes. It is possible to get the values using the attrib-
ute index, but that still does not get you any closer to determining the name of the attribute or
even whether the attribute lives in a namespace. The XMLReader API has a few methods that
move the cursor to attribute nodes, which allows them to be accessed using object properties
just like all other node types:

• bool moveToAttribute(string qualifiedName): Moves to an attribute by qualifiedName

• bool moveToAttributeNo(int index): Moves to an attribute by zero-based index

• bool moveToAttributeNs(string localName, string namespaceURI): Moves to an
attribute with localName in the specified namespaceURI

CHAPTER 9 ■ XMLREADER326

6331_c09_final.qxd 2/16/06 4:45 PM Page 326

• bool moveToFirstAttribute(): Moves to the first attribute in the list on the element

• bool moveToNextAttribute(): Moves to the next attribute in the list on the element

It is pretty obvious what these methods do based on their names. The following block
of code will demonstrate how to use these methods, though I will demonstrate the method
moveToAttributeNs() in the “Dealing with Namespaces” section.

One other method is handy when positioning the cursor on attributes. When positioned
on an attribute, the method moveToElement() will position the cursor back on the element that
owns the attribute. This allows the element to be accessed again. Otherwise, when positioned
on an attribute, the method read() or next() is called, and the cursor moves as if the method
were called while positioned on the element node for the attribute. For example:

$objReader = XMLReader::XML($data);
$objReader->read();
if ($objReader->nodeType == XMLREADER_ELEMENT && $objReader->hasAttributes) {

$objReader->moveToAttribute("att1")."\n";
print $objReader->localName.": ".$objReader->value."\n";

$objReader->moveToAttributeNo(2)."\n";
print $objReader->localName.": ".$objReader->value."\n";
if ($objReader->moveToFirstAttribute()) {

do {
print $objReader->localName.": ".$objReader->value."\n";

} while ($objReader->moveToNextAttribute());
}

$objReader->moveToElement();
print $objReader->localName."\n";

}

att1: att1 value
att3: att3 value
att1: att1 value
att2: att2 value
att3: att3 value
root

Moving the cursor around attributes is similar to moving through the document, though
you have much more freedom with attribute movement than with other types of nodes. Once
the cursor is positioned on an attribute, the attribute node is accessible like every other node
in the document. This is the only case, however, where the positioning can move in a reverse
direction when working with XMLReader.

CHAPTER 9 ■ XMLREADER 327

6331_c09_final.qxd 2/16/06 4:45 PM Page 327

Exporting to DOM Objects
XMLReader has a big advantage over the xml extension in that because of its internal API and
being a hybrid parser, it is possible to export nodes to the DOM extension. You may ask why
this is such a big deal. It may or may not be. It depends upon the functionality you need. Con-
sider a few scenarios. You have a 100MB document, and you need to pull only a few nodes from
it. You could need to create a new document based on these few nodes, or you could need to
process these nodes using the XSL extension.

Of course, you could always load the document into the DOM or SimpleXML extension
and access the nodes you need. This, however, will use more than 100MB of memory, because
building a tree in memory will require much more memory than the size of the document.
A better approach is to scan the document using XMLReader, export the specific nodes, and
process them. This will keep memory to a minimum in this case. You can export by using the
expand() method. The following example will use a small document to demonstrate this
method:

$data = '<root><element att1="value">some text</element></root>';
$objReader = XMLReader::XML($data);
while($objReader->localName != "element") {

$objReader->read();
}
if ($objReader->nodeType == XMLREADER_ELEMENT && $objReader->hasAttributes) {

$objElement = $objReader->expand();
var_dump($objElement);

/* Use DOM API since these are DOM objects */
$objAttribute = $objElement->attributes->item(0);
print $objAttribute->nodeValue;

}

The cursor first moves to the node named element. Assuming the node is of element type
and it has attributes, it is exported to a DOM object. To be precise, it is an element node, so it
exports to an object of the DOMElement class, as shown by the var_dump():

object(DOMElement)#2 (0) {
}

XMLReader is a stream-based parser, meaning that these nodes are not persistent.
Exporting a node to DOM creates a copy (which is a real copy equivalent to cloning a node
rather than the shared nodes passed between DOM and SimpleXML) of the XMLReader node
that is not associated with any document. This is important. Without an associated document,
the exported node is pretty much read-only.

Dealing with Namespaces
Handling namespaces with XMLReader is not any harder than handling a document without
namespaces. In fact, it works the same way with the same properties and methods you have
been using all along. So why is this section dedicated to namespaces? The answer is simple.

CHAPTER 9 ■ XMLREADER328

6331_c09_final.qxd 2/16/06 4:45 PM Page 328

It is easier to demonstrate how to work with namespaces after understanding the API rather
than trying to understand everything at once.

The only real difference when working with namespaces is that a couple of methods and
a few properties are relevant when dealing with namespaces but not otherwise.

■Tip The next() method accepts a local name for its optional parameter. When working with prefixed
elements, remember to not use the qualified name; just use the local name. The method getAttribute()
will retrieve a namespaced attribute based on its local or qualified name, but remember from the XML
specification that two attributes in different namespaces with the same local name may exist on the same
element. Without using the qualified name and this method, you may not end up with the attribute value
you intended to retrieve.

For the purposes of this chapter, I will use the document in Listing 9-2, referring to the file
reader2.xml, as the basis for the XML data.

Listing 9-2. Namespaced Document in File reader2.xml

<?xml version='1.0'?>
<chapter xmlns:a="http://www.example.com/namespace-a"

xmlns="http://www.example.com/default">
<a:title>XMLReader</a:title>
<para>

First Paragraph
</para>
<a:section a:id="about">

<title>About this Document</title>
<para>

<!-- this is a comment -->
<?php echo 'Hi! This is PHP version ' . phpversion(); ?>

</para>
</a:section>

</chapter>

This document is basically the document from Listing 9-1 with the document type
declaration removed, a default namespace (http://www.example.com/default) added, and an
additional namespace (http://www.example.com/namespace-a) associated with the prefix a.
A few of the elements and attributes have also been moved into the http://www.example.com/
namespace-a namespace. Just to prove to you that namespaces do not alter the way nodes are
accessed, I will run the original node count script again:

CHAPTER 9 ■ XMLREADER 329

6331_c09_final.qxd 2/16/06 4:45 PM Page 329

<?php
$objReader = XMLReader::open('reader2.xml');
$count = 0;
while ($objReader->read()) {

$count++;
}
print "Nodes Accessed: $count\n";
?>

This time it outputs Nodes Accessed: 27. Now, don’t go thinking I am trying to deceive
you since the original one counted 28. The document type declaration has been removed,
reducing the count by one. Other than that missing node, the cursor has stopped at the same
nodes in this document as it did before.

Prefixes and Namespace URIs
Let’s take a look at some of the namespace-specific functionality. The first step is to position
the cursor on the section element residing within the namespace prefixed by a:

$objReader = XMLReader::open('reader2.xml');
while ($objReader->read()) {

if ($objReader->nodeType == XMLREADER_ELEMENT
&& $objReader->name == "a:section") {
break;

}
}
print $objReader->name;

Of course, this prints a:section; otherwise, this would have been futile. You could have
also created the test for the node by doing this:

if ($objReader->nodeType == XMLREADER_ELEMENT
&& $objReader->localName == "section" && $objReader->prefix == "a") {
break;

}

It is much easier using the qualified name in this case. Unlike a node not within a name-
space or in the default namespace, the properties localName and name do not return the same
thing for a node residing in a prefixed namespace. For example, when positioned on the para
element, the following comparison is true:

/* This is TRUE for nodes in the default namespace or not residing in a namespace */
If ($objReader->name == $objReader->localName) {

...
}

Along with the prefix property, the namespaceURI property will return a string containing
the namespace URI in which the node resides. Keep in mind the cursor is still positioned on
the section element:

print $objReader->namespaceURI;

CHAPTER 9 ■ XMLREADER330

6331_c09_final.qxd 2/16/06 4:45 PM Page 330

This prints http://www.example.com/namespace-a. As far as object properties go, prefix
and namespaceURI are the only two that have meaning when dealing with namespaces and
return empty strings in all other cases. The remaining properties, which you have already
encountered, work the same way.

Attributes
Attributes work pretty much in the same manner as explained previously. A few additional
methods are specific to namespace usage as well as to the namespace declarations themselves.
The first things to look at are the attribute methods. Two previously mentioned methods are
getAttributeNs() and moveToAttributeNs().

Both of these methods take two parameters. The first is the local name of the attribute,
and the second is the namespaceURI in which the attribute is located. The section element,
where the cursor is still positioned, has a single attribute with the local name id in the name-
space http://www.example.com/namespace-a. You can retrieve the value of the attribute with
any of the following calls:

print $objReader->getAttribute('id');
print $objReader->getAttribute('a:id');
print $objReader->getAttributeNs('id', 'http://www.example.com/namespace-a');

All three of these will print the value of the attribute named id. The first method is not
recommended when working with namespaces. If an additional id attribute existed not within
the same namespace, you have no guarantee which attribute value is being retrieved. Con-
sider what might be printed if the start tag for the section element looked like <a:section
a:id="about" id="2">. The value for the first attribute would be retrieved even though it was
the second one you wanted.

■Caution Do not use getAttribute() without qualified names unless trying to access a non-
namespaced attribute. As of libxml2 2.6.21, this method will not retrieve values for namespaced attributes.

The moveTo methods work just like the getAttribute methods with regard to the qualified
name. The moveToAttribute() method, however, does not have the bug the getAttribute()
method has. When passing in a local name for the attribute, only non-namespaced attributes
are retrieved:

$objReader->moveToAttribute('id');
print $objReader->value."\n";
$objReader->moveToAttribute('a:id');
print $objReader->value."\n";
$objReader->moveToAttributeNs('id', 'http://www.example.com/namespace-a');
print $objReader->value."\n";

Although you would expect the same results as using the getAttribute methods, it is
slightly different:

CHAPTER 9 ■ XMLREADER 331

6331_c09_final.qxd 2/16/06 4:45 PM Page 331

/* first line is a blank line */
about
about

The output is actually correct. The moveToAttribute() method does not contain the bug
in the getAttribute() method. In actuality, the previous results should have looked like these.

Namespace Declarations
Namespace declarations are handled as regular attributes within XMLReader. They have their
own section because the implementation is not complete in the libxml2 library so can be
accessed only from certain attribute methods. These methods are currently the moveTo meth-
ods, except the moveToAttributeNs() method. This method currently does not move the cursor
to namespace declarations. For this example, the parser needs to be reset so the chapter ele-
ment can be used:

<?php
$objReader = XMLReader::open('reader2.xml');
while ($objReader->read()) {

if ($objReader->nodeType == XMLREADER_ELEMENT
&& $objReader->name == "chapter") {
break;

}
}

$objReader->moveToAttributeNo(0);
print $objReader->value."\n";
$objReader->moveToAttributeNo(1);
print $objReader->value."\n";

$objReader->moveToAttribute("xmlns:a");
print $objReader->value."\n";
$objReader->moveToAttribute("xmlns");
print $objReader->value."\n";

$objReader->moveToFirstAttribute();
print $objReader->value."\n";
$objReader->moveToNextAttribute();
print $objReader->value."\n";
?>

http://www.example.com/namespace-a
http://www.example.com/default
http://www.example.com/namespace-a
http://www.example.com/default
http://www.example.com/namespace-a
http://www.example.com/default

CHAPTER 9 ■ XMLREADER332

6331_c09_final.qxd 2/16/06 4:45 PM Page 332

It is possible in the near future that additional attribute methods will support namespace
declarations, but currently only the ones used previously in this chapter have been imple-
mented as of libxml2-2.6.20.

Performing Validation
One of the advantages over the xml extension is XMLReader’s ability to perform validation
while processing a document. Currently, only DTD and RELAX NG validation is supported,
but by the time you read this, XML Schema support may have been added. Depending upon
the type of validation being performed, you may need to prepare validation support before
calling the initial read() method but after setting the input data stream. While processing the
document, you can check the validity using the isValid() method. This method returns a
Boolean indicating the state of document validity.

■Note When not performing validation on a document, the isValid() method will always return FALSE.

Validating with DTD
You specify validation using a DTD with the XMLREADER_VALIDATE parser property. When this
property must be set depends upon a few conditions. When you need to load an external sub-
set, you must set this property prior to the initial call to read() unless the XMLREADER_LOADDTD
property has been set prior to the initial call to read(). By default an external subset is not
loaded, so in order to ensure it is used, it must be loaded in order to validate the document.
When the document does not contain an external subset, such as the document in Listing 9-1,
you can set this property at any time during script execution. Until the XMLREADER_VALIDATE
property has been set, however, any calls to isValid() will return FALSE, even though the doc-
ument may be valid. Once the property has been set, isValid will begin to return the actual
validity status of the document. For example:

<?php
$objReader = XMLReader::open('reader.xml');
$objReader->setParserProperty(XMLREADER_VALIDATE, TRUE);
while ($objReader->read()) {

if (! $objReader->isValid()) {
print "NOT VALID\n";
break;

}
}
?>

This piece of code results in no output. The only possible output would occur if the docu-
ment were not valid at any time during processing.

CHAPTER 9 ■ XMLREADER 333

6331_c09_final.qxd 2/16/06 4:45 PM Page 333

Validating with RELAX NG
RELAX NG validation works differently than DTD validation. The isValid() method is still
used to check validity, but you instruct the reader to perform validation through the
setRelaxNGSchema() method or the setRelaxNGSchemaSource() method. It is mandatory to
call either method after setting the input data and prior to the first call to the read() method.
Once the document has begun processing, the reader cannot be instructed to perform
RELAX NG validation. For example:

<?php
$schema = '<?xml version="1.0" encoding="utf-8" ?>
<element name="chapter" xmlns="http://relaxng.org/ns/structure/1.0">

<element name="title">
<text/>

</element>
<element name="para">

<text/>
</element>
<element name="section">

<attribute name="id" />
<text/>

</element>
</element>';

$objReader = XMLReader::open('reader.xml');
$objReader->setRELAX NGSchemaSource($schema);

libxml_use_internal_errors(TRUE);
while ($objReader->read()) {

if (! $objReader->isValid()) {
$xmlError = libxml_get_last_error();
var_dump($xmlError);
exit;

}
}
?>

The schema defined by the $schema variable is used to validate the document from
Listing 9-1 and is designed to fail. The reader is first instantiated, and the input data is set.
With the reader prepared for parsing, the RELAX NG schema to validate against is set using
the setRelaxNGSchemaSource() method, taking a string containing the entire schema as its
parameter. For this example, the new error handling for XML, added in PHP 5.1, is used. This
will allow the application to query for an XML error rather than having warnings displayed
during script execution. Using the read() method, the reader moves throughout all the nodes
in document order, checking the document validity at each stop, with $objReader->isValid().
Once the document fails validation, the script pulls the last error generated from the libxml
library and dumps the structure to the output.

CHAPTER 9 ■ XMLREADER334

6331_c09_final.qxd 2/16/06 4:45 PM Page 334

The section element from the schema is defined to allow only text content, but in the
XML document itself, it actually contains child elements. Upon the reader encountering the
child title element of the section element, the document fails the validity check, and the
script prints the dump of the LibXMLError object obtained from the libxml_get_last_error()
call:

object(LibXMLError)#2 (6) {
["level"]=>
int(2)
["code"]=>
int(38)
["column"]=>
int(0)
["message"]=>
string(35) "Did not expect element title there"
["file"]=>
string(0) ""
["line"]=>
int(0)

}

You can work with a RELAX NG schema from a file in the same manner. The only change
would be to reference the schema as a file using setRelaxNGSchema(), passing the filename or
URI as the parameter, rather than using a schema loaded into a string variable.

Seeing Some Examples in Action
Throughout this chapter you have seen how XMLReader processes documents, but most
examples have been small code snippets or code focusing on a particular functionality of
the XMLReader API. It is time to look at a larger application that uses a good portion of the
API and see how the code breaks down. For this example, just as in the previous chapter, I
will process a document and build an in-memory tree. Although you could easily do this
by exporting nodes using the expand() method, this example will not use that method; the
node information will be processed using reader properties. The DOM extension will still be
used to create the internal tree, but without relying on the expand() functionality, it is possi-
ble for you to easily implement your own tree creation storage by replacing the DOM
functionality.

■Note The complete example in this chapter presents the full API for the XMLReader extension in a single
application. You can find real-world examples of using XMLReader in later chapters such as Chapter 14 and
Chapter 17.

CHAPTER 9 ■ XMLREADER 335

6331_c09_final.qxd 2/16/06 4:45 PM Page 335

Here’s the code:

<?php
class cReader extends XMLReader {

private $document = NULL;
private $currentNode = NULL;
const xmlns = "http://www.w3.org/2000/xmlns/";

public function __construct() {
/* Create the base document for the tree */
$this->document = new DOMDocument();
$this->currentNode = $this->document;

}

function attributes() {
/* DOM throws exceptions so try/catch used */
try {

if ($this->moveToFirstAttribute()) {
do {

/* Attributes are always prefixed when in a namespace */
if ($this->prefix) {

if ($this->prefix != "xmlns") {
$this->currentNode->setAttributeNS($this->namespaceURI,

$this->name, $this->value);
} else {

/* This is a namespace declaration.
Ensure it is created as it may not be used on element */

$this->currentNode->setAttributeNS(self::xmlns,
$this->name, $this->value);

}
} else {

/* No need to handle default namespace declarations.
DOM already creates them with the element */

if ($this->name != "xmlns") {
$this->currentNode->setAttribute($this->name, $this->value);

}
}

} while ($this->moveToNextAttribute());
}

} catch (DOMException $e) {
throw $e;

}
}

CHAPTER 9 ■ XMLREADER336

6331_c09_final.qxd 2/16/06 4:45 PM Page 336

function startElement() {
try {

if ($this->namespaceURI) {
$node = $this->document->createElementNS($this->namespaceURI,

$this->name);
} else {

$node = $this->document->createElement($this->name);
}
$this->currentNode = $this->currentNode->appendChild($node);
if ($this->hasAttributes) {

$this->attributes();
}

} catch (DOMException $e) {
throw $e;

}
}

function endElement() {
$this->currentNode = $this->currentNode->parentNode;

}

function characterData() {
try {

$this->currentNode->appendChild(new DOMText($this->value));
} catch (DOMException $e) {

throw $e;
}

}

function PIHandler() {
$node = $this->document->createProcessingInstruction($this->name,

$this->value);
$this->currentNode->appendChild($node);

}

function saveXML() {
return $this->document->saveXML();

}
}

$xmldata = "<root><element1>text</element1><e2>text<e3>more</e3>text</e2></root>";

$objReader = new cReader();
$objReader->XML($xmldata);

CHAPTER 9 ■ XMLREADER 337

6331_c09_final.qxd 2/16/06 4:45 PM Page 337

try {
while ($objReader->read()) {

switch ($objReader->nodeType) {
case XMLREADER_ELEMENT:

$objReader->startElement();
break;

case XMLREADER_END_ELEMENT:
$objReader->endElement();
break;

case XMLREADER_TEXT:
case XMLREADER_CDATA:
case XMLREADER_WHITESPACE:
case XMLREADER_SIGNIFICANT_WHITESPACE:

$objReader->characterData();
break;

case XMLREADER_PI:
$objReader->PIHandler();
break;

}
}

} catch (DOMException $e) {
var_dump($e);

}

print $objReader->saveXML();
?>

<?xml version="1.0"?>
<root><element1>text</element1><e2>text<e3>more</e3>text</e2></root>

This example performs the same functionality as shown in the example for the xml exten-
sion in Chapter 8. It is a bit longer because namespace support has been added. As you may
infer from that, handling namespaces is much easier to deal with in XMLReader than in the
xml extension. Let’s take a look at the actual functionality contained in this example.

The cReader class is a class extending the XMLReader class. The only advantage of having
written the functionality as object methods is that it is encapsulated and possibly a bit easier
to follow. Before examining the class structure, let’s jump right down to the actual body of the
script itself where the cReader object is instantiated (again to be referred to as the reader) and
then returned to the class itself.

The reader sets the input to the XML to process and is processed using the read()
method. This ensures that the parser stops at each node within the document. The nodeType
test mimics the behavior of the event handlers used in the previous chapter. This is the reason
all the content type nodes—XMLREADER_TEXT, XMLREADER_CDATA, XMLREADER_WHITESPACE, and
XMLREADER_SIGNIFICANT_WHITESPACE—are grouped into the same functionality. The behavior

CHAPTER 9 ■ XMLREADER338

6331_c09_final.qxd 2/16/06 4:45 PM Page 338

needs to be the same for all of these, although XMLReader-specific processing can be per-
formed for each individual type. As each of the types listed in the switch statement are
processed, the application calls the specified method from the object. This is similar to an
event being called, but in this case the application controls the call; using the xml extension,
it is called automatically.

The first type of node the document encounters is typically an element node. This is not
always the case if you recall the possible legal structure of an XML document, but for this exer-
cise, the document element will be the first node. When encountered, the startElement()
method is called. The method first tests for a namespaceURI on the current node. When empty,
a regular element is created; otherwise, the element resides in a namespace and is created as
such. Notice that the element is created using the name property. This returns the qualified
name of the node rather than using localName, which would return the name of the node
without the appropriate prefix. The method then checks whether the element has attributes
using the hasAttributes property. Remember that attributes are not a node type that the
parser stops on. They must be requested when positioned on an element.

Assuming the element has attributes, the attributes() method is then called. This
method may look a bit confusing. Support for namespace declarations has been added here
because XMLReader handles namespace declarations just like any other attribute. The
reader positions itself on the first attribute and begins the attribute processing. Attributes
do not inherit the default namespace, so it is safe to assume that if an attribute has a prefix,
the attribute is a namespaced attribute. Without the prefix, the attribute is handled as a nor-
mal attribute.

The case for a normal attribute also tests to make sure the attribute is not a default
namespace declaration. In the case of this example, a default namespace would already have
been created when the element was created. If you are unsure of the reason for this, refer to
Chapter 6. Namespaced elements also need to test their prefixes for the string "xmlns". These
are also namespace declarations but define a prefix for the namespace as well. The DOM
extension normally handles creating these when the element is created, but namespace
declarations can also be defined on elements even though the element is not within the
namespace. In a case like this, the namespace declaration simply needs to be created on
the current element. Once the reader finishes with the current attribute, it moves to the next
attribute using the moveToNextAttribute() method. This method is used as the truth expres-
sion for the do/while loop. This guarantees that the loop will be executed at least once, which
is needed for the initial attribute, and will continue to be executed as long as the reader can
move to the next attribute. The TRUE/FALSE return values from XMLReader methods make
this extension extremely easy to use in control structures.

The remaining methods within the cReader class are fairly straightforward. The name and
value properties retrieve the needed XML information. If you compare these methods to the
equivalent ones from the previous chapter, you will find little difference other than how the
XML information is passed and obtained. It also demonstrates how simple it can be to convert
an existing application using the xml extension rather than using the XMLReader extension.

Again, you can customize this example if you like to use custom XML tree storage rather
than the DOM extension. The DOM extension was used only for brevity, because it natively
handles building an XML tree.

CHAPTER 9 ■ XMLREADER 339

6331_c09_final.qxd 2/16/06 4:45 PM Page 339

Conclusion
This chapter introduced the XMLReader extension as well as many of the advantages it has
over the xml extension. As of PHP 5.1, XMLReader has been included as part of the core PHP
distribution but is also available from PECL for those running PHP 5.0.x. The explanations,
code snippets, and examples in this chapter should provide you with enough information to
immediately begin using this API. You can find additional real-world uses in Chapters 14 and
17. These may also help you understand some of the benefits of using XMLReader for XML
processing.

XMLReader is the last of the native XML parsers in PHP. The next chapter will introduce
you to XSLT and the XSL extension. You will begin to look at how you can transform XML data
from one structure to another. If you have ever wondered how to use XML as a data source to
produce many different types of output, such as HTML, XHTML, WAP, and so on, then the XSL
extension is most likely what you have been seeking. Not only will you examine the extension,
but you will learn how to write XSL templates as well.

CHAPTER 9 ■ XMLREADER340

6331_c09_final.qxd 2/16/06 4:45 PM Page 340

Extensible Stylesheet Language
Transformations (XSLT)

The parsers you have read about allow applications to process XML data. Two of them, DOM
and SimpleXML, are directly relevant when working with the XSL extension. DOM is the pri-
mary and required extension when working with the XSL extension, but as you will see in this
chapter, you can also pass documents from SimpleXML to the XSL extension. Before proceed-
ing with this chapter, you should make sure you have at least a basic understanding of what
DOM and SimpleXML are and how they work.

This chapter will introduce Extensible Stylesheet Language (XSL) and Extensible Style-
sheet Language Transformations (XSLT) and show how to create style sheets for transforming
data. I will show how to use some of the common features in the language to create these style
sheets. With a working knowledge of the XSLT basics, you will then look at the XSL extension
and how you can use it with style sheets to transform XML data.

■Note The first part of this chapter deals with general information about XSL and XSLT, including how to
build style sheets. If you already understand XSL style sheets, you may want to skip to the “Introducing the
XSL Extension” section where I will discuss the PHP XSL extension specifically.

Introducing XSL and XSLT
You have already been exposed to an XSL language in Chapter 4, XPath. You can find out more
about XSL, a W3C specification, at http://www.w3.org/TR/xsl/. While XML defines languages
that describe data, XSL defines languages that can transform data, navigate documents, use
XPath, and format XML documents. The term XSL is often misused, because many people
think it is the same as XSLT, which is what this chapter is about, but in fact, XSLT is a subset
of XSL.

You can find more information about XSLT, also a W3C specification, at http://
www.w3.org/TR/xslt. It is a language written in XML that can transform an XML document
into another XML document. For example, you can use XSLT to take some XML data and,
using a style sheet, transform it into other output, such as XHTML or WAP, using an XSL

341

C H A P T E R 1 0

■ ■ ■

6331_c10_final.qxd 2/16/06 4:43 PM Page 341

processor. The processor in this case is the PHP XSL extension. Listing 10-1 shows an example
of a style sheet written using XSLT.

Listing 10-1. Sample XSLT Style Sheet

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="html"/>
<xsl:template match="/">
<html>
<body>
<xsl:apply-templates select="/sites/site"/>

</body>
</html>

</xsl:template>
<xsl:template match="/sites/site">
<p><xsl:value-of select="./name"/> : <xsl:value-of select="./url"/></p>

</xsl:template>
</xsl:stylesheet>

This style sheet may look familiar. You first saw it in Chapter 5. Looking at it more closely,
you may notice XPath syntax. XSLT utilizes XPath for navigational functionality, processing
functionality, and text-generation functionality. At this point, you should understand the
XPath language. (You can find detailed coverage of XPath in Chapter 4.) With a general idea
of what XSLT is and what it’s used for, you can examine the style sheet to figure out what it is
doing and how to write one.

Introducing Style Sheets
Style sheets define template rules that can identity and transform data from a source XML
document. You create a style sheet using elements that are defined by the XSLT specification
and are bound to the http://www.w3.org/1999/XSL/Transform namespace URI. Throughout
this chapter, I will use the prefix xsl to refer to the XSLT namespace. Creating a style sheet
begins with the root element, which must be either the xsl:stylesheet element or the
xsl:transform element:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0" />
<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0" />

The choice of element to use is completely up to you when creating a style sheet, but the
most commonly one used is the xsl:stylesheet element. No matter which element you
choose to use, they both must define the XSLT namespace, which in these examples is asso-
ciated with the xsl prefix but may be associated with any prefix you choose.

The version attribute is also required and typically set to 1.0. Any value other than this
enables forward-compatible processing. I will explain this in more detail in the “Using Out-
put” section, but for now it just means that when the version attribute has any value other
than 1.0, an XSLT processor based on the XSLT version 1.0 specification will bend some of
the rules and ignore certain instances that would cause an error according to the XSLT 1.0
specification.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)342

6331_c10_final.qxd 2/16/06 4:43 PM Page 342

■Note The style sheets explained in this chapter are full style sheets and not simplified inline XSLT. You
can use simplified inline versions only for style sheets containing a single template for the root node. The
XSLT namespace and version are defined on the root node, and XSLT elements are then embedded directly
into the output, rather than output tags being embedded within templates. The majority of style sheets you
will encounter in the real world will be complete style sheets. With an understanding of them, you will have
no problem understanding a simplified style sheet if you ever run into one.

Introducing Templates
Templates define rules that are processed when a matching node is encountered. You specify
them using an xsl:template element:

<xsl:template match="pattern" name="qname" priority="number" mode="qname" />

An xsl:template element doesn’t do much by itself because the rules are defined with the
scope of the element, but its attributes do define how data is to be processed by the rules.

The match Attribute
The match attribute specifies the node from the XML data document for which the rule set
applies. The value of the attribute is a pattern. (This is a term you should be familiar with
because it refers to an XPath pattern from Chapter 4.) XSLT locates nodes in a document using
XPath patterns. Notice the two xsl:template elements in the style sheet in Listing 10-1:

<xsl:template match="/">
<xsl:template match="/sites/site">

The first element matches on /, which refers to the root node of the XML data document.
The second element uses the pattern /sites/site. Based on what you read in Chapter 4, this
will match all site elements that are children of the document element, which is sites. This
attribute is not always required and depends upon whether the name attribute is being used
and how the template is being called.

The name Attribute
The name attribute defines a name for the current template. As you will see shortly in the
“Using Templates” section, you can call templates by name rather than by matching nodes.
When calling a template in this manner, the match attribute is not required since it’s not going
to be used. When both match and name attributes are defined, you can call the template either
by node matching or by name. This means a match attribute, a name attribute, or both attrib-
utes can exist on this element, but at least one is required.

The priority Attribute
You can use priority attributes to help resolve conflicts between matching templates. Tem-
plates having a higher priority take precedence over other matching templates. For example,
given two templates where one matches the node() pattern and the other matches the element’s

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 343

6331_c10_final.qxd 2/16/06 4:43 PM Page 343

site pattern, a site element node would match both templates. Assigning priorities to these
templates allows the correct one to be selected:

<xsl:template match="node()" priority="0" />
<xsl:template match="site" priority="1" />

When matching on a site element node, the second template is chosen, even though it
matches both templates, because the priority value 1 is higher than the priority value 0 in
the first template. This can become quite complicated when defining many templates because
it is up to you to keep track of all the priority values. The value for this attribute is a numeric.

When the priority attribute is not specified, XSLT computes a default value based on a
set of criteria:

• A pattern with a QName or PI literal preceded by a child or attribute axis specifier has
a priority of 0.

• A pattern with a name preceded by a child or attribute axis specifier has a priority of
-0.25.

• A pattern testing for node type preceded by a child or attribute axis specifier has a
priority of -0.5.

• All other patterns have a priority of 0.5.

So, based on these rules, the xsl:template element matching on * has a priority of -0.5,
and the one that matches on sites/site has a priority of 0.5, unless a priority attribute is
explicitly used.

The mode Attribute
The mode attribute is another mechanism to handle conflicting template matches. You can use
this attribute only when a match attribute is specified on the xsl:template element. As you will
see later in the “Applying Templates” section, this attribute is similar to using a name attribute,
except it works with the match attribute. This probably gives you an idea of what might be
coming up when you get into applying templates. If you have no idea why this may be useful,
then the next section will be helpful.

Using Templates
When processing style sheets, the template matching the root node, match="/", is automati-
cally processed because of some built-in default templates (which are explained later in the
“Using Built-in Templates” section). For example, the following is a modified version of the
style sheet from Listing 10-1:

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="html"/>
<xsl:template match="/">

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)344

6331_c10_final.qxd 2/16/06 4:43 PM Page 344

<html>
<body>

Some text
</body>

</html>
</xsl:template>
<xsl:template match="/sites/site">
<p><xsl:value-of select="./name"/> : <xsl:value-of select="./url"/></p>

</xsl:template>
</xsl:stylesheet>

Two templates are still defined, but the content of the body element has been changed to
not use the XSLT language. The following XML data will be used for the transformation against
this new style sheet:

<?xml version="1.0" encoding="iso-8859-1"?>
<sites>

<site>
<name>PHP</name>
<url>http://www.php.net/</url>

</site>
<site>

<name>XML C Parser</name>
<url>http://www.xmlsoft.org/</url>

</site>
</sites>

When the transformation occurs, the resulting data is as follows:

<html><body>
Some text

</body></html>

Ignore the formatting because this is based on the spacing used within the style sheet.
The output, though, shows that the template matching the root node, /, was called, but the
one matching /sites/site was not. The output consists of the content of the matched
xsl:template element that is not from the http://www.w3.org/1999/XSL/Transform name-
space. The output is not usually a snapshot of the xsl:template content, as it is here. The
XSLT language is usually intermixed with other content to allow for more advanced transfor-
mations, as you will see later in the “Using Templates and XSLT” section.

Applying Templates
If you look closely at this new style sheet and the one from Listing 10-1, you will notice that
the xsl:apply-templates element was removed. This element is what is used to access other
templates within the style sheet:

<xsl:apply-templates select="node-set-expression" mode="qname" />

The xsl:apply-templates element has two attributes, neither of which is required.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 345

6331_c10_final.qxd 2/16/06 4:43 PM Page 345

The select attribute specifies a node set to be processed based on the value of the attrib-
ute, which is an XPath expression. Taking the xsl:apply-templates element from the style
sheet in Listing 10-1, <xsl:apply-templates select="/sites/site"/>, the select attribute
results in the node set containing all site elements that are children on the document ele-
ment, which is sites. When the main template is processed and this element is encountered,
the node set from the XML data document, based on the XPath expression, is processed. This
results in the second template, <xsl:template match="/sites/site">, being called because
the node set from the xsl:apply-templates select attribute matches the match attribute on
the second xsl:template. So, this time, running the sites XML data document against the
original template in Listing 10-1, the results include the output from the second template,
as follows:

<html><body>
<p>PHP : http://www.php.net/</p>
<p>XML C Parser : http://www.xmlsoft.org/</p>
</body></html>

Absolute paths are not required for the match attribute or the select attribute. Each oper-
ates using the current node as the context. Based on this, Listing 10-2 shows an equivalent style
sheet to the one in Listing 10-1.

Listing 10-2. Alternative Expressions in Style Sheet

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="html"/>
<xsl:template match="/">
<html>
<body>
<xsl:apply-templates select="sites/site" />

</body>
</html>

</xsl:template>
<xsl:template match="site">
<p><xsl:value-of select="./name"/> : <xsl:value-of select="./url"/></p>

</xsl:template>
</xsl:stylesheet>

The xsl:apply-templates element selects all site elements that are children of the sites
elements, which in turn are children of the context node, which in this case is the document
node. It works just like XPath in this respect. The xsl:template element matches on all site
element nodes. Running the data against this style sheet produces the same output.

Omitting the select attribute results in all the child nodes of the current context node
to be used for the node set. You could change the xsl:apply-templates and xsl:template
elements to reflect this:

<xsl:apply-templates />

<xsl:template match="sites/site">

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)346

6331_c10_final.qxd 2/16/06 4:43 PM Page 346

Using the current style sheet, the output will be the same, even though the node set from
xsl:apply-templates is a bit different. Originally, the node set was being explicitly set. In this
case, the children of the document node, which could possibly include text nodes, comments,
and PIs, are being used for the node set. You must be careful when omitting the select attrib-
ute in the event that some data you might not have been expecting in the XML data suddenly
appears.

The mode attribute specifies the mode to use when matching a template. When this attrib-
ute is present, it will match only against templates that have the same mode specified. When
this attribute is omitted, it will match only against templates that also have omitted the mode
attribute. This attribute can be useful when transforming data into different results based on
some condition. For example, XML data that might be used for a publication will go through
stages. Before reaching the released version, it may be in an editing stage where reviewers are
commenting on the content. When processed in the editing stage, you would want these com-
ments to be included with the output. You would also want to perform this using a single style
sheet. In this case, you could define two templates that match the same expression but with
different modes. When the document is to be processed, you could select the mode condition-
ally, such as by using parameters, which will be discussed in the “Using Variables and
Parameters” section. The style sheet would end up having multiple elements for this:

<xsl:template match="chapter" mode="editing" />
<xsl:template match="chapter" mode="publish" />

You would then specify the template to use by setting the mode attribute on the
xsl:apply-templates element:

<xsl:apply-templates select="chapter" mode="editing" />

Using Built-in Templates
When no matching template is found for a node set, XSLT uses some built-in templates in
an attempt to process the data. The first template is used for the element and the root node.
When no matching template is found when either of these nodes is being processed, the
default template is as follows:

<xsl:template match="*|/">
<xsl:apply-templates/>

</xsl:template>

This template just calls xsl:apply-templates without a select attribute to process all the
child nodes of the current node. To see what this actually means, compare the following style
sheet with those you have seen so far in this chapter:

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="html"/>
<xsl:template match="site">

<p><xsl:value-of select="./name"/> : <xsl:value-of select="./url"/></p>
</xsl:template>

</xsl:stylesheet>

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 347

6331_c10_final.qxd 2/16/06 4:43 PM Page 347

This has a single template matching site elements. The XSL processor first tries to match
the root node. In this example, that template was removed. It ends up falling back on the
built-in template, which in turn tries to apply templates on the child nodes, since no select
attribute exists on the xsl:apply-templates element of the root node. At this point, the sites
element is in the node set. Again, no matching template exists for this node, so the built-in
template also processes it. This time the site elements are in the node set and do match a
template defined in your style sheet. At this point, these nodes are processed, and no further
recursion takes place on them. This doesn’t mean that processing stops, because all the previ-
ous node sets will still be completely processed.

The second built-in template is almost the same as the first, except it also passes the mode
attribute along. This applies only if a mode has been defined somewhere in the style sheet
and, while in the context of the mode, a built-in template was called for a node in the node
set. For example:

<xsl:template match="*|/" mode="m">
<xsl:apply-templates mode="m"/>

</xsl:template>

The last built-in template that affects the results works with text and attribute nodes.
If you have been playing around with changing some of the XPath used in this section, you
might have noticed that spacing is sometimes different in the results. This is because of run-
ning into a text node being processed by a built-in template:

<xsl:template match="text()|@*">
<xsl:value-of select="."/>

</xsl:template>

This template results in the output of the value of a text node or attribute. If you take the
style sheet from Listing 10-2 and remove the select attribute (rather than using the expression
sites/site) from the xsl:apply-templates element, you will notice that the document is
spaced differently. Without the select attribute, all child nodes are selected for the node set,
including text nodes. The style sheet does not define a template to handle text nodes, and
whitespace text is not disabled (which is an option covered later in the “Using Output” sec-
tion). In addition, the XSL processor uses the value of these text nodes, currently spaces and
line feeds in the XML data, in the results.

Calling Templates
Previously, I mentioned that you can give templates names using the name attribute on the
xsl:template element. You can call a template by name using the xsl:call-template element:

<xsl:call-template name="qname" />

Unlike the xsl:apply-templates element, this element does not allow a node set to be
specified. Instead, it calls a template that has a matching value for the name attribute as that
specified by the value of the name attribute on this element. The node set used is also the
current node set being processed, rather than the children:

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)348

6331_c10_final.qxd 2/16/06 4:43 PM Page 348

<xsl:template name="siteurl">
: <xsl:value-of select="./url"/>
</xsl:template>

<xsl:template match="site">
<p>

<xsl:value-of select="./name" />
<xsl:call-template name="siteurl" />

</p>
</xsl:template>

When the last template, matching on site, is being processed, the site node is also
processed by the named template siteurl to return the value of the url child element. Other
than some additional line feeds and spaces this has introduced (which was done for easier
readability), the results should be the same as the previously used style sheets working on the
data set.

Using Templates and XSLT
So far you have seen basic templates and how to call them. The only results so far have used
literal result elements (such as the HTML markup used within the templates) to show a few
examples of the xsl:value-of element. This element is part of XSLT and will help you write
rich style sheets. The following sections will explore some of the more commonly used ele-
ments and demonstrate how to use them.

Creating Nodes
You can create nodes in the transformed tree literally, as you have seen in the examples. The
HTML tags used within the templates demonstrate this. When transformed, these nodes are
automatically created within the result tree. Using the XSLT language, it is also possible to cre-
ate nodes dynamically. This means node names and values do not need to be hard-coded
within a template but can be created based on some criteria. I will now explain how to create
different nodes and show examples of using the XSL elements for performing these operations.

Attribute Value Templates

Within many of the XSL elements that follow, some of the attribute values of the defining ele-
ment are interpreted as attribute value templates, which allow the use of expressions. Curly
braces surround expressions that are to be evaluated within the attribute value and look like
{expression}. For example, to generate the local name of the current node in context along
with the value of an attribute named num from the current node, the attribute value template
would look like this:

{local-name(.)}{@num}

The attribute templates are not restricted to expressions only. You can also use literal
values within these templates. Note that in order to use a literal curly brace, you must use
double braces. The double braces will be replaced by a single brace. For instance, {{ evaluates
to a literal {, and }} evaluates to a literal }. So, when writing these templates using this:

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 349

6331_c10_final.qxd 2/16/06 4:43 PM Page 349

{local-name(.)}unevaluated{@num}

it evaluates to the following when the element <site num="1" /> is in context:

siteunevaluated1

Creating Elements

Sometimes you need to create elements in the result trees and literal elements just won’t do.
For instance, you cannot add elements that are named based on values from the context node
using literals. This is where you can use the xsl:element element:

<xsl:element name={qname} namespace={uri-reference} use-attribute-sets=qnames />

All attribute values of this element within the curly braces ({}) are interpreted as attribute
value templates for the values. The final result of the template, though, must be the type speci-
fied. The content of this element is a template to define attributes and children of the element
being created.

The name Attribute The name attribute specifies the name of the element to be created. You can
use it to mimic literal elements within the style sheet as well as to create dynamically named
elements:

<!-- Using literal p elements -->
<p>

<xsl:value-of select="./name" />
<xsl:call-template name="siteurl" />

</p>

You can also use xsl:element to produce the same <p></p> tags in the result tree:

<xsl:element name="p">
<xsl:value-of select="./name" />
<xsl:call-template name="siteurl" />

</xsl:element>

The element name could also be dynamically created rather than using a hard-coded
name. When sharing templates that match multiple nodes of the same name, you might want
the name of the current node in the result tree. It doesn’t make sense to write a bunch of con-
ditional code, which I haven’t explained yet, and hard-code names based on the conditions.
Attribute templates come in handy in this case:

<xsl:element name="{local-name(.)}">
<xsl:value-of select="./name"/> : <xsl:value-of select="./url"/>

</xsl:element>

Assuming this is within a matching template and an element named site is currently
being processed, the portion of the resulting tree looks like the following (depending upon the
values of the subnodes, of course):

<site>PHP : http://www.php.net/</site>

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)350

6331_c10_final.qxd 2/16/06 4:43 PM Page 350

The only condition when using attribute value templates is that the final result must be a
valid QName as defined in the XML specification.

The namespace Attribute The namespace attribute defines the namespace for the element when
created. The value of this attribute is also interpreted as an attribute value template. The result
of the attribute value template should be a URI reference, though it is not an error if it is not
legal. When the QName has a prefix, it will be associated with the namespace; otherwise, the
namespace is considered to be a default namespace. When it results in an empty string, the
created element will be considered to have a NULL namespace. Using the same site element
from the previous example as the context, the following code creates the resulting tree with
namespaced elements:

<xsl:element name="ns:{local-name(.)}" namespace="http://www.example.com/ns">
<xsl:element name="ns:{local-name(.)}" namespace="http://www.example.com/ns" />
<xsl:element name="{local-name(.)}" namespace="http://www.example.com/ns" />

</xsl:element>

Here the first xsl:element will create an element with the QName ns:site with the ns
prefix associated with the namespace http://www.example.com/ns. An empty child ns:site
element is also created and bound to the same namespace. An additional site element is
created, but this time without a prefix so the namespace will become the default namespace
for the element in the results. Processing this snippet from the style sheet would result in the
following piece of output:

<ns:site xmlns:ns="http://www.example.com/ns">
<ns:site></ns:site>
<site xmlns="http://www.example.com/ns"></site>

</ns:site>

The use-attribute-sets Attribute The use-attribute-sets attribute allows the use of a predefined
set of attributes that will be created with the element. The value of this attribute is a whitespace-
separated list of attribute set names. Before you try to understand what attribute sets are, you
first need to understand how attributes are created.

Creating Attributes

You can create attributes in the same manner as elements. The xsl:attribute element defines
a new attribute:

<xsl:attribute name={qname} namespace={uri-reference} />

You define the attributes of this element in the same way as the respective attributes from
the xsl:element element. The content of this attribute defines the value for the created attribute:

<xsl:element name="site">
<xsl:attribute name="{local-name(.)}att">

<xsl:value-of select="@num"/>
</xsl:attribute>

</xsl:element>

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 351

6331_c10_final.qxd 2/16/06 4:43 PM Page 351

Based on this code, an element named site will be created with an attribute named by
appending att to the local name of the context node. Its value will be set by the value of the
num attribute of the current context node. Using an element node defined by <site num="1" />
as the context would result in the following:

<site siteatt="1"></site>

Named Attribute Sets

You can group sets of attributes within a named attribute set so that you do not need to add
each individual attribute every time you need it:

<xsl:attribute-set name=qname use-attribute-sets=qnames />

The name attribute specifies the name of the named attribute set being defined. The value
is a literal QName and not an attribute value template like you saw with previous elements.
The value specified by the name is what is used to reference the attribute set from other ele-
ments such as the value specified by the use-attribute-sets attribute from the xsl:element
element. The use-attribute-sets attribute on the xsl:attribute set element can specify
additional named attribute sets that this name attribute set includes. The value consists of a
list of name attribute sets separated by whitespace. Attributes that are being defined within the
attribute set, and not coming from other attribute sets from the use-attribute-sets attribute,
are defined within the content of the xsl:attribute-set element. For example:

<xsl:attribute-set name="attset1">
<xsl:attribute name="att1">1</xsl:attribute>

</xsl:attribute-set>

<xsl:attribute-set name="attset2" use-attribute-sets="attset1">
<xsl:attribute name="att2">2</xsl:attribute>

</xsl:attribute-set>

<xsl:template match="site">
<xsl:element name="site" use-attribute-sets="attset2">

<xsl:attribute name="att3">3</xsl:attribute>
</xsl:element>

</xsl:template>

This code defines two attribute sets. The set attset1 defines a single attribute named att1
having the value 1. The set attset2 uses the named attribute set attset1 as well as defines an
attribute named att2 having the value 2. When attset2 is referenced from another element,
such as the xsl:element element in the previous code, it would have the same effect as defin-
ing the att1 and att2 xsl:attribute elements within the content of the xsl:element element.
Assuming the previous xsl:element is within a matched template, the result from the process-
ing would be as follows:

<site att1="1" att2="2" att3="3"></site>

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)352

6331_c10_final.qxd 2/16/06 4:43 PM Page 352

It is important to note that the same rules for the xsl:attribute element, such as using
expressions, pertain when used within attribute sets. Any expression would be evaluated just as
if the xsl:attribute elements had been defined within the content of the xsl:element element.

■Caution It is an error for an attribute to directly or indirectly reference itself.

Creating Text

You can easily create text using literal text as well as some other XSLT elements not yet intro-
duced. Even so, you can also use the xsl:text element to explicitly create text in the results
because it offers a bit of control over how the text is handled:

<xsl:text disable-output-escaping = "yes" | "no" />

The content of this element is what is to be used as the content of the resulting text node.
It may be controlled to a degree using the disable-output-escaping attribute. This attribute
may have the value yes or no and determines whether the text within the contents of the xsl:text
element will be escaped in the resulting XML document. By default, the XSL processor will
escape characters, so the default attribute value is no. For example:

<xsl:text disable-output-escaping="yes">
This & That

<xsl:text>

<xsl:text disable-output-escaping="no">
This & That

</xsl:text>

The difference between these two is significant. Processing the first will result in
This & That as the content in the final resulting XML document, which in reality is malformed
XML. The second block instructs the XSLT processor to escape the text content using the
disable-output-escaping attribute with the value no, which results in the text This & That,
which is legal and well-formed XML. The attribute, in this case, didn’t need to be specified
since it uses no, which is the default value anyway. This is something to keep in mind, espe-
cially when processing CDATA sections that have not been converted to text nodes because
the disable-output-escaping attribute will not work with CDATA sections. (This is covered
in more detail in the “Using Output” section.)

Creating Processing Instructions

You can create PIs just like all the other node types you have seen so far. You do this using the
xsl:processing-instruction element:

<xsl:processing-instruction name={ncname} />

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 353

6331_c10_final.qxd 2/16/06 4:43 PM Page 353

The name attribute, whose value is interpreted as an attribute value template, specifies the
target of the PI being created. The content of the element defines the data for the PI:

<xsl:processing-instruction name="php">
print "Hello World";

</xsl:processing-instruction>

When this block is encountered within a template, it creates the following PI:

<?php print "Hello World"; ?>

■Caution When the output method is html, processing instructions are terminated by > and not by ?>.
This means you need to manually add ? as part of the content of the xsl:processing-instruction
element.

Creating Comments

Comments are another type of node you can create dynamically; you do this by using the
xsl:comment element:

<xsl:comment />

As you may notice, this element has no attributes, and its content defines the text for
the comment:

<xsl:comment>
Node named <xsl:value-of select="local-name()" /> was processed

</xsl:comment>

Using the site element from the XML data source as an example, a comment is dynami-
cally generated when this element is processed within a template. Although the xsl:value-of
element has not yet been introduced, you might already have an idea of what it does. The
comment will include the literal text as well as the local name of the node in context when
processed:

<!-- Node named site was processed -->

Copying Nodes

You can copy nodes directly to the result tree using the xsl:copy element or the xsl:copy-of
element. The differences between these two are the depth of the actual copy and the node to
be copied.

xsl:copy This is the syntax for xsl:copy:

<xsl:copy use-attribute-sets=qnames />

The copy is only a shallow copy, so attributes and child nodes are not part of the copied
node. Namespace nodes, however, are copied along with the node. When the node being

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)354

6331_c10_final.qxd 2/16/06 4:43 PM Page 354

copied is an element type node, you can use the use-attribute-sets attribute to indicate the
named attribute set to be created with the copied element. For example:

<xsl:template match="site">
<xsl:copy use-attribute-sets="attset2" />
<xsl:copy />
<xsl:copy>Some Text</xsl:copy>

</xsl:template>

When a site element is matched against this template, three copies of the element are cre-
ated in the resulting tree. The first xsl:copy creates attributes based on the name attribute set,
attset2. The second xsl:copy copies only the element, which ends up being the open element
tag with a closing element tag because no attributes or children are copied and no named attrib-
ute set has been specified. The third xsl:copy element creates a copy of the element and adds
text content. It would also be valid for the content of the xsl:copy element to create attributes
and apply other templates. Applying this template to one of the site elements produces the
following:

<site att2="2" att1="1"/>
<site/>
<site>Some Text</site>

xsl:copy-of The xsl:copy-of element performs a deep copy of the node. Namespaces, attrib-
utes, and children are all copied along with the node. Here’s the syntax:

<xsl:copy-of
select = expression />

The value of the select attribute specifies the expression used to define the node set or
result tree fragment to be copied into the result tree. An expression evaluating to any other type
causes the results to be converted to a string and inserted into the result tree. This case would be
similar to having called xsl:value-of with the expression. Later in the “Using Variables and Para-
meters” section, you will be introduced to the concepts of variables and parameters in XSLT.
These add a data type called a result tree fragment, which is similar to the DOMDocumentFragment
object. The xsl:copy-of element is efficient in handling these, as well as node sets, when they
are to added to the final result tree. Rather than converting the nodes to strings, the nodes can
be copied directly to the resulting tree. For example:

<xsl:template match="site">
<xsl:copy-of select="." />

</xsl:template>

The following is an example of a portion of the resulting tree using this template:

<site num="2">
<name>XML C Parser</name>
<url>http://www.xmlsoft.org/libxslt/index.php</url>

</site>

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 355

6331_c10_final.qxd 2/16/06 4:43 PM Page 355

Text Generation

The xsl:value-of element is an element you have seen many times within the examples but
has yet to be fully explained. You can use it to generate text nodes in the resulting tree:

<xsl:value-of select=string-expression disable-output-escaping = "yes" | "no" />

The difference between this element and the xsl:text element is because of the select
attribute on the xsl:value-of element. This element takes no child elements like many of the
other ones and uses the results from the select attribute to generate the text. The results from
the select attribute are automatically converted to a string if not so already, just as if the string
function were called. In the event the expression results in an empty string, no text node is
created. The disable-output-escaping attribute works the same way as the attribute on the
xsl:text element works. For example:

<xsl:template match="site">
<p><xsl:value-of select="./name"/> : <xsl:value-of select="./url"/></p>

</xsl:template>

A site element matching this template would have text nodes created from the
xsl:value-of elements based on the resulting string from the child name and url elements:

<p>PHP : http://www.php.net/</p>

Example Generating an HTML Document

Before continuing, I will demonstrate many of the concepts presented so far using a small exam-
ple that transforms some XML data into an HTML page. The page will end up containing two
links with a description of each link. I will use the following XML document for the input data:

<?xml version="1.0" encoding="iso-8859-1"?>
<sites>

<site>
<name>PHP</name>
<url>http://www.php.net/</url>
<description>PHP: Hypertext Preprocessor</description>

</site>
<site>

<name>XML C Parser</name>
<url>http://www.xmlsoft.org/</url>
<description>The XML C parser and toolkit of Gnome</description>

</site>
</sites>

This document is almost a duplicate of the previous one in this chapter. I have added
a child element to each site element, providing a short description of the site. I will use the
following style sheet to transform this data:

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="html"/>

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)356

6331_c10_final.qxd 2/16/06 4:43 PM Page 356

<xsl:template match="/">
<html>

<body>
<!-- Process the site elements -->
<xsl:apply-templates select="/sites/site" />

</body>
</html>

</xsl:template>

<xsl:template match="site">
<!-- Build the anchor tag -->
<xsl:comment>Link for <xsl:value-of select="name" /></xsl:comment>
<a>

<xsl:attribute name="href">
<xsl:value-of select="url" />

</xsl:attribute>
<xsl:value-of select="name"/>

<!-- display description in a paragraph -->
<p><xsl:value-of select="description"/></p>

</xsl:template>
</xsl:stylesheet>

Upon transformation, the main template matches the root node. Not only does this pro-
vide the skeleton HTML, but it also instructs the processor to apply templates to the site
elements.

For each of the site elements in the XML document, a comment is created that includes
the addition of the value of the name element within the comment. An anchor tag is then cre-
ated, in which an href attribute must be built. The value of this attribute is pulled from the url
element from the current site element being processed. The content of the anchor tag, which
is the clickable text displayed when rendered, is then taken from the name element. Last, the
value of the description element is added within p tags. This occurs once for each site ele-
ment within the XML document and in this case would be twice. Figure 10-1 shows the output
in a browser when finally rendered.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 357

Figure 10-1. HTML output of transformation view in browser

6331_c10_final.qxd 2/16/06 4:43 PM Page 357

Performing Repetitive Processing
It is not required that nodes always be processed using the xsl:apply-templates element or
the xsl:call-template element. You can choose a node set and directly instantiate a template
using the xsl:for-each element. This element will iterate through the selected node set, and
its contents will be used as the template for each node in the set:

<xsl:for-each select=node-set-expression>
<!-- Content: (xsl:sort*, template) -->

</xsl:for-each>

The select attribute defines the expression used to select the nodes to be iterated, just
as it has worked on many of the other elements in XSLT. The content of this element is the
template for the selected node set. You might notice the xsl:sort element in the definition as
well. I will discuss this element in the “Sorting” section, but basically you can use it to define
the sort order of the node set being iterated:

<xsl:for-each select="/sites/site">
<p><xsl:value-of select="./name"/> : <xsl:value-of select="./url"/></p>

</xsl:for-each>

This syntax often depends upon coding style. If you think about what this is actually
doing, you might wonder what the difference is between using this and using
xsl:apply-templates. Either of these will take the set of site nodes and result in the same
set of nodes in the resulting tree. My recommendation, however, is to lean toward using
xsl:apply-templates and to fall back on xsl:for-each only if necessary. For instance, you
could rewrite the previous block using the following:

<xsl:template match="site">
<p><xsl:value-of select="./name"/> : <xsl:value-of select="./url"/></p>

</xsl:template>

<!-- assume following called in scope of sites element with site children -->
<xsl:apply-templates />

This also adds a bit more reusability to the style sheet because the site elements are
handled by a common template rather than handled directly inline where the xsl:for-each
element is used.

Performing Conditional Processing
The xsl:if and xsl:choose elements provide support for conditional processing within tem-
plates. Using conditionals is another instance, like xsl:for-each, that in many cases could be
handled by calling another template. Again, it comes down to coding style and how style
sheets are managed.

xsl:if

The xsl:if element works as a simple if/then statement:

<xsl:if test=boolean-expression>
<!-- Content: template -->

</xsl:if>

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)358

6331_c10_final.qxd 2/16/06 4:43 PM Page 358

The test attribute specifies the expression to test. It is evaluated as a Boolean, and when
it evaluates to TRUE, the contents of the xsl:if element are processed. There is no else case for
this element, so an evaluation of FALSE would skip over any processing defined in the content:

<xsl:template match="site">
<xsl:if test="@num = 2">

<p><xsl:value-of select="./url"/></p>
</xsl:if>

</xsl:template>

Using the sites document you have been using in this chapter, the num attribute is tested
for the value 2 when the site elements match this template. Only the site element passing
this condition is processed by the contents of the xsl:if element, which would result in the
following:

<p>XML C Parser : http://www.xmlsoft.org/</p>

As previously mentioned, you could also do this using xsl:apply-templates:

<xsl:template match="/sites/site">
<p><xsl:value-of select="./url"/></p>

</xsl:template>

<!-- Called within the template matching document node -->
<xsl:apply-templates select="sites/site[@num=2]"/>

The test is not always this simple, and in some cases it might just be too difficult or might
create some unreadability issues when trying to force the use of the apply-templates element.
Again, it comes down to coding style, extensibility, and manageability when deciding which
type to use.

xsl:choose

The xsl:choose element, along with the xsl:when and xsl:otherwise elements, is used to test
for multiple conditions, each with different results. It has a similar effect as using if/elseif/
else statements in PHP:

<xsl:choose>
<!-- Content: (xsl:when+, xsl:otherwise?) -->

</xsl:choose>

<xsl:when test=boolean-expression>
<!-- Content: template -->

</xsl:when>

<xsl:otherwise>
<!-- Content: template -->

</xsl:otherwise>

The xsl:choose element is the container for the conditional. It consists of one or more
xsl:when elements followed by an optional xsl:otherwise element. The xsl:when element

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 359

6331_c10_final.qxd 2/16/06 4:43 PM Page 359

defines the expression to test using the test attribute. This is the same as the test attribute
on the xsl:if element. When it evaluates to TRUE, the content of the element is instantiated;
otherwise, the next xsl:when element is tested. If all the tests from the xsl:when elements fail,
the content from the xsl:otherwise element, if present, is instantiated. For example:

<xsl:template match="/sites/site">
<xsl:choose>

<xsl:when test="@num=1">
<xsl:value-of select="./url"/>

</xsl:when>
<xsl:when test="@num=3">

Site Number 3
</xsl:when>
<xsl:otherwise>

No matching Sites
</xsl:otherwise>

</xsl:choose>
</xsl:template>

This template tests the num attribute of the current site element in context. When using
the following XML data with a style sheet containing the template:

<?xml version="1.0" encoding="iso-8859-1"?>
<sites>

<site num="1">
<name>PHP</name>
<url>http://www.php.net/</url>

</site>
<site num="2">

<name>XML C Parser</name>
<url>http://www.xmlsoft.org/</url>

</site>
</sites>

the resulting tree from the template would be as follows:

http://www.php.net/
No matching Sites

Sorting
You can sort node sets within an xsl:apply-templates or xsl:for-each element using an
xsl:sort element. When used within an xsl:for-each element, it must be the first child
element but may come after an xsl:param element within the contents of an
xsl:apply-templates element:

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)360

6331_c10_final.qxd 2/16/06 4:43 PM Page 360

<xsl:sort select = string-expression

lang = { nmtoken }
data-type = { "text" | "number" | qname-but-not-ncname }
order = { "ascending" | "descending" }
case-order = { "upper-first" | "lower-first" } />

This element specifies the sort key for the node set from the parent element. You can use
multiple xsl:sort elements to create sort keys, which are then processed in order.

The sort key is created based on the resulting string from the expression defined in the
select attribute. When not present, the select attribute defaults to ., causing the text value
of the current node to be used as the sort key. For example:

<xsl:for-each select="/people/person">
<xsl:sort select="./last-name" />
<xsl:sort select="./first-name" />
<p>

<xsl:value-of select="./last-name"/>. <xsl:value-of select="./first-name"/>
</p>
<xsl:text>
</xsl:text>

</xsl:for-each>

This for-each selects all person elements that are children of the people element, sorts
them by last-name, and then sorts them by the first-name elements that are children of the
person elements. This may sound a bit confusing and is much easier to see in an example.
The xsl:text element has been inserted to allow line feeds to be inserted. The following XML
data is used for the input:

<people>
<person>

<first-name>John</first-name>
<last-name>Smith</last-name>

</person>
<person>

<first-name>Tom</first-name>
<last-name>Jones</last-name>

</person>
<person>

<first-name>Joe</first-name>
<last-name>Smith</last-name>

</person>
</people>

The resulting output is as follows:

<p>Jones, Tom</p>
<p>Smith, Joe</p>
<p>Smith, John</p>

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 361

6331_c10_final.qxd 2/16/06 4:43 PM Page 361

The remaining optional attributes on this element control how the list of sort keys is sorted.
The values for these attributes are all attribute template values so may be dynamically created.

The lang Attribute

The lang attribute specifies the language of the sort keys. The acceptable values for this
attribute follow the same rules as those for an xml:lang attribute (http://www.w3.org/TR/
REC-xml/#sec-lang-tag). When not specified, the language is determined from the system
environment. For example, to specify German as the language used for the sort keys, you
would write the element as <xsl:sort lang="de" />.

The data-type Attribute

The data-type attribute specifies how the value of the resulting select expression should be
interpreted for sorting purposes. The possible value for this attribute is text (which is the
default value), number, or a QName. Any other value other than text or number should not be
used. Using a QName for this attribute, which would be any valid QName other than the string
text or number, is dependant upon a specific processor that understands what the value of the
QName represents. The value text causes the data to be sorted lexicographically according to
the language specified by the lang attribute.

The order Attribute

The order attribute accepts either ascending or descending for its value and determines
whether the data should be ordered by the respective value. The default value for this attribute
is ascending.

The case-order Attribute

The case-order attribute is valid only when the data-type is text, which of course is the default
type for the data-type attribute. It can have the value lower-first or upper-first, and the
default value is dependant upon the language (the value of the lang attribute) used for the keys.

■Note With the current version of libxslt, 1.1.14 (which is the XSLT library used for PHP 5), the
case-order and lang attributes have not yet been implemented and will have no bearing on sort orders.

Numbering
The xsl:number element inserts formatted numbers into the results tree:

<xsl:number
level = "single" | "multiple" | "any"
count = pattern
from = pattern
value = number-expression

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)362

6331_c10_final.qxd 2/16/06 4:43 PM Page 362

format = { string }
lang = { nmtoken }
letter-value = { "alphabetic" | "traditional" }
grouping-separator = { char }
grouping-size = { number } />

The value attribute contains an expression that is converted to a number as if the num-
ber function had been executed on the result of the expression. The number is then rounded
to an integer and converted to a string based on the values of the format, lang, letter-value,
grouping-separator, and grouping-size attributes. The actual process for the number-to-
string conversion is beyond the scope of this chapter. You can find information about how
to use these attributes to control the conversion in the XSLT specification at http://
www.w3.org/TR/xslt#convert.

The grouping-separator and grouping-size attributes are both optional, but unless they
both are specified on the element, either one is ignored by itself. These attributes define how
and what separators are used for a number. For example, a comma is typically used to sepa-
rate thousands within a number. Think of it in terms of the number_format() function in PHP,
except it has no decimals or decimal places. The grouping-separator attribute specifies the
character used to separate the digits, just like the thousands_sep parameter. Unlike the PHP
function, the separator is not forced to separate thousands. Although it typically separates
every three digits, it can separate at any number of digits. For example, the following:

<xsl:number grouping-separator="," grouping-size="3" value="1000000" />

results in this:

1,000,000

Changing the separator character to the pound sign (#) and grouping on every two digits,
like so:

<xsl:number grouping-separator="#," grouping-size="2" value="1000000" />

results in the following:

1#00#00#00

When the value attribute is not specified, a number based on the position of the current
node in the source XML document is inserted. The attributes level, count, and from can con-
trol how this number is derived. The following descriptions come from the XSLT
specifications:

• The level attribute specifies what levels of the source tree should be considered; it has
the value single, multiple, or any. The default is single.

• The count attribute is a pattern that specifies what nodes should be counted at those
levels. If the count attribute is not specified, then it defaults to the pattern that matches
any node with the same node type as the current node and, if the current node has an
expanded name, with the same expanded name as the current node.

• The from attribute is a pattern that specifies where counting starts.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 363

6331_c10_final.qxd 2/16/06 4:43 PM Page 363

The number constructed using the level, count, and from attributes is driven by the value
of the level attribute. It determines which nodes will be used to match against the expressions
defined in the count and from attributes. The following document demonstrates how to use
these attributes:

<book>
<chapter>

<section>
<p>c1 s1 p1</p>

</section>
</chapter>
<chapter>

<section>
<p>c2 s1 p1</p>

</section>
<section>

<p>c2 s2 p1</p>
<p node="context">c2 s2 p2</p>
<p>c2 s2 p3</p>

</section>
<section>

<p>c2 s3 p1</p>
</section>

</chapter>
</book>

The node that will be used as the context node is the p element having the attribute node
with the value context. In XPath terms, the node can be identified by the expression /book/
chapter[2]/section[2]/p[@node='context'].

When level="single", it searches for the first node in the ancestor-or-self axis that
matches the count pattern. Once a node has been found, it counts the number of preceding
siblings of this node that also match the count pattern and adds 1 to the count. The reason for
the count being incremented by 1 is to take into account the first matching node. If the from
attribute is specified, then the search is limited to ancestors of the node that are also descen-
dants of the nearest ancestor matching the from pattern:

<xsl:number level='single' count='p' />

When used within a style sheet against the context node, this would return 2. The first
matching node ends up being the context node. The number of preceding sibling nodes that
are named p, based on the pattern specified by the value of the count attribute, are then
counted. In this case, you have only a single preceding sibling, and it matches, so the count
is 1. You then add 1 to this number, which causes the final result to be 2.

When level="multiple", the search works in a similar manner to single, except in this
case, once a match is found, the search continues moving up one level in the hierarchy, allow-
ing multiple nodes to be located. Counting is then performed for each of the located nodes
using the pattern defined by the count attribute to match against previous siblings. The value
returned is a list of numbers based on the results of each count. They are ordered based on the

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)364

6331_c10_final.qxd 2/16/06 4:43 PM Page 364

location of the node, found from the search, in document order. The from attribute works in
the same manner as described for using single:

<xsl:number level='multiple' count='chapter|section|p' />

Here the count pattern will match elements named chapter, section, and p. This causes
the search to locate the context node itself (matching on p), the parent element of p (match-
ing on section), and the second chapter element in the document because it is the chapter
node in the hierarchy of the context node. Based on document order, counting starts with the
chapter element. The number of preceding siblings that match the count pattern is 1, which
would be the first chapter element in the document. Then, 1 is then added to this to take into
account the chapter node you are starting from, which results in 2. Counting is then per-
formed using the next node in document order, which is the section element. There is only
one preceding sibling that matches the pattern and adding 1 to this, the count also returns 2.
Finally, the matching preceding siblings from the context node are counted. Again, only a
single node matches, to which 1 is added, giving the final result of 2. The final value ulti-
mately returned by this is 2.2.2.

■Note You can control the value returned using the format attribute. In this case, the attribute was not
specified, and each count was separated by a decimal. If you used the attribute format="I.A.1", the
result would have been II.B.2 because the first numeric in the result would be formatted using Roman
numerals, indicated by I; the second numeric would be an alpha based on its numeric position from A,
where A is position 1; and the last numeric is returned as a numeric based on the use of 1 for the third
position in the format value. The xsl:number element is quite useful, especially in a case like this where
you could use it as a label indicating the current chapter, section, and paragraph.

When level="any", simply every node that matches the count pattern and that either is
the context node or precedes the context node in document order is counted. This means the
count includes preceding sibling nodes and ancestor nodes of the context, which match the
count pattern, as well as nodes matching the pattern within the subtrees of those nodes. If the
from attribute is specified, then only nodes matching the count pattern that fall within the
scope of the node matching the from pattern and its subtree (excluding any node that comes
after the context node in document order) and the context node are counted. For example:

<xsl:number level='any' count='p' />

This returns the value 6. Only six p elements in the document consist of the context node
and all the nodes that come before the context node in document order. The from attribute
could limit this further to count only the p elements that fall within the context node and its
ancestor chapter element:

<xsl:number level='any' count='p' from="chapter" />

This would return the value 4 because the p elements within the first chapter element are
not within the scope being matched even though they do precede the context node in docu-
ment order.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 365

6331_c10_final.qxd 2/16/06 4:43 PM Page 365

Using these attributes may be intimidating to those new to XPath and XSLT. It is a good
idea to review the XPath material in Chapter 4, because it explains in more detail the organiza-
tion of the tree, its axes, and its node sets.

Using Variables and Parameters
Variables and parameters allow values to be bound to a name using the elements
xsl:variable and xsl:param. The actual names are a bit misleading because the difference
between the two is that, once bound, the value for a variable cannot be changed; but when
a value is bound to a parameter, the value acts only as the default value. Parameters can be
passed to a template or style sheet that is used in place of the default values. For example:

<xsl:variable
name = qname
select = expression>
<!-- Content: template -->

</xsl:variable>

<xsl:param
name = qname
select = expression>
<!-- Content: template -->

</xsl:param>

The name attribute is a required attribute for each of these elements. The value is a QName
that specifies the name of the variable or parameter and is used to reference it within the style
sheet. The select attribute is an optional attribute and can be used for an expression that,
when evaluated, defines the value:

<xsl:param name="phpText" select="PHP" />

This creates a parameter named phpText with a default value consisting of the string PHP.
Because the value of the select attribute is an expression, the value can be any resulting type of
an expression valid under XPath. This means variables and parameters could even be node sets.

Using the select attribute is only one way to define a value. Each of these elements can
also instantiate templates that become the value of the variable or parameter. Templates
result in result trees, which consist of nodes. When defining the value within the content of
the xsl:variable or xsl:param element, the element is bound to a resulting tree fragment.
This means the resulting node set is wrapped within a root node, which is automatically cre-
ated. If you are familiar with the DOM tree, it is equivalent to creating the resulting node set
within a DOMDocumentFragment:

<xsl:param name="phpText">PHP</xsl:param>

Although this looks similar to the previous parameter of the same name, it is actually quite
different. Using the select attribute select="PHP" results in the parameter phpText being bound
to the string PHP. When the text PHP is used within the content of the xsl:param element, a text
node with the value PHP is actually bound to the phpText parameter. Although this might not
seem like a big difference, it actually could be, depending upon how the variable or parameter

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)366

6331_c10_final.qxd 2/16/06 4:43 PM Page 366

is used because it’s not always the case that the node set operates in the same manner as a
native string or numeric type would.

When the select attribute is not present and the element contains no content, the value
is defined as an empty string:

<xsl:param name="emptyVar />

This is equivalent to writing the following:

<xsl:param name="emptyVar" select="''" />

When referencing a variable or parameter, the name is prefixed with the dollar sign ($).
Taking the previous binding for the emptyVar parameter, it would be used within an expression
in the form of $emptyVar:

<xsl:value-of select="$emptyVar" />

Setting Global Variables and Style Sheet Parameters

Variables and parameters are used as top-level elements, meaning they are direct children
of the xsl:stylesheet element, are declared globally, and are visible everywhere in the style
sheet. As a result of parameters being able to be passed to style sheets and templates, top-level
xsl:param elements declare parameter elements for the style sheet, which can be passed to
the style sheet by an XSLT processor. The context of either of these types of elements, when
residing as top-level elements, is the root node of the source document. This is something to
keep in mind when writing any expressions for the values of these elements. It is also worthy
to note that the values must be computed prior to the variable or parameter being referenced.
For example:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:param name="x" select="1"/>
<xsl:template match="/">

<value>
<xsl:value-of select="$x" />

</value>
</xsl:template>

</xsl:stylesheet>

When a document is processed with this style sheet, the default results are as follows:

<value>1</value>

The XSLT processor may pass a different value for the parameter named x, such as the
value 5. This time, processing the document results in the following:

<value>5</value>

Setting Variables and Parameters in Templates

Variables and parameters used within templates are local to those templates. In other words,
they are visible to all sibling nodes and their descendants. All xsl:param elements must be
declared as the first child elements of an xsl:template element. The xsl:variable elements,

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 367

6331_c10_final.qxd 2/16/06 4:43 PM Page 367

on the other hand, can be declared anywhere within the list of children of an xsl:template
element. The parameter or variable, however, cannot be referenced by any elements that
precede its declaration. For example:

<!-- ERROR: variable used before being declared -->
<xsl:template name="mytemplate">

<xsl:value-of select="$x" />
<xsl:variable name="x" select="1" />

</xsl:template>

Think of the xsl:variable and xsl:param elements in terms of variable scope in PHP.
Global variables can be accessed from anywhere, including from within functions. Variables
declared within functions are visible only within the function. It is also perfectly valid for a
local variable to have the same name as a global variable. Within XSLT, this is called shadow-
ing. For example:

<!-- The Following is invalid -->
<xsl:template match="/">

<xsl:param name="x" select="1"/>
<xsl:variable name="x" select="1"/>

</xsl:template>

This template is invalid because an xsl:variable element with the same name as an
xsl:param element is within the same scope. To be able to reuse an xsl:variable or xsl:param
name, they must be of different scope, or shadowed. For instance, the following style sheet
binds a parameter within the global scope yet shadows the binding within a template:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:param name="x" select="1"/>
<xsl:template match="/">

<xsl:param name="x" select="3"/>
<value>

<xsl:value-of select="$x" />
</value>

</xsl:template>
</xsl:stylesheet>

This template is perfectly legal. The parameter, x, defined within the template shadows the
global parameter binding. Within the template, unless a parameter of the same name is passed
to it, the default value of 3 is used for the x parameter. Once the processor is finished with the
template, the local parameter loses scope, causing the global parameter to once again take
effect. The same rules apply to variables, although there is no possibility of a variable being
passed to a template. A variable is considered bound and usable based on it being in scope.

Passing Parameters to Templates

Just like the XSLT processor can pass parameters to style sheets overriding the default parame-
ter values, you can call templates with parameters to override default values bound within the
template. You can use the xsl:with-param element for this purpose:

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)368

6331_c10_final.qxd 2/16/06 4:43 PM Page 368

<xsl:with-param
name = qname
select = expression>
<!-- Content: template -->

</xsl:with-param>

This element is applicable within the content of an xsl:call-template or
xsl:apply-templates element. The required name attribute is the name of the parameter,
and you can use the optional select attribute to define the value. They work in the same
fashion as an xsl:param element and use any child elements to specify content. The context
for an expression used within the select attribute or template created within the content is
the same as that used for the xsl:call-template or xsl:apply-templates element in which
it resides. For example:

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:param name="x" select="2"/>

<xsl:template match="/">
<xsl:apply-templates select="sites/site">

<xsl:with-param name="x" select="count(.)" />
</xsl:apply-templates>

</xsl:template>

<xsl:template match="site">
<xsl:param name="x" select="10"/>
<xsl:value-of select="$x" />
<xsl:text>

</xsl:text>
</xsl:template>

</xsl:stylesheet>

This is a bit more complex. The parameter x is bound globally with the default value of 2.
The entry template, matching /, applies any templates of the site elements that are children
of the sites element and passes a parameter x with the value being the count of the current
node set. Based on this expression, the value will always be 1. The matching template also
defines the parameter x with the value 10. This is a shadow binding since it is declared locally
yet the style sheet has the global parameter x as well. The value 10 for the local parameter is
just the default value. As you can see from the results, the value passed from the xsl:with-
param element is what is used for the actual value of the parameter within the template:

1
1
1
1

The template processed four site elements, which caused 1 to be output for each ele-
ment. The xsl:text element was used only to add line feeds to the results.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 369

6331_c10_final.qxd 2/16/06 4:43 PM Page 369

Using Functions
XPath is the foundation for much of XSLT, so all the functionality and functions from XPath are
available within the XSLT language. XSLT, though, extends the functionality of the core XPath
library with some of its own functions not available under XPath. The following sections will
introduce you to these functions and show how to use them within a style sheet.

Multiple Source Documents

Documents outside the source document are accessible using the document() function:

node-set document(object, node-set?)

The simplest case when using this function is with a single parameter. When the object
parameter is not a node set, the object is simply converted into a string and treated as a URI
reference:

<xsl:value-of select="document('http://www.example.com/file.xml')" />

The result of the document() function is a node set, so it is also perfectly legal to use it as
part of a path for an expression:

<xsl:value-of
select="document('http://www.example.com/file.xml')/html/head/style" />

The URI may also be a fragment, so only certain nodes from the document will be
returned by the function.

When a node set is passed as a single parameter, the result is the union, for each node in
the set, of having called the document() function with the string value of the current node from
the set. For example, assume a list of elements containing URLs:

<sites>
<site>http://www.example.com/file1.xml</site>
<site>http://www.example.com/file2.xml</file>

</sites>

Both of these documents could be returned in a node set and their values determined:

<xsl:value-of select="document(/sites/site)" />

The last possibility is using two parameters, with a node set being passed in as the first
parameter. In this case, for each of the nodes in the node set, the function would be called
using the string value of the node and passing the second argument passed to the original
function call as the second argument for the current document() call. The final resulting node
set would be a union of all the accumulated results.

Keys

Keys in XSLT are similar to IDs in XML documents, except they do not have the same limi-
tations as using IDs. They are used in combination of the xsl:key element and the key()
function:

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)370

6331_c10_final.qxd 2/16/06 4:43 PM Page 370

<xsl:key
name = qname
match = pattern
use = expression />

node-set key(string, object)

You declare keys using the xsl:key element. The name attribute specifies the name for the
key. The match attribute is a pattern that causes nodes matching the pattern to be used as keys.
The use attribute is an expression specifying what information for the nodes to use as the key
value. Keys work like indexes and are optimized to find what you are seeking.

Think about book data stored in XML format. Each book has a unique ISBN to clearly
identify it. The following is a short example of such a document:

<books>
<book isbn="159059xxxx">

<title>Book 1</title>
<author>Author 1</author>

</book>
<book isbn="159059yyyy">

<title>Book 2</title>
<author>Author 2</author>

</book>
<book isbn="159059zzzz">

<title>Book 3</title>
<author>Author 3</author>

</book>
</books>

This document has no IDs defined, but the document can still be indexed for fast retrieval
within XSLT:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:key name="ISBN" match="book" use="@isbn"/>

<xsl:template match="/">
<xsl:value-of select="key('ISBN', '159059yyyy')/title" />

</xsl:template>

</xsl:stylesheet>

Processing this style sheet with the book data, the resulting output is Book 2.
The xsl:key element is a top-level element, so it must live as a direct child of the

xsl:stylesheet element. The element used here defines the key named ISBN that matches
on book elements and uses the isbn attribute of the book elements as the key value. The key()
function is used as the expression within the select element. The first parameter is the name
of the key to use. This value must match a predefined key, which in this case is ISBN. The sec-
ond value is the value of the key to match. Looking at the source document, the second book

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 371

6331_c10_final.qxd 2/16/06 4:43 PM Page 371

element contains the value 159059yyyy for its isbn attribute. The resulting node set is then
used as part of the path within the expression, which ultimately returns the value Book 2.

Number Formatting

The format-number() function creates formatted numbers. It is similar to using the
number_format() function from PHP, but it offers much more capability. It works in con-
junction with the xsl:decimal-format element, which controls the interpretation of a format
pattern used by the function. For example:

string format-number(number, string, string?)

<xsl:decimal-format
name = qname
decimal-separator = char
grouping-separator = char
infinity = string
minus-sign = char
NaN = string
percent = char
per-mille = char
zero-digit = char
digit = char
pattern-separator = char />

The format-number() function takes two required parameters plus an optional third
parameter. The first parameter is the number to be formatted. If it is not of the type number,
it is converted according to the rules defined in the XPath specifications. The second argu-
ment defines the format pattern used to format the number. The last parameter is optional.
When passed, it uses the named xsl:decimal-format element to provide different behavior
than the default decimal-format to interpret the format pattern. This explanation is a bit
useless unless you know how the xsl:decimal-format element interprets the pattern based
on its defined attributes as well as the defaults.

The name attribute is not required for the xsl:decimal-format attribute. It is used to
create a named decimal format, which could then be called directly by the format-number()
function. When a name is not specified by this element, the interpretation defined by the
rest of the attributes becomes the default decimal format, which overrides the built-in
default decimal format. The remaining attributes control interpretation of the format pat-
tern and are explained nicely in the XSLT specification. The following list comes from the
specification at http://www.w3.org/TR/xslt#format-number.

The following attributes both control the interpretation of characters in the format pat-
tern and specify characters that may appear in the result of formatting the number:

• decimal-separator specifies the character used for the decimal sign; the default value
is a period (.).

• grouping-separator specifies the character used as a grouping (for example, the
thousands separator); the default value is a comma (,).

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)372

6331_c10_final.qxd 2/16/06 4:43 PM Page 372

• percent specifies the character used as a percent sign; the default value is a percent
character (%).

• per-mille specifies the character used as a per-mille sign; the default value is the
Unicode per-mille character (#x2030) .

• zero-digit specifies the character used as the digit zero; the default value is a digit
zero (0).

The following attributes control the interpretation of characters in the format pattern:

• digit specifies the character used for a digit in the format pattern; the default value is
a number sign (#).

• pattern-separator specifies the character used to separate positive and negative
subpatterns in a pattern; the default value is a semicolon (;).

The following attributes specify characters or strings that may appear in the result of
formatting the number:

• infinity specifies the string used to represent infinity; the default value is the string
Infinity.

• NaN specifies the string used to represent the NaN value; the default value is the string
NaN.

• minus-sign specifies the character used as the default minus sign; the default value is
a hyphen (-, #x2D).

Based on all these rules, the following demonstrates how different formats work with
different values:

<xsl:decimal-format name="euros" decimal-separator="," grouping-separator="."/>

<xsl:value-of select="format-number('A', '.00')" />
<xsl:value-of select="format-number('1.99', '.00')" />
<xsl:value-of select="format-number('1.99', '.###')" />
<xsl:value-of select="format-number('9999.99', '#.###,##', 'euros')" />

NaN
1.99
1.99
9.999,99

Miscellaneous Functions

XSLT defines four functions that are not as significant as the other functions yet can some-
times be useful.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 373

6331_c10_final.qxd 2/16/06 4:43 PM Page 373

current() The current() function returns a node set that contains only the current node as its
members:

node-set current()

This function may not immediately seem to have a purpose because you could easily
access the current node using . or self::. When used within a predicate, though, it can
provide much different results:

<code>
<functions>

<function name="foreach">
<!-- function information -->

</function>
<function name="do">

<!-- function information -->
</function>

</functions>
<control name="do" params="0">

<!-- more info -->
</control>

</code>

<xsl:template match="control">
<xsl:apply-templates select="/code/function[@name=current()/@name]" />

</xsl:template>

Using the current control element matched in the template, the xsl:apply-templates
element applies any matching template to the function element whose name attribute has the
same value as the name attribute for the current node being processed. This is greatly different
from writing this:

/code/function[@name=./@name]

This is equivalent to writing this:

/code/function[@name=@name]

The node sets are completely different, because the latter expression would select every
function element rather than a single function element.

unparsed-entity-uri() The unparsed-entity-uri() function returns the URI of the unparsed
entity with the specified name that resides in the same document as the context node. When
the entity does not exist, an empty string is returned:

string unparsed-entity-uri(string)

Assume the XML source document contains a DTD with the following entity declaration:

<!ENTITY systemEntity SYSTEM "http://www.example.com/file.xml">

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)374

6331_c10_final.qxd 2/16/06 4:43 PM Page 374

You could then use the unparsed-entity function to look up the URI for this entity during
processing:

<xsl:value-of select="unparsed-entity-uri('systemEntity')" />

This would result in the string http://www.example.com/file.xml.

generate-id() The generate-id() function will return a string that uniquely identifies the argu-
ment node set that is first in document order:

string generate-id(node-set?)

An empty node set passed in as the node-set parameter will result in an empty string.
When no parameter is passed in, the context node is used. This function will always return the
same string for the same node, yet no two nodes in a document will generate the same ID.

■Caution The identifier returned by this function cannot be used to identify node sets between transfor-
mations. An identifier is guaranteed to be the same only within a single transformation. Performing another
transformation on a subsequent call to a PHP page or even within the same PHP page, even when the same
document and style sheet are used, may result in a different identifier being used during the transformation.

For example:

<xsl:template match="site">
<xsl:value-of select="generate-id()" />

</xsl:template>

When matched, the unique identifier for the current site element being processed is
returned:

id337632

system-property() This property returns the value of the system property passed in as the
argument:

object system-property(string)

The string argument is a QName, which is expanded using the namespace declarations in
scope for the expression. For instance, three system properties are required by the XSLT speci-
fications because they reside in the XSLT namespace:

<xsl:template match="/">
<xsl:value-of select="system-property('xsl:vendor')" />
<xsl:value-of select="system-property('xsl:vendor-url')" />
<xsl:value-of select="system-property('xsl:version')" />

</xsl:template>

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 375

6331_c10_final.qxd 2/16/06 4:43 PM Page 375

libxslt
http://xmlsoft.org/XSLT/
1.0

Using Messages
Debugging XSLT is not always the easiest of tasks. You can use the xsl:message element to
produce XML fragments that do not become part of the result tree, but you can capture them
using other methods depending upon the XSLT processor. Within PHP 5, any output from an
xsl:message is captured as an error. More particularly, an E_WARNING is generated with the out-
put from the xsl:message as the error message. Using PHP 5.1, you can capture them using the
new XML error handling by means of calling libxml_use_internal_errors(TRUE);. This way,
the messages will be contained within the message property of LibXMLError objects:

<xsl:message terminate = "yes" | "no">
<!-- Content: template -->

</xsl:message>

The terminate attribute instructs the XSLT processor whether it should terminate upon
encountering and after processing the xsl:message element. The default value is no, so pro-
cessing will continue, no E_WARNINGS will be issued, and no LibXMLError objects (explained in
Chapter 5) will be captured. The content of this element is the template used to create the
XML fragment that becomes the message for the warning:

<xsl:template match="site">
<xsl:message>

Debug: <xsl:value-of select="./name" />
</xsl:message>
<p><xsl:value-of select="./name" /></p>

</xsl:template>

The resulting tree can contain the following:

<p>PHP</p>
<p>XML C Parser</p>

The PHP warnings or message properties of LibXMLError objects would contain the fol-
lowing:

Debug: PHP
Debug: XML C Parser

Using Extensions
Extensions, naturally, are a way of extending the regular capability of the XSLT processor. They
allow you to add your own custom functions, which are then callable from the XSLT style sheets.
Several extensions are often built into the processor, such as those provided by EXSLT (http://
www.exslt.org/), which is a community initiative to provide extensions to XSLT. To utilize exten-
sion functionality, you need to define namespaces and associate them with prefixes on the

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)376

6331_c10_final.qxd 2/16/06 4:43 PM Page 376

xsl:stylesheet element for specific extensions. Table 10-1 presents some of the common pre-
fixes and associated namespaces used for some of the EXSLT modules.

Table 10-1. EXSLT Modules and Associated Namespaces

Module Prefix Namespace URI

Date date http://exslt.org/dates-and-times

Dyn dyn http://exslt.org/dynamic

Common exsl http://exslt.org/common

Functions func http://exslt.org/functions

Math math http://exslt.org/math

Random random http://exslt.org/random

RegEx regexp http://exslt.org/regular-expressions

Sets set http://exslt.org/sets

Strings str http://exslt.org/strings

So, to use the functionality of the Math module from EXSLT, the first thing is to add the
namespace to the xsl:stylesheet element:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
xmlns:math="http://exslt.org/math">

Calling Functions

You can now use functions from this module by prefixing the function name with the math
prefix, which instructs the processor to use the extension from the appropriate module. For
example, the Math module includes the lowest() function. It takes a node set as its parameter
and returns the lowest value. Using the sites document that has numeric values for the num
attribute of the site elements, you can determine the lowest value with this function:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
xmlns:math="http://exslt.org/math">

<xsl:template match="/">
<xsl:value-of select="math:lowest(/sites/site/@num)" />

</xsl:template>
</xsl:stylesheet>

If you look at the expression for the xsl:value-of element, you will notice the lowest()
function has been prefixed by math. When the processor evaluates the expression, functions
that are prefixed are treated as extension functions and are evaluated according to their name-
space association. The result of processing the data is the value 1, which is the lowest value for
the num attributes on site elements.

Extension Elements

Some extensions also define extension elements. To use the functionality of these elements
within a style sheet, you must specify an additional attribute, extension-element-prefixes,

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 377

6331_c10_final.qxd 2/16/06 4:43 PM Page 377

on the xsl:stylesheet element. This attribute takes a whitespace-separated list of registered
namespace prefixes associated with any of the extensions from which the use of its elements
is needed. One such module is the EXSLT Common module. It includes an exsl:document
element, which can be used to actually save a result tree to a URI during transformation:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
xmlns:exsl="http://exslt.org/common"
extension-element-prefixes="exsl">

<xsl:template match="/">
<exsl:document href="exsl.xml">

<mydoc>New document saved to a URI</mydoc>
</exsl:document>

</xsl:template>

</xsl:stylesheet>

For this example to work, extension-element-prefixes must include the exsl prefix in its
value list. Omitting this attribute or the exsl value results in the exsl:document element being
treated as a regular element in the template. With the prefix within the attribute, the result tree
does not contain the exsl:document element or its content. Instead, the content within the
element is output to the URI defined by the href attribute rather than to the result tree.

User-Defined Functions

You can implement user-defined functions in one of two forms. The first is a generic method
that works with XSLT processors implementing the EXSLT Functions module. The second
method is specific to the XSL extension in PHP 5, which allows user-defined PHP functions to
be called from within an XSLT style sheet. I will discuss this method later in the “Calling PHP
Functions from XSL” section after the XSL extension has been introduced.

The generic way is using the func:function and func:result elements from the EXSLT
Functions module. The function is written using syntax available when writing XSLT style sheets,
so a custom function may contain functionality from additional extensions and modules:

<func:function name = QName>
<-- Content: (xsl:param* | template) -->

</func:function>

<func:result select = expression>
<-- Content: template -->

</func:result>

The func:function element defines the function to be used within the style sheet. This
element is a top-level element, so it lives as a direct child of the xsl:stylesheet element. The
name attribute defines the name of the function. Its value is a QName and must include a prefix
associated with a namespace. Because these are user-defined functions, the prefix and name-
space should be something unique to the style sheet author.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)378

6331_c10_final.qxd 2/16/06 4:43 PM Page 378

Based on this, you should already be aware that you need to add two namespaces to the
xsl:stylesheet: one for the func prefix and one for the unique prefix and namespace. You will
also need to add the extension-element-prefixes attribute with the value func; as explained
in the previous section, you need this in order to use elements prefixed with func. The opening
xsl:stylesheet element should look something similar to the following, where the prefix rob
is associated with the http://www.ctindustries.net/xslfunctions namespace, which will be
used for the user-defined function:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
xmlns:func="http://exslt.org/functions"
xmlns:rob="http://www.ctindustries.net/xslfunctions"
extension-element-prefixes="func">

With this in place, you can now build the function. It will be a simple function that accepts
up to three parameters. The first two will be numbers and, depending upon the value of the
third parameter, will either be added or be subtracted with the result returned to the callee:

<func:function name="rob:myFunc">
<xsl:param name="val1" select="0" />
<xsl:param name="val2" select="0" />
<xsl:param name="subtractit" select="0" />
<xsl:choose>

<xsl:when test="$subtractit = 0">
<func:result select="$val1 + $val2" />

</xsl:when>
<xsl:otherwise>

<func:result select="$val1 - $val2" />
</xsl:otherwise>

</xsl:choose>
</func:function>

<xsl:template match="/">
<xsl:value-of select="rob:myFunc(4)" />
<xsl:value-of select="rob:myFunc(1, 2)" />
<xsl:value-of select="rob:myFunc(15, 3, 1)" />

</xsl:template>

You define function parameters using the xsl:param element. Within the rob:myFunc
function, three parameters (val1, val2, and subtractit) are defined with default values of 0.
The first two parameters, val1 and val2, are the numbers to either be added or be subtracted.
The last parameter, subtractit, is a flag signaling the operation to perform. Any value other
than 0, which is the default value, causes the function to return the difference between val1
and val2.

Only a single func:result element can be instantiated within the func:function ele-
ment. This is why the xsl:choose element is used. If xsl:if had been used, one func:result
element would need to live within xsl:if and the other outside of it. This would cause an
error; any time test evaluated to TRUE for an xsl:if, the first func:result would be instanti-
ated, and then after exiting the xsl:if block, the last one would try to be instantiated.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 379

6331_c10_final.qxd 2/16/06 4:43 PM Page 379

Moving down to the xsl:template element, you can see how the function is called within
the xsl:value-of elements. Because parameters have default values, the function can take
zero to three parameters. So, instantiating the template results in the following output:

4
3
12

Trying to call the function with more than three arguments will result in an error while the
data is being transformed.

■Tip User-defined functions not only allow more compact style sheets, such as when a function needs to
be referenced from multiple spots within a style sheet, but they also make it easier to port specific function-
ality to another style sheet as well as provide a single location when changes or bug fixes need to be made
to the functionality.

Using Fallback
When writing XSLT, it’s not always possible to know whether certain functionality has been
implemented by an XSLT processor or whether some type of extended functionality is available
to the processor. You can use the xsl:fallback element to define some fallback capabilities in
the event one of these conditions is encountered during processing:

<xsl:fallback>
<!-- Content: template -->

</xsl:fallback>

The content of this element is instantiated when a fallback condition arises:

<xsl:template match="site">
<xsl:function value="robtest">

Function EXECUTED
<xsl:fallback>

FALLBACK Condition Encountered
</xsl:fallback>

</xsl:function>
</xsl:template>

Within this template, an xsl:function element has been used. This is an invalid element
within the XSLT namespace. An xsl:fallback element has also been implemented within this
invalid xsl:function element. When a site element matches this template, the xsl:function
element is processed. If it were a valid element, the text Function EXECUTED would be added to
the result tree. However, this element is invalid, and the fallback condition is instantiated. The
resulting text for this template is as follows:

FALLBACK Condition Encountered

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)380

6331_c10_final.qxd 2/16/06 4:43 PM Page 380

Using Output
The xsl:output element is a top-level element, meaning it is a direct child of the xsl:stylesheet
element. It is not a required element but is often used to provide some instruction on how the
resulting tree should be output:

<xsl:output
method = "xml" | "html" | "text" | qname-but-not-ncname
version = nmtoken
encoding = string
omit-xml-declaration = "yes" | "no"
standalone = "yes" | "no"
doctype-public = string
doctype-system = string
cdata-section-elements = qnames
indent = "yes" | "no"
media-type = string />

The XSLT processor can create three types of output. They are xml, html, and text, which are
also the possible values for the method attribute. By definition, the method attribute can also take
a QName that must contain a prefix, but this is processor dependant and often not supported.

■Note The XSL extension in PHP 5 supports only the values xml, html, and text for the method attribute.

When this attribute is not specified or the xsl:output element is omitted from the style
sheet, the default output method is chosen based on the contents of the result tree. A result
tree meeting the following conditions defaults to the html output method:

• The root node of the result tree has an element child.

• The expanded name of the first element child of the root node (that is, the document
element) of the result tree has the local name HTML (in any combination of uppercase
and lowercase) and a NULL namespace URI.

• Any text nodes preceding the first element child of the root node of the result tree con-
tain only whitespace characters.

If any of these conditions is not met, the default output method is xml.
The remaining attributes are used as parameters for the output method. The following

descriptions come from the W3C XSLT specification at http://www.w3.org/TR/xslt#output.
(These are just general descriptions because some are further explained or used in examples
in the following sections.)

• version specifies the version of the output method.

• indent specifies whether the XSLT processor can add whitespace when outputting the
result tree; the value must be yes or no.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 381

6331_c10_final.qxd 2/16/06 4:43 PM Page 381

• encoding specifies the preferred character encoding that the XSLT processor should
use to encode sequences of characters as sequences of bytes. The value of the attrib-
ute is case-insensitive, and the value must contain characters only in the range from
#x21 to #x7E (that is, the printable ASCII characters). The value should either be a
character set registered with the Internet Assigned Numbers Authority (IANA) from
RFC-2278 or start with X-.

• media-type specifies the media type (MIME content type) of the data that results from
outputting the result tree. The charset parameter should not be specified explicitly;
instead, when the top-level media type is text, a charset parameter should be added
according to the character encoding actually used by the output method.

• doctype-system specifies the system identifier to be used in the document type
declaration.

• doctype-public specifies the public identifier to be used in the document type
declaration.

• omit-xml-declaration specifies whether the XSLT processor should output an XML
declaration; the value must be yes or no.

• standalone specifies whether the XSLT processor should output a stand-alone
document declaration; the value must be yes or no.

• cdata-section-elements specifies a list of the names of elements whose text node
children should be output using CDATA sections.

XML Output Method

When the result tree is output as XML, the processor creates a well-formed tree or issues errors
when this is not possible. It is important that any literal tags you may use within templates are
written as well-formed XML as well. For instance, creating the start tag for an element, yet
never closing, it would cause an error:

<!-- This is an error because it does not produce well-formed XML -->
<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="xml"/>
<xsl:template match="/">

<unbalanced>
<xsl:value-of select="2"/>

</xsl:template>
</xsl:stylesheet>

XML Declaration Attributes Roughly half the attributes affect any XML declaration that would be
included with the output. The primary attribute in this case is omit-xml-declaration. When
set to yes, no XML declaration is included with the output, which basically renders most of the
other attributes that affect it useless. Setting the value to no or omitting this attribute results in
an XML declaration being included in the output.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)382

6331_c10_final.qxd 2/16/06 4:43 PM Page 382

The version attribute specifies the version of XML used in the output, with the default
being 1.0. You could use other version numbers, such as 1.1 or 2.0; 2.0 is not even a valid ver-
sion number for XML and would be indicated in the resulting declaration, but the processor
will actually use whatever version it supports if not supporting the version specified to create
the document. When the standalone attribute is specified, it is included in the declaration
with the value set by this attribute. The last attribute affecting the declaration is the encoding
attribute.

The encoding attribute does two things. First, when specified, it adds an encoding attrib-
ute to the declaration of the resulting document. The value is the same as the value set in the
xsl:output element. Second, it sets the encoding for the processor to use while creating the
resulting document. You can find detailed information about encoding, especially with
respect to the support under PHP 5, in Chapter 5.

<xsl:output method="xml" version="1.0" standalone="yes" encoding="UTF-8" />

Used within a style sheet, this would cause the processor to produce an XML document
with the following XML declaration:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

Other Attributes The remaining attributes offer control over certain aspects of the tree structure
as well as the MIME type for the resulting data. I will first address the MIME type because it
currently does not do anything when using the XSL extension in PHP. This is because of the
media-type attribute not being implemented in the current version of libxslt, which at this
time is 1.1.14. Documents output in XML format typically are of the text/xml MIME type,
which is also the default value for this attribute when XML is output. MIME types are used
so when a client is requesting a document, the MIME type can be sent in the headers and
the client is able to use it to determine how to handle the content. Even though it is not
implemented, it has little bearing on the PHP XSL extension. Typical usage is through a
Web server, and the encompassing PHP application is able to modify the content headers
in any event.

The indent attribute works in a similar fashion to the formatOutput property in DOM.
When it is set to yes, the resulting XML is “beautified” by indenting and by adding line feeds
at the different levels of the tree. The default value is no for this attribute—for good reason.
Whitespaces are significant and could possibly alter a document in such a way that the serial-
ized version does not match what the resulting document was. When working with documents
that have elements containing mixed content, the safest bet is to not use indenting.

You can also add system and public identifiers to the resulting document using the
doctype-system and doctype-public attributes. When using these attributes, a document
declaration is included in the resulting document with the document element automatically
added. To specify a system identifier, add the doctype-system attribute to the xsl:output
element with the value of the system identifier. Using the sites document for the XML data
(where the sites element is the document element), the following would add a system identi-
fier to the resulting document:

<xsl:output method="xml" doctype-system ="http://www.example.com"/>

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 383

6331_c10_final.qxd 2/16/06 4:43 PM Page 383

This would cause the following to be added to the final results:

<?xml version="1.0"?>
<!DOCTYPE sites SYSTEM "http://www.example.com">

A public identifier is defined using both the doctype-system and doctype-public attrib-
utes. When both attributes are specified, the system identifier portion of the public identifier
is taken from the value of the doctype-system attribute. When a doctype-public attribute is
used alone, then the system identifier portion is empty. For example:

<xsl:output method="xml" doctype-public="publicid" omit-xml-declaration="yes" />

<!-- Resulting Document Declaration -->
<!DOCTYPE sites PUBLIC "publicid" "">

<xsl:output method="xml" doctype-public="publicid"
doctype-system ="http://www.example.com/" omit-xml-declaration="yes" />

<!-- Resulting Document Declaration -->
<!DOCTYPE sites PUBLIC "publicid" "http://www.example.com/">

The last attribute on this element is cdata-section-elements. This attributes takes a
whitespace-separated list of element names whose direct child text nodes should be output as
CDATA sections rather than text nodes. Any text nodes to be converted to CDATA sections that
contain the sequence of characters]]> are converted to two sequential CDATA sections. The
first CDATA section is closed after the]] characters. An additional CDATA section is created,
with the first character containing the > character and including the rest of the text:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="xml" cdata-section-elements="node2 node4 node6" indent="yes"/>
<xsl:template match="/">

<newdoc>
<node1>some text</node1>
<node2>some text</node2>
<node3><![CDATA[native CDATA section]]></node3>
<node4><![CDATA[native CDATA section]]></node4>
<node5>CDATA chars]]></node5>
<node6>CDATA chars]]></node6>

</newdoc>
</xsl:template>

</xsl:stylesheet>

This style sheet shows the effects of creating some text as CDATA sections. Text is first
output as a text node and followed by the corresponding text as CDATA. Because of the
cdata-section-elements attribute (node2), node4 and node6 will generate CDATA sections
for their child text nodes; the rest of the elements will output straight text nodes:

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)384

6331_c10_final.qxd 2/16/06 4:43 PM Page 384

<?xml version="1.0"?>
<newdoc>
<node1>some text</node1>
<node2><![CDATA[some text]]></node2>
<node3>native CDATA section</node3>
<node4><![CDATA[native CDATA section]]></node4>
<node5>CDATA chars]]></node5>
<node6><![CDATA[CDATA chars]]]]><![CDATA[>]]></node6>

</newdoc>

HTML Output Method

Even if this is your first time dealing with XSL, you are probably familiar with HTML. HTML is
not the same as XHTML, and using the html output method will generate HTML rather than
XML-conformant XHTML.

■Note To output XHTML, which is not a valid output method in XSLT 1.0, use the xml output method.

This being said, some of the syntax within your document may be altered a bit when it is
output. For instance, under HTML, many empty tags are written as a start element with no
corresponding closing tag. If within the style sheet, which must be XML conformant, you use

 or
</br>, you would see only
 when the document is output.

Another alteration that occurs is the addition of a META element. If the HTML document
contains a HEAD element, a META tag is added as the first child of the HEAD element that specifies
character encoding. If your result tree looked similar to the following:

<html>
<head></head>
<body>content</body>

</html>

it would be changed upon output to the following:

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>content</body>

</html>

■Caution Some of the material presented in this section is specific to the libxslt library, which is used by
the XSL extension in PHP 5.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 385

6331_c10_final.qxd 2/16/06 4:43 PM Page 385

The version attribute for HTML output corresponds to the HTML version for the resulting
document, such as 4.01 to specify that the document conforms to the HTML 4.01 specification.
Specifying this attribute automatically sets the document declaration using the appropriate
identifiers for the specified HTML version:

<xsl:output method="html" version="4.01"/>

Assuming you used the HTTML element and it is the document element of the tree, the
resulting output would automatically include the document type declaration:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">

Setting either the doctype-system attribute or the doctype-public attribute disables the
automatic creation of a document declaration based on the version attribute. Using either
of these attributes works the same as when the output method is xml. For example:

<xsl:output method="html" version="4.01" doctype-public="publicid"/>

The only change to this element has been the addition of the doctype-public attribute,
but it alters the resulting output greatly:

<!DOCTYPE html PUBLIC "publicid">

The media-type attribute, again, is applicable to this output method but does not cur-
rently serve a usable purpose under PHP using the XSL extension. The default value, in any
case, is text/html.

Putting all this together using the sites document again and the following style sheet,
an HTML page can be output containing an ordered list of all site names:

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="html" version="4.01" />

<xsl:template match="/">
<html>

<head>
</head>
<body>

<xsl:apply-templates select="/sites/site/name" />

</body>

</html>
</xsl:template>

<xsl:template match="name">
<xsl:value-of select="." />

</xsl:template>

</xsl:stylesheet>

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)386

6331_c10_final.qxd 2/16/06 4:43 PM Page 386

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">

<html>
<head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"></head>

<body>
XML C Parser
PHP
PHP
XML C Parser
</body>
</html>

Text Output Method

Text output is simple. You output the result tree by outputting the string value for each text
node in the document without performing any escaping. The only two applicable attributes
for this method are media-type, which does not affect anything using the XSL processor in
PHP, and the encoding attribute, which instructs the processor to encode the output using the
specified encoding. Using the style sheet from the CDATA example and modifying the
xsl:output to output as text, you’ll see that the results are radically different now:

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="text" />
<xsl:template match="/">

<newdoc>
<node1>some text</node1>
<node2>some text</node2>
<node3><![CDATA[native CDATA section]]></node3>
<node4><![CDATA[native CDATA section]]></node4>
<node5>CDATA chars]]></node5>
<node6>CDATA chars]]></node6>

</newdoc>
</xsl:template>

</xsl:stylesheet>

some textsome textnative CDATA sectionnative CDATA sectionCDATA chars]]>CDATA chars
]]>

Introducing the XSL Extension
The XSL extension is the new XSL processor for PHP 5. Prior to its creation, XSLT was available
through the domxml extension (when built with XSLT support) and the XSLT extension, which
was based on the Sablotron library. During the reimplementation of domxml, XML and XSLT

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 387

6331_c10_final.qxd 2/16/06 4:43 PM Page 387

were split into new extensions. This is how the DOM and XSL extensions came about in PHP 5.
Both domxml and the XSLT extension have been moved to PECL (http://pecl.php.net/),
although neither has packages built for it, and both must be accessed via the CVS repository.
Enough talk of those ancient extensions! The focus here is the XSL extension.

■Note The term XSL used within the rest of this chapter refers to the XSL extension in PHP 5.

XSL is based on the libxslt library (http://xmlsoft.org/XSLT/), which in turn is based
on the familiar libxml2 library. It makes a fine fit with the rest of the XML-based extensions
in PHP 5, because they all use the same common library, thus fitting into the interoperability
scheme. XSL requires that the DOM extension, enabled by default, also be available. This
ensures a tree-based parser is available to perform transformations to an in-memory tree.

Enabling XSL
By default, XSL is not built into PHP, though it’s included with the core. It must be specified
when configure is executed:

--with-xsl

Before adding this to your configure routine, make sure you have libxslt installed along
with the header files. The minimum version that can be used with XSL is 1.0.18. XSL also sup-
ports some EXSLT functionality, which requires that libexslt, a sister library to libxslt, also be
installed along with its headers. It is not required to build XSL with EXSLT support, but with-
out it, the extended functionality it offers will be unavailable.

■Note Unless building from source, Windows users can ignore this and use the DLL included with the
package from the PHP download site. Just make sure it is also enabled in the php.ini file.

Using XSL Constants
Table 10-2 describes XSL’s short list of constants.

Table 10-2. Constants from XSL

Constant Name Value Description

XSL_CLONE_AUTO 0 Autodetect whether document needs to be cloned.

XSL_CLONE_NEVER -1 Never clone the document.

XSL_CLONE_ALWAYS 1 Always clone the document.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)388

6331_c10_final.qxd 2/16/06 4:43 PM Page 388

All the constants deal with how the style sheet document is handled when imported by
the processor. I will explain how to use these constants later in the “The cloneDocument
Property” section.

Using the XSLTProcessor Class
XSL is an object-oriented API and works using a single class. The XSLTProcessor handles all the
functionality to transform XML data into another form. The API is simple, consisting of one prop-
erty and nine methods, yet provides some powerful functionality.

The cloneDocument Property
Earlier versions of libxslt (those prior to 1.1.5) caused problems with the XML data document
when using keys in a style sheet. The problems resulted in a corrupt XML data document, mak-
ing it useless for any further processing and possibly causing a crash. Originally, prior to this
being changed with libxslt 1.1.5, the data document would be copied and the copy was used by
XSL. Though this did prevent any problems, it also resulted in an increase in system resources
because two document trees were in memory at the same time for the same document.

Because this issue was specific to using keys, it made no sense to always force a document
copy. The cloneDocument property allows a developer to explicitly specify whether the docu-
ment should be cloned or left as is or specify that XSL should determine whether the document
needed to be cloned. The value of this property is one of the constants described in Table 10-2.

The default value for this property is XSL_CLONE_AUTO, so the processor will attempt to
autodetect the use of keys in a style sheet. If keys are detected, a copy of the XML data docu-
ment is used for the transformation. When using libxslt 1.1.5 or newer, there really is no need
for the document to ever be cloned, because using keys in a style sheet does not cause any
issues with the interoperability of extensions like earlier versions did. Depending upon your
style sheet and library versions, you may want to explicitly set the handling of document
cloning. When using this property, you can use the following guidelines to determine the
proper setting depending upon the version of libxslt you’re using. The variable $proc refers
to an already instantiated XSLTProcessor object.

• When using libxslt 1.1.5 or newer, the data document never needs to be cloned.
You can disable cloning by calling $proc->cloneDocument = XSL_CLONE_NEVER;.

• When using libxslt 1.1.4 or earlier and the style sheet makes no use of keys, then you
can disable cloning: $proc->cloneDocument = XSL_CLONE_NEVER;.

• When using libxslt 1.1.4 or earlier and the style sheet does use keys, then you should
perform cloning: $proc->cloneDocument = XSL_CLONE_ALWAYS;.

Even if your system is running libxslt 1.1.4 or earlier, the XSL_CLONE_AUTO option works
well determining whether cloning needs to take place. The only disadvantage to this is that
because it is out of your control, you will never know whether a document is being cloned.
Programmatically it does not matter, but if your systems administrator were to ask about any
sudden spikes in server memory usage, this would be a good place to start if using XSL.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 389

6331_c10_final.qxd 2/16/06 4:43 PM Page 389

The XSLTProcessor Methods
Table 10-3 lists the methods implemented by the XSLTProcessor class.

Table 10-3. XSLTProcessor Methods

Method Description

getParameter() Gets the value of a parameter

hasExsltSupport() Determines whether PHP has EXSLT support

importStylesheet() Imports style sheet

registerPHPFunctions() Enables the ability to use PHP functions as XSLT functions

removeParameter() Removes parameter

setParameter() Sets value for a parameter

transformToDoc() Transforms to DOMDocument

transformToURI() Transforms to URI

transformToXML() Transforms to string

The descriptions for these methods are generic. You’ll see explanations and examples of
these methods in the next section.

Using the XSL Extension
The API for this extension is easy to use, and you can perform simple transformations with
just a few lines of code. Before transforming any documents, you first need to create the
XSLTProcessor using the new keyword:

$proc = new XSLTProcessor();

With the XSLTProcessor now instantiated as $proc, you need to decide whether the default
document cloning setting needs to be overridden.

Importing the Style Sheet
The next step in the process is to import the style sheet into the processor by using the
importStylesheet() method. By importing the style sheet, the processor not only loads the
style sheet document but also compiles it so that it is ready to transform data:

void importStylesheet(DOMDocument stylesheet)

The method takes one parameter, which, according to the documentation, is a
DOMDocument object containing the style sheet:

$xsl = new DOMDocument();
$xsl->load('my_stylesheet.xsl');
$proc->importStylesheet($xsl);

Although a DOMDocument object is an acceptable and preferred object for the method, it is
also possible to pass SimpleXMLElement objects and other DOM node types to this method.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)390

6331_c10_final.qxd 2/16/06 4:43 PM Page 390

You might wonder how any other type of node than a document node could be used to con-
tain a style sheet. The answer to this is that it can’t. The reasoning behind allowing other node
types is because of the inner workings of SimpleXML. SimpleXML has no concept of a document
node. The first SimpleXMLElement object is created from one of the simplexml_load_xxx() func-
tions, and the resulting object refers to the document element. To allow SimpleXML to interact
with XSL, any SimpleXMLElement type object passed to this method automatically imports the
document node associated with the SimpleXMLElement node. This then opens the door for differ-
ent types of DOM objects, as long as they inherit from the DOMNode class, to be passed as well as
to exhibit the same behavior. For example:

/* Load style sheet from SimpleXMLElement object */
$xsl = simplexml_load_file('my_stylesheet.xsl');
$proc->importStylesheet($xsl);

/* Load from a DOMElement object */
$xsl = new DOMDocument();
$xsl->load('my_stylsheet.xsl');
$child = $xsl->documentElement;
$proc->importStylesheet($child);

Transforming Data
An XSLT processor loaded with a style sheet is ready to transform some data. You have three
methods to transform data. The difference between them lies with where the resulting data
is output. Do not confuse this with the xsl:output method that determines how the result
tree is output. Data can be returned as a string using the transformToXML() method, sent to
a URI using the transformToURI() method, or even returned as a DOMDocument object using the
transformToDoc() method.

As you will see, each method takes a doc parameter. The doc parameter, being an object
of the DOMDocument type, is the XML document containing the data to be transformed using the
already imported style sheet. This parameter, just like the one from the importStylesheet()
method, may also be a SimpleXMLElement object or DOMNode object and follows the same rules
for determining the document node.

■Caution Many developers make the mistake of thinking that because this method accepts nodes
other than document nodes, only a fragment of the XML document will be processed. This is incorrect.
No matter what node is passed in as the parameter, the full document, starting with the document node,
is transformed.

Returning Results As a String
When transforming XML using XSLT within a Web server environment, it is often the case that
the result tree is an HTML document that is to be returned to the requesting browser. It is also
possible that the result tree contains an RSS document that is to be sent to a requesting client.
Either way, each of these would use the transformToXML() method. The name of this method is

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 391

6331_c10_final.qxd 2/16/06 4:43 PM Page 391

a bit misleading at first. The ToXML part might make you think that only XML will be returned,
which is not the case when working with HTML. All this method does is return the resulting
tree as a string. The ToXML is used to be consistent with the other XML methods (such as saveXML()
in DOM and asXML() in SimpleXML) where the methods are just returning their tree, which
happen to be XML data, as a string:

string transformToXML(DOMDocument doc)

The doc parameter, which has already been explained, contains the XML data to be trans-
formed. This method returns the output as a string, which could then possibly be sent through
a Web server back to the requesting client. The example in Listing 10-3 illustrates a transfor-
mation where the results are just printed.

Listing 10-3. Transforming to a String

$xsl = new DOMDocument();
$xsl->load('my_stylesheet.xsl');

$proc->importStylesheet($xsl);

$dom = new DOMDocument();
$dom->load('my_xmldata.xml');

print $proc->transformToXML($dom);

Sending Results to a URI
Output can also be sent to a URI, such as a file or remote system. Just like the previous XML-
based extensions in this book, PHP streams handle the data transfer. This opens up many
different avenues for dealing with URIs:

int transformToURI(DOMDocument doc, string uri)

I will skip over the doc parameter because you have seen this parameter a few times now
and should understand what it is. The uri parameter is a string containing the URI for where
the resulting data is to be sent. This method returns an integer that specifies the number of
bytes written to the URI. Using the code from Listing 10-3 and just changing the transfor-
mation call, you could send the results to multiple places:

/* Save results to a local file.*/
$proc->transformToURI($dom, 'transform_results.xml');

/* Send results to remote Web server */
$proc->transformToURI($dom, 'http://www.example.com/process.php');

Returning Results As a DOMDocument Object
The last method for transformation returns the result tree as a DOMDocument object:

DOMDocument transformToDoc(DOMNode doc)

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)392

6331_c10_final.qxd 2/16/06 4:43 PM Page 392

Even though the doc parameter is a DOMNode type object in the documentation, it is the same
as the doc parameter used for the previous transformation methods and follows the same rules.
The return value in this case is truly a DOMDocument object. There is no gray area with respect to
the returned object type. Again, using the code from Listing 10-3 and changing the transforma-
tion call, XSL can return a DOMDocument object that can be used for further processing:

$transDoc = $proc->transformToDoc($dom);

You might wonder how this could be useful. It is unlikely you would need to edit the
resulting document, especially since it could have been performed using the style sheet. In
most cases, the new document would either be processed within an application or be quite
possibly used as the XML data for a different transformation. The possibilities are numerous.

Using Parameters in XSL
XSL provides functionality to pass parameters to a style sheet. The parameters and values
themselves are not passed to a style sheet until a document is being transformed. In the mean-
time, XSL provides three methods—setParameter(), getParameter(), and removeParameter()—
to manage the parameters that will be passed for use during the transformation. These meth-
ods can be called at any time after the XSLTProcessor object has been instantiated and before
a transformation call.

■Note Parameters passed by the XSLT processor affect only top-level parameters. These are xsl:param
elements that are immediate child elements of the xsl:stylesheet element.

Setting Parameters
Naturally, the setParameter() method sets parameters for the style sheet:

bool setParameter(string namespace, string name, string value)
bool setParameter(string namespace, array options)

As you can see, you have two ways to call this method. In each case, the namespace param-
eter is currently not used, so any value can be passed there because it will be ignored anyway.
It is a good idea, though, to pass NULL or an empty string just to reduce any possible confusion.
The style sheet used for these examples looks like the following:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:param name="param1" select="0" />
<xsl:param name="param2" select="0" />
<xsl:param name="param3" select="0" />

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 393

6331_c10_final.qxd 2/16/06 4:43 PM Page 393

<xsl:template match="/">
<xsl:value-of select="$param1" />
<xsl:value-of select="$param2" />
<xsl:value-of select="$param3" />

</xsl:template>
</xsl:stylesheet>

The first prototype accepts a name and value, where name is the name of the parameter in
the style sheet and value is the value for which the parameter should be set:

$proc->setParameter(NULL, 'param1', 'newval');

This sets the value for param1 to the string newval. When the transformation occurs, the
resulting output looks like the following:

Newval
0
0

The second prototype takes an array containing name/value pairs. This allows you to set
multiple parameters at the same time:

$proc->setParameter(NULL, array('param1'=>2, 'param2'=>3));

This operation sets the value of param1 to 2 and the value of param2 to 3. The resulting out-
put in this case is as follows:

2
3
0

Retrieving Parameter Values
The getParameter() method retrieves values for parameters set using the setParameter()
method. Parameters defined in the style sheet have no bearing on this method call. For
example:

string getParameter(string namespaceURI, string localName)

Again, the namespaceURI currently has no bearing and should be set to NULL or the empty
string until it is implemented. The localName parameter is the name of the parameter to
retrieve:

/* Parameter not set on processor but exists in style sheet */
var_dump($proc->getParameter(NULL, 'param3'));

/* Parameter set on processor and exists in style sheet */
$proc->setParameter(NULL, 'param1', 'newval');
var_dump($proc->getParameter(NULL, 'param1'));

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)394

6331_c10_final.qxd 2/16/06 4:43 PM Page 394

/* Parameter set on processor but not existing in style sheet */
$proc->setParameter(NULL, 'param4', 4);
var_dump($proc->getParameter(NULL, 'param4'));

A parameter that has not been set using setParameter() results in a return value of FALSE.
The following is the output from the preceding example. The last result demonstrates that a
parameter does not need to be specified in the style sheet to set and retrieve values for it on
the processor. When passed to the style sheet, it is simply ignored.

bool(false)
string(6) "newval"
string(1) "4"

Removing Parameters
You can remove parameters set by setParameter() by using the removeParameter() method:

bool removeParameter(string namespaceURI, string localName)

The parameters are the same as those for the getParameter() method. The namespaceURI
is not used, and the localName is the name of the parameter. Using the results from the
getParameter() example, it is clear that param4 has the value 4. For this example, param4 will
be removed, and then its nonexistent value can be retrieved:

var_dump($proc->getParameter(NULL, 'param4'));

$proc->removeParamater(NULL, 'param4');

var_dump($proc->getParameter(NULL, 'param4'));

string(1) "4"
bool(false)

Calling PHP Functions from XSL
EXSLT is a collection of additional modules providing extended functionality to XSLT. As long
as libexslt is included when building XSL (which, as long as you have it and the header files
installed, should build in automatically), the functions are available to be used within a style
sheet. Calling the hasExsltSupport() method will indicate whether your XSLT processor sup-
ports EXSLT, based on the value of the returned Boolean:

if ($proc->hasExsltSupport()) {
/* EXSLT support available */

}

Using the function module from EXSLT, you can create and use user-defined functions
within style sheets. The functions, however, are limited to XSLT syntax and the functionality
supported by the XSLT processor. XSL extends XSLT even further by adding its own module

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 395

6331_c10_final.qxd 2/16/06 4:43 PM Page 395

to support calling PHP functionality from within a style sheet. Because the functionality is
implemented by the parser and not by the libxslt/libexslt libraries, it is available whether or
not EXSLT support is enabled.

Setting Up the Processor
The registerPHPFunctions() method sets up the processor to allow PHP function calls to be
made from within the style sheet:

void registerPHPFunctions([mixed names])

Under PHP 5.0.x, the registerPHPFunctions() method takes no arguments. Calling it sim-
ply enables PHP function support in the style sheet. With the release of PHP 5.1, some steps to
secure the use of this method were added. The names parameter was added, allowing a devel-
oper to restrict the PHP functions available to be used in a style sheet. The value can be a single
string identifying a function to allow or an array containing multiple functions to allow. When
setting acceptable functions to be called using a string, the registerPHPFunctions() method
can be called multiple times, adding each function to the list of acceptable functions. It is
much easier, however, to just use an array containing all the function names in this case
because the method then needs to be called only once:

/* Setting up parser to support PHP functions - all PHP 5 versions */
$proc->registerPHPFunctions();

/* Restricting callable functions by single function at a time - PHP 5.1 + only */
$proc->registerPHPFunctions('date');
$proc->registerPHPFunctions('time');

/* Restricting callable functions using array - PHP 5.1 + only */
$proc->registerPHPFunctions(array('date', 'time'));

Functions are not limited to built-in functions either. User-defined functions are perfectly
valid:

function myFunction() {
return "myFunction called";

}

$proc->regsiterPHPFunctions('myFunction');

■Caution Calling the registerPHPFunctions() method without any arguments allows all functions
available within a PHP script, including user-defined functions, to be called from an XSLT style sheet.
Specifying function names as the parameter will restrict callable functions to only those registered with
the processor. This will help prevent untrusted style sheets from calling PHP functions that they are not
allowed to call or should not call.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)396

6331_c10_final.qxd 2/16/06 4:43 PM Page 396

Setting Up the Style Sheet
Using PHP functions is just like using EXSLT modules. You must add the proper namespace to
the xsl:stylesheet element. The PHP namespace for its own module is http://php.net/xsl.
Typically, the php prefix is used with this namespace, but you are free to specify any prefix you
like:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
xmlns:php="http://php.net/xsl">

This style sheet will use the prefix php to access PHP functionality.

Calling the Functions
With the processor set up to allow PHP functions and the namespace properly added to the
xsl:stylesheet element, the only thing left is to explain how functions are called within
the style sheet. The PHP XSL module provides two callable functions from a style sheet that
are used to access the PHP functions. Assuming the php prefix is associated with the PHP
namespace, they are php:function and php:functionString. The difference between these
two is how arguments to be passed to the PHP functions are handled. When using
php:functionString, arguments that are node sets from XSLT are converted to strings and
then passed to the PHP function. When using php:function, arguments that are node sets
are converted into corresponding DOM objects based on the type of node and passed to
the PHP function as an array of DOM objects.

Using Function Parameters
Each of these functions takes a variable number of parameters. The first parameter is required
and specifies the name of the PHP function or static method to call. A method call cannot be
made against an instantiated object because the object is not directly accessible from the style
sheet, but it could be called indirectly by calling a function that in turn calls the object. All
additional parameters are the parameters to be passed to the PHP function when called. The
additional parameters are specified in the order they are passed to the PHP functions:

php:function('testFunction', 'a', .);

When called from the style sheet, this would call the PHP function named testFunction
and pass the string 'a' for the first parameter and an array containing the context node, as
a DOMNode type, for the second parameter:

php:functionString('testFunction', 'a', .);

This function performs the same actions as the previous one, except in this case, the
string value of the context node is passed as the second argument.

Making the Call
The following function is defined within a PHP script that is performing some XSLT
processing:

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 397

6331_c10_final.qxd 2/16/06 4:43 PM Page 397

function MYFUNC($var = NULL) {
return var_export($var, true)."\n\n";

}

$proc->registerPHPFunctions('MYFUNC');

It accepts a single parameter, defaulting to NULL, and returns the results of calling
var_export(), which, by passing TRUE as the second argument to it, returns a parsable string
representation of a variable. To call this function, you need to use the php:function() function
or the php:functionString() function in the style sheet:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
xmlns:php="http://php.net/xsl">

<xsl:template match="/">
<xsl:value-of select="php:function('MYFUNC', 1)" />
<xsl:value-of select="php:function('MYFUNC', .)" />
<xsl:value-of select="php:functionString('MYFUNC', .)" />

</xsl:template>
</xsl:stylesheet>

The XML data that will be used for this transformation looks like this:

<sites>
<site><name>XML C Parser</name></site>
<site><name>PHP</name></site>

</sites>

The result from the transformation is as follows:

<?xml version="1.0"?>
1

array (
0 =>
class DOMDocument {
},

)

'
XML C Parser
PHP

'

■Note The only type of object that can be returned from the PHP function is one that is based on the
DOMNode class, which includes the majority of the classes from the DOM extension. All other types of objects
result in PHP issuing a warning and an empty string being used as the result. You’ll see an example of this in
the “Processing a Style Sheet Built Using the DOM Extension” section.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)398

6331_c10_final.qxd 2/16/06 4:43 PM Page 398

Looking at the template within the style sheets, you will see three calls made to the PHP
functions. The first call uses php:function to call the MYFUNC function, passing a number 1 as
its parameter. From the output you can see that the variable was truly passed as the integer 1.
The second call uses php:function to call the MYFUNC function, passing in the context node as
the parameter. Based on the rules of conversion for node sets, it is converted to a DOM object
with the type based on the node type and sent to the function as an array. From the output, you
can see that the array contains a DOMDocument object. The last call uses the php:functionString
function to call MYFUNC, again passing in the context node. This time, the node is converted to
a string using the rules defined by XPath and then passed to the MYFUNC function. The output
shows that the argument passed was a string containing all the text nodes from the XML data
document.

Seeing Some Examples in Action
XSL is not a complex extension to use. The majority of difficulty comes from creating the style
sheets used in the transformations. Examples of using the different functionality of the
XSLTProcessor are abundant. I’ll demonstrate two examples in the following sections. The first
is a continuation of the example in Chapter 6 where a style sheet was manually created using
the DOM methods. The second example is a bit larger. It aggregates some RSS feeds (which are
thoroughly covered in Chapter 14) using the XSL extension and a variety of XSLT functionality
for displaying in a web page.

Processing a Style Sheet Built Using the DOM Extension
One of the biggest problems developers have using the DOM extension is creating documents
with namespaces. The last example in Chapter 6 manually created an XSLT style sheet using the
DOM API. As you are now well aware, XSLT requires extensive use of namespaces, and they must
be used properly. This example will show the processing of that manually created document.

From the DOM example, the code for building an XSLT style sheet ended with the
$stylesheet variable, which is a DOMDocument object, containing a style sheet created manually.
Using this already created variable, the XML data from Chapter 6 (which will be re-created
here), will be transformed.

Here’s the code:

$xml = <<<EOF
<sites>

<site>
<name>Libxml</name>
<url>http://www.xmlsoft.org</url>

</site>
<site>

<name>W3C DOM Level 3 Specification</name>
<url>www.w3.org/TR/DOM-Level-3-Core/</url>

</site>
</sites>
EOF;

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 399

6331_c10_final.qxd 2/16/06 4:43 PM Page 399

$dom = new DOMDocument();
$dom->loadXML($xml);

$proc = new xsltprocessor();

$proc->importStylesheet($stylesheet);

print $proc->transformToXML($dom);

The code is straightforward and simple to understand. The code demonstrates that manu-
ally created style sheets, as long as they are namespaced properly, work fine with XSL. Running
the code with the code from Chapter 6, the output you will see should look similar to this:

<html><body>
<p>Libxml : http://www.xmlsoft.org</p>
<p>W3C DOM Level 3 Specification : www.w3.org/TR/DOM-Level-3-Core/</p>
</body></html>

Aggregating RSS Feeds Using XSL
This example demonstrates how to use the XSL extensions and some of the XSLT functionality
using RSS for the source data, since it is a data source everyone should be able to access. I will
not explain the structure and workings of RSS (covered in detail in Chapter 14) in this example
because the focus is on using the extension and XSLT functionality.

This example will show how to combine a couple of the PHP news feeds into a single XML
data source and store them locally. The feed to be accessed or identified in a configuration file
is named siteconfig.xml and contains the following document:

<?xml version="1.0"?>
<sites>

<site>
<name>PHP General</name>
<url>http://news.php.net/group.php?group=php.general&format=rss</url>

</site>
<site>

<name>PHP Pear Dev</name>
<url>http://news.php.net/group.php?group=php.pear.dev&format=rss</url>

</site>
</sites>

Two sites have been configured. The first one is the feed for the PHP General newsgroup,
and the second is the feed for the PHP PEAR Dev group. The url element for these groups
points to the locations of the respective RSS feeds from which you will pull the XML data.

This data is used by a style sheet, identified by the file rsscache.xsl, to transform the data
from each feed into a single document, which is then stored locally in the file named rsscache.xml.
This local file works as a cache; here it must be updated manually, but it is possible to have
this file automatically update on some specified schedule.

The style sheet that performs the transformation is as follows:

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)400

6331_c10_final.qxd 2/16/06 4:43 PM Page 400

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:php="http://php.net/xsl" version="1.0">
<xsl:output method="xml" indent="yes" />

<xsl:template match="/">
<xsl:element name="channels">

<xsl:apply-templates select="/sites/site"/>
</xsl:element>

</xsl:template>

<xsl:template match="site">
<xsl:variable name="siteurl" select="url" />
<xsl:apply-templates select="php:functionString('retrieveRSS',

$siteurl)/channel">
<xsl:with-param name="sitename" select="name" />

</xsl:apply-templates>
</xsl:template>

<xsl:template match="channel">
<xsl:element name="channel">

<xsl:element name="title">
<xsl:copy-of select="$sitename" />

</xsl:element>
<xsl:copy-of select="link" />
<xsl:apply-templates select="item"/>

</xsl:element>
</xsl:template>

<xsl:template match="item">
<xsl:element name="item">

<xsl:copy-of select="title" />
<xsl:copy-of select="link" />
<xsl:copy-of select="pubDate" />
<xsl:element name="timestamp">

<xsl:value-of select="php:functionString('strtotime', pubDate)" />
</xsl:element>

</xsl:element>
</xsl:template>

</xsl:stylesheet>

Looking at this file, you will notice that the http://php.net/xsl namespace has been
added. This will allow PHP functions to be called, assuming the processor calling the style sheet
has enabled the use of PHP function calls. The output method has been set to xml, because the
output is to be a locally cached XML document, and indenting has been enabled, which will
allow easier readability if you happen to open the resulting rsscache.xml file in an editor.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 401

6331_c10_final.qxd 2/16/06 4:43 PM Page 401

Upon processing the configuration data, each of the site elements is selected for further
processing, matching on site. The template handling these nodes retrieves the remote RSS
data. Rather than using the XSLT document() function, this calls a PHP function. This PHP
function has been defined within the encompassing script and is written as follows:

function retrieveRSS($url) {
$doc = new DOMDocument();
if ($doc->load($url)) {

return $doc->documentElement;
}
return 0;

}

It accepts a single argument, $url, that is then retrieved using a DOMDocument object. Look-
ing at the template making this call, a variable has been used and is set to the content of the
url element. This value is then passed to the retrieveRSS() function from which the docu-
ment element of the resulting XML document is returned or 0 is returned upon failure.

■Note The variable is not needed in this instance because using url rather than $siteurl would also
work, but a variable was used for demonstration instead.

Assuming the document element was returned from the function, the template then calls
xsl:apply-templates, selecting the channel element from the returned node set. By “node set,”
I am simply referring to the document element. This would occur once for each of the site ele-
ments from the configuration file, but note that each time the retrieveRSS() function is called,
any returned node set is processed by the templates before the next call to the function. When
applying the templates to the channel element, a parameter is also being passed. The content
of the name element for the specific site being processed is passed using the sitename parame-
ter. The reason for this will be shown in the template matching on the channel element.

Upon matching a channel element, a new channel element is created to encapsulate the data
you want pulled into the new XML document. The reason xsl:element is used instead of literal
<channel> and </channel> tags is because of the data being worked upon. The document came
from the external PHP function residing in the php namespace. Using a literal element tag causes
the php namespace declaration to be added to the elements. The resulting document does not
need any namespace information for this example, so by using xsl:element, the channel element
is specifically created with no namespace information. This is where the parameter passed from
the previous template comes into play. Rather than use the title for the channel from the RSS feed,
you would like to have the name you defined in the config file for the channel used instead for the
new document. You do not need to do anything special with the link, so it is simply copied, using
xsl:copy-of, into the new document. The template then applies templates to the item elements
from the channel.

The template matching on item just pulls a few elements from the RSS feed for each item.
They are still contained within an item element, but the nodes being copied are only title,
link, and pubDate. When the data from this resulting document is finally to be transformed
into HTML, it would be nice to be able to do some sorting using the XSLT sorting functionality.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)402

6331_c10_final.qxd 2/16/06 4:43 PM Page 402

You have no way to perform date sorting natively, so add a timestamp element. The value here
simply takes the date specified by pubDate and calls the PHP strtotime() function to convert
the date into a Unix time stamp. You can then use this value, being purely numeric, to perform
date sorting.

The local rsscache.xml file is created using the previous XML data and style sheet from the
following script. This is a single script, so the function you are interested in is buildCache().
This function uses a generic function to load the DOMDocument objects, create the XSLT proces-
sor, transform the data, and save the result document to a file.

The entire script for this example, referenced by the filename rssrender.php, appears as
follows:

<?php
/* The configuration file storing the sites to pull RSS data from.

It must be readable by the Web server */
$site_config = 'siteconfig.xml';
/* Template used to render the cached RSS */
$render_xsl = 'itemrender.xsl';
/* This file stores the summarize RSS information.

It must be read/writable by the Web server */
$rsscache = 'rsscache.xml';
/* Template used to build the RSS cache */
$rsscache_xsl = 'rsscache.xsl';

/* function called from the $rsscache_xsl template */
function retrieveRSS($url) {

$doc = new DOMDocument();
if ($doc->load($url)) {

return $doc->documentElement;
}
return 0;

}

/* Generic function to transform XML data using XSL extension */
function genericProcess($xmlfile, $xslfile, $params=NULL, $outputfile=NULL) {

$doc = new DOMDocument();
$doc->load($xmlfile);

$xsl = new DOMDocument();
$xsl->load($xslfile);

$proc = new xsltprocessor();
$proc->registerPHPFunctions();
$proc->importStylesheet($xsl);

if (is_array($params)) {
foreach ($params AS $key=>$value) {

$proc->setParameter(NULL, $key, $value);
}

}

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 403

6331_c10_final.qxd 2/16/06 4:43 PM Page 403

if ($outputfile == NULL) {
if ($outdoc = $proc->transformToDoc($doc)) {

$outdoc->formatOutput = TRUE;
return $outdoc->saveXML();

}
} else {

return $proc->transformToURI($doc, $outputfile);
}

}

/* Build the RSS Cache file */
function buildCache() {

genericProcess($GLOBALS['site_config'], $GLOBALS['rsscache_xsl'], NULL,
$GLOBALS['rsscache']);

}

$xslparams = NULL;
$cacheBuilt = FALSE;
$sorted = NULL;

/* Perform actions based on HTML form submissions */
if (isset($_POST['buildcache']) && ! empty($_POST['buildcache'])) {

buildCache();
} elseif (isset($_POST['sortit']) && ! empty($_POST['sortit']) &&

isset($_POST['sort']) && ! empty($_POST['sort'])) {
$sorted = $_POST['sort'];
$xslparams = array('sortparam'=>$_POST['sort']);

}

if (file_exists($rsscache)) {
$cacheBuilt = TRUE;

}

?>
<html>

<body>
RSS Items:

<form method="post">
<table>

<tr>
<td><input type="submit" name="buildcache" value="Update Cache">

 </td>
<?php if ($cacheBuilt) { ?>

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)404

6331_c10_final.qxd 2/16/06 4:43 PM Page 404

<td>
<select name="sort">

<option value="">Published Date</option>
<option value="channel" <?php if ($sorted == "channel")

print "selected"; ?>>Channel</option>
<option value="title" <?php if ($sorted == "title")

print "selected"; ?>>Item Title</option>
</select>
<input type="submit" name="sortit" value="Sort">

</td>
<?php } ?>

</tr>
</table>
</form>

<?php
if ($cacheBuilt) {

print genericProcess($rsscache, $render_xsl, $xslparams);
} else {

print "Cache not built. Please update Cache.";
} ?>

</body>
</html>

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:param name="sortparam" select="datetime" />
<xsl:output method="html"/>

<xsl:template match="/">
<table>

<xsl:apply-templates select="//channel/item">
<xsl:sort select="../title[$sortparam='channel']" order="ascending" />
<xsl:sort select="./title[$sortparam='title']" order="ascending"

case-order="lower-first" />
<xsl:sort select="./timestamp" order="descending" />

</xsl:apply-templates>
</table>

</xsl:template>

<xsl:template match="channel">
<xsl:element name="channel">

<xsl:copy-of select="title" />
<xsl:copy-of select="link" />

<xsl:apply-templates select="item"/>
</xsl:element>

</xsl:template>

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 405

6331_c10_final.qxd 2/16/06 4:43 PM Page 405

<xsl:template match="item">
<tr>

<td colspan="3">
<a>

<xsl:attribute name="href">
<xsl:value-of select="link" />

</xsl:attribute>
<xsl:value-of select="title"/>

</td>

</tr><tr>
<!-- Insert some non breaking spaces.

Rather than add DTD for nbsp numeric codes are used instead. -->
<td> </td>
<td>Channel:

<a>
<xsl:attribute name="href">

<xsl:value-of select="../link" />
</xsl:attribute>
<xsl:value-of select="../title"/>

</td>
<td>Published: <xsl:copy-of select="pubDate" /></td>

</tr>
</xsl:template>

</xsl:stylesheet>

The only part of this template that probably needs explaining is the sortparam parameter
and how sorting takes place. The sortparameter is passed into the style sheet from the XSLT
processor based upon the form submission. This allows you to choose how the sorting should
be performed in the resulting HTML output. The problem you run into is that the xsl:sort
element can be used only within the context of the xsl:apply-templates and xsl:for-each
elements. The possible solutions would be to create multiple templates to process item ele-
ments and call them based on the type of sorting that needs to be performed, use xsl:choose
and select the xsl:apply-templates call based on the value of the sortparam, or find a way to
work around the issue, as in this example.

You can request three types of sorting. The default is a simple datetime sort. The items are
ordered by their pubDate in descending order. This was the reason the additional timestamp
element was added. The sorting is actually performed on that element. The second sorting
method is by channel title, using the name that came from the site’s config file, in ascending
order followed by pubDate in descending order. Lastly, the items can be sorted by the title of
the item in ascending order followed by pubDate in descending order. Now the question you
most likely have is, how can this work when all the xsl:sort elements are called within the
scope of the same xsl:apply-templates call?

The first xsl:sort element defined performs a sort based on the title element from
the parent of the current item. The qualifier for the select, however, tests the equality of the
sortparam. Unless the value channel was passed from the XSLT processor, the qualifier fails,

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)406

6331_c10_final.qxd 2/16/06 4:43 PM Page 406

resulting in nothing being selected for this sort. The same trick is used in the second xsl:sort
element, but this time it checks for the value title. If the value matches, then sorting is per-
formed on the title element of the item. The last xsl:sort has no such qualifier. If you
remember the sort ordering, the last sort key for every sorting is the datetime. This key will
always be used and thus is never invalidated by a qualifier.

■Note Although this sorting trick does work, it will result in a slower transformation compared to using
xsl:choose or defining multiple templates. It does, however, create a more compact style sheet. The per-
formance issue really depends upon the amount of data being processed.

When running this example within a Web server, the cache can be created and/or
updated by clicking the Update Cache button. Sorting is simply changed by selecting the
desired sort option and clicking the Sort button. Figure 10-2 shows a rendered page that has
been sorted by the item name.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT) 407

Figure 10-2. Rendered HTML page

6331_c10_final.qxd 2/16/06 4:43 PM Page 407

Conclusion
XSLT is a powerful technology for transforming XML data into different results. This chapter
introduced and explained the XSLT language. As you can see, the bulk of the work is creating
the style sheet using the XSLT language. Style sheets can become quite complex. But the more
experience you get using the language, the easier it becomes to write more complex rules.

This chapter also explored XSLT functionality. Using EXSLT modules, an abundance of
more complex functions are available to be used within style sheets. The XSL extension takes
this a step further by allowing you to create your own functions using PHP that can be called
from a style sheet. This opens up endless possibilities for what can be performed during a
transformation.

This extension is the last of the internal PHP XML parsers and processors to be examined.
The next chapter covers how to develop with XML. It compares the different extensions and
technologies, including everything from the pros and cons to optimizations and interoper-
ability. After you have finished the next chapter, you should be prepared for your next
XML-based project using PHP 5.

CHAPTER 10 ■ EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)408

6331_c10_final.qxd 2/16/06 4:43 PM Page 408

Effective and Efficient
Processing

With so many different ways to process a document, it is often difficult to decide which is
the best method. This chapter will cover the strengths and weaknesses of the different parsing
methodologies to help you make an educated decision about which will work best for you. In
some cases, a single technology may not be enough, so this chapter will also cover how to
effectively combine technologies. By the end of this chapter, you should be able to determine
which technologies fit your needs and understand how to use them together to effectively and
efficiently process XML.

■Note I performed all the tests in this chapter using debug builds of PHP and libxml2. This adds overhead
in both memory usage and processing time. The results of the tests will vary between systems as well as
between different release builds of PHP and libxml2. You should not take the results presented in this chap-
ter as absolutes but as the basis to compare performance and memory utilizations among the different
extensions. When dealing with performance and optimizations, you should also consider ease of develop-
ment and debugging. It is possible you may overoptimize your code, leaving it difficult to maintain. How
code is organized is something left up to you to decide.

Looking at the Pros and Cons of Parsers
Each of the XML-based parsers in PHP 5 provides its own unique way to interact with XML
data. The most noticeable difference is the classification of tree-based parsers versus stream-
ing parsers. You can break this classification down even further, because the extensions in
each category differ significantly from each other. No single extension can handle every task
because each has its own pros and cons. The following sections will summarize and compare
the parsers available, which will eventually help you choose a specific parser.

Comparing Tree-Based and Streaming Parsers
As you recall, tree-based parsers build an in-memory representation of an XML document
while parsing it. Once loaded, the tree can be navigated, modified, and finally saved. Parsers

409

C H A P T E R 1 1

■ ■ ■

6331_c11_final.qxd 2/16/06 4:41 PM Page 409

that fall under this category potentially use a high level of system resources. Consider loading
a 10MB document using a tree-based parser. The entire document is loaded into memory in
a tree structure, which ends up consuming much more than the original 10MB of memory. On
the other hand, because the document resides in memory, navigating the tree is fast—once
the internal tree has been built, of course. The PHP 5 extensions falling into this category are
DOM and SimpleXML. Although they are fundamentally similar, their usage and their func-
tionality are significantly different from each other.

Streaming parsers are lightweight parsers. An XML document is simultaneously parsed
and processed. Data is read in chunks, and once specific data is processed, it is typically dis-
carded. Once parsing has been completed, no further processing can be performed. These
parsers differ greatly from tree-based parsers. Navigation is forward only. You cannot dynami-
cally access specific locations in an XML document, and the parser cannot access previously
processed data. The XML document is not memory resident, so modifications cannot be
made natively and then be saved to the original document. On the other hand, without the
need for a memory-resident structure, streaming parsers use memory effectively, keeping its
usage to a minimum. The two extensions falling into this category, though very distinct from
each other, are the xml extension and XMLReader.

Comparing Individual Parsers
With all the different functionality and nuances between the parsers, it’s not easy to figure out
how they are operationally different. Table 11-1 presents a matrix of the extensions and some
of the more significant differences. Following this table, I’ll discuss each of the differences in
more detail and how these features pertain to the specific extensions.

■Note Within the following sections when referring to the parsers, the term xml refers to the SAX-based
xml extension.

Table 11-1. Comparative Breakdown of Extensions

Tree-Based Parsers Streaming Parsers
Feature DOM SimpleXML xml XMLReader

System resources Variable Variable Minimal Minimal

Document navigation Excellent Good Forward-Only Forward-Only

Document editing Excellent Good None None

Ease of use Difficult Simple Simple Easy

Namespace support Excellent Decent Minimal Excellent

Parsing/processing speed Variable Variable Fast Fast

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING410

6331_c11_final.qxd 2/16/06 4:41 PM Page 410

System Resources
Overall, the streaming parsers win in this area. Unlike the tree-based parsers, xml and XML-
Reader do not need to build in-memory tree structures. Processing begins immediately as the
data streams through the parser. Once the data has been processed, the parser is free to release
the data. Memory usage remains low while parsing large documents. By “large documents,”
I mean ones that are megabytes in size.

The tree-based parsers, DOM and SimpleXML, are memory hogs. The amount of system
resources used depends upon the size and structure of the XML document being processed.
The larger the document, the more resources that are required. Processing with one of these
extensions takes place on the in-memory tree. The parser, however, must first build the entire
tree from the data before any processing can take place, and the tree, containing all the infor-
mation for the document, ends up using much more memory than a serialized version of the
tree itself.

Table 11-2 shows the internal memory used by libxml2 from each of the extensions pars-
ing a 12.5MB document called bigxml.xml. These figures do not represent the memory used by
PHP but, rather, the actual memory required to parse the document, which would be on top of
the memory used by PHP. The document consists of 200,000 child nodes; a snippet looks like
this:

<books>
<book id="1"><title>1</title><pages>1</pages></book>
<book id="2"><title>2</title><pages>2</pages></book>
<!-- Remaining book elements -->

</books>

Table 11-2. Internal Memory Usage by Extension

DOM SimpleXML xml XMLReader

85.6MB 85.6MB 26KB 177KB

I performed all tests using PHP 5.1 with libxml2-2.6.20 built in debug mode on a Pentium
4 2.6GHz system with 1GB of physical memory running under Windows XP SP 2. Similar tests
run on older hardware (a Pentium III 350MHz system with 512MB memory and various ver-
sions of Linux) resulted in similar results. All results in Table 11-2 have been rounded to the
nearest kilobyte or to the first tenth in the case of megabytes.

■Note I performed all tests under Windows using a debug build of PHP CLI and a debug build of libxml2.
Performance will differ based on platform, so although tests performed on your platform may not compare
to the results in this chapter, the numbers should be comparable when running the same tests with different
extensions.

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 411

6331_c11_final.qxd 2/16/06 4:41 PM Page 411

DOM

Loading a document 12.5MB in size and requiring 85.6MB of memory probably makes you
think the DOM extension must be doing a lot of editing on this document. You may be sur-
prised to find out this is the amount of memory just to create the DOMDocument object:

<?php
$dom = DOMDocument::load('bigxml.xml');
?>

Working with large documents definitely requires some finesse or some decent hardware
when using the DOM extension. Imagine the memory it would require to work with a docu-
ment on the scale of 100MB. Unfortunately, I am unable to supply any information on that;
after consuming about 700MB of system memory (not to mention the memory already being
used by the operating system and other applications), my test machine started to fail and had
to be rebooted.

SimpleXML

SimpleXML results in similar memory consumption as the DOM extension. Before rounding off
the figures, SimpleXML actually resulted in about 114 bytes less memory consumption, but look-
ing at the figures, the difference really doesn’t matter. Just like the DOM example, SimpleXML did
nothing other than load the document. No processing was actually performed. The following is
the actual script used for the result in Table 11-2:

<?php
$sxe = simplexml_load_file('bigxml.xml');
?>

As far as system resources go, both tree-based parsers are pretty much equal. The larger
the document, the more memory required to parse it.

xml

After looking at the figures for the previous two extensions, the number for xml is probably
shocking. The xml extension required only 26KB of memory to parse the 12.5MB file. Again,
this number does not reflect the amount of memory used by PHP, just the libxml2 library. Even
considering the memory used by PHP and the rest of your code, the number pales in compari-
son to a number such as 85.6MB.

The stream-based parsers do not create in-memory structures, so the memory require-
ments depend entirely upon your code. The result for xml was based on reading 4,096 bytes
of the document at a time and feeding them to the parser. No handlers were implemented, so
the data just simply parsed the following:

<?php
$handle = fopen("bigxml.xml", "r");
while ($data = fread($handle, 4096)) {

if (!xml_parse($parser, $data, feof($handle))) {
print "error";
break;

}
}
?>

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING412

6331_c11_final.qxd 2/16/06 4:41 PM Page 412

■Note Memory usage remained consistent using xml and XMLReader even when the document doubled in
size from 12.5MB to 26MB. The same cannot be said for DOM and SimpleXML, which caused memory usage
to peak at about 172MB.

XMLReader

Although not as low as xml, XMLReader is attractive with its 177KB memory usage.
XMLReader is a pull parser, so you must instruct it to keep parsing the document because
the cursor stops along the way. For example:

<?php
$reader = XMLReader::open('bigxml.xml');
while ($reader->read()) {

// do nothing
}
?>

Summary

Streaming parsers, xml, and XMLReader are the most memory-efficient parsers in terms of the
libxml2 memory usage. This comes with the cost of less functionality, however. The tree-based
parsers, DOM and SimpleXML, use quite a lot of memory because the actual usage depends
upon the size and structure of the document. Typically, creating the in-memory tree requires
four to seven times more memory than the actual size of the serialized document. This varies
not only based on the size of the document but also based on the composition of the document.

Document Navigation
Document navigation is the ability to move around and/or dynamically access locations
within a document. Streaming parsers offer virtually no navigation because they move only
forward through the document. The minor exception to this is XMLReader, with its ability to
move between attributes and elements. Neither xml nor XMLReader, though, allows move-
ment to previously processed data. Neither extension allows the document to be dynamically
accessed either, such as through XPath queries. Document navigation is one of the biggest
strengths of tree-based parsers, because they allow free movement to any point in the tree.
Trees can be descended, ascended, and even queried.

xml and XMLReader

As previously stated, these extensions make a single pass through a document. Without an in-
memory tree, navigation is not possible. XMLReader is a minor exception to this. Even though
the cursor moves only forward through a document, movement between an element and its
attributes is possible. Attributes are a special case within XMLReader, and unless instructed to
do so, the cursor never stops on an attribute. You can also use the next() method for naviga-
tional purposes. The cursor still will move only forward but can skip subtrees. Other than
these two cases, it could be argued that the read() function is considered to be navigational

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 413

6331_c11_final.qxd 2/16/06 4:41 PM Page 413

functionality; however, in my opinion, this method is integral to the “pull” philosophy and
relates more to its parsing method than to actual document navigation. The cursor will move
only to the next node, rather than to a node specified by the developer.

DOM

Support for working with a document is rich in the DOM extension. You can descend the tree
as well as ascend it. You can access the document node, document element node, child nodes,
and parent for the current node for node types through the object’s properties. DOM provides
navigational functionality to siblings and many other node types through simple method
calls. You can also use XPath to retrieve collections of nodes queried by an expression.

Because DOM supports access to an entire document, it is not always simple to access
a specific node without using XPath. For example, take the following document, where
$element is a DOMElement object referring to the body node:

<body>
<child1/>
<child2/>
<child3/>

</body>

Navigating to the child3 element without using XPath is not as simple as asking the
DOMElement object to get a specific node. In this instance, getElementsByTagName() could work;
except in a larger document, every node named child3 would be retrieved, but only the single
child element of the body element should be retrieved. You could do this in a few ways, but
they all look something like the following:

$node = $element->firstChild;
while ($node && $node->nodeName != 'child3') {

$node = $node->nextSibling;
}

The tree needs to be walked, in some manner, with each node being tested for the speci-
fied criteria.

SimpleXML

SimpleXML does not have as rich of navigational functionality as DOM, but it is so much eas-
ier to access elements. First I will cover some of the navigational limitations. SimpleXML does
not ascend a tree. For instance, while working with a bunch of SimpleXMLElement objects and
the object for the document element goes out of scope, you have no way to return to the top
of the tree. Another aspect of SimpleXML is that only elements and attributes within a docu-
ment are accessible. All other types of nodes—excluding text nodes, which make up the
content of these nodes—are inaccessible.

These deficiencies, in many cases, are outweighed by the ease of use SimpleXML offers
when descending a tree. For instance, in the example document for DOM, with the variable
$sxe referencing the body element, what took a few lines of code including a loop to walk the
tree using the DOM API takes only a single line of code using SimpleXML:

$node = $sxe->child3;

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING414

6331_c11_final.qxd 2/16/06 4:41 PM Page 414

SimpleXML allows you to work with the tree as an object, removing the need to manually
locate elements within the document.

Summary

Neither xml nor XMLReader offers any real document navigational functionality, because they
are both streaming parsers. DOM and SimpleXML, being tree parsers, allow movement through
the in-memory tree. The difference between DOM and SimpleXML is mainly because of the
API. SimpleXML, having a much smaller API, is restrictive in the allowable navigation. For
example, with a SimpleXMLElement object, you have no way to directly access the document
element or even the parent element without using XPath or keeping the object for the node in
scope and accessible. DOM allows direct access to the navigational functionality so a tree can
be descended and ascended. SimpleXML, on the other hand, allows intuitive movement
through the document using element names as object properties, making the API easier
for many developers to use.

Document Editing
Document editing involves editing an existing document as well as creating documents from
scratch. DOM and SimpleXML excel in this area, though DOM is the real winner. xml and
XMLReader are read-only parsers, so forget about either one of them if you require document
editing. SimpleXML does not provide the full capabilities of DOM, which offers complete
access to a document, but SimpleXML is convenient to use when working with uncomplicated
documents or when requiring simple text modification. Advanced editing is typically per-
formed with the DOM extension.

xml and XMLReader

Both of these extensions offer read-only access to the XML document. Any modifications that
a script may make are not performed on the actual XML document. For example, exporting a
node from XMLReader returns a copy of the node and not the actual node within the docu-
ment. The xml extension, on the other hand, works only with the string values of the
document contents and not the physical document.

DOM

DOM offers complete document-editing capabilities. The document is loaded into memory,
and its structure and contents can be altered and saved. With a rich API, probably with more
functionality than the majority of developers would ever use, virtually every aspect of a docu-
ment can be edited, including creating documents from scratch.

SimpleXML

SimpleXML provides limited editing capabilities. Although, like DOM, the document is loaded
into memory and ultimately saved, editing functionality is limited to existing elements and
attributes. You can remove elements and attributes from documents to a point, but you can-
not add them. This prevents you from creating documents from scratch as well as limits the
changes you can make to a document’s structure.

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 415

6331_c11_final.qxd 2/16/06 4:41 PM Page 415

Summary

Looking at the extensions, the only viable options for document editing are DOM and
SimpleXML. Although you can use SimpleXML for simple editing functions such as changing
the content of an element or attribute, you cannot make more advanced structural modifica-
tions. For complete editing capabilities, you need to use the DOM extension.

Ease of Use
Ease of use refers to the difficulty factor when using a particular extension. XMLReader is the
easiest extension to use. SimpleXML is also easy to work with, but people tend to have some
initial difficulty working with namespaces. The xml extension has a small API, but it is difficult
to distinguish certain data. Also, it provides challenges when working with namespaces. The
size of the DOM API alone causes this extension to rank last in this area.

xml

The xml extension is not overly difficult to use but does have its own quirks. At first glance you
might think you just need to define a few handlers and that you can start parsing. Although
generally speaking this is correct, you need to consider a few other issues. For starters, xml
does not directly parse a document from a file. The file must be loaded into strings that are
sent to the parser. You must determine ahead of time whether the document is to be parsed
with namespace support. Two functions exist to create the parser, and only one supports
namespaces. When dealing with namespaces, you must manually separate namespace URIs
from node names within the callbacks. Although a few areas may make this extension a bit
confusing, it still is not overly difficult to use. In any event, read on to see how XMLReader
overcomes many of these deficiencies.

XMLReader

Of all the extensions, XMLReader is the easiest of the XML-based parsers to use. You can con-
trol the parsing using a single method, and you can query information using a small list of
object properties. XMLReader is able to parse strings directly from files, and namespaced doc-
uments require no special setup. When you need namespace information, you can request it
directly from the reader.

DOM

Most people either love or hate DOM. This extension has a large API based on the W3C specifi-
cations and is often intimidating for those who have never used it before. It provides a lot of
functionality but tends to require a decent knowledge of the basic XML specifications. In many
cases, it takes a good amount of coding to get the information you are seeking. This area relates
to document navigation. Even though DOM has a more complex API, being based on the speci-
fications, developers who have used DOM parsers in other languages will have few problems
utilizing this one in PHP. The learning curve definitely depends upon your background.

SimpleXML

The purpose of SimpleXML was to make parsing XML as simplistic as possible. I still consider
XMLReader easier to use when dealing with namespaced documents; SimpleXML comes in

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING416

6331_c11_final.qxd 2/16/06 4:41 PM Page 416

second when reading or performing minor editing on documents. The problem areas often
encountered with SimpleXML tend to occur when working with namespaced documents or
documents with complex structures. For documents dealing with mainly elements, attributes,
and text, SimpleXML really shines. For example, consider using SimpleXML with the following
document:

<root>
<child1 att1="a">text</child1>

</root>

Assuming this document has been loaded into the SimpleXMLElement object $sxe, how
much easier can it be to work with a tree than the following? Not much!

/* Print element contents */
print $sxe->child1;

/* Print value of att1 attribute */
print $sxe->child1["att1"];

Summary

Although I find XMLReader the easiest API to work with, it is a toss-up between that and
SimpleXML. As you will learn after reading this chapter, every extension has some drawback.
How easy an extension is to use is just one factor you must consider when trying to determine
which one to use. A balance must exist—you must be comfortable with the extension but also
be able to get the job done in an efficient manner.

Namespace Support
Working with namespaced documents is not always so simple because they can get quite
complex. This is not only true when trying to write code for these documents but also when
reading them in serialized form. The following sections will compare how each extension does
when dealing with a namespaced document.

xml

The xml extension deals with namespaces when the parser is created with the
xml_parser_create_ns() function. In PHP 5, namespace declarations are handled only by
the xml_set_start_namespace_decl_handler() function. The end handler is never called. Data
available from the handler is the prefix and namespace URI. The element handlers prefix the
local name of the element with the namespace URI, separated by a user-definable character.
Looking back at the start namespace handler in Chapter 8, the handler is a little bit useless.
All that the handler would provide is the ability to map prefixes with namespace URIs for pos-
sible use within other handlers. The problem is that it is up to the developer to do this, which
means scoping issues need to be dealt with and need to be tracked for the prefix/namespace
URI combination within the element handlers. This is a complete waste of time because the
prefix has little meaning to an XML document. The namespace URI is what really matters.

The namespace declaration handlers are not the only issue you may run into problems
with. You must consider namespaces within the element handlers as well. Assume a docu-
ment using namespaces is being parsed and the xml parser has been created to handle

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 417

6331_c11_final.qxd 2/16/06 4:41 PM Page 417

namespaced documents. No special options have been used, other than the defaults and
a disabling of case folding. The parser encounters the element name mynode residing in
the http://www.example.com/mydoc namespace. What gets passed to the element handler
is http://www.example.com/mydoc:mynode.

This must now be split apart into the namespace URI and the element local name, and
it is up to the developer to do this. If the namespace URI used in the document for this partic-
ular element is known ahead of time, then it is not too difficult to handle. But this often is not
the case. Looking at the data passed for the element name, you might think about splitting it
into an array based on the : or searching for a substring after the last :. This is fine, but con-
sider what would happen in the rare case that the local name for the element contained the :
character. Now you need to think a bit more and possibly change the namespace separator
character to something not used in a namespace URI. You also need to consider that some
elements may not reside in any namespace, so these would also need to be handled in the
callbacks. Everything pertaining to elements also pertains to attributes.

As you can see, while xml supports handling namespaces, it is not as simple as you might
like. You need to consider many issues and code for them ahead of time. So all in all, although
you can work with namespaces, I do not consider this extension as having minimal name-
space support. It’s there, but it’s not particularly easy to use.

XMLReader

XMLReader is one of the best and easiest extensions when dealing with namespaces in docu-
ments. You don’t need to perform any special parsing or processing. The reader will stop at every
element in the document, just like the xml extension will handle each element. It doesn’t matter
whether namespaces are in use. Namespace information is easily obtainable if so desired using
the namespaceURI, prefix, name, and localName properties of the reader. When positioning the
cursor on attributes, the same properties are used in the same manner. As an alternative with
attributes, the getAttributeNs() method can also retrieve attribute values directly based on the
namespaceURI parameter passed to the method.

One of the differences between xml and XMLReader is how namespace declarations are
handled. Within xml, you must use a special handler. Within XMLReader, you can handle
namespace declarations as normal attributes. What distinguishes these from regular attrib-
utes is the namespace URI. Per the XML Namespace specification, the namespace http://
www.w3.org/2000/xmlns/ is always bound to the xmlns prefix. When this value is returned from
checking the namespaceURI property of an attribute, the attribute is a namespace declaration
and not a regular element attribute.

DOM

DOM provides full support for namespaces when reading and editing XML documents. When
reading a document, similar properties to XMLReader retrieve namespace information for the
current node. Namespace declarations are handled differently in DOM than in XMLReader,
however. Within DOM, they are of type DOMNameSpaceNode and not usually handled as regular
attributes.

DOM, being a tree-based parser, goes well beyond the capabilities of XMLReader. You can
create elements and attributes within namespaces, as well as create namespace declarations.
Although reading documents within namespaces is not too difficult, many developers new to

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING418

6331_c11_final.qxd 2/16/06 4:41 PM Page 418

DOM get confused when editing namespaced documents. Editing namespaced documents
often requires a good knowledge of what namespaces are and how they work within XML.

SimpleXML

SimpleXML is not one of my favorite extensions when working with namespaced documents.
It supports them, but unless you already know the document structure and which elements
and attributes are in which namespace, you can forget about trying to read the document with
this extension. For instance, say you are pulling in some XML data from a remote location,
http://www.example.com/remote.xml. You know nothing of the structure, so you write some
code like the following:

<?php
$sxe = simplexml_load_file("http://www.example.com/remote.xml");
$children = $sxe->children();
foreach($children AS $node) {

print $node;
}
?>

Much to your surprise, you get no output. Physically opening the document, you find out
everything is in a prefixed namespace:

<ns:root xmlns:ns="http://www.example.com/ns">
<ns:element1>some content</ns:element1>
<ns:element2>more content</ns:element2>

</ns:root>

Without specifying the namespace URI, you cannot access any of the child elements. The
children need to be accessed by $children = $sxe->children("http://www.example.com/
ns");.

You will run into the same problem with namespaced attributes as you did with elements.
To top it all off, the namespace declarations are inaccessible using SimpleXML, so you have no
way to even find out what namespaces have been declared within a document.

Summary

You have probably guessed that the degree of namespace support implemented by each exten-
sion varies greatly, and each one has problems. XMLReader is probably the easiest extension to
use while providing excellent namespace support. It requires no special setup and works the
same regardless of working with or without a namespaced document. DOM follows XMLReader
in the namespace area. It can be as easy as XMLReader but begins to add some complexity when
editing namespaced documents. SimpleXML places third in my list. It provides decent name-
space support but requires the developer to know the document structure and namespaces
ahead of time. The xml extension is my least favorite extension when working with namespaces.
It requires too much additional coding on the developer’s side to use namespace information
effectively. This is one of the major reasons I prefer XMLReader over xml.

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 419

6331_c11_final.qxd 2/16/06 4:41 PM Page 419

Parsing/Processing Speed
Determining the speed that each extension takes to parse and process a document depends
upon what type of processing needs to take place and the code written by the developer. This
section covers the time it takes for each extension to find an element within a document. Only
the basic functions of the extensions will be used. (You will take a look at optimizations later
in the “Optimizing Parsing and Processing” section.) The document used for this test is the
same one used when looking at the system resources. It is 12.5MB in size and contains 200,000
book elements. The document resides in the file bigxml.xml; a small snippet of the document
looks like the following:

<books>
<book id="1"><title>1</title><pages>1</pages></book>
<book id="2"><title>2</title><pages>2</pages></book>
<!-- Remaining book elements -->

</books>

Each extension will use basic, unoptimized functionality to search for the book element
with the id attribute containing the value 5000. You’ll see more optimized code later in this
chapter (in the “Optimizing Parsing and Processing” section), and for now the functions and
methods used are ones that are familiar even to developers new to these extensions. Table 11-
3 shows the results for each extension. The table shows the average time from ten executions
for each extension.

Table 11-3. Average Time in Seconds for Unoptimized Search for an Element

xml XMLReader DOM SimpleXML

0.930624079704 0.699739193916 7.1625934124 7.1127900362

The times differ dramatically for the stream-based parsers compared to the tree-based
parsers. The time is calculated from when the parser begins parsing to when the element is
found. The stream-based parsers do not have to load the entire document and therefore result
in much faster times. For the code within each of the following sections, two common func-
tions have been defined:

function starting_time() {
$mtime = microtime();
$mtime = explode(" ",$mtime);
return $mtime[1] + $mtime[0];

}

function ending_time() {
$mtime = microtime();
$mtime = explode(" ",$mtime);
return $mtime[1] + $mtime[0];

}

These calculate the starting time and the ending time to come up with an approximate
execution time.

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING420

6331_c11_final.qxd 2/16/06 4:41 PM Page 420

xml

Although not the fastest, the average time for the xml extension to locate the element is quite
impressive. The code used for this test is as follows:

function startElement($parser, $data, $atts) {
if ($data == "book" && $atts["id"] == 5000) {

$endtime = ending_time();
print $endtime - $GLOBALS['starttime'];
exit;

}
}

function endElement($parser, $data) { }

$parser = xml_parser_create();
xml_parser_set_option ($parser, XML_OPTION_CASE_FOLDING, 0);
xml_set_element_handler($parser, "startElement", "endElement");
$handle = fopen("bigxml.xml", "r");
$starttime = starting_time();
while ($data = fread($handle, 4096)) {

if (!xml_parse($parser, $data, feof($handle))) {
print "error";
break;

}
}

The starting time begins after the parser has been set up and the file is opened for read-
ing. The time calculation includes only the time it took for the extension to parse the data up
to the point the book element with the id attribute having the value 5000 is encountered. At
this point, the total time is calculated, and parsing stops.

XMLReader

XMLReader clearly outperforms all the extensions when locating an element. It performed
25 percent faster than xml, which came in with the second fastest time. You’ll be surprised to
know that this is without any optimizations, which will be demonstrated later in the “Optimiz-
ing Performance” section, so it can actually run even faster. The code used in this test also
measures the time after the parser has been set up until the element has been found, at which
point total execution time is calculated and parsing stops:

$reader = new XMLReader();
$reader->open('bigxml.xml');
$starttime = starting_time();
while ($reader->read()) {

if ($reader->nodeType == XMLREADER::ELEMENT &&
$reader->name == "book" && ($reader->getAttribute("id") == 5000))

{
$endtime = ending_time();
print $endtime - $starttime;
exit;

}
}

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 421

6331_c11_final.qxd 2/16/06 4:41 PM Page 421

Looking at the code, you should see that no special tricks have been used. The standard
read() method is called each time, and the nodeType, name and id attribute values are tested.

DOM

DOM tends to be the slowest extension in the pack, though its testing time is quite close to that
of SimpleXML. Remember that this is unoptimized code, and the document is an unknown
structure. The entire tree must be walked until the first element named book with the attribute
id containing the value 5000 is encountered. The majority of the time is due to the initial pars-
ing. Before any processing can begin, the entire document is loaded into memory:

function checkChild($node) {
if ($node->nodeType != XML_ELEMENT_NODE) {

return;
}
if ($node->nodeName == "book" && ($node->getAttribute("id") == 5000)) {

$endtime = ending_time();
print $endtime - $GLOBALS['starttime'];
exit;

}
foreach ($node->childNodes AS $child) {

checkChild($child);
}

}

$dom = new DOMDocument();
$starttime = starting_time();
$dom->load('bigxml.xml');
checkChild($dom->documentElement);

The code needs to walk to tree, so it recursively calls the checkChild() function. Any node
that is not an element is immediately ignored, and control returns to the parent calling func-
tion. Elements are the only node types that can contain child elements, so if the name of the
current element is not book and its attribute is of the wrong value, the code iterates through
the children of the node, passing each one to the checkChild() function. Again, this is not
optimized code, so it can run faster.

SimpleXML

SimpleXML displays decent results for a parser that needs to load the entire tree in memory
before processing. Like the code for DOM, the code used for the SimpleXML test is also unop-
timized, and the document structure is unknown:

function checkChild($sxe) {
foreach ($sxe->book as $book) {

if ($book["id"] == 5000) {
$endtime = ending_time();
print $endtime - $GLOBALS['starttime'];
exit;

}

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING422

6331_c11_final.qxd 2/16/06 4:41 PM Page 422

checkChild($book);
}
$children = $sxe->children();
foreach ($children AS $node) {

checkChild($node);
}

}

$starttime = starting_time();
$sxe = simplexml_load_file('bigxml.xml');
checkChild($sxe);

SimpleXML works on elements. If you look at the first foreach loop in the checkChild()
function, it iterates over book elements, skipping all other node types. For each book node
that does not have the attribute id does not exist or the attribute does not equal 5000, it is
then processed by a call to checkChild(). When no matching book elements occur, a general
processing of all children takes place. This presents an issue that skews this test, though. It
is possible that a book element may occur as a subchild that wouldn’t get processed until
after the book elements but appears before the book element in document order. The name
of nodes is not available using this extension, making working with unknown document
structures difficult.

Summary

The tests performed here are not perfect indicators of overall performance, but they should
give you a good idea. The stream-based parsers crushed the tree-based parsers in terms of
locating the element, but the further the element is in the document, the longer it takes the
streamers to find it. In addition, more of the document has to be parsed and processed. The
tree parsers have no choice but to parse the entire tree because processing can’t begin until
that happens. Within the “Optimizing Parsing and Processing” section in this chapter, you
will see more numbers based on different techniques and different processing tasks. One
thing is for sure—you will be surprised to see the results of an optimized XMLReader exam-
ple performing the same processing that was done in this chapter. If you haven’t been able
to tell by now, I am a little biased toward XMLReader when needing to process a document
in a single pass.

Choosing a Parser
Many times developers choose a particular parser because they are comfortable with the API.
This is not always the best choice, because the developer may need to do additional coding and
also because of many of the factors discussed in the previous sections. Sometimes it makes sense
to use a different technology, which may require learning a new API. The following sections will
explore some of the factors to think about when choosing a parser and will offer some guidance
on which one may be the right choice for you.

Tree-Based or Stream-Based Parser?
The first decision is determining whether a tree-based or stream-based parser is the right
choice. From the tests in the previous sections, a stream-based parser is highly efficient both

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 423

6331_c11_final.qxd 2/16/06 4:41 PM Page 423

in memory usage and in speed. The drawbacks, on the other hand, limit the processing that
can be performed. You should first ask yourself the following questions about the problem you
are trying to solve:

• Do I need to edit the content of the XML document?

• Do I need to perform multiple searches in the document in no particular order?

• Do I need to be able to navigate through the document in all directions?

• Do I need to use the document with the XSL extension?

• Do I need to traverse the trees within the document more than once?

If you can answer “yes” to any of these questions, then you will most likely need to use
a tree-based parser, which would be either DOM or SimpleXML. A few fringe cases are the
exceptions to some of these questions, but generally DOM or SimpleXML is a safe bet to use.
Now that you have determined the type of parser, you need to think about the specific parser
to choose.

xml or XMLReader?
Unless you have an application using xml under PHP 4 and encounter none of the issues that
exist with the extension when moving it to PHP 5, I highly recommend using XMLReader for
stream-based parsing. As you have read in this chapter and possibly in Chapter 9, it is faster,
has an intuitive and simple API, offers better namespace support, and offers advanced fea-
tures such as validation and exporting nodes to DOM. The amount of resources required is
comparable to that of the xml extension, so when it comes down to a choice, I recommend
XMLReader over xml. I have yet to find a case where XMLReader cannot perform the same
functionality or a case where the performance difference between the two is significant
enough to justify using the xml extension instead.

DOM or SimpleXML?
The choice between DOM and SimpleXML is not as clear-cut as that of xml versus XMLReader.
Everything that can be accomplished in SimpleXML can also be accomplished in DOM, but
the same cannot be said the other way around. This, however, comes at a price. SimpleXML
is extremely straightforward and has an intuitive and simple API. DOM has a large learning
curve and an extremely large and complex API. Deciding between these two extensions
requires you to answer another set of questions about what you are trying to accomplish:

• Do I need to work with node types other than just elements, attributes, and text?

• Do I need to edit anything more than existing text content?

• Do I need the ability to ascend trees without resorting to XPath or having to worry
about variable scope?

• Am I working with an unknown document structure?

• Do I need advanced XPath querying to retrieve more than just elements, attributes, and
text nodes?

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING424

6331_c11_final.qxd 2/16/06 4:41 PM Page 424

If you answered “yes” to any of these questions, you should probably consider using
DOM. Although much more complex to use, it overcomes many of the areas SimpleXML was
not meant to handle. These questions are handled with respect to SimpleXML, because DOM
already offers this functionality and is presented in Chapter 6.

SimpleXML works only with elements, attributes, and text content within a document:

$sxe->elementName
$sxe->elementName["attributeName"]

Other node types are not supported. SimpleXML was not designed to be a full-fledged
XML editing tool like the DOM extension but rather a lightweight, easy-to-use extension for
developers to access XML. For this reason, the majority of developers have no need to access
any other node types.

SimpleXML was also not designed to create XML documents. Again, most developers
are working with preexisting documents, such as RSS feeds, and just need to process them.
SimpleXML provides the ability to edit existing content, such as changing text content and
attribute values, removing attributes and elements, and adding new attributes, but anything
beyond this is beyond the editing capabilities of SimpleXML.

Navigation is primarily based on named element access using the object properties.
Although you can perform unnamed access using the children() and attribute() methods,
you have no way to access ancestor nodes directly from a SimpleXMLElement object. You have
to use XPath, or the object for a node further up in the tree must be accessible. Take the fol-
lowing code, for instance:

function loadxml() {
$xml = "<root><node1/><node1/><node2/></root>";
$sxe = simplexml_load_string($xml);
return $sxe->node1;

}
$xml = loadxml();

The variable $xml is a SimpleXMLElement object that iterates the node1 nodes. The problem
is that you have no way to get back to the root of the document without resorting to XPath:

$arXMLPath = $xml->xpath('/*');
$root = $arXMLPath[0];

Remember to keep scope in mind when working with SimpleXML or be prepared to use
XPath.

Unknown document structures present a real problem for SimpleXML when namespaces
end up being used. Normally the methods children() and attributes() are used when the
structure is not known, but unless a namespace URI is passed, they return only the elements
and attributes that are either not in a namespace or in the default namespace. All other cases
require you to know the namespace ahead of time.

XPath won’t save you in this case like it did with navigation. XPath in SimpleXML returns
only elements, attributes, and text nodes. Queries searching for any other type of information
result in an empty array.

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 425

6331_c11_final.qxd 2/16/06 4:41 PM Page 425

Summary
Probably the easiest decisions to make when choosing a parser are deciding between a
stream-based and tree-based parser and deciding between xml and XMLReader. It gets a little
more challenging when deciding between DOM and SimpleXML. You might lean toward the
ease of use of SimpleXML but are worried about needing some of the functionality of DOM
down the road. I have good news for you in this respect. As you will see in the section “Com-
bining Technologies,” it is easy to use the two extensions together, so when you run into areas
where something is too difficult or impossible to implement using SimpleXML, you can use
the functionality from DOM. Before jumping right into this interoperability, you will first
examine how to optimize parsing and processing.

Optimizing Parsing and Processing
I have thrown many aspects of parsing and processing at you in this chapter. Some of these
aspects are beneficial, and others are problematic. It’s not always possible to choose the most
efficient parser because the functionality is just not sufficient to accomplish the task. Take, for
instance, document editing. Of course, xml and XMLReader are fast and use minimal amounts
of memory, but you just cannot do document editing with them. You need to use either DOM
or SimpleXML. This means the amount of memory required will be much greater than that
used by either xml or XMLReader. The following sections will address some of these issues
and offer ideas and techniques to efficiently and effectively parse and process XML to
employ in your everyday usage of the extensions.

Using Memory Efficiently
Memory is one issue to be aware of when working with XML documents. This is not particu-
larly an issue using xml or XMLReader but is pertinent when using DOM and SimpleXML.
The following sections will cover a few of the common issues encountered when working
with these extensions that relate to memory usage.

Working with Large Documents: Part I
Large document is really an arbitrary term. The amount of memory used depends upon the
size of the document, which then must be evaluated with the resources available on the hard-
ware running the software. If you refer to Table 11-2, you will see that using either DOM or
SimpleXML with a 12.5MB file consumes 85.6MB of memory internally. This should give you
an idea of how to judge whether a document is considered large.

You cannot specifically do anything using DOM or SimpleXML to avoid the memory
issue. This is something you need to handle within the document. Breaking a document up
into logical sections and storing each section within its own file will allow you to work with
smaller pieces of it at a time, thus reducing the memory usage. You can do this using entity
references or XInclude. It is likely that the entire document will rarely need to be processed
at once. You can perform editing within the individual sections and pull them together only
when needed. At these times, editing usually is not being performed, so you can perform the
final processing using one of the stream-based parsers such as XMLReader. Take, for example,
the following document, which is a reader’s digest version of a large document:

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING426

6331_c11_final.qxd 2/16/06 4:41 PM Page 426

<document>
<section1><!-- All the content for section1 --></section1>
<section2><!-- All the content for section2 --></section2>
<section3><!-- All the content for section3 --></section3>

</document>

Logically, this document might be broken up into three sections where each section is
stored in its own file. You could then rewrite the base document, in this case using XInclude,
so that the different sections are just pointed to within the base document:

<document xmlns:xi="http://www.w3.org/2001/XInclude">
<xi:include href="section1.xml"/>
<xi:include href="section2.xml"/>
<xi:include href="section3.xml"/>

</document>

Editing the sections would involve editing one of the three files listed in this new docu-
ment. This immediately will reduce your memory usage by about a third of what it used to
be. Currently, only DOM is able to perform XIncludes, $dom->XInclude(), but the technique
is similar using external entities:

<!DOCTYPE document [
<!ENTITY section1 SYSTEM "section1.xml">
<!ENTITY section2 SYSTEM "section2.xml">
<!ENTITY section3 SYSTEM "section3.xml">

]>
<document>

§ion1;
§ion2;
§ion3;

</document>

Using entity references, any of the extensions could process the final document. This way,
if final document processing is performed by DOM or SimpleXML, the memory hit you will
end up taking will be a one-time thing and not every time a section of the document is edited.

General Memory Considerations
Large documents are only one of the potential areas that cause a high usage of memory.
Multiple documents in memory at a time can cause problems just as a single large docu-
ment. I can recall an instance when a developer sent me an email about using domxml
under PHP 4. He was trying to process more than 1,000 XML documents within a single
script, and his machine was crashing. The extensions in PHP 5 handle documents and
memory much differently than domxml did back in the day. A document is kept in memory
as long as an object is referencing it or any portion of the document. Consider the effects of
executing the following piece of code:

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 427

6331_c11_final.qxd 2/16/06 4:41 PM Page 427

<?php
$dom = new DOMDocument();
$dom->load('bigxml.xml');
$root = $dom->documentElement;
$dom->load('bigxml.xml');
?>

At first glance, you might think this script isn’t so bad. Although it’s using the 12.5MB XML
file, it’s loaded into the same variable, so the document from the first load() call should go
away and the memory used should be destroyed, right? Wrong. You may have forgotten about
the $root variable. With the second call to load(), the $dom variable is associated with the sec-
ond document and no longer associated with the first, but $root still remains. Until $root is
destroyed, the first document continues to reside in memory. Prior to loading the document
a second time, $root should be destroyed by calling unset($root);. When load() is called the
second time, the initial document will first be removed from memory before loading the new
document. This also is true when using SimpleXML, but be careful when calling unset().
Make sure it is called on the object and not on an object accessing a property, or you will
end up removing an element from the document rather than dereferencing the object:

/* Dereferencing a SimpleXMLElement */
unset($sxe);

/* Deletes an Element from the XML document*/
unset($sxe->elementName);

When trying to work with multiple documents in succession, you may want to write the
code within a function:

<?php
function processDoc($file) {

$dom = new DOMDocument();
$dom->load($file);
$root = $dom->documentElement;
/* Additional Code Here */

}

$arFiles = array('bigxml.xml', 'section1.xml', 'section2.xml');

foreach ($arFiles AS $filename) {
processDoc($filename);

}
?>

What’s so special about doing this? Using a function for the DOM functionality keeps all
the variables within the scope of the function processDoc(). The function allows you to not
have to worry about tracking all variables referencing the document. Once the function fin-
ishes, all the variables automatically go out of scope; thus, all the objects are destroyed and
the document is released from memory. Using the code shown here, only a single document
is in memory at a time, and when the foreach loop has finished processing, there is no

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING428

6331_c11_final.qxd 2/16/06 4:41 PM Page 428

cleanup needed. This is not always a good idea. It is very dependent upon the application you
are writing.

■Caution Segregating XML functionality into user-defined functions so that variable scope is automati-
cally managed is not always a good idea. Refer to the section “Working with Large Documents: Part II” for
additional information.

Optimizing Performance
Performance is another area where some code tweaks and use of some certain functions can
make all the difference between a script that is slow and one that provides a decent level of per-
formance. Many issues can affect performance when dealing with XML that are not within your
control. It has happened to all of us before that a remote file is being read in, and the network
unexpectedly goes down. In a case like this, you cannot do anything other than use cached
copies of the files when available. The following sections will cover issues that are within your
control in order to make optimal use of the extensions.

Working with Large Documents: Part II
When working with DOM or SimpleXML, execution time relates to the size of the document.
The larger the document, the more time it takes to load. Breaking the document into sections
and working with smaller portions of it at a time not only reduces the amount of memory
required but also reduces the amount of time the document takes to load.

Load time is not the only factor to consider. Unloading the document also requires a good
amount of time. Using the 12.5MB file bigxml.xml again and comparing the amount of time it
takes to load the document to that of unloading it, you will see that unloading the document
actually takes a little longer. Table 11-4 presents the time it takes the DOM and SimpleXML
extensions to load and unload bigxml.xml.

Table 11-4. Time in Seconds to Load and Unload bigxml.xml, Which Is 12.5MB

DOM: Loading DOM: Unloading SimpleXML: Loading SimpleXML: Unloading

6.42168030739 6.75953874588 6.40448312759 6.7824942112

Unloading the document seems to take about almost 10 percent longer than it takes
to load the document. The difference between the times of the two extensions is negligible
because the test is not 10 percent accurate; however, it is close because they are performing
virtually the same action.

This relates to managing memory by encapsulating XML functionality within functions.
Although doing this helps to manage the lifetime of documents and keep memory down,
script execution time increases. In a typical Web request, getting the data to the user is the
primary objective, and the amount of time it takes the script to shut down is not a primary
concern as long as the data has been sent to the user. Here you need to achieve a balance.
You need to balance how much memory you can use (without sacrificing too much system

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 429

6331_c11_final.qxd 2/16/06 4:41 PM Page 429

resources) with trying to process as fast as possible. The fewer number of documents that
need to be freed during script execution will result in fast processing to get the data to the
user and require a longer shutdown time, but it will also increase memory usage.

Working with Known Document Structures
Earlier in this chapter, in Table 11-3, I showed the results of testing the speed of the parsers when
searching for a single element in a document. The tests performed were all unoptimized searches.
I’ll now show the result of rewriting the tests for each extension using the assumption that the
document structure is known ahead of time. I will use the same document, bigxml.xml, weighing
in at 12.5MB. Table 11-5 shows the results of the optimized tests by extension. I applied the same
criteria for measuring time in these tests. The time does not include the initial time to set up the
parser. This includes only the actual time the extension spent parsing, which includes loading
the document, until the point the element found is measured.

Table 11-5. Average Time in Seconds for Optimized Search for an Element

xml XMLReader DOM SimpleXML

0.930624079704* 0.237751293182 6.6229793787 6.5837672472

* No optimizations could be made to the xml code, so there is no difference in time.

When I initially stated that the document structure was known, the extensions are using
only the assumption that book elements are children of the books document element. Other
types of elements could be mixed in, but this one part of the structure is a given, and the
extensions are coded for the possibility of the existence of other elements within the children
of the books element. For this reason, as shown in Table 11-5, I could not make any additional
optimizations to the code for the xml extension. To ensure the environment was still the same
for the tests, I ran xml ten times, which resulted in little difference from the original results in
Table 11-3, so I used the original result in Table 11-5.

XMLReader

The optimized version of the XMLReader script runs 66 percent faster than the original. This is
a dramatic increase in processing speed without any side effects. It does not require any addi-
tional memory usage or system resources. Before I explain the optimizations, you should look
at the code used:

<?php
$reader = new XMLReader();
$reader->open('bigxml.xml');
$starttime = starting_time();

while ($reader->nodeType != XMLREADER::ELEMENT || $reader->name != "book") {
$reader->read();

}

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING430

6331_c11_final.qxd 2/16/06 4:41 PM Page 430

do {
if ($reader->getAttribute("id") == 5000) {

$endtime = ending_time();
print $endtime - $starttime;
exit;

}
} while ($reader->next("book"));
?>

The first optimization, which was also used in the original test since it’s not specific to the
extension, is testing for the node type. The nodeType property is an integer and is much faster
to test for than a string, such as name. The document contains many text nodes, and rather than
having to test the name against the value book, they are quickly ignored by failing the nodeType
test, causing the reader to move the cursor using the read() method. The initial while loop
locates the first book element, at which point the real optimization can take place.

The document structure is known, so it is safe to assume that all book elements contain the
attribute id and that book elements are siblings of each other. The value of the id attribute for
the first book element is tested against the search criteria, which is the value of 5000 in this case.
Upon failing, the while() portion of the do/while loop is executed, and $reader->next("book")
is called.

The next() method skips subtrees and positions the cursor on the next sibling of the current
node. In this case, the value book is supplied, instructing the reader to move to the next book sib-
ling rather than stopping at the real next sibling of the node. In actuality, the next sibling would
have been a significant whitespace, but since these are useless to the search, they are skipped,
which allows the script to run even faster. If you recall, the document contains 200,000 book ele-
ments, so it ends up containing 200,001 significant whitespace siblings in total.

Although the actual execution time will vary depending upon the location of the element
in the document, it is quite impressive that 5,000 book elements can be processed, which also
includes the time to read the data from disk, in less than 0.3 seconds. The further within the
document the element resides, the longer the execution time; but considering that the time
should be no longer than a tree-based parser and should not introduce any memory penalties,
the results certainly demonstrate the efficiency of XMLReader.

DOM

An optimization of the DOM test resulted only in a 7 percent decrease in total time. In the fol-
lowing code, you can see that it is not as complicated as the previous test:

<?php
$dom = new DOMDocument();
$starttime = starting_time();
$dom->load('bigxml.xml');
$root = $dom->documentElement;
$child = $root->firstChild;
while ($child->nodeType != XML_ELEMENT_NODE || $child->localName != "book" ||

($child->getAttribute("id") != 5000)) {
$child = $child->nextSibling;

}
$endtime = ending_time();
print $endtime - $starttime;
?>

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 431

6331_c11_final.qxd 2/16/06 4:41 PM Page 431

Only the children of the document element need to be tested. Just like XMLReader, the
nodeType is the first test in the while() statement. It executes the fastest and is used to rule out
the text nodes. As long as any of the criteria do not match, the current node’s sibling is retrieved.
This process continues until the specified book element is found.

You might think that a 7 percent reduction in time is not all too significant, but in actuality it
is. The total time includes the time to load and build the in-memory tree. The actual time to walk
the tree and locate the specified book element is only 0.17 seconds. Consider this important piece
of information. It took less than two-tenths of a second to process 5,000 elements. The further the
element is located in the document, the longer it will take to find it; but the time is much smaller
than that of XMLReader because XMLReader parses and processes at the same time, while DOM
just has to process the already loaded document.

SimpleXML

The figures for SimpleXML are comparable to those of DOM. An optimized version on the
SimpleXML test code also resulted in a 7 percent decrease in the execution time. The code
for this test is also much simpler than that of the original test case:

<?php
$starttime = starting_time();
$sxe = simplexml_load_file('bigxml.xml');

foreach($sxe->book AS $book) {
if ($book["id"] == 5000) {

$endtime = ending_time();
print $endtime - $starttime;

}
}
?>

SimpleXML processes the document in a similar fashion to DOM. The foreach iterates
each of the book elements and tests the value of the id attribute. The amount of time, taking
out the factor of loading the document into memory, is also comparable to that of DOM.
SimpleXML also took roughly 0.17 seconds to iterate and locate the specified book element.
Generally speaking, DOM and SimpleXML are relatively close in performance figures based
on the tests performed in this chapter.

XPath

I tested searching for the element using XPath with both DOM and SimpleXML. The results are
not indicated in Table 11-5, as they couldn’t even come close to anything presented there. The
average time starting right before the document is loaded to the time it took to set up XPath and
perform the query was approximately 25 seconds. It took about 18 seconds to perform the query
alone. This cannot be considered an optimization; removing the time to load the document from
the results of the DOM and SimpleXML tests, they each took approximately 0.16 seconds to walk
the tree and locate the specified element. Just in case you think this number is a typo, it is not; it
takes less than two-tenths of a second to walk the tree using optimized code and locate the ele-
ment. Even taking into account the time to load the document into memory, the total time DOM
and SimpleXML take is less than the XPath query alone.

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING432

6331_c11_final.qxd 2/16/06 4:41 PM Page 432

The problem here is because of how XPath works. The query used to test XPath was the
following:

/books/book[@id=5000]

XPath had to check every single book element, totaling 200,000, and compare the id
attribute to the value 5000. You cannot just tell it to stop checking after it finds the first one.
Even if you tried to use the position() function, it still would check them all. The position()
function works on node sets, and the node set it would operate on would be the node set con-
taining every book node having an attribute named id with the value 5000. The only way it
could determine this would be to again check every single book element.

■Note Performing the XPath tests on an inferior machine running Linux resulted in drastically different
numbers. The query took only 7 seconds on the Linux machine compared to that of 18 seconds on the
Windows machine. Other tests were also performed, but none differed in such great amount as using XPath.
Debug builds of both the PHP CLI and libxml2 libraries were used in both environments when performing
the tests.

Summary

The optimizations shown in the previous sections have dealt with working within a single exten-
sion and making effective usage of memory and execution time. From the results, it is clear that
whenever possible, you should use XMLReader. Not only is memory efficiently handled because
of the streaming nature of the data but also it has proven to be the fastest parser of all the exten-
sions. It is inevitable that at one time or another you will need a tree parser. When using DOM or
SimpleXML, it is important to maintain a balance between the memory usage and script execu-
tion speed. A script that uses too much memory can take down a server or result in a slowdown
on the entire system. A script that runs too slow, on the other hand, may result in an unusable
application. You need to think about this when using DOM or SimpleXML because it’s not
always the case that you are in control of the XML document.

One extension I have not mentioned up to this point is XSL. It works in combination with
other extensions, so you need to do any optimization either using the partner extension,
which would be either DOM or SimpleXML, or using the XSLT language. In the next section,
I will cover not only working with the XSL extension in an optimized manner but also com-
bining the different extensions to achieve the desired results and providing efficient and
effective usage.

Combining Technologies
One of the original philosophies for XML in PHP 5 was interoperability among the various
extensions. This is true for all the new extensions, but the xml extension still stands alone.
Unlike the other extensions, the xml extension does not have any hooks to work natively with
the other extensions. The major benefit to the interoperability is that selecting a primary
parser to use in your application won’t always lock you into only the functionality provided

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 433

6331_c11_final.qxd 2/16/06 4:41 PM Page 433

by the extension. DOM and SimpleXML are able to completely work together, but because of
the differences in parsing technology, some, yet limited, functionality allows XMLReader to
work with DOM, which in turn means it can work with SimpleXML. In the following sections,
I will cover some techniques that allow the extensions to work together efficiently. You will
also take a look at the XSL extension and ways to optimize performance using the inter-
operability amongst the extensions.

Using DOM and SimpleXML Together
DOM and SimpleXML are able to work together on the same document at the same time. Nodes
can be imported from one extension to the other, which means the node can be shared between
the extensions without being a copy. Actions performed on the node from one extension are
reflected within the object from the other extension. DOM imports nodes from SimpleXML
using the dom_import_simplexml() function, and SimpleXML imports nodes from DOM using
the simplexml_import_dom() function.

The majority of times DOM needs to export a node to SimpleXML is when a document
is being created from scratch and then passed off to SimpleXML or when the node is coming
from another extension such as XMLReader or XSL, which support only the creation of DOM
objects, and is being sent to SimpleXML for processing.

The reason for this is that a developer who prefers to process documents using SimpleXML
will use SimpleXML as the primary parser and export a node to DOM only so that functionality
not supported by SimpleXML can be performed. A developer who works with DOM as the pri-
mary parser has all the functionality needed already available and would have loaded the
document using SimpleXML had its API been the preferable one to read the document with.

■Note Importing nodes using either function does not copy the underlying libxml2 structure. This structure
simply becomes accessible from either DOM or SimpleXML. This is significant because there is no perform-
ance loss importing nodes from one extension to the other.

Importing Nodes into SimpleXML
First let’s look at how SimpleXML imports a node from DOM. If SimpleXML is your parser
of choice, then this functionality is handy to be able to work with XMLReader and XSL. The
simplexml_import_dom() method takes one required parameter, node, and one optional
parameter, class_name. The node parameter is a DOM object containing the document node
to be imported, which inherits from the DOMNode class. The optional class_name parameter
allows the class name to create the returned SimpleXMLElement object. Any class name passed
as the optional argument must extend the SimpleXMLElement class.

The following code will demonstrate a document being loaded into a DOMDocument object,
exported to SimpleXML, modified by SimpleXML, and then serialized by DOM:

<?php
$dom = new DOMDocument();
$dom->loadXML('<books><book/></books>');

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING434

6331_c11_final.qxd 2/16/06 4:41 PM Page 434

/* Import document into SimpleXML */
$sxe = simplexml_import_dom($dom);

/* Edit the book element */
$sxe->book = "Edited Book Title";

/* Print the serialized document using DOM */
print $dom->saveXML();
?>

A document containing an empty book element is loaded into a DOMDocument object. This
object is then imported into SimpleXML and results in the SimpleXMLElement object, $sxe. The
value of the book element is modified using $sxe, and the document is serialized using the
original DOMDocument object. When the script is run, the output you will see is the modified
document:

<?xml version="1.0"?>
<books><book>Edited Book Title</book></books>

Importing Nodes into DOM
Developers preferring the SimpleXML API for handling XML will find the
dom_import_simplexml() function extremely handy. You can achieve the best of both worlds
by using a combination of these two extensions. The biggest complaints I have seen from
developers all revolve around SimpleXML having a small API and lacking functionality. This
was pretty much the purpose of SimpleXML in the first place. It was meant to be easy to use,
and any functionality that it doesn’t implement can be handled using DOM. The top two com-
plaints are that the name of the current node is unobtainable and elements cannot be created.
Both of these are easily solvable with interoperability.

In Chapter 7, you read about extending the SimpleXMLElement class and looked at the sim-
ple example using the dom_import_simplexml() function. That example can be extended even
further. It all depends upon how much functionality you require. For example:

<?php
class mySXE extends SimpleXMLElement {

function nodeName() {
$node = dom_import_simplexml($this);
return $node->nodeName;

}

function addChildElement($name, $value=NULL) {
$node = dom_import_simplexml($this);
$child = $node->appendChild(new DOMElement($name, $value));
return simplexml_import_dom($child, "mySXE");

}
}

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 435

6331_c11_final.qxd 2/16/06 4:41 PM Page 435

$books= new mySXE("<books/>");
/* Print the name of the document element */
print $books->nodeName()."\n";

/* Add book nodes to document */
$book = $books->addChildElement("book");
$book->addChildElement("title", "Title1");
$book->addChildElement("pages", 10);

$book = $books->addChildElement("book");
$book->addChildElement("title", "Title2");
$book->addChildElement("pages", 20);

/* Iterate through the books, and print titles */
foreach ($books->book AS $book) {

print "Title: ".$book->title."\n";
}
?>

This code is not overly optimized and just demonstrates how you can add DOM function-
ality to SimpleXML. Each time one of the extended functions is called, the node is imported
into DOM, and the desired functionality is performed. In this case, a function to retrieve the
current node name and a function to append a child element have been added to the class.
The final output results in the following:

books
Title: Title1
Title: Title2

Using XMLReader and DOM Together
Even using XMLReader, which is a streaming parser, it is possible to interface with DOM,
which in turn opens the window to interoperate with other extensions. XMLReader has an
expand() method that “expands” the current node the reader is positioned on and returns a
DOM object that is a copy of the node. This means you won’t be working on the original docu-
ment itself, just a copy of one of its subtrees.

The benefits of this method are found more often when working with large documents.
You can use XMLReader to locate nodes and then copy them out to DOM objects. Think about
the original problem in this chapter when working with large documents. One idea was to
break them up into logical areas and use XInclude. The problem is, this large document already
exists, so how are you going to go about breaking it up? The following document, which was
previously used in the example, resides in the file bigxml2.xml:

<document>
<section1><!-- All the content for section1 --></section1>
<section2><!-- All the content for section2 --></section2>
<section3><!-- All the content for section3 --></section3>

</document>

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING436

6331_c11_final.qxd 2/16/06 4:41 PM Page 436

You can use XMLReader to move through the document and locate each of the section
elements. When the cursor is positioned on the element, it will be expanded to a DOMElement
object, appended to a new empty document, and saved to disk using the element name as
the filename. At the same time, a new main document is created, defining each section as an
XInclude link. The generated file should look similar to the one presented within the “Working
with Large Documents: Part I” section:

<?php
define('XINCLUDEURI', "http://www.w3.org/2001/XInclude");

/* Adds new xi:include elements to the new document */
function addXISection($xidoc, $filename) {

$root = $xidoc->documentElement;
$newXI = $xidoc->createElementNS(XINCLUDEURI, "xi:include");
$root->appendChild($newXI);
$newXI->setAttribute("href", $filename);

}

/* Create the main document that will hold the XInclude links */
$domXI = new DOMDocument();
$root = $domXI->appendChild(new DOMElement("document"));
$root->setAttributeNS("http://www.w3.org/2000/xmlns/", "xmlns:xi", XINCLUDEURI);

/* Create the reader, and begin to parse document */
$reader = new XMLReader();
$reader->open('bigxml2.xml');

/* Following two lines, position cursor on the document element node */
$reader->read();
$reader->read();

/* Move cursor to first child node of document element */
if ($reader->read()) {

/* Perform tests, and use next() method to traverse sibling nodes */
do {

if ($reader->nodeType == XMLREADER::ELEMENT) {
/* XInclude filenames will be based on element names */
$filename = $reader->localName.".xml";
$node = $reader->expand();

/* Add expanded node to a DOMDocument, and serialize it to file */
$subdom = new DOMDocument();
$subdom->appendChild($node);
$subdom->save($filename);

/* Free document from memory */
unset($subdom);

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 437

6331_c11_final.qxd 2/16/06 4:41 PM Page 437

addXISection($domXI, $filename);
}

} while($reader->next());
}
$domXI->formatOutput = TRUE;
$domXI->save("segmented.xml");
?>

The resulting file is named segmented.xml and would be the file used when you need to
perform the final processing on the entire document. You can now perform editing using the
smaller files created for the elements expanded by XMLReader. This is only one instance that
the expand() method is useful and should give you ideas for other ways you might employ this
functionality in your code.

■Note Unlike the SimpleXML and DOM import functions, the expand() method performs a full copy of
the XML node. This means that the larger the subtree of the node, the more memory will be consumed and
the more time it will take to perform the node copy.

Using XSL with XMLReader
In the previous chapter, you read about XSL; it requires the use of the DOM extension. In the
current chapter, you have seen how XMLReader can interface with the DOM extension. If you
haven’t gotten the idea where I am going with this yet, let me make it a bit clearer. Using a
combination of XMLReader, DOM, and XSL, it is possible to transform very large documents,
which ordinarily wouldn’t be possible without running some real heavyweight hardware. For
example:

<?php
/* Set up the XSLT processor */
$xslDoc = new DOMDocument();
$xslDoc->load("bigxml2.xsl");
$xsltProc = new XsltProcessor();
$xsltProc->importStylesheet($xslDoc);

$reader = new XMLReader();
$reader->open('bigxml2.xml');
/* Following two lines, position cursor on the document element node */
$reader->read();
$reader->read();
/* Move cursor to first child node of document element */

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING438

6331_c11_final.qxd 2/16/06 4:41 PM Page 438

if ($reader->read()) {
/* Perform tests, and use next() method to traverse sibling nodes */
do {

if ($reader->nodeType == XMLREADER::ELEMENT) {
/* XSL output filenames will be based on element names */
$filename = $reader->localName.".xml";

$node = $reader->expand();
/* Add expanded node to a DOMDocument, and transform it */
$dom = new DOMDocument();
$dom->appendChild($node);
$xsltProc->transformToUri($dom, $filename);
unset($dom);

}
} while($reader->next());

}?>

This example is similar to the previous XMLReader and DOM example except that rather
than creating an XInclude document, subtrees are being transformed using XSL. The file
bigxml2.xsl could consist of any XSL templates you like. That is not provided in this example
and is left up to you to implement if you choose to do so.

Conclusion
No single parser will solve every problem. Each has its own strengths and weaknesses, and it’s
not always easy to determine which one to choose. This chapter covered the XML extensions
available in PHP 5 and provided some insight into how to go about determining which one
may be best suited for a particular problem at hand. It is not always easy to determine ahead
of time the right balance between memory usage and execution speed. Many aspects affect
these issues so the best you can do is plan as far enough ahead as possible, perhaps even mak-
ing some assumptions and writing code based on those assumptions. You can try to write as
efficient code as possible without being detrimental to the effectiveness of the application.
After reading this chapter and examining the results of the different tests, you should realize
that, when possible, you should use XMLReader. It not only uses minimal resources but also
provides excellent execution speed. Alternatively, it may be beneficial to see whether using
a combination of the technologies would help you.

This chapter concludes the coverage of specific XML-based extensions included with PHP
5. This does not mean this is all that you can do with XML in PHP. The remaining chapters in
this book will cover some of the other XML technologies and how you can use the extensions
to leverage them. The next chapter will introduce you to XML security, including XML signa-
tures and XML encryption. Currently, no extension provides this support directly, but you can
use the extensions to write some supporting functionality for XML security.

CHAPTER 11 ■ EFFECTIVE AND EFFICIENT PROCESSING 439

6331_c11_final.qxd 2/16/06 4:41 PM Page 439

6331_c11_final.qxd 2/16/06 4:41 PM Page 440

XML Security

PHP 5 provides many mechanisms to deal with XML documents. Applications can take
advantage of the tree-based parsers (DOM and SimpleXML) and the stream-based parsers
(xml and XMLReader), as well as document transformations using XSL. Processing, although
one of the primary tasks for an application, is just one aspect that you need to consider when
writing XML-based applications. Security and authentication of the data are often important
as well. This chapter will cover some standards and methods you can use to provide support
for XML encryption and digital signatures in documents.

■Note No built-in extension or package in PHP natively provides encryption and digital signatures.
Currently, it is possible to write code to perform limited XML security functions for simple documents using
an encryption extension, such as OpenSSL, mcrypt, or the sha1() function, and using a tree-based parser,
such as DOM. The examples within this chapter require that the DOM extension is available on the develop-
ment machine. This chapter will focus more on how you can implement digital signatures and encryption
using PHP rather than cover the complete specification. For this reason, I will use SHA1 and HMAC-SHA1
within the examples for digital signatures, because it is possible to use these algorithms without requiring
additional extensions, and I will use mcrypt for the examples of XML encryption because of its flexibility.

Introducing XML Security
Security is a topic that is always making headline news. In fact, reading news stories about
sensitive data being stolen is almost becoming commonplace. When you speak to people
about security measures they have taken, many times you hear that they use Secure Sockets
Layer (SSL) and a logon to protect their application and data. They just don’t realize that this
is only one layer—if someone breached that layer of security, it would be all over.

Therefore, you should handle security in layers. The application must be protected, the
network must be protected, and the data must be protected. The methods used for each of
these layers vary depending upon your needs and the purpose an application serves. Using
XML security is one such method that can protect data.

With XML being used more and more to transmit data between remote locations, it is
vital in many cases that this information is protected. How the data is protected depends
upon what the data contains. In some instances, it may be fine that the data is transmitted

441

C H A P T E R 1 2

■ ■ ■

6331_c12_final.qxd 2/16/06 4:39 PM Page 441

in plain text. The real concern is that the data has not been altered and that you can verify
the source of the data. An acquaintance of mine works in a company that deals with the
remote automation of machinery. Commands are sent in XML format and processed to con-
trol different machinery. The XML structure and data are not sensitive data, but ensuring that
the center issuing the commands is. Imagine what would happen if somehow an attacker
gained access to the application and began sending their own XML instruction sets. This
would be a worst-case scenario. To provide additional authentication of the commands, the
XML structures are digitally signed using XML signatures. By adding a layer of complexity to
the application (because the XML must be signed on the sending side and verified for both
integrity and sender authenticity), you in turn add an extra layer of security to the system.

Determining how to implement security when working with XML, whether you need sig-
natures or encryption, is often a daunting task. You must consider how secure your data needs
to be. If you work within a small office and you have XML data containing employee reviews,
you might want that data secured from the employees in the office. The security needs for this
data is much less than that of, say, credit card information contained within XML being sent
to a remote system across the Internet.

Another area to think about is interoperability. If the data is being passed to other systems,
possibly running different software and/or operating systems, you cannot expect those systems
to handle data in the same manner as your system. You might think this is not an issue because
XML is vendor neutral. But this, although true to a point, cannot be expected to hold true when
working with XML security. You cannot be positive that a remote system handles whitespace or
even orders attributes, which have no real order in XML, when the data is loaded. You can find
in-depth coverage of this particular issue in the section “Introducing Canonical XML.”

This chapter is broken down into two types of security implementations. The section
“Introducing Basic Security” covers some simple methods you can use to provide data integrity
and encryption when working with XML. Although easy to implement, much stronger methods
to protect data could be deployed. The section “Introducing Enterprise Security,” as well as
most of the material in the rest of the chapter, deals with W3C specifications designed for XML
security. The methods employed can provide greater security and interoperability, but they come
with a price. The methods are not even remotely close to being simple. In PHP, it is possible to
implement enterprise security to a point, but you may be begging for mercy by the time you
are done.

Introducing Basic Security
What I call basic security does not mean data is insecure. Rather, it refers to implementing
security in a manner that you do not need complex systems, you control the environments
or rules for all systems involved, and you are not concerned with interoperability. Basically,
you have the leeway to implement security in any manner you like, and all parties involved
will respect and follow your decision. This all falls within the umbrella term basic security,
and under these guidelines I will explain how you can work with XML securely.

Message Integrity
Message integrity means that data has not been altered from its original state. If you create an
XML document and either store it on the file system or send it to another party, you want to
make sure it remains unchanged; otherwise, a possibility exists that an unknown party has

CHAPTER 12 ■ XML SECURITY442

6331_c12_final.qxd 2/16/06 4:39 PM Page 442

altered the document in some malicious way. Using a digital signature, you can verify the
integrity of your data.

A simple example of this is hashing XML without getting a parser involved. Once you bring
an XML parser into the picture, things can drastically change. Assume you have an XML docu-
ment stored in some arbitrary place. It could be within a database or, as in this example, stored
on the file system in the file xmlsec.xml, which appears as the following:

<?xml version="1.0"?>
<root>

<data>My Data</data>
</root>

Once a document is in serialized form, you can create a digital signature of it. For
example, the following code loads the document from the file system and creates both an
SHA1 hash, which stands for the Secure Hash Algorithm, and an MD5 hash, which stands
for Message Digest 5. Only one of these hashes is needed, but both are shown here in case
you have a personal preference:

/* Generate SHA1 hash */
$sha1hash = sha1_file('xmlsec.xml');

/* Generate MD5 hash */
$md5hash = md5_file('xmlsec.xml');

/* Print resulting hashes */
print $sha1hash."\n";
print $md5hash."\n";

This technique is nothing new and might be something you are already doing with regu-
lar files. The resulting hash, whichever one you decide to use, must be stored in a secure yet
accessible location. The next time you open the document, you can verify its signature to
ensure the data has not changed. For example:

if (sha1_file('xmlsec.xml') == $sha1hash) {
/* Open and modify the XML document */
$dom = new DOMDocument();
$dom->load('xmlsec.xml');
$root = $dom->documentElement;
$root->appendChild($dom->createElement('data', 'More data'));
$dom->save('xmlsec.xml');

/* Create and store a new hash for the next time document is accessed */
$sha1hash = sha1_file('xmlsec.xml');
print 'New Hash: '.$sha1hash."\n";

} else {
print 'File has been altered!';

}

This approach has some drawbacks, such as what happens when the document needs to
be sent to another party. The outside party would need both the hash and the document. They

CHAPTER 12 ■ XML SECURITY 443

6331_c12_final.qxd 2/16/06 4:39 PM Page 443

cannot be sent together because a third party could intercept the communication, generate
an altered XML document, and replace the provided hash. When the intended recipient
receives this malicious message, they have no idea this happened. The new hash matches
against this new document.

This is where HMAC comes in. HMAC calculates a hash with a secret key. Not only can
you verify the message integrity, but you can also verify the authenticity of the message. For
HMAC, you use the mhash extension. (If this extension is unavailable, you can use a generic
HMAC function, which is shown later in this chapter in Listing 12-4.) There is little change to
the workflow using HMAC. The biggest difference is that you can provide your secret key to
the recipient of the XML documents at any time. You also can send the document and the
hash at the same time because without the secret key, the hash is nearly impossible to
reproduce.

For example, if the value of the secret key were secret, the data hmac would be created
using either of the two following calls:

$secret_key = 'secret';

/* Generate HMAC-SHA1 hash */
$hmac_sha1hash = bin2hex(mhash(MHASH_SHA1, file_get_contents('xmlsec.xml'),

$secret_key));

/* Generate MD5 hash */
$hmac_md5hash = bin2hex(mhash(MHASH_MD5, file_get_contents('xmlsec.xml'),

$secret_key));

Assuming the receiver already has your secret key, the XML document and the hmac could
be sent to the receiver, such as by being passed as parameters in a URL or through HTTP POST.

■Note When sending an XML document and an HMAC, the XML document should be Base64 encoded,
and the data must be verified prior to being loaded by a parser. It is also required that both parties use the
same algorithms when performing message verification and authentication.

The following code is a simple example of receiving a document and hmac using HTTP
POST. It assumes that the XML document is Base64 encoded and passed as the value of the
xmldoc parameter and the hmac is passed as the value of the hmac parameter. HMAC-SHA1 is
the mechanism being used by the sender and receiver in this example.

<?php
$secret_key = 'secret';

if (isset($_POST['xmldoc']) && isset($_POST['hmac'])) {
$xmldata = base64_decode($_POST['xmldoc']);

/* Generate the expected HMAC */
$hmac_sha1hash = bin2hex(mhash(MHASH_SHA1, $xmldata, $secret_key));

CHAPTER 12 ■ XML SECURITY444

6331_c12_final.qxd 2/16/06 4:39 PM Page 444

/* Verify message integrity and authenticity */
if ($hmac_sha1hash == $_POST['hmac']) {

$dom = new DOMDocument();
$dom->loadXML($xmldata);
print $dom->saveXML();

} else {
print 'DATA HAS BEEN ALTERED!!!';

}
} else {

print 'Missing Arguments';
}
?>

Data Encryption
Message integrity and authentication are good measures to use to ensure that the data came
from the real originating party and was not altered, but they do not help when you need to
keep data secret. For example, if you run an e-commerce site that is remotely hosted and from
which credit card information is submitted and then sent to your company’s internal systems
for processing, you need to protect that data at all costs. Consider sending the following XML
document across the Internet:

<?xml version="1.0"?>
<order>

<items>
<item>

<id>123</id>
<quantity>2</quantity>
<unit_price>9.99</unit_price>

</item>
</items>
<customer>

<name>John Smith</name>
<address>123 Doe Lane</address>
<city>Portland</city>
<state>Maine</state>
<zip>04101</zip>

</customer>
<creditcard>

<number>1234 1234 123 1234</number>
<ccv>123</ccv>
<exp>0107</exp>

</creditcard>
</order>

Doing so in plain text is just asking for trouble, not to mention against the regulations
of credit card companies. It wouldn’t even matter if the data were not altered in any way; the
simple fact that it was intercepted is cause for alarm. A situation like this is a prime candidate
for using encryption in XML.

CHAPTER 12 ■ XML SECURITY 445

6331_c12_final.qxd 2/16/06 4:39 PM Page 445

The following example demonstrates how you can encrypt the credit card information in
the XML, allowing it to be safely transmitted across the Internet. This example uses the mcrypt
library, but you can use any cryptographic tools you have available. The variable $orderxml
used in the example is assumed to contain the previous order.

$secret_key = 'secret';

$dom = new DOMDocument();
$dom->loadXML($orderxml);
$order = $dom->documentElement;
foreach ($order->childNodes AS $node) {

if ($node->nodeName == 'creditcard') {
/* Get serialized creditcard node */
$data = $dom->saveXML($node);

/* Encrypt the serialized node */
$td = mcrypt_module_open(MCRYPT_3DES, '', MCRYPT_MODE_CBC, '');
$iv = mcrypt_create_iv(mcrypt_enc_get_iv_size($td), MCRYPT_RAND);
mcrypt_generic_init($td, $secret_key, $iv);
$encrypted_data = rtrim(mcrypt_generic($td, $data));
mcrypt_generic_deinit($td);
mcrypt_module_close($td);

/* Create a new replacement node containing encrypted data */
$encNode = $dom->createElement('encrypted', base64_encode($encrypted_data));
$order->replaceChild($encNode, $node);

/* Add the Initialization Vector as an attribute */
$encNode->setAttribute('iv', base64_encode($iv));
break;

}
}

$enc_document = $dom->saveXML();

Note that within the example, the encrypted data, as well as the initialization vector (IV)
used on the decryption side, are both Base64 encoded. This ensures that the data is valid XML
syntax. The resulting document would look like the following:

<?xml version="1.0"?>
<order>

<items>
<item>

<id>123</id>
<quantity>2</quantity>
<unit_price>9.99</unit_price>

</item>
</items>

CHAPTER 12 ■ XML SECURITY446

6331_c12_final.qxd 2/16/06 4:39 PM Page 446

<customer>
<name>John Smith</name>
<address>123 Doe Lane</address>
<city>Portland</city>
<state>Maine</state>
<zip>04101</zip>

</customer>
<encrypted iv="5Fl6lc4xjwA=">Jhm3UYs90vxaOkD6OWfKsaO/zm3G0aCNft/9/57qzmODhz51

WC3fL8dxuPzexlE9aNworn1dn7YFT2bP+WjHUP/qzv0pIQh9vVQ48TlOl8Z/Qeh4ffyfVThCVpt4esau
yhalLSOeqJaE2/GW5sOnEEgqM7p9iHj4</encrypted>
</order>

On the receiving end, you simply do the reverse of what was done during the encryption
process. The variable $enc_document will be used for the input XML document, as shown in the
following code. The value for this variable depends upon how the XML is being passed to the
receiver of the encrypted data, so it may have come from an HTTP POST variable.

$dom = new DOMDocument();
$dom->loadXML($enc_document);
$order = $dom->documentElement;
foreach ($order->childNodes AS $node) {

if ($node->nodeName == 'encrypted') {
/* Get Initialization Vector */
$iv = base64_decode($node->getAttribute('iv'));

/* Get data, and decode it */
$data = base64_decode($node->nodeValue);

/* Decrypt the data */
$td = mcrypt_module_open(MCRYPT_3DES, '', MCRYPT_MODE_CBC, '');
mcrypt_generic_init($td, $secret_key, $iv);
$decrypted_data = rtrim(mdecrypt_generic($td, $data));
mcrypt_generic_deinit($td);
mcrypt_module_close($td);

$frag = $dom->createDocumentFragment();
/* Functionality available in PHP 5.1 */
$frag->appendXML($decrypted_data);

/* Replacement node */
$order->replaceChild($frag, $node);
break;

}
}

print $dom->saveXML();

CHAPTER 12 ■ XML SECURITY 447

6331_c12_final.qxd 2/16/06 4:39 PM Page 447

As you can see, the encrypted node is located, and the content and iv attribute are
retrieved and decoded. The content is then decrypted and loaded into a DOMDocumentFragment
using the asXML() method (which is available in PHP 5.1), and the old encrypted node is
replaced with the new fragment. This ultimately results in the original creditcard element
and its contents being put back into the tree. If you execute these scripts, you will see that
the resulting data is the same as the original.

The material you have seen so far about message verification and data encryption is only
the beginning. In many cases, these techniques might be all you ever need. However, you
might find yourself in the position some day that you no longer can control both end points
of the system, or your company might deal with numerous vendors on any number of plat-
forms. It is not feasible to be implementing custom security schemes and structures every
time. It might be time to start looking at a common methodology for performing XML security.
This is where I make the distinction between the terms basic security and enterprise security.

Introducing Enterprise Security
For those of you who need something more than basic security and do not want to deal with
proprietary formats, the W3C has developed some specifications for encrypting and digitally
signing XML. The XML-Signature Syntax and Processing specification (http://www.w3.org/TR/
xmldsig-core/) defines processing rules and syntax to provide integrity, message authentication,
and signer authentication services. The XML Encryption Syntax and Processing specification
(http://www.w3.org/TR/xmlenc-core/) defines a process for encrypting data and representing
the result in XML.

The only catch to all of this is that although PHP offers the tools to perform this in a limited
fashion, it is up to the developer to write the code to hook it all together. The idea of writing an
extension to provide this capability in an easy-to-use manner has been tossed around but has
yet to come to fruition. In the meantime, I will cover what these technologies are and how you
can implement them using the current tool set provided by PHP. I will use DOM as the parser
in the examples, since it offers the greatest flexibility; I will use SHA1, via the built-in sha1()
function, for the digital signatures portion, because it is available as part of the core PHP
install from the Strings extension and offers enough functionality to demonstrate and utilize
the technologies covered in this chapter. You could implement certain examples using one of
the other XML parsers and OpenSSL, but in order to cover the most areas of XML security,
I will show examples using DOM, SHA1 (used for digital signatures), and 3DES-CBC (used for
XML encryption utilizing mcrypt) for consistency. Using different algorithms depends not
only upon what your system supports but also upon whether the algorithm is applicable for
the specific task. For instance, a one-way hash is pretty much useless for data encryption,
because you still need a way to decrypt the data, but it is perfect for verifying the integrity of
data. Table 12-1 lists some of the algorithms and their identifiers that you can use when work-
ing with XML security. (I’ll cover algorithms and their identifiers throughout this chapter.)

CHAPTER 12 ■ XML SECURITY448

6331_c12_final.qxd 2/16/06 4:39 PM Page 448

Table 12-1. Algorithms and Their Identifiers

Algorithm Type Identifier

Triple DES Block http://www.w3.org/2001/04/xmlenc#tripledes-cbc

AES-128 Block http://www.w3.org/2001/04/xmlenc#aes128-cbc

AES-256 Block http://www.w3.org/2001/04/xmlenc#aes256-cbc

AES-192 Block http://www.w3.org/2001/04/xmlenc#aes192-cbc

RSA-v1.5 Key transport http://www.w3.org/2001/04/xmlenc#rsa-1_5

RSA-OAEP Key transport http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

Diffie-Hellman Key agreement http://www.w3.org/2001/04/xmlenc#dh

Triple DES Symmetric key wrap http://www.w3.org/2001/04/xmlenc#kw-tripledes

AES-128 Symmetric key wrap http://www.w3.org/2001/04/xmlenc#kw-aes128

AES-256 Symmetric key wrap http://www.w3.org/2001/04/xmlenc#kw-aes256

AES-192 Symmetric key wrap http://www.w3.org/2001/04/xmlenc#kw-aes192

SHA1 Message digest http://www.w3.org/2000/09/xmldsig#sha1

SHA256 Message digest http://www.w3.org/2000/09/xmldsig#sha256

SHA512 Message digest http://www.w3.org/2000/09/xmldsig#sha512

RIPEMD-160 Message digest http://www.w3.org/2001/04/xmlenc#ripemd160

Base64 Encoding http://www.w3.org/2000/09/xmldsig#base64

One of the most difficult tasks when working with XML security is that documents that
can be logically equivalent can be physically represented differently. Consider a document
that has been created in one application and is sent to another. The receiving application may
have a slightly altered document. It is possible the original application decided to format the
output to make it more readable. These two documents are logically equivalent, but is the
original document considered altered? With respect to document verification, it would be
because the original document added these whitespaces after the fact only when serializing.
To overcome this problem, the W3C developed the XML canonicalization specifications.

Introducing Canonical XML
The Canonical XML specification (http://www.w3.org/TR/xml-c14n) establishes a method
for determining whether two documents are identical. The underlying problem is that docu-
ments can be created that mean the same thing and that have the same content yet have
different physical representations. This makes it difficult to determine whether the two docu-
ments are actually identical. With Canonical XML, two documents having the same canonical
form are considered identical even if their physical representations are not identical.

Before going further, you should understand what canonical form is. The specification
defines canonical form of a document to be the physical representation of the document as
created using the following methods:

CHAPTER 12 ■ XML SECURITY 449

6331_c12_final.qxd 2/16/06 4:39 PM Page 449

• The document is encoded in UTF-8.

• Line breaks normalize to #xA on input, before parsing.

• Attribute values are normalized, as if by a validating processor.

• Character and parsed entity references are replaced.

• CDATA sections are replaced with their character content.

• The XML declaration and DTD are removed.

• Empty elements are converted to start-end tag pairs.

• Whitespace outside the document element and within start and end tags is normalized.

• All whitespace in character content is retained (excluding characters removed during
line feed normalization).

• Attribute value delimiters are set to quotation marks (double quotes).

• Special characters in attribute values and character content are replaced by character
references.

• Superfluous namespace declarations are removed from each element.

• Default attributes are added to each element.

• Lexicographic order is imposed on the namespace declarations and attributes of each
element.

If you look through this list, you will see a few items that make things difficult when
using PHP to create canonical XML. You can resolve many of these issues using parser
options when loading a document. Using LIBXML_NOENT, LIBXML_DTDLOAD, LIBXML_DTDATTR,
and LIBXML_NOCDATA in combination will substitute entity references with their content, load
the DTD to ensure IDs are handled, default all attributes so they are physically created in the
tree, and convert all CDATA to text content. This does leave a few items that are not performed
automatically.

You could handle the DTD in a couple of ways. Create a new document, and then do
a deep copy or import the document element into the new document. Then, output the doc-
ument using the document element as the context, or employ XSL. You can also handle the
XML declaration in two ways. Using DOM, you can output the document using the document
element as the context. Or, using XSL, assuming you used the already mentioned parser
options, you can perform a transformation on the document where the style sheet just returns
document element to the result tree and omits the XML declaration if being serialized. For
example:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output omit-xml-declaration="yes"/>

<xsl:template match="/">
<xsl:copy-of select="." />

</xsl:template>
</xsl:stylesheet>

CHAPTER 12 ■ XML SECURITY450

6331_c12_final.qxd 2/16/06 4:39 PM Page 450

If this is used to return a DOMDocument object, the DTD and XML declaration will have been
removed when serializing by using the document element as the context when serializing:

$root = $doc->documentElement;
print $doc->saveXML($root);

■Note Serializing a document using the DOM API in order to remove the DTD and XML declaration can
be done only when serializing to a string. Serializing to a file does not support a content node.

Data Model
If you decide to read the XML canonicalization specifications, you will notice that everything
is defined in terms of XPath node sets, where the node set contains the nodes to be converted
into canonical form. PHP has no native canonicalization support for XML, so using XPath
depends upon how you decide to implement some form of canonicalization. Based upon the
XPath data model, the types of nodes that are significant to create canonical form are root,
element, comment, PI, text, attribute, and namespace nodes.

This doesn’t mean you need to handle other types of nodes. As you have already seen,
attributes need to be defaulted, CDATA sections need to be converted to text nodes, and char-
acter and parsed entity references need to be resolved. You can handle them, however, while
the document is being loaded:

$dom = new DOMDocument();
$dom->loadXML($xmlstring, LIBXML_NOENT | LIBXML_DTDLOAD | LIBXML_DTDATTR |

LIBXML_NOCDATA);

The resulting document may still contain irrelevant nodes, such as a document type dec-
laration, but you will be able to discard them when creating the canonical form.

Node ordering is also important when creating the canonical form. Luckily, if using XPath,
node sets should already be in document order, but to produce correct canonical form, you
need to handle a few more issues:

• Namespace nodes come before attribute nodes.

• Namespace nodes are sorted lexicographically based on their local names, where
a default namespace would always come first in the list.

• Attribute nodes are also sorted lexicographically but are sorted based on their name-
space URIs and then based on their local names. Attributes not within a namespace
have an empty URI and would come before any namespaced attributes.

This prevents another challenge that you need to handle through coding. If XSL is being
used to create the output, then some creative use of templates could help you achieve this.
You could also perform this using the DOM API. Although attributes are unordered, when seri-
alized, namespaces are always serialized prior to attributes. In addition, both are serialized in
the order they are defined on an element. For instance, the first attribute added to the element
is the first attribute serialized. The same goes for the namespaces. The following element:

CHAPTER 12 ■ XML SECURITY 451

6331_c12_final.qxd 2/16/06 4:39 PM Page 451

<node a:attr="a-attr" b:attr="b-attr" attr2="attr2" attr="attr"
xmlns:b="http://www.example.com/b"
xmlns:a="http://www.example.com/a"
xmlns="http://www.example.com" />

would automatically serialize to the following:

<node xmlns:b="http://www.example.com/b" xmlns:a="http://www.example.com/a"
xmlns="http://www.example.com" a:attr="a-attr" b:attr="b-attr"
attr2="attr2" attr="attr"/>

This still is not what you actually need. The namespace declarations are not sorted, and
the attributes are not sorted. Using the DOM API means re-creating the tree using only the
appropriate nodes and applying all the appropriate rules. In this case, when the new element
is being created, namespaces and attributes need to be created in the proper order. The code
in Listing 12-1 is just an example of how to accomplish this. It is unoptimized and broken down
into multiple steps to illustrate what needs to happen. The variable $node used within the code
refers to a DOMElement object referencing the earlier node element.

Listing 12-1. Sorting Namespaces and Attributes

/* Generic Attribute Sorting And Appending Function */
function sortAndAddAttrs($element, $arAtts) {

$newAtts = array();
foreach ($arAtts AS $attnode) {

$newAtts[$attnode->nodeName] = $attnode;
}
ksort($newAtts);
foreach ($newAtts as $attnode) {

$element->setAttribute($attnode->nodeName, $attnode->nodeValue);
}

}

$dom2 = new DOMDocument();
$element = $dom2->createElementNS("http://www.example.com", "node");
$dom2->appendChild($root);

/* Create DOMXPath based on original document $dom */
$xPath = new DOMXPath($dom);

$nsnode = $xPath->query('namespace::*', $node);

/* Add namespace nodes */
foreach ($arNS AS $nsnode) {

/* Skip default namespace because it was already added with element node
Skip xml namespace because it is automatic for document */

if ($nsnode->prefix != "" && $nsnode->prefix != "xml") {
$element->setAttributeNS("http://www.w3.org/2000/xmlns/",

"xmlns:".$nsnode->prefix, $nsnode->namespaceURI);
}

}

CHAPTER 12 ■ XML SECURITY452

6331_c12_final.qxd 2/16/06 4:39 PM Page 452

/* Get attributes not in a namespace, and then sort and add them */
$arAtts = $xPath->query('attribute::*[namespace-uri(.) = ""]', $node);
sortAndAddAttrs($element, $arAtts);

/* Get namespaced attributes */
$arAtts = $xPath->query('attribute::*[namespace-uri(.) != ""]', $node);

/* Create an array with namespace URIs as keys, and sort them */
$arNS = array();
foreach ($arAtts AS $attnode) {

$arNS[$attnode->namespaceURI] = 1;
}
ksort($arNS);

/* Loop through the URIs, and then sort and add attributes within that namespace */
foreach ($arNS as $nsURI=>$val) {

$arAtts = $xPath->query('attribute::*[namespace-uri(.) = "'.$nsURI.'"]', $node);
sortAndAddAttrs($element, $arAtts);

}

Upon serializing this, where the element was just created as the document element of
$dom2, the output shows the namespaces and attributes correctly ordered:

<node xmlns="http://www.example.com" xmlns:a="http://www.example.com/a"
xmlns:b="http://www.example.com/b" attr="attr" attr2="attr2"
a:attr="a-attr" b:attr="b-attr"/>

Node Processing
Only nodes that are in the node set are processed when creating the canonical form. Once
completely processed, the node is removed from the set. If you are reading the specification,
you might be a little confused about how this occurs. I will attempt to explain this in simple
terms. When a node in the node set is processed, any attribute nodes, namespace nodes, and
child nodes are also processed only for those nodes that are also in the node set. Based on this,
the following sections explain how each node type is processed.

■Note The term process as used within the following sections is meant as the act of processing the node
into canonical form.

Root Node
The root node is the document and encompasses all nodes within a document. It has no phys-
ical representation and upon being processed will not generate an XML declaration or process
the document type declaration. So, the only children nodes that would possibly be processed
are the document element and comments or PIs that are direct children of this node.

CHAPTER 12 ■ XML SECURITY 453

6331_c12_final.qxd 2/16/06 4:39 PM Page 453

Element Node
An element node is processed through the creation of a start tag using the QName of the ele-
ment, the processing of any namespace and attributes nodes, and the processing of any child
nodes and an end tag for the element. I will not explain the semantics of this generation
because the PHP extensions actually handle the actual generation of the serialized form.

■Tip In canonical form, element nodes must always have a starting and ending tag. Empty tags are not
allowed. You must write <element /> as <element></element>.

One point I would like to mention, though, concerns using empty namespace declarations.
Within a document, you can use them to indicate that an element is not in any namespace. Typi-
cally, however, this is used only when within a default namespace and indicates that nodes
within the current scope are not within a default namespace. For example:

<element1 xmlns="http://www.example.com>
<element2>

<element3 xmlns=""></element3>
</element2>

</element1>

The element node element1 sets the default namespace to http://www.example.com. This
namespace is automatically inherited by element2. The element3 node removes the default
namespace by setting xmlns="" so that any element falling within the children of element3
would not be in any namespace unless otherwise set by one of those node. With respect to
canonical form, only elements that would otherwise be in a default namespace can set an
empty namespace. So, based on this rule, the following is invalid:

<!-- The following is invalid -->
<element1 xmlns="">

<element2></element2>
</element1>

The node element1 is not within a default namespace so cannot define an empty default
namespace in canonical form. In canonical form, it looks like this:

<element1>
<element2></element2>

</element1>

Namespace Node
Namespace nodes are processed only if they are not in scope based on the same prefix and name-
spaceURI of an ancestor element also within the node set. Consider the following document:

CHAPTER 12 ■ XML SECURITY454

6331_c12_final.qxd 2/16/06 4:39 PM Page 454

<element1 xmlns:a="http://www.example.com/a" xmlns:b="http://www.example.com/b">
<element2 xmlns:a="http://www.example.com/a" xmlns:b="http://www.example.com/Z">

<element3></element3>
</element2>

</element1>

The canonical form of this document looks like this:

<element1 xmlns:a="http://www.example.com/a" xmlns:b="http://www.example.com/b">
<element2 xmlns:b="http://www.example.com/Z">

<element3></element3>
</element2>

</element1>

You can see that the namespace with the prefix a was removed from element2. The
namespaceURI and prefix are both in scope from its parent so are not serialized. The namespace
with prefix b on element2 was included because the namespaceURI for that prefix changed and
is no longer the same namespace.

Attribute Node
The PHP extensions already handle the processing of attribute nodes when being serial-
ized. The only possible issue may deal with the values of attributes. The serialized value of
the node is modified by replacing the characters &, <, and " with their entity references and
the whitespace characters #x9 (tab), #xA (line feed), and #xD (carriage return) with their
character references. Notice that the > character is not modified. Basically, you will modify
the attribute values when serialized if using any special characters. If this is the case, then
XSL may be helpful because you can use a template to match attributes, which in turn calls
a PHP function to process the attribute value and return a modified string. For the sake of
this chapter and because of having to build all this manually, I will use simplified attribute
values that need no special handling.

Text Node
Text nodes are processed by converting the characters &, <, and > to their entity references. The
whitespace character #xD is also replaced by .

Processing Instruction Node
PI nodes will already have been taken care for you during serialization, unless the value is empty.
They consist of the <? characters followed by the target, a space, the value, and the closing ?>
characters. An empty value would not place a space after the target. Do not confuse an empty
value with a value consisting of whitespaces. Consider the following:

<?php?>
<?php ?>
<?php ?>

The canonical forms of these are as follows:

CHAPTER 12 ■ XML SECURITY 455

6331_c12_final.qxd 2/16/06 4:39 PM Page 455

<?php?>
<?php?>
<?php?>

Each of these has no value, so no additional space was added.

■Caution PIs that have empty values will need to be handled like attributes when creating the canonical
form. The suggested method is to use XSL to create the values properly. This, of course, is needed only if the
document can have PI nodes with empty values. In all other cases, serialization using the PHP extensions
will work correctly.

Comment Node
Comment nodes are a little special. Canonical form can be generated without comment
nodes. If this is the case, comment nodes have no bearing during serialization. In this case,
you need to remove all comments in the document. Again, you could do this using XSL or
using the DOM API. This is an example of doing this with DOM in combination with XPath:

$xPath = new DOMXPath($dom);
$cnodes = $xPath->query('//comment()');
foreach ($cnodes AS $cnode) {

$cnode->parentNode->removeChild($cnode);
}

Introducing Exclusive XML Canonicalization
An issue faced earlier in the chapter when working with canonical XML dealt with extracting
a document subset and inserting it into a different context. This caused many problems
because canonical XML includes the document subset’s ancestor namespace declarations
and attributes within the XML namespace. For instance, a wrapper node encapsulates a sub-
set and might be used for something like transport. If you are familiar with SOAP, you know
this would be equivalent to its envelope. The following document is in canonical form:

<subdoc>
<element>content</element>

</subdoc>

The document subset is then encapsulated within an envelope:

<envelope xmlns="http://www.example.com" xml:lang="en">
<subdoc>

<element>content</element>
<subdoc>

</envelope>

CHAPTER 12 ■ XML SECURITY456

6331_c12_final.qxd 2/16/06 4:39 PM Page 456

When canonical XML is applied to the subset in this case, the serialized version is much
different:

<subdoc xmlns="http://www.example.com" xml:lang="en">
<element>content</element>

</subdoc>

Dealing with something like digital signatures becomes a nightmare. The original docu-
ment no longer has the same canonical form as the latter one even though it is the same
document/subset. Trying to extract the subset and place it within a different context, such
as within another document, becomes impossible. This is why you might also hear canonical
XML referred to as inclusive canonical XML. It includes the context of a subset’s ancestors.

To deal with this issue, exclusive XML canonicalization was devised. It excludes, rather
than includes, the context of a subset’s ancestors. This means namespace declarations and
attributes in the XML namespace from a subset’s ancestors are not part of the canonicaliza-
tion process when performing exclusive XML canonicalization. Taking the enveloped subdoc
and using exclusive XML canonicalization, the results are probably more of what you had
originally expected:

<subdoc>
<element>content</element>

<subdoc>

The document subset remains in the same form as it originally was. This area is where
canonical XML and exclusive XML canonicalization differ.

Data Model
The data model for exclusive XML canonicalization is the same as that for canonical XML with
a few exceptions. These exceptions, as previously noted, fall into the area of namespace decla-
ration handling. You have already seen that a search of ancestor nodes not within the node set
for namespace declarations and attributes from the XML namespace is not performed under
exclusive XML canonicalization. Serialization of namespace declarations themselves also dif-
fers and depends upon a few factors.

You can use an InclusiveNamespaces PrefixList parameter with exclusive XML canoni-
calization. It is a list containing prefixes and/or a token that indicates a default namespace.
This parameter plays a role in how namespaced nodes are rendered in canonical form.

■Note For the sections dealing with prefixes not in the InclusiveNamespace PrefixList, assume the
list is NULL, meaning it does not contain any prefixes or tokens. This will help you understand the process.

Prefixed Namespace Nodes
Namespaced nodes with a prefix not in the InclusiveNamespaces PrefixList, if used, are
rendered if they meet the following criteria:

CHAPTER 12 ■ XML SECURITY 457

6331_c12_final.qxd 2/16/06 4:39 PM Page 457

• The parent element is in the node set.

• The namespace is visibly utilized by the element, which includes its attributes.

• The prefix has not already been rendered by an ancestor within the output, or the
prefix has been rendered by an ancestor yet refers to a different namespace.

The term visibly utilize means that either the element or one of its attributes uses the
prefix of the namespace within its qualified name. The following document will be serialized
using exclusive XML canonicalization. It is assumed that all nodes are within the node set.

<n1:element1 xmlns:n1="http://www.example.com/ns1"
xmlns:n2="http://www.example.com/ns2">

<n2:element2 n1:att1="value" xmlns:n3="http://www.example.com/ns3">
some content

</n2:element2>
</n1:element1>

Based on the rules for namespace serialization, the canonical form ends up like the
following:

<n1:element1 xmlns:n1="http://www.example.com/ns1">
<n2:element2 n1:att1="value" xmlns:n2="http://www.example.com/ns2">

some content
</n2:element2>

</n1:element1>

As you can see, the n2 namespace was not serialized on the n1:element1 element. It is
not visibly utilized there. Moving to the n2:element2 element, the n2 namespace declaration
is added because it meets all the criteria. Its parent element, n2:element2, is in the node set,
it is visibly utilized by the element (notice the n2 prefix for the element name), and the prefix
has not yet been rendered. The n3 namespace was not rendered because it is not visibly uti-
lized. The n2:element2 element is not in the n3 namespace and does not contain any
attributes within the n3 namespace.

Default Namespace Nodes
The rules for processing tokens that represent default namespace nodes not in the
InclusiveNamespaces PrefixList are different from those for canonical XML for empty
namespaces, xmlns="". The empty namespace is output only if the element visibly utilizes
the default namespace, the element does not define a default namespace that is in the node
set, and the nearest ancestor that is output and that visibly utilizes the default namespace
has a default namespace in the node set. This may sound a little confusing, so take a look at
the following document:

<element1 xmlns="">
<element2 xmlns="http://www.example.com/default">

<element3 xmlns="">
<element4 xmlns="">

Some Content

CHAPTER 12 ■ XML SECURITY458

6331_c12_final.qxd 2/16/06 4:39 PM Page 458

</element4>
</element3>

</element2>
</element1>

The canonical form using exclusive XML canonicalization is as follows:

<element1>
<element2 xmlns="http://www.example.com/default">

<element3 xmlns="">
<element4>

Some Content
</element4>

</element3>
</element2>

</element1>

The only element that declares an empty default namespace is element3.

InclusiveNamespaces PrefixList
The InclusiveNamespaces PrefixList throws a little curve to the rules already defined for han-
dling namespace nodes. A namespace node matching a prefix or token in the list is rendered
according to the rules of canonical XML rather than those of exclusive XML canonicalization.
Namespace nodes in the node set that match a prefix or token in the list, unlike those not in
the list, do not need to have parent elements in the node set. This can make your output look
a little strange because it can result in non-well-formed XML, which is perfectly acceptable
when generating a canonical form for a document subset. For the sake of sanity (because this
leads to much greater complexity than you are already dealing with), the discussion of name-
space nodes without an element in the node set is out of the scope of this chapter. Documents
and document subsets used within this chapter will conform to those described in the next
section.

Constrained Implementation (Non-Normative)
Section 3.1 of the Exclusive XML Canonicalization specification deals with a non-normative
way to implement exclusive XML canonicalization. It assumes that subsets are well-formed
and that when an element is in a node set, so is its namespace axis. When an element is not
in a node set, neither is its namespace axis. These are the types of documents and document
subsets that will be used within this chapter when working with the XML extensions in PHP.
The following steps come directly from the specifications for section 3.1:

1. Recursively process the entire tree (from which the XPath node set was selected) in
document order starting with the root. (The operation of copying ancestor xml:
namespace attributes into output apex element nodes is not done.)

2. If the node is not in the XPath subset, continue to process its children element nodes
recursively.

CHAPTER 12 ■ XML SECURITY 459

6331_c12_final.qxd 2/16/06 4:39 PM Page 459

3. If the element node is in the XPath subset, then output the node in accordance with
canonical XML except for namespace nodes, which are rendered as follows:

a. ns_rendered is a copy of a dictionary, off the top of the state stack, of prefixes and
their values that have already been rendered by an output ancestor of the name-
space node’s parent element.

b. Render each namespace node if and only if it is visibly utilized by the immediate
parent element or one of its attributes or if it is present in InclusiveNamespaces
PrefixList and if its prefix and value do not appear in ns_rendered.

c. Render xmlns="" if and only if the default namespace is visibly utilized by the
immediate parent element node or the default prefix token is present in
InclusiveNamespaces PrefixList and the element does not have a namespace
node in the node set declaring a value for the default namespace and the default
namespace prefix is present in the dictionary ns_rendered.

4. Insert all the rendered namespace nodes (including xmlns="") into the ns_rendered
dictionary, replacing any existing entries. Push ns_rendered onto the state stack, and
recurse.

5. After the recursion returns, pop the state stack.

This list contains generalized instructions on how exclusive XML canonicalization could
be implemented. As you get into the “Introducing XML Signatures” and “Introducing XML
Encryption” sections, you will see examples using PHP that demonstrate this generalization.

■Note The canonical forms used with digital signatures and encryption are generated using exclusive
XML canonicalization.

Introducing XML Signatures
XML signatures can verify the integrity and source of data and that the data has not been
altered from its original state. It does this by using keys. One of the most commonly used
methods involves public and private keys. An author of a document would use a private key
to sign the data. This would create a digital signature, which is then added to an XML docu-
ment. The receiver, who must have a copy of the author’s public key, would then use that key
to verify the signed data. Upon a successful verification, the receiver knows three things:

• The author is the genuine originator of the document, which is known as signer
authentication.

• The data has not been altered from its original form, which is called integrity.

• Neither the data nor the checksum has been tampered with, which may occur if
someone is trying to alter data while keeping the integrity of the data in order to
deceive the receiver of the data. This is commonly known as message authentication.

CHAPTER 12 ■ XML SECURITY460

6331_c12_final.qxd 2/16/06 4:39 PM Page 460

The XML-Signature Syntax and Processing specification (http://www.w3.org/TR/
xmldsig-core/) specifies the syntax and processing rules for creating and representing digital
signatures. It is named such because it uses XML syntax for the signature. You can apply XML
signatures to virtually any type of digital data including data within an XML document as well
as remote resources accessible from a URI.

Understanding the Types of Signatures
Three types of XML signatures exist: enveloped signatures, enveloping signatures, and
detached signatures.

Enveloped Signatures
Enveloped signatures are signatures that are contained within the XML content that is being
signed. In simple terms, an enveloped signature is an XML signature structure that is a child
of a signed document. For example:

<mydocument>
<mydata1>some data</mydata1>
<mydata2>more data</mydata2>
<Signature>

<!-- Signature Data -->
</Signature>

</mydocument>

The XML signature, denoted by the Signature element and its contents, is placed within
the document being signed. In this case, the data would include the data from the mydocument
element and all of its content but exclude the actual XML signature structure, which begins
with the Signature element.

Enveloping Signatures
XML signatures can also be enveloping. This means the data being signed lives within the XML
signature structure:

<mydocument>
<mydata2>more data</mydata2>
<Signature>

<!-- Signature Data including the reference to the Object element -->
<Object Id="mydata">

<mydata1>some data</mydata1>
</Object>

</Signature>
</mydocument>

Although the XML signature structure does not need to be embedded within an XML
document since its structure is in XML format, I have shown it this way because you have not
been introduced to the structure and because it illustrates how an enveloping signature can
be encapsulated within another document, for which the encapsulating document has no
bearing on the signature. In this case, the signature would include a reference to the Object

CHAPTER 12 ■ XML SECURITY 461

6331_c12_final.qxd 2/16/06 4:39 PM Page 461

element. The data within the Object element is the data being signed. I will explain how to
reference data later in the “Introducing the XML Signature Structure” section.

Detached Signatures
Enveloped signatures means the signature is encapsulated within a document being signed.
It is not necessary that the entire document be signed, and it is quite possible you have only
a single element in the document that is signed. In fact, it is also quite possible that the data
being signed does not even live within the document and resides remotely and is accessible
through a URI. Detached signatures are used just for these purposes:

<mydocument>
<mydata2>more data</mydata2>
<Signature>

<!-- Signature Data including the reference to the Object element -->
</Signature>
<Object Id="mydata">

<mydata1>some data</mydata1>
</Object>

</mydocument>

With this example, the data within the Object element is again being signed. This time,
however, the element lives outside the signature, and the signature is being applied only to
that particular element and not the entire document:

<Signature>
<!-- Signature Data including the reference to remote data -->

</Signature>

This example refers to data being signed that lives outside the document entirely. Rather
than referencing the Object element from the previous examples, the XML signature, in this
instance, references remote data using a URI. Again, I will explain this in detail in the “Intro-
ducing the XML Signature Structure” section when I break down the structure. Just as in the
previous example, it would also be valid to encapsulate the XML signature within a document,
and the document has no bearing on the signature or the referenced data.

Introducing the XML Signature Structure
The structure of XML signatures can get quite complex. An entire book could be written on
this subject alone. For this reason, I will keep things simple and cover only the core syntax.
This chapter will introduce how to create and verify basic XML signatures using PHP. After
you understand this, you should be able to implement more advanced signatures based on
the specifications.

The document in Listing 12-2 illustrates a valid enveloping signature.

CHAPTER 12 ■ XML SECURITY462

6331_c12_final.qxd 2/16/06 4:39 PM Page 462

■Note The XML signature in Listing 12-2, as well as all other examples in this chapter, uses the string
"secret" for the HMAC key. Attributes named Id are ID attributes. No DTDs are being used in this section,
although you could use a DTD to automatically define these as IDs within the document. Refer to the speci-
fications for the schemas for each element and attribute list.

Listing 12-2. Example of Enveloping Signature

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1" />
<Reference URI="#object">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>nTZuluErIxkl4DgMsBO/E5TiLRA=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>OUubDO2l6XUIODuLSjKAtjYlaTk=</SignatureValue>
<Object Id="object">Hello World!</Object>

</Signature>

The data being signed in this case is the Object element. It lives within the Signature ele-
ment, thus creating an enveloping signature. Using this example, you’ll now see how the XML
signature is composed and structured.

Signature Element
The Signature element is the root of an XML signature and is bound to the http://www.w3.org/
2000/09/xmldsig# namespace. This element contains all the information needed to verify an
XML signature.

SignatureValue Element
The SignatureValue element contains the Base64-encoded value of the actual digital signature,
which in Listing 12-2 is the value OUubDO2l6XUIODuLSjKAtjYlaTk=. I’ll explain how to compute
this value later in the “Generating a Signature” section as well as when you get into actually
generating an XML signature.

SignedInfo Element
The SignedInfo element is a container element that provides information regarding how
a signature is processed, the location of the data that is signed, and the value for data integrity.
This element also accepts an optional Id attribute. Using this attribute allows the element to
be referenced by other signatures or objects.

CHAPTER 12 ■ XML SECURITY 463

6331_c12_final.qxd 2/16/06 4:39 PM Page 463

CanonicalizationMethod Element

The CanonicalizationMethod element defines the type of canonicalization that must be applied
to the SignedInfo element when processing a digital signature. Implementations must at least
support canonical XML without comments, as noted by the value http://www.w3.org/TR/2001/
REC-xml-c14n-20010315. Other possible values include, but are not limited to, http://www.w3.org/
TR/2001/REC-xml-c14n-20010315#WithComments, which is canonical XML with comments, and
http://www.w3.org/TR/xml-exc-c14n/, which is exclusive canonical XML. As shown in Listing 12-2,
the value for this element is http://www.w3.org/TR/2001/REC-xml-c14n-20010315, so canonical
XML will process the SignedInfo element.

SignatureMethod Element

The SignatureMethod element specified the algorithm used to create and verify the digital sig-
nature. Depending upon the algorithm used, this element can have child elements, such as
HMACOutputLength, to provide additional information for the algorithm. You specify the actual
algorithm to be used in the Algorithm attribute. The algorithms are specified by URI and define
the role. You can find a few of the possible values at http://www.w3.org/TR/xmldsig-core/
#sec-AlgID within the specification. The value used in Listing 12-2 is http://www.w3.org/2000/
09/xmldsig#hmac-sha1, which corresponds to HMAC-SHA1. So, it is now safe to assume that
HMAC-SHA1 is the algorithm used in this chapter for digital signatures.

Reference Element

Reference elements specify what data is signed. You can use more than one Reference element.
For the sake of this chapter, however, the digital signatures used here will contain only a single
Reference element. This element can take any of three optional attributes. You can use an Id
attribute so that the element can be easily referenced from other places. The Type attribute is
a URI that specifies the type of data. For instance, the attribute can be Type="http://www.w3.org/
2000/09/xmldsig#Object" or Type="http://www.w3.org/2000/09/xmldsig#Manifest". The value
has no bearing on how the signature is generated. It can, however, be used by an application for
its own purpose. The last optional attribute is URI. This has much more bearing on data than
the other attributes.

The URI attribute identifies the location of the data object, using a URI as its value. The
attribute is considered optional, because it is possible that an application already knows where
the data resides. For instance, if the same XML structure is always used, it may be agreed upon
by both the author and the receiver of the document that a certain element within the docu-
ment will always be signed. Typically, though, it is safest to always include a URI. The example in
Listing 12-2 is using data that is located within the document. The URI attribute has the value
#object. This identifies the node set containing the element with an ID, defined by the Id attrib-
ute, of object.

■Note The Transforms element, which is an optional child of a Reference element, will be omitted from
this chapter. Its use is out of scope because it is a bit advanced at this point to attempt to use the current
XML functionality in PHP.

CHAPTER 12 ■ XML SECURITY464

6331_c12_final.qxd 2/16/06 4:39 PM Page 464

DigestMethod Element

The DigestMethod element defines the algorithm that is applied to the data being signed. You
specify the actual algorithm using a URI for the value of the Algorithm attribute. This attribute
works in the same manner as the one located on the SignatureMethod element. The example
in Listing 12-2 used the value http://www.w3.org/2000/09/xmldsig#sha1. The digest will be
computed using an SHA1 hash.

DigestValue Element

The DigestValue element contains the Base64-encoded value of the digest. Using the signa-
ture from Listing 12-2, the digest is simply the SHA1 hash of the canonical form of the data
being signed. Do not worry if you do not fully understand this at this point. This will be made
extremely clear when I cover how to create and verify the signatures in the “Creating a Signa-
ture” and “Verifying a Signature” sections.

KeyInfo Element

The KeyInfo element is an optional element that can allow the recipients to obtain the needed
keys, certificates, or public key management information. The XML signature in this chapter
uses the string "secret", which is private and known only to the author and recipient because
of the algorithm specified in the SignatureMethod element. Other algorithms use public/private
key pairs, making it perfectly viable to include public keys, certificates, or information about
accessing a public key within the XML signature.

This element serves as a container to provide the needed information, which may be con-
tained in any number of possible child elements. The content of a KeyName element is a string
containing a key identifier for the recipient. It indicates to the recipient information what key
to use for the document. A KeyValue element defines a single public key, such as DSA or RSA
public keys, which can verify and validate the signature. You can use a Retrieval element to
reference KeyInfo information stored in another location. It has a URI and Type attribute and
works in the same manner as a Reference element. The remaining possible elements, X509Data,
PGPData, SPKIData, and MgmtData, are used depending upon the type of algorithm being used.
For example, you can use X509 certificates, and an X509Data element could contain certificate
chains, revocation lists, or a SubjectKeyIdentifier. Again, these elements are out of the scope
of this chapter but are covered in more detail within the specification at http://www.w3.org/
TR/xmldsig-core/#sec-KeyInfo.

Object Element

An Object element is a container to hold any type of data. It has three optional attributes.
The Id attribute is an ID used to reference the element. The XML signature in Listing 12-2
uses the name object for the Id attribute, which is then referenced by the Reference element
through its URI attribute. A MimeType attribute specifies the MIME type of the data. The value
must be a valid MIME type as defined in RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt).
The last attribute is Encoding. The value defines the encoding used within the object. The
MimeType and Encoding attributes are purely informational. It is completely up to the appli-
cation whether they need to be used.

CHAPTER 12 ■ XML SECURITY 465

6331_c12_final.qxd 2/16/06 4:39 PM Page 465

Creating a Signature
Creating a signature involves generating the Reference and SignatureValue elements. The rest
of the information within a Signature element defines how the values are generated or, when
using an enveloping signature, could be data that is being signed. The first steps are determin-
ing the type of encryption algorithm that will be used and are determining what rules are to be
used when the signature is created; they also determine the rules an application must follow
to verify the signature.

In this case, the XML signature being created is the one in Listing 12-2. The following is
a list of rules that will be used to create the signature:

• The signature will be enveloping. The Reference element will refer to an Object element
with the Id object within the document. Specifically, the Object element will be a child
of the Signature element.

• XML canonicalization will be used. This determines the value for the Algorithm attrib-
ute on the CanonicalizationMethod element.

• HMAC SHA1, using the string "secret" for the key, will be used for the signature. This
determines the value of the Algorithm attribute on the SignatureMethod element.

• SHA1 will be used for message integrity. This determines the value of the Algorithm
attribute on the DigestMethod element.

Based on this list, you can create a skeleton Signature, as shown in Listing 12-3.

Listing 12-3. Skeleton Enveloping Signature Document

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1" />
<Reference URI="#object">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

</Reference>
</SignedInfo>
<Object Id="object">Hello World!</Object>

</Signature>

■Note A Reference element is created for each data object being signed. This example has only a single
data object, so the Reference element was created with the overall skeleton rather than generating them
because the DigestValue elements are calculated for each data object.

The only piece of information within the skeleton not mentioned in the list is the text
Hello World!; that text, as well as the encompassing Object element, is the message to be
signed. The last steps here are to generate the DigestValue and generate the actual signature.

CHAPTER 12 ■ XML SECURITY466

6331_c12_final.qxd 2/16/06 4:39 PM Page 466

Generating the Reference
According to the specification, DigestValues are created while Reference elements are created.
The reason for this is that multiple objects can be used within a single XML signature. In this case,
the data is simple, and the Reference element pointing to the data has already been created.

No transforms are being used, so you can move directly to the DigestValue calculation.
This is calculated by performing the following steps:

1. Obtain the raw data specified by the Reference element. In this case, it is the Object
element.

2. Apply any Transforms. This example does not use any.

3. If the transforms (or the raw data in the event there are no Transforms defined) result in a
node set, then use canonical XML to serialize the node set. In this example, there are no
transforms, and the raw data is the Object element. Canonicalization performed in this
step is true canonical XML, meaning inclusive. The value from the CanonicalizationMethod
element has no bearing on this step because that element pertains to Signature gener-
ation and not Reference generation.

4. Using the algorithm specified by the DigestMethod element, calculate the DigestValue
using the resulting data from step 3.

5. Add the DigestValue to the tree. Again, the specifications build the Reference element
during these steps, so if you decide to follow that method or have a complex signature
requiring the steps to be performed in that manner, then create the Reference element
and its children at this point and append it as a child to the SignedInfo element.

From step 1, the raw data is the Object element. For this example, I will use the variable
$doc, which represents the skeleton signature from Listing 12-3. This can either be loaded
from a file or be built manually using the DOM methods from Chapter 6.

■Caution When creating the signature document manually using the DOM API, the Signature element
defines the default namespace http://www.w3.org/2000/09/xmldsig#. Elements within its scope must
be created using namespace-aware methods, such as createElementNS, in order for this to work properly.

For example:

$xPath = new DOMXpath($doc);
/* Following line split into two lines because of length */
$query = '//*[local-name()="Reference" and '.

'namespace-uri()="http://www.w3.org/2000/09/xmldsig#"]';
$nodeset = $xPath->query($query);
$refElement = $nodeset->item(0);
$dataURI = $refElement->getAttribute("URI");

This returns the value #object. Because a DTD was not specified, you are unable to
retrieve the Object element using the getElementByID method from DOM. You must do it

CHAPTER 12 ■ XML SECURITY 467

6331_c12_final.qxd 2/16/06 4:39 PM Page 467

manually. You can use the following code to perform this operation. Note that it assumes the
URI value contains an ID and not a URL to external data:

$ID = substr ($dataURI, 1);
$query = '//*[@Id="'.$ID.'"]';
$nodeset = $xPath->query($query);
$Object = $nodeset->item(0);

The resulting $Object variable should be a DOMElement object referencing the Object
element in the document. Serialization using $doc->saveXML($Object) should produce the
following:

<Object Id="object">Hello World!</Object>

There are no Transforms, and the result of the first step is a node set containing the Object
element. This node set (read: element) must be serialized in canonical form:

<Object xmlns="http://www.w3.org/2000/09/xmldsig#" Id="object">some text</Object>

Canonical XML is used here, which is inclusive. This means the default namespace
defined by the Signature element, which is an ancestor of the Object element, is serialized
with the Object node. A quick and simple way to canonicalize this element is copying it to
another document and serializing the new document. The copy must be a deep copy so that
all attributes and children are copied. During the copy, because this node becomes the top-
level node, the inherited default namespace is re-created on the copy. Because of the structure
of the XML signature and data you are working with, this is the only thing you need to do prior
to serialization to result in the correct canonical form. For more complex structures, you
would need to use the techniques described in the “Introducing Canonical XML” section:

$dom = new DOMDocument();
$copyObject = $dom->importNode($Object, TRUE);
$dom->appendChild($copyObject);

■Caution This works only because the content of the Object element is simple text and not an XML
subtree. If the contents were a subtree, you would need to apply the rules and techniques described in the
“Introducing Canonical XML” section so that namespaces and attributes in particular are generated correctly.

Using the algorithm from the DigestMethod element, the canonical form of the data gen-
erates the digest. This value is then encoded using Base64 encoding and set as the content of
the DigestValue element:

$query = '//*[local-name()="DigestMethod" and '.
'namespace-uri()="http://www.w3.org/2000/09/xmldsig#"]';

$nodeset = $xPath->query($query);
$digMethod = $nodeset->item(0);
$algorithm = $digMethod->getAttribute("Algorithm");
if ($algorithm == "http://www.w3.org/2000/09/xmldsig#sha1") {

$canonical = $dom->saveXML($copyObject);

CHAPTER 12 ■ XML SECURITY468

6331_c12_final.qxd 2/16/06 4:39 PM Page 468

/* Create SHA1 hash of the canonical form of the Object element */
$hash = sha1($canonical);
$bhash = pack("H*", $hash);
$digValue = base64_encode($bhash);

/* Following is done in example only to add proper whitespacing */
$addPrev = NULL;
$addPost = NULL;
if ($digMethod->previousSibling->nodeType == XML_TEXT_NODE) {

$addPrev = clone $digMethod->previousSibling;
}
if ($digMethod->nextSibling->nodeType == XML_TEXT_NODE) {

$addPost = clone $digMethod->nextSibling;
}
/* End custom whitespaces */

/* Create DigestValue element, and append to parent of DigestMethod */
$digestValue = $doc->createElementNS("http://www.w3.org/2000/09/xmldsig#",

"DigestValue", $digValue);
$digMethod->parentNode->appendChild($digestValue);

/* Following is done in example only to add proper whitespacing */
if ($addPrev) {

$digMethod->parentNode->insertBefore($addPrev, $digestValue);
$digMethod->parentNode->removeChild($digMethod->nextSibling);

}
if ($addPost) {

$digMethod->parentNode->appendChild($addPost);
}
/* End addition of whitespaces */

} else {
print "Unhandled Encoding";
exit;

}

This piece of code finds the algorithm for the digest, and if it can be handled, then it contin-
ues processing. In this case, you are handling only SHA1. The SHA1 hash of the canonical form
previously obtained is converted to binary form. The sha1() function is being used, because it is
available by default in PHP. To avoid having to convert the value into binary form, you can use
mhash , $bhash = mhash(MHASH_SHA1, $canonical);, because it returns the hash as a binary rather
than as a hexadecimal. In any event, the binary value is then Base64 encoded. A DigestValue ele-
ment is then created using the createElementNS method and passing in the encoded value.

The additional code for handling whitespace is not needed when generating a signature.
The reason it has been added in this example is because whitespace is significant in canonical
form. To present a document in an easily presentable form, such as the one shown in Listing 12-2,
I added whitespaces. These whitespaces are included within a signature in order to present
you with a readable form as well as correct values for the DigestValue and SignatureValue
elements.

CHAPTER 12 ■ XML SECURITY 469

6331_c12_final.qxd 2/16/06 4:39 PM Page 469

Generating a Signature
Signature generation involves using the key, which in this case is the string "secret", to apply
the algorithm specified by the Algorithm on the SignatureMethod element to the SignedInfo
element in canonical form. This time the canonical form is generated using the method spe-
cified by the CanonicalizationMethod element. Rather than explain every single step in the
process, because you should be experienced enough at this point to find nodes and values,
I will demonstrate only the steps specific to generating the signature. This being said, the
following variables and values will be assumed:

• $canonMethod: "http://www.w3.org/TR/2001/REC-xml-c14n-20010315";

• $signedInfo: DOMElement for SignedInfo element

• $Object: DOMElement for Object element

• $key: "secret";

Listing 12-4 defines a generic HMAC function. To use the sha1() function without addi-
tional dependencies, I will use the function in Listing 12-4 within the example.

Listing 12-4. Generic HMAC Function

function hmac ($key, $data)
{

$b = 64; // byte length
if (strlen($key) > $b) {

$key = pack("H*",sha1($key));
}
$key = str_pad($key, $b, chr(0x00));
$ipad = str_pad('', $b, chr(0x36));
$opad = str_pad('', $b, chr(0x5c));
$k_ipad = $key ^ $ipad ;
$k_opad = $key ^ $opad;

return sha1($k_opad . pack("H*",sha1($k_ipad . $data)));
}

The process for generating the signature is similar to generating the digest. A different
node set is used, and HMAC SHA1 is being performed; however, in this example, the element
SignedInfo is being converted into its canonical form, and the signing algorithm is applied.
The resulting value is then set as the content for the SignatureValue element and appended
as a child to the Signature element. For example:

$dom = new DOMDocument();
$copyInfo = $dom->importNode($signedInfo, TRUE);
$dom->appendChild($copyInfo);
/*
Following works only with PHP 5.1 and above. LIBXML_NOEMPTYTAG used to
create start and end tags for empty elements. Document element $copyInfo passed
to dump the node, which does not generate an XML declaration output

CHAPTER 12 ■ XML SECURITY470

6331_c12_final.qxd 2/16/06 4:39 PM Page 470

*/
$canonical = $dom->saveXML($copyInfo, LIBXML_NOEMPTYTAG);

/* Calculate HMAC SHA1 */
$hmac = hmac($key,$canonical);
print $hmac."\n";
$bhmac = base64_encode(pack("H*", $hmac));

/* Handle whitespaces for presentation layout */
$addPrev = NULL;
$addPost = NULL;
if ($Object->previousSibling->nodeType == XML_TEXT_NODE) {
$addPrev = clone $Object->previousSibling;

}
if ($Object->nextSibling->nodeType == XML_TEXT_NODE) {
$addPost = clone $Object->nextSibling;

}
/* END Handle whitespaces for presentation layout */

/*
Create and append the SignatureValue element as child of Signature element
insertBefore used with whitespacing to generate output in Listing 12-2.

*/
$sigValue = $doc->createElementNS("http://www.w3.org/2000/09/xmldsig#",

"SignatureValue", $bhmac);
if ($addPrev) {
$Object->parentNode->insertBefore($sigValue, $Object->previousSibling);

} else {
$Object->parentNode->insertBefore($sigValue, $Object);

}

/* Following is done in example only to add proper whitespacing */
if ($addPost) {
$Object->parentNode->insertBefore($addPrev, $sigValue);

}

print $doc->saveXML();

The resulting document should look exactly like the document in Listing 12-2, down to
the same whitespaces used.

Verifying a Signature
Verifying a signature is similar to creating a signature but is a bit simpler. A tree is not being
created, so you do not need to deal with insert nodes or add any whitespace to make it look
nice. Verification requires validating the reference to ensure the integrity of the message and
validating the signature to ensure the message and signer authenticity. The XML signature in

CHAPTER 12 ■ XML SECURITY 471

6331_c12_final.qxd 2/16/06 4:39 PM Page 471

Listing 12-2 should be the same as the signature you just saw created. You can use either in the
following sections because it will be used as the XML signature being verified.

Validating the Reference
The steps for validating the reference are almost identical to creating the value for the
DigestValue content when creating a signature. The only difference is that the elements and
content already exists, so no modifications to the document are made. Normally, the following
steps would be performed for each Reference element in the XML signature, but in this case,
there is only a single Reference element.

Steps 1 to 4 of generating a reference from the “Creating a Signature” section are per-
formed on the XML signature. The resulting digest value is then compared to the value within
the DigestValue element in the XML signature. Remember that the value within the signature
is Base64 encoded. Although in many cases a Base64-to-Base64 comparison should work, the
specification recommends a binary-to-binary comparison in the event that additional white-
spaces ended up in the document. This is a simple comparison because the content of the
DigestValue is just the Base64-encoded binary value. A simple call to base64_decode() will
convert the value to binary form. The following code uses the resulting XML signature, refer-
enced by the $doc variable, as the document being verified:

/* Retrieve Reference node and location of data */
$xPath = new DOMXpath($doc);
$query = '//*[local-name()="Reference" and
namespace-uri()="http://www.w3.org/2000/09/xmldsig#"]';
$refElement = $xPath->query($query)->item(0);
$dataURI = $refElement->getAttribute("URI");

/* Retrieve Digest Value for current Reference */
$query = 'string(./*[local-name()="DigestValue" '.

'and namespace-uri()="http://www.w3.org/2000/09/xmldsig#"])';
$signedDigest = $xPath->evaluate($query, $refElement);

$ID = substr ($dataURI, 1);
$query = '//*[@Id="'.$ID.'"]';
$Object = $xPath->query($query)->item(0);

/* Create canonical form for Object element */
$dom = new DOMDocument();
$copyObject = $dom->importNode($Object, TRUE);
$dom->appendChild($copyObject);
$canonical = $dom->saveXML($copyObject);

/* Assume digest algorithm retrieved and SHA1 was found */
/* Create SHA1 hash of the canonical form of the Object element */
$hash = sha1($canonical);
$bhash = pack("H*", $hash);
$digValue = base64_encode($bhash);

CHAPTER 12 ■ XML SECURITY472

6331_c12_final.qxd 2/16/06 4:39 PM Page 472

if ($signedDigest != $digValue) {
print "Digest Authentication Failed";
exit;

} else {
print "Digest Authentication Success!";

}

Validating a Signature
The steps for validating the signature are also similar to creating the signature, though the tree
is not modified. Again, the algorithm specified by the SignatureMethod element is applied to the
canonical form of the SignedInfo element. The canonical form is generated using the method
specified by the CanonicalizationMethod element. The same rules apply for verifying the value
as those from verifying a reference. In the following example, the binary values, rather than the
Base64-encoded values, are compared to determine the authenticity of the message and signer:

/* Retrieve Value for SignatureValue element */
$query = 'string(//*[local-name()="SignatureValue" '.

'and namespace-uri()="http://www.w3.org/2000/09/xmldsig#"])';
$signature = base64_decode($xPath->evaluate($query));

/* Generate canonical form of SignedInfo element*/
$signedInfo = $xPath->query("//*[local-name() = 'SignedInfo']")->item(0);
$dom = new DOMDocument();
$copyInfo = $dom->importNode($signedInfo, TRUE);
$dom->appendChild($copyInfo);
/*
Following works only with PHP 5.1 and above
LIBXML_NOEMPTYTAG used to create start and end tags for empty elements
document element $copyInfo passed dump the node which does not generate
an XML declaration output

*/
$canonical = $dom->saveXML($copyInfo, LIBXML_NOEMPTYTAG);
$key = "secret";
$hmac = hmac($key,$canonical);
$calc_signature = pack("H*", $hmac);

if ($signature != $calc_signature) {
print "Signature Authentication Failed";

} else {
print "Signature Authentication Success!";

}

CHAPTER 12 ■ XML SECURITY 473

6331_c12_final.qxd 2/16/06 4:39 PM Page 473

■Caution The steps to generate and verify signatures as well as the type of signatures used in this
chapter are only a small subset of what can be performed using XML signatures. The steps are meant as
an introduction to get you started using digital signatures. Signatures can become quite complex working
with multiple sets of data, data residing in different locations, different types of data, and different algo-
rithms. The material presented here is intended only as a starting point, and you should refer to the
specifications to work with more advanced and complex XML signatures.

Introducing XML Encryption
In many instances, an XML document can contain sensitive data. For example, an e-commerce
system can collect customer and payment information and send that to a secure server for pro-
cessing rather than storing the information on a public server. This type of scenario pertains
more toward smaller businesses because they typically lack the resources to implement a large,
secure environment and tend to host their e-commerce systems with a hosting provider.

In this day and age, it is extremely unlikely for sensitive data to be left on these public
servers. In some cases, online credit card processors are used, leaving the small business with
the freedom of not having to deal with storing and managing this information. Some compa-
nies, however, still process credit card information internally. It is possible they also have a
brick and mortar store and handle sales processing together. It is important to these compa-
nies to transmit the sensitive information from their public site to their more secure internal
network. SSL is one possible method of handling this. The data is encrypted during transit.
Though once received, the data is back to clear text. This may not be a desirable situation.
This is a case where XML encryption may come in handy.

Introducing XML Encryption
XML signatures only get you so far. They provide the mechanisms to verify the integrity and
authenticity of the data, but the data is still, in most cases, in plain text. The W3C has defined
some specifications in order for systems to implement a common format to perform XML
encryption. The XML Encryption Syntax and Processing specification (http://www.w3.org/
TR/xmlenc-core/) specifies a process for encrypting data and representing the result in XML.
The XML Encryption Requirements specification (http://www.w3.org/TR/xml-encryption-req/)
specifies the requirements for implementing XML encryption.

Encryption Granularity
You can use XML encryption to sign virtually any type of data. This includes both XML and
non-XML-based data. Just like XML signatures, the data can even be located outside the XML
encryption document. This section will explain the granularity available using XML encryp-
tion. This means examining the different pieces and types of data that could be encrypted and
their relation to the XML encryption document. Consider the example of an order from an
e-commerce site explained earlier. If using XML format to describe the order, it may appear
in the following form, which is a stripped-down version of some payment information:

CHAPTER 12 ■ XML SECURITY474

6331_c12_final.qxd 2/16/06 4:39 PM Page 474

<payment>
<order_number>1001</order_number>
<customer>Joe Smith</customer>
<creditcard>

<number>4111 1111 1111 1111</number>
<expiration_month>01</expiration_month>
<expiration_year>2007</expiration_year>
<ccv2>123</ccv2>

</creditcard>
</payment>

This is not the type of information you would want to store or pass around in plain text.
Rather, it will be encrypted, and the information to be encrypted within the structure is com-
pletely up to your needs and/or security concerns.

Element Encryption

Element encryption involves encrypting an element within the document. It includes the
opening and closing tags as well as all of its content. For example, you may want to encrypt
the entire creditcard element within the payment document. This will protect the payment
information by not only encrypting the credit card number but also the type of payment:

<payment>
<order_number>1001</order_number>
<customer>Joe Smith</customer>

<EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'
xmlns='http://www.w3.org/2001/04/xmlenc#'>

<CipherData><!-- Encryption Information Here --></CipherData>
</EncryptedData>

</payment>

If someone were to intercept this document, the only information they would be able to
see is the order number and the customer’s name. The rest of the data is encrypted, so for all
they know the customer may have opted to pay by cash on delivery (COD).

Mixed Content Encryption

If hiding the type of payment made by a customer is not necessary, then the content of the
creditcard element could be encrypted rather than the entire element. This would then allow
some, internal to the company, to be able to examine the XML document and know the type
of payment being made without needing access to any of the encrypted information. For
example:

<payment>
<order_number>1001</order_number>
<customer>Joe Smith</customer>
<creditcard>

<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
Type='http://www.w3.org/2001/04/xmlenc#Content'>

CHAPTER 12 ■ XML SECURITY 475

6331_c12_final.qxd 2/16/06 4:39 PM Page 475

<CipherData><!-- Encryption Information Here --></CipherData>
</EncryptedData>

</creditcard>
</payment>

Character Data Encryption

Those even less concerned with the security of all but the actual credit card number may opt
to encrypt only the value of the number element. This would effectively encrypt the text con-
tent of the number element. For example:

<payment>
<order_number>1001</order_number>
<customer>Joe Smith</customer>
<creditcard>

<number>
<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'

Type='http://www.w3.org/2001/04/xmlenc#Content'>
<CipherData><!-- Encryption Information Here --></CipherData>

</EncryptedData>
</number>
<expiration_month>01</expiration_month>
<expiration_year>2007</expiration_year>
<ccv2>123</ccv2>

</creditcard>
</payment>

Arbitrary Data and XML Document Encryption

As I said before, you can encrypt any type of data. Someone may want the entire payment
document encrypted so if it were intercepted, the interceptor would have no idea what infor-
mation was contained within the XML encryption document. For example:

<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
MimeType='text/xml'>

<CipherData><!-- Encryption Information Here --></CipherData>
</EncryptedData>

Based on the resulting structure, for all one knows, the data that was encrypted was a
JPEG image rather than an XML payment document (though the size of the resulting structure
may give it away). The data being encrypted does need to be an XML document or have any-
thing to do with XML. XML encryption is just a process and standard structure for encrypting
some data, packing it up as a standard structure, and possibly providing some information
about the type of encryption and data used.

Super Encryption

Data that is encrypted more than once is called super encryption. It’s possible you are a secu-
rity zealot and are trying to prevent an attacker from ever gaining access to your data. Or it’s
also possible you have an XML document that already contains some encrypted data, and you

CHAPTER 12 ■ XML SECURITY476

6331_c12_final.qxd 2/16/06 4:39 PM Page 476

have added some information to the XML document and would like to encrypt this new, mod-
ified document. In this case, you want the original encrypted data to be included in your set of
data to be encrypted rather than adding an EncryptedData element to the document, which
would then contain two sets of encrypted data. Based on the syntax of XML encryption, which
I will be coming to shortly, it is invalid for an EncryptedData element to have an EncryptedData
as an ancestor. It is perfectly valid, however, to encrypt an EncryptedData element to create a
new EncryptedData element:

<!-- First Encrypted Data -->
<EncryptedData Id="encrypt1" xmlns='http://www.w3.org/2001/04/xmlenc#'

MimeType='text/xml'>
<CipherData><!-- Encryption Information Here --></CipherData>

</EncryptedData>

<!-- Super Encrypted Data Containing EncryptedData element with Id encrypt1 -->
<EncryptedData Id="encrypt2" xmlns='http://www.w3.org/2001/04/xmlenc#'

MimeType='text/xml'>
<CipherData><!-- Encryption Information Here --></CipherData>

</EncryptedData>

Formats of XML Encryption
XML encryption can either be enveloping or be detached. The examples you have seen so far
have all been enveloping structures. The physical location of the encrypted data does not need
to live within the XML encryption structure. The information provided within the CipherData
element, which is broken out when the structure is explained, could point to the location of the
encrypted data rather than include it within its content:

<!-- Example of Enveloping structure -->
<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'

MimeType='text/xml'>
<CipherData>

<CiperValue><!-- Encrypted Data --></CipherValue>
</CipherData>

</EncryptedData>

<!-- Example of Detached structure -->
<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'

MimeType='text/xml'>
<CipherData>

<CipherReference URI="http://www.example.com/encrypted_data.enc" />
</CipherData>

</EncryptedData>

Introducing the XML Encryption Structure
Depending upon the algorithm used and any optional information provided to the recipient
to aid in key retrieval and additional decryption information, the structure can become a bit
complex. This chapter will be using the Triple DES algorithm for encryption, and the structure

CHAPTER 12 ■ XML SECURITY 477

6331_c12_final.qxd 2/16/06 4:39 PM Page 477

explained in the following sections will provide enough information to support the use of
this algorithm.

■Note Using different encryption algorithms may require the use of elements and attributes not covered in
this chapter. The goal of this chapter is to provide enough information and examples so that you can under-
stand at least the basic concepts of XML encryption and can begin implementing it using PHP and Triple DES
encryption after reading the material. This topic is quite lengthy, and complete coverage is beyond the scope
of this book. You can find additional information regarding algorithms, structure, and processing in the speci-
fications identified at the beginning of this chapter.

EncryptedData Element
The EncryptedData element is the root of the XML encryption structure. It is the container
for the structure and holds information regarding the encryption used, key retrieval, and the
encrypted data. This element replaces the data being encrypted within an XML document or
becomes the root of an XML document if the data being encrypted is an entire XML document
or is not an XML document and does not reside within a document.

The element lives within the http://www.w3.org/2001/04/xmlenc# namespace, as do most
of its children. The possible children of this element are a CipherData element, which is required,
and EncryptionMethod, KeyInfo, and EncryptionProperties elements, which are all optional. Four
optional attributes exist. Other than the Id attribute, the attributes help the recipient restore the
encrypted data to its original form during decryption:

• The Id attribute specifies an ID for the element.

• The type attributes identifies the type of data prior to encryption. For example, the
value http://www.w3.org/2001/04/xmlenc#Element specifies the original data is XML
containing either an empty-element tag or a single element and its contents. The value
http://www.w3.org/2001/04/xmlenc#Content indicates that the original data is XML
containing the contents of an element, which could consist of mixed content. You can
use other values to help in restoring the data to its original state during decryption.

• The MimeType attribute can describe the media type of the data that has been
encrypted.

• The optional Encoding attribute can indicate the encoding of the original data.

Based on this, an element that has been encrypted would be replaced with the following
EncryptedData element:

<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
Type="http://www.w3.org/2001/04/xmlenc#Element">

<!-- Contents of EncryptedData element -->
</EncryptedData>

CHAPTER 12 ■ XML SECURITY478

6331_c12_final.qxd 2/16/06 4:39 PM Page 478

EncryptionMethod Element
The EncryptionMethod element is an optional element. It describes the algorithm that was
used to encrypt the data. Without this element, the recipient must already know the algorithm
used in order to decrypt the data. The child elements on EncryptionMethod depend upon the
type of algorithm used, which is specified by the value of the Algorithm attribute. In this case,
the algorithm is Triple DES:

<EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

No child elements are required for this algorithm. For additional information about pos-
sible child elements when using other algorithms, refer to the specifications for this element
at http://www.w3.org/TR/xmlenc-core/#sec-EncryptionMethod.

KeyInfo Element
The KeyInfo element provides information about obtaining the key needed to decrypt the
data. It is not required, but when not provided, the recipient must already know the correct
key to use in order to decrypt data. This element is from the XML-Signature Syntax and Pro-
cessing specification and used according to that specification. Please refer to the section
“Introducing XML Signatures” or the specification for more information.

■Tip Remember that this element lives in the http://www.w3.org/2000/09/xmldsig# namespace and,
when used within XML encryption, must be namespaced properly.

The examples of XML encryption within this chapter do not offer any hints about the key
used. The key for the examples is just the string "secret", and the only additional key informa-
tion that will be provided is the name of the key, which will be mcryptiv, and the value used for
the initialization vector for the mcrypt functions. This value is created when the IV is created
during encryption and then sent within the KeyValue element so that the data can be properly
decrypted:

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
<KeyName>mcryptiv</KeyName>
<KeyValue><!-- Value generated while encrypting --></KeyValue>

</KeyInfo>

CipherData Element
The CipherData element is a required element that provides the encrypted data through inclu-
sion or by providing a reference to the location of it. It is a container for either a CipherValue
element or a CipherReference element. Only one of these elements can be present as the con-
tent for this element.

CHAPTER 12 ■ XML SECURITY 479

6331_c12_final.qxd 2/16/06 4:39 PM Page 479

CipherValue Element

The CipherValue element includes encrypted data within the XML encryption structure. The
content of this element is the Base64-encoded value of the encrypted data:

<CipherValue>NMIYVAUsrK/P4+W1N2P811DL2Hpkg9SeCplIp9kxJpGfhXYFM2n29A==</CipherValue>

CipherReference Element

The CipherReference element works in a similar manner to Reference elements used in
XML signatures. It can contain Transforms elements, which are not covered in detail in this
chapter, but must have a URI attribute used to locate the encrypted data. After processing
the URI, which includes processing any Transforms that may be used, the resulting data
must contain the encrypted value. This means that if the data were Base64 encoded, like it
is when using a CipherValue element, it must be decoded prior to finishing processing:

<CipherReference URI="http://www.example.com/remotedata.enc" />

This example would use the data located at http://www.example.com/remotedata.enc.

Encrypting Data
The process for encrypting data is not overly complicated. In this case, it is actually quite
simple because many of the elements and attributes from the specification are not even
used. It is one thing if you are trying to create a generic XML encryption encrypt/decrypt
processor, but that is out of the scope of this chapter. Most developers just need to under-
stand how to perform these operations to implement some type of XML encryption scheme
using PHP within their applications, which is the focus of this chapter. For example:

<payment>
<order_number>1001</order_number>
<customer>Joe Smith</customer>
<creditcard>

<number>4111 1111 1111 1111</number>
<expiration_month>01</expiration_month>
<expiration_year>2007</expiration_year>
<ccv2>123</ccv2>

</creditcard>
</payment>

The formal specifications define the steps used for encrypting data. They are performed
for each data item to be encrypted. These steps are generic and do not have to be performed
in the exact order presented. As you will see through this demonstration, some steps are per-
formed out of order. For instance, the content of the KeyValue element depends upon the IV
used by the mcrypt functions. For this reason, the encryption is performed before the KeyInfo
element is created, although all but the IV is known prior to the data encryption. The following
steps are taken from the XML Encryption Syntax and Processing specification (http://www.
w3.org/TR/xmlenc-core/) for those needing to perform more advanced encryption than that
shown in this chapter:

CHAPTER 12 ■ XML SECURITY480

6331_c12_final.qxd 2/16/06 4:39 PM Page 480

1. Select the algorithm (and parameters) to be used in encrypting this data.

2. Obtain and (optionally) represent the key.

a. If the key is to be identified (via naming, via a URI, or included in a child element),
construct the ds:KeyInfo as appropriate (for example, ds:KeyName, ds:KeyValue,
ds:RetrievalMethod, and so on).

b. If the key itself is to be encrypted, construct an EncryptedKey element by recur-
sively applying this encryption process. The result may then be a child of
ds:KeyInfo, or it may exist elsewhere and may be identified in the preceding step.

3. Encrypt the data.

a. If the data is an element or is element content, obtain the octets by serializing the
data in UTF-8 as specified in the XML 1.0 specification. The encryptor can do the
serialization. If the encryptor does not serialize, then the application must perform
the serialization.

b. If the data is of any other type that is not already octets, the application must seri-
alize it as octets.

c. Encrypt the octets using the algorithm and key from steps 1 and 2.

d. Unless the decryptor will implicitly know the type of the encrypted data, the
encryptor should provide the type for representation.

4. Build the EncryptedType (EncryptedData or EncryptedKey) structure.

a. If the encrypted octet sequence obtained in step 3 is to be stored in the CipherData
element within the EncryptedType, then the encrypted octet sequence is Base64
encoded and inserted as the content of a CipherValue element.

b. If the encrypted octet sequence is to be stored externally to the EncryptedType
structure, then store or return the encrypted octet sequence, and represent the
URI and transforms (if any) required for the decryptor to retrieve the encrypted
octet sequence within a CipherReference element.

5. Process EncryptedData.

a. If the Type of the encrypted data is an element or is element content, then the
encryptor must be able to return the EncryptedData element to the application.
The application can use this as the top-level element in a new XML document
or insert it into another XML document, which may require a re-encoding.

b. If the Type of the encrypted data is not element or element content, then the
encryptor must always return the EncryptedData element to the application. The
application can use this as the top-level element in a new XML document or insert
it into another XML document, which may require a re-encoding.

Prior to beginning any coding, the first things you need to decide are the algorithms to be
used and the data to be encrypted. In this case, the payment document will be used as the
original document, which needs the creditcard element to be encrypted. The variable $doc

CHAPTER 12 ■ XML SECURITY 481

6331_c12_final.qxd 2/16/06 4:39 PM Page 481

will represent this data loaded into a DOMDocument object. The encryption algorithm will be
Triple DES in Cipher Block Chaining (CBC) mode and use "secret":

$key = "secret";

Obtain the data to be encrypted, which in this case is the creditcard element:

$xpath = new DOMXPath($doc);
$creditcard = $xpath->query("//creditcard")->item(0);
$plaintext = $doc->saveXML($creditcard);

When encrypting XML, you should use canonical form. This is to ensure that namespaces
are properly carried along with encrypted data. This example does not use any namespaces,
so this is not a concern. As you have seen, converting data to canonical form can be quite
complex. The good news is that it is only because of namespaces that using canonical form is
recommended. The order of attributes and the handling of whitespaces are not issues when
performing XML encryption like they are when adding XML signatures. So, rather than trying
to deal with writing a routine to create the canonical form, a really fast and easy shortcut is to
create a new document and import the node to be encrypted, as demonstrated in Listing 12-5.

Listing 12-5. Serializing a Namespace Element and Preserving Namespace Information

/* Preserving Namespace information */
$tempdoc = new DOMDocument();
$newnode = $tempdoc->importNode($node_to_encrypt);
$plaintext = $tempdoc->saveXML($newnode);

No matter which method you need, you now have a serialized version of the data being
encrypted, $plaintext. The next step is to perform the actual encrypting of the data:

$td = mcrypt_module_open(MCRYPT_3DES, '', MCRYPT_MODE_CBC, '');
$iv = mcrypt_create_iv(mcrypt_enc_get_iv_size($td), MCRYPT_RAND);
mcrypt_generic_init($td, $key, $iv);
$encrypted_data = rtrim(mcrypt_generic($td, $plaintext));
mcrypt_generic_deinit($td);
mcrypt_module_close($td);

Now that you have the information needed for the KeyInfo, you need to create it. To
ensure that the initialization vector value, $iv, remains intact, it must be Base64 encoded and
then set as the content of the KeyValue element:

$keyInfo = $doc->createElementNS("http://www.w3.org/2000/09/xmldsig#", "KeyInfo");

$keyTmp = $doc->createElementNS("http://www.w3.org/2000/09/xmldsig#",
"KeyName", "mcryptiv");

$keyInfo->appendChild($keyTmp);

/* Base64 encode the IV value, and set to KeyValue content */
$keyTmp = $doc->createElementNS("http://www.w3.org/2000/09/xmldsig#",

"KeyValue", base64_encode($iv));
$keyInfo->appendChild($keyTmp);

CHAPTER 12 ■ XML SECURITY482

6331_c12_final.qxd 2/16/06 4:39 PM Page 482

The last step is to put all the pieces together within an EncryptedData element. The type
of encrypted data is an XML element, so the Type attribute will be set accordingly. At this
point, you can swap out the creditcard element with the new EncryptedData element:

$encData = $doc->createElementNS("http://www.w3.org/2001/04/xmlenc#",
"EncryptedData");

$encData->setAttribute("Type", "http://www.w3.org/2001/04/xmlenc#Element");
$creditcard->parentNode->replaceChild($encData, $creditcard);

Add the EncryptionMethod element so the recipient knows the algorithm being used. This
is completely optional. If both parties have already agreed on an algorithm, then it is not nec-
essary that this be added:

$encMethod = $doc->createElementNS("http://www.w3.org/2001/04/xmlenc#",
"EncryptionMethod");

$encMethod->setAttribute("Algorithm",
"http://www.w3.org/2001/04/xmlenc#tripledes-cbc");

$encData->appendChild($encMethod);

Add the KeyInfo element created earlier:

$encData->appendChild($keyInfo);

Create the CipherData element, which in this example would require a CipherValue ele-
ment. It is important to remember that when using a CipherValue element, the content must
be Base64 encoded.

■Caution You must use the octet form of the data for encryption. When encrypting XML data, it must be
serialized using UTF-8 encoding. Serializing a node using saveXML($node) will automatically have the proper
encoding, but when serializing an entire document using saveXML(), the encoding of the original document
is used. If using an encoding that does not fit into octet form, convert the encoding to UTF-8 prior to encod-
ing. Calling $doc->encoding = "UTF-8" prior to serialization will change the encoding to output the
correct data to be encrypted.

For example:

$cipherData = $doc->createElementNS("http://www.w3.org/2001/04/xmlenc#",
"CipherData");

$encData->appendChild($cipherData);

/* Base64 encode the value to be used as the element content */
$encoded = base64_encode($encrypted_data);
$cipherValue = $doc->createElementNS("http://www.w3.org/2001/04/xmlenc#",

"CipherValue", $encoded);
$cipherData->appendChild($cipherValue);

The serialized value of this document will look like the following. (Note that the output
has been cleaned up and formatted for presentational purposes.)

CHAPTER 12 ■ XML SECURITY 483

6331_c12_final.qxd 2/16/06 4:39 PM Page 483

<payment>
<order_number>1001</order_number>
<customer>Joe Smith</customer>
<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"

Type="http://www.w3.org/2001/04/xmlenc#Element">
<EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<KeyName>mcryptiv</KeyName>
<KeyValue>5Fl6lc4xjwA=</KeyValue>

</KeyInfo>
<CipherData>

<!-- CipherValue has been formatted for display -->
<CipherValue>

Jhm3UYs90vxaOkD6OWfKsaO/zm3G0aCNhS//zoBMUysNZllY/cn8lbHX+d
6vPu/TZEytA+S1W1lehMFgxL2pWvW3UrCdypAocMln+FneJbfDUjVMRSYe
kYjgghdwWPc0aKlC9UAEm/ZTyTyo2xix4DHPBbIE1xf4SL8xhfOpcTPX+A
OeRYxU7r+wVRRq5wno2OQHHILMgMkaywQlS3qAk7YdXmfYZu1K4PCOHGEq
st0W50vW+oNZa37i6yqdVcOX

</CipherValue>
</CipherData>

</EncryptedData>
</payment>

Decrypting Data
Decrypting the data is even easier than encrypting the value. This time the tree does not need
to be modified, unless you want to re-create the entire original document rather than just use
the resulting creditcard element. Using the resulting data from the “Encrypting Data” section,
the variable $encdom will be used as the DOMDocument object with the loaded data.

■Note Decryption processing for other algorithms or complex structures is more involved than what is
presented in this chapter. The steps presented here are enough to handle most cases using basic structures,
such as the one from the previous section, and allow you to begin working with XML encryption once you
have finished reading the chapter. To use other algorithms or handle more complex structures, refer to the
XML Encryption Syntax and Processing specification.

The steps to decrypt the data depend heavily upon how data needs to be decrypted. The
example shown here is within a controlled environment. You know what has been encrypted
and how it has been encrypted, so you do not need to create a generic processor to handle all
types of algorithms and XML encryption structures. Because of this, you can skip many steps
and even perform them in a different order than defined in the specification. For those who
may need to handle different types of encryption algorithms and structures, the following are
the steps detailed in the specifications. They are performed for each EncryptedData or
EncryptedKey element within the document.

CHAPTER 12 ■ XML SECURITY484

6331_c12_final.qxd 2/16/06 4:39 PM Page 484

1. Process the element to determine the algorithm, parameters, and ds:KeyInfo element
to be used. If some information is omitted, the application must supply it.

2. Locate the data encryption key according to the ds:KeyInfo element, which may con-
tain one or more children elements. These children have no implied processing order.
If the data encryption key is encrypted, locate the corresponding key to decrypt it.
(This may be a recursive step because the key-encryption key may itself be encrypted.)
Or, one might retrieve the data encryption key from a local store using the provided
attributes or implicit binding.

3. Decrypt the data contained in the CipherData element.

a. If a CipherValue child element is present, then the associated text value is retrieved
and Base64 decoded so as to obtain the encrypted octet sequence.

b. If a CipherReference child element is present, the URI and transforms (if any) are
used to retrieve the encrypted octet sequence.

c. The encrypted octet sequence is decrypted using the algorithm/parameters and
key value already determined from steps 1 and 2.

4. Process decrypted data of a Type element or element content.

a. The clear-text octet sequence obtained in step 3 is interpreted as UTF-8 encoded
character data.

b. The decryptor must be able to return the value of Type and the UTF-8 encoded
XML character data. The decryptor is not required to perform validation on the
serialized XML.

c. The decryptor should support the ability to replace the EncryptedData element
with the decrypted element or element content represented by the UTF-8 encoded
characters. The decryptor is not required to perform validation on the result of this
replacement operation. The application supplies the XML document context and
identifies the EncryptedData element being replaced. If the document into which
the replacement is occurring is not UTF-8, the decryptor must transcode the
UTF-8 encoded characters into the target encoding.

5. Process decrypted data if Type is unspecified or is not an element or element content.

a. The clear-text octet sequence obtained in step 3 must be returned to the application
for further processing along with the Type, MimeType, and Encoding attribute values
when specified. MimeType and Encoding are advisory. The Type value is normative
because it may contain information necessary for the processing or interpretation
of the data by the application.

b. Note this step includes processing data decrypted from an EncryptedKey. The
clear-text octet sequence represents a key value and is used by the application in
decrypting other EncryptedType element(s).

Based on these steps, the first step you need to do is locate the information supplied
regarding how the data was encrypted and possibly what type of data was encrypted. Using

CHAPTER 12 ■ XML SECURITY 485

6331_c12_final.qxd 2/16/06 4:39 PM Page 485

the loaded document, the first step is to locate the EncryptedData element and determine the
algorithm, KeyInfo element, and parameters to use:

$xpath = new DOMXPath($encdom);
$query = "//*[local-name()='EncryptedData' and ".

"namespace-uri()='http://www.w3.org/2001/04/xmlenc#']";
$nodeset = $xpath->query($query);
if ($nodeset->length == 0) {

exit;
}
encData = $nodeset->item(0);

/* Get information on type of data encrypted */
$encType = $encData->getAttribute("Type");

The algorithm is not difficult to obtain. It is found on the EncryptionMethod element. The
following example first defines a default algorithm. In the event the element does not exist, it
assumes the Triple DES is being used.

/* default algorithm */
$algorithm = "http://www.w3.org/2001/04/xmlenc#tripledes-cbc";

/* Find the algorithm used for encryption */
$query = "//*[local-name()='EncryptionMethod' and ".

"namespace-uri()='http://www.w3.org/2001/04/xmlenc#']";
$nodeset = $xpath->query($query);
if ($nodeset->length == 1) {

$attrAlgorithm = $nodeset->item(0)->getAttribute("Algorithm");
if ($attrAlgorithm) {

$algorithm = $attrAlgorithm;
}

}

Once the algorithm is located, the code then determines how and if this algorithm can
be used. Again, the current application can handle only Triple DES in CBC mode and will pro-
duce an error for any other algorithm. The mcrypt extension is being used for encryption, so
based on the algorithm, some initial values are prepared for when mcrypt is used in the
decryption process:

switch ($algorithm) {
case "http://www.w3.org/2001/04/xmlenc#tripledes-cbc":

$mcryptalg = MCRYPT_3DES;
$mcryptblock = MCRYPT_MODE_CBC;
break;

default:
print "Unhandled Algorithm";
exit;

}

CHAPTER 12 ■ XML SECURITY486

6331_c12_final.qxd 2/16/06 4:39 PM Page 486

You must now obtain the KeyInfo information. This is a controlled environment, and you
know that it contains a KeyName and KeyValue element. The value you are mainly concerned
with is the KeyValue because this is where the value for the initialization vector resides for the
mcrypt functions. The following code uses the DOMXPath evaluate() method. The queries
convert the proper elements to strings, which, according to the XPath specification, return the
contents of the elements.

/* Find Key Information */
$query = "string(//*[local-name()='KeyName' and ".

"namespace-uri()='http://www.w3.org/2000/09/xmldsig#'])";
$keyName = $xpath->evaluate($query);
$query = "string(//*[local-name()='KeyValue' and ".

"namespace-uri()='http://www.w3.org/2000/09/xmldsig#'])";

/* KeyValue is Base64 encoded and must be decoded */
$keyValue = base64_decode($xpath->evaluate($query));

Now that you have the algorithm and the rest of the processing rules, you must locate the
encrypted data. The CipherData element needs to be located and then its children examined
for either a CipherValue element or a CipherReference element. The CipherData element can
have only one of these elements as its child; based on which one it has, it determines the loca-
tion of the encrypted data:

/* Find the Cipher Information */
$node = NULL;
$query = "//*[local-name()='CipherData' and ".

"namespace-uri()='http://www.w3.org/2001/04/xmlenc#']";
$nodeset = $xpath->query($query);
if ($nodeset->length == 1) {

$CipherData = $nodeset->item(0);
/* Find the child element as this element may have only one */
foreach ($CipherData->childNodes AS $node) {

if ($node->nodeType == XML_ELEMENT_NODE) {
break;

}
}

}

/* Error out if no child elements found */
if (! $node) {

print "Unable to find Encrypted Data";
exit;

}

CHAPTER 12 ■ XML SECURITY 487

6331_c12_final.qxd 2/16/06 4:39 PM Page 487

/* Based on the element name, find the data and obtain encrypted octet sequence */
if ($node->nodeName == "CipherReference") {

/* Handle CipherReference here
$encryptedData =

*/
} elseif ($node->nodeName == "CipherValue") {

/* Base64 decode the value to obtain encrypted octet sequence */
$encryptedData = base64_decode($node->nodeValue);

}

Using the information obtained earlier for the algorithm used, decrypt the data:

$td = mcrypt_module_open($mcryptalg, '', $mcryptblock, '');

/* IV was passed with KeyValue and must be used to properly decrypt */
mcrypt_generic_init($td, $key, $keyValue);
$decrypted_data = rtrim(mdecrypt_generic($td, $encryptedData));
mcrypt_generic_deinit($td);
mcrypt_module_close($td);

The variable $decrypted_data should now contain the decrypted creditcard element.
Any type of data may actually be decrypted, so the following block demonstrates how to gen-
erically handle the decrypted data. It is based on the information supplied by the content of
the EncryptedType element, which has been stored in $encType:

$newdoc = NULL;
switch ($encType) {

case "http://www.w3.org/2001/04/xmlenc#Element":
/* load element into a new document */
$newdoc = new DOMDocument();
$newdoc->loadXML($decrypted_data);
break;

case "http://www.w3.org/2001/04/xmlenc#Content":
/* This may be a fragment so create a doc with a root node,

load the data into a fragment - PHP 5.1 only - and append
the fragment to the document element. */

$newdoc = new DOMDocument();
$newdoc->loadXML('<root />');
$frag = $newdoc->createDocumentFragment();
$frag->appendXML($decrypted_data);
$newdoc->documentElement->appendChild($frag);
break;

default:
/* Data is generic type and possibly not XML */

}

if ($newdoc) {
print $newdoc->saveXML();

}

CHAPTER 12 ■ XML SECURITY488

6331_c12_final.qxd 2/16/06 4:39 PM Page 488

If you followed this demonstration starting with the “Encrypting Data” section, the output
you should see is as follows:

<?xml version="1.0"?>
<creditcard>

<number>4111 1111 1111 1111</number>
<expiration_month>01</expiration_month>
<expiration_year>2007</expiration_year>
<ccv2>123</ccv2>

</creditcard>

Conclusion
Security is always a concern for a developer and becomes more of an issue the more pub-
licly available an application is. It is no different when working with XML. In many cases,
it becomes more of an issue because XML documents are sent to and received from remote
sources. It becomes important that the data can be trusted before being processed. Many
developers I have spoken to rely on SSL and some type of application authentication to pro-
vide security for their data. The XML is then sent through an SSL tunnel. This may be fine when
working with Web servers, but it becomes quite a task for many when this is not the case.

The payment example shown in the chapter is just a small example of how you can pro-
tect sensitive data. It is inexcusable for anyone to send credit card information in plain text
across the Internet. With the number of security-related issues in the news, sometimes even
occurring within a company, it is not even safe to have this data in plain text on a secured net-
work. XML encryption adds a layer of security by keeping the data secret and accessible only
to those with the keys to access the data. Therefore, you have no reason to have this data in
plain text, and using XML encryption allows for easy storage as well as provides an easy pack-
aging for transport.

An advantage of XML security is that it is just a format and process for securing data. The
data does not have to be in XML format, and it does not have to reside within the structure. Using
this common format, any type of data, processed correctly, can be safeguarded and (assuming
the correct keys and algorithms used) processed in a standardized way. The technology does not
define the algorithms or keys available for use; this means you can use whatever encryption tools
you have available, or you can change to some other algorithm and key system.

This chapter introduced XML security by demonstrating how to use both XML signatures
and XML encryption using PHP. I touched on only the tip of these technologies because an
entire book could be written on them alone. The information presented, though, should pro-
vide a decent foundation to not only begin using these technologies but also to understand
how you can handle other algorithms, key systems, and more complex structures using the
specifications as a reference.

The next chapter is a break in the examination of XML technologies and provides an
introduction to PEAR and some of the XML packages it offers. The packages provide function-
ality written in PHP that can be used rather than having to write your own custom code for
many of the common XML needs and technologies.

CHAPTER 12 ■ XML SECURITY 489

6331_c12_final.qxd 2/16/06 4:39 PM Page 489

6331_c12_final.qxd 2/16/06 4:39 PM Page 490

PEAR and XML

With the introduction of PHP 5 came a bunch of new tools to work with XML. From XML
parsers to an XSLT processor and a SOAP service, the available extensions provide enough
functionality to serve the majority of your needs. Problems some developers face, however,
include that the extensions are not included on the server they are working with (and there-
fore not under their control) and that the extensions do not natively support some specific
functionality. You can at least work around the latter problem. You would just be required to
code the specific functionality by hand using the available tools.

The former issue is a bit more difficult to handle. In a similar fashion, you could choose
to write the functionality by hand but would need to start at the ground level and would be
forced to re-create functionality that otherwise would have been available through any of the
extensions not currently available. In cases like these, many developers will search the Inter-
net for preexisting code to leverage rather than starting from scratch. The PHP Extension and
Application Repository (PEAR) solves some of these problems.

This chapter will introduce PEAR and many of the packages you can use to work with
XML data.

What Is PEAR?
PEAR (http://pear.php.net/) is a centralized location for open source libraries, known as
packages, that developers can leverage within their applications. What sets PEAR apart from
many of the repositories on the Internet is that the packages available through PEAR must
conform to a set of defined guidelines. This helps to ensure that the packages are high quality
and will be maintained. Therefore, you know that reported bugs will be fixed, or at least dealt
with; new features may be added, as long as they won’t break existing functionality; and
updated packages will be made available. This should provide you with at least some feeling
of ease; in other words, once you start using a package, you will not be completely on your
own in the event of a problem. The following list summarizes the purpose of PEAR:

• PEAR provides a centralized location for libraries, called packages, written by the PHP
community.

• PEAR provides a distribution and management mechanism for these packages.

• Packages within PEAR follow set coding standards.

491

C H A P T E R 1 3

■ ■ ■

6331_c13_final.qxd 2/16/06 4:36 PM Page 491

• PEAR consists of a large community with support available through its Web site and
mailing lists.

• PEAR is governed by the PEAR group, which enforces that packages conform to guide-
lines and maintainers continue to follow the set guidelines.

PEAR is not an ad hoc repository. Packages must first be submitted and approved by the
community before being added to the repository. This ensures that the package conforms to
PEAR’s guidelines and standards, and it also makes sure the package provides some needed
functionality. Of course, not all developers like using code they have not written and may not
be interested in what PEAR has to offer. For those who do, however, PEAR is a perfect place
to search for quality code without having to worry about being left stranded in the event a
problem arises.

Using PEAR
The easiest way to work with PEAR is to use the PEAR Package Manager. Unless specifically
built without PEAR support or running under Windows, the PEAR Package Manager, as well
as a few core packages, is installed with the core PHP installation.

■Note Currently, it appears that PEAR will not be included with a default installation of PHP 6. You must
manually install the PEAR core and installer.

In the event your system does not include the core PEAR installation, you can install it
with some simple commands. In a Linux/Unix environment, depending upon the name of
your command-line browsers, one of the following should install and set up the PEAR core:

lynx -source http://go-pear.org/ | php
links -source http://go-pear.org/ | php

Installing in a Windows environment is just a bit different. The core PHP installation includes
a BAT file named go-pear.bat. Execute this file, and follow the instructions it provides.

In the event you are on a shared host or cannot install a systemwide PEAR installation,
additional options are available, such as installing a local copy of PEAR. To install packages as
described in this chapter, you should have the PEAR Package Manager installed and an avail-
able Internet connection. You can find instructions for performing manual installations of
PEAR packages within the PEAR manual at http://pear.php.net/manual/index.php.

You can access the PEAR Package Manager from the command line using the pear
command:

pear <command>

Although several commands are available, Table 13-1 presents the most commonly used
ones.

CHAPTER 13 ■ PEAR AND XML 492

6331_c13_final.qxd 2/16/06 4:36 PM Page 492

Table 13-1. PEAR Package Manager Commands

Command Argument Description

info <package name> Displays information about the supplied package

install <package name> Installs the specified package

list Lists all the installed PEAR packages

list-all Lists all the packages and shows versions for both the
available and installed packages

list-upgrades Lists all the packages with upgrades available

remote-info <package name> Displays information about the specified package

remote-list Lists the packages and versions from the remote repository

upgrade <package name> Upgrades the specified package

upgrade-all Upgrades all the packages with upgrades available

Using the commands listed in Table 13-1, the following sequence of commands will list all
currently installed PEAR packages, upgrade any installed packages with available upgrades,
display information about the XML_Parser package, and install the package (assuming it is not
already installed):

pear list
pear upgrade-all
pear remote-info XML_Parser
pear install XML_Parser

Using PEAR and XML Together
The majority of XML packages in PEAR require at least the xml extension. This is not a serious
stumbling block because this extension has been part of the core PHP installation since the
pre–PHP 4 days. The xml extension is the oldest XML-based extension. With a lot of applica-
tions and other extensions based on the xml extension, it’s difficult to find an installation of
PHP that does not include this extension.

PEAR provides many different branches in its tree. Each branch provides a grouping of a
certain type of functionality. The packages I will present in this chapter deal specifically with
XML functionality. Chapter 20 will cover packages relating to Web service functionality. PEAR
has an active community, and packages are proposed and added often. At the time of this
writing, PEAR contains 28 XML-based packages, but I will present only a few in this chapter.

If you use any of the XML packages, your script needs to include the library. Each of
these packages lives in the XML branch and is included using the normal PEAR syntax
require_once 'XML/<package_name>';. You can find the require statement for each of the
packages in the following sections of this chapter.

XML_Parser Package
The XML_Parser package provides an object-oriented interface to the xml extension. If you
read Chapter 8, you are probably wondering what advantage this offers, because the extension

CHAPTER 13 ■ PEAR AND XML 493

6331_c13_final.qxd 2/16/06 4:36 PM Page 493

can already use class methods natively. XML_Parser expands upon the built-in OOP functional-
ity offered by the extension; it provides some additional common functionality that normally
has to be written by a developer, such as handling different types of input for XML documents,
and it provides new methods of parsing. This package consists of two classes, each providing a
different method to parse XML. They are the XML_Parser and XML_Parser_Simple classes. Before
going into details, I have to say that I am not a fan of the XML_Parser_Simple class. I will elabo-
rate on this in the “XML_Parser_Simple Class” section.

XML_Parser Class
The XML_Parser class is the base class within the package. It provides common methods for
loading XML data, a simple way to register callbacks, standard error handling through stan-
dard PEAR errors, and two different modes affecting how the callbacks operate. To use this
package, assuming the location for the PEAR packages has been set up in the php.ini file,
your script must include the package:

require_once 'XML/Parser.php';

You can instantiate the class in two ways. Using a single object, you can extend the class
with the custom class implementing the methods for the callbacks to be used. Callbacks are
automatically registered based on the names of the methods defined in the class. The follow-
ing is a list of methods that can be defined in a class, which would be called by the parser
while it parses a document:

• startHandler(resource parser, string name, array attribs): This method is called
when a starting element tag is encountered.

• endHandler(resource parser, string name): This method is called when an ending
element tag is encountered.

• cdataHandler(resource parser, string data): This method is called when character
data is encountered.

• defaultHandler(resource parser, string data): This method is called for default
handling.

• piHandler(resource parser, string target, string data): This method is called
when a PI is encountered.

• unparsedHandler(resource parser, string entity_name, string base, string
system_id, string public_id, string notation_name): This method is called when
an unparsed entity is encountered.

• notationHandler(resource parser, string notation_name, string base, string
system_id, string public_id): This method is called when a notation is encountered.

• entityrefHandler(resource parser, string open_entity_names, string base,
string system_id, string public_id): This method is called when an external entity
reference is encountered.

Using these standard methods makes working with the parser quite convenient, because
you no longer need to register them manually. For example:

CHAPTER 13 ■ PEAR AND XML 494

6331_c13_final.qxd 2/16/06 4:36 PM Page 494

class myClass extends XML_Parser
{

function startHandler($parser, $name, $attribs)
{

print "<$name>\n";
}

function endHandler($parser, $name)
{

print "</$name>\n";
}

}

Once this class is instantiated and the input set, parsing can begin immediately. The call-
backs are automatically registered.

Input Settings

The xml extension works on string data. Anytime you want to use a file or stream, it is up to
you to write the supporting code to read the data into strings that could then be passed to the
parser. XML_Parser simplifies this through the implementation of three methods. They are
setInputString(), setInputFile(), and setInput().

setInputString() The setInputString() method takes a single argument, which is the string to
parse. The method operates in the same fashion as working with the native xml extension and
passing the is_final parameter set to TRUE to the xml_parse() function. When working with
large documents, this is not very efficient because the entire document is loaded into the
string and parsed as a whole rather than being chunked into smaller pieces of data.

setInputFile() The setInputFile() method is convenient to use when working with a document
from a file or a stream. It accepts a filename or URI, and it handles the opening of the resource
and the reading of the data for you. No longer do you need to write any code to handle the file
I/O because it will automatically be handled for you.

setInput() The setInput() method accepts a resource, such as that returned from the fopen()
function, as its parameter. Input would be read starting at the current position of the file posi-
tion indicator. This could be useful in cases where you are creating an XML document by
writing to a file and would like to then parse the file. You do not need to close the file. You
would just need to position the pointer back to the beginning of the file, and then you would
need to pass the resources to this method.

Parser Modes

XML_Parser operates in one of two modes. In event mode, it operates in the normal fashion as
the xml extension. The start and end element handlers, startHandler() and endHandler(), are
called for each element encountered in the document. This is the default mode and what you
are most likely used to dealing with if you have worked with the xml extension. In func mode,

CHAPTER 13 ■ PEAR AND XML 495

6331_c13_final.qxd 2/16/06 4:36 PM Page 495

the methods called for an element are based upon the name of the element. Methods are
written in the form xmltag_[element name]() for the start of the element and in the form
xmltag_[element name]_() for the closing element tag. These methods, respectively, take
the same arguments as the startHandler() and endHandler() methods. For example, given
the following XML document:

<root>
<title>My Title</title>
<description>My Description</description>

</root>

you can create a class with the following methods:

function xmltag_title($parser, $name, $attribs) { … }
function xmltag_title_($parser, $name) { … }

Unless additional element handlers are created, the only two events that will occur are
the start of the title element and the closing title element tag. The remaining handlers,
which all deal with other node types in the document, operate as normal in this mode. It is
only the element handlers that differ between modes.

You can set the mode in one of two ways. The first method is setting it via the object
constructor:

__construct($srcenc, $mode, $tgtenc)

The first parameter, $srcenc, is the source encoding for the document. The second
parameter, $mode, is the parser mode. It can be set to event, which is the default value, or
func. The last parameter, $tgtenc, is the target encoding.

The second way to set the mode is through the setMode() method. Once you have
instantiated the object, you can change the mode by passing the value func or event as a
parameter to this method:

$myParser->setMode("func");

Object Handler

You have one additional way to work with the XML_Parser class. Rather than extending the class
and creating the handler methods within an extended class, you can create a handler class, which
allows you to work directly with an instantiated XML_Parser class. The handler class defines the
methods for the callbacks and, when instantiated, is set as the object handler for an instantiated
XML_Parser object. For example:

require_once 'XML/Parser.php';

class MyHandler {
function startHandler($parser, $name, $attribs)
{

print "<$name>\n";
}

CHAPTER 13 ■ PEAR AND XML 496

6331_c13_final.qxd 2/16/06 4:36 PM Page 496

function endHandler($parser, $name)
{

print "</$name>\n";
}

}

$parser = new XML_Parser();
$objHandler = new MyHandler();
$result = $parser->setHandlerObj($objHandler);
...

XML_Parser_Simple Class
As I mentioned, the XML_Parser_Simple class is not one I particularly favor. It is a class extending
the XML_Parser class and operates by issuing an event for an element only upon encountering
the closing element tag. At this point, the element name, its attributes, and all character data
that resides as a direct child of the element are sent to the handler. No events are issued for the
start of the element, and character data as character data isn’t sent to the element handler where
appropriate. You must include the package in your script using this:

require_once 'XML/Parser/Simple.php';

The method that handles the element and character data is the handleElement() method:

handleElement($name, $attribs, $data)

The remaining handlers work as they normally do by using the XML_Parser class. Consider
the following document, contained in the string $xml:

<root>
<element1>

<child1>some text</child1>
<child2>more text</child2>

</element1>
<element2>element2 text</element2>

</root>

The following code then parses the document:

class simpleClass extends XML_Parser_Simple {
function handleElement($name, $attribs, $data)
{

print "$name : $data\n";
}

}

$o = new simpleClass();
$o->setInputString($xml);
$o->parse();

CHAPTER 13 ■ PEAR AND XML 497

6331_c13_final.qxd 2/16/06 4:36 PM Page 497

When looking at the following results, you have to keep in mind that the handler for the
element is called when the closing tag is encountered in the document. (I have modified the
following results to remove some additional line feeds to save space.)

CHILD1 : some text
CHILD2 : more text
ELEMENT1 :
ELEMENT2 : element2 text
ROOT :

For a simple document containing a document element and child elements consisting
of text-only content, then this type of parsing might be useful. In terms of parsing real XML,
which covers all types of document structures, this type of parsing makes absolutely no sense;
in fact, it is contrary to how XML works. Nodes are no longer in document order because the
lowest descendant of a tree is processed first; however, text content that is a child of an ele-
ment is processed with the element closing tag. This also means attributes used on an element
are not available to be handled until the element close tag occurs.

■Note Although the XML_Parser_Simple class may look appealing for simple tasks, I recommend
handling XML parsing in a proper manner and using the standard XML_Parser class. This will help you
understand XML and will keep you away from developing some potential bad habits that are counter-
productive in the long run.

XML_Tree Package
The XML_Tree package allows you to use DOM functionality without needing the DOM exten-
sion. It relies on the XML_Parser package, so you need the core xml extension to utilize this
package. Version 2 of this package (which has been in beta for more than a year), or newer,
is required to use it with PHP 5.x and newer. You can install or upgrade to the beta version
(unless it has been marked as stable by the time you are reading this) using one of the follow-
ing pear commands:

/* Upgrade an existing XML_Tree package */
pear upgrade XML_Tree-beta

/* Install XML_Tree package */
pear install XML_Tree-beta

Note that you can add -beta to the package name so the installer will select the latest ver-
sion rather than the latest stable version.

■Caution At this time, the extension is marked as a beta version and must be installed using one the
methods mentioned here. This extension still has some issues under PHP 5, but the examples demonstrated
here will work. Possible deviations from the code presented here may result in fatal errors.

CHAPTER 13 ■ PEAR AND XML 498

6331_c13_final.qxd 2/16/06 4:36 PM Page 498

The package consists of two classes. The primary class, XML_Tree, is equivalent to a docu-
ment node, and XML_Tree_Node is equivalent to element nodes. Attributes are handled via
name/value arrays. Method names are similar to those used in DOM, but some differences
exist; therefore, you cannot use this package as a one-to-one replacement for the DOM exten-
sion (not to mention that only a small subset of node types are supported). The API for this
package is of decent size, so I will use an example to demonstrate this package rather than
show the entire API.

XML_Tree enables you to build, navigate, and modify an XML document. Again, you have
some limits on what you can perform, but for the majority of cases that typically are element-
and attribute-based documents, you should not have any issues. The first aspect I will demon-
strate is document creation. I will show how to build the following XML document using the
XML_Tree package:

<?xml version="1.0"?>
<book lang="en>

<bookinfo>
<title>Sample Book</title>
<author>

<firstname>Rob</firstname>
<surname>Richards</surname>

</author>
</bookinfo>
<chapter id="navigation">

<title>Navigating The Tree</title>
<para>This chapter explains how to navigate a tree</para>

</chapter>
</book>

The following document is similar to one from Chapter 6 used to illustrate some of the
DOM functionality:

<?php
require_once 'XML/Tree.php';

$tree = new XML_Tree();

/* Create document element, and add lang attribute */
$book = $tree->addRoot('book');
$book->setAttribute("lang", "en");

/* create and add bookinfo element */
$binfo = $book->addChild('bookinfo');

/* create title element, and add to tree */
$title = new XML_Tree_Node("title", "Sample Book");
$binfo->addChild($title);

CHAPTER 13 ■ PEAR AND XML 499

6331_c13_final.qxd 2/16/06 4:36 PM Page 499

/* Create author element and its children */
$author = $binfo->addChild("author");
$fname = $author->addChild("firstname");
$fname->setContent("Rob");
$author->addChild("surname", "Richards");

/* Create chapter element and id attribute, and add to tree */
$catts = array("id"=>"navigation");
$chapter = new XML_Tree_node("chapter", NULL, $catts);
$book->addChild($chapter);

/* Create and add title and para elements */
$chapter->addChild("title", "Navigating The Tree");
$strContent = "This chapter explains how to navigate a tree";
$chapter->addChild("para", $strContent);

/* Print the resulting XML document */
print $tree->dump();
?>

You may notice that this document uses the same methods in multiple manners. For
example, the addChild() method may accept an element name, an XML_Tree_Node object, or
an XML_Tree object. When using an element name and any additional information pertinent
to the element, you can both create and append the method. Using an object of either
XML_Tree type will just append the passed object to the tree.

Navigation is also a bit different from using DOM. It is possible to access child elements
using the children property, which returns an array of child elements, but the syntax for other
methods may seem a little odd. Based on the previous example, you can use the following
code to dump the title element:

$title = $book->getElement(array(1,0));
print $title->dump();

From the book element, this piece of code accesses the title element and prints it:

<title>Navigating The Tree</title>

Many of the methods accept a path as an argument. The path is an array indicating the
position of the child element to be accessed. Using array(1,0) with the getElement() method
from the book element results in accessing the second child of the book element, which is the
chapter element, and then results in accessing the first child of that element. (Remember,
arrays have zero-based indexes.)

You can modify trees just like using DOM. Again, the parameters may look a little strange.
Some methods accept either a path or a position to locate an element. Positions can be either
positive, which locates the child element in document order, or negative, which locates the
element starting from the last child element and moving to the previous siblings. For example:

CHAPTER 13 ■ PEAR AND XML 500

6331_c13_final.qxd 2/16/06 4:36 PM Page 500

/* remove last child element from the bookinfo element */
$binfo->removeChild(-1);

/* Remove all children, and set text content */
$chapter->children = array();
$chapter->setContent("In progress");

print $tree->dump();

The result tree looks like the following document:

<?xml version="1.0"?>
<book lang="en">
<bookinfo>
<title>Sample Book</title>

</bookinfo>
<chapter id="navigation">In progress</chapter>

</book>

All in all, when tree-based parsers are just not an option, XML_Tree can provide the needed
functionality when the XML documents are not overly complex.

XML_Util Package
XML_Util contains a variety of functionality that can be used when creating XML documents.
It has no dependencies on any XML extension or package, but it requires the use of the pcre
extension. It allows you to create XML without needing any XML-based libraries. You don’t
even need to instantiate the XML_Util class because you can call the methods statically.

This package is similar in functionality to the XMLWriter extension available from the PECL
repository. Intuitive methods create a document in a simple-to-understand fashion. XML_Util
returns the newly created piece of the XML document as a string, so they must all be concate-
nated together or appended to a file because the document is created to result in a complete
XML document. This means, however, that it is not necessary to create complete documents.
It is possible to create just small pieces of a document even if it results in malformed XML.
The API for this class is not complex and is documented on the PEAR site. As an example to
demonstrate the functionality, I will show how to construct the following document using
XML_Util:

<?xml version="1.0" encoding="UTF-8"?>
<element name="courses" xmlns="http://relaxng.org/ns/structure/1.0">

<zeroOrMore>
<element name="course">

<element name="title">
<text/>

</element>
</element>

</zeroOrMore>
</element>

CHAPTER 13 ■ PEAR AND XML 501

6331_c13_final.qxd 2/16/06 4:36 PM Page 501

This document is a RELAX NG schema, which was used with DOM in Chapter 6. You can
construct it with XML_Util in fewer than 20 lines of code:

<?php
require_once "XML/Util.php";

$doc = XML_Util::getXMLDeclaration("1.0", "UTF-8");

$atts = array("name"=>"courses");
$doc .= XML_Util::createStartElement("element", $atts,

"http://relaxng.org/ns/structure/1.0");
$doc .= XML_Util::createStartElement("zeroOrMore");
$doc .= XML_Util::createStartElement("element", array("name"=>"course"));
$doc .= XML_Util::createStartElement("element", array("name"=>"title"));
$doc .= XML_Util::createTag("text");
$doc .= XML_Util::createEndElement("element");
$doc .= XML_Util::createEndElement("element");
$doc .= XML_Util::createEndElement("zeroOrMore");
$doc .= XML_Util::createEndElement("element");

print $doc;
?>

The resulting document does not contain the indentation and line breaks found in the
original document. Although indentation and line breaks are not required to use this schema,
you can easily format it using the XML_Beautifier package rather than having to do it by hand
to produce an XML document for presentation.

XML_Beautifier Package
The XML_Beautifier package can format an XML document for presentational purposes. It is
similar to using the formatOutput property in DOM but also allows for some additional format-
ting for comments and multiline starting element tags. The XML_Beautifier package depends
upon the XML_Parser and XML_Util packages, and the current stable release, which is version
1.1, works with PHP 5 and newer. The package currently consists of four classes, but the class
you will most likely be concerned with is the XML_Beautifier class. You can control much of the
formatting by using options with the XML_Beautifier class, as shown in Table 13-2.

Table 13-2. XML_Beautifier Options

Option Default Description

caseFolding FALSE Boolean indicating whether to enable or disable case
folding.

caseFoldingTo uppercase When caseFolding is enabled, this option sets the folding
to either uppercase or lowercase.

indent Four spaces A string that is used for indenting.

linebreak \n A string that is used for line breaks. For instance, under
Windows you may want to set this to \r\n.

CHAPTER 13 ■ PEAR AND XML 502

6331_c13_final.qxd 2/16/06 4:36 PM Page 502

Option Default Description

maxCommentLine -1 Maximum length of comment line before being wrapped.
The value -1 means to not limit the length.

multilineTags FALSE Boolean indicating whether a line break should be inserted
after each attribute in a starting element tag and also be
indented.

normalizeComments FALSE Boolean indicating whether whitespaces within comments
are to be normalized and line breaks removed.

removeLineBreaks TRUE Boolean indicating whether line breaks are to be removed
from CDATA sections.

You can manipulate the options in a variety of ways. The easiest method is to pass them
as the parameter value to the constructor of the class. Using this method, the options are passed
as an array containing name/value pairs:

$options = array("indent"=>" ", removeLineBreaks=>FALSE);
$xmlformat = new XML_Beautifier($options);

This creates an XML_Beautifier object that will use three spaces for indentation and will
not remove line breaks from CDATA sections. You can also set options using the setOption()
method or the setOptions() method. The difference between these two is that setOption()
will set a single option at a time using the option name passed as the first parameter and the
value passed as the second parameter. The setOptions() method will set any number of
options at a time because it takes a single parameter that consists of an array of options, just
like the constructor does:

$xmlformat->setOption("multilineTags", TRUE);
$xmlformat->setOptions(array("casFolding"=>FALSE, "normalizeComments"=>FALSE));

You can also quickly revert options to the original defaults with the resetOptions()
method that takes no parameters:

$xmlformat->resetOptions();

Once you have set all the appropriate options, you can easily format the XML using the
formatFile() method or the formatString() method. The method to use depends upon the
location of the XML document to be formatted:

string formatString(string $string [, string $renderer = "Plain"])
mixed formatFile(string $file [, string $newFile=NULL [, string $renderer=Plain"]])

The formatString() method takes a string containing the document to be formatted and
returns the formatted document as its return value. You can safely omit the $renderer param-
eter. You use this parameter to select the renderer to use; currently, only a Plain renderer has
been implemented and is the default value for the parameter. The formatFile() method
accepts the filename, passed by the $file parameter, of the XML document to be formatted.
The optional $newFile parameter can be a filename for the formatted document to be saved
to; the value XML_BEAUTIFIER_OVERWRITE, which causes the resulting document to overwrite
the original file with the new document; or NULL, which is the default value and results in the

CHAPTER 13 ■ PEAR AND XML 503

6331_c13_final.qxd 2/16/06 4:36 PM Page 503

formatted document to be returned as the return value. The last parameter is the same as the
one for the formatString() method; you can safely ignore it at this time.

The following example demonstrates how to format an XML document that is loaded into
a string, $xml, and printed to the output:

<?php
$xml = '<doc><element1 att1="attvalue" att2="att2value"/>
<element2>content</element2><!-- This
is a
comment --></doc>';

require_once 'XML/Beautifier.php';
$fmt = new XML_Beautifier(array("multilineTags"=>TRUE, "normalizeComments"=>
TRUE));
$result = $fmt->formatString($xml);
print $result;
?>

The document contained in the variable $xml contains line breaks with the most noticeable
ones being used within the comment node. The options multilineTags and normalizeComments
have been enabled. The resulting output based on this code looks like the following:

<doc>
<element1 att1="attvalue"

att2="att2value" />
<element2>content</element2>
<!-- This is a comment -->

</doc>

The element1 start tag has been split into several lines with only a single attribute per line.
This is caused by the multilineTags option. The comment has also been altered by using the
normalizeComments option. All line breaks have been removed and whitespaces have been nor-
malized, which, if you recall from Chapter 2, means that multiple whitespaces used in
succession are normalized into a single whitespace.

XML_HTMLSax Package
Normally, XML parsers cannot handle HTML documents because they are not well formed.
I say normally because it is possible to load an HTML document using DOM, but no other
parser handles it, unless, of course, it is XHTML. The XML_HTMLSax package was designed
to allow HTML to be parsed just like XML documents using either the xml extension or the
XML_Parser package. XML_HTMLSax offers its own set of options rather than the ones
defined by the xml extension, as shown in Table 13-3.

CHAPTER 13 ■ PEAR AND XML 504

6331_c13_final.qxd 2/16/06 4:36 PM Page 504

Table 13-3. XML_HTMLSax Options

Option Description

XML_OPTION_CASE_FOLDING Element opening and closing tags are converted to uppercase.

XML_OPTION_ENTIES_PARSED Entities are passed to the data handler parsed using the
html_entity_decode() function.

XML_OPTION_ENTIES_UNPARSED Entities are passed to the data handler unparsed.

XML_OPTION_LINEFEED_BREAK Line feeds generate calls to the data handler.

XML_OPTION_TAB_BREAK Tabs generate calls to the data handler.

XML_OPTION_TRIM_DATA_NODES Trims leading and trailing whitespace from data passed to the
data handler.

You register handlers in a similar fashion as the XML_Parser package. You must create a
user-defined class that defines the handler functions. You then register this class and its asso-
ciated handlers with an instantiated XML_HTMLSax object. Parsing takes place on string data,
so unlike XML_Parser, you must manually read data from a file. You can supply data from a file
in a single chunk returned from a function such as file_get_contents() or can split it into
chunks and parse it within a while loop. The following example reads the data from the page
http://www.php.net/support.php using file_get_contents() and parses it based on the han-
dlers defined in the myHTMLParser class that has been registered with an instantiated
XML_HTMLSax class, $parser:

<?php
require_once('XML/XML_HTMLSax.php');

class myHTMLParser {
function openHandler($parser, $name, $attrs) {

print "<$name";
foreach ($attrs AS $attname=>$attvalue) {

print ' '.$attname.'="'.$attvalue.'"';
}
print ">\n";

}

function closeHandler($parser, $name) {
print "</$name>";

}

function dataHandler($parser, $data) {
print $data;

}

function piHandler($parser, $target, $data) {
print "<?$target $data?>";

}
}

CHAPTER 13 ■ PEAR AND XML 505

6331_c13_final.qxd 2/16/06 4:36 PM Page 505

/* Create parser and handler object */
$parser = new XML_HTMLSax();
$myHandler = new myHTMLParser();

/* Set the handler object */
$parser->set_object($myHandler);

/* Set options */
$parser->set_option('XML_OPTION_TRIM_DATA_NODES');

/* Set the handlers */
$parser->set_element_handler('openHandler','closeHandler');
$parser->set_data_handler('dataHandler');
$parser->set_pi_handler('piHandler');

/* Parse document by string */
$doc = file_get_contents("http://www.php.net/support.php");
$parser->parse($doc);
?>

XML_Serializer Package
XML_Serializer provides the ability to quickly and easily transform arrays and objects into XML
documents, as well as the other way around. It depends upon the XML_Parser and XML_Util
packages, so make sure these are installed before trying to use this package. The package con-
sists of two classes, XML_Serializer, which performs the serialization of a data structure, and
XML_Unserializer, which takes an XML document and returns an array or objects based on
the contents.

■Note This package is currently at beta status and must be installed or upgraded using either pear
install XML_Serializer-beta or pear upgrade XML_Serializer-beta.

XML_Serializer Class
The XML_Serializer class transforms your data into XML documents. It can operate in one of
two modes. The difference between modes is how indexed arrays are handled. Indexed arrays
are arrays that use numeric keys. Two possible modes exist, as shown in Table 13-4.

Table 13-4. XML_Serializer Modes

Name Constant Description

default XML_SERIALIZER_MODE_DEFAULT When serializing indexed arrays, the default
tag is used as the tag name.

simplexml XML_SERIALIZER_MODE_SIMPLEXML When serializing indexed arrays, the key of the
parent value is used as a tag name.

CHAPTER 13 ■ PEAR AND XML 506

6331_c13_final.qxd 2/16/06 4:36 PM Page 506

To illustrate the difference between these two modes, look at the following results serializ-
ing an array consisting of the values a, b, and c and using each mode and no other options:

$vals = array('a', 'b', 'c');

/* Result using default serialization */
<array>
<XML_Serializer_Tag>a</XML_Serializer_Tag>
<XML_Serializer_Tag>b</XML_Serializer_Tag>
<XML_Serializer_Tag>c</XML_Serializer_Tag>
</array>

/* Result using SimpleXML serialization */
<array>a</array>
<array>b</array>
<array>c</array>

As you can clearly see, simplexml mode uses the parent tag, which is array for each of the
tag names. In this case, it also does not generate well-formed XML. This mode is generally
used when an array is a property of an object or an XML fragment is desired. You set the mode
through the XML_Serializer options. Table 13-5 lists all the options you can use when serializ-
ing data.

CHAPTER 13 ■ PEAR AND XML 507

Table 13-5. XML_Serializer Options

Name Constant Default Value Description

indent XML_SERIALIZER_OPTION_INDENT '' String used for indentation.

linebreak XML_SERIALIZER_OPTION_LINEBREAKS \n String used for newlines.

typeHints XML_SERIALIZER_OPTION_TYPEHINTS FALSE Automatically adds type hint attrib-
utes.

addDecl XML_SERIALIZER_OPTION_XML_DECL_ FALSE Adds XML declaration.
ENABLED

encoding XML_SERIALIZER_OPTION_XML_ENCODING NULL Encoding specified in the XML declara-
tion.

defaultTagName XML_SERIALIZER_OPTION_DEFAULT_TAG XML_Serializer_ Tag used for indexed arrays or invalid
Tag names.

classAsTagName XML_SERIALIZER_OPTION_CLASSNAME_ FALSE Uses class name for objects in indexed
AS_TAGNAME arrays.

keyAttribute XML_SERIALIZER_OPTION_ATTRIBUTE_KEY _originalKey Attribute where original key is stored.

typeAttribute XML_SERIALIZER_OPTION_ATTRIBUTE_TYPE _type Attribute for type (only if typeHints are
enabled).

classAttribute XML_SERIALIZER_OPTION_ATTRIBUTE_ class Attribute for class of objects (only if
CLASS _ typeHints enabled).

scalarAsAttributes XML_SERIALIZER_OPTION_SCALAR_AS_ FALSE Scalar values (strings, ints, and so on)
ATTRIBUTES will be serialized as attributes.

prependAttributes XML_SERIALIZER_OPTION_PREPEND_ '' Prepends string for attributes.
ATTRIBUTES

Continued

6331_c13_final.qxd 2/16/06 4:36 PM Page 507

Table 13-5. Continued

Name Constant Default Value Description

indentAttributes XML_SERIALIZER_OPTION_INDENT_ FALSE Indents the attributes; if set to _auto, it
ATTRIBUTES will indent attributes so they all start at

the same column.

mode XML_SERIALIZER_OPTION_MODE XML_SERIALIZER_ Sets the mode for XML_Serializer. Must
MODE_DEFAULT be one of the modes listed in Table 13-4.

addDoctype XML_SERIALIZER_OPTION_DOCTYPE_ FALSE Adds a doctype declaration.
ENABLED

doctype XML_SERIALIZER_OPTION_DOCTYPE NULL Supplies a string or an array with ID
and URI.

rootName XML_SERIALIZER_OPTION_ROOT_NAME NULL Name of the root tag.

rootAttributes XML_SERIALIZER_OPTION_ROOT_ATTRIBS array() Attributes of the root tag.

attributesArray XML_SERIALIZER_OPTION_ATTRIBUTES_ NULL All values in this key will be treated as
KEY attributes.

contentName XML_SERIALIZER_OPTION_CONTENT_KEY NULL This value will be used directly as con-
tent; instead of creating a new tag, this
can be used only in conjunction with
attributesArray.

commentName XML_SERIALIZER_OPTION_COMMENT_KEY NULL This value will be used directly as a
comment; instead of creating a new
tag, this can be used only in conjunc-
tion with attributesArray.

tagMap XML_SERIALIZER_OPTION_TAGMAP array() Tag names that will be changed.

encodeFunction XML_SERIALIZER_OPTION_ENCODE_FUNC NULL Function that will be applied before
serializing.

namespace XML_SERIALIZER_OPTION_NAMESPACE NULL Namespace to use.

replaceEntities XML_SERIALIZER_OPTION_ENTITIES XML_SERIALIZER_ Type of entities to replace.
ENTITIES_XML

returnResult XML_SERIALIZER_OPTION_RETURN_RESULT FALSE The serialize() method returns the
result of the serialization instead of
TRUE.

ignoreNull XML_SERIALIZER_OPTION_IGNORE_NULL FALSE Ignores properties that are set to NULL.

CHAPTER 13 ■ PEAR AND XML 508

One way you can set options is through the XML_Serializer constructor. You pass the con-
structor as an array with the name of the option as the key and with the value as the value of
the item in the array. For instance, you can create an object that will add the XML declaration
with the encoding set to UTF-8, with the document element named mydoc, with the default tag
named myelement, and with tabs for indenting like this:

$options = array(
'addDecl' => TRUE,
'encoding' => 'UTF-8',
'indent' => "\t",
'defaultTagName' => 'myelement',
'rootName' => 'mydoc'

);
$objSerializer = new XML_Serializer($options);

6331_c13_final.qxd 2/16/06 4:36 PM Page 508

You can specify options by using their actual names or by using the appropriate constants
listed in Table 13-5. In this case, I used the actual name of the option, but this is not required.
Similarly to some of the other XML packages in this chapter, you can also set options using the
setOption() or setOptions() method. The first, setOption(), accepts a name and a value
parameter. You can use this to set a single option at a time. The method setOptions() accepts
an array of options; these options are merged with any currently set options for the object.
You can reset options to their default values with a simple call to resetOptions().

You can also set options when the serialize() method is called. This method performs
all the work required to transform the data, which is passed as the first parameter into an
XML document. You can pass a special option, named overrideOptions (which is not listed in
Table 13-5 since it is pertinent to this method only), with the value TRUE and with the array of
options to instruct the object to use only the options passed to the method rather than any
that have been previously set. Putting together everything up to this point, the full code to
serialize the initial array is as follows:

<?php
require_once 'XML/Serializer.php';

$vals = array('a', 'b', 'c');

$options = array(
'addDecl' => TRUE,
'encoding' => 'UTF-8',
'indent' => "\t",
'defaultTagName' => 'myelement',
'rootName' => 'mydoc'

);

$Serializer = new XML_Serializer($options);
$result = $Serializer->serialize($vals, array('returnResult' => TRUE));

print $result."\n";
$result = $Serializer->getSerializedData();
?>

You should note a couple of things about this script. The first is the use of options passed
to the serialize() method. Unlike setting other options, any options passed to this method
are set only temporarily. Once the method has returned, the options will revert to their previ-
ous states. This occurs even when the overrideOptions option is passed. The second thing you
should note is the actual option being passed to this method. By default, the serialize()
method returns TRUE. Using the returnResult option causes this method to return the serial-
ized XML document. This means the last line calling the getSerializedData() method, which
just returns the current serialized document contained by the XML_Serializer object, is
redundant. In both lines of code, $result will contain the same XML document. The output
you should see upon script execution is as follows:

CHAPTER 13 ■ PEAR AND XML 509

6331_c13_final.qxd 2/16/06 4:36 PM Page 509

<?xml version="1.0" encoding="UTF-8"?>
<mydoc>

<myelement>a</myelement>
<myelement>b</myelement>
<myelement>c</myelement>

</mydoc>

XML_Unserializer Class
You can use the XML_Unserializer class for the reverse transform of the XML_Serializer class.
It takes XML documents and transforms them into the appropriate arrays or objects. The
options available are specific to this class, as shown in Table 13-6. Unlike those available to
the XML_Serializer class, no preexisting constants have been defined for these options.

Table 13-6. XML_Unserializer Options

Name Default Value Description

complexType array Complex types will be converted to arrays, if no type hint is
given.

keyAttribute _originalKey Get array key/property name from this attribute.

typeAttribute _type Get type from this attribute.

classAttribute _class Get class from this attribute (if not given, use tag name).

tagAsClass true Use the tag name as the class name.

defaultClass stdClass Name of the class that is used to create objects.

parseAttributes FALSE Parses the attributes of the tag into an array.

attributesArray FALSE Parses them into separate array (specify name of array
here).

prependAttributes '' Prepends attribute names with this string.

contentName _content Puts CDATA found in a tag that has been converted to a
complex type in this key.

tagMap array() Uses this to map tag names.

forceEnum array() These tags will always be an indexed array.

encoding NULL Specifies the encoding character of the document to parse.

targetEncoding NULL Specifies the target encoding.

decodeFunction NULL Function used to decode data.

returnResult FALSE The unserialize() method returns the result of the unseri-
alization instead of TRUE.

The XML_Unserializer class has similar methods as the XML_Serializer class. You can
set options through the constructor, the setOption() and setOptions() methods, and the
resetOptions() method. The only difference to remember is that the option used must be
an option listed in Table 13-6. Using the serialized XML document from the previous example,
which is stored in the variable $result, you can transform it back into an array using the fol-
lowing code:

CHAPTER 13 ■ PEAR AND XML 510

6331_c13_final.qxd 2/16/06 4:36 PM Page 510

require_once 'XML/Unserializer.php';

$XMLUnserializer = new XML_Unserializer();

$result2 = $XMLUnserializer->unserialize($result, FALSE,
array('returnResult' => TRUE));

if (PEAR::isError($result2)) {
die($result2->getMessage());

}

var_dump($XMLUnserializer->getUnserializedData());

print "\n".$XMLUnserializer->getRootName()."\n";

The unserialize() method takes three arguments in this case. The first, which is required,
is the XML document to unserialize. The second optional argument is a Boolean indicating
whether the value of the first parameter is the name of a file or just a string containing the
XML document. In this example, FALSE is passed, which indicates that the variable $result is
a string containing the XML document. The last optional parameter is an array of options to be
used for unserializing the document. Again, this uses the returnResult option so rather than
returning a TRUE/FALSE value, the method will return the unserialized data. It is not required to
return the value at this point because it can also be retrieved using the getUnserializedData()
method. The last line outputs the tag name of the root element. This must be called only after
the data has been unserialized. The output of this code is as follows:

array(1) {
["myelement"]=>
array(3) {
[0]=>
string(1) "a"
[1]=>
string(1) "b"
[2]=>
string(1) "c"

}
}

mydoc

This may look a bit odd. The original data was array('a', 'b', 'c'). The array does
exist in the output, but it is actually the value of the myelement key of an array. The problem
is that the original data being serialized was a numeric indexed array. When it was unserial-
ized, XML_Unserializer had to make some guesses about the data. You can avoid using the
typeHints option when serializing the data. Had it been used in the XML_Serializer exam-
ple, the resulting XML document would have looked like the following:

CHAPTER 13 ■ PEAR AND XML 511

6331_c13_final.qxd 2/16/06 4:36 PM Page 511

<?xml version="1.0" encoding="UTF-8"?>
<mydoc _type="array">

<myelement _originalKey="0" _type="string">a</myelement>
<myelement _originalKey="1" _type="string">b</myelement>
<myelement _originalKey="2" _type="string">c</myelement>

</mydoc>

Attributes have been added to each of the myelement elements to identify the key for each
item in the array. When this is unserialized, the XML_Unserializer uses the attributes to deter-
mine how the data is to be reconstructed. Had this been used originally, the var_dump() of the
resulting data would have been as follows:

array(3) {
[0]=>
string(1) "a"
[1]=>
string(1) "b"
[2]=>
string(1) "c"

}

This is the original array properly reconstructed.

Summary
I have demonstrated only a small portion of the XML_Serializer package; it actually provides
some powerful features. Dubbed “the Swiss Army knife for reading and writing XML files,” it
can easily serialize complex structures into XML documents, and vice versa. The possibilities
are pretty much endless of what can be performed using this package. Imagine how easy it
would be to convert data retrieved from a MySQL database into XML. You could convert rows
of returned records into XML and append them together to form a complete recordset. Add
type hinting to this, and you now have the basic data structure that could be sent to some
remote application. If you think about it, it starts leading you down the path of Web services.

XML_RSS Package
RSS, covered in detail in Chapter 14, is an XML format for content syndication. The XML_RSS
package consists of the XML_RSS class, which simplifies the process of reading and extracting
information from RSS feeds. The only dependency of this package is the XML_Parser package.
To parse remote feeds, which are typically required when working with RSS, PHP must be
allowed to access remote URLs through the allow_url_fopen INI setting. XML_RSS uses the
XML_Parser package, which in turn uses the xml extension, so the same rules that apply to the
xml extension for processing PHP streams apply to the XML_RSS package. The API is compact
and demonstrated further in the next chapter when I explain RDF and RSS.

XML_DTD Package
XML_DTD offers the capabilities to parse DTDs as well as validate documents against these
DTDs without needing a validating parser such as DOM. In fact, the only dependency this

CHAPTER 13 ■ PEAR AND XML 512

6331_c13_final.qxd 2/16/06 4:36 PM Page 512

package has is the XML_Tree package and its dependencies. The package consists of three
classes. XML_DTD_Parser performs the actually parsing of a DTD, which results in an object of
the XML_DTD_Tree class. You can use this to extract information from the parsed DTD. The last
class, XML_DTD_XmlValidator, validates an XML document against a DTD. This package is still
in an alpha release but will work to some degree under PHP 5.

■Caution Whitespaces are not properly ignored when validating a document. Elements that can consist
only of child elements will fail to validate if ignorable whitespaces exist between the child elements. When
setting the list of acceptable elements, #PCDATA must also be allowable content, or the whitespaces must
be removed from the document prior to it being validated. This issue exists with the alpha release 0.4.2 so
it may be fixed by the time you read this.

Depending upon the class being used, the DTD can reside within a file or be contained in
a string. In either case, the DTD is handled as an external subset, so it does not consist of a
document type declaration. Listing 13-1 contains an example of a DTD that could be used by
this package. The subset defined in this listing could be referred to by the file xmldtd.dtd.

Listing 13-1. External Subset in xmldtd.dtd

<!ELEMENT courses (course+)>
<!ELEMENT course (title, description)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>

The document in Listing 13-2 comes from Chapter 3, which explained document valida-
tion. The document, located in the file courses.xml, is considered valid when validated using
the DOM extension.

Listing 13-2. Courses Document Residing in the File courses.xml

<courses>
<course>

<title>French I</title>
<description>Introductory French</description>

</course>
<course>

<title>French II</title>
<description>Intermediate French</description>

</course>
</courses>

The XML_DTD_Parser class creates a tree that you can use to inspect the DTD. It has a single
method, parse(), that parses the DTD and returns an XML_DTD_Tree object. This method takes
one required parameter, which is the DTD to be parsed, and an optional parameter, which
indicates whether the first parameter is a file location or a string containing the DTD. The

CHAPTER 13 ■ PEAR AND XML 513

6331_c13_final.qxd 2/16/06 4:36 PM Page 513

default value of the second parameter is TRUE, indicating that the first parameter refers to a file
location. The following code demonstrates how to parse a DTD and outputs a dump of the
returned XML_DTD_Tree object:

<?php
require_once 'XML/DTD.php';
$dtdfile = "xmldtd.dtd";

$dtdParser = new XML_DTD_Parser;
$tree = $dtdParser->parse($dtdfile);
var_dump($tree);
?>

Using the XML_DTD_Parser class requires that the appropriate class definition file be loaded.
In this case, it is located at XML/DTD.php. The php_ini file has been configured to include PEAR
packages automatically, so complete pathing is not required and actually should be configured
in this manner for PEAR to operate properly. The following is the output returned after execut-
ing the code. (It contains more than what appears but has been edited to save space.)

object(XML_DTD_Tree)#2 (1) {
["dtd"]=>
array(1) {
["elements"]=>
array(4) {
["courses"]=>
array(4) {
["child_validation_dtd_regex"]=>
string(25) "(#PCDATA,course,#PCDATA)+"
["child_validation_pcre_regex"]=>
string(39) "((,?#PCDATA),?(,?course),?(,?#PCDATA))+"

/* Additional output omitted */
}

}
}

As you can see from the output, you could access XML_DTD_Tree directly using the arrays
contained within the object. For convenience, some methods have also been defined, which
are listed in Table 13-7, for the class to access specific information from the tree as well.

Table 13-7. XML_DTD_Tree Methods

Method Prototype Description

elementIsDeclared bool elementIsDeclared(string $elem) Indicates whether the element
specified by the $elem parameter
has been defined in the DTD

getAttributes array getAttributes(string $elem) Returns all the defined attributes
for the specified element

getChildren array getChildren(string $elem) Returns all the defined child ele-
ments for the specified element

CHAPTER 13 ■ PEAR AND XML 514

6331_c13_final.qxd 2/16/06 4:36 PM Page 514

Method Prototype Description

getContent string getContent(string $elem) Returns any content defined for
the element

getDTDRegex string getDTDRegex(string $elem) Returns the DTD element defini-
tion for the specified element

getPcreRegex string getPcreRegex(string $elem) Returns the Perl regular expres-
sion used for validating the
children of the specified element

The primary use of this package is for validating XML documents, which you can do by
using the XML_DTD_XmlValidator class. The class is easy to use because its constructor has no
arguments and has only two public methods. The isValid() method does the bulk of the work
from this class. It takes two parameters. The first is the filename for the DTD, and the second is
the filename of the XML document. The method returns a Boolean indicating whether the file
was successfully validated. Upon a failure, you can use the getMessage() method to retrieve
the specific errors that occurred during validation. The following code uses the DTD from
Listing 13-1 to validate the XML document from Listing 13-2:

<?php
require_once 'XML/DTD/XmlValidator.php';

$DTDValidator = new XML_DTD_XmlValidator;
if (! $DTDValidator->isValid('xmldtd.dtd', 'courses.xml')) {

echo $DTDValidator ->getMessage();
}
?>

The output is probably not what you are expecting:

line 2: <#PCDATA> not allowed under <courses>
line 6: <#PCDATA> not allowed under <courses>
line 3: <#PCDATA> not allowed under <course>
line 4: <#PCDATA> not allowed under <course>
line 7: <#PCDATA> not allowed under <course>
line 8: <#PCDATA> not allowed under <course>

The problem here is because of line breaks in the XML. These are currently not handled
correctly when this package is used under PHP 5.

■Note The issues with whitespaces causing XML documents to not validate may have been resolved by
the time you read this.

A workaround for this issue is to write DTDs that take the whitespaces into account. The
downside to this is that a DTD can no longer be written to strict measures. The following is the
DTD from Listing 13-1 modified to correctly validate the XML document from Listing 13-2:

CHAPTER 13 ■ PEAR AND XML 515

6331_c13_final.qxd 2/16/06 4:36 PM Page 515

<!ELEMENT courses (#PCDATA | course)*>
<!ELEMENT course (#PCDATA | title | description)*>
<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>

Although this package currently has issues, it still provides the mechanism to validate
XML documents without needing any built-in XML-based extensions.

XML_FastCreate Package
XML_FastCreate provides the ability to easily create XML and XHTML documents. It differs
from other packages that provide similar functionality in the way these documents are cre-
ated. It also can leverage other packages such as XML_DTD, XML_Beautifier, and XML_Tree
to provide document validation, format output, and return data in a form other than a simple
string. As long as the specific package has been installed, XML_FastCreate automatically takes
care of loading the appropriate class and performing the specific functionality using the
XML_FastCreate API.

■Note The additional packages are not required to use XML_FastCreate. Without XML_DTD, you cannot
perform document validation. Without XML_Beautifier, you cannot indent documents for presentation. With-
out XML_Tree, you can use only the Text driver.

Although only a few methods are defined in the API, it is quite dynamic. The following
piece of code, although not complete, demonstrates how to create documents:

$oFastCreate->html(
$oFastCreate->head(

$oFastCreate->title("XML_FastCreate Sample")
),
$oFastCreate->body(

$oFastCreate->p("Hello World!"),
$oFastCreate->br(),
$oFastCreate->p("End of Sample")

)
);

You can create tags by using dynamic methods. The name of the tag you want to create
becomes the name of the method to be called. The resulting document would look like this:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<html>
<head>
<title>XML_FastCreate Sample</title></head>
<body>
<p>Hello World!</p>

<p>End of Sample</p></body></html>

CHAPTER 13 ■ PEAR AND XML 516

6331_c13_final.qxd 2/16/06 4:36 PM Page 516

An XML_FastCreate object is not directly instantiated. A factory method is called statically
from the class, which determines the driver that will be used when creating a document, as
well as any options listed in Table 13-8 to use with the driver:

object XML_FastCreate::factory(string $driver, [array $options = array()])

Currently, two different drivers extend the XML_FastCreate class. You can use the Text
driver when a string is the desired output. This driver is built in and requires no other support-
ing packages. When the XML_Tree package has been installed, you can also use the XML_Tree
driver. This driver returns the results as an XML_Tree object rather than a plain string.

Table 13-8. XML_FastCreate Options

Name Default Value Description

dtd '' Sets the DTD file to perform validity checking. Using this
option requires the XML_DTD package to be installed.

indent FALSE Boolean to enable or disable output indentation. Using this
option requires the XML_Beautifier package to be installed.

version 1.0 Sets the XML version.

encoding UTF-8 Sets the encoding character set.

standalone no Sets the standalone attribute. Value can be yes or no.

doctype Not Set String containing the document type declaration or one of
the constants defined by this package:
XML_FASTCREATE_DOCTYPE_XHTML_1_1,
XML_FASTCREATE_DOCTYPE_XHTML_1_0_STRICT,
XML_FASTCREATE_DOCTYPE_XHTML_1_0_FRAMESET,
XML_FASTCREATE_DOCTYPE_XHTML_1_0_TRANSITIONAL,
XML_FASTCREATE_DOCTYPE_HTML_4_01_STRICT,
XML_FASTCREATE_DOCTYPE_HTML_4_01_Frameset, or
XML_FASTCREATE_DOCTYPE_HTML_4_01_Transitional.

quote TRUE Boolean indicating whether to autoquote attributes and
contents.

translate NULL Hash table of tags to translate to another: 'translate' =>
array('title' => array('<h1 class="title">',
'</h1>'), and 'date' => array('', '').

exec '' Sets external tool to valid the document.

file '' Writes the validation output to a file.

expand FALSE Boolean indicating whether empty tags should have opening
and closing tag (TRUE) or just an empty-element tag.

apos TRUE Changes apostrophe to '. The setting depends upon
whether you are creating XML or HTML.

singleAttribute FALSE Boolean indicating whether attributes may be written with
just a name (TRUE), such as <input type="checkbox" checked
/>, which is valid for HTML, or must conform to XML stan-
dards and require a value (FALSE) even when empty.

CHAPTER 13 ■ PEAR AND XML 517

6331_c13_final.qxd 2/16/06 4:36 PM Page 517

So, to create a new XML_FastCreate object using the Text driver along with a few options,
you do this:

require_once 'XML/FastCreate.php';

$options = array(
'doctype' => XML_FASTCREATE_DOCTYPE_XHTML_1_0_TRANSITIONAL,
'singleAttribute' => TRUE);

$oFastCreate = XML_FastCreate::factory('Text', $options);

It is with this $oFastCreate object that you can create the document. In a similar fashion
to the SimpleXML extension, CDATA sections and comments cannot be created using the
dynamic method access. For this reason, XML_FastCreate incorporates the methods cdata()
and comment(). Both of these methods accept a single parameter, which is the content for
these nodes in the XML document. A simple example of creating the courses document from
Listing 13-2 and adding a couple of comments within the document is as follows:

<?php
require_once 'XML/FastCreate.php';

$oFastCreate = XML_FastCreate::factory('Text');

$oFastCreate->courses(
$oFastCreate->comment('Intro to French Course'),
$oFastCreate->course(

$oFastCreate->title('French I'),
$oFastCreate->description('Introductory French')

),
$oFastCreate->comment('Intermediate French Course'),
$oFastCreate->course(

$oFastCreate->title('French II'),
$oFastCreate->description('Intermediate French')

)
);

$xml = $oFastCreate->getXML();
print $oFastCreate->indentXML($xml);
?>

The example is similar to the snippet of code presented earlier. The output is performed in
two steps. To get the XML document in a presentational state, the method indentXML() is used.
This method takes a string containing the XML to make presentable and also requires that the
XML_Beautifier package be installed. It is not required that the XML_FastCreate object hold any
XML document to perform the transformation because the string passed to the method is what is
used to be “beautified.” This is the reason the getXML() method is used. This method retrieves the
XML document created by the object as a string. This string is then passed to the indentXML()
method with the final result printed to the output.

CHAPTER 13 ■ PEAR AND XML 518

6331_c13_final.qxd 2/16/06 4:36 PM Page 518

This package provides more functionality than demonstrated here. As previously men-
tioned, documents can also be validated. The isValid() method, which requires the XML_DTD
package to be installed, works in the same manner as the XML_DTD package, except that it vali-
dates the XML document currently existing within the XML_FastCreate object based on the DTD,
which is passed as a filename to the method. XML_FastCreate is also able to perform validation,
indentation, and output all through a single method call. Based on the options set when the
object was created, the toXML() method will perform any necessary validation, indent if neces-
sary, and send the final document directly to output. The method does not return the final
document; rather, it returns TRUE or a PEAR error object. You can find additional information
about class methods and arguments in the PEAR manual for this package.

Conclusion
The PEAR repository is a place where you can find preexisting code covering many different
topics. The XML section alone contains 28 packages ranging from simple parsers to an object-
oriented API for creating SVG documents. This chapter introduced PEAR, its installer, and a few
of the XML-related packages. Many of these packages can come in handy, especially in cases
where DOM or SimpleXML are just not available. The only requirement of many of these pack-
ages is for the xml extension to be installed, which it is in almost every installation. Although
they might not be able to provide all the functionality that could be performed using DOM or
SimpleXML, the PEAR packages can do a lot with XML. Some packages are also written to per-
form specific functionality. One such package is XML_RSS. The next chapter introduces RDF
and RSS, where you will also find an example of processing an RSS feed using the XML_RSS
package.

CHAPTER 13 ■ PEAR AND XML 519

6331_c13_final.qxd 2/16/06 4:36 PM Page 519

6331_c13_final.qxd 2/16/06 4:36 PM Page 520

Content Syndication:
RSS and Atom

Content syndication is not something new—it has been around for many years but has
never been as widely used as it is today. The term content syndication refers to publishing
information on the Internet that can then be used by other sites as well as by stand-alone
reader applications. The explosion of Web logs (commonly referred to as blogs) breathed
new life into content syndication. Before, the syndicated content, known as feeds, was typi-
cally found on news sites only. Once blogs began proliferating on the Internet, content
started being shared left and right, and users began using readers and aggregators to track
their favorite blogs. Many people, mostly nontechnical ones, probably have never heard of
the acronym RSS or probably do not understand the concept of content syndication yet
unknowingly utilize it as they download MP3 files to their music players. In addition, those
who subscribe to podcasts are actually using technology built on RSS. Whether providing a
feed for a blog, providing a feed of changes for some software you may be writing, or doing
your own podcast, the applications for content syndication are almost endless, and its
usage is growing at a phenomenal rate every day.

This chapter will cover the formats used for these feeds, including a brief history of them.
Once you understand their basic structures, I will show how to use XML technologies in PHP
to create your own publishers and readers for these feeds.

■Tip Trying to figure out whether a feed is valid is not always simple to do. No matter how closely you
follow the specifications, you can create hours of work for yourself by having to track down the smallest
typographical error. The site Feed Validator (http://feedvalidator.org/) is a great resource for vali-
dating all the types of feeds mentioned in this chapter.

Understanding the Evolution of RSS and Atom
The acronym RSS is pretty ambiguous. The evolution of feeds is quite interesting and explains
the reason why the acronym RSS can stand for RDF Site Summary, Rich Site Summary, or
Really Simple Syndication. The history of content syndication actually goes back further than
RSS, but it didn’t start to get interesting until about 1999 when Netscape released RSS 0.9.

521

C H A P T E R 1 4

■ ■ ■

6331_c14_final.qxd 2/16/06 4:34 PM Page 521

For its portal site, Netscape released RDF Site Summary (RSS) 0.9, which was based upon
RDF. RDF, formally known as the Resource Description Framework, is a W3C specification for
describing metadata (http://www.w3.org/RDF/). With it, you can describe almost everything
with a URI. But RDF is not a simple technology. Although RSS 0.9 wasn’t really RDF, it was still
more complicated than RSS needed to be.

Dave Winer, the founder of UserLand Software, was one of the most vocal critics of Net-
scape’s implementation of RSS. He, as well as many others, thought it was still too complex
and that it lacked necessary features. Netscape quickly released RSS 0.91, which was no longer
based on RDF; Netscape dropped namespace support from the document, added a DTD, and
added a few new features from UserLand’s scriptingNews format. No longer supporting RDF,
the technology was now called Rich Site Summary. Although this step toward simplification
appeased those looking for an easier-to-use technology, it, at the same time, upset those who
favored the RDF approach and who thought the original RSS 0.9 had not gone far enough. Not
shortly after this, Netscape, no longer interested in the portal business, stopped developing
RSS completely. This is where RSS’s history begins to get interesting.

The developer community, rather than a single company, continued to work on RSS, but
developers could not agree on what the next version of RSS should entail. The RDF backers
began working on RSS 1.0, using RSS 0.9 as its basis and causing quite a battle in the developer
community. Everything that was deemed wrong with the original format and simplified by
RSS 0.91 was brought back to life. In December 2000, RSS 1.0 (named RDF Site Summary) was
officially released. Winer quickly countered this with his release of RSS 0.92, which was a con-
tinuation of RSS 0.91.

Thus, RSS had forked, which began the confusion most people have today when looking
at the different RSS versions.

Although RSS 1.0 was considered finalized, Winer continued developing the 0.9x branch
by releasing 0.93 and 0.94. Trying to bridge the gap between the two paths, Winer proposed
RSS 2.0, which was basically RSS 0.92 with some optional elements and namespace support. It
still did not include RDF, angering many of those in the RSS 1.0 group. Fighting even occurred
about whether discussions should take place on a mailing list (favored by the RSS 1.0 group)
or blogs (favored by Winer). In the end, Winer released a final version of RSS 2.0, not taking
into account many of the concerns from those in the RSS 1.0 group. This caused those devel-
opers to return to working on their own RSS branch.

The ongoing feud had no end in sight. About a year later, in mid-2003, Sam Ruby led a new
group with the goal of creating a blog format using the following guidelines:

• 100 percent vendor neutral

• Implemented by everybody

• Freely extensible by anyone

• Cleanly and thoroughly specified

RSS 0.9 was a Netscape initiative and a driving force behind its portal business. Netscape
was not worried about trying to create a vendor-neutral format, though. After all, when the two
RSS groups could not agree on anything, how could they all implement the same format and
allow extensibility by everyone? Therefore, rather than trying to guess the future and develop
new features, Sam Ruby created Atom based on what was known to work when dealing with
content syndication. In addition, he kept it simple with a minimal feature set.

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM522

6331_c14_final.qxd 2/16/06 4:34 PM Page 522

Introducing RSS 1.0: RDF Site Summary
RSS 1.0, released in December 2000, is the successor to RSS 0.9 in terms of an RDF-based feed.
This section will explain the structure of an RSS 1.0 document; Listing 14-1 shows a sample
RSS 1.0 document. I will cover as much detail as possible for RSS 1.0 in this chapter, and you
can find additional information in the full specification at http://web.resource.org/rss/
1.0/spec. Many people don’t need all the features of RSS 1.0 and prefer to use RSS 0.91, RSS
2.0, or Atom, but RSS 1.0 is probably the most complex structure to deal with, so I will cover it
in more detail than the others. Once you understand an RSS 1.0 document, the other syndica-
tion formats will be much easier to use.

Listing 14-1. Sample RSS 1.0 Document

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://purl.org/rss/1.0/" >

<channel rdf:about="http://www.exmaple.com/news.rss">
<title>Example RSS News</title>
<link>http://www.example.com/</link>
<description>

This is an example RSS feed from www.example.com.
</description>

<image rdf:resource="http://www.example.com/images/rss_channel.gif" />

<items>
<rdf:Seq>

<rdf:li resource="http://www.example.com/pub/article1.html" />
<rdf:li resource="http://www.example.com/pub/article2.html" />

</rdf:Seq>
</items>

</channel>

<image rdf:about="http://www.example.com/images/rss_channel.gif">
<title>Example RSS News Feed</title>
<link>http://www.example.com</link>
<url>http://www.example.com/images/rss_channel.gif</url>

</image>

<item rdf:about="http://www.example.com/pub/article1.html">
<title>Article 1</title>
<link>http://www.example.com/pub/article1.html</link>
<description>

This is the description for article 1.
</description>

</item>

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 523

6331_c14_final.qxd 2/16/06 4:34 PM Page 523

<item rdf:about="http://www.example.com/pub/article2.html">
<title>Article 2</title>
<link>http://www.example.com/pub/article2.html</link>
<description>

This is the description for article 2.
</description>

</item>
</rdf:RDF>

Introducing the RSS 1.0 Structure
An RSS 1.0 document should always include an XML declaration. Although optional for an
XML document, its use is normally recommended and is needed if trying to maintain back-
ward compatibility with RSS 0.9. The document root of all RSS 1.0 documents is a namespaced
RDF element in the RSS syntax schema namespace that also defines the RSS 1.0 schema as the
default namespace for the document. Although you can use any prefix to bind to the RSS syn-
tax schema, rdf is normally used; in fact, you must use rdf when maintaining backward
compatibility with RSS 0.9. For example:

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://purl.org/rss/1.0/">

Besides the required namespace declarations, the RDF element must contain the following
structure:

• One and only one channel element

• An optional image element

• One or more item elements

• Zero or more textinput elements

You can also declare additional namespaces on this element, which allow for the extensibil-
ity of the document, by using modules (explained later in the “Introducing Modules” section).

channel Element
The channel element is the container that holds the information describing the channel. In my
opinion, the structure of the channel element is more difficult to work with than the other RSS
branch and than Atom because the channel is not self-contained. RSS 1.0 allows only a single
channel in a feed and is not self-contained. The individual item elements are not contents of
the element but, rather, are contents of the RDF element.

An rdf:about attribute is required for a channel element. The value is a URI that identifies
a channel and must be unique in regard to all rdf:about attributes in the document. In this
respect, it is similar to an XML ID type attribute. Typically, the URI is the URL of the home page
for the site or the URL for the RSS feed, but it could be any URI you like as long as it is unique
from all other rdf:about values. For example:

<channel rdf:about="http://www.example.com/news.rss">

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM524

6331_c14_final.qxd 2/16/06 4:34 PM Page 524

A channel element needs to contain one title element, one link item, one description
item, and one items element. Depending upon whether the channel has an associated image
and/or textinput element as a child of the rdf:RDF element, an associated image and/or
textinput element is required within the channel element. It is invalid for an image or
textinput element to exist as a child of an rdf:RDF element and not have the corresponding
child element within the channel element. The same goes for the reverse of this statement.

title

The title element defines the title of the channel. It is a required element that contains
#PCDATA with a suggested maximum length of 40 characters. The length can exceed 40 charac-
ters, but doing so breaks backward compatibility with RSS 0.9. For example:

<title>Example RSS News</title>

link

The link element, which is required, defines the URL for an HTML page to which the title
element links. Normally this is the site’s home page or a news page on the site. The only valid
protocols for the URL are HTTP, HTTPS, and FTP (specified by http, https, and ftp, respec-
tively). For example:

<link>http://www.example.com/</link>

description

The description element describes the channel. It is a required element containing #PCDATA
with a suggested maximum length of 500 characters. Again, although only a suggestion,
lengths of more than 500 characters break compatibility with RSS 0.9 parsers. For example:

<description>This is an example RSS feed from www.example.com.</description>

items

The items element, also required, acts as a table of contents for the child item elements of the
rdf:RDF element. It defines the sequencing for the how the item elements should be ordered
when parsed. For example:

<items>
<rdf:Seq>

<rdf:li resource="http://www.example.com/pub/article1.html" />
<rdf:li resource="http://www.example.com/pub/article2.html" />

</rdf:Seq>
</items>

The child rdf:Seq element denotes that its child elements, the rdf:li elements, are to be
sequenced in the order its child rdf:li elements appear. Because RSS 1.0 requires a minimum of
at least one item element, this element is required, and at least one rdf:li element is required.

The rdf:li elements are associations to the document’s item elements. The resource
attribute corresponds to the item element’s rdf:about attribute and must contain the same
value as the corresponding rdf:about attribute. If you consider the rdf:about attributes to be

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 525

6331_c14_final.qxd 2/16/06 4:34 PM Page 525

XML ID type attributes, then the resource attribute would be an IDREF type attribute. It points
to and locates the item element in the document.

image

The image element is optional and used to associate an image element with the channel.
It is required only if an image element exists as a child of the rdf:RDF element. Similar to how
rdf:li elements work, the image element contains an rdf:resource attribute. For some rea-
son, the rdf:li resource attribute was not namespaced in the RSS 1.0 specification but must
be with the image element. The value must be identical to the image element’s rdf:about value
so that the image can be located within the document. For example:

<image rdf:resource="http://www.example.com/images/rss_channel.gif" />

This element must always be an empty element.

textinput

The textinput element associates an optional child textinput element of the rdf:RDF element
with the channel. It is required only when such a child element exists in the document. Being
an associative element, it is an empty element with only an rdf:resource attribute. Again, the
value of the rdf:resource attribute must be identical to the value of the rdf:about attribute of
the master textinput element. For example:

<textinput rdf:resource="http://www.example.com" />

This element was not used in Listing 14-1 but is written as demonstrated here.

image Element
An image element, which is a child of the rdf:RDF element, associates an image with an HTML
rendering of the channel. It is not required that you use an image with a feed, but when sup-
plied, the associated image element within the channel element must also exist. This element
requires an rdf:about attribute whose value is a URL locating the physical image. Like all URLs
in the RSS 1.0 specification, the protocol must be HTTP, HTTPS, or FTP (specified by http,
https, or ftp, respectively).

The format of the physical image has no restrictions (though it should be a common format
for the greatest Web browser support). The height and width depend upon the RSS version com-
patibility you are trying to obtain. The RSS 0.91 specification allows an image height from 1 to 144
and a width from 1 to 400. RSS 0.9, however, dictates an image of exactly 88 ✕ 31. For example:

<image rdf:about="http://www.example.com/images/rss_channel.gif">
<title>Example RSS News Feed</title>
<link>http://www.example.com</link>
<url>http://www.example.com/images/rss_channel.gif</url>

</image>

The image element, when used, cannot be an empty element. It must contain a title ele-
ment, a url element, and a link element.

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM526

6331_c14_final.qxd 2/16/06 4:34 PM Page 526

title

The title element supplies the alternate text for the image when the channel is rendered as
HTML. Its content becomes the value for the image’s alt attribute in the rendered HTML. Fol-
lowing the same format as the other title elements within the document, its content contains
#PCDATA and has a suggested maximum length of 40 characters. Again, the suggested length is
required only when maintaining backward compatibility with RSS 0.9. For example:

<title>Example RSS News Feed</title>

url

The url element specifies the URL to the physical location of the image. When the channel is
rendered as HTML, the contents of this element become the value for the image’s src attribute
in the rendered HTML. It is important to remember that only HTTP, HTTPS, and FTP (speci-
fied by http, https, and ftp, respectively) are valid protocols for the URL. When maintaining
compatibility with RSS 0.9, the length of the content can be no greater than 500 characters.
For example:

<url>http://www.example.com/images/rss_channel.gif</url>

link

The link element specifies the URL to which the image should link when the channel is ren-
dered as HTML. The contents could become the value for the href attribute of an anchor tag
surrounding the rendered image tag when displayed as HTML. The value is typically the site’s
home page or a news page and, to maintain compatibility with RSS 0.9, must have a length no
greater than 500 characters. The URL must also use only HTTP, HTTPS, or FTP (specified by
http, https, or ftp, respectively). For example:

<link>http://www.example.com</link>

item Element
The master item elements, which are those that are children of the rdf:RDF element, contain
the specific information for a block of content. This content could be anything identifiable by
a URI, such as news information, a job listing, or a blog entry. A minimum of one item element
is required and, when maintaining compatibility with RSS 0.9 or 0.91, must be limited to a
maximum of 15 item elements.

Each item element must contain a unique rdf:about attribute. The attribute must be
unique within the entire document and not just among the different item elements. The value
for this attribute is a URL to the specific content. For example, if the particular item element
were based on a blog entry, the attribute would contain the URL to the specific entry within
the blog. This value must also be identical to the content of the child link element, as well as
to the value of the resource attribute from the rdf:li element used within the channel ele-
ment. For example:

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 527

6331_c14_final.qxd 2/16/06 4:34 PM Page 527

<item rdf:about="http://www.example.com/pub/article1.html">
<title>Article 1</title>
<link>http://www.example.com/pub/article1.html</link>
<description>

This is the description for article 1.
</description>

</item>

All item elements must contain a title element and a link element. The description
element is optional, but it is common to see one within an item element.

title

The title element contains the title of the item. Using a blog entry as an example, the content
for this item would be the same as the title used for the entry within the blog. Its format is
#PCDATA with a suggested maximum length, for RSS 0.9 compatibility, of 100 characters. For
example:

<title>Article 1</title>

link

The link element contains the URL to a specific item. In the case of a blog entry, the content
of this element is the direct URL to the specific blog entry to which the item refers. The rules for
this element are the same as all other link and url elements from the RSS 1.0 specification. The
URL protocol must be HTTP, HTTPS, or FTP (specified by http, https, or ftp, respectively), and
the suggested maximum length is 500 characters. For example:

<link>http://www.example.com/pub/article1.html</link>

description

The description element provides a brief description or abstract of the content to which the
item is referring. It consists of #PCDATA with a suggested maximum length of 500 characters.
This element is optional, but it’s almost always used. For example:

<description>This is the description for article 1.</description>

Although not mentioned in the specification, it is generally acceptable to use HTML in a
description. Early in RSS’s history, plain text was considered the only valid content. However,
the original UserLand RSS reader never filtered out HTML, and developers began using it
within content. This pretty much became the norm and is where RSS 1.0 stands today; all
readers are generally expected to be able to handle HTML. You need to consider, though, that
RSS, being in XML format, must properly encode entities. It is also common to see developers
using CDATA sections to contain the content.

textinput Element
The textinput element generates a form, such as a search box or subscription form, that
would use the GET method when the feed is rendered into HTML. This is an optional element,
and I have yet to come across it in any RSS feeds. It most likely exists to maintain compatibility

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM528

6331_c14_final.qxd 2/16/06 4:34 PM Page 528

with RSS 0.9. Being a child of the rdf:RDF element, it contains an rdf:about attribute that has
a unique value corresponding to the location where the form should be submitted. This value
must not only be identical to the content of the child link element but also be identical to the
value of the rdf:resource attribute for the textinput element contained within the channel
element. For example:

<textinput rdf:about="http://www.example.com/search.php">
<title>Channel Search</title>
<name>str_search</name>
<description>Search all information within channel</description>
<link>http://www.example.com/search.php</link>

</textinput>

When this element is used, it needs to contain title, description, name, and link elements.

title

The title element provides a descriptive title for the textinput field. Its content is #PCDATA
with a suggested maximum length of 40 characters. For example:

<title>Channel Search</title>

description

The description element briefly describes the purpose of the form. Its content is #PCDATA with
a suggested maximum length of 100 characters. For example:

<description>Search all information within channel</description>

name

The name element defines the name attribute of the textinput field when rendered as HTML.
This means that when the form is submitted, the value of the name element will be the name
of the parameter passed to the site when the form is submitted. The content of this element
is #PCDATA with a maximum length of 500 characters. For example:

<name>str_search</name>

link

The link element defines the URL to which the form will be submitted using the GET method.
Its content is #PCDATA with a suggested maximum length of 500 characters. Following the URL
standards in the RSS 1.0 specification, the protocol can be HTTP, HTTPS, or FTP (specified by
http, https, or ftp, respectively). For example:

<link>http://www.example.com/search.php</link>

Introducing Modules
Modules provide the means to compartmentally extend RSS. They reside within their own
namespaces and are designed to provide specific, narrowly focused functionality. The RSS 1.0
specification includes three built-in modules that you can use to extend its basic functionality:

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 529

6331_c14_final.qxd 2/16/06 4:34 PM Page 529

• Dublin Core

• Syndication

• Content

Dublin Core
The Dublin Core module provides some standard metadata elements that can provide addi-
tional descriptions of the data contained within the RSS feed. The module is defined by the
http://purl.org/dc/elements/1.1/ namespace, typically bound to the dc prefix and declared
on the rdf:RDF element:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://purl.org/rss/1.0/"
xmlns:dc="http://purl.org/dc/elements/1.1/" >

You can use the elements defined by this module, listed in Table 14-1, within all child ele-
ments of the rdf:RDF element. This means the elements can be children of the channel, item,
image, and textinput elements. It is important to remember the difference between the RSS
elements because many share the same name though provide different functionality. The
easiest way to remember which elements can use these module elements is to use the module
elements only within elements that have an rdf:about attribute. It also doesn’t hurt to remem-
ber that the image and textinput elements within the channel element must be empty so
cannot contain child elements—or any content.

Table 14-1. Dublin Core Module Elements

Element Description

dc:title A name given to the resource.

dc:creator An entity primarily responsible for making the content.

dc:subject A topic of the content.

dc:description A description of the content.

dc:publisher An entity responsible for making the resource available.

dc:contributor An entity responsible for making contributions to the content.

dc:date The date of an event, such as the creation date.

dc:type The type or nature of the content.

dc:format The physical or digital manifestation of the resource, such as the media type.

dc:identifier A unique reference to the resource, such as the URI or ISBN.

dc:source A reference to a resource from which the current resource is derived.

dc:language The language of the content, such as en or en-GB.

dc:relation A reference to a related resource.

dc:coverage The scope of the resource.

dc:rights Information about the rights held in and over the resource. When this element
is absent, no assumption can be made about any rights concerning the
resource.

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM530

6331_c14_final.qxd 2/16/06 4:34 PM Page 530

Using the module, you can extend the channel element to include the publisher, creator,
and date. Each of these elements provides additional information about the channel. Taking
the channel element from Listing 14-1, an extended channel element using the Dublin Core
module would look like the following:

<channel rdf:about="http://www.exmaple.com/news.rss">
<title>Example RSS News</title>
<link>http://www.example.com/</link>
<description>This is an example RSS feed from www.example.com.</description>

<image rdf:resource="http://www.example.com/images/rss_channel.gif" />

<items>
<rdf:Seq>

<rdf:li resource="http://www.example.com/pub/article1.html" />
<rdf:li resource="http://www.example.com/pub/article2.html" />

</rdf:Seq>
</items>
<dc:publisher>Apress</dc:publisher>
<dc:creator>Rob Richards (mailto:rrichards@php.net)</dc:creator>
<dc:date>2005-10-01T12:00+00:00</dc:date>

</channel>

Syndication
The Syndication module provides additional information to aggregators and others accessing
the RSS feed regarding how often the feed is updated. Using this information, you can reduce
the amount of times you have to access the feed in order to keep up-to-date, which can also
help reduce your bandwidth usage. This module resides within the http://purl.org/rss/1.0/
modules/syndication/ namespace bound to the prefix sy:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://purl.org/rss/1.0/"
xmlns:sy="http://purl.org/rss/1.0/modules/syndication/" >

The Syndication module is extremely simple to use because it provides only three ele-
ments, shown in Table 14-2.

Table 14-2. Syndication Module Elements

Element Description

sy:updatePeriod The period over which the channel format is updated. The content of this
element can be hourly, daily, weekly, monthly, or yearly. When this element
is omitted, the default value daily is used.

sy:updateFrequency The frequency of updates in relation to the updatePeriod. The value must
be a positive integer and defaults to 1 when omitted.

sy:updateBase Defines a base date and time that are used with the updatePeriod and
updateFrequency to establish a publishing schedule. The content of this
element must take the format YYYY-MM-DDTHH:MM.

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 531

6331_c14_final.qxd 2/16/06 4:34 PM Page 531

You can use these elements only to describe a channel, and therefore you can use them
only as child elements of the channel element. For instance, you can extend the channel ele-
ment from Listing 14-1 to include a publishing schedule, as follows:

<channel rdf:about="http://www.exmaple.com/news.rss">
<title>Example RSS News</title>
<link>http://www.example.com/</link>
<description>This is an example RSS feed from www.example.com.</description>

<image rdf:resource="http://www.example.com/images/rss_channel.gif" />

<items>
<rdf:Seq>

<rdf:li resource="http://www.example.com/pub/article1.html" />
<rdf:li resource="http://www.example.com/pub/article2.html" />

</rdf:Seq>
</items>

<sy:updatePeriod>daily</sy:updatePeriod>
<sy:updateFrequency>4</sy:updateFrequency>
<sy:updateBase>2005-01-01T12:00+00:00</sy:updateBase>

</channel>

Based on the last three elements within the channel element, the content is updated every
six hours (four times per day) starting at noon Greenwich mean time (GMT).

Content
The Content module provides support for the actual content of Web sites and the information
about how it is to be interpreted. This module lives within the http://purl.org/rss/1.0/mod-
ules/content/ namespace bound to the content prefix:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://purl.org/rss/1.0/"
xmlns:content="http://purl.org/rss/1.0/modules/content/" >

This module currently contains five approved elements: content:items, content:item,
content:format, rdf:value, and content:encoding.

content:items

The content:items element is a container for content:item elements. It can be a child of an
RSS item or channel element, and it takes the following form:

<content:items>
<rdf:Bag>

<rdf:li>
<!-- content:item elements located here -->

</rdf:li>
</rdf:Bag>

</content:items>

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM532

6331_c14_final.qxd 2/16/06 4:34 PM Page 532

The additional rdf namespaced elements are necessary when using this element and are
from the RDF specification.

content:item

The content:item element describes a single version of the content for its parent item. This
attribute can contain an rdf:about attribute whose value is the URI of the content. When
this attribute is not used with this element, you need to use a child rdf:value element. For
example:

<!-- Without rdf:about attribute -->
<content:item>
<!-- information about the item goes here -->
<!-- content:item children -->

</content:item>

<!-- Using rdf:about attribute -->
<content:item rdf:about="http://www.example.com/image.jpg">
<!-- content:item children -->

</content:item>

The content of this element can consist of a required content:format element, an
rdf:value element that depends upon the existence of an rdf:about attribute, and an optional
content:encoding element.

content:format

The content:format element is a required, empty element with an rdf:about attribute. The
value of this attribute is a URI that represents the content of the item. Normally the value is
one of the URIs specified by the Resource Directory Description Language (RDDL) natures at
http://www.rddl.org/natures/. For example, an item that consisted of strict XHTML content
would have a content:format element like the following:

<content:format rdf:resource="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict" />

rdf:value

The rdf:value element contains the content of the content:item element. rdf:value is
required only when the content:item element does not contain an rdf:about attribute that
points to the content. When rdf:value is used, its content is encoded as specified by a con-
tent:encoding element. The following two examples of the rdf:value element have no
encoding defined and thus are considered to contain character data:

<rdf:value>This is Bold Text.</rdf:value>
<rdf:value><![CDATA[This is Bold Text.]]></rdf:value>

When content is included as unencoded XML, you should use the attribute
rdf:parseType="Literal" so as to not confuse RDF parsers.

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 533

6331_c14_final.qxd 2/16/06 4:34 PM Page 533

content:encoding

The content:encoding element is an empty element with an rdf:resource attribute. The value
of this attribute is a URI representing the encoding of the content:item element. For example,
when the content of the rdf:value element is well-formed XML, you should use the URI
http://www.w3.org/TR/REC-xml/#dt-wellformed. For example:

<content:item>
<content:format rdf:resource="http://www.w3.org/1999/xhtml" />
<content:encoding rdf:resource="http://www.w3.org/TR/REC-xml#dt-wellformed" />
<rdf:value rdf:parseType="Literal" xmlns="http://www.w3.org/1999/xhtml">

<p>This is Bold Text.</p>
</rdf:value>

</content:item>

Example Item Element

Putting all this together, the following code shows how to create a new item for the document
in Listing 14-1 and includes information about the content using the Content module. Some
simple XHTML markup, <p>This is Bold Text.</p>, is included within the content,
and the content module informs the parser and aggregator how to handle this data.

<item rdf:about="http://www.example.com/pub/article3.html">
<title>Article 3</title>
<link>http://www.example.com/pub/article3.html</link>
<content:items>

<rdf:Bag>
<rdf:li>

<content:item>
<content:format rdf:resource="http://www.w3.org/1999/xhtml" />
<content:encoding

rdf:resource="http://www.w3.org/TR/REC-xml#dt-wellformed" />
<rdf:value rdf:parseType="Literal"

xmlns="http://www.w3.org/1999/xhtml">
<p>This is Bold Text.</p>

</rdf:value>
</content:item>

</rdf:li>
</rdf:Bag>

</content:items>
</item>

Introducing RSS 2.0: Really Simple Syndication
The RSS 2.0 specification (http://blogs.law.harvard.edu/tech/rss) was released in July 2003.
Although it does supercede the previous 0.9x versions, many people continue to use RSS 0.91
because of its simplicity. RSS 2.0 is not much more complex than RSS 0.91, but it does allow
extensibility through the use of namespaces. You can use elements not defined in the specifi-
cation within an RSS 2.0 document as long as they are namespaced. This section will break

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM534

6331_c14_final.qxd 2/16/06 4:34 PM Page 534

down the structure of an RSS 2.0 document; Listing 14-2 shows the same feed as the RSS 1.0
document from Listing 14-1 but written using RSS 2.0.

Listing 14-2. Sample RSS 2.0 Document

<?xml version="1.0"?>
<rss version="2.0">

<channel>
<title>Example RSS News</title>
<link>http://www.example.com/</link>
<description>

This is an example RSS feed from www.example.com.
</description>



<item>
<title>Article 1</title>
<link>http://www.example.com/pub/article1.html</link>
<description>This is the description for article 1.</description>
<pubDate>Sun, 02 Oct 2005 11:05:27 GMT</pubDate>

</item>
<item>

<title>Article 2</title>
<link>http://www.example.com/pub/article2.html</link>
<description>This is the description for article 2.</description>
<pubDate> Sun, 02 Oct 2005 11:35:47 GMT </pubDate>

</item>

</channel>
</rss>

One of the biggest differences between these documents, excluding the mandatory use of
namespaces in an RSS 1.0 document, is the channel encapsulation. All information pertaining
to the channel (including the items) is contained within the channel element. This eliminates
the need to reference items, image, and textinput elements from within a channel element,
like you need to do in RSS 1.0.

Introducing the RSS 2.0 Structure
All RSS 2.0 documents start with a root rss element. The XML declaration is optional, but as
always, it is general practice to include it in the document. The rss element encapsulates the
information for the feed and uses a required version attribute to denote the RSS version being
used. This element contains a single channel element that defines the channel and includes
the feed content.

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 535

6331_c14_final.qxd 2/16/06 4:34 PM Page 535

It may seem odd that the document contains a channel element even though the docu-
ment can contain only a single channel, rather than just having its contents live directly as
children of the rss element, but I assume this is because of the structure RSS had in versions
0.9 and 0.91. To keep compatibility, these elements were kept within the structure. This is only
a guess, but otherwise it would be just as intuitive that all children of an rss element would
pertain to the channel, since it can contain only a single channel.

The channel element contains all the information for the feed, other than the version of
RSS being used. Its structure requires that the elements in Table 14-3 are implemented and
allows for additional information using the optional elements listed in Table 14-4.

Table 14-3. Required channel Elements

Element Description Example

title The name of the channel. If the feed “Example RSS News”
contains information from your Web
site, the title should be the same as
that of the Web site or specific page
name from the Web site.

link The URL to the Web site or specific “http://www.example.com”
page to which the feed refers.

description The description of the channel. “This is an example RSS feed from
www.example.com.”

Table 14-4. Optional channel Elements

Element Description Example

language The language in which the channel is en-us
written. The value should be a language
code as specified by Netscape (http://
blogs.law.harvard.edu/tech/stories/
storyReader$15) or defined by the W3C
in RFC 1766 (http://www.ietf.org/rfc/
rfc1766.txt).

copyright Copyright notice for content in the Copyright 2005, Example Holder
channel.

managingEditor Email address for the party responsible editor@example.com (Managing
for editing the content. Editor)

webMaster Email address for party responsible for webmaster@example.com (Webmaster)
handling technical issues.

pubDate The publication date for the content in Mon, 03 Oct 2005 13:00:01 GMT
the channel.

lastBuildDate The last date and time the content Mon, 03 Oct 2005 13:15:26 GMT
changed.

category The category (or categories) to which <category>PHP</category>
this channel belongs. This element
follows the same rules as the category
element for an item.

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM536

6331_c14_final.qxd 2/16/06 4:34 PM Page 536

Element Description Example

generator A string indicating the program used to My PHP RSS Generator v1.0
generate the channel.

docs A URL to the documentation for the RSS http://blogs.law.harvard.edu/
format used. Unless you have written tech/rss
your own documentation for RSS 2.0,
you should use http://blogs.law.
harvard.edu/tech/rss.

cloud Specifies a Web service implemented in <cloud domain="soap.example.com"
HTTP-POST, XML-RPC, or SOAP 1.1, port="80" path="/rsscloud.php"
which supports the rssCloud interface, registerProcedure="rssNotify"
allowing a process to register with and protocol="soap"/>
be notified of updates.

ttl The number of minutes a channel can <ttl>60</ttl>
be cached before refreshing from the
source (time to live).

image Specifies a GIF, JPEG, or PNG image to See the “image Element” section for
display with the channel. This element an example.
contains child elements that define the
image.

rating The Platform for Internet Content <rating>(PICS-1.1 "http://
Selection (PICS) rating for the channel. www.classify.org/safesurf/" l r
PICS is a W3C specification found at (SS~~000 1))</rating>
http://www.w3.org/PICS/ to rate con-
tent so users can control the type of
material they are allowed to access.

textInput Used to create a text input box to display See the “textInput Element” section
with the channel. for an example.

skipHours Contains up to 24 <hour /> child ele- <skipHours><hour>0></hour>
ments with values from 0 to 23, indicating <hour>12</hour><skipHours>
when the channel should not be read. This would ask an aggregator to not
This element is rarely used within a feed access the channel from noon to
but is still valid. From various statistics I 1 p.m. GMT or from midnight to
could find, fewer than 2 percent of feeds 1 a.m. GMT.
utilize this element.

skipDays Contains up to seven <day /> child ele- <skipDays><day>Thursday</day>
ments with values of Monday, Tuesday, </skipDays>
Wednesday, Thursday, Friday, Saturday, Do not read channel on Thursdays.
or Sunday, indicating days the channel
should not be read.
This element seems to be used even less
than skipHours. The best usage statistics
I could find for this element came in at
less than 0.2 percent.

A few of the optional elements require some additional explanation because they are
more than simple text content containers. These elements are image, cloud, and textInput.
I’ll explain the category element in more detail in the context of an item in the “item Element”
section. The rules for using this element as a child of channel are the same as when used as
a child of an item element.

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 537

6331_c14_final.qxd 2/16/06 4:34 PM Page 537

image Element
The image element defines the image associated with the channel and allows the image to be
rendered when the feed is rendered. You can use only GIF, JPEG, or PNG images for a channel.
When using an image element, you also need three child elements:

title: The title of the image. The value of this element is used as the value for the alt
attribute on the img tag when rendered as HTML. The value is normally the same as the
value of the channel’s title element.

url: The URL of the image. The value of this element is used as the value for the src
attribute of the img tag when rendered as HTML.

link: The URL of the site or Web page to which the image should link. You would use
this value to create an anchor tag with the value of the href attribute being the value of
the link element. In practice, this value is typically the same as the channel’s child link
element.

An image element can also define three additional optional elements to provide more
information for the image:

height: The height of the image in pixels. The value can be an integer from 1 to 400.
When omitted, the default value of 31 is used for the image’s height.

width: The width of the image in pixels. The value can be an integer from 1 to 144.
When omitted, the default value of 88 is used for the image width.

description: A description of the content to which the link element points. The value
of this element is used as the value for the title attribute of the link that surrounds the
rendered image.

The following structure uses the image element from the RSS document in Listing 14-2
and adds the optional elements to define a GIF with the dimension 100✕35 that will link to
http://www.example.com/ when selected in the rendered HTML:



textinput Element
The textInput element works in the same manner as that from the RSS 1.0 specification (though
note the difference in case for the element name). The textInput element generates a form, such
as a search box or subscription form, that would use the GET method when the feed is rendered
into HTML. When using it, you must also use the four required child elements:

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM538

6331_c14_final.qxd 2/16/06 4:34 PM Page 538

title: The label of the Submit button in the text input area.

description: Explanation of the text input area.

name: The name of the text object in the text input area. The value of this element is used
as the parameter name passed to the processing script.

link: The URL of the script that processes the request upon submission.

For example:

<textInput>
<title>Channel Search</title>
<name>str_search</name>
<description>Search all information within channel</description>
<link>http://www.example.com/search.php</link>

</textInput>

item Element
The item elements contain the actual content for the feed. Unlike RSS 1.0, it is legal to have
a feed without any items, though the feed would not serve much purpose in that case. Also,
unlike RSS 1.0, these elements are children of the channel element rather than just pointers
to items. Although the basic structure is similar to that used in RSS 1.0, additional optional
elements, defined by the RSS 2.0 specification, can further describe the item rather than
having to extend the structure like what you must do in RSS 1.0.

title

The title element, which is required, contains the title of the item. Using a blog entry as
an example, the content for this item would be the same as the title used for the entry
within the blog. Other than containing character data, this element has no further restric-
tions. For example:

<title>Article 1</title>

link

The link element, which is required, contains the URL to a specific item. In the case of a blog
entry, the content of this element would be the direct URL to the specific blog entry to which
the item refers. This element has no further restrictions for the content. Protocols are not
restricted under RSS 2.0 like they are when using RSS 1.0. For example:

<link>http://www.example.com/pub/article1.html</link>

description

The description element provides a brief description or abstract of the content to which the
item is referring. Unlike RSS 1.0, this element is required within an item element. For example:

<description>This is the description for article 1.</description>

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 539

6331_c14_final.qxd 2/16/06 4:34 PM Page 539

author

The author element is optional and is used to identify the author of the current item. The con-
tent contains the email address of the author. This element is useful when the feed contains
items from many different authors rather than from a single source. For example:

<author>rrichards@php.net (Rob Richards)</author>

category

The category element is an optional child element for both an item element and a channel
element. It associates one or more categories with either an item or a channel, depending
upon the context. It has one optional attribute, domain, whose value identifies a categorization
taxonomy. The value of the element is a slash-separated string that identifies a hierarchic
location in the indicated taxonomy. For example:

<category>PHP</category>

Here’s another example (which has been split into three lines for readability):

<category domain="http://www.dmoz.org">
Computers/Programming/Languages/PHP/

</category>

comments

The comments element includes the URL to a comments page for the particular item. For
example, most blog entries contain a section for user comments. The contents of the comments
element for this item would be the URL pointing to the user comment page or section. For
example:

<comments>http://www.exmaple.com/2005/10/01/article1.html#comments</comments>

enclosure

An enclosure element is optionally used to locate and describe some type of content associ-
ated with the current item. For example, an item for a news entry could refer to a multimedia
clip in MPEG format that shows the actual footage of the event. You could use an enclosure
element so that the video could be retrieved along with the feed. This way, if feed retrieval were
automated, you could retrieve the video clip with the feed, allowing it to stored and viewed
on a local machine rather than streaming it across the Internet.

This element was pretty much added to the RSS 2.0 specification specifically to allow for
the syndication of audio files, eventually termed podcasts. Its structure consists of an empty
element with three required attributes:

url: An HTTP URL locating the enclosure

length: The size of the enclosure in bytes

type: The MIME type of the enclosure

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM540

6331_c14_final.qxd 2/16/06 4:34 PM Page 540

For example:

<enclosure url="http://www.example.com/news/article1.mpg"
length="9312164" type="video/mpeg" />

guid

The content of the optional guid element is a globally unique identifier for the item. It is
a string that an aggregator can use to determine whether the item is new. You can use an
optional isPermaLink with either the value true, which is the default value, or the value false.
When the value is true, an aggregator assumes that the value of the element is a URL pointing
to the item that could be opened in a Web browser. For example:

<!-- GUID is not a URL -->
<guid isPermaLink="false">1234567890</guid>

<!-- GUID is a URL that can be opened -->
<guid isPermaLink="true">http://www.example.com/pub/article1.html</guid>
<!-- GUID is a URL that can be opened using default value for isPermaLink -->
<guid>http://www.example.com/pub/article1.html</guid>

pubDate

The optional pubDate element contains the date the current item was published. The value
of this element is a date in the format defined in RFC 822 (http://asg.web.cmu.edu/rfc/
rfc822.html#sec-5). When a future date is used, an aggregator can choose to not display
the current item until the specified date and time is reached. For example:

<pubDate>Sun, 02 Oct 2005 18:10:01 GMT</pubDate>

source

An optional source element supplies the name of the RSS channel from which the item came.
It has one required attribute, url, which links to the XML from the source. For example:

<source url="http://www.example.net/foreign.xml">Third Party Feed</source>

The url attribute, in this case, points to the www.example.net domain, which is the origi-
nator of the item. This allows the proper credits to be given to the originator when a feed
incorporates items from other feeds.

Extending RSS 2.0
You can extend RSS 2.0 in the same way you can extend RSS 1.0 documents. Elements outside
the RSS 2.0 specification must reside in a unique namespace when used within the feed. It
uses modules, but unlike RSS 1.0, no default modules are built into the specification. This
does mean, on the other hand, that you can use the modules explained earlier with an RSS 2.0
feed. For more information about extending RSS 2.0, please refer to the earlier “Introducing
Modules” section.

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 541

6331_c14_final.qxd 2/16/06 4:34 PM Page 541

Introducing Atom 1.0
As you read earlier, Atom was created because of all the problems and disagreements in the
RSS community a few years back. It is a new format, built from the ground up and not relying
on any of the existing RSS formats as its foundation. Atom not only defines a format for a feed
but also defines an API for creating, retrieving, and editing documents. This section will focus
on the format of an Atom 1.0 document. You can find additional information, including the
API, at http://www.atomenabled.org/. The document in Listing 14-3 is an example of the same
feed that has been shown in RSS 1.0 and RSS 2.0 formats but this time is converted to Atom 1.0
format.

Listing 14-3. Example Atom 1.0 Document

<?xml version="1.0"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>Example RSS News</title>
<link href="http://www.example.com/"/>

<updated>2005-10-02T11:35:27Z</updated>
<author>
<name>Rob Richards</name>
<email>rrichards@php.net</email>

</author>
<id>http://www.example.com/</id>

<entry>
<title>Article 1</title>
<link href="http://www.example.com/pub/article1.html"/>
<id>http://www.example.com/pub/article1.html</id>
<updated>2005-10-02T11:35:27Z</updated>
<summary>This is the description for article 1.</summary>

</entry>
<entry>
<title>Article 2</title>
<link href="http://www.example.com/pub/article2.html"/>
<id>http://www.example.com/pub/article2.html</id>
<updated>2005-10-02T11:25:47Z</updated>
<summary>This is the description for article 2.</summary>

</entry>
</feed>

The syntax is a little different from either RSS format. It uses a default namespace like RSS
1.0 does.

Introducing the Atom 1.0 Structure
Atom defines two different types of documents: Atom feed documents and Atom entry docu-
ments. An Atom feed document is similar to an RSS feed. It provides all the information for the

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM542

6331_c14_final.qxd 2/16/06 4:34 PM Page 542

feed as well as the content, which are called entries rather than items. An Atom entry document
represents a single entry that lives outside the context of a feed. The type of document being
created determines the document element that must be used. Atom feed documents, which
are most common, begin with a feed element, and Atom entry documents begin with an entry
element. In both cases, the elements reside within the http://www.w3.org/2005/Atom name-
space, which is set as the default namespace on the element. For example:

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<!-- Atom Feed elements -->
</feed>

<?xml version="1.0" encoding="UTF-8"?>
<entry xmlns="http://www.w3.org/2005/Atom">

<!-- Atom Entry elements -->
</entry>

Atom uses internationalized resource identifiers (IRIs), as defined in RFC 3987, located at
http://www.ietf.org/rfc/rfc3987.txt. IRIs extend the URI syntax to support a greater number
of characters. This means that a URI is an IRI, but not all IRIs are URIs. Section 3.1 from RFC 3987
explains how an IRI can be mapped to a URI. I will not go into detail about this; if you decide to
use IRIs with Atom, it is important you understand how mappings are created because you must
take two facts into consideration with Atom. First, when you use an IRI that is not also a URI for
dereferencing, you must map it to a URI. This means when a resource needs to be retrieved, the
IRI must have a mapping to a URI so that the resource can be located and retrieved. You can also
use an IRI for resource identification, such as when used as the value of Atom id elements. In this
case, the IRI alone is used for uniqueness, and the mapped URIs are not used.

Second, all Atom elements can contain xml:base and xml:lang attributes. As you saw in
earlier chapters, xml:base sets the base URI or IRI for resolving any relative paths found in the
scope of a particular element. You can identify the natural language for an element and its
descendants using the xml:lang attribute. This attribute is significant only for elements and
attributes defined as being “language-sensitive” from the Atom specification.

In terms of the structure of an Atom document, these attributes are part of a common
definition, atomCommonAttributes, that can be applied to any element. This definition consists
of zero or one xml:base attribute, zero or one xml:lang attribute, and any number of unspeci-
fied attributes. The unspecified attributes would constitute namespaced attributes, outside
the Atom namespace, used to extend the Atom specification.

Common Constructs
Many of the elements defined in the Atom specification share the same structure. The following
sections will present these common structures and their definitions. When an Atom element is
identified as being one of these types, it must adhere to the requirements for the particular
construct.

■Caution Whitespace must not be used in a Date construct or any IRI. Doing so results in the creation of
invalid Atom documents.

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 543

6331_c14_final.qxd 2/16/06 4:34 PM Page 543

Text
A Text construct, atomTextConstruct, contains human-readable text. This construct can either
be an atomPlainTextConstruct or an atomXHTMLTextConstruct. The difference is the type of con-
tent allowed within the element, which is explained in more detail within the context of the type
attribute in the “type Attribute” section. Other than the difference in content, a Text construct
consists of atomCommonAttributes, an optional type attribute, and its contents.

type Attribute
The type attribute specifies the type of content contained within the element. It can take the
value text, html, or xhtml. When this attribute is omitted from a Text construct, the value text
is used by default. The following is a breakdown of how content is treated based on the value
of the type attribute.

text

The value text indicates that the content is plain text with no entity-escaped HTML. This
doesn’t mean that entities do not have to be escaped. The content still must be valid XML. For
example:

<title type="text">Using PHP & XML</title>

Because this is plain text, an Atom processor can remove whitespace and format the text
for display, such as justifying text or using changing fonts.

html

The value html indicates that the content is suitable to be displayed as HTML. All markup
must be properly escaped, and the content should be able to be displayed within an HTML
DIV tag. For example:

<title type="html">Using PHP & XML</title>

xhtml

The value xhtml indicates that the content is valid XHTML. When using this type, the content
is contained within a div tag, which is not considered part of the content. This tag, as well as
the appropriate content, must reside within http://www.w3.org/1999/xhtml, just like when
writing an XHTML document. You can define the namespace anywhere within the Atom doc-
ument as long as it is in scope when using the construct. For example:

<!-- Using default namespace on div tag -->
<title type="xhtml">

<div xmlns=" http://www.w3.org/1999/xhtml ">
PHP & XML

</div>
</title>

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM544

6331_c14_final.qxd 2/16/06 4:34 PM Page 544

<!-- Using a prefixed namespace -->
<title type="xhtml" xmlns:xhtml="http://www.w3.org/1999/xhtml">

<xhtml:div>
<xhtml:b>PHP</xhtml:b> & <xhtml:b>XML</xhtml:b>

</xhtml:div>
</title>

As you can clearly see, the easiest manner to handle the namespacing is to set it as a
default namespace on the div element. Defining it anywhere above this element requires
using a prefix to keep it separate from the Atom namespaced elements and attributes, which
then must be used for every piece of XHTML written.

Person
A Person construct describes a person or other entity. It is constructed with
atomCommonAttributes, a single name element, an optional uri element, an optional email
element, and any number of extension elements. Extension elements are elements outside
the Atom namespace that can provide additional information about the particular element.
Table 14-5 describes the Atom-specific elements for this construct.

Table 14-5. Person Construct Child Elements

Element Description

name A required element containing a human-readable name for the person or entity. The
content is language-sensitive.

uri An optional element containing an IRI associated with the person or entity.

email An optional element containing the email address associated with the person or
entity.

Date
A Date construct defines an element containing a date and time conforming to those specified
in RFC 3339. It is constructed with atomCommonAttributes and has a date and time as the con-
tent. The date and time are separated by the uppercase letter T and, when a numeric time
zone offset is not used, must contain the uppercase letter Z for the time zone. For example:

<!-- No time zone offset specified -->
<updated>2005-10-02T11:30:00Z</updated>

<!-- Time zone offset used -->
<updated>2005-10-02T11:30:00-4:00</updated>

link
A link element defines a reference from a feed or entry to a Web resource. It consists of
atomCommonAttributes, a required href attribute, and five optional attributes:

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 545

6331_c14_final.qxd 2/16/06 4:34 PM Page 545

href: A URL or IRI that can be dereferenced to a resource.

rel: This attribute describes the meaning of the link. It can be a full URI or one of the
predefined values:

• alternate: An alternate representation of the entry of a feed, such as a link to
the page to which a feed refers.

• enclosure: A related resource that may require additional handling, such as a
video. When this attribute is used, it is also recommended that the length
attribute be provided.

• related: A resource related to the feed or entry.

• self: The feed or entry itself.

• via: The source of the information provided in the entry or feed.

type: The media type of the resource.

hreflang: The language of the resource.

title: The title for the link.

length: The size of the resource in bytes.

For example:

<link href="http://www.example.com/news/article1.mpg" rel="enclosure"
length="9312164" type="video/mpeg" />

Category
A category element associates a category with either a feed or an entry. It consists of
atomCommonAttributes, a required term attribute, an optional scheme attribute, and an
optional label attribute:

term: A string identifying the category

scheme: An IRI identifying the categorization scheme

label: A language-sensitive, human-readable label that can be displayed in user
applications

For example:

<category term="PHP" />

or:

<category term="PHP"
scheme="http://www.dmoz.org/Computers/Programming/Languages/PHP/"/>

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM546

6331_c14_final.qxd 2/16/06 4:34 PM Page 546

content
A content element either links or contains the content of an entry element. Its structure
depends upon the type and location of the actual content. All content elements contain a type
attribute and, depending upon its value, may require an src attribute. The content of this ele-
ment depends upon the value of the type attribute as well as the use of the src attribute.

In most cases, the value of the type attribute will be text, html, or xhtml. In these instances,
the content element does not have an src attribute and uses the rules defined by a Text con-
struct based on its type value. In the rest of the cases, the type attribute must contain a valid
MIME type, which excludes composite types.

When the src attribute is used, it contains the URI locating the content. The type attrib-
ute in this case indicates the MIME type of the remote content. When the src attribute is not
used, and the type attribute does not contain one of the already mentioned values, then the
content is determined as follows:

• If the type attribute ends in +xml or /xml, the src attribute is not used, and the content
of the element is an inline XML document.

• If the type attribute starts with text, then the src attribute is not used, and the content
of the element is an inline, escaped document.

• In all other cases, the content of the element is a Base64-encoded document of the
media type defined by the type attribute.

For example:

<content type="xhtml" xml:lang="en">
<div xmlns="http://www.w3.org/1999/xhtml">

PHP & XML
</div>

</content>

feed Element
The feed element is the document element for an Atom feed document containing the meta-
data and data for the feed. Its children consist of atomCommonAttributes, a number of metadata
elements (listed in Table 14-6), a number of extension elements, and zero or more entry ele-
ments (which are described in the following section).

Table 14-6. feed Metadata Elements

Element Use Description

title Required A Text construct containing the title or name of the feed.

id Required A permanent and universally unique IRI. If this is not a URI, it is
not dereferenced and is compared on a character-to-character
basis, just like a URI.

updated Required A Date construct indicating the date and time of the last signifi-
cant modification.

Continued

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 547

6331_c14_final.qxd 2/16/06 4:34 PM Page 547

Table 14-6. Continued

Element Use Description

author Recommended A Person construct providing information about the author of
a feed. A feed element must contain one or more author ele-
ments unless every entry element contains at least one author
element.

link Recommended A link, as defined in the “Common Constructs” section, to a
related Web page.

category Optional Associates a category, as defined in the “Common Constructs”
section, with the feed. A feed can have zero or more category
elements.

contributor Optional A Person construct providing information for a contributor to
the feed. You can use zero or more contributor elements.

generator Optional Identifies the agent used to create the feed.

icon Optional Identifies a small image, by means of a URL, for the feed.

logo Optional Identifies a larger image, by means of a URL, for the feed.

rights Optional A Text construct containing any rights, such as copyrights, for
the feed.

subtitle Optional A Text construct containing a description or subtitle for the
feed.

A document using the metadata elements from Table 14-6 could look something like the
one in Listing 14-4.

Listing 14-4. Sample Atom Feed Document Using Optional Elements

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>Example Feed</title>
<id>http://www.example.com/</id>
<updated>2005-10-02T15:15:00Z</updated>
<author>

<name>John Smith</name>
</author>
<author>

<name>Jane Doe</name>
</author>
<link rel="self" href="/atom/" />
<category term="technology"/>
<category term="PHP"/>
<contributor>

<name>John Doe</name>
</contributor>
<generator uri="/phpatomgen.php" version="1.0">

Example PHP Atom Generator
</generator>

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM548

6331_c14_final.qxd 2/16/06 4:34 PM Page 548

<icon>http://www.example.com/feedicon.jpg</icon>
<logo>http://www.example.com/feedlogo.jpg</logo>
<rights> © 2005 John Smith </rights>
<subtitle>Description of Example Atom Feed</subtitle>

<!-- Zero or more entry elements -->
</feed>

entry Element
Atom does not require a feed to contain any entry elements, which is similar to RSS 2.0,
because it does not require items. Using the Atom format, however, an entry element can be
part of a feed and also can be its own document. This section will cover the structure of an
entry element because it is the same whether used a child element of a feed element or used
stand-alone as the document element of an Atom entry document. The only difference is that
because Atom elements must live within the Atom namespace, an entry element used as an
Atom entry document must declare the namespace, http://www.w3.org/2005/Atom, while a
child entry element within a feed would normally already be within the scope of this name-
space. Many of the possible child elements, shown in Table 14-7, of an entry element are used
in a similar fashion as those used by the feed element.

Table 14-7. Entry Child Elements

Element Use Description

title Required A Text construct containing the title or name of the entry.

id Required A permanent and universally unique IRI. If this is not a URI, it is
not dereferenced and is compared on a character-to-character
basis like a URI.

updated Required A Date construct indicating the date and time of the last signi-
ficant modification.

author Recommended A Person construct providing information about the author of
a feed. An entry element must contain at least one author ele-
ment unless one is contained by the feed or is provided within
a source element for the current entry.

content Recommended Contains or links to the complete content, as defined in the
“Common Constructs” section, of the entry. This element must
be provided if the entry does not contain an alternate link and
should be provided if there is no summary.

link Recommended A link, as defined in the “Common Constructs” section, to a
related Web page. An alternate link must be used if the entry
does not contain a content element.

summary Recommended A Text construct that provides a short summary or description
of the entry. It is recommended that a summary element be used
when no content element is used, the content is remote and
uses an src attribute, or the content is Base64-encoded.

category Optional Associates categories, as defined in the “Common Constructs”
section, with the entry. A feed can have zero or more category
elements. There can be zero or more category elements.

Continued

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 549

6331_c14_final.qxd 2/16/06 4:34 PM Page 549

Table 14-7. Continued

Element Use Description

contributor Optional A Person construct providing information for a contributor to
the entry. You can use zero or more contributor elements.

published Optional A Date construct containing the initial creation date and time
of the entry.

source Optional A source element is used when an entry is copied from another
feed. I will explain this element in further detail following this
table.

rights Optional A Text construct containing any rights, such as copyrights, for
the entry.

I have explained each of the elements in Table 14-7 elsewhere in the chapter. The only ele-
ment that needs more clarification is the source element. You use a source element when an
entry is copied from another feed. Its children can be any of those used by the entry’s original
parent feed element except for entry elements, especially when the element is not already
contained by the entry. For example, if you used an entry from Listing 14-3 to create an Atom
entry document, it could look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<entry xmlns="http://www.w3.org/2005/Atom">

<title>Article 1</title>
<link href="http://www.example.com/pub/article1.html"/>
<id>http://www.example.com/pub/article1.html</id>
<updated>2005-10-02T11:35:27Z</updated>
<summary>This is the description for article 1.</summary>
<source>

<link href="http://www.example.com/"/>
<author>

<name>Rob Richards</name>
<email>rrichards@php.net</email>

</author>
</source>

</entry>

If you look at the source element, you will see that it used the link and author elements
from the original feed. This pertains to Atom entry documents and also when an entry from
one feed is incorporated into another feed. The original feed information for the entry is
maintained with the entry, keeping it completely separate from the current feed yet allowing
the entry to reference its original feed. The author, contributor, rights, and category ele-
ments are some elements to preserve from the original feed because they provide the most
important information pertaining to the origins and rights for the entry.

Choosing a Format
With three competing technologies, how do you choose one to use? If you are going to be sub-
scribing to a feed, the answer is simple. You use what is offered and what your reader supports.

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM550

6331_c14_final.qxd 2/16/06 4:34 PM Page 550

The hard part comes when you are the one creating the feed. Personally, when faced with a
decision like this, I often will check around to see what the big corporations are doing. It is
normally a safe bet that if several of them are using the same technology, it means good sup-
port exists for it. Of course, big companies also have a decent amount of resources behind
them, so even if the support is not there, it usually arrives quickly.

In my opinion, RSS 2.0 looks like a safe bet, although I am not ruling out the others. With
a quick look at some RSS 2.0 implementers, you will see names such as Yahoo, the Wall Street
Journal, MSNBC, and IBM. This does not even include those providing podcasts. This, how-
ever, doesn’t mean you have to use RSS 2.0 or even select just a single format.

If you look at the open source community, it is not surprising to find sites providing feeds
in all three formats. Unlike a company that normally mandates how its information is accessed,
open source sites tend to lean more toward freedom of choice. No matter what aggregator or
reader you are using, as long as it’s compatible with at least one of the technologies, you will be
able to access the information.

Comparing the three formats, my first choice is RSS 2.0. It is simple to use and has a high
usage rate. Second on my list is Atom. I consider Atom to be a wildcard format. It has a great
structure and offers more flexibility than RSS 2.0, but it does not yet have the user base RSS 2.0
does. Remember, Atom was created as a competing format because of all the problems between
the two RSS camps. So, unlike the RSS branches that already had user bases (though divided),
Atom started from the bottom. I consider it a wildcard because it still has the possibility of gain-
ing more widespread usage. RSS 1.0 is my least favorite. I think the structure is a bit awkward,
and the use of namespaces a bit extensive for my liking. You should also take into account that
RSS 1.0 is built on RDF technology, which in my opinion just overcomplicates things.

In the end, the choice is up to you. Everything here has been my opinion, not the voice of
the Great Oz. Only you understand who your audience is and your users’ needs. You know the
type of content your feed will be supplying. Finally, you will be the one who has to support it.
The advice offered should help you decide which format (or even formats) best suits your needs.

Seeing Some Examples in Action
Content syndication varies depending upon the technologies you are comparing. For this rea-
son, the examples in the following sections are not overly complex examples that attempt to
demonstrate the complete functionality of each of the formats. I will demonstrate a simple
API for creating minimal RSS 1.0, RSS 2.0, and Atom feeds using DOM; a simple RSS 2.0 parser
using SimpleXML; and a simple Atom parser using XMLReader. You could extend each of
these examples to create much more feature-rich applications.

Creating Simple Feeds Using DOM
Depending upon the type of feed and the different support being added to it, building a feed
manually using DOM can become complex, especially when trying to support multiple formats.
This example will demonstrate how to use DOM to create feeds in multiple formats and support
the minimal requirements for each format. The code is split into four classes. The Syndicator
class is the base class, which is not instantiated directly, that provides the bulk of functionality
for building a feed. The remaining classes, which extend the Syndicator class, are the ones that
are instantiated to create a feed in a specific format. The RSS1 class supports an RSS 1.0 feed, the
RSS2 class supports RSS 2.0 feeds, and the Atom class supports Atom 1.0 feed documents.

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 551

6331_c14_final.qxd 2/16/06 4:34 PM Page 551

Syndicator Class
The Syndicator class is the base class and provides the majority of functionality for creating
a feed. Because of the differing feed formats, much has been generalized in this class with
specifics provided by the extending classes. This class is not meant to be directly instantiated.
In actuality, this class should be made abstract, but in the event you are not fluent with OOP
or some of the newer aspects of PHP 5, I have written it as a regular class:

class Syndicator {
protected $rssDoc = NULL;
protected $docElement = NULL;
protected $root = NULL;
protected $items = NULL;
protected $hasChannel = TRUE;
protected $tagMap = array('item'=>'item', 'feeddesc'=>'description',

'itemdesc'=>'description');

const ITEM = 0;
const FEED = 1;

All class properties are protected because they are not meant to be accessed outside an
instantiated object. The first three properties are required because of the differing structures.
The rssDoc property holds the DOMDocument object you are using to create the feed. The
docElement property holds the DOMElement object to which item or entry elements are added.
This normally is the document element except in the case of RSS 2.0. The item elements are
added to the channel element in that format, which is actually a child of the document ele-
ment. The docElement property acts as a pseudo-document element, so you can add item and
entry elements using common functionality. The root property holds the DOMElement to which
you add the metadata for the feed. Again, this varies depending upon the format you are
using. For an Atom feed, the value of this property is the feed element, which is the document
element. For an RSS 1.0/RSS 2.0 feed, the value of this property is the channel element. I will
show how to use the remaining properties later in the example. The defaults for these, how-
ever, are for the RSS 1.0 and 2.0 feeds.

/* Common element creation function that handles namespace creation properly */
protected function createSyndElement($namespace, $name, $value=NULL)
{

if (is_null($namespace)) {
return $this->rssDoc->createElement($name, $value);

} else {
return $this->rssDoc->createElementNS($namespace, $name, $value);

}
}
/* Default link element creation function as Atom has a different format */
protected function createLink($parent, $url)
{

$link = $this->createSyndElement($this->NS, 'link', $url);
$parent->appendChild($link);

}

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM552

6331_c14_final.qxd 2/16/06 4:34 PM Page 552

The following function, createRSSNode(), adds a title, link, and description to the element
passed as the first parameter. In the case of an Atom feed, it also creates the updated and id
elements. Links in Atom feeds are created differently than in RSS 1.0 and RSS 2.0 feeds; thus,
the example uses a createLink() function. As you will see in the Atom class, it is overridden
so the element is created in the proper format. A $type variable is passed into this method to
indicate the type of element for which these child elements are being created. The reason for
this is to determine the element for the description. RSS 1.0 and RSS 2.0 use the element
description for both the channel and item elements. Atom, on the other hand, uses subtitle
for the feed element and content for the entry element. Based on the type, the proper name
is taken from the tagMap array, which is also overridden in the Atom class.

/* Generic method to create appropriate title, link, and
description for an element */

protected function createRSSNode($type, $parent, $title, $url,
$description, $pubDate = NULL, $id=NULL)

{
$this->createLink($parent, $url);
$title = $this->createSyndElement($this->NS, 'title', $title);
$parent->appendChild($title);
if ($type == Syndicator::ITEM) {

$titletag = $this->tagMap['itemdesc'];
} else {

$titletag = $this->tagMap['feeddesc'];
}
$description = $this->createSyndElement($this->NS, $titletag, $description);
$parent->appendChild($description);

The remaining functionality of the createRSSNode() method is specific to Atom. These
methods could be supported with additional coding for both RSS 1.0 and 2.0 but are currently
out of the scope of this example. To do so would require supporting extending modules, the
Dublin Core in particular, for RSS 1.0. These are required for a valid Atom feed so currently
work properly only for that format.

/* id elements and updated elements are specific to Atom
- corresponding elements from other formats not currently supported */

if (! is_null($id)) {
$idnode = $this->createSyndElement($this->NS, 'id', $id);
$parent->appendChild($idnode);

}
if (! is_null($pubDate)) {

$datenode = $this->createSyndElement($this->NS, 'updated', $pubDate);
$parent->appendChild($datenode);

}
}

The constructor performs all the initial setup for the feed. Each class defines a SHELL
property, which is just a template for the document. It is used to easily create a document with
the initial namespaces declared properly. The hasChannel property is set to FALSE for the Atom
class because it is the only format not using a channel element. Once the object is instantiated,

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 553

6331_c14_final.qxd 2/16/06 4:34 PM Page 553

the constructor will have properly set up the properties mentioned earlier and set the initial
metadata for either the feed element or the channel element based on the values passed to
the constructor.

function __construct($title, $url, $description, $pubDate = NULL, $id=NULL)
{

try {
$this->rssDoc = new DOMDocument();
$this->rssDoc->loadXML($this->SHELL);
$this->docElement = $this->rssDoc->documentElement;
if ($this->hasChannel) {

$root = $this->createSyndElement($this->NS, 'channel');
$this->root = $this->docElement->appendChild($root);

} else {
$this->root = $this->docElement;

}
$this->createRSSNode(Syndicator::FEED, $this->root, $title,

$url, $description, $pubDate, $id);
return;

} catch (DOMException $e) {
throw new Exception($e->getMessage());

}
throw new Exception("Unable to Create Object");

}

The addItem() method is pretty simple. It creates an element using the name pulled from
the tagMap, which is entry for Atom and item for RSS 1.0 and 2.0. The new element is then
appended to the node held by the docElement property. The createRSSNode() method is then
called, passing the type Syndicator::ITEM constant, which will result in the title, link, descrip-
tion, possible ID, and updated elements to be created on this new element.

public function addItem($title, $link, $description=NULL,
$pubDate = NULL, $id=NULL)

{
$item = $this->createSyndElement($this->NS, $this->tagMap['item']);
if ($this->docElement->appendChild($item)) {

$this->createRSSNode(Syndicator::ITEM, $item, $title, $link,
$description, $pubDate, $id);

return TRUE;
}
return FALSE;

}

/* Method used as a holder and is overridden in the Atom class */
public function addAuthor($name)
{

trigger_error("Function not yet implemented");
return FALSE;

}

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM554

6331_c14_final.qxd 2/16/06 4:34 PM Page 554

/* Simple method to return the formatted XML document as a string */
function dump()
{

if ($this->rssDoc) {
$this->rssDoc->formatOutput = TRUE;
return $this->rssDoc->saveXML();

}
return "";

}
}

RSS1 Class
The RSS1 class is the class to be instantiated when creating an RSS 1.0 feed. It has a format
much different than RSS 2.0 and Atom do and therefore must override some methods to sup-
port its structure properly. The first area to look at is the properties and the constant it defines.
The RDFNS constant is used only within this class. It defines the rdf namespace because it is
quite long and because the constant makes it easier to use. This namespace is needed for a
few elements, and attributes are specific to RSS 1.0. The NS property sets the common name-
space used within the Syndicator class. Using the property allows the Syndicator class to use
generalized code shared amongst the classes when creating elements.

class RSS1 extends Syndicator {
const RDFNS = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#';
protected $NS = 'http://purl.org/rss/1.0/';

/* Following is formatted for readability */
protected $SHELL =

'<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://purl.org/rss/1.0/" />';

The addToItems() method is unique to this class. RSS 1.0 requires items to be referenced
within the channel element. The items property, which you saw defined in the Syndicator class,
holds the DOMElement to which the rdf:li elements are added. Upon the addition of the first
item, the structure is set up, which includes the items element and the rdf:Seq element, which
is the parent for the rdf:li items. This method is never called publicly, and hence you have the
private accessor. Instead, it is called by the overridden addItem() method in this class.

private function addToItems($url)
{

if (is_null($this->items)) {
$container = $this->createSyndElement($this->NS, 'items');
$this->root->appendChild($container);
$this->items = $this->rssDoc->createElementNS(self::RDFNS, 'Seq');
$container->appendChild($this->items);

}

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 555

6331_c14_final.qxd 2/16/06 4:34 PM Page 555

$item = $this->rssDoc->createElementNS(self::RDFNS, 'li');
$this->items->appendChild($item);
$item->setAttribute("resource", $url);

}

The only reason that the addItem() method has been overridden is to support the cre-
ation of the rdf:li elements. This method first calls the parent addItem() method and then
makes a call to the internal addToItems() method.

public function addItem($title, $link, $description=NULL,
$pubDate = NULL, $id=NULL)

{
if (parent::addItem($title, $link, $description, $pubDate, $id)) {

$this->addToItems($link);
return TRUE;

}
return FALSE;

}

As you probably recall from the RSS 1.0 section, the channel and item elements must con-
tain an rdf:about attribute. The createRSSNode() method is overridden to create this attribute
prior to the createRSSNode() method from the Syndicator class being called.

protected function createRSSNode($type, $parent, $title, $url,
$description, $pubDate = NULL)

{
$parent->setAttributeNS(self::RDFNS, 'rdf:about', $url);
parent::createRSSNode($type, $parent, $title, $url, $description, $pubDate);

}
}

RSS2 Class
The RSS2 class instantiates an object to create an RSS 2.0 document. This class is extremely
simple. RSS 2.0 does not use a namespace, so the NS property is set to NULL, and the tem-
plate is simply the rss element with a version. The structure of an RSS 2.0 feed differs from
that of RSS 1.0; as in RSS 2.0, all elements reside within the channel element. The construc-
tor has been overridden so that once the constructor from the Syndicator class has been
called, the docElement property can be set to point to the proper node. In this case, both
the root and docElement properties point to the channel element.

class RSS2 extends Syndicator {
protected $NS = NULL;
protected $SHELL = '<rss version="2.0" />';

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM556

6331_c14_final.qxd 2/16/06 4:34 PM Page 556

function __construct($title, $url, $description, $pubDate = NULL, $id=NULL)
{

try {
parent::__construct($title, $url, $description, $pubDate, $id);
$this->docElement = $this->root;

} catch (Exception $e) {
throw new Exception($e->getMessage());

}
}

}

Atom Class
The Atom class, used to instantiate an object to create an Atom 1.0 feed, is not much more difficult
than using the RSS2 class. Its NS property is set to the Atom namespace, and the SHELL property is
set to the initial feed element. The hasChannel variable is set to FALSE in this case. When the con-
structor is called, a channel element will not be created, and the docElement property will be set
accordingly. The class also defines a custom tagMap. Atom tags vary slightly from the RSS 1.0 and
2.0 tags, which is the reason for the use of this array mapping.

class Atom extends Syndicator {
protected $NS = 'http://www.w3.org/2005/Atom';
protected $SHELL = '<feed xmlns="http://www.w3.org/2005/Atom" />';
protected $hasChannel = FALSE;
protected $tagMap = array('item'=>'entry', 'feeddesc'=>'subtitle',

'itemdesc'=>'content');

Atom has a different syntax for a link element. This method overrides the default method
so that the link is created in the proper format:

protected function createLink($parent, $url) {
$link = $this->rssDoc->createElementNS($this->NS, 'link');
$parent->appendChild($link);
$link->setAttribute('href', $url);

}

Atom also requires that the feed and entry elements contain an updated id element. In
the event no value has been passed to these parameters for the constructor and addItem()
methods, the values are automatically populated. The id is set to the URL, and the pubDate is
set to the current date and time.

■Note If you are not familiar with the value c passed to the date function, it is a new format character as
of PHP 5 that formats dates in ISO 8601 format. This format is compatible with the Atom Date construct.

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 557

6331_c14_final.qxd 2/16/06 4:34 PM Page 557

For example:

function __construct($title, $url, $description, $pubDate = NULL, $id=NULL)
{

try {
if (empty($id))

$id = $url;
if (empty($pubDate))

$pubDate = date('c');
parent::__construct($title, $url, $description, $pubDate, $id);

} catch (Exception $e) {
throw new Exception($e->getMessage());

}
}

The addAuthor() method is specific to Atom. An author element is required either within
the feed or within every entry element. Rather than supporting some version of this for the
RSS formats, the method defined in the Syndicator class will issue a user notice when called
and not overridden by the current instantiated class. This method, when called, adds a simple
author and child name element to the feed. This is the minimal amount of data required to cre-
ate a valid Atom document.

public function addAuthor($name)
{

$author = $this->rssDoc->createElementNS($this->NS, 'author');
if ($this->docElement->appendChild($author)) {

$namenode = $this->rssDoc->createElementNS($this->NS, 'name', $name);
if ($author->appendChild($namenode)) {

return TRUE;
}

}
return FALSE;

}

public function addItem($title, $link, $description=NULL,
$pubDate = NULL, $id=NULL)

{
if (empty($id))

$id = $link;
if (empty($pubDate))

$pubDate = date('c');
return parent::addItem($title, $link, $description, $pubDate, $id);

}
}

You can use the following code with the classes defined previously to create simple feeds
in each format. Currently, the RSS2 class is the default type of feed to be created. Executing the
code will create an RSS 2.0 document containing two articles and will print the resulting docu-
ment to the output. Depending upon how the script is being accessed (CLI versus Web page),

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM558

6331_c14_final.qxd 2/16/06 4:34 PM Page 558

you need to use the correct input variable. It is currently set up to use CLI, but commenting
the line requesting the $_SERVER['argv'] and uncommenting the $_GET['format'] line will
allow the script to run within a Web page. In CLI mode, passing the value rss1 will create an
RSS 1.0 feed, atom will create an Atom feed, and anything else will result in an RSS 2.0 feed.
When executed within a Web page, the same values are used, although they need to be named
with the parameter format.

$type = "";

/* Uncomment the following when using within a Web server environment
if (isset($_GET ['format'])) {

$type = (string)$_GET['format'];
}
*/

/* Comment out the following to disable CLI mode */
if (isset($_SERVER['argc']) && $_SERVER['argc'] > 1) {

$type = (string) $_SERVER['argv'][1];
}

swtich ($type) {
case 'rss1':

$test = new RSS1("RSS1 Title", "http://www.example.com/rss1.xml",
"My RSS1 Feed");

break;

case 'atom':
$test = new Atom("Atom Title", "http://www.example.com/atom.xml",

"My Atom Feed");
/* Author is only applicable to an Atom feed */
$test->addAuthor('Rob Richards');
break;

default:
$test = new RSS2("RSS2 Title", "http://www.example.com/rss2.xml",

"My RSS2 Feed");
}

$test->addItem('Article 1', 'http://www.example.com/pub/article1.html',
'This is the description for article 1.');

$test->addItem('Article 2', 'http://www.example.com/pub/article2.html',
'This is the description for article 2.');

print $test->dump();

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 559

6331_c14_final.qxd 2/16/06 4:34 PM Page 559

<?xml version="1.0"?>
<rss version="2.0">

<channel>
<link>http://www.example.com/rss2.xml</link>
<title>RSS2 Title</title>
<description>My RSS2 Feed</description>
<item>

<link>http://www.example.com/pub/article1.html</link>
<title>Article 1</title>
<description>This is the description for article 1.</description>

</item>
<item>

<link>http://www.example.com/pub/article2.html</link>
<title>Article 2</title>
<description>This is the description for article 2.</description>

</item>
</channel>

</rss>

Creating a Simple RSS 2.0 Parser Using SimpleXML
SimpleXML provides a simple way to parse feeds. As long as no default namespaces have been
used in the feeds, you have little to deal with other than understanding the structure. As you
are already aware from Chapter 7, you access elements as properties by name, and you access
attributes like an array with string indexes.

<?php
/* Define some RSS 2.0 and other compatible feeds */
$rssfeed = array();
/* The PHP RSS feeds are RSS version 0.93 */
$rssfeed['PHPGEN'] = 'http://news.php.net/group.php?group=php.general&format=rss';
/* The YAHOO RSS feeds are RSS version 2.0 */
$rssfeed['YAHOOTOPNEWS'] = 'http://rss.news.yahoo.com/rss/topstories';
/* The Planet PHP RSS feed is RSS version 0.91 */
$rssfeed['PLNTPHP'] = 'http://www.planet-php.org/rss/';
/* Apress new book list feed - RSS 2.0 */
$rssfeed['APRESSBOOKS'] = 'http://www.apress.com/rss/whatsnew.xml';

/* Loop through and process each defined feed */
foreach($rssfeed AS $name=>$url) {

$rssParser = simplexml_load_file($url);

/* Output the channel information */
print $rssParser->channel->title."\n";
print " URL: ".$rssParser->channel->link."\n";
print " ".$rssParser->channel->description."\n\n";

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM560

6331_c14_final.qxd 2/16/06 4:34 PM Page 560

/* Iterate through the items, and output each one */
foreach ($rssParser->channel->item AS $item) {

print $item->title."\n";
print $item->link."\n";
print $item->pubDate."\n";
print $item->description."\n\n";

}
}
?>

As you can see, in only a few lines of code the basic information from RSS feeds ranging
from version 0.91 to 2.0, excluding RSS 1.0, is easily parsed using SimpleXML.

Creating a Simple Atom Parser Using XMLReader
This example uses XMLReader to parse an Atom feed from Planet PHP (http://www.
planet-php.org). Although the feed uses Atom 0.3, the code written here based on Atom 1.0
is compatible with the older version feed. It is basic because it outputs only the feed title,
URL, and a subtitle, if one is defined. It then outputs the title, link, and content for each entry
element in the feed. The amount of code to perform this simple task is much greater than that
of SimpleXML. XMLReader is a streaming parser, so the entire tree is not loaded into memory.
Although it is extremely fast and uses a low amount of memory, the code is much more diffi-
cult to write because positioning must be tracked to retrieve the correct information from the
feed.

■Note Within the following example, you may notice $$curnode being used. This is not a typo but
rather the use of a variable variable. A variable variable allows access to variables using dynamic names.
For example, $a = 'myvariable'; $$a = 1; print $myvariable; results in the output of 1. You can
find detailed information concerning variable variables in the PHP manual.

Here’s the code:

<?php
$rssURL = 'http://www.planet-php.org/atom/';

function outputChannelInfo($channelTitle, $channelLink, $channelDesc)
{

print "Title: $channelTitle\n";
print "URL: $channelLink\n";
print "Description: $channelDesc\n";
print "-------------------------\n\n";
$GLOBALS['printTitle'] = TRUE;

}

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 561

6331_c14_final.qxd 2/16/06 4:34 PM Page 561

/* This function processes an entry element and its contents */
function processItem($rssParser)
{

$content = "";
$link = "";
$title = "";
$curnode = NULL;

/* Keep processing the entry until the closing entry tag is encountered */
while ($rssParser->read() && $rssParser->localName != "entry") {

switch ($rssParser->nodeType) {
case XMLREADER::ELEMENT:

$curnode = NULL;
switch ($rssParser->localName) {

case "title":
case "content":

$curnode = $rssParser->localName;
break;

case "link":
$link = $rssParser->getAttribute('href');

}
break;

case XMLREADER::TEXT:
case XMLREADER::CDATA:

if (! is_null($curnode)) {
$$curnode = $rssParser->value;

}
}

}
print " Title: $title\n";
print " URL: $link\n";
print " Description: $content\n\n";

}

/* Create a new XMLReader, and begin reading from the remote location */
$rssParser = new XMLReader();
$rssParser->open($rssURL);
$printTitle = FALSE;
$subtitle = "";
$link = "";
$description = "";
$curnode = NULL;

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM562

6331_c14_final.qxd 2/16/06 4:34 PM Page 562

while ($rssParser->read()) {
switch ($rssParser->nodeType) {

case XMLREADER::ELEMENT:
$curnode = NULL;
switch ($rssParser->localName) {

case "entry":
if (! $printTitle) {

/* output the feed information before the first entry element */
outputChannelInfo($title, $link, $description);

}
/* If the entry is not empty, then process the contents */
if (! $rssParser->isEmptyElement) {

processItem($rssParser);
}
break;

case "title":
case "subtitle":

$curnode = $rssParser->localName;
break;

case "link":
$link = $rssParser->getAttribute('href');

}
break;

case XMLREADER::TEXT:
case XMLREADER::CDATA:

if (! is_null($curnode)) {
$$curnode = $rssParser->value;

}
}

}
/* In the event the feed contained no entry elements, output the feed information */
if (! $printTitle) {

outputChannelInfo($title, $link, $subtitle);
}
?>

XMLReader has an easy API to understand. The code should be more than enough to
understand how it is being parsed.

Using PEAR XML_RSS
The PEAR XML_RSS class, mentioned in Chapter 13, provides an easy way to read RSS feeds
without having to even know XML. Although it cannot be used to read Atom-based feeds, it
should work with most RSS version 1.0 and 2.0 feeds. The only requirements to use this class,
other than having to install it on the machine, are that the XML_Parser package is installed
and that remote file access is enabled (unless all feeds being accessed are local files, which is
highly unlikely).

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 563

6331_c14_final.qxd 2/16/06 4:34 PM Page 563

You create the RSS parser by instantiating an XML_RSS object and by passing a URI or file
handle for the RSS data to be parsed to the constructor:

$rss_parser = new XML_RSS('http://www.example.com/feed.rss');

In this instance, the RSS feed, located at http://www.example.com/feed.rss, is set as the
data to be parsed for the instantiated XML_RSS object, $rss_parser. Once created, the parse()
method must be called to read and parse the data, which will then, barring any errors, be
available to access by means of the API:

$rss_parser->parse();

The API is quite simple, having only five methods. Each method returns an array of data,
which corresponds to a specific group of information from the RSS document. The first piece
of information that is typically requested concerns the channel. The getChannelInfo() method
returns an associative array containing information about the channel itself. You can use the
following keys to access specific channel information from the array:

title: Title of the channel

link: URI of the channel

description: Description of the channel

image: An image associated with the channel

The availability of these keys depends upon the actual data contained in the RSS feed,
so it is usually prudent to check that a certain key exists in the array prior to trying to retrieve
a value.

The next area of the RSS feed typically accessed is the items contained in the feed. The
getItems() method returns a two-dimensional array containing each RSS item, which is then
accessed in a similar fashion as the channel information. Unlike a channel, no image is associ-
ated with an item, but XML_RSS does provide access to the publication date for an item, if
available, through the pubDate key.

You can quickly access all images from the RSS document by using the getImages()
method. It returns a two-dimensional array containing information about each image. The
available keys for an image are as follows:

title: Name of the channel

link: URL to the site

url: URL to the image

Text inputs are not all that common in feeds but can be accessed through the
getTextinputs() method. This method returns an array accessed through the following keys:

title: The label of the Submit button

description: The description of the input field

link: The URL of the script that processes text input requests

name: The name of the text object in the text input area

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM564

6331_c14_final.qxd 2/16/06 4:34 PM Page 564

The last method, getStructure(), provides a quick way to retrieve the entire RSS docu-
ment as a structure. The return value for this method is an array, but its composition depends
upon the RSS document itself so has no defined set form.

Listing 14-5 shows the RSS document that is parsed by Listing 14-6, which also displays
some of its basic information on the console.

Listing 14-5. RSS File Located at http://www.example.com/feed.rss

<?xml version="1.0" encoding="UTF-8"?>
<rss version="0.91">

<channel>
<title>My RSS Feed</title>
<link>http://www.example.com/feed.rss</link>
<description>My Example Rss Feed</description>
<language>en</language>
<item>

<title>CDATA Section contained within description</title>
<link>http://www.example.xom/cdata.html</link>
<description><![CDATA[<p>CDATA sections contain the content for

the description element so may contain any type
of characters</p>]]></description>

</item>
<item>

<title>RSS 0.91 does not have any namespaces</title>
<link>http://www.example.com/namespaces.html</link>
<description><![CDATA[<p>No need to deal with namespaces when

using RSS 0.91.]]></description>
</item>

</channel>
</rss>

This document uses an older format of RSS, version 0.91, to demonstrate the flexibility of
the XML_RSS class. The code in Listing 14-6 could easily use a different feed without you having
to change anything other than the URL passed to the XML_RSS constructor:

Listing 14-6. RSS Parser Example

<?php
/* Require XML_RSS package */
require "XML/RSS.php";

/* Create RSS Parser */
$rss_parser = new XML_RSS("http://www.example.com/feed.rss");

/* Parse RSS Feed */
$rss_parser->parse();

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM 565

6331_c14_final.qxd 2/16/06 4:34 PM Page 565

/* Get and Display Channel Information */
$channel = $rss_parser->getChannelInfo();
echo 'Channel: '.$channel['title']."\n";
echo ' Link: '.$channel['link']."\n";
echo ' Description: '.$channel['description']."\n";
echo "---\n\n";

/* Get and Display Items */
foreach ($rss_parser->getItems() as $value) {

echo 'Item: '.$value['title']."\n";
echo ' Link: '.$value['link']."\n\n";

}
?>

Channel: My RSS Feed
Link: http://www.example.com/feed.rss
Description: My Example Rss Feed

Item: CDATA Section contained within description
Link: http://www.example.xom/cdata.html

Item: RSS 0.91 does not have any namespaces
Link: http://www.example.com/namespaces.html

Conclusion
Content syndication has become popular mainly because of the numerous blogs available on
the Web. The most popular formats for this are RSS 1.0, RSS 2.0, and Atom. These formats had
rough evolutions. With all the discontent between the RSS 1.0 and RSS 2.0 camps, a bunch of
developers decided to start things from scratch, which resulted in Atom. In this chapter, you
saw how documents in all of these formats are structured and learned how to create and parse
them using tools available in PHP. Through the recent chapters, you have gotten closer to
working with XML and the Internet, with content syndication being primarily an XML-based
Web technology.

In the next chapter, you will begin to enter the world of Web Services, starting with Web
Distributed Data Exchange (WDDX).

CHAPTER 14 ■ CONTENT SYNDICATION: RSS AND ATOM566

6331_c14_final.qxd 2/16/06 4:34 PM Page 566

Web Distributed Data Exchange
(WDDX)

With the exception of content syndication, the material presented to this point has been
about general XML technologies and tools. Moving forward, the remaining chapters focus
more on Web services and data exchange through the use of XML. This chapter will cover
WDDX, which is a common XML format for exchanging data structures; specifically, the
chapter will explain what WDDX is, how to use it, and how to use the wddx extension in PHP.
Although WDDX itself is not a Web service, it can be used to create Web services.

Introducing WDDX
WDDX is an XML technology that allows data and data structures to be exchanged between
systems in a system-neutral format while keeping the data types intact. It defines an XML
structure that is used to pass the data but does not define the mechanism the data is passed
between; therefore, WDDX itself cannot be considered a Web service but can be used to build
a Web service, in the general sense, using any form of transport you like, including (but not
limited to) HTTP, File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP), and
Post Office Protocol (POP). Basically, you can use any protocol that supports transferring
textual data.

Background
Allaire created WDDX in 1998 to provide distributed computing support to its ColdFusion
platform. With WDDX, variables (which include a name, data type, and value) can be serial-
ized into an XML document from one application and sent to another. The receiving
application can then unserialize the XML document and re-create these variables in their
native data types and values. Data types are not limited just to the simple number and string
types but also include more complex structures such as arrays, structures, and recordsets.

WDDX is platform and language agnostic. This allows other languages on a variety of
platforms to take advantage of this technology, thus letting an application on one platform
written in one language send data to another application on another platform using a dif-
ferent language. The receiving application is then able to unserialize the data into its own
native data types.

567

C H A P T E R 1 5

■ ■ ■

6331_c15_final.qxd 2/16/06 4:33 PM Page 567

WDDX is not a formal standard but is built upon open standards, specifically XML 1.0,
and is freely available for both use and redistribution. WDDX development and future evolu-
tion has moved to an open project, OpenWDDX.org (http://www.openwddx.org). Although you
can find some information and software development kits (SDKs) at this site, you won’t find
much activity from the past few years. This does not mean the WDDX technology is dead. It is
still actively used on a number of platforms and programming languages, especially PHP.

WDDX Data Types
Thinking of the data in terms of variables and their data types in PHP, the question becomes,
how can you send the data to another system, using XML, for processing? For example, you
might have the following variables, whose values need to be sent to another system:

$myinteger = 1;

Using XML, you might serialize the values, which simply means converting them to
a textual representation, and then send them in an XML document:

<data>1</data>

Depending upon the type of processing you need to perform, this might be sufficient.
The drawback to this is that you lose the native data types. Of course, the systems might
already have some predetermined structure and therefore map the structure accordingly,
or some sort of type hinting might be included in the document, like so:

<data type='integer'>1</data>

This does provide more flexibility, but any systems that are exchanging data have to
understand the structure and know how it should be processed. A different solution might
involve using XML Schemas to indicate data types, but, again, the system needs to know
how to process the document.

WDDX provides a solution to this problem. Through its common format, the value
would serialize to the following:

<wddxPacket version="1.0">
<header/>
<data>

<number>1</number>
</data>

</wddxPacket>

When passing a single value, this format might be acceptable, but XML is a descriptive
language. All you know from this structure is that it contains 1. You could never pass multiple
values in this format because nothing descriptive sets them apart. The majority of cases will
be serializing the actual variable rather than just the value, allowing for some descriptive
information to be passed. For instance, serializing the following variables, rather than single
values, produces something much more useful:

$mystring = 'Text Data';
$myinteger = 1;

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX)568

6331_c15_final.qxd 2/16/06 4:33 PM Page 568

<wddxPacket version="1.0">
<header/>
<data>

<struct>
<var name="mystring">

<string>Text Data</string>
</var>
<var name="myinteger">

<number>1</number>
</var>

</struct>
</data>

</wddxPacket>

This structure clearly shows that it contains a variable named mystring, which is a string
containing the value Text Data, and a variable named myinteger, which is a number containing
the value 1. WDDX is not limited to just these simple data types; WDDX provides support for
several abstract types that are represented in a number of languages, as shown in Table 15-1.

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX) 569

Table 15-1. WDDX Data Types and Language Mappings

WDDX PHP Java ECMAScript COM Type

null NULL null null VT_NULL

boolean boolean java.lang.Boolean boolean VT_BOOL

number integer, float, double java.lang.Double number VT_R8

dateTime java.lang.Date Date VT_DATE

string string java.lang.String String VT_BSTR

array array java.lang.Vector Array VT_ARRAY |
VT_VARIANT

struct array, object java.lang.Hashtable Object IWDDXStruct

recordset com.allaire.util. WddxRecordset IWDDXRecordset
RecordSet

binary com.allaire.util.Binary WddxBinary V_ARRAY | UI1

Understanding the Structure of WDDX
The structure of WDDX documents has remained consistent since 1999 with the release of
WDDX 1.0. Although the structure looks simple based on the DTD (http://www.openwddx.org/
downloads/download.cfm), the actual complexity of the document depends upon the data
being serialized. The more complex the structure of a variable (for instance, containing multi-
dimensional arrays or classes), the more complex the composition of the WDDX document
will be. The following sections will cover the structure of WDDX documents; you can build
them manually using an extension such as DOM or XMLWriter (covered in Chapter 2), or

6331_c15_final.qxd 2/16/06 4:33 PM Page 569

you can build them using the wddx extension in PHP, which requires little to no knowledge
of XML structures.

WDDX Packets
Data exchange using WDDX takes place through packets. Packets are simply XML documents
passing data in WDDX format; they begin with the wddxPacket element. This document element
contains a single header element and a single data element, providing a container for notes or
comments and a container for the actual data being exchanged, respectively. It also contains a
version attribute with the version of WDDX being used. Because currently only a single version
exists, the value will always be 1.0. When adding notes and comments to the packet, you use
a comment element, which is an optional child of the header element; otherwise, the header ele-
ment is just an empty element. For example:

<!-- Packet without notes or comments -->
<wddxPacket version='1.0'>

<header/>
<data>

<!-- WDDX data goes here -->
</wddxPacket>

<!-- Packet with a comment -->
<wddxPacket version='1.0'>

<header>
<comment>

This packet contains a comment
</comment>

</header>
<data>

<!-- WDDX data goes here -->
</wddxPacket>

The data element contains the meat of the packet, which is the data you are exchanging.
It contains only a single element, which depends upon the data being added to the packet.
The following is a list of valid child elements, which are explained in the next sections, for the
data element:

• null

• boolean

• number

• dateTime

• string

• array

• struct

• recordset

• binary

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX)570

6331_c15_final.qxd 2/16/06 4:33 PM Page 570

Simple Data Type Elements
Simple data types are simple structures that cannot contain additional data types within their
contents. These elements include null, boolean, number, dateTime, and string. These data types
simply contain a value of the specified type as its contents or are empty in the case that the data
type does not or cannot have a value, such as NULL.

null
The null element represents a NULL value or empty string, depending upon whether the lan-
guage supports a NULL type. In the case of PHP, NULL is supported, but just keep in mind that
if exchanging data with another system using another language, it may be interpreted as an
empty string rather than NULL when unserialized. This is the element’s syntax:

<null/>

boolean
The boolean element represents a Boolean value. The value of this element can be true or false.
Case sensitivity is important here. These values must be lowercase in order to be considered
valid values according to the WDDX DTD. Even though mixed case may work in certain cases,
using all lowercase is highly recommended. This is the element’s syntax:

<boolean>false</boolean>

number
The number element is used for floating-point numbers. In PHP this covers both the integer
types and the float types. The range of numbers for the value of this element is restricted to
+/-1.7E+/-308 with the precision restricted to a maximum of 15 digits after the decimal point.
This is comparable to an 8-byte floating-point representation, which is the common maxi-
mum value for floats within PHP.

The following elements contain the serialized values for the numbers 12345, -12345,
12.345, -12.345, and 123456789012345:

<number>12345</number>
<number>-12345</number>
<number>12.345</number>
<number>-12.345</number>
<number>1.2345678901235E+014</number>

dateTime
The dateTime element carries date and time information in ISO 8601 format. PHP does not
have a native datetime type. This does not mean you cannot use this element, though. For
instance, you can set values using the date() function with either the c format parameter
added in PHP 5 (that is, date('c')) or the DATE_ISO8601 constant added in PHP 5.1 (that is,
date(DATE_ISO8601)) to create ISO 8601–formatted dates. This is the element’s syntax:

<dateTime>2005-10-08T17:28:04-04:00</dateTime>

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX) 571

6331_c15_final.qxd 2/16/06 4:33 PM Page 571

string
The string element contains arbitrary-length strings that must not contain embedded NULLs.
You can handle control characters, falling into the UTF-8 range 00–1F, using child char elements.
The char element is an empty element with a code attribute. The value of this attribute is a single
character using the hexadecimal code. You do not need to handle tab (09) and newline (0A)
characters by using a char element. These characters are valid within XML text content.
Therefore, when setting a string value containing any of the special control characters, the
value of the string element will contain mixed content. For example, XML removes carriage
returns from XML data. Line endings in a Windows environment consist of a carriage return
and a newline. You can preserve these using the char element. The following examples illus-
trate how to use the string element as well as the char element:

<string>This is a string value without any control characters</string>
<string>Line 1<char code="0D"/><char code="0A"/>Line2</string>

Complex Data Type Elements
Complex data type elements include the array, struct, recordset, and binary elements.
These elements are used for more complex data structures, such as PHP arrays and classes.
Only two of these elements, array and struct, have direct mappings to native PHP types,
but the remainder can be converted into data usable by an application.

array
The array element holds data for an integer-based array. In PHP, arrays can have numeric or
string indexes. Only numeric-indexed arrays map to the array element. String-based indexed
arrays are handled with the struct element.

■Note Numeric index arrays in PHP are zero-based arrays. Creating arrays that are not zero-based, even
though they are numerically indexed, may not result in using the array element. For instance, the arrays
array(2=>'a', 4=>'b', 6=>'c') and array(0=>'a', 2=>'b') serialized using the wddx extension
would result in a struct with named variables rather than array elements.

The children of an array element consist of the values held at each index. These values can
be both simple and complex data types. This means an array element can have one or more data
type child elements, which are the same child elements valid for use within the data element. The
array element also contains a length attribute. The value of this attribute is the number of values
held within the array. In PHP terms, the value of the length attribute is the value from calling the
count() function on the array being serialized.

For instance, the following PHP arrays, which are both numerically indexed, are serialized
into the same WDDX array structure:

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX)572

6331_c15_final.qxd 2/16/06 4:33 PM Page 572

array('a', 1, false);
array(0=>'a', 1=>1, 2=>false);

<array length='3'>
<string>a</string>
<number>1</number>
<boolean value='false'/>

</array>

struct
Structures are string-indexed collections of data. The struct element identifies the contents
as being such a structure. In PHP, structures pertain to string-indexed arrays and objects. It
is also important to note that any non-zero-based numerically indexed array or zero-based
index array not having sequentially indexed items can result in the use of a struct element
rather than an array element.

The struct element is a container for zero or more var elements. These elements repre-
sent variables or class properties identified by the required name attribute. Each var element
contains a single child data type element, consisting of any element that is valid as a child of
the data or array element. Thus, if you took a few variables from PHP:

$myint = 12345;
$mystring = "This is a string";
$mykeys = array('key1'=>1, 'key2'=>2);

their serialized representations of the var element, which would live within a struct element,
would be as follows:

<var name='myint'>
<number>12345</number>

</var>

<var name='mystring'>
<string>This is a string</string>

</var>

<var name='mykeys'>
<struct>

<var name='key1'>
<number>1</number>

</var>
<var name='key2'>

<number>2</number>
</var>

</struct>
</var>

As you can see from the serialization of the $mykeys variable, it is a complex data struc-
ture. The variable contains an associative array; thus, the var element itself not only is a child

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX) 573

6331_c15_final.qxd 2/16/06 4:33 PM Page 573

of a struct element but also contains a struct element. This struct element then contains
additional var elements that identify each item in the array. If you remember that the defi-
nition of a WDDX structure is not complicated but the resulting serialized document can
become quite complex, you should now have an idea of what this means. The complexity
of the structure being serialized is directly related to the complexity of the resulting WDDX
packet. This will become even clearer within the “Using WDDX” section where you will see
an object being serialized into a WDDX structure.

PHP is a case-sensitive language, so the statement $myVar = array('key'=>1, 'KEY'=>2);
results in an associative array with two distinct keys: key and KEY. WDDX, being used by many
languages (some not case sensitive), does not differentiate variable names or key names of dif-
ferent case. A WDDX structure containing two variables with the same name, even if they
differ in case, will use the value of the last variable when the structure is deserialized. If you
serialized $myVar, your resulting structure might look like this:

<struct>
<var name='myVar'>

<struct>
<var name='key'><number>1</number></var>
<var name='KEY'><number>2</number></var>

</struct>
</var>

</struct>

While using PHP, you might end up with the same $myVar after unserializing the packet
as the original $myVar variable, but if this structure were passed to some other system using
a language that is not case sensitive, the resulting data would be an associative array, or
language-equivalent structure, containing only a single index, the string key, and the cor-
responding value of a numeric 2. The first value overwrites the second value because the
names, even though differing in case, are not unique. For interoperability, it is important
to uniquely identify names without any regard to case sensitivity.

recordset
The recordset element is used for tabular data, which is two-dimensional data such as data
in comma-separated value (CSV) format or records from a database. The data is in a format
that can be represented in a row and column format. Data serialized into this format can be
composed only of simple data types. It is not required that you use the recordset element for
two-dimensional data, and in many cases, developers use a struct instead. This tends to be the
case when data contains complex types, which cannot be used with a recordset element, and
because many languages do not have many direct mappings to a recordset type. In addition,
as you will see by its composition, some developers just do not like its structure.

A recordset element contains any number of field elements as its children. It does require
two attributes: rowCount defines the number of rows, and fieldNames defines the names of the
fields being used within its contents. The value of the rowCount attribute is simply the number
of rows of data encapsulated by the recordset element. The value of the fieldNames attribute is
a comma-separated list of the names of the fields used for the data. For example:

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX)574

6331_c15_final.qxd 2/16/06 4:33 PM Page 574

<recordset rowCount="2" fieldNames="ID,FIRST_NAME,LAST_NAME">
<!-- field elements -->

</recordset>

Based on this structure, you know that the recordset contains two records, each having
three fields identified by the names listed in the fieldNames attribute. This means the
recordset element will contain three field elements.

A field element contains the data for every row in the recordset for a specific field. It
contains a name attribute that identifies the name of the field, which must be one of the names
from the fieldNames attribute on the parent recordset element. Its child elements are com-
posed of any number of simple data type elements, which means null, boolean, dateTime,
number, string, or binary. Each one represents the data from a specific row for a field within
the tabular data. Because a single data type usually defines the data from a field, only one of
the data types will be used for every child element within a field element.

The structure of the recordset element, because of the layout of the field elements, often
looks odd to developers, and this is why they often use a struct instead. Rather than the XML
being broken down by rows of data, it is broken down by fields, which are then broken down
by rows. Consider the data from a database, as shown in Table 15-2, which is broken down by
the fields for each row.

Table 15-2. Database Data

ID FIRST_NAME LAST_NAME

1 John Smith

2 Jane Doe

When using XML for this data, it is common to use a structure similar to the following:

<row>
<ID>1</ID>
<FIRST_NAME>John</FIRST_NAME>
<LAST_NAME>Smith</LAST_NAME>

</row>
<!-- Additional row elements -->

You can also use a general field element name with a name attribute set to the name of
the field. In any case, the data per row is usually grouped together. In a WDDX packet, how-
ever, the data is serialized into the following format when using a recordset element:

<recordset rowCount="2" fieldNames="ID,FIRST_NAME,LAST_NAME">
<field name="ID">

<number>1</number>
<number>2</number>

</field>
<field name="FIRST_NAME">

<string>John</string>
<string>Jane</string>

</field>

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX) 575

6331_c15_final.qxd 2/16/06 4:33 PM Page 575

<field name="LAST_NAME">
<string>Smith</string>
<string>Doe</string>

</field>
</recordset>

As you can see, the data is grouped by field, so when reading this document logically, you
are processing the data for every row for a specific field rather than processing the data per row
for each field. Because of this reason alone, you may prefer using a struct element, where the
data can be serialized by row, rather than a recordset element. Unfortunately, when receiving
data, this might be out of your control.

binary
The binary element represents binary large objects (BLOBs), which are strings of binary data.
You may recall from previous chapters that passing binary data in its native form within XML
is not safe. Not all characters produce proper XML. WDDX 1.0 mandates that the binary ele-
ment contain the Base64-encoded data, although previous versions may have allowed other
encodings. In any event, you set the type of encoding used on the encoding attribute, which
under WDDX 1.0 is a fixed attribute containing the value base64. This element also allows the
length of the binary data and MIME type of the binary data to be included using the length
and type attributes. There is not a native binary type in PHP, so you will typically handle this
data using PHP strings. For example:

<binary encoding="base64" length="9312164" type="video/mpeg">
<!-- Base64-encoded data here -->

</binary>

Using WDDX
Although you could work with WDDX using the XML parsers in PHP, the wddx extension provides
quick and simple functionality for performing the majority of serialization and unserialization
routines required to convert data and WDDX packets in PHP. Although not every WDDX data type
element can be created during serialization using this extension, they are all supported during
unserialization into some sort of native PHP data type.

■Note All output produced by the wddx extension shown in this chapter has been formatted for presen-
tation. Because WDDX serialization does not add additional whitespace such as indentation and newlines,
I have altered the output for readability.

On the Windows platform, the wddx extension is enabled by default. It is built into PHP,
so you don’t need to modify the php.ini file to use the extension. On other platforms, you
must build PHP with wddx support. You can accomplish this using a configure flag:

--enable-wddx

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX)576

6331_c15_final.qxd 2/16/06 4:33 PM Page 576

The wddx extension is built upon the xml extension, which also must be present. You can
find additional information about the xml extension, including how to build it with PHP, in
Chapter 8.

Serializing Data
You can serialize data into WDDX packets in two ways. The first method is using a single func-
tion call that builds a complete packet based upon the parameters passed. The second method
is slightly more involved, but not much, and allows variables to be added to the structure in
multiple calls. The method used really depends upon the data an application is processing and
when it is available. For instance, you could serialize a few predetermined variables easily in a
single function call, but when trying to serialize data from database results, it is usually easier
to serialize rows as you iterate through the result set.

Simple Serialization
Depending upon the desired content of a WDDX packet, you can call either the
wddx_serialize_value() function or the wddx_serialize_vars() function. Each of these
functions creates a complete WDDX packet using a single line of code. The simplest of these
functions is wddx_serialize_value(). It takes a single parameter (a variable whose value is to
be serialized) and an optional string to add a comment to the header element, returning the
resulting WDDX packet. This function is useful only when you want to exchange a single
unnamed data type with another system. For example:

$myArray = array(1,2,3);

print wddx_serialize_value($myArray, 'This is an un-named array');

<wddxPacket version='1.0'>
<header>

<comment>This is an un-named array</comment>
</header>
<data>

<array length='3'>
<number>1</number>
<number>2</number>
<number>3</number>

</array>
</data>

</wddxPacket>

The more commonly used wddx_serialize_vars() function, demonstrated in Listing 15-1,
allows for an arbitrary number of variables to be serialized by name all at once. A struct ele-
ment is automatically created, and each variable passed to the function is created as a var
element mapping the name of the variable to the name attribute on the var element. The only
task you cannot perform using this function is adding a comment to the header. This, in my
opinion, is minor compared to how easily you can create a packet. In any case, you could use

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX) 577

6331_c15_final.qxd 2/16/06 4:33 PM Page 577

the second method of creating a packet, covered in the next section, if a comment is
absolutely necessary.

Listing 15-1. Serializing Variables in WDDX

<?php
class myClass
{

public $prop1;
public $prop2 = 'default';
public $prop3 = 0;
/* Additional functionality here */

}

$objMyClass = new myClass();
$objChildClass = new myClass();

/* Set prop1 to the $objChildClass */
$objMyClass->prop1 = $objChildClass;

$myInteger = 2;

/* Serialize the variables
The variable names are passed not the actual variables */
$output = wddx_serialize_vars('myInteger', 'objMyClass');

print $output
?>

The script in Listing 15-1 demonstrates the serialization of a variable containing an inte-
ger, $myInteger, and an object, $objMyClass, that has its prop1 property set to another object
of the same class. All the variables to be serialized are passed at once, passing their names, not
the actual variables, to the wddx_serialize_vars() function. The function returns the resulting
WDDX packet, which is shown here:

<wddxPacket version="1.0">
<header/>
<data>

<struct>
<var name="myInteger">

<number>2</number>
</var>
<var name="objMyClass">

<struct>
<var name="php_class_name">

<string>myClass</string>
</var>

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX)578

6331_c15_final.qxd 2/16/06 4:33 PM Page 578

<var name="prop1">
<struct>

<var name="php_class_name">
<string>myClass</string>

</var>
<var name="prop1">

<null/>
</var>
<var name="prop2">

<string>default</string>
</var>
<var name="prop3">

<number>0</number>
</var>

</struct>
</var>
<var name="prop2">

<string>default</string>
</var>
<var name="prop3">

<number>0</number>
</var>

</struct>
</var>

</struct>
</data>

</wddxPacket>

From the output you can see both the myInteger variable and the objMyClass variable set
as the var elements beneath the topmost struct element. What is of interest is the structure
created for objMyClass. This is an object serialized into a struct element.

You are most likely wondering where the var elements with the name attribute set to
php_class_name originated. Anytime an object is serialized using the wddx extension, a var
element with the name attribute set to php_class_name is added as the first child element of
the object’s struct element. The value of the element is a string element containing the
name of the class from which the object was instantiated. This way when the packet is unse-
rialized, the object can be instantiated in the values returned. I will demonstrate how to do
this in the “Unserializing Data” section.

Complex Serialization
Don’t be fooled by the heading “Complex Serialization.” This does not mean it is complex to
serialize data. Quite the contrary—it is still quite simple to serialize data. This section will just
detail how to handle complex data, which would be data that could not be serialized (or would
be difficult to do so) all at a single time. You can handle serialization in this fashion through
three functions: wddx_packet_start(), wddx_add_vars(), and wddx_packet_end().

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX) 579

6331_c15_final.qxd 2/16/06 4:33 PM Page 579

These functions work using a packet_id resource that is created by the wddx_packet_start()
function. This function not only creates the packet_id, but an optional comment can be passed
as a parameter, which will create a comment element within the header element for the final
packet. For example:

$wddxid = wddx_packet_start('Building a packet in pieces');

You then add variables using the wddx_add_vars() function. This function, besides the
fact that it takes the packet_id resource as its first argument, serializes variables in the same
manner as the wddx_serialize_vars() function. The noticeable difference is that using
wddx_add_vars() just adds the var element and its contents to the WDDX packet rather than
creating a stand-alone packet. This means that after you have a packet_id, you can make mul-
tiple calls to wddx_add_vars() until all data has been added, at which time wddx_packet_end()
is called to close and return the resulting packet. For example:

/* The following two variables represent the number of rows from the database
and the number of fields per row. These have been hard-coded for presentation */

$rowCount = 10;
$fieldCount = 2;

wddx_add_vars($wddxid, 'rowCount', 'fieldCount');

/* This section assumes SQL was run against some type of database and assumes the
resulting records are contained in $db. The dummy function fetch_db_data()
represents a function that returns the records one row at a time as associative
arrays */

$row = 0;
while ($line = fetch_db_data($db)) {

$row++;
/* var names must be unique so you create a variable name called

row with the row number appended to the end. */
$varname = 'row'.$row;

/* Use variable variable to set the array to the new named variable */
$$varname = $line;

/* You need to pass the variable name.
This is now stored in the variable $varname */

wddx_add_vars($wddxid, $varname);
}

$output = wddx_packet_end($wddxid);
print $output;

This code is not actually working code. It assumes a SQL query has been run that returns
some records. The number of rows returned would be stored in $rowCount, and the number of
fields per row would be stored in $fieldCount. These variables are then added to the WDDX
packet.

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX)580

6331_c15_final.qxd 2/16/06 4:33 PM Page 580

The function fetch_db_data() is a dummy function. It represents some function that returns
the current row as an associative array from the returned records. The code loops through these
records and, using a variable variable (because var elements must have unique name attributes),
adds the arrays to the packet one at a time. Once done, the call to wddx_packet_end() closes the
packet. The resulting packet should look similar to the following document. The structure, of
course, depends upon the fields and number of records being returned from the SQL query.

<wddxPacket version="1.0">
<header>

<comment>Building a packet in pieces</comment>
</header>
<data>

<struct>
<var name='rowCount'><number>10</number></var>
<var name='fieldCount'><number>2</number></var>
<var name="row1">

<struct>
<var name="catid"><string>1</string></var>
<var name="name"><string>John Smith</string></var>

</struct>
</var>
<var name="row2">

<struct>
<var name="catid"><string>2</string></var>
<var name="name"><string>Jane Doe</string></var>

</struct>
</var>
<!-- Additional rows --->

</struct>
</data>

</wddxPacket>

Unserializing Data
You can unserialize data by using a single function call, wddx_deserialize(). This function
takes a string containing a WDDX packet and returns the corresponding native PHP data type.

■Note As of PHP 5.1, the function wddx_deserialize() is an alias of the wddx_unserialize() method.
Although this chapter refers to wddx_deserialize(), you should use wddx_unserialize() when running
under PHP 5.1 or newer.

In the majority of cases, a struct element is a child of the data element, so an array con-
taining the data is returned. In all other cases, the data is simply returned. In both instances,
the returned data is of the type specified in the packet. The following example, using the

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX) 581

6331_c15_final.qxd 2/16/06 4:33 PM Page 581

packet created in Listing 15-1, demonstrates how the packet is unserialized. Rather than re-
creating the serialized packet, the code uses the resulting $output variable from the listing.
For example:

class myClass
{

public $prop1;
public $prop2 = 'default';
public $prop3 = 0;
/* Additional functionality here */

}

$unserialized = wddx_deserialize($output);
var_dump($unserialized);

The WDDX packet contains a serialized object, which is instantiated when the packet is
unserialized. Without using any additional features, such as autoloading, you must define the
class within the script so you can instantiate it. A var_dump() of the resulting $unserialized
variable shows the following:

array(2) {
["myInteger"]=>
int(2)
["objMyClass"]=>
object(myClass)#3 (3) {
["prop1"]=>
object(myClass)#4 (3) {
["prop1"]=>
NULL
["prop2"]=>
string(7) "default"
["prop3"]=>
int(0)

}
["prop2"]=>
string(7) "default"
["prop3"]=>
int(0)

}
}

This is an array containing two items. Because the packet contained var elements, the
resulting array is an associative array containing the names of the original serialized variables
as the keys. This makes it extremely simple to re-create the original variables if so desired. For
example:

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX)582

6331_c15_final.qxd 2/16/06 4:33 PM Page 582

foreach ($unserialized AS $key=>$value) {
/* variable variable used to re-create the original serialized variable */
$$key = $value;

}

print $objMyClass->prop2;

This results in the output of the string default.
It is not always possible to perform an operation such as this. The wddx_serialize_value()

function does not maintain any information for the variable. Only the value is serialized.
Although an array may be the resulting data structure after unserializing a packet, it is also
quite possible that just a string, integer, float, or object is returned. Again, this is not all that
common, because passing a single value, whether it is a simple or complex type, without any
descriptive information is quite useless, unless written for some specific task that both appli-
cations understand.

Seeing Some Examples in Action
The wddx extension is not difficult to use, but alone it is not very useful. After all, it is called
Web Distributed Data Exchange for a reason—data is meant to be exchanged with other sys-
tems. In the following sections, I will present two examples. The first is another example of
serializing and unserializing data. This will re-enforce what you have read in this chapter.
The second example will take working with wddx a step further. It will show how you can
create a Web service, both the client and server portions, using WDDX.

Seeing Simple Serialization/Unserialization in Action
You have seen how to use the different data types in PHP when creating a WDDX packet.
The following example brings them all together and demonstrates how a packet is created
using a number of variables with different data types. Listing 15-2 shows the resulting WDDX
packet from this code.

<?php
/* Some variables to pass */
$myinteger = 1;
$mystring = "My String";
$mysecondstring = "Second\nString";
$myarray = array('a', 'b', 'c');
$mystruct = array('key1'=>'a', 'key2'=>'b', 'key3'=>'c');

/* Multiple variables being serialized at once */
$serialized_out = wddx_serialize_vars('myinteger', 'mystring', 'mysecondstring',

'myarray', 'mystruct');
echo $serialized_out;
?>

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX) 583

6331_c15_final.qxd 2/16/06 4:33 PM Page 583

Listing 15-2. Resulting WDDX Packet

<wddxPacket version='1.0'>
<header/>
<data>

<struct>
<var name='myinteger'>

<number>1</number>
</var>
<var name='mystring'>

<string>My String</string>
</var>
<var name='mysecondstring'>

<string>Second<char code='0A'/>String</string>
</var>
<var name='myarray'>

<array length='3'>
<string>a</string>
<string>b</string>
<string>c</string>

</array>
</var>
<var name='mystruct'>

<struct>
<var name='key1'>

<string>a</string>
</var>
<var name='key2'>

<string>b</string>
</var>
<var name='key3'>

<string>c</string>
</var>

</struct>
</var>

</struct>
</data>

</wddxPacket>

The unserialization of this data, using the resulting $serialized_out from the serializa-
tion example represented by the packet in Listing 15-2, is performed with a single call:

$arOut = wddx_deserialize($serialized_out);
var_dump($arOut);

The output, shown in Listing 15-3, is an array containing the values of each serialized
variable that is associated with the original variable by the index of the array.

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX)584

6331_c15_final.qxd 2/16/06 4:33 PM Page 584

Listing 15-3. Unserialized WDDX Packet

array(5) {
["myinteger"]=>
int(1)
["mystring"]=>
string(9) "My String"
["mysecondstring"]=>
string(13) "Second

String"
["myarray"]=>
array(3) {
[0]=>
string(1) "a"
[1]=>
string(1) "b"
[2]=>
string(1) "c"

}
["mystruct"]=>
array(3) {
["key1"]=>
string(1) "a"
["key2"]=>
string(1) "b"
["key3"]=>
string(1) "c"

}
}

Because you know the original structure, the following code quickly re-creates the origi-
nal variables with their native types in PHP:

foreach($arOut AS $key=>$value) {
$$key = $value;

}

var_dump($myinteger);

As you can see from the output, the $myinter variable, which was set in the original script,
is re-created with its original value:

int(1)

Of course, for more complex structures, this little piece of code simply wouldn’t do, but it
should give you a starting point if you want to expand it to support the different data types in
WDDX.

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX) 585

6331_c15_final.qxd 2/16/06 4:33 PM Page 585

Creating a Simple Web Service Using WDDX
I have broken this example into two parts. I will show how to create a server component that is
designed to run beneath a Web server and how to create a client component. The client piece
is generic and written for the command line, but you can expand and embed it in a local Web
page. The service allows the client to request a record based on an ID from a database. The
request is packaged in a WDDX packet. The server receives the packet unserialized, and the
requested record returned is packaged in a WDDX packet to the client.

■Caution These scripts do not implement any form of security, and data is sent in plain text. When creat-
ing a Web service, authentication and secure transmissions are often important to implement. You could do
this using combinations of secure sockets, authentication mechanisms, and encryption. For instance, one
possible combination is SSL, XML signatures, and XML encryption.

WDDX Web Service Server
The database used in this example is SQLite, because by default it is included in almost every
PHP 5+ build. It may be necessary to repath or modify permissions for the database, wddxdb,
to be created. The server accepts only those POST requests sending a WDDX packet contain-
ing a structure with a var element having a name attribute set to recid. This element contains
the ID of the record to be retrieved from the database.

The server then retrieves the id and name fields from the database based on the recid and
serializes the results into a WDDX packet, which is then sent to the client. This example uses
the sqllite_fetch_all() function so you can expand the example and request a range of
record IDs. The function returns a multidimensional array, which is easily serialized using
the wddx_serialize_value() function.

■Note To try this example, the server code should reside in a directory accessible by the Web server and
be named wddxserver.php. Using a different name for this script will require the name to be changed in
the client portion as well.

Here’s the code:

<?php
/* If the database does not exist, then create it and populate it with some data */
if (! file_exists('wddxdb')) {

if ($dbhandle = sqlite_open('wddxdb', 0666)) {
sqlite_query($dbhandle, 'CREATE TABLE wddx (id int, name varchar(15))');
for ($x=1; $x< 11; $x++) {

sqlite_query($dbhandle,
"INSERT INTO wddx VALUES (".$x.", 'Data Num: ".$x."')");

}

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX)586

6331_c15_final.qxd 2/16/06 4:33 PM Page 586

sqlite_close($dbhandle);
}

}

/* Function to retrieve data from database and return the results in a
serialized WDDX packet. Upon failure return a NULL value in the packet */

function getDBData($recid) {
if (is_numeric($recid) && $dbhandle = sqlite_open('wddxdb')) {

$query = sqlite_query($dbhandle,
'SELECT id, name FROM wddx where id='.$recid);

$result = sqlite_fetch_all($query, SQLITE_ASSOC);
return wddx_serialize_value($result);

} else {
return wddx_serialize_value(NULL);

}
}

/* Requests are only accepted from a POST with the data set in the
packet variable. */

if (isset($_POST['packet'])) {
$wddx_packet = $_POST['packet'];
/* retrieve data based on the requested recid, and return resulting packet */
if ($wddx_packet && $arData = wddx_deserialize($wddx_packet)) {

if (is_array($arData) && array_key_exists('recid', $arData)) {
print getDBData((int)$arData['recid']);
exit;

}
}

}

/* On bad requests send a NULL value in the packet */
print wddx_serialize_value(NULL);
?>

WDDX Web Service Client
The client portion is simple. The majority of the code is handling the sockets to the server
for posting and retrieving data, as well as the displayed output of the results. The sample
code was designed to be run at a command though can be embedded within HTML to oper-
ate under a Web server. The first three variables must be set correctly to point to the server
hosting the wddxserver.php file, which is the server piece of this example, and to the port for
the Web server accepting HTTP requests. The connection will be made using TCP, set by the
$remote_protocol variable.

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX) 587

6331_c15_final.qxd 2/16/06 4:33 PM Page 587

Here’s the code:

<?php
/* Address of remote server - Set these to the server and port where the

remote server script is located. */
$remote_protocol = 'tcp';
$remote_server = 'localhost';
$remote_server_port = 80;

/* The serialized packet. In this case, being an example, it is hard-coded
to request the record having an id of 5. */

$packet = wddx_serialize_value(array('recid'=>5));

/* Make POST request using sockets */
$remote_connect = $remote_protocol.'://'.$remote_server;
$sock = fsockopen($remote_connect, $remote_server_port, $errno, $errstr, 30);
if (!$sock) die("$errstr ($errno)\n");

/* Use var name packet for the POST */
$data = 'packet='.urlencode($packet);

fwrite($sock, "POST /wddxserver.php HTTP/1.0\r\n");
fwrite($sock, "Host: $remote_server\r\n");
fwrite($sock, "Content-type: application/x-www-form-urlencoded\r\n");
fwrite($sock, "Content-length: " . strlen($data) . "\r\n");
fwrite($sock, "Accept: */*\r\n");
fwrite($sock, "\r\n");
fwrite($sock, "$data\r\n");
fwrite($sock, "\r\n");

$headers = "";
while ($str = trim(fgets($sock, 4096)))
$headers .= "$str\n";

$packet = "";
while (!feof($sock))
$packet .= fgets($sock, 4096);

fclose($sock);
/* END POST Request */

/* Unserialize packet data, and output resulting data */
$arData = wddx_deserialize($packet);
if (is_array($arData)) {

if (count($arData) > 0) {
foreach ($arData AS $rownum=>$arRow) {

foreach ($arRow AS $fieldname=>$fieldvalue) {
print $fieldname.": ".$fieldvalue."\n";

}

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX)588

6331_c15_final.qxd 2/16/06 4:33 PM Page 588

print "\n";
}

} else {
print "No Records Returned";

}
} else {

/* Some type of error happened */
var_dump($arData);

}
?>

Because this is merely an example, the record to be retrieved has been hard-coded to 5.
This effectively is requesting the record from the database with an ID of 5. It is fairly trivial to
modify this example to make the record number dynamic as well as to allow ranges of records
to be requested at once. Rather than serializing a variable named recid, it is just as easy to
serialize an associative array mapping recid to the record number being requested.

Once the packet has been created, the client opens a socket connection to the server and
posts the data, using the variable packet to identify the WDDX packet being sent. Once the
server has processed the request within the packet, it returns the results in another WDDX
packet. If it unserializes into an array, it is safe to assume, based on the server script, that the
data was queried and returned. This does not mean that any rows were returned, just that no
errors were encountered. An unserialized value of NULL indicates that some problem occurred.
I did not break errors out in the example, so this could include a problem accessing the data-
base and an improper request to the Web server.

The data returned, if an array, is a multidimensional array. This is the format returned by
the sqlite_fetch_all() function. Only simple output processing takes place here, printing
each field name and value on a single line. Each row, if the script were expanded to allow mul-
tiple record requests, would be separated by two lines. Modifying this example to perform
more complex operations and different output is an exercise I will leave to you.

Using PEAR XML_WDDX
When the wddx extension is unavailable or for some reason you just don’t want to use it, you
can use the PEAR XML_WDDX package to serialize and unserialize WDDX packets. It is com-
patible with PHP 5 and newer, so it will work correctly when migrating code from PHP 4 that
might have used this package. Although XML_WDDX will use the wddx_deserialize() func-
tion if the wddx extension is available, this package is not an exact replacement for the
extension, as you will see in this section.

You can install the package by using the PEAR installer. (You can find additional informa-
tion about PEAR and its installer in Chapter 13.)

pear install XML_WDDX

At the time of this writing, the current stable release is 1.0.1, and the only dependency
is the xml extension. When the wddx extension is present on the system, it is leveraged by
XML_Wddx to unserialize packets. Once you have installed the package, you can use the
XML_Wddx class within your script by adding the appropriate require statement:

require 'XML/Wddx.php';

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX) 589

6331_c15_final.qxd 2/16/06 4:33 PM Page 589

The class is then instantiated using the new keyword. You don’t have to pass any parame-
ters to the constructor, so the call is simply as follows:

$objWddx = new XML_Wddx();

XML_Wddx provides only two public methods: serialize() and deserialize(). The
serialize() method works just like the wddx_serialize_value() function from the wddx
extension. It accepts only a single parameter that contains the data to be serialized. It does
not provide any mechanism for creating a comment but does create and return the entire
packet from the method call.

■Note Control characters within strings are not handled using char elements. Any string that contains
a control character, explained in the earlier “string” section, is encapsulated within a CDATA section. To
clarify this, the entire string, and not just the control characters, is encapsulated.

You can unserialize a packet using the deserialize() method. This method takes one
parameter containing the packet and returns the unserialized data as a native PHP data type.
How the packet is unserialized depends upon whether the wddx extension was installed with
PHP. When present, the wddx_deserialize() method is used when the XML_Wddx deserialize()
method is called; otherwise, the native XML_Wddx code is used. This impacts unserialization
because the wddx extension provides support for more data types and XML_Wddx. The following
is a list of some of the differences between the two:

• XML_Wddx does not handle a recordset element.

• XML_Wddx does not handle a dateTime element.

• The wddx extension Base64 decodes the contents of binary elements and returns the
actual binary data. XML_Wddx does not, and the data is returned as a Base64-encoded
string that the user must decode.

For example:

<?php
/* Require the XML_Wddx package */
require 'XML/Wddx.php';

/* Some variables to pass */
$myinteger = 1;
$mystring = 'My String';
$mysecondstring = "Second\nString";
$myarray = array('a', 'b', 'c');
$mystruct = array('key1'=>'a', 'key2'=>'b', 'key3'=>'c');

/* Multiple variables must be passed within an array */
$myvalues = array($myinteger, $mystring, $mysecondstring, $myarray, $mystruct);

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX)590

6331_c15_final.qxd 2/16/06 4:33 PM Page 590

$objWddx = new XML_Wddx();

echo $objWddx->serialize($myvalues);
?>

The output of this script should look a bit familiar to you. The same variables were serial-
ized in Listing 15-2 using the wddx extension. The output has a few noticeable differences,
however.

<wddxPacket version='1.0'><header/><data>
<array length='5'>
<number>1</number>
<string>My String</string>

<string><![CDATA[Second
String]]></string>

<array length='3'>
<string>a</string>
<string>b</string>
<string>c</string>

</array>

<struct>
<var name='key1'><string>a</string></var>
<var name='key2'><string>b</string></var>
<var name='key3'><string>c</string></var>

</struct>

</array>
</data></wddxPacket>

The first thing you will notice is that this code uses an array element rather than a struct
element as the child for the data element. XML_Wddx does not accept multiple variables for seri-
alization; thus, you must place them in an array that is then serialized. Because they are passed
by array and no key is specified, var elements are not created. The other noticeable difference is
the use of the CDATA section within the second string element. The wddx extension does not
use CDATA sections but rather escapes the characters <, &, and >, and it converts control char-
acters to char elements.

XML_Wddx, however, does understand char elements during deserialization. The output
from the deserialization() method depends upon whether the wddx extension has been
installed with PHP. When it exists, the XML_Wddx deserialization() method natively uses it;
otherwise, the built-in deserialization routine is used. The following example uses the data
from $serialized_out in Listing 15-2:

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX) 591

6331_c15_final.qxd 2/16/06 4:33 PM Page 591

require 'XML/Wddx.php';

$objWddx = new XML_Wddx();

/* $serialized_out is the resulting serialized data from Listing 15-2. */
$arRet = $objWddx->deserialize($serialized_out);
var_dump($arRet);

The following is the resulting data structure from the var_dump() call. Remember, this
output is based on that the wddx extension was not installed with PHP and the internal
deserialization routine from the XML_Wddx class is being used. If you are trying this code on
a machine that has the wddx extension installed, your output will be the same as the output
in Listing 15-3.

array(5) {
["myinteger"]=>
string(1) "1"
["mystring"]=>
string(9) "My String"
["mysecondstring"]=>
string(13) "Second

String"
["myarray"]=>
array(3) {
[0]=>
string(1) "a"
[1]=>
string(1) "b"
[2]=>
string(1) "c"

}
["mystruct"]=>
array(3) {
["key1"]=>
string(1) "a"
["key2"]=>
string(1) "b"
["key3"]=>
string(1) "c"

}
}

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX)592

6331_c15_final.qxd 2/16/06 4:33 PM Page 592

Conclusion
WDDX is an XML format that allows data and its corresponding data types to be exchanged
between two independent systems. It is platform agnostic and supported through a number
of languages. Although not a Web service on its own, it can be used to create Web services, and
its format is much simpler than a SOAP document. It never became as much of a buzzword as
SOAP, but it provides a quick and easily created format that can be leveraged when needing to
connect systems.

This chapter dissected the WDDX structure and covered how both the wddx extension
and the XML_Wddx class can create WDDX documents. Within the examples, you learned how
to create a simple Web service using WDDX as the data envelope.

The next chapter progresses further into the area of Web services with a discussion of
XML-RPC. Unlike WDDX, XML-RPC is a complete service that includes how the data is trans-
ported between systems.

CHAPTER 15 ■ WEB DISTRIBUTED DATA EXCHANGE (WDDX) 593

6331_c15_final.qxd 2/16/06 4:33 PM Page 593

6331_c15_final.qxd 2/16/06 4:33 PM Page 594

XML-RPC

XML-RPC may have spawned the term Web service. Although XML was probably being passed
between systems to perform similar functionality, XML-RPC was the first platform-neutral tech-
nology with a defined standard that did not require developers to learn proprietary formats or
transports. By the end of this chapter, you should understand what XML-RPC is, its format, and
how you can leverage it in PHP through the xmlrpc extension or the XML_RPC package in PEAR.
This chapter will not cover the history of XML-RPC and its association to SOAP. You can find that
material in Chapter 1.

■Caution This chapter will not detail any type of security that you may need or want to implement.
Publicly implemented Web services can be dangerous when not properly protected because you are
possibly allowing anonymous users to execute code on your server. You must take the same care when
building a Web application as when implementing an XML-RPC server. This includes, at a minimum,
checking data inputs and possibly performing data encryption.

Introducing XML-RPC
XML-RPC stands for XML-based Remote Procedure Call. A procedure call, if you are not famil-
iar with the term, is simply a function call in terms of PHP. It is some code that you can call,
passing in parameters that the block of code can use, and from which you can possibly receive
a return value. A remote procedure call is effectively the same except the code being called
exists in and is executed by a different application and possibly by a different machine.

For a remote procedure call to take place, the call to the function, as well as any parameters
needed by the remote function and any results, must be exchanged between the two systems.
This of course cannot occur in the usual manner. Instead, everything must be marshaled. Mar-
shaling involves taking some data and converting it to a common format, which then can be
sent somewhere (including over a network), received by a remote system, and then converted
into data understandable by the receiver. If you read the previous chapter, this should sound
familiar. WDDX takes native PHP data, converts it to a common XML structure that could be
passed to some other system, and converts it into the other system’s native data types.

XML-RPC performs similar marshaling to what WDDX does; it converts the native data
types into an XML structure, but XML-RPC goes further than WDDX and is why it’s considered
to be a true Web service. It not only specifies the format for the XML message, but it also

595

C H A P T E R 1 6

■ ■ ■

6331_c16_final.qxd 2/16/06 4:31 PM Page 595

defines how the message is transported. An HTTP POST request is the mechanism used as the
transport in XML-RPC. Being a complete specification (http://www.xmlrpc.com/spec), as well
as defining ways to call remote procedures, XML-RPC is a much more well-known and more
commonly used technology than WDDX. Now, don’t get me wrong—I still think WDDX can be
useful, especially since it does not define a specific transport, leaving the possibilities endless.

Exploring the XML-RPC Structure
Structure within XML-RPC depends upon the direction of the data. Though the two share many
aspects, a request takes a different form than a response. Not only does each have its own XML
structure, but also each requires specific information in the HTTP headers. The following sec-
tions will cover each of these aspects and provide examples of the structure used. Before getting
into any specific area, it is first important to know and understand some of the common XML
elements shared between the request and the response.

Common Elements
Parameters passed to a function and return values are all pieces of data that have specific data
types. Not only is it important that the value for these is passed, but the value’s corresponding
data type must be kept intact. PHP is a loosely typed language, so, for instance, you can add
a string to a numeric, which would result in a numeric:

$float_as_string = "1.1";
var_dump($float_as_string);
$newval = 1 + $float_as_string;
var_dump($newval);

The output confirms that $float_as_string is actually a string and the resulting $newval
is a float with the value 2.1:

string(3) "1.1"
float(2.1)

It does not always work this way with other languages. Try doing something similar in C,
for example. The resulting value would not be anything close to what you would expect in PHP.

When passing values between systems, XML-RPC wraps each value within a value element.
The content of this element is a single element identifying the data type and containing the data
to be passed. For example, the following represents 1.1 in its serialized format:

<value>
<double>1.100000</double>

</value>

Most languages share many of the common data types, but this is not always the case.
Marshaling the data creates a common format that allows a different system to interpret data
into its own native types. The following sections will break down the common XML-RPC types
and how they relate to the data types in PHP.

CHAPTER 16 ■ XML-RPC596

6331_c16_final.qxd 2/16/06 4:31 PM Page 596

int
The int or i4 element passes a 4-byte signed integer. In terms of PHP data types, this is simply
an integer type. XML-RPC defines two elements for this data type, although they both mean
the same thing. I will use the int element within this chapter when referring to integers. This
is the syntax:

/* PHP Data Type */
(int) 5

/* XML-RPC format */
<value>

<int>5</int>
</value>

double
The double element is used for floating-point numbers. These are of the types float, double,
and real in PHP. To give you an idea of what to expect for output, I used the PHP xmlrpc
extension to generate the serialized values in the following code. You will notice that doubles
add a trailing zero to create at least six decimal places. Numbers containing more than six dec-
imal places are truncated to seven decimal places, so the number -12.12345678 is truncated to
-12.1234567 and not rounded up.

/* PHP Data Type */
(float) -12.345

(float) -12.12345678

/* XML-RPC format */
<value>

<double>-12.345000</double>
</value>

<value>
<double>-12.123457</double>

</value>

boolean
A boolean element is used in XML-RPC for Boolean data types. The physical value of the ele-
ment is either 1 for TRUE or 0 for FALSE. This is the syntax:

/* PHP Data Type */
(bool) FALSE

/* XML-RPC format */
<value>

<boolean>0</boolean>
</value>

CHAPTER 16 ■ XML-RPC 597

6331_c16_final.qxd 2/16/06 4:31 PM Page 597

string
A string element is used for the string data type. In PHP, many things are strings. No date or
binary types exist, because these are handled using strings. As you will see with the next two
types, you do not always have a direct one-to-one mapping of a native PHP data type to an
XML-RPC type. In terms of usage within PHP, you can use the string element when the data
is to be interpreted textually rather than what is held within the string, such as a date/time
value. This is the syntax:

/* PHP Data Type */
(string) "Some text string"

/* XML-RPC format */
<value>

<string>Some text string</string>
</value>

/* Alternative XML-RPC String Format */
<value>Some text string</value>

■Note When a data type is not specified, such as in the example for the alternative XML-RPC string
format, the type is automatically assumed to be that of string by default. It is best practice, however,
to always explicitly type data.

dateTime
The dateTime.iso8601 element represents a date and time in ISO 8601 format (http://
www.iso.org/iso/en/prods-services/popstds/datesandtime.html). The format allowed is
actually only a subset of the allowed dates from ISO 8601. In XML-RPC, the date is in the
basic format of CCYYMMDDTHH:MM:SS.

■Note The date does not include time zone information. The time zone used depends upon the applica-
tion. Normally, the server portion of the application dictates what time zone is being used for any dates
passed back and forth. To create a correct date within PHP, you must use a call similar to date('Ymd\
TH:i:s'), because date('c') or date(DATE_ISO8601) includes hyphens within the date portion and
includes the time zone in the time information, which must not be passed.

Some languages have a native datetime type, while others, like PHP, do not. In PHP, date
and times are held in strings. For example, calling $mydate = date('c'); returns the current
data and time in ISO 8601 format, but the type of $mydate is still a string. The type needs to be
converted to the proper XML-RPC format, as will be demonstrated in the “Encoding and
Decoding Data” section. This is the syntax:

CHAPTER 16 ■ XML-RPC598

6331_c16_final.qxd 2/16/06 4:31 PM Page 598

/* PHP Data Type Example */
(string) date('Ymd\TH:i:s')

/* XML-RPC format */
<value>

<dateTime.iso8601>20051014T16:16:11</dateTime.iso8601>
</value>

base64
The base64 element is similar to the dateTime.iso8601 element with respect to PHP. It denotes
binary data that has been Base64 encoded. Again, PHP does not have a binary data type or a
Base64 type. The data is simply a string. The type, as well as the data, needs to be converted to
a proper XML-RPC format. I will demonstrate how to do this in the “Handling Non-Native PHP
Data Types” section. This is the syntax:

/* PHP Data Type Example */
(string) file_get_contents('binaryfile.bin')

/* XML-RPC format */
<value>

<base64><!-- content omitted because of length --></base64>
</value>

array
PHP arrays are multipurpose. The indexes can be numeric, which really specifies order or
location, or can be strings that operate like a hash table or dictionary. I will refer to the latter
array types as associative arrays. An XML-RPC array is simply a vector or list. In PHP, this cor-
responds to a numerically indexed array.

An array is a complex type. This means its structure is not simply a value element con-
taining a type element containing a value. An array is a container for multiple values and thus
can contain any number of value elements. The value elements (for some reason that I do not
know) are contained within a data element. This data element is a child element of the array
element. This may sound a bit confusing and is probably much easier to see within the XML
structure:

<value>
<array>

<data>
<!-- Any number of value elements -->

</data>
</array>

</value>

The comment within this structure indicates that several value elements can exist as chil-
dren of the data element. The value element, again, is a wrapper element for any of the XML-RPC
data types discussed in this chapter. If you think about some complex data structures, such as
multidimensional arrays, the XML structure can become quite complex, because it entails arrays
within arrays. For example:

CHAPTER 16 ■ XML-RPC 599

6331_c16_final.qxd 2/16/06 4:31 PM Page 599

/* PHP Data Type */
(array) array('a', 'b', 'c')

/* XML-RPC format - value elements compacted on single line to save space */
<value>

<array>
<data>

<value><string>a</string></value>
<value><string>b</string></value>
<value><string>c</string></value>

</data>
</array>

</value>

Structures
Associative arrays, which are arrays with string indexes, and objects in PHP are serialized into
struct elements. These are complex structures containing a member element for each item in
an array or property of an object. Each member element consists of a name element, indicating
the index name or object property, and a value element. The value, again, is simply the wrap-
per for any of the XML-RPC data types mentioned within this chapter. This is the syntax:

/* PHP Data Type - both the following serialize into same XML-RPC format */
(array) array('a'=>1, 'b'=>2, 'c'=>3)
(object) class myclass { public $a=1; public $b=2; public $c=3; }

/* XML-RPC format - value elements compacted on single line to save space */
<value>

<struct>
<member>

<name>a</name>
<value><int>1</int></value>

</member>
<member>

<name>b</name>
<value><int>2</int></value>

</member>
<member>

<name>c</name>
<value><int>3</int></value>

</member>
</struct>

</value>

The structure shown here is not an overly complex structure. The values within the struct
element are all scalars, which basically means they are single values rather than complex val-
ues like arrays or objects. It is quite possible to have extremely complex structures, such as
when dealing with multidimensional arrays or objects whose properties contain arrays or
additional objects.

CHAPTER 16 ■ XML-RPC600

6331_c16_final.qxd 2/16/06 4:31 PM Page 600

Request Header
XML-RPC uses an HTTP POST as its transport. You might wonder why you need to worry about
the format for this. Whether you are creating your own XML manually or using the xmlrpc exten-
sion, it is up to you to provide the functionality to transport the data. An example of a request
header, defined by the XML-RPC specification, is as follows:

POST /rpcserver.php HTTP/1.0
User-Agent: PHPRPC/1.0
Host: rpc.example.com
Content-Type: text/xml
Content-length: 181

These are the minimum headers required to properly transport the data. The URI in the
first POST line is the location of the XML-RPC server to which the data is being sent. The
User-Agent, which is some identifiable name for the client sending the data, and the Host,
which is the address of the remote server, are both required headers. The Content-Type must
be set to text/xml, and the Content-length must be correctly set to the length of the data
being sent. Both of these headers are also required.

It is up to you what method or functionality you use to send the data, as long as it con-
forms to the rules specified here. For instance, you could use the Client URL Request Library
(CURL) or sockets to open a connection, send the request, and read the response.

Listing 16-1 contains two functions, either of which can be used to make the XML-RPC
calls. One, call_using_sockets(), works using network sockets. (This is the one I will use
within the examples in this chapter.) The other, call_using_curl(), uses the curl extension
to interact with the XML-RPC server. If you decide to try the examples in this chapter, you can
use either function. Note that when using the call_using_curl() function, you need an addi-
tional parameter to identify the protocol, such as http. This is not required when using
network sockets because tcp is assumed.

Listing 16-1. Functions to Transport XML-RPC

/* Function using network sockets */
function call_using_sockets($remote_server, $remote_server_port,

$remote_path, $request) {
$sock = fsockopen($remote_server, $remote_server_port, $errno, $errstr, 30);
if (!$sock) die("$errstr ($errno)\n");

fwrite($sock, "POST $remote_path HTTP/1.0\r\n");
fwrite($sock, "User-Agent: PHPRPC/1.0\r\n");
fwrite($sock, "Host: $remote_server\r\n");
fwrite($sock, "Content-type: text/xml\r\n");
fwrite($sock, "Content-length: " . strlen($request) . "\r\n");
fwrite($sock, "Accept: */*\r\n");
fwrite($sock, "\r\n");
fwrite($sock, "$request\r\n");
fwrite($sock, "\r\n");

CHAPTER 16 ■ XML-RPC 601

6331_c16_final.qxd 2/16/06 4:31 PM Page 601

$headers = "";
while ($str = trim(fgets($sock, 4096))) {

$headers .= "$str\n";
}

$data = "";
while (!feof($sock)) {

$data .= fgets($sock, 4096);
}
fclose($sock);
return $data;

}

/* Function using curl */
function call_using_curl($protocol, $remote_server, $remote_server_port,

$remote_path, $request) {

$url = "$protocol://$remote_server:$remote_server_port/";

$header = "POST $remote_path HTTP/1.0\r\n";
$header .= "User-Agent: PHPRPC/1.0\r\n";
$header .= "Host: $remote_server\r\n";
$header .= "Content-type: text/xml\r\n";
$header .= "Content-length: " . strlen($request)."\r\n";
$header .= "Accept: */* \r\n\r\n";
$header .= "$request\r\n\r\n";

$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $url);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_TIMEOUT, 1);
curl_setopt($ch, CURLOPT_USERAGENT, 'PHPRPC/1.0');
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, $header);
curl_setopt($ch, CURLOPT_POSTFIELDS, $request);

$data = curl_exec($ch);
if (curl_errno($ch)) {

print curl_error($ch);
} else {

curl_close($ch);
return $data;

}
}

■Tip Performing a POST using HTTPS is also an acceptable transport when the data needs to be encrypted
between the client and the server.

CHAPTER 16 ■ XML-RPC602

6331_c16_final.qxd 2/16/06 4:31 PM Page 602

Request Format
The purpose of XML-RPC is to make remote function calls, performing one call per request.
The root of every request document is a methodCall element. This element contains a single
methodName element and possibly a params element. The methodName element contains the name
of the procedure to be called in the remote application. The procedure name can contain only
uppercase and lowercase alphanumeric characters, underscores, periods, colons, and slashes.
All other characters are invalid for the contents of this element. For example:

/* Valid methodName contents */
<methodName>addNumbers</methodName>
<methodName>myApp.addNumbers</methodName>
<methodName>myApp::addNumbers</methodName>
<methodName>myApp/addNumbers</methodName>
<methodName>add_2_numbers</methodName>

/* Invalid methodName contents */
<methodName>addNumbers!</methodName>
<methodName>myApp?addNumbers</methodName>
<methodName>myApp#addNumbers</methodName>
<methodName>add_*2*_numbers</methodName>
<methodName>+_2_numbers</methodName>

The use of the params element depends upon whether the procedure being called takes any
parameters. When the procedure does not take any parameters, this element is not required as
part of the XML request; otherwise, it is required and takes a single param element for each of the
parameters being passed. Each of the param elements has a child value element that corre-
sponds to any of the data types in the “Common Elements” section for the respective parameter.
For example, consider the following PHP function:

function getUserInfo($userid)
{

/* Logic to retrieve user information */
}

The getUserInfo() function takes a single integer as its parameter. This parameter identi-
fies the user record to retrieve. When making an XML-RPC request to a server exposing this
function, the request would appear in the format shown in Listing 16-2.

Listing 16-2. Example XML-RPC Request Document

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>

<methodName>getUserInfo</methodName>
<params>

<param>
<value>

<int>5</int>
</value>

</param>
</params>

</methodCall>

CHAPTER 16 ■ XML-RPC 603

6331_c16_final.qxd 2/16/06 4:31 PM Page 603

The remote function getUserInfo takes only one integer as a parameter, so the request
contains only a single param element whose value is the integer 5. This value instructs the
function to retrieve the user information for the user with a user ID of 5.

Likewise, a function not requiring any parameters, such as function getCurrentDateTime()
{ /* Logic Here */ }, does not contain any param elements; thus, the params element is not
required, as shown here:

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>

<methodName>getCurrentDateTime</methodName>
</methodCall>

The order of the param elements is important when passing multiple parameters. Because
they are not named parameters, they must be ordered in the exact order as defined by the
remote function. For example, the following function defines three parameters:

function myfunc($parm1, $parm2, $parm3) { ... }

The parameters are broken down like this: $param1 takes an integer, $param2 takes a
string, and $param3 takes a float. To illustrate this point, examine the requests in Listing 16-3
and Listing 16-4. Only the request in Listing 16-3 is technically valid to call the remote func-
tion. I say technically here because some languages are strictly typed, while others are loosely
typed (like PHP) or even typeless. Languages that are not strictly typed can convert types,
allowing the parameters to be used.

Listing 16-3. Valid Request for myfunc

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>

<methodName>myfunc</methodName>
<params>

<param>
<value><int>5</int></value>

</param>
<param>

<value><string>Parameter String</string></value>
</param>
<param>

<value><double>12.345</double></value>
</param>

</params>
</methodCall>

CHAPTER 16 ■ XML-RPC604

6331_c16_final.qxd 2/16/06 4:31 PM Page 604

Listing 16-4. Invalid Request for myfunc

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>

<methodName>myfunc</methodName>
<params>

<param>
<value><string>Parameter String</string></value>

</param>
<param>

<value><int>5</int></value>
</param>
<param>

<value><double>12.345</double></value>
</param>

</params>
</methodCall>

In Listing 16-4, the string type parameter is the first, in document order, of the param
elements. This means it maps to the first parameter of myfunc(). The first parameter for the
function, however, requires an integer.

Response Header
For the greatest interoperability with XML-RPC clients, it is best practice to follow the guide-
lines set forth in the specification regarding the response headers. The following is an example
of the headers that should be sent when data is returned:

HTTP/1.1 200 OK
Connection: close
Content-Length: 158
Content-Type: text/xml
Date: Fri, 14 Oct 2005 23:57:08 GMT
Server: PHPRPC/1.0

In a more controlled environment, it is not always required that the specified headers be
followed exactly. For instance, when creating a server running within a Web server where you
know what the clients are expecting for return data, it is not always necessary to modify the
headers and allow the Web server to handle the headers directly. In most cases, the Content-Type
would not be correct, because the type would generally be returned as text/html, and possibly
the Server would not be correctly identified. However, unless clients need to detect these, they
can often use the default Web server headers. You should already understand how to modify
headers in PHP, so the examples you see in this chapter will rely strictly on the default behavior
of a Web server. I will leave any modifications you may need to make in your own environment
up to you.

CHAPTER 16 ■ XML-RPC 605

6331_c16_final.qxd 2/16/06 4:31 PM Page 605

Response Format
The methodResponse element serves as the root of a response document. The content of this
element is either a single params element or a single fault element. Unless the server is return-
ing an error condition, a params element will be used even when not returning a value. This
allows the client to know, at the least, that the procedure was executed without errors, such
as the response in Listing 16-5.

Listing 16-5. XML-RPC Response Without a Return Value

<?xml version="1.0"?>
<methodResponse>

<params/>
</methodResponse>

Returning Values
Just like return values from functions, only a single return value can be returned from the
XML-RPC server. XML-RPC has no concept of passing parameters by reference, so you should
not be expecting to be able to retrieve modified parameters. The return value from the server
is returned in the same format as that in Listing 16-5. The difference here is that the params
element is not empty. It contains a single param element containing a single value element. Its
format would look similar to the params subtree of an XML-RPC request document that passes
a single parameter:

<?xml version="1.0"?>
<methodResponse>

<params>
<param>

<value><!-- data type element and resulting return value --></value>
</param>

</params>
</methodResponse>

Look at the request from Listing 16-2 making a call to a getUserInfo() function. Without
getting into any specifics of the logic within the function, the ultimate return value is an array
containing the name, address, and ZIP code for the specified user. So, if the function were to
return array("name"=>'John Doe', 'address'=>'123 Example Drive', 'zipcode'=>'12345'),
the resulting XML-RPC response document would be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse>

<params>
<param>

<value>
<struct>

<member>
<name>name</name>
<value><string>John Doe</string></value>

</member>

CHAPTER 16 ■ XML-RPC606

6331_c16_final.qxd 2/16/06 4:31 PM Page 606

<member>
<name>address</name>
<value><string>123 Example Drive</string></value>

</member>
<member>

<name>zipcode</name>
<value><string>12345</string></value>

</member>
</struct>

</value>
</param>

</params>
</methodResponse>

Returning an Error
Errors are returned to the client using the fault structure. Rather than using the params element
within the response, the fault element is used instead. This element contains a single value
element containing a struct element. This structure has two named members: a faultCode
with a corresponding integer value and a faultString with a corresponding error message
contained in a string. For example:

<?xml version="1.0"?>
<methodResponse>

<fault>
<value>

<struct>
<member>

<name>faultCode</name>
<value><int>-1</int></value>

</member>
<member>

<name>faultString</name>
<value><string>Invalid Procedure Requested</string></value>

</member>
</struct>

</value>
</fault>

</methodResponse>

A fault takes this exact form. The only modifications you need to make are to the integer
value for the faultCode and to the string value for the faultString. You cannot make any other
modifications or additions to this structure.

■Note XML-RPC does not define any standard faultCodes or faultStrings. These depend on the
server and can take any values as long as the faultCode is an integer and the faultString is a string.

CHAPTER 16 ■ XML-RPC 607

6331_c16_final.qxd 2/16/06 4:31 PM Page 607

Special Remote Calls
Many XML-RPC implementations offer support for some server introspection. In simple
terms, a client can request the server to provide some additional support information, such
as a list of available functions. Although not an inclusive list, Table 16-1 describes a few of
these calls.

Table 16-1. Server Introspection Methods

Method Name Return Type Arguments Description

system.listMethods array Returns an array containing
the methods that a client can
call

system.methodHelp string string methodName Returns a string containing any
documentation for the method
specified by the methodName
parameter

system.methodSignature array string methodName Returns an array containing
the methodSignature of the
method specified by the
methodName parameter

A client can call any of these methods in the same manner as all other remote methods
are requested. It is not guaranteed that a server has implemented any or all of these methods,
and it is also possible that the server may implement some additional ones.

Using xmlrpc in PHP
The xmlrpc extension has existed in PHP since 4.1.0. It is based upon the xmlrpc-epi library
(http://xmlrpc-epi.sourceforge.net/), provides support for encoding and decoding XML-RPC
requests and responses, and provides some additional functionality specific to a server. Although
the extension is still marked as experimental, it has been available in PHP for more than four
years now, and it is highly unlikely that its API will change.

With the release of PHP 5, this extension now leverages libxml2 rather than expat by default;
however, just like the xml extension, the flag --with-libexpat-dir causes xmlrpc to be built with
expat. You can enable this extension through the configure script:

--with-xmlrpc[=DIR]

When DIR is not specified, the bundled xmlrpc-epi library is used; otherwise, DIR specifies
the path to search for the xmlrpc-epi include files. Under Windows, you can enable the exten-
sion through the php.ini file, which places the php_xmlrpc.dll file in the directory containing
your PHP extensions:

extension=php_xmlrpc.dll

The following sections will cover how to use the xmlrpc extension in PHP. First, I will cover
some generic functionality. These functions, while part of the extension, are not completely

CHAPTER 16 ■ XML-RPC608

6331_c16_final.qxd 2/16/06 4:31 PM Page 608

specific to XML-RPC. They allow the encoding and decoding of native PHP data into a serial-
ized XML format that would either allow you to manually build request and response structures
or allow you to transport the structures using protocols not defined by the XML-RPC specifica-
tion. Next, I will cover how to create an XML-RPC client, making calls to some fictional server.
Finally, I will show how to create a fictitious server so that it and the client can communicate
with one another.

Looking at the Generic Functionality
The xmlrpc extension contains a few functions that I consider general functionality. You can use
them when creating either a client or a server as well as when creating a service not conforming
to the XML-RPC specification. Many of these functions are useful when working manually with
data, as you will see in the “Creating an XML-RPC Client” and “Creating an XML-RPC Server”
sections; in fact, you can use some quick and easy methods to implement XML-RPC.

Encoding and Decoding Data
You can encode and decode data similarly to how you do so using WDDX, as described in
Chapter 15. The functions xmlrpc_encode() and xmlrpc_decode() can perform these opera-
tions, but they do not generate a full XML-RPC request or response. They strictly handle the
data and its types.

The xmlrpc_encode() function creates a params structure. This in itself is not enough to
make a request because the root methodCall element is missing and because the correspon-
ding methodName is missing. For example:

$encoded = xmlrpc_encode(array(1, 2));
echo $encoded;

Calling this code creates a params structure containing an array holding the values 1 and 2:

<params>
<param>

<value>
<array>

<data>
<value><int>1</int></value>
<value><int>2</int></value>

</data>
</array>

</value>
</param>

</params>

Although not a complete request, the data can be converted to native PHP data types
using the corresponding xmlrpc_decode() function:

CHAPTER 16 ■ XML-RPC 609

6331_c16_final.qxd 2/16/06 4:31 PM Page 609

$phpdata = xmlrpc_decode($encoded);
var_dump($phpdata);

array(2) {
[0]=>
int(1)
[1]=>
int(2)

}

The question now becomes, why would you ever use these functions?
When making a request, you do not have any functions like when using wddx to build

the XML document incrementally. It is an all-or-nothing deal. Although you could use DOM
on the resulting params structure and manually build a request document, you could use these
functions to create a Web service that does not conform to the XML-RPC specification. You
could pass the params structure back and forth, between the client and the server, just like you
pass a WDDX structure. No method name would be defined in the structure, but you could
use a technology such as REST, covered in Chapter 17, for this purpose.

The xmlrpc_decode() function is a little more flexible. It decodes both full XML-RPC
request documents, which are those containing the methodCall and methodName elements,
and those created by the xmlrpc_encode() function. The results from calling the function are
the same regardless of the type of document being decoded. Any method information is dis-
carded, and only the information contained within the params element is decoded.

Handling Non-Native PHP Data Types
The xmlrpc extension defines both a base64 data type and a dateTime.iso8601 data type, nei-
ther of which is a native type in PHP. You can use the xmlrpc_set_type() and xmlrpc_get_type()
functions to convert PHP data into these respective XML-RPC types and determine the type so
they are compatible with the extension and can be used directly. You can use these functions
when implementing either a client or a server so that the data is exchanged properly.

Consider the following piece of code that attempts to encode a date without setting its type:

$isodate = date('c');
echo xmlrpc_encode($isodate);

This simply results in a string element for the value:

<string>2005-10-19T12:24:42-04:00</string>

To the application reading this data, the data is simply a string and not identified as a
date. Setting the type of the $isodate variable to datetime, on the other hand, allows it to be
encoded properly into a dateTime.iso8601 type. For example:

$isodate = date('c');
xmlrpc_set_type($isodate, "datetime");
$encoded_iso = xmlrpc_encode($isodate);
echo $encoded_iso;

CHAPTER 16 ■ XML-RPC610

6331_c16_final.qxd 2/16/06 4:31 PM Page 610

This time, the resulting content of the value element is as follows:

<dateTime.iso8601>20051019T12:38:16</dateTime.iso8601>

The base64 data type is handled in the same manner. The variable being set by the
xmlrpc_set_type() function will contain the raw binary data and the type base64 passed as
the type to the function. Upon encoding, not only will the base64 element be used to hold the
contents, but also the raw binary data is automatically Base64 encoded within the resulting
structure.

■Caution Using the xmlrpc_set_type() function to create datetime and base64 data types will con-
vert the data type of any variable passed to the function into an object usable by the xmlrpc extension. This
means trying to perform a function such as echo on the resulting variable will not work as expected.

When decoding an XML structure, unless absolutely positive that it does not contain
a dateTime.iso8601 or base64 type, you should check the type of variable. Any data of these
types would be returned as objects. The values for these data types must be read through the
object properties as follows:

xmlrpc_type: The data type set using xmlrpc_set_type().

scalar: The value for the data returned as a PHP string.

timestamp: This property is valid only for date/time data and is the value of the scalar in
time-stamp format.

For example:

$phpdata = xmlrpc_decode($encoded_iso);

echo xmlrpc_get_type($phpdata)."\n\n";
var_dump($phpdata);

Using the $encoded_iso variable from the previous example, the data is decoded, the type
is output, and the resulting PHP data is output using the var_dump() function:

datetime

object(stdClass)#2 (3) {
["scalar"]=>
string(17) "20051019T13:21:40"
["xmlrpc_type"]=>
string(8) "datetime"
["timestamp"]=>
int(1129742500)

}

CHAPTER 16 ■ XML-RPC 611

6331_c16_final.qxd 2/16/06 4:31 PM Page 611

Creating an XML-RPC Client
You can create a compliant XML-RPC client using a combination of the functions introduced
earlier. This would require building a complete request and would require some additional
work. The extension, however, provides a quick and simple function, allowing you to create
a client—at least building the request structure—in as little as a single line of code. As previ-
ously mentioned, the extension does not provide a mechanism for the data transport, so you
will use the call_using_sockets() function from Listing 16-1 instead.

Using the xmlrpc_encode_request() Function
Calling the xmlrpc_encode_request() function with the appropriate arguments will create and
return a complete XML-RPC request document that includes the methodCall and methodName
information:

string xmlrpc_encode_request(string method, mixed params [, array output_options])

The method parameter is simply the name of the method to be called on the remote
server. The value passed to this parameter becomes the content of the methodName element in
the request. The params parameter contains the PHP data that will be passed as the parame-
ters to the server. If you have ever played around with this extension, you might have become
a bit confused by the data passed to this argument.

Passing any scalar type, such as an integer or string or even an object, to this parameter
creates a single param element for the data. Passing a numerically indexed array, on the other
hand, creates a param element for each item in the array. So, to create a request that consists of
a single parameter containing an array, the array needs to be passed as an item of an array:

echo xmlrpc_encode_request('remoteMethod', array(1, 2));

At first glance, you might think that a request containing a single parameter, which is an
array, would be created. The resulting request structure, however, proves this to be wrong:

<?xml version="1.0" encoding="iso-8859-1"?>
<methodCall>

<methodName>mymethod</methodName>
<params>

<param>
<value><int>1</int></value>

</param>
<param>

<value><int>2</int></value>
</param>

</params>
</methodCall>

In fact, to pass the array as a single parameter, you need to send it as the only item within
an encapsulating array:

echo xmlrpc_encode_request('remoteMethod', array(array(1, 2)));

CHAPTER 16 ■ XML-RPC612

6331_c16_final.qxd 2/16/06 4:31 PM Page 612

Here you can see that to send array(1, 2) as a single parameter, you need to pass it
within an array as array(array(1, 2):.

<?xml version="1.0" encoding="iso-8859-1"?>
<methodCall>

<methodName>remoteMethod</methodName>
<params>

<param>
<value>

<array>
<data>

<value><int>1</int></value>
<value><int>2</int></value>

</data>
</array>

</value>
</param>

</params>
</methodCall>

The last optional parameter, output_options, is an associative array containing any
options that you may want to pass. The following are the possible options:

verbosity: Determines how the resulting XML is formatted. Available values are
no_white_space, newlines_only, and pretty, which is the default.

escaping: Determines how and if certain characters are escaped. The value for this
option can be one or many values. When setting multiple values, you pass them as an
array. The possible values for this option are cdata, non-ascii, non-print, and markup.
The default for this option is the combination of non-ascii, non-print, and markup.

version: Specifies the format of the XML document. Possible values are xmlrpc, soap 1.1,
and simple. The keyword auto is also recognized and will create a response in the same
format a request came in. The default for this option is auto (when applicable) and
xmlrpc. (This chapter does not use this option, and all data is in xmlrpc format.)

encoding: The encoding for the XML document. The default encoding is iso-8859-1.

Decoding the Response
A client decodes responses it receives from the server using the xmlrpc_decode() function
described in the earlier “Encoding and Decoding Data” section. The response can either con-
tain any return values or contain a fault structure. As you will see in the next section, the fault
structure allows the client to perform error handling when the server encounters an error try-
ing to fulfill the request. For example:

$phpdata = xmlrpc_decode($retval);

CHAPTER 16 ■ XML-RPC 613

6331_c16_final.qxd 2/16/06 4:31 PM Page 613

Handling Errors
Whether or not the server produces an error when a request is made, a response is returned in
XML format. After decoding the response, a client is able to determine whether the response is
an error using the xmlrpc_is_fault() function. This function takes the return value from the
xmlrpc_decode() function and returns TRUE if an error condition is detected and FALSE if no
errors occurred from the request. For example:

$phpdata = xmlrpc_decode($retval);
/* check for errors */
if (xmlrpc_is_fault($phpdata)) {

print "Error Code: ".$phpdata['faultCode']."\n";
print "Error Message: ".$phpdata['faultString']."\n";

} else {
/* Process return value */

}

When a fault is detected, the resulting data is an array containing faultCode and
faultString members. The actual structure of the XML document for a fault will be shown
in the “Creating an XML-RPC Server” section. For now it is enough to understand that the
faultCode is an int data type and that the faultString is a string data type. These are the
only two members allowed within a fault structure. The faultCode is application dependant.
The XML-RPC specification does not have any predefined codes, so if you are handling errors
based on the code, it is necessary that the creator of the XML-RPC server being accessed pro-
vides the list of codes that can be returned.

Seeing an XML-RPC Client in Action
I will show a real example of an XML-RPC client later in this chapter in the “Seeing Some
Examples in Action” section. However, that section shows only a client, so here, in order to
explain both sides of the equation, I will show how to create a client that makes stock trades
that are executed on a remote server. I explain and demonstrate the server in the “Creating an
XML-RPC Server” section.

I wrote the following example to be executed from the command line using PHP CLI. With
a little HTML and a few
 tags, it is quite easy to adapt it to run under a Web server. I wrote
the server, created in the next section, to be executed from within a Web server. If you decide
to try this code, make sure you add the call_using_sockets() function from Listing 16-1, or
the equivalent function, to the script. In addition, make sure to set the remote server, sent as
the first parameter, accordingly. Currently, the script assumes localhost running on port 80
and assumes the script being called is named stocktrader.php and lives in the document root
of the Web site. Here’s the code:

<?php
/* An array to hold data returned from server */
$arMessage = array();

/* The userid is obtained through some other mechanism */
$userid = 1;

CHAPTER 16 ■ XML-RPC614

6331_c16_final.qxd 2/16/06 4:31 PM Page 614

/* Common function to make XML-RPC requests */
function make_request($request_xml, &$arMessage, $stockSymbol,

$stockQuantity, $transtype) {
$retval = call_using_sockets('localhost', 80, '/stocktrader.php', $request_xml);

$data = xmlrpc_decode($retval);

if (is_array($data) && xmlrpc_is_fault($data))
{

$arMessage[] = "Unable to $transtype $stockQuantity shares of $stockSymbol";
$arMessage[] = "Error Code: ".$data['faultCode'];
$arMessage[] = "Error Message: ".$data['faultString'];

} else {
$arMessage[] = $data;

}
}

/* Stock symbol, quantity, and type of transaction (buy/sell) are obtained
through some mechanism such as an HTML form */

/* Purchase 100 shares of Yahoo */
$stockSymbol = "YHOO";
$stockQuantity = 100;

$request_xml = xmlrpc_encode_request('stockPurchase', array($userid, $stockSymbol,
$stockQuantity));

make_request($request_xml, $arMessage, $stockSymbol, $stockQuantity, 'Purchase');

/* Add an blank to the message array to add extra line feed during output */
$arMessage[] = "";

/* Sell 50 shares of Google */
$stockSymbol = "GOOG";
$stockQuantity = 50;
$request_xml = xmlrpc_encode_request('stockSale', array($userid, $stockSymbol,

$stockQuantity));

make_request($request_xml, $arMessage, $stockSymbol, $stockQuantity, 'Sell');

/* Add an blank to the message array to add extra line feed during output */
$arMessage[] = "";

/* Buy 10 shares of Microsoft */
$stockSymbol = "MSFT";
$stockQuantity = 50;
$request_xml = xmlrpc_encode_request('stockPurchase', array($userid, $stockSymbol,

$stockQuantity));

CHAPTER 16 ■ XML-RPC 615

6331_c16_final.qxd 2/16/06 4:31 PM Page 615

make_request($request_xml, $arMessage, $stockSymbol, $stockQuantity, 'Purchase');

/* Output the messages received from the server */
foreach ($arMessage AS $message) {

print $message."\n";
}
?>

This sample code begins with some initialization. First, the $arMessage and $userid variables
are set up. The $arMessage variable is an array that will hold any return data or error information
from the remote server. This will be used at the end of the script to output all the messages. The
$userid variable is given the value 1. This variable represents the user ID for the person or entity
making the stock transaction and is hard-coded for this example.

Second, the make_request() function is a common function that will send an encoded
request to the server using the call_using_sockets() function from Listing 16-1. It takes five
parameters. The first is the encoded XML-RPC request to be sent. The second is the $arMessage
array passed by reference so that messages can be added and eventually used elsewhere in the
script. The remaining three parameters strictly add some information in the event the server
returns an error. As you can see within the error handling within the function, their text values
are simply inserted into the error messages being created.

Once the request has been made, the returned data is then decoded and tested for an
error. A fault structure is decoded into an array, and because a server can return any data type,
the type must first be tested for an array prior to checking whether it is a fault. In the event the
server returned an error, the error is dissected, and the error information is placed into the
$arMessage array. In all other cases, the actual decoded data is placed directly in the array.

For the actual client calls, you can see in the code that three stock transactions are to be
made. The first transaction attempts to purchase 100 shares of Yahoo stock. The second trans-
action attempts to sell 50 shares of Google, and the last attempts to purchase 50 shares of
Microsoft. They are all hard-coded for this example, but you could create a simple Web inter-
face to allow for dynamic input.

The xmlrpc_encode_request() function creates the request document. As you can probably
guess from looking at the function calls, the two methods being called on the remote server are
stockPurchase and stockSale. Each takes three parameters: the user ID, stock symbol, and
stock quantity. The corresponding variables are simply passed as items within an array.

Once all requests have been made and the return values and/or errors are processed, the
script simply loops through the $arMessage array and outputs the messages. Although the server
for this client has yet to be written, the following is the final output you would get once every-
thing is assembled and the script ran:

Bought 100 shares of Yahoo!

Sold 50 shares of Google

Unable to Purchase 50 shares of MSFT
Error Code: -1
Error Message: Stock Symbol MSFT cannot be traded

CHAPTER 16 ■ XML-RPC616

6331_c16_final.qxd 2/16/06 4:31 PM Page 616

The first two messages are the values returned directly from the remote server. They show
that the first two stock transactions were successfully executed. The last demonstrates a fault
returned when trying to purchases 50 shares of Microsoft. To see how and why the return val-
ues were created, you need to take a look at the server being used.

Creating an XML-RPC Server
You have two ways to handle the request data received from the client using the xmlrpc func-
tions. The first is a more manual method where it is up to the developer to decode the data,
handle the method call, and create the resulting response document. The second method
involves creating an XML-RPC server, registering methods, and allowing the server to process
the raw request and create the resulting document. In both cases, the result document must
be returned to the client.

The example server uses the second method to service the client. Before I get to that, I will
provide an overview of the functions that can process a request using the first method, as well
as show how you can access the request in the first place. Understanding these functions will at
least provide you with the flexibility of being able to create a server in either scenario depend-
ing upon your needs.

Retrieving the Request Data
The request is sent using an HTTP POST to the server. It is not passed as a parameter, so trying
to retrieve it using the $_POST superglobal is out of the question. It is strictly raw data. In some
cases, it can be retrieved using $HTTP_RAW_POST_DATA. This, however, depends upon INI settings
and is not always available. A much more universal and less memory-intensive way to get the
data exists. Using streams, the URI php://input grants you access to this raw data. Within your
XML-RPC server script, you would read the data just as you would a normal file:

$raw_post_data = file_get_contents("php://input");

No matter which method you choose to handle a request, you still need to retrieve the
raw POST data. This chapter, ensuring that the data is available for any PHP server setup, will
use only the streams functionality to retrieve this data.

Manually Handling a Request
Now that you have the raw request, you need to do something with it. The first step is to
decode the request structure. You require the method that needs to be executed here, so the
xmlrpc_decode() function is out of the question, since it will return only the parameters for
the method. The xmlrpc_decode_request() function is basically an extended version of the
function, because the return values are still the parameters of the request; however, this func-
tion also takes an additional parameter as input, which is passed by reference, and contains
the name of the requested method once the xmlrpc_decode_request() function has success-
fully returned:

$method_name = "";
$decoded = xmlrpc_decode_request($raw_post_data, $method_name);

CHAPTER 16 ■ XML-RPC 617

6331_c16_final.qxd 2/16/06 4:31 PM Page 617

Using the raw POST data from the previous section, calling this function will return the
parameters to be passed, which are then set to the $decoded variable. After calling this func-
tion, the variable $method_name will now contain the name of the method being requested.
This is the value set within the methodName element of the request.

Assuming that the requested function (the one named in the $method_name variable)
exists and is publicly available for remote requests, you now need to call the function. It is
up to you how you would like to handle the function call. Some possible methods are using
the call_user_func() or call_user_func_array() function, which could also be tested prior
to the actual call using the is_callable() function to ensure that the function can be called
in the first place. In any event, the response document you need to create depends upon
whether the function call was successful or an error condition was encountered.

The same function used to create the request, xmlrpc_encode_request(), is used to create
the response. This may seem a little odd because previously you saw that this function created
the entire request document, but the response document has a different structure. The differ-
ence in its usage lies with the first parameter. Passing in NULL as the method parameter causes
this function to generate the methodResponse structure. For example:

$response = xmlrpc_encode_request(NULL, $retVals);

Unlike when creating a request, you can pass any of the XML-RPC data types as $retVals.
A response contains only a single param element, so wrapping $retVals in an array will cause
only the param to be an array that contains each of the $retVals as items, rather than creating
multiple param elements.

But how are errors returned from the server? This is actually quite simple. You can create
a fault structure by creating an associative array containing a faultCode key and a faultString
key, with their values being the value that should be set as the content of the element when
serialized into XML format. For example, suppose the request method does not exist, and you
have defined code 500 to designate this error:

$arFault = array('faultCode'=>500, 'faultString'=>'Unknown Method Requested');

The $arFault array is then passed as the data to be passed back to the client:

$response = xmlrpc_encode_request(NULL, $arFault);

If you were to look at the resulting $response string, the document would look like the
following:

<methodResponse>
<fault>

<value>
<struct>

<member>
<name>faultCode</name>
<value><int>500</int></value>

</member>
<member>

<name>faultString</name>
<value><string>Unknown Method Requested</string></value>

</member>

CHAPTER 16 ■ XML-RPC618

6331_c16_final.qxd 2/16/06 4:31 PM Page 618

</struct>
</value>

</fault>
</methodResponse>

The only thing left to do, whether the response contains a return value or a fault, is to return
the data to the client. The easiest way to do this is when running the server within a Web server.
The response just needs to be echoed. Remember, though, that the data needs to be identified as
XML, so you must properly set the Content-Type header:

header('Content-Type: text/xml');
echo $response;

Using a Server to Handle a Request
You can write an XML-RPC server much more easily using the extension’s server rather than
having to do everything manually. The server in this case is a PHP resource that allows the reg-
istration of functions that are automatically called when a request document is passed to the
server. The server then also automatically creates the entire response document based on the
return value of the called function. From this description alone, you probably already have the
feeling that this is going to be much easier than having to manually perform all of the opera-
tions yourself.

The following creates a server using the xmlrpc_server_create() function and subse-
quently destroys it using the xmlrpc_server_destroy() function:

/* Create XML-RPC server */
$rpcserver = xmlrpc_server_create();

/* Destroy XML-RPC server */
xmlrpc_server_destroy($rpcserver);

Being a resource, it is not required that the server be destroyed; although it is automati-
cally cleaned up once PHP has finished serving the request, it is often good practice to do so
anyway.

Once you have a hold of a server, you need to register the functions to be served using
the xmlrpc_server_register_method() function. The function takes three parameters: the
server resource itself, the public name of the function called by the clients, and the internal
name of the function, which is the function definition. For instance, using the server just
created, $rpcserver, the following code maps the internal function buy_stock() to a publicly
identifiable method named stockPurchase and registers it with the server:

xmlrpc_server_register_method($rpcserver, "stockPurchase", "buy_stock");

This function returns a Boolean indicating whether the function was registered success-
fully. Functions that are registered must conform to the standard prototype used for callbacks.
For example:

mixed function_name(string method_name, array args, mixed user_data)

CHAPTER 16 ■ XML-RPC 619

6331_c16_final.qxd 2/16/06 4:31 PM Page 619

So, based on this prototype, you would define the buy_stock() function as follows:

function buy_stock($method_name, $args, $user_data) { . . . }

You would then reference this function from an XML-RPC request using the method
name stockPurchase.

Once you have defined and registered all functions with the server, all that is left to do—
once a request is made, of course—is access the raw post data, have the server process this
data, and finally return the results from the processing. As mentioned earlier in this chapter,
the best way to access the raw post data is by using PHP streams:

$request_data = file_get_contents('php://input');

This data is then passed to the server for processing by means of the
xmlrpc_server_call_method() function. This function takes the raw post data, parses the
request, calls the proper function, and returns the resulting response document:

mixed xmlrpc_server_call_method(resource server, string xml,
mixed user_data [, array output_options])

The parameters are pretty much straightforward. The server is the XML-RPC server that
has been created. The request data is passed to the xml parameter. The user_data parameter
allows data to be passed to the function being called. Whatever is passed to this parameter is
passed directly to the called function as its user_data parameter. The last parameter is the
same as the output_options parameter defined earlier in this chapter. It gives you control
over how the resulting response document is created.

You may be curious as to why this function can return mixed results. In most cases, the
return value will be a string containing the XML-RPC response. One output_option option,
output_type, was not covered earlier in this chapter. The default value for this option is the
value xml. It is also possible to specify the value php, which causes the results to be returned
as native PHP data types and ignores types not native to PHP. (I intentionally omitted this
option because the XML-RPC discussed in this chapter is written based upon the formal
specifications for the greatest interoperability. Everything contained in this chapter deals
strictly with the xml output_type.)

The response document is created based on the return value of the function it calls to
service the request. One special case exists when the returned data alters the response struc-
ture, and that is when a fault is created. Simply returning an associative array containing the
keys faultCode and faultString causes the XML-RPC server to create a fault structure using
the values for these items as the contents of the fault elements. For example, a function called
by xmlrpc_server_call_method() and returning the array array('faultCode'=>100,
'faultString'=>'Function Error Message') results in the following fault:

<?xml version="1.0" encoding="utf-8"?>
<fault>

<value>
<struct>

<member>
<name>faultCode</name>
<value><int>100</int></value>

</member>

CHAPTER 16 ■ XML-RPC620

6331_c16_final.qxd 2/16/06 4:31 PM Page 620

<member>
<name>faultString</name>
<value><string>Function Error Message</string></value>

</member>
</struct>

</value>
</fault>

■Tip Remember to set the Content-Type header to text/xml prior to returning the resulting response
document.

Putting this all together, you can create a server to service the request from the client cre-
ated in the previous section. It defines two functions, buy_stock() and sell_stock(), that are
registered with an XML-RPC server. The only two stocks, defined in the $arStocks array, that
can be used within these functions are Yahoo (YHOO) and Google (GOOG). The following is
the complete code for the server, referenced as the file stocktrader.php by the client. I wrote
it to run within a Web server because it leverages the header creation performed by the Web
server.

<?php
/* Stocks available to be traded */
$arStocks = array('YHOO'=>'Yahoo!', 'GOOG'=>'Google');

/* Function that performs the actual stock purchase */
function buy_stock($method_name, $args, $app_data) {

if (! is_array($args) || count($args) <> 3) {
return array('faultCode'=>-2,

'faultString'=>'Invalid Number of Parameters');
}
$userid = $args[0];
$symbol = $args[1];
$quantity = $args[2];
if (array_key_exists($symbol, $GLOBALS['arStocks'])) {

return "Bought $quantity shares of ".$GLOBALS['arStocks'][$symbol];
} else {

return array('faultCode'=>-1,
'faultString'=>"Stock Symbol $symbol cannot be traded");

}
}

CHAPTER 16 ■ XML-RPC 621

6331_c16_final.qxd 2/16/06 4:31 PM Page 621

/* Function that performs stock sale */
function sell_stock($method_name, $args, $app_data) {

if (! is_array($args) || count($args) <> 3) {
return array('faultCode'=>-2,

'faultString'=>'Invalid Number of Parameters');
}
$userid = $args[0];
$symbol = $args[1];
$quantity = $args[2];
if (array_key_exists($symbol, $GLOBALS['arStocks'])) {

return "Sold $quantity shares of ".$GLOBALS['arStocks'][$symbol];
} else {

return array('faultCode'=>-1,
'faultString'=>"Stock Symbol $symbol cannot be traded");

}
}

$request_xml = file_get_contents("php://input");

/* Create XML-RPC server, and register the functions */
$xmlrpc_server = xmlrpc_server_create();
xmlrpc_server_register_method($xmlrpc_server, "stockPurchase", "buy_stock");
xmlrpc_server_register_method($xmlrpc_server, "stockSale", "sell_stock");

/* Set content type to text/xml */
header('Content-Type: text/xml');

/* Process the XML-RPC request */
print xmlrpc_server_call_method($xmlrpc_server, $request_xml, array());
?>

The only portions of this example I expect you to have questions about are the functions
written to provide the requested functionality. Because arguments are passed as an array to
your functions, a simple check ensures it is an array, and the correct number of parameters is
passed. If the client does not send exactly three, the functions issue an error stating this. This
error is then returned to the calling client. The other error condition arises if the requested
stock is not one of your supported stocks. If you look at the earlier client example, you will see
the request to purchase 50 shares of Microsoft stock (MSFT). This symbol is invalid and causes
the fault with a faultCode of -1 to be returned to the client.

Using XML_RPC in PEAR
The XML_RPC package from PEAR provides an object-oriented API for creating XML-RPC
clients and servers. Unlike the xmlrpc extension, it also provides the mechanisms for trans-
porting data between the client and server. The only requirement for using this package is that

CHAPTER 16 ■ XML-RPC622

6331_c16_final.qxd 2/16/06 4:31 PM Page 622

the xml extension in PHP be installed. You can install the package, just like other PEAR
packages you have encountered so far, using the PEAR installer:

pear install XML_RPC

In many PHP installations, this package is already installed.

■Note If you are manually searching for this package on the PEAR site, it is grouped within the Web
service packages rather than within the XML packages.

Like all PEAR packages, the first thing you need to do when using the package is to include
it in the script being written:

require_once 'XML/RPC.php';

This now makes available the XML_RPC_Value, XML_RPC_Client, XML_RPC_Server,
XML_RPC_Message, and XML_RPC_Response classes. This package provides much more function-
ality than that provided natively by the xmlrpc extension, but unless you absolutely need to
utilize it all, I find the xmlrpc extension a bit easier to use.

This introduction to XML_RPC is not an in-depth coverage of the package functionality.
I will touch on only a few methods from the XML_RPC_Value, XML_RPC_Client, XML_RPC_Message,
XML_RPC_Response, and XML_RPC_Server classes and demonstrate a brief example of creating a
client. You can find more complete coverage of the API at the PEAR site for this package.

XML_RPC_Value
This package does not use native PHP variables and their data types. Rather, values are
wrapped within an XML_RPC_Value object. To create an object of this type, a PHP variable and
a string containing the data type defined in the XML-RPC specification are passed as parame-
ters to the constructor. Both parameters are strictly optional, because an empty XML_RPC_Value
object can be set after the fact using its methods, and the data type has a default type of string
when the type is not specified. For example:

/* Creating XML_RPC_Value objects */
$intValue = new XML_RPC_Value(1, 'int);
$stringValue = new XML_RPC_Value('string1', 'string');
$string2Value = new XML_RPC_Value('string2');
$arrayValue = new XML_RPC_Value(array(1, 2), 'array');

Because all values are objects, you need to access the underlying data using the object
methods rather than accessing the data directly. Although many different methods exist
depending upon what needs to be done, the only method you will be concerned with for
the sake of this object is scalarval(). This method returns the underlying PHP data using
its native data type. For example, using the $arrayValue object created previously, you can
retrieve the internal array using this method:

CHAPTER 16 ■ XML-RPC 623

6331_c16_final.qxd 2/16/06 4:31 PM Page 623

$val2 = $ arrayValue->scalarval();
var_dump($val2);

array(2) {
[0]=>
int(1)
[1]=>
int(2)

}

XML_RPC_Message
An XML_RPC_Message object contains the actual request sent to the server. It defines both the
method to be called and the parameters to be passed to the remote function:

XML_RPC_Message(string methodName, array parameterArray)

The first parameter, methodName, is the name of the remote function to be invoked. The
parameterArray parameter is an array containing XML_RPC_Value objects for each of the func-
tion’s parameters. Take, for example, a remote function named calcNumbers() with the
following prototype:

function calcNumbers($num1, $operator, $num2) { . . . }

✮Caution This prototype illustrates what the native function looks like. This is not the format used when
called by an XML_RPC_Server object. Refer to the “XML_RPC_Server” section for additional information
about defining internal functions.

It accepts three parameters. The $num1 parameter represents the first number for the cal-
culation. The $operator parameter is the operation to perform, such as +, -, /, or *. The last
parameter, $num2, is the second number for the calculation. Creating the request message for
this function to add the numbers 1 and 2 looks like this:

$objMessage = new XML_RPC_Message('calcNumbers', array(new XML_RPC_Value(1, 'int'),
new XML_RPC_Value('+'),
new XML_RPC_Value(2, int)));

XML_RPC_Message objects are also passed to the function being called on the server side.
The important methods here are getNumParams() and getParam(). Just like when working with
the xmlrpc extension, parameters from an XML-RPC request are passed to functions as a sin-
gle argument. In this case, it is an XML_RPC_Message object from which the parameters must
be extracted. You can retrieve the number of parameters contained in the XML_RPC_Message
by calling the getNumParams() method. It takes no parameters and returns an integer. Each

CHAPTER 16 ■ XML-RPC624

6331_c16_final.qxd 2/16/06 4:31 PM Page 624

parameter is then accessed by calling the getParam() method, passing the offset of the par-
ameter to return as the argument. The parameter returned is also contained within an
XML_RPC_Value object, just like all other values in this package. For example:

$paramcount = $objMessage->getNumParams();
for ($x=0; $x < $paramcount; $x++) {

$objRPCValue = $objMessage->getParam($x);
/* Do something with parameter */

}

XML_RPC_Client
Using the client is extremely easy in this package. Virtually all you need to do is create an
XML_RPC_Client object and send an XML_RPC_Message. For example:

XML_RPC_Client(string path, string server [, integer port [, string proxy [, integer
proxy_port [, string proxy_user [, string proxy_pass]]]]])

As you can see from the parameters for the construction, the client performs the neces-
sary transport based on the parameter values. You do not need to use any of the previously
defined functions, such as the one from Listing 16-1. The following list describes each of the
parameters and what they are used for:

path: The path on the server that services the request.

server: The URL of the remote server.

port: The port number to which to connect. The default value is 80 for HTTP and 443 for
HTTPS and SSL.

proxy: The URL of the proxy server if needed.

proxy_port: The port number of the proxy server. This defaults to 80 for HTTP and 443 for
HTTPS and SSL.

proxy_user: The username to be used to authenticate with the proxy server.

proxy_pass: The password to be used to authenticate with the proxy server.

For example:

$objRPCClient = new XML_RPC_Client('/rpcscript.php', 'example.com');

Using the newly created XML_RPC_Client object, the request is simply made by creating
the message, using the XML_RPC_Message object, and calling the send() method:

mixed XML_RPC_Client::send(XML_RPC_Message xmlrpc_message [, int timeout])

The method takes only an XML_RPC_Message object, using $objMessage from the previous
section, and an optional timeout value. Unless a communications error occurs or some other
error besides a returned fault structure occurs, which would cause the return value of the
method to be 0, an XML_RPC_Response object is returned:

$objResponse = $objRPCClient->send($objMessage);

CHAPTER 16 ■ XML-RPC 625

6331_c16_final.qxd 2/16/06 4:31 PM Page 625

XML_RPC_Response
Both a server and a client use the XML_RPC_Response class. As already demonstrated, it is
returned by an XML_RPC_Client object when calling the send() method. On the server side,
it is created and used as the response returned to the client. When needing to create a
response while creating an XML-RPC server, the parameters for the construction depend
upon what type of response is being sent. Returning a response with a return value simply
happens by passing an XML_RPC_Value object as the only parameter. For example:

$objResponse = new XML_RPC_Response(new XML_RPC_Value(1, 'int'));

Creating a fault structure for the response takes three parameters, with the first parameter
always being 0. The remaining parameters are, respectively, the fault code and the fault mes-
sage. For example:

$objFault = new XML_RPC_Response(0, -100, 'Invalid Method Requested');

Again, the object must be accessed using its methods to retrieve the response informa-
tion. The following is a list of available methods and their descriptions that can be called from
an XML_RPC_Response object. None of them take any parameters.

faultCode(): The numeric fault code or 0 if there is no error.

faultString(): The error message from the fault or empty if no error.

value(): Returns the XML_RPC_Value object containing with the response. This method
should not be called when the value returned by faultCode() is not 0.

serialize(): Returns the XML document of the response.

XML_RPC_Server
An XML_RPC_Server object works in a similar fashion as an XML-RPC server from the PHP
extension. Rather than having to call multiple functions, however, the majority of the work
happens by passing the information as arguments to the object’s constructor. For example:

XML_RPC_Server(array dispMap, int serviceNow = 1, int debug = 0)

Before getting to the first parameter, I will describe the remaining two, because they are
not used in this chapter. The serviceNow parameter indicates to the server whether it should
service the request immediately, which is during construction, or wait until instructed. When
told to wait by passing in the value 0 as the serviceNow argument, the server will not process
anything until its service() method is called. The debug parameter turns on debug mode
when the value 1 is passed as the argument.

The dispMap parameter is an associative array using the publicly known method name as
the key associated with another associated array that defines the internal function to be used.
The array held by each item is broken down into the following keys:

function: The value is the name of the internal function to be called. This key is manda-
tory within the array.

signature: The signature for the function. This is explained in more detail in a few
moments. Using this key is optional.

docstring: A string containing any documentation for the function. Using this key is optional.

CHAPTER 16 ■ XML-RPC626

6331_c16_final.qxd 2/16/06 4:31 PM Page 626

Before demonstrating how to create an XML_RPC_Server object, I will explain the signature
key. The signature key is an array containing additional arrays where each of these arrays defines
the data type for the return value and the data types for each of the accepted parameters. Its
usage is purely optional but can formally declare the procedure, number of arguments, and
type of arguments. For example:

function myfunct($arg1, $arg2="") {
return TRUE;

}

This is how a normal function is written when not working with xmlrpc. Its name is
myfunct, and it accepts two parameters. In this case, I will say $arg1 is an integer, and $arg2
is a string. The return value is clearly a Boolean. Because $arg2 is optional, you actually have
two different signatures. One signature exists for when $arg2 is not passed, and the other is
for when $arg2 is passed to the function. Rewriting this function to be used with XML_RPC,
it looks like the following:

function myfunct($args) {
/* $args is an XML_RPC_Message object */
return TRUE;

}

Returning to the signatures, the first item of a signature array item is the return type of
the function. The remaining items are the data types for each parameter. Because the function
has two signatures, the signature is written as follows:

array(
/* Signature when both parameters are passed */
array('boolean', 'int', 'string'),
/* Signature when only the required first parameter is passed */
array('boolean', 'int')

)

Again, PHP is a loosely typed language. When a variable is passed to a function, it does
not care about the type of the variable. The value of the variable is converted as needed to an
appropriate type based on its usage. Values in XML-RPC do have a specific type. Using signa-
tures, you can restrict the types of variables that will be passed to the PHP functions. For
example, when myfunc() is used without a signature, anything can be passed as arguments.
On the other hand, using signatures, such as the previous one, myfunct() is limited to accept-
ing a value that has an int data type and optionally a string for the second parameter. This
also illustrates how optional parameters are handled with signatures.

Now when creating the XML_RPC_Server object, registering only the single myfunct() func-
tion, you could do it in a few ways:

$objServer = new XML_RPC_Server(array("example.MyFunct" =>
array("function" => "myfunct")));

You can also create it with a signature like this:

CHAPTER 16 ■ XML-RPC 627

6331_c16_final.qxd 2/16/06 4:31 PM Page 627

$objServer = new XML_RPC_Server(array("example.MyFunct" =>
array("function" => "myfunct",

"signature" =>
array(

array('boolean', 'int', 'string'),
array('boolean', 'int')

))));

Because the serviceNow parameter is not used, creating $objServer automatically processes
the request that was sent and returns the appropriate response. You can find additional docu-
mentation and examples on the PEAR site for this package.

XML_RPC_Client Example
The following example illustrates how to write an XML-RPC client using the XML_RPC pack-
age from PEAR. The following client interacts with the stock server created using the xmlrpc
extension in PHP. It performs only a single transaction, but it works in the same manner as
the previous stock client does.

<?php
require_once 'XML/RPC.php';

$userid = 1;
$stockSymbol = "YHOO";
$stockQuantity = 100;

$params = array(new XML_RPC_Value($userid, 'int'),
new XML_RPC_Value($stockSymbol, 'string'),
new XML_RPC_Value($stockQuantity, 'int'));

$msg = new XML_RPC_Message('stockPurchase', $params);

$objStock = new XML_RPC_Client('/stocktrader.php', 'localhost');

$retVal = $objStock->send($msg);

if (!$retVal) {
echo 'Error: ' . $objStock->errstr;

} else {
if (!$retVal->faultCode()) {

$xmlrpcValue = $retVal->value();
echo $xmlrpcValue->scalarval()."\n";

} else {
echo "Unable to Purchase $stockQuantity shares of $stockSymbol";
echo "Error Code: ".$retVal->faultCode()."\n";
echo "Error Message: ".$retVal->faultString()."\n";

}
}
?>

Bought 100 shares of Yahoo!

CHAPTER 16 ■ XML-RPC628

6331_c16_final.qxd 2/16/06 4:31 PM Page 628

Seeing Some Examples in Action
Throughout this chapter, you have seen a few examples of interaction using XML-PRC. For
a final example, I will use a real-world scenario. You may not be aware of this, but interacting
with the PEAR repository using its tools occurs over XML-RPC.

■Note As of PEAR 1.4.0, REST, covered in the next chapter, is now the service of choice for interacting
with PEAR and its channels. XML-RPC is still available for supporting earlier versions of PEAR.

Leveraging this fact, you can create a custom interface to interact with PEAR directly. This
example will demonstrate how to retrieve information for a specific package from the PEAR
database. You can retrieve the full list of publicly accessible functions, which you could use to
expand upon this example, by calling the remote system.listMethods function. I will use the
xmlrpc extension in PHP to create the client.

This example has two files. The file pearxmlrpclib.php, shown in Listing 16-6, is the code
that performs all the work.

■Note I have omitted the code for the call_using_sockets() function from the example because
you can find it in Listing 16-1. If sockets are unavailable on your system, you can exchange it with the
call_using_curl() function as long as you change the appropriate call within the library as well.

Listing 16-6. Search Library Referenced As pearxmlrpclib.php

<?php

function call_using_sockets($remote_server, $remote_server_port,
$remote_path, $request) {

/* Code for this function found in Listing 16-1. */
}

/* Initialize variables */
$results = NULL;
$cur_package = '';
$pear_server = 'pear.php.net';
$pear_server_port = 80;
$pear_rpc_page = '/xmlrpc.php';

/* If form posted, then request the package information from PEAR
Invalid submissions are not being checked in this example */

if (! empty($_POST['submit'])) {
$cur_package = (string)$_POST['pkg_name'];
$request_xml = xmlrpc_encode_request('package.info', array($cur_package));

CHAPTER 16 ■ XML-RPC 629

6331_c16_final.qxd 2/16/06 4:31 PM Page 629

/* call_using_curl may be substituted here */
$retval = call_using_sockets($pear_server, $pear_server_port,

$pear_rpc_page, $request_xml);
$results = xmlrpc_decode($retval);

}
?>

You need to place the code for the Web page, shown in Listing 16-7, somewhere within a
Web site where it can be called from a browser. If the library file from Listing 16-6 is not placed
in the same directory, make sure to correctly change the reference so the Web page can
include it.

Listing 16-7. Web Page for Search Referenced As pearxmlrpc.php

<?php include('pearxmlrpclib.php'); ?>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">
<html>
<body>
<p>PEAR Package Information</p>

<form name="pear_search" method="post">
Package Name: <input type="text" name="pkg_name"

value="<?php echo $cur_package; ?>">

<input type="submit" name="submit" value="Search">

</form>

<?php
/* If we have results and it is an array, then output the key/value pairs */
if ($results && is_array($results)) {
?>
<table border="0">

<tr>
<th colspan="2">Package Information for <?php echo $cur_package; ?></th>

</tr>
<?php

foreach($results AS $key=>$value) {
/* Skip output of empty and complex values */
if (empty($value) || is_array($value))

continue;
?>

<tr>
<td align="right"><?php echo $key; ?>:</td>
<td align="left"><?php echo $value; ?></td>

</tr>

CHAPTER 16 ■ XML-RPC630

6331_c16_final.qxd 2/16/06 4:31 PM Page 630

<?php } /* End foreach */
} /* End if */
?>
</table>
</body>
</html>

Entering XML_RPC as the package on which to search results in the page shown in
Figure 16-1.

Conclusion
Calling remote procedures is not something new. Many technologies, such as DCOM and
CORBA, allow for RPC to take place. However, many of these are difficult to implement and are
even tied to specific platforms. XML-RPC was developed as a platform- and language-neutral
mechanism of exchanging data and allowing remote functions to be called, marshaling the
data in XML format. It also defined a universal transport agent, HTTP POST, allowing virtually
every computer to be able to interact with each other.

XML-RPC was pretty much the first official Web service. I say official, as you will see in
the next chapter, because XML has been exchanged between systems since it was conceived,
although no official nomenclature was ever given to the method until recently. With SOAP
and REST becoming more popular, XML-RPC usage has been on a decline, with many serv-
ices switching over to these other technologies. This does not mean XML-RPC is no longer
used. When compared to the other technologies, XML-RPC does have its place. For instance,
compared to using REST, XML-RPC provides a defined format for marshaling data, while
REST does not. SOAP, on the other hand, provides all the features of XML-RPC and then
some, but many feel overwhelmed by the complexity of it; XML-RPC is much easier to use.

The next chapter will begin the coverage of the common methods for using and imple-
menting Web services. The first of these is REST.

CHAPTER 16 ■ XML-RPC 631

Figure 16-1. Example output information for the XML_RPC package

6331_c16_final.qxd 2/16/06 4:31 PM Page 631

6331_c16_final.qxd 2/16/06 4:31 PM Page 632

Representational State Transfer
(REST)

Representational State Transfer (REST) is not a specific standard like many of the other
technologies covered in this book. Instead, it is an architectural style utilizing commonly
found technologies and protocols that in this case will be used to implement and utilize
REST-based Web services. This chapter will provide some background and information
regarding REST, but it focuses more on utilizing REST for Web services and uses the services
available from Yahoo and Amazon as examples.

Introducing REST
In 2000, Roy Fielding wrote his doctoral dissertation (http://www.ics.uci.edu/~fielding/
pubs/dissertation/abstract.htm) about architectural styles and designs of network-based
software architectures. Within it, he speaks of Web architectures where any information or
concept that can be named, referred to as a resource, is identified by a resource identifier, such
as a URI. In common terms, you can think of the PHP home page as a resource with a resource
identifier of http://www.php.net/.

Components in this architecture perform actions on the resource using its representa-
tion. For instance, using a browser to request the resource, a server transfers the current state
of a Web page to the browser. The browser is then able to perform the action of rendering the
representation. Simply put, the server sends the data for the requested page in its current
state, and the data is rendered. Navigating to any of the links within the rendered page causes
a state transition because the next page, which could be considered another state of an appli-
cation, is transferred to the browser for rendering.

This style of architecture was dubbed REST. It has become quite popular because it uses
components and technologies most developers already know. Using PHP, you can request a
remote resource as follows:

$representation = file_get_contents('http://www.php.net/');

PHP file functions and streams make accessing Web services simple in the REST world.

633

C H A P T E R 1 7

■ ■ ■

6331_c17_final.qxd 2/16/06 4:30 PM Page 633

Introducing REST Web Services
Although there is much more to REST than just the material presented in the previous section,
this chapter will focus on using it specifically for Web services. You should now have at least a
general idea what REST represents. It is fine if that is just a conceptual idea right now. This
section will cover how REST is used for Web services. I will explain both the client side and the
server side and will demonstrate them by showing how to create a custom Web service. Later
sections will show how to interact with some real-world Web services, such as those from
Yahoo and Amazon.

Using the REST methodology for a Web service involves the use of the following
components:

XML: XML is the format for the representation of the resource.

HTTP: The methods GET, HEAD, POST, PUT, and DELETE indicate the action to be taken.

URI: The URI, typically a URL, is the resource identifier that locates the Web service
(resource).

MIME type: Because the data being passed to the client is in XML format, text/xml is the
MIME type used.

Of all these components, the only topics you have not seen used in this book are the
HEAD, PUT, and DELETE methods when using HTTP. Everything else in this list should be
familiar to you. This does not mean you can use these components hazardously, though, as
you will see throughout the next sections.

■Note The MIME type should already be evident at this point. When a server is returning data, the MIME
type must be text/xml so it is correctly interpreted.

XML Representation
When making a call to a Web service, the data is returned in XML format. REST is different from
most technologies because it’s not a standard but an architectural style. REST has no standard
structure for the XML. By contrast, when working with XML-RPC or WDDX, the same format is
used no matter what system you access, as long as the system’s data conforms to either of these
technologies. A REST Web service returns XML as a structure defined by the implementer of the
service.

For example, assume you are accessing two independent Web services, Service A and
Service B, and each returns a set of customer data. The XML in Listings 17-1 and 17-2 return
the same set of data yet are structurally completely different.

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)634

6331_c17_final.qxd 2/16/06 4:30 PM Page 634

Listing 17-1. Customer Data from Service A

<?xml version="1.0" encoding="UTF-8"?>
<customers>

<customer>
<custid>1</custid>
<fname>John</fname>
<lname>Smith</lname>

</customer>
<customer>

<custid>2</custid>
<fname>Jane</fname>
<lname>Doe</lname>

</customer>
</customers>

Listing 17-2. Customer Data from Service B

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE customer_list [

<!ELEMENT customer_list (customer+)>
<!ELEMENT customer (first_name, last_name)>
<!ATTLIST customer custid ID #REQUIRED>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>

]>
<customer_list>

<customer custid="1">
<first_name>John</first_name>
<last_name>Smith</last_name>

</customer>
<customer custid="2">

<first_name>Jane</first_name>
<last_name>Doe</last_name>

</customer>
</customer_list>

Each of these documents returns the same customer data, John Smith and Jane Doe, but
structurally, they are completely different. They have no standard structure, so the caller must
already know what to expect. Typically, a public Web service offers a published API for this pur-
pose, but it is possible to use WSDL or Web Resource Description Language (WRDL). Although
this book does not cover WRDL, I will explain WSDL in Chapter 18 in relation to SOAP.

From the REST-based Web services I have seen, these technologies are rarely used. WRDL
is a descriptive language specifically for REST-based architectures, but it really never became
popular. The more commonly known WSDL, in my opinion, is like a black art because of its
complexity. Those who prefer REST to SOAP often do so because REST is easier to implement
and understand. From a client perspective, REST leverages technologies most developers are

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 635

6331_c17_final.qxd 2/16/06 4:30 PM Page 635

already comfortable using. SOAP, on the other hand, although not difficult to use with WSDL,
requires a developer to learn a new API and potentially use something they do not understand.
When implementing a service, REST has the same advantages as from the client perspective.
The developer already is comfortable writing code based on the existing technologies. Imple-
menting a SOAP service leads to learning a new API, writing a WSDL document, and adding
levels of complexity that many do not want to handle.

HTTP Methods
HTTP is the protocol used in a REST architecture. If you have researched REST at all, you have
probably come across the methods GET, HEAD, POST, PUT, and DELETE. In a purist view of
REST, each of these methods provides certain types of functionality often explained using the
database acronym CRUD. CRUD refers to Create, Retrieve, Update, and Delete. As you will see
in some of the real-world applications demonstrated in this chapter, this concept is really
a gray area.

Unless these methods are used in the manner shown in Table 17-1, a REST purist would
say that the service is not RESTful. Personally, I believe technology in general is a completely
gray area. It is all about getting the job done as simply as possible, without sacrificing security
and stability and without adding unnecessary layers of complexity. So, as long as the methods
are used in a similar fashion as listed in Table 17-1, it’s close enough to say the service is
RESTful. Aren’t there enough acronyms out there already?

Table 17-1. HTTP Methods for REST

Method CRUD Operation Description

GET Retrieve Retrieves the representation of a resource.

HEAD Retrieves metadata for the representation and resource.

POST Create In the strict sense, POST creates a resource. In the real world,
however, POST is typically used to create, update, and even
delete a resource. It is normal to use REST services that support
only GET and POST.

PUT Update Updates a resource. More often than not, you will not see this
method used in the real world but instead will see POST used to
perform the actions.

DELETE Delete Deletes a resource. Just like PUT, in the real world this is rarely
used, and instead POST is used in its place.

Although it might be worthwhile to understand the differences between how the different
methods are used in the purist world, this chapter will be limited to the GET and POST meth-
ods because these are more often than not what you will encounter in real-world usage.

HTTP GET
You should use the GET method only to retrieve a representation of a resource. You might be
tempted to create a service that uses only GET to perform all operations, which may work fine
for you, but you should perform any resource modifications, additions, and deletions using
POST. This will allow the separation of functionality and will also reduce the possibility of
inadvertent mistakes. This doesn’t mean a service is never implemented using only HTTP GET.

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)636

6331_c17_final.qxd 2/16/06 4:30 PM Page 636

Take RSS, for example, which fits in perfectly within the REST definition of a Web service.
From a user perspective, the only action that can be taken is to retrieve the resource, so an
HTTP GET call is made, the XML is returned, and the result can be parsed and processed as
a user sees fit.

When trying to use GET for all actions, though, the only differentiation between the
retrieval and the deletion of a resource is a combination of the URL and parameters. For
example, assume a service is running at the location http://www.example.org/myservice.php.
The difference between retrieving a record and deleting a record is the following:

/* Retrieve representation of resource 1 */
$representation = file_get_contents('http://www.example.org/myservice.php?resid=1');

/* Delete resource 1 */
file_get_contents('http://www.example.org/myservice.php?resid=1&del=1');

The service itself is able to know only that an operation is being performed on the
resource based on parameters:

/* Service Determination of Operation */
if (isset($_GET['del'])) {

/* Delete resource identified by $_GET['resid'] */
} else {

/* Retrieve resource identified by $_GET['resid'] */
}

This has too much room for mistakes. If the del parameter was accidentally passed, the
resource could be deleted even though the intended operation was a simple retrieval. It is
also possible that different URLs could be used, such as http://www.example.org/
myservice_retrieve.php to retrieve the representation and http://www.example.org/
myservice_delete.php to delete the resource. This, however, goes against the REST architec-
ture. The URL identifies the resource, and in this case, you end up with two URLs for the same
resource where the difference is the operation to perform. To summarize this, it is best prac-
tice to use GET for retrievals and POST for other operations on the resource.

HTTP POST
The POST method performs some type of action, other than a simple retrieval, on a resource.
Anytime a new resource is being created, modified, or deleted, it should be done using POST.
As you just read in the previous section, there are reasons for this. Not following this method-
ology (even though I still believe in gray areas) goes completely against the REST approach.
Although there is still room for potential errors since parameters are still used to determine
the type of modification to make, with a POST request you can at least know that something
should change, and from there you can implement checks to ensure that an inappropriate
action is not being requested.

This is one reason purists believe in using PUT and DELETE. The action is removed from
the parameter list and is determined by the HTTP method. Again, this is seldom used in the
real world and just adds complexity that really does not need to be there. Of course, I will prob-
ably take some heat for suggesting the use of POST rather than the other distinct methods, but
technology seems to be overly complicated. I don’t know about you, but if I can find a simple
way to do something and achieve the same results, then I prefer the simpler method.

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 637

6331_c17_final.qxd 2/16/06 4:30 PM Page 637

URI
Although you are already familiar with URIs and URLs, it is important to understand their sig-
nificance within a REST Web service. You might be curious why most of the URLs you see used
within Web services do not contain the actual Web page. They just point to some location. For
example, the Yahoo Web Search service, which I will demonstrate later in the “Introducing the
Yahoo Web Services” section, uses http://api.search.yahoo.com/WebSearchService/V1/
webSearch. URIs point to resources, and they should not change over time. If you decide to use
the URL http://www.example.org/myservice.php for your service and then after time decide to
implement it in another language, you will need to change the page name. Clients will no
longer be able to locate the service because they will be referencing an old location.

■Note The URL structures discussed in this section refer to more general usage of REST. When dealing
with Web services, as you will see in the examples throughout this chapter, URLs are not always provided
in the XML response. Sometimes you may receive identifiers for resources that can be used with a different
service to locate the actual resource or more additional information pertaining to the resource.

When choosing a URL for resources, you need to make sure it is descriptive but not overly
descriptive. It should be obvious based on the URI what the resource is or provides. Making it
overly descriptive in nature limits future extensibility. For instance, suppose you are creating
a service to provide information about automobiles. In particular, you are currently providing
information about Fords. This is one possible URL:

http://www.example.org/FordAutos

You can differentiate different makes of Fords by using further pathing in the URL:

http://www.example.org/FordAutos/escort
http://www.example.org/FordAutos/explorer

Down the line, say you decide to add some manufacturers; now you have a problem.
Of course, you can create similar structures like this:

http://www.example.org/ChevyAutos
http://www.example.org/NissanAutos

However, structurally this is not too intuitive. A much better structure is to use a structure
such as this:

http://www.example.org/auto/Ford
http://www.example.org/auto/Chevy
http://www.example.org/auto/Nissan

The entry point is of course http://www.example.org/auto. Although not critical when
creating a service, it is a good idea to put some thought into its structure prior to making it
publicly accessible.

When using a fixed URI, you need to think about how to handle API versioning. It’s
inevitable that eventually changes will be made and you will require a new version, so this

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)638

6331_c17_final.qxd 2/16/06 4:30 PM Page 638

is something to plan for in advance. You can handle this in a few ways based on personal pref-
erence. One way is to pass the version number as a parameter in the query string. There is no
specification on how you have to do this, so the parameter name and value are completely up
to you. For example:

http://www.example.org/auto/Ford?apiver=1.0
http://www.example.org/auto/Ford?apiver=2.0

It can also be part of the URL:

http://www.example.org/V1/auto/Ford
http://www.example.org/V2/auto/Ford

In certain cases where HTTP POST is used to call a service, you can also identify the ver-
sion by some required element in an XML document:

<request>
<version>1.0</version>

</request>

<request>
<version>2.0</version>

</request>

No matter which method you choose to employ, handling API versioning is always some-
thing to think about ahead of time so you encounter fewer problems in the future.

Creating a REST Web Service
The easiest Web services to create are those where clients simply make requests. Because no
data modifications are taking place, you need to handle only the GET method. For example,
suppose you want to write a service that simply adds two integers passed by the client. This is
not a very useful service, but it demonstrates the functionality nonetheless. Say you can access
this fictitious service at http://www.example.com/addit. It requires two parameters, num1 and
num2. If either of these parameters is absent, an error is returned in the form of an <error />
structure containing message elements citing the specific errors; otherwise, it returns a value
element containing the results of the addition.

Here’s the code:

<?php

function generate_error($messages) {
$error = '<error>';
/* A message does not contain any characters invalid for element content */
foreach ($messages AS $message) {

$error .= '<message>'.$message.'</message>';
}
$error .= '</error>';
return $error;

}

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 639

6331_c17_final.qxd 2/16/06 4:30 PM Page 639

function addit($num1, $num2) {
$retval = '<value>';
$retval .= $num1 + $num2;
$retval .= '</value>';
return $retval;

}

/* Set content type for XML */
header('Content-type: text/xml');
print '<?xml version="1.0"?>';

$errors = array();
if (isset($_GET['num1'])) {

if (isset($_GET['num2'])) {
print addit((int)$_GET['num1'], (int)$_GET['num2']);

} else {
$errors[] = 'Missing num2 parameter';

}
} else {

$errors[] = 'Missing num1 parameter';
if (! isset($_GET['num2'])) {

$errors[] = 'Missing num2 parameter';
}

}

print generate_error($errors);
?>

Calling this service using the URL http://www.example.com/addit?num1=1&num2=2 results
in the following data:

<?xml version="1.0"?>
<value>3</value>

Clearly this example is an overly simplified version of a Web service because services can
offer a great amount of functionality. It does, however, provide a good starting point to exam-
ine a bit more complex service.

The examples from Yahoo and Amazon use the GET method for accessing their Web serv-
ices. Although Yahoo’s Flickr service employs POST when modifying or creating photos, I will
not demonstrate how to use it in this chapter. Furthermore, Amazon uses GET exclusively for
its services shown in this chapter even when creating and modifying data. To demonstrate how
to effectively use GET and POST with a REST Web service, I will show how to create a service
that allows the retrieval and modification of an XML file. (In reality, the data can be stored in
any format as long as it is converted to and from XML format for transport.) This file simply
contains content, such as paragraphs that can render an HTML page. Once you’ve built the
service, I will demonstrate a simple client that accesses this service using GET and POST
methods depending upon the desired action.

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)640

6331_c17_final.qxd 2/16/06 4:30 PM Page 640

■Caution I haven’t implemented any security in this example and have implemented only limited data
checking. If following along with the example, ensure that you execute it within a controlled environment.
An alternative is to expand upon this example by adding security features and additional data checking to
prevent adverse effects from possible unauthorized usage.

The server portion consists of two files. The file restserver.php is used for the service and
contains the publicly accessible methods doc.view, doc.add, doc.update, and doc.delete. The
file myresource.xml is the XML document containing the data to be accessed and modified.
These are meant to reside within an accessible directory within a Web site, and the Web server
must have read/write access to the myresource.xml file. The following code shows the initial
contents of the XML file. It defines an internal subset so that an ID can be defined, and it pro-
vides a root element that will contain the modifiable data.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE root [

<!ELEMENT courses (course)*>
<!ELEMENT p (#PCDATA)>
<!ATTLIST p ID ID #REQUIRED>

]>
<root/>

■Caution The following example is written to be executed using PHP 5.1 or newer. The DOM load()
method is passing the options parameter to default DTD attributes and to create IDs. To use this code
under PHP 5.0, you must set either the resolveExternals property or the validateOnParse property
to TRUE for $doc in the getResource() function prior to loading the XML document.

The code for the server is a bit longer than the XML file:

<?php
/* Filename for the XML data - must be read/writable by Web server */
$resource_filename = 'myresource.xml';

/* Generic error returned when problem encountered */
function get_error() {

/* includes prologue as the value returned is sent directly to the client */
return '<?xml version="1.0"?><error code="-1">Invalid Request</error>';

}

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 641

6331_c17_final.qxd 2/16/06 4:30 PM Page 641

/* Load the XML document from file system, and make sure IDs are properly handled */
function getResource() {

$doc = new DOMDocument();
/* The following call uses the optional options parameter available
only in PHP 5.1 and higher */

if ($doc->load($GLOBALS['resource_filename'], LIBXML_DTDATTR)) {
return $doc;

}
return NULL;

}

/* Add a new p element using ID $id with the contents $value.
If $id already exists in document do not add new content */

function addResource($id, $value) {
if ($doc = getResource()) {

if (($element = $doc->getElementById($id)) == NULL) {
$element = $doc->documentElement->appendChild($doc->createElement('p',

$value));
$element->setAttribute('ID', $id);
if ($doc->save($GLOBALS['resource_filename'])) {

return $doc->saveXML();
}

}
}
return get_error();

}

/* Update or delete an existing p element based on $id.
If $id does not exist in document return generic error */

function updateResource($id, $value, $isdel = FALSE) {
if ($doc = getResource()) {

if ($element = $doc->getElementById($id)) {
if ($isdel) {

$element->parentNode->removeChild($element);
} else {

while($element->firstChild) {
$element->removeChild($element->firstChild);

}
$element->appendChild($doc->createTextNode($value));

}
if ($doc->save($GLOBALS['resource_filename'])) {

return $doc->saveXML();
}

}
}
return get_error();

}

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)642

6331_c17_final.qxd 2/16/06 4:30 PM Page 642

$action = '';

/* Set content type for XML */
header('Content-type: text/xml');

/* Determine action based on POST or GET */
if (isset($_POST) && isset($_POST['action']) && $_POST['action'] != 'doc.view') {

$action = $_POST['action'];
} else if (isset($_GET) && isset($_GET['action']) &&

$_GET['action'] == 'doc.view') {
$action = 'doc.view';

}

/* Perform specified action as long as needed parameters have been passed */
if ($action == 'doc.add' && isset($_POST['id']) && isset($_POST['value'])) {

echo addResource((int)$_POST['id'], $_POST['value']);
} else if ($action == 'doc.delete' && isset($_POST['id'])) {

echo updateResource((int)$_POST['id'], NULL, TRUE);
} else if ($action == 'doc.update' && isset($_POST['id']) &&

isset($_POST['value'])) {
echo updateResource((int)$_POST['id'], $_POST['value']);

} else if ($action == 'doc.view') {
/* The raw XML document could just be returned,

but here we ensure it is proper XML before sending.
If it is not proper, it will not load into the DOMDocument */

if ($doc = getResource()) {
echo $doc->saveXML();

} else {
echo get_error();

}
} else {

echo get_error();
}
?>

Four generic functions are defined: get_error(), which generates a basic nondescriptive
error; getResource(), which loads the XML data from the file system into a DOMDocument object;
addResource(), which adds a new element, as long as the ID is unique, to the XML data; and
updateResource(), which updates and deletes an element based on the ID. Based on the value
of the action parameter and the HTTP method used to call the service, the service will then
either perform the request operation and return the new XML data structure or return the generic
error message, indicating a failure.

The client piece for this is extremely simple, as shown next. I have written it to be exe-
cuted using PHP CLI, and it requests each of the accessible actions in sequence. It wouldn’t
require much additional effort to integrate it with some type of UI.

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 643

6331_c17_final.qxd 2/16/06 4:30 PM Page 643

<?php
/* Define remote server and path to script on remote server */
$server = 'http://localhost';
$path = '/restserver.php';

/* Function to make POST requests using PHP streams */
function make_post_request($url, $data) {

$opts = array(
'http'=>array('method'=>"POST", 'content'=>$data,
'header'=>"Content-Type: application/x-www-form-urlencoded\r\n")

);

$context = stream_context_create($opts);
return file_get_contents($url, FALSE, $context);

}

/* Example Get Resource */
$url = $server.$path.'?action=doc.view';

$dom = new DOMDocument();
$dom->load($url);
print $dom->saveXML()."\n";

/* Example Add Resource */
/* Select a new ID and request a new p tag be added */
$id = 5;
$value = 'Some Text';
$data = 'action=doc.add&id='.$id.'&value='.rawurlencode($value);
$url = $server.$path;
echo "Results After adding New Item:\n";
print make_post_request($url, $data)."\n";

/* Example Update Resource */
$value = 'New Modified Text';
$data = 'action=doc.update&id='.$id.'&value='.rawurlencode($value);
$url = $server.$path;
echo "Results After Editing Existing Item:\n";
print make_post_request($url, $data)."\n";

/* Example Delete Resource */
$data = 'action=doc.delete&id='.$id;
$url = $server.$path;
echo "Results After Deleting Item:\n";
print make_post_request($url, $data)."\n";
?>

The client makes POST requests using PHP streams and the file_get_contents() func-
tion. As you progress through the client code, the appropriate URL is created and called. Using

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)644

6331_c17_final.qxd 2/16/06 4:30 PM Page 644

the REST methodology, retrieving the data takes place with a simple GET call passing the
appropriate parameters. The additional three calls that modify the data take place using the
HTTP POST method.

■Note The text being added and modified is simple text in this example, and the rawurlencode()
function is used. In real-world applications, you must ensure that the data is handled correctly, either when
passed from the client or when being handled by the server, because entities must be properly escaped
before they can be added to the remote XML data document.

If you are trying this code on your own, as long as the server paths, filenames, and remote
permissions have been properly set, you should see the following output:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE root [
<!ELEMENT courses (course)*>
<!ELEMENT p (#PCDATA)>
<!ATTLIST p ID ID #REQUIRED>
]>
<root/>

Results After adding New Item:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE root [
<!ELEMENT courses (course)*>
<!ELEMENT p (#PCDATA)>
<!ATTLIST p ID ID #REQUIRED>
]>
<root><p ID="5">Some Text</p></root>

Results After Editing Existing Item:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE root [
<!ELEMENT courses (course)*>
<!ELEMENT p (#PCDATA)>
<!ATTLIST p ID ID #REQUIRED>
]>
<root><p ID="5">New Modified Text</p></root>

Results After Deleting Item:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE root [
<!ELEMENT courses (course)*>
<!ELEMENT p (#PCDATA)>
<!ATTLIST p ID ID #REQUIRED>
]>
<root/>

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 645

6331_c17_final.qxd 2/16/06 4:30 PM Page 645

The document has gone through three different iterations to end up in the same state it
was prior to calling the client code.

The following sections will cover some REST-based Web services found in the real world.
Yahoo and Amazon are just two of many companies and organizations providing publicly
accessible Web services. The examples in the next sections will show only a small subset of
functionality found in a few of the services. Using the ideas and techniques presented, you
should have no problems expanding the examples or even trying some of the other services
these companies offer.

Introducing the Yahoo Web Services
Yahoo provides a variety of Web services at http://developer.yahoo.net/, from searching the
Web to interfacing with Flickr (Yahoo’s photo-sharing community). Using REST, you can easily
add integration for them within a Web page or larger application. Although several services are
available, this chapter will demonstrate how to perform a Web search (http://developer.
yahoo.net/search/web/) and how to perform a product search (http://developer.yahoo.net/
shopping/V1/productSearch.html). Using the ideas and techniques presented in the examples,
it is quite easy to apply them to access other offered services. It is important to read the docu-
mentation for a particular service to understand the different parameters and results used for
a particular service.

■Note To utilize the Web services offered by Yahoo, you must be a registered user and obtain an appli-
cation ID (from http://api.search.yahoo.com/webservices/register_application) that uniquely
identifies the application accessing the service.

An application ID is required to access the services provided by Yahoo. This allows applica-
tion usage to be tracked but is not used to limit access. Access is controlled based on IP address.
The Flickr service, which is not covered in this chapter, requires its own API key. Although a lot of
functionality does not require authentication, to upload photos you must also register for an API
secret key (at http://www.flickr.com/services/api/registered_keys.gne) once you have your
API key.

Results
As previously mentioned, Flickr returns its own result structures, so the structure presented
here does not pertain to that service. The majority of the remaining services use a ResultSet
structure. Although the default namespace and schemas may vary between services, they all
return a document with a ResultSet element as the document element. This element also
contains three common attributes, though you can use additional attributes for different
services. For example:

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)646

6331_c17_final.qxd 2/16/06 4:30 PM Page 646

<ResultSet totalResultsAvailable="1285" totalResultsReturned="5"
firstResultPosition="1">

<-- Zero or more Result Elements -->
<Result>

<!-- Result Content -->
</Result>

</ResultSet>

The ResultSet element will always contain the attributes totalResultsAvailable,
totalResultsReturned, and firstResultPosition. As their names indicate, they provide the
total number of results available from the query as well as the total number of results returned
in the XML document. The firstResultPosition attribute indicates the position of the first
Result element in relation to the total number of available results. Based on the previous struc-
ture, the query resulted in a total of 1,285 hits where 5 have been returned in the resulting
XML document and where the first Result element represents the first result from the 1,285
results. This means the ResultSet element contains 5 Result child elements where the 5th ele-
ment relates to the 5th result from 1,285. The structure of the Result element depends upon
the service being called and is documented in each of the APIs from Yahoo.

Web Search
Yahoo provides a variety of search services, including audio, video, and Web searches. This
example will focus on performing a Web search, but you can find additional information
about performing other types of searches at http://developer.yahoo.net/search/index.html.
Although the URL to access the different searches is different, the methods and techniques
that will be demonstrated here are the same. The APIs, made up of the different parameters
and result structures, are the only things to be aware of when using any of these other services.
The developer site provides documentation for the APIs for all the available services.

The Yahoo Web Search service allows you to integrate an application with the Yahoo
search engine. Just like performing a search using your browser, programmatically you can
make remote calls to the Yahoo Web service, process the resulting XML document, and use the
results directly in your application. For instance, you could make a custom user interface that
allows a search and displays the results in your own format. You can find additional informa-
tion for this service at http://developer.yahoo.net/search/web/V1/webSearch.html.

All interaction with the Web search is performed using HTTP GET calls, which are made
against the following URL:

http://api.search.yahoo.com/WebSearchService/V1/webSearch

To make a request, parameters indicate the criteria and options used to perform the
search. At a minimum, you need the application ID, specified by the appid parameter, and
the search terms, specified by the query parameter, to avoid generating an error. Table 17-2
describes the acceptable parameters.

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 647

6331_c17_final.qxd 2/16/06 4:30 PM Page 647

Table 17-2. Web Search Request Parameters

Parameter Type/Value Description

appid string Your registered Yahoo application ID. This is a request
parameter.

query string Terms on which to search. This is a required parameter.

type all/any/phrase This value indicates the type of search. The default value
returns results containing all query terms. The value any
returns results containing one or more query terms. The value
phrase returns results matching the query terms as a phrase.

results integer The number of results to return. The default value is 10, and
100 is the maximum.

start integer The starting position of the results to be returned. The finish-
ing position (start + results - 1) cannot exceed 1,000. The
default value is 1.

format any/html/msword/ Specifies the kind of file for which to search. The default value,
pdf/ppt/rss/txt/ any, indicating any file type, is used when nothing is specified.
xls

adult_ok No value or 1 When the value 1 is passed, results containing adult content
can be returned.

similar_ok No value or 1 When the value 1 is passed, multiple results with similar con-
tent can be returned.

language string The language, as defined in the Yahoo documentation, in
which the results are written. The default value is en.

country string The country code, as defined in the Yahoo documentation, for
the country in which the Web site is located.

site string A domain to which to restrict your searches. Up to a maxi-
mum of 30 values, each specified by its own parameter, can be
used. When omitted, searches are not restricted to any
domain.

subscription string Any subscriptions to premium content that should also be
searched. You can submit multiple values, and you can find
supported subscription codes in the Yahoo documentation.

license any/cc_any/ The Creative Commons license under which the contents are
cc_commercial/ licensed. The default value any is used when nothing is
cc_modifiable supplied. You can specify multiple values using multiple

parameters.

Because the service is called by a simple GET request, it is easy to see what the structure
of a resulting search request looks like. Using the file_get_contents() function, you can
query the service for the term php web services, returning only a single result record and only
those in English. The code in Listing 17-3 demonstrates how to make this query and print the
resulting XML to the output.

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)648

6331_c17_final.qxd 2/16/06 4:30 PM Page 648

Listing 17-3. Example Querying Web Search Service

<?php
/* This is the application ID you registered with Yahoo */
$appid = "<your Yahoo! application id>";

/* URL to Web Search service */
$url = 'http://api.search.yahoo.com/WebSearchService/V1/webSearch';

/* The query is separate here because the terms must be encoded. */
$url .= '?query='.rawurlencode('php web services');

/* Complete the URL adding the App ID, limit to 1 result and only English results */
$url .= "&appid=$appid&results=1&language=en";

print file_get_contents($url);
?>

Assuming you have correctly set the application ID, $appid, and did not encounter any
unexpected errors, you should receive the following output. Note that the output has been
formatted for display purposes. Specifically, I have added the line feeds and indentations for
readability.

<?xml version="1.0" encoding="UTF-8"?>
<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:yahoo:srch"
xsi:schemaLocation="urn:yahoo:srch

http://api.search.yahoo.com/WebSearchService/V1/WebSearchResponse.xsd"
totalResultsAvailable="4376512" totalResultsReturned="1"
firstResultPosition="1">

<Result>
<Title>ASPN : Web Services : Simple Web Services API</Title>
<Summary>... Perl Web Services. PHP Web Services. Python Web Services ... Go

ogle Search Modules. Reference. PHP Web Services Quickstart ...</Summary>
<Url>http://aspn.activestate.com/ASPN/WebServices/SWSAPI/phptut</Url>
<ClickUrl>http://rds.yahoo.com/SIG=12qmiikdg/EXP=1130551351/**http%3A%2F%2Fa

spn.activestate.com%2FASPN%2FWebServices%2FSWSAPI%2Fphptut</ClickUrl>
<ModificationDate>1127977200</ModificationDate>
<MimeType>text/html</MimeType>
<Cache>

<Url>http://rds.yahoo.com/SIG=19gaac6ij/EXP=1130551351/**http%3A%2F%2F216.
109.125.130%2Fsearch%2Fcache%3Fei%3DUTF-8%26eo%3DUTF-8%26ac%3D0%26n%3D1%26b%3D1%
26va%3Dphp%2Bweb%2Bservices%26vm%3Dr%26fl%3D1%26vl%3Dlang_en%26u%3Daspn.activest
ate.com%2FASPN%2FWebServices%2FSWSAPI%2Fphptut%26w%3Dphp%2Bservices%26d%3DEQG5K2
FULnbk%26icp%3D1%26.intl%3Dus</Url>

<Size>18495</Size>
</Cache>

</Result>
</ResultSet>
<!-- ws01.search.re2.yahoo.com uncompressed Thu Oct 27 19:02:31 PDT 2005 -->

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 649

6331_c17_final.qxd 2/16/06 4:30 PM Page 649

The results from the Web search are fairly straightforward. The element names are
descriptive so it’s easy to deduce what each of the elements is used for. To aid in your under-
standing of the results, Table 17-3 describes the elements found within a Result element.

Table 17-3. Web Search Result Elements

Element Description

Title The title of the Web page

Summary Summary text associated with the Web page

Url The URL for the Web page that can be used for display purposes

ClickUrl The URL for linking to the page

MimeType The MIME type of the page

ModificationDate The date the page was last modified, in Unix time-stamp format

Cache An element containing a URL element indicating the URL of the cached result
and a Size element specifying its size in bytes

Now that you have an idea of how the service is called and what will be returned, it is
quite easy to integrate this using any of the XML extensions in PHP. For example, once you
have built the query, you can query the service and load the resulting XML into an object
using a single SimpleXML call. Once you have done this, the SimpleXML interface provides
easy access to the underlying results, as shown in Listing 17-4.

Listing 17-4. Using SimpleXML to Query the Web Search Service

<?php
/* This is the application ID you registered with Yahoo */
$appid = "<your Yahoo! application id>";

/* URL to Web Search service */
$url = 'http://api.search.yahoo.com/WebSearchService/V1/webSearch';

/* The query is separate here because the terms must be encoded. */
$url .= '?query='.rawurlencode('php5 xml');

/* Complete the URL adding App ID, limit to 5 results and only English results */
$url .= "&appid=$appid&results=5&language=en";

$sxe = simplexml_load_file($url);

/* Check for number of results returned */
if ((int)$sxe['totalResultsReturned'] > 0) {

/* Loop through each result and output title, url and modification date */
foreach ($sxe->Result AS $result) {

print 'Title: '.$result->Title."\n";
print 'Url: '.$result->Url."\n";
print 'Mod Date: '.date ('M d Y', (int)$result->ModificationDate)."\n\n";

}
}
?>

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)650

6331_c17_final.qxd 2/16/06 4:30 PM Page 650

The code to query the Web service in Listing 17-4 is similar to that of the code in Listing 17-3.
The only real differences are that the query has been changed to search for the terms php5
and xml, asking for five results, and that SimpleXML is being used to process the results. This
time something actually happens with the resulting XML document. SimpleXML loops through
each of the Result elements and outputs the contents of the Title, Url, and ModificationDate
elements. The resulting output should look similar to the following:

Title: Zend Technologies - PHP 5 In Depth - XML in PHP 5 - What's New?
Url: http://www.zend.com/php5/articles/php5-xmlphp.php
Mod Date: Oct 29 2005

Title: Workshop: XML in PHP5
Url: http://php5.bitflux.org/phpconf2004
Mod Date: Mar 05 2005

Title: XML with PHP5 - encoding
Url: http://www.topxml.com/forum/fb.asp?m=1470
Mod Date: Oct 26 2005

Title: XML with PHP5 - encoding
Url: http://www.topxml.com/forum/m_1470/printable.htm
Mod Date: Oct 18 2005

Title: XML in PHP5: An in-depth look into advanced XML features
Url: http://slides.bitflux.ch/phpconf2003
Mod Date: Oct 10 2005

As clearly demonstrated, using REST to interface with the Yahoo Web Search service is not
much different from working with XML from files. The difference is just that the file in this case
is a remote service where parameters are being passed. Once the results are returned, you can
handle them in the same manner you handle any other XML results using the extension of
your choice.

The next example will demonstrate how to access the Yahoo Product Search service.
Though accessing the service is not much more difficult than accessing the Yahoo Web Search
service, the ResultSet can be a bit more complicated.

Shopping
Performing a shopping search on Yahoo allows you to search matching products, see specific
offers from merchants, view user ratings, and compare products. Through the various shopping
Web services that Yahoo provides, it is also possible to perform these actions programmatically.
The example in this section will demonstrate how to perform product searches using the Yahoo
Product Search service. You can find additional information and documentation for this service
at http://developer.yahoo.net/shopping/V1/productSearch.html. The service itself, which is
the URL you will be making your requests against, is at the following location:

http://api.shopping.yahoo.com/ShoppingService/V1/productSearch

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 651

6331_c17_final.qxd 2/16/06 4:30 PM Page 651

The simplest case for a product search is a basic search using only query terms. Just like
Yahoo’s Web interface, the service also allows products to be searched by price range, depart-
ment, and merchant. Table 17-4 describes the available parameters for use with the service.

Table 17-4. Product Search Request Parameters

Parameter Type/Value Description

appid string Your registered Yahoo application ID. This is a request
parameter.

query string Terms on which to search. This is a required parameter.

results integer The number of results to return. The default value is 10, and
50 is the maximum.

start integer The starting position of the results to be returned. The
finishing position (start + results - 1) cannot exceed 1,000.
The default value is 1.

merchantid integer If specified, returns only products from a specified merchant.

highestprice float Sets the maximum price (in USD) for products to be returned.

lowestprice float Sets the minimum price (in USD) for products to be returned.

sort relevance/price Determines the sorting of the results. The default value
relevance sorts by relevance; price sorts by price from lowest
to highest.

department integer Sets the department to search for products in as defined in
the list at http://developer.yahoo.net/shopping/
departments.html.

If you look closely at this table, you will most likely notice that in order to search within a
particular merchant, you need the merchant ID, passed with the merchantid parameter. This
is not something you normally will have the first time you perform a query. This value is nor-
mally obtained from within the result of querying this service or one of the other applicable
shopping services.

The structure of the resulting document depends upon how specific the query searched
upon was. It still contains the ResultSet and individual Result elements, but the content of
the Result elements can be either a Catalog element, whose structure is broken out in Table 17-5,
or an Offer element, as shown in Table 17-6.

Table 17-5. Catalog Response Elements

Element Description

Url The URL for the corresponding catalog page on Yahoo Shopping

ProductName The name of the product

PriceFrom The lowest price (in U.S. dollars) for the product in this catalog

PriceTo The highest price (in U.S. dollars) for the product in this catalog

Thumbnail The URL of a product thumbnail image and its height and width in pixels

Summary A short description of the product

Description A longer description of the product

UserRating An enclosing tag for user rating information for this product

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)652

6331_c17_final.qxd 2/16/06 4:30 PM Page 652

Element Description

MaxRating A value from 1 (worst) to 5 (best) representing the maximum rating given
to this product by a user

NumRatings The number of users who have rated this product

AverageRating A value from 1 (worst) to 5 (best) representing the average rating given to
this product by a user

RatingUrl The URL to the ratings page for this product on Yahoo Shopping

CreateRatingUrl The URL to the page for posting reviews of this product on Yahoo
Shopping

SpecificationList Contains product specifications in key/value pairs

Specification Contains an individual key/value specification pair

SpecificationLabel Contains the label for the specification

SpecificationValue Contains the value for the specification

For example, if you performed a product search with the term linksys and only the second
result was returned using the following code:

<?php
/* This is the application ID you registered with Yahoo */
$appid = "<your Yahoo! application id>";

/* URL to Product Search service */
$url = 'http://api.shopping.yahoo.com/ShoppingService/V1/productSearch';

/* The query is separate here because the terms must be encoded. */
$url .= '?query='.rawurlencode(' linksys ');

/* Complete the URL with App ID, limit to 1 result and start at second record */
$url .= "&appid=$appid&results=1&start=2";

print file_get_contents($url);
?>

the resulting output would be the following XML document (note that it has been formatted
for easier readability):

<?xml version="1.0" encoding="ISO-8859-1"?>
<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:yahoo:prods"
xsi:schemaLocation="urn:yahoo:prods

http://api.shopping.yahoo.com/shoppingservice/v1/productsearch.xsd"
totalResultsAvailable="13640" firstResultPosition="2"
totalResultsReturned="1">

<Result>
<Catalog ID="1990338714">

<Url><![CDATA[http://shopping.yahoo.com/p:Linksys%20Instant%20Broadband%20

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 653

6331_c17_final.qxd 2/16/06 4:30 PM Page 653

EtherFast%20Cable%2FDSL%20Router:1990338714]]></Url>
<ProductName><![CDATA[Linksys Instant Broadband EtherFast Cable/DSL Router

]]></ProductName>
<PriceFrom>39.99</PriceFrom>
<PriceTo>61.61</PriceTo>
<Thumbnail>

<Url><![CDATA[http://us.f3.yahoofs.com/shopping/3029653/simg_t_ti18804jp
g70?rm_____DM3g.XsS6]]></Url>

<Height>53</Height>
<Width>70</Width>

</Thumbnail>
<Description><![CDATA[Linksys, a provider of networking hardware for the s

mall/medium business (SMB), small office/home office (SOHO), and enterprise mark
ets and broadband networking hardware for the home, has announced the new EtherF
ast Cable/DSL Router. The first in the new Instant Broadband series, this Linksy
s broadband router will enable home or office users to connect their computers t
o a cable or DSL modem and securely share Internet access and perform networking
tasks such as file and printer sharing. The built-in hardware firewall gives us
ers the security of sharing files without fear of intruders hacking into the net
work.]]></Description>

<Summary><![CDATA[Ethernet, Fast Ethernet ...]]></Summary>
<UserRating>

<MaxRating>5</MaxRating>
<NumRatings>10</NumRatings>
<AverageRating>4.0</AverageRating>
<RatingUrl><![CDATA[http://shopping.yahoo.com/p:Linksys%20Instant%20Broa

dband%20EtherFast%20Cable%2FDSL%20Router:1990338714:page=user-reviews]]></Rating
Url>

<CreateRatingUrl><![CDATA[http://shopping.yahoo.com/p:Linksys%20Instant%
20Broadband%20EtherFast%20Cable%2FDSL%20Router:1990338714:page=post-reviews]]></
CreateRatingUrl>

</UserRating>
<SpecificationList>

<Specification>
<SpecificationLabel>

<![CDATA[Networking Standards]]>
</SpecificationLabel>
<SpecificationValue>

<![CDATA[Ethernet, Fast Ethernet]]>
</SpecificationValue>

</Specification>
</SpecificationList>

</Catalog>
</Result>

</ResultSet>

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)654

6331_c17_final.qxd 2/16/06 4:30 PM Page 654

The catalog result is a more generalized result. Along with product information, it shows
the lowest and highest prices found for the product, as well as the user rating information.
An offer is a bit more specific, as described in Table 17-6.

Table 17-6. Offer Response Elements

Element Description

Field Contains the description.

Offer Contains the data for an individual merchant offering of a product.

Url Contains the URL for the corresponding catalog page on Yahoo Shopping.

ProductName Contains the name of the product.

Price Contains the price of the product in USD.

Thumbnail Contains the URL of a product thumbnail image and its height and width in pixels.

Summary Contains a short description of the product.

Merchant Contains a Name element with the name of the merchant making this offer. The
Merchant element also has an ID attribute specifying the merchant ID.

If you used a more specific query, such as Linksys Wireless-G Broadband Router WRT54G
Router, and the second result from the resulting records is returned, the Result element would
contain an Offer element, broken out in Table 17-6, instead. For example:

<?php
/* This is the application ID you registered with Yahoo */
$appid = "<your Yahoo! application id>";

/* URL to Product Search service */
$url = 'http://api.shopping.yahoo.com/ShoppingService/V1/productSearch';

/* The query is separate here because the terms must be encoded. */
$url .= '?query='.

rawurlencode('Linksys Wireless-G Broadband Router WRT54G Router');

/* Complete the URL with App ID, limit to 1 result and start at second record */
$url .= "&appid=$appid&results=1&start=2";

print file_get_contents($url);
?>

The output this time is much different. In this case, the result is an offer, which is specific
to a merchant.

<?xml version="1.0" encoding="ISO-8859-1"?>
<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:yahoo:prods"
xsi:schemaLocation="urn:yahoo:prods

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 655

6331_c17_final.qxd 2/16/06 4:30 PM Page 655

http://api.shopping.yahoo.com/shoppingservice/v1/productsearch.xsd"
totalResultsAvailable="155" firstResultPosition="2"
totalResultsReturned="1">

<Result>
<Offer>

<Url><![CDATA[http://store.yahoo.com/i-software/109246.html]]></Url>
<ProductName><![CDATA[Wireless-G Broadband Router [Linksys WRT54G Wireles

s]]]></ProductName>
<Price>65.40</Price>
<Thumbnail>

<Url><![CDATA[http://us.f3.yahoofs.com/shopping/mcid17_37651/simg_t_tiso
ftware_1869_19594097.th?rm_____Ddq1xgH7W]]></Url>

<Height>64</Height>
<Width>70</Width>

</Thumbnail>
<Summary><![CDATA[Wireless-G is the upcoming 54Mbps wireless networking st

andard that's almost the new screaming fast Wireless-G standard as your needs gro
w. The Linksys Wireless-G Broadband Router is really three devices in one box. F
irst, there's the Wireless...]]></Summary>

<Merchant ID="1009413">
<Name><![CDATA[BITS.com]]></Name>

</Merchant>
</Offer>

</Result>
</ResultSet>

As you can see, only some brief product information is included, and the price within this
data is specific for the merchant identified in the Merchant element. If you recall the input
parameters from Table 17-4, the merchantid parameter takes an integer identifying the mer-
chant to the queried. Using the ID attribute from the Merchant element is one way to retrieve
such an identifier. You could also use this identifier to search for additional information about
the merchant using the Yahoo Merchant Search service, which is also a part of the Yahoo
Shopping service.

There is a reason the second result was queried. A mix of Catalog and Offer elements will
often return the results. After running a few queries, it appears that the catalog results are
returned before the offer results, but this is not something I can say for sure. The more generic
the query, the more number of catalog results. Likewise, the more specific the query, the fewer
number of catalog results. Take the prior example, for instance; when the query Linksys
Wireless-G Broadband Router WRT54G Router was used, the first result was actually a Catalog
result, and the remaining Offer results were specific to individual merchants. The second
result was chosen in order to skip over the initial Catalog result because only one was con-
tained in that result set and to demonstrate the output of an Offer.

To demonstrate how to work with mixed results, I will show an example using the XSL
extension. This example, shown in Listing 17-5, is quite different from those you have previ-
ously seen using the XSL extension. In this case, the XML document being passed to the
XSLTProcessor contains a single element whose content is the request (URL) to the Yahoo Prod-
uct Search service. XSL uses this URL to make the request, receive the resulting document, and

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)656

6331_c17_final.qxd 2/16/06 4:30 PM Page 656

transform the results into HTML output. For the best results, the code should run under a Web
server and be called from a browser. The code expects the style sheet yahooprod.xsl to reside in
the same directory.

This example also uses hard-coded values for the query terms, but you can easily extend
it to be passed from a form or as parameters. If you make modifications along these lines, make
sure you properly encode the terms and query. Notice that the parameter separators have been
coded as & rather than &. You must also be careful with the terms themselves. The example
here performs a simple rawurlencode. This is not enough if additional special characters, such
as &, appear in the search terms.

Listing 17-5. Using XSL to Transform Product Search

<?php
/* This is the application ID you registered with Yahoo */
$appid = "<your Yahoo! application id>";

/* URL to Product Search service */
$url = 'http://api.shopping.yahoo.com/ShoppingService/V1/productSearch';

/* The query is separate here because the terms must be encoded. */
$url .= '?query='.

rawurlencode('Linksys Wireless-G Broadband Router WRT54G Router');

/* Complete the URL with App ID, limit to 5 results*/
$url .= "&appid=$appid&results=5";

/* Create document, and set url to url document element */
$dom = new DomDocument();
$dom->appendChild(new DOMElement('url', $url));

/* Load the style sheet yahooprod.xsl from Listing 17-6. */
$xsl = new DOMDocument();
$xsl->load('yahooprod.xsl');

/* Have the style sheet make the request and transform the results */
$proc = new xsltprocessor();
$proc->importStylesheet($xsl);
print $proc->transformToXML($dom);
?>

Listing 17-6 shows the style sheet. First, the results from the Yahoo services contain default
namespaces. If you recall from dealing with namespace in XPath and XSL, you need to register
namespaces in some manner. In this case, the namespace is declared in the xsl:stylesheet
element. The prefix prod has been added and refers to the urn:yahoo:prod namespace, which
comes from the data being returned by the service. All elements referenced from the result
document must be prefixed with the prod prefix in order to be accessed.

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 657

6331_c17_final.qxd 2/16/06 4:30 PM Page 657

Listing 17-6. XSL Template for Product Search: yahooprod.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:prod="urn:yahoo:prods" version="1.0">

<!-- urn:yahoo:prods namespace added with prefix prod matching the default namespace
of result document from the Yahoo Product Search Service -->

<xsl:output method="html"/>

<xsl:template match="prod:Thumbnail">

<xsl:attribute name="src">
<xsl:value-of select="prod:Url"/>

</xsl:attribute>
<xsl:attribute name="height">

<xsl:value-of select="prod:Height"/>
</xsl:attribute>
<xsl:attribute name="width">

<xsl:value-of select="prod:Width"/>
</xsl:attribute>

</xsl:template>

<xsl:template match="prod:Catalog">
<p>Catalog

<xsl:apply-templates select="prod:Thumbnail"/>

Product: <a>

<xsl:attribute name="href">
<xsl:value-of select="prod:Url"/>

</xsl:attribute>
<xsl:value-of select="prod:ProductName"/>

Price Range: <xsl:value-of select="prod:PriceFrom"/> -

<xsl:value-of select="prod:PriceTo"/>
</p>

</xsl:template>

<xsl:template match="prod:Offer">
<p>Offer

Product: <a>

<xsl:attribute name="href">
<xsl:value-of select="prod:Url"/>

</xsl:attribute>
<xsl:value-of select="prod:ProductName"/>

Merchant: <xsl:value-of select="prod:Merchant/prod:Name"/>

Price: <xsl:value-of select="prod:Price"/>
</p>

</xsl:template>

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)658

6331_c17_final.qxd 2/16/06 4:30 PM Page 658

<!-- Entry point -->
<xsl:template match="/">

<html>
<body>

<!-- Apply templates on document pulled from url defined
in passed in DOMDocument.

We are only interested in selecting the Result elements -->
<xsl:apply-templates

select="document(./url)/prod:ResultSet/prod:Result"/>
</body>

</html>
</xsl:template>

</xsl:stylesheet>

The other interesting aspect of this example is how the request is made. The main entry
match point calls xsl:apply-templates, passing the document() function. Using the content of
the url element from the DOMDocument object created in code, the style sheet makes the request
and then, with the resulting document, applies the templates to the Result elements. Calling
this from a browser results in output similar to that shown in Figure 17-1.

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 659

Figure 17-1. Product search output

6331_c17_final.qxd 2/16/06 4:30 PM Page 659

Standard Errors
One topic I haven’t covered yet is what happens when an error is encountered. Things don’t
always work exactly as planned, and eventually a request will result in an error for one reason
or another. The majority of the Yahoo Web services use a standard error format. (However,
Flickr has its own response format that includes errors so does not use this standard error for-
mat.) Depending upon the error, you will either receive an HTTP error code, which will be one
of the codes listed in Table 17-7, or receive an XML error document, illustrated in Listing 17-7.
Depending upon how the request is made, such as making the request directly with an XML
extension or the file_get_contents() function, an HTTP error will result in a PHP warning.

Table 17-7. Error Codes

Error Code Description

400 Bad request. The parameters passed to the service did not match as expected. The
Message element should tell you what was missing or incorrect.

403 Forbidden. You do not have permission to access this resource or are over your rate
limit.

500 Service unavailable. An internal problem prevented Yahoo from returning data to
you.

The XML document in Listing 17-7 is a generic structure. When an error is returned, the
Message element contains the actual text for the encountered error.

Listing 17-7. Error Message Structure

<Error xmlns="urn:yahoo:api">
The following errors were detected:

<Message>error message</Message>
</Error>

■Note In cases where a 400 code is returned, an XML error document will not be accessible because the
PHP streams will automatically generate a warning and not return an error document.

Introducing the Amazon Web Services
Amazon also provides a number of accessible Web services. You can find more information
within the Amazon site (http://www.amazon.com/):

• The Alexa Web Information Service allows the data collected by the Alexa Web crawler
and its usage analysis to be remotely and programmatically accessed.

• The Amazon Simple Queue Service offers hosted queues that can be used to buffer
messages between distributed applications.

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)660

6331_c17_final.qxd 2/16/06 4:30 PM Page 660

• The Amazon Historical Pricing service provides access to more than three years of
sales data.

• The Amazon E-Commerce Service, which I will demonstrate in this section, provides
much of the functionality found within the Amazon Web site. You can search products,
you can retrieve personal lists such as wish lists or wedding registries, you can access
seller information, and you can control remote shopping carts.

Before accessing the Amazon services, you must register with the Amazon Web Services
Program to receive an access key ID. This key is passed with every request made to the services
through the AWSAccessKeyId parameter and not only controls access to the service but also
allows usage to be tracked. You can obtain a key by registering at the following URL:

http://www.amazon.com/gp/aws/registration/registration-form.html

Registering for a key will allow you to try the examples provided in this section, which
consist of an item search (similar to a product search using the Yahoo service) and some
remote shopping cart functionality. The URL you need to use to access the Web service
depends upon your locale and is broken down by country code, as shown in Table 17-8.

Table 17-8. Amazon E-commerce Service URL by Locale

Locale URL

Amazon.com (US) http://webservices.amazon.com/onca/xml?Service=AWSECommerceService

Amazon.co.uk (UK) http://webservices.amazon.co.uk/onca/xml?Service=AWSECommerceService

Amazon.de (DE) http://webservices.amazon.de/onca/xml?Service=AWSECommerceService

Amazon.co.jp (JP) http://webservices.amazon.co.jp/onca/xml?Service=AWSECommerceService

Amazon.fr (FR) http://webservices.amazon.fr/onca/xml?Service=AWSECommerceService

Amazon.ca (CA) http://webservices.amazon.ca/onca/xml?Service=AWSECommerceService

The examples in the following sections will use the URL for the United States, http://
webservices.amazon.com/onca/xml?Service=AWSECommerceService. Feel free to change this
to a URL from Table 17-8 that matches your locale.

Introducing the Error Format
When errors are encountered, the response contains an Errors structure. Depending upon the
type of error or errors, this structure can be the document element or can be contained fur-
ther within the resulting XML document. In both cases, however, the actual Error structure
is the same:

<Errors>
<Error>

<Code><!-- Error Code defined in Amazon Web Services documentation --></Code>
<Message><!-- Error Message defined in Amazon documentation --></Message>

</Error>
<!-- Any number of Error elements: One per error -->

</Errors>

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 661

6331_c17_final.qxd 2/16/06 4:30 PM Page 661

For instance, when making an invalid request to the service, such as omitting the Service
parameter used to identify which service is being accessed, the error is returned as a top-level
error. This means that the returned XML document is an Errors structure. The request http://
webservices.amazon.com/onca/xml? results in the following response:

<?xml version="1.0" encoding="UTF-8"?>
<Errors>

<Error>
<Code>AWS.MissingServiceParameter</Code>
<Message>Your request is missing the Service parameter.
Please add the Service parameter to your request and retry.</Message>

</Error>
</Errors>

When the error is related to some issue concerning more specified functionality, such as
the omission of a parameter required for an operation, the Errors structure appears deeper
within the resulting XML document. For example, when performing an ItemSearch and omit-
ting your access key ID, such as when requesting http://webservices.amazon.com/onca/
xml?Service=AWSECommerceService&Operation=ItemSearch, the resulting document is as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<ItemSearchResponse

xmlns="http://webservices.amazon.com/AWSECommerceService/2005-10-05">
<OperationRequest>

<HTTPHeaders>
<Header Name="UserAgent"/>

</HTTPHeaders>
<RequestId>1H7BW92GT4GAKMBG38DV</RequestId>
<Arguments>

<Argument Name="Service" Value="AWSECommerceService"/>
<Argument Name="Operation" Value="ItemSearch"/>

</Arguments>
<Errors>

<Error>
<Code>AWS.MinimumParameterRequirement</Code>
<Message>Your request should have atleast 1 of the following parameters:

AWSAccessKeyId, SubscriptionId.</Message>
</Error>

</Errors>
</OperationRequest>

</ItemSearchResponse>

If you look toward the end of this response, you can see the Errors structure with the mes-
sage indicating the access key ID is missing. Because of the differing placements of the error, it
is not always so simple to determine whether the response is in error. According to the Amazon
documentation, you should use XPath to query for an error. Using SimpleXML or DOM, you
can do this easily:

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)662

6331_c17_final.qxd 2/16/06 4:30 PM Page 662

<?php
$query = 'http://webservices.amazon.com/onca/xml?Service=AWSECommerceService'.

'&Operation=ItemSearch';

/* Example Error checking using DOM */
$dom = new DOMDocument();
$dom->formatOutput = TRUE;
$dom->load($query);
$xpath = new DOMXPath($dom);
$errors = $xpath->query('//*[local-name()="Error"]');
if ($errors && $errors->length > 0) {

/* Dump first error */
echo $dom->saveXML($errors->item(0));

} else {
/* Result is valid so process */

}

/* Example Error checking using SimpleXML */
$sxe = simplexml_load_file($query);
$xpath = $sxe->xpath('//*[local-name()="Error"]');
if (is_array($xpath) && count($xpath) > 0) {

/* Dump first error */
echo $xpath[0]->asXML();

} else {
/* Result is valid so process */

}
?>

Usually you wouldn’t need such detailed examples of error detection and extraction, but
in this case there is a bit of a difference depending upon where the error is positioned. When
returned as a top-level error, the document does not use any namespaces. When returned
within a result document, however, default namespaces come into play. Unless you are coding
for a specific query, such as in this case where an ItemSearchResponse document is being
returned, the default namespace varies. It depends upon the resulting document. To create
a generic error-handling routine using XPath, you cannot register a namespace, so Error ele-
ments are searched by matching on their local names using the local-name() function. You
run into even more problems when trying to use the xml or XMLReader extension. XPath is
not an option. The only way around this is to parse the result document, expecting it to be
valid and erroring out when you encounter an Errors element.

Performing an Item Search
Performing item searches with the Amazon Web service is similar to that of using Yahoo’s,
except that Amazon allows for quite a number of parameters. Table 17-9 lists only a subset of
the parameters that are valid for this type of search.

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 663

6331_c17_final.qxd 2/16/06 4:30 PM Page 663

Table 17-9. Subset of ItemSearch Parameters

Parameter Description

Operation The operation to perform. This parameter is required and must be set to
ItemSearch to search items.

SearchIndex The Amazon store for which to search. This parameter is required, and valid
values vary by locale and are found within the API documentation.

Keywords The keywords for which to search. When SearchIndex is set to MusicTracks, the
keyword searches song titles.

Artist Artist’s name for which to search.

Author Author’s name for which to search.

Actor Actor’s name for which to search.

Director Director’s name for which to search.

Manufacturer Manufacturer for which to search.

Publisher Publisher for which to search.

ItemPage Results are returned ten at a time. This value indicates which page from the
result set to return. When not specified, the first ten, or all items if there are fewer
than ten, are returned. Values can be from 1 to 3200.

Sort Identifies how the results are ordered. You can find acceptable values in the API
documentation, and they are based on the value of SearchIndex and your locale.

MinimumPrice The minimum price for results to be returned. The value is specified in pennies
or equivalent local currency.

MaximumPrice The maximum price for resulting products. The value is specified in pennies or
equivalent currency.

ResponseGroup This parameter controls the resulting XML structure. The default value Small
returns only limited item information. By using one of the other acceptable val-
ues specified in the API documentation, such as Medium or Large, you can return
additional information such as price and image data in the resulting structure.
You can specify multiple groups by supplying them as a single comma-separated
value.

This also doesn’t even account for the parameters that control the format and presenta-
tion. Yes, you can supply a URL to a style sheet and return the resulting output rather than XML.
This is not something that I will demonstrate because by now you should be able to take the
resulting XML and do that yourself.

Except for the difference in handling the errors and the different resulting XML structure,
the procedure for making calls to this service is the same as when using the Yahoo services.
For this reason, I will not show a complete example. Instead, I will show a simple call using
DOM and the resulting document output. For example:

<?php
$access_key = '&AWSAccessKeyId=<your access key id>';

$query = 'http://webservices.amazon.com/onca/xml?Service=AWSECommerceService';
$query .= $access_key;
$query .= '&Operation=ItemSearch&Keywords='.rawurlencode('linksys');
$query .= '&SearchIndex=Electronics';

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)664

6331_c17_final.qxd 2/16/06 4:30 PM Page 664

$dom = new DOMDocument();
$dom->formatOutput = TRUE;
$dom->load($query);
print $dom->saveXML();
?>

The query that has been constructed contains the minimal amount of parameters
to perform an item search of any relevance. The Service parameter has been set to
AWSECommerceService. Because Amazon uses a single access point for its Web services,
it is mandatory to properly indicate the particular service against which the operations
should be performed. The Operation parameter, having the value ItemSearch, instructs the
service that the values being passed are to be used to search for an item. The Keywords
parameter contains the keywords to be used in the search. In this case, the same linksys
value that was used for one of the Yahoo product searches is being used here. This allows
you to compare the results from the two services using the same search criteria. Although
the particular value does not need to be encoded, the rawurlencode() function is a
reminder to encode any values you may be passing here. The last parameter of interest is
SearchIndex. The value for this comes from a list of acceptable values as defined in the
Amazon documentation. It indicates the department to be searched and is mandatory to
make a request without an error. When the code is actually executed, the returned docu-
ment should look similar to the one in Listing 17-8.

■Note I have modified Listing 17-8 for readability. I have added formatting, and I have removed eight of
the ten resulting Item elements for brevity. Your results may vary based on current search results from
Amazon as well as any differences in locale.

Listing 17-8. ItemSearch Result Document

<?xml version="1.0" encoding="UTF-8"?>
<ItemSearchResponse

xmlns="http://webservices.amazon.com/AWSECommerceService/2005-10-05">
<OperationRequest>
<HTTPHeaders>
<Header Name="UserAgent"/>

</HTTPHeaders>
<RequestId>1YJRG70RVP7HRZWPY57X</RequestId>
<Arguments>
<Argument Name="Service" Value="AWSECommerceService"/>
<Argument Name="AWSAccessKeyId" Value="XXXXXXXXXXXXXXXXX"/>
<Argument Name="SearchIndex" Value="Electronics"/>
<Argument Name="Keywords" Value="linksys"/>
<Argument Name="Operation" Value="ItemSearch"/>

</Arguments>
<RequestProcessingTime>0.0499119758605957</RequestProcessingTime>

</OperationRequest>

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 665

6331_c17_final.qxd 2/16/06 4:30 PM Page 665

<Items>
<Request>
<IsValid>True</IsValid>
<ItemSearchRequest>
<Keywords>linksys</Keywords>
<SearchIndex>Electronics</SearchIndex>

</ItemSearchRequest>
</Request>
<TotalResults>484</TotalResults>
<TotalPages>49</TotalPages>
<Item>
<ASIN>B00007KDVI</ASIN>
<DetailPageURL>http://www.amazon.com/exec/obidos/redirect?tag=ws%26link_co

de=xm2%26camp=2025%26creative=165953%26path=http://www.amazon.com/gp/redirect.ht
ml%253fASIN=B00007KDVI%2526tag=ws%2526lcode=xm2%2526cID=2025%2526ccmID=165953%25
26location=/o/ASIN/B00007KDVI%25253FSubscriptionId=XXXXXXXXXXX</DetailP
ageURL>

<ItemAttributes>
<Manufacturer>Linksys</Manufacturer>
<ProductGroup>CE</ProductGroup>
<Title>Linksys WRT54G Wireless-G Router</Title>

</ItemAttributes>
</Item>
<Item>
<ASIN>B0007MGG2M</ASIN>
<DetailPageURL>http://www.amazon.com/exec/obidos/redirect?tag=ws%26link_co

de=xm2%26camp=2025%26creative=165953%26path=http://www.amazon.com/gp/redirect.ht
ml%253fASIN=B0007MGG2M%2526tag=ws%2526lcode=xm2%2526cID=2025%2526ccmID=165953%25
26location=/o/ASIN/B0007MGG2M%25253FSubscriptionId=XXXXXXXXXXX</DetailP
ageURL>

<ItemAttributes>
<Manufacturer>Linksys</Manufacturer>
<ProductGroup>CE</ProductGroup>
<Title>Linksys Compact Wireless-G Broadband Router WRT54GC</Title>

</ItemAttributes>
</Item>
<!-- 8 additional Item elements omitted -->

</Items>
</ItemSearchResponse>

Using the Remote Shopping Cart
The operations for a remote shopping cart are actually pretty interesting. Using this function-
ality, it is possible to remotely create a shopping cart and add, remove, and update items
within the cart. You can also retrieve all carts within 90 days of the last access date. Using
a combination of operations available within the Amazon E-Commerce Service, such as the
item search, it is possible to create a custom Amazon shop where visitors can add items to

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)666

6331_c17_final.qxd 2/16/06 4:30 PM Page 666

their carts, and when they are ready to purchase, you hand them off to Amazon for order pro-
cessing. Although this might not sound worthwhile, if you happen to be an Amazon associate,
you can collect referral fees for the items purchased.

The steps for working with the remote shopping cart are fairly simple:

1. Create a new cart or retrieve existing cart.

2. Add/remove/update/clear the cart.

3. Hand off to Amazon for order processing.

Cart functionality is still part of the Amazon E-Commerce Service, so the Service parame-
ter will still be passed with the value AWSECommerceService.

■Note The parameter AssociateTag can be passed with all of the requests in this section. If you are an
Amazon affiliate, set the value of this parameter to your associate ID. This makes sure that items are identi-
fied as having originated from your Web site and makes sure you are credited for traffic and/or sales.

Creating and Retrieving a Cart
Unless you have an existing cart, which must have been accessed within the past 90 days,
you will need to create a new shopping cart. To do this, you must add at least one item to the
cart during its creation. Items are referenced by an Amazon Standard Item Number (ASIN).
You can find these numbers within the product Web pages as well as within the results from
other searches. If you look at one of the items in Listing 17-8, you will notice that each item
has an ASIN element. For instance, the last Item has the ASIN B0007MGG2M. In the case of
books, the ASIN is the same as the ISBN.

So, already aware that this book has the ASIN 1590596331, I could decide to purchase
a copy:

<?php
$access_key = '&AWSAccessKeyId=<your Access Key ID>';

$query = 'http://webservices.amazon.com/onca/xml?Service=AWSECommerceService';
$query .= $access_key;
$query .= '&Operation=CartCreate&Item.1.ASIN=1590596331&Item.1.Quantity=1';
$query .= '&MergeCart=True';

$dom = new DOMDocument();
$dom->formatOutput = TRUE;
$dom->load($query);
print $dom->saveXML();
?>

The important line in this code is the last $query line. It passes the value CartCreate as the
Operation parameter and adds one copy of the book to the cart. You can pass multiple items at
a time, which is the reason for Item.1.ASIN and Item.1.Quantity. You supply additional items

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 667

6331_c17_final.qxd 2/16/06 4:30 PM Page 667

by incrementing the number 1 for each additional item. A quantity for an item is always
required, and unless using an OfferListingId attribute for an Item, which is not covered here,
the ASIN is also required. So, adding items take this form:

$query .= '&Item.2.ASIN=X&Item.2.Quantity=X&Item.3.ASIN=X&Item.3.Quantity=X';

where X represents either a valid ASIN or a quantity.

■Note The MergeCart parameter determines how the cart is handled when the purchase is being handed
over to Amazon to process. The value False sends the shopper directly to the Amazon checkout system. The
value True merges the contents of this cart with anything they may have in a cart on the Amazon system.
The shopper is sent to the shopping cart screen. For the United States, False can be used and is the default
value for this parameter. All other locales must set this parameter to True. The example in this section uses
the value True for the greatest compatibility among readers.

Excluding this additional query, the resulting XML document looks like the one in
Listing 17-9.

Listing 17-9. Response from Creating a New Cart

<?xml version="1.0" encoding="UTF-8"?>
<CartCreateResponse xmlns="http://webservices.amazon.com/AWSECommerceService/200
5-10-05">
<OperationRequest>
<HTTPHeaders>
<Header Name="UserAgent"/>

</HTTPHeaders>
<RequestId>1058AHG20CGW011JKHFF</RequestId>
<Arguments>
<Argument Name="Item.1.ASIN" Value="1590596331"/>
<Argument Name="ResponseGroup" Value="Cart"/>
<Argument Name="Operation" Value="CartCreate"/>
<Argument Name="Service" Value="AWSECommerceService"/>
<Argument Name="AWSAccessKeyId" Value="XXXXXXXXXXXX"/>
<Argument Name="Item.1.Quantity" Value="1"/>

</Arguments>
<RequestProcessingTime>0.139086008071899</RequestProcessingTime>

</OperationRequest>
<Cart>
<Request>
<IsValid>True</IsValid>
<CartCreateRequest>
<Items>
<Item>
<ASIN>1590596331</ASIN>
<Quantity>1</Quantity>

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)668

6331_c17_final.qxd 2/16/06 4:30 PM Page 668

</Item>
</Items>
<ResponseGroup>Cart</ResponseGroup>

</CartCreateRequest>
</Request>
<CartId>102-9876508-1043332</CartId>
<HMAC>JCRKSBLOcCtdVdfK/dAabEwVYkE=</HMAC>
<URLEncodedHMAC>JCRKSBLOcCtdVdfK/dAabEwVYkE=</URLEncodedHMAC>
<PurchaseURL>https://www.amazon.com/gp/cart/aws-merge.html?cart-id=102-98765

08-1043332%26associate-id=ws%26hmac=JCRKSBLOcCtdVdfK/dAabEwVYkE=%26SubscriptionI
d=XXXXXXXXXXX%26MergeCart=False</PurchaseURL>

<SubTotal>
<Amount>4499</Amount>
<CurrencyCode>USD</CurrencyCode>
<FormattedPrice>$44.99</FormattedPrice>

</SubTotal>
<CartItems>
<SubTotal>
<Amount>4499</Amount>
<CurrencyCode>USD</CurrencyCode>
<FormattedPrice>$44.99</FormattedPrice>

</SubTotal>
<CartItem>
<CartItemId>UH08ZJLDTK045</CartItemId>
<ASIN>1590596331</ASIN>
<MerchantId>ATVPDKIKX0DER</MerchantId>
<SellerId>A2R2RITDJNW1Q6</SellerId>
<SellerNickname>Amazon.com, LLC</SellerNickname>
<Quantity>1</Quantity>
<Title>Pro PHP XML and Web services</Title>
<ProductGroup>Book</ProductGroup>
<Price>
<Amount>4499</Amount>
<CurrencyCode>USD</CurrencyCode>
<FormattedPrice>$44.99</FormattedPrice>

</Price>
<ItemTotal>
<Amount>4499</Amount>
<CurrencyCode>USD</CurrencyCode>
<FormattedPrice>$44.99</FormattedPrice>

</ItemTotal>
</CartItem>

</CartItems>
</Cart>

</CartCreateResponse>

This has two important pieces of information. The CartId element contains the unique
identifier, 102-9876508-1043332, for this cart. The HMAC element contains a security token,

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 669

6331_c17_final.qxd 2/16/06 4:30 PM Page 669

JCRKSBLOcCtdVdfK/dAabEwVYkE=, which must be used with the corresponding CartId in order
to access and modify the cart contents. So, if you left your cart today and returned tomorrow,
using those values you could retrieve the cart and its contents. The PurchaseURL is also another
important element but, unlike the other two, is not needed to access the cart. It, rather, is the
URL to send a shopper once they are ready to purchase the contents of the cart. It is not
important to capture this value initially because it is accessible when you retrieve the cart
or when the cart structure is returned from other operations.

/* Cart Id from Listing 17-9 */
$cart_id = '102-9876508-1043332';

/* HMAC from Listing 17-9 */
$hmac = 'JCRKSBLOcCtdVdfK/dAabEwVYkE=';

$query = 'http://webservices.amazon.com/onca/xml?Service=AWSECommerceService';
$query .= $access_key;
$query .= '&Operation=CartGet&CartId='.$cart_id;
$query .= '&HMAC='.$hmac;

Calling the query built in to the $query string will return the same document as shown in
Listing 17-9. To be clear, the cart is available to be retrieved and modified up to 90 days from
the last time it was accessed.

Modifying the Cart
You can modify a cart using the CartAdd, CartModify, and CartClear operations. The easiest
of these functions is CartClear. This operation removes all items from the cart. The cart still
remains available and can even be retrieved at a later date, but it is empty. You do need to see
the contents of an empty cart, and it is assumed the operation is not going to fail, so the fol-
lowing uses a simple file_get_contents to make the request:

<?php
$access_key = '&AWSAccessKeyId=<your Access Key ID>';

$query = 'http://webservices.amazon.com/onca/xml?Service=AWSECommerceService';
$query .= $access_key;
$query .= '&Operation=CartClear&CartId=102-9876508-1043332';
$query .= '&HMAC=JCRKSBLOcCtdVdfK/dAabEwVYkE=';

file_get_contents($query);
?>

Adding items is also quite simple. You add them in the same fashion as when the cart was
created. In fact, the only differences here are that the value of the Operation parameter is
CartAdd and that the CartId and HMAC parameters must be passed:

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)670

6331_c17_final.qxd 2/16/06 4:30 PM Page 670

<?php
$access_key = '&AWSAccessKeyId=<your Access Key ID>';

$query = 'http://webservices.amazon.com/onca/xml?Service=AWSECommerceService';
$query .= $access_key;
$query .= '&Operation=CartAdd&CartId=102-9876508-1043332';
$query .= '&HMAC=JCRKSBLOcCtdVdfK/dAabEwVYkE=';
$query .= '&Item.1.ASIN=1590596331&Item.1.Quantity=1';

$dom = new DOMDocument();
$dom->formatOutput = TRUE;
$dom->load($query);
print $dom->saveXML();
?>

Again, the cart is back to the same state as that in Listing 17-9, containing one book.
The last operation is to modify the cart contents, which is handled by CartModify. This

operation modifies item quantities as well as moves items between the active cart and the “save
for later” area. Let’s say I want to give some copies of this book away to family members. I will
need another five copies. Items within the cart are identified by their CartItemId elements.
Because the cart was cleared and the item re-added, the CartItemId has a different value than
in the original document from Listing 17-9. In this case, the value is U2TU24TAYQ6N18. The query
is almost the same as the CartAdd operation, except in this case the item is identified by the
value of the CartItemId element and not by an ASIN. For example:

<?php
$access_key = '&AWSAccessKeyId=<your Access Key ID>';

$query = 'http://webservices.amazon.com/onca/xml?Service=AWSECommerceService';
$query .= $access_key;
$query .= '&Operation=CartModify&CartId=102-9876508-1043332';
$query .= '&HMAC=JCRKSBLOcCtdVdfK/dAabEwVYkE=';
$query .= '&Item.1.CartItemId=U2TU24TAYQ6N18&Item.1.Quantity=6';

$dom = new DOMDocument();
$dom->formatOutput = TRUE;
$dom->load($query);
print $dom->saveXML();
?>

The quantity passed is the final quantity you want the item in the cart and not the number
to add or subtract. Setting the value to 0 effectively removes the item from the cart. Looking at
just a small subset of the resulting document, you can see it has been properly updated:

<!-- Fragment of Result Document -->
<CartItemId>U2TU24TAYQ6N18</CartItemId>
<ASIN>1590596331</ASIN>
<MerchantId>ATVPDKIKX0DER</MerchantId>
<SellerId>A2R2RITDJNW1Q6</SellerId>

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST) 671

6331_c17_final.qxd 2/16/06 4:30 PM Page 671

<SellerNickname>Amazon.com, LLC</SellerNickname>
<Quantity>6</Quantity>
<Title>Pro PHP XML and Web services</Title>
<ProductGroup>Book</ProductGroup>

Handing Off the Order
Once the shopper is ready to purchase, all you need to do is send them to the URL identified
by the PurchaseURL element. It is not necessary to check for this element every time a response
is returned because it is easily retrievable. Simply retrieve the cart, locate the element, and
retrieve its contents. For example:

<?php
$access_key = '&AWSAccessKeyId=<your Access Key ID>';

$query = 'http://webservices.amazon.com/onca/xml?Service=AWSECommerceService';
$query .= $access_key;
$query .= '&Operation=CartGet&CartId=102-9876508-1043332';
$query .= '&HMAC=JCRKSBLOcCtdVdfK/dAabEwVYkE=';

$dom = new DOMDocument();
$dom->load($query);

$xpath = new DOMXPath($dom);
$purchase_url = $xpath->evaluate('string(//*[local-name()="PurchaseURL"])');

/* Send shopper to Amazon for fulfillment */
header('Location: '.$purchase_url);
?>

Conclusion
REST is an architectural style and not any specific standard. This chapter focused on using
REST as applied to Web services. As you may have noticed, you can implement REST in a few
ways, though the material presented here pertains more to what you mostly find used in the
real world than what a purist view of REST is. Just like the arguments between the SOAP and
REST groups about what constitutes a Web service, just as many arguments take place within
the REST group about what constitutes a REST-based Web service.

Using REST tends to be easier than dealing with SOAP. You do not have to be concerned
with all the complexities, like you do with WSDL. The downside is that SOAP has much more
exposure than REST. It’s one of those buzzwords that almost every executive knows but proba-
bly doesn’t understand.

As you will see in the next chapter, SOAP does work well because it was designed explicitly
for Web services, but when possible I prefer using REST to avoid having to deal with any addi-
tional complexities.

CHAPTER 17 ■ REPRESENTATIONAL STATE TRANSFER (REST)672

6331_c17_final.qxd 2/16/06 4:30 PM Page 672

SOAP

The introduction of PHP 5 brought forth vast improvements in XML support for developers
and opened the door to numerous XML technologies. Native support for SOAP was one of these
improvements. With the recent upswing in Web service usage, the two major technologies are
REST-based services, which you read about in the previous chapter, and SOAP, which is what
this chapter will cover. Understanding SOAP is a bit more complex than understanding REST,
especially when writing servers, because you need to master several technologies. From the
consumer perspective, SOAP can be easy to use.

This chapter will explain and demonstrate how you can implement SOAP clients and
SOAP servers in PHP. To do so, you will be introduced to WSDL and SOAP 1.1. By the end of
this chapter, you should understand these technologies enough to consume a SOAP service
as well as to write your own SOAP server.

■Note Much of the information for the SOAP extension in PHP is based on the extension from PHP 5.1.0.
Many changes and additions have been made to the extension over the course of the different releases.
Although I do my best to indicate the differences and availability of functionality in the different versions,
I recommend you use the latest stable PHP release if you are implementing the SOAP extension in a pro-
duction environment. This not only will give you the latest functionality but also a more stable version of
the extension.

Introducing the Web Services Description
Language (WSDL)
WSDL is an XML grammar used to describe a Web service. It defines how the Web service is
accessed, the operations it performs, how messages are passed, and the structure of the mes-
sages. Although WSDL is not required to work with SOAP, it is an integral part of the WS-I Basic
Profile from the Web Services Interoperability Organization (http://www.ws-i.org/), and it
makes working with SOAP much easier. The good thing about working with WSDL is that on
the consumer side, you do not need to know any details about an API. In fact, you do not even
need to understand WSDL to consume the service. However, this has a downside. When the
service belongs to you and you are the one who has to create the WSDL document, it can be
a bit difficult. In my opinion, writing WSDL documents is like dabbling in the black arts.

673

C H A P T E R 1 8

■ ■ ■

6331_c18_final.qxd 2/16/06 4:27 PM Page 673

■Caution Although the material presented here for WSDL is according to the WSDL 1.1 documentation,
not everything is considered to be a valid way of doing things when following the WS-I Basic Profile
(WS-I BP). Your Web service does not have to conform to the WS-I BP, but certain companies do require
this conformance. Covering the actual contents of the WS-I BP is out of the scope of this chapter, but once
you have a working knowledge of WSDL and SOAP, it is not difficult to read the documentation if you have
a need for conformance.

You might run into various versions of WSDL when working with SOAP. Currently,
WSDL 2.0 is the latest W3C working draft (http://www.w3.org/TR/wsdl20/). It is an evolution
of WSDL 1.2, which was also a working draft but never officially released (although you may
run into its usage in the real world with SOAP 1.2). The structure explained in this chapter,
however, will deal with WSDL 1.1 (http://www.w3.org/TR/wsdl), because it is still widely used
in conjunction with SOAP 1.1 and is also a bit easier to understand, especially if this is your
first time working with WSDL.

■Note WSDL and SOAP are complex topics and not easily summarized. To ensure you have a good
understanding of each of these topics so you can effectively use SOAP in PHP, this chapter limits WSDL
use to version 1.1, covering areas specific to usage with SOAP version 1.1.

This section will explain the structure of a WSDL document and use XML Schemas
(covered in Chapter 3) to define the data types, and it will explain how to manually build a
WSDL document using a fictional PHP Web service as an example. Although XML Schema
is not the only schema language you can use when creating a WSDL document (you can also
use RELAX NG), it is the most common and preferential language for maximum interoperabil-
ity. Before jumping right into the structure, you should know that I will use a few namespaces
in this chapter, as shown in Table 18-1. These come from the W3C WSDL 1.1 note, but in this
case, contrary to their documentations, the current XML Schema namespace is being used.

CHAPTER 18 ■ SOAP674

Table 18-1. Common Prefixes Used in WSDL

Prefix Namespace URI Description

wsdl http://schemas.xmlsoap.org/wsdl/ WSDL namespace for the WSDL framework.

soap http://schemas.xmlsoap.org/wsdl/soap/ WSDL namespace for the WSDL SOAP binding.

http http://schemas.xmlsoap.org/wsdl/http/ WSDL namespace for the WSDL HTTP GET
and POST binding.

mime http://schemas.xmlsoap.org/wsdl/mime/ WSDL namespace for the WSDL MIME binding.

soapenc http://schemas.xmlsoap.org/soap/encoding/ Encoding namespace as defined by SOAP 1.1.

soapenv http://schemas.xmlsoap.org/soap/envelope/ Envelope namespace as defined by SOAP 1.1.

xsd http://www.w3.org/2001/XMLSchema Schema namespace as defined by XSD.

tns Various The “this namespace” (tns) prefix is used as a
convention to refer to the current document.

6331_c18_final.qxd 2/16/06 4:27 PM Page 674

The XML document in Listing 18-1, exampleapi.wsdl, is an example of a WSDL docu-
ment; I will explain its construction in this section. The funny thing about this WSDL
document is that for how long it is, only a single function is defined for the Web service it
is describing. It may seem complex at first, but I will explain each area in detail. This docu-
ment should serve as a reference as I cover each area in its own section, making it easier to
understand the specifics of the key points. Referring to this document will allow you to see
how all the areas fit into the large schema of the WSDL document.

Listing 18-1. Example WSDL Document for exampleapi.wsdl

<?xml version="1.0"?>
<definitions targetNamespace="urn:ExampleAPI" xmlns:tns="urn:ExampleAPI"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="urn:ExampleAPI">
<xsd:element name="getPeopleByFirstLastName">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="first" type="xsd:string"/>
<xsd:element name="last" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="Person">
<xsd:all>

<xsd:element name="id" type="xsd:int"/>
<xsd:element name="lastName" type="xsd:string"/>
<xsd:element name="firstName" type="xsd:string"/>

</xsd:all>
</xsd:complexType>

<xsd:complexType name="ArrayOfPerson">
<xsd:complexContent>

<xsd:restriction base="soapenc:Array">
<xsd:attribute ref="soapenc:arrayType"

wsdl:arrayType="tns:Person[]"/>
</xsd:restriction>

</xsd:complexContent>
</xsd:complexType>

<xsd:element name="getPeopleByFirstLastNameResponse"
type="tns:ArrayOfPerson"/>

CHAPTER 18 ■ SOAP 675

6331_c18_final.qxd 2/16/06 4:27 PM Page 675

<xsd:element name="DBUnavailableFault">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="DBMessage" type="xsd:string"/>
<xsd:element name="RetryInMinutes" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="SystemMaintenance">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="SysMessage" type="xsd:string"/>
<xsd:element name="RetryInMinutes" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

</types>

<!-- Input message -->
<message name="getPeopleByFirstLastName">

<part name="parameters" element="tns:getPeopleByFirstLastName"/>
</message>
<!-- Output Message -->
<message name="getPeopleByFirstLastNameResponse">

<part name="result" element="tns:getPeopleByFirstLastNameResponse"/>
</message>
<!-- Fault Messages -->
<message name="DBUnavailableFault">

<part name="DBUnavailableFault" element="tns:DBUnavailableFault"/>
</message>
<message name="SystemMaintenance">

<part name="SystemMaintenance" element="tns:SystemMaintenance"/>
</message>

<!-- Port for Example API -->
<portType name="ExamplePortType">

<operation name="getPeopleByFirstLastName">
<input message="tns:getPeopleByFirstLastName"/>
<output message="tns:getPeopleByFirstLastNameResponse"/>
<fault name="nodb" message="tns:DBUnavailableFault"/>
<fault name="sysmaint" message="tns:SystemMaintenance"/>

</operation>
<!-- Other operations -->

</portType>

CHAPTER 18 ■ SOAP676

6331_c18_final.qxd 2/16/06 4:27 PM Page 676

<!-- Binding for Example API - Document/literal, SOAP over HTTP -->
<binding name="ExampleBinding" type="tns:ExamplePortType">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getPeopleByFirstLastName">

<soap:operation soapAction="getPeopleByFirstLastName"/>
<input>

<soap:body use="literal"/>
</input>
<output>

<soap:body use="literal"/>
</output>
<fault name="nodb">

<soap:fault name="nodb" use="literal"/>
</fault>
<fault name="sysmaint">

<soap:fault name="sysmaint" use="literal"/>
</fault>

</operation>
<!-- Other operations -->

</binding>

<!-- Endpoint for Example API -->
<service name="ExampleService">

<port name="ExamplePort" binding="tns:ExampleBinding">
<soap:address location="http://www.example.com/ExampleService"/>

</port>
</service>

</definitions>

Understanding the Document Structure
In this section, I will break a WSDL document down into a simplistic view that takes into
account only the most important elements. This document does not take into account
namespaces other than the WSDL namespace to which the elements belong. Based upon
this breakdown, a WSDL document has the following structure:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>

<!-- definition of types used in WSDL -->
</types>

<message>
<!-- abstract definition of the data being transmitted -->

</message>

<portType>
<!-- a set of abstract operations referring to input and output messages -->

</portType>

CHAPTER 18 ■ SOAP 677

6331_c18_final.qxd 2/16/06 4:27 PM Page 677

<binding>
<!-- concrete protocol and data format specs -->

</binding>

<service>
<!-- specifies locations and bindings for a service -->

</service>
</definitions>

■Note I am using the WSDL elements in this section without prefixes to make them easier to read. These
elements, however, belong to the http://schemas.xmlsoap.org/wsdl/ namespace. Because they are
used as fragments from a complete WSDL document, assume that the wsdl namespace has been defined
as the default namespace.

Types
The types element encapsulates the data type definitions used when messages are exchanged.
Although you can use any schema language to define these types, XML Schema is the preferred
language, as well as what is used in this chapter, because of its maximum interoperability. Here
is the syntax:

<types>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- complexType definitions -->
</xsd:schema>

</types>

Using this element really depends upon the type of data being exchanged. For example,
if you are simply passing simple strings or numerics back and forth, then you can handle them
using a simple xsd:string type, which does not get defined here. Objects and arrays, on the
other hand, need to have a type defined.

■Note The examples in this section, unless otherwise noted, are smaller fragments from a larger
WSDL document. You may not see the actual definition of all namespaces, and in these cases you should
assume the namespace has been defined higher in the hierarchy using the prefix/namespace mappings
from Table 18-1.

Arrays

Arrays have no native built-in type under XML Schemas. One defined in the SOAP 1.1 encod-
ing schema, however, corresponds to the soapenc prefix from Table 18-1. When defining an

CHAPTER 18 ■ SOAP678

6331_c18_final.qxd 2/16/06 4:27 PM Page 678

array in WSDL, you use the soapenc:Array type but not directly. You create a custom complex
type by extending the soapenc:Array type and must follow some rules specified in WSDL 1.1:

• The name of the array types should be ArrayOfXXXX, where XXXX is the type of items
contained in the array.

• You specify the type of items contained in the array and its dimensions using a default
value for the soapenc:arrayType attribute.

• The default value is currently provided using an arrayType attribute from the name-
space associated with the wsdl prefix in Table 18-1.

If these rules are making your head spin, don’t fret. It is much easier to see how this works
in practice than in theory. For example, starting with a simple array on integers:

array(1,2,3,4);

the actual values within the array do not matter when creating the type definition. All you are
concerned with is that it is an array and it contains only integers. For example:

<xsd:complexType name="ArrayOfint">
<xsd:complexContent>

<xsd:restriction base="soapenc:Array">
<xsd:attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:int[]"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

Following the WSDL rules, you define a complex type having the name ArrayOfint. As
you know from Chapter 3, you create types through the further restriction of base types. In
this case, you use the soapenc:Array type as the base type to be restricted. You then specify
the types of items using the soapenc:arrayType attribute. The type of these is xsd:int; how-
ever, this is an array where multiple integers can be returned, so using the wsdl:arrayType
attribute, the item type is finally specified using xsd:int[].

Using arrays of simple types is fairly straightforward. To return an array containing
strings, the only parts you need to change in the example are the name of the complexType to
ArrayOfstring and the value of wsdl:arrayType to xsd:string[]. Returning arrays of other
complex types is also just as straightforward, but many people still have problems when
working with them. For this reason, I wrote a separate section about this topic; see the
“Complex Type Containing Complex Type” section. The next section will cover what I mean
by a complex data type. I will use a PHP object in this case.

Objects

Objects are another type (using the type word loosely) you will probably want to be passing
back and forth. In all actuality, it is not any specific object that is getting defined but rather the
class. When trying to think of this conceptually, however, most people find it easier to think of
an object, since that is what is actually being passed. With this in mind, I will use the class def-
inition shown in Listing 18-2 to demonstrate how to write the structure within WSDL using
XML Schema.

CHAPTER 18 ■ SOAP 679

6331_c18_final.qxd 2/16/06 4:27 PM Page 679

Listing 18-2. Person Class Definition

class Person {
public $id;
public $lastName;
public $firstName;

/* Class methods Here */
}

The Person class in Listing 18-2 defines three public properties. Although both the
lastName and firstName properties are strings, id is an integer. The types of these need to
be known so that you can define them correctly and enforce them using an XML Schema:

<xsd:complexType name="Person">
<xsd:all>

<xsd:element name="id" type="xsd:int"/>
<xsd:element name="lastName" type="xsd:string"/>
<xsd:element name="firstName" type="xsd:string"/>

</xsd:all>
</xsd:complexType>

The first step is to name the complexType. In this example, it is called Person to reflect the
name of the class it represents. The name can be anything you want, but it is much easier to
figure out its use and debug down the line when the name is the same as or is similar to the
class it represents. After naming the type, you define the properties. You do this in the same
manner as writing an XML Schema for an XML document, and here the properties are simply
considered as the elements in a document.

Complex Type Containing Complex Type

A complex type that contains a complex type is not defined any differently than what you
have done so far. In fact, you may already have an idea of how you build such a structure. If
you are unsure about building the structure, then you are not alone. The reason for a section
dedicated to this topic is that this area is often a point of confusion for many developers just
starting out writing WSDL. The easiest way to demonstrate and understand this is through
an example.

You already know how to define both an array and a class. Putting these two concepts
together, you can define an array containing Person objects, whose class is defined in Listing 18-2.
To start, you simply begin by creating the definition for the array type where the tns prefix is asso-
ciated with the same namespace as a defined targetNamespace:

<xsd:complexType name="ArrayOfPerson">
<xsd:complexContent>

<xsd:restriction base="soapenc:Array">
<xsd:attribute ref="soapenc:arrayType" wsdl:arrayType="tns:Person[]"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

CHAPTER 18 ■ SOAP680

6331_c18_final.qxd 2/16/06 4:27 PM Page 680

There is no difference, besides the value of wsdl:arrayType, between creating an array
that holds objects and creating an array that holds integers, as shown earlier. If you are won-
dering why Person[] is prefixed with tns in this example, you may want to return to Chapter 3
and review the section that covers complex types and targetNamespace. Using the techniques
you have learned, including the XML Schema information from Chapter 3, you should easily
be able to build even more complex types than shown here, such as objects that have proper-
ties that contain objects or arrays.

Messages
According to the WSDL documentation, a message is an abstract definition of the data being
transmitted. In simple terms, messages define input and output parameters. Do not take this
statement as a cold, hard fact. It really depends upon the bindings used, which are covered
later in the “Bindings” section, but conceptually this explanation is the easiest way to grasp
the concept of a message without already having to understand every technical detail about
WSDL and SOAP. Using this simplistic view, however, the client needs to know the types that
are expected when a message is sent, which is equivalent to calling to a function, and the type
expected in return from the function. The server also needs to know this information, but this
time it needs to know what types are expected when a function is called and what type it is
supposed to return.

Two binding styles exist, RPC and Document; each can use one of two different bindings,
encoded or literal. The style and use of the binding chosen drives how you write a message
element. Although I will discuss these binding styles later in the “Bindings” section, it is diffi-
cult to understand the forms a message element takes depending upon these. The following
code breaks down the message format and what it means when a SOAP message is created
(though Document/encoded is omitted). This format is not WS-I conformant and not used, so
you can basically forget that it exists.

In all cases, a message element takes the following basic form:

<message name="nmtoken">
<part name="nmtoken" element="qname"? type="qname"?/> *

</message>

Every message element has a name that must be unique among all message elements.
Each message element also contains zero or more part element children, which represent the
parameters or response for a function. Each part element also contains a name. This time the
name must be unique among all part elements contained within a single message element.
The element and type attributes are exclusive. When using RPC style, you must use the type
attribute, but when using Document style, you must use the element attribute instead. This may
seem a bit confusing, so the following breaks down the different styles and see how the mes-
sage is constructed based on a function that retrieves an array of Person objects based on
passing first and last name parameters:

function getPeopleByFirstLastName($last, $first) {
/* Function returns an $retVal that contains an array of People objects

i.e. - $retVal = array(newPerson(xx), new Person(yy)); */
$retVal = array(
return $retVal;

}

CHAPTER 18 ■ SOAP 681

6331_c18_final.qxd 2/16/06 4:27 PM Page 681

RPC/encoded

RPC/encoded is considered the easiest method to work with in terms of both writing a WSDL
and using a client with the WSDL. You write the input message for the function as shown in
Listing 18-3.

Listing 18-3. RPC/encoded Message Definition

<!-- Input message -->
<message name="getPeopleByFirstLastName">

<part name="first" type="xsd:string"/>
<part name="last" type="xsd:string"/>

</message>

What this means is that the function needs two parameters, first and last, each of which
are string types. When the actual SOAP message is created, the XML created for the message
itself uses the names of the parameters as the element names that wrap the passed values.
Because RPC is being used, these elements are wrapped within a single element whose name
is determined by the binding, explained later in the “Bindings” section of this chapter. Extract-
ing just this message from a SOAP call, where the first parameter contains the value John and
the last parameter contains the value Smith, would look like the following:

<getPeopleByFirstLastName>
<first xsi:type="xsd:string">John</first>
<last xsi:type="xsd:string">Smith</last>

</getPeopleByFirstLastName>

■Note The containing element here, getPeopleByFirstLastName, has nothing to do with the name of
the message. It comes from the binding, which has not yet been introduced. The name of the message can
be anything you like, though it is easier to keep it the same or similar to the function it represents or as a
common name if shared by multiple functions.

The message format to be used to return the result from the function takes the following
form:

<!-- Output message -->
<message name="getPeopleByFirstLastNameResponse">

<part name="result" type="tns:ArrayOfPerson"/>
</message>

Here, a single result of the ArrayOfPerson type defined earlier is returned.

RPC/literal

A message written for an RPC/literalWSDL takes the same form as that for RPC/encoded and
is just as simple as well. The difference is that the XML created just for the message does not

CHAPTER 18 ■ SOAP682

6331_c18_final.qxd 2/16/06 4:27 PM Page 682

contain the type information. For instance, using the message in Listing 18-3, the XML frag-
ment for the message alone would look like this:

<getPeopleByFirstLastName>
<first>John</first>
<last>Smith</last>

</getPeopleByFirstLastName>

You may wonder then how and why you would choose one of these over the other. For
those following standards, RPC/literal is WS-I compliant, and RPC/encoded is not.

■Note When using the RPC style, RPC/literal offers the same benefits as RPC/encoded yet does not
share its drawbacks. RPC/literal eliminates the overhead of carrying type information when the message
is being passed, and the biggest benefit, especially with those concerned with standards and maximum
interoperability, is that RPC/literal is WS-I compliant while RPC/encoded is not.

Document/literal

This document style is similar to RPC style when defining the message element, except the part
element uses the element attribute rather than a type attribute. This means elements must be
defined within the types section of the WSDL document. In most cases, you will see WSDL that
uses Document/literal and contains only a single part element within the message, regardless
of the number of parameters a function requires. The reason for this is because of how parame-
ters are wrapped. The Document/literal style does not wrap these within an operation name
like RPC does. Instead, for each part element, the value is wrapped in an XML element named
by the value of the element attribute. Instead of the message within the SOAP call having a sin-
gle element that contains the values and also names the operation, you’ll see an element for
each of the part elements in the message definition.

Consider the following types fragment in Listing 18-4. Two elements, first and last,
have been defined as string types. The elements getPeopleByFirstLastName and
getPeopleByFirstLastNameResponse have also been defined as complex types.

Listing 18-4. Document-Defined Types

<types>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="first" type="xsd:string"/>
<xsd:element name="last" type="xsd:string"/>

<xsd:element name="getPeopleByFirstLastName">
<xsd:complexType>

<xsd:sequence>
<xsd:element minOccurs="1" maxOccurs="1" name="first"

type="xsd:string"/>

CHAPTER 18 ■ SOAP 683

6331_c18_final.qxd 2/16/06 4:27 PM Page 683

<xsd:element minOccurs="1" maxOccurs="1" name="last"
type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="getPeopleByFirstLastNameResponse" type="tns:ArrayOfPerson"/>

<!-- Remainder to type definitions -->

</xsd:schema>
</types>

If the message were defined using a part for each of the first and last parameters, it
would look like the following:

<message name="getPeopleByFirstLastName">
<part name="first" element="tns:first"/>
<part name="last" element="tns:last"/>

</message>

Using the same first and last values as before (John and Smith) within a SOAP call,
you would construct the extracted message as follows:

<first>John</first>
<last>Smith</last>

Although complete valid, the WS-I standard allows for only a single child element within
the SOAP body from which this message was extracted. Because of this drawback, only a sin-
gle part element is used within a message definition. The element for the part points to either
an element with a simple type or an element with a complex type. For example, using the type
definitions from Listing 18-5, you can reconstruct the message using a single part element.

Listing 18-5. Document/literal Message Format

<!-- Input message -->
<message name="getPeopleByFirstLastName">

<part name="parameters" element="tns:getPeopleByFirstLastName"/>
</message>

<!-- Output Message -->
<message name="getPeopleByFirstLastNameResponse">

<part name="result" element="tns: getPeopleByFirstLastNameResponse"/>
</message>

Extracting the message from a SOAP message based on this message definition appears
like the following:

CHAPTER 18 ■ SOAP684

6331_c18_final.qxd 2/16/06 4:27 PM Page 684

<getPeopleByFirstLastName>
<first>John</first>
<last>Smith</last>

</getPeopleByFirstLastName>

This result looks the same as that from the RPC/literal example. The parameters are both
wrapped within a getPeopleByFirstLastName element, but the reason why is this is done is dif-
ferent. RPC gets this name from the binding, and the Document/literal style gets its name from
the name of the referenced element. They just happen to be named the same in each WSDL in
this case. Writing a WSDL in this manner is referred to as “Document/literal wrapped.” There is
no official specification for this. It is just a style that that also happens to conform to the WS-I
standard.

Port Types
Using the definition from the WSDL documentation, a port type is a named set of abstract
operations and the abstract messages involved. In simple terms, a portType element contains
a collection of operations (think of these in terms of PHP functions) and associates the mes-
sages used with them:

<portType name="nmtoken">
<operation name="nmtoken" /> *

</portType>

A portType element must have a name that uniquely identifies it among any other
portType elements. It contains any number of child operation elements. An operation ele-
ment exists for each operation (think: PHP function) that will be exposed by the Web service
named through its name attribute. When writing a WSDL document, the value of the name
attribute is the name of the corresponding PHP function. Working from the client side, the
name attribute is the name of the function you will be calling. Four types of operations are
supported, though in the majority of cases you will run into only a single one—two if you are
lucky. The type of operation defines the structure the operation element will take. For exam-
ple, using the name ExamplePortType, you create the element as follows:

<portType name="ExamplePortType">
<!-- Operation Elements -->

</portType>

■Note For services designed based on the WS-I Basic Profile guidelines, only a one-way operation or
request-response operation can be used. Both the solicit-response and notification operations are not
acceptable to be used under those guidelines.

One-Way Operation

A one-way operation involves a service receiving a message without returning a response. This
type of operation allows for asynchronous calls where the client can send a message and does

CHAPTER 18 ■ SOAP 685

6331_c18_final.qxd 2/16/06 4:27 PM Page 685

not wait for any type of response from the Web service. Take logging data using a remote serv-
ice, for example. This data is not critical, and you do not care whether it actually gets logged.
It is assumed that the service is working well enough that the majority of data is being logged.
A message element named dataLogger, whose structure is not important for this example, has
been already defined. The operation element for this would appear as the following:

<operation name="dataLogger">
<input message="tns:dataLogger"/>

</operation>

Request-Response Operation

The request-response operation is probably the most frequently encountered type of operation.
A client makes a request and then waits for the response. Because messages are bidirectional in
this type of operation, they contain both an input message and an output message. You can also
set an additional type, a fault element, which occurs when an error is encountered and is
returned to the requestor. The basic structure of the operation element for this type is as follows:

<operation name="nmtoken" parameterOrder="nmtokens">
<input name="nmtoken"? message="qname"/>
<output name="nmtoken"? message="qname"/>
<fault name="nmtoken" message="qname"/>*

</operation>

The operation element is defined in a similar manner as a one-way operation, except in
this case the message format is specified for the incoming parameters (the input element) and
the outgoing response (the output element). Optionally, this element can also define the mes-
sage formats for any faults, outside of those already defined by SOAP, using fault elements.

You can specify a name for each of the child elements (input, output, and fault) using the
name attribute. The only uniqueness that applies here is that no two fault elements can have
the same name. Using a name is not required unless you need to reference one of the elements
elsewhere. This applies when using the parameterOrder attribute or, as you will see when work-
ing with the SOAP extension, when returning a specific SOAP fault that has been defined in the
WSDL document for an operation.

parameterOrder Attribute The parameterOrder attribute really pertains only when the operation
is bound using RPC. By using a list of message part names, separated by a space, it allows the
signature of an RPC function to be captured. This parameter serves only as a hint for how the
parameters are ordered and can be ignored when the operation is not bound using RPC. In
any case, no matter which type of binding is used, this attribute is not required. If you decide
to add this attribute, however, you must follow a number of rules. The following is a list of
these rules as specified in the WSDL 1.1 documentation:

• The part name order reflects the order of the parameters in the RPC signature.

• The return value part is not present in the list.

• If a part name appears in both the input and output messages, it is an in/out
parameter.

CHAPTER 18 ■ SOAP686

6331_c18_final.qxd 2/16/06 4:27 PM Page 686

• If a part name appears in only the input message, it is an in parameter.

• If a part name appears in only the output message, it is an out parameter.

fault Element You can use a fault element when you encounter an error within the operation
being executed. Not only is it considered good practice to declare these, it also allows complex
types to easily be used in a fault, which then can easily be handled by the calling client. A fault
element takes a name, specified by the value of the name attribute, and must be unique among
any other fault element within the scope of the operation. Just like the input and output ele-
ments, it also must specify a message using the message attribute. The message it refers to,
which was covered earlier, is written exactly as every other message is written. Because only
a single fault can be returned by an operation per call, it is best to follow the convention you
used when writing the message for the response.

Example The request-response is the most often encountered type of operation, so I will show
a concrete example; I will use the getPeopleByFirstLastName() function, which many of the
previous examples were based on, as a reference. The function took the following form:

function getPeopleByFirstLastName($last, $first) {
/* Function returns an $retVal that contains an array of People objects

i.e. - $retVal = array(newPerson(xx), new Person(yy)); */
$retVal = array(
return $retVal;

}

The message definitions I will use are from Listing 18-5. In that particular example, the
WSDL is being written using the Document/literal style, so you do not need to use the
parameterOrder attribute:

<operation name="getPeopleByFirstLastName">
<input message="tns:getPeopleByFirstLastName"/>
<output message="tns:getPeopleByFirstLastNameResponse"/>

</operation>

This example also does not illustrate the use of the fault element. Because it is easier to
understand when actually working with SOAP, you will see it in action in conjunction with the
SOAP extension. For the syntax, though, you can expand this example to include some faults
you may want to return in a specific format.

Two faults will be declared here. One is used in the event the database on the server is
unavailable. In the event this happens, the fault will return the specific database error as well
as a numeric value indicating the number of minutes to wait until the operation should be
tried again. The other fault is similar except it is issued if the system is down for maintenance.
It also returns a numeric value with the number of minutes to wait. Although these are generic
faults, the operation they are being used with does not have many other cases where a fault
would be appropriate. The example in the “Using the SOAP Extension” section has much bet-
ter examples of fault usage.

CHAPTER 18 ■ SOAP 687

6331_c18_final.qxd 2/16/06 4:27 PM Page 687

Returning to the extended example, you need to define types for the fault messages:

<types>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- Previous defined types here -->

<xsd:element name="DBUnavailableFault">
<xsd:complexType>

<xsd:sequence>
<xsd:element minOccurs="1" maxOccurs="1" name="DBMessage"

type="xsd:string"/>
<xsd:element minOccurs="1" maxOccurs="1" name="RetryInMinutes"

type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="SystemMaintenance">
<xsd:complexType>

<xsd:sequence>
<xsd:element minOccurs="1" maxOccurs="1" name="SysMessage"

type="xsd:string"/>
<xsd:element minOccurs="1" maxOccurs="1" name="RetryInMinutes"

type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>
</types>

Using these types, you can construct the message formats used by the faults:

<message name="DBUnavailableFault">
<part name="DBUnavailableFault" element="tns:DBUnavailableFault"/>

</message>

<message name="SystemMaintenance">
<part name="SystemMaintenance" element="tns:SystemMaintenance"/>

</message>

So far, nothing is different from what you saw earlier in this chapter. The last step is to add
them to the operation:

<operation name="getPeopleByFirstLastName">
<input message="tns:getPeopleByFirstLastName"/>
<output message="tns:getPeopleByFirstLastNameResponse"/>
<fault name="nodb" message="tns:DBUnavailableFault"/>
<fault name="sysmaint" message="tns:SystemMaintenance"/>

</operation>

CHAPTER 18 ■ SOAP688

6331_c18_final.qxd 2/16/06 4:27 PM Page 688

The fault elements have been specifically named. Unlike the input and output elements,
it is mandatory that the name attribute be specified with a fault element. Again, once you see
how they are used in the SOAP extension, you will fully understand why they must be named
even when only a single fault element is present.

Solicit-Response Operation

A solicit-response type of operation is the opposite of a request-response. Rather than a client
making a request and waiting for a response, a solicit-response occurs when a server solicits
a response from a client. The format for an operation element in this case is the reverse of a
request-response type. The output element, which can be considered as a request (or techni-
cally a solicitation), is used for the initial message from the server followed by an input
element, which is the response from the client. This type can also contain fault elements just
like the request-response. A simple example of this is a client that has registered with a server
for some type of subscription-based service. The server can periodically solicit a response
from the client, inquiring if they would like to update their subscription. For example:

<message name="UpdateSubscriptionRequest">
<part name="UpdateSubscriptionRequest" type="xsd:string"/>

</message>

<message name="UpdateSubscriptionResponse">
<part name="UpdateSubscriptionResponse" type="xsd:string"/>

</message>

Using these two simple message formats, you write the operation as follows:

<operation name="UpdateSubscription">
<output message="tns:UpdateSubscriptionRequest"/>
<input message="tns:UpdateSubscriptionResponse"/>

</operation>

Of course, this is an oversimplified example and is used only to illustrate the structure
in this particular case. You will rarely encounter a solicit-response operation, especially used
with WSDL 1.1, because any service designed to the WS-I Basic Profile guidelines will never
implement this operation type.

Notification Operation

A notification operation is the opposite of a one-way operation. Instead of the client making
the request to the server and not waiting for a response, the server is sending a message to the
client and not waiting for a response. Accordingly, the format of the operation element is the
same as that of a one-way operation, except instead of having an input element, an output
element is used. It is also invalid to use a fault element in this case. An example of this sce-
nario is a client that has subscribed to a service. The server can send notifications to the clients
when updates are available. This would allow the client to go and retrieve updates at its
leisure. For example:

<message name="UpdateNotification">
<part name="UpdateNotification" type="xsd:int"/>

</message>

CHAPTER 18 ■ SOAP 689

6331_c18_final.qxd 2/16/06 4:27 PM Page 689

Here a simple message format is declared that specifies an integer value in the message. This
value could simply take the form of a 1 for updates available or a 0 if no updates are available (in
the event the client expects notifications at set times whether or not updates are available). The
following operation declares this notification using only the child output element:

<operation name="UpdateNotification">
<output message="tns:UpdateNotification"/>

</operation>

This again is an operation type you will rarely encounter, at least at this point in time.
It is not supported by the WS-I Basic Profile and thus would most likely appear only in pos-
sibly some private Web service implementations.

Bindings
If you have looked at the WSDL 1.1 documentation, you may have seen the terms abstract and
concrete thrown around a lot for the elements covered so far. I have intentionally omitted the
abstract and concrete terms when describing a WSDL document, because they often lead to
more confusion than necessary. Everything up until this point has been abstract. A binding
specifies concrete details about a portType and a protocol. In simpler terms, for operations
from a specific portType, bindings provide the information for the type of transport protocol
used and the format of the messages.

You can use three types of bindings in WSDL 1.1. They are SOAP, HTTP, and MIME.
Because this chapter deals specifically with SOAP, I will show how to use only SOAP bindings.
Listing 18-6 shows the basic structure of a binding element.

Listing 18-6. WSDL Binding

<wsdl:definitions >
<wsdl:binding name="nmtoken" type="qname"> *

<-- extensibility element (1) --> *
<wsdl:operation name="nmtoken"> *

<-- extensibility element (2) --> *
<wsdl:input name="nmtoken"? > ?

<-- extensibility element (3) -->
</wsdl:input>
<wsdl:output name="nmtoken"? > ?

<-- extensibility element (4) --> *
</wsdl:output>
<wsdl:fault name="nmtoken"> *

<-- extensibility element (5) --> *
</wsdl:fault>

</wsdl:operation>
</wsdl:binding>

</wsdl:definitions>

When defining bindings, each binding must have a unique name, specified by the value
of the name attribute. Typically, unless writing some complex WSDL documents, you will have
only a single binding element. The value of the type attribute specifies the portType for which

CHAPTER 18 ■ SOAP690

6331_c18_final.qxd 2/16/06 4:27 PM Page 690

this binding is used. Using the portType defined in the previous section, which was named
ExamplePortType, you can begin constructing the binding:

<binding name="ExampleBinding" type="tns:ExamplePortType">
<!-- Currently Empty -->

</binding>

Notice that the binding element just performs some simple mappings. The actual details
for the binding are defined by the extensibility elements.

■Note When working with a WSDL binding element, because of the extensibility, many elements have
the same local name but reside in different namespaces. As you continue reading, the element name will be
referenced by its localname and either WSDL (for the wsdl namespace from Table 18-1) or SOAP (for the
soap namespace from Table 18-1). For example, the top-level binding element is the WSDL binding, and
the child soap:binding element will be referred to as the SOAP binding.

SOAP Binding

This chapter concerns SOAP, so I will use SOAP bindings here. WSDL provides a binding ele-
ment in the http://schemas.xmlsoap.org/wsdl/soap/ namespace for this purpose. Using this
specific element also indicates that this is a SOAP 1.1 binding:

<soap:binding transport="uri" style="rpc|document"?>

The soap:binding element lives as a child of the WSDL binding element and refers to
extensibility element (1) in Listing 18-6.

The transport attribute indicates the SOAP transport used by the binding. In most cases,
it will probably be the HTTP transport protocol, specified by a value of http://schemas.
xmlsoap.org/soap/http, for this attribute. It is possible that something else, such as SMTP
or FTP, will be used, in which case the value will be some other URI; however, this is usually
unlikely. The style attribute sets the default style for each operation contained within the
WSDL binding. It can take the value rpc or document and refers to the style of the service as
discussed in the section “Messages.” This attribute is optional and defaults to the value of
document when omitted. The binding used, encoded or literal (which I will get to shortly), is
specified further within the WSDL binding structure. Because Document/literal is considered
the most widely acceptable style and use combination, I will define the SOAP binding using
the document style and will use HTTP for the transport protocol, which can take either of the
following forms since the style attribute has a default value:

<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" />

WSDL operation

The WSDL operation element within the WSDL binding structure simply specifies binding
information for the same named operation element within the portType structure. If you hap-
pen to glance at the WSDL 1.1 documentation, you may notice that it indicates that operations

CHAPTER 18 ■ SOAP 691

6331_c18_final.qxd 2/16/06 4:27 PM Page 691

are not required to be named, thus allowing for overloaded method names. In those cases, the
input and output elements must be named. Although this is technically true, it is not recom-
mended to write WSDL in this manner. Overloaded method names are not allowed by the WS-I
Basic Profile, which possibly may interfere with the interoperability of your Web service, so
using distinct names is the easiest way to ensure that all the mappings are performed correctly.
For example:

<operation name="getPeopleByFirstLastName">
<!-- Currently Empty -->

</operation>

SOAP operation

The SOAP operation element works with the WSDL operation element in a similar fashion
as the SOAP binding element does with the WSDL binding element. It provides some concrete
information for the specific WSDL operation. It lives as a child of the WSDL operation element
and refers to extensibility element (2) in Listing 18-6. For example:

<soap:operation soapAction="uri"? style="rpc|document"?>?

You may notice a few things about this element right off the bat. Its signature says it is
optional. Its use is optional only when not using HTTP for SOAP. This is because of the
soapAction attribute. When using any other transport protocol than HTTP, you cannot use
the soapAction attribute, leaving only the style attribute, which I will get to in a moment.

When using HTTP, the soapAction attribute specifies the value of the SOAPAction header.
Now, you probably have no idea what this is used for. It indicates the purpose of the SOAP
request and is required to be sent by a client. Without having to read the entire SOAP message,
a server such as a firewall could read this header, allowing it to perform filtering on SOAP
requests. The value of this attribute is a URI and typically set to the value of the WSDL opera-
tion name or the WSDL targetNamespace and some identifier for the operation (though it can
be any distinguishable URI you like). The value does need not to be unique, because if you
had multiple operations that performed similar functionality, you may want to use a common
URI for these. Remember, this is used to allow some sort of header filtering to be performed
on the receiving end.

The style attribute allows the style to be set on a per-operation basis. When this attribute
is not used, the style attribute set on the SOAP binding element is used for the operation; or
in the event the SOAP binding element did not define it, the defaulting document value is used.
Now, this should answer an earlier question about why the SOAP operation element is optional
when not using HTTP. Because a soapAction attribute is never used in those cases, you do not
need to include this element in the WSDL document when there is no need to override the
style from the SOAP binding. This does not apply in this case, however, because the chapter
strictly deals with HTTP and SOAP, which means every WSDL operation element will have
a SOAP operation child element.

Using the WSDL operation defined in the previous section, you can create the SOAP
operation element:

<soap:operation soapAction="getPeopleByFirstLastName" />

CHAPTER 18 ■ SOAP692

6331_c18_final.qxd 2/16/06 4:27 PM Page 692

The WSDL operation name is simply being used as the SOAPAction in this example.
Because no style attribute has been defined, it is using the value from the SOAP binding
element. It does not matter which form of the binding example you decide to use. In both
cases, the value ends up being document.

WSDL input/output/fault

Within the WSDL operation here, you also define WSDL input, output, and fault elements.
The elements you need to use depend upon the type of WSDL operation you defined earlier
in this chapter. The WSDL operations I am talking about are the ones you defined within the
portType. The input, output, and fault elements within the scope of the binding simply take
an optional name attribute. The use of the attribute is determined by the corresponding ele-
ment within the scope of the portType element. When used within the portType, the same
name should be applied to the element within the scope of the binding. This may sound
extremely confusing but is easy to understand when looking at an example. If you look at
the getPeopleByFirstLastName operation within the ExamplePortType portType using the
request-response format, you will notice the following input element being used:

<input message="tns:getPeopleByFirstLastName"/>

This element does not contain a name attribute, so writing it within the binding scope is
easily done using the following:

<input>
<!-- content here -->

</input>

The same thing will be done for any output and fault elements, except you will always
have a name when writing a fault element. If you recall from the portType section, you must
specify a name for fault elements.

■Note Not every SOAP element is covered in this chapter, because additional ones are defined in WSDL.
Many of these are not commonly used or beyond the scope of this book. You can find information about
these elements in the WSDL 1.1 documentation.

Both input and output elements generally will contain a soap:body element:

<soap:body parts="nmtokens"? use="literal|encoded"? encodingStyle="uri-list"?
namespace="uri"?>

The parts attribute specifies which message parts will appear within the SOAP body of
the message. Usually all message parts are included, and this attribute is not used. In the cases
I have actually seen it used, the message contained only a single named part, which was also
identified by the part attribute.

The use attribute determines whether the message parts are encoded or whether the
parts determine the schema of the message. As mentioned in the “Messages” section, which

CHAPTER 18 ■ SOAP 693

6331_c18_final.qxd 2/16/06 4:27 PM Page 693

explained the WSDL type and use, this attribute determines whether it is encoded or literal.
When the value literal is used, no other attribute is required, although you can optionally
use encodingStyle. When the value encoded is used, both the encodingStyle and namespace
attributes are used. Using SOAP, the value for the encodingStyle will be http://schemas.
xmlsoap.org/soap/encoding/. The value for the namespace attribute is usually the
targetNamespace, also referred to by the tns prefix in these examples. Assuming the name-
space is urn:ExampleAPI, the value for the this attribute will also be urn:ExampleAPI.

A fault element contains a soap:fault element rather than a soap:body element. It works
like a soap:body element, except it has a name attribute and no part attribute. For example:

<soap:fault name="nmtoken" use="literal|encoded" encodingStyle="uri-list"?
namespace="uri"?>

The value of the name attribute must be the same as the name of the WSDL fault element
so that they can be properly related. It is also required that a fault message have a single part,
which if you refer to the messages created for the fault elements in the request-response
example, you will see that each has only a single part defined.

Soap:header and Soap:headerfault

The soap:header and soap:headerfault elements define headers transmitted within a
soapenv:Header element. This concept may not be completely clear at this moment but will
become more evident once you understand the structure of a SOAP message. These elements
are valid to use within the scope of the input and output elements within a binding. Their
definitions closely resemble and are defined in the same manner as the soap:body element
with only a few exceptions. For example:

<soap:header message="qname" part="nmtoken" use="literal|encoded"
encodingStyle="uri-list"? namespace="uri"?>*

<soap:headerfault message="qname" part="nmtoken" use="literal|encoded"
encodingStyle="uri-list"? namespace="uri"?/>*

The value of the message attribute is that of a defined message within the WSDL docu-
ment. The part attribute defines the single part from within the message specified by the
message attribute. The remaining attributes are defined in the same manner as the soap:body
and soap:fault elements.

Example Binding

If you remember what I said earlier about writing WSDL being like dabbling in the black arts,
you might now start realizing why. It is sometimes enough to make your head spin. Not only
is the documentation confusing to wade through, but also there is so much reference to SOAP,
and you haven’t even been exposed to SOAP yet. As usual, it is often easier to learn by exam-
ple. The following structure is the portType described in the request-response section:

<portType name="ExamplePortType">
<operation name="getPeopleByFirstLastName">

<input message="tns:getPeopleByFirstLastName"/>
<output message="tns:getPeopleByFirstLastNameResponse"/>

CHAPTER 18 ■ SOAP694

6331_c18_final.qxd 2/16/06 4:27 PM Page 694

<fault name="nodb" message="tns:DBUnavailableFault"/>
<fault name="sysmaint" message="tns:SystemMaintenance"/>

</operation>

<!-- Other operations -->

</portType>

Using everything I have covered for bindings, write the binding structure for this portType
using the Document/literal style:

<binding name="ExampleBinding" type="tns:ExamplePortType">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="getPeopleByFirstLastName">

<soap:operation soapAction="getPeopleByFirstLastName" />
<input>

<soap:body use="literal"/>
</input>
<output>

<soap:body use="literal"/>
</output>
<fault name="nodb">

<soap:fault name="nodb" use="literal"/>
</fault>
<fault name="sysmaint">

<soap:fault name="sysmaint" use="literal"/>
</fault>

</operation>

<!-- Other operations -->

</binding>

Service
The service element describes a particular Web service by providing a name and the location
and associates a binding to a particular port. It is a collection of ports, referred to as end points,
exposing a binding. For example:

<service name="nmtoken">*
<port name="nmtoken" binding="qname">*

<-- extensibility element (1) -->
</port>

</service>

A WSDL document can contain multiple services, but in actuality it is common to find
only a single service element. In any event, each service is named using the name attribute.
When multiple services are specified, each service must be uniquely named.

CHAPTER 18 ■ SOAP 695

6331_c18_final.qxd 2/16/06 4:27 PM Page 695

Within a service element is the collection of uniquely named ports for the service. The
number of ports found varies depending upon usage. For example, it is possible that the same
binding, where the binding attribute specifies the name of a binding element that it is referenc-
ing, be specified for a number of ports, but the extensibility element is referencing different
locations. These allow the service to provide alternate access locations for a binding. It is also
possible that other ports can provide services for bindings other than SOAP, such as HTTP GET
and POST operations. For example, a REST-based Web service could be described here as well.
Again, this chapter uses SOAP, so I will keep it simple and use only a single port for the service.

The only real rules for the port element, other than making sure the name and binding
attributes are correctly set, are that a port must specify only address locations and no more
than one address. Under SOAP, you do this using the soap:address element:

<soap:address location="uri"/>

This is an empty element where the address is specified by the location attribute.
Using the service element, you can complete the WSDL document. Assuming the service

is located at the address http://www.example.com/ExampleService, you can link the rules
defined by the ExampleBinding binding to the port:

<service name="ExampleService">
<port name="ExamplePort" binding="tns:ExampleBinding">

<soap:address location="http://www.example.com/ExampleService"/>
</port>

</service>

You have now completed the entire WSDL document from Listing 18-1 along with some
additional pieces that are not even part of the original file. You will put many of these, how-
ever, to use when working with the SOAP extension and with PEAR SOAP through examples.

Introducing SOAP
Now that you have an understanding of how to write WSDL documents for a SOAP service,
or at least can decipher one if needed to when working with a SOAP service, it’s time to learn
what SOAP actually is. SOAP originally stood for the Simple Object Access Protocol in version
1.1, but with version 1.2, it no longer stands for anything and is now simply called SOAP. The
standard simplified definition of SOAP is that it is a lightweight protocol for exchanging infor-
mation in a decentralized, distributed environment. Although SOAP 1.2 is the latest version,
this chapter covers SOAP 1.1. It is still the most widely used version and also allows a SOAP
service to conform to the WS-I Basic Profile.

Many finer intricacies of SOAP may be pertinent when creating messages by hand, but in
reality most developers use an API that constructs messages for them. Within PHP, this would
be the SOAP extension. It is, however, good to understand at least the basic structure of a
SOAP message; this will not only help you understand what areas of the message certain API
calls affect, but you also may run into times that it is necessary to use a lower-level API call
and manually create certain portions of the message. This section will deal with more of the
basic structure of a SOAP message and intentionally skips over some of the extensibility
aspects and transport details. You can find additional information about these subjects and
other topics not covered in this chapter within the SOAP specification.

CHAPTER 18 ■ SOAP696

6331_c18_final.qxd 2/16/06 4:27 PM Page 696

In the previous section, you learned how to create a WSDL document. The SOAP mes-
sages in Listing 18-7 and Listing 18-8 are examples of messages based on the request and
response of calling the getPeopleByFirstLastName method using SOAP.

Listing 18-7. Example SOAP Request Structure Using WSDL in Listing 18-1

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ns1="urn:ExampleAPI">
<SOAP-ENV:Body>

<ns1:getPeopleByFirstLastName>
<first>j*</first>
<last>*</last>

</ns1:getPeopleByFirstLastName>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Listing 18-8. Example SOAP Response Structure Using WSDL in Listing 18-1

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<result>
<SOAP-ENC:Struct>

<id>1</id>
<firstName>John</firstName>
<lastName>Smith</lastName>

</SOAP-ENC:Struct>
<SOAP-ENC:Struct>

<id>2</id>
<firstName>Jane</firstName>
<lastName>Doe</lastName>

</SOAP-ENC:Struct>
</result>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Understanding the SOAP Message Structure
The basic structure of a SOAP message is simple. First, a SOAP message cannot contain a
DTD or PIs. A skeleton structure of a message, containing only the main SOAP elements,
looks like the following:

<Envelope>
<Header>...</Header>?
<Body>...</Body>

</Envelope>

CHAPTER 18 ■ SOAP 697

6331_c18_final.qxd 2/16/06 4:27 PM Page 697

This is only a simple representation because it also precludes some mandatory name-
spaces. The prefixes and namespaces in Table 18-2 are the few you may encounter in SOAP
messages. The ns* prefix is a generic prefix that could be any prefix you like.

Table 18-2. Namespaces You May See Using SOAP

Prefix Description

SOAP-ENV http://schemas.xmlsoap.org/soap/envelope/

SOAP-ENC http://schemas.xmlsoap.org/soap/encoding/

xsd http://www.w3.org/2001/XMLSchema

ns* The prefix and namespace URIs are application independent.

Encoding Style
The following text comes directly from the SOAP 1.1 documentation:

The SOAP encodingStyle global attribute can be used to indicate the serialization rules

used in a SOAP message. This attribute MAY appear on any element and is scoped to

that element’s contents and all child elements not themselves containing such an attrib-

ute, much as an XML namespace declaration is scoped. There is no default encoding

defined for a SOAP message.

—Simple Object Access Protocol (SOAP) 1.1, W3C Note; May 8, 2000

Rather than go into details about this attribute, you should just be aware of its exis-
tence. This is another one of those cases where following the documentation goes against
the WS-I Basic Profile, and in fact its use is no longer recommended. The only reason why
I have mentioned this attribute at all is that if you examine a SOAP message, you may see
this attribute being used. When used, this attribute is associated with the SOAP-ENV name-
space and normally takes the value of the SOAP encoding namespace:

SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

SOAP Envelope
Every SOAP message must contain an Envelope document element, which lives within the
SOAP-ENV namespace. This namespace identifies the message as a SOAP 1.1 message. This ele-
ment can contain any number of namespace declarations and attributes. As you can see in
Listing 18-7, the urn:ExampleAPI namespace with the ns1 prefix has been declared. Within the
message, it is used from the WSDL document where the message was defined. Here the prefix
has been changed, but the namespace has been kept intact.

Two others you may see are the declaration of the SOAP-ENC namespace and the
encodingStyle attribute. As you already know, using the encodingStyle attribute is discour-
aged. The SOAP-ENC namespace, when trying to conform to the WS-I Basic Profile, also falls
into this same category. You might be thinking at this point, why is it shown in the SOAP
response message in Listing 18-8? The answer lies in WSDL. In WSDL, a soapenc:Array was

CHAPTER 18 ■ SOAP698

6331_c18_final.qxd 2/16/06 4:27 PM Page 698

used, causing the SOAP server to automatically add this namespace in order to create the
proper output types in the SOAP response message. Although a perfectly valid WSDL docu-
ment and service, it fails to conform to the WS-I Basic Profile.

You might now understand my initial rant about this in Chapter 1. The WS-I is trying to
dictate what constitutes a Web service. It includes a limited amount of technologies and speci-
fications. It adds fuel to the fire by then limiting what is considered correct and incorrect within
those specifications. Of course, their goal is to provide maximum interoperability, but why
can’t they just write their own specs using only those things that are considered conformant
rather than leaving it up to the developer to learn all the specs and then having to forget many
of the things they were required to learn in the first place? It’s enough to make your head
spin . . . again.

I have gotten a little sidetracked while covering the structure of a SOAP message, but
before I move on I will touch upon the subject of the WSDL document again, because this
is important to understand. The soapenc:Array was used because it is part of creating
WSDL. It is not required that you conform to the WS-I Basic Profile. If you are looking for
conformance for your Web service, then you would need to modify the layout of the WSDL
document. As you will see later in this chapter when you actually create a working SOAP
server with the SOAP extension, using XML Schema alone it is possible to accomplish the
same task as having used soapenc:Array without using SOAP encoding. As I have said all
along, writing WSDL is a black art. It does take some practice and patience, especially when
trying to follow the documentation and specifications and when what is actually valid is
limited in use by other specifications or recommendations.

Getting back on topic here, in its simplest form, a SOAP Envelope element takes the
following form:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<!-- child elements -->

</SOAP-ENV:Envelope>

SOAP Header
A SOAP Header element is an optional element. It provides the ability to extend messages in
a modular way. For instance, you can implement transaction management or Web services
security within a Header element. When used, this element must be the first child element of
the SOAP Envelope element. The extended modules, referred to as header entries, live as chil-
dren of the Header element, and each must be namespace qualified. For example:

<SOAP-ENV:Header>
<t:Transaction xmlns:t="http://www.example.com">

<!-- data to be processed -->
</t:Transaction>

</SOAP-ENV:Header>

Two attributes, mustUnderstand and actor, can indicate how the entry is processed and by
whom.

CHAPTER 18 ■ SOAP 699

6331_c18_final.qxd 2/16/06 4:27 PM Page 699

SOAP actor

It is not always the case that a SOAP message goes from point A to point B, where point B is
the final destination. Any number of SOAP intermediaries could appear along the way before
the message reaches its final destination. To clarify the term SOAP intermediary, it is an appli-
cation that can receive and forward SOAP messages. A SOAP message can contain portions
that are specific only to certain intermediaries rather than for the final destination.

The actor attribute specifies the recipient of a header entry. It resides within the SOAP-ENV
namespace and specifies a namespace as its value, which identifies the recipient of the entry.
When the value is empty or the attribute is not used, the entry is considered to be destined for
the final recipient. Once an entry has been processed, it is removed from the Header before the
message is forwarded. The reason for this is that an entry for a specified recipient is considered
to be a contract between the originator and the recipient and is not valid beyond the recipient.
It is perfectly fine, however, that intermediaries add header entries before forwarding, so sim-
ply modifying any header entries it has processed would be equivalent to having removed and
added a new entry. A modified entry, however, sets up a new contract, which would be between
the intermediary that added or modified the entry and the specified recipient.

To illustrate this, consider the following path a SOAP message takes:

Server A => Server B => Server C

Server A is the origination point so needs no further identification. Server B is identified
by the namespace urn:ServerB, and Server C is identified by the namespace urn:ServerC:

<SOAP-ENV:Header>
<t:Transaction xmlns:t="http://www.example.com" SOAP-ENV:actor="urn:ServerB">

<!-- data to be processed -->
</t:Transaction>

</SOAP-ENV:Header>

Upon Server B receiving a SOAP message with this Header, it knows it needs to do some-
thing with it because it is the receiver. The actual operation is not important right now, but in
any event it removes this entry. In this case, it does not add a new entry, so the message is then
forwarded to Server C within an empty Header.

The actor attribute can specify a special value of http://schemas.xmlsoap.org/soap/
actor/next. This indicates that the entry is to be handled by the next application processing
the message. Rather than having to specify a recipient, it blindly instructs the application,
whether it is an intermediary or final destination, to handle the entry.

SOAP mustUnderstand

The mustUnderstand attribute provides some direction to the recipient of a header entry about
what to do if it does not understand or cannot fully and correctly process the entry. This attrib-
ute takes the value 0, which is the default when not specified, or 1. When the value 1 is used and
the recipient is unable to fully process the header, it is instructed to fail processing the message
and issue a SOAP fault. When the attribute is omitted or its value is set to 0, the application can
ignore the processing failure for the entry and continue processing the message:

CHAPTER 18 ■ SOAP700

6331_c18_final.qxd 2/16/06 4:27 PM Page 700

<SOAP-ENV:Header>
<t:Transaction xmlns:t="urn:ServerB" SOAP-ENV:actor="urn:ServerB"

SOAP-ENC:mustUnderstand="1">
<!-- data to be processed -->

</t:Transaction>
</SOAP-ENV:Header>

SOAP Body
The Body element is the container for the information for the final recipient. The structure of the
information depends upon the message structure chosen when creating the WSDL document.
This of course assumes you are using WSDL with SOAP. If you recall from the WSDL section, you
can choose RPC/encoded, RPC/literal, or Document/literal. The method used determines the
structure of the contents of the Body element. Rather than rehash the same information, I will
refer you to the “Messages” section for additional information and examples.

The Body element must be the next child element of the Envelope. When a Header is used, it
comes directly after the Header element; otherwise, it is the first child element of the Envelope.
For example:

<!-- BODY with Header -->
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header>
<!-- Data -->

</SOAP-ENV:Header>
<SOAP-ENV:Body>

<!-- Data -->
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

<!-- BODY Without Header -->
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<!-- Data -->

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Header entries and the Body element work in a similar fashion. The difference between
them is that the Body element does not use actor or mustUnderstand attributes. Its recipient is
the final recipient, and its contents must be fully understood by the application. It is equivocal
to having a Header entry that does not use the actor attribute and has a mustUnderstand attrib-
ute with the value 1. However, one element, defined by SOAP, does make the Body unique. This
is the SOAP Fault element.

SOAP Fault
A SOAP Fault issues an error to the caller. It resides within the content of the Body element and
can appear only once. A SOAP Fault element defines four child elements, although you can
add elements provided they are properly namespace qualified.

CHAPTER 18 ■ SOAP 701

6331_c18_final.qxd 2/16/06 4:27 PM Page 701

faultcode

The faultcode element allows an application to identify the fault issued. It is a required ele-
ment within a SOAP Fault, and its value must be a qualified name. Although not explicitly
stated, I believe the reason behind a qualified name for the value is that this allows an appli-
cation to determine from where the fault originated and to be able to distinguish between
various fault codes. For example, not only does SOAP include some built-in fault codes, listed
in Table 18-3, but imagine a system where SOAP messages pass through intermediaries. It is
quite possible that each intermediary uses the same fault code but for different reasons. With
each intermediary using a unique namespace, the recipient of the fault is able to properly
identify the correct type of fault and handle it.

Table 18-3. SOAP Fault Codes

Code Description

VersionMismatch The processing party found an invalid namespace for the SOAP Envelope
element.

MustUnderstand A SOAP header entry that contained a mustUnderstand attribute with the value 1
was unable to be properly understood or processed.

Client The SOAP message was incorrectly formed or did not contain the appropriate
information in order to succeed.

Server The SOAP message could not be processed for reasons not directly attributa-
ble to the contents of the message itself but, rather, to the processing of the
message.

Each of the fault codes in Table 18-3 is defined by SOAP and resides in the http://
schemas.xmlsoap.org/soap/envelope/ namespace:

<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<!-- Additional Fault child elements -->

</SOAP-ENV:Fault>

The Fault in this case indicates that there was a problem with the SOAP message sent
from the client. Fault codes can also be granular. Using the . character as a separator, you can
pass multiple related codes. For example, suppose you need to perform authentication; you
can pass this information in a SOAP header entity. An application receiving a message without
this entity may want to return an authentication error. This could be considered related to a
SOAP Client fault because the client did not pass the proper structure:

<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client.Authentication</faultcode>
<!-- Additional Fault child elements -->

</SOAP-ENV:Fault>

faultstring

The faultstring element is also a required element within a Fault. It provides a human-
readable explanation of the error that occurred. For example:

CHAPTER 18 ■ SOAP702

6331_c18_final.qxd 2/16/06 4:27 PM Page 702

<SOAP-ENV:Fault>
<faultstring>Authentication information is missing</faultstring>
<!-- Additional Fault child elements -->

</SOAP-ENV:Fault>

faultactor

The faultactor element indicates who caused the fault to occur. In a simple scenario where
there is a client and a single server, this element is not required, but you can use it. You can
determine the cause of the fault easily from the fault message. In a scenario where the message
is passing through intermediaries, using this element is required, so the proper application can
be identified by the receiver of the message as the cause of the fault. This element is similar to
using the actor attribute within a SOAP header entry. The value is a URI identifying an applica-
tion. The difference is that instead of specifying the intended recipient, it identifies the source
of the fault. For example:

<SOAP-ENV:Fault>
<faultactor>urn:ServerB</faultstring>
<!-- Additional Fault child elements -->

</SOAP-ENV:Fault>

detail

The detail element contains application-specific information related to the Body of a SOAP
message. If there is an error processing the Body element, the use of the detail element is
required to provide information about the specifics of the processing error. If the error does
not pertain to the processing of the Body element, then the detail element must not be pres-
ent within the Fault structure.

The detail element contains child elements, called detail entries. The structure of the
detail element is application dependant but can be described when using a WSDL docu-
ment. Referring to Listing 18-1, the getPeopleByFirstLastName operation within the
ExampleBinding binding defines a Fault named nodb. This fault uses a message composed of
the DBUnavailableFault element, which is a complex type containing a DBMessage element,
and of the RetryInMinutes element. If during the execution of the getPeopleByFirstLastName
function a database error occurs, then the server will issue a nodb fault. The details of the
database error will be contained with a DBMessage element, and some value for a time to retry
will be contained with the RetryInMinutes element. Assuming the ns1 prefix used by the
server is associated with the urn:ExampleAPI namespace and the server is using the WSDL
document from Listing 18-1, the Fault produced may look like the following if the server was
unable to connect to the database during the execution of the getPeopleByFirstLastName
function:

<SOAP-ENV:Fault>
<faultcode>ns1:DBError</faultcode>
<faultstring>A database error has occurred</faultstring>
<detail>

<ns1:DBUnavailableFault>
<DBMessage>Unable to connect to database</DBMessage>
<RetryInMinutes>60</RetryInMinutes>

CHAPTER 18 ■ SOAP 703

6331_c18_final.qxd 2/16/06 4:27 PM Page 703

</ns1:DBUnavailableFault>
</detail>

</SOAP-ENV:Fault>

Using SOAP in HTTP
You can use SOAP within HTTP with or without the HTTP Extension Framework (http://
www.ietf.org/rfc/rfc2774.txt). This framework, though out of the scope of this chapter,
defines a generic mechanism to extend HTTP. Whether or not you use this framework, some
common aspects exist for both of these when using SOAP in HTTP. When working with SOAP
APIs such as the SOAP extension, these are usually automatically handled for you; however,
some people like to try to send SOAP messages directly without the use of a SOAP API, so the
HTTP request and response are worth mentioning.

SOAP HTTP Request
The first thing to always remember is that you must set the Content-Type header accordingly.
When working with SOAP 1.1, as you are doing in this chapter, you must set the type to text/
xml. SOAP 1.2 has its own type defined, application/soap+xml, so you would use this instead
when working with that version of SOAP. It is always a good idea to include the character set
of the XML document as well. For example, a document using UTF-8 encoding would issue
the following Content-Type header under SOAP 1.1:

Content-Type: text/xml; charset="utf-8"

When sending a SOAP request, clients must include a SOAPAction header. This header
indicates the intent of the request being made and can be used by servers, such as a firewall,
to be able to filter SOAP requests. The value of this header corresponds to the value of the
soapAction attribute defined on soap:operation elements within a binding when working with
WSDL. For example, using the getPeopleByFirstLastName operation from the WSDL document
in Listing 18-1, the SOAPAction header is sent like the following:

SOAPAction: "getPeopleByFirstLastName"

Putting this all together, the entire request for calling the getPeopleByFirstLastName func-
tion using the WSDL in Listing 18-1 would look like the following code. Note that this is an
actual request made using the PHP SOAP extension, though I have edited certain headers to
change the service location for consistency with the WSDL document shown in this chapter.

POST /ExampleService HTTP/1.1
Host: example.com
Connection: Keep-Alive
User-Agent: PHP SOAP 0.1
Content-Type: text/xml; charset=utf-8
SOAPAction: "getPeopleByFirstLastName"
Content-Length: xxx

CHAPTER 18 ■ SOAP704

6331_c18_final.qxd 2/16/06 4:27 PM Page 704

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ns1="urn:ExampleAPI">
<SOAP-ENV:Body>

<ns1:getPeopleByFirstLastName>
<first>j*</first>
<last>*</last>

</ns1:getPeopleByFirstLastName>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP HTTP Response
SOAP HTTP uses HTTP status codes (found in section 10 of RFC 2616, which is located at
http://www.ietf.org/rfc/rfc2616.txt) when sending a response. For example, a SOAP
request that has been properly received and understood by the server results in the return
of a 2xx status code, which means the request was successful. In the event the server fails to
process a request, an HTTP 500 “Internal Server Error” is returned with a SOAP message con-
taining the appropriate Fault. The following is an example of a response returning a SOAP
message containing a Fault:

HTTP/1.1 500 Internal Server Error
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ns1="urn:ExampleAPI">
<SOAP-ENV:Body>

<SOAP-ENV:Fault>
<faultcode>ns1:DBError</faultcode>
<faultstring>Test Fault String</faultstring>
<faultactor>Fault Actor</faultactor>
<detail>

<ns1:DBUnavailableFault>
<DBMessage>DB Error</DBMessage>
<RetryInMinutes>60</RetryInMinutes>

</ns1:DBUnavailableFault>
</detail>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

CHAPTER 18 ■ SOAP 705

6331_c18_final.qxd 2/16/06 4:27 PM Page 705

Using the SOAP Extension
You can use the SOAP extension (ext/soap) to write SOAP servers and clients. It supports subsets
of the SOAP 1.1, SOAP 1.2, and WSDL 1.1 specifications. The extension provides some php.ini
configuration options, listed in Table 18-4, that you can use to control caching behavior.

CHAPTER 18 ■ SOAP706

Table 18-4. SOAP INI Options

Option Type Default Changeable Description

soap.wsdl_cache_enabled Boolean 1 PHP_INI_ALL Determines whether a WSDL docu-
ment is cached or if a new one must
be fetched each time a SoapClient or
SoapServer object is instantiated.

soap.wsdl_cache_dir String /tmp PHP_INI_ALL The directory to cache the WSDL
documents.

soap.wsdl_cache_ttl Integer 86400 PHP_INI_ALL Amount of time in seconds from
when a WSDL document is cached
until a fresh copy must be retrieved.

You can enable the SOAP extension by building PHP with the following configure flag:

./configure --enable-soap

Under a Windows environment, this extension is built as a shared library and must be
loaded through the php.ini file. Once you have placed the library php_soap.dll in your PHP
library directory, make sure it is enabled in the php.ini file:

extension=php_soap.dll

With the extension now loaded properly in PHP, you can move on to actually using the
SOAP API.

Common SOAP Classes
You use classes in the SOAP extension both when writing a SOAP client and when writing a
SOAP server. It is a good idea to understand these classes, including what they do and how
they are created, before attempting to work with SOAP. Although you may not need every
class, a few of them will come in handy when you are having problems returning or sending
data either to or from a SOAP server.

SoapVar
The SoapVar class creates encoded variables. When working without WSDL, it is a bit more dif-
ficult to use SOAP. Clients and servers are unable to automatically determine the proper data
types like those using WSDL can, though they can make some guesses. Through the use of a
SoapVar object, you can specify the data type as well as optionally specify the element name
to be used when creating a message. The SoapVar class also comes in handy when working
with different aspects of a SOAP message, such as the SOAP Header, regardless of whether
WSDL is being used. The SoapVar class is a simple class consisting solely of a constructor:

6331_c18_final.qxd 2/16/06 4:27 PM Page 706

__construct(mixed data, int encoding [, string type_name [, string type_namespace [,
string node_name [, string node_namespace]]]])

The constructor takes a number of parameters, each of which affects how the data will be
serialized when the SOAP message is created (see Table 18-5).

Table 18-5. SoapVar Parameters

Parameter Description

data The data to be serialized in the SOAP message is passed as the data parameter.

encoding The encoding parameter indicates the data type. The value of this parameter is
one of the SOAP encoding constants, which can be found in Appendix B.

type_name The data type name. When using RPC/encoded, the type_name is the value for the
xsi:type attribute in the SOAP message for the data being passed.

type_namespace The namespace from which the type specified by the type_name parameter
resides.

node_name The name of the element to be used in the SOAP message data.

node_namespace The namespace in which the element named by the node_name parameter
resides.

An example use of the SoapVar class is creating the SOAP Body when working without
a WSDL document. The structure needs to be defined somehow, but there is no schema a
client or server could use to create it. The following code creates a SoapVar that follows the
definitions from the WSDL document in Listing 18-1:

/* Define the structure of the getPeopleByFirstLastName types */
class getPeopleByFirstLastName {

public $first = 'j*';
public $last = '*';

}

$PeopleStruct = new getPeopleByFirstLastName();

/*
Create new SoapVar using the types defined in the WSDL from Listing 18-1 and
causing the element named getPeopleByFirstLastName within the urn:ExampleAPI as
the containing element

*/
$PeopleVar = new SoapVar($PeopleStruct, SOAP_ENC_OBJECT, "getPeopleByFirstLastName",

"urn:ExampleAPI", "getPeopleByFirstLastName",
"urn:ExampleAPI");

The data used is a getPeopleByFirstLastName object, and in sync with the WSDL document
it has first and last members. The object is encoded as a SOAP_ENC_OBJECT. Its type is
getPeopleByFirstLastName, which resides in the urn:ExampleAPI namespace, and it conforms to
the complex type defined within the WSDL document. Last, the members need to be wrapped
within a getPeopleByFirstLastName element that resides in the urn:ExampleAPI within the SOAP
message, so these are passed using the node_name and node_namespace parameters.

CHAPTER 18 ■ SOAP 707

6331_c18_final.qxd 2/16/06 4:27 PM Page 707

You may wonder why you went through all this trouble if the WSDL is right there in front
of you. This example does not directly use the WSDL document. Its only purpose is to allow
you to reference WSDL to understand how the SoapVar parameters relate to WSDL definitions.
If the WSDL were being used, none of this would have been necessary because you could have
used the $PeopleStruct object directly.

SoapHeader
The SoapHeader class provides the ability to create SOAP header entities, covered in the earlier
“SOAP Header” section. SOAP headers simply provide the ability to modularly extend a SOAP
message. The class is used both when using a WSDL and when not using WSDL so is a class
common to both methods. This class is also a simple class consisting solely of a constructor:

__construct(string namespace, string name [, mixed data [, bool mustUnderstand [,
mixed actor]]])

This constructor also takes a number of parameters; they are not difficult to understand
because they almost directly map to the structure of a SOAP header entity. The namespace and
name parameters go hand in hand. These parameters define the element created for the header
entity. The data parameter, which is optional, is what is used as the contents of the header
entity. It can be a PHP type or a complex defined type created using a SoapVar object. The
mustUnderstand parameter, also optional, sets the mustUnderstand attribute on the header
entity. When omitted or FALSE is passed, an attribute is not added. The actor parameter is an
optional parameter that sets the value of the actor attribute on the header entity. When used,
it must be either a string containing the URI for the actor or one of the SOAP ACTOR constants
listed in Appendix B.

For example, you can easily create a similar header to that shown in the “SOAP Header”
section using the SoapHeader class. An element with the local name Transaction residing in
the namespace http://www.example.com will be created with the contents dummy content. It
will specify the mustUnderstand attribute as well as set the actor to the next receiver of the
SOAP message. For example:

$soapHeader = new SoapHeader("http://www.example.com", "Transaction",
"dummy content", TRUE, SOAP_ACTOR_NEXT);

Once the message is serialized, the SOAP Header will look similar to the following fragment:

<SOAP-ENV:Header>
<ns2:Transaction SOAP-ENV:mustUnderstand="1"

SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next">
dummy content

</ns2:Transaction>
</SOAP-ENV:Header>

This is only a fragment, so the missing namespace declarations have not been included.
They were defined on the SOAP-ENV:Envelope element where the namespace http://
www.example.com was associated with the ns2 prefix.

CHAPTER 18 ■ SOAP708

6331_c18_final.qxd 2/16/06 4:27 PM Page 708

SoapParam
The SoapParam class provides the ability to create named parameters. Like the other common
classes, the SoapParam class only has a constructor that simply takes the data to be associated
with a name:

__construct (mixed data, string name)

The data parameter accepts a value containing either a native PHP type or a SoapVar. The
name parameter accepts a string containing the name to be used for the parameter.

Using the $PeopleStruct object, created earlier in the “SoapVar” section, you can create a
parameter named getPeopleByFirstLastName that contains the object. You can then pass this
parameter to a SoapClient method in order to make a remote call. For example:

$PeopleVar = new SoapVar($PeopleStruct, SOAP_ENC_OBJECT, "getPeopleByFirstLastName",
"urn:ExampleAPI", "getPeopleByFirstLastName",
"urn:ExampleAPI");

$PeopleParam = new SoapParam($PeopleVar, 'getPeopleByFirstLastName');

SoapFault
In the respect of commonality, a client uses the SoapFault class when a SOAP Fault is
received, and a server uses the class to create a SOAP Fault to return to a client. On the client
side, the structure of a SoapFault object is important. Depending upon the SOAP error han-
dling, a SoapFault either is handled as an Exception, which is the default, or is returned as the
return value when calling a function. In both cases, the structure of the object is the same. It
contains a number of properties, as follows, that provide details of the error:

faultcode: A string an application can use to identify the type of fault issued. Refer to
Listing 18-3 for SOAP-defined fault codes.

faultstring: A human-readable error description.

faultactor: The URI for the server responsible for issuing the fault.

detail: Application-specific information related to the Body of a SOAP message. Not all
SoapFaults provide information for this property. Its use depends upon the type of fault
and the application.

From a server perspective, the SoapFault class creates SOAP faults rather than handling
them. A fault is created by instantiating a SoapFault object and returning it from a function.
For example:

__construct(string faultcode, string faultstring [, string faultactor [,
mixed detail [, string faultname [, SoapHeader headerfault]]]])

You can create a fault through simple instantiation, passing the required information to
the constructor. From what you have read earlier in this chapter concerning a SOAP Fault and
the properties described previously, the first three parameters should be evident. The detail
parameter, however, needs some additional explanation.

CHAPTER 18 ■ SOAP 709

6331_c18_final.qxd 2/16/06 4:27 PM Page 709

The detail parameter can take data of any type. When a fault is defined in WSDL in the
output section, the structure of the detail can be defined. It does not need to be a simple type.
This portion of a SOAP Fault is application dependant, so you can pass a complex structure
in the detail section of a fault to provide extended information the client might need.

When defined in a WSDL document, a fault is named. The faultname parameter maps the
SoapFault to the named fault. By passing this parameter, not only does the client know what to
expect, but also any data passed in the detail parameter can be properly encoded. This allevi-
ates the need to use SoapVar objects for the detail data.

The headerfault parameter is used when the fault is being issued during the processing
of a SOAP header entity. It offers the ability to return a soap:headerfault, which is a fault mes-
sage in the SOAP Header of the response message. I will provide detailed information about
issuing faults from a server later in this chapter in the section “The Soap Server.” The following
is a quick example of creating a new SoapFault:

new SoapFault("DBError", "Error in the header", "urn:ExampleAPI",
"Fault: Simple String Details", "nodb");

The SOAP Client
The SoapClient class is the workhorse for consuming a SOAP service. It can make the requests
to a SOAP server. In WSDL mode, which is the recommended mode for working with SOAP, it
also performs the majority of data type conversions and encoding you will need to create SOAP
messages from PHP variables and types. Working in non-WSDL mode is often a bit more diffi-
cult, and this is where a few of the previously discussed common classes come in handy. The
following sections will explain the different functionality of the SoapClient class and take you
through the creation of a SOAP client to access the services. You can find additional examples
of accessing services in the “Seeing Some Examples in Action” section where I show how to
create clients to access both eBay and Google using SOAP.

Creating the Client
Create a SOAP client by instantiating a SoapClient object. It is at this point you can set a
number of options as well as whether WSDL will be used:

__construct (mixed wsdl [, array options])

The wsdl parameter is an important parameter. It determines whether the client will use
WSDL; if so, it specifies the location of the WSDL document. When using the client in non-WSDL
mode, you must pass NULL. You can pass options, listed in Table 18-6, as an associative array.
When working in non-WSDL mode, this parameter is required along with the use of the location
and uri options. Unlike using WSDL, these two options cannot be automatically determined
and must be set in order to access the service.

CHAPTER 18 ■ SOAP710

6331_c18_final.qxd 2/16/06 4:27 PM Page 710

Table 18-6. SoapClient Options

Option Description

location Defines the URL to which calls are made to the Web service. When used in
WSDL mode, this option will override the default address defined in the WSDL.

uri Defines the target namespace of the SOAP server.

style Defines the style of SOAP message structures. This option can have the
value SOAP_DOCUMENT or SOAP_RPC.

use Defines the encoding to use. This option can have the value SOAP_ENCODED
or SOAP_LITERAL.

soap_version Specifies whether to use SOAP 1.1 or SOAP 1.2. This option can have the
value SOAP_1_1 or SOAP_1_2.

connection_timeout The maximum number of seconds to wait to connect to the server. This
option is available in PHP 5.0.4 and newer.

stream_context A stream context to use during requests. This option is available in PHP 5.0.5
and newer.

login The username to use when HTTP authentication is being used.

password The password for HTTP authentication.

authentication Sets the authentication type. The value SOAP_AUTHENTICATION_DIGEST sets
the client to use Digest authentication. Any other value sets the client to use
Basic authentication. This is available in PHP 5.0.4 and newer.

proxy_host The proxy server host when making connections through a proxy server.

proxy_login The username to authenticate with the proxy server.

proxy_password The password to authenticate with the proxy server.

local_cert The certificate to use with HTTPS client certificate authentication. This is
available in PHP 5.0.4 and newer.

passphrase The passphrase to use with HTTPS client certificate authentication. This is
available in PHP 5.0.4 and newer.

compression Compression options to use. The value is any combination of
SOAP_COMPRESSION_ACCEPT, SOAP_COMPRESSION_GZIP, and
SOAP_COMPRESSION_DEFLATE combined using a bitwise “or.” For example:
SOAP_COMPRESSION_ACCEPT | SOAP_COMPRESSION_GZIP.

encoding Defines the encoding to use when returning strings. This is available in PHP
5.0.1 and newer.

classmap Allows some WSDL types to be mapped to PHP classes. The value is an
associative array using WSDL types as keys and the names of PHP classes as
values. This is available in PHP 5.0.3 and newer.

trace Enables debugging. Setting this option to 1 allows the use of the
__getLastXXX methods.

exceptions By default, SOAP Faults are thrown as exceptions. Setting the value of this
option to 0 disables Fault exceptions and results in an error instead.

The numerous options in Table 18-6 should provide you with plenty of flexibility to con-
trol many different aspects of the client. To ensure that you understand how a SoapClient
object is instantiated and various are options used, Listing 18-9 demonstrates various config-
urations used when creating a SoapClient object.

CHAPTER 18 ■ SOAP 711

6331_c18_final.qxd 2/16/06 4:27 PM Page 711

Listing 18-9. Examples Creating SoapClient Objects

$client = new SoapClient("http://www.example.com/example.wsdl");

$client = new SoapClient("http://www.example.com/example.wsdl",
array('login'=>"username", 'password'=>"password"));

$client = new SoapClient("http://www.example.com/example.wsdl",
array('proxy_host'=>"localhost",'proxy_port'=> 8080));

$client = new SoapClient(null, array('location'=>"http://www.example.com/soap.php",
'uri'=>"http://www.example.com/"));

$client = new SoapClient(null, array('location'=>"http://www.example.com/soap.php",
'uri'=>"urn:ExampleAPI",
'style'=>SOAP_DOCUMENT,
'use'=>SOAP_LITERAL));

class cPerson {
public $first;
public $last;

}

$client = new SoapClient("http://www.example.com/example.wsdl",
array('classmap' => array('Person' => "cPerson")));

■Note When working in exception mode, which is the default mode, all SOAP Faults cause a SoapFault
exception to be thrown. You should always use try/catch blocks so you can properly handle the fault.

Inspecting a Service
One of the benefits of SOAP, when using a WSDL document, is that it is easy to inspect the data
types and function signatures. You do not need to wade through excess documentation or
physically read a WSDL document and try to decipher it. They are accessible directly from the
SOAP client via the __getTypes() and __getFunctions() methods.

The following example consumes a Conversions service that provides functions to con-
vert numbers into English words, numbers into dollar amounts, and text into title-cased text:

<?php
/* Set the location of the WSDL document */
$wsdl = 'http://www.dataaccess.com/webservicesserver/conversions.wso?WSDL';

CHAPTER 18 ■ SOAP712

6331_c18_final.qxd 2/16/06 4:27 PM Page 712

try {
$xConverter = new SoapClient($wsdl);
echo "Types:\n";
if ($xTypes = $xConverter->__getTypes()) {

foreach ($xTypes AS $type) {
echo $type."\n\n";

}
}

echo "Functions:\n";
if ($xTypes = $xConverter->__getFunctions()) {

foreach ($xTypes AS $type) {
echo $type."\n\n";

}
}

} catch (SoapFault $e) {
var_dump($e);

}
?>

Each of the methods returns an array of strings containing either a type or a function sig-
nature based upon the method called. In the example, a SoapClient is created, $xConverter,
using the WSDL for this service. The client then makes a call to each of the functions and loops
through the returned arrays, outputting the contents. Listing 18-10 shows the output from
executing this code.

Listing 18-10. Conversions Service Types and Functions

Types:
struct NumberToWords {
unsignedLong ubiNum;
}

struct NumberToWordsResponse {
string NumberToWordsResult;
}

struct NumberToDollars {
decimal dNum;
}

struct NumberToDollarsResponse {
string NumberToDollarsResult;
}

CHAPTER 18 ■ SOAP 713

6331_c18_final.qxd 2/16/06 4:27 PM Page 713

struct TitleCaseWords {
string sText;
string sToken;
}

struct TitleCaseWordsResponse {
string TitleCaseWordsResult;
}

Functions:
NumberToWordsResponse NumberToWords(NumberToWords $parameters)

NumberToDollarsResponse NumberToDollars(NumberToDollars $parameters)

TitleCaseWordsResponse TitleCaseWords(TitleCaseWords $parameters)

When a service does not provide WSDL, this introspection cannot be done. The only way
you can find out what the service provides is through some sort of documentation.

Location, Location, Location
So far you have seen that the address for a service is either taken from a WSDL document or
specified using the location option when a SoapClient is instantiated. It is quite possible that
a service is unavailable because of the server being down. When making client calls, this results
in a SOAP Fault and 404 error in the HTTP response headers. The service, however, may be
provided at other addresses. For example, in a WSDL document, a service may have multiple
ports sharing the same port type. The only difference is the soap:address. This indicates that
alternative addresses are available for the service. Unfortunately, when listed, a SoapClient does
not automatically fall back to these addresses when it is unable to connect. In non-WSDL
mode, documentation may provide addresses for a service.

To change the location, you could always create a new SoapClient using an alternate
address specified by through the location option. This can become a hassle. It requires you to
set up all the options you were previously using again with only a modification to the location
option. To avoid this hassle, you can reuse the existing SoapClient object and simply change
the location by calling the __setLocation() method.

■Caution This method is available only in PHP 5.0.4 and newer.

This method takes one optional parameter. Passing a string containing a URL changes
the location to the new URL. Passing in NULL or omitting this parameter reverts the location
to the address specified in the WSDL document. In non-WSDL mode, you should not be
passing NULL or omitting this parameter because there is no address to fall back on. The
return value from this method is the value of any previously defined location option or NULL
if not previously specified. In WSDL mode only, a location previously set through the

CHAPTER 18 ■ SOAP714

6331_c18_final.qxd 2/16/06 4:27 PM Page 714

location option or this method will be returned. In the case, no location option has been
previously set, and the method does not return the address from the WSDL. For example:

/* address is defined as http://www.example.com/example/ in WSDL */
$sClient = new SoapClient('example.wsdl');

/* Override the location from the WSDL */
$location = $sClient->__setLocation('http://www.example.com/alternate/');

Making Client Calls
You can use many techniques to make client calls. Much of this depends upon whether WSDL
is being used as well as the style and use (that is, Document/literal or RPC/encoded). In this
section, I will cover how to make calls using some of these techniques.

I live in the United States, but many of the people I talk with on a regular basis are located
all over the world. It’s common that someone eventually starts talking about their local weather.
Unfortunately, the last time I had to deal with the metric system was long ago in school, so when
I hear that the current temperature is 5° Celsius, I really have no idea if that is cold. To me, 5° is
cold, but then again I know temperatures in terms of Fahrenheit, not Celsius.

Simple Type RPC-Encoded Call

While searching XMethods one day, I came across a temperature conversion Web service.
XMethods (http://www.xmethods.com/) lists a number of publicly accessible Web services. The
conversion service provides a number of functions to convert to and from different tempera-
ture measurements. The information provided for the server was that it was RPC style and
gave the location of the WSDL document. After creating a client using the WSDL document
for the service (http://java.hpcc.nectec.or.th:1978/axis/TemperatureConvert.jws?wsdl),
I queried it for the types and functions. A quick scan through the list revealed the exact func-
tionality I needed, whose signatures are as follows:

/* Convert Fahrenheit to Celsius */
float FahrenheitTOCelsius(float $temp)

/* Convert Celsius to Fahrenheit */
float CelsiusTOFahrenheit(float $temp)

Based on the signatures, accessing the functions is simple. Both the input parameter, $temp,
and the return value are simple floats. Based on this, the following script demonstrates how the
temperature 5° Celsius, defined by the variable $temp_celsius, is converted to Fahrenheit:

<?php
/* Temperature in Celsius */
$temp_celsius = 5;

/* Location of WSDL */
$wsdl = 'http://java.hpcc.nectec.or.th:1978/axis/TemperatureConvert.jws?wsdl';

$sClient = new SoapClient($wsdl1);

CHAPTER 18 ■ SOAP 715

6331_c18_final.qxd 2/16/06 4:27 PM Page 715

/* Output the temperature in Fahrenheit*/
print $sClient->CelsiusTOFahrenheit($temp_celsius)
?>

In only a few lines of code, you are able to access the service and find out that the temper-
ature equates to 41° Fahrenheit.

One thing you can see from this example is that a remote function can be called as a
native method of a SoapClient object. The function CelsiusTOFahrenheit() is called from
$sClient as if it were a real method of the SoapClient class. This type of calling convention
is available whether or not you are using WSDL. What you do get using WSDL in this case is
type conversion. To illustrate what I mean, let’s try using this service without WSDL:

<?php
$temp_celsius = 5;

try {
/* Location and URI both provided in Web service summary */
$location='http://java.hpcc.nectec.or.th:1978/axis/TemperatureConvert.jws';
$uri = 'http://java.hpcc.nectec.or.th:1978/axis/TemperatureConvert.jws';

/* Create client without using WSDL
set style to RPC, which was also provided in service summary */

$sClient = new SoapClient(NULL,
array('location' => $location,

'uri' => $uri,
'style' => SOAP_RPC));

print $sClient->CelsiusTOFahrenheit($temp_celsius)."\n";
} catch (SoapFault $e) {

echo $e->faultstring;
}
?>

Upon executing this code, a SoapFault is thrown, producing the following output:

org.xml.sax.SAXException: Bad types (int -> float)

Without using a WSDL document, the client took its best guess at converting the parame-
ter to a type. In this case, the parameter was a PHP integer that translated to an xsd:int. The
function on the server is expecting a float.

■Note Even though you are making a client call without using the WSDL, the server is using the WSDL
document, allowing it to enforce the data types, as well as using RPC/encoded, so it is expecting the data
types to be passed in the message.

CHAPTER 18 ■ SOAP716

6331_c18_final.qxd 2/16/06 4:27 PM Page 716

You can ensure the data is typed correctly in a couple of ways depending upon the data
type it needs to be. In this case, the parameter must be a float. Being a simple type as well as
having a corresponding PHP type, you can modify the call using PHP casting:

/* Cast PHP type */
$tempVar = (float)5;

print $sClient->CelsiusTOFahrenheit($tempVar)."\n";

This works fine assuming there is a corresponding PHP type, but when there is not, such
as using complex types, you can use a SoapVar object:

/* Use SoapVar */
$tempVar = new SoapVar($temp_celsius, XSD_FLOAT);

print $sClient->CelsiusTOFahrenheit($tempVar)."\n";

A SoapVar object is created of the xsd:float type using $temp_celsius as its data. This
object is then passed as the function parameter, satisfying the required data type constraint.

Complex Type Document Literal Call

If you refer to the Conversions service, whose types and functions are shown in Listing 18-10,
you will notice that all the functions take complex types for parameters. You can create these
complex types in a variety of ways. For example, the following functions take complex types
as parameters and return a complex type as the result:

NumberToDollarsResponse NumberToDollars(NumberToDollars $parameters)

TitleCaseWordsResponse TitleCaseWords(TitleCaseWords $parameters)

All of these types are structs. In PHP terms, this relates to either associative arrays or
objects. Suppose you want to call the NumberToDollars() function. The first thing to do is
examine the NumberToDollars struct so that the correct parameter can be created:

struct NumberToDollars {
decimal dNum;
}

Using objects, you can define a class for this structure:

class NumberToDollars {
public $dNum;

}

You can then use this class to call the function:

$wsdl = 'http://www.dataaccess.com/webservicesserver/conversions.wso?WSDL';

try {
$xConverter = new SoapClient($wsdl);

CHAPTER 18 ■ SOAP 717

6331_c18_final.qxd 2/16/06 4:27 PM Page 717

$param = new NumberToDollars();
$param->dNum = 123456;

$retVal = $xConverter->NumberToDollars($param);

print $retVal->NumberToDollarsResult."\n";
} catch (SoapFault $e) {

var_dump($e);
}

Upon execution of this code, you would see the following result:

one hundred and twenty three thousand four hundred and fifty six dollars

The name of the class is unimportant here. You could name it anything you like,
although naming it the same or similar to the structure makes it easier to identify and com-
pare to the structure definition. What are important are the class properties. The properties
must use the same names as the structure members. When the SoapClient creates the SOAP
message, the property names are used as the element names.

The return value in this example is also a complex type. Complex types are returned as
objects based on the stdClass class, although later in this chapter you will see how you can
map specific classes to data types. Based on the function signature from Listing 18-10, the
function returns a NumberToDollarsResponse type, which is structured as follows:

struct NumberToDollarsResponse {
string NumberToDollarsResult;
}

Now that you know structures and PHP objects map to each other, you can say that the
returned object contains the property NumberToDollarsResult and that the property is a string.
Based on this, the example simply outputs the value of this property.

You could also have used an array just as easily for the input parameter. The keys of an
associative array work the same way the properties of an object do. For example, you could
obtain the same results as before using an array in the following manner:

$param = array('dNum'=>123456);

$retVal = $xConverter->NumberToDollars($param);

Although an array is used for input, an object is still returned as in the previous example.

Adding SOAP Headers
The SOAP extension added a simple method to add SOAP header entities in PHP 5.0.5. If you’re
running any version prior to this, you must set headers using other mechanisms described in
the section “Low-Level Calls.” In all likelihood, you are probably running a newer version of
PHP, which means you have access to the __setSoapHeaders() method. This method sets head-
ers for the lifetime of a client, which means once set using this method, subsequent calls made
by the client will add the headers to the SOAP message. For example:

__setSoapHeaders(array SoapHeaders)

CHAPTER 18 ■ SOAP718

6331_c18_final.qxd 2/16/06 4:27 PM Page 718

The method accepts either an array of SoapHeader objects or NULL. The reason for allowing
NULL is that all headers currently set on the client are replaced by the headers passed in, and
using NULL allows all headers to simply be deleted.

The following example demonstrates how to add some basic authentication to the SOAP
message. A username and password are placed into a header entity for processing by the
receiver:

/* Create and authentication object with username/password */
class authentication {
public $username;
public $password;

}

$auth = new authentication();
$auth->username = 'username';
$auth->password = 'password';

/* You MUST encode the object */
$authVar = new SoapVar($auth, SOAP_ENC_OBJECT);

$header = new SoapHeader('urn:ExampleAPI', "Authentication",
$authVar, TRUE, SOAP_ACTOR_NEXT);

/* Set the new headers to use when creating SOAP messages */
$sClient->__setSoapHeaders(array($header));

When the message is sent, the first receiver of the message (in the event the message is
going to be forwarded) is required to process the Authentication header entity containing the
login credentials. Failure to do so results in a SoapFault being returned. The reason for this is
that the mustUnderstand attribute has been set and the actor identified as the next receiver of
the message. If you require subsequent client calls that do not require this header, you must
remove it by calling __setSoapHeaders with a NULL:

$sClient->__setSoapHeaders(NULL);

Low-Level Calls
Older versions of the SOAP extension limited what you could perform. For instance, older ver-
sions did not have a method to set header entities. You may want to use different options for a
specific call than what you had set on the SoapClient. You could always change the options
directly from a SoapClient, but then you would have to revert them once the call was made.

In cases like these, you can use the __soapCall() method:

__soapCall(string function_name [, array arguments [, array options [,
mixed input_headers [, array &output_headers]]]])

■Note In PHP 5.0.0 and 5.0.1, this method was named __call(). It was depreciated as of 5.0.2 in favor
of __soapCall().

CHAPTER 18 ■ SOAP 719

6331_c18_final.qxd 2/16/06 4:27 PM Page 719

Table 18-7 describes the various parameters for this method.

Table 18-7. __soapCall Parameters

Parameter Description

function_name The name of the function to call.

arguments An array of arguments to be passed to the function.

options An array of options. The only options that can be set through this parameter
are location, uri, and soapaction.

input_headers Sets the SOAP Header. The parameter value can be either an array of SoapHeader
objects or a single SoapHeader object.

output_headers A variable to which any headers received in the response will be stored.

The following example demonstrates how to use the various parameters for this method.
Once the parameters have been assembled, the SoapClient makes a request to execute the
doSearch function from the service.

$xConverter = new SoapClient(NULL,
array('location'=>'http://www.example.com/exampleAPI',

'uri'=>'urn:ExampleAPI'));

/* create a SoapParam */
$param = array(new SoapParam('PHP XML', 'search_term'));

/* Create an options array */
$options = array('location'=>'http://www.example.com/alternateExampleAPI',

'uri'=>'urn:AlternateExampleAPI');

/* Create SoapHeader */
$soapHeader = new SoapHeader("http://www.example.com", "Transaction",

"dummy content", TRUE, SOAP_ACTOR_NEXT);

/* Call remote function and retrieve any response headers */
$ret = $xConverter->__soapCall('doSearch', $param, $options, $header,

$response_headers);

Message Modification
Not everything is perfect in this world. The SOAP extension may not be doing exactly what you
want it to when creating a SOAP message. The specifications are also just like all other XML
specifications, and they leave many things up to interpretation. This might result in a service
expecting something different in terms of what is contained in the message. Luckily for you,
you can modify a message prior to being sent. Using a subclass, the doRequest() method can
be overridden.

The doRequest() method is called by a SoapClient object when a function call is made. It
first assembles the SOAP messages and then makes a call to this method to actually send the

CHAPTER 18 ■ SOAP720

6331_c18_final.qxd 2/16/06 4:27 PM Page 720

message. By subclassing the SoapClient class, it is possible that this method be intercepted,
allowing modifications to a message as well as altering how the message is sent. For example:

__doRequest(string request, string location, string action, int version)

The request parameter is the serialized SOAP message. Using one of the XML extensions,
like DOM, the message can be loaded into a tree and modified. The location parameter is the
URL being called for the service. Using this value, you could possibly change the location being
called. The action parameter is the SOAP action being taken. This is the value used for the
SOAPAction header in the HTTP request. The version parameter identifies the SOAP version
being used. Its value is the constant SOAP_1_1 or SOAP_1_2.

Using this method is not difficult at all. You must first create a class extending the
SoapClient class. This class will be specifically to modify requests made when calling the
CelsiusTOFahrenheit() function used in the “Simple Type RPC-Encoded Call” section.

Class mySoapClient extends SoapClient {
function __doRequest($request, $location, $action, $version) {

/* Load the request into a DOMDocument */
$dom = new DOMDocument();
$dom->loadXML($request);

/* Find the temp element and set temp to 20C */
$nodeList = $dom->getElementsByTagName('temp');
if ($nodeList->length == 1) {

$nodeList->item(0)->firstChild->nodeValue = "20";
}

/* Serialize the tree and send modified request to parent method */
$request = $dom->saveXML();
return parent::__doRequest($request, $location, $action, $version);

}
}

The __doRequest() method has been added to the class. When called, it loads the request
into a DOMDocument object, searches for the temp element, changes the value to 20, and then
sends the modified request to the parent to be handled.

Once the class has been defined, you create a client based on this new class:

$wsdl = "http://java.hpcc.nectec.or.th:1978/axis/TemperatureConvert.jws?wsdl";
$sClient = new mySoapClient($wsdl);

Next, set the original temperature to be converted:

$temp_celsius = 5;
$tempVar = new SoapVar($temp_celsius, XSD_FLOAT);

Finally, make the request:

print $sClient->CelsiusTOFahrenheit($tempVar)."\n";

CHAPTER 18 ■ SOAP 721

6331_c18_final.qxd 2/16/06 4:27 PM Page 721

The output is much different from the previous results. Instead of the value 41 being
printed, the result is not 68. In this version of the __doRequest() method, you modified the
SOAP message before it was sent out and changed the value of the temperature to be con-
verted to 20 instead of the original value of 5.

This is just a simple example of modifying a SOAP message prior to sending it out. This
method, however, provides great potential for employing a good number of technologies. For
example, the SOAP extension does not have any native abilities for performing security for
Web services (WS-Security). Imagine what it would take to add XML digital signatures and
XML encryption to a SOAP message. These require canonicalization so must be performed
on the raw SOAP message. Using the __doRequest() method, it is possible to intercept the
message and add this type of functionality from what you learned in Chapter 12. This is only
one area where you could take advantage of this functionality, because you could do plenty
of other things with the raw message.

Debugging Client Calls
Debugging SOAP can often be tricky. SOAP faults provide only so much information. With this
information, you still need to figure out why the error occurred. When a SoapClient is created
using the trace option with a value of 1, four methods are available that allow you to inspect
different parts of SOAP messages. Without the trace option, these methods are still present,
but they return empty strings. The methods being described are __getLastRequest(), which
returns a string containing the serialized SOAP-ENV:Envelope document sent by the client;
__getLastRequestHeaders(), which returns a string containing the HTTP Request headers;
__getLastResponse(), which returns a string containing the serialized SOAP-ENV:Envelope
document from the server; and __getLastResponseHeaders(), which returns a string contain-
ing the HTTP Response headers.

The debugging calls are not difficult to utilize. Simply call the appropriate method, pass-
ing no arguments, and the string returned contains the information you want. The following
is a simple example of calling a function that you know is going to cause a SOAP fault. When
the SoapFault is caught, the faultstring and request message are output along with the
HTTP headers from the response.

try {
$response = $sPublish->getPeopleByFirstLastName(1,2, 3);

} catch (SoapFault $e) {
echo "Fault: ".$e->faultstring."\n\n";
echo $sPublish->__getLastRequest()."\n\n";
echo $sPublish->__getLastResponseHeaders();

}

Fault: Error cannot find parameter

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="urn:ExampleAPI">

<SOAP-ENV:Body>
<ns1:getPeopleByFirstLastName/>
<param1>2</param1>
<param2>3</param2>

CHAPTER 18 ■ SOAP722

6331_c18_final.qxd 2/16/06 4:27 PM Page 722

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

HTTP/1.1 500 Internal Service Error
Date: Fri, 02 Dec 2005 08:29:32 GMT
Server: Apache/2.0.53 (Win32) PHP/6.0.0-dev
X-Powered-By: PHP/6.0.0-dev
Content-Length: 294
Connection: close
Content-Type: text/xml; charset=utf-8

From the faultstring, you can tell there is something wrong with the parameters being
passed to the server. The response header in this example does not offer any additional infor-
mation about the specifics of the error. The request SOAP message is a different story. The
structure is completely wrong. The Body should contain a single ns1:getPeopleByFirstLastName
element that further contains a first and last element. Instead of this, the Body contains three
child elements, which does not match the input message defined in the WSDL document.
Without having had access to the raw SOAP message, you probably would have a lot of trial
and error with code changes until you found the exact cause and resolution.

The SOAP Server
Have you written some functionality you would like to share with the world? Do you have an
application that you would like to open up access to remotely in a universal fashion? If you
have answered “yes” to any of these questions, the SOAP extension can be the answer to your
dilemma. Not only can you use it to consume Web services, but its API provides the ability to
create SOAP servers as well. In the following section, I will cover how you can do this by build-
ing a fully functional Web service of your own.

The server is based on the WSDL document in Listing 18-1. It provides a single function
that allows a client to search for people’s records based on first and last name. Partial names
are allowed by using the * wildcard. For example, looking for people whose first name starts
with j is written as j*. This can also be combined with a last name qualifier, so using s* for the
last name searches all people whose first name starts with j and whose last name starts with s.

Do You Need to Write WSDL?
Once finding out what it takes to write a WSDL document, many developers feel a bit over-
whelmed and wonder if they can get away with writing a service without a WSDL document.
Not creating a WSDL document for a SOAP server defeats many of the benefits you get from
using SOAP compared to creating a REST-based service, explained in Chapter 17.

Looking at it strictly from the client point of view, using a WSDL document allows devel-
opers to inspect an API without having to read any documentation. They just need to load a
WSDL document into a SoapClient and call the methods to list the types and functions avail-
able. From this, a service can quickly be consumed without having to spend large amounts of
time sorting through abundant amounts of documentation.

CHAPTER 18 ■ SOAP 723

6331_c18_final.qxd 2/16/06 4:27 PM Page 723

From both the client and server perspectives, end points, bindings, operations, and data
types are automatically set up when a WSDL document is loaded. Each knows the encoding to
use as well as how message structures should be formatted. Another beneficial aspect is that
in both cases data can usually be automatically converted to the needed data type.

Returning to the original question, the answer depends upon how the service will be used
as well as by whom. My take on this, however, is that if a WSDL document is not going to be
written for a service and made public to the consumers of the service, you are probably better
off writing a REST-based service. This type of service is much easier to create and consume,
especially when the major benefit of SOAP is not leveraged. If you absolutely do not want to
write WSDL, you may be able to find some tools to automatically generate WSDL documents
from PHP code. Zend Studio 5 mentions it has this ability. For those unfamiliar with Zend
Studio, it is a PHP IDE, developed by Zend (http://www.zend.com), that provides a number of
features for developing PHP applications. No, this is not an advertisement for the product, as
I have not tried it for several years. How well these work I am unable to say, but they may pro-
vide at least enough capability for you to get over the WSDL hump.

Creating the SOAP Server
The hardest part of writing a SOAP server, in my opinion, is the WSDL document itself. Once
you get over that hurdle, it is smooth sailing. As I clearly believe that WSDL should be written
for a SOAP server, everything discussed during the creation of the service is based upon a
SoapServer using WSDL. I cannot stress enough that if you do not want to write WSDL, write
a REST-based service. In any event, the service you will be creating is based on the WSDL doc-
ument, exampleapi.wsdl, from Listing 18-1:

__construct(mixed wsdl [, array options])

The wsdl parameter specifies the URI for the WSDL document to be used by the server.
When working in non-WSDL modes, this parameter must be set to NULL. The options parame-
ter specifies the options to be used for the server. This parameter is optional when working in
WSDL mode but is required when working in non-WSDL mode, because the uri option, which
specifies the target namespace of the server, must be set. Table 18-8 shows the full list of possi-
ble options.

Table 18-8. SoapServer Options Parameters

Parameter Description

actor The actor URI for the SOAP server.

classmap An associative array mapping WSDL types to PHP classes. The keys of the array are
the WSDL types for the classes, which are the values.

encoding Defines the encoding to use when returning strings. This is available in PHP 5.0.1
and newer.

soap_version Specifies whether to use SOAP 1.1 or SOAP 1.2. This option can have the value
SOAP_1_1 or SOAP_1_2.

uri The target namespace of the SOAP server.

Before creating the server for the service, which is not using options, you might like to see
how some other servers are created, shown in Listing 18-11.

CHAPTER 18 ■ SOAP724

6331_c18_final.qxd 2/16/06 4:27 PM Page 724

Listing 18-11. Various Combinations for Creating a SoapServer

/* Create server using WSDL and specifying Soap version and Actor URI */
$server = new SoapServer("mywsdl.wsdl",

array('soap_version' => SOAP_1_2,
'actor' => "http://www.example.com/actorA"));

/* Create server using WSDL and mapping a Person Class */
class Person {

public $id;
public $firstName;
public $lastName;

}

$server = new SoapServer("mywsdl.wsdl",
array('classmap' => array('book' => "Person")));

/* Create server in non-WSDL mode and setting URI */
$server = new SoapServer(null, array('uri' => "urn:ExampleAPI"));

The server you are creating is using a WSDL document, exampleapi.wsdl, and does not
need any options. It is simply created by the following:

$sServer = new SoapServer("exampleapi.wsdl");

Creating Function Handlers
Once you have created a SoapServer, you now need to define functionality to handle the
incoming requests. You can write handlers as regular PHP functions or as methods with a
class. How they are associated with SOAP actions, which are remote function calls, depends
upon the approach taken, and only a single approach can be used when writing a server.
What differentiates the two is that a class can be made persistent between SOAP requests
as long as the client handles session cookies correctly.

Using PHP Functions

There is little difference between writing handlers using PHP functions and writing regular
PHP functions. You just need to make sure the data being returned is of the correct type. Using
WSDL makes this easy because in most cases the data is typed and encoded correctly. I say
most cases because sometimes some unpredictable instances means it does not make this
easy. When this happens, the first thing to check is the WSDL document itself, making sure all
types and messages are correct. You can perform a quick check using a client and having it list
all types and functions. Compare the output with what you thought it should be.

Defining the Function Functions must be named the same as the operation name. Using the
WSDL document from Listing 18-1, only one operation is defined, getPeopleByFirstLastName.
It takes a single parameter that is a getPeopleByFirstLastName structure and that contains
a string for the first name (first) and a string for the last name (last). This is determined by

CHAPTER 18 ■ SOAP 725

6331_c18_final.qxd 2/16/06 4:27 PM Page 725

the parts defined for the getPeopleByFirstLastName message. Each part of a message becomes
a function parameter. The WSDL document in this example uses Document/literal for the
SOAP messages, so a single message part is usually used. When using RPC/encoded, quite often
a message contains multiple parts, which means the server function would take multiple
parameters—one parameter for each of the parts.

Returning to the function you are creating, you begin by defining the function with the
name getPeopleByFirstLastName and by accepting one parameter, which will also be called
getPeopleByFirstLastName:

function getPeopleByFirstLastName($getPeopleByFirstLastName) {}

Although it is required that the function is named the same as the operation in the WSDL,
the parameter can be named anything you like. It is easier, however, if you keep the names the
same as the WSDL document so that mapping parameters and structures is easier to do when
developing the service.

Input Parameters and Return Data Based on the WSDL document, the input parameter is a
getPeopleByFirstLastName structure. This equates to a PHP stdClass object with the proper-
ties first and last. Because of how the WSDL document was written, the return type, when
using the __getFunctions() method from a SoapClient object, is shown as the ArrayOfPerson
type rather than the getPeopleByFirstLastNameResponse type. The reason for this is that the
getPeopleByFirstLastNameResponse element refers to the ArrayOfPerson type rather than
defining the complex type within the scope of its element. In either case, the data returned
from this function is created in the same way.

The following code demonstrates how the input parameters are used within this function:

$people = array(array('id'=>1, 'firstName'=>'John', 'lastName'=>'Smith'),
array('id'=>2, 'firstName'=>'Jane', 'lastName'=>'Doe'));

/* Get the first and last values passed from the client */
$firstSearch = str_replace('*', '([a-z]*)', $getPeopleByFirstLastName->first);
$lastSearch = str_replace('*', '([a-z]*)', $getPeopleByFirstLastName->last);

$matching = array();

/* Find all matching records */
foreach($people AS $person) {

if (empty($firstSearch) || preg_match('/^'.$firstSearch.'$/i',
$person['firstName'])) {

if (empty($lastSearch) || preg_match('/^'.$lastSearch.'$/i',
$person['lastName'])) {

/* Match found - Add the record to our return list */
$matching[] = $person;

}
}

}

The search is very primitive. This creates an array containing records for two people. The
code converts the user’s query into regular expressions. It then loops through each person in

CHAPTER 18 ■ SOAP726

6331_c18_final.qxd 2/16/06 4:27 PM Page 726

the array and, based upon the user input for the first and last properties, then either adds
the person to the result list or skips it and moves to the next person in the array.

■Note Both arrays and objects map to a WSDL structure. Rather than an array containing arrays holding
a person’s information, you could also write $people as an array of objects. The object would be based
on a class, like the class in Listing 18-2, that contains the id, first, and last properties.

Once all matching records have been found, identified by $matching, they must be
returned to the client. You can do this in a few ways. The most straightforward method is
simply returning the array:

return $matching;

Using WSDL, the server properly encodes the return value in the SOAP message. This does
not always work correctly. For instance, you might not be using a WSDL document, for some
reason the client might not be using a WSDL, or possibly the WSDL contains a typographical
error. In this case, you might want to think about typing the return data using a SoapVar object.
The following example is based on the people records having been built from arrays:

/* Initialize the return array */
$retval = array();

/* Loop through the array of people to be return and create a SoapVar
for each person. The SoapVar is then added to the return array. */

foreach ($matching as $person) {
$retval[] = new SoapVar($person, SOAP_ENC_ARRAY, "Person", "urn:ExampleAPI");

}

/* Return the final data */
return $retval;

As you can see, it’s a little more involved to manually type data, but it is much safer. This
guarantees that the data is encoded in the exact manner you want it to be in the SOAP mes-
sage. If you decided to use an array of objects for the people records, the only change would
be to the encoding in the SoapVar constructor. SOAP_ENC_OBJECT would be the type of encoding
you would want.

Registering the Functions Once you have all the functions defined, you must register them with
the SoapServer. You can use the addFunction() method for this purpose. You can add func-
tions in a variety of ways. You can add a single function at a time by calling this method and
passing a string containing the function name. This method also accepts an array of strings
where each string is the name of a function. The last way to register functions is to call the
method and pass the constant SOAP_FUNCTIONS_ALL. This constant instructs the SoapServer
to add every function defined in the script. This is handy when the script only contains func-
tions to handle SOAP requests. If the script is large and contains numerous unrelated

CHAPTER 18 ■ SOAP 727

6331_c18_final.qxd 2/16/06 4:27 PM Page 727

functions, it is safer to register the functions by name, either one at a time or using an array.
This server consists of only one callable function, so it will be added by name:

$sServer->addFunction('getPeopleByFirstLastName');

Using a Class

Rather than having to register a number of functions, you can use a class that contains all the
methods to handle SOAP requests. This not only keeps the handlers contained in a single loca-
tion, but using a class allows persistence to be handled by the SOAP server. You write a class
method the same way you write a function for handling SOAP requests.

Setting the Class The difference between function handlers and method handlers is in how they
are registered. Unlike the functions, which must explicitly be registered using the addFunction()
method, you register class methods by registering the class in its entirety using the setClass()
method:

setClass(string class_name [, mixed args [, mixed ...]])

The class_name parameter is the name of the class to register with the SoapServer. Only
one class can be used, so calling this method again with a different class replaces the original
class being used with the new one. The remaining arguments to this method are the arguments
to pass to the class when it is instantiated:

class mySoapHandler {
function getPeopleByFirstLastName($getPeopleByFirstLastName) {

/* same code as previously defined for this function */
}

}

$sServer->setClass('mySoapHandler');

Persistence The lifetime of the object instantiated by the server is the life of the request. This
means that each time a client makes a call to the server, the server must instantiate a new
instance of the registered class. It is possible for a client to keep state and make the object
persistent through the use of the setPersistence() method. The method takes a single param-
eter that can be SOAP_PERSISTENCE_REQUEST, which is the default indicating not to maintain
state, or SOAP_PERSISTENCE_SESSION, which allows the object to persist between requests in
a PHP session.

Once the class has been registered with the server, simply call this:

$sServer->setPersistence(SOAP_PERSISTENCE_SESSION);

The object will be instantiated on the first request from a client and then saved in session.
On subsequent calls, the object is retrieved from session rather than a new instance being cre-
ated. This not only allows you to save session data for a client, but using constructor arguments
with the setClass() method, you are able to create functionality that is executed upon the first
request from a client, such as some initialization routines.

CHAPTER 18 ■ SOAP728

6331_c18_final.qxd 2/16/06 4:27 PM Page 728

Handling the Client Request
Once you have set up the SoapServer, including registering any function handlers or setting a
class and persistence, you need to handle the request from the client. Aptly named, the handle()
method does this:

handle([string soap_request])

In most cases, this method is called without any arguments. Services typically run within a
Web server, and the SoapServer retrieves the SOAP message from within this context, processes
it, and then returns the data to the client.

This is not always the case, because you may have written a daemon, something out of
the scope of this book, to listen on some arbitrary port and handle SOAP requests. After set-
ting up the SoapServer, you can pass the SOAP message directly to the handle() method for
processing. This ability also comes in handy when developing or debugging a service. Within
a single script, you can create a SoapClient, overriding the __doRequest() method. The mes-
sage contained in the request parameter from this method can then be sent to and handled
by a SOAP server running within the same script.

■Tip When implementing a SOAP server not running within the context of a Web server, you can leverage
the PHP output control functions to retrieve the resulting SOAP message so that it can be sent out in a cus-
tom fashion.

The service you are creating in this chapter is to be executed within the context of a Web
server, so no special handling of the SOAP message is needed. The server just makes the fol-
lowing call that processes and returns the resulting message to the client:

$sServer->handle();

Returning SOAP Faults
Operations do not also work flawlessly. For example, if the requested function needs to access
a database and the database happens to be down or the query failed for some other unfore-
seen reason, you want to let the client know that some type of error occurred. Earlier in this
chapter, in the section “Common SOAP Classes,” you were introduced to the SoapFault class
and learned the syntax of creating an object of this type.

A fault is returned to the client simply by having the function being called either throw
or return a new SoapFault object. It is created as you saw earlier in this chapter. The server
you are creating here contains two named faults defined in the WSDL document for the
getPeopleByFirstLastName operation. They are named nodb and sysmaint. This example is
not using a database, so the only relevant fault would be sysmaint.

The service should never be shut down completely. The Web server will always be run-
ning, and the service should always be accepting requests. Sometimes, however, changes need
to be made, so some type of system maintenance may be taking place. A system-wide vari-
able, $SYS_STATUS, is used and set to FALSE to indicate when this is taking place. When this is
taking place, the service should return a sysmaint fault to the client. This provides the client

CHAPTER 18 ■ SOAP 729

6331_c18_final.qxd 2/16/06 4:27 PM Page 729

with some information about what is going on, as well as the number of minutes it should
wait until trying to make another call. For example:

function getPeopleByFirstLastName($getPeopleByFirstLastName) {
if (isset($GLOBALS['SYS_STATUS']) && $GLOBALS['SYS_STATUS'] == FALSE) {

/* Set the details structure */
$details = array("SysMessage"=>"System Maintenance", "RetryInMinutes"=>60);

/* Throw new SoapFault Exception */
throw new SoapFault("SYSError", "System Unavailable", "urn:ExampleAPI",

$details, "sysmaint");
}

/* Function Code Here */
}

The $details variable in the code is used as the details parameter. The faultcode name
sysmaint, passed to the SoapFault constructor, maps the SystemMaintenance structure defined
in the WSDL document for this fault with the details data. When this is returned to the client,
assuming the client is a PHP SoapClient, a SoapFault exception is returned. An inspection of
the exception, looking at only the relevant SOAP parts, appears as shown in Listing 18-12
when var_dump() is called on SoapFault.

Listing 18-12. Var_dump of SoapFault Returned to SoapClient

["faultstring"]=>
string(18) "System Unavailable"
["faultcode"]=>
string(12) "ns1:SYSError"
["faultactor"]=>
string(14) "urn:ExampleAPI"
["detail"]=>
object(stdClass)#2 (1) {
["SystemMaintenance"]=>
object(stdClass)#3 (2) {
["SysMessage"]=>
string(8) "DB Error"
["RetryInMinutes"]=>
string(2) "60"

}
}

Processing SOAP Headers
To properly process SOAP headers, you must specify the soap:header element for a
wsdl:operation within a wsdl:binding. If the soap:header element is not included in the
WSDL and the client sends a header with the mustUnderstand attribute, the SoapServer

CHAPTER 18 ■ SOAP730

6331_c18_final.qxd 2/16/06 4:27 PM Page 730

will return a fault, even if the header handler is properly set up on the server. Before I get
ahead of myself, you first need to see how a header is defined.

Handling a header is implemented the same way a function handler is implemented. It is
written as either a PHP function or a class method depending upon which method of handling
you have chosen. The important aspects are the name of the function or method and the actor
defined for the SoapServer. The following shows the SoapHeader constructor, which is used by
a SoapClient to set a SOAP header:

__construct(string namespace, string name [, mixed data [, bool mustUnderstand [,
mixed actor]]])

Using the Correct Actor

The actor parameter specifies the actor URI (namely, the URI of the server) that is to handle
the header. If this parameter is not specified or is equal to the SOAP_ACTOR_NEXT constant, then
the PHP SoapServer will attempt to handle the header. When it is specified, the SoapServer will
attempt to handle the header only if it has not specified an actor or the value it specified is
equal to the one defined by the client. For example, if the client set the actor of the header to
urn:ExampleAPI, then in order for the SoapServer to handle the header, it either must not spec-
ify an actor or should be instantiated using the actor option, like the following:

$sServer = new SoapServer("exampleapi.wsdl", array('actor'=>'urn:ExampleAPI'));

The actor URI is not taken from the WSDL, and if expecting headers, defining the actor is
a good idea in the event the client defines a header that is not intended for your service.

Function/Method Naming

The function or method for the header handler is named based on the part element of the
message used by the soap:header. The value depends upon whether RPC/encoded or Document/
literal is being used in the WSDL document. For an RPC/encoded soap:header, the function
is named based on the value of the name attribute of the part element. For a Document/literal
soap:header, the name is based on the value of the element attribute of the part element. No
matter which value is used, the function is named by the localname, omitting any prefixes of
the value. The parameters that are passed are based on the data type of the element (Document/
literal) or the data type of the part (RPC/encoded). This is much easier to understand when
looking at a WSDL document. For example, you are using Document/literal, so given the fol-
lowing document fragments from a WSDL document, you can determine the function names
that must be implemented:

<definitions>
<types>

<xsd:schema ...>
<!- other types -->
<xsd:element name="headerfunc" type="xsd:string"/>

</xsd:schema>
</types>

CHAPTER 18 ■ SOAP 731

6331_c18_final.qxd 2/16/06 4:27 PM Page 731

<message name="headermsg">
<part name="param1" element="tns:headerfunc"/>

</message>

<binding ...>
<operation ...>

<soap:operation .../>
<input>

<soap:header message="tns:headermsg" part="param1" use="literal"/>
<soap:body />

</input>
</operation>
<!-- Other operations -->

</binding>
</definitions>

Starting with the soap:header element for the operation, you see that the message is
tns:headermsg, and the part is param1. Once you locate the specific part for that message in the
WSDL, you find the element is tns:headerfunc. Using the localname of this, the function to be
implemented must be called headerfunc(). This element is a simple xsd:string data type, so
a single string parameter is accepted by this function. The final prototype for the function or
method that should be implemented looks like the following:

headerfunc(string $param)

Completed Server Example
Throughout the “SOAP Server” section, you examined various aspects of writing a SOAP server
in PHP. In this section, you will put all the pieces together to create a fully functional SOAP
server, shown in Listing 18-13. It is based on the WSDL document from Listing 18-1. The por-
tion of the code not dealing with SOAP makes many assumptions. How it is implemented in
the real world is not important here, because you will most likely be working with databases
or other data storage mechanisms. What is important is how SOAP is used to glue the pieces
together, because a rich backend could easily be added within the framework of this example.

Listing 18-13. Completed Server Example for WSDL from Listing 18-1

<?php
/* System status - TRUE indicates normal operation /

FALSE indicates down for maintenance */
$SYS_STATUS = TRUE;

function getPeopleByFirstLastName($getPeopleByFirstLastName) {
/* If system is down throw SOAP fault */
if (isset($GLOBALS['SYS_STATUS']) && $GLOBALS['SYS_STATUS'] == FALSE) {

$details = array("SysMessage"=>"Sys Error", "RetryInMinutes"=>60);
throw new SoapFault("SYSError", "System Unavailable", "urn:ExampleAPI",

$details, "sysmaint");
}

CHAPTER 18 ■ SOAP732

6331_c18_final.qxd 2/16/06 4:27 PM Page 732

/* Initialize the Person Records */
$people = array(array('id'=>1, 'firstName'=>'John', 'lastName'=>'Smith'),

array('id'=>2, 'firstName'=>'Jane', 'lastName'=>'Doe'));

$firstSearch = str_replace('*', '([a-z]*)', $getPeopleByFirstLastName->first);
$lastSearch = str_replace('*', '([a-z]*)', $getPeopleByFirstLastName->last);

$retval = array();

foreach($people AS $person) {
/* Check if match on first name */
if (empty($firstSearch) || preg_match('/^'.$firstSearch.'$/i',

$person['firstName']))
{

/* Check if match on last name */
if (empty($lastSearch) || preg_match('/^'.$lastSearch.'$/i',

$person['lastName']))
{

/* Add matching records as an encoded SoapVar */
$retval[] = new SoapVar($person, SOAP_ENC_ARRAY, "Person",

"urn:ExampleAPI");
}

}
}

return $retval;
}

/* Create the server using WSDL and specify the actor URI */
$sServer = new SoapServer("exampleapi.wsdl", array('actor'=>'urn:ExampleAPI'));

/* Register the getPeopleByFirstLastName function */
$sServer->addFunction("getPeopleByFirstLastName");

/* Handle the SOAP request */
$sServer->handle();
?>

To test the server, you need to make requests using a client. The following is a small
example of code that can make requests against the server:

<?php
try {

$sClient = new SoapClient('exampleapi.wsdl');

/* Set search parameters */
$params = array('first'=>'jo*', 'last'=>'*');

CHAPTER 18 ■ SOAP 733

6331_c18_final.qxd 2/16/06 4:27 PM Page 733

/* Make request and dump response */
$response = $sClient->getPeopleByFirstLastName($params);
var_dump($response);

} catch (SoapFault $e) {
/* Dump any caught SoapFault exceptions */
var_dump($e);

}
?>

Using PEAR SOAP
The PEAR SOAP package is a SOAP client and server implementation written entirely in PHP.
It has been around for a number of years, but it is still in beta status and was written to pro-
vide SOAP support under PHP 4. If you happen to have an existing implementation based on
this package, you will be happy to know that PEAR SOAP works using PHP 5 and newer. If you
are looking to implement a new SOAP service, I suggest looking at the native PHP SOAP exten-
sion, because PEAR SOAP does have some limitations, which I will get to shortly.

You install the package like all other PEAR packages. It is in beta status, so do not forget
to indicate that when installing:

pear install SOAP-beta

Unfortunately, I cannot say for sure what dependencies this package has, because the
documentation is sparse. After a quick look through the source code, it appears that the xml
extension (ext/xml) is required, which is not surprising, and the PEAR HTTP_Request package
is needed when working with WSDL. Various other optional dependencies also seem to be
present, such as PEAR’s MAIL_Mime and Net_DIME packages, though are not required to use
the SOAP package.

The biggest limitation I ran into playing with the SOAP package was its inability to create
Document/literal messages. From the client side, you can work around this, though I cannot
say how reliably. Writing a Document/literal server is completely out of the question. This
presents a bit of a problem; Document/literal is being used more often now than RPC/encoded,
although still RPC/encoded services are being rolled out. Just compare the difference between
the number of Document/literal services to those of RPC/encoded at XMethods (http://
www.xmethods.net). Document/literal is a newer format than RPC/encoded, yet approximately
65 percent of the services listed at XMethods use it. Just look at two of the larger SOAP services
available. Google AdWords and eBay both provide SOAP access, and both require that Document/
literal-style messages be supported.

Because of these limitations, I will go into great detail about the PEAR SOAP package. It
provides some good functionality and supports PHP 4 and 5, thus allowing you to upgrade to
PHP 5 without having to rewrite your code. However, in my opinion, new projects should look
at leveraging the PHP 5 SOAP extension. It has some decent documentation, and though cer-
tainly lacking in some areas, it is actively maintained. In addition, being written in C, it
provides better performance.

Listing 18-14 gives you a quick look at writing a SOAP client with this package. It connects
to the service created in Listing 18-13. This demonstrates that even though the server uses
Document/literal, you can still use the SOAP package to create a client. Again, I am not saying

CHAPTER 18 ■ SOAP734

6331_c18_final.qxd 2/16/06 4:27 PM Page 734

that it will work in every case, but after a few modifications to calling styles, I have successfully
consumed some of the simpler Document/literal services found on the Internet.

Listing 18-14. PEAR SOAP Client Consuming Service in Listing 18-13

<?php
include("SOAP/Client.php");

/* Create client using WSDL */
$wsdl = new SOAP_WSDL("exampleapi.wsdl");
$sClient = $wsdl->getProxy();

/* Make request and dump response */
$response = $sClient->getPeopleByFirstLastName('jo*', '*');
var_dump($response);
?>

You should note a few things about this example. You can instantiate the SOAP_Client class
and pass a WSDL document to the constructor. For some reason, the data typing was not work-
ing properly and required the SOAP_WSDL class to be instantiated directly and the service to be
accessed through the retrieved proxy. The other notable difference is in the style; the function
call is made. Although nothing appears to be wrong with it, the call is using the RPC/encoded style
of calling. The function should take a single parameter containing a getPeopleByFirstLastName
structure, but instead the components of the structure are passed as arguments.

It is completely your decision to use this package when running PHP 5 or higher. Be
warned that unless you are already familiar with it, this package has little to no documenta-
tion. Unless you are lucky enough to find something by searching the Internet, the best option
you have is the automatically generated PEAR documentation for the package, which lays out
the API but offers no other information about what certain functions and properties do. The
code is quite complex, and looking at the code for some of its examples may be your best shot.
I am not trying to say this package is bad, but after having used both the PHP SOAP extension
and the PEAR SOAP package, I found the extension much easier to use. The extension also
provides the Document/literal support, which in my mind is important to have.

Seeing Some Examples in Action
Throughout this chapter, you have seen and maybe tried some of the examples of interacting
with Web services. A few of them are actual live Web services on the Internet. The ones chosen
in the chapter do not provide any real applicable use other than just as demonstration pieces.
For this reason, I have chosen to demonstrate how to work with two real-world Web services
from some well-known companies: eBay and Google. The eBay example is more of an instruc-
tional piece for getting set up and for understanding the different aspects that you must deal
with to interface with its Web service. The Google example demonstrates how to use its pub-
licly accessible services to perform searches, spell checks, and cached page retrieval. Google
also provides a service to its AdWords system, but the audience for that would be limited to
only those with an AdWords account. For this reason, I chose not to demonstrate that service.

CHAPTER 18 ■ SOAP 735

6331_c18_final.qxd 2/16/06 4:27 PM Page 735

Introducing the eBay Web Services
Unless you are living under a rock, you have heard of eBay. eBay is an online marketplace
where you can buy, sell, and auction off goods. With so much functionality, it is often difficult
to keep track of everything. You might be working for a company whose business is merchan-
dise sales. The company may already have a complete internal system for inventory, sales, and
tracking and is branching out to selling on eBay. With a system already in place, the company
does not want the hassle of having to manage its internal systems as well as its eBay account.
Using eBay Web services can solve this. SOAP is but one of the possible methods that can be
used to integrate with eBay, because it also provides REST support.

The eBay example that is provided shows how to get your SOAP environment set up and
enables you to understand what it is doing; it isn’t a run-through of the API. The reason those
who use SOAP like it is because SOAP is supposed to be simple. You load a WSDL document,
examine the available functionality, and begin consuming the service. After a good amount of
time spent trying to get my first successful connection to the eBay SOAP server, I was wishing
I had written about eBay’s REST implementation instead. Once over the initial hurdle, access-
ing the rest of the API was not as difficult. The material I will present in this example should
help you avoid all of the issues I personally ran into, decreasing the amount of your develop-
ment time significantly. If you prefer to get straight to working with the eBay Web service, you
should follow the steps and tips provided in the following steps and then skip to the section
“Setting Up the Environment.” However, be forewarned that some of the information in the
following sections may be useful in answering some questions you may have.

1. Sign up for the developer program at http://developer.ebay.com/join to receive
your keys (DevID, AppID, and CertID).

2. Sign up for a sandbox user ID at http://developer.ebay.com/DevZone/
sandboxuser.asp. This ID allows you to access the sandbox (test) system just like
accessing the live eBay system.

3. Generate a sandbox authentication token at http://developer.ebay.com/tokentool/,
using the sandbox user ID.

4. Download the PHP 5 sample code from https://codesamples.codebase.ebay.com/
files/documents/14/74/php5_eBay_codesamples.zip.

5. Use the included ebay.ini file to set up your IDs and authentication token.

Setting Up with eBay
My experience began with the initial registration. You must register for the developer program
at http://developer.ebay.com/join to use the Web services. Once you have registered, you
will receive three keys: DevID, AppID, and CertID. You will need all three during this exercise.
The next step is to get a copy of the documentation. I highly suggest you download the PDF
version, because it’s a bit slow trying to access the online HTML version. Even if you are on
a dial-up connection, it is well worth the wait in the long run to download the 16MB PDF file,
because you will most likely need it.

I personally thought the reason people liked SOAP was that it didn’t require you to have
to read every piece of documentation because WSDL was considered the Holy Grail. Under
that assumption, I created a SoapClient and passed in the location of the WSDL,

CHAPTER 18 ■ SOAP736

6331_c18_final.qxd 2/16/06 4:27 PM Page 736

http://developer.ebay.com/webservices/latest/eBaySvc.wsdl. I wasn’t expecting everything
to work right out of the box, but I at least wanted to see the function list and data types I
would be using. After a few minutes, I finally got some output. I found out the WSDL docu-
ment is more than 2MB in size. If you don’t end up saving a copy of the WSDL document
locally, make sure the SOAP caching directives in the php.ini file are set properly:

soap.wsdl_cache_enabled = 1
soap.wsdl_cache_ttl = (some large value)

The default is to enable the WSDL cache for 86,400 seconds, which equates to one day.
I couldn’t see downloading this large of a file every day and because other applications using
SOAP could not increase the wsdl_cache_ttl. For this reason, I decided to store and read the
WSDL document on the local file system. Although doing this requires that I must periodically
check for an updated WSDL document manually, it saved greatly on bandwidth usage because
I could check it every couple of weeks or so rather than every single day.

Having seen some previous code using the SOAP extension, I knew additional authentica-
tion than the keys received upon registration were needed. Here the documentation is lacking.
It talks about programmatically retrieving this, but after a few unsuccessful tries, I resorted to
searching the Web for the answer. Had I read the section “Executing Your First C# Call,” I would
have found this out immediately, but for some reason logic got the best of me, and I was look-
ing in the “Authentication & Authorization” section. A helpful page on the developer site is the
Developer Tools page at http://developer.ebay.com/help/tools. From here you can create
eBay test users, test the API, and create an authentication token (http://developer.ebay.com/
tokentool/). This will require you to register for an eBay account, but the account is within the
sandbox system, so a normal eBay account login will not work here.

Now with the token, I thought I was ready. I fired up the SOAP client again, loaded the
WSDL document, and generated the authentication, and of course it didn’t work. A WSDL file
is supposed to define the end point to access a service. The eBay WSDL does, but only if you
are accessing the production system. After reading the documentation more, I come to find
out, when working in the sandbox, you need to change the location for the SoapClient to
https://api.sandbox.ebay.com/wsapi. On top of that, and it doesn’t matter whether running
in a production environment or the sandbox, the URL needs to take parameters, and to top it
off they must be built dynamically because the function name must be passed. These parame-
ters are required for proper routing, which is something I thought the HTTP SOAPAction was
for, but alas it’s not used, so it’s more like working with a REST/SOAP hybrid. By now, you
should have the initial keys, authentication token, WSDL, and documentation as you move
toward getting a PHP SoapClient to connect and make its first call.

Setting Up the Environment
Now that you have an idea of what to expect when working the SoapClient to access the eBay
service, you need to decide how you want to go about your implementation. You can do this in
two ways. The first is to create a bunch of functionality to build the location string, which of
course is determined by the function you are calling. This would be required to be duplicated
within any scripts you write accessing the eBay service. Of course, this was my first course of
action. I just wanted to get something to work. The alternative is to create a custom class by
subclassing the SoapClient and to provide the special functionality within the custom class.
By doing this, you are able to use your custom class exactly as you have used the SoapClient

CHAPTER 18 ■ SOAP 737

6331_c18_final.qxd 2/16/06 4:27 PM Page 737

throughout the rest of this chapter. You do not need to play around with the URL or deal with
setting the authentication headers.

■Note You can find some sample code for an eBay SoapClient wrapper at https://codesamples.
codebase.ebay.com/files/documents/14/74/php5_eBay_codesamples.zip. It is not required you
use the same configuration methods as in the provided code, although until you understand how the calls
are made to the service and have made a few successful requests, it is in your best interest to leave any
changes there until later.

To get you quickly interfacing with eBay, you will use this code base to make a couple of
API calls. Rather than explaining the API to you (since you can find the functions and types in
the documentation as well as from using the __getTypes() and __getFunctions() methods
from the object), I will cover what the provided code does. You may wonder why this is neces-
sary. In the event something is not working or new parameters or SOAP headers are ever
required, you may need to change the base code yourself. It will also give you better insight
into how PHP SOAP interacts with eBay, making understanding the eBay documentation
much easier.

The provided code uses the following: an INI file for your keys, the authentication token,
the eBay system to connect with, and the API version. Each of your keys and token has two
sets of entries. One section, labeled production, is used when you are ready to access the live
eBay system with your client. The other section, labeled sandbox, contains the values when
accessing the test system. The only setting in each of these sections you should not change
is gatewaySOAP. This should already contain the correct locations for each of the two systems.
The remaining section, labeled settings, has two entries. The site entry specifies whether
you are working in the sandbox or production environment. The compatibilityLevel entry
specifies the eBay API version you are using. This can be located at the top of the WSDL docu-
ment within the comments. This is also another reason why you may want to keep the WSDL
local. Always grabbing the latest WSDL from the eBay site is a sure way to get the version level
out of sync. This is not something that is guaranteed to break your application, but there is
always the possibility. After adding your entries and verifying the other settings, your ebay.ini
should end up looking like the following:

[production]
authToken = "Your Auth & Auth Token"

devId = "Your DevID"
appId = "Your AppID"
cert = "Your CertID"
gatewaySOAP = "https://api.ebay.com/wsapi"

[sandbox]
authToken = "Your Auth & Auth Token"

CHAPTER 18 ■ SOAP738

6331_c18_final.qxd 2/16/06 4:27 PM Page 738

devId = "Your DevID"
appId = "Your AppID"
cert = "Your CertID"
gatewaySOAP = "https://api.sandbox.ebay.com/wsapi"

[settings]
site = "sandbox"
compatibilityLevel = 437

If you open one of the example files, such as GetUser.php, you should notice the following
code at the top of the file:

require_once 'eBaySOAP.php';

// Load developer-specific configuration data from ini file
$config = parse_ini_file('ebay.ini', true);
$site = $config['settings']['site'];
$version = $config['settings']['compatibilityLevel'];

$dev = $config[$site]['devId'];
$app = $config[$site]['appId'];
$cert = $config[$site]['cert'];
$token = $config[$site]['authToken'];
$location = $config[$site]['gatewaySOAP'];

// Create and configure session
$session = new eBaySession($dev, $app, $cert);
$session->token = $token;
$session->location = $location;
$session->site = 0; // 0 = US;

This loads and parses the ebay.ini file and loads the settings into an eBaySession object,
which is defined in the eBaySOAP.php file. The one property you may have to change, depend-
ing upon your location, is site. The eBay documentation defines site as “This is the site that
item of interest is (or will be) listed on or (for requests that get/set user information) that the
requesting or target user is registered on.” The value is a numeric site ID found within the doc-
umentation. I have provided them here for easy reference in Table 18-9. For the course of this
chapter, the code will be using the site ID of 0, for the United States, but you can change this
to a more appropriate site based on your needs.

Table 18-9. eBay Site IDs and Codes by Name

Site Name Site ID Site Code

Australia 15 AU

Austria 16 AT

Belgium (Dutch) 123 BENL

Continued

CHAPTER 18 ■ SOAP 739

6331_c18_final.qxd 2/16/06 4:27 PM Page 739

Table 18-9. Continued

Site Name Site ID Site Code

Belgium (French) 23 BEFR

Canada 2 CA

China 223 CN

France 71 FR

Germany 77 DE

Hong Kong 201 HK

Ireland 205 IE

India 203 IN

Italy 101 IT

Malaysia 207 MY

Netherlands 146 NL

Philippines 211 PH

Poland 212 PL

Singapore 216 SG

Spain 186 ES

Sweden 218 SE

Switzerland 193 CH

Taiwan 196 TW

United Kingdom 3 UK

United States 0 US

US eBay Motors 100 —

By default, the eBaySession object is set to disable exceptions and use the remote WSDL
document. If you are fine with just using the WSDL cache settings from the php.ini file to
handle this, then you should have no problem; otherwise, you should use a local copy requir-
ing you to set the location using the wsdl property:

$session->wsdl = 'eBaySvc.wsdl';

Whether or not you want to work with exceptions or have functions return SoapFault
objects is up to you. The example code has exceptions disabled yet is using try/catch blocks
and not testing for a SoapFault return value. For the sake of this chapter, you will use excep-
tions, so they must be reenabled. The eBaySession object has an options property. The value
is an array of options that are to be passed to the SoapClient constructor. You simply need to
enable exceptions within the array:

$session->options['exceptions'] = 1;

With the eBaySession object, $session, finally initialized correctly and the site property
properly set, you are now ready to make your first SOAP call to eBay.

CHAPTER 18 ■ SOAP740

6331_c18_final.qxd 2/16/06 4:27 PM Page 740

Interacting with the eBay Service
Using the eBaySession object previously created, you need to instantiate a new eBaySOAP
object. The eBaySOAP class, being a subclass of the SoapClient class, takes an eBaySession
object as its constructor parameter and uses the wsdl and options properties to call the parent
SoapClient constructor:

try {
$client = new eBaySOAP($session);
...

All that is left is to create any parameters that are to be passed to an eBay function and
then call the function. Before the call can be made, however, it has a catch. All request types
are based upon the AbstractRequestType type, and the version, being part of base type, must
be passed within the SOAP body with every request. This means with every function call you
make, you must pass the Version parameter as part of the structure.

To demonstrate this additional parameter requirement, you will make a call to the GetUser()
function. Looking at its signature using the __getFunctions() method, you can see that it
takes a single parameter:

GetUserResponseType GetUser(GetUserRequestType $GetUserRequest)

The GetUserRequestType parameter is a structure that takes the following form:

struct GetUserRequestType {
ItemIDType ItemID;
string UserID;
}

Both members of the structure are optional, but within the WSDL, they are defined as
minOccurs="0". The ItemID member is in all fairness a string but is defined in the structure
as an ItemIDType. A search through the types (__getTypes()) will show you exactly this. The
GetUserRequestType structure, however, extends the AbstractRequestType from which the
Version member comes. When called with only the Version parameter, the function returns
data for the user identified by the authentication token used to make the request:

$response = $client->GetUser(array('Version'=>$version));

When called with a UserID parameter, data pertinent to the specified user is returned.
The amount of data depends upon the UserID requested. When requesting information on
any user other than yourself, the returned structure omits certain information:

$response = $client->GetUser(array('Version'=>$version, 'UserID'=>'pierre'));

This is where the ItemID comes into play. If you are a seller and need to look up informa-
tion for a user who has successfully purchased an item from you, you can include the ItemID
in the request to retrieve the previously omitted information:

$params = array('Version'=>$version, 'UserID'=>'pierre', 'ItemID'=>'1');
$response = $client->GetUser($params);

Of course, if the specified user has no association with the specified item, the data is
returned in a limited fashion.

CHAPTER 18 ■ SOAP 741

6331_c18_final.qxd 2/16/06 4:27 PM Page 741

Just like the request types, the response types also extend a base type. In this case, the
AbstractResponseType type can provide additional information such as a time stamp from
when the request was processed or possibly messages from eBay. The type you are concerned
with is the GetUserResponseType. In addition to members from the AbstractResponseType type,
the GetUserResponseType adds a single User member of the UserType type and appears as the
following:

struct UserType {
boolean AboutMePage;
string EIASToken;
string RESTToken;
string Email;
int FeedbackScore;
int UniqueNegativeFeedbackCount;
int UniquePositiveFeedbackCount;
float PositiveFeedbackPercent;
boolean FeedbackPrivate;
FeedbackRatingStarCodeType FeedbackRatingStar;
boolean IDVerified;
boolean eBayGoodStanding;
boolean NewUser;
AddressType RegistrationAddress;
dateTime RegistrationDate;
SiteCodeType Site;
UserStatusCodeType Status;
UserIDType UserID;
boolean UserIDChanged;
dateTime UserIDLastChanged;
VATStatusCodeType VATStatus;
BuyerType BuyerInfo;
SellerType SellerInfo;
CharityAffiliationsType CharityAffiliations;
CharitySellerType CharitySeller;
boolean SiteVerified;
<anyXML> any;
}

Assuming no exceptions were thrown and you have successfully retrieved a GetUserRe-
sponseType structure, you simply access information as properties from the returned object:

print $results->User->Status."\n";
print $results->User->Email."\n";

Confirmed
Invalid Request

Here is a case where information is unavailable to you. The email address is not given out
unless you retrieve your own user record or the user is associated to you through an ItemID.

CHAPTER 18 ■ SOAP742

6331_c18_final.qxd 2/16/06 4:27 PM Page 742

Looking Under the Hood
Now that you can at least make calls to the eBay service, you should understand what is going
on behind the scenes in PHP. Unlike many of the services you have seen and maybe tried in
this chapter, much more is required to make a SOAP call than when simply calling a function.
For starters, you need to add the authentication information to the SOAP message.

Authentication Structure

If you look within the eBaySOAP.php file, you will notice the eBayCredentials and eBayAuth
classes. The eBayAuth class is the container for all authentication data. Upon creation, the
eBaySession object, $session, is passed to the constructor. Using the keys and token that
were added to $session at the beginning of the script, the proper structure is created using
the correct data types. It is important that SoapVar objects are created because the data must
not only be properly typed but also properly namespaced. Incorrect namespacing will result
in a SoapFault being issued.

The authentication information is not passed within the body of the message, but rather,
it is set in the SOAP Header. When the eBaySOAP object, $client, is instantiated, the constructor
makes a call to the __setHeaders() method, which is not part of the SOAP API but rather a cus-
tom method that instantiates the eBayAuth object, creates a SoapVar for the object, and then
creates a SoapHeader object using the resulting SoapVar. This is a bit confusing I know, but
again, data typing and namespacing is essential when working with the eBay service. An array
containing this header is then set as a property of $client because it will be used later when
a function call is made.

Remote Calls

When calls are made to the eBay service, not only does the SOAP message need to be properly
created, but also the URL being called must be dynamically created. The eBay system uses URL
parameters to properly route and filter a SOAP request. It is possible to do this without resort-
ing to method overloading, but you need to consider what has to occur to perform this.

One of the required parameters is the name of the function being called. Without using
overloading, you could hard-code the function name into the URL and call the function like
a normal SOAP call. This presents a problem in reusability. The next time you need to call a
different function, you need to also change the value of the URL parameter. You could use
a variable to set the URL and call the function. For example:

$function = 'GetUser';

/*
Code to build URL using $function variable

*/

$client->$function($params);

Although this works, it is not all that intuitive. You would always have to find what the
value of $function was to know what function you were actually calling using the SoapClient.

The example code from eBay uses a different technique. Within the eBaySOAP class
method, overloading is employed through the use of the __call() method. When you make
the call $client->GetUser($params), the call is routed through the __call() method. The

CHAPTER 18 ■ SOAP 743

6331_c18_final.qxd 2/16/06 4:27 PM Page 743

name of the method, equating to an eBay function, is passed as the first parameter. The URL
can now be dynamically created without having to change the calling convention you have
grown accustomed to in SOAP. The method then calls the __soapCall() method, passing the
name of the function to call, the new location as an input option, and lastly the authentication
header that was created earlier.

This example demonstrated only a single function call, but you should have a better
understanding of the interaction between the PHP SOAP extension and the eBay service. Using
a combination of the documentation and the type and using function information retrievable
from a SoapClient, you should be able to move on to more complex calls and data structures.
The most difficult parts should be behind you. Whether or not you decide to use the example
code as the basis for your application is entirely up to you. It definitely is a good starting point
to say the least. If you do plan on using the code, it is to your advantage to check on the eBay
site itself because the example code is not static. Even as I wrote this chapter, new updates
were made available on the site.

Introducing the Google Web Services
Google provides Web services to perform searches, do spell checks, and retrieve cached Web
pages, all of which make up its search service. You even have access to manage AdWords
accounts, using the AdWords API service. AdWords is an advertisement system where you can
purchase cost-per-click or cost-per-impression ads to be displayed on Google search result
pages. Both of these services are currently in beta status and provide SOAP-only access.

The AdWords API service requires an AdWords account. Using your account credentials,
you can register at https://adwords.google.com/select/ApiWelcome to receive your developer
token. This token is required to access the service. Not everyone reading this has an AdWords
account, so rather covering an API that only a few readers will benefit from, I will use the search
service as the example. If you care to find out more about the AdWords API service, including
the API documentation, you should browse to http://www.google.com/apis/adwords/.

The search service is a free service for noncommercial use. The only restriction is that
you are limited to 1,000 queries per day. Registration is required to access the service,
because you need to obtain a license key. You will also need to download the developer’s kit,
which includes the WSDL document you will be using to access the service. You can find reg-
istration and the developer’s kit at http://www.google.com/apis/.

Once you have downloaded the developer’s kit, extract the contents, and either note the
location of the WSDL file or copy it to another accessible location. The kit actually contains
three WSDL files, but the one you need to use is located within the root googleapi directory
from the package. At this point, it is not required that you have your license key because all
you want to do is load the WSDL file into a SOAPClient and inspect the API. The first step is to
examine the types used within the WSDL file. This will give you an idea of the type of return
data you should expect when making calls to the service. For example:

<?php
try {

$GoogleClient = new SoapClient('GoogleSearch.wsdl');
$types = $GoogleClient->__getTypes();
foreach($types AS $type) {

echo $type."\n\n";
}

CHAPTER 18 ■ SOAP744

6331_c18_final.qxd 2/16/06 4:27 PM Page 744

} catch (SoapFault $e) {
var_dump($e);

}
?>

struct GoogleSearchResult {
boolean documentFiltering;
string searchComments;
int estimatedTotalResultsCount;
boolean estimateIsExact;
ResultElementArray resultElements;
string searchQuery;
int startIndex;
int endIndex;
string searchTips;
DirectoryCategoryArray directoryCategories;
double searchTime;
}

struct ResultElement {
string summary;
string URL;
string snippet;
string title;
string cachedSize;
boolean relatedInformationPresent;
string hostName;
DirectoryCategory directoryCategory;
string directoryTitle;
}

ResultElement ResultElementArray[]

DirectoryCategory DirectoryCategoryArray[]

struct DirectoryCategory {
string fullViewableName;
string specialEncoding;
}

As you can see, few types are defined. Only three structures exist, and they are not overly
complex. Now that you have an idea of what the types look like, you can then use the
SoapClient to examine the callable operations from the service:

CHAPTER 18 ■ SOAP 745

6331_c18_final.qxd 2/16/06 4:27 PM Page 745

<?php
try{

$GoogleClient = new SoapClient('GoogleSearch.wsdl');
$google_funcs = $GoogleClient->__getFunctions();
foreach($google_funcs AS $function) {

echo $function."\n\n";
}

} catch (SoapFault $e) {
var_dump($e);

}
?>

base64Binary doGetCachedPage(string $key, string $url)

string doSpellingSuggestion(string $key, string $phrase)

GoogleSearchResult doGoogleSearch(string $key, string $q, int $start,
int $maxResults, boolean $filter,
string $restrict, boolean $safeSearch, string $lr,
string $ie, string $oe)

This service is compact and to the point. It contains only three operations, and only one,
doGoogleSearch(), takes a good number of parameters and returns complex results. If you
haven’t yet already registered and received your license key and would like to follow along with
the examples, now is the time to do so. Notice the $key parameter in all of the operations. This
parameter is your license key, and without it, the only result you can expect is a SOAP Fault
telling you that your key is invalid.

The first two operations, doGetCachedPage() and doSpellingSuggestion(), are simple
functions. The doGetCachedPage() function takes your license key and the URL to retrieve from
Google’s cache as parameters and returns the cached page. The SOAP extension automatically
performs the Base64 decoding, so the value returned from the function can be used immedi-
ately. The doSpellingSuggestion() function takes your key and the phrase to spell check and
returns a string containing the suggested spelling of the phrase. In the event no acceptable
spellings are found, an empty string is returned. Because of the simplicity of these functions,
I will demonstrate only a short example of calling them. The location of the Google WSDL file
is assumed to be in the same directory of the script. If you happen to have it located else-
where, modify the constructor call for the SoapClient to reflect this location:

<?php
$key = "<insert license key here>";

try {
$GoogleClient = new SoapClient('GoogleSearch.wsdl');

/* Retrieve cached page for http://www.php.net/ and display first 500 chars */
$cached = $GoogleClient->doGetCachedPage($key, 'http://www.php.net/');

CHAPTER 18 ■ SOAP746

6331_c18_final.qxd 2/16/06 4:27 PM Page 746

echo "Cache Retrieval Results: \n";
if ($cached) {

echo substr($cached, 0 , 500);
} else {

echo "No Cached Page Found";
}
echo "\n\n";

/* Perform Spelling Suggestion */
$orig = 'Pleeze Ceck my speling';
$spelling = $GoogleClient->doSpellingSuggestion($key, $orig);

echo "Spelling Suggestion Results: \n";
if ($spelling) {

echo " Original Spelling: ".$orig."\n";
echo " Suggested Spelling: ".$spelling."\n";

} else {
echo " No Suggested Alternatives Found\n";

}
} catch (SOAPFault $e) {

var_dump($e);
}
?>

Cache Retrieval Results:
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<BASE HREF="http://www.php.net/"><table border=1 width=100%><tr><td>
<table border=1 bgcolor=#ffffff cellpadding=10 cellspacing=0 width=100%
color=#ffffff>
<tr><td>This is

G o
o g
l e's

<a href="http://www.google

Spelling Suggestion Results:
Original Spelling: Pleeze Ceck my speling
Suggested Spelling: Please Check my spelling

The doGoogleSearch() function is a bit more complicated than the previous two func-
tions. Not only does it take a fair number of parameters, described in Table 18-10, but it also
returns a GoogleSearchResult structure, which is a complex type containing additional com-
plex types.

CHAPTER 18 ■ SOAP 747

6331_c18_final.qxd 2/16/06 4:27 PM Page 747

Table 18-10. doGoogleSearch Function Parameters

Parameter Description

key License key provided by Google upon registration.

q Query terms. Queries can contain the same syntax as allowed when using the Google
Web interface to perform a search. You can find additional details about syntax at
http://www.google.com/apis/reference.html#2_2.

start Zero-based index of the first desired result.

maxResults Maximum number of results to return per query. This value cannot exceed 10.

filter Activates or deactivates automatic results filtering, which hides similar results and
results that all come from the same Web host. Filtering tends to improve the end user
experience on Google, but for your application you may prefer to turn it off.

restricts Restricts the search to a subset of the Google Web index, such as a country like
Ukraine or a topic like Linux. See http://www.google.com/apis/reference.html#2_4
for more details.

safeSearch A Boolean value that enables you to filter adult content in the search results.

lr Restricts the search to documents within one or more languages. See http://
www.google.com/apis/reference.html#2_4 for more details.

ie This parameter has been deprecated and is ignored.

oe This parameter has been deprecated and is ignored.

The good thing about the SOAP extension is that it makes it simple to work with complex
types. The resulting GoogleSearchResult structure is accessed like an object, which you are prob-
ably comfortable using. The following example searches Google using the query PHP 5 SOAP,
starting at the first record designated by position 0 and returning a maximum of 5 records. Each
of these parameters is easily changed at the beginning of the script. The script could also be inte-
grated into a Web page, allowing the parameters to be passed in from a form. No matter how you
go about the input, the basic logic remains the same:

<?php
/* Values to pass as parameters */
$key = "<insert license key here>";
$query = 'PHP 5 SOAP';
$startrec = 0;
$maxResults = 5;
$filter = FALSE;

try {
$GoogleClient = new SoapClient('GoogleSearch.wsdl');

$searchResults = $GoogleClient->doGoogleSearch($key, $query, $startrec,
$maxResults, $filter, '', FALSE,
'', '', '');

CHAPTER 18 ■ SOAP748

6331_c18_final.qxd 2/16/06 4:27 PM Page 748

if ($searchResults) {
echo "Search Time: ".$searchResults->searchTime."\n\n";
foreach ($searchResults->resultElements AS $result) {

echo "Title: ".$result->title."\n";
echo "URL: ".$result->URL."\n";
echo "Summary: ".$result->snippet."\n";
echo "Cache Size: ".$result->cachedSize."\n\n";

}
}

} catch (SOAPFault $e) {
var_dump($e);

}
?>

Once the query has been executed, the script outputs the amount of time in seconds it
took Google to perform the query. It then loops through each of the resultElements from the
GoogleSearchResult structure and displays the title, URL, snippet, and cachedSize for each
of the ResultElement structures.

Search Time: 0.074399

Title: Zend Technologies - PHP 5 In Depth - PHP SOAP Extension
URL: http://www.zend.com/php5/articles/php5-SOAP.php
Summary: PHP 5's SOAP extension is the first attempt to implement the
SOAP protocol for
 PHP in C. It has some advantages over the
existing implementations written in ...
Cache Size: 101k

Title: Zend Technologies - PHP 5 In Depth - PHP SOAP Extension
URL: http://www.zend.com/php5/articles/php5-SOAP.php?article=php5-
SOAP&kind=php5&id=6460&open=1&anc=0&view=1
Summary: PHP 5's SOAP extension is the first attempt to implement the
SOAP protocol ...
 Hi I couldn't find the answer May be some
problem with Php5 Soap extensions ...
Cache Size: 101k

Title: Using the PHP 5 SOAP extension
URL: http://rootprompt.org/article.php3?article=8520
Summary: Using the PHP 5 SOAP extension. ... In this article and
through code examples,
 learn how to use the new SOAP extension in PHP
5 to access a J2EE application ...
Cache Size: 5k

CHAPTER 18 ■ SOAP 749

6331_c18_final.qxd 2/16/06 4:27 PM Page 749

Title: php tutorials - A Clean Start: The New PHP 5 SOAP Extension
...
URL: http://www.communitymx.com/abstract.cfm?cid=DF35C
Summary: Flash, Dreamweaver, Fireworks, ColdFusion, Freehand and
Studio MX tutorials,
 articles and extensions.
Cache Size: 19k

Title: Access an enterprise application from a PHP script
URL: http://www-128.ibm.com/developerworks/library/os-phpws/?ca=dgr-phpw11PHP5soap
Summary: Using the PHP 5 SOAP extension to consume a WebSphere Web service
... New in PHP
 5 is a built-in SOAP extension,
which we'll refer to as ext/soap. ...
Cache Size: 81k

Conclusion
Depending upon whether you are a consumer of a SOAP service or the developer, SOAP is not
always for the weak of heart. WSDL is a language that can take some practice to write correctly.
This chapter introduced you to many of the components that make up WSDL using a step-by-
step examination of the different areas of functionality and their relation to each other. For a
consumer of a SOAP service, this may not have been an area you were too interested in, but it
is good information to know. Being able to read a WSDL document often helps when the doc-
umentation just won’t do. From WSDL, the chapter moved on to SOAP, discussing its relation
to WSDL and providing a deep look at the structure of SOAP messages. Again, this may not be
something you want to know, but it’s helpful to understand during SOAP debugging sessions.

You put these technologies to some use as you looked at the PHP SOAP extension. Not
only did you learn about the API and some functionality not even documented, but also you
saw how some of the methods relate to the parts of a SOAP message. SOAP, in general, is not
difficult to use, until you run into problems. The more you understand the different aspects,
the easier and faster it becomes to resolve the issues. The information and examples in this
chapter should provide you with enough knowledge of SOAP to create some powerful Web
services. Whether or not it is more difficult than doing the same using REST is another story.
It all depends upon your preference, who will be consuming the service, and how complex the
application is. No matter which technology you choose, you are now well prepared to take on
the task at hand.

CHAPTER 18 ■ SOAP750

6331_c18_final.qxd 2/16/06 4:27 PM Page 750

Universal Description, Discovery,
and Integration (UDDI)

Armed with the knowledge of consuming and creating Web services, you set off to create the
next killer application. No matter how great the application might be, the question becomes,
how do you go about finding or advertising this Web service? Of course, getting it listed in the
popular search engines is one of the first steps you should take, but wouldn’t it be great if you
could easily discover and integrate with Web services without having to wade through all the
nonrelevant information returned from search engines and then having to find documenta-
tion for a particular service? This is where Universal Description, Discovery, and Integration
(UDDI) plays a role. This chapter will introduce many of the concepts behind UDDI and show
how you can leverage UDDI registries by using PHP.

■Caution As of January 16, 2006, the Universal Business Registry (UBR) mentioned throughout this
chapter has been shut down. Registries have been privatized, so it is possible that some of the examples
presented in this chapter will not work.

Introducing UDDI
In 2000, Microsoft, IBM, and Ariba collaborated on a project to create standards for describ-
ing, discovering, and consuming Web services. The idea was for registries, known as UDDI
registries, to be set up to manage information about service providers, service implementa-
tions, and service metadata. Providers, typically businesses, could then publish and maintain
their information while giving consumers, consisting of anyone needing to consume a service,
the ability to query the information to find services they needed and to query the information
about how the services are consumed. UDDI performed this interaction. After the release of
the UDDI 1.0 specification, UDDI was moved under the control of OASIS in 2002; you can find
additional information about UDDI at http://www.uddi.org.

751

C H A P T E R 1 9

■ ■ ■

6331_c19_final.qxd 2/16/06 4:24 PM Page 751

UDDI Registries
When UDDI was first conceived, the idea was that a master directory (the UBR) of publicly
available services would be made available and serve as the central repository for all busi-
nesses to register their services for consumption. The UBR was operated by four companies:
IBM, Microsoft, SAP, and NTT Communications. The UBR is split into nodes, similar to the
Domain Name System (DNS). When information is published to one node, it is replicated as
read-only data to the other nodes; therefore, when a query is made, it does not matter which
node is used to retrieve the data. Because of the read-only replication, it does mean that
updating data must be performed at the node with which the data was first registered. This
does not mean that you are locked into a node once registered, because you have methods
to transfer to another node. For more information about the different nodes, the following
are the UDDI home pages for each company:

IBM: http://www-306.ibm.com/software/solutions/webservices/uddi/

Microsoft: http://uddi.microsoft.com/

SAP: http://uddi.sap.com/

NTT Communications: http://www.ntt.com/uddi/

The adoption of UDDI never reached the scale originally intended. If you looked at the
number of services registered in the UBR, you might have been surprised how few businesses
have registered services. From what I can tell, proponents of UDDI claim that although the
listings in the UBR are sparse, UDDI is more often used in a private environment, such as an
intranet or extranet. Because these are private, I have no way to verify or dismiss these claims.
In private environments, the UBR does not play a role. These environments have their own
private registries.

UDDI Usage
Depending upon which point of view you believe, it is unclear whether UDDI was a success
or failure. Certainly in the public space, it is not living up to the original vision, which is a bit
funny if you think about it. UDDI is listed as one of the factors for being considered a true Web
service in a purist’s view. With so little external usage, it makes one wonder why UDDI is one
of the technologies that defines a Web service. Does this mean that even if you are using SOAP
for a Web service, it’s not really a Web service? In my opinion, it comes back to who created
and who is pushing the technology. The same companies that created SOAP and UDDI are
the ones who defined what a supposed Web service is.

You might be wondering then why you should even bother with UDDI. With the usage of
Web services on the rise, UDDI and the UBR could still gain momentum. It’s also a possibility
that one day you might need to work with a company that has employed it internally. Suppos-
edly most of the Web services in use today are not meant for public accessibility but are used
internally within organizations. This again is something that I cannot really verify or dismiss.
Of course, you could also be one of the Web service purists, which in that case you don’t have
a doubt in your mind about UDDI usage. In any case, understanding what UDDI is and how
to interface with registries is one of those nice topics to discuss during those company parties
when you can’t get rid of that person who just won’t stop talking.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)752

6331_c19_final.qxd 2/16/06 4:24 PM Page 752

UDDI Specifications
No matter what you think after reading the previous sections, UDDI is not dead. It took only
about three-and-a-half years, but UDDI 3.0 was finally approved in February 2005. Because
I will use the UBR to demonstrate how to access a registry using UDDI, I will use and reference
UDDI 2.0 in this chapter. If you happen to glance at the IBM 3.0 registry (https://uddi.ibm.com/
beta/registry.html), you will understand why. UDDI 3.0 is still in beta status. So, what exactly
does the specification define?

• SOAP APIs that applications use to query and to publish information to a UDDI registry

• XML Schema schemata of the registry data model and the SOAP message formats

• WSDL definitions of the SOAP APIs

• UDDI registry definitions (technical models, or tModels) of various identifier and cate-
gory systems that can be used to identify and categorize UDDI registrations

Because you should already be familiar with SOAP and WSDL from Chapter 18 and XML
Schemas from Chapter 3, this chapter focuses on the data structures in UDDI as well as the
SOAP API used to query and publish information to a registry.

Introducing Data Structures
UDDI 2.0 contains five data structure types that make up a registration:

• businessEntity

• businessService

• bindingTemplate

• tModel

• publisherAssertion

These structures form a hierarchy, as shown in Figure 19-1. No structure can have more
than one parent, but the parent can have multiple child structures. You will see this in more
detail in the “Accessing the SAP UDDI Registry via SOAP” section.

The data structures are defined in terms of XML Schemas, which for version 2 can be
found at http://www.uddi.org/schema/uddi_v2.xsd. The schemas and structure breakdowns
in the following sections come from the UDDI Version 2.03 Data Structure Reference (http://
uddi.org/pubs/DataStructure_v2.htm). Not only does this inclusion allow for quick reference,
but you also need to understand the structures to properly access and utilize a UDDI registry.

■Note Throughout the UDDI data structure definitions, you will encounter the term universally unique ID
(UUID). UUIDs serve as the keys for the UDDI data, similar to how you would use database keys, both unique
and foreign, in a database.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 753

6331_c19_final.qxd 2/16/06 4:24 PM Page 753

The businessEntity Structure
The businessEntity structure is the top-level structure containing all the information about
a business. It not only contains the business information, but it also serves as the container
for the information regarding the services the business offers. A businessEntity element is
defined within the UDDI XML Schema by the following:

<element name="businessEntity" type="uddi:businessEntity" />

<complexType name="businessEntity">
<sequence>

<element ref="uddi:discoveryURLs" minOccurs="0" />
<element ref="uddi:name" maxOccurs="unbounded" />
<element ref="uddi:description" minOccurs="0" maxOccurs="unbounded" />
<element ref="uddi:contacts" minOccurs="0" />
<element ref="uddi:businessServices" minOccurs="0" />
<element ref="uddi:identifierBag" minOccurs="0" />
<element ref="uddi:categoryBag" minOccurs="0" />

</sequence>
<attribute name="businessKey" type="uddi:businessKey" use="required" />
<attribute name="operator" type="string" use="optional" />
<attribute name="authorizedName" type="string" use="optional" />

</complexType>

Table 19-1, Table 19-2, and Table 19-3 further break down this schema by describing the
elements, attributes, and substructures found within a businessEntity element.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)754

Figure 19-1. UDDI data structure relationship

6331_c19_final.qxd 2/16/06 4:24 PM Page 754

Table 19-1. businessEntity Structure

Field Description Data Type Length

businessKey Required attribute. This is the unique identifier for a given UUID 41
instance of a businessEntity structure.

authorizedName Attribute. This is the recorded name of the individual who string 255
published the businessEntity data. This data is generated by
the controlling operator and should not be supplied within
save_business operations.

operator Attribute. This is the certified name of the UDDI registry site string 255
operator who manages the master copy of the businessEntity
data. The controlling operator records this data at the time
data is saved. This data is generated and should not be sup-
plied within save_business operations.

discoveryURLs Optional element. This is a list of URLs that point to structure
alternate, file-based service discovery mechanisms. Each
recorded businessEntity structure is automatically
assigned a URL that returns the individual businessEntity
structure. A URL search is provided via find_business calls.

name Required repeating element. These are the human-readable string 255
names recorded for the businessEntity, adorned with a
unique xml:lang value to signify the language in which
they are expressed. A name search is provided via
find_business calls. Names cannot be blank.

description Optional repeating element. This is one or more short string 255
business descriptions. One description is allowed per
national language code supplied.

contacts Optional element. This is an optional list of contact structure
information.

businessServices Optional element. This element serves as a container for structure
businessService elements.

identifierBag Optional element. This is an optional list of name/value structure
pairs that can be used to record identifiers for a
businessEntity. These can be used during a search via
find_business.

categoryBag Optional element. This is an optional list of name/value structure
pairs that are used to tag a businessEntity with specific
taxonomy information (for example, industry, product,
or geographic codes). You can use this element during
a search via find_business.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 755

As you can see from Table 19-1, additional structures can reside within the
businessEntity structure.

discoveryURLs
A discoveryURLs element is a container for discoveryURL elements, because you can use
multiple discoveryURL elements. A discoveryURL element points to URL-addressable dis-
covery documents with the attribute useType, whose value can be businessEntity or
businessEntityExt, and with content, which is a URL that points an instance of the type

6331_c19_final.qxd 2/16/06 4:24 PM Page 755

of structure specified by the useType attribute. For example, a businessEntity record with the
businessKey of ABCDE might also have the following discoveryURL within the XML document:

<discoveryURLs>
<discoveryURL useType="businessEntity">

http://uddi.example.com/?businessKey=ABCDE
</discoveryURL>

</discoveryURLs>

Navigating to the URL would basically return the entire businessEntity record again.

Contact Structure
Contact structures are contained within a contacts element. These serve to provide contact
information for a business. Table 19-2 shows this structure.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)756

Table 19-2. Contact Structure

Field Description Data Type Length

useType Optional attribute that is used to describe the type of contact string 255
in free-form text. Suggested examples include technical
questions, technical contact, establish account, sales
contact, and so on.

description Optional element. This is zero or more language-qualified string 255
descriptions of the reason why the contact should be used.

personName Required element. Contacts should list the name of the string 255
person or name of the job role that will be available behind
the contact. Examples of roles include administrator and
webmaster.

phone Optional repeating element. This holds telephone numbers string with 50
for the contact. You can adorn this element with an optional attributes
useType attribute for descriptive purposes. 50

email Optional repeating element. This holds email addresses for string with 255
the contact. You can adorn this element with an optional attributes
useType attribute for descriptive purposes.

address Optional repeating element. This structure represents the
printable lines suitable for addressing an envelope. structure

A contacts element can have multiple contacts as well as identify the type of contact by
using a useType attribute. It is not required that a business even define a contact.

Address Structure
When adding an address to a contact, you use the address structure. Zero or more address
elements, using the useType attribute to differentiate the type of address, can exist within a
contact element. The address structure consists of the attributes and elements shown in
Table 19-3.

6331_c19_final.qxd 2/16/06 4:24 PM Page 756

Table 19-3. Address Structure

Field Description Data Type Length

useType Optional attribute that describes the type of address in free- string 255
form text. Suggested examples include headquarters, sales
office, billing department, and so on.

sortCode Optional attribute that can drive the behavior of external string 10
display mechanisms that sort addresses. The suggested
values for sortCode include numeric ordering values (for
example, 1, 2, 3), alphabetic character ordering values (for
example, a, b, c), or the first n positions of relevant data
within the address.

tModelKey Optional attribute. This is the unique key reference that string 255
implies that the keyName/keyValue pairs given by subsequent
addressLine elements are to be interpreted by the taxonomy
associated with the tModel that is referenced.

addressLine Optional repeating element containing the actual address in string with 80
free-form text. If the address element contains a tModelKey, attributes
these addressLine elements are to be adorned each with an
optional keyName/keyValue attribute pair. Together with the
tModelKey, keyName and keyValue qualify the addressLine in
order to describe its meaning.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 757

The businessService Structure
A businessService structure describes an available service in generalized business terms:

<element name="businessService" type="uddi:businessService" />

<complexType name="businessService">
<sequence>

<element ref="uddi:name" minOccurs="0" maxOccurs="unbounded" />
<element ref="uddi:description" minOccurs="0" maxOccurs="unbounded" />
<element ref="uddi:bindingTemplates" minOccurs="0" />
<element ref="uddi:categoryBag" minOccurs="0" />

</sequence>
<attribute name="serviceKey" type="uddi:serviceKey" use="required" />
<attribute name="businessKey" type="uddi:businessKey" use="optional" />

</complexType>

The businessService structure is linked to the parent businessEntity structure by the
businessKey element in a similar fashion to how foreign keys in a database work. When
returned within a businessEntity, the businessService elements are contained within a
businessServices element and are structured according to the layout described in Table 19-4.
I say when here because using the UDDI API, it is possible to query for a single
businessService record.

6331_c19_final.qxd 2/16/06 4:24 PM Page 757

Table 19-4. businessService Structure

Field Description Data Type Length

businessKey This attribute is optional when the businessService data is UUID 41
contained within a fully expressed parent that already con-
tains a businessKey value. If the businessService data is
rendered into XML and has no containing parent that has
within its data a businessKey, the value of the businessKey
that is the parent of the businessService is required to be
provided. This behavior supports the ability to browse
through the parent-child relationships given any of the
core elements as a starting point. The businessKey may
differ from the publishing businessEntity’s businessKey
to allow service projections.

serviceKey Required attribute. This is the unique key for a given UUID 41
businessService. When saving a new businessService
structure, pass an empty serviceKey value. This signifies
that a UUID value is to be generated. To update an existing
businessService structure, pass the UUID value that cor-
responds to the existing service. If this data is received via
an inquiry operation, the serviceKey values may not be
blank. When saving a new or updated service projection,
pass the serviceKey of the referenced businessService
structure.

name Optional repeating element. These are the human-readable string 255
names recorded for the businessService, adorned with a
unique xml:lang value to signify the language in which
they are expressed. A name search is provided via
find_service calls. Names cannot be blank. When saving
a new or updated service projection, pass the exact name
of the referenced businessService here.

description Optional element. This is zero or more language-qualified string 255
text descriptions of the logical service family.

bindingTemplates This structure holds the technical service description structure
information related to a given business service family.

categoryBag Optional element. This is an optional list of name/value structure
pairs that are used to tag a businessService with specific
taxonomy information (for example, industry, product, or
geographic codes). You can use the categoryBag element
during search via find_service.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)758

The bindingTemplate Structure
A bindingTemplate structure provides technical descriptions of a Web service:

<element name="bindingTemplate" type="uddi:bindingTemplate" />

<complexType name="bindingTemplate">
<sequence>

<element ref="uddi:description" minOccurs="0" maxOccurs="unbounded" />
<choice>

<element ref="uddi:accessPoint" />

6331_c19_final.qxd 2/16/06 4:24 PM Page 758

<element ref="uddi:hostingRedirector" />
</choice>

<element ref="uddi:tModelInstanceDetails" />
</sequence>
<attribute name="serviceKey" type="uddi:serviceKey" use="optional" />
<attribute name="bindingKey" type="uddi:bindingKey" use="required" />

</complexType>

As shown by the fields in Table 19-5, the bindingTemplate structure allows for a descrip-
tion as well as technical entry points or, optionally, remotely hosted services. This structure is
one of the most important structures in UDDI. If you recall the purpose of UDDI (to allow the
description and discovery of Web services), this structure contains exactly that information.
This structure is linked to a parent businessService structure through the serviceKey attrib-
ute. Although this structure is contained within a bindingTemplates element when returned
in the scope of a businessService, it can also be returned as a stand-alone structure when
requested from the UDDI API.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 759

Table 19-5. bindingTemplate Structure

Field Description Data Type Length

bindingKey Required attribute. This is the unique key for a given UUID 41
bindingTemplate. When saving a new bindingTemplate
structure, pass an empty bindingKey value. This signi-
fies that a UUID value is to be generated. To update
an existing bindingTemplate structure, pass the UUID
value that corresponds to the existing bindingTemplate
instance. If this data is received via an inquiry opera-
tion, the bindingKey values cannot be blank.

serviceKey This attribute is optional when the bindingTemplate UUID 41
data is contained within a fully expressed parent that
already contains a serviceKey value. If the
bindingTemplate data is rendered into XML and has
no containing parent that has within its data a
serviceKey, the value of the serviceKey that is the
ultimate containing parent of the bindingTemplate is
required to be provided. This behavior supports the
ability to browse through the parent-child relation-
ships given any of the core elements as a starting point.

description Optional repeating element. This is zero or more string 255
language-qualified text descriptions of the technical
service entry point.

accessPoint Required attribute qualified element. This element is string with 255
a text field that conveys the entry point address suit- attributes
able for calling a particular Web service. This can be a
URL, an email address, or even a telephone number.
You cannot make any assumptions about the type of
data in this field without first understanding the tech-
nical requirements associated with the Web service.

Continued

6331_c19_final.qxd 2/16/06 4:24 PM Page 759

Table 19-5. Continued

Field Description Data Type Length

hostingRedirector Required element if accessPoint is not provided. This Empty with
element is adorned with a bindingKey attribute, giv- attributes
ing the redirected reference to a different
bindingTemplate. If you query a bindingTemplate and
find a hostingRedirector value, you should retrieve
that bindingTemplate and use it in place of the one
containing the hostingRedirector data.

tModelInstanceDetails This structure is a list of zero or more structure
tModelInstanceInfo elements. This data, taken in
total, should form a distinct fingerprint that can
identify compatible services. Refer to the “The
tModel Structure” section for additional information.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)760

The accessPoint element provides the location of a Web service. A required URLType
attribute identifies the type of content within the accessPoint element. It is limited to only
the following values:

mailto: Designates that the accessPoint string is formatted as an email address reference
(for example, mailto:purch@example.com).

http: Designates that the accessPoint string is formatted as an HTTP-compatible URL
(for example, http://www.example/purchasing).

https: Designates that the accessPoint string is formatted as a secure HTTP-compatible
URL (for example, https://www.example.com/purchasing).

ftp: Designates that the accessPoint string is formatted as a FTP directory address (for
example, ftp://ftp.example.com/public).

fax: Designates that the accessPoint string is formatted as a telephone number that will
connect to a fax machine (for example, 1 234 567 8901).

phone: Designates that the accessPoint string is formatted as a telephone number that
will connect to human or suitable voice or tone response–based system (for example,
1 234 567 8901).

other: Designates that the accessPoint string is formatted as some other address
format. When this value is used, one or more of the tModel signatures found in the
tModelInstanceInfo collection must imply that a particular format or transport type
is required.

The hostingRedirector element refers to another bindingTemplate entry. This allows
a service to be described and queried based on the description yet refers to a service that
has been described in a separate bindingTemplate record. When you use this element, it must
be an empty element with a bindingKey attribute that points to another bindingTemplate
structure. Also, you must not use the accessPoint element when using a hostingRedirector
element.

6331_c19_final.qxd 2/16/06 4:24 PM Page 760

The tModel Structure
Unlike the other structures you have seen, tModel structures have no owner; rather, they are
just referenced from other structures. In fact, you should not be surprised to find multiple
businessEntity structures referencing the same tModel structure. The reason for this is that in
most cases, the tModel represents some common technical interface, business relationship, or
categorization scheme. UDDI provides a number of predefined tModels, which you will see in
the “Creating a tModel” section later in this chapter. A tModel structure, shown in the following
XML Schema form and broken out in Table 19-6, allows for a description of a description,
basically acting as metadata:

<element name="tModel" type="uddi:tModel" />

<complexType name="tModel">
<sequence>

<element ref="uddi:name" />
<element ref="uddi:description" minOccurs="0" maxOccurs="unbounded" />
<element ref="uddi:overviewDoc" minOccurs="0" />
<element ref="uddi:identifierBag" minOccurs="0" />
<element ref="uddi:categoryBag" minOccurs="0" />

</sequence>
<attribute name="tModelKey" type="uddi:tModelKey" use="required" />
<attribute name="operator" type="string" use="optional" />
<attribute name="authorizedName" type="string" use="optional" />

</complexType>

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 761

Table 19-6. tModel Structure

Field Description Data Type Length

tModelKey Required attribute. This is the unique key for a given tModel string 255
structure. When saving a new tModel structure, pass an empty
tModelKey value. This signifies that a UUID value is to be gener-
ated. To update an existing tModel structure, pass the tModelKey
value that corresponds to an existing tModel instance.

authorizedName Attribute. This is the recorded name of the individual who pub- string 255
lished the tModel data. This data is calculated by the controlling
operator and should not be supplied within save_tModel
operations.

operator Attribute. This is the certified name of the UDDI registry site string 255
operator who manages the master copy of the tModel data. The
controlling operator records this data at the time data is saved.
This data is calculated and should not be supplied within
save_tModel operations.

name Required element. This is the name recorded for the tModel. A string 255
name search is provided via find_tModel calls. Names cannot be
blank and should be meaningful to someone who looks at the
tModel. The name should be formatted as a URI, and as a conse-
quence, the xml:lang attribute of the name element should not
be used.

Continued

6331_c19_final.qxd 2/16/06 4:24 PM Page 761

Table 19-6. Continued

Field Description Data Type Length

description Optional repeating element. This contains one or more short string 255
language-qualified descriptions. One description is allowed per
national language code supplied.

overviewDoc Optional element. This houses references to remote descriptive structure
information or instructions related to the tModel.

identifierBag Optional element. This is an optional list of name/value pairs structure
that can record identification numbers for a tModel. You can use
these pairs during searches via find_tModel.

categoryBag Optional element. This is an optional list of name/value pairs structure
that are used to tag a tModel with specific taxonomy information
(for example, industry, product, or geographic codes). You can
use these during searches via find_tModel.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)762

The tModel structure has two main uses. Its primary use is representing a technical speci-
fication. For example, you might use a tModel to describe an Open Financial Exchange (OFX)1

specification (http://www.ofx.net/). This tModel structure then might be referenced by vari-
ous bindingTemplate structures. When performing a search for services, in particular those
that conform to OFX, the tModel for OFX could be located; then, using its key, services that
reference the particular tModel could be queried.

The other use for a tModel structure is to define organizational identity and various clas-
sifications. For example, many companies register themselves with Dun & Bradstreet and
receive a D-U-N-S number. A tModel representing the D-U-N-S number identifier system
could be used to identity a businessEntity with a D-U-N-S number. The following is the
tModel record for the D-U-N-S number identifier system taken from the SAP test registry
(it has been formatted for easier readability):

<tModel tModelKey="UUID:8609c81e-ee1f-4d5a-b202-3eb13ad01823"
operator="uddi:replicationtest:node1" authorizedName="uddi.org">

<name>dnb-com:D-U-N-S</name>
<description xml:lang="en">Dun & Bradstreet D-U-N-S Number.</description>
<overviewDoc>

<overviewURL>
http://uddi.org/pubs/tModels/UBR_Taxonomy_tmodels.htm#D-U-N-S

</overviewURL>
</overviewDoc>
<categoryBag>

1. OFX is a specification for the electronic exchange of financial data between financial institutions,
businesses, and consumers via the Internet. CheckFree, Intuit, and Microsoft created it in early 1997,
and it is currently used by many banks, brokerages, and major payroll-processing companies.

6331_c19_final.qxd 2/16/06 4:24 PM Page 762

<keyedReference tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"
keyName="uddi-org:types:identifier" keyValue="identifier" />

<keyedReference tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4"
keyName="uddi-org:types:unchecked" keyValue="unchecked" />

</categoryBag>
</tModel>

Within a bindingTemplate structure, you may have noticed the tModelInstanceDetails
element. That element acts as a container for tModelInstanceInfo elements that are used to
reference a tModel. For example:

<tModelInstanceDetails>
<tModelInstanceInfo tModelKey="uuid:5FCF5CD0-629A-4C50-8B16-F94E9CF2A674">

<instanceDetails>
<overviewDoc>

<overviewURL>http://www.example.com/ftp</overviewURL>
</overviewDoc>
<instanceParms/>

</instanceDetails>
</tModelInstanceInfo>

</tModelInstanceDetails>

The tModel in this case indicates that the service is compliant with the FTP specification
referenced by the tModel, http://uddi.org/taxonomies/UDDI_CoreOther_tModels.htm#_
Toc25463130. When searching for a binding, you can use these as digital fingerprints returning
only those services matching the specified fingerprint. Other places where you might see
tModel being used, though not covered in this chapter, are within the identifierBag,
categoryBag, and address structures. The tModel works in a similar fashion though it is used
in different contexts.

The publisherAssertion Structure
The publisherAssertion structure, added in UDDI 2.0, creates relationships between busi-
nessEntity records. For example, a company may have multiple subsidiaries where each
subsidiary has its own businessEntity record. Relationships between these records are then
created using publisherAssertion structures. For example:

<element name="publisherAssertion" type="uddi:publisherAssertion" />

<complexType name="publisherAssertion">
<sequence>

<element ref="uddi:fromKey" />
<element ref="uddi:toKey" />
<element ref="uddi:keyedReference" />

</sequence>
</complexType>

Table 19-7 breaks down the publisherAssertion structure.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 763

6331_c19_final.qxd 2/16/06 4:24 PM Page 763

Table 19-7. publisherAssertion Structure

Field Description Data Type Length

fromKey Required element. This is the unique key reference to the first UUID 41
businessEntity for which the assertion is made.

toKey Required element. This is the unique key reference to the second UUID 41
businessEntity for which the assertion is made.

keyedReference Required element. This designates the relationship type for Empty with
which the assertion is made, represented by the included attributes
tModelKey and described by the included keyName/keyValue pair.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)764

For a valid relationship to be made, each businessEntity in the relationship must create
a publisherAssertion. It is not considered valid if only one of the parties does this, because
the other party in the relationship must acknowledge the relationship by means of an identi-
cal assertion. For example, if an entity with a businessKey of 0D28A920-ABCD-11D7-813C-➥

000621DC0A23 were to create a relationship with an entity that happens to be one of its child
subsidiary companies and that has a businessKey of 3604E5F0-DCBA-11D6-83CD-000C0E00230A,
the relationship would look like the following:

<publisherAssertion>
<fromKey>0D28A920-ABCD-11D7-813C-000621DC0A23</fromKey>
<toKey>3604E5F0-DCBA-11D6-83CD-000C0E00230A</toKey>
<keyedReference keyName="subsidiary" keyValue="parent-child"

tModelKey="uuid:807A2C62-EE22-470D-ADC7-E0424A337C03"/>
</publisherAssertion>

For this relationship to be considered valid, the other child entity must also assert the
same relationship.

The keyedReference element specifies the type of relationship between the entities. The
relationship is defined in terms of a tModel. In this case, the tModel specified by the value of
the tModelKey attribute references the uddi-org:relationships tModel, which is a classifica-
tion of businessEntity relationships. You can find additional information about this tModel
at http://www.uddi.org/taxonomies/UDDI_Taxonomy_tModels.htm#Relationships. The keyName
qualifies the relationship specified by the keyValue attribute. So, reading this assertion, the
entity identified by the fromKey, 0D28A920-ABCD-11D7-813C-000621DC0A23, is the parent of the
subsidy entity identified by the toKey, 3604E5F0-DCBA-11D6-83CD-000C0E00230A.

Introducing the SOAP API
UDDI uses SOAP to access the two APIs. The inquiry API is a publicly accessible API to query
a registry for information accessed over HTTP and requiring no authentication. The publisher
API, on the other hand, allows information to be created, updated, and deleted. It uses HTTPS
and an authentication scheme that depends upon the registry’s implementation being
accessed. Although neither API has a large number of functions, some of the structures can
become quite complex. The following sections deal with these in simple terms, because you
can find more detailed information in the API documentation at http://uddi.org/pubs/
ProgrammersAPI_v2.htm.

6331_c19_final.qxd 2/16/06 4:24 PM Page 764

■Note Most of the response message structures have not been described in much detail in this chapter.
In most cases, they are not overly complex and can easily be broken down by examining the return data in
PHP, by reading the UDDI 2.0 WSDL documents, or by referencing the sample response messages in Appen-
dix C of the UDDI 2.0 specification (http://uddi.org/pubs/DataStructure_v2.htm#_Toc25130791).

Inquiry
The inquiry API searches and retrieves information from UDDI registries. This API is
described in the following WSDL document:

http://uddi.org/wsdl/inquire_v2.wsdl

Although you are free to not use the WSDL, it makes it much easier to work with SOAP.
The WSDL is generic and does not contain any service information, but you can easily add it.
For example, save the WSDL file locally and open it in an editor. After the closing binding ele-
ment, add the following fragment:

<service name="InquireSoap">
<port name="InquireSoap" binding="tns:InquireSoap">

<soap:address location="http://udditest.sap.com/uddi/api/inquiry" />
</port>

</service>

This service element ends up being the last child element of the definitions element.
Once you have saved the WSDL, you can then use it to connect to the SAP test registry. Loading
this WSDL into a SoapClient and using the SOAP extension, a call to the __getFunctions()
method will return the functions in Table 19-8 as well as the return types. A call to __getTypes()
will return all types defined in the WSDL, which includes the arguments taken by the functions
and all the UDDI structures.

Table 19-8. UDDI Inquiry Functions

Name Description

find_binding Searches for bindings based on a serviceKey. This function returns a
bindingDetail element that encapsulates all matching bindingTemplate
records.

find_business Searches for entity records. This function returns a businessList ele-
ment that contains a businessInfos element that contains the matching
businessInfo records. Each of these elements contains the businessKey
attribute that can retrieve a specific businessEntity record as well as a
summary of the entity and services.

find_relatedBusinesses Searches for business entities that have a defined relationship, using
publisherAssertions, to the supplied businessKey. This function
returns a relatedBusinessesList, which is documentated at http://
uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_
Toc25130808.

Continued

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 765

6331_c19_final.qxd 2/16/06 4:24 PM Page 765

Table 19-8. Continued

Name Description

find_service Searches for a service within a registered businessEntity. This function
returns a serviceList.

find_tModel Searches for tModel information structures. This function returns a
tModelList.

get_bindingDetail Retrieves specific bindingTemplate records, contained within a
bindingDetail element, based on one or more bindingKey values.

get_businessDetail Retrieves specific businessEntity records, contained within a
businessDetail element, based on one or more businessKey values.

get_businessDetailExt Retrieves extended information for specific businessEntity records
based on one or more businessKey values.

get_serviceDetail Retrieves specific businessService records, contained within a
serviceDetail element, based on one or more serviceKey values.

get_tModelDetail Retrieves specific tModel records, contained within a tModelDetail
element, based on one or more tModelKey values.

If you tried calling __getTypes(), you might have noticed that many of the find_xxx()
functions accept an optional findQualifiers. These qualifiers allow you to refine your search
results by specifying aspects such as name matching and sorting. Table 19-9 shows the full list
of available qualifiers, and I will demonstrate many of them later in the “Accessing the SAP
UDDI Registry via SOAP” section.

Table 19-9. UDDI findQualifiers

Name Description

exactNameMatch This qualifier causes only entries that exactly match the value of the
name argument to be returned.

caseSensitiveMatch This qualifier results in a case-sensitive search based on the value of the
name argument.

sortByNameAsc Returns the results sorted on the name field in ascending order.

sortByNameDesc Returns the results sorted on the name field in descending order.

sortByDateAsc This qualifier returns the data sorted on the date last updated in
ascending order. Sort qualifiers involving dates are secondary in pre-
cedence to the sortByName qualifiers.

sortByDateDesc This qualifier returns the data sorted on the date last updated in
descending order. Sort qualifiers involving dates are secondary in
precedence to the sortByName qualifiers.

orLikeKeys When a bag container contains multiple keyedReference elements, any
keyedReference filters that come from the same namespace are OR’d
together rather than AND’d. This allows one to say “any of these four
values from this namespace and any of these two values from this
namespace.”

orAllKeys This qualifier changes the behavior for tModelBag and categoryBag to
OR keys rather than AND. It negates any AND treatment as well as the
effect of orLikeKeys and applies to find_binding, find_business,
find_service, and find_tModel.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)766

6331_c19_final.qxd 2/16/06 4:24 PM Page 766

Name Description

combineCategoryBags This qualifier is used by the find_business function. It makes the
categoryBag entries for the full businessEntity element behave as
though all categoryBag elements found at the businessEntity level
and in all contained or referenced businessService elements were
combined. Searching for a category will yield a positive match on a
registered business if any of the categoryBag elements contained within
the full businessEntity element (including the categoryBag elements
within contained or referenced businessService elements) contains the
filter criteria.

serviceSubset The find_business function uses this function. It is used only in
conjunction with a passed categoryBag argument and causes the
component of the search that involves categorization to use only the
categoryBag elements from contained or referenced businessService
elements within the registered data and ignores any entries found in
the categoryBag direct descendent element of registered
businessEntity elements. The resulting businessList message will
return those businesses that match based on this modified behavior,
in conjunction with any other search arguments provided.

andAllKeys This qualifier is used with find_business and findtModel functions and
changes the behavior for identifierBag to AND keys rather than OR.

Publisher
The publisher API creates, updates, and edits information within a registry. It also has a WSDL
describing the API, whose functions are listed in Table 19-10, and is located at the following
site:

http://uddi.org/wsdl/publish_v2.wsdl

Again, using the WSDL makes things a bit easier when working with the SOAP extension.
You access the service for the publisher API, though, through a different URL than the inquiry
API. The following is the fragment to add to the WSDL to access the SAP publisher service for
the test registry. You could use other registries, such as any of the UBRs where each also has
two different locations for the APIs. You can find a list of these locations at
http://uddi.org/find.html.

Just insert the following fragment as the next sibling of the binding element, which would
make it the last child of the definitions element, to use the WSDL to connect to the SAP test
registry in order to access the publisher interface:

<service name="PublishSoap">
<port name="PublishSoap" binding="tns:PublishSoap">

<soap:address location="https://udditest.sap.com/uddi/api/publish/" />
</port>

</service>

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 767

6331_c19_final.qxd 2/16/06 4:24 PM Page 767

Table 19-10. UDDI Publisher Functions

Name Description

add_publisherAssertions Adds relationship assertions to the assertion collection.

delete_binding Removes one or more instances of the bindingTemplate data from
the registry.

delete_business Deletes one or more registered businessEntity records and the
contents from the registry.

delete_publisherAssertions Deletes one or more assertions from the assertion collection. Any
relationships based on this assertion will become invalid.

delete_service Deletes one or more businessService records from a registry.

delete_tModel Hides registered information about a tModel. Any tModel hidden in
this way is still usable for reference purposes and accessible via the
get_tModelDetail message but is simply hidden from find_tModel
result sets. There is no way to actually cause a tModel to be deleted,
except by administrative petition.

discard_authToken Informs an operator site that a previously provided authentication
token is no longer valid and should be considered invalid if used
after this message is received.

get_assertionStatusReport Gets a status report containing publisher assertions and status
information. Returns an assertionStatusReport that includes the
status of all assertions made involving any businessEntity con-
trolled by the requesting publisher account.

get_authToken Gets an authentication token, which is required for all other pub-
lisher API calls. This is equivalent to a logon.

get_publisherAssertions Retrieves list of all active publisher assertions.

get_registeredInfo Retrieves an abbreviated list of all businessEntity and tModel data
managed by a given individual.

save_binding Saves a new or updates an existing bindingTemplates. You can save
multiple bindingTemplates at once.

save_business Saves or updates a complete businessEntity element. You must use
this function carefully because it also performs deletions on con-
tained structures when the businessEntity element being saved
differs, such as not including a substructure, from the data in the
registry.

save_service Creates or updates one or more businessService elements.

save_tModel Creates or updates one or more tModel elements.

set_publisherAssertions Saves the complete set of publisher assertions for an individual pub-
lisher account. Replaces any existing assertions and causes any old
assertions that are not reasserted to be removed from the registry.

Accessing the SAP UDDI Registry via SOAP
If you have been following along to this point, you should already have two WSDL files config-
ured to access the SAP test registry for the inquiry functions (http://udditest.sap.com/uddi/
api/inquiry) and for the publisher functions (https://udditest.sap.com/uddi/api/publish/).

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)768

6331_c19_final.qxd 2/16/06 4:24 PM Page 768

In the following sections, you will use the SOAP extension to create, update, and delete infor-
mation from the registry as well as to perform queries.

■Note Performing inquiries against the UBRs is open to the public and does not require any authentica-
tion. To access the publisher API against the SAP registries, you must be authenticated by a user ID and
password. If you are going to follow along with the publishing examples in this section, you need to register
for your own logon at http://udditest.sap.com/.

Performing Inquiries
If you have not already done so, retrieve a copy of the UDDI inquiry API WSDL located at
http://uddi.org/wsdl/inquire_v2.wsdl. Add the service element as the last child element
of the definitions element, so the end of the file looks like the following:

<service name="InquireSoap">
<port name="InquireSoap" binding="tns:InquireSoap">

<soap:address location="http://udditest.sap.com/uddi/api/inquiry" />
</port>

</service>
</definitions>

Although the order of this element does not matter as long as it is a child of the
definitions element, this placement makes it easier to insert and locate in the event you
decide to change to a different registry for primary use. Once you have the WSDL correctly
set up, you can easily create the client. Use the name of the downloaded WSDL file,
inquire_v2.wsdl, as the name for the local modified WSDL that will be used in the example.
For example:

$sClient = new SoapClient('inquire_v2.wsdl');

Now say Mr. Wile E. Coyote is trying to find some of his old friends to help him finally
catch that old roadrunner. Being now tech savvy, rather than calling his favorite company
Acme, he decides to see whether any other companies offer Web services that will let him find
the telephone numbers for his friends. He decides to tap into the IBM UBR to see what he can
locate:

function outputBusiness($bizInfo) {
print "Name: ".$bizInfo->name->_."\n";
print "Business Key: ".$bizInfo->businessKey."\n";
if (isset($bizInfo->description)) {

print "Desc: ".$bizInfo->description->_."\n";
}

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 769

6331_c19_final.qxd 2/16/06 4:24 PM Page 769

/* Output serviceInfo information only if one serviceInfo element is present */
if (isset($bizInfo->serviceInfos->serviceInfo) &&

! is_array($bizInfo->serviceInfos->serviceInfo)) {
print "Service Name: ".$bizInfo->serviceInfos->serviceInfo->name->_."\n";
print "Service Key: ".$bizInfo->serviceInfos->serviceInfo->serviceKey."\n";

}
print "\n";

}

The outputBusiness() function outputs some pertinent information from a businessInfo
response message. This example is using WSDL and not performing any class mappings. All
complex types are returned as stdClass objects. Most of this you are already familiar with
from Chapter 18, which covered SOAP. I will point out in this function the output for the
serviceInfo information. Based on the data from the test registry, only a few of the returned
records contained serviceInfo. To shorten the code, it outputs serviceInfo for a businessInfo
only as long as one and only one serviceInfo element is present in the response. From the
records returned, they have either one or zero serviceInfo elements, but this is something
you should be aware of if looking to model your code after this example. For example:

try {
$bizList = $sClient->find_business(array("generic"=>"2.0", "name"=>"Acme%",

"maxRows"=>5,
"findQualifiers"=>"sortByNameAsc,sortByDateAsc"));

if ($bizInfos = $bizList->businessInfos) {
if (isset($bizInfos->businessInfo)) {

if (is_array($bizInfos->businessInfo)) {
foreach($bizInfos->businessInfo AS $bizInfo) {

outputBusiness($bizInfo);
}

} else {
outputBusiness($bizInfos->businessInfo);

}
} else {

print "No Records Found";
}

}
} catch (SoapFault $e) {

var_dump($e);
}

As you can see, there is not much to this code. The main block simply calls the
find_business() method. The arguments being passed are what are important here. The
first argument, generic, comes from the UDDI 2.0 API. This argument is used for every API
call and indicates the UDDI version to which it is conforming. In this case, 2.0 is the value
used throughout the examples. The maxRows argument indicates the maximum number of
records to retrieve. This argument is optional and, when omitted, will return all of the
matching records.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)770

6331_c19_final.qxd 2/16/06 4:24 PM Page 770

The name argument is the name of the business being searched for. You probably notice
the % at the end of the name. This acts as a wildcard, just like when used in SQL. Based on the
value Acme%, all records whose businessEntity name begins with Acme will be returned in the
response message. This search is also being performed using case-insensitive matching, as
you can see by the findQualifiers. The reason for this is that a case-insensitive search is the
default type of search and is not being overridden by the qualifiers being passed in. When the
response message is returned, the records will be ordered based on the businessEntity name,
in ascending order, and further sorted based on the last updated date and time in ascending
order. This is not because of the order the qualifiers were specified but because of the rules,
which are included in the descriptions of the qualifiers in Table 19-9, of how the qualifiers
passed to the method are handled.

Our dear friend Wile executes the code and gets the following output:

Name: Acme Business
Business Key: 0cb8b470-52c4-11da-98fc-0002a58b4eaf
Service Name: Acme Open Service
Service Key: 639d6ce0-52c4-11da-90ff-0002a58b4eaf

This is where it is sometimes hard to be from the instant gratification generation. Either
because of the slowness of the test registry or because of the amount of data being returned
in the response (or possibly both), it takes a little bit of time to get the results. When they do
finally appear, a quick check of the results shows there is an Acme Web service for Acme Busi-
ness . . . eureka! The Acme Business company with a businessKey of 0cb8b470-52c4-11da-➥

98fc-0002a58b4eaf has an Acme telephone directory Web service with a serviceKey of
639d6ce0-52c4-11da-90ff-0002a58b4eaf. Using this serviceKey, Wile can now get the needed
information on how to access the Web service:

function outputTemplate($bindingTemplate) {
if (isset($bindingTemplate->description)) {

print "Desc: ".$bindingTemplate->description->_."\n";
}
if (isset($bindingTemplate->accessPoint)) {

print "Access Point: ".$bindingTemplate->accessPoint->_."\n";
print "Access Point Type: ".$bindingTemplate->accessPoint->URLType."\n";

} else {
print "Hosting Redirector Binding Key: ".

$bindingTemplate->hostingRedirector->bindingKey."\n";
}
if (isset($bindingTemplate->tModelInstanceDetails)&&

isset($bindingTemplate->tModelInstanceDetails->tModelInstanceInfo)) {
$modelDetails = $bindingTemplate->tModelInstanceDetails;
print "tModel Key: ".$modelDetails->tModelInstanceInfo->tModelKey."\n";

}
print "\n";

}

This function works in the same manner as the previous output function. In this case,
a bindingTemplate is passed in, and the select data is output. This includes any description it
may have, a tModelKey if present (which can be used to look up the tModel information using

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 771

6331_c19_final.qxd 2/16/06 4:24 PM Page 771

the get_tModelDetail() method), and the information from either an accessPoint or a
hostingRedirector. If you recall from the bindingTemplate structure, it must have one, but
not both, of these structures. For example:

try {
$serviceDetail = $sClient->get_serviceDetail(array("generic"=>"2.0",

"serviceKey"=>"639d6ce0-52c4-11da-90ff-0002a58b4eaf"));
if (isset($serviceDetail->businessService)) {

$bizService = $serviceDetail->businessService;
if (isset($bizService->bindingTemplates)) {

if (isset($bizService->bindingTemplates->bindingTemplate)) {
if (is_array($bizService->bindingTemplates->bindingTemplate)) {

$bindingTemplates = $bizService->bindingTemplates;
foreach ($bindingTemplates->bindingTemplate AS $bindingTemplate) {

outputTemplate($bindingTemplate);
}

} else {
outputTemplate($bizService->bindingTemplates->bindingTemplate);

}
} else {

print "No bindingTemplate elements found\n";
}

} else {
print "bindingTemplates element not found\n";

}
}

} catch (SoapFault $e) {
var_dump($e);

}

Again, the bulk of the work takes place in the first call. The get_serviceDetail() method
retrieves the service information for the Web service identified by the previous example. The
generic argument is required to be passed, and because you are using UDDI 2.0, you supply
the value 2.0. The only other argument you need is the serviceKey of 639d6ce0-52c4-11da-➥

90ff-0002a58b4eaf, which was obtained from the previous example using the find_business()
method.

Upon execution of the code, Wile finally has all the information he needs to access the
Web service and make his calls (the following results have been modified because of the length
of URL present in the results):

Access Point: http://localhost:38080/axis/EchoService1.jws
Access Point Type: other

Based on this information, he now knows that the Web service is located at the URL
shown for the value of Access Point in the previous results.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)772

6331_c19_final.qxd 2/16/06 4:24 PM Page 772

■Note This Web service is not physically accessible. The test registry is for testing purposes only, and much
of the data you will find there does not point to any publicly accessible, or even real for that matter, service.

Publishing to the Registry
The easiest way to publish information is using SOAP with a WSDL. Just as was done in the
“Performing Inquiries” section, retrieve a copy of the publishing WSDL from http://uddi.org/
wsdl/publish_v2.wsdl. Using this local copy, add the following fragment just before the clos-
ing definitions element:

<service name="PublishSoap">
<port name="PublishSoap" binding="tns:PublishSoap">

<soap:address location="https://udditest.sap.com/uddi/api/publish/ " />
</port>

</service>

Using this new local publish_v2.wsdl file, instantiate the client:

$sPublish = new SoapClient('publish_v2.wsdl');

■Note To execute any of the remaining code in this example, you need to use your credentials from the
IBM UDDI registration. If you have not yet registered, you can do so at http://udditest.sap.com.

Authenticating with the Registry
The first step you need to take once you have instantiated your client is to authenticate. This
is critical because without a valid authInfo structure, you will unable to perform any publish-
ing operations against the registry. You can handle authentication simply by calling the
get_authToken() method and passing in your userID and cred, which is your password in this
case. Like all the methods that have been called using UDDI, the generic parameter must also
be supplied. For example:

/* UserID and Password */
$userID = <userID for registry>;
$cred = <password for registry>;

try {
$authToken = $sPublish->get_authToken(array("generic"=>"2.0", "userID"=>$userID,

"cred"=>$cred));
$authInfo = $authToken->authInfo;

} catch (SoapFault $e) {
var_dump($e);

}

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 773

6331_c19_final.qxd 2/16/06 4:24 PM Page 773

Unless you encountered an error here, the variable $authInfo now contains your authen-
tication information, which is a UUID, that is needed for the other publisher functionality. The
rest of the example will use this variable.

Although an authToken (identified by the authInfo) eventually will expire, a hard logoff,
destroying the authToken, is often a good idea. You do this using the discard_authToken()
method. This is a safe method to call even if the authToken has expired because it will still
return a success message. For example:

try {
$response = $sPublish->discard_authToken(array("generic"=>"2.0",

"authInfo"=>$authInfo));
} catch (SoapFault $e) {

var_dump($e);
}

Creating an Entity
Now that you have the logon/logoff basics behind you, let’s create the first entry in the registry.
The fictitious company Acme XML will be created. You never know when Wile might need
Acme’s help in this area. For example:

try {
/* Create the businessEntity structure */
$businessEntity = array("businessKey"=>"",

"name"=>'Acme XML',
"description"=>"Acme's XML wing");

/* Save the businessEntity structure */
$bizDetail = $sPublish->save_business(array("generic"=>"2.0",

"authInfo"=>$authInfo,
"businessEntity"=>$businessEntity));

var_dump($bizDetail);

} catch (SoapFault $e) {
var_dump($e);

}

In this example, you create a simple businessEntity structure. The businessKey is set to
empty. This indicates to the registry that the businessEntity being passed in is new and that
a new record and businessKey are to be created. A name is required, and the value Acme XML
is used. An optional description (Acme's XML Wing) is also supplied for the structure. For now,
only the initial entity information is to be saved, and this is done by calling the save_business()
method.

This method not only serves to create new entities but also updates them when a valid
businessKey is supplied. Because it takes a complete businessEntity structure, you must be
careful when performing updates this way. If you are updating an entity record that contains
services and accidentally forget to include all the service information, the registry service
thinks you meant to remove the service information and will delete it. Once you see how to
add service information, you can address this issue. Returning to the entity creation, upon

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)774

6331_c19_final.qxd 2/16/06 4:24 PM Page 774

execution of this code, a businessDetail message is returned. Calling var_dump() on this
returned data outputs the following:

object(stdClass)#2 (3) {
["businessEntity"]=>
object(stdClass)#3 (6) {
["discoveryURLs"]=>
object(stdClass)#4 (1) {
["discoveryURL"]=>
object(stdClass)#5 (2) {
["_"]=>
string(89) "http://udditest.sap.com/uddi/discovery/businessEntity/e1a5c990-

6e3d-11da-c5d9-0002a58b4eaf "
["useType"]=>
string(14) "businessEntity"

}
}
["name"]=>
object(stdClass)#6 (2) {
["_"]=>
string(8) "Acme XML"
["lang"]=>
string(2) "en"

}
["description"]=>
object(stdClass)#7 (2) {
["_"]=>
string(20) "Acme's XML wing"
["lang"]=>
string(2) "en"

}
["businessKey"]=>
string(36) "e1a5c990-6e3d-11da-c5d9-0002a58b4eaf"
["operator"]=>
string(25) "uddi:udditest.sap.com"
["authorizedName"]=>
string(10) "95f36a40-6da5-11da-c273-0002a58b4eaf"

}
["generic"]=>
string(3) "2.0"
["operator"]=>
string(25) "uddi:udditest.sap.com"

}

As you can see, a businessKey of e1a5c990-6e3d-11da-c5d9-0002a58b4eaf has been
assigned to this new record. The registry has also automatically created the following
discoveryURL, which is wrapped across two lines here:

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 775

6331_c19_final.qxd 2/16/06 4:24 PM Page 775

http://udditest.sap.com/uddi/discovery/businessEntity/e1a5c990-6e3d-11da-c5d9-
0002a58b4eaf

Navigating to this URL in a browser returns an XML document of the businessDetail
record.

■Caution The keys you see in these examples are used only for demonstration purposes. They are likely
to be different throughout this chapter because the same data is consistently deleted and re-created by
myself while I write the examples.

Creating a Service
The next step you might want to take is setting up the first service for the entity. You can accom-
plish this using the save_service() method. It works in a similar manner to the save_business()
method except this method takes a businessService structure. For example:

try {
/* Create the businessService structure */
$businessService = array("name"=>"Test Web Service",

"description"=>"Acme XML's First Web Service",
"businessKey"=>"e1a5c990-6e3d-11da-c5d9-0002a58b4eaf",
"serviceKey"=>"");

/* Save the businessEntity structure */
$svcDetail = $sPublish->save_service(array("generic"=>"2.0",

"authInfo"=>$authInfo,
"businessService"=>$businessService));

var_dump($svcDetail);

} catch (SoapFault $e) {
var_dump($e);

}

The businessService being created consists of just a name, Test Web Service, and
a description, as shown previously. The businessKey is required here. The businessService
must provide the key so it is properly linked to the businessEntity. The key—in this case
e1a5c990-6e3d-11da-c5d9-0002a58b4eaf—comes from the businessDetail response from
the previous example when the entity was created. Because this is a new service, the supplied
serviceKey must be empty.

Upon calling the save_service() method with all of the required data and assuming
a SoapFault is not thrown, a serviceDetail message is returned containing the information,
including the assigned serviceKey, for this new service. Rather than wading through the infor-
mation from a var_dump(), navigate to the discoveryURL created when the entity was created.
The entire entity record as an XML document, including the newly added service, is returned.
It should look similar to the following, although the following output has been modified for
presentation:

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)776

6331_c19_final.qxd 2/16/06 4:24 PM Page 776

<?xml version="1.0" encoding="UTF-8" ?>
<businessEntity xmlns="urn:uddi-org:api_v3"

businessKey="uddi:e1a5c990-6e3d-11da-c5d9-0002a58b4eaf">
<discoveryURLs>

<discoveryURL useType="businessEntity">
http://udditest.sap.com/uddi/discovery/businessEntity/e1a5c990-6e3d-11da-

c5d9-0002a58b4eaf
</discoveryURL>

</discoveryURLs>
<name xml:lang="en">Acme XML</name>
<description xml:lang="en">Acme's XML wing</description>
<businessServices>

<businessService serviceKey="uddi:e31278f0-6e3d-11da-a644-0002a58b4eaf"
businessKey="uddi:e1a5c990-6e3d-11da-c5d9-0002a58b4eaf">

<name xml:lang="en">Test Web Service</name>
<description xml:lang="en">Acme XML's First Web Service</description>

</businessService>
</businessServices>

</businessEntity>

Creating a Binding
The last piece to complete the entity record is creating a binding for the new service, identified
by a serviceKey of e31278f0-6e3d-11da-a644-0002a58b4eaf. For this nonexistent service, I will
use the location http://www.example.com/acmexml as the accessPoint. Here’s the code:

try {
/* Create the tModelInstanceDetail structure */
$tModelInstanceDetails = array("tModelInstanceInfo"=>

array("tModelKey"=>"UUID:68DE9E80-AD09-469D-8A37-088422BFBC36"));

/* Create the bindingTemplate structure */
$bindingTemplate = array("description"=>"Acme XML's Web Service",

"accessPoint"=>array("_"=>"http://www.example.com/acmexml","URLType"=>"http"),
"tModelInstanceDetails"=>$tModelInstanceDetails,
"serviceKey"=>"e31278f0-6e3d-11da-a644-0002a58b4eaf",
"bindingKey"=>"");

/* Save the bindingTemplate structure */
$bindDetl = $sPublish->save_binding(array("generic"=>"2.0",

"authInfo"=>$authInfo,
"bindingTemplate"=>$bindingTemplate));

var_dump($bindDetl);

} catch (SoapFault $e) {
var_dump($e);

}

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 777

6331_c19_final.qxd 2/16/06 4:24 PM Page 777

This is an HTTP service, so HTTP’s tModel is used, identified by a tModelKey of
UUID:68DE9E80-AD09-469D-8A37-088422BFBC36. Once the tModelInstanceDetails structure has
been set up, which is required to save the bindingTemplate, the bindingTemplate structure
itself is established. It is given the description (Acme XML's Web service), and the accessPoint
and tModelInstanceDetails are established. The required serviceKey of e31278f0-6e3d-➥

11da-a644-0002a58b4eaf comes from the businessService previously created. This is used to
link the binding to the service when the binding is saved. Finally, the save_binding() method
is called, passing in the structure you built in $bindingTemplate. If you navigate to the
discoveryURL, you will now see the businessEntity record that also contains the following
fragment:

<bindingTemplates>
<bindingTemplate bindingKey="e4782370-6e3d-11da-954b-0002a58b4eaf"

serviceKey="e31278f0-6e3d-11da-a644-0002a58b4eaf">
<description xml:lang="en">Acme XML's Web Service</description>
<accessPoint URLType="http">http://www.example.com/acmexml</accessPoint>
<tModelInstanceDetails>

<tModelInstanceInfo tModelKey=" uddi:uddi.org:transport:http"/>
</tModelInstanceDetails>

</bindingTemplate>
</bindingTemplates>

Creating a tModel
This chapter did not cover how to create a tModel. It is not complicated to do, because it follows
the same pattern as you saw when saving other structures. Calling the save_tModel() method
with the appropriate parameters and structures is all you need to do. Using the tModelKey from
the tModelDetail response, you can then easily reference the tModel from your data. In most
cases, however, you will use precreated tModels when needed. For example, when saving the
binding in the previous example, you used the tModel for HTTP. tModels already defined for
use include the following:

UDDI registry tModels: Represents UDDI programming interfaces. You can find the docu-
mentation at http://uddi.org/taxonomies/UDDI_Registry_tModels.htm.

UDDI other core tModels: Various tModels defining technical definitions. You can find the
documentation at http://uddi.org/taxonomies/UDDI_CoreOther_tModels.htm.

Replication tModels: Represents the programming interface for replication between UDDI
instances. You can find the documentation at http://uddi.org/taxonomies/
UDDI_Replication_tModels.htm.

Taxonomy tModels: Represents categorization schemes, such as taxonomies, identifier
systems, and relationships. You can find the documentation at http://uddi.org/
taxonomies/UDDI_Taxonomy_tModels.htm.

Updating Data
As I mentioned before, updating data is the same as adding new data to the registry. The same
method calls as you saw demonstrated in the “Publishing to the Registry” section are used.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)778

6331_c19_final.qxd 2/16/06 4:24 PM Page 778

The only difference is that the value of the key for the specific structure is supplied rather than
passed as an empty value. The one thing you need to watch out for is ensuring that the struc-
ture being updated contains all substructure information as well. Take, for example, a change
in the business name.

Suppose you wanted to change the name of the businessEntity from Acme XML to
Acme XML, Inc. Imagine what would happen if you made the following calls:

/* Modify the businessEntity structure */
$businessEntity = array("businessKey"=>" e1a5c990-6e3d-11da-c5d9-0002a58b4eaf",

"name"=>'Acme XML Inc.',
"description"=>"Acme's XML wing");

/* Save the businessEntity structure */
$bizDetail = $sPublish->save_business(array("generic"=>"2.0",

"authInfo"=>$authInfo,
"businessEntity"=>$businessEntity));

If this were actually executed, all the previous service information that was added would
be lost. This is probably not something you want to do. The question is then how to perform
updates without losing existing data. For example:

try {
/* Connect to the inquiry service */
$sClient = new SoapClient('inquire_v2.wsdl');
/* Retrieve the businessDetail record for the entity */
$bizDetail = $sClient->get_businessDetail(array("generic"=>"2.0",

"businessKey"=>" e1a5c990-6e3d-11da-c5d9-0002a58b4eaf"));

/* Get the businessEntity from the response */
$businessEntity = $bizDetail->businessEntity;

/* Change the name of the businessEntity */
$businessEntity->name->_ = 'Acme XML Inc.';

/* Save the updated businessEntity using the publisher service */
$bizDetail = $sPublish->save_business(array("generic"=>"2.0",

"authInfo"=>$authInfo,
"businessEntity"=>$businessEntity));

} catch (SoapFault $e) {
var_dump($e);

}

As you can see, this is actually quite simple. Using a combination of functions from the
inquiry service, the current businessEntity record is retrieved. Modifications are then made
to this structure and saved to the registry using the publisher service. You can use this tech-
nique to update each UDDI structure.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI) 779

6331_c19_final.qxd 2/16/06 4:24 PM Page 779

Deleting Data
You have already seen one way to delete data. Not including data when updating a structure
causes the missing data to be removed from the registry. Unless doing some major updates,
this is not a safe method of performing a delete. It becomes quite easy to accidentally make
a mistake. A more controlled way to delete information is to use the delete_xxx() methods.
These methods take keys for arguments, so you can safely delete specific structures. For
example, if the businessEntity had a bindingTemplate with a bindingKey and value of
e4782370-6e3d-11da-954b-0002a58b4eaf, to safely delete this binding, you would execute
the following code:

$response = $sPublish->delete_binding(array("generic"=>"2.0", "authInfo"=>$authInfo,
"bindingKey"=>" e4782370-6e3d-11da-954b-

0002a58b4eaf"));

Assuming no SoapFault was thrown from this method, the binding would be successfully
removed. You can handle the remaining structures in the same way, using their specific delete
methods, so I won’t demonstrate any further examples.

Conclusion
The goal of UDDI was to provide a universal registry, the UBR, where businesses could register
their Web services and where those searching for Web services could locate them. In a sense,
the UBR is similar to a specialized search engine. UDDI goes a bit beyond that because not
only can Web services be located but also it provides the technical information about how
they are to be consumed. Whether this will ever come to realization is another matter. UDDI
in the public sense never gained much momentum, and data is sparse. Supposedly on private
networks, either intranets or extranets, UDDI has found its place. Companies and the busi-
nesses they have relationships with are able to publish and locate the services they need in
order to work together. Personally I cannot comment on this.

This chapter showed how simple working with UDDI is, especially by means of the PHP
SOAP extension. Being this simple, it is almost worth understanding how UDDI works and how
to interface with it because for all you know, one day it may move more mainstream. I haven’t
covered every aspect of UDDI, but I have covered the most important portions you need to
understand and work with when interfacing with a registry. Using what you have learned in this
chapter, it should not be difficult to understand other concepts presented in the UDDI specifi-
cation. UDDI is the last of the prominent Web service technologies covered in this book.

The next chapter provides an overview of the Web service extensions found in the PEAR
repository that you can use to work with specific services.

CHAPTER 19 ■ UNIVERSAL DESCRIPTION, DISCOVERY, AND INTEGRATION (UDDI)780

6331_c19_final.qxd 2/16/06 4:24 PM Page 780

PEAR and Web Services

By now you should understand how to implement and access Web services using technolo-
gies such as REST and SOAP. Through examples, you have seen how to use these technologies
to interface with some real-world Web services. This chapter will cover some of the PEAR
packages that have already been written to access other specific Web services found on the
Internet. By the end of this chapter, you may not completely understand how to use every
Web service package in the PEAR repository, but you should have at least an idea of what each
one does.

As mentioned in Chapter 13, PEAR (http://pear.php.net/) is a centralized location for
open source libraries, known as packages, that developers can leverage within their applica-
tions. Not only does PEAR contain a number of XML packages, but it also includes a few
packages specifically written for Web services. You can find additional information about
PEAR and how to install packages in Chapter 13.

■Caution When using many of the PEAR packages in a system with E_STRICT enabled in
error_reporting, be prepared for an abundant amount of “deprecated” messages. You can ignore
these messages, which stem from packages using syntax compatible with that of PHP 4.

Currently, 16 PEAR packages are designed specifically for Web services. In PHP 4, where
XML support was slim, the packages filled a great need. With the advances made in XML sup-
port in PHP 5, you will have little need to use the majority of them, unless your Web site is
hosted on a server that does not include the vast XML support of PHP 5. I will present about
half of the existing packages in this chapter and provide examples for a few of them. In most
cases, using SimpleXML alone to access a service will be enough to understand the package.
In addition, only a couple of the Web service packages have reached a release state; the rest
have little to no development currently taking place. The choice to use any of these packages
is completely up to you, but in the majority of cases you simply will not need them.

Using Services_Amazon
In Chapter 17, I showed you how to access some of the functionality using REST that Amazon
exposes via its Web services. As you may have noticed, the Amazon E-Commerce Service
(ECS) contains a good amount of functionality for interfacing with Amazon. Rather than

781

C H A P T E R 2 0

■ ■ ■

6331_c20_final.qxd 2/16/06 4:20 PM Page 781

having to manually build the URLs yourself, you can use the Services_Amazon package, which
allows you to call the ECS operations as object methods. Along with this, the package also pro-
vides caching capabilities.

■Note Accessing the Amazon Web services requires an access key ID, which you can obtain from
http://www.amazon.com/gp/aws/registration/registration-form.html.

After installing the package, you will have access to both the Services_Amazon class, which
is used to access the ECS 3.0 API, and the Services_AmazonECS4 class, which is used to access
the ECS 4.0 API. The examples in this section will use the Services_AmazonECS4 class. Even
though Amazon does not have plans to eliminate the ECS 3.0 API in the near future, the ECS
4.0 API is more extensible and thus is the preferred API for any new development. Once you
have included the correct file, you can instantiate the object:

require_once 'Services/AmazonECS4.php';

The constructor takes the required access key ID you received when you registered, as
well as an optional associate ID. If you are a registered associate, by passing your associate ID
you will ensure that any purchase made, if using such functionality, will be credited to your
account. For example:

$accesskey = '<insert your Access Key ID>';

/* If not using an associate ID, you should either set this variable to NULL
or not pass it to the constructor */

$associd = '<insert your Asscoiate ID>';

$amazon = new Services_AmazonECS4($accesskey, $associd);

A nice feature of this class is the ability to set the locale. As you probably recall from
Chapter 17 (specifically Table 17-8), the URL for the Web service depends upon your locale.
Using the setLocale() method, you do not need to remember the URL to which you should
be connecting. The method takes any of the two-letter codes from Table 17-8, which consist
of US, UK, DE, JP, FR, and CA. By default, Amazon US is the service Services_AmazonECS4 will
connect to, but you can easily change this to Amazon CA by calling the following:

$amazon->setLocale('CA');

Any interaction with the Web service from this point in the chapter will be interfacing
with http://webservices.amazon.ca/onca/xml?Service=AWSECommerceService.

The names of the methods are the same as the names of the operations defined in the
API. I have not included the complete list here, but you can find it in the Amazon Web services
documentation. You can’t really get around reading the documentation, because most of the
parameters for the methods are passed in an array where the parameter name is the key for
the value. The following example performs the same item search as in Chapter 17. Table 17-9
showed the list of options that can be passed, though Operation and SearchIndex should not

CHAPTER 20 ■ PEAR AND WEB SERVICES782

6331_c20_final.qxd 2/16/06 4:20 PM Page 782

be passed as options since Operation is dictated by the method being called and SearchIndex
is passed as the first argument to the ItemSearch method.

<?php
require_once 'Services/AmazonECS4.php';

/* Your Amazon access key */
$accesskey = '<insert your Access Key ID>';

/* Create the object without an associate ID */
$amazon = new Services_AmazonECS4($accesskey);

$options = array();
$options['Keywords'] = 'linksys';

/* array()Services_AmazonECS4::ItemSearch(string SearchIndex, [array() $options]) */
$result = $amazon->ItemSearch('Electronics', $options);

var_dump($result);
?>

The response is returned from the method as an array. The following is an abbreviated
version of the output. Only one item is shown, although the method did return ten items. This
output is equivalent to that shown in Listing 17-8.

array(4) {
["Request"]=>
array(2) {
["IsValid"]=>
string(4) "True"
["ItemSearchRequest"]=>
array(2) {
["Keywords"]=>
string(7) "linksys"
["SearchIndex"]=>
string(11) "Electronics"

}
}
["TotalResults"]=>
string(3) "488"
["TotalPages"]=>
string(2) "49"
["Item"]=>
array(10) {
[0]=>
array(3) {
["ASIN"]=>
string(10) "B00007KDVI"

CHAPTER 20 ■ PEAR AND WEB SERVICES 783

6331_c20_final.qxd 2/16/06 4:20 PM Page 783

["DetailPageURL"]=>
string(290) "http://www.amazon.com/exec/obidos/redirect?tag=ws%26link_code=

xm2%26camp=2025%26creative=165953%26path=http://www.amazon.com/gp/redirect.html
%253fASIN=B00007KDVI%2526tag=ws%2526lcode=xm2%2526cID=2025%2526ccmID=165953%2526
location=/o/ASIN/B00007KDVI%25253FSubscriptionId=0MWT9W26N2NFGGJZ33R2"

["ItemAttributes"]=>
array(3) {
["Manufacturer"]=>
string(7) "Linksys"
["ProductGroup"]=>
string(2) "CE"
["Title"]=>
string(32) "Linksys WRT54G Wireless-G Router"

}
}
/* Additional nine items omitted */

}
}

The following example demonstrates how to use the shopping cart. It performs similar
functionality as shown in Chapter 17. This code creates a new cart, and using CartId and HMAC
(which is the security token needed to access and modify the newly created cart returned from
the Web service), it locates the CartItemId for this newly added item and updates it to have a
quantity of 6.

<?php
require_once 'Services/AmazonECS4.php';

/* Your Amazon access key */
$accesskey = '<insert your Access Key ID>';

/* Create the object without an associate ID */
$amazon = new Services_AmazonECS4($accesskey);

/* Create a new cart, adding one item */
$items = array(array('ASIN'=>'1590596331', 'Quantity'=>1));
$result = $amazon->CartCreate($items);

/* Retrieve the CartId and HMAC from the results */
$cartid = $result["CartId"];
$hmac = $result["HMAC"];

/* Find the CartItemId for the item just added to the cart */
$cart_item_id = NULL;
foreach ($result['CartItems'] AS $key=>$value) {

var_dump($key);

CHAPTER 20 ■ PEAR AND WEB SERVICES784

6331_c20_final.qxd 2/16/06 4:20 PM Page 784

if ($key == 'CartItem' && $value['ASIN'] == '1590596331') {
$cart_item_id = $value['CartItemId'];

}
}

/* If CartItemId is found, then modify the quantity to 6 */
if (! is_null($cart_item_id)) {

$items = array(array('CartItemId'=>$cart_item_id, 'Quantity'=>6));
$result = $amazon->CartModify($cartid, $hmac, $items);

}

var_dump($result);

$purchase_url = $result['PurchaseURL'];

/* Send user to this URL to make purchase */
print $purchase_url;
?>

Other than the results being in array format, the output should be similar to the output
shown in Chapter 17. Although this has only been a short introduction to the Services_Amazon
package, it should give you an idea of how to use the rest of the functionality provided by
Services_Amazon. Other than using a predefined class, using Services_Amazon is no different
from performing it all yourself using only an XML-based extension such as SimpleXML.

Using Services_Delicious
Services_Delicious provides access to the del.icio.us Web service (http://del.icio.us/),
which offers the capability to use online bookmarks that you can access from anywhere you
have Internet access. You can then share these bookmarks with others in the community.
Using tags, you can categorize the bookmarks, allowing them to be easily searched using key-
words. Because it is currently in beta status, this package can be installed using the following
command:

pear install Services_Delicious-beta

■Note This package is currently missing a few important method parameters for some of the del.icio.us
API calls. Therefore, I will provide only a brief description and example of this package. You can find addi-
tional information for this package at http://pear.php.net/package/Services_Delicious.

Accessing del.icio.us and using this package requires a valid login, which you can obtain
at http://del.icio.us/register. The following is a short example of how to create a
Services_Delicious object, pass the user ID and password to the constructor, and return
the 25 most recent posts with the tag php:

CHAPTER 20 ■ PEAR AND WEB SERVICES 785

6331_c20_final.qxd 2/16/06 4:20 PM Page 785

<?php
require_once 'Services/Delicious.php';

$userid = '<your del.icio.us userid>';
$password = '<your del.icio.us password>';

$svcDelicious = new Services_Delicious($userid, $password);

$posts = $svcDelicious->getRecentPosts('php', 25);
var_dump($posts);
?>

Using Services_Ebay
The Services_Ebay package was developed to create a simple interface for integrating appli-
cations with eBay. The current version of this package is 0.12.0-alpha and is based upon
eBay’s Legacy XML API. As of June 1, 2006, eBay will be dropping support for the legacy
schema in favor of the New XML API that was released in early 2004. You can find additional
information about this at http://developer.ebay.com/migration. Unless this package is
updated to support the New XML API, you should refrain from developing any new applica-
tions using this package.

■Caution Because of the discontinuation of eBay’s Legacy XML API on June 1, 2006, which this package
is currently based upon, you should perform any new development interfacing with eBay using REST, SOAP,
or some other library compatible with PHP 5 that provides access to the eBay Web services.

Using Services_Google
The Services_Google package is simply a wrapper around the SOAP extension and is used
to access the Google Web APIs (http://www.google.com/apis/reference.html) for the search
engine, spelling suggestions, and cache. To access any of these services, you must obtain a
license key by registering for an account. A link to the registration page is available from the
previously mentioned URL. Because this package is a wrapper for SOAP, both PHP 5 and the
SOAP extension are prerequisites for installing and using this package. Having met these con-
ditions, and because the package is currently in alpha status, you install it using the following:

pear install Services_Google-alpha

Once you have installed it, you add support for the package to a script by calling the fol-
lowing:

require_once "Services/Google.php";

CHAPTER 20 ■ PEAR AND WEB SERVICES786

6331_c20_final.qxd 2/16/06 4:20 PM Page 786

■Note Google limits you to 1,000 automated queries per day based upon your license key.

This package consists of a single class, Services_Google, that is instantiated by passing
your license key as the only argument to the constructor:

$google = new Services_Google($key);

Checking Spelling
You can perform a spell check by calling the spellingSuggestion() method. This method
takes a string containing the phrase to be checked as its only parameter, and it simply returns
a string containing the suggested spelling for the supplied phrase. For example, the following
example performs a spell check on the phrase PHP xnl, and it is followed by the resulting
phrase suggested by Google’s spell-checking engine:

<?php
require_once "Services/Google.php";

/* Google license key */
$key = '<your Google license key>';

/* Create instance, passing license key as argument */
$google = new Services_Google($key);

/* Output the resulting suggested spelling */
echo $google->spellingSuggestion('PHP xnl')."\n";
?>

PHP xml

Retrieving Cached Pages
You can retrieve cached pages from Google by calling the getCachedPage() method from an
instantiated Services_Google object. The object takes a single parameter, which is a string
containing the URL to retrieve the cached page for, and it returns a string containing the
cached page.

■Caution As of version 0.1.1 of this package, this method is incompatible with PHP 5.1 and does not
return any valid data.

CHAPTER 20 ■ PEAR AND WEB SERVICES 787

6331_c20_final.qxd 2/16/06 4:20 PM Page 787

Searching the Web
You can perform Web searches via a Web service just like using Google from a browser by call-
ing the search() method. Once you have an instantiated the Services_Google object, you can
use a number of options, listed in Table 20-1, to control various aspects of the search.

■Caution When running the alpha version 0.1.1 of this package with a Web search, you must always set
the limit option, and the start option has no bearing on the results returned.

Table 20-1. Query Options

Option Default Value Description

start 0 Zero-based index of the first desired result.

maxResults 10 Maximum number of results to return for the query. The maxi-
mum value per query is 10.

limit FALSE Although Google limits the maximum number of results for
a query, the Services_Google class uses this option to make
multiple requests as you move through the returned results,
retrieving up to a maximum number of records specified by this
option. It is currently mandatory that you use this option, or no
results will be returned.

filter TRUE Activates or deactivates automatic results filtering, which hides
similar results and results that all come from the same Web host.

restricts empty Restricts results to certain countries and/or topics. You can
find additional information about using this parameter at
http://www.google.ca/apis/reference.html#2_4.

safeSearch TRUE A Boolean used to filter adult content from the results.

language empty Restricts the search to documents within one or more lan-
guages. Refer to http://www.google.ca/apis/reference.
html#2_4 for additional information.

You set these options using the queryOptions property, which is in fact an array where the
keys consist of the options from Table 20-1. For example, using $google as the object, you can
limit the results to those that are in the French language by using the following convention:

$google->queryOptions['language'] = 'lang_fr';
$google->queryOptions['limit'] = 3; /* Set to make the search work */

Once you have set any and all options, the search() method is called, passing the query
string as the argument, as shown here. The query string can contain any type of query that is
valid to be used on the Google search page itself.

$google->search("PHP XML");

foreach($google as $key => $result) {
echo $result->title."\n";

}

CHAPTER 20 ■ PEAR AND WEB SERVICES788

6331_c20_final.qxd 2/16/06 4:20 PM Page 788

You can find additional information about writing advanced queries at http://
www.google.ca/apis/reference.html#2_2. The actual results when this is executed look
like the following:

PHPIndex : PHP, XML et XSLT
PHPIndex : PHP, XML et XSLT : point de situation
XML parsing avec PHP

Using Services_Technorati
Technorati (http://www.technorati.com/) is a search engine for locating information from
weblogs. Rather than a traditional search engine that searches the entire Internet, usually
without concern of the source of the content, searches performed using Technorati are limited
to content coming from weblogs. The Services_Technorati package is an interface for access-
ing their services.

■Note To access the Technorati Web service, you must register for an API key at http://
www.technorati.com/developers/signup.html.

Once you have installed the package, you must include the required file and instantiate
the class:

require_once 'Services/Technorati.php';
$key = '<your API key here>';

$technorati = new Services_Technorati($key);

The constructor for the class also accepts an optional Cache object from the Cache_Lite
package, but this is not required to utilize the class. An optional method for creating a
Services_Technorati object is using the factory() method. This method is meant to be called
statically and takes the API key, an optional Cache object, and an optional version number:

$technorati = Services_Technorati::factory($key);

I did not use this when the object was initially instantiated because it produces E_STRICT
messages when they are enabled on the server. The method, however, allows the package to
provide additional and extended behavior in the future, where the class used for the object is
based on the version number passed as an argument. Currently, no additional interfaces exist,
so you can ignore this for the time being.

This class supports a number of methods. Table 20-2 lists the stable ones. By stable, I do
not mean that those not listed are not implemented properly in the package but, rather, that
the functionality itself is either disabled or considered experimental by Technorati.

CHAPTER 20 ■ PEAR AND WEB SERVICES 789

6331_c20_final.qxd 2/16/06 4:20 PM Page 789

Table 20-2. Services_Technorati Methods

Method Prototype Description

cosmos array cosmos(string $url, Returns the blogs that link to a specific
[array $options = null]) URL.

search array search(string $query, Returns the blogs that contain a given
[array $options = null]) search string.

outbound array outbound(string $url, The outbound query lets you see what
[array $options = null]) blogs are linked to on a given blog,

including their associated information.

blogInfo array blogInfo(string $url) The bloginfo query provides information
about what blog, if any, is associated with
a given URL. It also returns additional
information such as cosmos stats or RSS
feeds.

getInfo array getInfo(string $username) The getinfo query tells you the informa-
tion that Technorati knows about a user.

keyInfo array keyInfo() The keyinfo query provides information
about the daily usage of an API key. Key
info queries do not count against a key’s
daily query limit, where a day is defined as
00:00–23:59 Pacific time.

topTags array topTags([array $options = The toptags query allows you to get a list of
null]) the most popular post-tags tracked by

Technorati.

blogPostTags array blogPostTags(string $url, The blogposttags query returns the top
[array $options = array()]) tags for a given blog URL.

The majority of these methods also can take a number of options. You can find the avail-
able options for the methods in the Technorati documentation at http://developers.
technorati.com/wiki/TechnoratiApi.

■Note Not every option has been implemented within the Services_Technorati class. Some are
marked as experimental or have been recently added and have yet to make their way into the package.

You pass options as an array where the keys are the names of the options for each value.
For example, the cosmos() method is able to accept the type, limit, start, current, claim, and
highlight options. To limit the number of results returned to five and add highlighted, linked
text, you initialize and pass the options in the following manner:

$options = array('limit'=>5, 'highlight'=>1);
$technorati->cosmos($url, $options);

The API is actually quite simple to use. The following example demonstrates how to call
each of the methods from Table 20-2 and calls var_dump() on each of the returned arrays:

CHAPTER 20 ■ PEAR AND WEB SERVICES790

6331_c20_final.qxd 2/16/06 4:20 PM Page 790

<?php
require_once 'Services/Technorati.php';

$key = '<your API key here>';

/* Instantiating object rather than static call to avoid E_STRICT message */
$technorati = new Services_Technorati($key);

/* Check the stats on our API Key usage */
$keyinfo = $technorati->keyInfo();
var_dump($keyinfo);

/* Set limit of results to a max of 2 */
$options = array('limit'=>2);

$cosmos = $technorati->cosmos('www.php.net', $options);
var_dump($cosmos);

$search = $technorati->search('PHP 5 XML', $options);
var_dump($search);

$outbound = $technorati->outbound('www.planet-php.org');
var_dump($outbound);

$blogInfo = $technorati->blogInfo('www.planet-php.org');
var_dump($blogInfo);

$topTags = $technorati->topTags($options);
var_dump($topTags);

$options = array('limit'=>3);
$blogPostTags = $technorati->blogPostTags('http://blog.bitflux.ch/', $options);
var_dump($blogPostTags);
?>

Because of the amount of information this example outputs, I will show only a couple of
the results here. The following is the result from calling var_dump() on the array returned from
calling the blogInfo() method:

array(2) {
["version"]=>
string(3) "1.0"
["document"]=>
array(1) {
["result"]=>
array(4) {
["url"]=>
string(25) "http://www.planet-php.org"

CHAPTER 20 ■ PEAR AND WEB SERVICES 791

6331_c20_final.qxd 2/16/06 4:20 PM Page 791

["weblog"]=>
array(11) {
["name"]=>
string(10) "Planet PHP"
["url"]=>
string(25) "http://www.planet-php.org"
["rssurl"]=>
string(30) "http://www.planet-php.org/rss/"
["atomurl"]=>
string(31) "http://www.planet-php.org/atom/"
["inboundblogs"]=>
string(2) "16"
["inboundlinks"]=>
string(2) "17"
["lastupdate"]=>
string(23) "2005-06-16 11:05:04 GMT"
["rank"]=>
string(6) "153696"
["lat"]=>
string(1) "0"
["lon"]=>
string(1) "0"
["lang"]=>
string(2) "18"

}
["inboundblogs"]=>
string(2) "16"
["inboundlinks"]=>
string(2) "17"

}
}

}

As you can see, this output provides some basic information about the weblog (including
the link), provides links to RSS and Atom feeds, and summarizes the number of inbound and
outbound links.

The blogPostTags() method returns the tags based on the most popular topics referenced
on the weblog. In this case, I chose Christian Stocker’s blog (http://blog.bitflux.ch); Stocker
is one of the PHP XML developers. To reduce the length of the output, only the top three tags
were selected, by means of the limit option. The following is the result of the corresponding
call to var_dump() on the resulting array:

array(2) {
["version"]=>
string(3) "1.0"
["document"]=>

CHAPTER 20 ■ PEAR AND WEB SERVICES792

6331_c20_final.qxd 2/16/06 4:20 PM Page 792

array(2) {
["result"]=>
array(1) {
["querycount"]=>
string(1) "3"

}
["item"]=>
array(3) {
[0]=>
array(2) {
["tag"]=>
string(3) "PHP"
["posts"]=>
string(2) "65"

}
[1]=>
array(2) {
["tag"]=>
string(5) "Trips"
["posts"]=>
string(2) "48"

}
[2]=>
array(2) {
["tag"]=>
string(11) "Switzerland"
["posts"]=>
string(2) "45"

}
}

}
}

Based on these results, you can clearly see that the most referenced items on his weblog
pertain to PHP, trips, and Switzerland, in that order.

Using Services_Weather
The Services_Weather package is one of the more interesting Web services packages. It provides
a simple interface to gather weather information from a number of sources. These sources
include Weather.com (http://www.weather.com/services/xmloap.html), GlobalWeather (http://
www.capescience.com/webservices/globalweather/index.shtml), the National Weather Service
(http://weather.noaa.gov/weather/metar.shtml), and EJSE (http://www.ejse.com/
weather_data.htm).

Although this package provides a good amount of functionality, I will demonstrate only a
simple example using Weather.com. It is the only service that does not require the PEAR SOAP

CHAPTER 20 ■ PEAR AND WEB SERVICES 793

6331_c20_final.qxd 2/16/06 4:20 PM Page 793

package and does not require the DB package. Registration, however, is required to access this
service. The first step you should take before proceeding, assuming you would like to try the
code, is to register at http://www.weather.com/services/xmloap.html and obtain a partner ID
and license key. Once you have these, you can begin using the package, as follows:

require_once "Services/Weather.php";
$partner_id = '<your partner id>';
$license_key = '<your license key>';

$weather = Services_Weather::service("WeatherDotCom");
$weather->setAccountData($partner_id, $license_key);

The services() method is a factory method used to create the object with the correct class
type to connect to the correct weather service. In this case, WeatherDotCom is passed, resulting in
a Services_Weather_Weatherdotcom object being returned. Other available parameter values are
Globalweather, Metar, and Ejse. Because this is connecting to Weather.com, the account data
must be set prior to making any remote calls.

The next step is to retrieve the ID for the location from which to retrieve the specific
weather information. You do this by using the searchLocation() method. It takes a string that
identifies the location. For example, to specify the city of Portland in the state of Maine, you
would make the following call:

$location_id = $weather->searchLocation("Portland, Maine");

This location ID, $location_id, then retrieves the information about the location, the cur-
rent weather, and even the upcoming forecast.

Retrieving Location Information
The following shows how to retrieve location information:

$locInfo = $weather->getLocation($location_id);
var_dump($locInfo);

array(8) {
["cache"]=>
string(4) "MISS"
["name"]=>
string(12) "Portland, ME"
["time"]=>
string(8) "15:46 PM"
["latitude"]=>
string(5) "43.65"
["longitude"]=>
string(6) "-70.31"
["sunrise"]=>
string(7) "6:39 AM"
["sunset"]=>
string(8) "16:13 PM"

CHAPTER 20 ■ PEAR AND WEB SERVICES794

6331_c20_final.qxd 2/16/06 4:20 PM Page 794

["timezone"]=>
string(2) "-5"

}

Retrieving Current Weather Conditions
The following shows how to retrieve the current weather conditions:

$weatherInfo = $weather->getWeather($location_id);
var_dump($weatherInfo);

array(19) {
["cache"]=>
string(4) "MISS"
["update"]=>
string(17) "11/18/05 19:51 PM"
["updateRaw"]=>
string(20) "11/18/05 2:51 PM EST"
["station"]=>
string(12) "Portland, ME"
["temperature"]=>
float(37)
["feltTemperature"]=>
float(33)
["condition"]=>
string(4) "Fair"
["conditionIcon"]=>
string(2) "34"
["pressure"]=>
float(30.19)
["pressureTrend"]=>
string(6) "steady"
["wind"]=>
float(5)
["windGust"]=>
float(0)
["windDegrees"]=>
string(1) "0"
["windDirection"]=>
string(3) "VAR"
["humidity"]=>
string(2) "33"
["visibility"]=>
float(10)
["uvIndex"]=>
string(1) "0"

CHAPTER 20 ■ PEAR AND WEB SERVICES 795

6331_c20_final.qxd 2/16/06 4:20 PM Page 795

["uvText"]=>
string(3) "Low"
["dewPoint"]=>
float(10)

}

Retrieving the Forecast
The following shows how to retrieve the forecast:

$forecastInfo = $weather->getForecast($location_id);
var_dump($forecastInfo);

I have altered the following results for brevity by omitting the actual weather conditions:

array(4) {
["cache"]=>
string(4) "MISS"
["update"]=>
string(17) "11/18/05 20:05 PM"
["updateRaw"]=>
string(20) "11/18/05 3:05 PM EST"
["days"]=>
array(2) {
[0]=>
array(6) {
["temperatureHigh"]=>
float(0)
["temperatureLow"]=>
float(23)
["sunrise"]=>
string(7) "6:39 AM"
["sunset"]=>
string(8) "16:13 PM"
["day"]=>
array(8) {
/* Weather conditions */

}
["night"]=>
array(8) {
/* Weather conditions */

}
}
[1]=>
array(6) {
["temperatureHigh"]=>
float(40)

CHAPTER 20 ■ PEAR AND WEB SERVICES796

6331_c20_final.qxd 2/16/06 4:20 PM Page 796

["temperatureLow"]=>
float(30)
["sunrise"]=>
string(7) "6:41 AM"
["sunset"]=>
string(8) "16:12 PM"
["day"]=>
array(8) {
/* Weather conditions */

}
["night"]=>
array(8) {
/* Weather conditions */

}
}

}
}

The example shown here is specific to the Services_Weather_Weatherdotcom class. The
methods differ based upon the weather data provider you are accessing. You can find addi-
tional information about this package and the other classes at http://pear.php.net/package/
Services_Weather.

Using Services_Webservice
The Services_Webservice package is one of the more interesting Web services packages,
although it is not ready to be rolled out in a production environment. It requires you to be
running PHP 5.1+, and both the DOM and SOAP extensions are available. Services_Webservice
offers the capability to quickly and easily create a Web service exposing the functionality of a
class’s methods simply by having the class extend the Services_Webservice class. Doing so
also provides automatic WSDL creation as well as Discovery of Web Services (DISCO), which
provides a means to discover and retrieve the WSDL description of services on remote
machines.

For example, the following is the skeleton code:

function people_search($id, $lastName=NULL) {
/* Functionality Here */

}

class Person {
public $id;
public $firstName;
public $lastName;

CHAPTER 20 ■ PEAR AND WEB SERVICES 797

6331_c20_final.qxd 2/16/06 4:20 PM Page 797

/* Constructor to build the Person object based on ID */
public function __construct($id) {

/* Functionality Here */
}

}

class People {
/* Method to search for people based on last name returns an array */
public function search($lastName){

/* functionality here */
}

/* Return a Person object based on ID */
public function getPerson($id) {

/* Functionality here */
}

}

The main class is People, which searches for IDs and retrieves specific Person records.
This is easily converted into a Web service using the Services_Webservice class. For this to
work properly, the first step is to document the code using Docblock. If you are unfamiliar
with documenting PHP code using this syntax, you can find additional information at the
phpDocumentor project (http://www.phpdoc.org/index.php). This documentation is required
in order for your service to be able to automatically generate a WSDL document and provide
an information page for your Web service.

The last change to make is to have the main class that will be used for the Web service
(in this case the People class) extend the Services_Webservice class. The following code
demonstrates these changes as well as fully implements the previous skeleton code:

<?php
include_once('Services/Webservice.php');

/* Generic function to provide search and record retrieval functionality */
function people_search($id, $lastName=NULL) {

$arPeople = array(1=>array('lastName'=>'Doe', 'firstName'=>'Jane'),
2=>array('lastName'=>'Doe', 'firstName'=>'John'),
3=>array('lastName'=>'Smith', 'firstName'=>'Joe'));

if (is_null($id)) {
if (! empty($lastName)) {

$retval = array();
foreach ($arPeople AS $key=>$value) {

if (stripos($value['lastName'], $lastName) !== false) {
$retval[] = $key;

}
}
return $retval;

}

CHAPTER 20 ■ PEAR AND WEB SERVICES798

6331_c20_final.qxd 2/16/06 4:20 PM Page 798

} else if (is_numeric($id) && array_key_exists($id, $arPeople)) {
return $arPeople[$id];

}
return NULL;

}

/* A specific record for a Person */
class Person
{

public function __construct($id)
{

$retval = people_search($id);
if (! is_null($retval)) {

$this->id = $id;
$this->firstName = $retval['firstName'];
$this->lastName = $retval['lastName'];

} else {
throw new Exception("Not Found");

}
}

/**
* @var int
*/
public $id;
/**
* @var string
*/
public $firstName;
/**
* @var string
*/
public $lastName;

}

/* The class being exposed for the Web service */
class People extends Services_Webservice
{

/**
* Says "Locate IDS by Last Name"
*
* @param string
* @return int[]
*/
public function search($lastName)

CHAPTER 20 ■ PEAR AND WEB SERVICES 799

6331_c20_final.qxd 2/16/06 4:20 PM Page 799

{
$retval = people_search(NULL, $lastName);
if (! is_null($retval)) {

return $retval;
}
return new SoapFault("404", "No people found");

}

/**
* Says "Get a Person object based on ID"
*
* @param int
* @return Person
*/
public function getPerson($id)
{

try {
$person = new Person($id);
return new SoapVar($person, SOAP_ENC_OBJECT, 'Person', 'urn:People');

} catch (Exception $e) {
return new SoapFault("404", "Invalid ID");

}
}

}

$People = new People('People',
'Find People',
array('uri'=>'People', 'encoding'=>SOAP_ENCODED,'soap_version'=>SOAP_1_2));

$People->handle();
?>

The last two calls in this example instantiate the new People object and prepare it to
accept incoming SOAP requests. The first argument defines the namespace. In this case,
People is used. The second argument is the description of the service. This value displays the
description of the service on the informational page. The last parameter is a list of options to
send to the SoapServer when it is created. Because this package uses the SOAP extension, this
argument is the same argument as documented for the SoapServer __construct() method in
the SOAP extension.

Once the People object, $People, has been instantiated, a simple call to the handle()
method is executed. This method appropriately handles the incoming request based on the
parameters sent in. For example, a SOAP request is handled by the SoapServer to execute
functionality. When accessed directly from the Web, such as from a browser, passing no argu-
ments returns the informational page, which provides documentation, to the browser. For
instance, suppose this Web service were located at http://www.example.org/PeopleSearch.
Navigating to that URL with a browser would produce the output shown in Figure 20-1.

CHAPTER 20 ■ PEAR AND WEB SERVICES800

6331_c20_final.qxd 2/16/06 4:20 PM Page 800

Passing the parameter DISCO, as in http://www.example.org/PeopleSearch?DISCO, returns
discovery information for the service, like the following:

<?xml version="1.0" encoding="utf-8"?>
<discovery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/disco/">

<contractRef ref="http://www.example.org/PeopleSearch?wsdl"
docRef="http://www.example.org/PeopleSearch"
xmlns="http://schemas.xmlsoap.org/disco/scl/">

<soap address="http://www.example.org/PeopleSearch"
xmlns:q1="People" binding="q1:People"
xmlns="http://schemas.xmlsoap.org/disco/scl/"/>

</contractRef>
</discovery>

Passing the parameter WSDL in the URL returns the WSDL document for the service, which a
client can use to access the service. The following code demonstrates how to access this service,
using the SOAP extension’s SoapClient while also using the WSDL document from the service:

<?php
try {

$sClient = new SoapClient('http://www.example.org/PeopleSearch?WSDL');
$response = $sClient->search('smi');
foreach ($response AS $key=>$value) {

$person = $sClient->getPerson($value);
var_dump($person);

}
} catch (SoapFault $e) {

var_dump($e);
}
?>

CHAPTER 20 ■ PEAR AND WEB SERVICES 801

Figure 20-1. People Web service information page

6331_c20_final.qxd 2/16/06 4:20 PM Page 801

object(stdClass)#2 (3) {
["id"]=>
int(3)
["firstName"]=>
string(3) "Joe"
["lastName"]=>
string(5) "Smith"

}

You might now see why this package is interesting. With little coding and absolutely no
knowledge of Web services, SOAP, or WSDL, you can quickly create a Web service.

■Caution Again, at this time, Services_Webservice is at version 0.4.0 and is in an alpha state.
Be cautious if considering using this package on a production server.

Using Services_Yahoo
Services_Yahoo provides an object-oriented approach to interfacing with the Yahoo Web Search
service (http://developer.yahoo.net/search/index.html) and Yahoo Maps. The Yahoo Web
Search service includes audio, content analysis, image, local search, news, video, and Web serv-
ices. It depends upon the HTTP_Request package, and although the Yahoo Web Search service
requires the SimpleXML extension, working with Yahoo Maps requires DOM. The package cur-
rently consists of a number of classes, although the classes pertaining to searching share a good
amount of functionality and can be created through a common factory method.

■Note At this time, the Services_Yahoo package is at version 0.1.1 and is in an alpha state. To install this
package, you should use the command pear install Services_Yahoo-alpha. I won’t demonstrate
Yahoo Maps in this section, because currently neither documentation nor examples exist for using the class.
I have mentioned it, however, because by the time of this book’s publication, you might be able to find either
updated documentation or examples for this package.

Using Services_Yahoo_Search
The Services_Yahoo_Search class is simply a central point used to create the appropriate class
based on the type of search to be performed. To use the search capabilities of this package,
first load the class:

require_once "Services/Yahoo/Search.php";

CHAPTER 20 ■ PEAR AND WEB SERVICES802

6331_c20_final.qxd 2/16/06 4:20 PM Page 802

Once included in a script, only a single function named factory() can be called. This
function takes a single argument, which is a string identifying the type of search to be exe-
cuted. The value can be any of the following:

web: Searches the Internet for Web pages. You can find additional information at http://
developer.yahoo.net/search/web/V1/webSearch.html.

image: Searches the Internet for images. You can find additional information at http://
developer.yahoo.net/search/image/V1/imageSearch.html.

news: Searches the Internet for news stories. You can find additional information at
http://developer.yahoo.net/search/news/V1/newsSearch.html.

video: Searches the Internet for video clips. You can find additional information at
http://developer.yahoo.net/search/video/V1/videoSearch.html.

local: Searches the Internet for a business near a specified location. You can find addi-
tional information at http://developer.yahoo.net/search/local/V1/localSearch.html.
(Note: Currently only version 1 of the API is implemented in PEAR.)

In many examples, you may see the factory() method called statically. This is one of the
areas where doing so will result in a PHP Strict Standards message when running with the
E_STRICT notices enabled.

■Note You can find additional documentation for the searches that can be performed with this class at
http://developer.yahoo.net/search/index.html as well as in Chapter 17, where you can find
examples accessing some of the Yahoo Web services using REST.

Classes returned from this function are based upon a common class and thus share a
good number of methods, shown in Table 20-3. However, the classes returned for web, news,
and local add a couple of specific methods for those particular searches.

Table 20-3. Public Search Methods

Method Prototype Description

setAdultOK void setAdultOK() Allows adult content to be returned in
results. This is not used in all searches.

setAppID void setAppID(string $id) Sets the application ID, which is an ID
that has been registered with Yahoo.
The default value when not used is
PEAR_Services_Yahoo.

setFormat void setFormat(string $format) This method sets the format parameter
for a search. This method does not
pertain to all search types, and the
acceptable values depend upon the
type of search being performed. You
can find additional information within
the Yahoo documentation for the
specific search type.

Continued

CHAPTER 20 ■ PEAR AND WEB SERVICES 803

6331_c20_final.qxd 2/16/06 4:20 PM Page 803

Table 20-3. Public Search Methods

Method Prototype Description

setQuery void setQuery(string $query) Sets the query for the search.

setResultNumber void setResultNumber(int $count) Sets the number of results to return
from a search. The use of this method
depends upon the type of search being
performed.

setStart void setStart(int $start) Sets the starting position for the first
result returned. The use of this method
depends upon the type of search being
performed.

setType void setType(string $type) Sets the kind of search to be per-
formed. This method does not pertain
to all search types, and the acceptable
values depend upon the type of search
being performed. You can find addi-
tional information within the Yahoo
documentation for the specific search
type.

submit (object)Services_Yahoo_Response Submits the search and returns a
submit() Services_Yahoo_Response object used

to handle the results.

The following example performs a Web search using the query php5 xml. This is the same
query performed in Chapter 17 in Listing 17-5:

<?php
require_once "Services/Yahoo/Search.php";

try {
/* Instantiating object rather than static call to avoid E_STRICT message */
$service_yahoo = new Services_Yahoo_Search();
$search = $service_yahoo->factory("web");

$search->setQuery("php5 xml");
$search->setResultNumber(5);

$results = $search->submit();

if ($results->getTotalResultsReturned() > 0) {
foreach ($results AS $info) {

print 'Title: '.$info['Title']."\n";
print 'Url: '.$info['Url']."\n";
print 'Mod Date: '.date ('M d Y', (int)$info['ModificationDate'])."\n\n";

}
}

CHAPTER 20 ■ PEAR AND WEB SERVICES804

6331_c20_final.qxd 2/16/06 4:20 PM Page 804

} catch (Services_Yahoo_Exception $e) {
echo "Error: " . $e->getMessage() . "\n";
foreach ($e->getErrors() as $error) {

echo " " . $error . "\n";
}

}
?>

If you compare this code to that used in Chapter 17 with the code written using the
Services_Yahoo_Search class, the biggest difference is that you do not need to manually create
the query. Working with the results is not too much different. Rather than using SimpleXML to
navigate the results, like in Chapter 17, you can use a mixture of a Services_Yahoo_Search_
Response object and arrays.

I don’t know about you, but in my opinion working with SimpleXML natively to parse a
response from Yahoo is much simpler and cleaner than working with these classes; however,
you may find that not having to deal with manually creating a query outweighs this. Your deci-
sion should be based on personal preference. In any event, the resulting output looks the same
as that from Chapter 17, although the individual results will vary since the scripts were not run
on the same day:

Title: Zend Technologies - PHP 5 In Depth - XML in PHP 5 - What's New?
Url: http://www.zend.com/php5/articles/php5-xmlphp.php
Mod Date: Nov 02 2005

Title: XML with PHP5 - encoding
Url: http://www.topxml.com/forum/m_1470/printable.htm
Mod Date: Oct 18 2005

Title: Zend Technologies - PHP 5 In Depth - SimpleXML
Url: http://www.zend.com/php5/articles/php5-simplexml.php
Mod Date: Nov 13 2005

Title: ONLamp.com: Using PHP 5's SimpleXML
Url: http://www.onlamp.com/pub/a/php/2004/01/15/simplexml.html
Mod Date: Nov 13 2005

Title: PHPBuilder.com - [Resolved] PHP5 xml_set_default_handler
Url: http://www.phpbuilder.com/board/showthread.php?s=&threadid=10272891
Mod Date: Oct 29 2005

Using Services_Yahoo_ContentAnalysis
The Services_Yahoo_ContentAnalysis class is also a central point to create the correct
object needed to perform spelling suggestions and term extractions. You can include this
class like so:

require_once "Services/Yahoo/ContentAnalysis.php";

CHAPTER 20 ■ PEAR AND WEB SERVICES 805

6331_c20_final.qxd 2/16/06 4:20 PM Page 805

Just like with the Services_Yahoo_Search class, you use the factory method to create the
appropriate class for the Web service. The acceptable values that can be passed in this case are
as follows:

termExtraction: Accesses the Spelling Suggestion service to get a suggested spelling
correction for a given term. You can find additional information at http://developer.
yahoo.net/search/web/V1/spellingSuggestion.html.

spellingSuggestion: Accesses the Term Extraction Web service to get a list of significant
words or phrases extracted from a larger content. You can find additional information at
http://developer.yahoo.net/search/content/V1/termExtraction.html.

The number of methods for either of these is quite small. They both have setAppID(),
setQuery(), and submit() methods, which are the same as those shown in Table 20-3. When
performing a term extraction, you also have a setContext() method that does not return a
value and simply takes a single string argument from which to extract terms. Because neither
of these is a complex service, the following simple example demonstrates the Spelling Sugges-
tion Web service along with its result:

<?php
require_once "Services/Yahoo/ContentAnalysis.php";

try {
/* Instantiating object rather than static call to avoid E_STRICT message */
$service_yahoo = new Services_Yahoo_ContentAnalysis();
$search = $service_yahoo->factory("spellingSuggestion");

$search->setQuery("PHP 5 XnL");

$results = $search->submit();

foreach ($results as $result) {
echo $result . "\n";

}
} catch (Services_Yahoo_Exception $e) {

echo "Error: " . $e->getMessage() . "\n";
foreach ($e->getErrors() as $error) {

echo " " . $error . "\n";
}

}
?>

PHP 5 Xml

Using SOAP
The PEAR SOAP package provides all the functionality to create and consume Web services
based on SOAP. You can install the package, just like other PEAR packages you have encoun-
tered so far, using the PEAR installer. It is currently in beta status but can be used if the PHP 5

CHAPTER 20 ■ PEAR AND WEB SERVICES806

6331_c20_final.qxd 2/16/06 4:20 PM Page 806

SOAP extension is unavailable to you. You can find additional information about this package
and its usage in Chapter 18, which covers SOAP and WSDL in detail.

Using UDDI
As explained in detail in Chapter 19, UDDI provides the means to publish and maintain infor-
mation about Web services in a centralized location called the UBR. This registry can then be
searched by anyone needing a specific service from which even details of how the service is to
be consumed can be retrieved. The UDDI package provides a means of querying a registry in
an easy fashion, although the returned data is in XML format, which means you still need to
parse it by some means. Although it also provides mechanisms for publishing data, using the
SOAP extension along with WSDL binding is a much easier method for accessing a registry.
Because of these limitations, I will provide just a short example of querying the UBR.

The first step, like all other PEAR packages, is to include the required file and instantiate
the object. The constructor takes two optional parameters. The first is the registry to use. It can
be a full URL, the value IBM (which is the default) to connect to the test registry, or Microsoft to
connect to Microsoft’s test registry. The second optional parameter is the version of UDDI to
use. Although the default version is 1, you are probably better off using version 2. For example:

require_once 'UDDI/UDDI.php';
$uddi = new UDDI('IBM', 2);

The following is the only demonstration that I will provide for this package; it queries the
registry for the business Acme XML that you created in Chapter 19. Once you see the data that
is returned, you will understand why using SOAP as shown in the previous chapter is actually
much easier than using the UDDI package.

<?php
require_once 'UDDI/UDDI.php';
$uddi = new UDDI('IBM', 2);

$params = array("generic"=>"2.0", "name"=>"Acme XML%",
"maxRows"=>5,
"findQualifiers"=>"sortByNameAsc,sortByDateAsc");

$result = $uddi->find_business($params);
var_dump($result);
?>

The call does not look much different from the one using SOAP. In fact, the find_business()
call made in Chapter 19 could have been cut and pasted here. All that would be different is the
name of the variable to match the one used when the UDDI class was instantiated. The output,
on the other hand, is much different, as shown here. You do not get a nicely nested structure.
Instead, the raw XML is returned, which means more work for you because it now needs to be
parsed.

CHAPTER 20 ■ PEAR AND WEB SERVICES 807

6331_c20_final.qxd 2/16/06 4:20 PM Page 807

HTTP/1.1 200 OK
Via: HTTP/1.1 www-3.ibm.com (IBM-PROXY-WTE)
Date: Fri, 18 Nov 2005 06:54:00 GMT
Server: IBM_HTTP_SERVER/1.3.28 Apache/1.3.28 (Unix)
Content-Length: 681
Content-Type: text/xml
Content-Language: en-US

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP:Body>
<businessList generic="2.0" xmlns="urn:uddi-org:api_v2"
operator="www.ibm.com/services/uddi" truncated="false">
<businessInfos>
<businessInfo businessKey="68676670-5163-11DA-8A45-000629DC0A53">
<name xml:lang="en">Acme XML Inc.</name>
<description xml:lang="en">Acme's XML wing</description>
<serviceInfos>
<serviceInfo serviceKey="914B4F30-517B-11DA-8A45-000629DC0A53"
businessKey="68676670-5163-11DA-8A45-000629DC0A53">
<name xml:lang="en">Test Web Service</name>
</serviceInfo>
</serviceInfos>
</businessInfo>
</businessInfos>
</businessList>
</SOAP:Body>
</SOAP:Envelope>

What’s worse is that not only do you get the raw XML, but you also get the entire response.
So because the XML needs to be parsed, you first need to remove the rest of the response infor-
mation before parsing can even take place. Therefore, even if you are one who despises working
with SOAP, it clearly is easier to work with and performs a much better job when interfacing
with a UDDI registry.

Using XML_RPC
The XML_RPC package from PEAR provides an object-oriented API for creating XML-RPC
clients and servers. It also provides the mechanisms for transporting the data between the
client and the server. The only requirement for using this package is that the xml extension in
PHP be installed. You install the package, just like other PEAR packages you have encountered
so far, using the PEAR installer. In many cases, this package may have already been installed
by default. Chapter 16 explained this package.

CHAPTER 20 ■ PEAR AND WEB SERVICES808

6331_c20_final.qxd 2/16/06 4:20 PM Page 808

Conclusion
The purpose of PEAR is to eliminate having to reinvent the wheel every time you need some
specific functionality. By using any of the packages, you have an instant solution to your prob-
lem. In the area of Web services, PEAR falls short of fulfilling this need when using PHP 5.
Systems running PHP 4 and those running PHP 5 without all of the new XML features can still
benefit from the use of these packages, though. Trying to build and manipulate XML docu-
ments, as well as implement or consume a Web service, is often difficult to do manually. A
system running PHP 5 with the new XML features, however, makes obsolete the need to use
PEAR for any Web services. You can access a service requiring REST in a number of ways, such
as using DOM or SimpleXML. SimpleXML provides one of the easiest interfaces for working
with REST-based services. The SOAP extension also provides an abundant amount of function-
ality, and when used with WSDL, it is actually pretty simple for you to interact with a service.

Web services implemented in REST are already simple to use. The hardest part is having
to build the query string, which means you need to know the API of the Web service being
accessed. In most cases when using PEAR, you still need to know the API as well. Of course,
the location of the service and the name of the method are already provided, but a majority of
the packages require you to know the possible parameters that can be passed and force you to
supply them as an associative array. The return data from PEAR also ends up as arrays. I don’t
know about you, but in my opinion reading XML data using SimpleXML is much easier than
dealing with multidimensional arrays.

If you look at services that require SOAP to access them, it is not that difficult to use the
SOAP extension, especially in the case of working with WSDL. Using the PEAR packages still
has the same issues as using REST, such as having to know the API and returning the data as
arrays. With SOAP and WSDL, you can work directly with objects, calling the Web service func-
tions as an object method and dealing with returned data as objects. Now don’t get me wrong;
PEAR does have its place, but Web services just aren’t one of them in PHP 5. In prior versions
of PHP, I might not have said this because XML had very little support, but times have
changed.

CHAPTER 20 ■ PEAR AND WEB SERVICES 809

6331_c20_final.qxd 2/16/06 4:20 PM Page 809

6331_c20_final.qxd 2/16/06 4:20 PM Page 810

Other XML Technologies
and Extensions

Throughout this book, you have seen the numerous XML-based extensions and technologies
that you can use with PHP. This does not mean you are limited to only those I have covered.
Using the extensions and techniques demonstrated in this book, you should be able to lever-
age virtually any XML technology you encounter. Originally this chapter was going to provide
only descriptions of other XML technologies you may run into, but during the course of my
writing, some new developments in PHP in relation to XML have come about and are what
I consider to be valuable information.

As of PHP 5.1.2, the XMLWriter extension, originally a PECL extension, has been included
in the core PHP distribution, making it available to a much wider audience. In addition, SDO,
particularly the SDO_XML_DAS portion of it, has been released into the PECL. Although not ready
for production use, it is possibly a technology to keep on your radar. This chapter will provide
more information about these two technologies than I had planned to include. In addition,
Ajax has started causing quite a stir in the developer community, so it is only natural that I
demonstrate this technology and its interaction with PHP. Lastly, I could never leave out the
Wireless Application Protocol (WAP). Mobile devices accessing the Internet seem to be mak-
ing a comeback, so this is another area you should understand.

Using XMLWriter
The XMLWriter extension provides a lightweight way to generate XML, streaming the output
directly to disk or memory. Rather than creating in-memory XML trees that can be navigated
and edited, XMLWriter creates serialized documents that do not necessarily live in memory
because the document can be streamed to a URI or even flushed from memory as portions of
the document are no longer needed.

811

C H A P T E R 2 1

■ ■ ■

6331_c21_final.qxd 2/16/06 4:18 PM Page 811

■Note The XMLWriter extension was included with the core PHP distribution and enabled by default in
PHP 5.1.2. By the time this decision was made, it was too late to dedicate a chapter in this book to the
extension. Though not an in-depth examination of this extension, this section has been expanded from
more than a summary of XMLWriter, and its API is documented in Appendix B. This is not to say that PECL
extensions do not deserve the same attention as those distributed with PHP. It is just that the audience is
much wider because those using hosting services are not always able to control the inclusion of extensions
from the PECL.

The XMLWriter extension is modeled upon the C# implementation of the XMLWriter and
XmlTextWriter classes and, like the other extensions you have read about in this book, is built
upon the libxml2 library. This means it follows the same rules as the other XML extensions
with respect to PHP stream usage and any error handling configured in the libxml extension.
It happens to also be one of the only XML-based extensions that provides both an object-
oriented interface and a procedural interface. Because the other extensions are object
oriented, the material presented here will be within the object-oriented context as well.
If you happen to prefer procedural functions, after reading about how to use XMLWriter,
make sure you read the section “Introducing the Procedural Interface.”

Compared to building XML using the DOM extension, XMLWriter uses fewer system
resources. The API is also simple and straightforward, which means it can create an XML
document faster, and with the simple API, writing code with it is much faster than writing
code using DOM. Of course, this is applies only when creating straightforward documents
and not requiring the use of XPath or XInclude to create the documents.

Another advantage of the extension is its handling of special XML characters. If you were
writing a Web service using REST and needed to return data coming from a database, you
could build the resulting XML using DOM or even manually build the XML response docu-
ment using strings. In both cases, you need to pay careful attention to the data that is going
into the document. To ensure no invalid characters are used in spots where they cannot be
used, such as for the ampersand (&), you need to use a function such as htmlspecialchars()
to make sure the data is encoded correctly. This is not the case with XMLWriter. XMLWriter
automatically handles these conversions for you, allowing the raw data to be directly passed
to its methods. Although not foolproof, the extension makes its best effort to ensure the XML
document you are creating is well-formed and conforms to the W3C XML and namespace
specifications.

Enabling the XMLWriter Extension
As of PHP 5.1.2, XMLWriter is included with the core PHP distribution and enabled by default.
Prior to this version, XMLWriter was available only through the PECL at http://pecl.php.net/
package/xmlwriter. I will explain both types of installation.

XMLWriter from PECL
PECL is similar to PEAR, explained in Chapter 13, except rather than a collection of software
and classes written in PHP, PECL is a collection of extensions to PHP written in C. These exten-
sions work in the same manner as those you already use when working in PHP. The only

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS812

6331_c21_final.qxd 2/16/06 4:18 PM Page 812

difference is that they are not included in the default distribution, so you must install them
separately.

Windows users can simply get precompiled binaries at http://pecl4win.php.net/
index.php for the current version they are running. You place the dll in the same location you
have placed the other PHP extension libraries based on your installation. The last step, which
is often overlooked, is to enable the extension in your php.ini file:

extension=php_xmlwriter.dll

Users running non-Windows environments have two methods to install the extension.
The first method is to use the PEAR/PECL installer. The installer used depends upon the ver-
sion of PEAR installed on your system. As of PEAR 1.4.0, PECL extensions are installed using
the pecl command rather than the pear command. Every option that you normally would
pass to pear, you pass to pecl:

/* Install with PEAR 1.4.0+ */
pecl install XMLWriter

/* Install with PEAR pre-1.4.0 */
pear install XMLWriter

In the event the installer did not work or you want to install it yourself, simply download
the package, extract it, build it using phpize, and add the extension to php.ini. You may also
need to make note of the location it gets installed to and set extension_dir appropriately in
php.ini.

XMLWriter in PHP Distribution
If you are running PHP 5.1.2, the XMLWriter extension is already included in the build and
enabled by default. If for some reason the source you are building from has it disabled, add
the following flag to your configure directives to include the extension in your build:

--enable-xmlwriter

■Note I will use the term writer throughout the following sections to refer to an XMLWriter object.

Initializing the Writer
To use the writer, you must first instantiate it and then set it up for the appropriate output.
Its constructor does not take any arguments, and upon instantiation, it is pretty much just
an empty shell until initialized:

$writer = new XMLWriter();

The method used for initialization depends upon how you want to output the data. To
use a file or URI, call the openUri() method. This method takes a single parameter, which is
the URL to which the data is sent:

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS 813

6331_c21_final.qxd 2/16/06 4:18 PM Page 813

$writer->openURI('somefile.xml');

If you want the data to remain in memory, thus making it available to be returned as a
string, you use the openMemory() method, which takes no parameters, to initialize the writer:

$writer->openMemory();

Both methods return TRUE on success and FALSE on failure when using the object-oriented
interface. These two functions are the only exception cases where the object-oriented inter-
face returns different values than the procedural functions. I will explain this further in the
“Introducing the Procedural Interface” section later in the chapter.

Creating the XML Document
Since this is the last chapter of the book, you should be comfortable with the different node
types, such as element nodes, attribute nodes, comment nodes, and PI nodes. XMLWriter is an
API that lets you create an XML document in almost the same manner that you would verbally
describe the construction. Before I elaborate on this, just refer to a few of the writer methods
in Table 21-1. You can find a complete list of XMLWriter methods, along with their prototypes,
in Appendix B.

Table 21-1. XMLWriter Methods

Method Description

startDocument Creates the XML declaration specifying the version at a minimum.

startElement Creates an element start tag.

writeAttribute Creates an entire attribute that includes a name and value.

writeElement Creates an entire element that includes a name and value. This method will
output the start and end tag for an element.

endElement Creates an element end tag for the currently open element.

endDocument Closes off the document. This method closes all open tags in the proper order.

flush Flushes the contents of the buffer to the URI or a string. The destination is
determined by the method used to initialize the writer.

If you look at the methods in Table 21-1 in the order they are listed, you might be able to
visualize a document being created. The sample code in Listing 21-1 demonstrates this point.
Other than two methods used for formatting (explained in the “Formatting the Document”
section), this listing creates an XML document using only the methods from Table 21-1 in the
exact order in which they appear.

Listing 21-1. Creating Your First Document

<?php
/* Create a new XMLWriter object, buffering output to memory for string access */
$writer = new XMLWriter();
$writer->openMemory();

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS814

6331_c21_final.qxd 2/16/06 4:18 PM Page 814

/* Set indenting using three spaces, so output is formatted */
$writer->setIndent(TRUE);
$writer->setIndentString(' ');

/* Create the XML document */
$writer->startDocument();
$writer->startElement('root');
$writer->writeAttribute('att1', 'first');
$writer->writeElement('child1', 'some "random" content & text');
$writer->endElement();
$writer->endDocument();

/* Retrieve the current contents of the buffer */
$output = $writer->flush();

print $output;
?>

<?xml version="1.0"?>
<root att1="first">

<child1>some "random" content & text</child1>
</root>

Although not tested within the example, each of the methods creating components of
the document returns a Boolean that indicates success or failure. A typical usage of the return
value is to test whether the component was successfully created. If the piece of the document
being written at the time results in invalid XML, the writer will not send it to the output.
Instead, it will silently fail, returning FALSE as the result of the method call. In all other cases,
the method will return TRUE, indicating the data was successfully written to the buffer.

Comparing the output from the example and the code used, located below the /* Create
the XML document */ comment, you should get an idea of what I meant by visualizing the doc-
ument being created. You can describe the resulting document as follows in respect to the
associated method used to create the different components:

1. Create the XML declaration: Call the startDocument() method.

2. Create the start tag for the root element: Call startElement(), passing in the element
name. The writer maintains the element context.

3. Create an attribute for the currently open element in context: Call writeAttribute(),
setting the attribute name and value.

4. Create a new child element named child1 with some content: The writer is still in the
context of the root element, so upon the call to writeElement(), the start tag for root
is closed, meaning the > character is added to the tag, the writer context changes to
the content of the root element, and a complete element named child1 with the con-
tent some "random" content & text is written.

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS 815

6331_c21_final.qxd 2/16/06 4:18 PM Page 815

5. Close the root element: The writer context is still the content of the root element, so
calling endElement() creates a closing root tag. The context now becomes that of the
XML document itself.

6. Complete the document: Call the endDocument() method. This method ensures that
the writer context is properly cleaned up. In the event the context is not the XML
document at this point, the writer will close any open tags starting at its current con-
text and moving up in the hierarchy of the document until the XML document context
is reached.

Dealing with Character Encoding
The example in Listing 21-1 demonstrates the automatic character encoding mentioned in
the introduction to the XMLWriter extension. When creating the element child1, the string
some "random" content & text is passed for the content. Immediately you should notice the
problem with this data. The ampersand character (&) must be escaped within XML, and in
most cases, the double quotes (") should be as well.

The usage of the ampersand character has to be one of the most common problems I see
people encounter when working with XML. Most often, when a developer encounters an issue
with an ampersand, it is either because they forget it is a special character or because the data
they are using to create the XML with is being dynamically generated and they do not even
realize the data needs additional handling.

Using XMLWriter, you no longer need to be concerned about this. Content being written
to the document is automatically encoded for you. This makes working with dynamic data,
such as that being retrieved from a database, simple. You would use the same data to write to
the document as you would to read and write from the database.

Formatting the Document
Two methods used in Listing 21-1 that I have yet to explain are setIndent() and
setIndentString(). Besides four other methods (two handle the writer initialization, which
you have seen, and two manipulate the buffer, which is demonstrated in Listing 21-1 and cov-
ered in detail in the “Handling the Buffer” section), the indenting methods are the only other
ones explicitly used to create the document. They are used for formatting. Like the DOM
formatOutput property from Chapter 6, the setIndent() method instructs the writer to add
line feeds and indentation at the appropriate places in the document.

The default formatting used when the document is created is none. Unless manually
added within the document, such as by calling $writer->text("\n");, no line feeds or inden-
tation is automatically added. You can toggle automatic formatting on and off by passing
a Boolean to the setIndent() method:

/* Turn on formatting */
$writer->setIndent(TRUE);

/* Turn off formatting */
$writer->setIndent(FALSE);

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS816

6331_c21_final.qxd 2/16/06 4:18 PM Page 816

What sets this formatting apart from that used in the DOM extension is that the writer
allows the formatting to be changed as the document is being created. This means you could
have a document where some parts are automatically formatted and some parts are not.

Although XMLWriter controls the insertion of line feeds, you have control over the string
used for the actual indents when indentation is enabled. By default, a single space is used for
indenting. You can change this by calling setIndentString(), passing in a string to be used
instead of the one currently in use:

/* Set indenting to use a tab instead of a space */
$writer->setIndentString("\t");

You can use this method at any time during the creation of the document to change the
indenting string as needed.

Handling the Buffer
You can send output from the writer to a URI or hold it in memory and retrieve it into strings.
You set this up during the initialization phase of the writer, explained in the “Initializing the
Writer” section. For example, Listing 21-1 is holding the output in memory. To retrieve the
contents, you must call the method flush(). This method performs dual functionality. When
working with memory, it returns a string containing the contents. When working with a URI,
it flushes any data that may be sitting in the buffer to the output.

When working with a buffer in memory, the flush() method is able to return a string in
one of two ways. The first way, which is also the default behavior, simply returns the contents
of the buffer to a string, clearing the content in the buffer. This is performed by the call
$writer->flush();. The next time flush() is called, only content added after the previous
$writer->flush(); call is returned.

One of the advantages of working with the writer is that you can keep memory usage to
a minimum, but sometimes you will want to leave the contents in the buffer after retrieval.
The flush() method accepts a parameter named empty, which is applicable only when work-
ing with the memory buffer, that can control what happens with the data in the buffer when
it is being retrieved. For example, passing the value FALSE simply returns the contents of the
buffer, leaving the buffer intact. Passing the value TRUE or omitting the option not only returns
the current contents but also clears the contents of the buffer. This means the next time the
method is called, only content added after the previous $writer->flush(); call is returned.
For example:

<?php
$writer = new XMLWriter();
$writer->openMemory();
$writer->setIndent(TRUE);
$writer->startDocument();
$writer->startElement('root');

/* output buffer contents */
echo 'Data: '.$writer->flush(FALSE)."\n\n";

$writer->writeElement('child1', 'content');

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS 817

6331_c21_final.qxd 2/16/06 4:18 PM Page 817

/* output buffer contents, and clear buffer */
echo 'Data: '.$writer->flush()."\n\n";
$writer->endElement();
$writer->endDocument();

/* output buffer contents, and clear buffer */
echo 'Data: '.$writer->flush()."\n";
?>

Data: <?xml version="1.0"?>
<root

Data: <?xml version="1.0"?>
<root>
<child1>content</child1>

Data: </root>

When working with a URI or PHP streams, you do not need to do much with the buffer.
The buffer simply holds data until it is ready to send it to the output channel. You can use the
flush() method to force whatever contents the buffer is holding to be sent to the output chan-
nel. The only time you usually need to do this is when you are done creating the document to
make sure all data has been written to the destination.

■Tip When working with URIs, the stream is not closed until the writer is destroyed. There is currently
no method that can be called to close the stream. You can use the unset() method to destroy the object,
assuming it is not referenced elsewhere, causing the stream to close.

Creating Namespaced Documents
Creating a document containing namespaces is similar to creating any other document. The
only components’ namespaces that affect documents are elements and attributes, and some
methods exist to handle these:

/* Methods for creating elements */
startElementNS(string prefix, string name, string namespaceURI)
writeElementNS(string prefix, string name, string namespaceURI, string content)

/* Methods for creating attributes */
startAttributeNS(string prefix, string name, string namespaceURI)
writeAttributeNS(string prefix, string name, string namespaceURI, string content)

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS818

6331_c21_final.qxd 2/16/06 4:18 PM Page 818

■Caution Creating documents with complex namespace usage may not produce the expected output.
Although the document will be well-formed, namespace declarations can be repeated throughout the final
document rather than using a namespace that would otherwise already be in scope. Certain issues may
be resolved in the libxml2 library by the time you read this.

Here’s the code:

<?php
$writer = new XMLWriter();
$writer->openMemory();
$writer->setIndent(TRUE);
$writer->startDocument();
$writer->startElement('root');

/* Create a namespaced Element */
$writer->startElementNS('ns1', 'child1', 'urn:ns1');
$writer->writeElementNS('ns2', 'child2', 'urn:ns2', 'child2 contents');
$writer->endDocument();

print $writer->flush();
?>

<?xml version="1.0"?>
<root>
<ns1:child1 xmlns:ns1="urn:ns1">
<ns2:child2 xmlns:ns12="urn:ns2">child2 contents</ns2:child2>
</ns1:child1>
</root>

Introducing the Procedural Interface
Not everyone is a fan of object-oriented programming. If you happen to be one of these
people, then you are in luck with XMLWriter. It was originally developed to run under PHP 4.3
and was designed with a procedural-style interface. This interface is still available under PHP 5.
Only two functions work a little differently than the corresponding methods, and these per-
tain to the initialization of the writer. Using procedural style, there is no such thing as the new
keyword. The writer is created and initialized by a single function call, like so:

/* Create procedural-style writer with memory buffer */
$writer = xmlwriter_open_memory();

/* Create procedural-style writer with uri */
$writer = xmlwriter_open_uri('somefile.xml');

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS 819

6331_c21_final.qxd 2/16/06 4:18 PM Page 819

Looking at these function names should give you an idea of what the rest of them look
like. Based on the object-oriented method name, simply append xmlwriter_ to the beginning
of the method, add an underscore (_) between a lowercase character and an uppercase char-
acter, and finally convert the uppercase character to lowercase. For example, following these
rules, you would write the method startElementNS() as xmlwriter_start_element_ns(). When
calling the function, the first parameter is always the writer, and the remaining parameters are
the same as those used by the method. The example in Listing 21-2 is the code from Listing 21-1
written using the procedural style, and it produces identical output.

Listing 21-2. XMLWriter Using Procedural Style

<?php
/* Create a new writer, buffering output to memory for string access */
$writer = xmlwriter_open_memory();

/* Set indenting using three spaces, so output is formatted */
xmlwriter_set_indent($writer, TRUE);
xmlwriter_set_indent_string($writer, ' ');

/* Create the XML document */
xmlwriter_start_document($writer);
xmlwriter_start_element($writer, 'root');
xmlwriter_write_attribute($writer, 'att1', 'first');
xmlwriter_write_element($writer, 'child1', 'some "random" content & text');
xmlwriter_end_element($writer);
xmlwriter_end_document($writer);

/* Retrieve the current contents of the buffer */
print xmlwriter_flush($writer);
?>

Using SDO XML Data Access Service
Service Data Objects (SDO) provide a means to access various data sources in a unified
manner. The SDO specification (http://www-128.ibm.com/developerworks/java/library/
j-commonj-sdowmt/) is a joint collaboration between IBM and BEA. Originally available only
for Java, the SDO package in PECL (http://pecl.php.net/package/sdo) brings SDO to the
PHP world. The package provides two data access services (DAS): SDO_DAS_Relational for
reading/writing SDO from/to relational data sources and SDO_DAS_XML for reading/writing
SDO as XML documents. Because XML is the data you are accessing, the following sections
deal strictly with the SDO_DAS_XML service.

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS820

6331_c21_final.qxd 2/16/06 4:18 PM Page 820

■Caution The SDO package is currently marked as experimental. It is possible that changes to the API
and/or behavior have been made since the time of this writing. For this reason, the following sections on
SDO and XML usage in PHP will cover how to use the extension using simplistic examples.

Installing SDO
Installing SDO is similar to installing XMLWriter from the PECL. You need to pay attention,
however, when editing the php.ini file. The package is split between modules requiring the
base SDO module, php_sdo, to be loaded and modules requiring the data service module,
php_sdo_xml, to be loaded. Those running Windows should grab the prebuilt binaries from
PECL4Win (http://pecl4win.php.net/index.php), place them in the directory containing
your extensions, and enable them in the php.ini file:

extension=php_sdo.dll
extension=php_sdo_das_xml.dll

On other platforms, you can use the PEAR/PECL installer with the package name SDO.
The version depends upon the current release of the package. At this time, it is in beta, so for
the following installations, you replace <version> with beta:

/* PEAR 1.4.0+ */
pecl install SDO-<version>

/* PEAR pre-1.4.0 */
pear install SDO-<version>

Once you’ve installed SDO, you must load the modules through the php.ini file:

extension=sdo.so
extension=sdo_das_xml.so

Working with XML
To work with SDO, it is required that the data be modeled. In simpler terms, you must define
the structure the data can take. When working with XML data, XML Schemas is the language
used to do this. As you recall from Chapter 3, I used an XML document containing course
information to validate against an XML Schema. The schema in Listing 21-3, referred to in
the examples as sdoschema.xsd, is a simplified version of the original schema from Chapter 3;
I will use this schema in this chapter’s examples to demonstrate SDO.

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS 821

6331_c21_final.qxd 2/16/06 4:18 PM Page 821

Listing 21-3. XML Schema (sdoschema.xsd) for the Course Document

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="courses">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="course" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="credits" type="xsd:decimal"/>
<xsd:element name="lastmodified" type="xsd:dateTime"/>

</xsd:sequence>
<xsd:attribute name="cid" type="xsd:ID"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

SDO does not require an existing XML document. Using only the schema, you can create
documents from scratch. Some of the API that is required to do this is currently in a state of
flux, so I will limit the discussion to reading and writing XML using the existing XML docu-
ment shown in Listing 21-4.

Listing 21-4. XML Course Document (courses.xml)

<?xml version="1.0" encoding="UTF-8"?>
<courses>

<course cid="c1">
<title>Basic Languages</title>
<description>Introduction to Languages</description>
<credits>1.5</credits>
<lastmodified>2004-09-01T11:13:01</lastmodified>

</course>
<course cid="c2">

<title>French I</title>
<description>Introduction to French</description>
<credits>3.0</credits>
<lastmodified>2005-06-01T14:21:37</lastmodified>

</course>
</courses>

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS822

6331_c21_final.qxd 2/16/06 4:18 PM Page 822

■Note SDO issues exceptions upon errors. You should use try/catch blocks when writing code with the
extension in order to properly handle errors.

To work with XML data, you must first load the schema and create an SDO_DAS_XML object:

$xmldas = SDO_DAS_XML::create("sdoschema.xsd");

Using the $xmldas object, you then load the course data from the courses.xml file into an
SDO_DAS_XML_Document, called $xmldo:

$xmldo = $xmldas->loadFromFile("courses.xml");

The next step in preparing to manipulate the XML is that you need to get a handle on the
document element, in the form of a data object:

$courses = $xmldo->getRootDataObject();

Reading XML Data
Navigating XML using SDO is similar to doing it using SimpleXML, except when using SDO,
both elements and attributes are accessed as object properties. SDO, however, does not seem
to be concerned with namespaces, whereas within SimpleXML, you must specify from which
namespace you want to retrieve elements and attributes. Each of these methods has its mer-
its, and which is better is a matter of personal opinion. You also need to take into account the
type of functionality you need to perform with the XML.

Getting back to reading XML data with SDO, the following example demonstrates how to
iterate through the course elements and print the content of the title element and the cid
attribute:

foreach ($courses->course AS $course) {
print "Title: ".$course->title."\n";
print "Course ID: ".$course->cid."\n\n";

}

Title: Basic Languages
Course ID: c1

Title: French I
Course ID: c2

Other than the cid attribute being accessed by a property from $course, you wouldn’t be
able to tell this code apart from SimpleXML. You can also access specific elements by offset:

print $courses->course[1]->title."\n";

This piece of code outputs the contents of the title element from the second course ele-
ment that is a child of the courses element so would result in the output French I.

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS 823

6331_c21_final.qxd 2/16/06 4:18 PM Page 823

Accessing an element or attribute not specified in the XML Schema for an element results
in much different behavior than that of SimpleXML. Within SimpleXML, trying to read an ele-
ment that does not exist simply returns an empty string. Doing the same in SDO causes an
exception to be thrown:

try {
print $courses->course[1]->notinschema."\n";

} catch (Exception $e) {
var_dump($e);

}

The structure of a course element, defined in the XML Schema, does not include an ele-
ment or attribute named notinschema. When accessed, SDO throws an exception that indicates
it is not found.

Writing XML Data
Modifying existing data is as easy as setting the value on a property; again, this is something
you are already familiar with from using SimpleXML. For example, you can change the title of
the second course element from French I to Intro to French simply by setting the value for
the title property for the specific course:

$courses->course[1]->title = 'Intro to French';

Creating new XML data is a bit different. Using the data object for the specific element for
which the new data should be created, the createDataObject() method is called, passing in
the type of object to create. The type of object when using SDO and XML is the name of the
element from the schema. For example, to create a new course element within the courses
element structure, you make the following call:

$course = $courses->createDataObject('course');

This creates a new data object, $course, that corresponds to the course element from
the schema in Listing 21-3. Calling this method also inserts a new empty course element
into the XML document that is loaded in memory.

Once you have created the new object, then you can add the data, just like if you were
modifying an existing element. One thing to note is that properties not set are not created
in the resulting XML. For example:

$course->cid = 'c3';
$course->title = 'French II';
$course->description = 'Intermediate French';
$course->credits = '3.0';

As you can see, all the elements specified in the schema for a course element have been
defined except for the lastmodified element. To see what the resulting XML document looks
like, you can save it to a file and output it using file_get_contents():

$xmldas->saveDocumentToFile($xmldo, 'courses.xml');

print file_get_contents('courses.xml');

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS824

6331_c21_final.qxd 2/16/06 4:18 PM Page 824

■Note You can send the output directly to a string using a couple of different SDO methods. The version
of the SDO package used for this example is an unpublished, still-in-development version. The functionality
is in the process of changing but the saveDocumentToFile() method is stable, so this is the only method
I will demonstrate here.

The saveDocumentToFile() method takes as parameters the initial SDO_DAS_XML_Document
object, $xmldo, and the file to save the XML document. The following shows what the resulting
document looks like (note that I have formatted this for readability by adding line feeds and
spaces):

<?xml version="1.0" encoding="UTF-8"?>
<courses xmlns="" xsi:type="courses"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<course cid="c1">

<title>Basic Languages</title>
<description>Introduction to Languages</description>
<credits>1.5</credits>
<lastmodified>2004-09-01T11:13:01</lastmodified>

</course>
<course cid="c2">

<title>Intro to French</title>
<description>Introduction to French</description>
<credits>3.0</credits>
<lastmodified>2005-06-01T14:21:37</lastmodified>

</course>
<course cid="c3">

<title>French II</title>
<description>Intermediate French</description>
<credits>3.0</credits>

</course>
</courses>

Summarizing SDO_XML_DAS
The goal of the project in PECL is to bring the SDO technology to PHP, providing a unified
means of accessing data. It is still in the development stage, so SDO_XML_DAS is currently in
a state of flux. As far as I can tell—purely through my own personal testing—SDO_XML_DAS
works in a similar fashion to SimpleXML. The only current differential is the ability to create
new data. For many, this may not be a necessary feature because the XML interoperability
in PHP allows you to read with the SimpleXML extension and to write XML using the DOM
extension.

A feature that would set SDO_XML_DAS apart, in my mind, would be if it were to respect and
enforce the XML Schema in regard to data typing as well as the overall schema of data. For
instance, in the section “Writing XML Data,” you were able to create a course element without
the required lastmodified element. As you probably recall from Chapter 3, the default value

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS 825

6331_c21_final.qxd 2/16/06 4:18 PM Page 825

for the minOccurs attribute is 1, so in order for the resulting XML document to be valid, the
lastmodified element is required. The same goes for data typing; because during my testing,
I was able to set a text value for the credits element, which is defined as an xsd:decimal type.

These are just a few of the features that would make this extension much more usable.
Again, this extension is still under development, so new features may already planned for the
extension. For now, the package is not ready to be used in a production environment but is
something you may want to keep your eye on in the future.

Introducing Asynchronous JavaScript Technology
and XML (Ajax)
I understand that Ajax is not really a PHP-centric XML technology and is more UI related than
anything else, so you may be wondering why it is mentioned in a PHP and XML book. Formerly
known as the acronym for Asynchronous JavaScript Technology and XML, Ajax has gained much
attention and popularity among developers and is something you might need to implement one
day with a PHP backend. For this reason, it may be worthwhile for you to at least understand the
basics and see an example of Ajax interfacing with PHP.

What Is Ajax?
In a typical Web environment, a user might fill out information contained in a form and then
submit the data to the server. The server processes this data and then might send an error page
if any data is invalid or might send a page indicating that everything was filled out correctly.
During this time, the user is sitting there idle waiting for the response. When it does return, the
entire page reloads with the new data. To get around this idle period (as you know, the Web is
a fast-paced environment, and users do not have long attention spans), some developers use
JavaScript to validate form elements immediately on the user side as they are filled out. This
works well as long as no data in the form needs to be validated against information located
where the server resides. For example, you cannot test whether a username is already in use
without having the server check its database for you. This is where Ajax comes in.

Ajax allows for asynchronous requests, which means that request and response handling
can take place in the background and be sent to a server while the user is still interacting with
the UI. The response from these requests can then update portions of the UI without inter-
rupting the user. This is handled through callbacks, which are registered functions that are
called based on events that may occur. In the scenario of entering form data, as a user moves
to the next field in the form, Ajax could be used to make a request to the server to validate the
data just entered in the form field. This does not interrupt the user from completing other
form entries. Once the response is received, an event is triggered that may execute some func-
tionality that causes the page to display some indication that the field is not valid. Again, this
all happens without the user being interrupted. When the user is finally finished with the
form, then they can submit the entire page to the server. Of course, on the server side, data
still needs to be validated again, but the chances of it being invalid are much slimmer. As a
user, when filling out forms on a Web site, are you more upset at having to wait for the next
page to load or more upset having to wait just to find out that the data you entered is invalid
for some of the fields? I know the latter usually gets under my skin.

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS826

6331_c21_final.qxd 2/16/06 4:18 PM Page 826

Working with Ajax
Implementing a solution using Ajax is similar to implementing a REST-based Web service,
explained in Chapter 17. The difference here is that the client is an object embedded in a Web
page manipulated using JavaScript. Based on some event within the page, such as an onclick
or onblur event, a URL is built with all the appropriate parameters, and then the request is
made to the server. All this happens without the user ever leaving the page. As far as the server
side goes, there is absolutely no difference when working with Ajax than the REST services you
saw in Chapter 17. The server parses the incoming request parameters, performs whatever
logic it needs to do, and then returns its response in XML format. The bottom line is that Ajax
is just a REST-based client that can be used to make asynchronous calls from a Web page to
your REST-based Web service.

Rather than duplicating much of the information from Chapter 17, I will demonstrate
only a simple example of working with Ajax and PHP here. All of the new material you will see
in the example is based on JavaScript and therefore not directly related to PHP. This material is
described only in terms of its functionality and how it relates to the interaction with the PHP-
based Web service. Information pertaining to writing code using JavaScript is out of the scope
of this book; you can obtain the specification directly from Ecma International:

http://www.ecma-international.org/publications/standards/Ecma-262.htm

Listing 21-5 contains an HTML page with embedded JavaScript that will be used to inter-
act with a PHP script on the server. The HTML page contains a simplistic registration form
requesting the user to input a username, a password, and their first and last names. Once a
user has entered the username they would like to register with and has moved the cursor out
of the form field, Ajax checks its availability without interrupting the user, who is completing
the rest of the requested information.

Upon receiving a response from the server, one of two actions can take place. If the user-
name is available, the previously disabled submit button is enabled, allowing the user to submit
their data. If the username has already been taken, an alert pops up on the screen, indicating
that the user must choose another username. An alert may not be the best choice, because it is
intrusive, but this clearly illustrates the Ajax functionality. In a real-world scenario, CSS would
probably better serve the purpose of allowing some text to be displayed on the Web page rather
than a pop-up window appearing.

Listing 21-5. Client HTML Page

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Untitled Document</title>
<script language="javascript">
var httpreq;

// Change the location to point to your server script
var server = 'http://www.example.com/ajax.php';

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS 827

6331_c21_final.qxd 2/16/06 4:18 PM Page 827

// function called by onblur in form
function checkusername(input) {

url = server + '?uname=' + input;

// native XMLHttpRequest
if (window.XMLHttpRequest) {

httpreq = new XMLHttpRequest();

// Register the response callback
httpreq.onreadystatechange = processReqChange;
httpreq.open("GET", url, true);
httpreq.send(null);

// Windows/IE
} else if (window.ActiveXObject) {

httpreq = new ActiveXObject("Microsoft.XMLHTTP");
if (httpreq) {

// Register the response callback
httpreq.onreadystatechange = processReqChange;
httpreq.open("GET", url, true);
httpreq.send();

}
}

}

// response handler function
function processReqChange() {

if (httpreq.readyState == 4) {
if (httpreq.status == 200) {

response = httpreq.responseXML.documentElement;
result = response.getElementsByTagName('result')[0].firstChild.data;
if (result == 1) {

alert('Username already taken');
} else {

document.form1.submitinfo.disabled = false;
}

} else {
alert("Unable to retrieve Data:\n" + httpreq.statusText);

}
}

}
</script>
</head>
<body>

<form name="form1" id="form1">
Username: <input id="username" name="username" type="text"

onblur="checkusername(this.value)" />

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS828

6331_c21_final.qxd 2/16/06 4:18 PM Page 828

Password: <input id="password" name="password" type="password" />

First Name: <input id="firstname" name="firstname" type="text" />

Last Name: <input id="firstname" name="firstname" type="text" />

<input type="submit" name="submitinfo" id="submit" disabled />

</form>
</body>
</html>

Once the user enters a username in the username form field in Listing 21-5 and the focus
moves outside the field, the onblur event is triggered. This calls the JavaScript function
checkusername() with the value entered in the field. This function builds a request URL using
the server variable defined at the beginning of the JavaScript and then instantiates an
XMLHttpRequest object. When using Internet Explorer in a Windows environment, the object
needed is actually an ActiveX object, so the code makes sure the correct object is used.

Using the newly created object, you need to set up the function to be called when the
server returns a response. The processReqChange() function contains the code to handle the
server response, so in the previous code you set it on the object using the onreadystatechange
property. The object then opens the URL that was built in the script and sends the request to
the server. All this time the user is continuing to enter data in the other form fields.

When the server finally sends the response, the processReqChange() function gets exe-
cuted. The response is in XML format, and using properties of the object, the document
element of the data is accessed. Using the JavaScript DOM, the specific information from
the response the application is interested in is then retrieved. In this case, it is the value of
a result element. Based on the value, the script either enables the submit button if the
requested username is available or pops up an alert indicating that the name is taken.

Listing 21-6 shows the script used on the server to process the request. It is basic and
simply checks the value of an array containing existing usernames. The content of the result
element is then populated based on the return value of the checkname() function. The func-
tionality and data returned from the server can be as complex as it needs to be to fulfill the
needs of the client. You can find additional information about creating more advanced server
responses in Chapter 17.

Listing 21-6. Server-Side Ajax Processing Script

<?php
header('Content-Type: text/xml');
print '<?xml version="1.0" encoding="UTF-8"?>';

$current_users = array('rob', 'john', 'joe');
function checkname($username) {

if (in_array($username, $GLOBALS['current_users'])) {
return 1;

}
return 0;

}
?>
<response>
<result><?php echo checkname((string)$_GET['uname']) ?></result>

</response>

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS 829

6331_c21_final.qxd 2/16/06 4:18 PM Page 829

Because of the nature of Ajax and because its actions are based upon events, it is impos-
sible to include any figures that clearly demonstrate its functionality. To get an idea of how
Ajax works, you might want to try the code in Listing 21-5 and Listing 21-6. The HTML page
in Listing 21-5 is the UI portion. Simply copy the code into a file, such as ajax.html, and save
it within a directory served up by a Web server. You should then change the server variable
within the JavaScript code to point to your Web server. Also, copy the code in Listing 21-6,
which is the backend logic called by the Ajax request, into a file, such as ajax.php, that is
located within the same Web server. Once you have done this, simply navigate to the
ajax.html page, enter the name joe in the Username field, and move to another field. This
should cause a JavaScript alert to appear with the message “Username already taken.” Per-
forming the same action using the name Mike, on the other hand, will cause the submit
button to be come enabled.

■Note It is important that the ajax.html and ajax.php pages reside within the same Web site. Because
of the default security settings for the XMLHttpRequest object, access to a location different from the page
the object is being used on is normally denied.

Introducing Wireless Application Protocol (WAP)
WAP is a standard allowing wireless devices, such as mobile phones, to access information.
It is quite likely that you have a mobile phone that allows you to connect to the Internet and
access pages just like the browser on your computer. The phone actually has a built-in
browser; unlike your typical Web browser, though, it does not deal with HTML pages. Instead,
it deals with pages built using one of the WAP-supported languages: Wireless Markup Lan-
guage (WML) or XHTML Mobile Profile (XHTML MP), which is a mobile version of XHTML.

WAP was first introduced around 1997, give or take a year. At that time, WML was the
language to write applications for wireless devices. The technology was pretty much consid-
ered a failure. To name a few of the issues, browsing was slow, sites offering WAP services
were far and few between, and the amount of data that could be passed in a page was often
very limited.

Toward the end of 2001, WAP 2.0 was released. To make the language easier to work with
and closer to what was used to create regular pages, a stripped-down version of XHTML 1.1
was devised specifically for use with mobile phones. This subset, which is also an extension
of XHTML Basic, is XHTML MP.

Times seem to be changing. Wireless computing in general is commonplace; even within
households, high-speed networks are considered the norm, and leveraging much of this, mobile
phone companies have been marketing phones with a wide range of multimedia capabilities.
The younger generation seems to be more plugged in than any previous generation. It is no
longer enough to be able to simply talk on the phone while on the go. They need text messag-
ing, MP3s, and Internet access around the clock wherever they are. This might possibly
produce a big turnaround for WAP usage.

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS830

6331_c21_final.qxd 2/16/06 4:18 PM Page 830

■Tip Testing WAP is often difficult to do because development is usually performed on networks inacces-
sible to mobile phone access. Phone emulators are usually used during the development stages to test
mobile documents, because they allow access to any IP address and even flat files. From personal experi-
ence, I know how difficult it is to find a good emulator. If you need a good Windows-based emulator, you
should try the one from Openwave, a company that provides products and services to the communications
industry. The emulator is available from the developer section at http://developer.openwave.com/dvl/
tools_and_sdk/openwave_mobile_sdk/phone_simulator/.

Introducing Wireless Markup Language (WML)
WML was the original WAP language and is synonymous with WAP 1.0. With how quickly tech-
nology changes and how fast new mobile phones are pushed to the market, no mobile phones
in use today are unable to support XHTML or WAP 2.0, although they are still backward com-
patible with WAP 1.0. In fact, many companies have started completely abandoning WAP 1.0
in favor of WAP 2.0, which is XHTML MP, so deciding whether you want to support WML in
your mobile application is completely up to you.

WML works with the concepts of decks and cards. A deck is a document that can be
broken up into smaller pieces. A card is one of these smaller pieces of the document that is
displayed on the mobile device. If you think of it in terms of Web pages, a deck is a collection
of Web pages (the cards). A mobile device requests access to a WML document, which returns
this collection (the deck), all at once. Rather than having to make multiple requests to the
server for individual pages (the cards), navigation among the cards in the deck is done using
the deck it already has in memory. WML also possesses the ability to pass variables between
cards in a deck based on selections made within cards.

This does not mean additional decks cannot be requested. A card can contain links to
resources outside the current deck. When navigating to these links, the mobile device retrieves
the WML and loads the new deck. Remember, back in the day, wireless connections were very
slow. The goal was to send as much data to the device at once to reduce the number of times
a remote connection needed to be made.

WML Structure
WML documents require the use of a DTD, which identifies the structure and version of WML
used within the document. You can use four different XML versions, ranging from WML 1.0 to
WML 1.3. To support the lowest common denominator, I will describe WML 1.1 in this section.
I did not choose WML 1.0, because the DTD was not available from the older specification list:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html#previous

WML is based on XML, so a document should always include an XML declaration. WML
needs to include the DTD, and in this case WML 1.1 is being used, so the document would use
the following:

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS 831

6331_c21_final.qxd 2/16/06 4:18 PM Page 831

The document begins with a wml element, which serves as the document element and
defines the deck. The cards are defined within card elements that live only as children of the
wml element. Within a card element, the rules are strict about which elements can appear in
certain contexts. WAP browsers are not as forgiving as Web browsers usually are. A tag appear-
ing where it is not supposed to be will often cause the document not to render.

This section on WML serves only to provide some general information about the language,
because XHTML is the technology you most likely will want to be using for new wireless appli-
cations. Instead of looking at all the different pieces of WML, the following list just points out
some of the more common mistakes made when writing WML that cause documents not to
render. The complete rules and available tags for creating a WML document are available by
reading the DTD. You may want to refer to Chapter 3 if you need help dissecting the contents.

• You can use paragraph tags, p, only as direct children of a card element.

• The contents of anchor tags, or a tags, cannot contain text formatting elements such
as bold (b) or strong tags.

• WML must be XML compliant, so br tags must be closed, as in
.

• Tables do not have header elements (TH) like they do in HTML.

• Fonts are not changeable in WML, so the font tag does not exist.

WML Example
The following example uses only some of the basic features of WML. It contains two cards
that can be navigated between. On the initial card, identified by the id with the value main,
an additional anchor tag demonstrates how to link to another external deck. If you decide to
try this example, you can load it directly from the file system by placing the contents into a
file and giving it a .wml file extension. To use it within a Web server environment, make sure
the correct MIME type, text/vnd.wap.wml, is sent by the server when the file is requested.
Figure 21-1 shows the resulting document, as rendered by an emulator.

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<card id="main" title="Index" newcontext="true">
<p>Next Deck</p>
<p>Welcome!

Go to next card next card.
</p>
<p>Another way to navigate:

<anchor title="See Card 2">
next card <go method="get" href="#card2" />

</anchor>
</p>

</card>

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS832

6331_c21_final.qxd 2/16/06 4:18 PM Page 832

<card id="card2" title="Card 2" newcontext="false">
<p>This is the 2nd card in the deck<p>

Done
</p>

</card>
</wml>

Introducing XHTML
A number of XHTML specifications exist. You have XHTML Basic, which is the base imple-
mentation of XHTML with a minimal set of XHTML features and which is geared toward
mobile applications. You have XHTML MP, also known as WAP 2.0, which is an extension of
XHTML Basic that adds a few components. Lastly, you have XHTML 1.1, which contains the
full set of XHTML features. You would think that WAP 2.0 is the logical choice that phone ven-
dors would all agree upon. Looking at all the different phones available, however, this is not
the case. Many support WAP 2.0, and others support just XHTML Basic. Others even support
the full XHTML 1.1 feature set. As a developer, what are you supposed to do?

■Caution There is no definite agreement on the use of XHTML MP vs. XHTML Basic. Some groups believe
WAP 2.0 should always be used, some stick to XHTML Basic, and others implement features found in any of
the different XHTML versions. The problem is with vendor support. Mobile phone vendors have no set stan-
dard they all use, so determining which type of XHTML to serve up is not an exact science.

I have had to deal with this issue. After plenty of research, I decided to serve XHTML using
syntax from XHTML Basic (http://www.w3.org/TR/xhtml-basic/) and a few presentational

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS 833

Figure 21-1. WML rendered by emulator

6331_c21_final.qxd 2/16/06 4:18 PM Page 833

elements from XHTML MP, so the XHTML MP DTD is specified in the XHTML document being
served by the server. Because both WAP 2.0 and XHTML 1.1 are supersets of it, XHTML Basic
provides the greatest range of operability. You need to consider the limitations of mobile appli-
cations. The user is on a mobile device, so the screen is smaller; navigating is more difficult; and
bandwidth is still not close to that when browsing from a desktop. Mobile applications should
be lean and mean. Flashy applications might look nice at first, but if they slow the user down
from getting to where they want to go, then users will just stop using those applications.

WAP 2.0 uses the MIME type application/vnd.wap.xhtml+xml, defined by the Open
Mobile Alliance (http://www.openmobilealliance.org/), but not every phone fully supports
the WAP 2.0 feature set. Many developers, including myself, often use the application/
xhtml+xml type instead. This type encompasses the entire XHTML family, so with XHTML MP
being a member of this family, WAP 2.0–enabled devices should in most cases accept this type.
There is no guarantee, though, that this type will be accepted, but it seems that—and I say this
from experience—virtually all do. I have heard reports that specific models of phones do not
work with this type but have yet to run into this myself.

Document Structure
The first part of the document is the XML declaration and the doctype. The following example
is using the XHTML Mobile 1.0 DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"

"http://www.wapforum.org/DTD/xhtml-mobile10.dtd">

If you have written XHTML documents before, then you already understand the structure.
If you have worked only with HTML documents, you will be happily surprised that the markup
is almost identical. You could consider XHTML to be HTML written using proper XML syntax.
For example, every tag you open must have an associated closing tag. In some cases, this means
an element will simply be an empty element tag. Take the
 tag, for example. It is common
for HTML developers to use this tag as written. In XHTML, this is not valid because the tag is
never closed, so you must write it as
.

Not only do you need to take care that the document is well-formed but also of the char-
acters you use within the document. Have you ever written content that used the ampersand,
as in <title>This & That</title>? In XHTML you cannot do this because the ampersand must
be properly escaped, as in <title>This & That</title>.

A minimal XHTML document must have an html element, a head element, a title ele-
ment, and a body element. They are laid out in the same format as an HTML document. The
difference between these elements used within XHTML, though, is that they live within the
XHTML namespace, http://www.w3.org/1999/xhtml. For example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"

"http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<title>Example WAP 2.0 document</title>

</head>

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS834

6331_c21_final.qxd 2/16/06 4:18 PM Page 834

<body>
<p>This is an XHTML MP document</p>

</body>
</html>

WAP Cascading Style Sheets (WCSS)
WAP Cascading Style Sheets (WCSS) are a simplified version of CSS where features not appro-
priate or not necessary for mobile devices have been removed. Style sheets are normally
included using link elements:

<link rel="stylesheet" type="text/css" href="mobilestyle.css" />

Supposedly mobile browsers cache content including CSS files; however, some UI devel-
opers I have talked to have mentioned that they prefer inline CSS when dealing with mobile
devices because they are finding that this is just not true. When the files are not cached, the
CSS must be retrieved for every page accessed. Not only does this slow things down for the
user, but it also increases the amount of bandwidth they require for every page access.

XHTML 1.0, XHTML 1.1, and Mobile MP support inline CSS. The style element is not
part of the XHTML Basic specification. As mentioned earlier, this is one of those features out-
side of XHTML Basic that I use. For example:

<style type="text/css">
h1 {text-align: right; color: blue}
</style>

This style used within the document sets the h1 tags to use the right alignment and to
be blue.

Another potential issue to be aware of is that some mobile browsers do not even recog-
nize CSS or will ignore it. The good news is that unrecognized tags are simply ignored, so the
page will render, but it may not look exactly how you expect it to look. For this reason when
using CSS, it is wise not to rely on CSS for the entire formatting of the rendered page. The
page should look decent even if you removed the CSS.

XHTML Example
Here’s an XHTML example:

<?php
header('Content-type: application/xhtml+xml');
echo '<?xml version="1.0"?>';
?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"

"http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>

<title>XHTML Mobile Example</title>
</head>

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS 835

6331_c21_final.qxd 2/16/06 4:18 PM Page 835

<body>
<p>Select a category from the pull-down or an anchor link.</p>
<form action="catselect.php" method="POST">
Select a category:

<select name="category">
<option value="1">Audio & Video</option>
<option value="2">Camera & Photo</option>
<option value="3">Computers</option>

</select>
<input type="submit" value="Go" />

</form>

Electronics/Phones

</body>
</html>

As you can see, this example looks similar to plain HTML. Some PHP code has been
included at the top of this file, assuming it is saved as a .php file to modify the Content-type
header and produce the application/xhtml+xml MIME type, as well as the XML declaration.
The doctype has been set to the XHTML Mobile 1.0 DTD, and the elements have been placed
in the proper namespace, http://www.w3.org/1999/xhtml. The other changes from HTML you
may have also noticed are that all elements are now in proper XML format and all ampersands
(&) have been escaped using the entity &. When viewed on a mobile device, the page ren-
ders similar to that shown in Figure 21-2.

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS836

Figure 21-2. WAP 2.0 rendered by emulator

6331_c21_final.qxd 2/16/06 4:18 PM Page 836

Performing WAP Detection Using PHP
When a mobile user comes to visit your site, more often than not the user will navigate directly
to your main site page. This page, however, is typically written for access from a Web browser.
Mobile-enabled pages usually are kept within a subdirectory of the main site or have their own
tertiary domain. For example:

/* Example tertiary domain names */
mobile.example.com
wml.example.com
wap.example.com

If you have mobile-enabled content on your site, you probably don’t want the user’s
mobile device to either not be able to render anything or try rendering a page designed for an
HTML browser. What you can do in a case like this is to automatically redirect the device to
the appropriate location on your Web site.

How fancy you want to or need to get with the detection is really up to you and what your
application does. If determining the client type down to the make and model of their phone is
what your application requires, then most likely you or your company is in the mobile device
business, and you probably already know all about WAP and the various languages and speci-
fications. For all other developers, usually they just want to know whether it is a mobile device;
if so, does it require WML, WAP 1.x enabled, or does it support XHTML, WAP 2.0 enabled?

The following piece of code is similar to the tests I use for mobile detection. I place this code
at the top of all my Web site files. Once it is executed, you end up with the constant WAP_TYPE
having one of three values. You can then use the value where necessary to perform some type
of action depending upon the type of client it is.

define('TYPE_BROWSER', 0);
define('TYPE_WAP_1', 1);
define('TYPE_WAP_2', 2);

/* Check whether client is a mobile device - does it support WAP? */
if (strpos($_SERVER['HTTP_ACCEPT'], 'vnd.wap.wml')) {

/* Does this WAP device also support XHTML/WAP 2.0? */
if (strpos($_SERVER['HTTP_ACCEPT'], 'xhtml+xml')) {

define('WAP_TYPE', TYPE_WAP_2);
} else {

define('WAP_TYPE', TYPE_WAP_1);
}

} else {
/* Client is not a mobile device, so handle as a regular browser */
define('WAP_TYPE', TYPE_BROWSER);

}

For example, if you place this code in your index file, you can then test the value of the
WAP_TYPE client and redirect any mobile devices to another page or even another site:

If (WAP_TYPE != TYPE_BROWSER) {
header("Location: http://mobile.example.com/index.php");
exit;

}

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS 837

6331_c21_final.qxd 2/16/06 4:18 PM Page 837

You can also use the code within the mobile.example.com site if you want to support both
WML and XHTML. Rather than having two separate sites or the clients accessing two different
pages on the same site, you can use wrapper pages, where the wrapper page includes or gen-
erates the correct content type based on the WAP_TYPE constant. For example:

if (WAP_TYPE == TYPE_WAP_1) {
include ('content.wml');

} else {
include ('content.xhtml');

}

Although nothing fancy, these checks provide a simple manner of determining the func-
tionality supported by the client. If you really need to start getting into the details of the actual
device, you can also start inspecting the HTTP_USER_AGENT value. In most cases, though, the
code shown in this section is more than adequate to handle various mobile devices.

Conclusion
Wrapping up the coverage of PHP and XML, I introduced two additional PHP extensions, XML-
Writer and SDO, and a couple of XML technologies, Ajax and WAP, that you can work with using
PHP. XMLWriter provides a simple yet powerful interface for creating well-formed XML docu-
ments without having to build them in memory or worry about character encoding. When
combined with PHP streams, you can create some complex and interesting applications.

The SDO extension is a recent addition to the PECL library and is still in the development
phase. It is uncertain the direction this technology is going to go in PHP, but it has potential for
providing an interesting manner of working with XML data. Currently, data is accessed similarly
to when using the SimpleXML extension. SDO adds the capability of being able to create new
data within XML data. If taken in the direction suggested by my feature requests, it would allow
you to work with XML in the same way as working with a database. Using XML Schema, it would
be equivalent to XML data integrity through the enforcement of data types and structure.

Ajax is currently a hot technology. It allows for asynchronous interaction between a Web
page and a server using a REST-style Web service. Requests can be sent and responses can be
received without interrupting the user. Ajax opens up the potential for a new way to write
Web applications.

In addition, WAP, although not a new technology, is starting to creep back into the main-
stream. Mobile devices nowadays contain features never seen before. Whether it is because
people have grown accustomed to accessing the Internet using more than just a browser or that
hardware has finally caught up with the technology, interest in WAP is finally starting to get off
the ground. Whether every Web site will eventually have a mobile-enabled site is a completely
different animal, but in any event you are now ready if you ever have to tackle that problem.

Advances in technology never stop, and new ones are born every day. Even PHP contin-
ues to evolve on a daily basis. During the course of my writing, new features have been added
and changes have been made in the area of XML alone. Some of these changes have made it
into PHP 5.1.2, and others are scheduled to be released with PHP 6. It’s worth your time to
read Appendix C, which covers the changes and upcoming XML features that have taken
place since the time I wrote the earlier chapters.

CHAPTER 21 ■ OTHER XML TECHNOLOGIES AND EXTENSIONS838

6331_c21_final.qxd 2/16/06 4:18 PM Page 838

XML Schema Built-in
Data Types Reference

XML Schemas provide a number of built-in data types. You can use these types directly
as types or use them as base types to create new and complex data types. The built-in types
presented in this appendix are broken down into primitive and derived types and further
grouped by area of functionality for easier reference.

Type Definition
XML Schema data types are built upon relationships where every type definition is either an
extension or a restriction to another type definition. This relationship is called the type defi-
nition hierarchy. The topmost definition, serving as the root of the hierarchy, is the ur-type
definition, named anyType. It is the only definition that does not have a basis in any other
type. Using this data type is similar to using ANY within a DTD. It effectively means that the
data has no constraints. Take the following element declaration, for example:

<xsd:element name="anything" type="xsd:anyType" />

An element based on this declaration can contain any type of data. It can be any of the
built-in types as well as any user-derived type.

The simple ur-type definition, named anySimpleType, is a special restriction on the
ur-type definition. It constrains the anyType definition by limiting data to only the built-in
data types, shown in the following sections. For example, the following element declaration
defines an element that can be any built-in type but cannot be a complex type, which is sim-
ply an element that can contain subelements or attributes, as explained in Chapter 3:

<xsd:element name="simplelement" type="xsd:anySimpleType" />

The built-in types are divided into two varieties: primitive types and derived types.

Primitive Types
Primitive data types are those that are not defined in terms of another type. For easy reference,
the following tables group the primitive types together based on general, non-schema-specific
data types. Table A-1 shows the logical types, Table A-2 shows the numeric types, Table A-3

839

A P P E N D I X A

■ ■ ■

6331_appA_final.qxd 2/16/06 5:12 PM Page 839

shows the textual types, Table A-4 shows the date/time types, Table A-5 shows the binary
types, and Table A-6 shows the XML types.

Table A-1. Logical Types

Type Description Example

boolean Represents the binary-valued logic literals true, false, 1, 0

APPENDIX A ■ XML SCHEMA BUILT- IN DATA TYPES REFERENCE840

Table A-2. Numeric Types

Type Description Example

decimal Arbitrary-precision decimal numbers. 1.0, 1.00, -1, 01.1230, 1.123
The sign is optional, and when omitted,
+ is assumed.

double Real numbers with a double-precision, INF, -INF, NaN (Not a Number), 1.234, 1.2e3, 7E-10
64-bit, floating-point type.

float Real numbers with a double-precision, INF, -INF, NaN (Not a Number), 1.234, 1.2e3, 7E-10
32-bit, floating-point type.

Table A-3. Textual Types

Type Description Example

string Any legal XML character string according This is a string, This & that are strings
to the XML 1.0 specification. Special
characters such as <, >, &, ', and " should
be escaped.

AnyURI A URI. It can be absolute or relative and http://www.example.com
can contain a fragment identifier.

Table A-4. Date/Time Types

Type Description Example

dateTime A date and time in the format CCYY- October 31, 2005, at 2:30 p.m. Coordinated
MM-DDTHH:MM:SS. Universal Time (UTC) time is written as 2005-10-

31T14:30:00. The same date and time written in
Eastern Standard Time (EST) is 2005-10-
31T14:30:00-5:00.

date A calendar date in the format CCYY- October 31, 2005, is written as 2005-10-31.
MM-DD with an optional time zone.

time An instance of time during a day in the So, 2:30 p.m. UTC time is 14:30:00; the same time
format HH:MM:SS. written in EST is 140:30:00-5:00.

duration A duration of time in the format A duration of 1 year, 2 months, 3 days, 10 hours,
PnYnMnDTnHnMnS. If the number of and 30 minutes is written as P1Y2M3DT10H30M,
years, months, days, hours, minutes, or while a duration of 1 year is written as P1Y.
seconds in any expression is zero, the
number and its corresponding designator
can be omitted, but at least one designator
and the P designator must always be
present.

6331_appA_final.qxd 2/16/06 5:12 PM Page 840

Type Description Example

gMonth Two-digit Gregorian month in the October is written as —10, and April is written
format —MM with an optional time zone. as —04.

gDay Two-digit Gregorian day in the format The 22nd day of the month is written as —22.
—DD with an optional time zone.

gYear Four-digit Gregorian year in the format The year 2005 is written as 2005.
CCYY with an optional time zone.

gMonthDay Combination of the Gregorian month October 31 is written as —10-31.
and day in the format —MM-DD with
an optional time zone.

gYearMonth Combination of the Gregorian year October 2005 is written as 2005-10.
and month in the format CCYY-MM with
an optional time zone.

Table A-5. Binary Types

Type Description Example

base64Binary Base64-encoded arbitrary binary data See base64_decode() in the PHP manual.

hexBinary Arbitrary hex-encoded binary data See bin2hex() in the PHP manual.

Table A-6. XML Types

Type Description Example

QName Represents an XML qualified name. prefix:name, xsd:attribute

NOTATION Represents an XML NOTATION attribute.
This type must not be used in an XML
Schema. You can use it only to derive types
that can be used in an XML Schema.

APPENDIX A ■ XML SCHEMA BUILT- IN DATA TYPES REFERENCE 841

Derived Types
Derived types are data types that are defined in terms of other types, called base types. As you
will see in the following tables, a base type for a derived type can be a primitive data type or
even another derived type. These types also have been grouped into generalized, non-schema-
specific data types. Table A-7 shows the numeric types, Table A-8 shows the textual types, and
Table A-9 shows the XML types.

6331_appA_final.qxd 2/16/06 5:12 PM Page 841

Table A-7. Numeric Types

Type Base Type Description Example

integer decimal The mathematical concept of integer 1, 0, -1, 12345
numbers

nonPositiveInteger integer Any integer less than or equal to 0 0, -1, -12345

negativeInteger nonPositiveInteger Any integer less than 0 -1, -12345,
-23456

long integer Any integer less than or equal to -100000, 0,
9,223,372,036,854,775,807 and greater or 10000
equal to -9,223,372,036,854,775,808

int long Any integer less than or equal to -2147483648
2,147,483,647 and greater or equal to
-2,147,483,648

short integer Any integer less than or equal to 32,767 12345, -12345
and greater or equal to -32,768

byte short Any integer less than or equal to 127 and -123, 0, 123
greater or equal to -128

nonNegativeInteger integer Any integer greater than or equal to 0 0, 1, 12345

positiveInteger nonNegativeInteger Any integer greater than 0 1, 12345,
123456

unsignedLong nonNegativeInteger Any integer greater than or equal to 0 and 0, 12345,
less than or equal to 1234567
18,446,744,073,709,551,615

unsignedInt unsignedLong Any integer greater than or equal to 0 and 0, 12345,
less than or equal to 4,294,967,295 1234567

unsignedShort unsignedInt Any integer greater than or equal to 0 and 0, 1234, 65535
less than or equal to 65,535

unsignedByte unsignedShort Any integer greater than or equal to 0 and 0, 100, 126
less than or equal to 255

Table A-8. Textual Types

Type Base Type Description Example

normalizedString string A whitespace-normalized string. This means it Example
does not contain carriage returns, line feeds, or normalized
tab characters. string

token normalizedString A tokenized string. This means it does not A B C
contain carriage returns, line feeds, or tab
characters. It also does not have leading or
trailing spaces, and any two consecutive
characters in the string are spaces.

language token Language identifiers as defined by RFC 3066 en-US
(http://www.ietf.org/rfc/rfc3066.txt).

APPENDIX A ■ XML SCHEMA BUILT- IN DATA TYPES REFERENCE842

6331_appA_final.qxd 2/16/06 5:12 PM Page 842

Table A-9. XML Types

Type Base Type Description Example

Name token Represents an XML name as defined in the XML 1.0 specification

NCName Name Represents XML “noncolonized” names, which are simply element
QNames without the prefix and colon

ID NCName Represents the ID attribute type from the XML 1.0 specification

IDREF NCName Represents the IDREF attribute type from the XML 1.0 specification

IDREFS IDREF Represents the IDREFS attribute type from the XML 1.0 specification

ENTITY NCName Represents the ENTITY attribute type from the XML 1.0 specification

ENTITIES ENTITY Represents the ENTITIES attribute type from the XML 1.0 specification

NMTOKEN token Represents the NMTOKEN attribute type from the XML 1.0 specification

NMTOKENS NMTOKEN Represents the NMTOKENS attribute type from the XML 1.0 specification

APPENDIX A ■ XML SCHEMA BUILT- IN DATA TYPES REFERENCE 843

6331_appA_final.qxd 2/16/06 5:12 PM Page 843

6331_appA_final.qxd 2/16/06 5:12 PM Page 844

Extension APIs

This appendix is a quick reference for the XML parser extensions in PHP. You can find usage
examples and more detailed information in each parser’s respective chapter. The information
provided for the APIs covers functionality found in PHP 5.1.2, as well as a few new methods
that will be released with PHP 6.

libxml
The libxml extension, described in Chapter 5, is the foundation for all the XML-based exten-
sions in PHP. As of PHP 5.1, the extension defines common constants and functionality used
by a majority of the other related extensions. Table B-1 lists the general constants. Note that
some constants are defined only when using certain versions of the libxml2 library.

Table B-1. libxml General Constants

Name Description

LIBXML_VERSION The numeric value of the libxml2 version being used by PHP. You can
use this value to test the version number for functionality that depends
upon certain versions of libxml2.

LIBXML_DOTTED_VERSION The string value using dotted notation of the libxml2 version being
used. This value is primarily used for display purposes.

The extensions, such as DOM and SimpleXML, allow parser options to be passed to func-
tions and methods that are loading XML documents (see Table B-2).

Table B-2. libxml Constants for Loading Documents

Name Description

LIBXML_NOENT Substitutes entities found within the document with their replacement
content.

LIBXML_DTDLOAD Loads any external subsets but does not perform validation. This flag also
ensures that IDs set in a DTD are created within the document.

LIBXML_DTDATTR Creates attributes within the document for any attributes defaulted through
a DTD.

LIBXML_DTDVALID Loads subsets and validates a document while parsing.

Continued
845

A P P E N D I X B

■ ■ ■

6331_appB_final.qxd 2/16/06 5:13 PM Page 845

Table B-2. Continued

Name Description

LIBXML_NOERROR Suppresses errors from libxml2 that may occur while parsing.

LIBXML_NOWARNING Suppresses warnings from libxml2 that may occur while parsing.

LIBXML_NOBLANKS Removes all insignificant whitespace within the document.

LIBXML_XINCLUDE Performs all XIncludes found within the document.

LIBXML_NSCLEAN Removes redundant namespace declarations found while parsing the
document.

LIBXML_NOCDATA Merges CDATA nodes into text nodes. A document using CDATA sections will
be created with no CDATA nodes, as these will now be converted into plain-
text nodes. This flag is useful when loading a document to be used for an XSL
transformation.

LIBXML_NONET Disables network access when loading documents. You can use this flag to
increase security from untrusted documents so resources cannot be fetched
from the network.

LIBXML_COMPACT Enables some memory optimizations that may help speed up an application
using XML. This constant is available only when using libxml2 2.6.21 or higher.

Several constants are also defined that can be used in the context of serializing an XML
document (see Table B-3). These are available only when using libxml2 2.6.21 and higher.

Table B-3. libxml Constants for Saving Documents

Name Description

LIBXML_NOXMLDECL Does not produce an XML declaration when saving the document

LIBXML_NOEMPTYTAG Does not output empty tags; rather, always outputs an opening and closing
element tag with no content between

Table B-4 lists libxml’s functions.

Table B-4. libxml Functions

Function Description

libxml_clear_errors(void) Clears libxml error buffer.

libxml_get_errors(void) Retrieves an array of errors.

libxml_get_last_error(void) Retrieves the last error from libxml.

libxml_set_streams_context Sets the stream’s context for the next libxml document load or
(resource streams_context) write.

libxml_use_internal_errors Disables libxml errors and allows the user to fetch error infor-
([bool use_errors]) mation as needed. This returns a Boolean of the previous state.

The LibXMLError class was introduced in PHP 5.1. Objects of this type are returned from
the libxml error-handling functions. A few constants are defined explicitly for use with this
object (see Table B-5). Table B-6 lists the LibXMLError class properties.

APPENDIX B ■ EXTENSION APIS846

6331_appB_final.qxd 2/16/06 5:13 PM Page 846

Table B-5. libxml Error-Level Constants

Name Description

LIBXML_ERR_NONE No error has been detected.

LIBXML_ERR_WARNING This is a simple warning that the XML document may have problems.

LIBXML_ERR_ERROR This is a recoverable error. The XML document contains errors, but the
parser was able to continue processing.

LIBXML_ERR_FATAL This means a fatal error was detected, and the parser is unable to continue
processing the document.

Table B-6. LibXMLError Class Properties

Property Type Description

level integer Indicates the severity of the error using one of the error-level constants as
its value

code integer Indicates the error code from libxml2

column integer Indicates the column number, if available, from within the document
where the error occurred

line integer Indicates the line number, if available, from within the document where
the error occurred

message string Indicates the textual representation of the error

file string Indicates the filename of the XML document containing the error

xml
The xml extension, covered in Chapter 8, provides a SAX parser to process XML based on
events using handlers. Because this extension maintains compatibility and also can be built
using expat rather than libxml2, it defines its own set of parser option constants. Table B-7 lists
the xml parser’s options constants, Table B-8 lists the xml parser’s error code constants, and
Table B-9 lists the xml parser’s XML functions.

Table B-7. XML Parser Options Constants

Option Description

XML_OPTION_TARGET_ENCODING Sets the encoding to use when the parser passes the XML informa-
tion to the function handlers. The available encodings are US-ASCII,
ISO-8859-1, and UTF-8. The default is either the course encoding set
when the parser was created or UTF-8 when not specified.

XML_OPTION_SKIP_WHITE Skips values that are entirely ignorable whitespaces. These values
will not be passed to your function handlers. The default value is 0,
meaning to pass whitespaces to the functions.

XML_OPTION_SKIP_TAGSTART Skips a certain number of characters from the beginning of a start
tag. The default value is 0 to not skip any characters.

XML_OPTION_CASE_FOLDING Determines whether element tag names are passed all uppercase
or left as is. The default value is 1 to uppercase all tag names. The
default setting tends to be a bit controversial. XML is case-sensitive,
and the default setting is to case fold characters. For example, an
element named FOO is not the same as an element named Foo.

APPENDIX B ■ EXTENSION APIS 847

6331_appB_final.qxd 2/16/06 5:13 PM Page 847

Table B-8. XML Error Code Constants

Name

XML_ERROR_NONE

XML_ERROR_NO_MEMORY

XML_ERROR_SYNTAX

XML_ERROR_NO_ELEMENTS

XML_ERROR_INVALID_TOKEN

XML_ERROR_UNCLOSED_TOKEN

XML_ERROR_PARTIAL_CHAR

XML_ERROR_TAG_MISMATCH

XML_ERROR_DUPLICATE_ATTRIBUTE

XML_ERROR_JUNK_AFTER_DOC_ELEMENT

XML_ERROR_PARAM_ENTITY_REF

XML_ERROR_UNDEFINED_ENTITY

XML_ERROR_RECURSIVE_ENTITY_REF

XML_ERROR_ASYNC_ENTITY

XML_ERROR_BAD_CHAR_REF

XML_ERROR_BINARY_ENTITY_REF

XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF

XML_ERROR_MISPLACED_XML_PI

XML_ERROR_UNKNOWN_ENCODING

XML_ERROR_INCORRECT_ENCODING

XML_ERROR_UNCLOSED_CDATA_SECTION

XML_ERROR_EXTERNAL_ENTITY_HANDLING

APPENDIX B ■ EXTENSION APIS848

Table B-9. XML Functions

Function Description

xml_parser_create([string encoding]) Creates and returns an XML parser. You can specify an
optional encoding for output.

xml_parser_create_ns([string encoding Creates and returns an XML parser. You can specify an
[, string sep]]) optional encoding for output, and you can use an optional

separator to separate the namespace with the local name. If
not specified, a colon is used as the default separator.

xml_set_object(resource parser, object Associates a parser with an object so callback functions will
obj) use the object’s methods as handlers. This returns a Boolean

indicating success or failure.

xml_set_element_handler(resource parser, Sets start and end element handlers for the parser. This
string shdl, string ehdl) returns a Boolean indicating success or failure.

xml_set_character_data_handler(resource Sets a character data handler for the parser. This returns
parser, string hdl) a Boolean indicating success or failure.

6331_appB_final.qxd 2/16/06 5:13 PM Page 848

Function Description

xml_set_processing_instruction_handler Sets a PI handler for the parser. This returns a Boolean
(resource parser, string hdl) indicating success or failure.

xml_set_default_handler(resource parser, Sets the default handler for a parser. This functionality is
string hdl) now working as of PHP 5.1. This returns a Boolean indicating

success or failure.

xml_set_unparsed_entity_decl_handler Sets unparsed entity declaration handler for the parser. This
(resource parser, string hdl) returns a Boolean indicating success or failure.

xml_set_notation_decl_handler(resource Sets the notation declaration handler for the parser. This
parser, string hdl) returns a Boolean indicating success or failure.

xml_set_external_entity_ref_handler Sets the external entity reference handler for the parser. This
(resource parser, string hdl) returns a Boolean indicating success or failure.

xml_set_start_namespace_decl_handler Sets the start namespace declaration handler for the parser.
(resource parser, string hdl) This returns a Boolean indicating success or failure.

xml_set_end_namespace_decl_handler Sets the end namespace declaration handler for the parser.
(resource parser, string hdl) This returns a Boolean indicating success or failure.

xml_parse(resource parser, string data Parses the XML sent in the data parameter. Parsing can be
[, integer isFinal]) performed in chunks, and the isFinal parameter identifies

whether the chunk being passed is the end of the XML
document.

xml_parse_into_struct(resource parser, Parses the XML into an array, values, and optionally an
string data, array &values[, array array, index, containing pointers to values in the values
&index]) array.

xml_get_error_code(resource parser) Returns the XML parser error code. This code is a constant
defined by the XML extension.

xml_error_string(integer code) Returns the error string for the code.

xml_get_current_line_number(resource Returns the line number the parser is currently processing.
parser)

xml_get_current_column_number(resource Returns the column number the parser is currently
parser) processing.

xml_get_current_byte_index(resource Returns the byte index the parser is currently processing.
parser)

xml_parser_free(resource parser) Frees the reference to the XML parser.

xml_parser_set_option(resource parser, Sets the value for one of the XML parser options. This
integer option, mixed value) returns a Boolean indicating success or failure.

xml_parser_get_option(resource parser, Retrieves current value for an option.
integer option)

utf8_encode(string data) Encodes an ISO-8859-1 string to UTF-8.

utf8_decode(string data) Converts a UTF-8 encoded string to ISO-8859-1.

APPENDIX B ■ EXTENSION APIS 849

XMLReader
XMLReader, covered in Chapter 9, is a stream-based, lightweight, and simple-to-use parser.
This extension is written specifically for PHP 5 and newer. It originated as a PECL extension
but was not added to the main distribution until PHP 5.1. For PHP 5.1, all constants have been

6331_appB_final.qxd 2/16/06 5:13 PM Page 849

moved to the XMLReader class rather than to global constants. Table B-10 lists the XMLReader
node type constants, Table B-11 lists the options class constants, and Table B-12 lists the
XMLReader properties, which are read-only.

Table B-10. XMLReader Node Type Constants

Name Description

NONE No current node

ELEMENT Element node

ATTRIBUTE Attribute node

TEXT Text node

CDATA CDATA node

ENTITY_REF Entity reference node

ENTITY Entity node

PI PI node

COMMENT Comment node

DOC Document node

DOC_TYPE Doctype node

DOC_FRAGMENT Document fragment node

NOTATION Notation node

WHITESPACE Whitespace

SIGNIFICANT_WHITESPACE Significant whitespace

END_ELEMENT End element

END_ENTITY End entity

XML_DECLARATION XML declaration

Table B-11. XMLReader Parser Options Class Constants

Name Description

LOADDTD Loads DTD while parsing

DEFAULTATTRS Indicates the default attributes defined in the DTD while parsing

VALIDATE Validates the document while parsing

SUBST_ENTITIES Substitutes entities while parsing

APPENDIX B ■ EXTENSION APIS850

6331_appB_final.qxd 2/16/06 5:13 PM Page 850

Table B-12. XMLReader Properties (Read-Only)

Property Type Description

attributeCount integer Returns the number of attributes on the current element

baseURI string Returns the base URI for the current node

depth integer Returns the depth of the node within the tree using a zero-based
starting point

hasAttributes Boolean Indicates whether the element has any attributes

hasValue Boolean Indicates whether the node has a child text node

isDefault Boolean Indicates whether the attribute is defaulted from the DTD

isEmptyElement Boolean Indicates whether the element is an empty element tag

localName string Returns the local name of the node

name string Returns the full qualified name of the node

namespaceURI string Returns the namespace URI for the node

nodeType integer Returns an XMLReader node type constant for the current node

prefix string Returns the prefix of the current node

value string Returns the text value of the node

xmlLang string Returns the xml:lang scope for which the node resides

The majority of methods from the XMLReader class return a Boolean that indicates the
success or failure of the operation. Unless otherwise indicated in the method description, you
should assume a Boolean as the return type. Table B-13 lists the XMLReader class methods.

Table B-13. XMLReader Class Methods

Method Description

close() Closes the XMLReader parser and returns a Boolean indicating
success or failure.

getAttribute(string name) Returns the value of the attribute specified by name.

getAttributeNo(integer index) Returns the value of the attribute specified by index.

getAttributeNs(string name, Returns the value of the attribute specified by name and
string namespaceURI) namespace.

getParserProperty(integer Returns a Boolean for the value of the specified property.
property) The property is identified by one of the XMLReader parser

option class constants.

isValid Boolean isValid() When in validating mode, returns
Boolean indicating whether parsed document is valid.

lookupNamespace(string prefix) Returns the namespace URI in scope for the given prefix.

moveToAttribute(string name) Positions the reader on the attribute specified by name.

moveToAttributeNo(integer index) Positions the reader on the attribute specified by index.

moveToAttributeNs(string name, Positions the reader on the attribute identified by the name
string namespaceURI) and namespace.

Continued

APPENDIX B ■ EXTENSION APIS 851

6331_appB_final.qxd 2/16/06 5:13 PM Page 851

Table B-13. Continued

Method Description

moveToElement() When positioned on an attribute, this method positions the
reader back on the containing element.

moveToFirstAttribute() Positions the reader on the first attribute.

moveToNextAttribute() Positions the reader on the next attribute.

open(string URI [, string Sets the URI to be opened by the reader. The optional
encoding [, integer options]]) parameters are currently available only in CVS for the

upcoming PHP 6. You can specify the encoding of the
document within the file and parser options.

read() Positions the reader to the next node in the stream.

next([string localname]) Moves the reader to the next node in the stream, skipping
over any subtrees. Optionally, you can specify a local name,
causing the reader to continually call the next method until
it either has found a node with the specified name or has
reached the end of the stream.

setParserProperty(integer Sets the value for a specified property, which is one of the
property, Boolean value) parser options.

setRelaxNGSchemaSource(string Sets the URI of a RELAX NG schema to be used for validation.
filename)

setRelaxNGSchemaSource(string Provides a string containing a RELAX NG schema to be used
source) for validation.

XML(string source [, string Sets data, contained in the string parameter, to be processed
encoding [, integer options]]) by the reader. The optional parameters are currently avail-

able only in CVS for the upcoming PHP 6. You can specify the
encoding of the document within the file and parser options.

expand() Creates a copy of the node the reader is currently positioned
on and returns it as the appropriate DOM class. This function
is available in PHP 5.1 and newer.

readInnerXml() Returns a string containing the contents of the current node,
including child nodes and markup. This method is currently
available only in CVS for the upcoming PHP 6. libxml2 ver-
sion 2.6.20 or newer is also required for this functionality.

readOuterXml() Returns a string containing current node, including its con-
tents, child nodes, and markup. This method is currently
available only in CVS for the upcoming PHP 6. libxml2 ver-
sion 2.6.20 or newer is also required for this functionality.

readString() Reads the contents of an element or a text node as a string.
This method is currently available only in CVS for the
upcoming PHP 6. libxml2 version 2.6.20 or newer is also
required for this functionality.

SimpleXML
The SimpleXML extension, covered in Chapter 7, provides a tree-based parser that allows
an XML document to be manipulated as an object. Other than a few functions used to load
XML data and create a SimpleXMLElement object, you perform all functionality using the

APPENDIX B ■ EXTENSION APIS852

6331_appB_final.qxd 2/16/06 5:13 PM Page 852

SimpleXMLElement class. Table B-14 lists the SimpleXML functions, and Table B-15 lists
the SimpleXMLElement methods.

Table B-14. SimpleXML Functions

Function Description

simplexml_import_dom(DOMNode node Performs a zero-copy import from a DOMNode. This function
[, string class_name]) either returns a SimpleXMLElement object or returns an

object from the class specified by the class_name parame-
ter. When this parameter is used, the class must inherit
from the SimpleXMLElement class.

simplexml_load_file(string uri [, Loads the data from the location specified by the uri
string class_name [, integer parameter. The class_name parameter allows the returned
options]]) object to be instantiated as the specified class rather than

a SimpleXMLElement, as long as the class inherits from
SimpleXMLElement. The options parameter, added in PHP
5.1, allows the use of LIBXML constants appropriate when
loading a document.

simplexml_load_string(string data Loads the data contained in the data parameter. The
[, string class_name [, integer class_name parameter allows the returned object to
options]]) be instantiated as the specified class rather than a

SimpleXMLElement, as long as the class inherits from
SimpleXMLElement. The options parameter, added in
PHP 5.1, allows the use of LIBXML constants appropriate
when loading a document.

Table B-15. SimpleXMLElement Methods

Name Description

__construct(string data) Constructor for SimpleXMLElement. The data parameter
is a string containing an XML document and is used to
create the XML tree within the returned object.

asXML([string uri]) Returns a well-formed XML string based on the
SimpleXMLElement.

attributes([string ns]) Returns a SimpleXMLElement for the attributes of an ele-
ment. The ns parameter specifies a namespace for the
attributes to be retrieved.

children([string ns]) Returns a SimpleXMLElement for the children of an element.
The ns parameter specifies a namespace for the children to
be retrieved.

xpath(string path) Runs XPath query on XML data returning the results in an
array.

registerXPathNamespace(string Registers a namespace and associated prefix that can be
prefix, string namespace) used when performing XPath queries. This method was

added in PHP 5.1.

Continued

APPENDIX B ■ EXTENSION APIS 853

6331_appB_final.qxd 2/16/06 5:13 PM Page 853

Table B-15. Continued

Name Description

getDocNamespaces([bool recursive]) Returns an array containing all namespace declarations
defined on the document element. When recursive is
passed as TRUE, all namespace declarations in the entire
document are returned. The array is an associative array
using the namespace prefix as the key. Any redefined pre-
fixes further in the tree when using this method recursively
are not returned in the array, because their first definition
takes precedence. Default namespace declarations do not
have a prefix, so an empty string is used as the key in the
array. This method was added in PHP 5.1.2.

getNamespaces([bool recursive]) Returns an array containing all namespaces in use for the
current element or attribute. When the recursive parame-
ter is set to TRUE, all namespaces for child nodes are
returned as well. The array is an associative array using the
namespace prefix as the key. Any redefined prefixes further
in the tree when using this method recursively are not
returned in the array, because their first definition takes
precedence. Default namespaces do not have a prefix, so
an empty string is used as the key in the array. This method
was added in PHP 5.1.2.

DOM
The DOM extension, covered in Chapter 6, is a tree-based parser that offers the most flexibility
and functionality to manipulate an XML document. As you can see from its API, it is also the
most complex extension to use. Table B-16 lists the DOM node type constants, Table B-17 lists
the DOM exception code constants, and Table B-18 lists the DOM functions.

Table B-16. DOM Node Type Constants

Name Description

XML_ELEMENT_NODE The node is a DOMElement.

XML_ATTRIBUTE_NODE The node is a DOMAttr.

XML_TEXT_NODE The node is a DOMText.

XML_CDATA_SECTION_NODE The node is a DOMCharacterData.

XML_ENTITY_REF_NODE The node is a DOMEntityReference.

XML_ENTITY_NODE The node is a DOMEntity.

XML_PI_NODE The node is a DOMProcessingInstruction.

XML_COMMENT_NODE The node is a DOMComment.

XML_DOCUMENT_NODE The node is a DOMDocument.

XML_DOCUMENT_TYPE_NODE The node is a DOMDocumentType.

XML_DOCUMENT_FRAG_NODE The node is a DOMDocumentFragment.

XML_NOTATION_NODE The node is a DOMNotation.

XML_HTML_DOCUMENT_NODE The node is a DOMDocument containing an HTML document.

APPENDIX B ■ EXTENSION APIS854

6331_appB_final.qxd 2/16/06 5:13 PM Page 854

Table B-17. DOM Exception Code Constants

Name Description

DOM_INDEX_SIZE_ERR Indicates whether the index or size is negative or greater
than the allowed value.

DOMSTRING_SIZE_ERR Indicates whether the specified range of text does not fit into
a DOMString.

DOM_HIERARCHY_REQUEST_ERR Indicates whether any node is inserted where it doesn’t
belong.

DOM_WRONG_DOCUMENT_ERR Indicates whether a node is used in a different document
than the one that created it.

DOM_INVALID_CHARACTER_ERR Indicates whether an invalid or illegal character is specified,
such as in a name.

DOM_NO_DATA_ALLOWED_ERR Indicates whether data is specified for a node that does not
support data.

DOM_NO_MODIFICATION_ALLOWED_ERR Indicates whether an attempt is made to modify an object
where modifications are not allowed.

DOM_NOT_FOUND_ERR Indicates whether an attempt is made to reference a node in
a context where it does not exist.

DOM_NOT_SUPPORTED_ERR Indicates whether the implementation does not support the
requested type of object or operation.

DOM_INUSE_ATTRIBUTE_ERR Indicates whether an attempt is made to add an attribute
that is already in use elsewhere.

DOM_INVALID_STATE_ERR Indicates whether an attempt is made to use an object that
is not, or is no longer, usable.

DOM_SYNTAX_ERR Indicates whether an invalid or illegal string is specified.

DOM_INVALID_MODIFICATION_ERR Indicates whether an attempt is made to modify the type
of the underlying object.

DOM_NAMESPACE_ERR Indicates whether an attempt is made to create or change an
object in a way that is incorrect with regard to namespaces.

DOM_INVALID_ACCESS_ERR Indicates whether a parameter or an operation is not
supported by the underlying object.

DOM_VALIDATION_ERR Indicates whether a call to a method such as insertBefore
or removeChild would make the node invalid with respect to
“partial validity.” This exception would be raised, and the
operation would not be done.

Table B-18. DOM Functions

Function Description

dom_import_simplexml(SimpleXMLElement node) Imports a SimpleXMLElement and returns the
corresponding DOMNode. This function per-
forms a zero-copy import.

APPENDIX B ■ EXTENSION APIS 855

6331_appB_final.qxd 2/16/06 5:13 PM Page 855

DOMException
The DOMException class inherits from the built-in Exception class. When an exception error
occurs, according to the DOM specifications, DOM throws a DOMException, unless error han-
dling has been changed using the DOMDocument strictErrorChecking property. This allows a
developer to explicitly catch and handle a DOMException. The value of the code property corre-
sponds to one of the DOMException code constants.

DOMImplementation
Table B-19 lists the DOMImplementation methods.

Table B-19. DOMImplementation Methods

Method Description

createDocument([string namespaceURI[, Creates a new DOMDocument object. This method is
string qualifiedName[, DOMDocumentType typically used to create a document containing
doctype]]]) a doctype.

createDocumentType(string qualifiedName, Creates an empty DOMDocumentType object that
string publicId, string systemId) can be used with the createDocument() method.

hasFeature(string feature, string version) Tests whether the DOM implementation imple-
ments a specific feature for a specified version.

DOMXPath
Table B-20 lists the DOMXPath methods.

Table B-20. DOMXPath Methods

Method Description

__construct(DOMDocument doc) Constructs a new DOMXPath object for the given
DOMDocument.

registerNamespace(string prefix, string Registers a prefix and namespace that can be used
uri) in the XPath expressions.

query(string expr [,DOMNode context]) Evaluates the given XPath expression and returns
a DOMNodeList containing the resulting nodes.
A DOMNode can be passed to set the initial context.

evaluate(string expr [,DOMNode context]) Evaluates the given XPath expression and returns a
typed result if possible. A DOMNode can be passed to
set the initial context. This method was added in
PHP 5.1.

DOMNodeList
The DOMNodeList class has a single read-only property called length. It returns the number of
nodes contained within the list. Nodes are accessed using the item(integer index) method.
The index parameter specifies the zero-based index of the node to retrieve from the list.

APPENDIX B ■ EXTENSION APIS856

6331_appB_final.qxd 2/16/06 5:13 PM Page 856

DOMNamedNodeMap
The DOMNamedNodeMap class has a single read-only property called length. It returns the number
of nodes contained within the map. This class defines three methods to retrieve nodes (see
Table B-21).

Table B-21. DOMNamedNodeMap Methods

Method Description

getNamedItem(string name) Retrieves a node specified by name.

getNamedItemNS(string namespaceURI, Retrieves a node specified by local name and
string localName) namespace URI.

item(integer index) The index parameter specifies the zero-based index
of the node to retrieve from the list.

DOMNode
The DOMNode class is the base class for the majority of the rest of the DOM classes. Table B-22
lists its properties, and Table B-23 lists its methods.

Table B-22. DOMNode Properties

Name Type Read-Only? Description

nodeName string Yes Returns the more accurate name for the
current node type.

nodeValue string No The value of this node, depending on its
type.

nodeType integer Yes Gets the type of the node. This is one of the
predefined XML_xxx_NODE constants.

parentNode DOMNode Yes The parent of this node.

childNodes DOMNodeList Yes A DOMNodeList that contains all children of
this node. If there are no children, this is an
empty DOMNodeList.

firstChild DOMNode Yes The first child of this node. If there is no
such node, this returns NULL.

lastChild DOMNode Yes The last child of this node. If there is no
such node, this returns NULL.

previousSibling DOMNode Yes The node immediately preceding this
node. If there is no such node, this returns
NULL.

nextSibling DOMNode Yes The node immediately following this node.
If there is no such node, this returns NULL.

attributes DOMNamedNodeMap Yes A DOMNamedNodeMap containing the
attributes of this node (if it is a DOMElement)
or NULL otherwise.

ownerDocument DOMDocument Yes The DOMDocument object associated with
this node.

Continued

APPENDIX B ■ EXTENSION APIS 857

6331_appB_final.qxd 2/16/06 5:13 PM Page 857

Table B-22. Continued

Name Type Read-Only? Description

namespaceURI string Yes The namespace URI of this node or NULL if
it is unspecified.

prefix string No The namespace prefix of this node or NULL
if it is unspecified.

localName string Yes Returns the local part of the qualified name
of this node.

baseURI string Yes The absolute base URI of this node or NULL
if the implementation wasn’t able to obtain
an absolute URI.

textContent string No This attribute returns the text content of
this node and its descendants.

Table B-23. DOMNode Methods

Method Description

appendChild(DomNode newChild) Adds the newChild node to the end of the children.

cloneNode(Boolean deep) Clones a node. If deep is specified, then all child nodes are
also cloned.

hasAttributes() Returns a Boolean indicating whether the node has
attributes.

hasChildNodes() Returns a Boolean indicating whether the node has
children.

isDefaultNamespace(string Returns a Boolean indicating whether the supplied
namespaceURI) namespaceURI is the default namespace in scope for the

node.

insertBefore(DomNode newChild, Adds a new child node before a reference node.
DomNode refChild)

isSameNode(DomNode other) Indicates whether the current node is the same node being
passed to method.

isSupported(string feature, string Checks whether the feature is supported for specified
version) version.

lookupNamespaceURI(string prefix) Returns the namespace URI currently associated with the
supplied prefix.

lookupPrefix(string namespaceURI) Gets the namespace prefix of the node based on the
namespace URI.

normalize() Normalizes the node.

removeChild(DomNode oldChild) Removes the child node from list of children.

replaceChild(DomNode newChild, Replaces a child node with a different node. This method
DomNode oldChild) returns the node that was replaced.

APPENDIX B ■ EXTENSION APIS858

6331_appB_final.qxd 2/16/06 5:13 PM Page 858

DOMDocumentFragment
DOMDocumentFragment extends DOMNode (see Table B-24).

Table B-24. DOMDocumentFragment Methods

Method Description

__construct() Constructs a new DOMDocumentFragment element that is not associated
with a document.

appendXML(string data) Builds an XML tree based on the input data within a DOMDocument➥
Fragment. This function was added in PHP 5.1.

DOMDocument
DOMDocument extends DOMNode. Table B-25 lists the DOMDocument properties, and Table B-26 lists
the DOMDocument methods.

APPENDIX B ■ EXTENSION APIS 859

Table B-25. DOMDocument Properties

Name Type Read-Only? Description

actualEncoding string Yes Indicates the encoding of the document.

doctype DOMDocumentType Yes Indicates the document type declaration asso-
ciated with this document.

documentElement DOMElement Yes This is a convenience attribute that allows
direct access to the child node that is the doc-
ument element of the document.

documentURI string No Indicates the location of the document or NULL
if undefined.

encoding string No Indicates the current encoding of the document.

formatOutput bool No During serialization, this property specifies
whether line feeds and indentation should be
added. The default value is FALSE.

implementation DOMImplementation Yes Indicates that the DOMImplementation object
handles this document.

preserveWhiteSpace bool No Does not remove redundant whitespace. The
default is TRUE.

recover bool No Indicates the parser recover on a fatal error
while loading the document. The default is
FALSE.

resolveExternals bool No Loads external entities from a doctype decla-
ration. This is useful for including character
entities in your XML document.

standalone bool No Indicates the value of the standalone attribute
from the XML declaration.

strictErrorChecking bool No Throws DOMException on errors. The default is
TRUE.

Continued

6331_appB_final.qxd 2/16/06 5:13 PM Page 859

Table B-25. Continued

Name Type Read-Only? Description

substituteEntities bool No Determines whether the parser should
substitute entities with their content when
loading a document.

validateOnParse bool No Loads and validates against the DTD. The
default is FALSE.

version string No Indicates the XML version being used in the
document.

xmlEncoding string Yes Specifies, as part of the XML declaration, the
encoding of this document. This is NULL when
unspecified or when it is not known, such as
when the document was created in memory.

xmlStandalone bool No Specifies, as part of the XML declaration,
whether this document is stand-alone. This is
FALSE when unspecified.

xmlVersion string No Specifies, as part of the XML declaration, the
version number of this document. If there is
no declaration and if this document supports
the XML feature, the value is 1.0.

APPENDIX B ■ EXTENSION APIS860

Table B-26. DOMDocument Methods

Method Description

__construct([string version[, string Creates a new DOMDocument object.
encoding]])

createAttribute(string name) Creates a new attribute associated with the
DOMDocument.

createAttributeNS(string namespaceURI, Creates a new attribute node with an associated
string qualifiedName) namespace associated with the DOMDocument.

createCDATASection(string data) Creates a new CDATA node associated with the
DOMDocument.

createComment(string data) Creates a new comment node associated with the
DOMDocument.

createDocumentFragment() Creates a new document fragment associated with the
DOMDocument.

createElement(string tagName [, string Creates a new element node associated with the
value]) DOMDocument.

createElementNS(string namespaceURI, Creates a new element node with an associated
string qualifiedName [,string value]) namespace associated with the DOMDocument.

createEntityReference(string name) Creates a new entity reference node associated with
the DOMDocument.

createProcessingInstruction(string Creates a new PI node associated with the
target[, string data]) DOMDocument.

createTextNode(string data) Creates a new text node associated with the
DOMDocument.

getElementById(string elementId) Searches for an element with a certain ID.

6331_appB_final.qxd 2/16/06 5:13 PM Page 860

Method Description

getElementsByTagName(string tagname) Searches for all elements with the given tag name.

getElementsByTagNameNS(string Searches for all elements with given tag name in
namespaceURI, string localName) specified namespace.

importNode(DOMNode importedNode, Imports a node into current document.
Boolean deep)

load(string URI [, integer options]) Loads XML from a file.

loadHTML(string source) Loads HTML from a string.

loadHTMLFile(string URI) Loads HTML from a file.

loadXML(string data [, integer Loads XML from a string.
options])

normalizeDocument() Normalizes the document.

relaxNGValidate(string filename) Performs RELAX NG validation on the document
loading the schema from a URI.

relaxNGValidateSource(string data) Performs RELAX NG validation on the document
loading the schema from a string.

save(string URI[, integer options]) Dumps the internal XML tree back into a file.

saveHTML(string source) Dumps the internal document into a string using
HTML formatting.

saveHTMLFile(string URI) Dumps the internal document into a file using HTML
formatting.

saveXML([node n [, integer options]]) Dumps the internal XML tree back into a string.

schemaValidate(string filename) Validates a document based on a schema loaded from
a URI.

schemaValidateSource(string data) Validates a document based on a schema.

validate() Validates the document based on its DTD.

xinclude([integer options]) Substitutes XIncludes in a DOMDocument object.

registerNodeClass(string baseclass, Registers classes that will be used to create DOM
string extendedclass) objects rather than the internal ones. This method is in

CVS for the upcoming PHP 6.

DOMAttr
DOMAttr extends DOMNode. Table B-27 lists the DOMAttr properties, and Table B-28 lists the
DOMAttr methods.

Table B-27. DOMAttr Properties

Name Type Read-Only? Description

name string Yes The name of the attribute

ownerElement DOMElement Yes The element that contains the attribute

value string No The value of the attribute

APPENDIX B ■ EXTENSION APIS 861

6331_appB_final.qxd 2/16/06 5:13 PM Page 861

Table B-28. DOMAttr Methods

Method Description

__construct(string name, [string value]) Creates a DOMAttr with a specified name and
optional value

isId() Returns a Boolean indicating whether the attribute
is an ID

DOMElement
DOMElement extends DOMNode. Table B-29 lists the DOMElement methods, and Table B-30 lists the
DOMElement methods.

Table B-29. DOMElement Properties

Name Type Read-Only? Description

tagName string Yes The element name

Table B-30. DOMElement Methods

Method Description

__construct(string name, [string value Creates a DOMElement object with a specified name
[, string uri]]) and optionally a value and namespace URI.

getAttribute(string name) Returns the value of the attribute based on the
name.

getAttributeNode(string name) Returns the attribute node with the specified name.

getAttributeNodeNS(string namespaceURI, Returns the attribute node with given namespace
string localName) and name.

getAttributeNS(string namespaceURI, Returns the value of the attribute based on
string localName) namespace URI and name.

getElementsByTagName(string name) Gets elements by tag name.

getElementsByTagNameNS(string Gets elements by namespaceURI and localName.
namespaceURI, string localName)

hasAttribute(string name) Indicates whether the specified attribute exists.

hasAttributeNS(string namespaceURI, Indicates whether the specified attribute exists
string localName) within a namespace.

removeAttribute(string name) Removes the attribute by name.

removeAttributeNode(DOMAttr oldAttr) Removes the attribute from the element.

removeAttributeNS(string namespaceURI, Removes the attribute by name and namespace.
string localName)

setAttribute(string name, string value) Adds a new attribute with the specified name and
value.

setAttributeNode(DOMAttr newAttr) Adds a new attribute node to the element.

setAttributeNodeNS(DOMAttr newAttr) Adds a new attribute node to the element.

APPENDIX B ■ EXTENSION APIS862

6331_appB_final.qxd 2/16/06 5:13 PM Page 862

Method Description

setAttributeNS(string namespaceURI, Adds a new attribute in the specified namespace
string qualifiedName, string value) with fully qualified name and value.

setIdAttribute(string name, Boolean isId) Sets IDness of an attribute by name. This method is
implemented only in CVS for upcoming PHP 6.

setIdAttributeNS(string namespaceURI, Sets IDness of an attribute by name and namespace.
string localName, Boolean isId) This method is implemented only in CVS for

upcoming PHP 6.

setIdAttributeNode(attr idAttr, Boolean Set IDness of an attribute node. This method is
isId) implemented only in CVS for upcoming PHP 6.

DOMCharacterData
DOMCharacterData extends DOMNode. Table B-31 lists DOMCharacterData properties, and
Table B-32 lists DOMCharacterData methods.

Table B-31. DOMCharacterData Properties

Name Type Read-Only? Description

data string No The contents of the node

length integer Yes The length of the contents

Table B-32. DOMCharacterData Methods

Method Description

appendData(string arg) Appends a string to the end of the character data
of the node

deleteData(integer offset, integer count) Removes a range of characters from the node
starting at the offset

insertData(integer offset, string arg) Inserts a string at the specified 16-bit unit offset

replaceData(integer offset, integer count, Replaces a substring within the DOMCharacterData
string arg) node

substringData(integer offset, integer count) Extracts a range of data from the node

DOMComment
DOMComment extends DOMCharacterData. Table B-33 lists the DOMComment method.

Table B-33. DOMComment Methods

Method Description

__construct([string value]) Creates a DOMComment object with the specified value

APPENDIX B ■ EXTENSION APIS 863

6331_appB_final.qxd 2/16/06 5:13 PM Page 863

DOMText
DOMText extends DOMCharacterData. Table B-34 lists the DOMText properties, and Table B-35 lists
the DOMText methods.

Table B-34. DOMText Properties

Name Type Read-Only? Description

wholeText string Yes Returns all text of text nodes logically adjacent to this node,
concatenated in document order

Table B-35. DOMText Methods

Method Description

__construct([string value]) Creates a DOMText object with specified value.

splitText(integer offset) Splits the text of a DOMText node at offset, creating an adjacent
DOMText node.

isWhitespaceInElementContent() Returns a Boolean indicating whether the node contains only
whitespace.

isElementContentWhitespace() This method is depreciated by isWhitespaceInElement➥
Content().

DOMCdataSection
DOMCdataSection extends DOMText. Table B-36 lists the DOMCdataSection method.

Table B-36. DOMCdataSection Methods

Method Description

__construct([string value]) Creates a DOMCdataSection object with the specified value

DOMDocumentType
DOMDocumentType extends DOMNode. Table B-37 lists the DOMDocumentType properties.

Table B-37. DOMDocumentType Properties

Name Type Read-Only? Description

publicId string Yes The public identifier of the external subset.

systemId string Yes The system identifier of the external subset.
This can be an absolute or relative URI.

name string Yes The name of DTD, that is, the name imme-
diately following the DOCTYPE keyword.

entities DOMNamedNodeMap Yes A DOMNamedNodeMap containing the general
entities, both external and internal,
declared in the DTD.

APPENDIX B ■ EXTENSION APIS864

6331_appB_final.qxd 2/16/06 5:13 PM Page 864

Name Type Read-Only? Description

notations DOMNamedNodeMap Yes A DOMNamedNodeMap containing the notations
declared in the DTD.

internalSubset string Yes The internal subset as a string, or NULL if
there is none. This does not contain the
delimiting square brackets.

DOMNotation
DOMNotation extends DOMNode. Table B-38 lists the DOMNotation properties.

Table B-38. DOMNotation Properties

Name Type Read-Only? Description

publicId string Yes The public identifier of the DOMNotation

systemId string Yes The system identifier of the DOMNotation

DOMEntity
DOMEntity extends DOMNode. Table B-39 lists the DOMEntity properties.

Table B-39. DOMEntity Properties

Name Type Read-Only? Description

publicId string Yes The public identifier associated with the entity if
specified and NULL otherwise.

systemId string Yes The system identifier associated with the entity if
specified and NULL otherwise. This can be an
absolute URI or relative.

notationName string Yes For unparsed entities, the name of the notation for
the entity. For parsed entities, this is NULL.

DOMEntityReference
DOMEntityReference extends DOMNode. Table B-40 lists the DOMEntityReference method.

Table B-40. DOMEntityReference Methods

Method Description

__construct([string name]) Creates a DOMEntityReference object with specified name

DOMProcessingInstruction
DOMProcessingInstruction extends DOMNode. Table B-41 lists the DOMProcessingInstruction
properties, and Table B-42 lists the DOMProcessingInstruction method.

APPENDIX B ■ EXTENSION APIS 865

6331_appB_final.qxd 2/16/06 5:13 PM Page 865

Table B-41. DOMProcessingInstruction Properties

Name Type Read-Only? Description

target string Yes The target name of the PI

data string No The content of the PI

Table B-42. DOMProcessingInstruction Methods

Method Description

__construct(string name [, string value]) Creates a DOMProcessingInstruction object with
the specified target name and optionally speci-
fies the value

XSL
The XSL extension, detailed in Chapter 10, implements the XSL standard and performs XSL
transformations. The functionality of this extension is provided through the XSLTProcessor
class. Table B-43 lists the XSL constants, Table B-44 lists the XSLTProcessor properties, and
Table B-45 lists the XSLTProcessor methods.

Table B-43. XSL Constants

Name Value Description

XSL_CLONE_AUTO 0 Allows XSL to determine whether document passed to
importStylesheet() needs to be cloned

XSL_CLONE_NEVER -1 Never clones document passed to importStylesheet()

XSL_CLONE_ALWAYS 1 Always clones document passed to importStylesheet()

Table B-44. XSLTProcessor Properties

Name Default Value Description

cloneDocument XSL_CLONE_AUTO This property determines how the cloning of a document
is handled when passed to the importStylesheet. It may
take any of the values from Table B-43.

Table B-45. XSLTProcessor Methods

Name Description

getParameter(string namespace, Returns the value of the parameter specified by name. The
string name) namespace parameter is currently unused.

hasExsltSupport() Returns a Boolean indicating whether PHP has EXSLT
support.

importStylesheet(DOMDocument doc) Imports a style sheet from a DOMDocument object.

APPENDIX B ■ EXTENSION APIS866

6331_appB_final.qxd 2/16/06 5:13 PM Page 866

Name Description

registerPHPFunctions([mixed Enables the ability to use PHP functions as XSLT functions.
function]) The function parameter was added in PHP 5.1 and allows

the available functions to be called to be limited to those
specified in the function parameter. It can be a string to set
a single function at a time or an array to set multiple func-
tions at once.

removeParameter(string namespace, Removes a parameter. Returns a Boolean indicating success
string name) or failure.

setParameter(string namespace, Sets value for a parameter. In PHP 5.0 parameters must be
mixed name [, string value]) passed one at a time passing the namespace: a string con-

taining the name of the parameter and a string containing
the value. In PHP 5.1 it is possible to set multiple parame-
ters at once by passing the namespace and an associative
array containing the parameter names, where the names
are the keys and their corresponding values. Returns a
Boolean indicating success or failure.

transformToDoc(DOMDocument doc) Transforms the input DOMDocument containing the XML data
to a resulting DOMDocument.

transformToURI(DOMDocument doc, Transforms the input DOMDocument containing the XML data
string uri) to URI and returning the number of bytes written to the URI.

transformToXML(DOMDocument doc) Transforms the input DOMDocument containing the XML data
to a resulting string.

SOAP
The SOAP extension, covered in Chapter 18, provides functionality allowing for the consump-
tion and creation of SOAP-based Web services. Table B-46 lists the SOAP options constants,
Table B-47 lists the SOAP encoding constants, and Table B-48 lists the SOAP functions.

Table B-46. SOAP Options Constants

Name Name

SOAP_1_1 SOAP_ACTOR_NEXT

SOAP_1_2 SOAP_ACTOR_NONE

SOAP_PERSISTENCE_SESSION SOAP_ACTOR_UNLIMATERECEIVER

SOAP_PERSISTENCE_REQUEST SOAP_COMPRESSION_ACCEPT

SOAP_FUNCTIONS_ALL SOAP_COMPRESSION_GZIP

SOAP_ENCODED SOAP_COMPRESSION_DEFLATE

SOAP_LITERAL SOAP_AUTHENTICATION_BASIC

SOAP_RPC SOAP_AUTHENTICATION_DIGEST

SOAP_DOCUMENT

APPENDIX B ■ EXTENSION APIS 867

6331_appB_final.qxd 2/16/06 5:13 PM Page 867

Table B-47. SOAP Encoding Constants

Name Name Name

UNKNOWN_TYPE XSD_GMONTHDAY XSD_NONPOSITIVEINTEGER

XSD_ANYTYPE XSD_GYEAR XSD_NORMALIZEDSTRING

XSD_ANYURI XSD_GYEARMONTH XSD_NOTATION

XSD_ANYXML XSD_HEXBINARY XSD_POSITIVEINTEGER

XSD_BASE64BINARY XSD_ID XSD_QNAME

XSD_BOOLEAN XSD_IDREF XSD_SHORT

XSD_BYTE XSD_IDREFS XSD_STRING

XSD_DATE XSD_INT XSD_TIME XSD_TOKEN

XSD_DATETIME XSD_INTEGER XSD_UNSIGNEDBYTE

XSD_DECIMAL XSD_LANGUAGE XSD_UNSIGNEDINT

XSD_DOUBLE XSD_LONG XSD_UNSIGNEDLONG

XSD_DURATION XSD_NAME XSD_UNSIGNEDSHORT

XSD_ENTITY XSD_NCNAME SOAP_ENC_OBJECT

XSD_ENTITIES XSD_NEGATIVEINTEGER SOAP_ENC_ARRAY

XSD_FLOAT XSD_NMTOKEN XSD_1999_TIMEINSTANT

XSD_GDAY XSD_NMTOKENS XSD_NAMESPACE

XSD_GMONTH XSD_NONNEGATIVEINTEGER XSD_1999_NAMESPACE

Table B-48. SOAP Functions

Function Description

use_soap_error_handler([bool handler]) This function disables SOAP error handling and
uses the current PHP error handler. The SOAP error
handler is enabled by default when working with a
SoapClient or SoapServer.

is_soap_fault(zval data) Returns a Boolean indicating whether data is a
SoapFault.

SoapVar
The SoapVar class defines only a constructor and is used to type and encode data:

__construct(mixed data, int encoding [, string type_name [,
string type_namespace [, string node_name [, string node_namespace]]]])

Table B-49 lists the SoapVar constructor parameters.

APPENDIX B ■ EXTENSION APIS868

6331_appB_final.qxd 2/16/06 5:13 PM Page 868

Table B-49. SoapVar Constructor Parameters

Parameter Description

data The data to pass or return

encoding The encoding ID, one of the SOAP encoding constants

type_name The type name

type_namespace The type namespace

node_name The XML node name

node_namespace The XML node namespace

SoapParam
The SoapParam class creates a name-based parameter. This class implements only a
constructor:

__construct(mixed data, string name)

Table B-50 lists the SoapParam constructor parameters.

Table B-50. SoapParam Constructor Parameters

Parameter Description

data The data to pass or return. Typically this is a SoapVar object.

name The name of the parameter.

SoapHeader
The SoapHeader class creates SOAP header entities to be added to the SOAP message within
the SOAP header:

__construct(string namespace, string name [, mixed data [, bool mustUnderstand [,
mixed actor]]])

Table B-51 lists the SoapHeader constructor parameters.

Table B-51. SoapHeader Constructor Parameters

Parameter Description

namespace The namespace of the SOAP header element.

name The name of the SOAP header element.

data A SOAP header’s content. It can be a PHP value or a SoapVar object.

mustUnderstand Value of the mustUnderstand attribute of the SOAP header element.

actor Value of the actor attribute of the SOAP header element. This is the URI of the
recipient or one of the SOAP_ACTOR_... constants.

APPENDIX B ■ EXTENSION APIS 869

6331_appB_final.qxd 2/16/06 5:13 PM Page 869

SoapFault
The SoapFault class creates SOAP faults from a server that are returned to the calling client to
be handled:

__construct(string faultcode, string faultstring [, string faultactor [,
mixed detail [, string faultname [, SoapHeader headerfault]]]])

Table B-52 lists the SoapFault constructor parameters.

Table B-52. SoapFault Constructor Parameters

Parameter Description

faultcode The error code of the SoapFault

faultstring The error message of the SoapFault

faultactor A string identifying the actor that caused the error

detail A PHP variable or SoapVar object to pass in the SOAP fault detail

faultname Can be used to select the proper fault encoding from WSDL

headerfault Can be used during SOAP header handling to report an error in the response header

SoapClient
The SoapClient class creates SOAP messages and makes SOAP requests. Table B-53 lists the
SoapClient methods.

Table B-53. SoapClient Methods

Method Description

__construct(mixed wsdl [, array options]) Constructor for SoapClient.

__getLastRequest() Returns a string containing the last SOAP mes-
sage request when the trace option is enabled.

__getLastResponse() Returns a string containing the last SOAP mes-
sage response when the trace option is enabled.

__getLastRequestHeaders() Returns a string containing the last request
headers when the trace option is enabled.

__getLastResponseHeaders() Returns a string containing the last response
headers when the trace option is enabled.

__getFunctions() Returns an array of functions extracted from the
WSDL.

__getTypes() Returns an array of types extracted from the
WSDL.

__doRequest(string request, string This method is called by the SoapClient class
location, string action, int version) when a request is made. Implementing this

method in a subclassed SoapClient object allows
access and modification to the SOAP message
prior to the request being sent to a SOAP server.
When implemented, it is required that the
parent’s __doRequest method be called for the
request to be made.

APPENDIX B ■ EXTENSION APIS870

6331_appB_final.qxd 2/16/06 5:13 PM Page 870

Method Description

__soapCall (string function_name [, array Calls a function by name and returns appro-
arguments [, array options [, mixed priate typed data. This method depreciated
input_headers [, array &output_headers]]]]) __call() in PHP 5.0.2.

__setCookie(string name [, string value]) Sets a cookie that is sent with the request. This
method was added in PHP 5.0.4.

__setLocation([string new_location]) Sets a new URL (endpoint) for the SoapClient.
This method was added in PHP 5.0.4.

__setSoapHeaders(array SoapHeaders) Sets SOAP headers by passing an array of
SoapHeader objects, replacing any previously set
headers. This method was added in PHP 5.0.5.

SoapServer
Table B-54 calls the SoapClient methods.

Table B-54. SoapClient Methods

Method Description

__construct(mixed wsdl [, array Constructor for SoapServer.
options])

setClass(string class_name [, Sets the class and its constructor arguments that will
mixed args]) handle SOAP requests.

addFunction(mixed functions) Registers function handlers either one at a time, by array,
or all at once using SOAP_FUNCTIONS_ALL constant.

getFunctions() Returns an array of functions registered with the server.

handle([string soap_request]) Handles a SOAP request. A SOAP message can be passed
directly rather than retrieved automatically.

setPersistence(int mode) Sets the persistence mode of SoapServer using one of the
persistence constants.

fault(string code, string string Issues a SOAP fault.
[, string actor [, mixed details
[, string name]]])

XMLWriter
The XMLWriter extension, mentioned in Chapter 21, is an API to create XML-serialized XML
documents using a simple interface. It was added to the default PHP distribution in PHP 5.1.2.
It originally was a PECL extension developed for PHP 4.3 using procedural calls, but an object-
oriented interface was added for PHP 5. The API documented here is for the object-oriented
interface using the XMLWriter class. Table B-55 lists the XMLWriter class methods.

APPENDIX B ■ EXTENSION APIS 871

6331_appB_final.qxd 2/16/06 5:13 PM Page 871

Table B-55. XMLWriter Class Methods

Method Description

openUri(string source) Initializes the writer and sets the URI to which the data will be
written.

openMemory() Initializes the writer using memory to provide string output.

outputMemory([bool flush]) Returns the current data in the memory buffer as a string. The
memory buffer can be cleared when flush is passed as TRUE.

flush([bool empty]) Sends the writer buffer to the output. The return type depends
upon the output method being used (memory or URI). The
empty parameter, default FALSE, determines whether the writer
buffer is cleared when data is sent to output.

setIndent(bool indent) Turns indenting on/off. The default setting is off.

setIndentString(string Sets string to use for indenting.
indentString)

startComment() Starts a comment.

endComment() Closes an open comment.

writeComment(string content) Creates a complete comment tag.

StartAttribute(string name) Starts an attribute.

endAttribute() Closes an open attribute.

writeAttribute(string name, Creates a complete attribute with a name and content.
string content)

startAttributeNs(string prefix, Starts a namespaced attribute. libxml 2.6.17 and newer is
string name, string uri) required for this method.

startElement(string name) Starts an element.

endElement() Closes an open element.

startElementNs(string prefix, Starts a namespaced element tag.
string name, string uri)

writeElement(string name, Creates a complete element tag.
string content)

writeElementNs(string prefix, Creates a complete namespace element tag.
string name, string uri,
string content)

startPi(string target) Starts a PI tag.

endPi() Closes an open PI.

writePi(string target, string Creates a complete PI tag.
content)

startCdata() Starts a CDATA section.

endCdata() Closes an open CDATA section.

writeCdata(string content) Creates a complete CDATA section.

text(string content) Writes some text within current context.

startDocument([string version[, Starts a document setting as version, encoding, and standalone.
string encoding[, string
standalone]]])

APPENDIX B ■ EXTENSION APIS872

6331_appB_final.qxd 2/16/06 5:13 PM Page 872

Method Description

endDocument() Closes an open document.

startDtd(string name[, string Starts a DTD tag.
pubid[, string sysid]])

endDtd() Closes an open DTD tag.

writeDtd(string name[, string Creates a complete DTD tag.
pubid[, string sysid[, string
subset]]])

startDtdElement(string name) Starts a DTD element.

endDtdElement() Closes an open DTD element.

APPENDIX B ■ EXTENSION APIS 873

6331_appB_final.qxd 2/16/06 5:13 PM Page 873

6331_appB_final.qxd 2/16/06 5:13 PM Page 874

Features and Changes
in PHP 6

Technology is in a continual state of perpetual motion. It is nearly impossible to keep up
with all the changes and new features. This also holds true within PHP. During the time it took
to write the chapters in this book, PHP has added new functionality and has fixed or changed
some behavior. This appendix addresses some of these changes and introduces some new
functionality that will be released with PHP 6.

■Note Although most of the new features mentioned in this chapter are currently planned to be released in
PHP 6, it is possible they may be introduced in an earlier version depending upon the PHP release schedule.

xml Extension
Chapter 8 pointed out the problems of using default handlers. When using the xml extension
under PHP 4 and implementing a default handler, any data not handled by any other handler
will use the default handler. Under PHP 5, when defined, the default handler will process only
comments and entities. With the release of PHP 5.1, this has changed. Although XML declara-
tions and DTDs are still not handled, other types of data, otherwise unhandled in PHP 5.0, are
now processed by the default handler. Listing C-1 demonstrates how to parse a document
containing various node types using only a default handler. The results shown in Listings C-2
and C-3 demonstrate the difference in output when the code is executed in PHP 5.0 and in
PHP 5.1.

Listing C-1. Parsing XML Using Default Handler

<?php
function defaultData($parser, $data) {

print "$data";
}

875

A P P E N D I X C

■ ■ ■

6331_appC_final.qxd 2/16/06 5:15 PM Page 875

$xmldata = '<?xml version="1.0"?>
<root att1="attval">

<e1>some content</e1>
<!-- A comment -->
<?php echo "Processing Instruction"; ?>
<e2/>

</root>';
$xml_parser = xml_parser_create();
xml_parser_set_option ($xml_parser, XML_OPTION_CASE_FOLDING, 0);
xml_set_default_handler($xml_parser, "defaultData");
xml_parse($xml_parser, $xmldata, true);
?>

Listing C-2. Results Under PHP 5.0

<!-- A comment -->

Listing C-3. Results Under PHP 5.1

<root att1="attval">
<e1>some content</e1>
<!-- A comment -->
<?php echo "Processing Instruction"; ?>
<e2></e2>

</root>

XMLReader Extension
Once PHP 6 is released, XMLReader will provide some new functionality. Probably the most
notable feature is the ability to specify the encoding of the XML and parser options from the
libxml extension. For example:

boolean open(string URI [, string encoding [, int options]])
boolean XML(string source [, string encoding [, int options]])

The ability to specify an encoding might not seem all that exciting, but being able to
specify parser options now means that XMLReader can perform an XInclude as it processes
a document. For example, Listing C-5 shows how to process a document that contains an
xinclude call to retrieve only a specific course element from the document in Listing C-4.
When the first XML document contained in Listing C-5 is loaded into the XMLReader object,
the LIBXML_XINCLUDE parser option is specified, resulting in the XMLReader object also pro-
cessing the specified course element, shown by the results in Listing C-5.

APPENDIX C ■ FEATURES AND CHANGES IN PHP 6876

6331_appC_final.qxd 2/16/06 5:15 PM Page 876

Listing C-4. External Document courses.xml

<courses>
<course cid="c1">

<title>Basic Languages</title>
<description>Introduction to Languages</description>
<credits>1.5</credits>
<lastmodified>2004-09-01T11:13:01</lastmodified>

</course>
<course cid="c2">

<title>French I</title>
<description>Introduction to French</description>
<credits>3.0</credits>
<lastmodified>2005-06-01T14:21:37</lastmodified>

</course>
</courses>

Listing C-5. XMLReader Using XInclude and Resulting Output

<?php
$xincdata = '<?xml version="1.0" ?>
<academic xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="courses.xml" parse="xml"
xpointer="xpointer(/courses/course[@cid='."'c1'".'])">

<xi:fallback>Element not found</xi:fallback>
</xi:include>

</academic>';

$reader = new XMLReader();

/* Load the XML document, and pass the LIBXML_XINCLUDE parser option */
$reader->XML($xincdata, NULL, LIBXML_XINCLUDE);
while ($reader->read()) {

if ($reader->nodeType == XMLReader::ELEMENT) {
print $reader->localName;
/* If element is named title, move to text node and output contents */
if ($reader->localName == 'title') {

$reader->read();
print ": ".$reader->value;

}
print "\n";
}

}
?>

APPENDIX C ■ FEATURES AND CHANGES IN PHP 6 877

6331_appC_final.qxd 2/16/06 5:15 PM Page 877

academic
course
title: Basic Languages
description
credits
lastmodified

Three other new methods allow for text content to be accessed in a simpler manner. These
new methods, shown in Table C-1, are available only when PHP is built with libxml2-2.6.20 and
higher. None of the methods take any parameters, and all return a string.

Table C-1. New XMLReader Methods for PHP 6

Method Description

readInnerXml() Returns a string containing the contents of the current node, which includes
child nodes and markup.

readOuterXml() Returns a string containing the current node and all of its contents, which
includes child nodes and markup.

readString() Returns a string containing the contents an element or text node. When posi-
tioned on an element, the content of all text and CDATA nodes within the
subtree of the element are concatenated together in the resulting string.

The example in Listing C-6 uses XMLReader to process a document containing various
node types. I have not modified the results in order to demonstrate that all text nodes, includ-
ing the whitespaces, are returned in the resulting string from each of the method calls.

Listing C-6. Example Calling readString(), readInnerXml(), and readOuterXml()

<?php
$xmldata = '<?xml version="1.0"?>
<root att1="attval">

<e1>some content</e1>
<!-- A comment -->
<?php echo "Processing Instruction"; ?>
<e2/>
<![CDATA[more content]]>

</root>';

$reader = new XMLReader();
$reader->XML($xmldata);
while ($reader->read()) {

if ($reader->nodeType == XMLReader::ELEMENT) {
switch ($reader->localName) {

case 'root':
print "readInnerXML():\n";
print $reader->readInnerXml()."\n";
print "readString():\n";

APPENDIX C ■ FEATURES AND CHANGES IN PHP 6878

6331_appC_final.qxd 2/16/06 5:15 PM Page 878

print $reader->readString()."\n";
break;

case 'e1':
print "readOuterXML():\n";
print $reader->readOuterXML()."\n";

}
}

}
?>

readInnerXML():

<e1>some content</e1>
<!-- A comment -->
<?php echo "Processing Instruction"; ?>
<e2/>
<![CDATA[more content]]>

readString():

some content

more content

readOuterXML():
<e1>some content</e1>

SimpleXML Extension
No time has been wasted with the SimpleXML extension. As of PHP 5.1.2, two new methods
have been introduced, getNamespaces() and getDocNamespaces(), and the resulting structure
from calling var_dump() with a SimpleXMLElement has changed for the better.

Working with namespaced documents is probably the area that causes the most problems
for developers working with SimpleXML. To access an element or attribute within a name-
space, and not the default namespace, you must specify the namespace URI. The issue faced
is that it is up to the developer to remember all the namespaces used throughout the docu-
ment. The only way to introspect the document for namespaces is to import it into DOM and
use XPath to locate namespaces. That is, that was the only way until now.

The getNamespaces() and getDocNamespaces() methods return an associative array of
namespaces where the prefix is the key and the namespace URI is the value. The difference
between the two methods is the scope of the document that is searched and the type of name-
space returned in the array. The getNamespaces() method operates on the current element.
The namespace URI for which the element resides in, if any, is added in the returned array.
The getDocNamespaces() method uses the document element as the starting point rather than

APPENDIX C ■ FEATURES AND CHANGES IN PHP 6 879

6331_appC_final.qxd 2/16/06 5:15 PM Page 879

the element from which it is called. This method not only adds the namespace of the docu-
ment element but also any namespaces that have been declared on the document element.

■Note Prefixes are not used with default namespaces. If a default namespace is added to the return array
by either of these functions, the key for the item is an empty string.

These methods also take an optional Boolean parameter, recursive. When passed as TRUE,
both methods will also add namespaces found within the starting element’s subtree to the
array as well. The use of the recursive parameter might give you pause. It is perfectly legal for
prefixes to change their namespace associations within a document. Even default namespaces
can be changed for different scopes. Then how do you deal with the issue of using prefixes for
the array keys?

When working with SimpleXML, it naturally would be more important to know about
namespaces within an element that are closer to the element rather than ones that have been
redefined and reside further down in the subtree. The returned array, when called recursively,
returns the first namespace URIs encountered that have their prefixes redefined further within
the tree. This may be a bit hard to visualize, so the example in Listing C-7 should clarify this.

Listing C-7. Retrieving Namespace URIs with SimpleXML

<?php
$xmldata = '<?xml version="1.0" ?>
<root xmlns:a="urn:namespace:A" xmlns:b="urn:namespace:B">

<a:node_1 xmlns="urn:newns:C" xmlns:b="urn:newns:B">
<a:node xmlns:a="urn:newns:A" />

</a:node_1>
</root>';

$sxe = simplexml_load_string($xmldata);

/* getDocNamespaces() call */
$arnames = $sxe->getDocNamespaces();
print "Doc Namespaces: \n";
foreach ($arnames AS $prefix=>$namespace) {

print " Prefix: $prefix URI: $namespace \n";
}

/* Recursive getDocNamespaces() call */
$arnames = $sxe->getDocNamespaces(TRUE);
print "\nDoc Namespaces Recursive: \n";
foreach ($arnames AS $prefix=>$namespace) {

print " Prefix: $prefix URI: $namespace \n";
}

APPENDIX C ■ FEATURES AND CHANGES IN PHP 6880

6331_appC_final.qxd 2/16/06 5:15 PM Page 880

/* getNamespace() call */
$a_ns = $sxe->children('urn:namespace:A');
$node_1 = $a_ns->node_1;
$arnames = $node_1->getNamespaces();
print "\nElement a:node_1 Namespaces: \n";
foreach ($arnames AS $prefix=>$namespace) {

print " Prefix: $prefix URI: $namespace \n";
}

/* Recursive getNamespace() call */
$arnames = $node_1->getNamespaces(TRUE);
print "\nElement a:node_1 Recursive: \n";
foreach ($arnames AS $prefix=>$namespace) {

print " Prefix: $prefix URI: $namespace \n";
}
?>

Doc Namespaces:
Prefix: a URI: urn:namespace:A
Prefix: b URI: urn:namespace:B

Doc Namespaces Recursive:
Prefix: a URI: urn:namespace:A
Prefix: b URI: urn:namespace:B
Prefix: URI: urn:newns:C

Element a:node_1 Namespaces:
Prefix: a URI: urn:namespace:A

Element a:node_1 Recursive:
Prefix: a URI: urn:namespace:A

As you can see by the results, the first call to getDocNamespaces() returns the two name-
spaces, urn:namespace:A and urn:namespace:B, that are declared on the document element,
root. The next call to the method is performed recursively by passing TRUE as the parameter.
In this case, not only the two namespaces from the previous method call are returned but also
the urn:newns:C namespace is returned. The namespace urn:newns:A, from the a:node element,
is not returned in this case because the prefix a has already been mapped from the declaration
of the urn:namespace:A namespace on the document element. The last two getNamespaces()
method calls return namespaces that are actually used and not only declared within the scope
of the element from which the method is called. From the code in Listing C-7, the method is
called using the a:node_1 element as the starting point. The first call to getNamespaces() simply
returns the namespace urn:namespace:A, which is the namespace in which the element resides.
The second call to the method is performed recursively. Because the prefix a has already been
added to the array being returned, the urn:newns:A namespace is not added to the returned array.

APPENDIX C ■ FEATURES AND CHANGES IN PHP 6 881

6331_appC_final.qxd 2/16/06 5:15 PM Page 881

Besides the addition of these two methods, the data returned by calling var_dump()
on a SimpleXMLElement has also changed. First, attributes are now included in the output.
SimpleXMLElement objects containing attributes will be output, with this function containing
an additional property named @attributes. The value of this property is an array containing
its attributes. Second, how objects deal with namespaces has changed. The var_dump() func-
tion now also respects the namespace of the object, meaning that any child elements included
in the output are within the same namespace of the object with which the function was called.
Prior to this change, namespaces were not respected, and all elements within the objects sub-
tree were output.

Listing C-8 uses a document where one of the child course elements resides in a prefixed
namespace. Each of the course elements also contains a cid attribute. You will notice the dif-
ference between the output when the script is executed using PHP 5.0, shown in Listing C-9,
and the output when executed using PHP 5.1.2, shown in Listing C-10. Not only do you see the
attributes in Listing C-10, but only the first course element is contained in the output. The
object being passed to var_dump() has not had any namespace specified, such as creating an
object using the children(namespaceURI) method, so only children not within a namespace
or within the default namespace will be included.

Listing C-8. Using var_dump() with SimpleXMLElement

<?php
$xmldata = '<?xml version="1.0" ?>
<courses>

<course cid="c1">
<title>Basic Languages</title>

</course>
<a:course cid="c2" xmlns:a="urn:namespace:A">

<!-- this course element is within prefixed namespace -->
<title>French I</title>

</a:course>
</courses>';
$sxe = simplexml_load_string($xmldata);
var_dump($sxe);
?>

Listing C-9. PHP 5.0 Results from Listing C-8

object(SimpleXMLElement)#1 (1) {
["course"]=>
array(2) {
[0]=>
object(SimpleXMLElement)#2 (1) {
["title"]=>
string(15) "Basic Languages"

}

APPENDIX C ■ FEATURES AND CHANGES IN PHP 6882

6331_appC_final.qxd 2/16/06 5:15 PM Page 882

[1]=>
object(SimpleXMLElement)#3 (2) {
["comment"]=>
object(SimpleXMLElement)#4 (0) {
}
["title"]=>
string(8) "French I"

}
}

}

Listing C-10. PHP 5.1.2 Results from Listing C-8

object(SimpleXMLElement)#1 (1) {
["course"]=>
object(SimpleXMLElement)#2 (2) {
["@attributes"]=>
array(1) {
["cid"]=>
string(2) "c1"

}
["title"]=>
string(15) "Basic Languages"

}
}

DOM Extension
Not to be left out, the DOM extension contains new functionality for PHP 6. Developers who
regularly use this extension will be excited to know that one of the most requested features has
finally been implemented—the ability to have DOM return nodes using extended classes rather
than the built-in ones. Before going into more details on this, I will mention the other new
functionality that has been implemented, because it is now possible to add and remove IDs
using any attribute.

The DOM specification defines the setIdAttribute(), setIdAttributeNS(), and
setIdAttributeNode() methods on a DOMElement object. Until now, these have not been imple-
mented in the DOM extension. The methods do not create new attributes in a document. The
parameters passed are used to locate a specific attribute and indicate whether it should be an
ID. For example:

setIdAttribute(string name, boolean isId)
setIdAttributeNS(string namespaceURI, string localName, boolean isId)
setIdAttributeNode(DOMAttr idAttr, boolean isId)

Prior to these methods, the only way to create the attribute ID in a document was to use
a DTD to specify an attribute is of the ID type or use the xml:id attribute. This was limiting
because the DTD cannot be changed after the document has been loaded, so attributes not

APPENDIX C ■ FEATURES AND CHANGES IN PHP 6 883

6331_appC_final.qxd 2/16/06 5:15 PM Page 883

specified in the DTD could not be made into an ID. Also, once an attribute was made into an
ID, you had no way to remove the ID other than to physically remove the entire attribute from
the document. Listing C-11 demonstrates how to set and remove an ID on a document not
containing a DTD and use only these new methods.

Listing C-11. Setting Attribute IDs Using DOMElement Methods

<?php
$xmldata = '<?xml version="1.0" ?>
<courses>

<course cid="c1">
<title>Basic Languages</title>

</course>
</courses>';

$dom = new DOMDocument();
$dom->loadXML($xmldata);
$root = $dom->documentElement;
$node = $root->firstChild;
$course = $node->nextSibling;

$course->setIDAttribute('cid', TRUE);
print "setIDAttribute - TRUE\n ";
if ($element = $dom->getElementByID('c1')) {

print $element->nodeName;
} else {

print "ID Does not exist";
}

$attr = $course->getAttributeNode('cid');
$course->setIDAttributeNode($attr, FALSE);
print "\n\nsetIDAttributeNode - FALSE\n ";
if ($element = $dom->getElementByID('c1')) {

print $element->nodeName;
} else {

print "ID Does not exist";
}
?>

setIDAttribute - TRUE
course

setIDAttributeNode - FALSE
ID Does not exist

APPENDIX C ■ FEATURES AND CHANGES IN PHP 6884

6331_appC_final.qxd 2/16/06 5:15 PM Page 884

Finally, I will now cover probably one of the most requested features for DOM. The normal
method for creating objects based on a class that extends one of the DOM classes and inserting it
into the tree was to create the node using the new keyword to instantiate an object of the extended
class type. This node was then inserted into the tree using any of the various DOM methods
applicable for this action. This method had a few drawbacks. Probably the most important one
was that you should use the createXXXX() methods from DOMDocument when creating a new node
to properly create it with a document association. The other big drawback, which mostly affected
developers, was that once the newly created object fell out of scope and no longer had any refer-
ences, the next time the node was accessed, the object returned would be based on one of the
internal DOM classes and no longer the extended class type.

The good news is that you can finally do this—or at least once PHP 6 rolls around, you will
be able to do this. The registerNodeClass() method has been added to the DOMDocument class.
This method allows a user class that extends any of the DOM classes based on DOMNode to be reg-
istered with a document and cause the extended class to be instantiated when needed rather
than the internal DOM class. Every method within DOM will respect the class registration:

registerNodeClass(string baseclass, string extendedclass)

This method takes two parameters and returns a Boolean indicating whether registration
was successful. The first parameter, baseclass, is the name of the DOM class that the user
class is replacing. The extendedclass parameter is either the name of the user class to register,
which must inherit from baseclass, or NULL. When NULL is passed, any class that may have pre-
viously been registered for the baseclass will unregister itself, causing the baseclass to once
again be used as the class type when objects are created.

■Note Classes are registered per document and not per request. This also means that reusing a
DOMDocument object for multiple XML documents will reset the registered classes to the original empty
state each time a new document is loaded.

As mentioned in the previous note, classes are registered per document. This means every
time a new document is created, you must register your classes. For example, each of the fol-
lowing calls creates a new document:

/* Create a new empty document */
$dom = new DOMdocument();

/* Load a string creating a new document */
$dom->loadXML(...);

/* Load a URI creating a new document */
$dom->load(...);

Based on this, unless you are creating a new document from scratch, you would not regis-
ter any classes until after having called one of the load methods. A benefit of this being based
on a document, however, is that if you are working on two or more documents simultaneously,

APPENDIX C ■ FEATURES AND CHANGES IN PHP 6 885

6331_appC_final.qxd 2/16/06 5:15 PM Page 885

each document can use a different class for a node type, rather than only a single class per
node type for every document. This may sound more complex than it really is. Listing C-12
should make things much clearer.

Listing C-12. Registering Extended Classes in DOM

<?php
class userElement extends DOMElement {

function customFunction() {
print "Node Name: ".$this->nodeName."\n";
print "Node Contents: ".$this->nodeValue."\n";

}
}

$xmldata = '<?xml version="1.0" ?>
<courses>

<course cid="c1">
<title>Basic Languages</title>

</course>
</courses>';

$dom = new DOMDocument();
/* Load the XML, and remove blanks for simplicity */
$dom->loadXML($xmldata, LIBXML_NOBLANKS);

/* Register the userElement class */
print "Register userElement class\n\n";
$dom->registerNodeClass('DOMElement', 'userElement');
$root = $dom->documentElement;
$course = $root->firstChild;
$title = $course->firstChild;
$title->customFunction();

/* Unregister our custom class */
print "Unregister Custom Class\n\n";
$dom->registerNodeClass('DOMElement', NULL);
print "Remove reference to title node using unset()\n\n";
/* Call unset() to remove reference to title node */
unset($title);
?>

Register userElement class

Node Name: title
Node Contents: Basic Languages
Unregister Custom Class

APPENDIX C ■ FEATURES AND CHANGES IN PHP 6886

6331_appC_final.qxd 2/16/06 5:15 PM Page 886

Remove reference to title node using unset()

course element is of the userElement class

title element is of the DOMElement class

No longer do you need to use the new keyword. The ability to register classes with a docu-
ment solves many of the issues developers have had when a subclassed object loses scope.
Even when a class was unregistered, objects in scope that were created based on the extended
class remain the extended class type until they also lose scope. Listing C-12 demonstrated this
with the course element. This still does not provide persistence; when an object goes out of
scope, it is re-created when the node is accessed again. Therefore, property values will be
reset, but all the functions of the class are available.

APPENDIX C ■ FEATURES AND CHANGES IN PHP 6 887

6331_appC_final.qxd 2/16/06 5:15 PM Page 887

6331_appC_final.qxd 2/16/06 5:15 PM Page 888

■Symbols
{ } (curly braces), 349–350
/ (forward slash), 21
() (parentheses), 49, 51
[] (square brackets), 26, 48
< (angle bracket)

attribute values, 25
comments, 27–28
entity references, 17
PCDATA content, 53
processing instructions, 28
start and end tags, 21

> (angle bracket)
comments, 27–28
entity references, 17
processing instructions, 28
start and end tags, 21

= (equal sign), 132
>= (greater than or equal to sign), 132
> (greater than sign), 132
<= (less than or equal to sign), 132
< (less than sign), 132
+ (plus sign), 49, 132
? (question mark), 28, 49
' (single quote), 17, 24, 25
! (exclamation point), 26, 27–28
!= (not equal sign), 132

■A
about attribute

channel element, RSS 1.0, 524
image element, RSS 1.0, 526
item element, RSS 1.0, 527

absolute paths, XPath, 127
accept attribute, 153
accept-language attribute, 153
accessPoint element, 759, 760
acronyms, 14
actor attribute, 700, 708
Actor parameter, 664
actor parameter, 724, 731, 869
actualEncoding property, 859
addChild() method, 500
addFunction() method, 727, 871
add_publisherAssertions() function, 768
address element, 756
address structure, 756–757
addressLine attribute, 757
adult_ok parameter, 648
AdWords API, 13, 744
Ajax (Asynchronous JavaScript Technology and

XML), 826–830
Al-Ghosein, Mohsen, 10
Alexa Web Information Service, 660

all element, 78, 86
allow_url_fopen option, 175–176
Amazon E-Commerce Service (ECS), 13, 660, 781–785
Amazon Historical Pricing Service, 660
Amazon Simple Queue Service, 660
Amazon Web services, 660–661

error format, 661–663
item searches, 663–666
registering, 661
remote shopping cart, 666–672, 784–785
Services_Amazon PEAR package, 781–785

ancestor axis, 128
ancestor-or-self axis, 128
and operator, 132
andAllKeys option, 767
annotation elements, 88
ANSI (American National Standards Institute), 14
any element, 84
ANY value, 50, 84
anyAttribute element, 84
anyName pattern, 105
anySimpleType type, 839
anyType type, 84, 839
anyURI type, 840
API versioning, URIs and, 638–639
appendChild() method, 206–207, 209–210, 858
appendData() method, 863
appendXML() method, 859
appid parameter, 648, 652
appinfo element, 88
application-specific instructions. See PIs

(processing instructions)
applying templates, 345–347
array element, 572, 599–600
array type, 569
array type definitions, 678–679
arrays

parsing data into, 288–291
serializing, 506–510
unserializing, 510–512

Artist parameter, 664
AssociateTag parameter, 667
Association of Shareware Professionals (ASP), 230
asXML() method, 241, 853
Asynchronous JavaScript Technology and XML

(Ajax), 826–830
Atkinson, Bob, 10
Atom, 522. See also RSS technologies

Atom entry documents, 543, 549–550
Atom feed documents, 542–543, 547–549
constructs, 543–547
document structure, 543
sample document, 542
selecting feed technologies, 550–551

Index

889

6331_Index_final.qxd 2/16/06 2:56 PM Page 889

using DOM (example), 551–555, 557–560
using XMLReader (example), 561–563

Atom class, 557–560
Atom entry documents, 543, 549–550
Atom feed documents, 542–543, 547–549
atomCommonAttributes definition, 543
ATTLIST declarations, 36–38, 59–66
Attr interface, DOM, 187
ATTRIBUTE constant, 318, 850
attribute declarations

attribute IDs, 36–41, 64
attribute-list declarations, 59–66
namespaces in XML schemas, 94–97
RELAX NG schemas, 101–102, 113–114

attribute default values, 60–62
attribute groups, 79
attribute IDs, 36–41, 64
attribute-list declarations, 59–66
attribute nodes

canonical XML, 455
DOM extension, 207–208
XPath, 124, 125–126

attribute pattern, 112, 113–114
attribute sets, XSLT, 352–353
attribute types, 62–66
attribute values, 25, 326, 450
attribute XPath axis, 128
attributeCount property, 321, 851
attributeFormDefault attribute, 95–97
attributeGroup element, 79
attributes, 24

case sensitivity, 17–18
child elements vs., 25–26
creating using XSLT, 351–352
IDs, 36–41, 64
in canonical XML, 450, 451–453, 457
in DOM, 201–203
in DTDs, 36–38, 40–41, 59–66, 64
in RELAX NG schemas, 113–114
in SimpleXML, 255–257
in XML documents, 24–26
in XML schemas. See attributes (XML schemas)
namespaces and, 31, 32, 35–36
naming, 24–25
types, 62–66
usage guidelines, 25–26
values, 25
XMLReader access, 325–327

attributes key, 289
attributes() method, 256, 259, 853
attributes property, 857
attributes (XML schemas). See also attributes;

schemas, XML
attribute groups, 79
declaring, 73, 74–75, 79
default values, 79
global declarations, 95
local declarations, 95
namespaces and, 76, 94–100
qualified local declarations, 95–97
simple types, 72–73, 83–84

unqualified local declarations, 94–95
usage options, 79
user-defined types, 80–83

authentication. See also digital signatures
eBay Web services, 743
SOAP messages, 719
UDDI registries, 773–774
XML signatures, 460

authentication option, 711
author element

entry element, Atom, 549, 558
feed element, Atom, 548, 558
item element, RSS 2.0, 540

Author parameter, 664
authorizedName attribute, 755, 761
AverageRating element, 653
axes, XPath, 127–128, 131–132

■B
base attribute, 42–43, 543
base64 element, 599, 610–611
Base64 encoding, 27, 67
base types, 73
base URIs, 42–43
base64Binary type, 841
baseURI property, 321, 851, 858
Berners-Lee, Tim, 3
binary data in CDATA sections, 27
binary element, 576
binary large object (BLOB) fields, 8
binary type, 569
binding attribute, 695–696
binding definitions, WSDL, 681

SOAP binding, 691
SOAP headers, 694
SOAP operation, 692–693
WSDL operation, 691–692, 693–694

binding element, 690–691
bindingKey attribute, 759
bindingTemplate structure, 758–760
bindingTemplates attribute, 758
blogInfo() method, 790, 791–792
blogPostTags() method, 790, 792–793
body, XML documents, 20
Body element, 701
BOM (byte order mark), 19, 169
bookmarks, online, 785–786
boolean element, 571, 597
boolean() function, 138
boolean type, 569, 840
Box, Don, 10
buffering documents, XMLWriter, 817–818
bug fixes, libxml2, and libxslt libraries, 164
built-in types, 73
built-in XSL templates, 347–348
businessEntity structure, 754–757, 774
businessKey attribute, 755, 758
businessService structure, 757–758
businessServices element, 755
byte index, 291–292, 304
byte type, 842

■INDEX890

6331_Index_final.qxd 2/16/06 2:56 PM Page 890

■C
Cache element, 650
cached pages, retrieving, 787
calculations, XPath expressions, 146, 160
_call() method, 743–744
callbacks, 826
call_using_curl() function, 601
call_using_sockets() function, 601
canonical XML

attribute nodes, 455
canonical form requirements, 449–451
comment nodes, 456
element nodes, 454
empty namespace declarations, 454
encrypting data, 482
exclusive XML canonicalization, 456–460
namespace nodes, 454–455
node ordering, 450, 451–453
processing instruction nodes, 455–456
root node, 453
text nodes, 455
whitespace, 455

CanonicalizationMethod element, 464, 470, 473
cards, WML, 831
carriage return character

formatting XML documents, 23–24
in canonical XML, 455
in SAX parser, 277, 278
in user-derived types, 81–82
in XML documents, 16

CartAdd operation, 670–671
CartClear operation, 670
CartId element, 669
CartItemId element, 671
CartModify operation, 671
Cascading Style Sheets, WAP (WCSS), 835
case folding, SAX parser, 273
case-order attribute, 362
case sensitivity, 17–18, 64
caseFolding option, 502
caseFoldingTo option, 502
caseSensitiveMatch, 766
Catalog element, 652, 656
category element

Atom, 546
entry element, Atom, 549
feed element, Atom, 548
item element, RSS 2.0, 540

categoryBag attribute, 758
categoryBag element, 755, 762
CDATA constant
cdata() method, 518
cdata-section-elements attribute, 382, 384
CDATA sections, 173–174, 277–278, 450
CDATA type, 62–63. See also NMTOKEN,

NMTOKENS types
cdataHandler() method, 494
CDATASection interface, 187
ceiling() function, 138
certificates, XML signatures, 465
channel element, 524–526, 530–532, 536–537, 552,

555, 556

channels, RSS, 524–526, 531, 532, 536–537
character data

CDATA attribute type, 62–63
character data event handlers, 275–279, 284, 308
in canonical XML, 450
in DOM parser example, 308
in XML documents, 16–17
markup vs., 16–17

character data encryption, 476
character data handlers, 301
character encodings, 19
character escaping, 146
character references, 15–16, 17, 62, 450
CharacterData interface, 184, 186
characters

allowed in names, 16
case sensitivity, 17–18, 64
character references, 15–16, 17, 62, 450
decimal, hexadecimal equivalents, 15–16
restricted characters, 17, 25
Unicode character set, 15
whitespace characters, 16

child axis, XPath, 128
child content model, 50–52
child elements

attributes vs., 25–26
child content model, 50–52
complex types, 73–76, 84–85
in RELAX NG schemas, 101–103, 105
in SimpleXML, 244, 245, 246–250, 252
mixing with text content, 85–86
nested elements, 23–24

child nodes, DOM extension, 196–197
childNodes property, 196–197, 857
children() method, 246–247, 259, 853
children property, 500
choice element, 78
choice pattern, 105, 106, 114
chunking data, SAX parser, 286–287, 304
CipherData element, 479–480, 483, 485, 487
CipherReference element, 480, 487
CipherValue element, 480, 483, 487
circular entity references, 55
class definitions, WSDL, 679–680
classaddFunction() method, 727, 871
classes, DOM extension

constructors, 220
extending, 219–220, 226, 228
methods, 221
migrating from domxml extension, 228–230
objects, classes, and interfaces, 183, 184,

186–187, 885–887
properties, 220–221
registering, 885–887
scope and object lifetime, 221–223, 226,

885–887
classes, SimpleXML extension, 257–258
classmap option, 711
classmap parameter, 724
ClickUrl element, 650
Client fault code, SOAP, 702

■INDEX 891

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 891

clients
REST Web service (example), 643–645
SOAP. See SOAP clients
validating server-based data, 826–830
WDDX Web service (example), 587–589
XML-RPC, 612–617, 625, 628

cloneDocument property, 389, 866
cloneNode() method, 858
close() method, 851
code property, 178, 847
collections

iterating, 196–197, 201–202, 225, 245–246
NameNodeMap interface, 184, 186, 225
NodeList interface, 184, 186
of attributes, 201–202
of elements, 245–246
of node sets, 358–360, 360–362, 406–407
of nodes, 196–197, 225
removing nodes, 225

collisions, namespace, 31
column number, SAX, 291–292, 303–304
column property, 178, 847
combineCategoryBags option, 767
combining schemas

local vs. global declarations, 93
namespaces and, 94–100
using import elements, 97–100
using include elements, 91–93

COMMENT constant, 317, 318, 850
Comment interface, 187
comment() method, 518
comment nodes

canonical XML, 456
CharacterData interface, 184, 186
creating using XSLT, 354
XPath, 124, 127

comments, XML documents, 27–28
comments element, 540
Common EXSLT module, 378
Common Object Response Broker Architecture

(CORBA), 10
comparing parsers. See parser comparisons
complex element content, 86–87
complex type definitions, WSDL, 680–681
complex types, 73–76, 84–85
complexContent element, 86–87
complexType element, 74
compression option, 711
concat() function, 137
conditional processing, XSLT, 358
conditional sections, DTDs, 68–70
connection_timeout option, 711
constrained implementation, 459–460
constraining facets, 80–83
_construct() method, 853

DOMAttr class, 862
DOMCdata class, 864
DOMComment class, 863
DOMDocument class, 860
DOMDocumentFragment class, 859
DOMElement class, 862
DOMEntityReference class, 865
DOMProcessingInstruction class, 866

DOMText class, 864
DOMXPath class, 856
SoapClient class, 710–712, 870
SoapFault class, 870
SoapHeader class, 708, 869
SoapParam class, 869
SoapServer class, 724–725, 871
SoapVar class, 707, 868–869

constructors, DOM classes, 220
contact structure, 756
contacts element, 755
contains() function, 137
content

complex element content, 86–87
default element content, 76–77
element content, 21
empty element content, 112–113
fixed element content, 76–77
mixed element content, 85–86, 107–108, 111–112
PCDATA content, 52–54
reusing. See XInclude

content blocks, RSS, 527–528, 532–534, 539–541
content element, 546, 549
content management systems (CMS), 6–7
Content module, 532–534
content syndication. See syndication
context nodes, XPath, 127, 134
contexts (stream contexts), 176–177
contributor element, 548, 550
convenience of parsers. See parser comparisons
converting document encoding, 171–172
copying

nodes, 354–355
subtrees, 436–438

CORBA (Common Object Response Broker
Architecture), 10

cosmos() method, 790
count attribute, 363, 364, 365
count() function, 136
country parameter, 648
createAttribute() method, 860
createAttributeNS() method, 860
createCDATASection() method, 860
createComment() method, 860
createDataObject() method, 824
createDocument() method, 204, 856
createDocumentFragment() method, 860
createDocumentType() method, 204, 856
createElement() method, 204–205, 860
createElementNS() method, 204–205, 860
createEntityReference() method, 860
createProcessingInstruction() method, 860
CreateRatingUrl element, 653
createTextNode() method, 209–210, 860
creating resources, 636, 637. See also REST

(Representational State Transfer)
CRUD operations, 636
current() function, 374

■D
Data Access Service, SDO, 820–826
data element, 102, 570
data encryption. See encryption

■INDEX892

6331_Index_final.qxd 2/16/06 2:56 PM Page 892

data exchange extensions, 166
data parameter

SoapHeader class constructor, 708, 869
SoapParam class constructor, 709, 869
SoapVar class constructor, 707, 869

data pattern, 114
data property, 863, 866
data storage and retrieval applications, 7–9
data structures, UDDI. See UDDI (Universal

Description, Discovery, and Integration)
data-type attribute, 362
data type definitions, WSDL, 678–681
data types

any types, allowing, 84
attribute types, 62–66
base types, 73
built-in types, 73
complex types, 73–76, 84–85
constraining facets, 80–83
derived types, 73, 80–83, 841–843
empty elements, 85
length, restricting, 81
matching regular expressions, 81
multiple types, allowing, 83–84
PHP and XML-RPC data types, converting,

610–611, 623
primitive types, 73, 839–841
RELAX NG schemas, 102, 114
simple types, 72–73, 83–84, 839–841
user-derived types, 73, 80–83
WDDX, 568–569
XML schemas, 839–843

databases, 7–9
datatypeLibrary attribute, 102
Date construct, 545
date type, 840
dateTime element, 571
dateTime type, 103, 569, 840
dateTime.iso8601 element, 598–599, 610–611
debugging. See also errors and error handling

SOAP client calls, 722–723
XSLT, 376

decimal notation for characters, 15–16
decimal-separator attribute, 372
decimal type, 840
decks, WML, 831
declaration handlers, 281–283
declaration separators, 59
declarations

attribute lists. See attribute-list declarations
attributes. See attribute declarations
document type declarations, 19–20, 46–49
element type declarations, 50–54
entity declarations, 29, 54–59
external subset declarations, 47–48
markup. See markup declarations
namespace. See namespace declarations
notation declarations, 66–67
scope of. See scope
XML declaration, 18–19, 450

decrypting data, 447–448, 484–489
deep copies of nodes, 355
default attribute, 79

default attributes, canonical XML, 450
default element content, 76–77
default event handlers, 283–284, 302–303, 875
default mode, XMLSerializer class, 506
default namespaces

canonical XML, 454, 458–459
SimpleXML, 259
XML, 32, 34–35
XML schemas, 96
XPath, 227

DEFAULTATTRS constant, 850
defaultHandler() method, 494
define element, 119
defines, RELAX NG, 117–119
DELETE (HTTP), 636, 637
delete_binding() function, 768
delete_business() function, 768
deleteData() method, 863
delete_publisherAssertions() function, 768
delete_service() function, 768
delete_tModel() function, 768
deleting resources, 636, 637. See also REST

(Representational State Transfer)
del.icio.us Web service, 785–786
department parameter, 652
depth property, 321, 851
derived types, 73, 80–83, 841–843
descendant axis, XPath, 128
descendant nodes, XPath, 125
descendant-or-self axis, XPath, 128
description attribute, 758
Description element, 652
description element

bindingTemplate structure, 759
businessEntity structure, 755
channel element, RSS 1.0, 525
channel element, RSS 2.0, 536
contact structure, 756
image element, RSS 2.0, 538
item element, RSS 1.0, 528
item element, RSS 2.0, 538
textinput element, RSS 1.0, 528
textInput element, RSS 2.0, 538
tModel structure, 761

deserialize() method, 590
detached encryption, 477
detached signatures, 462
detail element, 703–704
detail parameter, 709, 710, 870
DigestMethod element, 465
DigestValue element, 465, 472
digit attribute, 373
digital signatures, 460–461. See also encryption

algorithms, 448–449
creating, 466–471
detached signatures, 462
enveloped signatures, 461
enveloping signatures, 461–462
generating references, 467–469
generating signatures, 470–471
hashing serialized XML, 443–445
message integrity, 442–443
verifying signatures, 471–474

■INDEX 893

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 893

W3C specifications, 447
XML signature structure, 462–465

digits in user-defined types, 82
Director parameter, 664
disable-output-escaping attribute, 353
discard_authToken() function, 768, 774
discoverURLs element, 755–756
Distributed Component Object Model (DCOM), 10
distributed computing, 9
distributed information systems. See Web services
div operator, 132
DOC constant, 317, 318, 850
DOC_FRAGMENT constant, 317, 318, 850
docstring key, 626
DOC_TYPE constant, 317, 318, 850
DOCTYPE declarations, 19–20, 46–49
doctype property, 859
doctype-public attribute, 382, 383, 384
doctype-system attribute, 382, 383, 384
document editing, parser comparisons, 410,

415–416
document element, 18, 20

in document type declarations, 46
retrieving using DOM extension, 193–194
XPath element nodes, 125

document encryption, 476
document() function, 370
Document interface, 186
Document/literal message format, WSDL, 683–685
document navigation, parser comparisons, 410,

413–415
document nodes, 159, 203–204
Document Object Model. See DOM (Document

Object Model)
document tree, 20
document type declarations (DOCTYPE), 19–20,

46–49. See also markup declarations
documentElement property, 859
documents

HTML. See HTML documents
RSS, 391–392
well-formed documents, 45
XHTML, 516–519
XML. See XML documents

DocumentType interface, 187
documentURI property, 859
doGetCachedPage() function, 746–747
doGoogleSearch() function, 746, 747–748
DOM (Document Object Model), 9, 14, 181.

See also DOM extension; DOM objects
creating feeds, 551–560
node types, 181–182, 194
Services_Webservice package, 797–802
tree representation of documents, 182
XML_Tree package, 498–501

DOM extension, 165, 185–188, 854–855, 883–887.
See also DOM (Document Object Model)

attribute nodes, 207–209
attributes, 201–203, 883–884
CDATA section nodes, 211
child nodes, 196–197
choosing parsers, 424–425, 426

classes
constructors, 220
extending core classes, 219–220, 226, 228
methods, 221
objects, classes, and interfaces, 183, 184,

186–187
properties, 220–221
registering, 885–887
scope and object lifetime, 221–223, 226,

885–887
comments, 211
creating and instantiating documents, 188–189
document editing, 410, 415, 416
document element, 193–194
document fragments, creating, 211
document navigation, 410, 414, 415
document node, 199, 203–204
domxml extension migration, 228–230
ease of use, 410, 416
element nodes, 204–206, 206–207
elements, 199–201, 217–218
entity reference nodes, 211
exporting nodes from XMLReader, 328
external subsets and, 215
handling encoded data, 188, 226
importing nodes from SimpleXML, 434, 435–436
internal subsets and, 214–215
large document processing, 411, 412, 413
loading HTML data, 190–191
loading XML data, 189–190, 193
locating elements, 431–432, 433
namespace declarations, 203
namespace support, 410, 418–419
namespaces, registering, 218–219, 227
navigating between nodes, 196–201
node information, 194–196, 217
node types, 181–182, 194
objects, creating and instantiating, 187–188,

885–887
optimizing, 426–427, 431–432, 433
PAD template (example), 230–234
parent nodes, 198–199
processing instruction nodes, 211
removing nodes, 212–213, 225
replacing nodes, 213
saving HTML data, 192
saving XML data, 191
sibling nodes, 198
SimpleXML interoperability, 250, 253, 255,

434–436
subtrees, 197
system resource usage, 410, 411, 412, 413
text nodes, 209–210
troubleshooting, 223–228
validation

using DTDs, 214–215
using RELAX NG schemas, 216
using XML schemas, 215–216

XMLReader interoperability, 436–438
XML_Tree package, 498–501
XPath support, 216–219
XSL template (example), 235–237

■INDEX894

6331_Index_final.qxd 2/16/06 2:56 PM Page 894

DOM objects. See also DOM (Document Object
Model)

constructors, 220
creating and instantiating, 187–188
extending core classes, 219–220, 226, 228,

885–887
in PHP sessions, 224–225
methods, 221
nodes vs. objects, 221–223
objects, classes, and interfaces, 183, 184,

186–187, 885–887
properties, 220–221
scope and object lifetime, 221–223, 226
serialization, 224–225

DOM parser, SAX example code, 306–310
DOMAttr class, 187, 228, 861–862
DOMCdata class, 864
DOMCDATASection class, 187, 228
DOMCharacterData class, 186, 210–211, 863
DOMComment class, 187, 863
DOMDocument class, 186, 188–192, 203–204,

859–861. See also tree, DOM
DOMDocument object, 392–393
DOMDocumentFragment class, 186, 211, 212, 859
DOMDocumentType class, 187, 864–865
domdtd class, 228
DOMElement class, 187, 862
DOMEntity class, 187, 865
DOMEntityReference class, 187, 228, 865
DOMException class, 186, 856
DOMException interface, 184
DOM_HIERARCHY_REQUEST_ERR constant, 855
DOMImplementation class, 185, 186, 203–204, 856
dom_import_simplexml() function
DOM_INDEX_SIZE_ERR constant, 855
DOM_INUSE_ATTRIBUTE_ERR constant, 855
DOM_INVALID_ACCESS_ERR constant, 855
DOM_INVALID_CHARACTER_ERR constant, 855
DOM_INVALID_MODIFICATION_ERR constant,

855
DOM_INVALID_STATE_ERR constant, 855
DOMNamedNodeMap class, 186, 201–202, 857
DOM_NAMESPACE_ERR constant, 855
DOMNameSpaceNode class, 186
domnamespacenode class, 228
DOM_NO_DATA_ALLOWED_ERR constant, 855
DOMNode class, 186, 194–196, 857
DOMNodeList class, 186, 196–197, 856
DOM_NO_MODIFICATION_ALLOWED_ERR

constant, 855
DOMNotation class, 187, 865
DOM_NOT_FOUND_ERR constant, 855
DOM_NOT_SUPPORTED_ERR constant, 855
DOMProcessingInstruction class, 187, 228, 865–866
DOMSTRING_SIZE_ERR constant, 855
DOM_SYNTAX_ERR constant, 855
DOMText class, 187, 864
DOM_VALIDATION_ERR constant, 855
DOM_WRONG_DOCUMENT_ERR constant, 855
domxml extension, 165, 228–230
DOMXPath class, 187, 216–217, 856
_doRequest() method, 720–722, 870
doSpellingSuggestion() function, 746–747

double element, 597
double type, 840
DTDs (Document Type Definitions), 3, 14.

See also validation
adding manually, 227
attribute ID definitions, 36–38, 64
attribute-list declarations, 59–66
conditional sections, 68–70
document type declarations, 19–20, 46–49
element type declarations, 50–54
entity declarations, 29, 54–59
entity references, 28–29
external subsets, 46–48
in canonical XML, 450
internal subsets, 48–49
markup declarations. See markup declarations
namespaces and, 35
notation declarations, 66–67
parsing, 512–516
schemas vs., 71, 90
standalone declaration and, 19
validation

within DOM extension, 214–215
XML_DTD package, 512, 515
within XMLReader, 333

Dublin Core module, 530–531
duration type, 840

■E
E-Commerce Service, Amazon (ECS), 13, 660,

781–785
ease of use, parsers. See parser comparisons
eBay Web services, 13, 736

authentication, 743
registration and setup, 736–737
remote procedure calls, 743–744
requests, 741
responses, 741–742
Services_Ebay package, 786
SOAP client implementation, 737–740

eBayAuth class, 743
ebay.ini file, 738–739
ebaySession object, 739–740
eBaySOAP class, 741
efficiency of parsers. See parser comparisons
EJSE, 793
ELEMENT constant, 317, 318, 850
element content, 21
<!ELEMENT declaration, 50–54
element encryption, 475
element event handlers, 274–275
element groups, 78–79
element hierarchy, 22–24
Element interface, 187
element nodes, 124, 125, 204–207, 454
element type declarations, 50–54
elementFormDefault attribute, 95–97
elementIsDeclared() method, 514
elements

attribute IDs, 36–41
attributes vs., 25–26
case sensitivity, 17–18
components of, 21

■INDEX 895

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 895

default namespaces and, 32, 34–35, 227
element handlers, 274–275
element hierarchy, 22–24
element type declarations, 50–54
empty-element tags, 21–22
identifying uniquely, 36–38
in DOM, 199–201, 226–227
in RELAX NG. See elements (RELAX NG)
in SimpleXML. See elements (SimpleXML)
in XML schemas. See elements (XML schemas)
in XSL and XSLT. See elements (XSL, XSLT)
namespaces and, 31, 32
nesting of, 23–24
referencing from other elements, 38–40

elements (RELAX NG)
declaring, 101–103, 111–113
defining allowable content, 112–113
disallowing, 105
empty content, 112
mixed content, 107–108, 111–112
naming elements, 104–105
patterns. See patterns

elements (SimpleXML)
accessing by index, 245–246
accessing by name, 242–243
accessing child elements, 244, 245–246
accessing element content, 243–244
accessing namespaced elements, 258–260
accessing unknown elements, 246–247, 250
collections, iterating, 245–246, 246–247
modifying child elements, 252–253
modifying subtrees, 252
modifying text content, 251–252
names of, determining, 247–250
namespaces and, 258–260, 879–883
removing from trees, 253–255
replacing subtrees, 253

elements (XML schemas). See also schemas, XML
annotation elements, 88
complex element content, 86–87
complex types, 73–76, 84–85
declaring, 73, 74–76
default content, 76–77
element groups, 78–79
element name substitutions, 77–78
empty elements, 85
fixed content, 76–77
global declarations, 95
local declarations, 95
mixed content, 85–86
namespaces and, 94–100
notation elements, 87–88
NULL-valued elements, 77
qualified local declarations, 95–97
schema element, 72
simple types, 72–73, 83–84
unqualified local declarations, 94–95
user-defined types, 80–83

elements (XSL, XSLT)
creating, 350–351
EXSLT extension elements, 377–378
matching, 343
selecting for processing, 346–347

email element, 545, 756
empty attribute values, 25
empty element content, 112–113
empty-element tags, 21–22
empty elements, 85, 450
empty namespace declarations, 454
empty pattern, 106
EMPTY value, 50, 84
enabled attribute, 87
enclosure element, 540–541
encoding and encoded data, 19

Base64 encoding, 27, 67
binary data, WDDX, 576
byte order mark (BOM), 169
detecting document encoding, 168–170
encoding conversions, 171–172, 293–294
encoding declaration, 19, 169–170
encryption, 293–294
handling encoded data, 67, 188, 226
images, XML documents, 65–66
in canonical XML, 450
in libxml2, 168, 170–172
in XMLWriter, 816
SAX parser options, 273
target encoding, xml extension, 300

encoding attribute
binary element, WDDX, 576
xi:include element, 153
xsl:output element, 382, 383, 387

encoding declaration, 19, 169–170
encoding element, 534
encoding option, 613, 711
encoding parameter, 707, 724, 869
encoding property, 859
encodingStyle attribute, 698
EncryptedData element, 478, 481, 483
EncryptedKey element, 481
encryption

algorithms, 448–449
canonical XML, 482
character data encryption, 476
decrypting data, 447–448, 484–489
detached encryption, 477
document encryption, 476
element encryption, 475
encrypting data, 446–447, 480–484
enveloping encryption, 477
mixed content encryption, 475–476
super encryption, 476–477
W3C specifications, 447
XML encryption structure, 477–480

EncryptionMethod element, 479, 483
end-point() function, 151
end tags, 21, 23–24
endAttribute() method, 872
endCdata() method, 872
endComment() method, 872
endDocument() method, 814, 873
endDtd() method, 873
endDtdElement() method, 873
END_ELEMENT constant, 318, 850
endElement() method, 814, 872
END_ENTITY constant, 318, 850

■INDEX896

6331_Index_final.qxd 2/16/06 2:56 PM Page 896

endHandler() method, 494
endPi() method, 872
entities, 54–55. See also entity declarations; entity

references
general entities, 29, 55–57
in SAX parser, 278–279
in SGML, 3
parameter entities, 57–59
parsed entities, 55–56
unparsed entities, 57, 374–375

entities property, 864
ENTITY, ENTITIES types, 65–66, 843
ENTITY constant, 317, 318, 850
entity declarations, 29, 54–59
Entity interface, 187
entity references, 55

ENTITY, ENTITIES attribute types, 65–66
entity errors, 227
external entity reference handlers, 280–281,

305–306
in attribute-list declarations, 62–63
in canonical XML, 450, 455
in SAX parser, 278–279, 280–281
in XML documents, 28–29
optimizing memory usage, 426–427
for restricted characters, 17

ENTITY_REF constant, 317, 318, 850
EntityReference interface, 187
entityrefHandler() method, 494
entry documents, Atom, 543, 549–550
entry element, 543, 549–550, 557
enumerated attribute types, 63–64
enumeration element, 80
Envelope element, 698
enveloped signatures, 461
enveloping encryption, 477
enveloping signatures, 461–462
epilog, XML documents, 20
Error structure, Amazon Web services, 661–663
errors and error handling. See also debugging;

faults
Amazon Web services, 661–663
DOMException interface, 184, 186
entity errors, 227
failed XIncludes, 155–156
failed XPointer expressions, 156–157
fallback capabilities, XSLT, 380
in XML-RPC, 607, 614, 618
libxml2-derived errors, 177–179
SOAP header entries, 700–701
using SAX, 292–293
validation errors, 177
WSDL, 687, 689
Yahoo Web services, 660

Errors structure, Amazon Web services, 661–663
escaping characters, 146
escaping option, 613
evaluate() method, 216, 217–218, 856
evaluating node sets. See expressions, XPath
event-based parsing, 165, 269–270. See also SAX

(Simple API for XML)
event handlers, SAX

character data handlers, 275–279, 301

declaration handlers, 281–283
default handler, 283–284, 302–303
element handlers, 274–275
external entity reference handlers, 280–281,

305–306
namespace declaration handlers, 297
object methods as handlers, 297–300
processing instruction handlers, 279

event mode, XML_Parser, 495–496
every quantifier, 161
exactNameMatch option, 766
except pattern, 104–105
exceptions option, 711
exceptNameClass pattern, 104–105
exclusive XML canonicalization, 456–457, 459–460
expand() method, 328, 436–438, 852
expanded names, XPath nodes, 124
expressions

attribute value templates, 349–350
in markup declarations, 49–50
XPath. See expressions (XPath)
XPath 2.0, 159–161
XPointer, 147–148

expressions (XPath)
abbreviated syntax, 131–132
axes, 127–128
calculations in, 146
complex expressions, 141–146
equivalent XPointer expressions, 147
filtering node sets, 133–134
name tests, 128–130
namespaces and, 141–143, 148
node type tests, 130
optimizing, 138–139
value comparisons, 135–136, 144–145
XPath functions, 136–138, 144–145, 146
XPath operators, 130

exsl:document element, 378
EXSLT modules, 377–380, 395
extending classes

in DOM extension, 219–220, 226, 228
in SimpleXML extension, 257–258

extends keyword, 219–220
Extensible Business Reporting Language (XBRL), 6
extension element, 87
extension-element-prefixes attribute, 377–378
extensions, PHP 5. See XML extensions, PHP
external content, including. See XInclude
external entities, 47, 57, 65–66
external entity reference handlers, 280–281,

305–306
external patterns, 119–121
external subsets, 46–48, 58, 68–70
externalRef element, 119–121

■F
facets, constraining, 80–83
factory() function, 803
fallback capabilities, XSLT, 380
false() function, 138
Fault element, 701–704
fault element, 607, 618, 686, 687, 693, 694
fault() method, 871

■INDEX 897

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 897

fault structures, XML-RPC, 607, 614, 618
faultactor element, 703, 709
faultactor parameter, 870
faultcode element, 702
faultCode() method, 626
faultcode parameter, 709, 870
faultname parameter, 710, 870
faults. See also errors and error handling

SOAP, 701–704, 709–710, 729–730, 870
WSDL, 687, 693
XML-RPC, 607, 618

faultstring element, 702–703
faultString() method, 626
faultstring parameter, 709, 870
feed documents, Atom, 542–543, 547–549
feed element, 543, 546, 547–549, 552, 557
Feed Validator, 521
feeds and feed technologies, 521–522, 550–551

Atom. See Atom
creating feeds using DOM, 551–560
parser using SimpleXML (example), 560–561
RSS 1.0. See RSS 1.0 (RDF Site Summary)
RSS 2.0. See RSS 2.0 (Really Simple Syndication)

Field element, 655
field element, 574–576
Fielding, Roy, 633
fieldNames attribute, 574–575
file data, parsing, 287
file property, 178, 847
file security support, PHP 5, 175–176
filter option, 788
filter parameter, 748
filtering, XPath expressions

abbreviated syntax, 131–132
axes, 127–128
calculations, 146
filtering node sets, 133–134
node tests, 128–130
numeric comparisons, 136
optimizing expressions, 138–139
predicates, 130
string comparisons, 135
value comparisons, 135–136, 144–145
XPath functions, 136–138
XPath operators, 132

find_binding() function, 765
find_business() function, 765
find_relatedBusiness() function, 765
find_service() function, 766
find_tModel() function, 766
firstChild property, 197, 857
firstResultPosition attribute, 647
fixed attribute, 79
#FIXED attribute default, 61
fixed element content, 76–77
flags, PHP parser options, 173–174
Flickr, 646
float type, 840
floor() function, 138
flush() method, 814, 817–818, 872
following axis, XPath, 128
following-sibling axis, XPath, 128
form attribute, 96–97

format attribute, 365
format element, 533
format-number() function, 372–373
format parameter, 648
formatFile() method, 503
formatOutput property, 859
formatString() method, 503–504
formatted numbers, XSLT results tree, 362–366
formatting XML documents, 23–24, 502–504,

816–817
forms, RSS, 528–529, 538–539
fractionDigits element, 82
from attribute, 363, 364, 365
fromKey element, 764
func mode, XML_Parser, 495–496
func:function element, 378
func:result element, 378
function() function, 397–399
function key, 626
functions. See also methods; names of specific

functions
user-defined, 378–380
XPath, 136–138, 144–145, 146
XPointer, 149–151

Functions EXSLT module, 378–380
functionString() function, 397–399

■G
gDay type, 841
general entities, 29, 55–59. See also parameter

entities
generate-id() function, 375
generator element, 548
GET (HTTP), 636–637
get_assertionStatusReport() function, 768
getAttribute() method, 202, 329, 331, 851, 862
getAttributeNo() method, 851
getAttributeNode() method, 202, 862
getAttributeNodeNS() method, 202, 862
getAttributeNS() method, 202, 331, 862
getAttributeNs() method, 851
getAttributes() method, 514
get_authToken() function, 768, 773
get_bindingDetail() function, 766
get_businessDetail() function, 766
get_businessDetailExt() function, 766
getCachedPage() method, 787
getChannelInfo() method, 564
getChildren() method, 514
getContent() method, 515
getDocNamespaces() method, 854, 879–891
getDTDRegex() method, 515
getElement() method, 500
getElementByID() method, 226–227, 860
getElementsByTagName() method, 199–200, 861,

862
getElementsByTagNameNS() method, 199, 201,

861, 862
getForecast() method, 796
getFunctions() method, 871
_getFunctions() method, 712, 870
getImages() method, 564
getInfo() method, 790

■INDEX898

6331_Index_final.qxd 2/16/06 2:56 PM Page 898

getItems() method, 564
_getLastRequest() method, 722, 870
_getLastRequestHeaders() method, 722, 870
_getLastResponse() method, 722, 870
_getLastResponseHeaders() method, 722, 870
getLocation() method, 794
getMessage() method, 515
getNamedItem() method, 857
getNamedItemNS() method, 857
getNamespaces() method, 854, 879–881
get_object_vars() method, PHP, 247–248
getParameter() method, 390, 393, 394–395, 866
getParserProperty() method, 316–317, 851
getPcreRegex() method, 515
get_publisherAssertions() function, 768
get_registeredInfo() function, 768
getSerializedData() method, 509
get_serviceDetail() function, 766
getStructure() method, 565
getTextinputs() method, 564
get_tModelDetail() function, 766
_getTypes() method, 712, 870
getUnserializedData() method, 511
getUser() function, 741
getUserRequestType parameter, 741
getWeather() method, 795
global scope of declarations, 89–91, 93
GlobalWeather, 793
GML (Generalized Markup Language), 2
gMonth type, 841
gMonthDay type, 841
Goldfarb, Charles F., 2
Google Web services, 12–13

AdWords API service, 744
cached pages, retrieving, 787
checking spelling, 787
doGetCachedPage() function, 746–747
doGoogleSearch() function, 746, 747–748
doSpellingSuggestion() function, 746–747
GoogleSearchResult structure, 745, 748–750
registration and setup, 744
search services, 744–750, 788–789
Services_Google package, 786–789

GoogleSearchResult structure, 745, 748–750
grammar element, 117–119, 120
grammars, 46, 49–50, 57–59
group element, 78–79
group pattern, 106
grouping-separator attribute, 363, 372
grouping-size attribute, 363
groups and grouping, 78–79
guid element, 541
gYear type, 841
gYearMonth type, 841

■H
handle() method, 729, 871
handleElement() method, 497
handlers, event-based parsing, 165
handlers, registering, 494, 505
hasAttribute() method, 862
hasAttributeNS() method, 862
hasAttributes() method, 201, 858

hasAttributes property, 321, 851
hasChildNodes() method, 196–197, 858
hasExsltSupport() method, 390, 395, 866
hasFeature() method, 856
hashing serialized XML, 443–445
hasValue property, 321, 851
HEAD (HTTP), 636
header element, 570, 699
header entries, SOAP

Header element, 699–701
in SOAP clients, 718–719
in SOAP servers, 730–732
SoapHeader class, 708

headerfault parameter, 710, 870
headers, 601–602, 605
height element, 538
here() function, 151
hexadecimal notation for characters, 15–16
hexBinary type, 841
highestprice parameter, 652
history of XML, 2–4
HMAC hash, 444
hostingRedirector element, 760
href attribute

link element, Atom, 546
xi:include element, 152
XLink, 158

hreflang attribute, 546
HTML documents

parsing, 504–506
transforming XML data, 356–357
using XSLT processor, 391–392

HTML (Hypertext Markup Language), 3, 22–24
loading in DOM trees, 190–191
outputting to XSLT trees, 385–387

html value, Text construct, 544
HTTP DELETE, 636, 637
HTTP GET, 636–637
HTTP HEAD, 636
HTTP POST

in REST architecture, 636, 637
using SOAP, 704
XML-RPC request headers, 601–602

HTTP PUT, 636, 637
HTTP requests, using SOAP, 704
HTTP responses, using SOAP, 705

■I
i4 element, 597
IANA (Internet Assigned Numbers Authority), 19
icon element, 548
iconv extension, 171–172
ID attributes, 36–38, 40–41, 64, 226–227
id element, 547, 549
id() function, 136, 155
id specification, 36, 40–41
ID type, 73, 843
identifierBag element, 755, 762
IDREF attribute, 38–39, 64
IDREF type, 73, 843
IDREFS attribute, 39–40, 64
IDREFS type, 843
IDs, 370–372, 375, 389

■INDEX 899

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 899

ie parameter, 748
if/then/else expressions, 160–161
IGNORE blocks, 68–70
image element

channel element, RSS 2.0, 537, 538
items element, RSS 1.0, 526
RDF element, RSS 1.0, 526–527, 530

images
adding to XML documents, 65–66
in RSS feeds, 526–527, 538
notation elements, 87–88

imageType attribute, 87
implementation property, 859
#IMPLIED attribute default, 60–61
import element, 91, 97–100
importNode() method, 861
importStylesheet() method, 390–391, 866
INCLUDE blocks, 68–70
include element, 91–93
including conditional DTD sections, 68–70
inclusive canonical XML, 457. See also canonical

XML
InclusiveNamespaces PrefixList parameter,

457–459
indent attribute, 381, 383
indent option, 502
indentation, 23–24
indentXML() method, 518
infinity attribute, 373
inline style sheets, 343
input element, 686, 689, 693
input settings, XML_Parser, 495
Inquiry API, UDDI, 765–767, 769–772
insertBefore() method, 206, 207, 209–210, 858
insertData() method, 863
instructions in schemas, 88
int element, 597
int type, 842
integer type, 842
integrity, 460. See also digital signatures
interleave pattern, 108–109
intermediaries, 700
internal parsed entities, 55–56
internal subsets, 48–49, 58
internalSubset property, 865
IRIs (internationalized resource identifiers), 543
isDefault property, 321, 851
isDefaultNamespace() method, 858
isElementContentWhitespace() method, 864
isEmptyElement property, 321
is_final parameter, 285–287
isId() method, 862
ISO-8859-1, ISO-2022-JP encodings, 19
ISO 10646 character set, 15
ISO (International Organization for

Standardization), 14
isSameNode() method, 199, 858
is_soap_fault() function, 868
isSupported() method, 858
isValid() method

xml extension, 333, 334
XML_DTD, 515, 519
XMLReader, 851

isWhitespaceInElementContent() method, 864
item element

channel element, RSS 2.0, 539–541
Content module, 533
RDF element, RSS 1.0, 527–528, 530, 556

item() method, 856, 857
ItemPage parameter, 664
items element, 524, 532–533, 555
itemType attribute, 83
iterating collections

of attributes, 201–202
of nodes, 196–197, 225
of XSLT node sets, 358–360, 360–362, 406–407

■J
JavaScript (Ajax), 826–830

■K
key() function, 370–372
key parameter, 748
keyedReference element, 764
KeyInfo element, 465, 479, 481, 485, 487
keyInfo() method, 790
keys

HMAC hash, 444
XML encryption, 479, 481, 485
XML signatures, 465
XSLT, 370–372, 389

Keywords parameter, 664, 665

■L
label attribute, 546
lang attribute

Atom elements, 543
XML, 42
xsl:sort element, 362

lang() function, 138
language option, 788
language parameter, 648
language type, 842
languages, specifying, 42
large document processing

breaking into smaller documents, 426–427,
436–438

DOM extension, 411, 412, 413
optimizing memory usage, 426–427
optimizing performance, 429–433
parser comparisons, 411–413
SimpleXML, 411, 412, 413
streaming parsers, 411, 413
tree-based parsers, 411, 413
xml extension, 412, 413
XMLReader, 413

last() function, 136
lastChild property, 197, 857
length attribute, 546, 572
length element, 81
length property, 863
level attribute, 363, 364, 365
level key, array structures, 289
level property, 178, 847
li element, 525, 555, 556

■INDEX900

6331_Index_final.qxd 2/16/06 2:56 PM Page 900

libraries
determining library version, 172–173
libxml2. See libxml2 library
libxslt. See libxslt library
PEAR. See PEAR
supported versions, 163–164

libxml extension, 167–168, 845
libxml2 library

enabling and disabling, 167
encoding conversions, 171–172
errors, retrieving, 293
internal document encoding, 170–172
library location, 167–168
library version, 172–173
libxml2-derived errors, 177–179
supported versions, 163–164

libxml_clear_errors() function, 178–179, 846
LIBXML_COMPACT constant, 846
LIBXML_DOTTED_VERSION constant, 845
LIBXML_DTDATTR option, 173, 450, 845
LIBXML_DTDLOAD constant, 845
LIBXML_DTDLOAD option, 173, 450
LIBXML_DTDVALID constant, 845
LIBXML_DTDVALID option, 173
LIBXML_ERR_ERROR constant, 847
LIBXML_ERR_FATAL constant, 847
LIBXML_ERR_NONE constant, 847
LibXMLError object, 178–179
LIBXML_ERR_WARNING constant, 847
libxml_get_errors() function, 178–179, 846
libxml_get_last_error() function, 178–179, 293, 846
LIBXML_NOBLANKS constant, 846
LIBXML_NOBLANKS option, 173
LIBXML_NOCDATA constant, 846
LIBXML_NOCDATA option, 173, 450
LIBXML_NOEMPTYTAG constant, 846
LIBXML_NOENT constant, 845
LIBXML_NOENT option, 173, 450
LIBXML_NOERROR constant, 846
LIBXML_NOERROR option, 173
LIBXML_NONET constant, 846
LIBXML_NONET option, 173
LIBXML_NOWARNING constant, 846
LIBXML_NOWARNING option, 173
LIBXML_NOXMLDECL constant, 846
LIBXML_NSCLEAN constant, 846
LIBXML_NSCLEAN option, 173
libxml_set_streams_context() function, 176, 846
libxml_use_internal_errors() function, 178–179,

376, 846
LIBXML_VERSION constant, 845
LIBXML_XINCLUDE constant, 846
LIBXML_XINCLUDE option, 173
libxslt library, 163–164, 389
license parameter, 648
lifetime of objects, 221–223, 226
limit option, 788
line feed character

formatting XML documents, 23–24
in canonical XML, 450, 455
in SAX parser, 277, 278
in user-derived types, 81–82

in XML documents, 16
migrating to PHP 5, 301

line number, retrieving using SAX, 291–292
line property, 178, 847
linebreak option, 502
link element

Atom, 545, 557
channel element, RSS 1.0, 525
channel element, RSS 2.0, 536
entry element, Atom, 549
feed element, Atom, 548
image element, RSS 1.0, 527
image element, RSS 2.0, 538
item element, RSS 1.0, 528
item element, RSS 2.0, 539
textinput element, RSS 1.0, 528
textInput element, RSS 2.0, 538

links between resources (XLink), 157–159
list pattern, 110–111
list type, 83
literal values, 349–350
load() method, 189–190, 428, 861
load time of large documents, 429–430
LOADDTD constant, 850
loadHTML() method, 191, 861
loadHTMLFile() method, 191, 861
loading documents

HTML data, 190–191
XML data, 189–190

loadXML() method, 189–190, 861
local-name() function, 137
local scope of declarations, 89–91, 93
local_cert option, 711
localName property, 321, 851, 858
location, XPointer, 149
location option, 711, 714–715
location paths. See paths, XPath
location set, XPointer, 149
location type, 149
login option, 711
logo element, 548
long type, 842
lookupNamespace() method, 851
lookupNamespaceURI() method, 858
lookupPrefix() method, 858
Lorie, Ray, 2
lowercase characters, 17–18
lowestprice parameter, 652
lr parameter, 748

■M
Manufacturer parameter, 664
markup, 16–17, 26–27
markup declarations

attribute-list declarations, 59–66
attribute types, 62–66
element type declarations, 50–54
entity declarations, 54–59
notation declarations, 66–67
wildcards, 49–50

markup language, 2
markup tags, 3

■INDEX 901

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 901

marshaling, 595. See also WDDX (Web Distributed
Data Exchange); XML-RPC

match attribute, 343, 371
Math EXSLT module, 377
Mathematical Markup Language (MathML), 5
maxCommentLine option, 503
maxExclusive element, 82
MaximumPrice parameter, 664
maxInclusive element, 82
maxLength element, 81
maxOccurs attribute, 74, 75, 78, 89–90
MaxRating element, 653
maxResults option, 788
maxResults parameter, 748
mbstring extension, 171–172
mcrypt library, 446–448
MD5 hash, 443
media-type attribute, 382, 383, 386, 387
member element, 600
memberTypes attribute, 84
memory usage

DOM extension, 410, 411, 412, 413
large document processing, 426–427
multiple document processing, 427–429
parser comparisons, 410, 411
SimpleXML, 410, 411, 412, 413
streaming parsers, 411, 413
tree-based parsers, 411, 413
xml extension, 410, 412, 413
XMLReader, 410, 413

Merchant element, 655, 656
merchantid parameter, 652, 656
MergeCart parameter, 668
message attribute, 694
message authentication, 460. See also digital

signatures
message definitions, WSDL, 681–685
message element, 681
message integrity

canonical XML. See canonical XML
encryption. See encryption
hashing serialized XML, 443–445
signatures. See digital signatures

message property, 178, 847
messages, debugging XSLT, 376
metalanguages, 2
method attribute, 381
methodCall element, 603–604
methodName element, 603
methodResponse element, 606, 618
methods. See also functions; names of specific

methods
domxml/DOM extension migration, 228–230
as event handlers, 297–300
extending DOM classes, 221

mhash extension, 444
migrating to PHP 5, 300–306
MIME types, 66–67
MimeType element, 650
minExclusive element, 82
MinimumPrice parameter, 664
minInclusive element, 82
minLength element, 81

minOccurs attribute, 74, 75, 78, 89–90
minus-sign attribute, 373
Misc* section, 20
mixed attribute, 86, 87
mixed content model, 52–54
mixed element content

RELAX NG schemas, 107–108, 111–112
XML schemas, 85–86

mixed pattern, 106
mod operator, 132
mode attribute, 344, 347
ModificationDate element, 650
modifying resources, 636, 637. See also REST

(Representational State Transfer)
modules, RSS

Content module, 532–534
Dublin Core module, 530–531
Syndication module, 531–532

Mosher, Ed, 2
moveToAttribute() method, 326, 327, 331, 851
moveToAttributeNo() method, 326, 327, 851
moveToAttributeNs() method, 326, 331, 851
moveToElement() method, 327, 852
moveToFirstAttribute() method, 327
moveToFirstElement() method, 852
moveToNextAttribute() method, 327
moveToNextElement() method, 852
multilineTags option, 503, 504
multiple documents, processing, 427–429
multiple formats, publishing to, 6
mustUnderstand attribute, 700–701, 708
MustUnderstand fault code, SOAP, 702
mustUnderstand parameter, 869

■N
name attribute

businessService structure, 758
RELAX NG schemas, 105, 113
template element, 343
XML schemas, 73
xsl:decimal-format element, 372
xsl:element element, 350
xsl:key element, 371
xsl:variable, xsl:param elements, 366

name element
businessEntity structure, 755
Person construct, 545
textinput element, RSS 1.0, 528
textInput element, RSS 2.0, 538
tModel structure, 761
XML-RPC, 600

name() function, 137
name parameter, 708, 709, 869
name property, 321, 851, 861, 864
name tests, XPath expressions, 128–130
Name type, 843
name/value pairs, 24–25
nameClass pattern, 104–105
named attribute groups, 79
named attribute sets, 352–353
named element groups, 78–79
named elements, 3
named patterns, 117–119

■INDEX902

6331_Index_final.qxd 2/16/06 2:56 PM Page 902

NameNodeMap interface, 184, 186
names. See also namespaces

attribute ID names, 37
attribute names, 24–25, 104–105
attribute uniqueness, 35–36
characters allowed in, 16
DOM extension node names, 194–195
element name substitutions, 77–78
element names, 21, 104–105, 351
namespaces and, 35–36
QNames, 31, 32, 35
reserved names, 16
scope of declarations and, 90, 93
XPath node names, 124

namespace attribute, 99, 351
namespace-aware parsers, 209, 296, 309
namespace declaration handlers, 297
namespace declarations

canonical XML, 450, 454
DOM extension, 203
SAX parser, 295, 297
XML schemas, 76

namespace nodes
canonical XML, 454–455
XPath, 124, 126–127

namespace parameter, 708, 869
namespace-uri() function, 137
namespace URIs, 330–331
namespace XPath axis, 128
namespaced schemas, 94–100
namespaces, 29–30

attribute uniqueness, 35–36
combining multiple schemas, 91–93, 94–97,

98–100
declarations. See namespace declarations
default. See default namespaces
defining, 31
element nodes, within namespaces, 205, 206
elements in specific namespaces, 201
elements in transformed trees, 351
in DOM extension, 218–219, 227, 418–419
in DOM parser example, 308
in exclusive XML canonicalization, 457–459
in RELAX NG schemas, 101, 115–117
in SimpleXML extension, 258–260, 261, 419,

879–883
in xml extension, 417–418
in XMLReader, 312–313, 328–333, 418
in XMLWriter, 818–819
in XPath expressions, 129, 130, 141–143
in XPath node names, 124
in XPointer expressions, 148
in XSL templates, 237
named patterns and, 118–119
namespace collisions, 31
namespace declaration handlers, 297
namespace support, parser comparisons, 410,

417–419
namespaced schemas, 94–100
naming, 33
PHP function calls and, 397
qualified local declarations, 95–97
qualified names, 116–117

registering, 218–219, 227, 261
reserved prefixes, 33
SAX parser and, 294–297
scope of, 33–35
sorting for canonical XML, 451–453
specifying in schemas, 72
tips for using, 35
unqualified local declarations, 94–95
unqualified names, 115–116
user-defined functions, EXSLT, 378–380
W3C XML Schemas namespace, 72
xsd prefix, 72

namespaceURI property, 321, 330–331, 851, 858
NaN attribute, 373
National Weather Service, 793
native XML databases (NXDs), 8–9
NCName type, 843
NCName:* XPath name test, 130
NDATA keyword, 57
negativeInteger type, 842
nesting

conditional sections in DTDs, 70
elements, 23–24

next() method, 320, 323–325, 329, 431, 852
nextSibling property, 198, 857
nillable attribute, 77
NMTOKEN, NMTOKENS types, 64–65, 843.

See also CDATA type
Node interface, 182, 186
node objects and interfaces

CharacterData interface, 184, 186
DOMException interface, 184, 186
DOMImplementation interface, 185, 186,

203–204
NameNodeMap interface, 184, 186, 225
Node interface, 182, 186
Node objects in DOM tree, 183
NodeList interface, 184, 186

node order
canonical XML, 450, 451–453
XSLT, 360–362, 406–407

node sets (XPath)
axes, 127–128
filtering, 133–134
location paths, 127
name tests, 128–130
node set functions, 136–137
node type tests, 130
predicates, 130

node sets (XSLT)
conditional processing, 358–360
containing current node only, 374
external documents, accessing, 370
repetitive processing, 358
sorting, 360–362, 406–407

node tests, XPath expressions, 128–130, 131–132
node type constants, 317–319, 850
node type tests, 130
node types, DOM, 181–182, 194. See also DOM

(Document Object Model)
NodeList interface, 184, 186
node_name parameter, 707, 869
nodeName property, 194–195, 857

■INDEX 903

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 903

node_namespace parameter, 707, 869
nodes, UDDI registries, 752
nodes (DOM)

attribute nodes, 207–209
attributes, 201–203
CDATA section nodes, 211
child nodes, 196–197
comments, 211
document fragments, 211
document node, 199, 203–204
DOM node types, 181–182, 194
element nodes, 204–207
elements

accessing by ID, 226–227
accessing by name, 199–201
accessing using XPath, 217–218

entity reference nodes, 211
in DOM tree, 182–183
iterating collections, 196–197, 225
Node interface, 182
node name, 194–195
node objects, 183
node type, 194
node value, 195
objects, DOM, vs. nodes, 221–223
parent nodes, 198–199
processing instruction nodes, 211
properties, 194–196
removing from tree, 212–213, 225
replacing, 213
retrieving using XPath, 217
sibling nodes, 198
text nodes, 209–210

nodes (in transformed trees)
attribute value templates, 349–350
attributes, 351–352
comment nodes, 354
copying nodes, 354–355
current node, retrieving, 374
elements, 350–351
named attribute sets, 352–353
node sets

conditional processing, 358–360
repetitive processing, 358
sorting, 360–362

processing instruction nodes, 353–354
text nodes, 353, 356

nodes (XPath)
axes, 127–128
calculations in expressions, 146
complex XPath expressions, 141–146
context nodes, 127, 134
equivalent XPointer expressions, 147
filtering node sets, 133–134
location paths, 127–132
node tests, 128–130
node type tests, 130
node types, 125–127
optimizing XPath expressions, 138–139
predicates, 130
value comparisons, 135–136, 144–145
XPath data model, 124–125

XPath functions, 136–138, 144–145, 146
XPath operators, 130

nodes (XSL, XSLT)
matching in templates, 343
selecting for processing, 346–347

nodeType property, 194, 321, 851, 857
nodeValue property, 195, 857
non-normative exclusive XML canonicalization

implementation, 459–460
NONE constant, 317, 318, 850
nonNegativeInteger type, 842
nonPositiveInteger type, 842
normalize() method, DOMNode class, 858
normalize-space() function, 137
normalizeComments option, 503, 504
normalizeDocument() method, 861
normalizedString type, 842
not() function, 138
NOTATION constant, 317, 318, 850
Notation interface, 187
NOTATION type, 64, 67, 841
notationHandler() method, 494
notationName property, 865
notations, 57, 64, 66–67, 281–283
notations property, 865
notes (annotation elements), 88. See also

comments
notification operation, WSDL, 698–699
ns attribute, 115–116
null element, 571
null type, 569
NULL value, 77
number element, 571
number() function, 137, 138
number type, 569
numeric values

formatted numbers, XSLT, 362–366, 372
numeric comparisons, XPath, 136
in user-defined types, 82

NumRatings element, 653
NXDs (native XML databases), 8–9

■O
OASIS (Organization for the Advancement of

Structured Information Standards), 14
Object element, 465
object handlers, XML_Parser, 496–497
object lifetime, 221–223, 226
object methods as event handlers, 297–300
object-oriented interface, xml extension, 493–498
object type definitions, WSDL, 679–680
objects, DOM

constructors, 220
creating and instantiating, 187–188
extending core classes, 219–220, 226, 228,

885–887
in PHP sessions, 224–225
methods, 221
nodes vs. objects, 221–223
objects, classes, and interfaces, 183, 184,

186–187, 885–887
properties, 220–221

■INDEX904

6331_Index_final.qxd 2/16/06 2:56 PM Page 904

scope and object lifetime, 221–223, 226
serialization, 224–225

objects, serializing, 224–225. See also
XML_Serializer package

oe parameter, 748
Offer element, 655, 656
omit-xml-declaration attribute, 382
one-way operation, WSDL, 685–686
oneOrMore pattern, 109–110
online bookmarks, 785–786
open() method, 315, 852
open source libraries. See PEAR
open_basedir option, 175–176
openMemory() method, 813–814, 872
openUri() method, 813–814, 872
operation element, 686, 689, 691, 693
Operation parameter, 664, 665, 670
operator attribute, 755, 761
operators, XPath, 130
optimization

memory usage, 426–429
parser comparisons. See parser comparisons
performance, 429–433

optional elements, 53–54
optional pattern, 106–107
or operator, XPath, 132
orAllKeys option, 766
order

elements in element type declarations, 51–52
entity declarations, 55–56
entity references, 58–59
node order

canonical XML, 450, 451–453
XSLT, 360–362, 406–407

schema elements, 74, 75
order attribute, 362
origin() function, 151
orLikeKeys option, 766
outbound() method, 790
output element, 686, 689, 693
outputBusiness() function, 770
outputMemory() method, 872
outputTemplate() function, 771
outputting XSLT result trees, 381–387
overviewDoc element, 762
ownerDocument property, 199, 857
ownerElement property, 861

■P
packages, PEAR. See PEAR
packets, WDDX

serializing data, 577–579, 579–581, 583–584,
590–591

unserializing data, 581–583, 584–585, 591–592
WDDX document structure, 570
Web service client (example), 587–589
Web service server (example), 586–587
XML_WDDX package, 589–592

PAD (Portable Application Description), 230–234,
262–268

param element, 112, 603, 604
parameter entities, 57–59, 69. See also general

entities

parameterOrder attribute, 686
parameters, XSLT

defining, 366–367
in style sheets, 393–395
passing to templates, 368–369
referencing, 367
scope of, in templates, 367–368
for user-defined functions, 379

params element, 603
parent axis, XPath, 128
parent nodes, 125, 198–199
parentNode property, 198–199, 857
parse() method, 513, 564
parsed character data. See PCDATA content
parsed entities, 55–57
parsed entity references, 450
parser attribute, 153
parser comparisons

choosing parsers, 423–426
document editing, 415–416
document navigation, 413–415
ease of use, 416–417
namespace support, 417–419
processing speed, 420–423
streaming parsers, 410, 423–424
system resource usage, 410, 411–413
tree-based parsers, 409–410, 423–424

parser modes, XML_Parser, 495
parser options, 173–174, 450–451
parsers and parsing, 14

Atom parser using XMLReader (example),
561–563

bypassing using CDATA sections, 26–27
DOM extension, 165
DOM parser using SAX (example), 306–310
epilogs and, 20
memory usage, 426–429
parsing DTDs, 512, 515
parsing HTML documents, 504–506
performance, 429–433
pull parsers, 165, 312
push parsers, 165, 270, 312
RSS 2.0 parser using SimpleXML (example),

560–561
SimpleXML extension, 164
using SAX. See parsing using SAX
using XMLReader. See parsing using

XMLReader
xml extension, 165, 270–272
XML_DTD package, 512, 515
XMLReader extension, 165

parsing speed
loading, unloading time, 429–430
locating specific elements, 430–433
optimizing, 429–433
parser comparisons, 410, 420–423

parsing using SAX
byte index, 291–292, 304
chunking data, 286–287, 304
column number, 291–292, 303–304
data from files, 287
encoding conversions, 293–294
error handling, 292–293

■INDEX 905

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 905

line number, 291–292
parser information, 291–292
parsing into array structures, 288–291
releasing parser, 294
xml_parse() function, 285

parsing using XMLReader
accessing attributes, 325–327, 331–332, 339
accessing node information, 320–323
accessing nodes, 319–320, 330–331, 338–339
accessing sibling nodes, 323–325
namespaces and, 328–333
retrieving attribute values, 326
validation using DTDs, 333
validation using RELAX NG, 334–335

parts attribute, 693
passphrase option, 711
password option, 711
paths, XPath

abbreviated syntax, 131–132
calculations in expressions, 146
complex XPath expressions, 141–146
equivalent XPointer expressions, 147
filtering node sets, 133–134
location paths, 127–132
namespaces and, 141–143
node tests, 128–130
optimizing XPath expressions, 138–139
predicates, 130
value comparisons, 135–136, 144–145
XPath functions, 136–138, 144–145, 146
XPath operators, 130

pattern element, 81
pattern-separator attribute, 373
patterns, RELAX NG, 100–102. See also schemas,

RELAX NG
attribute declarations, 101–102
attribute pattern, 112, 113–114
choice pattern, 106, 114
data pattern, 114
element declarations, 101–103
empty pattern, 106
external patterns, 119–121
group pattern, 106
interleave pattern, 108–109
list pattern, 110–111
mixed pattern, 106
named patterns, 117–119
oneOrMore pattern, 109–110
optional pattern, 106–107
value pattern, 112–113, 113, 114
zeroOrMore pattern, 109–110

PCDATA content, 52–54
PEAR

installing, 492–493
purposes and guidelines, 491–492
Services_Amazon package, 781–785
Services_Delicious package, 785–786
Services_Ebay package, 786
Services_Google package, 786–789
Services_Technorati package, 789–793
Services_Weather package, 793–797
Services_Webservice package, 797–802
Services_Yahoo package, 802–806

SOAP package, 734–735, 806
UDDI package, 806–808
Web services packages, 781
XML_Beautifier package, 502–504
XML_DTD package, 512–516
XML_FastCreate package, 516–519
XML_HTMLSax package, 504–506
XML_Parser package, 493–498
XML_RPC package, 622–628, 808
XML_RSS package, 512, 563–566
XML_Serializer package, 506–512
XML_Tree package, 498–501
XML_Util package, 501–502
XML_WDDX package, 589–592

PEAR Package Manager, 492–493
PECL, 812–813
per-mille attribute, 373
percent attribute, 373
performance. See also parser comparisons

large documents, processing, 426–427, 429–430
loading, unloading time, 429–430
locating specific elements, 430–433
multiple documents, processing, 427–429

persistence of SOAP classes, 728
Person construct, 545
personName element, 756
phone element, 756
PHP 4, 163, 167, 300–306
PHP 5

digital signature support, 448
DOM extension. See DOM extension
domxml/DOM extension migration, 228–230
encryption support, 448
file security, 175–176
I/O handling, 175
libxml2-derived errors, 177–179
PHP 4 migration, 300–306
protocols supported, 174–175
Safe Mode support, 175–176
SOA and, 9–10
stream contexts, 176–177
streams, 174–177
WAP detection, 837–838
XML extensions, 163, 164–167

PHP functions
in SOAP servers, 725–728
in style sheets, 396–399, 401, 402

php.ini options, 175–176
PI constant, 317, 318, 850
PI nodes

canonical XML, 455–456
creating using XSLT, 353–354
XPath, 124, 127

piHandler() method, 494
PIs (processing instructions), 28, 88, 279
point node type, 149
port element, 695–696
port type element, 685
port types, WSDL, 685–690
Portable Application Description (PAD), 230–234,

262–268
position() function, 136
positiveInteger type, 842

■INDEX906

6331_Index_final.qxd 2/16/06 2:56 PM Page 906

POST, HTTP
in REST architecture, 636, 637
XML-RPC request headers, 601–602

preceeding axis, XPath, 128
preceeding-sibling axis, XPath, 128
predicates, XPath, 130

calculations in expressions, 146
complex XPath expressions, 141–146
equivalent XPointer expressions, 147
filtering node sets, 133–134
namespaces and, 141–143
optimizing XPath expressions, 138–139
value comparisons, 135–136, 144–145
XPath functions, 136–138, 144–145, 146
XPath operators, 130

prefix property, 321, 330–331, 851, 858
prefixes

attribute uniqueness, 35–36
in exclusive XML canonicalization, 457–459
in RELAX NG schemas, 101
in XMLReader, 330–331
in XPath expressions, 142
namespace prefixes, 31, 33, 34, 218–219, 227
qualified names, RELAX NG schemas, 117
reserved prefixes, 33
user-defined functions, EXSLT, 378–380
WSDL prefix/namespace mappings, 674

preserveWhiteSpace property, 859
previousSibling property, 198, 857
Price element, 655
PriceFrom element, 652
PriceTo element, 652
primitive types, 73, 839–841
priority attribute, 343–344
procedural interface, XMLWriter, 819–820
procedure calls, 595. See also XML-RPC
processContents attribute, 84
processing instruction nodes

canonical XML, 455–456
creating using XSLT, 353–354

processing instructions (PIs), 28
annotation elements, 88
SAX event handlers, 279

processing speed
optimizing, 429–433
parser comparisons, 410, 420–423

ProcessingInstruction interface, 187
Product Search service, Yahoo, 651–659
ProductName element, 652, 655
prolog, 18–20
properties

domxml/DOM extension migration, 229
extending DOM classes, 220–221
system properties, 375–376

proxy servers, 176–177
proxy_host option, 711
proxy_login option, 711
proxy_password option, 711
pubDate element, 541
public identifiers, 46–47
public keys, 465
PUBLIC keyword, 47

publicId property
DOMDocumentType class, 864
DOMEntity class, 865
DOMNotation class, 865

published element, 550
Publisher API, UDDI, 767–768, 773–780
Publisher parameter, 664
publisherAssertion structure, 763–764
publishing

Web services. See UDDI (Universal Description,
Discovery, and Integration)

XML applications, 6–7
pull parsers, 165, 312
PurchaseURL element, 670, 672
push parsers, 165, 270, 312
PUT (HTTP), 636, 637

■Q
q parameter, 748
QName type, 841
QNames (qualified names). See also namespaces

namespaces and, 31, 32, 35
XPath expressions, 128–130

qualified names, RELAX NG schemas, 116–117
quantified expressions, 161
queries, XPath. See expressions, XPath
query() method, 216, 217, 856
query parameter, 648, 652

■R
range() function, 150
range-inside() function, 150
range node type, 149
range-to() function, 149–150
RatingUrl element, 653
rawurlencode() function, 665
RDF element, 524
RDF Site Summary, 522. See also RSS 1.0 (RDF Site

Summary)
read() method, 319–320, 333, 334, 852
readInnerXml() method, 852, 878
readOuterXml() method, 852, 878
readString() method, 852, 878
Really Simple Syndication. See RSS 2.0 (Really

Simple Syndication)
recordset element, 574–576
recordset type, 569
recover property, 859
ref attribute, 79, 93
Reference element, 464, 466, 467
references

character references, 15–16
digital signatures, 467–469, 472–473
element group references, 79
entity references, 28–29
for restricted characters, 17

registering DOM classes, 885–887
registerNamespace() method, 218–219, 856
registerNodeClass() method, 861, 885–887
registerPHPFunctions() method, 390, 396, 867
registerXPathNamespace() method, 261, 853
registries. See UDDI registries

■INDEX 907

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 907

rel attribute, 546
relative paths, XPath, 127
relative URIs, 42–43
RELAX NG schemas. See schemas, RELAX NG
relaxNGValidate() method, 216, 861
relaxNGValidateSource() method, 216, 861
remote content, including. See XInclude
remote document access, 176–177
Remote Method Invocation (RMI), 10
remote procedure calls, 595. See also XML-RPC

complex type document literal calls, 717–718
eBay Web services, 743–744
simple type RPC-encoded calls, 715–717
SoapClient class, 715–718
xmlrpc extension, 166

remote shopping cart. See shopping cart, Amazon
removeAttribute() method, 862
removeAttributeNode() method, 862
removeAttributeNS() method, 862
removeChild() method, 212–213, 858
removeLineBreaks option, 503
removeParameter() method, 390, 393, 395, 867
removing nodes from trees, 212–213, 225
repetitive processing, XSLT, 358
replaceChild() method, 213, 858
replaceData() method, 863
replacing text in documents. See entities
Representational State Transfer. See REST

(Representational State Transfer)
representations of resources. See REST

(Representational State Transfer)
request-response operation, WSDL, 686–698
requests, XML-RPC. See also XML-RPC

request format, 603–605
request header, 601–602
XML-RPC client (example), 612–613, 614–616
XML-RPC server (example), 617–618, 619–620
XML_RPC_Message class, 624–625

#REQUIRED attribute default, 60
#REQUIRED value, 36–38
reserved names, 16
resetOptions() method, 503, 510
resolveExternals property, 859
Resource Description Framework (RDF), 522
resource identifiers, 633
resources, 633

links between (XLink), 157–159
representations of. See REST (Representational

State Transfer)
ResponseGroup parameter, 664
responses, XML-RPC. See also XML-RPC

error handling, 607, 614, 618
response format, 606–607
response header, 605
XML-RPC client (example), 613, 614
XML-RPC server (example), 618, 620
XML_RPC_Response class, 626

REST (Representational State Transfer), 12, 14, 633
adding integers (example), 639–640
Amazon item search query (example), 664–666
Amazon remote shopping cart query (example),

667–672
Amazon Web services and, 660–661

client (example), 643–645
HTTP methods, 636–637
server (example), 641–643
URIs and, 638–639
Web services, 11–12, 634
XML representation of resources, 634–636
Yahoo Product Search query (example), 653–659
Yahoo Web Search query (example), 648–651
Yahoo Web services and, 12, 646

restricted characters, 17
restriction element, 80
restricts option, 788
restricts parameter, 748
Result element, 647, 652
result trees, XSLT

attributes, 351–352
comment nodes, 354
copying nodes, 354–355
elements, 350–351
formatted numbers, 362–366, 372–373
HTML documents, generating, 356–357
named attribute sets, 352–353
node sets, 358–360, 360–362, 406–407
outputting, 381–387
processing instruction nodes, 353–354
retrieving current node, 374
saving to URIs, 378
text nodes, 353, 356

results parameter, 648, 652
ResultSet element, 646–647, 652
retrieving resources, 636–637. See also REST

(Representational State Transfer)
reusing content. See XInclude
Rich Site Summary, 522. See also RSS 2.0 (Really

Simple Syndication)
rights element, 548, 550
RNG files, 101. See also schemas, RELAX NG
root element

RELAX NG schemas, 101
scope of declarations, 89–91
XML documents, 18, 20

root node, 124, 125, 453
round() function, 138
rowCount attribute, 574–575
RPC/encoded message format, WSDL, 682
RPC/literal message format, WSDL, 682–683
RSS 1.0 (RDF Site Summary)

channels, 524–526, 531, 532
content blocks, 527–528, 532–534
Content module, 532–534
document structure, 524
Dublin Core module, 530–531
forms, 528–529
history of RSS, 521–522
images, 526–527
sample document, 523–524
selecting feed technologies, 550–551
Syndication module, 531–532
using DOM (example), 551–557
using XML_RSS (example), 563–566

RSS 2.0 (Really Simple Syndication)
channels, 536–537
content blocks, 539–541

■INDEX908

6331_Index_final.qxd 2/16/06 2:56 PM Page 908

document structure, 535–536
forms, 538–539
history of RSS, 521–522
images, 538
modules. See modules, RSS
parser, SimpleXML (example), 560–561
sample document, 535
selecting feed technologies, 550–551
using DOM (example), 551–555, 556–557
using XML_RSS (example), 563–566

RSS1 class, 555–556
RSS2 class, 556–557
RSS documents, 391–392
rss element, 535
RSS technologies

Atom. See Atom
history of, 521–522
RSS 1.0. See RSS 1.0 (RDF Site Summary)
RSS 2.0. See RSS 2.0 (Really Simple Syndication)

Ruby, Sam, 522

■S
Safe Mode support, PHP 5, 175–176
safe_mode_gid setting, PHP, 175–176
safeSearch option, 788
safeSearch parameter, 748
SAP UDDI registry, 765, 767, 769–772, 773–780. See

also UDDI (Universal Description,
Discovery, and Integration)

save() method, 191, 861
save_binding() function, 768
save_business() function, 768, 774
saveDocumentToFile() method, 825
saveHTML() method, 192, 861
saveHTMLFile() method, 192, 861
save_publisherAssertions() function, 768
save_service() function, 768, 776
save_tModel() function, 768, 778
saveXML() method, 191, 483, 861
SAX (Simple API for XML), 14, 165, 269–270

DOM parser (example), 306–310
event handlers, 274–285, 297–300, 302–303,

305–306
namespaces and, 294–297
parser, creating, 272
parser options, 273–274
parsing documents

byte index, 291–292, 304
chunking data, 286–287, 304
column number, 291–292, 303–304
data from files, 287
encoding conversions, 293–294
error handling, 292–293
line number, 291–292
parser information, 291–292
parsing into array structures, 288–291
releasing parser, 294
xml_parse() function, 285

target encoding, 300
using xml extension, 270–272

scalar property, 611
scalarval() method, 623
schema element, 72

schemaLocation attribute, 93, 99
schemas, RELAX NG, 100–104. See also DTDs

(Document Type Definitions); schemas,
XML

attributes, 113–114
data types, 102, 114
defines, 117–119
elements. See elements (RELAX NG)
external patterns, 119–121
mixed element content, 107–108, 111–112
namespaces and, 101, 115–117
patterns. See patterns
root element, 101
specifications and tutorial, 121
validation, 216

schemas, XML, 71. See also DTDs (Document Type
Definitions); schemas, RELAX NG

annotation elements, 88
attributes. See attributes (XML schemas)
complex element content, 86–87
complex types, 73–76, 84–85
data types, 72–76
DTDs vs., 71, 90
element name substitutions, 77–78
elements. See elements (XML schemas)
empty elements, 85
mixed element content, 85–86
multiple, combining, 91–93, 94–97
namespace declarations, 76
namespaced schemas, 94–100
schema element, 72
scope of declarations, 89–91, 93
SDO Data Access Services, 821–823
simple types, 72–73, 83–84
specifying namespaces, 72
structure, 76
type definitions, 839
validation, 45–46, 215–216

schemaValidate() method, 215–216
schemaValidateSource() method, 215–216, 861
scheme attribute, 546
scope

extending DOM classes, 221–223, 226, 885–887
global declarations, 95
names in RELAX NG schemas, 117
namespaces, 33–35
parameters, 367–368
qualified local declarations, 95–97
root element declaration, 95
schema declarations, 89–91, 93
unqualified local declarations, 94–95
variables, 367–368

screen scraping, 12
SDO Data Access Service, 820–826
SDO_XML_DAS, 825–826
search() method, 788, 790
search services, Google

doGetCachedPage() function, 746–747
doGoogleSearch() function, 746, 747–748
doSpellingSuggestion() function, 746–747
GoogleSearchResult structure, 745, 748–750
registration and setup, 744
Services_Google package, 788–789

■INDEX 909

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 909

SearchIndex parameter, 664, 665
searching

Amazon item searches, 663–666
using Google. See search services, Google
using Technorati, 789–793
Yahoo Product Search service, 651–659
Yahoo Web Search service, 648–651

searchLocation() method, 794
secret keys, HMAC hash, 444
security

canonical XML. See canonical XML
encryption. See encryption
file security support, PHP 5, 175–176
general considerations, 441–442
message integrity, 442–445
PHP function calls, restricting, 396
signatures. See digital signatures

select attribute
xsl:apply-templates element, 346–347
xsl:for-each element, 358
xsl:variable, xsl:param elements, 366

self axis, XPath, 128
send() method, 625
Seq element, 525, 555
sequence element, 74, 75, 78–79
sequence lists, 51
sequences, XPath 2.0, 159–160
serialize() method

PHP, 224
XML_RPC_Response class, 626
XML_Serialize class, 509
XML_WDDX package, 590

serialized data
canonical XML, 450–451
encrypting and decrypting, 446–448, 483
hashing, 443–445
node order for canonical XML, 451–453

serializing data
arrays. See XML_Serializer package
DOM objects, 224–225
objects. See XML_Serializer package
WDDX data

complex data, 579–581, 583–584, 590–591
simple data, 577–579, 583–584, 590–591
unserializing data, 581–583, 584–585,

591–592
XML_WDDX package, 590–591

Server fault code, SOAP, 702
servers

REST Web service (example), 641–643
SOAP servers. See SOAP servers
validating server-based data, 826–830
WDDX Web service server (example), 586–587
XML-RPC server (example), 617–622, 626–628

Service Data Objects (SDO), 820–826
service element, 695–696
Service parameter, 665
serviceKey attribute, 758, 759
services() method, 794
Services_Amazon package, 781–785
Services_AmazonECS4 class, 782
Services_Delicious package, 785–786
Services_Ebay package, 786

Services_Google package, 786–789
Services_Technorati class, 789–790
Services_Technorati package, 789–793
serviceSubset option, 767
Services_Weather package, 793–797
Services_Webservice class, 798
Services_Webservice package, 797–802
Services_Yahoo package, 802–806
Services_Yahoo_ContentAnalysis class, 805–806
Services_Yahoo_Search class, 802–805
setAdultOK() method, 803
setAppID() method, 803, 806
setAttribute() method, 208–209, 862
setAttributeNode() method, 208, 862
setAttributeNodeNS() method, 208, 862
setAttributeNS() method, 203, 208–209, 863
setClass() method, 728, 871
setContext() method, 806
_setCookie() method, 871
setFormat() method, 803
setIdAttribute() method, 227, 863, 883
setIdAttributeNode() method, 863, 883
setIdAttributeNS() method, 863, 883
setIndent() method, 816, 872
setIndentString() method, 816
setInput() method, 495
setInputFile() method, 495
setInputString() method, 495
setLocale() method, 782
_setLocation() method, 714–715, 871
setOption(), setOptions() methods, 503, 509, 510
setParameter() method, 390, 393–394, 862
setParserProperty() method, 316–317, 852
setPersistence() method, 728, 871
setQuery() method, 804, 806
setRelaxNGSchema() method, 334, 335, 852
setRelaxNGSchemaSource() method, 334
setResultNumber() method, 804
_setSoapHeaders() method, 718–719, 871
setStart() method, 804
setType() method, 804
SGML (Standardized Generalized Markup

Language), 2–3
SHA1 hash, 443
shallow copies of nodes, 354–355
shared external subsets, 68–70
shopping cart, Amazon, 666–672, 784–785
short type, 842
show attribute, 158–159
sibling nodes, DOM extension, 198
Signature element, 463
signature key, 626, 627
SignatureMethod element, 464, 470, 473
signatures. See digital signatures
SignatureValue element, 463, 466, 470
SignedInfo element, 463, 470, 473
signer authentication, 460. See also digital

signatures
SIGNIFICANT_WHITESPACE constant, 318, 850
similar_ok parameter, 648
SimpleXML, 164, 239, 852–854, 879–883

attributes, 255–256, 256–257
child elements, 252–253

■INDEX910

6331_Index_final.qxd 2/16/06 2:56 PM Page 910

choosing parsers, 424–425, 426
document editing, 415, 416
document navigation, 414–415
DOM interoperability, 250, 253, 255, 434–436
ease of use, 410, 416–417
element content, 243–244, 251–252
element names, 247–250
element nodes, 242–243, 245–250
importing nodes from DOM extension, 434–435
large document processing, 410, 411, 412, 413
locating specific elements, 432, 433
memory usage, 426–427
namespace support, 410, 419, 879–883
namespaces, registering, 261
optimizing, 426–427, 432, 433
PAD template (example), 262–268
performance, 432, 433
removing elements from tree, 253–255
replacing subtrees, 253
RSS 2.0 parser (example), 560–561
saving XML content, 241
SimpleXMLElement class, 240–241, 257–258
system resource usage, 410, 411, 412, 413
XPath support, 260–261
Yahoo Web Search query (example), 650–651

SimpleXML extension, 258–260, 879–883
simplexml mode, 506
SimpleXMLElement class, 239–258, 257–258
simplexml_import_dom() function, 434–435, 853
simplexml_load_file() function, 239–241, 853
simplexml_load_string() function, 239–241, 853
simplified inline style sheets, 343
site parameter, 648
sleep() method, 224–225
SOA (Service Oriented Architecture), 10
SOAP, 11–12, 14, 867–871

clients. See SOAP clients
eBay and. See eBay Web services
encoded variables, 706–708
encoding style, 698
Envelope element, 698–699
error handling, 700, 701–704
faults, 701–704, 709–710, 729–730, 870
Google and. See Google Web services
header entries, 699–701, 708, 718–719
low-level function calls, 719–720
messages, 697, 701, 720–722
named parameters, 709
PHP functions, 725–728
request messages, 697, 704
response messages, 697, 705
servers. See SOAP servers
Services_Webservice package, 797–802
UDDI APIs, 765–768
XML-RPC and, 10

SOAP_... options constants, 867
SOAP clients

creating, 710–712
debugging client calls, 722–723
eBay Web services implementation, 737–740
header entries, 718–719
low-level function calls, 719–720
messages, modifying, 720–722

remote function calls, 715–718
service location, specifying, 714–715
services, inspecting, 712–714
SoapClient class. See SoapClient class

SOAP extension, 166, 867–871
clients. See SOAP clients
enabling, 706
servers. See SOAP servers
SoapClient class, 710–723
SoapFault class, 709–710, 729–730, 870
SoapHeader class, 708
SoapParam class, 709
SoapServer class, 724–734
SoapVar class, 706–708

SOAP faults, 701–704, 709–710, 729–730, 870
SOAP header entries, 699–701, 708, 718–719,

730–732
SOAP package, 734–735, 806
SOAP servers

creating, 724–725
eBay. See eBay Web services
handling client requests, 729
registering function handlers, 725–728
returning SOAP faults, 729–730
SOAP headers, 730–732
WSDL and, 723–724, 732–734

soapAction attribute, 692
SOAP_ACTOR_NEXT constant, 731
soap:address element, 695–696
soap:binding element, 691
_soapCall() method, 719–720, 744, 871
SoapClient class, 870–871

_construct() method, 710–712
_doRequest() method, 720–722, 870
_getFunctions() method, 712
_getLastRequest() method, 722
_getLastRequestHeaders() method, 722
_getLastResponse() method, 722
_getLastResponseHeaders() method, 722
_getTypes() method, 712
options, 711
remote function calls, 715–718
_setLocation() method, 714–715
_setSoapHeaders() method, 718–719
_soapCall() method, 719–720, 871

SoapFault class, 709–710, 729–730, 870
soap:fault element, 694
SOAP_FUNCTIONS_ALL constant, 727
SoapHeader class, 869
soap:header element, 694
soap:headerfault element, 694
soap:operation element, 692
SoapParam class, 709, 869
SOAP_PERSISTENCE_REQUEST option, 728
SOAP_PERSISTENCE_SESSION option, 728
SoapServer class, 724–725, 728, 729, 871
SoapVar class, 706–708, 868–869
soap_version option, 711
soap_version parameter, 724
soap.wsdl_cache_dir option, 706
soap.wsdl_cache_enabled option, 706
soap.wsdl_cache_ttl option, 706
solicit-response operation, WSDL, 698

■INDEX 911

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 911

some quantifier, 161
Sort parameter, 664
sort parameter, 652
sortByDateDesc option, 766
sortByNameAsc option, 766
sortByNameDesc option, 766
sortCode attribute, 757
sorting node sets

canonical XML, 450, 451–453
XSLT, 360–362, 406–407

source element, 541, 550
space attribute, 41–42
space character, 16, 81–82
space notation, 16
special characters, 53, 450
Specification element, 653
SpecificationLabel element, 653
SpecificationList element, 653
SpecificationValue element, 653
speed of parsing or processing, 410, 420–423,

429–433
spell check, Google Web services, 787
spelling suggestions, Yahoo Web services, 805–806
spellingSuggestion() method, 787
splitText() method, 864
src attribute, 546
stacking XPointer expressions, 147–148
standalone attribute, 382
standalone declaration, 19
standalone property, 859
standardized data descriptions, 5–6
start element, 117–119, 120
start option, 788
start parameter

GoogleSearchResult structure, 748
Yahoo Product Search request, 652
Yahoo Web Search request, 648

start-point() function, 151
start tags, 21, 23–24
startAttribute() method, 872
startAttributeNs() method, 872
startCdata() method, 872
startComment() method, 872
startDocument() method, 814, 872
startDtd() method, 873
startDtdElement() method, 873
startElement() method, 814, 872
startElementNs() method, 872
startHandler() method, 494
startPi() method, 872
starts-with() function, 137
steps, XPath, 127
stock trader (XML-RPC example), 615–616,

619–622
stream contexts, 176–177
stream_context option, 711
streaming parsers

document editing capabilities, 410
document navigation, 413, 415
document navigation capabilities, 410
ease of use, 410
namespace support, 410
parser comparisons, 410, 423–424

parsing and processing speed, 410, 420, 423
SAX (Simple API for XML). See SAX (Simple API

for XML)
system resource usage, 410, 411, 413
tree-based parsers vs., 410
xml extension, 165, 270–272
XMLReader extension, 165

streams, PHP 5, 174–177
strictErrorChecking property, 859
string comparisons, XPath expressions, 135–136,

144–145
string element, 572, 598
string() function, 137
string-length() function, 137
string-range() function, 150
string type

RELAX NG, 103, 111–112
WDDX, 569
XML schemas, 840

string values of XPath nodes, 124
struct element, 573–574, 577, 600
struct type, 569
style attribute, 691, 692
style option, 711
style sheets, 342

DOM extension (example), 399–400
importing to XSLT processor, 390–391
simplified inline style sheets, 343
templates. See templates, XSL
variables and parameters, 366–369, 393–395
WAP Cascading Style Sheets (WCSS), 835
XSL. See XSL (Extensible Stylesheet Language)
XSLT. See XSLT (Extensible Stylesheet Language

Transformations)
subclasses, DOM extension, 219–223
submit() method, 804, 806
subscription parameter, 648
SUBST_ENTITIES constant, 850
substituteEntities property, 860
substitutionGroup attribute, 77–78
substitutions, element names, 77–78
substring-after() function, 137
substring-before() function, 137
substring() function, 137
substringData() method, 863
subtitle element, 548
subtrees

accessing, 197
bypassing in XMLReader, 323–325
copying, 436–438
modifying, 252
replacing, 253

sum() function, 138
Summary element

Catalog element, Yahoo, 652
Offer element, Yahoo, 655
Result element, Yahoo Web Search, 650

summary element, 549
super encryption, 476–477
syndication, 6

Atom. See Atom
feeds using DOM, 551–560
history of, 521–522

■INDEX912

6331_Index_final.qxd 2/16/06 2:56 PM Page 912

parser, SimpleXML (example), 560–561
RSS 1.0. See RSS 1.0 (RDF Site Summary)
RSS 2.0. See RSS 2.0 (Really Simple Syndication)
selecting technologies, 550–551

Syndication module, 531–532
Syndicator class, 552–555
system identifiers, 46–47
SYSTEM keyword, 46–47
system-property() function, 375–376
system resource usage, parser comparisons, 410,

411–413
systemId property

DOMDocumentType class, 864
DOMEntity class, 865
DOMNotation class, 865

system.listMethods() method, 608
system.methodHelp() method, 608
system.methodSignature() method, 608

■T
tab character, 16, 23–24, 81–82, 455
tag key, array structures, 289
tagName property, 862
tags, 2, 3, 17–18, 21–22
target property, 866
targetNamespace attribute, 94–95, 99
Technorati Web service, 789–793
templates, XSL, 343, 344–345

applying, 345–347
attribute value templates, 349–350
built-in templates, 347–348
calling, 348–349
conflicts, resolving, 343–344
elements, matching, 343
elements, specifying for processing, 346–347
mode, specifying, 347
names of templates, 343, 348–349
priority, specifying, 343–344
variables and parameters, 366–369
Yahoo Product Search query (example), 657

templates (examples)
PAD template, 230–234, 262–268
XSL template, 235–237

term attribute, 546
term extraction, Yahoo Web services, 805–806
terminate attribute, 376
test attribute, 360
testing parsers. See parser comparisons
text and text content. See also text nodes

character data handlers, SAX, 276–277
in element type declarations, 53–54
replacing. See entities
simple types, 72–73, 83–84
text-only content, 53–54

TEXT constant, 317, 318, 850
Text construct, 544
text declarations, 47
Text interface, 187
text() method, 872
text nodes. See also text and text content

in canonical XML, 455
in DOM extension, 209–211
in XPath, 124, 126

in XSLT, 353, 356
whitespace in DOM tree, 182, 213

text output, XSLT result trees, 387
text pattern, 103, 111–112
text value, Text construct, 544
textContent property, 858
textInput element, 537, 538–539
textinput element, 526, 528–529, 530
Thumbnail element, 652, 655
time type, 840
timestamp property, 611
title attribute, 546
Title element, 650
title element

channel element, RSS 1.0, 525
channel element, RSS 2.0, 536
entry element, Atom, 549
feed element, Atom, 547
image element, RSS 1.0, 527
image element, RSS 2.0, 538
item element, RSS 1.0, 528
item element, RSS 2.0, 539
textinput element, RSS 1.0, 528
textInput element, RSS 2.0, 538

tModel structure, 761–763, 778
tModelInstanceDetails element, 760, 763
tModelKey attribute, 757, 761
token type, 842
toKey element, 764
topTags() method, 790
totalDigits element, 82
totalResultsAvailable attribute, 647
totalResultsReturned attribute, 647
toXML() method, 519
trace option, 711, 722
transformations, XSL

attribute value templates, 349–350
attributes, 351–352
CDATA sections and, 173–174
comment nodes, 354
copying nodes, 354–355
current node, retrieving, 374
elements, 350–351
formatted numbers, 362–366, 372–373
HTML documents, 356–357
named attribute sets, 352–353
node sets

processing, 358–360
sorting, 360–362, 406–407

processing instruction nodes, 353–354
RSS feed aggregation (example), 400–407
style sheet, DOM extension (example), 399–400
templates. See templates, XSL
text nodes, 353, 356
XSL extension, 166
XSLT processor. See XSLT processor
Yahoo Product Search query (example), 657

transformToDoc() method, 390, 391, 392–393, 867
transformToURI() method, 390, 391, 392, 867
transformToXML() method, 390, 391–392, 867
translate() function, 137
transport attribute, 691

■INDEX 913

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 913

tree, DOM
attribute nodes, 207–209, 208–209
attributes, 201–203
CDATA section nodes, 211
child nodes, 196–197
comments, 211
creating and instantiating documents, 188–189
document element, 193–194
document fragments, 211
document node, 199, 203–204
element nodes, 204–206, 206–207
elements, accessing by name, 199–201
entity reference nodes, 211
loading HTML data, 190–191
loading XML data, 189–190, 193
namespace declarations, 203
navigating between nodes, 196–201
node information, 194–196
parent nodes, 198–199
processing instruction nodes, 211
removing nodes, 212–213, 225
replacing nodes, 213
saving HTML data, 192
saving XML data, 191
sibling nodes, 198
subtrees, 197
text nodes, 209–210

tree-based parsers
document editing capability, 410
document navigation, 410, 413, 415
DOM extension, 165
ease of use, 410
namespace support, 410
parser comparisons, 409–410, 423–424
parsing and processing speed, 410, 420, 423
SimpleXML extension, 164
streaming parsers vs., 409–410
system resource usage, 410, 411, 413

tree (document tree), 20, 182–183
troubleshooting

corrupted XML documents, 389
default namespaces, element access, 227
DTDs, adding manually, 227
elements, retrieving by ID, 226
entity errors, 227
keys in style sheets, libxslt and, 389
node access, extended classes and, 226
nodes, removing from documents, 225
serializing DOM objects, 224–225

true() function, 138
type attribute

content element, Atom, 546
link element, Atom, 546
Text construct, 544
XLink, 158
XML schemas, 73, 74, 102

type definitions, 839
type key, array structures, 289
type parameter, 648
type_name parameter, 707, 869
type_namespace parameter, 707, 869
types. See data types
types element, 678

■U
UDDI package, 806–808
UDDI registries, 752

adding and updating information, 767–768,
773–780

deleting information, 780
querying, 765–767, 769–772, 807–808
SAP test registry, 765, 767, 768–780

UDDI (Universal Description, Discovery, and
Integration), 11–12, 751–752

address structure, 756–757
bindings for services, 777–778
bindingTemplate structure, 758–760
businessEntity structure, 754–757
businessService structure, 757–758
contact structure, 756
data structures hierarchy, 753–754
deleting registry information, 780
Inquiry API, 765–767
Publisher API, 767–768
publisherAssertion structure, 763–764
registries. See UDDI registries
services, creating, 776–777
specifications, 753
tModel structure, 761–763
usage of, 752

Unicode character set, 15
union data types, 83
union element, 84
Universal Business Registry (UBR), 751. See also

UDDI (Universal Description, Discovery,
and Integration)

Universal Description, Discovery, and Integration.
See UDDI (Universal Description,
Discovery, and Integration)

universally unique IDs (UUIDs), 753
UNKNOWN_TYPE constant, 868
unloading time, 429–430
unparsed entities

declaration event handlers, 281–283
entity declarations, 57
notation declarations, 66–67
referencing, 65–66
URIs, retrieving, 374–375

unparsed-entity-uri() function, 374–375
unparsedHandler() method, 494
unqualified names, RELAX NG schemas, 115–116
unserialize() method, 511
unserializing WDDX data, 581–583, 584–585, 590,

591–592
unset() method, 253–254, 257, 428
unsignedByte type, 842
unsignedInt type, 842
unsignedLong type, 842
unsignedShort type, 842
updated element, 547, 549
updating resources, 636, 637. See also REST

(Representational State Transfer)
uppercase characters, 17–18
uri element, 545
uri option, 711
uri parameter, 724

■INDEX914

6331_Index_final.qxd 2/16/06 2:56 PM Page 914

URIs (Uniform Resource Identifiers), 14
API versioning and, 638–639
base URIs, 42–43
combining multiple schemas, 93
in REST architecture, 638–639
namespaces, 31
outputting to, XSLT, 392
relative URIs, 42–43
XML Base specification, 42–43
XPointer references, 146, 147

Url element
Catalog element, Yahoo, 652
Offer element, Yahoo, 655
Result element, Yahoo Web Search, 650

url element, 527, 538
URLs (Uniform Resource Locators), 14, 147
use attribute

attribute element, 79
WSDL, 693
xsl:key element, 371

use-attribute-sets attribute, 351
use option, 711
user-derived types, 73, 80–83, 117–119
UserLand Software, 522
UserRating element, 652
use_soap_error_handler() function, 868
useType attribute, 756, 757
UTF-8, UTF-16 encodings, 15, 19, 169, 170–172

DOM extension and, 188, 226
SAX parser and, 293–294

utf8_decode() function, 293, 849
utf8_encode() function, 293, 849
UUencode encoding, 67
UUIDs (universally unique IDs), 753

■V
valid documents, 45
VALIDATE constant, 850
validate() method, 214–215, 861
validateOnParse property, 860
validating server-based information, 826–830
validation, 45–46

DTDs. See DTDs (Document Type Definitions)
entity errors, 227
libxml2-derived errors, 177
malformed document errors, 177
RELAX NG schemas. See schemas, RELAX NG
scope of declarations, 89–91, 93
XInclude and, 152
XML schemas. See schemas, XML
XML_DTD package, 512, 515
XMLReader, 313

value attribute, 80, 363
value comparisons, XPath expressions, 135–136,

144–145
value element, 533, 596, 599, 600, 603
value key, array structures, 289
value() method, 626
value pattern, 112–113, 113, 114
value property, 321, 851, 861
values

attribute default values, 60–62
attribute values, 24, 25, 326, 450

name/value pairs, 24
node values, DOM extension, 195

var element, 573–574, 577
variable variables, 561
variables, XSLT, 366–368
verbosity option, 613
version attribute, 342, 381, 383, 386
version information

API versioning, URIs and, 638–639
in XML declaration, 19
libxml2 version, 172–173

version option, 613
version property, 860
VersionMismatch fault code, SOAP, 702

■W
wakeup() method, 224–225
WAP Cascading Style Sheets (WCSS), 835
WAP (Wireless Application Protocol), 830–838
W3C (World Wide Web Consortium), 14, 15
W3C XML Schemas namespace, 72
WCSS (WAP Cascading Style Sheets), 835
wddx extension, 166
WDDX (Web Distributed Data Exchange), 166,

567–568
data types, 568–569, 571–576
enabling, 576
packets, 570
serializing data, 577–581, 583–584, 590–591
unserializing data, 581–583, 584–585, 591–592
Web service client (example), 587–589
Web service server (example), 586–587
XML_WDDX package, 589–592

wddx_add_vars() function, 580
wddx_deserialize() method, 581–583
wddxPacket element, 570
wddx_packet_end() function, 580, 581
wddx_packet_start() function, 580
wddx_serialize_value() method, 577, 583
wddx_serialize_vars() method, 577–578
weather information, Web service, 793–797
Weather.com, 793–797
Web Search service, Yahoo, 648–651
Web service definitions, WSDL, 695–696
Web services, 10, 11–13

Amazon. See Amazon Web services
creating, 797–802
del.icio.us Web service, 785–786
discovering. See UDDI (Universal Description,

Discovery, and Integration)
eBay. See eBay Web services
Google. See Google Web services
PEAR Web service packages, 781
publicly accessible (XMethods listing), 715
registries. See UDDI (Universal Description,

Discovery, and Integration)
REST. See REST (Representational State

Transfer)
Technorati Web service, 789–793
UDDI. See UDDI (Universal Description,

Discovery, and Integration)
WDDX (example), 586–589
weather information service, 793–797

■INDEX 915

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 915

WSDL. See WSDL (Web Services Description
Language)

Yahoo. See Yahoo Web services
Web Services Architecture Working Group (W3C),

11
Web Services Description Language. See WSDL

(Web Services Description Language)
Web services extensions, 166
Web Services Interoperability Organization (WS-I),

11, 673, 674, 699
well-formed documents, 45
whitespace

formatting XML documents, 23–24
in canonical XML, 450, 455
in DOM tree, 182, 197, 213
in element type declarations, 50–52
in NMTOKEN, NMTOKENS types, 65
in SAX parser, 273, 276–277, 290–291, 301
in user-derived types, 81–82
in XML documents, 16
in XMLReader, 317, 318, 320
migrating to PHP 5, 301
xml:space attribute, 41–42

WHITESPACE constant, 317, 318, 850
whiteSpace element, 81–82
wholeText property, 864
width element, 538
wildcards, markup declarations, 49–50
Winer, Dave, 10, 522
Wireless Application Protocol (WAP), 830–838
wml element, 832
WML (Wireless Markup Language), 830, 831–833
wrapper code, 229–230
writeAttribute() method, 814, 872
writeCdata() method, 872
writeComment() method, 872
writeDtd() method, 873
writeElement() method, 814, 872
writeElementNs() method, 872
writePi() method, 872
WS-I (Web Services Interoperability Organization),

11, 673, 674, 699
WSDL (Web Services Description Language),

11–12, 673–674
binding definitions, 690–695
data type definitions, 678–681
document structure, 677–678
example document, 675–677
faults, 687, 693
Google Web services and. See Google Web

services
message definitions, 681–685
port type definitions, 685–690
prefix/namespace mappings, 674
Services_Webservice package, 797–802
SOAP messages (examples), 697
SOAP servers and, 723–724
Web service definitions, 695–696

■X
XBRL (Extensible Business Reporting Language), 6
XHTML Basic, 833
XHTML documents, 516–519

XHTML (Extensible HTML), 24
XHTML Mobile Profile (XHTML MP), 830, 833–836
xhtml value, Text construct, 544
xi prefix, 152
xi:fallback element, 155–157
xi:include element, 152–155
XInclude, 152

failed XIncludes, handling, 155–156
including external content, 152–155, 876–879
optimizing memory usage, 426–427
XML Base specification, 42–43

xinclude() method, 861
XLink, 42–43, 157–159
xlink prefix, 158
XMethods, 715
XML Base specification, 42–43
XML data

loading in DOM trees, 189–190
saving as HTML, 192
saving as XML, 191
SDO access, 823–825

XML declaration, 18–19, 450
XML documents

adding DTDs manually, 227
adding images to, 65–66
body, 20
breaking into smaller documents, 426–427,

436–438
CDATA sections, 26–27
characters in, 15–18
cloning, libxslt library and, 389
comments, 27–28
as databases, 7–8
document encryption, 476
DOM extension. See DOM extension
entity errors, 227
external content. See XInclude
formatting, 23–24, 502–504
keys in style sheets, troubleshooting, 389
large document processing, 426–427, 429–430
layout and components of, 18–20
markup declarations. See markup declarations
native XML databases, 8–9
outputting, SimpleXML, 241
parsing. See parsers and parsing
processing instructions, 28
prolog, 18–20
root element, 18, 20
signing. See digital signatures
syntax, 21
tree representation of (DOM), 182–183
using XMLWriter, 814–819
validation. See validation

XML-enabled databases. See native XML databases
(NXDs)

XML encryption
character data encryption, 476
decrypting data, 484–489
detached encryption, 477
document encryption, 476
element encryption, 475
encrypting data, 480–484
enveloping encryption, 477

■INDEX916

6331_Index_final.qxd 2/16/06 2:56 PM Page 916

mixed content encryption, 475–476
super encryption, 476–477
XML encryption structure, 477–480

XML encryption structure, 477–480
XML (Extensible Markup Language), 1

history of, 2–4
HTML vs., 22–24
uses for, 4–9
W3C design goals, 3–4

xml extension, 165, 270–272, 847–849, 875–876. See
also SAX (Simple API for XML)

character data handlers, 301
choosing parsers, 424, 426
default handler, 302–303, 876
document editing, 415
document navigation, 413–414, 415
DOM parser, example code, 306–310
ease of use, 410, 416
large document processing, 410, 412, 413
namespace support, 410, 417–418, 419
system resource usage, 410, 412, 413
target encoding, 300
XML_Parser package, 493–498
XMLReader compared to, 312–314

XML extensions, PHP, 164–167. See also names of
specific extensions

XML() method, 315, 852
XML output, XSLT result trees, 382–385
xml prefix, 16, 33
XML representation of resources, 634–636. See also

REST (Representational State Transfer)
XML-RPC, 595–596. See also xmlrpc extension

data type elements, 596–600
encoding and decoding data, 609–610
error handling, 607, 614, 618
faults, 607, 618
relationship to SOAP, 10
requests, 601–602, 603–605, 612–613, 614–616,

617–618, 619–620
responses, 605, 606–607, 613, 614, 618, 620
return values, 606–607
server information, retrieving, 608
stock trader (example), 615–616, 619–622
XML-RPC client (example), 612–617, 625, 628
XML-RPC server (example), 617–622, 626–628

XML schemas. See schemas, XML
XML signatures, 460–461. See also encryption

creating, 466–471
detached signatures, 462
enveloped signatures, 461
enveloping signatures, 461–462
references, 467–469, 472–473
signatures, 470–471, 473–474
XML signature structure, 462–465

XML_ATTRIBUTE_NODE constant, 854
XML_Beautifier package, 502–504
XML_CDATA_SECTION_NODE constant, 854
XML_COMMENT_NODE constant, 854
XML_DECLARATION constant, 318, 850
XML_DOCUMENT_FRAG_NODE constant, 854
XML_DOCUMENT_NODE constant, 854
XML_DOCUMENT_TYPE_NODE constant, 854
XML_DTD package, 512–516

XML_DTD_Parser class, 513–514
XML_DTD_Tree class, 513–514
XML_DTD_XmlValidator class, 513, 515
XML_ELEMENT_NODE constant, 854
xmlEncoding property, 860
XML_ENTITY_NODE constant, 854
XML_ENTITY_REF_NODE constant, 854
XML_ERROR... constants, 848
xml_error_string() function, 293, 849
XML_FastCreate class, 517
XML_FastCreate package, 516–519
xml_get_current_byte_index() function, 291–292,

303–304, 849
xml_get_current_column_number() function,

291–292, 303–304, 849
xml_get_current_line_number() function,

291–292, 849
xml_get_error_code() function, 293, 849
XML_HTML_DOCUMENT_NODE constant, 854
XML_HTMLSax package, 504–506
xmlLang property, 321, 851
XML_NOTATION_NODE constant, 854
xmlns prefix, 31, 33. See also namespaces
XML_OPTION_CASE_FOLDING option, 273, 505,

847
XML_OPTION_ENTITIES_PARSED option, 505
XML_OPTION_ENTITIES_UNPARSED option, 505
XML_OPTION_LINEFEED_BREAK option, 505
XML_OPTION_SKIP_TAGSTART option, 273, 274,

290–291, 847
XML_OPTION_SKIP_WHITE option, 273, 274,

290–291, 847
XML_OPTION_TAB_BREAK option, 505
XML_OPTION_TARGET_ENCODING option, 273,

300, 847
XML_OPTION_TRIM_DATA_NODES option, 505
xml_parse() function, 285, 849
xml_parse_into_struct() function, 288, 849
XML_Parser class, 494–497
xml_parser_create() function, 272, 848
xml_parser_create_ns() function, 296, 848
xml_parser_free() function, 294, 849
xml_parser_get_option() function, 273, 849
xml_parser_set_option() function, 273
XML_Parser_Simple class, 497–498
XML_PI_NODE constant, 854
XMLReader, 311, 849–852, 876–879

Atom parser (example), 561–563
choosing parsers, 424, 426
copying subtrees, 436–438
document editing, 415
document navigation, 413–414, 415
document processing example, 335–339
DOM interoperability, 436–438
ease of use, 410, 416, 417
large document processing, 410, 413
locating specific elements, 430–431, 433
memory usage, 426–427
namespace support, 410, 418, 419
namespaces and, 312–313, 328–333
node object properties, 320–321
node type constants, 317–319, 850
nodes, exporting to DOM objects, 328

■INDEX 917

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 917

optimizing, 426–427, 430–431, 433
parser properties, 316–317
parsing XML documents, 317–327, 338–339
performance, 430–431, 433
processing speed, 313–314
reading XML data, 315
system resource usage, 410, 413
validation, 313
xml extension compared to, 312–314
XMLReader object, creating, 314–315
XSL interoperability, 438–439

XMLReader extension, 165, 876–879
XMLReader object, 314–315
XMLREADER_DEFAULTATTRS property, 316
XMLREADER_LOADDTD property, 316, 333
XMLREADER_SUBST_ENTITIES property, 316
XMLREADER_VALIDATE property, 316, 333
xmlrpc extension, 166, 608. See also XML-RPC

converting to XML-RPC data types, 610–611
encoding and decoding data, 609–610
stock trader (example), 615–616, 619–622
XML-RPC client (example), 612–617, 625, 628
XML-RPC server (example), 617–622, 626–628

XML_RPC package, 622–628
XML_RPC_Client class, 625
xmlrpc_decode() function, 609–610, 613
xmlrpc_encode() function, 609–610
xmlrpc_encode_request() function, 612–613, 618
xmlrpc_get_type() function, 610
xmlrpc_is_fault() function, 614
XML_RPC_Message class, 624–625
XML_RPC_Response class, 626
XML_RPC_Server class, 626–628
xmlrpc_server_call_method() function, 620
xmlrpc_server_create() function, 619
xmlrpc_server_destroy() function, 619
xmlrpc_server_register_method() function, 619
xmlrpc_set_type() function, 610
xmlrpc_type property, 611
XML_RPC_Value class, 623–624
XML_RSS package, 512
XML_Serializer class, 506–510
XML_Serializer package, 506–512
xml_set_character_data_handler() function, 275,

848
xml_set_default_handler() function, 849
xml_set_element_handler() method, 274, 275, 848
xml_set_end_namespace_decl_handler() function,

849
xml_set_external_entity_ref_handler() method,

280, 305–306, 849
xml_set_notation_decl_handler() method,

281–282, 849
xml_set_object() function, 297–300, 848
xml_set_processing_instruction_handler()

method, 279, 849
xml_set_start_namespace_decl_handler() method,

297, 849
xml_set_unparsed_entity_decl_handler() method,

281–282, 849
xmlStandalone property, 860
XML_TEXT_NODE constant, 854
XML_Tree class, 499–501

XML_Tree package, 498–501
XML_Tree_Node class, 499
XML_Unserializer class, 510–512
XML_Util package, 501–502
xmlVersion property, 860
XML_WDDX package, 589–592
XMLWriter extension, 811–820, 871–873
xmlwriter_open_memory() function, 819
xmlwriter_open_uri() function, 819
XPath, 14, 123. See also XPointer

axes, 127–128
calculations, 146
complex expressions, 141–146
data model, 124–127
DOM extension support, 216–219
equivalent XPointer expressions, 147
filtering node sets, 133–134
locating elements, 432–433
location paths, 127–132
namespaces, registering, 218–219, 227, 261
node sets, 127
node tests, 128–130
nodes and node types, 124–127
NXDs and, 8–9
optimizing expressions, 138–139
predicates, 130
SimpleXML support, 260–261
value comparisons, 135–136, 144–145
XPath 2.0, 159–161
XPath functions, 136–138, 144–145, 146
XPath operators, 130
XPointer extensions, 149–151

XPath 2.0, 159–161
XPath functions, 136–138
xpath() method, 260–261, 853
XPath operators, 130
XPointer. See also XPath

character escaping, 146
extending XPath functionality, 149–151
namespaces and, 148
stacking XPointer expressions, 147–148
URI references, 146, 147
XPath expression equivalents, 147

xpointer attribute, 153
XQuery, 159
XSD_... SOAP constants, 868
XSD files, 71
xsd prefix, 72
XSL (Extensible Stylesheet Language), 341

templates. See XSL templates
transformations. See XSLT (Extensible

Stylesheet Language Transformations)
XMLReader interoperability, 438–439
XSL extension. See XSL extension

XSL extension, 387–388, 866–867
constants, 388–389
corrupted XML, troubleshooting, 389
EXSLT modules and, 395–396
output methods, 391–393
parameters, 393–395
PHP functions, 396–399, 401
RSS feed aggregation (example), 400–407
style sheets. See style sheets

■INDEX918

6331_Index_final.qxd 2/16/06 2:56 PM Page 918

transforming data, 391–393
XSLT processor. See XSLT processor
Yahoo Product Search service query (example),

656–659
XSL functions, CDATA sections and, 173–174
XSL templates, 343, 344–345

applying, 345–347
built-in templates, 347–348
calling, 348–349
elements, matching, 343
elements, specifying for processing, 346–347
mode, specifying, 347
names of templates, 343, 348–349
priority, specifying, 343–344
resolving conflicts, 343–344
using DOM extension (example), 235–237

xsl:apply-templates element, 345–347, 359
xsl:attribute element, 351
xsl:attribute-set element, 352
xsl:call-template element, 348–349
xsl:choose element, 358, 359–360
xsl:comment element, 354
xsl:copy element, 354–355
xsl:copy-of element, 355
xsl:decimal-format element, 372–373
xsl:element element, 350
xsl:fallback element, 380
xsl:for-each element, 358
xsl:if element, 358–359
xsl:key element, 370–372
xsl:message element, 376
xsl:number element, 362–366
xsl:otherwise element, 359–360
xsl:output element, 381–382
xsl:param element, 366–369, 379
xsl:processing-instruction element, 353–354
xsl:sort element, 358, 360–362, 406–407
xsl:stylesheet element, 342
xsl:template element, 343
xsl:text element, 353
xsl:transform element, 342
xsl:value-of element, 356
xsl:variable element, 366–369
xsl:when element, 359–360
xsl:with-param element, 368–369
XSL_CLONE_ALWAYS constant, 388–389, 866
XSL_CLONE_AUTO constant, 388–389, 866
XSL_CLONE_NEVER constant, 388–389, 866
XSLT 2.0, 159
XSLT (Extensible Stylesheet Language

Transformations), 14, 341
attribute value templates, 349–350
attributes, 351–352

comment nodes, 354
conditional processing, 358–360
copying nodes, 354–355
current node, retrieving, 374
debugging, 376
elements, 350–351
extension modules, 376–380
external documents, 370
fallback capabilities, 380
formatted numbers, 362–366, 372–373
HTML document generation (example),

356–357
IDs, generating for node sets, 375
keys, 370–372, 389
messages, 376
named attribute sets, 352–353
outputting result trees, 381–387
processing instruction nodes, 353–354
processing node sets, 358
sorting node sets, 360–362, 406–407
style sheet, DOM extension (example), 399–400
system property values, 375–376
templates. See templates, XSL
text nodes, 353, 356
unparsed entity URIs, 374–375
user-defined functions, 378–380
XML Base specification, 42–43
XSLT processor. See XSLT processor

XSLT processor
corrupted XML, troubleshooting, 389
methods, 390
output methods, 391–393
parameters, 393–395
PHP functions, 396–399, 401, 402
RSS feed aggregation (example), 400–407
style sheet, importing, 390–391
transforming data, 391–393

XSLTProcessor class, 389–390, 866–867

■Y
Yahoo Web services, 12, 646

error format, 660
Flickr, 646
Product Search service, 651–659
registering, 649
results format, 646–647
Services_Yahoo package, 802–806
Web Search service, 647–651, 802–806

■Z
zero-digit attribute, 373
zeroOrMore pattern, 103, 109–110

■INDEX 919

Find it faster at http://superindex.apress.com
/

6331_Index_final.qxd 2/16/06 2:56 PM Page 919

	Pro PHP XML and Web Services
	Table of Content
	Chapter 1 Introduction to XML and Web Services
	Chapter 2 XML Structure
	Chapter 3 Validation
	Chapter 4 XPath, XPointer, XInclude, and the Future
	Chapter 5 PHP and XML
	Chapter 6 Document Object Model (DOM)
	Chapter 7 SimpleXML
	Chapter 8 Simple API for XML (SAX)
	Chapter 9 XMLReader
	Chapter 10 Extensible Stylesheet Language Transformations (XSLT)
	Chapter 11 Effective and Efficient Processing
	Chapter 12 XML Security
	Chapter 13 PEAR and XML
	Chapter 14 Content Syndication: RSS and Atom
	Chapter 15 Web Distributed Data Exchange (WDDX)
	Chapter 16 XML-RPC
	Chapter 17 Representational State Transfer (REST)
	Chapter 18 SOAP
	Chapter 19 Universal Description, Discovery, and Integration (UDDI)
	Chapter 20 PEAR and Web Services
	Chapter 21 Other XML Technologies and Extensions
	Appendix A XML Schema Built-in Data Types Reference
	Appendix B Extension APIs
	Appendix C Features and Changes in PHP 6
	Index

