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1

INTRODUCTION AND PREVIEW

1.1 Motivations

Deciding is a very complex and difficult task. Some people even argue that our abil-
ity to make decisions in complex situations is the main feature that distinguishes
us from animals (it is also common to say that laughing is the main difference).
Nevertheless, when the task is too complex or the interests at stake are too im-
portant, we quite often do not know or are not sure what to decide and, in many
instances, we resort to a decision support technique: an informal one—we toss a
coin, we ask an oracle, we visit an astrologer, we consult an expert—or a formal
one. Although informal decision support techniques can be of interest, in this
book, we will focus on formal ones. Among the latter, we find some well-known
decision support techniques: cost-benefit analysis, multiple criteria decision analy-
sis, decision trees, ... But there are many others, some not presented as decision
support techniques, that help making decisions. Let us give a few examples.

e When a school director has to decide whether a given student will pass or
fail, he usually asks each teacher to assess the student’s merits by means of
a grade. The director then sums the grades and compares the result to a
threshold.

e When a bank has to decide whether a given client will obtain a credit, a
technique, called credit scoring, is often used.

e When the mayor of a city decides to temporarily forbid car traffic in a city
because of air pollution, he probably takes the value of some indicators, e.g.
the air quality index, into account.

e Groups or committees also make decisions. In order to do so, they often use
voting procedures.

All these formal techniques are what we call (formal) decision and evaluation
models, i.e. a set of explicit and well-defined rules to collect, assess and process
information in order to be able to make recommendations in decision and/or eval-
uation processes. They are so widespread that almost no one can pretend not to
have used or suffered the consequences of one of them. These models—probably
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due to their formal character—inspire respect and trust: they seem scientific. But
are they really well founded? Do they perform as well as we want them to? Can
we safely rely on them when we have to make important decisions? It is cru-
cial to answer these questions because formal models are so widespread in many
domains of human activity. This is why we chose seven popular evaluation or de-
cision models and thoroughly analysed them, revealing their weaknesses and how
things can go wrong, in a previous volume published by the same authors and
Patrice Perny (Evaluation and decision models: A critical perspective, Bouyssou,
Marchant, Pirlot, Perny, Tsoukias, and Vincke, 2000). We also claimed that the
difficulties encountered are not specific to these seven models but common to all
evaluation and decision models: a perfect or not even a best formal model do not
exist. Actually, defining a ‘perfect model’ would be a difficult, if not impossible,
task. You might then ask why bother with formal decision models if they raise so
many problems. The answer given in the first volume provided three arguments
in favour of formal models and showing that, besides their weaknesses, they also
have advantages.

1. First, it should not be forgotten that formal tools lend themselves more eas-
ily to criticism and close examination than other types of tools. However,
whenever “intuition” or “expertise” was subjected to close scrutiny, it was
more or less always shown that such types of judgments are based on heuris-
tics that are likely to neglect important aspects of the situation and/or are
affected by many biases (see the syntheses of Bazerman, 1990; Hogarth, 1987;
Kahneman, Slovic, and Tversky, 1981; Poulton, 1994; Rivett, 1994; Russo
and Schoemaker, 1989; Thaler, 1991)

2. Second, formal methods have a number of advantages that often prove crucial
in complex organisational and/or social processes:

e they promote communication between the actors of a decision or eval-
uation process by offering them a common language;

e they require the building of models of certain aspects of “reality”; this
implies concentrating efforts on crucial matters. Thus, formal methods
are often indispensable structuring instruments.

¢ they easily lend themselves to “what-if” types of questions. These ez-
ploration capabilities are crucial in order to devise robust recommenda-
tions.

Although these advantages may have little weight in terms of effort involved,
money and time consumed in some situations (e.g. a very simple decision /
evaluation process involving a single actor) they appear fundamental to us
in most social or organisational processes.

3. Third, casual observation suggests that there is an increasing demand for
such tools in various fields (going from executive information systems, de-
cision support systems and expert systems to standardised evaluation tests
and impact studies). It is our belief that the introduction of such tools can
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have quite a beneficial impact in many areas in which they are not com-
monly used. Although many companies use tools such as graphology and/or
astrology to choose between applicants for a given position, we believe that
the use of more formal methods could improve such selection processes in
a significant way (if only issues such as fairness and equity). Similarly, the
introduction of more formal evaluation tools in the evaluation of public poli-
cies, laws and regulations (e.g. policy against crime and drugs, gun control
policy, fiscal policy, the establishment of environmental standards, etc.), an
area in which they are strikingly absent in many countries, would surely
contribute to a more transparent and effective governance.

So, where are we now? In the first volume, we heavily criticised formal models
but we also argued that they can be useful. It is now time to make a proposal.
Unfortunately, we have no miraculous solution but we can propose something:
a kind of guide, a way of reasoning aimed at helping the analyst to choose a
model and use it consistently. In this volume, we will systematically analyse many
formal models (often using an axiomatic approach). We will try to find their most
characteristic properties and show what makes them different from other models.
As they are different and thus cannot be used in the same way, our analysis will
therefore naturally lead us to determine a consistent way to use each of them.
We will also see in which context a given property seems useful, desirable or
undesirable.

Let us use a metaphor to clarify our purpose. Suppose you run a small low-
tech company which has four employees not including yourself. The company
has no computers and you are computer-illiterate but you believe that things
have changed and that it is now time to make a move. After looking at a few
catalogues presenting hundreds of different models, you feel lost. You therefore
go to the nearest computer store and ask the salesman what he has for you. He
shows you one model—a desktop—and tells you it is the best one; it was shown
on TV and it ranks number one in sales. You decide to buy five of them. The
salesman congratulates you: this is your best buy and you return home, happy.
It is possible, if you are lucky, that these computers will allow you to run your
business more efficiently and that you will be satisfied in the long term. But
you may also discover after some time that the computers are not as good as the
advertisements claim and that the ones you bought cannot do what you expected
of them.

Let us now imagine another scenario. When you go to the computer store, the
salesman tells you that computers are not perfect. They sometimes crash and, if a
hard disk crashes, you loose all of your data. They can become infested by viruses.
Some models are more reliable but their price is higher. Furthermore, no computer
is ideal for all types of applications. Some are bad for graphic applications, others
are not compatible with most other computers or are not user-friendly. You then
leave the store without buying a single computer, very frustrated because you still
think that you need computers, but you do not know what to buy.

In a third scenario, after telling you that no computer is perfect and that
you therefore need to know more about computers, the salesman explains how a
computer works, what the main functionalities are, how you can partially protect
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yourself against hard disk failures by making backups or against viruses. He also
sketches a classification of computers. There are mainly three types of computers:
CP, Pear and Plurax. CP’s are bad for graphics and not very reliable but they are
cheap and compatible with most computers. They are quite user-friendly and there
are a lot of business applications designed for CP’s. Pears are very reliable, good
for graphics and very user-friendly, but they are expensive and not compatible with
most computers although there are solutions to improve the compatibility. Finally,
Plurax’s are probably the most reliable and virus-proof computers. This explains
their high cost. They are not user-friendly and are therefore better suited for
computer specialists. The salesman then asks what your needs are and eventually
helps you to formulate them. He finally helps you design a complete solution, i.e.
not just five identical computers but, for example, several different computers—for
different uses—with the adequate software and, perhaps, linked by a network.

It is clear that the third scenario is the best one and this book is meant for
those wishing they met the third salesman rather than the first two.

Let us return to evaluation and decision models. A naive decision maker con-
sulting an analyst that always uses the same decision aiding method (because he
only knows that one or because it is the one he developed and he wants to sell
it) is like our business man in the first scenario. This is something we cannot, of
course, recommend.

After reading our first volume, a reader may feel very frustrated like the busi-
ness man in the second scenario, because we criticised so many different models
without proposing alternatives or a way to cope with the problems. If we (the
authors) stopped after the first volume, we would be like the second salesman, but
with this second volume, we hope to be like the third salesman, using criticism as
a stimulus, a springboard for going beyond the surface and analysing the situation
in depth.

In the next section, before shortly presenting the content of this book, we
will summarise what we learned in the first volume. Note that the first book is
more a companion volume than one ‘to-be-read-before-the-second’, but because it
appeared first and for the ease of reference, we call it first.

1.2 What have we learned in the first volume?

Let us summarise the conclusions of the first volume in a few points.

Objective and scope of formal decision / evaluation models

e Formal decision and evaluation models are implemented in complex decision
/ evaluation processes. Using them rarely amounts to solving a well-defined
mathematical problem. Their usefulness not only depends on their intrinsic
formal qualities, but also on the quality of their implementation (structuring
of the problem, communication with actors involved in the process, trans-
parency of the model, etc.). Having a sound theoretical basis is therefore
a necessary but insufficient condition of their usefulness (see first volume,
chapter 9).
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e The objective of these models may not be to recommend the choice of a
“best” course of action. More complex recommendations, e.g. ranking the
possible courses of action or comparing them to standards, are also frequently
needed (see first volume, chapters 3, 4, 6 and 7). Moreover, the usefulness
of such models is not limited to the elaboration of several types of recom-
mendations. When properly used, they may provide support at all steps of
a decision process (see first volume, chapter 9).

Collecting data

e All models imply collecting and assessing “data” of various types and qual-
ities and manipulating these data in order to derive conclusions that will
hopefully be useful in a decision or evaluation process. This more or less
inevitably implies building “evaluation models” trying to capture aspects of
“reality” that are sometimes difficult to define with great precision (see first
volume, chapters 3, 4, 6 and 9).

e The numbers resulting from such “evaluation models” often appear as con-
structs that are the result of multiple options. The choice between these
possible options is only partly guided by “scientific considerations”. These
numbers should not be confused with numbers resulting from classical mea-
surement operations in Physics. They are measured on scales that are dif-
ficult to characterise properly. Furthermore, they are often plagued with
imprecision, ambiguity and/or uncertainty. Therefore, more often than not,
these numbers seem, at best, to give an order of magnitude of what is in-
tended to be captured (see first volume, chapters 3, 4, 6 and 8).

e The properties of the numbers manipulated in such models should be exam-
ined with care; using “numbers” may only be a matter of convenience and
does not imply that any operation can be meaningfully performed on them
(see first volume, chapters 3, 4, 6 and 7).

e The use of evaluation models greatly contributes to shaping and transforming
the “reality” that we would like to “measure”. Implementing a decision /
evaluation model only rarely implies capturing aspects of reality that can be
considered as independent of the model (see first volume, chapters 4, 6 and
9).

Aggregating evaluations

o Aggregating the results of complex “evaluation models” is far from being an
easy task. Although many aggregation models amount to summarising these
numbers into a single one, this is not the only possible aggregation strategy
(see first volume, chapters 3, 4, 5 and 6).

e The pervasive use of simple tools such as weighted averages can lead to
disappointing and/or unwanted results. The use of weighted averages should
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in fact be restricted to rather specific situations that are seldom met in
practice (see first volume, chapters 3, 4 and 6).

¢ Devising an aggregation technique is not an easy task. Apparently reasonable
principles can lead to a model with poor properties. A formal analysis of
such models may therefore prove of utmost importance (see first volume,
chapters 2, 4 and 6).

e Aggregation techniques often call for the introduction of “preference infor-
mation”. The type of aggregation model that is used greatly contributes to
shaping this information. Assessment techniques, therefore, not only collect
but shape and/or create preference information (see first volume, chapter 6).

e Many different tools can be envisaged to model the preferences of an actor
in a decision/evaluation process (see first volume, chapters 2 and 6).

o Intuitive preference information, e.g. concerning the relative importance of
several points of view, can be difficult to interpret within a well-defined
aggregation model (see first volume, chapter 6).

Dealing with imprecision, ambiguity and uncertainty

e In order to allow the analyst to derive convincing recommendations, the
model should explicitly deal with imprecision, uncertainty and inaccurate
determination. Modelling all these elements into the classical framework
of Decision Theory using probabilities may not always lead to an adequate
model. It is not easy to create an alternative framework in which problems
such as dynamic consistency or respect of (first order) stochastic dominance
are dealt with satisfactorily (see first volume, chapters 6 and 8).

¢ Deriving robust conclusions on the basis of such aggregation models requires
a lot of work and care. The search for robust conclusions may imply analyses
much more complex than simple sensitivity analyses varying one parameter
at a time to test the stability of a solution (see first volume, chapters 6
and 8).

1.3 Stepping stones for the analyst

As we said above, we do not have solutions to all of the problems encountered
and all of the questions raised in the first volume. We do not have a unique and
well-defined methodology that one could follow step-by-step from the beginning to
the end of a decision aiding process. What we can do, is simply propose, here and
there, a sound analysis of techniques aimed at supporting a part of the decision
aiding process. These are what we call the ‘stepping stones for the analyst’. They
do not form a single and continuous path to cross the river but can help.
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@) We will use a special formatting—as shown in this paragraph—at different

£ places in this book, to draw the reader’s attention to a ‘stepping stone’, to the
£ summary of a section, to something we consider important or of much practical
= interest or when we present the conclusion of a long development.

1.3.1 Structure

The focus in this book—compared to its companion volume—is on multicriteria
evaluation and decision models: three chapters are devoted to the analysis of
aggregation methods (chapters 4-6). In chapter 5, we analyse different aggregation
methods in the light of Social Choice Theory, while, in chapter 6, we use the
framework of conjoint measurement theory in order to study many aggregation
methods (often the same ones as in chapter 5). Chapter 4 serves as an introduction
to chapters 5 and 6.

It is well-known that some aggregation methods (for instance the outranking
methods) yield relations that are not always transitive. It is therefore necessary,
after the aggregation, to use an exploitation technique the purpose of which is to
help make a recommendation to the decision maker. In chapter 7, we show that
an exploitation is often necessary, not only after an aggregation using an outrank-
ing method, but in many other cases, even, in some cases, with a multi-attribute
additive model. We then analyse several exploitation techniques. Another topic
addressed in chapter 7 is uncertainty. Uncertainty is present in many decision
problems and decision aiding processes. A very common and reasonable attitude
in presence of uncertainty, is to try to model it in order to take it into account
in the decision aiding process. Many different models of uncertainty are available
in the literature: probabilities, possibilities, belief functions, upper probabilities,
fuzzy sets, etc. There are also a lot of models incorporating these representa-
tions of uncertainty in decision models (for instance, Subjective Expected Utility).
Some of them even cope with multiple attributes. All these models deserve great
attention and the literature devoted to them is vast but we do not discuss them
for two reasons: we do not feel competent and the subject is much too vast for
this volume. Nevertheless, we discuss the important case, seldom treated in the
literature, where nothing is known about the uncertainty distribution or where the
hypotheses underlying some models are not met. In such cases, even if it is not pos-
sible to define a best or rational decision, we can try to draw robust conclusions or
to make robust recommendations, i.e. conclusions that are true or approximately
true or recommendations that lead to good—even if not optimal—outcomes under
all possible scenarios or states of the nature.

In many evaluation and decision models, and in particular in many aggregation
and exploitation methods, we use numbers. Sometimes, we use them to represent
preferences but in other cases we derive preferences from them. Sometimes they are
factual evaluations of an alternative on an attribute; sometimes, these evaluations
result from a more or less subjective process. In other cases, they are the result
of the aggregation (as in MAVT) and/or exploitation method. The pervasiveness
of these numbers and the variety of their roles makes it necessary to analyse their
meaning and what we can meaningfully do with them. As they play an important
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role from the beginning of the decision aiding process, the chapter on numbers
and preferences (chapter 3) comes before those on aggregation and exploitation
methods.

We have not presented the second chapter yet. Its status is quite different from
that of the other chapters. In chapters 3-7, we analyse some formal techniques
aimed at supporting one part of the decision aiding process but, in chapter 2,
the focus is on the whole decision aiding process, on the different ways of con-
ducting such a process and of introducing rationality into it, on a formalisation of
the different elements of the decision aiding process: the client, the analyst, the
stakes, the problem formulation, the model, the recommendation, etc. Because
this chapter provides a general framework for describing all parts of the decision
aiding process, it comes just after this introduction. Figure 1.1 presents the logi-
cal dependencies amongst the chapters. Readers interested mostly by theoretical

Figure 1.1: Reading schema.

aspects can concentrate on chapters 4-7 while practitioners will find it interesting
to first read chapters 2-3.

Although most questions raised in the first volume are addressed in this volume,
there is no chapter-by-chapter correspondence between both volumes. In the first
volume, we presented several applications of evaluation and decision models. Most
of them raised questions that are discussed in different chapters of this volume.
We discussed, for example, the problem of grading students. This problem raises
questions related to measurement, aggregation, uncertainty, robustness and so on,
which are discussed in various parts of the present book.

1.3.2 Outline of the chapters

1.3.2.1 Chapter 2: “Problem formulation and structuring: the deci-
sion aiding process”

We introduce two basic subjects in chapter 2. The first is a presentation of what we
call a “decision aiding approach”: a perspective of how “rationality” (a key concept
for formal decision aiding) enters into a decision and/or evaluation model. One
of our principal claims is that decision aiding approaches are NOT characterised
by any method used in providing decision support, but by how such methods are
used.
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However, the use of a combinatorial optimisation algorithm within the evalua-
tion model does not preclude that the whole decision aiding process was conducted
using a constructive approach. It simply shows that the precise decision maker’s
problem can be formulated using combinatorial optimisation.

Example 1.1

Consider the following (simplified) situation. A client is planning to open a num-
ber of shops in a town structured in districts. He might start by formulating the
problem of “covering” the whole town with the minimum number of shops (under
the hypothesis that shops opened in one district also “cover” the adjacent ones).
This is a typical combinatorial optimisation problem. A solution to this “prob-
lem” (let’s say a minimum of 3 shops are required) could lead the client to believe
that this is too expensive. The “problem” will now be reformulated as maximising
coverage under a budget constraint (a new issue for the client). Again this is a
well-known combinatorial optimisation problem. The new results, which do not
cover the whole town, could lead to considering that coverage could be “weighted”
(the districts having different commercial importance), thus slightly modifying the
previous formulation. At this point, the client and the analyst could go one step
further and consider a bi-objective combinatorial optimisation problem: maximis-
ing weighted coverage and minimising costs. The sequence previously described
is typically constructive (different problem formulations, alternative evaluation
models, different recommendations), since the client constructed the final model
without any ex-ante hypothesis about the problem situation and his preferences.
Nevertheless, the methods and algorithms are coming from optimisation.

On the other hand, the use of a preference aggregation procedure based on the
concordance-discordance principle could be seen as the result of a normative ap-
proach if the analyst imposes the axioms of such a model as “the model” of ratio-
nality.

Example 1.2

The Italian law concerning the call for tender for the allocation of public works
contracts (L. 109/1994) imposes, among others, that all tenders should include
an assessment of the environmental impact of the work to be undertaken in their
offer. Regulation DPR 554/1999 published as the application code of the above
law explicitly names the ELECTRE, AHP and TOPSIS methods in its annexes
A and B as the ones to be used in order to perform such an assessment. It is
interesting to note here that methods which have been explicitly conceived within
a constructive approach, become norms for this law. This is due to the fact that
in this context the decision rules have to be announced before the decision process
itself begins. <&

The second subject presented in chapter 2 is the “decision aiding process”: the
interactions between a client (a decision maker) and an analyst, aiming to aid
the client within a decision process. Decision aiding cannot be seen as just the
construction of a formal decision model. It is a complex activity (a process), which
can be described and characterised by its outcomes, summarised as follows:

e a representation of the problem situation;
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e a problem formulation;
e an evaluation model;
¢ a final recommendation.

A large part of chapter 2 is dedicated to discussing how such outcomes are con-
structed within a decision aiding process and in presenting practical recommenda-
tions (stepping stones) about conducting this process. The subsequent chapters
go through a more thorough analysis of the more technical and formal among the
above outcomes: the evaluation model. The elements of this are discussed in detail
level and the interested reader will also find several stepping stones enabling an
analyst and his client to establish meaningful and useful “evaluation models”.

1.3.2.2 Chapter 3: “Numbers and preferences”

For most people evaluating implies using numbers. It is only after some second
thought that we realise we can also evaluate objects by assigning labels such as
“good” or “bad” to characterise the way they perform for a given feature. Yet,
when using numbers, it is not always obvious to interpret the numbers attached
to objects in terms of achieving some level of performance; it is even less obvious
to see how they can be interpreted as reflecting the decision maker’s preference.
You may like having your coffee/tea hot. If this is the case, you probably prefer it
when it is served at a temperature of 40 °C rather than 30°C and at 50 °C rather
than 40 °C. But do you prefer a cup of coffee/tea served at 80 °C to a cup at 70 °C.
Coffee/tea can be too hot and you might prefer “not warm enough” to “too hot”.
More basically, without looking at preferences, but just in terms of warmth, a
cup of tea/coffee served at 80 °C is clearly hotter than a cup at 40°C; can we say
that the former is twice as hot as the latter? (if the temperature was measured
in degrees Fahrenheit—80 °C is equal to 176°F and 40°C to 104 °F—the former
would not be twice as hot as the latter).

Chapter 3 is devoted to examining what numbers mean and, also, how they
may relate to preference. To start with, we discuss the former issue, leading, in
an informal manner, to the notion of measurement scale.

We then contrast measurement and preference. Even when numbers really
measure a dimension of an object (for instance its cost, provided the latter is
precisely known) it is often the case that what we can say about the cost does not
directly transpose in terms of preference. If I want to buy a car, I may for instance
feel—in terms of preference—that paying 11000€ instead of 10000€ is more
painful than paying 15000 € instead of 14 000 €; in other words, my appreciation
of a cost difference may differ depending on where it is located on the cost scale.

Preference is modelled as one or several relations. For instance, we say that
alternative a is preferred to alternative b and note it a P b; alternatives may be
indifferent; there may be degrees in the preference. Many types of relations or
families of relations can be used to model preference and we try to link these with
numbers. We do this in both ways. Starting with numbers assigned to alternatives,
we list a number of likely interpretations of these numbers in terms of preference
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relations. We go from purely ordinal to more “quantitative” interpretations of
the numbers. We also deal with the case in which an interval is attached to each
alternative rather than a number, thus aiming at taking imprecision into account,
in a certain—non probabilistic—way. This interpretation of numbers in terms of
preference is what could be called “preference modelling”.

In the last part of the chapter, we study how some structures of preference
relations can be represented by numbers.

In the whole chapter, we consider that the objects are described on a single
dimension; the presence of several dimensions or criteria will be dealt with in
the subsequent chapters. At the end, we suggest at the end how these single
dimensional considerations can be related to multi-criteria evaluation models.

1.3.2.3 Chapter 4: “Aggregation—Overture”

When dealing with objects that can only be described and compared using several
characteristics, aggregation is a major issue: it aims at operating a synthesis of
the, usually contradictory, features of the objects, in view of achieving a goal such
as choosing among the objects, rank ordering them, sorting them into categories
and so on. There are at least two ways of looking at the operation that we call
“aggregation”.

One way, is to approach aggregation as a mechanism that transforms the assess-
ments or description of the alternatives on the various dimensions into a ranking
(or some other structure). Similar mechanisms were studied from a theoretical
point of view in the framework of Social Choice Theory.

There is another way of looking at aggregation that changes the point of view
on the subject significantly. This theory is usually called “Conjoint Measurement”.
In this approach, we consider the result of the aggregation, not the process itself.
For example, we consider a relation on the set of alternatives, which is one of the
possible outputs when applying an aggregation mechanism.

Aggregation procedures are studied in some depth in chapter 5, while conjoint
measurement models are described in chapter 6. In chapter 4, we propose an
introduction to both chapters: we present an example of an axiomatic charac-
terisation obtained in Social Choice Theory (the Borda method) and in conjoint
measurement (the additive value model), and we try to show why and how these
characterisations can be useful to the analyst. Chapter 4 also contains a section
on parameters. Most aggregation methods use parameters: weights, importance
coefficients, preference thresholds, value functions, etc. We believe that the best
way to elicit these parameters is to ask the decision maker to compare some alter-
natives (as is often done, for instance, with the additive value model) or to make
some statements about alternatives, but not about the parameters themselves. We
motivate this view and we present a general approach to the elicitation of para-
meters that can be adapted to most—if not all—aggregation methods. Another
section in this chapter should help the reader interested in a specific method to
find the most relevant results in chapters 5 and 6.
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1.3.2.4 Chapter 5: “Aggregation procedures”

Suppose that you have gathered all the information that you need to assess the
alternatives in a decision problem (buying a computer or a house, hiring an em-
ployee for a particular job, choosing a spot where to spend a holiday, ... ); assume
that the assessments are provided on a numerical scale. There are several paths
you may be tempted to follow to obtain a ranking of the alternatives. One could
be: compute a weighted sum of the assessments and rank the alternatives accord-
ing to the value of the sum. Although this is the most common way to proceed,
there are many other possible procedures. You could consider all pairs of alterna-
tives in turn and determine which alternative is to be preferred to the other for
each pair; this can be done using a form of majority rule, for instance, based on
the number of attributes for which one alternative is better than the other. How
can we choose one procedure among all those available? We try to answer this
question by presenting—in an informal and hopefully intuitive manner—axiomatic
characterisations of a number of these procedures. Our credo is that knowing the
characteristic properties of the procedures helps to perceive their “spirit”, sup-
ports some particular interpretations of its parameters and dismisses others, and
consequently helps to understand for which situations (nature, quality, availability
of information; time pressure, goal of the process, ...) they are best suited *.

Chapter 5, dealing with the characterisation of procedures, is subdivided ac-
cording to the type of input needed and the type of output provided by the proce-
dure. The input can possibly be a set of preference relations that are aggregated
into a global preference relation; the corresponding section of the chapter is thus
concerned with the case in which the preferential information for the alternatives
with respect to the various dimensions was modelled as relations, usually rank-
ings. Among the procedures of this type, we characterise the Borda rule, as well
as various types of majority rules and the lexicographic procedure. The output
is a relation interpreted as a global preference on the set of alternatives and op-
erating a synthesis of the partial preferences for the various viewpoints. In this
setting, we come close to methods that are actually used in multi-criteria decision
analysis, such as ELECTRE I, ELECTRE II or TACTIC. Arrow’s Theorem is also
presented in this section and its implications for decision aiding are discussed at
length.

The decision maker’s preference on each dimension cannot always be expressed
as a relation; in the next two sections, we consider the cases in which these pref-
erences are respectively formulated as fuzzy or valued relations and performance
tables. A fuzzy or valued relation occurs as input, for example, when a value can
be assigned to each pair of alternatives, reflecting the way or the intensity with
which one is preferred to the other; a performance table is essentially a function
that assigns a number to each alternative on each dimension; this number posi-
tions the alternative on the preference scale associated with the dimension. For
both types of inputs, the fuzzy (valued) relation and the performance table, we
consider that the output is a relation on the set of the alternatives. If the input is

! Note that there may be several equivalent characterisations for a single procedure; in such
a case, a procedure can be interpreted in different ways.
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a fuzzy (or valued) relation, we characterise generalisations of the Borda and ma-
jority rules, that can easily be adapted to deal with fuzzy relations. Here, we pay
special attention to the construction of the fuzzy relations and to the consistency
between the nature of the fuzziness, its representation and the aggregation tech-
nique. The procedures using fuzzy relations as input shed some light on methods
like PROMETHEE II and ELECTRE III. We then turn to some results obtained
in the framework of cardinal Social Choice Theory, i.e. when the information to be
aggregated into one relation does not consist of one preference relation per criteria
but of a number (a performance, an evaluation, a utility, ...) for each alternative
on each criterion. The case in which the input is a “performance tableau” gives us
the opportunity of characterising the minimum, the weighted sum as well as the
leximin and leximax procedures, that are commonly used in practice. Here again,
we insist on the necessary consistency between the meaning of the numbers to be
aggregated and the aggregation method.

Performance tableaus do not always contain numbers; evaluations often are ex-
pressed on qualitative scales, using verbal labels or statements. Even on numerical
scales, the significance of the numbers may only be ordinal. We briefly address
the question of procedures using this type of information as input, which we refer
to as “linguistic performance tables”.

The output of a procedure is not always a relation. Another case of interest
is that of procedures yielding a set as output, this set being usually interpreted
as a choice set, i.e. a subset of alternatives, possibly a single one, that would be
proposed to the decision maker as the best candidates. We show that the charac-
terisations of the procedures leading to a global preference relation can easily be
adapted to procedures for which the output is a choice set. It is, of course, pleas-
ant that the interpretation of the input data supported by the characterisation of
procedures leading to a ranking of the alternatives (or another type of a preference
relation) can also be used when dealing with a choice problem.

The last section covers some aggregation techniques with characterisations that
are not usually presented as similar to what is done in ‘Social Choice Theory’: the
so-called aggregation operators that are very popular in statistics and in the fuzzy
literature (the various means, the order statistics, the Choquet and Sugeno inte-
grals, ...). Unlike most aggregation methods in Social Choice Theory, aggregation
operators use numbers as input (as in Cardinal Social Choice Theory), but yield
one number per alternative and not a relation on the set of alternatives as out-
put. Despite this difference, we present results about aggregation operators in this
chapter because these results are very similar to those obtained in Social Choice
Theory: they impose conditions on the method transforming the input into an
output and not on the preference relations that can be represented by a given
model (as is the case in conjoint measurement).

1.3.2.5 Chapter 6: “Multi-dimensional preference models”

While chapter 5 views aggregation as a mechanism that transforms a multi-
dimensional input into a more synthetic single-dimensional output, the main prim-
itive of Conjoint Measurement Theory is a preference relation on a set of alter-
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natives. Conjoint measurement examines conditions on the relation under which
can be represented in a model linking the preference to the description of the
alternatives along the various relevant dimensions. The archetypical relations in
this theory are those that can be described in the additive value model, studied in
the first section of chapter 6. A preference - fulfills the additive value model if
one can decide that an alternative a, described by its evaluations ai,...,a, on n
dimensions, is preferred to an alternative b, described in terms of its evaluations
b1,...,bn, by comparing the values u(a) and u(b) of a function w; the peculiarity of
the latter is that its value, for an alternative a described by as, ..., an, is computed
as a sum of partial value functions w;(a;) that only depend on the evaluation of
a on dimension 7. In the first section of chapter 6, we do not only describe the
characteristic properties of the relations that can be represented by an additive
value function; more importantly, the analysis of the model draws attention to the
central concept of marginal preferences, i.e. the preferences induced by the global
one on the scales associated with the various dimensions. Marginal preferences are
the building blocks that can be combined to give the global preference. In other
words, the analysis of the model suggests ways of eliciting the preference by asking
well-chosen questions to the decision maker and these questions rely on marginal
preferences in an essential way. It is the main goal of the first section of chapter 6
to stress these features of conjoint measurement theory in the particular case of
the additive value model.

The rest of the chapter enlarges the scope of the conjoint measurement models
that we consider. Why is this needed? Because not all preferences fulfil the
conditions under which they can be represented by an additive value function. For
instance, preference relations obtained through applying some sort of a majority
rule while comparing each pair of alternatives in turn on all relevant dimensions,
typically lack the transitivity property (alternative a may be preferred to b and
b to ¢, while a is not preferred to ¢). Another example is seen when comparing
objects measured on a single dimension, using a measurement device. If objects are
only slightly different with respect to their measured characteristic, the measure
is usually repeated a certain number of times, to control the uncertainty on the
measure. Each object is thus associated with but a vector recording a sample
of noisy measures of this object and not with a single measure. Comparing two
objects is then done through a statistical test of comparison of means, namely the
means of the measures performed on each object. Such a comparison can lead to
an intransitive relation on the set of objects ; more precisely, it can occur that
an object a can be undistinguishable from b, which is undistinguishable from ¢,
while @ and ¢ can indeed be distinguished (a may be significantly greater than ¢ or
the opposite). This case suggests that a comparison relation, and by extension, a
preference relation, may not be transitive. Moreover, the marginal relations of this
comparison relation may be quite rough in the sense that they do not differentiate
the values on each dimension sharply; hence the marginal preferences of non-
transitive preferences may not convey all the information needed to construct the
global preference relation.

The need to deal with preferences that are not necessarily transitive and pref-
erences for which marginal analysis is not sufficient, leads us to propose two more
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general frameworks in the conjoint measurement spirit, both encompassing the
additive value model.

In the first of these frameworks, the marginal preferences are substituted with
more subtle relations conveying all the information induced by the global prefer-
ence on the scales of the various dimensions; they are called the marginal traces.
We describe a variety of very general models that encompass not only the addi-
tive value model but also a more general one called the decomposable model. An
important feature of a large particular class of these models is that they respect
dominance with respect to the marginal traces; we provide a characterisation of
this class of models.

Another way of generalising the additive value model is particularly suited to
describe preferences that can be established on the basis of pairwise comparisons
of alternatives, as is the case when using majority rules. The building blocks
for constructing preferences in our second framework are relations called traces
on differences. By means of these relations, it is possible to express that the
difference between two levels a; and b; on scale i is at least as large as that between
two levels ¢; and d; on the same scale. Within this framework, we analyse the
preferences obtained through well-known procedures that are mostly variants of
the majority rule, possibly with vetoes. These procedures are shown to correspond
to very rough differentiation of preference differences between levels on a scale:
essentially, a preference difference can be positive, negative or equal to zero; this
can reasonably arise when the scales are purely ordinal. Introducing vetoes in
variants of the majority rule amounts to distinguishing five classes of preference
differences instead of three.

Finally, a third general framework is explored, that obtained by combining the
two previous ones; in the corresponding models, marginal preferences on differences
can be expressed in terms of marginal traces. The use of these refinements allows
us to further investigate the models based on majority rules, with or without
vetoes and more generally, the models for preferences distinguishing few levels
of preference differences. At the other extreme, this framework encompasses the
additive difference model, which can finely distinguish preference differences.

After a brief section devoted to valued (or fuzzy) preference models (in which
we look at the measurement of global preference differences), we close chapter 6
with a rejoinder, stressing the links that exist between the two different approaches
to aggregation, described in chapters 5 and 6.

1.3.2.6 Chapter 7: “Making recommendation”

The ultimate aim of a decision aiding study is to build recommendations that
will hopefully be considered as useful by the participants in the decision process.
Such recommendations, at least in our approach to decision aiding, are based on
formal preference models. Many different tasks are required in order to obtain a
recommendation from such models. Some of them are rather informal, involving,
e.g., a good strategy of communication with the actors in the decision process,
the need for transparency in the decision aiding process, a sound management of
multiple stakeholders, etc. The last chapter of this volume discusses the formal
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tasks that are involved in the elaboration of a recommendation.
The analyst’s task at this stage is clearly dependent upon:

e the nature of the recommendation that is sought, which, in turn, is linked
to the problem formulation that has been adopted. This chapter will con-
centrate on the three problem formulations that are most frequently encoun-
tered in practice. The first two (i.e. choosing and ranking) involve a relative
evaluation of the alternatives, while the last one (sorting) is concerned with
absolute evaluation.

o the nature of the preference models that have been built. We distinguish two
main types of preference models: the ones based on value functions leading
to well-behaved preference relations and the ones tolerating incomparability
and/or intransitivity.

We first deal with the, relatively easy, case of preference models based on a value
function. We then tackle the much more difficult case of preference models tol-
erating incompleteness and/or intransitivity. We also envisage the situation in
which the recommendation is based on several preference models, a situation that
frequently arises in practice. The main difficulty here will be to reach conclusions
that will hold with all possible preference models, i.e. robust conclusions.

The chapter concludes with a more general perspective on robustness, an im-
portant emerging theme in the field of decision aiding. Indeed, all scientists who
have dealt with real decision problems know that the numerical values used in their
models are often questionable. This is the case for information describing the de-
cision situation, traditionally called the “data”. They are often values built by
the analyst according to the model he wants to use; they result from assumptions
about the context of the problem, from estimations of badly known or random val-
ues, from the forecasting of future events. Therefore, it often occurs that several
plausible “sets of data”, possibly very different from each other, can constitute a
good representation of the situation. This is also the case for the parameters that
have to be (more or less arbitrarily) chosen by the analyst using a formal decision
aiding tool (e.g. value functions, weights, thresholds, etc.).

In such a context, working with a unique (e.g. the “most plausible”) set of
values can be very risky. What the decision maker generally wants is a recommen-
dation that makes sense with all (or almost all) of the plausible sets of data. This
is the basis of the concept of robustness.

1.4 Intended audience

Most of us are confronted with formal evaluation and decision models. Very often,
we use them without even thinking about it. This book is intended for the aware
or enlightened practitioner, for anyone who uses decision or evaluation models—
for research or for applications—and is willing to question his practice, to have
a deeper understanding of what he does. We have tried to keep mathematics at
a minimum, so that, hopefully, most of the material will be accessible to the not
mathematically-inclined readers. We do not use sophisticated mathematical tools
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such as differential equations, abstract algebra or calculus and we do not prove
the theorems we present. Nevertheless, in order to make our definitions precise
and to be able to meaningfully manipulate formal concepts, we need to use a
formal language. That is why, compared to the first volume, this book requires
more mathematical maturity, even if, sometimes, we have privileged intuition and
accessibility over mathematical correctness. A rich bibliography will allow the
interested reader to locate the more technical literature easily.

This book can certainly be used for teaching purposes, but not for introductory
classes because it assumes a basic knowledge of multicriteria decision and evalu-
ation models. For example, we only give a very short presentation of the main
aggregation methods. For an introduction, we suggest Bouyssou et al. (2000),
Vincke (1992b) or Belton and Stewart (2001).

1.5 Who are the authors?

The authors of this book are European academics working in four different univer-
sities and research institutions, in France and in Belgium. They teach in engineer-
ing, mathematics, computer science and psychology schools. Their background is
quite varied: mathematics, economics, engineering, law and geology, but they are
all active in decision support and more particularly in multiple criteria decision
support. Preference modelling, fuzzy logic, aggregation techniques, social choice
theory, artificial intelligence, problem structuring, measurement theory, Opera-
tional Research, ...are among their special interests. Besides their interest in
multiple criteria decision support, they share a common view on this field. Four
of the five authors of the present volume, together with Patrice Perny, presented
their thoughts on the past and the objectives of future research in multiple criteria
decision support in the Manifesto of the new MCDA era (Bouyssou, Perny, Pirlot,
Tsoukias, and Vincke, 1993). In 2000, the five authors of this book, once again
with Patrice Perny, published a book entitled “Evaluation and decision models: A
critical perspective” (Bouyssou et al., 2000).

The authors are active in theoretical research on the foundations of decision
aiding, mainly from an axiomatic point of view, but have been involved in a variety
of applications ranging from software evaluation to location of a nuclear repository,
through the rehabilitation of a sewer network or the location of high-voltage lines.

In spite of the large number of co-authors, this book is not a collection of
papers. It is a joint work.

1.6 Conventions

To refer to a decision maker, a voter or an individual whose sex is not determined,
we decided not to use the politically correct “he/she” but just “he” in order to
make the text easy to read. The fact that all of the authors are male has nothing
to do with this choice. The same applies for “his/her”.

None of the authors is a native English speaker. Therefore, even if we did
our best to write in correct English, the reader should not be surprised to find
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some mistakes and inelegant expressions. We beg the reader’s leniency for any
incorrectness that might remain. Throughout, we have tried to stick to the spelling
used in the UK.

1.7 Acknowledgements

We are indebted to Philippe Fortemps who suggested the general layout of the
volume and to Vincent Zoonekynd whose help was instrumental in designing the
layout of the “stepping stones”. We are grateful to Diane Gassner who had the pa-
tience to read and correct our Continental approximation of the English language
and to Gary Folven from Springer for his constant support during the preparation
of this manuscript.

Our greatest debt is to our friend Patrice Perny. Most ideas in this book were
thoroughly discussed with him in very enjoyable meetings at Coxyde and Waulsort
and he managed to motivate us to write this second volume.
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PROBLEM FORMULATION AND
STRUCTURING: THE DECISION
AIDING PROCESS

Consider the following situations:

1. A family discovers that their daughter systematically refuses to eat any type
of food claiming that eating for her is “disgusting” (a typical symptom of
“anorexia mentalis”). It is reasonable to expect that the family will contact
a psychotherapist in order to conceive appropriate therapies to face this
(possibly extremely dangerous) situation.

2. Alady becomes pregnant. Soon after she gradually becomes physically upset.
Again we can expect that she will consult a physician in order to establish
an appropriate treatment.

3. A large company providing mobile communication services is facing the pos-
sibility that the European Union will introduce a new directive concerning
ownership of networks across Europe, thus seriously affecting its business.
We can expect that this company will contact a primary legal adviser in
order to appropriately redesign the company’s structure.

4. A manager has to reconsider the company’s supply chain management in or-
der to improve productivity and delivery time to the customer performance.
It is reasonable to believe that he will contact a supply chain management
specialist in order to study different policies and establish one.

These situations all share a common characteristic: there is “a problem”, for
which “a client” (the family, the lady, the company, the manager) asks the advice
of “an analyst” (the psychologist, the physician, the lawyer, the supply chain
management specialist) in order to “find a solution”.

There is, however, an important difference when we compare the advice of the
psychologist, the physician, the lawyer to that of the supply chain management
specialist: the language (for more details on this issue the reader is referred to
Ackoff, 1962; Bevan, 1976; Capurso and Tsoukias, 2003). Although all of these
advisers might use a “scientific approach” to help their clients, the psychologist,
the physician and the lawyer will use a human natural language (naturally am-
biguous) and a terminology depending on their specific domain, while the supply
chain specialist will be likely to use a formal language (like mathematics) which
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reduces (if does not exclude) ambiguity and is independent of the field of supply
chain management. He will use what we call a “decision support language”, thus
introducing a “model of rationality” in his decision aiding activity.

Does it make sense to use such a language in any context and at all times?
Obviously not. The use of a “decision support language” presents several disad-
vantages:

e it is much less effective with respect to human communication;

e it has a cost (not necessarily monetary);

e reducing ambiguity might not be desirable;

e it imposes a limiting framework on people’s intuition and creativity.

Nevertheless, such a language also presents several advantages, which in some
circumstances can be interesting (see also Bouyssou et al., 2000):

e it allows the participants in a decision process to speak the same language, a
fact that improves the transparency of the process and possibly increases par-
ticipation (for an example see Bana e Costa, Nunes da Silva, and Vansnick,
2001);

e it allows the identification of the underlying structure of a decision problem
(if there is any) and therefore allows the re-use of procedures and models
(for interesting examples see any textbook of Operational Research, e.g.,
Williams, 1990);

e it is not affected by the biases of human reasoning that are due to education
or tradition (for examples see Rivett, 1994},

e it may help to avoid the common errors that are due to an informal use of
formal methods; a typical case being the use of averages as a universal grad-
ing procedure (see Bouyssou et al., 2000, chapter 3, for a critical discussion
of this issue).

In this chapter we will focus on a number of this language’s concepts and terms. In
our first volume (Bouyssou et al., 2000) we have shown that within such a language
we make choices about models, procedures, numerical representations and logics,
which are not neutral with respect to the final result of the interaction between
the client and the analyst. Furthermore we have shown that a problem situation is
not perceived and modelled in a unique and objective way, but there exist several
different problem formulations. The use of a formal, domain-independent language
forces us to be more precise when terms such as problem, objective, solution etc.
are adopted (see, e.g., Belton and Stewart, 2001; Checkland, 1981; Rosenhead,
1989; Roy, 1996; Roy and Bouyssou, 1993).

The aim of this chapter is to introduce the reader to the concept of “decision
aiding process”, the activities occurring between a client (somebody looking for de-
cision support) and an analyst (somebody providing decision support). Although
each such process has a unique history (once accomplished), we claim that there
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are a number of invariants within it and that these can be used in order to provide
useful recommendations on how such a process can be conducted. In other words:
conducting a decision aiding process is a combination of personal skills (in human
communication, group conduction, listening etc.) and of formal skills characterised
by the establishment of precise cognitive artefacts which are used by the client and
the analyst in order to represent the problem and its solution(s). This chapter as
well as the whole book is dedicated to analysing such steps, providing concepts,
tools and methods to appropriately follow them.

In order to better understand our point of view, in the first section of this chap-
ter we discuss four different decision aiding approaches: normative, descriptive,
prescriptive and constructive (Bell, Raiffa, and Tversky, 1988; Dias and Tsoukias,
2004). Under our perspective, the decision support language makes sense within
a particular context: the interactions between the client and the analyst. Such a
stream of interactions is denoted as “decision aiding process” and is viewed as a
particular type of decision process. For this purpose, we briefly discuss the concept
of decision process in section 2.2 as well as the differences between “deciding” and
“aiding to decide”. In section 2.3, we then introduce a formal model of the decision
aiding process. Such a model is based on the cognitive artefacts, the “products” of
the process: a problem situation, one or more problem formulations, one or more
evaluation models, a final recommendation. In section 2.4, we focus on the con-
struction of such cognitive artefacts. Large part of the book will be dedicated to a
deeper analysis of the problems identified in section 2.4. A final section concludes
showing the research directions opened by such an approach.

2.1 Decision Aiding Approaches

In order to help someone to “make” a decision we normally elaborate preferences.
“Preferences are rational desires” (Aristotle, 1990). Practically what we usually
know is what a decision maker or a client! desires. Where does rationality come
from?

Suppose a client faces a health problem. He has a set of more or less sure
diagnoses and a number of possible treatments of more or less uncertain results.
A manual of decision theory will suggest to consider each possible treatment as
an alternative action and each possible diagnosis as a possible state of the world
to which a probability might be associated. For each treatment we thus obtain
the consequences of its application for each diagnosis. Such consequences allow to
establish a utility function. Maximising such an utility (function), will provide the
client with the best solution to his problem. The existence of such a utility function
is guaranteed through a number of axioms (Savage, 1954) which are supposed to
express the idea of rationality in a formal way. Such axioms are independent of
the client. Preferences among the potential consequences should be transitive and
this is imposed because it is considered essential in order to be rational, otherwise

1 Hereafter we will substitute the term “decision maker” with that of “client”. The reason
will become clear later in the text. A “client” is someone who seeks advice for a decision issue.
From such a perspective, he is a potential decision maker, but not necessarily.
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the client should be ready to pay an infinitely increasing amount of money for the
same solution (see the “money pump” discussion in Raiffa, 1970, p. 78). Similarly,
preferences about consequences ought to be “independent” (the fact that we prefer
a certain consequence to another should not depend on the likelihood that any of
the two will occur) (see Fishburn, 1970, p. 107). Rationality here is established
independently from the client. We should also note that, although we allow for
uncertainties in the diagnosis, there is no uncertainty in the model itself. Diagnoses
are all the possible diagnoses, the treatments are all the possible ones and it is
clear that the problem is to choose the best one for this specific client (who only
has to express his preferences) who is supposed to be “rational”. If he is not, then
he should modify his preferences in order to become so. Which is what we call a
normative approach.

Since von Neumann and Morgenstern (1947) and Savage (1954) this is the
dominant paradigm in decision analysis and decision support with or without
uncertainty, in the presence or not of multiple evaluation dimensions. Traditional
Operational Research techniques fit the same idea: maximise an economic function
in the presence of feasibility constraints (usually all expressed in terms of linear
functions). Rationality is imposed through a number of hypotheses and axioms
which exist independently from the client and his problem.

Returning to our client, we can argue whether his behaviour is effectively “ra-
tional” (in the sense of the axioms of economic rationality). Indeed, since Allais
(1953) (see also Kahneman and Tversky, 1979), it has been shown that real deci-
sion makers in real decision situations behave in a way that violates the axioms
of economic rationality. For instance “negative” outcomes may be considered in a
totally different way with respect to “positive” outcomes such that the axioms are
violated. Moreover, to explain observed patterns of behaviour of decision makers
it is often necessary to adopt “distorted probabilities” (Kahneman and Tversky,
1979) in order to take into account the perception of uncertainty that the decision
makers have. What should we do? One way could be to use any of the so called
“decision heuristics” derived through direct observation of real decision makers.
Consider the following frequent decision situation for instance. A decision maker
has to choose among candidates using a number of criteria. He may first rank the
criteria from the most important to the less important one. He then uses the most
important one in order to extract a subset of candidates who are the best on that
criterion. He then uses the second most important criterion in order to extract
a further reduced subset of candidates from the previously established one. He
then uses the third criterion in the same way until he (possibly) ends with a sin-
gle candidate. This is a lexicographic procedure (extensively studied in Fishburn,
1974). Another example is “dominance structuring” where the decision maker,
having once identified a “promising alternative” (intuitively or through another
decision procedure) will try to consolidate his opinion by looking whether it is
possible to construct a dominance relation between this alternative and the rest.
This might be possible by the de-emphasising of certain criteria (up to eliminating
them), bolstering the positive features of the “promising alternative” or modifying
the criteria set (Montgomery, 1983; Montgomery and Svenson, 1976). Clearly this
procedure aims at establishing a justification rather than making a choice.
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It should be noted that in the above approach, although we do not impose
a normative model of rationality we do impose one, but on empirical grounds.
Its validity derives from the fact that several “other” decision makers do behave
following a precise model. It should also be noted that we again consider the model
as sure. Diagnoses, treatments and probabilities are given and the client has to
choose one. The difference is that the model of rationality adopted is derived
from analysing the cognitive effort of other decision makers (Svenson, 1996). We
call such an approach descriptive since it is based on descriptive models of human
behaviour when decision situations are faced.

Both approaches presented impose a model of rationality to the client. The
question one could introduce is what happens if such a model of rationality cannot
be imposed. What happens if the client expresses preferences which do not fit any
model of rationality be it normative or descriptive. It might be the case that the
client has preferences which are neither transitive nor complete. He might not
be able to tell whether one alternative is preferable to another or he might not
be willing to do so. He might have a perception of the uncertainty associated
with the potential states of the world, but he might not be able to consider them
within a model of probability. It is also probable that, although he understands
the necessity to better shape his preferences, he has neither sufficient resources
nor the time to do it. At the same time, something has to be done and the analyst
has to be able to produce a recommendation.

In such cases we may adopt an approach which tries to construct a model as
coherent as possible with the information provided by the client, while trying to
satisfy minimum requirements of meaningfulness in manipulating such informa-
tion. In other words we are not going to ask the client to adapt himself to a model
of rationality, but try to adaptively model the available information and derive a
reasonable recommendation. Considering the health example, we will try to iden-
tify a prescription which fits best with the client’s preferences (even if these do not
obey a model! of rationality) and his personal perception of the uncertainty. Nev-
ertheless, we are not going to accept any type of information manipulation, but
only those which respect the “nature” of the data (Bouyssou et al., 2000; Roberts,
1979).

It should be noted that, while in the normative and the descriptive approach we
consider models of rationality defined “from outside” the client’s decision situation,
in this case we try to model the precise rationality the client exhibits at the
moment. Therefore, rationality is defined “within” the decision situation and
not “from outside”. We call such an approach prescriptive since it is aimed to
“prescribe” to the client the action which appears hic et nunc as the most preferred.

However, again the problem is not discussed. We always consider that the
diagnoses, the treatments, the uncertainties are given and that we are looking for
the best therapy to follow. In other words, the problem is well established and our
main concern is the potentially “irrational” information the client may provide or
the fact that such information is difficult to represent under usual quantitative
measures. Is it always the case? Are we really sure that all possible diagnoses
have been obtained? What if there were other experimental treatments we are not
aware of at this moment? Are we sure that the problem is to find a treatment? In
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several real decision situations neither the client nor the analyst are really aware of
what the problem exactly is. What often happens is that, while these two actors
try to model a problem, they also shape what the decision situation is about,
thus ending up formulating a completely new problem and so on. In our example,
although the client claims that he is looking for the best treatment, he might well
end up understanding that his problem is to take a long holiday (possibly together
with the analyst).

In other words, looking for the solution of a well established problem is always
possible, but could be the wrong thing to do, since it might not be the right prob-
lem to solve. The problem is that neither the client nor the analyst know what
the problem is a priori. Therefore, a decision support activity should also con-
tain the structuring of the problem situation in which the client claims to be and
the construction of several different problem formulations. Moreover, representing
the client’s preferences is not merely an elicitation process in which the analyst
helps the client to state his values or to discuss them. It is a dialogue aimed
at strengthening the conviction of the client that he actually does prefer “z” to
“y”, establishing the reasons for supporting such a conviction or the opposite one.
Within such an approach we do not limit ourselves to using the most appropriate
method for well established problem formulation, but we try to support the whole
decision process in which the client is engaged. From such a perspective, nothing
can be considered as “given” (if not the client’s demand for help), while everything
has to be constructed. Furthermore, within such an approach there is a funda-
mental learning dimension, since both the analyst and the client have to learn
about the client’s problem. We call such an approach constructive in the sense
that the problem and its solution are constructed, while in all other approaches
the problem is given and the solution is more or less discovered.

We can summarise the above presentation as follows.

Normative approaches

(:5 Normative approaches derive rationality models from a priori established
€3 norms . Such norms are postulated as necessary for rational behaviour. De-
& viations from these norms reflect mistakes or shortcomings of the client who
= should be aided in learning to decide in a rational way. These models are
2. intended to be universal, in that they should apply to all decision makers who
£ want to behave rationally. We may consider ethical norms, laws and religious
£ norms as analogies (for more detail, the reader is referred to the following clas-
£ sics: Fishburn, 1970, 1982; Luce and Raiffa, 1957; Raiffa, 1970; Savage, 1954;
% von Neumann and Morgenstern, 1947; Wakker, 1989).

Descriptive approaches

g\s Descriptive approaches derive rationality models from observing how decision
3 makers make decisions. Such models are general, in that they should apply to
&3 a wide range of decision makers facing similar decision problems. We may con-
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L;B sider scientists trying to derive laws from observed phenomena as an analogy

(for more details, the reader can refer to: Allais, 1979; Barthélemy and Mul-
¢ let, 1992; Gigerenzer and Todd, 1999; Humphreys, Svenson, and Vari, 1983;
3 Kahneman et al., 1981; Kahneman and Tversky, 1979; Montgomery, 1983;
&2 Montgomery and Svenson 1976; Poulton, 1994; Svenson, 1996; Tversky, 1969,
%A 1972; von Winterfeldt and Edwards, 1986).

Prescriptive approaches

{ié Prescriptive approaches discover rationality models for a given client from
i.2 his/her answers to preference-related questions. Modelling consists in discov-
3 ering the model of the person being aided to decide, i.e. unveiling his/her
E’f system of values. Therefore, they do not intend to be general, but only to be
"2 guitable for the given client in a particular context. Indeed the client can run
{jg into some difficulties trying to reply to the analyst’s questions and/or be unable
£ to provide a complete description of the problem situation and his/her Values
(f ) answer best ﬁttmg the decision maker’s information here and now.Here, we
o may consider a physician asking questions to a patient, in order to discover his
¢ illness and prescribe a treatment as an analogy (for more details, the reader
> is referred to: Belton and Stewart, 2001; Brown, 1989; Keeney, 1992; Larichev
&2 and Moskovich, 1995; Roy, 1996; Tversky, 1977; Vanderpooten, 2002; Vincke,
52 1992b; Weber and Goskunoglu, 1990).

Constructive approaches

L\gw Constructive approaches build rationality models for a given client from his/her
£ answers to preference-related questions. However, the “discussion” between
&3 the client and the analyst is not “neutral” in such an approach. Actually such
i; a discussion is part of the decision aiding process since it constructs the repre-
., sentation of the client’s problem and anticipates, to some extent, its solution.
5,} 1f, while talking about what to do tonight, we ask the question “where should
3 we go tonight?” we implicitly do not consider all options implying staying at
& home. If we ask “Who should we meet?” we implicitly do not consider all
options involving staying alone. In such an approach, structuring and formu-

fs lating a problem becomes as important as trying to “solve” it. Recent real
Hﬂ world applications (see, e.g., Bana e Costa, Ensslin, Corréa, and Vansnick,
2 1999; Belton, Ackermann, and Shepherd, 1997; Paschetta and Tsoukias, 2000;
&3 Stamelos and Tsoukias, 2003) do emphasise the importance of supporting the
whole decision aiding process and not just the construction of the evaluation

. model. Modelling using this approach consists in aiding a client to construct
¢ his own model, suitable for that contingency and particular context. Indeed,
£y we can adopt the term of “co-modelling” (co-construction of the model). Here,
&2 we may consider a designer or an engineer tentatively developing a new car
b7 a5 an analogy (for details, the reader is referred to: Checkland, 1981; Genard
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& and Pirlot, 2002; Habermas, 1990; Landry, Banville, and Oral, 1996; Landry,
¢ Malouin, and Oral, 1983a; Landry, Pascot, and Briolat, 1983b; Rosenhead,
& 1989; Roy, 1996; Schaffer, 1988; Watzlawick, Beavin, and Jackson, 1967).

Approach Characteristics Process to obtain the model
Normative Exogenous rationality, To postulate

ideal economic behaviour
Descriptive Exogenous rationality, To observe

empirical behaviour models

Prescriptive ~ Endogenous rationality, coherence  To unveil
with the decision situation

Constructive  Learning process, coherence To reach a consensus
with the decision process

Table 2.1: Differences between approaches.

Theoretical differences. ..

Table 2.1 summarises the differences between the approaches. We may start by
dividing these in two groups. On the one hand, normative and descriptive ap-
proaches use general models of rationality, established independently from the
client and the decision process, intended to model the rationality of decision mak-
ers in general. On the other hand, prescriptive and constructive approaches derive
a model for the rationality of the contingent client, and only that particular client.

The difference between normative and descriptive models mostly lies in the
process of obtaining the model. Normative models are grounded on abstract
economic considerations (rationality corresponds to the behaviour of an abstract
“homo economicus”), whereas descriptive models are grounded on empirical ob-
servation. The former focus on how decision makers ought to decide, whereas the
latter focus on how decision makers actually make decisions.

The difference between prescriptive and constructive models also lies to a great
extent in how the model is obtained. Prescriptive models intend to unveil a system
of values that exists before the decision aiding process starts, hidden somewhere
inside the client’s mind. Constructive models do not assume that preferences pre-
exist, but let the client construct his/her system of values while the model is being
constructed, recognising that one construction cannot be isolated from the other.
Indeed, the final model is expected to be validated through a consensus reached
between the client and the analyst. Such a “consensual” model is expected to
satisfy both the client’s perception of his/her problem and the analyst’s method-
ological requirements of meaningfulness and formal coherence (on this point see
Genard and Pirlot, 2002; Landry et al., 1996, 1983a,b).

...and practical issues

It should be noted that it often (usually in practice) does not happen that an
analyst follows any of the above approaches as if he was following a decision



2.1. DECISION AIDING APPROACHES 27

theory manual. Normative approaches might be used with weaker versions of
their axiomatics (see, e.g., Dubois and Prade, 1995; Dubois, Prade, and Sabbadin,
2001c; Wakker, 1989) knowing that this is empirically grounded. At the same
time, someone adopting a prescriptive or a constructive approach might decide to
introduce and fix a dimension of rationality in order to ease the dialogue with the
client and “force him” to accept a certain point of view. Such interactions between
the approaches can be better understood when decision support tools come into
practice (see also Belton and Stewart, 2001).

The number of decision support tools and methods available today in literature
and more or less applied is incredibly high (see Bouyssou et al., 2000). They range
from optimisation techniques to cognitive approaches, from artificial intelligence
tools to multiple criteria decision analysis methods, from extremely sophisticated
tools (such as logic argumentation and ordered sets) to “soft”, natural language-
oriented and user-friendly ones. We are not going to present these tools here. Each
of such tools however, has been created with a more or less precise “philosophical”
background (see Genard and Pirlot, 2002) and with a more or less precise decision
aiding approach in mind.

It is clear for instance that traditional Operational Research techniques such as
linear programming, combinatorial optimisation and queuing theory reflect a nor-
mative idea of rationality as well as expected utility theory and game theory (see
the discussion in Moscarola, 1984). On the other hand, several decision heuristics
as well as some early artificial intelligence knowledge representation techniques
reflect a descriptive approach: capture the way in which decision makers and/or
experts do it and generalise it. Much cognitive analysis can be associated to such
an approach.

At the same time, several multiple criteria decision support methods were
developed under a prescriptive approach and several artificial intelligence tools
make explicitly or implicitly reference to such an approach. Note for instance the
common argumentation concerning intransitive preferences in decision analysis and
non monotonic reasoning in logic (see, e.g., Doyle and Wellman, 1991; Tsoukias,
1991). It should also be noted that the seminal work of Simon (1954, 1979) on
the concept of bounded rationality can be viewed as the background of both of
several decision support methods (developed under a descriptive or a prescriptive
approach) and of several artificial intelligence achievements.

Finally, several “soft” OR methods implicitly and several MCDA methods
explicitly refer to a constructive approach. Indeed Roy (1996) explicitly claims
that the philosophical justification for the methods developed by himself and his
group is “constructivism”, while the description of the Soft Systems Methodology
(Checkland, 1981) clearly focuses on the decision aiding process and the structuring
issue although it does not explicitly mention a constructive approach.

However, despite the fact that more or less each decision support method can
be associated to a decision aiding approach, we claim that such an association is
misleading since it reduces such approaches to a mere collection of methods (on
this, note the examples used in chapter 1 of this book).

G

fer?

Our thesis is that decision aiding approaches do not imply the use of an
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52 exclusive set of methods and that at the same time, the use of a precise method
&2 does not imply the adoption of a decision aiding approach. In the extreme:

we consider it possible to use a constructive approach and adopt at a certain
2., point a combinatorial optimisation technique as well as using an outranking
E’? based preference aggregation procedure within a normative approach. The
&y difference really is observable in the conducting of the decision aiding process.
3 This is the reason why we dedicate a chapter to discussing how such a process
&7 can be structured and conducted.

In the following we are going to explore the constructive approach in more
detail. This book however, and the one we have already published (Bouyssou
et al., 2000) can be used in order to build models within any approach.

2.2 Decision Processes and
Decision Aiding Processes

The concept of decision process is due to Simon (1947). As early as in 1947, Simon
observed decision processes occurring within real organisations and concluded that
the behaviour of real decision makers is far from the postulates of decision theory,
at least as this theory was formulated at that time. During the ’'50s, Simon
(1954, 1956, 1957) developed his “bounded rationality” theory, which states that a
decision maker facing a choice behaves on the basis of a local satisfaction criterion,
in the sense that he will choose the first solution that he subjectively considers as
satisfactory without trying to attain an unrealistic (and useless) optimal solution.
Actually Simon considers decision theory to be based on three implicit hypotheses
(see the discussion in Moscarola, 1984):

e decision makers always know their problems well;

e such problems can always be formulated as an effectiveness (or efficiency)
problem;

e the information and the resources necessary to find a solution are always
available.

According to Simon, any of these hypotheses is not true in reality:
e decision makers never have a very precise idea of their problem;
¢ often their problems can be formulated as the search for a compromise;
¢ solving a problem is always constrained by the available resources and time.

The innovation introduced by Simon is radical. Decision theory as had been de-
veloped up to that moment always considered the rationality model as existing
independently from the decision maker and his decision process. Simon put the
decision process (the mental activities of a decision maker) and postulated that a
rationality model has to be found within such a process at the centre of his reflec-
tion and not outside it. Most of the literature around this concept is based on the
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hypothesis that such cognitive activities are scientifically observable (either empir-
ically or in experimental settings) and that “patterns” of “decision behaviour” can
be established (see Humphreys et al., 1983; Kahneman and Tversky, 1979; Mont-
gomery, 1983; Montgomery and Svenson, 1976; Slovic and Lichtentstein, 1983;
Slovic and Tversky, 1974; Svenson, 1996; Vari and Vescenyi, 1983). The use of
this concept in decision theory introduced two major innovations:

et

-

< e rationality is expected to be linked to the process and not to the final
€3 decision; coherence is expected along the process, but such coherence is
@ not necessarily reducible to the classic economic rationality;

£

&3 o rationality is bounded in time, space and the cognitive capacity of the
by decision maker, therefore is subjectively defined and only locally valid.

€2

The concept of decision process was later associated to organisational studies
and more precisely to the study of how organisations and other collective bodies
face decision situations (see Cyert and March, 1963; Emerson, 1962; March and
Simon, 1958). These works showed that the behaviour of an organisation (assumed
to be composed of rational decision makers) does not correspond to the rational
behaviour as described by decision theory (the reader can see an extreme model in
Cohen, March, and Olson, 1972, which describes the famous garbage can model,
in which organisations are seen precisely as garbage cans). The problem, already
observed by Weber (1922) in his studies during the 20’s on bureaucracies, is that
within an organisation different forms of rationality may co-exist (see Simon, 1976).
Later on, related research was condensed in Mintzberg’s work (see Mintzberg, 1979,
1983; Mintzberg, Raisinghani, and Théoret, 1976) as well as by other authors (see
Benson, 1975; Dean and Sharfman, 1996; Huber, 1991; llgen, Major, and Tower,
1994; Mackenzie, 1986; Masser, 1983; Mélese, 1978; Norese and Ostanello, 1984,
1989; Nutt, 1984, 1993, 1999; Ostanello, 1990; Ostanello and Tsoukias, 1993).

The observation of organisational decision processes leads to at least the fol-
lowing remarks:

L)

o=

o e multiple rationalities that can be associated to different individuals
€ and/or organisations coexist within organisational decision processes;
é;j e such different rationalities rarely aggregate into a unique rationality char-
[%3 acterising a process; an organised collection (a system) of rational indi-
oy

viduals does not constitute a rational entity.

Py
LA
[

We are not going to further discuss the issue of the decision process and its
models, Indeed, our aim is not just to propose another model of how decisions are
made, but to show how analysts can help their clients when they act as “decision
makers” either in individual or in organisational decision processes. Of course
accepting an hypothesis on how decision processes are structured might influence
the adopted decision aiding approach, but this is only one dimension among others
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in conducting a decision aiding process. The following section considers a model
of decision process, but our choice is essentially operational.

2.2.1 A descriptive model of the decision process

In this section we will use a descriptive model of the decision process, introduced by
Ostanello and Tsoukias (1993). This precise model originated to describe inter-
organisational decision processes, but is sufficiently general to be used in more
abstract contexts.

A decision process is characterised by the appearance of an “interaction space”,
an informal abstract space in which actors introduce and share a set of concerns
(named “objects”). The awareness of the existence of such an interaction space is
due to the existence of a “meta-object” (a concern which only exists in order to
allow the actors to justify their presence in the interaction space projecting their
concerns on such meta-object).

A temporal instance of a decision process (a state of the process) is charac-
terised by: the participating actors, their concerns (the objects) and the resources
committed by each actor to each object. Different levels of commitment and the
number of actors interested in the same object characterise the structure of such
a temporal instance, anticipating the dynamics under which such a state can be
reached. In Ostanello and Tsoukias (1993}, the following characteristic states were
suggested:

e controlled expansion;

e uncontrolled expansion;
e controlled reduction;

e stalemate;

e dissolution;

¢ institutionalisation

in order to show the different directions towards which the state of the process
can evolve (for more details, the reader can refer to Ostanello and Tsoukias,
1993).Recognising the present state and fixing a state one wishes to reach can
help in understanding the strategy to follow within the decision process.

Example 2.1
Consider the construction of a new highway expected to improve the accessibility
of two towns and going through a certain region.

There are a number of participating actors: the potential constructors of the
highway, the local, regional and national institutions (including the “National
Road Agency”), which have to authorise the construction besides as well as be
concerned by the use of the highway and the consequences of its construction, the
population affected by the highway and its construction, the social, political and
economic groups etc.

Each of these actors has specific concerns about:
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¢ the highway construction;

e the environmental impact;

e the socio-economic impact;

o the transformation of the land use;
e the transportation policy;

e the environmental policy;

which are all evoked by the “meta-object”: the idea of a highway between A and
B. Each participant commits and demands resources: for instance the potential
constructors commit money and demand knowledge and authorisation, the re-
gional authority commits authorisation and political legitimation and demands
infrastructures and political legitimation, etc. Different decision problems can be
identified such as:

¢ build the highway or not?

e freeway or toll-highway?

e which route?

e what the procedure to approve the route should be?

and each of them will be treated differently by the different actors depending on
the concerns they have.

An external observer could identify the interaction space in which the concerned
actors “meet” and can also recognise how the process reached its present “state”.
However, there are several different ways to conduct such a process (in a more or
less authoritarian or participatory way) and for each of these, different types of
decision, support can be demanded by different participants. It is not possible to
identify a unique decision support. Decision aiding always refers to a participant
and his concerns. o

As already discussed in the previous section, we are interested in decision aiding.
From such a perspective the introduction of the above model of the decision process
is functional to our purpose to describe the decision aiding process. Intuitively, in
decision aiding we also make decisions (what, why and how to model and support).
Decision aiding is also a decision process but of a particular nature.

{i} Our claim is that in decision aiding contexts an interaction space (for
3 at least two actors: the client and the analyst) appears, characterised by a
¢ meta-object which is the “consensual construction of a client’s concern repre-
3 sentation” through the use of the technical and methodological skills of the
i‘\% analyst and the domain knowledge of the client. Such a hypothesis implies that
2 the two actors engage themselves in a decision process, that is, the decision
£ aiding process is a special type of decision process.
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2.2.2 Decision Making and Decision Aiding

The difference between these two concepts has already been discussed in Roy
(1993) (see also Brown, 1989; Brown and Vari, 1992). However, Roy considers
these as two different approaches and not, as we do, as different situations. In
a decision making context we consider a decision maker who, having a concern,
might use a decision theory tool in order to establish potential actions to undertake
(although in more general terms decision making can be decision theory free).
From such a perspective, the reader will often find the term “decision making”
in this text. With this term, we will indicate the activities of an individual who
develops some information in order to establish a “decision” to carry on within
a decision process.? In such a setting, decision theory is directly used by the
decision maker. There is no distinction between an analyst and a client. The
decision maker is at the same time someone looking for support in his decision
process and someone endowed with the appropriate knowledge to give himself this
support. If there is an analyst, his presence is justified either because he acts as a
tutor or because he is a “clone” of the decision maker (somebody who represents
the decision maker, but who shares the same information, knowledge and values).
It should also be clear that in such a setting we consider the decision maker as
endowed with decision power and therefore also responsible for the decision to
make.

On the other hand, a decision aiding context implies the existence of at least
two distinctive actors: the client and the analyst, both playing different “roles”
with respect to the concern of the client. More actors may exist in such a setting,
the client not necessarily being a decision maker (he might not have decision power
and be for instance in turn the analyst for another client). For simplicity, we only
consider the simpler setting with only these two actors present and use with no
further distinctions the concepts of decision maker and client.

A decision aiding context only makes sense with respect to one or more decision
processes, the ones in which the client’s concerns originate. In this chapter we focus
our attention on the set of activities occurring within such a setting. We will call
such a set of activities a “decision aiding process”. The ultimate objective of this
process is to attain a consensus between the client and the analyst. On the one
hand, the client has a domain knowledge concerning the decision process. On the
other hand, the analyst has a methodological knowledge, which is more or less
domain independent. The task can be summarised as: given the client’s domain
knowledge and the analyst’s methodological knowledge (and the associated formal
and abstract language), interpret the client’s concerns and knowledge so that he
can improve his perceived position with respect to the reference decision process.
Such an interpretation ought be “consensual”: the client should consider it as his
own interpretation, while the analyst should consider it correct and meaningful.
However, the coherence sought by the actors does not refer to a given situation,
information or knowledge, but to the cognitive artefacts they produce working
together. From this point of view, the decision aiding process is an autopoietic

2 This is not in contradiction with our emphasis on decision aiding. Indeed the activity of
supporting a decision maker can be considered as the support to a decision making process.
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system (a self reference system which maintains its organisation constant, but
not a closed system since the environment is part of the system’s organisation,
see Maturana and Varela, 1984). Using a stakeholder approach (see Banville,
Landry, Martel, and Boulaire, 1998)decision aiding sees the emergence of a new
stakeholder in the decision process, which is the couple “client-analyst”. The
decision aiding process represents the cognitive efforts undertaken by this couple
in order to “positively” influence the decision process in which they are involved.

Example 2.2

Consider again the previous section’s highway example. If decision aiding is re-

quested by any of the participating actors, this will concern “an object” among

those evoked by the decision process (and its meta-object: the new highway).
Providing some decision aiding in this context raises questions of the type:

e what is the precise issue concerning the client and why (money, authority,
natural resources, power, etc.)?

e how can we formulate such an issue in a decision support language, in terms
of a decision problem (do we have to convince, to justify, to choose, to
analyse, etc.)?

e how exactly will the decision support be designed (which alternatives do we
consider, is there any uncertainty, are there several scenarios etc.)?

e what will effectively be done (negotiate with the other actors, impose a
precise policy, expand the interaction space, etc

In a constructive decision aiding approach the answers to the above questions are
not unique and have to be provided by both the client and the analyst who are

now perceived as a unique stakeholder within the process. &
o s . . -
> Within a decision process, several specific decision processes are struc-

3 tured. A particular type of decision process occurs when an individual (or
2 more), acting as a client, asks another individual (or more), acting as an ana-
E?\‘{ lyst, some advice concerning an object of the client’s concern within another
2 decision process.

3 We denote such a process as a “decision aiding process”, where we can recog-

£ nise:

& .

3 e at least two actors, the client and the analyst;

6

[f;} e at least two objects, the client’s concern and the analyst’s (economic,
) scientific or other) interest (economic, scientific or other) to contribute;
]

% e a set of resources including the client’s domain knowledge, the analyst’s
k? methodological knowledge, money (or whatever the analyst asks), time;

&3
2% e the meta-object being the construction of a shared representation of the

% client’s object and concern.
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Example 2.3

Consider an airline company. The sales department (the client) considers that, in
order to face tough competition (the decision process), it needs to diversify the
offer of seats on each route with respect to the season and the prices to apply, pos-
sibly adapting the offer dynamically as the demand evolves (the client’s concern).
They contact the company’s Operational Research department (the analyst) ask-
ing for support. The Operational Research department replies positively since
this is its job, but also because this is a good opportunity to show to the CEO
that they are useful (the analyst’s concern). The two actors (which in this case
are units of an organisation and not individuals) will share the knowledge of the
sales department (structure of the demand, structure of the supply, constraints of
the commercial policy, competitors policy etc.), the analyst’s knowledge (models
and methods for yield management), the company’s investment (time, money, re-
sources) as well as the “award” in the case of success. The Operational Research
department will possibly convince the sales department that their problem fits
the well know “yield management problem” (thus creating the meta-object of the
decision aiding process). However, we can expect that the result of the decision
aiding process will not just be the construction of a yield management model (and
possibly its successful implementation), but more generally an improvement of the
company’s commercial policy through the adoption of further actions conceived
while discussing the yield management problem. <o

2.3 A model of the Decision Aiding Process

A decision aiding process is a process of distributed cognition (Massey and Wal-
lace, 1996; Vygotsky, 1978). With this term we indicate any process in which
different agents endowed with cognitive capabilities have to share some informa-
tion and knowledge in order to establish some shared representation of the process
object. We call such shared representations shared cognitive artefacts. For ex-
ample, consider two persons observing a painting at an exposition, discussing the
interpretation to give to the artist’s effort.

Within a decision aiding process we have at least two such “cognitive agents”
(the client and the analyst) who share information and knowledge with the per-
spective of producing a set of shared cognitive artefacts, replying to questions such
as:

e who has which problem?
e what could a solution to that problem be?
e why such a solution could be successful? etc.

However, our analysis of the decision aiding process will not be cognitive (describe
and analyse the mental activities of the actors involved), but operational (how to
conduct the process?). Actually, we are not going to analyse how such a distributed
cognition occurs and how it works (although analysing how the two agents interact
can be extremely interesting). Our basic hypothesis is that since we are looking for
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formal models of decision support, there is a basic agreement between the client
and the analyst that they are looking for such a model and that they are going
to use a formal representation language (this may possibly reduce the cognitive
effort). There is no loss of generality with such a hypothesis. If such an agreement
does not exist in reality, it is always possible to consider that the analyst will spend
some of his time to convincing his client of the opportunity to follow a formal
approach. The operational question we therefore have to ask is the following:
what are precisely the cognitive artefacts that we expect from a decision aiding
process?

In other words, we model the decision aiding process through its main products,
the ones we consider mandatory in order to obtain “a consensual representation
of the client’s concern”. At the same time, we can see such products as the
deliverables honouring the contract with the client.

We introduce four cognitive artefacts as products of the decision aiding process:

e a representation of the problem situation;
e a problem formulation;
e an evaluation model;

e a final recommendation.

éﬁ In the following section we intend to discuss such artefacts in the form

3 of “checklists” to follow during the interaction with the client. We are aware
23 that a real decision aiding process rarely follows such a checklist, but we have

c adopted such a rationalisation for the following two reasons.
N
& 1. It may help a novice decision analyst in structuring his interaction with

E‘j his client in order to better conduct their discussion.
B g g may allow any experienced analyst going through a validation of his
Fﬁ work to verify if the key issues and deliverables have been appropriately

- considered and how.

é;; We understand that there is a risk of reducing decision aiding to “applying
€2 a manual”, but we are confident that the reader also understands that a real

E“{? decision aiding process is far more complex and that these are suggestions for
[‘; support.

2.3.1 The Problem Situation

The first deliverable consists in offering a representation of the problem situation
for which the client has asked the analyst to intervene. The main idea is to enable
the analyst to answer questions of the type:

e who has a problem?

e why is this a problem?



36 CHAPTER 2. PROBLEM FORMULATION AND STRUCTURING

e who decides on this problem (who is responsible)?
¢ who pays for the job?

e what is really important for the client?

e how is the client committed in this situation?

Such an analysis might also be useful for the client since it could help him to
better situate himself with respect to the decision process for which he asked the
analyst’s advice.

A representation of the problem situation can be conceived as a triplet

P=(A0,8)

where:

e A are the actors involved in the process (as described by the client and
perceived by the analyst);

e O are the objects (stakes) of the different actors;
e & are the resources committed by each actor on each object of his concern.

The reader should remember that a decision aiding process always refers to a de-
cision process in which the client is involved. Decision support is always requested
with respect to a decision process. Representing a problem situation corresponds
to taking a picture of the decision process at the moment the decision support is
requested. In this picture, the analyst and the client should recognise who par-
ticipates (the actors), why they participate and what their concerns (the objects)
are and what their level of commitment (the resources) is. Several different rep-
resentations of the problem situation can be constructed during a decision aiding
process. This is due both to the natural evolution of the decision process in which
the client is involved (the pictures will be different) and to the decision aiding
process itself which might modify the perception of the decision process for the
client and the analyst (they might observe the same picture differently).

Example 2.4 (Selection of a Billing System)

A new mobile telecommunications operator has been established in a small, but
highly competitive European market. One of the basic operational tools of such
companies is their billing system (BS). This system allows both a structured ac-
countancy of the traffic and a flexible policy towards the existing and potential
clients (enabling for instance a variety of services beyond the basic ones, the cre-
ation of packages of services oriented to specific market targets, the monitoring of
each subscriber’s traffic).

Some years after the establishment of the company, the necessity to upgrade
or to substitute the existing billing system became evident to the management.
A decision process was therefore triggered, and we were asked to provide decision
support (for details, see Stamelos and Tsoukias, 2003). An analysis of the problem
situation showed that:
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e The actors A involved were:

— the acquisition manager;

|

the information systems manager (IS};

— the marketing and sales manager;

the software suppliers;

the IS consultants.
e The objects O involved in the process were:

— the market share of the company;

|

the policy towards the suppliers;
— the company’s internal organisation;

— the billing system itself.

e The resources S implied in the process included the necessary funds for the
billing system, the knowledge about billing systems and the relations with
the software suppliers. The available time was very short, since all decisions
had to be made in the least possible time due to the extremely competitive
environment.

e The problem situation P results from the explicit representation of the sets
described above.

The client in this study was the IS manager. The identification of the actors, their
concerns and the resources were exploited in order to establish a set of problem
formulations (see next section) that were meaningful for the client and his concerns
within this situation. <

2.3.2 Problem Formulation

Given a representation of the problem situation, the analyst may provide the client
with one or more problem formulations. This is a crucial point of the decision
aiding process. While the first deliverable has mainly a descriptive (possibly ex-
plicative) nature, the construction of a problem formulation goes further towards
formalising the interaction between the client and the analyst and introduces the
use of the decision support language. The result is by definition reductive with
respect to the reality of the decision process.

The idea is that a problem formulation translates the client’s concern, using the
decision support language, into a formal “problem” (a problem to which decision
support techniques and methods apply). For instance, the client may claim that
he has a problem to “buy a new bus in order to improve service to the clients”.
This may result in different problem formulations such as:

e choose one among the potential suppliers of buses;

e choose one among the set of offers submitted by the suppliets;
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e choose one among the set of all combinations of two offers.

The above problem formulations are not similar and are not neutral with respect
to the possible final recommendation. Indeed we, want to emphasise that adopting
a problem formulation implies adopting a precise “strategy” towards the problem
situation. Each such strategy will lead the decision aiding process to different
recommendations. It is necessary to establish which strategy is going to be pur-
sued with the client. Returning to the bus acquisition example, the first problem
formulation focuses the attention on the suppliers and not on the offers they may
make. The second problem formulation implicitly assumes that only one type of
bus will be bought, while the third one allows to buy combinations of two different
offers. It is clear that the choice of one of the above problem formulations will
greatly influence the evaluation of the alternatives and the final solution.
A problem formulation can be conceived as a triplet:

I'= (A, V,1I)

where:

e A: is a set of potential actions that can be undertaken by the client with
respect to the problem situation P;

e V: is a set of points of view from which the potential actions are observed,
analysed, evaluated, compared, etc.;

e II: is a problem statement which anticipates what is expected to be done
with the elements of A. The reader will find more details on this point in
Bana e Costa (1996}, Ostanello (1990} and Roy and Bouyssou (1993) (see
also section 2.4.3).

The use of problem formulations aims to anticipate the possible conclusions of
the decision aiding process. The awareness of such possible conclusions allows the
client to check whether these are compatible with his expectations. Moreover, if
the effective conclusions are unsatisfactory to the client, he has the possibility of re-
vising the problem formulation opening new modelling possibilities. The analyst’s
second deliverable consists in submitting a number of problem formulations to the
client . The client validates them and chooses the ones with which the analysis
might continue. Hereunder, we continue with the real case study (Stamelos and
Tsoukias, 2003) concerning the selection of a billing system.

Example 2.5 (Selection of a Billing System BS)

The strategic decision with which the management was faced consisted in choosing
one among the following options: upgrade the existing BS, buy and customise an
existing BS, buy a BS created ad-hoc for the company by an external supplier
(bespoke system), develop an ad-hoc BS in collaboration with an external supplier.
However, the management was not able to choose an option without analysing
what the billing system would eventually be in all such options. We therefore
provided three problem formulations (the fourth option being the upgrade of the
existing BS, was considered familiar) which we will call:
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¢ B: buy (and customise an existing BS);
e M: make (externally a new ad-hoc BS);
e D: develop (a new ad-hoc BS in collaboration with a supplier).

In all three cases, a call for tenders was provided. The three problem formulations
become:

1. I'p = {(Ap, Vg,Ilg) where:

Ap: offers proposed by specific suppliers of existing BS accompanied by a
proposal for the customisation phase.

Vg: points of view of the evaluation:

— costs (including training, insurance fees and payment conditions);

— quality (based on ISO9126 and benchmarks on the proposed prod-
uct);

— timing (of delivery, test and installation);

— installed base of the proposed BS (including performance reports
on already installed BS of the same type).

IIz: ranking of the offers in order to enable further negotiations on the price.
2. Tpr = (Aps, Vg, 1y ) where:

Ay offers proposed by specific software developers with different degrees of
experience in BS development.

Ve points of view of the evaluation:
— costs (including training, insurance fees and payment conditions);
— requirements satisfaction (client driven requirements);
— timing (of delivery, test and installation);
— type of supplier-developer (taking into account the company’s sup-
plying policy);
consequences for the company’s internal organisation (including
project management).

Il selection of a supplier - developer with whom to establish a supplying
process (consisting of benchmarks, tests, training and delivery).

3. I'p = (Ap, Vp,Ilp) where:

Ap: set of suppliers with whom it could be possible to co-develop a new BS.
Vp: points of view of the evaluation:

— costs (distinguishing internal and external costs);

— requirements analysis and satisfaction;

— timing (including the time in which the product could be ready for
the market);
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— type of supplier-developer (including company’s supplying policy);
— consequences for the company’s internal organisation (including
project management);

— benefits to the company by entering the market of billing systems
as a supplier itself.

IIp: selection of a co-developer to establish a co-makership policy and there-
fore a long-term collaboration.

The client finally chose the first problem formulation, implicitly accepting a pure
buying policy with respect to the basic strategic choice. We are not going to
explain this choice. We would however, like to emphasise two observations:

1. From a general point of view, each problem formulation may generate quite
a different evaluation model. The set of potential actions is different (exist-
ing BS in I'g, offers of non existing software in I"js, co-developing suppliers
in Tp). The set of criteria may also be quite different (it is sufficient to
note that the “make” and the “development” option requires to consider
as a criterion the implication of the information systems department in the
development process, a fact that may alter the distribution of resources and
responsibilities in the company’s organisation or that the development op-
tion requires to evaluate the eventual benefits of “selling” the new billing
system). The relative importance of the criteria may also be different, while
the aggregation procedures in each model have to be adapted to the different
problem statements and the different nature of the criteria.

2. Focusing on the problem, the different problem formulations also lead to
different models. In the I'g case, existing software products must be com-
pared (even if the one chosen will be customised), a fact that allows the use
of existing models (as the ISO9126 standard). Benchmark tests must also
be performed. On the other hand, in the I'js case, the software artefact
does not yet exist. The attention of the evaluation will shift to the satisfac-
tion of the requirements during software development, and therefore some of
the supplier’s quality requirements have to be considered a priori. Finally,
in the I'p case, the evaluation consists in the comparison of possible part-
ners for software development, implying the comparison of the compliance
of the partner’s software development process with the company’s standards
(assuming that they exist).

Furthermore, the priorities among the different criteria and attributes will
change from one problem formulation to another, independently of the un-
certainty associated with the available or required information. Finally, in
order to aggregate the different software measurements, different necessities
arise from one problem formulation to another (e.g., in the I'5 case, measure-
ments may correspond to observations and therefore a functional aggregation
can be allowed, while in the I'j; and in the T'p cases, the measurements are
predictions or estimations based on expert opinions, a fact that requires a
different treatment). &
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Obtaining the client’s consensus on a problem formulation leads to a gain of in-
sight, since instead of having an “ambiguous” description of the problem we have
an abstract and formal problem. Several decision aiding approaches will stop here,
considering that formulating (and understanding) a problem is equivalent to solv-
ing it, thus limiting decision aiding to helping to formulate problems, the solution
being the client’s personal issue. Other approaches might consider the problem
formulation as given. Within a constructive approach the problem formulation is
one among the artefacts of the decision aiding process, the one used in order to
construct the evaluation model.

2.3.3 Evaluation Model

For a given problem formulation, the analyst may construct an evaluation model,
that is to organise the available information in such a way that it will be possible
to obtain a formal answer to a problem statement (defined within T').

An evaluation model can be viewed as an 5-tuple:

M= (A {D,E}, H U,TR)
where:

e Ais the set of alternatives to which the model applies. Formally it establishes
the universe of discourse (including the domain) of all relations and functions
that are going to be used in order to describe the client’s problem.

e D is the set of dimensions (attributes) under which the elements of A are
observed, described, measured etc. (the set D might be endowed with dif-
ferent structuring properties such as an hierarchy). Formally D is a set of
functions such that each element of A is mapped to a co-domain that we
denote as X;.

o £ is the set of X; associated to each element of D. Each X; can be considered
as a set of “levels” or “degrees” to which a structure such as an “order”
is possibly associated. Intuitively we can consider the functions in D as
measurements using the X; as “scales”. Issues concerning measurement are
discussed in more detail in chapter 3 of this book.

e H is the set of criteria under which each element of A is evaluated in order to
take in account the client’s preferences. Formally a criterion is a preference
relation, that is a binary relation on A (a subset of A x A) or a function
representing the relation. The reader will find more details about preference
models in chapter 3 of this book.

e U is a set of uncertainty structures to apply to D and/or H. Formally U
collects all uncertainty distributions that can be associated to the relations
and functions applied to A, besides possible scenarios to which uncertainty
measures can be associated.
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e R is a set of operators such that the information available on A, through
D and H can be synthesised to a more concise evaluation. Formally R is a
set of operators such that it is possible to obtain a comprehensive relation
and/or function on A, possibly allowing to infer a final recommendation.

The reader can observe that a large part of the existing decision aiding models
and methods can be represented through the above description. It also allows to
draw the reader’s attention to a number of important points:

1. It is easy to understand why the differences between the approaches do not

depend on the adopted method. The fact that we work with only one eval-
uation dimension, a single criterion, a combinatorial optimisation algorithm
can be the result of applying a constructive approach. It is important not
to choose the method before the problem has been formulated and the eval-
uation model constructed, but to show that this is the natural consequence
of the decision aiding process as conducted up to that moment.

2. The reader should note the difference between D and H. The former rep-

resents the “empirical” knowledge available or collected about A, but says
nothing about the preferences of the client. The fact that such knowledge
may use a structure such as an order (possibly coded in X;) does not estab-
lish any knowledge about the client’s “desires”. These are modelled in H
where preferences are explicitly represented. In the literature the elements
of D are often called “attributes”. Chapter 6 will extensively discuss the
direct use of such “dimensions” in decision aiding.

3. The technical choices (typology of the measurement scales, different prefer-

ences or difference models, different aggregation operators) are not neutral.
Even in the case in which the client has was to formulate his problem clearly
and he is convinced about it (possibly using one of the techniques aiding
in formulating problems presented in section 2.4), the choice of a particular
technique, procedure, operator can have important consequences that are
not discussed when the problem is formulated (for a critical discussion see
Bouyssou et al., 2000). Characterising such techniques, procedures and op-
erators is therefore crucial since it allows to control their applicability to the
problem as formulated during the decision aiding process.

4, The evaluation models are subject to validation processes. This includes

namely (see Landry et al., 1983a):

e conceptual validation: verify whether the concepts used within the
model in order to describe the client’s concerns and problem situation
are meaningful for the client, i.e., that he understands them and finds
them useful; in other words the client and the analyst have to agree
on what each precise concept represents and how this is useful for the
client’s problem;

e logical validation: verify whether the concepts and the tools used within
the model are logically consistent and meaningful (from a measurement
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theory perspective); the reader should pay attention to the fact that
logical consistency does not necessary imply that the client is consistent
in his claims, but that the model handles the information consistently
(including possible inconsistencies and ambiguities);

e experimental validation: test the model using experimental data (and
examples) in order to show that the model provides the expected re-
sults and possibly check formal requirements such as convergence of an
algorithm, accuracy of a classification, sensitivity to small variations of
the parameters, etc.;

e operational validation: show that the model when confronted with the
decision process for which it was conceived acts as expected and that
the client can indeed use it within such a process; further unforeseen
consequences of using the model can be observed at this point.

It should be noted that validating the model is a crucial activity to establish
the necessary consensus between the client and the analyst, consensus which
(at least partially) legitimates the model to be used within the decision
process for which it was conceived.

Example 2.6

Let us again consider the example of buying a bus. Suppose that the problem for-
mulation adopted was the second one (choose one among the offers from suppliers).
Suppose also that in reply to a call for tenders a number of offers are available.
An evaluation model for this problem formulation could be (we use subscript 2 in
order to denote that is the second problem formulation considered):

e Ay set of offers received, legally acceptable;

e Dy: economic dimension (costs, maintenance, payment conditions), tech-
nical dimension (technical characteristics), quality characteristics (comfort,
luggage capacity etc.}; it should be mentioned that the set of dimensions
in this case has an hierarchical nature (each of the above dimensions being
further decomposable);

e &5 we are not going to show the whole set of scales, but we can mention that
for instance maintenance is measured in “estimated numbers of man-hours
per month”, that one of the technical characteristics is the brakes capacity
measured in “metres to stop the bus at max speed and full charge”, that the
comfort is a qualitative measure provided by an external expert on a scale
of the type “good”, “acceptable”, “unacceptable”;

e Hj: again we are not going to give the whole set of criteria; a generalised
cost criterion putting together all different costs and the number of buses
to buy is considered, while several technical and quality criteria have to be
constructed such that the client’s preferences can be represented; for instance
a safety criterion is established (offer x is preferred to offer y iff the “brake’s
capacity of x” is at least 20 metres less than the “brake’s capacity of y”);
again an hierarchy of criteria has to be defined,;
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o Uy will be considered empty, all measures and preferences being considered
by the client as “sure” and “precise”;

* R, is a set of aggregation procedures including the necessary parameters; it
should be noted that the presence of an hierarchical structure on the criteria
could be seen as the creation of a number of evaluation models one for each
node of the hierarchy excluding the leaves. A precise aggregation procedure
can be associated to each such evaluation model for instance, the quality
criterion is obtained using a sorting (ordered classification) procedure by
which each offer is classified in one among a set of merit classes (very good,
good, acceptable, unacceptable) based on the values of the offers on the
different quality criteria (comfort, luggage capacity, number of seats) {on
such ordered classification procedures, the reader can be referred to: Belacel,
2000; Bouyssou and Marchant, 2005a,b; Bouyssou et al., 2000; Henriet, 2000;
Massaglia and Ostanello, 1991; Mousseau, Slowinski, and Zielniewicz, 2000;
Paschetta and Tsoukias, 2000; Perny, 1998; Yu, 1992b). Of course each
aggregation procedure requires a number of parameters (importance of the
criteria, thresholds, etc.). In our example the final aggregation was expected
to compute a value for each offer and a multi-attribute value function was
constructed. Therefore, tradeoffs between the three criteria (cost, technical,
quality) had to be established (on such procedures, the reader may refer to
Bouyssou et al., 2000, and chapter 6 of this book).

It is worth noting that had the third problem formulation been adopted, the
evaluation model would have been quite different. The set of alternatives would
be the set of all combinations of two offers. Furthermore, the reason for which
such a problem formulation was considered derives from the observation that two
different buses might better fit the variety of client the company serves (one for
child transportation and the other for medium range tourism services). At least a
criterion such as “fitting the market variety” should be added, while an uncertainty
could now be considered (unknown behaviour of the market). o

2.3.4 Final Recommendation

The evaluation model will provide an output (denoted by ®) which is still expressed
in terms of the decision support language. The final recommendation is the final
deliverable which translates ® into the client’s language.

It should be possible to check whether this final recommendation:

1. is technically sound (no incorrect or meaningless manipulations should be
undertaken). Since the output @ is the result of a number of manipulations
on the available information (representing consequences, modelling prefer-
ences and uncertainties, aggregating measures, preferences and uncertainties
etc.), it is important that such operations fulfil basic requirements of mean-
ingfulness (for definitions, see Roberts, 1979). The number of situations in
which intuitive reasoning leads us to undertake meaningless operations is in-
credibly high (for examples and further discussion see Bouyssou et al., 2000).
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Care should be taken to verify whether the evaluation model is free of such
biases;

2. is operationally complete (the client understands the recommendation and
is able to apply it). The fact that the output is technically sound does not
necessarily mean that this is useful for the client’s problem. An arithmetic
average of three measures of length is technically correct, but useless in case
the client is looking for an aggregate measure of a volume (where a geometric
average will fit perfectly). The final recommendation should be able to give
an operational reply to the client’s concerns (as these were established in the
problem formulation) and enable him to undertake some deliberation and/or
action (including doing nothing, provided this is deliberated);

3. is legitimated with respect to the decision process for which it was conceived.
We should always remember that the advice requested by the client refers
to some decision process in which he is involved. A technically sound and
operationally complete recommendation is not sufficient in order to be in-
cisive within the decision process. The reality of such processes includes
organisational, cultural, ethical and interpersonal dimensions which are not
necessarily (and rarely are) considered within the construction of the eval-
uation model and the establishment of the output ®. When we return to
the reality of the decision process we should take care to present the final
recommendation in such a way that this can be inserted in the process.

In other words, the final recommendation should be able to translate the con-
clusions of the decision aiding process into a format that can be used within the
client’s decision process and/or organisation process in which the client is involved.
In order to do that, the model, should not only be convincing for the client (which
should be the case if a consensus was reached between the client and the analyst),
but also should be able to convince the other actors participating in the process in
which it is going to be used. Theoretical soundness, operational completeness and
legitimation are the essential features the final recommendation should satisfy.

In the following sections we are going to focus our attention on how the previ-
ously introduced cognitive artefacts can be established, with particular emphasis
on the definition of a problem formulation and the construction of an evaluation
model. We try to outline a number of recommendations on how the decision aid-
ing process should be conducted as well as a number of technical issues to which
the analyst should pay attention. In this chapter, we do not provide the precise
theory concerning the items of the evaluation model. These are discussed in a
structured way and with much more detail in the following chapters. More pre-
cisely, the use of D, £ and the construction of elements of H are mainly discussed
in chapter 3. R is thoroughly discussed in chapters 4, 5 and 6 since it represents a
crucial component in multiple criteria decision and evaluation models. Chapter 7
is dedicated to several technical aspects of the final recommendation construction
and the treatment of robustness.
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2.4 Problem structuring

There is a lot of literature on problem structuring (Abualsamh, Carlin, and Mc-
Daniel, 1990; Belton and Stewart, 2001; Binbasioglu, 2000; Buchanan, Henig, and
Henig, 1998; Corner, Buchanan, and Henig, 2001; Courtney and Paradice, 1993;
Eden, 1988, 1994; Eden, Jones, and Sims, 1983; Keller and Ho, 1988; Landry,
1995; Lehaney, Martin, and Clarke, 1997; Massey and Wallace, 1996; McGregor,
Lichtenstein, Baron, and Bossuyt, 1991; Mingers and Rosenhead, 2004; Norese,
1996; Pidd, 1988; Smith, 1988, 1989; Sycara, 1991; Woolley and Pidd, 1981). A
common characteristic of this literature is the emphasis on the claim that support-
ing decisions should not be limited to solving well established decision models, but
should help in facing more “soft”, “ill-structured” decision situations that need
to be “structured”. The idea is that trying to fit a decision situation to a given
decision model may result in solving the wrong problem correctly. It is therefore
necessary to have methods and tools enabling to establish a problem formulation
before any choice concerning the decision and/or evaluation model. The issue is
(simplifying): first set what the problem is and only then consider how to solve
it. This may appear to be common sense, but several authors cited above have
shown that decision theory traditionally focuses its attention on how to solve the
problem and not on how to formulate it.

Our claim is that our model of the decision aiding process can be used as a
problem structuring method. Before showing how this can occur in detail, we
discuss some of the best known methods found in the literature.

2.4.1 Problem Structuring Methods

Problem structuring methodologies aim to help decision makers to better under-
stand their concerns (Checkland, 1981; Landry, 1995; Landry et al., 1983b; Rosen-
head, 1989), better justify and legitimate their conclusions (Landry et al., 1996)
and ease the validation process (Landry et al., 1983a; Ostanello, 1997).

Several among the problem structuring methodologies consider that decision
aiding is problem structuring (see, e.g., Checkland, 1981; Friend and Hickling,
1987; Rosenhead, 1989). In other words, the quantitative aspects on which evalu-
ation models usually rely are considered irrelevant, neglected or not at all consid-
ered under the not unrealistic claim that once the decision maker has a definitely
clear idea of what the problem is, he also knows how to solve it.

2.4.1.1 Cognitive Mapping

Particularly “cognitive mapping” (see Eden, 1988, 1994; Eden et al., 1983) aims
to give a representation of how a person (the client) “thinks” about a set of issues.
The basic tool is simple: a network in which nodes represent the issues concerning
the client(s) for whom the map is constructed and arrows represent the way in
which one issue may lead to or have an implication on another. Issues are rep-
resented as sentences calling for “action” or “problem solving” and arrows show
how one such action (or possible solution} will influence the outcome of another.
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What is important in this method however, is not the tool itself, but the con-
ducting of the interview which will lead to the establishment of the cognitive map.
Indeed, the existing software implementing the method (Decision Explorer™) 3 is
just a support for the discussion rather than a decision support tool. In the con-
struction of a cognitive map a key role is played by the “facilitator” (the analyst in
our terminology). He is expected to conduct the discussion and practically to de-
sign the cognitive map using the client’s replies as well as the discussion developed
during a cognitive mapping session. Actually, such sessions are carefully prepared
and precise rules on how the discussion has to be conducted by the facilitator are
established (see Rosenhead, 1989, ch. 3).

Cognitive mapping seems extremely useful when the client(s) consist in a group
of people involved in organisational decision processes in which the emergence of
consensus on different issues is extremely difficult and remains subject to power
manipulations. In such a situation, it can also be very useful in giving a “sense”
to discussions occurring within an (formal or informal) organisation.

The scope of a cognitive mapping session (possibly more than one session might
be necessary) is to provide the client(s) with a representation of how they perceive
their “problems” and how they expect to act on them. This a clearer representation
and the structuring of the problem situation should enable the emergence of a
consensus among the participants on how to act further and which actions it
might be necessary to undertake.

2.4.1.2 Strategic Choice

Another well known problem structuring method is “strategic choice” (see Friend
and Hickling, 1987; Friend and Jessop, 1969). Such a method is expected to
handle the complexity of interconnected decision problems. The basic idea is
that these complex problem situations are characterised by large uncertainties
requiring strategic management. The authors claim that the basic philosophy of
their method is “managing uncertainty in a strategic way”. Within such a method
three principal sources of uncertainty are identified:

e uncertainties about guiding values;
e uncertainties about the working environment;
¢ uncertainties about choices and related agendas.

The dynamics of a “strategic choice process” distinguish four “modes” of decision
making:

e the “shaping mode” where the decision maker(s) are add concerns about the
structure of the set of decision problems they are facing;

o the “designing mode” where the decision maker(s) are concerned about which
actions are feasible with respect to their view of the problem;

3 Decision Explorer is a product of Banxia Software, see http://www.banxia.com.
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e the “comparing mode” where the decision maker(s) look for the different
dimensions under which different actions could be compared;

o the “choosing mode” where the decision maker(s) look for arguments and
commitment to pursue actions over time.

Strategic Choice can be seen as a toolbox of procedures aimed to support the
four different “modes” previously introduced. However, such a toolbox (see also
the software STRAD2™)4 is expected to be used within a precise approach in
which the decision makers are seen as “stakeholders” of the final decision. It
is mainly based on conducting workshops facilitating communication among the
participants through the use of graphical tools manipulated by a facilitator who
also conducts the workshop. The different modes of decision making are seen as
interchangeable loops. This implies that within a workshop it is also important to
register the dynamics of the interactions and of the outcomes. Indeed, the result
of the method should not only be the deliverables (argued actions and policies),
but also new ways of pursuing the organisational decision process.

2.4.1.3 Soft Systems Methodology

Soft Systems Methodology was developed by Checkland (1981) as an alternative
to classic systems engineering (see Hall, 1962) seen mainly as a problem solving
process (in which traditional OR techniques could apply).

“SSM is a learning system. The learning is about a complex problematical hu-
man situation, and leads to finding accommodations and taking purposeful action
in the situation aimed at improvement, action which seems sensible to those con-
cerned. SSM articulates a process of enquiry which leads to the action, but that is
not an end point unless you choose to make it one (in Rosenhead, 1989, p. 67, ch.
4).

Although its presentation has evolved in recent years, we are going to present
SSM in its original form, as a series of stages taking place in two worlds: the real
world and an “abstract world” created through “systems thinking” on the real
world:

1. enter situation considered problematic (real world};
2. express the problem situation (real world);

3. formulate root definitions of related systems of purposeful activity (abstract
world);

4. build conceptual models of the systems used in the root definitions (abstract
world);

5. compare models with the real world actions (real world);

6. define possible changes which are both feasible and desirable (real world};

4STRAD2 is a product of Stradspan, see http://www.btinternet.com/~stradspan/
products.htm.
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7. take action to improve the problem situation.

From a modelling point of view what is important is how “root definitions” are
formulated. Under such a perspective SSM suggests a checklist of the following
demands:

Context: who would be victim or beneficiary of the purposeful activity?
Actor: who would carry out the activities?

Transformation process: what is the purposeful activity expressed as “input-
transformation-output™?

‘Weltanschauung: what view of the world makes this definition meaningful?
Owner: who could stop this activity?

Environment constraints: what constraints in its environment does this system
take as given?

The second important modelling step is to build conceptual models of the system
used in the root definitions. In order to do this, on the one hand it should be
possible to consider actions on the systems and on the other hand, it should be
possible to monitor and control them. This generates the following three basic
modelling criteria:

Effectiveness: is this the right thing to be doing?
Efficacy: do the means work?
Efficiency: is a minimum of resources used?

The reader should pay attention to the fact that the above recommendations have
to be seen within the whole process of understanding the problem situation and
the different purposeful activities that can be undertaken. SSM is not just a simple
checklist of modelling acts to follow in order to establish a deliverable for the client.
Practically SSM is applied through extensive interviews with the problem own-
ers and large workshops including the stakeholders of the problem situation. The
aim is that the modelling process suggested by SSM will allow such stakeholders
to converge to a shared representation of both the problem situation (what is the
problem?) and the actions to undertake (what to do?). Again the reader should
consider that SSM has to be viewed as a “methodology” and not just a method,
thus remaining situation driven and not method driven (the reader is referred to
Checkland and Scholes, 1990, for more details concerning the use of SSM).

2.4.1.4 Valued Focussed Thinking

In his challenging book, Keeney (1992), suggests that usually decision making
methods focus their attention on evaluating alternatives after such alternatives
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have been established or given. Instead, focus should be given to how such alter-
natives are or can be established and the author’s suggestion is: thinking about
values and objectives.

The idea is that as soon as the client has been able to structure his objectives
(with respect to a given problem situation) he is also able not only to compare
ready-made alternatives, but also to consider alternatives that were not there at
the beginning of the process, but appear desirable and feasible within the objectives
and values structure. For instance, it might be that only after understanding the
importance of CO reduction in car engines for future sales, that CO absorption
devices could be considered as components of such car engines.

Structuring objectives implies establishing an hierarchy of values starting from
what Keeney calls “fundamental objectives”. These should be (see table 3.2, in
Keeney, 1992, page 82):

essential: indicate consequences in terms of the fundamental reasons for interest
in the decision situation;

controllable: address consequences that are influenced only by the choice of al-
ternatives in the decision context;

complete: include all fundamental aspects of the consequences of the decision
alternatives;

measurable: define objectives precisely and specify the degrees to which objec-
tives may be achieved;

operational: make the collection of the information required for an analysis rea-
sonable, considering the time and effort available;

decomposable: allow the separate treatment of different objectives in the analy-
sis;

non redundant: avoid double counting of possible consequences;
concise: reduce the number of objectives needed for the analysis of a decision;

understandable: facilitate generation and communication of insights for guiding
the decision making process.

Fundamental objectives are then structured in attributes for which value func-
tions (or utility functions in the case uncertainty has to be considered) can be
constructed in order to “measure” the desirability of the outcomes and achieve-
ments for each objective. Such attributes result in “decomposing” the fundamental
objectives into “sub-objectives”, dimensions that contribute to defining the client’s
values. For instance, while looking to buy a car, a fundamental objective could
be “safety”. Such an objective can be decomposed into two attributes: “brakes
efficiency” and “steering efficiency” which can be appropriately measured and for
which the client could express preferences. The resulting structure of objectives
(and attributes) allows the decision maker to have insight into the problem situa-
tion and, more importantly, to have an organised insight. Indeed he might be able
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to concentrate his attention on high-valued alternatives or make use of generic
alternatives, to expand the decision context or even to consider any of his con-
cerns as decision opportunities rather than as decision problems, thus allowing new
unforeseeable paths of action to be taken into account. Keeney considers his ap-
proach as a path to creative decision making, claiming that structuring the client’s
values enables to expand the set of feasible actions through structured desirability.
From this perspective his suggestion can be considered as a problem structuring
approach, although, in this case, the use of quantitative methods is essential (in
order to build the value and/or utility functions to be associated to attributes).

2.4.1.5 Integrating Approaches

In their book, Belton and Stewart (2001), advocate the necessity of integrating
different approaches of multiple criteria decision analysis. In doing this they base
their argumentation on their model of the process of decision analysis in which the
following stages are distinguished:

¢ identification of the problem issue;

problem structuring;

model building;
¢ using the model to inform and challenge thinking;
¢ development of an action plan.

In discussing the problem structuring part of the MCDA process, the authors
suggest a checklist of issues to analyse in order to be able to establish a model:

e criteria;

e alternatives;

¢ uncertainties;

o stakeholders;

e environmental facts and constraints.

However, since the author’s proposal is essentially a way through which to inte-
grate different approaches, the idea is to consider within a MCDA process the use
of different techniques, driven by the problem situation and not by a particular
method, an idea shared by several scholars in this field (see Bana e Costa et al.,
1999; Belton et al., 1997; Norese, 1988, 1996). Multi-methodological approaches
have been considered in a wider perspective in the literature (for a presentation
see Rosenhead, 1989, ch. 13).
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2.4.1.6 Discussion

All the approaches introduced above are basically prescriptive in nature. They
suggest how an analyst should conduct the interaction with his client in order
to lead him (the client) in a reasonably structured representation of his problem.
However, they are either based on empirical grounds (we tried this several times
and it works) or they represent a consistent theoretical conjecture. In all cases
they have never been based on a descriptive model of the decision aiding activities,
fixing the cognitive artefacts of the process, thus allowing the client and the ana-
lyst to control the process in a formal way. The result is that either they have to
neglect the evaluation model aspect (ignoring situations when the problem formu-
lated still does not allow to find intuitively dominant solutions or underestimates
the cognitive biases that affect the decision maker’s behaviour) or they have to
fix a priori some of the artefacts by adopting a precise shape for the evaluation
model (using value functions) thus limiting the applicability of the approach or
they underestimate the influence that the analyst can have on his client, influ-
encing his behaviour. Moreover, all such approaches do not explicitly take the
process dimension of the decision aiding activities into account. Such a dimension
is essential in order to be able to revise and update the outcomes of the decision
aiding as the decision process evolves and the client learns.

The model of the decision aiding process previously suggested aims to fill such
a gap. It is a descriptive model (showing how the decision aiding process gets
structured) and at the same time is constructive since it suggests a path for the
process concerning both the client and the analyst. Moreover, it allows to control
the conducting of the process since it fixes the cognitive artefacts that are expected
to be constructed during the process. This allows to control the process itself
since each such artefact is precisely defined. In the next section, we are going to
present how such artefacts can be constructed in more detail, suggesting empirical
procedures for conducting the interaction with the client.

2.4.2 Representing the problem situation

We consider as given the interest of the client to work with the analyst. This
interest is expected to be due to one or more concerns for which the client seeks
advice due to his (possibly justifiable) conviction that he is unable to do this alone.

The construction of such a representation begins by establishing a list of actors
potentially affected by the interaction between the client and the analyst (see also
the so-called stakeholders approaches in decision aiding Banville et al., 1998; De
Marchi, Funtowicz, Lo Cascio, and Munda, 2000; Shakun, 1991). We try to answer
the question “Who else could be concerned by the client’s concern?”. A particular
issue to explore here is whether the client is the (only) “owner” of this particular
concern. It is often the case that the client himself is involved in a decision
aiding process as an analyst or that this concern originates within a particular
organisational structure. Actually he might not necessarily be a decision maker.
For instance, the advice could be asked:

o for a (a priori or a posteriori) justification purpose;
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e in order to understand a problem, but where no immediate action is expected
to be undertaken;

e because the client has to report to somebody within the organisational struc-
ture.

This leads to the following questions: why could the other actors be concerned
and what other concerns could they associate to the client’s concerns? Intuitively
we trace a map associating actors to concerns. Two questions arise at this point:

e are there any links among the concerns?
e how important are such concerns to the different actors?

In order to reply to the first question we can make use of a “projection” relation
(see Ostanello and Tsoukias, 1993) showing how a concern projects to another one
(usually from simple very specific concerns to more general and abstract ones).
Usually such a relation results in a tree in which the leaves represent the simple
(not further “decomposable”) concerns and the root represents the meta-object
characterising the decision process for which the decision aiding was requested.

Example 2.7

Imagine an artificial lake, created by the construction of a dam required to oper-
ate a hydroelectric power station, but also used for recreational activities (fishing,
sailing etc.). The concern of “fish availability” (associated to the local fishermen)
as well as the concern of “hydrogeological stability” (associated to the local elec-
tricity company) both project to the concern “lake management” (associated to
the local authority: the local province). &

In order to reply to the second question we can associate the resources committed
or requested by each actor for each of his concerns to each object. The client’s
commitment is in particular a key issue for two reasons:

e it will influence the content of the problem formulation and the evaluation
model;

e it will play a specific role as far as the timing of the decision aiding process
is concerned.

5 Establishing a representation of the problem situation enables the two
3 actors (the client and the analyst) to “situate” themselves with respect to the
&3 decision process for which the aid was requested. This is important for at least
& two reasons: '

bopd

[531 o it offers the basic information to formulate the decision aiding problem
f‘i and the associated evaluation models;

f\‘;’ e it allows the two actors, in case of unsatisfactory conclusions, to come
[i, back and re-interpret the problem situation or to update it in order to
€ take the evolution of the decision process into account.

P

£
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2.4.3 Formulating a problem

As already introduced, formulating a problem is the first effort to translate the
client’s concern into a formal problem. The first question to ask here is: “what are
we going to decide about”? We might call this set decision variables or alternatives
or potential decisions. At this stage, it is important to establish with sufficient
clarity what the set A does represent (e.g., suppliers or bids or combinations of
bids etc.) and how (are they quantities, alternatives, combination of actions etc.).

Where does such information come from? One source is of course the client
who might be able to provide at least part of the set A directly (for the cognitive
problems associated to this activity see Newstead, Thompson, and Handley, 2002).
The actors and their concerns as identified in the problem situation representation
can also be sources. However, quite often the elements of set A have to be “de-
signed” (see Hatchuel, 2001), in the sense that such a set does not already exist
somewhere (and we just have to find it), but has to be constructed from existing
or yet to be expressed information (the reader can see examples of such process in
Keeney, 1992, a couple starting comparing one week holiday packages in national
tourist resorts and ending up considering a one month holiday in the Pacific is-
lands). A way to do this can be to work on the client’s structure of values and
expectations (as Keeney, 1992, suggested by) or using an “expandable rational-
ity” (see Hatchuel, 2001) allowing to make the set of alternatives evolve, Another
way is through an analysis of the structure of concerns in the problem situation.
The client typically presents himself with a concern that remains somewhere at an
intermediate level of the tree of concerns. Going up and down such a tree enables
to identify different sets of potential actions (considering the resources the client
may commit for each such concern).

Example 2.8

Using the holiday example, the concern of an ordinary holiday may project on a
more general one which is the well being of the couple, for which further resources
could be committed and thus allow to consider a concern of a special holiday. <©

o3

[

The final shape of set A will only be fixed when the evaluation model is
£ established, but the effort of constructing set A during the problem formulation
&2 will pay during the whole decision aiding process: half of a problem is deciding
=2 what to decide.

The analysis of the different concerns (and how and why these associate to the
different actors) leads to the establishment of the points of view to be considered in
the decision aiding process. These represent the different dimensions under which
we observe, analyse, describe, evaluate, compare the objects in A. At this stage,
the elements of V' do not have any formal properties and do not necessarily define
a structure (such as a hierarchy). They simply represent what the client knows or
wishes to know about set A. The key question here is: “among all this knowledge,
what is relevant for the decision situation under analysis?” Again the representa-
tion of the problem situation can be useful here, since certain concerns can be of
a descriptive nature (thus resulting in points of view), while the identification of
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the different resources to be committed to the concern may reveal other points of
view. A more structured approach for this particular problem can be the use of
cognitive maps (Eden, 1988, 1994) or Checkland’s soft systems methodology (see
Checkland and Scholes, 1990).

Last, but not least, we have to establish a problem statement Il. Do we optimise
or do we look for a compromise? Do we just try to provide a formal description of
the problem? Do we evaluate or do we design alternatives? Establishing a problem
formulation implies announcing what we expect to do with set A. We can first
distinguish three basic attitudes:

o the first is constructing a set of feasible and realistic alternative actions
without any necessary further evaluation purpose (as, for instance, in the
“constraint satisfaction” case, see Brailsford, Potts, and Smith, 1999};

o the second is describing a set of actions under a set of precise instances of
the points of view established in V;

e the third one, which we will call “purposeful” (also named operational, see
Roy, 1996), consists in partitioning set A.

Let us focus on this third attitude. Partitioning the set A implies establishing a
set of categories to which each element of A is univocally associated (the “good”
elements and the “rest”, the “better”, the “second best”, etc., the “type X”, the
“type Y, the “type Z”, etc.). In all cases and under all approaches, a purposeful
problem statement results from the replies to the following questions:

o are the categories predefined or do they result from the comparison of the
elements of A among themselves?

o are the categories ordered (at least partially) or not?

e how many such categories can exist (if they are not predefined)? Just two
complementary ones or more than two?

A purposeful problem statement is a combination of answers to the above questions
and establishes a precise form of partition of set A:

1. in predefined, not ordered categories (a typical example being a diagnosis
problem: patient z has appendicitis, patient y has a simple abdominal pain,
etc.);

2. in predefined, ordered categories (as in the “sorting” procedures: tender x
is “acceptable”, tender y is “good”, etc.);

3. in not predefined, not ordered categories (as in the clustering and more
generally classification case: cluster the students of a class on the basis of
their height);

4. in two, not predefined, ordered categories (for instance, the chosen or rejected
objects and the rest or the optimal solutions and the rest: the outcome of
all mathematical programming algorithms result in such a partition);
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5. in more than two, not predefined, ordered categories (as in ranking proce-
dures: rank the students on the basis of their performances in the different
classes they followed in a year).

Up to now we have presented seven possible problem statements, the five pur-
poseful ones previously described, and the two “non purposeful” ones which we
call “design” and “description”. All such statements can be further characterised
by the possibility of looking to “robust” decision aiding. We will not further dis-
cuss this issue which already attracted the interest of several researchers (see Chu,
Moskowitz, and Wong, 1988; Kouvelis and Yu, 1997; Rios-Insua and Martin, 1994;
Roy, 1998; Vincke, 1999a,b; Wong and Rosenhead, 2000). Further discussion can
be found in chapter 7.

Operational Research and Decision Theory usually focus their attention on
optimisation and more generally on “choice” problem statements in which one
alternative or vector of decision variables is expected to be established as a solution
(thus introducing the use of only two categories of solutions: the chosen ones
and the rest). However, decision aiding is also provided when we rank-order the
alternatives, when we classify them in categories (ordered or not, pre-existing or
not) through internal (relative) or external (absolute) comparison. Establishing
the problem statement with the client enables to focus on the appropriate methods
and procedures to be used and avoids wasting time trying to force the information
in irrelevant ones. Nevertheless, the establishment of IT is an anticipation of the
final solution and as such it is rare that the client is able to provide it through
simple questioning. The work of the analyst here is to show (through examples)
the different possible problem statements and the different outcomes to which they
lead.

fﬁ As already mentioned, the establishment of a problem formulation is a key

£ issue in the decision aiding process. It represents a tentative start to foreseeing
& and anticipating the conclusions of the process and as such has a “strategic”

character (de facto establishing a strategy with respect to the decision process).
;_3 From this perspective, revising the problem formulation represents a revision
é of “strategy”.

2.4.4 Constructing the Evaluation Model

This is the typical task in which the analyst applies his methodological knowledge
to the information provided by the client in order to produce a model which can
be elaborated through a Decision Analysis method.

Again the first step is to fix the set of potential decisions or alternatives A. At
this stage set A should have precise formal properties such as:

e being a compact (in a topological sense) or a discrete subset of an n-dimen-
sional space;

e being a list of objects or an enumeration of options;

e having a combinatorial structure.
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The existence of feasibility (or acceptability) constraints should apply here either
directly (limiting the enumeration of A) or indirectly (limiting the space where
A can be defined). Set A, established in the problem formulation, is the starting
point of this process, but new elements may be added (such as dump alternatives
or ideal solutions) or eliminated. Within an evaluation model we consider the set A
as stable across time and if it has a combinatorial structure, we have to fix whether
we are going to focus on the elementary components or on a list of combinations.
For instance, in evaluating investment portfolios, we could either consider each
single investment (and then possibly try to find an optimal combination) or lists of
ready-made combinations proposed by an investment company (and then possibly
try to choose one of these).

Set A is described through a set of dimensions D. These represent the rele-
vant knowledge we have about A. Some of these dimensions might have already
been introduced in the form of constraints (used in order to fix set A), but other
dimensions might be necessary for evaluation purposes, that is they should allow
to evaluate the performance of each element of A under certain characteristics.
Again the establishment of D requires fixing some formal properties. Each ele-
ment of D is considered as a form of measurement, therefore the precise structure
(X;) of such a measure should be established (“a measurement scale”). Several
types of measurement scales are possible and might co-exist within an evaluation
model such as nominal, ordinal, etc (for more details see chapter 3 in this book).
Furthermore, set D may have a structure such as a hierarchy. Set D cannot be
empty. At least one dimension (the nominal description of A) exists. Usually set
D is constructed using set V' as a starting point. Typically the construction of D
involves structuring V' (if necessary) and associating a measurement structure to
each element thus defined.

In the case in where a purposeful problem statement has been adopted (such as
an optimisation or a ranking one), we then have to construct the set of criteria H
to be used for such a purpose. The key issues here are the client’s preferences. We
define as a criterion any dimension to which it is possible to associate a preference
model, even a partial one, such that the client should be able to make a choice along
this single dimension. The construction of the set of criteria is a central activity in
the decision aiding process. Dimensions expressed under “nominal measurement”
(dimensions where we only know “labels” of the alternatives, but we are unable
to provide any ordering among them) definitely require the establishment of a
preference model. Dimensions using X; endowed with some ordering structure can
be transformed directly into criteria using an ordering as a preference structure,
but this is rather exceptional. Usually the preference model is an interpretation of
the available ordering (consider for example the use of a semi-order as a preference
structure for a dimension endowed with a ratio scale) and therefore requires careful
elaboration. The reader will find more details in chapter 3. Furthermore, it
should be clear that if we are looking for a “rich” (in information) final result
(such as an optimal solution), then the preference information ought to be “rich”
itself. It should also be noted that the construction of H can be either the result
of a direct process (creating criteria from dimensions through direct questioning
of the client) or of an indirect process (establishing criteria “explaining” global
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preferences expressed by the client on examples or already known cases). When
several criteria are considered, the first approach is described in more detail in
chapter 5, while the second approach is described in chapter 6.

Last but not least, set H has to fulfil a number of conditions depending on the
type of procedure that is foreseen to be used in order to elaborate the solution. A
basic requirement is separability of the criteria: each criterion alone should be able
to discriminate the alternatives, regardless of how these behave under the other
criteria. A more complex requirement is the establishment of a consistent family
of criteria: a set which contains the strictly necessary criteria and only these (see
also chapter 4 in this book). Further conditions can apply, such as independence
in the sense of the preferences (when an additive composition of the criteria is
foreseen), etc. (for more details, the reader is referred to Keeney and Raiffa, 1976;
Roy and Bouyssou, 1993; Vincke, 1992b).

At this point an element which has to be added to the model is the presence
of any uncertainty structure Y. Uncertainty can be exogenous or endogenous
with respect to the model. Typical cases of exogenous uncertainty include the
presence of different scenarios or states of the nature under which the evaluation
has to be pursued, poor or missing information as far as certain dimensions or
criteria are concerned, hesitation or inconsistency of the client in establishing his
preference on one or more criteria. Typical cases of endogenous uncertainty include
the difficulty to discriminate alternatives in a dimension or criterion due to its
ambiguous definition or linguistic nature, the appearance of inconsistencies due
to conflicting information in different parts of the model, the impoverishment
of the information due to the aggregation of dimensions or criteria. In all such
cases the model must contain the appropriate structure for each particular type of
uncertainty (if any). It should be noted that choosing a particular representation
for a given uncertainty is not neutral with respect to the final result and that the
client should be aware of the different results to which such a choice may lead.

The last element to be established within the evaluation model is the precise
method R to be used in order to elaborate a solution to the model. Such a choice is
not neutral, since different methods can result in completely different conclusions.
Classic decision theory usually neglects this issue since it always considers as given
the method (an optimisation procedure).This is however, not generally the case.
The choice of R depends on the problem statement II adopted in the problem
formulation and should depend on two criteria:

vl

g e theoretical meaningfulness (in the sense of measurement theory): the
] method should be sound with respect to the information used. Typi-
%3 cal errors in this case include the use of averaging operators on ordinal
*ﬁ information, the use of a conventional optimisation algorithm when the
@j cost coefficients are only ordinal, the underestimation of the importance
o) of the independence of criteria when an additive value function is used.

g e operational meaningfulness (in the sense that the client should be able
&2 to understand and use the result within the decision process). It should
By be noted that theoretical meaningfulness does not prevent the problem
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& of establishing a useless result (an arithmetic mean of lengths is theoret-
E"; ically sound, but useless if the client is looking for a volume). Typical
£e errors here include the underestimation of the quantity of information
£ required by the client (a simple ranking of the alternatives can be in-
£ sufficient for the client’s concerns) or the aggregation of criteria without
S}j verifying their coherence.

(g

A critical aspect in establishing R is the set of properties each such method
fulfils. Each method may satisfy some useful properties, but may also not satisfy
some other useful ones. It may present undesired side effects (see Bouyssou et al.,
2000)such as non monotonicity, dependence on circuits, different forms of manipu-
lability etc. The analyst should establish a set of properties that the method should
fulfil (not necessarily of normative nature, but simply prescriptive ones) and make
the client aware of the possible side-effects of the use of a potential method. From
this perspective, the axiomatic study of the methods is a key knowledge for the
analyst since it allows to have a precise map of the properties each method satisfies
(see the discussion in chapter 4).

Furthermore, each method R requires the use of a number of parameters:
some of these directly representing preferential information to be obtained from
the client and his/her knowledge, others more or less arbitrary interpretations of
such knowledge and depending on R itself.

The best known example concerns the use of coefficients of importance when
several criteria have to be considered simultaneously. Here the client can have
an “intuition” on “how important” certain criteria are with respect to others,
but the precise formalisation of this concept strictly depends on how R works
(see Borcherding, Eppel, and von Winterfeldt, 1991; Mousseau, 1997). If, for
instance, R is based on the construction of a value function, then such parameters
are tradeoffs among the criteria and have to be established together with the
value function associated to each criterion. If on the other hand, R is a majority
procedure then these parameters are “power indices” to be associated to potential
coalitions of criteria. It is clear that, depending on what R is and on the available
information, the establishment of these parameters requires precise procedures
and interaction protocols with the client (see Mousseau, 1995; Mousseau, Dias,
Figueira, Gomes, and Climaco, 2003; von Winterfeldt and Edwards, 1986; Weber
and Borcherding, 1993).

The same reasoning applies to other parameters that could be necessary for
a given R, such as discrimination thresholds, cutting levels for valued preference
relations, cost coeflicients and right hand side terms in mathematical programmes,
boundaries of categories in classification procedures etc. Most of these parameters
are an interpretation of what the client considers relevant for the problem and
such an interpretation depends on how R is defined. Not all interpretations might
be consistent with the client’s information and knowledge and different consistent
interpretations might lead to completely different results. The reader will find
further details in section 4.4 of chapter 4.

[l

-

Although constructing the evaluation model can be seen as a traditional
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é decision aiding activity, on which the analyst’s decision aiding knowledge usu-
&2 ally focuses, it remains a crucial activity to which major attention has to be
E? dedicated. Several technical choices have to be made here and not all of them
E@ are either straightforward or neutral with respect to the final recommenda-
¢ tion. The accurate selection and justification of such choices enables on the
%> one hand to guarantee meaningfulness of this artefact and on the other hand
£2 to identify the precise reasons why this specific final recommendation has been
Lfﬁ obtained. from this perspective, a sound construction of the evaluation model
= ig crucial for easy revision and update, as well as enabling a clear justification

@ of its adoption.

2.4.5 Constructing the final recommendation

The output of the evaluation model is essentially a result which is consistent with
the model itself. This does not guarantee that this result is consistent with the
client’s concern and even less with the decision process for which the aid has been
requested. As the client and the analyst return to reality they should take at least
three precautions before they formulate the final recommendation (to be noted
that due to the expected consensus between client and analyst, we consider that
the outcome is also considered as “owned” by the client).

Sensitivity analysis. How will the suggested solution vary when the parameters
of the model are perturbed? What is the range of values of such parame-
ters for which the solution will remain, at least structurally, the same? A
solution that appears to be sensitive to very small perturbations of some
technical parameters implies that the solution strongly depends on this par-
ticular instance of the parameters and less on the preferential information.
Since such an instance can be quite an arbitrary interpretation, a thorough
investigation of the model should be conducted.

Robustness. We have already seen that robustness can be conceived as a dimen-
sion of the problem statement within a problem formulation. How good will
the solution (or the method) be under different scenarios and combinations
of the parameters? Being able to show that a particular solution will remain
“good” (although perhaps not the best one) under the worst conditions that
may occur should be considered as an advantage. Depending on the partic-
ular type of robustness considered, it is reasonable to verify whether such a
feature holds or not. On the other hand a typical error in robustness analysis
consists in testing different methods in order to find out if a certain solution
will remain “the best”. This is meaningless, since each method provides
qualitatively different results that cannot be compared.

Legitimation. How legitimated is the foreseeable recommendation with respect
to the organisational context of the decision process (David, 2001; Hatchuel
and Molet, 1986; Landry et al., 1996)7 As already mentioned, each decision
aiding process refers to a decision process that usually occurs within a certain
organisation (possibly of informal nature). Coming up with a recommenda-
tion that could be in conflict with such an organisation implies assuming
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risks. Either the client and the analyst explicitly pursue this conflict or they
risk wasting time and resources. It should be noted that in considering le-
gitimation, besides its precise contents, we have to take into account how a
recommendation is presented, implemented and perceived by the other ac-
tors. From this perspective, a valid representation of the problem situation
helps in verifying the legitimation.

[f;ﬁ Establishing the final recommendation implies the return to the reality
3 of the decision process for the client and the analyst. A successful return is
&2 not only guaranteed by the scientific legitimation of the final recommenda-
F‘,\‘ tion (theoretical and operational meaningfulness), but also by the capacity
. of the two actors to take the dynamics of the decision process as well as its
é organisational complexity into account.

2.5 Update and Revision: an open problem

Conducting a decision aiding process is not a linear process in which the four
cognitive artefacts are established one after the other. Since a decision aiding
process always refers to a decision process which has a time and space extension,
it is natural that the outcomes of the decision aiding process remain defeasible
cognitive artefacts. Usually the process will encounter situations in which any of
the above artefacts:

e may be in conflict with the evolution of the client’s expectations, preferences
and knowledge;

e may be in conflict with the updated state of the decision process and the
new information available.

It is therefore necessary to adapt the contents of such artefacts as the decision
aiding process evolves in time and space. see example 2.9 below.

Example 2.9

Consider again the case of the bus acquisition. A client looking for decision support
within a problem situation described as: “the client’s bus company is looking for
a bus”. He presents a set of offers received from several suppliers, each offer
concerning a precise type of bus (thus a supplier may introduce several offers).
The analyst will establish a problem formulation in which:

e A is the list of offers received;

o V is the list of points of view that are customary in such cases, (e.g., retrieved
from past decisions) let’s say cost, quality and transportation capacity;

e II is a choice problem statement (an offer has to be chosen).

It is possible to construct an evaluation model with such information in which:
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A are the feasible offers;

D are the dimensions under which the offers are analysed: price and man-
agement costs (for the cost point of view), technical features (for the quality
point of view), loading capacity (for the transportation capacity point of
view), etc.;

H are the criteria that the client agrees to use in order to represent his
preferences (the cheapest the better, the more loading capacity the better,
better quality resulting from better performances on technical features, ete.);

there is no uncertainty;

R could be a multi-attribute value function provided the client is able to
establish the marginal value function on each criterion.

When this model is presented to the client his reaction could be: “n reality we
can buy more than one bus and there is no reason that we should buy two identical
buses, since these could be used for different purposes such as long range leisure
travels or urban school transport”. With such information, it is now possible to
establish a new evaluation model in which:

A are all pairs of feasible offers;

D are the dimensions under which the offers are analysed (price, management
costs, technical features, loading capacity etc.), but now concerning pairs of
offers plus a classification of the buses in categories (luxury liner, mass transit
ete.);

H are the same criteria as previously plus a criterion about “fitting the
demand” since two different types of buses may fit the demand better;

uncertainty is now associated to the different scenarios of bus use;

R could be a multi-attribute utility function provided the client is able to
establish the marginal value function on each criterion.

A possible reaction to this suggestion could be the following: “meanwhile we had
a strategic discussion and the company considers that in reality the issue is to find
a supplier with whom to establish a strategic partnership considering the expansion
of our activities”. Clearly, not only does the evaluation model makes no sense,
but the problem formulation also has to be revised. We now have:

A are potential suppliers;

V concern the suppliers reliability, market share, availability to strategic
partnerships, quality record, etc.;

II will now become a classification problem statement, the issue being to find
out whether each supplier fits the company’s strategy.

A new evaluation model has to be built now in such a way that:
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A are potential suppliers;

D are the dimensions under which the suppliers are analysed (market share,
quality certification, history of past supplies, management structure etc.);

H are the criteria the client agrees to use in order to represent his preferences;
e there is no uncertainty;
e R could be a multiple criteria classification procedure.

The process may continue revising models and problem formulations until the
client is satisfied. <&

The above example shows that during a decision aiding process several different
versions of the cognitive artefacts may be established. However, such different
versions are strongly related to each other since they carry essentially the same
information and only a small part of the model has to be revised. The problem is:
is it possible to give a formal representation of how such an evolution occurs? In
other words: is it possible to show how a set of alternatives or some preferential
information may change while shifting from one model to another? It is out of
the scope of this volume to find an answer to this question which requires further
theory on the dynamics of the decision aiding process. We will just mention that
the descriptive model of the decision aiding process turns out to be useful since it
allows to establish a set of possible problem formulations and evaluation models
to be used in different contexts, thus preventing the necessity of re-starting the
modelling process from the beginning each time.

2.6 Conclusion

This is a book aiming at helping decision makers, analysts, practitioners and
researchers to appropriately use tools and methods of decision support. However,
such tools and methods are not independent algorithms and models which we just
have to apply to some information to obtain the conclusion. They are used within
a stream of interactions structured around a decision process in which an actor
involved (the client) asks for advice and support from another actor who becomes
involved (the analyst). In other words they are used within a decision aiding
process. It is therefore necessary to analyse them from the perspective of such a
process. Talking about the correct use of such tools, about their meaningfulness,
about their legitimation and the usefulness of their results only makes sense with
respect to such a decision aiding process.

In this chapter we tried to introduce a general description of what such a deci-
sion aiding process is and how it can be conducted in order to pursue meaningful,
useful and legitimated recommendations. In order to do so, we first had to show
that aiding someone involved in a decision process cannot just be limited to solv-
ing a well established formal problem. It concerns a wide set of issues including
the understanding of the problem situation in which the client is involved as well
as formulating a number of formal problems to choose from. Such concerns are
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independent of the formal model that is going to be used to elaborate the client’s
problem. In practice, such concerns are always considered. However, different
decision aiding approaches can be characterised by the fact that such concerns are
explicitly or implicitly considered as outcomes of the decision aiding approach.

In the chapter we basically introduce two contributions.

g

&2

- 1. A model of the decision aiding process based on the description of the
£ cognitive artefacts such a process produces. Indeed, our point of view
@ is that decision aiding is a process in which the actors engaged have to
‘f;‘j{’ establish a set of shared representations of issues such as:

L

5 e a representation of the problem situation within which the client
% (and consequently the analyst) are engaged;

ot

@ e one or more problem formulations, a formal anticipation of the
&3 model to construct, in which the client’s concerns are expressed
é’g in a “decision support language”;

£ e one or more evaluation models enabling to elaborate the problem
@? formulation(s) and to establish a conclusion;

> e a final recommendation in which the conclusions of the decision
[ alding process are summarised, expressed in natural language and
g prepared to be confronted with the real world (the client’s decision
> process).

-

g 2. A number of recommendations on how the above cognitive artefacts can
© be constructed through interaction with the client. Such recommenda-
& tions are expected to be helpful in order to:

£

> e guarantee the theoretical soundness of the result (meaningfulness);
g e guarantee the operational completeness of the result (usefulness);
é}; o guarantee the legitimation of the results within the client’s decision

process.

~ I g
RS

In the following chapters the reader will see how the construction of the eval-
uation model can be pursued following the above requirements in further detail.
More precisely, chapter 3 will discuss how it is possible to establish models of
preferences (on a single criterion) and how to use numerical representations of
measures and preferences correctly. Chapter 4 gives a general introduction to the
problem of aggregating preferences expressed on several criteria or performances
established on several dimensions (attributes). Chapter 5 will focus on the use of
“procedures” allowing to undertake such an aggregation (and will therefore study
the properties of such procedures), while chapter 6 will focus on the use of “mod-
els” representing a global preference and how these influence the preferences on
single criteria and their aggregation (and will therefore study the properties of
such models). Finally, chapter 7 will discuss the problem of constructing the final
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recommendation, mainly when the result of the aggregation is not directly usable
and issues concerning the robustness of such a recommendation.



NUMBERS AND PREFERENCES

3.1 Introduction

This book is devoted to the use of formal models in evaluation and decision aiding
models. Most of the formal models presented in the literature and used in practice
are based on two fundamental mathematical concepts: numbers and relations.
They are also present on each page of this book. In this chapter, we will focus on
these two basic tools.

Sections 3.1 to 3.3 are devoted to the use of numbers for representing vari-
ous aspects of the observed reality and the adequateness of performing certain
calculations with respect to this reality. The rest of the chapter deals with the
connections between the language of preference relations (evaluation and decision
alding is impossible in the absence of preferences) and the language of numbers.
This chapter does not aim at being exhaustive: it is to be seen as a collection of
questions that naturally arise in the course of using formal models for evaluation
and decision aiding, either to build preferences on the basis of numerical informa-
tion, or to build numerical models of preferences. It should be noted that, contrary
to the next chapters, this one does not provide operational tools for decision aid-
ing, but it points out fundamental aspects which will be (sometimes implicitly)
present everywhere in the book.

3.2 Numbers

To our knowledge, there is no culture, even very primitive, which does not use num-
bers or, more generally, mathematics. “Everything is numbering” said Pythagoras
and many stories and legends but also very concrete political decisions are based on
what could be called the mysticism of numbers. Martzloff (1981) writes: “Without
them, it is impossible to understand the measure of the sky and of the earth, to
manage the taxes and finances, to pitch military camps or to arrange bodies of
soldiers, to govern the city”.

Galileo (published 1966) translated many experimental observations about the
physical world into mathematics and said that (our translation):

Philosophy is written in this very vast book that is eternally open in
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front of our eyes—I mean the universe—but one cannot read it before
having learned the language and before having become familiar with
the characters in which it is written. It is written in mathematical lan-
guage and its letters are triangles, circles and other geometric shapes,
means without which it is humanly impossible to understand a single
word, without which we vainly roam in a dark labyrinth !

It is clear that the success of mathematics in the description and the explana-
tion of the solar system (for example forecasting the return of the Halley’s Comet)
was crucial in the development of the role of mathematics in the explanation of
other natural phenomena: capillarity, electromagnetism, classification of crystals,
heat propagation, ...Extending the domain of application of mathematics, Con-
dorcet introduced what is now called “social mathematics” (see Condorcet, 1785).
He was convinced that this discipline would contribute to the welfare and the
progress of humanity.

Today, mathematics are used in all the fields of human activity, not only as a
tool to make calculations, but also in the education, the methodology and every-
one’s way of thinking: we all reason in terms of measures, percentages, ratios,
logical deductions, statistics, ...In fact, numbers are present everywhere. Most of
the people consider that “natural numbers” (positive integers) exist independently
of any mathematics or, even, of any human intervention. However, our intuitive
perception is limited to very small numbers, associated to the counting of objects
(in some primitive tribes people only count up to five or have no specific words for
the numbers; very small numbers are considered to be particular characteristics of
the counted objects and are treated as attributive adjectives). The constitution of
a system of numbers is already a mathematical theory, with many rules, conven-
tions or axioms. These rules can be different depending on what these numbers
represent.

A first use of numbers is of course numbering (first, second, ...), i.e. giving a
list in a certain order (ordinal aspect of numbers). A second use of natural numbers
(positive integers) is to count objects (cardinal aspect); in this perspective, some
basic operations can be introduced, such as addition and subtraction. However,
the main use of numbers resides in one of the most natural activities of humans:
measuring. Measuring allows to quantify phenomena, to make calculations in or-
der to understand, to foresee and to manage our environment. Measuring weights,
lengths or volumes is necessary in commercial transactions. Measuring heat, du-
ration or flow is useful to describe physical phenomena. Measuring wealth, un-
employment or production allows to analyse economy. Measuring pollution, noise
or vegetation density is necessary in environmental management. Numbers are
used to measure many other things (as illustrated in Bouyssou et al., 2000, ch. 4):
speed, age, density, score, social impact, economic index, probability, possibility,
credibility, preference intensity, latitude, date, earthquake intensity, popularity,

1«15 filosofia é scritta in questo grandissimo libro che continuamente ci sta aperto innanzi
a gli occhi (io dico 'universo), ma non si pud intendere se prima non s’impara a intender la
lingua, e conoscer i caratteri, ne’ quali é scritto. Egli é scritto in lingua matematica, e i caratteri
son triangoli, cerchi, ed altre figure geometriche, senza i quali mezi é impossibile a intenderne
umanamente parola; senza questi é un aggirarsi vanamente per un oscuro laberinto”.
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political success, financial ratio, friction coefficient, coordinates, radioactivity, elec-
tric power, angle magnitude, percentage, severity of a tumour, cash-flow, exchange
rate, productivity, landscape harmony, ... A number can indicate the presence or
not of a specific property (boolean variable). It can be a tool for recognising an
object (i.e. a label). Sometimes, it is possible to define a standard and to express
the measure of every object in function of this standard thanks to physical instru-
ments, as is the case for lengths or weights. Sometimes, it is necessary to define
reference states on an “arbitrary” scale, as is the case for temperatures or dates
(of course, this can depend on the state of knowledge: thermodynamics allowed
to define an “absolute” zero for temperature and cosmology will perhaps allow to
do so for dates).

Manipulating “numbers” in social sciences, as most of the decision aiding tools
try to do, raises the question of measuring human or social characteristics, such
as satisfaction, risk aversion, preference, group cohesion, etc. However, contrary
to what happens for the characteristics measured in the natural sciences (length,
weight, duration, etc.), there is no real consensus on what measuring means in
social sciences. Does the way of measuring depend on the goal of the process
(description of reality, construction of models or laws, decision support)? Does
the duplication of social ohjects make sense (two apples having the same weight
versus two individuals having the same preference)? How to aggregate measures
(the weight of a package of apples versus the preference of a group of individuals)?

Some of these questions were raised in Bouyssou et al. (2000): remember,
in particular, the role of numbers in voting systems (chapter 2), in evaluating
students (chapter 3), in characterising the development of a country, the quality of
air or the performance of a decathlete (chapter 4), in assessing competing projects
(chapter 5) or in automatic decision making (chapter 7).

It seems clear that the numbers representing measures cannot always be treated
in the same way because the underlying information can be completely different
from one context to another. This chapter certainly does not give a definitive
answer to this fundamental and difficult problem. Its purpose is to try to clarify
the various types of numerical scales that are used, especially in the field of decision
aiding. We will first present four basic examples in order to introduce the main
types of scales that are usually discussed in measurement theory (see Krantz, Luce,
Suppes, and Tversky, 1971; Narens and Luce, 1986; Roberts, 1979, 1994). The
rest of the chapter is a study of the connections between numbers and relations in
preference modelling.

3.3 Four basic examples

3.3.1 The race

The arrival order in a race is the following: Alfred, Bill, Carl, David, Ernest, Franz,
Gilles, Henry, Isidore and John. Alfred, David, Franz and John form team a, the
others form team b. The duration of the race has been registered, in seconds,
yielding for each runner, giving the numbers in table 3.1. The purpose is to
compare these two teams and, if possible, to decide which team is the best. On
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A B ¢ D E F G H I J
43.5 43.7 442 45 47 48 52 521 525 55

Table 3.1: Race example: times in seconds.
Team a = {A,D, F,J}, team b= {B,C,E,G,H, I}.

the basis of these numbers, the following assertions can be verified:

(i)

(if)

(iii)

(iv)

(xii)

(xiii)

(xiv)

the mean time of team b = {B,C, E, G, H, I}, is higher than the mean time
of team a = {A, D, F, J};

the second best (lowest) time in team b is lower than the second best time
in team a;

the mean time computed on the basis of all the runner’ results, is beaten by
three runners of team a and three runners of team b;

the median? time, calculated on the basis of all of the runners’ results, is
exceeded by two runners of team a and three runners of team b;

the third best time in team « is lower than the times of three runners of team
b;

the worst time in team b is more than 1.2 times the best time in team a;

the difference between the worst time in team a and the worst time in team
b is 12.5 times the difference between the best time in team a and the best
time in team b;

the sum of the two best times in team « is higher than the sum of the two
best times in team b;

the difference between the two best times in team a is triple the difference
between the two best times in team b;

if we consider the three best times, team b is more often represented than
team a;

the sum of the three best times in team a is higher than the sum of the two
best times in team b;

the mean time of team b is 1.015 times the mean time of team a;

the ratio between the worst and the best times is higher in team a than in
team b;

in team a, the square of the worst time is 1.6 times the square of the best
time;

2 The median of a set of numbers is a value x such that there as many numbers greater than
z than number smaller than z (some specific conventions exist to avoid ambiguity in the even

case).
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(xv) the difference between the best and the worst times in team a is equal to
11.5.

Now, if we convert all the times into minutes, we see that all the assertions remain
valid, except (xiv) and (xv). More generally, as a duration is completely defined by
the choice of a unit (the origin being “natural”), every multiplication by a positive
constant should be possible without changing the conclusions. This shows that
some assertions that use numbers resulting from measurement, even in cases where
measurement is of “high quality” should be considered with care. The way in which
numbers are obtained is crucial for their interpretation. This will be all the more
true with numbers obtained by measurement operations of “decreasing quality”.

3.3.2 The weather

Temperatures were measured at noon in two European countries, during respec-
tively 10 and 8 consecutive days. The results, in Celsius degrees, are presented in
table 3.2. On the basis of these observations, how could we help a tourist choose a
country for his holidays? As in the previous example, many assertions can be pro-

12 3 4 &5 6 7 8 9 10
a 20 16 15 14 14 15 13 15 16 18
b 14 12 13 15 14 13 15 16 - -

Table 3.2: Temperatures in two countries (Celsius degrees).

posed for the comparison of the countries a and b, on the basis of these numbers.
Here are some examples of such valid assertions:

(i) the mean temperature in country a is higher than the mean temperature in
country b;

(ii) the second highest temperature in country a is higher than the highest tem-
perature in country b;

(iii) the mean temperature calculated on the basis of all the measures in both
countries, is exceeded seven times in country a and three times in country b;

(iv) the median value, calculated on the basis of all the measures in both coun-
tries, is exceeded four times in country a and once in country b;

(v) the fourth highest temperature in country a is higher than the temperatures
in country b during 5 days;

(vi) the highest temperature in country a is more than 1.5 times the lowest tem-
perature in country b;

(vii) the difference between the highest temperature in country a and the highest
temperature in country b is four times the difference between the lowest
temperature in country a and the lowest temperature in country b;
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(viii) the sum of the two highest temperatures in country « is larger than the sum
of the two highest temperatures in country b;

(ix) the difference between the two highest temperatures in country a is two times
the difference between the two highest temperatures in country b;

(x} if we consider the five highest temperatures in table 3.2, country ¢ is more
often represented than country b;

(xi) the sum of the three highest temperatures in country a is larger than the
sum of the four lowest temperatures in country b;

(xii) the mean temperature in country a is 1.1 times the mean temperature in
country b;

(xiii) the ratio between the highest and the lowest temperatures is larger in country
a than in country b;

(xiv) in country a, the square of the highest temperature is 2.37 times the square
of the lowest temperature;

(xv) the difference between the highest and the smallest temperatures in country
a is equal to 7.

The temperatures in table 3.2 are expressed in Celsius degrees, but they could be
expressed on another temperature scale. In table 3.3, they have been converted
into Fahrenheit degrees (in order to limit the number of decimals, we have simply
multiplied by 1.8 and added 32). On the basis of these new numbers, we see

1 2 3 4 ] 6 7 8 9 10
a 68 608 59 572 572 59 554 59 60.8 64.4
b 572 536 554 59 572 554 59 608 - -

Table 3.3: Temperatures in two countries (Fahrenheit degrees).

that some assertions remain valid and other do not. As a temperature scale is
completely defined when the origin and the unit are fixed, every transformation
of the form

ax + 8 (with o > 0),

should be possible without changing the conclusions. The reader can verify that
this is the case for all the assertions except (vi), (xi), (xii), (xiii), (xiv) and (xv). It
should be noted that what is verified is not the veracity or not of an assertion, but
the fact that its veracity (resp. falsity) is unchanged for an admissible change of
scale. For example, let us verify that the following assertion is not invariant for the
transformation oz + 8: “this temperature is the double of that one”. Numerically,
this assertion can be written
I = 21‘2.
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As this equality does not imply that
ar) + 8 = 2{azy + 8), Yo >0,V8,

the veracity (resp. falsity) of the assertion can change for an admissible change of
scale.

On the contrary, the assertion “this difference of temperature is the double of
that one” remains true (resp. false) when an admissible change of scale is applied.
Indeed,

T — Ty = 2(z3 — 24)

implies, Vo > 0,V5:

(az1 + 8) — (azs + B) = 2| (azs + B) — (aza + ﬁ)].

3.3.3 The race again

Let us take again example 3.3.1. Suppose that the only available information is
the ranking of the runners and that numbers have been associated to them in
decreasing order of the arrivals, as in table 3.4. On the basis of these numbers,

A B C D E F G H I J
0 9 8 7 6 5 4 3 2 1

Table 3.4: Race example: numbers associated to the runners.
Team a = {A,D,F,J}. Team b= {B,C,E,G,H,I}.

many assertions can be proposed for the comparison of the teams a and b; here
are some examples of such valid assertions:

(i) the mean of team « is greater than the mean of team b;

(ii) the second highest number in team b is bigger than the second highest number
in team a;

(ili) two runners of team a and three runners of team b have a number that is
bigger than the mean of the whole set of runners;

(iv) two runners of team a and three runners of team b have a number which is
bigger than the median of the whole set of runners;

(v) the third highest number in team a is greater than the numbers of three
runners of team b;

(vi) the greatest number in team a is less than two times the number of the third
runner in team b;
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(vii) the difference between the numbers of the best runners of teams a and b
is equal to the difference between the numbers of the last runners of these
teams;

(vili) the sum of the two highest numbers in team a is equal to the sum of the two
highest numbers in team b;

(ix) the difference between the numbers of the first and the second runners of
team @ is triple the difference between the numbers of the first and the
second runners of team b;

(x) team b has more runners among the three highest numbers than team a, and
also among the five highest;

(xi) the highest number in team a is larger than the sum of the three lowest
numbers in team b but smaller than the sum of the four lowest numbers in
team b;

(xil) the mean of team a is 1.17 times the mean of team b;

(xiii} the ratio between the second and the third highest numbers is larger in team
a than in team b;

(xiv) in team b, the square of the highest number is 20.25 times the square of the
smallest one;

(xv) the difference between the greatest and the smallest number in team a is
equal to 9.

In fact, in this example, the only relevant information is the ranking of the run-
ners, and there is no reason to privilege one numerical representation over another
(unless very specific assumptions are added). Consider, for instance, the numerical
representation given in table 3.5. On the basis of these new numbers, we see that

A B C D E F G H I J
100 9 8 10 9 8 7 6 5 0

Table 3.5: Race example: other possible values for the runners.

assertions (ii), (iv), (v) and (x) remain verified but not the others. This means
that the other assertions cannot be considered as reliable information: their truth
or falsity depends on the particular numerical representation which is chosen. As
only the ranking of the runners is known, every strictly increasing transformation
of the numbers should be possible without changing the conclusions derived from
these numbers. This is clearly the case only for assertions (ii), (iv), (v) and (x).
Note also that all these considerations do not allow to definitely decide which team
is the best.
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3.3.4 The expert’s advice

Suppose that an expert evaluated social projects in a city by assigning numbers to
them in function of what he considers as their chance of success and their global
interest for the city. The scale is [0, 20] and the higher the evaluation, the higher
the quality of the project. What kind of information can we deduce from these
evaluations? As in the previous examples, many assertions can be proposed on

A B C D E F G H I J
17 16 14 12 10 10 9 5 3 2

Table 3.6: Evaluations by the expert on a scale from 0 to 20.

the basis of these numbers; here are some examples of valid assertions:
(i) project A is the best;
(ii) project E is two times better than project H;

(iil) the difference between projects A and B is less than that between D and E;

)
)
(iv) the differences between B and C and between C and D are equal;
(v) four projects are “below the mean” (which is equal to 10);

)

(vi) if two projects can be chosen, the pair {B,C} is better than {4, D} (as the
sum of their evaluations is higher).

In this example, the numbers are associated to subjective evaluations (by the ex-
pert) and not to some “objective facts” such as times, temperatures or ranking,
as was the case in the previous examples. This means that the reliability of a
conclusion based on these numbers depends on the type of information they really
support. This can be the subject of additional assumptions or can be obtained
by a dialogue with the expert on how he has built his evaluations. Such a dialog
could reveal, for example, that his evaluations of “bad” projects were only very
roughly made (so that the difference between H and I has no meaning at all), or
that he really hesitated to consider that A is better than B, while he was sure that
C is much better than D. Moreover, if this expertise has to be merged with other
information, the decision maker may want to take into account the inevitable im-
precisions of such subjective evaluations by considering that a difference of 1 point
between two projects can be ignored. In this case, table 3.7 of evaluations could be
considered as equivalent to table 3.6 for the purpose of comparing projects. With

A B C D E F G H I J
17 17 15 12 10 10 10 0 O O

Table 3.7: “Equivalent” possible evaluations.

these new evaluations, we see that some of the assertions proposed before are no
longer true. Finally, the only reliable information could be the following:
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e A and B are the best projects and are very similar,

e ( is strictly better than D, which is better than £, F and G,
e There is no significant difference between E, F and G,

e H I, .J are the only bad projects (evaluations less than 7),

and every set of numbers supporting this information could be accepted (and not
only the strictly increasing transformations as in the example of section 3.3.3).
For example, every set of numbers satisfying the following conditions could be
considered as an acceptable numerical representation of the information (in the
following expressions, h(z) is the numerical evaluation of project x):

|h(A) — h(B)| <1,

h(A) > h(z) +1,YVz # A, B,

h(B) > h(z) + 1,Vz £ A, B,

h(C) > h(z) +1,Vz # A, B, C,

h(D) > h(z)+1,Vz # A, B,C, D, (3.1)
|h(E) — h(F)| <1,

|M(E) — MG)| <1,

|h(F) = h(G) <1,

hMz)<7iffx e {H,I,J}.

Of course, the solution of this system is not unique. Moreover, the threshold, equal
to 1 here, could be variable along the scale.

3.4 Evaluation and meaningfulness

3.4.1 Definitions

Let us consider a completely ordered set (i.e. a set with elements ranked from
the first to the last, without ties). As a completely ordered set can generally be
mapped to the real numbers (see Fishburn, 1970), we limit ourselves to numerical
ordered sets, i.e. subsets of real numbers, and we call them “numerical scales”.
“Evaluating” an object consists in associating an element of a numerical scale to
it, according to some conventions as, for example, the choice of a measurement
instrument (sometimes, the element of the numerical scale that is associated to an
object is not unique, because of imprecision or uncertainty, but we put these situ-
ations aside for the moment). The evaluation of an object along a numerical scale
is supposed to characterise or to represent a particular information about certain
aspects of this object (weight, temperature, age, number of votes, development
of a country, air quality, performance of a sportsman, etc. (see Bouyssou et al.,
2000, ch. 2 and 4). Changing the conventions leads to changing the evaluations of
the objects. An important question is to know whether changing the conventions
leads to a modification of the underlying information about the objects (in terms,
for instance, of comparisons between the objects). The examples in section 3.3
show that, depending on the context, some assertions remain true or remain false
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when the evaluations of the objects are transformed, while some assertions do not.
Remember that what is being verified is not the veracity or the falsity of an as-
sertion, but the fact that its veracity (falsity) is unchanged when the conventions
used for evaluation are modified.

Different numerical scales are considered as being “equivalent” if they support
(represent) the same information about the considered objects: we will call them
“info-equivalent”. Moreover, it is sometimes possible to characterise the mathe-
matical transformations between info-equivalent numerical scales. This observa-
tion lead Stevens (1946) to define three important types of scale respectively called
ordinal, interval and ratio scales (for more details, see Krantz et al., 1971; Narens
and Luce, 1986; Roberts, 1979, 1994). In the following definitions, the expression
“admissible transformations” means “transformations into info-equivalent numer-
ical scales”. A scale is ordinal if its admissible transformations are all strictly
increasing transformations; it is an interval scale if its admissible transformations
are all positive affine transformations of the form ¢(z) = az + 8, with o > 0
(in this case, the scale is univocally determined by the choice of an origin and a
unit); it is a ratio scale if its admissible transformations are the positive homo-
thetic transformations of the form ¢(z) = ax, with & > 0 (in this case, the scale is
univocally determined by the choice of a unit, the origin being “naturally fixed”).
Let us also mention the absolute scale which does not accept any admissible trans-
formation (except the identity), as a counting or a probability scale. Other, more
or less sophisticated, scale types can be defined (see Roberts, 1979) by their sets
of admissible transformations, but will not be developed here. It is also important
to note that, in many cases, it is not possible to characterise the transformations
between info-equivalent numerical scales in an analytical way (this is the case in
example 3.3.4).

In classical measurement theory, an assertion is declared to be meaningful if
its truth value is unchanged when admissible transformations are applied to the
scales used in the assertion. More generally (when the admissible transforma-
tions are not identifiable), we will say that an assertion is meaningful if its truth
value is unchanged when the numerical scales used in the assertion are replaced
by info-equivalent scales (see the concept of “technical sound” introduced in chap-
ter 2, section 2.3.4). For instance, if we consider that a numerical scale used for
evaluating durations is a ratio scale, then all the assertions in the basic example
3.3.1 are meaningful, except (xiv) and (xv), because their veracity (or falsity} is
unchanged by any positive homothetic transformation of the scale. If we accept
that a scale used for measuring temperatures is an interval scale, then all the as-
sertions in the basic example 3.3.2 are meaningful, except (vi), (xi), (xii), (xdiii),
(xiv) and (xv), because their veracity (or falsity) is unchanged by any positive
affine transformation of the scale. If we consider that a scale used for representing
a ranking is an ordinal scale, then only the assertions (ii), (iv), (v), and (x) are
meaningful, in the basic example 3.3.3, because their veracity or falsity resists to
any strictly increasing transformation of the scale. In example 3.3.4, only the as-
sertions that remain true (or false) for all the sets of all numerical values verifying
the constraints system are meaningful. As we see, depending on the scale type (i.e.
depending on the information supported by the scale), some caution is necessary
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in the manipulation and the interpretation of the numbers if we want to obtain
meaningful conclusions based on these numbers. A conclusion that is true using a
given scale but that is meaningless (not meaningful) for this type of scale is com-
pletely dependent of the particular scale which is considered, has no character of
generality and is thus, probably, of very limited interest. It can even be dangerous
because of the tendency of humans to generalise ideas without sufficient precau-
tions. The analysis of scale types allows to detect manipulations (mathematical
operations) which can lead to meaningless conclusions. In this case, we can speak
of meaningless operations or procedures. In this perspective, the analysis of scale
types is a useful tool for scientists.

3.4.2 Comments

Identifying the type of scale of a given set of evaluations is not always an easy
task. Besides the scales used for measuring physical phenomena (length, weight,
volume, force, time, energy, power, etc.), most of which are ratio or interval scales,
many situations lead to the use of scales of a type that does not belong to the
classical ones and is often the result of an empirical judgement, as in example
3.3.4 (see also Knapp, 1990). This is the reason why the concept of meaningfulness
has some limits and was the subject of some criticisms. It should also be noted
that a “meaningless” manipulation of some numbers (because of the scale type
considered) can sometimes yield pertinent information. If you respectively assign
the numbers 0, 1 and 2 to people having brown, blue and green eyes, the fact
that the arithmetic mean of these numbers, computed in a given population, is
1.2, yields the certainty that there are more green than brown eyes, although the
arithmetic mean is generally considered as meaningless in this context (being a
so-called nominal scale). Another example is the minimum spanning tree problem
where the sum can be applied to the numerical values of the edges of the given
graph in order to find the optimal solution, even if the numerical scale is ordinal
(so that, theoretically, the sum is meaningless). Conversely, it is possible that
an assertion is meaningful but without any interest for solving the problem. An
over-enthusiastic application of this theory may lead to the fanatic attitude where
“meaningless” is synonym of senseless. As we will see in the following sections, it
often happens, particularly in decision aiding, that the scales are an intermediary
between the classical types defined in section 3.4.1. In these cases, a punctilious
application of meaningfulness theory generally leads to an impoverishment of the
data, due to the important gap between ordinal and interval scales.

Defining admissible transformations or info-equivalent scales implies knowing
what kind of information we want to represent by the scale. The knowledge of the
nature of the data is not enough to determine the scale type or the info-equivalent
scales, especially in decision aiding. The context, the perception by the decision
maker and its purpose play an important role in the interpretation of the numbers
and the scale type and therefore in the conditions for meaningfulness and in the
acceptable manipulations. A price, for instance, is “naturally” a ratio scale, so
that, on this basis, it is possible to give a sense to the assertion “this object is k
times better than that one with regards to the price”. However, it may happen
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that the decision maker refuses this kind of assertion (due to his perception of the
prices in terms of preferences), but only accepts to compare prices in an ordinal
way. In this case, the price should be considered as an ordinal scale instead of
a ratio scale. Conversely, a decision maker may decide to give a sense to the
comparison of intervals on a scale that is “naturally” ordinal. To conclude, we
consider that scale types are not “naturally given” in decision aiding, even for
physical measures, and that every use of numbers must be accompanied by some
precisions on the information they are supposed to support. Despite the limitations
of meaningfulness theory, we consider it an important tool for the analysts in order
to avoid the development of completely arbitrary decision aiding procedures.

3.5 Stepping stones for this chapter

Here are the main ideas that we want to put forward in this chapter.

B
Ej 1. Numbers are present everywhere; however their origins can be very dis-
> similar and the information supported by these numbers can be very
- different from one situation to another. One consequence is that not all
Lff} mathematical operations are justified for all these numbers (see section
& 3.3).
% 2. In evaluation and decision problems (which constitute the subject of
@f’ this book), the analyst is often confronted with two types of numbers:
] “data”, which can be considered as pre-existing to the intervention of the
€3 analyst (the maximum speed of this car) and “parameters”, which are
E? introduced by the analyst in the decision aiding process (see the example
{Ej in Bouyssou et al., 2000, ch. 6). This distinction will be illustrated
(S in the next sections of this chapter (comparison versus representation
O problems).
&5 3. In evaluation and decision problems, the nature of the numbers used is
ke partially in the hands of the analyst: it mainly depends on the purpose
3 of the decision aiding process and on the future steps of the process (is it
S really useful to build a ratio scale if the next step only exploits the ordi-

nal properties of the numbers?). The role of the analyst is to be sure that
all the operations are compatible with his choice, from the assessment of
the numbers to their interpretation, including the mathematical manip-
ulations of these numbers. This essential aspect was widely illustrated
in Bouyssou et al. (2000); the more theoretical aspects were introduced
in section 3.4.

4. As mentioned in chapter 1, we are interested in formal models. It is
important to point out that a formal model does not necessarily imply
the presence of numbers. Many other concepts can be used in formal

D000 00000D

& models (sets, relations, geometrical figures, logic languages, ...). Even
ﬁg‘ if the numbers are useful, their presence in a “model” does not guarantee
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ES that it is a formal model. In a sense, the ease of use of the numbers may
& be a pitfall since it can lead to instrumental bias.

g 5. Another confusion is often made between the term “qualitative” and the
& absence of numerical information. The colour of an object is typically
&3 qualitative but can be represented by a number (the wave length). On
@ the contrary, the expression “a small number of students” does not con-
5 tain any number but is certainly not qualitative. It represents a quantity.
]

The next sections of this chapter will illustrate these stepping stones through
the study of the connection between numbers and preferences.

3.6 Numbers and preference relations

A fundamental step in decision aiding is the modelling and representation of the
decision maker’s preferences over the set A of alternatives. Two main situations
can be distinguished in this framework and will be developed in this chapter. First,
the alternatives can be evaluated according to one or several dimensions (cost, ac-
celeration, pick-up, brakes and road-holding of cars, as in Bouyssou et al. (2000,
ch. 6); see also chapter 7, section 7.3.5 of this book). An interesting question is to
find out what kind of preference relation can be deduced from these evaluations.
Of course, many variants can be considered, depending on the nature of the di-
mensions, the way the evaluations are expressed and the interpretation that the
decision maker wants to give to these evaluations. Second, the alternatives can be
compared pairwise according to one or several dimensions, in terms of preferences.
A problem is then to try to model this information by assigning numbers to the
alternatives. This problem is extensively studied in the literature under the de-
nomination “preference modelling” or “measurement”. These two main situations
are illustrated in figure 3.1 and respectively called the comparison problem and
the numerical representation problem. Note that the comparison and the numer-

Comparison

w Preferences

Numerical Representation

Figure 3.1: Numbers and preference relations.

ical representation problems do not only concern the preferences of the decision
maker when an analyst tries to build an evaluation or a decision model. Other
concepts such as “the likelihood of events” or “the importance of dimensions” lead
to the same kind of questions. We only consider “preferences” here because this
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concept is probably the most intuitive and can be apprehended with rather simple
questions (easily understandable by the decision maker).

3.6.1 The comparison problem

In the comparison problem, the alternatives are evaluated according to a set of
n dimensions (with n eventually equals to 1). Each dimension ¢ (i = 1,2,--- ,n)
is represented by a set of “states” X, called attribute, which can be expressed
by symbols, linguistic expressions or numbers. In our context of decision aiding,
we assume that X; is completely ordered. If not, no preference relation can be
established between the alternatives and none of the decision aiding procedures
presented in the following chapters is applicable. This means that, under certain
assumptions, X; can be considered as a numerical scale (see section 3.4) and that
the elements of X; are real numbers. However, this basic structure can be com-
pleted by additional information about how these numbers (the elements of X;)
must be compared: presence of thresholds, comparisons of differences, ...This
additional information comes from the context of the decision problem and from
the meaning that the decision maker wants to give to the elements of X;. Here
the notion of scale type and of meaningfulness that we discussed in section 3.4
comes into the picture. In the comparison problem, we have to make the scale
type of the X,’s precise in order to be able to infer meaningful preference asser-
tions. As we have seen, the scale type is not necessarily one of the three main
types presented in section 3.4. Moreover, it is not given naturally but depends on
the meaning given by the decision maker to that particular scale (see section 3.5,
point (4)). Remember also that the scale type cannot always be characterised in
a simple and concise way. Finally, given X; and additional information on how its
elements must be compared, the evaluation of an alternative according to i may
just be an element of X;, a probability distribution on X;, a fuzzy subset of X,
..., expressing the fact that the evaluation of an alternative according to a dimen-
sion can be imprecise, uncertain or undetermined. To conclude, the comparison
problem consists in building preference relations over the set of alternatives, based
on their evaluations on the X;’s and on the information we have on the nature of
the scales. This is a common situation in multiple criteria decision aiding.

Nature of the X;
Evaluation of the alternatives w.r.t. the X;

Preference relation on
the set of alternatives

Figure 3.2: The comparison problem.
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3.6.2 The numerical representation problem

In the numerical representation problem, alternatives are compared according to
one or several points of view. The comparisons can generally be expressed by
a binary relation S defined on the set A, where a S b means “a is at least as
good as b”. This relation can be completed by additional information (more or
less strong preference, preference with a certain credibility or probability, ... ). If
there are several independent dimensions, the comparison of the alternatives can
also be expressed by n binary relations S; (one for each dimension), with possible
additional information for each of them. The numerical representation problem
consists in associating numbers to the alternatives in such a way that the pairwise
comparison of these numbers is a good model of the pairwise comparison of the
alternatives. In other words, the numerical representation problem consists in
building numerical scales on the set of alternatives and in making the meaning of
the obtained numbers in connection with the given preferences clear. Measurement
theory and preference modelling typically apply to this type of situation.

@ise comparison of the alterna@

< Numbers associated to the alternatives ___—>

Figure 3.3: The numerical representation problem.

3.6.3 Content of the following sections

Section 3.7 is devoted to the comparison problem in the particular case in which
n = 1; the alternatives are evaluated according to a single dimension which is a
subset X of R (the case in which several dimensions have to be taken into account
will be dealt with in chapters 4, 5 and 6). In each subsection, we describe the basic
nature of X, the additional information on how to compare the elements of X and
the resulting evaluation of the alternatives. We then propose some preference
relations which can be deduced from this information and illustrate the case.

Section 3.8 is devoted to the numerical representation problem in the particular
case in which the alternatives are compared according to a single dimension, giving
rise to a relation S (the case of several dimensions in covered in chapter 6. In each
subsection, we consider a set of properties for the relation S and we propose a
numerical representation of this relation. We then discuss the meaningfulness as-
pects connected to the numbers obtained. The reader will find the basic definitions
about the properties of relations in section 3.10.



3.7. THE COMPARISON PROBLEM 83

3.7 The comparison problem

3.7.1 Pointwise evaluations on an ordinal scale

In this section, each alternative a € A is evaluated by a single element z(a) of
an attribute X C R. This attribute is considered by the decision maker as an
ordinal scale (see section 3.4). This basic structure can eventually be completed
by additional information about how the elements of X must be compared (the
variants on this additional information correspond to the diverse subsections).

3.7.1.1 Pure ordinal scale

Without any additional information, the relation > on the set X of numbers
naturally induces a preference and an indifference relations on A defined by:

(0)

aPb & z(a)>cz
= z(b),

Va,beA,{ alb < z(a)

where a P b means “a is preferred to b” and a I b means “a is indifferent to b”
(or, more precisely, the decision maker is indifferent between a and b).

It should be noted that P and I are invariant for any strictly increasing trans-
formation of the scale of X (leading to an info-equivalent scale). Every assertion
based on these relations can thus be considered as “meaningful”.

Of course, any “poorer” conclusion can also be considered (retaining only the
best or the worst, identifying the ties, ...}, but any richer conclusion would imply
that X is not a pure ordinal scale. The example in section 3.3.3 is typically a
situation where the numbers that are associated to the alternatives are elements
of a pure ordinal scale: the only information they are supposed to support is
the ranking of the runners. Other examples were presented in “Thierry’s choice
problem” presented in Bouyssou et al. (2000, section 6.1). When the evaluations
are purely ordinal, it is probably better, from a practical viewpoint, to introduce a
non-numerical coding to express them, in order to avoid any attempt to compare
differences or to make meaningless calculations. The reader will easily verify that
the obtained preference and indifference relations satisfy the following properties:

(1) it is impossible to have a P b and b P a simultaneously (one says that P is
asymmetric),

(2) if a is preferred to b and b is preferred to ¢, then a is preferred to ¢ (P is
transitive),

(3) if a is not preferred to b and b is not preferred to ¢, then « is not preferred to c
(P is negatively transitive}; this is due to the fact that, in the case considered
here, a is not preferred to b iff z(a) < x(b),

(4) one always has a I b and b I a simultaneously (I is symmetric),

(5) for each alternative a, a I a (I is reflexive),
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(6) if @ is indifferent to b and b is indifferent to ¢, then a is indifferent to ¢ (I is
transitive).

Consequently, P is a strict weak order (it satisfies (1) and (3), hence (2)) and [/
is an equivalence relation (it satisfies (4), (5) and (6)). Note also that, given two
alternatives a and b, only three situations are possible: a Pbor b Paor a I b,
and they are also mutually exclusive. In other words, I can be seen as an absence
of P so that I is completely determined by the knowledge of P.

Consider the following evaluations given by an expert for assessing the “aes-
thetic” of objects as a numerical example:

a b ¢ d e f
13 12 8 5 4 2

where the higher the evaluation the more beautiful the object. The comparison
of the objects leads to the comparisons presented in table 3.8. Every strictly

a b
I P
I

~l Y gle

~ T e
~T o e
~| "0 U T s

\m&.o@@f

Table 3.8: Comparison of objects: linear order.

increasing transformation of the numerical scale would lead to exactly the same
result (this is the case, e.g., if 13 becomes 1000, 12 becomes 397, 8 becomes 200,
5 becomes 80, 4 becomes 10 and 2 becomes 0).

Note also that our example is very particular because of the fact that all the
alternatives have different evaluations. This means that the indifference relation is
restricted to the identical pairs and that the preference relation is weakly complete
(given two distinct alternatives a and b, only two situations are possible: a P b or
b P a). Relation P is then called a strict linear order (asymmetric, transitive and
weakly complete or, equivalently, asymmetric, negatively transitive and weakly
complete).

If the example given above is modified as follows:

a b ¢ d e f g h
13 13 11 9 9 9 7 7

the classes of indifferent alternatives are not restricted to singletons and the re-

lation P is not weakly complete. Comparing the objects leads to the relations

presented in table 3.9. The “step type” matrix obtained, the “noses” of which

are on the diagonal, generalises the previous one. We can also describe the model

introduced in this section by using the relation S, where a § b means “a is pre-
ferred or indifferent to b” or “a is at least as good as b”. It is obtained from the
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Table 3.9: Comparison of objects: weak order.

numerical evaluations by defining, Va,b € A,
aShbex(a) > x(h).

This relation is reflexive, transitive and complete and is called a weak order (see
section 3.10 for definitions). It is of course the union of P and I and, conversely,
given §, the relations P and I are obtained by

aPbeaSband Not[bSa]
albsaSband b S a.

Instead of Not[b S a], we shall sometimes write b =S a. A weak order is nothing
but a ranking with possible ties. If there is no tie, it is called a complete or linear
order. In conclusion, comparing alternatives that are evaluated by elements of a
pure ordinal scale leads to a strict preference relation that is a strict weak order
and to an indifference relation which is an equivalence relation or, equivalently, to
an “at least as good as” relation which is a weak order.

3.7.1.2 Ordinal scale with a threshold

Consider the case in which, besides the natural relation > on the set X of numbers,
the decision maker considers that there is a threshold ¢ such that he does not want
to make a distinction between two numbers z and y such that |x — y| < ¢ (for
some comments about thresholding, see Bouyssou et al., 2000, page 142). This
information induces a preference and an indifference relation on A given by:

aPbez(a) > z(b) +q,

Va,beA,{ albe |z(a)—z(b)| <q,

and every assertion based on these relations will be meaningful. As a numerical
example, consider again the numerical evaluations given by an expert for assessing
the aesthetic of objects:
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Suppose now that the decision maker considers, in agreement with the analyst, that
a difference of 2 is not very significant. The resulting comparisons are presented
in table 3.10. In this step-type matrix, generalising the previous ones, the “noses”
are no longer on the diagonal. The reader can easily verify that, as in the previous
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Table 3.10: Comparison of objects: semiorder.

section, P is still asymmetric (property (1)) and transitive (property (2)) and [ is
still symmetric (property (4)) and reflexive (property (5)). However, P is no longer
negatively transitive (property (3)) and I is no longer transitive (property (6), as
illustrated by the triplet d, e, f), so that P is no longer a strict weak order and [
is no longer an equivalence relation. There are always three possible and mutually
exclusive situations: a P bor b P a or a I b, so that the information about the
pairwise comparison of the alternatives is entirely determined by P (I being an
absence of P), the properties of which are the following (besides asymmetry and
transitivity):

(7) if a is preferred to b, b indifferent to ¢ and ¢ preferred to d, then a is preferred
to d (note that this property implies the transitivity of P, because of the
reflexivity of I),

(8) if a is preferred to b, b preferred to ¢ and c¢ indifferent to d, then a is preferred
to d (it also implies the transitivity of P, because of the reflexivity of I).

The relation P is called a strict semiorder (see Pirlot and Vincke, 1997). Of course
a strict weak order (section 3.7.1.1) is a particular strict semiorder, corresponding
to the case in which the threshold is set as being equal to 0.

It is important to note that in this case, no special meaning should be attached
to the numerical value of ¢. This implies that the additions and subtractions in
the formulae written at the beginning of this section, do not induce any particular
algebraic structure on X; they are only convenient ways to express the fact that
each number cannot be distinguished from some other numbers in its neighbour-
hood. An equivalent manner of describing the situation, which points out the
ordinal character of the scale and avoids an eventual misunderstanding about the
interpretations of the numbers, is the following. Besides the relation > on X, the
decision maker considers that, an element =’ > x is associated with each x € X
and that every z such that 2’ > 2z > z is not distinguished from x; moreover, for
every z,y € X, z > y implies 2’ > y'. This information induces a preference and
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an indifference relation on A given by:

a Pbe x(a) > a'(b),
z

vabe A’{ alb a'(b) > z(a) and 2'(a) > z(b),

which are the same as before (z + ¢ = ).

This presentation also shows that ¢ is not necessarily a “constant”, as its
intrinsic value has no meaning. The only important property, which seems to be
rather unsurprising in the present context, is the fact that > y implies =’ > ¢/
(which could be written, with the idea of threshold, z > y implies = + g(z) >
y + q(y), the threshold becoming a function). In other words, if 2 > z > y and
if z cannot be distinguished from y, then it cannot be distinguished from x. The
case in which this assumption is not satisfied is not treated here (in our opinion,
it is not realistic) but will be evoked in section 3.7.3).

So, the following numerical evaluations would lead to the same preference struc-
ture as before, provided that the thresholds are chosen as indicated:

a b c d e f
Values 180 140 80 30 10 O
Thresholds 55 50 40 35 25 15

Again, this illustrates the fact that it is more prudent to work with the relations
P and I than with the numbers, because the temptation to make calculations is
great (for instance, the difference between a and b is greater than the difference
between d and f but a is indifferent to b while d is preferred to f).

Finally, the presence of a threshold seems to introduce an idea of “distance”
or “difference” between the evaluations. However, this does not mean that all
comparisons can be made between differences of evaluations. Let us denote by [z, y]
the preference difference between the evaluations x and y, where y > x. Imbedded
preference differences can be completely ranked on the basis of the relation > on
X. If two preference differences are not imbedded, one of them can be declared
“bigger” than the other only if the first one corresponds to a strict preference
situation and the second to an indifference situation. If two preference differences
are not imbedded and both correspond to strict preference situations, then neither
can be declared “bigger” than the other. The situation is similar if they both
correspond to indifference situations. In the numerical example introduced in this
section, the relation “bigger than” in the set of preference differences is given in
figure 3.4 (the edges obtained through transitivity are not represented).

Formally, if = is the relation “bigger than” in the set of preference differences,
we have:

y>t>2z>x, Or
[z,y] = [2,1] if y>t>z2>ux, or
y>x' and 2/ >t

3.7.1.3 Ordinal scale with two thresholds

It may happen that, besides the relation > on X, the decision maker considers
that two elements z’ and z” of X are associated with each € X in such a way
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[8,|1

[12,13] [4, 5] [2,4] I

Figure 3.4: Ordinal scale with a threshold: comparison of preference differences.

that ¢’ >z’ > z and
e every z verifying 2’ > 2 > x must not be distinguished from z,

e every 2 verifying x” > z > z' is weakly preferred to z in the sense that there
is a hesitation between indifference and strong preference,

e cvery z verifying 2 > z/ is strongly preferred to z.

Another presentation of the same situation is to denote 2’ = z + ¢(z) and 2" =
x + p(z) and to present ¢(z) and p(z) as thresholds associated to . However, the
remark made in section 3.7.1.2 about the ordinal character of the information also
applies here, so we prefer to avoid the introduction of arithmetic operations in the
description of the situation. As in section 3.7.1.2 it seems natural to accept the
assumption stating that x > y implies 2’ > 3’ and z” > y” (the reader interested
in other situations is referred to Vincke, 1988). This information induces three
relations on A: I (indifference), @ (weak preference) and P (strict preference)
defined by:

a Pb& x(a) > "(b),
Ya,be€ A, { a@Qbe z'(b) > z(a) > 2'(b),
albe () > z(a) and z'(a) > z(b),
and these three relations constitute a so-called pseudo-order (see Roy and Vincke,

1987). As in the previous sections, every assertion based on these relations will be
meaningful.
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Table 3.11: Comparison of objects: pseudo-order.

Let us consider again the data given in section 3.7.1.1 as a numerical example.
Suppose that the decision maker considers a difference smaller or equal to 2 as not
being significant and that a difference strictly greater than 3 is necessary to justify
a strict preference. These rules lead to the double step type matrix presented in
table 3.11. This matrix characterises a pseudo-order and generalises the previous
ones. In this case, the relation “bigger than” in the set of preference differences is
given in figure 3.5 (the edges obtained by transitivity are not represented) and is
obtained by the same reasoning as in section 3.7.1.2).

3 [
% R ——
5, 8]><[2, 5] Q

12, 13] [4,5] 2,4] I

Figure 3.5: Ordinal scale with two thresholds: comparison of preference differences.

3.7.1.4 Ordinal scale with & thresholds

The situation described in section 3.7.1.3 can be generalised by associating a
set of clements {z(1),z® ... z(®} with each element z of X such that 2*) >
21 > ... > 21 and delimiting zones of more and more strong preferences over



90 CHAPTER 3. NUMBERS AND PREFERENCES

x. Assuming that z > y implies () > y() Vj, this information induces a set
{I,P1,Ps,..., P} of relations on A defined by:

aP,b & z(a) > z®(b),
Va,be A aPjb & zUD(b) > z(a) > 20 (b),V) <k,
alb & () > z(a) and (D (a) > z(b).
These relations are a so-called “homogeneous family of semiorders”, (see Doignon,
Monjardet, Roubens, and Vincke, 1986; Roubens and Vincke, 1985). Taking the
example of section 3.7.1.2 again and introducing “thresholds” equal to 2, 3, 5 and
10, we obtain the following set of relations presented in table 3.12, where P; to
Py can be interpreted as preferences that are more and more strong. The relation

—|la b ¢ d e f
a I I P 2 P. 3 P 3 Ii
b |1 IR | P P I
c I P LPl_ P
d 1 I P
e I I T
f 1 I

Table 3.12: Comparison of objects: homogeneous family of semiorders.

“bigger than” in the set of preference differences is then given by figure 3.6. Re-
member that the edges obtained through transitivity are not represented; the other
missing edges correspond to pairs of preference differences for the relation “bigger
than” that cannot be compared. As in the previous sections, every assertion based
on the relations {I, P, -+ , Py} will be meaningful.

3.7.1.5 Ordinal scale with a degree of preference

Consider the case in which, besides the relation > on X, the decision maker is
able to associate a “degree” d(z,y) of preference of x over y (increasing with z and
decreasing with y) with every pair (z,y) of elements of X such that z > y. As X is
supposed to be an ordinal scale, this degree must also be an element of an ordinal
scale: any richer structure on the degree would imply a richer structure on X. In
other words, we are in a situation where the decision maker is able to rank the pairs
(z,y) of elements of X in function of the strength of preference of z over y (with
eventual ties). This situation is similar to the previous one {with k thresholds),
the number of thresholds being equal to the number of different values of the
degree of preference, so that it also induces a homogeneous family of semiorders
on A, with the same remark about meaningfulness. Another presentation of the
same situation consists in defining a valued preference relation S on A as follows:
Va,b e A,
S(a,b) = { d(z(a), z(b)) if z(a) > x(b),

0 otherwise,
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(2,13] Py

2f/ [2,18] Ps

5,8 [2,5] Py

12, 13] [4,5] [2,4] I

Figure 3.6: Ordinal scale with several thresholds (2, 3,5, 10): comparison of pref-
erence differences.

which will be a so-called semiordered valued relation (see Pirlot and Vincke, 1997;
Roubens and Vincke, 1985). This approach is used in methods such as ELECTRE
III or PROMETHEE (see section 4.5 of chapter 4). Note also that, in this situation,
the relation “bigger than” in the set of preference differences will be defined by:

[, Y] > [ t] H d(x,y) > d(z,t).

It will be a strict weak order as each preference difference is associated to an
element of an ordinal scale (same situation as in section 3.7.1.1 where the elements
of A are now the preference differences). Considering again the example given in
section 3.7.1.2, assume that the degrees of preference between evaluations are those
given in table 3.13. We then obtain the set of relations presented in table 3.14 and
the comparison of preference differences presented in figure 3.7.

— 13 12 8 5 4 2
13 1 7 16 18 20
12 5 8 10 16
8 4 6 9
) 2 3
4 2
2

Table 3.13: Degrees of preference between evaluations.
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— la b c d e f
a |I P P P1 P P33
b I P P Py Py
C I P4 P6 Pg
d I P P
e I P2
f I

Table 3.14: Comparison of objects: preference structure with degrees of preference.

3.7.2 Pointwise evaluations on an interval scale

In this section, each alternative a of A is evaluated by a single element z(a) of an
attribute X C R which is considered as an interval scale (see section 3.4). The
fact that the attribute is an interval scale can be established on the basis of the
information we have on how the decision maker compares the elements of X. It can
also happen that the attribute is “naturally” an interval scale (as a temperature for
instance). In this last case, the basic structure of X can eventually be completed
with additional information about how the elements of X must be compared. The
variants on this additional information correspond to the various subsections that
follow.

3.7.2.1 Pure interval scale

Without any additional information, the structure of X induces the following
relations on A and on the set of ordered pairs of elements of A:

a Pb< x(a) > z(b),
albs z(a)=ux(),
(a,b) P* (¢,d) < z(a) — z(b) > z(c) — z(d),
(a,b) I* (¢,d) & z(a) — z2(b) = z(c) — z(d).

It is tempting to interpret “(a,b) P* (c,d) ” as “the preference of a over b is
stronger than that of ¢ over d” and “(a,b) I* (¢,d) ” means “the preference of a
over b is as strong as that of ¢ over d”. As shown in section 4.3.9 of chapter 4, this
interpretation is not always justified however.

With such a definition, the relations P and P* are strict weak orders, whatever
the interpretation of P* (see section 3.7.1.1). Furthermore, these two relations
satisfy many additional conditions that have been studied in the theory of the
measurement of differences (see,e.g., Krantz et al., 1971, ch. 4).It is clear that
these two strict weak orders are invariant for any positive affine transformation
of X (leading to an info-equivalent scale), so that assertions solely based on them
are meaningful.

Consider the following table, giving the temperature (in Celsius degrees) in
eight different cities, as a numerical example:

a b ¢ d e f g h
12 5 14 11 7 11 18 15

Va,b,e,d € A
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[2,13]

14,13
PN
2,1 5,13

N
4, l12]

2,8]

[5,12]
(8, 13]
(4, 8]
8,12]
[5, 8]
2,5
4,5 2,4]
[12,13)

Figure 3.7: Ordinal scale with a degree of preference: comparison of preference
differences.

Assuming that the preferences are completely determined by the temperatures,
these data lead to the preference structure presented in table 3.15. It will be
the same for any scale of temperatures (we assume that the preference increases
with the temperature). Moreover, differences in temperatures induce a complete
ordering of the ordered pairs of cities as given in figure 3.8. In this figure, arrows
denote the presence of the relation P*. The resulting comparisons are the same
for any scale of temperatures. More generally, any assertion which resists to a
positive affine transformation (i.e. a transformation of the type cux + 5 where « is
positive} will be meaningful, as for example:

o I prefer the temperature of ¢ to the mean temperature of the other cities,

o the difference of preference between g and a is twice larger than the difference
of preference between c and d.

Note that these kinds of assertions were not allowed in section 3.7.1, even in the
case where a degree of preference was given (see section 3.7.1.5).
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Table 3.15: Comparison of objects: linear order.

3.7.2.2 Interval scale with a threshold

While X is still considered as an interval scale, suppose that the decision maker
considers that there is a threshold ¢ such that he does not want to make a distinc-
tion between two numbers z and y when |z — y| < ¢g. Note that here, contrary to
what happened in section 3.7.1.2, the numerical value of ¢ can be seen as a gap
which can be compared to the distances between elements of X. This information
allows first to define, as in section 3.7.1.2, a semiorder on A given by:

a Pb< z(a) > z(d) +q,
albe|z(a) —z(b)] <gq.
Moreover (and contrary to section 3.7.1.2), the interval scale structure of X allows

to compare all the differences of evaluations through the strict weak order »*
(“bigger than”) and the equivalence relation ~* (“equal to”) defined by:

[z, 9] =" [z, t] @ y—x >t — 2,

[,y ~ [t o y—z=t—=z.
However, due to the presence of ¢, this strict weak order cannot be used as such
to compare differences of evaluation: because of the existence of a threshold g,

“small” differences should be considered as non-significant.
That is why we suggest to define the relations P* and I as follows:

(a,b) P* (c,d) < z(a) — x(b) > maz|q, z(c) — x(d)],
(a,b) I* (c,d) & [Not[(a,b) P* (¢,d)] and Not{{c,d) P* (a,b)]].

With this definition, the reader can verify that P* is a weak order satisfying the
following desirable property:

a Pbe (a,b) P* (a,a)

(as was the case in section 3.7.2.1, where P was also a strict weak order while it
is a strict semiorder here). Let us illustrate this case with the numerical example
of section 3.7.2.1 where we introduce an indifference threshold equal to 2. We
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(9,b)
(9,€)
(h,b)
(c,b)
(h,€)

(9,d), (g, f)l, (c.e),(a,b)
(9,@),(d,b), (f,b)
(a,e)

(9,¢), (R, d),l(ct e), (f.€)
(g, k), (h,a), (e, d), (e, f)
(c,a), (e,b)

(h,c), (a,d), (a, f)

Figure 3.8: Representation of the relation P*.
(for positive differences of temperatures only)

Ay .

obtain the preference structure presented in table 3.16. The comparison of pairs
of alternatives will give the same figure as in figure 3.8, except that the last two
classes are now merged into the single class {(c,a), (e, b), (h, ¢), (a,d), (a, f)}.

Insofar as meaningfulness is concerned, it is clear that the previous relations are
invariant for any positive affine transformation of X, provided that ¢ be submitted
to the same transformation (in order to obtain an info-equivalent scale).

To generalise the results of measurement theory to this situation remains an
open problem. It would be interesting, in particular, to establish the properties of
P,I,P* and I* characterising the previous model. Such structures have received
little attention in the literature up to now.

3.7.3 Pointwise evaluations on a ratio scale

In this section, each alternative a of A is evaluated by a single element x(a) of
an attribute X C R which is a ratio scale. The fact that the attribute is a
ratio scale can be established on the basis of the information we have on how
the decision maker compares the elements of X. It can also happen that the
attribute is “naturally” a ratio scale (e.g., a length or a weight or a price). In the
latter case, the basic structure of X can eventually be completed with additional
information about how the elements of X must be compared. Various variants on
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Table 3.16: Comparison of objects: semiorder.

this additional information are studied in the following subsections.

3.7.3.1 Pure ratio scale

In the absence of any additional information, the structure of X induces the fol-
lowing relations on A and on the set of ordered pairs of elements of A:

a Pbe z(a) > x(b),
albe z(a)=x(),
(a,b) P* (¢,d) & z(a) — z(b) > z(c) — z(d),
(a,0) I" (¢,d) & z(a) — x(b) = z(c) — x(d),
(a,b) P** (¢,d) & z(a)/z(b) > z(c)/x(d),
(a,b) I"* (¢,d) & z(a)/x(b) = z(c)/z(d),
where the interpretation of P* and I* is similar to the one presented in section
3.7.2.1. A possible interpretation for “(a,b) P** (c¢,d)” is that “the preference
ratio between a and b is higher than between ¢ and d”, the relation I** being
interpreted similarly. The relations between P* and P** have been analysed in
Krantz et al. (1971, section 4.4.3, page 152).

As an illustration, consider a set A of eight possible decisions that have been
evaluated according to the gains (expressed in thousands of euros) they are sup-
posed to bring:

Va,b,c,d € A

a b ¢ d e f g h
18 15 12 12 11 9 8 5

The preference structure will be given by the step type matrix (P is a strict weak
order) given in table 3.17. For positive differences, the relation P* is the following
strict weak order:

(a,h) P [(a,9), (b, k)] P" (a, f) P~ [(a,€), (b, 9), (¢, 1), (d, )]
P* [(a,c)(a,d), (b, f) (e, h)] P* [(b,€), (¢, 9), (d, 9), (f, h)]
P* [(a,b)(b, c)(b,d), (¢, f), (d, f), (e, 9)(g, W)] P" (e, f)

P [(c,e), (d:e), (f,9)).



3.7. THE COMPARISON PROBLEM 97

~{e

~| | o
~ ~ly gl o
~ o~ o e

~" T o oo

oo ao ool
i BavEavBaviiaviiav]

B vEaviiavEiavEiav] S
il iavEaviiaviiaviiavEls ViR ISy

Table 3.17: Comparison of objects: weak order.

For ratios greater than 1, the relation P** is the following strict weak order:

{(a,h) P** (b,hy P*™ [(c, ), (d,h)] P** (a,g) P*™ (e,h) P (a, f) P
(b,g) P (f,h) P (b, f) P** (a,e) P™™ (g,h) P™
[(a,¢),(a,d), (c,9), (d, 9)] P (e, 9) P** (be) P™ [(c, f), (d, f)] P™*
[(b,c), (b, d)] P™* (e, ) P (a,b) P™" (£, 9) P*" [(c,€), (d, €)]-

The strict weak orders obtained are invariant for any positive homothetic trans-
formation of X, so that the assertions based on them are meaningful. When P**
is interpreted in terms of “ratio of preference”, the assertion “a is k times better
than b” is here meaningful, contrary to the previous cases.

3.7.4 Interval evaluations on an ordinal scale

Sections 3.7.1, 3.7.2 and 3.7.3 were devoted to comparison problems in a set of
alternatives that are evaluated by elements of numerical scales. In other words, the
evaluation of each alternative is considered as precise and certain. It often happens
in practice that the context of the problem does not allow the obtention of such
evaluations. Imprecisions, uncertainties, vagueness have to be taken into account
and many tools were developed in the literature to cope with these phenomena.
In Bouyssou et al. (2000, ch. 8), we analysed the very traditional tool offered
by probability theory, We will consider here the simplest way to introduce lack
of precision in the evaluation and decision models: it consists in assuming that
the evaluations of the alternatives are defined by intervals (on numerical scales).
Moreover, we assume that there is no dependence between these intervals, in the
sense that each alternative can have any value in its interval independently of the
values of the other alternatives.

In this section, each alternative is evaluated by an interval I'{a) = [z(a),Z(a)]
of an attribute X C R. This attribute is considered by the decision maker as an
ordinal scale. This basic structure can eventually be completed with additional
information about how the elements of X must be compared (the variants of this
additional information correspond to the following subsections).
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3.7.4.1 Pure ordinal scale

In the absence of additional information, the relation > on X can induce different
preference structures on A: we present and illustrate three of them here. A first
possibility is to define a preference and an indifference relation in the following
way:

a Pbe z(a) > T(d),

V“’bEA’{ albe I(a)NI0b) # o,

expressing the fact that strict preference of a over b only occurs when the “worst”
evaluation of a is higher than the “best” evaluation of b. In this case, P is a
strict interval order (i.e. an asymmetric relation satisfying property (7) presented
in section 3.7.1.2; (see also Fishburn, 1985)).

Note the difference between the situation studied in section 3.7.1.2 (pointwise
evaluations on an ordinal scale with a threshold) and the present situation (interval
evaluations on an ordinal scale). Here, it can happen that an interval is included
in another, while in section 3.7.1.2, we made the (reasonable) assumption that
a threshold could not be included in another threshold (represented by the fact
that © > y implies ' > y'). In the particular case in which the interval evalua-
tions present the property that no interval is included in another, the preference
structure is a strict semiorder, exactly as in section 3.7.1.2 (see Pirlot and Vincke,
1997).

A second possibility is to consider that there is a strict preference for a over
b as soon as the interval evaluation of a is “more on the right” than the interval
evaluation of b, as follows:

a P b« Z(a) > E(b) and z(a) > z(b),

Va,bEA{ albe I(a)CIb)orI(b) C I(a).

The obtained relation P is a strict partial order, i.e. an asymmetric and transitive
relation. It can be seen as the intersection of the two strict linear orders (see
section 3.7.1.1) L; and Ly defined by

ali1be E(a) > T(b
a Ls b z(a) > z(b).

That is why one says that it is a strict partial order of dimension two, representable
in a plane (see the example below).

A third possibility is to introduce a distinction between a strict preference P
and a weak preference @ and to consider that:

a Pb< z(a) > T(h),
Va,be A< aQbeT(a) >T(b) > z(a) > z(b),
albe I(a) CID)orlI(b)C (a).
This model leads to the so-called (P, Q,I)-interval order or (P,Q,I)-semiorder
that were studied in Tsoukias and Vincke (2003). All the relations obtained are

invariant for any strictly increasing transformation of X, so that every assertion
based on these relations is meaningful.
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— | a b ¢ d e f — | a b c d e f
a |1 I PT T pPT pT a | I 1T pPT pT p T pT
b I I pt | pt p? b | I 1 p! 1 pt pt
c|P P I P I I c | P P I P I I
d |1 1 P | p! I d | P I P! I pt pt
e|P P I P I I e | P P I P I P
f|lp P I I I I flpPp P I p p! I

— | a b c d e f

a [I 1T P T Qv P T pT

b |1 1 p! I pt pt

c | P P I p I I

dlg 1 P I pt Q!

e | P P I P I Q

flp P I Q Q! I

Table 3.18: Preference structure: interval order, partial order of dimension 2 and
(P, @, I) structure.

As a numerical example, consider the following interval evaluations given by an
expert for assessing the comfort of different transportation systems, on the scale
X = {1,2,3,4,5,6,7} where the elements of X respectively correspond to very
bad, bad, medium, acceptable, good, very good and excellent,

a b c d e f
1,3 [2,3] [5.6] [2,4] [5,7] [4,6]

as illustrated in figure 3.9. Table 3.18, presents the three preference structures

—_f—
—e—
—d ——
—c—
—b—
—a—

Figure 3.9: Interval evaluations on an ordinal scale.

corresponding to the three previous models (the notation P!, in the case (a, ¢) for
instance, means that ¢ P a). Every strictly increasing transformation of X would
yield the same preference structures (e.g., considering an increasing transformation
¢ such that ¢(1) = 0, #(2) = 5, ¢(3) = 10, ¢(4) = 12, ¢(5) = 14, ¢(6) = 16 and
¢(7) = 18).

However, no meaning can be given to the differences between these numbers.
The only meaningful information contained in the data, in terms of preferences,
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are the preference structures described above. There is no objective argument
allowing to choose between the three solutions, but the third one is of course more
discriminating than the other two. As mentioned before, the second preference
structure is a strict partial order of dimension 2 and can be represented in a plane
where an alternative is strictly better than another if both its coordinates are
strictly larger as depicted in figure 3.10.

18

Figure 3.10: Geometrical representation of the strict partial order of dimension 2.

3.7.4.2 Ordinal scale with a threshold

Consider the case where, besides the strict linear order > on X, the decision
maker considers that there is a threshold ¢ such that he does not want to make a
distinction between two numbers z and y such that |z — y| < ¢. Remember that
the scale is ordinal and that the numerical value of ¢ has no particular meaning:
we could thus adopt a different presentation from the one made in section 3.7.1.2.
As the evaluations of the alternatives are intervals, we cannot simply transpose
the structure of X (as we did in section 3.7.1.2) to A. In fact, many possibilities
exist for defining a preference structure on A on the basis of the given information.
A first possibility is to consider that the comparison between two alternatives a
and b could be made through the comparison of the intervals [z(a) — ¢,Z(a) + ¢]
and [z(b) — ¢,T(b) + ¢] and apply one of the models described in section 3.7.4.1,
but this would mean that no distinction is made between the “imprecision” of the
evaluation of the alternative (leading to interval evaluations) and the perception
of the elements of the attribute by the decision maker (leading to the introduction
of an indifference threshold), although the two phenomena are of very different
natures. Another possibility, presented in the literature, consists in applying the
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extension principle used in fuzzy logic for defining a fuzzy preference relation on
A, as explained below (see Perny and Roubens, 1998, and the example below).
One associates to each element a of A the fuzzy number II, defined on X by:

1 ifz € [z(a), Z(a)]
Vre X, l,(z) =< a ifze€[E(a),Ea)+q] orz € [z(a)—q,z(a)]
0 elsewhere,

where « € [0,1). Moreover, we define, on X x X, the function 6 by:

1 Hz>y—g
Oz, y) = { 0 otherwise.

In other words, 6(z,y) = 1 iff z is not worse than y.
Two indices are then introduced to compare every pair {a,b} of elements of A:

R*(a,b) = supmin{f(z,y), I, (z), Tp(y)}

Y

R~ (a,b) = 1an1§ max{f(z,y),l — (x),1 — I(y)}.

As illustrated in the example below, R*(a,b) is maximum (= 1) when there exist
two elements z and y of X such that z is not worse than y (z > y — ¢), = belongs
to I{a) and y belongs to I(b); it is equal to « if it is not maximum but there exist
two elements x and y of X such that x is not worse than y, x is “close” to I{a)
and/or y is “close” to I(b); it is minimum (= 0) if, for every z such that IT,(z) # 0
and every y such that TIp(y) s 0, z is worse than y.

The number R~ (a,b) is maximum (= 1) if, for every pair of elements z,y of X
such that x is worse than y, either II,(z) = 0 or II(y) = 0; it is minimum (= 0) if
there exist « and y such that z € I{a),y € I(b) and z is worse than y; it is equal
to (1 — «) if it is not minimum but there exist z and y such that x is worse than
Y, « is close to I{a) and y is close to I(b).

So, we see that R*(a,b) can be considered as an optimistic indicator of the
preference of a over b while R~ (a,b) is a pessimistic indicator of the preference
of a over b. Combining them (for example using a convex combination) leads to
the definition of a fuzzy preference relation on A. The reader will find interesting
results about this construction in Perny (1992).

It is easy to see that no strictly increasing transformation of X can change the
values of RT or R™, so that the assertions based on these indicators are meaningful
(of course, the threshold must also be transformed in order to maintain the same
structure on X).

To illustrate the previous construction, consider the following example: stu-
dents are evaluated on the ordinal scale {10,9,8,7,6,5,4,3,2,1,0}, where a dif-
ference of one is considered as not significant. Four students a,b,c,d have been
evaluated on this scale, respectively yielding the following intervals: [6,8], [5, 6],
[5,7] and [3,5]. Table 3.19 gives the values obtained for Rt and R™: we see that,
for R all the students are pairwise indifferent except a and d while for R™, they
are ranked in the order a, ¢, b, d at the level 1 — a. To conclude this section, let us
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R+]a b ¢ d R_|a b c d
a 1 1 1 1 a 1 1—-a 11—« 1
b 1 1 1 1 b 0 1 0 l1-—«
c 1 1 1 1 c 0 1—-« 1 11—«
d a 1 1 1 d 0 0 0 1

Table 3.19: Comparison of objects: relations R~ and R™T.

consider the previous model in the particular case where o = 0, so that, Va € A,

0 elsewhere.

Hdﬂ:{l if € [z(a),7(a)],

In this case, it is easy to see that the preferences between the alternatives are
defined on the basis of the relative positions of the intervals [z — 4,7 + 4] for the
optimistic indicator and of the intervals [z + £,Z — Z] for the pessimistic indicator.
More precisely, we obtain Rt € {0,1}, R~ € {0,1} and

Rﬂm&:0®g®—3>ﬂ@+

)

¥

N IR

mem:o@ﬂm~g>g@+

leading to interval orders. In the case where o # 0, the indicators Rt and R~ have
three possible values so that a connection could perhaps be established with some
well-known (P, Q, I)-structures (see Tsoukias and Vincke, 2003; Vincke, 1988): to
our knowledge, this connection has not been studied to date.

3.7.5 Interval evaluations on an interval scale

In this section, each alternative is evaluated by an interval I(a) = [z(a),Z(a)] of
an attribute X C R, which is an interval scale. As in section 3.7.2, in the case
where the attribute is “naturally” an interval scale, some additional information
can be given about how the elements of X must be compared.

3.7.5.1 Pure interval scale

Many preference structures can be proposed, based on the models presented in
sections 3.7.2.1 and 3.7.4.1. For example, we could define P and P* as follows:

a Pbegla) > T(h),

albe I(a)nI(b) 9,

(a,b) P (¢,d) & z(a) - T(b) > z(c) — Z(d),

(a,0) I* (¢, d) ¢ z(a) — T(b) = z(c) — T(d),

leading to an interval order P and a strict weak order P* (the additional properties
of these two relations have never been studied in the literature, to our knowledge).

VYa,b,c,d € A
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The important point is to define preference relations which are invariant for pos-
itive affine transformations of X, in order to ensure the meaningfulness of the
assertions based on these relations.

3.7.5.2 Interval scale with a threshold

As in section 3.7.4.2, fuzzy logic can again be used here, with the remark that the
operators which are used for defining Rt and R~ can be different from min and
max.

3.7.6 Summary of the comparison problem

The situations that were analysed in section 3.7 are only a small part of the
large number of possibilities that can be of interest. In each case, the purpose
was to show that, given numerical evaluations of alternatives, different meaningful
preference structures can be built depending on the types of evaluations (pointwise
versus interval evaluations), depending on the nature of the scale on which the
evaluations are defined (ordinal, interval or ratio scales) and depending on the
complementary information given on the way the elements of the scale can be
compared (thresholds).

Table 3.20 summarises the results presented. Much work still needs to be done
to analyse other situations and propose rigourous ways of treating comparison
problems to the analyst.

Situation section, page preference structure
Pointwise evaluations

pure ordinal scale 3.7.1.1, p. 83 strict weak order (strict linear order,
weak order)
ordinal scale with a threshold 3.7.1.2, p. 85  strict semiorder

ordinal scale with 2 thresholds 3.7.1.3, p. 87 pseudo-order
ordinal scale with k thresholds  3.7.1.4, p. 89 homogeneous family of semiorders

ordinal scale with a 3.7.1.5, p. 90 homogeneous family of semiorders
degree of preference + weak order on preference differences
pure interval scale 3.7.2.1, p. 92 strict weak orders on A and

A X A + properties
interval scale with a threshold 3.7.2.2, p. 94  strict semiorder on A +

strict weak order on A x A

-+ properties (open problem)
pure ratio scale 3.7.3.1, p. 96  three strict weak orders + properties
Interval evaluations

pure ordinal scale 3.7.4.1, p. 98  strict interval order
or strict partial order
or (P,Q, I)-structure
ordinal scale with a threshold 3.7.4.2, p. 100 fuzzy preference relation
pure interval scale 3.7.5.1, p. 102 strict interval order on A
+- strict weak order on A X A
+ properties (open problem)
interval scale with a threshold  3.7.5.2, p. 103  fuzzy preference relation

Table 3.20: Summary of the comparison problem.
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3.8 The numerical representation problem

In the following subsections, we consider situations where the alternatives are
compared pairwise according to a single dimension. Our purpose is to study the
numerical representation of the obtained relation and to analyse the admissible
transformations of these models. Note that, as a particular case, we find out how
to determine the type of an attribute X on the basis of pairwise comparisons of
its elements.

3.8.1 Weak order

If the pairwise comparisons of the alternatives lead to a strict preference relation P
which is a strict weak order (see section 3.7.1.1) and consequently to an indifference
relation I which is an equivalence relation or, equivalently, to a weak order S=P
U I (complete and transitive relation), assuming that A is finite or countable it
has been proved (see Krantz et al., 1971) that it is always possible to build a real
valued function g on A such that:

a Pbe gla) > g(b),

V“’b“{ aTbe gla) = g(b),

or equivalently:
aSbegla) = g(b).

When A is not countable (as in econometric models, for instance, where A is a
continuous subset of a real space), an order-density condition must be added (see
Krantz et al., 1971, ch. 2).

Of course, g is not unique: every strictly increasing monotonic transformation
of g provides another admissible numerical representation and every admissible
numerical representation is a strictly increasing monotonic transformation of g.
According to the definitions in section 3.7.1, the numerical scale obtained is an
ordinal scale, and the meaningful assertions based on this scale are those whose
truth value is unchanged by any strictly increasing monotonic transformation of
the scale.

For example, suppose that the pairwise comparisons of the elements of A =
{a,b,c,d, e, f} have led to the following preference structure:

— | a b c d e f
a| I P P~ P P P
b |P~ I P~ P~ P I
c| P P I I P P
d P P I I P P
e |P- P~ P~ P~ I P~
f\p- 1 P~ P~ P I

An easy way to verify that it is a weak order is to reorder the alternatives in the
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decreasing order of the number of Ps in the associated lines, as shown below:

— | d c a b f e
d| I I\ p P P P
c i I I\p P P P
a |\P- P~ I | P P P
b P~ P~ P I I P
f P~ P P I I 1P
e |P- P~ P~ P P ]

If all the Ps are grouped above the diagonal of the matrix and separated from the
Is by a step-type line the “noses” of which are on the diagonal and if all the P~s
are exactly in the symmetric part under the diagonal (so that the I's are grouped
in several disjoint squares along the diagonal), then the relation P is a strict weak
order (consequence of the definition) and the number of Ps in the row associated
to each alternative can be taken as the numerical value of this alternative, giving
in this case: g(d) = g(c) =4, g(a) = 3, g(b) = g(f) =1 and g(e) = 0.

Of course, every strictly increasing monotonic transformation of g provides
another admissible numerical representation of the weak order, as for example:
9'(d) = g'(c) = 1000, g'(a) = 800, ¢'(b) = ¢'(f) = 100, ¢'(e) = 10.

Another way of verifying that the given preference structure has the requested
properties is to check that the relation S=P U I is a weak order (complete and
transitive relation). Replace first all the Ps and Is by 1 and all the P7s by 0, in
the initial matrix, as follows:

—la b ¢ d e f
a |1 1 0 0 1 1
b |0 1 0 0 1 1
c|1 1 1 1 11
d|1 1 1 111
e |0 0 0 01 0
f10 1 0 0 11

To verify completeness, sum this matrix with its transpose (i.e. the matrix ob-
tained by permuting the rows and the columns): the relation S is complete iff the
resulting matrix does not contain any 0 (immediate consequence of the definition}.

To verify transitivity, compute the product of the above matrix with itself:
relation S is transitive iff for each 1 in the obtained matrix, there is a 1 in the
initial matrix (immediate consequence of the definition}. Note that the previous
operations can easily be implemented on a computer, in case A is large. Having
checked that the preference structure is a weak order, a numerical representation
is obtained by associating, to each alternative, the number of 1s in its row. Here,
this yields g(c) = g(d) = 6,g(a) = 4,g(b) = g(f) = 3 and g(e) = 1. If all the
values are different from each other, this means that P is a strict linear order.

As an exercise, the reader can verify that the following preference structure is
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not a weak order:

— | a b c d e f
a| I P~ P~ I P P
bt P I P P P I
c | P P I I P I
d| 1 P I I P P~
e |P- P~ P~ P~ I P
f|l P I I P P I

Indeed, the matrix of the relation S = P U [ is the following:

—|la b ¢ d e f
a |1 00 1 1 0
b1 1 1 1 11
c|1 0 1 1 1 1
d|{1 01 1 10
e |0 0 0 01 0
fi1 11111

Computing the product of this matrix with itself, we obtain a matrix in which
the cells (a,¢), (¢, b) and (d, f) are nonzero, proving that S is not transitive. If we
associate, to each alternative, the number of 1s of its row, we obtain: g(b) = g(f) =
6, g(c) = 5, g(d) = 4, g(a) = 3 and g(e) = 1, but this numerical representation
is not acceptable because, for example, ¢(f) > g(c) while f I ¢. In fact, as b I f
and f I ¢, we should have a numerical representation where g(b) = ¢(f) and
g(f) = g(c), implying g(b) = g(c) which is incompatible with the fact that b P c.

So, it is not possible to obtain a numerical representation of the given preference
structure by associating an element of a pure ordinal scale to each alternative.
We will see in the next section that a numerical representation is possible if we
introduce a threshold on the scale.

3.8.2 Semiorder

If the pairwise comparisons of the alternatives lead to a strict preference relation
P which is a strict semiorder (see section 3.7.1.2) then, assuming that A is finite,
it has been proven (see Scott and Suppes, 1958) that it is always possible to choose
a positive threshold ¢ and to build a real valued function g on A such that:

aPbegla) > glb)+q,

Ya,b e A
¢ {afbmg(a)—g(b)m.

As an example, suppose that the pairwise comparisons of the elements of A =
{a,b,c,d, e, f} have led to the following preference structure (it is the same as in
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the last example of the previous section):

— | a b c d e f
a | I P~ P~ I P P~
b| P I P P P I
c | P P~ I I P I
d| I P~ I I P P
e |P~ P~ P~ P~ I P
fl P I I P P I

As before, let us reorder the alternatives in the decreasing order of the number of
Ps in the associated rows. We see again that P is not a strict weak order because
the “noses” are not on the diagonal (see previous section):

| b f c d a e
b | I I\ P P P P
fl11 I I \p P P
c | P I I I | P P
d P~ P~ I I I |P
a |P- P~ P~ I I |P
e 1

P~ P~ P~ P~ P~
However, as all the Ps are grouped above the diagonal of the matrix and separated
from the Is by a step-type line and as all the P~s are exactly in the symmetric
part under the diagonal, then the relation P is a strict semiorder (see Pirlot and
Vincke, 1997). Choosing a threshold ¢ and an arbitrary value for the “worst”
alternative (e in our example), we can attribute increasing values from e to b in
such a way that the difference of values between two alternatives is larger than ¢
when one alternative is preferred to the other and less than g when the alternatives
are indifferent. In our example, taking ¢ = 3, we can define successively: g(e) = 0,
g9(a) =4, g(d) =6, g(c) = 8, g(f) = 10 and g(b) = 12.

If the set of alternatives is too large, checking that the preference structure is a
semiorder can be done using operations on matrices, as in the previous section. As
mentioned in section 3.7.1.2, P is a strict semiorder if it is asymmetric and if the
following two properties are satisfied (see properties (7) and (8) in section 3.7.1.2):

e if a is preferred to b, b indifferent to ¢ and ¢ preferred to d, then a must be
preferred to d;

e if a is preferred to b, b preferred to ¢ and ¢ indifferent to d, then ¢ must be
preferred to d.

In order to check these properties using operations on matrices, let us build the
matrix MF, obtained from the initial matrix by replacing all the Ps by 1 and all
the Is and P~s by 0, and the matrix M7, obtained from the initial matrix by
replacing all the I by 1 and all the P and P~ by 0. The asymmetry of P will
be verified if the sum of the matrix M¥ with its transpose does not contain any
element strictly greater than 1 (immediate consequence of the definition). The
other two conditions will be satisfied if, for each 0 in matrix MT, there is a 0
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in the matrix defined by the product M¥ M’ MP and in the matrix defined by
product M MF M?' (consequence of the definition).

In our example, here are the matrices MY, M?, M! MT MF and M MP M1
(where the elements larger than 1 have been replaced by 1):

MFPla b ¢ d e f Mila b ¢ d e f
e {0 0 0 0 1t O a |1 0 0 1 0 O
b |1 01 1 1 0 b |01 0 0 0 1
c |1 0 0 0 1 0 c |00 1 1 0 1
d {0000 1 0 d |1 01 1 00
e |00 0 0 0 O e |00 0 0 1 O
f /1 001 1 0 f 101 1 0 0 1
MPMIMP |la b ¢ d e f MPMPMI |a b ¢ d e f
a 00 0 0 00 a 0 0 00 00
b 1 00 110 b 1 0 01 10
c 000 010 c 0000 10
d 06 0 0 0 0 O d 00 0 0 00
e 0 0 0 0 0 0 e 00 0 0 0 O
f 1 00 010 f 00 0010

Once it has been checked that the preference structure is a strict semiorder, the
numerical representation is obtained by ordering the alternatives in the decreasing
order of the number of Ps in their rows, by choosing a constant threshold ¢ and
in giving numerical values to the alternatives, from the “worst” to the “best”, in
“the good way” (as we did above).

Of course the constant ¢ and the obtained numerical representation are not
unique: every strictly increasing transformation of the set of values {g(a), g(a) +
g,a € A} provides another acceptable numerical representation. However, not all
the acceptable numerical representations are obtained in this way. As an example,
consider A = {a,b,¢}, with @ I b,b I ¢ and a P c. Here are two numerical
representations of this semiorder, without any strictly increasing transformation
between the two sets of values {g(a), g(a)+q,a € A} and {¢'(a), ¢’ (a)+¢',a € A}:

g
’

g

When there is no pair of equivalent alternatives for the semiorder (two alternatives
are equivalent if they are indifferent between themselves and if they are compared
to the other alternatives in exactly the same way), then every admissible transfor-
mation of g must be strictly increasing. However, any strictly increasing transfor-
mation of g is not admissible because of the presence of the threshold. For example,
consider A = {a,b,¢,d}, witha I b,a Pc,a Pd,b P ¢,b Pd,cId Taking g =2,
a numerical representation of this semiorder is given by g(a) = 5,¢(b) = 4,9(c) =1
and g(d) = 0. Now, taking g'(a) = 5,¢'(b) = 4,¢'(¢) = 3 and ¢'(d) = 0 (which
can be seen as the result of a strictly increasing transformation of g), there is no

b ¢
2 1 q¢g=2
2 1 ¢=2

[V =
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threshold ¢’ allowing to represent the given semiorder since we must necessarily
have ¢ > ¢'(c) — ¢'(d) =3 and ¢’ < ¢'(b) — ¢'(c) = L.

As a last example, consider A = {a,b,c} witha P b,a P cand b I ¢. As a weak
order, it has a numerical representation which is unique up to a strictly increasing
transformation. However, as a semiorder (with two equivalent elements b and c)
it has several numerical representations with no strictly increasing transformation
between them, as illustrated below:

I}

a b c
g 5 21 2
g 5 1 2 2
Let us also mention the fact that a sort of “canonical” representation of a semiorder
is given by the concept of minimal representation (see Pirlot and Vincke, 1997, for
precise definitions and properties. This representation has the advantage of being
unique}.

q
q

Finally, an assertion based on a numerical representation of a semiorder is
meaningful if its truth value is unchanged when another numerical representation
of this semiorder (i.e. an info-equivalent scale) is used (unfortunately, as we have
seen above, there is no simple analytic expression of the admissible transformations
for the numerical representations of a given semiorder).

Note that we can also decide to numerically represent the semiorder with in-
tervals on an ordinal scale, with the property that no interval is included in any
other. In this case, we can give arbitrary values to the alternatives, in the increas-
ing order of the number of Ps in their rows: these values will be the left end points
of the intervals. The right end points are then fixed in the same increasing order
in such a way that, for each alternative a, the right-end point of its interval is:

e smaller than the left-end point of any alternative b such that b P a,

e larger than the left-end point of any alternative ¢ such that c I a.

For the example introduced at the beginning of this section, here is a possible
result:

alternatives left-end points right-end points

e 0 0.5
a 1 2.5
d 2 3.5
c 3 4.5
f 4 5.5
b 5 6

As an exercise, let us verify that the following preference structure is not a semi-
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order:

—|la b ¢ d e f
a I I | P~ P P
b I I I P~ I P~
c I 1 1 I I P
d| P P I I P 1
e |P- I I P~ I P~
flp PP I P I

Ordering the alternatives in the decreasing order of the number of Ps in the lines
gives the following matrix (if two alternatives have the same number of Ps in their
rows, we order them in the increasing order of the number of P~s in their rows),
which is not characteristic of a semiorder:

— | f d a ¢ b e
fl1 1 I | P P P P
d | I I |\ P{I|P P
a |P- P~ I I TP
c | P I I I I 1
b |\pP~ P~ I I I I
e |P- P~ P~ I I 1
Moreover, computing the matrices M*, M!, MF M! M¥ and M? MF M! gives
the following results:
MPla b ¢ d e f Mila b ¢c d e f
a |00 0 01 0 ¢ {1 1 1 00O
b {0 0 0 0 0 O b |1 1 1 0 1 0
¢c |00 0 0 0 O ¢c {1 1 1 1 10
d 1 1.0 0 10 d |0 01 101
e |00 0 0 O0 O e |01 1 0 10
f /1 11010 f {0 0 0 1 0 1
MPMIMP |a b ¢ d e f MPMPMI |a b ¢ d e f
a 0 000 0O a 0 00 O0O0O
b 0 00 0O0O b 00 0O0O0O0
c 000 O0O0OTO O ¢ 000 0O0O0
d 000010 d 011010
e 000 0O0O0 e 0 00 OO0 O
f 110010 I 011010

As we can see, P is asymmetric and satisfies the (M* M! MT)-condition, but the
(MP MPF MT)-condition is not satisfied as there is a 0 in the cell (d, ¢) of matrix M
but not in the same cell of matrix MEZMFP M. The reason is that d is preferred
to a which is preferred to e which is indifferent to ¢, but d is not preferred to c.
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3.8.3 Interval order

If the pairwise comparisons of the alternatives lead to a strict preference relation P
which is a strict interval order (see section 3.7.4.1), then, assuming that A is finite
or countable it has been proven (see Fishburn, 1985) that it is always possible to
build two real valued functions g and ¢(> 0) such that:

a Pbe gla)>g(b) +q(g(b)),
Va,be A g(a) < g(b) + q(g(b)),
’ albe
{ 9(b) < g(a) +q(g(a)).
Equivalently, if P is a strict interval order, it is always possible to associate an
interval G(a) = [g(a),g(a)] to each alternative a € A in such a way that:

a Pbs gla)>7(b),
albe Gla)NGD) # 2.

Taking ¢ = g and g + ¢ = 7, we obtain the representation given above.

For example, suppose that the pairwise comparisons of the elements of A =
{a,b,c,d,e, f} have led to the following preference structure (the same as in the
last example of the previous section):

—|la b ¢ d e f
a | I I I P~ P P
b | I I I P~ I P~
c| I I I I I P~
d| P P I I P I
e (P~ I I P~ I P~
fl P P P I P I

We have seen in the previous section that ordering the alternatives in the de-
creasing order of the number of Ps in their rows did not lead to a configuration
characterising a semiorder. So, we will build two different rankings of the alterna-
tives: the first one will be defined by the decreasing number of Ps in the rows (in
case of ties, put the alternative with the smallest number of P~s in its row first)
and the second one will be defined by the increasing number of Ps in the columns
(in case of ties, put the alternative with the largest number of P~s in its column
first). The first one is (f,d, a,c,b,€) and the second one is (f,d,c,a,b,e). Using
these two rankings to respectively reorder the rows and the columns of the initial
matrix, we obtain:

| f d ¢ a b e
fl 1 I \p P P P
d I I 1P PP
a |P- P~ I I I|P
c|\P~- I I I I I
b (P> P~ I I I I
e |\P- P~ I P I I

As P is asymmetric (this was verified at the end of section 3.8.2) and as all the
Ps are grouped above the diagonal and separated from the Is by a step-type line,
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the relation P is a strict interval order. The values of the function g (or of the left
end points g of the intervals) are chosen arbitrarily in the increasing order from
the bottom to the top of the rows. The values of the function ¢ -+ ¢ (or of the right
end points g of the intervals) are chosen in the increasing order from the right to
the left of the columns in such a way that, for each alternative a:

(94 9)(a) < g(b) when b P a,
(g + q)(a) > g(b) when b I a.

For the preference structure treated here, we obtain for example:

gle)=0 g(b)=5 g{c)=10

gla) =15 g(d) =20 g(f)=25
(g+a)e)=12 (9+q)(d) =17 (g+q)(a)=19
(g+a)c) =23 (g+q)(d)=28 (9+¢)(f)=30

If the set of alternatives is too large, checking that the preference structure is a

Fs
—d—
—c—
——

Fad
—c—
0F

i 30

Figure 3.11: Representation by intervals.

strict interval order can be carried out through operations on matrices, as in the
previous sections. We already know that P is an interval order if it is asymmetric
and if it satisfies the following property (see property (7) in section 3.7.1.2):

e if g is preferred to b, b indifferent to ¢ and ¢ preferred to d, then a must be
preferred to d.

Checking these properties through operations on matrices was explained in section
3.8.2, using the matrices M* and M. We concluded, at the end of section 3.8.2
that the preference structure treated here satisfied the asymmetry of P and the
(MP M" MP)-condition, proving that P is a strict interval order. Of course, g
and ¢ are not unique: every strictly increasing transformation of the set of values
{g(a), g(a)+q(g{a)),a € A} provides another acceptable numerical representation.
However, not all the acceptable numerical representations are obtained in this way.
For example, consider A = {a,b,¢,d}, witha Pb Pc,dI a,d ] bandd I c Here
are two numerical representations of this interval order where the two sets of values
{g(a),g(a) + q(g(a)),a € A} and {g'(a),g'(a) + ¢'(¢'(a)),a € A} are not ordered
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in the same way:

a b ¢ d

g 6 4 1 2
g+q 8 5 3 7
g 6 4 2 1
g+q 7 5 3 8

Note that even the two sets of values {g(a),a € A} and {¢'(a),a € A} are not
ordered in the same way, showing that non increasing transformations of g can
be admissible here, even when there is no pair of equivalent alternatives (which
was not the case for the semiorders). Also note that here, contrary to the semi-
orders again, every strictly increasing transformation of g is admissible because
it is always possible to adapt the variable threshold in order to have a numerical
representation of the interval order. This is due to the fact that, given g, the only
constraints that must be satisfied by g(a) + ¢(g(a)), for a certain a € A, are:

{ g(a) +q(g(a)) < g(b),vb:b P a,
gla) +q(g(a)) > g(c),Ve:c I a.

Finally, as for semiorders, we can conclude that an assertion based on a numerical
representation of an interval order is meaningful if its truth value is unchanged
when another numerical representation of this interval order is used (without hav-
ing the possibility of giving an analytic expression of the admissible transforma-
tions for the numerical representations of a given interval order).

3.8.4 (P,Q,I)-structure

If the pairwise comparisons of the alternatives lead to a strict preference relation
P, a weak preference relation ) and an indifference relation 7, then, in function
of the properties of these relations, numerical representations with two thresholds
or representations by intervals are possible. We refer the reader to Vincke (1988)
and Tsoukias and Vincke (2003) for some examples of results which were proved.

Generally speaking, these representations are not unique: when the thresholds
are not constant, every strictly increasing transformation of ¢ is admissible but all
the admissible transformations are not of this type. If one {or both) threshold(s)
must be constant, not all the strictly increasing transformations of ¢ are admissible.
As in the previous cases, an assertion based on a numerical representation of a
(P, @, I)-structure is meaningful if its truth value is unchanged when another
numerical representation of this (P, @, I)-structure is used.

3.8.5 Valued preference relation

Different situations can lead to the necessity of working with valued (or fuzzy)
relations. Let us point out two of them, which are very frequently encountered.
The first one is the case where the data associated to the alternatives are precisely
known and the relation used to compare them is vague (example: the relation
“much smaller” in a set of individuals whose heights are precisely measured).
The second one is the case where the relation used to compare the alternatives is
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precise but the data are not (example: the relation “smaller” in a set of individuals
whose heights are imprecise). Of course, the two types of imprecisions can also be
combined.

In these cases, the pairwise comparisons of the alternatives can lead to a valued
relation in A, a “degree” of preference being associated with each ordered pair of
elements of A. This “degree” of preference can reflect the imprecisions mentioned
above, but it can also express the result of a voting procedure, the probability of
an external event, a credibility index built in a decision aiding procedure (as in
Bouyssou et al., 2000, ch. 6), an intensity of preference, etc.

In most cases, it is an element of a numerical scale, so that the acceptable
numerical representations and the meaningfulness of the assertions depend on the
nature of the numerical scale on which the “degree” of preference is defined.

If the “degree” of preference is an element of an ordinal scale, the valued
relation is strictly equivalent to an embedded family of preference relations and
one may be interested in the numerical representation of this information by a
function ¢ and a family of thresholds (see sections 3.7.1.4 and 3.7.1.5). This
situation was studied by Doignon et al. (1986) and conditions were established for
the existence of this type of numerical representation. Such a model is used, for
example, in MACBETH (see section 7.3.1.3.1).

If the “degree” of preference of a over b is the number (or the proportion) of
people who prefer a to b in a jury, one may want to take some cardinal aspects
of this degree into account. For example, the assertion “the degree of a over b is
worth twice the degree of ¢ over d” is meaningful.

There is also a very abundant literature on so-called stochastic relations, where
the values associated with the pairs of alternatives are probabilities, with the
property that, Va,b € A,

pla,b) + p(b,a) = 1.

The interested reader is referred to Fishburn (1973a) and Roubens and Vincke
(1985).
If the valued relation is additive, in the sense that, Ya,b,c € A,
v(a,c) = v(a,b) + v(b, c),

then the “degree” of preference can be interpreted as an intensity of preference
and one may want to look for a numerical representation such that, Va,b € A,

g(a) — g(b) = v(a,b).

Measurement theory (see Krantz et al., 1971) provides many results in this context.

3.9 Conclusion

As mentioned in the introduction, the purpose of this chapter was to show the
connections between two languages that are naturally used in evaluations and
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decision aiding problems: the language of numbers and the language of preference
relations. We first pointed out the great diversity of information that can be
supported by numbers and the necessity of being very cautious in their use and
manipulation. The rest of the chapter gave some guidelines:

e to build preference relations on the basis of numerical evaluations of a set of
alternatives,

e to build numerical models of preferences expressed on a set of alternatives.

These two situations are permanently present in the decision aiding processes
which will be developed in the next chapter. More precisely, let us give some
examples of the relevance of the above considerations for the evaluation phase of
the decision aiding process:

e not all aggregation methods require an explicit modelling of the preference
of the decision maker on each dimension of evaluation. Some of them do the
job implicitly, in the process of aggregating the various dimensions. After
the latter is completed, one may observe the resulting preference structures
on these dimensions and they may be related to some of the interpretations
of numerical scales proposed in this chapter (see for instance, sections 5.4 or
6.2.9).

e some aggregation methods require a description of the alternatives on the
various dimensions, not by means of performance assessments, but by means
of preference relations (see sections 5.2 and 6.2.6). If the information avail-
able on these alternatives are performance measurements (possibly only on
a subset of the dimensions), “converting” them into preference relations is
directly related to section 3.7.6

e conversely, when the single dimensional information is ordinal {e.g. rankings)
some aggregation procedures (for instance the Borda rule, introduced in
4.2.2} use numerical representations of these relations as an intermediary
step in the aggregation process.

3.10 Appendix: binary relations and ordered sets

The purpose of this appendix is to recall some basic definitions about binary
relations and their properties. Let A denote a finite set of elements a, b, c, ... and
|A], its number of elements. A binary relation S on the set A is a subset of the
Cartesian product A x A, that is, a set of ordered pairs (a,b) such that a and b
belong to 4, i.e.,, § C A x A. If the ordered pair (a,b) is in S, we write (a,b) € S
or a S b. Otherwise, we write (a,b) € S or Not[a Sb] or a —Sb.

Let S and T be two relations on the same set A. The following notations will
be used.

e SCTiffaSb=aThbVa,be A (inclusion),
e a(SUT)biff a S bor (inclusive) a T b (union),
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e a(SNT)biff a SbandaT b (intersection),
e g SThiff 3c€ A:aScand cT b (product),

e aS?biffdccA:aScandcSb.
A binary relation S on the set A is:
o reflezive iff a S a,Va € A,

o irreflexive iff a =S a, Va € A,

e symmetriciff a Sb=0>bS5a,Va,be A,

e antisymmetric iff a S b= b S a,Va,b € A such that a # b,

e asymmetric iff a Sb=b-5a,Va,be A,

o complete if a Sbor b Sa,Va,be A

o weakly complete iff a S bor b S a,Va,b & A such that a # b,

o transitive iff a Sb,6 S c=a S ¢, Va,b,c€ A,

e negatively transitive iff ¢ =S b, b =S c= a ~S ¢,Va,b,c € A,

e an equivalence relation iff it is reflexive, symmetric and transitive,

e a strict partial order iff it is asymmetric and transitive,

e a partial order iff it is reflexive, antisymmetric and transitive,

e a partial preorder or simply preorder iff it is reflexive and transitive,
e a strict linear order iff it is asymmetric, transitive and weakly complete,
e a strict weak order iff it is asymmetric and negatively transitive,

e a weak order iff it is complete and transitive,

e a linear order iff it is complete, transitive and antisymmetric.

Given a binary relation S on a set A, we respectively denote by Ps and Ig the
asymmetric and the symmetric parts of S;

aPsb&saShand bS5 a,
alsbsaSband b Sa.

It is clear that S = Ps U Ig. When no confusion is possible, Ps and Ig will be
replaced by P and I. Given a binary relation S = P U, the relation F defined by

csvevcen] 5205
is clearly an equivalence relation. Also note that:

e S is a linear order iff P is a strict linear order,

e S is a weak order iff P is a strict weak order,

when I is defined as the absence of P.



4

AGGREGATION—OVERTURE

4.1 Introduction

In this chapter and the next two, we concentrate on aggregation, an important
point in the building of an evaluation model, itself a step of the decision aiding
process as in section 2.3 of chapter 2. This point is both crucial and highly
controversial since a profusion of methods have been—and are still—proposed to
overcome it. Let us first state exactly where we stand in the decision aiding
process; we recall the scheme described mainly in section 2.3.3. The analyst and
his client (to keep it simple) have determined—possibly after major efforts—a
problem formulation (a triplet (A, V,II), in the language of chapter 2) relative
to a problem situation P. And they have started to build an evaluation model
(A {D,E},H,U,R) (see section 2.3.3). That is, a set A of alternatives has been
eventually settled and each alternative a in A has been assigned an element g;(a)
on the scale X; associated with dimension 4, this for all dimensions that have
been determined relevant in the problem situation 7. The "level” g;(a) describes,
measures, characterises the alternative x on dimension ¢. It may happen that the
analyst and his client, have gone one step further, incorporating the client’s o
priori preference on each dimension; this, as we have seen in chapter 3, may result
for instance in a binary relation on A for each dimension or in a function h; that
usually assoclates a number h;(a) to alternative a on each dimension. Most of the
time, the number h;(a) can be viewed as a function of g;(a) (which, we insist, is
not necessarily a number; X; may well be an unordered set of labels, for instance).

Let us take the example of buying a sports car, which was discussed in chapter
6 of Bouyssou et al. (2000). The client, Thierry, who is an engineering student,
earns little money and participates in car races, wants to buy a sportive second
hand car. Here, rather exceptionally, the client also plays the role of the analyst.
Thierry selects a set A of 14 cars in the middle range segment, but with powerful
engines. Three points of view are of importance to him for assessing these cars:
cost, performance of the engine and safety; Thierry is not concerned at all with
such issues as comfort or aesthetics. He constructs an evaluation model taking
these three viewpoints into account. Cost is a single dimension, since Thierry
manages to estimate the yearly expenses g; that each car would generate for
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him. The numbers labelling the scale X associated to the cost represent amounts
of money. For assessing the engine performance, Thierry uses two dimensions,
namely, acceleration and pick up; the measures go and gz on the corresponding
scales X5 and X3 are expressed in seconds of time. The safety viewpoint is as-
sociated two dimensions, one evaluating the cars brakes while the other evaluates
roadholding. Cars are assessed on these dimensions using aggregates of several
indicators assessed by experts and found in specialised magazines; this yields two
functions g4 and g ranging respectively in the numerical scales X4 and Xs. Due
to their mode of computation, the significance of these numbers is rather unclear,
but Thierry believes that they correctly reflect his feelings about the safety of the
cars; he is ready to use them to compare cars, saying, for instance, that a car
rated “2” on the “brakes scale” X4 is better than a car rated 1.67 on the same
scale. The evaluation model built so far has specified the set of alternatives A,
the dimensions and scales, D and &; the preferences of Thierry have not been
incorporated into the evaluations. This is quite clear for cost, acceleration and
pick up, the assessment of which being measures expressed in physical units (€,
seconds). This is also largely true regarding the latter two dimensions, although
one may consider that Thierry’s preferences are reflected in the way he interprets
the numbers g4 and g¢s; one might argue that hy and hg, the preference-coloured
information on dimensions X4 and Xg, are in fact relations ordering of the cars
according to their value g4 and gs, respectively (many other interpretations of the
numbers g4 and g5 could be made, as was shown in chapter 3. In this decision
problem, uncertainty (that should be described in the U structure) has not been
explicitly modelled, although there are many elements of uncertainty, for instance,
in the assessment of the cost. At this point, the set R of aggregation procedures
to be used is still undetermined.

The crux of the evaluation process—and the central topic of this chapter and
the two next ones—is to select, build or elicit the link between the description
D of the alternatives—or the preference-coloured description H—and the output
of the evaluation process. The output may be, for instance, a relation on A or
a real-valued function on A, that synthesises the multi-dimensional description of
the alternatives, which incorporates the client’s preferences. The output of the
evaluation process is intended to allow the analyst to derive a recommendation for
the client (this is dealt with in chapter 7). The link between D and H, on the one
hand, and the output of the evaluation process, on the other, is symbolised by R
in the model described in chapter 2; this is also what we call “aggregation”. In the
buying a sports car example, Thierry has to combine the evaluations of the cars
on the various dimensions with his personal priorities to derive synthetic global
statements about the cars, that should help him make a decision.

This chapter and the following two (chapters 4-6) try to deal in a general
way with the operation of aggregating descriptions on various dimensions into
a global object, called preference, which summarises all relevant features of the
alternatives and incorporates the client’s preference in a given problem situation
P. These chapters are built as a piece of music for two voices. These voices develop
the theme of aggregation in rather different ways.

The first voice views aggregation as an operator that transforms single-dimen-
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sional information on the alternatives (sets of relations or vectors of numbers, see
chapter 2) into a global preference. It takes its inspiration from the tradition of
social choice theory. It characterises a number of mechanisms that can transform
a certain type of input information related to the evaluation of the alternatives
on several dimensions into a synthetic output, most of the time a relation. The
characterisations are expressed as properties of the mechanism.

The other voice follows the tradition of conjoint measurement theory. It pro-
vides us with families of models that decompose a global preference relation into
elements related to the description of the alternatives on the various dimensions.
The characterisations are of the following type: if a global preference relation sat-
isfies some conditions, then it admits a description within a particular model. In
this approach, one does not investigate the properties of mechanisms but those of
preference relations. Characterising a model amounts to finding the properties of
all the preference relations that fit the model.

4.1.1 How can this help the analyst?

With both voices, we focus on characterisations either of mechanisms or of models
(i.e. of subsets of preference relations) by groups of properties that we shall call
azioms. What can the benefits of having characterisations of a number of mecha-
nisms or models be in practice? Axioms usually have an intuitive content (which
we have tried to make as explicit as possible in the presentation that follows) as
they express:

e in the first approach, how an aggregation mechanism behaves, i.e. how the
output changes in response to particular changes in the input information

¢ in the second approach, how the preference behaves in various configurations,
i.e. on selected subsets (often pairs) of alternatives.

This offers the analyst an opportunity to test (at least partly) whether a set of
properties is likely to be verified in a particular decisional context. How? By asking
the client how he feels the mechanism should behave or how the preference behaves
in the situations evoked in the axioms (or some of these situations). So, ideally,
one might expect that the analyst who knows about the various mechanisms or
models and their characterisations is helped in his choice of a particular mechanism
or model in a given decisional context. The client’s answers to some well-chosen
questions may suggest that the analyst eliminate some methods and drive him
towards others or, at best, point him to a single particular method.

The two approaches we follow are not exclusive; the same methods commonly
used in practice for constructing preference relations (additive value model, ELEC-
TRE or PROMETHEE) can be understood using the tools and concepts of both
approaches. The interesting feature is that they can be analysed from two different
perspectives and using different concepts. This should help the analyst diversify
the “languages” in which he can talk with the client to better understand the
decision problem and elicit the client’s preferences in a reliable way.
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4.1.2 Organisation of chapters 4—6

The chapters on aggregation are organised in the following way. The concert starts
with a brief presentation, in chapter 4 sections 4.2 and 4.3, of the main themes of
the two voices; they are illustrated with well known situations. They should help
the reader understand the specificity of each approach more precisely, how they
contrast from one another and also on which points they converge. We then have
a few bars with three themes common to both voices.

¢ Since, in both approaches, systems of axioms fail most of the time to de-
termine a single mechanism or a single preference but rather select a family
of aggregation procedures or a model for a family of preferences, there usu-
ally remain “parameters” (e.g. weights, value functions, thresholds) to be
determined. The axioms generally offer clues on how to determine these
parameters. This question will be discussed in section 4.4 in a general way;
more practical issues on how to determine the parameters in the context of
a particular procedure or model will be addressed in chapters 5 and 6.

o The reader may sometimes be interested in a particular aggregation proce-
dure and not be willing to read the three chapters on aggregation before
finding the information he is looking for. Section 4.5 was written for this
reader; it is a kind of commented index of some popular aggregation meth-
ods, we give a list of all sections of chapters 4-6 that are relevant and we
briefly explain why.

o Our analysis of aggregation procedures is often axiomatic. We believe that
this has a lot of advantages but it also suffers some limitations. These are
discussed in section 4.6.

We come back to the main themes of the first and second voice and develop them
thoroughly in chapters 5 and 6. In chapter 5, the characteristic properties of a
variety of mechanisms (called procedures) are described. The rationale for grouping
the procedures is the type of input information needed and the type of output that
is desired. For example, section 5.2 deals with the aggregation of a profile of binary
relations into a binary relation, as the expression of the global preference; section
5.4 accepts a performance table as input (each row represents the description of
an alternative on a dimension) and associates a binary relation to any such table.

Chapter 6 mainly analyses two types of models. The first is, the comparison
of two alternatives resulting from the comparison of the description of each of
them on the different dimensions. In the second type of models, the preference
difference between alternatives is assessed for each pair of alternatives and each
dimension. The model then balances all these preference differences in order to
determine which of the two alternatives is the preferred one. Each type of model
has its own logic and suggests a corresponding strategy of elicitation.
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4.2 Theoretical results inspired by social choice
theory: introduction

In social choice theory, and more particularly in voting theory, a society needs to
choose a candidate from a set of candidates. The choice of the candidate is, in
most cases, based on the preferences of the voters. This problem bears a striking
similarity to the multiple criteria decision support problem in which a client needs
to choose an alternative, based on preferences on different dimensions. In multiple
criteria decision support, the client plays the role of society, criteria play the role
of the voters, and alternatives, the role of the candidates .

Social choice theory was already an active research field in the eighteenth
century with people like M. J. A. N. Caritat, marquis de Condorcet and J.-Ch.
de Borda, but it grew dramatically since the 1950s, thanks to the celebrated works
of K. J. Arrow and D. Black (see, among others, Arrow, 1963; Black, 1958). Since
the 1980s, some concepts and theorems originally developed in the framework of
social choice theory have been adapted to the problem of multiple criteria decision
support (see Arrow and Raynaud, 1986; Bouyssou and Perny, 1992; Marchant,
1996; Nurmi and Meskanen, 2000; Pérez and Barba-Romero, 1995). Some other
results have been completely developed in the framework of multiple criteria de-
cision support, but using an approach that is typical of voting theory.

In this section as well as in chapter 5, we present some of these results and we
try to show how they can be used to help the client and the analyst. We introduce
some concepts, an example illustrates why an axiomatic characterisation can be
useful and we explain why the theoretical results inspired by social choice theory
are fundamentally different from those obtained using measurement theory that
are presented in section 4.3 and chapter 6.

4.2.1 Aggregation functions

Suppose we have a set of alternatives A = {a,b,c,...} and a set of dimensions
N ={1,2,...,n}. We have some ordinal information about the alternatives along
each dimension. For example,

e linguistic assessments (excellent, good, average, bad or beautiful, average,
ugly or ...),

e numbers the meaning of which is only ordinal (expert evaluations on a ten
point scale),

e ranks (1 for the best alternative, 2 for the second, ...).

This ordinal information can be modelled or represented by a binary preference
relation. So, for each dimension 7, we have, a preference relation 7-; defined on A.
We call p the n-tuple (Z1,72,...,2n). Such a vector is called a profile. Lastly,
suppose that we would like to construct a global preference relation 27 on A and

1 For a more thorough discussion of the analogy between social choice theory and multiple
criteria decision support, see Bouyssou et al. (2000, ch. 2).
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that we want this global preference relation to be a weak order (a complete ranking,
possibly with ties).

To illustrate these first definitions, let us use an example. Let A = {a,b,c,d}
be the set of the alternatives and N = {1,2,3} the set of the dimensions. The
profile p thus contains three preference relations. We suppose here that these
relations are linear orders (complete rankings without ties):

l.ar1b>1d>1¢
2. a=9b>gcgd,
3. b>3d>3c>3a.

The notation x »~; ¥ >; z means that x is strictly better than y on dimension ¢
and that y is strictly better than z on the same dimension. Because we assumed
that the relations are linear orders, we also have, by transitivity, x strictly better
than z.

Our goal is now to construct a global preference relation 7 on A, taking the
preferences on each dimension into account. In other words, our goal is to aggre-
gate the n preference relations ; into one global preference relation 2. And we
want the global preference relation - to be a weak order (as decided above). A
possible way to do this is to adopt the majority principle. Alternative a is the
best one for a majority of criteria (2/3); therefore, it is the best alternative. Then
we see that b is better than d and ¢ for a majority of criteria (3/3) and, finally, d
is better than ¢ for a majority of criteria (2/3). It happens that, for this example,
the result is a complete ranking?:

a=b»d>c.

One could possibly argue that, even if a beats b on two criteria, there is a criterion
for which a is the worst alternative. Therefore, a should not be considered as the
best alternative. Instead, an alternative should be penalised for each bad position.
A possible way to construct the preference relation 77 is then the following: an
alternative gets one point for each first rank (best position), two points for each
second rank, three points for each third rank, and so on. These points can be
considered as penalties. The worse the position, the higher the penalty.

In our example, a obtains 6 points (1 + 1 +4), b obtains 5 points (2+2+1), ¢
obtains 10 points (4 + 3 + 3) and d obtains 9 points (3 + 4 + 2). Hence, b is the
best alternative because it obtained the lowest penalty. Similarly, we find:

b>a>d»c

Note that the ranking was different using the majority principle. So, starting from
the same data (the profile), there are different ways, different aggregation proce-
dures to construct a global preference relation. And these different aggregation
procedures do not yield the same result, the same global preferences.

2As is well known, the majority rule may give rise to global preference relations that are not
rankings and may have cycles; see section 5.2.1.3 in chapter 5
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Once an aggregation procedure has been chosen, the global preference relation
7 is of course a function of the profile, of the n preference relations 7;,i =1...n.
In other words, 7z = = (71, 72, . - -, on) = Z2(p). We call - an aggregation function
and each aggregation procedure corresponds to a different aggregation function.
Selecting an aggregation function amounts to setting the set R of “operators” that
appears in the description of an evaluation model (section 2.3.2).

When the problem is formulated in these terms, the task of the analyst is then
to choose a function 7. In this process, he can be helped by some theoretical re-
sults, by characterisations. These characterisations tell us what the fundamental
properties or characteristics of an aggregation function - are. In the next para-
graphs, we briefly show, in the light of an example, how these characterisations
can be helpful.

4.2.2 An example: the Borda method

The method we presented above, using penalties, is called the Borda method
(de Borda, 1784). It can be used in a number of different contexts, but we will
consider it in this section only for the aggregation of linear orders. This method
has a number of interesting properties of which we now present five.

4.2.2.1 Axioms and characterisation

o Weak Order. The global preference relation is always a weak order (a rank-
ing, possibly with ties).

o Faithfulness. If we have only one dimension, i.e. N = {1}, then Z(p) is equal
to 71, i.e. the global preference is identical to the preference relation on the
unique dimension.

e Cancellation. If, for every pair of alternatives, there are as many criteria in
favour of the first alternative as in favour of the second , then all alternatives
are tied.

o Neutrality. The result of the aggregation does not depend on the labels of
the alternatives but only on their positions in the n preference relations ;.

e Consistency. Suppose that, for some reason, you divide your n dimensions in
two subsets Ny = {1,2,...,k} and No = {k+ 1,k +2,...,n} (for example,
costs / benefits or financial / non-financial). This also corresponds to two
profiles, p; and py. Then, taking only the dimensions in /N7 into account,
you use an aggregation function to construct a global preference relation.
Suppose this yields a =(p1) b (a is not worse than b). Then, taking only
the dimensions in N5 into account, you use the same aggregation function
in order to construct a global preference relation. Suppose this also yields
a =(p2) b (or even a >(p2) b). Now, if you take all the dimensions in N
into account, you probably expect that the aggregation function will tell you
a 7(p) b (or a =(p) b). If it does, then we say that the aggregation function
satisfies Consistency.
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Using these five properties, Debord (1987) proved the following theorem 3.

Theorem 4.1

Suppose we want to aggregate profiles of linear orders. The only aggregation func-
tion satisfying Weak Order, Faithfulness, Cancellation, Neutrality and Consistency
is the Borda method.

In other words, if you want to use a procedure that satisfies the five above-
mentioned properties, you must use the Borda method. Conversely, if you use the
Borda method, these five properties are necessarily satisfied. Many other proper-
ties are also satisfied, but only the Borda method satisfies these five. Since the
five properties completely characterise the Borda method, this theorem is called a
characterisation and the five properties are called axioms.

Note that it might be possible to find other conditions that also characterise
the Borda method. They would necessarily be logically equivalent to those of
theorem 4.1 because they are necessary and sufficient. The reason why we use these
particular conditions is that we think they are more or less intuitively interpretable.
So, they can help the analyst or the client to better understand the procedure he
uses. We have also chosen the conditions in such a way that they are independent,
i.e. none of them is implied by the other ones. In other words, you cannot drop
one of them in the statement of the theorem.

Note also that Theorem 4.1 does not apply if we want to aggregate linear
orders and, simultaneously, take some additional information into account. For
example the fact that the preference between a and b on dimension 1 is much
stronger than the preference between c and d. Or the fact that b is definitely not a
good alternative. An aggregation function associates a linear order to each profile,
without considering any other information than the profiles. While this is quite
natural in Social Choice Theory, it is sometimes a limitation in multiple criteria
decision aiding.

Remark 4.2.1

For more on the Borda method, see, among others, Chamberlin and Courant
(1983), Debord (1992), Dummett (1998), McLean and Urken (1995), Marchant
(1996, 1998, 2000, 2001), Nitzan and Rubinstein (1981), Pattanaik (2002), Regen-
wetter and Grofman (1998), Saari (1990, 1994), Smith (1973} and Van Newenhizen
(1992) .

4.2.2.2 Usefulness of the characterisation

We believe that such a theorem can be useful for the client and the analyst be-
cause, if the analyst is able to explain the intuitive content of the axioms to the
client and if the client finds them appealing or at least acceptable, then he should
probably use the Borda method—mno other method satisfies the same axioms. On
the contrary, if he dislikes one or more axioms, then he should probably not use
the Borda method.

3 The first characterisation of the Borda method was presented by Young (1974), but in a
somewhat different context.



4.2. SOCIAL CHOICE AND MCDA 125

In order to make the axioms intuitively understandable to the client, the analyst
can state them in natural language, however he also does need to show why they
could be desirable or why not. He can also speak of the axioms that are not
satisfied by a method. This should help the client make up his mind. In the
previous section, while we presented the axioms, we also showed why they could
eventually be considered as sensible. In the following paragraphs, we show some
reasons to eventually reject them.

Consider Cancellation for example: it might seem reasonable in some applica-
tions but probably is not in most of them. Suppose a client faces a problem with
two dimensions and somehow finds that a criterion, say 1, is much more impor-
tant than the other criterion, say 2, he then will probably not find Cancellation
attractive. Indeed, for him, not only the number of criteria in favour of a against
b is relevant when comparing a and b but also the importance of each criterion.
And it is often the case that not all criteria play the same role.

Another reason why Cancellation might not be adequate is the following: sup-
pose that there are only two alternatives a and b (this makes the presentation
simpler but doesn’t change the reasoning) and that there are as many criteria in
favour of a as in favour of b. Suppose also that a client considers all criteria as
equally important. Then, according to Cancellation, a and b should be tied. But
suppose finally that the client considers that a is not only better than b on di-
mension 1 but much better than b. Then, this large advantage of a on dimension
1 combined with the advantages on the other dimensions in favour of a might be
too large to be compensated by the advantages of b on the rest of the criteria. It
would therefore be reasonable to consider a strictly better than b. Of course, if we
strictly respect the setting in which we presented the Borda method (aggregation
of linear orders), this cannot happen. We have only ordinal information and no
information about the size of some advantages or differences. But, in practice, it is
not always clear whether the information we have about the alternatives is purely
ordinal or not.

Another axiom that might not seem attractive in some cases is Consistency.
Suppose that four high school students take four exams and are ranked as follows.

Physics a >, b >y c = d,
Maths ¢ > a >m d > b,
Economics d >, b >, c >, a,
Law c>ja>;d>; b

They apply for scholarships and we want to give the best scholarships to the
best students. We therefore need to rank them. If they apply for a scholarship in
Physics, we might only look at the rankings in Physics and Maths. Because Maths
and Physics are very important in a cursus in Physics, we might also consider that
both dimensions play the same role. A reasonable ranking of the candidates is
then a >(p) ¢ =(p) b =(p) d (according to our opinion, intuitively).

Suppose then that the four students apply for a scholarship in Economics. For
similar reasons, we look only at the rankings in Economics and Law. Observe that
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¢ and d have symmetric positions in the two rankings. Hence, ¢ and d should be
considered as equivalent. The same applies to a and b. Observe also that ¢ and
d have ranks 1 and 3 in Economics and Law while a and b have ranks 2 and 4.
Therefore, the most plausible rankings of the four candidates is [c ~(p)} d] >(p)
[a ~(p) b].

Suppose now that the four students apply for the best student award in their
high school. A first and a second prize will be awarded. We therefore need to rank
the candidates. Because c is ranked before b in the rankings for both scholarships,
then, using Consistency, we might conclude that ¢ should be ranked before b in
the award contest. But if we look at the profile—at the four dimensions—we see
that b is perhaps better than ¢. Student b is better than ¢ in two rankings. His
only bad grades are in Maths and Law. But, because he is good in Physics and in
Economics, it is hard to believe that he is really bad in Maths. So, in this case,
the use of Consistency seems to yield an unsatisfactory result.

The problem illustrated in this example is typical of an interaction between two
or more criteria. Here, the interaction is positive, between Physics and Economics.
The impact of a good rank simultaneously in Economics and in Physics is larger
than the impact of a good rank in Physics “plus” the impact of a good rank
in Economics. The interested reader will find more about interaction and ways
to handle it in Grabisch, Labreuche, and Vansnick (2003), Marichal (2004) and
Marichal and Roubens (2000), among others.

On the contrary, Neutrality and Faithfulness seem to be two conditions an
aggregation function should satisfy in any context.

Weak Order has a different status. In our opinion, any client that wants to
construct a global preference relation, wants it to be a ranking, possibly with ties;
not a partial order or a cyclical relation—these are not easy to interpret. But, for
some reasons that we will present in section 5.2, p. 174, it is sometimes difficult to
obtain a ranking. So, in some cases, a client might be satisfied with a partial order
or even a preference relation with some cycles and eventually decide to use an
exploitation procedure (see chapter 7, section 7.4) later in the process. In such a
case an analyst could be interested by an aggregation function that doesn’t satisfy
the Weak Order property.

In chapter 5, we will present various results similar to theorem 4.1 and show
how they can be used to help the client and the analyst. We now turn to some
problems and limits of this approach.

4.2.3 Specificity of this approach

In section 4.2.2, we presented a characterisation of the Borda method as an ex-
ample of the results (and their usefulness) that can be obtained in a framework
inspired by social choice theory. The Borda method, like many other procedures
that have been characterised in social choice theory, aggregates ordinal informa-
tion: the information on each dimension is ordinal, it is a binary relation.

Until recently, all results of social choice theory applied to multiple criteria
decision support were characterisations of ordinal aggregation procedures. The
aggregation procedures that are not ordinal (for example MAVT, Multi-Attribute
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Value Theory) have always been studied in a different framework, in conjoint
measurement (see section 4.3 and chapter 6). It would be misleading to think that
social choice theory is devoted to the problem of ordinal aggregation and conjoint
measurement to cardinal aggregation. In fact, there is a part of social choice theory
called cardinal social choice theory. It studies procedures for aggregating cardinal
information into a weak order or a choice set. We will develop this in section 5.4.
Besides, conjoint measurement can also be used to study the problem of ordinal
aggregation (Bouyssou and Pirlot, 2002a).

What is then the difference between the two approaches? All characterisations
that will be presented in chapter 5 are to some extent similar to theorem 4.1. They
are often inspired by social choice theory (ordinal or cardinal). They characterise
aggregation procedures, i.e. procedures that transform an input—a profile or a
performance table—into an output—a weak order, most of the time. Characteri-
sations tell us which properties make a given procedure unique.

Roughly speaking, in conjoint measurement, the input is the global preference
relation and the set of dimensions. One then tries to represent the global preference
relation by means of a model, the parameters of which must be estimated. In
conjoint measurement, a typical theorem tells us under which conditions a global
preference relation can be represented by a given model. Note that the conditions
are imposed on the global preference relation, not on the model.

Some researchers have used the results of conjoint measurement in multiple
criteria decision support. For them, the model used in conjoint measurement
becomes the aggregation procedure. A typical result of conjoint measurement ap-
plied to multiple criteria decision support therefore tells us under which conditions
(imposed on the global preferences) a given aggregation procedure can be used.
It also suggests a way to set the parameters. This is completely different from so-
cial choice theorems where most of the conditions are imposed on the aggregation
procedure.

In the next section as well as in chapter 6, we will present some conjoint
measurement results applied to multiple criteria decision support.

4.3 Conjoint measurement theory interpreted in
MCDA

Measurement theory aims towards examining the conditions and the meaning of
measurement, which consists in representing “some attributes of objects, sub-
stances, and events” (Krantz et al.,, 1971, p. xvii) numerically. In problems in
which a relevant description of an object requires several dimensions, a major
question arises: is there an “aggregated measure” or “aggregated descriptor” that
allows us to compare these objects even when the measurements on the various
dimensions are expressed on incommensurable scales (e.g. mass and length)? Con-
Jjoint measurement theory examines the conditions under which a relation on a set
of objects described by a vector of evaluations is determined by a sort of synthetic
measurement that takes the relevant attributes of the objects into account in an
appropriate manner. This theory was first developed in Economics (Debreu, 1960)
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and in Psychology (Luce and Tukey, 1964). It did not take long before people work-
ing in decision analysis realised that it could also be used to represent preferences
(Edwards, 1971; Raiffa, 1969). In a decision context, the aggregated measure does
not reflect an intrinsic property of the objects, which would be independent of the
particular evaluation model; it is usually related to a client’s subjective preference,
which is assumed to be, in some way, related to several objective characteristics
of the objects.

4.3.1 The additive value function model

To be more concrete, suppose that within a certain problem formulation, we have
started to build an evaluation model: we have determined a set of alternatives
A and n dimensions that can describe all the aspects relevant to the decision
problem at hand. Suppose that a descriptor for assessing the alternatives on
each of the n aspects settled on has been constructed; let g; : A — X, be the
descriptor used for dimension 7, with X; the set of levels of the associated scale.
Referring to the evaluation model concept described in chapter 2, section 2.3.3,
A precisely denotes the set of alternatives to which the evaluation model applies;
it may be larger than the set of alternatives that can be actually chosen by the
client; it may contain ideal alternatives that could help in the elicitation of the
evaluation model. In this section and more generally in the framework of conjoint
measurement, we shall assume that the set of functions g; used to describe the
alternatives on each dimension is exhaustive, so that any alternative a can be
identified with the vector (g1(a),...,gi(a), ..., gn(a)). We may then work with the
set of vectors representing the alternatives instead of the alternatives themselves.
These vectors form a subset {(g1(a),...,gn(a)), a € A} of the Cartesian product
X = X1 X Xox...X; x...X, of the various scales. We assume further that
each vector of X corresponds to an alternative and that the client’s preferences,
denoted by =, is a relation on the whole* set X. Conjoint measurement theory
studies the links that may exist—depending on the properties of ~—between any
pair (z,y) of vectors of X and the fact that this pair is or is not in the preference
relation (z 7 y or Not{z Z y]).

In the most popular model of this theory, it can be determined that z is
preferred to y by comparing the values that a function u, defined on X, as-
signs to x and y; w is called a multi-attribute value function (MAV function).
A very particular case for u, but also by far the most frequent in practice, is
when u decomposes into a sum of n functions u; each of a single variable, i.e.
uw(z) = u(z1,...,Tn) = > iy ui(z;). The main model of conjoint measurement—

4 This postulates the extension to all the Cartesian product X of the preference relation that
is perceived on g(A) = {(g1(a),...,gn(a)), a € A}. In practice, such an extension could force
the client to compare alternatives that appear artificial or unrealistic to him. Monotonicity con-
siderations should help to position such unrealistic alternatives with respect to the real ones;
for instance, the fictitious cheap car with high performance on all dimensions would clearly be
ranked at the top; it is true however that meaningless comparison between unrealistic alterna-
tives could entail contradictions with groups of actual alternatives. Despite possible unwanted
practical consequences and provided that the range X; is not unrealistic, we consider that the
extension of 7 to X is not an outrageous assumption.



4.3. CONJOINT MEASUREMENT AND MCDA 129

called additive value function model—thus deals with preferences on X such that
for all z,y € X:

z oy < u(z Zu.b ) > u(y) = X:uZ Yi),s (4.1)

where u; is a function mapping X; into R for all 4. In this representation, the
relative importance of the criteria is reflected in the magnitude of the functions
u;. There is an alternative way of representing the same model, which makes the
importance of the criteria more explicit.

4.3.2 An alternative formulation showing tradeoffs

Let us start by normalising the values of u; to fit in the [0, 1] interval (this is always
possible if the set X; is finite or, more generally, if u;(X;) is a bounded set of R);
denoting by u,; (resp. T;) the minimal (resp. the maximal) value taken by wu;(z;)
when z; varies in the set X;, we define the normalised value v; of u; as

vi(ay) = ) (4.2)
Up — Uy
Expressing u; as a function of v; yields
wi(i) = (W — w)vi(zi) + w3 (4.3)
substituting this expression in equation (4.1) yields:
n n n n
vy e u(m) =Y (T —u)vi(z) Zy >u(y) = (W —u)vi(ys) + Y ;e
i=1 i=1 i=1 i=1

Subtracting Y i, u; from both sides of the inequality and dividing by Z;;l(ﬂj -
;) yields another additive value function v that represents the same relation =
we have:

rZy e ()= vy vi(yi)-
ZZJ luJ_‘u) ZZJ 1u1 —)
The transformed value function v is thus defined by:
v(z) = ! u(z) i Y

DI R i

Defining coefficients k; as:
Uy — Uy
ki = ==, (4.4)
Z] (@ — )

we have the following representation of the preference 7=

zmyeu(r Zkvz x;) > v ):Zkivi(yi), (4.5)
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in which k; are nonnegative “weighting factors” adding up to 1; in this represen-
tation the maximal value of v; is 1 and the minimal is 0.

In the sequel we assume that u;(X;) is a bounded set of R. Starting with any
representation of a preference in model (4.1), we can derive a representation in
model (4.5), as we have just shown. Conversely, from a representation in model
(4.5), we immediately derive a representation in model (4.1); letting u} = k;v;, we
get: z 7y < v(z) = Yo ui(z) = v(y) = Y1 ui(y;). Hence, models (4.5) and
(4.1) are equivalent in the sense that all preferences that can be represented by
one of them can be represented by the other.

Depending on the context, one or another formulation of the model may offer
an advantage. From equation (4.4), we infer that k; can be computed as the length
of the range of variation of function u; relatively to the sum of all ranges; the value
of k; remains invariant when we apply a positive affine transformation to u;. In
section 4.3.8, we shall see how the “weights” k; can be interpreted as tradeoffs.

4.3.3 Additive value function and conjoint measurement

The model described above, in either of its forms (4.1) or (4.5), will be referred to as
the additive value function model; u is called an additive MAV function. Conjoint
measurement theory is concerned with establishing conditions on 77 under which
a representation according to model (4.1) (or (4.5)) exists. The uniqueness of the
representation is also studied.

Why is this interesting? Clearly, if we have reasons to believe that a preference
might obey model (4.1), we can try to determine the preference—which is usually
not known explicitly—Dby constructing the functions u,; alternatively, for elicit-
ing model (4.5), we should construct the functions v; and assess the coeflicients
k;. Each model suggests a strategy (or several) for eliciting preferences that are
representable in the model. Of course, not all preferences satisfy model (4.1}; we
shall not specify the necessary and sufficient conditions here but just mention the
following two important and obvious requirements for the preference:

e =~ must be a weak order (see chapter 3, section 3.10), i.e. a transitive and
complete preference, in other words a complete ranking, possibly with tied
alternatives. This is clearly a necessary requirement since model (4.1) exactly
says that the order - on X is obtained by transporting the natural order of
R onto X using the function u.

e = must satisfy (strong) preference independence. The decomposition of u
into a sum of functions each of a single variable reveals that if x 77 y while z
and y have received the same assessment on dimension ¢, then, if we change
that common level into another common level, the transformed x and y will
compare in the same way as before. More formally, let z and y be such that
x; = y; = a;; let ' be equal to x except that 2} = b; # x; and let ¥’ be equal
to y except that y] = b; # v, then:

rzyer Ty
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since

uias) + > ui(zy) > wila) + Y u(y;) &

it I
wilbs) + Y wi(ws) > wilbs) + Y ui(y;)
I iF

The independence property of the preference has far-reaching consequences; it
allows in particular for ceteris paribus reasoning, i.e. comparing alternatives the
evaluations of which differ only on a few attributes without specifying the common
level of their evaluations on the remaining attributes; the independence property
guarantees that the result of such a comparison is not altered when changing the
common level on the attributes that do not discriminate between the alternatives.
We shall further discuss this property in section 4.3.5.

The two conditions stated above are not sufficient for ensuring that 2 satisfies
model (4.1). If the evaluation space X is infinite, various sets of sufficient condi-
tions are provided in the literature; they are often categorised into two branches,
the algebraic and the topological theories, respectively (see e.g. Fishburn, 1970,
ch. 5). We give a schematic outline of the algebraic approach in section 6.1.2 of
chapter 6, including an intuitive presentation of the additional conditions that are
necessary for the additive model. If the set of possible levels X; on each dimension
is finite, the situation is rather unpleasant since necessary and sufficient conditions
are not generic: using mathematical tools (mainly the theorem of the alternative
for systems of linear equations and inequalities, see Fishburn (1970), p. 46), one
can write a system of compatibility conditions for each particular set X (Fishburn,
1970, ch. 4) that guarantees the existence of a representation of 7 according to
model (4.1); we outline the theory for the finite case in chapter 6, section 6.1.3.
So, without explaining the formulation of necessary and sufficient conditions here,
we just bear the two necessary conditions cited above in mind.

4.3.4 Uniqueness issues

If the model is to be used to elicit preferences through the construction of functions
u;, it may also be important to know whether these u; are uniquely determined.
Actually, the u;’s are not unique. For a preference 2~ that fits in the additive value
model, there is a family of value functions u that both

e decompose additively as u(z) = > . ; ui(2;) and

o represent the preference, i.e., satisfy = 7= y < u(z) > u(y).

Suppose indeed that we start with a particular representation of ¥, u(z) =
S 1 ui(2;) and transform u; into uj by using a positive affine transformation

ui = ou; + i, (4.6)
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with & > 0 and f; a real number (that may vary with 7). By using ] instead of
u; in the additive model, we obtain:

' (z) = Zui(ml) = aZui(xi) + Zﬁi = au(z) + Zﬁi‘
i=1 =1 =1 i=1

Clearly, v/ is an alternative representation of the preference = since = = y <
u(z) > u(y) @ v'(z) > v'(y). So, the u;’s to be used in an additive representation
are at best determined up to a positive affine transformation.

If X is infinite, a number of systems of conditions that guarantee the existence
of an additive representation according to model (4.1) are known; this additive
representation is unique up to a positive affine transformation of the u;’s according
to equation (4.6) (the positive coefficient « is the same for all ¢ but §; may depend
on i). These conditions involve structural assumptions that are sufficient but not
necessary; however they may be reasonable in practical situations. For instance,
in the algebraic theories mentioned in the last paragraph of the previous section,
one postulates that the set of levels X; on each attribute are “sufficiently rich”
so that some “solvability conditions” are fulfilled; roughly speaking, it is required
that it always be possible to find a level z; such that an alternative involving z; is
indifferent to a specified alternative (see section 6.1.2 for more details). Richness
is not a necessary assumption, but it corresponds to our intuition related to the
measurement of length, for instance. In the finite case, provided the representation
of a preference by the additive model exists, it is generally not unique (even up to
a positive affine transformation).

Remark 4.3.1 (Normalisation)

If the representation in the additive model is unique up to a positive affine trans-
formation of the wu;’s, it is not difficult to impose additional constraints to the
function u in order to fix the degrees of freedom left for the determination of the
u;’s. One may, for instance, scale v in order for its minimal value on X to be 0
and its maximal value to be 1. If such a requirement is imposed and the functions
u; are constrained to be nonnegative, then they are exactly determined. Indeed,
consider any additive representation u of the preference, with w(z) = >°7 | u;(z;);
due to the uniqueness hypothesis of the u;’s up to a positive affine transformation,
all other additive representations are of the form

n n
u(@) =Y up(z) = (owi(z) + Bi),
i=1 i=1
with u}(z;) = aus(x;) + G;. If we impose that v’ is scaled as sald above and using
the notations introduced page 129, we must have
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Imposing that the u/’s are nonnegative, implies that au; + 3; > 0; this, combined

with the first equation, forces §; = —au,; the second equation entails
o= 1
Z?:l(ﬂi — 1)
Hence there is no degree of freedom left on o and the G;’s. .

Assuming that the u;’s are determined up to a positive affine transformation,
we shall briefly explain in section 4.3.7 how we can take advantage of this to
construct an additive representation of the preference.

4.3.5 Relevance of conjoint measurement results for MCDA

It may seem disturbing at first glance that conjoint measurement results require
the verification of properties of a preference that will only be known at the end of
the MCDA process. To use these results, the client is asked to answer questions
that refer to his intuitive perception of his own preferences. For instance, the
preference independence hypothesis that is crucial for model (4.1) can be at least
partially tested by asking the client questions like: “Do you prefer a meal with fish
and red wine or a meal with fish and white wine?” “Do you prefer a meal with
meat and red wine or a meal with meat and white wine?”. If the client is consistent
in preferring the same type of wine with both meat and fish, then there is no clue
that his preference might not satisfy preference independence, with main course
and wine as attributes. In the opposite case, we know that his preferences cannot
be represented by model (4.1). Thus, the characterisation of conjoint measurement
models has the advantage of allowing to test whether the model is likely to be able
to fit the preference. Of course the possibility of testing such hypotheses is often
theoretical: some axioms may have little intuitive content; even if it is not the case,
most of the time it is only possible to “falsify” a model by exhibiting a situation
where an axiom fails to be satisfied (like, potentially, in our question about fish,
meat and wine) while it is seldom possible to positively establish that a preference
will fit with the model.

4.3.6 Marginal preferences within the additive value model

The type of function u associated to model (4.1) suggests a stepping stone for its
elicitation. Under the hypothesis that > fits with model (4.1), the model suggests
that functions u; could be elicited. Going one step further, it is readily seen that
u;(x;) must be compatible with the marginal preference relation 2-; defined as:

T it & Vas; € Xy, (xi,a-s) T (s, a-4). (4.7)

Consider two alternatives (x;,a_;) and (y;,a—;) that may only differ on attribute
i; they have common evaluations a; on all attributes j except for j = 4. If the
client says that he likes (z;,a-;) at least as much as (y;,a_;), this means, in terms
of the marginal preference relation ;, that x; 2=; y; and it translates in model
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(4.1) into:
wil@s) + > wilag) > wily:) + Y us(ay),

J# J#i
from which we deduce u;(x;) > u;(y;). Thus, whenever z; 7-; i, we have u;(z;) >
u;(y;) and it is easily seen that the converse is also true; for all levels z;, y; in X,
we have x; 7Z; yi iff w;(z;) > wi(ys). Therefore, in model (4.1), the function u; can
be interpreted as a numerical representation of the marginal preference ;, which
is a weak order (a ranking of the alternatives, possibly with ties).

The fact that the marginal preference is a weak order has strong links with
the independence property of preference > (this will be analysed much more in
depth in section 6.2.9). This is also of significant practical importance. How-
ever, a difficulty remains; the u; functions that we need to use in the additive
representation of the preference are not just any numerical representation of the
marginal preference relations ;. A weak order like ;, has many different numer-
ical representations since any increasing function of a representation is in turn a
representation; the numerical representation of a weak order is determined up to
an increasing transformation. Among the whole set of possible representations of
the weak order Z7;, we have to select the right one (determined up to a positive
affine transformation), the one that is needed for a representation of the global
preference in the additive model.

Example 4.1 (Buying a sports car)

We consider the example briefly described in section 4.1 (see also in chapter 6 of
Bouyssou et al. (2000)). Thierry, a student who is passionate about sports cars
but earns little money, assesses fourteen cars among which he considers buying
one, based on the five dimensions that are of importance to him, namely cost,
acceleration, pick up, brakes and road holding. Assume that his preference fits
with the additive value model (4.1) and let us help Thierry build a value function
u that represents his preference in accordance with the additive model.

We first settle the ranges X; in which the attributes will reasonably vary (in
view of the evaluation of the fourteen selected cars). These ranges are shown in
table 4.1. The evaluations on the first three attributes are expressed in “physical”
units (thousands of €, and twice in seconds, respectively); the last two belong to
a qualitative scale. On the first three attribute scales, less is better, while on the
last two, more is better. What is the relationship between the evaluations and the

Attribute

1 X unit to be
Cost 1 [13;21] 1000€ minimised
Acceleration 2 [28;31] second minimised
Pick up 3 [34;42] second minimised
Brakes 4 [1;3] qualitative maximised
Road holding 5  [1;4]  qualitative maximised

Table 4.1: Ranges of the five dimensions in the “Buying a sports car example”.

value function u? There are two main features that we want to emphasise:
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e the information contained in the evaluations is transferred to the value func-
tion through the marginal preferences;

¢ the marginal preferences, which are weak orders in the additive model (4.1),
cannot be considered as identical to the natural ordering of the evaluations
although these weak orders are not unrelated.

Take for example the cost attribute. Clearly, a car, say x, that costs 15000€
is not preferred to a car y that costs 14000 € if both cars are tied for all other
dimensions. And the conclusion will be the same when comparing the first car
with any other car that costs less and has the same evaluation on all other at-
tributes. More formally, car z can be described by the vector (15, a2, a3, a4, a5)
and y by (14, az, as, a4, as); the first dimension of these vectors represents the cost
(in thousands of €) and a;, for ¢ = 2,...,5, designates any level on the other
attributes. Car y is certainly at least as preferred as x (y 77 x) since y is cheaper
than x and all other evaluations are identical for both cars. This is a typical case
in which “ceteris paribus” reasoning applies; the property of the preference we use
here is weak preference independence (see page 239, definition 6.3); it is implied
by strong preference independence which is a necessary condition for a preference
being represented by the additive value model (4.1).

The fact that car y is preferred to car z, independently of the value of a;, can
be translated into a statement involving the marginal preference 7-; on the Cost
attribute, namely 14 7, 15. For all pairs of costs z1,y; in the range [13;21], we
would similarly have y; 77 z1 as soon as the cost x; is higher than the cost y;. ©

Remark 4.3.2

This does not mean, however, that the marginal preference 7; is necessarily the
reversed natural order for the costs in the [13;21] interval. The marginal preference
771 might indeed not discriminate between x; and y; when the difference |z1 —y1} is
small enough. The client could feel that, due to the imprecision of the evaluation of
the costs, he cannot distinguish, in terms of preference, between costs that round
up to the same nearest thousand of Euros. In such a case, the marginal preference
relation 77 would be less discriminating than the reversed natural order on the
real numbers. A numerical representation u; of the weak order 77y is graphed in
figure 4.1.

4.3.7 Leaning on the additive value model to elicit prefer-
ences

The additive value model suggests a general strategy for the elicitation of a pref-
erence that fits with the model. We assume here that the conditions of uniqueness
of the additive representation are fulfilled (see section 4.3.4; i.e., that the functions
u;, which intervene in the sum are determined up to a positive affine transforma-
tion (see (4.6)). The strategy consists in eliciting the functions w;, relying on the
fact, observed in the previous section, that the u;’s are numerical representations
of the marginal preferences. The main problem is to find among the many rep-
resentations of the marginal preferences, the essentially unique ones that can be
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Figure 4.1: Numerical representation of the marginal preference for Cost in a case
where it is a nonincreasing function of the cost.

summed up and yield an additive representation u of the preference. This can be
done in many different ways, which have been thoroughly studied (see, e.g., Fish-
burn, 1967; Keeney and Raiffa, 1976; von Winterfeldt and Edwards, 1986). We
briefly illustrate the method of standard sequences using the example of ranking
sports cars outlined in the previous section; we refer the reader to Bouyssou et al.
(2000, ch. 6) for more details and for the illustration of other elicitation methods
applied to the same example.

We limit ourselves here to the elicitation of the marginal value function ug,
corresponding to the “Acceleration” attribute, by means of indifference judgements
requested from the client. We start by considering two hypothetical cars that differ
only on the cost and acceleration attributes, their performance levels on the other
dimensions being tied (this is again “ceteris paribus” reasoning but with only
three common levels, instead of four in the previous section). We assume that
the two cars differ in cost by a noticeable amount, say for instance 1000€; we
locate an interval of cost of that amplitude in the middle of the cost range, say
for example [16500;17500]€. We then fix a value for the acceleration, also in
the middle of the acceleration range, say, 29.5. We ask the client to consider
a car costing 16 500€ and accelerating in 29.5 seconds, the evaluations on the
other dimensions being fixed at an arbitrary (say mid-range) value. We ask the
client to assess a value zo of the acceleration such that he would be indifferent
between the cars (16.5;29.5) and (17.5;x2) (the cars are sufficiently specified by
a pair of levels, on cost and acceleration attributes, since we assume that their
evaluations on the remaining dimensions are identical and that the preference
is independent, i.e. that ceteris paribus reasoning makes sense). This question
amounts to determining which improvement of the performance on the acceleration
attribute (starting from a value of 29.5 seconds) would be worth a cost increase of
1000 € (starting from 16 500 €), all other performance levels remaining constant.
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Since the client is assumed to be fond of sports cars, he could say for instance that
z9 = 29.2 seconds, which would result in the following indifference judgement:
(16.5;29.5) ~ (17.5;29.2). In view of the hypothesis that the client’s preference
fits into the additive value model, this indifference judgement can be translated
into the following equality:

5 5
u1(16.5) + u2(29.5) + > u;(w;) = ua(17.5) + ua(29.2) + _uy(z;)  (4.8)

j=3 j=3

Since the performance of both cars on attributes ;7 = 3,4,5 are equal, the cor-
responding terms of the sum cancel and we are left with u1(16.5) + u2(29.5) =
u1(17.5) + u2(29.2) or:

U1(165) - u1(175) = UQ(292) - UQ(29.5), (49)

which translates as an equality between differences of marginal values on attributes
1 and 2.

The second question to the client uses his answer to the first question; we ask
him to assess the value zo of the acceleration that would leave him indifferent
between the two cars (16.5;29.2) and (17.5;22). Suppose the answer is zo = 28.9;
we would then infer that:

w1(16.5) — w1 (17.5) = uy(28.9) — u3(29.2). (4.10)

Note that the left-hand side has remained unchanged: we always ask for accelera-
tion intervals that are considered as equivalent to the same cost interval.

The next question asks for a value z4 such that (16.5;28.9) ~ (17.5; z2) and so
on. Let us imagine that the sequence of answers is e.g.: 29.5; 29.2; 28.9; 28.7; 28.5;
28.3; 28.1. In view of (4.9), this amounts to saying that this sequence of levels on
the marginal value scale of the acceleration attribute are equally spaced and that
all differences of value between consecutive pairs of levels in the list are worth the
same difference in cost, namely a difference of 1000<€ placed between 16 500 and
17500 €. In other words, the client values 1000€ as an improvement of

0.3 seconds  w.r.t. a performance level of 29.5s or 29.2s
0.2 seconds w.r.t. a performance level of 28.9s, 28.7s, 28.5s or 28.3s

on the acceleration attribute. He thus values improvements in the lower range
of the scale more. Similar questions are asked for the upper half of the range
of the acceleration attribute, i.e., from 29.5 to 31 seconds. We ask the client to
assess x2 such that he would be indifferent between (16.5;z2) and (17.5;29.5).
Assume the client’s answer is zo = 30.0. Then we go on asking for z, such that
(16.5;x2) ~ (17.5;30.0) and suppose we get z» = 31. From all these answers, one
understands that the client values a gain in acceleration performance of 1 second
between 31 and 30 and a gain of 0.2 second between e.g. between 28.9 and 28.7 in
the same way, a ratio of 5 to 1.

What can we do with this piece of information? We can build a piecewise
linear approximation of the function ug (defined on the range going from 28 to 31
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seconds). Using an arbitrary unit of length on the vertical axis (the unit of length
represents 1000€ or more precisely the difference u;(16.5) - u3(17.5)), we obtain
the function ug represented in figure 4.2; this is in fact a linear interpolation of
nine points the first coordinates of which correspond to the answers given by the
client to seven indifference judgments; the second coordinates of these points have
just to be equally spaced (by one unit of length). The position of the origin is
arbitrary. We have extrapolated the line from 28.1 to 28 (thinner piece of line).
Note that function us is decreasing, since smaller is better with the measure chosen
for evaluating the acceleration.

f t } } } ©
28.0 285 29.0 295 30.0 305 31.0
Figure 4.2: Piecewise linear interpolation of the marginal value function us on the
acceleration attribute.

To determine ug, ug and us, we search successively, in the same way as for
acceleration, for intervals on the pick up, brakes and road holding scales that
would compensate exactly the cost interval (16.5;17.5) in terms of preference.

Finally, we have to do the same recoding for the cost itself. We fix an interval
for instance on the acceleration scale, say [29.2;29.5]. We already know the answer
to one question: (17.5;29.2) is indifferent to (x1,29.5) when z; = 16.5. We then
ask the client, which level z; on the cost scale would leave him indifferent between
(16.5;29.2) and (x1,29.5). A cost lower than 16 500€ is expected and we use this
in the next question, and so on. We might end up, for instance, with the curve
shown in figure 4.3. Looking at this curve indicates that the client is inclined to
pay more for the same improvement on the acceleration attribute for a car priced
in the lower part of the cost range than for one priced in the higher part. Plausibly,
with the limited budget of a student, Thierry can reasonably spend up to 17500€
on buying a car; paying more would imply restrictions on other expenses. Suppose
we have built plecewise linear approximations of u; to ug in this way. If we have
chosen the same unit to represent intervals equivalent to %, (16.5) —u1(17.5) on all
vertical axes, all that remains is to add up these functions to obtain a piecewise
linear approximation of u; ranking in turn the alternatives according to their
decreasing value of u (formula (4.1)) yields the preference 7~ (or an approximation
of it). For the sake of illustration, we show the additive value function® computed

5In fact, these values have been determined by means of another elicitation method; details
are provided in Bouyssou et al. (2000, ch. 6).
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Figure 4.3: Piecewise linear interpolation of the marginal value function ug on the
cost attribute.

for each of the 14 cars selected as alternatives by Thierry in table 4.2. Ranking the
cars in decreasing order of the value function yields Thierry’s preference relation
7 on the set of alternatives. This preference is a weak order; its equivalence
classes are labelled by their rank in the table. If we admit that the precision of
the indifference judgments made by the client is absolute, there are no ties in this
ranking.

Cars Value u  Rank
Peugeot 309/16 0.85 1
Nissan Sunny 0.75 2
Honda Civic 0.66 3
Peugeot 309 0.65 4
Renault 19 0.61 5
Opel Astra 0.55 6
Mitsubishi Colt 0.54 7
Mazda 323 0.53 8
Fiat Tipo 0.51 9
Toyota Corolla 0.50 10
Mitsubishi Galant 0.48 11
Alfa 33 0.47 12
Ford Escort 0.32 13
R 21 0.16 14

Table 4.2: Ranking of the cars in decreasing order of the value function u.

Remark 4.3.3

As just outlined, the construction of an additive representation incorporates the
client’s preference in the w;’s; one can thus interpret the u;’s as the set of criteria H
of the evaluation model (A,{D,€}, H,U,R) (see section 2.3.3). The synthesis of
the various criteria into global preferential information, here the preference relation
7-, decomposes in two steps that can be interpreted as constituting the set R of
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“operators” in the evaluation model. First the criteria (i.e., the u; functions)
are summed up, yielding a numerical representation u of the preference; then
this representation is used according to model (4.1) to determine the preference
relation . Note that the sole significance of the function u is to be a numerical
representation of the preference relation; larger or smaller differences u(z) — u(y)
may not, in principle, be interpreted as reflecting larger or smaller differences in
preference intensities between the alternatives z and y. We will come back to this
point in section 4.3.9 below.

gj; The construction of an additive representation shows the following impor-
£ tant features:

-

& e the representations u; of the marginal preferences 7-; are built jointly,
@\3 using one of the dimensions (here the cost) as reference dimension;

o~

£ o the elicitation process transforms the dimensions (attributes) into crite-
(% ria, incorporating the client’s preference into the model;

@ e comparing differences u(z) — u(y) is meaningless; in the additive value
% function model, these differences do not, in general, model preference
o intensity.

£

4.3.8 Tradeoffs or substitution rates

An interesting feature of the form (4.5) of the additive model is that it allows
us to give a precise meaning to the intuitively appealing notion of “importance
of the criteria”; in this model, this notion can be represented by the “weights”
k;, provided that the v;’s are normalised in such a way that their maximum is 1
and their minimum is 0, as was assumed in section 4.3.2. The “weights” k; in
model (4.5), can be interpreted as substitution rates or tradeoffs. Consider two
alternatives z and y that share all levels except those on two dimensions i and j,
Le., £ = (x5, 25,a_(,;) and y = (yi,Y;,a-(4;}), where a_g; ;; denotes a vector
of dimension n — 2, the coordinates of which are those of alternative a except for
dimensions ¢ and j; suppose that these alternatives are indifferent, implying that
u(z) = uly); using the form (4.5), after having cancelled the terms kyv;(a;) for
l # 1,7 that appear on both sides of the equality we obtain:

kiui(:ci) + ]ijj(lﬂj) = kﬂ)z(yz) + k:jvj (yj)»

from which we get:
ki _ vi(yy) —vilzy) (4.11)
ki i) = vi(ya)
In other words, indifference between x and y means that the “difference of pref-
erence” between the levels z; and y; on attribute i is exactly balanced by the
“difference of preference” between the levels y; and z; on attribute j, the alter-
natives being tied on all other attributes (ceteris paribus reasoning again!). If we
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know that v;(x;)—vi(yi) correctly represents the preference differences on attribute
i, i.e. that the difference of preference between the levels x; and y; is at least as
large as the difference of preference between any two levels z; and &; if and only if
vi(z;) — vi(ys) = vi(2:) — vs(k;), and if the same is true for v; on attribute j, then
the coefficients k; and k; allow us to compare “inter-attribute” preference differ-
ences. Equation (4.11) tells us that the difference v;(y;) — v;{z;) can be balanced
by

ki

e (vi(@:) = vi(ys)) (4.12)

the ratio k;/k; being the substitution rate between the differences in marginal
values.

Let us assume that the conditions of uniqueness of the u;’s up to a positive
affine transformation are fulfilled. If model (4.1} is considered instead of model
(4.5), we may obtain a representation in the latter, as shown in section 4.3.2, by
applying the transformation (4.2), i.e., computing v;(x;) = (u;(z:) — ;) /(W — ;).
Substituting v; in equation (4.12) yields

ki _uiys) —u(zy)  Ti-w

ki wiz) —uwiy) T - wy

(4.13)

When using model (4.1), the ratio k;/k; can still be computed on the basis of a
ratio of differences (here involving u; and u;), except that the differences have to
be normalised by the range of the corresponding function (u; or u;).

Example 4.2

Consider for instance the “Buying a sports car” example (described on page 134)
and suppose that the u;’s are unique up to a positive affine transformation. If we
accept that the curves in figures 4.3 and 4.2 correctly represent the marginal value
functions u; and ue on cost and acceleration, respectively, then we may estimate
the ratio kj/ko by substituting u; by k;v;, for ¢ = 1,2, in the following equation
(see (4.9)):

u1(16.5) + u2(29.2) = u1(17.5) + u2(28.9).

Using (4.13), we obtain:

kl UQ(289) — U2(29.2) % U — Uy .

ky  u1(16.5) —uy(17.5) * Uy —uy’
In figure 4.3, we see that @ = 10 units and u; = 0; in figure 4.2, we obtain Ty = 8
units and u, = 0; remember that the units are the same on both attributes (due
to the elicitation procedure) and we have determined that they are equal to the
differences u5(28.9) — 19(29.2) = u1(16.5) — u1(17.5). Hence,

k 10
doix ==
kg 8

What does this mean? If we normalise the ranges of variation of the marginal value

functions on the two dimensions in order for the normalised values to vary between

1.2.
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0 and 1, then the substitution rate between one unit on the normalised range of
the cost criterion is worth 1.2 units on the normalised range of the acceleration
criterion. &

4.3.9 The measurement of global preference differences

Consider a preference 7~ for which there exists a unique additive representation
(up to a positive affine transformation of the w;’s) within model (4.1). Through
an elicitation procedure—such as, for instance, the standard sequence method
outlined in section 4.3.7—one obtains a value function u that represents 7-. Let us
assume that Thierry’s preference in the case outlined above fulfils the hypotheses
of model (4.1) and that a value function u representing Thierry’s preference in
the model has been correctly elicited. Note that this function represents Thierry’s
preference not only for the cars in the set of selected alternatives, but also for
the whole Cartesian product X determined by the ranges of the attributes (see
table 4.1). In other words, we know the u-value of any “car”—real or fictitious—
described by a vector (x1,zo, Z3, x4, Ts), with z; varying in the ranges specified in
table 4.1.

Under the above conditions, as we have seen in remark 4.3.1, the normalised
additive representation is uniquely determined. In other words, if we set the value
w of the ideal® car Z at 1 and the value of the anti-ideal car z at 0, then there is
only one additive value function representing >~. The u-function in table 4.2 has
been set using these constraints.

It is a common mistake to interpret the uniqueness of the additive value func-
tion representing 7 as implying that the size of the difference u(z) — u(y) can be
interpreted as measuring a preference difference and that such differences can be
compared meaningfully. In the “Buying a sports car” example, the difference in
the values of the two top-ranked cars, the Peugeot 309/16 and the Nissan Sunny, is
0.85—0.75 = 0.10; the difference in the values associated to the cars ranked in 8th
and 9th positions, the Mazda 323 and the Fiat Tipo, is equal to 0.53 —0.51 = 0.02.
Comparing these differences does not make any sense because we did not ask the
client any information on global preference differences. One cannot meaningfully
say something like “the difference (of preference) between the former two cars is
five times the difference between the latter two cars”. It cannot even be said that
the preference of the Peugeot to the Nissan is stronger than the preference of the
Mazda to the Fiat. Differences in u-values, although » is numeric and unique,
may not be meaningfully related with “strength of preference” or any analogous
concept.

We emphasise here that the only legitimate interpretation of u is ordinal. The
only conclusion we can meaningfully draw from the fact that the u-value attached
to the Peugeot is 0.85 and that attached to the Nissan is 0.75, is that the Peugeot
is preferred to the Nissan. And that’s alll The uniqueness result discussed above
only concerns additive representations of >-. There are clearly many other value

8 The ideal car is the fictitious car that realises the best performance level on all attributes,
in the range specified in table 4.1: it is a car that costs 13000 €, accelerates in 28 seconds, etc.
The anti-ideal car is defined symmetrically.
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functions—assigning 1 to the ideal car and 0 to the anti-ideal—that can represent
the preference - equally well, but the only one that is normalised and decomposes
into a sum of marginal value functions u; is . In table 4.3, apart from the
additive value function we already know, we give an equivalent representation of
the preference using a value function v. We see that the “difference” between the
Peugeot and the Nissan is 0.01 according to v, while it is 0.10 between Mazda and
Fiat. Any increasing transformation of the [0, 1] interval into itself provides an
alternative representation of the preference 7~ when applied to u. Does the above

Cars Value v Value v
Peugeot 309/16 0.85 0.60
Nissan Sunny 0.75 0.59
Mazda 323 0.53 0.58
Fiat Tipo 0.51 0.48
Ideal 1.00 1.00
Anti-ideal 0.00 0.00

Table 4.3: Two equivalent representations of the preference; u is the additive one.

analysis imply that comparing preference differences is meaningless? By no means!
But the model one uses must be specifically designed for that purpose. Difference—
or strength—of preference is a different notion from that of preference. Formally,
it is a relation, that we shall denote by 2-*, defined on the pairs of alternatives,
i.e. on X?2. It enables to compare one pair of alternatives (x,y) to another pair
(z,w). There are various ways of interpreting the relation resulting from such a
comparison. One reads (z,y) =* (z,w) as “the preference difference between z
and y is larger (or not smaller) than the preference difference between z and w”.
Another way of expressing the same idea is in terms of sirength of preference: the
preference of x to y is at least as strong as the preference of z to w.

In the comparison of the four cars discussed above, if we want to make sense
when comparing preference differences or talking in terms of strength of preference,
we need a value function, say v, that meets the following two requirements: for all
alternatives z,y,z,w € X,

T Zy e u(z) > v(y) (4.14)

and
(x,y) =¥ (z,w) & v(z) —v(y) > v(z) - v(w). (4.15)

Representations satisfying these two conditions were studied in the literature; con-
ditions have been provided, in particular, for the existence (and uniqueness) of a
value function v that satisfies (4.14) and (4.15) (see Krantz et al., 1971, ch. 4 and
Fishburn, 1970, ch. 6).

In these models, the value function does not, in general, decompose additively.
The conditions to be imposed on the pair of primitive relations (27, 72*) so that
they admit a representation as described above, with a function v that is also an
additive value function, are of course more restrictive than those just guaranteeing
a representation of the sole relation = with an additive value function. To be
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more specific, assume that the client not only has a preference on the set X of
alternatives, but is also able to compare preference differences between all pairs of
alternatives in X, yielding a relation on X2. If the pair (-, %) satisfies the axioms
that guarantee the existence of an additive value function v representing -, and at
the same time guarantee that differences in the values of v can be used to represent
7* according with (4.15), then building v as proposed for instance in section 4.3.7
will also yield a representation of Z*. On the contrary, it may happen, if 7> and
=* do not satisfy all the axioms of additive difference of preference measurement,
that the preference - has a unique additive representation v according to (4.1)
but that the relation /2* comparing preference differences cannot be represented
in accordance with (4.15) by differences of this function v. In this case, no other
function v could satisfy the latter condition on the representation of preference
differences and at the same time, constitute an additive value model for 77 since the
latter is unique. The additive model of preference differences is a very constrained
one; axiomatic characterisations of this model have been obtained; the interested
reader is referred to Dyer and Sarin (1979) and von Winterfeldt and Edwards
(1986, chapter 9) on this issue.

4.3.10 Insufficiency of classical conjoint measurement

We now come back to the additive value model (4.1) and describe several examples
showing that there are preferences that are both reasonable and do not satisfy the
hypotheses for an additive representation.

4.3.10.1 Example 1: Flexible CSP

A solution to a Flexible Constraint Satisfaction Problem is assessed by a vector
of n numbers that represent the degree to which each of the n constraints are
satisfied; the degree of satisfaction is usually modelled as a number between 0
and 1. For instance, in certain scheduling problems (Dubois, Fargier, and Prade,
1995; Dubois and Fortemps, 1999), there may be an ideal range of time between
the end of some tasks and the start of other; if more (or less) time elapses, the
schedule is then less satisfactory; for each constraint of this type, the degree of
satisfaction is equal to 1 if the corresponding slack time lies within the ideal range;
it decreases outside this range; and outside a larger interval corresponding to the
admissible delays between the end of a task and the beginning of another, the
degree of satisfaction reaches 0. Usually, one considers that the scale on which
the satisfaction degrees are assessed is ordinal (see chapter 3, section 3.4) and the
same goes for all constraints: one may meaningfully compare degrees of satisfaction
(saying for instance that one is higher than the other), but the difference between
two degrees cannot be compared meaningfully to another difference; moreover,
the degrees of satisfactions of two different constraints are commensurate: it is
meaningful to say that a constraint is satisfied to a higher level than another
one. A solution to such a scheduling problem is an assignment of a starting time
to each task; comparing two solutions amounts to comparing their associated
vectors of degrees of satisfaction. Usually in practice, a solution is evaluated using
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its weakest aspect, i.e. the lowest degree of satisfaction it attains on the set of
constraints. Clearly, the relation comparing the vectors of satisfaction degrees can
be viewed as a relation - on the product set X = [0, 1]™. In other words, vectors
of satisfaction can be compared using the “min-score”; for z = (z1,...,z,) and
y={y1,...,Yn), where z; and y; respectively denote the degrees of satisfaction of
constraint ¢ for the two alternatives to be compared, we have:

Ty min(zy,...,Ty) > min(y, ..., Yn) (4.16)

Clearly, the relation comparing the vectors of degrees of satisfaction can be viewed
as a relation 27 on the product set X = [0,1]™. It is defined by means of the “min”-
score instead of an additive value function as in model (4.1). Of course, it may
occur that a preference relation can be defined using several different scores and
one can not exclude a priori that the relation defined by (4.16) could also be rep-
resented in model (4.1). This is however not the case, since this relation does not
satisfy one of the necessary conditions stated above, namely the strong indepen-
dence property: we can indeed transform an indifference into a strict preference
by changing the common level of satisfaction that is achieved by two alternatives
for the same constraint. This is shown with the following example. Suppose there
are two constraints (n = 2) and = = (0.6,0.5), y = (0.6,0.7); one has y > z, but
lowering to 0.3, for instance, the common satisfaction level yields ' ~ ¢’ (with
z' = (0.3,0.5) and y' = (0.3,0.7)). It should be clear from this example that there
are simple and well-motivated procedures the additive value function model is not
able to encompass.

4.3.10.2 Example 2: Non-transitive preferences

In the previous example, we described a procedure leading to a preference that
lacks the strong independence property. The other necessary condition for model
(4.1), namely transitivity, may also fail to be satisfied by some reasonable prefer-
ences.

Let us just recall R. D. Luce's famous example (Luce, 1956) of the sugar in the
cup of coffee: a person who likes to drink coffee is indifferent between two cups of
coffee that differ by the adjunction of one grain of sugar; he normally would not
be indifferent between a cup with no sugar and a cup containing one thousand
grains of sugar; according to whether he likes drinking sugared coffee or not, he
would definitely prefer the latter or the former. A long sequence of indifferent
alternatives may thus result in a preference, contrary to the hypothesis of the
additive value model, in which preferences are weak orders, hence transitive 7.

4.3.10.3 Example 3;: PROMETHEE II and the additive value function
model

There are preferences that can be represented within the additive value function
model but:

7 For further discussion of the transitivity of preference issue, mainly in the context of decision
under risk, the reader is referred to Fishburn (1991b). For counter-arguments against considering
intransitive preferences, see (Luce, 2000, section 2.2).
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o the model is more specific than (4.1): the u; functions have special charac-
teristics;

o using model (4.1) offers no clues for eliciting the u;’s and constructing the
global preference.

Consider for example the PROMETHEE II method (Brans and Vincke, 1985). It is
usually presented as a method that relies on pairwise comparisons of alternatives,
as in the Condorcet method. It is nevertheless amenable to a representation within
the additive value model.

PROMETHEE II starts by comparing alternatives, in a pairwise manner, with
respect to each attribute i. Consider two alternatives x (resp. y) characterised by
their description (z1,..., %4, ..., Zn) (resp. (Y1,...,¥s .- -, Yn)) o0 the n attributes;
we assume that x;, y; are numbers, usually obtained as evaluations g;(), g;(y) of
the alternatives on attribute ¢. The intensity S;(z,y) of the preference of z to y
on attribute 4 is a nondecreasing function P; of the difference x; — y;:

Si(z,y) = Pi(zs — i) (4.17)

When the difference z; — y; is negative, it is assumed that S;(z,y) = 0: the
intensity of the preference of z over y on attribute ¢ is zero. The global intensity
of the preference of x to y is described using a weighted sum of the S; functions:

S(z,y) = ZwiSi(x, v), (4.18)

where w; is the weight associated to attribute ¢.

One can view S as a valued relation assigning the value S(z,y) to the pair
(z,y) for all z,y € A. In a further step, the alternatives are evaluated using their
score, computed as the “net flow” & at each node, i.e., for alternative z, ®(x) is
the difference of the sum of the values of all arcs emanating from z minus the sum
of the values of all arcs entering x:

O(z) = Z S(x,y) — Sy, z). (4.19)

yeA

This score is then used to determine that z is preferred to y if ®(z) > ®(y). This
is the customary presentation of PROMETHEE II (see, e.g., Vincke, 1992b, page
74).

By using equations (4.19), it is easy to rewrite ®(x) as follows:

n

Ba) = 3 wi Y [Si(zy) - Sily, o). (4.20)

i=1 yEA

The latter formula can be seen as defining an additive value model in which the
marginal value functions wu; have the following particular form:

wi(@:) = Y _[Siz,y) — Si(y, ). (4.21)

y€A
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The computation of function u; that models the influence of criterion i depends
on the other alternatives (as in the Borda method; see section 4.2.2 and, below,
section 5.2.1.1 for a discussion of a property called “(in)dependence of irrelevant
alternatives”). Equation (4.21) suggests that the preference can be constructed
through modelling the value of any echelon z; as the sum of its “advantages” and
“disadvantages” for each dimension , respectively coded by S;(z,y) and S;(y,x)
(remember that S;(x,y) = 0 whenever y; > x;). Model (4.1) makes no mention
of intuitively interpretable concepts that would suggest that u; could be viewed
as a superposition (using a sum) of more elementary elements. The basic notion
emerging from model (4.1) is the marginal preference 7=; defined by (4.7); the basic
hint provided by the model for building the preference, is that one may construct
u; as a numerical representation of 7;. In section 6.6.2, it will be shown that the
valued version of a family of models studied in section 6.4 offers better insight into
the process of constructing a preference according to the PROMETHEE IT model.
This example suggests that one of the virtues of a formal model could be
pedantically called its “hermeneutic power”, i.e. the fact that it facilitates the
elicitation process; of course this power depends on the context of the problem
situation, including the cultural and intellectual background of the client.

4.3.11 Conclusion

We hope to have shown:

e that the additive value function model is not appropriate for all possible
evaluation problems;

e that one virtue of the models that provide a preference representation (i.e.
models in which preference can be described using a condition of the type
x 7y < ... ) Is to support the process of constructing of the preference by:

— implying intuitively interpretable concepts (such as that of marginal
preference),

— establishing a link between these concepts and elements of the repre-
sentation built in the model (such as the link between the marginal
preferences and the marginal value functions u;).

In chapter 6 we present more general conjoint measurement models (which provide
more general representations of the preference); the models proposed all induce
concepts—usually different from marginal preferences—that can support the con-
struction or elicitation process.

4.4 General comment on the status of the para-
meters

Many aggregation methods require some parameters: weights, importance coeffi-
cients, indifference thresholds, concordance thresholds, veto thresholds, and so on.
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These parameters are very important; they allow us to adapt or modulate to some
extent a rigid mathematical model, taking the values or preferences of the client
into account. Thanks to the parameters, we can hope that the outcome of the
aggregation procedure will make sense to the client. Indeed, using the weighted
sum, ELECTRE, PROMETHEE II, AHP, ... without weights (or all weights be-
ing equal) is bound to fail. There is very little chance that a client will trust the
outcome of such an aggregation procedure because it is not faithful to his values,
preferences or beliefs. It does not reflect his subjective perception of the situation.
In this section, we will examine a few popular methods used to set parameters.
We will then present a general approach that can help us set the parameters in a
meaningful way. We will often speak of weights although not all parameters are
weights. But almost everything we will say about weights can be transposed to
other types of parameters.

4.4.1 Direct rating

In many applications, the analyst just asks the client to give numerical values to
the weights. These numbers are then eventually normalised, in order for them to
add up to one, and they are used in an aggregation procedure. What we would like
to show now, is that such weights should probably not be used in an aggregation
procedure. Not because the client gives wrong answers to the question raised by
the analyst or because the weights given by the client are only approximations
of the “true” weights, but because the analyst’s question is very ambiguous. We
know that weights (sometimes called importance coeflicients) do not play the same
role in different aggregation procedures (Bouyssou et al., 2000; Roy and Mousseau,
1996). Furthermore, in most aggregation procedures, the role of the weights is not
well understood. So, how can we hope that the weights given by the client can be
adapted to the aggregation procedure to be used thereafter?

Besides, even if we use an aggregation procedure in which the weights have a
simple and well-understood role (say the weighted sum), the weights do not have
any intrinsic numerical value in a given application. It is well known that the
value of the weights (using the weighted sum) must depend on the units used for
the different criteria. For example, if we already have the weights, if a dimension
is measured in metres and we change it to centimetres, then the weight of that
criterion needs to be divided by 100. Suppose now that we do not know the weights
and that we ask the client for them. Will he give a weight 100 times smaller if we
express the evaluations in centimetres instead of metres? Probably not.

Consider now an aggregation procedure where the units of measurement play
no role: absolute majority. Each criterion has a weight and the weights add up
to 1. An alternative a is globally at least as good as b if the total weight of the
criteria with @ Z; b is not smaller than 1/2. Suppose we decided to use three
criteria in a given problem formulation and we ask the client for the weights he
wishes to use. Feeling that criterion 1 is slightly more important than criterion 2
but much more important than criterion 3, he gives respective weights 0.45, 0.40
and 0.15. Note that no criterion is strong enough to attain the threshold 0.5 on
its own. Note also that any coalition of two criteria is strong enough to attain
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the threshold. So, the three criteria play exactly the same role; the real weight or
importance (game theorists speak of power index) of the three criteria are 1/3,1/3
and 1/3. They have the same power despite the very different weights given by the
client. When the number of criteria increases, computing the power of a criterion
becomes very difficult and we cannot expect a client to assign weights such that
the powers reflect his beliefs.

Besides, if we used simple majority—a is globally at least as good as b if the
total weight of the criteria with a 7Z; b is not smaller than the total weight of the
criteria with b 7-; a—the result would be very different, using the same weights.
Criterion 1 would have more power than criterion 2 and criterion 2 would have
more power than criterion 3. Yet the odds are small that a client assign different
weights if we use simple instead of absolute majority.

In ELECTRE I, the weights are independent of the units of measurement,
but are not independent of the other parameters of the methods (the various
thresholds). We cannot expect that the client to assign weights that are consistent
with the other parameters, the aggregation procedure and his preferences.

So, even if this has not been empirically proven, it seems extremely plausi-
ble that the weights spontaneously given by a client are not reliable, and it is
not a matter of precision. This cannot be solved by a sensitivity analysis. The
weights can differ by several orders of magnitude from weights that we would
obtain through a sound procedure (an example of such a procedure is given in
section 4.4.5).

4.4.2 Simos’ cards method

In the method proposed by J. Simos (see Roy and Figueira, 2002; Simos, 1990),
the client receives n cards; The name of one dimension is written on each one. The
first task is for the client to rank these cards from the least to the most important
criterion. Ties are allowed. The client can then insert one or more white cards
between the previously ranked cards. The number of white cards between two
criteria indicates the difference in importance between these criteria. The more
white cards, the larger the difference. Simos then suggests a simple algorithm that
computes weights based on the cards ranking given by the client.

In this method, the analyst does not ask the client for the numerical values
of the weights but he nevertheless asks him to reason about the weights, to make
statements about the weights. We are convinced that this does not make sense.
This would make sense only if the client had even some vague or imprecise knowl-
edge about the weights to be used with a particular procedure. It would help us to
set precise numerical values without asking for these values. But even just asking
the client to rank the criteria by importance is in fact too much. With the weighted
sum, there is no such thing as an intrinsic ranking of the criteria: it depends on
the units. Suppose we have two criteria and the performances on those criteria are
expressed in metres and Euros. Suppose also we have found weights that perfectly
reflect the client’s preferences: 0.3 and 0.7. It seems, therefore, that the second
criterion is more important than the first. If we now express the performances on
the first dimension in kilometres, we must multiply the weight of the first criterion
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by 1000. The weights are then 300 and 0.7. If we want to normalise them, we
find 0.998 and 0.002. It now seems that the first criterion is much more important
than the second . All this is of course spurious.

With ELECTRE, the value of the weights is not independent of the other
parameters (concordance, discordance, indifference and preference thresholds) and
the role of the weights is not completely clear. With some variants of ELECTRE
(such as ELECTRE III) or when an exploitation procedure is used, the role of
the weights can even become obscure (see also Bouyssou et al., 2000, ch. 6). We
illustrate this with an example using a simplified version of ELECTRE, namely
qualified majority. Suppose we have three criteria and we want to use qualified
majority, i.e. absolute majority with a threshold possibly different to 1/2. The
client thinks that criterion 1 is more important than criterion 2, which itself is
more important than criterion 3. We can represent this using the weights 0.45, 0.40
and 0.15. If we use a threshold equal to 1/2, we have seen in section 4.4.1 that
the three criteria have the same power, namely 1/3. But if we use a threshold
of 0.6, we see that criterion 1 has more power than criteria 2 and 3 because the
coalition of criteria 2 and 3 is not strong enough to attain the threshold, while the
other coalitions of two criteria are strong enough. If we use a threshold of 0.7, we
see that criteria 1 and 2 have the same power but more power than criterion 3
because the only strong enough coalition of two criteria is the coalition of 1 and
2. In these three examples, we see that although the client uses the same ranking
of the criteria, we obtain three different rankings of the power of the criteria.
And, if we were to use other weights such as 0.45, 0.30 and 0.25 (reflecting the
same ranking of the criteria), we would obtain other orderings of the power of the
criteria. The client can certainly not anticipate this and, so, we cannot expect him
to provide us with the correct ranking of the criteria. Note that if we consider the
possibility of using other kinds of majorities (like simple majority), the situation
worsens.

4.4.3 Ranking the criteria

The goal of the designers of MELCHIOR (Leclercq, 1984), ORESTE (Roubens,
1982) and QUALIFLEX (Paelinck, 1978) was to avoid asking the client for numer-
ical weights because it is too difficult. So, they decided to just ask for a ranking of
the criteria, from the most to the least important. But, in fact, this is not easier.

No method is used for eliciting this ranking. The analyst just asks the client
to provide a ranking of the criteria. For the reasons presented in the previous
section on Simos’ method, we think that a ranking of the criteria given by a client
is no more reliable than numerical values, because, we insist, it is not a problem
of precision. Several methods can be thought of that only use a ranking of the
criteria but that lead to different results. So, the meaning of the relation “more
important than” can vary from one aggregation procedure to another. It has no
meaning per se and, even if the client has the impression that he understands
it, we can never be sure that his concept of the relation “more important than”
coincides with the one to be used with a particular aggregation method. So, if no
absolute ranking exists, how can we expect the client to provide us with the right
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one, adapted to his problem, to the aggregation procedure to be used, to the units
and scales of the different criteria and to the other parameters used in the chosen
method?

4.4.4 Analytic Hierarchy Process (AHP)

The technique used in AHP (Saaty, 1980), to set the value of the weights is very
sophisticated (see section 4.5.1). It also avoids asking the client for numerical
values, but it fails for the same reason as the previous methods. It asks the client
to compare the importance of the criteria. But the concept of importance, even in
its relative form (more important than), is so ill-defined that the answers given by
the client and used with a particular aggregation procedure cannot reliably reflect
his value system. See Belton and Gear (1983) and Dyer (1990).

4.4.5 A classical technique in MAVT

In this subsection, we present an interesting technique, which is classical in MAVT,
but that can easily be adapted to other parameters in other aggregation proce-
dures. The reader should therefore not understand this subsection as an argument
in favour of MAVT and against other methods. Instead, it should be a source of
inspiration for a sound elicitation of parameters using other methods (this will be
developed in the next section).

Suppose a client and an analyst have decided to use an additive model, i.e.,
given the performances g1(a),...,gn(a) and g1(b),...,gn(b) of two alternatives a
and b, they will consider a, globally at least as good as b if and only if

Z kwi(gi(a)) > Z kivi(g:(b)) = u(b), (4.22)

where k; is the weight associated to dimension i and v; is the value function
corresponding to dimension 7 (note the similarity with equation (4.5); this will be
discussed at the end of this subsection, on p.153). Two kinds of parameters thus
need be determined: the marginal value functions and the weights. Suppose they
used the midvalue splitting technique (see Keeney and Raiffa, 1976, section 3.4.7) to
elicit the n value functions. We will not say much about this technique (though it is
quite interesting), but we will focus on the next step—the elicitation of the weights
or scaling constants—because these parameters are in some way comparable to
those discussed in the previous sections.

After the midvalue splitting technique, the client has n value functions such
that vi(g } = 0 and v(g;) = 1, where g, is the worst performance and g; is the
best performance on dlmensmn 7. The range of each value function is thus [0, 1].
If we then want to additively combine these values, we must use some weights,

as in (4.22). Indeed, even if the numerical difference in value between g . and
7, is the same as between 9, and g; (it is equal to one), these differences may
represent very different things for the client. The difference between g, and g; is
perhaps perceived as much bigger than the difference between 9; and g g] So, we
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need weights or scaling constants or substitution rates to make these differences
comparable.

Keeney and Raiffa (1976) suggest to use the following technique. For the
sake of clarity, suppose there are only three dimensions. Present the following
three fictitious alternatives to the client: a = (—9—1722,5_73), b = (g1,§2,g3) and
c = (31’22’53) where (z,y, z) stands for an alternative with performances z, y
and z on criteria 1, 2 and 3. Then ask the client to rank them from best to worst.
Suppose his answer is b > ¢ > a. From this, we can conclude that

u(b) > u(c) > ula)

or, using (4.22),
k‘g > k3 > kl.

We present then the following pair of fictitious alternatives to the client: d =
(9,,9,,93) and e = (g, :cz,gB) where x4 stands for an unspecified performance on
criterion 2, with the constraint that 9, < zy < g,. The client must then say for
which value of z3 he is indifferent between d and e. We then again write (4.22):

u(d) = k10 + ko0 + k31k10 + kzvz(xz) + k30 = U(@),

that is, k3 = koua(z2). Because the value functions v; have been previously deter-
mined by the midvalue splitting technique, we know the value of va(x2). Let us
call it 4. So, k3 = kou. This means that a difference of one unit on criterion 3 is
worth a difference of i units on criterion 2.

If we now present the pair d' = (gy,9,,9,) and €’ = (g ,z3,g,) where x5
stands for an unspecified performance on criterion 2, we can find a value v such
that k7 = kov in a similar way. This means that one unit of value on criterion 1 is
worth v units on criterion 2. We can then choose any value for ky and the other
weights are automatically determined by the relations k3 = kop and k1 = kov. In
particular, we can arrange to have Y. ; k; = 1 but this is not necessary. If there
are more criteria, the same technique can be generalised.

The interest of this technique is that all questions we ask to the client are
formulated in his language and are directly related to his problem, not to a model:
we only ask him to compare alternatives. We never ask for the value of a parameter.
We do not even mention parameters. Besides, we are sure that the parameters
we obtain are to some extent (we do not believe in a perfect model) compatible
with the client’s preferences: if we use (4.22) with the obtained parameters and
the alternatives a,b, ¢, d, e,d’ or €/, we necessarily obtain the preferences that were
previously stated by the client. If we do the same with other alternatives, we are
no longer sure that the obtained preferences will coincide with those of the client.
It will only be so if the chosen aggregation method is well-adapted to the client’s
preferences. This is not due to an incorrect choice of the weights.

But if we use (4.22) with the parameters elicited through a direct rating pro-
cedure, we are not even certain that the resulting preferences will coincide with
the client’s preference for even one pair of alternatives.
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In section 4.3, we presented the additive model (4.1) and showed that it had
the equivalent alternative formulation (4.5). The latter form corresponds exactly
to model (4.22) above, provided we identify g;(a) and x;. Despite the fact that
models (4.1) and (4.5) are equivalent, their different formulations suggest different
elicitation procedures for their parameters. This is why we presented another
elicitation procedure in section 4.3. Ideally, both procedures should lead to the
same result, i.e. to the same preference relation.

4.4.6 General approach

The technique used in the previous section to elicit the substitution rates or weights
can be adapted to many different parameters and aggregation procedures. For
example, Mousseau, Figueira, and Naux (2001) and Mousseau and Dias (2004)
have proposed a similar technique for eliciting the parameters of a variant of
ELECTRE 1 devoted to the problem of sorting. The same reasoning also lies
at the heart of the aggregation-disaggregation approach (see Jacquet-Lagréze and
Siskos, 2001, which is the editorial of a special issue on preference disaggregation)
and in particular the UTA method implemented in PREFCALC (see Jacquet-
Lagréze and Siskos, 1982 and also, to some extent Mousseau et al., 2003). Kéksalan
and Ulu (2003) use this approach for setting the parameters of a linear utility
model in a sorting problem. It is also possible to elicit preference thresholds (for
example in ELECTRE) by asking the client to compare some pairs of alternatives
instead of asking for the threshold directly, this whether one criterion or several
are considered (see chapter 3).

Ei{ For any aggregation procedure involving parameters, if we present a pair of
£ alternatives to the client and if he tells us which one he prefers, we can always
&2 draw some conclusion about the parameters (all of them, not just the weights)
= of the aggregation method we want to use. This conclusion is generally under
L‘} the form of a constraint. When we repeat this process and present more and
¢ more pairs of alternatives, we obtain more and more constraints. By combining
¢ these constraints, we can eventually isolate a set (hopefully not too large)
) containing the suitable parameters. Note that the representation theorems
obtained in the framework of measurement theory can help us determine the
questions we must ask to arrive at unique parameters or, more realistically, at
ﬁ a small set of parameters as fast as possible (i.e. with a minimal number of

5 questions).

g "{{L}

0G0

(

This can sometimes be difficult. It may require the use of complex algorithms.
And these algorithms are yet to be developed for some aggregation procedures.
But we are convinced that it is the best way to arrive at parameters that make
sense with respect to a particular aggregation procedure.

The difficulty is not only computational. Sometimes, the client will be able
to compare only a few pairs of alternatives. He will be undecided about the
other pairs. So, we might have too few constraints and not be able to set, even
approximately, the value of the parameters.
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Sometimes, we will need to ask hundreds of questions in order to have enough
constraints, but this will not be possible due to lack of time. We will therefore
need to cope with poor information. Some hypotheses will eventually help narrow
the set of possible parameters. We could, for example, invoke Laplace’s principle
of insufficient reason or, more generally, any means for setting default parameter
values. A sensitivity analysis or a robustness approach (see chapter 7, section 7.5)
might prove helpful in these cases.

Sometimes, in order to gain more information with less questions, we might be
tempted to present pairs of fictitious alternatives, with a particular structure (as
in the previous section). But the client must then compare alternatives that he
does not know and, possibly, alternatives that are not realistic. So, his answers
become less reliable. We must therefore balance the need for specially structured
alternatives that bring a lot of information and the need for reliable answers.

In the following two chapters, we discuss many aggregation procedures involv-
ing parameters. For some of them, we mention a technique that can be used for
eliciting these parameters, which always follows the approach presented in this sec-
tion. For the other aggregation procedures (not presented in this book or for which
we do not present an elicitation technique), the same approach can and should al-
ways be used. It does not yield the “right” or “correct” parameters (which we
cannot define) but it guarantees parameters that make sense.

4.4.7 Laplace’s principle of insufficient reason and other
principles

Suppose we are in the middle of a decision aiding process. We have been through
the formulation phase, we have constructed an evaluation model (see chapter 2,
section 2.3.3) and we have decided to use a particular aggregation method involving
weights, but we have no idea what the weights should be. It is then tempting to
invoke Laplace’s principle of insufficient reason and take all weights as being equal.
In a constructive approach (see chapter 2, p. 26), we can justify this by saying that
the client’s preferences do not exist a priori, that they are constructed during the
decision aiding process, through the interaction, the discourse between the client
and the analyst. So, if the client and the analyst agree on the relevance of Laplace’s
principle, then it is fine.

But we must not forget that in many cases, the client has some a priori prefer-
ences. They are of course incomplete and some are not stable (they might change
during the decision aiding process). But often, there are probably some elements
of preference that exist and that are stable. If we do not respect these preferences,
we should wonder what the client’s role is in such a process and we should not be
surprised if the client does not accept our recommendations. So, in a constructive
approach, we have to build the preferences around some elements that already
exist.

Let us come back to our example. Taking all weights as being equal amounts
precisely to not take the client’s preferences into account. This will yield a pref-
erence relation that is completely (and in some sense artificially) constructed. By
chance, it might contain the pairs that existed in the preferences of the client. The
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client might then accept the outcome of the aggregation and the recommendation
based on it. But the outcome can also contain none or only few of the pairs that
existed in the preferences of the client. There is then a risk that he accepts a
recommendation based on a constructed preference relation that has nothing to
do with his preferences.

We therefore think that the use of Laplace’s principle is not to be recommended
in our example and in many other cases. If we do not know which weights to use,
we may not guess or toss a coin. Our duty, as analysts, is to take one of the
following two routes:

e to honestly acknowledge our ignorance and use only the available informa-
tion. For example, to use the dominance relation or a robustness approach
(see chapter 7, section 7.5).

e to work harder and search for the information that can help us set the
weights. There are techniques for that. We presented some of them in
connection with some aggregation procedures. We also presented a general
approach (section 4.4) that can be used with any aggregation procedure.

This discussion is not limited to the use of Laplace’s principle for setting weights.
Tt holds for all parameters (thresholds, importance of criteria, value functions, .. .).
It also holds for other, somehow related, principles that can help set parameters,
like Jaynes’ maximum entropy or minimum information principle®, Wald’s max-
imin criterion or Savage’s minimax regret criterion® (see Luce and Raiffa, 1957).
This also holds for the principle lying at the heart of the Regime method (Hin-
loopen, Nijkkamp, and Rietveld, 1983). In this method, when the performances
of the alternatives on a criterion are ordinal, it is assumed that they can be repre-
sented by a value function but, because this value function is unknown, all value
functions compatible with the ordering of the performances are used in the com-
putation of some indexes. Yet, if the client has some preferences—and we believe
that this is often the case—there are value functions that better represent his
preferences than others and there are techniques to construct such functions.
Now, let us be more pragmatic. We know, that in almost all decision aiding
processes, it will not be possible to find a unique value for the weights or the other
parameters, even if we use the best techniques and devote a lot of time: these
techniques will probably give us intervals for the weights or at least narrow the
range of the possible values. What can we do then to set the weights within the
limits of our techniques? Toss a coin? This is hardly recommendable. The best
solution is probably to try to find robust alternatives, i.e. alternatives that are
good, even if not the best, under all possible scenarios (see chapter 7, section 7.5).
But this might take too long or be difficult in some circumstances. We could

8 See Jaynes (2003). Fine (1973, chapter 6) shows that the use of information-theoretic prin-
ciples like maximum entropy is an attempt to “enlarge the domain of classical probability to
include unequal probability assignments”; it thus clearly shows the filiation with Laplace.

9 These principles are mainly concerned, at least originally, with the assessment of probabilities
or statistical decision theory; they have links with Bayesian statistics; the minimal specificity
principle (Benferhat, Dubois, and Prade, 1997) used in the possibilistic approach to default or
nonmonotonic reasoning, is a similar idea proposed in the field of artificial intelligence.



156 CHAPTER 4. AGGREGATION—OVERTURE

then invoke Laplace’s principle or another similar principle. But that is precisely
what we strongly criticised in the previous paragraphs! What is the difference
between the situation here and the situation in the first paragraph of this section?
Unfortunately, there is no fundamental difference, it is only a matter of degree.
In both situations, we try to use a principle as a remedy to our ignorance. But
it is our conviction that we should do this only after we have used all available
techniques that are feasible in the decision aiding context.

Let us finally mention a situation where Laplace’s principle of insufficient rea-
son or another similar principle might be used to set the weights or some other
parameters. Suppose we have decided to use an aggregation procedure involving
weights but we do not know these weights. We therefore ask the client to compare
some alternatives, according to the general strategy presented in section 4.4.6, in
order to find constraints on the weights. Unfortunately, the client finds the task
difficult and can compare almost no alternatives, so we have almost no constraints.
We might then decide to arbitrarily choose some weights (according to Laplace’s
principle or to the throw of a dice), to use the aggregation procedure with these
weights and to present the resulting ranking to the client. The ranking should
be——unless we are extremely lucky—very different from what the client expects,
at least for some pairs. It can therefore be used as a provocation, as a support for
an interaction or a dialogue between the analyst and the client. It should force
the client to react and say, for example, ‘it is not possible that a is better than b;
I am sure b is better than a.” So, it can help us find constraints on the weights.

In such a case, the weights obtained by the application of Laplace’s principle
are in no way meant to be sensible, correct or even approximately correct weights.
We use them only for their maieutic virtues.

Note that a situation where the client does not answer any of our questions or
where he answers only a few of them is problematic; not only for the determination
of the parameters but also for the whole decision aiding process. The client must
use some of his resources (time, money, ...) to interact with the analyst and he
must commit himself. Otherwise, we can hardly speak of a decision aiding process.

4.5 1 am using the XY Z method. Which results
are useful for me?

In this section, we have selected a few popular aggregation methods or models of
preference in MCDA: AHP, ELECTRE I, ELECTRE III, MAVT, PROMETHEE
and TACTIC (in alphabetical order). We will list the relevant sections of chap-
ters 4-6 for each of them. We also give a short presentation and a few references
to important publications for each one. The reader interested in a more exten-
sive presentation of the different methods is referred to Belton and Stewart (2001)
and Vincke (1992b). There are of course, many other interesting methods but we
do not mention them here because chapters 5 and 6 do not contain any material
pertaining to them or because they are not popular.
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4.5.1 AHP
References: Saaty (1980) and Harker and Vargas (1987)

4.5.1.1 The method

The Analytic Hierarchy Process (AHP) is a method for building an evaluation
model. Its main characteristics are the following:

e the evaluation model is structured in a hierarchical way;
¢ the same assessment technique is used at each node of the hierarchy;

e the assessment of the “children” nodes of a common “parent” node is based
on pairwise comparisons.

In the simplest case, the hierarchy has three levels. The node at the top level repre-
sents the client’s global objective and is analysed as resulting from the aggregation
of n dimensions (or criteria) represented by the second level nodes; each dimen-
sion is split into as many nodes as there are alternatives (which are represented
as bottom nodes and duplicated as many times as there are dimensions). In more
complex cases, there may be more levels, corresponding to splitting dimensions in
sub-dimensions.

The assessment technique, used at each node (except for the bottom nodes),
assigns a weight or score to each of the “children” nodes of a “parent” node. For in-
stance, the procedure for assessing the n dimensions in terms of their contribution
to the client’s global objective runs as follows:

e the client is asked to compare the dimensions (or criteria)

— in a pairwise manner,
— in terms of their relative importance,

— using a conventional “semantic” scale with five levels (these levels be-
ing labelled “equally important”, “weakly more important”, “strongly
more important”, “very strongly more important”, “extremely more
important”) with possibly 4 intermediate levels;

e the qualitative assessments made by the client are given a quantitative in-
terpretation; the five levels of the semantic scale are respectively coded as
1,3,5,7 and 9; this process results in a n x n pairwise comparison matrix;
for instance, when the client considers that dimension i is “weakly more im-
portant” than dimension 7, 3 is written in row 4 column j of the matrix and
1/3 in row j column i;

e from the (numerically coded) pairwise comparison matrix, one computes a
score or weight w; attached to each dimension 4; the scores are computed as
the eigenvector corresponding to the maximum eigenvalue of the matrix and
are normalised to add up to 1.
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The reasons for applying such a procedure are complex. Briefly, the judgments
made by the client when comparing two dimensions 7 and j are assumed to be
strongly related to the ratio w;/w; of the scores of the corresponding dimensions,
as they are computed by the procedure.

The same procedure (differing only in the labelling of the levels on the semantic
scale}, is applied to compare the alternatives on each dimension. This yields a score
oy (z) attached to each alternative x on each dimension 1.

The global score of each alternative w.r.t. the global objective is finally com-

puted as:
n
Z w;o ()
i=1
and the alternatives are ranked accordingly.

4.5.1.2 Some pointers

A very distinctive feature of AHP is the derivation of the value of each alter-
native on each dimension by means of pairwise comparisons and the eigenvector
technique. But a very standard aggregation procedure lies at the heart of AHP:
the weighted sum. The values obtained through the eigenvalue technique are ag-
gregated by nothing else than a weighted sum. Section 5.4.4 about the weighted
sum thus gives us some insight into AHP and section 5.4.4.3 is particularly rele-
vant since it presents two meaningful techniques for the elicitation of weights to
be used in a weighted sum. Other techniques exist but are variants of these two
(e.g. von Winterfeldt and Edwards, 1986, ch. 7). The technique generally used
with AHP for the elicitation of the weights is not a variant of the techniques we
present. It yields weights that are independent of the aggregation procedure (the
weighted sum) and of the values of the alternatives on the dimensions. For reasons
presented in section 4.4, it should therefore never be used in the way advocated
in the orthodox AHP method. See also (Belton, 1986; Belton and Gear, 1983;
Bouyssou et al., 2000; Dyer, 1990, ch. 6).

Althqugh some proponents of AHP sustain that AHP is not a value function
method, the theory of additive value functions (MAVT) has at least some relevance
w.r.t. AHP. It cannot be doubted that the preference 7 induced by the global
score yielded by AHP satisfies the hypotheses of the additive value model since
alternatives, say x and y are ranked according to the rule:

n "
Ty e Zwiai(m) > Zwiai(y).
i=1 i=1
Comparing this expression with model (4.1), p. 129, one concludes that w;o;(x)
can play the role of the marginal value function u;{x;), when AHP is applied to al-
ternatives described by a performance vector. Can we infer from this that w;0;(x)
are the marginal value functions? In some cases we do! In section 4.3.4, we dis-
cussed uniqueness issues related to the representation in the additive value model.
If the conditions for uniqueness are fulfilled, there is only one representation of
the client’s preference in the additive model, up to positive affine transformations
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of the u;’s. In other words, if AHP gives us an additive representation of the
preference, it is the only one and u;(x;) = w;a,(x). So, in case of uniqueness of
the additive representation, AHP should be considered as a method for eliciting
an additive value function and could (should) be compared to the other elicita-
tion methods on empirical grounds. We are not aware of empirical tests on this
particular issue. But in view of the considerable experience accumulated on the
elicitation of the additive model, it can hardly be doubted that the elicitation of
an additive model using AHP would be biased. Indeed, with AHP, the questions
asked for eliciting, e.g., the “weights” do not refer to the scales of the associated
dimensions or to the additive model that will be used for the aggregation. We
therefore have the same problem as with the direct rating technique, discussed in
section 4.4.1, p. 148.

4.5.2 ELECTRE I
References: Roy (1968, 1971) and Maystre, Pictet, and Simos (1994)

4.5.2.1 The method

ELECTRE I is aimed at the aggregation of a performance table into a choice set. It
is often presented as a three-step procedure (preference modelling, aggregation and
exploitation) although the first step is almost trivial. But using this presentation
in three steps allows a unified presentation of ELECTRE I and ELECTRE IIL
Several variants of ELECTRE I have been proposed and, because the original
version of ELECTRE I is almost never used, we present the most common variant
here.

Preference modelling We define two binary relations S; and V; for each dimen-
sion by
aSib e gi(a) > gi(b)

and
aVib & gi(a) > gi(b) + 7,

where 7; is positive '°. The first relation simply expresses the fact that a is
at least as good as b on a given dimension. The second one expresses the fact
that a is much better than b on a given dimension, because the difference
between their performances exceeds a threshold that the client considers as
very large.

Aggregatlon A binary relation, called outranking relation, is constructed on A.
We will consider that a outranks b iff the coalition of criteria such that a
is better than b is sufficiently large and if b is not much better than a on
a dimension. In order to define large coalitions of criteria, an importance
coefficient w; is associated to each criterion and the large coalitions are those

101y section 5.4.6, the notation for the thresholds is more cumbersome because we consider
the case where there are several thresholds per criterion.
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for which the sum of the importance coeflicients is larger than a threshold
¢, called concordance threshold. Formally, the outranking relation depends
on performance table g but also on the n-tuples w = (wy,...,wy,) and ¥ =
(11,...,7) and on c. So, we write

aZz{gw,7,c)b e Z w; > cand fi: bV a.
1:aS;b

Exploitation The outranking relation built during the aggregation is usually not
a weak order. It is therefore not easy to see which alternatives are the
best ones and a complementary analysis is often necessary. The author of
the method recommends using the kernel (see section 7.4.3.1, p. 367) of the
relation 7. The kernel K is a subset of alternatives such that

o each alternative not in the kernel is outranked by at least one alternative
in the kernel and

& no alternative in the kernel outranks any other alternative in the kernel.

In other words, Vb € A\K,Ja € K : a (g, w,7,c) band Vb € K,Pa € K :
a (g, w,7,c) b. The kernel is not necessarily unique and does not always
exist. In such cases, several solutions have been proposed in the literature.
The kernel will not necessarily contain the best alternatives but a set of
promising alternatives that must be further analysed.

4.5.2,.2 Some pointers

Until now, ELECTRE I, with its concordance thresholds, discordance thresholds
and weights, has not been characterised as an aggregation procedure but different
special cases (simplified versions) have been. The concordance relation in ELEC-
TRE 1 is nothing but a kind of majority relation. It is therefore not surprising
that relevant results can be found in section 5.2.3 about the qualified majority.
These results do not take weights and vetoes into account.

Simple majority is another kind of majority and its weighted variant is charac-
terised. Due to the similarity between qualified and simple majority, the analysis
of weighted simple majority can be fruitful for our understanding of ELECTRE 1.
In particular, we present a technique that can be used for setting the weights in
section 5.2.2. It can easily be adapted for using it with ELECTRE 1.

One last result inspired by Social Choice Theory and relevant for understanding
ELECTRE I is theorem 5.13 in section 5.4.6. It does not take weights into account,
even though not all coalitions are assumed to be equally important. Contrary to
the other results related to ELECTRE I, these two address the aggregation of
performances and not of preference relations.

Other kinds of results have been found in the framework of conjoint measure-
ment (see section 6.5). In ELECTRE I, we add the weights of the criteria sup-
porting an alternative against another one. If we replace the sum of the weights
by a more general or abstract operation, we obtain a general model (or a family
of models) that is characterised. This general model contains ELECTRE I as a
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special case (see sections 6.3.5.3, 6.3.4, 6.4.3). The analysis of this model thus tells
us a lot about ELECTRE I, in particular that the traces on differences (see (6.28),
p. 275) are a fundamental elicitation tool. A slightly more general version helps
to clarify the very special way in which vetoes intervene in the global preference
relation; this issue is addressed in section 6.3.6.

4.5.3 ELECTRE III

References: Roy (1978), Vincke (1992b) and Roy and Bouyssou (1993, ch. 5 and
6)

4.5.3.1 The method

ELECTRE III is aimed at the aggregation of a performance table into a ranking
(partial weak order). The main difference with respect to ELECTRE I lies in the
preference modelling and the exploitation. With ELECTRE I, we say that a is
preferred to b with respect to dimension ¢ as soon as the performance of a is at
least as good as that of b on dimension i. The change from non-preference to
preference is therefore very discontinuous. Here, we will try to make the change
more continuous.

Preference modelling We define two valued binary relations S; and V; for each
dimension by

1 if gila) + 731 2 9:(b)
Si(a, b) = 0 if gi(a) + 752 < gl(b)
linear in between

and
0 if gia) <gi(b) + iz
Vi(a,b) =< 1 if gi(a) > gi(b) + Ti3
linear in between
where 7,1 < 7,2 < 7,3 are positive. The first relation simply expresses the
fact that a is at least as good as b on a given dimension. The second one
expresses the fact that a is much better than b on a given dimension.

Aggregation A binary relation S, called outranking relation, is constructed on
A. With ELECTRE 1II, the outranking relation is valued between 0 en 1.
In order to build S, we first compute a concordance index C1I, for each pair,
by

CI(a,b) = > w;S;(a,b).
=1
Then,

sty { € i Vi(b,a) < CI(a,b), Vi
a,0) = —Vi(b,a :
CI(a,b) IL;.vib.0)>Cr1(arp) % otherwise
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Exploitation The outranking relation constructed during the aggregation is val-
ued and, furthermore, often lacks nice properties. It is therefore not easy to
see which alternatives are the best ones and an exploitation is often neces-
sary. The author of the method recommends to use the so-called distillation
procedure. We do not present it here, because chapters 5 and 6 contain no
result pertaining to the exploitation procedure of ELECTRE III.

4.5.3.2 Some pointers

ELECTRE III builds a valued relation based on a concordance-discordance princi-
ple then exploits this relation in view of producing rankings. Only the part leading
to a valued relation is analysed in chapters 5 and 6. A version without discordance
is described as a generalisation of the Condorcet method (section 5.3.3). Conjoint
measurement models of valued preferences (section 6.6) offer a framework in which
the valued relation produced by ELECTRE III can be fully analysed; some of the
main features of ELECTRE III are emphasised by the model, namely the construc-
tion of the relation based on the modelling of preference differences. However, no
characterisation of the specific ELECTRE III valued relations is provided and it
would probably be very difficult to find one.

4.5.4 MAVT

References: Fishburn (1970), Keeney and Raiffa (1976), Wakker (1991b} and von
Winterfeldt and Edwards (1986)

4.5.4.1 The method

MultiAttribute Value Theory (MAVT)—also called MultiAttribute Utility Theory
(MAUT), but this terminology is better suited to decision under risk (not covered
in this volume)—is not the theory of an aggregation procedure, contrary to all
the other items in this section. MAVT studies a collection of models of preference
relations. Once it has been recognised (or assumed) that the client’s preference can
be represented in such a model, MAVT usually indicates strategies or procedures
for eliciting the model, hence the preference.

MAVT deals with preference relations - that can be represented by a value
function u in the following way:

T Zy e u(@) =u(y).

Such preferences are thus necessarily weak orders (rankings, possibly with ties).
The particular form of w that has received the most attention is the additive
model. Each alternative x is assumed to be completely described by a performance
vector z = (z1, 22, ...,%,) and each vector, provided its coordinates vary within a
specified range, is assigned a value u(z) = Y-, u;(z;), that decomposes additively
along the n dimensions. Systems of conditions on the preference - are known,
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guaranteeing that such a preference can be represented in the additive model, i.e.
satisfies

ki3 n
rye Y wlm) > wly),
d=1 =1

for some specification of the u; functions. Only preferences that are independent
weak orders can be represented in this way (additional restrictions on the pref-
erence are required). The form of the model suggests a strategy for eliciting the
client’s preference through the elicitation of the u; functions; many procedures for
doing this have been proposed in the literature‘(see, e.g., section 4.3.7).

4.5.4.2 Some pointers

It is not easy to approach multiattribute value (or utility) models using the char-
acterisation of aggregation procedures. The characterisation of the weighted sum
in section 5.4.4 is the closest in this chapter; what we miss is the possibility of
recoding the evaluations using marginal values that reflect single-attribute prefer-
ences.

Contrarily, MAVT is at the heart of conjoint measurement theory; in which it
has had many different full characterisations. The most relevant section of this
chapter is section 4.3. Section 6.1 of chapter 6 is devoted to a relatively detailed
presentation of the additive value model. Elicitation issues—mainly through using
standard sequences—are dealt with in sections 4.3.7, 6.1.2, 6.1.2.2; section 6.1.2.3
opens to other elicitation methods.

4.5.5 PROMETHEE II
References: Brans and Vincke (1985), Brans and Mareschal (2002)

4.5.5.1 The method

PROMETHEE II is aimed at the aggregation of a performance table into a weak
order and is often presented, as ELECTRE III, as a three-step procedure. In the
first step, a valued preference relation is built for each criterion. In the second
one, these valued relations are aggregated into one global preference relation. In
the last step, the global preference relation is exploited using a net flow procedure
in order to obtain a weak order. We hereunder detail the three steps.

Preference modelling The first step for the client is to choose a preference func-
tion P; for each dimension i. A preference function P; is a non decreasing
function from R into [0, 1] and such that P;(z) = 0 for all z < 0. Six such
functions are proposed in the software PROMCALC (see figure 4.4). A fuzzy
relation S; is constructed for each dimension on the basis of these preference
functions. It is defined by

Si(a,b) = Pi(gi(a) — g9:(b)), (4.23)
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Pi Di
1 e 1
gi(a)—gi(b) gi(a)—gi(b)
Di Pi
............... . 1 . 1
gi(a)—gi(b) gi(a)—gi(b)
Pi P
............... . 1 . 1
gi(a)—gi(b) gi(a)—gi(b)

Figure 4.4: The six preference functions proposed in PROMCALC.

where g;(a) is the performance of alternative a on dimension ;. The value
S;(a, b) measures, in some sense, the intensity of the preference for a over b

with respect to dimension i.

Aggregation In the second step, the profile of fuzzy relations obtained at the
end of step one, is aggregated into one fuzzy preference relation. The aggre-
gation is performed simply by computing a weighted average for each pair
of alternatives. Formally, for every a and b in A, we define

S(a,b) = w;Si(a,b),
i=1
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where w; is the weight of criterion i and the sum of the weights is 1. In some
sense, the value S(a,b) measures the global intensity of the preference for a
over b taking all criteria into account.

Exploitation The fuzzy relation obtained at the end of step 2 is often very dif-
ficult to interpret. An exploitation is therefore often necessary and is per-
formed using the net flow. For each alternative we compute

Oya) = _S(a,b)~ Y _S(b,a). (4.24)

beA bc A

The net flow of alternative a, ®;(a), is the sum of the valuations on all arcs
leaving ¢ minus the sum on all arcs entering a. The alternatives are then
ranked in decreasing order of their net flows. Other exploitation techniques
are also proposed by the authors of the method.

4.5.5.2 Some pointers

The last step is analysed in section 7.4.3.2 of chapter 7. If we consider the last
two steps as one procedure for the aggregation of valued relations into one weak
order, then we also have interesting results in section 5.3.2.

It is interesting to note that, if we consider all three steps together, then
PROMETHEE II can be put into a very simple form, which is a particular case of
the additive value fungtion model (see section 4.3.10.3). So, it can be described in
the framework of conjoint measurement theory. Unfortunately, the additive value
function model is much more general, so its analysis doesn’t tell us much about
PROMETHEE 1I.

The first two steps, leading to a valued relation, can also be analysed within
conjoint measurement; the resulting valued relation can be described in the frame-
work of models L— D (section 6.6.2). Although only describing part of the method,
this model is perhaps more in phase with the “philosophy” of PROMETHEE II
that, classified within the outranking methods, is based on pairwise comparisons
and is close in spirit to ELECTRE IIL

Let us finally mention a result in Myerson (1995) that characterises an aggre-
gation procedure in the framework of Social Choice Theory, which is very general
but not so far from the three steps of PROMETHEE II.

4.5.6 TACTIC
Reference: Vansnick (1986b)

4.5.6.1 The method

TACTIC is very similar to ELECTRE I but yields a global preference relation
instead of a choice set. Like ELECTRE I, it consists of three main steps.
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Preference modelling We define two binary relations P; and V; for each dimen-
sion by

a P b e gi(a)—gi(b) > 71

and

a V; b gi(a) > g:(b) + 712,

where 0 < 7,1 < 752. The first relation simply expresses the fact that a is
better than b on a given dimension because the difference between the pref-
erences exceeds some indifference or discrimination threshold. The second
one expresses the fact that a is much better than b on a given dimension,
because the difference between their performances exceeds a threshold that
the client considers as being very large. In the version presented in Vansnick
(1986b), instead of using the difference in the performances, one uses the
difference in the image of the performances through a value function.

Aggregation A binary relation, sometimes called outranking relation, is con-
structed on A. We will consider a outranks b iff the coalition of criteria
such that a is better than b is sufficiently larger than the coalition of cri-
teria such that b is better than a and if b is not much better than a on
at least one dimension. In order to define the importance of a coalition of
criteria, an importance coefficient w; is associated to each criterion and the
importance of a coalition is the sum of the importance coefficients of the
criteria in the coalition. Formally, the outranking relation depends on the
performance table g but also on the n-tuple w = (wx, ..., w,), the 2n-tuple
F=(T1,,T1,n,72,1,-+,7T2,n) and on a threshold p. So, we write

a>(g,w,7,p)be Z w; > p Z w; and Fi : 0 V; a.
i:aPib ©:bP;a
Note that contrary to ELECTRE I, the global preference relation is asym-
metric; it represents a strict preference.

Exploitation The outranking relation constructed during the aggregation is usu-
ally not a weak order and, hence, is difficult to interpret. In order to facilitate
the interpretation by the client, the simply connected components of the re-
lation are isolated and, within each component, the alternatives are grouped
suitably after eliminating possible cycles.

4.5.6.2 Some pointers

TACTIC is very close to the (weighted) Condorcet method. Two particularly
interesting sections are therefore sections 5.2.1 and 5.2.2. From a conjoint mea-
surement viewpoint, the most relevant sections are sections 6.3.5.5 and 6.3.6.2 as
well as the more general section 6.5.
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4.6 Limitations of the axiomatic approach

In this chapter, we suggested that the axiomatic analysis of an aggregation proce-
dure can help the analyst or client to choose one that is well-suited to his problem
and to use it in a consistent way. We suggested that the client and the analyst mu-
tually agree on a set of sensible or attractive conditions, hereby reducing the set of
available aggregation methods. But it is certainly not always easy to understand
an axiom and all of its consequences. This is even more difficult if we consider
groups of axioms, because they interact and as a group, can have far-reaching
consequences. In the course of a decision aiding process, it can thus happen that
a client does not agree with the outcome of the aggregation or that he finds a new
axiom attractive whilst this new axiom is not compatible with those he selected at
the beginning of the process. Choosing a particular method because the axioms
that characterise it seem attractive or relevant does therefore not always lead to
an adequate choice.

It might help in the discussion about the choice of the procedure to “test” the
axioms instead of asking the client if he agrees with them. We do not mean exten-
sive tests such as, for example, in the experimental assessment of mathematical
models in psychology. We simply suggest to present a few well-chosen pairs of
alternatives (real or not too fictitious ones) to the client and see if his preferences
are compatible with the axiom. This will not guarantee the choice of the “right”
aggregation procedure but it might help.

Many axioms force the aggregation procedures to behave consistently when we
change the preferences (Positive Responsiveness, Limited Influence of Indifference),
the weights (Convexity, Archimedeanness), the number of criteria (consistency) or
the set of alternatives (a variant of Independence of Irrelevant Alternatives—not
presented here—does this). These conditions often look attractive to the analyst
or the client because they guarantee that the outcome will not vary too much
or in the wrong direction if the data change a little bit. But these consistency
conditions are imposed for all logically possible profiles whilst the client is usually
only interested in small changes. Even if the single-dimension preferences, the
set of dimensions or the set of alternatives can change during the decision aiding
process, we do not expect dramatic changes. So, these consistency conditions,
although quite appealing, are perhaps too strong and there might be aggregation
procedures that are only locally consistent, but we do not know them. There are
two reasons for this:

o It seems technically difficult to characterise an aggregation procedure with
a restricted domain.

o It is not at all clear how we should define the restricted domain, i.e. the
set of admissible data (alternatives, dimensions, performances, preferences,
...), in a given decision aiding process, how we should define which changes
are possible and which are not.

When a theorem states that only one method or no method satisfies a given set
of axioms, we must not forget that there are perhaps other methods that almost
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satisfy these axioms. And these other methods may have such nice properties that
we might be willing to use them, even if they do not satisfy the axioms we had
first chosen. For example, there is an aggregation procedure which almost satisfies
the axioms of Arrow’s Theorem under some conditions: the Condorcet method. It
satisfies Independence of Irrelevant Alternatives, Pareto and Non-Dictatorship in
all cases. And, with 3 alternatives, the proportion of profiles for which it yields a
weak order varies between 91 and 94%, according to the number of voters (Gehrlein
and Fishburn, 1976). Unfortunately, when the number of alternatives grows, the
proportion rapidly decreases and tends towards 0.

The axiomatic approach probably suffers more limitations than those listed
above but these limitations certainly do not cancel the advantages. Instead, we
are convinced that it is a powerful tool for the analysis of aggregation procedures
and that it helps to understand a lot of their characteristics.



D

AGGREGATION PROCEDURES

In this chapter we analyse different aggregation procedures with an emphasis on
their axiomatic characterisations. Contrary to chapter 6, the viewpoint is that of
social choice theory.

5.1 Different kinds of aggregation functions

In section 4.2, we presented an example of an aggregation function: the Borda
method. It maps a profile of linear orders on a weak order. But we sometimes
want to aggregate other kinds of profiles: profiles of weak orders, of semi-orders,
of fuzzy relations, ... (in chapter 3, section 3.6.2, we discuss how these different
relations might arise), profiles of real valued mappings (performance table), etc.

Similarly, we do not always want the result of the aggregation to be a weak
order. A choice set or an acyclic relation might also be fine. So, we can define
other kinds of aggregation functions:

¢ functions mapping a profile of weak orders on a weak order,

¢ functions mapping a profile of linear orders on a subset of alternatives con-
taining only the best one,

¢ functions mapping a profile of linear orders on an acyclic preference relation,
¢ functions mapping a profile of fuzzy relations on a weak order,

¢ functions mapping a performance table on a fuzzy relation,

¢ functions mapping a performance table on a weak order,

e and so on.

The next two sections will be devoted to the problem of aggregating a profile of
binary preference relations (fuzzy in section 5.2, or not in section 5.3) into one
preference relation. In section 5.4, we will turn to the problem of aggregating a
performance table into one preference relation. In section 5.5, we will very shortly
discuss the aggregation of linguistic performances into one relation. The outcome



170 CHAPTER 5. AGGREGATION PROCEDURES

of the aggregation in sections 5.2 to 5.5 is always a preference relation. This is
well suited when the decision maker wants to rank a set of objects, but there are
cases where he wants to choose one object. It is then more adequate to use an
aggregation procedure (a choice function) leading to a subset of best alternatives
and not to a preference relation. This is discussed in section 5.6. We will con-
clude this chapter by a presentation of some techniques (e.g. the arithmetic mean)
aiming at the aggregation of a vector of performances into one single performance
(section 5.7).

5.2 Aggregation of preference relations into one
relation

In this section, we present different procedures aimed at aggregating a profile of
preference relations into one binary relation. These preference relations (binary
relations) can be the outcome of a preference modelling process (see chapter 3,
section 3.10) or be formally derived from performances (numerical, linguistic, .. .)
or they can be directly stated by the decision maker. In the evaluation model
presented in chapter 2, p. 41, the preference relations are elements of H. Un-
less otherwise stated, we do not assume that preference relations have particular
properties like reflexivity or transitivity.
We will discuss the following methods:

The simple majority or Condorcet method. We present the method itself,
its characterisation and the celebrated Arrow’s Theorem that explains why
the Condorcet method does not always help us make a decision. Some aspects
of the TACTIC method are discussed.

The weighted Condorcet method. This method is a variant of the one stated
above. A characterisation is presented as well as some consequences for the

TACTIC method.

The qualified majority. This method is to some extent similar to simple ma-
jority. A characterisation is presented and a link is established with the
ELECTRE-like methods.

The lexicographic method. This simple method, although its use is not very
widespread, has some interesting properties and allows us to introduce some
important concepts.

Note that we already extensively presented a method aggregating several prefer-
ence relations into one: the Borda method (see section 4.2.2).

Many other methods for the aggregation of preference relations into one relation
can be found in the literature. They are so numerous that it is definitely not
possible to present them all here. We present only five of them: we chose these
because they help us understand some aggregation methods commonly used in
multicriteria decision aiding.
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5.2.1 The simple majority or Condorcet method

This procedure, named after the French mathematician and philosopher Condorcet
(1743-1794), works as follows . Take any pair (a, b) of alternatives. If the number
of criteria such that a defeats b is larger than the number of criteria such that b
defeats a, then a is globally preferred to b. If the two numbers are equal, then
a is globally indifferent to b. We illustrate this method with a simple example
(the notation has been introduced in section 4.2.1, p. 121). Let A = {a,b,c},
N = {1,2,3} and p contain the following three weak orders (rankings, possibly
with ties).

1.a»1¢c»1b,
2. c>qa g b,
3. b>3 [C ~3 a].

Alternative a defeats b twice. Therefore, a is globally better than b. Alternative ¢
defeats a once and a defeats ¢ also once. Therefore, a and ¢ are globally indifferent.
Alternative ¢ defeats b twice. Therefore, ¢ is globally better than b. Finally, we
obtain the weak order [a ~(p) ¢] >(p) b.

5.2.1.1 Axioms and characterisation

o Anonymity. All criteria play exactly the same role. In other words,

(1, 0 ) = (i, 2e) = (e, =

AL A2 ~AAM I AUl e e N27N13--~atn)_
whatever the order of the relations in the profile.

e Completeness. The global preference relation is always complete, i.e. for any
pair (a,b), we have either a 7Z(p) b or b Z(p) a (possibly both). In other
words, no pairs of alternatives are incomparable.

o Neutrality. See section 4.2.2, p. 123.

e Positive Responsiveness. Suppose that, using -, we obtain Not [b >(p)
al, i.e. a is strictly preferred to b or they are incomparable or indifferent.
Suppose also that p’ is identical to p except for one criterion, on which
the position of a has improved with respect to b. If - satisfies Positive
Responsiveness, then a >(p’) b. In other words, if a is globally not worse
than b in p and if p’ is identical to p except for one criterion where the position
of @ has improved with respect to b, then a should be globally better than
b. By an improvement of a with respect to b, we mean one of the following
situations.

—br;ainpandaZ}binp or

1 This procedure was presented very informally in section 4.2.1, as a procedure for aggregating
linear orders.
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—a~;binpanda>}binp'.

An example will clarify the picture. Let A = {a,b,¢,d} be a set of projects,
N = {1,2,3} and p contain the following three linear orders.

l.d>1b>=1a»1¢
2. croa>od=gb,
3. b=3crg3a>3d.

Suppose that the decision maker uses the aggregation function - and finds
¢ ~(p) b. Later, the decision maker improves project ¢ and uses - again with
the new profile p’ in which the position of ¢ has improved on criterion 3. In
this new profile, ¢ =5 b >4 a =4 d. Because the position of ¢ has improved
and because ¢ was as good as b in p, Positive Responsiveness imposes that ¢
is now better than b in o, i.e. ¢ =(p') b.

Independence of Irrelevant Alternatives. The global preference between a
and b depends only on their relative position in p, not on other alternatives.
In other words, if p and p’ are two profiles such that, for each criterion 1,
aZ;binpeazibinp, thenax(p) b az(p) b

An example will help to understand this property. Let A = {a,b,c,d},
N ={1,2,3} and p contain the following three linear orders.

l.d=1b=1a>¢
2. c>9a>od=ob,
3. br3c>3a>=3d.

Suppose that the decision maker uses the aggregation function - and finds
¢ Z(p) b. Suppose that he later uses the same aggregation function with a
profile p’ differing from p only on the first criterion: this time, b > d >
a >4 c. In the new profile p’, b is still better than ¢ on criteria 1 and 3
and c is better than b on the second criterion, precisely as in p. Because no
change occurred in the relative position of ¢ and b, Independence of Irrelevant
Alternatives imposes that ¢ zZ(p’) b, as in p. The positions of d and a have
no influence on the way 7~ compares b and c.

The following theorem uses these 5 axioms to characterise the Condorcet method.
It is based on a theorem by May (1952).

Theorem 5.1

Suppose we want to aggregate profiles of weak orders into a binary relation. The
only aggregation function satisfying Anonymity, Completeness, Neutrality, Posi-
tive Responsiveness and Independence of Irrelevant Alternatives is the Condorcet
method.

Remark 5.2.1
In his theorem, May only considers aggregation procedures that satisfy Complete-
ness. He therefore uses a version of Positive Responsiveness that works only with
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procedures satisfying Completeness. But later in this book (Section 5.2.1.4), we
will consider aggregation procedures that do not satisfy Completeness. Hence we
need a version of Positive Responsiveness that works well with or without Com-
pleteness. That is why the version of Positive Responsiveness that we use is not
exactly the same as that of May. Note that our Positive Responsiveness plus
Completeness implies the Positive Responsiveness of May. Another difference be-
tween May’s theorem and theorem 5.1 is that May’s theorem is stated for only
two alternatives. But, because we impose Independence of Irrelevant Alterna-
tives, we may apply May’s theorem to each pair of alternatives and, so, the proof
is straightforward. .

5.2.1.2 Discussion

The five axioms characterising the Condorcet method look reasonable to some
extent but, nevertheless, deserve discussion.

Neutrality This condition is very compelling under most circumstances: we do
not want to favour any alternative a priori. Yet there are circumstances
where some alternatives have a different status than others and may be
treated in a different way. For instance, when there is a status quo, i.e. an
alternative representing the opportunity of doing nothing.

Completeness If two alternatives are indifferent on six criteria, if a is better
than b on one criterion and b is better than a on one criterion, then it
seems reasonable to conclude that a and b are globally indifferent. But
consider now a quite different situation: a is better than b on four criteria
and b is better than a on four criteria; then it might be the case that the
decision maker concludes that he is indifferent between a and b, but a more
likely situation is that he would be unable or unwilling to conclude anything,
because of the highly conflicting information he has about a and b. So,
imposing Completeness is a strong requirement.

Anonymity In most applications, even if no question about the importance of
the criteria is asked, we can expect that the decision maker will consider
some criteria more important than others or that they do not play the same
role. If this is the case, then the Condorcet method should not be used. If
the other axioms of the Condorcet method look attractive or seem adequate,
a possible solution is then to use the weighted Condorcet method (see p.
178).

Positive Responsiveness This property may seem desirable in many conditions
but it has some consequences that need to be considered. Suppose that,
given a profile p, the result of the aggregation is a ~(p) b. If the aggregation
procedure - satisfies Positive Responsiveness, then any change in favour of
a or in favour of b will break the indifference and we will have o >(p') b or
b =(p') a; even if there are many criteria and if the change occurs only on
one criterion. Therefore, a situation where two alternatives are indifferent is
very unstable: the smallest change can break the indifference.
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Independence of Irrelevant Alternatives Let A = {a,b,¢}, N = {1,2} and
p contain the following two linear orders.

1. b>1 ¢ a,
2. a>2b>gc,

Note that b compares to a in exactly the same way that ¢ compares to
a. Hence, under Independence of Irrelevant Alternatives, if an aggregation
function concludes that b >=(p) a, then it must also conclude that ¢ =(p) a.
But suppose that the decision maker knows or feels or is convinced that the
difference between b and a on criterion 1 is much larger than the difference
between ¢ and a. On the contrary, on criterion 2, he feels that the difference
between a and b is much smaller than between a and c. It might then be very
reasonable to conclude that b >(p) a but that a >(p) ¢, thereby violating
Independence of Irrelevant Alternatives.

This example shows us that, even if there are cases where Independence of
Irrelevant Alternatives makes sense, it is no longer a desirable property when
the information to be aggregated is not purely ordinal, because it discards
any information on preference differences, anything that is not ordinal.

Note that in this example, the available information is very poor, somewhere
between ordinal and interval: we have two linear orders (ordinal information)
plus the fact that some differences are larger than others. When we have
cardinal information (interval, ratio or absolute scales) for each criterion,
we then definitely have good reasons to reject Independence of Irrelevant
Alternatives.

5.2.1.3 When simple majority fails

In the previous section, we characterised the Condorcet method as a function
aggregating a profile of linear orders into a binary relation with Theorem 5.1. The
main problem with the Condorcet method is that this binary relation is not always
a weak order, as shown in the following example where p contains the following
three linear orders.

1.a>1b>1¢
2. c>9a 9 b,
3. b>3cr3a.

Alternative a defeats b twice. Therefore, a is globally better than b. Alternative
¢ defeats a twice. Therefore, ¢ is globally better than a. Alternative b defeats ¢
twice. Therefore, b is globally better than c¢. Unfortunately, this is not a weak
order: the global preference relation is cyclical (see figure 5.1). No alternative is
better than all of the other ones and it is therefore impossible to make a decision.
This situation is often called the Condorcet paradox. If an analyst presents such
an outcome to a decision maker, we can safely consider that it is of no help to the
decision maker.
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N
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-

Figure 5.1: The preferences a > b, b > ¢, ¢ > a.

Arrow (1963) proved a theorem that helps us understand why the Condorcet
method does not always work and why it is difficult to avoid this problem. We
now present this theorem (slightly modified) and the axioms it uses.

o Weak Order. See p. 123.

e Independence of Irrelevant Alternatives (see p. 172).  In (Arrow, 1963),
this condition is stated in terms of social choice and not in terms of social
preferences. A proof of Arrow’s Theorem with the condition we use can be
found in Sen (1986).

e Non-Dictatorship. There is no criterion k such that, in any profile p, if
a = b, then, necessarily, a >(p) b. In other words, no criterion can impose
its strict preference or, very roughly, the global preferences depend on more
than one criterion. Ideally, we would like = (p) to depend on all criteria.

So, imposing that it depends on more than one criterion is certainly a basic
condition.

e Pareto. If a is strictly better than b on all criteria (a >; b for all 1), then a
is globally strictly better than b, i.e. @ >=(p) b. It would indeed be strange
that an alternative b worse than a with respect to all criteria would globally
defeat a.

Theorem 5.2 (Arrow’s Theorem)

Suppose we want to aggregate profiles of weak orders and there are at least three al-
ternatives. There is no aggregation function satisfying Weak Order, Independence
of Irrelevant Alternatives, Non-Dictatorship and Pareto (in fact this theorem also
applies to profiles of linear orders, semi-orders,if there are at least four alterna-
tives, and many different kinds of binary relations).

The four properties involved in Arrow’s Theorem are not compatible. It is not
possible to find a method that satisfies all of them. Therefore, if an aggregation
function satisfies Weak Order, Independence of Irrelevant Alternatives and Pareto,
it necessarily does not satisfy Non-Dictatorship. In other words, such a method
always yields a global preference the asymmetric part of which is the same as
the asymmetric part of the preference relation along a given criterion (the same
for all profiles). Similarly, if an aggregation function satisfies Weak Order, Non-
Dictatorship and Pareto, it cannot satisfy Independence of Irrelevant Alternatives.
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Let us now come back to the Condorcet method. This method satisfies Pareto,
Non-Dictatorship and Independence of Irrelevant Alternatives. Hence, it cannot
satisfy Weak Order: this is why the outcome of the Condorcet method is not
always a weak order.

But it also tells us something which is much more important: there is no perfect
aggregation function. Or, we should say: no aggregation method can satisfy all
our expectations. But this is not a problem of the aggregation method, it is our
problem. Our expectations are not reasonable. We should not expect to find
an aggregation method satisfying all the axioms of Arrow’s Theorem, whether
we aggregate ordinal information or we use only the ordinal part of the available
information: it is too poor. So, if we want to aggregate a profile of binary relations,
we have to abandon one of the four properties proposed by Arrow; we have to use
a method that suffers some flaws, some weaknesses or at least some imperfections.
We can, for instance, drop transitivity. We then obtain a method that, in some
cases, will yield intransitive global preference relations. In order to arrive at a
recommendation for the decision maker, some further analysis is then necessary
(see section 5.2.1.5 and chapter 7).

Another possibility is to drop Independence of Irrelevant Alternatives. Look
for example at the Borda method. It satisfies Weak Order, Non-Dictatorship and
Pareto. Therefore, according to Arrow’s Theorem, it cannot satisfy Independence
or Irrelevant Alternatives. And, indeed, if you apply the Borda method to the
example on page 172, you will find that it doesn’t.

The task of choosing an aggregation procedure may then be seen as the task of
looking for the procedure whose strengths and weaknesses best fit to the decision
context. This fit must take into account some more or less objective elements such
as the axioms satisfied by the method or the computational tractability but also
some more subjective elements such as the ease of use, the confidence put by the
decision maker in the procedure, the existence of a software, and so on. In this
chapter, we will focus on the axiomatic properties satisfied by the procedure but
the other aspects also need to be examined with care.

Remark 5.2.2

As stated above, Arrow’s Theorem is limited to the aggregation of weak orders.
It tells us nothing about the aggregation of relations that are not weak orders.
In fact, it holds for most relations that we encounter in our applications: semi-
orders, interval orders, partial orders, some kinds of trees, and so on. This has
been proven in different variants or generalisations of Arrow’s original Theorem
(for example Barthélemy, McMorris, and Powers, 1995; Sen, 1986).

Note also that many researchers have tried to escape from Arrow’s Theorem
by weakening some of its axioms. For a survey of this literature, see Campbell and
Kelly (2002); for for more specific surveys focusing on conditions on profiles (on the
domain of aggregation functions), see Gaertner (2002); Weymark (forthcoming).

5.2.1.4 Condorcet and TACTIC

Consider an application of TACTIC (Vansnick, 1986b) without weights (or all
weights set to 1), without veto and with a concordance threshold equal to 1. What
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we obtain then is almost the Condorcet method. The only difference is that TAC-
TIC yields incomparability where the Condorcet method yields indifference. This
special version of TACTIC is therefore characterised by almost the same axioms as
the Condorcet method. We just have to replace Completeness by Antisymmetry.

No indifference. The global preference relation is always antisymmetric, i.e. for
any pair (a,b) of distinct alternatives, we never have a ~(p) b. In other words, no
pairs of alternatives are indifferent.

Theorem 5.3

Suppose we want to aggregate profiles of weak orders. The only aggregation func-
tion satisfying Anonymity, No indifference, Neutrality, Positive Responsiveness
and Independence of Irrelevant Alternatives is TACTIC, without weights, without
veto and with a concordance threshold equal to 1.

Among the conditions of this theorem, the only one we have not yet discussed
is No indifference. In some sense, it poses the same problem as Completeness.
Completeness does not allow incomparability. But No indifference does not allow
indifference. Yet, in our discussion of Theorem 5.1 (p. 172), we showed that
indifference and incomparability can, at least in some cases, be desirable.

If we now consider a version of TACTIC without weights and without veto
but with a Concordance threshold different from 1, the axioms of Theorem 5.3
remain valid, except for one: Positive Responsiveness. Indeed, if two alternatives
are incomparable in 7~(p), because the threshold is larger than 1, if the position
of b is improved on one of the criteria, the global preference relation might not
change.

As the Condorcet method, TACTIC satisfies Pareto, Independence of Irrele-
vant Alternatives and Non-Dictatorship. Therefore, as proved by Arrow’s Theorem
(Theorem 5.2), it cannot always yield a weak order. That is why an exploita-
tion phase is sometimes necessary after the aggregation phase (see chapter 7,
section 7.4).

5.2.1.5 What do we do with a non-transitive relation?

We showed in the two previous sections that the outcome of an aggregation with
simple majority (or a special case of TACTIC) is not always transitive. So, if
we decide to use simple majority, we must be prepared to face cases in which
the global preference relation is not transitive, i.e. preference relations on which
it is not easy to base a recommendation (see section 7.4) for the decision maker.
Indeed, if the global preference relation is a weak order (ranking with ties), then
there is one or several best alternative(s) and it is easy to see that they are good
candidates for a recommendation if the decision maker must choose an alternative.
But if the global preference relation is not transitive, then there is not necessarily
an alternative (or several) that is better than all of the other ones (see figure 5.1,
p. 175) and it is not at all obvious at to decide which one should be recommended.

Hence, a careful analysis of the global preference relation is needed in order
to derive a recommendation. This analysis is usually called the exploitation of
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the global preference relation. Many techniques have been developed for the ex-
ploitation: they are presented in chapter 7, section 7.4. The analyst performing
an exploitation should always bear the technique used for the construction of the
global preference relation in mind because not all exploitation techniques are com-
patible with a specific construction technique. Note that if the exploitation is
necessary when the outcome of the aggregation is not transitive, there are also
cases in which an exploitation is helpful even if the outcome of the aggregation is
transitive. This is also discussed in chapter 7.

5.2.2 The weighted simple majority or weighted Condorcet
method

This procedure is a generalisation of the classical Condorcet method. In this
procedure, each criterion ¢ is assigned a weight w; reflecting its importance. The
n-tuple w = (wy,...,wy,) is called the weight vector. We define Wy (p, w) as the
sum of the weights of the criteria such that a is at least as good as b (a 7Z; b) in
the profile p. This number can be interpreted as the strength of the coalition of
criteria supporting a against b. We will therefore say that a is globally at least as
good as b if Wyp(p, w) > Wie(p,w). Because the global preferences now depend
on the preferences for each criterion and also on the weights, we use the notation
7(p,w) for the global preference relation. This explicitly indicates that 2 is a
function of p and w.

We illustrate this method with a simple example. Let A = {a,b,c}, N =
{1,2,3} and p contain the following three linear orders.

1. a»1 ¢y b,
2. c>9a =2 b,
3. b=3c>sa.

Let the weights of the three criteria respectively be: 3, 1 and 1. We have
Weap(p,w) = 4 and Wy, (p, w) = 1. Therefore, a >(p,w) b. Also, We.(p,w) = 3 and
Weo(p, w) = 2. Therefore, a >(p,w) ¢. Finally, Wy (p,w) = 4 and W,,.(p,w) =1,
so, Therefore, ¢ >(p,w) b. The final ranking is thus:

a >{(p,w) ¢ >(p,w) b.

Note that if we choose all weights equal to 1, we obtain the classical Condorcet
method.
5.2.2.1 Axioms and characterisation

Here are the properties that we will use to characterise the weighted Condorcet
method.

o Weighted Anonymity. All criteria play the same role but their weight makes
a difference. Therefore, if you rename the criteria (for example, 3 becomes 2,
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2 becomes 3 and 1 doesn’t change) and if you accordingly change the weights
(ws becomes wa, wy becomes w3 and w; doesn’t change), the result of the
aggregation doesn’t change.

Slightly more formally,

t(t/hi_./?’"'7znvw1aw2»---»wn)
:i(inazlv"'vt%wnywh"~aw2)
= (8, Dny e 5 01 W3, Wy e v oy W) = ..

Convexity. Let p be a profile. Suppose that, using the weight vector w =
(w1,...,wn), we obtain a Z(p, w) b. Using another vector w’ = (wy,...,w),),
we also obtain a Z(p,w’) b. Suppose finally that we use a third weight

vector w” such that each weight w! is the average of w; and wi, i.e. w” =

7 !
(eden 2ty Because a (p,w) b and a (p,w’) b and also because

2
w” is half-way between w and w’, we might expect that a >5(p,w”) b. This
is precisely what convexity says.

Archimedeanness. Very roughly, Archimedeanness imposes that, if you raise
the weight of a criterion high enough, the global preferences will be identical
to the preferences for that criterion. A consequence of this is that a good
rank on a criterion with a high weight can compensate anything.

Neutrality. See p. 123

Positive Responsiveness. See p. 171,

Faithfulness. See p. 123

Independence of Irrelevant Criteria. A criterion which is assigned a weight
equal to zero plays no role. If a criterion has a weight equal to zero, modify-
ing the preferences along that criterion will not affect the global preference

relation.

Independence of Irrelevant Alternatives. See p. 172,

The following theorem uses these 8 axioms to characterise the weighted Condorcet
method. It is based on proposition 3 in Marchant (2003).

Theorem 5.4

Suppose we want to aggregate profiles of complete binary relations into complete
binary relations (not necessarily weak orders). The only aggregation function satis-
fying Weighted Anonymity, Convexity, Archimedeanness, Neutrality, Positive Re-
sponsiveness, Faithfulness, Independence of Irrelevant Criteria and Independence
of Irrelevant Alternatives is the weighted Condorcet method.
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5.2.2.2 Discussion

Some of the conditions characterising the weighted Condorcet method have already
been discussed: Neutrality, Positive Responsiveness, Faithfulness, Independence of
Irrelevant Alternatives (see p. 124 and p. 173). Among the other axioms, Weighted
Anonymity and Independence of Irrelevant Criteria seem to be unavoidable. But
the need for Convexity and Archimedeanness is subject to criticism, at least in
SOIne cases.

¢ In this context, Convexity is, to some extent, similar to Consistency (see
p. 123). We can use the same example of four students ranked in physics,
maths, economics and law to show that Convexity is not always desirable.
If there is some interaction between two or more criteria, Convexity is a
drawback.

o Due to Archimedeanness, as said earlier, a good rank on a criterion with
a high weight can compensate anything, even the worst ranks on all other
criteria. This is clearly not always what a decision maker wants.

5.2.2.3 Cyeclical preferences

Because the simple weighted majority method is just a generalisation of the plain
simple majority method, it is also possible that cyclical global preferences appear.
Hence, an exploitation (see chapter 7) of the global preference relation will often
be needed in order to arrive at a final recommendation (see chapter 2).

5.2.2.4 Choosing the weights

Archimedeanness tells us that, if the weight of a criterion is too high, then the
other criteria no longer play a role (they cannot even break ties). This criterion
becomes overwhelming. It is not hard to show that this happens when a criterion
has a weight larger than the sum of the weights of the other criteria. This is
definitely not desirable and it therefore puts a constraint on the weights. Let W
be the sum of the weights, for all criteria. Then, each weight w; must be lower
than W/2. Of course, this constraint is very weak and doesn’t help us very much
in choosing the weights.

If we want to be more practical, then we might use the following method,
consistent with the general approach presented in section 4.4.6. We present a
(fictitious or not) profile on two alternatives ¢ and b to the decision maker and we
ask him which one he prefers. He is not necessarily able to answer our question;
he can hesitate, but if he does answer, then we can use his answer to set the
weights. Suppose he says that a is strictly better than b. Then, we know that
Wan(p, w) > Wi (p, w). The weight of the coalition in favour of a is strictly larger
than the weight of the coalition in favour of b. If he says that a and b are indifferent,
then we know that Wop(p, w) = Wy (p, w).

For example, if we present this profile p

l.a>1b,
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2. b=aa,
3. bN3 a,

and if he says that b is strictly better than a, then we know that we +ws > wy +ws3
and, so, wg > wi.
With another profile p/,

1. a>1 b,
2. b=g a,
3. b>3a,

if he says that a is strictly better than b, then we know that w; > wq + ws.

If we then present other profiles p”,p"”,... on two alternatives, we can even-
tually find all inequalities (or equalities in cases of indifferences) involving every
pair of coalitions that restrict the set of possible weights. Our task is then to find
weights wy, wa, ..., wy, such that all inequalities are satisfied. There can be many
such vectors but they all correspond to the same ordering of the coalitions and,
hence, they all yield the same result. So, picking any of them is fine..

But, unfortunately, it is not always possible to find weights satisfying all the
inequalities. For example, suppose that using different profiles, we find

wo -+ wsz > wy +we > wy + w3 > wp > wy > wWs.

It is not possible to satisfy all these inequalities simultaneously. Indeed, wq +w3 >
wy -+ wy implies ws > w; and this is not compatible with w; > ws.

If such a problem occurs, we can ask the decision maker if he wants to revise his
position. If he does, there is no problem, but if he doesn’t, then, strictly speaking,
it means that the weighted Condorcet method is not appropriate for this decision
malker, in this context. But, of course, if we can find weights such that almost all
inequalities are simultaneously satisfied, then the decision maker and the analyst
might decide to go on and neglect the inconsistencies.

The number of profiles that is needed on two alternatives in order to rank all
coalitions can be very high if the number of criteria is not small. For n larger
than 5 or 6, this number can be prohibitive. Performing all necessary comparisons
would take too much time. Instead of ranking all coalitions, a possible attitude is
then to rank only the criteria (coalitions of size 1) or only the coalitions of size 1
or 2. In order to rank the criteria, we present profiles where a and b are indifferent
on all criteria but two. On one of these two criteria, a is better than 5. On the
other one, b is better than a. For example, with 4 criteria, if we want to rank
criteria 2 and 3, we use the following profile.

1. a ~q b,
2. a>q b7

3. b>3a,
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4. a ~4 b.

If the decision maker says that he prefers a to b, then we know that we > w3. Once
more, strictly speaking, it is necessary to compare all n(n —1)/2 pairs of criteria in
order to rank them and to test the consistency of the comparisons. We illustrate
this with an example. Suppose that after comparing a and b in two profiles, we
obtain w; > we and wy > ws. We might stop here and consider that w; > ws.
But if we ask the decision maker to compare a and b in a profile where they differ
only on criteria 1 and 3, we would perhaps find w; < ws. This would indicate that
the decision maker’s preferences are not compatible with the weighted Condorcet
method.

So, comparing all n(n — 1)/2 pairs of criteria is time consuming— perhaps
sometimes impossible—but it is a good method for checking the compatibility
between the decision maker’s preferences and the aggregation function. Note that
the only way to really check this compatibility is to compare all pairs of coalitions—
there are 2™ — 2 such pairs.

Note also that ranking only the criteria and not all coalitions yields a number
of inequalities that is not sufficient for determining the weights. Several weight
vectors satisfying the inequalities can yield different results. The choice of a weight
vector among those satisfying the inequalities is then, to some extent, arbitrary and
leads to an arbitrary ranking of the alternatives. It might then be wise to perform a
robustness analysis (see chapter 7, section 7.5) and to draw only robust conclusions,
i.e. conclusions that hold with any weight vector satisfying the inequalities.

[ver)

& Choice of the weights. A good way to set the weights with the weighted
¢ Condorcet method is to present various profiles on two alternatives to the de-
&2 cision maker. The profiles are constructed in such a way that, if the decision
“ maker can state which alternatives he prefers, then we can derive some inequal-
2. ities involving the weights. For example, w; +ws-+w4 > wa +ws. If we present
Sﬁ 2™ — 2 carefully constructed profiles and if the decision maker can say which
22 of the two alternatives he prefers for each profile, we then can unambiguously
£2 set the weights and we can also fully check the compatibility between the de-
 cision maker’s preferences and the aggregation procedure. Unfortunately, the
" decision maker is not always able to compare the two alternatives and we do
@ not always have the time to perform all 2" — 2 comparisons. Nevertheless,
3 performing as many comparisons as possible is probably the best way to set
/E,\Q the weights and to check the adequacy of the aggregation procedure.

5.2.2.5 TACTIC and Condorcet

On page 176, we already discussed the similarity between a simplified version
of TACTIC and the Condorcet method. The same analogy exists between the
weighted Condorcet method and TACTIC with weights but without veto and
with a concordance threshold equal to 1.

A sensible way to set the weights in TACTIC is the procedure described on p.
180, where indifference must be replaced by incomparability in the global prefer-
ence relation.
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5.2.3 Absolute and qualified majorities

Simple majority (see p. 171) is an operationalisation of the concept of majority.
Absolute majority is another one. With absolute majority, an alternative a is
globally preferred to b (i.e. @ >(p) b} if the number of criteria such that a is better
than b is larger than n/2. If a is not globally preferred to b and b is not globally
preferred to a, then a and b are indifferent. When the preferences on all criteria are
rankings without ties, simple and absolute majority always yield the same result.
But when there are ties, they can yield different results. This is illustrated by the
following example. Let A = {a,b}, N = {1,2,3,4} and p contain the following
four weak orders:

1. a»>1 b,
2. a =20,
3. b>3a.
4, b~y a.

Alternative a defeats b on more criteria than b defeats a (2 against 1). So, a >(p) b
according to simple majority. But, with absolute majority, a ~(p) b because the
number of criteria such that o is better than b is not larger than n/2 (criteria 1
and 2) and the number of criteria such that b is better than a is smaller than n/2
(criterion 3).

Note that absolute majority can also be defined as follows: an alternative a is
globally at least as good as b (i.e. a ZZ(p) b) if and only if the number of criteria
such that a is at least as good as b is at least n/2. This definition is equivalent to
the previous one.

In the simple example given above, absolute majority yields a tie while simple
majority does not. This is not a special case: absolute majority will very often
yield a tie where simple majority does not. We say that simple majority is more
decisive.

Qualified majority is a generalisation of absolute majority. With qualified
majority, a is at least as good as b (i.e. a Z(p) b) if and only if the number
of criteria such that a is at least as good as b is at least equal to some fixed
concordance threshold §, between 0 and n.

Fishburn (1973b) characterised absolute majority. We do not present his result
but a slightly modified version of another one, proved by Marchant (unpublished),
characterising qualified majority and, so, including the cases where thresholds
different from n/2 are used.

5.2.3.1 Axioms and characterisation

We will use the following properties to characterise qualified majority.
o Anonymity. See p. 215.

e Neutrality. See p. 123.
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e Non-Negative Responsiveness If p and p’ are two identical profiles except
that the position of a with respect to b has been improved on one criterion
in p, then the position of a w.r.t. b in the global preference relation >=(p’)
cannot be worse than in Z(p). In other words, if a is globally at least as
good as b in p, then this is still the case in /. If a is globally better than
b in p, then it is also so in p’. This condition is a weak version of Positive
responsiveness (see p. 171). With Positive Responsiveness, an improvement
of the position of a on one criterion must lead to a global improvement. With
Non-Negative Responsiveness, an improvement of the position of a on one
criterion cannot lead to a global deterioration.

o Limited Influence of Indifference Consider two identical profiles p and p’
except that, on one criterion ¢, a =; b in p and a ~; b in p’. Suppose that
a 7(p) b. Even if there is less support for the global strict preference of a
over b in p’ than in p, we might consider that there is not less support for
the global weak preference of a over b in p’ than in p. It is then reasonable
to impose that a =(p') b and this is precisely what Limited Influence of
Indifference does.

Suppose now that a =(p) b. Then, because there is less support for the global
strict preference of a over b in p’ than in p, it might happen that a ~(p’) b.
This is not prevented by Limited Influence of Indifference. So, moving from
a=; bin ptoa ~; bin p’ can influence the global preference relation and
cause a deterioration of the global position of a, but not in all situations.
That is why we speak of “limited influence.”

e Independence of Irrelevant Alternatives. See p. 172.
e Pareto. See p. 175.

The following theorem uses these 6 axioms to characterise qualified majority.

Theorem 5.5

Suppose we want to aggregate profiles of weak orders. The only aggregation func-
tion satisfying Anonymity, Neutrality, Non-Negative Responsiveness, Limited In-
fluence of Indifference, Independence of Irrelevant Alternatives and Pareto is a
qualified majority, i.e. there is an integer § (0 < § < n) such that a 7 (p) b iff the
number of criteria such that a 77; b is at least 8.

5.2.3.2 Discussion

Only two of the 6 conditions characterising qualified majority have not yet been
discussed.

Non-Negative Responsiveness This condition is very natural. It says that the
global preference cannot react in the wrong direction when the preferences
on one criterion change. Contrary to Positive Responsiveness (see p. 171
and 173}, it does not impose that global indifference be broken as soon as an
improvement occurs on one criterion. Therefore, it is hard to find situations
in which Non-Negative Responsiveness is a problem.
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Limited Influence of Indifference This condition is not as natural as Non-
Negative Responsiveness but it is at least reasonable. It is a type of prudence
condition. It makes the global preference stable or robust. It perhaps makes
sense when “a ~; " does not mean that a is perfectly equivalent to b on
criterion 4, but just means that a is approximately equivalent to b on criterion
1.

5.2.3.3 Cyclical preferences

Just like with the Condorcet method (see p. 174), it is possible to arrive at cycli-
cal or non-transitive preferences with qualified majority. Consider for example a
profile p consisting of the following three linear orders (this is the same profile as
in section 5.2.1.3):

l.a=1b>1¢
2. c>5 a9 b,
3. b>3cr3a.

Applying qualified majority with a threshold of 0.6, a cycle appears. Hence, an
exploitation of the global preference relation will often be needed (see section 7.4).

5.2.3.4 The choice of the concordance threshold ¢ for the qualified
majority

We now present a method to set the value of the concordance threshold 4. It is
based on the general method that we have presented in section 4.4.6. Present two
alternatives a and b to the decision maker and ask him if he strictly prefers a to b,
b to a or if he is indifferent between them. Let N,3(p) be the number of criteria in
p such that a is at least as good as b. According to the decision maker’s answer,
there are four cases.

i) He strictly prefers a to b. If Ngp(p) > Npa(p), we know that Ny, (p) < 6 <
Nap(p). But if Nyp(p) < Npo(p), we are in trouble because this is not compat-
ible with the qualified majority. There are then three possible attitudes: we
can ask the decision maker to revise his position, we can decide that qualified
majority is not the right model for this decision maker in this context or we
can just ignore his answer.

ii) He strictly prefers b to a. Symmetrically, if Nyo(p) > Nas(p), we know that
Nap(p) < 6 < Npa(p). But if Npo(p) < Nup(p), we are in trouble as in the
previous case.

iii) He is indifferent between a and b. We then know that § < Ngp(p) and 6 <
Nba(p)'

iv) He cannot compare a and b. We then know that § > Ny,(p) and § > Npo(p).
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So we have found two constraints on 6. If we then repeat this process with different
pairs of alternatives, we obtain more constraints on §. Some of them take the form
& > ..., some the form § < ... Hence, ideally, we can finally identify a value or a
range of possible values for 4.

Of course, this procedure does not always work. As always with this way
of working, some contradictions may appear between constraints; for example a
constraint saying that § > 3 and another saying that § < 2. Here again, three
attitudes are possible. We ask the decision maker to revise his position, we abandon
qualified majority or, if the contradictions are not too numerous and too severe, we
can try to find a value for § that is “almost” compatible with the constraints. In
our example, 2 would be a reasonable value for é, but 1 and 3 are also reasonable
candidates: they almost satisfy the constraints.

Another problem with this approach is the treatment of incomparability. If
we always handle incomparable pairs as in iv), then we will not help the decision
maker. Indeed, if his answers are totally compatible with the qualified major-
ity and if we respect all his preferences, indifferences and incomparabilities, then
the aggregation procedure will just restate the decision maker’s answers. This is
definitely not what he needs.

éj In a decision aiding process, there are almost always pairs that the de-
3 cision maker cannot compare; this is usually why he uses a decision aiding
&2 method. What can we then offer him with our aggregation procedures? First,
&? a structured process that can help him reason about his problem and analyse
2 his values, needs and goals. Second, a formal technique for constructing a
(;é global preference relation that obeys two (often contradictory) principles in a
3 consistent way: respecting the information provided by the criteria and by the
i decision maker, and easy to use and interpret (roughly speaking, as complete

and transitive as possible). According to the latter principle, it is necessary
o that the aggregation procedure changes at least some incomparabilities stated
<3 by the decision maker into indifferences or preferences.

The question is then: which ones? We do not have a clear answer, just two
suggestions:

o Drop the incomparabilities yielding constraints that are incompatible with
the other constraints. These incomparabilities are easy to identify: they
correspond to pairs with high values of Nyp(p) or Npo(p) or both.

e Ask the decision maker to distinguish between pairs that are incomparable
because he does not know how to compare them or because he is convinced
that they cannot be compared. Then drop the incomparabilities of the former

type.

Finally, if the decision maker is undecided about many pairs and if we do not
want to keep all the corresponding constraints, we may have too few constraints.
It is then perhaps wise to present pairs of fictitious alternatives in order to try to
obtain more constraints.
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5.2.3.5 The qualified majority and ELECTRE 1

It is easy to see that ELECTRE I (Roy, 1996}, without weights and vetoes, is
equivalent to a qualified majority with § > n/2. The characterisation of the
qualified majority and the discussion about the choice of the threshold can thus
help us use ELECTRE I in a consistent way. In fact, we just need one additional
condition {Marchant, unpublished) to characterise ELECTRE 1, without weights
and vetoes.

Restricted Positive Responsiveness. Suppose p and p’ are two identical profiles
except that the position of a has been strongly improved on one criterion 4, in
the following sense: b >; a and a > b. Suppose also that there is no criterion
for which a and b are indifferent. Then, if @ and b are globally indifferent in p, a
should be globally preferred to b in p’.

It is interesting to compare this condition with Positive Responsiveness (p.
171). Both conditions impose that the global preference reacts positively to an
improvement of the position of an alternative; but with Restricted Positive Re-
sponsiveness, this positive reaction is imposed only in some special cases.

Theorem 5.6

Suppose we want to aggregate profiles of weak orders. The only aggregation func-
tion satisfying Anonymity, Neutrality, Non-Negative Responsiveness, Limited In-
fluence of Indifference, Independence of Irrelevant Alternatives, Pareto and Re-
stricted Positive Responsiveness is ELECTRE I without weights and vetoes, i.e.
there s an integer § (6 > n/2) such that a 7(p) b iff the number of criteria © such
that a 7=; b is at least 4.

We will not devote a lot of time to the discussion of Theorem 5.6 because all the
axioms it uses have been discussed previously, except Restricted Positive Respon-
siveness. This condition might be seen as too restrictive, in some situations, just
for the same reason as Positive Responsiveness. But because Restricted Positive
Responsiveness is much weaker, the problem (if any) is much less serious. Note
finally that, in most cases, ELECTRE 1 is used with a threshold larger than n/2,
50, it never happens that there is no criterion on which @ and b are indifferent
and a and b are globally indifferent. Hence, Restricted Positive Responsiveness
is trivially satisfied and does not really help us to understand how ELECTRE I
works.

It is therefore more interesting to characterise ELECTRE I with § > n/2,
which is why we introduce a new condition.

Minimal Incomparability. Assume n is even. There is at least one situation where
a and b must be considered incomparable: when the conflict is maximal, i.e. when
a is strictly better than b on n/2 criteria and b is strictly better than a on the
other n/2 criteria. But, because n can be odd, we must adapt the condition for
this case. Alternatives a and b must be incomparable if a is strictly better than b
on (n +1)/2 criteria and b is strictly better than a on the other (n —1)/2 criteria,
or the converse.

The meaning of this condition is clear. If you impose it, you adopt a prudent
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attitude. You avoid that the aggregation function always gives a clear-cut and
easily interpretable result, even when it (perhaps) should not. But the cost of
imposing this condition is also clear. The global preference relation might be
difficult to interpret or use. It is up to the decision maker to choose between
prudence and ease of interpretation.

Theorem 5.7

Suppose we want to aggregate profiles of weak orders. The only aggregation func-
tion satisfying Anonymity, Neutrality, Non-Negative Responsiveness, Limited In-
fluence of Indifference, Independence of Irrelevant Alternatives, Pareto and Min-
imal Incomparability is ELECTRE I without weights and vetoes, i.e. there is an
integer § > n/2 such that a 7=(p) b iff the number of criteria i such that a 77; b is
at least §.

There is, to the best of our knowledge, no characterisation of the weighted qualified
majority. So, we cannot analyse the role and meaning of the weights in details,
although ELECTRE I is almost always used with weights. The method described
on p. 180 for setting the weights of the Condorcet or simple majority method can
easily be adapted to the qualified majority and ELECTRE I.

5.2.4 The lexicographic method

This very simple method works as follows: first, you need a linear order (a ranking
without ties) on the set of criteria N. This linear order is denoted by >, The
maximal criterion (with respect to >;) is denoted by 14, the second one, by 2¢ and
so on. So, we have 1¢ >, 2¢ >, 3¢... >, nf. Then you look at the first criterion
in >¢, Le. 16 If @ is strictly better than b on criterion 1¢, then a is declared
globally preferred to b without even considering the other criteria. Similarly, if b is
strictly better than a on criterion 1¢, then b is considered as globally preferred to
a without considering the other criteria. But if a and b are indifferent on criterion
1¢, you look at the second criterion in >¢, i.e. 2¢. If a or b is strictly better than the
other on criterion 2¢, then it is declared globally better than the other one without
considering criteria 3¢, 4¢, ...If you still can not make a difference between a and
b using criterion 2¢, you proceed with criterion 3¢, then 4° and so on until you can
make a difference or until you have considered all criteria. In that case, ¢ and b
are globally tied. Formally,

a ~; b for all criteria
az(p)biff ¢ or
a >; b for the first criterion 4, w.r.t. >, for which a %; b.

We illustrate the lexicographic method with a simple example. Suppose there are
three voters, three candidates and the profile p is

1. a~ b= ¢
2. ¢ > b~y a,

3.b>3an~gec.
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Suppose also that 2 >, 1 >, 3. Consider the pair a,b. Begin with criterion 2 on
which a and b are indifferent. They are also indifferent on criterion 1 (the next
one in >;). But b is strictly better than a on criterion 3. Therefore, b >(p) a.
Consider now ¢ and b. Alternative c¢ is strictly better than b on criterion 2 (the
first one in >;). So, ¢ >~(p) b. Similarly, ¢ >(p) a. The final result is thus the
linear order ¢ >(p) b >(p) a.

Note that, in this example, the relation 2 (p) is complete and transitive. But
there are cases where this is not so. For example, when the preferences along each
criterion are semi-orders, the global preference relation needs not be transitive.

Leaving aside some very particular (degenerated) cases, we can say that >(p),
the asymmetric part of the global preference relation, is transitive if and only if
each relation ¥, is transitive. Moreover, 7-(p) is a weak order iff all relations -,
are weak orders (for the aggregation of semi-orders, see e.g. Pirlot and Vincke,
1992).

The particularity of the lexicographic method is the existence of the order >,
and the fact that each criterion is totally or infinitely more important than all
other criteria lower in the order >4 If @ is better than b on criterion 14, it will
be globally better than b, even if b is better than a on ten or one hundred other
criteria. No compensation is possible.

There are not many cases in which a decision maker would say that only one
criterion (except in case of a tie) must be taken into account for deciding if a 7Z(p) b
or the converse. In most cases, a decision maker would be willing to consider all
criteria because the difference between a and b on criterion 1¢ might not be so large
(even if this is not explicit) and could be compensated by opposite differences on
other criteria.

But there is at least one context for which this does make sense: screening.
Screening can be applied to a wide variety of problems and is very popular in
recruitment processes. In a screening process, all applicants take a first test mea-
suring one or several abilities or competencies. The best applicants are then se-
lected while the others are eliminated. The remaining ones then take a second test
measuring some other characteristics. A new elimination follows. Then a third
test is given, and so on until one or only a few applicants remain.

In such a process, each test can be seen as a criterion. The first test corresponds
to criterion 1¢, the second one to criterion 2¢, and so on. The ranking of the
applicants after test 1 is /¢ The ranking given by test 2 is Zy¢, and so on.
If, at each step 4, we keep the best candidates according to 2, then the set of
applicants that remain at the end of the process is the set of the best applicants
according to the lexicographic method.

The motivation for using the lexicographic method in this context is obvious.
After the first test, only ;¢ is known. Furthermore testing all applicants is
expensive. One therefore tries to give the second test to as few applicants as
possible. This is why a first elimination occurs after the first test, taking into
account only ;.. For the same reason, a second elimination occurs after test 2,
taking into account only ¢, and so on. Of course, if the human resources manager
knew all relations 7y, e, ..., 2, from the beginning, he would probably not

T

use the lexicographic method. But the cost of information prevents him from
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giving all tests to all applicants.

5.2.4.1 Axioms and characterisation

Here are the most characteristic properties of the lexicographic method.

e Strong Pareto. If a is strictly better than b on some criteria (a =; b for some
i) and a is at least as good as b on all criteria (o 7Z; b for all ), then a is
globally strictly better than b, i.e. a »(p) b. Furthermore, if a is indifferent
to b on all criteria (a ~; b for all i), then a is globally indifferent to b, i.e.
a ~(p) b. Note that this condition implies Pareto (see p. 175). It is a kind
of unanimity condition.

e Independence of Irrelevant Alternatives. See p. 172.
o Weak Order. See p. 123.

The following theorem uses these three axioms to characterise the lexicographic
method. It can be found in Fishburn (1974).

Theorem 5.8

Suppose we want to aggregate profiles of weak orders and n > 3. An aggregation
function satisfies Weak Order, Independence of Irrelevant Alternatives and Strong
Pareto if and only if it is a lexicographic method.

5.2.4.2 Discussion

It is important to notice the similarity between this theorem and Arrow’s Theo-
rem 5.2. Non-Dictatorship has been deleted but Pareto has been strengthened to
Strong Pareto. The result is now that there is not one dictator but a hierarchy >,
of dictators. Let us now discuss some of the axioms used in this characterisation.

Strong Pareto Consider the following case: a ~; b for all criteria but the least
important one, i.e. nf, and @ =, b. According to Strong Pareto (but not to
Pareto), we have a >(p) b. At first sight, this seems quite reasonable but it
is so only if “a ~; b” really means that a and b are perfectly equivalent on
criterion 4. Indeed, if a and b are perfectly equivalent on all criteria except n,
then a difference on nf can make a global difference. But suppose now that
“a ~; b” just means that @ and b are approximately indifferent on criterion 4.
Then, the strict preference a >,¢ b, on the least important criterion, might
not be enough to conclude that a >(p) b.

Independence of Irrelevant alternatives As mentioned earlier (when discus-
sing the Condorcet method, p. 174), Independence of Irrelevant Alternatives
is probably not a good property when the information on each criterion is
richer (even slightly) than ordinal. It is worth saying a word about this in the
context of screening processes. Consider the recruitment example. When the
applicants take the first test, the result of the test can be a ranking (purely
ordinal information) but, very often, the result of the test is a score. The
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recruiter then keeps all the applicants with a score above a given threshold
or the m best applicants, where m is a predetermined number. The scores
are often measured on scales with well-known psychometric and/or statistic
properties but with measurement-theoretic characteristics that are not so
well understood. Nevertheless, they are very often a bit more than ordinal.
Suppose for example that the score is the number of correctly answered items
in a multiple choice questionnaire. Some items are easier than others. So,
the number of correct answers cannot be considered as a measure of some
ability on an interval scale. But suppose there are 20 items; then the differ-
ence between a score of 18 and one of 10 is certainly much larger than the
difference between a score of 5 and one of 2. Hence, some comparisons of
differences make sense: the information is more than ordinal. This indicates
that, when the result of a test is a score and not a ranking, then the lexi-
cographic method should not be used because the information is not purely
ordinal. This is even more true if the scores are measured on interval or ratio
scales.

The lexicographic method should probably be used only in two cases:

e when there are good reasons to consider that one criterion is infinitely
more important than the other ones, i.e. a difference on that criterion,
no matter how small it is, cannot be compensated by any number of
differences , no matter how large they are, on the other criteria. We must
also be sure that an indifference between a and b on a criterion really
means that a and b are perfectly equivalent regarding that criterion only.
The preference relations »; thus need be very finely grained.

e when the cost of constructing the preference relations ; is high and
one wants to reduce the costs by means of a screening process. But in
such a case, it is probably better not to use a pure lexicographic method.
The cost of constructing a very fine-grained preference relation 7-; might
be too high. Furthermore, some kind of compensation is very often
desirable. So, instead of keeping only the best applicants, one might
want to keep all the good ones, so that, after the last step, when the
remaining applicants have taken all tests, the decision maker can use a
method (AHP, MAVT, ELECTRE, ...) allowing some compensation.
The decision maker then needs to decide in which order the tests will
be given. He definitely must take the cost of the tests into account: a
cheap one will be given in the first steps, an expensive one later. But he
must also consider some preferential aspects of the problem: he does not
want to eliminate an applicant early on in the process who might prove
globally excellent later.
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5.3 Aggregation of fuzzy relations into one rela-
tion

So far we only considered the aggregation of classical preference relations, where
“classical” is used as opposed to “fuzzy.” We also sometimes use the term crisp
relations instead of classical relations. In a classical preference relation, when
comparing two alternatives a and b, there are four and only four possible cases:

o q is strictly preferred to b (a >=; b),

¢ g and b are indifferent (a ~; b),

o b is strictly preferred to a (a <; b) or
e a and b are not comparable.

But the situation is often not so clear-cut and there are many circumstances in
which more nuances would be useful. For example, a decision maker is not always
sure that he prefers a to b, even when considering only one criterion, because
his knowledge of a and b is uncertain or not perfect. Another example is when
the decision maker is sure of his preference but would like to make a distinction
between different degrees or intensities of preference. A last example is when some
criterion 7 can be decomposed into several sub criteria. When the decision maker
must say whether he prefers a to b, taking into account only criterion ¢, he might
hesitate because he does not know how to balance the pros and cons of the different
sub criteria. For a more thorough discussion of these questions, see Bouyssou et al.
(2000) and Perny and Roubens (1998).

In these cases, a fuzzy preference relation can be used to model the preferences
of the decision maker. A fuzzy preference relation is a relation in which the
preference between each pair of alternatives a and b is measured by a number
between 0 and 1. The value 1 indicates that a is preferred to b with certainty (if
we want to model uncertainty) or with maximum intensity (if we want to model
intensity). The value 0 indicates that it is certain that a is not preferred to b
(uncertainty representation) or that the intensity of the preference is 0 (intensity
representation). An intermediate value, say 0.7, indicates that it is fairly certain
that a is preferred to b or that the preference intensity between a and b is high
but not maximum. Note that, in some cases, a fuzzy preference relation can be
used to simultaneously capture uncertainty and intensity. In any case, the analyst
should always clearly know what he wants to represent by means of preferences
valued between 0 and 1.

Formally a fuzzy preference relation S (sometimes called valued relation) on
the set A maps each pair of alternatives (a,b) to a real number S{a,b) in [0, 1].
According to the context, S(a,b) will denote the intensity or the certainty of the
preference of a over b. The larger S(a,b), the larger the certainty or the intensity
of the preference. Note that S(b,a), the certainty or intensity of the preference
of b over a, is usually not linked to S(a,b). Yet, in some applications, these two
numbers are linked, for example by the relation S(a,b) + S(b,a) = 1 (reciprocal
relations) or max[S(a,b), S(b,a)] = 1, etc. This link can result from an arbitrary
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choice by the analyst or from the construction technique. For example, S(a,b) can
be the proportion of cases where the decision maker chooses a over b in a forced-
choice pairwise presentation. In this case, we necessarily have S(a,b)+5(b,a) = 1.
This is also true if S(a,b) is the proportion of experts in a panel choosing a over
b.

Suppose now that the preferences of a decision maker, along each criterion
i, are modelled by a fuzzy preference relation S;. We then have a profile p =
(81, S, .. .,8,) of fuzzy preference relations and the following question arises: how
can we aggregate or synthesise this profile into one (classical or fuzzy) preference
relation. This is almost the same problem as the one considered in section 5.2.
The only difference is that our profiles now consist of fuzzy relations and that the
global preference relation will in some cases be fuzzy (section 5.3.4).

5.3.1 Construction of fuzzy preference relations

Assume we have a small-sized problem with 6 alternatives and 4 criteria. A profile
of fuzzy preference relations is in this case defined by 4 x 6 x 6 = 144 numbers
between 0 and 1. Until now, to the best of our knowledge, no method has been
proposed in the literature to elicit S;(a,b), the certainty or intensity of the pref-
erence of a over b on criterion . But suppose we have such a method. We would
then need to apply it 144 times to determine the profile p. This shows why profiles
of fuzzy preference relations are almost never elicited by questioning the decision
maker: the process would be far too long. Instead, fuzzy preference relations are
usually obtained by construction, starting from a performance table where the
performances are real numbers or fuzzy numbers.

PROMETHEE II is an example of a method where a fuzzy preference relation
is constructed for each criterion, starting from real performances (see p. 196).
ELECTRE III (Roy, 1996) is another example (for a brief description of these
methods, see section 4.5). Note that the numbers S;(a,b) in PROMETHEE II are
usually interpreted as intensities of preference, while they are often considered in
ELECTRE III as degrees of credibility of the statement “a is at least as good as
b.” In our opinion, the construction techniques are so similar in ELECTRE III
and PROMETHEE II that such a dramatic difference between the interpretations
can hardly be justified. But it is not clear to us which of these interpretations is
correct.

We now present a completely different example of a construction technique in a
case where the membership degrees reflect some kind of uncertainty or imprecision
rather than an intensity. Suppose the performances of the alternatives on criterion
i are not perfectly known: they are modelled using fuzzy numbers. Figure 5.2
presents an example with three alternatives.  In this figure, the three curves
Ihgi(a)s g, (b) a0 fig, () are the fuzzy performances of the three alternatives a, b
and c¢. We might choose S;(b,a) equal to 1 minus the value of g, ) and pg, )
at the intersection of the two curves, as depicted in figure 5.2. This is in fact
the necessity (see Dubois and Prade, 1983) that b be strictly better than a. In
other words, taking only criterion ¢ into account, b is preferred to a with certainty
Si(b,a).
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Figure 5.2: A fuzzy preference relation based on fuzzy performances and aiming
at modelling uncertainty.

The three construction techniques presented here are just examples. Many
others are used and can be considered. But these examples show that the meaning
of the numbers S;(a,b) can vary and is not always clear. This should be kept in
mind when aggregating fuzzy preference relations.

We will now present two methods for the aggregation of fuzzy relations into
one relation: a generalisation of the Borda method and a generalisation of the
Condorcet method. There are of course many other methods, but we present
these two because they allow us to shed some light on some aggregation methods
that are commonly used in multicriteria decision aiding.

5.3.2 The Generalised Borda method

In section 4.2.2, we presented the Borda method as a method aimed at aggregating
a profile of linear orders into a weak order. In fact, the Borda method can be used
for aggregating any kind of binary relations and also fuzzy relations. Here is how
it works. Suppose we have a profile p of fuzzy relations: p = (51,...,5,). We will
not discuss the nature of the valuations for the moment; This will be addressed
later. We define b,(S;), the single-criterion score of alternative a in S, as follows.

ba(Si) =Y Si(a,b) = > _ Si(b,a). (5.1)

beA beA

It is the sum of the valuations on the arcs leaving a minus the sum of the valuations
on the arcs entering a. Thus, the larger b,(S;), the better ¢ in S;. The Borda
score of alternative a, B,(p), is then defined as the sum over all criteria of the
single-criterion scores.
Bu(p) = ) _ ba(S:)- (5.2)
iEN
We then say that o Z(p) b if By(p) > By(p). In other words, we rank the
alternatives in the decreasing order of their Borda scores.
We illustrate the Borda method with the profile presented in figure 5.3. The
Borda score of a, B,(p), is equal to —1.7. Similarly, Bs(p) = 1.4 and B.(p) = 0.3.
Hence, b >(p) ¢ >(a) .
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0.4
Figure 5.3: A profile of fuzzy preference relations.

Note that if a fuzzy relation happens to be a crisp linear order, then b,(S;) is
just the number of alternatives beaten by a in S; minus the number of alternatives
beating a in S;. It can be shown that this number is a negative affine transforma-
tion of the rank of @ in S;. Therefore, if the profile p contains only linear orders,
ranking the alternatives in increasing order of their sum of ranks (Borda method)
or in decreasing order of their sum of single-criterion scores (generalised Borda
method) is equivalent and the two methods coincide.

5.3.2.1 Axioms and characterisation

Here are the main characteristics of the generalised Borda method.
o Weak Order. See p. 123.

o Generalised Faithfulness. If we have only one criterion, i.e. N = {1}, and
if S; is a linear order, then Z(p) is equal to Sy, i.e. the global preference is
identical to the preference relation along the unique criterion.

e Generalised Cancellation. For any pair (a, b) of alternatives, let r4;, be defined

by
7"ab(p) = Z Si(av b)
ieN
If, for all pairs (a,b) of alternatives, ro5(p) = 75 (p), then all alternatives tie.
Note that, if all relations in p are linear orders, then ry;(p) is the number
of criteria such that a is preferred to b. Generalised Cancellation is thus
equivalent to Cancellation.

e Neutrality. See p. 123.

o (Consistency. See p. 123.
Marchant (1996} proved the following theorem.

Theorem 5.9

Let F be a set of fuzzy relations. Suppose we want to aggregate profiles of fuzzy
relations taken in F. The only aggregation function satisfying Weak Order, Gen-
eralised Faithfulness, Generalised Cancellation, Neutrality and Consistency is the
Generalised Borda method. This theorem holds for almost any F (see Remark 5.3.1
below).
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5.3.2.2 Discussion

This characterisation is very similar to Theorem 4.1. It uses almost the same
axioms. It is interesting to note that only one axiom is based on the valuations:
Generalised Cancellation. In this axiom we use the sum of some valuations. So,
these valuations must be cardinal, they should in principle be measured at least
on an interval scale, otherwise we are note sure it makes sense to add them; it
would not be meaningful in the sense of meaningfulness theory (see chapter 3,
section 3.4). Furthermore, even if we have interval or ratio scales, we must wonder
if the sum of the valuations makes sense, if it represents something. In order to
illustrate this last point, let us consider density (of mass). Density is measured
on a ratio scale, so, a statement like dy + do = d3 + d4, involving the sum of
densities, is meaningful, in the sense of meaningfulness theory (with d; the density
of object 7). But, even if it is meaningful, it does not mean anything except if
we speak of objects of identical volume. Similarly, even if the valuations are on
interval or ratio scales, we need to consider if their sum represents something. In
principle, measurement theory should be used to answer this question but, very
often, the problem is too difficult and the answer is unknown. So, the analyst and
the decision maker need to consider if they are willing and if it is sensible to give
a meaning to the sum of the valuations.

Hence, looking at this characterisation in order to find out if the Generalised
Borda method is appropriate in a given context makes sense only if the valuations
of the fuzzy preference relations are cardinal and if their sum represents something.
If not, then this characterisation may not be used.

Remark 5.3.1

Note that this theorem is valid in many different cases. Not only for profiles
of fuzzy relations without restriction but for virtually all kinds of profiles (for
a precise statement, see Marchant, 1996): profiles of ¢-transitive fuzzy relations
(where the t-norm t can be chosen arbitrarily), profiles of fuzzy relations such that
Si(a,b) + Si(b,a) = 1, profiles of semi-orders (they are also fuzzy relations, with
Si(a,b) € {0,1}), profiles of interval orders, ...

5.3.2.3 The Generalised Borda method and PROMETHEE II

Some aspects of PROMETHEE II (Brans and Vincke, 1985) have been shortly
discussed in section 4.3.10.3, p. 145 (see also section 6.6.2, p. 320). For a short
presentation of PROMETHEE, see p. 163.

The net flow of alternative a, denoted by ®(a), is defined (see p. 165) by:

Di(a) = _ Si(a,b) = Y _ Si(b,a),

beA beA
where

S(a,b) = w;Si(a,b)
i=1
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and
Si(a,b) = Pi(gi(a) — g:(b)). (5.3)
It is easy to see that the net flow can also be written as
O(a) = > wii(a), (5.4)
iE€N
where
®i(a) = > Si(a,b) =Y Si(b,a). (5.5)
beA beA

The net flow ®(a) of alternative a can therefore be seen as the sum on all criteria
of the single criterion net flow ®;(a). This is very similar to what was shown for
the Borda method.

A close look at Equations 5.1 and 5.2 will convince the reader that, once the
preference functions P; have been chosen, the PROMETHEE IT method is nothing
but a weighted version of the Borda method applied to the valued relations S; de-
fined by (5.3). Theorem 5.9 thus tells us a lot about the PROMETHEE II method.
Roughly speaking, once the decision maker has decided to use preference functions
and has agreed on the axioms characterising the Generalised Borda method, he no
longer has choice. He must use the PROMETHEE II method. We say “roughly”
because a small issue has not yet been addressed: the weights. In the generalised
Borda method, there are no weights. In PROMETHEE 11, there are weights. But,
if the weights are integer, it can be shown that assigning a weight w; to criterion
i amounts to considering a problem without weights and where each criterion i is
taken into account w; times. The number of criteria in this new problem is then
no longer n but the sum of the weights. If the weights are not integer but rational,
they can be transformed into integers through a multiplication.

The axioms characterising the Generalised Borda method have already been
discussed, but one of them deserves a deeper discussion in relation to the PROME-
THEE II method: Generalised Cancellation. In this axiom, we add the numbers
Si(a,b), for i € N. These numbers thus need to be at least taken on an interval
scale; otherwise the sum and, hence, the condition, do not make sense. But it
is not an easy task to decide if this is the case. The analysis of the construction
technique (the preference functions) does not tell us much about the scale on
which S;(a,b) is measured. Today, we do not have a clear understanding of what
is really modelled by the preference functions and we do not really know how to set
the parameters of these functions. The question of the scale type of S;(a,b) thus
remains open. Deciding if Generalised Cancellation is an appropriate condition in
a given decision problem is thus problematic because we do not even know if the
condition makes sense.

5.3.3 The Generalised Condorcet method and other majori-
ties

One of the most cited arguments against the Borda method (generalised or not)
is that it does not satisfy Independence of Irrelevant Alternatives (see p. 172). An
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obvious way to avoid this problem is to aggregate the preference relations in a
pairwise manner, i.e. to consider in turn all pairs of alternatives and to decide for
each pair which alternative is preferred to the other, taking only the preferential
information about that pair into account. We have already considered this idea
when we wanted to aggregate crisp (not fuzzy) relations (section 5.2) with the
Condorcet method (p. 171) and qualified majority (p. 183). We might then want
to adapt one of these methods for the aggregation of fuzzy preference relations. Let
us carry out the exercise with the Condorcet method. In the crisp case, a >(p) b
iff the number of criteria such that a is preferred to b is larger than the number of
criteria such that b is preferred to a. If these two numbers are equal, then a ~(p) b.
More formally,

azp)be [{i:a=; b} > {i:b>; a}
or, equivalently,
az®b & [{iraz: b} = {i:bZia}. (5.6)

For a crisp preference relation 2;, let us define S;(a,b) = 1 iff a 7; b. Otherwise,
Si(a,b) = 0. We can then rewrite (5.6) as

az(P)b & > Si(ab) > Siba) (5.7)

iEN ieN

If we now apply (5.7) with fuzzy relations (where S;(a,b) can take any value be-
tween 0 and 1), we have a generalisation or an extension of the Condorcet method
for fuzzy relations. The adaptation is thus very simple and we can follow the same
steps to generalise another type of majority method, e.g. the qualified majority.
In the next few paragraphs, we make some comments about this generalisation.

5.3.3.1 Does it make sense to add the valuations?

This question is in fact twofold. First, is it meaningful in the sense of meaningful-
ness theory (see chapter 3) to add the valuations? Second, even if the valuations
are measured on interval or ratio scales, does the sum of the valuations repre-
sent anything? These two questions have already been discussed in section 5.3.2.2
about the Generalised Borda method.

Note that when S;(a,b) takes its values in {0,1}, i.e. when the preference
relations are crisp, the sum of the valuations correspond to the number of criteria
for which a is better than b and this makes sense.

5.3.3.2 Other possible extensions

Have a look at (5.6). It is the definition of the simple majority for crisp relations.
It can also be written as (5.7). But it could also be written as

ax(p)b & > Sab) > S’0ba) (5.8)

1EN €N
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This expression is perfectly equivalent to (5.6) and (5.7) if we consider only crisp
relations, because 9;(b,a) can take only two values: 0 and 1. But using (5.8) for
the aggregation of fuzzy relations is not equivalent to (5.7). So, we now have two
different extensions of the Condorcet method and it would not be difficult to find
many more. This raises a new problem: which extension is the right one? Once
more, there is no universal answer. A correct extension in a given context is mean-
ingful, in the sense of meaningfulness theory, and involves arithmetic operations
that represent something, that make sense for the decision maker. Each case thus
requires a careful analysis but this is often difficult.

5.3.3.3 Transitivity

As seen in section 5.2.1.3 on Arrow’s Theorem, an aggregation method satisfying
Independence of Irrelevant Alternatives, Non-dictatorship and Pareto (that is the
case of the simple majority and of qualified majority) does not always yield a
transitive global preference relation. This was in the section about the aggregation
of crisp preference relations. But we now want to aggregate fuzzy preference
relations. Is it any different? Unfortunately not and the reason is simple: if
we want to aggregate fuzzy preference relations into a crisp preference relation,
we must be prepared to aggregate all kinds of fuzzy relations, for instance fuzzy
relations where S;(a, b) is 0 or 1 for every pair a, b. But such relations are obviously
equivalent to crisp relations and so, Arrow’s Theorem applies.

The outcome of an aggregation method (for fuzzy preferences) satisfying Inde-
pendence of Irrelevant Alternatives, Non-dictatorship and Pareto (like (5.7) and
different forms of majority) will therefore not always be transitive. Hence, an ex-
ploitation (see chapter 7) of the global preference relation will often be needed in
order to reach a final recommendation (see chapter 2).

5.3.3.4 ELECTRE III

Equation (5.7) is a particular generalisation of simple majority. If we omit the
weights and vetoes, the aggregation mechanism in ELECTRE III (Roy, 1996) can
be seen as the same kind of generalisation of qualified majority. Our comments
in the three previous paragraphs (sum of the valuations, other extensions and
transitivity) thus also apply to ELECTRE IIL

Let us mention here a recent paper by Mousseau and Dias (2004) about the
elicitation of the parameters of a variant of ELECTRE III. They propose a disag-
gregation technique in the spirit of the techniques we recommend in section 4.4.6.

5.3.4 Pairwise aggregation into a fuzzy relation

In this section, we consider the aggregation of a profile of fuzzy preference relations
into one fuzzy preference relation, contrary to the previous sections where the
outcome of the aggregation was a crisp relation. In order to do this, we aggregate
the relations S; in a pairwise manner into one fuzzy relation S by means of an
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aggregation operator such as the arithmetic mean. For example, we could define

1 k13
S(a,b) = — ;Sl(a, b), Va,b € A.

Of course, instead of the arithmetic mean, we can use the weighted arithmetic
mean, the geometric mean, the median, an Ordered Weighted Average (OWA)
operator, the min, the max, the leximin, etc. Any averaging or aggregation opera-
tor can do the trick (see Garcia-Lapresta and Llamazares, 2000 and Example 4.11
in Perny, 1992). Section 5.7, of this chapter, is devoted to these operators, in a
different context but the analysis remains valid. When evaluating the relevance
of a condition for his application, the interested reader will thus go to section 5.7,
bearing in mind that he is aggregating valuations of arcs from different preference
relations (see Fodor and Roubens, 1994, section 5.10).

A key property in the analysis of aggregation operators is commensurability (p.
203-205), this is the fact that valuations on different criteria can be compared. So,
a very careful construction of these valuations is necessary in order to guarantee
commensurability.

Another important issue for the aggregation of valuations is the scale on which
they are measured. As already mentioned in section 5.3.2.3, not much is known
today about the scales on which preference intensities, credibilities or certainties
are measured. And, as far as we know, to date, no technique has been proposed to
construct fuzzy preference relations such that the valuations would be measured
on, say, an interval scale. It is therefore prudent to use aggregation procedures
that only take the ordering of the valuations into account and not the values
themselves, unless there are good reasons to use the values.

5.3.5 General comment on the aggregation into a fuzzy re-
lation

As seen in sections 5.2.1.3 and 5.3.3.3, when we want to aggregate crisp or fuzzy
relations into one crisp relation using an aggregation method satisfying Indepen-
dence of Irrelevant Alternatives, Non-dictatorship and Pareto, the result is not
always transitive. But in this section, we want to aggregate profiles of preference
relations into a fuzzy relation, not a crisp one. We may thus wonder if it is now
possible to always obtain a transitive result. Unfortunately, the answer is negative.

Let us be more explicit: it is not possible to apply Arrow’s Theorem in this
context because Transitivity, as defined previously, does not make sense when
the global preference relation is fuzzy. Transitivity must be redefined for fuzzy
relations. A popular definition of transitivity for fuzzy relations is

Si(a,¢) = min{S;(a, b), S;(b,c)}

(called min-transitivity). But another definition is

Si(a, C) ,>_ Si(a» b)S’L(b’ C)
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(called product transitivity) or
Si(a,¢) > max(9;(a,b) + S;(b,c) — 1,0)

(called Lukasiewicz transitivity). And there are many more. But there are many
results in the literature showing that, for different definitions of transitivity, a vari-
ant of Arrow’s theorem can be proved, showing that Independence of Irrelevant
Alternatives, Transitivity and Pareto are not compatible with Non-dictatorship or
with a slightly stronger condition imposing the absence of a coalition of criteria
that would play the role of a dictator (see Banerjee, 1994; Barrett, Pattanaik, and
Salles, 1986, 1992; Dutta, 1987). There are also few results showing that Inde-
pendence of Irrelevant Alternatives, Transitivity and Pareto are compatible with
a particular definition of transitivity. One such result, due to Ovchinnikov (1991),
uses Lukasiewicz’s transitivity. But this apparently positive result is not totally
positive because Lukasiewicz-transitive relations can be very difficult to interpret
as illustrated in figure 5.4. The relation depicted in this figure is Lukasiewicz-

Figure 5.4: A Lukasiewicz-transitive fuzzy relation.

transitive because 0.2 > 0.6 4+ 0.6 — 1 > 0. But, for a decision maker, it is as
difficult to interpret as a cyclic crisp relation: it looks like a cycle. Note that if we
cut the relation at any level between 0.2 and 0.6, we obtain the cyclic crisp relation
(a,b), (b, c), (c,a). If we cut above 0.6, we obtain an empty relation that does not
help the decision maker either. Only when cutting under 0.2 do we obtain a weak
order, but one where all alternatives are indifferent.

So, the aggregation of fuzzy relations into one fuzzy relation is also difficult.

As an application of these results, note that the methods described in the pre-
vious section (5.3.4) do not always yield transitive relations (whatever definition of
transitivity you choose), since they satisfy Independence of Irrelevant Alternatives,
Pareto and Non-Dictatorship.

Note that, when the outcome of the aggregation is a fuzzy preference relation,
an exploitation (see chapter 7, section 7.4.3.2 and 7.4.4.2) is almost always nec-
essary if we want to make a recommendation (see chapter 2). Suppose that the
decision makers’s problem is to find the best alternative. It is not possible, in
general, to identify the best alternative just by looking at a fuzzy relation, even
if it is transitive in some sense. This is why exploitation techniques are needed.
If in addition, the outcome is not transitive, then the exploitation is even more
necessary ...and difficult.
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5.3.6 The difficulty of aggregating fuzzy relations

Let us summarise the steps involved in the process of aiding a decision maker by
modelling his preferences by means of fuzzy relations and aggregating them.

o It is almost never the case that fuzzy preference relations exist a priori, so, we
must first construct the fuzzy preference relations (1 per criterion). This can
be done by directly questioning the decision maker or using a construction
technique (see section 5.3.1 and chapter 3). In the first case, we do not know
exactly what properties the resulting fuzzy relations have. In particular, we
do not know on what kind of scale the valuations lie. In the second case,
it is sometimes possible to obtain well-behaved fuzzy relations, but with

many techniques, the obtained fuzzy relations are not well understood (with
PROMETHEE and ELECTRE III for example).

¢ We must then aggregate the fuzzy preference relations. Very few aggregation
methods yield a weak order (a ranking, possibly with ties). The generalised
Borda method does but it requires valuations that can be added and we
probably seldom have such valuations. We will thus almost always end up
with a non-transitive and eventually fuzzy global preference relation.

o We therefore need an exploitation step, which will not be simple. This is par-
ticularly true if the global preference relation is fuzzy because, in many cases,
we will not exactly know the properties and the meaning of the valuations
obtained at the end of the aggregation.

The number of steps and their complexity is such that we fear that the outcome
will seldom be reliable (although there are cases where it is). Given our current
knowledge, we think that it is often more sensible or prudent to take a simpler
route. For example, instead of constructing fuzzy relations from performances and
aggregating these relations, it might be better to directly use the performances in
an aggregation method. It is simpler (one step instead of two) and is perhaps
better understood so that we can use sound techniques for setting the parameters
(if any) of the aggregation method.

5.4 Aggregation of a performance table into one
relation

As mentioned in section 4.2.3, social choice theory is not only concerned with
the aggregation of ordinal information (preference relations) but also of cardinal
information. In this section, we present different characterisations of aggregation
procedures that were first formulated in the frame of social choice theory. We will
discuss the min, the weighted sum, the leximin and a family of procedures called
outranking procedures, similar in some sense to the ELECTRE-like methods and
PROMETHEE. There are of course many other aggregation procedures but we
chose these because they allow us to present some important concepts or because
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they are close to some aggregation procedures commonly used in multicriteria
decision aiding.

Before presenting these characterisations, we introduce some new notations
and make some general comments about the nature of the cardinal information.

5.4.1 Notations and definitions

In this section, the descriptor g; (introduced in section 4.3, p. 128) is assumed to
take its values in R. The values g;(a), gi(b), ... can be interpreted as a more or less
factual description of a,bd,... on dimension i—g; is then an element of D and &
could be formalised as X; x ... x X, where each X; = R (see chapter 2, p. 41)—or
as the numerical representation of the decision maker’s preferences with respect
to viewpoint i—g; is then an element of H (see chapter 2, p. 41).

In the first interpretation, our hypothesis is that all preferences are increasing
with g;, i.e. the larger an evaluation, on any criterion, the better the alternative.
If we then face a problem in which the preference on a criterion is decreasing with
gi, it is generally obvious to make the necessary adaptations in the aggregation
methods or in the axioms that we will present in this section.

In this context, a profile is a n-tuple of functions gy, ...,g,. We now use the
symbol g for a profile. The symbol p is used only for profiles of preference relations.
Note that a profile g can also be seen as a performance or evaluation table or
matrix. It contains an evaluation for each alternative on each criterion.

We must now consider the nature of the information provided by the functions
g:- We distinguish several cases (according to d’Aspremont and Gevers, 1977, and
Roberts, 1980).

Ordinal non commensurable. In this case, the only meaningful operation we
can perform is the comparison of two evaluations on a single criterion. For
example, g3(b) = 357 is obviously larger than g3(c) = 287. We cannot say
anything about the distance between b and ¢. Only the order matters. Fur-
thermore it is also impossible to compare evaluations on different criteria.
For example, the statement g3(c) = 287 > g1(c) = 36 has no meaning.

Because the information is purely ordinal, it is perfectly equivalent to use a
profile of weak orders, which contains exactly the same information, instead
of the functions g;. Therefore, we will not discuss this case; it has already
been treated in section 5.2.

Ordinal commensurable. It can happen that all evaluations, for all criteria, are
measured on the same ordinal scale. In such a case, only order matters, as
in the previous case, but, in addition, inter-criteria comparisons make sense.
For example, we can say that gs(c) = 8.6 > ¢g1(b) = 7.1. This will make it
possible to use the min or leximin, for instance. This hypothesis is frequent
made for example in constraint satisfaction problems (see p. 144). There, the
alternatives are different solutions to a problem (for example a scheduling
problem) and, for i = 1,..,n, the function g; measures the extent to which
constraint 1 is satisfied (between 0 and 1). Because the different criteria (the
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satisfaction of the constraints) are of a similar nature, it is not unreasonable
to consider that the satisfaction degrees can be compared across criteria.

It therefore makes sense to compare evaluations on different criteria when all
criteria are measured on the same scale. But, be careful! Same scale is not
equivalent to same range. For example, if an expert assesses the alternatives
on three criteria (financial, social and environmental costs), using a scale
from 0 to 10, it is very unlikely that the scales are the same, even if they
have the same range. Indeed, it is hard to say if a 5 on the financial criterion
is better, worse or equivalent to a 5 on the environmental criterion.

Interval non commensurable. The scale for each criterion is an interval scale

(see chapter 3), i.e. the evaluations can only be transformed through positive
affine transformations 2. Therefore, g; = 049, + f; is as good an evaluation
function as g;. Note that the transformations need not be the same for all
criteria. We can have all different «;’s and all different 8;’s. Therefore,
saying that

g2(c) — g2(a) = 2 (g2(b) — g2(a))

is meaningful while saying
92(c) — g2(a) = 2 (91(d) — g1(a))

is not. Indeed, if we use two different transformations for criterion 1 and
criterion 2, the first statement remains true while the second one becomes
false.

Interval with the same unit. The scale for each criterion is an interval scale.

The evaluations can only be transformed using affine transformations such
that g, = ag; + 8. Here, « is the same for all criteria, which means that the
same unit is used for all criteria but not necessarily the same origin. In this
case, a statement like

92(¢) — g2(a) = 2 (g1(d) -~ g1(a))
is meaningful because it is independent of the origin. But
92(c) = 2 g1(b)

is not meaningful. In other words, comparisons across criteria are not per-
mitted but comparisons of differences make sense. This will make tradeoffs
possible.

Ratio non commensurable. The scale for each criterion is a ratio scale. Evalu-

ations can only be transformed by linear transformations such that g} = «;¢;.
Comparisons across criteria are in general not meaningful but, because there

2 An affine transformation f is a mapping that can be written in the form f(u) = ou + 3,
where o and 3 are real constants. It is positive if o > 0.
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is a fixed origin, a special kind of comparison is possible. Suppose that
g2(c) > 0 and g1(a) < 0. Then, after any transformation, gj(c) > 0 and
gi(a) < 0. Therefore, the statement

g2(¢c) > g1(a)
is meaningful.

Ratio commensurable The scale for each criterion is a ratio scale with the same
unit. The evaluations can only be transformed by linear transformations such
that g} = og;, with « identical for all criteria. So, all statements that are
meaningful with ratio scales are meaningful here, even across criteria.

This case occurs, for example, when all criteria are expressed in monetary
units and when we are interested in the amounts of money and not by their
value or utility for one or several persons.

We can of course distinguish many other cases. Our list is not exhaustive. For
example, interval with the same unit and origin. But this case is not interesting:
on an interval scale, we always compare differences; so, the origin doesn’t play any
role and this case boils down to the case of interval scales with the same unit.
Another case is when all criteria are expressed on incommensurable ordinal scales
with a common fixed point. This can happen if all criteria are ordinal but, a
neutral point is precisely identified on each one; a point such that every evaluation
above it is considered as attractive and every evaluation under it is repulsive. An
aggregation procedure might take advantage of the existence of this special point
(see e.g. Grabisch and Labreuche, 2004). Unfortunately, we do not have much to
say about this case.

Note that if some preferences are increasing with g; and others are decreas-
ing with g; (see our comment p. 203), then it is very unlikely that some sort of
commensurability exists between the criteria.

5.4.2 A comment about commensurability

Commensurability is very rare. It almost never happens that two scales are com-
mensurable, even if we often assume they are, for commodity reasons. Often, when
two scales seem commensurable, they are not. For example, suppose some projects
must be ranked, taking only their costs in year 1 and 2 into account. The two
costs are measured in Euros. So, apparently, the two scales are identical but it
could be the case that the decision maker prefers a cost of 108 € in the second year
to the same cost in the first year because he expects to have more liquidities in the
second year (even after discounting). So, even if the consequences, measured in
monetary amounts are commensurable, we do not necessarily know how a decision
maker compares them. The simple algebraic comparison g;(a) > g¢;(b) does not
necessarily imply that g;(a) is at least as good as g;(b) (preferential comparison).

There are techniques that can help build commensurable scales. These tech-
niques are based on conjoint measurement (MAVT) and are discussed in section 4.3
and chapter 6. But, using these techniques, in the process of constructing the
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scales, we necessarily also build a global preference relation on A. So, once we
have obtained commensurable scales, we no longer need to use an aggregation
method, because we already performed the aggregation. These techniques do not
help us to construct commensurable scales that we can later use in a weighted sum
for example. They yield the scales and the global preference relation simultane-
ously.

If we do not construct commensurable scales, when do we face such scales? A
general answer to this question probably does not exits, but we see at least three
classes of problems in which we might have commensurable scales.

e When alternatives have dispersed consequences. An alternative has dis-
persed consequences (Azibi and Vanderpooten, 2003; Keeney and Raiffa,
1976) when it has consequences of the same nature in different places (the
impact of a factory all along a river it pollutes), at different moments (the
impact of an investment over the next ten years) or for different persons (the
impact of a new community policy on all people in that community) or units
(the impact of a policy decided by a bank for all its branches).

Suppose that, in order to estimate the aesthetical impact of a new freeway
on the landscape, twenty points are selected along it. At each point, the
maximum distance from which the freeway can be seen is considered as the
impact. From a purely algebraic viewpoint, the twenty evaluations are on
commensurable ratio scales. Now, from a preferential viewpoint, we probably
do not have ratio scales (because the aesthetical impact might not vary
linearly with distance) but we might still have commensurable scales (except
if one of the twenty points lies in a national park, for example).

Dispersion in time is more problematic because we seldom give the same
importance to yesterday, today, tomorrow, next year and the next millen-
nium. One Euro today often has more value than one Euro tomorrow while
one BEuro yesterday or in the next millennium has no value at all. But, in
some cases, short- or mid-term, commensurability might hold. Suppose for
example that, in a production planning problem, you estimate the average
delivery time for every month of a year (the mean of the delivery times for
all orders received during that month). It is probably reasonable to assume
that a given average delivery time for month 3 is equivalent (in terms of
preference) to the same average delivery time for month 7.

o In the constraint satisfaction problem (see p. 144).
o In the pairwise aggregation of fuzzy preference relations (see p. 199).

Our remark for the first case also holds for the last two ones: it is not because
the ranges of the scales are the same that they are commensurable. So, a careful
construction of the scales is necessary but perhaps not always possible. We now
turn to the description and analysis of some simple and/or popular aggregation
methods.
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5.4.3 The min

The min, also called maximin, is a very simple method. The alternatives are
ranked in the decreasing order of their minimum performance. Formally,

a 2(g) b & minlgi(a)] > minlgi(b)].

It is a very pessimistic aggregation method because it only takes the worst perfor-
mance into account. Table 5.1 illustrates how the min ‘works’. Note that, using

g1 92 g3 94
a 10 6 8 6
b 4 9 5 7
c 7 9 6 4

Table 5.1: The min: the smallest performance of a (resp. b and ¢) is 6 (resp. 4
and 4). The ranking is thus a >(g) [b ~(g) ¢].

the min, the global preference relation > (g) is always a weak order, i.e. a ranking,
possibly with ties.

Of course, a symmetrical or dual aggregation procedure can be defined: the
max (or minimax). The alternatives are ranked in the increasing order of their
maximal performance. Formally,

a 7(g) b & max{gi(a)] < max[g;(b)]-

It is a very optimistic aggregation method because it only takes the best perfor-
mance into account. Everything we state about the min in the next paragraphs
can easily be adapted to the max.

5.4.3.1 Axioms and characterisation
We will use the following condition to characterise the min.

o Weak Order. See p. 123.

e Strong Ordinality. Suppose that, given g, we change the performances in g in
order to obtain g’, in such a way that we never reverse the order between two
performances or break an indifference. In other words, if g;(¢) > g;(d), then
two cases are possible: gi(c) > gj(d) or gi(c) = g;j(d). The case gi(c) < g;(d)
is not allowed (this is a reversal). If g;(¢) = g;(d), then only one case is
possible: gi(c) = g;(d). Suppose now that alternative a is globally at least
as good as b in g. If > is Strongly Ordinal, then a must still be globally at
least as good as b in g’. Very roughly, this means that only the order of the
performances is relevant.

Formally: let g— be the smallest admissible or possible performance. Let
¢ be a non-decreasing mapping from [g..,oc0[ into R. If g’ is such that
gila) = ¢(g:(a)) for all 1 € N and all a € A, then a Z(g) b= o (g} b.
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o Weak Reversibility. Suppose that a 22(g) b. Then, by lowering any perfor-
mance of a sufficiently, it is possible to obtain b (g) a

e Strong Reversibility. Suppose that a 7(g) b and none of the performances
of b are equal to g_.. Then, by lowering any performance of a sufficiently, it
is possible to obtain b >~(g) a

In a different context, Bouyssou and Pirlot (1997) proved the following theorem.

Theorem 5.10

If the smallest possible performance g_ can be attained, then the only aggregation
function satisfying Weak Order, Strong Ordinality, Weak Reversibility and Strong
Reversibility is the min, i.e. the alternatives are ranked in the decreasing order of
their minimum performance.

For alternative characterisations, see Bouyssou (1991, 1995); Fortemps and Pirlot
(2004); Pirlot (1995).

5.4.3.2 Discussion

Because the only operation we carry out on the performances is comparing them,
they do not need to be on a scale that is stronger than ordinal. But, because we
compare performances on different criteria, it is necessary that these performances
be measured on commensurable scales. So, if we have ordinal commensurable
scales and if the four axioms which characterise the min seem appealing to the
decision maker, it makes sense to use the min. But this is not the only case. We
have seen that the scales must at least be ordinal. So, if the scales are commensu-
rable ratio scales and if the decision maker agrees with the axioms, then he should
also use the min. Its use is not restricted to ordinal scales. The important issue is
the commensurability of the scales.

If the smallest possible performance cannot be attained—for example if the
range for the performances is R—then Theorem 5.10 does not hold. This does not
mean that the min should not be used. It just means that there might then exist
other aggregation procedures which also satisfy Weak Order, Strong Ordinality,
Weak Reversibility and Strong Reversibility. Furthermore one of them might be
better suited to the decision maker’s need than the min.

o1 When using the min, it is very important to make sure that the per-

formances on all criteria are on the same scales, in a very strong sense: if
gi(a) > g;(b), the decision maker must then agree that g;(a) is at least as good
(or as desirable, as attractive, ...) as g;(b), for all pairs of criteria i,j and
all pairs of alternatives a,b. This is a strong requirement. Here is an example
where it is not satisfied: suppose some projects must be ranked, taking only
their costs in years 1 and 2 into account. The two costs are measured in €.
> So, apparently, the two scales are identical but it could be the case that the
decision maker prefers a cost of 10%€ in the second year to the same cost in
L"A the first year because he expects to have more liquidities in the second year
é s (even after actualisation).

OO

o

OO0

08¢
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Later on, we will present a method bearing some similarities with the min—+the
leximin—but let us first discuss the weighted sum.

5.4.4 The weighted sum

The weighted sum is a very popular and simple aggregation method. For each
alternative, we compute a score s,(p) which is defined as the weighted sum of its

evaluations:
sa(g) = Y _ wigi(a). (5.9)
iEN
The alternatives are then ranked in the decreasing order of their score. Table 5.2
illustrates how the weighted sum works.

gi g2 g3
a 10 6 8
b 4 9 5
c 7 9 6

Table 5.2: The weighted sum: if w = (1,2,1) the score of a (resp. b and ¢) is 30
(resp. 27 and 31). The ranking is thus ¢ >(g) a ~(g) b.

5.4.4.1 Axioms and characterisation
o Weak Order. See p. 123.

e Cardinal Pareto. If alternative q is strictly better than b on all criteria, then
a is globally preferred to b. Formally,

gi(a) > g; (L) Vie N = a>(g)b.

This condition is in fact almost the same as Pareto (see p. 175). The only
difference is that Pareto is formulated in terms of preference relations while
Cardinal Pareto is formulated in terms of performance tables.

e Cardinal Independence of Irrelevant Alternatives. The global preference
between a and b depends only on their evaluations in g and not on the
evaluations of other alternatives. In other words, if g and g’ are two pro-
files such that, for every criterion %, g;(a) = gj(a) and g;(b) = g;(b), then
a =(g) b < a (g') b. This condition is almost the same as Independence of
Irrelevant Alternatives (see p. 172).

o Cardinal Neutrality. The result of the aggregation does not depend on the
labels of the alternatives, but only on their evaluations in g. This condition
is almost the same as Neutrality (see p. 123).

e Invariance w.r.t. Independent Translations. Suppose that, given some g,
we change the performances in g in order to obtain g’, in such a way that
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gi(a) = gi(a) + B;. Suppose now that alternative a is globally better than b
in g. If 7~ is Invariant w.r.t. Independent Translations, then @ must remain
globally better than b in g’. Very roughly, this means that the performances
as such are not really important. What really matters are the differences
between performances. We speak here of Independent Translations because
the performances on each criterion are translated by a different quantity
B;. We already presented a somewhat similar condition: Strong Ordinality
{see p. 207). It could have been called Invariance w.r.t. a Common Non-
Decreasing Transformation.

Note that if the performances g;(a) are utilities that have been previously
constructed in such a way that differences of utility are meaningful, then
Invariance w.r.t. Independent Translations certainly makes sense. But it
might make sense in other circumstances as well.

e Invariance w.r.t. a Common Multiplication. Suppose that, given g, we
change the performances in g in order to obtain g’, in such a way that
gi(a) = ag;(a). Suppose now that alternative a is globally better than b in
g. If = is Invariant w.r.t. a Common Multiplication, then a must still be
globally better than b in g’. This, combined with the previous condition, im-
plies that only ratios of differences between performances are important. We
speak of a Common Multiplication because the performances on all criteria
are multiplied by the same amount «.

K. W. S. Roberts (1980) proved the following theorem.

Theorem 5.11

Suppose that, for each criterion i and each alternative a, the performance g;(a)
can be any real number. Then, the only aggregation function satisfying Weak
Order, Cardinal Pareto, Cardinal Independence of Irrelevant Alternatives, Cardi-
nal Neutrality, Invariance w.r.t. Independent Translations and Invariance w.r.t. a
Common Multiplication is the weighted sum, i.e. the alternatives are ranked in the
decreasing order of their weighted sum.

5.4.4.2 Discussion

In this characterisation, the first four conditions imposed on the aggregation func-
tion are extremely reasonable. It is hard to find an example of a decision problem
in which one of these conditions is questionable. But the last two deserve a closer
examination; combined with the first four, they impose that the scales of the
different criteria be interval scales with the same unit. We will show this now.

For the sake of clarity, let us consider a profile with two criteria. Suppose the
decision maker is indifferent between a and b. We then have to choose the weights
w; and we in such a way that wig1(a) + wag2(a) = wig1(b) + waga(b) (we will
discuss the choice of the weights later). This can be rewritten as

wifgi1(a) — g1(b)] = w2[g2(b) — g2(a)]
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or
g1(a) — g1(b) = r21(g2(b) — g2(a)], (5.10)

where ro; = wo/wi. If we now want to compare two other alternatives ¢ and d,
we need to compare

wig1(c) +weg2(c) and wig1(d) + waga(d)

g1(c) — g1(d) and ra1(g2(c) — ga(d)].

In the last line, it is clear that the quantities we compare are differences of perfor-
mances. The performances thus need to be measured on interval scales. Further-
more, we compare differences of performances on different criteria. The scales for
the criteria must therefore have the same unit.

But how do we know if we have interval scales with the same unit? Or how can
we construct our scales in such a way that we are sure that they are interval scales
with the same unit? These questions are addressed, to some extent, in chapter 3.

In (5.10), it also clearly appears that any difference on the second criterion is
exactly compensated by ro; times that difference on the first criterion. A difference
of 1 on the second criterion is compensated by a difference of 79 on the first one.
A difference of 2 on the second criterion is compensated by a difference of 2rqg;
on the first one. And so on. The ratio r9; is called the substitution rate or
tradeoff. It tells us how many units of criterion 1 each unit of criterion 2 is worth.
It is important to note that substitution rate ro; is independent of the level of
the performances. Whether the performances ga(a) and g2(b) are both low, both
average or both high, their difference is compensated exactly by r21[g2(a) — g2(b)].
This is a consequence of Invariance w.r.t. Independent Translations.

When there are more than two criteria, a substitution rate can be defined for all
pairs of criteria and has the same properties as the substitution rate in a bicriteria
problem.

@ In order to use the weighted sum, it is important that the performances
3 be measured on interval scales with the same unit for all criteria and that the
2 substitution rates be constant for all levels of the criteria. Here is an example
E~ (already introduced on p. 208) where it is not constant. Suppose some projects
EEJB must be ranked, taking only their costs in year 1 and 2 into account. The two
) costs are measured in Euros. The two scales are thus interval scales with the
» same unit. Suppose the decision maker expects to have more liquidities in the
& second year and he is indifferent between a (1.5 108 € in year 1, 210° € in year
&7 2) and b (110°€, 3109 €). The substitution rate sy is thus 1/2. Let us now
7 present two other projects to the decision maker: ¢ (1.510%€, 50108 €) and d
(\%31 (1108 €, 5110% €). The difference between the costs in the second year might
> now appear to be very small (relatively) when compared to the difference
i between the costs in the first year. The decision maker might then prefer ¢ to
& d. The substitution rate would then be smaller than 1 /2. In other words, it

‘v\ would have changed.

-
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It is interesting to note that none of the axioms of Theorem 5.11 involve weights.
So, even if no weights are given, if the decision maker does not think about weights,
the need for weights may appear as a consequence of the axioms or conditions
imposed on the aggregation function. This is quite different from what we had in
Theorem 5.4 where, in the axioms, the weights were considered as given.

Last remark: for convenience reasons, we often write that a performance ¢;(a)
is any real number although, for a given criterion 4, the range of g; is often limited.
The cost of a piece of equipment can neither be negative nor infinite! So, in some
cases, strictly speaking, Theorem 5.11 cannot be applied. But it is probably not
terribly wrong to apply it.

5.4.4.3 Choosing the weights

In order to set the weights, we need to ask questions to the decision maker, some-
how as with the Weighted Condorcet method (see p. 180).

1. A first strategy is the following. Present a profile on two alternatives to
the decision maker and ask him which one he prefers. Using (5.9), we then
obtain an inequality involving the weights and the performances of the two
alternatives. For example, suppose we present the following profile

g1 g2 g3 94
a 10 6 100 67
b 7 9 88 79

and the decision maker says he prefers a to b. We then know that

10w + 6ws + 100ws + 67ws > 7wy + Ywe + 88ws + 79ws.

Presenting more profiles will give us more inequalities. Eventually, we will
have so many constraints that all weight vectors satisfying them will yield
the same global preference relation. We then just have to pick one of these
weight vectors and we are done. But it can also happen that no weight
vector simultaneously satisfies all constraints. The decision maker might
then be willing to modify his judgements. If not, he might be satisfied with
a weight vector satisfying almost all constraints. If not, we are in trouble.
The weighted sum is an aggregation function that is not well suited to the
problem; probably because the scales are not interval scales with the same
unit.

2. A second and more direct strategy is to present only profiles on two alterna-
tives such that the performances of both alternatives are equal on all criteria
but two. In addition, the performance of one alternative is not fixed on one
of these two criteria. An example of this type of profile is:

We then ask to the decision maker for what value of g1(b) he would be
indifferent between a and b. Suppose he says 8. We then write (5.9):

10w; + 6ws + 100ws + 67wy = 8wy + Yws + 100ws + 67wy4.



5.4. AGGREGATION OF A PERFORMANCE TABLE 213

g1 g2 93 94
a 10 6 100 67
b ¢1(b) 9 100 67

Table 5.3: Setting the weights: a profile on two alternatives.

After some simplifications, we find:
2w1 = 3w2.

If we repeat this operation for the pairs of criteria (1,3), (1,4), ...(1,n), we
find all weights up to a multiplicative constant. If we follow the convention
that the weights add up to 1, then they are completely known; after only
n — 1 questions.

Note that if we ask only the n — 1 above-mentioned questions, we are sure
that all answers will be compatible and will lead to a unique weight vector,
up to a multiplicative constant. But if we ask additional questions, we might
obtain contradictory information, as with the first strategy.

3. Many other strategies (mostly variants of the first two) can be thought of
(see e.g. von Winterfeldt and Edwards, 1986, table 8.3).

The second strategy is faster to implement than the first but it also has some
drawbacks. The compared profiles are almost always hypothetical, fictitious and
any statement about such profiles is probably not very reliable. Any such state-
ment is about something that the decision maker does not really know and, might
even be about something impossible. Furthermore the task to be performed by
the decision maker is not familiar to him. Comparing alternatives (as in the first
strategy) is something he can (sometimes) do. Finding a performance for a given
criterion that makes two alternatives indifferent is something he probably never
does. It is therefore not certain he can do it in a reliable way. Nevertheless, this
technique can ‘force’ the decision maker to think about his problem and promote
the dialogue with the analyst. It is therefore an interesting maieutic tool.

;ré Choosing the weights. A good way to set the weights with the weighted
3 sum is to present a profile on two alternatives to the decision maker, in which
t.? the performances of the alternatives are identical except on two criteria, as in
E‘J table 5.3. The decision maker needs to find the value g;(b) that makes o and
. b indifferent. This is done for the n — 1 pairs (1,2), (1,3), ... (1,n) and yields
n — 1 equations, each one involving w; and one of the other weights. If we
then choose a value for wy, all other weights are fixed. They can eventually be
normalised. It is a good idea to present more than the n — 1 required profiles,
in order to check the adequacy of the weighted sum.

In many applications of the weighted sum (see, e.g., Liu, Lai, and Wang,
, 2000), the criteria are first rescaled or normalised so that the largest perfor-
mance is 1 and the smallest 0. Suppose we then apply a meaningful technique
> (like one of those presented above) for the elicitation of the weights. If, later,

:/ :{ Q\:\MQ‘ ‘j

»{)‘?.
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Ej? a new alternative is added and if some of its performances fall outside of the
&2 previous range for some criteria, we may be tempted to normalise the criteria
; (although this is not necessary). But if we do so, the scale of the values that
23 will be added in the weighted sum will change and, hence, the weights must be
&2 changed accordingly. It is in fact much simpler not to normalise or renormalise
the criteria. Then the weights never need to be changed when a new alter-
native is added. Furthermore, this normalisation is quite misleading: it gives
é the impression that a difference of, say, 0.1 on one criterion is worth the same
> difference on another criterion. This is not true. Even if two differences are
£2 numerically equal, they are not necessarily identical in terms of preferences.
= The normalisation also leads some people to believe that, because the nor-
&) malised performances are without units, the weights only need to reflect the
5 subjective intrinsic importance of the criteria. This is not true: the weights
¢y remain substitution rates or tradeoffs and must be elicited as above.

5.4.5 The leximin and leximax

The leximin is another simple aggregation method. For each alternative a, we
define a new vector g~ (a) which is just a reordering of g(a) such that the per-
formances in g-'(a) are increasing or at least not decreasing from left to right.
For example, if g is as in table 5.4, then g7 (a) = (4,5,10), g~ (b) = (4,5,9) and
g7 (¢) = (5,6,6). In order to determine the ranking between two alternatives, say

g1 g2 g3

a 10 4 5
b 9 5
5 6 6

Table 5.4: The leximin. The ranking is ¢ >~(g) a >(g) b.

a and b, we then look at their reordered vector of performances g (a) and g~ (b).
We first focus on the first component g7 (a) and g7’ (b). If ¢{"(a) > g7 (b), then
a ~(g) b. On the contrary, if g7’ (b) > g{ (a), then b >(g) a. If the two smallest
performances are equal, i.e. g7 (a) = g{ (b), then we look at the second component
in order to try to make a distinction between a and b. We do this in the same way
as for the first component. If we cannot make a distinction between a and b, i.e.
g5 (a) = g5 (b), we then look at the third component, and so on. If two vectors
g7 (a) and g~ (b) are identical, then a ~(g) b.

In other words: the leximin is the lexicographic method applied to g~'(a) and
g7 (b). '

We illustrate this using the example in table 5.4. By looking at the first
component of g~ (a), g7 (b) and g (¢), we find that ¢ =(g) a and ¢ >~(g) b but we
do not know how to rank a and b because their smallest performances are equal:
it is 4. We thus look at the second smallest performance of a¢ and b, i.e. at the
second component of g~"(a) and g~ (b). They are also equal. So, we look at the
third component and we find that a >(g) b. The ranking is thus ¢ > (g) a >(g) b.
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The leximax is the same method except that we use the vector g™(a), where
the performances are ordered in decreasing order, instead of g~ (a).

Very briefly, the leximin focuses on the worst performances, irrespective of
the criteria on which they are measured, while the leximax focuses on the best
performances.

5.4.5.1 Axioms and characterisation

The following properties are characteristic of the leximin.

Weak Order. See p. 123.

Cardinal Pareto. See p. 209.

Cardinal Independence of Irrelevant Alternatives. See p. 209.
Cardinal Neutrality. See p. 209.

Anonymity. Anonymity is verified when all criteria play exactly the same
role. That is, we can permute the components of g (the columns of the
performance table) without modifying the ranking of the alternatives.

Ordinality. Suppose that, given g, we change the performances in g in order
to obtain g’, in such a way that we completely preserve the order between
the performances. In other words,

9i(c) > g;(d) & gi(c) > g;(d).

Suppose now that alternative a is globally better than & in g. If 7~ is Ordinal,
then a must still be globally better than b in g’. This just means that
only the order of the performances is relevant. Note the difference with
Strong Ordinality (see the characterisation of the min, p. 207): with Strong
Ordinality, it is admitted that g;(c) > g;(d) and gj(c) = g}(d).

Independence. Suppose we have two alternatives a and b such that the per-
formances of @ and b in g are identical on some but not all criteria (say the
criteria in a set M). Suppose also that a 2Z(g) b. Consider now a new profile
g’ identical to g except that some of the performances of a and b on the cri-
teria in M have been modified, while keeping them equal (like in table 5.5).

g1 92 g3 94 91 92 93 Ya
a 4 6 5 8 a 3 6 7 8
b 4 9 5 6 b 3 9 7 6

Table 5.5: Two profiles on two alternatives such that Independence applies. The
set M consists of criteria 1 and 3.

If Independence is satisfied, then a 7(g’} b. The reason for imposing such
a condition is simple: when we compare a and b in profile g, we only pay
attention to the criteria which are not in M because the criteria in M do
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not make a difference. And this leads us to considering that a =(g) b. But
when we compare ¢ and b in the profile g’, we also only pay attention to the
criteria which are not in M for the same reason. Therefore, it seems logical
that we come to the same conclusion, i.e. @ (g’) b, because g and g’ are
just the same when we consider only the criteria not in M.

K. W. S. Roberts (1980) proved the following theorem.

Theorem 5.12

Suppose that, for each criterion 1 and each alternative a, the performance g;(a) can
be any real number. Then, if there are at least three criteria, the only aggregation
functions satisfying Weak Order, Cardinal Pareto, Cardinal Independence of Irrel-
evant Alternatives, Cardinal Neutrality, Anonymity, Ordinality and Independence
are the leximin and the leximaz.

For another characterisation, see Fortemps and Pirlot (2004).

5.4.5.2 Discussion

Anonymity is seldom a desirable condition: in many applications, we do not want
the criteria to play identical roles. But here are some cases where it seems a
reasonable condition:

e When the performances are evaluations given by different experts, stakehold-
ers or voters and there is no hierarchy among these persons, then it seems a
good thing to impose Anonymity.

e When all the performances express the same sort of consequence but for dif-
ferent comparable units, objects or persons (dispersed consequences) and if
there is no hierarchy among these units, then Anonymity also seems interest-
ing. For example, consider the choice among different potential locations for
a household garbage dump. The garbage dump will cause nauseous smells.
The nuisance caused by a smell is measured on an ordinal scale and varies
with the nauseous gas concentration. Using a mathematical model, it is
possible to predict the gas concentration in each house (the units) within
a radius of 10 kilometres around the location. The consequences are thus
nuisances caused by smells in each house. If we do not want to favour some
house or inhabitant, we will impose Anonymity. Because all other conditions
of Theorem 5.12 seem reasonable (at least to us) in this application and be-
cause the consequences are measured on the same ordinal scale (see below
for a more thorough discussion of this point), the leximin and the leximax
are probably “adequate” aggregation functions.)

e The flexible constraint satisfaction problem (flexible CSP) is another kind of
problem where Anonymity seems natural (see p. 144).

Ordinality, as stated above, means that only order matters, not the performances
themselves. It is very similar to Strong Ordinality (see par. 5.4.3.1, p. 207 and
par. 5.4.3.2). Note that, just like Strong Ordinality, Ordinality makes sense only
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if all scales are commensurable, i.e. a performance on a scale must be comparable
with a performance on another scale. This calls for a comment about the example
of the garbage dump. It is probably true that the nuisance caused by the odour
varies with the gas concentration: the higher the concentration, the stronger the
nuisance. But it is certainly not true that the same gas concentration causes
the same nuisance to each person. Some individuals are more sensitive to odours
than others. Ordinality is therefore questionable in this application and, strictly
speaking, it should be rejected. But, we might argue—this is open to discussion—
that smell sensitivity does not vary so much between individuals, except for some
rare cases, and that Ordinality is rather a reasonable condition. Then, the leximin
and leximax are the only possibilities.

On the contrary, if we decide that nuisances are not comparable between indi-
viduals, then the available information we have (the performances) is ordinal and
not commensurable. This is in fact equivalent to a profile of rankings and we are
then back to the problem discussed in section 5.2. The leximin and leximax are
no longer available options.

We repeat that, as on p. 208, even if the performances are measured on interval
or ratio scales, it might make sense to impose Ordinality. Consider for example the
choice between different potential locations for a facility to be accessed by different
customers (the units). The consequences are travel times for each customer. If all
customers have approximately the same importance, then we do not want to favour
any customer and we might impose Anonymity. Contrary to the garbage dump
example, the consequences are measured on ratio scales (travel times). Because
all performances are measured on the same ratio scale, we might just impose
Invariance w.r.t. a Common Multiplication (see p. 210) and not Ordinality (which
could be called Invariance w.r.t. a Common Increasing Transformation). This,
combined with the other axioms of Theorem 5.12 and some kind of continuity
would force us to use the arithmetic mean. 3

But it is not because we have a ratio scale (travel time) that we must im-
pose Invariance w.r.t. a Common Multiplication. We may think that a gain of
5 minutes in travel time for a 15 minutes journey is more important, has more
value than the same gain for a 30 minutes journey. The utility or value of travel
time would thus not be proportional to travel time. Then, instead of arbitrarily
saying that the utility or value of a travel time is equal to its square root (or
logarithm or square or exponential), we might just say that the utility of travel
time is measured on an ordinal scale. This brings us back to the problem of the
garbage dump. An important question is then to find out whether the utilities
are identical for all customers, in other words, if the travel times (or their utility)
are commensurable across customers. If the customers are individuals, then we
suspect that the answer is negative: not all people perceive and value time the
same way. But if the customers are similar companies, then the answer could be

3 This theorem (Roberts, 1980) is not presented in this book, but another characterisation
of the arithmetic mean can easily be obtained by adding Anonymity to the conditions of The-
orem 5.11, characterising the weighted sum. It is indeed clear that, if Anonymity is imposed,
then all weights must be identical and we obtain the arithmetic mean. Here, we consider the
arithmetic mean as an aggregation function and not as an aggregation operator as in section 5.7.
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approximately ‘yes’ because each company consists of different people and that
their “average” perception and value for time is perhaps roughly the same.

We now present an application, in robustness analysis, in which Ordinality
definitely makes sense. Suppose we want to go from A to B and there are six
possible routes: through C, D, E, F, G or H. We would like to choose the fastest
route but because of some unpredictable events, the travel times for each route
can take two different values. The travel times for these six routes are presented
in table 7.9 in chapter 7, where this example is introduced. If we want to find
a robust solution, we may then consider a decision problem with two criteria
such that the performances on the two criteria are the travel times under the
two different scenarios (for a motivation of this approach, see section 7.5.2). If
we consider that the utility or value of travel time is measured on an ordinal
scale, then Ordinality is a condition that we will definitely impose because the
performances on the two criteria are utilities of travel times, for the same person.
They are therefore perfectly commensurable. We know for sure that 28 minutes
on route AEB is better than 29 minutes on the same route.

Suppose now that both scenarios seem equally possible; we then do not want
to favour one of them and we may impose Anonymity. If we then also impose In-
dependence and the other conditions of Theorem 5.12 (these are very reasonable),
we find that we must use the leximin or the leximax.

@ Just as for the min, a crucial issue for the leximin is the commensurability
¢ of the scales. We must be able to compare performances on different criteria.
Lz If 5 is a performance on criterion ¢ and 6 on criterion j, then it must be
Ef' that the decision maker considers 6 as better than 5. The main difference
b . with respect to the min is Independence. Take two alternatives that have
gj the same performance on one criterion and lower that performance; if you
{.;1 lower it enough and if you use the min, you are sure that the two alternatives
t will be indifferent. With the leximin, because of Independence, if you lower
ikfa two identical performances, the ranking between these alternatives will not be
affected and if one is strictly preferred to the other one, they will remain so.

The last condition of Theorem 5.12 we want to discuss is Independence (see
p. 215). This condition looks innocuous but is in fact not always acceptable. It
is very similar to several other conditions introduced in section 4.3 and chapter 6:
namely Weak Separability (p. 258), Weak Preference independence (p. 239) and
Strong Preference Independence (p. 239). Because these conditions are discussed
at length in section 4.3 and chapter 6, we refer the reader to those sections.

5.4.6 The outranking procedures

The expression outranking procedure has often been used informally to designate
aggregation methods that, like ELECTRE I, PROMETHEE, TACTIC, etc., pro-
duce a global preference relation, sometimes not complete, based on pairwise com-
parisons of the alternatives. There is no formal definition of an outranking proce-
dure.

In this section, we use the expression outranking procedure in a different way,
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as defined by Pirlot (1997). It is not unrelated to the informal expression but
it is not equivalent. Qutranking procedures are a large family of aggregation
functions. Unlike most families of aggregation functions we have seen so far,
outranking procedures are functions not only of a performance table but also of
some parameters: the thresholds. For each criterion 4, there are t; thresholds:
Ti1»Ti,2,-- -+ Ti,t;» Lhese thresholds are non-negative real numbers and are or-
dered, i.e. 0 < 731 < 79 < Ty, We use the symbol 7 to represent the collection
of all thresholds to be used in a particular problem. In this section, an aggrega-
tion function is therefore a function 2~ that associates a global preference relation
denoted by (g, 7) to each profile g and each collection of thresholds 7.

Another difference with the aggregation functions presented so far: outranking
procedures are not defined by the computations we need to perform in order to
use them, but by a list of properties or axioms that they satisfy. We can therefore
not present outranking procedures without first presenting the axioms that they
all must satisfy (by definition).

e Cardinal Neutrality. See p. 209.

e No Reversal. Suppose that, given a profile g and a collection of thresholds
7, we have a 7=(g, 7) b. Construct a new profile g’ identical to g except that
some performances of a are raised and some performances of b are lowered.
Formally, for every criterion ¢, gj(a) > g;(a) and g;(b) < g;(b). Because the
position of a has improved and that of b has deteriorated and because we
had a (g, 7) b, No Reversal imposes a 22(g’,7) b.

o Cardinal Independence of Irrelevant Alternatives with thresholds. The global
preference between a and b depends only on their evaluations in g and on the
thresholds, but not on the evaluations of other alternatives. In other words,
if g and g’ are two profiles with a vector 7 such that, for each criterion
i, gi(a) = gi(a) and gi(b) = gi(b), then a Z(g,7) b & a Z(g',7) b. This
condition is almost the same as Independence of Irrelevant Alternatives (see
p. 172) and Cardinal Independence of Irrelevant Alternatives (see p. 209).
The difference is purely formal.

o Semi-Pareto. This axiom is a variant of Cardinal Pareto (p. 209) and gives a
meaning to the first threshold 7, 1. For a criterion 4, 7; 1 represents the limit
between the differences of performances that are considered as negligible or
not important and those that are significant or not negligible. The threshold
7;1 can therefore be seen as an indifference threshold. Taking this into
account, we can adapt the Pareto condition as follows: if an alternative a is
significantly better than another one (say b) on all criteria, then it cannot be
globally worse than b. By ‘significantly better’, we mean that the difference
in performances is larger than 7; ;. Formally, Semi-Pareto is satisfied if

Vi, gi(a) > gi(b) + 7,1 = Not[b (g, 7) al.

e Semi-Ordinality. This axiom gives a meaning to the other thresholds. As we
have seen, the first threshold 7; ; represents the limit between the differences
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in performances that are considered as negligible and those that are signif-
icant. No distinction is made between negligible differences (thus smaller
than 7;1). The other thresholds will partition the larger differences in per-
formances as follows: the differences in performance lying between 7; 1 and
7;,2 are considered as larger than those smaller than 7; ; but no distinction is
made between them. The differences in performance lying between 7; » and
7;,3 are considered as larger than those smaller than 7; » but no distinction is
made among them. And so on. Hence, if we change some performances but
if the differences in performances remain between the same thresholds, for
each criterion, then the result of the aggregation should not vary. Formally,
suppose we have two profiles g and g’ such that, for every pair a,b in A,
every criterion i and every j between 1 and ¢,

gi(a) 2 gi(b) + 7i; « gi(a) 2 gi(b) + 7.
Semi-Ordinality then imposes that > (g, 7)=2(g’, 7).

Pirlot (1997) defines an outranking procedure as any aggregation function satis-
fying Cardinal Neutrality, No Reversal, Cardinal Independence of Irrelevant Al-
ternatives with Thresholds, Semi-Pareto and Semi-Ordinality. The reader may
now wonder what these outranking procedures look like, but it is very difficult
to answer this question because this family is very large. Nevertheless, it is not
difficult to see that they are based on pairwise comparisons (because of Cardinal
Independence of Irrelevant Alternatives with Thresholds) and on differences in
performances for each criterion (because of Semi-Ordinality). They are therefore
quite close to the ELECTRE methods, TACTIC, PROMETHEE, etc. This is why
they are been called outranking procedures.

By imposing an additional condition, Pirlot (1997) characterises a family of
aggregation functions that is very much like ELECTRE I, without veto. This
condition is

Componentwise Strong Ordinality. This condition is similar to Strong Ordinality
{p. 207) but here we consider independent transformations for all criteria, i.e. we
have n mappings ¢; instead of one mapping ¢.

Formally, let ¢; be a non-decreasing mapping from R into R. If g’ is such that
gi(a) = ¢:(gi(a)) for all ¢ € N and all a € A, then o Z(g,7) b= a Z(g',7) b.

Theorem 5.13

An aggregation function satisfies Cardinal Neutrality, No Reversal, Cardinal Inde-
pendence of Irrelevant Alternatives with Thresholds, Semi-Pareto, Semi-Ordinality
and Componentwise Strong Ordinality if and only if there is a set C of coalitions
of criteria (to be interpreted as strong coalitions) such that

az(g,7)b iff {i:gila)>gi(b)} €C.
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5.4.6.1 Discussion

In general, outranking procedures allow for the existence of an indifference thresh-
old as defined by Semi-Pareto but in Theorem 5.13, there is no indifference thresh-
old (in fact, it is equal to zero). This is a consequence of Componentwise Strong
Ordinality. So, we could have used Cardinal Pareto instead of Semi-Pareto in the
statement of Theorem 5.13 but because Semi-Pareto is part of the definition of an
outranking procedure and because it is weaker than Cardinal Pareto, we prefer
the statement with Semi-Pareto.

As already discussed, Cardinal Neutrality is essentially the same condition
as Neutrality (see p. 123) and is very compelling except perhaps in situations
involving a status quo.

No Reversal is in fact a weak version of Non-Negative Responsiveness (see
p. 184). With Non-Negative responsiveness, when the position of a improves on
some criteria w.r.t. b, the global position of ¢ w.r.t. b can not deteriorate. With
No Reversal, the global position of a w.r.t. b can deteriorate in the sense that a
strict preference of a over b can be transformed in an indifference. But a preference
(strict or not) of a over b cannot be transformed in a strict preference of b over a.
This is an extremely weak condition. In just about all cases, we will want more
than No reversal. It is therefore a very compelling condition.

Cardinal Independence of Irrelevant Alternatives with Thresholds is a more
disputable condition. Because it is essentially the same condition as Independence
of Irrelevant Alternatives, we refer the reader to the discussion on p. 174.

Semi-Pareto is a weaker condition than Pareto. It applies only if a is signifi-
cantly better than b on all criteria whilst Pareto applies when a is better than b
on all criteria. Because Pareto is a very reasonable condition in most (or even all)
cases, Semi-Pareto seems very appealing.

Semi-Ordinality is a strange property of outranking procedures. In some sense,
it imposes that a method be not too sensitive to small changes. Indeed, if we change
some performances and if all performances remain between the same thresholds,
the result of the aggregation must be the same. But, at the same time, the
thresholds induce some discontinuities: if the difference between two performances
is just smaller than a threshold and if we slightly change these performances in such
a way that the difference between them becomes just larger than the threshold,
anything can happen.

Another salient aspect of outranking procedures is very clear when we look at
Semi-Ordinality: the outcome of an outranking procedure does not depend on the
magnitude of the performances, but only on their order and their differences. If
we add a constant to all performances on a criterion, no difference changes and,
hence, the outcome does not change. Suppose now that the indifference threshold
for a criterion expressed in Euros is 1000€. This threshold will play the same
role when we compare two alternatives with costs of 99000 € and 99500 € or two
alternatives with costs of 100€ and 600 € because the differences are the same.
But this is not necessarily what we want. If this is a problem in a given context,
we can easily avoid it by using variable thresholds. But we then leave the world
of outranking procedures (as defined by Pirlot).
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The last condition we must discuss is Componentwise Strong Ordinality. It is
not a characteristic of all outranking procedures, but only of those characterised
by Theorem 5.13. Componentwise Strong Ordinality is a very strong condition.
It has two aspects.

First, it imposes that the outcome of the aggregation be insensitive to any
non-decreasing transformation of the performances. So, the magnitude of the per-
formances is not relevant (this is also a consequence of Semi-Ordinality) but, in ad-
dition, the differences are also not relevant. So, only the order of the performances
matters and, hence, all thresholds must be zero. This is probably reasonable if the
performances are measured on an ordinal scale, that is, we have no information
about distances between the various performances.

Second, it imposes that the outcome be insensitive to different transformations
on the different criteria. This is quite different from Strong Ordinality that we
presented in section 5.4.3 about the min (see p. 207). There we considered the
same transformation for all criteria. Here, the performances on one criterion can
be transformed independently of those on another criterion. A consequence of
this is that the methods characterised by Theorem 5.13 are noncompensatory.
Indeed, suppose we have two criteria (investment and exploitation cost) and two
alternatives with the following performances:

a1 g2
a 4 2
b 1 4

Suppose also that a =(g,7) b. Then, if we want to use the same procedure in
order to compare two other alternatives ¢ and d with the following performances

g1 92
c 10 0.2
d 1 04

we must conclude ¢ 7 (g, 7) d because, on each criterion, the performances of ¢ and
d are in the same order as those of a and b. So, even though ¢ is much worse than d
on criterion 1 and only slightly better than d on criterion 2, the bad performance of
d on criterion 2 cannot be compensated by its very good performance on criterion
1.

A situation where noncompensation is probably desirable or useful is when
comparisons across criteria are difficult, as in the following example. Suppose
your beloved is in a coma and you must choose between 3 different surgical treat-
ments for him or her. You have a performance table with three criteria (cost in
Euros, quality of life after treatment and chances of success). If you use a com-
pensatory technique—say additive utility (see section 4.3)—to choose a treatment,
then during the elicitation process, you will have to answer questions like ‘Do you
prefer a or b where a and b are characterised by the following performances.

Cost QOL Chances
a 30000 6 0.7
b 10000 6 0.6
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This means that you will have to decide if increasing the chance of success of your
beloved by 0.1 is worth 20000€. This is a tough question! Chances are you will
not be able or willing to answer it. With a procedure like those characterised by
Theorem 5.13, you would not have to answer such a question, where an increase
on one criterion is compared to an increase on another one.

Note that, in our example, comparisons across criteria are difficult and, so,
perhaps justify the use of a method insensitive to independent transformations
of the scales but the performances are not measured on ordinal scales (at least
not all of them). Using a method satisfying Componentwise Strong Ordinality is
therefore not completely justified.

In Pirlot (1997), another result is presented, similar to Theorem 5.13 but where
Componentwise Strong Ordinality is replaced by two other conditions, one of them
expressing the fact that the second threshold 7;9 is a veto threshold. The meth-
ods characterised by this theorem are very close to those of Theorem 5.13. The
difference is the presence of a veto.

5.4.6.2 The outranking procedures and ELECTRE I

It is clear that ELECTRE I is an outranking procedure, in the sense of Pirlot
(1997). If we put aside the vetoes, ELECTRE I is even one of the methods
characterised by Theorem 5.13. These are more general than ELECTRE I because
the set of strong coalitions is not necessarily defined by the addition of weights.
The second main result in Pirlot (1997), that we do not present here, characterises
a family even closer to ELECTRE 1 since it allows for vetoes.

Lot

A very particular property of ELECTRE I is its noncompensatory char-
21 acter which, in the absence of vetoes, is formally expressed by Componentwise
&2 Strong Ordinality. Before using ELECTRE I within an evaluation model, it
is probably a good idea to check if the absence of compensation is desirable.
A simple way to do this is to present two alternatives a and b such that the
5 decision maker prefers one of them (say a) and such that the number of criteria
3 for which a is better than b is as small as possible. Then improve significantly
& the performances of b on all criteria for which b is better than a. If the de-
2 cision maker still prefers a to b, then ELECTRE I might be an appropriate

E;{f‘q aggregation method.

O

]
b

<

We already mentioned ELECTRE I several times in this chapter but we never
mentioned noncompensation. The reason is that this is the first time we consider
the aggregation of performances. Until now, we always considered the aggrega-
tion of preference relations and noncompensation was not really relevant in that
context. The condition that makes the outranking procedures noncompensatory
is clearly Componentwise Strong Ordinality.
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5.5 Aggregation of a linguistic performance table
into one relation

When each alternative is evaluated on each criterion by means of linguistic evalu-
ations {“good”, “average”, “bad” or ¢ ‘very comfortable”, “comfortable”, “accept-
able”, “unacceptable” or ...) and we want to construct a preference relation on
the set of alternatives, several attitudes are possible.

o We have no other information than the linguistic evaluations and an order
on these evaluations. For example, we know that “good” is better than
“average” which is better than “bad”. For some reason, we do not try or do
not succeed in gaining more information. In this case, we are back to the
case explored in section 5.2 (the aggregation of several binary relations into
one relation).

o If the decision maker has enough time and is willing to spend some energy
in such a process, it might be interesting to try to build a numerical rep-
resentation on each criterion. Using the techniques of preference modelling
(see chapter 3), we can arrive at numerical evaluations for each alternative
on each criterion on scales that are stronger than ordinal (eventually inter-
val scales). Instead of a numerical representation, we can also build a fuzzy
representation, i.e. a model where each alternative is characterised on each
criterion by a fuzzy number instead of a number. The next step is then
to aggregate these performances into one global preference relation. If the
performances are crisp, this brings us back to section 5.4; the case of the ag-
gregation of fuzzy performances into one relation—which is popular in fuzzy
control (see Bouyssou et al., 2000, chapter 7 or Nguyen and Kreinovich,
1998)—is not addressed in this book.

Note that transforming the linguistic evaluations into numerical or fuzzy
evaluations is not an easy task. It is not enough to say that we will (re)code
“good” by 3, “average” by 2 and “bad” by 1 or to decide that “good” is
represented by the trapezoidal® fuzzy number (6, 8.5, 10, 10), “average” by
(3.5, 4, 6, 8.5) and “bad” by (0, 0, 3.5, 4). The representation must really
represent the decision maker’s preferences. It is therefore necessary to have
a deep interaction with the decision maker to obtain the information that
can help us move from an ordinal scale to a richer scale. For a discussion of
techniques that may be of some help with fuzzy sets, see Bollmann-Sdorra,
Wong, and Yao (1993); Marchant (2004a,b, forthcoming).

e In the previous case, we suggested replacing the linguistic evaluations by
numerical or fuzzy evaluations through a preference modelling step. This
can take place independently for each criterion. The evaluations we obtain
are therefore on incommensurable scales and it is then not at all obvious how
to aggregate these evaluations. In section 5.4, all of the aggregation methods
we presented require some commensurability.

4An example of a trapezoidal fuzzy number is curve b in fig. 5.2.
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It might then be wiser (but this might also be more difficult) to model the
preferences on all criteria simultaneously in order to obtain commensurable
scales. This process is known by the name conjoint measurement. It is fa-
miliar to all those who used MAVT, but it is not limited to MAVT. Thanks
to the work of Bouyssou and Pirlot (2002a), we know that many different ag-
gregation methods (even those usually grouped under the label of outranking
methods) can be described in the framework of conjoint measurement. The
reader interested in this approach should go to section 4.3 and chapter 6.

Note that, after the conjoint measurement (or conjoint preference modelling)
step, no aggregation is needed because the modelling of the preferences on
all criteria simultaneously is necessarily accompanied by the construction of
the global preference.

Choosing between the three attitudes described above is not easy. If the decision
maker has a lot of time and is willing to cooperate with the analyst, if the decision
maker is able to give consistent answers to the analyst, to give him the necessary
information, then the last attitude will probably yield the global preference relation
with the strongest validity because it will be based on a large amount of consistent
and relevant preferential information.

But if time is short or if the decision maker does not really want to cooperate
or if he is not able to give consistent answers, then the second or even the first
attitude might be equally or even more valid than the third one. If the decision
maker does not really understand your questions or if he has no time to think
about your questions, the global preference relation might just be the outcome
of a stochastic (or chaotic) process and not really reflect the decision maker’s
preferences. In such a case, it might then be better to ask the decision maker for
less information and to replace it by some more or less normative principles (some
axioms characterising an aggregation function) that can eventually be discussed
with the decision maker. The result would then neither be a better reflection of the
decision maker’s preferences nor a worse one. But—this is important—it would
be consistent and you would know on what it is based.

5.6 Choice functions

Until now, we always considered the problem of aggregating a profile of preference
relations (or a performance table) into a global preference relation. If this global
preference relation is a weak order, then this problem is often referred to as the
ranking problem statement (see section 2.4.3 and Roy, 1996). But, in many cases,
the decision maker’s problem is not stated in terms of ranking alternatives. There
are many other possible problem statements. Formulating a problem statement
is a difficult issue and also a very important one if we do not want to find the
correct solution of an erroneous problem. We will not develop this point here
because it has been partially addressed in chapter 2 and will be further discussed
in chapter 7. Suppose our decision maker just needs to choose one alternative: the
best one. He is not interested in a ranking. This problem is known as the choice
problem statement. There are typically two ways to handle this problem.
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e The decision maker first constructs a global preference relation, by aggregat-
ing the single-criterion preference relations. He then tries to base his choice
on the analysis of the global preference relation. This second step is often
called the exploitation of the global preference relation. It is discussed in
chapter 7, section 7.4.

e The decision maker directly constructs a choice set (a set with the best
alternatives) in one step. Only this approach will be discussed in this section.

Many aggregation procedures can be used for ranking or choosing; in the latter
case, they provide the decision maker with a choice set which contains the best
alternatives (one or more alternatives). For example, with the Borda method,
instead of ranking the alternatives according to their score, you just choose the
alternatives with the highest score. With the Condorcet method, the choice set
contains the alternatives that are preferred to all other alternatives (this choice
set can eventually be empty). For many procedures, switching from ranking to
choosing requires only a small and obvious adaptation. But the choice functions
that we then obtain are no longer aggregation functions and the characterisations
that we presented above no longer hold. We need new characterisations of choice
functions.

For some methods, we have both kinds of characterisations (choice and rank-
ing). For example, Young (1974) characterised the Borda method as a choice
function. Fortunately, in all cases in which we have the two kinds of character-
isations, the axioms are almost the same; they express the same kind of ideas
and only small adaptations are necessary. This seems to indicate (but does not
prove) that characterisations of ranking and choice methods are essentially the
same. Therefore, if we know a characterisation of an aggregation procedure used
for ranking, we can quite safely use this characterisation for practical purpose, in
order to try to understand the corresponding choice function.

The opposite adaptation, i.e. transforming a choice function into an aggregation
function (for ranking) is often possible but less obvious. There can be several ways
to convert a choice function into an aggregation function.

In the following subsection, we explain how it is possible to take axioms per-
taining to the ranking problem and adapt them to the choice problem. Of course,
this is relevant only if the method one wants to analyse comes in two flavours:
ranking and choice.

5.6.1 Adapting the axioms to the choice problem

Adapting the axioms is usually an easy job. Let us use the symbol C for the choice
set. C is a function of p. C(p) is thus the choice set based on the profile p. We
first give three general principles of axioms translation and we then show some
examples:

ranking choice
a~(p)b if a is in C(p) then b is not in C(p)
az(p)b if b is in C(p) then a is also in C(p)

>(p) depends only on ... C(p) depends only on ...
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Based on these principles, it is easy to adapt some axioms to the choice problem.
We provide some examples below.

Cancellation. If, for any pair of alternatives, there are as many criteria in
favour of the first alternative as in favour of the second one, then all alternatives
are in the choice set.

Fuaithfulness (in the case of a profile of linear orders). If there is only one
criterion, i.e. N = {1}, then the choice set contains only the alternative which is
ranked first on that criterion.

Neutrality. The axiom presented in section 4.2.2 (p. 123) does not need to be
changed.

Anonymity. All criteria play the same role. In other words,

ClmuZe o Zn) = C(Zn 21 %) = C(Z8, Tns -5 T1) = -1 -

Positive Responsiveness. Suppose a is globally not worse than b (i.e., if b is
in C(p) then a is also in C(p)). Suppose also that p’ is identical to p except for
one criterion where the position of a has improved with respect to b. If 7~ satisfies
positive responsiveness, then a is globally strictly better than b (if a is in C(p’)
then b is not in C(p')).

Most axioms can easily be transposed to the choice problem, as illustrated
above. The interested reader will thus be able to analyse choice methods by
transposing characterisations obtained for ranking methods. Of course, before
trying such a transposition, one should check that no characterisation of the choice
method exists in the literature.

5.7 Aggregation of a performance vector into one
single performance

Suppose we have an object a, characterised by some performances or evaluations
(real numbers) on different criteria: g1(a) on the first criterion, g(a) on the second,
and so on. These numbers may eventually be the outcome of a preference modelling
process, they may be utilities (g; is then an element of H in the evaluation model.
See chapter 2, p. 41). Or they can be just performances or evaluations not reflecting
any preferences (g; is then an element of D in the evaluation model. See chapter 2,
p. 41). We might want to aggregate or summarise these performances into one
single global performance. We then immediately think of the arithmetic mean, or
the weighted arithmetic mean, the median, the min, etc. All these operations that
aggregate a vector g(a) of real numbers into a single real number G(a) are called
aggregation operators and this section will be devoted to them.

It is important to make a clear distinction between this section and section 5.4.
In that section, we also use the weighted sum and the min (among others), but we
then use the global score or performance to derive a ranking: the alternatives are
ranked in decreasing (or increasing) order of their global scores. In this section,
we are interested in the global performance itself, not in the ranking that we can
derive by comparing global scores.
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At first sight, this does not make a big difference and, indeed, the calculations
are exactly the same. But the conditions or axioms characterising, for example,
the weighted sum are not the same if we are interested in the ranking derived from
the weighted sum or in the weighted sum itself. In particular, the axioms in this
section will usually be stronger than those given in section 5.4 for the following
reason: suppose that, using the weighted sum as in section 5.4, we obtain a >(g) b.
If we used the weighted sum raised to the power 3, we would get the same result,
because

m2y<:)m32y3.

In other words, the ordering between any two numbers is preserved if we raise
them to the third power. Similarly, if we used the exponential of the weighted
sum, we would also get a ~(g) b because

x>y et >el.

This is in fact true for any strictly increasing function applied to the weighted sum
(e.g., the square root, arctan, ...). So, when we only look at the derived ranking,
the conditions characterising the weighted sum also characterise the square root of
the weighted sum and many others because they are all equivalent. But if we want
to characterise the weighted sum itself (not the derived ranking), then we need to
impose additional conditions that make a distinction between the weighted sum
and all the increasing transformations of the weighted sum (square root of the
weighted sum, etc.).

This way of reasoning not only applies to the weighted sum, but to all aggre-
gation operators: the min, the max, the ordered weighted average (see below in
this section), and so on.

It is then natural to ask the following question: when are we interested in the
global performance of an alternative rather than in its position in a ranking 7 We
can distinguish at least two situations where this is the case.

e Suppose the decision maker considers a hierarchy of criteria, i.e. some criteria
are decomposed into sub criteria which, in turn, can also be decomposed into
sub-sub criteria, and so on. It is then sometimes interesting or convenient
to perform the aggregation at different levels, i.e. aggregate at the level of
the sub criteria and then at the level of the criteria (we suppose here that
there are only two levels in the hierarchy). In such a case, after the first
aggregation (at sub criteria level), what we are interested in is not a ranking
but aggregated performances that we can use in the next aggregation (at
criteria level).

e There are also situations in which, after the aggregation, a relative evaluation
(a ranking) of the alternatives is not sufficient. An absolute evaluation is
needed, imposed or customary. Think of the students’ grades, the Dow
Jones, the life expectancy, and the many different indexes used in almost all
areas of human activity (see Bouyssou et al., 2000, ch. 4).
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In these cases, it is however important to remain critical. It is not because an
absolute evaluation is customary that we necessarily need it. For example, a
bank that evaluates credit applications probably does not need an absolute
and numerical evaluation. A very rough ranking or a classification in or-
dered classes (e.g., very good, good, acceptable, problematic, unacceptable)
is probably significant enough.

Another context where the aggregation of a vector of numbers into one number
is relevant is the pairwise aggregation of fuzzy preference relations (section 5.3.4).
But, here, the numbers are not performances of alternatives, they are valuations
of different fuzzy preference relations for a given pair of alternatives.

In this section, we will review some popular aggregation operators, present their
characterisation and try to identify contexts in which they are appropriate. As in
section 5.4, it is important to consider the nature of the information provided by
the numerical performances. Are the scales identical or not? Are the performances
measured on an ordinal, interval or ratio scale? The reader will find a discussion
of these points in section 5.4, p. 203.

5.7.1 Notation

As in section 5.4, the performance vector of alternative a could be denoted by
g(a). But, in this section, because we are looking at absolute evaluations and not
at rankings, most of the time, we will consider only one alternative at a time. We
can thus safely drop the name of the alternative and use the simplified notation
g = (g1,...,9n) for the vector of performances. The aggregation operator will be
denoted by G. Because the number of performances (the number of criteria or
dimensions) to be aggregated can vary, we will use the superscript (n) to specify
the number of arguments of a given operation aggregator. For example, G is an
aggregation operator for vectors of size 3. When we speak of a specific aggregation
operator, we indicate this with a subscript. For example, if G is the arithmetic
mean, we use the subscript T and we write

g+...+g
G(Tn)(gl,...,gn): ——————TZ———n

(n)

Similarly, G,,;, will denote the min, i.e.

Gi:i)n(gl, vy Gn) =min(gy, ..., gn).

5.7.2 The arithmetic mean

This well-known operator is defined by:

oot
Ggfn)(gl» c 7gn) = ______—g”
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5.7.2.1 Axioms and characterisation
The arithmetic mean has, among others, the following properties.

e Idempotency. When all performances of an alternative are identical, then
the global performance should be equal to the single-criterion performances.
In other words,

a™Mg,....q)=g.

This condition obviously makes sense only if all performances are measured
on the same scale and if the global performance also needs to be measured
on the same scale. We stress again that “same scale” does not only mean
scales with the same range (say, from 0 to 1) but fully commensurable scales
(for a more thorough discussion of this question, see stepping stones on p.
208). This can eventually be the case if the performances are not just “raw”
performances but utilities or numbers resulting from a preference modelling
process.

e Cardinal Neutrality. See section 5.4.4.1, p. 209.

o Continuity. Continuity ensures that, if a performance g; changes slightly,
then the global performance will not change dramatically. Small changes in
the single-criterion performances can only cause small changes in the global
performance G (g). Technically, this condition is spelled out as follows:
G™ is a continuous function of g1, g, ..., gn.

o Strict Monotonicity. Suppose that two alternatives a and b are identical
except on criterion 4. Suppose also that g;(a)} > g¢;(b). Strict monotonicity
imposes then that G™(g(a)) > G (g(h)). This condition is of course
related to Cardinal Pareto (p. 209) but it is stronger because Cardinal Pareto
applies only if ¢ is strictly better than b on all criteria.

Note that we often use a rounded version of the arithmetic mean and that
this rounded version does not verify Strict Monotonicity. Indeed, take a
and b such that g(a) = (3.12,4.32,2.71) and g(b) = (3.12,4.32,2.70). After
rounding, we obtain G(En)(g(a)) =338 = G-(f")(g(b)). So, even if a and b are
not the same, they get the same global performance because the small differ-
ence between them was lost in the rounding process. But this is usually not
a problem because, if we did not use rounding, we would probably consider
the difference as negligible anyway. So, this shows that Strict monotonicity
is probably not an important or crucial condition.

o Decomposability. This property is convenient when we perform the aggrega-
tion at different levels. Suppose that we have some criteria that are decom-
posed into sub criteria, themselves decomposed into sub-sub criteria. We
do not want the overall performance to depend on the way this hierarchy
of criteria is structured. If we use such a hierarchy, it is because it is con-
venient and helps us think in a structured way, considering only one small
sub problem at a time. Of course, another decomposition of the problem
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into sub problems might also work. The overall performance should there-
fore be independent of the decomposition we chose. This is in some sense
what Decomposability says. Formally, an aggregation operator G satisfies
Decomposability if

G(n)(gla Gk Gk+1y - 7gn) = G(n)(ga s G5 9k 1, ag’n)a
——
k times

where g = G*)(gy,...,gx). We may replace k different performances by k
times the value corresponding to their aggregation. Note that this condition
has some similarities with Consistency (see p. 123).

o Stability w.r.t. a Common Translation. Suppose two alternatives a and b are
such that the performance of b on each criterion is equal to the performance of
a plus a constant 3 (for example g(a) = (3,4.5,1.8) and g(b) = (4,5.5,2.8)).
Then the global performance of b is equal to the global performance of a
plus the same constant 3. Formally, Stability w.r.t. a Common Translation
is defined by

G (gi+B,...,9n+8) =G (g1,...,0:) + B.

This condition is often presented as follows.

If we change the scale of measurement by adding a constant to all
performances (like displacing the origin of the time scale from 1
A.D. to 622 A.D. as in the traditional muslim calendar) and we
then compute the global performance, we obtain the same result as
if we first aggregated the performances and then added the same
constant to the global score.

This interpretation is quite attractive but misleading. It implicitly assumes
that we want to use the same aggregation operator on both scales (before and
after the addition of a constant). But it is not clear at all why we would want
to use the same one (see Narens, 2002, for a deep discussion of these issues).
When we use a weighted sum, it is clear for everyone that, if we change
the unit of measurement of one criterion, we have to accordingly change the
weight of that criterion, i.e. we change the aggregation procedure. And this
is accepted by everyone. So, why impose that the aggregation operator be
independent of the scale of measurement?

We must therefore only keep the first interpretation in mind, which looks at
the relation between the global performances of pairs of alternatives with a
particular structure, in the absence of a change of scale. The question we
must now answer is: when is Stability w.r.t. a Common Translation a sensible
condition? Instead of a clear answer, we will just present two examples of
cases where Stability w.r.t. a Common Translation is not desirable.

— Suppose the performances of student a for three different courses are
g(a) = (3,2,3), with 0 and 10 indicating respectively the worst and
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best possible performances. It would make sense to give him a global
score equal to 2, thereby penalising his consistently bad scores. Suppose
now that the performances of another student b are g(b) = (9,8,9). A
decision maker might be tempted to reward his consistently good scores
and give him 9 as global score. Now note that g(b) = g(a) + 6 and
G (g(b)) # G (g(a)) + 6, contradicting Stability w.r.t. a Common
Translation. Finally, note that this has nothing to do with the nature
of the scales: this discussion does not rely on the hypothesis that the
performances lie on some particular scale. It just depends on the opinion
or preferences of a decision maker.

— Consider now a set of investments characterised by their rates of return
in years 1, 2 and 3 (for example, 0.95, 1.01 and 1.12). If we want to
aggregate the three rates into one rate, representing the average rate
over three years, it is well-known that we must use the geometric mean,
ie.

G*(91,92,93) = (919293)"/*

and not the arithmetic mean. This indicates that Stability w.r.t. a
Common Translation is not a desirable condition in this case. Note
though that the scale on which the rates are measured is a strong one:
it is an absolute scale.

This condition is very similar to Invariance w.r.t. Independent Translations
introduced on p. 209, for the weighted sum. There are however two differ-
ences:

— Here, we look at the global performance and not at the ranking derived
from the global performance. For this reason, we use the name Stability
instead of Invariance.

— Here, we consider identical translations on all criteria while the transla-
tions could be different on different criteria with the weighted sum (see
p. 209).

Finally note that it is necessary that the performances g;(a) be constructed
in such a way that differences of utility are meaningful (see section 4.3.9, p.
142), if we want to impose Stability w.r.t. a Common Translation but it is
not sufficient.

Stability w.r.t. a Common Multiplication. This condition is very similar to
the previous one: Stability w.r.t. a Common Translation. Here, instead of
adding a constant 8 we multiply by a constant «. Formally, Stability w.r.t.
a Common Multiplication is defined by

G™(agy,...,ag,) =aG ™ (g1,...,gn).

There is also a misleading presentation of this condition, based on a change of
scale. In this case, the change is no longer a change of origin (a translation)
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but a change of unit (a multiplication). This interpretation should not be
used for the same reasons as those presented for Stability w.r.t. a Common
Translation (see p. 231).

The following theorem (Kolmogoroff, 1930) uses these seven axioms to characterise
the arithmetic mean.

Theorem 5.14

Suppose that, for each dimension 1 and each alternative a, the performance g;(a)
can be any real number in some interval. The only aggregation operator satis-
fying Idempotency, Cardinal Neutrality, Continuity, Strict Monotonicity, Decom-
posability, Stability w.r.t. a Common Translation and Stability w.r.t. a Common
Multiplication is the arithmetic mean.

5.7.2.2 Discussion

The long list of axioms characterising the arithmetic mean and the nature of these
axioms (see above for a discussion) show that the arithmetic mean, although very
natural in statistics, is not so likely to be a “good” aggregation operator in many
contexts. Yet such a context may exist. Note also that the range of the scale (we
don’t use the plural because all criteria must be measured on the same scale) for
the performances can take different forms. For example, [0, 1], [0, o[ and | — o0, 00].

- To summarise very roughly, if we want to use the arithmetic mean, we need
£ to be sure that all criteria play exactly the same role, that all performances,
along all criteria, are measured on the same interval scale. If the performances
are measured on a “strong” scale (like mass, length, price, temperature, ...)
and if we just want to summarise this factual information, the conditions for
the arithmetic mean are probably met. But if the performances are subjec-
tive and/or measured on ordinal scales (loudness, risk, aesthetic, reliability,
3 .. .although it is sometimes possible to measure these attributes on interval or
ratio scales) or if we are not interested by the performances per se but by the
4 yalue or utility attached to these performances by the decision maker, then we
{3 should probably not use the arithmetic mean, unless we build the scales very
3y carefully.

5.7.3 Quasi-arithmetic means

This is a family of aggregation operators, generalising the arithmetic mean. We
say that an aggregation operator G is a quasi-arithmetic mean if there is a
continuous and strictly monotonic function f such that

™ gy, gn) = 1 (f(gl) +---+f(gn)) .

n

The arithmetic mean is a quasi-arithmetic mean with f(x) = z. The geometric and
harmonic means are also quasi-arithmetic means with f(z) = logz and f(r) = 1/z
respectively.
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The family of quasi-arithmetic means is characterised (Kolmogoroff, 1930) by
Idempotency, Neutrality, Continuity, Strict Monotonicity and Decomposability.
The arithmetic mean is the only one that also satisfies Stability w.r.t. a Common
Translation and a Common Multiplication. Any other quasi-arithmetic mean can
be characterised by imposing some kind of Stability condition applied not to the
performances themselves but to the performances transformed by f on top of the
previous five conditions.

The five axioms characterising the family of quasi-arithmetic means are quite
reasonable and tend to make them attractive. But as soon as we want to isolate
one of them, we need some kind of stability condition that we cannot easily justify.
This makes these quasi-arithmetic means no more attractive than the arithmetic
mean.

5.7.4 Min, max and the other order statistics

The min is the operator that maps each vector of performances on the smallest
performance.

G (91r- - gn) =min(gy, ..., gn).
The max is defined in a similar way. Min and max are particular cases of order

statistics. The kth order statistic, denoted by G(On ;k, is equal to the k-th smallest

performance. It is defined for £k = 1...n. Obviously, when k = 1, G(O"S)l = GE:I)H

When k£ = n, G(On;n = GE,?QX. Another particular case is the median: it corresponds
to the case k = (n-1)/2 if n is odd.

The family of order statistics was characterised by Fodor and Roubens (1995).
The axioms in their characterisation implicitly indicate that the performances to
be aggregated are measured on an ordinal scale and that the global performance
must also be interpreted on an ordinal scale. The use of the aggregation operator

an”l)n in such a context is in fact equivalent to the use of the min as an aggregation
function, aggregating a performance table into a binary relation (see section 5.4,
p. 207). We therefore do not present the characterisation of Fodor and Roubens
(1995); not only because it would be redundant with Theorem 5.10, but also to
stress the fact that, in spite of appearances, it sheds some light on the min as
an aggregation function, in the spirit of section 5.4, and not as an aggregation
operator.

This does not mean that using the min or another order statistic as an aggre-
gation operator with performances on interval or ratio scales is meaningless. But
we are not aware of any theoretical result that would help us understand what the
distinctive properties of this operator are.

5.7.5 The weighted mean, the weighted sum and the other
aggregation operators

It is possible to generalise the weighted mean exactly in the same way as the quasi-
arithmetic mean generalises the arithmetic mean. We then obtain the quasi-linear
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weighted mean, that was characterised by Aczél (1948). If we add a stability
condition to Aczél’'s axioms, it is possible to characterise the weighted mean. We
do not present these results here. They can be found, with related results, in Fodor
and Roubens (1994) for example. These results always involve Idempotency. But
if we want to aggregate performances on different scales, Idempotency does not
make sense. So, it is natural to turn to the weighted sum because it can eventually
be used even if the scales are not the same for all criteria. Surprisingly, we did not
find a characterisation of the weighted sum.

In the case of aggregation functions (see section 5.4), the weighted mean and
the weighted sum are equivalent because we look only at the induced ordering. But
in this section, we are considering aggregation operators and the two operators are
not equivalent.

There are of course many other aggregation operators and several of them have
been characterised: the weighted minimum and maximum (Dubois and Prade,
1986), the OWA or ordered weighted average (Fodor, Marichal, and Roubens,
1995; Yager, 1988), the Choquet and Sugeno integrals (Grabisch, Nguyen, and
Walker, 1995), ... (see also Marichal, 1998). We will not discuss them here because
we do not aim at exhaustivity. We just presented some operators that are often
used by analysts or that allow us to introduce some important concepts. We hope
that, after reading this section, the reader interested in other operators will be
prepared to dive into the relevant literature.



MULTI-DIMENSIONAL
PREFERENCE MODELS

This chapter may look more formal than the other parts of this book. We acknowl-
edge this, believing that a formal presentation of this material is both unavoidable
and worth the effort. Qur goal is to offer a picture of the variety of preference
models, showing them in a structured way that is the result of recent research.
We mainly present three frameworks for describing preferences. Each one is a sort
of matryoshka or Russian doll formed of embedded families of models. Each one
relies on a clear basic principle for decomposing preferences; they both start with
a very general family of models that gradually specialises when further proper-
ties are added. The remarkable thing is that most preference models that have
been proposed and that are used in practice belong to a family of models in these
hierarchies.

There is a price to pay: the—sometimes tiny—differences between families of
models in a hierarchy can only be understood by stating precise definitions and
theorems. In order to ease the reading and to convince the reader of the relevance
of our frameworks, we have illustrated the definitions as often as possible;

e we describe the insertion of as many examples of actually used models as
possible in the hierarchies;

¢ we emphasise the consequences of the progressive structuring of the hierar-
chies of models on the elicitation process of these models.

In the previous chapter we characterised a number of aggregation procedures;
we now explore another way of analysing multiple criteria preferences, by charac-
terising preference relations. The conjoint measurement approach was introduced
in section 4.3 where its main model, the additive value function model, was briefly
described. Some limitations of this model were discussed. We first come back to
the additive value model in more detail, focusing on the conditions under which a
preference relation can be represented in it and how it is possible to elicit the para-
meters of the model; we then develop three types of extensions of this fundamental
model, namely:

o models based on marginal traces (section 6.2)

o models based on traces on differences (section 6.3)
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e models based on marginal traces and on traces on differences (section 6.4)

In the light of these extensions, we then discuss models that distinguish a small
number of differences in preference (which are useful for understanding ordinal ag-
gregation; see section 6.5). Finally in section 6.6, we introduce valued preferences
and the related conjoint measurement models, in connection with the measurement
of preference differences.

Throughout this chapter we consider preferences, denoted by 7, defined on a
product set X =[] ; X;. Each of the sets X; is typically the co-domain of the
scale associated to dimension ¢ or the co-domain of a numerical representation of
the client’s preferences on dimension 4 (see chapter 2, section 2.3.3). Any alterna-
tive will be identified by a vector & = (x1,...,T,) of X where z1,...,2;, ..., 25
denote the evaluations of alternative z on the n dimensions. We shall use the
notation x_; to refer to a (n — 1) components vector obtained by dropping the ith
coordinate of vector z; this allows us to define an “alternative” (z;,a_;) as the
vector that has x; as its ith component while the other components are those of
vector a. Such n — 1 dimensional vectors form the set X_; = Hj# X;. We denote
by N the set of integers {1,2,...,n}. For any subset J of N, X is the product

set HiEJ X»L

6.1 The additive value model

The additive value function model was introduced in section 4.3.1 of chapter 4. We
recall that a preference 2~ on X can be represented in the additive value function
model (or additive value model for short) if there are functions u; from X into R
for all 4, such that, for all z,y € X:

n

rryeu) =Y ule) 2 ul) = > wily). (6.1)
i=1

i=1

Not all preferences, of course, satisfy such a condition. Before considering the
hypotheses under which this is the case, we investigate the notion of marginal
preference that is an important one in the process of elicitation of the additive
value model.

6.1.1 Independence and marginal preferences

In conjoint measurement, one starts with a preference relation 27 on X. It is then
of vital importance—as anticipated in section 4.3.6—to investigate how this infor-
mation makes it possible to define preference relations on dimensions or subsets
of dimensions.

Let J C N be a nonempty set of dimensions. We define the marginal relation
> 7 induced on X by = letting, for all z;,y; € X;:

7y ys e (Tg,2-0) 2 (Yg, %), forall 25 € Xy,
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with asymmetric (resp. symmetric) part >, (resp. ~y). When J = {i}, we often
abuse notation and write 2Z; instead of 7 (see the definition (4.7) of 2Z; on

p. 133). Note that if 7 is reflexive (resp. transitive), the same will be true for 27 ;.
This is clearly not true for completeness however.

Definition 6.1 (Independence)
Consider a binary relation - on a set X =[], X; and let J C N be a nonempty
subset of dimensions. We say that ¥ is independent for J if, for all zy,y5 € X,

(@, 2-5) Z (g, 2-0), for some z_y € X_jl =25 %5 ys.

If = is independent for all nonempty subsets of N, we say that 7 is independent
(or strongly independent). If ¥ is independent for all subsets containing a single
dimension, we say that 7 is weakly independent.

In view of (6.1), it is clear that the additive value model will require that 2
is independent. This crucial condition says that common evaluations on some
dimensions do not influence preference. Whereas independence implies weak in-
dependence, it is well-know that the converse is not true (Wakker, 1989).

Remark 6.1.1

The (strong) independence condition is equivalent to an apparently weaker condi-
tion, i.e. independence with respect to all subsets J containing n — 1 elements. It
is easy to convince oneself that this condition indeed implies independence with
respect to all subsets J of X. To contrast this condition with weak independence
we state both of them explicitly below. A relation - on X is

o (strongly) independent if, for all ¢ and all z;, y;, a;, 0_;,
(Tiy0-i) 2 (Ti,b—i) = (Yisa—i) Z (i, b—4) (6.2)
o weakly independent if, for all ¢ and all z;,y;,a—;,b_;,

(i, 0-q) T (Yira—s) = (T4, 0-4) Z (¥, b—4) (6.3)

In other words, (strong) independence means that once one has (2, a—;) 2 (s, b-;)
for some x;, then a_; =—; b_;; weak independence says that once for some a_s,
one has (z;,a_¢) 7 (yi,a—i), then z; 7=; y;. When dealing with (strong) inde-
pendence, the alternatives share a common level on a single criterion (z; is the
common level), while in the weak independence property, all levels are common
but one. This makes the latter condition less restrictive than the former. Strong
independence says that when two alternatives share the same evaluation on a cri-
terion, their relative position in the preference does not change when this common
level is changed in any other common one; weak independence says something sim-
ilar when two alternatives share all their evaluations but one: changing all those
common levels into other common levels does not change the way the alternatives
compare. .
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Remark 6.1.2

Weak independence is referred to as “weak separability” in Wakker (1989); in
section 6.2.3, we use “weak separability” (and “separability”) with a different
meaning. .

Remark 6.1.3

Independence, or at least weak independence, is an almost universally accepted
hypothesis in multiple criteria decision making. It cannot be overemphasised that
it is easy to find examples in which it is inadequate.

We have already examined the following example of likely non-independent
preference in section 4.3.5: if a meal is described by the two dimensions, main
course and wine, it is highly likely that most gourmets will violate independence,
preferring red wine with beef and white wine with fish. Similarly, in a dynamic
decision problem, a preference for variety will often lead to violating independence:
you may prefer Pizza to Steak, but your preference for meals today (first dimen-
sion) and tomorrow (second dimension) may well be such that (Pizza, Steak) is
preferred to (Pizza, Pizza), while (Steak, Pizza) is preferred to (Steak, Steak).

Many authors (Keeney, 1992; Roy, 1996; von Winterfeldt and Edwards, 1986)
have argued that such failures of independence were almost always due to a poor
structuring of dimensions (e.g. in our choice of the meal example above, preference
for variety should be explicitly modelled). .

When 7 is a weak order (complete transitive relation or a ranking, possibly
with ties) and is weakly independent, marginal preferences are well-behaved and
combine with the preference 7~ in a monotonic manner. For instance, if an alterna-
tive is preferred to another on all dimensions, then the former should be globally
preferred to the latter. This monotonicity property of the preference with respect
to the marginal preferences has strong links with the idea of dominance that we
shall discuss more in depth later (see section 6.2.8). We put forward some useful
properties of independent weak orders in the next proposition.

Proposition 6.1 (Properties of independent weakly ordered preferences)
Let 7 be a weakly independent weak order on X = [ X;. Then 7; is a weak
order on X; and for all x,y € X and all z;,w; € X;:

Lilzrnyandz 7 2 = (2,220 5y,
2. [z Zy andy; Ziwi) = 2 (Wi, y—i),
8 [z oy and z; = o] = (2,2-4) =y,
4. [x Zy and yi =i wi] = T = (Wi, y-i)-

The latter four properties express the way the preference 7~ responds to mar-
ginal improvement or worsening of the alternatives involved: the response is
monotonic (or non-negative) and even strictly monotonic (positive) with respect
to marginal preferences as we see from the last two properties. Non-negative or
positive responsiveness properties of the preference were discussed several times
in section 5.2 (see p. 171, 173, 184).
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éﬁ For preferences that are independent weak orders, the marginal prefer-

> ences are also weak orders and the preference responds monotonically with
2 respect to the marginal preferences. The importance of these properties can-
E" not be overemphasised, since direct procedures for eliciting preferences that are
Eb independent weak orders, usually rely on the relationship between marginal
@“ preferences and the global preference; this will be the case for the additive
3 value model as shown in the following sub-sections.
€3 It should however be kept in mind that preferences that are not weak
orders may show different behaviours. For more general preferences, the mar-
*7 ginal preferences may no longer be the adequate tool on which to rely for
i eliciting the preference. This will be strongly emphasised and analysed in the
3 generalisations of the additive value model discussed in sections 6.2 to 6.5.

6.1.2 The additive value model in the “rich” case

The purpose of the remainder of section 6.1 is to present the conditions under
which a preference relation on a product set may be represented by the additive
value function model (6.1) and how such a model can be assessed; the presentation
of this material follows Bouyssou and Pirlot (2005b). We begin here with the case
that most closely resembles the measurement of physical dimensions such as length.

When the structure of X is presumed to be “adequately rich”, conjoint mea-
surement is an adaptation of the process that is used for the measurement of
physical extensive quantities such as length. The basic idea of this type of mea-
surement (called extensive measurement, see Krantz et al., 1971, ch. 3) consists in
comparing the object to be measured with a standard object that can be replicated
while the length of the chains of replicas is an integer number of times that of the
standard “unit” object. The “length” of preference intervals on a dimension will
be measured here, using a preference interval on another dimension as a standard.
A sequence of “equal length” intervals, called a standard sequence, will be built
on each dimension; the procedure used to build such a sequence is known as the
“standard sequence method” (von Winterfeldt and Edwards, 1986).

6.1.2.1 The case of two dimensions

Consider first the two dimension case, where the relation - is defined on a set
X = Xy x X5. In section 4.3, p. 130, we already identified necessary conditions
for a relation to be representable in the additive value model, namely, we have to
assume that 7~ is an independent weak order. In such a case, 751 and o are weak
orders, as stated in proposition 6.1. Consider two levels z¥, 2} € X; on the first
dimension such that z} =1 29, i.e. z! is preferable to 2. Note that in order to be
able to find such levels, we will have to exclude the case in which all levels on the
first dimension are marginally indifferent.

Choose any 23 € X». The arbitrarily chosen element (z9,z9) € X will be our
“reference point”. The basic idea is to use this reference point and the “unit” on
the first dimension given by the reference preference interval [z9,z1] to build a
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standard sequence on the preference intervals on the second dimension. We are
therefore looking for an element z3 € X, that would verify:

(x(l)7x%) ~ (.’,E%,.’I?g) (6'4)

Clearly, this will require the structure of Xs to be adequately “rich” to be able
to find the level 3 € X, such that the reference preference interval on the first
dimension [z{, 2}] is exactly matched by a preference interval of the same “length”
on the second dimension [z, z3]. Technically, this calls for a solvability assumption
or, more restrictively, for the assumption that X5 has a (topological) structure that
is close to that of an interval of R and that - is “somehow” continuous.

If such a level z3 can be found, model (6.1) implies:

u1(29) +uz(2d) = ur(2}) + ua(29) so that (6.5)
us(3) — uz(zy) = wi (@) — wa(29). '
Let us set the origin of measurement letting:

uy(29) = ug(ah) =0,

and our unit of measurement letting:

up(zl) = 1 so that uy(z]) — uy (29) = 1.
Using (6.5), we obtain uz(z}) = 1. We have therefore found an interval between
levels on the second dimension ([z3, z3]) that exactly matches our reference interval
on the first dimension ([z9,z]]). We may proceed with building our standard

sequence on the second dimension (see figure 6.1) asking for levels z3,z3, ... such
that:

(x(l)v x%) ~ (x%v IL'%),

(x(l)1 x%) ~ (m%,x%),

(af, 28) ~ (21, 257").

As above, using (6.1) leads to:

up(23) — up(3) = w1 (27) — uy (29),
up(23) — uz(23) = w1 (1) — wa(a}),

uz(@h) — ua (2571 = ui(2]) — wa (29),
so that:

'LLQ(.T%) = 2,UQ($‘3) = 3, e ,’U,Q(CL'S) =k.

This process of building a standard sequence on the second dimension therefore
leads to defining uy on a number of carefully selected elements of X;.  When
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X1

Figure 6.1: Building a standard sequence on Xj.

measuring physical quantities such as length, a key idea is that it is always possible
to concatenate copies of a unit rod or ruler and to compare, with respect to length,
any object to a composite one obtained by concatenating copies of a unit rod. This
is a basic feature of what is technically called extensive measurement (Krantz et al.,
1971, ch. 3). An implicit hypothesis is that the length of any object can be exceeded
by the length of a composite object obtained by concatenating a sufficient number
of perfect copies of a standard rod. Such a hypothesis is called Archimedean since
it mimics the property of the real numbers which says that for any positive real
numbers x,y it is true that nx > y for some integer n, i.e. y, no matter how large,
may always be exceeded by taking any z, no matter how small, and adding it
with itself and repeating the operation a sufficient number of times. Clearly, we
will need a similar hypothesis here. Failing this, there might be a level yo € X,
that will never be “reached” by our standard sequence, i.e. such that yo o x’g,
for k =1,2,.... For measurement models in which this Archimedean condition is
omitted, see Narens (1985) and Skala (1975).

Remark 6.1.4
At this point a good exercise for the reader is to figure out how we may extend

the standard sequence to cover levels of Xy that are “below” the reference level
x9. This should not be diflicult. .

Now that a standard sequence is built on the second dimension, we may use any
part of it to build a standard sequence on the first dimension. This will require
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Xs

X1

Figure 6.2: Building a standard sequence on Xj.

finding levels 2%, 23, ... € X; such that (see figure 6.2):
(:L‘%,CE(Q)) ~ (mi,xé),

(lei’ig) ~ (T%WE%)’

k .0 k-1 1
(@1, 29) ~ (217", 22).

Using (6.1) leads to:

uy(2}) — ui(21) = ua(zy) — ug(a9),

uy (23) — ui(27) = ug(}) — ua(a5),

u1(:€1f) - ul(x’f—l) = Uz(il?%) — Uz(mg),
so that;:
'Ual(.'l?%) = 2,'11/1(1,':13) = 3, e ,ul(m’f) = k

As was the case for the second dimension, the construction of such a sequence
will require the structure of X; to be adequately rich, which calls for a solvability
assumption. An Archimedean condition will also be needed to ensure that all
levels of X; can be reached by the sequence.

At this point, we have defined a “grid” in X (see figure 6.3) and we have
u1(z¥) = k and ug(x§) = k for all elements of this grid. Intuitively, such numerical
assignments seem to define an adequate additive value function on the grid. We
have to prove that this intuition is correct. Let us first verify that, for all integers
a, ﬂa s g

at+fB=v+0=ce= (zF,25) ~ (27, 25). (6.6)

When € = 1, (6.6) holds by construction because we have: (z7,
When € = 2, we know that (29,2%) ~ (z1,21) and (22,29) ~ (
claim is proved using the transitivity of ~.

xlé) ~ (z1,29)-
1
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Xo

Figure 6.3: The grid.

Consider ¢ = 3. We have (29, z3) ~ (x1,22) and (29, 23) ~ (z},22). It remains

to be shown that (z%,23) ~ (z},23) (see the dotted arc in figure 6.3). This does
not seem to follow from the previous conditions that we more or less explicitly
used: transitivity, independence, “richness”, Archimedean property. Indeed, it
does not. Hence, we have to suppose that: (2%,z3) ~ (29,23) and (29, z3) ~
(x1,29) imply (z%,23) ~ (z},23). This condition, called the Thomsen condition,
is clearly necessary for (6.1). The above reasoning easily extends to all points on
the grid, using weak ordering, independence and the Thomsen condition. Hence,
(6.6) holds on the grid.

It remains to show that:
e=a+p8>c=y4+6= (xf,25) > (27,13). (6.7)

Using transitivity, it is sufficient to show that (6.7) holds when ¢ = ¢’ + 1. By
construction, we know that (z1,29) = (29,29). Using Jndependence this implies
that (z!,z8) > (29, 2%). Using (6.6) we have (z},25) ~ (2¥%1,23) and (29, 2%) ~
(z¥,9). Therefore we have (x5, 23) > (2%,23), the desired conclusion.

We have thus built an additive value function of a suitably chosen grid (see
figure 6.4). The logic of the assessment procedure is then to assess more and more
points, somehow considering more finely grained standard sequences. Going to the
limit then unambiguously defines the functions u; and ug. Clearly such u; and ug
are quite closely related. Once we have chosen an arbitrary reference point (29, z9)
and a level 21 defining the unit of measurement, the process we just described
entirely defines u; and wug. It follows that the only possible transformations that
can be applied to u; and ug, is to multiply both by the same positive number o
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X2

Ty

Figure 6.4: The entire grid.

and to add to both a (possibly different) constant. This is usually summarised by
saying that vy and wus define interval scales with a common unit.

The above reasoning is a rough sketch of the proof of the existence of an additive
value function when n = 2, as well as an outline of how it could be assessed. The
careful readers can refer to Fishburn (1970, ch. 5), Krantz et al. (1971, ch. 6) and
Wakker (1989, ch. 3).

Remark 6.1.5

The measurement of lengths through standard sequences as described above leads
to a scale that is unique once the unit of measurement is chosen. At this point, a
good exercise is to find an intuitive explanation to the fact that, when measuring
the “length” of preference intervals, the origin of measurement becomes arbitrary.
The analogy with the measurement of duration on the one hand and dates, as

given in a calendar on the other hand, should help. .
gf It is worth emphasising that the assessment technique using standard se-

£ quences outlined above makes no use of the vague notion of the “importance”
&3 of the various dimensions. The “importance” is in fact captured in the lengths
of the preference intervals on the various dimensions.
A common but critical mistake is to confuse the additive value function
@ model (6.1) Wlth a weighted average and to try to assess weights asking whether
> a dimension is “more important” than another. This makes no sense.
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6.1.2.2 The case of more than two dimensions

The good news is that the process is exactly the same when there are more than two
dimensions. There is one surprise: the Thomsen condition is no longer needed to
prove that the standard sequences defined on each dimension lead to an adequate
value function on the grid. A heuristic explanation of this strange result is that,
when n = 2, there is no difference between independence and weak independence.
This is no longer true when n > 3 and assuming independence is much stronger
than just assuming weak independence. We use the “algebraic approach” below
(Krantz, 1964; Krantz et al., 1971; Luce and Tukey, 1964). A more restrictive
approach using a topological structure on X is given in Debreu (1960), Fishburn
(1970, ch. 5) and Wakker (1989, ch. 3). We formalise the conditions informally
introduced in the previous section below. The reader not interested in the precise
statement of the results or, even better, having already written down his own
statement, may skip this section.

Definition 6.2 (Thomsen condition)
Let 7 be a binary relation on a set X = X1 x Xq. It is said to satisfy the Thomsen
condition if

(x1,22) ~ (y1,y2) and (y1, 22) ~ (z1,T2) = (21, 22) ~ (21, ¥2),

for all x1,y1,21 € X1 and all x9,y2, 22 € X2.

Figure 6.5 shows how the Thomsen condition uses two “indifference curves” (i.e.
curves linking points that are indifferent) to place a constraint on a third one.
This was needed above to prove the existence of an additive value function on our
grid. Remember that the Thomsen condition is only needed when n = 2; so, we
only stated it in this case.

Xs
22

Y2

T2
n z1 21
A~ B
E~ F }:>C~D

Figure 6.5: The Thomsen condition.

Definition 6.3 (Standard sequences)
A standard sequence on dimension i € N is a set {a¥ : af € X,k € K} where K is
a set of consecutive integers (positive or negative, finite or infinite) such that there
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are _;,y—i € X satisfying Not[z_; ~_; y—;] and (a¥,z_;) ~ (a] kel

allk € K.

y Y- z) for

A standard sequence on dimension ¢ € N is said to be strictly bounded if there
are b;,c; € X; such that b; >, a{? =i C;, for all k € K. It is then clear that, when
model (6.1) holds, any strictly bounded standard sequence must be finite.

Definition 6.4 (Archimedean)
For oll i € N, any strictly bounded standard sequence on i € N is finite.

The following condition rules out the case in which a standard sequence cannot
be built because all levels are indifferent.

Definition 6.5 (Essentiality)

Let = be a binary relation on a set X = X; X Xg X -+ x X,,. Dimension i € N
is said to be essential if (x4,a—) > (ys,a—:), for some z;,y; € X; and some
a_; € X_;.

Definition 6.6 (Restricted Solvability)

Let = be a binary relation on a set X = X1 X Xg X+ x X,. Restricted solvability
is said to hold with respect to dimension i € N if, for alze X, all z_; € X_;
and all a;,b; € X5, [(as, 2—3) mx 7 (b, 220)] = [z ~ (¢, 2—;), for some ¢; € X;].

Remark 6.1.6

Restricted solvability in the case where n = 2 is illustrated in figure 6.6. It states
that, given any x € X, if it is possible find two levels a;, b; € X; such that when
combined with a certain level 2_; € X_; on the other dimensions, (a;,z_;) is
preferred to x and x is preferred to (b;, z_;), it should be possible to find a level
¢i, “in between” a; and b;, such that (¢;, z2_;) is exactly indifferent to x.

A much stronger hypothesis is unrestricted solvability asserting that for all
z€ Xandal z_; € Xy, z ~ (¢,2-;), for some ¢; € X;. Its use leads to much
simpler proofs (Fishburn, 1970; Gonzales, 1996b).

It is easy to imagine situations in which restricted solvability holds while un-
restricted solvability fails. Suppose, e.g. that a firm has to choose between several
investment projects, two dimensions being the Net Present Value (NPV) of the
projects and their impact on the public image of the firm. Consider a project
consisting in investing in the software market. It has a reasonable NPV and no
adverse consequences on the image of the firm. Consider another project that
could have dramatic consequences on the image of the firm, because it leads to
investing in the cocaine market. Unrestricted solvability would require that by
sufficiently increasing the NPV of the second project it would become indifferent
to the more standard project of investing in the software market. This is not
required by restricted solvability. .

We are now in a position to state the central results concerning model (6.1). Proofs
may be found in Krantz et al. (1971, ch. 6) and Wakker (1991b).
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X

22

X1

by 9! a1

zZ>-T

}:> there is a w such that z ~ w
-y

Figure 6.6: Restricted Solvability on X;.

Theorem 6.1 (Additive value function when n = 2)
Let = be a binary relation on o set X = Xy X Xy. If restricted solvability holds
on all dimensions and each dimension is essential, then 77, has a representation in
model (6.1) if and only if 2Z is an independent weak order satisfying the Thomsen
and Archimedean conditions .
Furthermore in this representation, ui and ug are interval scales with a com-
mon unit, i.e. if u1,up and v, ve are two pairs of functions satisfying (6.1), there
are real numbers a, By, Bo with o > 0 such that, for all z; € X1 and all 9 € Xo

u1(z1) = owy(z1) + B1 and ua(xe) = ave(za) + Bo.

When n > 3 and at least three dimensions are essential, the above result simplifies
in that the Thomsen condition can now be omitted.

Theorem 6.2 (Additive value function when n > 3)
Let 7= be a binary relation on a set X = X1 x Xax ... x Xy, withn > 3. If restricted
solvability holds on all dimensions and at least 3 dimensions are essential, then
has a representation in model (6.1) if and only if 7 is an independent weak order
satisfying the Archimedean condition.

Furthermore in this representation uy, Us,...,u, are interval scales with a
common unit.

Remark 6.1.7

The additive value model is central to several fields in decision theory. It is there-
fore not surprising that quite a lot of energy has been devoted to analyse variants
and refinements of the results given above. Among the most significant ones, let
us mention:
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e the study of cases in which solvability holds only on some or none of the di-
mensions (Fishburn, 1992b; Gonzales, 1996a,b, 2000, 2003; Jaffray, 1974a,b;
Nakamura, 2002),

o the study of the relation between the “algebraic approach” introduced above
and the topological one used in Debreu (1960), see e.g. Karni and Safra
(1998), Kobberling (2003), Wakker (1989, ch. 3) and Wakker (1991b).

The results given above are only valid when X is the entire Cartesian product of the
sets X;. Results in which X is a subset of the Cartesian product X1 x Xa x...x X,
are not easy to obtain, see Chateauneuf and Wakker (1993) and Segal (1994) (the
situation is “easier” in the special case of homogeneous product sets, see Wakker,

1991¢, 1993)). .
(55 We have shown how additive value functions can be assessed using the

3 standard sequence technique. We pinpoint some of the characteristics of this
£ assessment procedure:

o It requires the set X; to be rich so that it is possible to find a preference
interval on X; that will exactly match a preference interval on another
dimension. This excludes using such an assessment procedure when some
of the sets X, are discrete.

o It relies on indifference judgements which, a priori, are less firmly estab-
lished than preference judgements.

¢ It relies on judgements concerning fictitious alternatives which, a priori,
are harder to conceive than judgements concerning real alternatives.

o The various assessments are thoroughly intertwined and, e.g., an impre-
cision on the assessment of z3, i.e. the endpoint of the first interval in
the standard sequence on X (see figure 6.1), will propagate to many
assessed values,

e The assessment of tradeoffs may be plagued with cognitive biases (see,
e.g., Delquié, 1993; Stillwell, von Winterfeldt, and John, 1987).

6.1.2.3 Implementation: Standard sequences and beyond

The assessment procedure based on standard sequences is, as we have seen, rather
demanding; hence, it seems to be seldom used in the practice of decision analysis
(Keeney and Raiffa, 1976; von Winterfeldt and Edwards, 1986). The literature on
the experimental assessment of additive value functions (see, e.g., Stillwell et al.,
1987; von Nitzsch and Weber, 1993; Weber, Eisenfuhr, and von Winterfeldt, 1988)
suggests that this assessment is a difficult task that may be affected by several
cognitive biases.

Many other simplified assessment procedures that are less firmly grounded in
theory have been proposed. In many of them, the assessment of partial value
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functions u; relies on direct comparison of preference differences without recourse
to an interval on another dimension used as a “yard-stick”. We refer to Dyer and
Sarin (1979) for a theoretical analysis of these techniques.

These procedures include:

e direct rating techniques in which values of u; are directly assessed with ref-
erence to two arbitrarily chosen points (Edwards, 1977; Edwards and Hut-
ton Barron, 1994),

e procedures based on bisection, the client being asked to assess a point that
is “half way” between two reference points in terms of preference(von Win-
terfeldt and Edwards, 1986),

e procedures that try to build standard sequences on each dimension in terms
of “preference differences” (see Krantz et al., 1971, ch. 4).

An excellent overview of these techniques may be found in von Winterfeldt and
Edwards (1986, ch. 7).

6.1.3 The additive value model in the “finite” case

In this section, we assumed that 2~ is a binary relation on a finite set X C X; X
X3 x -+ X X, (contrary to the previous section, dealing with subsets of product
sets will raise no difficulty here). The finiteness hypothesis clearly invalidates the
standard sequence mechanism used so far. There will only be a finite number of
“preference intervals” on each dimension and exact matches between preference
intervals will only exceptionally occur, see Wakker (1991a)..

Clearly, as before, independence remains a necessary condition for model (6.1).
Given the absence of structure of the set X, it is unlikely that this condition is
sufficient to ensure (6.1). The following example shows that this intuition is indeed
correct.

Example 6.1
Let X = X1 x Xy with X; = {a,b,c} and X3 = {d,e, f}. Consider the weak order
on X, such that, abusing notation in an obvious way,

ad = bd > ae = af > be > cd > ce > bf >~ cf.

It is easy to check that = is independent. Indeed, we may for instance check that:

ad > bd and ae > be and af > bf,
ad > ae and bd > be and cd > ce.

This relation cannot however be represented in model (6.1) since:
af = be = ui(a) + ualf) > u1(b) + uz(e),
be > cd = uy(b) + ug(e) > ui(c) + ua(d),
(
(b)

()
ce = bf = ui(c) +ua(e) > w1 (b) + uz(f),
bd =~ ae = uq(b) + ua(d) > u1(a) + uz(e).
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Summing the first two inequalities leads to:

ui(a) +ua(f) > wi(e) + uz(d).
Summing the last two inequalities leads to:

ui(c) +ua(d) > ui(a) +ua(f),

a contradiction.

Note that, since no indifference is involved, the Thomsen condition is trivially
satisfied. Although this is clearly necessary for model (6.1}, adding it to indepen-
dence will therefore not solve the problem. <&

The conditions allowing to build an additive value model in the finite case were in-
vestigated in Adams (1965), Adams and Fagot (1959) and Scott (1964). Although
the resulting conditions turn out to be complex, the underlying idea is quite sim-
ple. It amounts to finding conditions under which a system of linear inequalities
has a solution.

Suppose that z > y. If model (6.1) holds, we have:

i=1 =1

Similarly if z ~ y, we obtain:

Z wi(@i) = ) uilyi)- (6.9)

The problem is then to find conditions on 77 such that the system of finitely many
equalities and inequalities (6.8-6.9) has a solution. This is a classical problem in
Linear Algebra (see, e.g., Gale, 1960).

Definition 6.7 (Relation E™)

Let m be an integer > 2. Let %, 22%,..., 2™, y%,v%,...,y™ € X. We say that

(', 2% . 2™ E™ (YR ™)
if, for alli € N, (z},2?,...,2™) is a permutation of (y},y2,...,y").

Suppose that (z!,z2,...,2™)E™(y',y?,...,y™). Then model (6.1) implies that

Therefore if 27 >~ y7 for j = 1,2,...,m — 1, it cannot be true that 2 = y™. This
condition must hold for all m = 2,3,....
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Definition 6.8 (Condition C™)
Let m be an integer > 2. We say that condition C™ holds if

(27 = y? for j=1,2,...,m ~1] = Not[z™ = y™]
for all xt, 2%, ... 2™ yY92,...,y"™ € X such that

(xl,zz, oL Z™E™ (L YR Y™,

Remark 6.1.8
It is not difficult to check that:

o Ol o O™
e C? = = is independent,
o C? = - is transitive. .

We already observed that C™ was implied by the existence of an additive rep-
resentation. The main result for the finite case states that requiring that 7= is
complete and that C™ holds for m = 2,3,... is also sufficient. Proofs can be
found in Fishburn (1970, ch. 4) and Krantz et al. (1971, ch. 9).

Theorem 6.3 (Additive value function in the finite case)

Let 7= be a binary relation on a finite set X C Xy X Xg x -+ x X,,. There are
real-valued functions u; on X, such that (6.1) holds if and only if 7= is complete
and satisfies C™ form =2,3,....

Remark 6.1.9

Contrary to the “rich” case considered in the preceding section, here we have nec-
essary and sufficient conditions for the additive value model (6.1). However, it is
important to note that the above result uses a denumerable scheme of conditions.
Scott and Suppes (1958) show that this denumerable scheme cannot be truncated:
for all m > 2, there is a relation 7 on a finite set X such that C™ holds, but vio-
lating C™+1 (this is studied in more detail in Luce, Krantz, Suppes, and Tversky
(1990), Titiev (1972) and Wille (2000)).Therefore, no finite scheme of axioms is
sufficient to characterise model (6.1) for all finite sets X.

Given a finite set X of given cardinality, it is well-known that the denumerable
scheme of conditions can be truncated. The precise relation between the cardi-
nality of X and the number of conditions required raises difficult combinatorial
questions that are studied in Fishburn (1996, 1997). .

Remark 6.1.10

It is clear that, if a relation - has a representation in model (6.1) using functions
u;, it also has a representation using functions v} = au; + f3; with oo > 0. Contrary
to the rich case, the uniqueness of the functions u; is more complex, as shown by
the following example.
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Example 6.2
Let X = Xy x Xy with X; = {a,b,¢} and X3 = {d,e}. Consider the weak order
on X such that, abusing notation in an obvious way,

ad > bd = ae = cd > be = ce.
This relation has a representation in model (6.1) with
ui{a) = 3,u1(b) = 1,u1(c) = 0,ua(d) = 3,ua(e) = 0.5.

An equally valid representation would be given taking u1(b) = 2. Clearly this new
representation cannot be deduced from the original one applying a positive affine
transformation. e

Remark 6.1.11

Theorem 6.3 has been extended to the case of an arbitrary set X in Jaffray
(1974a,b) (see also Fishburn, 1992b; Furkhen and Richter, 1991). The result-
ing conditions are however quite complex. This explains why we spent time on
this “rich” case in the previous section. .

Remark 6.1.12

The use of a denumerable scheme of conditions in theorem 6.3 does not ease
the interpretation and test of conditions. However it should be noted that, on
a given set X, the test of the C™ conditions amounts to finding if a system
of a finite number of linear inequalities has a solution. It is well-known that
Linear Programming techniques are quite efficient for such a task. In chapter 7,
section 7.3.1, we show how to use LP techniques to assess an additive value model

(6.1). .

6.2 A first line of generalisation: models based on
marginal traces or preferences

Section 4.3 focused on the additive value function model (equation (6.1)); examples
were presented showing the need for preference models that cannot be described by
means of an additive value function. In this section we discuss a generalisation of
the additive value function model, while preserving the possibility of using the fun-
damental construction tool suggested by the model, namely marginal preferences
that are weak orders represented by the functions u; in (6.1). Interestingly, the
generalised model admits a full characterisation through fairly simple and intuitive
axioms, which was not the case for model (6.1) as we have just seen.

Since we limit ourselves to evaluation models in which there are a finite number
of alternatives, we may restrict the X,’s to be finite sets, but the reader might be
interested to know that the theorems below remain valid when the X; are countably
infinite and that for sets of arbitrary cardinality, necessary and sufficient conditions
are known (the references provided below deal with the general case).
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6.2.1 Decomposable preferences

The so-called decomposable model was introduced in Krantz et al. (1971, ch. 7) as
a natural generalisation of model (6.1). The preference 7 is meant to be a weak
order and can thus be represented by a rule of the type

T Zy < u(z) = uly) (6.10)

with u, a real-valued function defined on X. Instead of specifying u as a sum of
functions wu; of the variables z;, v is just assumed to be decomposable in the form

u(z) = U(ui(z1), ..., un(zs)) (6.11)

where u; is a function mapping X; onto R (the set of real numbers) and U is
increasing in all its arguments.

This model encompasses the case in which u is a non-additive function of the
u;'s, which is suitable for non-additive utility models, for instance polynomial
models (see, e.g., Krantz et al., 1971, ch. 7).

The interesting point with this model is that it admits an intuitively appealing
full characterisation. The basic axiom for characterising the decomposable model
described above (with increasing function U) is the weak independence condition
(see definition 6.1, page 239).

For preferences that are weak orders, we know that the weak independence
property is equivalent to the fact that the marginal preferences -, are weak orders
(proposition 6.1). Moreover, it is easy to see that u; in (6.11) is necessarily a nu-
merical representation of 77;, i.e. x; 77; v iff wi(z;) > ui(y;). This is an important
result, since it opens the door to the elicitation of the u;’s by questioning in terms
of marginal preferences 7; as in the additive utility model.

The following theorem states a simple and important characterisation of the
decomposable model. This result was first proved in Krantz et al. (1971, ch. 7).

Theorem 6.4 (Representation in the decomposable model)
A preference relation - on X admits a representation in the decomposable model:

zZy e Uui(z), o un(@n)) 2 Uluiy), - uilyn))

with U increasing in all its arguments iff - is a weak order and satisfies weak
independence.

If one intended to apply this model, one would specify the type of function U,
possibly by verifying further conditions on the preference that impose that U be-
longs to a parameterised family of functions (e.g. polynomials of bounded degree).
However, the structure of the model suggests a general elicitation scheme that is
quite complex due to the high generality of the model, but could be envisaged
for instance, when the number of alternatives is small. Even if this scheme may
be of little practical value, it is nevertheless fully compatible with the model and
logically valid when the number of alternatives is finite.
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6.2.2 A procedure for eliciting the general decomposable
model

Once it is recognised that model (6.11) could apply, the first step consists in
eliciting the marginal preferences 7=;. An arbitrary numerical representation of
the weak order ’7; may then be chosen for each u;. There are many possible
strategies for obtaining (through questioning a client) a function U that assigns a
rank to cach profile of levels @ = (u1,...,un) € []i; wi(X;) (we abuse notations
denoting by u; a value taken by the function u; : X; — R). We just suggest one
way of doing this here.

On each scale u;(X;), select a reference level u{ (this could be the minimum
or the maximum on each scale, but it is perhaps better—for cognitive reasons—to
start from the “middle” of the scale (see von Winterfeldt and Edwards, 1986, ch.
7)) and form the reference profile ® = (uf,...,ul). Assign the value 0 to this
profile, i.e. set U(@®) = 0. Then build a number of “milestone profiles” for instance
in the following way: denote by N (u;) the level just above u; on the scale u;(X;)
or u; itself if the latter is the highest level on the scale'. Conversely, A/ ~}(u;)
denotes the level just below u; or w; itself if there is no level below u;. A will be
called the “next level” operator and A/ ~!, the “preceding level” operator. Using
N, we recursively define the milestone profiles @', w2, ... by

@' = (N(u}), - N(up))
and more generally for all k =0,1,2,...,
T = (W (uk), ..., N(uh));
the milestone profiles below % are defined for k = 0, -1, -2,... by
7 = (W), N T E)),

Of course we stop generating milestone profiles as soon as w*+!

= 7* and as soon
as T~ = 7. Suppose that the generation stops when k = k above @° and when
k = k below @°. Due to the properties of the marginal preferences =; w.r.t. =, we

have:

T - - T L TR (6.12)
We assign the value k to U(@").

The next step consists in inserting all other profiles in between the appropriate
consecutive “milestones”. Start for instance with the profiles that differ from 7*
on a single coordinate and by one level, i.e., for some i, u; = N (ufF) # u¥. There

are at most n such (distinct) profiles that all lie between & and @*. One has to
situate them in this interval with respect to each other and then give them an
arbitrary value of U with the constraint that the assigned values reflect the order
of the profiles in the interval. One may then consider profiles at “distance 2” above

1 Formally, M (u;) > u; and for all u; € u;(X;), if there is v; € u;(X;) such that v; > u;, then
N(uz) > U
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T*, i.e. profiles that differ from the latter either on two coordinates by one level
(above) or on a single coordinate by two levels (above). After having inserted
all such profiles, one has to consider profiles that are more and more distant,
until all profiles have been inserted between those previously assessed. Note that
the only constraint to be fulfilled when inserting a new profile, is to respect the
dominance relation w.r.t. the previously inserted profiles; this means that if @’ is
to be inserted, the value U(T") must be

e larger than the value assigned to any already assigned profile T that is dom-
inated by %, i.e. to any profile such that

uj > uy, for all ¢ and for some ¢, u} > uy;

e smaller than the value assigned to any already assigned profile w that domi-
nates '

Remark 6.2.1

Our goal in outlining the above procedure was just to suggest a way of eliciting
a decomposable model; we do not say that the suggested strategy is the best one
possible; it is certainly not the only one. A lot of additional effort would be needed
to make it precise and operational. .

Remark 6.2.2

This procedure is also quite complex and it could be envisaged to use it only when
the number of different profiles is small. Note however, that the latter number is
not directly determined by the number of alternatives, but rather by the number
of levels on the scales u;(X;), i.e. the number of equivalence classes of the marginal
preferences. If the discrimination power of the marginal preferences is weak, the
cardinality of the set of profiles [} ; u;(X;) is low. .

Remark 6.2.3
Software could help operationalising the above procedure by

¢ prompting the next profile to be inserted;

e propagating the consequences of the last insertion, i.e. automatically insert-
ing all profiles that can unambiguously be placed due to dominance consid-
erations;

o list the places where a profile could be inserted, taking dominance consider-
ations into account . o

[ti/ The previous section shows that it is possible, at least in theory, to devise
€3 a procedure for faithfully assessing a general decomposable model or, in other
& words, to elicit a preference that is assumed to be a weakly independent weak

order. The procedure mainly relies on the elicitation of marginal preferences.
“% This is in line with the procedures used for eliciting the additive value model
5 (see section 6.1.2)
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6.2.3 Non-strict decomposable model
6.2.3.1 The non-strict decomposable model

The decomposable model is fairly general, yet not general enough to encompass a
widely used aggregation procedure such as the “min”. In the example of Flexible
CSP (p. 144), we pointed out that the “min-score” aggregation method (equation
4.16) does not satisfy the strong independence property; the same small numerical
example given there shows that it also fails to verify weak independence. However,
it is not difficult to convince oneself that changing all the levels that are common to
two alternatives into other common levels can only transform strict preference into
indifference, excluding strict preference in the opposite direction (the numerical
example shows a transformation of strict preference into indifference). This is a
motivation to consider a weakened variant of the decomposable model in which
U is not assumed to be increasing, but just non-decreasing in all its arguments;
we shall refer to such a model as non-strict decomposable model. The relevant
weakening of weak independence is called weak separability. This property was
considered for instance in Blackorby, Primont, and Russell (1978). We give its
definition below and, for reasons of symmetry, we also define (strong) separability.

Definition 6.9 (Separability)
Let - be a binary relation on a set X = [[;—; X; and J C N be a nonempty subset
of dimensions. We say that 77 is separable for J if, for all z;,y5 € X,

(zg,2-5) > (Ys,2-1), for some z_y € X_j| = x5 75 YJ.

If ¥ is separable for all nonempty subsets of N, we say that 7 is separable (or

strongly separable). If 7= is separable for all subsets containing a single dimension,
we say that = is weakly separable.

Comparing the definition of “separable for J” to that of “independent for J”
(see definition 6.1, p. 239), shows that the only difference is the substitution of
7 with > in the premise of the condition. Hence separability is a weaker
requirement than independence and weak separability weakens weak independence.
The weak separability property tells us that when two alternatives share the same
evaluations on all but one criterion, changing all these common levels into any other
common level, can neither transform a strict preference into a strict preference in
the other “direction”, nor into no preference at all. Weak separability and weak
independence are intuitively very similar conditions.

Substituting weak independence with weak separability leads to a slightly more
general family of models that can be characterised. They admit a numerical rep-
resentation of type (6.11) with U nondecreasing instead of increasing. This result
is stated below; it was proven (in the special case where X = R™) by Blackorby
et al. (1978) and is revisited in Bouyssou and Pirlot (2004b, Proposition 8).

Theorem 6.5 (Representation in the non-strict decomposable model)
A preference relation 7, on X admits a representation in the non-strict decompos-
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able model
zzy e Ui(z),.. un(en)) = Ulug(yr), ..o us{yn)),

with U nondecreasing in all its arguments, iff 7= is a weak order and satisfies weak
separability.

6.2.3.2 Eliciting the non-strict decomposable model

A non-strict decomposable model can be elicited in a very similar way to what
we proposed for the strict case. The only difference results from the fact that
the preference 7~ is no longer positively responsive to the marginal preferences.
It may occur that for some common levels a_;, (zf,a_;) > (z;,a_;) while for
other common levels b_;, (z},b_;) ~ (x;,b_;); in contrast, in the decomposable
model, one always has 2} >; z; = (z},a_;) = (z4,a-,), for all a_;. Consequently,
in the process proposed above for eliciting a decomposable model, one can not
exclude that M(u;) # u; while (wq,..., N(w), ..., un) ~ (U1, , U, .., Up); ID
particular, it may occur that in (6.12), w* ~ 71 for some k. As a consequence,
the suggested elicitation procedure must be adapted as follows.

For eliciting a non-strict decomposable model, follow the same lines as indicated
for the decomposable model. For each profile generated by applying the “next
level” operator A or the “preceding level” operator N ! to a starting profile, one
has to verify whether the generated profile is strictly preferred (>) or indifferent
(~) to the initial one. For instance, if for some k, @**! ~ @*, i.e. if consecutive
milestones are indistinguishable, then all profiles in-between also collapse; more
precisely, any profile T for which u; = Ef“ or @ for all i is indifferent both to
T+ and TF. Profiles generated by applying the “preceding level” operator should
be similarly checked for indifference or strict preference.

6.2.4 Insufficiency of the decomposable model

Decomposable preferences form a large family of preferences though not large
enough to encompass all useful cases. A major restriction is that not all preferences
may be assumed to be weak orders. The example of the sequence of cups of coffee,
each differing from the previous one by an imperceptible added quantity of sugar,
is famous; it leads to the notion of semiorder (Luce, 1956), in which indifference
is not transitive, while strict preference is. A classic example of such a situation
oceurs in statistical decision contexts.

Example 6.3 (Testing for equality of means)

Let X = R"; a vector ¢ € X can be viewed as a sample of n independent trials
drawn from a normal probability distribution. Let a and b be two vectors of X
assuming that they are respectively samples of the variables A and B, both normal
and with respective means p4 and pp (and known variance o?), one may wish to
test for equality of the means p4 and pp. Let us mention as a relevant example,
the case in which the length (or mass, or volume, ...) of a collection of objects are
measured using an appropriate measuring device; the measure of each object is
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repeated n times in order to control errors in measurement; vector a records the n
measures performed on a specific object that can be identified with the variable A;
the “true” measure of object A is u4. If we want to test whether there is evidence
that 4 > up or on the contrary, if the data point to accepting that u4 = ug
(one-sided test), we have to compute @ = 1/nY ; ;a; and b= 1/nY 7, b;. We
shall reject the hypothesis that u4 = up and consider that pa > pp if
o

ﬁ’
where k is a positive value determined in order to limit the risk of type I (i.e. the
risk of rejecting the hypothesis while it is true). One could decide that pua4 > pp
as soon as @ > b but due to random effects, using this criterion would lead us to
frequent errors, especially when up is only slightly larger than pa.

This classical statistical test interpreted within our framework, amounts to
define a relation > on X by

a>b+k

e T o
a»b1ffa>b+k\/ﬁ.

It models the decision that would be taken, according to standard statistical theory,
on the issue of mean equality in all possible cases of two independent samples of
normal distributions with known common variance. The relation that one obtains
on X is the asymmetric part of a semiorder (see chapter 3). In order to deal with
reflexive preferences as we did before, we may consider the semiorder of which the
asymmetric part is > that is defined as follows:

arbiffa>h— k-
Vn
The information conveyed in this relation, although it has no classical statistical
interpretation, is logically equivalent to its asymmetric part (the latter can be
reconstructed from the former without loss of information}.
This semiorder cannot be represented within the decomposable model (or in
its non-strict variant). Instead, here is another type of a representation for

1< 1 & o
arbiff — g a; > — E by — k—, (6.13)
n =1 n el \/ﬁ
or, equivalently,
1 & -
= biff — i— b))+ k—=2>0. 6.14
eRbIB LD (a b+ kg 619

The previous example shows that the decomposable model may prove insufficient
for representing relations that occur rather naturally; in particular, the model does
not cover preference relations that are no weak orders. One objection to example
6.3 may be that it does not deal with preferences in the true sense. We decided to
develop this example because it is familiar to all those who have received at least
a basic course in statistics; it also has the advantage of providing a simple and un-
ambiguous mathematical formulation. In addition, we are convinced that the type
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of behaviour producing the relation - or > in example 6.3 is very common when
dealing with an additive model for decision. Due to the uncertainty and errors
in the assessment of the marginal value functions u;, one would probably refrain
from claiming that a > b as soon as u(a) = 1/n) i a; > u(b) = 1/n> . b
Instead, it would be more reasonable to say that a > b when u(a) > u(b) + ¢, i.e.
when 1/n " ja; > 1/nY 0 bi + ¢, where € is a positive constant that offers
some guarantee against estimation errors. One would thus have:

a~biff ju(a) —ud)| <e
a > biff u(a) >u(b) +¢

Estimating ¢ is not an easy task. For example, considering an additive value model
involving evaluations on a cost criterion, one can compute the cost equivalent to
a unit of u and ask the client which monetary amount he would consider as an
indifference threshold, taking his perception of the uncertainty on cost evaluation
into account. Of course, this will only reflect the uncertainty as to cost (and not
error or imprecision in the elicitation of the functions w;) but it should provide
at least a lower bound on &, which, most likely, will be positive. The concern for
not asserting conclusions that are not well-established because the parameters of
a model are not precisely or reliably assessed, is the central topic of section 7.5 in
chapter 7.

6.2.5 Insufficiency of marginal analysis: marginal traces

In the decomposable model, the preference may be reconstructed on the basis
of the marginal preferences ’-; since it is represented by a function of the u,’s,
themselves representing >, (at least in the strict decomposable model).

This is no longer the case when - is not a weak order. Again take example

6.3. We have:
a; fﬂ b@ lﬁ (ai,c_i) > (bi,c_i),Vc_i

1 1 o
iff =(a; + cj) =z — (b + ¢;) — k—=,Ve_;
o ; j n( i ; 5) N (6.15)

iff a; > b; — kovn
The marginal preference >, is thus itself a semiorder with a larger threshold
—ko+/n (larger in absolute value compared to the threshold associated with ).
This threshold is n times larger than the one associated with the representation
of &, which means that the relation Z; on X; is not very discriminating.
Suppose that in example 6.3 the variance o2 of both observed normal distrib-
utions is equal to 1 and their mean y are known to range between —1/2 and 1/2.
Let n = 25, which corresponds to samples of 25 observations. Fix the type I risk
to 5%; in our case, this corresponds to a constant k equal to 1.96 in formula (6.15).

We thus have:

—_

9

(=]

arbifa>b— =b—0.392

=

(6.16)
a; = by iff a; > by ~ 1.964/n = b; — 9.8
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In view of (6.16), a; ~; b; iff |a; — b;| < 9.8, which means that ’7; does not
discriminate between levels on X; that differ by less than 9.8. If X; is bound
to take values, e.g. in the interval [—3.5;3.5}—which would be reasonable since
Gaussian distributions very seldom deviate from their mean by more than 3c—all
levels of X; are indifferent w.r.t the marginal preference.

Is there a relation on X; that has stronger links with the global preference 7
than marginal preference ;7 The answer is the marginal trace ff that is defined
below.

Definition 6.10 (Marginal trace)
The marginal trace ,ﬁf of relation 7= on the product set X = [[X; is the relation
on X; defined by:

for all c,d € X,
a; ?:;;t b; Zﬁ [(bi,C_i) ,>:J d] = [(ai,c_i) t d] and (6.17)
[e Z (@i, d-i)) = [c 2 (bi, d—i)]

In other words, if a test decides that pue > pup (where C and D are normal
variables with equal variances) on the basis of a sample of C containing b;, the
same decision would be made if the sample contained qa; instead of b;; conversely,
if a test decides that e > pp on the basis of a sample of D containing a;, the
same decision would be made if the sample contained b; instead of a;.

In example 6.3, one has a; =L b; iff a; > b;, which is easily verified. Suppose

~1 -

indeed that (b;,c_;) 7 d for some c_.; € X_; and d € X; this means that

1 1 & o
—(b; N> — d; — k—=. 1
RO ez o3k (6.18)

i#]

Substituting b; by a; > b; preserves the inequality. Conversely, when a; < b;, there
are situations in which substituting b; by a; results in violating the inequality.
Choose for instance ¢; and d; in (6.18), such that the inequality becomes an
equality; this can be done in many ways since ¢; and d; can take any value in R.
In such a case, substituting b; by a; breaks the tie in the wrong direction.

In models in which - is not assumed to be a weak order, the information
conveyed in the marginal preference relations may be insufficient to reconstruct
the preference. As we shall see, marginal traces, provided they are weak orders,
always convey sufficient information.

The reason why the insufficiency of marginal preferences did not show up in
the decomposable model is a consequence of the following result.

Proposition 6.2 (Marginal preferences and marginal traces)
If a preference relation 7 on X is reflexive and transitive, its marginal preferences
= and its marginal traces = are identical for all i.

~? ~i

This proposition almost directly results from the definitions of marginal preferences
and traces. It implies that there is no need to worry about marginal traces unless
> is not transitive. More precisely, as we shall see below, the notion that conveys
all the information needed to reconstruct the global preference from relations on



6.2. MODELS BASED ON MARGINAL TRACES 263

each scale X, is always the marginal traces; but when 77 is reflexive and transitive,
you may equivalently use marginal preferences. The converse of the proposition
is not true however: there are cases where 77 is not transitive (e.g. when 77 is a
semiorder) and ;= (see Bouyssou and Pirlot, 2004b, Example 4).

N’L_r\n

£y

- For transitive preferences, the marginal preference contains all the rele-
¢» vant information on the client’s preferences in relation to the corresponding
&3 dimension. When a preference happens to be nontransitive, the marginal pref-

erence may cease to be the central tool for eliciting the preference, because it
Lh may not contain all the relevant one-dimensional information. In the case of
@ intransitive preferences, the full one-dimensional information is to be sought
3 in the marginal traces.

Instead of generalising the decomposable model again to encompass preferences
that are, for instance, semiorders ?, we propose and study a much more general
model. It is so general that it encompasses all relations on X. Considering this
model as a framework, we introduce successive specialisations that will bring us
back to the decomposable model, but “from above”, i.e. in a movement from the
general to the particular. In this specialisation process, it is the marginal trace—
not the marginal preference—that is the central tool. Our main axioms will have
a direct impact on the properties of marginal traces while they will be used to
further specify the models.

6.2.6 Generalising decomposable models using
marginal traces

Consider the very general representation of a relation 7~ described by:

z t, Yy <= F(ul(wl)’U’?(zQ)? s ,un(xn)?ul(yl)»UQ(yQ)’ cee vun(yn)) >0 (LO)

The main difference w.r.t. the decomposable model is that the evaluations of the
two alternatives are not dealt with separately.

If no property is imposed on function F', the model is trivial since any relation
can be represented within it. It obviously generalises the decomposable model and
encompasses as a special case, the representation involving a threshold described
n (6.14) (in which the preference is a semiorder).

Tt is easy to obtain representations that guarantee simple properties of 2. For
instance, we have that:

e = is reflexive iff it has a representation in model (L0) with

F(lui(@a)l; [us(2)]) = 0;

2 Obviously one could think of generalising the decomposable model to represent some prefer-
ences that are semiorders, getting inspiration from the numerical representation with threshold
n (6.13).
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e = is complete iff it has a representation in model (L0) with

F(ui(za)]; fus(ya)]) = —F([wilys)s [wi(zs)]).

What if we impose monotonicity conditions on F'? The natural conditions in view
of the decomposable model are:

e F increasing in its first n arguments and decreasing in its last n arguments

e F non-decreasing in its first n arguments and non-increasing in its last n
arguments

The following axioms are closely linked to imposing monotonicity properties to &
and, as we shall see, with properties of the marginal traces.

Definition 6.11 (Axioms AC1, AC2, AC3, AC4)
We say that 7 satisfies:

AC1; iof
(Ti,a_4) Ty (zi,0-4) Z Y
and = or
(zi,b_s) Zw (@i, b)) mw
AC?2; if
Y (Ti,0-4) y % (2i,0-4)
and = or
w 2 (2i,0-4) w 2 (24,0-4)
AC3; if
(Ts,a-4) Y (zi,0-4) Ty
and = or
w 2 (T4, b-4) w 7 (24, 0-4),

forallzy,z; € X;, alla_;,b_; € X_; and all y,w € X,
AC4; if = satisfies AC3; and, whenever one of the conclusions of AC3; is
false, then the other one holds with = instead of 7.

We say that > satisfies AC1 (resp. AC2, AC3, AC4) if it satisfies AC1,
(resp. AC2;, AC3,;, AC4;) for alli € N. We also use AC123; (resp. AC123) as
shorthand for AC1;, AC2; and AC3; (resp. AC1, AC2 and AC3).

The intuition behind these axioms is the following. Take axiom AC1;. It suggests
that z; and z; can be compared: either z; corresponds to a “level” on a “scale”
on X; that is “above” z; or the other way around. Suppose indeed that z; is
involved in an alternative that is preferred to another alternative ((x;,z_;) 72 v);
suppose further that substituting z; to z; would not allow to preserve the preference
(Not[(zi,z—;) 7o y]). Then AC1,; says that substituting z; with z; when 2; is
involved in an alternative that is preferred to another ((z;, z_;) 2 w) will always
preserve the preference (i.e. we have: (z;,z_;) 7 w). One can interpret such a
situation by saying that z; is “above” z;. The “being above” relation on X; is
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what we call the left marginal trace of 25 and we denote it by =7; it is defined as
follows:
x; bj Z; < [(zi,z_i) ,>\: w = (IEi,Z_i) t, IU] (619)

We explained above that AC1; means that x; and z; can always be compared,
which, in terms of the left trace, interprets as: “We may not have Not[z; 7} 2]

and Not[z; 2] z;]” at the same time. It is easy to see that assuming the latter

~1

amounts to having some z_; and some w such that:

(zi,2-4) 5w and Not[ (@i, z—;) 7w

and at the same time, for some z_; and some y,

(zs,x_;) =y and Not[(z,2-;) Z y],

which is exactly the negation of AC1;. Axiom AC1; thus says that the left marginal
trace »-F is a complete relation; since it is transitive by definition, AC1; means
that = is a weak order. The natural order induced by > on X; is 7 this
order on X; may be interpreted as a criterion, an element of the set H defined in
chapter 2, section 2.3.3. So, in a sense, knowing -] transforms dimension ¢ into
a criterion; zj encodes the client’s preference as far as dimension i is concerned.
Endowed with the order 2}, X; can also be seen as an ordinal scale (see chapter
3, section 3.7.1.1).

AC1; deals with levels involved in alternatives that are preferred to other
alternatives, thus in the strong (left hand side) position in the comparison of two
alternatives; in contrast, AC2; rules the behaviour of 7 when changing levels
in alternatives in the weak position (another alternative is preferred to them).
Clearly, AC2; is concerned with a right marginal trace 2; that is defined as
follows:

Yi i wi [T 2 Wi y—i) = ¢ 2 (Wi, y-i)]- (6.20)
The interpretation of y; ;" w; is clear: when an alternative is beaten showing the
level y;, it would also be beaten if y; was changed into w;. In other words, =,
compares levels on X; when these levels are involved in alternatives in the weak
(right hand side) position of a preference relation. By reasoning as above, one sees
that AC2; be equivalent to requiring that 7. is a complete relation and thus a
weak order (since it is transitive by definition).

At this stage, it is natural to ask whether the left marginal trace is related to the
right one. The role of AC3; is to ensure that >} and ] are not incompatible, i.e.
that one cannot have Not{x; 57 v;] and Not [y; 27 ;] at the same time. If 72}

and = are complete, this means that one cannot have [y; =7 z;] and [z; >; ¥
(where =7 and > denote the asymmetric part of >+ and x| respectively) or, in
other words, that [z; =7 y;] implies [z; 27 v} and [z; >, y;] implies [z; =1 vil.

~1

As a consequence of AC123;, the intersection of the (complete) relations ] and
77 is a complete relation, that is nothing else than the marginal trace =+ since

~i
definition (6.17) is equivalent to

a; ff b & a; ,ﬁ;" b; and a; 77 b;.
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We summarise our findings in the next proposition (Bouyssou and Pirlot, 2004b,
Lemma 3).

Proposition 6.3 (Properties of marginal traces)
1. ET is a weak order iff AC1; holds,
2. =7 is a weak order iff AC2; holds,

~1

3. =F is a weak order iff AC1;, AC2; and AC3; hold.

T

The exact role of AC4; is less transparent. It is related to the monotonicity
properties of the preference 7~ with respect to its marginal traces. By definition of
the marginal traces, without assuming any of AC1, AC2 or AC3, the preference
responds monotonically w.r.t. fj and 7, as follows (Bouyssou and Pirlot, 2004b,
Lemma 2).

Proposition 6.4 (Responsiveness w.r.t. marginal traces)
For all xz,y € X and all z;,w; € X;,
1 zmyand 2 5F o) = (z,2-4) Ty,

2. [z 2y andy; T wil =z 7 (Wi, y—4).

These properties hold a fortiori if 27} (resp. 77;) is substituted by >%. Con-
trasting the latter with proposition 6.1 that describes the responsiveness of in-
dependent weakly ordered preferences 7 w.r.t. marginal preferences 7;, we note,
in the present case, that there is no mention of strict or positive responsiveness
(proposition 6.1.3 and 4). The latter property is not true of general preferences
and is indeed related to axiom AC4. As soon as 77 is reflexive, one can show that
ACY; implies AC123; and, moreover, that the preference is strictly responsive to
>§t, ie.:

[z zyand z - ) = (z,2-) = v, (6.21)

[z %y and y; =F w] = 2 = (wi,y-). (6.22)

Remark 6.2.4 (Positive responsiveness w.r.t. marginal traces)

The property just discussed corresponds to the positive responsiveness property
introduced in section 5.2 (see pages 171, 173). The two points of view on aggre-
gation developed in this book (characterisation of procedures, in chapter 5 and
characterisation of relations in a conjoint measurement framework, in the present
chapter) meet here. The positive responsiveness property defined on p. 171 relates
profiles of relations to the global preference obtained through an aggregation pro-
cedure applied to these profiles. If the relations in a profile (that can be interpreted
as a priori modelling the preferences of the client on the various dimensions, i.e.
as criteria in the sense of section 2.3.3 of chapter 2) happen to be our marginal
traces, then the positive responsiveness defined have the same meaning in both
cases. .

The links between the axioms given above and the marginal traces can be directly
exploited in the construction of a monotone numerical representation of 2Z in model
(L0). We have the following result (Bouyssou and Pirlot, 2004b, Theorem 2).
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Proposition 6.5 (Representation in models L)

A preference relation 7o on X admits o representation in model (LO) with F non-
decreasing in its first n arguments, and non-increasing in the last n arguments if
and only if it satisfies AC1, AC2 and ACS3.

To clarify how the marginal traces intervene in the construction of the represen-
tation, we describe how a representation can be obtained with F' monotone as
indicated. Due to the fact that - satisfies AC123, we know that the marginal
traces if are weak orders. Take any numerical representation of the weak order
,ﬁf for u;, i.e. u; is any real-valued function defined on X;, such that

zi 2 i () > ui(z).

Then define F as follows:

. _f Fexp(rio, (wilm) —uilyi)) iz iy,

Flui(z)]; [wi(yi))) = { _exp(z?zi (us () — us(x;)))  otherwise. (6.23)
It can easily be shown that this representation satisfies the requirements. Clearly,
the choice of the exponential function in the definition of F' is arbitrary; any other
positive and non-decreasing function could have been chosen instead. Again the
choice of a representation u; of the weak orders tf is highly arbitrary. We are
thus far from the uniqueness results that can be obtained for the representation of
preferences in the additive utility model (6.1). However, all these representations
are however equivalent from the point of view of the description of a preference.

6.2.7 Models using marginal traces

At this point, it might be useful to give a full picture of the models based on
marginal traces. We have identified three variants of model (L0) above: those
corresponding respectively to reflexive or complete preference - or to a preference
with complete marginal traces. One can associate particular features of the numer-
ical representation in model (L0) to each variant. Systematising the analysis, we
may define the variants of model (L0) listed in table 6.1. This table also shows a
characterisation of the models using the axioms introduced in the previous section.

Remark 6.2.5

Note that requiring that F' be strictly monotone instead of monotone makes no
difference unless - is complete. This is quite understandable and is due to the fact
that, when - is complete, the value of I dedicated to representing indifference is
0. In such a case, if F is strictly monotone, any increase (with respect to marginal
traces) of an evaluation of an alternative produces an alternative that is strictly
preferred to the original one. Not all preferences show this feature. .
Remark 6.2.6

Model (L8) is the closest to the (strict) decomposable model; while model (L7)
is the closest to the non-strict decomposable model. Fach of them generalises
the corresponding decomposable model to non-necessarily transitive preference
relations. If 7 is transitive (and complete, hence a weak order) the corresponding
decomposable model is the appropriate tool for analysing preferences. .
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Table 6.1: Main models using traces on levels and their characterisation.

Models Definition Conditions
(L0) x5y & Flusen), [ui(w)]) > 0 o
(L) (L0) with F(lus(@)], [w(@)]) =0 refl.
................. PR
D Pusen]; [us we)]) = —F (s (o)) [us(z:)) cpl
e it
iy AC123
(L4) (L0) with F(//,\\)
(Ls) (LD with FAN)
(3 refl., AC123
(L6) (L1) with F(//,N\\)
Ly @) wik FOAN) epl., AC123
s (L2) with F(A NN cpl,, ACH

/" means nondecreasing, \, means nonincreasing
/" means increasing, \\, means decreasing
refl. means reflexive, ¢pl. means complete

6.2.8 Respect of the dominance relation

Why is the monotonicity of F' in proposition 6.5 an appealing property? In conjoint
measurement, we do not suppose a priori that there is any preference information
on the sets X;; it is the “observed” global preference on X that reveals how the
client values the levels on each viewpoint. In the practice of MCDM, very often,
the set of levels on the scales attached to each viewpoint are at least ordered 3.
Suppose that there is an a priori weak order S; on each set X;, with z; S; 2
meaning that level x; is at least as good as level z;. In other words, S; orders the
levels of X; from the least desirable to the most desirable. We emphasise that this
order a priori has nothing to do with a particular client’s preference. For instance,
if the alternatives are cars and we consider the point of view of cost, the ordering
S; would correspond to “the cheaper the better”. Similarly, if cars are supposed
to be assessed on a comfort scale with 5 degrees, these degrees will usually be
ranked by increasing order of comfort, independently of the cars to be assessed
and one may presume for instance, that no client who considers comfort a relevant

3 We do not consider the case where the “natural” order on the scale is not compatible
with the “natural” preferences of the client here, i.e. for instance when the client’s preference
initially increases with the performance until a maximum is reached, after which the preference
decreases; for an analysis of the requirements for an appropriate system of criteria in multiple
criteria decision analysis, see Roy and Bouyssou (1993, chapter 2) or Bouyssou (1990).
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criterion for choosing a car, will find degree 3 more desirable than degree 4 (he
may possibly be indifferent).

So, if there is such a priori information available on the sets X;, one may expect
that the client’s preference - on the set X of alternatives fulfills the following

consistency property that we call “respect of dominance”. We restrict ourselves
to reflexive preference relations in this section.

Definition 6.12 (Respect of dominance)
Let S; be a weak order on X;, for all i, and let x,y be alternatives in X. The
dominance relation Ag on X is defined by

z Agy iff ©; S; vy, foralli € N; (6.24)

when this condition is fulfilled, we say that x dominates y. If 77 is a reflexive
preference on X, =, is “compatible with the dominance relation Ag” if the following
condition holds:

[z Asz,z 7y andy Agw] = 2z Z w. (6.25)

We say that 7 is strictly compatible with Ag if, in addition, we have z > w as
soon as at least one of the two dominance pairs corresponds to strict dominance,
i.e. z; Py x; ory; Py w; for some i € N, where P, denotes the asymmetric part of
Si.

When = is compatible with the dominance relation Ag, we also say that it “re-
spects dominance”; “strict respect of dominance” occurs when 77 is strictly com-
patible with Ag. This definition requires that combining preference with domi-
nance on both sides of the preference yields a preference; in particular it entails
(provided = is reflexive, which we assume here) that dominance implies preference
(ie.z Asy =z y).

Remark 6.2.7

Note that the above definition of dominance is the non-strict version of the usual
one. Usually (see, e.g., Steuer, 1986, p. 147), dominance is defined as an irreflexive
relation: on top of condition (6.24), we must have z; F; y; for at least one 5. The
latter relation, that we could refer to a strict dominance, is just the asymmetric
part of the above-defined A or in other words, we include in A pairs of alternatives
that are indifferent on all dimensions (x; I; y; for all 4, where I; denotes the
symmetric part of S;). o

The first question that arises in the framework of conjoint measurement is: “Are
all preferences compatible with some weak order S; on each X;7 And if this is
not the case, which preferences are?”. It is important to understand that, for the
moment, we do not presuppose the knowledge of weak orders on X;; we adopt the
typical point of view of conjoint measurement theory, assuming only that we have
a preference = on X. We thus investigate the conditions on 27 under which there
may erist weak orders S; on X; such that Z is compatible with the dominance
relation Ag these weak orders define. These conditions are readily obtained using
AC123, and AC4, for the strict respect of dominance (Bouyssou and Pirlot, 2004b,
Theorem 1).
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Theorem 6.6 {Compatibility with the dominance relation)
Let = be a reflexive relation on a set X. There are weak orders S; on X; for all
1 € N such that:

1. = is compatible with the dominance relation Ag iff 7~ satisfies AC123;
2. = is strictly compatible with the dominance relation Ag iff 7= satisfies AC4

The conditions that guarantee the compatibility of =~ with a dominance relation
are precisely those ensuring that the marginal traces ,ﬁf are weak orders and that
there is a monotone representation of 7 in model (L0). So it would be no wonder
if the marginal traces and the weak orders S; had close connections. It is indeed
the case that

Ty S; 7 = x4 i‘,;t Z4y

which means that ,ﬁf is usually less discriminant than S;. Thus, to be compatible
with Ag, 7 must have marginal traces that never contradict the weak orders S,
ie. if x; S; z;, either x; >§t Y; OF T; N;Th z;, but we never have z; >§t x;. Returning
to the comfort criterion in the buying-a-car example alluded to in the beginning
of this section, the qualitative levels 3 and 4, with 4 P; 3, may be considered by
the marginal trace as indifferent or distinct (with, in the latter case, 4 >f 3).

Strict compatibility with a dominance relation is quite a stringent requirement.
It imposes that raising the evaluation of an alternative on the scale S; of any crite-
rion 7 yields another alternative that is strictly preferred to the original one. And
a symmetric behaviour is expected when any evaluation is lowered. Indifference is
very “thin” with such a preference relation. This is indeed the case with prefer-
ences that can be represented by an additive value function (model 6.1) and also
by a decomposable model (6.11), but not with the non-strict decomposable model.
ig In practice, the client often has a priori preferences on each dimension:
£ cost should be minimised, time needed for accelerating to reach a certain
£2 speed should be minimised, etc. This section clarifies how these a priori one-
2 dimensional preferences combine with the global preference. If the latter sat-

isfies some reasonable properties, the marginal traces contain the a priori pref-
3 erences. However, the a priori preference may distinguish pairs of levels that
¢ are indifferent in the marginal trace. This is quite natural; small differences
& in cost, for instance, will usually not influence the way two costly equipments

compare to all other alternatives, provided the characteristics of the former
¥, two are tied on all other dimensions.

6.2.9 Properties of marginal preferences in (L0) and vari-
ants

We briefly come back to the analysis of marginal preferences in connection with the
variants of (LO) characterised above. As stated before (proposition 6.2), we know
that for reflexive and transitive preferences, tﬂ:?\f For reflexive preferences,
T, =F 2 implies x; 77; 2.

~i ~t
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The incidence of axioms AC1, AC2, AC3 and AC4 on marginal preferences is
summarised in the next proposition (Bouyssou and Pirlot, 2004b, Proposition 3
and Lemma 4.3).

Proposition 6.6 (Properties of marginal preferences)
1. If = is reflexive and either AC1; or AC2; holds then 7-; ts an interval order.

2. If, in addition, - satisfies AC3; then 7; is a semiorder.

~t

3. If = is reflexive and AC4, holds then ; is a weak-order and =

~t ~tTT A

The preference - in example 6.3, page 259 has marginal preferences 7-; that are
semiorders as is shown by equation (6.15), while marginal traces are the natural
weak orders on R. From the latter, applying proposition 6.5 (in its version for sets
X of arbitrary cardinality), we deduce that - satisfies AC123. Applying the third
part of proposition 6.6, we deduce further that = does not satisfy AC4.

6.2.9.1 Separability and independence

Conditions AC1, AC2, AC3 and AC4 also have an impact on the separability and
independence properties of 72 (Bouyssou and Pirlot, 2004b, Proposition 3.1 and
Lemma 4.3).

Proposition 6.7 (Separability and independence)
Let 77 be a reflexive relation on X. We have:

1. If = satisfies ACL; or AC2; then - is weakly separable fori € N.
2. If = satisfies AC4; then =, is independent for {i},

Preference - in the example of the statistical test (example 6.3, p. 259) is weakly
separable for all ¢ (since - satisfies AC123 and in view of part 1 of proposition
6.7); although > does not satisfy AC4, it is easy to see, applying the definition,
that - is also independent for all i.

6.2.9.2 The case of weak orders

The case in which = is a weak order is quite particular. We have the following
result (Bouyssou and Pirlot, 2004b, Lemma 5 and Lemma 4.3).

Proposition 6.8 (Case of weakly ordered preferences)
Let 7= be a weak order on a set X. Then:

1. [ is weakly separable] < [ satisfies AC1] & (7 satisfies AC2| < [ sat-
isfies AC3],

2. |z is weakly independent] < |7 satisfies AC4],

3. If = is weakly separable, the marginal preference 7=; equals the marginal trace
ff, for all i, and these relations are weak orders.
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This result recalls that when analysing weakly separable weak orders, marginal
traces can be substituted by marginal preferences (as is classically done); it also
shows that weak separability masks AC123.

Example 6.4 (Min, LexiMin and DiscriMin)

In section 4.3.10.1, we have shown that comparing vectors of satisfaction degrees
associated with a set of constraints could be done by comparing the lowest satis-
faction degree in each vector, i.e.

z 7y e min(Ty,. .., Tn) > min(yl, ..., Yn),

where x and y are n-tuples of numbers in the [0,1] interval. This method for
comparing vectors is known as the “Min” or “MaxMin” method. Clearly, the
preference 77 that this method yields is a weak order; it is not weakly independent
as was shown in section 4.3.10.1, but it is weakly separable since izi is simply the
natural weak order on the interval [0, 1]; the relation - thus satisfies AC123 but
not AC4. By theorem 6.8.3, F=,, for all i.

A refinement of the “Min” or “MaxMin” method is the “LexiMin” method
that was studied in section 5.4.5; the latter discriminates between alternatives
that the former leaves tied. When comparing alternatives x and y, LexiMin ranks
z before y if minz; > miny;; when the minimal value of both profiles are equal,
LexiMin looks at the second minimum and decides in favour of the alternative
with the highest second minimum; if again the second minima are equal, it goes to
the third and so on. Alternatives will only be indifferent for LexiMin when they
cannot be distinguished when their coordinates are rearranged in non-decreasing
order.

The preference yielded by LexiMin is again an independent weak order and
zf:g, for all 4.

There is another interesting procedure that is less commonly used: the “Dis-
criMin” method. To compare two alternatives, DiscriMin first eliminates the di-
mensions on which their evaluations are equal; then it ranks as first, the alternative
that has the highest minimal value (on the remaining dimensions). The obtained
preference is not a weak order because the associated indifference is not transitive
(for instance, (0.1,0.3) ~ (0.2,0.1) ~ (0.1,0.2) but (0.1,0.3) > (0.1,0.2)}); it is
nevertheless weakly separable; its marginal traces and preferences are again the
natural order on [0.1]. )

6.2.10 Eliciting the variants of model (L0)

This family of models suggests an elicitation strategy similar to that used for the
decomposable model, but based on the marginal traces instead of the marginal
preferences. It is not likely, however, that such a general model could serve as
a basis for a direct practical elicitation process; instead, we think that it is a
framework for conceiving more specific models associated to a method; the addi-
tive value function model could be considered in this framework; the DiscriMin
method, described above, is another example that doesn’t yield a preference that
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is a weak order. Although it may seem unrealistic to work in such a general frame-
work, Greco, Matarazzo, and Stowiriski (1999a) have proposed to do so and elicit
preferences using an adapted rough sets approach (indirect approach).

o)

;i‘ The family of models based on marginal traces constitute a framework

> that encompasses many common preference models; basic properties that dis-
i3 tinguish them (such as independence vs. separability, responsiveness, respect
{'3 of the dominance relation, etc.) can be understood in this framework. This
. may help the analyst to select appropriate evaluation models in practical prob-
¢ lem situations, for instance by looking for evidence that the preference satisfies

£y some discriminating properties or not.

/X

6.3 Following another path: models using mar-
ginal traces on differences

The generalisation of the additive value model was pursued to its most extreme
limits, since with model (L0} we encompass all possible binary relations on a
product set. This generalisation relies on the marginal traces on the sets X;.
These relations were shown to be the stepping stones to lean on to elicit this
type of model, for relations that are not transitive. For transitive (and reflexive)
relations, marginal traces reduce to the usual marginal preferences.

There is, however, another line of generalisation of the additive value model.
Obviously, it cannot be advocated as more general than the models based on
marginal traces; it nevertheless sheds another light on the picture, since it is based
on an entirely different fundamental notion: traces on differences. Instead of
comparing performance profiles alternatives such as in the additive value model or
the decomposable model or even, in a more implicit form, in model (L0), we can
see the preference of x over y as resulting from a balance made between advantages
and disadvantages of x w.r.t. y on all criteria. While the approach followed in the
additive value model could be described as Aggregate then Compare, the latter
is more relevant to the opposite paradigm Compare (on each dimension) then
Aggregate (Dubois, Fargier, Perny, and Prade, 2003; Perny, 2000). The origins of
such a paradigm can perhaps be found in social choice theory and, in particular,
the majority rule ¢ la Condorcet (see section 5.2.1). If we consider alternatives as
candidates and points of view as voters, we may use the majority rule to compare
the positions of each pair of candidates z,y in the ranking of each voter and
then “aggregate” these comparisons by counting the number of voters that place
candidate z ahead of candidate y and conversely. The ELECTRE methods (see
p. 187) exploit the same idea in the context of multiple criteria decision analysis.

6.3.1 The additive difference model

This paradigm is not new in conjoint measurement either. It is related to the
introduction of the intransitivity of preference. A. Tversky (1969) was one of
the first to propose a model generalising the additive value model and able to
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encompass preferences that lack transitivity. It is known as the additive difference

model in which,

sy e Y Biluilz:) —uily)) >0, (6.26)
i=1
where ®; are increasing and odd functions.

Preferences that satisfy (6.26) may be intransitive, but they are complete (due
to the postulated oddness of ®;). When attention is restricted to the comparison
of objects that only differ on one dimension, (6.26) implies that the preference
between these objects is independent of their common level on the remaining
n — 1 dimensions. This amounts to saying that - is independent for all 7; the
marginal preferences 7;, clearly, are complete and transitive (hence weak orders)
due to the oddness and the increasingness of the ®;. This, in particular, excludes
the possibility of any perception threshold on dimensions, which would lead to
an intransitive indifference relation on these dimensions. Imposing that ®; are
nondecreasing instead of being increasing allows for such a possibility. This gives
rise to what Bouyssou (1986) called the weak additive difference model.

Model (6.26) sums up the differences of preference represented by the func-
tions ®;(u;(x;) —ui(y;)); these differences are themselves obtained by recoding the
algebraic difference of partial value functions u; through the functions ®;. Due
to the presence of two algebraic operations—the sum of the ®; and the difference
of the u;—the difficulties faced when axiomatising (6.26) are of the same order
as (or worse than) for the additive value function model. The characterisations
obtained in the “rich case” incorporate unnecessary structural assumptions on the
set X, either in the topological or the algebraic approach: for n = 2, see Bouyssou
(1986); Croon (1984); Fishburn (1980); for n > 3, see Fishburn (1992a).

Dropping the subtractivity requirement in (6.26) (as suggested in Bouyssou,
1986; Fishburn, 1990a,b, 1991a; Vind, 1991) is a partial answer to the limitations
of the additive difference model. This leads to nontransitive additive conjoint
measurement models in which:

n
znye Y pileny) >0, (6.27)

i=1

where the p;’s are real-valued functions on X? and may have several additional
properties (e.g. pi(zi, ;) =0, for all i € {1,2,...,n} and all z; € X;).

This model is an obvious generalisation of the (weak) additive difference model.
It allows for intransitive and incomplete preference relations - as well as for in-
transitive and incomplete marginal preferences. An interesting specialisation of
(6.27) is obtained when the functions p; are required to be skew symmetric, i.e.,
such that p;(2;,v:) = —pi(ys, ;). This skew symmetric nontransitive additive con-
joint measurement model implies the completeness and the independence of . In
view of the addition operation involved in the model, the difficulties in obtaining
a satisfactory axiomatisation of the model remain essentially as in model (6.26).
Fishburn (1990b, 1991a) axiomatises the skew symmetric version of (6.27) both
in the finite and the infinite case; Vind (1991) provides axioms for (6.27) with
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pi(zi,2;) = 0 when n > 4; Bouyssou (1986) gives necessary and sufficient condi-
tions for (6.27) with and without skew symmetry in the denumerable case, when
n=2.

6.3.2 Comparison of preference differences

With the nontransitive additive model (6.27), the notion of “preference difference”
becomes more abstract than it seems to be in Tversky’s model (6.26); we still refer
to p; as to a representation of preference differences on i even though there is no
algebraic difference operation involved.

This prompts the following question: is there any intrinsic way of defining the
notion of “difference of preference” by referring only to the preference relation -7
The answer is pretty much in the spirit of what we discovered in the previous
section: differences of preference can be compared in terms of traces, here, of
traces on “differences”. We define a relation 77, that we shall call marginal trace
on differences, comparing any two pairs of levels (z;,¥;) and (z;,w;) € X? in the
following way.

Definition 6.13 (Marginal trace on differences ;)
The marginal trace on differences -} s the relation on the pairs of levels X}
defined by:

(ziyvi) 558 (ziywi) off { for alla_;,b_; € X_;,

(zzya—z) ,>\: (’w@, -’L) = (miyawi) i (yzyb—z)

Intuitively, if (x4, y:) 25 (2, w;), it seems reasonable to conclude that the pref-
erence difference between x; and y; is not smaller that the preference difference
between z; and w;. Note that, by construction, =} is reflexive and transitive.
Contrary to our intuition concerning preference differences, the definition of 2}
does not imply that there is any link between two “opposite” differences (x;,y;)

and (y;, ;). Henceforth we introduce the binary relation »}* on X2.

~t

(6.28)

Definition 6.14 (Marginal trace on differences 2 }*)

The marginal trace on differences 75 is the relation on the pairs of levels X}
defined by:

(@iyye) 207 (zowi) if (@ 90) Z3 (zi,wi) and (wi, 20) ZF (i, 20)]. - (6.29)

It is easy to see that 27* is transitive and reversible, i.e.

(@i, y) 27 (s, wi) & (Wi, 2) 727 (Y, ). (6.30)

The relations =} and Z* both appear to capture the idea of comparison of
preference differences between elements of X; induced by the relation 2. Hence,
they are good candidates to serve as the basis for the definition of the functions p;.
They will not serve this purpose well however, unless they are complete. Before
turning to the study of models based on traces on differences, it may be useful to
emphasise that, by definition, preferences have some monotonicity properties with
respect to their traces. We collect these properties in the following proposition
(Bouyssou and Pirlot, 2002b, Lemma 3, p. 689).
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Proposition 6.9 (Responsiveness w.r.t. traces on differences)
For all z,y € X and oll z;,w; € X;,

*

L [:L' /?/ Y and (Zhwl) ri’[/ (zl,yl)] = (Zi,l'_i) r%./ (wi7y~—i);

ok

2. [z =y and (25, w;) 77 (To,y0)] = (26, T_g) > (Wi, Y—s),

These statements tell us how a preference relation responds when a difference
of preference on a criterion is substituted with a larger one. The preference
cannot be reversed with respect to both =¥ and =** when enlarging the dif-
ference between the compared alternatives on any criterion. Furthermore, it is
not impossible that, using 7¥, a strict preference (2 > y) becomes an indifference
((z3,x—;) ~ (w4, y—4)), which is impossible when using 77*. Note that these are
simply consequences of the definition of 2}, not really a property of the prefer-
ence; they add credit to our interpretation of relations 777 and 7}* as comparing
differences of preference on X;.

These monotonicity properties of the preference with respect to the relations
Z¥ or 7" are similar to those observed with respect to marginal preferences

(proposition 6.1) and marginal traces (proposition 6.4).

6.3.3 A general family of models using traces on differences

In the same spirit as the generalisation of the decomposable model to the models
based on marginal traces, we envisage a very general model based on preference
differences here. It formalises the idea of measuring “preference differences” sep-
arately on each dimension and then combining these (positive or negative) differ-
ences to find out whether the aggregation of these differences leads to an advantage
for z over y. More formally, this suggests a model in which:

x 2y Gpi(wy,v1),p2(32,42), -+, Pn(@n, Un)) 2 0 (D0)
where p; are real-valued functions on X? and G is a real-valued function on
[Tie pi(X7).

As already noted by Goldstein (1991), all binary relations satisfy model (DO0)
when X is finite or countably infinite. Necessary and sufficient conditions for the
non-denumerable case are well-known (Bouyssou and Pirlot, 2002b).

As for the variants of model (L0), it is easy to impose conditions on G that
will result in simple properties of 7-; we have for instance:

e - is reflexive iff it has a representation in model (D0) with

G(lpi(zi, 2;)])) = 0, for all x5

e ~ is independent iff it has a representation in model (D0) with
pi(xi,x;) = 0 for all z;;

in addition, > is reflexive iff G(0) > 0 and 7 is irreflexive iff G(0) < 0.
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o - is complete iff it has a representation in model (D0) with skew-symmetric
Pis ie.
pi(%i, y:) = —pi(ys, 74) for all @, y;;

and G odd, i.e. G(—p) = —G(p) for all p = (p1,...,pn).

Again, as for the models based on marginal traces, the monotonicity of G is related
to the properties of traces on differences (6.28) and (6.29). The axioms needed to
guarantee the monotonicity of G are very similar to AC1, AC2 or AC3 because
traces are involved.

Definition 6.15

We say that relation 22 on X satisfies:

RC1; if
(Tiya-4) Z (Yir 0-i) (Tiycei) Z (Yird—y)
and = or
(Zi, c*i) />\: (wia d—z) (Ziy a—i) ,—%J (wi7 b—i)7
RC2; if
(@i, a-4) 22 (Y3, b-i) (ziya—i) 2 (wi, by)
and = or
(Yirc—i) Z (@iyd—y) (wi,c—) 2 (zi,d—i),

fOT all Ti, Y, 2, W € X5 and all a_;,b_j,c_y,d_; € X_;.

RC3; if = satisfies RC2; and when one of the conclusions of RC2; is false
then the other holds with > instead of 7.

We say that 7 satisfies RC1 (resp. RC2) if it satisfies RC1, (resp. RC2;) for
allt € N. We also use RC12 as shorthand for RC1 and RC2.

Condition RC'1; implies that any two ordered pairs (x;, ;) and (z;, w;) of elements
of X; are comparable in terms of the relation =F. Indeed, it is easy to see that
supposing Not{(z;,v;) 77 (z,w;)] and Not{(z;,w;) ZF (x4, ¥:)] is the negation
of RC1;. Similarly, RC2; implies that the two opposite differences (x;,¥,;) and
(yi,z;) are linked. In terms of the relation 77, it states that if the preference
difference between x; and y; is not at least as large as the preference difference
between z; and w; then the preference difference between y; and z; should be at
least as large as the preference difference between w; and z; (Bouyssou and Pirlot,

2002b, Lemma 1).

Proposition 6.10 (Completeness of the traces on differences)
We have:

1. [z} is a weak order] & RC1;,

2. [z is a weak order] & [RC1; and RC2;).

(3

Here again (as for the models based on marginal traces, see section 6.2.6) the
links between RC'1, RC2 and properties of 2} and 7¥* play a fundamental role
in the construction of a representation of a preference relation in model (D0) with
a monotone G function. Axiom RC?2 introduces a mirror effect on preference
differences: under RC?2;, the difference of preference (y;, x;) is the mirror image of

(x;,v;) (Bouyssou and Pirlot, 2002b, Theorem 1).
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Proposition 6.11 (Representation in model D)

A preference relation 7 on X admits a representation in model (D0) with G nonde-
creasing in all its n arguments iff 7= satisfies RC1. It admits such a representation
with, in addition, p;(z;,y:) = —pi(ys, ), off 7 satisfies RC1 and RC2.

The construction of a representation under the hypotheses of the above proposition
helps to make this proposition more intuitive. We outline this construction below.
Suppose that - satisfies RC1. We know, by proposition 6.10.1 that 7} is a

weak order on the set of pairs of levels X? for all i. Select, for all 4, a real-valued
function p; that represents the weak order =¥, i.e. that satisfies:

~?
pi(Ti, yi) 2 pilze, wi) M (@4, y0) 227 (20 w4),

for all z;,v;, z;, w; € X;. Then define G as follows:

Ao Y] — exXp Z?:lpi(xiv i) ifzry
G([p’t(x’uy’t)]) - { —exp[— Z:L:lpl(mz,yz)] Otherwise. (631)

It can easily be shown that G is well-defined. The choice of the exponential
function and the sum operator is purely arbitrary; any other increasing function
defined on the set of real numbers and taking positive values would do as well.
The role of such a function is to ensure that, in each of the two sub-domains x 77 y
and “otherwise”, function G is increasing in the p;’s; since the relation - is itself
non-decreasing with respect to the relations =¥ for all ¢ (as implied by proposition
6.9), raising the value of a p; (which represents ) may only result in remaining
in the same sub-domain or passing from the domain “otherwise” to the domain
“x 7~ y”; the value of G is negative in the former sub-domain and positive in the
latter and in each sub-domain, G is increasing. This proves that G is increasing
in all its arguments p;.

The second case, in which - satisfies RC1 and RC?2 is dealt with similarly.
Since in this case =* is a weak order, we use functions p; that represent 2™
instead of =¥. We may, moreover, exploit the reversibility property (6.30) of ZZ;*
to ensure that we may choose a skew-symmetric function p; to represent 22}*. Then
we define GG as in (6.31). In the same case, we may also obtain a representation in
which G is increasing (instead of non-decreasing) by defining G as follows:

exp Z?:lpi(%, Yi) ifx =y
Gllps(ainwl) = | 0 itz ~ y (632
—exp |~ Y i pi(zi,ys)]  otherwise.

Combining the various additional properties that can be imposed on =, we are led
to consider a number of variants of the basic (D0) model. These models, labelled
(D1) to (D11), can be fully characterised using the axioms RC1, RC2 and RC3.
The definition of the models, as well as their characterisation are displayed in table
6.2.

Remark 6.3.1 (Importance of marginal traces on differences)
In models (L0) to (L8) (see table 6.1, p. 268), both the understanding of the
models and the basis for eliciting them rely on a fundamental object: the marginal
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Table 6.2: Main models using traces on differences and their characterisation.

Models Definition Conditions
(D0) z 7y e Glpdei,y))) >0 @
(D1) (DO0) with p;{z:,2:) =0

) ind.
(D2) (D0) with p; skew symmetric

(D3) (DO0) with p; skew symmetric and  cpl., ind.

G odd
(p8y  (DO) with (")

) RC1
(D8) (DO) with G(,//)
(Ds) (D) with G

8 RC1, ind.
(D9) (D1) with G(,/)
ey (D2) with G(7)

RC12

(D10) (D2) with G(2/)
on (D3) with G(7) opl., RC12
(o1y (D3) with G(27) epl., RC3

/" means nondecreasing, /' means increasing
cpl. means completeness, ind. means independence

traces i;t Here, obviously, the same role is played by the traces on differences
ZFor 7. It is indeed tempting to interpret the functions p; as being numerical
representations of =7 or Z*; it is always possible to impose that the p; functions
used in models (D1} to (D11) represent either one or the other of those traces. o

ﬁj;) An alternative strategy for eliciting a preference model, relies on the elici-
£ tation of a relation comparing differences of preferences on each dimension, in
£ contrast to the elicitation of marginal traces for models (L1) to (L8) or, when
2 preferences aré assumed to be transitive, in contrast to the elicitation of the
&é‘ marginal preferences. In order to apply such a strategy, the basic property that
¢ should reasonably be required of the preference is that its traces on differences
3 be complete, which can be tested using axioms RC1 and/or RC2. Methods
&) of aggregation based on pairwise comparisons, such as the numerous versions
L{} of the majority rule considered in chapter 5, are likely to lead to preferences

b;'fi that fit into the “D” models.
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Remark 6.3.2 (Responsiveness with respect to traces on differences)

Proposition 6.9 expresses the fact that all preferences are positively (more pre-
cisely, non-negatively) responsive with respect to their traces on differences; this
is implied by the very definition of the traces. The response however is not strictly
positive in general. As can be seen in table 6.2, when the preference is complete,
RC3; is linked to the way the preference reacts to a strict increase of a prefer-
ence difference. Complete preference relations satisfying RC3; enjoy the following
positive responsiveness property (Bouyssou and Pirlot, 2002b, Lemma 3.5, p. 689):

[z 2y and (z,w;) =7 (24, 95)] = (20, 2-4) = (s, Y—4). (6.33)

For such a preference, indifference is “thin”, since, in case x and y are indifferent,
increasing the difference of preference (z;,y;) or reducing the difference (y;, ;)
converts indifference into strict preference.

Note that positive responsiveness is not the rule for all preferences. It is not the
case for instance in example 6.3 (statistical test of comparison of means) in which
the marginal traces on differences can be represented by the algebraic differences
of the values a; — b;. Clearly in this example, indifference is not thin, due to
the fact that the values of the means cannot be significantly distinguished unless
their difference reaches some threshold (see equation (6.14)). On the contrary,
the usual additive value model (6.1) is positively responsive; its marginal traces
on differences can be represented by the differences of marginal utilities u;(x;) —

U; (yz) .

6.3.4 Eliciting models using traces on differences

We suppose that = is reflexive and satisfies RC1, i.e., we are in model (D5)
(equivalent to (D9)). In this model, 77 is a weak order on the “differences of
preference” (z;,y;) € X2, for all 4, and the functions p; may be chosen to be
numerical representations of -}, To each pair of alternatives x,y € X, a profile
P = (p1,...,pn) of differences of preferences (p; = ps(a;,y;), for i = 1,...,n) is
henceforth associated. The function G may be conceived of as a rule that assigns
a value to each profile; in model (D5), G is just assumed to be nonincreasing (not
necessarily increasing if we choose to represent - into model (D5) instead of the
equivalent model (D9)) and therefore we may choose a very simple form of G that
codes profiles in the following way:

+1 if § corresponds to x > vy;
G(p) = 0 if p corresponds to z ~ y; (6.34)
—1 if P corresponds to Not[z = y].

The strategy for eliciting such a model (directly) may thus be as follows:

1. for all 4, elicit the weak order ZzF that ranks the differences of preference;
choose a representation p; of 227

2. elicit the rule (function) G that assigns a category (coded +1, 0 or —1) to
each profile 7.
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The second step of the elicitation strategy is comparable to that used for eliciting
function U in the decomposable model (page 256), since the monotonicity of G in
its arguments can be exploited.

The initial step, however, is more complex than with the decomposable model,
because we have to rank-order the set X2 instead of X;. If it may be assumed that
the difference of preference is reversible (see (6.30)), almost half of the work can be
saved since only the “positive” (or only the “negative”} differences must be rank-
ordered. The difficulty that remains even in the reversible case, may motivate
the consideration of another family of models that rely both on marginal traces
and on traces on differences. In some of these models, =¥ reacts positively (or
non-negatively) to marginal traces and therefore, the elicitation of p; may benefit
from its monotonicity w.r.t. marginal traces. This family of models is presented
in section 6.4.

Models (D4), (D5), (D6) and (D7), in which G is a nondecreasing function,
can be elicited in a similar fashion. The situation is different when a representation
is sought with G increasing, in particular for model (D11). The definition of G by
(6.34) is no longer appropriate for such representations, and defining G requires
more care and effort. We do not analyse this point.

6.3.4.1 Testing whether preferences fit into model (D5)

In view of the characterisation of (D5) (see table 6.2), a preference satisfies (D5)
iff the differences of preferences can be rank-ordered (according to 77) and the
preference - is monotone w.r.t. the orders on the differences of preference 2Z}.
(D5) might be considered as a default model if a model based on preference dif-
ferences was previously chosen. The elicitation strategy outlined above could be
pursued until consistency problems are encountered in the elicitation process: e.g.
contradictions between the client’s answers and consequences of the monotonicity
of = applied to previous answers. If no such contradiction has been met when
the elicitation is completed, the validation of the model may consist in partially
testing the consistency of the model by asking redundant questions aimed at de-
tecting non-monotonicity of 22 w.r.t. the elicited ;. Detected contradictions may
lead either to reject the model or to revise the elicitation of some 2.
Preliminary questions may lead to assuming a more structured model, such as

e.g.

o (D6) (equivalent to (D10)) if, in addition, the decision maker feels that
the difference of preference (z;,y;) is exactly the opposite of the difference
of preference (y;,z;) for all z;,y; (this may be partially tested by asking
appropriate questions);

e (D7) (equivalent to (D10)) if, in addition to the hypotheses of (D6), the de-
cision maker feels that the preference is complete (this can be partly tested).

41In the case of a tie, i.e, whenever (x;,¥;) ~7 (2;,w;), one has, however, to explicitly look at
the relation between the reverse differences (y;, z;) and (wy, z;) since all cases (¥, ~F or 37)
can possibly occur.
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Testing (or questioning about) Model (D11) seems to be more difficult. This
model departs from model (D7) or, equivalently (D10) because preference - reacts
positively to any improvement of the difference of preference on any dimension 1.
More precisely, if z ~ y and the difference of preference (z;,v;) is substituted
by a larger one w.r.t. 2%, say (z;,w;) with (z;,w;) >* (x;,¥;), the preference
becomes strict between the transformed alternatives, i.e. (z;,z-;) > (w;, y—q) (see
Bouyssou and Pirlot, 2002b, Lemma 3.5). Partially testing this condition does not
make much sense since this condition may, of course, hold in some cases in model

(D10); the fact that it holds in all cases is characteristic of model (D11).

6.3.5 Examples of models that distinguish no more than
three classes of differences

The family of models using traces on differences provides an appropriate frame-
work for describing the procedures examined in section 5.2, i.e. procedures that
aggregate a profile of preference relations into one relation. In this section, we
show that the simple majority (or Condorcet method), weighted majority, qual-
ified majority and the lexicographic method can be represented in some of the
models (D1) to (D11). We consider, in addition, a variant of the ELECTRE I
procedure in which the profile of preferences on each dimension are not weak or-
ders but semiorders. In each of these cases, the relation that orders the differences
of preference on each criterion is revealed by the global preference relation.

The above rules can also be described in another, more detailed, framework
that will be discussed below in section 6.4, where we will come back to all of these
rules. In section 6.5, we will study, a class of relations that encompass all the rules
and are called concordance relations.

First of all, the definitions of the various majority rules and the lexicographic
method discussed in section 5.2 require to be slightly adapted to our conjoint mea-
surement context. We do not start with a profile of preference relations here, but,
instead, with a global preference relation - that—we assume—can be obtained
through the application of some sort of a majority or lexicographic rule to a profile
of a priori preference relations on each dimension. More formally, we say that a
relation 77, defined on a product set X = [];"; X; is the result of the application
of a majority or a lexicographic rule if there is a relation S; on each X; such that
7 can be obtained by aggregating the n relations S; using that rule. These S;’s
will usually be weak orders, but we will also consider more general structures such
as semiorders. There can be some sort of relationship between S; and the revealed
marginal preferences 7; induced by - on X;. This relationship will be examined
in section 6.4.3. In the sequel, we refer to S; as to the a priori preference relation
on X;. Such relations may have been obtained as suggested in chapter 3

Take the example of the simple majority rule. We say that = is a simple
majority preference relation if there are relations S; that are weak orders on the
corresponding X; such that:

the number of criteria on which z; S; y;
x -y iff ¢ is at least as large as (6.35)
the number of criteria such thaty; S; z;.
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There is apparently a difference with the procedures defined in section 5.2. In
that section, the weak orders (that are denoted there by 7-; and correspond here
to the §; relations) are defined on the set of alternatives X it is easy to extend
our relation S;, defined on Xj, to a relation ;X on X just by saying that z S;* y
iff x; S; vy, where z; (resp. y;) is the evaluation of z (resp. y) on the ith dimension.
In other words, X; can be interpreted as representing the aspect of the alternatives
that is relevant for ranking them according to dimension 4; this ranking is .S;.

We emphasise that the relations denoted by 7; in section 5.2 are not to be
confused with the marginal preferences induced by - as defined by equation (4.7)
in section 4.3.6 (although there may exist relationships between them as we shall
see in section 6.4.1).

In the rest of this section, P; will denote the asymmetric part of a relation
S; defined on X; and its symmetric part will be denoted by I;. In the first five
examples, the S;’s are assumed to be weak orders.

We refer the reader to section 5.2 for a comparison of the social choice and
conjoint measurement perspectives on the procedures described below.

6.3.5.1 Simple majority or the Condorcet method

A relation 7 on X is a simple magjority relation (see section 5.2.1 for a social
choice viewpoint on simple majority) if there is a weak order S; on each X; such
that

syt {ie Ntz Siyit| > {t € Ny Sz} (6.36)

In other words, z 7 y if the “coalition” of criteria on which z is at least as good
as y is at least as large as the “opposite coalition”, i.e. the set of criteria on which
y is at least as good as x. The term “coalition” is used here for “set”, in reference
to social choice. We apparently do not distinguish between the case in which z; is
better than y; (x; P; y;) and that in which they are indifferent (z; I; y;). Note that
the criteria for which z; is indifferent to y; appear in both coalitions and hence
cancel each other. We could thus define a simple majority relation equivalently by
eyt [{i€N:a Py}l > {ieN:y P ai}l.
Such a relation can be represented in model (D11) by defining

pi(Ti, yi) = 0 if Ly (6.37)

and

G(lpi)) =D _ s (6.38)

ieN
Indeed z = y iff G([pi(zs,w:)]) ={t e N1z Piyi}| - |{i € N:y; By a}| >0,

which is clearly equivalent to definition (6.36).
This representation of a simple majority relation can furthermore be called
regular, in the sense that the functions p; are numerical representations of the
weak orders 77, the latter having exactly three equivalence classes, namely, the

set of pairs (z;,y;) such that x; P; y;, the set of pairs for which z; I; y; and the
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set of pairs such that y; F; z;. Note that the relation 7=} distinguishes the same
three classes; hence 77F = 7Z1*,

6.3.5.2 Weighted simple majority or the weighted Condorcet method

A relation 77 on X is a weighted simple magjority relation (see section 5.2.2 for a
social choice viewpoint on weighted majority) if there is a vector of normalised
weights [w;] (with w; > 0 and )7,y w; = 1) and a weak order S; on each X such

that
z 7y iff Z w; 2 Z Wy (6.39)
1€EN:x; S5y JEN:y; S5

The coalitions of criteria are weighted in this model: they are assigned a value
that is the sum of those assigned to the criteria belonging to the coalition. As in
the simple majority rule, the preference of z over y results from the comparison
of the coalitions: « 2~ y if the coalition of criteria on which x is at least as good
as y does not weigh less than the opposite coalition. As for simple majority,
we could have defined the relation using strict a priori preference, saying that
x ﬁ Yy iff ZiEN:xiPqu; Wy Z ZjEN:yij:cj w.j'
A representation of a weighted majority relation in model (D11) is readily
obtained. Let:
wp it @ Py
pi@i, yi) = 0 if oLy (6.40)
—w; iy By

and
Gllpi) =Y ps. (6.41)
ieEN
We have that = 22 y iff G([pi(z6, ¥:)]) = Dienvio,piys Wi — 2ojeNiy, Pya; Wi 2 0-
This representation is regular since p; is a numerical representation of 271 and
Z+* has only three equivalence classes as in the case of simple majority.

6.3.5.3 Weighted qualified majority

A relation - on X is a weighted qualified magjority relation if there is a vector of
normalised weights [w;] (i.e. with w; non-negative and summing up to 1), a weak
order S; on each X; and a threshold ¢ between % and 1 such that

sryiff Y w4 (6.42)
€Nz S5y

In contrast to the previous models, the preference does not result from a compar-
ison of coalitions, but from stating that the coalition in favour of an alternative
is strong enough, i.e. that the measure of its strength reaches a certain threshold
§ (typically above 0.5). Even when ¢ is set to 0.5, this method is not equivalent
to weighted simple majority, with the same weighting vector [w;]; this is due to
the inclusion of the criteria on which = and y are indifferent in both coalitions in
favour of x over y and in favour of y over x. Take for example two alternatives x,
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y compared on five points of view; suppose that the criteria are all assigned the
same weight, i.e. w; = 1/5, for ¢ = 1,...,5. Assume that x is preferred to y on
the first criterion (z1 P; y1), z is indifferent to y on the second and third criteria
(z2 I y2; z3 I3 y3) and y is preferred to @ on the last two criteria (ya Py z4;
ys Ps x5). Using the weighted majority rule (equation (6.39)), we obtain y > z,
since the coalition in favour of x against y is composed of criteria 1, 2, 3 (weighting
0.6) and the opposite coalition contains criteria 2, 3, 4, 5 (weighting 0.8). Using
the weighted qualified majority with threshold § up to 0.6, we obtain that = ~ y,
since both coalitions weigh at least 0.6.

Note that when the criteria have equal weights (w; = 1/n), weighted qualified
majority could be called simply qualified majority; the latter has the same rela-
tionship with weighted qualified majority that weighted simple majority has with
simple majority.

Remark 6.3.3 (Strict weighted qualified majority)

There is another way of defining a weighted qualified majority, denoting the pref-
erence by > and using P;, the asymmetric part of S;, in the sum in definition
(6.42):

z =y iff Z w; > 0.
ENz; Py
With this rule, that could be called strict weighted qualified majority, only those
criteria on which z is strictly preferred to y enter into the coalition; the criteria
on which z and y are tied (from the preference point of view) don’t count in the
comparison of these alternatives. The resulting preference > is irreflexive, since,
when comparing x with z, the coalition of criteria stating that z is strictly preferred
to x is empty. Furthermore, this preference is asymmetric when the threshold §
is strictly larger than 0.5; this results from the following fact: the coalition of
criteria stating that x is strictly preferred to y weighs more than 0.5 if and only if
the opposite coalition, the one stating that y is strictly preferred to x weighs less
than 0.5. The “asymmetric intuition” behind this kind of rule leads to excluding
values of § less than or equal to % )

Weighted qualified majority relations are a basic component of the ELECTRE
I and ELECTRE II methods (Roy, 1971) as long as there are no vetoes (see also
section 5.2.3.5).

Any weighted qualified majority relation admits a representation in model
(D8). Let:
wp— ¢ 2 Sy
pi(%i, Y1) = (6.43)
__% if NOt[.’Ei S; yz]

and

G(psl) = ps. (6.44)

i€EN
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We have that

z oy it G(pi(zi, 1)) = Z (wi_é)_ Z 2

. n n
1EN:x; Sy JEN:Not[z;S;y;]

= Z w; — 6 (6.45)
i€N:z; Sy,

> 0.

In this representation, p; is a numerical representation of 22} but not of 7*. The
former has two equivalence classes: the pairs (x;, y;) that are in S; form the upper
class of the weak order; those that are not in form the lower class. Note that there
are no further distinctions between pairs; all pairs in the upper class contribute
the same amount w; — % to the value of the coalition, while the pairs of the lower
class all contribute the same amount ~%. The comparison of preference differences
in this model is thus rather poor (as is the case, of course, in the previous two
models).

The relation Z}* is also a weak order; it has three equivalence classes. It makes
a distinction between x; P; y; and z; I; y; (a distinction that -} does not): both
cases play the same role when comparing (z;,y;) to other pairs (since what counts
in formula (6.42) is whether or not (z;, y;) belongs to S;); this is no longer the case
when comparing (y;, ;) to other pairs since then, x; I; y; counts in the coalition
in favour of y against x while z; P; y; does not.

Are there representations of a weighted majority relation in models which are
more constrained than (D8). The answer is positive in view of the fact that =r*
is a weak order for all ¢, hence that - satisfies axioms RC12 (Proposition 6.10.2).
Consequently, there are representations of - in model (D10) and possibly in more
constrained ones.

In such models, however, G may no longer—in general—be taken to be the
sum of the p;’s. Indeed, in all more constrained models considered in table 6.2,
pi(zi, ;) = 0 for all z; and p;(z;,v;) < 0 whenever x; is not at least as good as
y; {i.e. when y; P; ;). Suppose for simplicity that all criteria have equal positive
weight, (w; = 1/n) and suppose that threshold § is less than 2= so that unanimity
is not required for preference. Take a pair of alternatives that are indifferent on all
criteria but one, say criterion 1 (thus z; = y; for all ¢ # 1). We may assume without
being restrictive that z1,y1 are such that y1 P, z1 and hence that p;(z;,y;) < 0.
We have x 7 y since the former alternative is at least as good as (in fact indifferent
to) the latter on n — 1 criteria (and worse only on the first criterion). Using an
additive representation G([ps(2i,¥:)]) = > ;e n Pi(Te, yi) with pg(zi,y:) = 0 for all
t # 1 and p1(z1,y1) < 0 would lead us to conclude that z is not preferred or
indifferent to y ( Not[z ZZ y]) since we have:

pi(z1,y) + D pili,vi) = pi(z1,1) <0
i#l
It is however possible to get a representation of - in model (D6) that is equivalent
to model (D10) using a function G that is not the sum of its arguments p; (see
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table 6.2). Take for p; a numerical representation of = >, for instance:

~ 7

w; if oz Py,
pi(xi,yi) = 0 if Z; Ii Yi (6.46)

and define G for instance by:

Glpl)=1- > pi—6. (6.47)

1EN:p; <0

Since the weights w; sum up to one, 1 — Zz‘eN:pi<opi = ZieN:xiSiyi w; and
thus = 2 v iff G([pi(2i,43)]) = 2Zicnip,s,, Wi — 0 = 0, which is exactly the
same expression as in equation (6.45). The difference between these models is
in the different decompositions of the function mapping (x1,v1,...,%n, Yn) o0to
G(p1(z1,y1)s -+ 1 Pn(Zn,Yn)) into G and the p;’s. The two models for a weighted
qualified majority relation described above provide two such decompositions; they
vary in the properties of the p;’s, the crucial one being the requirement in the
latter that p;(z,,z;) = 0.

Let us turn to examining the properties of G as defined by equation (6.47). G
is a nondecreasing function of its arguments; it is not odd since when p; = 0 for
all 4, we should have G([p;]) = 0 (since G([—pi]) = —G([p;]) implies G([p;]) = 0).
G is not strictly increasing since the expression that defines G in terms of the
pi’s (equation (6.47)) makes no difference between p; = 0 (in case z; I; y;) and
p; = w; (in case z; P; y;). With the above definitions of p; and G we thus have a
representation of 2 in model (D6). Since models (D6) and (D10) are equivalent,
one can also build a representation in model (D10) by choosing a function G that
is increasing instead of nondecreasing. This can be achieved through the general
construction scheme outlined in section 6.3.3, using for instance equation (6.32)
as a definition of G.

Are there representations in models such as (D7) or (D11) or do we have to
conclude that a weighted qualified majority relation does not, in general, satisfy
the axioms for these models? Examining the properties of a weighted qualified
majority relation -, one readily sees that - is not necessarily complete. Take for
instance the case where there are four criteria and two levels on each criterion, i.e.
X; = {ai,b;}, with a; P; by, for £ = 1,...,4. Let the criteria have equal weights
(w; = 0.25) and § be equal to 0.75. Consider the alternatives x = (a1, a2, b3, ba)
and y = (b1, bs,a3,a4). We have neither x - y, nor y 7 z, since the first two
criteria are in favour of z and the last two in favour of y; both coalitions weigh
0.5, none reaches the threshold of 0.75.

Property RC3 is also not fulfilled, in general, by weighted qualified majority
relations. Consider a case with three criteria and two levels on each criterion
(X = {aqs, b}, with a; P b;, for 1 = 1,...,3). Take equal weights for all criteria
(w; = 1/3) and set the threshold & to 2/3. We have (a1, a2,b3) ZZ (a1, a2, as) since
these alternatives have common levels on two criteria. We apply RC2; to two
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“copies” of this preference, substituting a; with b; yielding:

(a1, a2,b3) 2 (a1, 02,a3) (b1,a2,b3) = (a1,02,a3)
and = and
(a1, a9,b3) 7 (a1,02,a3) (a1,a2,b3) Z (b1,02, a3).

The first preference on the righthand side is false; the second one is true (in
agreement with RC21, which is a property of weighted qualified majority relations
as already observed), but it is not strict (indeed, it is easy to see that (a1, az,b3) ~
(b1, as,as3)), contrary to RC3;.

Another way of obtaining an intuition about model (D11) and RC3 is through
noticing that in model (D11}, the class of indifferent alternatives is “thin” in
the following sense: take two alternatives z and y that are indifferent (z ~ y); let
(74, w;) be a pair of levels on X; that represent a difference of preference larger than
(xi,v:), the pair of levels shown by 2 and y on X;; we thus have (z;, w;) >F (s, ¥i)-
Substituting z; (resp. y;) by z; (vesp. w;) in z (resp. y) transforms indifference into
strict preference: (z;,z—;) > (w;,y—s). Indifference is broken in the same way as
soon as (z;,w;) =% (x;,y:), thus even when (z;,w;) ~F (zs5,y:) but (yi, ) >
(wy, 2;) (see section 6.3.8 for another example).

In the case of a weighted qualified majority preference relation -, we may
therefore not hope to have a representation of 2 either in model (D7) (unless
7 is complete), or in model (D11) (unless 7 is complete and satisfies RC3).
The most constrained model that Z fits in is (D6) and its equivalent strictly
increasing version (D10). Obtaining a representation of 2 in this model is of no
practical interest since such a representation is highly artificial. It can however be
obtained in the generic way suggested by formula (6.31): take a skew symmetric
representation of 7¥* for p; (as in (6.46)) and define G by:

_ €xXp Z?:lpi(xi»yi) if Zi:zisi’y'i w; > 0
Gllptaoul) = { o Sl s 20

This definition fulfills all the requirements of model (D10), but it offers no hint for
constructing it since it presupposes the knowledge of > (here via a representation
in model (D8)) to determine the adequate sub-domain.

See section 5.2.3 for a social choice viewpoint on qualified weighted majority.

Remark 6.3.4 (Majority models with semiordered a priori preferences)
In the variants of majority rules defined in sections 6.3.5.1 and 6.3.5.2 and in this
section, we considered an a priori preference relation S; on each dimension and we
assumed that this relation is a weak order. The reader might have noticed that this
assumption (in particular, the transitivity of S;) was not needed for obtaining a
representation of the majority relations in the models described. We can thus relax
the hypothesis made on S; to encompass other types of preference relations. This
may prove useful since, in the ELECTRE methods, when there is no veto, it may
occur that the a priori preferences are semiorders. This is the situation described
in section 3.7.1.2 of chapter 3. Often, the client may feel that a small difference
between the evaluations of alternatives on a dimension is not a sufficient reason
for saying that an alternative is better than another on that criterion. This lack of
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discrimination of the dimension may be due to the imprecision of the evaluation
process. Let us consider, for instance, one of the criteria retained in the choice of a
car example described in Bouyssou et al. (2000, chapter 6). The client wants to buy
a second hand car and he evaluates the potential cars on several criteria, including
their annual utilisation cost. Due to the uncertainty involved in the estimation
of such a cost (annual mileage, price of gasoline, maintenance costs, credit costs,
etc), he might consider that a difference of less than 100€ is not significant. If
X1 denotes the set of costs the client could afford, its a priori preference would
be modelled as follows: he would say that two cars x, y differing in cost by less
than 100€ are a priori indifferent on criterion 1; representing the evaluation of x
(resp. y) on criterion 1 by x; (resp. y1), we would write that x1 I; y; as soon as
|z1 —y1| < 100. The client would also say that level z; is a priori strictly preferred
to level y1 (x7 P1 y1) whenever x; is at least 100 € cheaper than y; (z1 < y1—100).
Since the a priori preference Sy on criterion 1 occurs when either Py or I; occurs,
we would thus have the following description of Sy:

zy Syyr iff 2 <y 4100 (6.49)

Relation S; is a semiorder. In all variants of majority relations studied in section
6.3.5, the a priori preferences S; were assumed to be weak orders. Relaxing this
hypothesis into the assumption that S; are semiorders, does not raise any problems
with the definitions of the variants of majority relations introduced so far. In
the case of weighted qualified majority for instance, we could simply apply the
same definition, obtaining what could be called a qualified magjority relation with
semiordered a priori preferences on the attributes. With this relaxed definition,
nothing changes in the possibility of representing - in models (D1) to (D11); in
particular, the same forms of representation in models (D6) and (D10) are valid
in case 7, has semiordered a priori preferences (see section 6.3.5.3). And the same
is true of course for the other variants of majority relations. .

6.3.5.4 Lexicographic preference relations

A lexicographic procedure supposes that the criteria are linearly ordered and are
considered in that order when comparing alternatives (see section 5.2.4): in this
order, the first criterion that favours one alternative with respect to another de-
termines the global preference. Denoting a linear order on the set of criteria by
>¢, we rank-order the criteria according to it: 1¢ >, 2¢ >4 ... >, nf. We thus have
the following definition: a relation - on X is a lexicographic preference relation if
there is a linear order >, on the set of criteria and a weak order (or a semiorder)
S; on each X; such that:

XTq¢ Ple Yie O

Tie I]l’, Yre and Zoe Pze Yge O

T Ile Yie Vi = 1,.. .,k —1 and Tyt Pke Yre,
for some k such that 2 < k < n.

z >y if {6.50)

and x ~ y if x;e Le y;e, for all ¢ € N. In other words, x ~ y if x; is a priori
indifferent to y;, for all i; z > y if, for the first index k¢ for which z; is not a
priori indifferent to y;e, one has x,¢ a priori preferred to y;e.
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Such a relation can be viewed (as long as there is only a finite number of
criteria) as a special case of a weighted majority relation. Choose a vector of
weights w; as follows: for all i € N, let wye be larger than the sum of all remaining
weights (in the order >;), i.e.:

Wie > Woe -+ Wae + .o + Wppe

Wot > Wat + ...+ W
2 " (6.51)

Win—1)¢ > Wyt

Using these weights in (6.40) and (6.41), which define a representation for weighted
majority relations, one obtains a representation for lexicographic relations in model
(D11). To illustrate the definition of weights appropriate for lexicographically or-
dering alternatives, we adapt the example presented in section 5.2.4. Consider a
case with three criteria and the following linear order >, on the criteria: crite-
rion 2 is more important than criterion 1, which in turn is more important than
criterion 3 (2 >¢ 1 >4 3). Let a = (a1,a2,a3), b = (b1,b2,b3), ¢ = (c1,¢2,¢3) be
three alternatives with the following a priori weakly ordered preferences on each
criterion: a; Iy by Py ¢1, ¢a Py by I3 ag, by P3 ag I3 c3, as in the example in section
5.2.4. The following weights constitute an appropriate choice for obtaining the
lexicographic ordering of the three alternatives, i.e. ¢ > b > a. Let:

wy =4 w; = 2wz =1.

Using formula (6.40) and (6.41), we obtain:

G([pi(ai, b)) = 04+0-1 = —G([pi(bi,as)))
G(lpi(ai,&)]) = 2-440 = —G([pieiai)))
G(lpi(bisci)) = 2—-44+1 = —G([pilci, bi)])s

which represents the lexicographic ordering of these three alternatives correctly.
Note that any set of weights such that w;e is larger than the sum of all the
remaining weights leads to the same relation 7.

6.3.5.5 Other forms of weighted qualified majority

Instead of imposing a threshold above 0.5 for defining a weighted qualified majority,
as in section 6.3.5.3, we may alternatively impose a relative majority threshold, in
an additive or a multiplicative form. A preference relation - on X is a weighted
majority relation with additive threshold if there is a vector of normalised weights
[w] (with w; > 0 and 37,y w; = 1), a weak order or semiorder S; on each X
and a non-negative threshold v such that

z zy iff Z wy > Z w; — . (6.52)
1EN:x; Siyi jEN:ijj:Ej
A relation - is a weighted magjority relation with multiplicative threshold p > 1 if

1EN:z; Siys pjeN:ijja:j
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with [w;] and S; as in the case of an additive threshold.

It is easy to provide a representation of a weighted majority relation with
additive threshold in model (D10); define for instance p; by equation (6.46) and
G by:

[pz sz Y- (654)

iEN

In this representation, G is not an odd function due to the presence of the —~ term;
we thus have a representation in model (D10}, since the p;’s are skew-symmetric
and G is increasing in the p;’s. Despite the fact that the representation above is
not in model (D7) or (D11), relation 7 is complete: we have z 2 y or y = z,
or both, for all z, y, since ZieN:ziSm w; > ZjeN;yjij,- w; or ZieNifEiSiyi w; <
ZjEN:ijjmj w; and v is non-negative. There must thus be (according to table
6.2) a representation of 7 in model (D7). A representation that would appear
natural is not obvious; we always have the opportunity of defining G according
to the general construction scheme provided by (6.31); using the p;’s defined by
(6.46), it adapts as follows:

Ay ay. — €xp Z:L: pi(ifi,yi) if Zie D = Y
Cllpi(eoyl) = { — exp[— 21;;1107;(%»%)] ifZiGNNPz' <7 (6.55)

This form guarantees the oddness of G as soon as the relation 7 is complete.

There is, in general, no representation of such a preference in model (D11)
since we cannot assume that indifference is “thin” unless v = 0 or < is smaller
than w,, the smallest of the weights w;, i € N. Indeed, z and y are indifferent iff
—v < Y ien Pi < 7. Any alternative x is indifferent to itself (z ~ x); if -y is at least
as large as some weight w;, we can build an alternative y = (y;,z—;) by changing
z only on criterion j on which we substitute level z; by any y; that is a priori
preferred to x; (y; P; z;). Comparing y to x, we see that —y <37 v pi = w; < ;
this means that y is indifferent to z, which violates the positive responsiveness
property.

Finally, note that the representations using the p;’s defined by (6.46) are, in
general, regular in the sense that such p;’s are numerical representations of the
weak orders &;* on differences of preference. This would fail to be the case only in
very degenerate situations in which a criterion would have no influence whatsoever
on preference ; such a criterion would never make any difference and could be
eliminated (see the notion of influent criterion in section 6.5).

Turning to weighted majority relations with multiplicative threshold as defined
by (6.53), one observes that /7 is complete and can be represented in model (D10),
for instance through defining p; by equation (6.46) and G by:

Gllp) = Y. p,+ > opi+t 1—— Z w;. (6.56)
i >0 zpl<0 Lpi=

Since - is complete, it is possible, as in the additive threshold case, to provide a
representation in model (D7). The preference 77 does not fit in model (D11) since,
in general, indifference is not “thin”.
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Remark 6.3.5 (Asymmetric preference relations: the TACTIC method)
Constructing preference relations using these rules resembles what is known as
the TACTIC method; it was proposed and studied in Vansnick (1986a) with the
possible adjunction of vetoes that we shall consider later in remark 6.3.8, p. 297.
In the original version of TACTIC the preference is defined as an asymmetric
relation > (a strict preference) either by:

z -y iff Z w; > Z w; + . (6.57)

i€N:x, Piyi JEN:y; Pz
or by:
) 1
x>y iff Z wy > - E Wy, (6.58)
€Nz Py, pjeN:yjPﬂj

where P; denotes the asymmetric part of the weak order or the semiorder S;.
The reflexive relation - defined by (6.52) can be obtained from the irreflexive one
defined by (6.57) just by saying that z 7 y if and only if Not[y > z]. Indeed,
assuming (6.52), we have

Notly = z] iff Z wy > Z wj —

1EN:z; Py JEN:y; Pyxy
iff g w; = 5 W5 — 9,
&Nz Sy JEN:wy; S5
since the term Zie Nezs Iy Wi appears in the two following expressions and can be
cancelled:
E Wy = g w; + E W
1EN:z; S,y 1EN:2; Py, €N Ly
and
> wi= Y wit Y w,
JEN:y; Sz JEN:y; Pjxy JEN:y; Iy

where I; is the symmetric part of S;. The reflexive and complete relation 7, derived
from definition (6.57) of its asymmetric part is thus a weighted majority relation
with additive threshold as defined by (6.52); hence it admits representations in
models (D10) and (D7), but not in (D11)5.

Remark 6.3.6 (Duality)

Usually, if a relation - is defined by = 7~ y if and only if Not[y > z], it is called
the dual of >; of course, > is also the dual of 7. Duality transforms irreflexive
relations into reflexive ones (and conversely); it transforms asymmetric relations
into complete ones (and conversely). If we interpret > as a “better than” relation,
its dual 77 interprets as an “at least as good” relation. °

5 Note that it is possible to develop a theory of models based on marginal traces or on marginal
traces on differences for irreflexive relations; the characterisation of such models is straightfor-
ward, using the results obtained for reflexive relations. See Bouyssou and Pirlot (2002a) for an
illustration in a particular context.
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The multiplicative versions (6.53) and (6.58) are not quite related in the same
way: due to the multiplicative threshold, there is no cancellation of the term
> icN:zily Wi and hence, assuming (6.58), we have:

Not|y > z] iff Z wy >
iEN:2; Py

> (6.59)

JENwy; Pyxy

D=

Such a relation, the dual of =, is a variant of the weighted majority relation with
multiplicative threshold defined by (6.53). It admits a (simpler) representation in
model (D10), using (6.46) as a definition of p; and defining G by:

G(lp) = Y pi+% > pi+(1—%) > wi (6.60)

2:p; >0 ip; <0 1:p;=0

Since the relation is complete, it also admits a representation in model (D7).

For more information about TACTIC, see also sections 5.2.1.4 and 5.2.1.4; note
that definitions (6.52) and (6.53) both reduce to that of weighted simple majority
(see section 6.3.5.2) when v = 0 and p = 1 respectively. .

Table 6.3 provides a summary of the main models applicable to preferences that
distinguish no more than three classes of differences of preference on each dimen-
sion.

Aggregation rule General model Special models
Weighted simple majority * (D11) (D11) + additive
(see 6.3.5.2)
Weighted qualified majority * (D10) (D8) + additive
(see 6.3.5.3)
Lexicographic (see 6.3.5.4) (D11) (D11) + additive
Weighted majority with (D7) (D10) + additive
add. threshold (see 6.3.5.5) (with constant: eq. (6.52))
Weighted majority with (D7) (D10) + linear
mult. threshold (see 6.3.5.5) (eq. (6.56))

Table 6.3: Models distinguishing no more than three classes of differences of pref-
erences.

6.3.6 Examples of models using vetoes

Vetoes could be introduced in all the examples dealt with in the previous section.
‘We shall only consider the case of qualified weighted majority relations (see section
6.3.5.3) with vetoes (the relations that are the basic ingredients of the ELECTRE
I and II methods) and of weighted majority relations with thresholds (see section
6.3.5.5) and vetoes (these relations are fundamental in TACTIC). This section
responds to section 5.4.6 of chapter 5; we use the notations introduced there.

* Also with semiordered a priori preferences, see remark 6.3.4.
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The intuition one can have about a veto is the following. Consider an alter-
native = and a criterion 7 on which the level of the performance of z, z;, is much
worse than the level y; of another alternative . A veto of y on x on criterion 4
consists in rejecting the possibility that x be globally preferred to y, irrespective
of the performances of z and y on the criteria other than i. In other words, a
veto on criterion ¢ forbids the declaration that = > y if (z;,y;) is a “negative”
difference that is “large enough in absolute value”, with respect to relation =} or
Zr* (in the latter case, this is equivalent to saying that (y;,x;) is a large enough
“positive” difference). Of course, if the difference (z;,y;) leads to a veto forbid-
ding the declaration that z preferred to y, it is certainly because we do not have
x; S; ys, but, instead, y; B; x;, and “even more”. We thus define the veto relation
Vi as a subset of relation P; consisting of all pairs (y;; x;) such that the presence
of the reverse pair (z;,y;) for two alternatives x and y prohibits z = y; V; is an
asymmetric relation.

Suppose that, for all 4, X, is a subset of the set of real numbers (X can be seen,
in a sense, as a performance table, as in section 5.4) and that S; is a semiorder
determined by the following condition:

TS Y & T 2 Y — Tyl (6.61)
where 7;; is a non-negative threshold. This is similar to the situation described
in section 6.3.5.3 using the example of the cost (except that the cost was to be
minimised; here we prefer the larger values): the values z; and y; are indifferent
(z; I; ys) if they differ by less than the threshold 7; 1; x; is strictly preferred to y;
(z; P; y;) if it surpasses y; by at least the value of the threshold. In such a case,
a convenient way of defining the veto relation V;, a subset of P;, is by means of
another threshold 7; 5 that is larger than 7, ;. We say that the pair (y;, ;) belongs
to the veto relation V; if the following condition is satisfied:

i Vizi @y > i+ i (6.62)

Clearly, the veto relation defined above is included in P;. Assume indeed that
ys Vi x4, since 742 is larger than 71, we have y; > z; + 752 > 2; + 74,1, yielding
ys Py x5, We call 7,2, a veto threshold; the relation V; defined by (6.62) is a
strict semiorder, i.e. the asymmetric part of a semiorder; it is contained in FP;
that is also a strict semiorder, namely, the asymmetric part of the semiorder S;.
In such a situation, when comparing an arbitrary level x; to a fixed level y;, we
can distinguish four relative positions of x; with respect to y; that are of interest.
These four zones are shown on figure 6.7; they correspond to relations described
above, namely:

If z; belongs to: then:
Zone 1 z; Py
Zone I1 Z; IZ Ys
Zone III ¥ Py x; and Not|y; V; z;]

Zone IV y; Py oy and y; Vi 24
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II
v 111 1
1 |/|-\|
T 1 T 1
Yi — Ti2 Yi = Tl Yi Yi + Ti1 T

Figure 6.7: Relative positions of an arbitrary level z; with respect to a fixed level
Yi-

6.3.6.1 Weighted qualified majority with veto

Starting with both an a priori preference relation .S; (a semiorder) and an a priori
veto relation V; (a strict semiorder included in P;) on each set X;, we can define
a global preference relation of the ELECTRE I type as follows:

ZieN:x.,;Sq‘,y/,; wi —>— 6
2z yiff ¢ and (6.63)
there is no dimension i on which y; V; z;;

in this expression, (wy,...,w,) denotes a vector of normalised weights and §, a
majority threshold that belongs to the [%, 1] interval. The global preference of the
ELECTRE I type is thus a weighted qualified majority relation (in which the a
priori preferences may be semiorders instead of weak orders) that is “broken” as
soon as there is a veto on any single criterion, i.e. as soon as the performance of
an alternative on some dimension is sufficiently low in comparison to the other.

It is not difficult to provide a representation of such a preference relation - in
model (D8§). Let:

wy if oz Sy
iz, y) = 0 if y Pz; but Notly; Vi ;] (6.64)
-M if oy Vixg,

where M is a large positive constant and

G(ps)) =Y pi—3. (6.65)

iEN

If no veto occurs in comparing z and y, then G([p;(z;,y:)]) = Zi:ZiSM w; — 0,
which is the same representation as for the weighted qualified majority without
veto (section 6.3.5.3). Otherwise, if on at least one criterion j, one has y; V; z;,
then G([pi(x:,y:)]) < 0, regardless of z..; and y_;. The effect of the constant M
in the definition of p; is to make it impossible for G to reach 0 whenever any of
the terms p; is equal to —M; it is sufficient that M be larger than 1 to ensure this
effect since the sum of all weights w; is equal to 1 and cannot balance a penalty
(represented by M) larger than 1.
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The above-mentioned representation of an ELECTRE I type of preference re-
lation in model (D8) is regular since p;, as defined by (6.64), is a numerical rep-
resentation of the weak order ¥ on the differences of preference. This order
distinguishes three equivalence classes of differences of preference, namely those
corresponding respectively to the cases where z; S; y;, y; F; z; but Not[y, V; z;]
and y; Vi x;.

The representation given above is probably the most natural and intuitive.
Since the set of relations that can be described by (6.63) contains the weighted
qualified majority relations, it is clear from section 6.3.5.3 that one cannot expect
that weighted qualified majority relations with veto admit a representation in
model (D7) or (D11). Nevertheless, they admit a representation in model (D6)
and in its strictly increasing yet equivalent version (D10). For a representation in
model (D§), we may choose a numerical representation of the weak order 27* for
pi, which determines five equivalence classes of differences of preference, namely:

M itz Viy
w;, if z; Py, and Not[z; V; y;]
pi(Ti,ys) = 0 if = Ly (6.66)
—w; if y; Pz, and Notly; Vi 2;]

where M is a positive constant larger than w;. The function G can be defined by

G(lpilzi, y)]) =

{ D iz 8oy MNP (T4, yi),wi) — 6 i, for all j € N, Not[y; V; ]

-1 if, for some j € N, y; V; z;. (6.67)

* ok

Using a representation of 7}* for p; forces us to define G in a tricky way since, when
z; P; y;, G should not make any distinction between the sub-cases Not[z; V; y;]
and z; Vi y;; the fact that the pair of levels (y;, ;) is in the veto relation V; only
intervenes when determining whether z is preferred to y (z 7 y) and not when
determining whether y is preferred to z. This leads us to write min{p;(z;, vi), wy]
instead of simply writing p;(x;, y;) in the definition of G. In this way, the value M
of p; is truncated to w; by function G. With this definition, G is nondecreasing in
all its arguments p;. Note that the value —M never appears in the sum since the
latter only adds up the weights of the criteria on which z; is at least as good as
y;- Thus the only constraint on M is to be larger than the maximal value w* of
the weights w; is ; this has to be imposed in order to obtain, with p;, a numerical
representation of the weak order 2-}*.

A strictly increasing representation (in model (D10)) is obtained using the
usual construction, for instance equation (6.48).

6.3.6.2 Weighted relative majority with additive threshold and veto

A veto relation can be defined and used as above to discard preferences in each of
the models of majority described in section 6.3.5. We consider a weighted majority
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relation with additive threshold described by equation (6.52) as a further example.
We can “add” a veto in the same way as in (6.63), defining - by:

Ty iff ZieN:mSiyi w; 2 ZjeN:ijjxj wj =7 and (668)
~ there is no dimension 4 on which y; V; z;.

We easily obtain a natural representation of such a relation in model (D9) by
modifying the definition (6.40) of p; in a weighted simple majority into:

w;, if oz Py
0 if Xy Il‘ Yi

pilTi, ys) = —w; if y; Pyz; and Not[y; V; z;] (6.69)
M if Y V—L xX;.
and defining G by
G(lp) =D pi+v (6.70)
iEN .

the positive constant M has to be chosen large enough to make G negative as soon
as there is a veto on any one criterion (e.g. M larger than 1+ 7). To obtain a
representation in model (D6), it is sufficient to define p; by (6.66) and G using the
same trick as in (6.67), yielding:

Glpi(mi,ya))) = D minpi(ws, yi), wi] + - (6.71)
ieN

Here too, terms equal to +M should not show up in the sum; hence p; has to be
truncated in order not to go above the value of weight w;; in contrast to (6.67),
the value —M plays its role, when there is a veto, by driving G to the negative
numbers.

A representation in model (D10} can also be obtained using the standard con-
struction. In general, the preference will not be a complete relation and hence will
not fit into models (D7) or (D11).

Remark 6.3.7

“Adding” vetoes to a previously defined preference -, as was done in the last two
subsections can have two kinds of effects on a pair of alternatives x and y. If we
initially had z > y, a veto can break the strict preference, yielding incomparability
between z and y; if this occurs when the initial preference was a complete relation,
the latter property will be lost. Another case is when z and y are indifferent with
respect to the initial preference (x ~ y); in this situation, vetoes may either make
z and y incomparable by breaking both the preference xz - y and the preference
y 7 x, or they may break only one, say 7 y; in this case, the introduction of
vetoes turns indifference into strict preference. Vetoes can only delete preference
arcs; they never create new ones. .

Remark 6.3.8 (Adding vetoes to asymmetric preferences)
In the TACTIC method (Vansnick, 1986a), the preference is defined as an asym-
metric relation >; in the absence of veto, it is defined by formula (6.57), in case
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of an additive threshold, or by (6.58), in case of a multiplicative threshold. We
consider only the additive threshold case here.

Remark 6.3.5 has shown that, starting with an irreflexive relation > defined
by (6.57), we obtain a reflexive relation 2, using - y if and only if Not[y = z];
this relation, the dual of >, is a weighted majority relation with additive threshold
in the sense of (6.52).

The original definition of the preference relation in the TACTIC method in-
volves a veto; it is defined as

ZiGN:wiPiy.L w; > ZjGN:yij:rj wWj + v
x>y iff and (6.72)
there is no dimension ¢ on which y; V; z;,

with V;, a strict semiorder included in P;; remember that y; V; x; is interpreted as
“y; is much better than x;”.
Using remark 6.3.5, the dual 7= of the relation just defined is such that:
ZiGN:ziSiyi wi 2 ZjEN:ijjz] wj —
x 7y iff or (6.73)
there is a dimension ¢ on which z; V; v;.

Although the first condition alone determines a weighted majority relation with
additive threshold (as established in remark 6.3.5), the relation >~ defined by (6.73)
is not a weighted majority relation with additive threshold and veto; it could be
called instead a weighted majority relation with additive threshold and bonus, since
the veto condition, which removes arcs from >, adds arcs to its dual as soon as z
is “much better” than y on any single dimension ¢ (according to the interpretation
of V;). We emphasise that the dual of a relation with veto is not a relation with
veto, but a relation with bonus. The intuition behind this type of preference is
that z is declared preferred to y as soon as there is a “large” preference difference
in favour of z on any dimension. .

6.3.7 Other examples of preferences that distinguish five
classes of differences

The relations defined by using vetoes described in the previous section, make
up a very particular subclass of relations for which five classes of differences of

preference can be distinguished. Using vetoes, the lowest class of the relation 27¥*

?

on differences of preference intervenes in a particular way that could be qualified
as “conjunctive and negative”; we declare that x is preferred to y if some condition
is fulfilled (involving neither the highest nor the lowest class of Z}*, but just the
fact that the pairs (x;,y;) are either above or below the “null” level (x;,;)) and
for each criterion, a requirement of “non veto” is satisfied. It is obviously possible
to conceive interventions of the highest and lowest classes of 7* that are much
less radical in the determination of a global preference. To illustrate this, we
briefly present an example of a preference - determined by a relation > ** with

~
five equivalence classes, not using vetoes.
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The thresholds 7,1 and 7;,2 that we introduced in section 6.3.6 (formulas (6.61)
and (6.62)) can be used with totally different meanings, for instance, with the se-
mantic of the (P, Q, I) preference structure introduced in chapter 3, section 3.7.1.1
(we consider a very special case here, in which the relations can be defined using
two constant thresholds). Let us recall the interpretation of the three binary re-
lations that appear in this structure: P represents clear-cut strict preference (an
asymmetric relation); I is indifference (a symmetric relation) and @ (an asymmet-
ric relation) represents weak preference, i.e. a state of hesitation between strict
preference (P) and indifference (I); this system of relations is assumed to be com-
plete, i.e. any pair of objects (x,y) either belongs to one of the three relations or
the opposite pair (y,z) belongs to P or (). Suppose that, for all 4, X; is the set
of real numbers. A convenient way of determining a (P, @, I} structure (P;, Qs, I;)
on X; is by means of a pair of thresholds 7; 1, 7,2 (wWith 0 < 7,1 < 7;2) that we
use to delimit the categories of pairs of levels® (x;,;) in the following way:

o P;: level x; is strictly preferred to level y;:
T Py if @i 2y + 72 (6.74)
o ();: level x; is weakly preferred to level y;:
i Qiy i+ S <yi+ T (6.75)
o I;: level x; is indifferent to level y;:
Ly iy — g <z <y +Tin (6.76)

or, in other words, if the absolute value of the difference of z; and y; is
smaller than 7,1 (lz; — vl < Ti1);

symmetrically, if (z;,y;} does not belong to any of the relations P, Q; or I;, then
we have:

Y Qi s if Yy —mio <x Sy T (6.77)

>

yi Py xy if z <yi - T2 (6.78)

The above-described situation is illustrated in figure 6.8; it corresponds to a
particular case of a (P,Q, I) interval order (Tsoukids and Vincke, 2003) but also of
a pseudo-order, a structure mentioned in section 3.7.1.3 (see also Roy and Vincke,
1987); this pseudo-order is particular since it admits a representation with two
constant thresholds. Using such a definition, we thus build exactly five classes of
differences of preference on each set X; and we may decide to combine them to
obtain a global preference through a model based on traces on differences ((D1)
to (D11)). To make it more concrete, let the functions p; be defined as follows:

6 We use the term “level” in a rather improper way here since—as we recall—there is no a
priori ordering on the sets X;; in this context, the term “level” designates an element of a set,
the set of symbols used to characterise the alternatives on dimension i, i.e. the co-domain of the
scale associated with i (see section 2.3.3).
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zi Iy yi
yi Py Yi Qi ——, i Qi i zi Py
l l l I l
1 1 1 1 1
Yi — Ti,2 Yi ~ Til Yi Yi + Til Yi + Ti2 Ty

Figure 6.8: Relative positions of an arbitrary level x; with respect to a fixed level
y; in a (P,Q, I) preference structure with two thresholds.

Case pilze, vs) Py, )

Z; Qi Yi 1 ~1
i L ys 0 0
yi Qi T; -1 1
Y Pi Ty -2 2

and let the p;’s be additively aggregated:

w2y iff > pil@, ). (6.79)
ieN

Observing a preference of this type would reveal in particular that, in comparing
alternatives x and y belonging to X,

o any difference (x;,y;) belonging to category @; can be exactly compensated
by a difference (y;, ;) belonging to category @; on another dimension j; for
instance, let z and y be two alternatives such that z; Q; v and y; Q; z;
while, on the other dimensions k # 1,j, £ = yk; in such a case z and y
cannot be distinguished; they are not only indifferent (z ~ y) but they also
compare to all third-party alternatives in the same manner: = 77 z iff y 77 2
and z — z iff z - y.

e any difference (x;,y;) belonging to relation P; can be exactly compensated
by a difference (y;,;) such that y; P; z; on another dimension j or by
differences y; Q; z; and (yx Qr %) on two dimensions j and k different
from 4; for instance, let z and y be two alternatives such that (z;,y;) belongs
to P;, (y5,x;) belongs to @; and (yg,zx) belongs to Q) while, on the other
dimensions | # 4,7,k, ; = y;; in such a case  and y should be declared
indifferent and compare in the same manner with respect to all third-party
alternatives: x - zifl y mzand z 2 iff 2 D .

Clearly, the above-defined model belongs to the class (D11).

Remark 6.3.9
There are of course many other ways of defining models of preference that distin-
guish five classes of differences. The preference we have just defined belongs to
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Fishburn’s model (6.27) since it can be represented combining the p;’s in an ad-
ditive manner. It also belongs to Tversky’s additive difference model (6.26) since
pi(2:,yi) can be obtained by recoding the arithmetic difference z; — y; by means
of a function ®;:

pi(zi, yi) = ®i(uwi(@:) — wiys)) = il — vi)- (6.80)
This is not the most general case:

e for an observed preference that admits a representation in model (D11), it
may be impossible to find p;’s such that the preference can be represented
by means of a sum of these p;’s as in model (6.27);

o the possibility or impossibility of decomposing the p; functions using an
order on the sets X; (the latter being possibly represented by partial value
functions u; on X;) will be examined in section 6.4; a special case is Tversky’s
model in which p; is a function of the difference w;(x;) — u;(y;). .

6.3.8 Examples of preferences that distinguish a large vari-
ety of differences

Contrary to the examples discussed so far in which the relations 72} or Z}* dis-
tinguish a small number of classes of preference differences (typically three or five
classes for 727* in the examples given above), there are very common cases where
there is a large number of distinct classes, possibly an infinite number of them.
The most common model, the additive value model, usually belongs to the class
of models in which 77 * makes subtle distinctions between differences of preferences.

Indeed its definition, equation (6.1), p. 238, can be rewritten as follows:

ey i Y (uiles) — uiyi) > 0. (6.81)

=1

The difference w;(x;) —u; (y;) can often be interpreted as a representation p;(x;, y;)
of 7Z**; the preference then satisfies model (D11). Let us take a simple example;

assume that X; = R, that the number of dimensions n is equal to 2 and that
us(x;) = x; for i = 1,2. The preference is defined by:

coyiffer 422>y +y2

if (1‘1 — yl) + (1‘2 — yg) > 0. (682)
In such a case, p1(z1,y1) = 21 —¥1 is a numerical representation of the relation 2z 1*
on the differences of preference on the first dimension X; (and similarly for z —ys
on X3). The pair (x1,y1) corresponds to an at least as large difference of preference
as (z1,wy) il 1 — y1 > 21 — wy; indeed, if (z1,a2) = (wy,be) for some “levels”
az,by in Xy, then substituting (z1,w1) by (z1,y1) results in (z1,a2) 7= (y1,b2)
and, conversely, if (y1,¢2) 77 (z1,d2) for some c¢p,ds in Xo, then (wi,c2) 7 (21,d2)
(by definition of ~=1*, see (6.29) and (6.28)). We furthermore know that both
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preferences obtained after these substitutions are strict as soon as (z1,y1) >7*
(z1,w1), i.e. as soon as x1 — y1 > 21 — wi. This strict responsiveness property of
7 is characteristic of model (D11), in which indifference is “thin” as was already
mentioned at the end of section 6.3.5.3. Indeed if (21,a2) Z (wi,b2), we must
have:

(21 —w1)+(a2 —bg) =0

and substituting (z1,w1) by (21, y1) results in (1 —y1) + (az — by) > 0 as soon as
— Y1 > 21 —Wi.
Thus, any increase or decrease of p;(x;, y;) breaks indifference. This is also the
case with the additive difference model (6.26) (with p;(z;, ys) = ®s(us(z;) —wilys))
and the nontransitive additive model (6.27).

Remark 6.3.10 (From ordinal to cardinal)
The framework based on marginal traces on differences that we studied in this
section 6.3 is general enough to encompass both “noncompensatory” and “com-
pensatory” preferences, for instance, preferences based on a majority or a lexi-
cographic rule (three classes of differences of preference) and those represented
in an additive manner (that can potentially distinguish an unbounded number
of differences). A weighted qualified majority rule, for instance, can be said to
be ordinal or purely non-compensatory; from the representation of the procedure
(equations (6.43—6.44)), one can see that the full weight w; associated to a dimen-
sion is credited to an alternative z, as compared to an alternative y, as soon as the
preference difference p;(x;,y;) is in favour of z on that dimension. In this model,
the preference difference p;(x;,y;) is positive as soon as z; is preferred to y;, w.r.t.
some a priori preference relation S; on X, hence the denomination of “ordinal”.
Contrarily, in the additive value model (equation (6.81)), a large difference
of preference on one dimension can be compensated by a conjunction of small
differences of opposite sign on other dimensions: the procedure is compensatory
and it uses the full power of the numbers p; in arithmetic operations such as sums
and differences; we call it “cardinal”.

Between these two extremes, the other procedures can be sorted in the in-
creasing order of the number of classes of differences of preference they allow to
distinguish. This can be seen as a picture of a transition from “ordinal” to “car-
dinal” or, alternatively, from noncompensatory to compensatory procedures. Of
course, the type of model is determined by the richness of the preferential infor-
mation available. .

e

o The family of models based on marginal traces on differences encompasses
(3 aggregation procedures ranging from those using purely ordinal information
&2 (like majority rules) to those relying on cardinal information (like the additive
" value model). Their description in a common framework enables to break from
%ﬁ) a vision of pure opposition between ordinal and cardinal procedures; it allows
@ us to view the existing aggregation procedures more as a continuum.
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6.4 Models using traces on differences and mar-
ginal traces

In many of the examples examined in section 6.3.5, the functions p; are represen-
tations of 7o or ZZ¥* and they can be expressed in terms of functions u; defined on
X;. This is, in particular, the case with the additive value model discussed in the
previous subsection: p;(x;,y;) = ui(x;) — uy(y;). In this section, we examine the
possibility of further decomposing the model on differences introduced in section
6.3.

Consider any relation 2 on X. As we have seen in section 6.3.3, any relation

admits a representation in model (D0) (equation (0)):
Zz i ) s G(p1($17y1)ap2($2, 92)7 v ,p'n(xny yn)) Z 0.

It is always possible to further decompose each p; using a real-valued function wu;
defined on X;. The latter, in this trivial model, is just a numeric label assigned to
each element of X;; all elements that are not distinguished by the marginal trace
,ﬁf may receive the same label or, in other words, the fact that w;(z;) = w:(ys)
implies that z; Nii y; is the only requirement imposed on w;. We may then
unambiguously define the function of two variables @; on u;(X;) % u(X;) by

Pi(Ti, yi) = pi(uilzi), wi(yi))- (6.83)

We thus have the general model using marginal traces and traces on differences,
that we label (L0DO0):

x5y Glpa(wilzi), wiy:))]) > 0. (L0DO)

Of course this definition, which makes sense in all cases, becomes interest-
ing and useful when ¢, enjoys some properties such as non-decreasingness in its
first variable and non-increasingness in its second variable; such a property brings
it closer to an algebraic difference (and thus closer to Tversky’s model (6.26)).
Combining the variants of model (D0) (studied in table 6.2) with monotonicity
properties of ¢; may indeed lead to interesting models.

A model in which the term p;(z;,y;) is substituted with ;(u;(x;), wi(y:)) cor-
responds to each of the 12 models (D0) to (D11) studied in section 6.3. In order
to bring the function p; “closer” to a subtraction, we envisage two variants of each
of these models. In the first one, we impose that ¢; be nondecreasing in its first
argument and nonincreasing in its second argument. This defines models (L1.D0)
to (L1D11). In the other variant, we impose that ¢; be increasing in its first
argument and decreasing in its second argument. This defines models (L2D0) to
(L2D11).

An interesting feature is that the axioms to be added to those shown in table
6.2 to characterise the newly defined models, are precisely axioms AC1, AC2, AC3
and AC4 that were used in the models based on marginal traces. The “RC” and
the “AC” axioms do not interact: they are independent (see Bouyssou and Pirlot,
2004a).
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Table 6.4: Models (L1D0) to (L1D11): Definition and characterisation.

Models Definition Conditions

(LOD0) =z y e Glpi(uwi(@:), wi(y:))]) 20 5]

(L1DO) (LODO) with wi( 7, \,) @

(L1D1)  (L1DO) with gi(u(e)wi(z)) =0

ind.

(L1D2) (L1D1) with ¢; skew symmetric

i3y (L1D2) with G odd cpl, ind.

(L1D4) ........... .(.LlDO) Gy
0 RC1, AC123

(L1D8) (L1D0) with G(/)

(L1b5) ..... D Gy
0y RC1, ind., AC123

(L1D9) (L1D1) with G(//)

(LlD,é). ........ .(.L1D2) Gy
D RC12, AC123

(L1D10) (L1D2) with G( /)

(L1D7) (L1D3) with G(") cpl., RC12, AC123

(L1D11) (L1D3) with G( /) cpl., RC3, AC123

/" means increasing, /* means nondecreasing, \, means nonincreasing
cpl. means completeness, ind. means independence

The definition and characterisation of the various models “(L1 — Dj)” (for
j =0 to 11) that we consider are provided in table 6.4. The table only describes
models (L1D0) to (L1D11). The models where ¢; is assumed to be increasing in
its first argument and decreasing in its second, i.e. models (L2D0) to (L2D11),
are equivalent to the corresponding (L1Dy) model with the exception of the last
one: (L2D11) is not equivalent to (L1D11). The characterisation of this model
can be found in table 6.5.

6.4.1 Relationship between marginal traces and traces on
differences

As suggested by the axioms used to characterise the variants of model (L0D0)
(see tables 6.4 and 6.5), these models use both marginal traces = (introduced
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Table 6.5: Characterisation of model (L2D11).

Model Definition Conditions

z 2y & Gllpi(uiz), us(yi))]) 2 0,
(L2D11) with ¢;(/, \\\) and skew symmetric, cpl., RC3, AC4
G odd and increasing

/" means increasing, \\, means decreasing, cpl. means completeness

in section 6.2.5, formulas (6.17)) and traces on differences =} and Z7* (formulas

~7

(6.28) and (6.29)). It is quite important and also quite simple to understand how
those traces are related: in fact, ,ﬁf is not only the marginal trace left by the
relation 27 on X; but, at the same time, it is the marginal trace left by =¥ and

7 on X;. Indeed, using the original definitions of the involved relations, we can
easily verify that we have:

zi 7y i Ve € Xa, (i, 20) 257 (Wi, 20)
and Yw; € Xy, (wy, y:) 27 (ws, 25).

~1

(6.84)

The latter expression implies that ,éli is the marginal trace of both § and z;*.
This is true without any assumption on 2. When the traces of =, are assumed to
be weak orders, the weak orders -7 and Z7* react monotonically with respect to
their traces ,ﬁzi (which are also weak orders). Table 6.4 shows us that for models
{L1D4) and those more constrained, both 7¥ and ,ﬁf‘ are complete relations (since
RC1 and AC123 hold), hence they are weak orders. For model (L1D6) and more
constrained ones, we have in addition that 777 is also a weak order. In model
(L1D4), one may thus take numerical representations of the weak orders 2} for
the functions p; and these functions factorise as p;(xz;,¥:) = @ilui(@s), wi(ys));
the functions u; may furthermore be taken to be numerical representations of the
weak orders i;t; G can be assumed to be nondecreasing in the p;’s. In model
(L1D6), we may choose functions p; that represent the weak orders X ¥*, the rest
of the properties of model (L1D4) remaining true. These facts have important
consequences for the elicitation of such models as we shall see in section 6.4.2.
Another feature shown in tables 6.4 and 6.5 is that the strict monotonicity of
G or the p;’s is not linked to observable characteristics of preference 7, unless we
consider the more constrained of the models, i.e. models (L1D11} and (L2D11).
In the former model, G strictly responds to any improvement or depreciation of a
difference of preference on any dimension ¢; in the latter model, not only does G
react in that way, but it is also the case for ¢;, for all i: @, strictly responds to any
improvement or depreciation of any of the compared alternatives on dimension
i. The practical consequences of this feature of the models are however relatively
limited: in these models, the indifference is “thin”, with, as we shall see, slightly
different behaviours depending on which of the two models the preference belongs
to. The concept of preference relations with thin indifference has been already
discussed, on p. 288, as a consequence of RC3 (for a preference that is a complete
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relation). Examples of preferences with thin indifference have been presented on
p. 302. Models (L1D11) and (L2D11) both satisfy RC3 and are complete; there is
nothing specific regarding thinness of indifference, with model (L1D11), contrary
to model (L2D11). Indeed, suppose that = and y are tied, i.e.  ~ y;

¢ in model (L1D11), indifference is broken as soon as any difference of prefer-
ence (x;,;) is substituted with a non-equivalent (w.r.t. =*) one;

e in model (L2D11) indifference is also broken when any level z; or y; is
changed into a non-equivalent (w.r.t. ﬁf) one.

In the latter model, variations of levels produce variations in the traces on differ-
ences which in turn can break ties.

6.4.2 Eliciting models using both marginal traces and traces
on differences

6.4.2.1 Procedure

The strategy suggested by the models using traces on differences for eliciting - can
be further refined with these models. In the models using traces on differences, it
is natural, as emphasised in remark 6.3.1, to base the elicitation of the preference
on the elicitation of the relation on preference differences (2 or 7*). Here, we
may further wish to use the possible decomposition of the relation on preference
differences on each dimension ¢ as a function of traces on the set X;.

Due to the existence of the ordering bzi on X;, we may represent all pairs
(x4, y:) (where x;,y; belong to X;) in a system of orthogonal axes; on both axes,
we rank the elements of X, in increasing order w.r.t. zf, e.g. by assigning the
value u;(z;) to z; (where u;(2;) is chosen to be a numerical representation of >=F).
Each pair (;,v;) can thus be represented in Cartesian coordinates by the point
(ui(2), us(ys)). We will be interested in the indifference curves of =¥ (and =**),
i.e. the equivalence classes of this relation.

Let us consider two simple examples of relations on preference differences on
dimension ¢. In the first one, the relation 2Z* (or ZJ) responds strictly to the
marginal trace =F; in the second, the response is not necessarily strict.

~%

Example 6.5 (Strict responsiveness)
Let X, = {1,2,3,4,5} and suppose that ﬁf is the usual order on X;. Let

pi (5, y:) = @i (ui(2;), u;(y;)) be defined by
pi(Ti,Ys) = Ti — Y (6.85)

and suppose that p; is a numerical representation of the weak order 277*. In such a
case, the equations of the indifference curves of 777* are x; —y; = k, for all possible
constants k. These “curves” are represented in figure 6.9. One observes that they
define increasing functions mapping X; into X;. Indeed, for each equivalence class
of ZF*, to each z; corresponds at most one y; such that (z;,y;) belongs to that

class (for instance, in the class p; = 2, to x; = 3 corresponds y; = 1, but no y;
can be associated to z; = 1). Moreover, if (z;,y;) belongs to an indifference curve,
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and you increment x;, positioning yourself at z; >f x;, then if there is a point on
the indifference curve corresponding to z;, it must be a level w; above y; and in
any case, (z;,y;) belongs to an indifference curve that is below (w.r.t. z}*) that
passing through (z;, ;).

The case in which 2™ is a weak order may be simpler compared to the case in
which only z¥ is complete. Indeed, =}* is a reversible relation and thus about”
“half of the relation” has to be described since, as is the case in the example
given above, when we know that (z;,v;) and (z;, w;) belong to the same indiffer-
ence curve, then we also know that (y;,z;) and (w;, 2;) belong to the same curve
(usually another one). The diagonal of X2, that is the set of all pairs (z;,x;), is
the only indifference curve that contains both (z;,v;) and (y;, ;). In such a case,

Figure 6.9: The indifference curves of p;(z;, ys) = x5 — ;.
an elicitation procedure of ¥ based on a preliminary elicitation of :fc, could be
designed as follows: start from any pair (z;,v;) and try to list the pairs in its
equivalence class by gradually incrementing the value of x;; start with the value
z; just above x;, and ask which value w; (there is at most one such value) is such
that (2z;,w;) is indifferent to (x;,y;). Then go ahead incrementing z;. When the
procedure finishes, start again at z; and decrement it. Here is a numerical illus-
tration on the example given above. We ask for indifference judgements based on
the relation ~. Let us start for instance with (x;,y;) = (3,1). Asking which pair
of type (4, w;) is indifferent to (3, 1), we obtain w; = 2; then we find that (5,3) is
indifferent to (4, 2) (and by transitivity, to (3,1)). Decrementing z; starting again
downwards from (3, 1), we obtain no other pair since no pair (2,w;) is indifferent
to (3,1) if w; is only allowed to take values in {1,2,3,4,5}. To describe the other
curves, just remove the pairs that have already been assigned to a curve and start
the same procedure from one of the unassigned pairs. <

7In case of ties in the relation =*, the remark in the footnote on p. 281 also applies here

~ 7
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Example 6.6 (Non strict responsiveness)
Our second example is built on the set X; = {1,2,3,4} (with Ef, the natural
order) by defining the representation p; of 77} as follows:

~T

0 if Ty — Yy = 0
pileg,y)=¢ 1 ifx;—y,=1lor2 (6.86)

and p;(z4, i) = —pi(ys, 2:). Here the indifference “curves” should be called indif-
ference strips; as the indifference curves in example 6.5, they are nondecreasing
in some sense. The indifference strips are shown in figure 6.10. In contrast to

L 1
T T

1 2 3 4

Figure 6.10: The indifference strips in example 6.6.
example 6.5, the equivalence classes of 2Z}* are not functions: for any x;, there
may be several pairs (z;,v;), (z;, ;) that are indifferent, while y; is not equal to
z;; for all z;; there is an interval (possibly empty) of values such that all pairs
(xi,vs), with y; in the interval, are indifferent. The lower and upper boundaries of
these intervals form a nondecreasing function of x;. For example, in figure 6.10,
the boundaries of the class containing pair (3,2) are:

e lower boundary: (2,1), (3,1), (4,2);
e upper boundary: (2,1), (3,2), (4,3).

Thus, in this example, the interval for z; = 1 is empty, that for z; = 2 contains a
single pair and the intervals for z; = 3 and z; = 4 both include two elements.
Based on the preliminary knowledge of tf, an elicitation procedure of 77;*
could run as follows: start with an arbitrary pair, say (3, 2). Ask which pairs (3, w;)
are indifferent to (3,2); we then obtain (3,1) and (3,2). Afterwards, increment
x; = 3, asking for pairs of type (4,w;) indifferent to (3,2); we obtain (4,2) and
(4,3). We start again from (3,2}, decrementing z; = 3 and asking for pairs (2, w;)
indifferent to (3,2); we obtain the single w; = 1. Finally, one asks for pairs (1, w;)
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indifferent to (2, 1) and we don’t get any value w;. The indifference class containing
(3,2) is now completely known. We remove the pairs that belong to it from further
consideration and start the same procedure from an arbitrary pair that has not
yet been assigned to an indifference class. If 71 is reversible as in this example,

it suffices to do half of the job, as in example 6.5. o

6.4.2.2 Peculiarities of the elicitation of models (L — D)

To build a representation of a preference 7 in one of the models from (L1D5)
and those more constrained, we might, in theory, apply the strategy outlined in
section 6.3.4. When both marginal traces and traces on differences are weak orders
(i.e. in models from (L1D5) and those more constrained), we may exploit what
precedes to ease the elicitation of the traces on differences using marginal traces.
In principle, the more the model is constrained the lower the complexity of the
elicitation; in particular:

¢ in models where p; is skew-symmetric, we may assign the value 0 to p;(z;, x;),
for all z; and elicit either the “positive” or the “negative” part of p; (exploit-
ing the fact that p;(x;,y:) = —pi(ys, T4));

o when p;(zs, 1) = @i(ui(z;),w;(y;)) is increasing in its first argument and
decreasing in its second one, the indifference curves are functions and their
elicitation might possibly be considered to be easier (compared to the de-
scription of “strips of indifference” in the non-strictly monotone case).

The latter advantage might however be questioned for two reasons. First, it is not
that clear, that eliciting indifference strips is more complex in terms of numbers of
mental operations, than eliciting indifference functions: we lack a full proper theory
on the complexity of eliciting empirical structures (in contrast to the complexity
of logical decision problems, which is well-studied (Garey and Johnson, 1979)).
The second objection is more serious. Consider all models (L — D) in which F
and ZF (or possibly 73*) are weak orders. In the models in which p;(z;,y;) =
wi(ui(x;), us(y;)) is non-decreasing in its first argument and non-increasing in its
second argument, it is always possible (as long as X; is a finite or denumerable
set, which we assume) to choose a numerical representation of the weak order
¥ (or 7=¥*) on differences of preferences for p; and a numerical representation
of the marginal trace ?;ft for u;. This is not always the case if we impose that
@i(us(zy), wi(y;)) is increasing in its first argument and decreasing in its second
argument. We shall not enter into the—rather technical—discussion of this issue
that we call the regularity of the representation elsewhere; the interested reader
is referred to Bouyssou and Pirlot (2004a, section 5.4.2) for more detail. The
disadvantage of a non-regular representation is obvious: if p; is not a numerical
representation of =¥ (or 71*), an elicitation procedure as the one outlined for
example 6.5 loses its justification.
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6.4.3 Models distinguishing no more than five classes of dif-
ferences revisited

We start with the weighted majority model then address more general models in
which ¥ or Z7i* have at most three classes of equivalence.

6.4.3.1 The weighted majority model revisited

In the weighted (simple) majority model (see section 6.3.5.2), we declare that z 77 y
if and only if the sum of the weights of the dimensions saying that z is at least as
good as y is not less than the corresponding sum for dimensions stating that y is at
least as good as x. The numerical representation of = in model (D11) described
by equations (6.40) and (6.41) can easily be transformed into a representation in
model (L1D11); it is sufficient to define ¢; by

w; if uz(xl) > uz(yz)
—w;  if wi(;) < uwilys),

where u; is any numerical representation of the weak order S; on X; (see section
6.3.5.2). With this definition, the value of the function ¢;(u;(z;),u;(ys)) is the
same as that of p;(z;,y;) defined by (6.40). The aggregation of the ¢;’s is carried
on additively as in (6.41), i.e. G([¢s]) = 2 _ien Pi-

One can immediately see that in the above representation, ¢; is not strictly
monotonic in its arguments. Indeed, as soon as we have, for instance, u;(z;) >
wi(ys), wi(wi(zs), ui(ys)) is equal to the weight w; and its value does not respond
to any further increase in its first argument. Similarly, the value of ¢; does not
increase when decreasing the value of its second argument. This shows that (6.87)
does not define a representation of majoritarian preferences in the strictly respon-
sive model (L2D11).

Is there another way of building a representation of such a preference that would
yield a representation in model (L2D11)8? The answer is, in general, negative for
the following reason: suppose that z is indifferent to y while u;(z;) > u;(y;)
for some 7; we have G([p;(ui(z;),ui(y:))]) = O to represent the indifference of
x and y. Assume that there exists z; with u;(z;) > u;(z;). According to the
definition of the weighted simple majority rule (6.39), we have (zj,z-;) ~ v.
Postulating the existence of a strictly monotonic representation of 7, would lead
to Gp;(uj(z;),1;(y;)), [wi(uwi(ms), wi(yi))]izs) > 0, which implies (z;j,2—:) = y, a
contradiction.

Remark 6.4.1 (Regularity of the representation)

Another issue about the representation is related to its regularity. In models
(L1Di) or (L2D1i), regularity is twofold: in equation (L0DO), it can or not be that
wi(ui(zy), ui(y:)) represents the weak order 77F or 727 and it can or not be that
u;(x;) represents the weak order »-f. The representation is regqular if both are
true, which presupposes at least model (L1D4) (in order to be sure that 7} and

~T

8 This is the only case of interest since we know that models (L1Di) and (L2D3) are equivalent
for i = 1 up to i = 10. So, if there is a representation in (L1D1i), there is one in (L2D1).
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>+ are both weak orders). It is always possible to obtain regular representations
functions ; that are monotonic but not strictly monotonic. This is no longer true
when we want a representation in models (L2Di) for i = 4 to 10 since all pairs
x4, y; for which z; P; y;, i.e. for which u;(z;) > w;(y;), are equivalent with respect
to ¥, The existence of regular representations is an advantage from the point
of view of the elicitation of the preferences, since, as shown in section 6.4.2, one
may rely upon the traces 7} and -] to build a numerical representation of the

~Y

preference. .

6.4.3.2 Other models

In all models studied in sections 6.3.5 and 6.3.6, the relations 2] are weak or-
ders for all 4; they thus admit a numerical representation that we denote by u;.
For all these models, as soon as p; is a representation of the weak order =¥ or
7, it always makes sense to define ¢; by setting ; (u; (), ws (1:)) = i, ys)-
By doing this, starting from a representation of 7 in model Di for some i € N,
one obtains a representation in the corresponding model (L1D3). For all ¢ # 11,
this implies that a representation also exists in the corresponding model (L2D1),
since the latter is equivalent to the former. The picture is not the same for mod-
els (L1D11) and (L2D11) as already observed for weighted majority preferences:
there is a representation in model (L2D11) iff there is one in model (L1D11) and
indifference is “thin”. Regarding the regularity of the representation, as in the
case of weighted majority, it is seldom possible to guarantee both regularity and
the strict monotonicity of ¢; whilst regularity and (non-strict) monotonicity of ¢;
are perfectly compatible.

6.5 Models with weakly differentiated preference
differences

In section 6.3.5 and subsection 6.4.3.1, we investigated a variety of models in which
the number of classes of differences of preference is reduced to at most three. Can
one provide a unified framework for discussing and understanding all these variants
of a majority rule? It is our aim in this section to briefly describe such a framework.
All the preferences described in the above-mentioned sections have some right to
be called concordance relations. The term “concordance” was introduced by Roy
(1968, 1971) in the framework of the ELECTRE methods (see also Roy (1996), Roy
and Bouyssou (1993, sections 5.2 and 5.3) and Roy (1991); Roy and Vanderpooten
(1996).). It specifies an index (the so-called concordance index) that measures the
strength of the coalition of criteria stating that an alternative x is at least as good
as an alternative y. Here, we use this term in the same spirit for qualifying a
preference relation that results from the comparison of the strengths of coalitions
of criteria: we have all preference relations studied in section 6.3.5 in mind® and
subsection 6.4.3.1.

9 The lexicographic preference described in subsection 6.3.5.4 enters into this framework but
can be seen as a limit case.
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An earlier investigation of preference relations of this type in a conjoint mea-
surement framework is that of Fishburn (1976) through its definition of noncom-
pensatory preferences (see also Bouyssou and Vansnick (1986)). More recently,
Fargier and Perny (2001) (see also Dubois, Fargier, Perny, and Prade, 2001a;
Dubois et al., 2003 and Dubois, Fargier, and Perny, 2002) have proposed a charac-
terisation of concordance relations that relies on an axiom inspired from neutral-
ity and monotonicity conditions used in Social Choice Theory, which strengthens
Fishburn’s noncompensation condition.

Although it has long been thought that noncompensatory preferences provided
the adequate framework for the analysis of preferences resulting from ordinal ag-
gregation methods (i.e. methods in which the only thing that matters in comparing
Z to y on a dimension is whether z is ranked above or below y if not x and y are
tied on that dimension), it was recently shown in Bouyssou and Pirlot (2002a),
that this is not totally true and that a slightly broader framework is needed. In
this paper (see also Bouyssou and Pirlot, 2005a), a precise definition of concor-
dance relations is proposed and the relations that fulfill it can be described within
the family of models that rely on traces on differences (sections 6.3.3 and 6.4).
It is the goal of this section to outline these results (we mainly follow Bouyssou
and Pirlot, 2005a). Similar ideas have been developed by Greco, Matarazzo, and
Stowinski (2001a)

6.5.1 Concordance relations

In a conjoint measurement context, a concordance relation is characterised by the
following features.

Definition 6.16 (Concordance relation)
A reflexive relation 77 on X is a concordance relation if there are:

e a complete binary relation S; on each X;,

e a binary relation > between subsets of N, the union of which is N, which is
monotonic with respect to inclusion, i.e. such that for all A,B,C,D C N,

[A>B,CD2ABD2D,CUD=N]=CPk D, (6.88)
such that, for all x,y € X,

rZy & Sz,y) > Sy, 2), (6.89)
where S(z,y) ={t € N :2; S; y;}.

In this definition, we interpret S; as the a priori preferences on the scale co-domain
X, of each dimension; in cases of practical interest, S; will usually be a weak order
or a semiorder (but we do not assume this to begin) and the global preference of
over y results from the comparison of the coalitions of criteria S(z,y) and S(y, z).
The former can be seen as the list of reasons for saying that z is at least as good
as y, while the latter is a list of reasons supporting conversely that y is at least as
good as z. A fundamental ingredient amalgamated in a concordance preference is



6.5. WEAKLY DIFFERENTIATED PREFERENCE DIFFERENCES 313

a way of comparing coalitions of criteria: we assume that there is a relation > on
the power set of the set N that allows us to decide whether a subset of criteria
constitute a stronger argument than another subset of criteria; the interpretation
of such a relation is straightforward when the compared subsets are the lists of
dimensions S(z,y) and S(y,z) involved in the comparison of two alternatives z
and y. Note that > enables us only to compare “complete” coalitions of criteria,
i.e. those whose union is N.

The weighted majority relation (section 6.3.5.2), typically, fulfills the require-
ments for a concordance relation as defined above. In this example, the strength of
a subset of criteria can be represented by the sum of their weights and, comparing
S(z,y) to S(y,z) amounts to comparing two numbers, namely the sums of the
weights of the dimensions that belong respectively to S(z,y) and S(y,z). In such
a case, > can be extended to a weak order on the power set of N and this weak
order admits a numerical representation that is additive with respect to individual
dimensions:

S(z,y) > Sy, x) iff Z wy > Z Wj. (6.90)

i€S(z,y) 1€8(y,x)

In our general definition however, we neither postulate that > is a weak order
nor that it can be additively represented on the basis of “weights” of individual
criteria. We only impose a quite natural property (6.88) on the relation &>, namely
that it is monotonic with respect to the inclusion of subsets of criteria. Suppose
that we start with a list of arguments A (e.g. S(z,y)) that is at least as strong as a
list B (e.g. S(y,z))—we thus start with A & B. This relation should be preserved
when enlarging the list A into a list C' that contains A or, on the opposite, when
contracting the list B into a subset D of B. This is the minimal requirement we
can impose on a relation comparing the strengths of coalitions.

The interesting feature of concordance relations, in the sense of definition 6.16 is
that they can easily be characterised within the family of models (Dk) that rely on
preference differences. The main result, obtained in Bouyssou and Pirlot (2005a,
Theorem 1), establishes that concordance relations are exactly those preferences
for which the traces on differences Z}* are weak orders and have no more than
three equivalence classes. This result will be part 1 of theorem 6.7 stated below
on p. 316. Consequently, concordance relations form a subclass of the relations
belonging to model (D6) (or equivalently to model (D10)).

6.5.1.1 The relation >

As a consequence of this result, all preferences described in section 6.3.5 (see also
table 6.3) admit a representation as a concordance relation, i.e. can be described
by means of equation (6.89), i.e.:

zzy e S,y > Sy, ),

for some > and some S; satisfying the requirements of definition 6.16. We em-
phasise that this is true, not only for simple weighted majorities (section 6.3.5.2),
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but also for qualified majorities (section 6.3.5.3) or lexicographic preferences (sec-
tion 6.3.5.4) that are not primarily defined through comparing coalitions (qual-
ified majority is defined through comparing the “pros” in favour of z against y
to a threshold; lexicographic relations arise from considering the most important
criterion and only looking at the others when alternatives are tied on the most
important one). Part 1 of theorem 6.7 says that all these relations can also be
represented according to equation (6.89) using an appropriate definition of > and
S;. Of course, we cannot ensure that & can be represented, in general, according
with equation (6.90), i.e. in an additive manner.

6.5.1.2 The relations S;

Are these relations determined by the preference =? Indeed they are; S; can be
defined as follows:

xi Siys & (x4, y0) 25 (w4, 24). (6.91)

The interpretation of this definition is clear (at least for reflexive and independent
preferences 77 with which all “null differences” (x;, z;), for z; € X;, are indifferent
with respect to relation 7=F): z; S; y; means that the difference of preference
(z4,¥:) 1s “non negative”, in the sense that it is at least as large as the “null
difference” (z;,x;) or any other null difference (z;, z;).

It can be shown that S, is complete but not necessarily transitive for a gen-
eral concordance relation 7; the marginal traces 2o} and 7 are included in S;,
which in turn is contained in the marginal preference ;. Note that in general
concordance relations, the marginal traces are not necessarily complete (hence not
necessarily weak orders) and the marginal preferences cannot be guaranteed to be
transitive or complete.

Tor more constrained concordance relations, namely for those that admit a
representation in model (L1D8), S; can be proved to be a semiorder (Bouyssou
and Pirlot, 2005a, theorem 4 and lemma 10). Remember that in such models, the
marginal preferences 2; is also a semiorder (proposition 6.6). It would however
be wrong to infer that S;=2; for concordance relations representable in model
(L1D6), as will be shown by the second example below. In the still more con-
strained model (L2D11}), S; and -; will be weak orders and, at this stage, it is
true that S; equals the marginal preferences 7-; as well as the marginal trace fﬂi

We give two examples that illustrate the relatively subtle relationships between
all these relations.

Example 6.7

Consider alternatives that can be described by two dimensions; the co-domain
of their associated scale is the integer interval [0,10]. Equal weights w; = 0.5
are associated to both dimensions and the decision rule that determines whether
z = (x1,x2) is preferred at least as much as y = (y1,y2) consists in checking
whether for both dimensions x; is not less than y; — 1. The rationale for this rule
is that the client does not perceive a clear difference of performance on a dimension
unless 2; and y; differ by at least two units. The global preference results from
unanimous agreement to say that z is at least as good as y on both dimensions.
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We thus have:

rnye Y wi=L (6.92)

vz 2y -1

So, for example, we have (1,2) ~'(2,3) and (1,2) ~ (2,1) but not (2,3) » (2,1),
which implies that the symmetric part of the global preference—interpreted as
indifference—is not transitive. The marginal traces 77} and »; are the natural
order on the integers of [0, 10] since any advantage x; > y; can make a difference,
in an appropriate context; for instance: z; = 2 > y; = 1 yields (2,4) = (0,5)
while Not[(1,4) = (0,5)]; hence 2 =] 1. The marginal preferences -; are the
semiorders defined by x; Z; v iff z; > y; — 1. We indeed have (z;,a-;) =
(¥i,a—s) as soon as this condition is fulfilled. The trace =}* on differences has
three equivalence classes: the class of pairs (z;,y;) such that z; — y; is strictly
larger than 1, that for which x; — y; is either —1,0 or 1 and, finally, that for which
z; — y; is strictly smaller than —1. In this example, S; is equal to the marginal
preference 7, since we have (x;,y;) 27 (vi,vs) iff 2, >y — 1. O
Example 6.8
This example is a variant of the previous one. We consider three dimensions instead
of two, with scales valued in the integer interval [0,10]. The weights attached to
the dimensions are equal (w; = %) and the preference of alternative z = (x1, 22, 3)
over y = (y1,Yyz2,ys) results from the following qualified majority rule:

znye Y. w06 (6.93)

2z 2yi—1

Note that setting the threshold to any value between 0.34 and 0.66 would not make
any difference to the preference relation 7. The only difference with example 6.7,
in terms of relations derived from the preference -, is the marginal preference ;;

in this example, all levels z; are indifferent with respect to the marginal preference.
Indeed we have for all a_;, x4, ys, (x5,a_5) ~ (y;,a_;) since

| Z ijZw¢:§> 0.6;

Jwwy2y;—1 J#i
in this case the common levels a.; ensure on their own that the required major-
ity threshold is reached, whatever happens on dimension 4. In this example, the
marginal preferences 7-; are different from the S; that are such that z; S;y, iff
x; > y; — 1 as in example 6.7. This again illustrates (as already shown in section
6.2.5) that ceteris paribus reasoning can be insufficient, even with quite reason-
able preferences. Note also that the present example is not covered by Fishburn’s
theory of noncompensatory preferences (Fishburn, 1976), because Fishburn’s ax-
ioms imply that the marginal preferences and the S; relations are identical; the
concordance relations in the sense of definition 6.16 are thus significantly more
general. <&

We summarise the results given above in the following theorem that is based on
Bouyssou and Pirlot (2005a, theorems 2 and 4). Note that this paper provides
conditions, expressed in terms of the relation -, that are equivalent to requiring
that the traces on differences 7-}* have at most three equivalence classes.
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Theorem 6.7 (Concordance relation)
1. A relation = on X is a concordance relation iff it is reflexive, satisfies RC'12
and its traces on differences 7F* have at most three equivalence classes.
2. The relations S; that intervene in the definition of concordance relations are
semiorders iff 7= satisfies, in addition, AC123.

3. These relations are weak orders as soon as 7, satisfies AC4.

6.5.2 Relationship with actual outranking methods

The above results and examples echo the practice of building concordance relations
in the ELECTRE I and II methods (section 6.3.5.3 and, particularly, remark
6.3.4) or the TACTIC method (section 6.3.5.5). In the process of building an
outranking relation ¢ la ELECTRE, a priori preferences on each dimension are
used to determine whether level z; is not worse than level y; and if this the case,
dimension 7 enters the coalition of dimensions S(z,y) that is in favour of saying
that z is globally not worse than y. Such a process is likely to lead to relations S;
as defined by (6.91).

This is also to be connected to the respect of the dominance relation by prefer-
ences that satisfy AC'123 (section 6.2.8). If we interpret S; as the a priori preference
of the client on dimension 7, the concordance relation of an ELECTRE I method,
is compatible with the dominance relation with respect to the S;’s. In addition, of
course, the differences of preference on each dimension are weakly differentiated.
The further introduction of vetoes may contribute towards refining the discrim-
ination between differences of preference. Models that encompass the latter will
not be discussed in detail here. Observe simply that outranking relations resulting
from the application of the ELECTRE I or II methods, are representable in the
subclass of model (L1D6) in which the traces on differences of preferences 27}*
have at most five equivalence classes. Models with vetoes constitute a very pecu-
liar subclass of that class, as emphasised in section 6.3.7. Greco et al. (2001a) have
characterised a slightly restrictive version of concordance relations with vetoes (see
the discussion section in Bouyssou and Pirlot, 2005a).

Recently, Bouyssou and Pirlot (2005¢) have modified definition 6.16 of concor-
dance relation in order to cover concordance relations with vetoes; these are called
concordance-discordance relations.

Definition 6.17 (Concordance-discordance relation)
A reflexive relation = on X is a concordance-discordance relation if there are:

e a complete binary relation S; on each X,
o an asymmetric relation V; included in S;,

o a binary relation > between subsets of N, the union of which is N, which is
monotonic with respect to inclusion, i.e. such that for all A,B,C,D C N,

[A>B,C2AB2D,CUD=N]=Cb D,
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such that, for all z,y € X,
z 5y & [S(z,y) B S(y, ) and V(y,z) = 2],
where S(z,y) ={t € N:2; S;y;} and V{y,z) ={i e N:y, V; 2;}.

This definition clearly encompasses the models of preference involving a veto
that were described in section 6.3.6. Concordance-discordance relations can be
characterised in the same spirit as concordance relations (theorem 6.7). Besides
being reflexive and satisfying RC'12, concordance-discordance relations have traces
on differences »7;* that determine at most five classes of differences; if there are
indeed five classes, all “positive” differences play the same role, while the largest
“negative” differences trigger a veto. The axioms characterising concordance-
discordance relations in Bouyssou and Pirlot (2005c) express essentially these
characteristics.

The models based on weakly differentiated differences of preference described
above, thus come quite close to a realistic description of the practice of building
outranking relations ¢ o ELECTRE.

6.5.2.1 Elicitation issues

It has just been suggested that the elicitation of the relations S; could be rather
direct; determining whether z; S; y; amounts to determining whether dimension ¢
joins the coalition S(z,y) that will be compared to S(y, z) to decide whether z is at
least as good as y. Eliciting the relation B> on the coalitions of dimensions might
be more delicate. In practice, this relation is usually assumed to be additively
representable, which means that coalitions can be compared by comparing their
weights; the weight of a coalition is computed as the sum of the weights of the
dimensions that belong to the coalition. The weights of individual dimensions can
be determined for instance by using Simos’“cards method” (see section 4.4.2, page
149) or by using one of the other methods discussed in section 4.4.

The existence of such an additive representation of > is certainly not guar-
anteed, in general, for concordance relations, even in the most constrained of the
variants considered in theorem 6.7. We are not aware of any characterisation of
concordance relations for which the relation > would be guaranteed to admit an
additive representation 1°; it is likely that the axioms used in such a characteri-
sation would be barely interpretable (such as those for additive representation of
value functions in the case of a finite set of alternatives; see section 4.3, page 131).
In the absence of an indication of the existence of an additive representation of >,
the monotonicity of > is the sole property that could be exploited to simplify the
elicitation of the relation on the power set of the set of dimensions.

{f‘: The models based on weakly differentiated differences of preferences are

10 Note that the problem of characterising relations > that admit an additive representation is
similar to the characterisation of comparative probabilities that admit a representation by means
of an additive probability measure (on this—much studied—issue, see de Finetti, 1931; Fishburn,
1996; Kraft, Pratt, and Seidenberg, 1959 and a recent survey by Regoli, 2000).
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[V an ideal framework both for

£

2 ¢ understanding the characteristics of the preferences obtained through a
@\ large number of aggregation procedures based on pairwise comparisons
é of alternatives;

% ¢ proposing new procedures of this type and analysing them easily.

(/’Et;

6.6 Models for valued preferences

So far in chapter 6, we have adopted a classical conjoint measurement point of view,
that led us to describing a preference relation on a product set of alternatives by
means of several types of models. For the reader’s convenience, the rules that
define 7~ in various families of models studied in the previous subsections, are
summarised in table 6.6; these families of models include:

* models based on marginal traces (models “(L)”)} analysed in subsection 6.2;

¢ models based on traces on differences (models “(D)”) analysed in subsection
6.3;

¢ models based on both traces (models “(L — D)”) analysed in subsection 6.4.

Models Representation of -
Model “(L)” Flug(xq)], [wi(y:)]) >0
Model “(D)” G(lpi(zi,y:)])) > 0

Model (L — D)”  G(lps(ui(@i), wi(y:))]) 20

Table 6.6: Representations of three models of preference.

A glance at table 6.6 shows that, in all cases, the preference relation is obtained
by “cutting” a function (F or G) at a single level—that is chosen to be 0 only for
convenience. It is tempting to ask whether the functions F' or G could not be used
for representing preference structures richer than just a binary relation 2 on the
set of alternatives. The first thing that comes to mind is that the values of F or G
could be used, for instance, for representing preference intensity or the credibility
of the preference. This immediately points towards a number of models that have
been evoked in earlier sections of this chapter, namely, the additive measurement
of differences, ELECTRE III and PROMETHEE II.

In this section, we shall briefly show that these models can be represented as
models (L), (D) or (L — D), the main difference with the latter being in the way
the values taken by G or F are related to a more complex preference structure.
Since the complete characterisation of such models is still under development, we
shall only indicate some general ideas of a theory of such structures in a conjoint
measurement perspective.
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6.6.1 The measurement of preference differences

In section 4.3.9, we introduced the model of measurement of preference differences
which involves two relations 72 and 7-*; the former denotes the usual preference
relation on the set of alternatlves and the latter is a relation that compares pairs
of alternatives; (z,y) ==* (z,w) states as “the difference of preference between x
and y is at least as large as that between z and w”. In the additive measurement of
differences of preferences, there is a function u on the set of alternatives that can
be decomposed as a sum of partial value functions u;(z;), i.e. u(z) = >, ui(x;),
and that satisfies the following two conditions:

zmy e u(z) > uly) (6.94)
(z,y) 2" (zw) & u(z) —uly) > u(z) — u(w) (6.95)

Bearing the “(L)” and the “(D)” models in mind, we can consider two natural
generalisations of the additive differences of preference models. Using the ideas of
models on levels (models “(L)”), yields the following representation of the pair of
relations 77, 7%

z 2y & Flug(@i)], [ui(y)]) 2 (6.96)
(,y) Z° (2,w) & Flui(z)], [wiys)]) 2 F([UZ(ZZ)] [ui(w:)]). (6.97)

We will refer to this model as the (L*) model; it is obtained from the addi-
tive differences of preference model (6.94) and (6.95) through substituting the
differences u(z) — u(y) and w(z) — u(w), respectively by F'([u;(z;)], [ui(y:)]) and
F([ui(z:)], [ui(wi)])-

Another avenue of generalisation is offered by substituting the differences u(z)—
u(y) and u(z) — u(w), respectively by G([p:(zi,v:)]) and G(|pi(z;, ws)]), yielding:

2y e G[pi(zi,y:)]) 20 (6.98)
(z,y) 2" (z,w) & G([pi(wi, v)]) = G([ps(zi, wi)]). (6.99)

We refer to the latter as the (D*) model. In both the (L*) and (D*) models, in
the absence of any additional specification, relation 7~ has no special property, as
was the case for model (L0) defined on p. 263 or model (D0) defined on p. 276.
The status of relation =* is different. Any valued relation on a set induces a
weak order on the pairs of elements of this set: the pair (z,y) comes before the
pair (z,w) in this weak order iff the value attached to (z,y) in the valued relation
is larger than that attached to (z,w). Considering F (resp. G) as a valued relation
on the set of alternatives X, we see that equations (6.97) (resp. (6.99) exactly
define the weak order induced by F (resp. G) on X?; hence, =* is a weak order
both in the (L*) and (D*) models.

It is not difficult to define a third family of models that we will call the (L*—D*)
model; it is obtained from (6.98) and (6.99) through decomposing p;(z;,y;) into
wi(ui(xy), ui(y,)) for all alternatives , y.

In the axiomatic analysis of such models, we would of course be interested in
conditions that make:
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¢ F nondecreasing (resp. increasing) in its first n arguments and nonincreasing
(resp. decreasing) in its last n arguments;

that F'(Ju;(z;)], [ui(z:)]) = 0 and that

P[us(w)], [us(y:)]) = —F([us(ya)}, [wilzi)]);

G nondecreasing (or increasing) in its n arguments;

that p;(z;, ;) = 0, pi(zi,¥:) = —pi(yi, ;) and that G is odd;

wi(ui{z;), u;(y:)) nondecreasing (resp. increasing) in its first argument u;(x;)
and nonincreasing (resp. decreasing) in its second argument wu;(y; ).

These questions correspond exactly to those we solved in the simpler case in which
the analysis is only concerned with a single preference relation -, without taking
the measurement of global differences of preference into account. One can be
confident that the axiomatic analysis of such models could be achieved using the
tools presented in the previous sections, namely, various sorts of traces. Since
such a study has not yet been completed, we do not develop these formal aspects
further; instead, we simply suggest a framework that encompasses several valued
relations showing up at some stage of practical multiple criteria methods.

6.6.2 Conjoint measurement models for ordinally valued or
fuzzy preference relations

Assume that a value S(z,y) is attached to each pair of alternatives (z,y) € X.
Assume further that the interpretation given to the values is ordinal. This means
that another set of values S’ is equivalent to S provided that, for all alternatives
z,y,z,w, we have S(z,y) > S(z,w) if and only if $'(z,y) > S'(2,w); in other
words, two ordinally valued relations S and S’ are equivalent iff they induce the
same (weak) order on the pairs of alternatives:

(@.9) 2" (zw) & S(z,y) 2 5(z,w).

Thus, an ordinally valued relation on X is equivalent to some relation ;2* on the
set of pairs of alternatives X 2. This relation is a weak order by construction.

Among several commonly used practical methods, which pass through the con-
struction of valued relations as an intermediary stage on their way to the elicitation
of a preference, are PROMETHEE II and ELECTRE III, not to speak of the ad-
ditive measurement of differences of preferences briefly discussed in section 4.3.9.
Let us interpret these valued relations in an ordinal way; we thus try to describe
these relations as representations of a relation =* comparing the differences of
preference between pairs of alternatives.

Consider a weak order »* on X?; we can view it as a weak order on the set
Y =[], Y;, where Y; = X;x X;. Proposition 6.8 (p. 271) applies to this situation;
assuming that =* satisfies the classical weak separability condition formulated for
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the Cartesian product Y, it tells us that 7* can be represented by means of
a nondecreasing function U of n variables and n functions p;(x;,y;) defined on
X, x X; such that:

(z,y) " (z,w) & U([pi(zs,y:)]) = U([pi(2i, wi)]). (6.100)

If we view the p; functions as valued relations on X; (representing the marginal

traces 77 of relation =*), we understand that the model given above provides a

framework for studying the aggregation of n valued relations into one (ordinally)

valued relation (this is to be put in relation with section 5.3, p. 192). Assuming

that U([p;(z;,z;)]) = 0 for all z, yields a relation 7 on X, defined as x 7 y if

(z,y) =* (z,z) with the numerical representation z - y il U({p;(z:,v:)]) = 0.
Under appropriate further conditions, the p;’s decompose as:

DilTi, ye) = 0i(us (24), us (%) )

with ; nondecreasing in its first argument and nonincreasing in its second. When
the p;'s have been substituted by the ;’s, model (6.100) offers a framework for
dealing with the aggregation of performance tables into a valued relation (see
sections 5.4, p. 202 and 5.5, p. 224).

As particular cases of the latter model, we have:

e the additive preference differences model, in which,
Pi(wiza), wiys)) = wilws) — wilys)
and U is a sum;

o the relation S(z,y) of PROMETHEE II (see p. 146), in which,
@i(ui(zi), us(ys)) = wiPi(gi(@) — 9i(y))

(equations 4.17 and 4.18) and U is a sum;

e the relation S(z,y) of ELECTRE III that also belongs to the model with
complicated @;’s and additive U.

Note that in all the cases stated above, U is additive. If appropriate conditions are
fulfilled, the relation =* admits a unique additive representation (see section 4.3.4,
p. 131). The theory of additive value functions could then apply; in particular,
the p;’s could be elicited as marginal value functions on the Cartesian products
X, x X, (see section 4.3.7, p. 135). Having modelled things in this way, how do
we help the client? The additive preference difference model is, in a sense, trivial.
Since in this model, it occurs that the relation 7, (defined above using Z*) is a
weak order, deriving a recommendation to the client is relatively straightforward
(see chapter 7 for a thorough discussion). When this is not the case, as with
PROMETHEE II, an “exploitation procedure” has to be applied to S(z,y) or Z*
in order to derive a recommendation. Classically, the net flow method is used with
PROMETHEE II, but it clearly makes usage of the numerical value of S, which is
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hardly arguable since we assumed that S is an ordinally valued relation (see the
discussion in section 5.3.5, p. 200 and also section 5.3.3, p. 197).

There is an alternative way of looking at this issue. Consider that the intensity
of the preference relation, %, is the main preferential object, the one that is
perceived by the client. Under this hypothesis, once this information has been
elicited from the client, we have to transform it into “decisive information”. For
instance, in case a ranking of the alternatives is needed—and under the assumption
that this ranking is not the client’s preference ——it would be advisable to study
models of procedures transforming an (ordinally) valued relation into a ranking
(i.e. a weak order), imposing rationality assumptions on such procedures. One
could envisage, for example, not to use the numerical representation of the valued
relation S obtained in the elicitation of 7-* but to change it into an equivalent one
that is needed in the process of building a final ranking (see also the discussion of
exploitation procedures in chapter 7, section 7.4).

6.7 Reconciling Social Choice and Conjoint mea-
surement

In chapters 5 and 6, we have described two quite contrasted approaches that we
believe are relevant for understanding the relationships between a preference on a
set of dimensions and the evaluations of these alternatives on a complete family
of criteria. The approach developed in chapter 5 finds inspiration in Social Choice
Theory and aims at characterising aggregation procedures. Conjoint measurement,
presented in chapter 6, characterises families of preferences that can be represented
in specific models.

Although conceptually different, the two approaches shed some light, from
various angles, on the aggregation issue. In this section, we try to emphasise cor-
respondences at various levels between the two approaches. The reader should be
aware that “correspondence” does not mean “equivalence”: in particular, bear in
mind that chapter 5 characterises procedures while chapter 6 characterises prefer-
ence relations.

1. The decomposable model (section 6.2.1} corresponds to the aggregation of
weak orders into a weak order, a special case of the aggregation of binary
relations into a binary relation (sections 4.2.2 and 5.2), encompassing, in
particular, the Borda (section 4.2.2) and lexicographic (section 5.2.4) meth-
ods. A preference = fitting with the decomposable model can be described
by z 7=y iff u(z) = U([ui(z:)]) = uly) = U([wi(y:)]). A general procedure
for aggregating weak orders into a weak order would start with a profile of
relations (S1,...,9;,...,S), that are weak orders, and output a weak order
>. If u,; is any representation of the weak order S; in the input profile and
if u represents =, then we can see U as an aggregation procedure; using the
decomposable model, this aggregation procedure is quite a general one but
the resulting preference is at least weakly separable (definition 6.9).
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2. Models based on marginal traces (L models). There are examples of aggre-
gation procedures in section 5.2 yielding preferences that fit with the more
general models based on marginal traces (section 6.2.7) and are not de-
composable. From proposition 6.8, we know that they are not weak orders
(otherwise they would fit with the decomposable model). The preferences
resulting from a majority rule (sections 5.2.1 to 5.2.3) are examples of such
procedures, but their description in the model based on marginal traces is
not the most appropriate one; they fit better into the model based both on
marginal traces and on traces on differences (see below, item 4).

3. Models based on traces on differences (D models). They are studied in section
6.3 and correspond to the aggregation of relations or valued relations into
a relation (sections 5.2 and 5.3). A preference - that can be described
within a D model satisfies z == v iff G([p;(z;,v:)]) > 0. A general procedure
aggregating relations into a relation is like the one described in item 1 except
that the relations S; are not necessarily weak orders. If p; represents the
relation S; (i.e. p(ws,y;) = 1 if x; S; y; and O otherwise), then G can be
viewed as an operator aggregating relations.

4. The models based on marginal traces and on traces on differences (L — D
models) are studied in section 6.4; the p; function of the D models is further
decomposed into ¢;(u;(z;),ui(y;)). The L — D models correspond to the
procedures that aggregate performance tables into a relation (section 5.4);
the input of such a procedure is a profile of functions (g1,..., i, ..., gn). If
we interpret z; as g;(x) (the evaluation of alternative x on dimension ¢) and
y; as g;(v), the function ¢, (u;(z;), u;(y;)) appearing in the L — D model can
be seen as a way of coding the difference of preference between z; and y;
on dimension i. Function G then aggregates these differences, determining
whether the balance is positive; if so, then x 7= y. All procedures studied
in section 5.4 fit with this interpretation of models L — D, but they also
fit with the more parsimonious decomposable model (item 1), which thus
provides a more appropriate framework for them. The procedures studied
in section 5.4 do not however illustrate all the ways of aggregating a perfor-
mance table into a relation; there are reasonable ones that do not fit with
the decomposable model. Consider, for instance, PROMETHEE II, which
was described as a procedure for aggregating fuzzy relations into a relation
in section 5.3.2.3. The fuzzy relations S;(z,y) on each dimension are built
through recoding the differences g;(z) — g;(y) using formula (5.3). One could
thus also interpret PROMETHEE II as aggregating the performance table
associated with the functions g; into a relation. This leads to interpreting
Si(z,y) as the ;(ui{x;), ui(y;)) function of a L — D model; this model will
not, in general, be a decomposable one.

Note that the L — D models also provide an adequate framework corre-
sponding with the aggregation of linguistic performance tables into a relation
(section 5.5). Remember that no particular structure is required on the com-
ponents X; of a conjoint measurement model. The “levels” of the linguistic
evaluation scales can thus be represented by the sets X;. An ordering of the
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levels of the linguistic scales, which is not pre-existent, is possibly induced
by the preference of the client (it is the case in the L — D models satisfying
RC1 and AC123; the induced weak order is the marginal trace Ef)

5. The valued version of the L — D model, briefly described in section 6.6.1, can
be put in correspondence with a family of aggregation procedures that has
not been discussed, but is the “valued version” of the aggregation of a per-
formance table into a relation (section 5.4). Take for instance the “weighted
sum procedure” (section 5.4.4); in the resulting relation, x is ranked before
y if the weighted sum s,(g) of the evaluations g(z) of z is larger than the
weighted sum s,(g) of the evaluations of y. Instead, one could consider the
procedure that would associate the difference s;(g)—sy(g) to each pair (x,vy),
which can also be written as Y,y wi(gi(z) — g:(y)) *'. By doing this, we
would have aggregated a performance table into a valued relation that can
obviously be put in correspondence with the measurement of differences of
preferences (section 4.3.9). It also corresponds to a particular case of the val-
ued L — D model, namely, the case in which the functions ¢; are differences
and G is a sum of those differences. Similar things can be said about the
“min” procedure (section 5.4.3) as well as about “leximin” and “leximax”
(section 5.4.5). In all these cases, the corresponding valued L — D model
could be called “decomposable” since the value associated with the pair
(z,y) is a difference of scores of the type U([u;(z:)]) — U(Jus(y:)]). It is not
difficult to find examples in which the L — D model does not decompose into
an algebraic difference. An appropriate “part” of the PROMETHEE IT or of
ELECTRE methods can be viewed as such examples. PROMETHEE II, for
instance, can be described as assoclating a value S(x,y) to each pair (z,y),
namely a weighted sum of the S;(z,y)) (formula (5.3)):

S(z,y) =Y Silw,y) = Y Pilgi(a) = 5:(y)); (6.101)
iEN iEN
then a score 12

cach “node” x:

is computed that is the “net flow” of the valued relation S at

o(z) =Y S(z,y) ~ Sy, z). (6.102)
yeA

If we consider the intermediary step of computing the relation S from the
performance table as a procedure per se, we see that we can analyse it in the
framework of the L — D models.

Going through the various models described in this chapter and overviewing their
inter-relationships, prompts two further remarks that will respectively relink ag-
gregation models looking back towards chapter 3 and forward towards chapter
6.

11 Instead of associating the difference of the weighted sums to a pair, we could associate the
difference of the Borda scores. This method has been characterised in Marchant (1998, 2000).

12 The reader can verify that this score is the same as that in formula (5.4). It is not uninter-
esting to note that a procedure can sometimes be analysed in several different ways.
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Looking back towards chapter 3. What is the “input” of the aggregation procedures
considered in the present chapter? On which objects are the preferences repre-
sented in our conjoint measurement models defined? We did not discuss much how
the data needed for describing the alternatives were prepared for use in all these
procedures or models.

The preparation of the inputs obviously has a lot to do with chapter 3. In
chapter 5, we considered various types of data as inputs of aggregation proce-
dures, especially: a binary or a valued relation on each dimension; a performance
table containing the evaluations of all alternatives on all dimensions. In chapter 3,
we mainly examined how relational information can be transformed into numer-
ical representations and, vice versa, how the evaluations of the alternatives on a
dimension can be transformed into a relation comparing the alternatives from the
point of view associated with this dimension. This could be described as preference
modelling on a single attribute.

It is one of the aims of chapter 3 to provide ways of preparing the information
on the alternatives for use in aggregation procedures. The circumstances of the
decision aiding process (type of information available, culture of the client, type
of recommendation required, etc.) may of course influence the type of aggregation
procedure that will be chosen and, accordingly, the type of preparation of the
input data. Comparing sections 4.2.2 and 5.3.2 illustrates the fact that using,
for instance, the Borda procedure applied to weak orders or the variant of the
Borda method applied to performance tables may depend on the type of raw data
available but also on the preference modelling phase and the interpretation of the
meaning of the data.

In conjoint measurement models, the perspective is apparently different since
the global preference is presented as a primitive of the model. Any alternative,
say z, is described as a vector (z1,...,2,) of a Cartesian product. The level z;
is usually interpreted as the evaluation g;(x) of alternative  on dimension i (the
scale of evaluation being possibly numeric, linguistic, ...).

A preliminary recoding of the “original” evaluation scale is not excluded by the
conjoint measurement approach. In any case, the vector (z1,...,z,) should offer a
complete, unambiguous description of the alternative x (see p. 128); in particular,
two alternatives associated with the same vector should be indistinguishable from
the point of view of the preference. Recoding a linguistic descriptor z; € X into a
numerical descriptor or a numerical descriptor into another numerical descriptor
can ease the elicitation of the preference. Consider for instance the problem of
choosing a place to live. Let x; denote the distance of house x from the centre of
the city, which constitutes point of view i. The client’s preference does not decrease
or increase monotonically with x;; the centre of the city is not an ideal place to
live (too much traffic, noise, pollution, ...); being far from the centre is not good
either (long journey to reach the office, ...); there might be an ideal distance
A corresponding to residential suburbs and the preference on this viewpoint will
decrease as the absolute value |z; — A of the difference between A and the distance
to the centre of the city increases. Suppose that we have determined that the
global preference of the client on the houses he could possibly buy and live in
can be modelled within a model based on marginal traces, say L3, for which the
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marginal trace ,ﬁfﬁ is a weak order; we can choose a numerical representation of
=F for u;. Recoding the “distance from the centre” attribute as |z; — A] could
ease the elicitation process. Indeed, knowing that the preference decreases when
|z; — Al increases provides us with a first approximation of a representation w; of
the marginal trace =% since we know that u;(2}) is a nonincreasing function of
z}, = |z; — Al; we just have to determine the intervals where u; would possibly be
constant as a function of .

In the same spirit, for D or L — D models, it could be advisable to find a
“pre-model” of the functions p;(x;, y:) or @;(ui(x;),ui(y;)). If a scale X; is poorly
structured (linguistic or ordinal), it may make sense to build a relation S;= (P;, I;)
(that is not necessarily a weak order) telling us which level z; is certainly not worse
than level y;. This is essentially what is done in formula (6.49) when determining
that cost x; is not worse than y; as long as it does not exceed y; by more than
100€. This introduces a constraint on the traces of differences Zf or Zz;* in
models D or L — D satisfying RC1 (hence for which =F is a weak order) since
pairs (x4, ;) such that z; S; y; should be ranked (by %) before pairs (z;, w;) such
that Not[z; S; w;]. In other words, in such a case, p;(z;,%;) should be larger
than p;(z;, w;), provided we choose a numerical representation of the weak order
¥ for p;. This again can ease the elicitation process.

Pointing forward to chapter 7. The recommendation to make to the client is
not always a straightforward consequence of the output of the aggregation phase
(it is even seldom the case as was announced in chapter 2 and is elaborated on in
chapter 7). Here, we only present one blatant example for which a post-aggregation
phase is needed. If we aggregate relations into a relation, say, by means of a
majority method (or, more generally, in the language of conjoint measurement,
if the preference fits with a D or L — D model and distinguishes few classes of
preference differences) it may occur that the output preference relation has circuits.
It is of course arguable that a procedure that may lead to (or a model that admits)
circuits is not appropriate for decision analysis. There is another way of dealing
with such a drawback. The idea is to accept cycles and other “defects” in the
preferences modelled and to exploit this information further in order to derive a
recommendation. Examples of exploitation procedures for this case are presented
in chapter 7, as well as considerations showing that an exploitation phase is needed
for all procedures and models.



MAKING RECOMMENDATION

7.1 Introduction

7.1.1 Position of the problem

In chapters 4, 5 and 6, we presented various preference models for alternatives
evaluated on several attributes/criteria. The presentation in these chapters em-
phasised the underlying logic of these models, their axiomatic analysis and their
possible implementation. Two main types of preference models were envisaged:

e preference models based on value functions leading to a weak order on the
set of alternatives,

¢ preference models in which incomparability and/or intransitivity may occur.

These preference models are tools built by the analyst in the course of the deci-
sion aiding study, the main phases of which were described in chapter 2. Having
built one or several preference models does not mean that the analyst’work is
over: this is only a step in the elaboration of a recommendation and its possible
implementation in the decision process.

Going from a formal preference model to a recommendation requires many
different tasks. Some of them are rather informal, involving, e.g., a good commu-
nication strategy with the actors in the decision process, the need for transparency
in this process, a sound management of multiple stakeholders, etc. This chapter
discusses the formal tasks that are involved in the elaboration of a recommenda-
tion. Sections 7.2, 7.3 and 7.4 will be devoted to the elaboration of a recommen-
dation on the basis of the preference models analysed in the previous chapters.
Section 7.5 will be devoted to the management of imprecision, uncertainty and
inaccurate determination in order to reach robust conclusions.

It should be clear at this stage that using the well-structured preference models
that are induced by value functions will make the elaboration of a recommendation
will be much easier. This does not mean that such models are always adequate.
We saw in chapters 5 and 6 that their construction often requires a delicate analy-
sis contrary, e.g., to more ordinal preference models, e.g. majoritarian models as
introduced in section 5.2.2 of chapter 5. Here, the analyst faces a difficult tradeoff
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between the ease of construction of the preference model and the ease of using it
to derive a recommendation. The analysis of this tradeoff depends on the nature
of the decision process.

7.1.2 What kind of recommendation?

The aim of this chapter is to study how an analyst can use formal preference models
to tentatively build a recommendation. The nature of this recommendation that
is looked for will therefore be of crucial importance in this phase of the decision
alding study. As should be apparent from section 2.3 of chapter 2, the central
element here is the problem statement II that has been agreed upon at the problem
formulation stage of the decision aiding process.

Among the various problem statements presented in chapter 2, in this chap-
ter our attention will be focused on the ones aiming at partitioning the set of
alternatives. Depending on:

¢ whether or not the categories are ordered,
e whether or not the categories are predefined and,
e the number of categories,

several problem statements arise. For instance, the situation in which categories
are neither ordered nor predefined, calls for the use of clustering techniques. Be-
cause our basic material in this chapter will be one or several relations comparing
alternatives in terms of preference, we will mostly restrict our attention to problem
statements involving ordered categories. This roughly leaves us with three main
problem statements, i.e., the three “purposeful” problem statements introduced
in chapter 2:

Choosing : at most two categories that are ordered and not predefined,
Ranking : ordered categories that are not predefined,
Sorting : ordered categories that are predefined.

The first two problem statements lead to a relative evaluation. They are concerned
with the fact that an alternative is or not preferable to another, without taking
a position on the “intrinsic desirability” of the alternatives that are compared,
which would require the categories to be predefined. Alternative a may be found
preferable to alternative b while a and b may both be rather poor. The third
problem statement deals with absolute evaluation: it will lead to a judgement on
the intrinsic desirability of the alternatives.

Before recalling the essential elements of these three problem statements, it is
important to note that the distinction between absolute and relative evaluation is
sometimes blurred in practice. The analyst having opted for a “choosing” problem
statement might well be lead to start a new phase of the decision aiding study after
realising that all alternatives that were considered are not likely to contribute much
to the decision process. Similarly, if the analyst has succeeded in isolating a set of
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“desirable” alternatives, their relative evaluation will be necessary if only one of
them can be implemented. In such cases, the problem statement is likely to evolve
during the decision aiding process.

7.1.2.1 Choosing

The first problem statement, choosing, is quite familiar in Operational Research
and in Economics. The analyst’task is formulated in such a way that he either
tries

e to isolate, in the set A of potential alternatives, a subset A’ that is likely to
contain the most desirable alternatives in A given the information available
or

e to propose a procedure that will operate such a selection.

Examples in which such a problem statement seems appropriate are not difficult
to find:

e a recruiter wants to select a unique applicant,
e an engineer wants to select the best possible technical device,

e a patient wants to choose the best possible treatment among those offered
in a hospital,

e a manager wants to optimise the supply policy of a factory,

¢ a consultant wants to screen a large number of possible sites to set up a new
factory. Only the most promising ones will be subjected to detailed on-site
studies.

In all these examples, the selection is to be made on the sole basis of the comparison
of potential alternatives. In other words, the “best” alternatives are not defined
with respect to external norms but with respect to a set of alternatives A; the
evaluation is only relative. Therefore, it may occur that the subset A’, while
containing the most desirable alternatives within A, only contains poor ones.

7.1.2.2 Ranking

The second problem statement, ranking, is also familiar in Operational Research
and Economics. The problem is formulated in such a way that the analyst tries

e torank order the set of potential alternatives A according to their desirability
or,

e to propose a procedure that will operate such a ranking.

It is not difficult to find examples in which this problem statement seems appro-
priate:
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e a sports league (e.g., soccer or basketball) wants to rank order the teams at
the end of the season,

¢ an academic programme has to select a number of applicants given the pro-
gramme'’s size. A competitive exam is organised which leads to rank ordering
the applicants according to an “average grade”. Applicants are then selected
in the decreasing order of their average grades until the size of the programme
is reached,

o an R&D department has to finance a number of research projects subject to
a budget constraint. Research projects are then rank ordered and financed
till the budget constraint is binding.

The evaluation is performed, as in the preceding problem statement, on a relative
basis: the top ranked alternatives are judged better than the others while nothing
guarantees that they are “satisfactory”. The ranking of the alternatives is not
defined with respect to outside norms but with respect to the comparison of the
alternatives in A among themselves.

Ideally we would like to be in a position to rank order the set A of alternatives
from the best to the worst alternatives. Remember from chapter 3 that this
amounts to defining a complete and transitive binary relation on A. As we will
show below, this is not always an easy task. Therefore, some techniques do not
insist on obtaining a complete relation leaving the possibility of incomparable
alternatives (see the case study described in Bouyssou et al., 2000, ch. 9).

Remark 7.1.1

Our definition of the ranking problem statement does not prevent the relative posi-
tion of two alternatives a and b from depending upon their comparison with other
alternatives, e.g., ¢. Methods using ranking techniques allowing for such compar-
isons violate the famous independence condition introduced by Arrow (1963) (see
section 5.2.1.2 in chapter 5). .

Remark 7.1.2

The distinction between this problem statement and the preceding one, choosing, is
often subtle. Both are based on the comparison of alternatives amongst themselves.
Intuitively, one would expect that the alternatives in set A’ in a choosing problem
statement should be ranked in the first equivalence class of the ranking within the
ranking problem statement. This is misleading however since the ranking problem
statement aims at providing much richer information than the choosing problem
statement. In a location study, the elements in A’ may be promising and worth a
further detailed study. This does not mean that they appear as equally promising.
On the contrary, A’ may contain sites that are quite different, e.g., isolated sites
and sites close to city or to a recreational facility. .

7.1.2.3 Sorting

The third problem statement, sorting, is designed to deal with absolute evaluation.
The problem is here formulated in such a way that the analyst tries
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e to partition the set of alternatives into several categories, the definition of
these categories being intrinsic,

e to propose a procedure that will generate such a partition.

The essential distinctive characteristics of this problem statement therefore lie in
the definition of the categories. Two main cases arise.

The definition of the categories may not refer to the desirability of the alter-
natives. Many problems that arise in pattern recognition, speech recognition or
diagnosis are easily formulated in this way. We may, e.g., want to decide whether
an image reveals the presence of roads, whether a certain sound is to be interpreted
as “yes” or “‘no”, whether a patient has a certain disease, etc. Such situations call
for the use of classification techniques that are beyond the scope of the present
volume. In those situations, a category is often defined with respect to one or sev-
eral of its prototypical elements. Alternatives are then assigned to the categories
according to their “proximity” to the prototypical elements.

In this chapter, we will exclusively be concerned with the case in which the
absolute evaluation that sought involves the desirability of the alternatives, e.g.,
a credit manager may want to isolate “good” risks and “bad” risks, an academic
programime may wish to enroll only “good” students, etc. A crucial problem here
will lie in the definition of the categories, i.e., of the norms defining what is a
“good” risk, what is a “good” student. Note that the traditional “classification”
methods used, e.g., in machine learning or pattern recognition are not always
well adapted to deal with the case of categories conveying information on the
desirability of the alternatives (on this point, see Greco, Matarazzo, and Stowiriski,
1999b, 2001c).

Remark 7.1.3

As already mentioned, the distinction between absolute and relative evaluation is
often more subtle than presented above and it is often the case that absolute and
relative considerations are mixed. For instance, in a choosing problem statement,
the set A’ may contain alternatives that are “obviously” very poor, leading the
analyst not to recommend any alternatives in A, but to foster a reformulation of
the problem that aims at enlarging the set of alternatives (for a formal study of
selection procedures that may end up with an empty choice set, see Aizerman,
1985; Aizerman and Aleskerov, 1995). Similarly, in a ranking problem statement,
it is often the case that alternatives are rank ordered using “average grades” as is
customary in many academic programmes. Although these average grades have,
most often, an ordinal meaning (see Bouyssou et al., 2000, ch. 3) some grades (e.g.,
the middle of the grading scale) may have a special meaning involving an element
of absolute evaluation. .
Remark 7.1.4

A frequent misunderstanding is to confuse “absolute evaluation” with the mea-
surement of desirability on a “cardinal” evaluation scale, the frequently mentioned
example being the grades assigned to students. We saw in Bouyssou et al. (2000,
ch. 3) that the case of grades is probably more complex than it appears at first
sight. Let us simply observe that absolute evaluation can be conceived indepen-
dently of the construction of any “cardinal” evaluation scale. Suppose that some
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alternatives are judged “satisfactory”, which is an absolute judgement. The ana-
lyst, having built a preference relation on the set of alternatives, might be led to
consider that all alternatives that are preferable to the satisfactory ones are also

satisfactory. This is independent from any “cardinal” evaluation scale. .
gbﬁ An appropriate definition of the problem statement is an essential part

5 of the formulation of the problem. It is crucial to know whether the desired
£ evaluation is absolute as in the sorting problem statement or relative as in the
choosing and ranking problem statements. The use of a problem statement
o involving absolute judgements calls for the modelling of norms. This is not
&> necessary when looking for a relative evaluation. In such a case however,
& the best alternatives may not be desirable. The main difference between the
(Q choosing and ranking problem statements lies in the richness of the output.

We refer the reader to Bana e Costa (1996), Roy (1996) and Roy and Bouyssou
(1993) for a thorough analysis of these three problem statements. The aim of this
chapter is to describe a number of techniques that the analyst can use in order to
build a recommendation in one of these three problem statements on the basis of
the preference models that were introduced in chapters 5 and 6.

In section 7.2, we tackle the simple case in which the preference model takes
the form of a value function. Section 7.3 is devoted to the case of making a rec-
ommendation on the basis of several value functions. Such a situation frequently
arises when using Linear Programming-based assessment techniques of, e.g., an
additive value function. In section 7.4 we deal with the more delicate case of de-
riving a recommendation on the basis of less well-structured preference models,
e.g., those obtained by using ELECTRE, TACTIC or PROMETHEE, belonging
to the family of the so-called outranking methods. A final section (7.5) will deal
with the general problem of deriving robust conclusions.

7.2 Deriving a recommendation
with a value function

Many of the preference models envisaged in chapter 6 are based on value functions.
This means that the analyst has built a real-valued function V such that alternative
a is judged at least as good as alternative b when V(a) > V(b). In chapters 5 and
6, several techniques were presented to assess such a function. Many of them imply
a particular functional form for V, e.g., an additive value function in the case of
the comparison of multi-attributed alternatives.

The value function V induces a binary relation 7 on the set of alternatives A,
interpreted as an “at least as good” relation letting, for all a,b € A:

arzbe Via) > V(D). (7.1)

Such a relation - is complete and transitive. It is therefore simple to use it to
build a recommendation involving only a relative evaluation of the alternatives,
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the hard work involved in the assessment of a value function being rewarded at
this stage of the decision aiding process.

In this section, we suppose that the value function V is only constrained by
(7.1). This means that any increasing transformation of V' would carry the same
information as V (in the language of chapter 3, we suppose that V' defines an
ordinal scale).

Remark 7.2.1

It should be mentioned here that all that follows does not depend on the way
value function V' was obtained. The analysis in this section applies as soon as a
preference model is, explicitly or implicitly, defined by (7.1). This is frequently
the case in Operational Research, Economics or Statistics. .

7.2.1 Relative evaluation

If the analyst has opted for a problem statement involving only a relative evaluation
of the alternatives, i.e., choosing or ranking, the well-behaved relation 2= between
alternatives induced by V offers a direct way to build recommendations.

7.2.1.1 Choosing

In a choosing problem statement, it is natural to look for alternatives that would
be “at least as good” as all other alternatives, i.e., to identify the set G(A, ) of
greatest alternatives in A given the binary relation 7 defined by:

G(A,x)={a€ A:axbVbe A}.

Since ¥ is complete and transitive, G(A, 7)) will, in general }, be nonempty. Find-
ing the alternatives in G(A, 77} is equivalent to finding the solutions to the following
optimisation problem:

max V(a).
Note that the set of solutions of this optimisation problem is unchanged if V is
replaced by any value function satisfying (7.1), i.e., by any value function obtained
from V applying to it an increasing transformation. Again, if a relative evaluation
is sought, the only element that really matters is .

The set G(A,7) may contain more than one element. In this case, all al-
ternatives in G(A, =) are indifferent and compare in the same way to all other
alternatives. Therefore, the preference model defined by V offers no means of
distinguishing between them. All alternatives in G(A, 7) are strictly preferred to
all alternatives outside G(A, 7). The rejection of the latter therefore seems fully
justified: all recommended alternatives are judged strictly better than all rejected
alternatives.

! This is true when A is finite. The general case may be more tricky: while the relation >
on R is complete and transitive, G(>,R) is clearly empty. The same is true with > on the open
10, 1[ interval.
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With a value function at hand, the analyst’s task in a choosing problem state-
ment is therefore clear: it consists in identifying the set G(A, =) of greatest ele-
ments in A. This is easy when A is “small” (i.e., finite and of limited cardinality).
When A is not “small”, the analyst will resort to one of the classical optimisa-
tion techniques developed in Operational Research, depending on the structure of
A and the properties of V' (bearing in mind that we may apply any increasing
transformation to V).

Remark 7.2.2

As observed in chapters 5 and 6, the task of assessing a value function is not al-
ways easy. Several value functions may appear as a reasonable preference model,
leading to several possible relations = an, thus, several sets G(A, ). The elab-
oration of the recommendation should this take into account. Such “robustness”
considerations will be discussed in sections 7.3 and 7.5.

Remark 7.2.3
The set of maximal alternatives M (A, ) in A, given the binary relation 77, is
defined by:

M(A,=)y={a€ A: Not[b>a],Vb e A}.

where > is the asymmetric part of 2-. It is often presented as the central notion in
a choosing problem statement. It is important to note that, when 77 is complete,
we always have G(4,7) = M(A, ).

When A is finite, it is easy to show that M (A, ) is nonempty when = has no
circuit in its asymmetric part >. For finite sets, the absence of any circuit in >
is, in fact, a necessary and sufficient condition for M (B, ) to be nonempty for all
nonempty sets B C A.

As soon as > has no circuit, building a recommendation in a choosing problem
statement does not raise conceptual difficulties, even when - cannot be be rep-
resented using a value function in the sense of (7.1). In fact, all what is in fact
needed is that > has no circuit. .

Remark 7.2.4

The determination of G(A, =) does not become easier if we suppose that V defines
a scale that is stronger than an ordinal scale, e.g., because it allows to compare
preference differences. This type of richer information may however ease the in-
terpretation of G(A, ), giving an indication of the “distance” between selected
and rejected alternatives. .

7.2.1.2 Ranking

Let us now envisage the case of a ranking problem statement. The hard work of
building a value function also pays off here since the binary relation 2~ induced on
A by the value function V' (or by any increasing transformation of V') rank orders
the alternatives from the best to the worst, which is precisely what is wanted.
Apart from the necessity of conducting a robustness analysis (see sections 7.3 and
7.5}, no additional work is required.
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Remark 7.2.5

As in the choosing problem statement, having a value function V' that is more con-
strained than an ordinal scale may ease the interpretation of the ranking. If, e.g.,
the difference between V{a) and V' (b) conveys information on the “preference dif-
ference” between a and b, this may be used to analyse the proximity of the various
indifference classes of 7-. It cannot be overemphasised that this is only legitimate
if such information has been modelled in the definition of V (see section 6.6.1 of

chapter 6). .
@a When a value function is defined on the set of alternatives, it is easy to

£y derive a recommendation in the choosing or ranking problem statement. The
/@ main difficulty lies in the definition of the value function.

7.2.2 Absolute evaluation: Sorting

In both problem statements involving only a relative evaluation of alternatives,
we have seen that the value function model provided an almost immediate way of
deriving a recommendation. The situation is slightly more complex in a sorting
problem statement, which calls for an absolute evaluation. It is thus necessary
to define the “norms” that will give sense to such an evaluation, whereas the
assessment of a value function usually does not require such an analysis.

The general problem of defining what is “good” and “bad” on the basis of a
preference model is complex (and often involves the definition of a “neutral” point,
see Rescher, 1969; von Wright, 1963, 1972). We will only envisage the, frequent,
case in which the absolute evaluation that is sought takes the form of a sorting
of the alternatives between several categories. We consider the case of r ordered
categories C1,C?,...,C", with C! containing the least desirable alternatives. The
definition of each category involves the definition of norms. These norms usually
take two distinct forms. They may be modelled as prototypes of alternatives
belonging to a category or as limiting profiles indicating the limit of each category.
Such norms may result from conventions, interaction with the decision maker or
the analysis of past decisions. The definition of such norms is discussed in some
detail in section 7.3.4.

Remark 7.2.6

These two ways of defining categories in a sorting problem statement are easily
illustrated by considering the case of the evaluation of students in an academic
programme. A “good” student may be defined using examples of past students
in the programme. This would define the prototypes of the category of “good
students”. Alternatively, we could define, as is done in the French baccalauréat,
an average grade above which, students are considered to be “good”. E.g., in
the French baccalauréat an average grade above 16 on a scale going from 0 to 20
implies that the exam is passed magna cum laude. .

7.2.2.1 Limiting profiles

When each category C* is delimited by a limiting profile 7*, an alternative a
should belong at least to the category C* when it is preferred to m*. It then
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becomes easy to use a value function to sort the alternatives: alternative a € A
will belong to C* if and only if V(%) < V(a) < V(x¥*!), where the unlikely
cases of equality are dealt with conventionally, depending on the definition of the
limiting profiles 7*. Note that the definition of a limiting profile implies that there
is only one such profile per category. The main problem here lies in the definition
of the limiting profiles 7%. We shall come back to this point in section 7.3.4.

7.2.2.2 Prototypes

The situation is more delicate when categories are defined via prototypes. Suppose
that category C* has been defined by a set P* of prototypes. A first step in the
analysis consists in checking whether this information is consistent with the value
function V, i.e., if the prototypes defining a category C* are all preferred to the
prototypes defining the category C*" when k > k'.

When this consistency test fails, the analyst may wish to reconsider the defini-
tion of V or of the various prototypes. When the prototypes are consistent, we may
easily associate to each category C¥, its lowest prototype L* and its highest pro-
totype H* in terms of the value function V. If V(a) € [V/(LF); V(H¥)], alternative
a should be assigned to the category C*. If this simple rule allows to assign each
alternative to a well-defined category, no further analysis is required. When this is
not the case, i.e., when there are alternatives a € A such that V(a) falls between
two intervals, we may either try to refine the information defining the categories,
e.g., try to ask for new prototypes, or apply a simple rule e.g., replacing the inter-
vals [V(LF); V(H*)] by the interval [(V(H*~1)+V (L*))/2; (V(H*)+V (LF+1))/2].
Ideally we would need a similarity measure on the set of alternatives, that would
allow to classify a as a member of C* if a is close to one or several of the prototype
alternatives defining C*. The simple rule envisaged above amounts to using V as
a very rough similarity measure since this amounts to saying that a is more similar
to b than it is to ¢ if [V (a) — V()] < |V(a) — V(c)|. It should however be noted
that the assessment procedures of V' envisaged above do not guarantee that such a
measure is appropriate. In general, this would call for the modelling of “preference
differences” between alternatives, e.g., using a model in which:

ambs Via) > V(b) and (7.2)
(a,0) =7 (c,d) & V(a) = V(b) 2 V(c) - V(d), (7.3)

where =" is a binary relation on A2 such that (a,b) =" {c,d) is interpreted as
“the preference difference between a and b is at least as large as the preference
difference between ¢ and d”. Preference models satisfying (7.2) and (7.3) were
presented in section 4.3.9 of chapter 4 and section 6.6.1 of chapter 6. They are
thoroughly analysed in Krantz et al. (1971, ch. 4). Again, a common mistake here
is to use any V satisfying (7.2) as if it would automatically satisfy (7.3). Note
that the fact that V in (7.2) defines an interval scale (e.g., if V' is a value function
obtained using an expected utility model, see Fishburn, 1970, ch. 8), does not
guarantee that (7.3) holds.

f}j When a value function is defined on the set of alternatives, the derivation

&> of a recommendation in the sorting problem statement calls for the definition
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&2 of the various categories. This may be done either by using limiting profiles or

prototypical elements. In the former case, the derivation of a recommendation
“_is straightforward. In the latter case, the situation is more complex, unless
@ the value function has been defined to model preference differences between
¢ alternatives.

Remark 7.2.7

As already emphasised, the assessment of a value function V is often a difficult
task. Therefore, the situation in which several functions V appear as reasonable
preference models is not exceptional. The following section deals with this situ-
ation in the special case of additive value functions. In such a case, it is often
possible to reach an ezplicit definition of the set of all acceptable value functions.
Formal techniques can then be used to derive robust recommendations taking the
fact that the preference model is not perfectly defined into account. Besides this
special case, the possibility of an explicit definition of the set of all acceptable value
functions is quite unlikely. The need for robust conclusions remains, however. Us-
ing a value function as if “small” differences were not significant is often helpful
in this respect. The definition of a threshold allowing to separate significant from
insignificant differences is not straightforward. The use of such a threshold should
be considered as a technical device allowing the analyst to cope with the likely
imprecision of the value function assessed. A more general view on robustness is
presented in section 7.5. )

7.3 Deriving a recommendation with
a set of value functions

In the preceding section, we envisaged the case in which the analyst has to build
a recommendation on the basis of a single value function V' (or, more precisely, of
a set of value functions representing the same preference relation 77 in the sense
of (7.1); these value functions can all be deduced from V' using increasing trans-
formations, see chapter 3). This amounts to separating the assessment phase of V
from the elaboration phase of the recommendation. Motivated by the assessment
of an additive value function via Linear Programming, in this section we envisage
techniques for which this separation is not so clear in that the assessment proce-
dure is no longer oriented towards the definition of a single value function V. The
analyst will then have to build a recommendation on the basis of several value
functions that cannot be deduced from one another using an increasing transfor-
mation. In this section, the analysis is closely related to section 7.5 in which the
general problem of defining and deriving robust conclusions is tackled.

7.3.1 Motivation: Linear programming assessment of addi-
tive value functions

In order to motivate our study of techniques designed to derive a recommendation
on the basis of several value functions, it is instructive to realise that such a
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situation is common when one tries to assess an additive value function using
Linear Programming techniques. This will also allow us to illustrate a “learning
by example” strategy for the assessment of a preference model based on regression.

7.3.1.1 Beyond standard sequences

In chapter 6 (see also Bouyssou et al., 2000; Krantz et al., 1971; Wakker, 1989), we
have presented the theory underlying the additive value function model. Consider
a set of alternatives A evaluated on a set of attributes. Let us denote by X; the
set of possible levels for attribute i« € N. This set of levels on attribute ¢ € N
may well contain levels that are not encountered within set A: this will be the
case as soon as the analyst wishes to build a preference model that can evaluate
alternatives that are outside A either because the recommendation will take the
form of a methodology for evaluating alternatives or because set A may evolve
during the study. If the set of attributes adequately describes the consequences
of the potential alternatives, each alternative is modelled as an element of X =
X1 xXgx...xX,. At this stage, the analyst may wish to build a preference model
allowing to compare all the elements of X. An additive value function model takes

the following form:

n

x*y@Zuzml ZZ (7.4)
=1 i=1

where u; is a real-valued function on X;.

The reader is referred to section 6.1 of chapter 6 for a detailed analysis of the
properties of this model. An analyst willing to make use of such a model should
therefore assess the functions u;, called marginal value functions. The results in
chapter 6 give useful hints on how such a value function may be assessed, which
exemplifies the interest of the axiomatic analysis of a preference model.

The main tool envisaged in chapter 6 to assess such a value function is the
standard sequence technique that directly follows from theorems 6.1 and 6.2. Let

us recall here that this techmque leads to choose a reference point (z9,z3,...,22)
in X and a reference level z1 on attribute i = 1. A standard sequence on attrlbute
j =2 1is a set of levels m%,w%, . ,x’; € Xy such that:
0,1 .0 0 1.0 .0 0
(2], 29,25 ..., z,) ~ (1,25, 5 . .., Ty ),
0,2 .0 0 1.1 .0 0
(x],25,25 ... z,) ~ (T, 25,23 .., L),
0,3 .0 0 1.2 .0 0
(2], 25,25 ..., z,) ~ (2],25,25 ..., T, ),
0 .k .0 0 1 k=1 0 0
(2l,25,23. .., xp) ~ (x1,25 ", Zg. .., ;).

Using (7.4), we have:

uy () — u(zf) = up(2

= ug(z§) — uz(z5 ).
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We can always take w;(z}) = 1 and w;(2?) = 0, for all i € N. Therefore the
standard sequence on attribute 2 buils above leads to ug(zl) = 1, us(x?) = 2,
U9 (CIJQ) k.

The logic of the assessment procedure is then to build a standard sequence on
each of the attributes which is different from the reference attribute 1.

Once this is done, we can use the information collected on any attribute other
than the reference attribute to build a standard sequence on the reference attribute.
We may, e.g., use attribute 2 in order to define a standard sequence on the first

attribute. This implies finding values z?,z3,...,2% € X, such that:
2,0 0
(21, 23,23 . - n) (zlax27x3 n)
3,0 .0 0
(wl,xg,ms...,xn)’\’(xl,x2,x3...,mn),
k.0 .0 0 k=1 ,1 .0 0
(x7, 25,23 .., xp) ~ (77,5, 25 . .., Xy, )

This will enable the assessment of a number of points on the graph of the marginal
value function on the reference attribute 1.

The logic of the assessment procedure derived from theorems 6.1 and 6.2 is
then to assess more and more points considering more finely grained standard
sequences. A limiting process then unambiguously defines the functions u;. The
resulting u; functions are unique up to the choice of the origin and that of a
common unit. Indeed, the only arbitrary choices made above were the definition
of the reference point (z9,29,...,22) (defining the origin) and the definition of
the reference level 21 (defining the common unit).

This assessment procedure results directly from theoretical considerations. It
is worth noting here that this procedure:

e requires that the set X; to be rich in that on each attribute ¢ € IV there
must be a level 27 such that the “difference” between z7 and z] ' exactly
offsets the “difference” between z} and z? (this is often called a solvability”
assumption). Practically, this excludes using such an assessment procedure
when some of the sets X; are discrete,

e relies on indifference judgements which, a priori, are less firmly established
than preference judgements,

e relies on judgements concerning fictitious alternatives which, a priori, are
harder to conceive than judgements concerning real alternatives,

e issuch that the various assessments are thoroughly intertwined and an impre-
cision on the assessment of x1, for instance, will propagate to many assessed
values.

It may thus be useful to resort to other kinds of assessment techniques.

5 The assessment of an additive value function using the standard sequence

23 technique is technically and cognitively demanding. In particular, it is not
&2 appropriate when some attributes have an underlying discrete structure or
P when it appears to be difficult to compare unrealistic fictitious alternatives.
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7.3.1.2 Linear Programming assessment techniques

In practice, it is not restrictive to suppose that the sets X; are bounded so that
there is a worst value z; and a most preferable value Z;. Using the uniqueness
properties of the w;, it may always be assumed that:

u1(zq) = ua(z,) = ... un(z,) =0 and (7.5)

D ui(@) =1. (7.6)
i=1

Two main cases arise (see figures 7.1 and 7.2):

e set X; is discrete and we have X; = {z;,},z?,...,2]*,%;}. We therefore
have to assess r; + 1 values of u,,

e set X, has a continuous structure. It is hardly restrictive in practice to
assume that X; C R. Instead of assessing u; we may opt for the assessment
of a piecewise linear approximation of w; partitioning the set X, into r; + 1
intervals and assuming that u; is linear on each of these intervals. Note that
the approximation of u; can be made more precise by simply increasing the
number of these intervals 2.

ui(z;) o l I l Zi

Figure 7.1: Value function when X; is discrete.

With these conventions, the assessment of model (7.4) amounts to giving a value
to r; + 1 points on each function u; subject to conditions (7.5-7.6). Taking these
conditions into account, this gives a total of >;-_(r; + 1) — 1 unknowns. Any
judgment of preference linking z and y translates into a linear inequality between
these unknowns. Similarly any judgment of indifference linking x and y translates
into a linear equation between these unknowns.

21t is, of course, not compulsory to partition the set X; into intervals of equal length.
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Figure 7.2: Value function when X; is continuous.

Linear Programming (LP) offers a powerful tool for testing whether a system
of linear constraints has solutions. Therefore, alternative assessment procedures
may be conceived on the following basis (which is closely related to the theoretical
analysis of model (7.4) in the finite case proposed by Scott (1964), see theorem
6.3):

e obtaining judgments in terms of preference or indifference linking several
alternatives in X,

e converting these judgments into linear constraints,
e testing, using LP, whether this system of constraints has a solution.

If the system has no solution then one may envisage either to propose a solution
that will be “as close as possible” to the information obtained, e.g., violating
the minimum number of constraints or to suggest the reconsideration of certain
judgements. If the system is compatible, one may explore the set of all solutions
to this system, since they are all candidates for the establishment of model (7.4).
These various techniques depend on

e the choice of the alternatives in X that are compared: they may be real or
fictitious, they may differ on a different number of attributes,

e the way of dealing with the inconsistency of the system of linear constraints
and to eventually propose that some judgments be reconsidered,

e the way of exploring the set of solutions of the system and to use this set as
the basis for deriving a recommendation.

M; Linear programming offers a simple and versatile technique to assess an
3 additive value function. All restrictions generating linear constraints on the
;:a parameters of the value function can easily be accommodated.
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7.3.1.3 Variants of LP based assessment

The idea that the assessment of an additive value function can be obtained via
the solution of a system of linear constraints has generated numerous studies (for
a thorough overview, see Belton and Stewart, 2001). We will look at the two most
useful and well-known techniques that have been developed within this framework
here.

7.3.1.3.1 UTA (Jacquet-Lagréze and Siskos, 1982) UTA (which is the
French acronym for additive utility) is one of the oldest technique belonging to
this family of assessment techniques. In UTA it is assumed that there is a subset
Apes C A of reference alternatives that the decision maker knows well either be-
cause he has experienced them or because they have received particular attention.
The technique amounts to asking the decision maker to provide a weak order on
Ares. Bach preference or indifference relation contained into this weak order is
then translated in a linear constraint:

o 1 ~ y yields an equation V(z) — V(y) = 0 and
e 1 > y yields an inequality V(z) — V(y) > 0,

where V(z) and V(y) can be expressed as a linear combination of the unknowns
as noted earlier. Strict inequalities are then translated into nonstrict ones as is
usual in Linear Programming, i.e., V(z) — V(y) > 0 becomes V(z) — V(y) > €
where € > 0 is a very small positive number that should be chosen according to
the precision of the arithmetics used by the LP package.

The testing of the existence of a solution to the system of linear constraints
is carried out via standard Goal Programming techniques adding appropriate de-
viation variables. In UTA, each equation V(z) — V(y) = 0 is translated into an
equation V(z) — V(y) + of —o; — o) + 0, =0, where 0,07 ,0; and o are
nonnegative deviation variables. Similarly each inequality V(z) — V(y) > € is
written as V(z) — V(y) + of — o, —of +0, > e It is clear that there will be
a solution to the original system of linear constraints if there is a solution of the
LP in which all deviation variables are zero. This can easily be tested using the
objective function

Minimise Z = Z ot +o; (7.7

ZEARcf

Two cases arise

1. If the optimal value of Z is 0, there is an additive value function that rep-
resents the preference information. It should be observed that, except in
exceptional cases (e.g., if the preference information collected is identical to
the preference information collected with the standard sequence technique)
there is an infinite number of such value functions (that cannot be deduced
from one another by an increasing transformation since we have normalised
the value functions using (7.5) and (7.6)). The value function given as the
“optimal” one using LP does not have a special status, since it is highly
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dependent upon the arbitrary choice of the objective function and upon the
implementation of the LP algorithm. Instead of minimising the sum of the
deviation variables, we could have as well minimises the largest of these vari-
ables and still preserving linearity using standard tricks in LP. The whole
polyhedron of feasible solutions of the original constraints corresponds to
adequate additive value functions: we have an entire set V of additive value
functions representing the information collected on the set of reference al-
ternatives Ages.

Using standard techniques in LP, several functions in V may be obtained,
e.g., the ones maximising or minimising, within V, u;(%;) for each attribute
(see Jacquet-Lagréze and Siskos, 1982). The size of V is dependent on the
choice of the alternatives in Ap.;.

2. If the optimal value of Z is strictly larger than 0, there is no additive value
function representing the preference information available. Note that, in gen-
eral, the value function derived from the optimal solution of the LP, is highly
dependent upon the choice of the objective function and there is no guaran-
tee that it leads to the minimum possible number of violations with respect
to the information provided (this would require solving an Integer Linear
Programme). This absence of a solution to the system of linear constraints
might be due to several factors:

¢ the piecewise linear approximation of the w; for the “continuous” at-
tributes could be too rough. It is easy to test whether an increase in
the number of linear pieces on some of these attributes may lead to a
nonempty set of additive value functions.

¢ the information provided by the decision maker could be of poor qual-
ity. It might then be interesting to present one additive value function
(e.g., one may present an average function after some post-optimality
analysis) in the pictorial form of figures 7.1 and 7.2 to the decision
maker and to let him react to this information either by modifying his
initial judgments or even by letting him react directly to the shape of
the value functions. This is the solution implemented in the well-known
PREFCALC system (Jacquet-Lagréze, 1990).

e the preference information provided by the decision maker might be
inconsistent with the conditions implied by an additive value function.
The system should then help to locate these inconsistencies and allow
the decision maker to reflect on them.

Even when a perfect restitution of the information provided by the decision
maker is not possible, the “optimal” additive value that has been obtained
may still be considered as an adequate model. Again, since the objective
function introduced above is somewhat arbitrary, it is highly recommended
to perform a post-optimality analysis, considering additive value functions
that are “close” to the optimal solution. This can easily be done using
alternative objective functions, e.g., maximising or minimising u;(%;), and
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introducing the linear constraint:
Z L2 +p,

where Z* is the optimal value of the original linear programme and p is a
small positive number. As in the above case, the result of the analysis is a
set ¥V of additive value functions defined by a set of linear constraints, A
representative sample of additive value functions within V may be obtained
as above.

It should be noted that many variants of UTA can be conceived building on
the following comments. They include:

e the addition of monotonicity properties of the u; with respect to the under-
lying continuous attributes,

¢ the addition of constraints on the shape of the marginal value functions v;,
e.g., requiring them to be concave, convex or S-shaped,

e the addition of constraints linked to a possible indication of preference inten-
sity for the elements of Ages given by the decision maker, e.g., the difference
between x and y is larger than the difference between z and w.

gig With UTA, the assessment of an additive value function rests on a weak
> order given by the decision maker on a subset Ages of A. This leads either
&2 to a whole set of additive functions V compatible with the information or to

the conclusion that there is no compatible additive value function. In the
first case, interaction with the decision maker can help reduce the size of V.
@ In the second case, it should be remembered that the objective function of
&> the optimisation model used to test the compatibility of the constraints is
& arbitrary. No particular status should be given to the value function derived

from the optimal solution of the LP. Interaction and post-optimality analysis
p should extensively be used to delineate an adequate set V.

7.3.1.3.2 MACBETH (Bana e Costa and Vansnick, 1994) It is easy to
see that equation (7.4) may equivalently be written as:

i=1 i=1
where
vi(zy) = v2(zy) = .. . vn(z,) =0, (7.9)
vi(ZT1) = v2(T2) = ... vu(Tp) = 1 and (7.10)

iwi =1. (7.11)
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Categories  Description

C1 weak
C2 strong
C3 extreme

Table 7.1: Definition of categories in MACBETH.

With such an expression of an additive value function, it is tempting to break down
the assessment into two distinct parts: a marginal value function v; is assessed on
each attribute and then, scaling constants w; are assessed taking the shape of the
value functions v; as given. This is the path followed in MACBETH.

The assessment procedure of the v; is conceived so as to avoid comparing al-
ternatives differing on more than one attribute. The trick here is that MACBETH
asks for judgments related to the difference between the desirability of alterna-
tives. Value functions v; are approximated on each attribute in a way similar to
that used in UTA: each point on the function is assessed for discrete attributes,
a piecewise linear approximation is used for continuous ones. MACBETH asks
the decision maker to compare pairs of levels on each attribute. If no difference
is sensed between these levels, they receive an identical marginal value level. If a
difference is felt between z¥ and z7, MACBETH asks for a judgment qualifying
the strength of this difference. The method and the associated software propose
three different semantical categories (see table 7.1), with the possibility of using
intermediate categories, e.g., between weak and strong (giving a total of six dis-
tinct categories, taking an hesitation between a weak difference and no difference
at all into account).

This information is then converted into linear inequalities using the natural
interpretation that if the “difference” between the levels z¥ and z7 has been judged
larger than the “difference” between xfl and =7, then it should follow that v, (z¥)—
vi]) > vi(al) — vilal).

The software associated to MACBETH offers the possibility of comparing all
pairs of levels on each attribute for a total of (r; + 1)r;/2 comparisons. Using
standard Goal Programming techniques as in UTA, the test of the compatibility
of a marginal value function with this information is performed via solving a Linear
Programme.

If there is a marginal value function compatible with the information, a post-
optimality analysis is performed and a “central” function is proposed to the deci-
sion maker who has the possibility of modifying it. If not, the results of the LP
are exploited so as to propose modifications of the information that would make
it consistent.

The assessment of the scaling constants w; is made using similar principles.
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The decision maker is asked to compare the following (n+ 2) alternatives by pairs:

(§17§29' . 7:—E-n—17£n)7
(_'fl;£21 fee 7&71——17&71)7
(glyf% v »g’_‘n—l,gn)v
(1,22, Zy_1,Tn) and
(Tlv-'f2a' ‘e 7T'n—1vfn)v

placing each pair in a category of difference. This information immediately trans-
lates into a set of linear constraints on the w;. They are processed as before.

Remark 7.3.1

It should be noted that once the marginal value functions v; are assessed, it is not
necessary to use the levels z, and T; to assess the w; since they may well lead to
alternatives that are too unrealistic. The authors of MACBETH suggest to replace
z; by a “neutral” level which appears neither desirable nor undesirable and z; by
a desirable level that is judged satisfactory. Although this has an impact on the
quality of the dialogue with the decision maker, this has no consequence on the
underlying technique used to process information. .

As in UTA, many variants of the method are easy to conceive through the ex-
ploitation of various types linear restrictions on the v; and/or on the w;. The
result of MACBETH, as in UTA is an entire set V of additive value functions
{again, since these functions are normalised using (7.9), (7.10) and (7.11), they
cannot be deduced from one another by an increasing transformation). The origi-
nality of MACBETH, breaking down the assessment phase into two different steps,
often allows to reduce the size of V compared with UTA, e.g., it is often the case
that interaction with the decision maker allows to specify a unique marginal value
function on each attribute.

L

- With UTA or MACBETH the result of the assessment procedure is a set
>3 V of additive value functions. The formulation of a recommendation should
& take the whole set of additive value functions in V into account.

This raises the problem of formulating a recommendation on the basis of a
set V of value functions that cannot be deduced from one another by using an
increasing transformation. What is sought here is a way of deriving “robust”
recommendations in spite of the fact that our assessment techniques have not
allowed to isolate a single value function.

Remark 7.3.2

As an alternative, we could also try to aggregate this information using the tech-
niques envisaged in chapter 5. This is rarely appropriate however, since most of
the techniques presented in chapter 5 require some form of interaction with the
decision maker. Here, the existence of several value functions stems from the as-
sessment procedure of the preference model and, therefore, occurs after the main
phase of interaction with the decision maker. .
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7.3.2 Choosing with a set of additive value functions

Suppose for example that, because we have assessed an additive value function
with UTA or MACBETH, we have an entire set V of value functions compatible
with the available information. Two main ways of exploiting this set V may be
envisaged within a choosing problem statement.

The simplest way of using the set V is to consider that an alternative a € A
should be included in the set A’ C A of recommended alternatives as soon as there
is one additive value function in V such that using this function, « is at least as
good as any other alternative in A. This is illustrated in section 7.3.5.

When the set V comes from Linear Programming-based assessment techniques,
such a test is easily performed using LP, since the elements in V correspond to the
solution of a set of linear constraints. In fact, we only have to test whether the
system of inequalities V'(a) > V(b), for all b € A, is consistent for some V € V.
This requires solving a linear programme for each alternative a € A.

The above mentioned technique is very cautious and is likely to lead to quite
large choice sets. A more refined analysis is based on the “proportion” of value
functions V' & V for which an alternative is optimal. The “more functions” V in ¥V
give a as the optimal solution, the more confident we are in the fact that a can be
recommended (implementing such an approach, would require making the way of
“counting” the functions in V precise and of making an hypothesis stating that all
functions in V play a similar role). In general, such an analysis would require an
enormous amount of computation (see Bana e Costa, 1986, 1988), even when V is
defined by the solutions of a set of linear constraints. A possible solution would
be to sample a few value functions within V.

When V is defined by linear constraints, Jacquet-Lagréze and Siskos (1982)
suggested that a finite subset V' of V that is “representative” of the whole set V
can be built considering on top of the “optimal” value function 2 X n functions
respectively obtained by maximising and minimising u;(Z;) for each attribute.
This set V' is easily obtained using LP.

When using techniques such as MACBETH, it may also occur that the shape
of the single attribute value functions u; are assessed with sufficient confidence but
that the scaling constants w; are only known through a number of inequalities.
This case has been thoroughly studied in Bana e Costa (1986, 1988), Bana e Costa
and Vincke (1995), Carrizosa, Conde, Fernandez, and Puerto (1995), Eum, Park,
and Kim (2001), Fishburn (1964); Hazen (1986), Henggeler Antunes and Clfmaco
(1992), Kirkwood and Corner (1993), Kirkwood and Sarin (1985}, Kmietowicz and
Pearman (1981), Mateos, Jiménez, and Rios-Insua (2003), Rios-Insua (1990) and
Rios-Insua and French (1991).

g:} LP offers simple means of deriving a recommendation in the choosing
3 problem statement, on the basis of a entire set V of additive value functions.
£t The more refined analysis based on the proportion of the value functions within
L“’J V that put each alternative in the first place is computationally intensive,

oy c
;i\' except under special circumstances.
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7.3.3 Ranking with a set of additive value functions

Here again, the crudest way of using the information contained in V would be to
build a partial preorder (i.e., a reflexive and transitive relation) T such that:

aTbe Via)> V() forall Ve, (7.12)

i.e., letting a be ranked before b if it is so for every admissible function V in V.

Testing if a T' b can easily be done using LP when V is defined via linear con-
straints. The use of such a technique is however limited since it implies solving
n(n — 1) linear programmes when |A| = n. Furthermore, such a unanimity argu-
ment is likely to lead to a very poor recommendation: many alternatives will be
incomparable when V is large.

When |4| is too large to allow the use of the technique described above or
when a richer result is sought, one may either try to restrict the domain ¥ through
emphasising interaction with the decision maker during the assessment phase, or
work with the representative set of value functions V' introduced above. Quite
interesting examples of such techniques can be found in Siskos (1982). This is
illustrated in section 7.3.5.

The case in which the value functions in V only differ in the assessment of
the scaling constants w; has been thoroughly studied in the literature (see Bana e
Costa, 1990; Bana e Costa and Vincke, 1995; Carrizosa et al., 1995; Kirkwood and
Sarin, 1985, for thorough overviews).

Remark 7.3.3
Suppose that we have obtained a finite representative sample V’ of V. At this
stage, it is tempting to consider that alternative a should be ranked higher than
alternative b if there are more value functions in V' leading to a 77 b than to b 7 a.
This amounts to replacing a “unanimity” argument by a “majority” one.
Although quite simple, such a “majority” argument is quite deceptive. Indeed,
as detailed in chapter 5, simple examples show that, in general, it does not lead
to compare alternatives in a transitive way, which is a basic requirement of the
ranking problem statement. .

Remark 7.3.4

It may be interesting to detail the links between the ranking technique evoked here
and the choice technique detailed above. Suppose that a € A4, i.e., that for some
V €V, we have V(a) > V(b), for all b € A. This obviously implies that a cannot
be strictly beaten by any other alternative using the relation T' defined by (7.12).
Hence, a must belong to set M (A, T) of maximal elements in A for T .

7.3.4 Sorting with a set of additive value functions

In the techniques envisaged so far we did not consider the definition of the “norms”
that are necessary to sort alternatives. A useful technique, in the spirit of UTA,
consists in assessing the additive value function using examples of alternatives
belonging to each of the ordered categories, that we called prototypes in section 7.1.
Such examples may come from past decisions or may be obtained from the decision
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maker as prototypical examples of each category. We may then try to infer limiting
profiles and an additive value function on the basis of such information.

This amounts to assessing an additive value function V' and thresholds s; such
that, for all prototypes 7} of category C* we have V(n}) € [s¥,s¥*![. This is
the basis of the UTADIS technique (see Jacquet-Lagréze, 1995; Zopounidis and
Doumpos, 2000b, 2001, 2002) and its variants (Zopounidis and Doumpos, 2000a).

Basically UTADIS replaces the weak order on a subset of reference alternatives
as used in UTA, by a number of prototype alternatives for each ordered category.
Such a technique extends the traditional methods of discrimination used in Statis-
tics considering the possibility of nonlinear value functions. As in Statistics, the
assessment may use “cost of misclassification” which simply amounts to weighting
the deviation variables in the LP used to assess the value function V appropri-
ately. As in UTA, this leads to a whole set of possible additive value functions
with associated limiting thresholds.

The way to make use of such information to build a recommendation has not
been thoroughly studied in the literature. The most obvious way of doing so
seems to be to consider a subset V' of representative additive value functions as
suggested above. For each alternative a € A, it is easy to compute a set of possible
assignments using V’. One may then, for example, use the frequency with which
each alternative is assigned to a category to devise a recommendation. This is
illustrated below.

7.3.5 Example: Thierry’s choice
7.3.5.1 Thierry’s choice (Bouyssou et al., 2000, ch. 6)

In order to illustrate the techniques described above, let us consider the example
of the choice of a car presented and discussed at length in Bouyssou et al. (2000,
ch. 6). Let us simply recall here the structure of this case.

Thierry, a Belgian engineering student, aged 21 (back in 1993 when the problem
was formulated), is passionate about sports cars and driving (he has taken lessons
in sports car driving and participates in races). Being a student, he cannot afford
to buy either a new car or a luxury second hand sports car; so he decides to explore
the middle range segment, 4 year old cars with powerful engines. Thierry intends
to use the car in everyday life and occasionally in competitions. His strategy is
first to select the make and type of the car on the basis of its characteristics,
estimated costs and performances; then to look for such a car in second hand car
sale advertisements.

The initial list of alternatives was selected taking an additional feature into
account. Thierry lives in town and does not have a garage to park the car in at
night. Consequently he does not want a car that would be too attractive to thieves.
This explains why he discards cars like VW Golf GTI or Honda CRX. He thus
limits his selection of alternatives to the 14 cars listed in table 7.2. As discussed
in Bouyssou et al. (2000, ch. 6), Thierry’s concerns are very particular. This leads
him to select five viewpoints related to cost (criterion 1), performance of the engine
(criteria 2 and 3) and safety (criteria 4 and 5). Evaluations of the cars on these
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Trademark and type Abbreviation

1 Fiat Tipo 20 ie 16V  Tipo

2 Alfa 33 17 16V Alfa

3 Nissan Sunny 20 GTI 16 Sunny
4 Mazda 323 GRSI Mazda
5 Mitsubishi Colt GTI  Colt

6 Toyota Corolla GTI 16 Corolla
7 Honda Civic VTT 16 Civic

8 Opel Astra GSI 16  Astra
9 Ford Escort RS 2000 Escort
10 Renault 19 165 R19

11 Peugeot 309 GTI 16V P309-16
12 Peugeot 309 GTI P309
13 Mitsubishi Galant GTT 16 Galant
14 Renault 21 20 turbo  R21t

Table 7.2: List of the cars selected as alternatives.

criteria were obtained from monthly journals specialised in the benchmarking of
cars. The official quotation of second hand vehicles of various ages is also published
in such journals following the process described in Bouyssou et al. (2000, ch. 6)
and Perlias-Bouncke (1998).

The cost criterion evaluates, in €, the estimated expenses incurred by buying
and using a car. Criterion 2 (“Accel” in table 7.3) encodes the time (in seconds)
needed to cover a distance of one kilometre starting from standstill. The third
criterion that Thierry took into consideration is linked to the pick up or suppleness
of the engine in urban traffic; this dimension is considered important since Thierry
also intends to use his car in normal traffic. The indicator selected to measure
this dimension (“Pick up” in table 7.3) is the time (in seconds) needed to cover
one kilometre when starting in fifth gear at 40 km/h. This dimension is not
independent of the second criterion, since they are generally positively correlated
(powerful engines generally lead to quick response times on both criteria); cars
that are specially prepared for competition may however lack suppleness in low
operation conditions, which is quite unpleasant in urban traffic. So, from the point
of view of the user, i.e., in terms of preferences, criteria 2 and 3 reflect different
requirements and are thus both necessary.

Criteria 4 and 5 (resp. “Brakes” and “Road-h” in table 7.3) were evaluated
using ordinal evaluations reported in several magazines on a scale with levels “se-
rious deficiency”, “below average”, “average”, “above average”, “exceptional”. He
considers 3 such indicators for criterion 4 and 4 for criterion 5. To obtain an over-
all indicator of braking quality (and also for road-holding), Thierry re-codes the
ordinal levels with integers from 0 to 4 and takes the arithmetic mean of the 3 or
4 numbers; this results in the figures rounded to 2 decimals provided in the last
two columns of table 7.3.

Note that the first 3 criteria have to be minimised while the last 2 must be
maximised. It seems reasonable to consider that the scale of each of these criteria
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is continuous.

Critl  Crit2  Crit3 Crit4 Critb
Cost Accel Pick up Brakes Road-h

1 Tipo 18342 30.7 37.2 2.33 3.00
2 Alfa 15335 30.2 41.6 2.00 2.50
3 Sunny 16973  29.0 34.9 2.66 2.50
4 Mazda 15460 30.4 35.8 1.66 1.50
5 Colt 15131 29.7 35.6 1.66 1.75
6 Corolla 13841 30.8 36.5 1.33 2.00
7 Civic 18971 28.0 35.6 2.33 2.00
8 Astra 18319 28.9 35.3 1.66 2.00
9 Escort 19800 29.4 34.7 2.00 1.75

10 R19 16966 30.0 37.7 2.33 3.25
11 P309-16 17537 28.3 34.8 2.33 2.75
12 P309 15980 29.6 35.3 2.33 2,75
13 Galant 17219 30.2 36.9 1.66 1.25
14 R21t 21334 289 36.7 2.00 2.25

Table 7.3: Data for the “choosing a car” problem.

7.3.5.2 Using UTA

Suppose that Thierry already has some knowledge about the 14 cars he wishes to
evaluate, e.g., because he has driven some of them or because he has read Bouyssou
et al. (2000, ch. 6). He feels able to express the following preferences:

P309-16 > Sunny > Galant > Escort > R21t.

Let us assume that Thierry only wishes to build a preference model that will
allow him to evaluate the 14 cars at hand. It is then reasonable to take, for each of
the 5 criteria, z; (resp. ;) as the worst (resp. best) value encountered in table 7.3
for this criterion. Let us also suppose that, as a first attempt, we wish to fit an
additive value function model in which each of the marginal value function has two
linear pieces to the information provided. For simplicity, the breakpoint Z; is taken
as (z, + %;)/2, for all criteria. Table 7.4 summarises this. Using this information,

Cost 21334 17587.5 13841
Accel. 30.8 29.4 28

Pick up 41.6 38.15 34.7
Brakes 1.33 1.995 2.66
Road-h. 1.25 2.25 3.25

Table 7.4: Additional data for the “choosing a car” problem.

we can express the utility of each of the 5 cars that were rank ordered, introducing
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two decision variables per criteria, y;1 giving the level of utility of breakpoint &;

and y;2 that of the best value Z;. Using linear interpolation as explained above,

we obtain:

V(P309-16) = 0.987y11 + 0.013y12 + 0.214y2; + 0.786y22 + 0.029y31 + 0.971yss +

0.496y41 + 0.504y42 - 0.5ys1 + 0.5y52,

V(Sunny) = 0836y11 +0164y12 —|—0714y21 +0286y22 +0058y31 +0.942y32 + Yao +

0.75ys1 + 0.25ys9,

V(Galant) = 0.902y1; + 0.098y12 + 0.429y2; + 0.638ys;1 + 0.362y30 + 0.496y41,

V (Escort) = 0.409y11 + y21 -+ ¥a2 + 0.992y41 -+ 0.008y42 + 0.5y51,

V(RQlt) = 0.643y91 + 0.357y22 + 0.58y31 + 0.42y32 4+ 0.992y41 + 0.008y42 + y51.
In order to test whether the information provided by Thierry is compatible with

an additive value function, we may then solve the following Linear Programme:

5
minZ:ZUf%—U; (F)
i=1
subject to

V(P309-16) — V(Sunny) + o — o] — o + 05 >,
V(Sunny) — V(Galant) + of — 05 —od +05 > ¢,
V(Galant) — V(Escort) + o4 — o5 —of +o5 >,
V(Escort) — V(R21t) + of — o) —of + 05 >,
Yo — Y1 > 0, fori =1,2,...5,

Z?:l Y2 = 1,

Y >0, fori=1,2,...5and k =1,2,

of, o7 >0, fori=1,2,...5,

\ ViV

where the values V(Cars) are as given above and ¢ is a small positive number, e.g.,
0.01.

Using a standard LP package, the reader will easily check that the optimal
value of Z is 0, so that there is an additive value function compatible with the
available information.

It is worth recalling that the optimal values of the variables y;; have no special
status since the objective function (F) is arbitrary: we could have decided to
minimise the largest of the deviation variables instead of minimising their sum.

7.3.5.3 Choosing

Since the set of alternatives in this example is small, we can test whether it is
possible to obtain any alternative as the most preferred one, given the information
obtained. This requires to express the value for each of the 14 alternatives as
a linear function of the y;;. For each of these 14 alternatives, we add to the
constraints (C) new ones expressing that the alternative under consideration is
preferred or indifferent to all others. We then test, using LP, if the resulting
system of constraints is compatible. If the answer is positive this means that,
given the available information, the alternative under consideration appears as a
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potential choice. Table 7.5 shows that the information available is compatible with
the choice of 6 among the 14 possible cars.

This relatively disappointing result shows the importance of interaction be-
fore directly using the results obtained with UTA and/or of a more sophisticated
analysis exploiting the “frequency” with which each alternative appears as at least
as good as all others. The analysis below will allow us to draw more conclusions
on this point.

Abbrev. Can be chosen

1 Tipo No
2 Alfa YES
3 Sunny No
4 Mazda No
5 Colt YES
6 Corolla YES
7 Civic No
8 Astra, No
9  Escort No
10 R19 YES
11 P309-16 YES
12 P309 YES
13 Galant No
14 R21t No

Table 7.5: Potentially optimal alternatives.

7.3.5.4 Ranking

It would be very time consuming to test for each pair of alternatives whether
all the value functions in V rank the elements of this pair in the same way. We
instead use a subset V' of V consisting of all the functions obtained minimising and
maximising the values y;2 for all criteria as well as the “optimal” additive value
function. This gives 1+ 2 x 5 = 11 rankings in total. They are summarised in
table 7.6. Although taking the intersection of these 11 rankings would result in a
very poor relation, compared to table 7.5, table 7.6 reveals that P309-16 seems to
be a very good alternative whatever the value function chosen, with alternatives
R19, P309 and Sunny as close contenders. Clearly alternatives Mazda, Escort,
Galant and R21t are quite poor. Although the choice of Alfa, Colt and Corolla
is compatible with the information available, table 7.6 leads to believe that their
choice is rather unfrequent with the set V.

7.3.5.5 Sorting

Let us suppose that, instead of a ranking, Thierry is simply able to divide the
reference set into “good” (P309-16 and Sunny), “acceptable” (Galant, Escort)
and “bad” cars (R21t), therefore creating three ordered categories. We may then
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min max min max min max min max min max
Abbrev. Opt. y12 Y12 Y22 Y22 Y3z Ys2 Y42 Y42 Ys2 Ys2

1 Tipo 6 2 11 6 14 7 11 6 6 13 2
2 Alfa 5 6 4 5 8 3 14 5 5 14 6
3 Sunny 2 5 2 3 3 2 3 2 2 3 5
4 Mazda 11 8 8 1 12 117 7 11 9 7 8
5 Colt 9 7 7 9 6 9 6 9 10 6 7
6  Corolla 9 6 7 13 6 8 7 14 8 9
7 Civic 10 12 12 10 2 10 2 10 7 2 12
8 Astra, g§ 11 10 8 4 8 4 8 12 4 11
9 Escort 13 13 13 13 10 13 12 13 11 10 13
10 R19 1 3 4 7 3 10 4 3 12 1
11  P309-16 13 1 1 1 1 1 1 1 1 3
12 P309 4 4 2 &5 3 5 3 4 5 4
13 Galant 12 10 9 12 9 12 9 12 8 9 10
14 R21t 14 14 14 14 11 14 13 14 13 11 14

Table 7.6: Ranks of alternatives using V'.

exploit this information in the spirit of the UTADIS method mentioned earlier.
This amounts to solving the following linear programme:

5
minZ:Zai—l—aé—l—ag (F")
i=1
subject to

(P309-16) + oy > 51 +¢,

(Sunny) + o2 > 31 + €,

(Galant) - o3 < s1,

(Galant) + 0% > sy + ¢,

(Escort) — o4 < 51,

(Escort) + of > 8o + ¢, ,
V(RQlt) — 05 < 89, (C )
Yo — i1 >0, fori=1,2,...5,

Sy =1,

yik >0, fori=1,2,...5and k=1,2,

0,20, fori=1,2,...5,0%,04 >0,

8128220,

Vv
Vv
Vv
Vv
Vv
14

where 51 and s; are the thresholds used to separate the three categories and € is a
small positive number, e.g., 0.01. In view of the results already obtained, it should
not be a surprise that the optimal value of this LP is 0.

It is interesting to test what the constraints imply for the assignment of the
14 — 5 = 9 cars that are not in the reference set using LP. This is summarised

in table 7.7. In this example, the assignment of two cars not in the reference set
(Colt and P309) is constrained by (C").
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Abbrev. Bad Acceptable Good

1 Tipo YES YES YES
2 Alfa YES YES YES
4 Mazda  YES YES YES
5 Colt NO YES YES
6 Corolla YES YES YES
7 Civic YES YES YES
8 Astra, YES YES YES
10 R19 YES YES YES
12 P309 NO YES YES

Table 7.7: Sorting the alternatives not in the reference set.

7.4 Deriving a recommendation with other pref-
erence models

As argued in chapters 5 and 6, using a value function is not always appropriate to
adequately model preferences. Several extensions of this central model were pro-
posed in these chapters. In most of them, we have seen that the “more ordinal”
aggregation at work could well lead to preference structures that are not transi-
tive and may include incomparability. As stressed in chapter 4, this additional
flexibility at the level of preference modelling may ease the analyst’s work and the
acceptation of the model. It nevertheless raises difficult problems when it comes
to establishing a recommendation. The aim of this section is to briefly envisage a
number of techniques that can be used for such a purpose.

7.4.1 The extent of the problem

Suppose that you have built a preference relation on a set of alternatives using
one of the techniques presented in chapters 5 and 6 that does not guarantee the
transitivity or the completeness of the result. This does not necessarily mean that
any preference structure can be obtained with such a method (e.g., only certain
types of intransitive or incomplete relations could occur). Below, we prove that
for a number of well known techniques, this is unfortunately true, thereby showing
the difficulty of building a recommendation on such a basis.

7.4.1.1 Simple majority

Consider simple majority, i.e., the simplest “ordinal” technique for comparing

alternatives as introduced in section 5.2.1 of chapter 5. On each criterion, we
suppose that alternatives can be compared using a weak order. Simple majority
amounts to declaring that:

z =y |P(z,y)| > |P(y,z)| and
T~y kP(ZE,y). = |P(y,x)],
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where P(z,y) denotes the set of criteria on which z is preferred to y. Clearly, a
relation - obtained in such a way is always complete.

Let T be any complete binary relation on a finite set of alternatives A. Besides
completeness, no hypothesis is made on T'; it may be the most intransitive relation
you can think of, with circuits of any length in its asymmetric part. The surprising
and disturbing fact, proved by McGarvey (1953), is that it is always possible to
see T as the result of a simple majority aggregation.

The proof of this result is simple and instructive. Take any complete relation
T on the finite set A. Consider any two alternatives a,b in A and label the other
alternatives in A arbitrarily z1,zs,...,2x_2. Considering only two criteria for
which, using obvious notations:

a>b>x1>x0>x3> ... > T2,

7.13
Th_o > T3> ...> Ty >Ty>a>b, ( )

we have |P(a,b)| = 2, |P(b,a)] = 0, |P(a,z)] = |P(z,a)] = 1, |P(b,x)] =
|P(z,b)| = 1 and |P(z,y)| = |P(z,y)| = 1, Vz,y € A\ {a,b}.
Similarly considering two criteria such that:

a>b>xy >z > 13> .. T2,

(7.14)
Thoo > T3> ...>Ty>x1 >b>a,

we obtain |P(a,b)| = |P(b,a)| =1, |P(a,z)| = |P(z,a)| =1, |P(b, )| = |P(z,b)| =
1 and |P(z,y)| = |P(z,y)| = 1, Vz,y € A\ {a,b}.

Now consider all k(k — 1)/2 distinct ordered pairs in A. If a T'b and Not[b T
a], we introduce two criteria satisfying (7.13). If b T a and Not[a T b], we
introduce two criteria satisfying (7.13) interchanging the roles of a and b. Other-
wise, since T is complete, we have ¢ T b and b T a. We then introduce two criteria
satisfying (7.14). Using simple majority on such k(k—1)/2 criteria will then yields
the relation T'.

Remark 7.4.1

The algorithm described above amounts to considering k(k-1)/2 criteria to obtain
the complete relation 7. In many cases, a much lower number of criteria can be
used. The determination of the minimal number of criteria for the result to hold

raises difficult combinatorial questions (see Stearns, 1959). )
fg With simple majority, any complete relation on a finite set of alternatives

£ may be obtained. Therefore, when devising a procedure designed to build a
£2 recommendation on the basis of a simple majority aggregation, this procedure
= has to deal with any complete relation.

7.4.1.2 ELECTRE I (Roy, 1968)

As we saw in section 5.2.3.5 of chapter 5, ELECTRE I, leads to building a relation
S on a finite set of alternatives evaluated on a set IV of criteria. For each criterion
1 € N, ELECTRE I uses the following ingredients:

e a weak order S; on X,
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e a positive weight w;,
e a binary relation V; on X; included in the asymmetric part of S;.

Defining for all z,y € A, S(z,y) = {i € N : z; S; y:}, i.e., the set of criteria for
which z is “at least as good as” y, we have in ELECTRE I

> w; > sand
aSbhe i€85(a,b) (7.15)
Not|b; V; a;], forallie N

where s € {1/2;1] is the concordance threshold.

It is easy to build examples in which S is incomplete and intransitive. More
is in fact true since it is possible to show (see Bouyssou, 1996) that any reflexive
relation on a finite set of alternatives may be obtained with ELECTRE I. This is
easily shown by considering a situation in which:

e there is a criterion on which all alternatives are indifferent and to which a
large weight is assigned,

o for each ordered pair (a,b) of alternatives such that Not[a S b] there is a
criterion to which little weight is assigned and on which we have b V; a.

In fact, the patient reader will easily prove that a similar conclusion still holds,
with a more complex construction, when all relations V; are assumed to be empty
(see Bouyssou, 1996). Therefore the situation is even worse with ELECTRE I
than with simple majority: any reflexive relation can occur!

7.4.1.3 ELECTRE III (Roy, 1978)

In Bouyssou (1996) it is shown that the situation is not simpler with aggregation
methods such as ELECTRE III (Roy, 1978) or PROMETHEE (Brans, Mareschal,
and Vincke, 1984; Brans and Vincke, 1985) leading to a valued preference relation.
With ELECTRE III, any reflexive (i.e., such that R{a,a) = 1, for all a € A)
valued relation on a finite set may be obtained. The situation is slightly more
complex with PROMETHEE. It is nevertheless true that if P is any irreflexive
(i.e., such that P(a,a) = 0, for all a € A) valued relation on a finite set A, then,
for some A € [0;1] it is possible to obtain the valued relation [AP] (defined by
letting {AP]{(a,b) = AP(a,b), for all a,b € A) as the result of PROMETHEE.

gb)f} For many aggregation methods that does not imply transitivity or com-
¢ pleteness, any preference structure can, in fact, be obtained. Techniques de-
£ signed to build recommendations should therefore be able to deal with any
E_ such structure. They are therefore quite unlikely to give satisfactory results
%, in all cases.

The difficulty of building adequate procedures dealing with all kinds of incom-
plete and/or intransitive relations is illustrated in the next section.
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7.4.2 How things may go wrong: examples

Many techniques for building recommendations on the basis of a non-necessarily
transitive or complete binary relation have been proposed in the literature on
MCDM. Most of them were justified on an ad hoc basis. In view of the results in
the preceding section, it should be expected that the intuition supporting these
techniques might not work appropriately in all cases. We illustrate this crucial
point using two examples.

Example 7.1 (Choice procedures and dominated alternatives)
Consider a set of alternatives A = {a, b, ¢, d} evaluated on three criteria. Suppose
that, on each criterion, alternatives are weakly ordered by a binary relation S;.
Suppose that the preference on each criterion are such that, using an obvious
notation for weak orders:

a P1 b P1 C P1 d,

C Pg d P2 a Pg b,

d P3 a P3 b P3 C,

where P; denotes the asymmetric part of ;.

Alternative b is strongly dominated by alternative a (a is strictly preferred to
b on all criteria). Intuitively, this gives a decisive argument not to include b in the
set of recommended alternatives.

Suppose then that the above information is aggregated into a binary relation S
using simple majority. It is not difficult to see that S is such that (see figure 7.3):

aPbaPec,
bPec,
c Pd,
dPa,dPb,

where P denotes the asymmetric part of S. Observe that the same result is
obtained with ELECTRE I using equal weights, a concordance threshold s €
[1/2;2/3] and no veto. It is obvious that S is not well suited to select a subset of
alternatives since its asymmetric part P contains a circuit involving all alterna-
tives (a P b,b P ¢,c P d,d P a). The simplest way to get rid of such a circuit is

oo

Figure 7.3: Majority relation in example 7.1.

to consider that all alternatives included in a circuit should be considered “equiv-
alent”. This can be done by considering the transitive closure of the relation,
i.e., the smallest transitive relation containing it. But using the transitive closure
of S would then lead to consider that all alternatives are equivalent and, hence,
to propose the whole set A as the set of recommended alternatives. This does
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Figure 7.4: Relation P in example 7.2. The relation P is weakly complete, all non
depicted arrows point downwards.

not appear to be sound since we have observed that there are quite compelling
arguments showing that b should not be recommended. It should be noted that,
the selection procedure of ELECTRE I (Roy, 1968), introduced below, would also
lead to recommending the whole set A for this example.

This example also illustrates that separating the phase of construction of S
from that of the construction of a recommendation may be deceptive. In our
example, the fact that b is strongly dominated is only apparent considering the
original information and not just the relation S. &

Example 7.2 (Ranking procedures and monotonicity)

Let A = {a,b,c,d,e, f,g}. Using the results in the previous section, we know that
with simple majority and ELECTRE I, we might end up with a complete binary
relation S such that (see figure 7.4):

aPbaPf
bPc,bPd,bPebP f
cPa,cPecP fcPy
dPa,dPc,dPedP f,dPg
ePa,eP f,ePyg

fPg,
gPa,gPhb,

where P denotes the asymmetric part of S.

In order to obtain a ranking on the basis of such information, one may use a
meagure of the “desirability” of each alternative. A simple measure of the desir-
ability of an alternative x consists in counting the number of alternatives y such
that £ S y minus the number of alternatives z such that z S z. This measure is
called the Copeland score of an alternative (Laslier, 1997).

A simple way of building a ranking on A goes as follows. Define the first
equivalence class of the ranking as the alternatives that have obtained a maximal
Copeland score. Remove these alternatives from the set of alternatives. Define the
second equivalence class of the ranking as the alternatives with maximal Copeland
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scores in the reduced set. Repeat this procedure as long as there are unranked
alternatives. Such a ranking procedure is intuitively appealing and leads to the
following ranking, using obvious notations:

d=c-e>|a, gl >b>f,

which does not seem unreasonable.

Consider now a relation identical to the one above except that a P d is added.
Intuition suggests that the position of a has improved and we should reasonably
expect that this is reflected in the ranking obtained on the basis of this new
relation. But applying the same ranking method as before now leads to:

[b,e,d] >~ € > [a, f, g].

Such a result is quite disappointing since, before a was improved, a was ranked
before b while, after the improvement of a, b is ranked before a. O

These two examples illustrate the following points.

5 The definition of sound procedures for deriving a recommendation on the

&> basis of a non necessarily transitive or complete binary relation is a difficult
&2 task. Intuitively appealing procedures may sometimes produce very disap-
x pointing results.

This raises the question of how to analyse and compare the various procedures
that have been proposed in the literature for such a purpose. The literature on
MCDM is quite poor in this respect. Most often, the authors of methods have
advocated an “intuitively reasonable” procedure. As shown above, “intuition”
may hide major difficulties.

A similar problem arises in Social Choice Theory. Although the literature on
Social Choice Theory is much richer than the literature on MCDM, it is mainly
restricted to the choosing problem on the basis of a complete binary relation,
with McGarvey’s result in mind. Furthermore, the attention of Social Choice
theorists has mainly been concentrated on the case of tournaments, i.e., complete
and antisymmetric relation (an excellent account of this literature can be found
in Laslier, 1997).

Two main routes may be followed to study the difficult problem of deriving a
recommendation on the basis of a non necessarily complete and transitive binary
relation. The first one (see, e.g., Bouyssou and Vincke, 1997; Vincke, 1992a)
consists in defining a list of properties that seem “desirable” for such a technique
(for example, never select a dominated alternative or respond to the improvement
of an alternative in the expected way). Given such a list of properties one may
then try:

¢ to analyse whether or not they are satisfied by a number of techniques,

e to establish “impossibility theorems”, i.e., subsets of properties that cannot
be simultaneously fulfilled,
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e to determine, given the above-mentioned impossibility theorems, the tech-
niques that satisfy most properties.

The second one (see, e.g., Bouyssou, 1991, 1992a,b, 1995, 1997; Bouyssou and
Perny, 1992; Bouyssou and Pirlot, 1997; Pirlot, 1995) consists in trying to find
a list of properties that would “characterise” a given technique, i.e., a list of
properties that this technique would be the only one to satisfy. This allows to
emphasise the specific features of an exploitation technique and, thus, to compare
it more easily with others.

These two types of analysis are not unrelated: ideally they should merge at the
end, the characterising properties exhibited by the second type of analysis being
parts of the list of “desirable” properties used in the first type of analysis. Both
types of analysis have their own problems. In the first, the main problem consists
in defining the list of “desirable” properties. These properties should indeed cover
every aspect of what seems to be constitutive of an “appropriate” technique. In
the second, the characterising properties will only be useful if they have a clear
and simple interpretation, which may not always be the case when analysing a
complex technique.

A thorough analysis of the problem would be rather lengthy and technical.
Our aim in this section will therefore be twofold. We shall first try to present the
procedures that have been proposed in the literature in a critical manner, warning
the reader against common pitfalls. Second, we shall try to offer an introduction
to the growing but quite technical literature on the subject.

7.4.3 Choice procedures

Let A be a set of alternatives. Suppose that you have built a preference relation
S on A using an aggregation technique. Let us call S the set of all conceivable
preference relations that can be obtained using such a technique. As shown above,
S consists of all reflexive binary relations if one is using ELECTRE I, all complete
binary relations if one is using simple majority and all reflexive valued relations
if one is using ELECTRE III. A choice procedure C is a function associating a
nonempty subset C(9) of A with each element S of S. The choice set C(S) should:

o be as small as possible given the available information,

e be such that there are clear arguments to justify the elimination of the al-
ternatives in A\ C(9), i.e., the alternatives that are not selected,

e be such that there is no built-in bias in favour of some alternatives, i.e., that
the only arguments that can be taken into account in the determination
of C(S) are how these alternatives are related in terms of the relation S.
Technically, this leads to requiring that C is neutral®, i.e., that C(S) =

3 The “neutrality” condition for choice procedures is different from the neutrality condition
introduced in chapter 5. We use a similar term however, because the idea underlying these two
conditions is similar: alternatives should not be treated differently because of their label. A
similar remark holds for the conditions of monotonicity and faithfulness introduced below.
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o|C(S7)], where ¢ is any one-to-one function on A and S is the binary
relation in § such that, for all a,b € A, S{a,b) = S%(o(a)}, o ())).

e react to the improvement of an alternative in the expected direction. Techni-
cally, the procedure should be monotonic, i.e., if a € C(S) and S’ is identical
to S except that [a S’ b and Not[a S b]] or [Not[b S a] and b S a, for
some b € A, then we should have a € C(S5").

Below, we distinguish the case in which & is a set of crisp (i.e., non valued) binary
relations from the case in which S is a set of valued relations.

Remark 7.4.2

We have defined a choice procedure as a function from the set of all possible
relations S to the set of nonempty subsets of A. It is important to realise that this
very definition implies that the only information that is taken into account by C
is the relation S on A. This, in particular, implies that:

e the choice set C(S) may depend on the behaviour of S on the whole set A.
Adding or removing alternatives from A may have a dramatic influence on
the result of the choice procedure. The fact that an alternative a belongs
to the choice set and that an alternative b is rejected may depend on the
comparison of ¢ and b with respect to other alternatives. It may even depend
on the comparison of two alternatives distinct from a and b. Although such
a dependence is almost inevitable as soon as the choice procedure has to
deal with relations S having no remarkable transitivity properties, it may
lead to undesirable effects. Indeed, the result of the choice procedure will be
dependent on the set of alternatives A, whereas, in practice, the definition
of this set can always be modified, e.g. adding very poor alternatives.

e the relation S contains all the information used by C. In particular, this
excludes the use of some “reference points”, i.e., of alternatives playing a
particular role, as advocated by Dubois et al. (2003). When such reference
points are taken into account, the separation between the phases of building a
relation S and exploiting it in order to build a choice set is blurred. Indeed, it
is then tempting to compare alternatives only to the reference points and not
amongst themselves. Such approaches may offer an interesting alternative
to the use of choice procedures. They have not been worked out in much
detail to date. In particular, the selection in practice of appropriate reference
points does not seem to be an obvious task. .

7.4.3.1 Crisp relations

Let S € 8. We shall always denote by P (resp. I) the asymmetric (resp. symmetric)
part of S and J the associated incomparability relation.
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@ (D)
Ny

Figure 7.5: Refining the set of greatest alternatives {a, b}.

7.4.3.1.1 Procedures based on covering relations Suppose that there ex-
ists a € A such that a P b, for all b € A\ {a}. Such an alternative is usually
called a Condorcet winner. In this case, letting C(S) = {a} seems to be the only
reasonable choice. In fact, by construction:

e when there is a Condorcet winner, it is necessarily unique,
e there is direct evidence that a is better to all other alternatives.

Unfortunately, the existence of a Condorcet winner is an unlikely situation and we
must agree on what to do in the absence of a Condorcet winner.

A simple extension of the notion of a Condorcet winner is that of greatest
alternatives already introduced. Remember that an alternative a € A belongs to
the set G(A, S) of greatest alternatives in A given S'ifa S b, forallb e A. Ifa
belongs to G(A, S}, we have direct evidence that a is at least as good as any other
alternative in A. Contrary to the case of Condorcet winners, there may be more
than one greatest alternative. When the set of greatest alternatives is nonempty,
it is tempting to put all alternatives on G(A,S) in C(S).

This seems a natural choice. Indeed, all greatest alternatives are indifferent,
so there is no direct evidence that would allow to further refine the choice set
C(5). Contrary to the case in which S is a weak order, it should however be noted
that there might be indirect evidence that allows to distinguish between greatest
alternatives. As shown in the following example, indirect evidence may be usefully
employed to narrow down the set of selected alternatives.

Example 7.3

Suppose that A = {a,b,c} and S besuch thata I b,b I cand a P ¢ (see figure 7.5).
Although both @ and b belong to G(A4, S), we can usé the way a and b compare to
a third alternative, ¢, to distinguish between them. In our example, since a P ¢
while b [ ¢, it is very tempting to use this indirect evidence to conclude that that
C(S) could be narrowed down to {a}. <&

Unfortunately, there is no clear-cut way of defining what should count as an indirect
evidence that an alternative is better to another and to balance it with the direct
evidence.

Suppose first that a P b so there is direct evidence that a is superior to b. If, for
allce A,wehavecPa=cPbcla=cSbhbPc=aPcandblc=aSc
there is no indirect evidence that b could be superior to a. In such a case, we say
that a strongly covers b (a SC b) and it seems that the selection of b would be quite
unwarranted. A cautious selection would then seem to be to select all alternatives
that are not strongly covered by any other, i.e., the set M(A, SC) of maximal
alternatives in A for SC. When A is finite, M (A, SC) is always nonempty since
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the strong covering relation is asymmetric and transitive and, thus, has no circuit.
Therefore letting C(5) = M(A, SC) defines a selection procedure. Note that the
use of this selection procedure would allow to avoid selecting a strongly dominated
alternative as was the case with the procedure envisaged in example 7.1 since, in
this example, a strongly covers b. With such a procedure, the rejection of the
elements in A\ C(S) would seem fully justified since for each b € A\ C(S), there
would be an a € C(S) such that a P b. We leave to the reader the, easy, task of
showing that this selection procedure is neutral and monotonic.

The relation SC is likely to be rather poor so, that the above procedure is quite
stringent and may result in large choice sets. In order to reject an alternative, it
is necessary to have direct evidence against it and no indirect evidence in its
favour. In example 7.3, it would not allow to distinguish between the two greatest
alternatives ¢ and b since there is no direct evidence for a against b.

A less stringent procedure would consist in saying that the selection of b is
unwarranted as soon as there is an alternative a such that there is direct evidence
that o is at least as good as b while there is no indirect evidence that b is better
to a. This would lead to the definition of a covering relation in which a weakly
covers b (a WC b) as soon as ¢ S b and for all ¢ € A, we have ¢ P a = ¢ P b,
cla=cSbbPc=aPcandblc= a8 c Therefore, the weak covering
relation WC is identical to the strict covering relation SC except that a I b is
compatible with a WC b. Contrary to SC, the relation WC is not asymmetric.
It is reflexive and transitive so its asymmetric part has no circuit. When A is
finite, letting C(S) = M(A,WC) therefore defines a selection procedure. For
each non selected alternative b, there is a selected alternative a such that either
a P b or a Ib, while there is no indirect evidence that b might be superior to a.
The theoretical properties of this choice procedure are quite distinet from the one
relying on the strong covering relation (Dutta and Laslier, 1999; Peris and Subiza,
1999), while remaining neutral and monotonic. It seems to qualify as a natural
benchmark for all choice procedures.

A weakness of the procedure given above is that when a and b are incomparable,
it is impossible to distinguish between them even when there is strong indirect
evidence that one is better to the other. It is possible to modify the definition of
the weak covering relation requiring only that there is no direct evidence against a,
i.e., that a S bor a J b (remember that J is the incomparability relation associated
to S; with W, it is impossible to have a WC b, while a J b}, while still requiring
that there is no indirect evidence that b is superior to a. This very weak covering
relation is still reflexive and transitive. Taking the maximal alternatives in A for
the very weak covering relation therefore defines a selection procedure. It refines
the above selection procedure based on the weak covering relation. This is however
a price to pay. Using such a choice set does not prevent the existence of a non
selected alternative b such that there is no alternative in the choice set for which
there is direct evidence that it is at least as good as b. Therefore, the narrowing
of the choice set, considering the very weak covering relation, may be judged
unsatisfactory.

We refer to Dutta and Laslier (1999), Laslier (1997) and Peris and Subiza
(1999) for a thorough study of the properties of choice sets that are based on some
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idea of “covering” i.e., mixing direct and indirect evidence to justify the selection

of C(5).

7.4.3.1.2 Procedures based on kernels Quite a different path was taken
by Roy (1968) and Roy and Skalka (1984) in the ELECTRE I and ELECTRE IS
methods (a similar idea is already detailed in von Neumann and Morgenstern,
1947, in the context of Game Theory). Note that the selection procedure is clear
as soon as S is transitive. In fact, in such a case, the set of maximal elements in
A le, M(A,S) ={a€ A: Not[b P a] forall b € A} is always nonempty and
such that, for all b ¢ M (A, S), there is an alternative a € M (A4, S) such that a S b.
In fact, when S is transitive, the set M (A, S) coincides with the set of maximal
alternatives for the weak covering relation since, in this case, § = WC.

For B C A, we say that B is dominating if for all ¢ ¢ B there is an alternative
b € B such that b S ¢. Therefore the selection of the alternatives in a dominating
subset always justifies the non selection of the other alternatives. By construction,
the set A itself is dominating. When A is finite, there are therefore dominating
subsets of minimal cardinality. If there is only one such dominating subset, it is
a good candidate for the choice set C(S). When S has circuits, there may be
more than one dominating subset of minimal cardinality. Taking their union will
generally result in quite an undiscriminating procedure. This is illustrated in the
following example.

Example 7.4

Let A = {a,b,c,d,e}. Suppose that S is such that a P b, b Pc,c Pd,d Pe
and e P a (see figure 7.6). This relation has 5 dominating subsets of minimal
cardinality, i.e., {a,c, e}, {a,b,d}, {a,¢,d}, {b,c,e} and {b,d, e}. The union of the
minimal dominating subsets is A. <o

Figure 7.6: Relation P in example 7.4.

B. Roy therefore suggested to consider the relation §’ obtained by reducing the
circuits in S, i.e., to consider all alternatives that are involved in a circuit as a
single alternative. Working with S’ instead of S amounts to considering that all
alternatives involved in a circuit compare similarly with alternatives outside the
circuit. This is frequently a strong hypothesis implying the loss of a lot of infor-
mation, as shown in example 7.4. The following example illustrates the process of
reducing the circuits of S.
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Example 7.5
Let A = {a,b,c,d,e, f} and consider the binary relation S such that:

aShaScaSdaSealf,
bSebSf,
cSa,cSe,
dSe,
eSf.

represented in figure 7.7 In order to build the relation S’ obtained by reducing

Figure 7.7: Relation § in example 7.5.

the circuits in S we need to find the maximal circuits in S (i.e., circuits that are
not included in other circuits). There is only one circuit in St a S b, b S ¢ and
¢ S a. Therefore the three alternatives a,b and c¢ are replaced by a single one, say
z, and there is an arc from z to another alternative if there is an arc in S going
from either a,b or ¢ to this alternative. Similarly there is an arc going from an
alternative to z if there was an arc going from this alternative to either a,b or ¢
in §. Therefore the binary relation S’ (see figure 7.8) is such that:

28 dxSexS f
dS'e,
e S f.
In the relation built in example 7.2, there is a circuit going through all alternatives

(dPc,cPa,aPbjbPe,eP f, fPyg,gPbandb P d). Insuch cases, the
reduction of circuits involves a huge loss of information. &

A famous result of Graph Theory (Berge, 1970; Roy, 1969-70) implies that when
a graph has no circuit, it has a unique kernel, defined as a dominating subset that
is internally stable, i.e., such that there is no arc between any of its elements (this

Figure 7.8: Relation S’ in example 7.5.
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O= 00
Figure 7.9: Relation S in example 7.6.
implies that the kernel is a minimal dominating subset). Reducing the circuits and

taking the kernel of the relation is the selection procedure proposed in ELECTRE L.
It is easy to verify that it is neutral and monotonic.

Example 7.6
Let A = {a,b,c,d,e, f,g}. Consider the relation S defined by figure 7.9. This
relation has no circuit. Its unique kernel is C(S) = {a,d, e, g} o

The selection procedure defined by the kernel is distinct from the one consisting
of alternatives that are maximal for the weak covering relation. Indeed in exam-
ple 7.6, the set of maximal alternatives for the weak covering relation is {a,d, ¢, f}
(g is covered by f, b and ¢ are covered by a). This shows that covered alternatives
may be selected in the kernel. Most importantly, as we have seen, the reduction of
circuit may involve an important loss of information and can even lead to selecting
dominated alternatives as in example 7.1.

The procedure in ELECTRE IS (see Roy and Bouyssou, 1993; Roy and Skalka,
1984) amounts to a more sophisticated reduction of the circuits that takes the way
the relation S has been defined into account. In particular, it can help to avoid
the selection of dominated alternatives.

Remark 7.4.3

A related selection procedure was suggested by Hansen, Anciaux-Mundeleer, and
Vincke (1976) and Vincke (1977} in order to avoid the reduction of circuits, which,
as we have seen, can lead to a significant loss of information. A quasi-kernel of a
graph is a set of vertices that is internally stable (alternatives in a quasi-kernel are
incomparable) and quasi-dominating, i.e., such that for any alternative b outside
the quasi-kernel, there is one alternative a in the quasi-kernel such that either
aSborasScandcSb, for some alternative ¢. Thus, a quasi-kernel may not be
dominating but all alternatives outside the quasi-kernel can be reached via a path
of length at most 2.

It is well-known (Lovész and Chvétal, 1974) that all graphs have at least one
quasi-kernel. There may however be several quasi-kernels. Hansen et al. (1976)
suggest to consider the selection of a quasi-kernel of minimal weakness, i.e., such
that the set of alternatives that are not dominated by one alternative in the quasi-
kernel is of minimal cardinality. This raises difficult combinatorial problems how-

ever, .
ég Choice procedures based on covering relations take the indirect evidence

€3 that an alternative is at least as good as another into account. There are several
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&2 ways to define what should count as indirect evidence. Procedures based on
kernels imply getting rid of circuits, which may involve a considerable loss of
y 8 g y
o information. They may lead to the selection of covered alternatives.

7.4.3.1.3 Other procedures The use of covering relations and of the notion
of kernel are far from being the only possible choices to devise a selection procedure
(Laslier, 1997; Peris and Subiza, 1999; Schwartz, 1986). Some of the possibilities
that we do not investigate here are:

e selection procedures based on the consideration of relations close to S for
which the choice is simple, e.g, orders or weak orders (see Barthélémy,
Guénoche, and Hudry, 1989; Laslier, 1997),

e selection procedures based on scores, e.g., Copeland scores (see Henriet, 1985;
Rubinstein, 1980; van den Brink and Gilles, 2003),

e selection procedures that directly operate on the evaluations of the alterna-
tives without building a relation S as an intermediate step. This was studied
in section 5.6 of chapter 5 (see also Fishburn, 1977).

7.4.3.2 Valued relations

The literature on selection procedures on the basis of valued preference relations
is extensive (Banerjee, 1993; Barrett, Pattanaik, and Salles, 1990; Basu, Deb, and
Pattanaik, 1992; Bisdorff, 2000; Bouyssou, 1992a, 1997; Bouyssou and Pirlot, 1997;
Dasgupta and Deb, 1991; De Donder, Le Breton, and Truchon, 2000; Dutta and
Laslier, 1999; Dutta, Panda, and Pattanaik, 1986; Fodor, Orlovski, Perny, and
Roubens, 1998; Fodor and Roubens, 1994; Herrera and Herrera-Viedma, 2000;
Kitainik, 1993; Lahiri, 2002; Litvakov and Vol’skiy, 1986; Montero and Tejada,
1988; Nurmi and Kacprzyk, 1991; Pattanaik and Sengupta, 2000; Perny, 1995;
Perny and Roubens, 1998; Roubens, 1989; Sengupta, 1999) and it would be illusory
to attempt summarising it here.
Let us simply mention here that this diversity is duc to numerous factors:

e the variety of possible interpretations of the valued relation which goes from
interpretations in terms of “credibility” to probabilistic or “intensity of pref-
erence” interpretations,

e the different ways in which to interpret the numbers in the valued relation
which goes from a purely ordinal interpretation to more cardinal interpreta-
tions. Indeed the number S(a,b) may, depending on the context, be inter-
preted as the (weighted) number of criteria on which a is judged at least as
good as b or simply as a “credibility” index of the proposition “a is at least
as good as b”,

o the various ways of defining classical properties (completeness, transitivity)
of binary relations for the valued case; these various definitions are not always
equivalent,
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o the difficulty to define “strict preference”, “indifference” and “incomparabil-
ity” on the basis of a valued relation.

We briefly envisage three different types of techniques here.

7.4.3.2.1 Use of A-cuts Any selection procedure designed for crisp relations
may be applied to a valued relation considering various A-cuts of the valued rela-
tions, i.e., the crisp relation S defined by:

a Sxbe Sabd) > A (7.16)

The definition of the A-cuts of a valued relation only uses the ordinal properties of
the valuations. With a strictly ordinal interpretation of valued relations, the set of
all A-cuts of a valued relation contains the same information as the valued relation
itself. A cautious attitude is therefore to study the result of selection procedures
for crisp relations when applied to the set of all A-cuts of the valued relation (in
practice, one may want to consider only the A-cuts corresponding to relatively
high values of A\). This raises the problem of aggregating this information. This
problem is all the more serious that it is easy to build examples in which two
distinct A-cuts of S may result in vastly different crisp relations, even when the
two values of A are “close”.

7.4.3.2.2 Fuzzyfication of crisp procedures Another class of procedures
consists in “fuzzyfying” the definition of various selection procedures for crisp
relations using a particular interpretation of logical connectives (AND, OR, NOT)
in a valued framework. This is a classical procedure in “fuzzy” mathematics.

Suppose, for instance, that S is a valued preference relation interpreted as an
“at least as good as” preference relation. The set of maximal elements in A given
a crisp relation S has been defined as M(A,S) ={a € A:Vbe A, Not[b Pal}.
This set may be empty. When it is not, we have seen that the alternatives in this
set may be seen as reasonable candidates for choice. The “fuzzyfication” of the
concept of the set of greatest alternatives amounts to attaching to each alternative
in A the credibility that it belongs to the set of greatest elements*.

Given the relation S, we have a P b if [a S b and Not[b S a]]. Interpreting
AND as “min” and NOT as “1-", we obtain the degree of credibility of the
proposition “a is strictly preferred to b” as P(a,b) = min(S(a,b),1 — S(b,a)).
Now we are looking for alternatives in A for which, for all b € A, it is not true that
b P a. Interpreting “for all” as “min”, which is consistent with our interpretation
of AND, we obtain:

p(a) = min(1 — P(b,a)),
= min(l — min(S(b,a), 1 — S(a,b}))),

beA
= IbI‘lsl[gln’laX(l - 5(b,a), S(a,b)),

4 An alternative approach in which a credibility degree is attached to subsets of alternatives
was explored by Kitainik (1993)
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that may be interpreted, given our particular choice of valued connectives, as the
credibility of the proposition “there is no alternative in A that is strictly preferred
to a”. One may then select alternatives for which this score is maximal (which
would imply that any difference in u is significative) or the alternatives in A for
which the value of p exceeds a certain threshold. Note that the choice of “1-"
as a valued interpretation of NOT is not fully compatible with a purely ordinal
interpretation of the valued relation S.

Such fuzzyfication techniques were first proposed by Orlovski (1978), using a
different definition of P (see Fodor and Roubens, 1997, for a detailed analysis).
The set of maximal alternatives for the strong or weak covering relation and/or the
set of greatest elements may be fuzzyfied in a similar manner (see Perny, 1995).

In fact, this technique allows to transfer any crisp definition into a definition
adapted to the valued case almost immediately, once fuzzy connectives have been
agreed upon. This is not an easy choice however (see, e.g., Alaoui, 1999; Bisdorff,
2000; Fodor et al., 1998; Fodor and Roubens, 1994; Kitainik, 1993; Perny and
Roubens, 1998; Perny and Roy, 1992).

7.4.3.2.3 Procedures based on scores Another class of procedures asso-
clate to each alternative a € A a “measure of its desirability” in A, we shall
say a score, given a valued relation S. Many such scores can be envisaged, e.g.,
the Net Flow score which is the analogue of the Copeland scores for crisp re-
lations obtained by letting the score of alternative a € A be Scoreyp(a,S) =
2vear(ap(S(a;b) — S(b,a)) which was axiomatised by Bouyssou (1992a), or the
Minimum in Favour score Scoremin(a,S) = minyea\{a} S(a,d), characterised in
Bouyssou (1995) and Bouyssou and Pirlot (1997). This procedure based on min
can be refined in many ways (see Dubois, Fargier, and Prade, 1996; Dubois,
Fortemps, Pirlot, and Prade, 2001b, for several lexicographic variants of min).
They have been studied in Fortemps and Pirlot (2004).

The choice of an adequate score is dependent upon the interpretation of the
valuations S(a,b). For instance, the use of the Net Flow score appears adequate
only if it is supposed that the credibility S(a,b) is measured on a scale that is
stronger than an ordinal scale, so that adding and subtracting credibility indices
is meaningful.

Remark 7.4.4

It is instructive to show how the axioms used to characterise the choice procedures
based on the Net Flow score (Bouyssou, 1992a) and the Minimum in Favour score
(Bouyssou, 1995; Bouyssou and Pirlot, 1997) make hypotheses on the nature of
the valuations of the fuzzy relation.

The selection procedure based on the Net Flow score is characterised by an
axiom implying that all circuits of length 2 or 3 in the fuzzy relation can be elim-
inated without affecting the selection, together with neutrality and monotonicity
requirements. Technically this means that if two fuzzy relations S and R are
identical except that:

R(a,b) = S{a,b) + € and R(b,a) = S(b,a) + € or
R{a,b) = S(a,b) + €, R(b,c) = S(b,¢c) + € and R{c,a) = S(c,a) +¢,



7.4. OTHER PREFERENCE MODELS 371

then S and R should lead to identical selections. Clearly, such an axiom is only
adequate if the valuations are “cardinal” for it to make sense to add a constant €
to some of them.

Similarly, the selection procedure based on the Minimum in Favour score is
essentially characterised by an “ordinality” axiom stating that if it is possible to
go from S to R via an increasing transformation on [0;1] then S and R should
lead to identical selections. .

7.4.3.2.4 Examples Some of the selection procedures for valued relations en-
visaged so far are illustrated below.

Example 7.7
Let A={a,b,c,d,e, f} and consider the valued binary relation S defined by:

S a b c d e f
1.0 05 05 03 03 06
08 10 01 05 04 09
02 02 10 08 02 03
01 00 02 10 09 05
07 06 01 01 10 08
01 04 02 00 00 1.0

SO a0 oR

Taking the Minimum in Favour score Score(a, §) = minye 4\ {a} S(a, b) leads to the
unique choice of alternative a which has a maximal score of 0.3. Fuzzyfying the
quantifier “for all” using “min”, this degree can be interpreted as the credibility
of the proposition “a is at least as good as any other alternative in A”, i.e., that
a belongs to the greatest alternatives for S in A.

The net flow score Score(a, S) = 3 p¢ 4\ (4} (S(a,b)—5(b, a)) leads to the unique
choice of b with a score of 3.7 - 2.7 =1.

Taking P(z,y) = min(S(z,y),1 — S(y, z)), we obtain:

P b c d € f
00 02 05 03 03 06
0.5 00 01 05 04 06
02 02 00 08 02 03
01 00 02 00 09 05
07 06 01 01 00 038
01 01 02 00 00 00

O RO o R

The fuzzyfication of the set of maximal elements envisaged above therefore leads
to the unique choice of ¢ with the credibility that it belongs to the set of maximal
alternatives of 1 — 0.5 = 0.5.

Note that on the example above, the three procedures give different results.

Unless S has some remarkable properties, this usually cannot be avoided. <&
Lfg The definition of a selection procedure for valued relations should take

&3 the nature of the valuation (e.g., the nature of the scale on which they are
& measured) and their interpretation (e.g., large preference or strict preference)
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‘S? into account. It is always possible to apply a selection procedure designed for
54 crisp relations to a valued relation through the use of A-cuts. Using the family
¢ of A-cuts of a valued relation and applying a choice procedure for crisp relations
£ to each of these relations may be seen as a very cautious attitude that does not
2 seek to exploit the finely grained information provided by the valued relation.
It nevertheless raises the problem of aggregating the results obtained at each
cut; this aggregation problem is all the more serious that the application of
< a choice procedure to two A-cuts obtained for values of A that are close to
£ each other may lead to quite different results. If more refined procedures
£ are applied, care must be taken to ensure the compatibility of the operations
© performed on the valuations with the way in which they were obtained. In
% some techniques, e.g., ELECTRE III or PROMETHEE, the precise nature of
“ the valuations is not easy to determine, as was emphasised in section 5.3.1 of
3 chapter 5.

7.4.4 Ranking procedures
7.4.4.1 Crisp relations

Let A be a set of alternatives. Suppose that you have built a crisp relation S on A
using some kind of aggregation technique. Let S be the set of all conceivable pref-
erence relations that can be obtained using such a technique. A ranking procedure
= is a function associating a reflexive and transitive binary relation 2(S) on A
with each element S of S. The task of building a transitive result on the basis of
a binary relation, that might not be transitive or complete is not easy: we are in
fact looking for a much richer result than that obtained using choice procedures.

Remark 7.4.5

Our definition of a ranking procedure does not imply that ~(S) is necessarily
complete. This is in accordance with our definition of the ranking problem state-
ment above. When using a ranking procedure - that might lead to an incomplete
relation 7(.S), it will be important to analyse the conditions under which incom-
parabilities could occur. Although always asking for a complete and transitive
relation may be overly demanding, having many incomparabilities in 7-(S) is un-
likely to be much helpful. .

Remark 7.4.6

Remark 7.4.2 about choice procedures fully applies here. Indeed, our definition of
ranking procedures implies that -(.5) depends on the behaviour of S on the entire
set A and S is the only information used by . Again the fact that the positions
of @ and b in 2Z(S) could depend on how they compare with respect to other
alternatives and, more generally on the whole relation S, although inevitable in
this approach, may be criticised. Similarly a ranking procedure 7= does not make
use of “reference points” to rank alternatives. .

We expect such a ranking procedure to be:

e neutral, i.e., insensitive to the labelling of the alternatives,
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e faithful, i.e., if S is a reflexive and transitive relation, we should have 2-(.5)
= S,

e monotonic, i.e., the position of a in the ranking 7 (S) should not decrease
if S is substituted by a relation S’ in which the position of a has improved
(see example 7.2).

Clearly, this list is only partial, e.g., we would also expect the ranking = (S) to be
linked to the covering relations defined above (or to have links with the underlying
weak order of S when S is a semiorder, see Vincke, 1992a).

Several types of ranking procedures have been suggested in the literature:

1. Ranking procedures based on the transitive closure of S,
2. Ranking procedures based on scores, e.g., the Copeland score,

3. Ranking procedures based on the repeated use of a choice mechanism (as in
example 7.2},

4. Ranking procedures based on distances.

We briefly illustrate each type of procedure below.

7.4.4.1.1 Procedures based on the transitive closure Let S be a reflexive
binary relation on A. A simple way to obtain a reflexive and transitive relation
> (S) on the basis of S is to take its transitive closure S, i.e., the smallest transitive
relation containing S. This defines a ranking procedure; it is easy to see that it
is neutral, faithful and monotonic. In view of our discussion of choice procedures,
the main defect of this ranking procedure should be apparent. All alternatives
that are involved in a circuit of S will be equally ranked if we let 2(S) = S.
This often results in a very poor information. As suggested in Schwartz (1972)
and Schwartz (1986), this phenomenon is somewhat less severe if the transitive
closure is taken on the asymmetric part P of S. This is however a price to pay,
since indifferent alternatives in S that are not included in a circuit of P will then
appear incomparable in = (S). This calls for the use of techniques allowing to deal
with such situations (see Perny, 1992).

A closely related ranking procedure is the one used in ELECTRE II (Roy and
Bertier, 1973). It was originally designed to produce a reflexive and transitive
relation on the basis of two nested reflexive relations. We present it below in the
special case in which there is only one relation (the role of the second one being
only to possibly refine the equivalence classes that are obtained).

Consider any reflexive relation S on A. The ranking procedure of ELECTRE II
first consists, as with ELECTRE I, in reducing the eventual circuits in S, replacing
all alternatives involved in a circuit by a single vertex in the associated graph. Once
this is done, we obtain, by construction, a relation with no circuit. We use this
relation to build two weak orders. In the first one, 77, the first equivalence class
consists of the maximal elements (there is no element that is strictly preferred to
them) of the relation with no circuit. These elements are then removed from the
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Figure 7.10: Relation S in example 7.8.

set of alternatives. The second equivalence class of 17 consists of the maximal
elements of the relation among those remaining and so forth.

The second weak order T3 is obtained in a dual way, building the last equiva-
lence class consisting of the minimal elements first (they are preferred to no other
element) in the relation with no circuit, removing these elements from the set of
alternatives and building the penultimate equivalence class of T as the minimal
elements among those remaining and so forth. Let us illustrate this process using
a simple example.

Example 7.8
Let A ={ay,a2,...,a9} and let S be such that (see figure 7.10):

ai S ag, a1 S 4,01 S as,
a Sa3,
as Sal,
aq Sa(;,
ag Sa7,
ay Sag,
ag Sag.

The relation S has a circuit: a; S as, as S as, ag S a;. We therefore replace S on
A with the relation S’ on A’ defined by (see figure 7.11):

bS a4,b S’ as,
273 S’ ag,
ag i ar,
ar S’ ag,
as S’ Qag,
where a1, a2 and ag have been replaced by b. The relation S’ has no circuit. Its set

of maximal elements consists of {b,ag}. Once these elements have been removed,
the set of maximal elements is {a4,a5}. At the next iteration, we obtain {ag},
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Figure 7.11: Relation S’ in example 7.8.

Figure 7.12: Relation =(S) in example 7.8. Transitivity arcs are omitted.

then {ay} and {ag}. Therefore the weak order T} is, using obvious notation:

[a1,a2,a3,as] T1 [aa,as] Th ag Th av Ty ag.

In a dual way, we obtain the weak order T5:
[a1,a2,a3] T2 a4 T2 as Ta [ar,as] T» [as, ag). %

In general, 7} and 75 are not identical. The reflexive and transitive relation 7-(.5)
is then taken to be the intersection of these two weak orders. In our example we
would obtain, abusing notation (see figure 7.12):

[a1,az,a3] > a4 > ag > ar > ag,
[GI,GQ, a3] > ag,
a4 > a5,
ag > ar7,ag > as,
as > ag.
What can be said of this result? First observe that the rationale for building two

weak orders and for defining >-(.5) as their intersection is to introduce incompa-
rability between alternatives that are difficult to compare using S. This is, for
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Figure 7.13: Transitive closure Sof Sin example 7.8 .Transitivity arcs are omitted.

instance, the case between as and all alternatives except aq or between ag and all
alternatives except ag. In this respect the success of the procedure is only limited
since we finally conclude that {a1,as2,as] =(9) as, ag >(S) a7, as >(S) a5 and
as >—(S) ag.

Let us also note that we would have obtained a similar result starting with the
transitive closure S of S instead of S. Observe that, simply taking =(8) = s,
would have probably been a better choice in this example (see figure 7.13).

The final result of the ranking procedure is obtained by taking the intersection
of two weak orders. Since it is well-known that there are reflexive and transitive
relations that cannot be obtained in such a way (Dushnik and Miller, 1941}, this
procedure is not faithful. We leave the proof that this procedure is indeed neutral
and monotonic to the reader (it is detailed in Vincke, 1992a).

S

- Taking the transitive closure of a relation leads to a ranking procedure
& that is quite undiscriminating. Applying transitive closure to the asymmetric
i part of S somewhat alleviates the problem but calls for the application of
techniques designed to deal with indifferent alternatives. Ranking procedures
“_building a reflexive and transitive relation on the basis of the intersection of
3 two weak orders are not faithful.

7.4.4.1.2 Copeland scores We have seen that the procedure suggested in
ELECTRE II does not satisfy all the requirements we intuitively would like to see
satisfied. A simpler ranking procedure consists in rank ordering the elements in
A according to their Copeland scores, i.e., the number of alternatives that they
beat minus the number of alternatives that beat them. In our earlier example,
this would, abusing notation, give the weak order (see figure 7.14):

al > ag = [ag,ag,a4,a6,a7] > ag > ag.

We cannot expect faithfulness with such a procedure, since the result of the
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agz, a3, a4, ag, 7

Figure 7.14: Relation »-(S) using Copeland scores.

procedure is obviously complete (note that the procedure treats indifference and
incomparability similarly). On the other hand, such a procedure is neutral and
monotonic.

The ranking procedure based on Copeland scores was characterised by Ru-
binstein (1980) (for the case of tournaments, i.e., complete and antisymmetric
relations) and Henriet (1985) (for the case of complete relations). It is not diffi-
cult to extend Henriet’s result to cover the case of an arbitrary reflexive relation
(see Bouyssou, 1992b). The main distinctive characteristic of this ranking proce-
dure is that it is insensitive to the presence of circuits in $ since the contribution
of this circuit to the Copeland scores of the alternatives in the circuit is always
zero.

gg Ranking procedures based on a score always lead to a complete and tran-

3 sitive relation. They are not faithful.

Remark 7.4.7

Observe that we could have weakened faithfulness requiring only that =-(S) = S,
when S is complete and transitive. We leave the easy task of showing that the
ranking procedure based on Copeland scores is indeed faithful in this weaker sense
to the reader. .

Remark 7.4.8

An alternative way of building a ranking procedure consists in using several scores
(see Bouyssou and Perny, 1992). Each score is used to build a weak order on A and
= (8) is taken as the intersection of these weak orders. The result of this type a
procedure is a reflexive and transitive relation that can have at most dimension k,
where k is the number of scores involved. Hence, such techniques are not faithful. e

7.4.4.1.3 Ranking by repeated choice A possible way of combining the
simplicity of such a ranking procedure with a move towards faithfulness consists
in using the Copeland scores iteratively to build two weak orders T} and Ty. This
would consist here in building the first equivalence class of a weak order 77 with the
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Figure 7.15: Relation (S} using repeated choice based on Copeland scores.

alternatives having the highest Copeland scores, and iterating the procedures after
having removed the already-ranked alternatives. For the relation in example 7.8,
we would obtain:

a1 T1 [az, a4,a8] T1 as T1 a7 T4 |as, as, ag).

Using a dual principle, we could also build a weak order T3 the last equivalence
class of which consists of alternatives having minimal Copeland scores and reiterate
the process on the set of unranked alternatives. This would yield:

(a1, a2,a3, as] T» aq T as Ty |as, a7] Ty aq.

Taking the intersection of these two weak orders is a much simplified version of
the ranking procedure implemented in ELECTRE III (Roy, 1978). This leads to,
abusing notation, (see figure 7.15):

a1 > [ag,ag] = Q4 > Qg > Q7 > A5 > QAg,
[ag,ag] > asg ~ as.

Such a result does not seem to lead us closer to an adequate restitution of the
uncertain positions of ag and ag within S. Furthermore, as observed in exam-
ple 7.2, such a ranking procedure is not monotonic, which seems to be quite a
serious shortcoming.

5 Ranking procedures based on the iteration of choice mechanisms are quite
&> unlikely to respect monotonicity except in trivial cases (Bouyssou, 2004; Juret,
(%3 2003; Perny, 1992). This tends to severely limit their interest.
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7.4.4.1.4 Use of distances Suppose that you have defined a distance d on
the set of binary relations in §. A natural way of obtaining a ranking procedure
would seem to be to find the reflexive and transitive relation T' at minimal distance
from S. This idea dates back at least to Barbut (1959), Kemeny (1959), Kemeny
and Snell (1962} and Slater (1961). Although this may seem the most natural way
of defining a ranking procedure, this approach raises new problems:

e the determination of a transitive relation at a minimum distance from crisp
or valued binary relations raises deep combinatorial questions and quite dif-
ficult algorithmic problems (see Barthélémy et al., 1989; Barthélémy and
Monjardet, 1981, 1988; Bermond, 1972; Charon, Hudry, and Woirgard, 1996;
Charon-Fournier, Germa, and Hudry, 1992; Hudry, 1989; Monjardet, 1990).
From a practical point of view, this tends to limit the use of such techniques
to small sets of alternatives.

e it ig likely that many quite distinct relations are at minimum distance of
S. The definition =(S) on the basis of this family of relations is far from
obvious. Systematically taking the intersection of all such relations will often
yield a result containing more incomparabilities than we would have liked.

o the choice of the distance function should be analysed with care (see Roy
and Stowinski, 1993) as soon as one is no loner faced with the, easy, case of a
distance between tournament and linear orders for which the distance based
on the symmetric difference is an obvious choice (see Barthélémy, 1979).

e the normative properties of such procedures are not easy to analyse (see,
however, Young and Levenglick, 1978).

Remark 7.4.9

The analysis above shows that it is very difficult to devise a ranking procedure
that is fully satisfactory. This difficulty is related to Arrow-like theorems intro-
duced in section 5.2.1.3 of chapter 5. Indeed, suppose that you have defined a
“very nice” ranking procedure. You could then proceed as follows to rank order
alternatives. Use one of the majoritarian aggregation methods introduced in sec-
tion 5.2.3 chapter 5 to build a relation S. This relation S will mainly depend
on “ordinal” considerations but will not have remarkable transitivity properties.
Applying your nice ranking procedure to S will lead to a reflexive and transitive
binary relation =(S). Clearly, this two-step process (building S and then applying
= to §) may be viewed as a one-step process associating a reflexive and transitive
relation to a profile of evaluations. But then, Arrow-like theorems apply to this
one-step process. The fact that there does not seem to be a ranking process that
would be fully satisfactory within this framework is therefore unsurprising.

This does not mean, however, that such ranking procedures are useless. Once
their shortcomings are acknowledged, they may indeed be useful tools for the
analyst in order to elaborate a recommendation. Discovering, for instance, that a
subset of the entire set A is almost always ranked in a similar way using several
such procedures, may be used as building block by the analyst in order to come
up with recommendations. .
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7.4.4.2 Valued relations

We have shown the difficulty of devising a satisfactory ranking procedure for crisp
relations. The situation is not easier with valued relations. An overview of ranking
procedures for valued preference relation may be found in Fodor and Roubens
(1994), Fodor et al. (1998), Perny (1992) and Perny and Roubens (1998). Working
with valued relations allows to better discriminate between alternatives. This
increased discrimination is often obtained at the cost of performing operations on
the valuations that are not always compatible with a strictly ordinal interpretation
of these numbers.

Since these procedures do not appear to be significantly more satisfactory than
the ones envisaged above, we do not study them in detail here. As in the case of
crisp relations, ranking procedures for valued preference relations may be based:

e on scoring functions. The main difficulty here will be that the result of
the ranking procedure will always be complete and that it is necessary to
use a scoring function that is somehow compatible with the nature of the
valuations. The ranking procedure based on the Net Flow score has been
characterised in Bouyssou (1992b) using axioms that are very similar to the
ones used for the associated choice procedure, i.e., interpreting the valuations
in a “cardinal way” (this result has been extended in Bouyssou and Perny
(1992) to cover the case of the intersection of two procedures based on scores).
Note that this ranking method is at work in the PROMETHEE method
(Brans et al., 1984; Brans and Vincke, 1985). Similarly the ranking procedure
based on the Minimum in Favour score was characterised in Bouyssou (1991),
Bouyssou and Pirlot-(1997) and Pirlot (1995) using axioms compatible with
an ordinal interpretation of the valuations.

o on the repeated use of a choice procedure as in ELECTRE III (Roy, 1978) or
in MAPPAC and PRAGMA (Matarazzo, 1986, 1988, 1990). As first shown
in Perny (1992), such procedures are quite unlikely to be monotonic, which
tends to seriously limit their interest.

e on a transitive relation close to the valued relation. Such procedures often
raise the same kind of difficulties as the ones evoked in the crisp case (see
page 379).

7.4.5 Sorting procedures

We have seen that the lack of transitivity and/or completeness raised quite serious
difficulties when it comes to devising choosing and ranking procedures. These dif-
ficulties are somewhat less serious here. This is because, with sorting procedures,
the assignment of an alternative only depends on its comparison to carefully se-
lected reference actions defining the categories. The use of such reference points
implies that, contrary to the case of choice and ranking procedures, the distinction
between the phase of building a relation S and then using this relation in order to
reach conclusions is blurred with the sorting problem statement. Reference points
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are used from the beginning and the relation S is mainly used to compare the
alternatives in A to these reference points.

To keep things simple, we only deal with the case of a crisp relation S here.
As in the case of value functions, we only consider the case of ordered categories.

Early attempts to propose sorting procedures are Massaglia and Ostanello
(1991), Moscarola and Roy (1977) and Roy (1981). A more general approach to
the problem was suggested in Roy and Bouyssou (1993) and Yu (1992a) with the
so-called ELECTRE TRI approach that we present below.

7.4.5.1 An overview of ELECTRE TRI

We consider the case of  ordered categories C*, C?,...,C", with C” containing the
most desirable alternatives. We suppose, for the moment, that each category CF is
delimited by a limiting profile 7%. It is not restrictive to suppose that *+1 strictly
dominates ® 7%, for all k. Furthermore, we can always find an alternative 771 that
strongly dominates® all other alternatives in A and, conversely, an alternative 7!
that is strongly dominated by all other alternatives (see figure 7.16). How can

Increasing preference °

7TT+1 @i
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Figure 7.16: Sorting with r ordered categories.

we use a preference relation between the alternatives in A and the set of limiting
profiles to define a sorting procedure? Intuitively, since 7% is the lower limit of
category CF, we can apply the following two rules:

e if an alternative a is preferred to 7%, it should at least belong to category
C*k,

o if ¥ is preferred to a, a should at most belong to category C*~1,

51e., 81 is at least as good as w* on all criteria and strictly better on some criterion.

6 1.e., it is strictly better on all criteria.
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the case in which o is indifferent to 7% is dealt with conventionally depending on
the definition of the limiting profiles 7*.

When the relation S is complete and transitive, these two rules lead to unam-
biguously assign each alternative to a single category.

The situation is somewhat more complex when S is intransitive or incomplete.
When S is compatible with the dominance relation (which is not a very restrictive
hypothesis), as we have supposed that 7* strictly dominates 71, it is possible to
show (see Roy and Bouyssou, 1993, ch. 5) that when an alternative a is compared
to the set of limiting profiles 7!, 72 ..., 7"+, three distinct situations can arise:

1. 7Y Pa,n” Pa,. .., ™" Paa P 7% a PaF ' ... ,a Pl Insucha
case, there is little doubt on how to assign a to one of C1,C?,...,C". Since
a P %=1 a should be assigned at least to category C*. But since 7% P a, a
should be assigned at most to C*. Hence, a should belong to C*.

2.7t P a2 Pa,...,nt"t Paal ntalat,...,al 7t qa P
7*....,a P w!. The situation is here more complex. Since 7! P a, al-
ternative a must be assigned at most to category C¥¢. Similarly since a P 7%,
a must be assigned at least to category C*.

The fact that a is indifferent to several consecutive limiting profiles is prob-
ably a sign that the definition of the categories is too precise with respect
to the binary relation that is used by the sorting procedure: the profiles
are too close to one another. This would probably call for a redefinition of
the categories and/or for a different choice for S. In such a situation, an
optimistic attitude consists in assigning a to the highest possible category,
ie., C*. A pessimistic attitude would assign a to C*.

3.0 Poan” Poa,...,wt Paa JataJdn e J s a P
7%, ...,a P w!. In this situation, a is incomparable to several consecutive
profiles. This is a sign that, although we are sure that ¢ must be assigned
at most to category C¢ and at least to category CF, the relation S does
not provide enough information to opt for a category within this interval.
Again, an optimistic attitude in such a situation consists in assigning a to
the highest possible category, i.e., Cf. A pessimistic attitude would be to
assign a to C*,

The assignment procedure described above is the one introduced in ELECTRE
TRI (Roy and Bouyssou, 1993; Yu, 1992a) in which a is assigned to one of
C',C?,...,C" using an optimistic procedure and a pessimistic procedure. Al-
ternative a is always assigned to a higher category when using the optimistic
procedure than when using the pessimistic procedure. One can verify that this
procedure coincides with the one suggested in 7.2.2 when S is defined by a value
function.

Another interesting special case of this procedure arises when S is identical
to a dominance relation. In this case, the optimistic procedure suggested above
coincides with a disjunctive sorting procedure. In fact a will be assigned to C* as
soon as 7¢t1 P g and Not[n P a], which means that £ is the highest category
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such that, on some criterion i € N, a is better than 7¢. Conversely, the pessimistic
procedure coincides with a conjunctive assignment strategy: a will be assigned to
C* as soon as Not[a P 7%*!) and a P 7%, which amounts to saying that k is the
lowest category such that a dominates 7*.

It is worth noting that although the authors of this method have coupled this
procedure with a particular definition of S (a crisp relation based on a concordance
discordance principle), it can be applied to any relation that is compatible with a
dominance relation.

Remark 7.4.10

We refer Greco, Matarazzo, and Slowiriski (2001b) and Slowinski, Greco, and
Matarazzo (2002) for an axiomatic analysis of the sorting model in which (see also
the pioneering work of Goldstein, 1991):

a€C* o sf < Flui(hi(a)),uz(ha(a)),. .., un(hn(a))) < s¥+1,

where F is a real-valued function on R™ which is nondecreasing in each of its
arguments, u; are real-valued functions on R, s* are real numbers and hi(a) is the
evaluation of alternative a € A on the ith criterion.

Taking F as a sum shows that the above model contains the UTADIS technique
introduced in section 7.3.4. It is not difficult to show that the same is true with
the ELECTRE TRI technique described above. A complete axiomatic analysis
of ELECTRE TRI was recently proposed in Bouyssou and Marchant (2005a) and
Bouyssou and Marchant (2005b). o

Remark 7.4.11

Each alternative is assigned to a category in ELECTRE TRI. Such an assignment
may hinder the fact that some assignments may be more well-established than
others. This clearly calls for a robustness analysis before coming to conclusions.
An interesting way of having a “built-in” robustness analysis within a sorting
procedure is to compute the credibility, between 0 and 1, that each alternative
belongs to each category. Alternatives for which this credibility is close to 1 for a
given category and close to 0 for all other categories are then seen to be “robustly”
assigned. Such assignment procedures allow to explicitly model the fact that the
definition of the categories may not allow to unambiguously assign each alternative.
These types of techniques are detailed in Perny (1998). .

Remark 7.4.12
When first confronted with ELECTRE TRI, many people have the impression
that this method, while preserving an “ordinal” character, provides a way out of
the problems caused by incompleteness and/or intransitivity. Indeed, the result of
ELECTRE TRI is an assignment of the alternatives in A among ordered categories
on the basis of an outranking relation built using the concordance-discordance
principles. This seems quite close to obtaining a weak order on A. Such a way of
ranking alternatives is in the spirit of the use of “reference points” for choosing or
ranking alternatives as advocated in Dubois et al. (2003).

It should however be noted that, unsurprisingly, sorting methods & la ELEC-
TRE TRI do not offer a “miraculous way out” of the problems of ordinal aggrega-
tion uncovered by Arrow-like theorems. Indeed, the appearance of transitivity of
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hi hy hs
a; 11 9 10
as 10 11 9
b 9 10 11

Table 7.8: Evaluation of two alternatives and the limiting profile.

the result of ELECTRE TRI is due to the fact that alternatives are only compared
to the limiting profiles and are not compared between themselves. If this were the
case, intransitivities would inevitably reappear. Let us illustrate this point using
a simple example.
Consider two alternatives a1 and ag evaluated on a family of three criteria and
let us suppose that we want to sort these two alternatives into two categories C'*
and C?, b being the limiting profile between C! and C?%. The evaluations of a1,
as and b for the three criteria are given in table 7.8. Suppose that we compare
these alternatives using simple majority (therefore considering that all criteria are
of equal importance). We obtain: b P a; and ag P b, so using both the pessimistic
and the optimistic versions of ELECTRE TRI, we should conclude that a; € C!
“and az € C?. This seems to give evidence that ay is superior to a;. However,
this evidence is contradicted by the fact that, using the same principles, the direct
comparison of a; and as would have led to a; P ag, a1 being better than as on
two criteria. .
(L‘\j ELECTRE TRI offers a simple way of using a relation based on a
&3 concordance-discordance principle to assign alternatives to ordered categories
2 defined by limiting profiles. Conjunctive and disjunctive sorting procedures are
&2 particular cases of ELECTRE TRI. Because alternatives are only compared
"~ to carefully selected reference alternatives, the possible incompleteness or in-
¢ transitivity of the preference relation that is used has less severe consequences
£ than for choosing or ranking procedures. However, this raises the problem of
/@%i defining these reference alternatives.

7.4.5.2 Implementation of ELECTRE TRI

The ELECTRE TRI procedure described above supposes that the analyst has
defined:

e the limiting profile 7% for each category C*,

e the parameters involved in the definition of S: weights, indifference and
preference thresholds, veto thresholds.

This is overly demanding in most applications involving the use of a sorting proce-
dure. In many cases however, it is possible to obtain examples of alternatives that
should be assigned to a given category. Like in the UTADIS method described ear-
lier (see 7.3.4), one may use a “learning by examples” strategy to assign a value
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to these parameters. Several strategies for doing this were investigated in Dias
and Climaco (2000), Dias and Mousseau (2006}, Dias, Mousseau, Figueira, and
Climaco (2002), Mousseau et al. (2001), Mousseau and Stowinski (1998), Mousseau
et al. (2000) and Ngo The and Mousseau (2002).

Remark 7.4.13

The symmetric part I of the relation S can be interpreted with some precaution
as a similarity relation. When this interpretation is accepted, we may extend this
type of methods to cover the case of unordered categories defined by prototypical
examples, through computing the “similarity” of an alternative with its proto-
typical elements. This has been investigated in detail in Belacel (2000), Belacel,
Hansen, and Mladenovié (2002), Belacel, Scheiff, Vincke, and Boulassel (2000),
Belacel, Vincke, and Boulassel (1999), Bisdorfl (2002), Henriet (2000), Henriet
and Perny (1996) and Perny (1998) o

7.5 Robustness of the conclusions

We have seen in section 7.3 that an assessment procedure can lead to several
possible value functions. We argued that, in such a case, the derivation of recom-
mendation should take all possible value functions into account. Indeed, we are
interested in obtaining recommendations that could be justified using any of the
possible value functions, i.e., in what could be called “robust” recommendations.

The interest of this idea of robustness is not limited to the case of an assessment
procedure leading to several value functions. As argued in section 2.3.3 of chap-
ter 2 many other sources of uncertainty, imprecision and inaccurate determination
interfere with the work of the analyst (see Bouyssou, 1989; Roy, 1989). The way
to manage them has generated a research trend in decision aiding under the name
of “robustness” problems. The purpose of this section is to introduce the reader
to this recent literature.

7.5.1 Introduction

All scientists who have treated real decision problems know that the numerical
values used in the models are questionable. On the one hand, this is the case
for the information describing the decision situation, traditionally called the data.
They often are values built by the analyst according to the model he wants to use,
they result from assumptions about the context of the problem, from estimations
of badly known or random values, from forecasting of future events. Therefore, it
is often the case that several plausible sets of data, possibly very different from
each other, can constitute good representations of the situation. On the other
hand, this is also the case for the parameters (value functions, weights, thresholds,
etc.) which must be (more or less arbitrarily) chosen by the user of the methods
described in this book (see, in particular, section 4.4 of chapter 4).

In such a context, working with a unique (the “most plausible”) set of values
can be very risky. This is particularly true for the decision maker who has to live
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with the consequences of his/her decision, if the “real” set of values is different
from the set used in the determination of the decision.

In Bouyssou et al. (2000, ch. 8), we analysed traditional and less traditional
ways of coping with uncertainty in Decision Theory. In Operational Research,
stochastic optimisation also takes the presence of multiple data instances which
can occur in the future into account. However, these approaches usually require
explicit information on the “plausibility” associated to each instance. This explicit
information (probabilities, possibilities, fuzzy numbers, etc.) is not known with
certainty; it can result from more or less reliable estimations and be based on
more or less strong assumptions. Moreover the enormous number of parameters
introduced in these approaches can lead to a “black box effect” which is rarely
desirable in a decision aiding process.

What the decision maker generally wants is a decision which is relatively good
for all (or almost all) of the plausible sets of data and which does not imply
too much risk. This is the basis of the concept of robustness that we want to
introduce in this section. This concept, which until now was not really integrated
into decision aiding methods, is a challenging area of research and is likely to be
a very important part of decision aiding techniques.

7.5.2 Robustness versus stability

We would like to avoid any confusion between robustness and stability. A solution
{a decision) is said to be stable if it resists to some perturbations of the data and
parameters which were used to determine it. The stability of a decision generally
results from an a posteriori sensitivity analysis which consists in studying how the
results vary with (generally small) changes in the data. This means that a solution
(a result, a decision) was determined on basis of a particular set of values for the
data and the parameters (the most “plausible” ones) and that an a posteriori study
of the neighbourhood of that solution is performed. Note also that, generally, for
technical reasons, the sensitivity analysis is performed for the perturbations of one
parameter at a time.

The idea of robustness leads to consider, a priori, several sets of values of the
parameters (possibly rather different from each other) and to look for decisions
which are “good” for all or almost all sets of values. No particular set of values
is privileged; uncertainty is introduced in the formulation of the problem and it
does not necessarily have to be quantified by probabilities or other tools.

7.5.3 Alternative definitions of robustness in the literature

To date there is no specific definition of robustness accepted by the scientific
community. Moreover, the idea of robustness is rarely integrated into the decision
aiding tools proposed in the literature and, when it is, it is generally assimilated
to stability, which is a different property, as explained in section 7.5.2.

However, the word “robustness” is not new: it was introduced in different
contexts and with different meanings for the last 30 years.
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One of the first papers dealing with a concept of robustness appeared in Man-
agement Science in the seventies (Gupta and Rosenhead, 1972) and was devoted
to strategic planning. In this context, due to the often appreciable uncertainty
about external conditions in the future, it is possible that a best decision based on
the state of current knowledge will prove to be less than good during the following
years. One way of avoiding this danger is to ensure that the early and irreversible
decisions keep as many options of “good” plans open as possible. In Rosenhead,
Elton, and Gupta (1972) and Rosenhead (1989), the robustness of a decision is
defined as the ratio of two quantities. The first is the number of “good” end-
states which remain as open options after the decision. The second is the number
of all possible end-states. The exact mathematical formulation and examples of
applications can be found in the aforementioned references.

Rosenblatt and Lee (1987) studied a facilities design problem where different
versions are possible for the demand of products to be manufactured with these
facilities, the objective being to minimise the cost resulting from the manipulations
of the material. This paper defines the robustness of a solution as the number of
versions where the solution provides a cost that is “not too far” from the optimum,
this acceptable distance being expressed as a pre-defined percentage.

Sengupta (1991) introduced a concept of robustness in Data Envelopment
Analysis that mixes the idea of stability for small variations of the data (clas-
sic sensitivity analysis) and the idea of prudence with regards to possible bad
versions.

In Statistics, robustness analysis is used to reduce the influence of outliers on
the results provided by regression methods or econometric models.

In Mathematical Programming, Mulvey, Verderbel, and Zenios (1995) intro-
duced a concept of robustness in relation to optimality (the solution must be “close
to” the optimum for all possible versions) and another in relation to feasibility (the
solution must be feasible for all possible versions). The final solution is calculated
by stochastic programming where penalties for less robust solutions are introduced
in the objective function .

In the field of Combinatorial Optimisation, the main contributions are those
of Kouvelis, Karawarwala, and Gutierrez (1992), Kouvelis and Yu (1997). They
propose three different definitions that are all inspired by the idea that a robust
solution should avoid any catastrophic result:

1. the first definition (absolute robustness) attaches to each solution its worst
value among all possible versions. One then tries to find the solution for
which this worst value is the best.

2. in the second definition (robust deviation) each solution is characterised, for
each version, by the difference between its value and the optimal value for
this version. The robust solution is then the solution that minimises the
largest of these differences.

3. the third definition (relative robustness) is similar to the second one except
that it uses deviations from the optimal solution expressed in percentage.
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Roy (1998) suggests to apply the concept of robustness not only to solutions
but, more generally, to “conclusions” (assertions, recommendations). A conclusion
is an information deduced from the model and given to the decision maker during
the decision process. It can be a solution to the problem, but it can also be a
property or a fact that can be useful for the decision maker. A conclusion is called
robust if it is true for all (or almost all) the versions of the problem where a version
is characterised by a plausible set of values for the parameters of the model used
to solve the problem. The reader is referred to Roy (1998) and Vallin (1999) for
details.

Vincke (1999a) proposed a theoretical framework for the concept of robustness.
It is based on formal definitions of “problem”, “instance of a problem”, “proce-
dure” and “method”. It leads to precise definitions of robust solutions and robust
methods, which are illustrated using classical optimisation problems (minimum
spanning tree, minimum Hamiltonian path) and preference aggregation problems.

Several recent papers deal with the robustness of the solutions to decision
problems (the interested reader will find a list of references available at http://
www.ulb.ac.be/polytech/smg/indexresearch.htm) but, as already mentioned,
the definition of the concept is far from being unique. Robustness may have several
meanings, such as flexibility (as in Rosenhead, 1989), prudence (as in Kouvelis and
Yu, 1997), stability (as in Roy, 1998), so that several formalisations of the concept
should be developed in the future. In the next sections, we would like to illustrate
some aspects which constitute stepping stones for the analyst on this subject.

7.5.4 Robustness illustrated: examples

Example 7.9 (Minimum spanning tree)
This first example illustrates the case of a decision situation that has been modelled
as an optimisation problem with some uncertainty on the data.

A communication network must be established between 4 cities A, B, C, D at
a minimum cost. The costs of the different connections are given in table 7.9 (see
also figure 7.17). They are expressed in millions of Euros. However, the total

AB AC AD BC BD CD
Costs 6 2 8 3 5 7

Table 7.9: Costs of the possible connections.

cost could be reduced due to the fact that another project, supported by another
budget, could be decided by the government in the near future. The problem is
that, for political reasons, it is impossible to know whether this project will concern
the connection AB (leading to a reduction of 4 million Euros for the cost of this
connection) or the connection CD (leading to a reduction of 3 million Euros). In
other words, a decision has to be taken in a context where there are two possibilities
for the costs, leading to two versions (one could also speak of two scenarios) of
the problem. Table 7.10 summarises the costs of the connections in both versions.
It is not difficult to see that the optimal solution in version 1 consists in choosing
the connections AB, AC and BD (this is known, in Operational Research, as
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Figure 7.17: Costs of the possible connections.

AB AC AD BC BD CD
Version 1 2 2 8 3 5 7
Version 2 6 2 8 3 5 4

Table 7.10: Costs in the two versions.

the minimum spanning tree problem), giving a communication network costing 9
million Furos. However, this choice is rather risky because, should version 2 occur,
the cost of this network would be equal to 13 million Euros, which represents an
increase of nearly 50%.

In version 2, the optimal solution consists in choosing the connections AC, BC
and C'D, also giving a communication network costing 9 million Euros, but with
the risk of paying 12 million Euros in version 1. A rapid analysis of this (very
simple) example shows that the network consisting in AC, BC and BD costs 10
million Euros in both versions, which is nearly optimal whatever the version is.
This last solution could be called “a robust solution” because it is very good in
both versions (even if not optimal) and its value does not vary too much (in this
case, it does not vary at all) when the version changes.

Remark 7.5.1

In this particular case, the solution {AC,BC,BD} is optimal if a probability
equal to 0.5 is assigned to each version and the mean cost of each connection is
computed. However, the robust solution cannot always be obtained in this way.
For example, consider a similar problem where the costs, in both versions, are given
in table 7.11. The reader can verify that the only solutions that can be obtained by

AB AC AD BC BD (CD
Version 1 7 5 12 11 9 16
Version 2 17 9 10 12 4 3

Table 7.11: New costs in both versions.

assigning probabilities to the two versions of the problem and by minimising the
expected cost are, for any set of probabilities, the solution S$1 = {AC,BD,CD}
or Sy = {AB, AC, BD}, while it would not be unreasonable for a decision maker,
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to consider that solutions S35 = {AC, AD, BD} or S4 = {AC, BC, BD} are more
robust, as shown in table 7.12.

S1 Sy S3 S,
Versionl 30 21 26 25
Version 2 16 30 23 25

Table 7.12: Comparison of the costs of four solutions in the two versions.

Remark 7.5.2

The solution Sy = {AC, BC, BD} of the initial problem would also be the one given
in the approach of Kouvelis and Yu (see section 7.5.2). However, it is not difficult
to build an example where the three definitions proposed by these authors do not
coincide with a reasonable and intuitive concept of robustness. this is illustrated
in the following example. °

<O

Example 7.10 (Choice of projects)

A choice must be made between 6 projects the costs of which depend on some
external conditions. To simplify the presentation, let us consider that two versions
of the problem are possible and that the estimation of the costs in these two
versions are given in table 7.13. We see that the best project (minimising the

Projects Version 1  Version 2

A 10 60
B 70 20
C 28 29
D 20 30
K 15 31
F 11 32

Table 7.13: Possible costs.

cost) in version 1 is A, which is very bad in version 2. Similarly, the best project
in version 2, which is B, is very bad in version 1. Applying Kouvelis and Yu’s
definition of absolute robustness, we have to associate the worst value to each
solution, yielding column 1 of table 7.14. According to this definition, the absolute
robust solution (having the best worst value) is C, which indeed can be considered
as satisfying for both versions. The robust deviation of each solution is obtained
by calculating, in each version, the difference between the value of this solution
and the optimal value of this version and by taking the largest difference. This
leads to column 2 of table 7.14, where we see that the best solution (minimising
the robust deviation) is D. Note that D could reasonably be considered as better
than C because it provides a significative improvement in version 1 (see table 7.13)
for a slight disadvantage in version 2. For Kouvelis and Yu’s third definition of
robustness, we have to compute the relative robust deviation of each solution. For
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this purpose, we compute, in each version, the ratio between the value of each
solution and the optimal value of this version and we take the largest of these
ratios. This leads to column 3 of table 7.14, where we see that the best solution
(minimising the relative robust deviation) is E, which again can reasonably be
preferred to C and D. Finally, solution F, that is very close to the previous ones
in version 2, is significantly better in version 1 and is in fact very close to the
optimum for this version.

In this example, we see that it would not be unreasonable for a decision maker
to have a preference for F' over all the other solutions, although F will not be
proposed by any of Kouvelis and Yu’s definitions. This example shows that:

1 2 3
A 60 40 2
B 70 60 6
Cc 29 18 1.8
D 30 10 1
E 31 11 055
F 32 12 06

Table 7.14: Three kinds of robustness.

Loyl

;‘? e in the presence of uncertainty, the concept of robust solutions may be
- more suitable than that of an optimal solution,

@ e even in relatively simple optimisation problems, the determination of
= robust solutions cannot always be reduced in a straightforward manner
£ to an optimisation problem,

€2

&2 e the way to model robustness should integrate aspects of the decision

maker’s preferences. o

o~
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Example 7.11 (Weighted absolute majority)
Let us now consider a situation with no uncertainty on “data” but in which nu-
merical values have to be chosen for the various parameters of the decision aiding
method.

Four objects a, b, ¢, d are compared according to three dimensions, yielding the
following three rankings:

e first dimension: a better than {b,c}, better than d.
e second dimension: b better than {a,d}, better than c.
e third dimension: ¢ better than {a, b}, better than d,

where {z,y} means that z and y are tied. We want to use a weighted absolute
majority rule, which requires the following steps (see section 5.2.3 of chapter 5):



392 CHAPTER 7. MAKING RECOMMENDATION

e assessing the “weights” of the dimensions;

e building a global preference relation: x is considered at least as good as y iff
the sum of the weights of the dimensions supporting this assertion represents
at least 50% of the sum of all weights.

According to section 4.4 of chapter 4 (see also 5.2.2), the only way to assess weights
in a significant and consistent manner (i.e., a way taking the use of these weights
in the next steps of the method into account) is to try to obtain some information
about the decision maker’s global preference relation. Note that without any such
information, we can already conclude from the data that a and b are at least as
good as d: whatever the weights, the sum of the weights supporting these assertions
represent 100% of the total sum of the weights. Note also that d can never be at
least as good as b, but it can be at least as good as a if the weight of the second
dimension is larger than 50% of the sum of all weights. Assume that the decision
maker has a global strict preference for a over ¢ (i.e. a is at least as good as ¢ but
¢ is not at least as good as a). This information leads to the following constraints
on the weights, denoting by w; the weight of the ith dimension:

wy +wy > 0.5(w1 + wy + ws),
w3 < 0.5(w1 + wy -+ wg).

As the weights are clearly defined up to a positive multiplicative constant, we can
assume that the total sum is equal to one and these two constraints are equivalent
to the unique constraint:

w1 +we > 0.5,

With any set of weights satisfying this constraint we obtain a global preference
relation respecting the information given by the decision maker. For example,
choosing w1 = we = wy = 1/3 yields:

albaPecalPd,
blc,bPd,cPd,

where P and I respectively denote the global strict preference relation and the
global indifference relation.

However, choosing another set of weights compatible with the available infor-
mation will lead to different relations P and I. The central question is therefore to
know what a robust conclusion is in such a problem. This clearly depends on the
definition of robustness, which, in turn, depends on the definition of “contradic-
tory” results. For instance, an inversion of strict preference can be considered as
“less acceptable” than the transformation of an indifference into a strict preference.

As our example is very simple, let us enumerate all the possible results that
can be obtained for all the possible sets of weights such that

wy +ws +wsg = 1,
w1 + wg > 0.5,
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Let us consider each ordered pair (z,y) of alternatives and compute for what
weights we obtain the proposition “x is at least as good as y”. This is done in
table 7.15. Using this table, it is easy to see that 4 different results can be obtained,

(a,b) wy < 0.5 (bya) : w1 <0.5
(a,d) always (d,a) : wy>0.5
(b, ¢) wy + wy > 0.5 (e,b) : w2 <05
(b,d) always (d,b) never

(¢, d) wy < 0.5 (d,c) wy > 0.5

Table 7.15: Conditions on weights.

depending on the choice of weights. They are presented in table 7.16 (remember
that we know that a P c). If we are very strict and decide that a result is robust

Weights Results
wy <0.5and wy >05 bPa,aldbPc,bPd,dPc
wy <05andwy, =05 albaldblcbPdcld
wy <05andwy, <05 albaPdblc,bPd,cPd
wy >0.5and wy <05 aPbaPdblcbPdcPd

Table 7.16: Possible results.

only if it remains unchanged for all possible sets of weights, then the only robust
conclusion is b P d (to which we could add two “negative” robust conclusions:
Not[d P a] and Not[c Pb]).

But if we accept to relax the definition and refuse only the inversion of strict
preference, we can also accept the global preference for a over d and for b over ¢
as robust. In a choice problem, a robust prescription could be the elimination of
¢ and d, as they are both globally not as good as a and b.

This example again shows that robustness is not an objective concept: it de-
pends on what the decision maker considers as “different results” (here, the inver-
sion of strict preference). This is why we consider that the concept of robustness
should be taken into account as early as possible in the decision aiding process:
ideally, it should be defined in the modelling step of the problem (see section 2.3.2
of chapter 2).

Note that, due to the small number of dimensions in the example, it was pos-
sible here to enumerate all the versions compatible with the available information.
This is generally not the case and a difficult question is how to build a represen-
tative set of versions. <

Example 7.12 (Linear Programming)

Note that the previous example also illustrated the fact that the concept of ro-

bustness can be applied to prescriptions and not only to solutions of the problem

(as was the case in example 7.9). More generally, it can be applied to any kind of

information, even in classical optimisation problems, as illustrated below.
Suppose that you have to produce a mix of two products A and B. The total

quantity of A and B to be produced is 30 tons; for technical reasons, you cannot
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produce more than 20 tons of the same product. The profit associated to each
product depends on the market conditions and two representative versions are
considered.

In the first version, the profit made on product A is 20€ per ton and the
profit made on product B is 10€ per ton. In the second version, the profits are
respectively 10€ per ton for product A and 30 € per ton for product B.

A traditional tool used for treating such a problem is linear programming.
Denoting by = and y the respective quantities of A and B in the production plan,
we have to determine the values of x and y that maximise (ax + by) under the
constraints

0 < =z < 20
0 < y < 2
z+y = 30

where a = 20, b = 10 in the first version and a = 10, b = 30 in the second version.
In such a context, assertions such as:

e there exists a solution giving a value at least equal to 50 to the objective
function,

¢ the value of the objective function is less than 700,
e the solution 7 = z9 = 15 cannot be optimal,

can be qualified as robust because they are true whatever the version.

However, the conclusions that are true for all the possible versions will generally
be of minor interest to the decision maker because there are too general (this is
the reason why Roy, 1998, proposed several variants of robustness).

Again, the choice of a robustness concept will depend on the context and on
the decision maker’s preferences. In an optimisation problem (as in examples 7.9
and 7.12), he may want to obtain, for instance:

e a solution that is feasible in all the versions and gives in each version a
value of the objective function that is within 10% of the optimal value of the
objective function for that version,

e a solution that belongs to the 10% best feasible solutions in each version,

e a solution that is feasible in 95% of the versions and quasi-optimal (within
5% of the optimum) in all the versions in which it is feasible,

e a solution that is feasible in “most” of the versions, “very good” in “many”
versions and “not too bad” in the others (the terms between inverted commas
having to be progressively formalised during the decision aiding process).

In a more general decision problem (as in example 7.11), there are of course many
more possibilities. A dialogue with the decision maker about these aspects seems
to be necessary in a decision aiding perspective. %
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7.5.5 Robust methods

Let us consider again the preference aggregation problem presented in exam-
ple 7.11. We fixed an aggregation method (the weighted absolute majority rule)
and we studied the set of results that could be obtained using this method on the
basis of the available information. Then, given a particular definition of robust-
ness, we obtained a set of robust prescriptions. Another approach would consist
in trying to build a method which always gives robust results, the definition of
robustness having been fixed in advance. Assume for example that the decision
maker considers an aggregated preference relation as robust if it is unchanged from
one version to another, except the eventual replacement of strict preferences by
indifferences or vice versa (remember that, in this example, a version is charac-
terised by a set of weights for the different dimensions). A method providing only
robust aggregated preference relations could be qualified as robust for this problem
(the reader will find an example in Vincke, 1999a). However, the search for robust
methods may lead to ad hoc methods which are not very interesting in practice
(pushing to the limit, if the method imposes the values of the weights, there is
only one version and the result will certainly be robust). This can be remedied
by the introduction of a concept of “neutrality”, which was proposed in Vincke
(1999a) (note that this term has here a meaning that is different from the one in
section 7.4.3 and chapter 5).

Sorensen (2003) and Sevaux and Stremsen (2004), in the field of scheduling
problems, propose a robust tabu search technique for combinatorial optimisation
problems and suggest a distinction between two kinds of robustness for the solu-
tions: the robustness of their structures and the robustness of their performances.

7.5.6 Back to Thierry’s choice

Considering again the example in section 7.3.5 (see also Bouyssou et al., 2000,
ch. 6), we can identify several sources of uncertainty that justify some robustness
considerations.

First of all, as in all decision problems, the so-called data (see table 7.3) cannot
be considered as completely and precisely known. These “data” depend on the
origin of the information (here, journals specialised in used cars), on the chosen
scales for each dimension and on some preliminary calculations made on the raw
data to summarise them (see Bouyssou et al., 2000, ch. 6.1.1; this is especially true
for criteria 4 and 5). Explicitly taking these uncertainties into account could lead
the analyst to replace the numbers in table 7.3 by intervals and to consider that
each element of the Cartesian product of these intervals defines a different version
of “Thierry’s choice” problem.

Using intervals in the UTA approach (see section 7.3.1.3.1) would lead to a
lower bound V(z) and an upper bound V(z) for each alternative = and the pref-
erence:

Sunny > Galant
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given by the decision maker would lead to an inequality such as:

V(Sunny) > V(Galant)

that could be integrated in the linear programme that is solved in order to build
the value function. Note that, as explained in chapter 3 (and, in particular, sec-
tions 3.7.4 and 3.7.3), there are several ways to express preferences between inter-
vals and the preference here above could also be represented by the two following
inequalities:

VY (Sunny) > V(Galant),

V(Sunny) > V(Galant).

Moreover, as already mentioned in section 7.3.1.3.1, the choice of the objective
function of the linear programme is somewhat arbitrary, so that it is important
to look for conclusions that, insofar as possible, resist the arbitrariness in the
choice of the objective function. In a choice problem, an interesting question is to
know whether there exists, for a given alternative z, a specification of the model
leading to the choice of that alternative. On the basis of table 7.5, we can say that
“Tipo is not the best” is a robust conclusion (because there is no value function
compatible with the available information that leads to the choice of Tipo). The
conclusion “Alfa is the best” is not robust. Indeed, while table 7.5 shows that
the assertion is true for some value functions, table 7.6 reveals that there are
value functions compatible with the available information for which it is not true.
Similarly, in a ranking problem, an interesting question is to know whether some
global preferences between pairs of alternatives are valid for all (or almost all)
value functions (see section 7.3.5)

Besides the uncertainties on the data and on the parameters of the decision
aiding model, a third level of uncertainty is connected to the choice of the model
itself. In Bouyssou et al. (2000, ch. 6), the “choosing a car” problem was treated
with different methods (e.g., methods using value functions and methods using
outranking relations): the robustness of a conclusion or a prescription can also be

- studied in relation to this diversity. When this is done, one should note that the
choice of the decision aiding method has an influence on the definition of the nec-
essary data (since two different methods may require different data). This shows
that the distinction between the so-called “data” and the so-called “parameters of
the method” (which we made in examples 7.9 and 7.11) is not always so clear.

7.5.7 Robustness and MCDA

In the case where the decision problem is modelled as an optimisation problem and
where a finite number of versions (sets of values for the data and the parameters
of the model) has to be taken into account, one could argue that there are some
similarities between searching for a robust solution of the optimisation problem
(that is a solution which is good in most versions and not too bad in others) and
searching for a compromise solution of a multicriteria problem where the versions
play the role of criteria. A concept such as efficiency (i.e., the search for non-
dominated solutions) could be used to select the candidates that qualifies as robust



7.5. ROBUSTNESS OF THE CONCLUSIONS 397

solutions and multicriteria methodologies could be applied to determine robust
solutions. The interested reader will find an illustration of this approach in Hites,
De Smet, Risse, Salazar, and Vincke (2003), where the robustness of a solution
does not only depend on its worst performance (as in Kouvelis and Yu, 1997) but
simultaneously on its good and bad performances (without trivially applying an
arithmetic or a weighted mean the drawbacks of which were abundantly illustrated
in Bouyssou et al., 2000. See also the concept of generalised Lorenz dominance
used by Perny and Spanjaard, 2003 for the same kind of problem).

Despite the similarities between searching for a compromise solution of a multi-
criteria problem and searching for a robust solution of a multiversion optimisation
problem, one should avoid considering that the only difference is the vocabulary
(on this subject, see Hites et al., 2003). In the formulation of the problem, the
family of criteria is built in such a way that the decision maker’s opinion is as
well represented as possible (see the concept of consistent family of criteria pro-
posed in Roy and Bouyssou, 1993, ch. 2), while the set of versions is often, at least
partially, imposed by external conditions. Moreover, the number of versions can
be infinite (e.g., if the values of the parameters are defined using intervals) and
the concepts of relative importance or preferential independence are not easy to
transpose. Finally, most decision problems are simultaneously multicriteria and
multiversion. In conclusion, it seems clear that the concept of robustness justifies
the development of a specific theoretical framework and of new methodologies.
This is an open field of research for the future.

7.5.8 Summary and open questions

Lo

o 1. Ignorance and uncertainty constitute an inevitable feature of all decision
- or evaluation problems. They find their origin, in particular, in:

&

(S e the attitudes of the actors,

éﬁ e the fact that the model is not reality,

2 e the incomplete or imprecise knowledge of the environment,

£

@ ¢ the imprecision of the measurement instruments,

62 e the fact that the choice of a precise decision aiding model is some-
5 what arbitrary,

£ e the imperfections of the communication between the actors.

&2
€3 2. Traditional tools (and, in particular probabilistic tools) are not com-

= pletely satisfactory to cope with all these uncertainties. “Much of what
S is not known cannot be expressed in terms of probabilities” (Rosen-

- head et al., 1972). The fact that there is always an irreducible part of
]

- uncertainty or ignorance that cannot be quantified and reduced to an
&2 optimisation problem is included in the idea of robustness.
&2
&

3. Robustness is, like “preference” or “importance”, a property that de-
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pends on the actors and the context: it has to be modelled in the course
of the decision aiding process.

. If the situation requires the use of the notion of robustness, it should

be integrated in the very beginning of the decision aiding process, in
the structuring step (see section 2.3.2 of chapter 2). This implies a
careful reflection about acceptable assumptions, reasonable requirements
and, finally, a good knowledge of the situation. It is also an interesting
communication tool to improve the mutual understanding between the
decision maker and the analyst.

. Robustness ideas and multicriteria concepts present some similarities,

but searching for robust solutions is not simply a particular application
of multicriteria methodology.

. Classifying and characterising multiversion situations in function of the

various sources and types of uncertainties is an open research question.
It is likely that the concept of robustness and its implementation should
depend on this classification.

. Decision aiding may first consist in trying to reduce the uncertainties,

in working on the set of versions, instead of immediately searching for
robust conclusions or solutions.

. Decision aiding may also consist in building robustness indicators or

providing structured sets of solutions and mechanisms of adaptation to
the evolving circumstances.

. An interesting question is that of the dependence or independence among

the various versions of a problem (in particular in the case in which the
data are defined using intervals).

Taking the concept of robustness into account in decision aiding tools and tech-

niques calls for the development of specific concepts and tools. This development
is likely to be of central importance in the next few years. It will considerably
enrich the toolkit of analysts.



8

CONCLUSION AND
PERSPECTIVES

8.1 Did we keep our promise?

This book follows a volume published in 2000 by the authors and Patrice Perny.
Five years ago we wrote (see Bouyssou et al., 2000, p. 244):

At this point it should be apparent that research on formal decision
and evaluation methods should not be guided by the hope of discovering
models that would be ideal under certain types of circumstances. Can
something be done then? In view of the many difficulties encountered
with the models envisaged in this book and the many fields in which
no formal decision and evaluation tools are used, we do think that this
area will be rich and fertile for future research.

Freed from the idea that we will discover THE method, we can, more
modestly and more realistically, expect to move towards:

o structuring tools that will facilitate the implementation of formal
decision and evaluation models in complex and conflictual decision
processes;

o flexible preference models able to cope with data of poor or un-
known quality, conflicting or lacking information;

e assessment protocols and technologies able to cope with complex
and unstable preferences, uncertain tradeoffs, hesitation and learn-
mng;

e tools for comparing aggregation models in order to know what they
have in common and whether one is likely to be more appropriate
in view of the quality of the data?

o tools for defining and deriving “robust” conclusions.

To summarise, the future as we see it: structuring methodologies al-
lowing for an explicit involvement and participation of all stakehold-
ers, flexible preference models tolerating hesitations and contradictions,
flezible tools for modelling imprecision and uncertainty, evaluation mod-
els fully taking incommensurable dimensions into account in a mean-
ingful way, assessments technologies incorporating framing effects and
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learning processes, exploration techniques allowing to build robust rec-
ommendations (see Bouyssou et al., 1993). Thus, “thanks to rigourous
concepts, well-formulated models, precise calculations and axiomatic
considerations, we should be able to clarify decisions by separating what
1s objective from what is less objective, by separating strong conclusions
from weaker ones, by dissipating certain forms of misunderstanding in
communication, by avoiding the trap of illusory reasoning, by bringing
out certain counter-intuitive results” (Roy and Bouyssou, 1991, see).

This “utopia” calls for a vast research programme reguiring many
different types of research (axiomatic analyses of models, experimental
studies of models, clinical analyses of decision/evaluation processes,
conceptual reflections on the notions of rationality and performance,
production of new pieces of software, etc.).

The authors are preparing another book that will hopefully con-
tribute to this research programme. It will cover the main topics that
we believe to be useful in order to successfully implement formal deci-
sion/evaluation models in real-world processes :

e structuring methods and concepts,

e preference modelling tools,

e uncertainty and imprecision modelling tools,
e aggregation models,

o tools for deriving robust recommendations.

If we managed to convince you that formal decision and evaluation
models are an important topic and that the hope of discovering “ideal”
methods is somewhat chimerical, it is not unlikely that you will find
the next book valuable.

Well, the “next” book is now in your hands. Did we manage to keep the promise
that we made five years ago? Although you remain the ultimate judge, we think
that it has been kept, at least partially.

While writing this book, we quickly realised that we could not give an exhaus-
tive view of all the current trends of research in decision aiding. Significant parts
of the field, such as decision under uncertainty and combinatorial optimisation,
had to be neglected. We finally decided to concentrate on “multiple criteria”,
although we are well aware that in many important situations this may not be
the central issue. Yet, our feeling is that, we have contributed to the “utopia”
announced earlier. Indeed:

1. Our presentation, although it is not exhaustive, is carried out within a unique
frame that can be extended to most (all?) decision and evaluation models:
the establishment of a “decision aiding methodology”. This is a step towards
a coherent structure of reasoning about theories and practices concerning
deciding and aiding to decide. We tried to show that different perspectives
on practice as well as different decision theories can be unified within a
“unique methodology”, the layout of which is introduced in this book.
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2. This book summarises concepts, findings and results obtained by the authors
and the larger OR/MS community over the last 15 years in a research project
which was summarised in the “Manifesto of a new MCDA era”, in which we
claimed (Bouyssou et al., 1993):

So what? We feel that at the beginning of the new age of MCDA
some priorities have to be settled. We do not need new methods
that just extend old ones or complicate already existing procedures.
We do not need conventional examples and applications that do
not allow us to learn more about MCDA. We believe that two main
subjects should be explored:

e theoretical and axiomatic foundations of MCDA at all levels
(approach, methodology, methods);

e conceptual and operational validation of the use of MCDA in
real world problems.

The results obtained since then are sufficiently encouraging not only to keep
going on, but also to try to summarise them in this volume.

8.2 Decision Aiding Methodology using stepping
stones

Hopefully reading this book has helped you realise that a decision aiding method-
ology is not just a collection of methods with some underlying theory. Indeed,
we cannot reduce decision aiding to the mere application of some formal meth-
ods that “faithfully” report the decision maker’s problem, preferences and values.
As discussed extensively in chapter 2 decision aiding is a process, during which a
number of “shared cognitive artefacts” are constructed through the interaction of
the participating actors, that is, at least, the client and the analyst. The main
cognitive artefacts are:

e a representation of the problem situation;
e a problem formulation;

e an evaluation model;

¢ a final recommendation.

Each of such artefacts contains precise elements of information, the presence of
which must have a justification. Such a justification comes from:

o the fact that the client and the analyst agree that these artefacts are relevant
for the decision process for which the decision aiding was requested,

e the fact that such elements constitute a consistent body of information,
where consistency is provided by axioms and theorems established in De-
cision Theory and Operational Research.
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The content of these cognitive artefacts is not the result of a straightforward
process, but the reasoned result of the interactions between the client and the
analyst. There are no “objective” elements within such an artefact, but elements
“subjectively” chosen as useful by the client and the analyst. This is again illus-
trated by the following example.

Example 8.1

A regional authority wants to establish a health care policy. In doing so, it may
consider the opinion of its “health officers” relevant. This is a choice. Not all
regional authorities will have the same attitude. We have to take this option into
account when providing decision aiding in such a situation. If, in order to imple-
ment the above policy, the regional authority decides to listen to the trade unions
or the individuals, this is again a choice which will affect the information collected
and possibly the outcome of the process. Furthermore, the way in which such
an opinion will be considered is a choice: it can be considered to be a constraint
(hard or soft), it can be considered to be a criterion among others or it can finally
simply be ignored. These are examples of critical options to be considered when
involved in a decision aiding process. Last, but not least, in the case the client
(for the same problem situation: the new health care policy in a certain region) is
not the regional authority, but another actor involved in the process, all the above
choices could be totally different. Aiding somebody to decide means being able to
assist him in all such choices. Aiding a client in a decision process is not only the
construction of a model comparing policies, but also the process with which these
policies are conceived, shaped and analysed. <

Decision aiding is always viewed as a decision process in which a “client” asks for
the advice of an “analyst”. In this book, we have chosen a simplified presentation
of this process in which the client and the analyst are seen as two interacting indi-
viduals. However, a client is not necessarily a decision maker (he could for instance
be an adviser to the decision maker). Furthermore a client is not necessarily an
individual, but could be a collective body (a board of directors, a committee, a
group of experts, a social group etc.). The motivation for asking advice is not
necessarily “to make a decision”, but to construct an argumentation or a justifi-
cation. Finally, an analyst is not necessarily an individual, but may be a group of
analysts. There might be a “chain” of analysts, each being the client of another.
A real decision aiding process is always a complex reality of interactions occurring
within real decision processes. Our simplified representation of such a process has
been conceived for two reasons:

1. our aim is not to make a “sociological” analysis of the decision aiding process
{(while this is also an important field of research), but to identify which
cognitive artefacts characterise the process in order to be able to conduct it;
in other words we try to provide a guide, a handbook, some stepping stones
for those who, for some reason, are in the position of analyst;

2. even in the most complex decision aiding situations there will always be two
distinct actors (almost always two individuals) who will have to argue about
what the problem is, how to formulate it and how to solve it; they represent
the “not further decomposable” units of the decision aiding process.
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8.3 Decision aiding approaches and tools

In this book we have discussed a number of different decision aiding approaches,
i.e. different perspectives about conducting of a decision aiding process. They are
essentially different insofar as their assumptions about the origin and the nature
of the rationality model to be introduced in the decision aiding process are con-
cerned. We claim that such approaches are not collections of methods, although
this is a common way to classify decision methods. Indeed, what we distinguish
are not methods, but how these methods are or can be used. For instance, optimi-
sation methods can be used in a constructive way, while outranking methods can
be used in a normative way. Normative, descriptive, prescriptive and construc-
tive approaches represent general directions on how a decision aiding process is
conducted and therefore represent a key part of a decision aiding methodology.
This having been said, we consider that a decision aiding methodology also
contains a toolbox of methods, protocols of interaction, procedures, algorithms
and concepts. When facing a problem situation, the analyst has to use such a
toolbox. The issue is then how to use it consistently in order to provide the client
with a useful, meaningful and legitimated recommendation. Indeed, this book
mainly aims at providing elements allowing to construct and use formal models
of different natures. We wanted the reader of this book to be able to use formal
models and tools in a reasoned and informed way. We tried to provide some
stepping stones in this direction. More precisely, we decided to cover the main
tools used for the construction of decision support models and methods in the
presence of multiple criteria. We distinguished three classes of such tools:

o preference modelling tools;
e preference aggregation tools;
¢ final recommendation tools.

The reader may have already noticed that several of the tools we discuss can also be
used when where multiple criteria are not present. Preferences are modelled in any
type of decision support model and under any approach. Aggregation procedures
are extremely common in many situations in which no criterion is modelled (such
as when we aggregate uncertainties or measures). Some algorithms presented in
chapter 7.1 are derived from graph theory and, as such, have wider applications
than the ones discussed here. We have not discussed such extensions in this book,
although they may prove important features of a decision aiding methodology.

8.4 Stepping stones for preference modelling

Modelling preferences is the essential and elementary activity of any decision aiding
process. Preferences always refer to somebody and to a given problem situation
and formulation. As such they always represent the “subjective” dimension of any
decision support model. There are no “objective preferences”, as is no “objective
decision support”.
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There are two different problems in preference modelling. In the first one ob-
jects, for which preferences have to be expressed, are described using one or several
attributes to which a “measurement scale” is associated. From this information
we try to derive a preference model. Consider the case in which two objects have
respective lengths of 10cm and 12 cm: we want to know which one is preferred to
the other and under which preference model.

In the second one, we already have a set of preference statements (possibly
expressed directly by the client) and we want to know whether there is a preference
model that captures such statements. Furthermore, we want to know whether a
numerical representation equivalent to such a model exists, i.e., one or more real
valued functions on the set of objects for which the preference statements have
been expressed, such that the relations between the numerical values are equivalent
to the preference statements. Consider the case in which the client claims that a is
indifferent to b which is indifferent to ¢, but a is preferred to ¢. We are looking for
one or more functions u : {a, b, ¢} — R that will associate a real number to each of
the objects in such a way that we can represent the above-mentioned statements
comparing these numbers in some way.

In both cases the analyst has to pay attention to:

e the properties the numerical scales have or could have; this is important
when such information (the scales) have to be further used in the decision
aiding process since it affects the meaningfulness of the manipulations we
carry out (as for instance when we aggregate measures or preferences);

e the properties that preference models fulfill (such as completeness or transi-
tivity), since again these can allow the use of certain numerical representa-
tions and/or of certain methods;

e the fact that although there is a limited number of preference models avail-
able in the literature, they are sufficiently flexible to cover most of the pref-
erence statements a client can address within a problem situation, including
situations of conditional preferences, ambiguity, uncertainty and/or incon-
sistency; it is important therefore, to look carefully for the most appropriate
model;

e the fact that numerical representations of preferences are a very elegant and
easy to handle tool, but by no means the only way to elaborate recommen-
dations; it is possible to work with the preference statements modelled in
a different way without necessarily looking for a numerical representation,
which might not even exist.

8.5 Stepping stones for preference aggregation
Aggregating preferences is one of the main technical problems in Multiple Criteria

Decision Analysis methods. Indeed a large part of this book are dedicated to this
problem (chapters 4-6).
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The point of view adopted is to help the analyst to make better use of a toolbox
of techniques, rather than describing a number of methods exhaustively (although
several of them are briefly described in the text). As with preference modelling,
we consider two different perspectives of the preference aggregation problem.

The first perspective focuses on aggregation procedures and is inspired by re-
lated results in social choice theory. Given preferences expressed on several criteria,
we try to construct or identify the most appropriate procedure to perform a syn-
thesis of the preferences and the most appropriate protocol to obtain the necessary
preferential information that such a procedure may require. Despite their differ-
ences, most of the procedures that were analysed share several common features
that we tried to uncover in the text, while emphasising the specific characteristics
of a number of well-known techniques.

The second perspective focuses on the client’s preferences and the models that
can represent them. The idea here is, how to interpret the client’s global preference
statements when there is an underlying multi-attribute structure. We obtain sets
of conditions that preferences have to satisfy in order to be represented using
a number of models. Such conditions allow the comparison of models and, most
importantly, give hints on how to assess them. Such a perspective is clearly inspired
by conjoint measurement theory and extensively discussed in chapter 6.

We can summarise some stepping stones for the analyst as follows.

e There is no unique and/or universal procedure or model to aggregate pref-
erences. A preference aggregation procedure has to be discussed, chosen,
validated and justified as appropriate within the decision aiding process (in
the evaluation model) given the information available and the problem for-
mulation adopted. Chapters 46 show that this is not an impossible task.

o A preference aggregation procedure tends to impoverish the information
available before aggregation. This means that from “poor” information we
cannot construct a “rich” result without adding information. The client has
to be aware that in order to obtain a “rich” result he has to provide more
information and this can be costly (not only in monetary terms) and painful.

e Almost all preference aggregation procedures make use of specific parameters
(e.g., tradeofls, importance coeflicients, thresholds, beliefs) that have to be
assessed. Quite often, there are specific protocols to assess such information,
which take the client’s cognitive effort and the biases possibly arising from
the client/analyst interaction into account. The analyst has to take care in
using them appropriately.

¢ It is not uncommon that applying a preference aggregation procedure implies
making several hypotheses that are difficult to verify. These hypotheses have
to be explained to the client who has to understand their consequences. The
client should understand the logic of the models that were used. He should
feel the owner of the models.

¢ The axioms characterising preference aggregation procedures and models are
not just their mathematical description. They have to be seen as properties
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that may or may not be desirable or required. Knowing the axioms char-
acterising a certain procedure is much like knowing the “properties” of a
cruciform screwdriver: they give hints on how, where and when to use it.

o Despite their variety, preference aggregation procedures and models share
several common features and can be sorted into in a limited number of
classes. The analyst tempted by the creation of a new ad-hoc procedure
should take care to verify whether what he is trying to do makes sense and
has not already been analysed in the literature (and the book you have in
your hands gives a reasonable sample).

8.6 Final stepping stones

Decision aiding is a process which starts in the real world (recognising the problem
situation) and step by step moves towards formal modelling (indeed, it is based
on the use of a formal language). However, at a certain point, it has to come back
to the reality and formulate a final recommendation for the client.

From such a perspective, the results obtained through the use of the evaluation
model remain in the abstract and formal world and do not necessarily represent
something which can be directly used by the client for his concerns and purposes.
After all, a client asks for your advice in order to buy a car, not to learn his value
function for cars.

The return to reality is a mix of formal and informal activities. Informal for
the validation and legitimation of the results regarding the decision process for
which the aid was requested. Formal for the elaboration of final recommendation
from the rough result of the evaluation model. Chapter 7.1 is dedicated to this last
part of formal decision aiding activities. The problem here is that the evaluation
model can elaborate a synthetic representation of the client’s preferences, beliefs,
judgements and assessments, but may not provide a direct answer to the problem
statement agreed upon in the problem formulation. If this is the case (and it
often is), then we still need one further step to obtain such a specific answer. This
means, e.g., going from a global value function to a best choice; establishing a
subset of “good” candidates (not identical to the subset of the better ones) from
some pairwise comparisons between candidates and profiles, etc. In performing
such a final step, the analyst should take into account the fact that:

¢ most of the procedures elaborating the final recommendation are algorithms,
which fulfil some specific properties (and not others) that should be analysed
with care. There is no straightforward procedure in performing this step (as
was the case for the previous ones). It has to be chosen and justified.

e It is not uncommon that several such procedures will (again) introduce some
arbitrary hypotheses. This has to be discussed with the client, who has to
understand them and agree on their use.

e Sensitivity analysis (in the sense of analysing the behaviour of the recommen-
dation with respect to perturbations of the evaluation model parameters) is
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an essential activity to be pursued at this step. It enable the analyst to give
a more convincing result to the client and to construct a reasoned argumen-
tation.

¢ Robustness analysis (in the sense of establishing whether the recommenda-
tion will still hold under different scenarios of information and combinations
of parameters) is a critical activity to be performed at least at this stage
and for which sensitivity analysis is not a substitute. Being able to provide
a robust recommendation can be of invaluable help to the client and should
be the ultimate aim of a decision aiding process. We may even claim that
robustness should be an issue to consider when formulating the problem.

8.7 And after all this?

Our hope “after all this” is that the stepping stones we presented and justified in
this text will be really helpful to the analysts who try decision aiding in the real
world. We will be happy to receive feedback on this point.

On the other hand this book concludes (we hope positively) an experience
started over 10 years ago, trying to condensate theoretical and practical knowl-
edge about decision aiding into a methodology. We are aware that despite our
efforts (and the efforts of a whole community carrying out research and practice in
decision aiding), questions of capital importance remain unanswered. They deal
with both the theoretical foundations of our discipline and the practical carrying
out of decision aiding processes. Indeed, what is presented here remains far from
a “ready to use methodological compendium”.

This means more research. We need to further investigate theoretical questions
in preference modelling, in decision making under uncertainty, in axiomatising
protocols, algorithms and models. We need further research in order to understand
the dynamics of decision aiding processes and the relations between their cognitive
artefacts. We also need more insight into our practical experiences and professional
activities to enhance our knowledge about successes and failures.

In other words: there is still a lot of work to be done. But this is another story.
Our hope is that we have motivated you enough to contribute. Who knows; it
may be that one day, some of us continue it. Until then, so long. ..

Bruxelles, Gent, Mons, Paris (Brussels, Ghent, Mons, Paris)
September 2005
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dominated alternative, 358
greatest alternatives, 363
kernel, 365, 367
quasi-kernel, 367
scores, 368
desirable properties, 361
reference point, 362
valued relation, 368
cuts, 369
fuzzyfication, 369
min in favour, 370
net flow, 370
scores, 370
coalitions of criteria
comparison, 313
cognitive artefacts, 34, 401
defeasible, 61
evaluation model, 41
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final recommendation, 44
problem formulation, 37
problem situation, 35
cognitive mapping, 46
commensurability, 200, 203-205, 208, 216,
224, 230
comparison problem, 80, 81, 83-103
for interval evaluation
interval scale, 102
interval scale with threshold, 103
ordinal scale, 97-100
ordinal scale with threshold, 100
for pointwise evaluation
interval scale, 92
interval scale with threshold, 94
ordinal scale, 83
ordinal scale with a degree of pref-
erence, 90
ordinal scale with multiple thresh-
olds, 89
ordinal scale with threshold, 85
ordinal scale with two thresholds,
87
ratio scale, 95
completeness, 171, 173
componentwise strong ordinality, 220
concordance
relation, 312
elicitation, 317
threshold, 185
concordance-discordance
relation, 316
Condorcet method, 171-178, 283
generalized, 197
weighted, 178-182, 284
conjoint measurement, 127, 237-326, 338
restricted solvability, 248
Thomsen condition, 247
unrestricted solvability, 248
consistency, 123, 195, 231
constraint satisfaction problem, 144, 206,
216
continuity, 230
convexity, 179

decision aiding
approach, 21, 26
constructive, 24, 25
descriptive, 23, 24
normative, 22, 24
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prescriptive, 23, 25
decision aiding process, 21, 28-45, 63
cognition, 34
cognitive artefacts, 35, 61
conclusion, 45
conduction, 21, 28, 45
decision process, 36, 61
model, 34, 52, 64
problem formulation, 37
decision process, 24, 28-34
model, 30
decision support
decision process, 36
language, 20
methods and tools, 27
dimension
essential, 248
importance, 246
direct rating, 148, 251
dispersed consequences, 206, 216
dominance, 240, 268

ELECTRE 1, 153, 159, 187, 223, 316,
356, 359, 365
ELECTRE IS, 365, 367
ELECTRE 11, 316, 374
ELECTRE 111, 161, 193, 199, 202, 321,
357, 372, 378, 380
ELECTRE TRI, 383, 385
elicitation, 147-156
additive value function, 241, 251
bisection, 251
concordance relation, 317
decomposable model, 256
direct rating, 251
midvalue splitting, 151
models D, 280
models L, 272
models L — D, 306
preference difference, 251
entropy, 155
evaluation model, 41-44, 56, 117
absolute, 328, 335
aggregation procedure, 58
alternatives, 56
criteria, 57
dimensions, 57
measurement scales, 57
relative, 328
uncertainty, 58
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faithfulness, 123, 179, 227
generalized, 195
fuzzy relation, see valued relation

generalised Borda method, 194-197
generalised cancellation, 195-197
generalised Condorcet method, 197
generalised faithfulness, 195

idempotency, 230
independence, 215, 218, 238
strong, 239
weak, 238, 239
independence of irrelevant alternatives,
172, 174, 175, 179, 184, 190,
191, 197
cardinal, 209, 215
with thresholds, 219
independence of irrelevant criteria, 179
interaction space, 30
states, 30
interval scale, 191, 196, 197, 204, 210~
212, 217, 224, 233
invariance
w.r.t. a common multiplication, 210,
217
w.r.t. independent translations, 210,
232

legitimation, 45, 60

lexicographic method, 188-191, 289
leximax, 214

leximin, 214

limited influence of indifference, 184, 185
linguistic performances, 224

MACBETH, 344, 347
majority
absolute, 148, 149, 183-188
generalized, 197
qualified, 160, 183-188
weighted, 284, 290, 295
simple, 160, 171-178, 283
weighted, 178-182, 284
with bonus, 297
with veto, 293, 295-297
MAPPAC, 380
marginal preference, 239
properties, 270
marginal trace, 262, 304
complete, 266



442

left, 265
model L, 267
model L — D, 303, 304
on differences, 275
right, 265
MAVT, 151, 162, 206, 225
max, 207, 234
maximin, 207
meaningfulness, 44, 58, 76, 77, 196, 198,
203
measurement, 196, 200, 241
conjoint, 127, 237-326
interval scale, 246, 249
preference differences, 319
theory, 77
MELCHIOR, 150
meta-object, 30
midvalue splitting, 151
min, 207, 234
minimal incomparability, 187
minimax, 207
monotonicity
strict, 230

neutrality, 123, 171, 173, 179, 183, 195,
227
cardinal, 209, 215, 219, 230
in a robustness context, 395
no indifference, 177
no reversal, 219
non-dictatorship, 175
non-negative responsiveness, 184
noncompensatory, 302, 312, 315
numbers
expert advice example, 75
legitimate operations on, 71, 73, 74,
76
measurement, 68, 69
race example, 69, 73
scale, 71, 73, 74, 76
temperature example, 71
used as labels, 69
used for counting, 68
numerical representation problem, 80, 82,
104-114

operational completeness, 44
order statistics, 234

ordered weighted average, 235
ordinal procedure, 302

SUBJECT INDEX

ordinal scale, 203, 204, 208, 216, 218,
224, 234
ordinality, 215, 216
semi-, 220
strong, 207, 216
ORESTE, 150
outranking procedure, 218-223, 316

parameter, 155
Pareto, 175, 184
cardinal, 209, 215
semi-, 219
strong, 190
positive responsiveness, 171, 173, 179,
227
possibility theory, 101
PRAGMA, 380
preference difference, 276
additive, 319
five classes, 298, 310
many classes, 301
three classes, 282, 310
preference independence
strong, 218
weak, 218
preference model, 399
additive differences, 273, 302
additive preference differences, 319
additive value function, 238, 249,
338
Linear Programming assessment,
340
MACBETH, 344
standard sequence, 338
UTA, 342, 351
decomposable, 255, 258
lexicographic, 289
marginal traces, 267, 303, 304
noncompensatory, 302
nontransitive additive, 274, 302
traces on differences, 276, 303, 304
value function, 327, 332, 337
cardinal, 335, 336
ordinal, 335, 336
preference relation
a priori, 282, 288, 312, 314
concordance, 312
decomposable, 255, 2568
dominance, 268
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elicitation, 241, 251, 256, 272, 280, problem statement, 37-41, 328
317 choosing, 329, 333
fuzzy, 320 ranking, 329, 334
independence, 238 sorting, 330, 335
marginal, 239 problem structuring, 46-61
marginal trace, 262 PROMETHEE 1, 357, 372, 380
noncompensatory, 312, 315 PROMETHEE 11, 145, 163, 193, 196,
responsiveness, 240, 266, 276, 280 202, 321, 357, 372, 380
separable, 258
Thomsen, 247 qualified majority, 183-188
trace on differences, 275 QUALIFLEX, 150
valued, 320 quasi-arithmetic mean, 233
preference structure
(P, @, I) semiorder, 299 ranking procedure, 372
(P,Q,I) interval order, 98 crisp relation, 372
(P,Q,I) semiorder, 98 Copeland scores, 359, 376
(P,Q,I) structure, 102 desirable properties, 372
numerical representation, 113 distance-based, 378
circuit, 334 ELECTRE 11, 374
homogeneous family of semiorders, faithfulness, 376-378
90 monotonicity, 376-378
incomparability, 328, 355 repeated choice, 359, 377
interval order, 98, 103 transitive closure, 373
matrix representation, 111 reference point, 372, 383
numerical representation, 111 valued relation, 380
intransitivity, 328, 355 ELECTRE 111, 380
numerical representation, 104 MAPPAC, 380
partial order PRAGMA, 380
dimension two, 98 PROMETHEE 1, 380
preference difference, 87, 92, 103 PROMETHEE 11, 380
pseudo order, 88 repeated choice, 380
semiorder, 86, 288 scores, 380
matrix representation, 107 ratio scale, 196, 205, 206, 208, 217
numerical representation, 106 rationality, 26
tournament, 360 bounded, 28
valued relation, 90, 101 organisational, 29
numerical representation, 113 recommendation, 327
weak order, 85, 103 final, 44-45, 60, 327-385
matrix representation, 105 robust, 334
numerical representation, 104 reference point, 362, 372, 383
problem Regime, 155
structuring, 2, 399 relation, see binary relation
problem formulation, 37-41, 54 responsiveness
points of view, 55 marginal preferences, 240
potential alternatives, 54 non-negative, 184, 266, 276
problem statement, 55 positive, 171, 173, 179, 227, 240,
problem situation, 35-37, 52 280
actors, 52 restricted positive, 187
concerns, 53 restricted positive responsiveness, 187

resources, 53 reversibility
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strong, 208
weak, 208
robustness, 2, 56, 60, 218, 327, 385-399
definition, 386-388
examples, 388-39%4
mathematical programming, 387
multicriteria analysis, 396
of a method, 395
of a recommendation, 394
of a solution, 394
Thierry’s choice, 395
vs. stability, 386

scale, 69
admissible transformation, 77
info-equivalent, 77
interval, 77,191, 196, 197, 204, 210~
212, 217, 224, 233
ordinal, 77, 203, 204, 208, 216, 218,
224, 234
ratio, 77, 196, 205, 206, 208, 217
type, 78
screening
alternatives, 189
semi-ordinality, 220
semi-Pareto, 219
semiorder, 86, 288
sensitivity analysis, 60, 386
separability, 218
strong, 258
weak, 218, 258
simple majority, 171-178, 355
McGarvey theorem, 356
weighted, 178-182
social choice, 121, 169-235
cardinal, 202
soft systems methodology, 48
solvability
restricted, 248
unrestricted, 248
sorting
classification, 331
ELECTRE TRI, 381
learning by examples, 384
optimistic, 382
pessimistic, 382
limiting profiles, 335
procedure, 380
prototypes, 331, 335, 336
UTADIS, 349

SUBJECT INDEX

stability
w.r.t. a common translation, 231
standard sequence, 242, 247, 248, 250
stepping stones, 24, 25, 27, 29, 31, 33,
35, 83, 56, 58, 59, 61, 64, 79,
153, 182, 186, 191, 208, 211,
213, 218, 223, 233, 241, 246,
250, 257, 263, 270, 273, 279,
302, 317, 391, 397
strategic choice, 47
strict monotonicity, 230
strong ordinality, 207, 216
componentwise, 220
strong Pareto, 190
strong reversibility, 208
substitution rate, 211
Sugeno integral, 235

TACTIC, 165, 177, 182, 296, 297
technical soundness, 44
Thierry’s choice, 117, 349, 395
Thomsen condition, 247
trace
marginal, 262
on differences, 275, 304
complete, 277
model D, 276
model L — D, 303, 304
tradeoff, 211
transitive closure, 359
transitivity, 145, 177, 185, 199, 200

UTA, 153, 342, 347, 351, 395
variants, 344
UTADIS, 348, 354, 383, 385

validation, 42
value focussed thinking, 50
value function

additive, 238, 249, 338, 340, 342,

344, 347, 348, 351-354
finite case, 251

decomposable, 231
valued relation, 192, 320
veto, 293, 296-298

weak order, 85, 175, 190, 195, 209, 215
weak reversibility, 208

weighted anonymity, 179

weighted Condorcet method, 178-182
weighted mean, 234
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weighted minimum, 235
weighted simple majority, 178-182
weighted sum, 150, 158, 211, 217, 234
as aggregation function, 209-214
as aggregation operator, 227
weights, 147, 154, 180, 197, 212, 214
in AHP, 151
in Condorcet method, 180
in ELECTRE, 149
in MAVT, 151
in simple majority, 180
in weighted sum, 212
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