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Introduction

Mais malheur à l’auteur qui veut toujours instruire !
Le secret d’ennuyer est celui de tout dire.

Voltaire (1694–1778)

These notes originated in a course for second-year graduate students given at the
University of Rennes 1 in the period 2005–2008. It was an introductory course on
ergodic theory and dynamical systems; the aim was to present a number of general
ideas that form the basis of these two theories, before the students specialize by
following more advanced courses.

The course consisted of 12 sessions of 2 h each; I chose to focus each session
on one specific concept, and make the different sessions more or less independent
of one another. Consequently, the material presented here lies at the junction of
very diverse mathematical theories, and the audience interested in the subject often
includes students and researchers from very different fields: probability theory,
dynamical systems, geometry, physics, etc.

Each chapter begins with an informal presentation of the concepts and the
problems we wish to resolve. These are followed by rigorous definitions and proofs,
which we have attempted to illustrate with examples that are both simple and
relevant. The figures we include shape the readers’ intuition, while the exercises
allow them to test their understanding of the subject. I found it interesting to add
comments at the end of each chapter, in order to place the material into its historical
context, present a number of actual problems, and orient the readers toward literature
dealing with their own interests. These comments are meant rather for a second
reading and assume a certain command of the concepts presented in this book.

As to the contents, I have chosen to put the emphasis on the ideas rather than
the theoretical aspects, on the examples rather than the technique. There exist
several books presenting the general theories in great detail, both in the domain
of dynamical systems and in that of ergodic theory. These notes are not meant to
replace them. For a number of classical results, I have given new or unusual proofs,
in order to illustrate some lesser known aspects of the subject. These proofs have
the potential to interest even the most hardened researcher. Readers are of course
invited to consult reference material to learn the more classical approaches, which
are summarized in the comments.

xi



xii Introduction

Themes

Ergodic theory and dynamical systems are two theories that go well together. The
first gives the second its most remarkable quantitative results, while the second is
a tireless supplier of examples quick to undermine the conjectures that are most
dear to the first. Both originating at the beginning of the twentieth century, at least
from the point of view of modern mathematics, under the leadership of one of the
giants of the century, Henri Poincaré (1854–1912), they have known a sustained
development up to today. Books that pretend to present a nonnegligible part of these
theories are susceptible, by their volume and by their style, to frighten even the most
motivated students.

This book was written with the aim to be accessible to a large audience, to arouse
the interest in a very active field of mathematics, and to serve as an introduction into
more advanced literature.

The great problems we wish to solve have not evolved much in one century. Take
the example of a map that acts on some configuration space X. The points of X
represent the different states the system can take on during its motion. Starting with
an initial configuration given by a point x of X, the iterates of x correspond to the
successive states the system visits during its evolution. This book is interested in the
following questions:

• Does the system return to its initial state during its evolution?
What do the concepts of recurrence and nonwandering try to formalize, both

quantitatively (measure) and qualitatively (topology)?
• It is possible to construct a representation of the system in which the evolution

takes on a form that is particularly simple to describe?
The notions of local and global conjugation, isomorphism, coding, and

symbolic model each try, in their own way, to put the system in a form where
the evolution can be computed effectively.

• Can the system evolve in such a way that it converges to a state given a priori, if
we perturb it during its evolution?

This theme is dominant in hyperbolic dynamics, where the existence of local
instabilities, modeled by the stable and unstable manifolds, leads to a uniform
behavior of the system that is stable under perturbation.

• In how far can the evolution of the system be predicted in the long term, or which
probability quantity is the system prone to simulate?

The concept of entropy, introduced in 1958 by A.N. Kolmogorov in the theory
of dynamical systems, has allowed us to make decisive progress on this question.

Organization of This Book

Chapters 1–4 deal with results from ergodic theory (recurrence, ergodicity, mixing),
illustrated by examples from algebra, mechanics, or probability theory: Hamiltonian
flows, Bernoulli shifts, toral automorphisms, flows on SL2.R/, etc. We have tried
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to highlight the role played by the weak topology in questions of ergodicity and
mixing; the properties of this topology are recalled in Chaps. 16–18. Chapter 4
presents the Hopf argument, one of the well-known arguments of the hyperbolic
theory of dynamical systems.

Chapters 5–9 deal with the dynamics of transformations, from a topological point
of view. We introduce the concepts of nonwandering, transitivity, and conjugation,
illustrated by the construction of a number of Morse–Smale transformations and
by the study of the dynamics of certain polynomials (Schröder’s examples). The
theory of linearization of Hartman–Grobman allows us to analyze the behavior of
the system in the neighborhood of its hyperbolic periodic points; we apply it to the
study of a system obtained by perturbing a toral automorphism (called derived from
Anosov).

Chapters 10–12 deal with entropy. We prove the Kolmogorov–Sinaï theorem on
generating partitions. As applications, we compute the entropy of dilating maps
(Rokhlin’s formula) and of certain maps on the interval. One chapter deals with the
interpretation of entropy in information theory.

The notions of Lebesgue space and ergodic decomposition are studied in
Chapters 13–15. These important notions are rarely treated in detail in the literature.
The object of these chapters is to present the theory of ergodic decomposition
clearly, concisely, and completely. To do this, we have used the Hopf argument
as inspiration, and construct the ergodic components “geometrically”.

For Whom Is This Book

This book can be studied by a graduate student who has followed a course on
measure theory and knows the vocabulary of the theory of Hilbert spaces. Some
examples require a certain familiarity with the notions of flows and differential
manifolds.

Researchers who wish to familiarize themselves with the issues at the intersection
of dynamical systems and ergodic theory can also benefit from this text, through the
comments appearing at the end of the chapters. These give a brief overview of the
problems and methods that have characterized the theory, and mention a number of
open questions in the field.

Chapters 16–18 summarize the results that are not necessarily part of undergrad-
uate or graduate studies. From the first chapter on, we use the weak topology in the
setting of Hilbert spaces. The properties of this topology are recalled in Chap. 16.
Chapter 17 deals with the notion of conditional expectation.

Certain aspects of the theory of metric spaces and of measure theory are not
studied in their most general form in undergraduate courses: separability, support,
regularity, density of Lipschitz functions in the spaces Lp. These are presented in
Chap. 18. If the reader is not familiar with these results, it is best to omit them
during a first reading of the book. They become more or less evident when we work
on open subsets of Rn with measures of the form f .x/ dx; it is with this type of space
in mind that the reader is invited to begin reading.
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Chapter 1
The Mean Ergodic Theorem

The most useful piece of advice I would give to a mathematics
student is always to suspect an impressive sounding theorem if it
does not have a special case which is both simple and
non-trivial.

M.F. Atiyah

1.1 Introduction

Ergodic theory is the study of the long-term behavior of systems preserving a certain
form of energy.

From a mathematical point of view, a physical system can be modeled by the
data of a space X, a transformation T W X ! X, and a measure � defined on X and
invariant under T: for every measurable set A � X, we have �.T�1.A// D �.A/.
The quadruple consisting of the space X, the measure �, the �-algebra consisting
of the measurable sets with respect to �, and the measurable transformation T that
preserves � form what we call a measure-preserving dynamical system.

The space X consists of the set of all possible states of the system during its
evolution. The transformation T describes its evolution in time; T.x/ is the state of
the system at time 1 if it was in state x at time 0. The successive iterates T2.x/,
T3.x/; : : : give the state of the system at time 2; 3; : : : Finally, the measure �
corresponds to an arbitrary extensive quantity defined on the space X and preserved
during the motion.

The typical example comes from classical mechanics. It is given by a point mass
that moves under the action of a time-independent potential. The set XDR3 �R3
is the space .x; v/ of positions and velocities, also called the phase space. The
transformation T associates with the initial condition .x; v/ the values of the position
and velocity after a given time period, for example 1 s, 1 day, or 1 year, depending on
the studied time scale. Finally, the measure � is the standard volume dx dv defined
on the space X. Its invariance follows from the preservation of energy.

We want to determine the behavior of the sequence of iterates Tn D T ı T ı
� � � ı T. The following remark, due to B. Koopman (1931), is crucial for what lies
ahead. If we let the transformation T act by composition on the space L2.X; �/ of
square-integrable functions, the resulting map U is a linear isometry: if f 2 L2 and
Uf D f ı T, then kUfk D k f k. This follows from the invariance of � under T. We

© Springer-Verlag London 2016
Y. Coudène, Ergodic Theory and Dynamical Systems, Universitext,
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4 1 The Mean Ergodic Theorem

can therefore apply techniques from Hilbert analysis to study the “average” behavior
of the sequence f ı Tn, that is, its behavior in L2 norm.

By focusing our attention on the L2 action, we have replaced an a priori nonlinear
problem in finite dimension with a linear problem in infinite dimension. Did we truly
come out ahead? As it happens, Hilbert spaces have a certain number of properties
reminiscent of finite dimension. The most useful is the weak compactness of the
unit ball. Showing weak convergence therefore corresponds to identifying the limit
through a property that characterizes it uniquely, a task that turns out to be simpler
than that of showing the convergence.

These Hilbertian methods allow us to obtain the convergence of the averages
1
n

Pn�1
kD0 Uk for every linear map U satisfying the inequality kUfk 6 k fk for every

f 2 L2. This result, initially obtained by J. Von Neumann (1932) in a slightly
different context using functional calculus methods, illustrates a fact often used in
analysis, namely that “taking averages tends to make things more regular”.

A consequence of the ergodic theorem is that if the space X has finite measure,
then almost every trajectory returns arbitrarily close to its initial state. This is one
of the rare general conclusions we can draw on the character of motion in classical
mechanics. Anterior to the ergodic theorem, this result, proved by H. Poincaré in
1899, is often considered as the first mathematical result of ergodic theory, and
marks the birth of this discipline.

1.2 The Mean Ergodic Theorem

Theorem 1.1 Let H be a Hilbert space, and let U W H ! H be a linear map
satisfying 8f 2H, kUfk 6 k fk. Set

Sn. f / D
n�1X

kD0
Ukf and Inv D f f 2 H j Uf D f g:

Denote by P W H ! H the orthogonal projection onto the subspace Inv of U-
invariant vectors. Then

1

n
Sn. f / �! Pf in norm.

The proof we will present is based on an argument given by R. Mañé and uses
the weak topology in Hilbert spaces. The properties of this topology are given in
detail in Chap. 16. The proof also calls upon the adjoint U� of the map U. Recall
that this adjoint is a linear map from H to H defined by the equality

hU�f ; gi D h f ;Ugi:
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It satisfies the relations .U�/� D U and kU�k D kUk. We will prove that when this
norm is bounded from above by 1, the map U� has the same invariant vectors as U.

Lemma 1.1 Under the assumptions of the theorem, every element g 2 H that is
invariant under U is invariant under U�. Likewise, every element g 2 H that is
invariant under U� is invariant under U.

Proof Assume that g is invariant, that is, Ug D g. The equality U�g D g results
from the following calculation:

kg �U�gk2 D kgk2 C kU�gk2 � 2hg;U�gi 6 2kgk2 � 2hUg; gi D 2hg� Ug; gi:

It suffices to replace U by U� in this calculation to show that every element g 2 H
that is invariant under U� is invariant under U. ut
Proof of Theorem 1.1 If f belongs to Inv, we have 1

n Sn. f / D f and the theorem
holds. It suffices to prove that 1

n Sn. f / tends to 0 for f 2 Inv?. Note that the spaces
Inv and Inv? are invariant under both U and U� by virtue of the lemma.

We have the equality

k 1n Sn. f /k2 D h f ; 1n S�
n
1
n Sn. f /i:

We must therefore verify, for every f 2 Inv?, that the sequence 1
n S�

n
1
n Sn. f /

converges weakly to 0, or equivalently that the accumulation points of this sequence
are all 0. Because they are in Inv?, it suffices to prove that they are invariant under U
or under U�, by the lemma. To do this, we note that for every h 2 H, we have the
equality

.I � U�/ 1n S�
n h D 1

n
.I � U�/

n�1X

kD0
U�k h D 1

n
.I � U�n

/ h:

Let h D 1
n Sn. f /; we have the following upper bound:

k.I � U�/ 1n S�
n
1
n Sn. f /k 6 1

n
k.I � U�n

/k�k 1n Sn. f /k 6 2

n
k fk �����!

n!1 0:

Convergence in norm implies weak convergence. Consequently, every weak accu-
mulation point of the sequence 1

n S�
n
1
n Sn. f / is invariant under U, as desired. ut

Let .X; T ; �/ be a measure space. Let H be the space L2.X/ of square-integrable
measurable functions with real values. From a measurable map T W X ! X we define
a linear map U W H ! H by setting Uf D f ı T. If T preserves the measure �, the
operator U satisfies kUfk D k fk. We can apply the above to obtain the L2 ergodic
theorem (Theorem 1.2).
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Theorem 1.2 (Von Neumann) Let .X; T ; �/ be a measure space, let T W X!X be
a measurable map that preserves �, and let f 2 L2.X/. Then

1

n

n�1X

kD0
f ı Tk L2�����!

n!1 Pf ;

where P is the orthogonal projection onto the subspace f f 2 L2 j f ı T D f g.
A measurable function f W X ! R that satisfies f ı T D f is called invariant for

the transformation T. Let A be a measurable set, and let T�1A be the set of points
of X whose image belongs to A. The set A is called invariant under T if it satisfies
the relation T�1A D A. Its characteristic function is then invariant under T:

1A ı T D 1T�1A D 1A:

The measurable sets that are invariant under T form a �-algebra that we will denote
by I. Let us show that the invariant functions are precisely the functions that are
measurable with respect to this �-algebra I.

Proposition 1.1 Let .X; T ; �/ be a measure space, let T W X ! X be a measurable
map that preserves �, and let f W X ! R be a measurable function. Then f is
invariant under T if and only if it is measurable with respect to the �-algebra
consisting of the invariant sets.

Proof A function f is measurable with respect to I precisely when its level sets
f �1.y/ are invariant under T, that is, when we have the equality T�1f �1.y/ D f �1.y/
for every y 2 R. But this relation is equivalent to the equality f .T.x// D f .x/ for
every x 2 X satisfying f .x/ D y. ut

Let us now consider the properties of the projection P defined earlier. This
projection is orthogonal, as illustrated in Fig. 1.1.

Properties of the projector P

• 8f 2 L2, 8g 2 L2 such that g ı T D g, we have
R

Pf g d� D R f g d�;
• 8f 2 L2, 8A � X such that T�1A D A and �.A/ < 1, we have

R
A Pf d� DR

A f d�;
• 8f 2 L2 such that f > 0, we have Pf > 0.

Moreover, if �.X/ <1, then

• 8f 2 L2, we have
R

Pf d� D R f d�;
• 8f 2 L2 such that f > 0, for almost all x 2 X, the inequality f .x/ > 0 implies

Pf .x/ > 0.

Proof The projection P is orthogonal, it is equal to its adjoint: P D P�. This implies

Z

Pf g d� D hPf ; gi D h f ;P�gi D h f ;Pgi D
Z

f g d�:



1.2 The Mean Ergodic Theorem 7

This proves the first statement, the second follows from this equality by taking g D
1A, and the case A D X corresponds to the fourth statement.

Let us now prove the inequalities. For every N > 0, we have the upper bound

�.fx j Pf .x/ < �1=Ng/ 6 N2

Z

jPf j2 d� <1;

which implies

� 1
N
�.fx j Pf .x/ < � 1

N g/ >
Z

fPf .x/<� 1
N g

Pf d� D
Z

fPf .x/<� 1
N g

f d� > 0:

It follows that �.fx j Pf .x/ < �1=Ng/ D 0, and therefore that

�.fx j Pf .x/ < 0g/ D 0:

Finally, if the measure of the set fx j Pf .x/ D 0g is finite, we have the equality

Z

fxjPf .x/D0g
f d� D

Z

fxjPf .x/D0g
Pf d� D 0:

The function f therefore vanishes on fx j Pf .x/ D 0g provided that it is
nonnegative. ut

As an application, we can now prove the Poincaré recurrence theorem, illustrated
by Fig. 1.2.

Theorem 1.3 Let .X; T ; �/ be a measure space, and let T W X ! X be a
measurable map that preserves �. We assume �.X/ < C1. Let B � X be a
measurable set. Then for almost all x 2 B, there exist infinitely many n 2 N such
that Tn.x/ 2 B.

Proof Recall that convergence in L2 norm implies the strong convergence of a
subsequence. This remark, combined with the ergodic theorem, shows that there
exists a subsequence ni such that for almost all x 2 X, the sum 1

ni
Sni1B converges to

P1B.x/. This quantity is strictly positive for almost all x 2 B, by virtue of the last
property of the projection P proved earlier.

If the trajectory of x passes through B only finitely many times, we have

1

n

n�1X

kD0
1B.T

k.x// �! 0;

which gives a contradiction. ut
We can prove the Poincaré recurrence theorem without using the ergodic

theorem.
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Another proof Set

1B.x/ D lim
1

n
Sn.1B/.x/ D lim

1

n
Cardf0 6 k 6 n � 1 j Tk.x/ 2 Bg:

This function is invariant under the transformation T: 1B ı T D 1B. We have

�
�
B \ .1B D 0/

� D
Z

1B 1.1BD0/ d�

D
Z

1B ı Tk 1.1BD0/ d� for every k, by invariance;

D
Z
1

n
Sn.1B/ 1.1BD0/ d� by taking the average over k;

6
Z

1B 1.1BD0/ d� by Fatou’s lemma,

D 0:

For almost all x 2 B, the frequency 1B.x/ is nonzero, which proves the result. ut

1.3 Application to Classical Mechanics

The main motivation of H. Poincaré comes from classical mechanics. Consider a
point mass under the influence of a time-independent force field. We will show that
if the space is closed and the energy is conserved during the motion, there exists
an invariant finite measure in the phase space. We can then apply the recurrence
theorem and conclude that the system certainly returns to a state close to its initial
state.

Let V W Rn ! R be a C2 function. We denote its gradient by rV . The energy
associated with the potential V is given by

8.x; v/ 2 Rn � Rn; E.x; v/ D 1
2
mv2 C V.x/:

Assume that there exists E0 2 R such that the energy surface E�1.E0/ is compact
and E�1.E0/ \ f.x; 0/ j rV.x/ D 0g D ¿. Then:

• For every .x0; v0/ 2 E�1.E0/, the differential equation

m
d

dt

�
x
v

�

D
�

mv
�rV.x/

�

admits a unique solution 't.x0; v0/ satisfying '0.x0; v0/ D .x0; v0/ and defined
for every t.
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• The energy E is constant along the trajectories of the flow 't.
• Denote by vol2n�1 the Riemannian volume form on the manifold E�1.E0/. The

Borel measure d� D krEk�1 d vol2n�1 is a finite measure, invariant under
the transformations .x; v/ 7! 't.x; v/ for every t 2 R. Its support is equal to
E�1.E0/.

The first statement follows from general existence theorems for differential
equations; here we can apply the Cauchy–Lipschitz theorem to deduce the existence
of a solution on an open time-interval. We then obtain the invariance of the energy
through an elementary calculation:

d

dt
E.'t.x// D

D
rE;

d

dt
't.x/

E
D mv

@E

@x
� @E

@v
rV.x/

D mvrV.x/� mvrV.x/ D 0:

Once we know that the trajectory is restrained to a compact subset of the phase
space, the usual existence theorems for differential equations allow us to assert that
the solutions are defined for all t.

The invariance of the measure is due to J. Liouville. It is illustrated by Fig. 1.3
and can be deduced from the following result.

Lemma 1.2 Let 't be a C2 flow defined on an open subset U of Rd, and let X be the
associated vector field: X.x/ D d

dt't.x/jtD0. Let f W U ! R be an integrable map,
zero outside of a compact subset of U. Then

d

dt

Z

f .'t.x// dx j tDt0
D
Z

f .'t0 .x// div X.x/ dx:

Proof Using a partition of unity, we can restrict ourselves to the case where f
is C1 with compact support, localized in a box R D Q

iŒai; bi�. After replacing f
by f ı 't0 , if necessary, we may moreover assume t0 D 0. We differentiate under the
summation sign:

d

dt

Z

R
f .'t.x// dx D

Z

R
hrf .x/;X.x/i dx D

Z

R

X

i

@f

@xi
� Xi dx:

Next, we integrate by parts:

Z

R

@f

@xi
Xi dx D

Z

R

@. f Xi/

@xi
dx �

Z

R
f
@Xi

@xi
dx;

Z

� � �
Z �Z @. fXi/

@xi
dxi

�
dx1 � � � dxn D

Z

� � �
Z

Œ f Xi�
bi
ai

dx1 � � � dxn D 0;

taking into account that the function f vanishes on the boundary of R. ut
We can now show the invariance of the volume.
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Proof of the invariance of the measure � The divergence of the vector field
�

x
v

� 7!� v�rV.x/=m

�
is zero:

@v

@x
� 1

m

@

@v
rV.x/ D 0:

By the lemma, the volume form dx1^� � �^dxn^dv1^� � �^dvn is invariant under 't.
Denote by ! the volume form on E�1.E0/ associated with the Riemannian volume
form. It satisfies the relation

krEk�1! ^ dE D dx1 ^ � � � ^ dxn ^ dv1 ^ � � � ^ dvn:

To obtain this equality, it suffices to evaluate each of the two terms on a basis for
Rn � Rn of the form ( @ 

@y1
; : : : ;

@ 

@y2n�1
;rE), where  .y1; : : : ; y2n�1/ is a coordinate

system on E�1.E0/. The invariance of krEk�1! then results from the following
calculation:

'�
t

� !

krEk
�
^ dE D '�

t

� !

krEk
�
^ '�

t dE D '�
t

�! ^ dE

krEk
�
D !

krEk ^ dE:

ut
It suffices to apply the recurrence theorem to the map .x; v/ 7! '1.x; v/ to obtain

the desired result.

Corollary 1.1 Let B � E�1.E0/ be a measurable set with respect to vol2n�1. Then
for almost every point of B, the associated trajectory passes through B infinitely
many times.

The reader who wishes to know more about the link between classical mechanics
and ergodic theory can consult the books of Arnold [1] and of Arnold and Avez [2].
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f

Pf

Uf = f

Fig. 1.1 Projection onto an invariant subspace

B x
T n(x)

Fig. 1.2 Recurrence

0 π−π x

v

Fig. 1.3 observation of areas, physical pendulum: 1
2
mv2 C cos x D C
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1.4 Exercises

1.4.1 Basic Exercises

Exercise 1 Let H be a Hilbert space, let U be an invertible isometry of H, and let
f 2 H. Show that the sequence 1

2nC1
Pn

kD�n Ukf converges in norm. What is its
limit?

Exercise 2 Let H be a Hilbert space, let U be an isometry of H, and let f 2 H.
Prove the identity

f � 1
n

Sn. f / D gn � Ugn; with gn D 1

n

n�1X

kD0
Sk. f /:

A coboundary is an element of H of the form g � Ug, with g 2 H. Show that the
coboundaries are dense in the orthogonal complement of the U-invariant functions.

Exercise 3 Let H be a Hilbert space, let U be an isometry of H, let � 2 R, and let
P� W H ! H be the orthogonal projection onto the subspace f f 2 H j Uf D ei� f g.
Show that

1

n

n�1X

kD0
e�ik� Ukf

L2�����!
n!1 P� f :

Exercise 4 Let .X; T ; �/ be a probability space, let T W X ! X be a measurable
map that preserves the measure �, and let A, B be two measurable subsets of X.
Determine the limit

1

n

n�1X

kD0
�.A \ T�kB/ �����!

n!1 ?

Prove the equality hP1A;P1Bi D �.A/�.B/C hP1A � �.A/;P1B � �.B/i.
Exercise 5 Let .X; T ; �/ be a measure space such that�.X/<1, and let T W X!X
be a measurable map that preserves the measure �. Let A � X be a measurable
subset; show that T�1A � A implies �.A X T�1A/ D 0.

Exercise 6 Let .X; T ; �/ be a measure space such that�.X/<1, and let T W X!X
be a measurable map that preserves the measure �. Let f W X ! .0;C1/ be a
measurable function. Show that

P1
kD0 f .Tk.x// D 1 for almost all x 2 X.
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1.4.2 More Advanced Exercises

Exercise 7 Let H be a Hilbert space, let U be an isometry of H, and f 2 H. Show
that the sequence Unf converges in norm if and only if Uf D f .
Hint: What should the limit be equal to?

Exercise 8 A contraction U defined on a Hilbert space H is a continuous linear
map of norm at most 1: kUk 6 1. Let Inv D f f 2 H j Uf D f g, and let P be the
orthogonal projection onto Inv.

• Show that P D P2 D P� D PU D UP D PU� D U�P.
• Set L D 1

2
.IdCU/. Show that Lnf ! Pf in norm.

Hint: We use the notation Ck
n D nŠ=.kŠ.n � k/Š/.

Prove the inequality kLn.1 � U/k 6 Cn=2
n =2n�1.

Exercise 9 Let .X; T ; �/ be a probability space, and let T W X ! X be a measurable
map that preserves the measure �. Let P be the orthogonal projection from L2.X/
onto the linear subspace of T-invariant functions.

• Show that for every measurable A � X, we have kP1Ak > �.A/.

Hint: Use the Cauchy–Schwarz inequality.

• What is the limit of the sequence 1
n

Pn�1
kD0 �.A \ T�kA/?

• Deduce the inequality lim�.A \ T�nA/ > �.A/2.

1.5 Comments

U. Krengel’s book [13] contains a detailed presentation of the ergodic theorems.
The proof of the mean ergodic theorem that we have presented is due to à R. Mañé [15].
There exist other proofs:

• The most popular proof is due to F. Riesz [19] and dates back to the 1940s. It consists in
verifying the theorem for the coboundaries g � Ug, and then showing the density of the
coboundaries through a direct calculation. Assume that U is unitary; we must show that
every vector f 2 H that is orthogonal to the coboundaries is U-invariant:
if 8g 2 H, hg � Ug; f i D 0, then hg; f i D hUg; f i D hg;U�1f i; consequently,

U�1f D f .
• In his book [19], F. Riesz gives a proof of the ergodic theorem based on a convexity

argument: Let C be a convex subset in a Hilbert space, and let � be the infimum of the
norms of the elements of C. Then every sequence in C whose norm converges to � is in
fact convergent. This can be proved using the parallelogram law.

• The original proof of J. Von Neumann (1931) used functional calculus for unitary
operators. It can be found in the book by F. Riesz and B. Nagy [19]. This proof can
be summarized as follows: Let U 2 L.H/ be a unitary operator. We can construct an
algebra homomorphism from the set of bounded Borel functions f W S1 ! C to L.H/
that sends 1 onto the identity and z 7! z onto U. The image of g W S1 ! C is denoted by
g.U/. This morphism moreover satisfies that if gn is a uniformly bounded sequence and



14 1 The Mean Ergodic Theorem

gn ! g pointwise, then for all f 2 H, we have gn.U/f ! g.U/f in norm. To obtain the
ergodic theorem, it suffices to take gn.z/ D 1

n

Pn�1
kD0 zk and note that for all z 2 S1, we

have gn.z/ ! 1
f0g.z/.

• Finally, we can give a proof that holds in an arbitrary reflexive Banach space (for
example, in Lp for 1 < p < 1), using weak compactness and a convexity lemma in
the style of Banach–Saks; we refer to the book by U. Krengel [13, Chap. 2]. The limit P
is identified with the projection with image Inv and kernel Im.Id �T/. Oddly enough,
this generalization is nontrivial, even in finite dimension:
Let Q be a stochastic n � n matrix .8i; j, Qi;j > 0 and 8i,

P
j Qi;j D 1/, which we

identify with the contraction of Rn endowed with the uniform norm. Then 1
n

Pn
1 Qk ! P,

where P is the projection defined earlier.
Here is a direct proof of this result, in the style of F. Riesz: The space of stochastic
matrices is compact and convex and contains the Qk. It therefore suffices to show that
P is the only possible accumulation point for 1

n

Pn
1 Qk. Let P1 be such an accumulation

point; a direct calculation shows that P1x D x if x 2 Ker.Id �Q/ and P1x D 0 if
x 2 Im.Id �Q/. The subspaces Ker.Q � Id/ and Im.Q � Id/ are in direct sum, and P1 is
the expected projection. The book by J. Kemeny, J. Snell, and A. Knapp (Denumerable
Markov Chains, Chapter 6.1) gives a slightly different proof of this result.

There exists a process to generalize a result on unitary operators to arbitrary contractions. It
relies on the following fact due to P. Halmos (1950) and presented in the book by F. Riesz
and B. Nagy [19, App. §4]:
Let T be a linear map defined on a Hilbert space H and satisfying kTk 6 1. There exist a
Hilbert space H1 containing H and a unitary operator U W H1 ! H1 such that Tnf D PUnf
and T�

nf D PU�nf for every f 2 H, where we have denoted by P the orthogonal projection
from H1 onto H.
The ergodic theorem stated earlier is of little use when the measure � is infinite and the
transformation is ergodic, because in that case there is no nonzero L2 invariant function.
When the transformation is not ergodic, the ergodic components may be finite, in which
case the limit may be nonzero; this is for example the case for a rotation defined on R2.
It is not necessary that U be linear to obtain the weak convergence in the mean ergodic
theorem (Baillon’s nonlinear ergodic theorem).
The L2 convergence of 1

n

P
e�ik� f ı Tk is uniform in � (Wiener–Wintner theorem).

Generalizations of this result can be found in the work of J. Bourgain (1990).
There exist topological versions of the Poincaré recurrence theorem. If X is a metric space,
almost every point belonging to the support of the measure is topologically recurrent: not
only does the trajectory emanating from the point return to B, it also admits a subsequence,
in B, that converges to its initial point. This will be proved further on. In his book Measure
and Category, in Chap. 17, J. Oxtoby gives an abstract version of the recurrence theorem
that unites the topological and measurable aspects.
We can generalize the Poincaré recurrence theorem in several directions; for example, Von
Neumann’s ergodic theorem shows that almost every point of B returns to B with a positive
frequency. Another generalization, which can be found in the books [18] and [13], is due to
A. Khintchine:
For every " > 0, we can find L > 0 such that every interval of length L contains an integer n
satisfying �.B \ T�nB/ > �2.B/� ".
This property was studied by T. Downarowicz and V. Bergelson (2008) in connection with
the mixing of the transformation.



Chapter 2
The Pointwise Ergodic Theorem

Le second, de diviser chacune des difficultés que j’examinerois,
en autant de parcelles qu’il se pourroit, et qu’il seroit requis
pour les mieux résoudre.

R. Descartes (1596–1650)

2.1 Introduction

Consider a dynamical system, modeled by the data of a phase space X, a transfor-
mation T W X ! X describing the evolution of the system over time, and a finite
measure � representing an extensive quantity conserved during the motion. We
wish to study the sequence fTn.x/gn2N, which represents the succession of states
the system takes on over time. This sequence makes up the trajectory of the point x,
or its orbit.

Let us study the asymptotic behavior of this sequence. To do this, we consider
an observable quantity f W X ! R and study its evolution in time. The quantities
Sn. f /.x/ D Pn�1

kD0 f .Tk.x// are called the Birkhoff sums of the function f and the
averages

1

n

n�1X

kD0
f .Tk.x//

are the Birkhoff averages of f . In 1932, G.D. Birkhoff showed that the sequence
of averages 1

n Sn. f /.x/ converges for almost all x 2 X, provided that the function f
is integrable. When f is the characteristic function of a set A � X, these averages
correspond to the frequency of passage of the iterates of x in the set A between the
times 0 and n � 1. These frequencies converge, and the limit is the average time x
passes in A during its motion.

No doubt, the most natural idea for attacking a problem is to try to divide it up
into several subproblems, which will, with any luck, be easier to treat than the initial
problem. To study the dynamics of a transformation, we can try to “break up” the
space X into several disjoint pieces, each of nonzero measure, so as to restrict the
transformation to each of these pieces, as shown in Fig. 2.2. If this is not possible,
the system is called ergodic.

© Springer-Verlag London 2016
Y. Coudène, Ergodic Theory and Dynamical Systems, Universitext,
DOI 10.1007/978-1-4471-7287-1_2
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16 2 The Pointwise Ergodic Theorem

When a system is ergodic, it is possible to compute explicitly the limit of the
Birkhoff averages 1

n Sn. f /. This limit does not depend on x and is obtained by
averaging f over X with respect to the studied measure. We can therefore say that
for an ergodic system,

the time averages coincide with the space averages.

The Birkhoff ergodic theorem therefore allows us to pass from a qualitative
property, namely no nontrivial invariant sets, to a quantitative statement, namely
the frequency of passage in an arbitrary set is proportional to the size of the set. In
particular, during the motion, the trajectories visit the whole space if the system is
ergodic.

The simplest examples of ergodic systems come from probability theory. Con-
sider a random experiment, such as rolling a die or drawing a ball from an urn.
Let ˝ be the set of possible outcomes, and let P be the probability measure on ˝
associated with these outcomes. The repetition of this experiment, independently
and an indefinite number of times, can be modeled by considering the space of
sequences of outcomes˝N endowed with the product probability P˝N and the shift
transformation, which consists in leaving out the first element of the sequence and
shifting the other elements one to the left. In this context, the ergodic theorem,
together with the ergodicity of the shift, gives the strong law of large numbers,
whose first proof in this general setting is due to A.N. Kolmogorov (1933).

2.2 The Pointwise Ergodic Theorem

The following theorem is know as the Birkhoff (1932) ergodic theorem. It is
a pointwise version of the ergodic theorem presented in Chap. 1. The statement
invokes the notion of conditional expectation, presented in Chap. 17.

Theorem 2.1 (Birkhoff) Let .X; T ; �/ be a measure space for which �.X/ < 1,
let T W X ! X be a measurable map that preserves the measure�, and let f W X ! R
be an integrable function. Set I D fA 2 T j T�1A D Ag. Then, for �-almost all
x 2 X,

1

n

n�1X

kD0
f
�
Tk.x/

� �����!
n!1 E. f j I/.x/:

Proof Set

f .x/ D lim
1

n

n�1X

kD0
f .Tk.x//; f .x/ D lim

1

n

n�1X

kD0
f .Tk.x//:

To obtain the almost everywhere convergence, it suffices to prove the inequalitiesR
f d� 6

R
f d� 6

R
f d�, because if these hold, f � f is a nonnegative function
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with zero integral, which implies that f � f D 0 for almost all x. Let us prove
R

f d� 6
R

f d�, the other inequality is obtained by replacing f by �f .
The function f is not a priori bounded from above and can take on the values

�1 and C1. To bypass this difficulty, we fix a constant M > 0 and introduce
the function f M D min.f ;M/. At the end of the proof, the constant M will tend to
infinity. The following calculation, which uses Fatou’s lemma, shows that f M.x/ is
unequal to �1 for almost all x 2 X:
Z

f M >
Z

lim
1

n

X
�j f ı Tkj > lim

Z
1

n

X
�j f ı Tkj D �

Z

j f j > �1:

Let us now fix " > 0. Recall that the upper limit of a sequence is the greatest
accumulation point of the sequence. If f .x/ is finite, we can find n 2 N� for which
1
n

P
f .Tk.x// is greater than f .x/ � ". If f .x/ is equal to C1, we can find n 2 N�

such that 1
n

P
f .Tk.x// is greater than M. We can therefore consider the smallest

integer n.x/ > 0 for which the following equality is satisfied:

f M.x/ 6
1

n.x/

n.x/�1X

kD0
f .Tk.x// C ":

Set AR D fx 2 X j n.x/ > Rg. The intersection of all the AR for R 2 N is
empty, and the integral

R
AR
.j f j CM/ d� tends to 0 when R tends to infinity, by the

dominated convergence theorem. Choose R such that this integral is less than ", and
write A D AR to lighten the notation.

We define by induction a sequence ni depending on x, as follows:

n0 = 0 n1 ni
n(T ni(x))

ni+1 nk N nk+1

x T n1(x) T ni(x) T ni+1(x) T nk(x) T nk+1(x)

• If Tni .x/ 62 A, we set niC1 D ni C n.Tni .x// and use the upper bound

n.Tni .x// f M.T
ni x/ 6

n.Tni x/�1X

kD0
f .Tk.Tni x// C n.Tni.x// ":

Since the function f M is invariant under T, this implies

.niC1 � ni/ f M.x/ 6
niC1�1X

kDni

f .Tk.x// C .niC1 � ni/":

• If Tni .x/ 2 A, we set niC1 D ni C 1 and bound from above: f M.x/ 6 M.
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The construction is illustrated by Fig. 2.1. In both cases, we have

.niC1 � ni/ f M.x/ 6
niC1�1X

kDni

Qf .Tk.x// C .niC1 � ni/";

where Qf D f C .j f j CM/1A.
Let N 2 N, and let k be the integer (depending on x) satisfying nk 6 N <

nkC1. We have constructed the nk in such a way that the successive differences are
bounded: 0 6 N�nk 6 nkC1�nk 6 R. We take the sum of the previous inequalities:

Nf M.x/ D
k�1X

iD0
.niC1 � ni/f M.x/C .N � nk/f M.x/

6
nk�1X

jD0
Qf .Tj.x//C nk "C RM

6
N�1X

jD0
Qf .Tj.x// �

N�1X

jDnk

Qf .Tj.x//C N "C R M

6
N�1X

jD0
Qf .Tj.x//C

N�1X

jDN�R

j f .Tj.x//j C N "C R M:

This last inequality is obtained using the inequalities nk > N � R and Qf > �j f j. We
now only need to integrate,

8N 2 N�;
Z

f M d� 6
Z
Qf d�C R=N

Z

j f j d�C "C RM=N;

and let N tend to infinity, giving
R

f M d� 6
R Qf d�C": The integral of Qf is bounded

from above as follows:
Z
Qf d� D

Z

f d�C
Z

A
.j f j CM/ d� 6

Z

f d�C ":

Finally, we have obtained
R

f M 6
R

f C 2" for every " > 0, which gives
R

f M 6R
f . The sequence f M is increasing and converges to f , and we have seen that

R
f 0 >

�1. We can now apply the monotone convergence theorem to obtain the desired
inequality

R
f 6

R
f . ut
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Identifying the Limit Let us begin with the case where f is bounded and show that
the almost everywhere limit, denoted by f , satisfies the properties that characterize
the conditional expectation. First, f is invariant under T, hence measurable with
respect to I. Next, by the dominated convergence theorem,

R
f d� D R

f d�. Let A
be a measurable invariant set. Since 1A D 1A ı T, we have the equality 1Af D 1Af ,
which implies

Z

A
f d� D

Z

1Af d� D
Z

1Af d� D
Z

A
f d�:

For unbounded f , we approximate f with a bounded function g and note that

�
�
�
1

n

n�1X

kD0
. f � g/ ı Tk

�
�
�
1
6 k f � gk1; kE. f � g j I/k1 6 k f � gk1:

Remarks

• The convergence also holds in L1 norm. For bounded f , this is a consequence of
the dominated convergence theorem; for integrable f , we reason as above.

• Recall that a function f is I-measurable if and only if it is invariant under T;
we saw this in Chap. 1, and it follows from the equivalence of the equalities
f .T.x// D f .x/ and T�1f �1.ff .x/g/ D f �1.ff .x/g/.

Definition 2.1 Let .X; T ; �/ be a measure space, and let T W X ! X be a
measurable map that preserves the measure �. The transformation T is called
ergodic with respect to the measure � if the only invariant measurable sets either
are of measure 0 or have a complement of measure 0:

T�1A D A implies �.A/ D 0 or �.Ac/ D 0:

The limit in the ergodic theorem then takes on a particularly simple form.

Proposition 2.1 A transformation T is ergodic if and only if the measurable
functions that are invariant under T are constant almost everywhere. When �.X/
is finite and nonzero, this implies the equality

8f 2 L1; E. f j I/ D 1

�.X/

Z

X
f d�:

Proof Let g be an invariant function. Set

C D sup
˚
t j �.g�1..�1; t/// D 0	 :
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By ergodicity, we have the equality C D inf
˚
t j �.g�1.Œt;1/// D 0	. The

constant C is finite provided �.X/ ¤ 0. The sets g�1..�1;C// and g�1..C;1//
are then of measure 0, and the function g is constant, equal to C, almost everywhere.
The function E. f j I/ is therefore constant and its integral is

R
f d�. This gives the

desired equality. ut
Suppose that T is ergodic and that �.X/ is finite, and let us apply the ergodic

theorem to the characteristic function of a measurable set A. We obtain

a.e. x 2 X;
1

n
Card

˚
k 2 f0; 1; : : : ; n � 1g j Tk.x/ 2 A

	 �����!
n!1

�.A/

�.X/
:

The average time a trajectory spends in the set A is therefore the same for almost
all trajectories; it is proportional to the measure of the set A. This is illustrated by
Fig. 2.3.

2.3 Ergodicity of the Shift

The following example plays an important role in probability theory.

Proposition 2.2 Let .X; T ; �/ be a probability space. On the product space
.XN; T ˝N; �˝N/, we define a transformation T by setting T.fxig/ D fxiC1g. Then T
is ergodic.

Proof Let f be an invariant integrable function. For every " > 0, we can find g 2 L1

depending only on a finite number n of coordinates and such that kg � fk1 < "=4.
This classical result is recalled in Chap. 17. The function g is not invariant, but it
nevertheless satisfies the following estimate:

kg � g ı Tnk1 6 kg � fk1 C k f � f ı Tnk1 C k f ı Tn � g ı Tnk1 6 "=2:

Let us calculate the norm of g � g ı Tn explicitly:

kg � g ı Tnk1 D
Z

jg.x0; : : : ; xn�1/� g.xn; : : : ; x2n�1/jd�.x0/ � � � d�.x2n�1/

D
Z

jg.x0; : : : ; xn�1/� g.y0; : : : ; yn�1/j
� d�.x0/ � � � d�.xn�1/d�.y0/ � � � d�.yn�1/

D
Z

jg.x/� g.y/j d�˝N.x/ d�˝N.y/:

This last integral is therefore less than "=2.
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The integral
R j f .x/� f .y/jd�˝N.x/d�˝N.y/ is bounded from above by the sum

of the terms
Z

j f .x/� g.x/jd�˝N.x/d�˝N.y/;

Z

jg.x/� g.y/jd�˝N.x/d�˝N.y/;

Z

jg.y/� f .y/jd�˝N.x/d�˝N.y/;

which gives, for every " > 0,
Z

j f .x/� f .y/jd�˝N.x/d�˝N.y/ 6 "=2C 2k f � gk 6 ":

This shows that f .x/ D f .y/ for almost all .x; y/ 2 ˝N �˝N. By Fubini’s theorem,
we can find y0 2 ˝N such that the set of x 2 ˝N satisfying f .x/ D f .y0/ is of full
measure, so that f is constant almost everywhere. ut

As an application, let us show how the law of large numbers can be deduced from
the ergodic theorem. Denote by RN the space of sequences of real numbers endowed
with the product topology and the associated Borel �-algebra. Let .Xi/ be a sequence
of random integrable variables defined on a probability space .˝; T ;P/. Let  W
˝ ! RN be the map defined by  .!/ D fXi.!/gi2N, and let � D  �P. Saying
that the Xi are independent, identically distributed, random variables corresponds to
saying that � coincides with . �PX0/

˝N, where PX0 is the probability distribution
of X0.

Define f W RN ! R by setting f .fxigi2N/ D x0. Let T be the shift on the space
RN. Taking into account the equalities f ı Tk ı  D Xk, we see that the ergodic
averages of f and the averages of the Xi are related through

�1

n

n�1X

kD0
f ı Tk

�
ı  D 1

n

n�1X

kD0
Xk:

Let us apply the ergodic theorem to the function f , to the shift T defined on RN,
and to the probability measure �. We obtain the strong convergence of the averages
of f with respect to the measure �, which is equivalent to the convergence of the
averages of the Xi with respect to P. Set E.X0/ D

R
X0 dP D R

f d�. We have
proved the following result.

Corollary 2.1 Let .˝; T ;P/ be a probability space, and let .Xi/i2N be a sequence
of independent, identically distributed, integrable random variables on this space.
Then, for almost all ! 2 ˝ ,

1

n

n�1X

kD0
Xi.!/ �����!n!1 E.X0/:
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x

T n1(x)
T n2(x)

T n3(x)

T n4(x)

T n5(x)
A

Fig. 2.1 Proof of the ergodic theorem

A Ac

T TT T

Fig. 2.2 A system that is not ergodic

x

T n(x)

Fig. 2.3 Ergodicity: the time spent in a set is proportional to the measure of the set



2.4 Exercises 23

2.4 Exercises

2.4.1 Basic Exercises

Exercise 1 Verify that the map n.x/ that is used in the proof of the ergodic theorem
is measurable.

Exercise 2 Let .X; T ; �/ be a measure space with �.X/ < 1, let T W X ! X be
a measurable map that preserves the measure �, and let f W X ! R be integrable.
Show that for �-almost all x 2 X, we have 1

n f .Tn.x//! 0.

Exercise 3 Let .X; T ; �/ be a measure space, and let T W X ! X be a measurable
map that preserves the measure �. Show that T is ergodic if and only if for all
measurable sets A;B � X of positive measure, almost every point of A has an orbit
that passes infinitely many times through B.

Exercise 4 Let T be an ergodic transformation of a measure space .X; T ; �/. We
denote by P W L2.X/ ! L2.X/ the orthogonal projection onto the T-invariant
functions. Assume �.X/ D1. Show that for all f 2 L2.X/, we have Pf D 0.

2.4.2 More Advanced Exercises

Exercise 5 Let ˛ be an irrational real number. Show that the transformation T from
R=Z to R=Z given by T.x/ D xC ˛ mod 1 preserves the Lebesgue measure and is
ergodic.
Hint: Consider what the invariance of f under T means for its Fourier coefficients.

What condition on ˛ 2 Rn is necessary for the transformation of .R=Z/n given
by T.x/ D xC ˛ mod 1 to be ergodic with respect to the Lebesgue measure?

Exercise 6 Let ˛ be an irrational real number. Show that the transformation T from
R=Z � R=Z to R=Z � R=Z defined by T W .x; y/ 7! .x C ˛; x C y/ preserves the
Lebesgue measure and is ergodic.
Hint: Again, consider what the invariance of f 2 L2 under T means for its Fourier
coefficients.

Exercise 7 Give an example of an ergodic transformation T such that T ı T is not
ergodic.

Exercise 8 Construct a transformation of the real line that preserves the Lebesgue
measure and is ergodic.
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2.5 Comments

The proof of the ergodic theorem that we have presented is due to Y. Katznelson and B.
Weiss (1982). There exist other proofs:

• The original proof of the pointwise ergodic theorem, due to G. Birkhoff (1931), uses
a maximal inequality. This equality was then generalized and simplified by N. Wiener
(1939), K. Yosida and S. Kakutani (1939), H.R. Pitt (1942), F. Riesz (1945), E. Hopf
(1954),: : : The following version, due to A. Garsia (1965), admits an elementary proof.
Let U WL1 ! L1 be a linear map such that kUf k 6 k f k. Set

En D ˚
x j max

06m6n
Smf > 0

	
:

Then
R

En
f > 0.

• In 1966, E. Bishop gave a proof of the ergodic theorem inspired by the theory of
martingales and based on upcrossing inequalities.

• In 1982, T. Kamae gave a proof based on nonstandard analysis. The proof by Y.
Katznelson and B. Weiss presented earlier was inspired by the proof by T. Kamae.

• In 1987, P. Shields gave a new proof of the ergodic theorem, which was not based
on a maximal inequality. In 1988, J. Bourgain proposed a proof based on variational
inequalities. More recently, M. Keane and K. Petersen (2006) proposed “elementary”
proofs of the ergodic theorem, in the style of Y. Katznelson and B. Weiss.

There exist versions of the ergodic theorem for the contractions of L1. The most general
statement is no doubt due to R. Chacon; it is included in Krengel’s book [13, Chap. 4,
Thm. 1.11] and is proved using a “filling scheme”.
If �.X/ D 1, we still have convergence almost everywhere in the ergodic theorem, but
the limit is no longer necessarily given by a conditional expectation. In particular, this limit
is 0 if T is ergodic. When the measure is infinite but the transformation T is recurrent,
E. Hopf gives a “ratio” version of the ergodic theorem: for nonnegative f ; g 2 L1, the
ratio Snf=Sng converges to

R
f=
R

g. This statement was extended to positive contractions
by R. Chacon and D. Ornstein (1960). Once again, it can be proved by passing through a
maximal inequality. It can also be deduced from the finite measure theorem using induction
(R. Zweimüller, 2004).
To prove the ergodic theorem, we can restrict ourselves to the case of a shift on RN, with
the projection onto the first coordinate as the observable quantity. The general case can be
deduced from this by factoring the system through the morphism ' W X ! RN given by
x 7! ff .Ti.x//gi2N . This remark is used in the proof given by T. Kamae.
The ergodic theorem concerns the averages of the powers of an operator. There also exist
results on the almost everywhere convergence of the powers themselves. The following
theorem, due to G.-C. Rota (1962) and E. Stein (1961), can be applied, for example, to the
auto-adjoint operator Tf D 1=2. f ıT Cf ıT�1/ and gives a weighted version of the ergodic
theorem.
Let T W L1 ! L1 be such that kTk1 6 1 and kTf k

1

6 k f k
1

for bounded f , Tf > 0 for
f > 0, T1 D 1, and T�1 D 1. Then TnT�

nf converges almost everywhere if f 2 Lp for
some 1 < p < 1.
The convergence does not necessarily hold for every f 2 L1 . A counterexample was
constructed by D. Ornstein in 1968.
The behavior of ergodic sums from the topological point of view is different from its
behavior from the point of view of measures. The set f.xn/ 2 f0; 1gN j 1

n

P
xi convergesg

has full measure for every probability measure defined on f0; 1gN that is invariant under the
shift. Nevertheless, the set of sequences .xi/i2N for which every real number in Œ0; 1� is an
accumulation point for the averages 1

n

P
xi is a Gı-dense subset of f0; 1gN.



Chapter 3
Mixing

Pour apprendre quelque chose aux gens, il faut mélanger ce
qu’ils connaissent avec ce qu’ils ignorent.

P. Picasso (1881–1973)

3.1 Introduction

Consider a potential V defined on R3, and let us study the motion of a point mass
under the action of the force field generated by this potential. Let .x; v/ 2 R3�R3 be
the initial position and velocity of the point mass. We denote by T.x; v/ the position
of the point at time 1. The initial energy of the system is given by the formula
E.x; v/ D 1

2
mv2CV.x/; it is preserved during the motion. When the energy surface

E.x; v/ D E0 is bounded, we can restrict the Lebesgue measure dx dv to this surface
to obtain a probability measure, which we denote by �.

Let us consider the propagation of a gas or liquid under the action of the
potential V . The initial distribution of the gas can be represented by a probability
measure of the form d� D h d�, where h is a nonnegative function on the energy
surface in question. If A is a subset of this energy surface, �.A/ represents the
quantity of gas or liquid present in A. We can also see it as the probability that a
particle is in the region A at the initial time.

How should we model the evolution of the gas? A first, very naive, approach,
consists in disregarding the interactions within the gas and supposing that each
molecule moves in accordance with the classical laws of motion. The distribution of
the gas at time 1 is then given by the measure T�� defined by T��.A/ D �.T�1A/
for every measurable A � X.

The sequence Tn�� represents the evolution of the gas over time. If this sequence
converges to the measure �, we say that the transformation is mixing with respect
to �: every initial distribution of gas of the form hd� ends up spreading uniformly
on the energy surface, following the distribution �.

The property of being mixing is stronger than ergodicity. It excludes periodic
limit behavior (for example, Tn D Id for some n > 2), while such behavior
is possible for an ergodic transformation. The ergodicity of the measure � is in
fact equivalent to the weak convergence of the averages 1

n

P
Tk�� to � for every

probability measure � of the form hd�.

© Springer-Verlag London 2016
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Shifts on product spaces are mixing with respect to the product measures.
For these systems, it is customary to deduce the ergodicity from the mixing
property, because the proofs are of the same order of difficulty. A second family
of mixing maps is given by the hyperbolic automorphism of tori. These maps are
obtained by considering matrices with determinant 1, with integer coefficients and
no eigenvalues of absolute value 1. The action of such a matrix on the quotient space
Tn D Rn=Zn preserves the Lebesgue measure and gives a map that is mixing with
respect to this measure.

3.2 Definition of Mixing

Definition 3.1 Let .X; T ; �/ be a probability space, and let T W X ! X be a
measurable map that preserves the measure �. The transformation T is mixing with
respect to the measure � if it satisfies

8 measurable A;B � X; �.A \ T�nB/ �����!
n!1 �.A/ �.B/:

This definition is illustrated by Fig. 3.1. Mixing is a stronger property than
ergodicity.

Proposition 3.1 A mixing transformation is ergodic.

Proof Let A � X be an invariant set; since T�nA D A, we must have A \ T�nA D A.
The mixing property implies �.A/ D �.A/2, that is, �.A/ D 0 or 1. ut

To establish that a transformation is mixing, we will rely on the following
criterion.

Criterion Let D be a subset of L2 that generates a dense linear subspace in L2. The
transformation T is mixing if and only if for all f ; g 2 D,

Z

f ı Tn g d� �����!
n!1

Z

f d�
Z

g d�:

Proof We can rephrase the criterion in terms of the weak topology on the Hilbert
space L2: for all f , g 2 D, the composition f ıTn converges weakly to

R
f d�. By the

properties of weak convergence, stated in Chap. 16, Proposition 16.1, this implies
the weak convergence of f ı Tn to

R
f d� for every f 2 L2. We conclude by noting

that
R

f ı Tn g d� D �.A \ T�nB/ if f D 1B and g D 1A. ut
Note that if the sequence f ı Tn converges to a constant, this constant must equal

limh f ı Tn; 1i D h f ; 1i. In terms of the weak topology, the map T is mixing if and
only if the sequence f ı Tn converges weakly to a constant for every f 2 L2.
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When X is a metric space and T and � are Borel, mixing can be expressed using
weak convergence. Recall that a sequence of probability measures �n converges
weakly to � if for every bounded continuous function f , the sequence

R
f d�n

converges to
R

f d�. The transformation T is mixing if and only if

for every g 2 L2 such that
Z

g d� D 1; Tn�.g d�/ �����!
n!1 d� weakly:

This is a consequence of the density of the bounded continuous functions in L2,
recalled in Chap. 18.

3.3 Example: Multiplication by 2

Consider the transformation from Œ0; 1/ to Œ0; 1/ given by

T.x/ D
(
2x if x 2 Œ0; 1

2
/ ;

2x � 1 if x 2 Œ 1
2
; 1/ :

Let us show that it preserves the Lebesgue measure and that it is mixing.

Proof The inverse image of an interval Œa; b� under T is a disjunct union of two
intervals of length .b � a/=2, as illustrated by Fig. 3.2. The transformation preserves
the Lebesgue measure.

To prove that the transformation is mixing, we can restrict ourselves to the case
where A is of the form Œk=2n; kC 1=2n/ for n 2 N and 0 6 k 6 2n � 1, because
these intervals generate the Borel �-algebra. The set T�N Œk=2n; .kC 1/=2n/ is made
up of the following 2N intervals:



.kC i 2n/

2nCN
;

kC 1C i 2n

2nCN

�

:

If n C N > n0, the intersection of these intervals with B D Œk0=2n0

; k0 C 1=2n0

/

consists of 2N�n0

intervals of length 2�n�N , which gives the desired relation,
�.B \ T�nA/ D �.A/ �.B/. ut
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3.4 Example: The Bernoulli Shift

The following example comes from probability theory. The mixing property of the
shift implies its ergodicity and allows us to recover the law of large numbers for
independent random variables with the same probability distribution.

Proposition 3.2 Let .˝; T ; �/ be a probability space. On the product space
.˝N; T ˝N; �˝N/, we define a transformation � by setting �.fxig/ D fxiC1g.
Then � is mixing with respect to �˝N.

Proof The functions in L2.X/ that depend only on a finite number of coordinates
are dense in L2. Hence, let f and g depend on j coordinates and assume n > j; then

Z

g f ı �n d�˝N D
Z

g.x0; : : : ; xj/ f .xn; : : : ; xjCn/ d�˝N

D
Z

g.x0; : : : ; xj/ f .xn; : : : ; xjCn/ d�.x0/ � � � d�.xjCn/

D
Z

g.x0; : : : ; xj/ d�.x0/ � � � d�.xj/

�
Z

f .xn; : : : ; xjCn/ d�.xn/ � � � d�.xjCn/

D
Z

f d�˝N
Z

g d�˝N:

We have proved that the shift � is mixing. ut
When˝ is finite, the dynamical system consisting of the transformation � on˝N

and the measure �˝N is called a Bernoulli shift. We number the elements of ˝ D
fx1; : : : ; xkg and set pi D �.fxig/. The system is fully determined by the parameters
p1; : : : ; pk.

3.5 Example: Toral Endomorphisms

Proposition 3.3 Let A be an n � n matrix with integer coefficients and nonzero
determinant. This matrix induces a map on the quotient space Tn D .R=Z/n

that preserves the Lebesgue measure. This map is mixing if A does not have any
eigenvalues that are roots of unity.

The maps from Tn to itself obtained from matrices with determinant˙1 without
any eigenvalues of absolute value 1 are called hyperbolic automorphisms of Tn.

Proof Let us show the invariance of the measure by using Fourier series. Let k 2 Zn,
and let k �x be the quantity

P
kixi. Set ek.x/ D e2� ik�x; these functions form a Hilbert
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basis for L2.Tn/. Let f 2 L2, and let ck be its Fourier coefficients; then

Z

f .Ax/ dx D
X

k2Zn

ck

Z

e2� i k�Ax dx D
X

k2Zn

ck

Z

e2� i.tAk/�x dx

D c0 D
Z

f .x/ dx:

Let k; ` 2 Zn. Let us now show that this transformation is mixing:

Z

Tn
ek.x/ e`.A

nx/ dx D
Z

Tn
e2� ik�xe2� i`�Anxdx D

Z

Tn
e2� i.kCtAn

`/xdx:

This last quantity is 0 if tAn
` ¤ �k. If it does not tend to 0 when n tends to infinity,

there exist distinct integers n1; n2 such that tAn1` D �k D tAn2 l. We would therefore
have tAn2�n1` D `. Since A does not have any eigenvalues that are roots of unity, it
follows that ` D 0 and k D 0. ut
Remark The map induced by the matrix

�
1 1
1 2

�
on the torus T2 is sometimes called

Arnold’s cat map, in reference to an illustration in the book by Arnold and Avez [2]
that shows the effect of this map on the image of a cat; see Fig. 3.3.
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A

B T−nB

A

Fig. 3.1 Mixing property

1

a

b

0 1a/2 b/2 1/2 a+1/2 b+1/2

Fig. 3.2 Multiplication by 2

We apply the matrix
1 1
1 2

to the unit square.

Here is the result
modulo 1.

Fig. 3.3 Automorphism of the torus
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3.6 Exercises

3.6.1 Basic Exercises

Exercise 1 Show that a rotation on the circle S1 is not mixing with respect to the
Lebesgue measure.
Hint: Use complex exponential functions.

Exercise 2 Show that if T is a mixing transformation, T ı T is also mixing.

Exercise 3 Show that the map F W Œ0; 1�! Œ0; 1� given by

F.x/ D
(
2x if x 2 Œ0; 1=2�;
2 � 2x if x 2 .1=2; 1�

preserves the Lebesgue measure and is mixing.

Exercise 4 Let .X; T ; �/ be a probability space, and let T W X ! X be a measurable
transformation that preserves �. Assume that T is mixing. Show that for every A �
X of nonzero measure and every sequence ni ! 1, we have

S
i2N T�ni A D X up

to a negligible set.

Exercise 5 Does there exist a 3 � 3 matrix with integer coefficients and determi-
nant 1 that is not hyperbolic but whose action on the torus T3 is mixing?

Exercise 6 Let .X; T ; �/ be a probability space, and let T W X ! X be a measurable
transformation that preserves �. Show that if T is mixing, there do not exist any
nonconstant measurable functions f W X ! C and complex numbers � of absolute
value 1 that satisfy

for almost all x 2 X; f
�
T.x/

� D �f .x/:

3.6.2 More Advanced Exercises

Exercise 7 Let .X; T ; �/ be a probability space, and let T W X ! X be a measurable
map that preserves the measure �. Show that T is mixing if and only if for every
measurable A � X, �.A \ T�nA/ converges to �.A/2.
Hint: Consider the space generated by the functions 1A ı Tn for n 2 N.

Exercise 8 Let .X; T ; �/ be a probability space, and let T W X ! X be a measurable
map that preserves �. Assume that T is mixing. Let ki be a strictly increasing
sequence of integers. Show that for every f 2 L2,

1

n

nX

iD1
f ı Tki

L2�����!
n!1

Z

f d�:
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Conversely, show that if this convergence holds for every f 2 L2 and every strictly
increasing sequence ki of integers, then T is mixing.
Hint: Use the characterization of mixing using the weak topology as well as the
Banach–Saks theorem, included in Chap. 18.

Exercise 9 Give an example of a 4 � 4 matrix with integer coefficients and
determinant 1 that is not hyperbolic and whose action on the torus T4 is mixing.

3.7 Comments

Given an arbitrary probability measure �, it may happen that the sequence 1
n

P
Tk

�

.hd�/
converges for all bounded nonnegative functions h, to a limit that is singular with respect to
the measures h d�. The simplest example is given by T.x/ D 1

2
x on Œ0; 1� and � D �Œ0;1�.

We then have Tn
�

.h�Œ0;1�/ ! ı0.
To what extent is mixing a typical property of dynamical systems? To answer this

question, let us define a distance on the set of invertible Borel transformations of Œ0; 1�d or
Td preserving the Lebesgue measure. Let In be a sequence of boxes separating the points:

d.T; T0/ D X 1

2n

�
�.T.In/	T0.In//C �.T�1.In/	T0�1.In//

�
:

For this topology, the set of mixing transformations is meager (that is, a subset of a
countable union of closed sets with empty interior). This also holds for the C0 topology
on the space of homeomorphisms, but does not hold if we consider the space of C2

diffeomorphisms on Td that preserve the Lebesgue measure. In the C2 topology, every
diffeomorphism that preserves the Lebesgue measure and is close to a hyperbolic auto-
morphism is mixing.

The notion of mixing is more difficult to define when the measure is infinite. In 1969,
U. Krengel and L. Sucheston proved that on an infinite � -finite measure space, there do not
exist any invertible transformations that preserve the measure and satisfy

8g 2 L1; 8f 2 L1 such that

Z

f d� D 0;

Z

f ı Tng d� ����!n!1

0:

The mixing property of hyperbolic toral endomorphisms can be proved in several ways.

• The proof given earlier, using Fourier series, can be generalized to transitive automor-
phisms on Abelian compact groups. In general, the techniques from harmonic analysis
work well in an algebraic setting.

• It is possible to encode these maps using a symbolic system; the proof of the
mixing property then proceeds as with a shift. The simplest encoding is given by
the decomposition in base 10. This decomposition gives a conjugation between the
multiplication by 10 on R=Z and the shift on the alphabet f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g.

• The mixing property can be deduced from the density, in the torus, of the projection of
the stable subspaces of the matrix, a density that can be obtained using the ergodicity of
the irrational translations on the torus. It then suffices to compute explicitly the images
of the boxes whose faces are parallel to the eigenvectors of the matrix.

• Another method consists in showing that an accumulation point of the sequence f ı Tn

is constant along the stable and unstable subspaces of the matrix. This argument can be
generalized to geometric systems. It is the object of the next chapter.
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A transformation preserving a probability measure is called mixing of order 3 if it satisfies
the following property:

8 measurable A;B;C � X;

�.A \ T�n1B \ T�n1�n2C/ �������!n1;n2!1

�.A/ �.B/ �.C/:

Do there exist mixing transformations that are not mixing of order 3? This question, asked
by V. Rokhlin is 1949, is still open to this day. B. Host (1991) proved that a mixing
transformation whose spectrum is singular is mixing of all orders.



Chapter 4
The Hopf Argument

The author has had complaints about too much detail missing in
the presentation of the material in the latter paper. This has
been rectified in the present paper.

E. Hopf (1902–1983)

4.1 Introduction

The ergodic theorem was proved by G.D. Birkhoff in 1932. At the time, there were
already examples of ergodic systems. They came from probability theory and model
random phenomena like throwing a die or drawing balls from an urn. It is therefore
not surprising to see ergodicity appear in this context.

The next question was whether this ergodicity appears in classical mechanics.
The focus was on geodesic flows in nonpositive curvature. J. Hadamard had in fact
already proved in 1898 that these flows are unstable from the topological point of
view.

Let us explain briefly how these dynamical systems are defined: Consider a
surface whose points are locally saddle points. The manifold with equation

f.x; y; z/ 2 T3 j cos.2�x/C cos.2�y/C cos.2�z/ D 0g

is an example of a surface embedded in the torus T3 whose curvature is negative
outside of eight points; it is represented in Fig. 4.1. This surface is used in the
study of a physical system consisting of three double pendula joined at their tips.
The geodesic flow acts on the set of vectors of norm 1 tangent to the surface by
translating these vectors along the geodesics. It preserves the canonical volume on
the set of unit vectors.

G. Hedlund was the first to give an example of a surface with nonpositive
curvature for which the geodesic flow is ergodic with respect to the volume.
Carrying on the work of J. Hadamard, he showed, in 1934, that on some surfaces, the
geodesic flow is semiconjugate to a symbolic system, which allowed him to reduce
to a well-known situation.

© Springer-Verlag London 2016
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36 4 The Hopf Argument

In 1936, E. Hopf proposed a geometric argument, which allowed him to prove
the ergodicity of the geodesic flow on all surfaces of finite volume with nonpositive
curvature. This argument turns out to be tricky to implement in higher dimension.
However, it seems to apply to a larger class of dynamical systems: if there exist
sufficiently many directions that are dilated and contracted by the transformation,
then there is hope to prove the ergodicity of the system using the Hopf argument.

We will illustrate this argument by giving a new proof of the mixing property of
hyperbolic toral automorphisms. Then, we will show the ergodicity of the geodesic
flow on surfaces of finite volume with nonpositive constant curvature, using an
algebraic model for this flow: it can be identified with the action of a diagonal
subgroup of a quotient of the group SL2.R/ of 2 � 2 matrices with real coefficients
and determinant 1.

4.2 Stable Foliation and Invariant Functions

Let X be a metric space, let T W X ! X be a map, and let x 2 X. The (strong) stable
manifold of x for the map T is defined by

Wss.x/ D fy 2 X j d�Tn.x/;Tn.y/
� �����!

n!1 0g:

The stable manifolds partition the space X. If T is bijective, we can also define the
(strong) unstable manifold Wsu.x/ of x: it is the stable manifold of x for T�1.

Let � be a measure that is invariant under T. A measurable function f W X ! R
is called Wss-invariant if, after restriction to a set X0 satisfying �.Xc

0/ D 0, it is
constant on the stable manifolds: 8x; y 2 X0, y 2 Wss.x/ implies f .x/ D f .y/.

The following result gives the link between the stable foliation and the weak
accumulation points of the sequences of the form f ı Tn.

Theorem 4.1 Let X be a metric space, let � be a finite Borel measure on X, and
let T W X ! X be a measurable map that preserves �. Let f 2 L2.X/; then the
accumulation points (for the weak topology) of the sequence fıTn are Wss-invariant.
If T is moreover invertible, then these accumulation points are also Wsu-invariant.

Proof In this proof, we will use several classical properties of the weak topology,
which are set out in Chap. 16. Let ni and g be such that f ıTni converges to g for the
weak topology.
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Let us first assume that f is a bounded Lipschitz function. The Banach–Saks
theorem, recalled in Chap. 16, provides subsequences m`, nik !1 such that


`.x/ WD 1

m`

mX̀

kD1
f ı Tnik .x/ �����!

`!1 g.x/ a.e.

If y 2 Wss.x/, then

j
`.x/� 
`.y/j 6 C
1

m`

mX̀

kD1
d
�
Tnik .x/;Tnik .y/

� �����!
`!1 0:

Consequently, the function g is Wss-invariant.
Let us now proceed to the general case f 2 L2. For every " > 0, we can find a

Lipschitz function f 0 such that k f � f 0k < ". This classical density result is recalled
in Chap. 18. The sequence f 0 ı Tn is bounded in L2 norm. By weak compactness
(Chap. 16), we can find a subsequence nij such that f 0 ı Tnij converges weakly to a
function g0. We have just seen that this function g0 is necessarily Wss-invariant. The
sequence . f � f 0/ ı Tnij therefore converges weakly to g � g0, which implies

kg � g0k 6 lim k. f � f 0/ ı Tnij k 6 k f � f 0k < ":

We can therefore find a sequence of Wss-invariant functions that converges to g in
L2 norm and, after taking a subsequence, almost everywhere. The function g is Wss-
invariant.

Let us proceed to the case where T is invertible. Let I be the subspace of Wsu-
invariant functions. We will show that if f belongs to I?, then f ı Tn converges
weakly to 0. Let g be a weak limit of f ı Tni . We apply the above to T�1; we can
find a subsequence nik and a function g0 2 I such that g ı T�nik * g0. We obtain

hg; gi D lim
k!C1h f ı Tnik ; gi D lim

k!C1h f ; g ı T�nik i D h f ; g0i D 0:

Every function f 2 L2 can be written as a sum f D f1 C f2 with f1 2 I and f2 2 I?.
The sequence f2 ı Tn tends weakly to 0. The accumulation points of f ı Tn are also
accumulation points of the sequence f1 ı Tn, which belongs to I. ut

If f is an invariant function, then f ıTn D f and we obtain the following corollary.

Corollary 4.1 (Hopf) Let X be a metric space, let � be a finite Borel measure, and
let T W X ! X be a measurable map that preserves�. Then every function f 2 L2.X/
that is invariant under T is Wss-invariant. If T is moreover invertible, then f is also
Wsu-invariant.

Set-theoretically, this corresponds to saying that every measurable set that is
invariant under T coincides, up to a set of measure 0, with a union of stable
manifolds.
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The Hopf argument is only useful if the stable foliation is nontrivial. For an
isometry, for example, we have Wss.x/ D fxg for all x, and the argument does not
give any information on the invariant sets.

4.3 Application to Toral Automorphisms

Let us apply this argument to hyperbolic automorphisms of the torus Tn, in order to
give a new proof of a proposition seen in Chap. 3.

Proposition 4.1 Let A be an n � n matrix with integer coefficients and determi-
nant 1, without any eigenvalues on the unit circle. This matrix induces a map on the
quotient Tn D .R=Z/n that preserves the Lebesgue measure and is mixing.

Proof Denote by Es the projection onto the torus of the linear subspace associated
with the eigenvalues of absolute value less than 1. Let Eu be the projection onto
Tn of the subspace associated with the eigenvalues of absolute value greater than 1.
The example of the matrix A D � 2 11 1

�
is illustrated by Fig. 4.2. These two subspaces

are in direct sum and generate Rn. The stable and unstable manifolds for the map
induced by the matrix on the torus are given by Wss.x/ D x C Es and Wsu.x/ D
xC Eu, respectively.

We choose a coordinate system in the directions of Es and Eu, which gives a chart
.x; y/ 2 U defined in a neighborhood U of an arbitrary point of the torus. In this
chart, the stable manifolds are horizontal, the unstable manifolds are vertical, and
the Lebesgue measure takes on the form dx dy. Let f 2 L2.Tn/ be a function defined
on the torus, and let g be a weak accumulation point of the sequence f ıTn. We have
shown that this function g is invariant under Wss and Wsu. In the coordinate system
.x; y/, it therefore does not depend on x or on y when restricted to a full-measure
subset of U. The following lemma shows that it is constant almost everywhere on U.

Lemma 4.1 Let .X; T ; �/ and .Y;S; �/ be two probability spaces, and let
f WX�Y!R be an L2 function. We assume that there exist two measurable functions
'1 W X ! R and '2 W Y ! R and a subset Z � X � Y of full �˝ �-measure such
that

8.x; y/ 2 Z; f .x; y/ D '1.x/; f .x; y/ D '2.y/:

Then f is constant almost everywhere.

Proof By Fubini’s theorem, there exist Y0 � Y of full measure and x0 2 X such
that fx0g � Y0 � Z. For every .x; y/ 2 Z \ .X � Y0/, the point .x0; y/ is in Z, which
implies '1.x0/ D '2.y/ D f .x; y/. This proves the lemma. ut

The function g is locally almost constant, by virtue of the lemma we just proved.
We need to deduce from this that it is constant almost everywhere.
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Lemma 4.2 Let X be a metric space, let � be a measure with connected support,
and let g be a locally almost constant function. Then g is constant for almost all
x 2 supp�.

Proof For every x0 2 supp�, we can find rx0 > 0 such that g is constant almost
everywhere on B.x0; rx0 /, equal to Cx0 . For x 2 supp�, we set

g.x/ D lim
r!0

1

�.B.x; r//

Z

B.x;r/
g d�:

The function g is locally constant on supp�; it has value Cx0 on the intersection
B.x0; rx0 / \ supp�. By the connectedness of the support, we can deduce that g is
constant and that the constant Cx0 does not depend on x0; we denote it by C.

Recall that the support of a finite measure has a countable basis: we can find a
countable family of open sets D such that every nonempty open set can be written
as a union of elements of this family. This classical property is proved in Chap. 18.
For every x0 2 supp�, we can therefore find U 2 D such that x0 2 U � B.x0; rx0 /.
The resulting family of open subsets fUx0gx02X � D is countable and covers supp�,
and the function g is constant, equal to C almost everywhere on each of these open
sets. It follows that g is constant almost everywhere on supp�. ut

We have shown that every accumulation point g of f ı Tn is constant almost
everywhere. Since the integral of g is equal to that of f , we see that

R
f d� is the only

accumulation point of f ı Tn for the weak topology. By compactness, this implies
the convergence of the sequence f ıTn to the constant

R
f d�. The transformation is

indeed mixing with respect to the Lebesgue measure. ut
The key point in this proof is the existence of a coordinate system in which

the stable and unstable manifolds can be identified with the horizontal and vertical
vectors, respectively, and such that the invariant measure is equivalent to a product
measure. This measure is called absolutely continuous along the stable and unstable
foliations.

4.4 Flows on the Quotients of PSL2.R/

The geodesic flow on surfaces with constant nonpositive curvature can be described
in algebraic terms. The space on which the system is defined can be identified
with PSL2.R/, the quotient of the set of 2 � 2 matrices with real coefficients and
determinant 1 by the subgroup fId;� Idg. The flow is given by the following family
of transformations:

8t 2 R; 't

��
a b
c d

�� D � et 0
0 e�t

��
a b
c d

�
:
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These transformations define a flow

's ı 't D 'sCt;

and preserve the measure d� D da db dc=jaj. This measure has infinite total mass.
The group PSL2.R/ acts on itself by left multiplication and right multiplication.
These two actions leave � invariant, so that we obtain a measure on all quotients of
PSL2.R/.

Consider the right action of a subgroup � of PSL2.R/. For v 2 PSL2.R/, the
orbit of v under the action of the group is defined by � v D fv� j � 2 � g. From
now on, we will assume that the projection onto the quotient X D PSL2.R/=� is a
local homeomorphism. This condition is, for example, guaranteed by the existence
of a point v 2 PSL2.R/ satisfying d.v; � v X fvg/ > 0. Let us, moreover, assume
that X has finite �-measure. A subgroup � satisfying these properties is called a
lattice. The flow 't, which acts on the left, commutes with the action of � , which
acts on the right. It therefore passes to the quotient and defines a new flow on X,
which we also denote by 't. The measure � on the quotient is preserved by this
flow.

Definition 4.1 A flow f'tgt2R is ergodic with respect to an invariant measure � if
the only measurable sets invariant under all transformations 't for t 2 R either are
of measure 0 or have a complement of measure 0.

We will show that the flow f'tgt2R defined earlier is ergodic on X, using the Hopf
argument.

Theorem 4.2 Let � be a lattice in PSL2.R/. Then the flow 't is ergodic with respect
to the measure induced by � on the quotient PSL2.R/=� .

Proof We endow PSL2.R/ with a distance d invariant under multiplication on the
right. We can, for example, take d.A;B/D log.kAB�1k kBA�1k/, for a well-chosen
norm k�k. The choice of this norm, which is not unique, is the object of Exercise 2.
This distance passes to the quotient and defines a distance on X D PSL2.R/=� that
is compatible with the quotient topology.

We define three families of transformations by setting, for t 2 R and v 2 X,

't.v/ D
�

et 0
0 e�t

�
v; hsu

t .v/ D
�
1 t
0 1

�
v; hss

t .v/ D
�
1 0
t 1

�
v:

The equality 't ı hss
s D hss

se�2t ı 't shows that for every s 2 R, the points hss
s .M/

belong to the stable manifold for 't passing through v. A similar calculation shows
that hsu

s .v/ belongs to the unstable manifold for 't.
Let u0 D e2t u .1 � e2tsu/�1. We introduce a system of local coordinates in the

neighborhood of an arbitrary point v0 2 X by setting .t; s; u/ 7! hsu
u0

hss
s 't.v0/. In this

coordinate system, the stable manifolds Wsu.v/ are vertical lines and the unstable
manifolds

S
t2R 't.Wss.v// are horizontal planes. These observations follow from a

calculation that is proposed in Exercise 3 and illustrated by Fig. 4.3.
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We now consider a function f 2 L2.X; �/ that is invariant under the flow. In
this coordinate system, it does not depend on t. We apply the Hopf argument.
The function also does not depend on the coordinates s and u, up to a set of
measure 0. Note that in our coordinate system, the measure � is equivalent to a
product measure because it can be calculated explicitly using the change of variables
formula for C1 diffeomorphisms. The two lemmas used to study the hyperbolic
automorphims in the previous paragraph hold, and we conclude that f is constant
almost everywhere. ut

We have not proved that the maps 't for t ¤ 0 are mixing. That is the object of
Exercise 7.
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{ }, ,(x y z cos(2πx) + cos(2πy) + cos(2πz) = 0)| .

Surface embedded in the torus T2

with equation

The curvature is 0 in 8 points.

Fig. 4.1 A manifold with negative curvature

W ss(x)

W su(x)

x

Fig. 4.2 Stable and unstable manifolds for the toral automorphism
�
2 1
1 1

�

ϕth
ss
s (1, 0, 0) = (et, 0, se−t)

ϕth
su
s (1, 0, 0) = (et, set, 0)

ϕt

a

b

c

Id

W ss(Id)

W su(Id)
(a, b, c)

a b
c d

:

.

Orbits of the flow ϕt

in the coordinates

Fig. 4.3 Geodesic flow in constant negative curvature
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4.5 Exercises

4.5.1 Basic Exercises

From here on forward, X is a metric space, � is a finite Borel measure defined on X,
and T is a measurable transformation that preserves �.

Exercise 1 Show that every measurable function f invariant under T is Wss-
invariant. Show that a measurable function f W X ! R is Wss-invariant if and
only if it coincides almost everywhere with a function that is constant on the stable
manifolds.

Exercise 2 Give an example of a norm on R2 for which the only linear orientation-
preserving isometries are˙ Id. Let k�k be the norm induced by this norm on the set
of 2 � 2 matrices. Show that the expression

d.A;B/ D log.kAB�1k/C log.kBA�1k/

defines a distance on PSL2.R/ that is invariant under right multiplication.
Hint: Take the L1 norm in the first quadrant and the L2 norm in the second.

Exercise 3 Set

u0 D e2tu.1� e2tsu/�1; s0 D s.1 � e2tsu/; t0 D t � ln.1 � e2tsu/:

Show that

hsu
u0

ı hss
s ı 't D hss

s0

ı 't0 ı hsu
u :

Show that the transformation .s; t; u/ 7! hsu
u0

ı hss
s ı 't.v/ is a diffeomorphism

from a neighborhood of the origin in R3 to a neighborhood of v 2 PSL2.R/.
Let v0 be a point of this neighborhood; verify that in this coordinate system, the
unstable manifolds Wsu.v0/ correspond to the vertical lines and the stable manifoldsS

t2R Wss.'t.v
0// correspond to the horizontal planes.

Exercise 4 The “stable foliation” Wss is called ergodic with respect to the mea-
sure � if every Wss-invariant function is constant almost everywhere. Show that if
this is the case, the transformation T is mixing with respect to the measure �. Show
the ergodicity of the stable foliation for the toral automorphism given by the matrix
 
2 1

1 1

!

with respect to the Lebesgue measure.
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4.5.2 More Advanced Exercises

Exercise 5 The convex hull of a set A � L2.X/ is denoted by Conv.A/; it is the
smallest convex set containing A. Let f 2 L2.X/. Show that all elements of the
following convex set are Wss-invariant:

T

N2N
Conv

�ff ı Tn j n > Ng�:

Exercise 6 Let f1, f2 2 L2.X/. Assume that there exist two sequences of integers
mi, ni that tend to infinity, such that the product f1 ıTmi f2 ıTmiCni converges weakly.
Show that the limit is Wss-invariant. Generalize to a finite number of functions fk.

Exercise 7 Prove the following relation for "; t 2 R:

hss
.e�t�1/=" ı hsu

" ı hss
.et�1/=" D hsu

"et ı 't:

Consider the quotient of PSL2.R/ by a lattice. Show that a Wsu-invariant and Wss-
invariant measurable function f is invariant under the flow 't, in the sense that
f ı 't D f almost everywhere. Deduce that the geodesic flow is mixing with respect
to the measure �:

8f 2 L2; f ı 't ����!t!1

Z

f d� weakly.

Exercise 8 Let � be a subgroup of PSL2.R/. Set � � D � � fIdg. Recall that the
group � acts properly on PSL2.R/ if for every compact subset K � PSL2.R/, the
set f� 2 � j �.K/ \ K ¤ ¿g is finite. Prove the equivalence of the following
statements:

• The group � is discrete.
• The group � acts properly on PSL2.R/.
• The group � is countable, and � v is closed for every v 2 PSL2.R/.
• For every v 2 PSL2.R/, we have d.v; � �v/ > 0.

4.6 Comments

The term “foliation” used for the partition of X given by the manifolds Wss.x/ for x 2 X
is, of course, incorrect; in general, we should not expect this partition to form a foliation in
the geometric sense of the word. The term “stable distributions” is sometimes used in the
literature, but it clashes with the concept of distribution that comes from analysis. The term
“lamination” is also used, but again, this term has a more restrictive meaning in differential
geometry.
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The Hopf argument also holds if we consider the “average” foliation

Wss
moy.x/ D

(

y 2 X j 1
n

nX

kD1

d.Tk.x/; Tk.y// ����!n!1

0

)

:

The functions that are invariant under T are Wss
moy-invariant. More generally, the eigenfunc-

tions of f 7! f ı T are Wss
moy-invariant. On the other hand, the accumulation points of f ı Tn

are in general not invariant under this foliation.

The previous theorems can in part be generalized to infinite measures. If we can find a
countable family of open sets Ui of finite measure such that �.X X [Ui/ D 0, then the
accumulation points of f ı Tn for f 2 L2 are Wss-invariant. The proof is the same; the
condition on the measure guarantees the density of the bounded L2 Lipschitz functions in
L2.X/.

Meanwhile, in infinite measure, showing that the L2 functions that are invariant under T
are constant almost everywhere is not enough to obtain ergodicity. For example, for a
translation on R, there are no invariant sets of nonzero finite Lebesgue measure, and
therefore no invariant L2 functions; but there are many invariant sets of infinite measure
whose complement has infinite measure, and many bounded invariant functions.

In infinite measure, the Hopf argument remains valid if we assume that the measure is
conservative, that is, if every set of nonzero measure has an intersection of nonzero measure
with one of its iterates. The proof is based on the “ratio” ergodic theorem, proved by E. Hopf
in 1937 to extend the argument to infinite measures.

E. Hopf’s original argument used the Birkhoff ergodic theorem, rather than the Banach–
Saks theorem, and did not use the weak topology. From this point of view, it could not be
used to tackle the question of whether the transformation is strongly mixing.

From the 1960s on, the mixing property was studied using entropic techniques. The
� -algebra of invariant sets is replaced by the Pinsker � -algebra consisting of the sets
belonging to a partition with zero entropy, and the Hopf argument is proved using increasing
generalizations, in a series of articles that begin with D.V. Anosov and Y. Sinaï in 1967
and conclude with F. Ledrappier and L. S. Young in 1984. In their most general form,
these results show the equivalence between the Pinsker � -algebra and the � -algebra of
measurable sets that are the union of “fast” stable manifolds Wss

fast.x/ D fy 2 X j
lim 1

n log d.Tn.x/; Tn.y// < 0g for every C2 diffeomorphism on a compact manifold. The
link with mixing is provided by the following remark: the accumulation points of the
sequences of the form f ı Tn are measurable with respect to the Pinsker � -algebra.

It is in general difficult to prove that the Lebesgue measure is absolutely continuous with
respect to the stable foliation. For a geodesic flow on a compact manifold with negative
curvature, the absolute continuity of the volume was proved by D. V. Anosov in 1963. The
case of nonpositive curvature is not as well understood; the question of whether the volume
is ergodic is still open to this day.

There exist a few examples of surfaces with nonpositive curvature for which we know
how to prove the absolute continuity of the volume with respect to the stable and unstable
foliations. For example, if there exists a point with nonpositive curvature on each geodesic,
then the geodesic flow is Anosov (Eberlein, 1973), which implies absolute continuity, and
therefore ergodicity. This holds for the surface with equation f.x; y; z/ 2 T3 j cos.2�x/ C
cos.2�y/C cos.2�z/ D 0g because its curvature vanishes at finitely many points.

The surface f.x; y; z/ 2 T3 j cos.2�x/ C cos.2�y/ C cos.2�z/ D 0g appears in the work
of T. J. Hunt and R. S. Mackay (2003), who give an example of a mechanical system that
reduces to studying the geodesic flow on this surface. Maupertuis’s principle, presented in
Chap. 9, §45 of V. I. Arnold’s book [1], provides another physical motivation for the study
of geodesic flows. This principle states that at high energy, a Hamiltonian system behaves
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like a geodesic flow associated with a certain metric on the phase space. However, this
metric rarely has nonpositive curvature.

The identification of connected complete orientable surfaces with constant nonpositive
curvature with quotients of PSL2.R/ follows from Hadamard’s theorem. This theorem
states that the exponential map, defined on the tangent space to the surface at one of its
points, is a covering map [9]; the metric can be calculated explicitly in polar coordinates:
ds2 D dr2 C sh2.r/ d�2 . This allows us to identify the universal cover of the surface with
the upper half-plane H D fz 2 C j Re.z/ > 0g endowed with the metric jdzj=Re.z/. For
this metric, the isometries that preserve the orientation are the homographies z 7! azCb

czCd
for a; b; c; d 2 R with ad � bc D 1. Finally, two unit vectors of TH can be deduced from
one another using a unique homography. From an algebraic point of view, the isomophism
between

�
a b
c d

� 2 PSL2.R/ and .x C iy; �/ 2 T1H is given by the Iwasawa decomposition
of the matrix.

There exist algebraic methods for constructing quotients of PSL2.R/ of finite volume. We
can, for example, take the quotient by PSL2.K/, where K is a quaternion algebra over a
number field. These constructions are described by Katok [12]. Here is an example: Let
a; b 2 N be two prime numbers with a not a square modulo b. The quotient of PSL2.R/ by
the following group is compact:

��
x0 C x1

p
a x2 C x3

p
a

b.x2 � x3
p

a/ x0 � x1
p

a

� ˇ
ˇ
ˇ x0; x1; x2; x3 2 Z; x20 � a x21 � b x22 C ab x23 D 1

�

:

The most general constructions are geometric and use the identification of PSL2.R/with the
unit tangent bundle of the upper half-plane H. The discrete subgroups of finite covolume are
obtained from polygons in the plane that are symmetric with respect to the origin and have
a finite number of sides. In fact, we associate with such a subspace the group generated by
the elements of PSL2.R/ that identify opposite sides of the polygon. A well-known result of
Poincaré states that we thus obtain the lattices of PSL2.R/. A reference for these questions
is the book by A. Beardon [3].
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Chapter 5
Topological Dynamics

All truly wise thoughts have been thought already thousands of
times; but to make them truly ours, we must think them over
again honestly, until they take root in our personal experience.

J. W. von Goethe (1749–1832)

5.1 Introduction

A topological dynamical system is given by a topological space X and a transfor-
mation T W X ! X. We will study the case where X is a metric space and T satisfies
certain compatibility conditions with the topology, for example that T is continuous
or Borel. The sequence x;T.x/;T.T.x//; : : : of iterates of a point x 2 X forms the
trajectory or orbit of the point x.

Here are several examples of topological dynamical systems:

• systems arising from physics: the mechanics of a point mass can be described
using the transformation that associates with initial conditions .x0; v0/ 2 R3�R3
the position and speed .x; v/ of the point at time 1;

• systems arising from algorithmics: when an equation cannot be solved explicitly,
we can try to approximate its solutions using a sequence xnC1 D T.xn/ defined
by induction;

• systems arising from probability theory: repeating an experiment independently
can be described using a shift on a product space;

• systems arising from geometry: studying the evolution of an equation (geodesic
flow, Ricci flow,: : :) gives information on the structure of the underlying space;

• systems arising from arithmetic: one of the first examples was given by Gauss,
who noted that calculating the continued fraction representation can be done
using a transformation that preserves an explicit measure;

• systems arising from group theory: we can study linear actions on quotients
of groups of matrices, or let an element of the group act on the quotient by
translation.

Let x be a point of X. What can be said about the behavior of the sequence
fTn.x/gn2N in general? This sequence may be convergent. That is the desired
behavior when the system is meant for computing the solutions of an equation. On

© Springer-Verlag London 2016
Y. Coudène, Ergodic Theory and Dynamical Systems, Universitext,
DOI 10.1007/978-1-4471-7287-1_5

49
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the other hand, the trajectory may be dense in the space X. This is almost always the
case when the transformation is ergodic with respect to a finite measure with full
support.

In general, these two behaviors can coexist in the same system, which leads us
to study the notion of nonwandering sets. The points that do not belong to this
set are those that have a neighborhood that is distinct from all of its iterates. Their
trajectories cannot be dense; such a point also cannot return close to the initial point.
The trajectory of an arbitrary point cannot converge toward a wandering point. It
must therefore either go to infinity or end up in the nonwandering set.

5.2 Transitivity and Topological Mixing

Definition 5.1 Let X be a metric space, and let T W X ! X be a map. This map
is said to be transitive if for all nonempty open subsets U;V of X, there exists a
sequence ni !1 such that T�ni U \ V is nonempty.

The map T is topologically mixing if for all nonempty open subsets U;V of X,
there exists N 2 N such that for every n > N, the set T�nU \ V is nonempty.

The definition is illustrated by Fig. 5.1. A topologically mixing map is transitive.
The following relationship between these notions and ergodicity and measure-
theoretic mixing follows from the definitions.

Proposition 5.1 Let X be a metric space. A Borel transformation T of X that
preserves an ergodic finite Borel measure of full support is transitive. If the measure
is mixing, T is topologically mixing.

Let us introduce the notion of an !-limit set.

Definition 5.2 Let X be a metric space, and let T W X ! X be a map. The !-limit
set of x is the set of all accumulation points of the sequence fTn.x/gn2N:

!.x/ D fy 2 X j 9ni !1; Tni x! yg D T

n2N
fTk.x/ j k > ng:

We can show that when T is ergodic, there exists a point whose orbit is dense.

Proposition 5.2 Let X be a metric space, let � be a finite Borel measure, and let
T W X ! X be a Borel map that preserves �. We assume that � is ergodic. Then for
almost every x 2 X, we have supp� � !.x/.
Proof In Chap. 18, it is proved that the support of a finite measure is separable. Let
fxigi2N be a countable subset of supp� that is dense in supp�, and let r > 0 be
rational. The sets B.xi; r/ have positive measure. By ergodicity, there exists a set
˝i;r with negligible complement such that for x 2 ˝i;r, the point Tn.x/ belongs to
B.xi; r/ for infinitely many integers n 2 N.
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Taking the intersection of the ˝i;r for i 2 N and r > 0 rational, we see that for
almost every x 2 X, for every i 2 N, and for every rational number r > 0, we can
find infinitely many n such that Tn.x/ 2 B.xi; r/. For these x, we have xi 2 !.x/ for
every i 2 N. The support of � is therefore contained in !.x/. ut
Corollary 5.1 Let X be a metric space, and let T be a Borel transformation of X
that preserves an ergodic finite Borel measure of full support. Then there exists a
point x 2 X such that !.x/ D X.

If the measure has full support, the transformation is transitive. Figure 5.2
illustrates the transitivity of a toral automorphism.

In general, in a topological space, a set is dense if and only if it meets all
nonempty open sets. The existence of a point x such that !.x/ D X therefore implies
transitivity.

To establish the converse, we will use the Baire category theorem. This result
plays an important role in topological dynamics. It holds in every topologically
complete space, that is, in every topological space that is homeomorphic to a
complete metric space, and reads as follows: in such a space, every countable
intersection of dense open sets is dense. Complete or locally compact metric spaces
are examples of topologically complete spaces, and the Baire category theorem is
often stated in this setting.

Proposition 5.3 Let X be a topologically complete separable space, and let T W
X ! X be a continuous map. Then T is transitive if and only if there exists x 2 X
such that !.x/ D X.

Proof We have the following equality:

fx 2 X j !.x/ D Xg D T

U open
nonempty

T

N2N
S

n>N
T�nU:

We can restrict the first intersection to the open sets belonging to a base of the
topology; this notion is recalled in Chap. 18. If X has a countable base, the set
fx 2 X j !.x/ D Xg can therefore be written as a countable intersection of open
sets.

If T is transitive, the sets
S

n>N T�nU are dense because they meet all open sets.
The set fx 2 X j !.x/ D Xg is a countable intersection of dense open sets; it is
therefore nonempty by the Baire category theorem.

Conversely, let x 2 X be such that !.x/ D X, and let U and V be two nonempty
open sets. The orbit of x admits accumulation points in U and V; it therefore passes
infinitely many times through these open sets, which shows the transitivity. ut
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5.3 Recurrent Points and the Nonwandering Set

Definition 5.3 A point x 2 X is recurrent if x 2 !.x/, that is, if there exists a
sequence ni ! 1 such that Tni x ! x. We will denote the set of recurrent points
by R.

We have just seen that if T is continuous, the set of x 2 X such that !.x/ D X
is an intersection of open sets. The same holds for the set of recurrent points. This
comes from the following equality:

fx 2 X j x 2 !.x/g D T

k2N�

\

N2N

S

n>N
fx 2 X j d.x;Tnx/ < 1=kg:

The following result is closely related to the Poincaré recurrence theorem.

Proposition 5.4 Let X be a metric space, let � be a finite Borel measure, and let
T W X ! X be a Borel map that preserves �. Then almost every point of the support
of � is recurrent.

Without the separability assumption on X, we cannot guarantee that the support
has full measure. On the other hand, the support of a finite measure is always
separable. The proof can be found in Chap. 18.

Proof Let fxigi2N be a countable subset of supp� that is dense in supp�. Let D be
the set of balls with center in one of the xi and rational radius. For every U 2 D, the
set

fx 2 X j x 62 U or Tkx 2 U for infinitely many kg

has full measure in X, by the Poincaré recurrence theorem. The following set
therefore has full measure in X:

fx 2 X j 8U 2 D; x 2 U implies Tkx 2 U for infinitely many kg:
We conclude by noting that for every x 2 supp�, the set of U 2 D containing x
forms a base of neighborhoods of x. ut
Definition 5.4 A point x 2 X is nonwandering if for every open set U containing x,
there exists a sequence ni !1 such that T�ni .U/\U is nonempty. We denote the
set of nonwandering points by ˝ .

The nonwandering set contains all !-limit sets: for all x2X, we have !.x/�˝ .
The nonwandering set is closed, and recurrent points are nonwandering. We
therefore have the following corollary.

Corollary 5.2 Let X be a metric space, let � be a finite Borel measure, and let
T W X ! X be a Borel map that preserves �. Then supp� � R � ˝ .

For continuous transformations, we have the following criterion.
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Proposition 5.5 Let T be a continuous map on a metric space. A point x is
wandering (x 62 ˝) if and only if there exists an open set U containing x such
that T�nU \U is empty for every n > 1.

The proposition is illustrated by Fig. 5.3.

Proof First, suppose that x is periodic with period p > 0: Tpx D x. Then x is
nonwandering because x is in T�pkU \ U for every positive k.

Next, let x 62 ˝ . There exist an open set U containing x and N > 1 such that for
every n>N, we have T�nU \U D ¿. Set r D 1

2
minfd.Tnx; x/ j n 6 Ng, and write

V D U \ T

06n6N
T�nB.Tnx; r/:

The set T�iV \ V is included in T�iU \ U if i > N, and included in T�i
�
B.x; r/ \

B.Tix; r/
�

if i 6 N. The set T�iV \ V is therefore empty for every i > 1. ut
Finally, if T is an invertible transformation of X, the nonwandering set of T�1

coincides with that of T.
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xi

T ni(xi)

U
V

Fig. 5.1 Transitivity

1000 iterates of x 10 000 iterates of x 100 000 iterates of x

Fig. 5.2 Transitivity of hyperbolic toral automorphisms. We iterate an arbitrary point x of the
torus T2 using the transformation

�
2 1
1 1

�

U
x Tx

T 2x

T 3x

T −1x

T −2x

yi

T ni(yi)

U

x

Fig. 5.3 Nonwandering set. Assume that T is invertible. A point x is wandering if and only if there
exists a neighborhood U of x that is disjoint from all of its iterates
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5.4 Exercises

5.4.1 Basic Exercises

Exercise 1 Let T be a homeomorphism on a metric space. Show that T�1 is tran-
sitive (resp. topologically mixing) if and only if T is transitive (resp. topologically
mixing).

Exercise 2 Let X be a metric space, let T W X ! X be a continuous map, and let
x 2 X. Show that T

�
!.x/

� � !.x/, that T.R/ � R, and that T.˝/ � ˝ .
Assume that X is compact. Show that T

�
!.x/

� D !.x/.
Exercise 3 Let X be a metric space without any isolated points, let T W X ! X be a
map, and let x 2 X. Show that if fTn.x/ j n 2 Ng is dense in X, then !.x/ D X and
T is transitive.

Exercise 4 Let X be a metric space, and let T W X ! X be a map. Let x; y 2 X.
Show that if d.Tnx;Tny/ �����!

n!1 0, then !.x/ D !.y/. Show that !.Tx/ D !.x/.
Exercise 5 Consider the shift �.fxigi2N/ D fxiC1gi2N on the space X D f0; 1gN;
this space is endowed with the product topology. Consider the following set: F D
ffxig j 8k 2 N; xk D 1 ) xkC1 D 0g. Find points x 2 X such that !.x/ D F. Do
the same for F reduced to the point f0gi2N.

Exercise 6 Let X be a topologically complete metric space, and let T W X ! X be
a continuous map. Let x be a point whose orbit is a closed subset of X. Show that
either x has an iterate that is periodic or !.x/ is empty.
Hint: Use the Baire category theorem on the orbit itself.

Exercise 7 Let X be a metric space without any isolated points, and let T W X!X
be a homeomorphism. Assume that there exists x 2 X such that fTn.x/ j n 2 Zg is
dense in X. Show that T is transitive.

Exercise 8 Give an example of a continuous dynamical system that preserves a
probability measure that is transitive but not ergodic.
Hint: Take a sum of ergodic measures.

5.4.2 More Advanced Exercises

Exercise 9 Give a homeomorphism of Rd whose nonwandering set is empty.

Exercise 10 Construct a bijective holomorphic map from the closed unit disk to
itself that has a unique fixed point. Is it transitive, topologically mixing? Which
Borel probability measures are invariant under this map? Which are ergodic?
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Exercise 11 Let X be a metric space, let � be a finite Borel measure, and let
T W X ! X be a Borel map. Assume that there exist x 2 X and ni ! 1 such
that

1

ni

ni�1X

kD0
ıTkx ����!i!1 � weakly:

Show that supp� � !.x/.
Exercise 12 Let X be a compact metric space, and let T W X ! X be a surjective
continuous map. Let U be a proper open subset of X such that T.U/ � U. Show that
the set

S
n2N T�n.U/ is not equal to X.

5.5 Comments

We have just seen that for a transformation that preserves a finite measure of full support,
almost all points are recurrent. Strictly speaking, this is the result that should be called the
Poincaré recurrence theorem. Here is how it is stated in the 1890 paper Sur le problème des
trois corps et les équations de la dynamique:
If we disregard certain exceptional trajectories whose realization is infinitely improbable,
we can prove that the system will pass infinitely many times as close as we want to its initial
position.
However, it is common practice to reserve the name of Poincaré recurrence theorem for the
purely measurable statement proved earlier.
There exist other concepts of recurrence. A point x is said to be chain recurrent if for every
" > 0, there exist n 2 N and x1; x2; : : : ; xn with x1 D xn D x such that d.T.xi/; xiC1/ < "

for every i < n. In other words, up to allowing a small error at every iteration, we can
return arbitrarily close to the initial point. A nonwandering point is chain recurrent and
the set of chain-recurrent points is closed and invariant under T. The following result,
due to C. Conley (1978), is the first step in the decomposition of X in invariant sets:
Let X be a compact metric space, and let f be continuous. There exists a continuous
function  W X ! R that is constant on the orbits of the chain-recurrent points and strictly
decreasing on the other orbits; moreover,  .R/ has empty interior.
We can describe the transitivity in terms of invariant functions. The following result is due
to H. Keynes and J. Robertson (1968):
Let T W X ! X be a homeomorphism on a compact metric space with no isolated points.
Then T is transitive if and only if every function that is invariant under T and whose set of
points of continuity is dense, is constant on a Gı-dense set.
We have used the Baire category theorem to show that if every nonempty invariant open set
is dense, then the transformation admits a Gı-dense set of points that all have dense orbits.
Here, the Baire category theorem plays a role analogous to that of the ergodic theorem in
the measurable setting: the absence of nontrivial invariant sets gives a “large” set of points
whose orbits take up much space.
The Baire category theorem holds in all topologically complete spaces, that is, in every
topological space homeomorphic to a complete metric space. A subset of a topologically
complete space is topologically complete if and only if it is a countable intersection
of open sets (Mazurkiewicz–Alexandrov theorem; this is Theorem 2.5.4 in the book by
Dudley [6]). The locally complete metric spaces (i.e., those whose points each admit a
complete neighborhood), a fortiori the locally compact metric spaces, are topologically
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complete. To prove this, it suffices to verify that such a space is the inter of all 1=k-
neighborhoods of itself in its completion. The open unit ball in a Hilbert space is an example
of a topologically complete space that is neither locally compact nor complete for its natural
metric.
Making the link with measure theory, it is interesting to work with separable spaces, that
is, with spaces that admit a dense countable subset. A Polish space is a topological space
homeomorphic to a complete separable metric space. Such a space admits a countable
base of open sets, the Baire category theorem holds, and the finite Borel measures are
automatically inner regular. This last point is proved in Chap. 18. Polish spaces therefore
provide a natural setting for topological dynamics questions, if we wish to leave the setting
of compact metric spaces.
Let T be a continuous map, and let ˝ be its nonwandering
set. The nonwandering set of the restriction of T to ˝ is
not necessarily equal to ˝. Unlike for recurrence, it does
not suffice to study the trajectory of a point x to determine
whether or not it is wandering. Indeed, the trajectories that
return to the neighborhood of x can wander away from the
orbit of x. We have drawn a counterexample on the right.
The transformation is defined on Œ0; ��2. It has five fixed
points. The point at the center of the square is attracting
and all points in the interior of the square converge to this
point. The points on the boundary of the square converge to one of its four vertices. The
nonwandering set of the transformation consists of all points on the boundary of the square.
After restriction to the boundary of the square, the nonwandering set contains only the four
vertices. Such a transformation can be constructed from the flow given by the equations

x0 D sin.x/ .cos.y/C 1=10 cos.x// ;

y0 D sin.y/ .1=10 cos.y/� cos.x// :

Given a transitive transformation, it is in general difficult to determine whether a particular
point has a dense orbit. For example, the transformation of the interval Œ0; 1� given by x 7!
4x.1� x/ is transitive. Can we give an explicit rational number in Œ0; 1� that admits a dense
orbit under the action of this transformation? This question corresponds to finding a rational
number r such that the sequence f.2n=�/arcsin.r/gn>0 is dense in R=Z. The question is
open, even if, numerically, it seems that most rational numbers actually have a dense orbit.



Chapter 6
Nonwandering

With many a weary step, and many a groan,
Up the high hill he heaves a huge round stone;
The huge round stone, resulting with a bound,
Thunders impetuous down, and smokes along the ground.
Again the restless orb his toil renews,
Dust mounts in clouds, and sweat descends in dews.

Homer

6.1 Introduction

Consider a dynamical system given by a locally compact metric space X and a
continuous map T W X ! X. A point in X is wandering if it admits a neighborhood
that is disjoint from all of its iterates.

A point can be nonwandering and still have a trajectory that goes to infinity.
Here is an example: consider a dynamical system on a compact set that preserves a
probability measure and has a fixed point, for example an automorphism of a torus
embedded in R3. We send the fixed point to infinity, making sure that the area of
the obtained surface remains finite. All points are nonwandering because the system
preserves a finite measure of full support, but the points that converged to the fixed
point now go to infinity.

When all points are nonwandering, however, such behavior is exceptional. We
will show that in this situation, the recurrent points form a Gı-dense set of points
on X: most of the trajectories return arbitrarily close to their initial positions.

On the other hand, what can we say if the nonwandering set is finite? In this case,
the system has only finitely many periodic points, and all trajectories either go to
infinity or converge to one of these periodic orbits. We come across this situation in
mechanics when we take friction into account. The energy is not conserved, and the
system ends up reaching a stable equilibrium. From a certain point of view, it is the
simplest asymptotic behavior that we can observe for a dynamical system.

This type of dynamical system exists on all compact manifolds. Here is how
to construct examples in dimension 2: every orientable compact surface is homeo-
morphic to a sphere, a torus, or a surface of genus greater than 1, in the shape of
a “doughnut”. It can therefore be cut up into “pants” and disks. Hence it suffices
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60 6 Nonwandering

to construct transformations on each of the pieces, ensuring that they correspond
through the gluings.

When the nonwandering set is finite, we can represent the dynamical system
using a graph: the vertices of the graph are the nonwandering points of the set, and
two vertices are connected if there exists a trajectory joining the two points. Such a
representation is useful in classification problems.

6.2 Nonwandering

Let X be a metric space, and let T W X ! X be a continuous map. We recall the
definition of the nonwandering set:

˝ D fx 2 X j 8U open containing x; 9ni !1 such that T�ni U \ U ¤ ¿g:

This set is closed, satisfies T.˝/ � ˝ , and contains all limit sets

!.x/ D fy j 9ni �!1 such that Tni .x/ �! yg:

The stable manifold of a point x 2 X is defined by

Wss.x/ D fy 2 X j d�Tn.x/;Tn.y/
� �����!

n!1 0g:

The results that follow describe the dynamics of the map T in the two extreme
cases ˝ finite and ˝ D X.

A point x2X is called periodic if there exists an integer n>0 such that Tn.x/D x.
The period of the point x is the smallest integer n > 0 satisfying this equality.

Proposition 6.1 Let X be a locally compact metric space, and let T W X ! X be a
continuous map. We assume that the nonwandering set˝ of T is finite. Let P be the
set of periodic points of T. Then the orbit of any point of X either is attracted by a
periodic point or goes to infinity:

X D S

x2P
Wss.x/[ fx j !.x/ D ¿g:

Proof Let x0 2 X. Consider a point in !.x0/ � ˝; since its orbit is contained in ˝ ,
which is finite, one of its iterates p is periodic. Denote by ` the period of p. Let "0 >0
be such that the set fx 2 X j d. p; x/ 6 "0g is compact and disjoint from ˝ X f pg.
For every sufficiently small ı < "0, we have the inclusion T`.B. p; ı// � B. p; "0/.
This is illustrated by Fig. 6.1.
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Since the annulus fx j ı 6 d. p; x/ 6 "0g is compact and disjoint from ˝ ,
it contains only finitely many iterates of x0. Consequently, there exists an integer
N 2 N such that for every n > N, the iterate Tn`.x0/ is in B. p; ı/ [ B. p; "0/c.
Let n > N; since the point Tn`.x0/ is in B. p; ı/, the point T`

�
Tn`.x0/

�
belongs to

B. p; "0/, and therefore T.nC1/`.x0/ is in B. p; ı/. The sequence Tn`.x0/ is in B. p; ı/
for every n > N. This shows that x0 2 Wss. p/. ut
Remark More generally, if !.x/ meets an invariant compact subset K of ˝ that is
isolated in ˝ (i.e., d.K;˝ X K/ > 0), then !.x/ is contained in K.

Proposition 6.2 Let X be a topologically complete metric space, and let T W X ! X
be a continuous map. We suppose that the nonwandering set of T equals X. Then
the recurrent points are dense in X.

Proof Set

Uk;N D S

n>N
fx 2 X j d.x;Tnx/ < 1=kg:

The set of recurrent points coincides with the intersection of the Uk;N for
all k;N 2 N�. If ˝ D X, then the open sets Uk;N are dense in X. It suffices to
apply the Baire category theorem to conclude. ut
Remark In general, the recurrent points are dense in the interior of˝ (if this interior
is nonempty), but not necessarily in ˝ . Moreover, the nonwandering set of the
transformation T restricted to ˝ is not always equal to ˝ .

6.3 Examples

In the following examples, we will construct transformations on manifolds of
dimension d using local charts. Let X be a Ck manifold. A Ck chart on X is a
homeomorphism (k D 0) or a (Ck) diffeomorphism ' from an open subset of X
to an open subset of Rd.

Let f W X ! X be a continuous map, and let x0 2 X. Choose a chart ' W U ! V
such that U contains x0 and f .x0/. The composition ' ı f ı '�1 is the expression
of f in this chart. This map goes from the open subset V \ .'f �1/.U/ � Rd to V . It
allows us to represent f locally using a map between two open subsets of Rd.

• North-south dynamics
Let x 2 Rd and let � 2 R. We consider the map x 7! �x. This map can

be extended to the sphere Sd using the stereographic projection from the set
f.x; t/ 2 Rd�R j jxj2C t2 D 1g to Rd given by .x; t/ 7! 2x=.1� t/. The resulting
map is a homeomorphism of Sd. If j�j ¤ 1, its nonwandering set consists of an
attracting fixed point and a repelling fixed point. This example is illustrated by
Fig. 6.2.
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• A saddle point on S2

We consider the map from R2 to R2 given by the formula

.x; y/ 7�!
�1

2
xC x

1C x2
;
1

2
y
�
:

The nonwandering set consists of the points .�1; 0/ and .1; 0/, which attract, and
the point .0; 0/, which is a “saddle point”. Their stable manifolds are given by

Wss.˙1; 0/ D f.x; y/ j ˙x > 0g; Wss.0; 0/ D f.x; y/ j x D 0g:

This map can be lifted to the sphere S2 using the stereographic projection, in
which case the north pole will become a repelling fixed point, as illustrated by
Fig. 6.3. The map .x; y/ 7! �

1
2
.jxC 1

2
j � jx � 1

2
j C x/; 1

2
y
�

has similar dynamics;
it is linear in the neighborhood of the fixed points.

• The sphere, again
Let A be a d � d matrix with real coefficients that has d distinct real

eigenvalues, and let f W Sd�1 ! Sd�1 be the map given by the formula
f .x/ D Ax=kAxk. The nonwandering set consists of d points that can be either
fixed or periodic with period 2, depending on the sign of the eigenvalues.

• Gluing at the level of the attracting points
Consider two homeomorphisms f1 and f2 from the sphere S2 to itself. We

suppose that f1 has an attracting fixed point p1 and that there exists a local
chart U1 in the neighborhood of which f1 is of the form x 7! 1

2
x. We also suppose

that f2 has a repelling fixed point of the form x 7! 2x in a well-chosen chart U2.
We can then construct a new surface by removing disks around p1 and p2

and gluing the two punctured spheres using a cylinder joining the holes. To do
this, we take polar coordinates .r1; �1/ in the neighborhood of p1 and .r2; �2/ in
the neighborhood of p2. We remove the disks fjr1j 6 1=4g and fjr2j 6 1=4g
and join the annuli f1=4 < jr1j < 1g and f1=4 < jr2j < 1g using the map
.r2; �2/ D .4r�1

1 ; �1/. The maps f1 and f2 correspond to each other through this
gluing and give a homeomorphism f of our new surface. The nonwandering set
of f is the union of the nonwandering sets of f1 and f2 minus p1 and p2. This
construction is illustrated by Fig. 6.4.

We can also glue two fixed points p1 and p2 of a single homeomorphism f1.
If the basin of attraction of p1 is disjoint from the basin of repulsion of p2, the
resulting nonwandering set equals that of f1, minus the two points p1 and p2.

On the other hand, if the two basins are not disjoint, the nonwandering set
may be larger than that of the initial map. This is the case, for example, when we
glue the north pole to the south pole in north-south dynamics; the resulting map
is a translation on the torus, and all points are nonwandering.
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6.4 The Graph Associated with the Dynamical System

We can construct an oriented graph to represent the dynamical system as follows.
The vertices are the points of ˝ . We join two vertices by an oriented edge

if there exists a point whose negative iterates tend to the first point and whose
positive iterates tend to the second point. In other words, x; y 2 ˝ are joined
if Wsu.x/\Wss.y/ ¤ ¿. The presence of cycles in this diagram can indicate the
presence of recurrent points for the transformation. An example is shown in Fig. 6.5.
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Fig. 6.1 Finite nonwandering set

Fig. 6.2 North-south dynamics

Fig. 6.3 A saddle point on the sphere

Fig. 6.4 Gluing

Fig. 6.5 Graph associated with the dynamical system
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6.5 Exercises

6.5.1 Basic Exercises

Exercise 1 Let v 2 Rd. Consider the translation T.x/ D x C v on the torus Td.
Determine the nonwandering set.

Exercise 2 Let X be a metric space, and let T W X ! X be a homeomorphism whose
nonwandering set is finite. Show that this set consists of periodic points.

Exercise 3 Let T be a homeomorphism on a compact space X. Let x 2 X. Recall
that the unstable manifold of x is defined by

Wsu.x/ D fy 2 X j d�T�n.x/;T�n.y/
� �����!

n!1 0g:

Assume that the nonwandering set ˝ of T is finite. Prove the equality

X D S

x2˝
Wsu.x/:

Exercise 4 Give an example of a continuous map on Sd whose nonwandering set is
reduced to one point. What can be said about the dynamics of such a map?

Exercise 5 Study the dynamics of the map T W S1! S1 given by the formula

T.x/ D xC 1
20

�
1 � cos.4�x/

�
:

Next, study the dynamics of the map on T2 defined by .x; y/ 7! .Tx;Ty/.

Exercise 6 Consider a; b 2 C satisfying jaj2 � jbj2 D 1. Show that the linear
fractional transformation z 7! .azC b/=.bzC a/ sends the closed unit disk
fz 2 C j jzj 6 1g to itself. Compute the fixed points of this transformation, and
determine its nonwandering set.

Exercise 7 Give an example of a diffeomorphism on the surface of genus 2 (i.e.,
the “doughnut” with two holes) whose nonwandering set is finite.

6.5.2 More Advanced Exercises

Exercise 8 Construct homeomorphisms of the sphere S2 with a nonwandering set
that has one, three, and seven elements, respectively.

Exercise 9 Let X be a locally compact space, let T W X ! X be continuous, and
let K � ˝ be an isolated compact subset of ˝ such that T.K/ � K. Let Wss.K/ D
fy 2 X j d.Tn.y/;K/ �����!

n!1 0g. Consider x 2 X; show that if !.x/ \ K ¤ ¿, then

x 2 Wss.K/.
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Exercise 10 Let F be a closed subset of Œ0; 1�. Construct a homeomorphism of Œ0; 1�
whose set of fixed points equals F. Construct a homeomorphism of Œ0; 1� whose
nonwandering set equals F.

Exercise 11 Let T be a continuous map on a metric space X. Show that the
nonwandering set of T2 is included in that of T. Give an example where the converse
inclusion does not hold.

Exercise 12 Let X be a compact metric space, and let T W X ! X be a continuous
map. Let x 2 X be such that !.x/ does not contain any fixed points of T. Show that

d
�
TnC1.x/;Tn.x/

� �����!
n!1 0:

Deduce that !.x/ is connected. Assume, moreover, that the nonwandering set of T
is countable. Show that the sequence Tn.x/ converges.

6.6 Comments

When we perturb a homeomorphism in the C0 topology, the
nonwandering set can remain close to its initial position or,
on the contrary, “explode”. Consider, for example, a linear
fractional transformation z 7! .az C b/=.bz C a/, jaj2�jbj2 D
1, from the closed unit disk to itself. When a C b D 2, the
nonwandering set is restricted to the fixed point that lies on the boundary of the disk.
If ja C bj < 2, the map is the conjugate of a rotation, and all points of the disk are
nonwandering. When a C b D 2, the graph associated with the dynamical system consists
of a single point and a loop at this point. This is the simplest example of a graph containing
a cycle. The presence of cycles often indicates a certain form of instability in the dynamical
system. We can study these stability problems using filtrations; this is the object of Chaps. 2
and 3 of the book by Shub [21].
Given a compact manifold M, we can always construct, on M, a homeomorphism T whose
nonwandering set is finite. On the other hand, it is not always possible to construct a
homeomorphism T with finite nonwandering set and prescribed periodic points. Suppose,
for example, that in the neighborhood of each periodic point, there exists a local chart in
which T is linear, without any eigenvalues of absolute value 1. Let ni be the number of
periodic points for which the linearized map has an unstable subspace of dimension i. We
have the following formula, due to S. Smale (1967):

X
.�1/ini D 
;

where 
 is the Euler characteristic of M. For an orientable surface M of genus g, this gives
n0 � n1 C n2 D 2� 2g. We thus see, for example, that we cannot find a homeomorphism
on M whose nonwandering set consists of an attracting point (n0 D 1), a repelling point
(n2 D 1), and a saddle point (n1 D 1).

Here is how we prove the formula given above for surfaces: Note that the unstable
manifolds Wsu of the saddle points form the edges of a “triangulation” of the surface whose
vertices are the saddle points and the repelling points of T, and whose faces are the basins
of attraction Wss of the attracting points. The Morse–Smale formula then follows from the
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Euler relation, which links the number of vertices, edges, and faces of a “triangulation” of
the surface to its Euler characteristic.

In the examples given earlier by gluing half-spheres and “pants”, the Euler characteristic
of the surface equals the difference between the number of half-spheres and the number of
pants. The number of half-spheres equals n0 C n2, while the number of pants equals n1. We
indeed obtain the desired formula.

A Morse–Smale diffeomorphism is a diffeomorphism on a connected compact manifold,
whose nonwandering set is finite and whose periodic points are hyperbolic; we moreover
require that the stable and unstable manifolds of the periodic points intersect transversally
whenever they intersect. The examples given earlier are examples of Morse–Smale diffeo-
morphisms. These transformations are stable, in the sense that every diffeomorphism close
to such a map for the C1 topology is C0-conjugate to it.

Determining the nonwandering set can prove to be difficult in practice: for example, we
still do not know whether all points are nonwandering for an Anosov diffeomorphism on a
connected manifold. Likewise, studying the dynamics of a quadratic polynomial z 7! z2Cc
involves passing through a sophisticated proof of a nonwandering theorem.



Chapter 7
Conjugation

The source of all great mathematics is the special case, the
concrete example. It is frequent in mathematics that every
instance of a concept of seemingly great generality is in essence
the same as a small and concrete special case.

P. R. Halmos (1916–2006)

7.1 Introduction

Let Y be a metric space, and let T W Y ! Y be a continuous map. It is not in
general possible to explicitly compute the iterates Tn.x/ in order to decide whether
the individual orbits converge or diverge.

We can, however, look for a new coordinate system in which the transformation
has a simpler expression, allowing the effective computation of its iterates. Let X
be another metric space, and let S W X ! X be a continuous map. We say that T is
conjugate to S, from a topological point of view, if there exists a homeomorphism
' W X ! Y that satisfies ' ı S D T ı '. The map ' represents the change of
coordinates, and S is the expression of T in this new coordinate system.

From the relation ' ı S D T ı ', we deduce the equality Tn D ' ı Sn ı '�1
for every integer n. The conjugation ' therefore gives a bijection between the orbits
of S and those of T. If a trajectory of S is convergent, then its image by ' is also
convergent; if it is dense, its image is dense. If a set or measure is invariant under S,
its image is also invariant under T, etc. The dynamics of S and T correspond to each
other and studying the transformation T reduces to studying S.

Can we, using conjugation, reduce the study of a general dynamical system to
that of a small number of well-chosen examples? Here are two families of dynamical
systems for which this has been done:

• completely integrable mechanical systems: the two-body problem, geodesic
motion on an ellipsoid, harmonic oscillators, the displacement of a rigid body
in an ideal fluid, a symmetric top fixed at its extremity. These can be conjugated
to rotations on tori.

• transformations of compact Riemann manifolds that dilate a metric. Again, we
can reduce to studying an algebraic system on a homogeneous space. These
transformations have a clearly more disorganized behavior than the integrable
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70 7 Conjugation

systems; for example, they are topologically mixing, which is never the case for
a completely integrable system.

Further on, we will study three examples: the first is given by a map on the
interval, which turns out to be dilating after a suitable change of coordinates. The
second comes from physics; it is a simple pendulum under the influence of a
constant force field. The third is obtained by iterating a rational function on the
extended complex plane C [ f1g. In each of these examples, the conjugation
depends on a peculiar identity satisfied by a well-chosen function. From this point
of view, these systems may seem rather exceptional.

7.2 Conjugation and Semiconjugation

Definition 7.1 Let X and Y be two metric spaces, and let S W X ! X and T W Y ! Y
be two (continuous, Ck) Borel maps. The map T is semiconjugate to S via a map
' W X ! Y if we have the relation ' ı S D T ı '. In other words, the following
diagram is commutative:

X
S

X

Y
T

Y

We speak of conjugation when ' is Borel (continuous, Ck) and bijective, with Borel
(continuous, Ck) inverse.

Examples

• The map x ! 2x mod 1 is semiconjugate to the shift on a two-symbol alphabet
via the continuous map

' W f0; 1gN �! Œ0; 1/

faigi2N 7�!
X ai

2iC1 :

• Consider the map T W Œ0; 1/! Œ0; 1/ defined by

T.y/ D 4 y .1� y/:

Set '.x/ D sin2. �
2

x/. We take the square of the following trigonometric identity:

sin.2 �
2

x/ D 2 sin.�
2

x/ cos.�
2

x/:
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This gives the equality '.2x/ D 4'.x/.1 � '.x//, that is, '.2x/ D T.'.x//. The
map T is therefore semiconjugate to the map S.x/ D 2x from R to R.

Proposition 7.1 Let S W X ! X and T W Y ! Y be Borel maps that are
semiconjugate via a Borel map '. Let � be an S-invariant Borel measure. Then
its image '�� is a Borel measure that is invariant under T. If S is ergodic with
respect to � (resp. mixing), then T is ergodic (resp. mixing) with respect to '��.

Proof

• Let us show the invariance of '��:

T�.'��/ D .T ı '/�� D .' ı S/�� D '�.S��/ D '��:

• Let A � Y be a T-invariant set. Then '�1.A/ is S-invariant:

S�1 �'�1.A/
� D .' ı S/�1.A/ D .T ı '/�1.A/ D '�1T�1.A/ D '�1.A/:

Since � is ergodic, '�1.A/ either is negligible or has negligible complement,
with respect to �. The same therefore holds for A with respect to '��.

• For the mixing property, let A;B � Y be two Borel subsets; then

'��.T�nA \ B/ D �.'�1T�nA \ '�1B/ D �.S�n'�1A \ '�1B/:

This quantity converges to �.'�1A/ �.'�1B/, which is the desired value.

ut
Example Set

S.x/ D
(
2x if x 2 Œ0; 1=2/ ;
2 � 2x if x 2 Œ1=2; 1/ ;

that is, S.x/ D 1 � j2x � 1j for x 2 Œ0; 1/. A direct calculation shows that S is
conjugate to T.y/ D 4y.1� y/ on Œ0; 1/ via the homeomorphism

y D '.x/ D sin2. �
2

x/:

The following diagram is commutative:
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This diagram is illustrated by Fig. 7.1. Since S is mixing with respect to the
measure dx, the map T is mixing with respect to the measure dy=.�

p
y.1� y//.

Indeed, this measure is the image of the Lebesgue measure by ':

dy D d
�
sin2. �

2
x/
� D 2�

2
sin.�

2
x/ cos.�

2
x/ dx D �py.1 � y/ dx:

The density of the T-invariant measure is clearly visible in Fig. 7.2, which was
obtained using numerical experiments.

7.3 Elliptic Functions

A priori, every peculiar identity may lead to an interesting conjugation. We will
study elliptic functions, which generalize the usual trigonometric functions. We fix
a parameter k 2 .0; 1/ and define the Jacobi elliptic function sn via its inverse:

sn�1.z/ D
Z z

0

dt
p
.1 � t2/.1 � k2t2/

:

Set K D sn�1.1/. The function sn depends on the parameter k and defines a
continuous bijection from Œ�1; 1� to Œ�K;K�. This bijection is holomorphic in the
neighborhood of 0 in the complex plane. The derivative of sn can be calculated
using the formula for the derivative of an inverse function; we obtain the equality
sn0.x/2 D .1 � sn2.x//.1 � k2 sn2.x//. The function sn satisfies the identity

sn.uC v/ D sn.u/ sn0.v/C sn0.u/ sn.v/

1 � k2 sn2.u/ sn2.v/
:

To establish this identity, it suffices to differentiate the right-hand side, first with
respect to u, and then with respect to v, and to note that the two derivatives are
equal. This shows that the right-hand side can be written as a function of the sum
uC v. We determine this function by taking v D 0. It follows that

sn.2u/ D 2 sn.u/ sn0.u/
1 � k2 sn4.u/

:

This equality allows us to extend the map sn to a meromorphic function on the
complex plane: for every z, there exists an integer n such that sn.z=2n/ is well
defined; we deduce the value of sn.z/ by applying the identity.

Now, let us calculate a few values of sn using the earlier formulas:

sn.K/ D 1; sn0.K/ D 0; sn.2K/ D 0; j sn0.2K/j D 1; j sn.uC 2K/j D j sn.u/j:
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It follows that

sn.uC 4K/ D sn.u/:

The function sn is periodic, with period 4K. Set

K0 D
Z 1=k

1

dt
p
.t2 � 1/.1� k2t2/

:

By the formula given earlier, sn�1. 1k / D K C iK0, which implies

sn.K C iK0/ D 1

k
; sn0.K C iK0/ D 0; sn.2K C 2iK0/ D 0:

As above, it follows that

sn.uC 4iK0/ D sn.uC 4K C 4iK0/ D sn.u/:

Surprisingly, the function sn has a second period 4iK0. Let us give two applications
of the peculiar identities we have just proved.

7.4 The Simple Pendulum

Elliptic functions allow us to explicitly integrate certain equations from classical
mechanics. Consider a simple pendulum under the influence of the Earth’s gravita-
tional field. Denote by � the angle the pendulum makes with the vertical axis. It is
represented on the left in Fig. 7.3. The energy is preserved during the motion, which
gives the equation

� 02 � 2!2 cos � D E D C

for some constant C. Set  D 2!p
EC 2!2 sin.�=2/. This function satisfies the

relation

 02 D !2.1 �  2/
�
1 �

�1

2
C E

4!2

�
 2
�
:

When jEj < 2!2, this equation admits the solutions  .t/ D sn.! t C C0/ with
k2 D 1=2C E=4!2 and C0 some constant determined by the initial conditions. In
the phase space . ; 0/, the motion is conjugate to a rotation.
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7.5 Schröder’s Examples (1871)

The function z 7! sn2.z/ has two periods. We pass to the quotient in order to obtain
a map on the torus T2 D C=.2KZC 2iK0Z/ with values in C [ f1g. Let us verify
that this holomorphic map is surjective. The image of an open set by a nonconstant
holomorphic map is also open, and the image of a compact set by a continuous map
is compact. The set sn2.T2/ is a subset that is both open and closed in the connected
space C [ f1g; it is therefore equal to C [ f1g.

The function sn2 gives a semiconjugation between the mixing transformation of
the torus T2 given by x 7! 2x and the rational function

z 7�! 4z .1� z/ .1 � k2z/

.1 � k2z2/2
:

This rational function is therefore transitive on C [ f1g, and ergodic and mixing
with respect to a measure that is absolutely continuous with respect to the Lebesgue
measure.
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0

1
T (x)

x → sin2(π
2x)

0 11

1
x → 1 − 2x − 1||

Fig. 7.1 Conjugation of T.x/ D 4x.1� x/ to the “tent” map

1
y(1 − y)

1/100.
This histogram contains 100 sticks
of width 1 It was formed
using the first million iterates of
the point

The limit distribution is clearly
visible on the histogram.

x = 0.9 by T .

Fig. 7.2 Statistical behavior of the orbits of T.x/ D 4x.1� x/

θ

sn(x)
k = 1

k = 0,95

k = 0,9

k = 0,5

k = 0,3 0,7

1

1

0,75

0,5

0,25

2 3 4 5

sn (ωt)2

x

Fig. 7.3 Simple pendulum
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7.6 Exercises

7.6.1 Basic Exercises

Exercise 1 Give an explicit C0 conjugation between the maps f1; f2 W R ! R
defined by f1.x/ D 2x and f2.x/ D 3x. Show that there exists a C1 conjugation
on R � f0g. Does there exist a C1 conjugation on all of R?

Exercise 2 Let A be an n � n matrix with integer coefficients, and let v be a vector
in Rn. Assume that 1 is not an eigenvalue of A. Show that the maps on Tn induced
by x 7! Ax and x 7! AxC v are conjugate via a translation.

Deduce that these two transformations have the same properties from a topolog-
ical point of view and from the point of view of the Lebesgue measure.

Exercise 3 Show that the transformation of the interval .0; 1=2/ given by the
formula x 7! 2x.1 � x/ is conjugate to multiplication by 2 on .�1; 0/ via the
conjugation x 7! 1

2
.1 � ex/.

Exercise 4 Study the dynamics of the map T W Œ�1; 1� ! Œ�1; 1� given by the
formula T.x/ D 4x3 � 3x.
Hint: Use a trigonometric identity for the cosine.

Exercise 5 Let a; b; c; d 2 R with ad � bc ¤ 0. Show that a linear fractional
transformation z 7! .azC b/=.czC d/ on C [ f1g is conjugate, via a linear
fractional transformation, to a translation z 7! z C ˛ with ˛ 2 R, to a homothety
z 7! �z with � 2 R, or to a rotation z 7! ei� z with � 2 R.

Exercise 6 The motion of the pendulum is periodic; determine its period. Assume
that the pendulum hangs vertically downward at time t D 0. Show that its height at
time t is proportional to sn2.!t/.

Exercise 7 Show that Schröder’s examples admit infinitely many periodic points,
and that these periodic points are dense in C [ f1g. Explicitly determine the
invariant measure that is absolutely continuous with respect to the Lebesgue
measure.

7.6.2 More Advanced Exercises

Exercise 8 Classify all linear maps of the plane up to C0 conjugation. Do the same
up to C1 conjugation.

Exercise 9 Consider a norm on the algebra of n� n matrices with real coefficients.
Let A be such a matrix, with norm less than 1 and positive determinant. Assume that
the eigenvalues of A are distinct. Show that the map from Rn to Rn given by x 7! Ax
is C0-conjugate to the map x 7! 1

2
x.

Hint: Begin with the case where all eigenvalues are real.
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Exercise 10 Let ' W R ! R be a 1-periodic continuous map; set f .x/ D 2x C
'.x/.

• Show that the sequence
P1

nD0 2�n�1'. f n.x// converges; denote its limit by  .
• Show that  is continuous and periodic with period 1.
• Show the relation 2 .x/ D '.x/C  . f .x//.
• Let h.x/ D xC  .x/. Show that h is surjective and that h. f .x// D 2h.x/.
• Show that if f is C1 and f 0 > 1, then the map h is injective.
• Let f W R=Z! R=Z be the map obtained from f by passing to the quotient. Show

that f is transitive and that it admits an invariant finite measure of full support that
is mixing.

7.7 Comments

The first duplication formulas for elliptic integrals appeared in the eighteenth century. The
following formula can be found in the treatise Produzioni Mathematische (1750) by G.
Fagnano:

Z r

0

dtp
1� t4

D 2

Z �

0

dtp
1� t4

; r2 D 4�2.1� �4/

.1C �4/2
:

These integrals play a role in the problem of cutting up an ellipse into arcs of equal
length [14].
The functions sn can be constructed from the Jacobi � functions and are related to the
Weierstraß } functions through the formula

}.u/ D �1
3
.1C k2/C 1

sn2.u/
:

Here are some physical systems whose motion equations can be integrated using elliptic
functions, the calculations are given in the book by D. F. Lawden, Elliptic functions and
applications [14]: an object under the influence of a force proportional to 1=r4 or 1=r5,
relativistic effects in the two-body problem, a whirling chain, a rigid body rotating freely
about a fixed point, electric current in a rectangular conducting plate.
Rational functions that act transitively on C[f1g are called Lattès functions, even though
the work of S. Lattès (1918) was carried out after that of E. Schröder. J. Milnor (2004) has
given a historical overview of this problem.
We can obtain other families of transitive rational functions on C [ f1g using peculiar
identities for sn.mt/ with m 2 N. Schröder’s example is the only one-parameter family of
degree 4. There exist families of degree n2 for every n > 1. We can also construct isolated
examples that can be obtained using the transformation formulas for elliptic functions
with respect to the parameter k. For example, the function sn.uI k/ associated with the
parameter k can be expressed as a function of sn.uI `/ with ` D 2

p
k=.1C k/ using the

formula

sn..1C k/uI k/ D .1C k/
sn.uI `/

1C k sn2.uI `/ :
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The equation ` D k admits the solutions k D ˙ 1
2
.1 ˙ i

p
7/. For these values, the map

z 7! .1C k/z=.1C kz2/ is therefore transitive.
In many classification results, the system is conjugate to an algebraic model. We must then
classify these models. For example, J.-P. Conze and J. Marcuard (1970) have shown that
two automorphisms of a torus or of a nilmanifold are topologically conjugate if and only if
they are algebraically conjugate.
We know how to classify up to topological conjugation the C1 maps of connected, compact,
differentiable manifolds that dilate a Riemann metric, thanks to the work of M. Shub
(1969) and M. Gromov (1981). The manifold must be diffeomorphic to the quotient of a
simply connected nilpotent Lie group G by a group of affine transformations acting properly
discontinuously without any fixed points; such a manifold is called an “infra-nilmanifold”.
The transformation is conjugate to the quotient of an automorphism of G whose eigenvalues
are greater than 1.
In 1978, A. Manning showed that Anosov diffeomorphisms on infra-nilmanifolds are
topologically conjugate to automorphisms without any eigenvalues of absolute value 1.
The infra-nilmanifolds endowed with an Anosov diffeomorphism have been classified in
dimension less than 9 by J. Lauret and C. E. Will (2004). Those associated with a nilpotent
Lie algebra G of class 2 (ŒG; ŒG;G�� D 0) have been classified by T. L. Payne (2009).
There exist examples of manifolds homeomorphic to tori or to infra-nilmanifolds, but not
diffeomorphic to such manifolds, which admit Anosov diffeomorphisms. These examples
were constructed by F. Farrell and L. Jones (1978) and F. Farrell and A. Gogolev (2010).
We do not know, however, whether a manifold endowed with an Anosov diffeomorphism is
necessarily homeomorphic to an infra-nilmanifold.



Chapter 8
Linearization

I specifically remember discussions among ourselves and with
visitors about what is now known as nonlinear
mathematics—truly a strange expression, for it is like saying “I
will discuss nonelephant animals”.

S. Ulam (1909–1984)

8.1 Introduction

To study the dynamics of a transformation f on a space X, we can try to conjugate f
to a simpler model A W Y ! Y via a homeomorphism ' W X ! Y satisfying
A ı ' D ' ı f . When Y is an open subset of Rd and the model A is linear, we speak
of linearization.

The dynamics of a linear map is sufficiently simple that we can completely
describe the asymptotic behavior of its orbits and deduce that of its conjugates.
Figure 8.1 shows the phase portraits of the linear maps on R2 that are diagonalizable
on C.

Which maps can be linearized? This question can be tackled using perturbative
methods: is a transformation close to a linear map A conjugate to it? This is the
case whenever A does not have any eigenvalues of absolute value 1, as illustrated in
Fig. 8.2. Such a map is called hyperbolic.

This result can be generalized to the infinite dimensional setting, provided that
the space can be decomposed into two subspaces that are respectively contracted and
dilated by the linear map. To construct the conjugation, we must solve the equation
A ı ' D ' ı f , that is, construct a fixed point for the map ' 7! A ı ' ı f �1. To
do this, we apply the hyperbolic fixed point theorem which follows from the fixed
point theorem for a contractive Lipschitz map.

We can also tackle the conjugation problem locally. Suppose that the transfor-
mation f is differentiable and has a fixed point p. In the neighborhood of this fixed
point, the transformation f is close to its differential Dp f . P. Hartman and D. M.
Grobman (1960) have shown that we can conjugate f to its differential in a small
neighborhood of the fixed point if this differential is hyperbolic.

When f is invertible and all eigenvalues of Dp f have absolute value less than 1,
the conjugation can even be extended to the set of points whose orbits tend to p,
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80 8 Linearization

which shows, a posteriori, that this set is open and homeomorphic to Rd. This set is
called the basin of attraction of the fixed point p.

8.2 The Hyperbolic Fixed Point Theorem

Recall that a map on a metric space is contractive if it is Lipschitz with Lipschitz
constant less than 1. The contraction mapping theorem, due to S. Banach, states that
every contractive map on a complete metric spaces admits a unique fixed point. We
will give a hyperbolic version of this result.

Definition 8.1 Let E be a Banach space. A continuous linear map T W E ! E
is called hyperbolic if there exist two closed subspaces Es and Eu of E such that
E D Es ˚ Eu and

T.Es/ � Es; kTjEsk < 1;
T.Eu/ D Eu; TjEu is invertible; k.TjEu/

�1k < 1:

Theorem 8.1 Let E be a Banach space, let T W E! E be a hyperbolic linear map,
and let F W E ! E be a continuous map. We assume that F � T is Lipschitz, with
sufficiently small Lipschitz constant. Then F has a unique fixed point.

Proof Consider the two identities

.Id�T/.IdCT C � � � C Tn/ D Id�TnC1;

.T � Id/.T�1 C T�2 C � � � C T�n/ D Id�T�n:

The first identity shows that Id�T W Es ! Es is invertible, the second that Id�T W
Eu ! Eu is invertible. The linear map Id�T W E! E is therefore invertible.

A point x is a fixed point of F if and only if .F� T/.x/ D x� T.x/, that is, if and
only if it is a fixed point of the map .Id�T/�1.F � T/. This map is contractive if
the Lipschitz constant of F�T is less than k.Id�T/�1k�1. It therefore has a unique
fixed point. ut

8.3 The Linearization Theorem, Lipschitz Case

The following result shows that a continuous map close to a hyperbolic linear map
is necessarily conjugate to this map.

Proposition 8.1 Let B be a Banach space, let A W B ! B be an invertible,
hyperbolic, continuous linear map, and let f W B ! B be an invertible continuous
map. We assume that f �A is bounded and Lipschitz with sufficiently small Lipschitz
constant. Then f and A are conjugate to each other.
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Proof Let g W B ! B be a map satisfying the same assumptions as f . Let us show
that there exists a continuous map ' such that g ı ' D ' ı f . Such a map ' must be
a fixed point of the transformation given by ' 7! g ı' ı f �1. We are looking for a '
of the form ' D IdC , with  W B! B bounded and continuous. We have

g ı .IdC / ı f �1 D .g � A/ ı .IdC / ı f �1 C A ı .IdC / ı f �1

D .g � A/ ı .IdC / ı f �1 C A ı f �1 C A ı  ı f �1:

Set

T. / D A ı  ı f �1;

F. / D T. /C .g � A/ ı .IdC / ı f �1 C A ı f �1 � Id :

These two maps go from E to E, where E D Cb.B;B/ is the Banach space of the
bounded continuous functions from B to B, endowed with the uniform norm. The
function F has been chosen such that we have the equality

g ı .IdC / ı f �1 D IdCF. /;

so that we wish to show that F has a fixed point. To do this, let us show that T is
hyperbolic and that the Lipschitz constant of F � T is small.

Let Bs and Bu be the stable and unstable manifolds of A, respectively. Set
Es D Cb.B;Bs/ and Eu D Cb.B;Bu/. These two spaces are the stable and unstable
manifolds of T, respectively.

If  2 Es, then kT. /k D kA ı  ı f �1k1 D kA ı  k1 6 kAjBsk�k k1:

If  2 Eu, then

.TjEu/
�1 D .AjBu/

�1 ı  ı f and k.TjEu/
�1. /k1 6 k.AjBu/

�1k�k k1:

The Lipschitz constant of F � T is less than that of g � A, which we denote by K:

k.F � T/. / � .F � T/. 0/k1 D k.g � A/ ı .IdC / � .g � A/ ı .IdC 0/k1
6 Kk �  0k1:

The hyperbolic fixed point theorem holds and gives a unique map  2 Cb.B;B/
satisfying F. / D  , as desired. It remains to show that the map ' D IdC is
invertible. To do this, we reverse the roles of g and f . We obtain a function ' 0 that
satisfies f ı' 0 D ' 0 ı g. This gives g ı' ı' 0 D ' ı' 0 ı g and f ı' 0 ı' D ' 0 ı' ı f .
By the uniqueness of the conjugation, we have ' ı ' 0 D ' 0 ı ' D Id. ut
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Remark In the theorem above, the invertibility of f follows from the other assump-
tions. Let K be the Lipschitz constant of f � A. Let us show that if this constant is
less than kA�1k�1, the function f is invertible.

Set Ay.x/ D A.x/ � y; this map is Lipschitz, with inverse A�1
y x D A�1xC A�1y.

The map A�1
y .A � f / is contractive, so has a fixed point, which satisfies y D f .x/.

The relation

x D A�1.A � f /.x/C A�1y

gives

kx � x0k 6 kA�1kKkx � x0k C kA�1k�ky � y0k:

The map f �1 is therefore Lipschitz.

8.4 The Linearization Theorem, Differentiable Case

We want to understand the dynamics of a diffeomorphism in the neighborhood of a
periodic orbit. The Hartman–Grobman theorem concerns the case where the orbit is
hyperbolic.

Definition 8.2 Let M be a differentiable manifold, and let f W M! M be a C1 map.
A periodic point p of f with period n is called hyperbolic if Dp f n is invertible and
does not have any eigenvalues of absolute value 1. We speak of an attracting (resp.
repelling) point when all eigenvalues have absolute values less than 1 (resp. greater
than 1).

Let us show that this notion of hyperbolicity agrees with the one introduced
earlier. Consider a d � d matrix A without any eigenvalues of absolute value 1.
The origin is a hyperbolic fixed point in the sense of the earlier definition. We must
verify that the matrix is hyperbolic according to the definition given at the beginning
of the chapter, for a well-chosen norm on Rd.

Let � be the set of eigenvalues of A of absolute value less than 1. Set

Es D ˚�2� Ker.A � � Id/d:

On the invariant subspace Ker.A � � Id/d, we have

Am D �� IdC.A � � Id/
�m D

d�1X

kD0
Ck

m �
m�k.A � � Id/k:

The norm of the matrix Am is bounded from above by md�1j�jm times a constant
that is independent of m. We choose �0; �1 2 R such that
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max
�2�

� < �0 < 1 and �0 < �1 < 1:

Since kAmk 6 �m
0 for m sufficiently large, the sequence

kxks D
1X

mD0
��m
1 kAmxk

converges for every x 2 Es. We thus obtain a norm on Es that satisfies the relation

kAxks D �1.kxks � kxk/ 6 �1kxks:

For the eigenvalues of absolute value greater than 1, we proceed likewise by
considering A�1, which give another norm k�ku on the sum of the generalized
eigenspaces associated with the eigenvalues of A of absolute value greater than 1.
This norm is contracted by A�1. The matrix A is then hyperbolic with respect to
the maximum of the two constructed norms. Note that if A does not have any
eigenvalues of absolute value greater than 1, the ball B.0; r/ for the norm k�ks

satisfies A
�
B.0; r/

� � B.0; �1r/ � B.0; r/.
Let us now state the Hartman–Grobman linearization theorem.

Theorem 8.2 (Hartman–Grobman) Let M be a differential manifold of dimen-
sion d, and let f W M ! M be a C1 differentiable map with a hyperbolic fixed
point p. We can then find neighborhoods U1;U2 � M of p and V1;V2 � Rd of 0, as
well as a homeomorphism ' W U1 [ U2 ! V1 [ V2 that locally conjugates f and
Dp f :

Proof Consider a local chart centered at p. Let us show that f � Dp f extends to a
map on Rd with small Lipschitz constant.

Let g W Rd ! Œ0; 1� be a C1 map equal to 0 for jxj > 2 and equal to 1 for jxj < 1.
Set gr.x/ D g.x=r/. The extension of f is given by Qf D grf C .1 � gr/Dp f for a
well-chosen r. In order to get an upper bound for the Lipschitz constant of Qf �Dp f ,
we bound the norm of the differential of gr. f �Dp f / for jxj < 2r:

kDx
�
gr. f � Dp f /

�k 6 1

r
kDgk1 kf .x/ � Dp f .x/k C kgrk1kDx f � Dp fk

6 1

r
kDgk1

�
sup

jxj<2r
kDx f � Dp fk

�
jxj C kDx f � Dp fk:
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It suffices to take r such that supjxj<2r kDx f�Dp fk < "=.1C2kDgk1/with " small,
to be able to apply the linear conjugation theorem. We obtain a global conjugation
' W Rd ! Rd between Qf and Dp f . On B.0; r/, we have the equality Qf D f . For U2 we
take the open subset of M corresponding to B.0; r/, and we set U1 D f �1.U2/\U2.
The open sets V1 and V2 are the image of U1 and U2, respectively, by '. ut

When p is an attracting fixed point, we can choose the sets such that we have
the inclusions U2 � U1 and V2 � V1. If f is moreover invertible, the conjugation
extends to a homeomorphism

' W S
k2N

f �k.U1/ �! Rd

by setting ' D .Dp f /�k ı' ı f k on f �k.U1/. This extension is illustrated by Fig. 8.3.
The set

S
k2N f �k.U1/ consists of the points whose orbits converge to p. This is

the basin of attraction of p. With the notation of the previous chapters, this basin
coincides with Wss. p/, which is therefore an open set homeomorphic to Rd.

The Hartman–Grobman theorem can also be used to study the dynamics in the
neighborhood of a hyperbolic periodic point p. Let n be the period of the point p.
This point is fixed by f n, and we can apply the linearization theorem to this iterate
of f . In the case of an attracting periodic point, we obtain n disjoint open sets Wss. p/,
Wss. f . p//; : : : ;Wss. f n�1. p//, each sent to the next by f . These open sets, which are
homeomorphic to Rd, are permuted cyclically by f . The orbit of a point belonging
to any of these open sets ends up identifying with that of p.
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8.5 Exercises

8.5.1 Basic Exercises

Exercise 1 Let X be a compact metric space, and let T W X ! X be a map that for
every pair of distinct points x; y 2 X satisfies the inequality d.T.x/;T.y// < d.x; y/.

Show that T has a unique fixed point x0 and that for all x 2 X, we have
Tn.x/ �����!

n!1 x0.

Hint: Consider maxfd.Tx;Ty/=d.x; y/ j d.x; y/ > "g.
Exercise 2 Let M be a manifold, and let T W M ! M be a differentiable map with
a hyperbolic fixed point p that is not attracting. Show that the set of points attracted
by p has empty interior.
Hint: Use the Baire category theorem.

Exercise 3 Consider a diffeomorphism T on a compact manifold M. Assume that
its nonwandering set is finite and made up of hyperbolic periodic points. Show that
the union of the basins of the attracting periodic points is a dense open set.

Exercise 4 Let f be a differentiable map on a compact manifold M. Let p be a
hyperbolic periodic point. Show that there exists a neighborhood of p such that all
periodic points in this neighborhood have periods greater than that of p.

Suppose that all periodic points of T are hyperbolic. Let n 2 N�; show that the
set of periodic points of T with period n is finite.

Exercise 5 Let T be a diffeomorphism on a compact manifold M. Let p be a
hyperbolic fixed point. Assume that there exists a point x ¤ p such that x 2 Wss. p/\
Wsu. p/. Show that x is not recurrent. Show that it belongs to the nonwandering set.
Deduce that the nonwandering set of T is infinite.

Exercise 6 Consider a diffeomorphism T on a manifold M and a hyperbolic fixed
point p. Let Es be the stable manifold of Dp f . Show that we have a bijective
continuous semiconjugation ' W Es ! Wss. p/ that satisfies

8.5.2 More Advanced Exercises

Exercise 7 Let M be a connected compact manifold, and let f W M ! M be a
diffeomorphism that admits an attracting fixed point. Show that the complement
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of the basin of attraction is a nonempty, connected, compact set. Deduce that
this complement is not countable if it contains more than one point. Is there a
counterexample when M is not compact?

Exercise 8 Let T be a diffeomorphism of a connected compact manifold M of
dimension greater than 1. Assume that the nonwandering set˝ is finite and made up
of hyperbolic periodic points. Show that if Card.˝/ D 2, then M is homeomorphic
to a sphere. If Card.˝/ > 2, then ˝ contains a periodic orbit that is neither
attracting nor repelling.

Exercise 9 Show that there does not exist a diffeomorphism T on a connected
compact manifold, whose nonwandering set consists of three hyperbolic fixed
points.

Exercise 10 Under the assumptions of the Lipschitz linearization theorem, let
pu; ps W B ! B be the projections onto Bu and Bs, respectively. Show that the
conjugation ' between A and f is given by the formulas

' D IdC.Id�T/�1
�
.A � f / f �1�;

D IdC
X

k>0
puA�k�1.A � f /f k C psA

k.A � f /f �k�1

D lim
n!1 puA�nf n C psA

nf �n:

8.6 Comments

There exist different methods for obtaining a conjugation between two dynamical sys-
tems:

• Apply a fixed point theorem.
• Apply a local inversion theorem.
• Try to obtain the conjugation in the form of a series.
• Construct the conjugation geometrically.

The proof of the linearization theorem given earlier uses a fixed point theorem. We could
also have called upon the following local inversion theorem:

Let U and V be two open subsets in Banach spaces E and F, respectively, and let f W
U ! V be a homeomorphism whose inverse is Lipschitz. Let g W U ! F be such
that the Lipschitz constant of f � g is less than the inverse of that of f �1. Then g is a
homeomorphism from U to g.U/ and its inverse is Lipschitz.

The proof of this result, which uses the contraction mapping theorem, can be found in the
book by Shub [21, App. 5.1]. For a proof that uses the geometry of the stable and unstable
manifolds, we refer to the book by Palis and de Melo [16]. If we wish to study the regularity
of ', it is better to use a series expansion, for example the one presented in Exercise 206.
When f is C1 and there are no resonances between the eigenvalues .�1; : : : ; �n/ of Dp f ,
that is,

8i; 8k1; : : : ; kn 2 N such that
X

ki > 1; �i ¤ �
k1
1 �

k2
2 � � ��kn

n ;
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S. Sternberg (1959) has shown that the conjugation is in fact C1. The proof can be found
in the book by Katok and Hasselblatt [11, Theorem 6.6.6]. An example where there is
resonance is given by a diffeomorphism of Rn or Tn preserving the Lebesgue measure
(˘�i D 1). In this case, we can show that two such C1 maps that coincide at all orders
at p are conjugate via a conjugation preserving the volume; we refer to the work of A.
Banyaga, R. de la Llave, and C. E. Wayne (1996).

On the other hand, if we do not make any assumptions on the Lipschitz constant of
f � A, we still have a continuous semiconjugation ' such that A ı ' D ' ı f (take g D A
in the proof). If the Lipschitz constant of f � A is small, ' satisfies the following regularity
condition: there exist C;D 2 R with 0 < C < 1, such that for all n 2 N�, we have
kx � yk 6 Dnk'.x/� '.y/k C Cn.

A Lipschitz map on a subspace of a metric space, with real values, always admits a
Lipschitz extension with the same Lipschitz constant; this result can be found in the book
by Dudley [6, Theorem 6.1.1]. For every Lipschitz map f from a subset of Rn to Rn, where
the set Rn is endowed with the Euclidean metric, there exists a Lipschitz extension with the
same Lipschitz constant. This is the Kirszbraun theorem; a proof can be found in the book
by Federer [7].

Here is a global conjugation theorem that can be deduced from the Lipschitz case of the
Hartman–Grobman theorem: every C1 map on the torus Tn that is C1-close to a hyperbolic
automorphism is in fact topologically conjugate to this automorphism. Consequently, such
a map is transitive, topologically mixing, etc.

The situation is very different when we perturb an automorphism whose eigenvalues have
absolute value 1. The standard example is the family f� W T2 ! T2 defined by f�.x; y/ D
.x C y; y C � sin.2�.x C y///. The maps f� preserve the Lebesgue measure, and all points
are nonwandering. For � D 0, the system is integrable; the trajectories of f0 are contained
in the circles fy D Cg, and there do not exist any orbits asymptotic to periodic points:
Wss. p/ D fpg for all periodic p. On the other hand, for � > 0 there exists a periodic point
that is hyperbolic; its stable manifold is therefore nontrivial. We do not know whether there
can exist an orbit whose closure has nonempty interior. Likewise, we do not know whether
there exists an invariant open set such that the Lebesgue measure restricted to it is ergodic.
Sinaï [22] has conjectured that the entropy of f� with respect to the volume is nonzero for
every � > 0.

A diffeomorphism is not in general conjugate to its differential in the neighborhood of
a fixed point if the differential at this point has eigenvalues of absolute value 1. Studying
the dynamics in the neighborhood of such a fixed point involves Birkhoff normal forms and
KAM theory [2].

Consider the case of C1 diffeomorphisms of the unit disk that preserve the area and
have the origin as a fixed point, with differential at this point equal to a rotation over the
angle 2�˛. For every number ˛ that is neither Diophantine nor rational, B. Fayad and
M. Saprykina (2005) have constructed examples that are ergodic with respect to the area
measure. Such diffeomorphisms cannot be conjugate to a rotation in the neighborhood of
the origin, because if they were, we would obtain invariant open sets by taking the images
of concentric circles by the conjugation. On the other hand, for ˛ Diophantine, M. Herman
has shown that we can always find invariant closed simple curves in the neighborhood of the
fixed point on which the transformation is conjugate to a rotation. Moreover, these curves
form a set of positive area. We refer to an article by B. Fayad and R. Krikorian (2009) for a
presentation of M. Herman’s results.



Chapter 9
A Strange Attractor

The perfect square has no corners.
Great talents ripen late.
The highest notes are hard to hear.
The greatest form has no shape.

Lao Tzu

9.1 Introduction

Using the Hartman–Grobman theorem, we can show that a small perturbation f
of a hyperbolic toral automorphism is conjugate to this automorphism. For such a
transformation, all points are therefore nonwandering, and there exists a dense set
of recurrent points.

Consider the hyperbolic automorphism on T2 given by the matrix A D �
2 1
1 1

�
.

What happens if we carry out a local perturbation in the neighborhood of the origin
.0; 0/ that transforms this fixed point into an attracting point? By the Hartman–
Grobman theorem, there exists an open set U of points that will be attracted by
.0; 0/. In this chapter, we consider an explicit example of perturbation. The open
set U in this example is depicted in Fig. 9.1. What can be said about this set?

We will see that there exists a hyperbolic fixed point p on the boundary of this
open set. Its stable and unstable manifolds

Wss. p/ D fx 2 T2 j d� f n.x/; f n. p/
� �����!

n!1 0g
D fx j d� f n.x/; p

� �����!
n!1 0g;

Wsu. p/ D fx 2 T2 j d� f �n.x/; f �n. p/
� �����!

n!1 0g
D fx j d� f �n.x/; p

� �����!
n!1 0g

form two immersed submanifolds of dimension 1. The stable manifold of p cannot,
of course, belong to the open set U of points attracted by .0; 0/. We will show
that its closure K has empty interior and coincides with the complement of U.
Consequently, most orbits converge to the origin.

© Springer-Verlag London 2016
Y. Coudène, Ergodic Theory and Dynamical Systems, Universitext,
DOI 10.1007/978-1-4471-7287-1_9
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What can we be said about the dynamics of f �1? The origin is now a repelling
point, and all other points converge to the invariant compact set K. Moreover, the
transformation restricted to K is transitive. The structure of K is interesting: it has
empty interior in T2, but contains an immersed submanifold of dimension 1 that is
both dense in K and has empty interior in K. This is therefore a geometric object
that is halfway between a line and a plane. It is indicated in black on Fig. 9.1, while
its complement, in white, corresponds to the open set U.

The proofs are based on the Hartman–Grobman linearization theorem and on the
existence of an invariant direction on K that is dilated by the differential of f . In
fact, the transformation A has an eigenvalue that is greater than 1 and the associated
dilation is undisturbed by the perturbation when we are far from the origin.

Historically, the compact set K is the first example of a uniformly hyperbolic
attractor that is not a submanifold. It was constructed by S. Smale in 1972. Since
the transformation f �1 comes from a toral automorphism, which is the simplest
example of an Anosov diffeomorphism, it is called a diffeomorphism derived from
Anosov (DA diffeomorphism for short). We can carry out this type of construction
on any transformation with a hyperbolic fixed point.

9.2 Perturbation of a Toral Automorphism

We begin with the matrix A D �
2 1
1 1

�
. We denote the golden mean by � D 1Cp

5
2
'

1.618. The matrix A admits two eigenvalues �2 and ��2; the associated eigenvectors
eu D 1p

1C�2
�
�
1

�
and es D 1p

1C�2
� �1
�

�
form an orthonormal basis for R2. We have

�
2 1

1 1

�

D 1p
1C �2

�
� �1
1 �

� �
�2 0

0 ��2
�

1p
1C �2

�
� 1

�1 �
�

:

Let us perturb A in such a manner that the point 0 becomes attracting. For .x; y/ 2

� 1

2
; 1
2

�2
, set

f

�
x
y

�

D 1p
1C �2

�
� �1
1 �

��
�2 C p1k.r=a/ 0

0 ��2
�

1p
1C �2

�
� 1

�1 �
��

x
y

�

D
�
2 1

1 1

��
x
y

�

C p1
1C �2 k.r=a/

�
�2 �

� 1

��
x
y

�

;

with r D p
x2 C y2 and k.r/ D .1 � r2/21Œ�1;1�.r/ used as a C1 “bump”. The

parameter a controls the extent of the perturbation, while the parameter p1 controls
its amplitude. When a 2 Œ0; 1=2�, the map f passes to the quotient and defines
a transformation from T2 to T2, also denoted by f . Let us establish some of its
properties.
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Properties

• For every .x; y/ 2 T2, we have f ..x; y/C Reu/ � f .x; y/C Reu.
• For p1 2 .��2; 0� and a 2 Œ0; 1=2�, the map f is a diffeomorphism of the torus T2.
• For p1 2 .��2; 1 � �2�, the point 0 is an attracting fixed point. We denote its

basin of attraction by U.
• For p1 2 .��2; 1 � �2�, the map f has a fixed point p 2 .0; a/eu such that
Œ0; p/ � U.

• The open ball B.0; jpj/ is included in the basin of attraction U of 0.
• For every .x; y/ 2 Uc, we have jd.x;y/f � euj > 1.

Proof

• For every .x; y/ 2 T2, the point f .x; y/ � A.x; y/ belongs to Reu. Consequently,
the point f

�
.x; y/C teu

� � A
�
.x; y/C teu/

�
is also in Reu, and therefore

f
�
.x; y/C teu

� � f .x; y/ 2 Reu:

• Let us determine the Jacobian of f in the orthonormal basis .eu; es/:

det.df / D @

@x

�
xC ��2p1xk.r=a/

�

D 1C ��2p1k.r=a/C ��2p1
x2

ra
k0.r=a/

> 1C ��2p1:

The map f is therefore a local diffeomorphism.
Let us show that it is bijective. Let Sr be the circle with radius r and center 0.

The transformation f restricted to Sr is linear, and f .Sr/ is an ellipse with minor
axis ��2 r es and major axis .�2 C p1k.r=a// r eu. The lengths of these two axes
are strictly increasing functions for r 2 Œ0; a�. The sets f .Sr/ for r 2 Œ0; a� are
therefore disjoint, and the transformation f is bijective from the ball B.0; a/ onto
the set f .B.0; a//. This set coincides with the interior of the ellipse f .Sa/; it
therefore equals the image of B.0; a/ by the matrix

�
2 1
1 1

�
. Outside of B.0; a/,

this matrix coincides with f , which is bijective.
• The fixed point 0 is attracting for the values given above because the differential

D0f admits ��2 and �2 C p1 as eigenvalues.
• The map h.t/ D �2tCp1t k.t=a/ admits a fixed point in the interval .0; a/ because

h.0/ D 0, h0.0/ 2 .0; 1/, and h.a/ > a. Let t0 be the smallest fixed point of h in
.0; a/. We set p D t0 eu and note that �2 C p1k.jpj=a/ D 1.

• Let us show that j f .x; y/j < j.x; y/j if j.x; y/j < jpj. In the basis .eu; es/, we have

j f .x; y/j2 D ��4y2 C ��2xC p1xk.r=a/
�2

< ��4y2 C ��2xC p1xk.jpj=a/
�2

D ��4y2 C x2:
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We have used the fact that k is strictly decreasing on .0; a/ and the equality
p1k.jpj=a/ D 1� �2. The function .x; y/ 7! f .x; y/=j.x; y/j reaches its maximum
on the annulus f" 6 jmj 6 jpj � "g. It is therefore contractive on this annulus.
Every point of B.0; jpj/ has an orbit that ends up entering B.0; "/. The orbit of
the point therefore converges to 0.

• Let us determine the differential in the direction eu. In the basis .eu; es/, we have

d.x;y/f :eu D �2 C p1k.r=a/C p1
x2

ra
k0.r=a/

D 1 � p1
�
k.jpj=a/� k.r=a/

�C p1
x2

ra
k0.r=a/:

This is greater than 1 if r > jpj and equal to 1 if .x; y/ D .0; jpj/. This point is
in U.

ut
From here on, we take p1 D �2.236 and a D 0.5. We denote the basin of

attraction of 0 by U and the complement of U by K. Finally, we fix a linearization '
from a neighborhood V of p to .0; 1/2.

9.3 Perturbed Dynamics

We wish to show that the map f restricted to K is transitive. For the proof, we study
the stable and unstable manifolds of the fixed point p on the boundary of U. We will
need to verify that Wsu. p/ is dense in T2, and then that Wss. p/ is dense in K.

Lemma 9.1 Let x 2 K. Then for every " > 0, the segment x� Œ0; "� eu meets U. The
open set U is therefore dense in T2, and K has empty interior.

Proof The open set U consists of the points whose iterates converge to 0; it is
invariant under f . If the segment x � Œ0; "� eu does not meet U, then the same holds
for all of its iterates. Since Dyf � eu > 1 if y 2 K, these iterates are of the form
f n.x/ � Œ0; cn"� eu, with cn > Cn for some constant C > 1.

Since the set RCeu is dense in T2, we can find n 2 N such that every point of T2

is at a distance less than jpj from Œ0;Cn"� eu. In particular, the point f n.x/ is at a
distance less than jpj from Œ0;Cn"� eu; in other words, the point 0 is at a distance less
than jpj from the subset f n.x/ � Œ0;Cn"� eu � K. This gives a contradiction. ut
Proposition 9.1 The set p C RCeu is included in Wsu. p/. The unstable manifold
Wsu. p/ is therefore dense in T2.

Proof Suppose, to the contrary, that the set is not included in Wsu. p/. We can then
set

t1 D infft 2 RC j pC teu 62 Wsu. p/g:
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Because of the form of the map t 7! f . pC teu/, the real number t1 is positive. The
image of p C Œ0; t1/ eu by f is of the form p C Œ0; s/ eu. Since Wsu. p/ is invariant
under f , we have s D t1, and the point p0 D pC t1 eu is a fixed point of f .

The point p0 is distinct from the origin. Indeed, since p is in the set RCeu, we
would otherwise have 0 2 R�eu, which contradicts the irrationality of �. The set U
is the basin of attraction of the origin. It follows that the fixed point p0 is not in U;
the slope of the curve t 7! f . pC teu/ at t1 is therefore greater than 1. Consequently,
the points on pC Œ0; t1/ eu close to p0 D pC t1eu have negative iterates that approach
both p and p0, which is absurd. ut
Proposition 9.2 Let m 2 U and t > 0 be such that m C Œ0; t/ eu � U and
mC teu … U. Then mC teu belongs to Wss. p/. Moreover, the set Wss. p/\Wsu. p/
is dense in K.

Proof Let ' W V ! .�1; 1/2 be a linearization on an open neighborhood of p.
Since Wsu. p/ \ U contains .0; p/, there exists x0 2 .0; p/ \ V such that Œx0; f .x0/�
is in U \ V . Hence, there exists in '.V/ a rectangle Œ�ı; ı� � Œx0; f .x0/� contained
in '.U/. Its positive iterates under the action of Dpf �1 are also in '.U/ and cover
Œ�ı; ı� � Œx0; p/. This reasoning is illustrated by Fig. 9.2. The open set U comes to
lean against the stable manifold of p.

Consider a curve in the open set Œ�ı; ı� � Œx0;�x0/ originating in the lower half-
plane, and not entirely contained in '.U/. The first point of the curve that is not in
'.U/ must lie on the x-axis, that is, on '.Wss. p//.

For large n, the iterate f n.mC Œ0; t� eu/ is a line from a small neighborhood of 0
in the direction of eu. The first point of the curve that belongs to K must therefore
be in V , and belongs to Wss. p/.

Let us now show the density of Wss. p/\Wsu. p/ in K. Let m0 2 K and " > 0 be
such that m D m0 � " eu is in U. Since pC RCeu is dense in T2, there exists C > 0

such that pCC eu is arbitrarily close to m. Taking up the previous reasoning, we see
that the iterate f n. pC ŒC;CC 2t� eu/ is close to f n.mC Œ0; 2t� eu/. It therefore meets
Wss. p/ at a point x such that f �n.x/ is as close to mC t eu as we want. ut

9.4 Transitivity and the Mixing Property

Corollary 9.1 The map f restricted to K is transitive and topologically mixing.

Proof Let U1 be an open set intersecting K, let x1 2 Wss. p/ \ Wsu. p/ \ U1, and
let n1 be such that f �n.x1/ is in V for every n > n1. Set x0

1 D f �n1 .x1/. We begin by
showing that every segment in the direction of eu, passing close to x0

1, meets Wss.x0
1/

in the neighborhood of the point x0
1.

Let R � V be a small rectangle with center x0
1 and oriented in the directions of es

and eu. There exists N such that for every n > N, the iterate f n.x0
1/ is in V . The

set f N.R/ contains a small rectangle R0 with center f N.x0
1/ and, after increasing N

if necessary, we may assume that R0 crosses the open set V from top to bottom.
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Since f N.x0
1/ is in '..�1; 1/� f0g/, the vertical lines in R0 meet '..�1; 1/� f0g/ �

Wss
�

f N.x0
1/
�

in the neighborhood of f N.x0
1/. The vertical lines of R therefore meet

Wss.x0
1/ in the desired manner. Figure 9.3 summarizes the situation.

Let U2 be another open set intersecting K. To prove the transitivity, it suffices to
construct a point x0 2 K with a negative iterate in U2 and a positive iterate in U1.
Let x2 2 U2 \ Wss. p/ and " > 0 be such that x2 C Œ�"; "� eu is in U2. For large n,
the image f n.x2 C Œ�"; "� eu/ is a segment in the direction of eu, close to p, which
crosses V from top to bottom. It therefore meets Wss.x0

1/\ f n1 .U1/ at a point x0 that
is in K.

The previous reasoning shows that for every sufficiently large n, the set
f n.U2/\K meets f n1 .U1/. This implies that the restriction of f to K is topologically
mixing. ut
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Fig. 9.1 Basin of attraction of the origin. (a) 0 is an attracting fixed point. p is a hyperbolic fixed
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9.5 Exercises

9.5.1 Basic Exercises

Exercises 1–5 and 8–11 concern the diffeomorphism f we have just studied.

Exercise 1 Show that K is compact, connected, and uncountable.

Exercise 2 Show that for every m 2 T2, we havef .�m/ D �f .m/. Deduce that
there exists a hyperbolic fixed point p0 2 Œ�a; 0� eu and that Wss. p0/ is dense in K.

Exercise 3 Show that Wss. p/ has empty interior in K.
Hint: Note that no point of Wss. p/ has dense orbit.

Exercise 4 Let " > 0. Show that . pCŒ0; "� eu/\K is compact, without any isolated
points, and with empty interior in pC Œ0; "� eu. Deduce that it is uncountable.

Exercise 5 Show that the points of Wss. p/ can be reached from U in the following
sense: for every x 2 Wss. p/ there exists a continuous map � W Œ0; 1�! T2 such that
�.Œ0; 1// � U and �.1/ D x.

Exercise 6 Show that we can glue two systems derived from Anosov in such a way
that we obtain a diffeomorphism f on a surface of genus 2 whose nonwandering
set is the union of two uncountable connected compact sets K1 and K2 restricted to
which f is transitive.

Exercise 7 Let M be a differential manifold, and let f W M ! M be a C1

diffeomorphism with a hyperbolic fixed point p. Show that if Wss. p/ and Wsu. p/
are dense in M, then f is topologically mixing.

9.5.2 More Advanced Exercises

Exercise 8 Show that K is not locally connected.
Hint: Note that every neighborhood of p contains a point of U that belongs to
Wsu. p/ and iterate a neighborhood of this point.

Exercise 9 Let � W Œ0; 1�!K be a continuous map starting at p: �.0/ D p. On an
open neighborhood V of p on which we have a linearization, we consider a partial
path �.Œ0; ı�/ contained in V . Show that �.Œ0; ı�/ � Wss. p/.

Does it follow that �.Œ0; 1�/ � Wss. p/?

Exercise 10 Let � W Œ0; 1� ! T2 be a continuous map that satisfies �.Œ0; 1// �
Wss. p/. Show that �.1/ 2 Wss. p/.
Hint: Use contradiction and show that �.1/ is a hyperbolic fixed point.

Exercise 11 Show that K is not path-connected.
Hint: Show that p and �p cannot be connected by a path that remains in K.



9.6 Comments 97

Exercise 12 Let M be a differential manifold, and let f W M ! M be a C1

diffeomorphism with a hyperbolic fixed point p. Suppose that Dpf has a unique
eigenvalue of absolute value less than 1 and that this eigenvalue is real and positive.
Show that Wss. p/ X fpg has two connected components.

9.6 Comments

The perturbation f studied in this chapter is C1 and has Lipschitz derivative. We could have
constructed a C1 map by taking a “bump” function of the type

k.r/ D exp
�

� 1

1� r2

�
1Œ�1;1�.r/:

From a numerical point of view, a polynomial “bump” seems preferable.
Here are three algorithms that allow us to visualize the compact set K.

• We choose a point x arbitrarily and iterate it a million times using the map f �1. If the
point is not the origin, its trajectory will converge to the attractor K. The transformation
f �1 restricted to K is transitive. For most x, the trajectory should therefore converge to
all points of the attractor. This is what is seen in practice. This method is the fastest one
from a numerical point of view.

• The origin is an attracting fixed point for the map f and K is the complement of its basin
of attraction. To visualize this basin, we fix a small disk with center the origin, and then
color the points of the plane as a function of the number of iterations needed to reach this
disk. In practice, most points reach the disk in less than 70 steps. We could, for example,
color all points needing more than twenty iterations in black, which would allow us to
represent a small neighborhood of K.

• We can show that the periodic points of f are dense in K. The set of periodic points with
period less than n, for n sufficiently large, therefore gives a good approximation of K.
Calculating the periodic points turns out to be very costly numerically, so this method is
seldom recommended.

We can describe the dynamics of f restricted to K in a more precise way. On K, the
transformation f is semiconjugate to a topologically mixing shift of finite type. R. F.
Williams (1974) has shown that it is conjugate to a shift on a generalized solenoid. The
behavior of f is therefore highly unpredictable.
The compact set K is locally homeomorphic to the product of a segment and a Cantor set.
We can verify this in the neighborhood of p by showing that the intersection of K and the
local unstable manifold of p has empty interior in K. To prove it in the neighborhood of
every point x of K, we must study in detail the structure of the stable manifolds Wss.x/ and
show that they are all immersed submanifolds of dimension 1.
The points of Wss. p/ and of Wss.�p/ make up the accessible boundary of U. They are the
only points of @U that are the endpoints of a curve � W Œ0; 1� ! T2 contained in U for
t 2 Œ0; 1/. This notion of accessible boundary no doubt corresponds better to the intuitive
idea one can have of the boundary of a set.
A DA diffeomorphism is an example of an Axiom A diffeomorphism: its periodic points
form a dense subset of the nonwandering set f0g [ K; when restricted to the latter, the
tangent space can be decomposed into the sum of two invariant subbundles, respectively
contracted and dilated by the differential of the map.
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The nonwandering set of an Axiom A diffeomorphism decomposes into a finite number
of invariant compact sets, restricted to which the transformation is transitive. This can be
proved by studying the stable and unstable manifolds of the periodic points, as was done
for the DA diffeomorphism.



Part III
Entropy Theory



Chapter 10
Entropy

The sun comes up just about as often as it goes down, in the
long run, but this doesn’t make its motion random.

D. Knuth

10.1 Introduction

Let us study the problem of conjugation from the measure-theoretic viewpoint.
Consider two measure-preserving dynamical systems given by a map T1 W X1 ! X1
preserving a measure �1 and a map T2 W X2 ! X2 preserving a measure �2.
These two systems are isomorphic if there exist two subsets of X1 and X2, each
with negligible complement, as well as a measurable bijection ' with measurable
inverse between these two sets that satisfies ' ıT1 D T2 ı' and sends �1 to �2, that
is, '��1 D �2.

Which properties are preserved by isomorphisms? If T1 is ergodic or mixing,
the same holds for T2. The measure of the full space and the average number of
preimages are quantities that are invariant under isomorphisms. We can construct
other invariants by letting the maps T1 and T2 act on the space L2 by composition:
for every f 2 L2, we set U1f D f ıT1 and U2f D f ıT2. If T1 and T2 are isomorphic,
the maps U1 and U2 are conjugate via a unitary operator. They therefore have the
same eigenvalues, which gives new numerical invariants.

Using these invariants, we can classify the rotations of the circle or the ergodic
toral translations up to isomorphism. Two such systems are isomorphic if the
induced maps on L2 are conjugate, and this happens if and only if they have the same
eigenvalues. The situation is more complex for hyperbolic toral automorphisms or
Bernoulli shifts on a finite alphabet. We can show that the induced linear maps
on L2 are all conjugate to one another, but this conjugation is not obtained via an
isomorphism. The classification of these systems up to isomorphism, which was
started in the 1930s, was resolved only in 1970, by D. Ornstein.

An important step in this resolution was the construction in 1958 by A.N. Kol-
mogorov of a new isomorphism invariant called entropy. This numerical invariant
measures the “randomness” in the system. Here is how it is defined. We begin by
partitioning the space X into a finite number of pieces, and then take their iterates by
the transformation T, so that we cut up X into increasingly small pieces. If the initial
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partition is well chosen, the measure of the pieces tends to 0 and the entropy can be
obtained from the rate at which the measure decreases; Figs. 10.1 and 10.2 give
several examples of partitions for affine toral maps. The average measure decreases
polynomially for the rotations but exponentially for the Bernoulli shifts, and it is the
exponent that makes it possible to differentiate the latter.

A priori, the rate at which the measure decreases depends on the initial partition.
This leads to a number of technical complications and makes entropy a difficult
concept to define and to compute.

10.2 Definition of Entropy

Let .X; T ; �/ be a probability space. A (finite, countable) partition � of X consists
of a (finite, countable) set of measurable subsets of X that are mutually disjoint and
whose union covers almost all of X. We denote by �.x/ the element of the partition
containing the point x 2 X.

Let T W X ! X be a measurable map, and let � D fAigiD1;:::;n be a partition.
We set T�1� D fT�1.Ai/giD1;:::;n. Let �1; �2; : : : ; �n be partitions of X. The partition

generated by the �i is defined by the relation
n_

iD1 �i.x/ D Tn
iD1 �i.x/. Figure 10.3

illustrates this notion.

Definition 10.1 Let .X; T ; �/ be a probability space, and let � be a countable
partition of X. The information function and entropy of � are defined by

I.�/.x/ D � log
�
�
�
�.x/

�� D
X

A2�
� log

�
�.A/

�
1A.x/;

H.�/ D
Z

X
I.�/ d� D

X

A2�
��.A/ log

�
�.A/

�
:

The information function I.�/ is a nonnegative measurable function; the entropy
H.�/ is a nonnegative real number, which can be infinite if the partition is not finite.
To compute these quantities, we introduce a conditional version of entropy.

Definition 10.2 Let A � T be a �-algebra. The conditional entropy of � given A
is defined by

H.� j A/ D �
X

A2�

Z

E�.1A j A/ log
�
E�.1A j A/

�
d�:

Let � be a countable partition; we denote by H.� j �/ the conditional entropy
of � given the �-algebra generated by the elements of �.

Properties Let �, �1, �2, � be countable partitions, let T W X ! X be a measurable
map that preserves the measure �, and let A and B be sub-�-algebras of T .
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• H.� j T / D 0, H.� j fXg/ D H.�/.
• If A � B, then H.�/ > H.� j A/ > H.� j B/ > 0.
• H.�1 _ �2 j �/ D H.�1 j �2 _ �/ C H.�2 j �/; in particular, H.�1 _ �2/ 6

H.�1/C H.�2/.

Proof

• This follows from the equalities

E.1A j fXg/ D �.A/ and E.1A j T / D 1A:

• The function f .x/ D x log x is convex. Jensen’s inequality gives

f
�
E.1A j A/

�
6 E

�
f .E.1A j B// j A

�
:

Consequently, we have

E
�

f
�
E.1A j A/

��
6 E

�
E
�

f .E.1A j B// j A
�� D E

�
f .E.1A j B/

�
:

It suffices to take the sum over all elements A of � to obtain the desired inequality.
• Set �1 D fAig, �2 D fBjg, and � D fCkg, in which case �1 _ �2 D fAi \ Bjg and
�2 _ � D fBj \ Ckg. Set �.A j B/ D �.A \ B/=�.B/. We have

H.�2 j �/ D �
X

j;k

�.Bj \ Ck/ log�.Bj j Ck/

D �
X

i;j;k

�.Ai \ Bj \ Ck/ log�.Bj j Ck/

H.�1 j �2 _ �/ D �
X

i;j;k

�.Ai \ Bj \ Ck/ log�.Ai j Bj \ Ck/

H.�1 _ �2 j �/ D �
X

i;j;k

�.Ai \ Bj \ Ck/ log�.Ai \ Bj j Ck/:

It suffices to take the sum of the first two equalities to obtain the third. ut
Definition 10.3 Let .X; T ; �/ be a probability space, let T W X ! X be a
measurable map that preserves the measure �, and let � be a countable partition
of X. The entropy of T relative to the partition � and the entropy of T are defined by

h�.T; �/ WD lim
N!1

1

N
H
� N�1_

iD0 T�i�
�
;

h�.T/ D supfh�.T; �/ j � is a finite partition of Xg:
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The sequence 1
n H
�n�1_

kD0T�k�
�

converges because it is nonincreasing. We prove

this below.

10.3 Properties of Entropy

Here are several formulas concerning the entropy of a transformation.

Properties Let � and � be two countable partitions, let T W X ! X be a measurable
map that preserves the measure �, and let A and B be sub-�-algebras of T .

• H.� j A/ D H.T�1� j T�1A/.
• h�.T; �/ 6 h�.T; �/C H.� j �/.
• h�.T; �/ D limn!1 H.� j n_

1
T�i�/.

• For every n 2 N, we have h�.T; �/ D h�.T;
n_

iD0 T�i�/.

Proof

• This follows from the relation E�.T�1A j T�1A/ D E�.A j A/ ı T.
• We begin with the relation

H.
n_
0

T�i�/ 6 H.
n_
0

T�i�
n_
0

T�i�/ D H.
n_
0

T�i�/C H.
n_
0

T�i� j n_
0

T�i�/

and then bound the last term as follows:

H.
n_
0

T�i� j n_
0

T�i�/ 6
X

i

H.T�i� j n_
0

T�i�/

6
X

i

H.T�i� j T�i�/

D .nC1/H.� j �/:

The desired inequality follows by dividing by nC 1 and taking the limit.
• We also have

H.
n_
0

T�i�/ D H.
n_
1

T�i�/C H.� j n_
1

T�i�/ D H.
n�1_
0

T�i�/C H.� j n_
1

T�i�/;

hence, by applying this relation recursively,

H.
n_

kD0T�k�/ D H.�/C
nX

jD1
H.� j j_

kD1T�k�/:

Since the sequence H.� j n_
kD1T�k�/ is nonincreasing, the same holds for the

average 1
nC1H.

n_
kD0T�k�/, and these two sequences have the same limit.
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• The last point is a consequence of the following equalities:

h
�
T;

n_
iD0 T�i�

� D lim
1

N
H
�N�1_

jD0
n_

iD0 T�i�j�
�

D lim
1

N C n
H
�NCn�1_

kD0 T�k�
�

D h.T; �/:

ut

10.4 Generating Partitions

To compute the entropy of a transformation, we first construct partitions that are
well suited to the transformation.

Definition 10.4 Let .X; T ; �/ be a probability space, let T W X ! X be a
measurable map that preserves the measure �, and let � be a finite partition of X.
The partition � is called one-sided generating or a one-sided generator if the �-
algebra generated by the elements of the partitions T�i� for i 2 N and the negligible
sets equals T .

When the transformation is invertible, we speak of a generating partition or
generator if the �-algebra generated by the elements of the partitions T�i� for i 2 Z
and the negligible sets equals T .

The explicit computation of the entropy is based on the following theorem, due
to A. Kolmogorov and Y. Sinaï (1958).

Theorem 10.1 (Kolmogorov, Sinaï) Let .X; T ; �/ be a probability space, let
T W X ! X be a measurable map that preserves the measure �, and let � be a finite
one-sided generator of X. Then

h�.T/ D h�.T; �/ D H.� j T�1T /:

Proof Let �n be a sequence of countable partitions satisfying �nC1.x/ � �n.x/ for
every n 2 N and every x 2 X. Let A be the �-algebra generated by the elements
of all the �n. Finally, let � be a finite partition of X. Let us show the convergence
H.� j �n/! H.� j A/.

Let A be an element of �. By the martingale convergence theorem in L2, recalled
in Chap. 17, we have E�.1A j �n/ ! E�.1A j A/ in L2 norm. We can find a
subsequence ni for which the convergence occurs almost everywhere. This implies

E�.1A j �ni/ log
�
E�.1A j �ni /

� �! E�.1A j A/ log
�
E�.1A j A/

�
a.e.
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The left-hand side is bounded by e�1. By the dominated convergence theorem, we
have

Z

E�.1A j �ni / log
�
E�.1A j �ni/

�
d� �!

Z

E�.1A j A/ log
�
E�.1A j A/

�
d�:

Taking the sum over all elements A of �, we obtain H.� j �ni/ ! H.� j A/. Since
the sequence H.� j �n/ is nonincreasing, we have the desired relation.

Consider a one-sided generating partition �.

• If we set �n D n_
iD1 T�i�, then

h�.T; �/ D lim H.� j �n/ D H.� j T�1T /:

• If we set �n D n_
iD0 T�i�, then lim H.� j �n/ D H.� j T / D 0.

By the properties established earlier, we also have

h�.T; �/ 6 h�.T; �n/C H.� j �n/ D h�.T; �/C H.� j �n/:

We have just seen that the last term tends to 0 when n tends to infinity, so we have
the inequality h�.T; �/ 6 h�.T; �/ for every finite partition �. The desired equality
h�.T/ D h�.T; �/ follows. ut

In the invertible case, we can use generating partitions to compute the entropy.

Theorem 10.2 Let .X; T ; �/ be a probability space, let T W X ! X be a measurable
map that preserves the measure �, and let � be a generating finite partition of X.
Then

h�.T/ D h�.T; �/:

Proof The proof proceeds as in the one-sided case. Set

�n D n_
iD�n

T�i�:

By the definition of a generating partition, the �n generate the �-algebra T .
Consequently, we have

H.� j �n/ �! H.� j T / D 0:

By the properties of entropy, we also have the inequality

h�.T; �/ 6 h�.T; �n/C H.� j �n/:
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It remains to verify the inequality h�.T; �n/ 6 h�.T; �/:

h.T; �n/ D lim
N!1

1

N
H
�N�1_

jD0
n_

iD�n
T�i�j�

�

D lim
1

N
H
�NCn�1_

jD�n
T�j�

�

6 lim
1

N




H
�N�1_

jD0 T�j�
�
CH

� �1_
jD�n

T�j�
�
CH

�NCn�1_
jDN

T�j�
��

6 h�.T; �/C 0C lim
1

N
H
�

T�N.
n�1_
jD0 T�j�/

�

6 h�.T; �/C lim
N!1

1

N
H
�n�1_

jD0 T�j�
�

6 h�.T; �/:

We therefore have h�.T; �/ 6 h�.T; �/ for every finite partition �. The result has
been proved. ut

10.5 Entropy and Isomorphisms

Definition 10.5 Let .X1; T1; �1/ and .X2; T2; �2/ be two probability spaces, let
T1 W X1 ! X1 be a measurable map that preserves �1, and let T2 W X2 ! X2
be a measurable map that preserves �2. These two measure-preserving dynamical
systems are called isomorphic if there exist two subsets X0

1 � X1 and X0
2 � X2, each

with negligible complement, as well as a measurable bijection ' W X0
1 ! X0

2, with
measurable inverse, that conjugates T1 and T2 and sends �1 to �2:

' ı T1 D T2 ı '; '��1 D �2:

We will show that entropy is invariant under isomorphisms.

Proposition 10.1 Two isomorphic measure-preserving dynamical systems have the
same entropy.

Proof Let .X1; T1; �1/ and .X2; T2; �2/ be two isomorphic systems; we use the
notation of Definition 10.5. Let � be a finite partition of X2; we restrict this partition
to X0

2 and consider its inverse image under '. We obtain a partition of X0
1 to which

we add the element X0
1

c in order to get a partition of X1, which we will abusively
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denote by '�1�. This partition has the same entropy as �:

H�1.'
�1�/ D

X

A2�
�1.'

�1A/ log.�1.'�1A//

D
X

A2�
�2.A/ log.�2.A//

D H�2.�/:

Let us now use the commutativity of ', T1, and T2:

h�1.T1; '
�1�/ D lim

1

n
H�1

�n�1_
kD0 T�k

1 '�1�
�
D lim

1

n
H�1

�n�1_
kD0 '

�1T�k
2 �

�

D lim
1

n
H�1

�
'�1.

n�1_
kD0T�k

2 �/
�
D lim

1

n
H�2

�n�1_
kD0T�k

2 �
�

D h�2.T2; �/:

Next, we take the upper limit over all finite partitions �:

h�2.T2/ D sup
�

fh�2.T2; �/g 6 sup
�
fh�1.T1; �/g D h�1.T1/:

The inverse inequality can be obtained by exchanging the two dynamical systems.
ut
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x
y

→ x +
√

2
y +

√
3

x
y

→ 1 1
1 0

x
y

n = 1

n = 3

n = 5

ξ = {[0, 1/2[2, [0, 1/2[ × [1/2, 1[, [
1/2, 1[ × [0, 1/2[, [1/2, 1[2}, [

We consider the partition

n∨
k=0

T −kξand its iterates

by the following maps:

At the nth step, we obtain (2n + 2)2 pieces that are approximately
of the same size for translation, while the toral automorphism
gives 2n+2 pieces.

Fig. 10.1 Iteration of a partition of the torus

7∨
k=−7

T−kξ

Fig. 10.2 Iteration of the partition � by the automorphism
�
1 1
1 0

�

ξ1 = {A1,A2} ξ2 = {B1,B2}

A1 A2

ξ1 ∨ ξ2

B1

B2

A1 ∩ B1

A1 ∩ B2

A2 ∩ B1

A2 ∩ B2

Fig. 10.3 Generating partitions
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10.6 Exercises

10.6.1 Basic Exercises

From this point on, .X; T ; �/ is a probability space.

Exercise 1 Consider the map T W Œ0; 1/ ! Œ0; 1/ given by T.x/ D 2x mod 1. This
map preserves the Lebesgue measure. Let � D fŒ0; 1=2/; Œ1=2; 1/g.
• Compute T�1�, and then � _ T�1�.
• Compute H.�/, and then H.� _ T�1�/.
• Prove the following formula by induction:

n�1_
0

T�i� D
�

` � 1
2n

;
`

2n

�

j ` 2 f1; : : : ; 2ng
�

:

• Compute H.
n�1_
0

T�i�/ and h.T; �/.

• Show that the partition � is generating. Deduce h.T/.

Exercise 2 Let � be a finite partition of X. Prove the inequality H.�/ 6
log
�
Card.�/

�
. Show that we have equality if and only if all elements of � have

the same measure.

Exercise 3 Let .X; T ; �/ be a probability space, let T W X ! X be a measurable
map that preserves �, and let � be a countable partition of X. Let k be a nonnegative
integer. Prove the following equalities: h�.Tk; �/ D kh�.T; �/ and h�.Tk/ D
kh�.T/.

Exercise 4 Let � and � be two finite partitions of X. Set d.�; �/ D H.� j �/ C
H.� j �/. Let �1, �2, and �3 be three finite partitions of X. Prove the triangle
inequality

d.�1; �3/ 6 d.�1; �2/C d.�2; �3/:

Exercise 5 Let .X; T ; �/ be a nonatomic probability space: �.fxg/ D 0 for all
x 2 X. Show that the identity map does not admit a generating partition. Generalize
to the case of a transformation for which all points are periodic.

Exercise 6 Consider a measurable map T W X ! X that preserves the measure �.
Let � be a finite one-sided generating partition of X. Suppose that T is invertible.
Show that h�.T/ D 0.
Hint: What is the �-algebra T�1T ? What is its relation to the entropy?
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10.6.2 More Advanced Exercises

Exercise 7 Let .X; T ; �/ and .Y;S; �/ be two probability spaces, and let
T W X ! X and S W Y ! Y be two measurable maps that preserve the measure.
Suppose that these two dynamical systems are isomorphic. Show that they have the
same entropy.

Exercise 8 Let � and � be two countable partitions of X. Show that H.� j �/ D 0 if
and only if for almost all x 2 X, we have �.x/ � �.x/.

Suppose H.�/ <1 and H.�/ <1. Show that the equality H.� _ �/ D H.�/C
H.�/ is satisfied if and only if the partitions � and � are independent:

8A 2 �; 8B 2 �; �.A \ B/ D �.A/�.B/:

Exercise 9 In the proof of the Kolmogorov–Sinaï theorem, we saw that if an
increasing sequence of partitions �n generates T , then H.� j �n/ converges to 0
for every finite partition �. Show the converse.
Hint: Begin by showing that the entropy of a partition of the form fA;Acg given the
�-algebra generated by all the �n is 0.

10.7 Comments

The sequence an D H._n
kD0T

�k�/ satisfies the inequality anCm 6 am C an. We call it
subadditive. The convergence of the sequence an=n could therefore also have been deduced
from the following elementary lemma: Let an 2 R be a sequence satisfying anCm 6 amCan.
Then the sequence an=n admits a limit in Œ�1;1/, and this limit coincides with inffan=ng.
We could have defined the entropy by taking the upper limit over all countable partitions
with finite entropy. We would have obtained the same value for h�.T/. The Kolmogorov–
Sinaï theorem also holds for all countable generating partitions, but we must then justify
the use of the dominated convergence theorem. To do this, we can use the following lemma,
due to K.L. Chung (1961), and proved again in the book by Parry [18, Chap. 2]: Let � be
a countable partition, and let f�ngn2N be an increasing sequence of countable partitions.
Then

Z

sup
n

I.�j�n/ d� 6 H.�/C 1:

When can a system with positive entropy be called random? This certainly applies for
Bernoulli shifts, which model rolling a die or flipping a coin. In 1964, Y.G. Sinaï showed
that every ergodic measure-preserving dynamical system with positive entropy admits a
quotient isomorphic to a Bernoulli shift with the same entropy. This result allows us to
interpret entropy in probabilistic terms: a system has entropy greater than or equal to
�P

pi log pi if and only if there exists a partition fA1; : : : ;Ang of the space satisfying
�.Ai/ D pi and such that the Xn.x/ D P

i 1Ai .T
n.x// form a sequence of independent,

identically distributed random variables. For example, a system has entropy greater than
log.6/ if and only if it allows us to simulate rolling a six-sided die.
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The first regular systems to have been classified using entropy are the ergodic auto-
morphisms of the torus T2, by R.L. Adler and B. Weiss (1967). Two such systems
are isomorphic if and only if they have the same entropy. In particular, there exist
automorphisms of T2 that are isomorphic without being algebraic conjugates, for example�
5 2
2 1

�
and

�
5 4
1 1

�
. The isomorphism is constructed using a Markov partition.

In 1970, D. Ornstein showed that two two-sided Bernoulli shifts are isomorphic if and
only if they have the same entropy. This result extends to mixing shifts of finite type. Y.G.
Sinaï, R. Bowen, and M. Ratner then showed, using Markov partitions, that most uniformly
hyperbolic systems are isomorphic to Bernoulli shifts; examples are C2 diffeomorphisms
derived from Anosov preserving the Lebesgue measure and C1 Axiom A diffeomorphisms
preserving a mixing Gibbs measure. Pesin theory allows us to extend these results to certain
classes of nonuniformly hyperbolic systems. Measure-theoretically, the behavior of these
systems is highly unpredictable.
Classifying noninvertible transformations up to isomorphism is more delicate. The only
isomorphisms between two two-sided Bernoulli shifts are obtained by permuting the
symbols. In 2001, B. Marcus and S. Tuncel gave a classification of the two-sided shifts
of finite type. A rational transformation of the Riemann sphere has a unique probability
measure with maximal entropy: in 2002, D. Heicklen and C. Hoffman showed that this
system is isomorphic to a Bernoulli shift.
A measure-preserving dynamical system can have infinite entropy: Consider a sequence pi

of real numbers in Œ0; 1� satisfying
P

pi D 1 and �P
pi log pi D 1. The sequence of

the pi defines a probability measure � on the set of natural numbers N, and the shift on
the product space NZ has infinite entropy relative to the product measure �˝Z. We can,
however, show that a Lipschitz homeomorphism with Lipschitz constant K, defined on
a finite-dimensional compact metric space and preserving a Borel probability measure,
has finite entropy, bounded from above by dim.X/ logC K (A.G. Kouchnirenko, 1965).
In particular, a C1 diffeomorphism on a compact manifold preserving a Borel probability
measure has finite entropy.
In 1970, W. Krieger proved that every ergodic invertible transformation of a Lebesgue space
that preserves the measure and has finite entropy admits a one-sided generating partition
with at most eh�.T/C1 elements. The ergodic invertible transformations with strictly positive
entropy do not have one-sided generating partitions.
In 1977, D.A. Lind and J.P. Thouvenot showed that every ergodic transformation with
finite entropy of a Lebesgue space is isomorphic to a toral homeomorphism preserving the
Lebesgue measure. The existence of C1 realizations for transformations with finite entropy
remains an open question.



Chapter 11
Entropy and Information Theory

Von Neumann told me, “You should call it entropy, for two
reasons. In the first place your uncertainty function has been
used in statistical mechanics under that name, so it already has
a name. In the second place, and more important, no one really
knows what entropy really is, so in a debate you will always
have the advantage.”

C.E. Shannon (1916–2001)

11.1 Introduction

The term entropy was first used by R. Clausius in 1865, in the setting of his research
on heat. The underlying concept would play a crucial role in the development of
thermodynamics and statistical mechanics with the work of J.W. Gibbs and L.
Boltzmann at the end of the nineteenth century. It was, however, not these two
theories that inspired A.N. Kolmogorov when he introduced a new invariant called
“entropy” to study dynamical systems, but rather the work of C.E. Shannon on
information theory.

In a well-known paper published in 1948, marking the birth of information
theory, C.E. Shannon introduced a quantity meant to quantify the information lost
in telephone transmissions when there is static on the line.

The following experiment shows how we can understand entropy from the point
of view of information theory. Consider an information source that produces a value
or result belonging to a set of n symbols x1; : : : ; xn with respective probabilities
p1; : : : ; pn. We wish to determine the result produced by the information source by
asking yes-no questions, of the type “Is the result equal to x1?” or “Does the result
belong to such and such a subset?”. Set H D �P pi log pi, where the logarithm is
in base 2. C.E. Shannon showed that the average number of questions necessary lies
between H and H C 1 provided that the choice of the questions is optimal.

In Chap. 10, we introduced the concept of partition and associated information
function. What is the connection with the question we just stated? First, note that
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a question partitions the sample space into two subsets. A sequence of questions
therefore gives a sequence of partitions of our space. If this sequence of questions
is able to distinguish between all possible results, this means that the generated
partition is the partition into singletons, where �.x/ D fxg for all x. The entropy of
this partition is exactly equal to H.

The value of H manifests as the average amount of information needed to
determine the result produced by the source. Later on, we will explain how to
quantify this concept of information and treat a number of concrete examples. We
will compute explicitly the entropy H when the source produces a sequence of
mutually independent symbols or when the probability of a symbol depends only
on the symbol that precedes it (Markov case).

11.2 The Notion of Information

Alice is informed of the result of a random experiment. Bob wants to determine this
result and asks Alice to give him information. Alice allows Bob to ask one question,
which she will answer with “yes” or “no”.

Bob asks his question, and Alice gives a positive answer. How much information
has Bob received?

Let us try to understand the value of this information. We first note that Bob’s
question partitions the sample space˝ into two subsets: on the one hand, the results
that lead to a positive answer from Alice and on the other hand, those that lead to a
negative answer.

The amount of information received by Bob depends on the probability p of
obtaining a positive answer to his question; we denote this amount by I. p/. Next,
suppose that Alice carries out the experiment twice and that the answer to the first
question is positive in both cases, and let us state the following postulate.
The value of the information provided by the two results obtained in an independent
manner is equal to the sum of the amount of information associated with each of the
results.

The amount of information obtained by Bob is therefore equal to twice the
amount that would have resulted from a positive answer to a single execution of the
experiment. On the other hand, the probability of obtaining a positive answer twice
is equal to p2. So we have I. p2/ D 2I. p/. It follows that I. pm/ D mI. p/ when we
repeat the experiment m times. If the function p 7! I. p/ is continuous on .0; 1/, this
leads to the equality I. px/ D xI. p/ for every real number x. By convention, we set
I. 1
2
/ D 1, which gives I. y/ D � log2. y/.
Let us compute the average amount of information given by Alice’s answer:

the answer is positive with probability p, in which case the amount of information
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received is equal to log2 p; the answer is negative with probability 1 � p, in which
case the amount of information received is equal to log2.1 � p/. We therefore have

H. p/ D �p log2 p � .1 � p/ log2.1 � p/:

Denote by � D fyes; nog the partition of ˝ associated with Alice’s question, by x
the result of the random experiment, and by� the probability measure defined on˝ .
By the definition of p, we have p D P. yes/ D �.�.x//, and we recover the usual
formula for the entropy of a partition with two elements. Let us now treat a concrete
example Sect. 11.3.

11.3 The Game of Questions and Answers

Alice rolls two six-sided dice and takes the sum of the outcomes (Table 11.1). Bob
tries to guess the result by asking questions to which Alice replies with “yes” or
“no”.

Bob asks, for example, whether the result is greater than or equal to 7, then
whether it is even. The respective answers to these questions are “no” and “yes”. He
then asks whether the result is equal to 6, and after receiving a negative answer,
whether it is equal to 2. This is summarized in Table 11.2. We can calculate
explicitly the information given by Alice’s replies. Denote Alice’s result by x,
and by �1,. . . , �n the partitions associated with Bob’s successive questions. The
information Bob obtains from the answers to questions 1 through n is equal to
I.�1 _ �2 _ � � � _ �n/.x/; it can be found in the penultimate column of the table.

The information gain given by answer n is I.�n j �1_� � �_�n�1/.x/, that is,
� log2 �.�n.x/ j �1 _ � � � _ �n�1.x//. This is the difference between I.�1 _ �2 _
� � � _ �n/.x/ and I.�1 _ �2 _ � � � _ �n�1/.x/; it can be found in the last column of the
table.

To guess the result x, Bob must obtain a total gain of information equal to
� log2

�
P.fxg/�. We can follow his progress in the table. For example, the reply

to question 3, “Is the result equal to 6?”, is rather favorable (information greater
than 1), even if on average such a question brings little information in this context
(the average relative information is equal to 0:25). After having asked question 4, “Is
the result equal to 2?”, Bob has enough information to guess the number. Indeed, 4
is the only result that induces the series of answers “no-yes-no-no” to his questions,
and in fact, Bob has reached the necessary amount of information: log2.12/ ' 3.58.

11.4 Information and Markov Chains

Here is another example from probability theory. Let X0;X1; : : : ;Xn; : : : be a
sequence of stationary random variables on a probability space .˝; T ;P/, with
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Table 11.1 Probability distribution of the sum of the outcomes of rolling two six-sided dice

Result x 2 3 4 5 6 7 8 9 10 11 12

Probability p 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Information 5.17 4.17 3.58 3.17 2.85 2.58 2.85 3.17 3.58 4.17 5.17

Table 11.2 List of questions and answers (x D 4)

i Question An element Cumulative Gain Answer Cumulative Gain

of �i entropy information

1 > 7? f7; 8; 9; 10; 11; 12g 0.98 0:98 No 1.26 1:26

2 Even? f2; 4; 6; 8; 10; 12g 1.96 0:98 Yes 2 0:74

3 6? f6g 2.21 0:25 No 3.17 1:17

4 2? f2g 2.3 0:09 No 3.58 0:41

2

3

4
5

6

7 8
9 10
11 12

Table 11.3 List of questions and answers (x D 12)

i Question An element Cumulative Gain Answer Cumulative Gain

of �i entropy information

1 6; 7; 8; 10, or 11? f6; 7; 8; 10; 11g 0.98 0:98 No 1.26 1:26

2 4; 7; 9; 10, or 11? f4; 7; 9; 10; 11g 1.98 1 No 2.16 0:9

3 5; 7; 8, or 9? f5; 7; 8; 9g 2.97 0:99 No 3.18 1:02

4 2; 10, or 12? f2; 10; 12g 3.22 0:25 Yes 4.17 0:99

5 2? f2g 3.28 0:06 No 5.17 1

2
3

4
5

6

7
8

9

1011 12
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values in the finite set A D f1; : : : ;Ng. Suppose that we know the values of the Xi

for i > 1. What amount of information do we need, on average, to know the value
of X0?

We may assume that the space ˝ on which the Xi are defined is equal to AN,
where the random variable Xi corresponds to the projection onto the coordinate i.
We denote by � W ˝ ! ˝ the shift to the left. Let us consider the partitions �n of˝
defined by �n D f.Xn D a/ j a 2 Ag; note that �n D ��n�0. Let H.X0 j X1; : : : ;Xn/

be the average amount of information needed to know the value of X0 if we know
that of the Xi for i D 1; : : : ; n. We have the equality

H.X0 j X1; : : : ;Xn/ D H.�0 j �1 _ �2 _ � � � _ �n/ D H
�
�0 j n_

iD1 �
�i�0

�
:

This amount converges to the entropy of the shift h.�; �0/. When ˝ D AN, the

partition �0 is generating because the elements of the partition
n_
0
��i�0 are the

cylinder sets of length n C 1. The entropy of the shift can therefore be seen as the
average amount of information needed to know the “current” value X0 if we know
the “past” values Xi of the process for i > 1. Let us carry out the calculation when
the Xi form a Markov chain.

Proposition 11.1 Let A be a finite set; the shift � W AN ! AN is defined by the
formula �.fxigi2N/ D fxiC1gi2N. For i; j 2 A, we consider elements pi, pi;j of Œ0; 1�
satisfying

P
i pi D 1,

P
j pi;j D 1, and

P
i pipi;j D pj. Denote by P the probability

satisfying

P
�ffxigi2N j x0 D i0; : : : ; xn D ing

� D pi0pi0;i1pi1;i2 � � � pin�1;in :

The entropy of � with respect to P is given by

hP.�/ D �
X

i;j

pipi;j log2 pi;j:

Proof By virtue of the equalities P.XkD j j XkC1D i/D pi;j and piDP.X1D i/ and
the Markov property, we have

H.X0 j X1; : : : ;Xn/ D H.X0 j X1/
D �

X

i;j

P.X0 D j;X1 D i/ log2 P.X0 D j j X1 D i/

D �
X

i;j

pipi;j log2 pi;j:

ut
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As a corollary, we deduce that a Bernoulli shift on an alphabet with n symbols
with respective probabilities p1; : : : ; pn has entropy�P pi log2 pi. For example, the
Bernoulli shift corresponding to flipping a fair coin (p1 D p2 D 1

2
) has entropy

equal to log2 2 D 1. The Bernoulli shift corresponding to rolling a six-sided die
(p1 D � � � D p6 D 1

6
) has entropy log2 6.

In Chap. 10, we saw that two measure-preserving dynamical systems with
different entropies cannot be isomorphic.

Corollary 11.1 Two Bernoulli shifts with different entropies are not isomorphic. In
particular, the Bernoulli shift with probability vector . 1

2
; 1
2
/ is not isomorphic to the

Bernoulli shift with probability vector . 1
6
; 1
6
; 1
6
; 1
6
; 1
6
; 1
6
/.

11.5 Interpretation in the Dynamical Setting

Consider a transformation T that admits a one-sided generating partition �, in the
sense that the elements of the T�i� for i 2 N generate the �-algebra of measurable
sets. Let us try to interpret the entropy h.T/ of T in terms of information. We saw in
Chap. 10 that this entropy is given by the formula h.T/ D h.T; �/ D H.� j T�1T /;
it corresponds to the average amount of information needed to determine to which
element of � the point x belongs if we know the positions of the iterates Ti.x/ in the
partition � for i > 1.

Under very general hypotheses, we can show that � is generating if and only
if the sequence �.Ti.x// for i > 0 determines x uniquely if x belongs to a certain
well-chosen set of full measure. To formalize this result, we need preliminaries on
measure theory that are the object of the last part of this book.

Proposition 11.2 Let .X; T ; �/ be a Lebesgue space, and let T W X ! X be a
measurable map that preserves the measure �. A finite partition � is one-sided
generating if and only if there exists a set X0 � X of full measure such that the
map

X �! �N

x 7�! f�.Ti.x//gi2N
restricted to X0 is injective.

In other words, once the points of Xc
0 have been dismissed, the position of the

point x is fixed if we know the list of elements of � to which x and its iterates
belong. This result will be proved in Chap. 15. We use the notion of Lebesgue space,
a notion that will be explained in Part IV of this book. All probability spaces one
comes across in practice are Lebesgue spaces. For example, every Borel space of
a complete metric space, endowed with a Borel probability measure, is a Lebesgue
space.
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Using this result, we can interpret the entropy of a transformation in terms of
information. Knowing the position of all the iterates Ti.x/ for i > 0 with respect
to the generating partition � corresponds to knowing the point T.x/, and the only
thing missing to determine the point x completely is the position of x with respect
to the partition itself. The entropy h.T/ can therefore be seen as the average amount
of information needed to know x if we know T.x/.

If the transformation T is invertible, the point x is completely determined by
the knowledge of T.x/, and the amount of information needed to know x if we
know T.x/ is 0. The entropy of an invertible transformation with a one-sided
generating partition is 0. This does not mean that all invertible transformations
have entropy 0, rather that in general, these transformations do not have one-sided
generating partitions, whence the need to turn to generating partitions to calculate
their entropy.

11.6 Exercises

11.6.1 Basic Exercises

Exercise 1 Alice rolls two six-sided dice and takes the sum of the outcomes. She
agrees to answer Bob’s questions about the value of the sum with “yes” or “no”.

Can Bob be certain to guess the correct value using only three questions? What
is the minimal number of questions he must ask to be certain to conclude regardless
of the result? Repeat this exercise for three and then four dice.

Exercise 2 Alice rolls two six-sided dice and Bob tries to guess the sum of the
outcomes. He is allowed to ask four questions.

Alice’s first three answers have given him an amount of information equal to
3:17, and he only has one question left.

• Can the result be 6?
• Can the result be 4?
• If so, which question should Bob ask?

Recall that log2.3/ D 1.58 and log2.5/ D 2.32.

Exercise 3 Let X0;X1; : : : ;Xn; : : : be a stationary Markov sequence of random
variables. Show the inequality H.Xn j X0/ 6 H.XnC1 j X0/.
Exercise 4 We roll two n-sided dice and take the sum of the outcomes. Calculate
the entropy of the system obtained by repeating this experiment independently.
Compare this with the entropy associated with the independent repetition of a
uniformly distributed experiment on a set with 2n� 1 elements.

Exercise 5 Show that the two-sided Bernoulli shift (where “two-sided” means
indexed by Z) on an alphabet with three symbols with respective probabilities 1

3
,
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1
3
, and 1

3
is not isomorphic to the Bernoulli shift on an alphabet with two symbols

with respective probabilities 1
2

and 1
2
.

Exercise 6 Let p; q 2 Œ0; 1� satisfy pCq D 1. Compute the entropy of the following
Markov chains:

12

pq

1 2

p

p

p

qq

q

Transition matrix:

�
p q
p q

�

Transition matrix:

�
p q
q p

�

11.6.2 More Advanced Exercise

Exercise 7 We consider a random experiment with n possible outcomes with
respective probabilities p1; : : : ; pn. Bob tries to guess the outcome of the experiment
using only yes-no questions. Show that the minimal number of questions Bob needs
to ask to be certain to conclude regardless of the result is always greater than the
entropy �P pi log2 pi. Show that equality is possible only if all outcomes of the
experiment have the same probability. The number of possible outcomes must then
be a power of 2.

11.7 Comments

Let us return to the case of a six-sided die. Consider a set of questions �1; : : : ; �n that allows
us to conclude regardless of the outcome: �1_� � �_�n.x/ D fxg, that is, H.�1_� � �_�n/ D
�P

pi log pi D 3.27. For some outcomes, it is not necessary to ask n questions to conclude.
For example, for the questions in Table 11.3, it suffices to ask the first three to find the result
if it is 4; 5; 6; 7; 8, or 9.
On average, what is the number of questions truly asked to find the outcome? In his
fundamental paper of 1948, C.E. Shannon showed that this average number is always
greater than the entropy. In 1952, D. Huffman proposed an algorithm to construct a sequence
of questions that minimizes the average number of questions that need to be asked. For the
rolling of two dice, Table 11.3 was obtained using this algorithm. The average number of
questions truly asked is 3:306; this is optimal. The compression methods jpeg, mp3, and
pkzip use this algorithm by D. Huffman.
Note that at least four questions need to be asked to distinguish between all outcomes.
Indeed, three questions partition the set of outcomes into at most 23 D 8 parts, whereas
there are 11 different outcomes.
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We can try to determine a set of four questions such that the average number of questions
that need to be asked out of this set of four is minimal. This can be obtained using a
“numismatic” algorithm, which gives the questions “6; 7; 8, or 9?”; “4; 5; 7; 8, or 10?”;
“3; 5; 6; 7, or 11?”; and “2; 3, or 4?”. The average number of questions needed is 3.333.
The entropy associated with rolling two n-sided dice is given by

H D �X
pi log pi D 2 log n � 1

n2

� n�1X

iD1

2i log i C n log n
�

� log.n/C 1

2
C o.1=n/:

The reader may want to compare this with the entropy of the uniform distribution on a set
with 2n � 1 elements: H D log.2n � 1/ � log.n/C log.2/C o.1/.



Chapter 12
Computing Entropy

L’entropie est une loi générale de l’univers: la tendance
naturelle des choses à passer de l’ordre au désordre sous l’effet
d’un hasard calculable.

F. Jacob

12.1 Introduction

In general, computing the entropy of a measure-preserving transformation is a
delicate problem. We will study a class of noninvertible maps for which the
computation does not present too many problems.

A map T on a metric space X is called uniformly dilating if there exists a finite
partition fXig of X such that the restriction of T to each of the Xi dilates the metric
in the following sense: there exists a constant K > 1 such that for every i,

8x; y 2 Xi; d
�
T.x/;T.y/

�
> K d.x; y/:

We have already come across several examples of dilating maps: the toral
automorphisms whose eigenvalues all have absolute value greater than 1 and the
piecewise C1 maps on the interval whose derivatives are greater than some constant
K > 1 satisfy this property. A few dilating transformations on the interval are shown
in Fig. 12.1.

For these maps, we can give an explicit expression for the entropy of invariant
probability measures. This expression uses the dilation factor of the measure under
the action of the transformation. From an informal point of view, we could say that
the inherent randomness of the system is proportional to this dilation factor.

This factor is easily computed when the transformation is regular and preserves
an invariant measure that is absolutely continuous with respect to the Lebesgue
measure. It can be obtained through a simple change of variables. The entropy
then equals the integral of the logarithm of the Jacobian of the transformation. We
thus link a measurable quantity, defined globally and measuring the uncertainty
in the evolution of the system over time, to a quantity obtained by averaging the
infinitesimal dilation observed in the neighborhood of each point of the space.
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The Bernoulli shifts defined on a finite alphabet I can be interpreted in terms of
a dilating map. More generally, we can introduce a distance on the set of admissible
sequences of a Markov chain with finite state space, for which the shift is dilating.
It then becomes possible to compute the shift’s entropy by evaluating its Jacobian.
This computation method is not the most elementary one, but it illustrates well the
concept of a dilating map.

12.2 The Rokhlin Formula

Let .X; T ; �/ be a probability space, and let T W X ! X be a measurable map that
preserves the measure �. Suppose that T restricted to a measurable set A � X is
injective. We define the inverse of the Jacobian of T on A by the formula

1

jT 0
�j
D d

d�

�
T�.�jA/

� ı T;

so that we have the usual change of variables:

Z

A
g ı T d� D

Z

TA

g

jT 0
�j ı T�1

jA
d�:

Proposition 12.1 Let .X; T ; �/ be a probability space, and let T W X ! X be a
measurable map that preserves the measure �. Suppose that there exists a finite
partition Xi, for 1 6 i 6 k, such that the TXi are measurable and T W Xi ! TXi is
bijective with measurable inverse. Then

for almost all x0 2 X; E. f j T�1T /.x0/ D
X

TxDTx0

f .x/

jT 0
�.x/j

;

H.fXigiD1;:::;k j T�1T / D
Z

X
log jT 0

�j d�:

Proof Denote by T�1
i W TXi ! Xi the inverse of T on the domains in question; we

extend this function to X arbitrarily. Note that for all x0 2 Xi, we have

fx j Tx D Tx0g D fT�1
i .Tx0/ j i such that T.x0/ 2 T.Xi/g:

To compute the conditional expectation, we write f D P
i 1Xi f ı T�1

i ı T, which
gives

E. f j T�1T / D
X

i

E.1Xi j T�1T / f ı T�1
i ı T:
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It therefore suffices to prove the equality E.1Xi j T�1T / D 1TXi ı T

jT 0
�j ı T�1

i ı T
:

Z

g ı T E.1Xi j T�1T / d� D
Z

Xi

g ı T d�

D
Z

1TXi g

jT 0
�j ı T�1

i

d�

D
Z

1TXi ı T g ı T

jT 0
�j ı T�1

i ı T
d�:

It remains to compute the entropy of the partition fXig:

H.fXig j T�1T / D
X

i

Z

�1Xi log E.1Xi j T�1T / d�

D
X

i

Z

Xi

log jT 0
�j ı T�1

i ı T d�

D
X

i

Z

Xi

log jT 0
�j d�

D
Z

X
log jT 0

�j d�: ut

The following formula, due to V. Rokhlin, will allow us to calculate the entropy
of maps that are piecewise dilating.

Corollary 12.1 The entropy is bounded from below by the integral of the Jacobian:

h�.T/ >
Z

X
log jT 0

�j d�;

with equality if the partition fXig is a one-sided generator.

Remarks

• Suppose that we have X � Rn, that� is the Lebesgue measure, that T is C1 on the
interior of Xi (Lipschitz suffices), and that �.@Xi/ D 0. Then jT 0

�j D j det.DT/j
almost everywhere.

• The quantity E.1Xi j T�1T /.x/ can be seen as the probability that x is in Xi, given
the value of T.x/.

• If T has a one-sided generator, then h.T/ can be seen as the average amount of
information needed to know x, given that Tx is known.

• The operator L� f .y/ D P
TxDy f .x/=jT 0

�.x/j is the transfer operator associated
with T; it is the adjoint of the isometry f 7! f ı T defined on L2.X; �/.
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12.3 Entropy of Shifts

Let us compute the entropy of the shift on a Markov chain using the observations
above. Let I be a finite alphabet. Let X D IN, and consider the shift on X given by
T.fxigi2N/ D fxiC1gi2N.

We define a measure on X using a transition matrix fpi;jg. For every i; j 2 I, we
take real numbers pij 2 Œ0; 1� and pi 2 Œ0; 1� satisfying

X

i

pi D 1;
X

j

pij D 1; and
X

i

pipij D pj:

Let a1; : : : ; an be elements of I. Recall that the cylinder set Œa1; : : : ; an��X consists
of the elements of X that begin with the sequence a1; : : : ; an. By the Kolmogorov
extension theorem, there exists a probability measure � on X that satisfies

�.Œa1; a2; : : : ; an�/ D pa1pa1a2 � � � pan�1an :

This measure is T-invariant. The entropy of the transformation T relative to this
measure is given by the following proposition.

Proposition 12.2 h�.T/ D �
X

i;j

pi pij log pij.

Proof Let N be the cardinality of I. Each point of X has exactly N preimages and T
is bijective from Œi� to X. We therefore take Xi D Œi�. The partition fŒi� j i 2 Ig
is a generator because the partition generated by its first k inverse images under T
consists of all cylinder sets of length k. Let us calculate the Jacobian of T W Œi�! X
restricted to the cylinder set Œi; j�, when it has nonzero measure:

�.T�1Œ j; a1; : : : ; an� \ Œi�/ D �.Œi; j; a1; : : : ; an�/ D pipij

pj
�.Œ j; a1; : : : ; an�/:

This shows that jT 0
�j is constant on the cylinder set Œi; j�, with value pj=pipij. Finally,

h�.T/ D �
X

i;j

pi pij log. pij/�
X

i

pi log. pi/
�X

j

pij

�
C
X

j

log. pj/
�X

i

pipij

�
:

The last two terms cancel each other out. ut
The space X can be endowed with the following distance:

d
�fxig; fyig

� D 2� minf j2Njxj¤yjg:

The shift is dilating with respect to this distance when restricted to the cylinder sets
Œa� D f fxig 2 IN j x0 D ag, for every a 2 I. This follows from the relation

8x; y 2 Œa�; d
�
Tx;Ty

�
> 2 d.x; y/:
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The dynamical system we have just studied is therefore an example of a piecewise
dilating map.

12.4 Entropy of Dilating Transformations

The trajectories of a dilating map T tend to separate over time, as illustrated by
Fig. 12.2. This allows us to show that a partition fXig is generating if the restriction
of T to each piece of the partition is dilating.

Proposition 12.3 Let X be a metric space, let � be a Borel probability measure,
and let T W X ! X be a Borel map that preserves the measure �. Let � be a finite
partition whose elements have finite diameters; we suppose that for some K > 1

and for every A 2 �,

8x; y 2 A; d.Tx;Ty/ > K d.x; y/:

Then � is a one-sided generator.

Proof Let us show that the diameters of the sets
� n_
0

T�i�
�
.x/ tend to 0 when n tends

to1.
If this is not the case, we can find ı > 0 and, for every integer n 2 N, points xn

in
n_
0

T�i� .x/ such that d.xn; x/ > ı. For every i 2 f0; : : : ; ng, the point Tixn belongs

to �.Tix/, which gives

d.TiC1xn;T
iC1x/ > K d.Tixn;T

ix/:

Consequently, we have

diam �.Tnx/ > d.Tnxn;T
nx/ > Knd.xn; x/ > Kn ı:

The diameter of the �.Tnx/ is therefore not bounded. We conclude using the
following lemma. ut
Lemma 12.1 Let X be a metric space, and let �n be a sequence of countable
partitions that satisfies, for every x 2 X, diam �n.x/ ! 0. Then the elements of
the �n for n 2 N generate the Borel �-algebra of X.

Proof Let U be an open subspace of X. For every x 2 U, there exists n 2 N such
that �n.x/ � U. We therefore have

U D S

n2N

[

A2�n
and A�U

A:
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The open subspace U is in the �-algebra generated by the �n. The proof is illustrated
by Fig. 12.3. ut

We have shown that the entropy of a piecewise dilating map can be obtained by
integrating the Jacobian.

Theorem 12.1 Let X be a metric space, and let T W X ! X be a uniformly piecewise
dilating Borel map: there exist a finite partition fXig of X by bounded Borel sets and
a constant K > 1 such that

8i; 8x; y 2 Xi; d
�
T.x/;T.y/

�
> K d.x; y/:

Let � be a Borel probability measure that is invariant under T. Then the entropy
of T relative to � is given by

h�.T/ D
Z

X
log jT 0

�j d�:
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Fig. 12.1 A few dilating maps on the interval Œ0; 1�

X

Fig. 12.2 Dilation and generating partition

X

U

ξn(x)

Fig. 12.3 Sequence of partitions with arbitrarily small diameter
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12.5 Exercises

12.5.1 Basic Exercises

Exercise 1 Consider the map T W Œ0; 1�! Œ0; 1� given by

T.x/ D
(p

2 x if x 2 Œ0; 1=p2�;p
2x2 � 1 if x 2 Œ1=p2; 1�:

Show that T preserves the measure 2xdx and determine its entropy.

Exercise 2 Let A be an n � n matrix with integral coefficients and nonzero
determinant, whose eigenvalues all have absolute value greater than 1. This matrix
induces a map on the torus Tn by passing to the quotient. Show that this map
preserves the Lebesgue measure, and then that it is injective and dilating on every
set with sufficiently small diameter. Determine its entropy relative to the Lebesgue
measure on the torus.

Exercise 3 Let U be an open subset of Rn, and let T W U ! Rn be an injective C1

map preserving a finite measure of the form d� D h dx, with h measurable. Compute
jT 0
�j.
Suppose that the function log.h/ is �-integrable. Prove the following formula:

Z

U
log jT 0

�j d� D
Z

U
log j det DxTj d�:

Exercise 4 Let X be a compact metric space, let T W X ! X be a continuous map,
and let � be a Borel probability measure that is invariant under T. Let � be a finite
partition satisfying the following property:

8A 2 �; 8x; y 2 A distinct; d.Tx;Ty/ > d.x; y/:

Show that the partition � is generating.

Exercise 5 Show that the following map T W Œ0; 1�! Œ0; 1� preserves the Lebesgue
measure:

T.x/ D
(pj2x� 1j if x 2 Œ0; 1

2
�;

1 �pj2x � 1j if x 2 . 1
2
; 1�:

Compute its entropy.
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12.5.2 More Advanced Exercises

Exercise 6 Let T W Œ0; 1�! Œ0; 1� be the map defined by

T.x/ D

8
ˆ̂
<

ˆ̂
:

2xC 1=3 if x 2 Œ0; 1
3
�;

�3xC 2 if x 2 Œ 1
3
; 2
3
�;

2x � 4=3 if x 2 Œ 2
3
; 1�:

Show that T preserves a probability measure that is absolutely continuous with
respect to the Lebesgue measure. Compute the entropy of T with respect to this
measure. Does there exist a generating partition with two elements?

Exercise 7 Let .X; T ; �/ be a probability space, and let T W X ! X be a measurable
map that preserves �. We suppose that there exists a finite partition fXig such that
the TXi are measurable and that the restriction of T to each of the Xi is a bijective,
bimeasurable map from Xi to TXi. Prove the equality

Z

X
jT 0
�j d� D

Z

X
Card

�
T�1.y/

�
d�.y/:

Exercise 8 Let p; q 2 Œ0; 1� satisfy p C q D 1. Compute the Jacobian of the
unilateral shift associated with the Markov chain with transition matrix

� p q
p q
�
. Then,

do the same for the transition matrix
� p q

q p
�
. Deduce that the associated measure-

preserving dynamical systems are not isomorphic.

12.6 Comments

For a measurable map T W X ! X that is injective when restricted to the elements of a finite
partition fXig, the Jacobian jT0

�j as defined earlier a priori does not depend on the chosen
partition. However, if fYjg is another partition such that T is injective when restricted to its
elements, then the Jacobians T0

�jXi
and T0

�jYj
coincide almost everywhere when restricted to

Xi \Yj. The function jT0

�j can therefore be considered well defined up to a set of measure 0,
without needing to refer to a specific partition.
The inverse of the Jacobian admits a probabilistic interpretation. The quantity 1=jT0

�.x/j
corresponds to the probability of obtaining the value x among all values of T�1.T.x// if we
know the value of T.x/.
We have restricted ourselves to the case of a partition fXig with finite cardinality because
it is in this context that the concept of entropy was defined. The results proved earlier also
hold if the partition fXig is countable; the proofs are the same.
A Lebesgue space X on which there is a measurable map T W X ! X that preserves the
measure, and for which the cardinality of the fibers T�1.x/ is countable for every x 2 X,
automatically admits a countable partition fXigi2N such that T restricted to each of the Xi is
injective. This result is proved in the book by Parry [17].
We can relax the assumption of uniform dilation in the proposition showing that the
partition fXig is generating (Proposition 12.3). Indeed, it suffices that a power of the
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transformation be dilating. When the space X is compact, it suffices to have a bound of
the form d.Tx; Ty/ > d.x; y/ on the elements of the partition fXig. When the transformation
is ergodic, we can settle for a dilation that is uniform on only one element Xi, and a bound
of the form d.Tx; Ty/ > d.x; y/ on all other elements. Almost all points in X have an orbit
that passes infinitely many times through the element Xi on which we have the dilation, and
this suffices to conclude.
Let X be a compact manifold, and let T be a C1 differentiable map on X. The condition
that det DxT > 1 at every point ensures that the transformation restricted to any set of
sufficiently small diameter is uniformly dilating. Not all differential manifolds admit such
a transformation. Only the manifolds that can be written as the quotient of a nilpotent Lie
group by a discrete subgroup are likely to admit such maps.
The Jacobian is invariant by measurable conjugation. It can be used to distinguish between
the unilateral shifts. For example, the unilateral shift associated with the Markov chain with
transition matrix

� p q
p q
�

and the one associated with the Markov chain with transition matrix� p q
q p
�

have the same entropy. However, the partitions given by the level sets of the Jacobian
cannot be isomorphic: in the first case, this partition generates the Borel sets under the
action of the shift, whereas in the second case, the generated partition is invariant under the
permutation of the two symbols.
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Chapter 13
Lebesgue Spaces and Isomorphisms

Nous avons la chance unique d’avoir à notre disposition une
langue universelle, la numérotation décimale écrite, utilisons-la.

H. Lebesgue (1875–1941)

13.1 Introduction

Let us study the spaces on which the measure-preserving dynamical systems are
defined. We will say that two probability spaces are isomorphic if, after having
dismissed a negligible set of points in both spaces, we can find a measure-preserving
measurable bijection whose inverse is also measurable. If two dynamical systems
are isomorphic, so are their underlying spaces.

Can we classify the probability spaces up to isomorphism? First, note that an
isomorphism sends the points with positive measure (the atoms of the measure) onto
points with the same measure. The number and mass of these atoms are therefore
isomorphism invariants.

Surprisingly, most probability spaces without atoms are isomorphic to Œ0; 1�

endowed with the Lebesgue measure. Only when the space is not measurable or
separable does such an isomorphism not exist.

Let us explain why this is so, by considering the case of a Borel space X in
a complete measurable metric space. By the separability of X, we can encode the
points of X by sequences of 0’s and 1’s, in the same way that we can represent a
real number by the sequence of its digits in base 2. Hence there exists a measurable
injection from X into f0; 1gN. The only problem left is to show that this map sends
measurable sets onto measurable sets.

This question appears very early in the history of measure theory. H. Lebesgue
already wondered under which conditions a Borel map transforms a Borel set into
a Borel set. Injectivity of the transformation turns out to be sufficient. Proving this
required the introduction of a new class of sets, namely Suslin (or analytic) sets, and
the structure of these sets needed to be studied extensively.

It is possible to bypass the difficulties presented by these notions by making
do with only showing that the image of a Borel set by an injective Borel map is

© Springer-Verlag London 2016
Y. Coudène, Ergodic Theory and Dynamical Systems, Universitext,
DOI 10.1007/978-1-4471-7287-1_13
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measurable. This result is relatively easy to obtain, because the measurability refers
to a measure. We can therefore obtain it through a direct computation. This is the
approach we will follow in this chapter.

13.2 Measurable Isomorphism

Let us begin by recalling the difference between a Borel set and a measurable set.
Let X be a topological space, let B.X/ be the Borel �-algebra of X, and let � be
a measure on this �-algebra. We will say that a subset of X is �-measurable if it
belongs to the completion B.X/ of the Borel �-algebra with respect to �:

B.X/ D fA � X j 9B;C 2 B.X/ such that B � A � C and �.C X B/ D 0g:

The �-algebra B.X/ is complete in the following sense: the subsets of the negligible
sets all belong to this �-algebra.

Recall that a map f between two spaces .X; T ; �/ and .Y;S; �/ is measurable
if the inverse images of the elements of S are in T . For a real-valued function, the
measurability refers to a different notion: a function f W X ! R on a measure space
.X; T ; �/ is called measurable if the inverse image of every Borel subset of R is
in T . If the �-algebra T is complete, these two notions coincide: every measurable
function f W X ! R is a measurable map from .X; T ; �/ to .R;B.R/; f��/; that
is, the inverse images of the f��-measurable sets are in T . For this reason, it is
preferable to work with complete �-algebras.

Definition 13.1 Two measure spaces .X; T ; �/ and .Y;S; �/ are called isomorphic
if there exist two measurable sets X0 � X and Y0 � Y such that �.Xc

0/ D 0 and
�.Yc

0/ D 0, as well as a bijective measurable map ' W X0 ! Y0 that has a measurable
inverse and satisfies '�� D �.

Recall that a measure � is called nonatomic if the singletons are all negligible:
�.fxg/ D 0 for every x.

Example Let � be a nonatomic Borel probability measure on Œ0; 1�. Let us show
that .Œ0; 1�;B.Œ0; 1�/; �/ is isomorphic to .Œ0; 1�;B.Œ0; 1�/; �/, where � denotes the
Lebesgue measure.

The isomorphism ' is given by the distribution function of �:

'.x/ D �.Œ0; x//:

Since � does not have any atoms, the map ' is continuous, nondecreasing, and
surjective. An example is given in Fig. 13.1.
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• Let us show that '�� D �. Let y 2 Œ0; 1�, and let

x D minfx0 2 Œ0; 1� j '.x0/ D yg:

We have the equality '.x/ D y and the relation '�� D � is a consequence of the
following calculation:

'��.Œ0; y// D �.'�1.Œ0; '.x//// D �.Œ0; x// D '.x/ D y D �.Œ0; y//:

• Let us construct a Borel subset X0 � Œ0; 1� restricted to which the map ' is
injective. To do this, note that every open subset of .0; 1/ is a disjoint countable
union of open intervals. Hence there exist ai; bi 2 .0; 1/ with ai < bi, such that

.0; 1/X supp� D `

i2N
.ai; bi/ :

Set

X0 D .0; 1/X .SŒai; bi�/ D supp� XSfai; big [ f0; 1g;
Y0 D '.X0/ D .0; 1/ XSf'.ai/g:

The function ' is then an increasing bijection between X0 and Y0. Since ' W X0 !
Y0 and '�1 W Y0 ! X0 are increasing, they are Borel; since '�� D �, they are
also measurable. The map ' is indeed an isomorphism.

We now state the measurability lemma, which will allow us to establish the
isomorphism theorem. The notions from measure theory that play a part in this
lemma (inner regularity, Lusin’s theorem) are recalled in Chap. 18.

Lemma 13.1 (Measurability Lemma) Let X be a Hausdorff topological space,
and let � be an inner regular finite Borel measure on X. Let Y be a separable metric
space, and let ' W X ! Y be a Borel map. Let A � X be a Borel or �-measurable
set satisfying

'.A/\ '.Ac/ D ¿:

Then '.A/ is a measurable set with respect to the measure '��.
In particular, if ' is injective, then it is a measurable isomorphism:

' W .X;B.X/; �/ ��! .Y;B.Y/; '��/:

Proof By the inner regularity, there exists, for every " > 0, a compact set K � A
such that �.A X K/ < ". By Lusin’s theorem, there exists a compact subset K0 � K
such that�.KXK0/ < " and 'jK is continuous. In particular, '.K/ is compact, hence
Borel and '��-measurable.
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We then construct by induction mutually disjoint compact sets Ki, restricted to
which ' is continuous and whose union gives almost all of A: there exists N � A
with �.N/ D 0 such that

A D `Ki q N:

We can apply the same reasoning to Ac and write Ac D `
K0

i q N0. Figure 13.2
illustrates this decomposition.

Let us give a lower bound for the measure of the set '.[Ki/, which is Borel:

'��
�
'.[Ki/

� D ��'�1.'.[Ki/
��

> �.[Ki/ D �.A/:

The same reasoning gives the lower bound '��
�
'.[K0

i /
�
> �.Ac/.

The sets '.[Ki/ and '.[K0
i / are disjoint by virtue of the two inclusions

'.[Ki/ � '.A/ and '.[K0
i / � '.Ac/. We therefore have

'��
�
'.[Ki/q '.[K0

i /
� D '��.'

�[Ki/
�C '��.'

�[K0
i /
�

> �.A/C �.Ac/

D '��.Y/:

Consequently, the set '.[Ki/ [ '.[K0
i / has full measure. Its complement is

negligible; it contains the set '.A/ X '.[Ki/, which is therefore measurable. It
follows that '.A/ is measurable. ut
Remarks

• The result also holds if ' is �-measurable, in the following sense: the inverse
image of every Borel set in R is �-measurable.

• We of course have '.X/ \ '.Xc/ D ¿. This shows that ' is almost surjective:
'.X/ is measurable and '��

�
'.X/c

� D 0.
• The condition '.A/ \ '.Ac/ D ¿ is equivalent to the equality '�1.'.A// D A,

and also to A DSy2'.A/ '�1.fyg/. The set A is the union of level sets of '.

13.3 Lebesgue Spaces

Definition 13.2 A Lebesgue space .X; T ; �/ is a measure space, endowed with a
probability measure � defined on a complete �-algebra T , that is isomorphic to
.Œ0; 1�;B.Œ0; 1�/; �/.

Here, we are interested in nonatomic probability spaces: �.fxg/ D 0 for every
x 2 X. There also exists a notion of Lebesgue space “with atoms”: such a space is
isomorphic to the union of an interval endowed with the Lebesgue measure and a
countable measure space whose points have positive measure.
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The following theorem shows that most nonatomic probability spaces are
Lebesgue spaces.

Theorem 13.1 (Isomorphism Theorem) Let X be a Borel subset of a complete
separable metric space, and let � be a nonatomic Borel probability measure on X.
Then .X;B.X/; �/ is a Lebesgue space.

Proof By the Oxtoby–Ulam theorem, of which a proof is included in Chap. 18,
the measure �, seen as a measure on the complete separable metric space, is inner
regular, and this property also holds after restriction to any measurable subset of the
space. The measure � is therefore inner regular on X.

Since every subset of a separable metric space is a separable metric space, there
exists a countable base of open sets fUigi2N for the topology on X. Consider the
injections

'1 W X ,�! f0; 1gN '2 W f0; 1gN ,�! Œ0; 1�

x 7�! f1Ui.x/gi2N ai 7�!
X ai

3i
:

The Borel injection '2 ı '1 establishes an isomorphism between .X;B.X/; �/ and�
Œ0; 1�;B.Œ0; 1�/, '2 ı'1�.�/

�
; it is illustrated by Fig. 13.3. This reduces the problem

to the example following Definition 13.1. ut
The measurability lemma can be generalized to Lebesgue spaces.

Proposition 13.1 Let ' be a measure-preserving measurable map between two
Lebesgue spaces, and let A be a measurable subset satisfying '.A/ \ '.Ac/ D ¿.
Then '.A/ is measurable. In particular, if ' is injective, ' is an isomorphism.

Proof We reduce to the space .Œ0; 1�;B.Œ0; 1�/; �/ by isomorphism. A small check
is necessary to ensure that the negligible sets that appear in the definition of an
isomorphism do not pose any problems. We denote the two Lebesgue spaces by X
and Y, where ' W X ! Y.

Let X0 � X be a subset with negligible complement, and let B � Œ0; 1� be a �-
measurable subset that has negligible complement and is in bimeasurable bijection
with X0. After passing to a subset if necessary, we may assume that B is Borel. Let
Y0 � Y be a subset with negligible complement, and let B0 � Œ0; 1� be a Borel
subset that has negligible complement and is in bimeasurable bijection with Y0. Set
X0 D X0 \ '�1.Y0/; we identify this with a Borel subset of Œ0; 1� of full measure,
using earlier bijections. The set '.A \ X0/ is measurable, because we can identify
A \ X0 with a �-measurable subset of Œ0; 1� and apply the measurability lemma
(Lemma 13.1) to ' W X0 ! Y0. Likewise, the set '.Ac \ X0/ is measurable.

The map ' preserves the measure; the set '.A\X0/q'.Ac\X0/ has full measure
in Y. Since '.A/ and '.Ac/ are disjoint subsets of Y, we have the inclusion

'.A/ X '.A \ X0/ �
�
'.A \ X0/q '.Ac \ X0/

�c
:

The set '.A/ X '.A \ X0/ is therefore negligible, and '.A/ is measurable. ut
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In the proof above, we have shown that the set '.X0/ is measurable (take A D X
in the proof); on the other hand, the set '.X0c/ need not be measurable. An example
is constructed in the exercises. In general, the image of a negligible set by a measure-
preserving measurable map is not necessarily measurable.

13.4 The Measurable Stone–Weierstraß Theorem

The following is an application to density problems in the Lp spaces.

Theorem 13.2 Let .X; T ; �/ be a Lebesgue space, let p 2 Œ1;1/, and let
fn W X ! R be a sequence of bounded measurable functions that separates the
points:

8x; y 2 X; x ¤ y; 9n 2 N such that fn.x/ ¤ fn.y/:

Then the algebra generated by the functions fn and the constants is dense in
Lp.X; T ; �/.

Proof The separation hypothesis implies that the following map in injective:

' W X ,�! RN

x 7�! f fi.x/gi2N:

It therefore gives an isomorphism from .X; T ; �/ to .RN;B.RN/; '��/.
The set '.X/ is contained in the compact set K D Q

i2NŒ�k fik; k fik�, and
the measure '�� is supported on K. The map ' therefore induces an invertible
isometry from Lp.X; T ; �/ to Lp.K;B.K/; '��/, which sends the functions fi to the
projections onto the coordinates.

These projections are continuous functions on K that separate its points. By
the usual Stone–Weierstraß theorem, the algebra generated by these projections is
uniformly dense in C.K/ and C.K/ is dense in Lp.K;B.K/; '��/. The latter is a
classical result elaborated in Chap. 18. ut
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ϕ(x)

x0

1/2

1

1/3 2/3 1

Fig. 13.1 Isomorphism between Œ0; 1� and Œ0; 1=3� [ Œ2=3; 1�, endowed with the renormalized
Lebesgue measure

A

K1
K2

K3

K1

K2

Fig. 13.2 Image of a Borel set

Fig. 13.3 Construction of the isomorphism
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13.5 Exercises

13.5.1 Basic Exercises

Exercise 1 Let A and B be two Borel subsets of Œ0; 1�, and let ' W A ! B be a
nondecreasing map from A to B. Show that ' is Borel.

Exercise 2 Let .X; T ; �/ and .Y;S; �/ be two Lebesgue spaces, let ' W X!Y be a
measurable map, and let A 2 T .

• Show that there exists a set A0 � A such that �.A X A0/ D 0 and '.A0/ 2 S.
• Is the set '.A X A0/ necessarily measurable?

Exercise 3 Let X be a Hausdorff topological space with a countable base of open
sets, and let � be an inner regular nonatomic Borel probability measure. Show that
the space .X;B.X/; �/ is a Lebesgue space.

Exercise 4 Let f W Œ0; 1� ! R, and let � be the Lebesgue measure on Œ0; 1�.
Compute f�� when

• the map f is constant;
• the map f is C1 and injective;
• the map f is piecewise affine.

Exercise 5 Let B be a Borel set in a complete metric space, endowed with a
nonatomic finite Borel measure. Show that for every t 2 Œ0; �.B/�, there exists a
Borel set A � B such that �.A/ D t.

Exercise 6 Let .X; T ; �/ be a Lebesgue space, and let fBigi2N be a countable family
of elements of T . Suppose that for every x, y in X with x ¤ y, there exists i 2 N such
that x 2 Bi and y 62 Bi. Show that together, the Bi and the negligible sets generate
the �-algebra T .

13.5.2 More Advanced Exercises

Exercise 7 Let � be a finite Borel measure on a separable metric space X. Let A be
a Borel subset of X satisfying the following property: for every measurable B � A,
we have either �.B/ D 0 or �.A X B/ D 0. Show that there exists x 2 A such that
�.A X fxg/ D 0.

Exercise 8 Give a set N � Œ0; 1� that is negligible for the Lebesgue measure and
admits a bijection to R. Construct a subset N0 of Œ0; 1� that is not measurable for the
Lebesgue measure and that admits a bijection to R.

• We define a function ' as follows: ' is equal to the identity on Œ0; 1�XN and ' is
a bijection from N to N0. Show that ' W Œ0; 1� ! Œ0; 1� is a measurable map that
preserves the Lebesgue measure.
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• Show that the image of a negligible set by a measure-preserving measurable map
between two Lebesgue spaces is not necessarily measurable.

Exercise 9 Let .X; T ; �/ be a Lebesgue space, and let f fngn2N be a family of
bounded functions that generates an algebra that is dense in L2.X/. Show that there
exists a set X0 � X of full measure such that the restrictions of the fn to this set X0
separate the points of X0.
Hint: Approximate the characteristic functions of a countable base of open sets.

Exercise 10 The Lebesgue spaces that we have considered in this chapter are
nonatomic probability spaces. We can also define Lebesgue spaces of finite measure
with atoms: these are measure spaces isomorphic to Œ0; a� [ N endowed with the
measure �Œ0;a� CPi2N aiıi, with a; ai 2 RC and aCP ai < C1.

• Classify these spaces up to isomorphism.
• Show that the measurability lemma is also true for these spaces.
• Show that the Stone–Weierstraß theorem is also true for these spaces.
• Show that every Borel set in a complete separable metric space, endowed with a

finite Borel measure, is isomorphic to such a space.

13.6 Comments

A separable metric space can always be embedded into a complete separable metric space,
for example its completion. But nothing guarantees that it is a Borel subspace of its
completion. If that is the case, we say that this topological space is a standard Borel space.
Such a space becomes a Lebesgue space if we endow it with a Borel probability measure.
We can give a stronger version of the measurability lemma: the image of a Borel subspace by
an injective Borel map between two standard Borel spaces is a Borel subspace. This result
is more difficult to establish than the lemmas given earlier; the proof usually passes through
the theory of analytic sets. We refer the reader to the book by Cohn [4, Chap. 7]. Without the
injectivity hypothesis, we have the following result: for a Borel map between two standard
Borel spaces, the image of a Borel set is universally measurable, that is, measurable with
respect to every finite Borel measure on the target space.
Lusin’s theorem admits a purely topological version: Let X be a separable metric space, and
let f W X ! R be a Borel function. Then there exists a dense subset Gı restricted to which f
is continuous.
The compact subsets given by Lusin’s theorem are not connected in general, contrary to
what might be implied by Fig. 13.2. We can show that for a dense set Gı of Borel maps
f W Œ0; 1� ! R (for example in Lp with p 2 Œ0;1/), there does not exist an open subset on
which f is continuous.
Let f W Œ0; 1� ! Œ0; 1� be a Borel map. In general, there is no reason for the inverse image
of a measurable Lebesgue space to be a measurable Lebesgue space. We have seen in the
exercises that this does hold if the measure f

�

� is equal to �. More generally, it is the case
if f satisfies the following property: a Borel subset of Œ0; 1� is negligible if and only if its
inverse image under f is negligible. We then say that f is nonsingular.
Here are two types of probability spaces that are not Lebesgue spaces:

• spaces that are too large, for example an uncountable product of circles, endowed with
its Haar measure;
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• spaces that are too small, for example a nonmeasurable subset of Œ0; 1�, endowed with
the restriction of the Lebesgue measure.

There exist other notions of “sympathetic” probability spaces: standard spaces, the compact
classes of Marczewski, the perfect spaces of Gnedenko and Kolmogorov, Lusin spaces, etc.
All these notions amount to supposing more or less that every separable sub-� -algebra is a
Borel � -algebra, for an ad hoc topology with respect to which X is almost � -compact. These
notions are equivalent to one another; their aim is to recover the disintegration theorem
stated further on. The terminology “Lebesgue space” was introduced by Rokhlin [20]. The
measurability lemma can be found in a paper by J. Haezendonck (1973).
There exist versions of the measurable Stone–Weierstraß theorem for Baire measures on
locally compact spaces; we refer to the work of R.H. Farrell, S. Cater, or R.J. Nagel.
Let .X; T ; �/ be a Lebesgue space. Denote by L0.X/ the set of real-valued measurable func-
tions, endowed with the topology of convergence in probability. This topology corresponds
to the distance

d. f ; g/ D inf
">0

f"C �.! j d. f .!/; g.!// > "/g:

The measurable Stone–Weierstraß theorem also holds in this space, and it is not necessary
to assume that the functions are bounded in the statement of the theorem. The proof remains
the same.
Lebesgue spaces enjoy a number of properties that are not true for all probability spaces.
The Stone–Weierstraß theorem is an example. Another example is given by the following
result: Let .X; T ; �/ be a Lebesgue space. Every morphism of � -algebras from T to T is of
the form A 7! F�1A, where F W X ! X is a measurable map.
We can look for topological equivalents to the isomorphism theorem. It is, for example,
possible to associate a symbolic representation with each of the points of a compact metric
space K: we can always construct a continuous surjection ' W f0; 1gN ! K, so that the
space K is homeomorphic to the quotient of f0; 1gN by the equivalence relation x � y $
'.x/ D '.y/.
In certain specific cases, we can construct isomorphisms between measure spaces that are
continuous. For example, J. Oxtoby and S. Ulam (1941) have shown that two nonatomic
probability measures of full support on the cube Œ0; 1�n that do not charge the boundary of
the cube can be deduced from each other through a homeomorphism. This result does not
hold for f0; 1gN; on this space, the subset of R given by the measures associated with the
closed open subsets (that is, with the cylinders) is a nontrivial homeomorphism invariant.
The problem of the classification of measures on f0; 1gN up to homeomorphism remains
open to this day, even in the case of product measures. We refer the reader to the paper by
R. Daniel Mauldin and A. Yingst (2009) on this subject.



Chapter 14
Ergodic Decomposition

I was very concretely minded (. . . ). Yet I felt a little bit that I
ought to do these abstract things, and Steinhaus, whom I met a
little later, said, “You shouldn’t; you must earn the right to
generalize.”

M. Kac (1914–1984)

14.1 Introduction

When a system is not ergodic, it is possible to decompose the underlying space into
several pieces, so that the transformation is ergodic on each of these pieces. We
call this a partition into ergodic components. The number of components may be
uncountable, but the resulting partition still satisfies a certain regularity property: it
is possible to approximate it with partitions having finitely many pieces.

Strictly speaking, constructing the partition into ergodic components is not
difficult. In general, we can associate with each �-algebra a partition such that the
functions that are measurable with respect to this �-algebra are exactly the functions
that are constant on the elements of the partition. We will present this construction in
the next chapter. It therefore suffices to consider the partition associated with the �-
algebra of functions invariant under the transformation; a measurable set is invariant
mod 0 if and only if it is a union of elements of this partition, up to a negligible set.

But in order to speak of the ergodicity of the transformation when restricted
to each of its ergodic components, it is not enough to partition the space into
these components; we also need to deduce from the measure defined on the whole
space a measure that is invariant on each of the components. These measures are
obtained by disintegration. Such a disintegration is possible whenever we work with
a measurable partition �, that is, with a partition that can be approximated with par-
titions that are finite in the following sense: there exists a sequence of partitions �n

whose elements are measurable, finite in number, and satisfy �.x/ D Tn2N �n.x/ for
almost all x.

© Springer-Verlag London 2016
Y. Coudène, Ergodic Theory and Dynamical Systems, Universitext,
DOI 10.1007/978-1-4471-7287-1_14
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The notion of ergodic decomposition is a purely measurable notion. When we
work with measures on topological spaces or on metric spaces, it is useful to have
a geometric definition of the ergodic components. To obtain this, we can use the
Hopf argument as inspiration. Rather than pairing the points whose trajectories are
asymptotic, we can pair the points whose Birkhoff sums, associated with an arbitrary
bounded continuous (or Lipschitz) function, are asymptotic. This way, we obtain a
Borel realization of the ergodic components that depends only on the topology of
the space. The measure then selects the components of the points that are typical,
from the point of view of the Birkhoff ergodic theorem. And when we define the
components using Lipschitz functions, the Hopf argument becomes an immediate
consequence of the ergodic decomposition theorem.

14.2 Disintegration

A partition f�.x/g is called measurable if there exist measurable sets Bn, for n 2 N,
each the union of elements of the partition, such that for almost all x 2 X, we have
the equality �.x/ DTBn3x Bn

T
Bc

n3x Bc
n.

These elements Bn allow us to approximate the partition � with finite partitions.
If we define the partitions by setting

�k D fBk;B
c
kg; �n D

nW

kD0
�k;

then we have the relation �.x/ DTn2N �n.x/ for almost all x 2 X.
We will study the notion of measurable partition in detail in the next chapter. Its

significance comes from the following disintegration theorem (Figs. 14.1 and 14.2).

Theorem 14.1 Let .X; T ; �/ be a Lebesgue space, and let � be a measurable
partition. Then there exists a unique family of probability measures ��.x/ supported
on the elements of the partition such that, for every A 2 T ,

• the set A is ��.x/-measurable for �-almost all x;
• the function x 7! ��.x/.A/ is �-integrable and its integral is �.A/:

�.A/ D
Z

��.x/.A/ d�.x/:

Proof We may assume that X is of the form f0; 1gN. We denote by C the algebra of
finite unions of cylinders sets in f0; 1gN and by B the �-algebra generated by C.
The algebra C satisfies the Kolmogorov criterion: every nonincreasing sequence
of elements of this family whose intersection is empty, eventually takes on the
value ¿; it therefore has measure 0 with respect to every finitely additive measure
on C. Consequently, every finitely additive measure on C admits a unique �-additive
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extension to B. It therefore suffices to define the ��.x/ on the algebra generated by
the cylinder sets.

Letb� � T be the �-algebra of sets that are unions of elements of the partition.
Suppose that the integral relation in the theorem is satisfied. Consider C 2 C and
A 2 b�. Since A is constant on the elements of �, we must have �.A \ C/ DR

A ��.x/.C/ d�. By the properties of the conditional expectation, this is equivalent
to the equality

8C 2 C; for �-almost all x; ��.x/.C/ D E.1Cjb�/.x/:

The function E.1Cjb�/ is a priori defined only almost everywhere. We choose a rep-
resentative that is constant on the elements of the partition. Since the number of ele-
ments of C is countable, there exists a set ˝ , with �.˝c/ D 0, for which the quan-
tities E.1Cjb�/.x/ are well defined for all C 2 C and all x 2 ˝ . After restricting ˝
again if necessary, we may assume that the function C 7! E.1Cjb�/.x/ is finitely
additive, which gives the desired measure ��.x/.

The integral relation is satisfied for A 2 C. Let us show that it also holds if A 2 T .
Since every open set is a nondecreasing union of elements of C, the equation is also
true for the open sets, and by taking the complement, for the closed sets. Let A 2 B;
for every " > 0, there exist a closed set F and an open set U such that �.UXF/ < "
and F � A � U. We therefore have

�.A/� " 6 �.F/ D
Z

��.x/.F/ d�.x/ 6
Z

��.x/.U/ d�.x/ D �.U/ 6 �.A/C ":

This proves the desired relation for A 2 B. It remains to verify it for �-negligible
A 2 T . Such a set is contained in a negligible set B 2 B. The relation shows that B
is �-negligible for �-almost all x. The same therefore holds for A. This impliesR
��.x/.A/ d� D 0.
It remains to prove that ��.x/ is supported on �.x/. Let Bn be the sequence

of sets from the definition of �. For �-almost all x and all n 2 N, we have
��.x/.Bn/ D E.1Bn jb�/.x/ D 1Bn.x/. Consequently, the Bn and Bc

n that contain x have
full measure for ��.x/, and the same holds for �.x/, which is a countable intersection
of such sets. ut
Remark The measures �C.x/ are not a priori defined on the whole �-algebra T .
However, if we consider a �-algebra B0 � T generated by a countable number of
elements, then for �-almost all x 2 X, all elements of B0 are �C.x/-measurable.
And every family of measures defined on B0 and satisfying the conclusions of the
theorem coincides with �C.x/ on B0 for �-almost all x.
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14.3 Ergodic Decomposition

To define the ergodic components topologically, we consider standard Borel spaces:
we call a topological space X a standard Borel space if it is homeomorphic to a
Borel subset of a complete metric space. A standard Borel space endowed with a
Borel probability measure is of course a Lebesgue space, and every Lebesgue space
is isomorphic to a standard Borel space endowed with a probability measure (after
completion).

Let X be a metric space, and let x 2 X. The ergodic component of x is defined by

C.x/ D fy 2 X j 8f 2 Cb.X/; 1n Sn. f /.x/� 1
n Sn. f /.y/! 0g:

The sets C.x/ are T-invariant and partition the space X. Figure 14.3 shows examples
where T is a rotation.

Proposition 14.1 Let X be a metric space, let T W X ! X be a Borel map, and let
x 2 X. There exists at most one invariant Borel probability measure supported on
C.x/, that is, such that C.x/ is measurable and has negligible complement. When it
exists, this measure is denoted by �x. In that case, �x is ergodic and we have

8y 2 C.x/; 8f 2 Cb.X/;
1

n
Sn. f /.y/ �!

Z

fd�x:

Proof Let f 2 Cb.X/, and let ni 2 N be a sequence such that 1
ni

Sni. f /.x/ converges;

we denote its limit by `. Since 1
ni

Sni. f /.y/ also converges to ` for every y 2 C.x/,
for every invariant probability measure � with support C.x/, we have

Z

f d� D
Z

C.x/
f d� D

Z

C.x/

1

ni
Sni. f /.y/ d�.y/ D `�.C.x// D `:

Two invariant probability measures with support C.x/ give the same value for the
integral of f , and are therefore equal. If, moreover, such a probability measure �x

exists, then
R

fd�x is the only possible accumulation point for the sequence
1
n Sn. f /.y/, which is therefore convergent. ut

We can now state and prove the ergodic decomposition theorem.

Theorem 14.2 Let X be a standard Borel space, let T W X ! X be a Borel
map, and let � be a probability measure that is invariant under T. Then the
partition fC.x/gx2X is measurable. The set of x for which C.x/ supports an invariant
probability measure has full �-measure, and for every positive Borel function f and
positive invariant �-integrable function g, we have

Z

X
f g d� D

Z

X

�Z

C.x/
f d�x

�
g.x/ d�.x/:
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Proof We begin by constructing a countable family f fkgk2N of bounded Lipschitz
functions, which allows us to approximate from below the characteristic functions of
the open sets. We begin with a countable base of open sets D that is invariant under
taking finite unions: U1; : : : ;Un 2 D implies

S
Ui 2 D. Then, for every element U

of this base, we approximate 1U from below by the sequence of continuous functions
fj;U.x/ D min.1; j d.x;Uc//. Every nonempty open subset U of X can be written as
a nondecreasing union of elements Uj of D, and the sequence fj;Uj is nondecreasing,
converging to 1U.

Let �n and � be probability measures. If the sequence
R

fk d�n converges toR
fk d� for every k 2 N, then we have the inequalities lim�n.U/ > �.U/

for every open subset U � X, simply by the monotone convergence theorem.
These inequalities imply the weak convergence of the sequence �n to �: for every
f 2 Cb.X/, we have

R
f d�n !

R
f d�. This follows from the portmanteau theorem

[6, Theorem 11.1.1]. Exercise 5 proposes a proof of that theorem.
Let P be the projection from L2.X/ onto the subspace of T-invariant functions.

The Birkhoff ergodic theorem provides a set e̋ of full measure for which 1
n Sn. fk/.x/

converges to Pfk.x/ for every k 2 N. For these x, we set

eC.x/ D fy 2 e̋ j 8k 2 N; 1n Sn. fk/.y/� 1
n Sn. fk/.x/ �! 0g

D fy 2 e̋ j 8k 2 N; Pfk.x/ D Pfk.y/g:

The partition eC is measurable because its elements are intersections of sets of the
form fx j Pfk.x/ 2 Œr1; r2�g for m 2 N and r1; r2 2 Q. It is T-invariant. Let �eC.x/ be

the disintegrations of � along eC. The sets eC.x/ and the measure � are T-invariant;
the measures T��eC.x/ therefore form a new family of measures disintegrating �. By
the uniqueness of the disintegration, we must have T��eC.x/ D �eC.x/ for almost all x.

For these x, we have found an invariant measure with supporteC.x/.
For every y 2 eC.x/, the sequence 1

n Sn. fk/.y/ converges to Pfk.x/. We apply the
dominated convergence theorem and use the invariance of �eC.x/ with respect to T:

Z

fk.y/ d�eC.x/.y/ D
Z
1

n
Sn. fk/.y/ d�eC.x/.y/ �����!n!1 Pfk.x/:

It follows that
R

fk d�eC.x/ D Pfk.x/ for almost all x 2 X.

We wish to show that the partitions C andeC are equal almost everywhere. We set
˝ D fx 2 e̋ j 8k; 1

n Sn. fk/.x/!
R

fk d�eC.x/g and use the disintegration formula:

Z

X
�eC.x/.˝

c/ d�.x/ D �.˝c/ D 0:

The set ˝c is therefore �eC.x/-negligible for �-almost all x.
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Let y 2 eC.x/ \ ˝ . Set �n D 1
n

Pn�1
kD0 ıTk.y/. We have the following convergence:

8k 2 N;
Z

fk d�n D 1

n
Sn. fk/.y/ �����!n!1

Z

fk d�eC.x/:

This implies the weak convergence of the sequence �n to the measure �eC.x/. The
point y is therefore in C.x/, which shows the equality

eC.x/ \˝ D C.x/ \˝:

The partition C is measurable and for �-almost all x, the set C.x/ supports an
invariant probability measure: �x D �eC.x/ D �C.x/.

To obtain the integral equation that figures in the statement of the theorem, we
consider a positive integrable function g and integrate the relation

R
fk d�C.x/ D

Pfk.x/, which holds for almost all x 2 X, with respect to the measure g d�. From
this, we deduce the desired integral relation for the fk, and then for the characteristic
functions f of open sets by the monotone convergence theorem. We pass to the
characteristic functions of measurable sets using outer regularity and monotone
convergence, and then to positive functions by linearity and, again, monotone
convergence. ut

Let us conclude with two remarks.

• If A is a �-measurable set, then it is �C.x/-measurable for �-almost all x. Indeed,
we can find two Borel sets B � A � C such that �.C X B/ D 0, and the
disintegration formula gives �C.x/.C X B/ D 0 for �-almost all x 2 X.

• The integral equation generalizes to �-integrable f and T-invariant �-integra-
ble g, simply by decomposing f and g into positive and negative parts and noting
that f coincides �-almost everywhere with a Borel function.
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μ(A)

μx(A)

ξ(x)

Fig. 14.1 Disintegration

r

Br

y
μξ(x,y)

X = [0, 1]2 r ∈ Q ∩ [0, 1] dμ(x, y) = f(x, y) dx dy

ξ(x, y) = [0, 1] × {y} Br = [0, 1] × [0, r] dμξ(x,y) =
f(x, y)
f(x, y) dx

dx

Fig. 14.2 Disintegration of f .x; y/ dx dy along the horizontal lines

θ = 0 θ ∈ Q, θ = p/q θ /∈ Q

C(x) = x C(x) = {Rnx | n = 1, . . . , q} C(x) = S(0, ‖x‖)
νx = δx νx = 1

q
q
n=1 δRnx νx = λS(0, x )

Fig. 14.3 Ergodic disintegration of the measure associated with a rotation R of angle 2�� on the
disk
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14.4 Exercises

14.4.1 Basic Exercises

Exercise 1 Let .X; T ; �/ be a Lebesgue space, and let � be a measurable partition.
Verify that for every measurable function f and almost all x 2 X, we have
E. f jb� /.x/ D R f d��.x/. Express the usual properties of the conditional expecta-
tion using the ��.x/.

Exercise 2 Let .X; T ; �/ be a Lebesgue space, let T W X ! X be a measurable map
that preserves�, and let � be a measurable partition that satisfies �.T.x// D T.�.x//
for almost all x. Show that for almost all x, we have T���.x/ D ��.T.x//.
Exercise 3 Give a Lebesgue space .X; T ; �/ and a measurable partition � such
that � is not atomic, while the ��.x/ are all atomic.

Exercise 4 Let .X; T ; �/ be a Lebesgue space, and let � be a measurable partition.
Verify that for almost all x, the spaces X and �.x/, endowed with the measure ��.x/
and the �-algebra of ��.x/-measurable sets, are Lebesgue spaces (with atoms).

Exercise 5 Let X be a metric space, and let�n and� be Borel probability measures.
We assume that for every open subset U � X, we have lim�n.U/ > �.U/.

• Show that for every closed subset F � X, we have lim�n.F/ 6 �.F/.
Hint: Consider the complement.

• Show that for every Borel set A such that �.@A/D0, we have lim�n.A/D�.A/.
Hint: Take F D A and U D ı

A.
• Show that for every bounded continuous function f , we have

R
f d�n !

R
f d�.

Hint: Approximate f with
P

k" 1f �1.Œk";.kC1/"//, where " has been chosen such
that �. f �1.Z"// D 0.

Exercise 6 Let X be a separable metric space, and let T W X ! X be a Borel
map. Show that every ergodic invariant finite measure is supported on an ergodic
component.
Hint: Note that x 7! R

f d�C.x/ is invariant under T.

Exercise 7 Let X be a metric space, let T W X ! X be a Borel map, and let � be
a T-invariant finite measure. Show that every T-invariant measurable set coincides,
almost everywhere, with a set that is a union of ergodic components.
Hint: Show that 1I.x/ � �x.I/ D 0 for �-almost all x if I is an invariant set.
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14.4.2 More Advanced Exercises

Exercise 8 Let X be a standard Borel space, let T W X ! X be a Borel map, and let�
be a T-invariant finite Borel measure. Show that for �-almost all x, the component
C.x/ is a standard Borel space.

Exercise 9 Let X be a standard Borel space, and let d be a metric on X that generates
the topology. Let BL.X/ be the set of bounded Lipschitz functions. Show that the
ergodic components coincide, up to a negligible set, with the partition

C0.x/ D fy 2 X j 8f 2 BL.X/; 1n Sn. f /.x/� 1
n Sn. f /.y/! 0g:

Exercise 10 Let X be a standard Borel space, and let T W X ! X be a Borel map.
Show that the set

˚
x 2 X j 1n

Pn
kD1 ıTkx converges weakly to a measure supported on C.x/

	

has full measure for every invariant finite Borel measure. Does it have full measure
for every invariant Borel measure? Can this set be empty?

Remark The points in this set are called generic points.

Exercise 11 Let .X; T ; �/ be a probability space, and let F W X ! Rn be an
integrable map. Show that

R
F d� is in the closure of the convex hull of F.X/.

Suppose that .X; T ; �/ is a Lebesgue space, and let T W X ! X be a measurable
map that preserves�. Show that every invariant finite measure can be approximated
with linear combinations of ergodic finite measures (Choquet theorem).

14.5 Comments

The construction of conditional measures ��.x/ is based on the Kolmogorov criterion. If X is
locally compact, we can also use the Riesz representation theorem and give a proof that does
not use a symbolic model; this is the approach followed in the book by H. Furstenberg [8].
When � is a product measure on a product space and � is the partition in horizontal or
vertical subspaces, the disintegration theorem reduces to the Fubini theorem. We therefore
recover the pathology associated with this type of situation. For example, the measurability
of a set A with respect to a probability measure � cannot be deduced from the measurability
of A with respect to all disintegrations ��.x/. A well-known counterexample was given by
W. Sierpinski in 1920: modulo the continuum hypothesis, Sierpinski constructed a subset
of Œ0; 1�� Œ0; 1� that intersects every line in at most two points, but whose outer measure, in
the sense of Lebesgue, is equal to 1.
The sets C.x/ are not in general Borel. If X is a compact metric space, or if X is a totally
bounded metric space and we require that the convergence in the definition of the C.x/
take place only for the uniformly continuous functions, then the C.x/ are Borel sets. The
partition C.x/ is even Borel when restricted to the set ˝ D fx j 8f ; 1n Sn. f /.x/ convergeg:
There exist Borel sets Bn such that for every x 2 ˝, the set C.x/ \ ˝ coincides with the
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intersection of all Bn and Bc
n that contain x. This follows from the existence of a countable

subset, dense for the uniform topology, in the set of uniformly continuous functions.
Is it customary to use the term “ergodic components” to denote the class mod 0 of the
partition fC.x/g constructed earlier, which means that the components depend on the chosen
measure �. In applications, it is sometimes preferable to have a Borel version of these
components that is independent of the measure. The version stated earlier was inspired by
the Hopf argument. We could also have taken

C.x/ D fy 2 X j 8f 2 Cb; 9ni such that 1
ni

Sni . f /.x/� 1
ni

Sni . f /.y/ ! 0g;

which allows the use of the L2 ergodic theorem rather than the almost everywhere ergodic
theorem. We could also have taken

C.x/ D fy 2 X j 8f 2 BL.X/; 1n Sn. f /.x/ � 1
n Sn. f /.y/ ! 0g;

where BL.X/ is the space of Lipschitz bounded functions, with respect to a distance
compatible with the topology on X. In this case, the components depend on the chosen
distance function. Another possibility is to take

C.x/ D fy 2 X j � . 1n
Pn

kD1 ıTk x;
1
n

Pn
kD1 ıTk y/ ! 0g;

where � is the Prokhorov distance function. In this case, all ergodic components are standard
Borel spaces.
There exist several approaches to the ergodic decomposition theorem. We can use the
abstract Choquet theorem: every point in a compact convex space contained in a locally
convex topological linear space is the barycenter of a measure supported on the extreme
points of the compact space. The ergodic decomposition is obtained by applying this result
to M1.X/. This does not provide an explicit description of the ergodic components.
Another approach, due to N. Krylov and N. Bogolyoubov, is based on the concept of generic
points. These points x 2 X are those for which 1

n

Pn
kD1 f .Tkx/ converges for every f 2

Cb.X/. When X is locally compact, the Riesz theorem allows us to associate with each
of these points a conditional measure �x, which in turn allows us to define the ergodic
component as the set of y such that �x D �y. This point of view is presented in the book by
M. Denker, C. Grillenberger, and K. Sigmund [5].
The ergodic decomposition theorem also holds for the actions of countable groups on
standard Borel spaces. This extension is due to V. S. Varadarajan (1963); a proof can be
found in the book by E. Glasner [10]. There also exist ergodic decomposition theorems for
quasi-invariant actions, or in the setting of infinite measures. For this, we refer the reader to
the book Cocycles on ergodic transformation groups by K. Schmidt.



Chapter 15
Measurable Partitions and � -Algebras

The title of Rokhlin’s paper [On the fundamental ideas of
measure theory] seems to suggest that measurable partitions are
the main object of measure theory. But probably this would
seem very doubtful to most analysts (“all my life I have worked
with the Lebesgue integral, and this is the first time I have heard
about measurable partitions”).

D.V. Anosov

15.1 Introduction

This chapter studies the notion of measurable partition in detail. As far as we know,
there exists no elementary treatise of this notion, and yet it plays an important role
in ergodic theory. We have seen it play a role in Chap. 14 when we studied the
decomposition of a transformation into ergodic components.

The notion of partition is intimately linked with the notions of an algebra of
measurable functions and of a �-algebra. In fact, with every partition we can
associate the algebra of measurable functions that are constant on each of the
elements of the partition. We can also associate with a partition the �-algebra
generated by the elements of the partition.

Consider a Lebesgue space .X; T ; �/. In this chapter, we will show that there is
a bijection between the sub-�-algebras of T and a certain type of partition of X
that was already used in the last chapter, namely measurable partitions. The
terminology is somewhat misleading. By a measurable partition, we do not mean
just a partition into measurable sets, but rather a partition that can be approximated
by finite partitions into measurable sets. The first task of this chapter will therefore
be to formalize this notion.

The elements of the functional space L0.X/ are equivalence classes of measurable
functions. In order to establish a correspondence between certain subspaces of Lp

and measurable partitions, we will need to identify the partitions that coincide
modulo a negligible set. Once again, we will need to explain what we mean by
this.

Modulo these identifications, we will be able to associate a unique measurable
partition with each �-algebra of T that contains all negligible sets. The �-algebra
will then be generated by the elements of this partition and the negligible sets.
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If we apply this correspondence to the �-algebra of sets invariant under a
transformation of X, we obtain the partition into ergodic components that was
studied in the last chapter. It is worth noting that we can define these ergodic
components without using the disintegration theorem.

In summary, the notion of measurable partition, introduced by V.A. Rokhlin in
the 1940s, allows us to give a concrete realization of the notion of a �-algebra. One
of its most salient applications can be found in entropy theory.

15.2 Measurable Partitions

Definition 15.1 Let .X; T ; �/ be a probability space. A partition � of X consists of
a set of mutually disjoint subsets of X that cover X. The element of the partition that
contains the point x 2 X is denoted by �.x/.

The partition is called measurable if there exists a countable family of measur-
able sets fBng, where each Bn is the union of elements of the partition, such that for
all distinct C1;C2 2 �, there exists n 2 N such that

C1 � Bn and C2 � Bc
n or C1 � Bc

n and C2 � Bn:

We say that the sets Bn separate the elements of the partition �. The elements
of a measurable partition are sometimes called the atoms of the partition. They are
measurable sets; it suffices to remark that the sets Bn from the definition of the
partition determine this partition fully: �.x/ DTBn3x Bn

T
Bc

n3x Bc
n.

Two partitions � and � coincide up to a negligible set, or modulo 0, if there exists
a measurable set ˝ � X that has negligible complement and satisfies �.x/ \ ˝ D
�.x/ \ ˝ for almost all x 2 X. From here on, we identify any two partitions that
are equal mod 0, and we also use the term measurable partition for a partition that
coincides mod 0 with a partition that is measurable in the sense of the definition
given above.

We will say that a sub-�-algebra A of T is complete if it contains the �-
measurable sets that are negligible with respect to the measure �. This is a relative
completion. Every sub-�-algebra A � T admits a unique completion A: this is the
�-algebra generated by A and the �-negligible sets. Equivalently, the completion
consists of the subsetseA 2 T for which there exist a set ˝ 2 T of full measure and
a set A 2 A satisfying eA \ ˝ D A \ ˝ . It also consists of the subsets eA 2 T for
which there exists A 2 A such that the symmetric difference ofeA and A is negligible,
that is, �.A	eA/ D 0.

We will associate a �-algebra with every partition, and vice versa.



15.4 The Partition Associated with a � -Algebra 157

15.3 The � -Algebra Associated with a Partition

With the partition �, we associate the completion of the �-algebra generated by the
measurable sets saturated by �:

b� D fA 2 T j A D [x2A�.x/g:

Note that a measurable function isb�-measurable if and only if it coincides almost
everywhere with a function that is constant on the atoms of the partition; it suffices
to approximate the function with linear combinations of characteristic functions to
see this.

The following lemma will allow us to define a bijection between the partitions
and �-algebras.

Lemma 15.1 Let .X; T ; �/ be a Lebesgue space, let � be a measurable partition
of X, and let Bn be the sets from its definition. Then the �-algebrab� is generated by
the Bn and the negligible sets.

Proof Let ' W X ! f0; 1gN be the function defined by '.x/ D f1Bn.x/g. Note that
the inverse image of a Borel set under ' is measurable. Moreover, the inverse image
of the �-algebra of '��-measurable sets is contained in the �-algebra generated by
the Bn and the negligible sets. We must therefore show that it contains the �-algebra
fA 2 T j A D Sx2A �.x/g.

Consider a set A 2 T ; we have the equality '�1'.A/ D [x2A�.x/. Consequently,
if A D [x2A�.x/, then '�1'.A/ D A. In the chapter on Lebesgue spaces, we saw
a measurability lemma that allows us to assert that '.A/ is '��-measurable, which
concludes the proof. ut

15.4 The Partition Associated with a � -Algebra

We will say that a complete �-algebra A � T is separable if it is the completion of
a �-algebra generated by a countable family of sets.

Lemma 15.2 Let .X; T ; �/ be a Lebesgue space. Every complete �-algebra A�T
is separable.

Proof The space L1.X; T ; �/ is separable. Moreover, every subset of a separable
metric space is separable. We refer to Chap. 18 for the proof of these classical
results. It follows that the set f1A j A 2 Ag is separable for the L1 norm. Let f1Ang
be a dense countable subset; let us show that the An generate A.

For every A 2 A, there exists a sequence nk such that the characteristic functions
1Ank

converge almost everywhere to 1A. The symmetric difference of A and lim Ank

therefore has measure 0. The set A is in the completion of the �-algebra generated
by the An. ut



158 15 Measurable Partitions and � -Algebras

Let A be a complete sub-�-algebra of T , and let fBngn2N be a countable set of
subsets such that A is generated by the Bn and the negligible sets. We associate
with A the partition �A whose atoms are given by the formula

�A.x/ D T

n2N
Bn3x

Bn
T

n2N
Bc

n3x

Bc
n:

This partition is measurable; the Bn indeed separate the elements of the partition.

Lemma 15.3 The definition of the partition �A does not depend on the choice of
the Bn.

Proof Let fBng be a family of subsets, and let hBni be the �-algebra they generated.
We have the equality

T

Bn3x
Bn

T

Bc
n3x

Bc
n D

T

A3x
A2hBni

A:

To see this, note that hBnix;y D fA 2 hBni j x 2 A $ y 2 Ag is a �-algebra that
contains the sets Bn if x 2 Bn $ y 2 Bn for all n.

Let Bn and B0
n be two countable families with completion A. For each n, there

exist sets A1n;A
2
n 2 hBni such that A1n � B0

n � A2n and �.A2n � A1n/ D 0. Likewise,
there exist sets A01

n ;A
02
n 2 hB0

ni such that A01
n � Bn � A02

n and �.A02
n � A01

n / D 0. The
partitions associated with the Bn and B0

n coincide on˝ D .[A2n�A1n/
c\.[A02

n �A01
n /

c.
ut

Proposition 15.1 Let .X; T ; �/ be a Lebesgue space. We have a bijection between
the measurable partitions of X and the complete sub-�-algebras of T . This bijection
is given by

� �!b�

�A  � A:

Proof We take a partition �, denote by Bn the sets from its definition, and associate
with it the �-algebrab� . By Lemma 15.1, this �-algebra is generated by the Bn and
the negligible sets. We can use these sets Bn to define the partition �b� , which shows

the equality �b� D �.

Let A be a complete �-algebra, and let fBng be a countable family of subsets that
generateA after completion. These sets Bn can be used to define the partition �A. By
Lemma 15.1, the partition c�A is generated by the Bn and the negligible sets, which
shows the equality c�A D A. ut
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15.5 Factors and Partitions

We introduce the notion of a factor and show that there exists a bijection between
the factors of a Lebesgue space and the measurable partitions of the space.

Definition 15.2 Let .X; T ; �/ be a Lebesgue space. A factor of .X; T ; �/ consists
of a Lebesgue space .Y;S; �/ and a measurable map ' W X ! Y satisfying '�� D �.

In Chap. 13, we saw that the map ' is almost surjective. We will call ' the
projection associated with the factor.

With every factor of .X; T ; �/, we can associate a partition of X using the formula

� D f'�1.fyg/ j y 2 Yg:

This partition is measurable; it suffices to take the Bn to be the inverse images of a
countable family of subsets of Y that separates the points. Conversely, with every
measurable partition of .X; T ; �/, we can associate a factor by taking the quotient
of X by the equivalence relation

x � y if and only if y 2 �.x/:

The quotient space is denoted by X=� and the canonical projection by � W X!X=�.
This space is endowed with the �-algebra ��T D fA � X=� j ��1A 2 T g and the
measure ���.

Lemma 15.4 The space .X=�; ��T ; ���/ is a Lebesgue space.

Proof It is immediate that ��T is complete with respect to ���. We denote by Bn

the sets from the definition of the partition �. The map ' W X ! f0; 1gN defined by
'.x/ D f1Bn.x/g passes to the quotient and gives an injective measurable map ' W
.X=�; ��T ; ���/! f0; 1gN. The measurability lemma shows that the images of the
elements of ��T are '��-measurable sets. The map ' is therefore an isomorphism:

' W .X=�; ��T ; ���/
��! �f0; 1gN;B.f0; 1gN/; '��

�
:

ut
We will call two factors isomorphic if there exists an isomorphism between the

factors that commutes with the two projections.
We consider a factor ' W .X; T ; �/ ! .Y;S; �/ and denote by � the associated

partition. Note that the map ' passes to the quotient and gives a measurable injection
from .X=�; ��T ; ���/ to .Y;S; �/. Since these two spaces are Lebesgue spaces, this
injection is an isomorphism.

It follows that there is a bijection between the factors and the measurable
partitions of Lebesgue spaces.
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15.6 � -Algebras and Algebras of Functions

Let .X; T ; �/ be a probability space; we denote by L0.X; T ; �/ the algebra of real-
valued measurable functions, and we endow it with the distance

d. f ; g/ D inf
">0

˚
"C ��fx 2 X j d. f .x/; g.x// > "g�	:

This makes L0 into a complete (but not locally convex) metric space. The conver-
gence associated with this distance is the convergence in probability.

Proposition 15.2 There exists a bijection between the complete sub-�-algebras
of T and the closed subalgebras of L0.X; T ; �/. This bijection is given by

A �! L0.X;A; �/

fA 2 T j 1A 2 A0g  � A0:

Proof The equality A D fA 2 T j 1A 2 L0.X;A; �/g is proved by approximating
the A-measurable functions with linear combinations of characteristic functions of
elements of A.

The equality A0 D L0.X; fA j 1A 2 A0g; �/ corresponds to showing that if
f 2 A0, then 1f �1.I/ 2 A0 for every open interval I � R. This is a consequence of
the following fact, left as an exercise: there exists a sequence of Pn defined on R
that converges simply to 1I . ut

15.7 The Rokhlin Correspondence

From the earlier lemmas, we deduce the following theorem.

Theorem 15.1 Let .X; T ; �/ be a Lebesgue space. There exist bijections between

• the measurable partitions of X;
• the complete sub-�-algebras of T ;
• the closed subalgebras of L0.X; T ; �/;
• the factors of .X; T ; �/, up to isomorphism.

Let us give two examples to illustrate this correspondence. The first concerns the
decomposition into ergodic components, while the second refers to the notion of a
generating partition.

We consider a Lebesgue space .X; T ; �/ and a measurable map T W X ! X that
preserves the measure �. We can consider the completion of the �-algebra of sets
invariant under the transformation T. With this �-algebra is associated a measurable
partition C of X into invariant sets. Its elements are the ergodic components of T.
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By the above, the partition C into ergodic components is uniquely determined by
the following two properties:

• All elements of the partition are invariant under T.
• Every invariant set is the union of elements of the partition.

These two properties hold up to negligible sets: two sets are considered to be equal
if their symmetric difference is negligible.

The space X=C is the set of ergodic components of T, while the associated
subalgebra of L0.X; T ; �/ consists of the measurable functions that are invariant
under the transformation T. The partition C of course coincides with the one
constructed in the last chapter. It is worth noting that we can define it without using
the disintegration theorem for measures. Nonetheless, this theorem gives ergodic
measures on each of the components, and this is what turns out to be useful in
practice.

Let us give a second illustration of the correspondence seen earlier by proving
the following proposition, which was used in Chap. 11.

Proposition 15.3 Let .X; T ; �/ be a Lebesgue space, and let T W X ! X be a
measurable map that preserves the measure �. A finite partition � is a one-sided
generator if and only if there exists a set X0 � X of full measure such that the map

X �! �N

x 7�! f�.Ti.x//gi2N
restricted to X0 is injective.

Proof We denote this map by ' W X ! �N, and view it as a factor, where the set �N is
endowed with the measure '��. With this factor is associated a measurable partition
��, given by

��.x/ D '�1.f'.x/g/ D T

k2N
.T�k�/.x/:

We order this family fT�kA j k 2 N; A 2 �g so as to obtain a sequence
of measurable sets fBngn2N, and note that the complement of an element of this
family can be written as a finite union of elements of this family. The partition �� is
associated with the Bn through the relation

��.x/ D T

k2N;A2�
x2T�kA

T�kA D T

Bn3x
Bn D T

Bn3x
Bn

T

Bc
n3x

Bc
n:

The �-algebra associated with the partition �� is the �-algebra generated by the Bn:

b�� D hBn j n 2 Ni D hT�kA j k 2 N; A 2 �i:
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The partition � is generating if this �-algebra equals T , or equivalently if and only if
the partition �� coincides, up to a negligible set, with the partition into singletons �T .
In other words, the partition � is generating if and only if there exists X0 � X with
�.Xc

0/ D 0 such that

8x 2 X0; ��.x/ \ X0 D �T .x/ \ X0 D fxg:

This condition is equivalent to the injectivity of the restriction of ' to X0:

8x 2 X0; '�1.f'.x/g/\ X0 D ��.x/\ X0 D fxg:

ut
15.8 Exercises

15.8.1 Basic Exercises

Exercise 1 Let .X; T ; �/ be a Lebesgue space, and let A be a closed subalgebra of
L0.X; T ; �/. Show that there exists a partition of X such that the functions of A are
exactly those that coincide almost everywhere with the functions that are constant
on each of the elements of the partition.

Exercise 2 Determine the measurable partitions associated with the closure of the
following subalgebras of L0.Œ�1; 1�;B.Œ�1; 1�/; �/:
• the algebra of even functions;
• the algebra generated by the polynomials of odd degree;
• the algebra generated by the function x 7! x.x � 1/.xC 1/.
Exercise 3 Let .X; T ; �/ be a Lebesgue space, and let f W X ! R be a measurable
function. Let A be the closed subalgebra of L0 generated by f .

• Show that the partition of X given by the level sets of f , that is, �.x/ D
f �1.f f .x/g/, is measurable.

• Show that this partition is the one associated with the subalgebra A.
• This result is well known to probabilists. In what type of problems is it used?

Exercise 4 Consider the map on the torus .R=Z/2 defined by T.x; y/ D .xC y; y/.
This map preserves the Lebesgue measure. Explicitly give the partition of T into
ergodic components with respect to this measure.

The map T also preserves the Dirac measure at the origin .0; 0/. Explicitly give
the ergodic components of T with respect to this measure.
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15.8.2 More Advanced Exercises

Exercise 5 Let ˛ be an irrational real number. We take R=Z endowed with the
Lebesgue measure, and consider the map T W R=Z! R=Z given by T.x/ D xC ˛.
Show that the partition whose elements are the orbits of the map T is not measurable.

Exercise 6 Let .X; T ; �/ be a Lebesgue space. We say that a measurable parti-
tion �1 of X is finer than a partition �2 if there exists a set ˝ � X with negligible
complement such that �1.x/\˝ � �2.x/\˝ for almost all x 2 X.

Let � be an arbitrary partition of X. Show that there exists a measurable partition �
of X such that every measurable function that is constant on the elements of �
coincides almost everywhere with a function that is constant on the elements of � .
Show that among these measurable partitions �, there exists one that is finer than
the others.

Exercise 7 Let .X; T ; �/ be a Lebesgue space, and let � be a countable group
of measurable transformations of X, all invertible with measurable inverse and
preserving �. A set is called invariant under � if it is invariant under all transfor-
mations in the group. Show that there exists a measurable partition of X consisting
of invariant sets, such that every invariant measurable set is the union of elements
of this partition.

Exercise 8 Let .X; T ; �/ be a Lebesgue space, and let T W X ! X be a measurable
map that preserves the measure �. Denote by �C.x/ the measures obtained by the
disintegration of � into ergodic components along the partition C, and by � W X !
X=C the canonical projection. Show that the following formula holds:

h�.T/ D
Z

X
h�C.x/ .T/ d�.x/ D

Z

X=C
h�C .T/ d���.C/:
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Chapter 16
Weak Convergence

The study of various topologies and the relations among them is,
despite its current popularity in the theory of topological linear
spaces, a pretty dull business.

P.R. Halmos (1916–2006)

16.1 Convergence in a Hilbert Space

A Hilbert space H is a vector space endowed with an inner product such that the
norm associated with the inner product is complete. We use the notation h ; i for the
inner product, and k fk Dph f ; f i for the norm.

We can endow H with two topologies:

• the strong topology: a sequence fn of elements of H converges strongly to f 2 H
if k fn � fk �����!

n!1 0;

• the weak topology: a sequence fn of elements of H converges weakly to f 2 H if
h fn; gi �����!n!1 h f ; gi for all g 2 H.

Theorem 16.1 Every strongly convergent sequence is weakly convergent.

This is a consequence of the following inequality.

Cauchy-Schwarz Inequality For all f ; g 2 H, we have jh f ; gij 6 k fk�kgk.
Proof This is a consequence of the Pythagorean theorem:

k fk2 D
�
�
�
D

f ;
g

kgk
E g

kgk
�
�
�
2 C

�
�
� f �

D
f ;

g

kgk
E g

kgk
�
�
�
2

:

f

gf , g g

g 2

f − f , g g

g 2

We have equality if and only if f is proportional to g. ut
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168 16 Weak Convergence

Theorem 16.2 Every weakly convergent sequence is bounded.

Proof It suffices to show that there exist g 2 H and " > 0 such that

supfh fn; hi j n 2 N; h 2 B.g; "/g <1;

because then the following equality shows that k fnk is bounded independently of n:

k fnk D 1

"

�h fn; gC "fn=k fnki � h fn; gi
�
:

Suppose that we cannot find g and " as above. We construct, by induction, an
increasing sequence of integers nk and a nested decreasing sequence of closed
balls Bk whose diameters tend to 0, such that for all h 2 Bk, we have h fnk ; hi > 2k.

Let g1 be the unique common point of all Bk. We then have the inequality
h fnk ; g1i > 2k that contradicts the weak convergence of the sequence fn. ut

Weak convergence corresponds to “coordinatewise” convergence.

Proposition 16.1 Let D be a set of elements of H that generates a dense linear
subspace of H; to show that fn converges weakly to f , it suffices to verify the
convergence h fn; gi �����!n!1 h f ; gi for g 2 D.

Proof Let " > 0, and let g 2 H and gk 2 Vect.D/ be such that kgk � gk �����!
n!1 0.

We have the inequality

jh fn � f ; gij 6 jh fn � f ; gkij C k fn � fk�kgk � gk:

Since the sequence k fn � fk is bounded, we can find k 2 N such that the last term
of this inequality is less than " for all n. For this value of k, the sequence h fn� f ; gki
tends to 0; we can therefore bound jh fn � f ; gij from above by 2 " for n sufficiently
large. ut

Here are two other results on the weak topology.

16.2 Weak Sequential Compactness

Theorem 16.3 (Banach–Alaoglu) Let H be a Hilbert space, and consider a
bounded sequence ffngn2N of elements of H. Then we can find f 2 H and a
subsequence fn1 ; : : : ; fnk ; : : : such that

fnk �! f weakly when k �! C1:
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Proof Let F be the closed linear subspace generated by the fn, and let fvmg be a
Hilbert basis for F. Such a basis can be obtained by applying the Gram–Schmidt
orthonormalization process to the fi. Since hv1; fni is a bounded sequence, we can
find a subsequence fn0

i
such that hv1; fn0

i
i converges. From this subsequence, we can

extract a subsequence such that hv2; fn00

i
i converges, and so on. By taking the kth

term of the kth subsequence, we construct a sequence fnk such that for all m 2 N,
the sequence hvm; fnki converges. We denote its limit by cm. Let N 2 N; we have

k fnkk2 >
NX

mD0
jhvm; fnk ij2 �����!k!1

NX

mD0
jcmj2:

Since the sequence k fnkk is bounded, this last quantity converges, and we obtain
a well-defined element of H by setting f D P

civi. For all m 2 N, this element
satisfies hvm; fnk i �����!k!1 hvm; f i. We therefore have hh; fnki ! hh; f i if h 2 F. If

h 2 F?, then hh; fnki D 0 and hh; f i D 0. This proves the theorem. ut

16.3 Convex Closed Subsets

Theorem 16.4 (Banach–Saks) Let H be a Hilbert space. Consider elements f and
ffngn2N of H such that the sequence fn converges weakly to f . Then there exists a
subsequence fn1 ; : : : ; fnk ; : : : such that

1

m

mX

kD1
fnk �����!m!1 f strongly.

Proof We may assume f D 0. Let us construct a subsequence fnk satisfying

X

i<j

jh fni ; fnjij < C1:

We suppose that we have constructed fn1 ; : : : ; fnk such that if i < j, we have
jh fni ; fnjij < 1=2j.

For all i 6 k, we know that h fni ; fni �����!n!1 0. We can therefore find nkC1 such

that for all i 6 k, we have jh fni ; fnkC1
ij < 1=2kC1, which gives

X

i<j

jh fni ; fnjij <
X j

2j
6 2:
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We can now give an upper bound for the average along the sequence nk:

�
�
�
1

m

mX

kD1
fnk

�
�
�
2 D 1

m2

mX

kD1
kfnkk2 C

2

m2

X

16i<j6m

h fni ; fnji

6 1

m
sup kfnkk2 C

4

m2
:

This quantity indeed tends to 0. ut
Remarks

• It follows that every strongly closed convex set is weakly closed.
• Let .X; T ; �/ be a measure space. Every L2 sequence that converges in L2 norm

admits a subsequence that converges almost everywhere. If H is of the form
L2.X/, we can therefore find mi such that

1

mi

miX

kD1
fnk ����!i!1 f almost everywhere.



Chapter 17
Conditional Expectation

Probability theory is measure theory with a soul.

M. Kac (1914–1984)

17.1 Definition of the Conditional Expectation

This appendix recalls a number of results on the notion of conditional expectation.
Let .X; T ; �/ be a measure space, with � a finite measure, and let A be a �-algebra
contained in T . With every function f 2 L1.X; T ; �/, we can associate a signed
measure on the �-algebra A using the formula

�f .A/ D
Z

A
f d�:

The conditional expectation of f with respect to the �-algebra A is equal to the
Radon–Nikodym derivative of �f jA with respect to �jA. This derivative is denoted

by E. f j A/; it is the unique function in L1.X;A; �/ that satisfies, for all A 2 A,

�f .A/ D
Z

A
E. f j A/ d�:

In other words, the function E. f j A/ is uniquely determined by the following two
relations:

E. f j A/ 2 L1.X;A; �/;

8A 2 A;
Z

A
E. f j A/ d� D

Z

A
f d�:

When the function f is square integrable, its conditional expectation is also square
integrable. The operator f 7! E. f j A/ then identifies with the orthogonal projection
of f 2 L2.X; T ; �/ onto the subspace L2.X;A; �/. We could have defined the
conditional expectation of L2 functions using this projection, and then extended the
definition to all integrable functions using a density argument.
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172 17 Conditional Expectation

17.2 Properties of the Conditional Expectation

Let us give a few properties of the conditional expectation. They follow from the
previous description, and are left as an exercise.

• For all f1; f2 2 L1.X; T ; �/ such that f1 6 f2,

E. f1 j A/ 6 E. f2 j A/:

• For all f 2 L1.X; T ; �/,

jE. f j A/j 6 E.j f j j A/:

• Let f 2 L1.X; T ; �/, and let g 2 L1.X;A; �/; we have the equality

E. fg j A/ D g E. f j A/:

• Let A0 � A be a sub-�-algebra; we have the equality

E.E. f j A/ j A0/ D E. f j A0/:

• Let T W X ! X be a measurable map that preserves the measure �; we have

E. f j A/ ı T D E. f ı T j T�1A/:

17.3 The Martingale Convergence Theorem in L2

The conditional expectation is a continuous operator with respect to the first
argument: if fn is a sequence of integrable functions that converges in L1 norm to
a function f , then the conditional expectations of the fn converge to that of f . We
will prove a continuity property with respect to the second argument: if An is an
increasing sequence of �-algebras, then the expectation of a function f with respect
to these �-algebras converges to the expectation of f with respect to the �-algebra
generated by all the An.

We begin by stating an abstract convergence result in Hilbert spaces.

Proposition 17.1 Let H be a Hilbert space, and let Ei be a nested increasing
sequence of closed linear subspaces of H: Ei � Ej if i < j. We denote by E1
the closure of the union of the Ei for i 2 N. The orthogonal projections onto the Ei

are denoted by �i. Then, for all v 2 H, we have the convergence in norm

�iv ����!i!1 �1v:
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Proof Our proof is based on the weak compactness of the unit ball in a Hilbert
space. The sequence �nv is bounded by kvk; we will show that it converges weakly.
Consider an accumulation point v1 of �nv; let us show that it equals the orthogonal
projection of v on E1.

All �nv are in E1; the same holds for their limit v1. Next, the terms of the
sequence v � �nv are orthogonal to Ei for n greater than i. The limit v � v1 is
orthogonal to Ei for all i; it therefore belongs to the orthogonal complement of E1:

v1 2 E1; v � v1 2 E?1:

These properties determine the projection of v on E1. We have shown that �1v is
the only accumulation point of the sequence�nv; the sequence�nv��1v converges
weakly to 0. In particular, this implies

h�1v � �nv; vi �����!n!1 0:

This quantity equals the square of the norm that we wish to bound from above:

k�1v � �nvk2 D h.�1 � �n/
�.�1 � �n/ v; vi

D h.�1 � �n/
2 v; vi

D h.�1 � �n/ v; vi:

This norm converges to 0, and the theorem is proved. ut
Let us now turn to the martingale convergence theorem in L2.

Theorem 17.1 Let .X; T ; �/ be a probability space, and let Ai be a nested
increasing sequence of �-algebras contained in T : Ai � Aj if i < j. We denote
by A the �-algebra generated by the Ai. Then for all f 2 L2.X; T ; �/, we have the
convergence in L2 norm

E. f j An/ �����!n!1 E. f j A/:

Proof To alleviate the notation, we suppose A D T ; the general case can be
deduced from this one by replacing f by E. f j A/. The conditional expectation
of f with respect to the �-algebra An is the orthogonal projection of f on L2.X;An/.
We denote by �1 the limit of these projections. We need to show that this limit
equals the identity. Since measurable simple functions are dense in the L2 functions,
it suffices to verify that the following collection of sets coincides with A:

A0 D fA 2 A j �11A D 1Ag:

This class contains the union of the Ai, which is an algebra of subsets of X.
Let us verify that A0 is a monotone class. It is indeed invariant under taking the
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complement; let us show that it is invariant under taking an increasing countable
union. Let An be an increasing sequence of elements of A0; the sequence 1An

converges to 1[An in L2 norm, by the dominated convergence theorem. It follows
that

�1
�
1[An

� D lim
n!1�1

�
1An

� D lim
n!1 1An D 1[An :

By the monotone class theorem, A0 contains the �-algebra generated by the An. It
coincides with A, and the projection �1 equals the identity, as desired. ut

To illustrate this theorem, we take a probability space .X; T ; �/ and consider the
product .XN; T ˝N; �˝N/. Let pn W XN ! Xn be the projection onto the first n
coordinates, and set An D p�1

n .T ˝n/. The �-algebras An generate T ˝N, by
definition of the tensor product. Therefore, for all f 2 L2.XN/, we have

E. f j An/ �! f :

The function f is thus approximated explicitly in L2 norm by functions that depend
on only a finite number of coordinates. This result also holds for any integrable
function f , because the space L2 \ L1 is dense in L1.

Finally, note that the convergence in the martingale convergence theorem also
holds almost everywhere. A proof of this can be found in the second chapter of
Parry’s book [18].



Chapter 18
Topology and Measures

We think in generalities, but we live in details.

A.N. Whitehead (1861–1947)

18.1 Separability

Definition 18.1 A metric space X is separable if it contains a dense countable
subset. A topological space is said to have a countable base if there exists a
countable collection of open sets such that every open set can be written as a union
of elements of this collection.

Note that in this case, every open set can be written as a countable union of
elements of the base, more specifically, as the union of all elements of the base that
it contains.

Proposition 18.1 A metric space is separable if and only if it has a countable base.

This implies that every subset of a separable metric space X is separable. Indeed,
such a subset admits a countable base of open sets, which is obtained by restricting
the base of X to the subset.

Proof If X has a countable base, it suffices to take a point in each element of the
base. The resulting set meets all open sets and is therefore dense.

Suppose that X is separable; let D be a dense countable subset. Let us show that
the set fB.y; r/ j y 2 D; r 2 Qg is a base of open sets. Let U be an open set, and let
x 2 U. We can find a point y 2 D such that d.y; x/ < d.y;Uc/. Let r 2 Q be such
that d.y; x/ < r < d.y;Uc/. The relation x 2 B.y; r/ � U shows that U is indeed a
union of open balls with rational radius and center in D. ut

18.2 The Support of a Measure

Definition 18.2 Let X be a metric space, and let � be a Borel measure. A point
x 2 X belongs to the support of the measure � if every neighborhood of x has
positive measure. The support is denoted by supp�.

© Springer-Verlag London 2016
Y. Coudène, Ergodic Theory and Dynamical Systems, Universitext,
DOI 10.1007/978-1-4471-7287-1_18

175



176 18 Topology and Measures

Let us give a few properties of the support.

Proposition 18.2

• The support is a closed set.
• If X is separable, then �

�
.supp�/c

� D 0.
• Let A � X be such that �.Ac/ D 0. Then supp� � A.
• If the measure � is finite, then its support is separable: there exists a countable

subset of the support that is dense in the support.

Proof We have the equality

.supp�/c D S

U open
�.U/D0

U:

The union can be restricted to a base of open sets; this proves the first two points. Let
x 2 supp�, and let U be an open set containing x. Since �.U/ > 0 and �.Ac/ D 0,
we have �.U \ A/ > 0. The open set U meets A, which shows that x 2 A; that is,
supp� � A.

For every k; n 2 N�, we consider the sets A satisfying the following two
conditions:

• For all x; y 2 A, the inequality x ¤ y implies d.x; y/ > 2=k.
• For all x 2 A, we have �

�
B.x; 1=k/

�
> 1=n.

These sets have finite cardinal, bounded from above by n�.X/. For each k and n, we
choose such a set Ak;n of maximal cardinality. The union of these sets, for k; n 2 N�,
forms a dense countable subset of the support of �.

Indeed, if x 2 supp� and k > 0, there exists n 2 N� such that �
�
B.x; 1=k/

�
>

1=n. Because Ak;n is maximal, we have d.x; y/ < 2=k for some y 2 Ak;n; hence
x 2 Ak;n. ut

18.3 Density in the Lp Spaces

Let X be a topological space. We denote its Borel �-algebra by B.X/. Let � be
a Borel measure defined on X. The completion of B.X/ with respect to � will be
denoted by B.X/; its elements are the �-measurable sets:

B.X/ D fA � X j 9B;C 2 B.X/ such that B � A � C and �.C X B/ D 0g:

We can show that the Lipschitz functions are dense in the Lp spaces. The proof uses
the regularity properties of the measure.
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Proposition 18.3 (Outer Regularity) Let X be a metric space, let � be a finite
Borel measure, and let A � X be a �-measurable set. Then for every " > 0, there
exists an open set U containing A such that �.U X A/ < ".

We say that the measure is outer regular. This implies that every �-measurable
set can be written as .\Ui/X N, where Ui is a sequence of open subsets of X and N
is a negligible set.

Proof Set

T D
n
A measurable

ˇ
ˇ
ˇ
8" > 0; 9U open such thatA � U and �.U X A/ < "
8" > 0; 9V open such that Ac � V and �.V X Ac/ < "

o
:

The open sets are in T : the complement of any open set U can be written as an
intersection of open sets Vn D fx 2 X j d.x;Uc/ < 1=ng, so the measure of
the Vn tends to that of Uc. The negligible sets are also in T . It now suffices to
show that T is a �-algebra. The invariance under taking the complement is clear.
Let Ai be measurable sets in T , and let Ui be open sets such that Ai � Ui and
�.Ui X Ai/ < "=2i. The union of the Ui is indeed an approximation of the union of
the Ai:

S
Ai �

[
Ui; �.

S
Ui X

[
Ai/ 6

X
�.Ui X Ai/ < ":

For the complements, there exists n such that �
�Tn

1 Ai XT1
1 Ai

�
<"=2, and we use

the inclusion

nT

1

Vi X
n\

1

Ac
i �

nS

1

.Vi X Ac
i /:

ut
Theorem 18.1 (Density in the Lp Spaces) Let X be a metric space, let � be a
finite Borel measure, and let 1 6 p < 1. Then every function f 2 Lp.X; �/ can be
approximated, in Lp norm, by a sequence of bounded Lipschitz functions belonging
to Lp.

Proof Since the functions that are linear combinations of characteristic functions
are dense in the Lp spaces, we can restrict ourselves to the case where f is a
characteristic function: f D 1A. Let U be an open set containing A such that
�.U X A/ < ". We have

k1U � 1Akp D �.U X A/1=p < "1=p:

It now suffices to approximate 1U by a sequence of bounded Lipschitz functions.
Set fk D min.1; kd.x;Uc//. These functions are Lipschitz:

8x; y 2 X; j fk.x/� fk.y/j 6 k d.x; y/:
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The sequence fk converges pointwise to 1U, and the functions j1U� fkj are uniformly
bounded from above by 1. This ensures the convergence of the fk to 1U in Lp norm.

ut
Remark This theorem also holds if X is a separable metric space and � is locally
finite.

18.4 Inner Regularity

Let us now study a property that is stronger than outer regularity.

Definition 18.3 A Borel measure � defined on X is said to be inner regular if for
every Borel subset A � X of finite measure and every " > 0, there exists a compact
subset K � A such that �.A X K/ < ".

This property is satisfied whenever the underlying space is a complete separable
metric space.

Theorem 18.2 (Oxtoby–Ulam) A finite Borel measure defined on a complete
separable metric space is inner regular.

Proof Let fxig be a dense sequence in X, and let n 2 N�. The family of closed balls
B.xi; 1=n/ for i 2 N covers X, so that there exists N 2 N, depending on n, such that

�
�

X X
NS

iD0
B.xi; 1=n/

�
< "=2n:

Set

K0 D T

n2N�

NS

iD0
B.xi; 1=n/:

This set is closed and totally bounded; it is therefore compact. We moreover have
the inequality �.K0c/ < ". Let A � X be a Borel set. By the outer regularity, there
exists a closed subset F � A such that �.AXF/ < ". Set K D K0 \F � A. This set
is compact, and �.A X K/ < 2". The theorem has been proved. ut

We conclude with a result due to Lusin, which shows that a measurable function
is continuous on a set with small complement. When the measure is inner regular,
this set can be taken to be compact.

Theorem 18.3 (Lusin) Let X be a Hausdorff topological space, let � be an inner
regular finite measure, and let Y be a separable metric space. Let f W X ! Y be a
measurable function (that is, the inverse image of any Borel set is �-measurable).
Then for every �-measurable A � X and every " > 0, there exists a compact subset
K�A such that �.A X K/ < " and fjK is continuous.
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Proof Fix n 2 N�. Let Ei be a disjoint countable family of Borel sets with diameter
less than 2=n that covers Y. We can construct the Ei by induction from a dense
sequence fyigi2N� in Y by setting Ei D B.yi; 1=n/XTj<i Ej:

By regularity, for every i, there exist a Borel set A0
i and a compact set Ki such that

Ki � A0
i � A \ f �1.Ei/; �

�
A \ f �1.Ei/ X Ki

�
< "=2iCn:

We then have �.AX[Ki/ < "=2
n, so that there exists N 2 N, depending on n, such

that

�
�

A X
NS

iD0
Ki

�
< "=2n:

We define a function fn on K0
n D [N

0 Ki by setting fn.x/ D yi for every x 2 Ki.
The compact sets Ki are disjoint; hence the function fn is continuous. It moreover
satisfies d. fn.x/; f .x// < 1=n on K0

n. The sequence fn converges uniformly to f on
\nK0

n, which shows that f is continuous on this compact set. This concludes the
proof. ut

18.5 Exercises

Exercise 1 Give an example of a locally compact metric space that is not separable.

Exercise 2 Let X be a separable metric space. Show that there exists a countable
base of open sets D that is invariant under taking finite unions:

8n 2 N; 8U1; : : : ;Un 2 D;
S

Ui 2 D:

Hint: Take the family of open sets that are finite unions of sets belonging to a given
countable base of open sets.

Exercise 3 Let X be a separable metric space. Show that there exists a sequence of
continuous functions fn W X ! R that separates points: for all distinct x; y 2 X, there
exists n such that fn.x/ ¤ fn.y/. Deduce that there exists a continuous injection from
X to RN.

Exercise 4 Give an explicit sequence of compact sets Kn � Œ0; 1� X Q such that
�.Kn/ tends to 1 when n tends to C1.

Exercise 5 Let X be a Hausdorff topological space, endowed with a finite Borel
measure. We say that the measure � is tight if there exists a sequence of compact
subsets Ki such that �

�
X XSi2N Ki

� D 0. Show the equivalence of the following
properties:

• The measure � is tight.
• The measure � is inner regular.
• For every Borel subset A � X, the measure � restricted to A is tight.
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Exercise 6 Show that every metric space endowed with an inner regular Borel
probability measure is almost separable, that is, it admits a separable subset of full
measure.
Hint: A totally bounded metric space is separable.

Exercise 7 Show that RN is not �-compact, but is tight, with respect to every finite
Borel measure.
Hint: Use the inner regularity of the measure.

Exercise 8 Show that the Oxtoby–Ulam theorem also holds if instead of assuming
that the measure is finite, we assume that it is �-finite, that is, that there exists a
sequence of Borel sets Bi of finite measure such that X D Si2N Bi.

Exercise 9 A �-algebra T is said to be complete if it has the following property:
for every B 2 T such that �.B/ D 0 and every A � B, the set A belongs to T . Let X
be a topological space. Show that B.X/ is complete.

Exercise 10 Let .X; T ; �/ be a measure space with T complete, let Y be a
topological space, and let f W X ! Y be a function such that the inverse image
of every Borel set is in T . Show that the inverse image of every f��-measurable set
is in T .

Let X and Y be two topological spaces, let � and � be Borel measures on X and Y,
respectively, and let ' W X ! Y be a Borel map such that '�� D �. Show that ' is
measurable: the inverse image of a �-measurable set is �-measurable.

Exercise 11 Let ' W Œ0; 1�! Œ0; 1� be a measurable map in the following sense: the
inverse image of a Borel set is Lebesgue-measurable. Show that there exists a Borel
subset X0 � Œ0; 1� with Lebesgue-negligible complement such that '.X0/ is Borel
and ' W X0 ! '.X0/ is Borel.
Hint: Use Lusin’s theorem.



Notation

The sets of natural numbers (including 0), integers, rational numbers,

real numbers, and complex numbers are denoted respectively by N;Z;Q;R;C.

1A Characteristic function of A

B 3 x B contains x

B.x; r/ Open ball with center x and radius r

BL.X/ Space of bounded Lipschitz functions

Cb.B;B/ Space of bounded continuous maps

Cb.X/ Space of bounded continuous functions

	 Symmetric difference

rV Gradient of the function V

h� Entropy of the measure �

H Upper half-plane

H.�/ Entropy of the partition �

K Compact set or Lipschitz constant

Lp Space of classes of pth-power summable functions

lim Upper limit

M Riemann manifold

M1.X/ Space of invariant probability measures

� Measure

N� Positive integers: f1; 2; 3; 4; : : :g
!.x/ !-limit set

˝ Nonwandering set

¿ Empty set

't Flow

a.e. Almost everywhere

� Symbol indicating the end of a proof

PSL2.R/ Matrices with determinant ˙1
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182 Notation

supp� Support of �

S1 Unit circle

Sn. f / Birkhoff sum of f

T � -algebra

Tn Torus of dimension n

U� Adjoint of U

_ Generated partition

Wss Stable manifold

Wsu Unstable manifold

^ Exterior product

X Set

Xi Random variable

� Partition
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conditional, 102
of a Bernoulli shift, 118
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