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SymbolsSymbols

a = Concrete cover or half the distance between parallel bars.
or
Distance between points of zero bending moment.
or
The cover over a deformed bar or half the distance between parallel bars 
whichever is the lesser.
or
Dimension of the critical shear perimeter measured parallel to the 
direction of M*v.
or
Footing outstand.

Act = Cross-sectional area of uncracked concrete in the tensile zone 

Ast = Area of tensile reinforcement.

Ab = Cross-sectional area of reinforcing bar.

AFN = Reaction area for punching shear.

Ag = The gross cross-sectional area of a member.

Am = Area of thin walled section for torsion defined by the median lines of 
the walls of a single cell.

as = Length of support in direction on span.

As = The cross-sectional area of the reinforcement Asc + Ast.

As1 = Tensile area of primary beam. This is usually the area of a singly 
reinforced beam with the maximum steel ratio pmax for which ku = 0.4.

As2 = Tensile area of secondary beam.

Asc = Area of compressive reinforcement.

= Area of reinforcement on the compression side of a column.

Ast = Area of tensile reinforcement.

= As1 + As2 for doubly reinforced beams.



Ast.min = Minimum area of reinforcement.

Asv = Cross-sectional area of shear reinforcement.

Asv.min = Minimum area of shear reinforcement.

Asw = Area of a single leg of a closed tie used as torsional reinforcement.

At = Torsion area defined as the area from the centre of the corner bars of 
the cross section.

av = Distance from section at which shear is being considered to the 
nearest support.

b = Width of beam.

b = Effective flange width bef.

b = Column width perpendicular to applied moment.

beff = Effective beam width or effective flange width.

bmin = Minimum beam width for a given exposure classification.

bo = Critical dimension of an opening adjacent to a slab support.

bv = Effective width of a web for shear.

= b for a rectangular beam.

= bw for a T-beam or L-beam.

bw = Width of a web as in a T-beam.

C = Internal compressive force carried by the concrete.

cmin = Minimum distance from centroid of reinforcement to exposed

concrete face required to satisfy exposure conditions.

D = Overall depth of beam.

D = Column depth in direction of applied moment.

d = Effective depth measured to the resultant tensile force.

db = Bar diameter.

Db = Overall depth of a spandrel beam.

Dc = Smaller column dimension.

do = Distance from extreme compression fibre to the centroid of the 
outermost layer of tensile reinforcement but not less than 0.8D.

ds = Depth of rectangular stress block γkud.

Ds = Overall depth of slab or drop panel as appropriate.
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dsc = Depth measured to centroid of compressive reinforcement.

e = Load eccentricity measured  from plastic centroid.

e' = Load eccentricity measured from tensile reinforcement.

Ec = Modulus of elasticity of concrete. 

Es = Modulus of elasticity of steel reinforcement.

E* = Design load (or W*).

Ec = Modulus of elasticity for concrete at 28 days.

Ecj = The mean value of modulus of elasticity of concrete at nominated age.

σ1.5 × 0.043 fcm

c = An intermediate concrete stress.

fcs = Max shrinkage-induced stress on uncracked sections at the extreme 
fibre where cracking first occurs.

fscr = Tensile stress in the reinforcement (at the cracked section) due to 
‘short term’ serviceability loads under direct loading.

fscr.1 = As above but using ψs =1.0 (rather than 0.7).

f'c = 28 day characteristic compressive strength of concrete.

f'cf = Characteristic flexural strength of concrete.

f'cf = Flexural tensile strength of plain concrete.

= 0.6   f ’c          

fcm = Mean compressive strength of concrete at relevant age.

fcv = Concrete shear strength.

Fd = Slab design load.

Fd.eff = Effective design load for serviceability in kN/m or kN/m2.

Fep = Load due to earth pressure in kN.

Flp = Load due to liquid pressure.

fsc = Stress in compressive reinforcement.

fst = Stress in tensile reinforcement.

fsy = Yield strength of steel reinforcement.

fsy.f = Yield strength of fitments.

G = Concentrated or total dead load.

√

f

E u = Ultimate earthquake action.

√
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g = Distributed dead load.
or
Ratio of distance between outer reinforcement to the overall depth 

of a column section.

GR = Dead loads resisting instability.

Jt = Torsional  modulus for the cross section.

k = Effective length multiplier.

K = Ratio of areas Asc/As2 in design of doubly reinforced beams.

ks = Coefficient to take account of the stress distribution shape in a section 
prior to cracking (0.6 for flexure & 0.8 for tension). 

k1 = Second moment of area multiplier.

k2 = Deflection constant for rectangular beams.

k3 = Slab multiplier.

k4 = Deflection constant for slabs.

k5 = Special Slab deflection coefficient read from chart D2.

kb = The value of ku for balanced conditions.

kcs = Long-term deflection multiplier (to account for shrinkage & creep).

kd = Depth of N.A. at working/serviceability load conditions.

km = End moment condition parameter.

kp = Deflection correction for steel ration in beams used with chart D1.

ku = Ratio of depth of NA to beam effective depth d.

L = Span of beam between support centrelines.

l = Clear distance between webs of parallel beams.

Ln = Clear span between inner faces of supports or the clear projection of 
cantilevers.               

lx = Short clear slab panel dimension between supports.

ly = Long clear slab panel dimension between supports.

Le = Effective length of a column.

Leff = Effective span of beam, lesser of L and (Ln + D) or (Ln + D/2) for cantilevers.

Ln = Clear span between inside of supporting beams, columns or walls.

Lo = Span length used in the simplified method, L minus 0.7 times the sum 

of as for each support.
L'o = The smaller value of Lo for adjoining spans.

Lst = Tensile development length for fst < fsy.
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Lsy.c = Development length for compressive reinforcement at yield condition.

Lsy.t = Tensile development length i.e.  minimum  length of embedment
required to develop yield strength  of a reinforcing bar in tension.

Lt = Width of the design strip.

Lu = The unsupported length of a column, taken as the clear distance 
between faces of members capable of providing lateral support to the 
column. 

Lx = Shorter effective span of slab supported on four sides.

Lx = Short effective span of a slab panel.

Ly = Long effective span of a slab panel.

M* = Design moment due to factored loads.

M*s = Design bending moment (at the Serviceability limit state).

M*s.1 = As above but using ψs =1.0 (rather than 0.7).

M*v = The unbalanced slab bending moment transferred into the support.

M*xand = Slab design moments in x and y directions.
M*y

M1 = Effective moment capacity of primary beam.

M2 = M*–M1 the effective moment capacity to be carried by secondary beam.

Mm = Positive bending moment at midspan.

MNE = Negative moment at exterior support.

MNI = Negative moment at interior support.

Mo = Total static moment for the span of the design strip.

Mu = The ultimate strength in bending at a cross-section of an 
eccentrically loaded compression member.

Mub = The ultimate strength in bending when ku = 0.545.

Mud = Reduced ultimate strength in bending for ku = 0.4 condition.

Muo = Ultimate strength in pure bending.

Muo min= Minimum strength in bending at a critical cross section.

My = Moment causing initial yield of reinforcement.

N* = Design axial load.

NA = Neutral axis.

Nc = The buckling load in a column.
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Nu = The ultimate compressive strength combined with moment Mu.

Nub = The ultimate compressive strength when ku = 0.6.

Nuo = The ultimate strength of an axially loaded squat columns.     

p = Reinforcing steel ratio.

P* = Concentrated design load.

p1 = Tensile steel ratio in primary beam.

pc = Compressive steel ratio.

= Asc/bd.

pmax = Maximum tensile steel ratio for ku = 0.4 condition.

pt = Total tensile steel ratio.

Ast/bd.

pv = Shear steel ratio Ast/(bvdo).

Q = Concentrated or total live load.

q = Distributed live load.

q1 = Maximum soil bearing pressure under footing.

q2 = Minimum soil bearing pressure under footing.

qa = Permissible soil bearing pressure.

qu = Factored soil bearing capacity.

= 1.4qa

R = Radius of curvature.

r = Radius of gyration.

T = Internal resultant tensile steel force carried by the reinforcement.

t = Flange thickness.

= Thickness of slab Ds making up T-beam or L-beam.

th = Hypothetical thickness used to calculate creep and shrinkage.

= 2Ag/ue.

T* = Design torsional moment.

Tu.max = Ultimate torsional strength of a beam limited by crushing failure.

Tuc = Ultimate torsional strength of a beam without torsional reinforcement.

Tus = Ultimate torsional strength of a beam with torsional reinforcement.

u = Length of critical shear perimeter for two-way action.
or
Shear perimeter d/2 from face of column.
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ue = Exposed perimeter plus half perimeter of enclosed voids.

ut = Perimeter of At

Vc = Simplified ultimate shear capacity of unreinforced beam.

v'c = Nominal concrete shear stress capacity.

Vu = Ultimate shear strength.

Vu.max = Ultimate shear strength limited by shear crushing.

Vu.min = Ultimate shear strength of a beam with minimum shear reinforcement.

Vuc = Ultimate shear strength excluding shear reinforcement.

Vuo = The ultimate shear strength of a slab where M*v = 0

Vus = Contribution provided by shear reinforcement to the ultimate shear 
strength of a beam.

w* = Distributed design load.

Ws = Serviceability wind action.

Wu = Ultimate wind action.

wx' = Equivalent design load for shorter slab support.

wy' = Equivalent design load for longer slab support.

x = Smaller dimension of a cross section (or smaller dimension of a 
rectangular component of a cross section).

x , y = The shorter and longer dimensions respectively of the cross section 
of the torsion strip or spandrel beam.

y1 = Larger dimension of a closed rectangular torsion tie.

# = AS3600 Concrete Structures Code reference.

1 = Shear strength coefficient for comparable increase in shear capacity 
of shallow beams.

2 = Shear strength coefficient for axial load effects.

3 = Shear strength coefficient to account for increased strength when 
concentrated loads are applied near supports (short shear span av < 2do).

βd = Creep factor for sustained loading.

βh = The ratio of the longest overall dimension of the effective loaded area, 
Y, to the overall dimension X, measured perpendicular to Y.

βx , βy = Bending moment coefficients for two-way slabs supported by rigid 
beams and walls.

= Deflection obtained from calculations.

β

β

β

δ



b, s = Moment magnifiers for braced and sway columns.

= Maximum deflection - normally expressed as a fraction eg  (D / L).

εc = Concrete compressive strain.

= 0.003 at failure.

εcs = Design shrinkage strain (from Section 6.1.7.2 - AS3600).

εs = Strain in steel reinforcement.

εsc = Strain in compressive reinforcement.

εst = Strain in tensile reinforcement.

εy = Steel strain at the point of yielding.

= Strength reduction factor.

= Ratio of depth of simplified rectangular stress block to depth of NA. 

κ = Curvature.

l = Design parameter used in conjunction with chart B1.

θ = Angle of rotation.

θt and = Angle between the concrete compression "strut" and the member 

θv axis in the truss model for torsion or shear respectively.

σ = Density of concrete in kg/m3 taken as 2400 kg/m3 in this book.

ψC = Live load combination factor for strength.

ψL = Long-term live load combination factor for serviceability.

ψS = Short-term live load combination factor for serviceability.
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∆

Φ

γ

= density of concrete (taken as 2400 kg/m3 in this book)ρ



First  edit ion
This book is designed to provide an introduction to the design of reinforced concrete elements.  The
work began as an aid for students to understand the design of concrete elements, not just as a
theoretical study, but as a practical operation in the design of structures.  In its development it has
expanded from the original brief to provide a more complete picture.

The resulting book has become a blend.  A blend of theory, Code requirements and Design
Aids.  It is this blend that helps to provide the balanced process for the design and analysis of
concrete components that every engineer and student needs to work with.

It is not possible to comprehend the formulae and the expressions without having an
appreciation of the models used to depict the behaviour of concrete elements.  The theory in this
book presents the basic models in a simplified form.  For a more comprehensive understanding of
the theory there are a number of excellent Australian books, many of which develop from first
principles the models behind the Code requirements.

The Code itself, AS3600, provides the practicing engineer and student with the current "...
minimum requirements for the design and construction of concrete structures and members ...".
This book has taken some of the fundamental requirements and related them to practical examples
to highlight the use of the Code in the design and analysis of elements.

The design office would be incomplete without computer programs and design aids to assist in
those tasks which are often repeated.  In today's world, engineers and students do not have the time
to develop tools to assist them in their tasks.  This book contains a large number of design aids
which have been developed to provide practical tools for the solution of problems.  Many of these
aids have evolved during the development of the book.  They have already been tried and tested by
students.  Some, like the column charts in chapter 13, have undergone numerous minor revisions
in layout to produce more readable charts.  It is always a fine line between developing a design aid
and simply providing an expression in simple terms suitable for calculation.

There have been numerous people involved in the development of this book.  There are too
many people to name individually.  The authors, however, are conscious of a debt to all those who
have contributed with material, comments, reading and checking.  There is also a hidden
contribution by those colleagues and fellow engineers whose knowledge and experience has been
absorbed by the authors in their careers.  The authors wish to specifically thank Standards Australia
in referencing relevant Code requirements.

The responsibility of the material in this book is the authors.  It has been checked and
rechecked within the confines of the printing deadlines.

PrefacePreface



Both authors wish to acknowledge the part played by their families in the development of the
book.  Both families have suffered while the authors spent long nights in front of the computer,
writing material, developing charts, writing and running programs and printing and plotting.  The
authors look forward to returning to their families.

Sydney  1992

Second edit ion
In the light of the 2001 Concrete Structures Code AS3600 and the new and revised AS1170
Loading Codes it was necessary to revised the book to incorporate the Code revisions.

The 2001 AS3600 Code has incorporated 65 MPa concrete and it is proposed that in the
forthcoming major Code revision, high strength concretes will also be included.

As a response to the Concrete Code released in 2001 and in anticipation of the introduction of
high strength concrete grades, the authors have included 65, 80, 100 and 120MPa high strength
concrete grades for the design of columns.  Column design charts are included for all strength grades
from 25MPa to 120MPa.

The overall philosophy of the book has been maintained. To simplify the use of design tables
and design charts, tables and charts have been added in a separate section at the end of the book.
Thus where use of design charts is required in any chapter, only the referenced design chart has been
included in the solution of the particular example.

The authors regret that the previous co-author, David Hall, was not available to participate in
this revision. They wish to acknowledge his contributions. There are other people who also should
be acknowledged and thanked with their direct and indirect contributions and while such a list is
not within the scope of this preface, the authors’ families were perhaps the main contributors and
we thank them sincerely.

Argeo Beletich

Paul Uno

January 2003
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1.1 Symbols used in This Chapter

Fep = Load due to earth pressure in kN.

Flp = Load due to liquid pressure.

G = Concentrated or total dead load.

GR = Dead loads resisting instability.

g = Distributed dead load.

M* = Design bending moment due to design loads.

N* = Design axial load.

Q = Concentrated or total live load.

q = Distributed live load.

E* = Design load (or W*)

w* = Distributed design load.

P* = Concentrated design load.

�R = Design capacity of structural component.

# = AS3600 Concrete Structures Code reference.

�C = Live load combination factor for strength.

�S = Short-term live load combination factor for serviceability.

�L = Long-term live load combination factor for serviceability.

1.2 General Considerations
The AS 3600 Concrete Structures Code is said to be a Limit State design Code.  The
terminology is comparatively new with design engineers so that there is still some
confusion about limit state design approach. The ultimate strength design procedure has
not changed, it is only one of the limit state conditions to be satisfied. A limit state is said

Limit state conditions,
loads and load combinations

1
c h a p t e r

Eu =      Ultimate strength 

Su = Ulitmate action due to combination of various actions.
Ws        =       Serviceability wind action.
Wu       =        Ultimate wind action.

action.



to have been reached when a structure or a structural element can no longer satisfy any
one of a number of limit state conditions. The limit state conditions to be considered in
any design will be:

(a) Stability - a structure must be stable to prevent tilting, sliding or overturning.

(b) Strength - a structure and all its structural components must be strong enough to
prevent structural failure.

(c) Serviceability - the structure must be serviceable, i.e. it must be able to perform the
functions for which it was designed. Deflection is the main serviceability condition
of any design. While excessive deflection may not impair the strength of a structure,
it may lead to cracking of masonry walls supported by reinforced concrete members,
door and window frames may become sufficiently distorted to cause them to jam
and exposed slabs may pond water imposing an additional load on the structure.

(d) Durability - the structure must also have a reasonable service and maintenance free
life. There is nothing more disconcerting than to find concrete spalling and the
reinforcement corroding shortly after construction. Typical causes of durability
failure are due to factors such as insufficient concrete cover, lower concrete strength
grade and excessive flexural and shrinkage cracking.

(e) Fire resistance - life and property must be safeguarded against fire. While it is not
feasible to design a completely fireproof structure, the structure must be capable of
safety withstanding the heat generated by fires for a period which will permit
evacuation.

When the resistance or performance of a structure is equal to one of the specified
performance conditions, the structure is said to have reached the limit state for that
condition. The critical condition is the primary limit state. It is apparent that some of
the conditions to be satisfied are not load dependent and hence difficult to evaluate. For
those conditions which are load dependent, a margin of safety has to be included in the
design calculations.

1.3 Load Factors and Load Combinations
A factor of safety is a very simple concept in principle. It is a safeguard against
overloading, underestimating of design loads, negative tolerances in material
performance and construction processes which may lead to lower strengths. Loads to be
considered in the design include dead loads, live loads, wind loads, snow loads,
earthquake loads and forces due to structural performance such as differential settlement
of foundations, differential temperature effects,  as well as material performance such as
creep, shrinkage and elastic shortening. While some loads and forces may be determined
with a high degree of confidence, others are much more difficult to estimate. For
example, the dead loads to be carried by a structure can be calculated quite accurately
while live loads cannot be determined with the same degree of accuracy. A group of
students were asked to estimate the floor dead loads and live loads for an office
construction; predictable the results for the dead loads varied by 10% from the lowest to
the highest estimate while the live loads had a variation of 40%. If a universal factor of
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safety were to be applied for the combined action of dead and live loads, either the
structure would be underdesigned and unsafe or overdesigned and uneconomic.

In limit state design the factor of safety is applied indirectly by way of load factors.
The magnitude of the load factor depends on how accurately the various types of loads
can be estimated. For strength design conditions, the dead load factor is 1.2 and the live
load factor is 1.5 if these are the only loads applied to the structure. The summation of
the most adverse factored load combinations is called the “design action effect” or simply
the “design load” and it is now given a symbol E* (previously W*) generally or more
specifically a symbol which readily identifies the type of design load with a superscript *.
For example w* is used to designate the uniformly distributed design load, N* is the
design axial load, M* is the design bending moment, V* is the design shear force and so
on. For strength conditions, if the members are proportioned so that their ultimate
strength is equal to or greater than the required design strength, the factor of safety
against failure is implied by the load factors used to calculate the design load. If wind
loads as well as dead and live loads are to be considered then it is necessary to modify the
load factors. This becomes apparent in the case of a non-trafficable roof; it is extremely
unlikely that the maximum dead load, the maximum live load and the maximum wind
load (which has the probability of occurring once in every 50 years) will all be applied at
the same time.

The new Structural Design Actions, AS/NZS 1170.0:2002 General Principles
Code (previously included in AS1170.1:1989) gives all the load factors and load
combinations to be considered for strength, stability and serviceability. The following
sections consider these limit state conditions for dead loads G, live loads Q, wind loads
Wu, and other superimposed loads. Loads or examples due to earthquake and
prestressing are not included because this book does not deal with earthquake or
prestressing. Users of this book are referred to appropriate codes for loads not included.

1.3.1 Load Combinations for Strength Design

The design load E* is taken as the most severe combination of factored loads determined
from the following:

Dead Load Only 
(a - Permanent Action Only)

E* = 1.35G

Dead Loads and Live Loads 
(b - Permanent and Imposed Action)

E* = 1.2G + 1.5Q

Dead Loads and Long Term Live Loads
(c - Permanent, Arbitrary-Point-in-Time Imposed Action)

E* = 1.2G + 1.5 �l Q 

Dead Loads, Live Loads and Wind Loads
(d - Permanent, Arbitrary-Point-in-Time Imposed and Wind Action)

E* = 1.2G + �c Q + Wu

L I M I T S T A T E S ,  L O A D S A N D L O A D C O M B I N A T I O N S 3



Dead Loads and Wind Load (Reversal)
(e – Permanent and Wind Action Reversal)

E* = 0.9G + Wu

Dead Loads, Live Loads and Earthquake Loads
(f - Permanent, Arbitrary-Point-in-Time Imposed and Earthquake Action)

E* = G + �c Q + Eu

Dead Load, Live Load and combinations of Liquid, Snow, Water & Earth Pressures
(g - Permanent, Arbitrary-Point-in-Time Imposed and Earthquake Action)

E* = 1.2G + �c Q + Su

where �c is the live load combination factor tabulated below.
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TTaabbllee  11..11  
LLiivvee  LLooaadd  CCoommbbiinnaattiioonn  FFaaccttoorr  ψcc

Type of Live load Combination Factor ψc

Distributed Loads only
Floors

Residential & Domestic 0.4
Office 0.4
Parking Area 0.4
Retail Area 0.4
Storage Area 0.6
Other 0.6 Unless Otherwise Assessed

Roofs
Trafficable 0.4
Non-trafficable 0.0

Concentrated Loads
Floors & Roofs

Residential & Domestic As per UDL above

Roofs
Non-Trafficable 0.0

Machinery (Long Term) 1.2



1.3.2 Load Combinations for Serviceability

Serviceability conditions in this book refer primarily to deflection of flexural members.
Deflection is time dependent because of shrinkage and creep phenomena exhibited by
concrete. It is thus necessary to consider both the short & long-term effects.

Short-term or Long-term Serviceability Limit States

(a) G

(b) �SQ

(c) �LQ

(d) Ws

(e) Es

(f) Other actions

�S and  �L are the short-term and long-term live load combination factors - 

see table 1.2.

TTaabbllee  11..22  
SShhoorrtt  TTeerrmm  aanndd  LLoonngg  TTeerrmm  CCoommbbiinnaattiioonn  FFaaccttoorrss  ψss aanndd  ψLL

Imposed Load Short Term factor �s Long Term factor �L

Uniformly Distributed Load
(Imposed Action)

Floors
Residential & Domestic 0.7 0.4
Offices 0.7 0.4
Parking 0.7 0.4
Retail 0.7 0.4
Storage 1.0 0.6
Other 1.0 0.6

Roofs
Used for floor activities 0.7 0.4
All other roofs 0.7 0.0

Concentrated Loads 
(Imposed Actions including Balustrades)

Floors 1.0 0.6
Domestic housing floors 1.0 0.4
Roofs used as floors 1.0 0.6
All other roofs 1.0 0.0
Balustrades 1.0 0.0
Long Term Machinery 1.0 1.0

L I M I T S T A T E S ,  L O A D S A N D L O A D C O M B I N A T I O N S 5



1.3.3 Load Combinations for Stability

A structure such as a retaining wall must be stable against sliding or overturning. The
stability conditions are deemed to be satisfied if;

EXAMPLE 1
Figure 1.1 shows all the
component weights and the
resultant active earth pressure
for a cantilever retaining wall.
Check the stability of the
retaining wall for overturning
and sliding, neglecting the
resistive effect of passive earth
pressure. A coefficient of
friction of 0.55 may be
assumed between the base
and the sand foundation.
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0.9 G 
(i.e. 0.9 x dead load 
leading to stability)

(i) 1.35 G 
(i.e. 1.35 x dead load causing

instability)
or

(ii) 1.2 G + 1.5 Q
or

(iii) 1.2 G + �c Q + Wu
or

(iv) G + �c Q + Eu
or

(v) 1.2 G + �c Q + Wu

Combinations 
that produce a net 
‘stabilising’ effect

Combinations 
that produce a net 
‘de-stabilising’ effect

≥

500   500

250

500

600

4800

5.3kN

250

667

875

1750

126.7kN

32.4kN

16.2kN

F    = 32.6kN 

30kN`O'

1967

1500

1250

ep   

Figure 1.1



(a) For ‘Overturning’ take moments about pivot point  “O” (at the toe of the footing)

0.9 (Restraining Moments) = 0.9 (0.25*5.3 + 0.667*16.2 + 0.875*32.4

+ 1.25*30 + 1.75*126.7)

= 269.8 kNm

Overturning moment due to active earth pressure = 1.5 (1.967*1.5*32.6)

= 144.3 kNm

< 269.8 kNm restraining 
moment

(b) Sliding:                       Sum of vertical forces = 210.6 kN

0.9 (Sliding resistance) = 0.9*0.55*210.6

= 104.2 kN

Sliding effect due to factored active earth pressure = 1.5*32.6

= 48.9 kN

< 104.2 kN resistive force.

The retaining wall has thus satisfied two of the stability limit state conditions. The
designer should check the remaining load combinations. Similarly the designer should
check the retaining wall in accordance with AS4678-2002, ‘Earth Retaining Structures’. 

EXAMPLE 2
A simply supported beam in an office building has a 5.4 m span. The beam is required to
carry superimposed dead loads g = 8 kN/m and superimposed live loads q = 12 kN/m.
Assuming the weight of the beam is 4.8 kN/m, determine the design loads for (a) strength
conditions and (b) the design loads for short-term and long term serviceability conditions.

(a) The distributed design load for strength conditions will be given by:

w* = 1.2g + 1.5q

= 1.2(8 + 4.8) + 1.5*12

= 33.4 kN/m

(b) Short-term Serviceability conditions.

wS = g + �S q

= (8 + 4.8) + 0.7*12

= 21.2 kN/m

Long-term Serviceability conditions.

wL = g + �L q

= (8 + 4.8) + 0.4*12

= 17.6 kN/m

L I M I T S T A T E S ,  L O A D S A N D L O A D C O M B I N A T I O N S 7



8 D E S I G N H A N D B O O K F O R R E I N F O R C E D C O N C R E T E E L E M E N T S

EXAMPLE 3
Beam ABC shown in
Figure 1.2 supports
superimposed uniformly
distributed dead load 
g = 16 kN/m and live
load q = 24 kN/m. The
beam also supports a
concentrated load made
up of a 20 kN dead load and 40 kN live load applied at B. Calculate the beam design
loads and draw the loading diagram. Using the calculated design loads draw the shear
force and bending moment diagrams. The calculations should include estimates for the
weight of beam.

Discussion

The weight of concrete beams cannot be neglected as they may constitute between 10%
and 15% of the applied service loads. It is common practice to make an initial estimate
for the weight of beam. Experienced designers can predict the weight of beam quite
accurately while lesser mortals apply various “rules of thumb”. A simple rule used in these
notes is;

WEIGHT OF BEAM in (kN/m) = NUMERICAL VALUE OF THE SPAN in (m)

For example a beam spanning 5.6 m, its weight is estimated to be 5.6 kN/m. A check of
the beam weight is made when a trial section is chosen in the design but, it will be found
that the above rule is conservative in general.

SOLUTION

Estimated weight of beam = 6 kN/m

Uniformly distributed design load w * = 1.2(16 + 6) + 1.5*24  = 62.4 kN/m

Design concentrated load  W* = 1.2*20 + 1.5*40  = 84 kN

The design loading diagram, the shear force diagram and the bending moment
diagram are shown in Figure 1.3. The maximum design bending moment M* at point X
is calculated from the shear force diagram.

When calculating the load due to self weight, the density of unreinforced concrete
is normally taken as 2400 kg/m3 (23.5 kN/m3). Since most structures have at least 1%
reinforcement (add another 0.63 kN, not allowing for displaced concrete), our
minimum self weight of reinforced concrete becomes 24 kN/m3. If a higher % of
reinforcement is present, the self weight should be revised accordingly (refer AS1170.1
Table A1). 

A B C

2m 4m

  
M * . * .

_= =3 45 215 2
2

371 kNm

Figure 1.2



EXAMPLE 4
The cantilevered beam
shown in Figure 1.4
supports a uniformly
distributed dead load 
g = 20 kN/m which
includes the weight of beam and a uniformly distributed live load q = 12 kN/m.
Determine the maximum positive and negative design bending moments for the beam.

Discussion

The dead load is a permanent load over the two spans while the live load by its very
nature may act over either or both spans. There are four possible loading conditions.
Using subscripts to designate the spans over which the loads act, the possible loading
conditions are:

(a) gABC

(b) gABC + qABC

(c) gABC + qAB

(d) gABC + qBC

L I M I T S T A T E S ,  L O A D S A N D L O A D C O M B I N A T I O N S 9

A B C

84kN

62.4kN/m

243.2kN 215.2kN
Loading Diagram

3.45m

243.2kN

118.4kN

34.4kN

215.2kN

A B X C

Shear Force Diagram

Bending Moment Diagram

362kNm
371kNm

A C

4.2m 1.8m

B

Figure 1.3 - Strength Action Effects

Figure 1.4



SOLUTION

For this simple case the worst conditions can be chosen by inspection. The maximum
negative bending moment at B will occur when the cantilever carries a maximum load,
i.e. condition (b) and (d).

The design load for the combined dead and live loads is given by:

w * = 1.2*20 + 1.5*12

= 42 kN/m

Hence the maximum negative design bending moment at B will be:

M* =  - 42* 
1.82

2
=   - 68 kNm

The maximum positive bending moment in span AB will occur when the load over
AB is a maximum while the load over the cantilever BC is a minimum i.e. condition (c).

The design load over
AB is w*

AB = 42 kN/m due
to dead and live loads
while the design load over
BC due to dead loads only
is w*

BC = 1.2*20 = 24
kN/m. The loading diagram is shown in Figure 1.5.

The reaction at A is calculated by taking moments about B:

R*
A =

=      80 kN

The point of zero shear force occurs 80 / 42 = 1.9 m from A and the maximum
bending moment  calculated from the area under the shear force diagram will be:

M* =      80 

= + 76 kNm

It becomes apparent from this example that with multiple spans there can be
numerous combinations of dead and live loads applied to various spans. Loading patterns
producing maximum bending moments and shear forces in continuous beams will be
considered in chapter 9.
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A C

4.2m 1.8m

B
42kN/m 24kN/m

 

42 4 2

2

24 1 8

2
4 2

2 2
* . * .

.

( )
−

( )

1.9
2

Figure 1.5



P R O B L E M S

QUESTION 1

A reinforced concrete column in an office building is required to carry the following axial
loads;

Dead   Load G = 400 kN

Live   Load Q = 300 kN

Wind Load Wu = 360 kN

Determine the column design loads:

QUESTION 2

Beam ABC carries a
superimposed uniformly
distributed dead load 
g = 8 kN/m, uniformly
distributed live load 
q = 6 kN/m and a
concentrated load 
applied at B. 
The concentrated load is made up of dead load G = 14 kN and live load Q = 10 kN.

(a) Determine the load action effects for strength design, draw the loading diagram, the
shear force diagram and the bending moment diagram.

(b) Determine the short-term and the long-term design load actions for serviceability.

QUESTION 3

Check the cantilever
retaining wall for
overturning stability. 
Note that a live load
surcharge of 22 kN/m is
applied on the surface. 
The soil has a unit weight
of 18 kN/m3. The
triangular distribution of
active earth pressure varies
from zero to 24 kPa and
the uniform lateral pressure
of 6 kPa is due to the live
load surcharge.
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QUESTION 4

The double cantilevered
beam ABCD carries a
total dead load 
(including its own weight)
g = 12 kN/m and a superimposed live load q = 9 kN/m.

Calculate the maximum positive design moment and the maximum negative design
moments at the supports.
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1.2m 4.8m 1.6m

A       B C D



2.1 Additional Symbols used in this Chapter
Ast = Area of tensile reinforcement.
b = Width of beam.
C = Internal compressive force carried by the concrete.
D = Overall depth of beam.
d = Effective depth of beam.
εc = Concrete strain.
εs = Strain in steel reinforcement.
εsy = Steel strain at the point of yielding.
Ec = Modulus of elasticity of concrete. 
Es = Modulus of elasticity of steel reinforcement.
fc = An intermediate concrete stress.
f ’c = 28 day characteristic compressive strength of concrete.
fst = An intermediate tensile steel stress within the elastic range.
fsy = Yield strength of steel reinforcement.
kb = The value of ku for balanced conditions.
ku = Ratio of depth of NA to beam effective depth d.
L = Span of beam between support centrelines.
Leff = Effective span of beam L and (Ln + D) or (Ln + D/2) for cantilevers.
Ln = Clear span between inner faces of supports or the clear 

projection of cantilevers.               
Mud = Reduced ultimate strength in bending for ku = 0.4 condition.
Muo = Ultimate strength in pure bending.
NA = Neutral axis.
p = Reinforcing steel ratio.

Singly reinforced 
concrete beams

2
c h a p t e r
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pmax = Maximum tensile steel ratio for ku = 0.4 condition.
R = Radius of curvature.
T = Internal resultant tensile steel force carried by the reinforcement.
γ = Ratio of depth of simplified rectangular stress block to depth of NA. 
Φ = Strength reduction factor.
k = Curvature.
θ = Angle of rotation.

2.2 Material Properties

2.2.1 Concrete

The 1994 of the AS3600 Concrete Structures Code provided for concrete strengths up
to 50 MPa but there have been dramatic increases in the strengths of concretes developed
in recent years. Concrete strength of 100 and 120 MPa have been readily available for
some time. Codes have however not kept up with these rapid developments so that
designers using such high concretes strengths have to rely on their own expertise and
reliable published research. In the 2001 edition of the AS3600 an additional conrete
strength grade with a characteristic strength of 65 MPa was included in the Code and in
the proposed review of the Code, three further grades with characteristic strength of 80
MPa, 100 MPa and 120 MPa may be included.

It is now common practice to speak of normal strength concretes (NSC) for
strengths up to 50 MPa, high strength concretes (HSC) up to 120 MPa and ultra high
strength concretes (UHSC) with strengths exceeding 130 MPa. The standard HSC
grades to be provided for in this book are 65, 80, 100 and 120 MPa. On the practical
side, use of HSC in flexural members such as beams and slabs are most unlikely as there
are no significant advantages; the increase in strength gained with the high strength is
minimal. For example, a beam of dimensions b=350, d = 450 reinforced with 4N28mm
bars has the following strengths; 

Using f ’c = 32 MPa, the design flexural strength �Muo = 382 kNm
Using f ’c = 80 MPa, the design flexural strength �Muo = 420 kNm

The 80 MPa concrete is 250% stronger than the 32 MPa concrete but, the moment
capacity of the beam has only increased by about 20%. It should further be noted that
the cost of the 80 MPa concrete is about 50% more expensive then the 32 MPa concrete.
In simple terms it may be said that for this particular beam section the unit cost per kNm
is 40% more expensive for the 80 MPa concrete compared with the 32 MPa concrete.
This is only meant to be a simple illustration as there are many other factors to be
considered in carrying out a comparative cost analysis.

On the other hand, use of HSC can appreciably reduce the size of columns and it is
in this area where HSC shows significant advantages. The authors have endeavoured to
produce a book which is useful to designers and it does not include design material not
applicable to designers. It is forseen that NSC will be used in design of all types of
flexural members while HSC may be primarily applied to columns in commercial



buildings and sporting structures where space is at a premium (or where durability issues
dominate the design). HSC concrete design and design aids are only applied to columns
in Chapter 13. In the current Code #6.1.1.1 standardised concrete strength grades have
been defined whose characteristic strengths f’c correspond to 20, 25, 32, 40, 50 and 65
MPa. The standard strengths use either normal-class concrete defined in AS1379
“Specification and Supply of Concrete” designated by the prefix N or special class
concrete designated by prefix S. 

The stress-strain relationship for concrete is not
linear as shown in Figure 2.1 (right). In the working
load range the concrete may reach stresses of
approximately 0.5f’c. In this range the stress-strain
relationship is approximated by a straight line. The
slope of the straight line is called the secant modulus
of elasticity used to calculate short-term deflections.
As shown by Figure 2.1, the stress-strain diagram
becomes much more curvilinear as stresses approach
the ultimate strength. For gradual long-term strain
increment, the stress-strain curve dips below the
ultimate strength prior to actual failure.

2.2.2 Reinforcement

The stress-strain curve for steel is
idealised by a continuous yield
plateau as shown in Figure 2.2.
(right) The designer is not interested
in the strain hardening part of the
curve since concrete and hence
member failure will have occurred
while the steel reinforcement is in the
plastic yield state. The standard
grades of reinforcement and the
required minimum yield strengths are
shown in Table 2.1.

TTaabbllee  22..11  --  SSttaannddaarrdd  GGrraaddeess  ooff  RReeiinnffoorrcceemmeenntt

Grade of Reinforcement Yield Strength
Type Grade fsy in MPa

Plain bars R250N 250
Deformed bars D500N 500
Plain & Deformed Hard R500L & 500

Drawn Wire D500L 500
Welded Wire Mesh D500L 500
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Properties of standard welded wire mesh are shown in Table 2.3

TTaabbllee  22..33  --  SSttaannddaarrdd  wweellddeedd  wwiirree  mmeesshh
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1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

80
160
240
320
400

480
560
640
720
800

880
960
1040
1120
1200

1280
1360
1440
1520
1620

110
220
330
440
550

660
770
880
990
1100

1210
1320
1430
1540
1650

1750
1870
1980
2090
2200

200
400
600
800
1000

1200
1400
1600
1800
2000

2200
2400
2600
2800
3000

3200
3400
3600
3800
4000

310
620
930
1240
1550

1860
2170
2480
2790
3100

3410
3720
4030
4340
4650

4960
5270
5580
5890
6200

450
900
1350
1800
2250

2700
3150
3600
4050
4500

4950
5400
5850
6300
6750

7200
7650
8100
8550
9000

620
1240
1860
2480
3100

3720
4340
4960
5580
6200

6820
7440
8060
8680
9300

9920
10540
11160
11780
12400

800
1600
2400
3200
4000

4800
5600
6400
7200
8000

8800
9600
10400
11200
12000

12800
13600
14400
15200
16000

1020
2040
3060
4080
5100

6120
7140
8160
9180
10200

11220
12240
13260
14280
15300

16320
17340
18360
19380
20400

TTaabbllee  22..22  --  AArreeaass  ooff  RReeiinnffoorrcciinngg  BBaarrss  iinn  mmmm22

No.
of

Plain
R10

Bars Bars 12mm 16mm 20mm 24mm 28mm 32mm 36mm

Bar Diameter

RL1218 1112 227 11.9 100 7.6 200
RL1118 891 227 10.65 100 7.6 200
RL1018 709 227 9.5 100 7.6 200

RL918 574 227 8.6 100 7.6 200
RL818 454 227 7.6 100 7.6 200
RL718 358 227 6.75 100 7.6 200

SL81 454 454 7.6 100 7.6 100
SL102 354 354 7.6 200 7.6 200
SL92 290 290 8.6 200 8.6 200
SL82 227 227 7.6 200 7.6 200

SL72 179 179 6.75 200 6.75 200
SL62 141 141 6.0 200 6.0 200
SL52 89 89 4.75 200 4.75 200
SL42 63 63 4 200 4 200

Longitudinal Wires Cross Wires Size(mm) Pitch Size(mm) Pitch

Area mm2/m Longitudinal Wire Cross Wire
Ref. No.



2.3 Ultimate Strength Theory

2.3.1 Assumptions

The following assumptions are made in the derivation of strength formulas:

(a) All the concrete on the tension side of the neutral axis (NA) is cracked and it does
not contribute to the moment capacity of the beam.

(b) Strain is linear i.e. it is directly proportional to the distance from the NA for all
moments up to and including the ultimate bending moment Muo.

(c) Concrete has crushed when the maximum strain in the concrete section has reached
a value of 0.003, i.e. εc = 0.003.

(d) The modulus of elasticity for the steel reinforcement is Es = 2 � 105 MPa.

2.3.2 Ultimate Strength Conditions

When a small moment is applied to a reinforced concrete beam, the stress distribution
above the NA is almost linear as shown in Figure 2.3b. Gradual increase in the applied
moment will cause the stress distribution to become distinctly curvilinear until the
maximum stress at the outer fibre has reached the ultimate strength of concrete as shown
in Figure 2.3c. At this point the concrete section has not failed since most of the concrete
section in compression is stressed below the ultimate strength of concrete. The reinforcing
area or the tensile steel ratio is chosen so that the steel has reached its yield capacity at about
the time that the maximum outer concrete stress is equal to its ultimate capacity. The
tensile force carried by the reinforcement, given by T = Astfsy has reached its limit and it is
balanced by the resultant compressive force C carried by the concrete. Internal forces C and
T form a couple to balance the externally applied moment. But the concrete has not yet
failed; the reinforced concrete section can sustain a larger moment. Increasing the external
moment will require an increase in the internal couple but, since the magnitude of the
internal forces T and C have reached their limit because the reinforcement is yielding and
the tensile force T cannot exceed Astfsy. The internal lever arm is increased by shifting C
towards the outer fibre and hence reducing the depth of the NA. If the depth of the NA is
reduced, a smaller area of concrete is in compression and to maintain internal equilibrium
C = T, the concrete stresses must be increased. A greater area of concrete will be subjected
to the ultimate stress conditions leading to eventual failure. The stress distribution at failure
is depicted by Figure 2.3d which is similar to the stress-strain curve shown in Figure 2.1.

Figure 2.3
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The following beam conditions are identified by their ultimate strength actions:

(a) Under-reinforced beams in which the area of tensile reinforcement and hence the
steel ratio is such that all the tensile reinforcement will have yielded prior to crushing
of the concrete.

(b) Balanced beams in which simultaneous yielding of the tensile reinforcement and
crushing of the concrete will occur. Balanced conditions are idealised conditions.

(c) Over-reinforced beams. These are heavily reinforced beams whose brittle failure is
due to crushing of the concrete while the steel reinforcement is stressed below its
yield strength.

Under-reinforced beams are said to behave in a ductile manner. It is possible to
imagine that once the reinforcement has yielded, it continues to elongate rapidly. Since
this occurs prior to crushing of the concrete and hence beam failure, very pronounced
beam deflection can be observed while the beam is still able to carry the applied loads.
The exaggerated beam deflection gives ample warning of impending failure and the
ductile beam behaviour allows a redistribution of moments in indeterminate structures.
Similar “plastic” behaviour is observed in steel structures.

Over-reinforced beams exhibit brittle failures since concrete, a brittle material,
crushes while the reinforcement is still in its elastic stress range. Over-reinforced beams
give no warning of failure which is sudden and catastrophic. While over-reinforced
beams are stronger, there are no advantages in designing over-reinforced beams because
the Code discourages the design of over-reinforced beams by imposing certain design
penalties to be considered later.

Balanced beam condition is only a yard stick used to differentiate between under and
over reinforced beams.

2.3.3 Derivation of Basic Equations

Figure 2.4

Considering an under-reinforced concrete beam on the verge of failure, Figure 2.4b
shows the linear strain diagram with a maximum concrete strain   εc = 0.003 as defined
earlier. Figure 2.4c represents the actual stress diagram which acting on the beam
produce a resultant tensile force T = Astfsy and a resultant compressive force of magnitude
C equal to the tensile force T. To determine the internal moment of resistance, it will be
necessary to evaluate the internal lever arm between T and C. The difficulty becomes
apparent in locating the position of C. The compressive stress distribution called the
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“stress block” has been described by a number of researchers. In Chapter 13 the equation
used is the CEB (Comite Europeen du Beton) which is quite a complex equation. For
the purposes of determining expressions for the depth of the NA, kud and the ultimate
moment capacity Muo it is not necessary to evaluate or know the actual stress distribution
if a simple empirical method can be applied to determine the magnitude and location of
C. One such method accepted by the Code is to replace the actual stress block by a
rectangular stress block of uniform stress 0.85f ’c and a depth γkud. This simplified
rectangular stress block is sometimes called the Whitney stress block after the engineer
who initially proposed it. The size and shape of the empirical stress block is not
important (a triangular stress block could just as easily have been chosen) provided that
the magnitude and location of C coincides with that produced by the actual stress block.
The rectangular stress block which is universally recognised will be used throughout
these notes except for the derivation of the column design charts in Chapter 13.

The value of γ is given in the Code #8.1.2.2 as follows; 

� =   0.85                                  for f ’c ≤ 28 MPa

� =   0.85 - 0.007(f ’c - 28)        for f ’c ≥ 28 MPa

≥ 0.65

Using the simplified rectangular stress block, the resultant force C is equal to the
uniform stress of 0.85f ’c acting over a rectangular area of the beam cross-section width b
and depth γkud, i.e.,

C = 0.85f ’cbγkud

Equating the internal forces (equilibrium condition) C = T and solving for ku:

0.85f’cbγkud = Astfsy

(2.1)

This is the general formula applied to any under-reinforced beam.

For the specific case of balanced conditions the reinforcement has just yielded when
the concrete has failed. The depth of the NA for the balanced beam is kbd. From the
geometry of the strain diagram Figure 2.4b we can derive an expression for the depth of
the NA in which kbd replaces kud. Thus from similar triangles,
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Multiplying throughout by d,

εc - εckb = εskb

εckb + εskb = εc

kb =
εc

εc + εs

The steel strain at the point of yielding εs = fsy/Es = fsy/2*105 and the concrete strain
at failure was specified to be εc = 0.003 in the initial assumptions. Thus substituting for
εc and εs in the above expression for kb gives;

Most reinforced concrete beams use grade 500N deformed reinforcing bars 
whose yield strength fsy = 500 MPa. Substituting 500 for fsy in the above equation gives
kb = 0.545.

2.3.4 Maximum Value of ku

The value kb = 0.545 is the limiting or maximum value of ku for under-reinforced or
ductile beams. When ku = 0.545 there is no guarantee that all the reinforcement has
yielded; with multiple rows of reinforcement, the reinforcement in the top row may still
be in the elastic range. Even with one row of reinforcement, a designer aiming at a value
of ku = 0.545 may quite easily end up with an over-reinforced beam by choosing
reinforcement whose area is greater than the theoretical area required to give a value of
ku = 0.545. The Code #8.1.3 specifies a maximum value of ku = 0.4 which is just under
3/4 of that for a balanced beam. This is to ensure that beams will behave in a ductile
manner at ultimate moment conditions.

Maximum  ku = 0.4  (2.2)

Over-reinforced beams can be made to behave in a ductile manner by the
introduction of compressive reinforcement. The addition of compressive reinforcement
will increase the internal compressive force and hence the internal tensile force due to
increased tensile stresses. Provided that sufficient compressive reinforcement has been
included, the tensile reinforcement will reach its yield stress. Beams reinforced with
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compressive reinforcement as well as tensile reinforcement are referred to as doubly
reinforced beams dealt with in chapter 5. #8.1.3 of the Code permits the design of beams
whose neutral axis is located so that ku > 0.4 provided that the ultimate moment is
reduced to Mud which is the ultimate strength for ku = 0.4 and, a minimum amount of
compressive reinforcement is added to the beam given by:

Minimum Asc = 0.01bkud (2.3)

There is no strength advantage in designing beams whose ku > 0.4.

2.3.5 Maximum Steel Ratio pmax

The steel ratio to satisfy the Code condition for ku given by equation 2.2 may be
determined by equating 2.1 and 2.2.

is the steel ratio p which becomes the maximum steel ratio pmax when ku = 0.4.

Solving for pmax gives:

(2.4)

2.3.6 Beam Ductility

The ductile behaviour of under-reinforced beams was referred to earlier. Having derived
some beam relationships, it is now possible to evaluate beam ductility. A ductile beam
with a small steel ratio deforms substantially at failure whereas an over-reinforced beam
with a large steel ratio exhibits very small deformations right up to failure. A measure of
deformation is not the amount of deflection but the curvature of the member usually
given the symbol κ. A small deformation has a very large radius of curvature while a large
deformation has a small radius curvature. Deformability, curvature or ductility is the
inverse of radius of curvature, i.e. 1/R, which we will simply call curvature.

Figure 2.5 shows two similar size beams; beam ‘A’ is lightly reinforced (small steel
ratio) and beam ‘B’ is heavily reinforced ( high steel ratio). Since the depth of the neutral
axis kud given by equation 2.1 is directly proportional to the steel ratio p (= Ast/bd), beam
‘A’ has a smaller steel ratio p and a smaller depth of neutral axis kud and it is the more
ductile beam. It may be supposed that for a given size beam, the inverse of the steel ratio
1/p or the inverse of the depth of neutral axis 1/kud is also a measure of ductility.
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Figure 2.5

Figure 2.6 will be used to derive beam curvature or ductility relationships. The
figure shows a small length x of a deformed reinforced concrete beam on the point of
failure (note that the size of the element and its deformed shape have been greatly
exaggerated).

The amount of shortening in the top fibre is xεc making the length of the top fibre
equal to x - xεc or x(1 - εc) where εc is the concrete strain. The compressed length of the
top fibre in Figure 2.6 may be calculated from,

Solving for θ gives:

(a)

The angle of rotation θ may also be obtained from the geometry of Figure 2.6 as:

(b)
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Equating the two expressions for θ given by (a) and (b) and solving for curvature
1/R.

(c)

Since the strain εc at failure is taken as a constant of 0.003, curvature is inversely
proportional to the depth of the neutral axis as anticipated earlier. From equation 2.1,

Substituting for εc and 1/ku in (c), the equation for curvature may be written,

(d)

For a given beam, Curvature = Constant * 

A plot of curvature at collapse or ductility versus the steel ratio for a slab  d = 120mm
and a beam d = 350mm using f ’c = 25 MPa is shown in Figure 2.7.

The following points may be noted from the plots illustrated by Figure 2.7 (below):

(a) The decrease in
ductility with
increasing depth.

(b) The rapid decrease 
in ductility with
increasing steel ratio.

(c) When the steel ratio
reaches the
maximum pmax
corresponding to 
the Code limit 
ku = 0.4, beam
ductility approaches
the flat portion of
the curve, a
justification for the
limiting ku. 
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2.3.7 Ultimate Moment Capacity Muo

Referring to Figure 2.4, the ultimate moment capacity is the moment provided by the
couple of the internal forces C and T. Taking moments about C gives,

Muo = T(d - 0.5γkud)

= Astfsy(d - 0.5γkud)

= Astfsyd(1 - 0.5γku)

Substituting the expression for ku derived by equation 2.1,

(2.5)

The fraction 1/1.7 is sometimes rounded off to decimal 0.6. Equation 2.5 may be
simplified by introducing a new symbol z defined by:

(2.6)

Making Astfsy = zbdf ’c. Sustituting for Astfsy and 
Ast

bd
. 

fsy

f’c
in equation 2.5 gives,

Muo = zbdf ’cd (1 -  z1.7)

Which is written in the form,

(2.7)

2.4 Moment Capacity ΦMuo
Equations 2.5 and 2.7 give the ultimate moment capacity of singly reinforced, under-
reinforced beams. These are theoretical values which assume that all physical conditions
have been met. Practically it is necessary to make allowances for the possible
cummulative adverse effects brought about by:

(a) Variations in concrete strength due to inconsistances in  batching, mixing,
transporting, compacting and curing of concrete.
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(b) Dimensional tolerances in setting up formwork.

(c) Variations in positioning of reinforcement.

The combined negative combination of these conditions may result in a member
strength well below that predicted by equation 2.5 or 2.7. Code #2.3 requires that the
ultimate moment capacity Muo be reduced to ΦMuo where Φ is called the strength
reduction factor. Values of Φ for various strength conditions given by the Code are
duplicated in table 2.4.  For bending, the reduction factor Φ = 0.8. 

TTaabbllee  22..44  --  SSttrreennggtthh  RReedduuccttiioonn  FFaaccttoorrss  �

�Muo is simply called the moment capacity or the effective moment capacity which
must at all times be equal to or greater than the design moment M*.

�Muo ≥ M*  (2.8)
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Type of Action Effect Strength Reduction Factor Φ

(a) Axial force without bending
(i) tension 0.8
(ii) compression 0.6

(b) Bending without axial tension or compression where:
(i) ku ≤ 0.4 0.8
(ii) ku > 0.4

(c) Bending with axial tension � + (0.8 - �)

the value of Φ is obtained from (b)
(d) Bending with axial compression where:

(i) Nu  Nub 0.6

(ii) Nu < Nub 0.6 +  ( � - 0.6)

the value of � is obtained from (b)

(e) Shear 0.7
(f) Torsion 0.7
(g) Bearing 0.6

(h) Compression and axial tension in strut and tie action 0.7
(i) Bending shear and compression in plain concrete 0.7
(j) Bending shear and tension in fixings 0.6
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EXAMPLE 1
The beam cross-section shown in Figure 2.8
(right) uses N25 grade concrete and it is
reinforced with 3N24 tension bars.

(a) Show that the beam is under-reinforced
and calculate the depth of the neutral axis.
(b) Calculate the ultimate and the effective
moment capacity.

Data:
b = 300 mm d = 350 mm

f ’c = 25 MPa fsy = 500 MPa

Ast = 1350 mm2

SOLUTION

(a) f ’c < 28 hence γ = 0.85.

Steel ratio,  p =  
Ast

bd
=      

1350
300�350

= 0.0129

From equation 2.1,   ku =

ku =

= 0.357

<       Code maximum of 0.4

The same condition could have been checked by comparing the actual steel ratio
with the maximum steel ratio corresponding to ku = 0.4.

pmax =  = 0.0145x

> 0.0129 the actual steel ratio.

Depth of neutral axis = kud = 0.357 *350 = 125 mm

(b) From equation 2.6, = 0.258

Substituting in equation 2.7 for the ultimate moment capacity, 
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Muo =

=

=  201 kNm

Note that in the equation for Muo all the units are in mm and N, so that the moment
will be in Nmm. The multiplier 10-6 is included to convert the moment to conventional
kNm units.

Effective moment capacity, ΦMuo = 0.8*201 = 160 kNm. The value of 0.8 for Φ
was obtained from table 2.4.

EXAMPLE 2
The beam shown in Figure 2.9 carries a superimposed uniformly distributed dead load
g = 27 kN/m. Determine the maximum distributed live load which may be applied to
the beam.

Figure 2.9

Data:
b = 350 mm d = 450 mm D = 500 mm
Ast = 2480 mm2 f ’c = 32 MPa fsy = 500 MPa

SOLUTION

f ’c > 28, therefore γ = 0.85 - 0.007(32 - 28) = 0.822

Maximum steel ratio,                                                              = 0.0179

Actual steel ratio, = 0.0157 < pmax

From equation 2.6, = 0.245
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Moment capacity, �Muo =

=

=  380 kNm

bd2

The Code condition ΦMuo ≥ M* is satisfied for the maximum design distributed
load w* when,

= 380

w*

= 90.4 kN

This is a design distributed load of 90.4 kN/m which would cause the design
moment to be equal to the effective moment capacity ΦMuo. Using 24 kN/m3 for the
weight of concrete (assuming 1% steel), the weight of beam = 0.35*0.5*24 = 4.2 kN/m.

Total dead load g = 27 + 4.2 = 31.2 kN/m.

The design load for the factored dead and live loads,

w* = 1.2*31.2 + 1.5*q

= 39.3 + 1.5q

Equating the two values for w* and solving for the live load q,

= 35.3 kN/m

That is, the maximum distributed live load which may be applied to the beam is
35.3 kN/m.
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P R O B L E M S

QUESTION 1

(a) Calculate the effective
moment capacity for the
beam section shown in figure.

(b) Determine the maximum
number of N20 bars which
may be added to the beam so
that Code condition ku ≤ 0.4
is still satisfied and calculate
the new effective moment
capacity. Note that the
reinforcing bars should be
kept in two rows placed
symmetrically about the
vertical axis and they should
not be staggered.

(c) Calculate the value of ku for
the reinforcement chosen in
(b) and use the strain diagram
to show that all the
reinforcement has yielded for the calculated moment capacity.

(d) The beam in (b) has an effective span Leff = 6.5 m. What is the maximum
superimposed dead load which can be applied to the beam if it is required to carry
a 24 kN/m distributed live load.

QUESTION 2

Values of γ and the maximum steel ratio pmax corresponding to ku are frequently required
in calculations. Complete the following table by calculating pmax and γ (rounded off to
four decimal places) for the standard grades of concrete.

f c fsy γ ku pmax

20 500 0.4
25 500 0.4
32 500 0.4
40 500 0.4
50 500 0.4
65 500 0.4
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3.1 Additional Symbols used in this Chapter

Ast = Area of tensile reinforcement.

a = Concrete cover or half the distance between parallel bars.

bmin = Minimum beam width for a given exposure classification.

cmin = Minimum distance from centroid of reinforcement to exposed
concrete face required to satisfy exposure conditions.

f ’cf = Characteristic flexural strength of concrete.

Muo min= Minimum strength in bending at a critical cross section.

3.2 Durability and Concrete Cover
Durability is one of the primary conditions to be satisfied in any design. It is also one of
the limit states. Structures are normally designed for an average life span of 50 years
although, some structures such as public monuments are designed for longer life spans
while temporary structures may be designed for very short life spans. The designer is
aware that what starts out as a temporary structure, often turns out to be a permanent
structure;  the Eiffel Tower is a classic example. Deterioration of concrete structures
during their life span is of primary importance and it may be due to:

(a) Corrosion of the reinforcement and spalling of concrete due to insufficient cover for
the degree of imperviousness and aggressiveness of the environmental conditions to
which the concrete is exposed.

(b) Chemical or physical breakdown and loss of concrete section caused by direct
chemical attack, salt water spray, cycles of freezing and thawing etc. The loss of
concrete will reduce cover over the reinforcement and lead to accelerated corrosion
of reinforcement.

Beam design

3
c h a p t e r



It does not require the services of an investigative reporter to show that far too many
buildings exhibit some signs of deterioration soon after completion. The description
“concrete cancer” has been applied to describe the deterioration of concrete structures in
major industrial centres. Large sums of money amounting to many millions of dollars are
being spent annually on repairs of concrete structures which have deteriorated at a rate
not anticipated in their design and construction.

There are many explanations but, one of the principal reasons for reduced durability
is lack of adequate concrete cover due to poor design, detailing, construction and
supervision. The Code has devoted the whole of section four to the minimum conditions
required to satisfy durability. It is an endeavour by the Code Committee to identify the
causes and recommend minimum design and construction procedures. The results are;
increased concrete strength and increased cover over the reinforcement. The consequences
of the recommendations will be more durable although more expensive structures initially.
The following section is only concerned with concrete strength and concrete cover.

3.2.1 Concrete Cover for Exposure Classifications

TTaabbllee  33..11  --  EExxppoossuurree  CCllaassssiiffiiccaattiioonnss  

(i.e. Table 4.3 from AS3600)

Surface and Exposure Environment Exposure Classification

1. SURFACES OF MEMBERS IN CONTACT WITH THE GROUND     
(a) Members protected by damp-proof membrane. A1
(b) Residential footings in non-aggressive soils. A1
(c) Other members in non-aggressive soils. A2
(d) Members in aggressive soils. U

2. SURFACES OF MEMBERS IN INTERIOR ENVIRONMENT
(a) Fully enclosed within a building except for a brief period A1

of weather exposure during construction.
(b) In industrial buildings, the member being subjected to B1

repeated wetting and drying.

3. SURFACES OF MEMBERS IN ABOVE-GROUND EXTERIOR ENVIRONMENT
In areas that are;

(a) Inland (> 50 km from coastline) environment;
(i) Non-industrial & arid climate. A1
(ii) Non industrial and temperate climate. A2
(iii) Non-industrial and tropical climate. B1
(iv) Industrial and any climate. B1

(b) Near-coastal ( 1 km to 50 km from coastline)and any climatic zone. B1
(c) Coastal (up to 1 km from coastline but excluding tidal and splash zones) 
and any climatic zone.

4. SURFACES OF MEMBERS IN WATER
(a) In fresh water. B1
(b) In sea water -

(i) permanently submerged. B2
(ii) in tidal or splash zones. C
(c) In  soft running water. U

5. SURFACES OF MEMBERS IN OTHER ENVIRONMENTS
Any exposure environment not otherwise described in items 1 to 4 U
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To give the designer a better opportunity to identify the risk of corrosion of the
reinforcement, the Code has classified exposures in ascending order of severity. Exposure
classifications are designated as A1, A2, B1, B2, and C. Exposure conditions leading to
these classifications are described in Table 3.1.

Note:
1 Climatic zones referred to in table 3.1 are shown in Code Figure 4.3

2 Industrial refers to areas within 3 km of industries which discharge atmospheric
pollutants.

3 Coastal zones include locations <1 km from shorelines of large expanses of salt water

4 Designations U are undefined and to be determined by the designer.

Well compacted, properly cured concretes are stronger and less porous. The Code
requires a minimum curing period and a minimum strength of normal grade concretes
for each exposure classification. These minimum requirements are shown in Table 3.2.
This is an expedient way of ensuring that stronger and hence less porous concretes are
progressively used with increasing severity of exposure.

TTaabbllee  33..22  --  MMiinniimmuumm  SSttrreennggtthh  aanndd  CCuurriinngg  PPeerriiooddss

Exposure Minimum  Minimum Curing Strength After  
classification Characteristic Strength Period Minimum Curing Period
A1 20 MPa 3 days 15 MPa
A2 25 MPa 3 days 15 MPa
B1 32 MPa 7 days 20 MPa
B2 40 MPa 7 days 25 MPa
C 50 MPa 7 days 32 MPa

The minimum concrete covers for standard formwork and compaction are shown in
Table 3.3 below. For rigid formwork and intense compaction (e.g. precast concrete
members using steel forms and form vibrators or vibrating tables) the reader is referred
to Code Table 4.10.3.4. The Code does make some concessions when only one surface
is externally exposed. In such circumstances, the next lower grade of concrete may be
used provided that the cover for that surface is increased by 20 mm if standard formwork
and compaction are applied. The increased covers for standard formwork and
compaction are shown bracketed in Table 3.3 for each exposure classification.

If concrete is cast against the ground as in footings, concrete cover must be increased
by 10 mm if the concrete surface is protected by a damp-proof membrane or by 20 mm
otherwise.

Note: Bracketed figures are the appropriate covers for single exterior surfaces when
concession relating to the lower strength grade is permitted e.g. exterior surface
classification B1, interior surface classification A1, reduced concrete strength grade N25
may be used but cover must be increased from 40 mm to 60 mm.
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TTaabbllee  33..33  --  MMiinniimmuumm  CCoovveerr  ffoorr  SSttaannddaarrdd  FFoorrmmwwoorrkk  aanndd  CCoommppaaccttiioonn

Exposure Required Cover in mm
Classification Characteristic Strength f 'c 

20 MPa 25 MPa 32 MPa 40 MPa ≥50 MPa

A1 20 20 20 20 20
A2 (50) 30 25 20 20
B1 (60) 40 30 25
B2 (65) 45 35
C (70) 50

3.2.2 Minimum Member Dimensions

In any beam design it is necessary to check that the chosen reinforcement will fit the
beam width. In addition to the cover, the clear spacing between bars must also be
established. The Code does not specify what the minimum clear spacing between bars
should be, it makes the following statements;

#8.1.7
The minimum clear distance between parallel bars (including bundled bars), ducts and
tendons shall be such that concrete can be properly placed and compacted in accordance with
Clause 19.1.3.

#9.1.3(d)
Concrete shall be transported , placed and compacted so as to completely fill the formwork to
the intended level, expel entrapped air, and closely surround all reinforcement, tendons, ducts,
anchorages and embedments.

The Code thus gives the designer the freedom to determine what the clear spacing
between parallel bars should be. It is rather unfortunate that the Code has not specified
minimum spacing between parallel bars because there will always be designers who will
end up with congestion of reinforcement. Congested areas will invariably lead to
incomplete compaction around the reinforcement causing loss of strength and loss of
bond and leading to premature corrosion of reinforcement.

Experience has shown that a horizontal spacing between parallel bars equal to one
and one half times the aggregate size but not less than the bar diameter will ensure that
the reinforcing bars are surrounded by concrete and full compaction is achieved. Vertical
spacing between horizontal rows of reinforcement is normally obtained by the use of
spacer bars; 32 mm spacer bars will provide adequte clearance for compaction. Table 3.4
was produced as a quick and ready means of choosing reinforcement. The table is based
on the following conditions;

(a) 20 mm maximum size aggregates are used. The clear horizontal spacing spacing
between bars is thus taken as 30 mm for bars up to 28 mm diameter and the bar size
for larger bars.
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(b) Exposure classification A1. The minimum dimensions bmin and
cmin for exposure classifications other than A1 will need to be
adjusted using the additional cover given in Table 3.3

(c) 12 mm stirrups or fitments are used. The minimum cover is
measured to the outside of the stirrups.

(d) 32 mm spacer bars are used to separate the horizontal rows of
reinforcement.
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TTaabbllee  33..44  --  AArreeaass  ooff  RReeiinnffoorrcceemmnntt  aanndd  MMiinniimmuumm  BBeeaamm  DDiimmeennssiioonnss  ffoorr  EExxppoossuurree  CCllaassssiiffiiccaattiioonn  AA11

Bar Number 1 Row 2 Rows 3 Rows
Dia. per

Row bmin Area cmin Area cmin Area cmin

2 118 220 440 660
3 160 330 660 990

12 4 202 440 38 880 60 1320 82
5 244 550 1100 1650
6 286 660 1320 1980

2 126 400 800 1200
3 172 600 1200 1800

16 4 218 800 40 1600 64 2400 88
5 264 1000 2000 3000
6 310 1200 2400 3600

2 134 620 1240 1860
3 184 930 1860 2790

20 4 234 1240 42 2480 68 3720 94
5 284 1550 3100 4650
6 334 1860 3720 5580

2 142 900 1800 2700
3 196 1350 2700 4050

24 4 250 1800 44 3600 72 5400 100
5 304 2250 4500 6750
6 358 2700 5400 8100

2 150 1240 2480 3720
3 208 1860 3720 5580

28 4 266 2480 46 4960 76 7440 106
5 324 3100 6200 9300
6 382 3720 7440 11160

2 160 1600 3200 4800
3 224 2400 4800 7200

32 4 288 3200 48 6400 80 9600 112
5 352 4000 8000 12000
6 416 4800 9600 14400

2 172 2040 4080 6120
3 244 3060 6120 9180

36 4 316 4080 50 8160 84 12240 118
5 388 5100 10200 15300
6 460 6120 12240 18360



3.2.3 Minimum Steel Ratio

Code #8.1.4.1 requires that reinforced concrete beams have an ultimate strength in
bending (Muo) at critcal sections not less than (Muo min) where  

(� Muo ) min ≥ � 1.2 Z (f ’cf )

(Muo) min = Minimum strength in bending at a critical cross section

Z = Modulus of gross (uncracked) section.

=               for rectangular sections

f ’cf = Characteristic flexural strength of concrete.

=

The above conditions may however be deemed to have been satisfied if the area of
reinforcement is such that the steel ratio is not less than the minimum steel ratio given by:

3.3 Design
The essential conditions have now been established to proceed with beam design. In any
design problem, the material properties, f ’c and fsy are known. There are still three
variables to be determined in the design:

(a) the beam width b,
(b) the effective depth d and
(c) the steel ratio p or area of reinforcement Ast..

There is however only one strength equation for φMuo and it cannot be used to solve
three unknowns. Consequently it is necessary to assume two of the unknowns and solve
for the third unknown. The final product will depend on the initial assumptions; varying
the assumptions will alter the final product. The design procedure may take the
following steps:

(a) Assume a steel ratio which is more than the minimum but less than the maximum
steel ratio. Any steel ratio between these limits is legal although a large steel ratio may
lead to steel congestion and shallow beams with large deflections. Small steel ratios
will result in very large beams. Initially, a steel ratio p ≈ 0.5 pmax means
approximately equal to) is a good starting point. Having chosen the steel ratio, the
value of z is calculated from equation 2.6.
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(b) The beam must be such as to satisfy equation 2.8,

� Muo ≥ M*

Subtituting equation 2.7 for Muo,

Using the limiting condition when the two sides are equal and solving for the paramater
bd2 gives,

(3.1)

Having assumed a steel ratio p, there are still two unknowns to be determined in
equation 3.1. There are infinite combinations of dimensions b and d to satisfy equation
3.1. Beam proportions having a relationship b = 0.6d have been found to produce
economic sections which are structurally stable. Thus substituting 0.6d for b in equation
3.1 gives the required effective depth.

(3.2)

Note that if the beam width b is given, the relationship of b = 0.6d cannot be used.
Equation 3.1 would then be applied to determine the required effective depth.

(c) The required area of steel reinforcement is now calculated.

Ast = pbd

(d) The results for b, d and Ast thus far are theoretical values based on the assumptions
made in (a) and (b). Different assumptions will produce different results since there
are an infinite number of solutions. The theoretical values are now converted to
practical values by:

(i) Choosing the reinforcement.

(ii) Rounding-off the overall beam dimensions b and D using preferred dimensions
of 25 mm increments for dimensions up to 350 mm and 50 mm increments for
dimensions  greater than 400 mm.

(iii) Steps (i) and (ii) give a trial section whose moment capacity must be checked so
that the condition φ Muo ≥ M* is satisfied.
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EXAMPLE 1
A beam uses N25 concrete and it is required to carry a design moment M* = 225 kNm.
Design the beam for exposure classification A2.

SOLUTION

Maximum steel ratio is obtained from equation 2.4.

= 0.014

Assume a steel ratio p = 0.01 which is approximately 0.5pmax.

= 0.20

Assume a beam width to depth ratio such that b = 0.6d.

From equation 3.2, the required effective depth is calculated,

d      =

= 474 mm

and  b = 0.6*474  = 284 mm

The required area of reinforcement,  A st = 0.01*284*474   = 1346 mm2.

The results so far are purely theoretical based on the assumed steel ratio p = 0.01 and
beam proportions such that b = 0.6d. It is now necessary to choose a trial section to
match or balance the calculated values. Choose 2N32 bars whose area is 1600 mm2.
The beam dimensions should satisfy preferred dimensions. Since the chosen
reinforcement has an area greater than the calculated area, a smaller beam width and/or
effective depth may be used. Try beam size b = 300 and D = 500. From Table 3.3, the
minimum cover for exposure A2 is 10mm greater than the cover required for exposure
A1 on which table 3.4 is based. The adjusted minimum dimensions become;

bmin =   160 + 20  = 180 < 300 mm chosen.

c min =   48 + 10  = 58 mm
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Thus,  d = 500 - 58   = 442 mm

Calculate the minimum area of steel deemed necessary to ensure Muo ≥ Muo min

∴p min = 0.0017

Figure 3.1 Trial Section

The effective moment capacity for the trial section can now be calculated and compared
with the design moment.

Actual steel ratio   p =                    = 0.0121    (> p min =0.0017)

(< p max =0.0180)

z =                   = 0.242

� Muo =

=  243kNm
>  M* ( = 225 kNm)

The moment capacity for the trial section matches the design moment reasonably closely
in this example. Frequently the difference between the moment capacity and the design
moment is greater. The choice of available reinforcement will in most instances not match
the calculated area because of discrete sizes of reinforcement. Also the rounded-off beam
dimensions will differ from the calculated dimensions. In such circumstances it becomes
necessary to compensate for the mismatch in areas and dimensions by judicial adjustments.
The reader is invited to repeat the above example by choosing a new trial section if the beam
width b = 300 mm is maintained and 3N24 reinforcing bars are used instead. The depth of
the trial section should be chosen by the reader and the moment capacity calculated. It may
be necessary to repeat the calculations with a new trial section if the moment capacity of the
trial section is either less than or much greater than the design moment.
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If the minimum strength equation of Section 8.1.4.1 from the Code were used, it
would have given an Muo min value of 36 kNm which is well and truly satisfied by the
value of 276.6 kNm

� Muo min

= 36 kNm

EXAMPLE 2
A 6 m span simply supported exterior beam is required to carry a 26 kN/m superimposed
dead load and a 20 kN/m superimposed live load. The beam is part of a commercial
complex located in the coastal region (3 km from the sea) south of Sydney. Design the
beam using grade N32 concrete if the beam width b = 350 mm is fixed.

SOLUTION

Data:    g = 26 kN/m    q = 20 kN/m    f ’c = 32 MPa      L = 6 m      b = 350 mm

From Table 3.1, exposure classification = B1.

Assume weight of beam  = 6 kN/m

Design load,  w* = 1.2 (26 + 6) + 1.5*20  = 68.4 kN/m

Assume a steel ratio,     p =  0.6*pmax = 0.60*0.0179

=  0.0107

z =

From equation 3.1,    

bd2 =

d =

=  477 mm
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Area of reinforcement required,  Ast = 0.0107*350*477  = 1786 mm2

From Table 3.4, choose 3N28 bars whose area Ast = 1860 mm2. Applying the increased
cover for exposure B1 obtained from Table 3.3, the minimum dimensions read from
Table 3.4 become,

bmin = 208 + 2*20  = 248 mm

cmin = 46 + 20  = 66 mm

Required total depth of beam,  D = 477 + 66  = 543 mm.

Choose  D = 550mm, making the effective depth  d = 550 - 66  = 484 mm.

Figure 3.2  -  Trial Section

For the trial section,  p  =                       

z  =  

Moment capacity,  � Muo =

= 324 kNm  > M*

Actual weight of beam  = 0.35*0.55*24  = 4.6 kN/m  < Assumed weight of 6 kN/m.
The trial section is satisfactory. If the actual weight of beam is used, the design moment,
M* = 300.2 kNm.

EXAMPLE 3
The overall beam dimensions b = 300 mm and D = 450 mm have been predetermined
by the architect. Design the beam for M* = 200 kNm using N40 grade concrete if the
structure is located less than 1 km from the sea.
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SOLUTION

There are instances when site conditions or aesthetic considerations dictate the size of a
structural member. In such circumstances, for the most efficient beam design using the
smallest practicable amount of reinforcement, there is only one possible solution. It is
necessary to start the design by estimating the effective depth d which is used to calculate
the required area of reinforcement. The reinforcement is then chosen, the value of d is
adjusted if necessary and the moment capacity is calculated. If the condition φMuo ≥ M*

is not satisfied, the process is repeated with a new estimate for d.

Data:
b = 300 mm D = 450 mm

f ’c = 40 MPa M* = 200 kNm

From Table 3.1, exposure classification B2 applies.

It is necessary to estimate the effective depth d for the beam.  Assuming that the
reinforcement will be made up of say N28 bars placed in one row,  from Table 3.4 the
minimum value cmin = 46 mm. From Table 3.3 the minimum covers for exposures A1
and B2 are 20 mm and 45 mm respectively.  

Therefore cmin = 46 + 25  = 71 mm and the estimated effective depth,

d  = 450 - 71  = 379 mm

Equation 3.1 may now be solved for  z.

bd2 =

=

1.7z - z2 =

= 0
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This is a quadratic in z whose standard solution is,

There can only be one solution given by equation 3.3 below.

(3.3)

Evaluating z by substituting in equation 3.3,

z  =

=  0.1605

But from equation 2.8,                          , the area of reinforement required will be,

= 1460 mm2

This is the precise area of reinforcement required for the assumed effective depth of beam
d = 379 mm. Choosing the reinforcement from table 3.4,  for 3N28 bars give an area Ast
= 1860 mm2. The minimum width of beam required to fit the chosen 3N28 bars is read
from Table 3.4 for exposure A1 and adjusted for exposure B2 using Table 3.3.

bmin = 208 + 2*25  = 258  <  b    (= 300)

The area of reinforcement provided and the area required are close, however it may be
necessary to repeat the calculations using a new estimate for d to achieve an area of
reinforcement closer to that provided.

P R O B L E M S

QUESTION 1

An external reinforced concrete beam in an industrial area of Sydney is required to carry
a 24 kN/m superimposed dead load and a 20 kN/m live load. The beam is simply
supported over an effective span L = 6.8 metres.

Design the beam for a given beam width b = 400 mm using the minimum
permissible concrete strength grade. Assume initially a steel ratio p = 0.8pmax.
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QUESTION 2

Repeat question 1 if only N20 bars are available.

QUESTION 3

A reinforced concrete beam has an effective cross-section b = 300 mm and  d = 446 mm.
If the beam design moment M* = 320 kNm,  calculate the precise area of reinforcement
required for a concrete strength f’c = 40 MPa  (do not choose the reinforcement).

QUESTION 4

A 6 m span simply supported reinforced concrete beam ina near-coastal area uses grade
N40 concrete. The beam which is exposed to the weather carries a uniformly distributed
dead load g = 64 kN/m which includes the weight of beam, and a uniformly distributed
live load q = 40 kN/m. Design the beam by determining the required reinforcement if
the overall beam dimensions  b = 350 mm and D = 600 mm are to be maintained in the
design.
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4.1 Additional Symbols used in this Chapter
� = Design parameter used in conjunction with chart B1.

4.2 Design Formulae
Designs are most frequently carried out using some form of design aids. It is however
important that  designers be able to design from formulae derived in chapter three to
ensure their understanding of the basic principles. There is always a possibility that a
designer may find himself or herself in a situation where design aids are either not
available or appropriate. The effective moment capacity of a singly reinforced concrete
beam was derived in Chapter 2.

Where  

The equation may be simplified by introducing a new symbol � such that:

�Muo = �.bd2 (4.1)

Where:
� = �f'c z                                                                                                (4.2)

Or
(4.3)

For a given grade of concrete λ is a function of the steel ratio. A plot of equation 4.2, �
versus p, may be obtained for various grades of concrete. Such plots are produced in design
chart B1 for normal grades of concrete for which the steel ratio varies from the minimum to
the maximum steel ratio. The advantages of using equation 4.1 in conjunction with design
chart B1 become apparent for both design and checking of singly reinforced concrete beams.

Design aids for singly
reinforced concrete beams
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4.3 Checking Procedure - Given f’c, b, d and p or Ast
(a) Calculate steel ratio p.

(b) Read value of � read chart B1

(c) Calculate the effective moment capacity from equation 4.1.

EXAMPLE 1
Determine if the reinforced concrete beam section
shown in Figure 4.1 may be used to carry a design
moment  M* = 160 kNm.

SOLUTION

f ’c = 32 MPa      b = 250 mm      d = 345 mm    

Ast = 1350 mm2 M* = 160 kNm

From Chart B1 read � =  5.4
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Effective moment capacity,

�Muo  = � bd2

= 5.4*250*3452*10-6

= 160.6 kNm

> M* therefore satisfactory.

4.4 Design Procedure – Given f’c and M*
(a) Choose a steel ratio p not more than pmax.

(b) Read � from Chart B1.

(c) Equating the design moment to the moment capacity given by equation 4.1,

M* = �bd2 the required beam size,  

If b is not given then assume b = 0.6d making the required depth,

and the required width   b = 0.6d.

OR

If b is given, the required effective depth,

(d) The required steel area,  Ast = pbd.

(e) Choose and round-off overall beam dimensions b and D to obtain a trial section.
Note that the minimum cover for the appropriate exposure classification and clear
spacing of reinforcement should satisfy the physical size of the trial section.

(f) Check capacity of trial section as for example 1.

EXAMPLE 2
A reinforced concrete beam in an exposure classification A2 uses N40 grade concrete.
Design the beam to carry a design moment M* = 260 kNm if the beam width 
b = 300 mm is to be maintained.

SOLUTION

f ’c = 40 MPa       M* = 260 kNm      b = 300 mm      Exposure classification A2.

Choose steel ratio, p = 0.016. This is best done from design chart B1 since the
permissible working ranges for the steel ratios are readily observed.

From Chart B1 read the value of  � = 5.65
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Required effective depth, 

Required area of reinforcement,  Ast = 0.016*300*392  = 1882 mm2.

From Table 3.4 choose 4N24 bars for which,  bmin = 250 mm  and  cmin = 44 mm.

For the trial section shown in Figure 4.2 (right),

From chart B1 read � = 5.3 for p = 0.0148.

Moment capacity of trial section,

= 262 kNm  > M* (= 260)

EXAMPLE 3
The beam shown in Figure 4.3 is required to support a superimposed dead load equal to
15 kN/m and a superimposed live load equal to 24 kN/m. Design the beam for the
maximum positive bending moment if the beam dimensions b = 350 mm and D = 500
mm are to be maintained. The beam will be permanently submerged in sea water. Use
the minimum concrete grade required to satisfy exposure conditions.

SOLUTION

b = 350 mm      D = 500 mm      g = (weight of beam + 15) kN/m      q = 24 kN/m

Weight of beam = 0.35*0.5*24  = 4.2 kN/m

The maximum positive bending moment will occur when the live load acts between the
supports only. The factored design loads for the maximum positive bending moment
shown in Figure 4.4 are calculated from:

From A to B,  w* = 1.2 (4.2 + 15) + 1.5*24  = 59 kN/m

From B to C,  w* = 1.2 (4.2 + 15)  = 23 kN/m
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The maximum positive bending moment occurs at X the point of zero shear force,
which is:

The maximum positive design bending moment at X,

From Table 3.1, exposure classification = B2.

From Table 3.2, minimum grade of concrete = N40.

Assuming one row of N32 bars, from table 3.4, c min = 48 mm for exposure A1. The
increased cover of 25 mm required for exposure B2 is obtained from Table 3.3 to give 
cmin = (48 + 25)  = 73 mm.

Effective depth  d = 500 - 73  = 427 mm.

Required value of  

From design Chart B1 read the required steel ratio  p = 0.0115.

Required area of reinforcement,  Ast = 0.0115*350*427  = 1719 mm2.

3-N28 bars have an area  Ast = 1860 mm2.

Check  bmin = 208 + 2*25  = 258  < 350 mm beam width.

There should be no  need to check the beam moment capacity since the effective
depth is equal to the assumed effective depth and the chosen reinforcement has an area
greater than the calculated area. It is however a good practice to check the beam capacity
just in case there was an error made in the earlier calculations. Using corrected d = 429

From design Chart B1 read  � = 4.5

Hence moment capacity,  �Muo = 4.5*350*4292*10-6

= 290 kNm  > M* (= 269.2)    
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4.5 Singly Reinforced Beam (SRB) Design Charts
Charts SRB at the end of the book were drawn in terms of actual beam sizes. These
Charts may be used for beam design or analysis of existing beams. The charts are
intended for the use of practicing designers or advanced students. To design a beam for
a design moment M*, choose a beam width b and calculate the ratio M*/b. Choose Chart
SRB appropriate to the strength of concrete. For the minimum conditions of φMuo = M*,

enter the chart with the value of 
φMuo

b
equal to the calculated M*/b. Choose a suitable

effective depth d and read the required steel ratio p. This procedure may be repeated with
new values of b or d to obtain the best section.

EXAMPLE 4
Design a beam using grade N32 concrete to carry a design moment M* = 420 kNm.
Assume exposure A2 will apply.

SOLUTION

Assume a beam width, say b = 400 mm.

= 1.05*106 N

From Chart SRB32, for                        = 1.05*106 N, choose an effective depth 

d = 500 mm (or any value between the minimum, pmin, and the maximum, pmax, steel
ratio) and read the required steel ratio p = 0.0120.

Required Ast = 0.0120*400*500 = 2400 mm2.

Choose reinforcement, 4-N28 bars give Ast = 2480 mm2.

Using beam depth D = 550 mm, maximum effective depth d = 550 - 51 = 499 mm (note
that cmin = 51). As the effective depth is reduced, the moment capacity should be checked.

For the beam chosen, p =                   = 0.0124.

From Chart SRB32, read           = 1.07*106 for p = 0.0124 and d = 499 mm.

Moment capacity, �Muo = 1.07*106*400*10-6 = 428 kNm  > M* ( = 420). 
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P R O B L E M S

QUESTION 1

A beam size b = 300, d = 412, D = 500 is reinforced with 8-N20 bars placed in two rows
of 4 bars. If the beam uses grade N40 concrete, determine the effective moment capacity:

(a) by calculation using derived formulae

(b) using design Chart B1

to show that the results are comparable.

QUESTION 2

Use design Chart B1 to determine the area of reinforcement which would be required
for a beam size b = 350 mm, d = 430 and   D = 500. The beam uses grade N40 concrete
and it carries a design moment M* = 270 kNm.

QUESTION 3

A beam in an exposure classification B1 uses grade N32 concrete and it is required to
resist a design moment M* equal to 355 kNm. Design the beam if the external beam
dimensions b = 350 and D = 500 must be maintained.

QUESTION 4

The cantivered beam shown below is an external wall beam of a hotel building at Arbel
which has a temperate climate. Arbel is an inland town with no industries. The beam
uses grade N25 concrete and it is required to carry a superimposed 18 kN/m dead load
and a superimposed 22 kN/m live load.

(a) Design the beam for the maximum positive bending moment using an initial
estimate of 0.013 for the steel ratio

(b) Use the beam size determined in (a) to design the cantilever for the maximum
negative bending moment.
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5.1 Additional Symbols used in this Chapter  
Ast = Total tensile area.

= As1 + As2
As1 = Tensile area of primary beam. This is usually the area of a singly 

reinforced beam with the maximum steel ratio pmax for which ku = 0.4.
As2 = Tensile area of secondary beam.
Asc = Area of compressive reinforcement.
fsc = Stress in compressive reinforcement.
dsc = Depth measured to centroid of compressive reinforcement.
εc = 0.003 the compressive strain in concrete at failure.
εsc = Compressive strain in Asc.
εy = Yield strain of reinforcement.
M* = Design moment due to factored loads.
M1 = Effective moment capacity of primary beam.
M2 = M* - M1 the effective moment capacity to be carried by secondary beam.

pc = Compressive steel ratio.

=

pt = Total tensile steel ratio.

=

p1 = Tensile steel ratio in primary beam.

5.2 Use of Doubly Reinforced Beams
Doubly reinforced beams are beams with compressive as well as tensile reinforcement.
There is little strength advantage in purposely adding compressive reinforcement to a

Doubly reinforced beams

5
c h a p t e r
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bd
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A
bd

st



singly reinforced beam when the concrete can carry the internal compressive force
required to balance the tensile force. Most beams would in effect include “incidental
compressive reinforcement” in the form of hanger bars required to position stirrups.
Such incidental compressive reinforcement would be disregarded when it comes to dete-
rmining the moment capacity. The additional moment capacity obtained by the
inclusion of the hanger bars is too small to warrant the additional effort and cost of the
calculations which have now become much more involved.

Compressive reinforcement may however be added for the purpose of reducing long-
term deflection. If compressive reinforcement is added for the sole purpose of satisfying
serviceability, it is disregarded in strength calculations. The effect of compressive
reinforcement on serviceability will be considered in Chapter 8 dealing with this topic.

Doubly reinforced beams are required in circumstances where a singly reinforced
beam using the maximum steel ratio cannot carry the design moment and beam size
cannot be increased either due to physical restrictions or other conditions beyond the
control of the designer. 

5.3 Strength Equations
Considering a beam of fixed dimensions b and D containing an area of reinforcement As1
so that the steel ratio is equal to the maximum steel ratio.

A s1 = pmax bd 

The effective moment capacity of this beam will be,

Where,

If the design moment M* is greater than M1, the beam capacity can be increased
while still maintaining beam ductility by additional area As2 of tensile reinforcement
which will yield on application of the design moment M* and an area of compressive
reinforcement Asc to balance the tensile force carried by As2. The forces carried by As2 and
Asc form an internal couple whose effective moment is equal to the difference M* - M1. 

A doubly reinforced beam is shown in Figure 5.1(below) (a). Applying the principle of
superposition the beam may be regarded as the superposition of a PRIMARY beam shown in
Figure 5.1(b) and a SECONDARY beam shown in Figure 5.1(c). Considering each in turn.
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PRIMARY BEAM
This is a singly reinforced beam using the maximum steel ratio having the following properties:

Area of reinforcement,

(5.1)

Where pmax is the maximum steel ration given by equation 2.4

(5.2)

Moment capacity,

(5.3)

Where z is calculated for the maximum steel ratio,

(5.4)

OR the moment capacity is determined using chart B1,

(5.5)

Where � is read from table 5.1 on page 61, for the maximum steel ratio.

SECONDARY BEAM
The secondary beam is regarded as a ‘steel’ beam made up of a tensile steel area As2 and
a compressive steel area Asc.

The moment capacity to be provided by the secondary beam,

M2 = M* - M1 (5.6)

M2 is equal to the internal moment of resistance due to the couple provided by the
reinforcement As2 and Asc. To maintain beam ductility, the additional tensile area As2 must
yield at moment M2. Taking moments about the compressive reinforcement Asc gives,

.                                                                                         (5.7)

Where: As2 fsy = Tensile force and

(d - dsc)   = Lever arm of internal couple.

� = 0.8 (the reduction factor for bending)

Solving for As2, the required additional area of tensile reinforcement,
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While the additional area of tensile reinforcement As2 is calculated to yield at the
design moment and ensure a ductile beam behaviour, the corresponding area Asc of
compressive reinforcement may not have yielded at the design moment. To establish the
required area Asc it is necessary to evaluate the strain at the level of the compressive
reinforcement and compare it with the yield strain.

The compressive strain is calculated from the geometry of the strain diagram shown
in Figure 5.1(d).

(5.8)

But ku = 0.4 for maximum steel ratio used in the primary beam and the position of the
neutral axis is maintained provided that the areas of reinforcement are not varied from
the calcuated areas. Hence the compressive steel strain becomes,

(5.9)

The steel strain at point of yielding εy = 0.0025. Comparing the compressive strain
εsc with the yield strain of 0.0025 will establish if the compressive reinforcement has
yielded and hence determine the area of compressive reinforcement.

If �sc ≥ 0.0025 then the compressive reinforcement HAS yielded and the required
area of compressive reinforcement is give by;

A sc = 
As2

If �sc < 0.0025 then the compressive reinforcement has NOT yielded and the
required area of compressive reinforcement is calculated from equilibrium condition
provided by the internal forces.

The term      is to compensate for the concrete displaced by the compressive
reinforcement.
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(5.10)

The reinforcement can then be chosen for areas Ast and Asc. To ensure a ductile beam
behaviour, the steel ratio for the primary beam p1, using chosen reinforcement, should
be checked that it does not exceed the maximum steel ratio pmax within reason. Using the
actual areas of reinforcement the steel ratio for the primary beam becomes,

Care should be exercised in choosing the reinforcement, especially the tensile
reinforcement. The doubly reinforced beam is designed for ku = 0.4 in the primary beam.
With the addition of balanced areas As2 and Asc, the position of the neutral axis will
remain unchanged i.e. ku is still 0.4. If however the tensile reinforcement is chosen to be
much greater than the calculated value, the neutral axis will be displaced to give a value
of ku greater than 0.4 and the above equations are no longer applicable. It would be
necessary to check the capacity of the doubly reinforced beam by determining the
position of the neutral axis by successive iterations. The analysis of doubly reinforced
beams will be considered later in this chapter. At this point we are only concerned with
the design of doubly reinforced beams whose neutral axis parameter ku = 0.4. 

EXAMPLE 1
A reinforced concrete beam section b = 300 mm, D = 400 mm is required to carry a
design moment M * = 300 kNm. The beam uses N25 concrete and it is located in
exposure classification A2. Design the beam.

SOLUTION

Data:   b = 300 mm   D = 400 mm   M * = 300 kNm    f ’ c = 25 MPa
Exposure A2

Assuming one row of N32 bars are used for both the compressive and tensile
reinforcement, use Tables 3.3 and 3.4 to determine depths d and dsc.

dsc = cmin = 48 mm from Table 3.4 + 10 mm additional cover for exposure
A2 from Table 3.3 

= 58 mm

d = D - cmin = 400 – 58 = 342 mm
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Primary Beam
Tensile area:     As1 = pmax bd = 0.0145*300*342

= 1,488 mm2

For pmax z = 0.34γ = 0.34 x 0.85 = 0.289

Moment capacity,     M1

= 168.3 kNm

< M * Hence doubly reinforced beam required.

Secondary Beam
Moment to be carried by reinforcement in secondary beam,

M2 = M* - M1

= 300 – 168.3

= 131.7 kNm

Tensile area required,

As2

= 1159 mm2

Determine strain in compressive reinforcement.

�sc

= 0.00173

< �y ( = 0.0025)

Hence the compressive reinforcement has NOT yielded.

Stess in compressive reinforcement, fsc = �scEs = 345.6 MPa

Area of compressive reinforcement required,
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Total tensile area required,

Ast = As1 + As2

= 1488 + 1159

= 2647 mm2

From Table 3.4, it is not possible to choose tensile reinforcement which will fit in one
row. It may have been anticipated that for the size of beam more than one row of tensile
reinforcement may be required. Assume two rows of N28 bars for tensile reinforcement
and one row of N28 bars for the compressive reinforcement and repeat calculations.

From Tables 3.3 and 3.4, 

d   = D - cmin = 400 - 86 = 314 mm

dsc = 56 mm

Primary Beam
Tensile area    As1 = 0.0145*300*314 = 1366 mm2

z = 0.289 as before.

Moment capacity  M1 = 0.8*25*0.289(1 - 0.289/1.7)*300*0.3142

= 141.3 kNm

Secondary Beam
Moment to be carried,

M2 = 300 - 141.3 = 158.7 kNm

Tensile area required,

As2

= 1538 mm2

Strain in compressive reinforcement,

�sc

= 0.00166 < 0.0025

The compressive reinforcement has NOT yielded giving a compressive stress, 
fsc = 332 MPa.
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The area of compressive reinforcement required,

Total tensile area required,

Ast = 1366 + 1538

= 2904 mm2

Alternatively the compressive area could be calculated from,

(5.11)

Substituting in equation 5.11,

Asc

Choose 4N28 bars in one row and 2N20 bars in the next row for the tensile
reinforcement, Ast = 3100 mm2, and 4N28 bars for the compressive reinforcement, 
Asc = 2480 mm2. The final beam is shown in Figure 5.2. The steel ratio of the primary
beam using the actual reinforcement should be checked against the maximum steel ratio.

Steel ratio of primary beam using reinforcing areas shown in Figure 5.2 (below),
noting that the compressive reinforcement has NOT yielded,

5.4 Design Aids for Doubly Reinforced Beams
Primary Beam
Table 5.1 below is useful for deterimining the area of reinforcement As1 and the moment
capacity M1 of the primary beam. The values of z and � are tabulated for the maximum
steel ratio pmax.
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Parameter f c in MPa

20 25 32 40 50 65

� 0.850 0.850 0.822 0.766 0.696 0.65
pmax 0.0116 0.0145 0.0179 0.0208 0.0237 0.0287
z 0.2890 0.2890 0.2795 0.2604 0.2366 0.221
� 3.838 4.797 5.979 7.057 8.1468 9.998

Secondary Beam
The ratio of compressive area to tensile area is obtained from equations 5.8 and 5.11.

So that, Asc

Or more simply,

Asc = K*As2 (5.12)

The value of multiplier K is plotted in Chart B2 for various grades of concrete. For

values of dsc ≤ 0.0667, the compressive reinforcement has yielded. This may be shown

from equation 5.10 when the compressive strain �sc is equal to the yield strain of 0.0025.
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EXAMPLE 2
A reinforced concrete beam using N32 concrete is required to carry a design moment M*

= 465 kNm. The beam is in Exposure classification B1. Design the beam if the beam
overall dimensions b = 350 and D = 500 are fixed.

SOLUTION

Data:  f ’c = 32 MPa    M* = 465 kNm    b = 350 mm     D = 500 mm

Exposure classification B1

Assume single row of N24 top (compression) bars and single row of N32 (tension)
bars. From Tables 3.3 and 3.4,

dsc = 64 mm

d = 500 - 68 = 432 mm

Primary Beam
From Table 5.1 read,

pmax = 0.0179

� = 5.979

Area of tensile reinforcement in primary beam,

As1 = 0.0179*350*432

= 2706 mm2

Moment capacity of primary beam,

M1 = �bd2

= 5.979*350*4322*10-6

= 390.5 kNm

Secondary Beam
Moment to be carried,

M2 = M* - M1

= 465 – 390.5

= 74.5 kNm

Area of tensile reinforcement required,
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From Chart B2, read K = 1.42

Area of compressive reinforcement required,

Asc = K*As2

= 1.42*452

= 719 mm2

Total tensile area required,

Ast = As1 + As2

= 2706 + 506

= 3212 mm2

The available choice of tensile reinforcement from Table 3.4 will require two rows 
of reinforcement. Assume that the tensile reinforcement is made up of two rows of 
N24 bars. From Table 3.4, cmin = 92.

d = 500 - 92 = 408 mm

dsc = 64 mm as before.

Primary Beam
As1 = 0.0179*350*408

= 2556 mm2

M1 = 5.979*350*4082*10-6

= 348.3 kNm

Secondary Beam
M2 = 465 - 348.3 = 116.7 kNm

As2

= 848 mm2

From Chart B2, K = 1.47

Required compressive area,

Asc = 1.47×848 = 1247 mm2

Total tensile area required,

Ast = 2556 + 848 = 3404 mm2
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For tensile reinforcement, choose 8N24 bars in two rows as shown below giving, 
Ast = 3600 mm2.

Compressive reinforcement, choose 3N24 bars, Asc = 1350 mm2.

The final beam is shown in Figure 5.3 below.

5.5 Moment Capacity of Doubly Reinforced Beams
To determine the moment capacity for a given doubly reinforced beam is more complex.
The design procedure used so far assumed that the position of the neutral axis is
maintained at ku = 0.4 which is the maximum value permitted by the Code. The addit-
ion of compressive reinforcement and tensile reinforcement to the primary beam was
balanced to maintain the position of the neutral axis with ku = 0.4.

In the analysis of doubly reinforced beams, there is no guarantee that the above
conditions have been maintained. The value of ku is unknown and it can only be
determined by an iterative procedure. The position of the neutral axis is established when
internal equilibrium is achieved as outlined below. The moment capacity is obtained by
taking moments about the tensile reinforcement.

1. Assume ku = 0.4 initially. 

2. Calculate compressive steel strain εsc from equation 5.8 or 5.9.

3. If εsc ≥ 0.0025, the compressive reinforcement has yielded and the
compressive stress, fsc = fsy = 500 MPa otherwise the compressive 
stress fsc = εsc × 2 × 105 MPa.

4. Calculate the internal forces,

Cc = 0.85f ’cbγkud*10-3 kN

Cs = (fsc - 0.85f ’c)Asc ×10-3 kN

T = fsy Ast ×10-6 kN

5. Check for internal equilibrium,

If Cc + Cs > T reduce ku and repeat from step 2.

If Cc + Cs < T increase ku and repeat from step 2.

If Cc + Cs = T calculate moment capacity.
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6. Moment capacity, take moments about tensile reinforcement

�Muo = �[Cc(d - 0.5γkud) + Cs(d - dsc)]

Note: The above procedure is not complete since it assumes that all tensile reinforcement
has yielded and it is concentrated at depth d. Also there is no provision made to reduce
the moment capacity when ku exceeds the maximum of 0.4 required by the Code. A
classic example of these conditions exists in columns subjected to pure bending.

EXAMPLE 3
The reinforced concrete beam shown in Figure 5.4 (below) was designed as a singly
reinforced beam using 4N28 bars. The 2N20 top bars were added as hanger bars for the
shear reinforcement and as compressive bars to reduce long-term deflection. The top bars
were not included in the strength design.

(a) Neglecting the hanger bars, determine the effective moment capacity fo the beam as
a singly reinforced beam.

(b Since the 2N20 top bars are in effect compressive reinforcement, determine the
effective beam moment capacity as a doubly reinforced beam and comment on the
results.

SOLUTION

(a) Singly reinforced beam.

� = 0.766

From Chart B1,   � = 6.3
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Moment capacity, �Muo = 6.3×300×4502×10-6 = 382.7 kNm

Depth of NA, kud = 0.3532*450 = 158.9 mm

(b) As a doubly reinforced beam. The effect of the compressive reinforcement will be to
reduce the depth of the neutral axis i.e. ku will be reduced. A starting point in this
example could be a value for ku less than 0.3292 obtained for the singly reinforced
beam. For the sake of uniformity, the given procedure will be used with an initially
assumed value for ku = 0.4.       

=  0.1

Assume, ku = 0.4

Stress in compressive reinforcement for this condition is 500 MPa

Internal compressive and tensile forces,

Cc = 0.85*40*300*0.766*0.4*450*10-3

= 1406 kN

Cs = (500 - 0.85*40)*620*10-3

= 289 kN

T = 500*2480*10-3

= 1240 kN

The total internal compression Cc + Cs = 1695 kN is greater than the internal tension
of 1240kN. The value of ku will have to be reduced to balance the internal forces.

Try ku = 0.25. 

Strain in compression reinforcement,

The compression reinforcement has NOT yielded.
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Stress in compressive reinforcement,

fsc = 0.0018 × 2 × 105

= 360 MPa

Internal forces,

Cc = 0.85 × 40 × 300 × 0.766 × 0.25 × 450 × 10-3

= 879 kN

Cs = (360 - 0.85 × 40) × 620 × 10-3

= 202 kN

T  = 1240 kN as before.

Cc + Cs = 879 + 202
= 1081 kN

< T (= 1240)

The position of the neutral axis has now been under-estimated. The value of ku
needs to be increased. Using a value of 0.290 for ku gives the following results:

�sc = 0.001966

fsc = 393.1 MPa

Cc = 1019.6 kN

Cs = 222.6 kN

Cc + Cs = 1242.2 kN

T = 1240 kN

The depth of the neutral axis,

kud = 0.290 × 450 = 130.5 mm

The moment capacity is now determined by taking moments about the tensile
reinforcement.

Comments: The 2N20 hanger bars caused a sizeable decrease in the depth of the
neutral axis from 158.9 mm to 130.5 mm but the moment capacity was only increased
by 4.1% from 382.7 kNM to 398.4 kNm. This explains why incidental compressive
reinforcement is frequently not included in strength calculations.
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5.6 Design Charts DRB
Design of doubly reinforced concrete beams can be simplified by the development of
design charts. These are Charts DRB-25, DRB32, DRB-40 and DRB-50 corresponding
to 25, 32, 40 and 50 MPa concrete grades are included at the end of the book. Charts
DRB (doubly reinforced beams) are total design charts which allow a designer to directly
choose the steel ratios pt and pc required for a beam of given size to carry a design
moment M* for any ratio of dsc/d.

The design procedure is made up of the following steps:

(a) For the given design conditions, f ’c, M*, b and D, assume dsc and d and calculate
dsc/d and M*/(bd2).

(b) From chart corresponding to f ’c, enter chart with values of dsc/d and �Muo/(bd2)
(=M*/(bd2)) and read the required steel ratios pt and pc.

(c) Required areas of reinforcement Ast = ptbd, Asc = pcbd.

(d) Choose the reinforcement.

(e) If dc and d for chosen reinforcement are different to the assumed values, repeat
steps (b), (c) and (d) using new ratio dc/d.

EXAMPLE 4
Choose the reinforcement for a beam size b = 350 mm, D = 500 mm to carry a design
moment M* = 520 kNm using grade N32 concrete assuming exposure classification A2.

SOLUTION

Assume dsc = 50 mm and d = 400 mm to give dsc/d = 50/400 = 0.125.

From Chart DRB-32 for dsc/d = 0.0125 and ΦMuo/(bd2) = 9.29 MPa read the
required steel ratios pt = 0.0276 and pc = 0.0126. Figure 5.5 shows the construction lines
required to read the chart.

Required areas of reinforcement   Ast = 0.0276 × 350 × 400 

= 3864 mm2

Asc = 0.0126 × 350 × 400 = 1764 mm2

6N32 bars in two rows of three bars gives Ast = 3720 mm2 and 4N24 bars gives Asc
= 1800 mm2. From Table 3.4 adjusted dimensions for exposure A2 are d = 419 mm and
dsc = 49 mm. Repeating the procedure using new values of d and dsc,
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Figure 5.5

Choose 6N28 bars giving A st = 3720 mm2, and 3N24 bars giving Asc =1350 mm2

Check primary beam steel ratio.
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P R O B L E M S

QUESTION 1

(a) Show that for the beam section shown a
singly reinforced beam only is needed to
carry a design moment M* = 282 kNm and
choose reinforcement.

(b) If the design moment for the beam in part
(a) is increased to 299 kNm, show that while
theoretically a singly reinforced beam may be used, the choice of reinforcement is
such that compressive reinforcement will have to be added to satisfy Code
requirements. What is the required minimum compressive reinforcement ?

QUESTION 2

The beam shown appears in 
a drawing but the design
calculations cannot be found.
Using the beam dimensions
for the conditions shown on
the drawing, go through the
normal design step procedure
to show that the beam satisfies
strength conditions.

QUESTION 3

Determine the depth of the NA and the effective moment capacity for the beam given
in question 2. Note that evaluating ku within +_ 0.005 will achieve adequate accuracy.

QUESTION 4

A simply supported beam
with a 6 m effective span is
used in the exterior wall
over an opening for a basement carpark of a commercial building 10 km from the coast.
The beam supports a total dead load g = 32 kN/m which includes its own weight and a
live load q = 40 kN/m. Because of physical restrictions the beam has a square section 400
mm by 400 mm. N40 grade concrete is used.

(a) Design the beam for the maximum bending moment using N24 reinforcing bars
only.

(b) How far from the support centrelines could the compressive reinforcement be
theoretically terminated and what will be the tensile reinforcement carried through
to the supports.

(c) Draw the beam showing all the relevant details.
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6.1 Additional Symbols used in this Chapter
a = Distance between points of zero bending moment.

b = Effective flange width bef.

bw = Width of web.

ds = Depth of rectangular stress block.
= γkud

t = Flange thickness.
= Thickness of slab Ds making up T-beam or L-beam.

L = Span of T-beam or L-beam.

l = Clear distance between webs of parallel beams.

6.2 Effective Flange Width
Floor slabs are generally
supported by integrally cast
beams. While the floor slab is
designed to span the parallel
supporting beams, 
in the direction of the span 
L shown in Figure 6.1 (right),
portion of the slab is
considered to make up the
beam and increase the load
carrying capacity.

T-beams and L-beams

6
c h a p t e r

SPAN  L



The beams in the direction of span L are made up of a web and a flange which is
part of the slab on each side of the web to give the beams a T or L shape as shown in
Figure 6.2 (below). It may be anticipated that the flange width b should extend to centre
of each slab i.e. l /2 either side of the web. This is a reasonable supposition and it is the
case in most instances. However an excessively thin flange may not be very effective
because it may buckle under a relatively small moment. The Code #8.8.2 limits the
flange width to a maximum effective flange width bef herein given the symbol b.

T-beams        b = bw + 0.2a

L-beams        b = bw + 0.1a

Where;          a = distance between points of zero bending moment

= 0.7L for continuous beams.

Note that the flange outstand on either side of the web cannot exceed l/2.

6.3 When are T-beams, T-beams?
Consider a rectangular beam shown in
Figure 6.3 (right) in which some of the
concrete below the neutral axis has been
removed. It is quite obvious that the
moment capacity of such a beam has not
been affected since the concrete below the
neutral axis is assumed to be fully cracked
and it does not contribute towards the
moment capacity of the beam. The removal
of some of the concrete below the neutral
axis has altered the beam shape but the
beam flexural strength is still that of a
rectangular beam. This is really a
rectangular beam in ‘disguise’ of a T-beam
and it is designed as a rectangular beam.

However, if the concrete removed in Figure 6.3 extended into the compression
region above the neutral axis as shown in Figure 6.4, then the moment capacity of the
beam is affected. The beam is a true T-beam and it can no longer be designed as a rect-
angular beam.
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Figure 6.4

All references made to T-beams apply equally to L-beams. To design a T-shaped
beam it is first necessary to determine the depth of the stress block by treating the beam
as a rectangular beam b by d. If the depth of the stress block is within the flange, then
the beam is designed as a rectangular beam b by d. If the depth of the stress block is below
the flange and in the web then a separate design procedure must be addopted. For a
rectangular beam, the effective moment capacity which must be at least equal to the
design moment, may be obtained by taking moments about the tensile reinforcement.
Referring to Figure 6.4, for a rectangular beam b by d when the effective moment
capacity        �Muo = M* the design moment,

M*= �C (d - 0.5 �kud)

= �*0.85f’cb�kud(d - 0.5�kud) 

Let  ds = γkud the depth of the stress block.

M*= Φ∗ 0.85f’cbds(d - 0.5ds)

Solving for the depth of stress block ds,

= ds(d - 0.5 ds)

= 

Transposing all the terms to one side and multiplying by 2 gives,

= 0

This is a quadratic in ds whose standard solution is,
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There is only one solution for  the depth of the stress block given by,

(6.1)

The depth of the stress block calculated from equation 6.1 is compared with the
flange thickness.

If ds ≤ t the stress block is in the flange and the beam is
designed as a rectangular beam b by d.

If ds > t the stress block is in the web and beam has to be
designed as a true T-beam.  The design procedure
will be developed on the following pages.

6.4 Determining Depth of Stress Block Using Design Aids
Substitute λ b d2 for M* in equation 6.1,

ds

Dividing both sides by the effective depth d gives,

(6.2)

It may be noted that ds /d is a dimensionless ratio. On the right hand side � and f’c
have the same units of N/mm2, so the right hand side is also dimensionless as expected.

The ds/d ratio may be read from the design chart B3 on page 77 which gives a plot
of ds/d versus � for standard concrete strength grades.

EXAMPLE 1
Figure 6.2 represents the cross-section of a beam and slab construction with the
following properties;

f’c = 25  MPa fsy = 500 MPa L = 7000 mm t = 75 mm bw = 350 mm

D = 500 mm d = 420 mm l = 1600 mm Exposure classification A1

The slab supports a superimposed dead load (not including weight of construction)
g = 6 kPa, and a superimposed live load  q = 15 kPa.

(a) Calculate the design load and hence the design bending moment to be
carried by the intermediate beams.
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(b) Determine the effective flange width for the T-beams.

(c) Will the intermediate beams be designed as T-beams or rectangular beams?

(d) If the intermediate beams are to be designed as rectangular beams, then choose the
reinforcement.

SOLUTION

(a) Each beam carries the superimposed loads extending to the centreline of each panel
as shown in Figure 6.5 (below).

T - B E A M S A N D L - B E A M S 77

8

7

6

5

4

3

2

0.1 0.15 0.2 0.25 0.3

f'   
= 50MPa

c   

f'  =
 40MPa

c

f'  =
 32MPa

c

f'  = 25MPa

c

d

d
s

t

wb

b

d

sd

CHART B3

λ

1

Figure 6.5



Superimposed dead load per metre length of beam,

g = 1.95×6  = 11.7 kN/m

Superimposed live load per metre length of beam,

q = 1.95×15  = 29.25 kN/m

Weight of 1 metre length of beam,

= 0.075×1.95×24 + 0.425×0.35×24

= 7.08 kN/m

Design load,

w* = 1.2×(11.7 + 7.08) + 1.5×29.25

= 66.4 kN/m

Design bending moment,

(b) Effective flange width,

b = bw + 0.2L

= 350 + 0.2*7000

= 1750mm

The flange outstand is 0.1×7000 = 700 mm which is less than half the distance
between parallel beams.

(c) For a rectangular beam size b = 1750 mm and d = 420 mm, the depth of the stress
block may be calculated from equation 6.1,

Alternatively using Chart B3,
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From Chart B3 read ds/d = 0.08 < t/d(=75/420=0.179) i.e. stress block is in the
flange and the beam is designed as a rectangular beam whose width is equal to the
effective flange width b = 1750 mm.

(d) From Chart B1 read the required steel ratio corresponding to � = 1.32 falls below
the range, use p = 0.005.

Area of tensile reinforcement required,

Ast = pbd = 0.005×1750×420

= 3675 mm2

From Table 3.4 select 6N28 bars placed in two rows of three bars.

6.5 Design of T-Beams
Design of true T-beams (or L-beams) is similar to doubly reinforced beams in which the
compressive reinforcement is replaced by the concrete flanges. The superposition
principle will be used to derive design formulae.

Referring to Figure 6.6 (below), the T-beam may be regarded as the superposition of
the “primary” beam (b) and “secondary” beam (c).

Each beam will be considered separately.

SECONDARY BEAM

Compressive force provided by the flanges,

Cf = 0.85 f ’c (b - bw) t

Taking moments about the tensile reinforcement, the effective moment capacity of
the secondary beam,

M2 = ΦCf (d -    )

M2 = Φ0.85f ’ c (b - bw ) t (d -   ) (6.3)
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The effective moment capacity may also be determined by taking moments about
the centroid of the flanges.

M2 = �As2 fsy(d -     )

But the value of M2 is already known from equation (6.3), therefore the area As2 may
be determined by solving for As2.

(6.4)

PRIMARY BEAM

The effective moment capacity to be carried by the primary beam is,

M1 = M* -  M2

Since this is a rectangular beam, the effective moment capacity is give by the
equation,

M1 = � bw d2

Transposing to determine the value of � for the primary beam,

The steel ratio p may now be read from chart B1 and the tensile area required by the
primary beam will be,

A s1 = p bw d

The total tensile area required by the T-beam,

Ast = As1 + As2

Finally it is just a matter of choosing the reinforcement for Ast. As with doubly
reinforced beams a check should be made that the steel ratio of the primary beam using
the actual area Ast of the selected reinforcement does not exceed the maximum steel ratio.

EXAMPLE 2
Redesign the intermediate T-beam in example 1 if the design moment 

M* = 900 kNm.

Data:          f ’c =  25 MPa       M * = 900 kNm     b = 1750 mm      d =  420 mm

t =   75 mm        bw =  350 mm     Exposure Classification A1.
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SOLUTION

For a rectangular beam b = 1750 mm and d = 420 mm carrying an ultimate design
moment M* = 900 kNm,

From Chart B3 for �= 2.915 read,  ds /d =  0.19  >  t/d
That is, ds > t. The depth of the stress block is greater than the flange thickness so

the beam must be  designed  as a true  T- beam.

SECONDARY BEAM

Effective moment capacity,
M2 = 0.85Φf ’c (b - bw) t

= 0.85×0.8×25(1750 - 350) ×75×                   ×10-6

= 682.8 kNm

Area of tensile reinforcement required,

As2

= 4463 mm2

PRIMARY BEAM

Moment to be carried by primary beam,

M1 = M* -  M2

= 900 - 682.8

= 217.2 kNm

�

=  3.52
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From Chart B1 read required steel ratio corresponding to �

p = 0.01

Area of reinforcement required for primary beam,

As1 = pbwd

= 0.01×350×420

= 1470 mm2

Total tensile area required for the T-beam,

Ast = As1 + As2

= 1470 + 4463  = 5933 mm2

From Table 3.4 choose 6N36 bars place in two rows of 3 bars whose area Ast = 6120 mm2. 
Checking the steel ratio for the primary beam,

p1

= 0.0114 < p max

6.6 T-Beam Design Charts
At the end of the book design Charts TB.10 to TB.20 have been drawn for t/d ratios of
0.10, 0.12, 0.14, 0.16, 0.18 and 0.20. Each chart plots the b/bw ratio versus the steel
ratio p for a series of stresses �Muo/(bd2) and the standard concrete stress grades. The
required steel ratio for a given condition is not greatly affected by the t/d value. For
example, a T-beam whose ratio b/bw = 4.0 uses concrete strength f’c = 25 MPa. For a
moment capacity �Muo such that �Muo/(bd2) = 4.0 MPa, the required steel ratio p =
0.0106 when t/d = 0.16 and p = 0.0105 when t/d = 0.18. The smaller t/d ratio gives
slightly higher values of p. The main effects of the t/d ratio are the moment value or the
�Muo/(bd2) stress which causes the depth of the stress block ds to be equal to the flange
thickness t and the limit of b/bw for a maximum value of ku = 0.4. These limits are shown
on the charts. For intermediate t/d ratios the charts may be interpolated.

It is important to realise that b is the flange width and that the steel ratio p is in terms
of the flange width and not the web width. Ratios of b/bw less than 1.0 designate inverted
T-beams or T-beams with negative flanges which are designed using the same procedures.
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EXAMPLE 3
Determine the area of reinforcement for the beam shown in Figure 6.8.

SOLUTION

Data:   b = 150   bw = 350   d = 540   t = 100   f’c = 25 MPa   M* = 175 kNm

= 

Using Chart T-18A for t/d = 0.18, read the required steel ratio
p = 0.0114 for  

ΦMuo
bd2 = 4.00 MPa and b/bw = 0.43. 

Using the smaller value of t/d, the steel ratio read from 
T-18A will be slightly conservative, a more accurate value
can be obtained by interpolating between the results
obtained from Charts T-18 and T-20 although the
difference may not be discernable.

Hence the required tensile area,

Ast = 0.0114*150*540

= 923 mm2
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P R O B L E M S

QUESTION 1

The L-beam shown below is part of a beam and slab construction. Determine the
depth of the stress block to show that the beam is to be designed as an L-beam and
design the beam. The flange width shown may be taken as the effective flange width.

f ’ c =  25 MPa

M* = 490 kNm

Exposure Classification A1

QUESTION 2

Figures shown below represent an integral beam and slab construction which is
required to support a superimposed dead load (not including the weight of
construction) g = 25 kPa and a superimposed live load q = 37 kPa.

(a) Determine the design load and hence the design moment to be carried by the
intermediate beam.

(b) Determine the effective flange width for the T-beam and the L-beams.

(c) Design the intermediate T-beam. Note that because of the large moment there
will likely be more than one row of reinforcement.

f ’ c = 25 MPa,    Exposure Classification A1
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7.1 Additional Symbols used in this Chapter
Ab = Cross-sectional area of reinforcing bar.

a = The cover over a deformed bar or half the distance between parallel bars 
whichever is the lesser.

db = Bar diameter.

�c = Concrete strain.

Lsy.c = Development length for compressive reinforcement at yield condition.

Lsy.t = Tensile development length i.e. minimum length of embedment 
required to develop yield strength of a reinforcing bar in tension.

Lst = Tensile development length for fst < fsy.

My = Moment causing initial yield of reinforcement.

7.2 Development Length
Determining the size of a beam and the reinforcement required to carry a given design
moment is but one part of the overall design process. A reinforced concrete beam can
only function if the reinforcement is effectively bonded to the concrete and the length of
embedment is sufficient to carry the tensile force in the reinforcement. Considering
Figure 7.1a and 7.1b, in each case the reinforcement is chosen to yield at the point of
maximum bending moment. On either side of the maximum  bending moment, the
reinforcing bars must be embedded for a sufficient length to develop the tensile yield
strength in the reinforcement.

Figure 7.1

Developmental length and
termination of reinforcement

7
c h a p t e r

T=A fb sy

Mu uM

(a) Cantilever



Figure 7.1

The Code #13.1.2.1 gives the tensile development length as,

(7.1)

Where:

k1 = 1.25 for "top" bars i.e. bars with more than 300mm of concrete cast below the bar.

= 1.0 otherwise.

k2 = 1.7 for bars in slabs and walls if the clear distance is 150mm or more.

= 2.2 for longitudinal bars in beams and and columns with fitments.

= 2.4 for any other longitudinal bars.

Ab = Cross-sectional area of reinforcing bar.

2a = The lesser of twice the cover to the deformed bar and the clear distance between
parallel bars.

Some explanations of the multipliers k1 and k2 may be in order. Bleeding of freshly
placed concrete is a form of segregation. While excessive bleeding can be reduced with
proper mix design, it cannot be eliminated altogether. As concrete settles, bleed water
will accumulate under the reinforcing bars to leave voids after hardening and drying out
of the concrete. The deeper the concrete pour, the greater will be settlement. Reinforcing
bars near the top of a beam may not be fully surrounded by concrete causing a loss of
bond. Such losses can only be compensated by increasing the the contact area i.e. by
increasing the length of embedment. The Code considers  that if the depth of concrete
below the reinforcing bars is greater than 300 mm, settlement of concrete may cause
25% loss in bond which must be compensated by increasing the length of embedment.

Bond between the reinforcing bars and the concrete is the result of chemical
adhesion, friction and positive bearing between the concrete and the deformations on the
surface of the reinforcing bars. The effect the reinforcing bars placed in tension is a shear
force over the surface area of the reinforcing bars known as bond stresses. A secondary
effect is a radial bursting pressure in the concrete around the reinforcing bars. This is
analogous to the pressure in a water pipe which may cause the pipe to split
longitudinally. Bond failure may take the form of pulling out of the reinforcing bars or
more commonly longitudinal splitting of the concrete either between bars or from the
reinforcing bars to the surface. If the bars are placed close together, the bursting pressures
between the bars will combine and increase the possibility of longitudinal cracks between
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the bars. The Code states that if the bars in walls or slabs are placed closer than 150 mm,
the development length is increased with the larger multiplier k2 = 2.4 rather than the
value of 1.7 when the bars are placed more than 150 mm apart.

Table 7.1 is drawn to allow direct reading of the tensile developmental length Lsy.t
given by equation 7.1. The following notes should be read in conjunction with Table 7.1:
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Bar Size
f’c a N12    N16 N20 N24 N28 N32 N36

15   592 961 1382 1841 2337 2853 3400
20   478 790 1151 1554 1993 2457 2953
25   401 670 987 1344 1737 2157 2609
30   345 582 864 1184 1540 1923 2338
35   303 514 768 1058 1383 1734 2117

25 40   300 461 691 956 1255 1579 1934
45   300 417 628 872 1148 1450 1781
50   300 400 576 802 1059 1340 1650
55   300 400 531 742 982 1246 1537
60   300 400 500 646 858 1092 1352
65   300 400 500 606 807 1028 1275

15   523 850 1221 1628 2065 2522 3005
20   423 698 1018 1373 1762 2171 2610
25   354 592 872 1188 1536 1907 2306
30   305 514 763 1046 1361 1699 2066
35   300 454 678 935 1222 1533 1871

32 40   300 407 611 845 1109 1396 1710
45   300 400 555 771 1015 1281 1574
50   300 400 509 709 936 1184 1458
55   300 400 500 656 868 1101 1359
60   300 400 500 610 809 1029 1271
70   300 400 500 600  758 965 1195

15   468 760 1092 1456 1847 2255 2688
20   378 624 910 1228 1576 1942 2334
25   317 530 780 1062 1374 1705 2063
30   300 460 683 936 1217 1520 1848
35   300 406 607 836 1093 1371 1674

40 40   300 400 546 756 992 1249 1529
45   300 400 500 690 908 1146 1408
50   300 400 500 634 837 1059 1304
55   300 400 500 600  776 985 1215
60   300 400 508 600  724 920 1137
65   300 400 500 600  700 863 1069

15   419 680 977 1302 1652 2017 2404
20   338 558 814 1099 1409 1737 2088
25   300 474 698 950 1229 1525 1845
30   300 411 611 837 1089 1359 1653

50 35   300 400 543 748 978 1226 1497
40   300 400 500 676 887 1117 1368
45   300 400 500 617 812 1025 1259
50   300 400 500 600  749 948 1167
55   300 400 500 600  700 881 1087
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Tensile Development Length Lsy.t in mm for Standard Compaction



NOTES ON TABLE 7.1 

(1) Intermediate values may be interpolated.

(2) All tabulated and plotted values are for k1 = 1.0 and  k2 = 2.2.

(3) For top bars the development length is calculated by multiplying tabulated and the
plotted values by 1.25 (the value of k1 for top bars).

(4) For slabs in which the clear spacing between reinforcing bars is more than 150 mm,
k2 = 1.7. The tabulated and the plotted values may be adjusted by multiplying by
1.7/2.2 = 0.773.

(5) For slabs in which the clear spacing between reinforcing bars is 150mm or less, and
for beams and columns without fitments, k2 = 2.4. The tabulated and the plotted
values may be adjusted by multiplying by 2.4/2.2 = 1.09.

The development lengths are tabulated for discrete concrete covers. In beams and
columns the concrete cover for longitudinal reinforcement will exceed the minimum
cover because of fitments.

For plain bars used as fitments with diameters db ≤ 13 mm, the development length
is taken as,

Lsy.t = 40db ≥ 300mm

For hard drawn wire the development length is taken as,

Lsy.t = 50db

7.3 Reinforcement Stressed Below Yield Stress
The Code requires that the tensile force carried by the reinforcement must be developed
by bond at any section. At a point in the beam where the bending moment is say one
half of the maximum bending moment, the reinforcement will only be stressed to one
half of the yield stress. The tensile force carried by the reinforcing bars will also be halved
and the length of embedment Lst required to develop the tensile force will only be one
half of Lsy.t the development length required at the point of maximum bending moment
where the reinforcement is at its yield point. Thus the development length required at
any section, where the reinforcement is not fully stressed, may be calculated as the stress
ratio of Lsy.t. The Code requires that this length be not less than 12 bar diameters.

7.4 Hooks and Cogs
Occasions frequently arise when it is not possible to provide a length of embedment equal
to the development length requirement. Two possible courses of action may be taken.

(a) Reduce the size of the reinforcement. For example a beam in exposure classification
A1 uses grade N25 concrete. The concrete cover which satisfies Code requirement
is 20 mm. The required tensile reinforcing area is 1260 mm2. Either 4N20 bars or
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2N28 bars may be used having similar areas of 1256 and 1232 mm2. However from
Table 7.1 the development length required for the N20 bars is 1151 mm while 
for the N28 bars 1993 mm is the minimum development length. If the beam is
3000 mm long, then it is obvious that N28 reinforcing bars could not be used since
the available length of embedment of reinforcement from the point of maximum
bending moment (at mid-span) is only 1500 less end cover.

(b) The second choice is to hook the reinforcing bars at the ends. The pull-out resistance
will be increased substantially if a hook is present at the end of a reinforcing bar. The
contribution of a standard hook is given by the Code #13.1.2.4 as the equivalent
resistance provided by a straight length of bar equal to 0.5Lsy.t. In other words with
a hook a length of only 0.5Lsy.t is required to be embedded. This length is measured
to the outside of the hook. For the example used in (a) with N28 bars, the length of
embedment required from mid-span will be 0.5×1993 = 946 mm. This could easily
be accommodated.

Figure 7.2 Standard Hooks and Cogs

The Code considers a standard hook as being a hook with a 135˚  or 180˚  bend plus
a straight extension of 4db but not less than 70 mm, or a cog made up of a 90˚  bend having
the same total length as that provided by a 180˚  hook. This is shown in Figure 7.2. The
minimum diameter of the pin around which reinforcing bars are bent is give by #19.2.3.2
as 5db. The minimum extensions of the straight portion for cogs required to satisfy Code
requirements are shown in Table 7.2. These are based on an internal diameter of bends
equal to 5db. The anchorage provided by hooks and cogs will be lost if the radius of
curvature of the bends is excessively large. If the internal diameter of a bent bar is equal to
10db or greater, the actual length of bar measured around the curve is used to determine
development length. With cogs, the Code specifies a maximum internal bend diameter of
8db while with hooks the maximum implied bend diameter is a diameter less than 10db.
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Cogs Based on a 5db Internal Diameter

Even with cogs or hooks there are instances when the available length of embedment
is insufficient to develop the tensile force carried by the reinforcement. Common
practices use some form of end plates or anchor plates welded to the reinforcement as
shown in Figure 7.3 (below). The end plate is fillet or even butt welded to the reinforcing
bars.

7.5 Curtailment of Tensile Reinforcement
Some reinforcement may be terminated at sections along the beam where it is no longer
required. For example, in a simply supported beam carrying uniformly distributed loads,
one half of the tensile reinforcement provided at mid-span may be theoretically
terminated 0.146L from each support. This is the position in the beam where the
bending moment is one half the mid-span moment. The length of the terminating
reinforcement would need to be at least equal to the development length Lsy.t. either side
of mid-span to satisfy development length.

It is assumed here that the reinforcement has only yielded at the point of maximum
bending moment. In fact, the tensile reinforcement reaches its yield point when the
bending moment is about 5% smaller than the ultimate bending moment. This implies
that at ultimate moment conditions the tensile reinforcement has yielded over a length
of beam where the bending moment is greater than 0.95Muo.

The CEB/FIB concrete stress equation was used to calculate the ratio of the bending
moment at first yield of the reinforcement to the ultimate moment My / Muo. The results
are shown in Table 7.3. 
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Bar Size

N12
N16
N20
N24
N28
N32
N36

Min. Straight Length x (mm)

120
135
160
190
225
255
285

1.1 A fb sy

Figure 7.3



Table 7.3 gives the moment ratios over the full range of steel ratios. As shown in the
table the yielding moment My is only slightly less than the ultimate bending moment
Muo. However, even a 4% difference can have important implications in the termination
of reinforcement and the required development length. This is illustrated by example 1
below.

EXAMPLE 1
The simply supported beam shown in Figure 7.4 carries a design load w*. If the yield
moment My = 0.964Muo, determine the region over which the reinforcement has yielded
at ultimate strength conditions.

Yield moment,  My = 0.964Muo

= 0.964  

Equating the bending moment distance y from the support to the yield moment,

= 0.964  

L y  -  y2 = 0.241L2

y2 - L y + 0.241L2 = 0

y  = 0.5L  +_ 0.095L

Figure 7.4
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That is, the yielding moment occurs 0.095L either side of mid-span so that the
reinforcement has yielded within a 0.19L central region of the beam. The reinforcement
will need to extend a distance Lsy.t on either side to satisfy anchorage. If the beam is
reinforced with more than one row of reinforcement, then the bottom row will yield
even earlier. Practically it may be taken that at ultimate conditions the tensile
reinforcement has yielded in the central 0.25L of a simply supported beam. For all
positive reinforcing bars the development length Lsy.t should be provided for sections
displaced 0.125L either side of the maximum bending moment.

The Code #8.1.8.1 requires that termination and anchorage of flexural
reinforcement be based on a hypothetical bending moment diagram by displacing the
positive and negative bending moments distance D either side of the maximum bending
moment. The Code condition shown in Figure 7.4 is based on a beam truss analogy. The
author feels that this may not always be conservative.

Figure 7.5 (right)
summarises Code #8.1.8
dealing with termination
and anchorage of
positive and negative
reinforcement at simple
and restrained or
continuous supports.

Positive reinforcement 
at a simple support:

Sufficient positive
reinforcement must
be carried to enable
it to develop a tensile force
of 1.5V*  at the face of the
support. V*  is the design
shear force at the critical
section d from the face of the
support or at the support as
per section 8.4.2(b).

Either a minimum of one half of the tensile positive reinfo-rcement required at mid-
span must extend 12db or the equivalent anchorage past the face of the support,

OR 
one third of the tensile positive reinforcement must be carried a distance 8db+D/2
past the face of the support.

Positive reinforcement at a restrained or continuous support:

At least one quarter of the positive reiforcement must be continued past the near face
of the support.

Negative reinforcement:

At least one third of the total negative reinforcement must extend a distance D past
the point of contraflexure.

D D

DD

Hypothetical Bending Moment
Envelope displaced D either
side of maximum +ve and -ve
BM

See alternate
detail below
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Figure 7.5



Curtailment or termination of tensile reinforcement can setup severe stress
conditions, especially if a large number of reinforcing bars are terminated at the one
section. Bursting pressure in the concrete may lead to longitudinal splitting and shear
failure due to reduced dowell action as the tensile force and the shearing resistance shared
by a large number of reinforcing bars is suddenly transferred to a smaller number of
reinforcing bars. The Code #8.1.8.4 requires that where tensile reinforcement is
terminated one of the following conditions must be satisfied;

Not more than one quarter of the maximum tensile reinforcement is terminated
within any distance 2D.
OR
At the cut-off point the shear capacity of the beam �Vu  is not less than 1.5 times
the design shear force V* .
OR
Shear reinforcement in the form of stirrups with an area (Asy + Asv.min) is provided
for a distance D along the terminating bars from the cut-off point.

7.6 Continuous Beams

Figure 7.6 - Termination and anchorage of tensile reinforcement in continuous beams where the longer span
is ≤ 1.2 times the shorter span in any two adjacent spans and the live load q ≤ 2× the dead load g

For continuous beams which would normally be analysed using bending moment
and shear force coefficients, Code compliance is simplified by #8.1.8.6 summarised in
Figure 7.6. To satisfy shear conditions, not more than one quarter of the maximum
tensile reinforcement may be terminated within a distance 2D.
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7.7 Development Length of Bundled Bars (#13.1.4)
Bundles of 2, 3 and 4 reinforcing bars may be used in heavily reinforced members where
congestion of reinforcement may otherwise result. Naturally with bundles of 3 and 4
bars, not all the surface area of the individual bars will be surrounded by concrete.
Because of the predictable loss in bond, the Code requires that the development length
of the largest bar in the bundle be increased by:

(a) 20% for a 3-bar bundle and

(b) 33% for a 4-bar bundle.

7.8 Development Length for Mesh in Tension (#13.1.5)
The development length of the longitudinal wires in welded wire mesh is satisfied by the
embedment of at least two transverse wires with the closer wire 25 mm from the critical
section.

7.9 Development Length of Compressive Reinforcement
(#13.1.3)
The development length required to develop the yield strength fsy of compressive
reinforcement, Lsy.c, is taken as 20db. Hooks may not be considered to contribute to the
development length.

7.10 Lapped Splices for Tension Bars (#13.2.2)
The minimum length of tension lap splices is Lsy.t, the development length for tensile
reinforcement given by equation 7.1 and Table 7.1.

7.11 Lapped Splices for Reinforcing Mesh in Tension
(#13.2.3)
The minimum length of lap splices is taken to be at least equal to the development length
i.e. two transverse wires.

7.12 Lapped Splices for Compression Reinforcement 
(#13.2.4)
The minimum length of lap splice is taken as the compressive developmental length Lsy.c
but not less than 300 or 40db where db is the diameter of the smaller bar.
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EXAMPLE 2
A cantilevered reinforced
concrete beam shown in
Figure 7.7 supports dead and
live loads which produce
design load conditions 1 and 2
shown in the figure. Grade
N32 concrete is used for the
beam. The bending moment

 envelope  for the two
loading conditions (live load

over cantilever and live load

between supports) is also

shown in the figure. The beam
has been designed for the
maximum positive and
maximum negative bending
moments. Cross-sections for
the maximum moment
conditions are shown in Figure
7.7 as well. In accordance with
the Code, curtail as much
reinforcement as possible and
draw a final layout of the longitudinal reinforcement. The reaction force at A is 228 kN
for loading condition 1 and 108 kN for loading condition 2.

SOLUTION

The order in which the positive and negative reinforcement will be terminated is shown
in Figure 7.8 (below).

CURTAILMENT OF POSITIVE REINFORCEMENT

(1) Termination of No.1 bars (6 bars remaining).

Problems involving termination of reinforcement may be simplified by assuming that the
moment capacity is proportional to the area of the reinforcement. This simplification
will yield conservative results by slightly underestimating the beam moment capacity.
The theoretical position of curtailment is obtained by equating the bending moment
expression (in terms of the unknown distance x from support A) to the moment capacity. 
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BENDING MOMENT ENVELOPE
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Moment capacity with 6N20 bars,

M6 =                       kNm

The bending moment at any distance x from support A,

RA x  -  w       = Mx

Solving the quadratic in x,

(7.2)

This is a general equation to be used for determining distance x from the support
where reinforcing bars may be terminated. Substituting for RA and Mx and solving for x
when two of the reinforcing bars may be terminated.

= 1.6 m and 4.0 m

(2) Termination of bars No.2 (4 bars remaining).
Moment capacity of section with remaining 4 bars,

M2 =     × 349= 174.5 kNm

Substituting in equation 7.2 to deterime distances x where the additional two bars
may be terminated.

= 0.91 m and 4.72 m

(3) Termination of bars No.3 (2 bars remaining).
Moment capacity of section with remaining 2 bars,

M3 =      ×349 = 87.3 kNm

The theoretical position where these bars may be terminated,

x =   

= 0.41 m and 5.22 m
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It should be noted that at the simple support A, one half of the reinforcement must
be carried a minimum distance 12db (=240 mm) past the face of the support and a
minimum of one quarter of the positive reinforcement must be carried to the interior or
moment resisting support B. Thus it will only be possible to terminate bars No.3 near
support B.

CURTAILMENT OF NEGATIVE REINFORCEMENT

While the Code does not make any reference to this aspect, negative reinforcement
should not be terminated in a cantilever. Since one third of the negative reinforcement
must be carried a minimum distance D past the point of contraflexure, not more than
three reinforcing bars can be curtailed. Bars No.1 will be curtailed at the one section.
This exceeds the condition that not more than one quarter of the reinforcement may be
terminated within a distance 2D. It then becomes necessary to check the beam for shear.
This will be left until later when shear in beams has been covered.

Negative moment capacity of beam with remaining 2 bars,

M1 =     171 = 68.4 kNm

Equation 7.2 may again be used to calculate the theoretical position of curtailment. Note
however that the maximum negative moment is due to loading condition 2 and the
corresponding loads (w*  = 45 kN/m) and reactions (RA = 108 kN) must be used.

x =   

= 4.05 m

It is also necessary to determine the point of contraflexure. This may be determined
from equation 7.5 when the moment is zero.

x =              = 4.8 m

The calculated theoretical points of curtailment are shown in Figure 7.9 (below).
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The actual termination of reinforcement must satisfy the Code requirement of a
hypothetical bending moment envelope obtained by displacing the actual bending
moment envelope a uniform distance D each side of the maximum positive and negative
bending moments. This simply means that the reinforcement will be carried a distance
D past the theoretical points of cut-off calculated above. The new layout and distribution
of longitudinal reinforcement is shown in Figure 7.10 (below).

It now only remains to check that development lengths have been provided. The
concrete cover using 12mm stirrups is 38mm for the nagative reinforcement and 47mm 
for the positive reinforcement. Assuming 20mm minimum cover, the actual concrete 
side cover for the longitudinal reinforcement is 32mm.

Clear spacing =                                = 68 mm  < 94 (Twice the cover)

Assuming N32 spacer bars between each row of positive reinforcement, the clear
spacing between bars is 32 mm which is less than the horizontal spacing of 68 mm and
less than twice the cover of 94 mm. The development length will therefore be calculated
for a = 32/2 = 16 mm. From Table 7.1 Lsy.t = 1180 mm by interpolation between 
a = 15 mm and a = 20 mm.

Similarly the clear spacing between the negative reinforcing bars is calculated to be
(350 - 2*32 - 5*16)/4 = 51.5 mm. This is less than twice the 38 mm cover. The required
development length for the N16 negative reinforcement is obtained from Table 7.1 for
a = 51.5/2 = 26 mm.

Lsy.t = 576 mm

The negative reinforcing bars are top bars with more than 300 mm of concrete cast
below the bars. The development length must therefore be increased by factor k1.

Lsy.t = 1.25*576 = 720 mm

The reinforcement layout in Figure 7.10 should now be checked to ensure that the
above development lengths are available for all positive and negative reinforcement.

98 D E S I G N H A N D B O O K F O R R E I N F O R C E D C O N C R E T E E L E M E N T S

350 2 32 4 20
3

− × − ×

Figure 7.10



P R O B L E M S

QUESTION 1

The cantilever beam shown below supports a uniformly distributed dead load g = 38
kN/m (including weight of beam) and a uniformly distributed live load q = 25
kN/m. Grade N40 concrete is to be used for the beam which is in Exposure
Conditions B1. The beam supports are 200 mm wide.

(a) Draw the bending moment envelope to include live load applied between
the supports (condition 1) and live load applied on the cantilever only (condition 2).

(b)The beam size b = 300 mm, D = 550 mm is to be used for the full length of the
beam. Choose the reinforcement for the maximum positive and the maximum
negative bending moments given that only N24 bars are available to you.

(c) Terminate as many bars as possible so that Code conditions are satisfied and
show the final beam details on an appropriate drawing.
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8.1 Additional Symbols used in this Chapter
Ast.min = Minimum area of reinforcement.

Act = Cross-sectional area of uncracked concrete in the tensile zone. 

beff = Effective beam width or effective flange width.

�cs = Design shrinkage strain (from Section 6.1.7.2 - AS3600).

�cs.b = Basic shrinkage strain.

Ec = Modulus of elasticity for concrete at 28 days.

Ecj = The mean value of modulus of elasticity of concrete at nominated age.

= �1.5*0.043        .

Fd.eff = Effective design load for serviceability in kN/m or kN/m2.

fcm = Mean compressive strength of concrete at relevant age.

fcs = Max shrinkage-induced stress on uncracked sections at the extreme 
fibre where cracking first occurs.

fscr = Tensile stress in the reinforcement (at the cracked section) due to ‘short
term’ serviceability loads under direct loading.

fscr.1 = As above but using ψ s =1.0 (rather than 0.7).

k1 = Second moment of area multiplier.

k2 = Deflection constant for rectangular beams.

k3 = Slab multiplier.

k4 = Deflection constant for slabs.

k5 = Special Slab deflection coefficient read from chart D2.

kp = Deflection correction factor for steel ratio in beams.

kcs = Long-term deflection multiplier (to account for shrinkage & creep).

ks = Coefficient to take account of the stress distribution shape in a section 
prior to cracking (0.6 for flexure & 0.8 for tension). 

Serviceability

8
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kd = Depth of N.A. at working/serviceability load conditions.

Leff = Effective span, also noted as Lef.   
= Lesser of (Ln + D) and L.  =  (Ln + D/2) for a cantilever.

Ln = Clear span between beams, columns or walls (cantilever=clear projection).

Lx = Shorter effective span of slab supported on four sides.

Ly = Longer effective span of a slab supported on four sides.

M*s = Design bending moment (at the Serviceability limit state).

M*s.1 = As above but using ψ s =1.0 (rather than 0.7).

w* = Design load used for strength conditions.

th = Hypothetical thickness used to calculate creep and shrinkage.

= 2Ag/ue

ue = Exposed perimeter plus half perimeter of enclosed voids.

� = Deflection obtained from calculations.

� = Maximum deflection.

� = Density of concrete in kg/m3,  taken as 2400 kg/m3 in these notes.

8.2 Serviceability Considerations                  
A structure and all its structural components must perform the functions for which they
are designed. Deflection is one of the main criteria to be satisfied. The results of excessive
deflection may:

(a) Produce a feeling of concern in the safety of a structure.

(b) Cause excessive distortion in window and door openings rendering them
unserviceable (they may become permanently stuck).

(c) Cause cracking of masonry walls and spalling of finishes such as tiles.

(d) Cause ponding of water in exposed suspended slabs when drainage is inadequate.

The other serviceability criterion is flexural cracking, which is also associated with
durability. Cracks in the concrete are unsightly and excessive cracks will allow water to
reach the reinforcement and promote corrosion. Limiting of flexural or other cracks may
be achieved by good detailing practice. .

8.3 Deflection
It is a comparatively simple matter to calculate the deflection of say a simply supported
steel beam carrying a uniformly distributed load w. The material and section properties
are known and it is only a matter of applying a standard deflection formula. 

Deflection =   

In reinforced concrete, however, the following problems must be considered:

5
384
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(a) Since a reinforced concrete flexural member is made up of steel reinforcement and
concrete, what value should be use for the modulus of elasticity E?  This is further
complicated by the fact that concrete is not a perfectly elastic material.

(b) The flexural member is cracked below the neutral axis. Taking this into account and
the difference in the properties of the materials, how is the second moment of area
I to be calculated?

(c) With the flexural cracks occurring at variable spacings along the beam, in between
the cracks, the flexural member is much stiffer due to the stiffness of the uncracked
portions. The stiffening effect of the uncracked portions is to reduce deflection. The
second moment of area should be increased to account for increased stiffness.

(d) Assuming the problems noted in (a), (b) and (c) are solved, the deflection formula
may be used to calculate the immediate deflection upon loading. Shrinkage and
creep are inherent properties of concrete which lead to substantial additional long
term deflection (about twice the initial deflection). Shrinkage and creep rates depend
on many factors such as the type of cement, size and properties of the aggregates,
additives, water cement ratio, curing conditions, distribution of reinforcement,
duration and intensity of loading, just to name a few.

It is quite apparent from the forgoing discussion that deflection can never be
accurately calculated. There are three ways to satisfy serviceability:

(a) Deemed to comply condition.

(b) Deflection calculated by simplified calculations.

(c) Deflection determined by refined calculations.

Deflection limitations are given by Code Table #2.4.2, duplicated in Table 8.1 below.

TTaabbllee  88..11    --    LLiimmiittss  ffoorr  CCaallccuullaatteedd  DDeefflleeccttiioonn  ooff  BBeeaammss  aanndd  SSllaabbss

Type of Member Deflection to be Deflection Limitation   �/Leff

Considered for Spans for Cantilevers
Notes 1 and 2 Notes 3

All members The total 1/250 1/125
deflection

Members The deflection 1/500 where 1/250 where provision
supporting which occurs after provision is made is made to minimise
masonry partitions the addition or to minimise the effect effect of movement,

attachment of the of movement, otherwise 1/500
partitions. otherwise 1/1000

Bridge members The live load and impact 1/800 1/400
deflection

Notes:
1 In flat slabs, the deflection to which the above limits apply is the theoretical deflection of the line diagram
representing the idealised frame.
2. Deflection limits given may not safeguard against ponding.

3. For cantilevers, the value of /Lef given in this table applies only if the rotation at the support is included in the
deflection calculations.
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8.4 Deemed to Comply Conditions #8.5.4 and #9.3.4
This is by far the simplest method since it does not involve deflection calculations.
Deflection is deemed to have satisfied limitations give by Table 8.1 if the ratio effective
span to effective depth Leff/d does not exceed the maximum ratio given by the following
equations for beams and slabs:

(8.1)

(8.2)

Where; Leff = Effective span.

= Deflection limit given by Table 8.1.

Fd.eff = The effective design load in kN/m for beams and kN/m2 for slabs 
given by:

= (1 + kcs)g + (ψs + ψl kcs)q  for total deflection and, 
= kcs g + (ψs + ψl kcs)q   

for deflection which occurs after the addition or attachment of 
partitions (i.e. the incremental deflection). 

kcs = Long term deflection multiplier i.e. the additional long-term 
deflection is calculated by multiplying the immediate deflection by kcs.

= 2 - 1.2        ≥ 0.8

k1 = Second moment area multiplier.
= 0.02 + 2.5p for  rectangular sections where p ≥ 0.005.
= 0.1 -  13.5p (but ≤ 0.06) for rect. sections where p < 0.005.

k2 = Deflection constant.

=        for simply supported beams,

=        for end spans in continuous beams,

=        for interior spans in continuous beams.

k3 = 1.0 for one-way slabs and for two way rectangular slabs carrying
uniformly distributed loads where q ≤ g.

= 0.95 for two-way flat slabs without drop panels.
= 1.05 for two-way flat slabs with drop panels which extend
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at least L/6 in each direction on  each side of a support centreline and
have an overall depth not less than 1.3D where D is the slab thickness
without the drop panel.

k4 = The deflection constant taken as:

(a) 1.6 for simply supported one-way slabs.
(b) For continuous one-way slabs (where the span ratio of adjoining
spans does not exceed 1.2 and the end spans are no longer than an
interior  span), the value of k4 may be taken as 2.0 for an end span or 
2.4 for interior spans.

(c) For simply supported two-way slab panels, the value of k4 = 2.5 
may be used provided that q ≤ g (see Table 8.2, No. 9.)

(d) For rectangular slabs supported on four sides by walls or beams
subjected to uniformly  distributed loads where q ≤ g, the value of  
k4 is taken from Table 8.2 below.

TTaabbllee  88..22  --  SSllaabb  SSyysstteemm  MMuullttiipplliieerr    kk44    ffoorr  RReeccttaanngguullaarr  SSllaabbss  SSuuppppoorrtteedd  oonn  FFoouurr  SSiiddeess

Deflection Constant  k4

Edge Conditions

1.0 1.25 1.5 2.0
1. Four edges continuous 4.00 3.40 3.10 2.75

2. One short edge discontinuous 3.75 3.25 3.00 2.70  

3. One long edge discontinuous 3.75 2.95 2.65 2.30 

4. Two short edges discontinuous 3.55 3.15 2.90 2.65 

5. Two long edges discontinuous 3.55 2.75 2.25 1.80 

6. Two adjacent edges discontinuous 3.25 2.75 2.50 2.20 

7. Three edges discontinuous, one 3.00 2.55 2.40 2.15 
long edge continuous

8. Three edges discontinuous, 3.00 2.35 2.10 1.75
one short edge continuous

9. Four edges discontinuous 2.50 2.10 1.90 1.70 
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8.5 Beam Deflections: Deemed-to-Comply
Chart D1 is a plot of equation 8.1 in terms of  (beff,Fd.eff)  for:  

(a) Deflection limitation   

(b) Second moment area multiplier k1 = 0.02 + 2.5p  if p ≥ 0.005  , or
=  0.1 -  13.5p  (but ≤ 0.06) if p < 0.005

(For beams with a steel ratio p = 0.01 the value of k1 = 0.045. For beams
whose steel ratio is other than 0.01, a correction factor kp read from the
bottom of the chart can be applied to the Lef /d ratio).

(c) Simply supported beams where k2 =  

(d) End spans of continuous beams where k2 =  

(e) Interior spans of continuous beams where k2 =  

(f) Assumed concrete density of 2400 kg/m3 is used for calculating the
modulus of elasticity of concrete.

EXAMPLE 1
In a retail construction a simply supported
reinforced concrete beam whose cross-section is
shown in Figure 8.1 (right) has an effective span
Leff = 4800 mm. The beam is designed to support
a total dead load (including its own weight) 
g = 16 kN/m and a live load q = 12 kN/m.

(a) Check the beam for total deflection. It may
also be assumed that the beam is loaded after
a 28 day curing period.

(b) Check the beam for incremental deflection.
It may be assumed that the beam supports
internal masonry partitions for which there
is no provision made to minimise the effects
of deflection; i.e. small deflection may lead
to cracking of the partitions. 
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SOLUTION

(a) From Table 8.1, for maximum total deflection,   

k2 =       for simply supported beams.

Leff = 4800 p   =   2480/(300 x 500) = 0.0165

beff = 300 k1 =   0.02 + 2.5 x 0.0165 = 0.0613

ψs = 0.7 from table 1.2

ψl = 0.4 from table 1.2

kcs = 2 -               = 1.7 Ec =   34500 MPa

Fd.eff = (1 + kcs)g + (ψs + ψl kcs)q

= (1 + 1.7)16 + (0.7 + 0.4*1.7)12

= 59.8 kN/m or N/mm

From chart D1 read maximum        ratio for total deflection of          

13.3       kp= 1.11 

Maximum        = 1.11 x 13.3 = 14.8

Alternatively substitute into the formula: 

Actual                    =  9.6  < 14.8  SATISFACTORY

That is, the total deflection criteria has been satisfied.

(b) From Table 8.1 the incremental deflection criteria (this is the deflection which
occurs

after the attachment of the partitions) is   

Fd.eff = kcs g + (ψs + ψl kcs)q

= 1.7*16 + (0.7 + 0.4*1.7)12 = 43.8

From chart D1 for           

= 14.8
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Adjust         for                     by multiplying by 0.63.

Maximum         = 0.63*1.11 x 14.8 = 10.3 > 9.6 actual.

The beam satisfies the incremental deflection requirement. If the deflection
limitation is exceeded by a small amount a designer would most likely elect to apply a
check by calculating beam deflection (using the Code ‘simplified’ method - section
8.5.3) rather than redesigning the beam.

With slender beams, the serviceability criteria frequently dictates the beam design.
That is to say that the serviceability limit state is the primary limit state. The designer
should therefore choose the beam depth to satisfy serviceability and then design the beam
for strength (the secondary limit state). This is illustrated by Example 2. It may be worth
while noting that compression reinforcement in the form of hanger bars will be assumed,
from now on (say 2N20 bars). 
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EXAMPLE 2
Design a simply supported beam spanning 6.5 m to carry superimposed dead and live
loads g = 20 kN/m and q = 24 kN/m respectively. The beam uses grade N50 concrete
and it is located in Exposure Classification A2. The beam is an external wall beam
supporting a masonry wall. It may be assumed that a number of expansion joints have
been included in the wall to minimise wall damage due to excessive deflection. Assume
p=0.01 to make correction kp = 1.0.

SOLUTION

Estimate of beam depth required for serviceability.
Assume, b = 350

kcs = 1.8

Weight of beam = 6 kN/m

From Table 1.2, the short-term and long-term live load multipliers for an office
construction,

ψs = 0.7
ψl = 0.4

Estimated effective load for serviceability.
For total deflection, the effective load,

Fd.eff = (1 + 1.8)26 + (0.7 + 0.4*1.8)24
= 106.9 kN/m or N/mm

= 3.27

From Chart D1 read        = 12

Hence required  d =           = 542

For incremental deflection, the effective load,

Fd.eff = 1.8*26 + (0.7 + 0.4*1.8)*24
= 80.9 kN/m

= 4.33

From Chart D1 read maximum          = 13.2

Adjusted maximum                                    = 0.79*13.2 = 10.4

Required effective depth =           = 625
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The incremental deflection governs.
Assume beam depth D = 700 and design beam for strength. If serviceability is not

satisfied, increase the area of compressive reinforcement.

STRENGTH DESIGN

Weight of beam = 0.35*0.7*24 = 5.9 say 6 kN/m which is equal to the assumed weight
at start of question.

Design load,      w* = 1.2(6 + 20) + 1.5*24

= 67.2 kN/m

Design moment, M* =                      

=  355 kNm

Assume d = 650 for one row of reinforcement.

Required,    � =                    = 2.4

From Chart B1, read required steel ratio  p = 0.0062

Required tensile reinforcing area,

Ast = 0.0062*350*650

= 1410 mm2

3N28 bars give   Ast = 1860 mm2

Checking trial beam,  d = 700 - cmin = 700 - 46 = 654 mm

p =                 = 0.0081

λ = 3.1  

Moment capacity   φMuo = 3.1*350*6542*10-6

= 464 kNm > M* (= 362 kNm)

Now recheck trial beam for serviceability. From initial calculations it was established
that incremental deflection will govern.

Assuming 2N20 compression bars,  kcs = 2 - 1.2         = 1.60

Design load,      Fd.eff = 1.6*26 + (0.7 + 0.4*1.6)*24  = 73.76 kN/m

= 4.75
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From chart D1 for                   ,                 = 13.0  and kp = 0.96

Maximum         = 0.79 x 0.96 x 13.6 
= 10.3

Actual                     = 9.9 < 10.3 maximum.

Figure 8.2

8.6 Simply Supported One-Way Slabs
The slab shown in Figure 8.3 (right) is a
one-way slab because the bending action
is in one direction between the supports.
The slab is designed as a rectangular beam
of unit (one metre) width. In addition to
the main longitudinal reinforcement,
secondary transverse reinforcement is
provided to prevent the formation of
cracks caused by temperature and in
particular shrinkage movements. 

If a slab is unrestrained in the
transverse direction the change in length
due to temperature variations and shrinkage strains would be free to take place and
theoretically there would not be any need to reinforce the slab in the transverse direction. In
reality most slabs will be restrained either by attachment to other structural members or by
frictional restraint provided by the supporting members. 

Shrinkage cracks in unreinforced or inadequately reinforced slabs tend to be
localised and quite large. The purpose of the reinforcement is to reduce temperature and
shrinkage movements and redistribute cracks over a wide area. Temperature and
shrinkage cracking will not be visible if sufficient reinforcement is provided. Shrinkage
cracks extend the full depth of a slab so that they are much more likely to be the cause
of leaking roofs. 
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8.7 Crack Control for Flexure #8.6.1 &  #9.4.1
In the previous Code flexural cracks were considered to be controlled if the centre-to-
centre spacing of reinforcement did not exceed the lesser of 2.5D or 500 mm. In the new
Code these absolute values have been removed, whereby a beam or slab in flexure is only
‘deemed to comply’ to the crack control requirements of the Standard if the minimum
area of reinforcement Ast.min is greater than or equal to 3ksAct/fs, and if the calculated steel
stress fscr1 is less than 0.8fsy. If the beam or slab is exposed to weather conditions longer
than the usual brief period during construction then other Code provisions need to be
satisfied. More severe exposure conditions require the designer to check the stresses in
the reinforcement based upon bar size and bar spacing. The steps in this process are
summarized here:

Steps Formula / Clause

1 Determine Ast.min Astmin = 3 ksAct / fs

2 Calculate Act # 8.6.1 (I)

3 If Ast.min > Ast then Ast = Ast.min -

4 Determine M*s and M*s1 # 8.6.1 (b)

5 Calculate steel stress fscr after concrete cracks

6 If fscr > fs using Table 8.6.1 (A) then check bar spacing Table 8.6.1.A

7 If fscr > fs using Table 8.6.1 (B) then redesign Table 8.6.1.B

8 Redesign by either increasing bar size or reducing bar # 8.6.1 (ii)
spacing ensuring Clause 8.6.1.(ii) is satisfied 

9 If beam is under Direct loading  then calculate fscr.1 # 8.6.1.(iv)

10 If fscr.1 > 0.8 fsy then revise design -

EXAMPLE 2A
Check the beam in Figure 8.2 against the crack control requirements for flexure of

Clause 8.6.3 in AS3600-2001. Assume the beam is subjected to direct loading and
exposed to external weather conditions for its design life. Concrete strength f ’c = 50 MPa
and Ec = 38,000 MPa (fcm = 56.5 MPa).
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TTAABBLLEE  88..66..11  ((BB))  MMaaxxiimmuumm  SStteeeell  SSttrreessss
ffoorr  FFlleexxuurree  ((oorr  TTeennssiioonn))  iinn  BBeeaammss

Centre to Centre Max Steel Stress
Spacing (mm) (MPa)

50 360
100 320
150 280
200 240
250 200
300 160

TTAABBLLEE  88..66..11  ((AA))  MMaaxxiimmuumm  SStteeeell  SSttrreessss
ffoorr  FFlleexxuurree  iinn  BBeeaammss

Bar Diameter Max Steel Stress 
(mm) (MPa)

10 360
12 330
16 280
20 240
24 210
28 185
32 160
36 140
40 120



STEP 1
To determine Ast.min we first have to calculate Act. If we ignore the presence of the
reinforcement then A   for rectangular sections is bD/2 (= 122,500 mm2). The beam is
in flexure thus ks=0.6. The maximum permitted steel stress fs for N28 bars is 185 MPa
(Table 8.6.1.A). 

STEPS 2 & 3

= 1192 mm2

STEP 4 < 1860 mm2 (3 N28) ∴ no need to increase Ast.

STEP 5
To calculate the tensile stress in the reinforcement at a cracked section under short term
serviceability loads fscr we must calculate the design bending moment at the serviceability
limit state M*

s , the neutral axis depth kd and the I cr .

where

n = Es / Ec

= 200,000 / 38,000

= 5.26

p = Ast / bd

= 1860 / (350*649)

= 0.0082

np = 0.0431

k = d (                  - np)       -see equation 8.9

= 165 mm

Icr = b(kd)3/3  +  n Ast (d - kd)2 –see equation 8.10 

= 350(165)3/3 +5.26*1860*(649-165)2

= 2816 x 106 mm4

M*
s = M* (G +ΨsQ) / (1.2G + 1.5Q)

= 362*(26+0.7*24) / (1.2*26 + 1.5*24) 

= 230.5 kNm

fscr = n M*s (d – kd) / Icr

= 5.26*226.2 x 106 (649 – 165) / 2816 x 106

= 208.4 MPa
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STEP 6 
Determine if the calculated steel stress fscr exceeds the maximum steel stress fs for bar size
based upon Table 8.6.1(A).

fs = 185 MPa    (for N28 bars)

∴f scr > fs

STEP 7
The maximum stress value from Table 8.6.1(A) for bar size was exceeded; however the
Code gives the designer a second chance by calculating the bar spacing and using the
maximum permitted steel stress from Table 8.6.1(B) as the new limit on steel stress.
(refer to Note 2 AS3600-2001 page 90 & 104).

Spacing = [350 – 2(10 ties) – 1(28 bars) – 2(20 cover)]/2

= 130 mm (centre to centre)

fs = 300 MPa (for 125 spacing from Table 8.6.1B)

∴f scr <      fs OK for flexure (thus redesign not req’d)

STEP 8
Even though the resultant steel stress is less than the permitted steel stress based upon bar
spacing, the Code still requires that minimum bar spacing values be checked – see
AS3600 #8.6.1.(ii). Fortunately this requirement is satisfied since distance from side or
soffit of the beams to centre of nearest longitudinal bar is < 100 mm and the centre to
centre spacing of bars near the tension face is < 300 mm

STEP 9
For beams under ‘direct loading’ (i.e. due to direct superimposed loads as opposed to
loads from restraint or thermal effects), the designer needs to calculate the tensile stress
in the reinforcement at a cracked section under short term serviceability loads fscr.1 where
full dead load and live load act (i.e. ψs =1.0)

M*s.1 = M* (G +ΨsQ) / (1.2G + 1.5Q)

= 362*(26+1.0*24) / (1.2*26 + 1.5*24) 

= 269.4 kNm

f scr.1 = n M*s (d – kd) / Icr

= 5.26*269.4 x 106 (649 – 165) / 2816 x 106

= 243.5 MPa

0.8fsy = 400 MPa

fscr.1 < 0.8fsy

∴ Design OK for Crack Control
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8.8 Crack Control for Shrinkage and Temperature 
Effects #9.4.3
Control of cracks due to shrinkage effects and temperature variations is achieved by
providing a minimum amount of reinforcement to reduce the size of cracks and prevent
localised movement and propagation of cracks. The minimum areas of reinforcement are
given below.

8.9 Minimum Reinforcement Required in Secondary 
Direction
(a) For Unrestrained Slabs - i.e. slabs free to expand and contract in the secondary

direction. If the slab width is less than 2.5 metres, no secondary reinforcement is
required. Otherwise the minimum area of secondary reinforcement is given by:

Ast.min = 1.75 bD x 10-3 (8.3)

(b) For Restrained Slabs - the minimum area of reinforcement depends on the degree of
crack control (how important is it) and the severity of exposure. The minimum areas
are given by the following equations:

FOR EXPOSURE CLASSIFICATIONS A1 AND A2            

Ast.min =   1.75 bD x 10-3 for minor control  (8.4)

Ast.min = 3.5 bD x 10-3 for moderate control (8.5)

Ast.min = 6.0 bD x 10-3 for strong control (8.6)

FOR EXPOSURE CLASSIFICATIONS B1, B2 AND C            

Ast.min = 6.0 bD x 10-3 for strong control (8.7)

(c) Partially Restrained Slabs - the minimum area of reinforcement will be somewhere
between that given by (a) and (b) above. The designer must exercise his/her
professional judgement in determining the degree of restraint.

8.10 Minimum Flexural Steel Ratio
The minimum strength requirement in bending is similar to that required for beams i.e.
1.2 times the mininum strength in bending Muo min (this is the minimum moment
capacity just prior to cracking). This can be satisfied with a minimum steel ratio obtained

by using the formula  Ast
bd ≥ 0.22 (D

d )2 ( f ’cf
fsy ). This minimum steel ratio will apply

to one-way slabs. 
For continuous two-way slabs the Code requirement is deemed to have been

satisfied by providing a minimum steel ratio of 0.0025 for slabs supported by columns
and  0.002 for slabs supported by beams or walls (Code section 9.1.1).
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8.11 Slab Deflection
Chart D2 below is a graphic representation of the bracketed term in equation 8.2 given
the symbol k5. Thus the maximum effective length to effective depth ratio required to
satisfy serviceability is given by:

= k3 k4 k5 (8.8)

Serviceability condition for slabs is in most instances the primary limit state. A
designer should therefore always begin by estimating the minimum effective depth
required to satisfy serviceability. The design of simply supported slabs making use of
Chart D2 is illustrated by Example 3 (below).
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EXAMPLE 3
Figure 8.3 is a representation of a simply supported slab  L = 4.6 m span, 3 m wide for
a retail store. Design the slab to carry a 2.5 kPa dead load and a 4 kPa live load using
N32 grade concrete for exposure conditions A2. Assume that the slab will be required to
support partitions for which some control of damage due to deflection is provided.

SOLUTION

Data:     f 'c = 32 MPa    g = 2.5 kPa    q = 4 kPa

L = 4.6 m        B = 3 m         Exposure A2

ψs = 0.7  (Table 1.2)

ψl = 0.4  (Table 1.2)

For total deflection, maximum                   (table 8.1)

For deflection after addition of partitions                  

(a) Determine Depth of Slab for Serviceability
Estimate 4.8 kN/m2 weight of slab (assumed 200 mm deep) to make the total dead

load g = 2.5 + 4.8 = 7.3 kN/m2.
Determine effective loads Fd.eff to be used for deflection criteria, the slab is assumed

to have tensile reinforcement only so that kcs = 2.

Fd.eff = (1 + kcs)g + (ψs +  ψl kcs)q  (for total deflection)

= (1 + 2)7.3 + (0.7 + 0.4*2)4

= 27.9 kN/m2

Fd.eff = kcs g + (ψs + ψl kcs)q  (for deflection after the attachment of partitions)

= 2*7.3 + (0.7 + 0.4*2)4

= 20.6 kN/m2

From Chart D2 read, k5 = 16.4 for   ∆/Leff = 1/250 and  Fd.eff = 27.9 and, k5 = 14.4
for   ∆/Leff = 1/500 and Fd.eff = 20.6. The incremental deflection will govern because of
the smaller value of k5.

Multiplier k3 = 1.0 for one-way slabs and k4 = 1.6 for simply supported slabs .

Maximum,           = k3 k4 k5

= 1.0*1.6*14.4

= 23.0

Hence the minimum required effective depth,

d =    = 200 mm
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From Table 3.3, minimum cover required is 25 mm. Assuming N20 bars, depth of
slab required, D = 200+10+25 = 235 mm, say 250 mm.

(b) Design Slab for Strength

Weight of slab wswt = 0.25*24 = 6 kN/m

Design load,       w* = 1.2(2.5 + 6) + 1.5*4

= 16.2 kN/m

Design moment,  M*  =                   

= 42.9 kNm per m width of slab.

Estimated effective depth d = 250 - 25 -10 

= 215mm (for N20 bars)

λ =                  = 0.93

Using Chart B1 and λ = 1 (close enough to 0.93), read off a p value of 0.0025. 

Minimum steel ratio   =    

= 0.0020 < 0.0025

Note also Clause 9.1.1 of AS3600 requires that the minimum Ast/bd be not less than
0.002 for a slab supported by walls or beams. This is satisfied in this example.

Required area of reinforcement, Ast = 0.0025*1000*215

= 538 mm2 per m width of slab

The reinforcement may be chosen from Table 8.3 which tabulates the equivalent
area in mm2/m width for various spacings and sizes of reinforcement. From the table,
initially select N20 bars at 500 mm centres to give an area Ast = 620 mm2. Now check
the crack control requirements of the AS3600 assuming the slab is “fully enclosed within
a building except for a brief period of weather exposure during construction where wider
cracks can be tolerated”. Clause 9.4.1 (i) of AS3600 has been satisfied on the previous
page. Clause 9.4.1 (iii) requires that the centre to centre spacing of bars in each direction
shall not exceed the lesser of 2.0 D or 300 mm. In this example we must therefore adopt
N20 bars at 300 mm spacing or use N16 at 300 centres whose area is 667 mm2 per metre
width.
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TTaabbllee  88..33    --    AArreeaass  ooff  RReeiinnffoorrcceemmeenntt    mmmm22 //  mm  wwiiddtthh

Bar Bar Sizes

Spacing 12 mm 16 mm 20 mm 24 mm 28 mm 32 mm  

100 1 100 2 000 3 100 4 500 6 200 8 000  

125 880 1 600 2 480 3 600 4 960 6 400  

150 733 1 333 2 067 3 000 4 133 5 333  

175 629 1 143 1 771 2 571 3 543 4 571  

200 550 1 000 1 550 2 250 3 100 4 000  

225 489 889 1 378 2 000 2 756 3 556  

250 440 800 1 240 1 800 2 480 3 200  

275 400 727 1 127 1 636 2 255 2 909  

300 367 667 1 033 1 500 2 067 2 667  

325 338 615 954 1 385 1 908 2 462  

350 314 571 886 1 286 1 771 2 286  

The slab should now be checked for serviceability since the weight of slab is greater than
the initially assumed weight.

Total dead load g = 2.5 + 6 = 8.5 kN/m2

For total deflection Fd.eff = 3*8.5 + 1.5*4  = 31.5 kN/m 2

From Chart D2 for                 , k5 = 15.8

Maximum,        = 1.0*1.6*15.8= 25.3  >          = 21.4 actual.

For deflection after attachment of partitions,

Fd.eff = 2*8.5 + 1.5*4 = 23 kN/m 2

From Chart D2 for                 , k5 = 13.9

Maximum,         = 1.0*1.6*13.9  = 22.3 > 21.4 actual

SECONDARY REINFORCEMENT

Assuming partial restraint and that moderate crack control is required, choose steel ratio
for temperature and shrinkage mid-way between equations 8.3 and 8.5 for exposure A2.
The minimum required area of reinforcement,

Ast.min =  

= 2.63*1000 *250 x 10-3

= 658 mm2 per m width
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From Table 8.3, select N16 bars at 300 mm centres to give an area Ast = 667 mm2

per metre width of slab.
If the slab had been fully

restraint and strong control against
cracking had been required, the
secondary reinforcement may have
been greater than the main
longitudinal reinforcement.The
final slab is shown in Figure 8.4
(right).

It was discovered in the last
example that Chart B1 is not
suitable for slabs because of the
small moments carried by slabs. A
table of moment capacities for
slabs could be produced. Such a
table is not really practical because of the variations in concrete cover for different
exposures and concrete grades. Chart S1 is used instead of a table. Chart S1 is drawn for
f'c = 25 MPa but it can be safely used for higher grade concretes. For example at the lower
range, for a slab with d=70 mm and M*=10 kNm, the required steel ratios are:  

p = 0.00544 for f 'c = 25 MPa, 
p = 0.00536 for f 'c = 32 MPa (1.5% below that for N25 grade) and, 
p = 0.00530 for f 'c = 40 MPa (2.5% below that for N25 grade).

Similarly at the higher range for a slab d=260 mm and M*=150 kNm, the required
required steel ratios are; 

p = 0.00596 for f 'c = 25 MPa, 
p = 0.00586 for f 'c = 32 MPa (1.7% below that for grade N25) and,
p = 0.00579 for f 'c = 40 MPa (2.9% below that for grade N25).

Chart S1 is conservative and the differences are indeed very small. The designer may
choose to apply a correction by deducting 1.5% from the steel ratio read from S1 for
both N32 and N40 grade concrete. Nevertheless, Chart S2 for f 'c = 32 MPa is also 
included as this may be a more common grade in slabs.

Slabs are frequently reinforced with reinforcing mesh whose yield strength fsy is
also 500 MPa. Standard reinforcing meshes and their areas are shown in Table 8.4
page 124. Note that these bar diameters and areas are different to the previous grades
of undeformed (or smooth wire) fabric that had a yield of 450 MPa (eg F72, F918
etc).
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TTaabbllee  88..44  --  SSttaannddaarrdd  RReeiinnffoorrcciinngg  MMeesshheess                                    

Area mm2 /m Longitudinal Wires Cross Wires

Ref.No. Longitudinal Cross Size Pitch Size Pitch
Wires Wires

Rectangular Meshes
RL1218 1112 227 11.9 100 7.6 200
RL1118 891 227 10.65 100 7.6 200
RL1018 709 227 9.5 100 9.5 200

RL918 574 227 8.6 100 7.6 200
RL818 454 227 7.6 100 7.6 200
RL718 358 227 6.75 100 7.6 200

Square Meshes
SL81 454 454 7.6 100 7.6 100
SL41 126 126 4 100 4 100

SL102 354 354 9.5 200 9.5 200
SL92 287 287 8.6 200 8.6 200
SL82 227 227 7.6 200 7.6 200

SL72 179 179 6.75 200 6.75 200
SL62 141 141 6.0 200 6.0 200

SL52 89 89 4.75 200 4.75 200
SL42 63 63 4 200 4 200

SL63 94 94 6 300 6 300
SL53 59 59 4.75 300 4.75 300

Trench Meshes
L12TM 1112 65 11.9 100 5.0 300
L11TM 899 65 10.7 100 5.0 300
L8TM 454 65 7.6 100 5.0 300

The moment capacities for slabs using reinforcing mesh are plotted on Chart S3.
Chart S3 on page 123 is a much more useful alternative since it enables the designer to
enter the chart with the slab effective depth and design moment and read directly the
required reinforcing mesh. Example 4 illustrates the use of Table 8.4, serviceability chart
D2 and moment Charts S2 and S3.

EXAMPLE 4
Figure 8.5 shows a simply supported slab for a domestic building. The slab supports a
superimposed dead load g = 1.5 kPa and a live load q = 2 kPa. 

(a) Design the slab for exposure classifications A1 using N32 grade concrete and
reinforcing mesh if precautions are taken to ensure that the partitions will not be
unduly affected by deflection.

(b) Redesign the slab if a layer of compressive reinforcing mesh equal to the tensile
reinforcing mesh is provided. 
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Figure 8.5

SOLUTION

Data:    f 'c = 32 MPa      fsy = 500 MPa      L = 4.75 m

g = 1.5 kPa         q = 2 kPa        Exposure A1

ψs = 0.7 for serviceability from Table 1.2

ψl = 0.4 for serviceability from Table 1.2

(a) Assume D = 250 mm for the purpose of estimating weight of slab.

Weight of slab = 0.25*24 = 6 kN/m2

Total dead load,  g = 1.5 + 6 = 7.5 kN/m2

Live load,  q = 2 kN/m2

Since there is no compressive reinforcement, the long-term deflection multiplier kcs = 2.

For total deflection                      , the effective design load,

Fd.eff = (1 + kcs)g + (ψs + ψl kcs)q 

= (1 + 2)7.5 + (0.7 + 0.4*2)2

= 25.5 kN/m2

From Chart D2 read k 5 = 16.9

For incremental deflection                      , the effective design load,

Fd.eff = kcs g + (ψs + ψl kcs)q

= 2*7.5 + (0.7 + 0.4*2)2

= 18 kN/m2

From Chart D2 read k 5 = 15.1

The incremental deflection will govern.

k3 = 1 for one-way slabs and k4 = 1.6 for simply supported slabs.

Maximum = k3 k4 k5

= 1.0*1.6*15.1

= 24.1
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Required effective depth, d =          = 197. 

Allowing approximately 25 mm from the centre of reinforcement to the underside
of the slab, the required depth  D = 222. Since the slab depth and weight has been over-
estimated,

Try D = 220 mm.

Weight of slab = 0.22*24 = 5.3 kN/m2

Total g = 1.5 + 5.3 = 6.8 kN/m2

For total deflection                    ,  the effective design load,

Fd.eff = 3*6.8 + 1.5*2 = 23.4 kN/m2

From Chart D2, k5 = 17.4

For incremental deflection                    , the effective design load,

Fd.eff = 2*6.8 + 1.5*2 = 16.6 kN/m2

From Chart D2, k5 = 15.5. Using the smaller value of k5,

Maximum          = 1.6*15.5 = 24.8

Required,    d  =         = 192 mm

Required,    D = 192 + 5 (half bar diameter) + 20 (cover)

= 217 < 220 mm (the assumed value).

The design load for strength conditions for a 1 m wide strip,

w* = 1.2*6.8 + 1.5*2

= 1.2 kN/m

Design moment for 1 m width of slab,

M* =                     

= 31.6 kNm per m width of slab.

From Chart S2, the required p = 0.0022, which is greater than the calculated
minimum steel ratio of 0.0019 (ie using D=220 & d=195)

Required   Ast = 0.0022*1000*195

= 430 mm2 per m width of slab.

From Table 8.4, choose SL81 mesh whose area is 454 mm2 per metre width of slab.
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Check slab depth, (the longitudinal wires are ≈ 8 mm diameter),

D = 195 + (8/2) + 20 ≈ 220 mm

(b) Using equal tensile and compressive reinforcement, the long-term deflection
multiplier will be,

kcs = 2 - 1.2        = 2  -  1.2  = 0.8

Assume D = 170 mm, the weight of slab = 0.17*24 = 4.1 kN/m2

Total dead load g = 4.1 + 1.5 = 5.6 kN/m2

For total deflection                     , the effective design load,

Fd.eff = (1 + 0.8)5.6 + (0.7 + 0.4*0.8)2

= 12.12 kN/m2

From Chart D2, k 5 = 21.7

For incremental deflection                     , the effective design load,

Fd.eff = 0.8*5.6 + (0.7 + 0.4*0.8)2

= 6.52 kN/m2

From Chart D2, k5 = 21.2. Using the smaller value of k5,

Maximum         = 1.6*21.2 = 33.9

Minimum required d =          = 140 mm

For strength design considering a 1 m wide strip, the design load,

w* = 1.2*5.6 + 1.5*2

= 9.7 kN/m

Design moment,

M* =                   

= 27.4 kNm

From Chart S2, the required steel ratio p = 0.0037, which is greater than the
minimum steel ratio of 0.0019.
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Required area of longitudinal reinforcement,

Ast = 0.0037*1000*145

= 537 mm2 per m width of slab.

Choose N12 bars @ 200 mm with an area Ast = 550 mm2 per metre.

Alternatively the reinforcing mesh may be chosen directly from Chart S3. Enter
chart with effective depth  d = 140 mm  and design moment  M* = 28.2 kNm to read
RL918 (580 mm2) as the required reinforcing mesh.

Check depth of slab.

D  = 145 + (9/2) + 20

≈ 170 mm   (which is approximately equal to the assumed depth).

Comments: The following points are noted as a result of example 3 and example 4;

(a) Serviceability requirements are invariably the governing criteria for slabs.

(b) Singly reinforced, simply supported, one-way  slabs are rather thick when the
"deemed to comply" serviceability condition is used to determine the depth of slab.
This is especially so when incremental deflection limitation of L/1000 is applied.

(c) Incremental deflection is in most cases the criterion for serviceability conditions.

(d) Slab depths can sometimes be reduced by providing a layer of compressive
reinforcement. The cost of the additional reinforcement may be offset by the thinner
slab, reduced weight and increased headroom.

8.12 Transformed Sections 
Transformed sections are sometimes a convenient means of converting cross sectional
areas of composite materials to an equivalent or transformed area of one material type.
In reinforced concrete, the steel reinforcement is transformed to an equivalent area of
concrete. Transformed section areas are then used to calculate the second moment of
area of reinforced concrete sections required for deflection calculations.

Figure 8.6
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A short steel section of area As, length L and modulus of elasticity Es subjected to a
load P will deflect an amount �s given by;

�s =  

A similar concrete section will deflect an amount �c given by;

�c =  

The transformed concrete section is a concrete area which will give a deflection equal
to the steel section. Equating the two deflection expressions and solving for the
transformed concrete  area Ac,

=  

E c A c =  E s A s

A c =       A s

= nAs

Where n = E s /E c is called the "modular ratio".
If the section is a square concrete section size D reinforced with steel of area A s, the

whole section may be converted to a concrete section in which the steel area is  replaced
by a thin rectangular concrete area of magnitude nA s at the level of the reinforcement.

Figure 8.7

The total concrete area in the transformed section will be:

Ac =  D2 + nA s

It is common to allow for the concrete area displaced by the reinforcement.
Adjusting the above formula,

Ac =  D2 -  As +  nAs

= D2 +  (n - 1)As

i.e. transformed area (n - 1)As allows for the concrete displaced by the reinforcement.
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8.12.1 Transformed Beam Section - Cracked Beams

Transformed sections will be used to determine the second moment of area, Icr, of a singly
reinforced cracked beam. The stresses at which flexural cracking occurs are very small so
that the stress distribution may be assumed to be linear as shown in Figure 8.8 (below).

The depth of the neutral axis is found by equating the internal forces  C = T.

0.5 fc b kd = n Ast fc

In terms of the tensile steel ratio, Ast = pbd

0.5 b kd = npbd            

0.5*(kd)2 = npd2 -  npdkd

(kd)2 = 2npd2 -  2npdkd

(kd)2 + 2npdkd -  2npd2 = 0

kd =

(using the quadratic equation formula)

kd  =  d(                   – np)                                                           (8.9)

Using the transformed section, the second moment area of the cracked section is
found by taking moment areas about the neutral axis.

Icr =             + b kd        
2

+ nAst (d - kd)2

Icr =             + n Ast (d - kd)2 (8.10)
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For a doubly reinforced beam, the transformed area is shown above as Figure 8.9.
The depth of the neutral axis and the second moment area of the cracked section are
found as for singly reinforced beams. The derived formulae are given below. 

kd = d                                                                                                      (8.11)

Icr = b           + nAst(d - kd )2 + (n - 1)Asc(kd - dsc) (8.12)

Where:   p = Tensile steel ratio =           

pc = Compressive steel ratio  =             

Note that for the tensile reinforcement the transformed area is nAst since the
concrete below the neutral axis is cracked i.e. the tensile reinforcement does not displace
any concrete because the concrete does not carry tensile forces while the transformed area
of the compressive reinforcement is (n - 1)Asc to allow for the stress carrying concrete
displaced by the reinforcement.

8.12.2 Effective Second Moment of Area Ieff

The second moment of area to be used for calculating the immediate or elastic deflection
cannot be the second moment of area of the cracked section, Icr, since it ignores the
stiffening effect of concrete between flexural cracks. The Code #8.5.3 gives a formula for
an effective moment of area, Ief which is weighted to account for the stiffening effect of
the uncracked concrete. This is the well known “Bransons Formula”.

Ief = Icr + (I - Icr)            ≤ Ie.max (8.13)

Where:  Ie.max      = Second moment of area of the gross section which may
conservatively be taken as the second moment of area of the 
gross concrete section by neglecting the reinforcement.

= 0.6 I  if p < 0.005

= I  if p ≥ 0.005
I     = Second moment of Area of gross section.
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Mcr = Cracking moment.

= Z (f 'cf - f 'cs )   or               (f'’cf - f'cs )  

f'cs = �cs

�cs = Concrete design shrinkage strain (from AS3600 Clause 6.1.7).

Ms = Maximum bending moment calculated for the short-term
serviceability loads.

yt = Distance from centroid of gross section to the extreme tension
fibre.

Z = Section Modulus 

= or             for uncracked section.

f 'cf = Characteristic flexural strength of concrete.

f 'cf = 0.6                                                                                                  (8.14)

Sustituting for f'cf the equation for the cracking moment becomes,

Mcr = Z (0.6         - fcs)                                                                               (8.15)

If one wants an approximate value of the effective I value (Ief) without carrying out
detailed calculations as described above then the Code provides two simple but
conservative formulae as an alternative, namely

Ief = (0.02 + 2.5p)bd3 when p ≥ 0.005,   or

Ief = (0.01 – 13.5p)bd3 ≤ 0.06 when p< 0.005

For simply supported members, the effective second moment of area to be used in
the deflection formula is that given by equation 8.13. For continuous members or
members with end restraints the effective second moment of area to be used in the
deflection formula is a weighted average second moment of area given by equations 8.16
and 8.17 in (a) and (b) below.

(a) One end simply supported and one end restrained,

Ieff =                                                                                                        (8.16)

(b) Both ends restrained,

Ieff =                                                                                                        (8.17)
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Where:  IM = Ieff at mid-span.

IL = Ieff at left support.

IR = Ieff at right support.

8.12.3 Elastic Deflection Formulae

The immediate deflection is calculated using standard deflection formulae which may be
expressed in the form:

� =  K                                                                                                       (8.18)

The maximum moment M and the multiplier K for common loading conditions are
shown in the Table 8.5 below.
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It may be necessary to superimpose two or more deflection conditions such as in a
cantilevered beam to obtain the additional deflection due to end rotation.

The immediate deflection, �s, for the short-term serviceability loads ws is calculated
from,

ws = g +ψs q                                                                                             (8.19)

The additional or incremental deflection due to sustained loading, �inc, is obtained
using the long-term serviceability loading wl calculated from,

wl = g +  ψl q                                                                                             (8.20)

To calculate the additional or incremental deflection, �inc, the Code permits the use
of the long-term multiplier, kcs. The incremental deflection is obtained by multiplying
the elastic deflection due to the long-term serviceability loading by the long term
multiplier kcs.

Note that the total deflection, �tot = �s + �inc, must not exceed the maximum
deflection of Lef /250 given in Table 8.1. The incremental deflection due to shrinkage
and creep effects is also limited if masonry partitions are supported.

8.12.4 Beam Deflection – Simplified Calculation Method

The previous few sections have provided the necessary information to calculate the
deflection of a beam more precisely than the ‘deemed to comply’ span to depth ratio
method. This is because we now have a better estimate of the true or effective I value
taking into account factors such as (i) degree of cracking (ii) concrete shrinkage (iii)
amount of reinforcement and (iv) support conditions.

The following example will illustrate how to calculate the deflection of a singly
reinforced beam using the ‘simplified’ method as nominated in AS3600 section 8.5.3.

EXAMPLE 5

Calculate the immediate
(short term) deflection and
the total (short + long term)
deflection for the simply
supported, singly reinforced
concrete beam shown in
Figure 8.10 (right). The
beam is part of an office
construction and it supports
a masonry partition.
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f'c = 25 MPa

g = 16 kN/m including beam weight
q =  8 kn/m
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400450
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Figure 8.10



SOLUTION

Modulus of elasticity of concrete (for f ’c = 25 MPa, the fcm is 27.5 MPa – see Table 8.6)

Ec = (�)1.5 0.043  

= (2400)1.5 0.043  

= 27,500 MPa

Modular ratio,

n =                         = 7.27

Steel ratio,

p =                  = 0.0135

np = 7.27*0.0135 = 0.098

Second moment area of gross section,

I =                                 = 1900*106 mm4

Modulus of section of gross section,

Z =                   = 8.44*106 mm3

Depth of neutral axis of cracked section,

kd = d                              

= 0.3554 x 400  

= 142 mm

Second moment of area of cracked section,

Icr =             + nAst (d - kd)2

=                     + 7.27*1350*(400 - 142)2

=  892*106 mm4

Concrete flexural-tensile stress induced by shrinkage strain �cs

fcs = s�cs

S E R V I C E A B I L I T Y 135

 f cm

27 5.

  

E
E

s

c

= 200 10
27 500

3*
,

 

1350
250 400*

  

bD 3 3

12
250 450

12
= *( )

 

1900 10

450
2

6*






( )np np np2 2+ −






b kd( )3

3

250 142
3

3*( )

  

1 5
1 50

. p
p

E
+













where �cs is a function of the hypothetical thickness th (see AS3600 #1.7 - Notation)

t h =

=                          assuming the top of the beam is not exposed to drying

=  195 mm (say 200)

From AS3600 Figure 6.1.7.2 (Interior Environment), choose k1 = 0.3 (use 56 days
as a guide since shinkage tests on fresh concrete are based on 56 day results. Designers
may choose an alternative period for ‘short term’ based upon their own job conditions).

�cs =  0.3*�cs.b (short term shrinkage – say 56 days)

=  0.3*850

=  255 x 10-6 (i.e. 255 microns)

fcs = x 255x10-6

=  0.62 MPa

Cracking moment,

Mcr =  Z (0.6         -   fcs)

= 8.44*106 (0.6        - 0.62)

= 20.1 kNm

Short-term, loading

ws = g +  ψsq

= 16 + 0.7*8 = 21.6 kN/m

Maximum serviceability bending moment for short-term loading,

Ms =                 = 67.5 kNm

Effective second moment area (sometimes incorrectly called ‘moment of inertia’),

Ief =  Icr + (I - Icr )          

(but ≤ Ie.max)

=      

=     918*106 mm4

Since p = 0.0135 > 0.005 then Ie.max = I gross
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Immediate deflection for short-term service loading,

δs =  K            where K = 5/48, (or  just                for simply supported beams)

=                                       = 7.0 mm

Sustained loading,
wl = g + ψl q

= 16 + 0.4*8 = 19.2 kN/m.

We must now recalculate � cs and f cs in longer term since concrete shrinkage will be
greater as will be the tensile stresses induced by these shrinkages. Using Table 6.1.7.2
from AS3600 for a 30 year life and th = 195 mm, the new will be 670 microstrain (i.e.
k1= 0.78). The new fcs will be 1.63 MPa, the new Mcr will be 11.6 kNm and thus the
long term Ief will be 897 x 106 mm4. Substituting this Ief into the standard deflection
equation now gives 7.1 mm (hardly any difference to the initial value – this is because
the Ief is almost equal to the Icr in both short and long term cases). 

By direct proportions, the immediate deflection due to the sustained loading will be;

�sus =          7.1 = 6.3 mm (alternatively recalculate �s using wl =19.2 in the formula)

The long-term deflection multiplier kcs = 2 since there is no compressive
reinforcement. Hence the incremental deflection due to sustained loading (i.e. the
deflection that occurs after the attachment of masonry walls or partitions) will be:

�inc = kcs �sus = 2*6.3 = 12.6 mm              which does not satisfy L / 500.

Total deflection,

�tot = 7.1 + 12.6  = 19.7mm              which barely satisfies L / 250. 

The engineering designer has a few options: (a) totally redesign the beam to satisfy
the requirements of AS3600 Table 2.4.2; (b) make minor changes to the design eg
increase the f’c (which increases Ec) or provide compression reinforcement (which
reduces kcs); (c) accept the design as the masonry wall supported may not be a feature
wall and as such minor cracking may be tolerable; or (d) carry out a refined calculation
as per AS3600 #8.5.2.

EXAMPLE 6
The continuous beam ABCD shown in Figure 8.11 is part of an office building. The
bending moment diagram shown is for the short-term serviceability loading. Check the
deflection in the end span AB if the beam supports masonry partitions for which there
is some provision made to reduce the effects of deflection. Refer to Table 8.6 for fcm and
Ec values.

f 'c = 32 MPa     g = 42 kN/m     q = 30 kN/m
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SOLUTION

Modulus of elasticity of concrete,

Ec = (2400)1.5 0.043              

= 31,000 MPa

Modular ratio,

n =             = 6.45

Figure 8.11

Only the section properties in the middle of the beam and the right hand support
will be determined. The beam is simply supported at A so that its stiffness is effectively
zero at A.
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PROPERTY MID-SPAN RIGHT SUPPORT

b = 350mm = 350mm       

d = 450mm = 450mm        

dsc = 50mm = 50mm         

Ast = 2400mm2 = 3200 mm2

p =          = 0.0152 = 0.0203

np = 0.098 = 0.131

Asc = 1600mm = 2400mm2

pc =             = 0.0102 = 0.0152       

(n-1)pc = 0.056 = 0.083

kd = 

kd = 148 mm = 161 mm        

Icr =            + nAst(d - kd)2 + (n - 1)Asc(kd - dsc)
2

Icr = 1874*106 mm4 = 2372*106 mm4

I =              = 3650*106 mm4 = 3650*106 mm4

Z =  = 14.6*106 mm3 = 14.6*106 mm3

t h =  = 200 mm (ue for 4 sides) = 200 mm [ue =2(500+350)]

εcs (say 30yrs) = 670*10-6 (microstrain) = 670*10-6 (microstrain)

f cs(dr) = f cs(sr) - = 0.58 MPa (doubly reinf) = 0.51 MPa (doubly reinf)

(Asc/Ast)fcs(sr)...but ≥1/4 f  (suggested minimum)

where f cs(sr) = 1.74 MPa = 1.52 MPa[1.5p/(1+50p)]Es� cs

Mcr = Z (0.6         -  fcs) = 41.1 kNm = 42.1 kNm

Ms = 178 kNm = 235 kNm      

Ief = Icr + (I - Icr)     
3

= 1896*106 mm4 = 2379*106 mm4
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The effective second moment of area to be used in the deflection formulae:

Ief =              

Ief =                      x 106

= 2138*10 6 mm4

Short-term and long-term serviceability loading,

ws = 42 + 0.7*30

= 63 kN/m

wl = 42 + 0.4*30

= 54 kN/m

The immediate deflection due to short term loading is calculated from equation
8.17 by superposition of loading conditions 1 and 2 shown in Table 8.5.

M =                                  M = 235 kNm

=            

= 283.5 kNm

K =                                  K = -          

�s =  

=  16.0  –  8.0                                                                                  (8.19)

=  8.0 mm

INCREMENTAL DEFLECTION

Long-term deflection multiplier,

kcs = 2 - 1.2                 

= 1.20
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Immediate deflection due to long-term sustained loading may be calculated as direct
loading proportion of the immediate deflection calculated for the short-term loading.

�sus =         x  8.0

= 6.9 mm

Hence incremental deflection due to sustained loading,

�inc = k cs �sus

= 1.2*6.9

= 8.3 mm  (= L / 723)

<          (= 12 mm)  ∴SATISFACTORY

Total deflection,

�tot = 8.0 + 8.3

= 16.3 mm (< L / 250) i.e. 24 mm ∴SATISFACTORY 

TTaabbllee  88..66  EEllaassttiicc  MMoodduulluuss  vvaalluueess  ffoorr  vvaarriioouuss  ggrraaddeess  ooff  ccoonnccrreettee  

Strength Grade - f c (MPa) Mean strength - f cm (MPa) Elastic modulus Ec (MPa)
20 24 25000
25 29.5 27500
32 37.5 31000
40 46 34500
50 56.5 38000

P R O B L E M S

QUESTION 1

The simply supported
slab for a domestic
building shown above
carries a total dead load g
= 6 kPa (including
weight of slab) and a live
load q = 3 kPa. The slab
supports masonry partitions for which provision is made to minimise the effects of
movement.

(a) If the slab is only reinforced with N16 bars at 250 centres, check the slab for
serviceability.

(b) If N12 compression bars at 400 centres are added to the slab, what will be the new
live load which may be applied to the slab.
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QUESTION 2

For the office floor
construction shown right,
the T-beams are simply
supported over a span 
L = 6500. The effective
flange width for the T-
beams is  beff = 1600. Check
the T-beams for deflection if the superimposed  dead load on the slab g = 2 kPa and the
live load q = 3 kPa. It may be assumed that provision is made to limit deflection effects
on the masonry partitions supported by the construction.

QUESTION 3

The figure to the right shows
the arrangement of an
external masonry wall
supported by a reinforced
concrete beam. The
construction is part of a
retail store on a beach
promenade. Loads carried by the beam are made up of a 20 kN/m dead load and 5 kN/m
live load. There is no provision made to reduce deflection effects on the masonry wall
construction. Using grade N40 concrete and a beam width b = 350:

(a) Design the beam as a singly reinforced beam using 2N20 hanger bars in the top of
the beam.

(b) Redesign the beam if 4N28 compression bars are included in the beam to reduce
deflection only.

QUESTION 4

The figure shows an external
balcony in a domestic
building. The balcony is to
be designed to carry a 
1.0 kPa superimposed dead
load and a 3kPa live load.
Design the reinforced
concrete balcony using 
N32 concrete in exposure
classification A2. Check that
serviceability has been satis-
fied for total deflection only
using simplified deflection
calculations. It may be assumed that the supporting beam provides torsional rigidity to
prevent rotation. 
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9.1 Additional Symbols used in this Chapter
Fd = Uniformly distributed design load.

Ln = Clear span between inside faces of supports.

9.2 Loading Combinations
Beams and one-way slabs which are continuous over two or more spans may be analysed
by any of the well known methods such as three moment equation, slope deflection,
moment distribution, and so on. The difficulty is not in the analysis but in the shear
volume of work due to the loading possibilities. While the dead load is permanent, the
live load can be applied to any one span or combination of spans. The maximum design
shear force and bending moment in any span can only be determined after the analysis
has been carried out for each dead load and live load combination. Considering a 3-span
continuous beam ABCD shown in Figure 9.1, there are 8 possible loading combinations.
Whatever method of analysis is applied, the beam is indeterminate to the second degree
requiring two simultaneous equations to be solved for each loading condition.

As shown in the figure, there are 8 possible loading conditions. To determine the
support moments for all loading conditions it will be necessary to solve 2 simultaneous
equations 8 times. In each case it is still necessary to calculate the maximum bending
moment and the shear forces for each span. Figure 9.1 also shows the bending moment
diagram for each loading condition drawn on the same baseline. A line drawn to enclose
all the bending moment diagrams represents the “bending moment envelope”. A shear
force envelope is obtained in the same manner. Figure 9.2 shows the shear force and the
bending moment envelopes for a 3-span continuous beam drawn by a computer program.

If the number of spans is increased to say 8 continuous spans, to cover all possible
dead and live load combinations, it would be necessary to solve 7 simultaneous equations
256 times. A manual solution is obviously not the answer. There are two possibilities for
carrying out such analysis: 

Continuous beams and
continuous one-way slabs

9
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(a) a computer program,

(b) an empirical solution using bending moment and shear force coefficients.

Ideally the computer program should also plot the bending moment and shear force
envelopes as shown in Figure 9.2 for example 1.

Figure 9.1 - Loading Combinations for a 3-span Continuous Beam
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EXAMPLE 1
The following computer results are obtained for a three-span continuous beam ABCD
carrying a 10 kN/m dead load and a 10 kN/m live load. The spans are 8 m, 7 m and 
6 m respectively.

Number of spans ______________ 3

Left end fixed _________________ N

Left end cantilever _____________ N

Right end fixed ________________ N

Right end cantilever ____________ N

Span in m, AB _________________ 8

BC ________________ 7

CD ________________ 6

Uniformly distributed live loads Y or N _ Y

Dead loads in kN/m AB __________ 10

BC __________ 10

CD __________ 10

Live loads in kN/m AB __________ 10

BC __________ 10

CD __________ 10

Dead load and live load factors 1.25, 1.5

DISTANCE
FROM

SUPPORT MAXIMUM MAX SHEAR FORCE MAXIMUM SUPPORT
REACTION LEFT RIGHT MOMENT TO LEFT

A +92.6 kN +92.6kN
In span AB + 156.1kNm +3.37 m  

B +244.7 kN -132.5kN +112.2kN -180.0kNm
In span BC +69.5kNm +3.63 m

-18.4kNm +4.39 m

C +201.0 kN -98.5kN +102.5kN -119.8kNm
In span CD +95.1kNm +3.37 m  

D +72.3 kN -72.3kN

Tabulated Results
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Figure 9.2 - Shear Force and Bending Moment Envelopes

9.3 Bending Moment and Shear Force Coefficients
for Continuous Beams and Continuous One-Way Slabs   
Design Bending Moment,  

M* = B.M.Coefficient * Fd * (Ln)
2 (9.1)

Design Shear Force,     

V* = S.F.Coefficient * Fd * Ln (9.2)

Code clause #7.2 permits shear force and bending moment coefficients to be used
for calculating design shear forces and design bending moments provided that the
following conditions are satisfied:

(a) The ratio of the longer to the shorter span in any two adjacent spans does no exceed
1.2.

(b) The loads are uniformly distributed.
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(c) The live load q does not exceed twice the dead load g.

(d) Members are of uniform cross-section.

(e) The reinforcement is arranged in accordance with Figure 7.9, redrawn in Figure 9.5,
(note that for beams at least one quarter of the negative reinforcement provided at
the support must be extended over the full span) and Figure 9.6 for slabs.

(f) Bending moments at supports are caused only by the action of loads applied to the
beam or slab.

The shear force and bending moment coefficients are shown in Figure 9.3 for 2
spans and Figure 9.4 for 3 or more spans.

Figure 9.3 -  Figure 9.4 - 
S.F. and B.M. Coefficients for 2 Spans S.F. and B.M. Coefficients for 3 or More Spans

Figure 9.5 - 
Arrangement of Reinforcement for Continuous Beams
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Figure 9.6 - Arrangement of Reinforcement for Continuous Slabs

EXAMPLE 2
The continuous 3-span
beam used in example 1 is
redrawn in Figure 9.7
(right). The beam carries a
total dead load (including
the weight of beam) g = 10
kN/m and a live load q = 10 kN/m.

Using bending moment coefficients,calculate all negative and positive bending
moments and compare the results with example 1.

SOLUTION

Design load,   Fd = 1.2×10 + 1.5×10 = 2.7 kN/m

Moment Condition Coeff. Ln M* = Coeff. ×Fd× (Ln)
2 Results from

Example 1

Negative BM s                                                         
Support B                                                 

Exterior Face 1/10 7.6 156.0 kNm 180.0 kNm
Interior Face 1/10 6.6 117.6 kNm 180.0 kNm    

Support C                                                 
Interior Face 1/10 6.6 117.6 kNm 119.8 kNm    
Exterior Face 1/10 5.6 84.6 kNm 119.8 kNm    

Positive BM s                                                           
Span AB 1/11 7.6 141.8 kNm 151.1 kNm    
Span BC 1/16 6.6 73.5 kNm 69.5 kNm    
Span CD 1/11 5.6 77.0 kNm 95.1 kNm    
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Comments:

(1) The bending moments obtained using bending moment coefficients appear to
under-estimate the theoretical results in example 1.

(2) The theoretical results are based on knife-edge supports where in reality the support
width, or more precisely the clear span between support faces as compared to the
centreline span, must affect the bending moment; the wider the support, the lesser
will be the bending moment.

(3) In practice a redistribution of moments will occur, depending on the extent of
flexural cracking over the supports. A relaxation of negative bending moments over
the supports will produce a corresponding increase in the positive bending moment
between supports.

Code #7.6.8 permits redistribution of moments. For steel ratios equal to or less than
0.5pmax i.e. ku ≤ 0.2, the negative moments over interior supports may be reduced
by up to 30% with a corresponding increase in the positive bending moment. 
The permissible redistribution is reduced for higher steel ratios and no redistribution
is allowed if the steel ratio is equal to or greater than the maximum steel ratio 
i.e. ku.≥ 0.4. With doubly reinforced beams, redistribution is permitted provided
that the steel ratio in the primary beam does not exceed the maximum steel ratio.

(4) The central span BC in example 1 also showed a negative moment between
supports. This is indirectly catered for by Code #8.1.8.6 which requires that at least
one quarter of the negative moment tensile steel reinforcement is extended over the
whole span.

(5) Continuous members which do not fall within the Code guidelines (q ≤ 2g and 20%
maximum span difference between adjacent spans) or contain cantilevered ends may
not be designed by using bending moment and shear force coefficients.

EXAMPLE 3
In an office building a continuous one-way slab over four equal spans is supported by
integral beams as shown in Figure 9.8. Design the slab using N32 grade concrete and
welded wire mesh reinforcement for the maximum negative and maximum positive
bending moments. The reinforcement so determined will be extended over the full slab.
The slab supports masonry partitions for which there is no provision made for deflection.
The superimposed dead and live loads are: g = 2 kPa and q = 3 kPa. Exposure
classification A1 may be assumed. 

Figure 9.8
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SOLUTION

Data:   g = 2 kPa    q = 3 kPa    f’c = 32 MPa    fsy = 500 MPa 

Exposure Classification A1.

From Table 1.2, ψs = 0.7 and ψl = 0.4

From Table 8.1, the deflection limitations are;

Maximum total deflection               

Maximum incremental deflection  

SERVICEABILITY

Try 150 mm thick slab. Weight of slab = 0.15 × 24 = 3.6 kN/m2.

Total dead load g = 2 + 3.6 = 5.6 kN/m2

Assuming initially the same negative and positive reinforcement. The slab will in
effect carry compressive reinforcement since the required reinforcement for the
maximum negative and positive bending moments will be carried over the full slab. The
value of the long-term deflection multiplier kcs will  thus become 0.8 since the
reinforcing areas Asc = Ast based on initial assumption.

For total deflection, the design service load,

Fd.ef = (1 + kcs)g + (ψs + ψl  kcs)q

= (1 + 0.8)5.6 + (0.7 + 0.4×0.8)3

= 13.14 kN/m2

From Chart D2 for                  , read k 5 = 21.1

For incremental deflection, the design service load,

Fd.ef = kcsg + (ψs + ψl  kcs)q

= 0.8×5.6 + (0.7 + 0.4×0.8)3

= 7.54 kN/m2

From Chart D2 for                     , read k5 = 16.2.

From Chapter 8, k3 = 1.0 and k4 = 2.1 for end spans.

Maximum  = k3 k4 k5

= 1.0×2.1×16.2

= 34.0
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Using the centreline spacings of supporting beams as conservative estimate for the
effective span, the minimum required effective depth of slab will be,

d =           = 68 mm

Use d = 75 mm to give depth of slab D = 100 mm.

STRENGTHDESIGN FOR A 1 WIDE STRIP

Weight of slab = 0.1×24 = 2.4 kN/m

Total dead load; g = 2.4 + 2 = 4.4 kN/m

Design load; Fd = 1.2×4.4 + 1.5×3

= 9.8 kN/m

Using bending moment coefficients shown in Figure 9.4,

Maximum negative design bending moment,

M =  -                  = - 3.9 kNm per m width of slab.

Maximum positive design bending moment,

M = +                  = +3.6 kNm per m width of slab.

The design moments are too small to be read from Chart S2. SL82 mesh provides
an area of 227 mm2 per metre width of slab and a steel ration p = 0.003. The moment
capacity using SL82 mesh is:

The slab should now be checked for the minimum steel ratio and for crack control.

P R O B L E M S

QUESTION 1

An exposed reinforced concrete deck
supported by 250 mm wide cross-walls is
shown at the right. The structure is
located at Hornsby in NSW, which is
approximately 20 km from the coastline.

In addition to its own weight, the deck
is required to carry a live load q = 5 kPa.
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Future plans exist to enclose the deck, in which case it would also be required to carry a 1 kPa
superimposed dead load primarily due to the masonry partitions to be installed. Provision will
be made in the construction of the partitions to minimise the effects of movement.

Design the slab using grade N40 concrete and reinforcing fabric. It may be assumed
that the negative reinforcement required at the supports will be extended over the full
length of the slab. It may also be assumed that the slab is partially restrained against
movement due to temperature and shrinkage effects.
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10.1 Additional Symbols used in this Chapter
Am = Area of thin walled section for torsion defined by the median lines of the 

walls of a single cell.

Asv = Cross-sectional area of shear reinforcement.   

Asv.min = Minimum area of shear reinforcement.      

Asw = Area of a single leg of a closed tie used as torsional reinforcement.      

At = Torsion area defined as the area from the centre of the corner bars of the 
cross section.           

av = Distance from section at which shear is being considered to the nearest 
support.           

bv = Effective width of a web for shear.

= b for a rectangular beam.

= bw for a T-beam or L-beam.           

bw = Width of a web as in a T-beam.           

do = Distance from extreme compression fibre to the centroid of the 
outermost layer of tensile  reinforcement but not less than 0.8D.          

fcv = Concrete shear strength.        

fsy.f = Yield strength of fitments.      

Jt = Torsional  modulus for the cross section.           

pv = Shear steel ratio Ast/(bvdo)      

Tuc = Ultimate torsional strength of a beam without torsional reinforcement.      

Tu.max = Ultimate torsional strength of a beam limited by crushing failure.      

Tus = Ultimate torsional strength of a beam with torsional reinforcement.      

T* = Design torsional moment.            

u = Length of critical shear perimeter for two-way action.      

Shear and Torsion

10
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ut = Perimeter of At.

Vc = Simplified ultimate shear capacity of unreinforced beam.          

v’c = Nominal concrete shear stress capacity.             

Vu = Ultimate shear strength.       

Vu.max = Ultimate shear strength limited by shear crushing.       

Vu.min = Ultimate shear strength of a beam with minimum shear reinforcement.
Vuc = Ultimate shear strength excluding shear reinforcement.          

Vus = Contribution provided by shear reinforcement to the ultimate shear 
strength of a beam.      

x = Smaller dimension of a cross section (or smaller dimension of a 
rectangular component of a cross section).      

y = Larger dimension of a cross section (or larger dimension of a rectangular 
component of a cross section).      

y1 = Larger dimension of a closed rectangular torsion tie.           

1 = Shear strength coefficient  for  comparable increase in shear capacity of 
shallow beams.           

2 = Shear strength coefficient for axial load effects.           

3 = Shear strength coefficient to account for increased strength when 
concentrated loads are applied near supports (short shear span av < 2do).     

θt , θv = Angle between the concrete compression “strut” and the member axis in 
the truss model for torsion or shear respectively.  

10.2 Shear Failure Models
It is useful to consider some aspects of the behaviour of concrete in shear to give the
reader a better appreciation of the design process. Considering an uncracked reinforced
concrete member shown in Figure 10.1, a small element “A” taken at the level of the
neutral axis is only subjected to boundary shear stresses fv since there are no bending
stresses.

Figure 10.1
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The enlarged element “A” and the boundary shear stresses are shown in Figure
10.1(b). The effect of the shear stresses will be to distort the element and produce tensile
stresses ft (in this case principal tensile stresses) across the diagonal 2-3 of the element as
shown in Figure 10.1(c). The principal diagonal tensile stresses act on the principal plane
2-3 inclined at 45o to the neutral axis. Above or below the neutral axis, compressive or
tensile stresses exist in combination with shear stresses which will alter the slope of the
principal plane on which the tensile stresses act.

If the element is located at a section near a simple support, the moments are small
and flexural cracks are not likely to occur. Cracking of the member, if it takes place, will
occur along diagonal lines parallel to the principal planes. The propagation of the
diagonal cracks above the neutral axis is affected by the horizontal compressive stresses
due to bending and direct vertical compressive stresses due to applied loads and in
particuar concentrated loads. Axial tension or compression applied to the member may
also have a marked effect. Shear failure initiated by diagonal tension cracks will be
resisted by a dowel action in the longitudinal tensile reinforcement (the degree of this
resistance will depend on the
amount and the size of the tensile
reinforcement) and direct shear
resisted by the uncracked concrete
above the diagonal tension crack.
A failure condition is shown in
Figure 10.2.

Shear reinforcement in the
form of vertical stirrups or inclined
shear reinforcement and bent-up
bars will not prevent the formation
of diagonal tension cracks. Only
vertical stirrups will be considered
in this chapter because they are the
most frequently used form of shear
reinforcement. Shear reinforce-
ment is in reality tensile reinforc-
ment which ties together the beam
on either side of the diagonal
tension crack as shown in 
Figure 10.3 . Shear reinforcement will thus increase the beam shear capacity by providing
an additional shear resisting component. It is apparent from Figure 10.3 that the capacity
of the shear reinforcement will depend on the area of shear reinforcement available
within a potential diagonal crack length and effective anchorage of the shear
reinforcement on either side of the diagonal crack.

In addition to the direct concrete shear resistance and dowel action, shear resistance
is also provided by the ragged shape of the diagonal crack. Diagonal shear cracking
generally occurs in conjunction with flexural cracking and the terminology “flexural-
shear cracking” is frequently employed. The mechanics of shear failure is very complex
and to a large degree it is still not sufficiently well understood to enable practical design
rules to be formulated to specifically include all the shear resistance components. In 1962
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the ACI-ASCE Committee on “Shear and Diagonal Tension” reported that it could not
clearly define the shear failure mechanism. Considerable research on shear has been
carried out since and a lot of experimental data is available but it is still not possible to
formulate simple design rules to account for the contributions to shear resistance
provided by all the beam components.

The shear strength of a beam also depends on such factors as the shear span and the
depth of beam. In addition to the classic analysis, the Code permits the use of analysis
based on the truss analogy for determining ultimate shear capacity. The truss analogy will
only be considered here as a simple means of understanding beam behaviour. As a
simplification, it is assumed that flexural-shear cracks occur at regular intervals at 45o as
shown in Figure 10.4a .

Figure 10.4 - Beam Truss Analogy

The beam functions as a conventional truss with:

(a) the top compression chord formed by the uncracked concrete,

(b) by the main longitudinal reinforcement acting as the bottom tension chord,

(c) the stirrups acting as vertical ties and,

(d) the uncracked concrete bands separated by diagonal tension cracks acting as web
compression members.

The analogous truss is shown in Figure 10.4b. The main difference between the
beam and the truss is that in the beam the uncracked concrete and the tensile
reinforcement can transmit shear while in the pin-jointed truss only the web members
can transmit shear. In the analogous truss the shear capacity will depend on:

(a) The yield strength and the area of the stirrups within a potential shear crack which
depends on the spacing of stirrups.

(b) The crushing strength of the inclined concrete web members.  Web crushing may
be a possibility in beams with very thin webs and it is the limiting consideration and
the upper limit for beams.

The design shear strength of a beam is φVu where the ultimate shear strength Vu is
made up of a beam component Vuc and a shear reinforcing component Vus.

Vu = Vuc + Vus (10.1)
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The beam component Vuc, which is the ultimate shear strength of the unreinforced
beam, has to incorporate all the shear strength components already mentioned. This can
only be done by an empirical formula based on experimental data and it is given by
equation 10.2.

Vuc = β1 β2 β3 bv do (10.2)

Where: β1 = 1.1 (1.6 -           ) ≥ 1.1

β2 = Factor for axial forces which will not be considered.

1.0, or

1 – (N* / 3.5 Ag) for significant axial tension

1 + (N* / 14 Ag) for significant axial compression

β3 =         ≤ 2 for large concentrated load applied < 2do from support.

do = Distance from extreme compression to outer layer of tensile 
reinforcement. 

Equation 10.2 may be simply written as,

Vuc = β1 β2 β3 Vc (10.3)

Where Vc is a conservative value of Vuc (no axial tension) assuming values of 1.0
for β1, β2 and β3 and it is given by equation 10.4.

Vc = bv do (10.4)

The beam shear capacity is obtained by multiplying equation 10.4 by the reduction
factor φ = 0.7 for shear.

φVc = φ bv do 

Rearranging the equation,
1/3

(10.5)

Let, pv = Shear steel ratio defined by equation 10.6.

pv = (10.6)
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and let v’c = Nominal concrete shear stress capacity defined by equation 10.7.

v’c =
φ

(10.7)

Equation 10.5 may be re-written to give the nominal concrete shear stress capacity
in terms of the shear steel ratio.

v’c = φ
1/3

(10.8)

Chart V1 on page 160 is a plot of equation 10.8.

10.3 Contribution to Shear Capacity by Vertical Stirrups
The contribution provided by shear reinforcement in the form of vertical stirrups is
simply the tensile capacity of the number of vertical stirrups contained within a potential
shear crack. Assuming shear cracks inclined at 45o to the longitudinal direction so that
the horizontal projection of the inclined cracks can be taken to be approximately equal
to do, the number of vertical stirrups included in the horizontal projection will be do/s
where s is the stirrup spacing. Multiplying the effective number of stirrups do/s by the
area Asv of the stirrups (note 2 legs of stirrups make Asv) gives the shear area within the
potential diagonal crack. The shear area Asvdo/s multiplied by the yield strength of the
stirrups f

sy.f
represents the ultimate tensile resistance or the ultimate shear contribution

Vus provided by the shear reinforcement. The ultimate shear capacity of the stirrups is
given by equation 10.9.

Vus = (10.9)

Multiplying both sides by the reduction factor � ( =0.7) for shear,

�Vus = �

Rearranging the equation in a form to make it suitable for the development of a
design aid by dividing both sides by do.

(10.10)

Design Chart V2 is a plot of equation 10.10 for N12 stirrups. This chart will be used
to determine the required stirrup spacing to carry the excess shear which is the difference
between the design shear force and the unreinforced concrete beam capacity, V* - �Vuc.

There are still a number of Code conditions which must be satisfied before a
systematic design procedure is outlined followed by worked examples.

158 D E S I G N H A N D B O O K F O R R E I N F O R C E D C O N C R E T E E L E M E N T S

V
b d

c

v o

 
p fv c'( )

 

A f d

s
sy f osv .

 

A f d

s
sv sy f o.

Φ ΦV
d

  =  
A f

s
us

o

sv sy.f



10.4 Maximum Ultimate Shear Strength #8.2.6
The maximum shear force is limited by crushing of the inclined concrete compression
members considered in the analogous truss. The ultimate shear strength Vu cannot
exceed Vu.max given by,

Vu.max = 0.2 f’c bv do (10.11)

10.5 Maximum Design Shear Force Near a Support #8.2.4
The maximum design shear force V * is taken “at the face of the support”. This is a major
change from the previously accepted position which was at a distance d from the face of
the support. The concrete Code AS3600-2001 does state that the maximum transverse
shear near a support can be taken at a distance d from the face of the support provided
that the following conditions are satisfied:

(i) diagonal cracking cannot take place at the support or extend into it

(ii) no concentrated loads exist closer than 2do from the face of the support

(iii) the value of β3 =1.0

(iv) transverse shear reinforcement required at do from the support is continued
unchanged to the face of the support. 

The Code also states that the longitudinal tensile reinforcement required at do from
the face of the support be continued onto the support and that it be fully anchored past
the face of the support.

10.6 Requirement for Shear Reinforcement #8.2.5
The conditions governing the inclusion of shear reinforcement are as follows:

(a) V* ≤ 0.5φVuc No shear reinforcement is required except for deep 
beams (i.e D>750) for which the minimum shear 
area Asv.min must be provided.  

(b) 0.5φVuc < V* ≤ φVu.min Minimum shear area Asv.min must be provided.  

(c) V* ≤ φVuc No shear reinforcement is required for shallow 
members (where D ≤ x where x is the greater of 
250 or (bw/2).  

(d) V* > φVu.min Shear reinforcement must be provided.   

10.7 Minimum Shear Reinforcement #8.2.8
The minimum area of shear reinforcement to be provided in a beam is given by:

A sv.min = (10.12)
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10.8 Shear Strength with Shear Reinforcement #8.2.9
The ultimate shear strength of a beam provided with minimum shear reinforcement is
given by:

Vu.min = Vuc + 0.6bv do (10.13)

(Note the 0.6bvdo section of the above formula is the steel shear strength contribution as
the 0.6 value is in units of kN/mm2). The derivation of the Vu.min formula comes from
the basic design shear strength formula Vu = Vuc + Vus as defined in # 8.2.2. The shear
strength contribution by the shear reinforcement Vus is defined by the formula given in
# 8.2.10:

substituting                                    and using θ v = 30o, Vus becomes 0.6 bv do.

10.9 Spacing and Distribution of Shear Reinforcement 
#8.2.12.2-3
The maximum spacing of shear reinforcement is taken as 0.5D but not more than 300mm
except when the design shear force is less than or equal to the minimum shear force, V* ≤
φVu.min, the spacing may be increased to 0.75D or 500mm, whichever is the lesser.

The shear reinforcement required at any section must be carried a minimum
distance D in the direction of decreasing shear. 

10.10 Anchorage of Shear Reinforcement #8.2.12.4
Since shear reinforcement is in tension it needs to be anchored on each side of potential
diagonal cracks. The Code now requires that shear reinforcement develop its yield
strength at any point in the stirrup legs and as such nominates various ‘deemed to
comply’ conditions. These include using hooks with 135o and 180o hooks plus having
the hook extend a distance of 10 db or 100 mm (whichever is greater) into the centre of
the concrete element. If the hook is located in the tension zone, the original calculated
spacing s of the stirrups (or ties) must now be reduced to 0.8s (i.e brought 20% closer
together ). Finally any fitment cogs are not allowed
to be anchored in the cover zone (i.e. usually 20 to
70 mm from any surface) of the concrete. Welding
of the fitments is considered suitable anchorage.

Closed shear reinforcement shown in Figure
10.5a should be used in preference to the open 
U-shaped shear reinforcement shown in Figure 10.5b
because it provides a much more rigid reinforcing
cage securing the longitudinal reinforcement and it
is effective in resisting torsion.
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10.11 Design Procedure
The design procedure for shear reinforcement using vertical stirrups is outined by the
flow chart below.
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EXAMPLE 1

For the reinforced concrete beam shown in 
Figure 10.6 calculate:

(a) the maximum permissible shear force Vu.max

(b) the unreinforced beam shear capacity φVuc

(c) the beam shear capacity Vu.min using minimum
shear reinforcement and,

(d) determine the spacing of N12 stirrups at a section
where the design shear force V*= 280 kN.        

SOLUTION

Data:   bv = 350   D = 500   Ast = 3720 mm2

Exposure A2

Asv = 220 mm2 f
sy.f

= 500 MPa   f ’c = 32 MPa

Minimum cover to shear reo. = 25 mm

Design shear force V* = 280 kN

(a) Maximum permissible shear force.
Shear depth do = 500 - 25(cover) - 12(stirrup) - 14(half bar)  

= 449 mm      

Vu.max = 0.2 f ’c bv do
= 0.2*32*350*449*10-3

= 1005 kN  

(b) Unreinforced beam shear capacity

Shear steel ratio pv =    

=                 = 0.0237 

From Chart V1 read v’c = 0.64 MPa

φVc = v’c bv do = 0.64*350*449*10-3

= 100.6 kN 
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A value of 100.6 kN may be taken as a conservative value of the unreinforced beam
shear capacity φVuc provided there are no axial tension forces. A better estimate is
obtained if multiplying factor β1 is included.

β
1

= 1.1(1.6 -          )   

= 1.1(1.6 -          )   

= 1.266 

Adjusted beam shear capacity,

φVuc = β1 φVc
= 1.266*100.6   

= 127.4 kN 

(c) Having chosen N12 shear reinforcement as the minimum shear reinforcement as
well as the shear reinforcement to carry shear forces where required, the only
difference will be in the spacing. The spacing required to satisfy the minimum shear
reinforcement, from equation 10.12:

s =    

=    

= 898 mm 
This exceeds the maximum spacing which is the lesser of 300 mm and 0.5D, i.e. 250 mm,

thus N12 stirrups at 250 mm centres will be used for the minimum shear reinforcement. This
is a hefty minimum shear reinforcement. Much smaller bars could have been used.

Beam shear capacity using minimum shear reinforcement,

φVu.min = φVuc + φ 0.6bv do
= 127.4 + 0.7*0.6*350*449*10-3

= 193.4 kN 

(d) Required capacity of shear reinforcement,

Minimum shear capacity to be provided by the shear reinforcement,

φVus = V* - φVuc
= 280 – 127.4   

= 152.6 kN 

= 340 
From Chart V2 read required spacing of N12 stirrups, s = 226 say 220 mm.
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10.12 Torsion in Beams
Torsion is the action of a load eccentric to the longitudinal axis of a beam. Torsion
within a structure can be classified in two forms:

(1) Statically Determinate Torsion

This torsion is related to a normal statically determinate structure, such as a simple
beam. Using the equations of statics there is a resultant torsion (twisting) action on the
beam due to the applied forces.

A typical instance of this type of action is shown in Figure 10.7.

(2) Torsion Induced in Statically Indeterminate Structures.

With statically indeterminate structures consisting of columns, beams and slabs there
are often residual torsional forces due to the redistribution of forces within members in
relation to their stiffnesses. For example, a slab floor subject to differing load patterns may
redistribute the slab moments into beam torsion due to moment rotation at the beam
support. A typical instance of this type of action is shown in Figure 10.8.

This book deals only with statically determinate torsion. The Code indicates that if
the “torsional reinforcement requirements of Clauses 8.3.7 and the detailing
requirements of Clause 8.3.8 are satisfied.” it is permissible to disregard the effect of
indeterminate torsion.

166 D E S I G N H A N D B O O K F O R R E I N F O R C E D C O N C R E T E E L E M E N T S

P

Vertical
Load

BEAM 1

BEAM 2

BEAM 3

Torsion
T *

*

Heavy LoadingLighter Loading

Torsion in beam is a
function of member
stiffnesses and distribution
of loads

Edge beams

Intermediate
beams

Figure 10.7

Figure 10.8



10.13 Torsion Action
The action of torsion in a beam causes a twisting of the cross section along the
longitudinal axis. This twisting causes a spiral cracking pattern to develop as illustrated
in Figure 10.9 (below). 
To resist the torsion stresses there are three components of the cross section:

(1) Diagonal Compressive Stresses
parallel to the spiral cracks.

(2) Transverse Tension Stresses in
the closed reinforcing ties.

(3) Tension Stresses in the
Longitudinal Reinforcement in
the corners of the ties.

It is possible to model this
behaviour as a space truss. This is
similar in principle to the truss
analogy used to represent the
behaviour of shear. Figure 10.10
shows these actions diagrammatically.

Torsion and shear both cause
diagonal compressive stresses and
also transverse tension stresses in the
closed ties. This is reflected in the
equations given in the Code for
Torsion, which include shear as a
component. The longitudinal
tension forces in the corner bars do
not have a direct shear component.

In nearly all cases torsion will
occur in conjunction with bending
and shear action. The designer must
then consider the combined action
of shear and torsion as well as
considering the additional tensile component of torsion in the longitudinal steel.

10.14 Equations for Torsion Effects in Beams
The Code equations are given below in the sequence the designer would approach the
design. A flow chart is shown in Figure 10.11 which combines the design process for
bending, shear and torsion.

TORSIONAL STRENGTH LIMITED BY WEB CRUSHING #8.3.3
Equation 10.14 combines the shear and torsion actions and limits them to prevent the
crushing of the concrete in a diagonal direction.
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(10.14)

Where: φ = 0.7 

T
u.max

= 0.2f ’c Jt Jt
= 0.4x2 y for rectangular sections 

OR   

Jt = 0.4 Σ(x2 y) for T, L or I shaped sections 

OR  

Jt = 2Am bw for thin walled sections. 

REQUIREMENTS FOR TORSIONAL REINFORCEMENT #8.3.4 (A)

The next stage is to determine if torsional and shear reinforcement is required. The code
gives three conditions. Torsional and shear reinforcement is not required if any ONE of
the three equations are satisfied.

T* < 0.25 φTuc

OR

(10.15)

OR

The latter applies only where D < (the greater of 250 mm and bw/2)

Tuc is defined for beams without prestress in equation 10.16.

) (10.16)

TORSIONAL REINFORCEMENT #8.3.4 (B)

If torsional reinforcement is required by equation 10.15 then the amount of
reinforcement for both shear and torsion shall be sufficient to satisfy equation 10.17.

(10.17)

Tus is defined for beams without prestress in equation 10.18.

Tus = fsy.f (Asw/s) 2At cot θt (10.18)
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Where: At = the area of a polygon whose vertices are at the centre of the 
longitudinal bars at the corners of the cross section. This is normally a 
rectangle formed by lines joining the centres of the four longitudinal 
corner bars.

θt = the angle between the longitudinal axis of the member and the 
diagonal compressive struts. This is taken as 45 degrees as a 
conservative value. For a more accurate value the angle varies linearly 
from 30 degrees (for T* = φTuc) to 45o (for T* = φTu.max). Equation
10.19 shows this relationship.

θt = 30 + 15                                                                                    (10.19)

The value of θt can conservatively be taken as 1.0 (this corresponds to an angle
of 45 degrees).

It should be noted that in the design process equation 10.18 can be expanded and a
unique solution determined for the spacing of the ties. An alternative is to use the design
charts on a trial and error basis. Both alternatives are shown in the design example.

MINIMAL TORSIONAL REINFORCEMENT #8.3.7

IF torsion reinforcement is required all of the shear reinforcement required by Clause
8.2.8 from the Concrete Code shall be provided in the form of closed ties.

The closed ties shall be continuous around all sides of the cross-section and anchored
so as to develop full strength at any point. The spacing of the closed ties shall not be
greater than the lesser of 0.12 ut and 300 mm.

LONGITUDINAL TORSIONAL REINFORCEMENT #8.3.6

Additional longitudinal reinforcement is required to resist the tensile forces generated by
the torsion action which extends the length of the member along the longitudinal axis.
In theory this action causes a tensile action in all longitudinal bars (both in the tension
and compression zone).

(a) The additional area of tensile longitudinal reinforcement shall be calculated using
equation 10.20.

As(tors) = 0.5 (10.20)

(b) The additional area of longitudinal reinforcement in the compressive zone shall be
calculated using equation 10.21

As(tors) = (0.5                               ) – ( ) (10.21)
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10.15 Flow Chart for Combined Bending, Shear and Torsion
Figure 10.11 illustrates the design process for concrete beams with a combined action of
bending, shear and torsion.

Note that the design of the shear reinforcement is integral with the torsion details.
Hence the full shear design process should not be undertaken in the shear design phase.
Rather the basic factors calculated and incorporated in the torsion design phase.

10.16 Notes on Torsional Reinforcement
Section 8.3.8 of the Code specifies the details for torsional reinforcement.

(a) Torsional reinforcement consists of both closed ties and longitudinal top and
bottom reinforcement.

(b) The closed ties shall be continuous around all sides of the cross section and the ends
anchored so that at any point on the ties the full strength can be developed.

The spacing of the closed tie shall not exceed the lesser of 0.12ut and 300 mm.

(c) Longitudinal reinforcement shall be placed such that at least one bar is at each corner
and is as close as possible to the corner of the closed ties.
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Chart T3 Spacing of Closed Ties for Torsion Reinforcement

174 D E S I G N H A N D B O O K F O R R E I N F O R C E D C O N C R E T E E L E M E N T S

Chart T3

TIE SPACING

TIE SPACING  s  mm

N12 Ties

50 100 150 200 250 300

150

200

250

300

350

400

450

500

550

600



EXAMPLE 2
The reinforced concrete beam shown in Figure 10.12 is
subject to the following loads:

(a) Bending Moment M* = 45 kNm
(b) Shear force  V* = 110 kN
(c) Torsion force T* = 14 kNm

Check whether the beam can carry the loads
satisfactorily and determine the reinforcement details to
satisfy bending, shear and torsion requirements.

Data

f’c = 40 MPa   b = 250 mm   D = 400 mm   Use N28 bars  M* = 45 kNm
Minimum cover to reinforcement = 30 mm

1. BENDING

d = 400 - 30 - 12 - 28/2 = 344 mm

M* ≤ φMuo

λ =                      

=          =                    = 1.521 

From Chart B1   p = 0.0038

Ast (bending) = p b d   

= 0.0038 * 250 * 344

= 327 mm2

2. SHEAR

do = 344 mm bv = 250 mm

(a) Maximum permissible shear force

φVu.max = 0.7x 0.2f’c bv do
= 0.7*0.2*40*250*344*10-3 = 482 kN 

(b) Adjusted beam shear capacity

pv = 

=  = 0.0144 
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From Chart V1 (f ’c = 40) read  v’c = 0.583

φVc = v’c bv do

= 0.583 * 250 * 344 * 10-3 = 50.12 kN 

β1 = 1.1(1.6 -          )    

= 1.1(1.6 -          ) 

= 1.382    

φVuc = β1 φVc  = 1.382 * 50.12 

= 69.2 kN

(c) Beam shear capacity using minimum shear reinforcement

φVu.min = φVuc + φ0.6 bv do

=  69.2 + 0.7 * 0.6 * 250 * 344 * 10-3

=  105.3 kN 

3. TORSION

x = 250 mm  y = 400 mm  Jt =  0.4 * 2502 * 400  = 10 * 106

(a) Maximum permissible torsion force

φTu.max = φ0.2 f ’c Jt

= 0.7 * 0.2 * 40 * 10 

= 56 kNm

(b) Beam torsion capacity

φTuc = φ 0. 3         Jt

= 0.7 * 0.3 *      * 10 

= 13.3 kNm

These values can be read directly from Chart T1S

4. COMBINED SHEAR AND TORSION

(a) Check section strength

+               ≤ 1.0
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= 0.48 ≤ 1.0        ..... section size OK

(b) Check unreinforced section capacity

0.25 φTuc = 3.35            T* = 14 > 3.35

≤ 0.5   

= 2.64     (> 0.5)

Both criteria are exceeded thus shear and torsion reinforcement is required.

(c) Determine shear/torsion reinforcement

≤ 1.0

(i) Using the charts:

Trial 1 - adopt 50% contribution from both shear and torsion

Shear V* = 110 kN  cot θv = 1 (conservative method)

do = 344 mm    fsy.f = 500 MPa    Asv = 220 mm2 (for 2 legs of N12 ties)

Required value         = 0.5

thus φVus =                = 220 kN

= 640

From Chart V2, spacing = 120 mm

Torsion

T* = 14 kNm   cot θ t = 1 (conservative method)  do = 344 mm

fsy.f = 500 MPa   Asw = 110 mm2

At = (400 - 2 * 30 - 2 * 12 - 28) * (250 - 2 * 30 - 2 * 12 - 28)

= 39744 mm2

Required value = 0.5 (assumed)

thus φTus =                 =  28 kNm
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= 352

From Chart T3, spacing = 107 mm

Simplify the spacing to 100 mm.

SHEAR

From Chart V2 for N12 at 100 mm spacing 

= 770

φVus = do cot θv * 770  

= 344 * 1 * 770 * 10-3

= 265 kN

TORSION

From Chart T3 for N12 at 100 mm spacing 

=  370

φTus = 2 A t cotθt * 370 

= 2 * 39744 * 1 * 370 * 10-6

= 29.4 kN

= 0.89 ....OK

Use N12 closed ties at 100 mm spacings

Check minimum spacing as the lesser of 0.12 ut and 300 mm

ut = 2*(400 - 2*30 - 2*12 - 28) + 2*(250 - 2*30 - 2*12 - 28)

= 852 mm

∴ 0.12 ut = 0.12 * 852 = 102 mm (≈100) ....OK
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(ii) By equations (using the non-conservative approach):

SHEAR

θv = 30 + 15                       

= 30 + 15                      = 30.01°

cot θv = 1.73

φVus =                             

=  

TORSION

θt = 30 + 15                          

= 30 + 15                 = 30.24°

cot θt = 1.715 

φTus =                              

=  

= 

= ≤ 1.0

= 0.0027s + 0.0024 s   1.0   

∴ s   =             = 197 mm 

Note the larger spacing because of the inclusion of the cot θ effect. The value
without this (i.e. using θ = 45o) is 115 mm. These values are greater than the minimum
thus use 100 mm.
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USE N12 closed ties at 100 mm spacings

5. TORSION AND BENDING

Additional reinforcement shall be designed to resist the force of:

0.5 fsy.f ut cot2θt = 0.5*500*         *852*1.732 *10-3

= 701 kN

Ast(tors) =                   = 1403 mm2

Bottom longitudinal reinforcement:

Ast = Ast(bend) + Ast(tors)

= 327 + 1403 

= 1730 mm2 (3 N28 - 1860 mm2)

Use 3 N28 bars in the bottom

Top longitudinal reinforcement:

Ast = - Ast(bend) + Ast(tors)

= - 327 + 1403  

= 1076 mm2 (2 N28 - 1240 mm2)

Use 2 N28 bars in the top

P R O B L E M S

QUESTION 1

The beam shown above carries superimposed dead loads g = 76 kN/m and
superimposed live loads q = 100 kN/m. The beam which is exposed to the weather is
located inland, 80 km from the coast, in a non-industrial environment and arid climate.
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(a) Choose the longitudinal reinforcement for moment conditions using N28
reinforcing bars.

(b) Determine the spacing of N12 stirrups at the critical section. Vary the spacing along
the beam.

(c) Draw the beam showing all details.
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11.1 Additional Symbols used in this Chapter
a = Dimension of the critical shear perimeter measured parallel to the 

direction of M*v.

as = Length of support in direction on span.

bo = Critical dimension of an opening adjacent to a slab support.

Db = Overall depth of a spandrel beam.

Ds = Overall depth of slab or drop panel as appropriate.

Fd = Slab design load.

Ln = Clear span between faces of supports.

Lo = Span length used in the simplified method, L minus 0.7 times the sum 
of as for each support.

L’o = The smaller calue of Lo for adjoining spans.

Lt = Width of the design strip.

l x = Short clear slab panel dimension between supports.

l y = Long clear slab panel dimension between supports.

Lx = Short effective span of a slab panel.

Ly = Long effective span of a slab panel.

Mm = Positive bending moment at midspan.

MNE = Negative moment at exterior support.

MNI = Negative moment at interior support.

Mo = Total static moment for the span of the design strip.

M*v = The unbalanced slab bending moment transferred into the support.

M*
x = Slab design moments in x directions.

M*
y = Slab design moments in y directions.

Two-way slabs

11
c h a p t e r
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Vuo = The ultimate shear strength of a slab where M*v = 0.

w* = Unit slab design load used as alternative symbol for Fd.

wx’ = Equivalent design load for shorter slab support.

wy’ = Equivalent design load for longer slab support.

x and y = The shorter and longer dimensions respectively of the cross section of 
the torsion strip or spandrel beam.

βh = The ratio of the longest overall dimension of the effective loaded area, 
Y, to the overall dimension X, measured perpendicular to Y.

βx = Bending moment coefficients for two-way slabs supported by rigid 
βy beams and walls.

11.2 Rectangular Two-Way Slabs
As the name implies, two-way slabs transmit bending action in two directions between
the supports. There are a number of two way slabs to be considered.

(a) Slabs supported by rigid beams or walls. The beams are designed separately as T and
L-beams.

(b) Slabs supported by columns with drop panels around the columns. The drop panels
are thickened portions of the slab designed to carry the high shear forces around the
columns. Such slabs are referred to as flat slabs. 

(c) Slabs supported by columns without drop panels. Such slabs are called flat plates. 

Two-way slabs conventionally refer to slabs supported by rigid beams or walls. Type
(b) and (c) slabs are usually specifically referred to as flat slabs and flat plates. The Code
permits two-way slabs to be designed using a rigorous design procedure. This frequently
requires the use of sophisticated computer programs utilising finite element analysis
techniques and it is outside of the scope of this book. The alternate method provided for
in the Code is the simplified method using bending moment coefficients with deemed
to comply arrangement of reinforcement. This latter method which has been widely used
and well proven over many years, will be used here.

11.3 Two-Way Rectangular Slabs Supported by Rigid 
Beams and Walls
For the purpose of determining
strength of two-way rectangular slabs,
the slab is divided into a middle strip,
equal to three quarters of the effective
span,  and two edge strips in each
direction as shown in Figure 11.1
(right). Most of the bending action in
each direction is carried by the middle
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L 
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y

y

x

x



strips. The edge strips are not designed in the normal sense; the small bending action
taken by the edge strips is considered to be adequately catered for by the minimum steel
ratio 0.002 as per #9.1.1(b). The positive design bending moments per unit width (1 m)
in each direction are given by:

M*x = βx Fd (Lx)
2 (11.1)

M*y = βy Fd (Lx)
2 (11.2)

Where;  βx and βy are bending moment coefficients.

Lx and Ly is the shorter and longer effective span.

Fd is the design load in kPa or kN/m for a unit width.

Note that both equation 11.1 and 11.2 is in terms of span Lx.

It does not require a great deal of imagination to realise that the bending moment
carried per unit width in each direction will depend on the spans Lx and Ly. A simple
analogy is to consider two elastic bands stretched between supports at right angles with
a point load applied at the intersection of the elastic bands. When the lengths  are equal,
Lx = Ly, the proportion of the load carried by each band will also be equal. If Lx is made
shorter than Ly, the shorter band will  carry a higher proportion of the load. As Lx is
progressively made shorter, the proportion of the load carried by the shorter band will
continue to increase while the load carried by the longer band will continue to decrease.
In the ultimate, when the longer band length Ly is many times longer than Lx, the longer
band will hardly carry any load while the shorter band carries most of the load. The
condition being approached is that of a one-way action. Bending action in two-way slabs
is very similar to this analogy.

Table 11.1 on the next page is a table of moment coefficients β x and β y given by
the Code for two-way slabs to be used in equations 11.1 and 11.2. It is noted that when
the span ratio Ly/Lx = 2.0, a slab is considered to approach  a  one-way slab and it is
designed as such. The minimal bending in the long direction is adequately catered for by
the minimum steel ratio 0.002. Note that while the bending moment coefficient βx.
varies with the span ratio  Ly/Lx the coefficient βy is constant.

As an alternative to Table 11.1, Chart S4, following the table, is a plot of the
bending moment coefficients. The chart illustrates how the bending moment coefficients
tend assymptotically towards a horizontal line near  Ly/Lx = 2.0.

The negative bending moment at a continuous support is given as;

1.33*(The maximum positive bending moment)

The negative bending moment at a discontinuous support is given as;

0.50*(The maximum positive bending moment)

When the negative bending moments on either side of a support differ due to
difference in the spans or edge conditions in the adjacent spans, the Code permits the re-
destribution of the out of balance moments in proportion to the slab stiffnesses.
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Short  Span  Coefficient  βx
Values  L y / L x

1.0 1.1 1.2 1.3 1.4 1.5 1.75 ‡2.0

1. Four edges continuous 0.024 0.280 0.320 0.350 0.370 0.400 0.400 0.480 0.024

2. One short edge
discontinuous 0.028 0.032 0.036 0.038 0.041 0.043 0.047 0.050 0.028

3. One long edge
discontinuous 0.028 0.035 0.041 0.046 0.050 0.054 0.061 0.066 0.028

4. Two short edges
discontinuous 0.034 0.038 0.040 0.043 0.045 0.047 0.050 0.053 0.034

5. Two long edges
discontinuous 0.034 0.046 0.056 0.065 0.072 0.078 0.091 0.100 0.034

6. Two adjacent edges
discontinuous 0.035 0.041 0.046 0.051 0.055 0.058 0.065 0.070 0.035

7. Three edges discontinuous
one long edge continuous 0.043 0.049 0.053 0.057 0.061 0.064 0.069 0.074 0.043

8. Three edges discontinuous
one short edge continuous 0.043 0.054 0.064 0.072 0.078 0.084 0.096 0.105 0.043

9. Four edges discontinuous 0.056 0.066 0.074 0.081 0.087 0.093 0.103 0.111 0.056
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Edge Conditions
Long-Span
Coefficient
βyfor All
Values of 
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11.4 Deemed to Comply Arrangement of Reinforcement 
#9.1.3.3
A deemed to comply arrangement of reinforcement required by the Code is shown in
Figure 11.2.

11.5 Torsional Reinforcement at Corners of Restrained 
Edges
In addition to the deemed to comply arrangement of flexural reinforcement shown
above, torsional reinforcement must be provided in both the top and bottom of the slab
at corners not free to lift where one or both edges are discontinuous. The Code # 9.1.3.3
requires the reinforcement in each face to be made up of two layers perpendicular to the
edges of the slab and extending a minimum distance of 0.2 times the shorter span. The
area of each layer should be not less than:

(a) 0.75Ast when both edges are discontinuous and,

(b) 0.50Ast when only one edge is discontinuous.

Where Ast is the area of the maximum positive moment reinforcement required at
mid-span. Any other reinforcement provided may be considered as part of the torsional
reinforcement.

A slab must still satisfy serviceability requirements as well as shear strength
conditions.

EXAMPLE 1
The rectangular slab system for an office building shown in Figure 11.3 is supported by
400 mm wide and 600 mm deep beams. Design slab panel “A” using grade N32 concrete
and steel reinforcing mesh for a superimposed dead load g = 1 kPa and a live load q = 4
kPa. It may be assumed that the slab does not support masonry walls. Masonry walls in
the building are applied directly to the beams. Exposure classification A2 may be
assumed.
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SOLUTION

Data:     f ’c = 32 MPa      fsy = 500 MPa      g = 1 kPa      q = 4 kPa

Exposure Classification A2

SERVICEABILITY

Assume 150 mm thick slab.

Weight of slab = 0.15*24 = 3.6 kN/m2

Total dead load g = 1 + 3.6 = 4.6 kN/m2

The effective length is taken as the lesser of the distance between support centrelines
and the clear span Ln + D. It is sufficient to take the effective spans as the span between
support centrelines. Thus the effective spans are:

Lx = 4000 + 400 = 4400

Ly = 5000 + 400 = 5400

= 1.23

From Table 1.2 the short-term live load factor  ψs = 0.7.

Also from Table 1.2 the long term live load factor  ψl = 0.4.

For total deflection                   

Assuming tension reinforcement only, the long-term deflection multiplier  kcs = 2.

The effective load for for total deflection,

Fd.eff = (1+2)*4.6 + (0.7+0.4*2)*4  = 19.8 kN/m2
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From Chart D2, k5 = 18.4

(where Ec =31,000 MPa for 32 MPa)

From page 104, k3 = 1.0

From Table 8.2 for edge condition 6 and Ly/Lx = 1.23 (by interpolation),   k4 = 2.79

The maximum span to depth ratio for total deflection,

= k3 k4 k5 = 1.0*2.79*18.4 = 51.4

Required effective depth, d =            = 8  mm 

The assumed 150mm thick slab is adequate, although a thinner slab could be used.

STRENGTH

For a 1 m wide slab strip.

Design load, Fd = 1.2*4.6 + 1.5*4 = 11.5 kN/m

From chart S4 for Ly/Lx = 1.23, βx = 0.049 and βy = 0.036

Maximum positive design bending moments.

M*
x = βx Fd (Lx)

2

= 0.049*11.5*(4.4)2 = + 10.9 kNm

M*
y = βy Fd (Lx)

2

OR

M*
y =                                     = + 8.0 kNm

Maximum negative design bending moments.

At continuous edges,

M*
x = - 1.33*10.9  = - 14.5 kNm

M*
y = - 1.33*8.0  = - 10.6 kNm

At discontinuous edges,

M*
x = -  0.5*10.9  = - 5.5 kNm

M*
y = -  0.5*8.0  = - 4.0 kNm

L

d
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REINFORCEMENT

Effective depth of slab for reinforcement in short direction

d = 150 - 25(cover) - 6(half bar assuming 12 mm bars)

= 119 mm

Effective depth of slab for reinforcement in long direction, 

d = 119 - 12(bar dia.)

= 107 mm

The reinforcing fabric may now be chosen from Chart S3 as shown in the following
table. Note that by using Chart S3, selection of meshes will satisfy the minimum steel
ratio.

Mx My d Mesh Chosen From Chart S3 

- 14.5 - 119 SL102          

+ 10.9 - 119 SL92              

- 5.5 - 119 SL92*          

- - 10.6 107 SL92              

- + 8.0 107 SL82*      

- - 4.0 107 SL82*

(* minimum reinforcement 0.0020 bD as per Code)

Alternatively the reinforcing areas could have been determined from Chart S2. The
required areas will be calculated for the maximum positive reinforcement since the area
of the torsional reinforcement is a proportion of the maximum positive area required for
bending.

M*
x = + 10.9 kNm and d = 119 mm

From Chart S3 read required steel ratio p = 0.0020.

Required Ast = 0.0020*1000*119 = 238 mm2/m.

M*
y = + 8.0 kNm and d = 107 mm

From Chart S2 required steel ratio  p = 0.0020 which is greater than the minimum
steel ratio as per # 9.1.1 from AS3600.

Required Ast = 0.0020*1000*107 = 214 mm2/m

The reinforcing mesh determined above are shown in Figure 11.4. It would not be
a good engineering practice to end up with a proliferation of reinforcing mesh. The
number of mesh types should be kept to a minimum. The final arrangement of reinforce-
ment which satisfies the deemed to comply arrangement given in Figure 11.2 is shown
in Figure 11.5
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For torsional reinforcement at corners, with two edges discontinuous, the required
area: 

= 0.75*Ast = 0.75*238  = 179 mm2

The SL72 mesh provided top and bottom has an area of 179 mm2. However the
minimum area of steel 0.0020bD required by the Code is still 238 mm2 i.e. SL82

With one edge discontinuous, the required area;

= 0.5*238  = 120 mm2

Again the SL62 square mesh is sufficient (but again the Code minimum requires
that SL82 be used).

Figure 11.4 - Reinforcing Mesh as Calculated                 

11.6 Equivalent Uniformly Distributed Loads
The tributary areas shown in Figure 11.6 may be used to calculate shear forces in slabs.
The loads carried by supporting walls or beams, an equivalent uniformly distributed load
w’ is applied. The value of w’ is calculated by dividing each slab panel into triangular and
trapezoidal loaded areas obtained by lines drawn at 45o at each corner as shown in Figure
11.6.

The value of w’ is calculated by applying the triangular or trapezoidal load to the
supporting beams. An expression for w’ for the short span beam supporting a triangular
load shown in Figure 11.7 is derived below.
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Figure 11.7

Distributed load at mid-span =          kN/m 

Support reactions, R* = One half the triangular area.

=                      

=                       
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Taking moments about mid-span,

M* =                                  

= w* (a)

For a uniformly distributed load wx’, the mid-span moment is,

M* = wx’              (b)

Equating the two expressions and solving wx’ the equivalent load carried by the short
span beam,

wx’ =                                                                                                        (11.3)

Applying the trapezoidal load to the long span, an expression for the equivalent
uniformly distributed load wy’ may be derived to be given by,

w’y = w* lx [ ] (11.4)

The equivalent loads given by equations 11.3 and 11.4 may now be used for
checking the slab for shear near the supports or for designing the supporting beams. Note
that the total equivalent uniformly distributed load to be applied to a beam will be the
sum of the equivalent uniformly distributed loads contributed by the slabs on either side
of the beam.

EXAMPLE 2
Calculate the equivalent uniformly distributed load which may be used for designing the
supporting beam between panel “A” and panel “B” in Figure 11.3 if the slab design load
w* (including the weight of slab) is 11.75 kN/m2.

SOLUTION

Considering panel “A” 

This is the short span beam in the panel with l x = 4.0 m.

From equation 11.3, the equivalent distributed load,

wx’ =            =                = 15.7 kN/m

Considering panel “B”
This is also the short span beam in panel “B” having the same span as panel “A”, and

hence the same equivalent load wx’ = 15.7 kN/m.
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The total equivalent load applied to this beam will hence be 2*15.7 = 31.4 kN/m.
Note however that the load over the beam width (0.4*11.75 = 4.7 kN/m) and the weight
of beam must be added to the equivalent load of 31.4 kN/m to obtain the design load
for the beam.                        

11.7 Simplified Slab Design Method
The Simplified Slab Design Method is one of three methods of rectangular slab systems
which are outlined in AS3600 Code. They are:

(a) Simplified Slab Design

The Simplified slab design method provides a simple approach for the design of
regular flat slabs and plates and other rectangular two way slab systems. It is limited in
application but simple to apply.

(b) Idealised Frame Method of Slab Design

The Idealised Frame Method of Slab Design provides the designer with a more
flexible structural model to determine the slab moments. This method also provides for
the inclusion of vertical forces into the design. Many of the restrictions of the Simplified
Method do not apply to the Idealised Frame. The analysis of the “Frame”  requires a
basic knowledge of two dimensional frame analysis. This does provide the designer more
control in modelling the slab structure. The Simplified Method is used to provide the
distribution of moments across the strip and for reinforcing details.

(c) Collapse Load Method of Analysis and Design of Slabs.

The Collapse Load Method involves the use of plastic design and collapse
mechanism in the determination of the failure capacities of slabs. This method has the
advantage of being readily applicable to slabs of any shape. Separate checks must be made
on shear and deflections.

This chapter limits itself to details of the Simplified Method of Slab Design. It should be
appreciated that in the design process the designer may need to use any of the three
methods or a combination of them.

11.8 Criteria for Application of Simplified Slab Design 
Method
This method is intended to apply to multiple span reinforced two way slab structures
with a rectangular grid support system.

These include:
(a) Flat Plates
(b) Flat Slabs
(c) Beam and Slabs
(d) Slabs with Thickened Slab Band (Band Beam)
(e) Waffle Slabs
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The restrictions on the application of this method are listed in Code section 7.4.1.

(a) There shall be at least two continuous spans in each of the two principal directions.

(b) The supporting grid is rectangular. Individual supports can be offset a maximum of
10% of the span length in the direction of offset, from the grid line.

(c) The ratio of the longer span to the shorter span of any portion of the slab enclosed
by the centrelines of the supporting members, shall not be greater than 2.0.

(d) Within the design strips, shown in Figure 11.8, in either direction, the lengths of
successive spans shall not differ by more than one third of the longer span. The end
spans shall not exceed the adjacent internal spans.

(e) Lateral forces on the structure are not resisted by the slab system but by shear walls
or braced frames.

(f) Vertical loads are essentially uniformly distributed.

(g) The live load applied to the slab shall not exceed the twice the dead load.

(h) The reinforcment shall be arranged in accordance with Code requirements. See
Sections 11.11 and 11.15

11.9 Geometry of the Simplified Slab System
The geometry of the Simplified Slab System is shown in Figure 11.8 (below). Each of the
two principal directions of the two-way action is considered separately. For each principal
direction the slab is divided into design strips (interior and exterior). Within each of these
design strips a further division is made into a column strip and two middle strips.

The moments are calculated for each principal direction and each design strip. Each
design strip consists of a
number of spans which are
analysed in turn. Then the
moments are distributed
between the column strip
and the middle strips for
each span.
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11.10 Calculation of Moments
(a) Division of Slab into Design Strips

For each of the principal directions, the slab is first divided up into design strips as shown
in Figure 11.8.

(b) Calculation of Static Moment for Each Span

For each of the spans within the design strips the static moment is calculated using
equation 11.5.

M0 =                                                                   (11.5)

Figure 11.9 illustrates the method of calculating  L0 for various support conditions.

(c) Design Moments within the Span

The total static moment shall be distributed between the midspan positive moment and
the end negative moments in accordance with Table 11.2 for end spans. For interior
spans for all types of slab systems the negative moment factor shall be 0.65 and the
positive moment factor shall be 0.35. These details are shown in Figure 11.10.
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TTaabbllee  1111..22  --  EEnndd  SSppaann  MMoommeenntt  DDiissttrriibbuuttiioonn  ffoorr  FFllaatt  SSllaabbss

Type of slab system and Exterior negative Positive moment Interior negative
edge rotation restraint moment

MNE MM MNI

Flat slabs with exterior 0.0M0 0.60M0 0.80M0
edge unrestrained

Flat slabs with exterior edge 0.25M0 0.50M0 0.75M0
restrained by columns only

Flat slabs with exterior edge 0.30M0 0.50M0 0.70M0
restrained by spandrel beams 
and columns

Flat slabs with exterior 0.65M0 0.35M0 0.65M0
edge fully restrained

Beam and slabconstruction 0.15M0 0.55M0 0.75M0

Figure 11.10  Moment Distribution within Spans

(d) Design Moments within Column and Middle Strips

The three design moments for each span shall then be distributed transversely across
the design strip in accordance with Table 11.3.

TTaabbllee  1111..33  --  DDiissttrriibbuuttiioonn  ooff  MMoommeenntt  BBeettwweeeenn  CCoolluummnn  aanndd  MMiiddddllee  SSttrriipp

Bending Moment Moment Factor Moment Factor
for Column Strip for Middle Strip

Negative Moment - Interior Support 0.60 to 1.00 0.40 to 0.00

Negative Moment - Exterior Support 0.75 to 1.00 0.25 to 0.00

Positive Moment   - All Spans 0.50 to 0.70 0.50 to 0.30

The design moments for the middle strip are calculated by adding together the
moments for the two adjoining halves from adjacent design strips. For middle strips
which are adjacent to and parallel with an edge supported by a wall the value of the
design moment shall be twice the value of design moment for the adjacent half middle
strip for the adjoining interior design strip (see Figure 11.8).
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11.11 Moment Reinforcement Design and Detail
Figure 11.11 shows the reinforcement arrangement which is deemed to comply with
section 9.1.3 of the Code.

In addition all slab reinforcement perpendicular to a discontinuous edge shall extend
beyond the supporting member as follows:

(a) Positive Reinforcement - not less than 150 mm beyond the supporting edge or to
the edge of the slab if there is no supporting member.

(b) Negative Reinforcement - such that the calculated force is developed at the support
face in accordance with section 13.1 of the Code.

Figure 11.11 -  Reinforcing Details
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11.12 Shear Consideration
There are two principal forms of shear which act in a slab system. The first form is the
localised effect of  shear at columns, the second is the normal beam shear action across
the width of the slab. This section discusses the localised effect of shear at  columns. The
beam shear can be checked using the methods discussed in Chapter 10 and in Section
11.6 for the distribution of load for shear calculations.

The action in the vicinity of the column is complicated by the combined action of
shear and moment. The principal shear effect is punching shear. The conventional
model for punching shear is shown in Figure 11.12.

The shear perimeter is defined
by an outline in plan which is at a
distance d away from the  boundary
of the area of effective support
(previously d/2) normally the cross
section of the column under. The
outline is similar to the area of
support with two differences:

(1) The outline does not follow
reentrant corners. The outline
ignores the point on the cross
section which is the reentrant
point.  Figure 11.15 shows
some typical shear perimeters,
one of which is an example of
an “L” shaped support. The
inside corner of the “L” shape is
ignored.

(2) Portions of  the critical shear
perimeter is ignored where a
critical opening occurs. A
critical opening is defined as an
opening through the thickness
of a slab which has an edge or
portion of an edge located with
a clear distance to the critical
shear perimeter less than 2.5 b0.
Where b0 is effective opening
dimension. This is illustrated in
Figure 11.13 where a circular
opening and a rectangular
opening are shown.
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In considering the capacity in shear of the slab, at the support, due account must be
taken of any transfer of moment from the slab into the support. The term  M*

v
designates the amount of moment which is transferred from the slab system into the
support in the direction being considered. For the simplified method the code
designates:

(a) For Interior supports M*v shall be determined from the unbalanced moment
transferred from the slab to the support. The Code specifies the minimum value of
this moment in equation 11.6.

M*v = 0.06[(1.2g+0.75q) Lt(Lo)
2 - 1.2g Lt(L’o)

2] (11.6)

Where L’o is the smallest value of the adjoining spans.

(b) For Exterior supports M*v is the actual moment.

11.13 Shear Capacity where Bending Moment M*v = 0
Although in the simplified method M*

v should always be non-zero the value Vuo is a basic
factor which is used in some cases.

Where there is no transfer of moment from the slab to the support there are two
design cases. These relate to the inclusion or non inclusion of a shear head. A shear head
usually consists of  steel sections, universal beams, columns or channels embedded in the
slab. This is illustrated in Figure 11.14. 

Figure 11.14 - Shear Head Arrangement

1. NO SHEAR HEAD.

The shear capacity of a slab for two way punching at a support without a shear head and
ignoring prestress is given  by equation 11.7

φVuo = φudfcv (11.7)

Where: fcv =  0.17                            ≤ 0.34         

βh  = the ratio of the larger effective support dimension (Y) to the overall dimension
(X) measured perpendicular to Y
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2. SHEAR HEAD PRESENT

The shear capacity of a slab for two way punching at a support with a shear head and
ignoring prestress, is given  by equation 11.8.

φVuo =  φud(0.5        )                                                                                (11.8)

11.14 Capacity where Bending Moment M*v > 0
Where M*

v is not zero the transfer of moment into the support must be included in
the determination of punching shear and torsional effects at the support. The
expressions which relate to the shear capacity are derived from considering the shear
and torsion on the side of the support at the slab level. The condition which must be

satisfied is  .                          The following expressions derived for this condition 

relate to the different cases of shear in slabs at supports. If the transfer of moment from
the slab to the column or support is significant it is necessary to resist the torsional
effect with either a torsion strip or a spandrel beam. These are illustrated in Figures
11.15 and 11.16.

Figure 11.15
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Figure 11.16

There are four cases considered in the Code.

(1) The shear capacity of a slab at a support where  there are no closed ties in the torsion
strip or spandrel beam is given in equation 11.9.

φVu = φ (11.9)

(2) The shear capacity of a slab at a support where  the torsion strip contains torsional
reinforcement in the form of closed ties as detailed in Section 11.15 and as defined
in equation 11.14, is given in equation 11.10.

φVu.min = φ (11.10)

(3) The shear capacity of a slab at a support where  the spandrel beam contains torsional
reinforcement in the form of closed ties as detailed in Section 11.15 and as defined
in equation 11.14, is given in equation 11.11

φVu.min = φ (11.11)

(4) The shear capacity of a slab at a support where  the torsion strip or spandrel beam
contains torsional reinforcement in the form of closed ties as detailed in Section
11.15 and in excess of the minimum required by  equation 11.14, is given in
equation 11.12
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φVu = φVu.min (11.12)

The value of φVu shall not exceed the maximum as specified in equation 11.13.

φVu.max ≤ 3φVu.min (11.13)

11.15 Shear Reinforcement Details                   
If closed ties are required within the torsion strip or spandrel beam then the minimum
area is given by equation 11.14.

Asw ≥ (11.14)

The closed ties used as shear reinforcement shall be as detailed in Figure 11.16. They
shall also comply with the following Code requirements (Section 9.2.6).

(1) the ties shall extend along the torsion strip or spandrel beam a distance of not less
than Lt / 4 from the face of a support or concentrated load. The first tie shall be
located with in a distance of 0.5 x spacing ‘s’ from the face of support.

(2) The spacing, s, of the closed ties shall not exceed the greater of 300 mm and Db or
Ds as applicable.

(3) There shall be at least one longitudinal bar at each corner of the closed tie.

11.16 Deflection
The deflection calculations are as detailed in Chapter 8. Chart D2 can be used to check
on deemed to comply conditions. The following points are reiterated to emphasize the
particular aspects relevant to the simplified method.

(1) k3 = 0.95 for two way flat slabs without drop panels.

= 1.05 for two way flat slabs with drop panels.

The drop panels shall extend a distance L/6 in each direction on each side 
of a support centreline.

The overall depth of the drop panel shall be at least 1.3D where D is the 
slab thickness without the drop panel.

(2) k4 = 2.0 for end spans

= 2.4 for interior spans

This applies where in the adjoining spans the ratio of the longer span to the
shorter span does not exceed 1.2. The end span shall not be longer than an interior span.
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11.17 Design Process
The design process for the simplified method can be outlined as follows:

(1) The Code places restrictions on the application of the method. These restrictions
should be verified before proceeding with any analysis or design.

(2) The slab size should be estimated (for design only).

(3) The analysis should be carried out in both the x and the y direction.

(4) The moments in the direction of  the strip and the transverse moments calculated.

(5) The reinforcing steel calculated.

(6) The slab deflection is calculated. If the deflection exceeds the code requirements
then the slab is redesigned.

(7) The shear capacity of the slab is checked.

(8) Final reinforcement details are then determined.

EXAMPLE 3
A simple slab floor system is shown in Figure 11.17. Design the floor system using the
simplified design method. In this example the complete problem will not be worked out.
Typical aspects will be detailed only.

Figure 11.17
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DATA

The floor system is used for offices with a design live load of 3 kPa.
The slab will not support any masonry walls or features and there are no fittings

which will be damaged by deflection.
f ’c = 40 MPa. Use N12 bars where possible.
Required cover A1 - 20 mm

CALCULATIONS

(a) Determine design strip dimensions - see Figure 11.7

(b) Determine drop panel extent - based on L/6

x direction L/6 = 7000/6 = 1167 mm * 2 = 2333 mm

Round off to 2400 mm overall.

y direction L/6 = 6000/6 = 1000 mm * 2 = 2000 mm

2000 mm overall

See Figure 11.17

(c) Determine approximate slab thickness. There are a number of techniques and aids
available to estimate the depth. Chart D2 in chapter 8 can be used as follows.

Leff /d = k3k4k5 Data Leff = 7000 

k3 = 1.05, Drop panels k4 = 2.1, End span kcs = 2.0  (No Asc at midspan)

Live Load = 3 kPa, Dead Load = 6 kPa  (estimate 250 average D)

Long Term Loading Fd.eff = (1 + 2)*6 + (0.7 + 2*0.4)*3  = 22.5 kPa

∆/Leff = 1/250

From Chart D2  (Chapter 8) k5 = 18.3

Incremental Loading Fd.eff = 2*6 + (0.7 + 2*0.4)*3  = 16.5 kPa

∆/Leff = 1/500

From Chart D2 (Chapter 8) k5 = 16.1

Therefore using the lesser value of k5,   d = 7000/(1.05*2.1*16.1)   = 197 mm

D = 197 + 12/2 + 20 = 223 say   230 mm

Drop panel depth  1.3D = 230 * 1.3 = 300 mm

Check average concrete thickness = 230 + 2.4*2.0*(300-230)/(7*6)

= 238 say 240 mm

Try new dead load,  g = 24 * 0.24 = 5.76 kPa

Check incremental deflection only which was earlier established to govern.

Incremental Loading, Fd.eff = 2 * 5.76 + (0.7 + 2*0.4)*3  = 16.0 kPa

∆/Leff = 1/500
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From Chart D2  (Chapter 8) k5 = 16.3

Therefore using the new value of k5,   
d = 7000/(1.05*2.1*16.3)   = 195 (say 200 mm)

D = 200 + 12/2 + 20 = 226 say   230 mm

Drop panel depth  1.3D = 230 * 1.3 = 300 mm      ...... OK

(d) Slab Analysis

X-DIRECTION  - LONG SPAN

Lt = 6.0     L = 7.0     Fd = 1.2*5.76+1.5*3 = 11.4 kPa

To calculate L0,   first calculate as = 270 mm see Figure 11.9

Lo = 7000 - 2*(0.7*270)  = 6622 mm

Mo = 11.4*6.0*6.6222/8  = 375 kNm

INTERNAL STRIP

Note C- indicates column strip M - indicates middle strip

Internal Span End Span
Distribution of Moment along the Span

Negative End Mmt Positive Moment Neg. Ext  Pos. Mmt Neg. Int
0.65*375 0.35*375 0.25*375 0.5*375 0.75*375
-244 130 -94 188 -281

Distribution of Moment Across the Strips

C 0.75 M 0.25 C 0.5 M 0.5 C 1.0 M 0.0 C 0.5 M 0.5 C .75 M .25
-183 -61 65 65 -94 0 94 94 -211 -70

Lt   = 3.2     L = 7.0     Fd = 1.2*5.76+1.5*3 = 11.4 kPa

Lo  = as before  = 6622 mm

Mo =                            = 200 kNm

EXTERNAL STRIP

Internal Span End Span
Distribution of Moment along the Span

Negative End Mmt Positive Moment Neg. Ext  Pos. Mmt Neg. Int
0.65*200 0.35*200 0.25*200 0.5*200 0.75*200
-130 70 -50 100 -150

Distribution of Moment Across the Strips

C 0.75 M 0.25 C 0.5 M 0.5 C 1.0 M 0.0 C 0.5 M 0.5 C .75 M .25
-98 -32 35 35 -50 0 50 50 -112 -38

T W O - W A Y S L A B S 207

11 4 3 2 6 622
8

2. * . * .



Y-DIRECTION  - SHORT SPAN

Lt = 7.0     L = 6.0     Fd = 1.2*5.76+1.5*3 = 11.4 kPa

To calculate Lo -   first calculate as = 270 mm, see Figure 11.9

Lo = 6000 -  2*(0.7*270)  = 5622 mm

Mo =                              = 316 kNm

INTERNAL STRIP

Internal Span End Span
Distribution of Moment along the Span

Negative End Mmt Positive Moment Neg. Ext  Pos. Mmt Neg. Int
0.65*316 0.35*316 0.25*316 0.5*316 0.75*316
-205 110 -79 158 -237

Distribution of Moment Across the Strips

C 0.75 M 0.25 C 0.5 M 0.5 C 1.0 M 0.0 C 0.5 M 0.5 C .75 M .25
-154 -51 55 55 -79 0 79 79 -178 -59

Lt = 3.7     L = 6.0     Fd = 1.2*5.76+1.5*3 = 11.4 kPa

Lo = as before  = 5622 mm

Mo =                              = 167 kNm

EXTERNAL STRIP

Internal Span End Span
Distribution of Moment along the Span

Negative End Mmt Positive Moment Neg. Ext  Pos. Mmt Neg. Int
0.65*167 0.35*167 0.25*167 0.5*167 0.75*167
-109 58 -42 84 -125

Distribution of Moment Across the Strips

C 0.75 M 0.25 C 0.5 M 0.5 C 1.0 M 0.0 C 0.5 M 0.5 C .75 M .25
-82 -27 29 29 -42 0 42 42 -94 -31

Each of these moments acts across the width of the particular strip and adjoining middle
strips are added together.

(e) Reinforcement Selection
For each of these moments the appropriate area of steel can be calculated.  The

following checks must be made.
Minimum reinforcement is 0.0025 bD (as per # 9.1.1(a) needs to be calculated for

four cases - two in each direction. The long span bars will be laid closest to the external
face as this is the main bending direction.
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The value of d in the long span for the drop panel is 300 - 20-12/2 = 274 mm.

In the slab d = 230 - 20 -12/2 = 204 mm.

The value of d in the short span for the drop panel is 300 – 20 -12/2 -12 = 262 mm.

In the slab d = 230 - 20 -12/2 -12= 192 mm.

Check long span - column moment at internal column  M* = -211 kNm.

Strip is 3m wide - M* per m width = -211/3 = -70 kNm.

Check minimum steel  p = 0.0025 bD 

Therefore required Ast is 0.0025*1000*274 = 685 mm2/m

Capacity of this section is 0.8*685*500*274 (1 - 685*500/(1.7*1000*274*40))*10-6

= 74 kNm/m

N12 at 125 centres give a capacity of 76 kNm/m.

The remaining sections can be completed.

(f) Shear Capacity at Columns

Check in x-direction.

The shear load on an internal column is 7*6*11.7  = 492 kN

Out of balance slab moments are 217 - 188  = 29 kNm

Check minimum M*v using equation 11.6

Minimum M*v = 0.06 [ (1.2*5.76 + 0.75*3)*6*6.6222 - 1.2*5.76*6*6.6222 ]

= 35.5 kNm  ..... use minimum

Use average d for both directions d = (274+262)/2 = 268 mm

a = b = 400 + d = 668 mm u = 4 * 668  = 2672 mm

fcv = 0.17*(1+2)√40 = 0.51√40    <0.34)√40    therefore use 0.34√40  = 2.15 MPa

φVuo = 0.7*2672*268*2.15*10-3 = 1078 kNm  from equation 11.7

Using equation 11.9

φVu.min =                                            = 950 kN > 492 ....OK

Check for minimum area of ties using equation 11.13.
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P R O B L E M S

QUESTION 1

Derive the expression for the equivalent load wy’ given by equation 11.4.

QUESTION 2

(a) Use the information given in example 1 to design slab panel “F” if the panel supports
masonry walls which will be constructed to reduce the effects of deflection.

(b) Calculate the equivalent uniformly distributed load to be carried by the supporting
beam between panels “H” and “F”.

(c) Check the slab for shear near supports . The slab may be treated as a wide beam (say
consider one metre width) and the shear requirements for beams applied.

(d) Show all the final slab details on a suitable drawing.

QUESTION 3

Complete the flat slab design in example 3. 

(a) Determine steel reinforcement throughout the slab.

(b) Check edge columns for shear.

(c) Draw a section showing location and extent of reinforcement.
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12.1 Additional Symbols used in this Chapter
a = Footing outstand.

AFN = Reaction area for punching shear.

f ’cf = Flexural tensile strength of plain concrete.

= 0.6         

q1 = Maximum soil bearing pressure under footing.

q2 = Minimum soil bearing pressure under footing.

qa = Permissible soil bearing pressure.

qu = Factored soil bearing capacity.
= 1.4qa. 

u = Shear perimeter d/2 from face of column.      

Vuc = Ultimate punching shear strength.  

12.2 Types of Footings
Figure 12.1

Footings

12
c h a p t e r

  
f c'

(a) Strip Footing (b) Spread or Pad Footing (d) Strap or Cantilever Footing(c) Combined Footing



Footings are used to transfer concentrated or linear loads from columns or walls to
the foundations. The size of the footing is governed by the soil bearing capacity. There
are many types of footings, Figure 12.1 illustrates the more common types.

12.3 Spread Footings
Considering the general case where the column transmits an axial load N and a moment
M to the footing, it is necessary to proportion the footing so that the maximum soil
bearing pressure under the footing does no exceed the permissible soil bearing capacity.

The bearing pressure distribution under the footing can be determined as the
summation of the uniform bearing pressure due to the axial load N and the linearly
varying pressure due to the moment M as shown in Figure 12.2.

The bearing pressure distribution under the footing can be determined as the
summation of the uniform bearing pressure due to the axial load N and the linearly
varying pressure due to the moment M as shown in Figure 12.2.

Figure 12.2

Due to the axial load, the bearing pressure will be uniform given by:

(a)

Due to the moment the bearing pressure will vary linearly from a maximum tensile or
negative value -fm to zero at the centreline and to a maximum compressive or positive
value +fm. The maximum values may be calculated from the usual moment–stress
relationship.

Where; Z = Modulus of section of footing  = 
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The moment M is produced by the load N acting at an eccentricity e = M/N from
the column centreline, i.e. M = N*e.

Substituting for M and Z in the equation for fm gives; 

(b)

The combined effect is the summation of equations (a) and (b) to give the maximum
and minimum bearing values q

1
and q

2
at the extremities.

The two equations are frequently represented by,

Which may be further simplified in the form,

(12.1)

It may be seen that q
2

can be positive or negative or even zero. q
2

will be zero when
the terms in the brackets are zero, that is when:

(L - 6e) = 0

Which is when: 

When e = L/6 the pressure distribution will vary from zero to a maximum as shown in
Figure 12.3 (below).

When e > L/6, q
2

will be negative. But the contact bearing pressure between the footing
and the soil cannot be negative except for soil adhesion and possible short-term suction.
The bearing pressure distribution is shown in Figure 12.4.
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Figure 12.4

Such conditions lead to an inefficient footing since a portion of the footing is not in
contact with the soil. Also q

1
will tend to be excessively high.

When e < L/6, both q
1

and q
2

are positive. In other words the footing is in direct
contact with the soil over its full length as shown in Figure 12.5.

Figure 12.5

A designer will always proportion the footing to ensure that the footing is fully in
contact with the soil, for which the soil pressure distribution is shown in Figure 12.5.
This is achieved when the eccentricity e < L/6 from the column centreline, i.e. the
eccentricity is within the middle third of the footing. The central third is frequently
referred to as the kern.

EXAMPLE 1
A column transmits an axial load N = 600
kN and a moment  M = 78 kNm to the
footing. Determine the length of the footing
L if the width B = 2 m and the maximum
permissible soil bearing capacity qa = 150
kPa.
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SOLUTION

Eccentricity of loading,                          

Substituting 150 for q
1

in equation 12.1,

150 =         (L + 6 × 0.13)          

Solving for the required length L;

300L2 = 600 × L + 600 × 6 × 0.13   

L2 - 2 × L - 1.56 = 0             

L = 2.60 m 

Use the derived value of 2.6 m for L in equation 12.1 as a check on the soil bearing
pressure and plot the final distribution.

q
1,2

=  

q
1

= 150 kPa 

q
2

= 81 kPa 

12.4 Combined Footings and Strap Footings
In commercial buildings the exterior columns are frequently placed close to or hard
against the building boundaries to maximise use of land since commercial land is very
expensive. The column sits right on the edge of the footing causing eccentric loading and
excessively high soil
bearing pressure. It is
possible however to
combine the exterior and
the first interior column
footings to act as a single
footing. The footing is
called a combined footing
and it is proportioned to
give uniform bearing
pressure. This is achieved
if the resultant column
load coincides with the
centre of area of the
footing. The shape of the
footing is frequently
trapezoidal as shown in
Figure 12.7 (right).
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Referring to Figure 12.7, the position of the centroid of the trapezoidal area may be
derived to be given by;

The position of the resultant of the column loads is obtained by taking moments
about the left edge and it is given by:

Equating the two expressions for x:

(a)

The required area of footing is calculated using the permissible soil bearing pressure qa.

(12.2)

The area of the trapezoidal shape is also given by:

(b)

From which,

(c)

and,

(12.3)

The two equations (a) and (b) relate three unknowns B1, B2 and L. It is necessary to
assume one of the unknowns, usually L, and solve simultaneously for the remaining
unknowns B1 and B2 . Substituting for (B + B2) and B2 in equation (a) and solving for
B1 gives,

(12.4)

EXAMPLE 2
Referring to the combined footing shown in Figure 12.8, determine suitable size of
footing for a permissible soil bearing pressure qa = 200 kPa and footing length L = 4200.
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Figure 12.8

SOLUTION

d1 = 0.6 m     N1 = 400 kN     L = 4.2 m

d2 = 3.6 m     N2 = 800 kN    qa = 200 kPa

Area of footing required from equation 12.2,

= 6 m2

Footing dimension B1 from equation 12.4,

Substituting for B1 in equation 12.3,

- 0.41 = 2.45 m

When B1 = B2, the combined footing is a rectangular footing. What would be the
required size of a rectangular footing in this example. Try it. (Answer: B = 1.15 m and 
L = 5.2 m).

If the columns are too far apart, a combined footing becomes excessively large.
Instead two footings connected by a rigid beam are used. Such footings are called strap
or cantilever footings, as shown in Figure 12.1 d and Figure 12.9. The philosophy is
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similar to combined footings. To obtain uniform bearing pressure the centroid of the
two footings (excluding the connecting beam) is made to coincide with the resultant of
the column loads.

Figure 12.9

Reaction forces R1 and R2 act through the centroid of each footing. From
equilibrium conditions:

R1 + R2 = N1 + N2 

R2  = N1 + N2 – R1 (d) 

Taking moments about N2 (and R2 since they coincide),

R1 = N1 L 

R1 =  

Substituting for R1 in (d),

R2 = N1 + N2 -            

EXAMPLE 3
Determine the required footing dimensions for the strap footing shown in Figure 12.10
if the maximum permissible soil bearing pressure qa = 150 kPa.
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Figure 12.10

SOLUTION

N1 = 500 kN   L = 6.0 m

N2 = 800 kN   l = 6.3 -  = 5.55 m

R1 =              

=                        

= 540.5 kN

Therefore the required footing dimension B1 under the 500 kN load 

B1 =                = 2.40 m

Under the 800 kN load, the reaction force;

R2 =                               

= 500               + 800

= 759.5 kN

The required footing dimension,

B2 =                           

= 2.25 m
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12.5 Design of Footings Supporting Axially Loaded Columns
There are three failure conditions to be considered:

(1)Bending,

(2)Bending shear (or one-way shear),

(3)Punching shear (or two-way shear).

(1) CRITICAL SECTION FOR BENDING.
The critical section for the maximum bending moment is illustrated in Figure 12.11
below.

(2) CRITICAL SECTION FOR BENDING SHEAR.
The critical section is taken a distance d from the critical section for bending. 
This is a one-way shear action taken across the full width of the footing.

(3) CRITICAL SECTION FOR PUNCHING SHEAR.
This is referred as two-way action. The critical section is taken along a perimeter u
distance d/2 from the critical section for bending.

Figure 12.11

12.5.1 Design Considerations

All the problems in this chapter are concerned with footings supporting axial column
loads only. In practice this is frequently the case. To enable a column to transmit a
moment to the footing, fixed ended conditions are implied. It is only necessary for the
footing to rotate, by uneven settlement, a very small amount (on average one half of one
degree) to make the column end behave as a pin-ended column.
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CONCRETE COLUMNS OR WALLS

CRITICAL SECTION AT COLUMN FACE

CRITICAL SECTION MID-WAY

STEEL COLUMNS WITH UNSTIFFENED

= =

BASE PLATE

BETWEEN COLUMN FACE AND
EDGE OF BASE PLATE

CRITICAL SECTION MID-WAY

MASONRY COLUMNS AND WALLS

= =

BETWEEN CENTRELINE AND FACE
OF MASONRY COLUMN OR WALL



Most of the problems will assume a reinforced concrete column with the critical
section for bending at the face of the column. Design procedure for footings supporting
masonry or steel columns will be identical except that the position of the critical section
will be different.

12.5.2 Factored Bearing Soil Capacity qu

Footings are designed in bending as wide cantilever beams supporting uniformly
distributed loads. Since all designs will be carried out by the ultimate strength design
method, the permissible soil bearing pressure qa is replaced by a factored soil bearing
value qu = 1.4*qa where 1.4 is the average dead and live load factor applied to the column
loads. It must be stressed that qu is NOT the ultimate soil bearing capacity; it may be
thought of as the “permissible” soil bearing value for ultimate load conditions.

For a 1 m width of footing shown in Figure 12.12, the design bending moment at
the critical section will be,

The footing can be designed for bending as a rectangular beam 1 m wide.
The bending shear force V*, i.e. the shear force across the 1 m width of footing, is

the shear force distance d from the critical section for bending.

V* = (a - d) qu kN per m width of footing

Figure 12.12 

The effective shear capacity ΦVuc is determined as for beams. Bending shear is
frequently a critical condition in footings. That is, if a footing is designed for bending
first, bending shear may not be satisfied so that it may be necessary to either increase the
depth of the footing or increase the steel ratio to give a shear capacity ΦVuc at least equal
to the design shear force V*.
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Finally there is always a possibility that the column may literally punch through the
footing as illustrated in Figure 12.14.

Figure 12.14

The punching shear force will be equal to the bearing pressure qu acting on the reaction
area AFN.

V * = qu AFN

where AFN = B×L - (c + d)2

The nominal shear stress due to punching shear acts on the shear area around the
perimeter u. The Code #9.2.3 gives the shear capacity for two way action, i.e. punching
shear,

ΦVuc = Shear area × Shear stress

= Φ u d fcv

Where u*d is the punching shear area and fcv is the maximum shear stress given by:

Where:  βh = Ratio of the larger column dimension Y to the smaller column
dimension X.

The value of fcv will be equal to the maximum of 0.34 for all rectangular columns
whose larger dimension Y ≤ 2X.
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Minimum Footing outstand a       

Bar Size      Straight Bars   Cogged Bars    

N16 440 240      

N20 580 310      

N24 780 410      

N28 1010 520      

N32 1260 650      

N36 1530 780   

When choosing the reinforcement it is necessary to check that development length Lsy.t
for straight bars or 0.5Lsy.t for cogged or hooked bars is satisfied. Table 12.1 gives the
minimum footing outstand a required to satisfy development length. The table is based
on factor k2 = 1.7, 40 mm end cover, f ’c = 25 MPa and fsy = 500 MPa.

EXAMPLE 4
A 400 mm square reinforced concrete column transmits a design load N* = 950 kN to a
square footing. Design the footing using grade N25 concrete if the factored soil bearing
capacity qu = 200 kPa.

SOLUTION

Size of square footing required,

L =           = 2.18 m say 2.2 m

Figure 12.15

Bending moment at face of column (critical section for bending),

M* = 200            = 81 kNm/m width

Choose a steel ratio of say p = 0.005.
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From Chart B1, read λ = 2.0.

Minimum required effective depth,

d =                                = 200 mm

Required area of reinforcement,

Ast = 0.005 × 1000 × 200 = 1000 mm2/m width.

Check footing for bending shear.

Shear force at critical section,

V * = qu (a - d)

= 200 (0.9 - 0.200)   

= 140 kN/m width 

From chart V1 for pv = 0.005, v’c = 0.35 MPa.

ΦVc = 0.35 × 1000 × 200 × 10-3

= 70 kN 

Shear capacity; ΦVuc = b1 ΦVc = 1.54*70   

= 108 kN   

< V * (140 kN) UNSATISFACTORY 

There are two ways to rectify this problem.

(a) Increase the effective depth of the footing to increase the shear capacity. This will be
a trial and error procedure.

Choosing steel ratio p = 0.003 and effective depth d = 300 mm gives a moment
capacity ΦMu = 108 kNm.

For bending shear, from Chart V1, v’c = 0.30 MPa.

Shear capacity,

ΦVuc = 1.43 × 1000 × 300 × 0.30 × 10-3 = 129 kN
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Design shear force,

V* = 200 × (0.9 - 0.30)   

= 120 kN   

< ΦVuc (129 kN) SATISFACTORY 

Check footing for punching shear.

Punching shear force,

V* = 200 [(2.2)2 - (0.70)2] = 870 kN 

Perimeter for punching shear,

u   = 4 × 700  

= 2800 mm 

For a square column sections (X = Y), the shear strength of concrete for two-way shear,

fcv = 0.34   

= 0.34   

= 1.7 MPa 

Thus the punching shear capacity,

Vuc = 0.7 × 2800 × 300 × 1.7 × 10-3

= 1000 kN   

> V* (870 kN)  SATISFACTORY 

Total area of reinforcement required,

Ast = 0.003 × 2.2 × 103 × 300   

= 1980 mm2

Choose 7N20 bars to give Ast = 2170 mm2.

Check reinforcement for anchorage. From Table 12.1, minimum outstand required
for development length of straight bars is a = 580 mm while the available outstand is 
900 mm.

(b) Increase the steel ratio to make ΦVuc ≥ V*.

From Chart V1, for a steel ratio p = 0.012, v’c = 0.47 MPa.

Shear capacity of footing,

ΦVuc = 1.54 × 200 × 103 × 0.47 × 10-3

= 145 kN   

> V* (140 kN)  SATISFACTORY 
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The required area of reinforcement,

Ast = 0.012 × 1000 × 200   

= 2400 mm2/m width of footing. 

Total tensile area required,

Ast = 2.2 × 2400   

= 5280 mm2

8N32 bars give Ast = 6400 mm2.

Check the reinforcement for anchorage. From Table 12.1, the minimum outstand 
a = 1260 mm for straight bars and 650 mm for cogged bars. Use N32 cogged bars.

Check punching shear.

Reaction area,

AFN = (2.2)2 - (0.600)2

= 4.48 m2

Punching shear force,

V* = qu AFN
= 200 × 4.48   

= 896 kN 

Shear perimeter (noting that 600 is one side of the shear perimeter)

u       = 4 × 600 

= 2400 mm 

Shear strength, fcv = 1.7 MPa

Hence punching shear capacity,

ΦVuc = Φ u d fcv
= 0.7 × 2400 × 200 × 1.7 × 10-3

= 571 kN   

< V* (892 kN)  UNSATISFACTORY 

It will still be necessary to increase the depth of the footing to satisfy punching shear.
However, a smaller steel ratio will be required for the increased depth. 
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12.6 Design Aids
The required steel ratio for a given depth of footing or the required depth for a specified
steel ratio may be governed by bending or bending shear. Most frequently, the bending
shear condition is the governing criteria. For a given effective depth d of footing and steel
ratio p, it is a simple process to calculate the maximum outstand a for both the bending
and bending shear conditions. The lesser value of a is the governing condition. This is
the process used to plot charts F1 to F20 in the design section at the end of the book.
From charts F, the required steel ratio for any effective depth d and footing outstand a
may be read directly. The designer need not be concerned with the governing criteria.

The punching shear condition must however be checked separately. Chart FP is
used for punching shear. The punching shear capacity ΦVuc for any shear perimeter u
and depth d may be read directly from chart FP and compared with the design punching
shear force V*. This chart may be used to initially establish the approximate minimum
effective depth required to satisfy punching shear.

While in the past footings were commonly designed using grade N20 concrete, the
exposure conditions are such that grade N20 concrete may only be used in domestic
construction. Grade N25 concrete will be the most common grade to be used in footings
and it is the grade chosen in the design charts. 

EXAMPLE 5
A 350 mm square column carries a design load N* = 1600 kN. Design a square footing
using N25 concrete for a factored soil bearing capacity qu = 300 kPa. The footing is in
non-aggressive soil and it is cast against a damp-proof membrane.

Figure 12.16

SOLUTION

Size of square footing required,

B =            

= 2.3 m 
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Minimum cover required for exposure classification A1 is 30 mm. Assuming N32
bars, the distance from the centre of top layer of reinforcement to the underside of the
footing,

c = 30 + 32 + 32/2   

= 78 say 80 mm 

The footing depth will be chosen initially for punching shear. Try D = 550 mm to
give d = 470 mm.

Reaction area:    A
FN

= (2.3)2 - (0.82)2

= 4.62 m2

Punching shear force,

V * = 300 × 4.62 = 1386 kN 

Punching shear perimeter,

u = 4 × 820 

= 3280 mm 
From Chart FP (page 234), read punching shear capacity of footing,

ΦVuc = 1850 kN    

> V * (= 1400 kN)  SATISFACTORY 

Footing outstand, a =                  = 975 mm

From chart F3 (page 234), required steel ratio p = 0.007.

Total area of reinforcement required,

Ast = 0.007 × 2300 × 470   

= 7667 mm2

Choose 13N28 bars whose area Ast = 8060 mm2.

From Table 12.1, bars will need to be cogged to satisfy development length condition
(available outstand is 975 mm and the required minimum outstand for cogged bars is
520 mm).

COMMENTS ON EXAMPLE 5.

(a) The footing was designed for the lesser effective depth, i.e. using the effective depth
for the top row of reinforcement. Applying the resulting reinforcement will yield
conservative results for the bottom row of reinforcement. Designers frequently use
the average effective depth for the design of footings. This approach seams
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reasonable for punching shear but the author feels that when the outstands in the
two directions are not the same, as in rectangular footings, the reinforcement in each
direction should be determined by using the corresponding effective depth.

(b) The depth of footing must satisfy the compressive development length Lsy.c for
column starter bars. This is frequently the criteria governing the depth of footing.

(c) In the selection of footing size, there was no provision made for the additional
bearing pressure due to the weight of footing. This is normally very small and it is
frequently disregarded unless the footing is very deep or the soil bearing value is
very small. In example 5, the additional factored bearing pressure due to the
weight of footing will be, 1.25*0.5*24 = 15 kPa. The size of footing should be
determined using the net bearing pressure (qu - unit weight of footing). Taking the
factored weight of footing into consideration in example 5, the required size of
footing will be, 

12.7 Further Design Considerations
Rectangular footings may be required if
site conditions limit one of the footing
dimensions. With rectangular footings
a greater proportion of the bending
moment in the short direction is
carried by portion of the footing
adjacent to the column because of the
stiffening effect provided by the
column. A larger portion of the total
short reinforcement should be placed
in the central band of width B equal to
the short footing dimension (shown in
Figure 12.17 (right). Commonly
2/(L/B +1) of the total short reinforcement is placed in the central band and the
remainder equally distributed between the outer strips.

12.8 Column to Footing Load Transfer
The axial load carried by the column
is transferred by end bearing and
dowel action. The area of the dowels
does not have to be equal to the area
of the column reinforcement. While
there are no Code requirements, it is
suggeted that a minimum dowel area
of 0.005 × Ag be adopted which is

F O O T I N G S 229

  
B =

−
=1600

300 15
2 37.

B

B

2

(L/B+1)
.A stx[ ]    

sy.cL

40 db

Figure 12.17

Figure 12.18



specified by the American Concrete Institute Code. The dowels must extend into the
footing a minimum distance equal to the compressive development length Lsy.c = 20db,
and they must extend into the column a minimum distance equal to 40db which is the
compressive lap splice length as per # 13.2.4 of AS 3600. These conditions are shown in
Figure 12.18.

The maximum concrete bearing stress given by #12.3 is, Φ0.85f’c but not
greater than Φ2f’c.

Where:    Φ = 0.6
A1 = Contact bearing area and

A2 = The largest concentric surface area at the base of a frustum of a
pyramid whose sides slope 2 units transverserly for each
longitudinal unit as shown in Figure 12.19.

In concentrically loaded pad footings it will be found that the minimum area of
dowels only will be required for most cases unless the columns are extremely large
columns carrying large loads. If the columns transmit moments to the footings, the
contact bearing area at the column-footing interface is reduced to the depth of the
neutral axis. Some of the dowels will thus be in tension requiring the tensile forces carried
by the column reinforcement to be transfered to the footing entirely by dowel action.

Figure 12.19
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EXAMPLE 6
Figure 12.20 shows the outer column supported by a combined footing. The column
uses N40 concrete and it is reinforced with 8N28 longitudinal bars. The footing uses
N25 concrete.

Determine the size and number of dowels required to be placed in the footing to
transmit the full potential column axial load capacity.
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SOLUTION

Column

Steel area = 8 × 620 = 4960 mm2

Load capacity of reinforcement = 4960 × 400 × 10-3 = 1984 kN

Net area of concrete = 400 × 400 - 4960 = 155.04 × 103 mm2

Ultimate load capacity of concrete = 0.85 × 40 × 155.04 × 103*10-3

= 5271 kN

Ultimate column load capacity = 1984 + 5271 = 7255 kN

The reduction factor for columns Φ = 0.6

Effective column capacity = 0.6 × 7255 = 4353 kN

It will be learned in chapter 13 that the above value is the ΦNuo value.

Footing

Maximum concrete bearing stress = Φ0.85 × f’c

= 0.6 × 0.85 × 25                  

= 22.95 MPa   

< Φ*2f’c (= 30 MPa) 

Therefore concrete bearing capacity of footing,

= 22.95 × 4002 × 10-3

= 3672 kN 

Compressive load to be carried by dowels,

= 4353 - 3672 = 681 kN 

Area of dowels required =                 = 1362 mm2

Minimum area of dowels = 0.005 × 4002 = 800 mm2

< 1362 mm2 calculated area 

7N16 dowels give an area As = 1400 mm2

Required compressive development length = 20 × 16 = 320 mm which is greater
than the available depth in footing of 400 mm.

Splice length required above footing = 40 × 16 = 640 mm
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P R O B L E M S

QUESTION 1

A rectangular reinforced concrete column 300 mm by 600 mm supports a 360 kN dead
load and a 580 kN live load. The supporting footing uses grade N25 concrete.
Underground services make it necessary to restrict the footing dimension parallel to the
300 mm column dimension to 2400 mm.

(a) For a soil bearing value qu = 200 kPa, determine the size of the footing 
required.

(b) Design the footing for a depth D = 450 mm.

QUESTION 2

An unreinforced concrete footing using grade N25 concrete is required for a 300 mm
wide masonry wall transmitting a design load N* = 280 kN/m. Determine the depth of
the footing required if the factored soil bearing capacity qu = 100 kPa.

QUESTION 3

Figure shows the position of two 500 mm square columns. Column A supports a design
load N* = 800 kN and column B supports a design load N* = 1450 kN. Determine the
required footing dimensions for,

(a) a trapezoidal combined footing of length L = 5000 mm and,

(b) a rectangular combined footing.

The factored soil bearing capacity = 400 kPa.

QUESTION 4

Determine the size of a strap footing required in question 3 if the length of the
footing perpendicular to the boundary under column A is 1500 mm.

F O O T I N G S 233

A B

4000250

B
O

U
N

D
A

RY

qu



234 D E S I G N H A N D B O O K F O R R E I N F O R C E D C O N C R E T E E L E M E N T S

Shear Perimeter u

u=
10

00

u=
15

00

u=
20

00

u=
25

00

u=30
00

u=3500

u=4000

u=4500

u=5000

CHART FP

200

250

300

350

400

450

500

550

600

650

700

750

800

Ef
fe

ct
iv

e 
d

ep
th

 d
 m

m

0 1000 2000 3000 4000

u

f'c = 25 MPa

Punching Shear Capacity  V kN F

d/2

d/2

d

Outstand a mm

Ef
fe

ct
iv

e 
d

ep
th

 d
 m

m

200 400 600 800 1000 1200 1400

200

300

500

400

600

700

800

1000

900

Chart F

f' = q = kPa25 MPac u

3

300

0.002

0.003

0.01

0.004

0.005

0.015

Φ u



13.1 Additional Symbols used in this Chapter
Ag = The gross cross-sectional area of a member.

As = The cross-sectional area of the reinforcement  = Asc + Ast.

Asc = Area of reinforcement on the compression side.

Ast = Area of reinforcement on the tension side.

b = Column width perpendicular to applied moment.

D = Column depth in direction of applied moment.

Dc = Smaller column dimension.

d = Effective depth measured to the resultant tensile force.

dsc = Distance from extreme compression fibre  to  the centroid of the 
outer compression reinforcement.

e = Load eccentricity measured  from plastic centroid.

e’ = Load eccentricity measured from tensile reinforcement.

fsc = Stress in compressive reinforcement.

p = Total steel ratio As/bD.

fsy = Yield strength of steel reinforcement.

fst = Stress in tensile reinforcement.

g = Ratio of distance between outer reinforcement to the overall depth 
of a column section. 

k = Effective length multiplier.

km = End moment condition parameter.

Le = Effective length of a column.

Lu = The unsupported length of a column, taken as the clear distance 
between faces of members capable of providing lateral support to the 
column. 

Columns

13
c h a p t e r

kuo =    Ratio at ultimate strength of the depth of the NA from the extreme
 compressive fibre to do. Symbols ku is applied for kuo in this text.
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Mu = The ultimate strength in bending at a cross-section of an eccentrically 
loaded compression member.

Mub = The ultimate strength in bending when ku = 0.545.

Mud = The reduced ultimate strength in bending when ku is reduced to 0.4.

Nc = The buckling load in a column.

Nu = The ultimate compressive strength combined with moment Mu.

Nub = The ultimate compressive strength when ku = 0.6.

Nuo = The ultimate strength of an axially loaded squat columns.     

r = Radius of gyration.

βd = Creep factor for sustained loading.

δb, δs = Moment magnifiers for braced and sway columns.

εsc = Strain in compressive reinforcement.

εst = Strain in tensile reinforcement.

εsy = Strain in reinforcement at point of yielding.

13.2 High Strength Concrete
For NSC (normal strength concrete) the stress-strain behaviour of concrete is well
known and while there are a number of empirical formulae defining the stress-strain
relationship, the one used by the authors is the CEB stress equation. The interesting part
of stress-strain relationship of NSC is the fact that the maximum ultimate stress, fcu, for
all these grades occurs fairly consistently at a strain of εcu = 0.0022.

For HSC (high strength concrete) grades the same stress-strain relationship does not
apply and the maximum ultimate stress, fcu, occurs at higher strains εcu. Figure 13.1
below is a plot of stress-strain for 25, 50 and 100 MPa concretes. It may be observed that
maximum ultimate stress for the 100 MPa concrete occurs at a strain which is in the
region of 0.003 which is significantly higher then either the 25 or 50 MPa concretes. A
further point of particular interest is the fact that the strain εcu of 0.0022 for NSC is less
then the yield strain for steel εy = 0.0025. The figure may also be used to illustrate that
for the HSC the stress strain curve is almost linear up to the maximum stress while for
NSC the stress-strain relationship is distinctly curvilinear.

The shape of the stress-strain curve is also an indication of the “ductility” of
concrete. This is shown by flatness of the curve following the peak stress. The plateau
reached by the stress-strain curve is analogous to elesto-plastic material such as steel. The
unloading part of the curve for the 25 MPa concrete is very flat, implying that there is
an extended post peak loading region providing for extensive movement and rotation
prior to failure. The flat plateau region of the curve will allow for redistribution of forces
in a structural framework and provide for visual warning of potential failures. For the
100 MPa HSC, the unloading part of the curve is almost vertical which implies sudden
failure as would be expected in a brittle material. The unloading part of the HSC can
however be flattened with the introduction of effective lateral confinement of the
column core using closely spaced steel ties or helical reinforcement. The HSC plot also



illustrates why there is a strong argument for adopting equivalent triangular rather than
rectangular stress block for the design of columns and beams.

Figure 13.1

The CEB-FIB equation used for normal strength concretes (fc
’ ≤ 50 MPa) is given by

equation 13.1 below.

(13.1)

Where: f c = Concrete stress at strain εc

a1 = 39000(fo + 7) - 0.953

a2 = 206600

a3 = 65600 (fo + 10) - 1.085 - 850

fo = 0.85 f ’c

For high strength concretes (fc
’ > 50 MPa) the stress-strain equation is that developed by

Collins, Mitchell and MacGregor9 given by equation (13.2) below.

(13.2)
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Where:      

13.3 Column Strength Equations
The main function of a column is to transfer loads and moments from beams and slabs
to the footings and foundations of a structure. While columns primarily carry
compressive loads, they must also be able to carry
moments. Even with the best intentions, axially loaded
columns do not exist in practice. The Code #10.1.2
requires that columns be designed for a minimum
eccentricity of 0.05D. The term beam-columns is a term
frequently used to describe the axial load and moment
actions transmitted by columns.

The primary longitudinal reinforcement serves to
increase the compressive strength of a column and to
provide the internal tensile force required to transmit
moments. Considering initially a theoretical axially
loaded short stocky reinforced concrete column shown
in Figure 13.2 (right).

The ultimate axial load capacity Nuo (at zero
moment) is achieved by the concrete reaching its
ultimate strength of 0.85f ’c and the reinforcement
reaching its yield strength fsy. The ultimate load
capacity is given by equation (a).

Nuo = 0.85f ’cbD + fsy As (a)

A maximum concrete stress of 0.85f c’ is used instead 
of f ’c to account for the size difference between a
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laboratory tested cylinder and the full size of a column. In the laboratory there is greater
control to achieve uniformity of the 100 mm by 200 mm or 150 mm by 300 mm test
cylinders while in an actual column, uniformity of loading, uniformity of construction
and consistency of material properties is much more difficult to achieve even in a
laboratory. There are other arguments which suggest that the multiplier 0.85 is made up
two factors, one to account for the size difference as noted above and the other to
account that spalling of concrete cover which occurs prior to failure.

bD is the gross area Ag of the column and As is the total area of reinforcement. A
more precise estimate is obtained by using the net concrete area (Ag - As) in the first term.

Nuo = 0.85f ’c(Ag - As) + fsy As (b)

Equation (b) is conventionally written with the concrete stress 0.85f’c subtracted from
the yield stress in the second term. This is shown in equation 13.3 which may be
obtained by collecting the like terms in equation (b).

Nuo = 0.85f ’c Ag + ( fsy - 0.85f ’c )As (13.3)

Equation 13.3 assumes that the reinforcement has yielded at the time of the concrete
reaching its maximum stress of 0.85f’c. In discussing material properties in Section 13.2
it was shown that for normal strength concretes ( f’c ≤ 50 MPa ) the maximum strength
occurs at a fairly consistent concrete strain εc = 0.0022 which is less than the yield strain
of the steel reinforcement εsy = 0.0025. Strictly speaking there is no guarantee that either
material has reached its maximum capacity at the point of failure. The correct solution
could be obtained by considering the combined axial load-strain (N - ε ) diagram.
Rewriting the general axial load equation in terms of the combined strain ,

(c)

The maximum value of N = Nuo may be obtained by either differentiating equation
(c) with respect to the composite strain ε, solving for ε which will be the ultimate strain
εuo corresponding to Nuo or by numerical iteration of equation (c) to obtain the
maximum value of N = Nuo. One would expect that the solution obtained for εuo will lie
between the value for maximum concrete strain for plain concrete, εc = 0.0022 and the
yield strain of steel εsy = 0.0025. So what is all the fuss about you may ask.

There are a couple of simplified solutions for obtaining Nuo. The first is to just use
equation 13.3, which assumes that both materials have reached their respective
maximum capacities. This can be slightly unconservative but the error is only small. The
second solution is to assume that both materials have reached a strain of 0.0025 which
is the yield strain of steel. That is, it will be necessary to calculate the concrete stress fc
from the CEB-FIB equation for a strain εc = 0.0025. This is on the unloading part of the
stress-strain curve so that the result for Nuo will be conservative. The following example
will illustrate these considerations.
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EXAMPLE 1
Determine the maximum axial load capacity of
a 350 mm square, short column made using 
40 MPa concrete and reinforced with four N32
bars.

SOLUTION

(a) Simplified solution using equation 13.3

(b) Assuming that the concrete strain                           at the ultimate load,

Concrete stress, 

Maximum ultimate axial load, 

(c) The axial load at any strain ε of the composite stress-strain diagram is given by;
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Differentiating with respect to strain and equating to zero,

Let 

Solving for ε,

From earlier solution, 

Substitute constants and solve quadratic for ε,

That is, the reinforcement has yielded and the maximum ultimate axial compressive
load, Nuo is achieved at the
steel yield strain of 0.0025.
The result for Nuo = 5,560 kN
is the same as that achieved for
(b). A plot of the individual
material axial loads and the
combined axial load is shown
in Figure 13.4 (right).
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The results for the three solutions were:

Nuo = 5,656 kN Simplest solution overestimates by 2.8%
Nuo = 5,560 kN Equals exact solution 
Nuo = 5,560 kN Exact solution

As can be seen by the above results, the differences between the exact solution and the
simplest solution given by equation 13.1 is small and within acceptable orders of
accuracy. The simplest solution (a) is very attractive and is one which could be applied
to a manual design. The column design charts developed at the end of this book have
however been drawn using exact solutions. 

13.4 Constraining Effects of Transverse Reinforcement
Transverse reinforcement in the form of rectangular ties, circular ties and helical
reinforcement required by the Code makes up a steel cage which can be fabricated off
site. The transverse reinforcement restrains the longitudinal reinforcement and most
importantly it acts to prevent the longitudinal bars from buckling prematurely. The
transverse reinforcement will also act as lateral constraint to the concrete which has the
potential of increasing the maximum concrete strength of the core contained within the
transverse reinforcement by as much as 50% depending on the yield strength, amount
and spacing of the transverse reinforcement. Figure 13.5(a) below illustrates the concept
of constraining effects of ties in a square column.

Figure 13.5
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An added complication is the arching effect in between the ties shown in Figure
13.5(b). The overall implication of the transverse reinforcement as far as constraining the
core is that the constraining stresses are greatest adjacent to the ties and in line with the
return legs. The magnitude of the constraining stresses reduce non linearly with the
reduction of the effective core as shown above. Some researches have developed empirical
formulae for effective constraining stresses applied uniformly to the full core. Designing
of columns for constraining effects of transverse reinforcement is still a very complex
procedure and it may be some time before practical design formulae are developed.
Never the less, ensuring that columns behave in a ductile manner is essential in
earthquake prone areas. Ductility is achieved with the inclusion of transverse
reinforcement specified in terms of minimum spacing or more appropriately in terms of
volume of transverse reinforcement per unit length.

It may be readily appreciated that single closed square or rectangular ties may be
effective restraints to the longitudinal reinforcement but they do not provide very
effective constraint to the concrete core. On the other hand, closely spaced helical
reinforcement will create a very effective constraint to the concrete core approaching that
of a tubular casing. It has been shown that square or rectangular ties can also be effective
provided that there are multiple ties placed to maximise constraining effects. Some
examples of effective tie arrangements are shown below.

Figure 13.6

Recently there have been numerous publications of research projects which develop
the quantity or volume of transverse reinforcement and the stress-strain relationships of
constrained concrete cores to be used in design. In such cases, the concrete cover is
ignored as it spalls off prior to the maximum load being reached by the core as the lateral
reinforcement becomes effective in constraining the concrete core. The Code makes no
provision for the design of transverse reinforcement which is effective in increasing the
compressive strength of the concrete core.

A designer may choose to take advantage of the higher strengths available with high
strength concretes combined with further increases in concrete strengths achieved by
effective lateral constraint provided by transverse reinforcement. Use of say 100 MPa
concrete could produce a maximum compressive strength of up to 150 MPa in the core
leading to very ductile and efficient space saving columns. There are however some
disadvantages:

C O L U M N S 243

(a) (b) (c)



(a) designs are much more complex,

(b) there are no current Code design guides so the designer will need to be very
competent and up to date with latest research,

(c) spacing of the transverse reinforcement can be very close leading to construction
difficulties such as placing and compacting concrete and providing continuity of
longitudinal reinforcement at column, beam and slab connections,

(d) increased costs in construction and supervision,

(e) high strength concretes are much more impervious with finer discontinuous water
channels which can lead to explosive failures at high temperatures.

The choice to the designer is:

(a) Use the full concrete section but ignore potential strength benefits of the
constraining effects of transverse reinforcement.

(b)Design the column as a section made up of the core contained within the
transverse reinforcement and ignore all concrete cover. The transverse reinforcement
will need to be designed as an effective “sleeve” which is mobilised with the
development of hoop tension during loading to restrain the core and increase the
stress-strain behaviour of the core. There have been a number of research papers
published recommending mathematical models for stress-strain relationship of
constrained concrete columns. 

13.5 Combined Moment and Axial Load Condition
Figure 13.7 shows a column section subjected to an ultimate axial load Nu and an
ultimate moment Mu which is the same as an eccentric load Nu applied at an eccentricity
e to produce the same moment, i.e. Nue = Mu. The eccentricity e is measured from the
geometric centroid of a symmetric column which coincides with the plastic centroid. In
an unsymmetric column section it is necessary to calculate the position of the plastic
centroid defined as the point in the cross-section through which the ultimate load Nuo
(given by equation 13. ) would need to be applied to cause simultaneous uniform
crushing of the concrete and yielding of all the reinforcement. Since this chapter is
primarily concerned with symmetric sections, eccentricity of loading will be measured
from the geometric centroid.

As a matter of convenience the reinforcement furthest from the eccentric load is
called the tensile reinforcement Ast (even though it may be in compression at small
eccentricities) while the reinforcement on the load side is referred to as the compressive
reinforcement Asc. When a column is reinforced on four sides the distinction is not quite
so evident.
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Figure 13.7

13.6 Strength Interaction Diagrams
It may be readily appreciated from Figure 13.7 that there is an infinite combination of
loads Nu and moments Mu ( or loads Nu and eccentricities e) defining the strength of a
given column section. A plot of ultimate loads and moments which would just cause a
section to fail is typically shown in Figure 13.8 and it is called a load-moment interaction
diagram.

There are a number
of salient points on the
interaction diagram which
should be noted and are
explained below with the
aid of a strain diagram.
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Point 1 - This is the ultimate strength Nuo at zero eccentricity given by equation 13.1.

Point 2 At this point the eccentricity is such
that the N.A. coincides with the tensile
reinforcement i.e. ku = 1.0.

Between point 1 and 2, ku > 1.0 so that the tensile reinforcement will be in compression.

Point 3 The position of the neutral axis is
such that ku = 0.545. For a column reinforced
on two faces only, this would be referred to as
the balance point at which the load capacity is
Nub and the moment capacity is Mub. At this
point the tensile reinforcement has just
reached its yield stress fsy and the eccentricity
is denoted as eb. For columns reinforced on
four faces, the strength values are still
designated as Nub and Mub obtained for 
ku = 0.545.

Between 2 and 3 the stress in the tensile reinforcement fst
is less than the yield stress fsy.

Point 4 This is the strength of the section in
pure bending. It is calculated as the strength
of a doubly reinforced beam for which the
value of ku is not known and it must be
calculated iteratively.

13.7 Strength Equations - Columns Reinforced on Two Faces
The Code #10.6.2 permits the use of the simplified rectangular stress block previously
used for beams. The strain is assumed to vary linearly from a maximum value of 0.003
when the neutral axis falls within the column section. Figure 13.11 illustrates the external
and internal forces and stresses on a column section reinforced on two faces with applied
eccentricity of loading so that ku ≤ 1.0.

246 D E S I G N H A N D B O O K F O R R E I N F O R C E D C O N C R E T E E L E M E N T S

k  du  

st

STRAIN DIAGRAM

=0ε εc =0.003

STRAIN DIAGRAM

st

uk  d

= 0.0025ε

εc= 0.003

Figure 13.9

Figure 13.10



Referring to Figure 13.10, the resultant internal forces in the concrete Cc, the
compressive reinforcement Cs and the tensile reinforcement T, may be determined from:

Cc = 0.85f ’cbγkud

Cs = Ascf ’sc

Allowing for the concrete displaced by the reinforcement,

Cs = Asc(fsc - 0.85f’c)

T = Ast fst

Figure 13.11
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The compressive and the tensile reinforcement may or may not have yielded. It is
necessary to calculate strains from the strain diagram.

fsc = Esεsc = 2 × 105 × εsc ≤ fsy

fst = 2 × 105εst ≤ fsy

From equilibrium conditions, Nu = Cc + Cs - T

Nu = 0.85f ’cbγkud + Asc(f sc- 0.85f’c) - Astfst (13.4)

Taking moments about the tensile reinforcement,

Nue’ = Cc(d - 0.5γkud) + Cs(d - dsc)

Substituting for Cc and Cs gives;

Nue’ = 0.85f ’cbγkud2(1-0.5γku) + Asc(fsc-0.85f ’c)(d-dsc) (13.5)

Dividing equation 13.3 by 13.2 gives the eccentricity e’,

(13.6)

The eccentricity of loading from the column centroid,

(13.7)

The column moment capacity,

Mu = Nu e (13.8)

Equations 13.4, 13.5, 13.6, 13.7 and 13.8 can be applied to determine the load Nu
and moment Mu capacity for any value of ku ≤ 1.0 of a given column. The results may
be used to plot an interaction diagram. By varying the amount of reinforcement, a series
of interaction diagrams can be obtained for the one column size.

The above equations are valid for columns reinforced on two faces with ku ≤ 1.0 and
a maximum concrete strain εc = 0.003. When ku > 1.0, the maximum concrete strain is
varied between 0.003 for ku = 1.0 (point 2 on the interaction diagram) and 0.002 when
ku is equal to infinity, that is, the zero moment condition (point 1 on the interaction
diagram). The interaction diagram between points 1 and 2 is drawn by a connecting
straight line.
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EXAMPLE 2
Determine the ultimate load and moment capacity of the column section shown in
Figure 13.12 for the points shown in Figure 13.8 and sketch the load-moment
interaction diagram.

SOLUTION

Point 1 zero moment condition. Applying equation 13. ,

Nuo = [0.85*25 × 400 × 500 + 4960 × (500 - 0.85 × 25)] × 10-3

= 6625.6 kN

Point 2 ku = 1.0, kud = 425 and the tensile stress fst = 0.

Data: f’c = 25 MPa

b = 400

D = 500

dsc = 75

gD = 350

d = 425

γ = 0.85

Asc = Ast = 2480 mm2

The strain in the compressive reinforcement,

The compressive stress,

fsc = 2 × 105 × 0.00247 = 494 MPa < fsy (= 500 MPa)

From equation 13.2, the ultimate load capacity,

Nu = 0.85 × 25 × 400 × 0.85 × 1 × 425 + 2480 × (494-0.85 × 25) - 2480 × 0

= 4.243 × 10
6

N or 4243 kN

Evaluating equation 13.3,

Nu e’ = 0.85 × 25 × 400 × 0.85 × 1 × 4252(1- 0.5 × 0.85 × 1) + 2480 × (494-0.85 × 25)(425-75)

= 1.161 × 109 Nmm or × 106 kNmm
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Eccentricity measured from the column centroid,

Ultimate Moment capacity,

Mu = 4243 × 99 × 10-3 = 420 kNm

Point 3 ku = 0.545, this is the balance point when fst = fsy.

Strain in compressive reinforcement,

Following the procedure used for point 2 gives the following results:

Nu = 0.85 × 25 × 400 × 0.85 × 0.545 × 425+2480 × (406-0.85 × 25) - 2480 × 500

= 1388 kN

Nue’ = 0.85 × 25 × 400 × 0.85 × 0.545 × 4252 (1-0.5 × 0.85 × 0.545) + 2480 ×
(406-0.85 × 25)  × (425-75)

= 880457 kNmm

e = 634 - 175 = 459 mm

Mu = 1388 × 0.459 = 637 kNm 

Point 4 This is the pure moment condition for a doubly reinforced beam. Since the
position of the neutral axis i.e. the value of ku is unknown, it will be necessary to estimate
the value of ku and continue to refine the estimate. The correct value of ku is obtained
when the internal forces are in equilibrium. When ku was 0.545 the resultant internal
force was a sizeable 1388 kN.

Try ku = 0.2 and calculate Nu from equation 13.2.

fsc = 2 × *105 × 0.000353 = 70.6 MPa

= 0.012 > 0.0025 hence fst = 500 MPa.
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Considering the strain equation, the tensile reinforcement will yield for values of 

ku ≤ 0.545.

Nu = [0.85*25*400*0.85*0.2*425 + 2480*(70.6-0.85*25) - 2480 × 500] × 10-3

= - 503 kN

Since the value of Nu has changed sign in going from ku = 0.545 to ku = 0.2, try ku
slightly greater say 0.24.

fsc = 158.8 MPa

Nu = [0.85 × 25 × 400 × 0.85 × 0.24 × 425 + 2480 × (158.8-0.85 × 25) - 2480 
× 500] × 10-3

= -162 kN 

Further iteration gives the following:

For ku = 0.262, fsc = 195.9 MPa,

Nu = [0.85 × 25 × 400 × 0.85 × 0.262 × 425 + 2480 × (195.9-0.85 × 25) -
2480 × 500] × 10-3

= 804.5 + 433.1 – 1240

= -2.4 kN which is near enough to zero 

Taking moments about the tensile reinforcement, the moment capacity may be
calculated,

Mu = 804.5 × (425-0.5 × 0.85 × 0.262 × 425) × 10-3 + 433.1 × (425-75) × 10-3

= 303.8 + 151.6   = 455.4 kNm 

The load-moment
interaction diagram for
the column section is
plotted in Figure 13.13.
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13.8 Reduction Factor Φ
The reduction factor for beam-columns given in the Code lies between 0.6 and 0.8
depending on the moment influence. Point 3 in the interaction diagram was referred to
earlier as the balance point. At the balance point the value of ku = 0.545 and the outer
layer of tensile reinforcement has reached its yield strength. Between point 1 and point
3, the tensile reinforcement has not yielded and the column is said to exhibit a primary
compression mode of failure. Columns are the most important elements in a structure.
A beam failure in a structure is very undesirable but the failure tends to be localised. A
column failure can be catastrophic by comparison. The reduction factor for primary
compression failure is given in the Code as Φ = 0.6.

At point 4 in the interaction diagram, the member is in pure bending for which the
usual reduction factor Φ = 0.8 is applied. Column sections in pure flexure are frequently
over-reinforced. Code #8.1.3 specifies that for beams with the neutral axis parameter ku
> 0.4, the design strength for bending shall be taken as ΦMud where Mud is the ultimate
strength in bending for a cross-section with ku = 0.4 and the tensile force has been
reduced to balance the reduced compressive force. This simply means that the Code will
not permit beam strength greater than that for which ku = 0.4 to be used while the
reduction factor Φ =0.8 is applied. If Mu is the actual ultimate strength of an overreinf-
orced beam, the real or effective reduction factor is,

Between points 3 and 4, the reduction factor will vary from 0.6 to 0.8 or Φo
(whichever is the lesser) and its value is interpolated between these points using the
following equations.

When ku ≤ 0.4 and Nu < Nub Φ = 0.6 +                        

When ku > 0.4 and Nu < Nub Φ = 0.6 + (Φo - 0.6)                         

The effect of the continuous change in the reduction factor is to cause a
discontinuity in the interaction diagram at the balance point with increased values in
moment capacities below the balance point. 

EXAMPLE 3
Calculate the reduced ΦNu and ΦMu for the column section in example 2 and replot
the reduced interaction diagram on Figure 13.13.

SOLUTION

Point  1 ΦNuo = 0.6*6625.6  = 3975 kN     

Point  2 ΦNu = 0.6*4243   = 2546 kN         
ΦMu = 0.6*420       = 252 kNm 
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Point  3 ΦNub = 0.6*1388   = 833 kN        
ΦMub = 0.6*637    = 382 kNm 

Point  4 Since the section in pure bending is not over- reinforced 
ku = 0.262 < 0.4 the reduction factor Φ = 0.8 as for beams. 

ΦMu = 0.8 × 455.4 = 364 kNm 

Point  5 It is worth while obtaining an additional point between Nu = 0 and
Nub for the exercise of calculating the reduction factor Φ and to obtain 
a better plot of the interaction curve. Determine the co-ordinates for say
a point with ku = 0.4 which is about mid-way between kub and ku for Muo.

kud  = 0.4 × 425 = 170 

fsc = 0.001676 × 2 × 105 = 335.3 MPa 

Nu = [0.85 × 25 × 400 × 0.85 × 170 + 2480(335.3 - 0.85 × 25) - 2480 × 500]*10-3

= 1228.2 + 778.8 – 1240

= 767 kN 

Nue’ = 1228.2 × (425 - 0.5 × 0.85  170) + 778.8 × (425 - 75)

= 705850 kNmm 

e’ 920 mm 

e      = 920 - 175 = 745 mm 

Mu = 767 × 745 × 10-3

= 571 kNm 

Since ku < 0.4,

The value of Φ could have been anticipated since the equation for Φ (when ku ≤ 0.4) is
a linear variation between 0.6 and 0.8. 

The load and moment capacity is now calculated.

ΦNu = 0.69 × 767 = 529 kN

ΦMu = 0.69 × 571 = 394 kNm

EXAMPLE 4
Figure 13.14 shows the cross-section of a column reinforced with 6N32 bars. The
column uses grade N32 concrete and it is reinforced to carry moments about the weak
axis.
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(a) Calculate the ultimate load Nu and ultimate moment Mu for the balance condition
when ku = 0.545 and for pure moment condition.

(b) Calculate the value of Φo.

(c) Determine the load and moment capacities ΦNu and ΦMu between Nu = 0 and Nub
when ku = 0.52.

Figure 13.14

SOLUTION

Data:  b = 400   D = 240   d = 180   dsc = 60   f’c = 32 MPa

ϒ= 0.822   Ast = Asc = 2400 mm2

(a) Balance point for ku = 0.545       

kud = 0.545 × 180 = 98.1 mm 

fst = 500 MPa 

esc

fsc = 0.001165 × 2 × 105 = 233 MPa

Ultimate load for balance conditions,

Nub = [0.85 × 32 × 400 × 0.822 × 98.1 + 2400 × (233 - 0.85 × 32) - 2400 × 500] × 10-3

= 877.3 + 493.9 – 1200

= 171.2 kN 

Nube’ = 877.3 × (180 - 0.5 × 0.822 × 98.1) + 493.9 × (180 – 60)

= 181810 kNmm 

e’ =              = 1062 mm 

e = 1062 – 60 = 1002 mm 

Hence ultimate moment for balance conditions,

Mub = 171.2 × 1002 × 10-3

= 171.5 kNm 
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Nu = 0 condition

The value of ku must be determined by iteration until equation 13.4 gives Nu = 0.

For ku = 0.495:

kud     = 0.495 × 180 = 89.1 mm 

fsc 

= 196 MPa 

Nu

= 796.9 + 405.1 – 1200

= 2.0 kN which is close to zero 

Ultimate moment,

Mu 

(b) Mud condition for ku = 0.4

Since the value of ku for Nu =0 is greater than 0.4, it will be necessary to calculate
Mud for ku = 0.4 so that the reduction factor Φo may be determined.

kud = 0.4 × 180 = 72 mm 

fsc

Taking moments about the tensile reinforcement,

Mud = [ 0.85 × 32 × 400 × 0.822 × 72(180 - 0.5 × 0.822 × 72)

+ 2400 × (100 - 0.85 × 32) × (180 - 60) ] × 10-6

= 117.8 kNm 

Φo

Moment capacity at Nu = 0

ΦMu = 0.6 × 162.9 = 97.7 kNm

(c) For the intermediate point between the balance point (ku = 0.545) and pure 
moment condition (ku = 0.495) of ku = 0.52

kud = 0.52 × 180 = 93.6 mm
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fsc

Nu

Nu e’  = 837.1(425 – 0.5  0.822 × 93.6) + 451.7(180 – 60)

= 172679 kNmm 

e’ 

e = 1945 - 60 = 1885 mm 

Mu = 88.8 × 1885 × 10-3

= 167.4 kNm 

Since ku > 0.4 and Nu is less than Nub, the reduction factor Φ is calculated from:

since Φ0 = 0.6 

Hence the design moment capacity,

ΦMu = 0.6 × 167.4 = 100.4 kNm 

And the design load capacity,

ΦNu = 0.6 × 88.8 = 54.2 kN. 

13.9 Column Design
If column interaction charts are not available, the design procedure would be to select a
column size and the reinforcement. For the chosen column, the moment capacity ΦMu
is calculated when the load capacity ΦNu = N*.

EXAMPLE 5
Choose a reinforced concrete column section to carry a design load N* = 1400 kN and
design moment M* = 250 kNm. Use N25 concrete and assume exposure A2.

SOLUTION

Choosing the column section is just a matter of experience, there are no hard and fast
rules although aesthetics frequently dictate member sizes. For this example, a 450 deep
and 350 wide column section reinforced with 6N32 bars has been chosen as shown in
Figure 13.15.
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Data: b = 350 mm

Ast = Asc = 2400 mm2

dsc = 60 mm

M* = 250 kNm

D = 450 mm

f’c = 25 MPa

Exposure A2

d = 390 mm

N* = 1400 kN 

Figure 13.15

The procedure adopted here is to determine the neutral axis parameter ku which will
produce a load capacity ΦNu equal to the design load N*. Once the neutral axis
parameter ku is determined by trial and error from equation 13.4, the eccentricity and
the moment capacity can be calculated from equations 13.3 to 13.6.

Try ku = 0.6, kud = 0.6 × 390 = 234

Stress in compresive reinforcement,

fsc

fst

Substituting in equation 13.4

ΦNu = 0.6 × [0.85 × 25 × 350 × 0.85 × 234 + 2400 × (446 - 0.85*25) - 2400 ×
400] × 10-3 = 923 kN   < N* (= 1400) 

Increase ku to increase ΦNu, say try ku = 0.7

kud = 273          

fsc = 468.1 MPa 

fst = 257.1 MPa 

Substituting in equation 13.4,

ΦNu = 0.6 × [0.85 × 25 × 350 × 0.85 × 273 + 2400(468.1 - 0.85 × 25) - 2400 ×
257.1]*10-3

= 1309 kN 

Increase ku to 0.727, kud = 283.5
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ΦNu = 0.6 × (1792.2 + 1084.2 – 540.7) 

= 1075.3 + 650.5 -324.4

= 1401.4 kN 

N u × e’ = 1075.3 × (390 – 0.5 × 0.85 × 283.5) + 650.5 × (390 – 60)   

= 504472 kNmm    

= 195 mm 

Moment capacity,

ΦMu = ΦNu × e = 1401.4 × 195 × 10-3 = 273.3 kNm

The chosen section has a combined load-moment capacity ΦNu = 1401kN ª N* and
ΦMu = 273.3 kNm > M* = 250 kNm hence the chosen section is satisfactory.

13.10 Design Charts
The load-moment interaction charts considered so far are limited in their application to
specific sized columns. Dividing equation 13.4 by the column dimensions bD will
reduce the equation to a stress Nu/bD versus the total steel ratio p (= As/bD).

Defining,  

The effective depth                       

The equation now becomes,

(13.9)

Similarly dividing equation 13.3 by bD2 will also reduce that equation to a stress.
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d2

d - dsc

Substituting in the equation,

(13.10)

Dividing equation 13.7 by D,

(13.11)

Dividing equation 13.10 by 13.9 gives the ratio e’/D to be used in equation 13.11. And
finally dividing equation 13.8 by bD2,

(13.12)

The interaction diagrams may now be drawn using equations 13.9 to 13.12. Such
interaction diagrams will be in terms of stresses Nu/bD and Mu/bD2 and the total steel
ratio p = As/bD. A typical interaction diagram is shown in Figure 13.16. A full set of
interaction diagrams is contained at the end of the book.

Figure 13.16
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EXAMPLE 6
The column section whose ratio g=0.7 is
shown in Figure 13.17 (right). The column 
is required to carry a design axial load
N*=1850 kN and a design moment M*=160
kNm. Choose the column reinforcement for a
grade N25 concrete.

SOLUTION

Chart RC2f25-7 in the design charts at the end of the book will be used for g = 0.7 and
f ’c = 25 MPa.
Stresses due to design loading,

Enter Chart RC2f25-7 and read the required steel ratio p = 0.022.

Required area of reinforcement,

As = p b D = 0.022 × 400 × 400 

= 3520 mm2

Choose 6N28 bars (3 bars on each face) whose area is 3720 mm2.

13.11 Design of Short Columns
Short columns are defined as columns whose slenderness is such that the additional
moment due to slenderness effects is minimal and it may be disregarded in the design
procedure. The Code #10.3.1 defines short columns by the slenderness ratio.

(a) For braced columns,

(13.13)

That is, a short column is defined by a slenderness which is less than the greater of
the above values.

(b) For unbraced columns,

(13.14)
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Where:
Le = effective length.

r = radius of gyration.

= 0.3D for rectangular columns (D is the column dimension in the direction 
in which stability is being considered).        

= 0.25D for circular columns.   

M*1 = the lesser end moment.   

M*2 = the larger end moment. 

The ratio M*1/M*2 is taken to be negative when the column is bent in single
curvature and positive when the column is bent in double curvature. When the larger
moment M*2 is equal to or less then the minimum design moment of 0.05DN* the ratio
of M*1/M*2 is taken to be -1.0.

Column design will generally fall in the category of short columns. Slender columns
in braced and unbraced frames are subjected to additional moments due to the P-∆ effect
and they will be considered at the end of this chapter.

13.12 Short Columns with Small Axial Loads
When the axial load N* in short columns is less than 0.1fc’Ag, the axial force may be
disregarded and the column section is designed for bending only.

13.13 Short Braced Columns with Small Bending Moments
The bending moments in short interior columns of a braced rectangular structure may
be disregarded if the following conditions are satisfied:

(a) The ratio of the longer to the shorter length of any two adjacent spans does not
exceed 1.2.

(b) The column loads are primarily due to distributed loads whose intensities are such
that the live load q is not more than twice the dead load g.

(c) The column sections are prismatic and they are symmetrically reinforced.

If the above conditions are satisfied, the design axial strength of the column may be
taken as 0.75ΦNuo. 

13.14 Effective Length of Columns Le = kLu
The effective length of columns with simple end restraints may be determined using the
effective length multiplier k given in Figure 13.18.
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Figure 13.18

13.15 Moment Magnifier for Braced Columns
Consider a compression member subjected to an axial load N and end moments M1
shown in Figure 13.19. The end moments will cause the member to deflect an amount
∆1 at mid-height. Due to the deflection ∆1 the moment is increased by an amount M2 =
∆1N since the load N is now eccentric to the member at mid-height.

Figure 13.19

The additional moment M2 will cause a further deflection ∆2 and a corresponding
increase in moment M3 = ∆2N. This process is continued until stable conditions are
achieved and a maximum deflection ∆max is reached given by,

∆
max

(a) 
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Where Mmax is the final maximum moment given by,

Mmax = M1 + ∆ 1N + ∆ 2N + ∆ 3N + ........ 

= M1 + ∆maxN (b) 

and Nc is Euler’s buckling load given by,

(c) 

Substituting for  ∆max in (b),

Solving for Mmax gives,

The term 1/(1-N/Nc) is the moment magnifier for a column bent in single curvature
due to equal end moments. In the Code, the magnification factor for a braced column
is δb which also includes the effects of end moments M*

1 and M*
2. Computer programs

are available which will calculate the increased moment. This is called a second order
analysis. If such programs are not readily available to the designer, the Code #10.4.2
permits the use of the moment magnifier δb given by:

(13.15)

Where; km = End moment condition parameter given by:

(13.16)

The ratio of the smaller end moment to the larger end moment M*
1 /M*

2 is negative
if the column is bent in single curvature and positive when the column is bent in reverse
curvature. If the minimum moment of 0.05DN* exceeds the larger applied design
moment, the value of M*

1 /M*
2 is taken to be -1.0 and km becomes 1.0.

Nc = Buckling load given by:

(13.17)
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182do ΦMub = Measure of the stiffness EI of the member.   

do = Depth from compression fibre to outermost tension reinforcement.         

βd = Factor for creep effects due to sustained axial loads. It may be disregarded
for short columns whose slenderness ratio Le/r ≤ 40 and for columns with
small axial loads where N* ≤ M*/2D. 

(13.18)

ΦMub = Balanced moment capacity for ku = 0.545. This value would normally be
read from the column interaction diagram.               

Since designs will be carried out using design charts which are in terms of stresses,
the buckling load equation is converted to buckling stress. Dividing by the column area
gives,

which may be written in the format of equation 13.19,

(13.19)

EXAMPLE 7
A rectangular column shown in Figure
13.20 has cross-sectional dimensions 
b = 350  D = 400, and it uses grade N32
concrete. The column is reinforced on
two faces to give the ratio g = 0.7. End
conditions may be taken as free to rotate
at the top end and not free to rotate at
the lower end. Lateral sway is prevented.

The column is required to carry an
axial design load N* = 1855 kN made up
of 507 kN dead load G and 831 kN live
load Q. The two design end moments of
26 kNm and 174 kNm will cause the
column to deform in single curvature.

(a) Calculate the column moment
magnification factor.

(b) Determine the required steel ratio
and choose the reinforcement.
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SOLUTION

Data: b = 350 D = 400 do = 340 g = 0.7  
f ’c = 32 MPa Lu = 6200 N* = 1855 kN M*

1 = 26 kNm  

M*
2 = 174 kNm   

Column effective length using effective length multiplier k = 0.85 from Figure 13.18,

Le = kLu = 0.85*6200 = 5270 mm

Radius of gyration, r = 0.3*400 = 120 mm

Slenderness ratio,                                             

Minimum design moment   = 0.05DN*

= 0.05*0.4*1855

= 37.1 kNm

> 26 kNm applied design moment 

Use M *
1

= 37.1 kNm

Axial stress due to design load,

= 13.25 MPa

For the larger design moment,

= 3.1 MPa

On Chart CR2f32-7 reproduced in Figure 13.21, locate point using above stresses
to give p = 0.026 which is an initial approximation for the steel ratio since it does not
account for moment magnification. For this steel ratio read,

= 23.5 MPa 

= 4.5 MPa
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To determine the maximum slenderness ratio for a short column,

The column will have to be designed as a slender column since the slenderness ratio
of 43.9 exceeds the maximum value of 25 for a short column.

To calculate the buckling stress Nc/bD, the creep factor βd will have to be included
since the slenderness ratio is greater than 40.

= 0.379
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To calculate the moment magnification factor δb, the end moment ratio M*1/M*2
is negative since the column is bent in single curvature.

= 0.685

Magnified bending stress δb = 1.28*3.1 = 3.97 MPa.

Using the magnified bending stress, from chart RC2f32-7, read new steel ratio 
p = 0.035. This initial value may be accepted and it will be a conservative estimate of the
required steel ratio. The more accurate result will be obtained by repeating the design
steps using the new steel ratio until the same magnification factor and steel ratio obtained
in two consecutive iterations. Repeating the procedure with the new steel ratio of 0.035,

For p = 0.035,            = 25.8 MPa and            = 5.4 MPa

Magnified stress δb = 1.11 × 3.1 = 3.4 MPa

Further iterations will converge 
on δb = 1.16 with a magnified stress, 
1.16 × 3.1 = 3.6 MPa and a requred steel
ratio p = 0.032. The required area of
reinforcement,

As = 0.032 × 350 × 400 = 4480 mm2

Use 6N32 (As = 4800 mm2). It is
not always possible to closely match the
reinforcement to the required area and it
is not a good practice to use mixed size
reinforcement.
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13.16 Biaxial Bending
Columns are frequently subjected to design moments applied about both axes. Even when
the moment is applied about one axis (uniaxial bending) the minimum moment condition
of 0.05DN* will ensure that columns are designed for biaxial bending. Design of columns
in biaxial bending is much more complex. The required design aids are three dimensional
interaction diagrams. Biaxial bending problems for rectangular columns can be simplified
by the use of the combined orthogonal interaction formula given in #10.6.5 of the Code.

(13.20)

Where: M*x, M*y = Design moments magnified where applicable.

Between the limits, 1.0 ≤ αn ≤ 2.0

The interaction formula will generally be worked out in terms of stresses because the
design charts are in terms of stresses.

Columns subjected to biaxial bending are commonly reinforced on four faces using
8, 12 or 16 bars distributed to give equal reinforcement on each face. Design charts
RC4f##-4 to RC4f##-9 for columns equally reinforced on four faces using 12
reinforcing bars are included at the end of this chapter. Charts RC2f may still be used
for columns carrying small moments M*y applied about the weak axis. Only the corner
bars are considered for moments M*y as shown in the following example 7.

EXAMPLE 8
Check the column in example 7 for biaxial bending when the minimum design moment
is applied about the weak axis.

SOLUTION

Data:   D = 350 mm b = 400 mm f’c = 32 MPa Le = 5270 mm

N* = 1855 kN N*/bD = 13.25 MPa km = 0.685 Mx*/bD2 = 3.1 MPa

For bending about the x-axis

From chart RC2f32-7, for p = 0.034 and           = 13.25 MPa:

= 3.9 MPa

= 5.3 MPa
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Magnified bending stress             = 1.13 × 3.1 = 3.5 MPa

For bending about the y-axis

Using the 4 corner bars only since charts RC2f will be used for equal reinforcement on
2 faces.

Minimum design moment about y-axis,

M*y = 0.050 × 0.35 × 1855 = 32.5 kNm

Using the same cover, depth to reinforcement, do = 350 - 60 = 290 mm

Steel ratio using the 4N32 corner bars,                 

The g ratio falls between two charts, Chart RC2f32-6 will be used since the lesser
value of g gives conservative results. Alternatively both Charts RC2f32-6 and RC2f32-7
may be used and the results interpolated for g = 0.66.

From Chart RC2f32-6 for p = 0.023, 0.6Nuo/bD = 22.5 MPa ( = ΦNuo/bD at zero
moment) and ΦMub/bD2 = 3.6 MPa.

Buckling stress,

For equal end moments km = 1.0 since the ratio M*1/M*2 is taken to be -1.0.

Magnification factor,
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Magnified bending stress,

= 4.44 × 0.663 = 2.9 MPa

From chart RC2f32-6 for p = 0.023 and          = 13.25 MPa, 

= 3.6 MPa

Exponential to be used in interaction formula,

αn = 0.7 +                  = 1.70

= 1.19

> 1.0 UNSATISFACTORY

The column section will need to be increased or additional reinforcement added.
Add two more N32 reinforcing bars for bending about the weak axis. In this case the
column is equally reinforced on 4 faces using 8 bars. Charts CR4f are drawn for columns
equally reinforced on 4 faces using 12 or more reinforcing bars. Use of Charts CR4f is
illustrated in example 9. A conservative result may be obtained using Charts CR2f.

It will be necessary to recalculate the stress conditions for bending about the y-axis
using the increased steel ratio for 8N32 bars.

Steel ratio p =                 = 0.046

From Chart RC2f32-6 for p = 0.046,             = 29 MPa and            = 5.5 MPa and

buckling stress         =33.8 as for bending about x-axis.

Magnification factor,

Magnified design bending stress,

= 1.64 × 0.663 = 1.09 MPa 

From Chart RC2f32-6 for the steel ratio p = 0.046 and axial stress N*/(bD) = 13.25 MPa,
ΦMuy/(bD2) = 3.6 MPa.
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Exponential index for the interaction formula,

αn = 0.7 +                    = 1.48

= 1.06

< 1.0 satisfactory

The procedure will need to be refined or the steel ratio will have to be increased to
satisfy biaxial bending conditions.

EXAMPLE 9
The square column section shown in Figure 13.23 is equally reinforced on all four faces
using a total of 12 reinforcing bars. For the data given in the figure choose the
reinforcement assuming that the applied moments cause the column to deform in single
curvature and that the column is laterally restrained at the ends.

Data:

g = 0.6 Le = 3060 mm

G = 320 kN M*1x = 35 kNm

M*1y = 10 kNm do = 280   

f’c = 25 MPa N* = 950 kN

Q = 250 kN M*2x = 90 kNm

M*2y = 25 kNm 

SOLUTION

= 7.8 MPa

Bending about the X-Axis

= 2.1 MPa

From Chart CR4f25-6, required steel ratio p = 0.012.

To determine if the column is short or slender, for p = 0.012 read ΦNuo/(bD) = 
16.5 MPa and ΦMub/(bD2) = 2.4 MPa.
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The result of 1.06 is close to the limit of 1.0 and it may be accepted considering the
conservative approach adopted by using the design chart C2f3-6for cloumn with equal
reinforcement on two facts.



For a short column,

Maximum                                            

= 19.3 < 25

Therefore maximum slenderness ratio for a short column is 25.

Radius of gyration, r = 0.3 × 350 = 105 mm

Actual slenderness Le/r = 3060/105 = 29.1 > 25 for a short column. This is a slender
column and it will have to be designed as a slender column which includes moment
magnification due to slenderness effects.

Buckling stress,

Note that the creep factor has been ignored since the slenderness ratio was less than 40.

To determine the magnification factor, the end moment condition parameter,

km = 0.6 - 0.4           = 0.756

Magnification factor,

δb =                     

From Chart CR4f25-6, required steel ratio, p = 0.012.

Required area of reinforcement, As = 0.012 × 350 × 350 = 1,470 mm2

Bending about the Y-Axis

Minimum design bending moment = 0.05 × 0.35 × 900

= 15.75 kNm

The maximum design moment for bending about y-axis, My* = 25 kNm
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Maximum design bending stress, 

From Chart CR4f25-6, the required steel ratio for bending about the y-axis p < 0.01

As for bending about the x-axis, there is no moment magnification.

As for bending about the x-axis, there is no moment magnification.

Required area of reinforcement = 0.01 × 350 × 350 = 1,225 mm2

Choosing the Reinforcement and Checking Interaction Formula

For the biaxial bending condition the area of reinforcement calculated for bending about
the x-axis and about the y-axis may be added together and the reinforcement chosen for
the total area. This approach is usually conservative and it does not require checking of
the interaction formula. In this example the reinforcement will be chosen to satisfy the
interaction formula.

The initially estimated area of reinforcement will be the sum of the areas calculated
for bending about the x and y axis.

As = 1470 + 1225 = 2695 mm2

Steel ratio p =                 = 0.022.

From Chart RC4f25-6, for p = 0.022 and ΦNu/(bD) = N*/(bD) = 7.8 MPa the bending
stress capacity ΦMu/(bD2) = 2.9 MPa. This will be the same for bending about both the
x and y axes because of the square column section.  Also from the same chart the axial
stress capacity at zero moment condition ΦNuo/bD = 19 MPa.

Exponential index for interaction formula,

αn = 0.7 + 1.7        = 1.40

Applying the interaction formula,

= 0.74 < 1.0 SATISFACTORY

EXAMPLE 10  CIRCULAR COLUMNS

Circular columns are ideal for biaxial bending. The applied moments are combined
vectorially and the column is designed using the resultant moments as a uniaxially bent
column.

A 400 mm diameter circular column shown in Figure 13.24 is reinforced with 8 bars
placed on a 280 mm pitch circle diameter. The column uses grade N25 concrete. Choose
the reinforcement for the following conditions:
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Le = 3250 mm N* = 1540 kN

M*1x = 40 kNm M*2x = 75 kNm M*1y = 25 kNm M*2y = 64 kNm

Note: M*1x and M*1y are applied to the same column end.

SOLUTION

Combine the end moments to determine the resultant end moments.

M*1 =                  = 41.2 kNm

M*2 =                  = 98.6 kNm

Gross column area, Ag =                 = 125.7 × 103 mm2

g =         = 0.7

= 12.25 MPa

= 1.96 MPa

From Chart CC8B25-7 at the end of the book read p = 0.029 and for p = 0.029

read            = 21 MPa.

Radius of gyration, r = 0.25*400 = 100 mm

Slenderness ratio,                  = 32.5

The maximum slenderness ratio for a short column,

274 D E S I G N H A N D B O O K F O R R E I N F O R C E D C O N C R E T E E L E M E N T S

gD = 280D=400

Figure 13.24

 40 252 2+

 75 642 2+

π × 400
4

2

 

280
400

  

N
Ag

*

.
= ×

×
1540 10

125 7 10

3

3

  

M
A Dg

* .

.
= ×

× ×
98 6 10

125 7 10 400

6

3

 

ΦN
A

uo

g

L
r
e = 3250

100



= 37.0 > 32.5

The column is thus designed as a short column whch does not require moment
magnification i.e. the required steel ratio is read directly from the design chart.

Required area of reinforcement, As = 0.029 × 125.7 × 103 = 3645 mm2

Use 8N24 reinforcing bars whose area = 3616 mm2

13.17 Column Reinforcing Details
(a) Minimum and Maximum Steel Ratio

The longitudinal steel ratio should be not less than 0.01. While the Code does not
specify a maximum steel ratio, it gives a warning that if the steel ratio exceeds 0.04, the
designer must satisfy himself that steel congestion will not occur (especially at junctions
and around splices) and that proper placing and compaction of concrete can be achieved. 

(b) Lateral Restraint of Longitudinal Reinforcement

The longitudinal compression reinforcing bars are compression elements which may
buckle unless they are restrained at regular intervals by ties or continuous helical reinforc-
ement. Helical reinforcement also functions much like a tension membrane; it prevents
the concrete from bursting under compression so that the load carrying capacity of the
column is increased. The AS3600 Code does not provide additional load carrying
capacity for columns with helical reinforcement, it in effect considers that ties have the
same restraining capacity provided by helical reinforcement. The Code requires that
restraint be provided for all corner bars and every longitudinal bar if the spacing between
bars is more than 150 mm or every alternate bar if the bar spacing is 150 mm or less.
The minimum size of ties and helical reinforcement is given in Table 13.1. Effective
restraint is provided by bends in ties with an included angle of 135˚ or less or between
two 135˚ fitment hooks. The minimum spacing of ties and general Code requirements
discussed above are shown in Table 13.1 and Figure 13.25.

TTaabbllee  1133..11  MMiinniimmuumm  SSiizzee  ooff  TTiieess  aanndd  HHeelliicceess

Longitudinal Bar Size Minimum Size of Fitment

Up to N20 single bars 6 mm

N24 to N36 single bars 10 mm

Bundled bars 12 mm 
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Figure 13.25
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Figure 13.26
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Figure 13.27
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13.18 Fire Design
The Building Code of Australia provides mandatory requirements for the construction
of buildings and often the elements that form the building. Fire requirements have
become a major focus of this Code (and its predecessor Ordinance 70). Originally
building elements such as walls, columns etc merely had to provide structural adequacy
for a minimum period (eg a 3 hr fire rating meant the wall should not collapse after 3
hrs of fire exposure) so that people could egress from a building. 

This rating was then modified to account for structural integrity and insulation i.e.
to ensure the wall did not crack or transfer heat through it (such that it posed a fire risk
on the protected side of the wall). 

The original requirements for columns design under fire merely required the
designer to work out the cover to longitudinal reinforcement and the minimum column
dimension then use a graph from the Standard (# Figure 5.6.3) to read off a fire
resistance period (primarily for structural adequacy). The design parameters for columns
exposed to fire have now been extended from the previous version of AS3600-1994.

The requirements of structural integrity and insulation were not necessary as
columns are usually totally surrounded by fire. Beams and slab design however requires
the designer to calculate structural integrity and insulation values (using tables from
AS3600 based upon cover or slab thickness) as these elements are usually only exposed
to fire from one side. 

As mentioned in the previous section, even though fire resistance period (FRP) is
comprised of three levels (fire resistance levels – FRL) and always in the order - Structural
Adequacy, Structural Integrity and Insulation (eg 180/120/120), the only important
FRL for columns is Structural Adequacy. The old Code only used Figure 5.6.3 to
provide the FRP for columns yet did not take into account important parameters such
as (a) length of column (b) reinforcement % (c) applied load (d) concrete grade (e) aspect
ratio. 

The AS3600-2001 Code provides a new formula to account for these variables.
Since these parameters are now being accounted for, designers should find that the FRP
derived from the formula gives FRP values less than those derived from the graph. Since
Figure 5.6.3 is more conservative (so as to account for all the other variables) the new
Code has retained this graph and now called it the Deemed to Comply condition for
column fire design.

The value of k relates to the reinforcement ratio. If p% < 2.5% then k = 1.5,
however is p% ≥ 2.5% then k = 1.7. An example has been provided below to give
designers the opportunity to compare FRP values derived using the formula vs the graph.

EXAMPLE 11
A column 500 x 500 with an effective length of 5000 mm is totally engulfed by a fire.
The column has an applied design axial load of 4000 kN, contains 32 MPa concrete and
is reinforced with 8-N20 bars (cover being 30 mm). Determine the fire resistance period
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(FRP) using the formula and compare this with the deemed to comply value using the
graph from AS3600.

N* = 4000 kN
Dc = 500 mm
Dg = 500 mm
f ’c = 32 MPa

Ast = 8-N20
= 2500 mm2

p % = [2500 / (500 x 500)} x 100
= 1.0 %

∴k = 1.5

f ’c
1.3 = 90.5

Dc
3.3 = 806.5 x 106

Dg
1.8 = 72.1 x 103

N* 1.5 = 253  x 103

Le
0.9 = 2133

∴FRP = 146 min (use 120 min standard level)

Using Code Figure 5.6.3 (with cover to main reinforcement of 30 mm and
minimum column dimension of 500 mm), the actual point corresponds to 105 min.
FRP values however are only ever quoted in the standard levels 30, 60, 90, 120, 180 or
240 minutes so our 105 value would fall back to the 90-minute level. It can thus be seen
that using the formula provided an extra 30 minutes of fire rating when compared to the
deemed to comply figure.
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P R O B L E M S

QUESTION 1

The rectangular column section (b = 300, D = 400,
g = 0.7) shown uses grade N32 concrete and it is
reinforced with 6Y32 bars placed along the 300mm
ends. Calculate effective load and moment capacities
at ΦMu = 0, ku = 0,  ku = 0.6,  Nu = 0, and when 
Nu = Nub/2 and plot the results on a suitable graph.
Clearly show the resulting values of ΦNu and ΦMu for
each point on the graph.

QUESTION 2

The square column shown above is framed into concrete floor beams so that it is
rotationally restrained at the top end. At the lower end, the column is supported by a pad
footing which is not rotationally restrained. The whole framework is restrained from
sidesway by shear walls.

The column has a square cross-section and it is to be reinforced with 12 reinforcing
bars evenly distributed between the four faces. Choose the reinforcement for the column.

QUESTION 3

The column in question 2 is also subjected to a design moment M*
y = 100 kNm applied

about the y-axis. Check the column for biaxial bending if it is reinforced with 12N32
bars.
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QUESTION 4

The following data applies to a braced column bent
in single curvature whose cross-section is shown
below:

f ’c     = 32 MPa

G    = 680 kN

Q    = 900 kN

N* = 2200 kN

M*
1 =  90 kNm

M*
2 = 250 kNm

g    = 0.8   Choose the reinforcement for the column for the following conditions;  

(a) Le = 3600 mm
(b) Le = 7200 mm

QUESTION 5

The column in question 4 has an
effective length Le = 3600 mm for
buckling about both axes. The column 
is reinforced with 12N32 bars. Check
the column for biaxial bending.

f ’c = 32 MPa

G    = 680 kN   Q = 900 kN

N* = 2200 kN

M*
1x =  90 kNm

M*
2x = 250 kNm

gx = 0.8   gy = 0.7

M*
1y =  40 kNm

M*
2y = 120 kNm   
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2400
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12400

800
1600
2400
3200
4000

4800
5600
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8000

8800
9600

10400
11200
12000

12800
13600
14400
15200
16000
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2040
3060
4080
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6120
7140
8160
9180

10200

11220
12240
13260
14280
15300

16320
17340
18360
19380
20400

TTaabbllee  22..22  --  AArreeaass  ooff  RReeiinnffoorrcciinngg  BBaarrss  iinn  mmmm22

No.
of

Plain
R10

Bars Bars 12mm 16mm 20mm 24mm 28mm 32mm 36mm

Bar Diameter

RL1218 1112 227 11.9 100 7.6 200
RL1118 891 227 10.65 100 7.6 200
RL1018 709 227 9.5 100 7.6 200

RL918 574 227 8.6 100 7.6 200
RL818 454 227 7.6 100 7.6 200
RL718 358 227 6.75 100 7.6 200

SL81 454 454 7.6 100 7.6 100
SL102 354 354 7.6 200 7.6 200
SL92 290 290 8.6 200 8.6 200
SL82 227 227 7.6 200 7.6 200

SL72 179 179 6.75 200 6.75 200
SL62 141 141 6.0 200 6.0 200
SL52 89 89 4.75 200 4.75 200
SL42 63 63 4 200 4 200

Longitudinal Wires Cross Wires Size(mm) Pitch Size(mm) Pitch

Area mm2/m Longitudinal Wire Cross Wire
Ref. No.

TTaabbllee  22..33  --  SSttaannddaarrdd  wweellddeedd  wwiirree  mmeesshh
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TTaabbllee  22..44  --  SSttrreennggtthh  RReedduuccttiioonn  FFaaccttoorrss  �

Type of Action Effect Strength Reduction Factor Φ

(a) Axial force without bending
(i) tension 0.8
(ii) compression 0.6

(b) Bending without axial tension or compression where:
(i) ku ≤ 0.4 0.8
(ii) ku > 0.4

(c) Bending with axial tension � + (0.8 - �)

the value of Φ is obtained from (b)
(d) Bending with axial compression where:

(i) Nu  Nub 0.6

(ii) Nu < Nub 0.6 +  (� - 0.6)

the value of � is obtained from (b)

(e) Shear 0.7
(f) Torsion 0.7
(g) Bearing 0.6

(h) Compression and axial tension in strut and tie action 0.7
(i) Bending shear and compression in plain concrete 0.7
(j) Bending shear and tension in fixings 0.6
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TTaabbllee 33..11 -- EExxppoossuurree CCllaassssiiffiiccaattiioonnss    (i.e. Table 4.3 from AS3600)

Surface and Exposure Environment Exposure Classification

1. SURFACES OF MEMBERS IN CONTACT WITH THE GROUND     
(a) Members protected by damp-proof membrane. A1
(b) Residential footings in non-aggressive soils. A1
(c) Other members in non-aggressive soils. A2
(d) Members in aggressive soils. U

2. SURFACES OF MEMBERS IN INTERIOR ENVIRONMENT
(a) Fully enclosed within a building except for a brief period A1

of weather exposure during construction.
(b) In industrial buildings, the member being subjected to B1

repeated wetting and drying.

3. SURFACES OF MEMBERS IN ABOVE-GROUND EXTERIOR ENVIRONMENT
In areas that are:

(a) Inland (> 50 km from coastline) environment;
(i) Non-industrial & arid climate. A1
(ii) Non industrial and temperate climate. A2
(iii) Non-industrial and tropical climate. B1
(iv) Industrial and any climate. B1

(b) Near-coastal ( 1 km to 50 km from coastline)and any climatic zone. B1
(c) Coastal (up to 1 km from coastline but excluding tidal and splash zones) A1
and any climatic zone.

4. SURFACES OF MEMBERS IN WATER
(a) In fresh water. B1
(b) In sea water -

(i) permanently submerged. B2
(ii) in tidal or splash zones. C
(c) In  soft running water. U

5. SURFACES OF MEMBERS IN OTHER ENVIRONMENTS
Any exposure environment not otherwise described in items 1 to 4 U

To give the designer a better opportunity to identify the risk of corrosion of the reinforcement, the
Code has classified exposures in ascending order of severity. Exposure classifications are designated as
A1, A2, B1, B2, and C. Exposure conditions leading to these classifications are described in Table 3.1.

Notes:
1 Climatic zones referred to in Table 3.1 are shown in Code Figure 4.3
2 Industrial refers to areas within 3 km of industries which discharge atmospheric pollutants.
3 Coastal zones include locations <1 km from shorelines of large expanses of salt water.
4 Designations U are undefined and to be determined by the designer.

TTaabbllee 33..33 -- MMiinniimmuumm CCoovveerr ffoorr SSttaannddaarrdd FFoorrmmwwoorrkk aanndd CCoommppaaccttiioonn

Exposure Required Cover in mm
Classification Characteristic Strength f c 

20 MPa 25 MPa 32 MPa 40 MPa ≥50 MPa

A1 20 20 20 20 20
A2 (50) 30 25 20 20
B1 (60) 40 30 25
B2 (65) 45 35
C (70) 50
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TTaabbllee  33..44  --  AArreeaass  ooff  RReeiinnffoorrcceemmnntt  aanndd  MMiinniimmuumm  BBeeaamm  DDiimmeennssiioonnss  ffoorr  EExxppoossuurree  CCllaassssiiffiiccaattiioonn  AA11

Bar Number 1 Row 2 Rows 3 Rows
Dia. per

Row bmin Area cmin Area cmin Area cmin

2 118 220 440 660
3 160 330 660 990

12 4 202 440 38 880 60 1320 82
5 244 550 1100 1650
6 286 660 1320 1980

2 126 400 800 1200
3 172 600 1200 1800

16 4 218 800 40 1600 64 2400 88
5 264 1000 2000 3000
6 310 1200 2400 3600

2 134 620 1240 1860
3 184 930 1860 2790

20 4 234 1240 42 2480 68 3720 94
5 284 1550 3100 4650
6 334 1860 3720 5580

2 142 900 1800 2700
3 196 1350 2700 4050

24 4 250 1800 44 3600 72 5400 100
5 304 2250 4500 6750
6 358 2700 5400 8100

2 150 1240 2480 3720
3 208 1860 3720 5580

28 4 266 2480 46 4960 76 7440 106
5 324 3100 6200 9300
6 382 3720 7440 11160

2 160 1600 3200 4800
3 224 2400 4800 7200

32 4 288 3200 48 6400 80 9600 112
5 352 4000 8000 12000
6 416 4800 9600 14400

2 172 2040 4080 6120
3 244 3060 6120 9180

36 4 316 4080 50 8160 84 12240 118
5 388 5100 10200 15300
6 460 6120 12240 18360
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Bar Size
f’c a N12    N16 N20 N24 N28 N32 N36

15   592 961 1382 1841 2337 2853 3400
20   478 790 1151 1554 1993 2457 2953
25   401 670 987 1344 1737 2157 2609
30   345 582 864 1184 1540 1923 2338
35   303 514 768 1058 1383 1734 2117

25 40   300 461 691 956 1255 1579 1934
45   300 417 628 872 1148 1450 1781
50   300 400 576 802 1059 1340 1650
55   300 400 531 742 982 1246 1537
60   300 400 500 646 858 1092 1352
65   300 400 500 606 807 1028 1275

15   523 850 1221 1628 2065 2522 3005
20   423 698 1018 1373 1762 2171 2610
25   354 592 872 1188 1536 1907 2306
30   305 514 763 1046 1361 1699 2066
35   300 454 678 935 1222 1533 1871

32 40   300 407 611 845 1109 1396 1710
45   300 400 555 771 1015 1281 1574
50   300 400 509 709 936 1184 1458
55   300 400 500 656 868 1101 1359
60   300 400 500 610 809 1029 1271
70   300 400 500 600  758 965 1195

15   468 760 1092 1456 1847 2255 2688
20   378 624 910 1228 1576 1942 2334
25   317 530 780 1062 1374 1705 2063
30   300 460 683 936 1217 1520 1848
35   300 406 607 836 1093 1371 1674

40 40   300 400 546 756 992 1249 1529
45   300 400 500 690 908 1146 1408
50   300 400 500 634 837 1059 1304
55   300 400 500 600  776 985 1215
60   300 400 508 600  724 920 1137
65   300 400 500 600  700 863 1069

15   419 680 977 1302 1652 2017 2404
20   338 558 814 1099 1409 1737 2088
25   300 474 698 950 1229 1525 1845
30   300 411 611 837 1089 1359 1653

50 35   300 400 543 748 978 1226 1497
40   300 400 500 676 887 1117 1368
45   300 400 500 617 812 1025 1259
50   300 400 500 600  749 948 1167
55   300 400 500 600  700 881 1087
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Tensile Development Length Lsy.t in mm for Standard Compaction



TTaabbllee  88..11    --    LLiimmiittss  ffoorr  CCaallccuullaatteedd  DDeefflleeccttiioonn  ooff  BBeeaammss  aanndd  SSllaabbss

Type of Member Deflection to be Deflection Limitation   �/Leff

Considered for Spans for Cantilevers
Notes 1 and 2 Notes 3

All members The total 1/250 1/125
deflection

Members The deflection 1/500 where 1/250 where provision
supporting which occurs after provision is made is made to minimise
masonry partitions the addition or to minimise the effect effect of movement,

attachment of the of movement, otherwise 1/500
partitions. otherwise 1/1000

Bridge members The live load and impact 1/800 1/400
deflection

Notes:
1 In flat slabs, the deflection to which the above limits apply is the theoretical deflection of the line diagram
representing the idealised frame.
2 Deflection limits given may not safeguard against ponding.

3 For cantilevers, the value of D/Leff given in this table applies only if the rotation at the support is included in the
deflection calculations.

TTaabbllee  88..33    --    AArreeaass  ooff  RReeiinnffoorrcceemmeenntt    mmmm22  //  mm  WWiiddtthh

Bar Bar Sizes

Spacing 12 mm 16 mm 20 mm 24 mm 28 mm 32 mm  

100 1 100 2 000 3 100 4 500 6 200 8 000  

125 880 1 600 2 480 3 600 4 960 6 400  

150 733 1 333 2 067 3 000 4 133 5 333  

175 629 1 143 1 771 2 571 3 543 4 571  

200 550 1 000 1 550 2 250 3 100 4 000  

225 489 889 1 378 2 000 2 756 3 556  

250 440 800 1 240 1 800 2 480 3 200  

275 400 727 1 127 1 636 2 255 2 909  

300 367 667 1 033 1 500 2 067 2 667  

325 338 615 954 1 385 1 908 2 462  

350 314 571 886 1 286 1 771 2 286  
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DESIGNATION OF 
COLUMN 

DESIGN CHARTS

RECTANGULAR COLUMNS (RC)

R C  f   -

CIRCULAR COLUMNS (CC)

C C 8 b   - 

gf ’c

g

2 = Equal reinforcement on 2 faces
4 = Equal reinforcement on 4 faces using 12 or more bars

Using 8 or more bars

f ’c
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DESIGN HANDBOOK FOR REINFORCED CONCRETE ELEMENTS – ERRATA SHEET 1

Sheet 1

 Page xi – Amended text highlighted in bold

 As1 = Tensile area of primary beam. This is usually the area of a singly
reinforced beam with maximum steel ratio pmax for which ku = 0.4.

                 Remove following;

Asc = Area of reinforcement on compression side.

Page xii – Remove following;

bw = Width of web.

d = Effective depth of beam.

Page xiii – Remove crossed out material and add/amend text highlighted in bold;

dsc = Distance from extreme compression fibre to the centroid of the outer
compression reinforcement.

Ecj = The mean value of modulus of elasticity of concrete at nominated age.

= ρ1.5×0.043√fcm

Eu = Ultimate earthquake action.

fc = An intermediate concrete stress.

Fst = An intermediate tensile steel stress within the elastic range.

Page xiv – Amended text highlighted in bold

GR = Dead loads resisting instability

Lef = Effective span of beam, lesser of L and (Ln + D) or (Ln + D/2) for cantilevers.

Lo = Span length used in simplified method, L – 0.7 times the sum
of as for each support.

Pages xiv and 235 – Add symbol definition kuo

kuo = Ratio at ultimate strength of the depth of the NA from the extreme compressive
fibre to do. Symbols ku is applied for kuo in this text.

Page xv – Remove following;

Ly = Longer effective span of slab supported on four sides.

Mud = The reduced ultimate strength in bending when ku is reduced to 0.4.
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Page xvi – Add/amend text highlighted in bold

pv = Shear steel ratio  Ast/(bvdo).

Su = Ultimate action due to combination of various actions.

Page xvii         - Remove crossed out material
- add/amend text highlighted in bold
- replace symbols b1, b2, b3 and d by β1 , β2 , β3 and δ

Vuc = Ultimate punching shear strength.

w* = Design load used for strength conditions.

w* = Unit slab design load used as alternative symbol for Fd.

Ws = Serviceability wind action.

Wu = Ultimate wind action.

β1 = Shear strength coefficient for comparable increase in shear capacity
of shallow beams.

β2 = Shear strength coefficient for axial load effects.

β3 = Shear strength coefficient to account for increased strength when
concentrated loads are applied near supports (short shear span av < 2do).

δ = Deflection obtained from calculations.

Page xviii – Replace symbols db , ds , D, F and g by δb , δs , ∆ , Φ , γ and add ρ

δb , δs = Moment magnifiers for braced and sway columns.

∆ = Maximum deflection – normally expressed as a fraction, eg  ∆/L.

Φ  or  φ = Strength reduction factor.

γ = Ratio of depth of simplified rectangular stress block to depth of NA.

ρ = density of concrete (taken as 2400 kg/m3 in this book)

Page 1 - Add the following symbols;

Eu = Ultimate strength action.

Su = Ultimate action due to combination of various actions.

Ws = Serviceability wind action.

Wu = Ultimate wind action.
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Page 10 Figure 1.5 – Replace 43 kN/m UDL by 42 kN/m and 25kN/m UDL with
24kN/m

Page 17 – Amended text highlighted in bold

(b) Strain is linear i.e. it is directly proportional to the distance from the NA for all
      moments up to and including the ultimate bending moment Muo.

Page 18 Figure 2.4 alter dimension γkud and identify figures (a), (b), (c) and (d)

Page 23 – Replace Figure 2.7 with following
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Page 25 and Page 285 Table 2.4 Replace symbol ‡ with  ≥

(d) Bending with axial compression where:

(i) Nu ≥ Nub

Page 26 – Altered value shown highlighted in bold

0.01450.85 =××=γ=
500
2534.0

f
f

34.0p
sy

'
c

max

Page 28 – Add bd2 to equation as shown bold

2bd





 −Φ=Φ

7.1
z1zfM '

cuo

Page 32 – Table 3.1, altered classification shown highlighted in bold

(c) Coastal (up to 1 km from coastline but excluding tidal and splash zones)          B2
                    and any climatic zone.

Page 34 – Table 3.3, heading, alteration shown highlighted in bold

Required Cover in mm
                                                        Characteristic Strength f c

’

Page 36 – Altered symbols shown highlighted in bold

sy

'
cfst

f
f2

d
D22.0

bd
A







≥

Page 41 – Altered data shown highlighted in bold

Required total depth of beam,  D = 477 + 66 = 543 mm.
.
.

The trial section is satisfactory. If the actual weight of beam is used, the design moment,
M* = 300.2 kNm

Page 45 Equation 4.3 – Corrected equation reads,











−Φ=λ

c

sy
sy 'f

f

7.1
p1fp

Page 56 – Remove crossed out text and add new formula

If εsc ≥ 0.0025 then the compressive reinforcement HAS yielded and the required
      area of compressive reinforcement is equal to the tensile area is given by;
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Asc = AS2

               '
csy

sys2
sc

0.85ff

fA
A

−
=

Page 57 – Modify equation for p1 (modification shown in bold) when εsc ≥ 0.0025

bd

AA

p

scst

1













 −
−

=
sy

'
csy

f
0.85ff

                      If εsc ≥ 0.0025

Page 60 – Equation 5.11, add Φ to denominator

( )( )sc
'
csc

2
sc

ddf85.0f
MA

−−
=
Φ

                            5.11

Page 61 Table 5.1 – Replace data for 65MPa concrete grade shown in bold

f 'c  in  MPa
Parameter 20 25 32 40 50 65

γ 0.850 0.850 0.822 0.766 0.696 0.65
pmax .0116 0.0145 0.0179 0.0208 0.0237 0.0287

z 0.2890 0.2890 0.2795 0.2604 0.2366 0.221
λ 3.838 4.797 5.979 7.057 8.147 9.998

Page 62 – Altered data shown in bold

dsc = 64mm

           d = 500 - 68  = 432mm

Area of tensile reinforcement in primary beam,

        As1 = 0.0179×350×432

= 2706 mm2

         M1 = λbd2

= 5.979×350×4322
×10

-6

= 390.5 kNm

M2 = M* - M1

= 465 – 390.5

= 74.5 kNm
Area of tensile reinforcement required,
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( ) ( )
2

6

scsy

2
2s mm

645008.0
10

ddf
M

A 506
432

74.5
=

−×
×

=
−Φ

=

0.148
432

==
64

d
dsc

Page 63 – Altered data shown in bold

From chart B2 read  K = 1.42

Area of compressive reinforcement required,

        Asc = K×As2
= 1.42×506
= 719 mm2

Total tensile area required,

        Ast = As1 + As2

= 2706 + 506
= 3212 mm2

.

.

.
Total tensile area required,

        Ast = 2556 + 848 = 3404 mm2

Page 64 – Correct text shown in bold and in Figure 5.3 replace 9N24 by 8N24 bars

For tensile reinforcement, choose 8N24 bars in two rows as shown below giving, Ast = 3600 mm2.

              Figure 5.3

Page 68 – Altered data shown in bold

From chart DRCB-32 for dsc/d = 0.125 and ΦMuo/(bd2) = 9.29 MPa read the required steel ratios
pt = 0.0276 and pc = 0.0126.  Figure 5.5 shows the construction lines required to read the chart.

Required areas of reinforcement     Ast = 0.0276×350×400
= 3864 mm

2



DESIGN HANDBOOK FOR REINFORCED CONCRETE ELEMENTS – ERRATA SHEET 7

Sheet 7

                                                     Asc = 0.0126×350×400 = 1764 mm
2

6N28 bars in two rows of three bars gives Ast = 3720 mm2 and 4N24 bars gives
Asc = 1800mm2.  From Table 3.4 adjusted dimensions for exposure A2 are d = 419mm
and dsc = 49mm.  Repeating the procedure using new values of d and dsc,

Page 69 – Altered data shown in bold

13204190.009 

36664190.0250 

0.009   0.0250C 

 8.46

0.11749/419

=××=

=××=

==

=Φ

==

350AquiredRe

350AquiredRe

p, read p32B-DRChart

MPabd/M

d/d

sc

st

ct

2
uo

sc

Choose 6N28 bars giving  Ast = 3720mm2, and 3N24 bars giving Asc =1350mm2

Check primary beam steel ratio.

)0179.0(p
350

p

max

t

=<=









×
−

=

   0.0162
419
13503720

0.0126

0.125

9.29

Tensile Steel Ratio pt

0.0276
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Page 70 – Replace Chart DRCB – 32 with following
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Page 71 Question 2 – Adjust effective depth dimension to centroid of reo.

Page 77 Figure 6.5 – Amend figure

Page 82 – Amendment shown in bold

From Table 3.4 choose 6N36 placed in two rows of 3 bars whose area Ast = 6120 mm2.

Page 83 – Amended text shown bold and replace chart T-18A

Example 3.

Determine the area of reinforcement for the beam shown in Figure 6.8.

Solution

Data:       b = 150    bw = 350      d = 540      t = 100      fc
’=25 MPa      M*=175 kNm

2

*

bd
M = MPa

540

10
2

6
 4.0

150
175

=
×

×

d
t 185.0

540
100

==            
wb
b = 

350
150  = 0.43
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Using chart T-18A for t/d = 0.18, read the required steel ratio
p = 0.0114 for  ΦMuo/(bd

2
) = 4.00 MPa and b/bw = 0.43.

Using the smaller value of t/d, the steel ratio read from T-18A
will be slightly conservative, a more accurate value can be
obtained by interpolating between the results obtained from
charts T-18 and T-20 although the difference may not be
discernable.

Hence the required tensile area,

Ast = 0.0114×150×540

                                   = 923 mm
2                           Figure 6.8

Page 95 Example 2 – Add text shown in bold
- Alter effective depth dimensions in Figure 7.7

shown   in   the   figure.       Grade
N32 concrete is used for the
beam which is in an Exposure
Classification  A1.    The bending

Page 96 – Example 2 - Correction shown in bold

mandm
81

815.1742228228x
2

 4.72 0.91 =

××−±
=
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Page 97 Figure 7.9 – Corrected dimensions shown in bold

Page 98 Figure 7.10 – Amended figure shown below

Page 98 – Amended values shown in bold

It now only remains to check that development lengths have been provided. The
concrete cover for Exposure Condition A1 is 20mm. Since at this stage using
12mm stirrups is 38mm for the negative reinforcement and 47mm for the
positive reinforcement. are assumed, Assuming 20mm minimum
cover, the actual concrete side cover for the longitudinal reinforcement is
32mm.

Clear spacing = )ercovtheTwice(mm68
3

204322350   94 <=
×−×−

      Assume N32 spacer bars between each row of positive reinforcement, the clear
spacing between bars is 32 mm which is less than the horizontal spacing of 68 mm
and less than twice the cover of 94 mm. The development length will therefore be
calculated for a = 32/2 =16 mm. From Table 7.1 Lsy.t = 1180 mm by interpolation ...
   Similarly the clear spacing between the negative reinforcing bars is calculated to be
(350-2×32-5×1.5 mm. This is less than twice the 38 mm cover. The required
development length for N16 negative reinforcement is obtained from Table 7.1 for
a = 51.5/2 = 26mm.

Lsy.t = 576 mm

The negative reinforcing bars are top bars with more than 300mm of concrete cast
below the bars. The development length must therefore be increased by factor k1.

0.91 3.813.81 1.28
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Lsy.t = 1.25×576 = 720 mm, say 710 mm

Page 99 Question 1 – Change Grade N32 concrete to Grade N40

Page 103 Note 3. – Change D/Lef to read ∆/Lef

Page 105 Line 7 – Change “then” to “than”

Page 105 Table 8.2 Edge Condition 1 should read as follows;

1. Four edges continuous 4.00 3.40 3.10 2.75

Page 107  – Amendment shown in bold

MPa  34500               ==−= ccs E7.1
2480
6202.12k

Page 113 – Corrections shown in bold

STEP 1
To determine Ast.min we first have to calculate Act.  If we ignore the presence of the
Reinforcement then Act for rectangular section   ……………..

STEPS 2 & 3

s
s
f

k ct
min.st

A3
A =

.

.

.
STEP 5
To calculate the tensile stress in the reinforcement at a cracked section under short term
Serviceability loads fscr we must calculate the design bending moment at the serviceability

Limit state *
sM  the neutral axis depth kd and the Icr.

( )
cr

scr I
kddn

f
−

=
*
sM

Page 116 and 311 – On Chart D2 change D/Lef to ∆/Lef along top of chart

Page 118 Correction shown in bold

From Table 3.3,  minimum  ………….
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Pages 123 and 314 - Replace chart S3 with chart on following page

OR

simply plot line for RL918 mesh from 16.8 kNm for d=80mm to 51.3 kNm for d-
230mm on existing chart.
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Page 130 Figure 8.8 – Change stress at level of reinforcement shown in bold

Page 131 Equation 8.12 – Corrections shown in bold

( ) ( ) ( ) ( )sc
3

d−−+−+= kdA1nkddnA
3

kdbI sc
2

sccr

Page 137 Replace es by εcs

From AS3600 for a 30 year life and th = 195 mm, the new εcs will be 670 microstrain

Page 139 – Corrections shown in bold

Asc = 1600mm2

.

.

.

fcs(dr) = fcs(sr) - (Asc/Ast)fcs(sr)…but ≥ fcs(sr) (suggested minimum)
= 0.58 MPa = 0.51 MPa
     (doubly reinf)    (doubly reinf)

Where fcs(sr) = [1.5p/(1 + 50p)]Ecεcs = 1.74 MPa = 1.52 MPa

Page 151 – Correction shown in bold

DESIGN STRENGTH FOR A 1m WIDE STRIP

Page 154 – Alter symbols b1, b2 and b3 to β1, β2 and β3,
Page 159 Section 10.5 - Altered symbol shown in bold

Shear near a support can be taken at a distance do from the face of the support provided

Page 162 Section 10.8 – Altered text shown in bold

( )v
of.sy

us Cot
s

df
V θ








= svA

d-kd
kd

fc
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substituting Asv.min = 










f.sy

v
f

sb35.0
 and …………..

Page 163 Flow Chart – Change ΦVc and ΦVuc shown in bold

Page 174 Alter Text in Chart Heading and Vertical Axis Format

For β1 = 1.1( 1.6 – do/1000 ) ≥ 1.1

and  β2 = β3 = 1.0

Calculate, ΦVuc = β1 ΦVc

Read vc
’ from Chart V1 and Calculate

ΦVc =  vc
’ bv do
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Page 179 – Replace £ with ≤

= 0.0027s + 0.0024s ≤ 1.0

Page 189 - Correction shown in bold

Data:    fc
’ = 32 MPa    fsy = 500 MPa    g = 1 kPa    q = 4 kPa

Page 190 - Correction shown in bold

Required effective depth, mm4400d  85.6
51.4

==

Page 216 – Correction shown in bold

Unknowns B1 and B2. Substituting for (B1 + B2) and B2 in equation (a) and solving for

Page 217 – Correction shown in bold

Or cantilever footings as shown in Figure 12.1(d) and Figure 12.9. The philosophy is

Page 222 Figure 12.14 – Change to lower case u after SHEAR PERIMETER

Page 231 Figure 12.20 – Change 8Y28 to 8N28

Page 233 Question 3 Correction shown in bold

The factored soil bearing capacity  qu = 400 kPa.

Pages 234 and 326 Chart FP – Horizontal axis symbol shown in bold

Punching Shear Capacity  ΦVu kN

Pages 239 – Replace symbol e by ε in line,

Rewriting the general axial load equation in terms of the combined strain ε,

Page 244 – Corrections shown in bold

(given by equation 13.3) would need to be applied to cause simultaneous uniform

Page 247 Figure 13.11 – Corrections shown in bold

Replace  Nuo  by  Nu

Replace  d – 0.5 γ k du  by  d – 0.5 γ ku d

Page 248 Fourth equation – Equation to read as follows;

syst
5

st f102f ≤ε×=

Page 249 - Line 6 replace 13.1 by 13.3 Line 27 replace 1161×106 by 1.161×106
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Page 253 – Amend text shown in bold

Nue′ = 1228.2×(425-0.5×0.85×170) + 778.8×(425-75)

= 705850 kNmm

    e′ = mm
767

 920705850
=

    e = 920 – 175 = 745 mm

 Mu = 767×745×10-3

       = 571 kNm
        .

       .
       .

   Φ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

       = 0.6 + 69.0
1388
76712.0 =






 −×

       .
       .
       .

             ΦMu = 0.69×571 = 394 kNm

Page 254 – Amend text shown in bold

Nube′ =  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

  = 181810 kNmm

Page 255 - In line 2 replace 13.2  by  13.4

Page 256 – Amend text shown in bold

Nue′ = 837.1×(425-0.5×0.822×93.6) + 451.7×(180-60)

= 172679 kNmm

    e′ = mm
8.88

 1945172679
=

    e = 1945 – 60 = 1885 mm

 Mu = 88.8×1885×10-3

                      = 167.4 kNm
       .
       .
       .

ΦMu = 0.6×167.4 = 100.4 kNm
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Page 257 - In line 12, line 18 and line 25, replace 13.2  by  13.4

Page 258 - Amendments shown bold

ΦNu×e′ = 1075.3×(390-.5×0.85×283.5) + 650.5×(390-60)
                            = 504472 kNmm

           e = 165
4.1401

−
504472 = 195 mm

Page 258 - Section 13.10 line 2, replace 13.2  by  13.4

Page 263 Equation  13.17 - Replace 200do  by  182do

Page 264 - Line 1 and subsequent Equation 13.19 - Replace 200do  by  182do

- Example 7 changed dead and live loads shown bold

          The column is required to carry an
axial design load N* = 1855 kN made up
of 507 kN dead laod G and 831 kN live

Page 266  Calculations for Nc/bD – Corrected data is highlighted in bold

       


















β+

Φ








 π
=

d

2
ub

o2

e

c
1

bD

M
d

D
LbD

N
182

             
MPa

379.01
5.4340

400
5270

2

 28.7

182

=









+

××






 π

=

Page 267  - Altered data is highlighted in bold

          

c

*
m

b

N
N1

k

−

=δ   1.28

28.7

=
−

=
25.131

685.0

Magnified bending stress δb 2

*

bD
M  = 1.28×3.1 = 3.97 MPa

Using the magnified bending stress, from chart CR2f32-7, read new steel ratio  p = 0.035.
This initial value may be accepted and it will be a conservative estimate of the required
steel ratio.  The more accurate result will be obtained by repeating the design steps using
the new steel ratio until the same magnification factor and steel ratio obtained in two
consecutive iterations.  Repeating the procedure with the new steel ratio of 0.035,

For p = 0.035, 
bD
NuoΦ

 = 25.8 MPa and  2
ub

bD
MΦ

 =  5.4 MPa
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MPa

379.01
340400

5270bD
N 2

c

 34.4

5.4182

=









+
××







 π

=

          1.11

34.4

=
−

=δ
25.131

685.0
b

Magnified stress δb 2

*

bD
M

 = 1.11×3.1 = 3.4  MPa

Further iterations will converge on δb = 1.16 with a magnified stress,

δb 2

*

bD
M

 = 1.16×3.1 = 3.6 MPa  and a required steel ratio p = 0.032.  The required

area of reinforcement,

         As  = 0.032×350×400  = 4480 mm2

Pages 268 Example 8 - Amendments shown highlighted in bold

Check the column in example 7 for biaxial bending when the minimum design moment
is applied about the weak axis.

.

.

.

MPa
bD

M

MPa
bD

M

2
ubx

2
ux

 5.3

 3.9

=
Φ

=
Φ

Pages 269 - Amendments shown highlighted in bold

MPa
379.01

340400
5270bD

N 2
c  33.85.3182

=







+
××







 π

=

          1.13

33.8

=
−

=δ
25.131

685.0
b

Magnified bending stress 2

*
x

b bD
M

δ  = 1.13×3.1  = 3.5 MPa

.

.

.
From Chart RC2f32-6 for p=0.023, 0.6Nuo/bD = 22.5 MPa (=ΦNuo/bD at zero
moment) and ΦMub/bD2 = 3.6 MPa.
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         MPa
379.1
290350

5270bD
N 2

c  17.13.6182
=






 ××







 π

=

4.44

17.1

=
−

=δ
25.131

1
b

Pages 270 - Amendments shown highlighted in bold

Magnified bending stress,

     
2

*
y

b
bD

M
δ  = 4.44×0.663 = 2.9 MPa

.

.

.

    
2
uy

bD

MΦ
 = 3.6 MPa

Exponential to be used in interaction formula,

          αn = 0.7 + 
5.22

25.13*7.1
  = 1.70

1.19 

3.6
2.9 3.5

=







+






=















Φ
+















Φ

αα 7.17.1n

uy

*
y

n

ux

*
x

3.5M

M

M
M

                                                    > 1.0  UNSATISFACTORY

     The column section will need to be increased or additional reinforcement added.  Add
two more N32 reinforcing bars for bending about the weak axis.  In this case the column
is equally reinforced on 4 faces using 8 bars.  Charts CR4f are drawn for columns equally
reinforced on 4 faces using 12 or more reinforcing bars.  Use of charts CR4f is illustrated
in example 9.  A conservative result may be obtained using charts CR2f.

     It will be necessary to recalculate the stress conditions for bending about the y-axis
using the increased steel ratio for 8N32 bars.

Steel ratio p =  0.0466400
=

× 400350

From chart CR2f32-6 for p = 0.046, 
bD
NuoΦ

 = 29 MPa and  
2
ub

bD

MΦ
 = 5.5 MPa and

buckling stress 
bD
Nc = 33.8 determined earlier.

Magnification factor,

          1.64 

33.8

=
−

=δ
25.131

1
b
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Magnified design bending stress,

2

*
y

b
bD

M
δ  = 1.64×0.663 = 1.09 MPa

From chart CR2f32-6 for the steel ratio p = 0.046 and axial stress N*/(bD) = 13.25
MPa, ΦMuy/(bD2) = 3.6 MPa.

Page 271 – Amendments shown highlighted in bold

Exponential index for the interaction formula,

αn = 0.7 + 1.48
29

=
25.137.1

1.06 

3.6
1.093.5 1.481.48

=







+






=















Φ
+















Φ

αα

8.3M

M

M
M

n

uy

*
y

n

ux

*
x

The result of 1.06 is close to the limit of 1.0 and it may be
accepted considering the conservative approach adopted by
using the design chart C2f3-6 for columns with equal
reinforcement on two faces.

Page 287 Table 3.4 Modify Sketch

Pages 362 to 377 –Circular Column Charts;

Horizontal Axis should read, 
DA

ΦM
g

u  and Vertical Axis should read, 
g

u
A
ΦN

Page 385 – Add page number shown in bold
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Sheet 22

Pages 294 Replace Chart DRCB - 25
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Sheet 23

Page 295 Replace Chart DRCB - 32
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Sheet 24

Page 296 Replace Chart DRCB - 40
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Sheet 25

Page 297 Replace Chart DRCB - 50
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Sheet 26

Page 298/299 Replace With Single T-Beam Chart T-10
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Sheet 27

Page 300/301 Replace With Single T-Beam Chart T-12
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Sheet 28

Pages 302/303 - Replace with single T-Beam Chart T–14
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Sheet 29

Pages 304/305 - Replace with single T-Beam Chart T–16
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Sheet 30

Pages 306/307 - Replace with single T-Beam Chart T–18
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Sheet 31

Pages 308/309 - Replace with single T-Beam Chart T–20



DESIGN HANDBOOK FOR REINFORCED CONCRETE ELEMENTS – ERRATA SHEET 32

Sheet 32

Page 311 Chart D2 – Replace title block
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Sheet 33

Page 316 replace Chart V2
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Sheet 34

Page 319 replace Chart T3
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Sheet 35

Page 321 Replace charts F1 and F2
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Sheet 36

Page 322 Replace charts F3 & F4
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Sheet 37

Page  323 Replace charts F6 and F8
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Sheet 38

Page 324 Replace charts F10 and F15
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Sheet 39

Page 325 Replace chart F20
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Sheet 40

Page 339 replace Chart RC4f65-9 with Chart RC2f65-9 below

Page 349 replace Chart RC2f32-9 with RC4f32-9 below
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Sheet 41

Design Section Following Page 283 – Enlarged Chart B1 may be added
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Sheet 42

Optional – Charts SRB25 – SRB50 on pages 290-293 have been redrawn for
relevant steel ratios
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