
Advances in Industrial Control 

Springer-Verlag London Ltd. 



Other titles published in this Series: 

Modelling and Identification in Robotics 
KrzysztofKozlowski 

Spacecraft Navigation and Guidance 
Maxwell Noton 

Robust Estimation and Failure Detection 
Rami Mangoubi 

Adaptive Internal Model Control 
Aniruddha Datta 

Price-Based Commitment Decisions in the Electricity Market 
Eric Allen and Marija Ilic . 

Compressor Surge and Rotating Stall: Modeling and Control 
Jan Tommy Gravdahl and Olav Egeland 

Radiotheraphy Treatment Planning: New System Approaches 
Olivier Haas 

Feedback Control Theory for Dynamic Traffic Assignment 
Pushkin Kachroo and Kaan Ozbay 

Control and Instrumentation for Wastewater Treatment Plants 
Reza Katebi, Michael A. Johnson & Jacqueline Wilkie 

Autotuning ofPID Controllers 
Cheng-Ching Yu 

Robust Aeroservoelastic Stability Analysis 
Rick Lind & Marty Brenner 

Performance Assessment of Control Loops:Theory and Applications 
Biao Huang & Sirish L. Shah 

Data Mining and Knowledge Discovery for Process Monitoring and Control 
XueZ. Wang 

Advances in PID Control 
Tan Kok Kiong, Wang Quing-Guo & Hang Chang Chieh with Tore J. Hiigglund 

Advanced Control with Recurrent High-order Neural Networks: Theory and 
Industrial Applications 
George A. Rovithakis & Manolis A. Christodoulou 

Structure and Synthesis ofPID Controllers 
Aniruddha Datta, Ming-Tzu Ho and Shankar P. Bhattacharyya 

Data-driven Techniques for Fault Detection and Diagnosis in Chemical Processes 
Evan L. Russell, Leo H. Chiang and Richard D. Braatz 

Bounded Dynamic Stochastic Systems: Modelling and Control 
Hong Wang 



Andrew P. Featherstone, Jeremy G. VanAntwerp 
and Richard D. Braatz 

Identification 
and Control of Sheet 
and Film Processes 

With 63 Figures 

, Springer 



Andrew P. Featherstone, BS, MS, PhD 
International Paper Company, Hwy. 3 North, Redwood, MS 39156, USA 

Jeremy G. VanAntwerp, BS, MS, PhD 
Engineering Department, Calvin College, 3201 Burton Street SE, Grand Rapids, 
Michigan 49546, USA 

Richard D. Braatz, BS, MS, PhD 
Department of Chemical Engineering, University of Illinois at Urbana-Champaign, 
600 S. Mathews Avenue, Box C-3, Urbana, IL 61801, USA 

ISBN 978-1-4471-1134-4 

British Library Cataloguing in Publication Data 
Featherstone, Andrew P. 

Identification and control of sheet and film processes. -
(Advances in industrial control) 
l.Process control2.Coatings 
I.Title II. Van Antwerp, Jeremy G. III.Braatz, Richard D. 
670.4'27 
ISBN 978-1-4471-1134-4 

Library of Congress Cataloging-in-Publication Data 
Featherstone, Andrew P., 1971-

Identification and control of sheet and film processes / Andrew P. Featherstone, Jeremy 
G. VanAntwerp, and Richard D. Braatz. 

P. cm. -- (Advances in industrial control) 
Includes bibliographical references and index. 
ISBN 978-1-4471-1134-4 ISBN 978-1-4471-0413-1 (eBook) 

DOI 10.1007/978-1-4471-0413-1 
1. Process controL 2. Extrusion process. 3. Plastics--Extrusion. 4. Paper coatings. I. 

VanAntwerp, JeremyG., 1971- II. Braatz D.,1966- III. Title. N. Series. 
TSIS6.8 F42 2000 
670.42'7--dc21 00-32974 

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as 
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced. 
stored or transmitted, in any form or by any means, with the prior permission in writing of the 
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued 
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be 
sent to the publishers. 
© Springer-Verlag London 2000 
Originally published by Springer-Verlag London Limited in 2000 
Softcover reprint ofthe hardcover lst edition 

MATLAB® is the registered trademark ofThe MathWorks Inc., 
http://www.mathworks.com 

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a 
specific statement, that such names are exempt from the relevant laws and regulations and therefore 
free for general use. 

The publisher makes no representation, express or implied, with regard to the accuracy of the 
information contained in this book and cannot accept any legal responsibility or liability for any errors 
or omissions that may be made. 

Typesetting: Camera ready by authors 
69/3830-543210 Printed on acid-free paper SPIN 10763838 



Advances in Industrial Control 

Series Editors 

Professor Michael J. Grimble, Professor ofIndustrial Systems and Director 
Professor Michael A. Johnson, Professor of Control Systems and Deputy Director 

Industrial Control Centre 
Department of Electronic and Electrical Engineering 
University of Strathdyde 
Graham Hills Building 
50 George Street 
Glasgow Gil QE 
United Kingdom 

Series Advisory Board 

Professor Dr-Ing J. Ackermann 
DLR Institut fur Robotik und Systemdynamik 
Postfach 1116 
D82230 WeBling 
Germany 

Professor LD. Landau 
Laboratoire d'Automatique de Grenoble 
ENSIEG, BP 46 
38402 Saint Martin d'Heres 
France 

Dr D.C. McFarlane 
Department of Engineering 
University of Cambridge 
Cambridge CB2 1 QJ 
United Kingdom 

Professor B. Wittenmark 
Department of Automatic Control 
Lund Institute of Technology 
PO Box 118 
S-221 00 Lund 
Sweden 

Professor D.W. Clarke 
Department of Engineering Science 
University of Oxford 
Parks Road 
Oxford OXl 3PJ 
United Kingdom 



Professor Dr -Ing M. Thoma 
Institut fUr Regelungstechnik 
Universitat Hannover 
Appelstr. 11 
30167 Hannover 
Germany 

Professor H. Kimura 
Department of Mathematical Engineering and Information Physics 
Faculty of Engineering 
The University ofTokyo 
7-3-1 Hongo 
BunkyoKu 
Tokyo 113 
Japan 

Professor A.J. Laub 
College of Engineering - Dean's Office 
University of California 
One Shields Avenue 
Davis 
California 95616-5294 
United States of America 

Professor J.B. Moore 
Department of Systems Engineering 
The Australian National University 
Research School of Physical Sciences 
GPO Box 4 
Canberra 
ACT 2601 
Australia 

Dr M.K. Masten 
Texas Instruments 
2309 Northcrest 
Plano 
TX 75075 
United States of America 

Professor Ton Backx 
AspenTech Europe B.V. 
DeWaal32 
NL-5684 PH Best 
The Netherlands 



SERIES EDITORS' FOREWORD 

The series Advances in Industrial Control aims to report and encourage 
technology transfer in control engineering. The rapid development of control 
technology has an impact on all areas of the control discipline. New theory. new 
controllers. actuators. sensors. new industrial processes. computer methods. 
new applications. new philosophies.... new challenges. Much of this 
development work resides in industrial reports. feasibility study papers and the 
reports of advanced collaborative projects. The series offers an opportunity for 
researchers to present an extended exposition of such new work in all aspects of 
industrial control for wider and rapid dissemination. 

The economic importance of sheet and fIlm processes in commercial and 
industrial activities is probably not very widely appreciated. Even a short list of 
the materials that are produced in sheet or fIlm form will include paper. card. 
polymers. glass. steel and aluminium. The list of products utilising these sheet 
and fIlm items becomes very long. very quickly. It is therefore surprising that 
there appears to be such a small number of books or monographs devoted to the 
identification. modelling. simulation and control of these important processes. 
In this timely monograph by Andrew Featherstone. Jeremy VanAntwerp and 
Richard Braatz. a reference list spanning 375 entries shows no similar 
comprehensive monograph focussed on this technical area. Thus. one of the key 
values of this new entry to the Advances in Industrial Control monograph series 
is the interesting broad process review presented early in the monograph. This 
enables the reader to obtain a concise view of the main physical and modelling 
aspects of sheet and fIlm processes and the various control methods. which have 
been tried. The background on model-based predictive control and robust 
control methods is subsequently given further in-depth development in the body 
of the text. Other aspects explored in the main text include identification. 
modelling and experimental design. 

As Featherstone. VanAntwerp and Braatz show. in the opening pages of this 
monograph. small improvements in sheet and fIlm production process control 
can bring substantial monetary savings from improved product quality and 
reduced material wastage. For this reason. we feel that this book will be eagerly 
read by professional industrial engineers and academic researchers alike. 

M.J. Grimble and M.A. Johnson 
Industrial Control Centre 

Glasgow. Scotland, UK 



PREFACE 

Sheet and film processes include coating, papermaking, metal rolling, and 
polymer film extrusion. Coating processes are of great importance to manu­
facturing, especially in the photographic, magnetic and optical memory, elec­
tronic, and adhesive industries. The total capitalization of industries which 
rely on coating technology has been estimated to be over $500 billion world­
wide. Paper manufacturing is the mainstay of the pulp and paper industries; 
and polymer film extrusion is used to make a variety of products from the 
manufacturing of plastic films for windshield safety glass to blown films for 
making large plastic bags. A significant fraction of the world's metals are 
produced in sheet form. 

Improving the control of sheet and film processes is of substantial in­
dustrial interest. Improved control of sheet and film properties can mean 
significant reductions in material consumption, greater production rates for 
existing equipment, improved product quality, elimination of product rejects, 
and reduced energy consumption. 

Sheet and film processes are notorious for having process operating prob­
lems. Wrinkling can occur in plastic films and paper sheets, and flow instabil­
ities can cause dewetting phenomena or adhesive globs when coating paper. 
Breaks can occur during coating, polymer film extrusion, and papermaking. 
A common operational problem in metal rolling is the production of sheets 
that do not lie flat. Given the high throughput in these machines, the finan­
cial cost of these process operation problems is very high. For example, a 
single paper break can result in a loss in production of 20 acres of paper. 
Better control algorithms can greatly reduce or even remove most of these 
process operations problems, as well as increasing the overall product quality. 

Sheet and film processes have characteristics that challenge the develop­
ment of identification and control algorithms that are robust and reliable. 
Most of these processes are far too complex to be accurately modeled using 
first-principles. This implies that the model to be used for feedback control 
must be constructed from experimental input-output data. The quantity of 
data available is typically low relative to the very high input and output 
dimensions of sheet and film processes, which can have 100s of inputs and 
up to 10,000 outputs. The resulting parameter estimation problem is poorly 
conditioned, and the models obtained have significant uncertainty associated 
with them. The high level of uncertainty and the very high process dimen-



x 

sionality challenge the development of control algorithms that are robust and 
computable. 

The goal of this book is to present theoretical background and practical 
techniques for the identification and control of sheet and film processes. It 
is explained why many existing industrial control systems perform poorly 
for sheet and film processes. Algorithms are described and illustrated that 
avoid the pitfalls of many existing control design procedures. These algo­
rithms include an experimental design technique that ensures informative 
data are collected during input-output experimentation, model identification 
techniques which produce a process model and an estimate of its accuracy, 
and control techniques that take into account actuator constraints as well as 
robustness to model uncertainties. 

The algorithms covered in this book are truly the state of the art. Vari­
ations on some of the algorithms have been implemented on industrial sheet 
and film processes. Other algorithms are in various stages of implementa­
tion. All of the algorithms have been applied to realistic simulation models 
constructed from real plant data; many of these studies are included in this 
book. 

The authors thank DuPont, the International Paper Company, the N a­
tional Center for Supercomputing Applications, and the University of Illinois 
Computational Science and Engineering program for funding as this book 
was being written. 

A.P.F., J.V.A., RD.B 
Urbana, Illinois 
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PART I 
BACKGROUND 



CHAPTER! 

SHEET AND FILM PROCESSES 

Sheet and film processes are a wide class of industrially important processes 
which include coating and laminating applications (e.g., pharmaceutical or 
food packaging), papermaking, polymer film extrusion, sheet metal rolling, 
and plate glass manufacture. Sheet and film processes are primary in the pho­
tographic, magnetic and optical memory, electronic, pulp and paper, polymer, 
metals, and adhesive industries. Better control for these processes can mean 
significant reductions in raw materials consumption, greater production rates 
for existing equipment, improved product quality, elimination of product de­
fects and/or rejects, and reduced energy consumption [12, 353, 354]. 

Fig. 1.1. Schematic diagram for a generic sheet or film process (not drawn to scale; 
the zigzag pattern is actually stretched out in the machine direction so as to make 
a 1_20 angle with the machine direction) 

Figure 1.1 illustrates some of the generic characteristics of sheet and film 
processes. Sheet or film properties are most commonly measured by a scan­
ning sensor which travels back and forth across the sheet or film (called the 
web). As the web moves in the machine direction, this creates a zigzag pattern 
of measurements. Web properties are controlled by manipulating actuators 
at some distance upstream from the sensor. The actuators are generally uni­
formly spaced across the machine but the portions of the web affected by each 
actuator greatly overlap due to fluid or solid mechanics in the web. Because 
of the distance between the actuators and the 

sensor. 

and because the sensor 

A. P. Featherstone et al., Identification and Control of Sheet and Film Processes
© Springer-Verlag London Limited 2000



4 1. Sheet and Film Processes 

scans across the web rather slowly compared to the web speed in the machine 
direction, there is a delay between the time when an actuator is adjusted and 
the time when that adjustment is measured in the web by the sensor. 

Converting raw materials into sheet and film products involves complex 
processing operations, such as stretching and drying. Every operation must 
perform properly to produce finished products which meet stringent quality 
standards. This book focuses on the design of control systems to maintain 
flat profiles through manipulations across the machine. Control actions are 
effected at the distribution device, which is known as the headbox in paper­
making, the die in coating and polymer extrusion processes, and the work roll 
in metal rolling. These manipulations are performed to meet two main con­
trol objectives (see Figure 1.1). One is the maintenance of the average sheet 
or film thickness, which is referred to as the machine-direction (MD) control 
problem. The other is the maintenance of flat profiles across the machine web, 
referred to as the cross-directional (CD) control problem. Significant CD vari­
ations can be present, even when there are no MD variations. This can result 
in sheets that bulge or will not lie flat. There exist strong interactions between 
actuator movements and the resulting sheet profile, making the CD control 
problem challenging. Since the MD problem [9, 10, 23, 24, 72, 111, 233, 309] 
has been extensively studied and is much less difficult than the CD prob­
lem [53], this book will focus mainly on the CD problem. Any CD control 
algorithm can be modified so as to control both machine-direction and cross­
direction variations [22]. 

The rest of this chapter is devoted to a description of the processing 
which occurs in different sheet and film processes. Polymer film extrusion is 
described in some detail to provide an indication of the complexity of such 
processes. As sheet and film processes share many features, the subsequent 
descriptions of papermaking, coating, and metal rolling are covered in less 
detail. An overview of the rest of the book is provided at the end of the 
chapter. 

1.1 Plastic Film Extrusion 

Polymer film extrusion is used to make a variety of products from plastic 
sheets for making windshield safety glass to blown films for making large 
plastic bags [61, 235]. This section provides an overview of the primary pro­
cessing associated with plastic film extrusion. Although much of the discus­
sion is directed towards blown film extruders, most of the material applies to 
fiat film extruders as well. More detailed descriptions of polymer processing 
are available from several sources [55, 73, 186, 255]. 

A polymer melt is formed in a screw extruder, where polymer powder 
or granules are heated to form the thermoplastic melt, and then extruded 
through the annular opening in the die tool. Most blown film products use 
a conventional single screw extruder (see Figure 1.2), consisting mainly of a 
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motor ~y 
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Fig. 1.2. Schematic diagram for a blown film process (not drawn to scale) 

screw which rotates within a close fitting heated cylindrical barrel. The raw 
material enters the extruder through a feed hopper mounted at one end of 
the barrel, and moves forward by the action of the screw. 

Below the feed hopper is the feed port, which is designed to promote 
streamlined How of the raw material into the screw. The feed port is often 
cooled to ensure proper How. Sometimes vacuum feed ports are used, par­
ticularly to reduce porosity for dry-blend powders, when the screw must be 
sealed at the thrust bearing in order to prevent leakage. 

As the granules move along the screw, they are melted by controlled 
electric band heaters and by the heat generated by friction. Friction occurs 
between the screw and the granules, between the granules and the walls of 
the barrel as the granules are pushed along by the screw, among the granules 
as they slide past each other, and within granules as they are sheared by 
the action of the screw. This frictional heating can be significant and in high 
speed machines external heating may be required only during start-up. Air or 
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liquid coolers are generally incorporated, especially for temperature-sensitive 
materials. 

An extruder typically features three zones which approximately corre­
spond to three stages in the process. The first section is referred to as the 
solid zone, which is associated primarily with conveying the solid material 
from under the feed port to the hotter portion of the barrel. The solid zone 
features a relatively deep channel. The intermediate zone follows, where most 
of the melting occurs and the diminishing depth of thread causes the melting 
polymer to be compressed. This compression increases the shearing action on 
the polymer melt, which increases the frictional heat and improves mixing. 
The last section is called the melt zone, which is associated primarily with the 
metering and pressuring of the polymer melt and features a shallower chan­
nel. This further homogenizes the melt, meters the melt uniformly through 
the die, and smoothes out pulsations. The relative magnitude of zone lengths 
varies depending on the polymer. For example, polyolefins use relatively short 
transition zones, whereas polyvinyl chloride (PVC) requires a long transition 
zone [186]. 

Gases that have been entrapped or evolved during the melting stage can 
be removed through the use of venting or degassing zones. This is achieved 
by releasing the compression on the plastic melt, which causes water or 
other volatiles to vaporize and the melt to froth. For the degassing, a special 
screw/barrel combination is used. The first area is analogous to the simple 
screw design with a solid, intermediate, and melt zone. The channel depth 
is increased to provide the expansion in the degassing area, where frothing 
occurs and the volatiles are released from the melt. The volatiles are released 
through a vent-hole or vent-holes in the degassing area. Finally, as the screw 
depth is shallowed, the melt is recompressed before exiting the extruder. 

Some extruders feature multiple screws (usually two) which may be co­
rotating or counter-rotating. This can provide better mixing with less shear 
heat, and so is suitable for polymers that are temperature-sensitive. Multiple­
screw machines are more expensive, and so tend to be used only when the 
polymer properties demand it. 

The downstream end of an extruder (known as the extruder head) is 
fitted with a filter that removes impurities or other contamination. This is 
necessary because such contaminating particles can cause holes or breaks 
in the film. The shaping tool associated with extrusion is called the die. A 
suitable transition piece or adaptor is used between the extruder exit and the 
die. This adaptor is designed to equalize the flow rate of the polymer melt 
exiting from all areas of a profile die; that is, to prevent channeling. 

There are several possible die configurations for the formation of films or 
sheets. Design considerations include minimizing material holdup or stagna­
tion, and allowing a gradual flow transition from the circular cross section at 
the extruder exit to the thin cross section at the die exit. While it is possible 
to design and build a film extrusion die that will provide a uniform product 
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thickness across the entire width for one particular polymer type and molec­
ular weight distribution, in practice the variations in polymer properties and 
other disturbances imply that some form of on-line actuatiQn is required. 

In the schematic for the blown film extruder in Figure 1.2, the polymer 
melt from the extruder enters the die from the side, but entry can also occur 
from the bottom of the die. The internals of the die are designed so that the 
polymer melt emerges through an annular die opening, in the form of a tube. 
The tube is subjected to both a moderate internal air pressure via an air inlet 
running through the die mandrel, and a longitudinal force via the pinch rolls. 
The air pressure maintained through the center of the mandrel expands the 
tube to the required diameter, which stretches the plastic film and decreases 
the film thickness. The tube is simultaneously cooled by air from an exter­
nal air ring. Sometimes the tube is also internally cooled by circulating air 
inside the trapped volume via ducts in the die mandrel. External or internal 
sizing and/or cooling of the bubble is sometimes achieved by contact with 
the surfaces of the baskets or mandrels. 

The frost line is where the polymer melt becomes solidified. During stable 
operation the blown film gradually deforms into a stable solid cylindrical 
bubble beyond the frost line. The bubble pressure is maintained at both the 
die and the pinch rolls. The film thickness is affected by many disturbances, 
including variations in the bubble pressure, the extruder throughput, the 
haul-off speed, and the temperature distributions in the die and barrel. The 
bubble is gradually flattened by the guide rolls, and beyond the pinch rolls 
(also called nip rolls) it is handled as a thin flat product. 

Start-up of the blown film process normally involves the pulling of the 
inflated extruder tube, with the help of a cable, until it becomes pinched 
between the nip rolls. Internal air pressure is subsequently applied to form 
the bubble. 

The most common blown film line configuration involves vertical upward 
extrusion and cooling. Vertical downward extrusion has been reported, par­
ticularly when rapid cooling is desired (for example, with PVC), as well as 
horizontal in-line extrusion and blowing for relatively small sizes and heat 
sensitive materials (such as PVC) [55]. 

In film extrusion lines, variations in film thickness could arise from im­
perfections on the die surface or disturbances in the air flow surrounding 
the film, as well as from changes in the physical properties of various poly­
mers used in different extrusion runs. In addition, there are many problems 
associated with the production of good quality film. Among the many de­
fects which can occur are variations in the film thickness, surface defects, low 
tensile strength, low impact strength, hazy film, blocking (the tendency of 
layers of films to stick together), and wrinkling. Surface defects are due to 
contamination or imperfect mixing in the extruder. Both of these factors can 
be reduced by modifying the melt filter design to better screen out contam­
inating particles and improve homogeneity by increasing the back pressure 
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in the extruder. Blocking is caused by the blown film not being sufficiently 
cooled before reaching the nip rolls. Wrinkling can be caused by the blown 
film being too cool when it reaches the pinch rolls, by the die gaps being 
out of adjustment, by misalignment of the guide roll and the pinch rolls, by 
pressure non-uniformity at the pinch rolls, by surging polymer flow from the 
extruder, and/or by surging air currents around the blown film. Wrinkling 
can be reduced in many cases by placing horizontal stationary guides around 
the tube or by protecting the whole extruder from stray air currents. 

While the normal output of a blown film line is a tubular lay-flat product, 
the introduction of slitters, cutters, punches, gusseting and sealing devices, 
and other equipment can allow in-line production of slit-open and gusseted 
products, as well as a variety of bags including grocery and T-shirt bags. 
Linear production speeds can be as high as 20 mph for thin products such as 
garment bags. The bubble circumference can be as high as 20 meters [73]. 

The actuators, whose main purpose is to provide profile uniformity, are 
almost always located at evenly spaced points along the cross-direction. In 
polymer film extrusion, the actuators can be of several types. Choke bars 
(restrictor bars) and flexible lips are used to adjust the width of the die gap. 
These devices have a large number of screws or bolts across their width (or 
circumference) that permit local adjustments [73,361]. Thickness variations 
can be controlled by adjusting the temperature of the polymer melt at the die 
surface [61, 186,361]. For example, Figure 1.3 shows valves that manipulate 
the air flow rate around a blown film die, which determines the local cool­
ing of the polymer melt, and hence thickness. The number of actuators for 
blown film extruders has been reported to be between 45 and 120 [210]. The 
controller sends signals to the manipulated variables based on measurements 
of the film profile around the circumference. In Figure 1.3, the measuring 
device revolves around the film tube, measuring a spiral portion of the film 
[186]. The control signals must be determined based on this limited measure­
ment information. For blown film lines, variations in the machine direction 
should be less than ±2% from the average, and cross-directional variations 
(depending on product) can be ±3% to ±15% [186]. 

In polymer film extrusion, the film is usually stretched at some point be­
tween the actuators and measurements. During normal operation the process­
ing is stable, and can usually be assumed to be linear. Sensor measurements 
include opacity, caliper, and organic content. The sensor measurements are 
located some distance down the machine-direction from the actuation. This 
results in a significant time delay. 

1.2 Papermaking 

Paper manufacture is a complex operation. A detailed description of paper­
making is beyond the scope of this text and can be found elsewhere [111, 318] 
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Fig. 1.3. Control of film thickness using cooling air at the die surface (not drawn 
to scale). A scaled down schematic of the blown film with die at the bottom shows 
where the transmitter, track, and measuring device are located. 

(see 1203J for a good overview). A simplified process flowsheet for papermak­
ing given in 1203J has about 30 separate unit operations. 

The culminating unit of this process is the paper machine (see Figure 1.4). 
A modern paper machine may have a few hundred actuators to manipulate 
and several hundred sensor lanes, with the paper moving through the machine 
in excess of 50 mph. The high capital cost of each machine (approximately 
$500 million) provides a strong economic incentive for machine speeds to 
continue to increase in the future. Also, demands for high product quality 
and improvements in sensor technology are driving increases in process di­
mensionality. In particular, full-sheet sensors have recently become available 
which provide more than 10,000 sensor lanes-an order of magnitude increase 
in process dimensionality 16] . 

Figure 1.5 shows a schematic of a Fourdrinier type paper machine. (The 
headbox is not shown in 1.5 but can be seen at the left of Figure 1.4.) A 
dilute slurry of wood fibers in water, called stock, is extruded through a slit 
at the bottom of the headbox called the slice lip opening (see Figure 1.5). 
The slurry passes through the slice lip opening onto the Fourdrinier table, 
which has a screen conveyer belt that allows water to drain out of the slurry, 
leaving a wet felt of paper. The wet felt passes from the Fourdrinier table 
into the press section, where the wet felt is pressed between a series of rollers 
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Fig. 1.4. An industrial paper machine (courtesy of Consolidated Papers, Inc.) 
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Fig. 1.5. Schematic diagram for a Fourdrinier type paper machine (courtesy of 
Beloit Corporation) 

to remove moisture. The sheet then passes to the dryer section, where it 
is further pressed between heated rollers to remove most of the remaining 
moisture. Finally, the paper is measured by a scanning (or fixed bank) of 
sensors and is wound up at the reel of the machine. The measurements are 
fed back to actuators which attempt to manipulate some property of the 
sheet in order to maintain a flat paper profile across the machine. 

Typical sensor measurements include wet basis-weight, dry basis-weight, 
moisture, and caliper [19, 54, 199, 200, 244, 294, 318]. The sensor measure-



1.3 Coating 11 

ments (which are usually at the reel, but also can be further upstream) are 
located some distance down the machine-direction from the actuation (which 
is usually at the slice lip, but can also be further downstream). The size of 
the people in Figure 1.4 provides a sense of the size of a paper machine, 
and a comparison of Figures 1.4 and 1.5 provides an indication as to the po­
tential distance between sensing and actuation. This results in a significant 
time delay between actuator manipulations and sensing of the result of these 
manipulations. 

The actuators are almost always located at evenly spaced points along the 
cross-direction. Actuation can be through slice lip variation, heat lamps, wa­
ter jets, air jets, or steam sprays [221,318, 355, 356]. In many cases, multiple 
banks of actuators and sensors are used [206]. No matter what mechanism is 
used for manipulation of the paper sheet properties, the actuator dynamics 
are usually assumed, at least nominally, to be identical within an actuator 
bank [362, 220, 264]. The CD controller sends signals to the actuator bank 
based on measurements of the paper profile properties. 

1.3 Coating 

Coating applications are widespread and technologically very important. The 
total capitalization of the industries which rely on coating technology has 
been estimated to be over $500 billion worldwide [86]. A common application 
of coating technology is to apply an even coat of adhesive in order to produce 
a laminate of two sheets or films. This basic technique is used to produce pho­
tographic film, medical, pharmaceutical, and food packaging, and products 
from bumper stickers to optical and magnetic media storage devices. 

Figure 1.6 is a simplified diagram of a typical plant for producing labels 
or bumper stickers. This plant will be described here with the understand­
ing that it shares common characteristics with other coating and laminating 
processes. 

The process begins with a feed roller from which substrate is unwound 
(the substrate is the backing of the label). From there, the substrate passes 
between a roller and a stainless steel die. The adhesive flows through a slot 
in the die to the substrate. The cavity in the die is designed to distribute 
a uniform flow of adhesive through the slot. A controlled pump supplies a 
constant flow of adhesive through the die. 

The die gap is the height of the slot at a given point along the die. The 
die gap can vary across the die because the actuators are designed to locally 
deform the die. Die gaps are difficult to measure directly while the die is 
in use, so strain gauges are calibrated to die gaps when the die is not in 
use, and are used to estimate the die gaps when the die is in use. The gaps 
through which adhesive flows are adjusted by means of n equally spaced 
bolts or screws. These actuators can be thermal-expansion bolts or motor- or 
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Fig. 1.6. Schematic diagram for a label-producing plant (not drawn to scale) 

hydraulic-driven screws [46, 207, 268, 353]. Changing the die gaps varies the 
adhesive Bows across the machine. 

After being coated with adhesive, the substrate passes through a drier. 
After the drier, the time-averaged adhesive thickness at each of the positions 
corresponding to a die bolt is measured by a traversing coat-weight sensor. 
The CD controller sends signals to the actuators based on the coat-weight 
sensor readings collected across the width of the coated substrate. A layer of 
paper from the label roller is laminated to the adhesive-coated substrate and 
wound on the the product roller. The laminate on the product roller is taken 
elsewhere to be printed and cut to make labels. 

1.4 Metal Rolling 

Figure 1.7 shows a schematic diagram for a Sendzimir mill for rolling thin 
hard materials such as stainless steel [167]. Thick stock is pressed between 
two sets of rollers. The metal plastically deforms to make a sheet that is 
thinner than the original stock. 

The most common defect in Bat-rolled steel products is gauge variations 
[165,82, 166]. This is analogous to machine-direction variations in other sheet 
and film products and can be handled by similar methods. Cross-directional 
variations in metal rolling are the second most common defect and are more 
challenging to control. A common shape defect is for the strip to have a long 
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edge such that the strip will not lie flat, or to have a drop in caliper near 
the edge. The metal trimmed from the edges can be 2% or more of the sheet 
product. By some estimates, a 1 % reduction of edge trimming can save $3 
million per year [247]. 

machine direction 
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Fig. 1.7. Schematic diagram for a Sendzimir rolling mill with shape measurement 

The internal stress distribution in the strip is referred to as the "shape" 
of the metal strip. Shapemeters measure the shape profile of the strip by 
measuring the tension of the strip as it passes over a measurement roll [256]. 
An X-ray source with a detector array can measure the caliper profile to 
a resolution as fine as 5 mm with a sampling time of 100 ms [247]. Unlike 
the traversing sensors common in polymer film extrusion, papermaking, and 
coating processes, the shapemeter and the X-ray profile sensors provide si­
multaneous profile measurements across the machine. 

The Sendzimir mill is known as a cluster mill because the work rolls (the 
rolls that are in contact with the strip) are nestled in supporting rolls. The 
shafts with the shaded centers in Figure 1.7 are the main screwdown shafts for 
the process and are used for gauge control. Shape control under load is made 
via crown actuators (hydraulic or electric motors) which provide additional 
force at different points across the main screwdown shafts via an eccentric 
gear train. A disadvantage of using only crown actuators is that the bending 
effects on the workrolls (the rolls touching the metal sheet) are smoothed 
out by the stiffness of the intermediate rolls. It is possible to use the first 
intermediate rolls (the rolls touching the workrolls) for shape control [289]. 
The closer proximity of the intermediate rolls to the metal sheet allows a 
higher order bending to be applied to the workrolls. 

The mill shown in Figure 1. 7 can operate in either direction. Stock can 
be passed through several times, from alternating ends, with a reduction 
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in thickness at each pass until the desired thickness is achieved. The CD 
controller sends signals to the actuators to achieve a desired shape across the 
metal sheet. 

1.5 Book Organization 

The book is organized into two parts. Part I (including this chapter) provides 
background on sheet and film processes. Chapter 2 describes the characteris­
tics of sheet and film processes, especially those characteristics that affect the 
design and implementation of process identification and control algorithms. 
These process characteristics lead to the definition of model structures and 
uncertainty descriptions applicable to sheet and film processes. Chapter 3 re­
views the literature on the identification, estimation, monitoring, and control 
of sheet and film processes. Special attention is given to how well the various 
techniques are able to address the characteristics of sheet and film processes. 

Part II describes methods for the identification and control of sheet and 
film processes. Chapter 4 describes the control requirements for models of 
sheet and film processes, and discusses how model identification and control 
design procedures should be related to ensure reliable control. A blown film 
extrusion model is used to illustrate the key points. Chapter 5 uses the results 
of Chapter 4 to develop a procedure for conducting input-output experiments 
so as to provide data rich in the process information relevant for closed-loop 
control. Chapter 6 describes the design of CD controllers that are robust to 
model uncertainties, and Chapter 7 describes the design of model predictive 
controllers to deal with actuator constraints. In both chapters the techniques 
are applied to a simulation model constructed from data collected from an 
industrial paper machine. Chapter 8 summarizes the main messages of the 
book and discusses generalizations and applications to the control of other 
processes. 



CHAPTER 2 

PROCESS CHARACTERISTICS 

This chapter describes the characteristics of sheet and film processes. These 
characteristics define the process models that are appropriate for describ­
ing the relationships between the manipulated and measured variables, and 
specify requirements for the development of effective identification and con­
trol algorithms for these processes. 

2.1 Traversing and Full-scan Sensors 

Sensing methods include beta-ray absorption, gamma-ray, X-ray absorp­
tion, X-ray fluorescence, infrared, microwave, visible light, magnetic, elec­
tric capacitance, force distribution, and ultrasonics [83, 167, 209, 224, 256, 
301, 307, 312, 318]. Typical sensor measurements include wet basis-weight, 
dry basis-weight, opacity, moisture, caliper, organic content, and stress 
[8, 19, 46, 54, 199, 200, 244, 256, 294, 312, 318]. For a sheet and film process, 
a single sensor with the auxiliary equipment necessary to operate the sen­
sor can cost as much as $300,000 [167, 328]. Due to their high cost, usually 
only a few sensors are used to measure the uniformity of the sheet or film. 
To provide measurements along the entire cross-direction, these sensors are 
placed on tracks so as to continuously travel back and forth transverse to the 
movement of the sheet or film. Since the sheet or film moves in the machine­
direction, each sensor measures only a zigzag portion of the sheet or film, 
as illustrated in Figure 1.1. It is from this limited number of noisy measure­
ments that the entire sheet or film profile (that is, at all sensing locations) is 
estimated at each sampling time for use by the control algorithm. 

For metal rolling, several sensors have been available for simultaneously 
measuring the entire profile across the rolling machine [247, 256]. In the last 
few years, sensors have become available that simultaneously measure the 
entire profile for paper machines [78, 144, 261, 346, 347]. The CD profile can 
be measured as finely as every millimeter at rates of up to 120,000 times per 
minute [6]. This can result in as many as 10,000 sensor measurements along 
the cross-direction. In contrast to scanning sensors which provide limited 
data, such full scans provide so much data that algorithms need to be carefully 
designed to extract the maximum information from the data, while being 
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computationally efficient enough to complete all calculations on the controls 
computer during each sampling instance. 

2.2 Actuators 

Actuators for sheet and film processes are almost always located at evenly 
spaced points along the cross-direction. In coating applications the fluid flows 
through a slot, and the actuators vary the amount of fluid flow at a location 
by changing the width of this slot, often by thermal-expansion bolts or motor­
or hydraulic-driven screws [46, 207, 268, 353]. A larger variety of actuators are 
found in paper machines, where actuation can be through slice lip variation, 
heat lamps, water jets, air jets, or steam sprays [184, 185,221,249,250,306, 
318,349,355,356]. In some cases, multiple banks of actuators are used, with 
a substantial amount of space between actuator banks [206]. No matter what 
mechanism is used for manipulation of sheet or film properties, the actuator 
dynamics are usually assumed, at least nominally, to be identical within an 
actuator bank [220, 362, 264]. 

Actuator positions for sheet and film processes are usually constrained. 
In cases where the actuators are steam sprays or heaters, excessive actuator 
movements may compromise the integrity of the sheet or film. In cases where 
the actuators are physically connected, these constraints prevent excessive 
mechanical stresses between the actuators [46, 70, 237, 248, 274, 289, 363]. 

There are three typical types of constraints on the actuator positions. 

1. Each actuator position Ui may be constrained from being too large or 
too small, that is, Umin $ Ui $ Umaz , for i = 1, ... , n. These are known 
as min-max constraints. 

2. The differences between adjacent actuator positions Ui may be limited, 
that is, IUi+l - Uil $ 16ulmaz, for i = 1, ... , n - 1. These are often called 
first-order constraints. 

3. The amount of "zigzag" that can be introduced among neighboring ac­
tuators is limited by a second-order bending moment constraint (see 
Figure 2.1). These take the form IUi+2 - 2Ui+l + uil $ 162ulmaz, for 
i = 1, .. . ,n- 2. 

Any subset of these constraints can be important for a particular sheet and 
film process. 

Sometimes rate constraints are imposed on the process as well. The rate 
at which most actuators can move is limited by physical constraints and a 
desire to reduce wear in the physical components. 

2.3 Process Dynamics 

Processing usually occurs between actuator banks and sensing banks, with 
typical processing including draining, drying, pressing, steaming, heating, 
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Fig. 2.1. Min-max and second-order bending moment constraints for two (a) and 
three (b) actuators. These diagrams are for illustration only; a sheet and film process 
can have more than 100 actuators. 
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and stretching. During normal operation the processing is stable, and can 
usually be assumed to be linear [32, 46J (an exception is in moisture control 
on a paper machine [226]). Since the sensor measurements are taken after 
some form of processing, they are located some distance down the machine­
direction from the actuation. This results in a significant time delay between 
actuator manipulations and sensing of the result of these manipulations. The 
delay is time-varying as the machine speed varies. Additional delay is often 
caused by sensor delay, for example, due to integrating-type sensors [46J. 

The dynamic relationship between the manipulated and measured vari­
ables is usually written in terms of a process transfer function P(s), defined 
by 

y(s) = P(s)u(s), (2.1) 

where y is a vector of profile measurements written in terms of deviations from 
steady-state, u is a vector of actuator settings written in terms of deviations 
from steady-state, and s is the Laplace transform variable. For sheet and film 
processes, it is normally a good assumption that the process dynamics are 
identical across the machine, so the transfer function can be written as 

P(s) = p(s)PeD , (2.2) 

where p(s) represents the dynamics (usually dominated by the time delay) 
associated with actuation, processing, and sensing, and PeD is a constant ma­
trix representing the interactions between the inputs and outputs (discussed 
below). Nearly all reported sheet and film process models can be written in 
this form. 

2.4 Interactions and Model Structures 

When an actuator is manipulated, sheet or film properties usually change 
for some distance on either side of the position directly downstream from 
the actuator. These interactions are caused by fluid flow within the sheet or 
film, processing between actuator and sensor banks, and/or physical connec­
tions between actuators within an actuator bank. The maximum number of 
sensing lanes that can be affected by moving a single actuator is the width 
of interaction, which can be as small as one or as large as the number of 
sensor lanes [46J. The width of interaction is typically an odd number, which 
would indicate an equal number of affected sensing lanes on each side of the 
actuator. The width of interaction is often reported in terms of the number 
of interaction parameters m, defined in more detail below. 

The observed interactions are incorporated into the profile response model 
with n actuators and m interaction parameters through the constant matrix 
PeD = P~-;. The (i, j) element of the interactions matrix P~-; describes the 
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steady-state response at measurement location i due to a unit step change 
in actuator j. Early work on CD control assumed that the interactions ma­
trix took one of the following three forms [220]: centrosymmetric, Toeplitz 
symmetric, and circulant symmetric. The assumptions regarding the nature 
of the interactions determine the appropriate model structure. Assumptions 
that accompany each model structure are summarized below. Whether or not 
the assumptions are accurate can mean the success or failure of the control 
system design based on one of these models [135]. The description of the 
three model structures is followed by a description of model structures that 
allow general interactions across the machine. 

2.4.1 Toeplitz Symmetric 

A model structure used in many industrial CD control systems is the Toeplitz 
symmetric description [79]. In Toeplitz symmetric models the same element 
is repeated along each diagonal of the matrix: 

Table 2.1. Non-zero interaction parameters {Pi} from reported Toeplitz models. 
Models marked with an asterisk appear to be based on data from industrial ma­
chines. Comments: (1) "Swedish Research Labs", (2) actuator model, (3) newsprint, 
(4) sack paper, (5) paper board, (6) discretized at 20 cm actuator spacing, (7) 
change in slice lip opening only. Many of these entries are tabulated elsewhere 
[220]. 

Reference Comment PI 1>2 P3 P4 Ps P6 P7 Ps P9 PIO 
[353]* 1 1.0 1.2 0.6 -0.4 -0.9 -0.2 -0.2 

[363] 1.0 0.4 -0.5 0.05 

[32] 1.0 0.4 

[330] 2 1.0 -0.15 0.03 -0.01 

[362] 1.0 0.2 

[362] 1.0 0.4 

[362] 1.0 0.5 -0.5 

[200]* 3,6 1.0 0.1 -0.3 

[200]* 4,6 1.0 1.3 0.8 -0.6 -0.3 0.0 -0.1 

[200]* 5,6 1.0 0.9 0.7 0.8 1.0 0.6 -0.5 -0.4 -0.2 -0.2 

[274]* 1.0 0.45 -0.55 

[94]* 1.0 0.4 -0.2 -0.4 -0.2 

[94]* 7 1.0 0.2 -0.1 -0.1 

[135] 1.0 0.9 0.6 0.2 0.1 -0.1 -0.05 

[137]* 1.0 0.9 0.7 0.8 1.0 0.6 -0.5 -0.4 -0.2 -0.2 
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This model follows from the assumption that changes observed downstream 
from one actuator caused by adjustments at the nearest neighboring actuators 
is independent of position across the machine. This is the model structure 
most often found in the literature (see Table 2.1). 

2.4.2 Circulant Symmetric 

The circulant symmetric model structure is 

PI P2 Pm-l Pm ... Pm Pm-l P2 

P2 PI P2 Pm-l Pm 

P2 PI P2 Pm-l Pm-l 

Pm-l P2 PI P2 Pm 

pn,m_ Pm Pm-l P2 Pm-l Pm 
C -

Pm Pm-l P2 Pm-l Pm (2.4) 

Pm P2 PI P2 Pm-l 

Pm-l Pm-l P2 PI P2 

Pm Pm-l P2 PI P2 
P2 Pm-l Pm Pm Pm-l P2 PI , .. , 

nxn 

Each row is equal to the row immediately above it but with each element 
shifted to the right, and the overall matrix is symmetric. Circulant symmetric 
matrices are both Toeplitz symmetric and centrosymmetric (see next section). 
As such, this model structure represents interactions for circulant 'symmetric 
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sheet or film processes, as are used in blown film extruders [235, 61], paper 
machines with neglected edge effects [220, 362]' and adhesive coating pro­
cesses [46]. The circulant symmetric structure has additional mathematical 
properties (see [133]), which lead to the development of identification and 
control procedures that are especially effective (see Section 2.4.4 and Chap­
ters 4-5). 

As a specific example, consider a model for a blown film extruder [135]: 

-8s 
P( ) ( )p4S,S e p4S,S 

8 = P 8 CD = --1 CD' 
7'8 + (2.5) 

where the process has a time delay 8 and a time constant 7' equal to one 
minute, 8 = 7' = 1, and the elements of the interaction matrix are given by 

Pl = 1.0; P2 = 0.9; P3 = 0.6; P4 = 0.2; Ps = 0.1; 

P6 = -0.1; P7 = 0.05; Pm = Ps = O. (2.6) 

The interactions matrix (2.5) is singular, which implies that there are profile 
disturbances which cannot be corrected by varying the manipulated variables. 
Such singularity or near singularity is common in sheet and film processes. 

In general, the process profile parameters {Pi} are nonlinear functions 
of the polymer being processed, the die gap opening, the temperature, and 
other variables. These nonlinear dependencies are quite complex, and most 
current first-principles modeling efforts are focused on modeling the axial 
(bubble) shape, assuming constant properties at the surface and a rigid die 
gap opening [308, 258, 218, 364, 228, 255]. Other studies have considered the 
deformation of an elastic ring under pointwise radial load [210], but do not 
consider the actual blown film process. The existing first-principles models 
for blown film extruders are not sufficiently accurate for use in the design of 
control algorithms. 

Although the overall blown film process is nonlinear, a linear model is 
normally adequate over the range of manipulated variable moves allowed 
during normal operations. 

2.4.3 Centrosymmetric 

A centrosymmetric model structure is: 
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(2.7) 

Centrosymmetric models include Toeplitz symmetric and circulant symmet­
ric models as special cases and can also take into account different effects 
near the edges. Centrosymmetric models have elements that are symmetric 
about the center of the matrix. If a machine was constructed such that the 
profile response (that is, the measured effect on the profile from stepping an 
actuator) was symmetric with respect to a vertical plane through the center 
of the sheet or film, then it would be exactly centrosymmetric. Centrosym­
metric models can represent edge effects, that is, slight differences in response 
observed at different distances from the center of the sheet. If it is further 
assumed that the effect of actuator adjustment at position i on response at 
position j is the same as that at position j on response at position i, then 
the model structure is centrosymmetric symmetric. 

The identification and control of a centrosymmetric symmetric model for 
a paper board machine has been reported, where the edge effects reduced the 
response near the edges [137]. 

2.4.4 Pseudo-singular Value Decomposition 

The above structures assume that the number of actuators is equal to the 
number of sensing locations. While this was true for early implementations 
of CD control to sheet and film processes, modern processes usually have the 
number of sensing locations much larger than the number of actuators. Most 
industrial control algorithms use a non-square matrix to transform the vector 
of sensor readings so that it has the same dimension as the vector of actuator 
signals, and then it is assumed that the interactions matrix between the 
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actuator vector and transformed sensor vector has one of the above structures 
[164, 324]. For many processes, the spacial response to a single actuator 
move changes from actuator to actuator [183, 310], which causes this latter 
assumption to be violated. For this reason, recent studies have considered 
processes with arbitrary non-square interactions matrices [138, 339]. 

A model representation that will be used frequently in this book is the 
pseudo-singular value decomposition (pseudo-SVD) of the sheet/film process 
transfer function. Taking the singular value decomposition (SVD) [156] of the 
interactions matrix PeD allows the process transfer function to be written in 
the pseudo-SVD form 

P(s) = p(S)PeD 
= p(s)U17VT 

= U(P(s)17)VT 

= U17(s)VT (2.8) 

where U and V are real orthogonal matrices. The elements of the diago­
nal matrix 17(s) are transfer functions. These diagonal elements 17ii{s) are 
referred to as pseudo-singular values [135]. The pseudo-SVD form is suffi­
ciently general to allow for non-square PeD with arbitrary interactions. For 
non-square PeD, first augment the matrix with rows or columns of zeros 
to make a square matrix. Then compute the SVD of the square matrix to 
result in square U and V. The pseudo-singular values corresponding to the 
additional rows or columns will be equal to zero. Although there are more 
compact ways to define the pseudo-SVD for a non-square interactions matrix, 
this definition leads to the simplest notation. 

Fine Paper Machine. As an example of a process with a non-square inter­
actions matrix written in pseudo-SVD form, consider the transfer function 
from the slice lip to the weight profile for a fine paper machine: 

e-2s 

y{s) = 0.533s + 1 PeDU{S) (2.9) 

where the process has a time delay of 2 minutes, and a time constant of 0.533 
minutes. The interactions matrix PeD is of the form 

PeD =CA (2.1O) 

where the matrix C represents the interactions between 130 actuators and 
650 downstream measurement locations, and the diagonal matrix A captures 
the variation of the gains for each actuator across the machine. The matrix 
C is given in Table 2.2. 

The c vector from Table 2.2 is plotted in Figure 2.2. The shape of each 
profile response was uniform across the paper machine; however, the magni­
tude of the overall responses varied with actuator position, which necessitated 
the definition of the matrix A. The diagonal matrix A quantifies the variation 
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Table 2.2. The structure of the interactions matrix. The vector c, shown in Figure 
2.2, was fit from data in Figures 3 and 5 of [182]. 

c= 

C2 C7 C12 ••• CS7 0 0 0 
CI C& Cll ••• CS6 0 0 0 
CO C5 ClO ••• CS5 0 0 0 
CI C4 C9 ••• CS4 0 0 0 
C2 Cs C8 ••• Css CS8 0 0 0 
Cs C2 C7 ••• CS2 CS7 0 0 0 
C4 CI C& ••• CSI CS6 0 0 0 
C5 CO Cs ••• CSO C3S 0 0 0 
C& CI C& ••• C29 CS4 0 0 0 
C7 C2 C7 ••• C28 CSS CS8 ••• 0 0 

CS5 CSO C25 ••• 

C36 CSI C26 ••• 

CS7 CS2 C27 ••• 

C38 C33 C28 ••• 

0 C34 C29 ••• 

0 Ca5 C30 ••• 

000 

CO Cs CIO ••• 

Cl C4 C9 

C2 Cs C8 

Cs C2 C7 

C4 CI C& 

Cs CO Cs 

•.• C4 CI 

••• Cs CO 

••• C& CI 

OOO···C7C2 

of the gains for each actuator across the machine. Each diagonal element of 
A corresponds to the peak gain of one actuator. The diagonal elements of 
A are plotted in Figure 2.3. Figure 2.3 shows that the profile response to a 
single actuator move is relatively uniform across the middle of this particular 
paper machine, first increases as an edge is approached, and then decreases 
right near the edge. 

For this paper machine, the actuators are motors which change the slice 
lip openings and the weight profile is measured by a scanning sensor at the 
reel of the machine. The model parameters were fit to data collected during 
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Fig. 2.2. The effect of a step change in one actuator on downstream profile mea­
surements 

0.2 

0.1 

o~------~~------~~--~ 
o 50 100 

Actuator number i 

Fig. 2.3. Gains for each actuator as a function of position across the paper machine 

the input of pseudo-random binary sequences at a few different points across 
the paper machine and measured the downstream machine response [182]. 
Readers are referred elsewhere for a detailed description of the data fitting 
procedure [339]. 

The U, V, and 17(8) in the pseudo-SVD model structure (2.8) are con­
structed by taking the singular value decomposition of FeD. For this process, 
the diagonal elements of 17(8) are 

(2.11) 
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where Eii is the (i, i) element of the singular value matrix E. Figure 2.4 
is a plot of the Eii . As typical for sheet and film processes, the condition 
number of the interactions matrix, which is equal to the ratio of the largest 
and smallest Eii , is large. 
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Fig. 2.4. The singular values for a fine paper machine 

Simplifications Due to Symmetry. The pseudo-SVD model structure 
simplifies when the interactions matrix is symmetric (PeD = P8D)' The 
symmetric model structure allows downstream responses to actuator moves 
to be different near the edges, and hence is more general than the Toeplitz 
symmetric model structure. For symmetric PeD, an orthogonal decomposi­
tion of PeD [20] allows U to be chosen equal to V: 

P(s) = UE(s)UT (2.12) 

In this case, UT = U- 1 and the diagonal elements of Ep(s) can be interpreted 
as pseudo-eigenvalues: 

P(s) = UE(s)UT = UA(s)U- 1 (2.13) 

where the A( s) can be considered as a generalization of the eigenvalue matrix, 
just as E(s) is a generalization of a singular value matrix. 

The pseudo-SVD model structure simplifies further when the transfer 
function matrix is circulant symmetric, in which case it can be diagonalized 
by the real Fourier matrix R (see [133] for details): 

P(s) = p(s)p~,m = p(s)RART = RA(s)R-l. (2.14) 

The decomposition matrix R depends only on the process dimension and not 
on localized physical phenomena. This decomposition can be used for any 
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circulant symmetric sheet and film process. An additional property that can 
be exploited to simplify model identification and controller design is that only 
(n+l)/2 (for n odd) or (n/2)+1 (for n even) of the diagonal elements Aii(S) 
are distinct [192]. 

2.4.5 Modal Decomposition 

The pseudo-SVD model structure can be referred to as a modal decomposition 
[139]. The reason for this can be seen by expanding (2.8) to give 

n 

P(s) = UL'(s)VT = L'L'ii(S)UiVl, (2.15) 
i=l 

where Ui is the ith column of U (known as an output singular vector), and Vi 
is the ith column of V (known as an input singular vector). The interactions 
matrix P(s) is equal to a linear combination of the rank-one interactions ma­
trices Ui vt associated with each pseudo-singular value L'ii (s). Each pseudo­
singular value L'ii ( s) can be interpreted as a dynamic mode of the sheet/film, 
with Vi and Ui representing the input and output spacial directions associated 
with the ith mode. 

To explore this concept in more detail, consider a vector of manipulated 
variables in the direction of the input singular vector Vk: 

u(s) = O:(S)Vk (2.16) 

where o:(s) describes the dynamics of manipulated variable moves. Because 
the input singular vectors Vi are orthogonal, the overall profile response is 

n 

y(s) = P(s)u(s) = L Eii(S)UiVt O:(S)Vk = Ekk(S)O:(S)Uk' (2.17) 
i=l 

Hence the dynamics of the overall profile response is only a function of the 
dynamics of the single mode Ekk(S) and the dynamics of the actuator, o:(s). 
The direction of the overall profile response is in the direction of kth output 
singular vector Uk. In other words, an input in the direction of the kth input 
singular vector Vk results in a profile response in the direction of the kth out­
put singular vector Uk, with the input-output dynamics completely specified 
by the kth mode L'kk(S). 

Now consider the general case where the vector of manipulated variables 
is written as a linear combination of the input singular vectors Vi, which is 
always possible since the vectors Vi form an orthonormal basis [156]: 

n 

u(s) = LO:k(S)Vk (2.18) 
k=l 
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where ak (8) describes the dynamics of the manipulated variable moves in the 
direction of the kth input singular vector Vk. Given a vector of manipulated 
variables 1.1.(8), ak(8) can be computed from 

(2.19) 

Hence ak(8) is the projection of 1.1.(8) onto the kth input singular vector Vk. 
The orthogonality of the input singular vectors Vi implies that the overall 

profile response is 

Y(8) = P(8)1.I.(8) 
n n 

= L Eii (8) Ui vt L ak (8) Vk 
i=l k=l 

n 

= L Ekk(8)ak(8)Uk. (2.20) 
k=l 

Hence the overall profile response is equal to the sum of the profile responses 
associated with each component ak (8) of the manipulated variable vector 
1.1. ( 8 ). The profile response associated with ak ( 8) is in the direction of the kth 
output singular vector Uk, and these profile responses are decoupled, since 
the output singular vectors Uk are orthogonal. Since the magnitude of each 
output singular vector Uk is normalized to one, the dynamics (including the 
magnitude) of the effect of the kth component ak (8) is completely described 
by the kth mode, Ekk(S). 

The modes Ekk (s) completely describe the input-output dynamics of the 
sheet/film process, whereas the input singular vectors Vi completely describe 
the input directionality of the process, and the output singular vectors Ui 

completely describe the output directionality. The singular vectors Ui and Vi 
can be interpreted spacially across the machine, in many cases in terms of 
spacial frequencies. For example, consider a blown film extruder with 45 ac­
tuators and 45 sensing lanes. The symmetry of a blown film extruder implies 
that the interactions matrix will be circulant symmetric (2.4). As described 
in the last section, this implies that U = V = R, and that R is a fixed matrix 
irrespective of the values for the interaction parameters {Pi}. Figures 2.5 and 
2.6 plot several of the singular vectors for the blown film extruder. Figure 2.5 
shows the first through fifth singular vectors, whereas Figure 2.6 shows the 
21st and 22nd singular vectors. These vectors represent spacial frequencies 
described by the model. 

For industrial processes it is common for the modes Ekk (8) corresponding 
to the low spacial frequencies to have relatively high magnitudes, except for 
a Eii(8) corresponding to a flat input singular vector Vi (this is labeled as 
Vl in Figure 2.5) which can be zero for some processes [46J. This makes 
physical sense, in that the movement of several adjacent actuators in a single 
direction (as shown for the input singular vector V2 in Figure 2.5) is expected 
to lead to a large profile response. On the other hand, usually many of the 
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modes corresponding to high spacial frequencies (as shown in Figure 2.6) 
have low magnitudes. This is due to a compensatory effect, in which the 
profile responses to actuator moves in one direction are compensated by the 
profile responses due to neighboring actuators in the opposite direction. How 
precisely these statements hold for a particular process depends on the values 
of the interaction parameters {Pi}' 

The interpretation of input and output singular vectors as spacial direc­
tions holds irrespective of the nature of the interactions across the machine, 
since this interpretation only depends on being able to write the process 
transfer function in pseudo-SVD form (2.8) . Although the spacial frequen­
cies interpretation of the Ui and V; does not exactly hold for sheet and film 
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processes that have edges (e.g., paper machines, Hat film extruders), the in­
terpretation can still be useful, especially away from the edges [137]. 

2.4.6 Other Model Structures 

There have also been extensive developments in modeling sheet and film pro­
cesses using two-dimensional state space or transfer function representations 
[300,360], where one dimension is in the cross-direction, and the other is in 
the machine-direction. An advantage of such models is the ability to clearly 
represent the coupling of the MD and CD directions. However, the analytical 
and computational complexity of dealing with such models has limited their 
use mostly to academic studies [360]. 

Other researchers have chosen to write process signals (e.g., actuator sig­
nals, disturbances) and the profile response to each actuator move in terms 
of a linear combination of basis functions, and to identify the coefficients 
corresponding to each basis function. Basis functions studied include splines 
[173] and discrete orthonormal Chebyshev polynomials, also referred to as 
Gram or discrete Legendre polynomials [207, 217]. In fact, the pseudo-SVD 
model structure can be interpreted as representing another type of basis func­
tion expansion [126]. The two-dimensional representation and basis function 
expansions will be discussed in more detail in Chapter 3. 

2.5 Large-scale Systems 

Sheet and film processes can have hundreds of actuators [61, 362] and up to 
10,000 sensing locations [207, 6]. Moreover, an established trend is for new 
machines to have smaller spacing between neighboring actuators and neigh­
boring sensing locations, which increases the dimension of the system [353]. 
The large-scale nature of these processes makes control more challenging be­
cause: 

1. Most off-the-shelf controller synthesis software have numerical inaccura­
cies for processes with a large number of inputs and outputs [189] (this 
is not to say that the algorithms are inherently nonrobustj only that the 
implementations are typically nonrobust for large-scale systems). 

2. Even with the processing speeds achievable by modern control hardware, 
the large-scale and high speed nature of these machines place constraints 
on the amount of on-line computation available for the control algorithm 
[26, 46, 112, 181, 199, 366]. 

3. Processes of large dimension tend to have plant interaction matrices that 
are poorly conditioned [295], and such processes are well-known to be 
difficult to identify [4, 5, 137, 197, 213, 222, 225] and control [39, 41, 168, 
223, 295, 314]. 
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Model identification for sheet and film processes is complicated by the 
fact that measurements are usually obtained via a traversing sensor. Tech­
niques are available for identifying the nominal model and disturbance char­
acteristics for this problem of identification with missing data [22, 198]. A 
more critical issue is that the amount of high quality data available for sheet 
and film processes is low relative to the complexity of the interactions, so 
that a model with a limited number of parameters is preferred. This is what 
motivated the simplified model structures commonly used in CD control (de­
scribed in Sections 2.4.1 - 2.4.3). The disadvantage of using simplified model 
structures is that they may not accurately describe the profile responses for 
all the actuators across the machine. 

u poorly 
conditioned 

process 

y 

Fig. 2.7. Effect of poor conditioning on identification response 

The condition number of the interactions matrix is equal to the ratio of 
the magnitudes of the largest and smallest pseudo-singular values in (2.8). 
As mentioned above, the interactions matrices for sheet and film processes 
are usually poorly conditioned, that is, the condition number of the inter­
actions matrix is large. The poorly conditioned character of sheet and film 
processes limits the ability to identify highly accurate models, which limits 
the achievable closed-loop performance. To understand why poorly condi­
tioned interactions matrices cause identification problems, consider Figure 
2.7 where the profile vectors (y) are shown that correspond to two input vec­
tors (u) of the same magnitude (Le., Euclidean norm). One profile vector is 
large in magnitude, whereas the other profile vector is small in magnitude. 
In other words, one vector of manipulated variables has a large output re­
sponse while the other vector of manipulated variables has a small effect on 
the output. The responses of some combinations of actuator moves tend to 
"add up" to result in a large profile response, whereas the responses to other 
combinations of actuator moves tend to cancel each other so that the overall 
effect on the profile is small. 

All input vectors of the same magnitude are represented by the circle 
in the left hand side of Figure 2.7; whereas the corresponding profile vectors 
are given by the narrow cigar-shaped ellipsoid at the righthand side of the 
figure (such a graphical representation would be strictly correct for a pro-
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cess with two inputs and two outputs, however, the basic idea generalizes 
to higher dimensions). The input vector corresponding to the smallest mag­
nitude profile vector is the input singular vector Vi in (2.20) corresponding 
to the pseudo-singular value Eii (s) with the smallest magnitude. Similarly, 
the input vector corresponding to the largest magnitude profile vector is the 
input singular vector Vi in (2.20) corresponding to the pseudo-singular value 
of largest magnitude. 

The behavior of the process output to the direction of the process input 
is referred to as the gain directionality of the process. When the interactions 
matrix is poorly conditioned, there is a fundamental limitation to the accu­
racy of the gain directionality that can be obtained with a fixed amount of 
noisy data. Identification experiments will generally have a good signal-to­
noise ratio in the large gain direction (the long axis in the ellipsoid). The 
high signal-to-noise ratio will yield accurate information regarding the mag­
nitude of the large gain, and its directionality. However, for the small gain 
direction, the signal to noise ratio will be quite poor, and it will be difficult 
to obtain accurate information of this gain's directionality or its magnitude. 
The directionality and magnitude associated with the small gains are very 
important to model-based control strategies. For robust control, it is required 
to obtain both a nominal estimate of the gain directionality, and an estimate 
of its accuracy. Procedures for doing this are presented in Chapter 4. 

Another critical issue associated with the identification of these processes 
is how to choose the input moves so as to provide data rich in process infor­
mation relevant for closed-loop control. Methods for addressing this problem 
of input design are presented in Chapter 5. 

2.6 Model Uncertainty 

It is impossible to generate a highly accurate sheet and film process model, 
either phenomenologically or via input-output identification, because of in­
accurate values for the physical parameters of the sheet/film process, cross­
directional movement of the entire sheet or film web including shrinkage 
or stretching [145, 146, 227, 236, 237, 350], lack of complete understand­
ing of the underlying physical phenomena (for example, during drying) 
[37, 44J, unknown disturbances [167, 259, 304J, equipment aging [115J, and 
static friction, metal fatigue, and metal relaxation associated with actuation 
~, 19, 46, 237, 26~. 

Due to their poor conditioning and the limited input-output data avail­
able, a sheet/film process model is only an approximation of the true process. 
A simple method to represent uncertainties is in terms of upper and lower 
bounds on each of the profile parameters {Pi}, and on the parameters in the 
scalar dynamics, such as the time delay and time constant [220J. However, 
it has been shown that models which appear to be highly accurate in the 
individual elements of the process interactions matrix may still have large 
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errors in the gain directionality, resulting in poor closed-loop performance 
[5, 135, 168, 197, 225]. More general multivariable uncertainty descriptions 
are needed to accurately quantify the accuracy in the gain directionality. 

In the most general representation for model uncertainty, the inaccuracy 
is represented by describing the process model as a set of plants P(8), given 
by a nominal model P{ 8) and a set of norm bounded perturbations ..1. The six 
major types of multivariable uncertainty descriptions are listed in Table 2.3 
[315,242]. Figure 2.8 shows the location of each uncertainty in the process. 

Table 2.3. Six major types of .multivariable uncertainty descriptions (dependence 
on 8 suppressed for brevity) 

Uncertainty Mathematical 

Type Representation 

Additive F = P+WAL1A 

Multiplicative Input F=P(I+w/L1/) 

Multiplicative Output F = (I + woL1o)P 

Inverse Additive 
• 1 
P = (I + WIAPL1IA)- P 

Inverse Multiplicative Input 
• 1 

P = P(1 + wIIL1II )-

Inverse Multiplicative Output 
• 1 
P = (I + WIOL1IO)- P 

-u y 

Fig. 2.8. Open-loop block diagram with all uncertainty types 

Through weights each perturbation is normalized to be of size one. For 
linear time-invariant uncertainties, this normalization gives: 

sup U{L1i(8)) == IIL1i(8)1100 ~ 1, (2.21) 
s=jw 

where L1i (8) is a stable transfer function representing unmodeled dynamics 
(e.g., as would be associated with neglected high-order dynamics), and u is 
the maximum singular value [156]. In the more general case where L1i is not 
treated as being linear time-invariant, other norms on L1i are used [42, 263, 
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367]. Uncertainties that have been carefully characterized include nonlinear 
time-invariant (NLTI), nonlinear time-varying (NLTV), linear time-varying 
(LTV) [367], and arbitrarily-slow time-varying (SLTV) [263]. 

Multiplicative input uncertainty represents inaccuracies associated with 
the actuators, whereas multiplicative output uncertainty represents inaccu­
racies associated with the measurements. Additive and multiplicative output 
uncertainties are the most commonly used to represent unmodeled process 
dynamics. The "inverse" uncertainties allow for processes in which it is not 
known with certainty whether poles near the imaginary axis are unstable or 
stable. Since sheet/film processes normally have stable open-loop response to 
actuator manipulations, most inverse uncertainties are not useful for mod­
eling inaccuracies associated with sheet/film processes. The exception is the 
inverse multiplicative output uncertainty description, which provides a con­
venient mathematical means to address performance specifications within the 
context ofrobust stability (this is discussed in more detail in Chapter 6). 

Each uncertainty block is of dimension compatible with the nominal model 
P(s). This implies that L1A has the same dimensions as P(s), ..11 and L111 
are square matrices of dimensions equal to the number of actuators, and ..10 
and ..110 are square matrices of dimensions equal to the number of sensing 
locations. 

Each uncertainty block can have structure. In the literature, additive un­
certainty (typically representing unmodeled process dynamics) is normally 
represented as a full matrix, whereas multiplicative uncertainties are treated 
as being either full or diagonal. Further, diagonal uncertainty blocks can 
be represented as having diagonal elements that are independent scalars, 
L1i = diag{5ij}, or repeated scalars, L1i = 5il. A repeated diagonal uncer­
tainty description may be appropriate for modeling inaccuracies in the sensor 
model, since the sensor is usually of the tracking type, with the same sensor 
being used to take all measurements. An independent diagonal uncertainty 
description would be more appropriate for representing inaccuracies in the 
actuator models [115] since each actuator is expected to have somewhat dif­
ferent dynamic response. 

The uncertainty weights in Table 2.3 assume that components of the same 
type (for example, slice lip screws) have the same level of uncertainty associ­
ated with their respective models. This is a good assumption for sheet/film 
machine components, since each component of a particular type is almost 
always manufactured by the same company to provide the same level of re­
producibility. Note that this assumption does not necessarily require that 
the models for each component of a particular type are precisely equal for all 
plants within the uncertainty description, only that the level of inaccuracy 
of each component is the same. 

Now let us consider an additional additive uncertainty description for 
a sheet and film process, in which the pseudo-singular values in (2.8) are 
uncertain. The uncertainty description is represented as independent diagonal 
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additive uncertainty (that is, ..1DA = diag{8k}, k = 1, ... ,n): 

(2.22) 

where WDA is a diagonal weighting matrix, not necessarily equal to a scalar 
multiplied by the identity matrix. Theoretical justifications of this uncer­
tainty description, including methods to compute W DA from experimental 
data, are provided in Chapter 4. 



CHAPTER 3 

LITERATURE REVIEW 

The plastic film industry began implementing profile control in the early 
1970s (although not much of this work seems to have been published [354]). 
Profile control was first implemented to metal rolling machines in the mid-
1970s [52, 320, 334]. The first implementation of profile control on paper 
machines occured in 1977 [318]; however, widespread use of such systems did 
not occur until the 1980's [185, 316, 362]. The control of cross-directional 
variations in blade coaters became widespread in the early 1990s [46, 47, 
348]. Here we review the literature on sheet and film process control, with 
particular attention to the effectiveness of existing techniques at addressing 
the characteristics of sheet and film processes covered in the previous chapter. 
First, we assess the effectiveness of various approaches to profile control, 
including linear control, model predictive control, and robust control. Then 
we review approaches for profile estimation, model identification, and on-line 
process monitoring. 

3.1 Linear Control 

The two main profile control schemes reported in the literature before 1988 
were linear quadratic optimal [21, 32, 330, 274, 362] and model inverse-based 
control [19, 363]. These profile control algorithms continue to be implemented 
on some machines [112, 157, 181, 183]. Mostly steady-state models were used, 
with new control actions often taken only after steady-state was reached. This 
is equivalent to treating the process dynamics as being entirely due to a time 
delay, which is a good assumption for many sheet and film processes. Linear 
quadratic optimal control was applied to dynamic models in later studies 
[93, 120, 333]. The linear quadratic optimal controller for two-dimensional 
models of sheet and film processes was also derived [178, 179]. 

Analysis and linear controller design for circulant symmetric processes 
(described in Section 2.4.2) have been studied by many researchers, al­
though not usually within the context of sheet and film process control 
[129,130,174,175,176,230,231,234,352]. The model structure can be ex­
ploited to simplify the design of decentralized [1, 325, 352], linear quadratic 
[56], and Hoc-optimal controllers [193, 194]. While results in this 

area are 

of 
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significant theoretical interest and industrial a.pplication, such models ade­
quately describe a very restrictive form of sheet and film process. 

Many of the linear profile control techniques do not explicitly address 
the issue of robustness to inaccuracies in the model. Because of this, appli­
cations of these methods can result in poor closed-loop performance [135]. 
Another weakness of the linear control approaches is that constraints can 
be satisfied only by sufficiently penalizing the control action in the objective 
function. Unfortunately, this will make the control action sluggish when the 
disturbances are uniform across the sheet/film and the control penalty is not 
needed. 

3.2 Linear Control with Antiwindup Compensation 

Depending on the process, constraint-handling may be needed when the dis­
turbances are sufficiently large and have sharp spacial variations across the 
sheet or film. A common industrial approach to deal with actuator constraints 
is to "clip" the control actions so that the constraints are satisfied (as illus­
trated in Figure 3.1). This will change the direction of the control actions, 
which can seriously degrade the closed-loop performance [66,305]. 

Umax 

- U max 

feasible 
region 

-U max 

u2 
infeasible 

"clipped" 

ul 

u max 

Fig. 3.1. Uncompensated actuator constraints may change the direction of the 
input whereas directionality compensation does not 

The traditional approach for dealing with constraints is to use simple 
static nonlinear elements (for example, selectors and overrides) which modify 
the linear control system only when necessary [58, 59]. Such methods are 
commonly referred to as antiwindup compensation [141, 152, 257J. Advan­
tages of this approach are that: (1) well-developed linear control methods can 
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be applied to design the linear controller; and (2) such constraint-handling 
methods are almost as easy to implement as a purely-linear controller. The 
static nonlinear elements are simple operations requiring very little compu­
tational effort and are already standard in industrial control. 

The disadvantages of using static nonlinear elements are that they can 
cause severe performance degradation such as limit cycles and increased vari­
ance [26]. Numerous ad hoc design methods have been developed for avoiding 
some of these problems, but these techniques can perform poorly (or may even 
lead to instability) in some situations [66]. Optimization-based algorithms to 
construct antiwindup compensators have been proposed [212], but are not 
yet sufficiently developed to consider for application to large-scale processes. 
In fact, even the development of a nonconservative performance objective to 
use in such optimization-based algorithms while having reasonable computa­
tional requirements is a challenge [292]. Below we focus on three antiwindup 
approaches that have been discussed with respect to sheet and film processes. 

3.2.1 Directionality Compensation 

Figure 3.1 illustrates the method of handling constraints referred to as direc­
tionality compensation [66]. When the output of the linear controller cannot 
satisfy the constraints on the actuator movements, the directionality compen­
sator scales back the linear control output while keeping the same direction 
until the control action becomes feasible. For some industrial-scale adhesive 
coaters at the Avery-Dennison Company, directionality compensation per­
formed nearly as well as model predictive control [46]. However, this is not 
expected to hold for general sheet and film processes. 

3.2.2 Observer-based Compensation 

Observer-based antiwindup compensation is described in some detail in a 
popular controls textbook [11]. The use of observer-based antiwindup com­
pensation was applied in a paper machine simulation study [217]. While this 
approach is not optimal over the class of antiwindup compensators [211], its 
performance can be adequate for some processes. 

3.2.3 IMC-based Antiwindup Compensation 

The use ofthe Internal Model Control (1M C)-based antiwindup compensation 
[373] for application to sheet and film processes has been proposed [338]. This 
approach, which can be interpreted as an extension to model state feedback 
[238], optimizes a particular nonlinear time-domain performance objective. 
Although the method may not be optimal for the performance objectives 
most appropriate for a sheet and film process, a significant advantage to IMC­
based antiwindup compensation is that it is rather simple to implement. It 
would be interesting to determine how well the approach works on realistic 
simulation models of large scale sheet and film processes. 
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3.3 Model Predictive Control 

The application of Model Predictive Control (MPC) has been considered for 
the control of paper machines [31, 101, 109, 123, 278, 284, 372], coating 
processes [46,47], and polymer film extruders [64, 65,177,270,359]. In MPC 
[31, 127, 147, 240, 275] (and its many variants, MPHC [273], GPC [84, 85, 
332], DMC [96,95,243, 265, 265], IDCOM [143, 273, 272], MMC [80D, the 
control objective is optimized on-line subject to the constraints. For example, 
actuator settings within the constraint set could be selected to minimize the 
CD profile variance of sheet or film. A linear or quadratic optimization is 
solved at each sampling instance, and off-the-shelf software is available for 
performing these calculations for small scale control problems [241]. However, 
for sheet and film processes, these optimization problems can be very large 
(over five hundred decision variables and over two thousand constraints [33, 
266, 339]). For high speed sheet and film processes with industrial control 
systems, it is not always feasible to solve the optimization problem within 
the sampling interval [26, 46, 112, 181, 199, 366]. 

Consequently, algorithms have been developed that reduce the compu­
tation associated with obtaining an optimal or suboptimal solution to the 
linear or quadratic programs associated with model predictive control. Much 
of this work was focused on application to sheet and film processes, although 
many of the algorithms that were developed apply to more general processes. 

Solving an MPC problem is equivalent to solving a linear or quadratic 
program (QP) of size mn, where m is the control horizon (typically on the 
order of 10 sampling times) and n is the number of decision variables (usually 
equal to the number of actuators). A linear program results if the objective is 
to minimize the I-norm or oo-norm of the measured sheet or film profile, and 
a quadratic program results if the objective is to minimize the variance of 
the sheet or film measurements. The number of flops required by the fastest 
generic QP algorithms is O((mn)3) [246]. The computational requirements 
can be reduced for QP-based MPC algorithms using warm starts, sparse­
ness, and blocking [148, 275]. Furthermore, the quadratic program can be 
structured so that the computation time is linear in the control horizon m, 
giving a flop count of O(m(n + 2p)3), where p is the number of states [266]. 
Warm starts, exploiting sparseness, and blocking can also be used with the 
linear programming (LP) formulation of MPC [99, 101, 109, 122, 123, 124J. 
There has been some discussion concerning whether the LP or QP formula­
tion is best suited to addressing. the real control objectives in sheet and film 
processes [71, 256, 267J. 

One approach to obtain faster computation times is to write the control 
vector in terms of a linear combination of a low number of basis functions, and 
then optimize over the coefficients of the basis functions. The lower number 
of optimization variables in the MPC algorithm results in shorter computa­
tion times. This approach has been demonstrated in simulations of a paper 
machine where the Karhunen-Loeve expansion and the singular value decom-
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position was used to define the basis functions [277, 282]. This latter reference 
used basis function expansions for the manipulated variables, the measured 
profiles, and the disturbances. It is possible to formulate an MPC algorithm 
so that the number of independent variables in the optimization problem is 
equal to the number of basis functions used to represent the disturbances, 
which can be much smaller than the number of basis functions used to rep­
resent the interactions matrix [282]. 

Even faster computation times are possible using algorithms that com­
pute an approximate solution to the MPC problem. The simplest approach 
is to add a penalty on the constraints in the objective function to an uncon­
strained MPC problem, and then iterate the penalty until the solution to the 
unconstrained MPC problem satisfies the constraints [77, 79, 125, 173,362]. A 
related approach speeds up the MPC computations by replacing the actuator 
constraints with an optimal 2-norm approximation [49, 339, 340, 337]. This 
latter algorithm is robust in the sense that it avoids exciting uncontrollable 
process directions, although it does not actually guarantee robustness to all 
types of model uncertainties (see Chapter 7 for more details). When imple­
mented correctly, these algorithms have an on-line flop count of O((mn)2), 
and tend to provide a smoother series of input vectors than other methods. 
This can be an advantage in many practical applications for which a "saw­
tooth" input vector is undesirable (e.g., it may result in excessive wear to 
a slice lip). Another way to speed up MPC computations is to treat all fu­
ture actuator settings as unconstrained [372], which reduces the flop count 
to O(n3). The loss in closed-loop performance using this approximation was 
negligible when applied to a simplified paper machine model and other sim­
ulation examples [372]. While simulation results confirm that approximate 
MPC algorithms can be significantly faster than exact MPC algorithms, in 
theory the approximate algorithms can result in poorer closed-loop perfor­
mance. 

The combination of time-varying Kalman filtering for profile estimation 
and the appropriate implementation of model predictive control gives nom­
inally stable closed-loop dynamics [62]. A disadvantage of MPC is that no 
general method exists for analyzing the closed-loop stability or performance 
when there are model uncertainties [265, 67, 142, 252]. There do exist algo­
rithms which guarantee zero steady-state error under plant/model mismatch 
for exponentially decaying disturbances [262, 374], but these algorithms pro­
vide no indication of the dynamic performance. Zaftriou [369, 370] proposed 
a method for analyzing the dynamic performance for an uncertain linear sys­
tem controlled by MPC, but the method is too computationally demanding 
to be applied to sheet and film processes. 

Interestingly, control systems for sheet and film processes have been re­
ported which provided adequate closed-loop performance with no or mild 
constraint-handling capabilities. For example, for an industrial-scale adhe­
sive coater, it was shown that model predictive control did not provide an 
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appreciable improvement in performance over a scheme which required much 
reduced computation [46]. For a blown film extruder, a controller designed 
to not manipulate uncontrollable plant directions did not need constraint­
handling at all [135]. It is shown in Chapter 4 that explicit constraint-handling 
is not necessary for many large-scale sheet and film processes provided that 
the controller is designed to be robust to model uncertainties. 

Explicit conditions have been developed to determine whether constraint­
handling is needed for a particular process [345]. The formulation considers 
the effects of measurement noise, process disturbances, model uncertainties, 
plant directionality, and the quantity of experimental data. Application to 
a paper machine model constructed from industrial data provides further 
evidence that many sheet and film process models are not sufficiently accu­
rate to require explicit constraint-handling, for example, as offered by model 
predictive control. 

3.4 Robust Control 

As discussed in Chapter 2, models for sheet and film processes have a signif­
icant amount of uncertainty associated with them. For large-scale systems, 
simulation studies that plot deviations in the closed-loop response when the 
plant is perturbed provide a limited investigation of the robustness to model 
uncertainty [46, 63, 101]. 

Model uncertainty representation for sheet and film processes was de­
scribed in the last chapter (Section 2.6). The function, p., is a nonconservative 
measure for system robustness to model uncertainty [106, 302]. The strategy 
of robust control in addressing this plant/model mismatch is to represent the 
true process by a set 0/ plants. The term robust is used to indicate that some 
property (for example, stability or performance) holds for a set of possible 
plants as defined by the uncertainty description. The term nominal refers to 
the system without model uncertainty. 

No researcher has ever proposed the use of p.-theory to design controllers 
for sheet and film processes without first reducing the dimension of the pro­
cess. In fact, the computation time for any exact algorithm for p.-theory can 
be exhorbitant for processes of high dimension [45, 51, 329], no matter how 
cleverly the algorithm is constructed [171, 341, 342, 343]. Although tight 
approximations allow computation which has polynomial growth as a func­
tion of process dimension, the order of this polynomial seems to be large 
('" O(n4) for controller synthesis) [30, 368]. Published examples [189, 220] 
illustrate that current p. software is inadequate for direct application to large­
scale sheet and film processes. 

Several researchers have focused on reducing the computational load as­
sociated with designing, analyzing, and implementing robust controllers for 
sheet and film processes. One of the earliest studies of robustness of cross­
directional control systems was for shape control in steel rolling [167]. The 
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robustness of several control schemes were compared through some analysis 
and in simulations. It waS demonstrated that the use of basis function expan­
sions could reduce the sensitivity of the closed-loop system to uncertainties in 
the interaction matrix. This theme was explored in a series of papers by var­
ious authors [7, 134, 137, 139, 173, 177, 216, 286, 290, 291, 287]. It has been 
shown that spline-based methods result in reduced-order controllers that are 
less robust than those produced using other basis functions [92]. 

Laughlin, Morari, and Braatz [220] used circulant matrix theory to de­
velop methods for designing conservative robust multivariable controllers 
based on the design of only one single loop controller. Circulant symmetric, 
Toeplitz symmetric, and centrosymmetric symmetric models were covered by 
the theory. The controllers for circulant symmetric and Toeplitz symmet­
ric models were decentralized; whereas centrosymmetric symmetric models 
were controlled by a decentralized controller in series with a constant decou­
pIer matrix. A strong advantage of the approach is that no iterative design 
procedure (for example, like that required for most robust controller design 
algorithms [108]) was required for computing the robust controller. Disad­
vantages of this approach are that: (i) only parametric uncertainties in the 
interaction matrices are allowed; (ii) forcing the controllers to have these 
particular structures restricts the performance that can be achieved by the 
control algorithms; and, (iii) application of the method to a process with a 
different number of sensors than actuators would require squaring-up to give a 
square transfer function matrix. Although squaring-up procedures have been 
applied industrially for at least the last fifteen years [167, 288, 289, 323], they 
can result in a loss of performance when model uncertainty and actuator con­
straints are taken into account [92, 295]. 

Duncan [117] developed a robust controller design algorithm for sheet 
and film processes with arbitrary interaction matrices. Sufficient conditions 
for robust performance with multiplicative input and output uncertainties 
were derived in terms of satisfying robust performance for single-input single­
output (SIS0) subsystems. A scalar penalty on the manipulated variables was 
selected large enough for the resulting linear quadratic optimal controller to 
be robust. A similar approach was developed which provided robustness to 
a very highly structured uncertainty description by the setting of multiple 
control penalities [323]. The algorithm was tested in simulations to a paper 
machine model constructed from experimental data. 

Hovd, Braatz, and Skogestad (HBS) [190, 191] used the properties of 
unitary-invariant norms to design nonconservative robust multivariable con­
trollers based on controller synthesis for a diagonal plant. This method was 
applicable to circulant symmetric processes (i.e., no edge effects) for some 
types of uncertainty descriptions, and to general interaction matrices for other 
types of uncertainty descriptions. The approach was generalized to processes 
that have both controllable and uncontrollable modes [134, 138,298]. A mod­
ified version of the control algorithm [322] was implemented as an industrial 



44 3. Literature Review 

profile controller working with a hardware-in-the-Ioop paper machine simu­
lator [324]. The closed-loop performance results agreed with predictions from 
the robustness analysis. 

Chapter 6 describes extensions and refinements to the robust control al­
gorithms of HBS [48,344]. First, substantially simplified statements are pro­
vided of both the theory and the resulting algorithms. Second, for many 
uncertainty types, the control design calculations are further simplified. For 
example, where HBS may reduce the multivariable robust control problem to 
a large number of single-input single-output (SISO) robust control problems, 
in many cases it is possible to reduce the multivariable problem to a single 
SISO robust control problem. Third, nonlinear as well as linear perturbations 
are addressed. The advantage of considering nonlinear perturbations is that 
some profile properties (such as moisture) provide nonlinear deviations from 
the nominal model. The extended algorithms are applied to a simulated pa­
per machine, based on a realistic description of the interactions across the 
machine, and the level of model inaccuracies. Both full-order and low-order 
controllers are designed that are robust to model uncertainties. The simula­
tion example is of substantially higher dimensionality than that of any robust 
control problem ever considered. 

3.5 Profile Estimation 

The cross-directional profile must be determined from measurements taken 
either from traversing or full-scan sensors. A common industrial practice for 
separating the MD and CD variations, known as exponential multiple-scan 
trending [318, 326], weighs the current measurement at each CD position to 
its long-term historical value [355]. Since process disturbances are expected to 
be correlated (for example, during drying, heating, stretching), this method 
may give poor profile estimates [22]. 

Several researchers have applied least-squares optimal estimation theory 
[8] to estimate the cross-directional profile. For a process with a scanning sen­
sor, profile estimates can be obtained using a periodic time-varying Kalman 
filter, which can be computed using a periodic lliccati difference equation 
[22, 62, 158, 173, 269]. An alternative approach to computing this Kalman 
filter is to solve a "lifted" algebraic lliccati equation [333]. A time-varying 
Kalman filter has been also derived for estimating the MD and CD varia­
tions for the case where there is both scanning and fixed sensors [116]. Opti­
mal least-squares estimation using a two-dimensional transfer function (the 
cross-direction and the machine-direction) has been explored in a series of 
papers [178, 179, 260]. A scheme consisting of a recursive least-squares algo­
rithm for estimating the cross-directional profile deviations and an extended 
Kalman filter for estimating the machine-direction deviations was developed 
[113, 114, 355, 356]. A dual Kalman filter which contains a combination of 
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a temporal model and a spacial model has been applied to industrial pro­
cesses [76]. Wavelets can be used to greatly reduce the amount of data before 
feeding it into an estimation algorithm [2, 245]. 

An alternative approach is to estimate the profile deviations for a set of 
consecutive profile measurements simultaneously [276, 280]. These profiles 
form a matrix, with the CD position as one index and MD position (or time) 
as the other index. Computing the singular value decomposition of the matrix 
and dropping subspaces associated with small singular values gives a low rank 
matrix in which random variability in the data has been smoothed. At each 
sampling time, the most recent profile measurement vector is included and 
the oldest profile measurement vector is dropped [285, 281]. This approach 
is closely related to principal component analysis, with the representation of 
the matrix in terms of the singular vectors also known as the Karhunen-Loeve 
(KL) expansion. The coefficients of the KL expansion can be modeled by a 
low-order autoregressive model [279, 283]. The low-order representation for 
the profile deviations can be coupled with optimal control algorithms [7]. 

Most sheet and film processes have nonuniform stretching or shrinkage, 
and sideways drift in the position of the sheet/film. This effect is usually 
large enough that it is not known a priori which sensor measurement loca­
tions correspond to which actuators. The estimation of these correspondances 
is usually referred to as the mapping problem or the alignment problem. The 
industrial standard approach to alignment is to perform some bump tests at 
various cross-directional locations, and then to use least-squares estimation 
with a known actuator response model to fit parameters that define align­
ment. The simplest model is the uniform shrinkage model, which assumes 
that the center of the downstream response Cj to the jth actuator is linearly 
related to the position of the jth actuator Xj [162, 163, 1801: 

(3.1) 

Alignment models for sheet and film processes with nonlinear shrinkage in­
clude fuzzy logic models [161] and neural network models [89]. A technique to 
estimate the alignment using closed-loop data has been developed [91, 118]. 
The above alignment algorithms have been implemented on real machines 
[90, 161] 

A measurement approach that may vastly improve the ability to construct 
the mapping for paper machines is on-line imaging and image analysis [105, 
155, 170, 195]. The approach takes into account the fact that paper usually 
has a faint impression in it from the textiles used on the machine. While these 
faint impressions are not always visible to the naked eye, the impressions can 
be observed by image analysis algorithms that take into account the periodic 
nature of the impressions (such as Fourier transform analysis). This approach 
has been demonstrated in several applications to industrial paper machines 
[3501. As computers become faster, the high speed capture and processing of 
images will become more and more accessible, likely to the point where the 
results of the image analysis can be used in on-line control. 
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Another approach that may lead to improved profile estimates for Four­
drinier paper machines is the use of a CCD camera to measure the dry line, 
which is the visual border between where the fiber sheet has a glossy surface 
and where it has a rough surface [209]. This border can be seen in Figure 1.4. 
The glossy surface arises because of free-standing water at the surface of the 
fiber sheet, and the dry line occurs where the water has sufficiently drained 
through the Fourdrinier wire that fibers are at the surface of the fiber sheet. 
The advantage of measuring the dry line is that these measurements can be 
collected much closer to the actuation than for traditional sensor technolo­
gies, resulting in a much shorter time delay. Also, the data can be collected 
at a much higher resolution than that obtained by scanning sensors. This 
sensor technology has been implemented on industrial paper machines [209]. 

3.6 Model Identification 

Usually the most challenging, time-consuming, and expensive step in the 
design of the control system is the development of the process model. The 
identification of accurate models for sheet and film processes is especially 
challenging when traversing sensors are used, since in this case the quantity 
of data is low relative to the dimensionality of the process. 

However, the use of traversing sensors does not require a significant in­
crease in the complexity of the development of model identification algo­
rithms. The data can be utilized in a model identification algorithm, im­
mediately after each sensor reading is taken, by using techniques developed 
for identifying process models when there are missing data [198, 22]. It is 
straightforward to couple such techniques with any model identification al­
gorithm which assumes that all data are available. Higher quality models are 
obtained with full-scan sensors are used [78, 215], since the quantity of data 
provided by these sensors is many orders-of-magnitude larger than provided 
by traversing sensors. 

For most sheet and film processes, the high dimensionality and strong 
interactions make it impossible to identify a highly accurate full-dimensional 
model between the actuator and sensor locations [134, 217]. This motivates 
the identification of lower dimensional models, for example, as represented 
by orthogonal polynomials [207, 217, 359], Fourier series [121, 134], eigen­
vectors [126, 138], or splines [173]. The lower dimensional models can be 
either constructed directly from plant data, or by first constructing a full­
dimensional model and then doing model reduction [217]. The advantage of 
the second approach is that any known structure of the interaction matrix 
(e.g., Toeplitz) can be used in the construction of the full-dimensional model. 
This can greatly reduce the number of estimated model parameters, leading 
to better identifiability [64, 77]. Even fewer model parameters can be ob­
tained if the response to a single actuator move can be parametrized with 
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a small number of model parameters [149, 150]. Such approaches have been 
applied to industrial data [151]. 

The poorly conditioned nature of sheet and film processes motivates the 
identification of both a nominal model and an estimate of its accuracy. This 
accuracy estimate should be nonconservative, otherwise the resulting closed­
loop performance obtained by a robust controller will be sluggish. On the 
other hand, too tight of an uncertainty description will lead to aggressive con­
trol actions with large overshoots or possible instability. Linearized statistics 
[17] or Monte Carlo simulation [18] can be used to produce nonconservative 
estimates of the model accuracy [135, 137]. The model uncertainty descrip­
tion can then be used to determine the order of the lower order model for 
the interactions. This approach is described in more detail in Chapter 4. 

A significant consideration for poorly conditioned processes such as sheet 
and film processes is the experimental input design. The industrial standard 
is the "bump test" , in which the output data are collected for a simultaneous 
step input in a limited number of actuators across the machine [164, 160]. 
A more sophisticated approach that has been applied to an industrial paper 
machine is to use pseudo-random binary sequences instead of step inputs at 
the limited actuator locations [183]. Neither of these experiments excite the 
higher order spacial directions [136], so the resulting input-output data are 
not sufficiently informative to construct accurate models for those modes. An 
alternative approach is to vary all the manipulated variables simultaneously 
[78]. While such an approach may give more informative data than moving 
a limited number of actuators, it still provides lower signal-to-noise ratios in 
plant directions associated with higher order spacial directions [136]. 

A systematic procedure has been developed for selecting the manipulating 
variables during the collection of input-output data to simultaneously satisfy 
process constraints and to provide the most useful model information for 
closed-loop control purposes [136]. The procedure involves the solution of a 
nonlinear program with the process constraints as program constraints and 
the objective a function of the process modes (see Chapter 5 for details). The 
procedure leads to order-of-magnitude improvements in model accuracy, and 
significant improvements in closed-loop performance. A further advantage of 
this approach is that the number of experiments needed to build a highly 
accurate model is much less than with other approaches. 

3.7 Process Monitoring 

Equipment faults and failures are common during normal sheet and film 
process operations. Common problems include poor or broken electrical con­
nections, mechanical breakages in strain gauges used to keep track of actuator 
movements, and frozen bolts or stripped screws used to implement actuator 
movements [264]. 
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On-line process monitoring includes the problems of fault and failure de­
tection, isolation, and compensation. In what follows we will use the term 
fault to apply to both faults and failures, since a failure is just an extreme 
type of fault. 

3.7.1 Fault Detection 

The detection of faults during paper machine operation has been explored by 
many researchers. The predominant approach is to calculate on-line the sheet 
or film profile variation [60, 98, 274, 362] or other statistics [103, 104, 202, 204] 
from the process input-output data. An increase in a statistic indicates that 
a fault has occurred [187, 201, 214, 299]. 

3.7.2 Fault Isolation 

It is common to isolate the direction of faults by separating the overall pro­
file variance (0"2) into cross-directional (O"b), machine-directional (O"~), and 
residual (O"~) components [60, 98, 318]. The typical assumption is that the 
components of the total variation are independent, so that the total variance 
is the sum of its components: 0"2 = O"b + O"~ + O"~. This assumption, although 
not applicable for many process disturbances [274], allows the separate calcu­
lation of the variances [60,97,362]. An increase in either directional variance 
(O"b or O"~) indicates that the fault is along that direction. An increase in 
the residual variation O"~ may indicate that the fault is due to a sheet or film 
instability [60, 303, 362]. 

An approach that takes into account system controllability has been de­
veloped [3, 125], in which the variance of the observed profile is compared to 
that obtainable by a minimum variance controller. Both variances are com­
puted only over the controllable subspace of the interaction matrix, since no 
control algorithm can be expected to reduce the variations for the uncon­
trollable modes of the process [119, 121, 134, 135]. The use of the process 
model in the fault detection procedure is a significant departure from earlier 
methods for detecting machine problems. The approach allows the isolation 
of faults. The difference between the observed profile and the minimum vari­
ance profile can be mapped back to the actuators to allow poor control to 
be associated with individual actuators [125]. Plotting the difference in vari­
ations associated with each actuator as a function of scan number provides a 
clear picture of the operating conditions of the machine. Application to data 
from an industrial paper machine allowed the quick determination of poor 
control associated with a number of actuators. 

For applications in which the actuators have a substantial likelihood of 
becoming faulty, it is useful to feed back a direct measurement of the actuator 
location [46, 64, 248, 310, 351]. This allows quick detection of stripped screws, 
burned-out motors, etc. 
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3.7.3 Fault Compensation 

The controllers produced by the design procedure of Laughlin, Morari, and 
Braatz [220] were provably tolerant to actuator failures. Although several 
researchers (see [43] and citations therein) have developed methods to de­
sign linear controllers which are tolerant to faults for general processes, these 
methods are either computationally expensive or conservative. Also, a differ­
ent linear controller is expected to be optimal for each operating condition 
associated with each fault. Therefore, requiring the fault compensator to 
be the same linear controller for all conditions may give poor performance 
for some or all of the operating conditions. Model predictive control, al­
though computationally expensive, provides a simple nonlinear method for 
fault compensation for general processes-the fault is represented as an ad­
ditional constraint in the quadratic or linear program formulation [265]. This 
approach has been applied to a simulated polymer film extruder [64], where 
direct measurement of the actuator positions was used to locate a faculty 
actuator. 
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IDENTIFICATION AND CONTROL 



CHAPTER 4 

MODEL REQUIREMENTS AND PROCESS 
IDENTIFICATION 

Sheet and film processes are inherently difficult to identify. The extensive 
interactions across the machine result in the process transfer function hav­
ing a large condition number, and it is well-known that identifying the gain 
directionality for such processes is challenging (as discussed in Section 2.5). 
The input signals used for process identification are constrained, which limit 
the signal-to-noise ratios obtained during experimental input-output testing. 
Sheet and film processes have a high input-output dimensionality, implying 
that a significant number of model parameters must be identified. At the 
same time, the quantity of experimental data that can be collected is usually 
low, in that traversing sensors are typically used, which measure a limited 
portion of the profile at any given time. Also, the time period during which 
input-output experiments can be carried out is also limited. For example, a 
film extruder may change polymer grades after only eight hours, in which 
case the entire time period for conducting experiments must be substantially 
less than eight hours for the identified model to be available long enough to 
be used for closed-loop control purposes for the current polymer grade. Typ­
ically, the input-output experimental runs are constrained by various staff 
(e.g., process operators, plant managers) to run no longer than 20 minutes. 

This chapter shows how the performance achievable from a closed-loop 
control algorithm is limited by the accuracy of the identified model. The­
ory and simulations are used to show the relationship between the quality of 
the process model and the resulting closed-loop performance. Exactly which 
aspects of the process must be known are quantified. This leads to a pro­
cedure, which is presented in the next chapter, that shows how to conduct 
identification experiments in an optimal manner. 

4.1 Model Requirements 

As discussed in Section 2.4.4, transfer functions for sheet and film processes 
can be written in pseudo-SVD form 

P(s) = UE(S)VT, (4.1) 

A. P. Featherstone et al., Identification and Control of Sheet and Film Processes
© Springer-Verlag London Limited 2000
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where U and V are constant real unitary matrices, and the elements of the 
diagonal matrix 17(8) are transfer functions. Nearly every published model 
of sheet and film processes can be represented in the pseudo-SVD form. 

One goal of this chapter is to provide insight as to which aspects of the 
process must be extracted for the model-based controller to provide adequate 
closed-loop performance. To do this, first it is assumed that the process can be 
placed in pseudo-SVD form (4.1), and that the orthogonal matrices U and 
V in (4.1) are exactly known. This assumption exactly holds for circulant 
symmetric processes (2.4), in which the orthogonal matrices U = V = R 
can be computed before the experimental data are collected (as discussed in 
Section 2.4.4). The assumption is removed in the next section, which describes 
how to design controllers to be robust to inaccuracies in U and V, as would 
occur, for example, for fiat web processes which have edge effects. 

d 
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K(s) 

u 
Pt(s) y 

-

n 

Fig. 4.1. Standard feedback control system. The manipulated variable is u, the pro­
cess output is y, the setpoint is r, the measurement noise is n, and the disturbances 
are d and I. 

Consider a closed-loop system with the standard feedback controller as 
shown in Figure 4.1. In Chapter 6 it is shown that, for pseudo-SVD processes 
(4.1), controllers of the form 

(4.2) 

(referred to as SVD controllers) provide optimal performance under mild 
technical conditions. The optimality is true even for the case where model 
inaccuracies are present. This strongly motivates the use of SVD controllers 
for sheet and film processes. 

Given the relatively slow speed of measurements and manipulations com­
pared to the speed of the rest of the process dynamics, the most important 
performance specification for sheet and film processes is zero steady-state 
error [44]. For a stable plant to have zero steady-state error, the final value 
theorem implies that the controller must have an integrator (1/ s) in each 
channel [251, 321]. A SVD controller with integral action in all channels 
while having no poles in the open right half plane will be referred to as an 
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integral SVD controller. The performance and robustness characteristics of 
the SVD controller and the requirement of integral action motivate the fol­
lowing result concerning the gain identification requirements for pseudo-SVD 
processes. 

Theorem 4.1. Consider a closed-loop system without actuator limitations 
as shown in Figure 4.1. Assume the true plant Pt(s) and a model of the plant 
Pm(s) are stable proper rational transfer functions that are of the pseudo­
SVD form (Pt(s) = UEt(s)VT and Pm(s)=UEm(s)VT). Then an integral 
SVD controller designed to stabilize Pm(s) will also stabilize Pt(s) only if 
Et,ii(O)/ Em,ii(O) > 0, for a~l i. Furthermore, there exists an integral SVD 
controller that stabilizes both Pm (s) and Pt (s) and continues to do so with 
arbitrary detuning of its single loop gains EK,ii(O) if Et,ii(O)/Em,ii(O) > 0, 
for all i. 

If any of the true process gains Et,ii(O) are equal to zero, then there does 
not exist a nonsingular integral controller that stabilizes the unconstrained 
closed-loop system [69J. If none of the true process gains are exactly equal 
to zero, then Theorem 4.1 implies that an integral SVD controller exists 
that stabilizes both the model and the true process if each identified model 
gain Em,ii(O) has the same sign as the corresponding process gain of the 
true process Et,ii(O). Furthermore, these sign conditions must hold for any 
model-based integral SVD controller to stabilize the true process. Relation­
ships between Theorem 4.1 and other results in the literature are described 
elsewhere [132J. The proof of Theorem 4.1 is given in Section 4.5. 

For a process without actuator limitations, an integral SVD controller 
whose design is based on a model with inaccurate signs of its steady-state 
gains will cause an unstable closed-loop response. Since sheet and film pro­
cesses (like all real systems) have constraints on their actuator moves, the 
vector of manipulated variables for such a controller will grow in magnitude 
until the actuator moves become limited, irrespective of how small the dis­
turbances are that enter the system. Although Theorem 4.1 does not imply 
that any non-SVD integral controller whose design is based on a model with 
inaccurate signs of its steady-state gains will destabilize the closed loop sys­
tem, such destabilization will tend to occur [133, 137], as will be illustrated 
in simulation studies in Section 4.3. 

4.2 Coupling Model Identification and Control 

The poor conditioning (see Section 2.5) of sheet and film processes makes it 
difficult to reliably identify the signs of all of the process gains Et,ii(O) from 
the limited input-output data usually available for sheet and film processes 
(this will be illustrated using rigorous statistical analysis in Section 4.3). This 
motivates the idea of designing the controller to only perform manipulations 



56 4. Model Requirements and Process Identification 

in directions that correspond to model gains L'm,ii(O) whose signs are known 
with confidence (these directions are the corresponding columns Vi of the 
input rotation matrix V - see Section 2.4.5). Manipulations in directions 
corresponding to process gains whose signs may be incorrectly identified may 
lead to poor closed-loop performance. These considerations, and the proven 
robustness and optimality properties of the SVD controller (4.2), motivate 
the following coupling between the model identification procedure and the 
controller design. 

4.2.1 Model Identification 

The input-output data are collected and used to statistically fit a model for 
the process dynamics p(s) in (2.8) and the steady-state process interaction 
matrix Pm(O). The scalar dynamics for sheet and film processes are usually 
well described as being first-order plus time delay. For specificity, the dynam­
ics are treated as first-order plus time delay and are scaled so that p(O) = 1 in 
the following presentation. The approach can be generalized to other process 
dynamics in a straightforward manner. 

The process model gains L'm,ii(O) are computed by taking a matrix de­
composition of the steady-state interaction matrix Pm(O) = UL'm(O)vT es­
timated from the input-output data. This results in 

e-(Ja 

Pm(s) = TS + 1 Pm (0) (4.3) 
-(Ja 

= -=---IUL'm(O)VT (4.4) 
TS+ 

-(Ja n 

= -=---1 L L'm,ii (O)Ui VjT 
TS + i=1 

(4.5) 

where the output singular vector Ui is the ith column of the matrix U and 
the input singular vector Vi is the ith column of the matrix V (see Section 
2.4.5). 

4.2.2 Controller Design 

Basic statistical analysis is used to compute confidence intervals for each 
L'm,ii(O) [57, 102]. The SVD controller is designed to only make manipulated 
variable moves in the directions Vi corresponding to gains L'm,ii(O) that are 
known with confidence. The confidence intervals describe the accuracy of each 
controlled gain, and are used to design a controller robust to the potential 
gain variations. 

A robust controller design procedure, described in detail in Chapter 6, is 
summarized below. First, the block diagram is rearranged in the form shown 
in Figure 4.2. The test for robust stability is 
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Fig. 4.2. Uncertain system representation 

sup J.t(F, (G(jw),K(jw))) < 1, Vw, (4.6) 
w 

where J.t is the robustness margin and F, (G, K) is a linear fractional transfor­
mation between G and K, which is the mapping between the top input and 
output of G in Figure 4.2. For our purposes here, what is important is that 
the left hand side of (4.6) is computable from the controller K, the plant P, 
and the uncertainty description. 

In general, robustness margin computations are computationally expen­
sive for processes of high dimension [51, 36J. However, with pseudo-SVD 
processes, the dimension of the problem can be reduced for a broad class of 
realistic uncertainty descriptions, including descriptions which capture inac­
curacies in the input and output rotation matrices U and V (see Chapter 6 for 
details). The robustness margin for pseudo-SVD processes can be computed 
as 

J.t(F, (G(jw), K(jw))) = m~ { J.t(F, (Gi(jw), L'K,ii(jW»)}, (4.7) 
I 

where Gi corresponds to a single-input single-output (SISO) robust controller 
design problem for each controlled gain L'm,ii(S), This decouples the design 
problem for K(s) into independent design problems for each L'K,ii(S). The 
controller L'K,ii(S) for each SISO problem can be designed by any robust 
controller method. We suggest to use IMC tuning [35, 242, 293J, with 

(4.8) 

for all i for which the sign of Em,ii(O) is not known with confidence; otherwise, 

( 1 ) I+TDS+-
EK,ii(S) = 1. T]S . 2T + 8 

Em,ii(O) TF,iS + 1 2(Ai + 8) 

where 

o 
T] = T + 2"; 

TO 
TD = 2T+0; TF,i = 2(Ai + 0) . 

(4.9) 
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Each 8180 controller is a Proportional-Integral-Derivative (PID) controller 
in series with a first-order filter. The 8180 controllers EK,ii(S) are stacked up 
as the diagonal elements of a matrix EK(S), with the overall SVD controller 
computed from 

(4.10) 

A simple way to tune the controller is to select the IMC tuning parameters 
Ai as fast as possible while maintaining stability for all model gain variations. 
A very useful rule-of-thumb is to not select any Ai lower than () / 4 or T / 5 [242]. 
Following this rule will guarantee a certain level of robustness. As another 
rule-of-thumb, selecting Ai larger than 1. 7() and larger than T produces single 
loop controllers that are very robust to model uncertainty, but have sluggish 
closed-loop response. 

Any of the well-established multivariable antiwindup procedures can be 
used to deal with the constraints (see Section 3.2). Constraint handling may 
be unnecessary for many sheet and film processes, since directions corre­
sponding to low gains Em,ii(O) are not manipulated by the SVD controller, 
and designing the controller to be robust tends to prevent overly large dy­
namic excursions in the manipulated variables [137, 345]. This is illustrated 
in the following examples. 

4.3 Simulation Studies 

These examples illustrate the relationship between model identification and 
controller design. To simplify the concepts being demonstrated, a 5 x 5 circu­
lant symmetric process is studied first. Second, the coupled identification and 
control procedure is applied to the large-scale blown film process presented 
in Section 2.4.2. 

4.3.1 An Illustrative Example 

For the first example, the true transfer function is for a circulant symmetric 
process: 

1.0 0.9 0.7 0.7 0.9 

(J 0.9 1.00.90.70.7 e- 8 

Pt(S) = p(s)Pt(O) = -- 0.70.91.00.90.7 , 
TS + 1 

0.70.70.9 1.00.9 

0.90.70.70.9 1.0 

(4.11) 

where () = T = 1 min. The condition number of the process is K, (Pt (jw)) = 
178 for all frequencies, which is large, suggesting potential identification and 
control problems. The focus will be on the identification of the steady-state 
interaction matrix Pt(O), since the scalar dynamics do not pose any special 
challenges. 
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Model Identification. During identification, the measured process output 
at steady-state Ym is assumed to be given by 

Ym = Pt{O)u + e, (4.12) 

where u is the actuator input move (reported in deviation variables) and e 
represents zero-mean Gaussian measurement noise. In the standard industrial 
experiment (called a "bump test"), the open-loop response is measured for 
a step in one of the manipulated variables. This defines the process input as 
u = ael, where 

o 
o 

el = 1 

o 
o 

( 4.13) 

To prevent excessive process upsets during experimental data collection, 
constraints are imposed on the process inputs and outputs. For sheet and 
film processes, common constraints on the manipulated variables at each 
time instance are min-max constraints, and second-order bending moment 
constraints (see Section 2.2). As discussed in [220], the constraints are func­
tions of the flexibility of the die (or slice) lip, and the number of allowable 
actuator locations. Other manipulations, such as steam sprays or cooling air 
jets, can be substantially less constrained. The effects of the constraints on 
the performance of the controller will be investigated using the two sets of 
constraints shown in Table 4.1. Constraint Set 1 (CS-l) is a tight set of con­
straints, while Constraint Set 2 (CS-2) is a weaker set of constraints, allowing 
a more flexible die lip with a larger operating region. 

Table 4.1. Two sets of manipulated variable constraints. Constraint Set 1 is a 
tighter set of constraints than Constraint Set 2. 

Constraint Set 1 (CS-l) Constraint Set 2 (CS-2) 

-1:$ Ui:$ 1 -10:$ui:$10 

-2 :$ Ui-l - 2Ui + Ui+l :$ 2 -10:$ U;-l - 2u; + Ui+l :$ 10 

For the identification experiments, a is usually selected as large as possible 
without violating any actuator or profile constraints. Here, it is assumed that 
the profile constraints indicate that the largest allowable weight is a = 1. 
Then the output to the single step input experiment is 
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0.7 

0.9 

Ym = 1.0 +c. (4.14) 

0.9 

0.7 

Because a substantial fraction of the noise occurring in sheet and film pro­
cesses is associated with the sensor, the measurement noise in each sensing 
location is considered to be independent. The variance is assumed to be 0.04, 
which is a reasonable value for many sheet and film processes. It is industrial 
practice to repeat the bump tests several times to reduce the effects of noise. 
Simulated identification experiments consisted of 5 step input tests, and the 
process parameters were calculated using least-squares fitting. 

Because the process transfer function (4.11) is symmetric, the U matrix 
in (4.1) is equal to the V matrix, and the pseudo-singular values can be 
interpreted as pseudo-eigenvalues (see Section 2.4.4). To make this clear in 
what follows, the matrix of pseudo-singular values 17(8) will be written as a 
matrix of pseudo-eigenvalues A( 8). As an aside, because the transfer function 
is circulant symmetric, the U = V matrix is equal to the real Fourier matrix 
R, whose elements can be computed analytically as a function of the process 
dimension (see discussion in Section 2.4.4). Also, approximately half of the 
pseudo-eigenvalues are repeated. Although not explored in detail here, these 
properties can be exploited to simplify the parameter estimation procedure 
[133, 134, 135]. The estimated interaction parameters Pj(O) (see (2.4)) and 
the steady-state plant At,ii(O) and model gains Am,ii(O) from a sample data 
set are shown in Table 4.2. 

Table 4.2. The data set from a simulation experiment with five open-loop step 
response tests on the process Pt defined in (4.11) with measurement noise for the 
5 x 5 example. Due to symmetry, the second and fifth gains are equal, and the third 
and fourth gains are equal. 

Pl(O) P2(0) P3(0) All (0) A22(0) A33(0) 

Exp. Data 1.0900 0.9013 0.6878 4.2683 0.5342 0.0568 

Pt(O) 1.0000 0.9000 0.7000 4.2000 0.4236 -0.0236 

The results show that the signs of the process gains may be identified 
incorrectly with only very small element-by-element errors in the estimated 
process model. For the sample data set, the sign of the smallest process gain 
Am ,33(0) is incorrect (see the last column of Table 4.2), even though the 
maximum error is less than 9% for any of the estimated parameters Pi(O). 
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The next step is to determine which signs of the identified gains are known 
with confidence, based on the experimental data. The confidence interval of 
each gain is calculated using the estimated noise variance (this is known in 
practice), the number of bump tests, the known input u, and the measured 
output Ym. If the confidence interval includes zero, then the sign is not known 
with confidence (although not shown here for brevity, this procedure can 
be posed rigorously in terms of hypothesis testing, as discussed in detail in 
Chapter 5 of [133]). Figure 4.3 shows the 95% confidence interval for each 
gain for the sample data set. 

4 

~ 3 
.; 2 
U; 
Q) 

c: 1 
'n; * ~ 0················ ............•........ 

-1 

_2L---~----~--~----~ 

o 2 3 4 

Fig. 4.3. The plant gains At,ii(O) (shown using *) and the 95% confidence intervals 
for each model gain Am,ii(O) from experimental data for the 5 x 5 example 

Figure 4.3 indicates that the sign of the third process gain Am ,33(O) is not 
known with confidence, since the confidence interval includes zero. Using the 
confidence interval to determine whether the sign of the gain is known with 
sufficient accuracy is equivalent to using a hypothesis test with a 97.5% level 
of significance (since Figure 4.3 shows the 95% confidence intervals). If fact, 
rigorous statistical analysis indicates that there is only a 57% probability of 
correctly identifying the sign of this gain [133]. 

Controller Synthesis. The SVD controller was designed to minimize the 
effect of output disturbances d on the controlled variable Y (see Figure 4.1), 
while being robustly stable to actuator and model gain uncertainties (sen­
sor uncertainties were ignored in this example because they usually have a 
much smaller effect on the robustness of the closed-loop system than actuator 
uncertainties [314]). The process block diagram in Figure 4.4 describes the 
robustness problem (4.7) to be calculated. (See Chapter 2 for background 
on uncertainty modeling and Chapter 6 for background on the use of J.L for 
robust control.) The uncertainty associated with each actuator (this, for ex­
ample, could result from stiction or motor wear) is normally assumed to be 
independent of the other actuators, which corresponds to a diagonal pertur­
bation block ..1/. Here ..1/ is represented as being a full matrix to account 
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Fig. 4.4. Block diagram of a circulant symmetric process with input and gain 
uncertainty weights 

for inaccuracies in the input rotation matrix R, and for structural mismatch, 
for example due to the process not having exactly a circulant symmetric 
structure. The actuator uncertainty weight 

(4.15) 

allows 10% steady-state error in manipulated variable movements and 150% 
error at high frequencies, with corner points at w = 10 and w = 150. This 
uncertainty description is large enough to cover 10% error in any element 
of the interaction matrix (we see from Table 4.2 that the uncertainty in the 
(1,1) element of P(O) is 9%), and to cover variations of up to 0.1 min in the 
open-loop response of each actuator. 

The uncertainty in the gain matrix, L1D A, is diagonal, with WDA calcu­
lated from the radii of the confidence intervals in Figure 4.3. The full G(s) 
matrix (as shown in Figure 4.2) constructed from the block diagram of the 
process (in Figure 4.4) is given by 

(4.16) 

with L1 = diag{L11' L1DA}. The controller design problem can be decoupled 
into the associated 8180 subproblems, with Gi given by 

(4.17) 

This allows the 8180 controller (L'K,ii(S) = AK,ii(S)) for each controlled 
process gain Am,ii (s) to be designed independently. 

Based on the identification results, the three nonzero 8180 controllers 
(AK,U(S) and AK,22(S) = AK,55(S)) are designed based on the two reliably 
identified gains (one of the gains has two directions corresponding to it). 
The uncertainty weights used for the computations are W DA,U = 0.3920 and 
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W DA,22 = W DA,55 = 0.2772. (These weights are equal to the radii of the con­
fidence intervals in Figure 4.3.) The 1MC parameter for each 8180 controller 
AK,ii(S) was tuned as fast as possible while achieving robust stability, while 
satisfying the lower bound of Ai = 1.78 (in fact, for this example each Ai was 
equal to 1.78). The overall 8VD controller is constructed as in (4.10), and 
will only perform manipulations in the three directions corresponding to the 
two reliably identified gains. The value for I' for the entire system based on 
the identified model is 0.5416, which indicates that the closed-loop system is 
stable for the actuator and model gain variations. 

Time Domain Simulations. The 8VD controller is compared to a con­
troller designed with the Quadratic Penalty FUnction (QPF) method [79]. 
This model-based method uses time-varying control penalty weights to min­
imize the performance objective while satisfying actuator constraints. The 
QPF method often has similar performance to Model Predictive Control 
(MPC), but is less computationally intensive. For these reasons, the method 
is widely applied to industrial sheet and film processes [79]. Our implemen­
tation of the method may not correspond exactly to the latest version of the 
QPF method, as the original manuscript describing the method is somewhat 
sketchy [79], and the details of the current version are proprietary (this al­
gorithm was owned by ABB as of pUblication). The main conclusions drawn 
from the simulations using the QPF control algorithm do not depend on 
the details of the implementation of the algorithm, and hold for any control 
algorithm that attempts to control all of the process gains [133, 137]. 

Figure 4.5 shows the steady-state profiles after the QPF controller at­
tempts to reject a random disturbance under the two constraint sets. The 
steady-state profiles for the 8VD controller rejecting the same disturbance 
are also shown. Table 4.3 reports the steady-state profile deviations. The SVD 
controller, which only attempts to control the controllable process gains, pro­
vides much less profile variability than the QPF method which attempts to 
control both controllable and uncontrollable process gains. The time-domain 
responses for the process using the QPF controller with the two constraint 
sets are shown in Figures 4.6 and 4.7. The 8VD controller time-domain re­
sponses are shown in Figure 4.8. 

Table 4.3. The standard deviation (u) of the initial disturbance profile and steady­
state profiles after control for the 5 x 5 example. Measurement noise not shown to 
aid in comparisons; similar results occur when measurement noise is included. 

Initial Disturbance SVD QPF at CS-1 QPF at CS-2 

u 0.1161 0.0191 0.0338 0.1038 
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Fig. 4.5. Steady-state profiles using the SVD and QPF controllers for the 5 x 5 
example: initial disturbance ( ... ); SVD (-); QPF at CS-l (- -); QPF at CS-2 
(- . -). Measurement noise not shown to aid in comparisons; similar results occur 
when measurement noise is included. 
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Fig. 4.6. Time-domain profile response for all five measurement locations using the 
QPF controller under Constraint Set 1 for the 5 x 5 example. Measurement noise 
not shown to aid in comparisons; similar results occur when measurement noise is 
included. 

The effect of the misidentified process gain (see Table 4.2) on the perfor­
mance of the QPF controller is seen in the closed-loop responses shown in 
Figures 4.6 and 4.7. According to theory (Section 4.1), the actuator moves 
will drift until the constraints are hit. The profile response under Constraint 
Set 2 is worse than under Constraint Set 1 (see Table 4.3 and Figure 4.5), 
because the QPF controller forces the manipulated inputs to drift until the 
constraints are hit; the weaker C8-2 constraints allows for greater drift. 

The 8VD controller design performs input moves only in directions cor­
responding to the accurately identified gains and avoids the directions cor-
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Fig. 4.7. Time-domain profile response for all five measurement locations using the 
QPF controller under Constraint Set 2 for the 5 x 5 example. Measurement noise 
not shown to aid in comparisons; similar results occur when measurement noise is 
included. 
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Fig. 4.8. Time-domain profile response for all five measurement locations using 
the SVD controller for the 5 x 5 example. Measurement noise not shown to aid in 
comparisons; similar results occur when measurement noise is included. 

responding to the misidentified gain (see Figure 4.8). Only the projection of 
the disturbance in the controlled directions goes to zero (due to the integral 
action), which leaves some offset. The final profile resulting from the SVD 
control response haS a smaller standard deviation than the final profiles from 
either QPF control response. The manipulated variable moves for the SVD 
controller easily satisfy the constraints, with a maximum deviation of 0.3220 
and a maximum second-order bending moment of 0.4669. 

It should be stressed that the poor performance of the QPF method is 
not due to a deficiency in the QPF controller design method per se, nor 
is it due to the QPF controller being tuned over aggressively (Figures 4.6-
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4.8 show that the QPF controller has a speed of response similar to the SVD 
controller). Rather, the poor performance of the QPF method is due solely to 
the fact that the QPF controllers attempted to control all of the process gains 
although the sign of some of the associated model gains was not accurately 
identified. 

If the QPF controller were based on a model that accurately identified 
the signs of all the gains, then controller would perform well, and weaker 
constraints would result in improved disturbance rejection. In this example, 
however, there is only a 57% probability of correctly identifying the sign of 
the third gain [133]. The theoretical results of Section 4.1 can be extended to 
show that any controller will give poor closed-loop performance if designed 
to control a manipulated variable direction corresponding to a process gain 
with an incorrectly identified sign [133, 137]. Therefore, it is essential that 
control algorithms be designed to only control manipulated variable directions 
associated with process gains whose signs are known with confidence. 

4.3.2 Blown Film Extruder 

The second example to be considered is the blown film extruder with 45 
actuator and measurement locations from Section 2.4.2. Since the actuator 
die is circular, the circulant symmetric process description is applicable. The 
steady-state interaction matrix was assumed to have seven nonzero param­
eters, and the noise level was chosen to give realistic signal-to-noise ratios 
for such machines. For this example, the measurement noise in each sens­
ing location was again considered to be independent and have a variance of 
0.04. Following industrial practice [182], the step input was performed in a 
number of actuator locations which are separated so that the resultant bump 
response profiles are expected not to overlap. The bump test was selected 
because this is current industrial practice. The process model was identified 
with five bump tests and the values of the process gains were calculated using 
least-squares estimation. 

Figure 4.9 shows the confidence interval associated with each distinct 
identified process gain, as well as the values of the gains for the true process 
(22 of the gains are repeated due to the circulant symmetry). Based on the 
criteria that the interval must not include zero, the signs of thirteen of the 
twenty-three distinct gains were not known with confidence (of these thirteen, 
six were actually identified incorrectly). The problem was then reduced to 
designing SISO controllers for the controllable ten process gains. The actuator 
uncertainty description and robust controller design procedure in the last 
example were used. That is, each SISO controller was chosen to be IMC­
PID, with the tuning parameter Ai optimized for each subproblem, while 
satisfying the inequality Ai ~ 1.7lJ. 

Closed-loop simulations were carried out for the SVD controller and the 
QPF method for Constraint Sets 1 and 2. The initial disturbance, and steady­
state profile responses at each measurement location after control, are shown 
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Fig. 4.9. The plant gains At, .. (shown using *) and the 95% confidence intervals for 
each model gain Am, .. calculated from data collected from the blown film example 
process. Only the unique 23 process gains are shown since the other 22 gains are 
repeated. Also, the symmetry of the process implies that the gains L' .. (O) can be 
interpreted as pseudo-eigenvalues A .. (O) (see Section 2.4.4 for a discussion of both 
of these facts). 

in Figures 4.10 and 4.11. The standard deviations of all the profiles are listed 
in Table 4.4. 

The effect of the misidentified process gains (see Figure 4.9) on the per­
formance of the QPF controller is clearly seen in the responses shown in 
Figures 4.10 and 4.11. The response is similar to, yet more extreme than, the 
response seen for the 5 x 5 example. The particular back-and-forth profile 
response seen in the figures for the QPF control algorithm is not uncommon 
in industry, and is known as "picketing" [181]. While picketing is commonly 
attributed to a misalignment of the mapping of actuators to sensor lanes, 
here the picketing occurs even though the actuators are perfectly mapped 
to the sensor lanes. For flat machines, the back-and-forth closed-loop profile 
response due to attempting to control uncontrollable pseudo-singular values 
is more staggered [137]; this is observed in industrial machines. 

The QPF control algorithm gives poor performance because it attempts 
to control all process gains although the sign of some of the gains are not 

Table 4.4. The standard deviation (0') of the initial disturbance profile and steady­
state profiles after control for the blown film example. Measurement noise not shown 
to aid in comparisons; similar results occur when measurement noise is included. 

Initial Disturbance SVD QPF at eS-! QPF at eS-2 

0' 0.3847 0.0488 0.3642 3.5069 
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Fig. 4.10. Steady-state profiles using the SVD (-) and QPF at CS-l (- -) 
controllers for the blown film example with initial disturbance ( ... ). Measurement 
noise not shown to aid in comparisons; similar results occur when measurement 
noise is included. 
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Fig. 4.11. Steady-state profile using the QPF at CS-2 (-) controller for the blown 
film example with initial disturbance ( ... ). Measurement noise not shown to aid in 
comparisons; similar results occur when measurement noise is included. 

correct in the model. The profile response remains bounded because the actu­
ator moves are bounded by the constraints. The steady-state profile is a linear 
combination of the pseudo-singular vectors (in this case, Ui = ~) associated 
with the gains that were incorrect in the model. The severity of the steady­
state profile is determined by the magnitude of the actuator constraints. For 
a real blown film extruder, the response of the QPF controller in Figure 4.11 
(and possibly in Figure 4.10) would cause the film to break. Ideally, weaken­
ing the constraints should lead to better control, but this will only happen if 
the controller is based on a sufficiently accurate model. The QPF controller 
under the weaker constraints yields worse performance than would have been 
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obtained without the controller. The poor performance is similar to the re­
sults from the control system audits reported by Bialkowski [25]. Here, the 
poor performance is a result of the inaccurate model violating the model re­
quirements of Section 4.1, and not due to a specific deficiency in the QPF 
design method. It is the authors' opinion that the poor performance reported 
for industrial sheet and film process control systems is often due to the signs 
of the model gains being incorrectly identified. 

The effect of the misidentified gains is not so apparent in the profile 
response produced by the SVD controller (see Figure 4.10). Since the SVD 
controller does not perform actuator moves in any of the directions associated 
with inaccurate gains, the model requirements are satisfied for each controlled 
direction. The performance limitation is specified by the number of accurately 
known gains. IT the model is improved (more gains are accurately identified), 
then the profile variability would be reduced. As with the 5 x 5 example, 
the inputs generated by the SVD controller easily satisfies the constraints, 
with a maximum deviation of 0.2449 and a maximum second-order bending 
moment of 0.0654. 

4.4 Conclusions and Implications for Input Design 

That processes of high dimensionality tend to be poorly conditioned is well­
known to industrial control engineers [34], and can be proved using the statis­
tics of large matrices [297]. This implies that there is a very high probability 
(nearly 100%) of incorrectly identifying the sign of many of the gains for a 
large-scale process. Hence for any large-scale process, reliable control can be 
obtained only by not controlling those gains whose sign is not known with 
confidence. 

This problem is especially acute for sheet and film processes, for which a 
limited quantity of experimental data can be collected, and the measurement 
noise is often high relative to the magnitude of the profile measurement. This 
implies that there is an inherent performance limitation for sheet and film 
processes which cannot be ignored during the identification and controller 
design procedure. 

The interaction between model accuracy and closed-loop performance was 
explored for sheet and film processes using a model decomposition in terms 
of a static input rotation matrix (V), a diagonal transfer function matrix 
(Em (8)), and a static output rotation matrix (U). Theoretical results and 
simulations indicated the importance of only performing manipulations in 
directions of the input singular vectors (Vi) corresponding to gains whose 
signs have been reliably identified. The SVD controller can be designed to be 
robust to inaccuracies in the controlled model gains and in the input and out­
put rotation matrices. The performance of the SVD controller was compared 
to that of the industrially-accepted QPF controller design method. While 
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attempting to control in all directions was shown to result in poor perfor­
mance, the SVD controller provided consistently good results. Furthermore, 
the simulation examples suggested that constraint-handling may be unnec­
essary for many sheet and film processes when the SVD identification and 
control procedure is used. This is because directions corresponding to low 
gains tend not to be manipulated by the SVD controller (since these are the 
ones that tend not to be reliably identified). Also, designing of the SVD con­
troller to be robust tends to prevent overly large dynamic excursions in the 
manipulated variables. In cases where constraint-handling is necessary, any 
of the well-established multivariable antiwindup procedures can be applied. 
This results in a simple controller implementation. 

The authors expressed the opinion that the poor performance often re­
ported for industrial sheet and film process control systems is most likely 
due to the signs of the model gains being incorrectly identified. All model 
gains cannot be determined with confidence due to the limited quantity of 
experimental data, the relatively high level of measurement noise, and the 
poor conditioning of large-scale sheet and film processes. This poses an in­
herent limitation on the performance achievable by any control algorithm 
applied to these processes. The best control algorithms will manipulate only 
in directions corresponding to gains whose signs are known with confidence. 
Although the focus of this chapter was on sheet and film processes, the results 
have relevance to any large-scale process [137]. 

Given that the achievable closed-loop performance is limited by the ac­
curacy of the process model, a natural question to pursue is whether it is 
possible to change the experimental design procedure so that more accu­
rate process models can be constructed. After all, the bump test provides a 
limited amount of spacial excitation across the machine, with the resulting 
experimental data providing little information about the gain directionality 
associated with the higher spacial frequencies. An experimental design proce­
dure that simultaneously manipulates the actuators so as to better excite the 
gain directionality can result in much more informative process data. Models 
fit to this improved process data would be of much higher accuracy, espe­
cially for those aspects of the model relevant for closed-loop control. Such an 
experimental design procedure is described in the next chapter. 

4.5 Proof of Theorem 4.1 

The following lemmas are used to prove Theorem 4.1. 

Lemma 4.1. Assume P(s) = U17(s)yT and K(s) = Y17K(s)uT. Then the 
closed-loop system is internally stable if and only if each 8180 loop with 
17K,;;(S) and 17;;(s) is stable. 

Lemma 4.2. Assume 9(S) = g(s)jsr, where g(s) is stable. Then the closed­
loop system with 9 = P k is stable only if 9 (0) > o. 
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Proof {Lemma 4.1}. 
The MIMO system is internally stable if and only if 

[
PK(I + PK)-l (I + PK)-lp 1 
K(I + PK)-l -K(I + PK)-lp 

( 4.18) 

is stable (the Laplace transform variable s is suppressed for brevity). With the 
pseudo-SVD decompositions of P and K, (4.18) is equivalent to the condition 
that 

[
UEEK(I + EEK)-lUT U(I + EEK)-lEVT 1 
VEK(I + EEK)-lUT -VEK(I + EEK)-lEVT 

(4.19) 

is stable. Pre- and post-multiplication by unitary matrices does not affect the 
stability of (4.19), so the MIMO system is internally stable if and only if 

(4.20) 

is stable for all i, which occurs if and only if each SISO loop with Eii and 
EK,ii is stable for all i. [] 

Proof {Lemma 4.2}. 
The proof generalizes the proof of an existing result [239]. The transfer 

function g(s) can be written as g(s) = n(s)/d(s) with 

d(s) = sq + ... + d(O). (4.21 ) 

Then g( s) stable implies that 

d(O) > 0 (4.22) 

from the Routh Criterion, and 

(4.23) 

stable implies that 

n(O) > 0, (4.24) 

also from the Routh Criterion. Conditions (4.22) and (4.24) imply that g(O) > 
O. [] 

Proof (Theorem 1). 
(1) As a result of Lemma 4.1, K(s) = VEK(S)UT stabilizes both Pt(s) 

and Pm(s) if and only if each SISO loop with EK,ii(S) and Et;;(s) is stable, 
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and with L'K,ii(S) and L'm,ii(S) is stable, for all i. A necessary condition for 
this lLemma}.2 applied to these SISO loops) is th~t EKii(O)Emii(O) > 0, 
and L'Kii (O)L'tii (0) > 0, for all i. This implies that L'mii (0)/ L'tii (0) > 0, for 
all i which is equivalent to L'm,ii(O)/17tii(O) > 0, for all i (because Pt(s) and 
Pm(s) are stable). 

(2) Assume L'm,ii(O)/17tii (0) > 0, for all i, then there exists "(* > 0 
sufficiently small (from [239]) so that L'Kii (s) = "(* / s will stabilize each SISO 
loop, and will continue to do so for all 0 < "( < "(*. (Apply [239] to each 
L'm,ii(O) and L'tii (0), and take the smallest "(*.) Then Lemma 4.1 implies 
that K(s) = V L'K,ii(S)UT is an integral SVD controller which stabilizes both 
Pm(s) and Pt(s). 0 



CHAPTERS 

DESIGN OF EXPERIMENTS 

As described in Chapters 2 and 4, sheet and film processes are characterized 
by large dimensionality, tightly constrained input moves, poorly conditioned 
interaction matrices, poor signal-to-noise ratios, and a limited number of ex­
perimental runs allowed for model identification purposes. The development 
of high quality models for such processes poses a challenging identification 
problem [64,134,135,208,217]. 

In the previous chapter it was suggested that the industrial bump tests 
applied to sheet and film processes are not sufficiently informative to ad­
equately identify the gain directionality. The main goal of this chapter is 
to show how to design experiments so that the input-output data collected 
during the experiment is as informative as possible. First, previous research 
on experimental design is reviewed to provide some perspective. Then ex­
pressions are provided for estimating the gains and their accuracies, as this 
information is needed for formulating the experimental design procedure. The 
experimental design procedure minimizes the confidence ellipsoid of the most 
crucial model parameters over the manipulated variables subject to their 
physical constraints. A simulated annealing algorithm is used to compute a 
suboptimal solution to the nonconvex optimization problem. The algorithm 
is applied to the simulated blown film extruder studied in the last chapter, 
and the result is compared to the results from a standard industrial input 
design. The algorithm provides an order-of-magnitude improvement in model 
quality, which results in a 37% reduction in thickness variability. 

5.1 Previous Research on Experimental Design 

The optimal design of experiments was extensively studied in the 1970s-
80s [29, 110, 140, 159, 311, 327, 358, 371J. Several experimental design ob­
jectives have been studied, perhaps the most popular being D-optimality, 
G-optimality, and A-optimality [13, 311]. D-optimality is the criterion that 
best suits our purposes. 

A D-optimal experimental design minimizes the volume of the confidence 
ellipsoid of the parameter vector subject to the physical constraints on the 
manipulated variables. This optimization problem is nonconvex, and can be 
shown to be NP-hard [358]. This means that the computational requirements 

A. P. Featherstone et al., Identification and Control of Sheet and Film Processes
© Springer-Verlag London Limited 2000
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to achieve the global optimum becomes prohibitive as the dimension of the 
problem increases. Several algorithms for the construction of suboptimal de­
signs have been developed [16, 28, 87, no, 172, 319, 357, 358, 365]. 

Simulated annealing is a well-known algorithm for computing good local 
optima [28, 172,88, 154]. Goffe et al. [154] compared the simulated annealing 
algorithm to three common optimization algorithms (a simplex algorithm, a 
conjugate gradient algorithm with numerical derivatives, and a quasi-Newton 
algorithm with numerical derivatives) on four parameter identification prob­
lems. The simulated annealing algorithm performed better than the other 
algorithms for difficult objective functions and it was even able to find the 
global optimum in several cases. It was also found to be a robust algorithm; 
that is, not likely to fail or have numerical difficulties. Bohachevsky et al. [28] 
report that a generalized simulated annealing method produced a better ex­
perimental input design than previous designs reported in the literature [16]. 
Haines [172] also reports favorable results when applying the simulated an­
nealing algorithm to the construction of optimal experimental designs. Al­
though the simulated annealing algorithm does not guarantee a solution that 
is globally optimal, it allows the search to move away from local optima and 
continue over a wider area. The computational expense is less than an exhaus­
tive search and it can incorporate a large number of parameters [28, 88, 154]. 
Based on these advantages, a simulated annealing algorithm will be used to 
compute suboptimal experimental designs for sheet and film processes. 

5.2 Process Gain Estimation 

The interaction matrix for a sheet and film process is the mapping from the 
manipulated variables to the sheet/film profile (see Section 2.4). The manip­
ulated variables are typically slice or die lip positions, while the sheet/film 
profile measurements are typically in terms of basis weight, thickness, or mois­
ture content (see Chapter 2). Sheet and film process models can be written 
in the pseudo-SVD form: 

n 

P(s) = UE(s)yT = L Ejj(s)Ujl-~t (5.1) 
j=1 

where the matrices U and Y are real and unitary (see Section 2.4.4). The 
elements of the diagonal matrix E( s) are transfer functions, and their values 
at steady-state (s = 0) are referred to as the gains of the sheet/film process 
(these could be referred to as steady-state pseudo-singular values or steady­
state modes, but such nomenclature would be clumsy). The previous chapter 
showed that the accuracy of the process gains directly specifies the closed­
loop performance achievable by a model-based controller. More specifically, 
the sign of a process gain must be accurately known for the controller to 
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reliably suppress disturbances in the direction of the column of U associated 
with the process gain. 

Here the focus is on the steady-state model because the scalar dynamics 
for sheet and film processes are easy to identify in practice. For the ith 
experiment with manipulated variable input ui , the profile measurement is 

i P. i+ i Ym = CDU c, (5.2) 

where PCD is the steady-state process interaction matrix, the manipulated 
variable vector u i and profile measurement vector y:n are written in terms 
of deviation variables, and ci is the effect of the noise and unmeasured dis­
turbances on the profile measurement. The noise ci comes from a normal 
distribution with an expected value of zero (E(ci ) = 0) and a covariance 
matrix cov(ci ) = (72 {1i. The positive-definite covariance matrices {1i are as­
sumed known, and the scalar parameter (7 can be either assumed known or 
unknown (this is discussed in more detail later ). A diagonal noise covariance 
matrix {1i = diag{ {1jj} assumes that the measurement noise is uncorrelated 
across the width of the machine, and setting {1i = I assumes that the noise is 
equal in magnitude for each lane. A nondiagonal noise covariance matrix {1i 

takes into account spacial correlation of noise processes across the machine 
[269]. Normally it is assumed that the noise covariance matrix is constant 
from experiment to experiment, which results in the {1i being equal to a 
single matrix {10. The matrix {10 can be set equal to the sample covariance 
matrix for Ym collected over several consecutive measurements while the con­
trol algorithm is turned off. Temporal noise correlation can be taken into 
account with a slight modification of the following presentation [17, 229]. 

The first step is to parameterize the interaction matrix PCD in terms of a 
number of independent model parameters, which are collected into a model 
parameter vector (). Typically the elements of the vector () are the interaction 
parameters {pj}. It is assumed that the interaction matrix PCD is linear in 
the parameter vector (), which is true for all the model structures considered in 
Chapter 2. The generalization to interaction matrices PCD that are nonlinear 
in the parameters is straightforward [17]. As is standard in industrial practice, 
it is assumed that the profile response to a change in the manipulated variable 
vector is allowed to reach steady-state before another change is made; the 
generalization to dynamic data collection is straightforward [229]. Here we 
will describe a simple approach to estimating the accuracy of the model gains. 

Because interaction matrix PCD is linear in the parameter vector (), the 
ith profile measurement in (5.2) can be rewritten as 

(5.3) 

where the input matrix X(ui ) is a linear function of the inputs to the ex­
periment, ui . The precise form for X(ui ) depends on the model structure 
[132, 133]. 

For N experiments, the measurements can be stacked up to give 
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(5.4) 

where 

(5.5) 

and 

(5.6) 

The maximum-likelihood estimate for the parameter vector is 

(5.7) 

where 

(5.8) 

The covariance matrix for the model parameters is [17] 

(5.9) 

IT the constant u is known before the experiments are conducted, then the 
parameter covariance matrix cov( 8) is a known function of the experimen­
tal inputs ui . IT the constant u is estimated during the experimental design 
procedure, then an estimate of u is given by 

,,2 = 1 (yTn-1y _ 8TX Tn-1y) 
n1lN -m 

(5.10) 

where m is the number of model parameters in (J and n 1l is the number of 
sensor lanes. In this case, "replaces the u in (5.9). In either case, the accuracy 
of the model parameter estimates is directly specified by how the process is 
excited by the inputs ui , which provide a large number of degrees of freedom 
for affecting the model accuracy. Hence it should not be surprising that a 
systematic experimental design based on (5.9) can significantly outperform 



5.2 Process Gain Estimation 77 

the industrial-standard bump test, which does not exploit these degrees of 
freedom in the experiment. 

The next step is to construct the estimated interaction matrix PCD from 
the estimated model parameter vector 8, and to compute the pseudo-singular 
value decomposition (5.1). From the computed input and output rotation 
matrices V and U, the jth pseudo-singular value is 

A TAT A 

L'jj(O} = Uj PCD Vj = Uj X(Vj)O, (5.11) 

where X(Vj) has the same form as X(ui) in (5.3) but with ui replaced by 
Vj. The n estimated pseudo-singular values are stacked up into a vector 0'11 
which is given by 

(5.12) 

where Xu,v is defined by (5.11) to be 

(5.13) 

The matrix Xu,v is a function of the rotation matrices U and V. With this 
transformation, an estimate for the covariance matrix for 8'11 is 

A A T 2 T -1 -1 T 
COV(O'lI) = Xu,vcov(O)Xu,v = (1 XU,v(X n X) Xu,v (5.14) 

where X is defined in (5.5). With the covariance matrix for 8,11, the 100(1-
p}% confidence interval for each pseudo-singular value Eii(O) is given by 

where [cov(8'lI}]ii is the (i, i) element of cov(8,lI}, and the values for the 
standard normal deviate Zp/2 at various levels of significance can be read 
from statistical tables [102]. 

The confidence interval in (5.15) is precisely correct when the rotation 
matrices U and V are exactly known. Theoretically, the confidence interval 
in (5.15) is optimistic (that is, undersized) when U and V are estimated from 
data, since in this case inaccuracies in U and V were not taken explicitly into 
account when deriving the confidence interval. These optimistic estimates do 
not provide any problems as long as a high level of significance is selected for 
defining the confidence intervals in (5.15) [137]. 
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The experimental design procedure is an iterative process. An experi­
mental design is computed, then it is applied to the process and data are 
collected, model parameters are fit to all the data, and this information is 
used to design the next experiment. This procedure, known in the experi­
mental design literature as sequential experimental design [17, 311], designs 
each experiment based on the best estimates of the model parameters. 

5.3 Problem Formulation for Constrained Input Design 

The volume of the confidence ellipsoid for the parameter vector 0 based on 
the first N experiments is quantified by the in/ormation matrix [17,311] 

(5.16) 

which is the inverse of the covariance matrix for the gain estimates. For 
identification and control purposes, the most critical parameters for sheet 
and film processes are the process gains (see Chapter 4). The D-optimality 
criterion minimizes the volume of the confidence ellipsoid for the process gain 
estimates subject to the experimental constraints [13]: 

max detM({uili = 1"" ,N}) 
uN 

(5.17) 

subject to {profile and actuator constraints}. 

After the first experiment, the objective function is modified to exclude pro­
cess gain estimates whose signs are known with confidence. The following is 
a description of the constraints, the objective function modification, and the 
method used to solve the optimization problem. 

5.3.1 Constraints 

To limit the process disruption during the experiment, constraints are im­
posed on the actuators and the profile. For sheet and film processes, the 
constraints on the manipulated variables at each time instance are one or 
more of the following (see Section 2.2): 

Umin ::; Uj ::; Umaz , Vj (min-max), 

-16ulmaz ::; Uj - Uj-l ::; 16ulmaz, Vj (first-order), (5.18) 

-162ulmaz ::; Uj+1 - 2uj + Uj-l ~ 162ulmaz, Vj (second-order). 

After the first experiment, profile constraints can be included by applying 
(5.2) with the estimated PeD to rewrite the profile constraints in terms of 
constraints on the manipulated variables. The optimization problem which 
defines the D-optimal experimental design problem is posed as (5.17) subject 
to the constraints (5.18). 
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5.3.2 Modification of the Objective Function 

For the first experiment, little is known about the process gains. However, in 
subsequent experiments, the sign of some process gains may be known with 
sufficient confidence for those gains to be reliably controlled. For control pur­
poses, further reduction of the confidence interval associated with these gains 
will not significantly improve the achievable closed-loop performance [135]. 
Therefore, these gains are excluded in the objective function by dropping 
the corresponding rows of Xu,v in (5.13). This formulation still allows in­
put manipulations in any direction, as this can allow input designs to more 
easily satisfy the constraints. This means that the accuracy of the reliably­
known gains may improve even though their accuracy is not represented in 
the objective function. 

At a given level of confidence, the confidence interval around each esti­
mated gain is tested for the inclusion of zero. H the confidence interval does 
not include zero, then the sign of the gain is known within the selected con­
fidence level. After the first experiment, it is suggested to use a very high 
confidence interval in the accuracy tests (e.g., 99.99%). This conservative 
level of confidence prevents any poorly identified gain from being mistakenly 
excluded from the objective function after only one experiment. For gain es­
timates based on more than one optimally-designed experiment, the level of 
confidence may be reduced, e.g., to 99.9%. 

5.3.3 Constrained Input Design Via Simulated Annealing 

A simulated annealing algorithm [88, 154] can be used to solve the optimiza­
tion problem. The simulated annealing algorithm searches for the global op­
timum of an n-dimensional function by allowing both up and downhill moves 
and focusing on the most promising area as the optimization proceeds. As 
the constraints (5.18) are not the box constraints which are used in most 
simulated annealing algorithms [28, 88, 154], modifications are necessary to 
handle the first- and second-order spacial constraints (5.18). One approach to 
dealing with the additional constraints is run a standard simulated annealing 
algorithm over the min-max constraints, but immediately reject any point 
that violates the first- and second- order constraints (this approach was used 
in the next section). A much more efficient way to impose constraints is to 
penalize the objective function by a large constant multiplied by the fourth 
power of the constraint violation. The penalty forces the chosen design to 
satisfy the input constraint. When the constraint is satisfied, no penalty is 
added to the objective function. Such an algorithm can calculate an experi­
mental design within a few minutes on a Pentium III computer, which means 
that the approach can be implemented on-line. A more detailed description of 
such simulated annealing algorithms, with details regarding the parameters 
used and computation times, are provided elsewhere [133]. 
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Simulated annealing is not guaranteed to converge to the global optimum 
solution. The optimization problem should be solved several times, using 
different initial points, and the best solution chosen for the input to the 
experiment. 

5.4 Simulation Case Study 

This simulation study, based on the blown film process of Section 2.4.2, il­
lustrates the experimental design procedure for a realistic large-scale sheet 
and film process. Identification experiments were performed to develop two 
models: one based on using the standard industrial step experiments (the 
bump test), and the other based on the optimal experimental design proce­
dure. Closed-loop simulations were performed on the original process transfer 
function to compare the achievable closed-loop performance using the two 
models. 

Assume that the true transfer function Pc (s) for a blown film extruder 
with 45 actuator and sensor lanes is (from Section 2.4.2): 

P(s) = e-a p4S,8 
s+ 1 CD' 

(5.19) 

where 

PIP2 .. ·P7 0 ... 0 P7 ... P2 

P2 PI P2 P7 0 

P2 PI P2 P7 . P7 

P7 P2 PI P2 ... 0 

p4s,8 _ 0 P7 P2 P7 0 
(5.20) C -

0 P7 P2 P7 0 

0 . '" P2 PI P2 P7 

P7 P7 .. · P2 PI P2 

. '" 0 P7 P2 PI P2 
P2 .. · P7 0 ... 0 P7 P2 PI 

" ... , 

45 x 45 

and the interaction parameters are 

PI = 1.0; P2 = 0.9; Ps = 0.6; P4 = 0.2; 

Ps = 0.1; Ps = -0.1; P7 = 0.05. (5.21) 

It should be noted that the interaction matrix is singular, which poses diffi­
culties for most model identification and control procedures. 
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5.4.1 Model Identification 

For this example, the measurement noise in each sensing location was consid­
ered to be independent and have a variance of 0.04. This is a realistic noise 
description for many plastic film extrusion processes. Using the industrial 
standard input design [182]' a number of actuators were manipulated which 
are separated so that the corresponding profile responses do not overlap. For 
the blown film process example, the step input was specified as 

(5.22) 

where 

o 

o 
(5.23) 

o 
with the 1 in the kth position. The standard bump test satisfies the con­
straints (5.18) with Umin = -1, U max = 1, and 18ulmax = 182ulmax = 2. 
A representative profile response to the standard bump test experiment is 
shown in Figure 5.1. 
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Fig. 5.1. Blown film process: (a) the manipulated variables for the standard bump 
test experiment, (b) a representative open-loop profile response 

The optimal experimental designs were computed while satisfying the 
same constraints applied to the standard bump test experiment. The input 
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manipulations and profile responses for the first and fifth optimally-designed 
experiments are shown in Figure 5.2. It is clear that the optimally-designed 
experiments provide substantially more excitation in the high spacial frequen­
cies across the machine than provided by the bump test experiment (shown 
in Figure 5.1). The results of the identification experiments are contained in 
Figure 5.3, which shows the 95% confidence interval for each estimated gain 
along with the true value when the number of experiments is either one or 
five (only the unique 23 process gains are shown-as discussed in Chapters 
2 and 4, the other 22 gains are repeated). 
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Fig. 5.2. Blown film process: the input manipulations (a,b) and open-loop profile 
responses (c,d) of the first and fifth optimally-designed experiment, respectively 

After one experiment using the bump test (5.22), it is apparent from Fig­
ure 5.3 that many of the gains are incorrectly identified, and that most gains 
have large confidence intervals. Comparing Figure 5.3a to Figure 5.3b, the 
first optimally-designed experiment has significantly reduced the length of 
confidence intervals for all the parameters. In fact, on average the param-
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Fig. 5.3. The true plant gains A;;(O) (shown using *), the estimated model gains 
A;;(O) (shown using .), and the 95% confidence intervals based on: (a) one bump 
test experiment, (b) one optimally-designed experiment, (c) five bump test exper­
iments, (d) five optimally-designed experiments. Only the unique 23 process gains 
are shown since the other 22 gains are repeated (as discussed in Section 4.3). Also, 
the symmetry of the process implies that the gains L';; (0) can be interpreted as 
pseudo-eigenvalues A;;(O) (see discussion in Section 2.4.4). 

eter estimates .1ii (O) are 1290% more accurate for the optimally-designed 
experiment. 

Ten gains are confidently identified for the five standard bump test ex­
periments, whereas seventeen gains are identified with confidence for the five 
optimally-designed experiments (Figures 5.3c and 5.3d). Not all the gains 
have a smaller variance than with the bump test experiments, due to the ex­
clusion of the already confidently known gains in the objective function during 
the optimization. The bump test experiments identify .11,1(0), .119,19(0), and 

.123 ,23(0) more accurately than the optimally-designed experiments. This has 
no consequence in the controller design, because the gains are identified with 
significant confidence in both models. The optimally-designed experiments 
are concerned with obtaining better estimates for the gains whose signs are 
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not accurately identified. On average the estimated gains are 1120% more 
accurate for the optimally-designed experiments. 

5.4.2 Time Domain Simulations 

The two models were used to design controllers; one based on the five bump 
test experiments (Modell) and the other on the five optimally-designed ex­
periments (Model 2). The controllers were designed using the SVD controller 
design method described in Chapter 6, which provides a controller that is ro­
bust to the inaccuracies quantified by the model identification algorithm as 
well as model structure errors. The controller provides the best performance 
achievable for the model with the quantified model inaccuracies. The sim­
ulations demonstrate the improvement in dosed-loop performance obtained 
by the more accurate model produced by the optimal experimental design 
procedure (see Figure 5.4). 

'" '" Ql 
C 

.:s:. 
(,) 

1: 
l-

'" '" Ql 

1.5 

10 20 30 
Time 

(a) 
1.5r--~-~--~----' 

.i! 0.5 
(,) 

1: 
I-

-0.5'---~-~--~-~-' 

10 20 30 40 
Measurement position 

(c) 

1.5 

'" '" Ql 
c 0.5 .:s:. 
(,) 

1: 
I-

10 20 30 
Time 

(b) 

1.5 

'" '" Ql 
c 

0.5 .:s:. 
(,) 

1: 
I-

0 

-0.5 
10 20 30 40 
Measurement position 

(d) 

Fig. 5.4. Time-domain profile response (a,b) and steady-state controlled variable 
profile (c,d) based on the model from five bump test experiments and five optimally­
designed experiments, respectively [final profile (-); initial disturbance ( ... )] 



5.4 Simulation Case Study 85 

The model based on the five optimally-designed experiments has a larger 
number of gains known with confidence. allowing the robust controller to 
perform manipulated variable moves in more directions than with the model 
based on the standard bump test experiments (33 directions for the optimally­
designed model compared to 19 for the bump test model). This results in a 
smoother closed-loop profile response. The model produced by optimal ex­
perimental design results in a standard deviation for the closed-loop profile 
deviations that is 37% smaller than for the model produced from the bump 
test experiments. It should be reiterated that the better model was not ob­
tained by more experiments or by weakening the constraints. The better 
model was obtained by using the optimal experimental design rather than 
the standard industrial bump tests. 



CHAPTER 6 

ROBUST CONTROL 

Chapter 4 showed that knowing the signs of the steady-state process gains is 
necessary for the reliable control of sheet and film processes. Chapter 5 pre­
sented an algorithm for optimally identifying the steady-state gains. More­
over, this algorithm gives confidence intervals on the steady-state gains. The 
confidence intervals can be incorporated into a control algorithm to obtain 
a controller which is robust to model uncertainty. This chapter shows how 
to perform robust controller synthesis for sheet and film processes in a com­
putationally efficient manner. Further, it is shown how the optimality of the 
controllers can be relaxed to give low-order controllers that are easier to 
implement. 

The chapter begins with some background on robust control. This is fol­
lowed by algorithms for full-order and low-order controller design. The chap­
ter finishes with a series of examples that demonstrate the concepts. 

6.1 Background 

A block diagram of the closed-loop system is shown in Figure 6.1. A 
continuous-time representation for the process signals is used here because 
more process engineers are familiar with continuous-time than discrete-time. 
The generalization to discrete-time is straightforward. 

The objective of the controller K(s) is to minimize the effect of dis­
turbances d on the profile properties y. Since the sensitivity function (J + 
P(s)K{S))-l is the transfer function between d and y, this objective can be 
quantified by 

IIWp(s)(J + P(s)K(s))-llloo == sup O'(Wp(s)(J + P(s)K(S))-l), 
s=jw (6.1) 

where O'(A) refers to the maximum singular value of A, and the weight Wp(s) 
is selected to define the desired performance (e.g., bandwidth). The weight 
is also used to normalize the desired performance objective: 

IIWp(s)(I + P(s)K(s))-llloo ~ 1. (6.2) 

The goal of the CD control problem is to maintain flat profiles across the 
entire width of the machine, implying that the performance weight W p (s) 

A. P. Featherstone et al., Identification and Control of Sheet and Film Processes
© Springer-Verlag London Limited 2000
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Fig. 6.1. Standard feedback control system 

should be selected as a scalar weight wp(s) multiplied by the identity matrix. 
The most commonly used weight has the form 

as+ 1 
wp(s) = b --, (6.3) 

as 
where a and b are constant real scalars [220]. With this performance weight, 
the maximum disturbance amplification will be less than lib at all frequen­
cies, and the closed-loop system will have a bandwidth of at least 1/a. In 
time domain terms, this specifies a desired closed-loop time constant of a. A 
physically meaningful performance weight must satisfy 0 < b < 1 and a > O. 

Uncertainty descriptions appropriate for sheet and film processes were 
covered in Chapter 2. Algebraic manipulations performed either by hand 
[242, 315, 375] or with programs [15, 81, 300, 296] can be used to collect 
the uncertainties associated with various components in the system into the 
block-diagonal matrix ..1(s) shown in Figure 6.2. The generalized plant G(s) 
is defined by the nominal model P(s), the performance specifications, the 
uncertainty weights, and the location of the uncertainties. The generalized 
plant G(s) and the controller K(s) can be combined to produce the nominal 
closed-loop system matrix M(s).1f G(s) is partitioned to be compatible with 
K(s), then M(s) is described by the linear fractional transformation (LFT) 
(as shown in Figure 6.2) 

M = F,(G, K) = Gll + G12K(1 - G22 K)-lG21 (6.4) 

where s has been suppressed for brevity. The LFT F, (G, K) is defined for 
any well-posed system (this is equivalent to the existence of the inverse of 
(I - G22 K)). 

Equation 2.21 implies that each block-diagonal matrix ..1(s) within the 
uncertainty description is in the set .d, where 

(6.5) 

each ..1k(S) has the same dimensions as P(s), and u is the number of uncer­
tainty types. The structure of each ..1k (s) can be repeated diagonal, indepen­
dent diagonal, or full block. 
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Fig. 6.2. Equivalent system representations (dependence on s suppressed for 
brevity) 

The closed-loop system is said to satisfy robust stability if it is stable for 
all stable norm-bounded perturbations .1(s) E ~. The closed-loop system 
is said to satisfy robust performance if the performance specification (6.1) 
holds for all ..1 E ~. The closed-loop system is robustly stable to linear time­
invariant (LTI) perturbations Ll(s) if and only if the nominal closed-loop 
system is stable (that is, the poles of M(s) are in the open left half plane) 
and the structured singular value J.Li1(M(jw)) is less than 1 for all frequencies 
(see [106, 242, 253, 315] for more details). The value of the matrix function 
J.Li1(M(jw)) at each frequency depends on both the elements of the matrix 
M(s) and the structure of ~. The corresponding test for robust performance 
is exactly the same as the robust stability test, except with the performance 
specification treated as though it were an additional inverse multiplicative 
output uncertainty (that is, WIO is set equal to Wp, with full-block .110 
representing the performance specification). 

The matrix function J.L provides a tool for determining robust stability 
and performance with respect to LTI uncertainty [74, 75]. Any system with 
uncertainty adequately modeled as in (2.21) can be put into M - ..1 form, 
with robust stability and robust performance written as a J.L-test. Although 
exact computation of the matrix function J.L can be computationally expensive 
[45, 51], upper and lower bounds for J.L can be computed in polynomial time 
(M can always be augmented with zeros to a square matrix with the same 
value of J.L, so without loss of generality M will be taken to be square in what 
follows): 

max p(MU) = J.Li1(M)~ inf 7f(DMD- 1), 
UEU DED 

(6.6) 

where U is the set of unitary matrices with the same block diagonal structure 
as ~, p(A) is the spectral radius of A, and D is the set of all matrices that 
commute with every .1 E ~, that is, D = {DIDLl = .1D for all .1 E ~} [106, 
302]. This definition implies that each DE D is a block-diagonal matrix with 
u blocks, the structure of each block defined by the corresponding block of 
..1 E ~. In particular, Dk is full block for repeated-scalar Llk' Dk is repeated 
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scalar for full-block Llk, and Dk is independent scalar for independent scalar 
Llk. 

The maximization in (6.6) is not convex, and existing algorithms provide 
only a local maximum, hence the reference to the maximization as being a 
"lower bound", although the equality in (6.6) holds [15]. The upper bound 
can be formulated as a linear matrix inequality and is solvable in polynomial 
time using either ellipsoid or interior point algorithms [30, 246]. The com­
puted lower and upper bounds are usually tight. However, computational 
experience indicates that the bounds become more conservative as the sys­
tem dimension increases [342, 343]. Robust suboptimal controllers are almost 
always computed using the upper bound. 

The Hoo-optimal control problem is to compute a stabilizing K(s) that 
minimizes 11F1(G, K)lloo (see Figure 6.2). The state-space approach for solving 
the Hoo control problem is implemented in off-the-shelf software [15, 81]. 
The DK-iteration method (often called IL-synthesis) is an ad hoc method 
that attempts to minimize the upper bound of IL, that is, it attempts to solve 
[15,81] 

inf inf sup a(D(s)FI(G(s),K(s))D-l(s)), 
K(8)EK~ D(8)ED~U 8=jw 

(6.7) 

where K: is the set of all internally stabilizing controllers of dimension n x n, 
and O:u is the set of all nu x nu stable minimum phase transfer functions 
that satisfy DLl = LlD at each frequency. The approach in DK-iteration is 
to alternatively minimize 

sup a(D(s)M(s)D-l(s)) = sup a(D(s)FI(G(S), K(s))D-l(S)) 
s=jw s=jw (6.8) 

for either K(s) or D(s) while holding the other constant. For fixed D(s), 
the controller synthesis is solved via Hoo-optimization. For fixed K(s), the 
quantity (6.8) is minimized for each D(s) using linear matrix inequalities 
[30, 246] or some other approach [15, 81]. The resulting invertible stable 
minimum-phase transfer function D(s) is wrapped back into the nominal 
interconnection structure G(s). This increases the number of states of the 
scaled G(s), which causes the second Hoo-synthesis step to produce a higher 
order controller. The iterations between D(s) and K(s) stop after the quan­
tity (6.8~ is less than 1 or is no longer diminished. The resulting high-order 
controller is typically reduced using Hankel model reduction [153]. Although 
the DK-iteration method is not guaranteed to converge to a global minimum, 
it has been used to design robust controllers for many mechanical systems, 
e.g., flexible space structures [14], missile autopilots [271, 196], and rockets 
[128]. 

Besides being an approximation to the original IL condition for LTI per­
turbations, (6.7) is also interesting in its own right, as its objective less than 
one is a necessary and sufficient condition for robustness to arbitrarily slow 
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linear time-varying (SLTV) perturbations [263] when all the perturbations 
are full block. Also, the objective in (6.7) less than one is a necessary and 
sufficient condition for robustness to fast linear time-varying (FLTV), nonlin­
ear time-invariant (NLTI), or nonlinear time-varying (NLTV) perturbations 
when the matrices in D are restricted to be constant matrices [367]. 

6.2 Optimal Robust Controller Design 

To state the results, it is useful to recall that G( s) is an open-loop transfer 
function matrix defined by 'the uncertainty weights Wj (s), the uncertainty 
locations (in Table 2.3), and the open-loop nominal model P(s). For the 
uncertainty types in Table 2.3 and in (2.22), G(s) can be written in terms of 
submatrices that include only the following terms (including multiplications 
of the terms): P(s), Wj(s)In' In, On, U, and V, where In is the n x n identity 
matrix, and On is the n x n matrix of zeros. Define the n lower dimension 
transfer functions ('ji (s ), which are constructed from G (s) by the following 
substitutions (see (6.38) and (6.43) below for example): 

P( s) f-----t Eii (s) 
wj(s)In f-----t Wj(s) 

In f-----t 1 

On f-----t 0 

U f-----t 1 

V f-----t 1 

(6.9) 

Each of the Gi(s) corresponds to a pseudo-singular value 17ii(s) of the plant 
P(s). To simplify the statement of the results, P(s) will be treated as being 
square. As discussed earlier, this is without loss in generality. 

The results of this section are of two types. First, it is shown that for 
various uncertainty types the robust controller of the form 

(6.10) 

is optimal. Second, it is shown how controllers of this form simplify robustness 
analysis and synthesis by either partially or completely decoupling the MIMO 
controller design problem into SISO control problems, or a single SISO control 
problem. The robustness analysis and synthesis results are first presented for 
sheet and film processes with general interactions. Then somewhat stronger 
results are stated for symmetric nominal models. This is followed by some 
remarks on optimality, how to handle uncontrollable directions, and low-order 
controller design. 
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6.2.1 Processes with General Interaction Matrices 

For the case where all the uncertainty blocks are full and nonlinear and/or 
time-varying, the following theorems provide conditions for which the robust 
optimal controller has the form K(s) = VEK(S)UT , and describes how this 
simplifies the computation of the robust optimal controller. Proofs of all 
results are in Section 6.6. 

Theorem 6.1. (Robust Optimality with SLTV Ll) Consider a nomi­
nal model P(s) = UE(s)VT , where U and V are real orthogonal matrices 
and E(s) is a diagonal transfer function matrix. Suppose there are mul­
tiple full-block uncertainties of the forms listed in Table 2.3 and a diago­
nal additive uncertainty of the form {2.22}. Then a controller of the form 
K(s) = VEK(S)UT minimizes 

inf IID(s)F/(G(s), K(s))D-1(S)lloo 
D(s)ED~" 

(6.11) 

where u is the number of uncertainties and 

D~u = diag{Dk}, k = 1, ... , u, 

D1 = diag{dli (s)}, i = 1, ... ,n, (6.12) 

Dk = diag{dk(s)In}, k = 2, ... ,u. 

The generalized plant G(s) is constructed from the nominal model P(s), the 
types of uncertainties, and the uncertainty weights, with the rows and columns 
of G(s) arranged such that the independent diagonal additive uncertainty is 
the upper block of Ll. 

Furthermore, 

inf inf IID(s)F/(G(s),K(s))D-1(S)lloo = 
K(8)EK~ D(s)ED~" 

inf ._max {inf inf Ilbi(s)F/(Ci, EK,ii)(bi (s))-11I oo }, 
dlo(S) ,-1,,,.,n EK,iiEK! du(s) (6.13) 

k=2,,,.,u 

where Ci(s) is constructedfromG(s) as defined in {6.9}, bi(s) = {diag(dli (s), 
d2(s), ... ,du(s))ldk(s) is stable and minimum phase; k = li,2, ... ,u}, the 
EK,ii(S) are the diagonal elements of EK(S), and the Laplace transform vari­
able s has been suppressed in places for brevity. For the case with no indepen­
dent diagonal additive uncertainty, the dli (s) and the corresponding infimum 
in {6.13} are dropped. 

Theorem 6.2. (Robust Optimality with NLTV, NLTI, and LTV Ll) 
Consider the assumptions of Theorem 6.1, except with the SLTV perturba­
tions replaced by NLTV, NLTI, or LTV perturbations. All results of Theorem 
6.1 hold, with the scaling matrices D:u restricted to be constant matrices. 
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For 8LTV, NLTV, NLTI, and LTV full-block uncertainties, Theorems 6.1 
and 6.2 indicate that the robust controller synthesis problem for K(s) can be 
reduced to n mildly coupled 8180 robust controller synthesis problems for 
the 17K,ii(s). If DK-iteration is used to design a robust suboptimal controller, 
then the K step consists of n independent 8180 H oo-optimal control problems, 
one for each of the 8180 subplants 17ii(s) of P(s). The D step is coupled, 
since many of the elements of D(s) enter in more than one of the 8180 Hoo­
optimal control problems. After the DK iterations have converged to result 
in the final 17K,ii(s), they are collected into a diagonal matrix 17K(s), and 
the final controller computed from (6.10). 

The next result is for the case where the uncertainties are linear time­
invariant. 

Theorem 6.3. (Robust Optimality with LTI ..1) Consider a nominal 
model P(s) = U17(s)VT , where U and V are real orthogonal matrices and 
17(s) is a diagonal transfer function matrix. Suppose there is any combination 
of uncertainties of the following forms: (i) one full-block uncertainty of any 
type, (ii) any number of repeated diagonal multiplicative and inverse multi­
plicative uncertainties of the forms listed in Table 2.3, (iii) an independent 
diagonal additive uncertainty of the form (2. 22}. Then a controller of the 
form K(s) = V17K(s)UT minimizes 

sup Jl.l1(FI(G(S), K(s))) (6.14) 
s=jw 

where the generalized plant G( s) is constructed from the nominal model P( s), 
the types of uncertainties, and the uncertainty weights. Furthermore, 

inf sup Jl.l1 (FI (G(s), K( s))) 
K(s)EK~ s=jw 

= ._max { inf 1 sup Jl.&(FI(Gi(s),17K'ii(S)))} ' 
.-1'00' ,n L'K, .. (s)EK. S=JW (6.15) 

where..d = {diag{ok}llokl:S1jokECjk=1,"',u} and Gi(s) is con­
structed from G(s) as defined in (6.9). 

For some sheet and film processes, Theorem 6.3 indicates that the ro­
bust controller synthesis problem for K (s) can be reduced to n completely 
independent 8180 robust controller synthesis problems for 17K,ii(s), one for 
each of the 8180 subplants 17ii(s) of P(s). The following result makes the 
comparison with Theorem 6.1 clearer. 

Corollary 6.1. (Robust Optimality with LTI ..1) Consider the con­
ditions in Theorem 6.3, with the additional condition that J1. is equal to its 
upper bound. Then 
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inf sup JL..:1(F/(G(s), K(s))) = 
K(s)EK~ s=jw 

where D~ = {b(s)1 O(s) = diag{dk(s)}jdk(s) stable and minimum phasej 
k = 1,··· ,u}, and s has been suppressed in places for brevity. 

It is much simpler to solve for the controller in (6.16) than in (6.13), al­
though (6.13) has fewer variables to optimize over. The 8180 problems in 
(6.13) are coupled while those in (6.16) are completely decoupled. If DK­
iteration were applied in both cases, the computation for D in (6.13) is cou­
pled, while the computation for each D in (6.16) is not. In both cases the K 
step is decoupled. 

As discussed in Section 6.1, it is common for JL to be equal to or nearly 
equal to its upper bound. The next result assumes this to generalize Theorem 
6.1 to address a wider range of uncertainty structures. 

Theorem 6.4. (Robust Optimality with SLTV or LTI ..1) Consider 
a nominal model P( s) = U E( s) V T , where U and V are real orthogonal ma­
trices and E(s) is a diagonal transfer function matrix. Suppose there is any 
combination of uncertainties of the following forms: {i} multiple full-block 
uncertainties and repeated diagonal multiplicative and inverse multiplicative 
uncertainties of the forms listed in Table 2.3, {ii} an independent diagonal 
additive uncertainty of the form {2.22}. Assume that JL is equal to its upper 
bound. Then a controller of the form K(s) = VEK(S)UT minimizes 

sup JLa(F/(G(s), K(s))) = inf IID(s)F/(G(s), K(s))D-l(s)lIoo 
s=jw D(s)ED~u (6.17) 

where the generalized plant G(s) is constructed from the nominal model P(s), 
the types of uncertainties, and the uncertainty weights. 

Let f refer to the number of full blocks, and d refer to the number of 
repeated and independent scalar diagonal blocks, and let the rows and columns 
of G be arranged such that all the full blocks appear as the lower blocks in ..1. 
Then 

inf inf IID(s)F/(G(s), K(s))D-l(S)lloo 
K(8)EK~ D(8)ED~U 

where 
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Dj(s) , 

6.2 Optimal Robust Controller Design 95 

n! = {diag{d/,k(S)} I d/,k(S) stable and minimum phase; k = 1,··· ,f}, 

n~ = {diag{ dd,k (s)} I dd,k (s) stable and minimum phase; k = 1, ... ,d}, 

Gi(s) is constructed from G(s) as defined in (6.9), 17K,ii(s) are the diagonal 
elements of 17K (s), and the Laplace transform variable s has been suppressed 
in some places for brevity. 

The upper bound is not exactly equal to J.L for many problems, in which 
case the assumption of Theorem 6.4 will be an approximation. However, this 
approximation is a widely accepted one, and is used in all existing off-the-shelf 
software for robust controller synthesis [15, 81]. 

The next results show that, under increased restrictions on the uncertain­
ties, it is possible to construct the multivariable robust optimal controller by 
solving a single 8180 robust synthesis problem. 

Theorem 6.5. (Robust Optimality with Multiplicative LTI Ll) Con­
sider the conditions of Theorem 6.3 with the additional conditions that: (i) 
all the uncertainties are multiplicative or inverse multiplicative (the full-block 
uncertainty must correspond to a multiplicative or inverse multiplicative un­
certainty), (ii) the 17ii(s) =I 0 'Vi, and (iii) the 17ii(s) have same right half 
plane (RHP) poles and zeros, 'Vi. Define 17 K,IT,opt as the optimal controller 
for any of the SISO robust synthesis problems in the right hand side of (6. 15}. 
Then the other n - 1 SISO robust optimal controllers can be computed by 

.. () _ 17K,IT,opt(s)17IT(s) 
17K,u,opt s - 17ii(s) (6.19) 

Theorem 6.6. (Robust Optimality with Additive LTI Ll) Consider 
the conditions of Theorem 6.3 with the additional conditions that: (i) there 
is one additive, inverse additive, or diagonal additive uncertainty, (ii) the 
17ii(s) =I 0 'Vi, and (iii) the 17ii(s) have same RHP poles and zeros, 'Vi. 
Define 17 K,IT,opt as the optimal controller for any of the SISO robust synthesis 
problems in the right hand side of (6. 15}. Then the other n - 1 SISO robust 
optimal controllers can be computed by 

(6.20) 

Assumption (iii) of Theorems (6.5) and (6.6) is not restrictive, as sheet and 
film processes have the same dynamics for each pseudo-singular value, and so 
share the same poles and zeros. Assumption (ii) only requires that a pseudo­
singular value is not precisely equal to zero so that the ratios in (6.19) and 
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(6.20) are well-defined (note that this assumption does allow L'ii{S) to have 
zeros). When a pseudo-singular value is exactly zero, which occurs for some 
square and all non-square interaction matrices, then the corresponding S1S0 
controller EK,ii(S) should be set equal to zero, since that pseudo-singular 
value and the corresponding columns of U and V are uncontrollable [135, 137]. 

6.2.2 Symmetric Nominal Models 

Somewhat broader uncertainty types than those considered in Theorems 6.3 
and 6.4 are applicable to sheet and film processes with symmetric nominal 
models. More specifically, in this case the results hold for diagonal uncertain­
ties of any of the forms listed in Table 2.3. 

Corollary 6.2. (Robust Optimality with LTI .:1) Assume the con­
ditions of Theorem 6.3 with the additional condition that U = V. Then the 
results of Theorem 6.3 hold for any combination of uncertainties of the fol­
lowing forms: {i} one full-block uncertainty of any type, {ii} any number of 
repeated diagonal uncertainties of the forms listed in Table 2.3, {iii} an inde­
pendent diagonal additive uncertainty of the form {2.22}. 

Corollary 6.3. (Robust Optimality with SLTV or LTI.:1) Assume 
the conditions of Theorem 6.4 with the additional condition that U = V. 
Then the results of Theorem 6.4 hold for any combination of uncertainties of 
the following forms: {i} multiple full-block uncertainties and repeated diagonal 
uncertainties of the forms listed in Table 2.3, {ii} an independent diagonal 
additive uncertainty of the form {2.22}. 

6.2.3 Remarks 

All of the results in this section yield controllers that are superoptimal [169, 
219, 331], that is, the Hoo norm is minimized in n directions. This is in 
contrast to the Hoo controllers computed by commercial software packages, 
which only minimize the Hoo norm in the worst-case direction [15]. From a 
practical point of view, this means that the superoptimal Hoo will give much 
better closed-loop response to most disturbances, although it will have the 
same overall Hoo-norm as a non-superoptimal controller. 

The controller design theorems in Sections 6.2 and 6.3 (below) yield con­
trollers of the form K(s) = VEK(S)UT . The robustness for the overall sys­
tem is maximized by minimizing the robustness margin for the S1S0 control 
problems. However, as discussed in Chapter 4, a pseudo-singular value whose 
steady-state sign is not known with confidence is uncontrollable (Chapter 5 
describes how to compute confidence intervals for the pseudo-singular values 
so as to determine which are controllable). The S1S0 controller EK,ii(S) is 
set equal to zero if it corresponds to an uncontrollable pseudo-singular value. 
Otherwise, EK,ii(S) is computed according to the appropriate theorem from 
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Section 6.2 or 6.3. The SISO robust control problems associated with the un­
controllable pseudo-singular values should not be included in the robustness 
margin calculations, that is, the multivariable performance specification is 
only applied to the controllable plant directions. 

When used for controller design via DK-iteration, the theorems in Section 
6.2 may yield controllers of unacceptably high order. In practice, low-order 
controllers are often desirable. Low-order controllers can be achieved by using 
model reduction techniques to reduce the controller order or by fixing the con­
troller order in the synthesis step. The theorems provided above are suitable 
for the former approach, while the theorems in the next section are suitable 
for the latter. Fixing the controller order in the synthesis step leads to further 
simplifications in robust controller design. As will be seen in the examples 
section, this simplification can occur with only a small loss in closed-loop 
performance. 

6.3 Low-order Robust Controller Design 

The results of the previous section can be used to compute robust suboptimal 
controllers using the DK-iteration method. It is unlikely, however, that any 
controller design method, irrespective of complexity, will produce a controller 
that gives precisely the desired stability and performance for all disturbances 
and all operating conditions (for example, during startup or grade changes). 
This motivates the development of controllers which have parameters that can 
be tuned (or detuned) on-line when necessary. Secondly, controllers produced 
by DK-iteration tend to have very high order, while low-order controllers are 
easier to implement. 

That an SVD controller optimizes robust performance for a variety of 
uncertainty types suggests that such low-order tunable controllers should 
be selected to have the SVD structure. In this way, the low-order tunable 
controller will have the optimal directionality. The algorithms for low-order 
robust controller design for the LTI uncertainty types considered in The­
orem 6.3 require less computation and are presented first, followed by the 
algorithms for the uncertainty types considered in Theorems 6.1, 6.2, and 
6.4-6.6. 

6.3.1 LTI Uncertainty 

For the LTI uncertainty types covered by Theorem 6.3, the following result 
shows that any SVD controller (6.10) decouples the multivariable robust con­
trol synthesis into independent SI80 control problems. 

Corollary 6.4. (Robustness Analysis with LTI ..,1) Consider the con­
ditions and notation in Theorem 6.3. Then 
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SS':;fwJ.L~(F,(G(s),K(s))) = sS':;fw mF{J.L.&(FI(Gi(s),17K,ii(s)))} (6.21) 

= mF Ls,:;fw J.L.& (FI(Gi(S), 17K,ii(S)))} (6.22) 

holds for any controller of the form K(s) = V 17K (s)UT . 

The robustness for the overall system is optimized by minimizing the 
robustness margin for the S1S0 control problems. A low-order multivariable 
controller can be designed by designing low-order S1S0 controllers 17K,ii(s). 
The controller 17K,ii(s) for each S1S0 problem can be designed by any robust 
controller design method; here we describe the use of Internal Model Control 
(IMC) tuning [242] for scalar dynamics described by first-order plus time 
delay (this is by far the most commonly used model for describing sheet and 
film process dynamics [182,44]' for more complex models see [38, 242, 293]): 

e-()S 

p(s) = --1' 
rs+ 

(6.23) 

Without loss of generality, the steady-state gain of p(s) has been scaled so 
that p(O) = 1. 

The Internal Model Control-Proportional-Integral-Derivative (IMC-PID) 
controller is 

where 

() 
r[ = r+-; 

2 

r() 
rD = 2r + (); 

(6.24) 

rF,i = 2(Ai + ()); (6.25) 

for all i in which the sign of 17ii(O) is known with confidence; otherwise 

17K,ii(s) = o. (6.26) 

If a lower order controller is desired, the IMC-PI form is 

(6.27) 

for all i in which the sign of 17ii(O) is known with confidence, and 

(6.28) 

otherwise. 
The SISO controllers 17K,ii(s) are stacked up as the diagonal elements of 

a matrix 17K(s), with the overall SVD controller computed from (6.10). The 
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number of states in K(s) constructed using the IMC-PID form (6.26) is less 
than or equal to 2n, whereas using the IMC-PI form (6.27) results in K(s) 
having not greater than n states. 

The IMC tuning parameters Ai can be selected either as fast as possible 
while maintaining robust stability [315], or to maximize robust performance. 
If the Ai are used to optimize robust performance, then care must be taken 
to ensure that the combined uncertainty-performance description is not too 
conservative. 

The IMC tuning rules used in (6.26) and (6.27) are known to provide 
poor load disturbance suppression for processes which have the open-loop 
time constant r larger than the desired closed-loop time constant A [35]. 
For most sheet and film processes, the time delay dominates the open-loop 
dynamics and r is relatively small, so that A will be greater than r for a 
robust control system [44]. For those rare sheet and film processes where 
robust performance allows A < r, the IMC-tuning rules used in (6.26) should 
be replaced by the modified IMC-PID rules [188]. 

6.3.2 SLTV, NLTV, NLTI, LTV Uncertainties 

Here we consider low-order controller design for the uncertainty types con­
sidered by Theorems 6.1, 6.2, and 6.4. 

Corollary 6.5. (Robustness Analysis with SLTV..:1) Consider the 
conditions and notation in Theorem 6.1. Then 

inf IID(s)Fz(G(s), K(s))D-l(S) 1100 = 
D(S)ED~U 

inf m~ { inf IIDi(s)Fz(Ci(s), EK'ii(S))(Di(s))-llloo} , 
dk(S) • dli(S) (6.29) 

k=2, ... ,u 

holds for any controller of the form K (s) = V E K (s) uT . 

Corollary 6.6. (Robustness Analysis with NLTV, NLTI, and LTV ..:1) 
Consider the conditions and notation in Theorem 6.2. Then 

inf IIDFz(G(s), K(s))D-lll oo = 
DEDnu 

(6.30) 

k=2, ... ,u 

holds for any controller of the form K(s) = VEK(S)UT , where nnu is the 
set of constant matrices with the same structure as D~u. 
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Corollary 6.7. (Robustness Analysis with SLTV or LTI.1) Consider 
the conditions and notation in Theorem 6.4. Then 

inf IID(s)F/(G(s),K(s))D-l(s)lloo = 
D(8)ED~u 

holds for any controller of the form K (s) = V E K (s) UT , where 

b(s) = [b~(s) ,. ]. 
Dj(s) 

(6.32) 

If J.1. defines a robust performance objective (with .110 representing the 
performance specification), then low-order tunable controllers can be de­
signed by solving the appropriate optimization problem (6.29, 6.30, or 6.31), 
with the EK,ii(S) restricted to be a low-order controllers, such as (6.26) or 
(6.27). A procedure similar to DK-iteration can be used to compute a high 
quality suboptimal solution to the nonconvex optimization problems. In the 
K step, the Hoo optimization over the controller is replaced by an optimiza­
tion over the Ai. The optimizations over the Ai are independent, and can 
be easily automated. Moreover, since the SISO control problems are nearly 
decoupled, each Ai behaves similarly as in tuning a SISO IMC controller. 
In particular, for reasonable uncertainty and performance weights, the SISO 
robust performance objectives will be large when Ai is either small (poor 
stability robustness) or large (poor performance). Extensive experience with 
IMC tuning of time delay processes indicates that the optimization of the J.1. 

upper bound over Ai will usually have a unique minimum. Also, given that 
the Eii(S) have the same dynamics with a nearly continuous range of gains 
from low to high singular values of PCD, the minimizing Ai for one optimiza­
tion can be used as an initial condition for the adjacent optimization (Ai+1)' 
In the D step, fitting the D-scale at each frequency to a transfer function 
is unnecessary, since the IMC-PI/PID EK,ii(S)'S are not computed from the 
transfer functions di (s), but only from their values at each frequency. Thus 
the modified DK-iteration procedure avoids both the D-fitting and the Hoo­
synthesis procedures, which are the steps in standard DK-iteration that can 
cause numerical inaccuracies [192]. 

An alternative to the modified DK-iteration procedure will be to directly 
optimize the overall J.1. upper bound over the Ai using a generic optimization 
procedure. This would require re-computing the D-scales every time the Ai 
are updated. The modified DK-iteration procedure, on the other hand, re­
quires a limited number of D-scale computations if properly initialized. The 
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independent design procedure in Section 6.3.1 can be used to initialize the 
algorithm. 

If the J.L robustness measure defines a robust stability objective (without 
inverse multiplicative input or output uncertainties), then it is desired to 
select the IMC tuning parameters Ai as fast as possible while maintaining 
robust stability. This optimization problem can be posed as: 

where the s has been suppressed in places for brevity. A modified DK-iteration 
procedure similar to that described above can be used to solve this optimiza­
tion problem. The robust stability objective is achievable if and only if the 
optimal value of the objective function in (6.33) is less than E. If the optimal 
value of the objective function in (6.33) is greater than E, then the uncertainty 
set must be reduced (for example, through increased data collection [136]). 

6.3.3 Multiplicative or Additive LTI Uncertainties 

Here we consider low-order controller design for the uncertainty types con­
sidered by Theorems 6.5 and 6.6. 

Corollary 6.8. (Robustness Analysis with Multiplicative LTI .:1) 
Consider the conditions and notation in Theorem 6.5. Then 

holds for any controller of the form K(s) = V17K(s)UT . Furthermore, all 
SISO controllers 17K,ii (s) can be constructed from a single SISO controller 
design problem. Let the low-order controller designed be denoted t. The other 
controllers are given by 

17 .. () _ 17K,rr,opt(s)17rr(s) 
K,u,opt S - 17ii (s) (6.35) 

Corollary 6.9. (Robustness Analysis with Additive LTI.:1) Consider 
the conditions and notation in Theorem 6.6. Then 

holds for any controller of the form K(s) = V17K(s)UT . Furthermore, all 
SISO controllers 17K,ii(s) can be constructed from a single SISO controller 
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design problem. Let the low-order controller designed be denoted t. The other 
controllers are given by 

(6.37) 

For the uncertainty descriptions treated by Theorems 6.5 and 6.6, a con­
troller of the form K(s) = V EK(S)UT decouples the process into n inde­
pendent SISO problems. If low-order controllers are desired, EK,ii(S) may be 
selected to have the form of (6.26) or (6.27) and only one EK,ii(S) needs to 
be synthesized. The other controllers are constructed as multiples of that one 
controller. 

6.3.4 Implementation 

SVD controllers (6.10) can be implemented in the form of a static decoupler 
UT in series with a diagonal dynamics matrix EK(S) in series with another 
static decoupler V. The implementation for the PI and PID SVD controllers 
is particularly simple-the technology for implementing static decouplers and 
noninteracting PI/PID controllers has been available for over two decades. 

Sheet and film processes usually have min-max and second-order spacial 
constraints on their manipulated variables to prevent excessive stresses (such 
as in a die or slice lip) or flow instabilities [44]. These constraints can be 
addressed by applying any of the well-established multivariable anti-windup 
procedures [11, 68, 238, 373] to the SVD controllers. The SVD controllers 
with anti-windup are implement able in real time on large scale sheet and 
film processes using existing hardware. 

6.4 Applications 

Here the robust controller design theorems developed in the previous sections 
are applied to a model developed from industrial data that captures many of 
the realities of an industrial paper machine. 

6.4.1 Paper Machine Model 

Consider the model for a fine paper machine with 130 actuators and 650 
sensing locations considered in Section 2.4.4, where there is uncertainty in 
both the input and the output of the process (see Figure 6.3). This uncer­
tainty includes inaccuracies in the actuator and sensor dynamics, as well as 
uncertainty associated with the interaction matrix. The operators ..d] and 
..do are unity norm bounded and assumed to be linear time-invariant (LTI). 
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The magnitude of the uncertainty is set by the weights WI and Wo. Each 
uncertainty weight (WI, Wo) was chosen to represent up to 10% steady­
state error and up to 100% dynamic error. The uncertainty weights also 
cover model error due to replacing the time delay with a third-order Pade 
approximation [251, 321] (see Figure 6.4). 

The performance weight is selected to ensure less than 0.4% steady-state 
error and a closed-loop time constant of Tp = 5 minutes. Equation 6.3 indi­
cates that the maximum disturbance amplification will be less than 2 at all 
frequencies, and that the bandwidth of the closed-loop system will be at least 
0.2. Rearranging the block diagram in Figure 6.3 and including a performance 
block results in the generalized plant matrix 

G= 

r 

[ 
0 0 0 -WI 1 

WoP 0 0 -WoP 
WpP Wp -Wp -WpP 

P / -/ -P 

Fig. 6.3. Block diagram with both input and output uncertainty 

10-3 L-___ ....l-___ ~ ___ __' 

10-1 10° 101 102 

Frequency (rad/s) 

(6.38) 

Fig. 6.4. Bode magnitude plot for IWol + IWII + IWOWII (dashed) and relative 
model error due to Pade approximation of the time delay (solid) 
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with 

~= [Lll Llo J (6.39) 

WI = Wo = 0.1(108 + 1) I 
8+1 

(6.40) 

Wp = 0.5(Tp 8 + 1) I 
Tp 8 + 0.002 

(6.41) 

Tp = 5 (6.42) 

Controllers designed to be robust to the uncertainty description will also be 
insensitive to measurement noise, as the uncertainty specifications require a 
roll-off of the complementary sensitivity function. 

6.4.2 The Inadequacy of Commercial Software 

The commercial software packages for designing robust controllers are the 
MATLAB ",-toolbox [15] and the Robust Control Toolbox [81]. It is impossible 
to even form the G matrix (6.38) for the large-scale paper machine in MATLAB 
on a Sparc Ultra 2200 computer with 64 MB of RAM and 240 MB of swap 
space-the computer runs out of memory. 

It is instructive however to estimate the time required to design a robust 
controller using the standard OK-iteration procedure [15, 81, 107, 242, 315] 
if it were possible to perform these calculations. For only 20 actuators, one 
OK-iteration step took 77 minutes. One Hoo synthesis step took 20 minutes, 
'" analysis took 57 minutes for 50 frequency points, and the O-fitting step 
took 2 seconds. Assuming that scaling up to 130 actuators follows an O(n3 ) 

increase in computation time, and that six OK-iteration steps are necessary, 
then OK-iteration for 130 actuators would require more than 2000 hours of 
computation. Note that assuming an O(n3) increase in computation time is 
a lower bound-it is likely that a higher order would occur in practice. For 
example, for 40 actuators the", analysis step took more than 30 minutes per 
frequency point. 

The conservative timing estimates above are for the case where the un­
certainties are all full block. OK iteration for repeated-scalar uncertainties 
is not implemented in the commercial software packages. If it were imple­
mented, the O-fitting step for repeated-scalar uncertainties would take much 
longer, as in this case the number of degrees of freedom to be computed grows 
very much more rapidly (quadratically) as a function of plant input-output 
dimension. This high computational expense is likely why the O-fitting step 
for repeated-scalar uncertainties is not implemented in commercial packages. 

Even if a supercomputer with GBs of RAM and/or swap space were avail­
able, and if time to compute the robust optimal controller was not a concern, 
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the paper machine control problem has a large enough dimensionality that 
the DK iteration algorithm would likely produce highly suboptimal results 
(the algorithm would have difficulty converging). This behavior has been 
demonstrated on much smaller problems in past work [192]. Also, the re­
sulting controller would be of very high order and would be expensive to 
implement. 

This motivates the robust controller design procedures presented in this 
manuscript. The dimensionality reduction theorems given here allow robust 
controllers to designed for systems in which no other design techniques are 
suitable. The total computation time of the following algorithms is on the 
order of minutes on a Sun workstation or Pentium II. 

6.4.3 Repeated Scalar Input and Output Uncertainties 

If Lll and Llo are treated as being repeated scalar, then the input-output 
uncertainty description satisfies the conditions of Theorem 6.5, and the robust 
controller design problem reduces to the design of a single EK,ii(S), The n 

lower dimensional transfer functions Gi ( s) are constructed as shown in (6.9): 

(6.43) 

[
01 0 0 1 

~ = 0 00 0 . 

o 0 op 
(6.44) 

The multivariable robust control problem decouples into independent S1S0 
robust control problems as defined in (6.15), with 

-WI E K,ii E ii -WI E K,ii WI E K,ii 

1 + EK,iiEii 1 + EiiEK,ii 1 + EiiEK,ii 

F1(Gi,EK,ii) = 
WOEii -WOEiiEK,ii -WOEiiEK,ii (6.45) 

1 + EK,iiEii 1 + EK,iiEii 1 + EK,iiEii 

WpEii Wp -Wp 

1 + EK,iiEii 1 + EK,iiEii 1 + EK,iiEii 

where the dependence on the Laplace transform variable s has been sup­
pressed for brevity. 

Since the number of uncertainties in the S1S0 problem (6.43) is less than 
four, J.L is equal to its upper bound. DK-iteration can be used to compute a 
J.L-suboptimal solution for the S1S0 controller design problem. 
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Using the J.t-toolbox [15], DK-iteration was applied to one of the S1S0 ro­
bust control problems defined in (6.43). The frequency-dependent D scales, 
D(s), were allowed to be up to third order. The DK-iteration procedure was 
stopped after six steps, at which point the maximum value of J.t was 0.96. 
DK-iteration for this S1S0 system required about 10 seconds of computation 
per iteration on Sparc Ultra 2200. The state space matrices for the S1S0 con­
troller are given elsewhere [335]. The other robust S1S0 controllers EK,ii(s) 
were constructed as shown in (6.19), and the robust multivariable controller 
constructed as shown in (6.10). The value of J.t for the S1S0 problem is equal 
to J.t for the multivariable system (see Figure 6.5). 

The robustness of the multivariable controller is illustrated in closed-loop 
responses (Figures 6.7-6.11) where the controller rejects the disturbance in 
Figure 6.6. The dynamic perturbations were selected to be time delays be­
cause the dynamics associated with time delays are known to be particularly 
difficult to handle by most control systems. 

The controller attempts to control all of the pseudo-singular values of the 
paper machine in Figures 6.7-6.11. For industrial paper machines, some of the 
smaller pseudo-singular values are usually uncontrollable. Here it is assumed 
that the uncontrollable pseudo-singular values have magnitude less than 0.12. 
The controller used in the closed-loop simulations shown in Figures 6.12-6.16 
does not attempt to control the pseudo-singular values of the paper machine 
corresponding to the singular values of the interaction matrix Pc D (in Figure 
2.4) smaller than 0.12 (see Section 6.3.1). In this case, J.t for robust perfor­
mance applies only for the controllable pseudo-singular values. The loss in 
closed-loop time-domain performance in not controlling the smallest pseudo­
singular values is negligible. Both controllers are insensitive to high frequency 
measurement noise (measurement noise was not included in the time-domain 
simulations so that the details of the closed-loop responses would be clear). 

6.4.4 Low-order Robust Controller Design 

Here the same uncertainty description for the paper machine is assumed as 
in Section 6.4.3, but the S1S0 robust controllers are designed to be in the 
IMC-Pl form (6.27). 

For the selected input-output uncertainty description with the SVD con­
trol structure, Corollary 6.8 holds. Only one S1S0 PI controller EK,ii(S) needs 
to be designed. The multivariable robustness margin reduces to the calcula­
tion of J.t for a single 3 x 3 transfer function matrix, which took less than 
0.2 seconds for each frequency on a Sparc Ultra 2200. The single IMC tun­
ing parameter A = Ai was selected to minimize the value of J.t. This resulted 
in Ai = 8.26 min, with a multivariable J.t value of 1.028 (see Figure 6.5). A 
rescaling of the uncertainty and performance weights by 3% would give J.t < 1. 
The multivariable SVD controller was constructed from the S1S0 controller 
as described in Section 6.3.1. The multivariable closed-loop responses to a 
variety of perturbations are shown in Figures 6.17-6.21. For brevity, only 
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Fig. 6.5. J.L as a function of frequency for the full-order controller with repeated­
scalar uncertainties (dashed), the low-order controller with repeated-scalar uncer­
tainties (solid), and the full-order controller with full-block uncertainties (dotted) 
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Fig. 6.6. The process disturbance, which represents a streak down the middle 
of the paper machine. Such disturbances are commonly encountered in industrial 
paper machines. 
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Fig. 6.7. The closed-loop response of the paper machine to the process disturbance 
in Figure 6.6 for the nominal model. The controller was designed via DK-iteration 
to control all the pseudo-singular values of the process . 
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Fig. 6.8. The closed-loop response of the paper machine to the process disturbance 
in Figure 6.6 for repeated-scalar input uncertainty ..1/ and output uncertainty ..10 
equal to the identity matrix. This corresponds to underestimating all of the gains in 
the process transfer function by 20%. The controller was designed via DK-iteration 
to control all the pseudo-singular values of the process. 
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Fig. 6.9. The closed-loop response of the paper machine to the disturbance given 
in Figure 6.6 for repeated-scalar input uncertainty .11 and output uncertainty .10 
equal to minus one times the identity matrix. This corresponds to overestimating 
all of the gains in the process transfer function by 20%. The controller was designed 
via DK-iteration to control all the pseudo-singular values of the process . 
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Fig. 6.10. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for repeated-scalar input uncertainty .11 and output uncertainty 
.10 equal to a third-order Pade approximation for a time delay of 2 minutes times 
the identity matrix. The controller was designed via DK-iteration to control all the 
pseudo-singular values of the process. 
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Fig. 6.11. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for repeated-scalar input uncertainty LlI and output uncertainty 
Llo equal to minus one times a third-order Parle approximation for a time delay of 
2 minutes times the identity matrix. The controller was designed via DK-iteration 
to control all the pseudo-singular values of the process. 
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Fig. 6.12. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for the nominal model. The controller was designed via DK­
iteration to control a subset of the pseudo-singular values of the process. 
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40 

o time (min) 

Fig. 6.13. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for repeated-scalar input uncertainty LlJ and output uncertainty 
.10 equal to the identity matrix. The controller was designed via DK-iteration to 
control a subset of the pseudo-singular values of the process . 
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Fig. 6.14. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for repeated-scalar input uncertainty LlJ and output uncertainty 
.10 equal to minus one times the identity matrix. The controller was designed via 
DK-iteration to control a subset of the pseudo-singular values of the process. 
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Fig. 6.15. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for repeated-scalar input uncertainty Ll/ and output uncertainty 
Llo equal to a third-order Pade approximation for a time delay of 2 minutes times 
the identity matrix. The controller was designed via DK-iteration to control a subset 
of the pseudo-singular values of the process . 
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Fig. 6.16. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for repeated-scalar input uncertainty Ll/ and output uncertainty 
Llo equal to minus one times a third-order Pade approximation for a time delay of 
2 minutes times the identity matrix. The controller was designed via DK-iteration 
to control a subset of the pseudo-singular values of the process. 
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the time-domain responses for the IMC-PI SVD controller which controls a 
subset of the pseudo-singular values of the process are shown. 

The robustness as measured by J.L is only slightly larger for the IMC­
PI SVD controller than for the higher order SVD controller designed by 
DK-iteration. The IMC-PI SVD controller actually gives better closed-loop 
performance for the perturbations shown in Figures 6.17-6.21, although the 
J.L-value indicates that there exist norm-bounded perturbation(s) in which 
the high-order SVD controller will give better performance. The main point 
is that the loss in performance from using the low-order robust controller 
instead of the high-order controller is negligible. The low-order controller 
required less computation to design, and also has a simple tuning parameter, 
.x, which can be re-tuned on-line should the uncertainty description have been 
too optimistic or too conservative. 
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Fig. 6.17. The closed-loop response of the paper machine to process disturbance 
in Figure 6.6 for the nominal model. The IMC-PI SVD controller was designed to 
control a subset of the pseudo-singular values of the process. 

6.4.5 Full-block Input and Output Uncertainties 

Now let ..11 and ..10 be full blocks. In this case, since there are less than four 
full blocks, the robustness margins for LTI and SLTV are equal [106] and 
Theorem 6.1 applies. The multivariable robust control synthesis problem can 
be replaced by the coupled SISO problems in (6.13) with (ji defined by (6.43). 

If DK-iteration is used to compute a J.L-suboptimal controller, only two 
transfer functions d1 (s) and d2 (s) need to be fitted in the D-step. It is more 
expensive to compute each dk(s) than in the repeated-scalar case (Section 
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Fig. 6.18. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for repeated-scalar input uncertainty .1/ and output uncertainty 
.10 equal to the identity matrix. The IMC-PI SVD controller was designed to con­
trol a subset of the pseudo-singular values of the process. 
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Fig. 6.19. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for repeated-scalar input uncertainty .1/ and output uncertainty 
.10 equal to minus one times the identity matrix. The IMC-PI SVD controller was 
designed to control a subset of the pseudo-singular values of the process. 
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Fig. 6.20. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for repeated-scalar input uncertainty .1/ and output uncertainty 
.10 equal to a third-order Pade approximation for a time delay of 2 minutes times 
the identity matrix. The IMC-PI SVD controller was designed to control a subset 
of the pseudo-singular values of the process . 
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Fig. 6.21. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for repeated-scalar input uncertainty .1/ and output uncertainty 
.10 equal to minus one times a third-order Pade approximation for a time delay of 
2 minutes times the identity matrix. The IMC-PI SVD controller was designed to 
control a subset of the pseudo-singular values of the process. 
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6.4.3), since each dk{S) appears in multiple 8180 Hoc-synthesis problems. 
All the Gi{s) and L'K,ii{S) are used to compute the d1{s) and d2{s) for the 
next iteration. The D-scale computation could be posed as a highly struc­
tured Linear Matrix Inequality (LMI) optimization (for more details, see 
[30, 232, 341]), the dimension of which is equal to the dimension of the origi­
nal multivariable robust control synthesis problem. The K-step, on the other 
hand, consists of independent 8180 robust controller synthesis problems. 

The wide range of gains of the pseudo-singular values in the coupled 
8180 problems caused the optimization over the dynamics of d1 and d2 to 
provide negligible improvement over constant D-scales. Optimization over 
even a constant d2 had negligible effect as well. This is not surprising since 
the robustness of the overall system is much more sensitive to full-block 
input uncertainty than full-block output uncertainty when the plant is poorly 
conditioned, as it is in this case. This restricted the number of degrees of 
freedom in the D-scales enough that it was necessary to relax the performance 
weight to Tp = 8 in order to get J.I. < 1. The optimization over the D-scales 
gave d1 = 0.15 and d2 = 1, with J.I. = 0.99 (see Figure 6.5). With the D-scales 
fixed, about 10 seconds was required to compute the Hoc controller for each 
SISO subproblem on a Sparc Ultra 2200. 

The closed-loop responses are shown in Figures 6.23 and 6.24 for full-block 
uncertainties. That is, the input and output uncertainties were full random 
matrices with norm one. Attempts to simulate a process with anti-diagonal 
time delay perturbations failed because the computer did not have enough 
memory to create the uncertain transfer function. It was possible to create 
the transfer function matrix in MATLAB for a constant anti-diagonal pertur­
bation, but the time-domain simulation would not converge. For brevity, only 
the time-domain responses for the controller which controls a subset of the 
pseudo-singular values of the process are shown. 

The time-domain simulations for the full-block uncertainties are very sim­
ilar to the diagonal perturbations. In all cases, the robust controllers derived 
from the theorems in this paper achieve monotonic or near monotonic rejec­
tion of the disturbance within the desired settling time. 

6.5 Summary 

Control algorithms for sheet and film processes based on modified DK­
iteration procedures were presented that address model uncertainties in a 
numerically efficient and effective manner. Alternative algorithms requiring 
less computations were presented for the design of robust low-order tunable 
controllers. The low-order controllers were of the form of two static decoupling 
matrices in series with either a diagonal PI or PID controller. The algorithms 
are applicable to large scale sheet and film processes with arbitrary interac­
tion matrices and very general uncertainty structures. This includes processes 
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Fig. 6.22. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for the nominal model. The controller was designed via DK­
iteration to control a subset of the pseudo-singular values of the process and to be 
robust to full-block uncertainty. 
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Fig. 6.23. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for full-block input uncertainty .11 and output uncertainty 
.10 equal to a worst-case norm random matrix. The controller was designed via 
DK-iteration to control a subset of the pseudo-singular values of the process. 
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Fig. 6.24. The closed-loop response of the paper machine to the process distur­
bance in Figure 6.6 for full-block input uncertainty L1J and output uncertainty 
.10 equal to a worst-case norm random matrix. The controller was designed via 
DK-iteration to control a subset of the pseudo-singular values of the process. 

where the number of actuators is not equal to the number of sensors, the in­
teraction matrix is singular or nearly singular, and the perturbations are 
nonlinear and/or time-varying. 

For the simple types of dynamics usually associated with sheet and film 
processes, the low-order controllers will give nearly the same robust perfor­
mance as high-order controllers, while being simpler to implement. Another 
advantage of a low-order controller is that it is tunable. The IMC tuning 
parameters Ai can be reset on-line to trade off robustness with closed-loop 
speed of response (of course, no amount of detuning of the Ai can compensate 
for having gains of the wrong sign, as described in Chapter 4). 

Both the full-order and low-order robust controller design algorithms were 
applied to a simulated fine paper machine which has a realistic description 
of interactions across the machine. This example is of substantially higher 
dimensionality than that of any robust control problem ever considered. 

6.6 Proofs 

In this section we provide the proofs for the Theorems and Corollaries in 
Sections 6.2 and 6.3. We begin with some preliminary mathematics needed 
in the proofs. 

Preliminary Mathematics. Without loss in generality, each proof consid­
ers one of each type of uncertainty (..1 = diag{Lld = diag{LlDA,LlA,LlIA ' 
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-u y 

Fig. 6.25. Open-loop block diagram with all uncertainty types 

..10, ..1/0, ..11, ..1 II }). Below is some preliminary algebra which is used in the 
proofs. For brevity, dependence on s will be suppressed in most places except 
where needed for clarity. Also note that POD may be taken as square without 
loss of generality since it is always possible to augment with rows or columns 
of zeros as needed. 

The G matrix for the system shown in Figure 6.25 is: 

0 0 0 0 0 V T _VT _VT 

0 0 0 0 0 wAl -wAl -wAl 

0 0 -WIAP 0 0 WIAP -WIAP -WIAP 

G= 
WOUWDA wol -woP 0 0 woP -woP -woP 

(6.46) W/OUWDA w/Ol -w/OP w/Ol -w/Ol w/OP -w/OP -w/OP 

o 0 0 0 0 0 -wIl -wIl 

o 0 0 0 0 0 -wIll -wIll 

UWDA 1 -P 1 -1 P -P -P 

This can be written as G = UwGVJ where 

Uw = diag(l, V, U, U, U, V, V, U) (6.47) 

(6.48) 

and G is partitioned compatibly with G and has diagonal n x n sub-blocks. 
Also define 

Uwl = diag(I, V, U, U, U, V, V) (6.49) 

(6.50) 

(these will be used later, in (6.75) and following.) 
The scaled G is also partitioned compatibly with G and has diagonal 

sub-blocks: 
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where 

- -1 DGllD = 

-D1 

-d2wAI 

-d3wJAE 

DG12 = -d4W oE 

-dSWIOE 

-d6wJI 

-d7wIII 

and 

The following lemma will be useful in proving our results. 

(6.51) 

(6.52) 

(6.53) 

(6.55) 

Lemma 6.1. (Optimality of the SVD Controller) Consider the robust 
synthesis problem 

_ inf sup a (FI(G(s),K(s))) , 
K(s)EK~ s=jw 

(6.56) 

where G(s) is composed of diagonal sub-blocks of dimension n x n. Then a 
diagonal controller K(s) is optimal. 

Note that the lemma also holds if the Hoo norm is replaced by a I-" problem 
which has a single full-block Ll, since these objectives are equivalent [106]. 
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Proof of Lemma 6.1. Essentially, this lemma shows that a decentralized 
controller is optimal for a decentralized plant with decentralized weights 
(costs). 

The optimal controller solves 

(6.57) 

where K s represents the set of all stabilizing controllers. 
The key to a rigorous proof that a diagonal controller i< can be chosen 

to be optimal is to reparameterize the above optimization over i< as an 
optimization over the Youla matrix Q, and then use matrix dilation theory 
to show that Q can be taken to be diagonal. The set of all stabilizing i< is 
given by 

Ks = {K: K = (Y - TQ)(X - 8Q)-1,Q E n1ioo} 

= {K: K = (X - Q8)-1(y - Q1'),Q E n1ioo} 

(6.58) 

(6.59) 

where (8, T) and (8,1') are right and left coprime factors of G22 respectively 
(i.e.,G22 = 8T-1 = 1'-18), and (X, Y,X, Y) is a solution to the following 
Bezout identity: 

[ X_ -! 1 [T Y 1 = I 
-8 T 8 X 

(6.60) 

Note that, since G22 is diagonal we may choose T, 8, X, Y, X, Y, 1', 8 to all 
be diagonal (to do this, first construct the right and left coprime factors of 
each subsystem and stack these on the diagonal to construct right and left 
coprime factors of the overall system). 

Using the parameterization (6.58)-(6.59), (6.57) becomes 

where 

G ll = Gll + G12TYG21 

G12 = G12T 

G21 = 1'G21 

(6.61) 

(6.62) 

(6.63) 

(6.64) 

The only restriction on Q is that it should be analytic in the closed RHP. 
The matrix Gll consists of diagonal blocks because Gll , G12 , and G21 

consist of diagonal blocks and T and Y are diagonal. Similarly, G12 and G21 
also consist of diagonal blocks. Thus, each entry of Gll + G12QG21 will have 
one Qij in it, and the rows and columns of this matrix can be permuted 
so that the permuted matrix can be partitioned with only one Qij in each 
partition (permuting the rows and columns of a matrix does not change the 
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value ofits unitary-invariant norm). Call this permuted matrix P(Q) and let 
Pij(Qij) be the partition containing Qij. Then 

inf IIGu + G12QG21 11 00 = inf IiP(Q)lloo 
QE'R1I.oo QE'R1I.oo 

(6.65) 

The maximum singular value of a matrix (in this case, P(Q)) is greater than 
the maximum singular values of each partition Pij of P(Q) [156], that is, 

= inf sup a (P(Q)I .) (669) 
QE'R1I.oo and Q diagonal W S=JW • 

= inf sup a- (Cn + C12QC21IS-jw) . (6.70) 
QE'R1I.oo and Q diagonal W -

Thus minimizing over diagonal Q gives an Hoo-norm less than or equal to 
the value obtained by minimizing over full Q. Since Q being diagonal is more 
restrictive than allowing Q to be full, the above inequalities are equalities and 
the optimal Q can be taken to be diagonal. That diagonal Q corresponds to 
diagonal K can be seen from (6.58)-(6.59), that is 

inf sup a (Cu + G12QG2I!s-jw) 
QE'R1I.oo and Q diagonal W -

(6.71) 

= _ in( IIF,(C,k)ll. 
KEK. and K diagonal 00 

(6.72) 

o 
Proof of Theorem 6.1. The necessity and sufficiency of (6.11) as a test 
for robustness to arbitrarily-slow linear time-varying full-block uncertainties 
was shown by Poolla and Tikku [263J. Now 

(6.73) 
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(6.78) 

= inf inf Fl ([DO fO] a [DO-1 °f] , EK) 00 
L'KEK~ DED~" 

(6.79) 

= inf inf max 
d/c dli i=l, ... ,n 

k=2, ... ,U i=l, ... ,n 

(6.80) 

= inf max 
d/c i=l, ... ,n 

k=2, ... ,u 

(6.81) 

._max { inf infllbiF/(a\EK'ii)(bi)-lll }. 
'-1, ... ,n L'K,;;EK~ dli 00 (6.82) 

inf 

k=2, ... ,u 

The fact that (6.79) is equal to (6.80) follows from Lemma 6.1. 0 

Proof of Theorem 6.2. That constant scaling matrices provide a necessary 
and sufficient condition for robustness to LTV, NLTI, and NLTV uncertain­
ties was shown in [367]. The rest of the proof follows the same steps as that 
of Theorem 6.1. 0 
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Proof of Theorem 6.3. Consider G = UwGV: where G has diagonal sub­
blocks. Then 

inf sup 1£4(F,(G,K)) 
KEK~ 8=;'" 

(6.83) 

(6.84) 

( - T T) = inf sup 1£4 Uw1Fi(G, V KU)Vwl 
KEK~ 8=;'" 

(6.85) 

(6.86) 

The last step follows from two observations. For the sub-blocks of L1 which 
are repeated diagonal, the corresponding sub-blocks of Uw1 and V:1 commute 
with the sub-block of L1 and cancel. The sub-blocks of Uw1 and V:1 corre­
sponding to a full uncertainty block can be absorbed into the uncertainty to 
produce an equivalent full uncertainty block (that is, it will have the same 
set). 

By assumption L1 has at most one full block. Absorb u -1 diagonal blocks 
of L1 into G. The remaining block can be either full or diagonal without 
affecting the value of 1£. By taking the remaining block as full, Lemma 6.1 
implies that a diagonal VT KU = EK is optimal for all values of the diagonal 
uncertainties, and hence is optimal for (6.86). Now by taking the remaining 
block as diagonal, (6.86) is equivalent to 

(6.87) 

(6.88) 

(6.89) 

o 
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Proof of Corollary 6.1. 

inf sup /-L.4(FI(G,K)) 
KEK~ s=jw 

o 
Proof of Theorem 6.4. The equations are given first and comments follow. 

inf sup Il-Ll(FI(G, K)) (6.92) 
KEK~ s=jw 

- T = inf sup Il-Ll(Fl(UwGVw ,K)) (6.93) 
KEK~ s=jw 

= inf sup 1l-,!,(FI(G, VT KU)) (6.95) 
KEK~ s=jw 

(6.99) 



126 6. Robust Control 

(6.100) 

(6.101) 

J (6.103) 

= inf max {inf inf 
DIED! i=l,,,, ,n EK, .. EK! b~EO~ 

[D~ 1 -i [(D~)-l l} D} F,(G, EK,ii ) (D})-l 00 (6.104) 

In (6.96) we have absorbed the diagonal blocks of.1 into a which produces 
a diagonally scaled a denoted by as (this scaling is the same as that used 
in skewed-p, for details see [40, 131, 313, 317]). For any fixed values of the 
diagonal blocks of .1, Theorem 6.1 may be applied to show that a diagonal 
controller is optimal. If it is optimal for any fixed values, it is optimal for the 
worst case values. 

In (6.98) we replaced jj with ILJ.BF where LiBF is one large full block [106]. 
The step from (6.101) to (6.102) holds as a direct application of Corollary 
6.1. The step from (6.103) to (6.104) holds since Dd has a extra degree of 
freedom (thus dBF may be set to one without loss of generality). 

o 
Proof of Theorem 6.5. Under the assumptions, (6.15) of Theorem 6.3 
holds. Pick any , E [1, n] and define 



A EK .. E-. E .. _ ,n n 
K,n - E~ 

n 

S = 1/(1 + ErrEK,ii) 

Then 

= inf sup 1",& 
L'K,iiEK! s=jw 

6.6 Proofs 

. f ( [:~o~ =:~o~ :~:: -:~:sll = III sup 1",& 
L'K,iiEK! s=jw -wIH wIH -wIH wIH 

wIIH -wIIH -WIIS WIIS 

. f ( [:~o~ =:~o~ ~~:: -:~!sl) = III sup 1",& - - - .:.. 
EK,.;EK! s=jw -WI!! WIH_ -WI~ WI~ 

wIIH -wIIH -WIIS WIIS 
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(6.105) 

(6.106) 

(6.107) 

(6.108) 

(6.109) 

(6.110) 

(6.111) 

(6.112) 

(6.113) 

since, for the assumed uncertainty types, the above matrices contain Eii and 
EK,ii only as the product EiiEK,ii. Since (6.113) is the SISO control problem 
for Err, we have 

E~ tEK~ :tv .. - E - ===} E.. _ n,op ,n 
.n.,n,opt - K,ii,opt K,n,opt - ~ .. 

LIn 

(6.114) 

Note that assumptions (ii) and (iii) were required to ensure complete 
SISO control problem equivalence (that is, internal stability as well as the 
I" condition is satisfied). At the surface it may appear that it would also be 
required that Eii have no zeros or poles at s = O. However, the continuity of 
I" allows the construction of a limit argument to show that zeros or poles at 
s = 0 are allowed [254]. 

o 
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Proof of Theorem 6.6. Under the assumptions, (6.15) of Theorem 6.3 
holds. Pick any I E [1, n] and define 

i: .. _ EK,iiEii 
K,n - E= 

n 
(6.115) 

For any i 

Now apply that same argument as used in the proof of Theorem 6.5. 0 

Proof of Corollary 6.2. Similar to the proof of Theorem 6.3. 0 

Proof of Corollary 6.3. Similar to the proof of Theorem 6.4. 0 

Proof of Corollary 6.4. Similar to the proof of Theorem 6.3. 0 

Proof of Corollary 6.5. Similar to the proof of Theorem 6.1. 0 

Proof of Corollary 6.6. Similar to the proof of Theorem 6.2. 0 

Proof of Corollary 6.7. Similar to the proof of Theorem 6.4. 0 

Proof of Corollary 6.S. Similar to the proof of Theorem 6.5. 0 

Proof of Corollary 6.9. Similar to the proof of Theorem 6.6. 0 



CHAPTER 7 

MODEL PREDICTIVE CONTROL 

Chapter 4 showed that the controllability of sheet and film processes can 
be quantified in terms of the accuracy of the signs of the process gains. 
It was also shown that constraint handling is unnecessary for many sheet 
and film processes, provided that the controller is designed to be robust to 
model uncertainties. On the other hand, explicit constraint-handling may be 
required for processes with especially stringent actuator constraints or large 
disturbances. 

Model Predictive Control (MPC) is a control method that explicitly 
takes actuator constraints into account during the calculation of the actuator 
moves. MPC performs an on-line optimization of the performance objective 
function subject to the constraints on the actuator moves. As discussed in 
Section 3.7.3, MPC can be a simple nonlinear fault compensator for general 
processes. The main disadvantages of MPC are that it is computationally 
expensive, and that most formulations do not take model uncertainty into 
account (as discussed in Section 3.3). 

This chapter details an MPC algorithm that is suitable for application to 
sheet and film processes [50, 339]. The approach specifically takes into account 
the large-scale, uncertain, constrained nature of sheet and film processes. The 
algorithm requires minimal on-line computation, so it can be implemented 
using existing control hardware, and it does not attempt to manipulate in 
uncontrollable directions. The method is applied to the paper machine model 
described in Section 2.4.4. 

7.1 Problem Formulation 

Chapter 6 used a continuous-time representation for the transfer function ma­
trix because more process engineers are familiar with continuous-time than 
discrete-time representations. Model predictive control is almost always for­
mulated most naturally using a discrete-time representation for the mapping 
between the vector of manipulated variable moves and the vector of mea­
sured variables. As is common in model predictive control, the process is 
represented by its finite impulse response 

A. P. Featherstone et al., Identification and Control of Sheet and Film Processes
© Springer-Verlag London Limited 2000
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nT 

y(k + 1) = y(k) + PCD I:Piu(k - i), (7.1) 
i=O 

where u(k) is the vector of manipulated moves and y(k) is the sheet/film 
profile at time instance k, and PCD is the interaction matrix presented in 
Chapter 2. The number of impulse response coefficients used to model the 
system is nT and 

Pi = 9i+l - 9i, 'Vi = 0, ... ,nT (7.2) 

where 9i is the scalar such that 9iPCD is the ith impulse response coefficient 
matrix, 'Vi = 1, ... , nT and 0 otherwise. This description can model a system 
with time delays by setting Pi = 0, 'Vi = 0, ... , e where e is the time delay 
of the process. The interaction matrix PCD for a sheet and film process is 
typically non-square and singular or nearly singular (as discussed in Chapter 
2). 

The constraints on the manipulated variables (discussed in Section 2.2) 
form a finite polytope: 

u(k) E P == {u(k) I AU(k) ~ b}. (7.3) 

For example, the constraints for the minimum and maximum allowable value 
for each actuator can be written as 

(7.4) 

where u/ and Uh are vectors and the inequalities hold element-by-element. 
The second-order bending moment constraints can be written as: 

where lb is a vector, and 

F= 

-1 1 0 ... '" ... 0 

1 -2 1 

o 1 -2 ". 

". -2 1. 0 

1 -2 1 
o ., ....... 0 1 -1 

(7.5) 

(7.6) 

If min-max and second-order bending moment constraints were the only con­
straints of concern, then the inequalities would be arranged as: 
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Iu(k) ~ Uh (7.7) 

-Iu(k) ~ -Ul (7.8) 
Fu(k) ~ lb (7.9) 

-Fu(k) ~ lb (7.10) 

where I is the identity matrix. The inequalities are collected together to form 
the matrix A and vector b that define the polytope (see Figure 2.1): 

Au(k) ~ b (7.11) 

where 

(7.12) 

and 

(7.13) 

The model predictive control problem is to compute u( k) as the solution 
to the following quadratic program (QP) 

p 

min L [y(k + j) - r(k + j)]T Wy [y(k + j) - r(k + j)] 
u(k}EP ;=1 

+ [u(k) - u(k - l)f Wu [u(k) - u(k - 1)] (7.14) 

nT 

subject to y(k + 1) = y(k) + POD L.BiU(k - i) (7.15) 
i=O 

where r(k + j) is the desired profile (which is usually flat), Wyand Wu are 
positive semi-definite weighting matrices, and p is the control horizon. Each 
weight (Wy, Wu ) is assumed to be a constant multiplied by the identity 
matrix, which is appropriate for sheet and film processes. In particular, Wu 
is often selected large enough that rate constraints 

-Llu~az + u(k - 1) ~ u(k) ~ Llumaz + u(k - 1) (7.16) 

are satisfied. Another method to handle rate constraints is described else­
where [336, 50]. 

The dynamics for sheet and film processes are simple enough that a control 
horizon of one is usually adequate, so for brevity this case is considered here. It 
is straightforward to generalize the control algorithm to handle larger control 
horizons (which would increase the computational requirements). 
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7.2 Fast MPC Algorithm 

An overview of the algorithm is presented in Table 7.1. Only an outline of 
the algorithm derivation is given here (a complete derivation is available 
[336,50]). It is assumed that the number of manipulated variables nu is less 
than or equal to the number of measured variables ny because this is the 
common situation in sheet and film processes. Removing this assumption is 
straightforward. 

The control algorithm uses the singular value decomposition of the inter­
action matrix PeD, 

(7.17) 

where E is a real nu X nu matrix whose diagonal elements are non-negative, 
V is a real nu x nu orthogonal matrix (that is, VTV = InJ, and U is the 
ny x nu matrix containing the left singular vectors of PeD where nu is the 
number of elements of u, ny is the number of elements of y, and In is the 
n x n identity matrix. The matrices E, U, and V are computed off-line using 
standard mathematical software. Due to strong interactions across the web, 
a number of the singular values of PeD will usually be zero or nearly zero, 
as described in Chapter 4. 

The control algorithm approximates the finite polytope (7.3) with an 
ellipsoid 

(7.18) 

where Urn is the center and iP defines the direction and relative length of the 
axes of an ellipsoid, and a is a scaling parameter which is optimized online to 
reduce conservatism (see below). The matrix iP is selected to have the form 

(7.19) 

where All' is a real diagonal positive-definite matrix. Selecting iP of the form in 
(7.19) fixes the directions of the axes of the ellipsoid (7.18) in nu-dimensional 
space, and simplifies its off-line computation (see [336, 50]). 

By isolating the decision variables u(k), a solution to (7.14) can be found 
very efficiently. The lone inequality constraint (7.18) introduces one Lagrange 
multiplier>. > O. It can be shown that h(>') defined in Table 7.1 is mono­
tonic in >. [336, 50]. Consequently, h(>') = a has a unique solution which is 
determined via bisection. This>. gives the u(k) which (sub-optimally) solves 
the QP for a fixed scaling parameter a. The value of a is iterated until the 
resulting u(k) lies on the boundary of the polytope (7.3). Properties of the 
ellipsoid approximation [205] imply that a can be computed via bisection and 
will converge to a value between 1 and amax = ut(k)Tut(k). The exact value 
of a needed to produce a u(k) which lies on the boundary of the polytope is 
found via bisection. Since a = 1 corresponds to an ellipsoid that is completely 
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Table 7.1. The robust ellipsoid (RE) algorithm (fl and f2 are numerical tolerances; 
R;(k) and 'Y; are defined at the end of the table) 

Off-line: 

1. Compute and store the singular value decomposition of the process (7.17). 
2. Compute and store an ellipsoid which is completely contained within the 

constraints (7.18). 
p 

'"' 2"T" " 3. Compute and store D = Wu + L..J 'Y; E WilE, where E is the best estimate 
j=l 

of E. If a gain is not known with confidence, Eii is set to zero. 

On-line: 

1. Obtain the current measurement y(k). When the plant gain is not known 
with confidence, set the corresponding u;(k) = O. Otherwise do 1-9. 

p 

2. Compute N = Wuu(k - 1) - EUTWII L 'YjRj(k). 
j=l 

3. Compute the unconstrained (transformed) actuator settings u!<k) = N;/D;;. 
4. Does ut satisfy the (transformed) polytopic constraints AVu(k) ~ b? If yes, 

GOTO 10, If no, continue. 
5. BISECT on a 
6. BISECT on ,x 
7. Compute u(k) from [D + ,xA4I);; u;(k) = [,xA4Ium + N);. 

nu 

8. Is Ih(,x) - al < fl (where h(,x) == L A4I,;; (u;(k) - Um,;)2 = 
;=1 

~ A ( (,xA4Ium + N); " ) 2 )? f GOTO f . t: 41,;; (D + ,xA4I );; - Um,; = a .. I no, 6. I yes, contmue. 

9. Does (7.3) hold with -f2 ~ m!lX ([AVu(k) - bl;} ~ O? If no, GO TO 5. If 
• 

yes, continue. 
10. Implement the control action u(k) = Vu(k). GOTO 1. 

R;(k) ~ y(k) - r(k+ j) + ui; [til; (E u(k - i+ q)) + 

l p, (~il(k - i+q)) l' j < OT 

R,(k) ~ y(k) - r(k+ j) + ui; [~Il; (E il(k - i+ q)) l' j ~ "" 

j-l 

'Yj = L(j - i){3;, j ~ nT 

;=0 
nT 

'Y; = L(j - i){3;, j > nT 

;=0 
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within the polytope, a = 1 produces a u(k) which lies completely within the 
polytope. Likewise, a = ut(k)Tut(k) produces a u(k) which lies outside the 
polytope (if ut(k) was within the polytope it would have been implemented 
- see Table 7.1). 

As the unconstrained solution approaches the manipulated variable con­
straint region, the performance of the algorithm approaches that of the QP 
solution. Systems for which the unconstrained solution is regularly far out­
side the manipulated variable constraint set may have undersized actua­
tors and/or a controller that is tuned too aggressively. In other words, the 
above MPC algorithm will provide a good approximation to the QP for well­
designed and well-tuned MPC control systems, but will provide a poorer 
approximation for poorly designed systems. 

The actuator moves u(k) to be implemented on the process are calculated 
from u(k) = VU(k) with the following exception. In practice, the experimen­
tal data used to construct the process model are not sufficiently informative to 
accurately identify many of the singular values and singular vectors in (7.17) 
(see Chapter 4). These model errors can include time-varying phenomena 
including actuator stiction/backlash, nonuniform sheet shrinkage, variable 
transport delay, and varying process responses. As shown in Chapter 4, at­
tempting to control these modes will lead to very poor performance. The 
algorithm in Table 7.1 is ideally suited to control only those singular vectors 
that are controllable. Since it uses the singular value decomposition of the 
plant to diagonalize the controller, each Ui is independent and corresponds 
to a singular value of the process. Thus, if the singular value is known to 
be poorly captured by the process model (this can be determined using the 
multivariable statistics in Chapter 5), then the corresponding Ui is simply set 
to zero. The algorithm in Table 7.1 will be referred to as the robust ellipsoid 
(HE) algorithm since it is designed to be robust to uncontrollable modes, and 
it uses ellipsoid approximations in its calculations. 

The HE algorithm requires no on-line calculations of matrix inverses, 
singular value decompositions, or determinants. The number of iterations 
(number of times h(.x) is computed) for convergence is not a function of the 
size of the process interaction matrix. The most computationally expensive 
steps in the algorithm for large nu and ny are the matrix multiplications 
required to translate between (u, y) and (u, y) coordinates. This is in contrast 
to the QP control algorithm (7.14) whose on-line computational expense is a 
higher order polynomial function of nu , as discussed in Section 3.3. 

It is instructive to compare the HE algorithm with other "fast MPC" 
approaches. One strategy is to just compute the unconstrained control move, 
and then to "clip" each manipulated variable so that it satisfies the actuator 
constraints (see Section 3.2). While this algorithm is easy to implement, it 
gives very poor closed-loop performance for poorly conditioned processes [69]. 
Standard ellipsoidal algorithms [27] and active set methods are slower than 
the best interior point algorithms [246], which require O(n3 ) flops to solve a 
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QP, where n is the problem size [246]. The RE algorithm's most expensive 
step is a matrix-vector multiplication, which requires O{n2) flops. As will be 
seen in a paper machine simulation study, this leads to a much faster control 
algorithm. The RE algorithm is also much faster than recent customized 
LP /QP algorithms [100, 266]. As such, it is the closest to achieving the 5-
second sampling times which are enabled by the full-scan sensor technologies 
which have become available. 

The RE algorithm is not a standard ellipsoidal algorithm [27], since ~ in 
(7.18) is computed only once. Standard ellipsoidal algorithms recompute a 
new ellipsoid that encloses the optimal solution at each step, which is at a 
higher computational cost relative to the RE algorithm which only rescales 
the ellipsoid at each step. The RE algorithm also has an intuitive interpreta­
tion as the solution to an unconstrained QP with a time-varying penalty on 
the vector of manipulated variables. 

The transformation from an optimization problem over U to an optimiza­
tion over u was motivated by the results of Chapter 6, which showed that 
this decomposition corresponds to a controller structure that is robust to 
very general classes of perturbations in the plant interaction matrix. Fur­
thermore, the control algorithm does not manipulate in directions that are 
uncontrollable due to model uncertainties. The inherent robustness of the 
RE algorithm will be demonstrated on the paper machine model constructed 
from industrial data presented in Section 2.4.4. 

7.3 Industrial Paper Machine Simulation Study 

The RE algorithm is compared to a traditional MPC algorithm for the fine 
paper machine model from Section 2.4.4. A discrete-time form of the paper 
machine model is 

y(k + 1) = y(k) + PCD[u(k - 1) - (1 - adu(k - 2) 

-alu(k - 3) + b1w(k)] (7.20) 

where y{k + 1) is the vector of measurements of basis weight at time k + 1, 
u{k - I} is the vector of actuator positions at time k - 1, PCD is the inter­
action matrix (with units of lbs/mil) given in (2.9), and w(k) is a zero-mean 
Gaussian white noise signal that is integrated by the plant dynamics. The 
signal represents process disturbances and real paper machines are known to 
have disturbances of this sort (see, e.g., Equation 3 of [182]). The magnitude 
of the disturbances b1 = 0.015 was selected based on Figures 7 and 8 of [182]. 
The value al = 0.1533 corresponds to the scalar dynamics in (2.9). 

The traditional MPC formulation results in a constrained quadratic pro­
gram (QP) with nu decision variables. This QP was solved using IMSL's QP 
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solver, which is implemented in FORTRAN. For the closed-loop simulations 
shown here, the controller tuning parameters, Wyand Wu , were chosen to be 
2I and 0.011 and fl and f2 were chosen to be 10-6 and 2 x 10-6 , respectively. 
The control horizon was p = 10. 

The closed-loop responses of the RE and traditional MPC algorithms were 
computed with three different initial measured profiles; one with a bump near 
the edge, one with a bump near the center, and a pseudo-random profile. For 
the case of no plant/model mismatch, the RE and QP algorithms achieve 
similar measured profiles (see Figures 7.1, 7.2, 7.3, and Table 7.2), but the 
RE algorithm has a much smoother series of input vectors (see Figures 7.1-
7.3), which produces less stress on the slice lip. 

Table 7.2. Steady-state variances of the measured profile and CPU time required 
to solve the problem on a Sparc Ultra 1 (143 MHz) with 64 MB of RAM for the three 
different initial profiles. Each number reported here is the average of 10 simulations 
to average out any effects of the random seed (the second number in each column 
is the sample standard deviation based on 10 simulations). 

nu = 130, nil = 650 side bump center bump pseudo-random 
QP 2.042 ± 0.003 1.877 ± 0.003 1.840 ± 0.005 
RE 2.102 ± 0.003 1.897 ± 0.002 1.838 ± 0.003 

QP w /model uncertainty 3.274 ± 0.020 3.337 ± 0.009 3.224 ± 0.043 
RE w /model uncertainty 2.150 ± 0.008 1.913 ± 0.003 1.836 ± 0.004 

As discussed in Chapter 4, many of the smaller pseudo-singular values 
are poorly identified in practice. The corresponding singular vectors are also 
poorly known, and in fact, even their general direction cannot be predicted 
with confidence from the experimental data. Attempting to manipulate in 
these directions will result in poor performance. 

To compare the robustness of the two algorithms to plant/model mis­
match, the directions of the singular vectors in U were flipped for i =113, 
116, 117, 118, 119, 121, 126, 127, 129, 130. This.new plant PeD will be as­
sumed to be the true process. For each controller, the manipulated variable 
vector was calculated based on PeD but was implemented on PeD . Chapter 
4 gives criteria for deciding which pseudo-singular values should be controlled 
and which should not. For this study, we will assume that the 20 smallest 
pseudo-singular values were determined to be uncontrollable. For the RE al­
gorithm, Ui was set equal to zero for i = 111, ... ,130. Thus, the RE algorithm 
is controlling the paper machine based on the reduced-order controllable por­
tion of the model. The mis-identified plant results in poor performance for 
the QP, but the performance of the RE algorithm suffers only slightly (see 
Figures 7.4, 7.5, 7.6, and Table 7.2). Also, the jaggedness of the QP manipu­
lated variable vectors becomes more pronounced while the RE manipulated 
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Fig. 7.1. Measurement profiles and manipulated variable settings are shown for 
the QP and RE algorithms when the web has an initial profile with a bump near 
the edge. The initial measurement profile and first actuator setting are shown as a 
solid line, the steady-state profile and final actuator setting are shown as a dotted 
line. 
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Fig. 1.2. Measurement profiles and manipulated variable settings are shown for 
the QP and RE algorithms when the web has an initial profile with a bump in the 
middle. The initial measurement profile and first actuator setting are shown as a 
solid line, the steady-state profile and final actuator setting are shown as a dotted 
line. 
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Fig. 7.3. Measurement profiles and manipulated variable settings are shown for 
the QP and RE algorithms when the web has a pseudo-random initial profile. The 
initial measurement profile and first actuator setting are shown as a solid line, the 
steady-state profile and final actuator setting are shown as a dotted line. 
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variable vectors are virtually the same (compare Figures 7.1-7.3 with Figures 
7.4-7.6). 

Figure 7.7 shows how the computation time for the HE and QP algorithms 
grows as a function of the number of actuators. The slope of each line is an es­
timate of the rate of growth of the solution time as a function of the problem 
size (e.g., a slope of 3 means the solution time grows as n!). The computa­
tion time for the HE algorithm grows more slowly as a function of nu than 
the time required by the QP. The HE algorithm is fast enough to be imple­
mented on industrial paper machines, even those of very high dimensionality, 
while providing robustness to model uncertainties (e.g., manipulated variable 
settings for 200 actuators in under ten CPU seconds). 

7.4 Summary 

An algorithm for the control of sheet and film processes has been developed 
which directly addresses actuator limitations and model uncertainties. The 
algorithm is based on an off-line singular value decomposition of the plant. 
The poly topic manipulated variable constraints are approximated with an 
ellipsoid whose size is optimized on-line to reduce conservatism. The con­
trol algorithm only manipulates in controllable plant directions, which are 
identified using cited statistical criteria. 

In the case where there was no plant/model mismatch, the robust el­
lipsoid algorithm provided similar closed-loop profile responses as classical 
model predictive control, but with much smoother manipulated variable pro­
files. In the practical case where there were model uncertainties, the robust 
ellipsoid algorithm provided substantially reduced profile variability. The ro­
bust ellipsoid algorithm was also substantially faster than classical quadratic 
programming-based model predictive control-an order of magnitude faster 
for the paper machine with 520 actuators. The robust ellipsoid algorithm 
is sufficiently computationally efficient to be implemented in real-time on 
large-scale sheet and film processes. 
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Fig. 7.4. Measurement profiles and manipulated variable settings are shown for the 
QP and RE algorithms when the plant is mis-identified. The initial measurement 
profile and first actuator setting are shown as a solid line, the steady-state profile 
and final actuator setting are shown as a dotted line. 
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Fig. 7.5. Measurement profiles and manipulated variable settings are shown for the 
QP and RE algorithms when the plant is mis-identified. The initial measurement 
profile and first actuator setting are shown as a solid line, the steady-state profile 
and final actuator setting are shown as a dotted line. 
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Fig. 7.6. Measurement profiles and manipulated variable settings are shown for the 
QP and RE algorithms when the plant is mis-identified. The initial measurement 
profile and first actuator setting are shown as a solid line, the steady-state profile 
and final actuator setting are shown as a dotted line. 
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Fig. 7.7. The CPU time for the QP (*) and RE (x) algorithms are shown as 
a function of the number of actuators. For each algorithm, for each number of 
actuators, the solution time for ten different random seeds is shown. The slopes of 
the lines shown in the Figure are 3.73 for the QP and 2.38 for the RE algorithm. 
The optimizations were run on a Sparc Ultra 1 workstation (143 MHz) with 64 MB 
of RAM. 



CHAPTERS 

AFTERWORD 

This book presents practical techniques for the identification and control of 
sheet and film processes. Part I of the book provided background on sheet 
and film modeling and control. Chapter 1 described the processing involved 
in the manufacture of sheet and film products. Polymer film extrusion, pa­
permaking, film coating, and sheet metal rolling processes were highlighted. 
Sheet and film products include windshield safety glass, garment bags, plastic 
wrap, paper, photographic film, pharmaceutical packaging, bumper stickers, 
aluminum foil, and sheet metal. The breadth and importance of sheet and film 
processing were emphasized with statistics regarding the amount and value 
of the manufactured products and the high capital cost of the equipment. 

Chapter 2 described the characteristics of sheet and film processes includ­
ing high input-output dimensionality, poor conditioning of the interactions 
across the machine; and the types of sensors and actuators commonly de­
ployed and their limitations. These characteristics define the process models 
suitable for describing the relationship between the manipulated and mea­
sured variables, and specify requirements for the development of effective 
model identification and control algorithms for these processes. Model struc­
tures for sheet and film processes included Toeplitz symmetric, circulant sym­
metric, centrosymmetric, the pseudo-SVD, two-dimensional models, and ba­
sis function expansions. The pseudo-SVD model structure was shown to be a 
natural way of representing the profile responses as contributions from each 
of a number of modes, each mode being associated with a spacial input di­
rection and spacial output direction. A fine paper machine and a blown film 
extruder were used to illustrate the properties of the model structures. It was 
discussed how symmetry, for example as associated with blown film extru­
sion, could be used to simplify the pseudo-SVD model structure. The chapter 
concluded with discussion on how to represent model uncertainty for sheet 
and film processes. 

Chapter 3 reviewed the CD control literature with attention to the ef­
fectiveness of the techniques at addressing the characteristics of sheet and 
film processes. The profile control techniques included model inverse-based 
control, linear quadratic optimal control, antiwindup compensation methods, 
model predictive control, and robust control. Methods for profile estimation, 
model identification, and on-line process monitoring were also reviewed. 

A. P. Featherstone et al., Identification and Control of Sheet and Film Processes
© Springer-Verlag London Limited 2000
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As discussed in Part I, the financial incentives to improved profile control 
are huge. In spite of this, sheet and film processes are often poorly controlled 
in practice. For example, Bialkowski [25] reported that many profile control 
systems performed worse than when the process was operated manually (con­
trol algorithm turned off). Our discussions with industrial control engineers 
indicate that it is common for a significant proportion of profile control sys­
tems to be turned off at any particular moment. Control-induced operations 
problems such as picketing are also described in the literature (see Chapter 
4 for details). This motivated the development of the methods described in 
Part II, which collectively provide an effective approach for identifying and 
controlling sheet and film processes. 

In Chapter 4 the pseudo-SVD model structure was used to provide cru­
cial insight into the relationship between the accuracy of the identified model 
and achievable closed-loop performance. Theoretical results and simulations 
indicated the importance of the control algorithm only performing manipula­
tions in directions of the input singular vectors corresponding to gains whose 
signs have been reliably identified through rigorous statistical analysis. This 
key result explains the poor performance observed by Bialkowski and others. 
This result set the groundwork for a combined model identification and con­
trol procedure, which is described in Chapter 4 and discussed in more detail 
in the remaining chapters of Part II. 

As discussed in Chapter 4, SVD controllers can be designed to be robust 
to inaccuracies in the controlled model gains, and in the input and output ro­
tation matrices. The performance of the SVD controller was compared to that 
of the industrially-accepted QPF controller design method. While attempting 
to control in all directions was shown to result in poor performance, the SVD 
controller provided consistently good results. Furthermore, the simulation 
examples suggested that constraint handling may be unnecessary for many 
sheet and film processes when the SVD model identification and control pro­
cedure is used. This is because the directions corresponding to uncontrollable 
gains are not manipulated by the SVD controller, and designing the SVD con­
troller to be robust tends to prevent overly large dynamic excursions in the 
manipulated variables. In cases where constraint handling is necessary, any of 
the antiwindup compensation methods discussed in Section 3.2 can be used. 
This results in simple controller implementation. 

A conclusion in Chapter 4 was that the bump test, which is the industrial­
standard experiment for perturbing sheet and film processes to produce data 
for model construction, does not excite the process in all the directions of 
importance for closed-loop control purposes. Many of the gains for models 
constructed from bump test data are highly inaccurate, which limits the 
achievable closed-loop performance. Chapter 5 describes a procedure that 
determines identification experiments so that the resulting data are optimally 
informative. In a blown film extruder case study, the experimental design 
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procedure provided substantial improvement in the accuracy of the estimated 
model gains, resulting in improved closed-loop performance. 

Chapter 6 gave detailed instructions for the design of robust full-order and 
low-order controllers for a wide range of model uncertainty types and struc­
tures. Simulation studies showed that the low-order controllers performed 
well for many different uncertainty types and disturbances. Taken together, 
Chapters 4, 5, and 6 provide a detailed description of the combined model 
identification and control procedure. First, the identification experiments are 
optimized in order to select input moves to provide data rich in process 
information relevant for closed-loop control. That is, to provide maximal in­
formation on the steady-state gain directionality of the interaction matrix. A 
parameter estimation procedure uses the data to fit the model and quantify 
its accuracy. Then, the SVD robust controller design method uses the the­
oretical model requirements with the accuracy estimates to only allow the 
accurately known aspects of the model to be controlled. The resulting con­
troller can be low-order and tunable, providing flexibility, or high-order and 
maximally robust to errors in the process model. 

In cases where antiwindup compensation methods are insufficient for con­
straint handling, or MPC is desired for fault compensation, Chapter 7 de­
scribes a model predictive control (MPC) algorithm that is suitable for im­
plementation using industrial control hardware. The MPC algorithm can be 
used in place of the robust SVD controllers described in Chapter 6. The MPC 
control algorithm does not attempt to control the uncontrollable modes of the 
process (so it is robust to this form of model uncertainty), it explicitly handles 
process constraints, and it has minimal on-line computational requirements. 
In a fine paper machine case study, the SVD-based MPC controller yielded 
substantially reduced profile variability compared to an industrially-accepted 
MPC control algorithm. 
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/-,,42,57 
D-optimal, 73 

Actuators, 16 
Alignment problem, 45 
Antiwindup compensation, 38, 58 

Basis-weight, 10 
Blown film extrusion, 4, 21, 66, 80 
Bump test, 45, 47, 66, 73, 80 

CCD camera, 46 
Centrosymmetric, 21 
Centrosymmetric symmetric, 22, 43 
Circulant matrix theory, 43 
Circulant symmetric, 20, 26, 28, 37, 43, 

54,58,66 
Clipping, 38, 134 
Coating, 11, 37, 40, 41 
Constraint-handling, 38, 70, 129 
Constraints, 16, 43, 59, 78, 130 
- rate constraints, 16, 131 
Cross-directional, 4 
Cross-directional variation, 48 

Decentralized control, 37, 43 
Die, 4 
Directionality compensation, 39 
DMC,40 
Dry line, 46 
Dual Kalman filter, 44 

Ellipsoid algorithm, 135 
Equipment faults, 47 
Experimental design, 73 
Exponential multiple-scan trending, 44 
Extended Kalman filter, 44 

Fault compensation, 49 
Fault detection, 48 
Fault isolation, 48 
Finite impulse response, 129 

Fourdrinier paper machine, 9, 46 
Fourier series, 46 
Fourier transform analysis, 45 
Full-scan sensors, 13, 15, 46, 135 
Fuzzy logic models, 45 

Gain directionality, 32, 53 
Generalized plant, 88 
Gram polynomials, 30 

Headbox,4 
Hypothesis testing, 61 

IDCOM,40 
Image analysis, 45 
IMC 
- example, 106 
IMC-based antiwindup compensation, 

39 
IMC-PID, 57, 66, 98 
Input singular vector, 27 
Integral SVD controller, 55 
Interaction parameters, 18 
Interactions matrix, 18 

Kalman filter, 44 
Karhunen-Loeve expansion, 45 

Large-scale systems, 30 
Lifting, 44 
Linear fractional transformation, 57, 88 
Linear program, 40, 49 
Linear quadratic optimal control, 37 
LP, see Linear program 

Machine-direction, 4 
Machine-directional variation, 48 
Mapping problem, 45 
Metal rolling, 12, 37, 42 
Minimum variance, 48 
MMC,40 
Modal decomposition, 27 
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Mode, 27 
Model identification, 31, 46, 53, 56, 59, 

81 
Model inverse-based control, 37 
Model predictive control, 40, 49, 63, 

129,135 
Model requirements, 53 
Model state feedback, 39 
Model structure, 19 
- centrosymmetric,21 
- centrosymmetric symmetric, 22, 43 
- circulant symmetric, 20, 26, 28, 37, 

43,54,58,66 
- modal decomposition, 27 
- pseudo-SVD, 22, 53, 54 
- Toeplitz symmetric, 19, 26, 43 
Model uncertainty, 32, 42, 62, 88 
Monte Carlo simulation, 47 
MPC, see Model predictive control 
MPHC,40 

Neural network models, 45 

Observer-based compensation, 39 
On-line imaging, 45 
Optimal estimation theory, 44 
Optimal experimental design, 73 
Orthogonal polynomials, 30, 46 
Output singular vector, 27 

Paper machine, 9, 23, 37, 40, 42, 44-46, 
135 

Papermaking, 8 
Parameter estimation, 56, 60, 74 
Picketing, 67 
PID controller, 58, 98 
Plastic film extrusion, 4, 21, 37, 40, 49, 

53,66,80 
Polyolefins, 6 
Process monitoring, 47 
Profile estimation, 44 
Pseudo-random binary sequences, 47 
Pseudo-SVD, 22, 53, 54 

PVC, 6, 7 

QP, see Quadratic program 
QPF, see Quadratic penalty function 

method 
Quadratic penalty function method, 63 
Quadratic program, 40, 49, 135 

RE algorithm, 134 
Recursive least-squares, 44 
Reduction to SISO, 95 
Residual variation, 48 
Riccati equation, 44 
Robust control, 42, 56, 62 
- performance, 89 
- stability, 89 
Robust ellipsoid algorithm, see RE 

algorithm 

Scanning sensors, 15,44,46, 53 
Sendzimir mill, 12 
Sequential experimental design, 78 
Shape, 13 
Shape control, 14,42 
Sheet and film processes, 3 
Simulated annealing, 74, 79 
Spacial directions, 27, 47 
Spacial frequencies, 28 
Spline-based methods, 43 
Splines, 46 
Steel rolling, 12, 42 
Strain gauges, 47 
Superoptimal, 96 
SVD controller, 54, 56, 61 

Time-varying Kalman filter, 44 
Toeplitz symmetric, 19, 26, 43 
Traversing sensors, 15, 44, 46, 53 
Two-dimensional models, 30, 37, 44 

Wavelets, 45 
Windshield safety glass, 4 
Work roll, 4 


