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PREFACE

he human genome project was virtually completed in 2003, the same

year in which the 50th anniversary of the discovery of the DNA

double helix came around. This project has opened the door to the
genomic era. Nowadays, we have easy access to genome sequence databases
for more than 100 organisms. However, despite such remarkable progress in
genome science, we are still far from a clear understanding of how genomic
DNA is packaged without entanglement into a nucleus, how genes are
wrapped up in chromatin, how chromatin structure is faithfully inherited
from mother to daughter cells, and how the differential expression of genesis
enabled in a given cell type. Exploring and answering these questions consti-
tutes one of the next frontiers in the 21st century.

Multifarious DNA structures are found in the genome, i.e., curved
DNA structures found in regions of periodically occurring A-tracts, triplex
structures composed of homopurine/homopyrimidine regions, quadruplex
structures made up of guanine-rich sequences, left-handed DNA helix
(Z-DNA) formed by alternating purine-pyrimidine sequences, cruciform
structures formed by inverted repeats, and so forth. The implication of these
structures for DNA packaging and gene expression has long been argued. In
the meantime, much circumstantial evidence and several lines of direct
evidence have been presented, and we are beginning to appreciate how these
structures provide additional structural and functional dimensions to
chromatin organization and gene expression. However, to the best of my
knowledge, there is no book in which the fruits of the studies performed to
date have been compiled, in order to shed light on the roles of DNA
conformation in transcription.

The challenge of this book is to collect these results, and it is intended
to serve as a source of information. The book is not only aimed at specialists,
but also at students and non-specialists who have no prior knowledge of this
field. Contributors from the respective fields describe, in 14 chapters, the
history, up-to-date topics, what has been clarified, and what is still to be
discovered. These chapters are grouped into five closely related parts. Part I
presents fundamental knowledge on DNA structure, which will simply guide
the reader into the ‘DNA world’. Readers will see that there are many DNA
structures in genomes besides the DNA described by James D. Watson and
Francis H. C. Crick, which is now called B-form DNA, and will further
understand how these structures are constructed and what possible biological
functions they may have. In Part 11, the role of curved DNA is discussed.
Among the multifarious DNA structures, curved DNA has been most widely
and intensively studied in relation to transcriptional regulation. The roles of
this structure in both prokaryotic and eukaryotic transcription are discussed,
and the proteins that bind curved DNA and their functional roles are
described. Part I1I focuses on the role of Z-DNA, triplex, quadruplex and



supercoiled DNA. In addition, the relationship between DNA conformation,
transcriptional defects and human diseases is discussed, with Fragile X mental
retardation syndrome and Friedreich’s ataxia used as examples. Highlighted in
Part IV are the roles of architectural transcription factors and protein-induced
DNA bends in gene regulation. Furthermore, the mechanism of mammalian male
sex determination is discussed as a relevant biological phenomenon. Finally, Part
V focuses on how the structural and mechanical properties of DNA influence
nucleosome positioning and chromatin organization, and discusses how these effects
influence gene expression.

“This structure has novel features which are of considerable biological
interest.” This is the second (and the last) sentence in the first paragraph of Watson
and CricK’s historical paper, “Molecular structure of nucleic acids—a structure for
deoxyribose nucleic acid” (Nature 171, 737-738, 1953). Now, the time has come
to solve the riddle that is ‘written’ in DNA conformation, as another point of
considerable biological interest regarding the DNA molecule.

I acknowledge the farsightedness of Ron Landes at Landes Bioscience who
commissioned me to edit this book. I am particularly thankful to the authors for
their scholarly contributions, and for their patience during the editing and the
production of the book. I am deeply indebted to Junko Ohyama, my wife, for
helping me in every aspect of this endeavor. I am also thankful to Toru
Higashinakagawa at Waseda University for his advice, and to Cynthia Conomos
and Sara Lord at Landes Bioscience. Members of my laboratory have tolerated
my preoccupation with this book project. I am also very grateful to them.

Takashi Ohyama
Kobe, Japan
September 2004
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CHAPTER 1

DNA:

Alternative Conformations and Biology
Vladimir N. Potaman and Richard R. Sinden

Abstract

ocal structural transitions from the common B-DNA conformation into other DNA

forms can be functionally important. This chapter describes the structures of DNA forms

called alternative DNA conformations that are different from the canonical B-DNA
helix. Also discussed are the requirements for the formation of alternative DNA structures, as
well as their possible biological roles. The formation of non-B-DNA within certain sequence
elements of DNA can be induced by changes in environmental conditions, protein binding
and superhelical tension. Several lines of evidence indicate that alternative DNA structures
exist in prokaryotic and eukaryotic cells. The data on their involvement in replication, gene
expression, recombination and mutagenesis continues to accumulate.

Introduction

Genetic information is generally stored in long double-stranded DNA molecules. Hydro-
gen bonding between nucleobases keeps the complementary DNA strands organized into a
right-handed helical structure called B-DNA. Structural transitions into other DNA forms can
occur within certain sequence elements of DNA and these can be functionally important.
Several non-B-DNA structures (oftentimes called unusual or alternative DNA structures) can
be important for interactions with proteins involved in replication, gene expression and recom-
bination. They may also play different roles in the formation of nucleosomes and other su-
pramolecular structures involving DNA. DNA sequences characterized as “random” or “mixed
sequence” typically only form A-DNA or B-DNA. Special sequence characteristics or defined
symmetry elements are required to form alternative structures such as left-handed Z-DNA,
cruciforms, intramolecular triplexes, quadruplex DNA, slipped-strand DNA, parallel-stranded
DNA, and unpaired DNA structures.! Together with variations in DNA supercoiling, local
alternative structures provide enormous potential for autoregulation of DNA functions. This
chapter will briefly review major alternative DNA structures and their potential involvement
in biology.

B-DNA and A-DNA

Structure

Table 1 lists structural parameters for three structural families of DNA helices. B-DNA is
the term given for the canonical right-handed DNA helix that is the most common form of
DNA. Canonical B-DNA is a double helix made of two antiparallel strands that are held to-
gether via hydrogen bonding in the A*T and G*C base pairs (Fig. 1). One helical turn of
B-DNA contains about 10.5 base pairs that are buried inside the helix and are almost

DNA Conformation and Transcription, edited by Takashi Ohyama. ©2005 Eurekah.com
and Springer Science+Business Media.



4 DNA Conformation and Transcription

Table 1. Structural parameters of DNA helices

Structural Parameter A-DNA B-DNA Z-DNA
Direction of helix rotation Right handed  Right handed Left handed
Residue per helical turn 11 10.5 12
Axial rise per residue 2.55A 3.4 A 3.7A
Pitch (length) of the helix 28.2 A 34 A 44.4 A
Base pair tilt 20° -6° 7
Rotation per residue 32.7° 34.3° -30°
Diameter of helix 23A 20A 18 A
Configuration dA, dT,dC  anti anti anti
of glycosidic bond ~ dG anti anti syn
Sugar Pucker dA,dT,dC  C3'endo C2" endo C2' endo
dG C3' endo C2' endo C3' endo

perpendicular to the helical axis. DNA exists as a cylinder of 20 A in diameter with two
grooves, a major and a minor groove, spiraling around the cylinder. In B-DNA the distance
between the bases (rise) is 3.4 A. Studies of oligonucleotide duplexes in crystals showed signifi-
cant sequence-dependent variability of the structural parameters listed in Table 1 that define
the structure of the B-DNA helix. In bent DNA, for example, certain B-DNA parameters add
up over a length of several base pairs to produce a permanenty curved DNA helix. A- and
Z-DNA are also double-helical but the spatial arrangement of base pairs differs significantly
from that for B-DNA. Other DNA structures may have regions of unpaired strands or be
composed of three and even four strands.

A-DNA has 11 base pairs per helical turn, base pairs are tilted to about 20°, with respect to
the helical axis, the grooves are not as deep as those in B-DNA, the sugar pucker is C3' endo
compared to C2' endo for B-DNA, and the base pairs are shifted to the helix periphery which

Canonical B-form DNA

B-form DNA Z DNA B-form DNA

INUNUNUR G ANUNUNUN

Figure 1. B-DNA and Z-DNA. Top) B-DNA exists as a right-handed helix with about 10.5 bp per helical
turn. The bases (denoted by the letters) are organized in the central region of the helix with the phosphate
backbone (denoted by the ribbon) distributed on the outside of the helix. B-DNA has two grooves: a major,
the wider, groove and a minor, the narrower, groove. Bottom) Left-handed Z-DNA can exist within regions
of a B-DNA helix. A Z-DNA helical region is shown flanked by B-DNA regions.
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creates a9 A hole in the helix center. In A-DNA the average rise is 2.55 A. A-DNA and B-DNA
have different patterns of bound cations and water molecules®* that result in different stability
conditions for these structures. B-DNA is stable under a broad variety of conditions, whereas
A-DNA has been observed under conditions of reduced water content, such as in DNA fibers
at 75% relative humidity or in solutions containing organic solvents or high salt concentra-
tions.>” The ease of conversion from B-DNA into the A-form is somewhat sequence-specific,®
being more difficult in sequences containing 5'-AA-3' steps, and easiest in sequences contain-
ing 5'-CC-3' and 5'-ACT-3" steps.® Because of the variability in structural parameters for dif-
ferent di- and trinucleotides within the helix, B- and A-DNA actualy consist of families of
conformations. Experiments with oligonucleotide duplexes in crystals have shown that B- and
A-DNA do not represent deep local energetic minima and that a number of intermediate
structures may form upon a mild change in conditions.”!!

Biological Relevance of A-DNA

Biochemical, crystallographic and computer simulation analyses of the A-DNA structure
and protein-DNA complexes indicate that an A-like DNA conformation may either form
upon binding of certain proteins to DNA, or be an important intermediate step in forming the
stron%y1 ;iistorted DNA conformation observed within at least some complexes with pro-

teins. <" Several examples below illustrate these structural roles of A-DNA in biological pro-
cesses.
TBP-Binding

Nanosecond scale molecular dynamics simulations in water using two different starting
structures show that the DNA oligomer, GCGTATATAAAACGC, which contains a target site
for the TATA-box binding protein (TBP), adopts an A-like conformation in the region of the
TATA-box and undergoes bending related to that seen within the complex with the TBR!
This is consistent with A-DNA being an important intermediate step in forming a strongly
distorted DNA structure observed within its complex with TBP in crystals.”

CAP Binding

The Escherichia coli cyclic AMP receptor protein (CAP) has two symmetrically related in-
verted recognition elements separated by a spacer whose length may be either 6 or 8 bp (e.g.,
TGTGAxcoax TCACA).!® CAP binding induces DNA bending with DNA remaining in the
B-form when the spacer is 6 bp. For the 8 bp spacer, an additional transition into the A-form is
necessary to shorten the distance between TGTGA sites for CAP binding."”

Complexes with Polymerases

The B-to-A transition may occur in DNA complexes with enzymes that cut or seal at the
(O3'-P) phosphodiester linkage. The transition is necessary to expose atoms of the
sugar-phosphate backbone, such as the 3'-oxygen ordinarily buried within the chain backbone,
for enzymatic attack.'® A polymerase-induced A-DNA conformation has been identified in
crystallographic studies of HIV reverse transcriptase bound to DNA.'® The function of a con-
formational switch from the B-form to an underwound A-form DNA at the polymerase active
site may provide discrimination between correct and incorrect base pairing'® because of a lower
sequence-dependent structural variability in A-DNA compared with B-DNA. A-DNA in the
vicinity of the DNA polymerase active site may improve the base pair fit in the nascent
template-primer dug)lex and increase a reliability of proofreading thereby contributing to the

fidelity of synthesis."

Protection from DNA Damage

A-DNA suabilization by a group of proteins from sporulating bacteria Bacillus subtilis has
been described.”® Nucleobases in A-DNA are an order of magnitude less susceptible to UV
damage compared with B-DNA.?! Therefore, the conformational change on protein bindin%
in the spores may be responsible for the well-known resistance of DNA in spores to UV damage.”



6 DNA Conformation and Transcription

DNA Supercoiling

In most biological systems DNA is normally negatively supercoiled. Supercoiling is a prop-
erty of topolo§ically closed DNA molecules (those in which the free rotation of the DNA ends
is restrained).”” Through changes in twisting and writhing, supercoiling makes the molecular
shape and helix structure of DNA remarkably dynamic. The most important topological prop-
erty of supercoiled DNA is its linking number, Lk, which is an integer number of times one
strand crosses the other in a planar projection. Due to the continuity of DNA strands, the
linking number can only change when at least one strand is cut by chemicals, ionizing radia-
tion, or enzymes and then sealed. DNA topology is described by the equation

Lk = Tw+ Wr

where Tw is the number of twists or double helical turns, and Wr is the number of super-
coils or writhes. For a covalently closed molecule, Lk must remain constant but Tw and Wr can
change simultaneously. For relaxed DNA,

Lk = Lk, = N/10.5

where N is the number of base pairs in DNA, and 10.5 is the average number of base pairs
per helical turn. Usually DNA isolated from cells is negatively supercoiled, such that (Lk-Lk,)
< 0. DNA with Lk < Lk, is said to be underwound in terms of the number of helical turns.
Such a state of DNA underwinding results in a torsional tension in the DNA double helix. The
deficit of helical ewists is compensated for by DNA supertwisting into the right-handed super-
coils. The lack of one helical turn results in one supercoil. The level of supercoiling is character-
ized by the term “superhelical density” or G, where

o =10.51/N

where 1T is the number of titratable (measurable) supercoils (and 10.5 and N are as defined
above). Besides existing as interwound supertwists, negative supercoils can exist as left-handed
toroidal coils that can be represented, for example, by DNA wrapping around a protein. Nega-
tively supercoiled DNA contains free energy since the underwinding creates a high energy
state. The free energy of supercoiling is given by the following relationship

AG = (1100 RT/N)(Lk-Lk,)?

where R is the gas constant, T is the temperature in degrees Kelvin, and N is as defined
above. The free energy of supercoiling can be used to locally unpair the DNA helix and drive
the formation of alternative DNA structures (see below) or unwind DNA for interaction with
transcription or replication proteins.

In vivo most DNA is negatively supercoiled. This is easily understood for circular molecules
such as plasmids and bacterial chromosomes in which the free rotation of DNA strands is
restrained. Circular bacterial chromosomes are long enough to be additionally subdivided into
smaller topological domains. In fact, the 2.9 Mb E. coli chromosome is organized into about
45 independent domains in vivo.”> For linear DNA to exist in a supercoiled state, it must be
organized into one or more topological domains. Eukaryotic chromosomes may form indepen-
dent loops stabilized by the interaction of specific DNA regions with proteins attached to the
nuclezzr matrix. In addition, RNA polymerase can define topological domains in eukaryotic
cells.

Linking number in vivo is regulated by enzymes called topoisomerases that transiently break
and reseal the DNA double helix. Type I topoisomerases break only one strand of the DNA,
allowing one strand to rotate around the other. Type II topoisomerases break and reseal both
DNA strands. Correspondingly, the linking number changes in increments of 1 and 2 for type
I and type II topoisomerases, respectively. In bacterial cells the level of supercoiling is carefully
maintained by topoisomerase I, that relaxes supercoils, and topoisomerase II (gyrase), that
introduces negative supercoils. In bacterial cells about half of the free energy from DNA
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supercoiling (called unrestrained supercoiling) is available for biological reactions, while the
other half is presumably restrained by virtue of stable left-handed toroidal coiling around pro-
teins. On average in bulk eukaryotic DNA, supercoils are restrained by the organization into
nucleosomes. However, DNA in individual genes can contain unrestrained negative supercoil-
ing.?*?’ Transient changes in the level of supercoiling can be caused by proteins tracking through
the DNA. In particular, the movement of an RNA polymerase during transcription generates
waves of negative supercoiling behind and positive supercoiling in front of the enzyme.?®

The state of DNA supercoiling may be important for the regulation of cell functions in a
number of ways. (i) The energy from DNA supercoiling can be used to facilitate the opening of
the promoter or origin of replication regions by RNA polymerase or replication proteins.1 (iv)
DNA supercoiling may facilitate functional enhancer-promoter communication over a large
distance, probably by bringing the enhancer and promoter in the plectonemically wound DNA
into close proximity.?’ (iii) The supercoil-induced formation of alternative structures in the
regulatory regions may also influence protein binding. One particular example, albeit an arti-
ficially created system, is a down-regulation of transcription from an inverted repeat-containing
promoter where the cruciform formation possibly prevents an assembly of transcription ma-
chinery.*® An example of transcriptional up-regulation is a likely supercoil-driven Z-DNA for-
mation in the Rous sarcoma virus promoter that prevents nucleosome formation and facilitates
access of transcription proteins to the gene regulatory regions.*!

Supercoil-Induced DNA Structures and Their Biological Roles

While DNA mostly has a seemingly random distribution of nucleobases in the sequence,
defined order sequences may rather frequently occur. These include inverted repeats that can
form cruciforms, mirror repeats that may adopt intramolecular triplex DNA conformations,
and direct repeats, that can form stipped mispaired structures, and (GC),, and (GT),, tracts that
can form Z-DNA.

Cruciform Structure

An inverted repeat or a palindrome is a DNA sequence that reads the same from the 5' to 3’
in either strand. For example, many type II restriction enzyme sites are palindromic. To form a
cruciform the interstrand hydrogen bonds in the inverted repeat must be broken and intrastrand
hydrogen bonds then established between complementary bases in each single strand, thus
forming two hairpin-like arms with 3-4 unpaired bases at their tips (Fig. 2A). As a whole, the
cruciform consists of two rather long duplex DNA arms, and two comparatively short hairpin
arms which form a four-way junction. The structure of the four-way junction is such that the
nucleobases in and around the junction are fully involved in base pairing.** Cruciforms can
form in topologically closed molecules where they use energy from DNA supercoiling to melt
the center of the inverted repeat, allowing the intrastrand hairpin nucleation.”*> The thermo-
dynamic stability of the cruciform comes from relaxation of one negative supercoil per 10.5 bp
of DNA sequence that converts into the cruciform. The propensity for cruciform formation
increases in longer inverted repeats that relax more supercoils than shorter ones. It also depends
on temperature and the base composition of the inverted repeat, most importantly, in its cen-
ter, in accordance with a requirement of partial DNA melting before the hairpin base pairing.
Although schematically the cruciform is usually shown as having a cross shape as in the sche-
matic representation in Figure 2, such an extended structure is favored only under the low-salt
conditions, where electrostatic repulsion between phosphates pushes all four cruciform arms
apart (Fig. 2B). Under physiologically relevant salt conditions, where the phosphates are par-
tially shielded and repulsion is reduced, the cruciform adogts an X-type structure with unequal
inter-arm angles as seen in the AFM image in Figure 2C.* The extended cruciform is rather
stiff, as judged from lictle fluctuation of the inter-arm angles, whereas the X-type cruciform has
a pronounced mobility of the hairpin arms observed by atomic force microscopy in liquid.*®
The distribution of inverted repeats in eukaryotic DNA is nonrandom and they are clustered at
or near genetic regulatory regions, which suggests that they are important biologically.**3¢
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Figure 2. Cruciform structures. A) A schematic represen-
tation of a cruciform is shown. An unpaired loop of 3-4
bp typically exists at the tip of the cruciform arms. B) .
Atomic force microscopy (AFM) image of 2 106 bp in-
verted repeat extruded into a cruciform with 53 bp arms R e T
in the extended conformation in supercoiled plasmid e W
DNA. C) AFM image of a 106 bp inverted repeat ex- =
truded into a cruciform with 53 bp arms in the X-zype )E%
<

=
A ‘Cj; Cruciform

structure

conformation.

Z-DNA Structure

Left-handed Z-DNA has been mostly found in alternating purine-pyrimidine sequences
(CG),and (TG),.>” Z-DNA is thinner (18 A) than B-DNA (20 A), the bases are shifted to the
periphery of the helix, and there is only one deep, narrow groove equivalent to the minor
groove in B-DNA. In contrast to B-DNA where a repeating unit is 1 base pair, in Z-DNA the
repeating unit is 2 bp. For Z-DNA in (CG), sequences the twist angle for a CpG step is 9°,
whereas it is 51° for the GpC step, totaling 60° in the 2 bp repeating unit. The helix repeat in
Z-DNA is 12 bp/turn and an average rise is 3.7 A/bp, compared with 10.5 bp/turn and 3.4 A/
bp in B-DNA. The backbone follows a zigzag path as opposed to a smooth path in B-DNA.
The sugar and glycosidic bond conformations alternate: C2" endo in an#i dC or dT and C3'
endo in syn dG or dA. Electrostatic interactions play a crucial role in Z-DNA formation. Be-
cause of the zigzag backbone path, some phosphate groups are closer and electrostatic repul-
sion between them is greater than in B-DNA. Therefore, Z-DNA is stabilized by high salt
concentrations or polyvalent cations that shield interphosphate repulsion better than monova-
lent cations. Other factors also contribute to Z-DNA stability. If an alternating purine-pyrimidine
sequence occurs in a circular DNA molecule, DNA supercoiling is a major driving force for
Z-DNA formation. Z-DNA formation unwinds DNA about two supercoils per 12 bp of DNA.
The junctions between the B- and Z-DNA in supercoiled DNA span several base pairs in
which nucleobases behave as if they were unpaired. In particular, they are partially reactive to
single-strand specific chemicals. A computer analysis of over one million base pairs of human
DNA, containing 137 complete genes identified 329 potential Z-DNA-forming sequences.a8
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Like inverted repeats, potential Z-DNA-forming sequences have a distinctly nonrandom dis-
tribution with a strong bias toward locations near the site of transcription initiation.

Triplex DNA Structure

When the hydrogen bonds in the A*T and G*C base pairs in canonical B-form DNA are
formed, several hydrogen bond donor and acceptor groups in nucleobases remain unused.
Each purine base has two such groups on the edges thar are exposed in the major groove. These
groups can be used to form base triads that are unit blocks of triple-stranded (triplex) DNA
that consists of the B-form double helix and the third strand bound in the major groove.>*#2
The third strand bases form the so-called Hoogsteen-type hydrogen bonds with purines in the
B-form duplex. Energetically favorable triplexes have duplex pyrimidines (Py) and purines
(Pu) segregated in complementary strands (Py*Pu duplex). For a snug fit in the duplex major
groove, the third strands are made of either only pyrimidines (Py*Pu*Py triplex), or mostly
purines with a fraction of pyrimidines (Py*Pu*Pu triplex). In the Py*PuPy triplex, the usual
base triads are T*A*T and C*G*C" (cytosine is protonated and this requires pH < 5). In the
Py*PuePu triplex the usual triads are T*A*A and C*G*G, and less frequently T*AeT. Triplex
DNA may form intermolecularly, between a duplex target and a third oligonucleotide strand.
It may also form intramolecularly in supercoiled DNA within a Py*Pu sequence of mirror
repeat symmetry. For this, half of the mirror repeat Py*Pu sequence unpairs and one of the
unpaired strands folds back and binds as a third strand to purines in the repeat’s double-stranded
half. The resulting local structure contains three notable features: a triple-stranded region; a
fourth, unpaired strand; and a short (3-4 nt) stretch of unpaired bases in the fold-back strand
(Fig. 3A). The Py*Pu*Py triplex/single strand combination is termed H-DNA to reflect the
necessity of cytosine protonation in the C*GsC" triads.® By analogy, the Py*PusPu triplex/
single strand combination is termed H’>-DNA.* Similar to the cruciform, H (H’)-DNA may
only form under torsional stress in a topologically closed DNA (Fig. 3B)."*> Among other
factors that promote H (H’)-DNA are longer lengths of Py*Pu mirror repeats and the presence
of multivalent cations.*>*> The presence of single-stranded regions provides the DNA mol-
ecule with local increased flexibility akin to a hinge, which is incidentally another reason for
calling the structure H-DNA. However, the angle berween the outgoing duplex arms in the
H-DNA structure fluctuates over a smaller range than in the X-type cruciform.*® Analysis of
the genomic databases showed that in eukaryotes mirror repeated sequences occur more fre-
quently than statistically expected.>** In the human genome, H-DNA-forming sequences
may ocour as frequently as 1 in 50,000 bp, whereas in the E. coli genome they are not abun-
dant.

Search for Unusual DNA Structures in Vivo

Numerous attempts have been undertaken to show the formation of supercoil-induced
alternative DNA structures in living cells. The differential chemical susceptibility of double
and single-stranded DNA regions in cruciforms and H-DNA as well as of structural junctions
in Z-DNA has been exploited to probe for the formation of alternative structures in vivo.
Using OsOy reactivity with unpaired thymines, the cruciforms,”” Z-DNA® and H-DNA®
were detected in supercoiled plasmids propagated in E. coli cells. The differences in photo-
chemical reactivity of TA dinucleotides with psoralen (reactive in double-stranded DNA but
not in single-stranded DNA or in the junctions between the B- and Z-DNA regions) were used
to show the formation of cruciforms, Z-DNA, and H-DNA in E. co/.>%**! H>-DNA formation
in E. coli was also detected by chloroacetaldehyde reactivity with unpaired adenines and cy-
tosines.? Elevated plasmid supercoiling in E. cols was interpreted as a combination of (i) super-
coil relaxation by the formation of Z-DNA or cruciforms and (ii) a compensatory supercoiling
increase by DNA gyrase.”>>* The analysis of sites differentially susceptible to DNA methylase
in B- and Z-DNA showed that (GC), sequences in plasmids or integrated in the E. coli chro-
mosome form Z-DNA in vivo.”>* Monoclonal antibodies were raised that recognize struc-
tural features of either cruciforms, Z-DNA, or triple-stranded DNA. These were then used to
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Figure 3. Intramolecular triplex DNA. A) A

schematic representation of an Hy-3 type in- A =
tramolecular triplex is shown, formed within a Hy3-type
mirror repeat sequence of (GAA),*(TTC),. B) 5'

wtramolecular triplex

AFM image of a 46 Pu*Py tract from a region 3
ofthe human PKD! geneinatriplex conforma-
tion within a plasmid DNA.

probe eukaryotic chromosomal DNA for the structures in question. Local structural transi-
tions into cruciforms,”” Z-DNA%® and triplex DNA*® were detected by immunofluorescence.
Thus, several lines of evidence indicate the presence of alternative DNA structures in prokary-
otic and eukaryotic cells. The existence of proteins that specifically bind to alternative DNA
structures also supports the notion of H-, Z- and cruciform DNA formation in vivo.

Cruciform, Z-DNA and H-DNA-Binding Proteins

An integral part of our understanding of the biological roles of alternative DNA structures
comes from the identification of proteins that specifically interact with these structures. A
number of proteins bind to different structural elements in cruciforms.®® They include HMG
proteins, a replication initiation protein RepC, the cruciform binding protein CBP* and
four-way junction resolvases.®¢! Among the Z-DNA-binding proteins are the highly specific
binders, such as Zo domain-contatining proteins ADAR1 and ESL3,%”%2 and relatively low
specific proteins, such as HMG proteins, zeta crystalline and type III intermediate filament
proteins.%3 Proteins that bind to triple-stranded DNA have been identified in the HeLa cell
extracts and keratinocyte cDNA expression library.% In addition, several proteins that bind
single-stranded Py or Pu sequences have been partially characterized. 6769

Possible Biological Roles of Supercoil-Driven Alternative Structures

Many similar biological roles for alternative DNA structures including cruciforms, Z-DNA,
and H-DNA have been proposed.’ This is perhaps not surprising because these sequences
often occur in the regulatory regions of genes that may use different structures for che same
purposes. The dependence of all three structures on DNA supercoiling as well as the preference
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of structures to form in certain locations of topological domains also add to the apparent
similarity in their functions.

Modulation of Supercoiling

The extent of supercoiling is known to affect transcription, recombination, and replication
such that an optimum DNA topology may be required for these processes.”° The formation
of cruciforms, Z-DNA and H-DNA may cause partial relaxation of excessive superhelicity in a
topological domain. Specific cases of DNA replication and gene expression have been described

that depend on superhelicity changes induced by the formation of cruciforms, Z-DNA and
H-DNA.30’3S’71

Nucleosome Exclusion

DNA wrapping around histones in nucleosomes interferes with the protein binding to
promoters and origins of replication.”> Nucleosome formation, on the one hand, and the for-
mation of cruciforms, Z-DNA and triplex DNA, on the other hand, are mutually exclu-
sive.>”37> Thus, the alternative structure-forming DNA sequences may expose nucleosome-free
DNA, making them accessible to transcription, replication and recombination proteins.

Positioning of Sequence Elements, Molecular Switch

Supercoiled DNA at physiological ionic strength forms a plectonemic superhelix in which
distant parts of the double helix are intertwined. The slithering motion of one duplex region
on the other results in a wide distribution of distances between any two pre-selected remote
sites. Similar to strongly bent DNA,’® the X-type cruciforms and H-DNA tend to occupy the
apical positions in plectonemic DNA structures®®4¢ and therefore, may specifically position
distant DNA sites. This was first realized for H-DNA whose fold-back structure seemed suit-
able for bringing remote sequence elements into close proximity. In agreement with this idea,
increased recombination rates were observed when homologous sequences were separated by
H-DNA-forming elements.”””® It is likely that the X-type cruciforms may also position DNA
elements for recombination or for promoter-enhancer interactions. Moreover, cruciform tran-
sitions between the X-type and extended conformations may serve to switch between the favor-
able and unfavorable arrangements of interacting DNA sites.”

Roles in Transcription

Analyses of genomic databases show that sequences capable of forming cruciforms, Z- and
H-DNA are frequently found around transcription initiation sites.**3%*® The formation of
alternative DNA structures in these sequences may influence transcription by changing the
supercoiling levels within a domain thereby changing the energy cost for protein-DNA bind-
ing. The formation of an alternative structure may also alter interactions between transcription
factors bound to different sites due to a change in their spatial positioning. At least two of the
structures, cruciforms and H-DNA, may spatially organize DNA around their formation sites
so that certain DNA segments are brought into close proximity.33#¢ Gene expression may also
depend on protein binding to unusual DNA structures. For example, poly(ADP-ribose) polg-
merase (PARP) may bind to the junction-containing DNA structures such as cruciforms. 0
Repressive PARP binding to potential cruciforms in a promoter of its own gene and dissocia-
tion upon DNA strand break-induced autoribosylation are parts of the mechanism of auto-
regulation of PARP expression.®™®! In another example, in the human proenkephalin gene
switching of a regon of DNA between the linear and cruciform form provides a mechanism of
gene regulation.®” More correlations of transcrption with the formation of non-B-DNA struc-
tures are discussed in detail in other chapters of this book.

Roles in Replication

One of the well-studied effects of alternative structures on replication is a block to poly-
merases due to template folding, which was shown for cruciforms/hairpins®>#* and H-DNA.#>%7
Unless unwound by the replication accessory proteins, including helicases,®® polymerization
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blocks may result in genetic mutations that lead to the development of human diseases, such as
polycystic kidney disease and Friedrich ataxia. Single-stranded parts of the cruciform and H-DNA
may serve as recognition elements for the replication initiation proteins.>® Protein binding
may also be directed to the four-way junction of the cruciform to initiate replication as shown
for CBP in Hela cells.”

Roles in Recombination

There are several relationships between the formation of alternative structures and DNA
recombination. Consistent with an idea of sequence positioning by a fold-back structure of
H-DNA, facilitated recombination was observed between distant elements separated by the
Py*Pu tract.””7® Several models of Z-DNA assisted recombination have been proposed.”® DNA
strand exchange during recombination requires initial duplex-duplex interaction. For this, ex-
posed N7 and C8 of guanosines in one Z-DNA duplex are available for interaction with an-
other Z-DNA duplex so as to initiate recombination. During the synapsis step in homologous
recombination a paranemic joint, a nascent heteroduplex where strands from different DNA
molecules base pair without breaking them, can be formed from the alternating left-handed
and right-handed turns.

Slipped-Strand DNA

If a region of DNA contains a block of several nucleotides that repeats many times, there are
multiple opportunities for the formation of base pairs in an out-of-register or “slipped” fash-
ion. A slipped-strand DNA (S-DNA) structure forms when a secrion of the repeating duplex
unwinds so that one region of the direct repeat forms the Watson-Crick base pairs with another
region of the repetitive sequence forming two loop-out regions in opposite strands (Fig. 4A)."!
The likelihood of DNA slippage increases with increasing length of the repeats and increasing
potential for partial base pairing in the looped-out single strand. The out-of-register base pair-
ing is more probable in the GC-rich repeats because they have a better propensity for nucle-
ation of the double-stranded structure than the average 50% GC flanking sequences if the
DNA strands are temporarily separated and then allowed to re-form the duplex. Interruptions
in the direct repeat tracts significantly reduce the number of possible out-of-register configura-
tions and, therefore, the probability of S-DNA formation.

Biological Significance

S-DNA has been of considerable interest in the last decade. Fourteen genetic
neurodegenerative diseases and three fragile sites have been associated with the expansion of
(CTQG)p*(CAG)p, (CGG)*(CCG)p, or (GAA),*(TTC), repeat tracts. Different models have
been proposed for the expansion of triplet repeats, most of which presume the formation of
alternative DNA structures in repeat tracts. One of the most likely structures, S-DNA, can
stably and reproducibly form within the GC-rich triplet repeat sequences, (CTG)n*(CAG),,
(CGG)y*(CCG)y. In fact, given that the loops of the slipped out arms are complementary,
good evidence exists that there is a further conformational transition to a folded slipped strand
structure (Fig. 4B), as formed by the model slipped strand structure shown in Figure 4C.
S-DNA may be involved in triplet repeat mutagenesis in several ways, such as a simple primer/
template misalignment or reiterative synthesis, involving repetitive slippage events. More de-
tails on the S-DNA structure and its role in the triplet repeat mutagenesis may be found in
recent reviews.” 2

Slipped misalignment during DNA replication is very important in spontaneous frameshift
mutagenesis. In 1966, Streisinger et al proposed a model that explained frameshift mutations
within runs of a single base by a slippage of the nascent DNA strand on the replication tem-
plate strand.>® Since the genetic code is read as triplets, adding or deleting a single base shifts
the reading frame of all bases downstream of the mutation. As a result, part of the mRNA
encodes amino acids that are different from those in the wild-type protein. Further work has
shown that direct repeats and more complex DNA repeats often contribute to frameshift
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‘ Figure 4. Slipped-strand DNA. A) A representa-
A . tion of slipped-strand DNA, formed withina tract
of (CTG),*(CAG), is shown. B) The comple-
(CTG), mentary loops of the two slipped-strand structure
can form interstrand hydrogen bonds, forminga
T folded slipped strand structure. C) An AFM im-
j ¥ age of a DNA molecule containing (CTG),3 and
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mutagenesis.”?® The hairpin-forming sequences intervening the repeats have been shown to
stabilize S-DNA and promote mutations.

DNA Unwinding Elements

DNA unwinding elements (DUE) have been identified in both prokaryotic and eukaryotic
DNA sequences (see ref. 1, for review). DUEs are AT-rich sequences about 30-100 bp long.
They have little sequence similarity except for being AT-rich. Under torsional stress, unwind-
ing of the double helix occurs first in AT-rich sequences, therefore, DUEs can be maintained as
unpaired DNA regions in the presence of negative supercoiling (Fig. 5A). In the presence of
Mg?*, DUEs tend to remain double-stranded and other regions (such as inverted repeats)
unwind to partially relieve superhelical tension. Thus, the ability of DUEs to form denatur-
ation bubbles may be dependent on the level of unrestrained supercoiling and the local ionic
environment in cells.

Biological Significance

DUE:s are commonly associated with replication origins and chromosomal matrix attach-
ment regions. DUEs are a common feature of DNA replication origins in E. coli and yeast.”’
Replication from the yeast origins shows a correlation between the extent of DNA unwinding
and the proficiency of the DUEs as replication origins. Similarly, DNA unwinding is also
required at the E. coli origin of replication. The AT-rich DUEs are also found in at least some
mammalian origins.”® Thus, DUEs seem to fulfill a primary requirement for the initiation of
DNA replication in all systems, which is the formation of an unpaired region in DNA where
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A' Unwound DNA

Figure 5. Unwound (unpaired) DNA. A) A representation of an unpaired region within a B-DNA helical
region isshown. This structure, typically called unwound DNA, is formed under superhelical tension within
A+Trich DNA regions. B} Unwound regionsin supercoiled plasmids, formed within (AT TCT)3*(AGAAT)3
tracts from the human SCA10 gene.

the replication complex assembles. Recent studies showed that an AT-rich repetitive sequence
(ATTCT),*(AGAAT),, whose spontaneous length expansion has been associated with the de-
velopment of the disease, spinocerebellar ataxia type 10, has the properties of DUE (Fig. 5B).%
Under superhelical stress, the repeating sequence preferentially unpairs and may potentially
bind the proteins of the replication complex. Unscheduled initiation of replication from the
false origin in combination with a possible primer/template slippage in the repeated sequence
may produce longer than expected products of DNA replication. These may be incorporated
into the repeat tract leading to the expansion of repeat length and eventually to the develop-
ment of the disease.”’

Conclusion

Local structural transitions from the common B-DNA conformation into other DNA forms
can be functionally important. Such transitions within certain sequence elements of DNA can
be induced by changes in environmental conditions, protein binding and superhelical tension.
Several lines of evidence indicate that alternative DNA structures may exist in prokaryotic and
eukaryotic cells. The data on their involvement in replication, gene expression, recombination
and mutagenesis continues to accumulate.
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CHAPTER 2

Sequence-Dependent Variability of B-DNA:
An Update on Bending and Curvature

Victor B. Zhurkin, Michael Y. Tolstorukov, Fei Xu, Andrew V. Colasanti
and Wilma K. Olson

Abstract

NA bending is universal in biology—both the storage and the retrieval of information
D encoded in the base-pair sequence require significant deformations, particularly bending,

of the double helix. The A-tract curvature, which modulates these processes, has thus
been a subject of long-standing interest. Here we describe the ongoing evolution of models
developed to account for the sequence-dependent bending and curvature of DNA, namely the
AA-wedge, junction, and flexible anisotropic dimer models. We further show that recent
high-resolution NMR structures of DNA A-tracts are consistent with crystallographically ob-
served structures, and that the combined data provide a realistic basis for describing the behav-
ior of curved DNA in solution.

Introduction

The phenomenon of DNA ‘curvature’ (or intrinsic bending) in solution was ﬁrst observed
in the kinetoplast DNA (k-DNA) of the trypanosome Leischmania tarentolae.? Since these
reports, more than 2,000 original papers and over 100 reviews have been published on the
subject of ‘DNA Bending and Curvature’. Nevertheless, until very recently, the structural mecha-
msms whlch underlie the A-tract-induced curvature of DNA have been a topic of heated de-
bate.>® For example, detailed models based on known DNA crystal structures failed to ac-
count for gel retardation and cyclization rates. Conversely, simplistic models offered to rationalize
the solution data contradicted the X-ray structures. No short overview can profess to be com-
plete in such circumstances.

Here we aim at laying the basic stereochemical groundwork for the next chapters. We pay
only limited attention to the physico-chemical origins of DNA curvature, such as the comparative
roles of the spine of hydration, bound cations, and water activity in stabilizing the A-tract
conformation—for a review see refs. 6-8. Instead, we summarize the evolution of structural
concepts over the past 20-30 years, highlighting the erraric history of the field and recent key
findings which appear to settle eatlier differences of opinion.

We emphasize the truly remarkable progress to date in understanding the sequence-dependent
behavior of DNA (at least, in vitro). In this historical context, we see, in fact, that current
uncertainties regarding DNA conformation in solution are small. In terms of the bending
angles at the base-pair level, a very high precision of 1-2° has been achieved. We conclude with
a brief mention of open problems in the interpretation of experimental data, and possible ways
to resolve them (e.g., accounting for DNA flexibility in the analysis of polyacrylamide gel
electrophoresis (PAGE) data).

DNA Conformation and Transcription, edited by Takashi Ohyama. ©2005 Eurekah.com
and Springer Science+Business Media.
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B-DNA Family of Forms

We deal exclusively with B-DNA, defined phenomenologically as a family of structural
forms, which are:
i. stabilized in aqueous solution of relatively low ionic strength;
ii. linked with one another by means of non-cooperative transitions;
iii. separated from the A and Z forms by cooperative transitions.”

According to both X-ray and NMR measurements, the B-DNA forms are right-handed
duplexes, with deoxyribose sugars puckered predominantly in a C2’-endo conformation (sce
below). The B form is universal in the sense that it can accommodate any DNA sequence. On
the other hand, certain sequences, such as poly(dA*dT), have been observed only in a B-like
conformation, and not in the A and Z forms described in Chapter 1.

“Typical’ B-DNA variability is presented in Figure 1. These examples illustrate the known
variation of B-DNA helical structure as a function of sequence' and environment.>!>'? The
changes in base-pair inclination shown here correspond approximately to thermal fluctuations
of the duplex under ‘standard’ conditions (see below). Any realistic explanation of the DNA
curvature phenomenon must take this variability into account.

Sequence-Dependent Anisotropic Bending of DNA

Initially, the DNA duplex was described as an ideal isotropic rod, with elastic properties
independent of sequence. The measured persistence length of ~500 A corresponds to thermal
fluctuations of the bending angle of -5°.1* Later, once it became clear how tightly DNA is
packed in chromatin, the initial isotropic representation of the double helix was rightfully
questioned,'® and the concept of DNA anisotropy was introduced.!#1® The latter idea implies
that bending across the grooves (in the Tilt direction) is much less pronounced than bending
into the grooves (in the Roll direction), see Figure 2A. The variation of Tilt is hindered by
stacking interactions between the bases and stereochemical constraints of the backbone, both
of which resist the stretching of one strand and the compression of the other. This feature, first
predicted by energy calculations,'®!7 was later confirmed once a number of protein-DNA
complexes had been crystallized.’®'? Arguably, DNA anisotropy reveals itself most strikingly
in the recently solved SWI/SNF-independent (Sin) mutant nucleosomes,?® where sharp bends
with Roll of magnitude 20-25° (‘mini-kinks’) are alternately directed into the minor and major
grooves at regular 5-6 bp increments along the DNA (Fig. 2B).

The concept of anisotropy is complemented by the notion of sequence-dependent variabil-
ity of DNA, and bending in particular (Fig. 2A).%'?? Overall, the DNA bending preferences
follow a simple rule: the purine-pyrimidine (RY) and AA*TT dimers bend predominantly into
the minor groove, whereas the pyrimidine-purine (YR) and GG*CC dimers bend more fre-
quently toward the major groove. Historically, this rule originates from Calladines®* steric
clash model, which was used to rationalize the alternation of positive and negative Roll at
sequential base-pair steps in the Dickerson-Drew dodecamer structure.”” Later, a somewhat
modified version of this idea was corroborated by energy calculations?® and used to account for
DNA ber)ding.27’28 Despite its simplicity, the ‘YR/RY rule’ still holds for numerous B-DNA!C
and protein-DNA? crystal structures.

The pyrimidine-purine (YR) dimers deserve special attention. In addition to being the
most anisotropic dimers (their equilibrium Roll anFle has the largest absolute value), they are
also the most flexible among all dimeric steps.”*?>3 The bending and ‘bendability’ of YR steps
are particularly notable in protein-DNA complexes, where these dimers are often severely kinked
and serve as targets for intercalation.?? The YR distortions are believed to be operative in indi-
rect recognition and also appear to be important for the wrapping of DNA in large nucleopro-
tein complexes.'®

The Sin mutant nucleosomes?® mentioned above, provide a remarkable example of the
DNA structural variability in nucleo-protein complexes (Fig. 2C). As is clear from the color-coded
mosaic of Roll angles in these structures, the tight association of DNA with the core of histone
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proteins requires a regularly alternating pattern of (red B—B* and blue B—5B®) DNA defor-
mation. These nucleosomes have a common DNA template, containing six A-tracts high-
lighted by blue lines (Fig. 2C). Three of the A-tracts bend exactly into the minor groove, one
exactly into the major groove, and two show mixed (but minor-groove dominant) bending.
Thus, we see that the nucleosomal structure takes advantage of the slight minor-groove bend-
ing preferences of the A-tracts, but the imperfect spacing of A-tracts in the crystallized se-
quences precludes a uniform conformational response.

The notion of anisotropic, sequence-dependent bending of DNA presented above provides
a useful perspective for comprehending the controversies over A-tract bending and a frame-
work for interpretation of recent high-resolution structures.

A-Tract Curvature: AA-Wedge, Purine-Clash, and Junction Models

The A-tract story began with the seminal 1980 work of Trifonov and Sussman® who dis-
covered the periodicity of AA*TT dimers in genomic DNA and tied this observation to the
DNA packaging in chromatin. Specifically, they argued that the AA*TT dimer had an intrinsic
‘wedge-like” shape, which when repeated in phase with the helical periodicity of the duplex
would introduce systematic intrinsic bending in DNA. (The Roll and Tilt components of the
AATT wedge, however, were not initially specified.) Therefore, when DNA curvature was
subsequently found in studies of k-DNA containing periodically repeated As- and Ag-tracts,
the observation was interpreted by Marini et al'? as a manifestation of the AA-wedges in
solution.

On the other hand, the crystal structure of the Dickerson-Drew dodecamer,
d(CGCGAATTCGCG),, which had been resolved by that time,? was in apparent contradic-
tion with the idea of AA wedges. Successive A*T base pairs were nearly coplanar in the central
AATT tetramer of the dodecamer, and the only distortions of any significance were found in
the CG and GC dimeric steps at the ends of the molecule. The interpretation, by Calladine, of
the structural irregularities in the dodecamer in terms of ‘purine-clashes’,”® in combination
with the results of energy calculations,?® led to an alternative explanation of k-DNA curva-
ture.””"?® According to this scheme, the YR and RY dimers are responsible for intrinsic DNA
bending, and the A-tracts remain essentially ‘straight’ (i.e., the A*T base pairs are perpen-
dicular to the duplex axis). Indeed, the k-DNA sequence is organized in such a way that the
As and Ag runs are interrupted by pyrimidine-rich segments of 4-5 bp, e.g.,
CCC-A5-TGTC-As-TAGGC-Ag-TGCC-As. The local bends in CA dimers (which are di-
rected into the major groove) are separated by 9-11 bp, as are the bends at AT and AC steps
(which are directed toward the minor groove). Thus, it was imagined that these local bends
(YR and RY) would accumulate and produce a s%niﬁcant global bend. The ‘purine-clash’ models
were refuted, however, when it was shown®*?” that they don’t distinguish between ‘strongly’
curved and Sslightly’ distorted DNA sequences (for comparison of the early models see the
reviews of Tan and Harvey® and Sundaralingam and Sekharudu®).

Crucial gel electrophoresis experiments carried out by Hagerman,?** Dickmann,* and
Koo, W, and Crothers® established three important features of curved DNA:

i. Properly phased A-tracts are indispensable for ‘strong’ DNA curvature (e.g., substitution of
AAGAA for As diminishes the effect drastically).
il. A-tract orientation is important (A4Ts-induced bending differs from that of T4Ay).
iii. Flanking sequences have a limited influence on the magnitude of DNA curvature (the gel
retardation associated with the GAsG sequence is 10-15% less than that for CAsC).

To account for these results, Ulanovsky and Trifonov % refined the AA-wedge model, speci-
fying, for the first time, values of the Roll and Tilt anﬁles at AA*TT dimeric steps, and Crothers
and coworkers introduced their junction’ model.”**! Although Wu and Crothers* noted that
they could not exclude a wedge-like ‘smooth’ bending mechanism, they expressed a preference
for junction bending “because it leads to more interesting hypotheses as a focus for further
work.” Introduction of yet another model of A-tract curvature, however, led to a certain
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B, Roll =-5° B, Roll = (° BA, Roll = 5°

Figure 1. Schematic representation of DNA structural variability within the B family of forms. Three regular
conformations are shown. B (blue): Twist = 38°, Roll = -5° (intermediate substate between the B and C
forms); B (gray): Twist = 36°, Roll = 0° (canonical B-DNA); B2 (red): Twist = 34°, Roll = 5° (intermediate
substate between the canonical A and B forms). Note that DNA twisting is strongly correlated with the
inclination of base pairs since duplex unwinding is accompanied by an increase in the Roll angle.® For
definition of the base-pair step parameters (Twist, Tilt, and Roll) see reference 80. To calculate these
parameters from the published coordinates, and to generate atomic coordinates for the given Twist, Tilt, and
Roll values, the CompDNA/3DNA software was used.'>®! For clarity, the propeller twist and buckle angles
are set to be zero (here and in Figs. 3 and 5).

(4)

\\}

minor 1A ” .
groove o . : ] . groove
Roll <0 2 Roll > 0

Figure 2A. Anisotropic sequence-dependent bending of DNA. The images are based on the crystallo-
graphic structure of the nucleosome.”® Although the DNA distortions represent a larger variation of
structural parameters than in free B-DNA, the duplex remains within the B-family of forms. Here and
below, the color coding is the same as that used in Figure 1: red for Roll > 0 (bending into the major
groove); blue for Roll < 0 (bending into the minor groove).
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Figure 2B. Sequential variation of Roll along the DNA in 12 high-resolution nucleosome structures with
a common DNA template.?® Except for DNA2, which denotes the unmodified reference structure, the
labels refer to the Protein Data Bank (PDB) entries of core particle structures with point mutations of
histone H3 or H4. The composite plots highlight the ‘mini-kinks’ (i.e., large positive or negative Roll every
5-6 bp) which bring about the right folding of DNA.

(©

-7 & -5 -4 -3 -2 -1 0
ATCAATATCCACCTGCAGATTCTACCAAAAGTGTATTTGGAAACTGCTCCATCAAAAGGCATGTTCAGCGGAA

TAGTTATAGGTGGACGTCTAAGATGGTTITTICACATAAACCTTTGACGAGGTAGTITTICCGTACAAGTCGCCTTA
+T +6 *5 4 +3 2 *1 o

Holl -i [} - ‘i

Figure 2C. The color-coded mosaic reveals the periodic interconversion of local conformation between
states of negative (blue) and positive (red) Roll, i.e., B€ and B forms, in the 11 Sin mutant nucleosomes
described in B; the PDB entries are given on the left and right sides. The 146 bp sequence, written along
the upper and lower edges of the image, is divided into two fragments to emphasize the imperfect symmetry
of the structures. Base-pair positions are expressed in terms of the number of helical turns away from the
dyad (located at 0). A-tracts are highlighted by blue lines. Histone proteins in contact with DNA are noted
in boxes at the observed sites of interaction.
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‘dualism’ of interpretation. Both models were equally successful in accounting for PAGE data
(but both were equally unacceptable from the crystaliographic point of view—see below).

The principal difference between the wedge and junction models is the conjecture made on
the ‘nature’ of interactions stabilizing the A-tract geometry. The AA-wedge model is based on
the “first approximation’ that the average conformation of any dimeric step (e.g., AC*GT or
AA°TT) is independent of its neighbors. In particular, the AA*TT dimer is believed to have
the same distorted conformation in the context of both CAAC*GTTG and AAAA*TTTT. (As
shown below, this hypothesis is not confirmed by X-ray and NMR structures.) By contrast, the
‘junction’ model is based on the assumption that an A-tract (made up of four or more consecu-
tive adenines in the same strand) is stabilized in a ‘specific’ conformation which is somewhat
different from the canonical B form. The latter idea builds upon the concept of ‘junction
bending’ originated by Selsing et al*® in their construction of a stereochemically optimal B/A
junction. In other words, the AA-wedge model is a nearest-neighbor dimeric model, while the
junction model postulates cooperative interactions along the DNA chain, which make A-tracts
different from other sequences.

This difference between the two models leads to differences in the description of DNA
deformation. The wedge model considers the dimeric step as the elementary structural unit of
a duplex, and the ‘wedge angles’ accordingly describe transitions from the 7-th to the (7+1)-st
base pair (coordinate frames are assigned to each base pair). By contrast, the ‘junction’ model
ignores possible irregularities within the A-tracts and non-A-tracts, and only considers the
‘effective’ deformations at the 5'- and 3’-ends of the A-tracts (see Fig. 3).

Subsequent modifications of the wedge model, in which all 16 dimers are considered*¢ do
not change the basic tenets, (i) that deviation from base-pair co-planarity occurs predomi-
nantly in the AA*TT steps and (ii) that the A-tract occurs naturally in a conformation similar
to the BE form in Figure 1. The wedge model also incorporates sequence-dependent values of
Twist, which are based on known solution properties of DNA.%5

The ‘overall’ DNA bend of an A-tract is directed approximately into the minor groove in
the center of the run of A, the bending vector being shifted somewhat toward the 3’-end of
the fragment.”#! Among various A,-tracts, the bend angle is probably the largest for 7 = 6, in
as much as in this case the gel retardation is the strongest.‘ﬂ The bend angle for the Ag-tract has
been estimated to be 17-21° from cyclization experiments.® In fact, the experimental bend
angle estimates differ by roughly two-fold, ranging from 13.5° (based on the analysis of 2D
scanning force microscopy images™) to 28° (based on carly PAGE-circularization data®®). Re-
cent topological measurements of supercoiled DNA by Lutter and coworkers find the A-tract
bend angle to be 22° at room temperature.® Thus, we consider a value 20 +2° to be the best
current estimate of the DNA bending angle per Ag-tract (under ‘standard’ conditions). As
mentioned above, both the AA-wedge model and the junction model ascribe this intrinsic
bending to a specific conformation of the A-tract, with the AA-dimers rolled into the minor
groove and the base pairs inclined with respect to the local DNA axis (Fig. 3A,B).

It should be noted thar the introduction of a 20° bend per A-tract requires only relatively
small distortions in local structure. The Roll angles in the A-tract need not differ any more
than 5-6° from those of ‘random’, mixed-sequence DNA. That is, the expected difference
between the two structures does not exceed their thermal fluctuations under ‘standard’ con-
ditions. (These fluctuations correspond to the difference berween B€ and B, or between B
and B* forms in Fig. 1). This is yet another reason why the stereochemical mechanisms of
A-tract curvature have proved to be evasive for so long.

Non-A-Tract Model

The crystallographic B-DNA structures provide a completely different perspective on the
problem. The base pairs in A-tracts of known structures are essentially coplanar, with
Roll(AA) = 0° (B form in Fig. 1; see Fig. 4A and Table 1). By contrast, the base pairs are in-
clined in the non-A-tracts, with Roll positive (B* form in Fig. 1). Following this ‘non-A-tract’
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(4) AA-wedge (B) A-tract junction  (C) non-A-tract

Figure 3. Three alternative models for the curved CsA5CsAsCs fragment: A) AA-wedge model; B junction
model; C) non-A-tract model. Blue arrows: rolling of AA-dimers into the minor groove (A, B); red arrows:
rolling of non-AA-dimers into the major groove (C). A) The A-tract generated from non-coplanar dimer
steps is shown in blue (Roll(AA) = -6.5°, Tilt(AA) = 3.2°). Dimeric step parameters are taken from Bolsho;
et al;* the bend angle per A-tract is 28° according to this model. B) A-tracts (in blue) have a regular B
conformation (Fig. 1) and non-A-tracts (in gray) a canonical B conformation. The helical axis of each
fragment is shown. The angles between these axes are the ‘junctions angles’. (Note that adjacent base pairs
at the junctions are slightly unstacked to increase the visual effect.) The 8; and 8; angles in the junction
model do not necessarily imply that there are sharp distortions at the ends of the A-tracts.’” Rather, these
parameters are ‘virtual’ angles introduced to simplify description of the DNA trajectory. Instead of using
the 10 Roll and 10 Tilt angles of the ‘wedge’ model for each helical turn of DNA, only two ‘effective’ angles
are used, 6; and 8,. (For the Roll and Tilt comgonents of 8; see Koo et a1.46) C) A-tracts (in gray) have a
B conformation and non-A-tracts (in red) a B* conformation (Fig. 1). This scheme corresponds to the
non-A-tract model suggested by Olson, Calladine, Dickerson, and colleagues.3 50,51

model suggested by Olson,’® Calladine,”" Dickerson,? and colleagues, curved DNA resembles
the image shown in Figure 3C. Importantly, the direction of DNA bending and its magnitude
are the same as that predicted by the A-tract junction model (Fig. 3B). Thus, based on PAGE
or cyclization data, it is impossible to distinguish between the two models. Only high-resolution
techniques like NMR can help to solve the conundrum.

High-Resolution NMR Structures of A-Tract DNA

New techniques taking advantage of the partial orientation of macromolecules in a liquid
crystalline medium, and subsequent measurement of the residual dipole couplings make
possible an unprecedentedly high accuracy in the determination of DNA conformation in
solution.>?>® Using this approach, Bax and coworkers’>> found that the AsT base pairs in
the central AATT tetramer of the Dickerson-Drew dodecamer are practically coplanar:
Roll(AA) = Tilt(AA) = -1°. Moreover, the central part of the new NMR structure differs no
more from the 11 solved X-ray structures of the same sequence than the crystallographic
models differ from one another (Fig. 4). The NMR and X-ray conformations of the dodecamer,
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Figure 4. Distribution of Roll angles of A-tracts in solution and the solid state. The average Roll values are
given in parentheses. A) Roll values in B-DNA X-ray structures. Solid bars: A ,-tracts (= 4 to ) in structures
with resolution 2.6 A and better. Open bars: AA*TT dimers in eleven Dickerson-Drew dodecamers con-
taining a central AATT motif. Curves in A and B: Gaussian approximation of the cumulative A, and AATT
distributions. B) Roll values in protein-DNA crystal complexes (with resolution 2.6 A and better). Solid
bars: A,-tracts (7 = 4 to 6); open bars: the AA*TT dimers in A, T-tracts (n+m 2 4, n < 4, m < 4), such as
AATT and AAAT. DNA fragments distorted by intercalation (e.g., in complexes with TBP and IHF) are
omitted from consideration. C) Roll(AA) values in the NMR-resolved oligomers, GGCA4CGG® (solid
bars) and GGCA¢CGG> (open bars). For each sequence, the 10 best structures were taken (PDB entries
INEV and 1FZX, respectively). Curves: Gaussian approximations of the distribution of Roll in the A4
structure (dotted line) and in both NMR structures (solid line); broken line: ‘skewed’ non-Gaussian ap-
proximation of the distribution in the two NMR structures.
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Table 1. The AA-TT dimeric step parameters in X-ray and NMR structures

N Twist () Tilt ) Roll ()
B-DNA, A, and AATT 43 35.8(2.7) -0.12.7) -0.2(2.2)
B-DNA, A; and A; 14 33.3 (5.1 -2.8(1.5) 3.2(5.4)
P+DNA, Apand AT, 89 35.8 (3.1) -0.8 (2.8) -0.7 3.7)
P+DNA, A-tracts 43 36.1(3.3) -0.2(2.2) -1.7 (3.2)
NMR, A-tracts 80 37.22.1) -0.7 (2.8) -1.7 (2.9
NMR, Ay and A3 30 35.6(1.1) -2.2(1.6) 3.0(2.5)

B-DNA and P+DNA: crystallographic structures of B-DNA and protein-DNA comglexes, with
resolution 2.6 A and better. NMR: high resolution structures from the Lu® and Crothers>® groups; the
ten lowest energy structures are taken from each of the PDB entries: 1FZX and 1NEV (Ap-tracts) and
1G14 (A2 and A3). For each dataset, the average and root-mean-square deviations (in parentheses) are
given; N is the number of dimeric steps in a dataset. Ap-tracts are consecutive runs of adenines in one
strand, n =4 to 6. Accordingly, AnTm are runs of n adenines followed by m thymines, n+m=41to 6.
A2 and A3 are ‘isolated’” adenine dimers or trimers, which don’t belong to the Ap- or ApTp-tracts
described above. For example, the tetramer TTAA contains two dimers AA-TT, whereas AATT contains
no ‘isolated’ AA-TT dimers (because AATT belongs to the AnTm set). Note that in the two ‘A2” and ‘A3’
sets (B-DNA and NMR) the average Roll is positive (~3°), while in the other sets Roll is negative.
The used Nucleic Acid Database (NDB) entries are described below. B-DNA, Ap-tracts, 21 steps:
bdj081, bdl006, bdl047, bdi015 (-1 and -2). B-DNA, AATT, 22 steps: eleven structures of the
Dickerson-Drew dodecamer. B-DNA, A2 and A3: bd0033, bd0034, bd0051, bdj019, bdj031, bdj055,
bdl059. P+DNA, Ap-tracts: pd0045, pd0050, pd0125, pd0187, pd0189, pd0314, pdr015, pdr056,
pdt033, pdt038, pdt040.

however, differ at the terminal CGCG tetramers, but this is a natural consequence of the
packing interactions in the crystal phase.

Two other oligomers recently resolved by NMR contain central A4- and Ag-tracts, which
are flanked by GC-rich termini,”> (For brevity, the oligomer GGCA4CGG? is denoted the
Ag-decamer, and GGCA¢CGG?® the Ag-dodecamer.) These sequences were selected by anal-
ogy with naturally curved k-DNA" and synthetic DNA fragments which produce the stron-
gest retardation in PAGE experiments.*"* The solution structures of the two oligomers are
close to the crystallographic data (Fig. 4 and Table 1). In terms of the average Roll angle, the
A-tracts in solution differ from those found in B-DNA crystals by 1.5°, and from protein-bound
A-tracts by a mere 1.0° (Table 1). Note that in this selection, both A,-tracts and A, T ,-tracts are
included to make the crystallographic datasets more representative. If, however, the
protein-bound A,-tracts are considered separately from the A,T,-tracts, then the average
Roll(A,) in the X-ray complexes is equal to -1.7°, that is, a value identical to the mean value
found in solution (Table 1). For B-DNA crystal structures, A,- and A, T,-tracts are indistin-
guishable in terms of the average Roll value.

In short, ‘pure’ A,-tracts (without A, T,,) in solution are characterized by the same inclina-
tion of base pairs as those in protein-DNA co-crystals (on average), but differ somewhat from
the A-tracts in ‘free’ B-DNA crystals (of course, this conclusion is based on limited statistics). A
similar tendency was observed earlier, when we compared DNA twisting under the same con-
ditions. In that case, the structure of DNA in solution® was also closer to that in protein-DNA
co-crystals® than to the structure of ‘pure’ crystallographic B-DNA.!® Apparently, the protein
environment in co-crystals is closer to ‘standard’ solvent conditions than the environment in
B-DNA crystals. (If the crystallographically observed A-tract conformation is, indeed, affected
by the presence of the dehydrating agent MPD (2-methyl-2,4-pentanediol)*”® then, as we see
here, the effect does not exceed 1.5° in Roll.)
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Comparison of the NMR-resolved A-tract structures with existing models shows that the
A-tract in the As-decamer®® is quite irregular (the Roll(AA) angles differ by 6°). That is, the
duplex is somewhat distorted at each dimeric step, rather than in one or two selected locations,
Indeed, the Crothers group describes the overall duplex structure as a ‘delocalized” bend*®
rather than a junction bend of the type anticipated in their earlier work.

The other important result following from the comparison of X-ray and NMR data is
clear evidence in favor of cooperative interactions stabilizing a ‘specific’ A-tract conforma-
tion. Both in B-DNA crystals and in solution, isolated adenine dimers have a positive Roll of
~3° (Table 1), which makes them closer to ‘random’ sequence DNA than to an A-tract. This
contradicts one of the major AA-wedge model postulates—namely, that the AA-dimer and
the A-tract have identical (or very similar) conformations. The other postulate—that the
A,*T, sequences are unique—is remarkably confirmed.*>*? Ulanovsky and Trifonov*® cor-
rectly predicted the qualitative effect—the preference of the A-tracts (compared to
random-sequence DNA) for negative Roll—before there were any ‘solid’ data, but the abso-
lute magnitude of the predicted AA-wedge, ~9°, is far too large (Table 1). (Current best
estimates of the mean AA wedge are actually closer to the coplanar base-pair geometry pre-
dicted in the non-A-tract models cited above.) Note also that the slight negative Tile(AA)
observed by X-ray and NMR (Table 1) indicates that the thymines are opened and the adenines
closed'®—a trend opposite to the wedge model. “*# The ‘cooperative interactions’, which
stabilize a ‘specific’ A-tract conformation different from random-sequence B-DNA (see above),
are likely to be solvent-mediated interactions in the grooves (e.g., the minor groove hydra-
tion spine associated with crystallized A-tracts and the major groove cation binding found in
the structures of GC-rich sequences). We do not discuss these physico-chemical effects here
and refer the reader to published reviews.®®

Further examination of the NMR-resolved structures shows that the Ag-dodecamer’ (aver-
age Roll(AA) = -0.8") is closer to the crystallographic B-DNA A-tracts than is the Ag-decamer™
(Roll(AA) = -3.3°). In Figure 4C, the ‘black’ bars corresponding to the A¢-decamer are more
widely distributed than the ‘white’ ones associated with Ag (so far, it is unclear whether this
scattering reflects real DNA flexibility, or a lack of NMR-restraints in the computer simula-
tions used to deduce the structure). Overall, the two strucrures produce a lopsided distribution
of Roll(AA) angles ‘skewed’ toward negative values (broken line curve in Fig. 4C).

If supported by future solution structures, this ‘skewness’ would corroborate our idea®® of
the asymmetric bending of AA-sequences (preferentially into the minor groove). This kind of
asymmetry is important, because it increases the ‘effective’ bend angle measured in cycliza-
tion® and loop formation®"6? experiments, where high-energy DNA distortions are operative
in achieving a ‘closed’ DNA configuration.

Modeling of A-Tract Curvature Based on NMR and X-Ray Data

Below, we offer a simple qualitative model of DNA bending based on current estimates of
the sequence-dependent Roll angles in solution. This ‘model’ is not meant to explain all avail-
able data—rather, it is given to illustrate how by using NMR and X-ray data, one can realisti-
cally account for the magnitude and directionality of the A-tract bending observed in PAGE
and cyclization experiments. As noted above, the Roll angles in the A-tract need not differ
more than 5-6° from those of ‘random’, mixed-sequence DNA.

Our model is based on three important features of the two A-tract NMR structures
discussed above:

i. On average, Roll(AA) is less than Roll(non-AA).

ii. There is a significant positive Roll(CA) at the 5’-end of the A-tract (a finding consistent
with both X-ray observations!? and molecular simulations, i.e., Monte Carlo®*3! and mo-
lecular dynamics®%4 calculations).

iii. The 3’-end of the A-tract is characterized by a negative Tilt(AC) = -5° (which brings the
adenine and cytosine close to one another).

55,56
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Accordingly, we adopt the following Roll values: Roll(AA) = -2° (comparable to -1.7° in
Fig. 4C); Roll(CA) = 8° (the same as in the Ag-dodecamer®); Roll(MN) = 3° for all other
dimers (in agreement with the average Roll = 2.7° found in protein-DNA cocrystals”” and the
mean Roll = 4.6° reported in earlier NMR-resolved DNA structures®®). The Tilt angle is taken
to be zero for all dimers (see below), and the Twist angles are taken from Kabsch et al. ¥ The
latter values are not critical for short DNA fragments of 30-40 bp, but do matter in the descrip-
tion of the overall shape of 100-200 bp DNA fragments,” an issue beyond the scope of the
present article.

The bend angle per Ag-tract associated with the model is 19° (Fig. 5A), a value consistent
with the 20 +2° experimental interval.“*> Furthermore, the overall DNA bending vector is
directed approximately along the dyad axis of the fourth A*T pair in the A-tract (highlighted in
green in Fig. SA), a result also in agreement with the experimental data mentioned above.374!
The predicted overall bend angle is not very sensitive to the value of Roll(CA): reduction of this
Roll by 5° (from 8° to 3°) diminishes the global bend angle by only 2° (from 19° to 17°). The
large positive Roll(CA), denoted C-A1 in Figure 5A, is critical to the directionality of the DNA
bend, i.e., the shift in directionality toward the 3'-end of the A-tract. The importance of the
CA step in the bending of A-tracts has long been appreciated, both in experimental®®®” and
computational>®®? studies, but its key role in bending directionality has not been previously
pointed out.

The Tilc at the 3"-end of the A-tract is more critical to the magnitude of bending (A6-C in
Fig. 5A). For example, if Tilt(AC) = -5° as in the NMR-resolved A4- and Ag-structures,”>%
then the overall bend angle increases up to 24°. That is, the Tilt at the 3’-end of the A-tract is
roughly additive with the sum of the Roll(AA) angles. We do not include this Tilt(AC) in the
present model, however, because it is likely to be related to the effect of the cytosine sugar
switch, and as such it has to be treated by a model which explicitly incorporates DNA flexibil-
ity (see below).

Unresolved Problems: Sugar Switching and Overall DNA Flexibility

Below, we emphasize several as yet unanswered questions related to the mechanisms of
DNA bending and curvature.

Sugar Switching and DNA Bending

NMR studies of DNA oligonucleotide duplexes show that 90-95% of the deoxyribose sug-
ars attached to purines (A and G) remain in the B-like C2’-endo conformation, or S domain,
in solution.®® This conformational propensity is less clear-cut in the case of pyrimidines (espe-
cially cytosine): in some examples, up to 35-40% of the sugar rings are switched to the C3’-endo
conformation (N domain).>**’ The conformational preference of the cytosine sugar for the
C3’-endo form is also predicted in energy minimization’® and ab initio quantum mechanical
studies”’ and is seen in the distribution of conformational states in high-resolution crystal
structures.”” It should be noted, however, that detection of the sequence-dependent N/S equi-
librium in solution is an extremely sophisticated and time-consuming procedure, so that even
in the recent well resolved NMR structures of DNA A-tracts> the question of deoxyribose
interconversion has not yet been addressed. For example, in the Ag-dodecamer® the sugar
rings of the terminal cytosines apparently adopt an unfavorable O1’-endo conformation. Such
states are suggestive of fast, undetectable NS interconversions in cytosine, with the
N-population high enough to shift the average sugar pucker toward the O1°-endo form. The
sugar switching is evidently a complicated context-depending phenomenon, requiring further
investigation.

Using high frequency antiphase NMR spectroscopy, in the Sarma group® it was demon-
strated, in the context of CAAAC, that the 3’-terminal cytosine is especially prone to sugar
switching. Such deformation may have important consequences in terms of DNA bending,
The inter-phosphate distance along the DNA chain is known to be shorter in the A form (with
sugars in the C3’-endo conformation) than in the B form (with C2’-endo puckered rings).
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Figure 5. Curved (AsCsA¢Cs), fragment constructed on the basis of current X-ray and NMR data. A) Static
‘equilibrium’ conformation is bent by 19° per helical turn, as a result of the negative Rolls of the AA-dimers
(blue arrows directed into the minor groove) and the positive Rolls of the non-AA-dimers (red arrows
directed into the major groove). The overall DNA bending vector (black arrow) is directed approximately
along the dyad axis of the A*T pair marked A4 and shown in green. The AA*TT dimers are shown in blue,
and the GG*CC dimers in red. Specific Roll and Tilt values are §iven in the text, and the procedure to
calculate the ‘overall’ DNA bend angle is described in the literature.” The dimeric step C-A1 (at the 5'-end
of the A-tract) is characterized by a positive Roll, 3555664 and the step AG-C (at the 3’-end of the A-tract)
by a negative Tilt. °>5%73 B) Effect of thermal fluctuations on DNA curvature: a ‘bouquet’ of representative
instantaneous chain configurations is shown in stereo. The 100 bp fragments, superimposed at their right
termini, wete generated by Monte Carlo simulations.® Fluctuations in Roll, Tilt, and Twist correspond to
a persistence length of 500 A.'? The ‘equilibrium’ conformation (in blue and yellow) is the same as in A.

Therefore, it is natural to expect that S—N sugar switching would introduce local compression
in the sugar-phosphate backbone, and that this compression would, in turn, induce DNA
bending toward the perturbed sugar. Indeed, this is exactly what has been predicted in energy
calculations of the CAAAC fragment mentioned above.”? Specifically, an isolated sugar switch
was found to introduce a negative Tilt (-2° to -7°) in the same direction as that recently ob-
served in the Ag- and Ag-oligomers.”>® Such a Tilt corresponds to bending the DNA axis
‘down’ at the AG-C position in Figure 5A—that is, to an increase in the overall A-tract bending
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as described above. Interestingly, a similar S9N sugar switch has also been observed at the
3-end of an A-tract in the context of CAsC.7>

The cytosine S and N conformers are in dynamic equilibrium in solution; therefore, the
aforementioned Tilt angle at the 3’-end of the A-tract should be considered within the frame-
work of a dynamic model of DNA bending. Such models are only beginning to emerge. Hope-
fully, in the near future several more A-tract containing duplexes will be studied as exhaustively
as the Dickerson-Drew dodecamer has been studied in the Bax group.’ This would provide
the information necessary for developing a dynamic model of DNA bending, which includes,
among other features, sugar ring interconversion.

Global DNA Flexibility

There is no good reason why the gel electrophoresis properties of 150-200 bp DNA frag-
ments have been interpreted for so long in terms of ‘static’ models rather than the deformable
DNA segments commonly used to account for the ring closure rates of chain molecules of the
same length. As noted above, DNA curvature is brought about by local effects of the same
magnitude, or even less than, the thermal fluctuations of the base-pair step parameters (e.g.,
static bends vs. angular deformations of ~5° in the case of Roll). Thus, from the point of view
of statistical mechanics, a ‘static’ model of DNA curvature is absurd.

To evaluate the effect of fluctuations on DNA curvature, one can use either all-atom chain
simulations (Monte Carlo®®?' and molecular dynamics“‘“) or a simplified Twist-Roll-Tilt
model® corresponding to the observed bending and rorsional rigidities of DNA. The latter
‘flexible anisotropic dimer’ model® was used to illustrate the dramatic effect of room-temperature
fluctuations on the shape of naturally curved DNA (Fig. 5B). Clearly, many of the states of a
curved DNA chain are extended by such fluctuations, that is, ‘real curved’ DNA is longer than
the idealized chain produced by a static model. Conversely, ‘moderately’ curved DNA frag-
ments in reality are more compact than their ‘static model representation.>®® Therefore, cur-
rent quantitative estimates of the sequence-dependent bending angles of DNA, based on a
static interpretation of PAGE data, may be biased.

Althotgh critical evaluation of the static model has been presented in numerous re-
views,316474 this oversimplified representation of the DNA chain still dominates the litera-
ture. Only within the last year have Mohanty and colleagues begun to develop a theoretical
framework for the interpretation of PAGE data in terms of the sequence-dependent conforma-
tion and deformability of DNA.7>7¢

DNA Curvature and Gene Regulation

Realistic modeling of the looping and other perturbations of DNA critical for its biological
functioning requires knowledge (as accurate as possible) of the numerical values of the param-
eters which govern the sequence-dependent ‘mechanical’ properties of the double helix, such as
the equilibrium Twist, Roll, and Tilt angles, the torsional and bending stiffness, etc. The recent
progress in determination of reliable three-dimensional DNA structures in solution and the
growing number of DNA structural examples in the solid phase bode well for improvements in
current knowledge-based force fields, i.e., the mechanical parameters used in modeling long
chains.” As new dara accumulate it will become possible to include, in addition to the mean
values and variance of base-pair step parameters, the sequence context of the dimeric building
blocks, the dependence of the base-pair steps on backbone structure, and the role of local
environmental variables on conformational state. Such information will make it possible to
model large protein-DNA assemblages where the duplex is severely distorted.

Genome-Wide A-Tract Distribution in Bacteria

In E. coli and other bacteria, there is an increased number of A-tracts (compared to random
DNA sequences with the same base composition). These A-tracts are organized in ~100 bp
clusters, in which the A-tracts are phased with a period of ~11 bp.”’ Frequently, two or three
phased A-tracts are located inside a cluster, and as such they produce a net bend of 40-60°.
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Although a 60° deflection is 2 modest bend, preexisting curvature of this magnitude would
reduce the energy of elastic deformation required for DNA loop formation (180° bending) by
more than half. The 3 keal/mole dectease in free energy of the curved segment would increase
the probability of looping by ~100 fold. (Note that this estimate is valid only for linear, spa-
tially unconstrained DNA molecules; Tolstorukov and Zhurkin, unpublished data.)

Importantly, these A-tract clusters are observed throughout bacterial genomes, both in cod-
ing”” and regulatory sequences.”® In addition to reducing the energy required for DNA com-
paction, the A-tract clusters may serve as binding sites for the bacterial nucleoid-associated
proteins that have propensities for curved DNA. Thus, A-tract clusters may be operative in the
compaction of bacterial genomes, providing intrinsic DNA curvature and increasing the stabil-
ity of DNA complexes with architectural proteins.

Conclusion

We are now in a ‘transition’ period in which X-ray and NMR-based models of DNA curva-
ture are beginning to evolve. The original concepts, such as the preference for A-tracts to bend
into the minor groove (compared to mixed-sequence DNA), hold. The new ‘knowledge-based’
models operate with real base-pair steps, as opposed to the hypothetical components of early
wedge and junction models, and incorporate the deformability encoded in known structures.
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CHAPTER 3

Curved DNA and Prokaryotic Promoters:

A Mechanism for Activation of Transcription
Munehiko Asayama and Takashi Ohyama

Abstract

ntrinsically curved DNA structures often occur in or around origins of DNA replication,
I regions that regulate transcription, and DNA recombination loci, and are found in a wide

variety of cellular and viral genomes from bacteria to man. In bacterial promoters, bent
DNA structures are often located from immediately upstream of the -35 hexamer to around
position -100 relative to the transcription start site (+1). They have a range of functions: facili-
tating RNA polymerase binding to the promoter, transition from closed to open promoter
complexes, or transcription factor binding. To perform these functions, in some cases intrinsi-
cally curved structures function together with DNA bends that are induced by binding of
RNA polymerase, transcription factors, or nucleoid-associated proteins. This chapter will de-
scribe how curved DNA structures are implicated in prokaryotic transcription.

Introduction

DNA can become bent cither by an exterior force such as a protein binding, or by the
nucleotide sequence per se. The former is called protein-induced DNA bending or simply
DNA bending, and the latter is called bent DNA, curved DNA, or intrinsic DNA curvature.
Initially, the formation of a stable bent configuration of DNA was proposed by Crick and Klug
to explain the mechanism underlying DNA packaging into nucleosomes, which dates back to
1975.! Several different models soon followed.>® Among them, the “wedge model” ° and the
“junction model”® are famous for predicting intrinsic DNA curvatures® (Chapter 2). The first
naturally occurring curved DNA was discovered in 1982, by electrophoretic analyses of the
minicircle fragments of mitochondrial (kinetoplast) DNA (k-DNA) from a parasite, Leishmania
tarentolae.” A DNA fragment from the organism migrated unusually slowly in non-denaturing
polyacrylamide gels. This fragment contained a unique nucleotide sequence, with regularly
distributed runs of adenines or thymines, with a periodicity of one run per helical repeat.
Although such regular runs were soon proved to be the cause of intrinsic DNA curvature, the
molecular mechanism to form curved DNA structure is still a matter of controversy.%%13

Since the initial discovery, curved DNA structures have been identified in a wide variety of
cellular and viral genomes from bacteria to man. Interestingly, curved DNA structures often
occur in or around origins of DNA replication,1 21 promoters and enhancers (Table 1; for
eukaryotes see Table 1 in Chapter 5) and DNA recombination loci,”*?? irrespective of the
origin of the DNA, suggesting that DNA curvature is important in many basic genetic pro-
cesses (for reviews, see refs. 24-27). In order to reveal its role, a great many studies have been
cartied out. Here, focusing on the roles in prokaryotic transcription, we describe the fruits of
these studies.

DNA Conformation and Transcription, edited by Takashi Ohyama. ©2005 Eurekah.com
and Springer Science+Business Media.
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Table 1. Prokaryotic genes that have a curved DNA structure in or around the

promoter
Promoter® Origin Locus Reference(s)
argT Escherichia coli upstream 45
arglU Escherichia coli upstream 31
bolAp1 Escherichia coli core 33
caa Escherichia coli downstream 61,62
gal Escherichia coli upstream 54,123
ginAp2 Escherichia coli upstream 59,96
glpF Escherichia coli core 31
helD Escherichia coli core 31
ilviH Escherichia coli upstream 46
iVPG2 Escherichia coli upstream 125
katEp Escherichia coli core 33
lac Escherichia coli core, upstream 30,83
leuv Escherichia coli upstream 37
ompF Escherichia coli upstream 55
proV Escherichia coli core 3
rrnB Escherichia coli upstream 39,57
rrnD Escherichia coli upstream 31
bla Escherichia coli plasmid pUC19 upstream 40,41
spoOFP2 Bacillus subtilis core 32
Pas Bacillus subtilis phage 29 upstream 58,89
Alu156 Bacillus subtilis phage SP82 upstream 42
Bal129 Bacillus subtilis phage SP82 upstream 74
plc Clostridium perfringens upstream 43
nifLA Klebsiella pneumoniae upstream 60
psbAZ Microcystis aeruginosa upstream 47,48
rpoD1 Microcystis aeruginosa upstream 44
Plkt Pasteurella haemolytica core ~ upstream 35
hisR Salmonella typhimurium upstream 38
skc Streptococcus equisimilis upstream 49
Pctil Streptococcus pneumoniae plasmid pLS1 upstream 50,118

2 Gene or operon names are used except a few cases

The Shape of Curved DNA

Naturally occurring curved DNA can adopt various conformations, which are determined
by runs of adenines or thymines (A-tracts or T-tracts) as described above. When the A- or
T-tracts occur with a periodicity almost equal to that of the DNA helical repeat length of
around 10.5 bp, DNA forms a planar curve (i.e., a two-dimensional curve). However, if the
tract periodicity is other than this, then either a right- or a left-handed superhelical conforma-
tion is formed.'? These three-dimensional (3D) structures are sometimes called “space curves”
(Fig. 1). When the periodicity is less than 10.5 bp (e.g., 9 or 10 bp), DNA adopts a left-handed
superhelical conformation, and when it is more than 10.5 bp (e.g., 11 or 12 bp), DNA adopts
a right-handed superhelical conformation. As the tract periodicity departs further from 10.5
bp, the helical axis becomes almost straight; e.g., periodicities of 5 to 7 bp result in a nearly
straight (actually, a zigzag) trajectory of the helical axis.
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Plane curve

Space curve
(left-handed
superhelical)

Space curve
(right-handed
superhelical)

Figure 1. Three-dimensional views along each axis, of two-dimensionally curved and three-dimensionally
curved DNA structures. The figure shows the structures formed by the nucleotide sequences (AsGTAC)y
(left), (AsGTACGAsGTGCAC); (top) and (AsGTACGTC); (right). For DNA-drawing softwares, see
Chapter 5 (Fig. 2).

Mapping Curved DNA Loci

Bacterial core promoters have conserved sequences at positions -35 (TTGACA) and -10
(TATAAT) relative to the transcription start site, which are recognized by RNA polymerase
(RNAP) holoenzyme carrying a principal sigma factor such as sigma 70 (¢ 0 (Escherichia coli)
or SigA (6™) (Bacillus subtilis). This section describes where curved DNAs occur, and a repre-
sentative technique for studying DNA curvature.

Circular Permutation Analysis

Circular permutation analysis, cyclization analysis, and electron microscopy are often used
to find the position or magnitude of bends in DNA.5?? Circular permutation analysis, de-
vised by Wu and Crothers in 1984, has now become routine. It can reveal the position, magni-
tude, and direction of a DNA bend compared to known standards. Here, we will describe only
this assay (see Fig. 2). A DNA bend slows migration through a polyacrylamide gel. This phe-
nomenon is more pronounced when the bend is in the center of a DNA fragment as opposed
to near the ends. Thus to find the center of a bend, the DNA fragment of interest is first cloned
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Figure 2. Circular permutation assay. A) DNA fragments used in the assay. First, the DNA fragment of
interest is cloned as a tandem dimer. A variety of restriction enzymes that cut once within the fragment are
used to cut the dimer, creating a set of circularly permuted DNA fragments, identical in nucleotide com-
position and length, but differing in the position of the bend site relative to the fragments’ ends. B)
Non-denaturing polyacrylamide gel electrophoresis of the circularly permuted DNA fragments. C) Plotting
the mobility as a function of the position of cutting. Reproduced from ref. 44 with permission from The
Japanese Biochemical Society ©1999.

as a tandem dimer, and is then cut with a series of restriction enzymes, each cutting once only
within each fragment. The mobility (or relative mobility) of the fragments is plotted against
the position of cutting. In the fragment which migrates most rapidly in the gel, the DNA cut
was presumably closest to the center of the DNA bend.

Core Promoter Region

There are several reports of curved DNA in this re%ion (Table 1). The £. coli lac core P1
promoter contains a slightly curved DNA around -31.%° In addition, promoters of E. coli glpF
(a gene involved in facilitated diffusion of glycerol), helD (helicase IV), and proV (the first gene
of the prol operon, involved in high-affinity transport of glycine, betaine and proline) are
involved in curved DNA.?! The P2 promoter of the B. subilis spoOF gene, which encodes a
protein required to initiate sporulation, contains curved DNA centered around -10.%% The
curved region contains the recognition site of phospho-Spo0A, a transcriptional regulator es-
sential for the initiation of sporulation.

In the following promoters, absence of the consensus hexamer sequences may be offset by
the presence of curved DNA. In £. coli, expression of a number of genes during the stationary
phase is controlled by 6° (KatF). Interestingly, the 6°-regulated promoters do not present good
consensus sequences in -10 and -35 regions, but are probably located in intrinsically curved
DNA.?3 Recently, a similar report has been presented on the Campylobacter jejuni promoters
which are recognized by house-keeping sigma-factor, RpoD.>* C. jejuni is a human gastrointes-
tinal pathogen. Petersen et al showed that the promoters recognized by RpoD do not contain
the conserved -35 motif, but instead show very strong periodic variation in AT-content, and
also semi-conserved T-tracts with a periodicity of 10-11 nucleotides that could form curved
DNA. In cattle, Pasteurella haemolytica causes necrosis of the lung and the production of a
fibrinocellular exudate. In the P haemolytica leukotoxin promoter, the conserved -35 motif is
also absent, and instead four repeats of CAc(C/T)A are present with approximately 10 bp
periodicity. The repeats form a curved DNA structure, which influences transcription.

Upstream of the Core Promoter

Based on computer modeling, an early study suggested that strong E. coli promoters harbor
a bent DNA structure in their upstream sequences.*® Indeed, most of the curved DNA struc-
tures that have been experimentally identified are upstream of core promoters. Roughly, they
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fall into two groups: one located immediately upstream of the -35 hexamer, and the other
further upstream. The first group includes promoters of the following genes: E. coli argU (argi-
nine tRNA-4),3! the E. coli lew VIRNA operon,3 7 a Salmonella hisR tRNA operon,® the E. coli
B tRNA operon,? the E. coli rrnD rRNA operon,®! bla (P-Iactamase gene) in E. coli plas-
mid pUC19,*4! the Alu156 of Bacillus subtilis phage SP82,*2 Clostridium perfringens plc (en-
coding phospholipase C (0t-toxin)),*> and M; icrocystis aeruginosa (cyanobacterium) K-81 poDJ
(encoding principal sigma factor, ot

The second group includes DNA curvatures of E. coli argT, and the ilviH operon (encodes
acetohydroxyacid synthase I1T), with centers of curvature between -90 and -95,%> and at -120,%
respectively. M. aeruginosa K-81, a photosynthetic freshwater cyanobacterium, can grow be-
tween 5 and 38°C, with optimal growth at 28 to 30°C. Its psbA2 gene (encoding a core protein
in photosystem II) contains a unique curved DNA upstream of the light-responsive promoter,
from -180 to -140. Interestingly, the center of curvature depends on temperature: it was at
bases -180, -160, and -140, at 50, 30, and 4°C, respectively. 7 In many other organisms, the
light-responsive genes also have curved DNA in the upstream region, e.g., in Synechocystis
PCC6803 (blue-green algae), Cyanidium caldarium (red algae), Oryza sativa (plant, rice) and
Nicotiana tabacum (plant, tobacco).®® This may suggest that the curved DNA is highly con-
served among light responsive genes from cyanobacteria to higher plants. Streptococcus equisimilis
H46A, a human serogroup C strain, is a potent producer of the plasminogen activator strep-
tokinase. The streptokinase gene (skc) has an intrinsic DNA curvature located at -100.%#

Some promoters have DNA curvatures in both regions. For example, the Py promoter of
plasmid pLS1, which can replicate in both Gram-positive and Gram-negative bacteria, carries
two curvatures. One is in the proximal region (--50 to -80), and the other is in the distal region
(--140 to -220).%°

Transcription factor binding sites are often located in curved DNA, irrespective of the
location of the curvature. Both E. coli lac and gal operons possess dual promoters, P1 and P2.
In the lac operon, slight curves form around positions -30 and -100 relative to P1’s transcrip-
tion start point.*® The catabolite gene activator protein (CAP; sometimes known as CRP, the
cyclic AMP receptor protein), a positive regulator responding to carbon source limitation,'
binds the region within this curvature.*®>! In the gal operon, the curved structure is located
between -60 and -90 relative to P1’s transcription start 5point. This region is slightly upstream
of the CAP binding site, which is centered at -41.5.5%>* The E. coli ompF gene, coding for a
major outer membrane protein, also carries curved DNA. The sequence causing the curve lies
between -101 and -71, where two sets of periodically spaced A4 tracts are present. The binding
site of OmpR (an activator) overlaps the curved DNA.* In the E. coli 7nB P1 promoter, the
curved DNA center overlaps one of three FIS (factor for inversion stimulation) binding sites.’%%7
The B. subtilis phage 629 has a curved DNA that falls into this category.*® The promoters Pag,
(the promoter of early genes) and Pa3 (the promoter of late genes) partially overlap, and drive
transcription in opposite directions. Two p4 binding sites, separated by 15 bp, are within a
segment of curved DNA. When p4 binds, it increases the curvature.’® In the E. coli ginAp2
promoter (from the g/rALG operon, encoding gluramine synthetase), computer simulation
suggested that a 70 degree curve forms between the binding sites for the activator (nitrogen
regulator I, NR;, = NerC) and for oV (6>)-RNAPY Similarly, in the Klebsiella pneumoniae
nifLA promoter, a curved structure forms between two NtrC binding sites and the core pro-
moter.

Downstream of the Core Promoter

In this region, curved DNA is rare. One example is the slight curve in the operator region of
the E. coli caa gene (colicin A).5162 However, in this region, protein-induced DNA bends may
be more important than intrinsic curvature, as regulators of transcription: when LexA (the
repressor of the SOS system) binds here, it bends the DNA substantially.*-62



42 DNA Conformation and Transcription

Role of the Curved DNA

First, we briefly describe how researchers have tried to understand the function of DNA
conformation. We then detail how curved DNA is implicated in the transcription cascade.

Short History

The first functional analysis of DNA curvature was performed in 1984 using a promoter of
a tRNA operon of Salmonella.®® A 3 bp deletion at position -70 disrupted a curved structure,
and reduced in vivo transcription to 40%. This study suggested that curved DNA could con-
tro] transcription. The E. coli argT promoter requires an upstream region for high in vivo
activity. Deletion mutants were used to study this promoter,*> which required an upstream
curved DNA region for high activity. Techniques using synthetic bent DNA are sometimes
very useful, and have suggested that a DNA curvature close to the -35 hexamer is important.5>
Furthermore, linker scanning mutations were used to study the DNA curvature just upstream
of the -35 sequence of E. coli rrnB operon. They revealed that the angular orientation of the
DNA curvature determines promoter activation.*’

Insertion of a short DNA segment(s) into sites in or around the curved DNA region is also
useful. In 1989, McAllister and Achberger investigated the function of curved DNA upstream
of the Alu 156 promoter of B. subtilis phage SP82.4? By introducing short DNA fragments (6
t0 29 bp) between the core promoter and the curved DNA, they changed the rotational phase
between them. These changes correlated with the changes in promoter function in vivo. The
most efficient mutant promoters contained insertions of 11 and 21 base pairs, and the least
efficient promoters contained insertions of 15 and 25 base pairs. In vitro these mutations
influenced the efficiency of RNA polymerase binding to the promoter. These findings demon-
strate that the rotational phase between core promoter and the curved DNA is significant. The
same methodology was used to study the promoter of C. perfringens plc gene and it was shown
that upstream curved DNA stimulates transcription both in vivo and in vitro.

In 1994, using deletion mutants, Pérez-Martin and Espinosa showed that curved DNA
increases transcription from the Py promoter of pLS1 in vivo and in vitro, apparently inde-
pendently of any activator protein.”® Furthermore, an upstream curved DNA was replaced by
the target sequence of IHF (integration host factor) or that of CopG (both are DNA-bending
proteins), which activated transcription in the presence of these proteins but did not in their
absence or deficiency. This study indicated that the curved conformation of DNA increases the
number of contacts between the RNA polymerase and the promoter DNA, and that this in-
crease is important in transcription initiation.

In order to alter shapes of DNA curvatures per se with minimal changes to sequence, short
DNA segments were inserted into the center region of curved DNA in the pUC19 B-lactamase
gene promoter,”* and into the cyanobacterium M. aeruginosa rpoD1 gene promoter.* The
resulting promoters were less active than the wild-type promoters, indicating that activity de-
pended on the gross geometry. These promoters have right-handed curved DNA. Such DNAs
are often located just upstream of promoters,** but promoter DNA itself wraps around RNAP
left-handedly (Fig. 3).%’ Thus it is tempting to speculate that if RNAP changed the writhe of
the helical axis from right-handed to left-handed, it might deform the DNA and lead to local
unwinding (and formation of an open promoter complex).**%> To test this hypothesis,
right-handed curved DNA, lefr-handed curved DNA, two-dimensionally curved DNA and
straight DNA segments were synthesized and tested for their effect on transcription in vivo.
Right-handed curved DNAs clearly facilitated formation of the open promoter complex and
activated transcription.*! Curved DNA can also change its shape depending on temperature.®®
Thus, temperature can be used to study the relationship between DNA conformation and
function.®*” Recently, a mechanism of transcriptional regulation has been proposed that de-
pends on a temperature-induced conformational change (Chapter 4).
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Downstream DNA
—

Upstream DNA

Figure 3. Schematic view showing the RNA polymerase and the trajectory of the DNA (A) and
three-dimensional representation of how promoter DNA wraps around the polymerase (B). “P” indicares
RNAP: Reproduced from ref. 67 with permission from the Nature publishing group ©1999.

Mechanistic Roles

Transcription initiation involves several steps.71’72 Briefly, an RNAP binds to promoter (P),
to yield RNAP-promoter closed complex (RP¢) with an equilibrium constant K. Next, RNAP
melts approximately 14 bp of promoter DNA surrounding the transcription start site, with a
rate constant &, to yield an RNAP-promoter open complex (RPp). Subsequently, RNAP be-
gins to synthesize RNA as an RNAP-promoter initial transcribing complex (RPy7¢). There are
several abortive cycles of RNA synthesis, which yield RNA of 2-8 nucleotides long, with a rate
constant &. When by chance 2 9 nucleotide strand is synthesized, RNAP releases the promoter
DNA (promoter clearance) and synthesizes RNA as an RNAP-DNA elongation complex (RDg).
Bent DNA is implicated in the steps described below.
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RNAP Binding

Several studies have indicated that curved DNA is important for binding RNAP to the
promoter.”®”>75 In the gal P1 promoter, a point mutation from GeC to T#A at position -19,
which abolishes P2 activity, enhances contact between the E. coli RNAP and the DNA between
-49 and -54, and activates transcription from the P1 promoter, even in the absence of
cAMP-CAP’? This mutation generates a run of six consecutive thymines (5" TTTTTT-3’ is
formed from 5"-TTTGTT-3’), which presumably influences the helical trajectory of the pro-
moter, and helps RNAP binding. Hybrid £. coli A phage promoters (Apg) have been created,
carrying curved DNA from the B. subtilis phage SP82 promoter, Alul56, or Bal129, immedi-
ately upstream of the -35 region. These promoters bound E. coli RNAP more efficiently than
did the original promoter. Interestingl%r, the upstream curved DNA wrapped around the RNAP
in a nucleosomal-DNA-like fashion.”

The interaction between the ®-subunit of RNAP and the curved DNA next to the core
promoter may be important for initiating transcription. Many genes have an AT-rich upstream
(UP) element upstream of the -35 hexamer, and this was originally identified in the E. col rrnB
P1 promoter. This element stimulates transcription through contact with the C-terminal do-
main of the O-subunit (-CTD) of RNAP”%7 The consensus sequence of the UP element is
NoA(A/THA/T)T(A/T) T4N,A4N:.2 This region behaved slightly abnormally during elec-
trophoresis, suggesting that it may be curved. The curved conformation may influence interac-
tions between the UP element and a-CTD.* A study using the E. coli lacUV’5 promoter
revealed that in the RNAP-promoter open complex, 0-CTD makes alternative nonsyeciﬁc
interactions with the DNA minor grooves at positions -43, -53, -63, -73, -83, and -93.3 Thus
around the UP element, the conformation of DNA may assist the DNA to interact with -CTD
efficiently, and as a result, may influence transcription. However, it is difficult to distinguish
the effects due to the shape of DNA from effects due to an AT-rich DNA sequence per se.”8%
None of the above studies paid attention to the 3D architecture of DNA. Interestingly; an in
vitro experiment indicated thart in the step of binding, . co/i RNAP favors DNA with a
right-handed superhelical writhe.!

Formation of the Open Promoter Complex

After the RNAP holoenzyme binds to the promoter, approximately 14 bp of the promoter
(between positions -11 and +3) melts.”? An early study hypothesized that DNA curvature
allows upstream DNA to contact the promoter-bound RNAP, and that these interactions help
the DNA for formation of the open promoter complex.*? Indeed, in some cases, curved DNA
enhances formation of the open complex.‘“’5 33 For example, an in vitro experiment indicated
that in the E. coli gal P1 promoter, the upstream curved DNA activates transcription by en-
hancing the rate of isomerization from the closed complex to the open complex (£,) at P1, both
in the absence of the cAMP-CAP and in its presence (the study used mutants where the P2
promoter was silenced).>4

DNA architectures are not necessarily optimally oriented towards the surface of the RNAP.
The RNAP must therefore distore the DNA.34 Actually, the promoter DNA becomes bent
when RNAP binds to it, and it wraps around the enzyme with a left-handed superhelical
conformation (Fig. 3).65-67.85.86 Energy invested in DNA bending could open the double he-
lix.¥” These considerations suggest that DNA curvatures can enhance stress, depending on the
direction of the curvature, which explains well why many bacterial promoters have a right-handed
curved DNA immediately upstream of the -35 region.% This right-handed curvature presum-
ably increases stress when the DNA wraps around RNAD, reversing its superhelical handedness.
Indeed, when a synthetic right-handed curved DNA segment was placed immediately up-
stream of the -35 region of pUC19 B-lactamase promoter, it facilitated DNA melting at posi-
tions -11, -9, and +3 and activated transcription, compared to left-handed curved,
wo-dimensionally curved, and zigzag (straight) DNA se ments.?! Positions -11 and +3 corre-
spond to the limits of RNAP-induced promoter melting.” Based on this putative mechanism,
modulating the shape of DNA can also produce negative effects. A Ts tract introduced just
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upstream of the -35 hexamer reduced promoter activity.®® As another example, curved DNA
inhibited transcription from the B. subtilis Ppy;, promoter, by reducing the ability of RNAP to
form transcriptionall;' active open complexes (in this case, binding of RNAP to the promoter
was also impaired).®’ However, it is still not clear why DNA curvatures which are preset to
modulate promoter melting, are usually located upstream of the core promoter.

Promoter Clearance

In the last stage of transcription initiation, promoter escape or promoter clearance occurs.
“Escape” deals directly with issues affecting the downstream movement of a polymerase mol-
ecule. On the other hand, “clearance” implies that the polymerase moves far enough down-
stream to make the core promoter available to a second polymerase.”®”! These phenomena are
also rate-limiting steps in transcription initiation. In the B. subtilis page $29 A2c promoter,
preventing RNAP escape represses transcription.”> Are DNA curvatures involved in promoter
escape or promoter clearance? The following study suggests they are. In a study using two
promoters isolated from the B. subtilis bacteriophage SP82, curved DNA with a strong affinity
for RNAP reduced transcription, while curved DNA with a weaker affinity stimulated tran-
scription.”* DNA curvatures may collaborate with H-NS to reduce promoter clearance - it is
known that they can repress transcription (Chapter 4). Images from scanning force microscopy
(SEM) showed that in an E. coli rrnB P1 promoter with an upstream DNA curvature, H-NS
trapped RNA polymerase in the open initiation complex. The SFM images suggested that
H-NS-mediated trapping of RNAP could prevent promoter clearance.”® To the best of our
knowledge, a positive influence of DNA curvature has not been reported.

Transcription Factor Binding

If a curved DNA overlaps with some cis-DNA element, the curve’s role may be to recruit
trans-acting factors. In the M. aeruginosa psbA promoter, the curved region (approximately
-180 to -140) is bound by a protein factor, and mutants having altered curvature had decreased
basal transcription.®® E. coli OmpR and B. subtilis SpoOA are response regulators in bacterial
two-component regulatory systems.”* Although OmpR can stimulate transcription of ompF
(at low osmotic strength), and of ampC (at high osmotic strength), the OmpR binding site in
the ompC promoter seems not to form a curved DNA. Thus, the presence or absence of curved
DNA may be distinguished by OmpR in the differential activation of ompF and ompC pro-
moters.” The B. subrilis spoOF gene, which decides the cell fate in sporulation initiation, has a
tandem promoter, P1 and P2. P1 is recognized by 6*-RNAP during exponential cell growth,
and P2 is recognized by 6t-RNAP during initiation of sporulation. For Spo0A binding at P1,
the center of DNA curvature is close to the 0A-boxes. Increased SpoOA binding to the 0A-boxes
represses transcription from the upstream P1, and simultaneously induces transcription from
the downstream P2.** Curved DNA may facilitate Spo0A binding. However, no report has
shown conclusively that curved DNA conformation per se is involved in factor binding.

Curved DNA as a Framework for Interaction between Activator and RNAP

Intrinsically curved DNA is sometimes located between activator binding sites and promot-
ers. Several examples indicate that these structures enable activator and RNAP to interact. In
the 6N-dependent glnAp2 or ginHp2 promoter of E. coli, the DNA between the NRy
{(NerC)-binding site and the 6" -recognition region must be either intrinsically curved, or curved
by binding of the integration host factor, IHE The g/n4p2 has an intrinsic DNA curvature in
the relevant region. Although glnHp2 does not carry curved DNA, it has an IHF-binding site
in the relevant region. The DNA bend allows the activator to contact the 6™-RNAP-promoter
complex. This activates transcription by catalyzing the isomerization of the closed
6N-RNAP-promoter complex to form an open complex.”®?>%

However, when supercoiled DNA templates are used, transcription can be initiated even in
the absence of such a bend,”® meaning that the spatial alignment between NR; and RNAP on
the templates may be significant. Similarly, in the K. pneumoniae nifLA promoter, an activator
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protein NtrC may interact with the 6™-RNAP holoenzyme bound to the promoter with the
help of an intervening curved DNA.% As another example, in the E. coli rnB P1 promoter, the
rotational phase between the FIS binding site and the promoter is important in activating
transcription.”” The curvature between these regions may also help FIS and RNAP to spatially
position themselves correctly.

Other Roles

Curved DNA can also play a role in packaging of genomes. In eukaryotes, this role is played
in nucleosome or chromatin formation (see Chapter 13). In E. coli, some nucleoid-associated
proteins, such as H-NS (histone-like nucleoid-structuring protein), CbpA (curved DNA-binding
protein A), Hfq (host factor for phebge Qp), and IciA (inhibitor of chromosome initiation A)
preferentiallz bind to curved DNA.?*1% Of these, H-NS can condense DNA both in vitro and
in vivo'?"1%% and regulates expression of a number of genes, 2% which are described in Chap-
ter 4.

Curved DNA may also modulate the geometry of promoters in collaboration with
structure-specific transcriptional regulators. The B. subtilis LipC protein, which belongs to the
LrpC/AsnC family of transcriptional regulators, forms stable complexes with curved DNAs.
Interestingly, LrpC proteins wrap DNA to form nucleosome-like structures (but containing
positively supercoiled DNA), and it is speculated that these could regulate transcription.'®* As
another function, temperature-dependent conformational changes of bent DNA, as observed
for M. aeruginosa psbA2 gene," can regulate transcription of several genes (Chapter 4).

Intrinsic DNA Curvature and Transcription-Factor
Induced DNA Bend

A great many DNA binding proteins, including transcription factors, from both eukaryortes
and prokaryotes, bend DNA on binding. 2195197 E. ¢oli CAP, FIS and IHE, and B. subtilis $29
p4 protein are well known to induce DNA bends (for a review, see ref. 26). CAP activates
transcription through protein-protein interaction with RNAP!%1%9° The CAP-induced DNA
bend might be required to create the appropriate geometry for this interaction.''” IHF and FIS
are nucleoid-associated proteins. IHF is distributed uniformly within the nucleoid, while FIS
accumulates at specific loci.'"! They help formation of DNA micro-loops and/or nucleopro-
tein complexes.!' 2114 RNAP itself also induces DNA bends.!!>!1° In addition, there are many
reports of repressors causing DNA to bend.!'¢1?!

For transcriptional activation, it is thought that induced DNA bends promote polymerase
binding, protein-protein interactions, wrapping of DNA around the RNAP or multd-component
DNA-protein complexes, local unwinding of DNA, and in some cases dissociation of nucle-
oprotein complexes.!%!?2 Intrinsic DNA bends can also generate most of these effects. In-
deed, CAP-induced DNA bends were functionally substituted by replacing the CAP binding
site of the gal promoter or the lac promoter with synthetic bent DNA sequences.?>!?? Also, the
IHF binding site was functionally replaced by intrinsically bent DNA sequences.'?* Conversely,
as described above, intrinsic DNA curvature can be functionally replaced by protein-induced
DNA bends.”® These studies shed light on the significance of DNA bend per se in transcrip-
tion initiation. The same is true for transcriptional repression. The p4 bends its target site on
binding, excluding B. subrilis *-RNA polymerase from the Pay, promoter, and directing it to
the Pa3 promoter. As a result, transcription from the $29 Py, promoter is repressed. Interest-
ingly, the p4-induced DNA bend can be functionally substituted by intrinsically bent DNA.*

As described above, intrinsic DNA bends and protein-induced DNA bends can play the
same role. In some cases, they collaborate. In E. cols, the ifyPc2 promoter drives transcription
of the {lvGMEDA operon whose products are required for the biosynthesis of L-leucine,
L-isoleucine and L-valine. The promoter is activated both by intrinsic bend around position
-50, and by IHF-induced DNA bend around -90.'% The DNA geometry and localized desta-
bilization of the DNA helix, generated by these two bends, might facilitate RNAP-promoter
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interaction and DNA unwinding. Proteins that bend intrinsically curved DNA structures to-
ward different direction can also facilitate DNA unwinding as discussed for open promoter
complex formation. This phenomenon is another example of the collaboration. The general
importance of bending induced by transcription factors is described in Chapter 11.

Conclusion

Intrinsically curved DNA structures can modulate transcription initiation. Although such
structures have various functions in the transcription initiation cascade, it appears that they
mainly work by helping RNAP to bind to the promoter, and by facilitating formation of the
open promoter complex. Bacteria are able to control promoter activity by carefully tuning the
three-dimensional architecture of the promoter.
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CHAPTER 4

Repression of Transcription by Curved DNA

and Nucleoid Protein H-NS:
A Mode of Bacterial Gene Regulation

Cynthia L. Pon, Stefano Stella and Claudio O. Gualerzi

Abstract
N ucleoid-associated protein H-NS has emerged as one of the most intriguing and

versatile global regulators of enterobacterial gene expression acting primarily yet not

exclusively at the transcriptional level where it generally acts as a repressor. H-NS is
also believed to contribute to the architectural organization of the nucleoid by causing DNA
compaction, although the evidence for such a role is not overwhelming. H-NS binds preferen-
tially to DNA elements displaying intrinsic curvatures and can induce DNA bending. These
functions are determined by its quaternary tetrameric structure. In turn, the existence of an in-
trinsic DNA curvature separating two or more H-NS binding sites seems to be characteristic of
the H-NS-sensitive promoters and a prerequisite for the transcriptional repressor activity of this
protein. In some cases, like that of the »#rF promoter, the temperature-sensitivity of the DNA
curvature represents a key element in the thermo-regulation of pathogenicity gene expression.

Introduction

Histone-like nuclemd-structurmg protein (H-NS), was discovered in Escherichia coli ap-
proximately two decades ago;"** the claim of an earlier discovery of this protem is in fact devoid
of any scientific foundation. Indeed, the H1 protein described in 1971-72%# was a <10 kDa
thermostable (at 100°C) transcriptional enhancer composed of 67-70 amino acids eluting as a
monomer from size-exclusion chromatography (SEC).? Instead, it is well established that H-NS,
which is almost mvarlably a strong transcnpuonal repressor in vivo and under all in vitro
conditions (for reviews see refs. 5-7), is inactivated by a brief exposute to 55°C® and its mono-
meric mass is 15.6 kDa, being constituted by 136 amino acids.” Furthermore, H-NS elutes
from SECasa mlxture of dimers and tetramers even at UM <:oncentrauons10 and its amino
acid composition? is distinctly different from that regorted for H1.%

After elucidation of the H-NS prlmary sequence, the monocistronic gene (ns) encodmg
this protein was isolated and characterized.'>!? However, due to a mlstake in the orientation of
the Kohara-Isono blot used in the physmal mapping of the gene,'? its chromosomal posmon
was erroneously reported to be 6.1 min instead of 27 min where it is actually located.' Further
biochemical characterization demonstrated that H-NS binds double stranded (ds)DNA better
than single-stranded DNA and RNA"® and displays a marked preference for bent DNA.!¢18
An architectural role in the orgamzatlon of “bacterial chromatin®, was inferred from its abun-
dance (20, 000 copies / cell),*!? from its biochemical properties and from its nucleoid
localization,? but evidence also began to accumulate that H-NS controls, mainly at the
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and Springer Science+Business Media.
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Figure 1. Specific recognition of curved DNA by H-NS. A) Curvature prediction and B) scanning force
microscopy of a 1.1 kb linear fragment of naked DNA containing an in phase triple repeat of 5A and 6A
tracts inserted at one third of its length; C) specific complexes formed by H-NS art the position of the
curvature of the same DNA molecule at | protein dimer / 10 bp. Reprinted from: Dame RT, Wyman C,
Goosen N. Biochimie 2001; 83:231-234 with permission from Elsevier.

transcriptional level, the expression of several genes since different A7ns mutations were shown
to cause extremely pleiotropic phenotypes (for a review see ref.14). More recently H-NS has
emerged not only as one of the most important and intriguing global transcriptional regula-
tors, but also as a participant in other processes such as translation and the control of RNA and
protein stability.

Genes encoding proteins homologous to H-NS were in the meantime discovered in other
enterobacteriaceae' 2! but no H-NS-like protein was detected in Gram positive bacteria (Ba-
ctllus stearothermophilus and B. subtilis). Thus, unlike with the ubiquitous nucleoid-associared
protein HU, H-NS was considered to be restricted to enteric bacteria. However, recent ge-
nomic data has shown that several Gram negarives from ecologically different habitats, contain
H-NS-related proteins sharing a similar two-module structural organization.”? However, it is
not clear whether the roles of these proteins and of enterobacterial H-NS are the same. Finally,
a gene (szpA) orthologous to hns was also identified in E. coli 2 and its product (StpA) was
shown to share at least some properties with H-NS.

In the following sections we describe in more detail some structural and functional facets of
H-NS with emphasis on its regulation of transcription in combination with bent DNA.

Relationship between Function and Three-Dimensional
and Quaternary Structure of H-NS

As mentioned above, the preference for curved DNA is a major characteristic of H-NS.
This binding property is clearly demonstrated by biochemical evidence and by electron micro-
graphs showing that H-NS clusters precisely in the position of an intrinsic bend within a linear
segment of DNA (Fig. 1). The functional significance of this preference for curved DNA!®18 js
suggested by the frequent occurrence of an intrinsic DNA bend flanked by two or more ex-
tended H-NS binding sites in the promoter regions susceptible to H-NS repression. {e.g., refs.
8, 24, 25) Among different types of curved DNA, H-NS seems to prefer AT-rich planar curva-
tures.”®?’ These findings, along with the fact that H-NS binds also to non-AT curvatures
lacking a defined sequence-specificity,*® suggest that this protein prefers a specific geometric
structure of the duplex, probably corresponding to a narrow minor groove. However, little is
known of the molecular nature of the H-NS-DNA interaction from both the protein and the
nucleic acid side and nothing is known of the structural consequences locally induced by such
an interaction. Thus, although H-NS binding results in the stabilization or induction of DNA
bends from which transcriptional repression normally ensues, the microscopic consequences of
the binding from which these macroscopic effects ultimately stem remain mysterious.

Structural and biochemical data show that H-NS consists of two domains whose
three-dimensional (3D) structures have been elucidated®”-* (Fig. 2). However, considerable con-
troversy surrounds the actual structure of the N-terminal domain for which three different analy-
ses have yielded three completely different structures,>>> two of which are shown in Figure 2.
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Figure 2. 3D structures determined in solution by NMR spectroscopy of (A) the C-domain®®* (IHNR)
and (B) N-domain?® (1NI8) of E. coli H-NS. The alternative 3D structure of the N-domain of Selmonella
typhimurium H-NS3¥ (1LR1) is shown in (C). The structures were obtained from the Protein Data Bank.
The loops indicated in panel A are numbered according to Schroeder and Wagner.’

The C-terminal domain, which is separated from the N-domain by a linker, is considered
to be the DNA binding domain. The interaction of this domain plus the linker (residues 60-137)
with a 14 bp synthetic DNA (CAAAATATATTTTG) was investigated by nuclear magnetic
resonance (NMR) spectroscopy; loops L1 and L2, which are spatially close to each other and
display marked positive surface charges, were identified as the structural elements involved in
this interaction. The N-terminal domain, which is ~45 A awa);6 from the C-domain, consists
primarily of a-helices and its function is to promote protein dimerization. However, in addi-
tion to the controversy concerning the 3D structure of this domain, there is disagreement
concerning the quaternary structure of H-NS which consists of a hcterodisgerse aggregate of
trimers®>* or of monomers, dimers and tetramers in dynamic equilibrium.” !>

In spite of the commonplace attribution of the DNA-binding and the protein dimerization
functions to the C- and the N-domain, respectively, not all genetic and biochemical data can
be easily fic within this schematic model. Therefore, the relationship between structure and
function of H-NS may be much more complicated than it superficially appears.

Indeed, probably because of the contribution of loop L1 to the H-NS-DNA interaction,
the DNA affinity of H-NS depends substantialgy on the linker, which is otherwise considered
responsible for tetramerization of the protein.*®*? Furthermore, also the N-terminal 46 resi-
dues, which should constitute the heart of the dimerization domain of H-NS§'*33-% may con-
tribute to the interaction with DNA.'%3>3 This agrees with genetic data suggesting that dele-
tion of the first 20 N-terminal residues abolishes the capacity of H-NS to repress transcription
of at least some genes.'” On the other hand, both recognition of bent DNA and bending
non-curved DNA by H-NS are severely impaired by mutations of P115, (within the DNA
binding domain}, which affect H-NS oligomerization without influencing its basal DNA binding
capacity. Similar properties are also conferred by other mutations in both N-domain (residues
1-20) and C-domain (W108).1011:353839 Although these phenotypes could arise from defects
of protein-protein and/or protein-DNA interaction, overall these results indicate the role played
by H-NS oligomerization in the selective binding to bent DNA and induction of DNA curva-
ture. The images of H-NS-plasmid DNA complexes obrained by atomic force microscopy
(AFM)® (see also Fig. 3) are fully compatible with this premise.

Indeed, at one H-NS dimer / 12 bp of nicked circular plasmid, H-NS was found to cause
wwo types of DNA condensation. In the first rype of complex, large tracts of dsDNA are held
together by H-NS bridges while the rest of the DNA forms double stranded loops. The bridges
were interpreted as the result of tetramerization of H-NS dimers bound to two separate double
stranded helices. The second type of complex is characterized by globular foci of H-NS incor-
porating large amounts of DNA while the rest of the plasmid remains partly naked and partly
subject to the lateral condensation characteristic of the first type of complex. The DNA con-
tour length is reduced -3% in the first type of complex, possibly due to interwinding of the
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Figure 3. Opposite effects of HU and H-NS on DNA structute. A relaxed pUC19 plasmid (central panel)
is opened by addition of 1 dimer HU / 9 bp (left panel) and compacted by 1 dimer H-NS / 12 bp (right
panel). Reprinted by permission of Federation of the European Biochemical Societies from: Dame RT,
Goosen N. FEBS Lett 2002; 529:151-156.

two helices, and by ~25% in the second. When two-times more protein is added, unstable
rod-like structures whose compaction may be as high as 50% may appear.®°

Although it is difficult to judge whether and how the complexes observed by electron mi-
croscopy (EM) and AFM* could be related to complexes surmised from other types of experi-
mental evidence, the occurrence of at least two types of H-NS-DNA interactions leading to the
formation of different types of nucleoprotein complexes is also indicated by fluorescence spec-
troscopy’>*! and by H-NS footprinting analysis.”*2 One type of complex could involve a
small number of H-NS molecules nucleated around select positions of the chromosome and
would depend on the H-NS capacity to form tetramers or small oligomers inducing
duplex-duplex bridging. Another, less specific type of complex, would rely on the basic DNA
binding capacity of H-NS and would engage a much larger number of H-NS molecules lin-
early polymerized along the duplex, eventually resulting in larger aggregates with strongly con-
densed DNA.?404243 The moderate compaction of the nucleoids clearly observed in cells
overproducing a mutant H-NS (AG112-P115) having wild-type (wt) affinity for non-curved
DNA but with strongly reduced affinity for curved DNA'"** (Fig, 4) could be due to this
second type of H-NS-DNA interaction. Likewise, the repression of the g/ operon by a tran-
scriptional silencing mode could involve this type of H-NS-DNA interaction and could ac-
count for the suppression of the bgl/ phenotype apparently sustained by the formation of
heterodimers between H-NS mutants lacking the DNA-binding domain and wt StpA.#>4¢
Indeed, formation of these chimeric dimers containing only one DNA binding site is incapable
of suppressing other, obviously more stringent sns phenotypes (e.g., see refs. 10, 47 and refer-
ences therein).
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Figure 4. Appearance of the nucleoids of £. coli K12AH1ATrp subjected to cryo-fixation before (A) and after
(B) overexpression of H-NS (AGly112-Pro115), a mutant protein with intact basal DNA-binding capacity
but unable to recognize bent DNA and to bend DNA.!! The black bars correspond to 1 pum. Reprinted from:
Spurio R, Duerrenberger M, Falconi M et al. Mol Gen Genet 1992; 231:201-211 with permission from
Springer-Verlag.

The observation that different H-NS-DNA complexes are formed as a function of the
variation of environmental parameters*® matches the finding that H-NS oligomerization
equilibria are sensitive both in vitro®’ and in vivo (Stella et al, in preparation) to variations of
physical parameters (protein concentration, temperature and ionic strength) corresponding
to the environmental cues to which H-NS responds in vivo. These findings suggest that
changes of the intracellular milieu may modulate H-NS function through the formation of
different types of complexes.

Architectural Role of H-NS

DNA compaction is believed to involve DNA supercoiling and looping. In light of their
capacity to affect these parameters, proteins HU and H-NS have long been considered respon-
sible for condensing chromosomal DNA (~1.5 mm in E. coli) inside the nucleoid. However,
this viewpoint has been challenged by the observation that the HU/H-NS ratio varies consid-
erably (2.5-fold) in the cell as a function of the growth phase,!” by data showing that none of
the nucleoid-associated proteins contributes to chromosome looping and by recent AFM
observations suggesting that HU and H-NS have antagonistic effects on chromosomal archi-
tecture,”® with HU stretching out and extending a circular duplex and H-NS causing instead
its compaction (Fig. 3).%

Thus, although H-NS is commonly credited with the dual roles of transcriptional repressor
and of architectural protein of the nucleoid, the evidence for the latter role is somewhat weak
and indirect. The nucleoid localization of H-NS in both cryo-ﬁxed20 and viable cells® (Fig. 5)
is compatible with but does not constitute proof in its favor. The early evidence that H-NS
causes DNA compaction? has recently been challenged by Amit et al>' who suggested that the
increased sedimentation velocity acquired by a plasmid upon H-NS binding is due to the
binding of a large number of protein molecules. Furthermore, the finding that H-NS polymer-
ization (one dimer/15-20 bp) increased the bending rigidity of the double helix and increased
the end-to-end distance of a DNA fragment clashes with the notion that H-NS causes DNA
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Figure 5. In vivo fluorescence localization of H-NS-GFP (green fluorescent protein) fusion protein {A) and
DAPI-stained nucleoids (B) in exponential phase E. coli JM109 cells 30 min after IPTG induction of
phns-gfp — ASV (Alanine, Serine, Valine). The bar represents 1 im. Reprinted from: Giangrossi M, Exley
RM, Le Hegarat F et al. FEMS Microbiol Letr 2001; 202:171-176 with permission from Elsevier.

compaction.” Thus, the most convincing evidence for an architectural role comes from the
H-NS-induced DNA condensation seen by EM (Fig. 3)2440 4nd from the observation that
nucleoids are clearly condensed upon overproducrion of H-NS (AG112-P115), a non-lethal
event which does not cause generalized transcriptional repression (Fig. 4A,B).% The altered
DNA-binding properties of this H-NS mutant {normal capacity to bind non-curved DNA burt
reduced capacity to bind curved DNA) support our previous interpretation that it is the
non-specific coating of DNA by H-NS which ultimately causes clumping and compaction of
the duplex.

DNA Bending and H-NS Activity

Beyond their immediate informational significance, the nucleotide sequences characteriz-
ing the individual genomes determine intrinsic structural properties and spatial structures of
the DNA which may represent an additional source of genetic information exploited by cells to
regulate life processes. Sequence-directed DNA curvature represents one of the most impor-
tant and widespread of these structural features. These curvatures, present in a substantial
fraction of the promoters (Chapter 3), show conservative patterns of distribution in the ge-
nomes of mesophilic bacteria, being preferentially located 40-200 bp upstream from the near-
est transcriptional start.”? Thus, DNA curvatures represent a well known example of the func-
tional importance which the local architecture of the genome might acquire®>>” since they can
affect a large numbser of cellular phenomena, transcription being one of the most prominent. >
Indeed, bent DNA has been shown to affect bacterial transcription sometimes facilitating the
binding to promoters of RNA polymerase and/or of nucleoid-associated proteins (e.g., IHE
FIS, HU, H-NS, Lrp, Crp) functioning as activators and/or repressors, depending on the ge-
netic system. Whereas in some cases bent DNA may play a direct role in transcriptional regu-
lation, in other cases it plays an indirect role insofar as the binding of DNA-binding proteins
stabilizes or enhances the curvature of a pre-existing DNA loop giving rise to nucleoprotein
complexes which block downstream transcription. In fact, these nucleoid-associated proteins
are not only able to recognize and bind curved DNA regions displazrin§ more or less stringent
consensus sequences, but are often able to induce DNA bending.***® Concerning H-NS in
particular the presence of intrinsically curved DNA regions is a common occurrence in
H-NS-sensitive promoters, and the molecular basis of its regulatory activity often resides

in its preferential interaction with intrinsically curved DNA and in its ability to induce DNA
bending.!!:5%0
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Transcriptional Regulation by H-NS and Thermosensing
through Curved DNA

H-NS affects the expression of a large number of enterobacterial genes, some coding for
housekeeping functions, and many implicated in cellular responses to environmental changes,
including the virulence factors whose expression is triggered by the passage from the external to
the intestinal environment.®® Thus, a variety of ?hcnow es is associated with /zs mutations:
increase in pH resistance;®"6? loss of mobility;%3%* serine-*® and cold-susceptibility® (the latter
phenotype likely related to the fact that H-NS is a cold-shock protein).5”*® However, H-NS
does not regulate all its target genes through the same mechanism. In fact, although H-NS acts
as a transcriptional repressor in the majority of the cases, it can also act as a translational repres-
sor® or affect gene expression at different post-transcriptional levels.”” Nevertheless, to focus
on the specific scope of this review, here we shall describe only the cases in which H-NS acts as
a transcriptional repressor, with emphasis on the cases in which the repression mechanism can
be related to the presence and participation of a curved fragment of DNA. However, it should
be borne in mind that even in those cases in which H-NS clearly acts as a transcriptional
repressor on a promoter containing a curved segment of DNA, the repression may involve
different mechanisms. In fact, depending on the genetic system, the repression has been attrib-
uted to the capacity of H-NS to increase DNA compaction, to alter its topology or to induce
the formation of more or less complex nucleoprotein particles as a result of its preferential
interaction with bent DNA.”!7? Furthermore, while for some genes the actual molecular mecha-
nism causing repression has been artributed to promoter occlusion (Fig. 6A)>7174 in other
cases it has been demonstrated that it is due to RNA pol;merase entrapment in the promoter
caused by H-NS-mediated looping of DNA (Fig. 6B).%”3

As mentioned above, intrinsic DNA curvatures may be the primary actors in determining
transcriptional regulation insofar as DNA curvatures are sensitive to changes in environmental
parameters such as temperature, magnesium and polyamine concentrations.’® Furthermore,
the fact that these parameters differentially affect the curvature depending on the DNA se-
quence indicates that at least some DNA curvatures could be ideal and specific sensors impli-
cated in gearing gene expression to environmental changes. It should not be ignored, however,
that the same (or similar) physical parameters which can influence DNA curvature can also
affect, both in vitro®” and in vivo (Stella et al, manuscript in preparation), the oligomerization
equilibria of H-NS which, in turn, can influence its activity on the DNA.

H-NS is involved in many regularory circuits controlling the expression of virulence genes
58717785 and different mechanisms may account for this function. In fact, while in some cases
transcription is prevented by direcr binding of H-NS to target genes,—/1 in others, the effect is
indirectly caused by the influence of H-NS on the expression of specific transcriptional regula-
tors or by its inhibition of DNA modifications involved in gene activation.

A particular type of H-NS-dependent transcriptional regulation, which has recently emerged
as a widespread strategy for controlling the expression of pathogenicity, is that mediated by
environmental-dependent changes of DNA curvature. Some detailed information concerning
this type of regulation is available in the case of Shigellz virF, the gene whose producr triggers
the pathogenicity cascade in the etiological agent of human bacillary dysentery.® Like in other
pathogenic enterobacteriaceae the transcription of the virulence genes of Shigella is strictly
dependent on temperature, being repressed in non-intestinal environments characterized by
lower temperature and osmolarity than in the intestine. Thus, the entry of the bactetium into
the warm (37°C) host milieu represents a central cue triggering the expression of virulence
factors and, ultimately, of the virulence phenotype.” The primary event following the tem-
perature upshift is the synthesis of VirE a transcriptional activator encoded by »irF, a gene
transcriptionally repressed below the threshold temperature of ~32°C.8'#° In turn, the in-
creased intracellular concentration of VirF triggers the activation of virB, a second regulator
gene®® whose product activates several invasion operons.’®®> The transcriptional repression
of virF below 32°C is mediated by H-NS and depends on the presence of an intrinsically bent

G,
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Figure 6. Schematic representation of two mechanisms by which H-NS may cause transcriptional repres-
sion. A) Promoter occlusion as postulated in the case of hns autorepression.”® B) RNA polymerase entrap-
ping as shown for the P1 promoter of rr7B.”° Further details can be found in the text.

region whose center at 4°C is located at 137 bp upstream from the transcriptional start. This
bend is flanked by two rather extended H-NS sites, one of which overlaps the core elements of
the promoter. Both extent and localization of this curvature were found to be
temperature-sensitive. In fact, gel elecrrophoretic analyses between 20°C and 60°C revealed
that with increasing temperature there is a reduction of DNA curvature (which is maximum at
4°C) so that the bend seems to collapse when the temperature approaches the
transcription-permissive conditions (32°C) thereby allowing the transition of »irF promoter
from the repressed to the derepressed state.33 Furthermore, mutations affecting the curvature’s
amplitude or the relative orientation of the two H-NS sites severely affected in vivo and in vitro
H-NS binding to »irFand the thermoregulation of its expression.®? In addition, it was shown
that when the temperature increases from 4° to 60°C, the center of the DNA bend within the
virF promoter slides downstream by almost eight helical turns; it is also noteworthy that the
sliding rate is not linear with temperature but undergoes the largest increase within the narrow
range (28°C-32°C) which corresponds to the transition from transcriptional repression to dere-
pression. Within this range, the center of bending moves downstream by one helical turn going
from -116 to -106 (Fig. 7).8 Sliding of a bending center has also been reported in other cases
such as in the upstream region of the light-responsive promoters of the cyanobacterial psbA
gene.”? Although the biological significance of these slidings remains largely unclear, the
observation that the bending center within the virF promoter region “moves” towards the
boundary of a FIS binding site (site 11} and that the movement of the bending center is slow
up to 28°C while becoming rapid when the transition temperature is approached suggests that
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Figure 7. Schematic representation of the S. flexneri virF promoter in the (A) repressed configuration and
(B) derepressed configuration. As described in the text, the H-NS- mediated repression is switched on and
off by the presence of a thermosensor represented by an intrinsic DNA curvature.?83 The portion of DNA
indicated by a thicker line corresponds to the FIS site III which spans from approximately -119 to -145.52
The center of the bend was determined to be at -136, -118, -106 and -91 at 4°, 28° 32° and 40°, respec-
tively.®? Further details can be found in the text.

this shift might be related to the ability of FIS to partially relieve H-NS-induced virF repres-
sion at the transition temperature.®? If it could be demonstrated that the sliding of the virF
bending center renders this promoter region more accessible to FIS binding, thereby facilitat-
ing this protein in antagonizing H-NS-mediated repression, it would be tempting to interpret
the bend-movement in »irF as an example of a (general?) strategy to optimize gene control in
multifactorial regulatory systems by the gradual environmentally-guided unmasking of specific
DNA targets.

Taken together, the available data indicate that an intrinsic DNA bend within the promoter
region of virF behaves as a thermal sensor and the geometric characteristics of this DNA curva-
ture play an essential role in the thermoregulation of Shige/la virulence expression (Fig. 7).2":3

Other hypotheses were also presented in the past to explain the H-NS-dependent ther-
moregulation of virF expression. They were formulated in terms of changes in H-NS structure
and modifications of DNA supercoiling (reviewed in refs. 31, 93). However, they have been
disproven eventually. In fact, transcriptional repression by H-NS requires a supercoiled DNA
target but the role of DNA supercoiling is only allowing H-NS to build a repressing complex
and not acting as the temperature sensor.8! Furthermore, recent in vitro®” and in vivo (Seella ex
al, manuscript in preparation) data indicate that H-NS oligomerization does change with
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temperature but not within the temperature interval in which the virF promoter undergoes
the inactive/active transition.

In addition to the just described case of the virF thermoregulation, other cases are known in
which a nucleic acid acts as a thermosensor in the control of virulence expression. For instance,
a more stable binding of the YmoA repressor to the virF promoter of Yersinia enterocolitica,
determined by a stronger DNA curvature induced by low temperature, results in silencing the
virulence genes encoded by the Yops plasmid.”*** Furthermore, several genetic systems are
known in which an increased DNA curvature induced by low temperature favors transcription
instead of repressing it. For instance, like in the case of Shigella virF, the promoter of Clostridium
perfringens pleC gene displays an increased bent structure at lower temperatures but in this case
the expression is more efficient at low temperature because of the acquisition of a suitable
template conformation.”® Similarly, an increased DNA curvature at low temperature favors the
binding of IHF and stimulates transcription from the Py, promoter of bacteriophage A.””

A temperature-mediated change in DNA flexibility has also been implicated in the repres-
sion at low temperature of E.colf hly, an operon which is either plasmid- or chromosome-encoded,
depending on the bacterial strain.”” This operon, whose thermoregulated expression is under
the control of H-NS and DNA curvature, encodes the ®-hemolysin Hly, a toxin produced by
several uropathogenic strains of E. coli. In the case of the Ay operon carried by pHly152, a
regulatory sequence (the 650 bp-long A#R) is located > 1.5 kb upstream of the three promoters
of hlyC, the first gene of the operon, being separated from the latter by an IS2 insertion ele-
ment. Deletion of /R results in constitutive repression of hemolysin expression, a phenotype
presumably connected with the loss of ps, a transcriptional antitermination element located in
hlyR. Several lines of evidence indicate that the thermoregulated expression of Aly operon is
regulated by a nucleoprotein complex formed by H-NS and Hha, a protein homologous to
YmoA, the above-mentioned temperature-dependent modulator of Yersinia virulence factors.”®
In fact, while hha mutants display only a partial derepression of temperature- and
osmolarity-mediated expression of hemolysin, hba-hns double mutants were defective in both
thermo- and osmo-regulation. Furthermore, while Hha displays a strong affinity for H-NS,
this protein alone does not show any DNA binding preference, unlike its partner H-NS which
preferentially binds to two sites in the regulatory region of the Ay operon. The two sites, the
first partially overlapping the core elements of the two most upstream promoters of AlyC and
the second located ~2 kb upstream, are separated by an intrinsic DNA curvature predicted in
silico and observed by AFM. Deletion analysis demonstrated that the upstream site is impot-
tant for thermoregulation of the operon, and temperature was found to influence the affinity
of H-NS for a DNA fragment containing both sites. The higher affinity of H-NS for its sites at
low temperature correlates well with its more efficient transcriptional repression observed in
vitro and with the constitutive hemolytic phenotype of the Ans mutants observed in vivo. A
current model explaining the H-NS/Hha-mediated temperature-dependent repression of hemol-
ysin expression is that Hha generates hetero-oligomeric complexes with H-NS which are better
suited than H-NS homo-oligomers in the temperature dependent repression of the Aly operon.
The H-NS binding specificity ensures that these complexes interacr specifically with the DNA
targets at the two sides of the bend, simultaneously occluding the transcription antiterminator
sequence ops and at least two hlyC promoters.

Conclusion

H-NS has emerged as a major actor in the transcriptional regulation of gene expression,
especially for genes involved in the cellular response to environmental changes and in viru-
lence. While a general feature of the genes subject to H-NS control is the presence of an intrin-
sic DNA curvature, more work is necessary to establish whether a unitary mechanism underlies
the H-NS functions and to clarify the molecular basis of the specificity governing H-NS-DNA
interaction. Also to be clarified are the mechanism and the structural consequences of the

binding.
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CHAPTER 5

Curved DNA and Transcription
in Eukaryotes

Takashi Ohyama

Abstract

ntrinsically curved DNA structures are often found in or around transcriptional control
I regions of eukaryotic genes, and curved DNA may be common to all dlass I gene promoters.

Although not all class IT gene promoters contain curved DNA structures, both TATA-box-
containing and TATA-box-less promoters often contain such structures. Furthermore, several
studies have suggested that the TATA box itself adopts a curved DNA conformation. Curved
DNA structures are likely to function in transcription in several ways. These include acting as
a conformational signal for transcription factor binding; juxtaposition of the basal machinery
with effector domains on upstream-bound factorss; regulation of transcription in association
with transcription-factor-induced bending of DNA; and organization of local chromatin struc-
ture to increase the accessibility of ¢zs-DNA elements. This chapter presents a concise overview
of studies of these functions.

Introduction

Eukaryotic cells use three different RNA polymerases, referred to as pols 1, I, and III, to
transcribe their genes. Pol I produces rRNAs, pol II produces mRNA molecules and most
small nuclear (sn) RNAs, and pol III produces small RNA molecules such as tRNA, 55 rRNA
and U6 snRNA. DNA templates that are transcribed by pols I, II and III are often called class
L, Il and I1I genes, respectively. They have their own (class-specific) promoters. Curved DNA is
often found in the transcriptional control regions,! with many reports having identified curved
DNA in class IT gene promoters. Both TATA-box-containing and TATA-box-less promoters
often contain curved DNA. However, curved DNA is not necessarily confined to class II gene
promoters. Class I gene promoters also often contain it. The role of curved DNA in eukaryotic
transcription is being gradually revealed.

Here, I review what has been dlarified in the field of eukaryotic transcription, and what is
still unknown. Several studies have indicated that curved DNA is implicated in the packaging
promoter DNA into chromatin, and this is described in Chapter 13.

Intrinsic DNA Bends in Control Regions of Transcription
Class I Gene Promoters

A large number of ribosomes are required in each cell generation. To meet the requirement,
genomes have multiple copies of the rRNA gene (rDNA). For example, the human genome
has about 200 copies of the gene. They are organized in tandem arrays in eukaryotes, in which
the transcribed regions are separated by an intergenic spacer (Fig. 1). Three of the four rRNAs

DNA Conformation and Transcription, edited by Takashi Ohyama. ©2005 Eurekah.com
and Springer Science+Business Media.
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Figure 1. Schematic representation of class I and II gene promoters.

(18S, 5.8S and 28S molecules) are generated from a single precursor tRNA. The nucleotide
sequences of the rRNA gene promoters are highly divergent across species. As a result, in this
class of genes, transcription is restricted by the cognateness between gene and transcription
machinery. For example, the human rRINA gene is not transcribed by the mouse pol I machinery,
or vice versa.

More than a decade ago, by employing a circular permutation polyacrylamide gel electro-
phoresis assay (Chaptcr 3), Schroth et al identified two intrinsically curved DNA structures
near the transcription initiation site of the Physarum polycephalum rRNA gene (Table 1).° The
center of one curved DNA was 160 nucleotides upstream (-160) of the transcription start site
(+1) and the center of the other was about 150 nucleotides downstream (+150). Subsequently,
a curved DNA was also experimentally identified upstream of the promoter (center position:
-260 - -280) for the Arabidopsis thaliana rRNA gene.? Marilley and Pasero used several curva-
ture prediction models to analyze rRNA gene promoters from mammals (Rattus norvegicus),
amphibians (Xengpus laevis, Xenopus borealis), insects (Drosophila melanogaster), echinoderms
(Paracentrotus lividus), protozoans (Tetrahymena pyriformis, Dictyostelium discoideum), dicoty-
ledons (Arabidopsis thaliana, Pisum sativum), monocotyledons (Triticum aestivum, Zea mays),
and myxomycetes (P/)_ysarum polycephalum). Each promoter had at least one curved DNA struc-
ture, although the position and extent of DNA curvature differed.’> Computational modelm§
also suggested that the promoter of the mouse rDNA overlaps with a curved DNA structure.
In conclusion, a curved DNA structure may be a common feature of class I gene promoters. To
the best of my knowledge, however, no study has succeeded in clarifying the function of this
curved DNA.

Class II Gene Promoters and Enbancers

The TATA box, the initiator element (INR), and the downstream promoter element (DPE),
are generally regarded as the core elements of promoters of class II genes (Fig. 1). The TATA
box, with the consensus TATA(A/T)A(A/T), is located approximately 25-31 bp upstream of
the transcription start site. The INR is centered at the transcription initiation site and has a
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Table 1. Curved DNA-containing promoters, enhancers and regulatory sequences®

Gene Class Origin Locus Reference
rRNA I human promoter 5
rRNA b Rattus norvegicus promoter 5
rRNA I mouse promoter 6
rRNA I Xenopus laevis promoter 5
rRNA | Xenopus borealis promoter 5
rRNA | Drosophila melanogaster promoter 5
rRNA | Paracentrotus lividus promoter 5
rRNA | Tetrahymena pyriformis promoter 5
rRNA | Dictyostelium discoideum promoter 5
rRNA | Arabidopsis thaliana promoter 5
rRNA | Arabidopsis thaliana around position -270 4
rRNA I Pisum sativum promoter 5
TRNA | Triticum aestivum promoter 5
rRNA | Zea mays promoter 5
rRNA I Physarum polycephalum both sides of transcription 3
start site

rRNA | Physarum polycephalum promoter 5
B-actin It human promoter 20
cdc2 Il human promoter 16
c-myc Il human promoter 42
E2F1 Il human E2F binding site 34
erythropoietin receptor 1l human promoter 42
e-globin Il human promoter 42
Gy-globin Il human promoter 38
Ay-globin Il human promoter 38
yp-globin Il human promoter 38
d-globin Il human promoter 38
B-globin Il human promoter 42
IFNS Il human enhancer 24
Bmei’-globin il mouse promoter 42
A2 vitellogenin Il Xenopus upstream regulatory region 18
BhC4-1 1Y Bradysia hygida promoter 39
AaH |" toxin Il Androctonus australis promoter 15
DNA polymerase 8 Il Plasmodium falciparum promoter 37
E1A Il human adenovirus type 2 enhancer 23
E1A Il human adenovirus type 5 enhancer M
E2 Il adenovirus E2F binding site 34
E6-E7 Il human papillomavirus type 16  E2 protein binding site 21
IE94 Il simian cytomegalovirus upstream of the enhancer 25
rbcS-3A Il pea light responsive elements 17
rbcS-3.6 Il pea light responsive elements 17
MFa 1 Il Saccharomyces cerevisiae upstream activation site 22
STE3 Il Saccharomyces cerevisiae upstream activation site 22
GAL1-10 Il yeast promoter 19
GAL80 Il yeast promoter 19
AKY2 Il Saccharomyces cerevisiae promoter 40

a Reports on the TATA box conformation are not involved.
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loose consensus sequence, PyPyAN(T/A)PyPy, where Py is a pyrimidine and N is any nucle-
otide. Many promoters have either the TATA box (including TATA-like sequences) or some
kind of INR, and some have both. Many Drosophila TATA-less promoters, and most likely
many mammalian TATA-less promoters, seem to contain a DPE.” The DPE, with the consen-
sus PuG(A/T)CGTG, where Pu is a purine, is centered approximately 30 bp downstream of
the initiation site. There is also a class of pol I promoters comprised of G/C rich sequences,
and containing multiple binding sites for transcription factor Sp1 instead of the elements de-
scribed above. Such promoters are often associated with housekeeping genes.

As shown in Table 1, many class II gene promoters have a curved DNA structure. Although
the table does not list the reports on the conformation of TATA box per se, several groups have
discussed this issue. Using models of Bolshoy et al,? Calladine et al’ and Satchwell et al,'®
Schitz and Langowski calculated helix trajectories of 504 vertebrate promoters, which sug-
gested that the regions containing the TATA box (either canonical or non-canonical) all form
curved DNA structures.!! They also predicted that the upstream half of the TATA box would
be curved towards the major groove, and the remainder would be straight, or even curved
towards the minor groove. de Souza and Ornstein subjected the TATA box of the adenovirus
major late promoter (whose sequence is TATAAAA) to molecular dynamics simulations. Their
results suggested that the direction of the curvature is toward the major groove.'> However,
based on DNA cyclization kinetics, Davis et al reported that the curvature is toward the minor
groove.'? Thus the issue of the TATA box conformation is not yet settled. What about the
other promoter elements? Based on the consensus sequence for the INR, AAA or TTT could
be formed within the box. These tracts change the direction of the helical path of DNA. How-
ever, the DNA conformation of this region has not yet been reported. DPE itself cannot pos-
sess DNA curvarure as judged from its consensus sequence. To the best of my knowledge, there
are no reports describing the DNA conformation of this region, though the main reason may
simply be lack of studies. Concerning the G/C rich promoters, Spl-induced DNA bending is
well known.'* However, intrinsic DNA curvature has not been reported.

The DNA elements for binding transcription factors are sometimes located in curved DNA
structures. Delabre et al reported that in the scorpion (Androctonus australis) AaH T’ toxin gene
promoter, the region containing the putative TATA box and the CCAAT box is located in a
large curved DNA structure.' In the human ¢4c2 promoter,'® the binding sites for c-Myb,
ATE Spl, E2F and CBF are located in curved DNA. In the pea 76¢S-34 and rbcS-3.6 genes,
both of which code for the small subunir of ribulose-1,5-bisphosphate carboxylase/oxygenase,
each light responsive element overlaps with a curved DNA structure.!” The Xenopus A2
vitellogenin gene presents another example of a curved DNA structure that occurs between
cis-DNA elements: curved DNA was found berween a DNA element located around position
-100, which could activate transcription in a cell-specific manner, and the estrogen-responsive
element located around -300.'8 Also, in the yeast GAL80 gene, a single curved DNA structure
lies between the UASGaLgo (an upstream GAL80-specific activation sequence) and the more
gene-proximal promoter elements.!” The GALI gene has two curved DNA structures between
UASG (an upstream activation sequence) and the TATA box.!? The curvatures found near
GAL!I and GAL80 may be involved in nucleosome formation (Chapter 13). Cis-DNA ele-
ments themselves form curved DNA structures in the following cases. The human B-actin
promoter has a B-actin-specific conserved sequence (conserved among humans, rats and chick-
ens) between the TATA and CCAAT boxes, which forms a curved DNA structure.”® In human
papillomavirus type 16 (HPV-16), the E2 protein binding site in the upstream regulatory
region forms a curved DNA structure.?! At present, however, we cannot find any common
features shared by these regions, except that a curved DNA structure is present.

Curved DNA structures have also been found in enhancers, or adjacent to enhancers. In the
Saccharomyces cerevisiae genome, the UAS of the mating pheromone o factor 1 (MF « 1) gene,
and the UAS of the STE3 gene, adopt curved DNA structures.”? The enhancer of the human
adenovirus type 2 (Ad2) E1A gene has a sharply curved DNA structure.” As shown in Figure
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Adenovirus type 2
EI1A enhancer

Figure 2. Computer modeling of the curved DNA found in the human adenovirus type 2 E1A enhancer.
The upstream half of the enhancer, where most of the enhancer elements are contained, adopts a curved
DNA conformation.?® The three-dimensional structure of the enhancer was drawn by a combination of
DIAMOD* and RASMOL.* The modeling algorithm was based on Bolshoy et al® with the twist angles from
Kabsch et al.> The repeated sequence elements required for enhancer function are indicated by I and IL.

2, most of the enhancer elements are within the curved DNA. In the enhancer of the human
interferon-B (/FNP) gene, positive regulatory domains (PRDs) 11 and IV also form curved
DNA structures: PRDII is curved towards the minor groove and PRDIV towards the major
groove.24 The simian cytomegalovirus /E94 gene has a wide curved DNA region (about 1 kb)
upstream of the enhancer.?

Class III Gene Promoters

The important promoter elements of the 5S rRNA genes and tRNA genes are located down-
stream of the transcription start site. On the other hand, the promoters of human and Saccha-
romyces cerevisiae UG snRNA genes are similar to class II gene promoters in the sense that they
adopt a TATA box at the “correct” site (-32 to -25 and -30 to -23, respectively).2® The TATA
box is likely to have a curved conformation as described above. Therefore, they may be counted
as promoters that contain curved DNA. To the best of my knowledge, there are no reports of
curved DNA structures in or around the promoters of 5S rRINA genes and tRNA genes, but
presumably this is simply due to lack of studies.

Role of Intrinsic DNA Curvature in Transcription

Does curved DNA actually function in eukaryoric transcription? The sequence and confor-
mation of DNA are two sides of the same coin. Thus, we must always consider the
possibility that it is the DNA sequence itself that is important, and the curved conformation
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may simply be a by-product. It is usually very difficult to experimentally prove significance
of DNA conformation per se without impairing the DNA sequence. In the following two
cases, however, this difficulty was overcome. Using a constrained minicircle strategy,”” Parvin
et al showed that the bending of the TATA box enhances its affinity for the TATA box
binding protein (TBP).?® Moreover, they suggested that the direction of bending is impor-
tant: a bend towards the major groove showed 100-fold higher affinity than an unbent struc-
ture, and 300-fold higher affinity than a bend towards the minor groove. They observed
similar discrimination with the holo-TFIID transcription complex. However, this study did
not describe the effect of the intrinsically curved DNA conformation of the TATA box, but
reported the effect of “constrained” bending of the box. If the TATA box intrinsically curves
toward major groove, as suggested by Schitz and Langowski!! and de Souza and Ornstein,'?
the role of the conformation may be to facilitate TBP binding. In the adenovirus £14 gene
enhancer, the bent conformation per se activated transcription.”> Run-off transcription as-
says using the wild-type DNA template, with a temperature-dependent conformational change
of DNA curvature, showed that a moderately curved enhancer was superior to a highly
curved enhancer in stimulating transcription. In the study, curved DNA of the phage A
origin of replication could substitute for the £1A enhancer, and stimulated transcription of
the E1A gene to some extent, when it had an appropriate DNA conformation.

Synthetic curved DNA fragments sometimes help the analysis of the structure-function
relationships. An early study reported that (CAAAAATGCC) and (CAAAAATGCC)3s acti-
vated transcri(;ation driven by the promoter element CGTATTTATTTG by two- and three-fold,
respectively.*® Using synthetic curved DNA segments, Kim et al also showed that transcription
could be activated by curved DNA.?' As described in Chapter 3, curved DNA with a
right-handed superhelical writhe activates transcription in Escherichia coli. However, a recent
study showed that it was left-handed curved DNA that activated transcription in eukaryotes.*?
In the study, synthetic DNA fragments with different geometries were constructed by chang-
ing the spacing between T’ tracts, which was based on the principle described in Chaprer 3.
When left-handed curved DNA was linked to the herpes simplex virus thymidine kinase pro-
moter at a specific rotational orientation and distance, the curved DNA activated transcrip-
tion. Neither planar curving, nor right-handedly curved DNA, nor straight DNA had this
effect (Chapter 13). Thus, in studying the role of DNA curvatures, it seems important to
consider the shape of DNA curvature. It has been suggested that many eukaryotic promoters
can adopt superhelical conformations.*

How does curved DNA function in transcription? The most likely role is that curved DNA
structures funcrion as recognition signals for transcription factors (Fig. 3). In the study of the
human B-actin promoter described above, a protein in the Hela cell extracts bound to the
curved DNA.? The above report by Parvin et al?® seems to support this role as well. However,
the TATA box may curve toward the minor groove as suggested by Davis et al.'> Their study
leads us to another important concept: the binding of a transcription factor can change the
direction of DNA curvature. They used the TATA box of the adenovirus major late promoter
and showed, by cyclization kinetics, that the direction of bend induced by TBP (toward the
major groove of the TATA box) was opposite to the direction of bend of the TATA box per se
(toward the minor groove).13 They speculated that the intrinsic bend of the TATA box could
repress transcription complex assembly in the absence of TBP. A similar phenomenon has been
reported for the interaction between the E2F transcription factor and the E2F site.** In the
human E2FI promoter, a consensus E2F site adopts a curved DNA structure oriented toward
the major groove relative to the center of the E2F site (magnitude of the bend; ~40°). When
E2F binds, the bend is reversed and oriented toward the minor groove (net magnitude of the
resulting bend; ~25°). Furthermore, in the human /FNp enhancer, the directions of the two
intrinsic bends are also counteracted or reversed by the binding of NF-xB, ATF-2/c-Jun, and
HMGI(Y).?* Alteration of DNA architecture may facilitate protein-protein interactions be-
tween the transcription factors that constitute the enhanceosome.
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Figure 3. Possible roles of curved DNA in eukaryortic transcription. I) Transcription factors may recognize
the curved shape of DNA. II) Curved DNA can juxtapose two distant sites on a sequence. For example,
factors bound upstream can be brought close to the basal machinery. I1I) Transcription factor binding may
induce a change in the curved conformation, which in turn regulates transcription. IV) Curved DNA could
regulate nucleosome positioning,

As another possibility, curved DNA-mediated nucleosome positioning may be used to jux-
tapose two distant sites, and to allow interaction between transcription factors. The regulatory
region of the Xenopus A2 vitellogenin gene may be such an example. In this case, curved DNA
is located between the estrogen-responsive element and the cell type specific activator sequence.'®
These elements may be juxtaposed by nucleosome positioning directed by the curved DNA. In
fact, in the corresponding region of the Xenopus vitellogenin B1 gene, the DNA sequence
strongly directs the positioning of a nucleosome. This nucleosome creates a static loop. As the
result, the distal estrogen receptor binding site is brought close to the proximal promoter ele-
ments, which presumably allows interaction between transcription factors, and facilitates tran-
scription.?® Without the help of a nucleosome, curved DNA conformation could play the
same role. An experiment using an artificial promoter showed that a curved DNA juxtaposed
bound factors, and activated transcription.®® Thus, there are several lines of direct or indirect
evidence for the function of curved DNAs. In some cases, they may play a single role in tran-
scription, but in others they may play multiple roles simultaneously.

Some of the putative roles of DNA curvature described above seem to be the same, in
essence, as those for prokaryotic transcription. The important question we must consider next
is the relationship between curved DNA, chromatin structure and transcription. This issue is
described in Chapter 13.
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Conclusion

The presence of a curved DNA structure may be a common feature shared by class I gene
promoters. In transcription of some class I genes, curved DNA conformations per se may also
play an imporrant role. Curved DNA sequences seem to be used in several ways; some roles are
presumably common between prokaryotes and eukaryotes, while others are used in transcrip-
tion in the chromatin environment, and are thus specific to eukaryotes.
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CHAPTER 6

Putative Roles of kin17, a Mammalian
Protein Binding Curved DNA,

in Transcription

Jaime F. Angulo, Philippe Mauffrey, Ghislaine Pinon-Lataillade,
Laurent Miccoli and Denis S.F. Biard

Abstract

n bacteria, RecA protein is indispensable for recombination, mutagenesis and for the
I induction of SOS genes. Curiously, anti-RecA antibodies recognize kin17, a human nuclear

Zn-finger protein of 45 kDa that preferentially binds to curved DNA and participates ina
general response to diverse genotoxics. KIN17 gene is conserved from yeast to man and codes
for a protein involved in DNA replication. Recent observations suggest that kin17 protein may
also participate in RNA metabolism. Taken together all these data indicate the participation of
kinl7 protein in a pathway that harmonizes transcription, replication and repair in order to
circumvent the topological constraints caused by unusually complex lesions like multiply dam-
aged sites.

Introduction

DNA conformation undergoes important and dynamic changes during transcription and
replication. The molecular characterization of these changes is essential in predicting the progress
of the cell cycle and when evaluating the consequences of the damage to mammalian cells
caused by endogenous or environmental genotoxic agents. Therefore it is useful to identify
proteins that recognize the particular structures formed during the metabolic processing of
DNA. Several transcription factors and other nuclear proteins have been identified and shown
to specifically recognize DNA deformations like cyclobutane pyrimidine dimers, platinum-
DNA cross-links, cruciform DNA and curved regions.!® We have characterized a human pro-
tein that preferentially binds to curved DNA and is involved in DNA and RNA metabolism.

Identification of kin17 Protein

The analysis of human inherited disorders like xeroderma pigmentosum (xp) allowed the
identification of genes coding for proteins that specifically bind to pyrimidine dimers and
other types of DNA lesions.”® Some of these proteins belong to the machinery of DNA
transcription or replication. These data provide a first image of the drastic effects that the
modification of these proteins may have for the whole organism. In parallel, other human
genes of DNA metabolism have been identified thanks to the genetic analysis of bacteria. In
Escherichia coli bacteria, RecA protein is essential for homologous recombination, mutagenesis

DNA Conformation and Transcription, edited by Takashi Ohyama. ©2005 Eurekah.com
and Springer Science+Business Media.
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and the induction of the SOS response.! "2 The strong conservation of RecA protein among
prokaryotes'>'# stimulated the search for analogous proteins in mammalian cells. Numerous
eukaryotic proteins that are structural and/or functional homologues of RecA protein have
been identified.!>?> All of them seem to evolve from a common ancestral protein but only a
small subset of these RecA-like proteins may form helical filaments on DNA. Indeed, the
functional divergence of RecA-like proteins is enormous, the members of this family being
involved in different DNA transactions.?® Anti-RecA antibodies cross-react with nuclear pro-
teins from plant or mammalian cells.”’"%* Interestingly, the cross-reacting material is localized
in structures directly involved in DNA transactions during mitosis or meiosis (e.g., the synap-
tonemal complex, the stroma or meiotic nodules).””*> In mammalian cells and tissues, the
cross-reacting material is nuclear and their levels are low in quiescent cells as compared to
proliferating cells. Genotoxic agents like mitomycin C (MMC) induced a striking increase of
these antigens inside the nucleus. 2 Considering the cross-reactivity with anti-RecA antibodies
we proposed the generic name of kin proteins (from immunological kinship to RecA protein).
The screening of expression libraries using antibodies raised against the E. coli RecA protein
allowed us the isolation of recA genes from Streptococcus pneumoniae,> Streptomyces ambofaciens”
and Gram" bacteria.® Therefore, we used this approach to isolate 17 cDNA fragments from a
mouse embryo cDNA library. The clone number 17 gave the strongest cross-reactivity and was
used to isolate the full-length cDNA. The encoded protein has a primary structure different to
that of RecA and is different from all the proteins reported in databases. The lack of informa-
tion on the biological role of this gene led us to call it KIN17 gene.?%®

Molecular Characterization of kin17 Protein

Modular Nature of kin17 Protein
The mouse kin17 protein, has a calculated molecular weight of 44,726 and an isolelectric
point of 9.3. The primary structure contains the following domains that are located in hydro-
philic helix regions of the protein, ¥ (Fig. 1A):
1. a Zn-finger domain of 23 residues of the type Cx,Cx;2HxsH between residues 28 and 50
which mediated DNA recognition.38-39
2. an active bipartite nuclear localization signal of 31 residues (236 and 266)® that accounts
for the nuclear localization of kin17 protein in mammalian tissues.0-44
3. a KOW motif (residues 330 to 363) supposed to participate in transcription elongation. 46
Orthologs of KIN17 gene have been reported from yeast to humans, however the family of
encoded proteins do not present striking homologies with other proteins.? The evolutionary
conservation of kin17 protein structure is significant since there are several mammalian nuclear
proteins involved in important DNA processes, like tumour suppressor p53*” and DNA-dam-
age sensor protein poly(ADP-ribose) polymerase®® which lack a yeast counterpart, indicating
that some important DNA transactions are particular to mammals. A central fragment of 39
residues which is highly conserved between the human and mouse kinl7 proteins (residues
163 to 201, Fig. 1A) has a sequence similarity with the fragment 308-346, within the C-
terminal domain of RecA protein (residues 270-352),%% as shown in Figure 1B. The core of
RecA protein (residues 31-269) is followed by a smaller C-terminal domain that appears as a
lobe on the surface of the RecA filament.** This lobe shifts after binding of nucleotides.’*4 A
major antigenic determinant is located between residues 260 and 330 of RecA protein.”” Al-
though the last 24 residues of the C-terminus are disordered in the proposed crystal structure
of RecA, genetic and biochemical data indicate a role in modulating DNA bindin()g, })robably
in regulating the access of double stranded (ds) DNA to the presynaptic filament.>*>” Accord-
ingly, the deletion of a C-terminal fragment of RecA protein reduces the efficiency of recombi-
nation,’® probably because it nucleates to double-stranded DNA much more frequently than
does the wild-type protein®” resulting in increased sensitivity to MMC in vivo.>>! In vitro this
deletion enhanced binding to duplex DNA.>%¢!
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Home sapiens MGKSCFLTPKATANRIKSKGLOKLRWYLQMCOKGCRDENGFKCHCMSESHPROLLLASEN
Mus musculus MGKSLFLSPKATANRIKSKGLONVRWYLOMCOKQCRDENGFKCHCMSESHPDROLLLASEN
Drosophila m. MGRAEVGTPKYLANKMKSKGLOKLRWYLQMCEKQCRDENGFKCHTMSESHPROLLLFADN
Anopheles g. ~GKAEVGTPKYLANKMKAKGLOKLRAYLCOMCEKCQCRDENGEFKCHTMSESHRRQILLEADN
Caenorhabditis e. MGKHEKGSSKDLANRTKSKGLOKLKFFEOMCOKQCRDANGFKCHLTSEARDRQLLLFAEN
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Homo sapiens PQOFMDYFSEEFRNLUFLELLRRRFGTKRVENNIVYNE HREHIHMNATQWETLTDFTK

Mus musculus POQFMDYFSEEFRNDFLELLRRRFGTKRVENNIVYNEY ISHRERITHMNATQWETLTDFTK
Drosophila m. PGKFLHSFSKEFSDGYMELLRRRPGTKRTSANKI YORY TAHKERTHMNATRWLILSDYVK
Anopheles g. AGRFIDGFSSEFLTGYLQILRRQIGTKRVAANKVYQEY IADRHHLAMNATKWHSLSDFVK
Caenorhabditis e. SNEYLRQFSNDFEKNFMQLLRTSYGTKRVRANEVYNAF IKDKGHVHMNSTVRESLTGEVQ
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Homo sapiens WLGREGLCKVDETPKGWY IQY IDRDPETIRRQLELEKKKKQULDDEEKTAKF IEEQVRRG
Mus musculus WLEREGLCKVDETPRGWY QY IDRDPET T RROLELEKKKKQILODEEK TAKF TERQVRRG
Dresophila m. WLGRTGQVIADETEKGWEVTY IDRSPEAMEROAKADRKEKMHKDDEERMADF IEQQIKNA
Anopheles g. YLGRNGHCVADETDKGWF ITY IDRDPETLAMOEKMAKKQKMOKDDAERLAEFIEEQVRRG
Caencrhabditis e. YLGSSGKCKIDEGDKCWY LAY 1 DQ- -EALIRKEEDQRKQQCHKDDEEREMOTMDGMVORG
H AL L L A T L N S A

Homo sapiens L--EGKEQEVPTFTELSRENDEEKVTFNLSKGACSSSGATSSKSSTLGPSALKT ~- -~
Mus musculus L~-EGKEQETPVFTELSRENEEEKVTFNLNKGAGGSAGATTSKSSSLGPSALKL-—-——-—

Droso, K==AKDGEEDEGQEKFTELKREENEPLKLD { RLEKK~==FOPDTVLGKSALAKR = =
Anopheles g. K--TEEEPCT ~YSELKRE-NEEDTIKIELKLG--~SKQQQSTPSAVISKR-————-—
Caenorhabditis e. KELAGDDEREYEATELIRDTPDOQKIQLDLNLGILDRKLDVIXSGVASAKISIFDMPKVKKE

i1}
Homo sapiens = wmmee— IGYSASVKRKESSQOSSTQSKEKKKKKSALDEIME EEERK-RTARTDYWLGPET
Mus musculus = —---e- LGIAASGKRKESSQSSAQP - -AKKKKSALDE IMEL EEEKK-RTARTDAWLOPGT
Dreosophiia m.  —----- PAPEAREKVFKK~~~PKSVAGDSQTRSVLDEL IKDEESKKERANRKDYWLHKGT

les g.  —---e- PPOALDDGKKEKKIKAATSNGETKRLSALDEL IQEEEQKKEKNNRKDYWLAEGT
Caenorhabditis e. DPDEPGPSOPSRKSGXKRSRSRS PARKKFSKKSALDE IKEMEERKKERKNRKDYWMREGI
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Homo sapiens TVKIITKKLGEXYHKKKAIVKEVIDRYTAVVRMIDSG KLDQTHLETVIPAPGKRILY
Mus musculus VVKIITKKLGEXYHKKKGVVKEVIDRYTAVVKMIDSG RKLDQIHLETV I PAPGKRVLY
Drosophila m. VVKFISKSMGEKFFKQKAVVLDVIDRYQGKIKFLETGEKLKVDORHLETVIPALDKPVMY
Anopheles g. VVKLISRSLGEKYYKEKGVVVEVIEKYRAKIKLLETG. XVDQARHLETVIPAVGKQILY
Caenorhabditis e. VVKVITKSLGSEYYKAKGVVRKYVDDY TAQVKLED-GTVVKLDQEHVETVI PSLEGRCMMT
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Homo sapiens LESINERIFSATIVIETGPLKGRRVEGIQYEDISK

Mus musculus LNGGYRG TLESINEWAFSATIVIETGPLKGRRVEG

Drosophila m. VNGAYRGSEALLRKLDERRYSVSVEI LHGPLKGRIVDNVQYEDISKLHGA

Ancpheles g. LNGGYRGCTAVLKAINTHRYSVTIEIASGPLKGRLVSNVAYEDISKL-~~

Caenorhabditis e. VNGAYRGQEATLESI DEXYRFSLRLKIASGPTRGRCID-VPYEDASKLA--
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Figure 1A. Conservation of the modular structure of kin17 protein. Multiple sequence alignment of five
metazoan kin17 proteins. The Zinc finger motif that mediates the interaction with DNA is enclosed with
abox and named motif 1. The RecA homologous region corresponding toa DNA-binding domain is marked
as II. The nudlear localization signal is marked as [II and the KOW motif supposed to interact with RNA
as IV. The kin17 protein sequences correspond to the following species from top to bottom: Homo sapiens,
Mus musculus, Drosophila melanogaster, Anopheles gambiae and Caenorbabditis elegans. The character
indicates positions which have a single, fully conserved residue. .’ indicates that one of the following groups
is fully conserved: STA; NEQK; NHQK; NDEQ; QHRK; MILV; MILF; HY; FYW and the character *.’
indicates the conservation of one of the following groups: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK;
NDEQHK; NEQHRK; FVLIM; HEY.

Molecular Bases of the Cross-Reactivity
The cross-reactivity between kinl7 protein and anti-RecA antibodies is due to a major
antigenic determinant located in the core of kinl7 protein between amino acids 129 and 228.
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Figure 1B. Conservation of the modular structure of kin17 protein. Structure of the antigenic determinant
common to kin17 and RecA proteins. The region of human and mouse kin17 proteins from the amino acid
L% to E2! is shown and compared with the C-terminal fragment of RecA protein between 1L3% and E3%,
Identical amino acids in these three proteins are marked in bold letters and flagged with a star. A short line
indicates similarities among the following groups of residues: NEQK; STA; NHQK and SAG. The iden-
tities concerning only human and mouse kin17 proteins are shown within boxes.

The deletion of this fragment avoids the cross-reactivity and dramatically affects the intra-
nuclear localization. Indeed, the truncated kin17 protein forms large nucleoplasmic clusters
that strongly interact with nuclear components.®? This data indicates that the strong antigenic
determinant is part of a functional domain.

Interaction between kinl7 Protein and Curved DNA

The finger motif of kin17 protein binds Zn. The resultant Zn-finger mediates the interac-
tion with double- and single-stranded (ss) DNA. More importantly, kin17 protein binds pref-
erentially to pBR322 fragments carrying curved segments with an efficiency that seems to be
correlated with the magnitude of DNA curvature.”” Milot et al showed that chromosomal
illegitimate recombination junctions in mammals are associated with the presence of curved
DNA,*® Curved DNA contains runs of adenines distributed regularly at one run per helical
repeat and has a reduced electrophoretic mobility. The functional importance of curve DNA in
several biological relevant processes will be discussed in the other chapters of this book. In the
case of kin17 protein produced in bacteria, the relevance of the interaction with curved DNA
was further assessed in vitro by using fragments found at illegitimate recombination. Indeed,
Stary and Sarasin isolated several hot spots of illegitimate recombination from an Hela de-
rived-cell line carrying a single copy of an SV40 shuttle vector. In these cells, the overexpression
of V40 T-antigen produce heterogenous circular DNA molecules carrying the integrated vec-
tor and the boundary cellular DNA associated with palindromes, A + T-rich DNA segments,
alternating purine/pyrimidine sequences and Alu family repeats.® Other sites of integration of
polyomavirus in the mouse genome were tested in parallel. They confirmed a preferential bind-
ing of kin17 protein to curved DNA leading to the suggestion that this protein may be in-
volved in the illegitimate recombination process.>® The binding to curve DNA is mediated
by a domain located in the core of kin17 protein between residues 71 and 281.2% In vitro, the
base composition of DNA may modify its interaction with the kin17 protein (Tran et al, 2004,
submitted). The binding of kin17 protein to DNA has been also observed in cultured human
cells.*” As described below, the binding of kin17 protein to curved DNA was further con-
firmed in vivo by overexpressing the mouse kin17 protein in E, coli.5%¢

Evidence for the Participation of kinl7 Protein in Transcription

Expression of kinl7 Protein in E. coli and Trans Species Complementation
Devoret and colleagues showed that kin17 protein produced in bacteria under the control
of a Tac promoter is able to regulate gene expression by binding to curved DNA regions.%
They used H-NS-deficient strains of E. cols. H-NS protein is a major component of the nucle-
oid which binds to curved DNA and regulates the expression of at least 36 genes. Among these
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Figure 2. In vivo detection of kin17 protein in
adult mouse testis sections. Kinl7 protein was -8 = s
. . »
detected using the monoclonal antibody 58 | ZAd P e L i
(mAb k58) and revealed with 3,3'- B Sips
diaminobenzidine tetrahydrochloride (DAB) .
brown staining as reported.%%” The sections * ‘!(,1 Y o "’ ()
were counterstained with Mayer’s hemalun so- gt e W ﬁ L . b ]
lution. A) Immunohistochemical detection of i da . :
™
.

mouse kin17 protein in a seminiferous tubule
of mouse testis. The brown staining correspond- e T
ing to the presence of kin17 protein is clearly ﬂ”w -';',-"\f . -
observed and marked with arrows in the follow- Jér- w?f ﬁ* ;& 3
ing cells: spermatogonia (Sg), preleptotene (S) %_____‘&ﬁ ‘

and pachytene (P) spermatocytes. Sertoli cells > -
(Ser) are also stained as compared with the con-
trol. Magnification: x 1,000. B) Photomicro-
graph of a paraffin section of mouse seminifer- B
ous tubule. The monoclonal antibody against
kinl7 protein was omitted. The Mayer’s
hemalun staining reveal cells nuclei in blue. .
Magnification: x 800.
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H-NS upregulates the /ADC gene, encoding flagellin, the major strucrural component of flagellae
responsible for cell motility. The expression of kin17 protein in H-NS-deficient bacteria in-
creases the synthesis of flagellin and leads to the recovery of motility. The same H-NS protein
downregulates in vivo the bgloperon as kin17 protein does. However, not all H-NS functions
can be recovered by the expression of kin17 protein. This is not surprising because even in two
closely related species like E. coli and Salmonella only partial complementation of H-NS are
observed. Whatever the complementation may be, these data indicate that kin17 protein may
be involved in the regulation of gene expression in mammalian cells.® In mouse or human
cells, the up- or downregulation of kin17 protein induced important changes in the pattern of
gene ex_/pression leading to a complex pleiotrophic phenotype suggesting a role in transcrip-
tion.”””7° Furthermore, in vivo, kin17 protein is detected in all the cell types that compose the
male mouse germinal tissue (Fig. 2). It is distributed in intranuclear clusters and interacts
directly with RNA and DNA. In agreement with this data, Rappsilver et al have identified
kin17 protein as part of the human spliceosome by large-scale proteomic analysis.”' Indeed,
under native conditions, a fraction of kin17 protein was co-purified with the fraction contain-
ing polyA* RNAs pointing to a direct role in RNA processing.”?

Preferential Expression during Proliferation
In cultured cells, KINI7 gene expression reaches its highest level during cell proliferation
and falls in confluent cells in a way similar to that of the group of late-growth related genes. In
. . . . . . <68 . . . . .
proliferating cells, kin17 protein is located in nuclear foci.®® This particular intranuclear distri-
bution indicates its participation in a nuclear network required during cell growth. %4173 How-
ever, the physiologic level of kin17 protein is tightly regulated since its ectopic overexpression
. . . . 68,69
triggers a strong deformation of nuclear morphology and is lethal for mammalian cells.
The overexpression of deletion mutants indicates that the C-terminal end of kinl7 protein
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may interact with the nuclear matrix and is essential for the formation of the large intranuclear
clusters. Indeed, a fraction of the endogenous nuclear kin17 protein is strongly anchored in the
nuclear matrix.”* Interestingly, one of the partners of kin17 protein in the nuclear networks is
the viral T-antigen (T-Ag).”” In certain cell types T-Ag is also associated with the nuclear matrix
in the heterogeneous nuclear riboucleoprotein (hnRNP) network including peri- and
interchromatin fibrils which are the centres of pre-mRNA splicing.”®

Physical Interaction with SV40 T Antigen

The physical contact with kinl7 protein takes place throug7h the T2 region (amino acids
168 10 383) located in the NH;-terminal region of T antigen. 3 The binding of T-Ag to the
viral origin of replication enhances this interaction. The residues involved lie in the major
DNA-binding domain of T-Ag which interacts with p53 and DNA polymerase . The kin17
protein inhibits T-Ag-dependent DNA replication and suggests that these two proteins form
part of a nuclear complex in vivo.”> This tallies with the fact that nuclear kin17 protein mol-
ecules are in equilibrium between a fraction dispersed through the nucleoplasm and fractions
bound to chromatin, DNA or nuclear matrix.”* The molecules of kin17 protein move from the
nucleoplasmic dispersed form to the bound form during cell proliferation.”

UVC Irradiation of Non-Replicating Cells Triggers the Intranuclear
Accumulation of kinl7 Protein

UVC-irradiation of arrested mouse or primary human fibroblasts boosts KIN17 gene ex-
pression to its maximal values within around 16 hours.*>7® In human cells, 50 to 75% of DNA
lesions caused by UVC are eliminated within 2 hours by nucleotide excision repair (NER) in
the so-called “early phase”;”” the remaining lesions are processed during a “late phase” by other
mechanisms.®*®! Since KIIVI7 gene expression begins to increase 7 hours after irradiation, we
conclude that this gene may be involved in transactions that helps to circumvent lesions not
resolved by NER in the late phase of the response, as defined by Herrlich et al.®* Since in these
cells DNA synthesis is arrested, it remains to be determined whether kin17 protein acts directly
on the lesions or if it indirectly activates the expression of repair proteins.

Hdentifying the Mechanism of the UVC-Induced Upregulation

The fact that UVC and ionizing radiation (IR) upregulate KINI7 gene by two distinct
pathways that are independent of the ataxia telengiectasia mutated gene (ATM) prompted us
to identify other regulating factors. Two transcription factors, AP-1 and NFxf, control several
other UVC-responsive genes via the protein kinase C (PKC) pathway.®® However, phorbol
ester treatment does not affect KIN17 RNA expression in BALB/c 3T3 or in mouse lymphoma
cells.”® Similarly, p53 protein controls the expression of nearly 100 genes implicated in the
UVC response. Some of them display expression kinetics similar to those of KIN17 gene®*%
but normal and p53-deficient cells display a similar UV-induced upregulation of KIN17 gene.
Finally, Weiss et al showed that the mouse Husl gene, a component of the cellular machinery
that responds to stalled DNA regplication and DNA damage, is not involved in the UV-induced
upregulation of KIN17 RNA.®

87,88

The Integrity of Two DNA Repair Genes Is Required for the Upregulation
of KIN17 Gene Expression after UVC Irradiation

We determined the expression of the human KINI7 gene in primary fibroblasts from xero-
derma pigmentosum patients, an autosomal recessive cancer-prone inherited disorder provoked
by the inactivation of one of the seven XP genes (XPA to XPG). XP patients (NER-deficient)
are extremely sensitive to sunlight compared to NER-proficient individuals. NER possesses
two major overlapping subpathways: global genome repair (GGR) and transcription coupled
repair (TCR). The earliest step of GGR is lesion recognition by a complex formed by two
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proteins: xeroderma pigmentosum group C (XPC) and one of the human homologues to Rad23
(HHR23B),” followed by the recruitment of the transcription factor II H (TFIIH) and XPG,
XPA, replication protein A (RPA), excision repair complementation class-1 (ERCC-1) and
XPE Human primary fibroblasts from XPA and XPC patients are unable to trigger KIN17
gene expression after UVC-irradiation although they present a similar upregulation of p53
protein, of P21 and GADD45 RNA. This observation was further confirmed using XP44RO,
acell line established from a testicular melanoma of an XPC patient that also failed to upregulate
KIN17 gene after irradiation. The introduction of a retroviral vector carrying the normal XPC
cDNA in XP44RO cells fully restored their capacity to repair DNA and to trigger KIN17 gene
expression after irradiation. This indicates a direct relation between the repair capacity of the
cell and the upregulation of this gene. Primary fibroblasts from an XPA patient are also unable
to induce KIN17 gene expression. These data indicate that the activities of XPA and XPC
proteins are required to trigger KIN17 gene expression after UV. This response is strictly de-
pendent on GGR, indicating that the primary signal that leads to the upregulation of KIN17
gene and other UVC-responsive genes is a subset of the complexes formed at the site of DNA
lesions during GGR.3® Strikingly, this is the first case of a UVC-inducible response which is
strictly dependent on GGR. The fact that human XPC protein translocates very rapidly (within
5 minutes) to the sites containing UV lesions and that lesion binding seems to trigger an overall
intianuclear stabilization of XPC protein further supports this hypothesis.”!

The Knock Down of Human KIN17 Gene Increases Radiosensitivity
of Human Cells

RKO cells present a great number of kin17 protein molecules/cell as compared with normal
human fibroblasts or other tumour-derived cells. Considering this fact, we introduced an epi-
somal vector carrying a human KIN17 cDNA in an antisense orientation. Three stable clones
presented 70-80% reduction in the level of kin17 protein were called RASK (from RKO antisense
KIN17) and were further characterized.®’ These clones have a plating efficiency 15-fold lower
than those observed for the control clones, and display a reduced proliferation rate, indicating
that decreased levels of kin17 protein strongly affect cell growth. RASK cells accumulate in
early and mid-S phase. Only a few cells were detected in late S phase, suggesting that low kin17
protein levels result in a better entry into S phase with some difficulties in progressing through
the S phase. However, irradiation of RKO and RASK cells at 6 Gy does not affect the y-ray-
induced G arrest, indicating that kin17 protein is not essential at this checkpoint.®’ As ex-
pected, RASK cells are 4- to 5-fold more radiosensitive than the parental RKO cells,”® indicat-
ing that low levels of kin17 protein lead to important changes in the expression profile of genes
relevant for cell survival.

Speculative Remarks

The interaction RecA-DNA is modulated by the C-terminal domain of the protein.®! This
domain plays its regulatory role by interacting with other domains of the RecA filament coated
on DNA. Although RecA protein does not preferentially recognize curved DNA, it does bind,
like kin17, to ds, ssDNA and ssRNA.?2% In kin17 protein, the domain homologous to the C-
terminal domain of RecA participates in the preferential recognition of curved DNA. This
property acquired during evolution may be helpful to detect a particular DNA (or most prob-
ably RNA) structure. During evolution, kin17 protein also acquired a KOW domain suggest-
ing a role in transcription elongation. We hypothesize thar under physiological conditions
kin17 protein may be involved in elongation or splicing by recognizing particular structures on
RNA. This interaction may provoke conformational changes that will increase the stability of
the complex and will facilitate the recruitment of other nuclear proteins. Interestingly enough,
RecA protein is able to assimilate RNA into duplex DNA leading to the formation of an R-
loop.”* Kasahara et al proposed that R-loops serve as origins of bi-directional chromosome
replication.
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Evidence Pointing to a Role of kin17 Protein in DNA Replication

Molecular Analysis of Deletion Mutants

The deletion of the core DNA-binding domain of kin17 protein leads to the formation of
large intranuclear clusters with a shape different from those formed by the wild-type protein
and produces important deleterious effects.>8 The deletion of this region abolishes the bind-
ing to curved DNA whereas deletion of the Zn-finger domain or of the C-terminal end does
not affect this interaction.®2 The ectopic expression of kin17 protein inhibits T-Ag-depen-
dent DNA replication, indicating a strong interference with T-antigen or with the nuclear areas
on which the synthesis of viral DNA takes place.®® As mentioned, RKO cells presenting de-
creased amounts of kin17 protein display a disrugtion in the S phase progression, together
with a significant decrease in clonogenic growth.®” This results suggest the involvement of
kin17 protein in DNA replication.
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Figure 3A. Cell cycle arrest triggers the accumulation of human kin17 protein in large intranuclear clusters
as shown by immunocytochemical detection of this protein and DNA. HCT116 cells were seeded for four
days and thereafter treated with different drugs known to modify the cell cycle (nocodazol, aphidicolin,
hydroxyurea, I-mimosine, camptothecine, etoposide) or irradiated at 6 Gy. 24 h later they were fixed with
ethanol/acerone and ysakin17 protein was detected using purified IgG K36 coupled with a Cy3-conjugated
antibody. Cells were counterstained with 4',6-diamino-2- phenylindole (DAPI; at 4 pig/ml). Immunofluo-
rescence staining was viewed using a Zeiss Axiophot 2 epifluorescence microscope coupled to a cooled
Sensys 1400 camera from Photometrics monitored by the Zeiss KS300 3.0 program. Magnification: x 315.
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Figure 3B. Monitoring the cell cycle arrest by flow cytometry of BrdU-labelled cells. 24 h after treatment
with nocodazol, aphidicolin, hydroxyurea, [-mimosine, camptothecine or etoposide, HCT116 cells were
pulse-labelled with 30 mM bromodeoxyuridine (BrdU) for 15 min, washed in PBS, trypsinized and col-
lected. The cells were resuspended in PBS and fixed with 75% ethanol. Nuclei were isolated, treated with
pepsine, washed with PBS and then incubated successively with rat anti-BrdU antibody for 1 h at room
tempereature, After incubation with fluorescein isothiocyanate-conjugated goat anti-rat IgG secondary
antibody and staining with 25 pg/ml propidium iodide the data were collected using a FACsort flow
cytometer (BD PharMingen) as previously described.¢768

Biochemical Detection of kinl7 Protein in DNA Replication Complexes

We analyzed the properties of kinl7 protein in its native state in human cells. Gel filtration
of total protein extracts showed that the human kin17 protein is present in three complexes
with molecular masses corresponding to Mr 400,000 (I), 600,000 (II) and 1,800,000 (III).
RPA protein coelutes in complexes II and II1. Treatment of human cells with HU arrests them
at the G1-S border and increases the molecular weight of the kinl7-containing complexes
together with a relocalization of kin17 protein in large intranuclear clusters (Fig. 3). L-mimosine
(MIMO) and HU trigger a similar effect in RKO cells.”” The other drugs affecting DNA
replication and producing a redistribution of kin17 protein are the following: aphidicolin (APH)
which inhibits DNA polymerase o and 8; camptothecin (CPT) which interferes with the seal-
ing activity of DNA topoisomerase [ producing double strand breaks (DSBs), and etoposide
(VP16), a specific inhibitor of DNA topoisomerase 1I. 24 hours after treatment with any of
these drugs the nuclear concentration of kin17 protein increased and formed intranuclear clus-
ters which are easily detectable by immunocytochemical detection (Fig. 3A). As expected, the
drug treatment strongly modified the cell cycle as shown by the comparison of DNA synthesis
in the population of mock treated and treated cells (Fig. 3B). In treated cells, the intranuclear
concentration of anchored kin17 protein increased as compared with that of mock treated cells
as shown by western detection of nuclear proteins like kin17, RPA 70, PCNA and p34cdc2
(Fig. 3C).
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Figure 3C. Detection of proteins ysakin17, RPA70, PCNA and p34cdc2 in the nuclear fraction of treated
cells. HCT116 cells at 50% confluence were treated with etoposide, camptothecine, aphidicolin, hydrox-
yurea, 1-mimosine or nocodazol at the indicated doses. 24 h later, cells were trypsinized, counted, and
washed in PBS. To discriminate between chromatin-bound proteins versus detergent-soluble proteins, cells
were lysed with 100 pl per 108 cells of buffer N (50 mM Tris-HCl [pH 7.91/150 mM NaCl/ 1% Igepal/
1 mM EDTA/ complete protease inhibitor cocktail from Roche). Lysates were maintained on ice for 30 min.
Soluble proteins were recovered after centrifugation (20,000 g for 15 min). Remaining pellets {insoluble
proteins) were directly denatured with 100 pl per 10° cells of 2x Laemmli buffer. Both fractions were
analysed by Western blot with purified IgG K36 and K58 at the concentration of 40 ng/ml and with other
antibodies as described.’

Intranuclear Modification of Protein Complexes during the Cell Cycle

Treatment of proliferating HeLa cells with L-mimosine for 24h followed by drug removal
resulted in a synchronized population which rapidly re-entered into the S phase. A time depen-
dent increase in kinl7, cyclin B and p34cdc2 levels were observed until completion of the S
phase. This should be correlated with the re-initiation of DNA replication.” In parallel kin17
protein is detected in DNA replication foci attached to the nuclear matrix of HeLa cells. The
removal of more than 80% of total DNA did not affect the association with other nuclear
proteins. The in vivo protein-protein cross-linking confirmed the association with the nuclear
matrix during all the phases of the cell cycle, indicating that the “nucleoplasmic pool” of kin17
protein could serve as a “stock” that may later be associated with both chromatin and/or nuclear
matrix during DNA replication.” It is possible that the nuclear accumulation of kin17 protein
leads to an increase in the chromatin-bound fraction in order to facilitate the DNA replication
process in spite of the presence of multiply damaged sites or other DNA lesions.”* Further
work will be required to precise the role of kin17 protein in replication. Although in mammals
several aspects of this process remains yet to be elucidated, research on viruses indicates that
replication initiation proteins belongs to the class of RNA-binding proteins involved in splic-
ing.” This observation opens the possibility to use kin17 protein as a tool to precisely describe
the molecular steps of replication initiation in human cells during the response to genotoxic
agents.
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Figure 4. Participation of human kin17 protein in a general response to genotoxic agents. The involvement
of kin17 protein in different responses to genotoxic agents has already been reported,#243.67.7478.87.88.57
After genotoxic injury, UV or IR, there are two possibilities depending on the complexity of the lesions. At
low levels of damage, ATF2 (and other transcription factors) will stimulate cell proliferation and subse-
quently DNA replication, eliminating the damage and leading to a normal cell division. Alternatively, when
the damage level is very high, other transcription factors like p53 may arrest the cell cycle, thus allowing
fepair processes to occur. If the repair process performed by base excision repair (BER), homologous
recombination (HR), end-joining (E]) or other repair systems is accurately performed, then cells will
proliferate following a normal cell cycle. If the cell is unable to deal with the numerous lesions, then RPA,
kin17 and other proteins of DNA metabolism will be recruited and form “protection clusters” at the
remaining unrepaired chromatin lesions. The “in extremis” treatment of these lesions may result in a late
error-prone repair that will finally generate mutations in the descendants. A failure of this “last chance trial”
10 release the DNA replication arrest (due for example to the high number or complexity of the lesions) will

lead to cell death.

Conclusion

We have identified a nuclear protein that participates in the response to severe lesions cre-
ated by genotoxics on chromatin. Since this protein recognizes curved DNA and other particu-
lar RNA structures and forms high molecular weight complexes, we assume that it may be
important for the formation of clusters around the unrepaired remaining lesions. We suggest
that this process is a “last chance pathway” that gives the opportunity to restart DNA replica-
tion before activation of cell death. The recognition of topological constraints created by sev-
eral types of DNA damage may perturb the accurate replication of DNA therefore decreasing
fidelity and helping to generate biological diversity (see Fig. 4).%
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CHAPTER 7

Roles for Z-DNA and Double-Stranded

RNA in Transcription:

Encoding Genetic Information by Shape Rather
than by Sequence

Alan Herbert

Abstract
eadout of eukaryotic genomes is soft-wired, leading to many different messages from a
Rsingle gene. Z-DNA and double-stranded RNA (dsRNA) are both examples where
genetic information is encoded by shape rather than by sequence. The use of these two
conformational motifs to produce sequence-specific changes in RNA transcripts is discussed
using dsRNA editing by ADAR1 as a model. This concept is extended to other RNA-directed
modifications of DNA and RNA.

Introduction

Our understanding of how genetic information is encoded within DNA has changed dra-
matically over the last decade. We now know that the readout of genetic information in eu-
karyotes is not only more complex than previously appreciated but also more dynamic. Much
of che information is soft-wired, with many different messages being produced from a single
gene.! This outcome is only possible because of extensive alternate splicing and edmng of
pre—mRNA 23The exact information read out from a gene depends upon cellular context.* It
varies with the pattern of histone modification and DNA methylation according to a program
transmitted epigenetically from a cell’s parent.>® It changes according to signals from the extra-
cellular environment and according to the other gene products present within the cell. It in-
volves very specific RNA-based mechanisms that dlrect information readout by regulating RNA
stability, DNA methylation and DNA rearrangement.” It produces a large number of different
ribotypes, but only a selection of those that could be produced from the genome.

Readout of genetic informartion begins at the level of the gene. Again here our understand-
ing of how this happens has undergone revision. In eukaryotes, very specific macromolecular
complexes are assembled from modular components.® Their formation depends on the spatlal
proximity of appropriate DNA sequence motifs and interactions involving generic protein
domains. The combination is able to target specific chromosomal regions even though, in a
large genome, there may be hundreds of thousands of potential binding sites for each indi-
vidual component.

Along with sequence-specific recognition of DNA, we now also appreciate that recognition
of DNA shape can provide information important for the assembly of macromolecular ma-
chines. Often there is a requirement for specialized nucleotide sequences such as the TATA
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box, which undergoes a major distortion in shape when bound by the TATA binding pro-
tein.>!® This need is also true of other bent DNA conformations.'! Specific sequences, how-
ever, are not always required, an example being Holiday junctions that form during recombi-
nation following the exchange of DNA strands between homologous duplexes.'?

Here, we discuss biological processes that utilize Z-DNA and double-stranded RNA con-
formations to modify the sequence-specific read-out of genes.

Formation of Z-DNA

Z-DNA is a high energy conformer of B-DNA that is stabilized by negative supercoiling.
The ease of formation varies with sequence-(CG),, is best, (TG), is next, while a (GGGC),
repeat is better than (TA)n'® and favored when deoxycytidine is 5-methylated."

Sequences that form Z-DNA are ten times more frequent in 5' than in 3’ regions of genes,
reflecting the overlap of CpG rich islands with the first exon of genes.!#!® This distribution fits
with the expectation that Z-DNA formation in vivo will be associated with actively transcribed
genes. As demonstrated by Liu and Wang, negative supercoils arise behind a moving RNA
polymerase as it ploughs through the DNA double helix.® The torsional strain generated by
passage of RNA polymerases thus becomes a potent source of energy to stabilize Z-DNA.

Other enzymes also can induce Z-DNA formation.!” The SWI-SNEF-like BAF complex
remodels chromatin to form an open structure; in the case of the colony-stimulating factor 1
(CSFI) gene, this results in Z-DNA formartion, either as a result of negative supercoiling gen-
erated by the processive movement of the BAF helicase or through the release of negative
supercoils previously constrained by histones.'8

Potential Roles for the Z-DNA Conformation Due to Its Physical
Presence

Formation of Z-DNA in transcriptionally active regions of the genome may have many
functional consequences:

Protein exclusion: Z-DNA formation could affect the placement of nucleosomes as well as
the organization of chromosomal domains by providing regions from which histones or other
architectural proteins are excluded."”

Polymerase stalling: Formation of Z-DNA behind (5') to 2 moving polymerase may block
the following RNA polymerase from transcribing that region of a gene.® Thus formation of
Z-DNA could ensure spatial separation between successive polymerases and perhaps minimize
non-functional mis-splicing of messages.

Inhibition of DNA modification: Formation of Z-DNA may protect sequences from modifi-
cation. For example, DNA methylases do not modify Z-DNA.2"?? Also B-DNA specific re-
striction endonucleases do not cleave sequences in the Z-DNA conformation.??

DNA 1opology: Z-DNA formation could alter the phasing of recognition sites for DNA
binding proteins. The helical repeat for Z-DNA is 12 base pairs, whereas that for B-DNA is
10.5. Formation of two turns of Z-DNA will cause the relative position of two binding sites at
opposite ends of the Z-helix to change by about one third of a turn. Further, if the B-Z junc-
tions are bent,” then the relative positions in space of the two binding sites will also change.
Z-DNA formation could thus impact formation of macromolecular complexes.

DNA kinetics: Z-DNA formation could facilitate a number of processes by relieving local-
ized topological strain. For example, sequences forming Z-DNA may favor recombination of
homologous chromosomal domains at nearby sites by allowing intertwining of intact duplexes
to form paranemic joints.24 The Z-DNA forming (CA/GT), sequence has been shown to be
recombinogenic in ycast2 3 but less effective than (CG), in human cells.?*?” Furthermore, sev-
eral reports correlate chromosomal breakpoints in human tumors with potential Z-DNA forming
sequences; although a causal relationship has not yet been established.”®>2

Proof of these mechanisms would be aided by methods to demonstrate formation of Z-DNA
in vivo. Sensitive techniques such as infrared Raman spectroscopy that detect a specific Z-DNA
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signature are limited by a requirement for a high localized concentration of the conformer.*®

Techniques that involve the use of a protein probe, such as an antibody, that is specific for
Z-DNA conformation must be used with care as the protein can induce Z-DNA formation
where none had been present before. A promising new technique uses chemistry thatis Z-DNA
specific. C2'0-hydroxylation of deoxyguanosine is favored when 5-iodouracil-containing
Z-DNA is itradiated with UV light due to the spatial orientation of these two residues in the
left-handed conformation.*3> The reaction results in formation of guanosine, which can be
detected in modified DNA using ribonuclease T1. The reaction is not inhibited by protein.®
This, or similar approaches, may be useful for tracking the formation of Z-DNA in vivo under
physiological conditions.

Protein Recognition of the Z-DNA Conformation

There has been an extensive search by a number of laboratories for Z-DNA binding pro-
teins. Early studies were unfruitful and caused widespread skepticism that Z-DNA would be
associated with any biological function. Many of the positive results reported in these studies
may have been due either to artefacts or misinterpretation of data. 3641 This trend continues
today and underscores the need to apply existing physicochemical methods to establish the
case for Z-DNA binding.*>%3

‘The first successful identification of a natural, high affinity Z-DNA binding protein de-
pended on the development of a method that incorporated rigorous controls and was designed
to show unambiguous Z-DNA binding.# A short linear radiolabeled probe that incorporated
5-bromodeoxycytidine was used in electrophoretic mobility shift assays (EMSA).*> This probe
flipped to the Z-DNA conformarion in physiological salt supplemented with magnesium. The
method allowed competition to be performed with both linear and supercoiled plasmids so
that specificity of binding could be confirmed. The assay required that the protein be of high
affinity for the Z-DNA conformation. Indeed the protein that was eventually purified had a
nanomolar affinity for the Z-DNA.** In particular, it had a slow off-rate, around 1072 5,
explaining the stability of complexes in EMSA under conditions where no magnesium was
present in the gel buffer to stabilize the probe in the Z-conformation.*”” The Z-DNA binding
domain of the protein, Zo (Table 1), was mapped and expressed in Escherichia coli, allowing its
specificity for Z-DNA to be confirmed by circular dichroism*” and Raman spectroscopy. 8
These studies demonstrated that Zot binds to Z-DNA formed by many different sequences of
varying nucleotide composition*” and induces formation of Z-RNA at 45°C in physiological
salt.”® The final demonstration that this protein was indeed specific for the Z-conformation
was the co-crystallization of the Zot domain with Z-DNA at 2.1 angstrom resolution (Fig. 1) >!

The Zo. Fold

Zo. belongs to the winged helix-turn-helix family of proteins that include the
non-sequence-specific B-DNA binder histone H5 and the sequence-specific B-DNA binding
transcription factor hepatocyte nuclear factor 3y (HNF-3y).>2>* Two molecules of Zot bind to
one turn of the Z-DNA helix, reflecting the stoichiometry that was first detected in EMSA®
and confirmed in ultracentrifugation studies.®® In contrast to B-DNA binding, the first alpha
helix of Zot does not contact DNA.?! The interaction involves conserved residues in 3 and
the C-terminal B-sheet wing. The wing ensures specificity of Zat for the Z-DNA conformation
in a number of ways. The wing contains two conserved prolines that directly contact the Z-DNA
backbone and a conserved tryptophan that is essential to the Za. fold.** The tryptophan lies in
a hydrophobic pocket between the wing and 013, contributing to the overall rigidity of the
domain (Fig. 1).”! The tryptophan has an indirect water mediated DNA contact. It also orien-
tates a conserved tyrosine present in @3 through a perpendicular edge to face interaction. This
tyrosine makes a direct DNA contact. Other DNA contacts are diagrammed in Figure 1. The
relative importance of these contacts in Z-DNA binding have been evaluated by mutation.>?
Relate to wildtype the Ky for the K169A mutation reduced binding 37 fold, the N173A
mutation 168 fold, the Y177A mutation 26 fold and the P192A mutation 13 fold.”® In
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Table 1. Sequence and structural analysis of the Zo and related domains

ol Bl o2 o3 B2 p3
1_hza GEGK ATT AHDLSGKL GTP KK.EINRVLYSLAKKGK LQKEA GTP PLWKI
2 rza GEGK ATT AYALAREL RTP KK.DINRILYSLERKGK LHRGV GKP PLWSL
3 bza GDGK ATT ARDLARKL QAP KK.DINRVLYSLAEKGK LHQEA GSP PLWRA

4 xzal G.TK TFT AKALAWQF KVE KK.RINHFLYTFETKGL LCRYP GTP PLWRV
5 xza2 GDTQ TFT AKALAWQF KVK KK.HINYFLYKFGTKGL LCKNS GTP PLWKI

6 _hzb S--D -8S ALNLAKNI GLT KARDINAVLIDMERQGD VYRQG TTP PIWHL
7 rzb S--K -8S ALNLAKNI GLA KARDVNAVLIDLERQGD VYREG ATP PIWYL
8 bzb SS-- -S8S ALNLAKNI GLT XARDVNAVLIDLERQGD VYRQG TTP PIWYL
9 xzbl PP-- -ST TLIIRKNV GIS KLPELNQILNTLEKQGE ACKAS TNP VEKWTL
10 xzb2 PP-- -ST PFIIRKNV GIS KMPELTQILNTLEKQGE ACKAS TNP VKWTL

11 _e3l GIEG -AT AAQLTRQL NME KR.EVNKALYDLQRSAM VYSSD DIP PRWFM
12 _var GLEG -VT AVQLTRQL NME KR.EVNKALYDLQRSAM VYSSD DIP PRWFM
13 mEST1 SDGG PVK IGQLVKKC QVP KK.TLNQVLYRLKKEDR VSSPE P ATWSI
14 mEST2? EANG PHR ALHIAKAL GMT TAKEVNPLLYSMRNKHL LSYDG QTWKTI

Human Za and ZP (hza, hzb, and HSU10439A), rat Za. and Z (rza, rzb, and RNU18942), bovine Za
and ZB (bza, bzb, and this paper), two Zo. -related sequences (xzal and xza2) and two Zp related
sequences (xzbT and xzb2) present in Xenopus ADAR1a and ADAR1b2 (XLU88065 and XLU88066,
respectively), the vaccinia E3L protein (e3/, 564006), and the variola equivalent (var, VVCGAA), as well
as a mouse expressed sequence tag (mESTT, mEST2, AA204007) with relationship to Za are shown.
A second sequence in AA204007 related to Zo was found when the EST was sequenced. Residues that
contact Z-DNA in crystal structures are bolded. The structural motifs corresponding to sequence blocks
are given above the sequences. (Adapted from Herbert et al, 1997.)

solution, most of these Z-DNA contacting residues are prepositioned to bind Z-DNA.** The
domain is extremely stable and resistant to thermal denaturation.**

The Zo. Family of Z-DNA Binding Domains

A number of sequences related to Zat exist. The first ten sequences listed in Table 1 belong
to a family of dsRNA editing enzymes, that contain a Zot domain and the related Z3 domain.
The next two sequences are for E3L proteins expressed by vaccinia and the closely related
variola virus early during infection and that are essential for pathogenicity. The last two se-
quences are from the DLM-1 protein, which was not named at the time of the original publi-
cation describing Z0..>*>” The Zo domain from DLM-1 has been recently crystallized bound
to Z-DNA.*® Residues in Zot and DLM-1 that bind Z-DNA are bolded.

Z-DNA binding by Z} and E3L domains has been investigated. The E3L proteins bind
with lower affinity for Z-DNA than Za (Kd, ~10° M''; Schade M, unpublished). The major
difference is a faster off-time from Z-DNA than Zo. Experimentally, this is reflected in the
requirement for both cytosine methylation and low magnesium concentration for E3L 1o in-
duce a transition of linear poly(CG), from the B- to Z-DNA conformation (unpublished).
However, a fast off-rate may be of less consequence in vivo because of the tendency of E3L to
multimerize through protein-protein contacts.”® The binding of one E3L molecule to Z-DNA
may initiate and stabilize the binding of a second molecule. Interestingly, deletion of the E3L
Z-DNA binding domain of vaccinia virus renders the virus nonlethal in murine models of
infection. Substitution of the human Zot domain for the E3L Z-DNA binding domain restores
pathogenicity.®* Mutations that diminish Z-DNA binding of the Zat-E3L fusion reduce patho-
genicity, although it is possible that some of these mutations affect nuclear localization of the
fusion protein, which is also essential for pathogenicity.°
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Figure 1. The interaction between Zot and Z-DNA. A) A stereoview looking down the helical axis of o3
emphasizes the residues in Zo important for binding to Z-DNA. B) A representation of the contacts
between Zat domain and Z-DNA showing that these are all with one strand of the helix. Three water
molecules that mediate interactions are labeled W. Hydrogen bonds are shown with dotted lines and
hydrophobic contacts indicated by lines of bubbles. B) adapted from Schwartz et al, 1999.

The ZB domain does not appear to bind Z-DNA by itself.4>¢'"%* Constructs in which ZB is
fused to Zot show reduced competition by Z-DNA polymer and lower binding to alternating
(CA), sequences in supercoiled plasmids.‘w’éz’63 One explanation is that Z§ does not bind
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Z-DNA but increases the off-rate of the fusion protein. This explanation is supported by the
behavior of Za-ZP fusions in EMSA assays, which require a dimer with two Zat domains to
bind whereas a Zat-Zat fusion binds as a monomer.* One key difference between Zow and Z8
is the replacement of a tyrosine in 03 by an isoleucine in ZB (Table 1). This residue contacts
Z-DNA in both the Zot and DLM-1 crystal structures.”'*® Mutation of the isoleucine in Z to
tyrosine results in a protein that can flip a (CG)g from the B-DNA to Z-DNA.®’ The Zf
domain of DLM-1 differs as it binds well in EMSA to a Z-DNA probe, but is not competed
better by either Z- or B-form poly(CG),, suggesting that the C-terminal B-sheet may be com-
patible with the domain binding to both Z- and B-DNA through different modes of interac-
tion (unpublished). In this context, it is also possible that some members of the Zot family
could be optimized to bind DNA in a sequence-specific manner or to RNA. An important
point is the assays designed to find Zot would not have found lower affinity Z-DNA binding
proteins, or those that could bind to both B- and Z-DNA. ¥

Other Z-DNA Binding Motifs

Peptides in which every second residue is lysine will stabilize Z-DNA in vitro at micromolar
concentrations.® This provides a simple protein motif for recognition of Z-DNA. This motif
exists in a number of proteins, bur it remains to be shown that such proteins interact with
Z-DNA. In addition, evidence has been presented to show that topoisomerase II from Droso-
phila, humans and calf thymus recognize a number of different DNA shapes, including
Z-DNA. 14667 However, the domain interacting with these shapes has not yet been biochemi-
cally defined. A crystal structure of yeast topoisomerase II suggests that the two strands of
DNA bound by the catalytic domain are in the B-DNA conformation.®® The interaction of
phospholipid binding domains to Z-DNA has been noted and dismissed as an artefact arising
because such proteins have hydrophobic cavities lined with basic residues, conditions that fa-
vor Z-formation.>® However, this conclusion may need re-evaluation now that the role of phos-
pholipids in signaling within the nucleus has been firmly established. Z-DNA binding by this
class of proteins could be modulated by phosphatidylinositol or its derivatives.**** A binding
motif with a hydrophobic cavity could also make formation of Z-RNA energerically more
favorable by promoting RNA dehydration.”®

Potential Roles for the Z-DNA Conformation Due
to Protein Recognition

Z-DNA binding proteins can impact both the spatial and temporal organization of biologi-
cal processes. The Zat domain and artificial Z-DNA-specific restriction nucleases constructed
from it®*”! have provided tools to demonstrate in principle how this might occur. Evidence for
a number of different effects is gradually accumulating. In general, Z-DNA binding proteins
may augment or modulate all those functions, listed in the section above “Potential Roles for
the Z-DNA Conformation Due to Its Physical Presence”, that are possible in the absence of
protein-specific recognition. Z-DNA binding proteins may also target associated protein do-
mains or macromolecular complexes to particular locations in the genome: those undergoing
active transcription, those being remodeled, methylated or rearranged and those that are being
silenced. These are not necessarily independent processes. The following are given as examples.

RNA editing: The Za. domain is present in the RNA editing enzyme ADAR1 along with the
ZB domain.*” ADARI acts on regions of dsSRNA to convert adenosine to inosine by deamina-
tion of the C6 position.? Inosine is recognized as guanosine by most enzymes, including the
translation apparatus. One outcome is an amino acid substitution when one of the first two
positions of a codon is edited.”” ADARI has three dsSRNA binding motifs that are not se-
quence specific.” They increase the efficiency of editing of long dsRNA substrates but are not
required for it.”# Many long dsRNA editing substrates are formed by folding introns back onto
exons, requiring that editing occur before splicing.”>”7 Z-DNA, generated in regions of active
transcription, could help target ADAR1 to such substrates, ensuring that they are edited before
they are spliced. 134
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The Zo domain of ADARI has been shown to increase editing efficiency of short (15 bp)
dsRNAs.” A site of Z-DNA formation immediately cis to short dsRNAs was not required for
editing.” Instead, formation of Z-DNA elsewhere in the plasmid appeared sufficient to target
ADARLU ro these editing substrates. The use of Z-DNA forming sites distant from the editing
site has a number of advantages. It allows the use of chromatin structure to regulate editing.
The only requirement is that a site of Z-DNA formation be physically close to the dsRNA
target. This placement could change during development, allowing editing to be turned on or
off. Indeed, editing of a particular transcript could be regulated in different tissues by localizing
different Z-DNA-forming elements to the site of dsRNA transcription. Further, the efficiency
of editing in this situation would not be determined by the rate at which the substrate is
transcribed but rather by factors that regulate the energetics of nearby Z-DNA formation.
Evolutionarily, this is a very flexible arrangement as it does not require engineering of specific
sequences in cis to the editing site, but rather takes advantage of alternate chromatin structures
stabilized by proteins with different combinations of generic binding domains.

In this example, Z-DNA acts as a flag, targeting ADARI to a dsRNA substrate. What is
remarkable about this mechanism is the use of two shape-specific protein motifs, one for Z-DNA
and the other for dsRNA, to make very specific sequence changes to an RNA transcript. Pro-
cesses that depend on recognition of both Z-DNA and dsRNA shapes by ADARI may be
impacted by other members of the Zat family, such as E3L, which also has a dsRNA binding
domain in addition to a Z-DNA binding domain. By competing for interaction sites with
ADARI and other related proteins, E3L could deregulate a number of RNA-directed pro-
cesses, especially those that are part of the anti-viral response.”® For example, during vaccinia
infection, viral DNA replication occurs in the cytoplasm; in response, ADAR1 accumulates in
the cytoplasm. The production of E31 may constitute a counter response by the virus.”®

Allele-specific gene silencing: Both Z-DNA and dsRNA could play a mechanistic role in the
assembly of silencing complexes. An example of this may be the dsRNA-directed methylation
associated with suppression of gene expression in plants.” The presence of Z-DNA would help
target the machinery to the appropriate site. Z-DNA would signal that the region is still tran-
scriptionally active while the requirement for dsRNA would allow RNA generated in #rans to
target a particular transcriptional unit for inactivation. A similar mechanism would also be
effective at suppressing expression of short interspersed elements (SINEs) and other
retrotransposons in mammals. An interesting system in which the dependence of this process
on Z-DNA formation could be investigated is the allele-specific expression of the RT6 gene in
rat, which has RT64 and RT6b alleles.*® Both a rodent ID retroelement and the length of a
Z-DNA repeat present in a promoter appear to correlate with selective methylation of the
RT6a allele in peripheral T-cells.®® Silencing associated with rodent B2 SINEs, which contain
15% of (CA), repeats in the mouse genome, may also influence gene expression.®'

Antisense gene regulation: dsRNA can be formed by overlapping genes. A recent survey of
the mouse genome identified 2,431 cases where the sense-antisense overlap of mRNA tran-
scribed from contiguous was greater than 20 bps in length.®? The open chromatin regions
associated with nascent dsRNA may also form Z-DNA, targeting enzymes like ADAR] that
modify transcripts or others that induce silencing.

Transcription: Protein-induced stabilization of Z-DNA has been shown to increase tran-
scription from a lac-Z reporter construct in the yeast Saccharomyces cerevisiae when Z-DNA
forming elements were placed in the promoter.”* The effect was greatest when a second gene
transcribing in the opposite orientation to the lc-Z gene was placed immediately 5 of the
Z-DNA forming segment. In this situation, the Z-DNA forming segment was embedded in an
open region of chromatin within the promoter region of both genes. Interestingly, Z-DNA
formation was also observed, though to a lesser extent, when the second gene were placed in
the same orientation as the /ec-Z gene i.e., the Z-DNA forming segment was 3’ to one gene and
5 to the reporter gene. In this case, both genes were transcribed in the same direction from the
same strand. With this arrangement, less Z-DNA may have been formed because the
chromatin structure surrounding the Z-DNA forming insert may have been less open than
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when the orientation of both genes was opposite. Alternatively, the negative supercoiling gen-
erated by transcription of the /ac-Z gene may have been partially canceled by read-through of
polymerases from the upstream gene. The existence of any negative supercoiling at all implied
that forward diffusion of positive supercoiling generated by upstream polymerases was quite
limited, even though the two transcription units were very close together. Whether Z-DNA
formation prevented the upstream polymerase from reading through the downstream gene was
not evaluated in these experiments. If that were so, the primary transcript from the upstream
gene may have been truncated due to stalling of polymerases in the region of Z-DNA forma-
tion.

Chromosomal remodeling: Active genes have open promoter regions in which torsional re-
straints imposed by histones are relaxed. The CSF! promoter has been shown to form Z-DNA
during remodeling by the SWI-SNF-like BAF complex. Evidence for Z-DNA formation dur-
ing activation of the CSFI gene was obtained by showing that Z-DNA forming sequences were
sufficient for transcription, regardless of nucleotide composition, and that these sequences were
specifically cleaved by the Zot nuclease in a transcription-dependent manner.'® The results
obtained mitror previous reports where activation of c-myc and a corticotrophin gene was
accompanied by enhanced binding of a Z-DNA specific antibody.®>** Protein recognition of
Z-DNA in these situations could help target remodeling and transcriptional complexes. Simi-
lar roles for Z-DNA forming sequences in modulating transcription have been proposed.®>

DNA methylation: Methylation of CpG would favor the Z-DNA conformation and allow
Z-DNA binding proteins with lower affinity than Za to stabilize this shape. Binding of such
proteins could help phase placement of histones so that these regions are accessible first to
remodeling complexes during reactivation of a locus and then to the transcriptional machinery.

Nuclear architecture: Z-DNA binding domains may perform a structural role in nuclear
architecture. They could tether active DNA to particular sites within the nucleus: to areas
where transcription factories are already assembled; to sites where recombination enzymes are
active or topoisomerases concentrated.®® Attachment of DNA to the nuclear matrix at such
locations appears to be transient and may involve type Il intermediate filaments such as vimentin
and glial fibrillary acidic protein. *>® It has been suggested that transcripts heavily modified by
the Z-DNA binding enzyme ADAR1 also participate in organization of the nuclear matrix.®®

DNA rearrangement: Another interesting example might be found in Tetrabymena. The cili-
ated protozoan has a micronucleus used for genetic reproduction and a macronucleus where
transcription occurs. The transcriptionally-active macronucleus is stained exclusively with
anti-Z-DNA antibodies, but not the quiescent micronucleus.®” Interestingly, the macronucleus
has extensive deletions of DNAs resolving from genomic rearrangements. Short RNAs have
been isolated that appear to direct these deletions. The coordination of these rearrangement
events could involve recognition of both Z-DNA and dsRNA.”

Z- triggers: Z-DNA binding proteins may orchestrate complex biological processes in both
time and space, acting as molecular triggers. The possibility of using Z-DNA as a conforma-
tional switch has been demonstrated. For example, Z-DNA formation at one site in a closed
circular plasmid diminishes Z-DNA formation at another distant site.”' This process has been
shown to inhibit transcription from a conformationally sensitive promoter by reducing nega-
tive superhelicity in the region of the promoter.’? In a similar manner, Z-DNA binding pro-
teins could act at a distance to switch a gene on and off.

Z-DNA binding proteins could also influence gene expression in a different fashion by
altering the geometry of a chromosomal domain. By bringing spatially separated elements
together or moving them apart, Z-DNA proteins may affect promoter/enhancer interactions
as well as those necessary for site-specific recombination. Both of these processes require that
DNA elements be correctly orientated in space and potentially could be regulated by Z-DNA
binding proteins acting at a distance.'”

A different type of Z-DNA switch has been engineered into a nano device.”® In this system,
conversion of a (CG); connector from B- to Z-DNA conformation changed the relative posi-
tion of two reporter fluorescent dyes by 50 to 60 angstroms. Similarly, Z-DNA binding
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proteins could instigate conformational rearrangements in the macromolecular machines that
are involved in transcription, replication or recombination. The allosteric realignment of com-
ponents in space would trigger subsequent steps in the reaction. Recognition of Z-DNA by
proteins would not only amplify the signal generated by Z-DNA formation, but allow the
sequence of events to be timed precisely. Related domains that bind to Z-RNA could play a
similar role in RNA splicing, editing and translation.”

Conclusion

The Z-DNA conformation has many potential roles in transcription. We now have mo-
lecular tools to investigate these possibilities. Editing by ADARI shows how genetic informa-
tion stored in Z-DNA and dsRNA shapes can alter the readout of information stored in se-
quence. In this process, generic protein domains bind these two very different nucleic acid
conformations and guide the sequence-specific modification of transcripts.
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CHAPTER 8

Do DNA Triple Helices or Quadruplexes

Have a Role in Transcription?
Michael W. Van Dyke

Abstract

ertain DNA sequences preferentially adopt multistranded, non-B-form structures
‘ under physiological conditions. These include three-stranded DNA triplexes and

four-stranded DNA quadruplexes. Several lines of evidence suggest that multiplex
structures can form in vivo, either from the addition of oligonucleotides or through the
transient formation of single-stranded regions. The consequences of multiplex structures on
many DNA-dependent biological processes have been described. In this chapter I will review
the effects of different DNA multiplexes on the process of transcription. The influence of
parameters such as multiplex type and multiplex formation conditions on different transcription
mechanistic steps in organisms spanning from prokaryotes to Xengpus oocytes and mammalian

cells will be discussed.

Introduction

Oligopurine/oligopyrimidine-rich DNA sequences have long been known to preferentially
adopt multistranded structures quite different from the familiar Watson-Crick base-paired,
right-handed, antiparallel-stranded, B-form double-helical structure.'> Examples include triple
helical DNA (triplexes) and G-quartet-containing quadruplexes (Gy), both of which can form
under physiological conditions, and once formed, are extremely stable.>¢

Although a considerable amount of information is available about the properties of DNA
multiplex structures in vitro, little is known about their existence and biological roles in
vivo.”1? Sequences capable of forming these structures abound in all eukaryotic organisms.!
Examples include the G-rich 3’ overhangs on the ends of chromosomes and long oligopurine
tracts within the promoter regions of several genes. DNA multiplexes have been invoked as
necessary intermediates in many biological processes, including chromosome condensation,
recombination, replication, telomere function, and transcriptional control.!*'® Potentially
deleterious multiplex structures could also form as a consequence of essential biological pro-
cesses that use the DNA as a template (e.g., replication and transcription) with removal of
these structures then being necessary for viability.!2° In this chapter, I review the literature
to address these questions: (1) can DNA multiplexes such as triplexes and quadruplexes
affect the process of transcription, and (2) do DNA multiplexes play a role in transcription
regulation in vivo?

DNA Triplexes

As has been well known, certain nucleic acid sequences preferentially adopt a triple-helical
structure under the proper conditions.># Triplex structures are characterized by a single

DNA Conformation and Transcription, edited by Takashi Ohyama. ©2005 Eurekah.com
and Springer Science+Business Media.



106 DNA Conformation and Transcription

‘ Pu
i ; 4
T1] Mo
S5 S v |
| p v
| :
o, i A — ]
- P BB g
NI, AANS@
& o @ B v
Sy . A
hos o |
.- : Y
| t./\_.‘-" 3 |
Al CHy v
oo o A
| W s ‘"/'F% Py
| W “ wl
el S
¢ JA
| :\’"{‘H":

Figure 1. Triplex nucleic acids. A) Schematic representation of an intermolecular triplex. The third strand
(black) is seen residing in the major groove of duplex DNA. Note that this third strand may be part of a larger
molecule (dotted line extensions). B) Base triplets and strand orientations in the pyrimidine motif. C) Base
triplets and strand orientations in the purine motif.

polynucleotide strand residing in the former major groove of a homopurine-homopyrimidine
duplex (Fig. 1A), which are reviewed in Chapter 1 of this book. Two triplex motifs are known.
The parallel- or pyrimidine-motif (Py) has a C- or T-rich third strand bound in a parallel
orientation with respect to the duplex homopurine strand, while the antiparallel- or purine-motif
(Pu) has the opposite orientation and a primarily A- or G-rich third strand. Both types of
triplexes utilize Hoogsteen hydrogen bonding between their third strands and purines in their
duplex acceptors. The primary base triplets of Py triplexes are T*A*T and C*G*C*, while the
base triplets of Pu triplexes are T*A*A, T*A*T, and C*G*G (Fig. 1B, C). Py triplexes can occur
with RNA being present as any of the three strands, while Pu triplexes only occur with DNA.2
Both inter- and intramolecular triplexes have been observed. The former involves a third DNA
strand that originates from either a second DNA molecule or from a distal site on the same
molecule, while the latter involves homopurine-homopyrimidine sequences immediately adja-
cent to the duplex acceptor (Fig. 2A). Four isomers of intramolecular triplexes can exist depen-
dent on the half-element strand that serves as the third strand (Fig. 2B). Intramolecular tri-
plexes are also known as H-DNA or H-DNA, depending on whether they contain Py or Pu
triplexes, respectively.

In theory, a homopurine-homopyrimidine duplex should be capable of forming triplexes of
cither motif. However, under physiological conditions, cytosine protonation is not favored,
and C*G+G is the most stable base triplet in the purine motif. T-rich nudleic acids would be
expected, therefore, to form Py triplexes, while G-rich DNAs would form Pu triplexes. The
same is true for intramolecular triplexes, with the additional condition that the different iso-
mers are not isoenergetic.”>?* In both intermolecular and intramolecular triplexes, contiguous
homopurine-homopyrimidine runs of at least 10 base pairs are required for the duplex accep-
tor, since shorter triplexes are not very stable under physiological conditions, and even single
base interruptions are known to greatly destabilize triplexes.”%” Triplex formation is kineti-
cally slow compared to duplex annealing.”>?® However, once formed, triplex RNA and DNA
are very stable, exhibiting half-lives on the order of days.”>*
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Figure 2. Intramolecular triplexes. A) Schematic representation of an intramolecular triplex. The third
strand (gray) is shown residing in the major groove of duplex DNA. B) Schematic representations of
H-DNA isomers H-y3 (1) and H-y5 (2), and H-DNA isomers H-r3 (3) and H-t5 (4). In H(H’) DNA
nomenclature, the nature of the third strand is identified as either pyrimidine (y) or purine (r) and origi-
nating from either the 3' or 5' end of the corresponding oligopyrimidine or oligopurine strand. The
purine-rich strand is shown in black, while the pyrimidine-rich strand is shown in light gray.

DNA Quadruplexes

DNAs (and RNAs) containing guanine tracts will associate in vitro to form four-stranded,
right-handed helices known as quadruplexes or tetraplexes.”® These G4 nucleic acids are char-
acterized by stacked G-quartet structures, square planar arrays of four guanines, each serving as
the donor and acceptor of two Hoogsteen hydrogen bonds. Electronegative carbonyl oxygens
line the center of the G-ring, where they interact with a suitably sized monovalent cation,
typically Na* or K* (Fig. 3A). Several isoforms of DNA and RNA quadruplexes have been
described by NMR and X-ray crystallographic studies.’®! The isoforms are characterized by
either parallel or s or 7ans antiparallel strand orientations and may be composed of either
intermolecular or intramolecular or both types of hydrogen bonding (Fig. 3B). G-rich nucleic
acids can be highly polymorphic, adoption of the exact G4 structure depending on several
factors including nucleotide sequence, strand concentration, and the types and concentrations
of monovalent, divalent, and polyvalent cations present. Formation of G4 nucleic acids re-
quires one or more polynucleotide strands, each containing one or more runs of two or more
contiguous guanosine nucleotides. Four parallel-stranded intermolecular G4 nucleic acids (Fig.
3B, structure 1) require only a single G-tract. However, their strand stoichiometry and very
slow formation kinetics lessen the likelihood that this form of G4 nucleic acid often occurs in
vivo. More likely in vivo are G4 multiplex species formed from polynucleotides containing
multiple G-runs, which have the ability to form intramolecular Hoogsteen hydrogen bonds.
These species include purely intramolecular G4' nucleic acids that require only a single DNA
or RNA molecule (Fig. 3B, 2), and G’2 hairpin dimer species that can link two separate poly-
nucleotides (Fig. 3B, 3, 4). Formation of intermolecular species may be rather slow under
physiological conditions, though intermediates containing intramolecular G*G Hoogsteen base
pairs (e.g., G’) form quite rapidly.>> Once formed, each of the G4 species is quite stable, with
measured enthalpies approaching -25 kcal/mole of G-quartet.>® Thus, equilibration between
different G4 species is glacially slow under physiological conditions, and the thermodynami-
cally favored structure is not necessarily the species that occurs in vivo.
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Figure 3. G4 nucleic acids. A) Chemical structure of a Hoogsteen hydrogen-bonded G-quartet. M* repre-
sents a monovalent cation, typically Na* or K*. B) Schematic representations of a parallel-strand intermo-
lecular tetraplex (G4, 1), a monomeric intramolecular quadruplex (G4', 2), and two forms of dimeric
hairpin quadruplexes (G2, 3,4). Both RNA and DNA and mixtures of these nucleic acids can form Gy
structures. A G’ structure contains only Hoogsteen hydrogen-bonded GG base pairsand would correspond
to a single hairpin (indicated in bold) in representation 4.

Multiplexes and Transcription

A considerable body of evidence indicates that multiplex nucleic acids may affect transcrip-
tion. Briefly, transcription requires a stare site (+1), usually indicated by an arrow in most
schematic representation, to define where transcription begins and in which direction it pro-
ceeds. In addition, transcription requires an RNA polymerase, which is the enzyme that cata-
lyzes the template-directed sequential condensation of ribonucleotides to generate a product
RNA. In many cases, the RNA polymerase itself does not directly recognize the +1 site but
relies on auxiliary proteins for this purpose. In addirion, these proteins and/or RNA poly-
merase do not typically interact directly with the +1 site but rather recognize nearby sequences
known as the promoter. Once these proteins and RNA polymerase have assembled on a pro-
moter, addition of ribonucleotides will allow transcription to begin. The process of transcrip-
tion initiation is shown schematically in Figure 4A. Afterward, the transcribing RNA poly-
merase can proceed downstream of the +1 site and generate an RNA transcript (wavy line) in a
process known as elongation (Fig. 4B). Note that transcription is 2 multistep process: promoter
recognition, initiation, elongation, and that the overall rates of transcription depend on the
efficiencies of these different steps. These steps are often affected by a class of nucleic acid
binding proteins (specific transcription factors), which can greatly modulate transcription.

Multiplex structures are believed to interfere with transcription primarily through two dif-
ferent mechanisms: promoter occlusion and elongation arrest.* In promoter occlusion (Fig.
4C), a DNA multiplex interferes with the binding of a transcription factor to a gene promoter.
Note that, for occlusion to occur, the sites of transcription factor binding and multiplex
formation need to overlap, and the extent of overlap necessary depending on the transcription
factor and multiplex structure used. As shown in this example (Fig. 4C), the typical occluded
protein is a specific transcription factor that normally stimulates transcription initiation or
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Figure 4. Transcription regulation by multiplexes. Schematic representations of transcription and its inhi-
bition by multiplexes. A) A distal homodimeric specific transcription factor (left, dark gray) positively affects
the function of basic transcription factors (center, light gray) and RNA polymerase II (right, medium gray)
bound proximally to the start site of transcription, thereby promoting initiation (rightward bold arrow). B)
An elongating RNA polymerase II proceeds downstream from the start site of transcription, synthesizing
an RNA transcript (tail) complementary to the DNA template strand. C) A promoter-bound multiplex
(bold line) occludes the binding of a specific transcription factor, thereby diminishing transcription initia-
tion. D) A multiplex located downstream of the transcription start site positions a covalent DNA crosslink
(X) that impedes elongation by RNA polymerase I1.

elongation. However, it is also possible to inhibit transcription of a targeted promoter by oc-
cluding a DNA-binding basic transcription factor (e.g., TFIID). Likewise, it is possible to
stimulate transcription through protein occlusion, if the occluded protein is a transcriptional
repressor. In elongation arrest (Fig. 4D), a post-initiation RNA polymerase II has its progress
impeded by a downstream-situated multiplex. Note that a multiplex alone usually cannot ef-
fectively impede elongation by an RNA polymerase, especially eukaryotic RNA polymerases
that normally function in a chromatin environment. Thus, unless the multiplex is located
immediately downstream of a transcription pause or termination site, it is usually necessary for
the multiplex to direct a subsequent covalent modification of the template (e.g., a cross-link or
strand break) that renders it unsuitable for elongation.

Conceivably, there are several other mechanisms by which a multiplex structure might af-
fect transcription. Some are shown schematically in Figure 5. For example, multiplex-forming
oligonucleotides could themselves adopt structures that bind proteins involved in transcription
(Fig. 5A). Note that these could include proteins directly involved in RNA synthesis (e.g.,
transcription factors) as well as proteins that ultimately modulate their activity (e.g., signal
transduction proteins). Given the appropriate sequence homology, multiplex-forming oligo-
nucleotides could bind to RNA transcripts through conventional Watson-Crick base pairing,
thereby leading to transcript degradation (and apparent loss) through endogenous RNase H
activity (Fig. 5B). Alternatively, multiplexes could inhibit transcription through the delivery of
nonspecific and specific inhibitors of transcription, instead of through the direct occlusion of
stimulatory transcription factors (Fig. 5C). Discerning these possible mechanisms relies on the
use of adequate and sufficient controls, including muragenesis of multiplex-forming sequences,
order-of-addition experiments, and physical verification of multiplex structures.

Intermolecular Triplexes and Transcription

Most studies on the modulation of transcription by multiplexes have been done with oligo-
nucleotides and intermolecular triplexes, because of the ease of forming such structures, the
variety of controls that can be performed, and the flexibility possible through use of chemically
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Figure 5. Alternative mechanisms for transcription regulation by multiplexes. Schematic representations of
transcription regulation by multiplexes and multiplex-forming oligonucleotides. A) A multiplex-forming
oligonucleotide folds into a structure that serves as an aptamer, which competes for promoter binding by
a general transcription factor (center, light gray). B) A multiplex-forming oligonucleotide binds to an RNA
transcript and directs its degradation by RNase H. C) An upstream promoter multiplex binds proteins that
actively interfere with the function of specific and general transcription factors.

modified triplex-forming oligonucleotides (TFOs). Studies on intermolecular triplexes have
been performed both in vitro and in vivo, “in vivo” referring to any living organism, including
cultured cells.

Intermolecular triplex effects on transcription have been irvestigated in vitro for a number
of model systems, including prokaryotic, eukaryotic, and various hybrid systems. A list of
representative studies is presented in Table 1. Both triplex motifs, purine and pyrimidine, have
been explored, as have binding modes that are less well defined. Occlusion of specific transcrip-
tion factors or general transcription factor/RNA polymerase binding has been proposed and/or
reported in many studies.>3%4245475L.5456.71 Typical observed results have been in the range
of 50% to 105% transcription inhibition when 0.2 to 50 UM TFO was present. Control
reactions usually involved oligonucleotides (ODN) that were not capable of triplex formation
or templates that lacked TFO binding sites. Some unusual findings include the demonstration
that a TFO targeting an upstream stimulatory transcription factor could apparently inhibit
transcript appearance through partial hybridization to these transcripts and RNase H-mediated
RNA degradation, and that transcription was inhibited when triplexes were located distal to
transcription factor binding sites.?**® Promotion of transcription has also been described in
vitro, through the direct delivery of transcription activators by hybrid TFOs.®> Inhibition of
transcription elongation has been observed in vitro as well 38:40495%:58:6061.68.72 Ty i effects
range from 60% to 95% transcription inhibition, depending on several factors including the
location of the intermolecular triplex relative to the start site of transcription, the type of RNA
polymerase investigated, and whether the TFO was noncovalendy bound or whether it di-
rected a covalent modification of the DNA template. Taken together, these data demonstrated
that many types of intermolecular triple helices can specifically and effectively inhibit several
types of transcription through multiple mechanisms in vitro.

Given the observed successes with intermolecular triplexes in vitro, several research groups
have investigated the effects of intermolecular triplexes on transcription in vivo (see Table 1).
Both transcription factor occlusion and polymerase elongation mechanisms of triplex action
have been investigated in vivo, with reports of efficiencies in excess of -90% reported in some
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circumstances, depending on oligonucleotide type, delivery method, and target site. Substan-
tial transcription stimulation in vivo mediated by an activation domain peptide/triplex-forming
oligonucleotide hybrid has also been reported.®> These findings suggest that intermolecular
triplexes appear to be an efficient means of inhibiting specific gene transcription in vivo.

In experiments performed on in vivo targets, researchers encounter complications not
found with in vitro experiments, including maintaining oligonucleotide stability in the pres-
ence of serum and cellular nucleases, delivering adequate concentrations of TFO to the proper
cellular compartment (nucleus), and ensuring that triplex-formation actually occurs. Each
of these difficulties has been addressed by a variety of means. Stability questions have been
addressed by chemical modifications of the TFO termini and/or its phosphodiester back-
bone, 36:41:42:44:4647,53,55,62,66,69,70.75-82.84 Dyelivery difficulties have been surmounted by
transfection with cationic li%ids, electroporation, microinjection, or synthesis in
sity, 48:53:55-57,65.67.70.76,80.81.83.85.86 R yen triplex formation, which can be highly problematic
in an intracellular milieu with its high protein concentrations and surfeit of nonspecific
nucleic acid targets, has been overcome by first preformin§ triplexes on their plasmid rargets
in vitro and then introducing the entire complex into cells,*!#4:46:50.63.64.66,69.71.73-75.78,79.52.87
Note that these ex vivo experiments, although successful at addressing particular aspects of
triplex-mediated transcription modulation, do not completely address the overall feasibility
of triplexes in vivo. In addition, since very few investigators have actually demonstrated
triplex formation in vivo, and oligonucleotides can affect cells through multiple specific and
nonspecific mechanisms, most studies supporting triplex effects in vivo are not as compel-

ling as they could be.

Intramolecular Triplexes and Transcription

Oligopurine®oligopyrimidine sequences have long been understood to play an instru-
mental role in the regulation of transcription for many genes.! It has also been well known
that certain oligopurine®oligopyrimidine sequences, especially those possessing mirror re-
peats, can form intramolecular triplexes in vitro under conditions of low pH or increased
negative superhelicity.? Thus it has been tempting to speculate that intramolecular triplexes
are responsible for the transcriptional regulation observed ar these sites. There is some evi-
dence that intramolecular triplexes can form in vivo, albeit under less than physiological
conditions in prokaryotic systems.}*° Additionally, in triplex-specific antibody studies,
cross-reactive structures have been identified near the centromeres of chromosomes.'**! How-
ever, most reports in the literature regarding the involvement of H-DNA (or its purine-motif
counterpart, H'-DNA) on transcription are only suppositions; few researchers have tested
whether these sequences actually form intramolecular triplexes, and most physical studies
have been performed in vitro. Nonetheless, a few exemplary studies have been done to inves-
tigate the possible role of intramolecular triplex structures on transcriptional regulation.
Some are presented in Table 2.

Intramolecular triplexes may affect transcription from two locales: either proximally up-
stream the transcription start site or at any distance downstream. In the former case, intramo-
lecular triplexes located within gene promoters are believed to arise in response to increased
negative superhelical tension, which can result from nearby transcription. Such triplexes could
then inhibit subsequent transcription events by displacing necessary transactivating proteins
(Fig. 4C) or by recruiting repressive proteins (Fig. 5C). An alternative view is that the
single-stranded region resulting from intramolecular triplex formation could serve as an entry
point for RNA polymerase and thus serve as an activator of transcription.'? In the latter case,
downstream intramolecular triplexes could arise as a result of processes that locally denature
the DNA template (e.g., replication, transcription). These downstream triplexes would then
either impede subsequent transcription elongation (Fig. 4D) or inhibit transcription elonga-
tion by sequestering essential proteins (Fig. 5A) or by delivering repressive proteins (Fig. 5C).
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Table 1. Intermolecular triplexes and transcription

Triplex Transcription ~ Maximum
Target® Multiplex”  Proof Assay! Effect® Controls Ref.
human 27mer GAT  EMSA, invitro, HeLa  -95% @ 160 complement 35
c-myc P1 PO TFO, DNase [ FP NE, c-myc P2 nMTFO ODN
promoter, “parallel” runoff
linear
plasmid
human 28mer PO REPA in vivo, PBMC  -55% @ 15 31mer GT 36
IL2Ra TFO, 3'- cells, northern, uM TFO ODN / c-myc
promoter, SRE, amine, media TFO or B-actin
chromosome  parallel mRNA
human 27mer GAT  EMSA/ invivo, Hela  -90% @ 125 complement 37
c-myc PO TFO, chromatin  cells, northern, pM TFO ODN / B-actin
P1 promoter, Pu3 DNase | media TFO mRNA
chromosome hyper
-sensitivity
syn., +180 15mer MT DMS FP in vitro, Jurkat  -90% @ 10 MT TFO 38
G-free cassette, PO TFO, NE, G-free, uM TFO, noncovalent,
Ad2 MLP, 3'-C*, Py3 pre. 3plx covalent scrambled
linear plasmid ODN covalent
syn., 1-5 21mer T°™C n.s. in vitro, -90% @ 2.5  scrambled 39
copies, PO TFO, {prior work)  Drosophila UM TFO, pre. ODN/ ftz
Sp1 site, Py3 K. cell NE, 3plx, basal promoter
Ad E4 core primer ext., transcription  (co-transcribed)
promoter, pre. 3pix (-Sp1)
supercoiled
plasmid
E. coli bla 13mer T°™C  DNase | FP/ invitro, E. coli -80% @ 50 unmod. TFO, 40
gene, +22, PO TFO, 5'- DNaselFP  RNA pol uM TFO, nonspecific
DNA psoralen, Py3 holoenzyme, covalent pso-16-mer
fragment runoff, pre. (-20% each)
3plx / tetR gene

human 15mer T°™C  EMSA, invivo, HSB2  -90% @ 10 HIV LTR CAT 41
IL-2Ra, PO TFQO, 3'- REPA, cells, CAT UM TFO
enhancer, acridine, Py3 DNase assay, pre.
NF-xB site, | FP 3plx
plasmid
HIV-1 31 & 38mer EMSA,CD  invitro, Heta  -80% (in vitro) scrambled 42
promoter, GT PO TFO, NE, smear; & -90% ODN
Sp1 and +1 3'-amine, in vivo, U937/  (in vivo)@
sites, parallel HIV-1 cells, 10 uM TFO
plasmid media TFO
syn., $10 21mer T°™C DNase | &  in vitro, T7 92% @ 1 scrambled 43
promoter, PO TFO, MPE FP pol., runoff UM T™eC; - ODN/
+1, linear Py3; 22mer 99% @ T uM  wt $10
plasmid GT GU PO GT TFO promoter

TFOs, Pu3 (co-transcribed)

Table continued on next page
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Table 1. Continued

Triplex Transcription ~ Maximum
Target® Multiplex” Proof* Assay? Effect® Controlsf Ref.
human 15mer T°™C  DNase | FP  in vitro, -80% @ 1 yM  mutant 44
IL-2Ra, PO TFO, 3'- C8166 NE, TFO 3plx site /
enhancer, acridine, Py3 primer covalent HIV LTR
NF-xB site, extension, (in vitro) -80%
plasmid pre. 3plx; @ 0.2 uM
in vivo, HSB2  TFQO, covalent
cells, CAT assay, (in vivo)
pre. 3plx
syn., 10 2Tmer T°™C  n.s. in vitro, T7 90% @ 1 wt 10 45
promoter, PO TFO, (prior work) pol., runoff, BM TSmeC, promoter
+1, linear Py3; 22mer pre. 3pix GT, GU TFO  (co-transcribed)
plasmid GT GU PO
TFOs, Pu3
human 15mer T"™C  DNase [ FP  in vivo, -90% @ 5 unmod. TFO, 46
iL-2Ra, PO TFO, 3'- HSB2 cells, UM TFO mutant mod.
enhancer, acridine, Py3 CAT assay, ODN / mutant
NF-xB site, pre. 3plx? 3plx site
plasmid
syn., PRE 38mer GT EMSA, in vitro, Hela -105% @ 200 (in vitro) mut. 47
site, Lov PO TFO,3'- DNase!l FP NE, G-free, nM TFO ODN (-50%
core cholesterol, pre. 3plx; (in vitro); @ 200 nM) /
promoter, Pu3 in vivo, CV-1 -50% @ 20 mut. promoter,
plasmid cells, CAT assay, pM TFO, AdZ MLP
media TFO (in vivo) (co-transcribed);
(in vivo) mut.
ODN (-15% @ 20
pM) / SV2CAT
human 6-16  21mer AGT  EMSA, in vivo, Hela -99% @ 1.8 GAODN/ 48
promoter, PO TFO, DNase 1 &  cells, CAT, uM TFO, SV40 or
IRE, plasmid ~ Pu3 Cu-phen. co-transfect (-50% for minimal TK
FP controls) promoter
syn. +63 53mer GT EMSA in vitro, T3 -80% @ 0.2  reverse ODN 49
or +103, PO TFO, 3! or T7 RNA pM TFO,
linear -amino, Pu3 pol., truncated  (-30% @ 4 uM
plasmid transcript, reverse ODN)
pre. 3plx
syn., +204, 15mer "™C PCR/PCR  in vivo, Hela -75% @ 1.8 mut. ODN 50
plasmid PO TFO, or XP2YQ(SV) uM TFO
5'-psoralen, cells, B-gal (24h Hela),
Py3 assay, pre. 3pix  -85% (72h XP)
human 21mer GC EMSA, invitro, Hela  -50% @ 15 reverse 51
H-ras PO TFO, DNase NE, runoff, uM TFO ODN/CMV
promoter, Pu3 1 FP pre. 3plx promoter
-8, linear
plasmid

Table continued on next page
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Table 1. Continued

Triplex Transcription  Maximum

Target® Multiplex®  Proof Assay? Effect® Controls Ref.
syn., +46, 11mer CT PO T, CD in vitro, 77 -95% @ 5 11mer CT 52
linear PS TFO, Py3 RNA pol., uM PO ODN, -TFO
plasmid runoff, pre. TFO

3plx
IgH3' a 4Tmer GT EMSA/ in vivo, +160% @ 25 mut. ODN/ 53
enhancer, PO TFO, 3'-  invivo CH12.1X.A2 ug TFO mut. enhancer
Pax5 site, amine, Pu3  DMS FP cells, juciferase,
plasmid & northern,
chromosomal (co)transfect

TFO
human c-myc, 23mer GAT  EMSA, in vitro, -80% @ 20 reverse 54
P2 promoter, PO, Pu3 DNase | FP Hela NE, pM TFO ODN/CMV
MAZ & E2F runoff, pre. promoter
sites, linear 3plx
plasmid
human 21mer GT EMSA in vivo, HepG2  -90% @ 600  albumin 55
ALDH, PO, PS, & cells, RT-PCR, nM PS TFO mRNA
downstream  PO/PS TFO, transfect TFO
promoter, Pu3
chromosome
rat at(l) 30mer GA EMSA in vitro, RCF -95% @ 250 20mer AGCT 56
collagen PO TFO, NE, runoff, UM TFO, (in  ODN/mut.
promoter, parallel pre. 3plx; vitro); -60% & CMV I[E
-138, fragment in vivo, @ 1uMTFO promoter
or plasmid RCEF cells, (in vivo)

CAT, post

transfect TFO
human HER2 28mer GAC  EMSA, in vivo, MCF7  -28% protein, mut., 57
core PO TFO, Pu3 FTIR cells, ELISA, -49% mRNA  complement,
promoter, northern, @ 0.22 uyM scrambled /
chromosome transfect TFO TFO, 6 h EGFR protein,

post transfect. GAPDH mRNA

HIV1 nef 11mer TGC  REPA, Ty invitro, Hela  -60% @ 2 uyM PO & other 58
gene, linear PN TFQ, NE, truncated  TFO modif. TFOs
plasmid Py3 transcript, pre.

3plx
human 15mer GT PO EMSA, in vivo, -70% @ 2.4  random GT 59
GM-CSF TFO, Pu3 DNase Jurkat cells, UM TFO ODN/IL3
promoter, I FP luciferase, promoter,
NF-xB site, RNase protect, mRNA
plasmid & ELISA,
chromosome media TFO
HIV1 nef 15mer T in vitro, Hela -77% @ 10 unsub. TFO 60
gene, linear  TG*™C PO NE or SP6 or uUM TFO & random
plasmid TFO, 5'-acridine, T7 RNA pol., (pol 1}, -60% ODN

Py3, stabilized truncated @ 10 uM
with BePl transcript, TFO + 25
pre. 3plx UM BEPI (SP6)

Table continued on next page
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Table 1. Continued
Triplex Transcription ~ Maximum

Target® Multiplex® Proof* Assay? Effect® Controls’ Ref.
HIVT nef 16mer TC n.s. invitro, Hela  -77% @ 1 titration 61
gene, linear  or T°™C NE or SP6 uM TC TFO
plasmid PN TFO, Py3 RNA pol., (pol lI), -60%

truncated @ 10 uM

transcript, pre.  T°™C TFO

3plx (SP6)
human TNF  27mer GT EMSA invivo, THP-1  -75% @ 0.6  other GT 62
gene, 3" PO TFO, 3'- cells, TNF uM TFO ODNs/IL-B
intron, cholesterol, bioassay, RT mRNA
chromosome  Pu3 -PCR, media

TFO
syn., +400, 19mer GT PO REPA, PCR/ in vivo, Hela -79% @ 0.6 -pre. 3plx & 63
plasmid TFO, 5'- REPA, PCR  cells, luciferase, uM TFO, -crosslink /

psoralen, Pu3 pre. 3plx covalent B-gal
murine 20mer GAPO EMSA, T,  invivo, NIH 90% @ 1 ug non-specific 64
c-Ki-ras TFO, Pu3 CD 373 cells, TFO (-40% @ ODN
promoter, CAT, pre. 3plx 1 pg non-
-290, plasmid specific ODN})
human IGF-I  RNA cont. 23 n.s. for RNA in vivo, C6 -95% complement 65
gene, 1% exon, nt. GA cells, stable RNA
chromosome  sequence, clones, northern,
Pu3? in situ TFO

rat a1(i) 18mer GA PS EMSA, in vivo, 2TK -80% @ 50 18mer ACGT 66
collagen TFO, Pu3 DNase cells, CAT, ug TFO ODN
promoter, | FP pre. 3pix
-141, plasmid
rat IGF-IR RNA cont. n.s. invivo, Co(t1)  -75%?, complement 67
gene, 3' 24 nt. GA cells, stable (similar RNA /
(+4504), sequence, clones, northern, inhibition B-actin
chromosome  Pu3? in situ TFO IGF-1 mRNA)
syn., +185, 15mer n.s. invitro, HeLa  -90% @ 10 -uv 68
finear TG ™eC NE, runoff uM TFO,
plasmid PO TFO, Py3 crosslink
human, 26 & 23mer EMSA in vivo, Hel.a 90% @ 100 reverse 69
c-myc, P1 GAT PS cells, luciferase, UM, both ODNss
promoter TFOs, Pu3 pre. 3pix TFOs
PuF site & P2
promoter MAZ
site, plasmid
human cyclin  18mer GT EMSA, in vivo, Hel.a -60% @ 10 reverse ODN/ 70
D1 promoter, PS TFO, DNase cells, luciferase, uM TFO CMV luc
Spl, Pu3 1 FP transfect TFO
chromosome
human a1} 30mer GAT  EMSA in vitro, Hela -75% @ 200 mut. & 71
collagen PO TFO, NE, runoff, pre. ng TFO, control?
promoter, Pu3 3plx; in vivo, (in vitro); -55% ODN/
-140, fragment CK-Y cells, GFP, @ 30 nM TFO CMV IE
or plasmid pre. 3plx {in vivo) promoter

Table continued on next page
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Table 1. Continued

Triplex Transcription  Maximum
Target® Multiplex®  Proof® Assay? Effect® Controlsf Ref.
human HER2, 23mer "P"GAT EMSA invitro, Hela  -80% @ 1 titration, diff. 72
+205, linear PO TFO, NE, truncated  pM TFO TFOs
plasmid 5'-pam, Pu3 transcript, pre.
3plx
syn., -40, 20mer GA EMSA, in vivo, NIH +250% @ 1:1 titration, 73
minimal PO TFO,5' co-migrate 3T3 cells, TFO:plasmid  unmod.
c-fos -or 3! luciferase, (+10% @ 2:1) TFO
promoter, -peptide, pre. 3plx
plasmid Pu3
human T1mer GA n.s. invivo, 10T1/2  -70% @ 500:1 GA & ACGT 74
c-src PO TFO, cells, CAT, TFO:plasmid ODNs
promoter, Pu3 pre. 3plx
Sp1 & SPY
sites, plasmid
CAT gene, 19mer GAT  n.s. in vivo, 90% @ 180 +/-TFO/ 75
+578, PD TFO, Xenopus uM TFO Cyclin B1
plasmid Pu3 oocyte, CAT, mRNA
northern, pre.
3plx
syn., +113, 15mer EMSA / in vivo, P4 -70% @ 0.5 mut. & 76
plasmid & TGS™eC REPA cells or nuclei, uM TFO reverse
chromosome PN TFO, luciferase, (5' acridine, ODN/
5'-acridine northern, cell, plasmid); mut. site
or psoralen, Py3 co-transfect -50% @ 0.5
TFO or UM TFO (5'
steptolysin psoralen, nuclei,
permeabilize  chromosome
human c-myc, 23mer GT EMSA, in vivo, CEM -63% @ 20 GA & 77
P2 promoter, PO TFO, DNase cells, uM TFO scrambled
MAZ site, 3'-amine, | FP northern, ODNs /
chromosome  Pu3 RT-PCR, GAPDH
media TFO mRNA
human 18 or 28mer  n.s. (prior)  in vivo, -90% @ 1 -TFO, -UV 78
rhodopsin GA(Tor Q) HT1080 cells, pM, both
gene, 1%or PO TFO, IFM, pre. 3plx  TFOs
2™ intron, 5'-psoralen
plasmid & 3'-amine,
Pu3
human 18mer GAT  EMSA, in vivo, Tet-On  -90% @ random, 79
bcl-2 3! PO(PS ends) co-migrate  Hela, western, 12.5:1 scrambled
UTR, TFO, 3'- pre. 3plx TFO:plasmid ODN / actin
+ 1946, amine, Pu3 protein
plasmid
murine 20mer, PO/PS EMSA, in vivo, 293 -75% @ 5 -TFO 80
Ki-ras GA TFO, DMS & cells, CAT, puM TFO
promoter, Pu3 DNase | FP co-transfect
plasmid TFO

Table continued on next page
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Table 1. Continued

Triplex Transcription  Maximum
Target® Muitiplex®  Proof Assay? Effect® Controls Ref,
syn., HIV-1 15mer n.s./REPA  invivo, P4 -85% @ 32 reverse 81
PPT, +113, TG ™eC cells, singlecell uM TFO ODN, Renilla
plasmid PN TFO, luciferase, luciferase
Py3 microinject TFO
human IgE 21mer TC EMSA invivo, DG75 -80% @ 200:1 random PO 82
promoter, AE TFO, Py3 cells, luciferase, TFO: ODN, mut.
STAT6 & pre. 3plx plasmid, AE ODN
Pu.1/NF-xB (-20% mut.
sites, plasmid AE ODN)
human 16mer GT PO EMSA / in vivo, A431 -60% @ 3 scrambled 83
ICAM-1 TFO, 3'-or capture- cells, FACS, UM TFO ODN, HLA-DR
gene, 3" 5'-psoralen, PCR northern, (northern), expression/
intron, Py3 transfect TFO  +/- UV? GAPDH
chromosome mRNA
human bcr 13mer GA PO EMSA, in vivo, K562 -35% @ 15 G-rich PEG'd 84
promoter, +1, TFO, 3'-PEG, DMS FP cells, RT-PCR, pMTFO, random ODN /
chromosome  Pu3 media TFO (random abl mRNA
ODN, -15%)

syn., 5 sites 22mer, GT co-migrate  invitro, HeLla  +1000% @ GAL4 E4 85
upstream PO TFO, 3' NE, runoff, 2.5nMTFO  promoter
core Ad E4 -peptide, pre. 3pix; in vitro (+100%
promoter, Pu3 in vivo, Hela @ 50 nM2);
linear plasmid cells, CAT, +3000% @ 50

co-transfect TFQO  nM TFO in vivo
human Fts2  25mer GT EMSA in vivo, DU145 -80% @ 250 scrambled 86
promoter, PO TFO, Pu3 cells, luciferase, nM TFO ODN, c-src
Sp1, plasmid RT-PCR, (plasmid), or c-myc
& chromosome northern, -62% @ 400  reporters

co-transfect nM TFO

TFO (chromosome)
human 25mer "PGAT EMSA, invivo, Hela  -70% @ 2 different 87
HER?2, core PO TFO, 5'-/ alkylation/  cells, luciferase, pM TFO modified
promoter, 3'-pam, Pu3  Southern pre. 3plx (5' & 3'pam) TFOs

plasmid

? Target information is indicated as gene name, site, and whether located on an extrachromosomal DNA
(eg plasmid) or on a chromosome. Syn., synthetic target. Ad, adenovirus. MLP, major late promoter.

Trlplex information is indicated as length, base composition (in order of abundance), backbone
composition, modifications (indicated by 5'- or 3'-), auxiliary compounds (“stabilized with...”), and
triplex motif. Bases include NG-methyl—B—oxo—adenine (M), 5-methylcytidine (SmeC), and
pyrazolopyrimidine guanine (°PG). Backbone compositions include phosphodiester (PO),
phosphorothioate (PS), N3'-P5' phosphoramidate (PN), 2'-aminoethoxyribose (AE), and N,N-
diethylethylenediamine phosphoramidate (PD). Modifications include N*, N*-ethano-2'-deoxycytidine
(C*), phenylacetate mustard (pam), polyethylene glycol (PEG). Motifs include purine (Pu3), pyrimidine
(Py3), and parallel. Additional abbreviations include triplex-forming oligonucleotide (TFQ), containing
(cont.), nucleotide (nt.). € Assays used to demonstrate triplex formation include electrophoretic mobility
shift assays (EMSA), footprinting (FP) with enzymes like DNase | or with chemicals including dimethyl
sulfate (DMS), copper-1,10 phenanthroline (Cu-phen.), and methidiumpropyl-EDTA-iron (MPE),

Table continued on next page
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Table 1. Continued

circular dichroism (CD), melting temperature (Try), Fourier transform infrared spectroscopy (FTIR), and
restriction endonuclease protection assays (REPA). Assays shown after aslash (e.g., PCR/PCR) indicate
those assays performed after transcription has occurred. ¢ Transcription assay information is presented
as extract (e.g., nuclear, NE) or polymerase (pol.), template, and assay type for in vitro studies and cell
type, assay type, and TFO administration method for in vivo studies. In vitro assays include runoff, G-
free cassette, primer extension, and truncated transcript. In vivo assays include RNA-based (e.g.,
northern, reverse transcriptase PCR [RT-PCT]), immunological (e.g., enzyme-linked immunosorption
[ELISA], immunofluorescence microscopy [IFM], fluorescence-activated cell sorting [FACS]), and
enzymatic activity assays (e.g., chloramphenicol acetyltransferase [CAT], B-galactosidase [B-gal.],
luciferase [luc.]). Preformed triplexes (pre. 3plx). © Maximum effect of triplex on transcription. Minus
and plus signs indicate triplex-dependent transcription inhibition and stimulation, respectively.
Unexpected or unusual findings are indicated in parentheses. Mut., mutant. ' Controls used to
demonstrate specificity of triplex effects on transcription. Controls involving oligonucleotides are
shown before the slash, while controls involving targets are shown after (e.g., scrambled ODN/mutant
promoter). Additional abbreviations include: unmodified (unmod.), cytomegalovirus immediate-early
promoter (CMV IE), and unsubstituted (unsub.).

Promoter-based intramolecular triplex effects on transcription have been reported to be
quite variable, with magnitudes ranging from highly stimulatory to no effect to moderately
inhibitory,1392949697.102-104 N telling have been the results of the corresponding control
experiments, which in the majority of studies showed no correlation between intermolecular
triplex formation and transcriptional strength.”22%%7:192104 Eor downstream intramolecular
triplexes, significant inhibitory effects have been consistenty reported both in vitro and in
vivo, though their exact correlation with a specific triplex structure has been somewhat weak.?®1%!
All in all, these studies suggested that the transcriptional effects ascribed to relatively short
polypurine®polypyrimidine sequences located upstream of many genes is most likely not the
result of intramolecular triplex formation, whereas the transcriptional effects observed with
very long downstream polypurinespolypyrimidine sequences may well involve some form of
intramolecular triplex, especially of the H’ variety.

Quadruplexes and Transcription

While quadruplexes, especially of the G-quartet variety, have primarily been invoked as
playing a role in the biogenesis of chromosome telomeres, recent studies have suggested that
they may also have a role in the transcriptional regulation of certain genes.”!® G-rich sequences
capable of forming quadruplex structures in vitro have been identified in the immunoglobulin
switch region, the c-myc promoter, and upstream of the insulin gene.?>1%% Use of a single-chain
antibody fragment probe specific for guanine quadruplexes has led to identification of
cross-reactive species in the macronucleus but not the micronudleus of Stylonychia lemnae,
suggesting that quadruplexes do exist in vivo.!” Less clear is how such quadruplex structures
arise, although arguments concerning the formation of intramolecular triplexes, including lo-
cal negative superhelical tension in the promoter region, chromatin remodeling, and the con-
sequence of transcription and/or replication events may also apply here.”!? At present only a
few studies directly describe quadruplex effects on transcription (see Table 3). Effects are be-
lieved to occur at the level of transcription factor occlusion and/or transcription factor recruit-
ment, and significant effects, both stimulatory and repressive, have been observed.'®11! One
major weakness of all these studies is the lack of in vivo characterization of Gy structures, which
makes ascribing transcriptional effects to bona fide quadruplexes a bit tenuous.
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Table 2. Intramolecular triplexes and transcription

Triplex Transcription  Maximum
Target® Multiplex®  Proof* Assay? Effect® Controlsf Ref.
Drosophila 25 bp mirror  oligo hybrid., in vivo, -67% del. H, del. H, mut. 92
hsp26 repeat, H DEPC FP, ST Drosophila, +2% mut. H-, H, H'
promoter -89, nuclease/ hsp26-lacZ -68% H'*
chromosome DEPC FP transgene, B-gal
syn., promoter, (G=C),, H' CAA FP in vivo, LTK" +970% (G)39, number of 15
plasmid cells, TK CAT, +90% (G)15, repeats
direct & +50% (G)35
competitions

syn., +120, 38 bp mirror  chloroquine in vivo, -80% mut. H 93
plasmid repeat, H 2D gel E. coli,

or H'? electro- lacZ, p-gal

phoresis

murine 27 bp mirror CAAFP in vivo, HepG2 -50% mut. H, mut. H, 94
c-Ki-ras repeat, H cells, CAT -50% mut. H*  multi
promoter, mut. H*
plasmid
syn., +17, 69 bp mirror  CAA FP, in vivo, 53% (-74% H [ tef 95
plasmid repeat, mung-bean  E. coli, @5 uM

stabilized nuclease viability BePl)

with BePI,

Hy-5
chicken 49 bp Py/ S1 &P1 in vivo, +900%, H, H* 96
malic enzyme Pu, H' nuclease chicken (+0% reversed
promoter, hepatocytes, reversed
plasmid CAT orientation)
murine 128 bp, H-y3 CAA, DEPC, in vivo, NIH no effect, H, reverse 97
metallothionein-1 DMS FP 373 cells, basal or orientation
promoter, luciferase Cd**-induced
plasmid
syn., (GAASTTC), n.s. invivo, COS-7 -91% @n=  number of 98
human repeats, H'? cells, RNase 230 repeats  repeats,
frataxin protection, reverse
1%t intron B-gal orientation
GAA repeat,
+100? plasmid
syn., (GAASTTC),, DEPC (ss in vitro, T7 -90% @ n number of 99
human repeats, H'?  DNA RNA pol., = 88 repeats  repeats
frataxin tested!) runoff
1%t intron
GAA repeat,
+100? plasmid
syn., (GAA)gg, H'?  n.s. in vitro, T7 -90% (-25%  (GGA); 100
human RNA pol., @ 2.5 uM ODN/
frataxin runoff complement  (CUQ)gg
1% intron [TTC]; ODN) template
GAA repeat,
+100? plasmid

Table continued on next page
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Table 2. Continued

Triplex Transcription  Maximum
Target® Multiplex®  Proof® Assay? Effect® Controls’ Ref.
syn., (GAA) 50, gel mobility / in vitro, T7 -99% number of 101
human (multi-H' gel mobility or SP6 RNA rflUUC]130, repeats,
frataxin 1% (sticky DNA) pol. or Hela -95% orientation /
intron GAA NE, runoff co-transcribed  co-transcribed
repeat, +100? control contro}
plasmid template
human 60 bp Py/Pu, S1 nuclease, in vivo, NIH +400% H* mut. H, 102
HMGAZ2 H? EMSA 373, supercoiled,  linear or
promoter, luciferase (+200% mut.  supercoiled/
-25, plasmid H) CMV B-gal
syn., E.coli 33 nt n.s. in vivo, -0% PIT", mut. 103
PiT multimers, E. coli, (promoter PIT
sequences, H' lacZ, B-gal PIT); +300%
promoter & (downstream
downstream, 2 x PIT), mRNA
plasmid translation effect
Drosophila 25 bp mirror  DMS, in vivo, 0% H, mut. H™ & 104
hsp26 repeat, H kethoxal, Drosophila, -40% mut. multi-mut.
promoter, CMCT, hsp26-lacZ H* H*
chromosome KMnO4 &  transgene,

UV FP/ B-gal

REPA

? Target information is indicated as gene name, site, and whether located on an extrachromosomal
DNA (e.g., plasmid) or on a chromosome. Syn., synthetic target. ® Triplex information is indicated as
length of the triplex-forming region, sequence of repeating element, auxiliary compounds (“stabilized
with...”), and triplex motif (H or H'). BePl, (3-methoxy- 7H-8-methyl-11-[(3'-amino)propylamino}
benzolelpyrido [4,3-b]indole).  Assays used to demonstrate triplex formation include electrophoretic
mobility shift assays (EMSA), oligonucteotide hybridization, footprinting (FP} with enzymes like St
nuclease or with chemicals including chloroacetaldehyde (CAA), 1-cyclohexyl-3-(2-morpholinoethyl)-
carbodiimide metho-p-toluene sulfonate (CMCT), diethylpyrocarbonate (DEPC), and dimethyl sulfate
(DMS), or with ultraviolet radiation (UV) and restriction endonuclease protection assays (REPA). Assays
indicated after a slash (e.g., UV FP / REPA) indicate those assays performed after transcription has
occurred or in vivo. ¢ Transcription assay information is presented as extract (e.g., nuclear, NE) or
polymerase (e.g., T7 RNA pol.), template, assay type {e.g., runoff} for in vitro studies, and cell type,
template, and assay type for in vivo studies. In vivo assays include RNA-based (e.g., RNase protection)
and enzymatic activity assays (e.g., chloramphenicol acetyltransferase [CAT], B-galactosidase [B-gal.],
luciferase [luc]). ® Maximum effect of triplex on transcription. Minus and plus sign preceding
percentage effect indicate triplex-dependent transcription inhibition and stimulation, respectively. H°
and H* refer to mutations that either disrupt or promote H(H')-DNA formation. Del., deletion. Mut.,
mutation. Unexpected or unusual findings are indicated in parentheses.  Controls used to demonstrate
specificity of triplex effects on transcription. Controls involving template DNA are shown before the
slash, while controls involving alternative targets are shown after (e.g., H™/ tetd).
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Table 3. Quadruplexes and transcription

Quad. Transcription ~ Maximum

Target® Multiplex” Proof® Assay? Effect® Controls’ Ref.
human (GoATHC),,  EMSA, in vivo, -80% with mut. G4, 109
insulin intra- or DMS FP Hela celis, Pur-1 multi-mut.
gene, -363, inter-molecular luciferase G4*, Pur-1
plasmid G4 expression
syn. G4 RNA? n.s. in vitro, T7 +100% 7-deaza- 110

RNA pol. termination ~ GTP

+ GTP only, @ 13-14 nt.

PAGE
human 22mer n.s. in vivo, -70% @ 100  random 111
c-myc GigA;T,, G4' Ramos cells, nM G4 ODN, ODN
promoter, proliferation, (-55% @ 100
chromosome G4' ODN, nM ss G-ODN)

media
human 27mer DMS FP, in vivo, Hela +200% chair  TmPyP2, 112
c-myc GoAqTs, TMPyP4 cells, luciferase mut. alternative G4
promoter, stimulated UV Fp, or Ramos cells, mut., CA46
-115 P1, by TMPyP4,  Tag DNA RT-PCR cells
plasmid or “chair” G4'  pol. stop
chromosome assay

2 Target information is indicated as gene name, site, and whether located on an extrachromosomal
DNA (e.g., plasmid) or on a chromosome, Syn., synthetic target. ® Quadruplex information is indicated
as length of the quadruplex-forming region, composition or sequence, auxiliary compounds (“stabilized
with...”), and quadrupliex form. TMPyP4, cationic porphyrin. © Assays used to demonstrate quadruplex
formation include electrophoretic mobility shift assays (EMSA), footprinting (FP) with dimethy!
sulfate (DMS) or ultraviolet radiation (UV), and polymerase (pol.) stop assays. Data not shown
(n.s.). ¢ Transcription assay information is presented as assay type for in vitro studies and as cell type,
template, and assay type for in vivo studies. PAGE, polyacrylamide gel electrophoresis. RT-PCR,
reverse transcriptase PCR. ® Maximum effect of quadruplex on transcription. Minus and plus sign
preceding percentage effect indicate quadruplex-dependent transcription inhibition and stimulation,
respectively. Abbreviations include nucleotide (nt.), single-stranded (ss), and mutation (mut.). Unexpected
or unusual findings are indicated in parentheses. ' Controls used to demonstrate specificity of triplex
effects on transcription. G4 and G4* refer to mutations that either disrupt or promote G4 formation.

Conclusions

Do DNA multiplexes affect transcription? From the aforementioned studies, the following
conclusions can be made: (1) Some intermolecular triplexes can significantly repress transcrip-
tion in vitro. However, their effectiveness in vivo often requires triplex preassembly in vitro. (2)
Intramolecular triplexes may be responsible for impeding transcription on long, repeated se-
quences. (3) G-quadruplexes may affect transcription.
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CHAPTER 9

Nucleic Acid Structures and the Transcription
Defects in Fragile X Syndrome
and Friedreich’s Ataxia

Karen Usdin

Abstract

ragile X mental retardation syndrome (FXS) and Friedreich ataxia (FRDA) belong to a
F group of genetic disorders known as the Repeat Expansion Diseases. These diseases all

result from expansion of a specific tandem repeat. These repeats form a variety of
secondary structures that have been suggested to play a role in this expansion. In addition, the
properties of these structures suggest ways in which the expanded repeat could contribute to
disease pathology. The FXS and FRDA repeats are transcribed but not translated, and expan-
sion leads to aberrant transcription of the affected genes. This chapter discusses the types of
nucleic acid structures formed by these repeats and their potential consequences for disease
pathology.

Introduction

The Repeat Expansion Diseases arise from expansion of a specific tandem array. Expansion
occurs on intergenerational transfer of so-called premutation alleles that have repeat numbers
above the normal threshold and results in alleles with even higher numbers of repeats (full
mutations). The consequences of expansion depend on the affected gene and its pattern of
expression, the location of the repeat within this gene, and the sequence of the repeat unit.
Diseases are known where the repeac is not transcribed, where it is transcribed but not
translated and where it forms part of the final protein (Fig. 1). The disease-causing repeats
identified to date include the triplets CGG*CCG, CTG*CAG, and GAA*TTC, as well
as the tetramer CCTG*CAGG, the pentamer ATTCT*AGAAT, and the dodecamer
C4sGCsGCG*CGCG4CGy. Where the repeat is part of the coding sequence the connection
between expansion and disease is relatively straightforward: the repeat negatively affects some
property of the protein, either by disrupting its normal function, by conferring toxic properties
on the protein or by some combination of the two. Where the repeat is not transcribed, it
presumably affects promoter initiation in some way.! Where the repeat is transcribed but not
translated the molecular mechanisms responsible for disease symptoms are somewhat less obvious.

This chapter will focus on two disorders in this category, Fragile X syndrome and Friedreich
ataxia. FXS, the most common heritable cause of mental retardation is caused by expansion of
a CGG*CCG-repear. The repeat is located in the 5" untranslated region (5" UTR) of the fragile
X mental retardation 1 gene (FMR1) which encodes an RNA binding protein, FMRE, thought
to be involved in translational control.2 Cognitive difficulties are often accompanied by behav-
ior problems, anxiety, insomnia, depression, attention deficit hyperactivity, connective tissue

DNA Conformation and Transcription, edited by Takashi Ohyama. ©2005 Eurekah.com
and Springer Science+Business Media.
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HD
i SCA1,2,3,6,7,1217

Ry FXS DRPLA DM1

EPM 1 FRAXE MR FRDA DM2 SCA10 SBMA SCA8
Repeat C,GC,GCG G CCTG ATTCT CTG
Unit JRlE.. /
Intragenic : .
location PROMOTER 5' UTR INTRON ORF 3 UTR

Figure 1. The repeat expansion diseases. The currently known repeat expansion diseases are listed with the
sequence of the Watson strand of the responsible repeat shown below. The intragenic location of these
repeats is illustrated on a diagrammatic representation of a generic gene. EPM1: Progressive myoclonus
epilepsy Type 1, FXS: fragile X syndrome, FRAXE MR: FRAXE mental retardation, FRDA: Friedreich
ataxia, DM: myotonic dystrophy, SCA: spinocerebellar ataxia, HD: Huntington disease, DRPLA:
dentatorubropallidoluysian atrophy, SBMA: spinal and bulbar muscular atrophy.

abnormalities, and enlarged testicles in males.? Female carriers of premutation alleles show a
much higher incidence of premature ovarian failure than carriers of full mutations.*? Older
premutation carriers of both sexes have an increased incidence of cerebellar degeneration mani-
festing in ataxic gait, intention tremor, and both bowel and urinary incontinence.'®'3 This is
accompanied by the presence of ubiquitinated intranuclear neuronal inclusions,'® and charac-
teristic MRI findings including increased T2 signal intensities in the middle cerebellar pe-
duncle."? Expansion affects both transcription and translation. Expansion into the full muta-
tion range causes methylation!® and heterochromatinization'®!” of the promoter. Expansion
also results in the stalling of the 40S ribosomal subunit on any residual FMRI mRNA.'® The
net result being an FMRP deficiency. Paradoxically carriers of premutation alleles often have
higher than normal amounts of FAMR! mRNA despite the fact that the stability of this RNA is
unchanged.'®?° Since FMRP levels in these individuals are close to normal it is thought that
their symptoms are due to some toxic effect of RNA with expanded repeats, rather than FMRP
insufficiency.

FRDA results from expansion of the triplet GAA*TTC. The repeat is located in the first
intron of the frataxin gene which encodes frataxin, a mitochondrial protein thought to be
involved in iron homeostasis.?! FRDA is a relentlessly pro%ressive disorder involving the loss of
large sensory neurons, and hypertrophic cardiomyopathy.”! Diabetes or glucose intolerance is
common.”! Affected individuals often become wheelchair bound in adolescence, and early
mortality is common primarily due to cardiac failure. In these individuals there is a severe
deficit of frataxin mRNA.? No aberrandy sgliced transcripts have been detected and the sta-
bility of the frataxin RNA seems unaffecred.??

Unusual Nucleic Acid Structures Are Formed by the FXS
and FRDA Repeats

The repeats responsible for the Repeat Expansion Diseases are all structurally polymorphic.
In addition to fully Watson-Crick (WC) base-paired duplexes with unusual helical parameters,
the FXS and FRDA repeats form structures containing a number of non-Watson-Crick inter-
actions. These non-canonical interactions enable the individual strands of the repeats to form
a variety of inter-strand and intra-strand structures. The different classes of structures that can
be formed by these repeats is illustrated in Figure 2.

The FXS-Repeat DNA Structures

While the CGG*CCG-tract is a fully base-paired, right-handed double helix, it differs from
a double helix comprised of a mixed sequence in having an increased flexibility,2>** causing the
repeat to be more writhed. As a result, the average superhelical density of a DNA domain
containing the FXS-repeat would be higher than adjacent domains.?*** CGG*CCG-duplexes
also have an unusual stable radius of curvature.?’
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Figure 2. Structures formed by FXS and FRDA repeats. A diagrammatic representation of the different types
of nudleic acid structures formed by the FXS repeats is shown in the light box shown on the left. The
structures formed by the FRDA repeats are shown in the box on the right. The structures shown in the region
of overlap of the 2 boxes are formed by both repeats. For reasons of space, only a single example of a triplex
is provided, in this case a PusPu*Py triplex, and slipped DNA structures which form when the 2 strands of
the repeat slip relative to each other, resulting in multiple looped out regions which can then form hairpins
and tetraplexes are not shown.

The CGG-strand of the repear forms anti-parallel homoduplexes,?® and hairpins contain-
ing a mixture of WC G*C and Hoogsteen GG base pairs.”’?® These sequences can also form
inter- or intramolecular quadruplexes (tetraplexes) under physiologically reasonable condi-
tions.””3? Quadruplexes are structures held together primarily by Hoogsteen hydrogen bond-
ing between 4 G residues from different strands or different parts of the same strand (see
Chaper 8).

Like its complementary strand, CCG-repeats can form antiparallel homoduplexes.?® Short
CGG-tracts form e-motif structures containing WC GeC base pairs and extrahelical cytosines.®
Longer CCG-tracts form hairpins that fold in such a way as to maximize WC GeC pairs.”®?>
The Cs not involved in G*C pairs are intrahelical and well-stacked in the stem and probably
form single hydrogen-bonded CC mispairs.>* However, these mispairs are more susceptible to
open-closure than the G*C base pairs, and thus their Cs can be “flipped out” of the helix more
easily.>? At neutral and slightly acid pH, GCC-strands form tetraplexes held together by CeC*
pairs.”® Below pH 5 intercalated cytosine tetraplexes (i-tetraplexes) are formed. These struc-
tures consist of two pairs of parallel DNA strands held together in an antiparallel configuration
via the intercalation of hemiprotonated C*C* pairs.?>

The simple repetitive nature of these repeats also allows the slippage of the two complemen-
tary strands relative to one another. The looped out strands then have the potential to form the
folded structures outlined above resulting in slipped DNA or S-DNA (see Chapter 1).

FRDA Repeat Structures

Molecular dynamic simulations suggest that like the FXS B-DNA duplex, the FRDA B-DNA
duplex is also unusually flexible.> In addition the complementary DNA strands of the FRDA
repeat can also form parallel duplexes,?” hairpins,”® and both pyrimidine:purine:pyrimidine
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(Py*PusPy), 34! and purine:purine:pyrimidine (PusPusPy) triplexes®*® (sce Chapter 1).
PuePuePy triplex formation between separate but directly oriented GAA*TTC-tracts generates
a structure known as “sticky DNA”*

The Potential Biological Significance of These Structures

Some of these structures have properties that suggest a role in expansion. For example the
FXS and FRDA triplet repeats impede flap endonuclease-1 (FEN-1) processing of the 5" flap
of Okazaki fragments generated during lagging strand DNA synthesis.***¢ FEN-1 is inhibited
by secondary structures in the flap DNA and the effect of the FXS and FRDA is thought to
involve the formation of such structures. A role for FEN-1 inhibition in expansion in humans
is suggested by the fact that mutations in rad27p, the yeast homolog of FEN-1, increase the
CGG*CCG-repeat expansion frequency.”” The structures formed by these repeats also block
the progress of DNA polymerase in vitro,?! and cause stalling of the replication fork in bacte-
ria®® and yeast.® Thus it is also possible that subsequent repeat-induced repeated strand slip-
page or attempts by the cell to repair the fork contributes to expansion.® Alternatively, since
structures with regions of single-strandedness are prone to strand breakage or strand inva-
sion,”® it may be that expansion results from repeat-mediated recombination instead.”!

In addition to the role they play in FXS, long CGG*CCG-repeat tracts form folate-sensitive
fragile sites,”>># which appear microscopically like prematurely packaged chromatin. These
sites may result from the propensity of the FXS repeats to exclude nucleosomes,”” an effect that
may be related to the unusual properties of duplexes conrtaining these repeats. However, since
these sites are induced by agents that deplete intracellular nucleotide pools,”® they may result
from a problem with DNA replication instead. The FXS repeats form structures that block
DNA synthesis much more effectively than other triplet repeats which do not form fragile
sites.®* Depleted nucleotide pools may slow replication thus allowing these structures to
form more readily. This in turn may lead to the failure to complete replication before packag-
ing is initiated.

In addition to potential effects on DNA stability and chromosome fragility, the structures
formed by the repeats may also be responsible for the transcription defect in FRDA, and the
symptoms seen in carriers of both FXS premutation and full mutarion alleles. This issue will be
the subject of the remainder of this chapter.

DNA Structures and Elevated FMR1 mRNA Levels in FXS Premutation
Carriers

A point mutation in FMRP resulting in the substitution of asparagine for isoleucine at
position 340, leads to a very severe FXS phenotype that is not accompanied by an increase in
FMRI mRNA.* This suggests that the elevated levels of RNA seen in carriers of premutation
alleles is not due to feedback regulation of the promoter in response to inadequate levels of
functional FMRP. The failure to see increased transcription on naked DNA templates,’”*®
suggests that chromatin structure may be involved. Nucleosome exclusion together with the
propensity of these repeats to act as a sink for superhelical energy,” may lead to a more open
chromatin and DNA conformation that facilitates initiation of transcription in premutation
carriers as illustrated in Figure 3. This could be accomplished not only by promoting melting
of the transcription start site by RNA polymerase II but also by increasing the access of various
transcription factors to the promoter.

DNA Hairpins and Aberrant Promoter Methylation in Individuals
with FXS

The importance of DNA methylation for gene silencing in FXS is demonstrated by the fact
that 5-azadeoxycytidine (5-azadC), an inhibitor of DNA methyltransferase (DNMT), can re-
activate the FMRI gene in cells from fragile X patients.”® DNA methylation also directly blocks
binding of the transcription factor nuclear respiratory factor 1 (NRF-1) leading to a large drop
in promoter activity.
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Figure 3. Diagrammatic representation of the FMR! promoter in normal and in FXS premutation and full
mutation alleles. In alleles with fewer than 60 repeats, the promoter and the repeat bind histones normally,
and these histones have modifications characteristic of actively transcribing chromatin including acetylation
of histone H3 at lysine 9. The promoter is thus accessible to the transcription factors necessary for optimal
promoter activity. In “premutation” alleles which contain 60-200 CGG*CCG-repeats, the flexibility of the
repeat region is exacerbated, as is the peculiar radius of curvature. The repeat tracts exclude nucleosomes
effectively and this together with the enhanced writhe of these repeats may lead to 2 more open promoter
conformation that is more freely accessible to the transcription factors that have been shown to be important
for the full activity of this gene. Thisincludes NRF-1, members of the SP family of proteins, and heterodimers
of upstream stimulatory factors 1 and 2 (USF). Furthermore the additional repeats may lead to a high level
of binding of proteins that bind to CGG*CCG-repeats (CGG-binding proteins [CGG-BPs]) and can act
as transcriptional activators. This leads to an increase in promoter activity. The net result of this is an increase
in the amount of an RNA containing a long CGG-repeat tract. Evidence suggests this RNA responsible for
the cerebellar and ovarian dysfunction seen in carriers of these alleles, perhaps by sequestering important
proteins or by otherwise affecting normal gene expression. In full mutation alleles, a threshold for
heterochromatinization is exceeded with the result that both the promoter and H3 histones associating with
the promoter are methylated. Other proteins important for gene silencing are recruited to the promoter
either by binding to the methylated cytosines in the DNA or the modified histones. The promoter is
compacted and buried within the heterochromatin complex thereby preventing access of transcription
factors to their binding sites. In addition, the DNA methylation blocks binding of NRF-1 an important
transcription factor. The net result is a significant drop in the activity of the FMRI promoter and the FMRI
transcript deficit that is responsible in large part for the FMRP insufficiency that leads to the symptoms of
FXS.

Slipped structures containing CCG-hairpins are 10-15 times more efficient substrates for
human DNMTs than either the corresponding Watson-Crick duplexes or CCG-hairpins.®!
This substrate efficiency is thought to be due to a combination of the CCG-hairpin in which
cytosines are more readily flipped out of the helix into the active site of the enzyme than WC
GeC pairs, and the ability of the CCG-hairpin in these three-way junctions to move along the
WC arms thereby converting WC CpG sites into sites that are better methylase substrates.®!



132 DNA Conformation and Transcription

According to this view, structure formation by the FXS repeat is the trigger for DNA methyla-
tion which then spreads into the adjacent promoter. DNA methylation leads to the recruit-
ment of a variety of proteins including histone methyltransferases (HMTs) that methylate histone
H3 at lysine 9 (K9) generating one of the hallmarks of transcriptionally silent chromatin.

Triplexes and the Transcription Defect in FRDA

Sequences with triplex-forming potential within a transcription unit block transcription
elongation both in vitro,*3 and in Escherichia cols.®* There is also a wealth of data to support
the idea that intermolecular triplex formation is able to down-regulate transcription elongation
in mammalian cells.® This has led to the suggestion that one of the triplexes formed bg' the
FRDA repeats may account for the transcription deficit in FRDA patients.?>404266-68 Tyj_
plexes that have been invoked include PuePusPy triplexes in which the RNA transcript acts as
the third strand,*® and the “sticky DNA” which forms when two direct repeats of
GAA*TTC-repeats are present in a single supercoiled plasmid.**

In vitro transcription studies show that these repeats have the intrinsic ability to decrease
the yield of full length transcript, an effect exacerbated by template supercoiling.*>%® Tran-
scripts are truncated at the distal end of the repeat and the polymerase remains attached to the
template. This suggests a model in which a triplex is formed during transcription as illustrated
in Figure 4. In this model, a PuePu*Py triplex forms between the repeats that have already
reannealed behind the polymerase and the free purine strand resulting from the occlusion of
the template strand by the transcribing polymerase. The polymerase is trapped at the
triplex:duplex junction, and the pyrimidine strand that would normally form a duplex with
what is now the third strand in the triplex, is unpaired allowing an RNA: DNA hybrid to form.
Support for this model comes from the observation that the transcription deficit can be allevi-
ated by the addition of a single stranded oligonucleotide containing TTC-reGgeats. The oligo-
nucleotide anneals to the GAA-rich strand, thus blocking triplex formation.

A Unified Theory for Gene Silencing in FXS and FRDA?

However, recent work raises the intriguing possibility that the transcription defects in FXS
and FRDA may share a common mechanism, at least in part. In Drosophila gene silencing
occurs despite the absence of DNA methylation,%” and in Newrospora crassa and Arabidopsis
thaliana loss of the HMT responsible for H3K9 methylation leads to a loss of DNA methyla-
tion.”%7? That chromatin modification is also a crucial early event in gene silencing in mam-
mals is suggested by the fact that in mice mutation of LSH, a member of the SNF2 family of
chromatin remodeling proteins, leads to a loss of DNA methylation.”> Moreover, during
X-chromosome inactivation, H3K9 methylation and gene silencing occur well before DNA
methylation.”® In FXS therefore, it may be that the repeats lead to gene silencing by directly
recruiting the enzymes necessary for the histone modifications that generate transcriptionally
silent chromatin.

A role for HMTs in FRDA as well is suggested by the recent finding that GAAsTTC-repeats
cause heterochromatinization of a linked transgene in mice.”> Since these repeats are devoid of
CpG residues, this process presumably occurs independently of DNA methylation. Since the
FRDA repeat is only ~1.7 kb away from the start of transcription in the frataxin gene,”®
heterochromatinization of the FRDA repeat may affect frataxin promoter activity. It may thus
be that both FXS and FRDA result, at least in part, from gene silencing in which the primary
epigenetic signal is repeat-induced histone modification.

By analogy with AT hook gene silencing proteins which are thought to recognize some
feature of the minor groove of their target sequences rather than the primary DNA sequence,”’
the unusual duplexes formed by these repeats may allow binding by a protein that facilitates
heterochromatinization. Alternatively, comparison with the dodeca-centromeric satellite of
Drosophila may be more apt: one strand of this satellite forms a hairpin leaving the other strand
available to bind Drosophila dodeca-satellite-binding protein 1 (DDP1), a single-stranded bind-
ing protein thought to be involved in silencing.”®
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Figure 4. Triplex model for the transcription deficit in FRDA. The elongating transcription complex
proceeds into the repeat region separating the template and non-template strand as it goes, and drawing the
template strand into the channel of the RNA polymerase (RNAP) (A). As the polymerase moves further into
the repeat, the template which has already been transcribed emerges from the interior of the polymerase and
is now able to reanneal with the cognate region of the non-template strand. At the same time, the region
complementary to the region of the template currently being transcribed is free to hydrogen bond with this
duplex initiating the formation of an PuePuePy triplex (B). Transcription continues in this fashion forming
a longer and longer triplex structure behind the polymerase, until the end of the repeat is reached (C). At
this point most of the non-template strand is involved in a triplex, leaving the 5" end of the template strand
unpaired. This allows the nascent RNA strand to anneal to form an RNA:DNA hybrid. The polymerase is
unable to proceed beyond this point resulting in the failure to produce a full-length transcript and reducing
the amount ;)f polymerase available to initiate further rounds of RNA synthesis. Adapted from Grabczyk
and Usdin.
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However a wide variety of different repeats are prone to heterochromatinization and they
often evolve rapidly without significant sequence conservation.”” Moreover some of these re-
peats can be interrupted by different transposable elements without affecting silencing.®® While
it is possible that there is some aspect of DNA conformation that is shared by all of these
sequences, recent findings suggest another explanation. In yeast, mutations in genes in the
RNAI pathway lead to loss of gene silencing.®! In plants transgene silencing by double-stranded
RNA (dsRNA) is associated with methylation of the region homologous to the dsRNA 3283
and a mutation in argonaute 4, a protein involved in RNA-mediated gene silencing in Droso-
phila and fission yeast, reactivates silenced genes and decreases both DNA methylation and
H3K9 methylation.®* Given the many parallels between yeast, plants and mammals in various
aspects of RNAi, dsSRNA may also be a signal for H3K9 methylation in mammals.®> dsRNA
can be generated in vivo in 2 ways: by the generation of overlapping transcripts generated from
both DNA strands and by transcription of palindromic and quasi-palindromic sequences that
are able to form fold-back structures. We have shown that CGG-RNA can form hairpins analo-
gous to its DNA counterpart,?® and it may well be that GAA-RNA behaves the same way. Thus
the unusual structures formed by the repeat containing RNA rather than the DNA may make
the FXS and FRDA repeats particularly prone to heterochromatinization.

Conclusion

The FXS and FRDA repeats form a variety of different nucleic acid structures in vitro.
These structures have properties that may account for both expansion and disease pathology.
Whether this is in fact the case, and if so, which particular structure or structures are involved
remains to be seen.
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CHAPTER 10

Possible Roles of DNA Supercoiling
in Transcription
Susumu Hirose and Kuniharu Matsumoto

Abstract
T ranscription and supercoiling of the template DNA are closely related each other. DNA

supercoiling affects transcription and transcription affects supercoiling of the template

DNA. Furthermore, packaging of genomic DNA into chromatin in eukaryotes raises
another type of relation. DNA supercoiling can affect transcription through modulation of the
chromatin structure.

Introduction

Typical double-stranded DNA consists of a helix with a pitch of one turn per 10.5 base
pairs. Both underwinding and overwinding of the DNA double helix induce twisting and
coiling of the helix unless the DNA strand can rotate freely. The coils thus formed are termed
negative and positive supercoils, respectively (see Chapter 1 for details). Current views of the
mechanisms underlying transcriptional regulation rely on a concept originally proposed by
Jacob and Monod regulation through cis-elements on DNA and #rans-acting factors that bind
to the elements.! However, DNA supercoiling can modulate accessibility of rans-acting factors
to cis-elements. Transcription is an asymmetric process: only one strand of the DNA double
helix is copied into RNA. To achieve this, the double helix must be locally unwound. There-
fore, negative supercoiling of DNA is thought to facilitate the step. Moreover, DNA supercoil-
ing can affect transcription in chromatin context in eukaryotes. This chapter discusses roles of
DNA supercoiling in transcriptional regulation.

Prokaryotic Transcription

In prokaryotes, there are two major topoisomerases that act toward opposite direction.
DNA gyrase can generate negative supercoils into relaxed DNA and relax positively super-
coiled DNA. In contrast, topoisomerase I can relax negatively supercoiled DNA but not posi-
tively supercoiled DNA. The superhelical state of cellular DNA in prokaryotes appears to be
under equilibrium between actions of these topoisomerases. Measurements of psoralen bind-
ing averaged globally across the Escherichia coli / genome have detected unconstrained negative
supercoils with a superhelical density of -0.05.>

Consistent with the finding of unconstrained negative supercoils in genomic DNA, it has
been established that DNA supercoiling functions as a regulator of prokaryotic transcription.
First, supercoiling affects transcription in vitro. Some promoters have an optimum level of
supercoiling for their transcription and the level is different for different promoters. Second,
supercoiling pla ays a regulatory role in vivo. Genetic studies have shown that mutations in
topoisomerase I” or DNA gyrase® affect transcription in vivo.

2

DNA Conformation and Transcription, edited by Takashi Ohyama. ©2005 Eurekah.com
and Springer Science+Business Media.



Possible Roles of DNA Supercoiling in Transcription 139

Nascent RNA

RNA polymerase

B Negative

‘ - Positive
Supercoils

Supercoils

Figure 1. Transcription-driven supercoils. Tracking RNA polymerase generates positive supercoils in the
template DNA ahead of it and negative supercoils behind it. “B” represents a topological barrier. It does not
necessarily require attachment of DNA to cellular structures. Certain sequence-specific binding proteins
can form the topological barrier upon binding to DNA.** Modified from Hirose S, Ohta T. Cell Struct
Funct 1990;15:133-135.

Two rate limiting steps are known for prokaryotic transcription. One is formation of an
RNA polymerase-DNA open complex and the other is promoter clearance. Because negative
supercoiling favors the unwinding of the DNA double helix that is required for formation of
the open complex, it is expected to increase the rate of transcription for promoters in which
open complex formation is rate limiting. Indeed most genes are activated by increased negative
supercoiling. However, transcription of gyr A and gyr B encoding the subunits of DNA gyrase
is induced by relaxation of DNA. It has been proposed that promoter clearance but not open
complex formation is the rate-limiting step for these promoters.”

The superhelical state of DNA is known to change depending on the growth conditions of
cells.® For example, nutrient downshift and stationary growth phase cause a decrease in the
extent of negative supercoiling, while high osmolarity leads to an increase in the negative su-
percoiling of DNA. In agreement with these findings, transcription by RNA polymerase har-
boring the stationary phase-specific 6° appears to be enhanced on templates with decreased
superhelicity.” DNA supercoiling also changes transiently during heat shock.'” The heat stress
induces rapid relaxation of negative supercoils and then DNA topology returns back to the
original state with negative supercoiling. In response to the relaxation, most genes are repressed
but some specific or stress genes are induced.'

Transcription of a double helical DNA requires a rotation of an RNA polymerase and its
nascent RNA chain relative to DNA. The velocity of the rotation is calculated to be a few hun-
dred rounds per minute since a pitch of the helix is about 10 base pairs and the rate of RNA chain
elongation is a few thousand nucleotides per minute. It seems difficuit for the RNA polymerase
and its nascent RNA to rotate around the template DNA at such a high velocity. Instead the
DNA must turn around its axis during transcription. Then the tracking RNA polymerase gener-
ates positive supercoils in the template DNA ahead of it and negative supercoils behind it (Fig.
1). These supercoils will be relaxed by DNA tozpoisomerascs. Liu and Wang summarized the
concept as the twin-supercoiled-domain model.'? The model predicts the followings. First, nega-
tive supercoils should accumulate in the absence of a negative supercoil-relaxing enzyme.
Second, positive supercoils should accumulate in the absence of a positive supercoil-relaxing
enzyme. These predictions are fulfilled by two earlier observations. First, pBR322 DNA harbor-
ing high degrees of negative supercoiling has been isolated from rgpA mutanes of E. coli and
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Salmonella typhimurium, and the presence of the highly negatively supercoiled DNA was depen-
dent on the transcription of the #etA gene.' Second, highly positively supercoiled pBR322 DNA
has been isolated from E. cols treated with gyrase inhibitors.'* According to the model, negative
and positive supercoils would accumulate in the intergenic regions of two divergent and conver-
gent transcription units, respectively. Such supercoils can in turn affect transcription.

Eukaryotic Transcription

In eukaryotes, psoralen-binding assays on human HeLa and Drosophila Schneider cell lines
have shown that the bulk of each genomic DNA is torsionally relaxed within nuclei.” However,
it did not necessarily exclude a possibility that there were negarively supercoiled micro domains
within these genomes. Indeed unconstrained negative supercoils have been demonstrated in
the Asp70 and 18S-ribosomal RNA genes of the Schneider cell line;'® and in the dihydrofolate
reductase gene'® and the hygromycin resistance transgenes'” of cultured human cells.

To test whether the twin-supercoiled-domain model is applicable to eukaryotic transcription,
Giaever and Wang constructed a yeast plasmid carrying the coding sequence of the E. coli topA
gene placed downstream of an inducible yeast promoter.'® The plasmid DNA became posi-
tively supercoiled in yeast Azgp! top2ts cells at the restrictive temperature when the E. coli DNA
topoisomerase I was expressed. The generation of positive supercoils was observed only during
transcription. Because neither one of the yeast DNA topoisomerases I and II can be functional
under these conditions and because the E. coli enzyme can relax only negative supercoils, these
results verify the model. Recently Matsumoto and Hirose'” have visualized transcription-coupled,
unconstrained negative supercoils of DNA in approximately 150 loci on polytene chromo-
somes of Drosaphila melanogaster. The results demonstrate that transcription-coupled negative
supercoils of DNA exist within a cell even in the presence of active topoisomerases. These
negative supercoils can affect transcription.

As described for prokaryotic transcription, supercoiling modulates in vitro transcription of
eukaryotic genes.”® Hirose and Suzuki,?’ and Mizutani et al*? have shown that transcription of
the Bombyx mori fibroin gene increases and plateaus from templates of increasing negative
supercoiling, and transcription from the adenovirus type 2 major late promoter (Ad2MLP)
rises and then falls, while transcription of the Drosophila hsp70 gene remains unchanged (Fig.
2). Dissection of transcription revealed that formation of a preinitiation complex on the

Silk fibroin gene Ad2MLP Drosophila hsp70
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Figure 2. DNA superhelicity affects transcription of eukaryotic genes differently. In vitro transcription
activities of indicated promoters were measured on plasmid DNAs with various supethelical densities.
Reprinted from Mizutani M, Ura K, Hirose S. Nucl Acids Res 1991;19:2907-2911 with permission from
Oxford University Press.
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Figure 3. Underwinding of DNA upon binding of TBP to the TATA element. Negatively supercoiled
plasmid DNA carrying Ad2MLP was incubated with indicated concentration of yeast TBP at 30°C and then
treated with DNA topoisomerase 1. DNA was purified and analyzed by two-dimensional electrophoresis.
The mark “rc”, relaxed closed circular DNA; “nc”, nicked circular DNA; “I7, linear DNA. Reprinted from
Tabuch H, Handa H, Hirose S. Biochem Biophys Res Commun 1993; 192:1432-1438 with permission
from Elsevier.

fibroin gene or the Ad2MLP is slow on relaxed DNA and accelerated by negative supercoiling
of DNA. On the contrary, the preinitiation complex assembled rapidly on the hsp70 gene
irrespective of DNA topology. Tabuchi et al*® have demonstrated that binding of TATA ele-
ment binding protein (TBP) to the TATA element induces underwinding of the duplex DNA
(approximately 0.5 linking difference per bound TBP molecule as shown in Fig. 3). The
underwinding has been confirmed by crystal structure of a TBP-TATA element complex.?#?>
The change was facilitated by negative supercoiling of DNA on the fibroin promoter and the
Ad2MLP but not on the hsp70 promoter.”® These data reveal that although supercoiling can
affect both prokaryotic and eukaryotic transcription in vitro, the critical steps are different:
open complex formation in most genes of prokaryotes vs TBP binding to the TATA element in
most genes of eukaryotes. In transcription from the Ad2MLP, promoter clearance is also facili-
tated by negative supercoiling of DNA.% It is possible that clearance of the Ad2MLP goes up
and then down with increasing negative supercoiling. Interestingly, the rate-limiting step in
hsp70 transcription is not preinitiation complex formation but restart of a paused RNA poly-
merase to productive elongation.”” Probably /70 transcription becomes independent of DNA
topology so that it can be induced immediately upon heat shock.

Whether DNA supercoiling affects transcription in vivo is still elusive in eukaryotes. Al-
though Dunaway and Ostrander have clearly shown that local domains of negative supercoil-
ing activate the ribosomal RNA gene promoter in vivo,® other promoters have not been tested
through a similar approach. Supercoiling factor (SCF) is a protein capable of generating nega-
tive supercoils in relaxed DNA in conjunction with topoisomerase 112 D. melanogaster SCF
localizes to many interbands and puffs that are active sites of transcription® (Fig. 4), suggesting
that SCF plays a role in formation of transcriprionally active chromarin. Recent study has
shown that transcription of certain genes is compromised by targeting SCF with RNAI
(Furuhashi and Hirose, unpublished). Because SWI/SNF-type chromatin remodeling factors
require changes in DNA topology for their action,®! SCF and topoisomerase IT may facilitate
chromatin remodeling through generation of negative supercoils.
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Figure 4. Drosophila SCF localizes to interbands and puffs on polytene chromosomes. Salivary gland
polytene chromosomes were stained with antibody against SCF (red) and DAPI (blue). Reprinted from
Kobayashi M, Aita N, Hayashi S et al. Mol Cell Biol 1998; 18:6373-6744 with permission from American
Society for Microbiology.

Formation of unusual DNA structure (see Chapter 1 for derails) such as Z-form is 51gn1ﬁ-
cantly facilitated by negative supercoiling.>* Such unusual DNA structure can affect transcrlp—
tion. For example, Z-DNA in a promoter region has been suggested to parucnpate in transcrip-
tional activation in collaboration with a chromatin remodeling complex BAE* On the contrary,
Z-form within a transcribable region would inhibit transcrlptlon elongatlon Finally positive
supercoiling of DNA has been reported to diminish transcription in vivo. 34 These data indicate
a possible role of DNA supercoiling in eukaryotic transcription in vivo.

Conclusion

DNA supercoiling can affect transcription in both prokaryotes and eukaryotes. While the
critical step is open complex formation in most prokaryotic genes, TBP binding to the TATA
element is affected in most eukaryotic genes. Furthermore, DNA supercoiling can affect
transcription through chromarin remodeling in eukaryotes.

References

1. Jacob F, Monod ]. Genetic regulatory mechanisms in the synthesis of proteins. ] Mol Biol 1961;
3:318-356.

2. Wang JC. DNA topoisomerases. Ann Rev Biochem 1996; 65:635-692.

3. Sinden RR, Carlson JO, Pettijohn DE. Torsional tension in the DNA double helix measured with
trimethylpsoralen in living . coli cells: analogous measurements in insect and human cells. Cell
1980; 21:773-783.

4. Pruss GJ, Drlica K. DNA supercoiling and prokaryotic transcription. Cell 1989; 56:521-523.

S. Margolin P, Zumstein L, Sternglanz R et al. The Escherichia coli supX locus is topA, the structural
gene for DNA topoisomerase I. Proc Natl Acad Sci USA 1985; 82:5437-5441.

6. Rudd KE, Menzzel R. His operons of Escherichia coli and Salmonella typhimurium are regulated by
DNA supercoiling. Proc Natl Acad Sci USA 1987; 84:517-521.

7. Menzel R, Gellert M. Modulation of transcription by DNA supercoiling: a deletion analysis of the
Escherichia coli gyrA and gyrB promoters. Proc Natl Acad Sci USA 1987; 84:4185-4189.

8. Drlica K. Control of bacterial DNA supercoiling. Mol Microbiol 1992; 6:425-433.

9. Kusano S. Ding Q, Fujita N et al. Promoter selectivity of Escherichia coli RNA polymerase E6”°
and Ec®® holoenzyme. ] Biol Chem 1996; 271:1998-2004.



Possible Roles of DNA Supercoiling in Transcription 143

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24

25.
26.
27.
28.
29.
30.
31
32.
33.
34.

35.

Mizushima T, Natori S, Sekimizu K. Relaxation of supercoiled DNA associated with induction of
heat shock proteins in Escherichia coli. Mol Gen Genet 1993; 238:1-5.

. Dorman CJ. Flexible response: DNA supercoiling, transcription and bacterial adaptation to envi-

ronmental stress. Trends Microbiol 1996; 4:214-216.

Liu LF, Wang JC. Supercoiling of the DNA template during transcription. Proc Natl Acad Sci
USA 1987; 84:7024-7027.

Pruss GJ, Drlica K. Topoisomerase I mutants: the gene on pBR322 that encodes resistance to
tetracyclin affects plasmid DNA supercoiling. Proc Natl Acad Sci USA 1986; 83:8952-8956.
Lockshon D, Morris DR. Positively supercoiled plasmid DNA is produced by treatment of Escher:-
chia coli with DNA gyrase inhibitors. Nucleic Acids Res 1983; 11:2999-3017.

Jupe ER, Sinden RR, Cartwright IL. Stably maintained microdomain of localized unrestrained
supercoiling at a Drosophila heat shock gene locus. EMBO ] 1993; 12:1067-1075.

Ljungman M, Hanawalt PC. Localyzed torsional tension in the DNA of human cells. Proc Natl
Acad Sci USA 1992; 89:6055-6059.

Kramer PR, Sinden RR. Measurement of unrestrained negative supercoiling and topological do-
main size in living cells. Biochemistry 1997; 36:3151-3158.

Giaever GN, Wang JC. Supercoiling of intracellular DNA can occur in eukaryotic cells. Cell 1988;
55:849-856.

Matsumoto K, Hirose S. Visualization of unconstrained negative supercoils of DNA on polytene
chromosomes of Drosophila. J Cell Sci 2004; 117:3797-3805.

Hirose S, Ohta T. DNA supercoiling and eukaryotic transcription-cause and effect. Cell Struct
Funct 1990; 15:133-135.

Hirose S, Suzuki Y. In vitro transcription of eukaryotic genes is affected differently by the degree
of DNA supercoiling. Proc Natl Acad Sci USA 1988; 85:718-722.

Mizutani M, Ura K, Hirose S. DNA superhelicity affects the formation of transcription preinitiation
complex on eukaryotic genes differently. Nucleic Acids Res 1991; 19:2907-2911.

Tabuchi H, Handa H, Hirose S. Underwinding of DNA on binding of yeast TFIID to the TATA
clement. Biochem Biophys Res Commun 1993; 192:1432-1438.

. Kim Y, Geiger JH, Hahn S et al. Crystal structure of a yeast TBP/TATA-box complex., Nature

1993; 365:512-520.

Kim JL, Nikolov DB, Burley SK. Co-crystal structure of TBP recongizing the minor groove of a
TATA element. Nature 1993; 365:520-527.

Parvin JD, Sharp PA. DNA topology and a minimal set of basal factors for transcription by RNA
polymerase II. Cell 1993; 73:533-540.

Rougvie AE, Lis JT. The RNA polymerase II molecule at the 5" end of the uninduced hsp70 gene
of D. melanogaster is transcriptionally engaged. Cell 1988; 54:795-804.

Dunaway M, Ostrander EA. Local domains of supercoiling activate a eukaryotic promoter in vivo,
Nature 1993; 361:746-748.

Ohta T, Hirose S. Purification of a DNA supercoiling factor from the posterior silk gland of
Bombyx mori. Proc Natl Acad Sci USA 1990; 87:5307-5311.

Kobayashi M, Aita N, Hayashi S et al. DNA supercoiling factor localizes to puffs on polytene
chromosomes in Drosophila melanogaster. Mol Cell Biol 1998; 18:6737-6744.

Gavin I, Horn PJ, Peterson CL. SWI/SNF chromatin remodeling requires changes in DNA topol-
ogy- Mol Cell 2001; 7:97-104.

Nordheim A, Lafer EM, Peck L] et al. Negatively supercoiled plamids contain left-handed Z-DNA
segments as detected by specific antibody binding. Cell 1982; 31:309-318.

Liu R, Liu H, Chen X et al. Regulation of CSF1 promoter by the SWI/SNF-like BAF complex.
Cell 2001; 105:309-318.

Gartenberg MR, Wang JC. Positive supercoiling of DNA greatly diminishes mRNA synthesis in
yeast., Proc Natl Acad Sci USA 1992; 89:11461-11465.

Leng F, McMacken R. Potent stimulation of transcription-coupled DNA supercoiling by
sequence-specific DNA-binding proteins. Proc Natl Acad Sci USA 2002; 99:9139-9144.



Part IV
DNA-Bending Proteins:
Architectural Regulation

of Transcription



CHAPTER 11

Gene Regulation by HMGA and HMGB
Chromosomal Proteins and Related
Architectural DNA-Binding Proteins

Andrew A. Travers

Abstract
T he eukaryotic abundant high mobility group HMGA and HMGB proteins can act as

architectural transcription factors by promoting the assembly of higher-order protein-

DNA complexes which can either activate or repress gene expression. The structural
organisation of both classes of protein is similar with either a single or repeated DNA binding
domain preceding a short negatively charged C-terminal tail. In the HMGB dlass of proteins
the HMG DNA-binding domain binds non-specifically and introduces a sharp bend into
DNA whereas the AT-hook in the HMGA protein binds preferentially to A/T rich regions of
DNA and stabilises a B-DNA structure. The acidic tails are hypothesised to facilitate the inter-
action of the proteins with nucleosomes by binding to the positively charged histone tails. Both
classes of protein also interact with a large number of transcription factors that bind to specific
DNA sequences.

Introduction

The eukaryotic nucleus contains three classes of abundant chromatin associated proteins —
the High Mobility Group proteins of the HMGA, HMGB and HMGN classes (originally
termed HMGI/Y, HMG1/2 and the HMG14/17; for recent nomenclature changes see ref. 1),
so called because they were initially identified on the basis of their rapid migration through
starch gels.” The HMGA and HMGB classes of chromosomal proteins in general share some
common characteristics, notably a conserved acidic region and the ability to interact with
several different transcription factors. A major role is to organise the structure of DNA-protein
complexes in the context of chromatin.

Architectural DNA Binding Proteins

In both the eukaryotic nucleus and the bacterial nucleoid the trajectory of the DNA double
helix is normally tightly constrained so that not only can the DNA be compacted without
entanglement but also to provide an appropriate environment for the enzymatic machinery
involved in DNA transcription, replication and recombination. This organisation is normally
effected by abundant DNA binding proteins, termed architectural DNA-binding proteins,”
that either induce DNA bending or facilitate the formation of multicomponent DNA-protein
complexes. The term ‘architectural’ in this context implies that the protein is required for
organising DNA but the proteins that fall within this definition are often otherwise function-
ally distinct and would include, for example, the histone octamer, abundant eukaryotic
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chromosomal proteins, such as the HMGA and HMGB proteins, abundant proteins associ-
ated with the prokaryotic nucleoid, such as FIS, H-NS, IHF and HU, as well as bona fide
transcription factors exemplified by the TATA-binding protein (TBP). Some of these proteins
have more than one architectural function. For example FIS can stabilise particular configura-
tions of supercoiled DNA plasmids and also act to promote the assembly and activity of tran-
scription, replication and recombination complexes. Many of the more generalised architec-
tural proteins may be regarded as facilitators and are often not essential for viability while some
more ‘specialised’ proteins, such as the histone octamer and TBP, are clearly essential.

Principles of Transcription Factor Induced Bending

The bending of DNA by transcription factors and by other protein complexes is a major
component in the establishment of the overall morphology of protein-DNA complexes. This
bending is usually a consequence of indirect readout, a mechanism by which the selectivity of
binding is dependent not on making direct contacts between the aminoacids and bases, i.e.,
direct readout, but instead on the physicochemical properties of the DNA molecule itself.

Recognition of DNA by transcription factors often involves both direct and indirect read-
out. However, the principles of indirect readout are well illustrated by the histone octamer
which, although not a transcription factor itself, completely lacks direct contacts between the
aminoacid side chains and the bases of the bound DNA. The octamer binds 147 bp of DNA
whnch are wrapped in a left-handed superhelix with a total curvature of approximate 10 radi-
ans.® This curvature contrasts with the stiffness of DNA in solution where the average persis-
tence length (P), defined as the length over which the average deflection of the polymer axis
caused by thermal agitation is one radian, is 140-150 bp,’ i.e., the same length as that bound
by the histone octamer. For DNA molecules that are not anisotropically curved the affinity of
the DNA for the octamer is directly proportional to the flexibility (the inverse of the stiffness).®
However the dependence of the binding energy on P is some 10-fold lower than the depen-
dence of the bending energy in solution on . This implies that the histone octamer increases
the apparent flexibility substantially to compensate for the average increase in DNA curvature
on binding.

How might this change in flexibility be effected? The histone core provides a DNA binding
surface in the form of a positively charged ramp. On binding to this ramp the negative charges
on one side of the DNA are neutralised. This asymmetric neutralisation, which can be mim-
icked in free DNA,” creates an imbalance in charge distribution on opposite sides of the double
helix so that repulsion between the opposing sugar-phosphate backbones on the unneutralised
side facilitates bending by increasing the width of the grooves. Concomitantly, the reduction in
this repulsion on the inside of the bend permits greater freedom in the motions of the base-
pairs, with a corresponding reduction in the width of the grooves. The greater flexibility of the
motions between base-pairs is reflected in the periodic variation of twist and roll with groove
width such that the ranges of values assumed for both are substantially larger than the corre-
sponding ranges observed for DNA molecules free in solution.

The correlation between flexibility and affinity for the histone octamer only applies strictly
when a DNA molecule does not possess intrinsic anisotropic curvature. When it does the
affinity may be relatively higher or lower. For example, the intrinsically curved TATA DNA
sequence whose curvature is compatible with the surface of the histone octamer binds with an
afﬁmty that would normally be characteristic of a substannally more flexible isotropic binding
site.%? In this case binding is favoured by the lower entropic penalty on binding relative to an
isotropically flexible molecule.® However if the intrinsic bend is too great and therefore less
compatible with thc protein binding surface the affinity is reduced relative to an isotropically
flexible molecule.'®

An extension of this principle of asymmetric alteration of the ionic environment of DNA is
provided by the transcription factor TBP and the HMG-domain, found in HMGB proteins, a
class of abundant chromosomal proteins and certain transcription factors such as SRY and
LEF-1." The HMGB proteins consist essentially of a small L-shaped protein domain with a
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cluster of hydrophobic residues on its inner surface and an extended unstructured basic region.
When these proteins bind to DNA they produce a bend of 95-120° over about six base-pairs
and decrease both the axial and torsional stiffness.'> On the outer surface of the bend the
hydrophobic ‘wedge’ towards the apex of the L binds in and widens the minor groove, con-
comitantly untwisting the DNA. This effect is believed to be facilitated by a local reduction in
the dielectric constant which increases the repulsion between opposing sugar-phosphate back-
bones on the approach of the protein to DNA.!>'4 At the same time the basic region neutralises
the phosphates bounding the major groove on the inside of the bend thus decreasing the repul-
sive forces and permitting the narrowing of the groove. Additionally the protein inserts, or
intercalates, hydrophobic aminoacids into either a single base-step or into two base-steps that
are themselves separated by a single base-step. The extent to which this intercalation increases
or simply stabilises the induced bend is unclear. The bend induced by the intercalation con-
trasts with the smooth DNA bending induced by the histone octamer since the intercalation
effectively introduces a kink in the DNA such that the stacking interactions between adjacent
base-pairs are very substantially reduced.

In the TATA-binding protein this same principle of hydrophobic interactions predomi-
nates. Here two pairs of phenylalanine residues are intercalated at steps separated by 6 bases,
kinking the DNA by ~45° at each intercalation site.!>!® Between these pairs of phenylalanine
residues a hydrophobic surface rests snugly within the minor groove. Again the minor groove is
widened and untwisted. However, unlike the HMGB proteins there is no charge neutralisation
on the opposing major groove face of the bent DNA and indeed the sharpness of the induced
curvature is less than that for the HMGB proteins.

In other transcription factors there is substantial variation in the degree of induced bending.
The Escherichia coli CAP (aka CRP) factor is 2 good example of mixed direct and indirect
readout. This dimeric protein induces a bend of ~45° per monomer.!” In this case the major
bend occurs where the recognition helix of the helix-turn-helix motif binds in the major groove
on the inside of the bend, concomitantly making direct contacts with the DNA bases and
neutralising the sugar-phosphate backbone in the immediate vicinity.'® Flanking the central
recognition palindrome is a basic ramp which binds DNA and increases the overall DNA bend
by indirect readout in a manner analogous to the histone octamer.

Biological Functions of DNA Bending

Although one of the principal roles of DNA bending in the living cell is to maintain the
compaction of DNA, it also has important functions in transcriptional control and, in particu-
lar, in the assembly of regulatory complexes. A major consequence of introducing a tight bend
into DNA is to bring DNA sequences which are far apart on a linear representation of a DNA
molecule into close spatial proximity. This effect, which is also characteristic of plectonemically
supercoiled DNA, is mediated in chromatin by the HMG-domain transcription factors, such
as TCF-1, LEF-1 and SRY. In the case of TCF-1 acting at the enhancer of the TCR promoter,
the bend induced by the factor brings together a normally unstable complex of the Ets-1 and
PEBP2oc DNA-binding proteins and ATF/CREB activator proteins to form a stable com-
plex.® This example is probably a particular case of the more general phenomenon in which
the DNA between a transcription factor and its target protein partner must be bent for pro-
tein-protein contacts to occur. The ease of bending will depend critically on the distance and
the helical phase difference between the binding sites of the factor and its target. Normally
unless one or both of the partner proteins are flexible contact will be facilitated when the
binding sites are in helical phase, primarily because of the constraints on the torsional flexibil-
ity of DNA. However, at least in vitro, the constraints imposed by both torsional and axial
rigidity can be overridden by the abundant DNA-bending proteins of the HMGB class. In the
presence one of these proteins a requirement for an integral number of helical turns between
binding sites is no longer crucial. 2’ Furthermore the involvement of the HMGB protein in the
formation of the complex need only be transient.
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To what extent are variations in DNA flexibility reflected in genomic organisation? An
excellent example of the dependence of biological function on DNA structure is provided by
genome of the enteric bacterium E. cofs. In this organism the strongest promoters for DNA
transcription, often those directing the synthesis of tRNA and tRNA, are almost invariably
associated with A/T rich, and hence flexible, DNA sequences extending upstream for 100-300
base-pairs from the transcription startpoint.?’ The activity of many of these promoters is strongly
dependent on a high negative superhelical density stored in the DNA. This would in principle
favour both DNA untwisting at sequences such as TATAAT close to startpoint® and also left-
handed DNA wrapping around the protein complex responsible for initiating transcription. In
many of these highly active promoters the DNA sequence also imparts curvature to the region,
a feature that correlates both with the presence of multiple activating binding sites for the
abundant DNA bending protein FIS (Factor for Inversion Stimulation).?"?? These sites are
often organised in helical phase such that the binding of FIS could constrain a negative super-
helical loop. Indeed in the rnA4 P1 regulatory region the presence of a far upstream FIS site
centred at position -222 from the transcription startpoint results in the constraint of an addi-
tional supercoil in the initiation complex.?* A primary function of this FIS-induced DNA
looping is to promote the wrapping of DNA around the RNA polymerase prior to the initia-
tion of transcription,? a phenomenon that has also been proposed for the activation of the lac
promoter by the CAP DNA-bending transcription factor,?® and consequently to facilitate the
extended wrapping characteristic of the open complex.”” In turn the FIS-induced constraint of
negative superhelicitg buffers this type of promoter against changes in the unconstrained su-
perhelical density.?#?>?8 In other such promoters an alternative model proposes that the up:
stream activating sequence contains regions that are highly susceptible to DNA untwisting.”
For both DNA wrapping and untwisting in the upstream region both models predict that the
topological unwinding is transmitted to the “TATA’ sequence and promotes its untwisting.

DNA bending may also be required for the establishment of repressive regulatory com-
plexes. Here, a DNA loop is often formed by the binding of an oligomeric repressor to two sites
that are distant from each other along the DNA sequence. This loop, which can be as tightly
bent as nucleosomal DNA, prevents the binding of RNA polymerase to the regulated pro-
moter. Examples of this mode of regulation include repression by the AraC, Lacl and GalR
proteins.*3?

HMGA Proteins

The vertebrate HMGA proteins are small proteins of ~100-110 aminoacids and contain
tandem copies, usually three, of a characteristic DNA-binding domain, the AT-hook, together
with a C-terminal acidic region (Fig. 1).> The AT-hook is not restricted to the HMGA pro-
teins as such as it is also found in a related Drosophila chromosomal protein, D1, which con-
tains multiple copies of the motif,3>3¢ in the motor subunits of various ATP-dependent chro-
matin remodelling complexes and in certain transcription factors that also contain a primary
sequence-specific DNA-binding domain where it is assumed to act as an auxiliary DNA-bind-
ing element.”’

The AT-hook is an unstructured short motif with the consensus sequence Arg/Lys-Pro-Arg-
Gly-Arg-Gly—Pro—Arg/ Lys®”? and selectively binds in the minor groove of A/T-rich regions of
DNA.?# The central Arg-Gly-Arg core adopts an extended conformation deep within the
groove with the arginine side chains making extensive hydrophobic contacts along the base of
the groove.! The proline residues change the trajectory of the backbone allowing the basic
residues flanking the core mediate electrostatic and hydrophobic contacts with the DNA back-
bone. When bound to DNA the surface of the core motif contacting the DNA is concave and
resembles that of the DNA binding drug netropsin, which has a similar selectivity for A/T-rich
sequences.?! For both netropsin and an AT-hook one consequence of DNA binding is a mod-
est widening of the minor groove with a concomitant stabilisation of B-DNA structure. In
some cases this widening results in a change in the direction of bending of DNA, particular‘I}y
when that bending is dependent on a narrow minor groove width in A/T-rich sequences.*"*?
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Figure 1. Comparison of the structural organisation of the HMG proteins. Regions of net negative charge
outside the principal DNA binding or nucleosome binding domains are indicated in red and those of net
positive charge in blue. The AT-hook DNA binding domain (AT) in HMGA proteins and the A- and B-
type HMG domainsin HMGB proteins ate indicated. The nucleosome binding domain (NBD) in HMGN
proteins is also shown.

HMGB

Thus a small intrinsic bend of ~20° towards the minor groove in the IFN-f} enhancer is re-
versed on binding HMGAL.#® This could then facilitate recognition of the opposing major
groove by transcription factors binding to specific sequences. Nevertheless although the HMGA
proteins induce only small changes in DNA structure they bind tightly to DNA ligands with
distorted or unusual features. These include supercoiled DNA, four-way junctions and base-
unpaired regions of AT-rich DNA (reviewed in ref. 34). Strikingly in vitro these proteins can
also introduce supercoils into relaxed DNA, possibly by stabilising cross-overs and thereby
stabilising DNA loops.* This ability has been suggested as an explanation of the observation
that in vitro HMGALI represses the chick globin B* gene promoter in the absence of the 3'
enhancer but strongly activates transcription in its presence, regardless of whether or not the
substrate is free DNA or is assembled into nucleosomes.®> This stabilisation of loops could be
mediated by the presence of multiple AT-hooks on each protein.

In mammals the HMGA proteins are encoded by two functional genes, HMGAI and
HMGA2.% Alternative splicing of the transcripts of these genes increases the variety of protein
products, of which the most abundant are HMGAla (HMG-I) and HMGA1b (HMG-Y).
These proteins appear to perform a variety of functions, of which the most studied are related
to chromatin structure and to the facilitation or inhibition of transcription factor binding. In
vitro HMGA proteins bind to nucleosomes, notably at the exit and entry points to the nucleo-
some core particle where they are in close proximity to histones H2A, H2B and H3.%647 The
proteins can also bind to internal sites where they can induce local changes in the rotational
setting of the wrapped DNA. The binding to the nucleosomal DNA is mediated by the AT-
hooks but (by analogy to the HMGB class of proteins) it is conceivable that the acidic tail may
also be involved in contacting the histone octamer and could perform a similar role to that of
the HMGB proteins.

In mitotic chromosomes the HMGA proteins are associated with particular bands and these
proteins are localised to the base of large chromatin loops in close proximity to scaffold-attach-
ment regions (SARs).%® As a consequence it has been suggested that the HMGA proteins are
involved in the maintenance of the condensed mitotic chromosome structure in these regions.
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Evidence supporting this view was adduced from the observation that synthetic ‘MATH’ pro-
teins containing AT-hooks interfere with chromosome condensation during mitosis.*’ In con-
trast another model suggests that co-operarive binding of HMGA molecules to a looped chro-
matin domain in interphase nuclei will facilitate the formation of an ‘open’ chromatin structure
that is competent for transcription by competing with histone H1.*® Although some experi-
ments demonstrate that the MATH proteins can counteract the spreadin§ of heterochromatin,
as shown in particular by suppressing position-effect variegation in flies.”! The mechanism by
which this is accomplished remains to be established. However the expression of the HMGA
proteins is strongl;f correlated with cell growth and is characteristically high in neoplastically
transformed cells.”?

HMGALI has been shown to interact directly with a large variety of transcription factors
including AT-1, ATF-3, NF-Y, IRF-1, SRE NF-kB, p50, Tst-1/Oct-6 and c-_[un.34 In some
cases the protein regulates the formation of an enhanceosome. Thus at the virus-inducible -
interferon enhancer a complex containing both HMGA proteins and transcription factors forms
and then acts to recruit RNA polymerase II and its associated general transcription factors.”>>*
In other cases HMGA proteins can block enhanceosome formation.”® This modulation of
transcription factor binding may be integrated with the regulation of chromarin organisation.
Thus HMGA1la enhances the binding of the ATF-3 to a site at the edge of a nucleosome
positioned on the HIV-1 promoter.>® This combination of bound proteins can then recruit the
remodelling complex hSWI/SNE The interactions of HMGA with these factors can be modu-
lated by covalent modifications including phosphorylation and methylation.**

HMGB Proteins

HMGB proteins are characterised by the HMG-box, a DNA-binding domain specific to
eukaryotes. A major characteristic of this domain is to introduce a sharp bend into DNA (Fig.
2). Accordingly the domain also binds preferentially to a variety of distorted DNA structures,
especially those in which the distortion itself induces a bend. These include negatively super-
coiled DNA, small DNA circles, cruciforms, DNA bulges and cisplatin modified DNA.'® The
HMG-box domain is also found in several related types of protein, for example transcription
factors such as SRY and LEF-1, and subunits of many chromatin remodelling complexes. All
these proteins are predominantly nuclear and appear to act primarily as architectural facilita-
tors in the manipulation of nucleoprotein complexes; for example, in the assembly of com-
plexes involved in recombination and the initiation of transcription, as well as in the assembly
and organisation of chromatin.

The archetypal HMGB proteins are highly abundant (-10-20 copies per nucleosome in the
mammalian nucleus®’) and often occur in two major forms, HMGB1 and HMGB2, originally
termed HMG1 and HMG2, in vertebrates.! The two distinguishing features of these highly
homologous proteins are two similar, but distinct, randem HMG-box domains (A and B), and
a long acidic C-terminal ‘tail’, consisting of ~30 (HMG1) or 20 (HMG2) acidic (aspartic and
glutamic acid) residues, linked to the boxes by a short, predominantly basic linker (Fig. 1).
However the most abundant HMG-box domain proteins in Saccharomyces cerevisiae, Nhp6ap
and Nhp6bp (non-histone proteins 6A and 6B respectively), contain only a single HMG box,
and lack an acidic tail. Likewise the two major HMG-box domain proteins in Drosophila
melanogaster, HMG-D and HMG-Z, have only a single HMG box but, unlike the yeast pro-
teins, contain a short C-terminal acidic rail in addition to a basic region (Fig. 1). These abun-
dant proteins in yeast and Drosophila may be the general functional counterparts of HMGBI
and 2 in vertebrates.

The precise functions of the chromosomal HMGB proteins in vivo for a long time re-
mained obscure. However there is now substantial evidence that they interact directly with
both transcription factors and with the histone octamer. These interactions can affect tran-
scription factor access to chromartin either directly or by promoting chromatin remodelling. In
the latter case the proteins may facilitate repression or activation.
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Figure 2. DNA bending by an HMG domain. The figure shows the DNA binding domain of the Drosophila
High Mobility Group protein HMG-D binding to a short DNA fragment. The protein binds in the minor
groove widening the groove and concomitantly stabilising a bend of ~100° in the DNA. This is achieved
by inserting the sidechains of hydrophobic aminoacid residues (space-filling representation) between ad-
jacent base-pairs at two locations separated by one base-step. The -helices of the protein are depicted in
red and yellow. The DNA structure shown contains a ‘bulge’ in which two adjacent bases on one of the
strands are unpaired. Reproduced with permission from ref. 88.

There are two established cases in which the assembly of nucleoprotein complexes contain-
ing sequence-specific DNA-binding proteins is promoted by the DNA-bending properties of
HMGBI and 2, i.e., the proteins have a classical architectural role. First, in V(D)] recombina-
tion the lymphocyte-specific proteins RAG1 and RAG2 (human recombination activating genes
1 and 2) appear to recruit HMGB1 and 2 to the appropriate sites in chromatin®®®? presumably
by protein-protein contacts with the RAG1 homeodomain. Here they ensure the “12/23 rule”.
This requires that V(D)] recombination occurs only between specific recombination signal
sequences (RSS). Each RSS is made up of a conserved heptamer and nonamer sequence sepa-
rated by a non-conserved spacer of either 12 or 23 base pairs. HMGBI (in concert with RAG1,2)
facilitates recombination probably by bending the DNA between the two conserved sequences
spaced by 23 bp and stabilising a nucleoprotein complex. The HMGB protein plays the dual
role of bringing critical elements of the 23-RSS hepramer into the same phase as the 12-RSS to
promote RAG binding and of assisting in the catalysis of 23-RSS cleavage. Recent footprinting
experiments indicate that the HMGB1 (or HMGB2) protein is positioned 5' of the nonamer
in 23-RSS complexes, interacting largely with the side of the duplex opposite the one contact-
ing the RAG proteins.®® A second instance in which an abundant HMGB protein may facili-
tate nucleoprotein complex assembly is in the formation of an enhanceosome containing the
Epstein-Barr virus replication activator protein ZEBRA and HMGB1,% the two proteins bind
cooperatively, HMGB1 binding to, and presumably bending, a specific DNA sequence be-
tween two ZEBRA recognition sites. Bending of DNA by HMGBI1 and 2 has also been in-
voked to explain the essential role of these proteins in initiating DNA replication by loop
formation at the MVM (minute virus of mice) parvovirus origin of replication.
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In vitro HMGB proteins can enhance the binding of various transcription factors (e.g.
adenovirus MLTE, Oct-1 and 2, HoxD9, p53, steroid hormone receptors, Rel proteins, p73,
Dof2 and the Epstein-Barr activator Rta) to their cognate DNA binding sites (reviewed in ref.
66). Similarly rat SSRP1 has been shown to facilitate the DNA binding of serum response
factor®” and human SSRP1 is associated with the Y isoform of p63 in vivo at the endogenous
MDM?2 and p21*f1#! promoters.® In most of these cases, the interaction of the HMG pro-
tein with the transcription factor has been detected in vitro and could, in principle, serve as the
mechanism for recruitment of HMGB1 or 2 to particular DNA sites. In some cases transfec-
tion experiments indicate functional interactions in vivo. Direct interactions between Nhp6p
and the Gal4p and Tup1 p transcription factors have also been inferred in vivo by a split-ubiquitin
screen and confirmed by a pull-down assay.%” Although the demonstrated interactions in vitro
so far involve an HMGB protein and a single transcription factor, it is entirely possible that in
vivo, in a natural regulatory context, the bending of DNA by HMGB1 and 2 could potentially
allow the recruitment of a second transcription factor to the complex, in an analogous manner
to the action of sequence-specific HMG-box transcription factors' such as LEF-1 in the
enhanceosome at the T cell receptor alpha (TCRr).” HMGBI1 may play a catalytic, chaper-
one role, since it does not appear to be stably incorporated into the final complex. Although a
role for HMGB1 and HMGB2 induced DNA bending in the facilitated binding of transcrip-
tion factors, while being entirely plausible, has not been directly established, it is strongly
suggested by the ability of HU to substitute for the HMGB1-stimulated binding of the Epstein
Barr virus transactivator Rta to its cognate binding sites.”' A possible role for an HMGB1-
induced change in DNA conformation in facilitation of transcription factor binding is also
suggested by the observation that HMGB1 promotes binding of p53 to linear DNA but not to
66 bp DNA circles.”> However, in this case the data do not distinguish between possible effects
of DNA bending or untwisting.

The biological roles of the HMGB proteins have been studied using gene knock-outs. In
mice the loss of HMGB1 but not of HMGB2 is lethal although in the former knock-out there
are pleiotropic effects on glucose metabolism while in the latter spermartogenesis is impaired.”? 74
This suggests a functional redundancy between members of the HMGB1 and 2 family. A
similar situation occurs with Nhp6ap and Nhp6bp in yeast.”> However, the different pheno-
types of the HMGB1 and HMGB2 null mice probably reflect specific roles for the two pro-
teins in different tissues.”>”* In S. cerevisiae the transcriptional effects of NHPG are not general
but gene-specific. At the CHA! locus, loss of NHPG results both in an increase in the basal level
of transcription and in a substantial decrease in the induced level.”® This suggests an effect at
the level of chromatin. The CHA! regulatory region contains a positioned nucleosome which
occludes the TATA box under non-inducing conditions. On induction the TATA region be-
comes accessible.”” However in the mutant strain, consistent with the increased basal level
transcription, the chromatin structure of the TATA region in the uninduced state is similar to
that in the induced wild-type strain. NHP6 thus appears to be required for establishment of the
organised chromatin structure characteristic of the uninduced state. The RSC remodelling
complex is also required for this process’® suggesting that RSC and NhpGp may cooperate to
remodel chromatin.

Further insights into how NhpGap and NhpGbp function were provided by studies on the
HO gene.” Loss of NHP6 function can be suppressed by mutations that increase nucleosome
accessibility and mobility, and enhanced by those with the opposite effect. Mutations both in
the SIN3 and RPD3 genes, encoding components of a histone deacetylase complex, and in
SIN4, partially restore wild-type function in cells lacking both Nhp6ap and Nhp6bp, while
loss of the histone acetylase Gen5p (also a component of the SAGA histone acetylase complex)
in the same cells results in a more severe phenotype. Rpd3p and Gen5p contribute to the
dynamic balance between histone acetylation and deacetylation.®® Both histone acetylation
and the sin (SW1/SNF independence) phenotype are correlated with chromatin unfolding®"®*
and/or enhanced nucleosome accessibility®® while histone deacetylation would be expected to
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favour folding. On this argument one role of the Nhp6p proteins would be to antagonise
folding and possibly promote nucleosome accessibility.

The ability of the HMGB proteins to promote both transcription factor binding to their
cognate sites and also chromatin remodelling implies that these activities could be coordinated
to alter chromatin structure in the vicinity of a factor binding site. Like the HMGA proteins
the abundant HMGB proteins bind to nucleosomes at sites close to the DNA exit and entry
points. An insight into how HMGB proteins might alter the accessibility of nucleosomal DNA
was provided by the observation that HMGBI1 could facilitate the binding and subsequent
remodelling function of the ACF remodelling complex in vitro.* Further observations showed
that HMG-D, a Drosophila HMGB protein, when bound to nucleosome core particles in-
creased the accessibility of nucleosomal DNA to restriction endonucleases at particular sites.®>
These sites were asymmetrically distributed, one site being located at one end of the bound
DNA and the other in the vicinity of the nucleosome dyad. This effect required the acidic tail
of the HMGB protein: without it the HMG-D reduced accessibility at all sites tested on the
nucleosome. This result argues that certain HMGB proteins can alter the structure of nucleo-
somes and to do so presumably by interacting with an available basic region of the histone
octamer. From the distribution of the sites with increased accessibility a prime candidate would
be one (but not both) of the N-terminal tails of histone H3 or one of the C-terminal tails of
histone H2A. It is important to note that the yeast Nhp6 proteins lack an acidic region and so
could not interact with histones directly in this way. However they can associate with two other
proteins, Pob3p and Spt16p, to form a complex, SPN, involved in chromatin remodelling. 547
Both these proteins contain extensive acidic regions and so, in principle, could substitute for
the lack of an acidic region in Nhp6p.

Concluding Remarks

The abundant HMGA and HMGB chromosomal proteins share several common features.
Both interact with nucleosomes, both can also bind a set of transcription factors, both are
involved in enhanceosome formation and both can facilitate the recruitment of chromatin
remodelling complexes. Interestingly the HMGN class of HMG proteins shares with the HMGA
and HMGB classes the ability to interact with nucleosomes and also possesses a C-terminal
region with a net negative charge.
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CHAPTER 12

Molecular Mechanisms of Male Sex

Determination:
The Enigma of SRY

Michael A. Weiss

Abstract

he human testis-determining gene Sry, a single-copy gene on the short arm of the Y

chromosome, encodes a high-mobility-group (HMG) box, a DNA-bending motif

conserved among architectural transcription factors. The SRY-DNA complex exhibits
a dramatic reorganization of the double helix. Although Sry-related Sox genes are of broad
interest in relation to development, the mechanistic role of SRY in gene regulation has
remained enigmatic. It is not known whether the HMG box is the sole functional domain of
the protein. Additional unresolved issues include identification of target genes and interacting
proteins. Although sex-reversal mutations commonly impair DNA binding, this correlation is
not rigorous and does not exclude alternative regulatory mechanisms, such as possible
SRY-directed RNA splicing. New studies of transgenic XX mice expressing chimeric SRY
proteins suggest a powerful methodology to investigate structure-function relationships. Progress
may benefit from genetic, genomic- and proteomic-based technologies to delineate the down-
stream pathway of SRY.

Introduction

Sexual dlmorphlsm provides a model of a genetic switch between alternative programs of
development The male phenotype in eutherian mammals is determined by Sry (sex-determining
region of the Y chromosome;*™ genes and DNA sites are herein indicated in italics as above,
and proteins in capital letters), a gene on the short arm of the Y chromosome. Assignment of
SRY as the testls—determmmg factor (TDF) is supported by studies of transgenic murine mod-
els’ and human intersex abnormalities.*!® Because SRY was identified in the absence of a
priori biochemical informarion, its molecular activity was inferred b?' sequence homology:
SRY contains a sequence-specific high mobility group (HMG)-box,'' a conserved motif of
DNA binding and DNA bending.!* The HMG box is of broad interest in relation to human
development Its binding to DNA induces a dramatic reorganization of DNA structure,'>!
which i I proposed to contribute to assembly of specific transcriptional preinitiation com-
plexes.!>!” Although the association between SRY-induced DNA bending and sex determina-
tion is highly suggestive, how SRY functions at the molecular level to initiate testicular differ-
entiation remains enigmatic. Does SRY operate via specific DNA bending, and if so, what is
the relationship between DNA architecture and gene regulation? If this association is spurious
or incomplete, what alternative mechanisms may be operating?

DNA Conformation and Transcription, edited by Takashi Ohyama. ©2005 Eurekah.com
and Springer Science+Business Media.
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In this chapter I review the structure of SRY and discuss current questions related to pos-
sible biochemical mechanisms of testicular differentiation. SRY belongs to a subfamily of re-
lated HMG boxes, designated SOX. Sox genes are classified in seven families (designated A-G)
based on extent of homology (> 80% within a family). SOX proteins share similar DNA-binding
and DNA-bending properties.'®!® Of particular interest is SOX9, proposed to function down-
stream of SRY and site of mutations associated with campomelic dysplasia and sex reversal 20!
Section I focuses on the structures of specific and non-specific HMG boxes and their respective
DNA complexes. Section I highlights similarities and differences between human and murine
SRY in relation to studies of engineered sex reversal in transgenic mice. Design of chimeric
murine Sry transgenes’?? promises an important new approach toward structure-function
relationships in vivo. In Section III current hypotheses and approaches toward the functional
delineation of a pathway of testicular differentiation are described.

Structure of the HMG Box and Protein-DNA Complexes

The HMG box defines a superfamily of eukaryotic DNA-binding proteins.'> This ca. 80-resi-
due domain, originally described in non-histone chromosomal proteins HMG1 and HMG2,
exhibits an L-shaped structure!” (Fig. 1A). Three o--helices and an N-terminal B-strand pack to
form major- and minor wings.”*%” The structure presents an angular surface as a template for
DNA bending!?!%2% (asterisk in Fig. 1A). A side view illustrates its flat architecture (Fig.
1B). Two classes of HMG boxes are distinguished by their DNA-binding properties. Whereas
HMGI! and related proteins typically contain two or more HMG boxes that recognize dis-
torted DNA structures with weak or absent sequence specificity, specific architectural tran-
scription factors contain one HMG box that recognizes both distorted DNA structures and
specific DNA sequences.!” Domains of either class dock within a widened minor groove to
direct bending of an underwound double helix. Such architectural distortion can enhance
binding of unrelated DNA-binding motifs to flanking target sites.'>#25% The extent of DNA
bending varies among HMG boxes, but in each case the protein binds on the outside of the
DNA bend to compress the major groove.

NMR and crystallographic analyses of non-specific HMG boxes**?” demonstrate that, unlike
conventional globular domains, the two wings of the HMG box contain discrete hydrophobic
cores. The primary core, located between helix 1, helix 2, and the proximal portion of helix 3,
stabilizes the confluence of the major wing (lower panel of Fig. 2). A “mini-core” occurs in the
minor wing between t-helix 3 and the N-terminal B-strand (ugg)er panel of Fig. 2). Both
wings contribute to the motif’s angular DNA-binding surface.!*#%-3 Structures of non-specific
DNA complexes”?! are remarkable for non-polar contacts between the protein and an ex-
panded, underwound and bent minor groove. Structures of bound and free HMG boxes are
similar (for reviews, see refs. 32 and 33).

Structures of specific DNA complexes containing the HMG boxes of SRY and lymphoid
enhancer factor-1 (LEF-1) have been determined by NMR!3:1434 (Fig. 3A, B). The bound
HMG boxes strongly resemble non-specific HMG boxes. Comparison of specific and
non-specific complexes has provided insight into the origins of sequence specificity, which
seems to reflect sequence changes at only a handful of positions.?” SRY and LEF-1 complexes
exhibit overall similarities as well as key differences. Although differing in bend angle (54°
[SRY] and 110° [LEF-1]), each exhibits a single side-chain “cantilever” at corresponding posi-
tions: partial intercalation by Ile (SRY; position 13 of the HMG box consensus, lower 3pane:l of
Fig. 2) or Met (LEF-1) similarly disrupts base stacking but not base pairing,'>!%3%% These
“cantilever” side chains are shown in black in Figure 3. No additional sites of insertion (as
defined in non-specific complexes?®*°) are observed. Similar structural features have recently
been g;)ggrved in ternary DNA complexes containing the SOX2 HMG box and a POU do-
main.”>’>

SRY and LEF-1 each contain a basic region C-terminal to the HMG box (red segments in
Fig. 3). Although conserved among specific HMG boxes, basic tails are not generally present in
non-specific domains.'? Although not well ordered in the free domains (dashed line in Fig.



SRY and Male Sex Determination 161

A. Front View B. Side View

C. Model

(N)
\

Figure 1. The HMG box. A and B) Ribbon model showing front (A) and side views (B). a-Helices 1 and
2 form major wing; helix 3 and the N-terminal B-strand form minor wing. Asterisk indicates position of
cantilever side chain. C) Proposed model of SRY in which the free minor wing exists in equilibrium between
open and closed structures. V5 and Y69 (right-hand panel; HMG-box consensus numbering) stabilize
minor wing (see Fig. 2). In DNA complex an interface forms between helix 3 and the N-terminal f-strand.
Figure is reprinted with permission from Weiss MA. Floppy SOX: Mutual induced fit in HMB (high-
mobility group) box-DNA recognition. Mol Endocrinol 2001; 15:353-362.

4A), the tails play critical functional roles. Comprising residues 70-85 in an extended HMG
box consensus sequence (Fig. 4B), this region also contains a nuclear localization signal (NLS;
an additional NLS is present near the N-terminus of the HMG box**%) and sites of clinical
mutations.*** R133 (position 78 in the HMG-box consensus; residue in the asterisked box in
Fig. 4B) is required for function of the C-terminal NLS; its substitution by tryptophan impairs
nuclear import, but not DNA binding or bending.***> Although SRY and LEF-1 contain
analogous basic tails, the two proteins exhibit different patterns of basic residues, prolines and
glycines (Fig. 4B). These distinct patterns reflect structural differences between the tails in
respective protein-DNA complexes'#** (Fig. 3). Truncation of the LEF-1 cail impairs DNA
bending (from 130° to 52°) and impairs specific DNA affinity by at least 100-fold. 464
Although the structure of free SRY or LEF-1 has not been determined, insights have been
obtained from studies of SRY-related SOX HMG boxes."? Solution structures of SOX4 and
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Figure 2. Side-chain packing in SRY HMG box. Upper panel) Comparison of bound SRY box? (dark grey)
and non-specific boxes (HMG-D; and HMG-1B) at left. Side-chain packing in minor wing of bound SRY
is shown at right. Lower panel) Major wing of SRY in DNA complex. Numbering refers to the HMG-box
consensus. Figure is reprinted with permission from Weiss MA. Floppy SOX: Mutual induced fitin HMG
(high-mobility group) box-DNA recognition. Mol Endocrinol 2001; 15:353-362.

SOXS5 in the absence of DNA have been found to exhibit a novel combination of order and
disorder. The three canonical ot-helices are present and locally well ordered.”®! Whereas the
major wing is well defined, however, the minor wing is not (Fig. 1C and Fig. 5). NMR models
of SOX4° exhibit no fixed relationship between 0t-helix 3 and the major wing (0-helices 1 and
2); the N-terminal strand is disordered and detached. The presence of ordered ot-helical seg-
ments with imprecise tertiary relationship is reminiscent of a molten globule® in equilibrium
between open and closed states (Fig. 1C). Flexibility of the minor wing may enable SRY and
SOX proteins to accommodate a broad range of sequence-dependent DNA bend angles.”®

Insights from Comparison of Human and Murine SRY

Evidence that SRY is sufficient to initiate male organogenesis in an otherwise female genetic
background was provided by studies of Sry transgenes in XX mice:® a 14 kb genomic segment
of the murine Y chromosome containing the murine Sry gene (mSry) open reading frame (o)
and flanking control elements (Fig. 6A) could direct male somatic differentiation.’ Surpris-
ingly, an analogous 24 kb segment of the human Y chromosome containing the human Sry
gene (hSry) could not function similarly in transgenic mice. This result was unexpected in light
of the broad conservation of organogenetic pathways among mammals. However, human and
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A

Figure 3. Structures of HMG box/DNA complexes (stereo pairs). A) SRY-DNA complex** (protein databank
accession code 1J46). Ribbon model of protein is shown in green (HMG box) and red (tail; residues 70-85
in the HMG-box consensus). DNA is shown as gray sticks. B) LEF-1-DNA complex” (protein databank
accession code 2LEF). Ribbon model of protein is shown in blue (HMG box) and red (tail; residues 70-85).
DNA is shown as gray sticks. Asterisk (right panel) indicates binding of LEF-1 tail within compressed major
groove. Cantilever side chains 113 (SRY) and M13 (LEF-1; M11 in protein data bank [PDB] entry) are
shown as black sticks.

120 125 130 135 140 SRY
65 70 75 %k 80 85 HMG
— -
hSRY HREKY |P|NYKYR|P}R|R} KA |KIMLPK
mSRY HREKY |P|NYKYQ |P| H|R| RA|K|VSQR
bSRY HRDKY |P| GYKYR {P| R|R|RA |K|RPQK
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Figure 4. Tail sequences and mode of DNA binding. A) Ribbon model of SRY HMG box with selected side
chains. Position of disordered tail is shown as dashed line. B} C-terminal sequences among mammalian SRY
alleles (upper group) and other sequence-specific HMG boxes (lower group). Bar indicates position of tail;
left-hand segment (residues 70-78 in the HMG box) delimits truncated tail. Asterisk indicates R133 (site
of sex-reversal mutation).* Boxes indicate residues of functional interest. Dashed boxes indicate divergent
residues in LEF-1/T-cell factor-1 (TCF-1) family of HMG boxes. C-terminal basic side chains are high-
lighted in light grey (mLEF1). Sequences are designated by species: hSRY, human; mSRY, murine; bSRY,
bovine; gSRY, goat; eSRY, equine; pSRY, porcine and oSRY, sheep.
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major wing

Figure 5. Molten structuse of SOX-4 HMG box: well-ordered major wing and disordered minor wing.°
Figure is reprinted with permission from Weiss MA. Floppy SOX: Mutual induced fit in HMG (migh
mobility group) box-DNA recognition. Mol Endocrinol 2001; 15:353-362.

murine SRY (hSRY and mSRY) exhibit marked sequence divergence both within and extrinsic
to the HMG box.* Substitutions occur at 28 of 85 amino-acid positions in the HMG box, for
example, spanning its DNA-binding surface (including the cantilever side chains), and hydro-
phobic core. Further, rodent Sry coding regions contain a CAG DNA repeat encoding a novel
glutamine-rich domain C-terminal to the HMG box*> (Fig. 6A). This repeat can function as
a transcriptional activation domain in model systems.”” Failure of hSRY-directed male gene
expression in the original studies of transgenic XX mice could have reflected impaired DNA
bending or less stringent sequence specificity,’® absence of a glutamine-rich repeat in hSRY, or
divergence of ¢/s-acting control elements between human and murine genomic segments.

To distinguish between these Eossibilities, an innovative approach employing chimeric
transgenes has been developed.””* This approach utilizes the 14 kb mSry orf (Fig. 6, top) to
retain appropriate cis-acting regulatory elements to direct expression of mSry (panel A) in the
differentiating gonadal ridge. In this context “domain swap” of DNA segments encoding the
mSRY HMG box by DNA segments encoding the boxes of mSOX3 or mSOX9 was observed
not to impair Sry-directed male sex determination (Fig. 6B and 6C), indicating their func-
tional equivalence in the context of mSRY.?? Swap of murine and human HMG boxes and
amino-terminal non-box sequences (Fig. 6D) likewise yields a chimeric protein able to direct
testicular differentiation.?® An identical phenotype was observed following replacement of the
5"-portion of the mSry orfby the ASry coding region, including its stop codon (Fig. 6E); induction
of sex reversal in XX transgenic mice by hSRY lacking the divergent C-terminal non-box se-
quences of mSRY suggests that the glutamine-rich domain (dark grey segment in Fig. GE) is
not required for male-specific gene regulation.?> We note in passing that this conclusion is not
in accord with transgenic studies of truncation mutants of 725y transgenes in which an intact
glutamine-rich domain was apparently required for XX sex reversal.’ It could not be excluded,
however, that such truncations led to proteolyic instability or aggregation of the variant pro-
teins, thus preventing SRY-directed gene regulation. It remains formally possible that mSRY
functions through its gluramine-rich domain whereas hSRY functions through recruitment of
an unrelated set of interacting proteins,®’ coincidentally leading to identical phenotypes.

Conservation of DNA bend angles among primate SRY-DNA complexes has motivated the
hypothesis that a precise DNA bend angle is required o initiate the male program.®! The
functional equivalence of mSRY and hSRY in sex-reversed XX mice,”® as demonstrated by
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Figure 6. Transgenic studies of Sry-directed sex reversal in XX mice. Male somatic phenotype is induced by
14 kb genomic fragment of Y chromosome containing Sry open reading frame’ (o7 top panel). Domain
structure of mSRY is delineated in (A): N-terminal HMG box and C-terminal glutamine-rich region due
to CAG repeat. B and C) Chimeric mSry constructions encoding “domain swap” of mSRY HMG box by
those of mSOX3 (B) or mSOX9%? (C). In chimeric construction (D) the N-terminal portion of mSry HMG
box is replaced by that of 4Sry, including coding regions for N-terminal non-box sequences (black) and
HMG box? (checkerboard). Chimeric construction (E) contains intact 4Sry orf; including coding region
for C-terminal non-box sequences (black) and 3’ stop codon (arrowhead), instead of N-terminal segment
of mSry orf The glutamine-rich domain of mSRY is thus not expressed.?? Chimeric constructions in each
panel function in XX transgenic mice to induce testicular differentiation and male somatic development.?>%
Sequences of SOX3 and SOX9 HMG boxes are identical in human and murine genes. Figure is reprinted
with permission from Philips NB et al. Sry-directed sex rversal in transgenic mice is robust with respect to
enhanced DNA bending: Comparison of human and murine HMG boxes. Biochemistry 2004;
43:7066-7084.

chimeric transgenes, may bear on this. Although hSRY and mSRY each induce sharp bends in
DNA, Grosschedl and coworkers reported that a human SRY domain bent a consensus SRY
target site (5’-ATTGTT-3’ and complement) 25-30° less sharply than did a murine domain.*®
These findings rationalized the seeming inability of hSRY to cause sex reversal in XX transgenic
mice’ but will require reassessment in light of the new generation of transgenic studies de-
scribed above.”® In fact, a survey of multiple biochemical studies suggests that the relative
extent of DNA bending by human and murine SRY is uncertain as a broad range of bend
angles have been inferred from permutation gel electrophoresis. This range may be due in part
to differences among studies in protein constructions, DNA target sites, conditions of electro-
phoresis, length of DNA probes and method of interpretation.

The Biochemical Basis for the Genetic Function of Sry

How SRY regulates testicular differentiation is not well understood. The absence of identified
target genes poses a major barrier to future advances. The presumption that SRY functions as
an architectural transcription factor is nonetheless supported by a wealth of indirect observations.
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i. The SRY HMG box is conserved as a specific DNA-bending motif!!-62 whereas sequences
N- and C-terminal to the HMG box exhibit marked divergence among mammalian Sry
alleles.>
ii. Almost all point mutations causing human sex reversal occur in the HMG box and impair
specific DNA binding®6? or DNA bending, 3463
iii. Studies of chimeric murine and human Sry transgenes in XX mice indicate that divergent
sequences C-terminal to the HMG box (murine or human; see Fig. 6 above) are equally
compatible with testis determination.?3
iv. Nuclear localization of human SRY is critical as demonstrated by a sex-reversal variant
(R133W) thar is specifically impaired in nuclear localization. %045
Together, these observations suggest—but do not establish—that the DNA bending contrib-
utes to assembly of sex-specific transcriptional complexes.!>!”

A central role for DNA bending is in accord with studies of other specific HMG-box pro-
teins. Examples of target genes and cis-acting DNA control sites are well characterized in the
case of SOX2, SOX9 and LEF-1,4% for example, and so the simplest hypothesis would be
that homologous protein motifs operate through homologous mechanisms. Nonetheless, na-
ture does not always respect such economy: structural motifs may and often do diverge in
function and may be utilized in diverse pathways. It is therefore possible that non-DNA-mediated
activities of SRY in the nucleus may play ancillary or even central roles in its function. A
possible role in RNA splicing, for example, has been described.”%”! One may also imagine that
the SRY HMG box could participate in protein-protein interactions to regulate the activities of
other DNA- or RNA-binding factors. Definitive evidence in favor of or excluding these possi-
bilities will require biochemical reconstitution of SRY-dependent regulatory complexes.

We anticipate that genetic insight will precede and provide guidance for biochemical stud-
ies. Participation of additional factors in the pathway of male development is implied by the
absence of SRY mutations or deletions in the majority of patients with 46, XY gonadal dysgen-
esis.”? In most such cases the responsible gene or genes are unknown. Further, the existence of
SRY-interacting proteins is suggested by the observations of inherited SRY mutations in pa-
tients with gonadal dysgenesis and their (male and fertile) fathers. Although stochastic effects
on gene expression and protein stability cannot be excluded as a mechanism of phenotypic
variability, variable penetrance is likely to reflect autosomal polymorphisms in other genes
required for testicular differentiation. This would be in accord with studies of male sex deter-
mination in mouse strains Mus domesticus and Mus musculus, which have implicated at least
three autosomal genes in testicular differentiation.”>”* Even if SRY operates through the in-
duction of a specific nucleoprotein architecture,'1>16:366375 it is not known how such archi-
tectures affect transcription. Binding of SRY, for example, may facilitate binding of other pro-
teins to neighboring sites or competitively displace such factors.”>7678

Anomalous Sex-Reversal Mutations

Because of the provisional nature of the DNA-bending hypothesis, it is worthwhile to sum-
marize observations that may be inconsistent. Two mutations in the N-terminal non-HMG-box
region of SRY (S18N and R30I) have been identified in patients with partial gonadal dysgen-
esis. In each case the same mutation was noted in normal male members of the proband’s
family.”#® The uncertain molecular basis of these sex-reversal phenotype may reflect present
limitations in knowledge rather than evidence against the DNA-bending hypothesis. The R30I
mutation, for example, may perturb a protein kinase A (PKA) phosphorylation site that has
been shown to enhance DNA binding affinity in vitro.®! Involvement of C-terminal non-box
sequences is suggested by the a case report of 46, XY sex reversal associated with an SRY muta-
tion causing deletion of the C-terminal 41 residues.?? Because the deletion spares the HMG
box, the variant protein is predicted to retain native DNA-binding and DNA-bending proper-
ties. Interestingly, whereas protein sequences outside of the SRY HMG box are generally diver-
gent,? Sry alleles encode a conserved putative PDZ-binding peptide sequence at the extreme
C-terminus, which is deleted in the above patient. Indeed, a candidate human SRY-interacting
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PDZ protein (SRY Interacting Protein 1; SIP1) has been identified by the yeast two-hybrid
assay.®> Based on this and other considerations, participation of SIPs in SRY-directed gene
regulation is proposed.®”>

Although mutations in the HMG box of SRY generally impair DNA binding, variants with
near-native DNA-binding properties have also been described. Variant proteins with native-like
DNA-binding properties are proposed to exhibit structural perturbations in DNA architec-
ture,>#6384 decreased stability leading to accelerated degradation in vivo,'? or impaired nuclear
localization.*® The following mutations are of special interest. (i) V60L and V60A. Located at
position 5 of the HMG box, the native valine packs in the mini-core of the minor wing (see
Fig. 2A). VGOL is inherited” whereas VG0A is uncharacterized.%> Although an initial report
indicated that VGOL blocked detectable DNA-binding activity’ (a finding seemingly at odds
with its presence in a male father), a subsequent study found essentially native DNA binding
and induced DNA structure.®® The V60A variant has not been characterized. (i) M641 and
MG64R. Located at position 9 of the HMG box, the native residue projects from the N-terminal
B-strand at the edge of the DNA.'>* M64I has been reported to impair specific DNA bending
but only modestly affect DNA-binding affinity.%> The structural basis of the bending defect
has been elucidated at atomic resolution.®* Although specific DNA binding is reduced by
about two-fold, it is not clear that this decrement is in itself sufficient to block testicular differ-
entiation. MG4R impairs specific DNA binding by approximately five fold with complete loss
of DNA bending.* Abolition of DNA bending by a point mutation is unusual and suggests a
fundamentally different mode of DNA binding. (iii} M787. Located at position 23 of the
HMG box, the native side chain packs at the back of the protein-DNA complex (magenta in
Fig. 7). It is not known whether the mutation is de novo or familial. The mutation impairs
specific DNA binding by less than two fold with little change in DNA bending, It is possible
that M78T impairs binding of an SRY-interacting factor or accelerates intracellular degredation.
(iv) F109S. Located at position 54 of the HMG box, the native side chain seals the back surface
of the hydrophobic core* (magenta in Fig. 7). The mutation is inherited and also found in
several unaffected male members of the family.3 The mutation does not significantly perturb
specific Ia)NA binding or DNA bending® but is predicted to accelerate proteolytic degredation
in vivo.

DNA Bend Angle and Transcriptional Regulation

A central role for DNA bending in SRY-mediated gene regulation provides an attractive
mechanism in light of conservation of DNA bend angles among primate SRY complexes.®!
Further, a decrement in DNA bending similar in magnitude to that reported between mSRY
and hSRY was characterized in a variant hSRY-DNA complex associated with de novo sex
reversal.®> We propose that sharp DNA bending above a critical threshold is necessary to direct
male-specific transcriptional regulation (Fig. 8A). This model envisages that SRY-directed DNA
bending within a permissive range of angles facilitates assembly of DNA-multiprotein
preinitiation complexes’’”® (“enhanceosomes” and “repressosomes”; giving rise to architec-
wural gene regulation).’>!” The notion of a threshold in DNA bending giving rise to a range of
functional DNA bend angles is supported by studies of transcriptional activation in Escherichia
c0li. 8”8 This model also posits correspondin§ thresholds in specific DNA affinity and kinetic
liferime of the multiprotein-DNA assembly.”

Decreased DNA bending below a critical threshold may impair transcriptional regulation.
Functional analysis of nucleotide substitutions in the LEF-1-responsive enhancer element TCRa
inT cells has shown that variant target sites bent to 90° exhibit impaired transcriptional activa-
tion uncorrelated with effects of the substitutions on protein binding.’! Similar studies of
amino-acid substitutions in the HMG box of SOX2 and nucleotide substitutions in its
5-TTTGTTT-3" (and complement) target site demonstrated that spatially precise DNA bend-
ing is essential to its transcriptional regulation of a target gene fgf¥4 (fibroblast growth factor
4).% Variant SOX2-binding site 5-TTTGGTT-3" (and complement) exhibits a DNA bend
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tail

Figure 7. Space-filling model of SRY-DNA complex highlighting positions of M78 and F109 (magenta;
residues 23 and 54 in HMG-box consensus) on “back” surface. The HMG box is otherwise shown in blue,
C-terminal basic tail in red (residues 73-85), and bend DNA site in gray (12 bp). Coordinates obtained from
ref. 34.

angle of 42° rather than 80° as in the native complex with no change in phase orientation.
Although SOX2 binds well to the variant site, transactivation of the fgf# enhancer is blocked.%®

Binding and bending of DNA control sites by SRY may enable the recruitment of addi-
tional factors, which might be non-sex specific. Such recruitment can be mediated by
protein-protein interactions (model I in Fig. 8B), either berween SRY and other DNA-binding
proteins or accessory proteins. It is possible that a subset of sex-reversal mutations not observed
in the protein-DNA interface (e.g., see Fig. 7) may weaken such interactions. Cooperative
recruitment of other DNA-binding proteins may also be indirectly mediated by changes in
DNA structure. Assembly of such complexes could regulate transcriptional initiation or induce
an altered chromatin structure, leading in turn to recruitment of trithorax-group-,
polycomb-group- or higher-order architectural proteins involved in the long-range regulation
of gene expression. An example of cooperative recruitment is provided by SOX and POU
domains.””>*® Unlike SRY, SOX proteins often exhibit conservation outside of the HMG box,
including within classical domains of transcriptional activation or repression.’®!? Almost all
SRY proteins lack discrete transactivation- or repression domains (possibly excepting the
glutamine-rich repeat of rodent alleles; see Fig. 6). Mutations in or truncation of the
transactivation domains of SOX9 is associated with campomelic dysplasia and sex reversal,
presumably due to a block in the pathway downstream of SRY.2-%!

A major barrier to further progress is posed by the present absence of known target genes. A
variety of indirect evidence raises the possibility that Sox9 is the only critical target gene (for
review, see ref. 92). Although SOX9 is downstream of SRY and also required for testis termina-
tion, whether or how SRY might regulate its expression, nuclear localization, or activity is not
understood. New technologies in genomics and proteomics offer great promise to surmount
this barrier. Identification of target genes will enable characterization of DNA control ele-
ments, if present, and so permit testing of the DNA-bending hypothesis. Comparison of hu-
man and murine pathways should continue to be fruitful. The diversity of HMG boxes func-
tionally tolerated in chimeric mS7y transgenes contrasts with the subtle biochemical deficits
observed or inferred in a subset of sex-reversal human SRY variants.>30:82
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Figure 8. Proposed mechanism of SRY-directed architectural gene regulation. A) Schematic model of
SRY-directed assembly of a male-specific transcriptional preinitiation complex through sharp DNA bend-
ing. Regulation requires a threshold in DNA bending, DNA affinity, and kinetic stability. Right, activated
transcription occurs in the presence of bound SRY as specific DNA bend permits assembly of stable
activator-coactivator-basal preinitiation complex”” (enhanceosome). Left, activated transcription is off in
absence of bound SRY due to disassembly of DNA-multiprotein complex and dissociation of
activator-coactivator complexes. Putative factor X (at right) is proposed to bind cooperatively with SRY to
an adjoining DNA site. B) Enlargement of proposed SRY multi-protein/DNA complex. Cooperative
binding of factor X, a putative sequence-specific DNA-binding protein, is proposed to bind ata DNA site
adjoining that of SRY. Cooperativity may be mediated either via protein-protein interactions (model I; e.g.,
by an SRY-interacting protein at left) or via changes in local DNA structure induced by SRY (model I at
right). Figure is reprinted with permission from Philips NB et al. Sry-directed sex rversal in transgenic mice
is robust with respect to enhanced DNA bending: Comparison of human and murine HMG boxes.
Biochemistry 2004; 43:7066-7084.

Conclusions

The male phenotype in mammals is determined by SRY. Critical questions are: Does SRY
function as an architectural transcription factor? Is its HMG box the only functional element?
Is Sox9 a direct target, and if so, the only functional target? Integrating the SRY-mediated switch
into a broader genetic framework of organogenesis would have important implications for the
pathogenesis and therapy of diverse human diseases.
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CHAPTER 13

The Role of Unusual DNA Structures
in Chromatin Organization for Transcription

Takashi Ohyama

Abstract

he structural and mechanical properties of DNA influence nucleosome positioning

and the manner in which DNA is organized in chromatin. Curved DNA structures,

poly(dAedT) sequences, and Z-DNA-forming sequences frequently occur near
transcription start sites. Many reports have indicated that curved DNA structures play an
important role in the formation, stability and positioning of nucleosomes, and consequently
in DNA packaging in nuclei. Curved DNA structures and poly(dAedT) sequences can increase
the accessibility of target DNA elements of activators in chromatin to facilitate initiation of
transcription. Z-DNA seems to be implicated in gene activation coupled with chromatin
remodeling, and eukaryotes may use triplex DNA and cruciform structures to manipulate
chromatin structure in a site-specific manner.

Introduction

DNA is highly compacted in a nucleus. In humans, the genomic DNA measures about a
meter if unraveled. Thus, it follows that in the nucleus of a somatic cell, about 1x10” m in
diameter, our chromosomal DNA must be compacted in length by as much as 200,000-fold.
Biologically important DNA regions, such as the origins of replication, regulatory regions of
transcription, and recombination loci must also be compacted. A narrow fiber of DNA is first
folded into nucleosomes, the most fundamental unit of chromatin. It is generally thought that
if nucleosomes assemble over a promoter region, they block initiation of transcription, because
they inhibit access and/or assembly of transcription factors.

Histone modifications and ATP-dependent chromatin remodeling play a central role 1o
suppress or amplify the inherently repressive effects of chromatin.! ™ There are several mecha-
nisms to explain how these phenomena participate in gene regulation. One model of transcrip-
tion initiation is as follows: (i) a transcription factor (activator) binds to its target sequence in
chromatin; (ii) the activator recruits a remodeling complex by direct protein-protein interac-
tion; (iii) the complex alters the structure of the surrounding nucleosomes; (iv) the altered
chromatin structure allows general transcription factors and RNA polymerase to bind to the
promoter; (v) transcription starts.* Activators can bind to their target DNA elements, even
when the target is adjacent to nucleosomes, or actually within a nucleosome.'>"?

What chromatin structure is it that activators can bind? At present, we cannot clearly an-
swer this question. This problem is still a “missing link” in the transcription cascade. The
structural and mechanical properties of DNA have been often argued in relation to their effects
on the nucleosome positioning and their effects on the way DNA is organized in chromatin. In

DNA Conformation and Transcription, edited by Takashi Ohyama. ©2005 Eurekah.com
and Springer Science+Business Media.
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Table 1. Repetitive sequences that contain a curved DNA structure in the repeating

unit

Organism Repetitive Sequence Reference(s)
Monkey Satellite 49
Cow (Bos taurus) Satellite 51
Rat (Rattus norvegicus) Satellite 49,51
Mouse Satellite 47,49
Chicken (Gallus gallus) Satellite 51
White dove (Columba risoria) Satellite 51
Pigeon (Columba livia) Satellite 51
Komodo dragon (Varanus komodoensis) Satellite 51
Monitor lizard (Varanus dumereliaddi) Satellite 51
Boa constrictor (Boa constrictor) Satellite 51
Frog (Xenopus laevis) Satellite 50
Oatmeal nematode (Panagrellus redivirus) Satellite 51
Shrimp (Artemia franciscana) Alul family 48
Tobacco Highly repetitive DNA 52

sequence family

this chapter, I focus on whether unusual DNA structures affect the packaging of genomic
DNA into chromatin, and on how transcription is initiated.

Curved DNA and DNA Packaging in Chromatin

Both intrinsic DNA curvature and anisotropic DNA bendability (flexibility) influence the
formation, stability and positioning of nucleosomes.2#? Thus, they may gﬂlay an important
role in the packaging of transcriptional control regions into chromatin.*>*¢ This section fo-
cuses on the role of intrinsic DNA curvature, and considers how the packaged DNA keeps cis
elements accessible to transcription factors. The role of DNA bendability is described in the
next chapter.

DNA curvature seems to have general significance for DNA packaging. Because DNA has
to be bent to fit closely around a histone core, it seems thermodynamically favorable to form
nucleosomes on DNA sequences that are already appropriately curved. In fact, it has been
experimentally shown that nucleosomes often preferentially associate with curved DNA frag-
mens, 2628303573841 Eor example, Widlund et al constructed a library of nucleosome core
DNA from the mouse genome, and screened those sequences that form the most stable nucleo-
somes.” The identified fragments contained phased runs of three or more consecutive adenines
(or thymines), and showed retarded migration in non-denaturing polyacrylamide gel electro-
phoresis. Thus, curved DNA structure was found to be the most common feature among the
screened fragments.

Curved DNA structures may also stabilize chromatin through their interaction with his-
tone N-terminal tail domains that are the ma&’or sites of histone modifications such as acetyla-
tion, methylation and phosphorylation.!>#1%1213 These modifications are implicated in tran-
scription activation and gene silencing. Interactions between N-terminal domains and intrinsic
DNA curvature could influence nucleosome positioning and stability.*>*¢ On rigid, intrinsi-
cally curved DNA sequences, interactions berween DNA and the histone tails stabilizes the
formation of nucleosomes by ca. 250 cal/mol.*

The next question is whether curved DNA structures occur frequently in eukaryotic ge-
nomes. There are some clear answers to this. For example, repetitive DNA sequences, includ-
ing satellite DNASs, very often contain one or more curved DNA structures (Table 1).4-2
Curved DNA structures may be a common feature shared by all satellites, which are universally
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Figure 1. Target DNA elements of transcription activators could become accessible in chromatin, either by
making the region free of nucleosomes, or by exposing it toward the environment on the nuclessome. In
the figure, the rope represents the DNA, and wooden cylinders represent histone octamers. Taped sections
represent activator target DNA elements. The sphere and pyramid represent activators.

associated with regions of constitutive heterochromatin and comprise anywhere from a few
percent to > 50% of mammalian genomes.”>>* If the hypothesis is correct, then curved DNA
structures must contribute significantly to genome packaging. Some satellites, however, do not
show the electrophoretic retardation characreristic of curved DNA structures. A fragment from
bovine satellite I DNA is one such example. It behaves normally in non-denaturing polyacry-
lamide gels. Interestingly, an “unseen DNA curvature” was found in the fragment, in which
another structural property that causes rapid migration had suppressed the effect of the curved
DNA.* Interestingly, repeatedly occurring curved DNA sites are not restricted to satellite
DNA, but are also reported for human €-, Gy-Ay-yf-, 8-, and B-globin, c-myc, and immuno-
globulin heavy chain p loci, and in mouse B™¥"-globin locus.”®>® Considering that most
findings of naturally occurring curved DNA structures have been based on detection of re-
tarded migration, the finding of “unseen curved DNA” strongly suggests that there are many
more curved DNA loci on eukaryotic genomes than expected.

Now, let’s consider promoter packaging into chromatin. Positioning of nucleosomes on a
DNA sequence plays an important role in controlling the access of specific DNA-binding
proteins to regulatory DNA elements.*¢> Curved DNA often occurs in transcriptional con-
trol regions irrespective of the promoter type (Chapter 5). Thus, curved DNA may regulate
positioning of nucleosomes in these regions, so as to allow the binding of activators.* Logi-
cally, the target DNA elements could become accessible by one of two mechanisms: either by
positioning the target on a nucleosome and exposing it toward the environment; or by making
it free of nucleosomes (Fig. 1).

An example of the first mechanism is the nucleosome structure formed on the long terminal
repeat of the mouse mammary tumor virus (MMTV-LTR). In this case, four glucocorticoid
receptor recognition elements (GREs) are located on the surface of a positioned nucleosome,
and the major grooves of two GREs are exposed towards the environment.* These sites can be
recognized by the receptor (a zinc finger protein), which initiates transcription. By what mecha-
nism are these two GREs exposed on the surface of the nucleosome? An early study implicated
curved DNA.% It was subse?uently suggested that this curved DNA has a left-handed curved
trajectory of its helical axis.*
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Figure 2. Synthetic curved DNA with a close resemblance to part of a negative supercoil can activate
transcription by modulating local chromatin structure. The figure shows an example using the HSV #
promoter as a test system. This curved DNA can attract histone octamers. When it is linked to the core
promoter at a specific rotational phase and distance, it can position the TATA box in the linker DNA region
(pLHC4/TLN-6), or at the edge of the nucleosome (pLHC4/TLN-16) with its minor groove facing
outwards. Both structures enhance accessibility of the TATA box and transcription is activated, although
the first structure is more active than the second. The symbols a1, 2 and 3 indicate nucleosomes formed
on the promoter region. Reproduced with permission from ref. 65, ©2003 Oxford University Press.

If the helical axis adopts a left-handed curved trajectory, it will resemble the negatively
supercoiled DNA seen on a nucleosome, and thus it may recruit core histones easily. Further-
more, if a c/s-DNA element is involved in, or is located near, the curved DNA structure, rota-
tional setting of the element on the histone core (or even in linker DNA region in some cases)
would be restricted by the DNA curvature. When its recognition site is displayed toward the
environment by the curvature, the recognition step would be facilitated. Recently, this hypoth-
esis was substantiated by using synthetic DNA segments with different conformations.> When
left-handed curved DNA was linked to the herpes simplex virus thymidine kinase (HSV #£)
promoter at a specific rotational phase and distance, in COS-7 cells, it activated the promoter
approximately 10-fold. Mechanistically, the curved DNA attracted a histone cote and the TATA
box was thereby left in the linker DNA with its minor groove facing outwards (Fig. 2). Neither
planar DNA curvature, nor right-handedly curved DNA, nor straight DNA, had this effect.

On the other hand, when a given DNA is dissimilar to the negative supercoil, it would
make the region free of nucleosomes (the second mechanism). The adenylate kinase gene pro-
moter of Saccharomyces cerevisiae, which has a curved DNA of this type, seems to be an example
of this. This promoter was shown to be free of nucleosomes.”” In the yeast GALI promoter and
GAL80 promoter, curved DNA may make the UAS (upstream activation sequence) escape
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from being incorporated into nucleosomes. The underlying mechanisms are, however, differ-
ent. Under inactivated (non-inducing) conditions, the GALI promoter, which has two strong
DNA curvatures in the upstream of the TATA box, is incorporated into a nucleosome, re-
ferred to as nucleosome B. The bend centers lie within the terminal 20 bp or so on each end of
the 147 bp sequence bound to the nucleosome B.% The UASg is located in the non-nucleosomal
region just upstream of the nucleosome B. In this case, high nucleosome-forming ability of the
two curved DNA structures seems to be used to make the UAS free of nucleosomes. In con-
trast, in the GAL80 promoter, a single intrinsic DNA curvature which is located close to
UASGaLso seems to exclude nucleosome formation on the UAS.%® It can be imagined that
similarity or dissimilarity between a given DNA curvature and the negatively supercoiled DNA
seen on a nucleosome determines how easily the curved DNA can be incorporated into nucleo-
somes.

Besides the mechanism described above, curved DNA may also alter nucleosome structures
to make target DNA elements accessible on the surface of nucleosomes. An interesting result
was obtained in an experiment using DNA fragments composed of a synthetic DNA bending
sequence (the repeated (A/T)sNN(G/C);NN motifs; TG-motifs) and the binding site for the
nuclear factor 1 (NF-1) with an As tract on both sides.%” The TG-motifs are anisotropically
flexible and have a high nucleosome-forming ability.”” When nucleosomes were reconstituted
on the fragments, the NF-1 binding affinity was higher when the flanking A-tracts were
out-of-phase with the TG-motifs, than when they were in-phase. An altered nucleosome struc-
ture was also formed on a poly(dAedT) sequence,!” which is described in the next section.

Poly(dAedT) Sequences and Nucleosome Positioning

DNA sequences of (dA#dT), also frequently occur in eukaryotic genomes. They are rigid
and adopt a unique DNA conformation that has a narrow minor groove.”*”? In Homo sapiens,
Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae, there are more
poly(dAedT) sequences present than would be expected if the DNA sequence were random,
while in Escherichia coli and Mycobacterium tuberculosis, no difference is observed between
actual and expected occurrences.” In promoter regions, (dAedT),-rich sequences, where sev-
eral (dAedT), sequences are connected by other short sequences, have frequently been found.
For example, in yeast, promoters of the genes HIS3, PET56, DED1, CBS2, ARG4, URA3 and
ADH?2 contain or are flanked by them.”*”® The (dAedT),-rich sequences act as upstream
promoter elements in HIS3, PETS6, DED1, ARG4, and URA3.7%7>"7 In the rest of this sec-
tion, the relationships between poly(dAedT) sequences, nucleosome formation, and transcrip-
tion are considered further.

In Vitro Reconstitution of Nucleosomes on Poly(dAedT) Sequences

It is not yet clear whether poly(dAedT) sequences always impede nucleosome formation.
Earlier studies showed that long poly(dAedT) sequences resisted nucleosome formation.”*#! It
was also shown that nucleosome formation over one member of a young A/ subfamily, which
had recently transposed immediately downstream of a T 4A; stretch in the human neurofi-
bromatosis type 1 gene locus, was impeded by the stretch.?> On the other hand, human ge-
nomic DNA fragments containing long (dAedT), tracts (e.g., n=32, 34, or 41) were success-
fully incorporated into nucleosome cores.?*%* Furthermore, nucleosomes were reconstituted
successfully on the yeast DEDI promoter, containing a T tract, two Ts tracts and a Ty tract 386
In this case, the characteristic T-tract conformation was lost upon folding into nucleosomes,
indicating that the structural constraints in a nucleosome dominate over the intrinsic confor-
mation of the T-tract. Higher temperatures apparently favor reconstitution.”” The length of
poly(dAedT), the number of the poly(dAedT) sequences, the DNA sequences surrounding
poly(dAedT), and conditions used for reconstitution, all seem to determine whether
poly(dAedT) sequences can form nucleosomes.
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Figure 3. A putative nucleosome structure formed on the poly(dAedT)-containing wild-type AMT1 pro-
moter (left). Also shown is a putative nucleosome structure formed on a mutant promoter (right), which
carried “normal” DNA instead of the poly(dAedT) sequence. A16: the (dAedT)y tract; S16 (“normal”
DNA): a random sequence predicted to assume a B-form DNA structure; AMT1: Amtl-binding site. In
the wild-type, compared to the mutant, the Amt1-binding site is more accessible owing to the adjacent
homopolymeric (dAedT) tract. Reproduced with permission from ref. 17, ©1996 Elsevier.

Influence of Poly(dAedT) Sequences on Nucleosome Formation
in Vivo

Some promoters carrgmg one or more poly(dAOdT) sequences are not packaged into stable
nucleosomes in vivo,3**° while others are packaged.”®*! Shimizu et al found that in the yeast
minichromosome, A;sTATA;¢ and As4 tracts disrupt nucleosome formauon, whereas a shorter
AsTATA tract is incorporated into the positioned nucleosome.’ They also reported that the
longer A-tracts retained their unique DNA conformation in vivo. Using in vive UV
photofootprinting and DNA repair by photolyase, Suter et al demonstrated that in yeast,
poly(dAOdT) sequences in promoters such as HIS3, URA3 and ILVI were not folded in nu-
cleosomes.®? Like the report by Shimizu et al, this group also suggested that poly(dAedT)
sequences maintain their characteristic DNA structure in vivo. Interestingly, in the Candida
glabrata AMTI gene (encoding copper-metalloregulatory transcription factor), nucleosome
formation was allowed but the poly(dA#dT) sequence influenced the resulting nucleosome
structure. The promoter harbors a (dAedT)¢ sequence slightly upstream of a metal response
element (MRE). These two sequences are packaged into a positioned nucleosome that exhibits
the (dAedT);¢-dependent localized distortion (Fig. 3). This nucleosome makes the MRE ac-

cessible, 17?3

Functional Significance of Poly(dAedT) Sequences in Transcription
Poly(dAedT) sequences seem to make target DNA elements in chromatin more accessible,
which is essentially the same as the proposed effect of curved DNA. To do this, they either
prevent nucleosome formation, or change nucleosome structures. As described above, in some
cases, the poly(dAedT) sequences are incorporated into nucleosomes, with either the orlglnal
conformauon, or with an altered conformation,!”#¢°%%3 while in other cases they are not in-
corporated. 32 Although it is not clear what determines this difference, the lengths of
poly(dAedT) sequences and a slight difference in the conformational and/or mechanical
properties of the poly(dAedT)-containing sequences may be key parameters. In addition, to
establish non-nucleosomal regions, or to form distorted nucleosomes, assistance of some fac-
tors (e.g., poly(dAedT)-binding proteins or histone modifying enzymes) may be required. In
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this sense, the HMG-I(Y) family of “high mobility group” proteins may be important. HMG
proteins organize the structure of DNA-protein complexes in the context of chromatin (Chap-
ter 11). HMG-I(Y) can preferentially bind to certain types of poly(dAedT) sequences on the
surface of nucleosomes and alter the local setting of DNA on the nucleosomes.?* Thus,
poly(dAedT) sequences may also funcrion as a signal o introduce structural changes into nu-
cleosomes.

Chromatin and Z-DNA, Triple-Stranded DNA, and Cruciform DNA

The bulk of the eukaryotic genome is believed not to be torsionally stressed, even though it
is negatively supercoiled, because such supercoilings are largely accommodated by the DNA
writhing in nucleosomes. Unconstrained negative supercoils, however, can be still generated.
For example, they are generated behind an RNA polymerase transcribing a DNA template
(Chapter 10).”> The negative supercoils stabilize non-B DNA structures such as Z-DNA, tri-
plex DNA and cruciform DNA. DNA elements with sequences suitable for the formation of
Z-DNA are found at various positions in genomes. An early study estimated that the human
genome contains approximately 100,000 copies of potential Z-DNA-forming sequences.96
Interestingly, similar to curved DNA and poly(dAedT) sequences, Z-DNA-forming sequences
occur more frequently near transcription statt sites.”’ Do they function to position nucleo-
somes ot to inhibit nucleosome formation? It is thought that the acrual Z-DNA structure lies
in non-nucleosomal regions in chromatin.”® However, we do not yet know whether Z-DNA
can regulate nucleosome position.

An interesting study has been reported recencly. Z-DNA seems to be implicated in gene
activation coupled with chromatin remodeling (Fig. 4). The promoter of the human
colony-stimulating factor 1 (CSF1) gene is flanked by TG repeats (Z-DNA forming sequence),
which were converted to Z-DNA upon activation by the SWI/SNF-like BRG1-associated fac-
tor (BAF) complex in vivo. Furthermore, the in vitro data showed that the BAF complex
facilitates Z-DNA formation in a nucleosomal template.”® These data suggest that at the CSF!
promoter, BAF-induced Z-DNA formation stabilizes an open chromatin structure. This illus-
trates why promoters sometimes contain, or are flanked by, Z-DNA forming sequences.

Triple-stranded DNA seems unable to be accommodated within nucleosomes.'® This con-
clusion is strengthened by the report by Espinas et al, who performed in vitro assembly of
mono-nucleosomes onto 180 bp DNA fragments containing (GA¢TC),, or onto 190 bp
fragments with (GA®TC).!%! Although the repeated sequences themselves had no influence
on nucleosome positioning, nucleosome assembly was strongly inhibited when the triple-stranded
DNA was formed at the (GA®TC),, site. On the other hand, triplex formation was difficult
when the (GA®TC), site was incorporated into a nucleosome. Thus, nucleosome assembly and
triplex formarion are presumably competing processes. In conclusion, triplexes seem unable to
determine the position of nucleosomes by recruiting histone cores.

Cruciform structures are located mainly on internucleosomal DNA,'%? perhaps because
they cannot associate with histone cores'® and as a result, they could induce an alternative
positioning of nucleosomes. The cruciform structures could also act over a distance to destabi-
lize adjacent nucleosomes.® Thus, cruciforms are probably not used to recruit histone octamers
to form positioned nucleosomes. However, eukaryotes may use triplex structures and cruci-
forms to form open chromatin structures.

Linker histones are probably implicated in transcriptional regulation.!?>!% However, the
interaction between unusual DNA structures and linker histones has not been studied ad-
equately. Interestingly, H1 seems to bind preferentially to curved DNA structures that are
flanked with specific sequences.'”” It is evident that more information is needed, on the inter-
action between linker histones and DNA of various conformations.
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Figure 4. A model depicting NFI- and Z-DNA-facilitated chromatin remodeling by the BAF complex, at
the CSFI promoter. Prior binding of NFI/CTF to its target site in the CSFI promoter is required for the
recruitment of the BAF complex. Activation of the promoter by the BAF-complex requires Z-DNA-forming
sequences, which are converted to Z-DNA conformation upon activation, removing the nucleosome.
Reproduced with permission from ref. 99, ©2001 Elsevier.

Conclusion

Curved DNA and poly(dAedT) structures can enhance the accessibility of cis-DNA ele-
ments in chromatin by exposing them to the milieu while on the nucleosome (curved DNA),
or by preventing nucleosome formation (both curved DNA and poly(dAedT)), or in some
cases by forming altered nucleosomal structures (poly(dAedT)). Z-DNA seems to be impli-
cated in gene activation coupled with chromatin remodeling, and triplex DNA and cruciform
structures may be used to form open chromarin structures.
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CHAPTER 14

DNA Bendability and Nucleosome
Positioning in Transcriptional Regulation

Mensur Dlakié, David W. Ussery and Seren Brunak

Abstract
T he placement of nucleosomes along genomic DNA is determined by signals that can be

specific or degenerate at the level of sequence; the latter signals are harder to find using

conventional methods. In recent years, the development of sophisticated machine
learning techniques that can extract subtle phased signals has improved our ability to distin-
guish between various classes of nucleosome-positioning sequences. Our knowledge of the
structural mechanics of free DNA also has reached the point where it can be fruitfully incorpo-
rated into predictive models. More importantly, the accumulation of high-resolution struc-
tures with proteins bound to DNA, and those of nucleosomes in particular, has provided im-
portant clues about the role of DNA bending and flexibility in nucleosome positioning.

Introduction

Eukaryotic DNA is compacted and organized in nucleosome arrays that make up chromo-
somes.' The nucleosome core, a basic unit of chromatin, contains two copies each of the core
histones H2A, H2B, H3 and H4, and about 146 base pairs of DNA wrapped around the
protein octamer.? Further compaction of DNA by the linker histone H1 is achieved in
higher-order structures assembled from repetitive nucleosome cores and linker DNA. Although
nucleosomes show no clear binding preference for particular DNA sequences, they are not
randomly distributed on DNA. Translational and rotational positioning of nucleosomes along
the DNA molecule are in part determined by signal sequences that are often degenerate, and
sometimes have periodicity corresponding to the helical repeat of DNA.>?

Structural properties of DNA, such as intrinsic bending and flexibility, play important roles
in DNA recognition by sequence-specific DNA-binding proteins.'®!> A similar role has been
proposed for these DNA features in nucleosome zpositioning,““6 and verified using a variety of
experimental and theoretical approaches.>®3!7-% There is a statistical preference for rotational
positioning of DNA around the histone octamer such that AAA*TTT and AAT*ATT tri-
nucleotides have the DNA minor groove facing the octamer, while the minor groove of
GGC*GCC and AGC*GCT faces away from protein.>!” These observations were confirmed
by designing artificial nucleosome positioning sequences that form nucleosomes significantly
better than bulk nucleosomal DNA.® In addition to static bending properties of DNA, the
variation in sequence-dependent bendability' can also impart strong rotational and transla-
tional orientation to nucleosomal DNA.%?

DNA Conformation and Transcription, edited by Takashi Ohyama. ©2005 Eurekah.com
and Springer Science+Business Media.
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Figure 1. Nucleosome core particle. Ribbon representations of core histones (H2A: green; H2B: light green;)
H3: cyan; H4: red) bound to DNA (yellow). DNA axis is shown as a continuous white line going through
centers of base pairs. The first 20 residues of the histone H3 tails were omitted for clarity.

Comparison of Nucleosomal DNA with B-DNA Oligonucleotides

The recent flurry of nucleosome core structures from Richmond and Luger labs®**7 has
revealed a wealth of structural details about protein-DNA interactions (Fig. 1). These efforts
culminated with a 1.9 A structure that provided a high-resolution view of the DNA conforma-
tion as well.”®? The resolution of this structure is comparable to high-resolution structures of
oligonucleotides, providing a solid basis for statistical analyses aimed at extracting general prin-
ciples of conformational variability in nucleosomal DNA. We therefore set out to determine to
what degree the nucleosomal DNA angular parameters and deformability compare with those
of B-DNA oligonucleotides {Table 1), and whether these differences can be rationalized in
terms of nucleosome positioning. Many sequence-dependent characteristics of DNA are shared
between the two dara sets, clearly showing that intrinsic conformational properties of the double
helix are utilized by the histones much the same way as in specific protein-DNA complexes.'
On the other hand, certain features of nucleosomal DNA are not found as major trends in
B-DNA oligonucleotides.

Sequence-dependent deformability of DNA is reflected in the dispersion of base-pair pa-
rameters. The inspection of Table 1 reveals that nucleosomal DNA shows greater flexibility
than B-DNA in terms of roll and tilt angles, and only slightly lower flexibility for twist (stan-
dard deviations from mean values are shown as subscripts in Table 1). Higher flexibility of
DNA angular parameters was also observed when comparing specific protein-DNA complexes
to B-DNA."? Although reduced variability of B-DNA is likely caused in part by crystal packing
effects, it is clear that the entropy of protein-DNA complex formation enables, and possibly
requires, larger conformational flexibility of DNA.

DNA duplex bends towards the minor or major grooves (roll) much more easily than in a
direction along the longer base-pair axis (tilt);'*3" this bending anisotropy holds true in



191

DNA Bendability and Nucleosome Positioning in Transcriptional Regulation

*2ANIONIS BI0D SWOSOI|ONU Y} U JudsaLd JOU SEM BPAOBIONUIP DD *(1- SI TUIIDIYI0I UOHB[SLIOD Y} ‘SI|qeliBA OM)
a1 usamiaq adojs saneSou yiIm diysuone(as Jeaul) 1ajad e Jo 95D Uf /| SIIUBIDLI00 UONBIILIOD BU) ‘Sa|geLIEA OM) 3y} usamiag adols aamsod yam diysuone|al seau|
1Dapad 51 21941 §|) ‘PaIe|R1 A|eaUl| 2. SO|BUE |01 PUE ISIM} YDIYM 0} 33130p 21 SAINSEILL JBY) (| PUE |- USDMISQ) JUBIDIS0D UONE|SLOD B 51 40Dy 113 10} UB)s padueyd 3y
LM SBN|RA [BI1USPI SABY SIPHOS|INUIP AIBIUDWRIAWOD) *UMOYS BIE S3PRO3[ONUIP dnbIun UB) AJUQ 1d1ISGNS Ul UMOYS SUOITRIASP PIEPUEIS Uitm ‘BpRod|anuip uoaiS e
Joy sialawresed Je|N3UE JO SaNjeA ueaw JasaIdas SIIGUINN B BIe(] UIRI0I] WO PIULBIGO SEM (X L SPOD UOISSSODE) DINDNLS 40D SUWOSOBINN gerce VN JO
saunyesa) Juapuadap-aouanbas ann jo aAnejuasadal Bulag 10U se PSPN|IXS d1am SIPOBINUIP [BUILLIS) ‘SISA|RUE 31|ED O} JB|ILUIS ¢ "SIAUND JO BLUSYDS LUOKe NDjED
[e20} B Buisn paujwiRiop arom siaawe.ed proe 219(dnu 3y | *sasodnd uoneindjes ay) 10) sa1LS Judpuadapul se Way pajeasn am ‘AnstuwAs olydeido|jeisAn Aq patejos
10U 21oMm pue Judsaid a1om Jun dLlBWIWASE Jod $3INJBJoW B|dNINW UBYM | o "3SEGRIE PIDY JIRPINN 3y} JO AN|IDe} 4O1e9s By} Buisn paure1qo asem (UoneulwoIq pue
uoReAYIBW UBL JBLIO SUOIEIYIPOLL 35Bq AUE JO SYDIU ‘S31S DIseqe ‘saB|ng ‘sopnoajow Suyejedsaju) Jo s3nip punog noyim) sowosljo YNG-9 JO $3)1 2Jeutplood dy L

(70 W0rgiTlg 9EE00'0 16tpe9 %)
08°0- €096°6¢ %1770 809701 €6°0- £5506°9¢ 8E5¢5°0- wiozo- o1
08°0- 165y gy 49500°0 99780°0- 68°0- 10Spy°Ge 0Uv000 olygy Vi
0v'0- Wy LE wr00 €6577°9- 08°0- ST 9¢ $5%00°0 08T 20
£T0- w's00'ge 60 89YEp Q- 150 197g9°67 P80 €9vgg, v
2o 8517 1E €00 WELL0- 18°0- 08849 g 862000 6176¢°0 v
0z 0 12 pge - 60867 08°0- 90580°€¢ weg| 0 452659 )
LE°0 89269 '6¢ T 007900~ 9g°0- (596G 969°Z- wsgery VD
L£°0- rErp9 67 892677 6056y vS0- 09| grpg 861670 €9960°1 ov
Ze0- 9EGT'GE Wege'0- 96500°0 £5°0- rLEyE 19'09°0- Q40T Y 44
8L°0- 687y L¢ rTE00°0 64599°C 6°0- wsgLe 80500°0 1601160 A
85°0- 28Y65"pE #00°0 eUSTye- 840 SipeLE 855000 §990p°Z Ad
9°0- 167 °Gg 05297" |- 2rpery £5°0- 99y g 6570 9860°T w
8y°0- ¥6599°G¢ 92E00°0 ¥5561°0 €20 v6Y89 g 170070 997" v
uo2y ML nm lioy oy 1sIML nwL i1oy
VYNQa-9 Pl QEOmOQ-U:Z

s1wo81jo YNQ-g pue YN [ewosoajonu uaamjaq sidjawesed [einjoniys jo uosiedwo) °| Jjqe]




192 DNA Conformation and Transcription

g

R=057 * R=0.81 T R=0.69
B4 2 4 \\ B ol
E2N BN} 3 : e
Faw \\.‘ .. Cow AN g e
s -2 k1 N B .
& 92, 2 . H Ny
s 3 AATT & 35 AT 5 > TA
: e : N : N
£ R £w e §» . >
E . s NN Zs
N,
2 2 ]
R=-0.54 R=-0.51 - R=-0.93!
g 4s: B -g B .
3 3 <
’-w,x.\\o" call : £ o Lot ] ..
3% T e AGCT § s T~ T ACGT § . TG-CA
; LI RS X8 \\}‘\. &
. . ] 3 ASCSY 0 ~
25 5 ¢ ¢ b3 »
= 2 2
Ny R=0.88 R=-0.80
A TN B al E
2 . N z
40 - &0 . »® 40
& 3 s @
38 PR NN GATC 2 ~ GC 38 CG
‘*Q\ "\,\
£ ~ 0 I ]
2 AN s T Y]
28 &y + 20 20 -
" AN R=-0.80 25204540 5 0 5 10 15 20 25 72520518 5 0 5 10 45 20 25
g L] T Nucleosoma Rofl Nucleosomat Roll
. .
2 ~
@ \\\
3 N X
. e GG-CC
30
~
% AN
-
26204540 5 0 § 10 156 20 25
Nucieosomat Roll

Figure 2. Roll vs. Twist plots for dimers from nucleosomal DNA. Lines represent best linear regression fits
through the data points. R-values in the upper right corner are coefficients of correlation. Empty plot for
CG indicates that for that dinucleotide no entries were present in the structure.

protein-DNA complexes as well.!? In nucleosomal DNA, there is even greater preference for
roll over tilt, in terms of both mean values and the dispersion (Table 1). The roll in nucleoso-
mal DNA contributes to smooth bending into either groove and to kinking into the minor
groove.'>? The latter feature is never seen in B-DNA oligonucleotides and is rarely seen in
protein-DNA complexes.”® Kinking into minor groove is observed almost exclusively at CA*TG
steps (roll angles are in the range -12° to -21°), in marked contrast with protein-DNA com-
plexes where CA*TG step has mostly positive roll.*® However, CAsTG steps have a preference
for low-roll/high-twist in a YCAR context (Y stands for pyrimidine and R for purine),?" and
most of nucleosomal CA*TG steps with negative roll values are indeed preceded by a pyrimi-
dine and followed by a purine.

Pyrimidine-purine (YR) dimers are the most easily deformed steps both in B-DNA crys-
tals'>?2%* and protein-DNA complexes.!>* YR dimers in nucleosomal DNA are even more
flexible as judged by standard deviations of roll angles,? living up to their billing as “flexible
hinges” that fir the DNA duplex to the protein surface.'® Though both TA and CA*TG steps
have the highest flexibility of all 10 unique dimers in terms of twist and roll values (Table 1),
most 03f negative roll angles occur at CA*TG steps, while TA steps have mostly positive roll
angles.

Greater flexibility of nucleosomal DNA is achieved by concerted changes in roll and twist
angles. A strong anti-correlation between twist and roll has been observed in earlier analy-
ses,'»¥%% and is also present in our subset of B-DNA oligomers shown in Table 1. Overall, all
dimers in nucleosomal DNA have excellent correlation berween twist and roll values (Fig. 2),
as is the case for specific protein-DNA complexes,'>!? which supports the notion that
sequence-specific constraints of the sugar phosphate backbone contribute primarily to the con-
formational variability of protein-bound DNA. In B-DNA oligomers, where crystal packing
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forces induce subtle but noticeable variations in DNA deformability,36 the correlation between
twist and roll angles is less prominent (Table 1). It is important to note that YR steps have the
most significant twist-roll correlation, consistent with their highest flexibility. In particular, roll
angles in CA*TG steps cover the span of more than 40° (from -21° to +23°). This remarkable
variability enables them to be positioned either on the “inside” or on the “outside” of the
histone octamer.

DNA Bending and Flexibility Are Utilized for Nucleosome
Positioning

The analysis above shows that nucleosome positioning, for the most part, takes advantage
of the intrinsic structural mechanics of the double helix. When DNA is bound by specific
transcription factors, most of the free energy contribution comes from specific interactions
between protein side-chains and DNA bases. In this case the protein has to accommodate
structural properties of only a limited number of nucleotides, and YR dimers have been se-
lected over the course of evolution as most frequent sequence elements to “fic” DNA around
the protein because of their unique conformational properties.'*'>*® When wrapping DNA
around its surface, a sequence-specific DNA-binding protein needs to solve a “local” optimiza-
tion problem, as its binding site will typically be short. This is achieved efficiently bg utilizing
only part of the conformational space where YR dimers have positive roll angles.'**° In con-
trast, core histones have to wrap tightly a longer piece of DNA regardless of its sequence. This
is a “global” optimization problem and can be solved only by exploiting a wider range of
conformational variability of DNA. Part of the solution is similar to sequence-specific
DNA-binding proteins in a sense that YR dimers in nucleosomal DNA are most flexible and
roll is preferred over tilt. However, nucleosomal DNA has certain characteristics that are only
partially employed in B-DNA oligomers and specific protein-DNA complexes: (1) higher overall
flexibility of all dinucleotides; (2) extremely tight coupling of twist and roll angles; (3) negative
roll angles in CA*TG steps.

Integrating the results from the present analysis with earlier theoretical and experimental
data, we propose that nucleosomes are positioned by a combinartion of static and dynamic
signals encoded in DNA. Statistical analysis of nucleosomal DNA cleavage!” showed that
GGC*GCC elements strongly prefer to have the minor groove facing “outside” (positive roll
angles). The same trend is seen for the GG*CC step in our analysis, as well as AC*GT, AATT
and TA steps. On the other hand, the GC step, and to a lesser degree the AT step, show
stronger preference for negative roll values. We propose that sequence elements with stronger
bending preferences set the initial frame for nucleosome positioning by assuming their pre-
ferred conformation. When these sequences are positioned in such a way that satisfies most of
their rotational preferences, the rest of DNA is “molded” around the histone octamer by ex-
ploiting the conformational variability of DNA. The CA*TG step is most useful in this regard
as it can conform both to “inside” and “outside” positions; other DNA sequences are also
capable of adopting alternarive conformations depending on the context.’” This concept im-
plies that strong nucleosome positioning can be achieved by sequences with properly phased
rotational signals, by sequences that contain many flexible elements, and by those that contain
favorable combinations of the two. Indeed, all three types of nucleosome positioning sequences
have been observed experimentally.52%2

Preference of Nucleosomal Positioning in Exon and Intron DNA
Phased structural features can be “hidden signals” for nucleosomal positioning, which are
not apparent from looking at the sequence. To extract meaningful information from the noisy
data, we used machine learning methods which learn the theory automatically from the data by
inference and model fitting. For this purpose, we adopted probabilistic models known as hid-
den Markov models (HMMs); an HMM is composed of connected states that emit observable
outputs. Using this technique, we have found a pattern in human DNA which codes for pro-
teins.® There is a periodicity of about 10 bp for human exon DNA, whilst intron DNA
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Figure 3. Circular HMM for human exon DNA. A 10 state wheel hidden Markov model reveals DNA
periodicity, as described in ref. 8. The HMM is completely defined by the set of 10 states, the alphabet of
4 symbols, a probability transition, and a probability emission matrix. The model is intended to describe
a stochastic system that evolves from state to state, while randomly emitting symbols from the alphabet. In
the wheel architecture the thickness of the external arrows shows the probability of starting in the corre-
sponding state. Emission probabilities are represented by bars inside boxes. (This figure was originally Figure
1A in ref. 8, and is used with permission from Elsevier.)

contains a somewhat weaker periodicity signal. However, it is unlikely that the periodicity in
the exon DNA is coming from 0-helix encoding sequences; the functional saturation of the
genetic code precludes its involvement in nucleosomal positioning, 28 Figure 3 displays a wheel
shaped HMM architecture for human exon DNA (in this case of length 10 nucleotides), where
sequences can enter the wheel at any point. The thickness of the arrows from “outside” repre-
sents the probability of starting from the corresponding state. After training, the emission
parameters in the wheel model showed a clearly recognizable periodic pattern [AT][AT]G (non-T,
AorT, G) in states 8, 9 and 10. This wheel with a model of ten nucleotides provided the best
fit from several different numbers of states. Furthermore, using the wheel model to estimate
the average negative log-likelihood per nucleotide, values specific for various types of exons,
introns and intergenic regions were also computed. The ranking of these also strongly indicate
that the above described periodic pattern is strongest in exons. The period in the alignments
(average distance between state 9 nucleotides) is in the order of 10.1-10.2 bp.8 This value is the
periodicity of DNA wrapped around nucleosomes, as discussed above.

By looking for periodicity signals in prokaryotic genomes, at the DNA structural level, we
found evidence for horizontal DNA transfer from an Archaea to the bacterium Thermotoga
maritime.> s it possible that such signals exist in DNA thar is more compacted, than in
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Figure 4. Periodicity plots for Caenorhabditis elegans chromosome 1. DNA structural periodicity was
calculated for four different measures, as described previously.”” The four panels correspond to the whole
chromosome, intron-containing DNA, exon-containing DNA, and the . coli K-12 chromosome. Figure
continued on next page.

regions of highly expressed genes? One possibility is that there might be a difference between
DNA which conains protein-coding regions vs. the rest of the DNA. A good test of this is
chromosome 1 from Caenorbabditis elegans (~16 Mbp), which has a coding density of about
25%-that is, about 25% (-4 Mbp) of the chromosome is transcribed into mRNA. Further-
more, this “coding” region is divided into two almost equal fractions of intron and exon DNA
(~2Mbp each). Figure 4 shows the periodicity plot for the whole chromosome, as well as for the
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Figure 4. Continued.

exon and intron containing DNA. It is quite clear that, in contrast to the results for human
DNA, the dominant contribution to the periodicity is from the DNA containing introns, with
the exon DNA having a less strong periodicity. For comparison, the periodicity plot for the 4.6
Mbp chromosome of Escherichia coli K-12, which mostly contains coding DNA, is also shown
in Figure 4. Thus, it seems likely, at least for C. elegans chromosome 1, that the non-coding
DNA is more likely to be wrapped tightly in nucleosome complexes, whilst the coding DNA
might have a greater chance to exist in a more open conformation. The strong peak of around
10.2 nucleotides in C. elegans has been prevxously found using several different methods, and
has been localized to introns and intergenic regions.***! Repeats of various sizes have been
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found in other chromosomes.*? It is likely that these periodic repeats are reflections of global
chromatin properties.

Nucleosome Positioning and Transcriptional Regulation

The idea has been around for more than 20 years—phased nucleosomes can result in more
compact chromarin structures, and these regions are less available for the transcriptional ma-
chinery.*> The size of an RNA polymerase molecule is about the same size as a nucleosome
octamer with DNA wrapped around it, as shown in Figure 1. Thus if these nucleosomes are
tightly bound together, in some sort of higher order structure, then there is little chance that
the RNA polymerase enzyme can get access to the promoter region, and hence transcription
will be repressed.

Although this idea is simple, in actuality there are complications. The degree of compaction
of the chromatin depends on many things, including modification of the histone protein tails**
as well as DNA methylation, and there are many pathways which can regulate these modifi-
cations.””# In this chapter, we are focusing on the structure of DNA, and whether there are
some general properties of the double helix which can affect the ability of certain sequences to
condense.

Based on the sequences of DNA wrapped around trimmed nucleosomal cores, a trinucle-
otide model was developed for the preference of certain trinucleotides to be in phase with the
helical repeat. Depending on where these trinucleotides are located, they will have either the
major or minor groove facing away from the histone octamer."” Trinucleotides were given a
number based on the frequency of occurrence; those favoring the major groove were assigned a
negative value, whilst if the minor groove faced away from the nucleosome, they were given a
positive number. By taking the absolute value of the numbers, one has a measure of the relative
propensity of a sequence to be positioned in nucleosomes, which we call “position prefer-
ence”.’ In human promoters, we have found that several trinucleotides known to have high
propensity for major groove compression occur much more frequently in the regions down-
stream of the transcriptional start point, whilst the upstream regions contain more
low-bendability triplets. Within the region downstream of the start point, we find a periodic
pattern in sequence and bendability, which is in phase with the DNA helical pitch. The peri-
odic bendability profile shows bending peaks roughly at every 10 bp with stronger bending at
20 bp intervals. These observations suggest that DNA in the region downstream of the tran-
scriptional start point is able to wrap around"--otein in a manner reminiscent of DNA in a
nucleosome. This notion was further supported by the finding that the periodic bendability is
caused mainly by the complementary triplet pairs CAG*CTG and GGC*GCC, which previ-
ously have been found to correlate with nucleosome positioning.

When these values are calculated for individual genes in the E. coli K-12 genome, there is a
correlation between low position preference values and highly expressed genes.” This makes
sense from a structural point of view, in that regions that are not preferentially localized in
nucleosomes would tend to exist in more open conformations, and hence be more accessible to
the RNA polymerase. This works even though in E. coli there are no histones or nucleosomes;
however, the E. coli chromosome is compacted roughly 7,000-fold, so there must still be a need
for some sort of chromatin strucrure, and the physical chemical properties are likely to be the
same. The E. coli chromosome contains clusters of highly expressed genes, localized to certain
regions of the chromosome.*® Similarly, based on an extensive series of gene expression experi-
ments in human cells, it has been shown that highly expressed human genes cluster together in
distinct regions of the chromosomes.’'>? It is possible to predict such regions throughout the
whole genome using methods such as the nucleosomal position preference. As an example,
Figure 5A shows a plot of the nucleosomal position preference along chromosome 1 of the
yeast Schizosaccharomyces pombe.>® A close-up (Fig. SB) shows the marked region with a low
position preference (dark green in lane C) corresponds to the SPAC2341.07 gene, which is a
zinc finger protein that can be highly expressed in S. pombe. Other regions, such as highly
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expressed tRNA operons, consistently exhibit position preference values significantly lower
than the chromosomal average in both eukaryotic and prokaryotic genomes (i.e., they are more
likely to exclude chromosomes). In general, although different genes are expressed under dif-
ferent conditions, utilization of DNA structural properties can be helpful in finding regions
along a chromosome that are potentially highly expressed.

Conclusions

Nucleosome positioning is governed by various sequence signals, including the differences
between coding and non-coding DNA sequences imposed by evolutionary constraints. Ex-
panding the alphabet of position signals beyond simple sequence, for example by using the
extended set of DNA structure paramerters in connection with machine learning methods, will
further improve our ability to predict the role of nucleosome placement in transcriptional
regulation.
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