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Preface

It is well known that inequalities are a very important tool in classical analysis.
One application of these inequalities is the theory of PDEs (Partial Differential
Equations). To our knowledge, some students such as Master or Diploma stu-
dents do not have sufficient knowledge in this direction. Most of the basic courses
in PDEs contains Bellman–Gronwall’s inequality and nothing more. Advanced
courses teach some classes of inequalities related to one topic of PDEs such as
elliptic, parabolic and hyperbolic equations. On the other hand, there exist indeed
some monographs about inequalities (cf. [7, 83, 58, 216, 724, 725, 726, 727, 942]),
but all these monographs do not contain in detail explanations about applications
to ODEs (Ordinary Differential Equations) and PDEs.

This book is aimed at presenting some analytic inequalities and their ap-
plications in (partial) differential equations. These inequalities include integral
inequalities, differential inequalities and difference inequalities which play a cru-
cial role in establishing (uniform) bounds, global existence, large-time behavior,
decay rates and blow-up of solutions to various classes of evolutionary differen-
tial equations. The material of this book is selected by the author from a huge
literature such as published papers, preprints and books categorized in terms of
different properties that are consequences of those inequalities such as (uniform)
bounds, global existence, large-time behavior, decay rates and blow-up of solutions
for some partial differential equations.

There are essentially three parts in this book. The first part contains two
chapters where we establish some important analytic inequalities. In Chapter 1,
we carefully collect a number of integral inequalities including some famous in-
tegral inequalities such as the Bellman–Gronwall inequalities and the Henry in-
equalities. In Chapter 2, we consider differential and difference inequalities which
are categorized in terms of implications such as uniform bounds, asymptotic be-
havior, decay rates and blow-up of solutions. The second part mainly discuss
applications of some analytic inequalities introduced in the first part, which con-
sists of nine chapters, Chapter 3–Chapter 11. In Chapter 3, we introduce some
existence results on global and uniform attractors of some evolutionary differen-
tial equations. In Chapter 4, we introduce some results on global existence and
uniqueness of solutions to evolutionary differential equations. Chapter 5 is con-
cerned with the global existence and uniqueness for abstract evolutionary PDEs.

xi



xii Preface

Chapter 6 investigates the global existence and asymptotic behavior of solutions
to fluid equations. In Chapter 7, we establish the asymptotic behavior of solutions
for parabolic and elliptic equations. Chapter 8 studies the asymptotic behavior
of solutions to hyperbolic equations. In Chapter 9, we investigate the asymptotic
behavior of solutions to thermoviscoelastic, thermoelastoplastic and thermomag-
netoelastic systems. In Chapter 10, we study the blow-up of solutions to nonlinear
hyperbolic equations and hyperbolic-elliptic inequalities. In Chapter 11, we are
concerned with the blow-up of solutions to abstract equations and thermoelastic
equations. The last part is Chapter 12, an appendix, which presents some basic in-
equalities including Young’s inequalities, Hausdorff–Young’s inequalities, Hölder’s
inequalities, Minkowski’s inequalities and Jensen’s inequalities.

One of the features of this book is that the reader may learn not only basic
useful analytic inequalities from the first part of the book, but also many results
and techniques in differential equations established in the second part. I believe
that this book would be useful for Master, PHD students from mathematics, the-
oretic physics and other branches of science.

In the process of writing this book, many people have given me generous
help. Among them, I appreciate greatly Professor Bert-Wolfgang Schulze for his
spending a lot of time to improve earnestly the language word by word and giving
me helpful suggestions, and also sincerely thank Professors Irena Lasiecka (Uni-
versity of Virgina, USA), Vilmos Komornik (Université de Strasbourg, France),
Pavel Krejč́ı (Mathematical Institute, Academy of Sciences of the Czech Republic),
Mokhtar Kirane (Université de La Rochelle, France), Patrick Martinez (Univer-
sité Rennes I, France), Fatiha Alabau-Boussouira (Université de Metz et CNRS,
France), Maurizio Grasselli (Politecnico di Milano, Italy), Hyeong-Ohk Bae (Ajou
University, Republic of Korea) for providing me their recent results on analytic
inequalities. Moreover, I would like to take this opportunity to thank all the au-
thors of the references cited in this book for their excellent works which have
increased the readability and highlights of the book. I also appreciate all the peo-
ple who concern about me including my teachers, colleagues and collaborators.
The book was initiated when I visited Germany and Brazil in 2008, so I par-
ticularly acknowledges the hospitality from Potsdam University in Germany and
National Laboratory for Scientific Computing (LNCC) in Brazil. When I was vis-
iting TU Bergakademie Freiberg, Germany, in August, 2012, Professor Michael
Reissig proposed many good suggestions for the old book manuscript. Therefore I
appreciate very much for his suggestions which indeed have improved the old book
manuscript. Moreover, I would like to thank my students Lan Huang, Xinguang
Yang, Shuxian Deng, Xin Liu, Zhiyong Ma, Taige Wang, Guili Hu, Xiaoke Su,
Yaodong Yu, Lili Xu, Dongjie Ge, Xiaona Yu, Songtao Li, Tao Li, Xiaozhen Peng,
Baowei Feng, Ming Zhang, Wei Wang, Haiyan Li, Jianlin Zhang, Xing Su, Yang
Wang, Jie Cao, Tianhui Wei, Jia Ren, Jianpeng Zhang, Linlin Sun, Pengda Wang,
Cheng Chen and Ying Wang for their hard work in typewriting and checking the
gallery proof of the book manuscript.
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Chapter 1

Integral Inequalities

1.1 The classical Bellman–Gronwall inequality

It is well known that classical integral inequalities furnishing explicit bounds for an
unknown function play a fundamental role in differential and integral equations.
In this chapter, we shall first collect some basic integral inequalities.

Let us start with the famous Gronwall inequality (Gronwall [332]), which
plays a crucial role in analysis, especially in studying existence, uniqueness and
stability and estimates of solutions to differential equations (see, e.g., Bellman
[94, 95, 96, 98], Gronwall [332]).

Theorem 1.1.1 (The Gronwall Inequality [332]). Assume u(t) is a continuous func-
tion on the interval I = [α, α+ h], and a and b are non-negative constants. More-
over, if for all t ∈ I, the following inequality holds

0 ≤ u(t) ≤
∫ t

α

(bu(s) + a) ds. (1.1.1)

Then, for all t ∈ I,

0 ≤ u(t) ≤ ahebh. (1.1.2)

Proof. Set u = z exp[b(t− α)]. Let the maximum of z on I be attained at t = t1.
For this value of t, (1.1.1) implies

0 ≤ zmax exp (b(t1 − α)) ≤
∫ t1

α

(bz(s) exp[b(s− α)] + a) ds

which, by the mean value theorem, gives us

0 ≤ zmax exp[b(t1 − α)] ≤ zmax

∫ t1

α

b exp (b(s− α)) ds+

∫ t1

α

ads

≤ zmax (exp[b(t1 − α)]− 1) + a(t1 − α)

© Springer International Publishing Switzerland 2017 1 
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2 Chapter 1. Integral Inequalities

or

0 ≤ zmax ≤ a(t1 − α) ≤ ah.

This immediately implies (1.1.2). �

Remark 1.1.1. Note that inequality (1.1.1) was already established by Peano
(1885–1886), who explicitly considered the special case of the above theorem for
a = 0, and obtained some general results on differential inequalities as well as
maximal and minimal solutions of differential equations.

Theorem 1.1.2 (The Classical Bellman–Gronwall Inequality [96]). Assume y(t) and
g(t) are non-negative, continuous functions on 0 ≤ t ≤ T satisfying the inequality,
for all t ∈ [0, T ],

y(t) ≤ η +

∫ t

0

g(s)y(s)ds, (1.1.3)

where η is a non-negative constant. Then for all t ∈ [0, T ],

y(t) ≤ η exp

(∫ t

0

g(s)ds

)
. (1.1.4)

Proof. Let

v(t) = η +

∫ t

0

g(s)y(s)ds. (1.1.5)

Thus from (1.1.3) it follows that for all t ∈ [0, T ],

v′(t) = g(t)y(t) ≤ g(t)v(t). (1.1.6)

Multiplying (1.1.6) by exp

(
− ∫ t

0 g(s)ds

)
, we can get

d

dt

(
v(t) exp

(
−

∫ t

0

g(s)ds

))
≤ 0,

which thus gives us (1.1.4). �

Remark 1.1.2. In 1919, Gronwall [332] studied the case g(t) = constant ≥ 0.
Later on, in 1934, Bellman [95] extended this result to the form of Theorem 1.1.2.
Since this type of inequalities is a very powerful and useful tool in analysis, more
and more improvements and generalizations of the classical Bellman–Gronwall
inequality have been established.

Remark 1.1.3. Clearly Bellman’s inequality includes Gronwall’s inequality because
of

∫ t

α
ads ≤ ah for all t ∈ I = [α, α + h]. Since Bellman’s inequality was found,

its influence continued to increase, and it has been extended to various forms of
inequalities.



1.2. Linear generalizations of the Bellman–Gronwall inequalities 3

We note that Theorem 1.1.2 indeed provides bounds on solutions of (1.1.3)
in terms of the solution of a related linear integral equation

v(t) = η +

∫ t

0

g(s)v(s)ds (1.1.7)

and belongs to the basic tools in the theory of differential equations. Motivated
by various applications, it has been extended in different ways. For instance, on
the one hand, in the Picard–Cauchy type iteration for establishing existence and
uniqueness of solutions, this inequality and its various variants play a significant
role, on the other hand, inequalities of the type (1.1.3) are also frequently used in
the perturbation and stability theory of differential equations.

1.2 Linear generalizations of the Bellman–Gronwall

inequalities

Since the above inequalities appeared, many different generalizations have been
found, which include linear, nonlinear, singular, and uniform generalizations, and
other generalizations, involving operators in partially ordered linear spaces, etc.

Reid [833] was one of the early users of the above inequalities in the theory
of ordinary differential equations, who employed a slightly more general form than
Theorem 1.1.2 to study the properties of solutions of infinite systems of linear
ordinary differential equations. In this section, we shall gives some representative
generalizations and emphasize their interconnections.

Bellman [97] established the following variant of Theorem 1.1.2 in order to
study the asymptotic behavior of the solutions of linear differential-difference equa-
tions.

Theorem 1.2.1 (The Bellman Inequality [97]). Let u and f be continuous and
non-negative functions on J = [α, β], and let n(t) be a continuous, positive and
non-decreasing function on J . Then for all t ∈ J ,

u(t) ≤ n(t) +

∫ t

α

f(s)u(s)ds, (1.2.1)

implies for all t ∈ J ,

u(t) ≤ n(t) exp

(∫ t

α

f(s)ds

)
. (1.2.2)

Proof. In fact, by virtue of (1.2.1), the function w(t) = u(t)/n(t) satisfies

w(t) ≤ 1 +

∫ t

α

f(s)w(s)ds,
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which, together with Theorem 1.1.2, yields

w(t) ≤ exp

(∫ t

α

f(s)ds

)
.

Thus this gives us the required inequality (1.2.2). �

Theorem 1.2.2 (The Jones Inequality [407]). Assume y(t), f(t), and g(t) are real-
valued piecewise-continuous functions defined on 0 ≤ t ≤ T , and g is non-negative
on this interval. Then for all t ∈ [0, T ],

y(t) ≤ f(t) +

∫ t

0

g(s)y(s)ds, (1.2.3)

implies for all t ∈ [0, T ],

y(t) ≤ f(t) +

∫ t

0

g(s)f(s) exp

{∫ t

s

g(θ)dθ

}
ds. (1.2.4)

Proof. Let h =
∫ t

0
g(s)y(s)ds. Then (1.2.3) yields

h′(t) = g(t)y(t) ≤ g(t)f(t) + g(t)h(t),

whence

d

dt

(
h(t) exp

(
−

∫ t

0

g(s)ds

))
≤ g(t)f(t) exp

(
−

∫ t

0

g(s)ds

)
. (1.2.5)

Thus integrating (1.2.5) with respect to t ∈ [0, T ] yields

h(t) ≤
∫ t

0

g(s)f(s) exp

{∫ t

s

g(θ)dθ

}
ds

which, together with (1.2.3), implies (1.2.4). �

The above inequality was established by Jones [407] in 1964. Note that (1.1.4)
provides the best possible result, in the sense that when we replace the inequality
(1.1.3) by an equality, the same may be done in (1.1.4). Also, it is obvious that
when f(t) ≡ η (a constant), a direction integration in (1.2.5) yields

y(t) ≤ η exp

(∫ t

0

g(s)ds

)
which is precisely (1.1.4).

An alternative form of (1.2.4) can be stated as follows when y(t), f(t) is more
regular.



1.2. Linear generalizations of the Bellman–Gronwall inequalities 5

Theorem 1.2.3 (The Generalized Jones Inequality [407]). Assume that g(t) is a
non-negative integrable function on [0, T ] (0 < T ), and that f(t) and y(t) are non-
negative absolutely continuous functions on [0, T ] satisfying the following integral
inequality for almost all t ∈ [0, T ],

y(t) ≤ f(t) +

∫ t

0

g(s)y(s)ds. (1.2.6)

Then, for almost all t ∈ [0, T ],

(1) y(t) ≤ f(0) exp

(∫ t

0

g(s)ds

)
+

∫ t

0

exp

(∫ t

s

g(η)dη

)
f ′(s)ds. (1.2.7)

(2) If f(t) ≡ A = constant > 0, then for almost all t ∈ [0, T ],

y(t) ≤ A exp

(∫ t

0

g(s)ds

)
. (1.2.8)

If, further, g(t) ≡ B = constant > 0, then for almost all t ∈ [0, T ],

y(t) ≤ A exp (Bt) . (1.2.9)

Proof. Since f(t) and y(t) are non-negative absolutely continuous functions on
[0, T ], we know that y′(t), f ′(t) exist for almost all t ∈ [0, T ].

Then if we set

h(t) = f(t) +

∫ t

0

g(s)y(s)ds, (1.2.10)

then it follows from (1.2.6) and (1.2.10) that for almost all t ∈ [0, T ],

h′(t) = f ′(t) + g(t)y(t) ≤ f ′(t) + g(t)h(t)

which implies

d

dt

(
h(t)

(
−

∫ t

0

g(s)ds

))
≤ f ′(t)

(
−

∫ t

0

g(s)ds

)
. (1.2.11)

Integrating (1.2.11) with respect to t yields (1.2.7). Now (1.2.8) and (1.2.9) are
direct consequences of (1.2.7). �
Theorem 1.2.4 (The Gollwitzer Inequality [322]). Assume u, f, g and h are non-
negative continuous functions on J = [α, β], and for all t ∈ J ,

u(t) ≤ f(t) + g(t)

∫ t

α

h(s)u(s)ds. (1.2.12)

Then for all t ∈ J ,

u(t) ≤ f(t) + g(t)

∫ t

α

h(s)f(s) exp

(∫ t

s

h(σ)g(σ)dσ

)
ds. (1.2.13)
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Proof. Let

z(t) =

∫ t

α

h(s)u(s)ds. (1.2.14)

Then we have z(α) = 0, u(t) ≤ f(t) + g(t)z(t), and

z′(t) = h(t)u(t) ≤ h(t)f(t) + h(t)g(t)z(t). (1.2.15)

Multiplying (1.2.15) by exp
(
− ∫ t

α h(σ)g(σ)dσ
)
, we have

d

dt

[
z(t) exp

(
−

∫ t

α

h(σ)g(σ)dσ

)]
≤ h(t)f(t) exp

(
−

∫ t

α

h(σ)g(σ)dσ

)
. (1.2.16)

Setting t = s in (1.2.16) and integrating the resulting equation over [α, t], we
conclude that

z(t) exp

(
−

∫ t

α

h(σ)g(σ)dσ

)
≤

∫ t

α

h(s)f(s) exp

(
−

∫ s

α

h(σ)g(σ)dσ

)
ds.

(1.2.17)
Thus using (1.2.12), (1.2.17), we finally obtain (1.2.13). �

Remark 1.2.1. If g(t) = 1, then Theorem 1.2.4 reduces to Theorem 1.2.3 (Jones
[407]). Moreover, some generalizations of Theorem 1.2.4 when g(t) = 1, including
the subsequent extensions to discrete and discontinuous functional equations are
also contained in Jones [407].

Remark 1.2.2. Note that in Theorem 1.2.4 equality in (1.2.13) holds for a subin-
terval J1 = [α, β1] of J if equality in (1.2.12) holds for t ∈ J1. The results are still
valid if “≤” is replaced by “≥” in (1.2.12). Both (1.2.12) and (1.2.13), with “≤”

replaced by “≥”, remain valid if
∫ t

α
is replaced by

∫ β

α
and

∫ t

s
by

∫ s

t
throughout.

Remark 1.2.3. In 1975, Beesack [86] pointed out that if the integrals in Theorem
1.2.4 are Lebesgue integrals, the hypotheses can be relaxed to: u, f, g and h are
measurable functions such that hu, hf, hg ∈ L(J). The equality and inequality
conditions are then to be interpreted as almost everywhere, and the stated con-
dition for equality is necessary as well as sufficient. Similar remarks apply to all
subsequent theorems, which will be mostly stated for the continuous case.

Pachpatte [722] exploited the following variant of the inequality in Theorem
1.2.4 to obtain various generalizations of Bellman’s inequality in Theorem 1.2.5.

Theorem 1.2.5 (The Pachpatte Inequality [722]). Assume u, g and h are non-
negative continuous functions on J = [α, β] and n(t) be a continuous, positive and
non-decreasing function on J . Suppose that for all t ∈ J ,

u(t) ≤ n(t) + g(t)

∫ t

α

h(s)u(s)ds. (1.2.18)
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Then, for all t ∈ J ,

u(t) ≤ n(t)

[
1 + g(t)

∫ t

α

h(s) exp

(∫ t

s

h(σ)g(σ)dσ

)
ds

]
. (1.2.19)

Proof. Obviously, the proof follows in the same manner as that of Theorem 1.2.2,
by using the inequality given in Theorem 1.2.4. �

Remark 1.2.4. We recall that this Gronwall inequality was given by Willett in
[966], where an explicit bound for u(t) was given under more general assump-
tions, e.g.,

u(t) ≤ n(t) +

n∑
i=1

gi(t)

∫ t

α

hi(s)u(s)ds.

Theorem 1.2.6 (The Pachpatte Inequality [722]). Assume that u, p, q, f and g
are non-negative continuous functions on J = [α, β], and let for all t ∈ J ,

u(t) ≤ p(t) + q(t)

∫ t

α

(f(s)u(s) + g(s)) ds. (1.2.20)

Then for all t ∈ J ,

u(t) ≤ p(t) + q(t)

∫ t

α

(f(s)p(s) + g(s)) exp

(∫ t

s

f(σ)q(σ)dσ

)
ds. (1.2.21)

Proof. Let

z(t) =

∫ t

α

(
f(s)u(s) + g(s)

)
ds.

Now we can follow the proof of Theorem 1.2.5 to get the desired inequality (1.2.21).
�

Remark 1.2.5. Theorem 1.2.6 extends the result of Chandirov [137] where q(t) = 1.
If we choose g(t) = 0 in Theorem 1.2.6, then Theorem 1.2.6 reduces to Theorem
1.2.4.

Theorem 1.2.7 (The Gollwitzer Inequality [322]). Assume u, v, h and k are non-
negative continuous functions on J = [α, β], and let for all α ≤ x ≤ t ≤ β

u(t) ≥ v(x) − k(t)

∫ t

x

h(s)v(s)ds. (1.2.22)

Then for all α ≤ x ≤ t ≤ β,

u(t) ≥ v(x) exp

(
−k(t)

∫ t

x

h(s)ds

)
. (1.2.23)
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Proof. Set

z(x) = u(t) + k(t)

∫ t

x

h(s)v(s)ds, α ≤ x ≤ t ≤ β. (1.2.24)

Thus this, together with (1.2.22), gives for all α ≤ x ≤ t ≤ β,

z′(x) = −h(x)v(x)k(t) ≥ −h(x)z(x)k(t), (1.2.25)

because z(x) ≥ v(x); here z′(x) at the end points is defined to be the limit from

the interior of [α, t]. Then using the integral factor r(x) = exp
(
−k(t)

∫ t

x h(s)ds
)
,

we have (rz)′(x) ≥ 0 and hence (rz)(t) ≥ (rz)(x) on [α, t]. This result is sharp in
the sense that if equality in (1.2.22) holds on [α, t], then the equality in (1.2.23)
holds on [α, t]. �

Remark 1.2.6. The above result is similar to a special case of the Langenhop
inequality (Langenhop [478]), and an estimate for u, independent of x, is obtained
by taking x = α.

The following generalization can be found in Qin [760, 761, 762, 763, 764,
765, 766].

Theorem 1.2.8 (The Generalized Bellman–Gronwall Inequality [763]). Assume that
f(t), g(t) and y(t) are non-negative integrable functions in [0, T ] (0 < T ) satisfying
the integral inequality for all t ∈ [0, T ],

y(t) ≤ g(t) +

∫ t

0

f(s)y(s)ds. (1.2.26)

Then, for all t ∈ [0, T ],

y(t) ≤ g(t) +

∫ t

0

exp

(∫ t

s

f(θ)dθ

)
f(s)g(s)ds. (1.2.27)

In addition, if g(t) is a non-decreasing function in [0, T ], then for all t ∈ [0, T ],

y(t) ≤ g(t)

[
1 +

∫ t

0

exp

(∫ t

s

f(θ)dθ

)
f(s)ds

]
(1.2.28)

≤ g(t)

[
1 +

∫ t

0

f(s)ds exp

(∫ t

0

f(θ)dθ

)]
. (1.2.29)

Moreover, if T = +∞ and
∫ +∞
0

f(s)ds < +∞, then for all t ∈ [0, T ],

y(t) ≤ Cg(t), (1.2.30)

where C = 1 +
∫ +∞
0 f(s)ds exp

(∫ +∞
0 f(θ)dθ

)
is a positive constant.
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Proof. (1) Let h(t) =
∫ t

0 f(s)y(s)ds. Then from (1.2.26), we obtain

h′(t) = f(t)y(t) ≤ f(t)g(t) + f(t)h(t) (1.2.31)

with h(0) = 0. Multiplying (1.2.31) by exp
(
− ∫ t

0 f(s)ds
)
yields

d

dt

(
h(t) exp

(
−

∫ t

0

f(s)ds

))
≤ f(t)g(t) exp

(
−

∫ t

0

f(s)ds

)
,

whence gives us

h(t) ≤
∫ t

0

exp

(∫ t

s

f(θ)dθ

)
f(s)g(s)ds. (1.2.32)

Now inserting (1.2.32) into (1.2.26) yields (1.2.27).

(2) If g(t) is a non-decreasing function in [0, T ], then (1.2.28) and (1.2.29)
easily follow from (1.2.27).

(3) If, further, T = +∞ and
∫ +∞
0 f(s)ds < +∞, then (1.2.30) easily follows

from (1.2.29). �

The following result can be regarded as a corollary of Theorem 1.2.8, which
can be found in Racke [822].

Corollary 1.2.1 ([822]). Let a > 0, φ, h ∈ C([0, a]), h ≥ 0, and let g : [0, a] → R be
increasing. If for any t ∈ [0, a],

φ(t) ≤ g(t) +

∫ t

0

h(s)φ(s)ds, (1.2.33)

then for all t ∈ [0, a],

φ(t) ≤ g(t) exp

(∫ t

0

h(s)ds

)
. (1.2.34)

In 1973 and 1975, Pachpatte [717], [722] obtained the following two results,
which can be regarded as generalizations of Theorem 1.2.2.

Theorem 1.2.9 (The Pachpatte Inequality [717, 722]). Assume u(t), f(t) and g(t)
are real-valued non-negative continuous functions on I = [0,+∞) satisfying the
inequality for all t ∈ I,

u(t) ≤ u0 +

∫ t

0

f(s)u(s)ds+

∫ t

0

f(s)

[∫ s

0

g(τ)u(τ)dτ

]
ds, (1.2.35)

where u0 is a non-negative constant. Then, for all t ∈ I,

u(t) ≤ u0

{
1 +

∫ t

0

f(s) exp

(∫ s

0

(f(τ) + g(τ))dτ

)
ds

}
. (1.2.36)
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Proof. If we define a function v(t) by the right-hand side of (1.2.35), then we have

v′(t) = f(t)u(t) + f(t)

∫ t

0

g(τ)u(τ)dτ, v(0) = u0

which in view of (1.2.35) implies

v′(t) ≤ f(t)

[
v(t) +

∫ t

0

g(τ)v(τ)dτ

]
. (1.2.37)

Setting

m(t) = v(t) +

∫ t

0

g(τ)v(τ)dτ, m(0) = v(0) ≡ u0,

it follows from (1.2.37) and the fact that v(t) ≤ m(t), that

m′(t) ≤ (f(t) + g(t))m(t).

This implies due to m(0) = u0,

m(t) ≤ u0 exp

[∫ t

0

(f(s) + g(s)) ds

]
.

Then (1.2.37) yields

v′(t) ≤ u0f(t) exp

[∫ t

0

(f(s) + g(s)) ds

]
. (1.2.38)

Now integrating both sides of (1.2.38) over [0, t] and substituting the value of v(t)
in (1.2.35), we can obtain the desired bound in (1.2.36). �

Theorem 1.2.10 (The Pachpatte Inequality [717, 722]). Assume u(t), f(t) and g(t)
are real-valued non-negative continuous functions on I = [0,+∞), and n(t) is a
positive, monotonic, non-decreasing continuous function on I, such that for all
t ∈ I, the inequality holds,

u(t) ≤ n(t) +

∫ t

0

f(s)u(s)ds+

∫ t

0

f(s)

[∫ s

0

g(τ)u(τ)dτ

]
ds. (1.2.39)

Then for all t ∈ I,

u(t) ≤ n(t)

{
1 +

∫ t

0

f(s) exp[

∫ s

0

(f(τ) + g(τ))dτ ]ds

}
. (1.2.40)
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Proof. Thanks to the assumptions on n(t) on I, it follows from (1.2.39) that

u(t)/n(t) ≤ 1 +

∫ t

0

f(s)u(s)/n(t)ds+

∫ t

0

f(s)

[∫ s

0

g(τ)u(τ)/n(t)dτ

]
ds

≤ 1 +

∫ t

0

f(s)u(s)/n(s)ds+

∫ t

0

f(s)

[∫ s

0

g(τ)u(τ)/n(τ)dτ

]
ds.

(1.2.41)

Then by using Theorem 1.2.9, we can derive (1.2.40) from (1.2.41). �

Dhongade and Deo [206] established results similar to those in Theorems
1.2.9 and 1.2.10 when the second integral term on the right-hand side in (1.2.35)
and (1.2.39) is absent. However, the bounds obtained in Theorems 1.2.9 and 1.2.10
are different from those given in [206].

Note that in Theorem 1.2.10, when n(t) is not monotonic non-decreasing,
estimate (1.2.40) is also obtained in Pachpatte [719], which will be stated in the
following theorem.

In order to formulate this result, we introduce the definition of sub-multipli-
cative functions.

Definition 1.2.11. The non-negative function W (u) is said to be sub-multiplicative
if W (uv) ≤ W (u)W (v) for all u, v ≥ 0.

Theorem 1.2.12 (The Pachpatte Inequality [719]). Assume u(t), f(t), g(t), and
h(t) are real-valued non-negative continuous functions on I = [0,+∞). More-
over, assume W (u) is a continuous, positive, monotonic, non-decreasing and sub-
multiplicative function for u > 0,W (0) = 0, and assume further that the inequality
holds for all t ∈ I,

u(t) ≤ u0 +

∫ t

0

f(s)u(s)ds+

∫ t

0

f(s)

(∫ s

0

g(τ)u(τ)dτ

)
ds+

∫ t

0

h(s)W (u(s))ds

(1.2.42)
where u0 is a positive constant. Then for all t ∈ [0, b],

u(t) ≤ G−1

[
G(u0) +

∫ t

0

f(s)W (1 +

∫ s

0

f(τ) exp(

∫ τ

0

(f(k) + g(k))dk)dτ)ds

]
×

[
1 +

∫ t

0

f(s) exp[

∫ s

0

(f(τ) + g(τ)dτ)ds]

]
, (1.2.43)

where

G(r) =

∫ r

r0

ds

W (s)
, r ≥ r0 > 0, (1.2.44)

and G−1 is the inverse function of G, and t is in the subinterval [0, b] of I such
that

G(u0) +

∫ t

0

h(s)W (1 +

∫ s

0

f(τ) exp[

∫ τ

0

(f(k) + g(k))dk]dτ)ds ∈ Dom(G−1).

(1.2.45)
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Proof. Define

n(t) = u0 +

∫ t

0

h(s)W (u(s))ds, n(0) = u0.

Then we infer from (1.2.42) that

u(t) ≤ n(t) +

∫ t

0

f(s)u(s)ds+

∫ t

0

f(s)

(∫ s

0

g(τ)u(τ)dτ

)
ds. (1.2.46)

Since n(t) is positive, monotonic, non-decreasing on I, we derive from Theorem
1.2.10 and (1.2.46) that,

u(t) ≤ n(t)

[
1 +

∫ t

0

f(s) exp

(∫ s

0

(f(τ) + g(τ))dτ

)
ds

]
. (1.2.47)

Furthermore, we also have

W (u(t)) ≤ W (n(t))W

(
1 +

∫ t

0

f(s) exp

(∫ s

0

(f(τ) + g(τ))dτ

)
ds

)
, (1.2.48)

since W is sub-multiplicative. Hence from (1.2.48) it follows that

h(t)W (u(t))

W (n(t))
≤ h(t)W

(
1 +

∫ t

0

f(s) exp

(∫ s

0

(f(τ) + g(τ))dτ

)
ds

)
. (1.2.49)

Because of (1.2.44), this reduces to

d

dt
G(n(t)) ≤ h(t)W

(
1 +

∫ t

0

f(s) exp

(∫ s

0

(f(τ) + g(τ))dτ

)
ds

)
. (1.2.50)

Now integrating (1.2.50) over [0, t], we obtain

G(n(t)) −G(n(0)) ≤
∫ t

0

h(s)W

(
1 +

∫ s

0

f(τ) exp

(∫ τ

0

(f(k) + g(k))dk

)
dτ

)
ds.

(1.2.51)
Thus (1.2.43) follows from (1.2.42) and (1.2.51), which completes the proof. �

The following result is a more general form of the above theorem which may
be useful in certain situations. To this end, we introduce the definition of sub-
additive functions.

Definition 1.2.13. The no-negative function W (u) is said to be sub-additive if
W (u+ v) ≤ W (u) +W (v) for all u, v ≥ 0.

Theorem 1.2.14 (The Pachpatte Inequality [721]). Assume u(t), f(t), g(t), and
h(t) are real-valued non-negative continuous functions on I = [0,+∞), and let
W (u) be a continuous, positive, monotonic, non-decreasing, subadditive and sub-
multiplicative function for u > 0,W (0) = 0. Moreover, let p(t) > 0,M(t) ≥ 0 be
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non-decreasing in t and continuous on I, M(0) = 0, and assume further that the
inequality holds for all t ∈ I,

u(t) ≤ p(t) +

∫ t

0

f(s)u(s)ds+

∫ t

0

f(s)

(∫ s

0

g(τ)u(τ)dτ

)
ds

+M

(∫ t

0

h(s)W (u(s))ds

)
.

(1.2.52)

Then for all t ∈ [0, b],

u(t) ≤
[
p(t) +M

(
G−1

[
G

(∫ t

0

h(s)W (p(s)(1

+

∫ s

0

f(τ) exp(f(τ)) exp

(∫ τ

0

(f(k) + g(k))dk

)
dτ))

)
ds

]
+

∫ t

0

h(s)W

(
1 +

∫ s

0

f(τ) exp

(∫ τ

0

(f(k) + g(k))dk

)
dτ

)
ds

)]

×
[
1 +

∫ t

0

f(s) exp

(∫ s

0

(f(τ) + g(τ)dτ)ds

)]
, (1.2.53)

where

G(r) =

∫ r

r0

ds

W (M(s))
, r ≥ r0 > 0, (1.2.54)

and G−1 is the inverse function of G, and t is in the subinterval [0, b] of I such
that

G

(∫ t

0

h(s)W

(
p(s)

(
1 +

∫ s

0

f(τ) exp(

∫ τ

0

(f(k) + g(k))dk)dτ

)
ds

)

×
∫ t

0

h(s)W

(
1 +

∫ s

0

f(τ) exp

(∫ τ

0

(f(k) + g(k))dk

)
dτ

)
ds

)
∈ Dom(G−1).

Proof. The proof follows by using arguments similar to those in the proof of the
above theorem, together with Theorem 1 in Deo and Murdeshwar [202]. We omit
the details here. �
Theorem 1.2.15 (The Pachpatte–Pachpatte Inequality [728]). Assume u(t), a(t),
b(t) are real-valued non-negative continuous functions defined for all t ∈ R+, such

that
∫ +∞
0

b(s)ds < +∞ and assume that a(t) is non-increasing for all t ∈ R+. If
for all t ∈ R+,

u(t) ≤ a(t) +

∫ +∞

t

b(s)u(s)ds, (1.2.55)

then for all t ∈ R+,

u(t) ≤ a(t) exp

(∫ +∞

t

b(s)ds

)
. (1.2.56)
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Proof. First we assume that a(t) > 0 for all t ∈ R+. From (1.2.55) we easily obtain

u(t)

a(t)
≤ 1 +

∫ +∞

t

b(s)
u(s)

a(s)
ds. (1.2.57)

Define a function z(t) by the right-hand side of (1.2.57). Then z(+∞) = 1, u(t)
a(t) ≤

z(t) and

z′(t) = −b(t)
u(t)

a(t)
≥ −b(t)z(t). (1.2.58)

The inequality (1.2.58) implies that for all t ∈ R+,

z(t) ≤ exp

(∫ +∞

t

b(s)ds

)
. (1.2.59)

Using (1.2.59) in u(t)/a(t) ≤ z(t), we get the desired estimate (1.2.56).

If a(t) is non-negative, we carry out the above procedure for a(t) + ε instead
of a(t), where ε > 0 is an arbitrary small constant, and then pass to the limit as
ε → 0+ to obtain (1.2.56). �

A fairly general linear version of Theorem 1.1.2 may be stated as follows (see,
e.g., Chu and Metcalf [164]).

Theorem 1.2.16 (The Chu–Metcalf Inequality [164]). Let u and f be real contin-
uous functions on [0, T ]. Let K be continuous and non-negative on the triangle
Δ : 0 ≤ y ≤ x ≤ T . If for all x ∈ J = [0, T ],

u(x) ≤ f(x) +

∫ x

0

K(x, y)u(y)dy, (1.2.60)

then for all x ∈ J ,

u(x) ≤ f(x) +

∫ x

0

H(x, y)f(y)dy, (1.2.61)

where for all 0 ≤ y ≤ x ≤ T,

H(x, y) =
+∞∑
i=1

Ki(x, y)

is the resolvent kernel and the Ki (i = 1, 2, . . . ) are the iterated kernels of K.

Proof. In fact, from (1.2.60), we have for all 0 ≤ x ≤ T ,

u(x) ≤ f(x) +

∫ x

0

K(x, y)f(y)dy +

∫ x

0

K(x, y)

∫ y

0

K(y, z)u(z)dy

= f(x) +

∫ x

0

K1(x, y)f(y)dy +

∫ x

0

K2(x, y)u(y)dy.

The rest of the proof follows by induction and a standard estimate procedure
shows the resulting series to be uniformly convergent. �
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The previous results, in which an explicit upper bound for u was obtained,
are the only cases for which the resolvent kernel H can be summed up in “closed
form”. For example, if K(x, y) = g(x)h(y) ≥ 0, 0 ≤ y ≤ x ≤ T , then

H(x, y) =

+∞∑
i=1

g(x)h(y)

(i− 1)!

[∫ x

y

g(z)h(z)dz

]i−1

= g(x)h(y) exp

(∫ x

y

g(z)h(z)dz

)
,

since we can show by induction that each Ki (i = 1, 2, . . . ) is given by the appro-
priate term in the sum for H . �

As pointed out by Chu and Metcalf [164], the cases in which we obtain
an explicit bound for u are precisely those in which the resolvent kernel (or a
majorant of it) can be summed up in closed form. This is, in fact, the case when
K(x, y) = h(x)g(y) ≥ 0. Of particular interest is the case h ≡ 1.

Note that Beesack [85] extended Theorem 1.2.14 to the case where u, f ∈
L2(J) and K ∈ L2(Δ) and the results are still valid if “≤” is replaced by “≥” in
both (1.2.60) and (1.2.61). The inequality of Theorem 1.2.14 includes as a special
case of the inequality given in Theorem 1.2.2.

Concerning Theorem 1.2.14, there is another interesting linear generalization
due to Willett [966] under the assumption that either K(x, y) or ∂K(x, y)/∂x is
degenerate or directly separable in the following sense

K(x, y) ≤
n∑

i=1

hi(x)ki(y)

or a similar relation holds for ∂K(x, y)/∂x.

The following theorem is a slight modification of the inequality given by
Norbury and Stuart [700].

Theorem 1.2.17 (The Norbury–Stuart Inequality [700]). Assume u and K(t, s) are
as in Theorem 1.2.14, and K(t, s) is non-decreasing in t for each s ∈ J .

(1) If for all t ∈ J = [0, T ],

u(t) ≤ C +

∫ t

0

K(t, s)u(s)ds, (1.2.62)

where C ≥ 0 is a constant, then for all t ∈ J ,

u(t) ≤ C exp

(∫ t

0

K(t, s)ds

)
. (1.2.63)

(2) Let n(t) be a positively continuous and non-decreasing function for all t ∈ J .
If for all t ∈ J ,

u(t) ≤ n(t) +

∫ t

0

K(t, s)u(s)ds, (1.2.64)
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then for all t ∈ J ,

u(t) ≤ n(t) exp

(∫ t

0

K(t, s)ds

)
. (1.2.65)

The following result is due to Pata, Prouse and Vishik [732].

Theorem 1.2.18 (The Pata–Prouse–Vishik Inequality [732]). Let k0, k1 ≥ 0,m ∈
L1
loc(R

+),m ≥ 0 almost everywhere, and φ ∈ C(R+), φ ≥ 0. If for any t > 0 and
some constant δ > 0,

φ2(t) ≤ k0 + k1e
−δt +

∫ t

0

m(s)φ(s)e−δ(t−s)ds, (1.2.66)

then for any t > 0,

φ2(t) ≤ 2k0 + 2k1e
−δt +

(∫ t

0

m(s)e−δ(t−s)/2ds

)2

. (1.2.67)

Proof. Let ψ(t) = φ2(t)eδt. Then inequality (1.2.66) implies

ψ(t) ≤ k0e
δt + k1 +

∫ t

0

m(s)eδs/2ψ1/2(s)ds. (1.2.68)

Fix a t ∈ R+, and let t0 ∈ [0, t] be such that ψ(t0) = maxs∈[0,t] ψ(s). Then Young’s
inequality applied to (1.2.68) yields

ψ(t0) ≤ k0e
δt0 + k1 + ψ1/2(t0)

∫ t0

0

m(s)eδs/2ds

≤ k0e
δt0 + k1 +

1

2
ψ(t0) +

1

2

(∫ t0

0

m(s)eδs/2ds

)2

which gives us (1.2.67). �
Remark 1.2.7. This result may have a general form of differential inequality
(2.1.29), see, e.g., Theorem 2.1.6.

The following result can be used to prove a uniform bound for a non-negative
function (see, e.g., Chi-Cheng Poon [157]).

Theorem 1.2.19 (The Chi-Cheng Poon Inequality [157]). Let φ(s) be a non-negative
function on [0, 1]. Assume that there are constants γ and λ, γ > λ > 0, such that
for any 1 ≥ s0 > 0 and 0 < s < s0/2,

φ(s) ≤ C

((
s

s0

)γ

φ(s0) + sλ0

)
. (1.2.69)

Then for all s ∈ (0, 1/2), we have

φ(s) ≤ Csλ < C(1/2)λ. (1.2.70)
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Proof. Since γ > λ > 0, choose an α > 0 such that γ − α > λ. Let Q > 1 be a
constant to be determined later. For any s < s0/Q, we have

φ(s) ≤ C

(
s

s0

)α (
s

s0

)γ−α

φ(s0) + Csλ0 . (1.2.71)

If Q is chosen large enough, then from (1.2.69), we infer that for all s < s0/Q,

φ(s) ≤
(

s

s0

)γ−α

φ(s0) + Csλ0 . (1.2.72)

Let η = γ − α. Then from (1.2.72), fixing an s < 1/Q, we have

φ(s) < sηφ(1) + C. (1.2.73)

By induction, we obtain from (1.2.73) that for any positive integer k,

φ(sk) ≤ sηkφ(1) + Cskλ−η
k∑

i=1

si(η−λ). (1.2.74)

Let C0 = φ(1) + Cs−η
∑+∞

i=1 si(η−λ). Since η > λ,C0 > 0 is finite, and then
we have from (1.2.74)

φ(sk) ≤ C0s
kλ. (1.2.75)

For any t > 0, there is a positive integer k such that sk+1 < t ≤ sk. This, together
with (1.2.75), implies (1.2.70). �

1.3 Simultaneous inequalities

Greene [331] showed the following interesting inequality, which can be used in
analysis of various problems in the theory of certain systems of simultaneous dif-
ferential and integral equations.

Theorem 1.3.1 (The Greene Inequality [331]). Let f, g, hj (1 ≤ j ≤ 4) be non-
negative continuous on [0,+∞) and let hj be bounded such that for any t ≥ 0,

f(t) ≤ C1 +

∫ t

0

h1(s)f(s)ds+

∫ t

0

h2(s)g(s) exp(μs)ds, (1.3.1)

g(t) ≤ C2 +

∫ t

0

h3(s)f(s) exp(−μs)ds+

∫ t

0

h4(s)g(s)ds, (1.3.2)

where C1, C2 and μ are non-negative constants. Then there exist positive constants
βk,Mk (k = 1, 2) such that for any t ≥ 0,

f(t) ≤ M1 exp(β1t), g(t) ≤ M2 exp(β2t). (1.3.3)
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Proof. The proof due to Greene has been simplified by many authors, see, e.g.,
Wang [943] and Das [195]. Here we present the proof of Das [195].

First observe that (1.3.1) implies

e−μtf(t) ≤ C1 +

∫ t

0

e−μsh1(s)f(s)ds +

∫ t

0

h2(s)g(s)ds.

Define
F (t) = e−μtf(t) + g(t).

Then from (1.3.1)–(1.3.2) it follows that

F (t) ≤ C +

∫ t

0

h(s)F (s)ds (1.3.4)

where C = C1 + C2 and h is defined by

h(t) = max
{
|h1(t) + h3(t)|, |h2(t) + h4(t)|

}
.

Now applying Theorem 1.1.2 to (1.3.4) yields

F (t) ≤ C exp
( ∫ t

0

h(s)ds
)
. (1.3.5)

Inserting (1.3.5) into (1.3.4), we obtain

f(t) ≤ C exp
(
μt+

∫ t

0

h(s)ds
)
, g(t) ≤ C exp

(∫ t

0

h(s)ds
)

which gives us the bounds in (1.3.3). �

The following system of inequalities can be considered as a simultaneously
singular Bellman–Gronwall inequality (see, e.g., Dickstein and Loayza [210]).

Theorem 1.3.2 (The Dickstein–Loayza Inequality [210]). Let A > 0, B > 0, k >
0, T > 0, 0 < α1, α2, β1, β2 < 1. Assume that continuous functions φ, ψ : (0, T ) →
R+ satisfy for any t ∈ (0, T ),

φ(t) ≤ A+ ktα1

∫ t

0

(t− s)−α1s−β1ψ(s)ds, (1.3.6)

ψ(t) ≤ B + ktα2

∫ t

0

(t− s)−α2s−β2φ(s)ds. (1.3.7)

Then there exists a constant C = C(α1, α2, β1, β2, k, T ) > 0 such that for all
t ∈ (0, T ),

φ(t) ≤ C
(
A+Bt1−β1

)
, ψ(t) ≤ C

(
B +At1−β2

)
. (1.3.8)
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Proof. Set φ̃(t) = sups≤t φ(s), ψ̃(t) = sups≤t ψ(s). Then (1.3.6)–(1.3.7) hold for φ̃

and ψ̃. Indeed, if τ < t, then

τα1

∫ τ

0

(t− s)−α1s−β1ψ̃(s)ds = τ1−β1

∫ 1

0

(1− z)−α1z−β1ψ̃(τz)dz

≤ t1−β

∫ 1

0

(1 − z)−α1z−β1ψ̃(tz)dz

= tα1

∫ t

0

(t− s)−α1s−β1ψ̃(s)ds,

so that,

φ(τ) ≤ A+ kτα1

∫ τ

0

(τ − s)−α1s−β1ψ̃(s)ds ≤ A+ ktα1

∫ t

0

(t− s)−α1s−β1ψ̃(s)ds,

whence

φ̃(t) ≤ A+ ktα1

∫ t

0

(t− s)−α1s−β1ψ̃(s)ds.

A similar estimate holds for ψ̃. It then suffices to prove (1.3.8) for φ̃, ψ̃. This
is why we assume that φ and ψ are non-decreasing functions.

First we prove (1.3.8) for t small. To this end, define

M = kmax

[∫ 1

0

(1− s)−α1s−β1ds,

∫ 1

0

(1− s)−α2s−β2ds

]
.

Then we deduce from (1.3.6)–(1.3.7),

φ(t) ≤ A+Mt1−β1ψ(t), ψ(t) ≤ B +Mt1−β2φ(t) (1.3.9)

which gives
φ(t) ≤ A+BMt1−β1 +M2t2−β1−β2φ(t). (1.3.10)

Fix τ > 0 such that M2τ2−β1−β2 < 1/2. If t ≤ τ , then we derive from (1.3.10)

φ(t) ≤ 2(A+BMt1−β1). (1.3.11)

Analogously, we have
ψ(t) ≤ 2(B +AMt1−β2)

which, together with (1.3.11), proves (1.3.8) for all t ≤ τ with C = 2.

Consider now t > τ and choose a, b such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∫ a

0

+

∫ 1

b

)
(1− s)−α1s−β1ds ≤ 1

2k
T−(1−β1), (1.3.12)(∫ a

0

+

∫ 1

b

)
(1− s)−α2s−β2ds ≤ 1

2k
T−(1−β2). (1.3.13)
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Then by virtue of (1.3.12)–(1.3.13), we deduce from (1.3.6) that

φ(t) ≤ A+ ktα1

(∫ at

0

+

∫ bt

at

+

∫ t

bt

)
(t− s)−α1s−β1ψ(s)ds

≤ A+
1

2
(tT−1)1−β1ψ(t) + k(1− b)−α1(aτ)−β1

∫ t

0

ψ(s)ds

≤ A+
1

2
ψ(t) + k(1 − b)−α1(aτ)−β1

∫ t

0

ψ(s)ds. (1.3.14)

Similarly, from (1.3.7), we obtain

ψ(t) ≤ B +
1

2
φ(t) + k(1− b)−α2(aτ)−β2

∫ t

0

φ(s)ds. (1.3.15)

Set

J =
4

3

(
1 1/2
1/2 1

)
, (1.3.16)

Q =

(
0 k(1− b)−α1(aτ)−β1

k(1− b)−α2(aτ)−β2 0

)
, (1.3.17)

P = JQ, v = J

(
A
B

)
, (1.3.18)

and

f(t) =

( ∫ t

0
φ(s)ds∫ t

0
ψ(s)ds

)
. (1.3.19)

Then we derive from (1.3.14)–(1.3.19) that

f ′(t) ≤ v + Pf(t),

whence
f ′(t) ≤ ePtv.

This shows (1.3.8) for C > 0 and for all t > τ , which completes the proof. �

1.4 The inequalities of Henry’s type

In this section, we shall introduce the inequalities of Henry’s type. Such kind of in-
equalities usually arises from the infinite-dimensional theory in a Banach space of
evolutionary partial differential equalities which requires solving integral inequal-
ities with singular kernels. Henry proposed a method in [355] to find solutions of
such inequalities and proved some results concerning linear inequalities of Henry’s
type. More general linear inequalities of this type were established in Sano and
Kunimatsu [845].



1.4. The inequalities of Henry’s type 21

1.4.1 The Henry inequalities

In this subsection, we shall present a new method, due to [606], to solve non-
linear integral inequalities of Henry type and also their nonlinear Bihari version.
These estimates are quite simple and the resulting formulas are similar to those
in the classical Gronwall–Bihari inequalities. We also present results from [606] on
integral inequalities containing multiple integrals which are modifications of the
results recently published in [605] (see also [604]).

Theorem 1.4.1 (The Henry Inequality [355]). Assume b ≥ 0, β > 0 and let a(t)
be a non-negative function locally integrable on [0, T ) (for some T ≤ +∞), and
assume that u(t) is non-negative and locally integrable on [0, T ) such that

u(t) ≤ a(t) + b

∫ t

0

(t− s)β−1u(s)ds (1.4.1)

on this interval, then for all t ∈ [0, T ),

u(t) ≤ a(t) +

∫ t

0

(
+∞∑
n=1

(bΓ(β))n

Γ(nβ)
(t− s)nβ−1a(s)

)
ds. (1.4.2)

Proof. Let Bφ(t) = b
∫ t

0
(t− s)β−1φ(s)ds, t ≥ 0, for locally integrable functions φ.

Then u ≤ a + Bu implies u ≤ ∑n−1
k=0 B

ka + Bnu, and Bnu(t) =
∫ t

0
(bΓ(β))n (t −

s)nβ−1u(s)ds/Γ(nβ) → 0 as n → +∞ for each t ∈ [0, T ). Now from (1.4.1) it
follows that

u(t) ≤ a(t) +

∫ t

0

+∞∑
n=1

(bΓ(β))n

Γ(nβ)
(t− s)nβ−1a(s)ds. (1.4.3)

�

Remark 1.4.1. In fact, the original form of (1.4.2) in Henry [355] should read

u(t) ≤ a(t) + θ

∫ t

0

E′
β(θ(t − s))a(s)ds, (1.4.4)

where

θ = [bΓ(β)]1/β , Eβ(z) =

+∞∑
n=0

znβ/Γ(nβ + 1), E′
β(z) =

d

dz
Eβ(z),

and E′
β(z) � zβ−1/Γ(β) as z → 0+, E′

β(z) � ez/β as z → +∞, and Eβ(z) � ez/β
as z → +∞. If a(t) ≡ a, a constant, then

u(t) ≤ aEβ(θt). (1.4.5)
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Theorem 1.4.2 (The Henry Inequality [355]). Assume β > 0, γ > 0, β+ γ > 1 and
a ≥ 0, b ≥ 0, and let u be non-negative and tγ−1u(t) locally integrable on [0, T ),
and satisfy for a.e. in [0, T ),

u(t) ≤ a+ b

∫ t

0

(t− s)β−1sγ−1u(s)ds. (1.4.6)

Then
u(t) ≤ aEβ,γ

(
(bΓ(β))1/νt

)
, (1.4.7)

where ν = β + γ − 1 > 0, Eβ,γ(s) =
∑+∞

m=0 Cmsmν with C0 = 1, Cm+1/Cm =
Γ(mν + γ)/Γ(mν + γ + β) for m ≥ 0. As s → +∞, we have

Eβ,γ(s) = O

(
s1/2(ν/β−γ) exp

(
β

γ
sν/β

))
. (1.4.8)

Proof. If

Bφ(t) = b

∫ t

0

(t− s)β−1sγ−1φ(s)ds,

then an easy induction from (1.4.6) shows that

u(t) ≤ a

n∑
m=0

Cm[bΓ(β)]mtmν +Bn+1u(t). (1.4.9)

Also

Bnu(t) =

∫ t

0

Kn(t, s)s
γ−1u(s)ds, (1.4.10)

where for γ ≥ 1,

Kn(t, s) ≤ Qnt
(n−1)(γ−1)(t− s)nβ−1,

Q1 = b, Qn+1/Qn = bΓ(β)/Γ(nβ)/Γ(nβ + β).

If γ ∈ (0, 1), we have

Kn(t, s) ≤ Qn(t− s)nν−γ , Q1 = b,

Qn+1/Qn = bΓ(β)/Γ(nν)/Γ(nν + β).

In either case, Qn+1/Qn = O(n−β) as n → +∞, so Bnu(t) → 0 as n → +∞, and

u(t) ≤ aEβ,γ

(
[bΓ(β)]1/νt

)
. (1.4.11)

Now Γ(z + p)/Γ(z + q) = zp−q{1 + (p− q)(p + q − 1)/2z +O(z−2)} as z → +∞,
so if δ = (βγ + ν)/2ν, then

Γ((n+ 1)β + δ)Cn+1

Γ(nβ + δ)Cn
= (β/ν)β [1 +O(n−2)]. (1.4.12)
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Thus CnΓ(nβ+ δ)(β/ν)−nβ converges as n → +∞ and has an upper bound K for
all n ≥ 0. Then for all s > 0,

Eβ,γ(s
β/ν)sδ−1 ≤ K

+∞∑
n=0

(β/ν)nβ

Γ(nβ + δ)
snβ+δ−1. (1.4.13)

The Laplace transform of the right-hand side of (1.4.13) is

Kλ−δ
/[
1− (β/νλ)β

]
,

therefore, the series is O(exp(βs/ν)) as s → +∞, which proves the result. �

The estimate of Eβ(z) and E′
β(z) as z → +∞ follows from the fact that the

Laplace transform ∫ +∞

0

e−λzEβ(z)dz = λ−1/(1− λ−β)

has a simple pole at λ = 1 (see, e.g., Evgrafov [243]). For example, we can choose
γ ∈ (0, 1) so 1− λ−β 	= 0 for 
λ ≥ γ, λ 	= 1, and then for z > 0,

Eβ(z) =
1

β
ez +

1

2πi
lim

N→+∞

∫ γ+iN

γ−iN

eλzλ−1/(1− λ−β)dλ, (1.4.14)

where the shift in the line of integration is justified by eλzλ−1/(1− λ−β) → 0 as
�λ → ±∞ for 
λ bounded. Integration by parts in the integral on the right-hand
side of (1.4.14) shows that∣∣∣∣Eβ(z)− 1

β
ez

∣∣∣∣ = O(ez) as z → +∞.

The following result was established by Nagumo [659], and can be viewed as
a generalization of Theorem 1.4.2 for the special case when a ≡ 0, β = 1, γ = 0
(β + γ = 1).

Corollary 1.4.1 (The Nagumo Inequality [659]). Let v(t) ∈ C[0, b] be a non-negative
function such that v(0) = 0 and limh→0+ v(h)/h = 0. If v(t) satisfies for all
t ∈ (0, b],

v(t) ≤
∫ t

0

v(s)/sds, (1.4.15)

then for all t ∈ [0, b],
v(t) = 0.

Proof. For all t > 0, ε > 0, t > ε, let F (t) =
∫ t

0 v(s)/sds for s ∈ [ε, t].
Then we have F ′(t) = v(t)/t. If we add the condition F ′(0) = 0, then since
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limh→0+ v(h)/h = 0, we have that F ′(t) ∈ C[0, b]. By (1.4.15), we know that
F ′(t) = v(t)/t ≤ F (t)/t for all t > 0, that is,(

logF (t)
)′ ≤ 1/t, t > 0. (1.4.16)

Integrating (1.4.16) over [ε, t] for any ε > 0 (t ≥ ε) yields

F (t) ≤ F (ε)t/ε. (1.4.17)

By the l’Hospital Rule and noting that limh→0+ v(h)/h = 0, we deduce that
for all t > 0

F (t) ≤ t lim
ε→0+

F (ε)/ε = t lim
ε→0+

F ′(ε) = 0

which together with (1.4.15) gives that for all t ∈ (0, b],

v(t) = 0. (1.4.18)

Combining v(0) = 0 and (1.4.18), we complete the proof. �

In the same manner, we may prove the following result (see, e.g., Henry [355],
p. 190); the proof is left to the reader.

Theorem 1.4.3 (The Henry Inequality [355]). If α, β, γ are positive with β+γ−1 =
ν > 0, δ = α+ γ − 1 > 0, and for all t > 0,

u(t) ≤ atα−1 + b

∫ t

0

(t− s)β−1sγ−1u(s)ds, (1.4.19)

then

u(t) ≤ atα−1
+∞∑
m=0

C′
m(bΓ(β))mtmν (1.4.20)

where C′
0 = 1, C′

m+1 = C′
m = Γ(mν + δ)/Γ(mν + δ + β).

Corollary 1.4.2 (The Henry Inequality [355]). Under the hypotheses of Theorem
1.4.3, let a(t) be a non-decreasing function on [0, T ). Then

u(t) ≤ a(t)Eβ

(
g(t)Γ(β)tβ

)
, (1.4.21)

where Eβ is the Mittag-Leffler function defined by Eβ(z) =
∑+∞

k=0
zk

Γ(kβ+1) .

In order to formulate the following singular Bellman–Gronwall inequality
(see, e.g., Theorem 1.4.4) which can be viewed as a generalization of the above
theorem (see, e.g., Amann [40]), we need to introduce first some basic concepts.

By a vector space, we always understand a vector space overK, whereK = R

or K = C. If M is a subset of a vector space, we set

Ṁ := M\{0}.
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If X is a topological space, by BC(X,E) we denote the closed linear subspace
of B(X,E) consisting of all bounded and continuous functions.

Let J be a perfect subinterval of R. Denote

JΔ :=
{
(t, s) ∈ J × J ; s ≤ t

}
and

J∗
Δ :=

{
(t, s) ∈ JΔ; s < t

}
.

Assume that J is a perfect subinterval of R+ containing 0 and let

JT := J ∩ [0, T ], T ∈ R+.

For any given α ∈ R, we denote by K(E,F, α) the Fréchet space of all k ∈
C(J∗

Δ,L(E,F )) satisfying

||k||(α),T := ||k||(α),T,L(E,F ) := sup
0≤s<t≤T

(t− s)α||k(t, s)||L(E,F ) < +∞, T ∈ J̇ ,

equipped with the topology induced by the seminorms {|| · ||(α),T ; T ∈ J̇}. We
also put K(E,α) := K(E,E, α). We see that

|| · ||(α),T ≤ Tα−β|| · ||(β),T , α > β, T ∈ J̇ , (1.4.22)

so that
K(E,F, β) ↪→ K(E,F, α), α > β. (1.4.23)

Let
||k||(α) := sup

(t,s)∈J∗
Δ

(t− s)α||k(t, s)||L(E,F )

and denote by K∞(E,F, α) the Banach space consisting of all k ∈ K(E,F, α)
satisfying ||k||(α) < +∞, equipped with norm || · ||(α). Note that

K∞(E,F, α) ↪→ K(E,F, α) (1.4.24)

and

K∞(E,F, 0) = BC(J∗
Δ,L(E,F )). (1.4.25)

If α < 0, then each k ∈ K(E,F, α) can be continuously extended over JΔ by
putting k(t, t) = 0 for all t ∈ J so that

K(E,F, α) ↪→ C(JΔ,L(E,F )), α < 0. (1.4.26)

If E = K, we canonically identify L(K,F ) with F via

L(K,F ) 
 B ↔ B · 1 ∈ F.

Then k ∈ K(K,F, α) if and only if k ∈ C(J∗
Δ, F ) and

sup
0≤s<t≤T

(t− s)α||k(t, s)||L(E,F ) < +∞, T ∈ J̇ .
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In particular, we have an embedding

BC(J̇ , F ) ↪→ K∞(K,F, 0) = BC(J∗
Δ, F ) (1.4.27)

by the identification

C(J̇ , F ) 
 u ↔
[
(t, s) �→ u(t)

]
∈ C(J∗

Δ, F ). (1.4.28)

Let G be a Banach space. Assume that k ∈ K(E,F, α) and h ∈ K(F,G, β)
with α, β ∈ (−∞, 1), and set

h ∗ k(t, s) :=
∫ t

s

h(t, τ)k(τ, s)dτ, (t, s) ∈ JΔ.

We easily verify that

h ∗ k ∈ K(E,G, α + β − 1) (1.4.29)

and

||h ∗ k||(α+β−1),T ≤ B(1 − α, 1− β)||h||(α),T ||k||(β),T , T ∈ J̇ , (1.4.30)

where B is Euler’s beta function. It follows from Fubini’s theorem that the oper-
ation ∗ is associative.

In the sequel, we shall prove the following generalized Bellman–Gronwall
inequality. First, we give the following two lemmas.

Assume that k ∈ K(E,α) for some α ∈ [0, 1). By an easy induction argument,
we see that for all n ∈ N and all 0 ≤ s < t ≤ T ,

|| k ∗ k ∗ · · · ∗ k(t, s)︸ ︷︷ ︸
n

||L(E) ≤
[Γ(1− α)||k||(α),T ]n

Γ(n(1 − α))
(t− s)n(1−α)−1. (1.4.31)

Set

ω :=

+∞∑
j=1

k ∗ · · · ∗ k︸ ︷︷ ︸
j

. (1.4.32)

Then we have the following lemma.

Lemma 1.4.4 ([40]). The function w ∈ K(E,α) satisfies the estimate

(t− s)α||w(t, s)||L(E) ≤ c(α, ε)me(1+ε)m1/(1−α)(t−s), (1.4.33)

for any given ε > 0 and 0 ≤ s < t ≤ T, T ∈ J̇ , where

m := Γ(1− α)||k||(α),T .
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Proof. Let β := 1 − α ∈ (0, 1]. Thanks to (1.4.31), it suffices to prove that for all
x > 0,

+∞∑
j=1

xj−1

Γ(βj)
≤ c(β, ε)e(1+ε)x1/β

. (1.4.34)

Stirling’s formula implies the existence of θ(t) ∈ (0, 1) such that for all t > 0,

Γ(t) =
√
2πtt−1/2e−t+θ(t)/(12t),

which implies that for all j ∈ N that

Γ(j + 1)β

Γ(βj)
=

[jΓ(j)]β

Γ(βj)
≤ (2π)(β−1)/2eβ/12β1/2 j

(1+β)/2

ββj
.

Hence, by Hölder’s inequality

+∞∑
j=1

xj

Γ(βj)
=

+∞∑
j=1

xj

(j!)β
Γ(j + 1)β

Γ(βj)

≤ c(β)

[ +∞∑
j=1

(ηx1/β)j

j!

]β[+∞∑
j=1

j(1+β)/(2(1−β))

(ηβ)jβ/(1−β)

]1−β

,

where η > 0 is arbitrary. Since the last series converges for η > 1/β, it follows that
for all x > 0 and η > 1/β,

+∞∑
j=1

xj−1

Γ(βj)
≤ c(β, η)

(
eηx

1/β − 1

ηx1/β

)β

≤ c(β, η)eβηx
1/β

which yields (1.4.33) with η := (1 + ε)/β. �

Now it is easy to prove the following existence and uniqueness theorem for
abstract linear Volterra equations.

Lemma 1.4.5 ([40]). Assume that α, β ∈ [0, 1) and k ∈ K(E,α). Then the linear
Volterra equations

u = a+ u ∗ k, v = b+ k ∗ v (1.4.35)

possess for each a ∈ K(E,F, β) and b ∈ K(F,E, β) unique solutions

u ∈ K(E,F, β), and v ∈ K(F,E, β),

respectively, which are given by

u = a+ a ∗ ω, v = b+ ω ∗ b (1.4.36)

respectively, where ω, the resolvent kernel of (1.4.35), belongs to K(E,α) and is
given by (1.4.32).
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Proof. We consider the first equation in (1.4.35). The second one can be treated
in a similar manner.

Define ω by (1.4.32) and u by (1.4.36), and observe that ω ∈ K(E,α) and
u ∈ K(E,F, β) by Lemma 1.4.1 and by (1.4.23) and (1.4.29), respectively. It is
obvious that u solves (1.4.35).

Let T ∈ J̇ be fixed. Upon replacing J by JT , it follows from (1.4.22), (1.4.23),
(1.4.29), (1.4.30), and (1.4.31) that ∗k ∈ L(K∞(E,F, β)) and that the spectral
radius of this operator equals zero. Hence (1.4.35) has at most one solution ‘on
JT ’ for each T ∈ J̇ . This proves the lemma. �

Remark 1.4.2. ([40]) In the definition of K(E,F, α), we can replace the assumption
that k ∈ C(J∗

Δ,L(E,F )). Then everything remains true provided:

(1) sup0≤s<t≤T is replaced by ess sup0≤s<t≤T everywhere.

(2) (1.4.26) is replaced by

K(E,F, α) ∩ C(J∗
Δ,L(E,F )) ↪→ C(JΔ,L(E,F )), α < 0.

(3) C(J∗
Δ, F ) is replaced by L∞,loc(J

∗
Δ) in the interpretation of K(K,F, α).

(4) BC is replaced by L∞ in (1.4.25) and (1.4.27).

With this new definition ofK(E,F, α), and by using obvious notation, observe
that

K(F,G, β) ∗ K(E,F, α) ↪→ K(E,G, α+ β − 1) ∩ C(JΔ,L(E,G))

if α+ β < 1.

As a simple application of Lemma 1.4.2, we prove the following generalized
Bellman–Gronwall inequality (see [40]).

Theorem 1.4.6. ([40]) Given α, β ∈ [0, 1) and ε > 0, there exists a positive constant
c := c(α, β, ε) such that the following is true: If u : J → R satisfies[

t �→ tβu(t)

]
∈ L∞,loc(J,R) (1.4.37)

and for a.e. t ∈ J̇ ,

u(t) ≤ At−β +B

∫ t

0

(t− τ)−αu(τ)dτ, (1.4.38)

where A and B are positive constants, then for a.e. t ∈ J̇ ,

u(t) ≤ At−β
(
1 + cBt1−αe(1+ε)μ(α,B)t

)
, (1.4.39)

where μ(α,B) := (Γ(1− α)B)1/(1−α).



1.4. The inequalities of Henry’s type 29

Proof. Let E := F := R and k(t, s) := B(t − s)−α for (t, s) ∈ J∗
Δ. Then that

k ∈ K(E,α) and ||k||(α),T = B for T ∈ J̇ . Let a(t) := At−β and observe that

(1.4.28) implies a ∈ K(E, β) and ||a||(β),T = A for T ∈ J̇ . Since u ∈ K(E, β) by
(1.4.37) and Remark 1.4.2, it follows from (1.4.29) and (1.4.23) that

b := a+ k ∗ u− u ∈ K(E, β).

Hence u = a− b+ k ∗ u, and now Lemma 1.4.2 implies that

u = (a− b) + ω ∗ (a− b).

Note that b ≥ 0 by (1.4.38) and that k ≥ 0 implies ω ≥ 0. Thus u ≤ a + ω ∗ a,
that is, for almost all t ∈ J̇ ,

u(t) ≤ At−β +A

∫ t

0

ω(t− τ)τ−βdτ.

Thus by Lemma 1.4.1, we have for all t > 0, ε > 0,

ω(t) ≤ c(α, ε)Bt−αe(1+ε)μ(α,B)t.

Since for all t > 0 and ν ≥ 0,∫ t

0

eν(t−τ)(t− τ)−ατ−βdτ ≤ eνt
∫ t

0

(t− τ)−ατ−βdτ

= B(1− α, 1− β)t1−α−βeνt,

the assertion follows immediately. �
Corollary 1.4.3 ([40]). Assume (1.4.37) and (1.4.38) hold. Then for any ε > 0,
there exists a constant c := c(ε, α, β,B) > 0 such that for almost all t ∈ J̇ ,

u(t) ≤ Act−βe(1+ε)μ(α,B)t.

Remark 1.4.3.

(a) We note that, in general, the constant c(α, ε) in the estimate of Lemma 1.4.1
and, consequently, the constant c in Theorem 1.4.4 and Corollary 1.4.3, tend
to infinity if ε → 0. Moreover, if α = 0, then ε = 0 is possible and c(0, 0) = 1.
In this case, the constant c of Theorem 1.4.4 equals 1/(1−α) and (1.4.39) is
then a consequence of the classical Gronwall inequality (e.g., [37], Corollary
6.2).

(b) The factor e(1+ε)μ(t−s) in Lemma 1.4.1, Theorem 1.4.4 and Corollary 1.4.3,
where μ := m1/(1−α) in Lemma 1.4.1, can be replaced by e(μ+ε)(t−s).

It is well known that the generalized Bellman–Gronwall inequality has been
proved, in a form somewhat less precise than the one of Theorem 1.4.4, by Amann
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in [28] and, independently, by means of Laplace transform techniques, by Henry
[355]. The technique, used in the proof of Lemma 1.4.1 for estimating the majorant
of the series (1.4.32) by means of Stirling’s formula, is taken from [941].

The following result may be found in Ye and Li [980], and is a corollary of a
special case of Theorem 1.4.4 with β = 0 and α ∈ (0, 1).

Corollary 1.4.4 ([980]). Let v(t) ≥ 0 be continuous on [t0, T ]. If there are positive
constants a, b and α < 1 such that for all t ∈ [t0, T ],

v(t) ≤ a+ b

∫ t

t0

(t− s)α−1v(s)ds, (1.4.40)

then there is a constant M > 0, independent of a, such that

v(t) ≤ Ma. (1.4.41)

Proof. By iterating (1.4.40) and exploiting the identity∫ t

0

(t− s)−α−1(s− τ)β−1ds = (t− τ)α+β−1Γ(α)Γ(β)

Γ(α+ β)
,

we obtain

v(t) ≤ a+ b

∫ t

t0

(t− s)α−1
{
a+ b

∫ s

t0

(s− τ)α−1v(τ)dτ
}
ds

≤ a
{
1 + b

(T − t0)
α

a

}
+ b2

∫ t

t0

{∫ t

τ

(t− s)α−1(s− τ)α−1ds
}
v(τ)dτ

= a(1 + b)
{
1 + b

(T − t0)
α

a

}
+ b2

Γ2(α)

Γ(2α)

∫ t

t0

(t− τ)2α−1v(τ)dτ,

which implies that

v(t) ≤ a
n−1∑
j=0

[
b(T − t0)

α

a

]j
+

[bΓ(α)]n

Γ(nα)

∫ t

t0

(t− τ)nα−1v(τ)dτ. (1.4.42)

Choosing n so large that nα− 1 > 0, we conclude that

v(t) ≤ C1a+ C2

∫ t

t0

v(τ)dτ (1.4.43)

where C1, C2 are positive constants depending only on T − t0 and b, but not on
α and a. Thus (1.4.41) follows from (1.4.43), by the Bellman–Gronwall inequality.

�

Recently, Ye et al. [979] gave the following inequality to prove the continuous
dependence on parameters of fractional differential equations, which can be viewed
as a general form of the above theorem.
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Theorem 1.4.7 ([979]). Let β > 0, and assume that a(t) is a non-negative function
locally integrable on [0, T ) for some T ≤ +∞ and let g(t) be a non-negative, non-
decreasing continuous function on [0, T ), g(t) ≤ M (a constant). Assume that u(t)
is non-negative and locally integrable on 0 ≤ t < T and satisfies

u(t) ≤ a(t) + g(t)

∫ t

0

(t− s)β−1u(s)ds (1.4.44)

on this interval. Then for all 0 ≤ t < T ,

u(t) ≤ a(t) +

∫ t

0

[
+∞∑
n=1

(g(t)Γ(β))n

Γ(nβ)
(t− s)nβ−1a(s)

]
ds. (1.4.45)

Proof. Let Bϕ(t) = g(t)
∫ t

0
(t− s)β−1ϕ(s)ds, t ≥ 0, for locally integrable functions

ϕ. Then

u(t) ≤ a(t) +Bu(t)

implies

u(t) ≤
n−1∑
k=0

Bka(t) +Bnu(t).

Let us prove by induction that

Bnu(t) ≤
∫ t

0

(g(t)Γ(β))n

Γ(nβ)
(t− s)nβ−1u(s)ds (1.4.46)

and Bnu(t) → 0 as n → +∞ for each t ∈ [0, T ).

We know that (1.4.46) holds for n = 1. Assume that it holds for some n = k.
If n = k + 1, then

Bk+1u(t) = B(Bku(t))

≤ g(t)

∫ t

0

(t− s)β−1

[∫ s

0

(g(t)Γ(β))k

Γ(kβ)
(s− τ)kβ−1u(τ)dτ

]
ds.

(1.4.47)

Since g(t) is non-decreasing, it follows that

Bk+1u(t) ≤ (g(t))
k+1

∫ t

0

(t− s)β−1

[∫ s

0

(Γ(β))k

Γ(kβ)
(s− τ)kβ−1u(τ)dτ

]
ds. (1.4.48)

Interchanging the order of integration, we obtain

Bk+1u(t) ≤
∫ t

0

(g(t)Γ(β))k+1

Γ((k + 1)β)
(t− s)(k+1)β−1u(s)ds, (1.4.49)
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where the integral∫ t

τ

(t− s)β−1(s− τ)kβ−1ds = (t− τ)kβ+β−1

∫ 1

0

(1− z)β−1zkβ−1dz

= (t− τ)kβ+β−1B(kβ, β) =
Γ(β)Γ(kβ)

Γ((k + 1)β)
(t− τ)kβ+β−1

is evaluated with the help of the substitution s = τ + z(t− τ) and the definition of
the beta function (cf. [747], pp. 6–7). This gives us the relation (1.4.46). Moreover,

Bnu(t) ≤ ∫ t

0
(MΓ(β))n

Γ(nβ) (t − s)nβ−1u(s)ds → 0 as n → +∞ for all t ∈ [0, T ), hence

the theorem is proved. �

For g(t) ≡ constant = b in the theorem, we obtain the following inequality,
which can be found in Henry ([355], p. 188).

Corollary 1.4.5 ([355]). Let b ≥ 0, β > 0, and let a(t) be a non-negative function
locally integrable on [0, T ) for some T ≤ +∞. Assume that u(t) is non-negative
and locally integrable on [0, T ) and that

u(t) ≤ a(t) + b

∫ t

0

(t− s)β−1u(s)ds (1.4.50)

on this interval. Then for all 0 ≤ t < T ,

u(t) ≤ a(t) +

∫ t

0

[
+∞∑
n=1

(bΓ(β))n

Γ(nβ)
(t− s)nβ−1a(s)

]
ds. (1.4.51)

Corollary 1.4.6 ([355]). Under the hypotheses of Theorem 1.4.5, let a(t) be a non-
decreasing function on [0, T ). Then

u(t) ≤ a(t)Eβ(g(t)Γ(β)t
β), (1.4.52)

where Eβ is the Mittag-Leffler function, defined by Eβ(z) =
∑+∞

k=0
zk

Γ(kβ+1) .

1.4.2 Henry–Gronwall–Bihari type integral inequalities

A new approach due to Medveď [606] to the analysis of nonlinear integral in-
equalities with weakly singular kernels will be used to prove Theorem 1.4.6, which
concerns a nonlinear integral inequality. Linear inequalities investigated by Henry
[355] (see also Section 1.4.1) are special cases of this nonlinear one.

First let us define a special class of nonlinear functions.

Definition 1.4.1. Let q > 0 be a real number and 0 < T ≤ +∞. We say that a
function ω : R+ = [0,+∞) → R satisfies condition (q), if for all u ∈ R+, t ∈ [0, T ),

e−qt[ω(u)]q ≤ R(t)ω(e−qtuq), (1.4.53)

where R(t) is a continuous non-negative function.
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Remark 1.4.4. If ω(u) = um,m > 0, then for any q > 1,

e−qt[ω(u)]q = e(m−1)qtω(e−qtuq), (1.4.54)

i.e., condition (q) (i.e., (1.4.53)) is satisfied with R(t) = e(m−1)qt.

Let ω(u) = u + aum, where 0 ≤ a ≤ 1, m ≥ 1. We shall show that ω
satisfies condition (q). We also need the following well-known inequality, which is
a consequence of Jensen’s inequality,

(A1 +A2 + · · ·+ An)
r ≤ nr−1(Ar

1 +Ar
2 + · · ·+Ar

n) (1.4.55)

for any non-negative real numbers A1, A2, . . . , An, where r > 1 is a real number
and n is a natural number. Using (1.4.55) with r = q and n = 2, we have

e−qt[ω(u)]q = e−qt(u+ aum)q ≤ 2q−1e−qt(uq + aquqm), (1.4.56)

2q−1eqmtω(e−qtuq) = 2q−1eqmt[e−qtuq + ae−qmtuqm]

= 2q−1e−qt[eqmtuq + auqm] ≥ 2q−1e−qt[uq + aquqm] (1.4.57)

and thus (1.4.56) yields condition (q), i.e., (1.4.53), with R(t) = 2q−1eqmt.

The following three theorems are due to Medveď [606].

Theorem 1.4.8 (The Medveď Inequality [606]). Let a(t) be a non-decreasing, non-
negative C1-function on [0, T ), F (t) a continuous, non-negative function on
[0, T ), ω : R+ → R a continuous, non-decreasing function, ω(0) = 0, ω(u) > 0
on (0, T ), and u(t) a continuous, non-negative function on (0, T ) satisfying for all
t ∈ [0, T ),

u(t) ≤ a(t) +

∫ t

0

(t− s)β−1F (s)ω(u(s))ds, (1.4.58)

for a constant β > 0. Then the following assertions hold:

(1) Assume β > 1
2 , and let ω satisfy condition (q) with q = 2. Then for all

t ∈ [0, T1],

u(t) ≤ et
{
Ω−1

[
Ω
(
2a2(t)

)
+ g1(t)

]}1/2
, (1.4.59)

where

g1(t) =
Γ(2β − 1)

4β−1

∫ t

0

R(s)F 2(s)ds,

and Γ is the gamma function, Ω(v) =
∫ v

v0

(
dy

ω(y)

)
, v0 > 0,Ω−1 the inverse of

Ω, and T1 ∈ R+ such that Ω
(
2a2(t)

)
+ g1(t) ∈ Dom(Ω−1) for all t ∈ [0, T1].

(2) Let β ∈ (0, 12 ], and let ω satisfy condition (q) with q = z + 2, where z = 1−β
β

(i.e., β = 1
z+1 ). Then for all t ∈ [0, T1],

u(t) ≤ et
{
Ω−1

[
Ω
(
2q−1aq(t)

)
+ g2(t)

]}1/q
, (1.4.60)
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where

g2(t) = 2q−1Kq
z

∫ t

0

F q(s)R(s)ds,

Kz =

[
Γ(1− ap)

p1−ap

]1/p
, α =

z

z + 1
, p =

z + 2

z + 1
, (1.4.61)

where T1 ∈ R+ is such that Ω
(
2q−1aq(t)

)
+ g2(t) ∈ Dom(Ω−1) for all t ∈

[0, T1].

Proof. First we shall prove the assertion (1). Using the Cauchy–Schwarz inequality,
we obtain from (1.4.58)

u(t) ≤ a(t) +

∫ t

0

(t− s)β−1esF (s)e−sω(u(s))ds

≤ a(t) +

[∫ t

0

(t− s)2β−2e2sds

]1/2 [∫ t

0

F 2(s)e−2sω2(u(s))ds

]1/2
. (1.4.62)

For the first integral in (1.4.62), we have∫ t

0

(t− s)2β−2e2sds =

∫ t

0

τ2β−2e2(t−τ)dτ

= e2t
∫ t

0

τ2β−2e−2τdτ =
2e2t

4β

∫ t

0

σ2β−2e−σdσ

≤ 2e2t

4β
Γ(2β − 1). (1.4.63)

Therefore, (1.4.62) yields

u(t) ≤ a(t) +

[
2e2t

4β
Γ(2β − 1)

]1/2 [∫ t

0

F 2(s)e−2sω2(u(s))ds

]1/2
. (1.4.64)

Using the inequality (1.4.55) with n = 2, r = 2, we obtain

u2(t) ≤ 2a2(t) +
e2tΓ(2β − 1)

4β−1

∫ t

0

F 2(s)e−2sω2(u(s))ds (1.4.65)

and applying condition (q) for q = 2, we have

v(t) ≤ α(t) +K

∫ t

0

F 2(s)R(s)ω(u(s))ds, (1.4.66)

where

v(t) =
(
e−tu(t)

)2
, α(t) = 2a2(t), K =

Γ(2β − 1)

4β−1
. (1.4.67)
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Now we shall proceed in a standard way. Let V (t) be the right-hand side of
(1.4.66). Then

ω(v(t))[ω(V (t))]−1 ≤ 1,

which yields[
α′(t) +KF 2(t)R(t)ω(v(t))

]
[ω(V (t))]

−1 ≤ α′(t) [ω(α(t))]−1
+KF 2(t)R(t),

(1.4.68)
i.e.,

V ′(t)
ω(V (t))

≤ α′(t)
ω(α(t))

+KF 2(t)R(t) (1.4.69)

or
d

dt
Ω(V (t)) ≤ d

dt
Ω(a(t)) +KF 2(t)R(t). (1.4.70)

Integrating this inequality from 0 to t, we obtain

Ω(V (t)) ≤ Ω(α(t)) + g1(t), (1.4.71)

where

g1(t) = K

∫ t

0

F 2(s)R(s)ds

whence

v(t) ≤ V (t) ≤ Ω−1 [Ω(α(t)) + g1(t)] .

Using (1.4.67), we obtain (1.4.59).

Now let us prove assertion (2). Obviously, β − 1 = −α = −z
(z+1) . Let p, q be

as in the theorem. Since 1/p+ 1/q = 1, Hölder’s inequality yields

u(t) ≤ a(t) +

∫ t

0

(t− s)β−1F (s)ω(u(s))ds

= a(t) +

∫ t

0

(t− s)−αesF (s)e−sω(u(s))ds

≤ a(t) +

[∫ t

0

(t− s)−apepsds

]1/p [∫ t

0

F q(s)e−qsωq(u(s))ds

]1/q
. (1.4.72)

For the first integral in (1.4.72), we have∫ t

0

(t− s)−αpepsds = ept
∫ t

0

τ−αpe−pτdτ =
ept

p1−αp

∫ pt

0

σ−αpe−σdσ

≤ ept

p1−αp
Γ(1− αp). (1.4.73)
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Obviously, 1 − αp = 1
(z+1)2 > 0 and so Γ(1 − αp) ∈ R. Thus by (1.4.62) and

condition (q), we get

u(t) ≤ a(t) + etKz

[∫ t

0

F q(s)R(s)ω(e−qsuq(s))ds

]1/q
, (1.4.74)

where Kz is defined by (1.4.61). Now using the inequality (1.4.55) for n = 2, r = q,
we obtain

uq(t) ≤ 2q−1aq(t) + 2q−1eqtKq
z

∫ t

0

F q(s)R(s)ω(e−qsu(s)q)ds, (1.4.75)

which yields

v(t) ≤ φ(t) + 2q−1Kq
z

∫ t

0

F q(s)R(s)ω(v(s))ds, (1.4.76)

where

v(t) =
(
e−tu(t)

)q
, φ(t) = 2q−1aq(t). (1.4.77)

Let V (t) be the right-hand side of (1.4.76). Then ω(V (t))[ω(V (t))]−1 ≤ 1
which yields [

φ′(t) + 2q−1Kq
zF

q(t)R(t)ω(v(t))
]
[ω(V (t))]

−1

≤ φ′(t) [ω(φ(t))]−1
+ 2q−1Kq

zF
q(t)R(t), (1.4.78)

i.e.,
V ′(t)

ω(V (t))
≤ φ′(t)

ω(φ(t))
+ 2q−1Kq

zF
q(t)R(t), (1.4.79)

or
d

dt
Ω(V (t)) ≤ d

dt
Ω(φ(t)) + 2q−1Kq

zF
q(t)R(t). (1.4.80)

Integrating (1.4.80) from 0 to t, we conclude

Ω(V (t)) ≤ Ω(φ(t)) + g2(t), (1.4.81)

where

g2(t) = 2q−1Kq
z

∫ t

0

F q(s)R(s)ds.

Consequently,

v(t) ≤ V (t) ≤ Ω−1[Ω(φ(t)) + g2(t)]. (1.4.82)

Using (1.4.79), we can obtain (1.4.60). �

As a consequence of Theorem 1.4.6, we have the following corollary.
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Theorem 1.4.9 (The Medveď Inequality [606]). Let 0 < T ≤ +∞, a(t), F (t) be as
in Theorem 1.4.6, and let u(t) be a continuous, non-negative function on [0, T )
such that

u(t) ≤ a(t) +

∫ t

0

(t− s)β−1F (s)u(s)ds, (1.4.83)

for a constant β > 0. Then the following assertions hold:

(1) If β > 1
2 , then for all t ∈ [0, T ),

u(t) ≤
√
2a(t) exp

[
2Γ(2β − 1)

4β

∫ t

0

F 2(s)ds+ t

]
. (1.4.84)

(2) If β = 1
z+1 for some z ≥ 1, then for all t ∈ [0, T ),

u(t) ≤ (2q−1)1/qa(t) exp

[
2q−1

q
Kq

z

∫ t

0

F q(s)ds+ t

]
, (1.4.85)

where Kz is defined by (1.4.61), q = z + 2.

The method used in the proof of Theorem 1.4.6 enables us to prove the
following theorem concerning the inequality (1.4.83), where a(t), F (t), and u(t)
are integrable on [0, T ).

Theorem 1.4.10 (The Medveď Inequality [606]). Let a(t), b(t) be non-negative, in-
tegrable functions on [0, T ) for 0 < T ≤ +∞, and let F (t), u(t) be integrable,
non-negative functions on [0, T ) such that for a.e. on [0, T ),

u(t) ≤ a(t) + b(t)

∫ t

0

(t− s)β−1F (s)u(s)ds. (1.4.86)

Then the following assertions hold:

(1) If β > 1/2, then for a.e. on [0, T ),

u(t) ≤ etΦ1/2(t), (1.4.87)

where

Φ(t) = 2a2(t) + 2Kb2(t)

∫ t

0

a2(s)F 2(s) exp

[
K

∫ t

s

b2(r)F 2(r)dr

]
ds,

K =
Γ(2β − 1)

4β−1
.

(2) If β = 1/(z + 1) for some z ≥ 1, then for a.e. on [0, T ),

u(t) ≤ etΨ1/q(t), (1.4.88)
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where

Ψ(t) = 2q−1aq(t) + 2q−1Kq
zb

q(t)

×
∫ t

0

aq(s)F q(s) exp

[
2q−1Kq

z

∫ t

s

bq(r)F q(r)dr

]
ds,

q = z + 2, and Kz is defined by (1.4.61).

Proof. First we shall prove assertion (1). Using the same procedure as in the proof
of assertion (1) of Theorem 1.4.6, we can show that

v(t) ≤ 2a2(t) +
Γ(2β − 1)

4β−1
b2(t)

∫ t

0

F 2(s)v(s)ds, (1.4.89)

where v(t) = (e−tu(t))2. From Theorem 1.4 in [591], we obtain inequality (1.4.87).

Using the procedure from the proof of the assertion (2) of Theorem 1.4.6, we
can show that

v(t) ≤ 2q−1aq(t) + 2q−1Kq
zB

q(t)

∫ t

0

F q(s)v(s)ds, (1.4.90)

where v(t) = (e−tu(t))q , and the inequality (1.4.88) is a direct consequence of
Theorem 1.4 in [591]. �

The following result is an analogue of Theorem 1.4.7 (see, e.g., [115]).

Theorem 1.4.11 (The Brandolese Inequality [115]). Assume that a non-negative
and locally bounded function h = h(t) satisfies the inequality for all t ≥ 0,

h(t) ≤ C1(1 + t) + C2

∫ t

0

(t− τ)−a(1 + τ)−bh(τ)dτ (1.4.91)

for some a ∈ (0, 1), b > 0, positive constants C1 and C2.

If a+ b > 1, then for all t ≥ 0,

h(t) ≤ C(1 + t) (1.4.92)

for a constant C > 0 independent of t. The same conclusion (1.4.92) holds true
in the limit case a+ b = 1 under the weaker assumption

h(t) ≤ C1(1 + t) + C2

∫ t

0

(t− τ)−aτ−bh(τ)dτ, (1.4.93)

provided that C2 > 0 is sufficiently small.
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Proof. If a+ b = 1, we deduce from (1.4.93) the inequality

h(t) ≤ C1(1 + t) + C2K(a, b) sup
0≤τ≤t

h(τ),

where

K(a, b) =

∫ t

0

(t− τ)−aτ−bdτ =

∫ 1

0

(1− s)−as−bds.

Consequently,

sup
0≤τ≤t

h(τ) ≤ C1

1− C2K(a, b)
(1 + t),

provided that C2 < 1/K(a, b). This gives us (1.4.92).

In the case a+ b > 1, using (1.4.91), we write b = b1 + η for a+ b1 = 1 and
η > 0, and we fix t1 > 0 such that

C2(1 + t1)
−η <

1

K(a, b1)
.

Now splitting the integral in (1.4.92) at t1 yields

h(t) ≤ C(1 + t) + C2K(a, b1)(1 + t1)
−η sup

0≤τ≤t
h(τ)

for some constant C > 0 independent of t. Hence the conclusion follows. �

Now we shall prove a result which is a modification of Lemma 7.1.2 in Henry
[355] (see, e.g., Theorem 1.4.3) and is due to Medveď [606].

Theorem 1.4.12 (The Medveď Inequality [606]). Let a(t) be a non-negative, non-
decreasing C1 function on [0, T ) for 0 < T ≤ +∞, and F (t) a continuous, non-
negative function on [0, T ). Let u(t) be a non-negative, continuous function on
[0, T ) such that for constant β > 0, γ > 0, for all t ∈ [0, T ),

u(t) ≤ a(t) +

∫ t

0

(t− s)β−1sγ−1F (s)u(s)ds. (1.4.94)

Then the following assertions hold:

(1) If β > 1
2 and γ > 1− 1

2p , where p > 1, then for all t ∈ [0, T ),

u(t) ≤ 21−
1
2q a(t) exp

[
4q

2q
KqLq

∫ t

0

F 2q(s)eqsds+ t

]
, (1.4.95)

where

K =
Γ(2β − 1)

4β−1
, L =

[
Γ((2γ − 2)p+ 1)

p(2γ−2)p

]1/p
,
1

p
+

1

q
= 1.
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(2) Let β = 1
m+1 for some real number m ≥ 1, γ > 1 − 1

κq , where κ > 1,

p = m+2
m+1 , q = m+ 2. Then for all t ∈ [0, T ),

u(t) ≤ 2(κr−1)/qra(t) exp

[
p

κr

∫ t

0

ersF rq(s)ds+ t

]
, (1.4.96)

where r > 1 is such that 1/κ+ 1/r = 1,

P =

[
Γ(1− αp)

p1−αp

]rq/p [
Γ(κq(γ − 1) + 1)

κκq(γ−1)

]r/κ
and −α = β − 1 = −m

m+1 .

Proof. Let us prove assertion (1). From the inequality (1.4.94), we have

u(t) ≤ a(t) +

[∫ t

0

(t− s)2β−2e2sds

]1/2 [∫ t

0

s2γ−2F 2(s)e−2su2(s)ds

]1/2
≤ a(t) + etK1/2

[∫ t

0

s2γ−2F 2(s)(e−su(s))2ds

]1/2
, (1.4.97)

which yields

u2(t) ≤ 2a2(t) + 2e2tK

∫ t

0

s2γ−2F 2(s)(e−su(s))2ds, (1.4.98)

whence

v(t) ≤ c(t) + 2K

∫ t

0

s2γ−2F 2(s)v(s)ds, (1.4.99)

where
c(t) = 2a2(t), v(t) = (e−tu(t))2. (1.4.100)

Thus from (1.4.99) it follows that

v(t) ≤ c(t) + 2K

∫ t

0

s2γ−2e−sF 2(s)esv(s)ds

≤ c(t) + 2K

[∫ t

0

s(2γ−2)pe−psds

]1/p [∫ t

0

F 2q(s)eq(v(s))qds

]1/q
, (1.4.101)

where q > 1, 1
q + 1

p = 1. For the first integral in (1.4.101), we have∫ t

0

s(2γ−2)pe−psds ≤ ept

p(2γ−2)p
Γ((2γ − 2)p+ 1).

Obviously, the assumption yields

(2γ − 2)p+ 1 >

[
2

(
1− 1

2p

)
− 2

]
p+ 1 = 0.
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Hence,
Γ((2γ − 2)p+ 1) ∈ R.

Let L be as in Theorem 1.4.10. From (1.4.101), we have

vq(t) ≤ 2q−1cq(t) +
4q

2
KqLq

∫ t

0

F 2q(s)eqsvq(s)ds, (1.4.102)

which yields

vq(t) ≤ 2q−1cq(t) exp

[
4q

2
KqLq

∫ t

0

F 2q(s)eqsds

]
. (1.4.103)

From this inequality and (1.4.100), we obtain (1.4.95). Now let us prove
assertion (2). From the inequality (1.4.96), we obtain

u(t) ≤ a(t) +

[∫ t

0

(t− s)−pαepsds

]1/p [∫ t

0

sq(γ−1)e−qsF q(s)uq(s)ds

]1/q
≤ a(t) + et

[
Γ(1− αp)

p(1−αp)

]1/p [∫ t

0

sκq(γ−1)e−κsds

]1/(κq)
×

[∫ t

0

ersF rq(s)(e−su(s))rqds

]1/(rq)
≤ a(t) + et

[
Γ(1− αp)

p(1−αp)

]1/p
Γ(κq(γ − 1) + 1)1/(κq)

κκq(γ−1)−1

×
[∫ t

0

ersF rq(s)(e−su(s))rqds

]1/(rq)
, (1.4.104)

where r is as in the theorem. We assume that γ > 1 − 1
κq and thus we have

κq(γ − 1) + 1 > κq
(

−1
κq

)
+ 1 = 0, i.e., Γ(κq(γ − 1) + 1) ∈ R. Therefore, (1.4.104)

yields

v(t) ≤ 2rq−1

[
aqr(t) + P

∫ t

0

ersF rq(s)v(s)ds

]
, (1.4.105)

where v(t) = (e−tu(t))rq and P is defined as in the theorem. Therefore, we obtain

v(t) ≤ 2rq−1arq(t) exp

[
P

∫ t

0

ersF rq(s)ds

]
(1.4.106)

which yields the inequality (1.4.96). �

For the special case when a(t) = t−α (α > 0, a constant), β = 1/2, γ = 1/2,
F = constant > 0, we have Theorem 1.4.11 below, whose proof needs the following
lemma, due to Bae and Jin [57].
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Lemma 1.4.13 ([57]). Let a < 1, b > 0, d < 1. If b+ d < 1, then for all t > 0,∫ t

0

(t− s)−a(s+ 1)−bs−dds ≤ Ct1−a−d(1 + t)−b. (1.4.107)

If b+ d = 1, then for all t > 0,∫ t

0

(t− s)−a(s+ 1)−bs−dds ≤ Ct−a ln(1 + t). (1.4.108)

If b+ d > 1, then for all t > 0,∫ t

0

(t− s)−a(s+ 1)−bs−dds ≤ Ct−a. (1.4.109)

Proof. Set

I :=

∫ t

t/2

(t− s)−a(s+ 1)−bs−dds, II :=

∫ t/2

0

(t− s)−a(s+ 1)−bs−dds.

Then we have

I ≤ C(1 + t)−bt−d

∫ t

t/2

(t− s)−ads = C(1 + t)−bt−dt1−a

= C(1 + t)−bt1−a−d, (1.4.110)

II ≤ Ct−a

∫ t/2

0

(s+ 1)−bs−dds. (1.4.111)

If t ≥ 2, then∫ t/2

0

(s+ 1)−bs−dds =

∫ t/2

1

(s+ 1)−bs−dds+

∫ 1

0

(s+ 1)−bs−dds

≤ C

∫ t/2

1

(s+ 1)−b−dds+ C

∫ 1

0

s−dds

≤
⎧⎨⎩

C(t+ 1)1−b−d, if b+ d < 1,
C ln(t+ 1), if b+ d = 1,
C, if b+ d > 1.

(1.4.112)

If t ≤ 2, then∫ t/2

0

(s+ 1)−bs−dds ≤ C

∫ 1

0

(s+ 1)−bs−dds ≤ C. (1.4.113)

Hence, we derive from (1.4.111)–(1.4.112)

II ≤
⎧⎨⎩ Ct−a(t+ 1)1−b−d, if b+ d < 1,

Ct−a ln(t+ 1), if b+ d = 1,
Ct−a, if b+ d > 1.

(1.4.114)
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Thus it follows from (1.4.110)–(1.4.114) that∫ t

0

(t− s)−a(s+ 1)−bs−dds

≤
⎧⎨⎩

Ct1−a−d(t+ 1)−b + Ct−a(t+ 1)1−b−d, if b+ d < 1,
Ct1−a−d(t+ 1)−b + Ct−a ln(t+ 1), if b+ d = 1,
Ct1−a−d(t+ 1)−b + Ct−a, if b+ d > 1.

(1.4.115)

The proof is thus complete. �
Theorem 1.4.14 (The Bae–Jin Inequality [57]). Assume that x(t) ≥ 0 satisfies that
the inequality for all t > 0,

x(t) ≤ Ct−α + ε

∫ t

0

(t− s)−1/2s−1/2x(s)ds. (1.4.116)

Then for all t > 0,

x(t) ≤ Ct−α + Cεt−1/2

∫ t

0

s−1/2x(s)ds, (1.4.117)

where α > 0, C > 0 are constants independent of t > 0 and ε > 0.

Proof. Let

I :=

∫ t

t/2

(t− s)−1/2s−1/2x(s)ds, II :=

∫ t/2

0

(t− s)−1/2s−1/2x(s)ds.

Then we infer that

I ≤ Ct−1/2

∫ t

t/2

(t− s)−1/2x(s)ds, II ≤ Ct−1/2

∫ t/2

0

s−1/2x(s)ds. (1.4.118)

If we insert (1.4.116) in I, we obtain

t1/2I ≤ C

∫ t

t/2

(t− s)−1/2x(s)ds

≤ Cε

∫ t

t/2

(t− s)−1/2
{
s−β + ε

∫ s

0

(s− τ)−1/2τ−1/2x(τ)dτ
}
ds

= C

∫ t

t/2

(t− s)−1/2s−βds

+ Cε

∫ t

t/2

∫ s

0

(t− s)−1/2(s− τ)−1/2τ−1/2x(τ)dτds

= I1 + I2. (1.4.119)
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A straightforward computation yields

I1 ≤ C2t−β+1/2. (1.4.120)

Next, Fubini’s theorem gives

I2 = Cε

∫ t/2

0

∫ t

t/2

(t− s)−1/2(s− τ)−1/2τ−1/2x(τ)dsdτ

+ Cε

∫ t

t/2

∫ t

τ

(t− s)−1/2(s− τ)−1/2τ−1/2x(τ)dsdτ

= Cε

∫ t/2

0

τ−1/2x(τ)
{ ∫ t

t/2

(t− s)−1/2(s− τ)−1/2ds
}
dτ

+ Cε

∫ t

t/2

τ−1/2x(τ)
{ ∫ t

τ

(t− s)−1/2(s− τ)−1/2ds
}
dτ

≤ Cε

∫ t

0

τ−1/2x(τ)dτ, (1.4.121)

where we have used the following estimates:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

τ

(t− s)−1/2(s− τ)−1/2ds = C

∫ t−τ

0

z−1/2(t− τ − z)−1/2dz

≤ C for t/2 < τ < t,∫ t

t/2

(t− s)−1/2(s− τ)−1/2ds ≤ C

∫ t

τ

(t− s)−1/2(s− τ)−1/2ds

≤ C for 0 < τ < t/2,

with some constant C > 0 independent of t owing to Lemma 1.4.3. Hence from
(1.4.119)–(1.4.121), we conclude that

I ≤ Ct−β + Cεt−1/2

∫ t

0

τ−1/2x(τ)dτ. (1.4.122)

Combining (1.4.118) and the above estimates on I and II, we complete the proof.
�

1.4.3 The Ou-Yang and Pachapatte type integral inequalities

In this subsection, we begin to study the integral inequality

ur(t) ≤ a(t) +

∫ t

0

(t− s)β−1F (s)ω(u(s))ds, β > 0. (1.4.123)

The following result concerns the case r = 2, which was studied in Medveď
[606].
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Theorem 1.4.15 (The Medveď Inequality [606]). Assume that r = 2. Let a(t) be
a non-decreasing, non-negative C1 function on [0, T ) for 0 < T ≤ +∞, F (t) be
a continuous, non-negative function, and ω : R+ → R, dω(u)/du be continuous,
non-decreasing functions such that ω(0) = 0, ω(u) > 0 on (0, T ). Let u(t) be
a continuous, non-negative function on [0, T ) satisfying the inequality (1.4.123).
Then the following assertions hold:

(i) Assume that β > 1
2 and that ω satisfying condition (q) (i.e., (1.4.53)) for

q = 2. Then

u(t) ≤ et
{
Λ−1

[
Λ(2a2(t)) +K

∫ t

0

F 2(s)R(s)ds

]}1/4

, (1.4.124)

for all t ∈ [0, T1), where

K =
Γ(2β − 1)

4β−1
, Λ(v) =

∫ v

v0

dσ

ω(
√
σ)

, v0 > 0 (1.4.125)

and T1 ∈ R+ is such that Λ(2a2(t)) +K
∫ t

0
F 2(s)R(s)ds ∈ Dom(Λ−1) for all

t ∈ [0, T1].

(ii) Let β ∈ (0, 1
2 ] and let ω satisfy condition (q) (i.e., (1.4.53)) for q = z + 2,

where z = 1−β
β , i.e., β = 1

z+1 . Then for all t ∈ [0, T1],

u(t) ≤ et
{
Λ−1

[
Λ(2q−1aq(t)) + 2q−1Kq

z

∫ t

0

F q(s)R(s)ds

]}1/(2q)

,

(1.4.126)
where

Kz =

[
Γ(1− βp)

p1−βp

]1/p
, β =

1

z + 1
, p =

z + 2

z + 1
, (1.4.127)

and T1 ∈ R+ is such that Λ(2q−1aq(t))+2q−1Kq
z

∫ t

0 F
q(s)R(s)ds ∈ Dom(Λ−1)

for all t ∈ [0, T1].

Proof. First let us prove the assertion (i). Following the proof of Theorem 1.4.6,
we can show that

v2(t) ≤ α(t) +K

∫ t

0

F 2(s)R(s)ω(v(s))ds, (1.4.128)

with

v(t) = (e−tu(t))2, α(t) = 2a2(t), K =
Γ(2β − 1)

4β−1
. (1.4.129)
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Let V (t) denote the right-hand side of (1.4.128). Then v(t) ≤ √
V (t). This

yields ω(v(t)) ≤ ω(
√
V (t)) and thus

V ′(t)
ω(

√
V (t))

=
α′(t) +KF 2(t)R(t)ω(v(t))

ω(
√
V (t))

≤ α′(t)
ω(

√
α(t))

+KF 2(t)R(t).

(1.4.130)

This yields

d

dt

∫ V (t)

0

dσ

ω(
√
V (σ))

≤ d

dt

∫ α(t)

0

dσ

ω(
√
α(σ))

+KF 2(t)R(t). (1.4.131)

Thus we have
d

dt
Λ(V (t)) ≤ d

dt
Λ(α(t)) +KF 2(t)R(t), (1.4.132)

where Λ is defined by (1.4.125). This yields

V (t) ≤ Λ−1

[
Λ(α(t)) +K

∫ t

0

F 2(s)R(s)ds

]
, (1.4.133)

whence

v(t) ≤
√
V (t) ≤

{
Λ−1

[
Λ(α(t)) +K

∫ t

0

F 2(s)R(s)ds

]}1/2

. (1.4.134)

Using (1.4.129), we can obtain (1.4.128). Now we shall prove assertion (ii).
Following the proof of assertion (2) of Theorem 1.4.6, we can show that

v2(t) ≤ φ(t) + 2q−1Kq
z

∫ t

0

F q(s)R(s)ω(v(s))ds, (1.4.135)

where
v(t) = (e−tu(t))q, φ(t) = 2q−1aq(t). (1.4.136)

Following the procedure from the proof of assertion (i), we obtain

v(t) ≤
{
Λ−1(Λ(φ(t))) + 2q−1Kq

z

∫ t

0

F q(s)R(s)ds

}1/2

(1.4.137)

and using (1.4.136), we can obtain (1.4.126). �

Remark 1.4.5. We can prove a result similar to Theorem 1.4.12 for an analogue
of the inequality (1.4.123) involving multiple integrals. We do not give the details
here.
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The nonsingular version of (1.4.123) for r = 2, β = 1 was studied by Pach-
patte in [723], where a result obtained by Ou-Yang [715] is generalized. Applying
the method developed in Medveď [606], the following theorem can be proved in
Medveď [606].

Theorem 1.4.16 (The Medveď Inequality [606]). Let a(t) be a non-negative, non-
decreasing C1-function on the interval [0, T ] (0 < T < +∞), let F (t) be a non-
negative, continuous function on [0, T ], 0 < β < 1, r ≥ 1, and let ω : R+ → R+ be
a continuous, non-decreasing, positive function. Assume that u(t) is a continuous,
non-negative function on [0, T ] satisfying the inequality (1.4.123). Then for all
t ∈ [0, T ],

Λqr(u
qr(t)) ≤ Λqr(2

q−1aq) +Kq

∫ t

0

e−qsF q(s)ds, (1.4.138)

or

u(t) ≤
{
Λ−1
qr

[
Λqr(2

q−1aq) +Kq

∫ t

0

e−qsF q(s)ds

]}1/qr

, (1.4.139)

where β = 1
1+z , z > 0, q = 1

β + ε = 1 + z + ε, p = 1+z+ε
z+ε , ε > 0,

Λqr(v) =

∫ v

v0

dσ

ωq(σ1/rq)
, (1.4.140)

with 2q−1aq(0) ≥ v0 > 0, and Λ−1
qr is the inverse of Λqr, a = a(t),

Kq =
2q−1epT

p1−αp
Γ(1 − αp),

with α = 1 − β = z
1+z . Also, Γ is Euler’s Gamma function, and T1 > 0 is such

that for all t ∈ [0, T1],

Λqr(2
q−1aq) +Kq

∫ t

0

e−qsF q(s)ds ∈ Dom (Λ−1
qr ).

Proof. Obviously, 1
p +

1
q = 1. Using the Hölder inequality, we obtain from (1.4.123)

ur(t) ≤ a(t) +

∫ t

0

(t− s)−αese−sF (s)ω(u(s))ds

≤ a(t) +

[∫ t

0

(t− s)−αpepsds

]1/p [∫ t

0

e−qsF q(s)ωq(u(s))ds

]1/q
. (1.4.141)

Since (A+B)q ≤ 2q−1(Aq +Bq) holds for any A ≥ 0, B ≥ 0 and∫ t

0

(t− s)−αpepsds = ept
∫ t

0

τ−αpe−pτdτ ≤ ept

p1−αp
Γ(1− αp), (1.4.142)
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for 1− αp = ε
(1+z)(z+ε) > 0, we obtain from (1.4.141) that for all t ∈ [0, T ],

urq(t) ≤ 2q−1aq +Kq

∫ t

0

e−qsF (s)ωq(u(s))ds. (1.4.143)

Let W (t) denote the right-hand side of the inequality (1.4.143). Then u(t) ≤
W 1/rq(t) which yields ωq(u(t)) ≤ ωq(W 1/rq(t)).

From (1.4.143), we obtain

W ′(t)
ωq(W 1/rq(t))

≤ Kqe
−qtF q(t)ωq(u(t))

ωq(W 1/rq(t))
+

α′(t)
ωq(α1/rq(t))

,

i.e.,

d

dt

∫ W (t)

0

dσ

ωq(σ1/rq)
≤ Kqe

−qtF q(t) +
d

dt

∫ α(t)

0

dσ

ωq(σ1/rq)
, (1.4.144)

or
d

dt
Λqr(W (t)) ≤ Kqe

−qtF q(t) +
d

dt
Λqr(d(t)), (1.4.145)

where Λqr is defined by (1.4.140) and α(t) = 2q−1aq(t). Integrating inequality
(1.4.145) from 0 to t, we can obtain the inequality (1.4.138). �

1.4.4 Henry type inequalities with multiple integrals

The following theorem, due to Medveď [606], is a modification of Theorem 1.4.6.

Theorem 1.4.17 (The Medveď Inequality [606]). Let a(t), a′(t), . . . , a(m−1)(t)

(a(i) = dia
dti ) be non-negative, continuous functions on [0, T ) (0 < T ≤ +∞), Fi(t)

(i = 1, 2, . . . ,m) be non-negative, continuous functions on [0, T ), ω as in Theorem
1.4.13, and let u(t) be a continuous, non-negative function on [0, T ) such that for
all t ∈ [0, T ],

u(t) ≤ a(t) +

∫ t

0

(t− s)β1−1F1(s)ω(u(s))ds

+

∫ t

0

∫ t1

0

(t1 − s)β2−1F2(s)ω(u(s))dsdt1 + · · · (1.4.146)

+

∫ t

0

∫ t1

0

· · ·
∫ tm−1

0

(tm−1 − s)βm−1Fm(s)ω(u(s))ds · · · dt1,

where βi > 1/2 (i = 1, 2, . . . ,m) and ω satisfies condition (q) (i.e., (1.4.53)) for
q = 2.

Then for all t ∈ [0, T1],

u(t) ≤ etχ1/2(t), (1.4.147)
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where χ(t) = Ω−1[Ω{(m+ 1)a2(t)} +G(t)],

G(t) = h1(t) +

∫ t

0

h2(s)ds+ · · ·+
∫ t

0

∫ t1

0

∫ tm−1

0

hm(s)ds · · · dt1,

hi(t) = ηi(m+ 1)F 2
i (t)R(t), ηi =

Γ(2βi − 1)

22βi+m−1
, i = 1, 2, . . . ,m (1.4.148)

and T1 ∈ R+ is such that Ω{(m+ 1)a(t)2}+G(t) ∈ Dom (Ω−1) for all t ∈ [0, T1].

Proof. In fact, the inequality (1.4.146) yields

u(t) ≤ a(t) +

[∫ t

0

(t− s)2β1−2e2sds

]1/2 [∫ t

0

F1(s)
2e−2sω2(u(s))ds

]1/2
+ · · ·+

[∫ t

0

∫ t1

0

· · ·
∫ tm−1

0

(tm−1 − s)2βm−2e2sds · · · dt1
]1/2

×
[∫ t

0

∫ t1

0

· · ·
∫ tm−1

0

F 2
1 (s)e

−2sω2(u(s))ds · · · dt1
]1/2

≤ a(t) + etη
1/2
1

[∫ t

0

F 2
1 (s)e

−2sω2(u(s))ds

]1/2
(1.4.149)

+ · · ·+ etη1/2m

[∫ t

0

∫ t1

0

· · ·
∫ tm−1

0

F 2
m(s)e−2sω2(u(s))ds · · · dt1

]1/2
,

where ηi (i = 1, 2, . . . ,m) are defined by (1.4.148). Here we have used the following
estimate ∫ t

0

∫ t1

0

· · ·
∫ ti−1

0

(ti−1 − s)2βi−1e2sds · · · dt1

=

∫ t

0

∫ t1

0

· · ·
∫ ti−2

0

e2ti−1

∫ ti−1

0

σ2βi−1e−2σdσ · · · dt1

≤ e2t

22βi
Γ(2βi − 1)

∫ t

0

∫ t1

0

· · ·
∫ ti−2

0

e2ti−2dti−1 · · · dt1

≤ e2tΓ(2βi − 1)

22βi+i−1
, i = 1, 2, . . . ,m.

(1.4.150)

The inequalities (1.4.149) and (1.4.55) yield

u2(t) ≤ (m+ 1)

[
a2(t) + e2tη1

∫ t

0

F 2
1 (s)e

−2sω2(u(s))ds (1.4.151)

+ · · · + e2tηm

∫ t

0

∫ t1

0

· · ·
∫ tm−1

0

F 2
m(s)e−2sω2(u(s))ds · · · dt1

]
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and using the property (q) (i.e., (1.4.53)) for q = 2, we obtain

v(t) ≤ (m+ 1)

[
a2(t) + η1

∫ t

0

F 2
1 (s)R(s)ω(u(s))ds (1.4.152)

+ · · · + ηm

∫ t

0

∫ t1

0

· · ·
∫ tm−1

0

Fm(s)R(s)ω(u(s))ds · · · dt1
]
,

where
v(t) = (e−tu(t))2. (1.4.153)

Let V (t) be the right-hand side of (1.4.150) and

α(t) = (m+ 1)a2(t), hi(t) = c2i ηi(m+ 1)F 2
i (t)R(t). (1.4.154)

Then for all t ∈ [0, T ),

V ′(t)− α′(t)− h1(t)ω(v(t)) = V1(t), (1.4.155)

V ′
1(t)− h2(t)ω(v(t)) = V2(t), . . . , (1.4.156)

V ′
m−2(t)− hm−1ω(v(t)) = Vm−1(t), (1.4.157)

V ′
m−1(t) = hm(t)ω(v(t)) ≤ hm(t)ω(v(t)). (1.4.158)

�

We need the following lemma, due to Medveď [606].

Lemma 1.4.18. ([606]) If H(t) is a C1-function on [0, T ), H(t) ≥ 0 for all t ∈ [0, T ),
and H(0) = 0, then for all t ∈ [0, T ),∫ t

0

H ′(s)
ω(V (s))

ds ≥ H(t)

ω(V (t))
. (1.4.159)

Proof. Integrating by parts on the left-hand side of (1.4.156), we obtain∫ t

0

H ′(s)
ω(V (s))

ds =
H(t)

ω(V (t))
+

∫ t

0

H(s)
ω′(V (s))

[ω(V (s))]2
V ′(s)ds ≥ H(t)

ω(V (t))
. �

Now let us continue the proof of the theorem. Using (1.4.155) and (1.4.156),
we have

Vm−1(t)

ω(V (t))
≤

∫ t

0

V ′
m−1(s)

ω(V (t))
ds ≤

∫ t

0

hm(s)ds. (1.4.160)

Therefore, for the equality (1.4.154) and the inequalities (1.4.159), (1.4.160), it
follows

Vm−2(t)

ω(V (t))
≤

∫ t

0

V ′
m−2(s)

ω(V (t))
ds ≤

∫ t

0

hm−1(s)ds+

∫ t

0

Vm−1(s)

ω(V (s))
ds

≤
∫ t

0

hm−1(s)ds+

∫ t

0

∫ t1

0

hm(s)dsdt1.

(1.4.161)
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Continuing in this way, we can prove that

V1(t)

ω(V (t))
≤

∫ t

0

h2(s)ds+

∫ t

0

∫ t1

0

h3dsdt1 (1.4.162)

+ · · · +
∫ t

0

∫ t1

0

· · ·
∫ tm−1

0

hm(s)dsdtm−1 · · · dt1.

Using this inequality, we obtain

V ′(t)
ω(V (t))

− α′(t)
ω(α(t))

≤ V ′(t)− α′(t)
ω(V (t))

≤ h1(t) +
V1(t)

ω(V (t))

≤ h1(t) +

∫ t

0

h2(s)ds+

∫ t

0

∫ t1

0

h3dsdt1

+ · · ·+
∫ t

0

∫ t1

0

· · ·
∫ tm−1

0

hm(s)dsdtm−1 · · · dt1
:= G(t), (1.4.163)

whence for all t ∈ [0, T1),

v(t) ≤ Ω−1[ω(α(t)) +G(t)] (1.4.164)

where T1 ∈ R+ is as in Theorem 1.4.14. Using (1.4.153), we can obtain (1.4.159).
�

Remark 1.4.6. We note that the assertion for the case βj = 1
z+1 , z ≥ 1 for all j

and its proof are similar to the assertion (2) of Theorem 1.4.6. We omit the details
here. The case βi >

1
z+1 for a real number z ≥ 1 is more complicated and we also

omit it here.

1.5 Integral inequalities leading to upper bounds
and decay rates

In this section, we shall introduce some integral inequalities leading to upper
bounds and decay rates. Bae and Jin [57] proved the following theorem.

Theorem 1.5.1 (The Bae–Jin Inequality). Let α < 1/2 and ε > 0 be given con-
stants. Assume that x(t) ≥ 0 is a function satisfying the integral inequality for all
t > 0,

x(t) ≤ Ct−α + εt−1/2

∫ t

0

s−1/2x(s)ds, (1.5.1)

with a constant C > 0. If

lim
t→0+

t−ε

∫ t

0

s−1/2x(s)ds = 0, (1.5.2)
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then there exists a constant ε0 > 0 such that if ε ≤ ε0, then for all t > 0,

x(t) ≤ C1t
−α, (1.5.3)

for some constant C1 > 0.

Proof. Let J(t) =
∫ t

0
s−1/2x(s)ds. Then J(t) satisfies

J ′(t) ≤ Ct−αt−1/2 + εt−1J(t)

which implies
d

dt

(
t−εJ(t)

)
≤ Ct−α−1/2−ε. (1.5.4)

Integrating (1.5.4) over (0, t) gives us

t−εJ(t) ≤ C

∫ t

0

s−α−1/2−εds. (1.5.5)

Here we used the assumption that lim
t→0+

t−εJ(t) = 0.

Assume that α+ ε < 1/2. Then Lemma 1.4.3 yields∫ t

0

s−α−1/2−εds ≤ Ct−α+1/2−ε. (1.5.6)

Thus we infer from (1.5.3) that

J(t) ≤ Ct−α+1/2

which, inserted in (1.5.1), gives us (1.5.3). �
Remark 1.5.1. If α+ ε < 1/2, then (1.5.3) still holds.

The next result, obtained by Kawashima, Nakao and Ono [423] in 1995, is
an analogue of Theorem 1.5.1.

Theorem 1.5.2 (The Kawashima–Nakao–Ono Inequality [423]). Let y(t) be a non-
negative function on [0, T ), 0 < T ≤ +∞, which satisfies the integral inequality
for all t ∈ [0, T ],

y(t) ≤ k0(1 + t)−α + k1

∫ t

0

(1 + t− s)−β(1 + s)−γyμ(s)ds (1.5.7)

with some constants k0, k1 > 0, α, β, γ ≥ 0 and 0 ≤ μ < 1. Then for all t ∈ [0, T ],

y(t) ≤ c(1 + t)−θ (1.5.8)

with some constant c > 0 and

θ = min

{
α, β,

γ

1− μ
,
β + γ − 1

1− μ

}
, (1.5.9)
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with the following exceptional case: If α ≥ θ̂ and (β + γ − 1)/(1 − μ) = θ̂ ≤ 1,
where

θ̂ = min

{
β,

γ

1− μ

}
, (1.5.10)

then for all t ∈ [0, T ],

y(t) ≤ c(1 + t)−θ̂
(
log(2 + t)

)1/(1−μ)

. (1.5.11)

Remark 1.5.2. Once we have known that y(t) is a bounded function, we can also
apply Theorem 1.5.2 to the case μ = 1. In particular, if γ > 0 and β + γ − 1 > 0,
we can obtain (1.5.8) for

θ = min{α, β}. (1.5.12)

Note that even for the exceptional case, (1.5.8) is valid if θ is replaced by θ − ε,
0 < ε � 1.

Proof. The case μ = 0 is well known. We define M(t) by

M(t) := sup
0≤s≤t

{
(1 + s)θy(s)

}
. (1.5.13)

Then we infer from (1.5.7) and (1.5.13) that

y(t) ≤ k0(1 + t)−α + k1

∫ t

0

(1 + t− s)−β(1 + s)−γ−μθds Mμ(t)

≤ k0(1 + t)−α + c(1 + t)−θ∗
Mμ(t)

with a constant c > 0 and θ∗ := min{β, γ + μβ, β + γ + μθ − 1}, where we have
assumed that β 	= 1 and γ + μθ 	= 1. Now it is easy to see that min{α, θ∗} = θ,
and hence

(1 + t)θy(t) ≤ k0 + cMμ(t). (1.5.14)

Since 0 < μ < 1, (1.5.14) implies M(t) ≤ C < +∞, which is equivalent to (1.5.8).
The exceptional case where β = 1 or γ + μθ = 1 can be treated in a similar
way. �

The following result was proved by Vaigant [931] (see also Kaliev and Pod-
kuiko [410]).

Theorem 1.5.3 (The Vaigant Inequality [931]). Assume that y(t) is a continuous
and non-negative function satisfying for all t > 0,

yn(t) ≤ a+ b

∫ t

0

c(τ)yn−1(τ)dτ (1.5.15)

where a, b ≥ 0 and n ≥ 1 are constants, c(t) ∈ L1[0, T ].
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Then we have for all t > 0,

y(t) ≤ a1/n +
b

n

∫ t

0

c(τ)dτ (1.5.16)

≤ C(T ) (1.5.17)

with a constant C(T ) > 0.

Proof. Without loss of generality, we assume c(t) is a continuous and non-negative
function. For general c(t), we may use continuous functions from L1[0, T ] to ap-
proximate c(t).

Let z(t) =
∫ t

0 c(τ)y
n−1(τ)dτ . Then it is easy to verify z(t) is a continuous

function satisfying for all t > 0,

z(0) = 0, z′(t) = c(t)yn−1(t). (1.5.18)

From (1.5.15), we derive
yn(t) ≤ a+ bz(t). (1.5.19)

Then (1.5.18) gives(
z′(t)
c(t)

)n/(n−1)

≤ a+ bz(t), z′(t) ≤ c(t)(a+ bz(t))(n−1)/n

or
d

dt
(a+ bz(t))

1/n ≤ b

n
c(t). (1.5.20)

Integrating (1.5.20) with respect to t, we arrive at

(a+ bz(t))1/n ≤ a1/n +
b

n

∫ t

0

c(τ)dτ

which together with (1.5.19) proves (1.5.16); (1.5.17) is a direct result of (1.5.16).
�

Inequalities involving sequences of real numbers, which may be considered
as discrete analogues of the Bellman–Gronwall inequality, have been used in the
analysis of finite difference equations. These discrete analogues have been also
proved to be very useful for partial differential equations. Now we shall review
some of the typical results of this type.

Theorem 1.5.4 (The Hull and Luxemburg Inequality [383]). Let m be a posi-
tive integer, u0, u1, . . . , um be a sequence of m + 1 non-negative numbers, and
z0, z1, . . . , zm a non-decreasing sequence of m + 1 real numbers. Furthermore, let
{fm} be a non-decreasing sequence of non-negative real numbers and L ≥ 0. As-
sume that

ul ≤ fl + L

l−1∑
j=0

uj(zj+1 − zj) = {fl + Lu0(z1 − z0)}+
l−1∑
j=0

uj(zj+1 − zj) (1.5.21)
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for l = 1, 2, . . . ,m. Then the inequality

ul ≤ {fl + Lu0(z1 − z0)}
l∏

j=1

[1 + L(zj − zj−1)] (1.5.22)

holds for l = 1, 2, . . . ,m.

Proof. Set hj = zj+1 − zj , j = 0, 1, . . . ,m− 1. By hypothesis,

ul ≤ fl + Lu0h0 + L
l−1∑
j=1

ujhj . (1.5.23)

Since 1 + Lh0 ≥ 1, the inequality (1.5.22) certainly holds for l = 1. Assume that
it holds for l ≤ n− 1. We show that it holds for l = n.

Now

un ≤ (fn + Lu0h0) + L

n−1∑
j=1

ujhj

≤ (fn + Lu0h0) + L

n−1∑
j=1

hj(fj + Lu0h0)

j∏
i=1

(1 + Lhi−1)

≤ (fn + Lu0h0)

{
1 + L

n−1∑
j=1

hj

j∏
i=1

(1 + Lhi−1)

}

≤ (fn + Lu0h0)

n∏
j=1

(1 + Lhj−1)

(1.5.24)

since {fn} is non-decreasing, and{
1 + L

n−1∑
j=1

hj

j∏
i=1

(1 + Lhi−1)

}
= 1 + Lh1(1 + Lh0) + Lh2(1 + Lh0)(1 + Lh1)

+ · · ·+ Lhn−1(1 + Lh0) · · · (1 + Lhn−2)

≤ (1 + Lh0)
{
1 + Lh1 + Lh2(1 + Lh1)

+ · · ·+ Lhn−1(1 + Lh1) · · · (1 + Lhn−2)
}

= (1 + Lh0)(1 + Lh1) · · · (1 + Lhn−1)

=

n∏
j=1

(1 + Lhj−1),

which completes the proof. �
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In the investigation of convergence properties of several finite difference
schemes for nonlinear parabolic equations, Lees [495] has used the following result.

Theorem 1.5.5 (The Lees Inequality [495]). Let u and f be non-negative functions
defined on the integers 1, 2, . . . ,m. Let f be non-decreasing. If

ul ≤ fl + Lk

l−1∑
i=1

ui, l = 1, 2, . . . ,m (1.5.25)

where L and k are positive constants, then

ul ≤ fl exp(Lkl), l = 1, 2, . . . ,m. (1.5.26)

Proof. This theorem easily follows by setting u0 = 0 and uj − uj−1 ≡ k, k > 0,
for j = 1, 2, . . . ,m. For, under these assumptions, (1.5.25) yields the estimate

ul ≤ fl

l∏
j=1

(1 + Lk) ≤ fl exp(Lkl),

which proves (1.5.26). �

For other useful discrete analogue, we refer to Hull and Luxemburg [383],
Jones [407], Li [542], Willett and Wong [967].

Ladyzhenskaya, Solonnikov and Ural’ceva [472] established the following two
discrete forms of the Bellman–Gronwall inequalities.

Theorem 1.5.6 (The Ladyzhenskaya–Solonnikov–Ural’ceva Inequality [472]). Let
a sequence yi (i = 0, 1, . . . ) of non-negative numbers satisfy the recursion relation

yi+1 ≤ Cbiy1+ε
i , i = 0, 1, . . . (1.5.27)

for some positive constants C, ε and b ≥ 1. Then

yi ≤ C [(1+ε)i−1]/εb[(1+ε)i−1]/ε2−i/εy
(1+ε)i

0 . (1.5.28)

In particular, if y0 ≤ θ = C−1/εb−1/ε2 and b > 1, then

yi ≤ θb−i/ε (1.5.29)

and consequently
yi → 0 (1.5.30)

when i → +∞.

Proof. This result is proved directly by induction. We leave the details to the
reader. �
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Theorem 1.5.7 (The Ladyzhenskaya–Solonnikov–Ural’ceva Inequality [472]). As-
sume that the non-negative numbers yi and zi (i = 0, 1, . . . ) are connected by the
system of recursion inequalities⎧⎪⎨⎪⎩

yi+1 ≤ Cbi
(
y1+δ
i + z1+ε

i yδi

)
, (1.5.31)

zi+1 ≤ Cbi
(
yi + z1+ε

i

)
(1.5.32)

where C, b, ε and δ are certain fixed positive numbers and b ≥ 1. Then

yi ≤ λb−i/d, zi ≤ (λb−i/d)1/(1+ε) (1.5.33)

where

d = min (δ, ε/(1 + ε)) , λ = min
(
(2C)−1/δb−1/(δd), (2C)−(1+ε)/εb−1/(εb)

)
,

when y0 ≤ λ and z0 ≤ λ1/(1+ε).

Proof. Indeed, inequalities (1.5.33) hold by assumption for i = 0. Assume that
they hold for yi and zi. Then from (1.5.31)–(1.5.32) it follows that{

yi+1 ≤ Cbi2(λb−i/d)1+δ = 2Cλ1+δbi(1−(1+δ)/d), (1.5.34)

zi+1 ≤ 2Cλbi(1−1/d). (1.5.35)

But, as is easily verified, the right-hand sides of these inequalities (1.5.34)–(1.5.35)
do not exceed λb−(i+1)/d and (λb−(i+1)/d)1/(1+ε), respectively, and hence the in-
equalities in (1.5.33) also hold for yi+1 and zi+1. �

Ammari and Tucsnak [42] recently established the following discrete inequal-
ity with a uniform bound (see, e.g., Rauch, Zhang and Zuazua [830]).

Theorem 1.5.8 (The Ammari–Tucsnak Inequality [42]). Let {ak}∞k=1 be a sequence
of positive real numbers satisfying for k = 0, 1, 2, . . . ,

ak+1 ≤ ak − Ca2+α
k+1 , (1.5.36)

for some constants C > 0 and α > −1. Then there is a constant M = M(C,α) > 0
such that for k = 0, 1, 2, . . . ,

ak ≤ M

(k + 1)1/(1+α)
. (1.5.37)

Proof. Let Fk = M
(k+1)1/(1+α) , where M > 0 is to be determined later on. After a

simple calculation, we obtain

1

M
lim

k→+∞

[
(Fk − Fk+1)k(k + 2)1/(1+α)

]
=

1

1 + α
, (1.5.38)
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so there is an integer k0 > 0 such that for all k ≥ k0,

Fk − Fk+1 ≤ 2M

(1 + α)k(k + 2)1/(1+α)
, (1.5.39)

which implies that for all k ≥ k1 = max
[
k0, 2

]
,

Fk − Fk+1 ≤ 4

(1 + α)M1+α
F 2+α
k+1 . (1.5.40)

If we now assume that

4

(1 + α)M1+α
< C,

M

(k1 + 1)1/(1+α)
≥ ak1 , (1.5.41)

then we infer from (1.5.40), that for all k ≥ k1,

Fk − Fk+1 ≤ CF 2+α
k+1 . (1.5.42)

It obviously suffices to show that for all k ≥ k1,

ak ≤ Fk. (1.5.43)

We shall do this by induction over k. In fact, if k = k1, (1.5.43) follows directly
from (1.5.41). If we assume that (1.5.43) is fulfilled for k ≤ m, by combining
(1.5.36) and (1.5.42), we obtain

am+1 + Ca2+α
m+1 ≤ Fm+1 + CF 2+α

m+1

which obviously implies that am+1 ≤ Fm+1. �

The following two theorems concern integral inequalities which yield polyno-
mial or exponential decay of solutions (see, e.g., Haraux [347] and Lagnese [474],
and Komornik [451]).

Theorem 1.5.9 (The Haraux–Lagnese Inequality [347, 474]). Let E : [0,+∞) →
[0,+∞) be a non-increasing function and assume that there exists a constant T > 0
such that for all t ∈ R+, ∫ +∞

t

E(s)ds ≤ TE(t). (1.5.44)

Then for all t ≥ T ,
E(t) ≤ E(0)e1−t/T . (1.5.45)

Proof. Define for all x ∈ [0,+∞),

f(x) = ex/T
∫ +∞

x

E(s)ds.
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Then f is locally absolutely continuous and it is also non-increasing by (1.5.44):

f ′(x) = T−1ex/T
(∫ +∞

x

E(s)ds− TE(x)

)
≤ 0

almost everywhere in [0,+∞). Hence, using again (1.5.44), for all x ∈ [0,+∞),

f(x) ≤ f(0) =

∫ +∞

0

E(s)ds ≤ TE(0),

i.e., for all x ∈ [0,+∞), ∫ +∞

x

E(s)ds ≤ TE(0)e−x/T . (1.5.46)

Since E is non-negative and non-increasing, we have∫ +∞

x

E(s)ds ≥
∫ x+T

x

E(s)ds ≥ TE(x+ T ). (1.5.47)

Inserting (1.5.47) in (1.5.46), we obtain for all x ∈ [0,+∞),

E(x+ T ) ≤ E(0)e−x/T ,

which, by setting t = x+ T , gives us (1.5.44). The proof is complete. �
Remark 1.5.3. Note that the inequality (1.5.45) also holds for 0 ≤ t < T ; indeed,
it is weaker than the trivial inequality E(t) ≤ E(0).

Remark 1.5.4. Theorem 1.5.9 is optimal in the following sense: given T > 0 and
t′ ≥ T arbitrarily, there exists a non-increasing function E : [0,+∞) → [0,+∞),
non-identically zero, satisfying (1.5.44) and such that

E(t′) = E(0)e1−t′/T .

Remark 1.5.5. If the function E is also continuous, then the inequality (1.5.45) is
strict; in particular, E(T ) < E(0). This result is also optimal, see Komornik [451].

The following theorem, due to Komornik [451], is a nonlinear generalization
of Theorem 1.5.9, which also improves some earlier results of Haraux [347] and
Lagnese [474] (see also Theorem 1.5.9).

Theorem 1.5.10 (The Komornik Inequality [451]). Let E : [0,+∞) → [0,+∞) be a
non-increasing function and assume that there are two constants α > 0 and T > 0
such that for all x ∈ [0,+∞),∫ +∞

t

Eα+1(s)ds ≤ TEα(0)E(t). (1.5.48)

Then, for all t ≥ T ,

E(t) ≤ E(0)

(
T + αt

T + αT

)−1/α

. (1.5.49)
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Proof. First, if E(0) = 0, then E(t) = 0 and there is nothing to prove. Otherwise,
replacing the function E by E/E(0), we may assume that E(0) = 1, and we have
to prove the estimate for all t ≥ T ,

E(t) ≤
(

T + αt

T + αT

)−1/α

. (1.5.50)

Define the function

F : [0,+∞) → [0,+∞), F (t) =

∫ +∞

t

Eα+1(s)ds.

Obviously, F is non-increasing and locally absolutely continuous. Differenti-
ating and using (1.5.48), we get

−F ′′(t) ≥ T−α−1Fα+1(t) a.e. in (0,+∞),

whence

(F−α(t))′ ≥ αT−α−1 a.e. in (0, B), B = sup{t : E(t) > 0}. (1.5.51)

(Observe that F−α(t) is defined for 0 < t < B). Integrating (1.5.51) over [0, s]
gives for every s ∈ [0, B),

F−α(s)− F−α(0) ≥ αT−α−1s,

whence for every s ∈ [0, B),

F (s) ≤ (
F−α(0) + αT−α−1s

)−1/α
. (1.5.52)

Since F (s) = 0 if s ≥ B, this inequality holds, in fact, for every s ∈ [0,+∞). Since
F (0) ≤ TEα+1(0) = T by (1.5.48), the right-hand side of (1.5.52) is less than or
equal to (

T−α + αT−α−1s
)−1/α

= T (α+1)/α(T + αs)−1/α. (1.5.53)

On the other hand, due to E being non-negative and non-increasing, the
left-hand side of (1.5.52) can be estimated as follows:

F (s) =

∫ +∞

s

Eα+1(t)dt ≥
∫ T+(α+1)s

s

Eα+1(t)dt ≥ (T + αs)Eα+1(T + (α+ 1)s).

(1.5.54)
Therefore, we can deduce from (1.5.53)–(1.5.54) that

(T + αs)Eα+1(T + (α + 1)s) ≤ T (α+1)/α(T + αs)−1/α,

whence for all s ≥ 0,

E(T + (α+ 1)s) ≤ (1 + αs/T )−1/α. (1.5.55)

Choosing here t = T + (α+ 1)s we obtain (1.5.49). �



1.5. Integral inequalities leading to upper bounds and decay rates 61

Remark 1.5.6 ([451]). Note that the inequality (1.5.49) also holds for 0 ≤ t < T ;
indeed, it follows from the inequality E(t) ≤ E(0).

Remark 1.5.7 ([451]). If we let α → 0 in (1.5.49), then Theorem 1.5.10 reduces to
Theorem 1.5.9.

Remark 1.5.8 ([451]). In fact, Theorem 1.5.10 is optimal in the following case:
given α > 0, T > 0, C > 0 and t′ ≥ T arbitrarily, there exists a non-increasing
function E : [0,+∞) → [0,+∞) satisfying (1.5.48) and such that

E(0) = C, E(t′) = E(0)

(
T + αt′

T + αT

)−1/α

.

We leave to the reader to verify that the following example has these prop-
erties:

E(t) =

⎧⎨⎩ C(1 + αC−αt/T )−1/α, if 0 ≤ t ≤ t′′,
C(1 + α)1/α(1 + αC−αt′/T )−1/α, if t′′ ≤ t ≤ t′,
0, if t > t′

(1.5.56)

where t′′ = (t′ − TCα)/(α + 1). Note that for 0 ≤ t < T , we cannot state more
than the trivial estimate E(t) ≤ E(0). Indeed, for any given α > 0, T > 0, C > 0
and t′ < T , the function

E(t) =

{
C, if 0 ≤ t ≤ T,
0, if t > T

(1.5.57)

satisfies (1.5.48) and E(t′) = E(0) = C.

Remark 1.5.9. ([451]) Assume that E is also continuous. Then the inequality
(1.5.50) is strict; in particular, E(T ) < E(0). See Komornik [451] for this result,
for a detailed study of integral inequalities of type (1.5.48) (also for α < 0), and
for the study of closely related differential inequalities.

Obviously, the above two theorems can be stated as the following form, which
was used in [451].

Corollary 1.5.1 (The Komornik Inequality [451]). Let E : [0,+∞) → [0,+∞) be
a non-increasing function and assume that there exist two constants p ≥ 1 and
A > 0, such that for all 0 ≤ s < +∞,∫ +∞

s

E(p+1)/2(t)dt ≤ AE(s). (1.5.58)

Then we have for all t ≥ 0,

E(t) ≤
{

E(0)e1−t/A, if p = 1,

(A(1 + 2/(p− 1)))2/(p−1) 1
(1+t)2/(p−1) , if p > 1.

(1.5.59)
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Now we shall study integral inequalities of type (1.5.48) in detail. This also
includes the case α < 0 (see, e.g., Komornik [451]). Such integral inequalities
are related with the Lyapunov methods. For details, we may refer the reader to
Komornik [451].

We next introduce some Alabau inequalities, which were established in [19].

Assume H is a separable real Hilbert space with scalar product 〈·, ·〉 and
norm | · |. Let A : D(A) ⊂ H → H be the infinitesimal generator of a strongly
continuous semigroup exp(tA) of bounded operators on H with its domain D(A).
It is well known that the H-valued function U(t) = etAU0 is continuous for any
U0 ∈ H , of class C1([0,+∞), H) for any U0 ∈ D(A), and that, in the latter case,
U(t) = etAU0 solves the Cauchy problem for all t ≥ 0,

U ′(t) = AU(t), U(0) = U0. (1.5.60)

Moreover, for any k ∈ N,

U0 ∈ D(Ak) ⇒ U (k) = etAAkU0 = AketAU0.

We recall that a semigroup etA is said to be strongly stable if for all U0 ∈ H ,

lim
t→+∞ etAU0 = 0.

If there exist two constants M,ω > 0 such that for all t ≥ 0,

‖etA‖ ≡ sup{‖etAx‖H : x ∈ H, ‖x‖H ≤ 1} ≤ Me−ωt,

then etA is called exponentially stable.

The following result, given by Alabau [17] in 1999, is a generalization of
the integral inequalities due to Haraux [347] and Komornik [451], i.e., Theorems
1.5.9–1.5.10.

Theorem 1.5.11 (The Alabau Inequality [17]). Assume that there exists a func-
tional E on C([0,+∞), H) × [0,+∞) such that for every U0 ∈ H, E(U(·), ·) is
a non-increasing, locally absolutely continuous function from [0,+∞) on [0,+∞).
Assume, moreover, that there exist a positive integer k and a non-negative constant
c such that for all 0 ≤ s ≤ T , for all U0 ∈ D(Ak),∫ T

s

E(U(t), t)dt ≤ c

k∑
p=0

E(U (p)(s), s).

Then for every positive integer n, we have for all t > 0, for all U0 ∈ D(Akn),

E(U(t), t) ≤ cn

(
kn∑
p=0

E(U (p)(0), 0)

)
t−n,

for a certain constant cn depending on n.
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Since the above theorem is a slight modification of the next result, we omit its
proof and only give the proof of the following theorem, obtained in 2002 by Alabau,
Cannarsa and Komornik [19] in a slightly different form, which is a polynomial
decay criterion.

Theorem 1.5.12 (The Alabau–Cannarsa–Komornik Inequality [19]). Let H,A be
same as the above statement. Let L : H → [0,+∞) be a continuous function such
that, for some integer K ≥ 0 and some constant c ≥ 0, for all T ≥ 0, for all
x ∈ D(AK), ∫ T

0

L(etAx)dt ≤ c
K∑

k=0

L(Akx). (1.5.61)

Then, for any integer n ≥ 1 and any x ∈ D(AnK), for all 0 ≤ s ≤ T ,∫ T

s

L(etA)
(t− s)n−1

(n− 1)!
dt ≤ cn(1 +K)n−1

nK∑
k=0

L(esAAkx). (1.5.62)

If, in addition, L(etAx) ≤ L(esAx) for all x ∈ H and any 0 ≤ s ≤ t, then for all
t > 0,

L(etAx) ≤ cn(1 +K)n−1n!

tn

nK∑
k=0

L(Akx), (1.5.63)

for any integer n ≥ 1, and any x ∈ D(AnK).

Proof. To prove (1.5.62), we proceed by induction on n. Let us first show (1.5.62)
for n = 1: for any x ∈ D(AK) and any 0 ≤ s ≤ T , the assumption (1.5.61) yields∫ T−s

0

L(etAesAx)dt ≤ c
K∑

k=0

L(AkesAx),

which, since A commutes with esA, yields∫ T

s

L(etAx)dt ≤ c

K∑
k=0

L(esAAkx). (1.5.64)

Now assume that the conclusion holds for n ≥ 1 and let x ∈ D(A(n+1)K). Inte-
grating (1.5.62) over [S, T ], for 0 ≤ S ≤ T , we have∫ T

S

ds

∫ T

s

L(etAx)
(t− s)n−1

(n− 1)!
dt ≤ cn(1 +K)n−1

nK∑
k=0

∫ T

S

L(esAAkx)ds. (1.5.65)

Next, apply Fubini’s Theorem and (1.5.62) for n = 1 to find∫ T

S

L(etAx)dt

∫ t

S

(t− s)n−1

(n− 1)!
ds ≤ cn+1(1 +K)n−1

nK∑
k=0

K∑
h=0

L(AheSAAkx).

(1.5.66)
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Since

nK∑
k=0

K∑
h=0

L(eSAAk+hx) =

K∑
h=0

nK∑
k=0

L(eSAAh+kx) ≤ (1 +K)

(n+1)K∑
k=0

L(eSAAkx),

(1.5.66) implies∫ T

S

L(etAx)
(t− S)n

n!
dt ≤ cn+1(1 +K)n

(n+1)K∑
k=0

L(eSAAkx) (1.5.67)

for any 0 ≤ S ≤ T , as desired.

Finally, to prove (1.5.63), it suffices to observe that

L(etAx)
T n

n!
≤

∫ T

0

L(etAx)
tn−1

(n− 1)!
dt ≤ cn(1 +K)n−1

nK∑
k=0

L(Akx), (1.5.68)

as L is non-increasing along etAx. Thus the proof is complete. �

In 1999, Martinez [586] extended the results of Haraux [347], [349] and Ko-
mornik [449] (i.e., Theorems1.5.9–1.5.10) with a weighted function.

Theorem 1.5.13 (The Martinez Inequality [586]). Let E : [0,+∞) → [0,+∞) be a
non-increasing function and φ : [0,+∞) → [0,+∞) a strictly increasing function
of class C1 such that

φ(0) = 0, φ(t) → +∞ as t → +∞. (1.5.69)

Assume that there exist σ ≥ 0 and ω > 0 such that for all S ≥ 0,∫ +∞

S

E1+σ(t)φ′(t)dt ≤ 1

ω
Eσ(0)E(S). (1.5.70)

Then E(t) has the following decay property: for all t ≥ 0,⎧⎪⎨⎪⎩
if σ = 0, then E(t) ≤ E(0)e1−ωφ(t), (1.5.71)

if σ > 0, then E(t) ≤ E(0)

(
1 + σ

1 + ωσφ(t)

)1/σ

. (1.5.72)

Proof. Define now a function f : [0,+∞) → [0,+∞) by

f(τ) = E(φ−1(τ)).

Then it is easy to verify that f is non-increasing and satisfies that for any 0 ≤
S < T < +∞,∫ φ(T )

φ(S)

f1+σ(τ)dτ =

∫ φ(T )

φ(S)

E1+σ(φ−1(τ))dτ (1.5.73)

=

∫ T

S

E1+σ(t)φ′(t)dt ≤ 1

ω
Eσ(0)E(S) =

1

ω
fσ(0)f(φ(S)).
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Setting s = φ(S), then as limT→+∞ φ(T ) = +∞, we derive that f satisfies
that for all s ≥ 0, ∫ +∞

s

f1+σ(τ)dτ ≤ 1

ω
f(s). (1.5.74)

Hence now applying Theorem 1.5.10 (or Corollary 1.4.5) to (1.5.74) we obtain for
all s ≥ 0,

if σ = 0, f(s) ≤ f(0)e1−ωs, (1.5.75)
⎧⎪⎨⎪⎩ if σ > 0, f(s) ≤ f(0)

(
1 + σ

1 + ωσs

)1/σ

. (1.5.76)

Since E(t) = f(φ(t)), (1.5.71) and (1.5.72) follow from (1.5.75) and (1.5.76). �
Remark 1.5.10. We know that the new feature of Theorem 1.5.13 is concerned
with the weighted function φ′(t), which allows us to consider functions E(t) that
can decay slowly to zero. For example, if E satisfies (1.5.70) for

φ(t) = ln(ln(3 + t))− ln(ln 3), σ = 0,

or
φ(t) = ln(3 + t)− ln 3, σ > 0,

then from Theorem 1.5.13 it follows that for all t ≥ 0

E(t) ≤ CE(0)

(ln(3 + t))γ
,

with γ = ω if σ = 0, and γ = 1/σ if σ > 0.

Remark 1.5.11. In fact, if φ(0) 	= 0, then it suffices to replace φ(t) by φ(t)− φ(0)
in (1.5.71) and (1.5.72).

Corollary 1.5.2 (The Martinez Inequality [586]). Let f : [0,+∞) → [0,+∞) be
a non-increasing continuous function. Assume that there exist constants σ > 0,
σ′ ≥ 0, and C > 0, such that for all t ≥ 0,∫ +∞

t

f1+σ(τ)dτ ≤ Cfσ(0)f(t)

(1 + t)σ′ . (1.5.77)

Then there exists a constant C̃ > 0, such that for all t ≥ 0,

f(t) ≤ C̃f(0)

(1 + t)(1+σ′)/σ . (1.5.78)

Proof. Without loss of generality, we may assume that f(0) = 1. Define for all
t ≥ 0,

g(t) =
f(t)

(1 + t)σ′ .
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Then g is non-increasing and satisfies for all t ≥ 0,∫ +∞

t

g1+σ(τ)(1 + τ)σ
′(1+σ)dτ ≤ Cg(t). (1.5.79)

Thus we can apply Theorem 1.5.13 with φ(t) = (1 + t)σ
′(1+σ) − 1 to (1.5.79)

to deduce that g decays as

g(t) ≤ C/(1 + t)[σ
′(1+σ)+1]/σ = C/(1 + t)σ

′
(1 + t)(1+σ′)/σ

which gives (1.5.78). �

We can use Corollary 1.5.2 to show the following integral inequality (see, e.g.,
Martinez [586]).

Corollary 1.5.3 (The Martinez Inequality [586]). Let f : [0,+∞) → [0,+∞) be
a non-increasing continuous function. Assume that there exist constants σ > 0,
σ′ ≥ 0 and c > 0, such that for all t ≥ 0,∫ +∞

t

f1+σ(τ)dτ ≤ cf1+σ(t) +
c

(1 + t)σ′ f
σ(0)f(t). (1.5.80)

Then there exists a constant C > 0, such that for all t ≥ 0,

f(t) ≤ Cf(0)

(1 + t)(1+σ′)/σ . (1.5.81)

Proof. Without loss of generality, we may assume that f(0) = 1. Note that we
may neglect the influence of the term f1+σ(t) on the decay estimate of f . It is
known that if there is only the term f1+σ(t) on the right-hand side of (1.5.80),
then f decays exponentially to zero, but if there is only the second term, then
f decays at least polynomially to zero. Now we prove (1.5.81) by an induction
argument. In the following, by C we shall denote all universal different positive
constants.

First, it is obvious from (1.5.80) that for all t ≥ 0,∫ +∞

t

f1+σ(τ)dτ ≤ Cf(t). (1.5.82)

Therefore from Corollary 1.5.2 and (1.5.82) it follows that for all t ≥ 0,

f(t) ≤ C

(1 + t)1/σ
. (1.5.83)

Then inserting the inequality (1.5.83) in (1.5.80), we can obtain that for all
t ≥ 0, ∫ +∞

t

f1+σ(τ)dτ ≤ Cf(t)

(1 + t)
+

Cf(t)

(1 + t)σ′ . (1.5.84)
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Now if we set σ1 = min(1, σ′), then we can derive from (1.5.84) that for all t ≥ 0,∫ +∞

t

f1+σ(τ)dτ ≤ Cf(t)

(1 + t)σ1
, (1.5.85)

which, together with (1.5.78), implies that for all t ≥ 0,

f(t) ≤ C

(1 + t)(1+σ1)/σ
. (1.5.86)

If σ′ ≤ 1, then we can conclude (1.5.81). Otherwise, for all t ≥ 0,

f(t) ≤ C

(1 + t)2/σ
. (1.5.87)

Now if we take n ∈ N such that σ ∈ [n, n+1], then we can prove by induction
that for all k ∈ N, k ≤ n, f satisfies for all t ≥ 0,

f(t) ≤ Ck

(1 + t)(1+k)/σ
. (1.5.88)

We hence have proved (1.5.88) for k = 0 and for k = 1 if n ≥ 1. Assume
that n ≥ 2 and that (1.5.88) is true for some k < n. Then we may use (1.5.88) to
derive from (1.5.80) that f satisfies for all t ≥ 0,∫ +∞

t

f1+σ(τ)dτ ≤ Cf(t)

(1 + t)1+k
+

Cf(t)

(1 + t)σ′ . (1.5.89)

Since 1 + k ≤ n ≤ σ′, we obtain for all t ≥ 0,∫ +∞

t

f1+σ(τ)dτ ≤ Cf(t)

(1 + t)1+k
. (1.5.90)

Therefore from Corollary 1.5.2 it follows that for all t ≥ 0,

f(t) ≤ Ck

(1 + t)(2+k)/σ
.

This shows that for all t ≥ 0,

f(t) ≤ Ck

(1 + t)(n+1)/σ
, (1.5.91)

and for all t ≥ 0,

f(t) ≤ Ck

(1 + t)(σ′+1)/σ
. (1.5.92)

�
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Now we may use Corollary 1.5.3 to prove the following integral inequality
(see Martinez [586]).

Theorem 1.5.14 (The Martinez Inequality [586]). Assume that E : [0,+∞) →
[0,+∞) is a non-increasing function and φ : [0,+∞) → [0,+∞) a strictly in-
creasing function of class C1, such that

φ(0) = 0, φ(t) → +∞ as t → +∞. (1.5.93)

Assume that there exist constants σ > 0, σ′ ≥ 0, and c > 0 such that for all S ≥ 0,∫ +∞

S

E1+σ(t)φ′(t)dt ≤ cE1+σ(S) +
c

(1 + φ(S))σ′ E
σ(0)E(S). (1.5.94)

Then there exists a constant C > 0 such that for all t ≥ 0,

E(t) ≤ E(0)
C

(1 + φ(t))(1+σ′)/σ . (1.5.95)

Proof. In fact, if we introduce f(τ) = E(φ−1(τ)) and use Corollary 1.5.3, then the
desired conclusion easily follows. �

Next let us establish the following lemmas.

Lemma 1.5.15 (The Martinez Inequality [586]). Let Φ(t) : R+ → R+ be a non-
increasing function and σ : R+ → R+ be a strictly increasing C1 function, such
that

σ(0) = 0 and σ(t) → +∞ as t → +∞. (1.5.96)

Assume that there exist constants m ≥ 0 and ω > 0, such that for all S ≥ 0,∫ +∞

S

Φ1+m(t)σ′(t)dt ≤ 1

ω
Φm(0)Φ(S). (1.5.97)

Then Φ has the following decay property: if m = 0, then for all t ≥ 0,

Φ(t) ≤ Φ(0)e1−ωσ(t), (1.5.98)

and if m > 0, then for all t ≥ 0,

Φ(t) ≤ Φ(0)

(
1 +m

1 + ωmσ(t)

)1/m

. (1.5.99)

Proof. Define a function f : [0,+∞) → R+ by

f(τ) = Φ(σ−1(τ)).
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Then it is easy to verify that f is non-increasing for all 0 ≤ S < T < +∞∫ σ(T )

σ(S)

f1+m(τ)dτ =

∫ σ(T )

σ(S)

Φ1+m(σ−1(τ))dτ =

∫ T

S

Φ1+m(t)σ′(t)dt

≤ 1

ω
Φm(0)Φ(S) =

1

ω
fm(0)f(σ(S)).

Setting s = σ(S), then since lim
T→+∞

σ(T ) = +∞, we have that f satisfies for

all s ≥ 0, ∫ +∞

s

f1+m(τ)dτ ≤ 1

ω
f(s).

Then applying Theorem 1.5.10 to the above inequality shows that if m = 0, then
for all s ≥ 0,

f(s) ≤ f(0)e1−ωs,

and if m > 0, then for all t ≥ 0,

f(s) ≤ f(0)

(
1 +m

1 + ωms

)1/m

.

Noting that Φ(t) = f(σ(t)), we can obtain (1.5.98) and (1.5.99). �

In turn, Lemma 1.5.1 implies the following result.

Lemma 1.5.16 (The Martinez Inequality [586]). Assume that f : R+ → R+ is a
non-increasing continuous function, and there exist constants m > 0, n ≥ 0, and
c, such that for all t ≥ 0,∫ +∞

t

f1+m(τ)dτ ≤ c
fm(0)f(t)

(1 + t)n
. (1.5.100)

Then there exists a constant C > 0, such that for all t ≥ 0,

f(t) ≤ f(0)
C

(1 + t)(1+n)/m
. (1.5.101)

Proof. Without loss of generality, we may assume that f(0) = 1. Define, for all
t ≥ 0,

g(t) =
f(t)

(1 + t)n
.

Then the function g is non-increasing and satisfies for all t ≥ 0,∫ +∞

t

g1+m(τ)(1 + τ)n(1+m)dτ ≤ Cg(t). (1.5.102)
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Now we can apply Lemma 1.5.1 with

σ(t) = (1 + t)n(1+m)+1 − 1

to derive that g decays as

g(t) ≤ C

(1 + t)(n(1+m)+1)/m
=

C

(1 + t)n(1 + t)(1+n)/m
.

Therefore (1.5.101) follows. �

The following lemma, similar to Theorem 1.5.14, from Martinez [586], will
be of essential use in establishing the next result.

Lemma 1.5.17 (The Martinez Inequality [586]). Assume that Φ(t) : R+ → R+ is
a non-increasing function and σ : R+ → R+ is a strictly increasing C1 function,
with σ(t) → +∞ as t → +∞, and that there exist constants p, q ≥ 0, and c > 0,
such that for all 1 ≤ s < +∞.∫ +∞

s

σ′(t)Φ1+p(t)dt ≤ cΦ1+p(s) +
cΦ(s)

σq(s)
. (1.5.103)

Then there exist positive constants k and δ, such that for all t ≥ 1,

Φ(t) ≤ ke−δσ(t), if p = q = 0, (1.5.104)
⎧⎨⎩Φ(t) ≤ k

σ(t)(1+q)/p
, if p > 0. (1.5.105)

Proof. The desired conclusion follows readily if we employ Corollary 1.5.3 for
f(t) = Φ(σ−1(t)). �

Now we establish decay properties, due to Alabau [18]. We first give a result
for a general weight function F−1. We consider here the special choice of a weight
function which will become clear in an application (see Chapter 8, Section 7),
where the link between dissipation and the linear and nonlinear kinetic energy of
the solution will be made, through convexity arguments).

Assume η > 0 and T0 > 0 are fixed given real numbers and F is a strictly
increasing function from [0,+∞) on [0, η), with F (0) = 0 and lim

y→+∞F (y) = η.

For any r ∈ (0, η), we define a function Kr : (0, r] → [0,+∞) by

Kr(τ) =

∫ r

τ

dy

yF−1(y)
(1.5.106)

and a strictly increasing onto function ψr defined from

[1/F−1(r),+∞) to [1/F−1(r),+∞)
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by for all z ≥ 1
F−1(r) ,

ψr(z) = z +Kr

(
F

(
1

z

))
≥ z. (1.5.107)

Now we give the first weighted integral inequality due to Alabau [18].

Theorem 1.5.18 (The Alabau Inequality [18]). Assume that E is a non-increasing,
absolutely continuous function from [0,+∞) on [0,+∞), satisfying 0 < E(0) < η
and the inequality for all 0 ≤ S ≤ T ,∫ T

S

E(t)F−1(E(t))dt ≤ T0E(S). (1.5.108)

Then E(t) satisfies the estimate: for all t ≥ T0

F−1(r) ,

E(t) ≤ F

(
1

ψ−1
r (t/T0)

)
, (1.5.109)

where r is any real number such that

1

T0

∫ +∞

0

E(τ)F−1(E(τ))dτ ≤ r ≤ η. (1.5.110)

Moreover, we have

lim
t→+∞E(t) = 0, (1.5.111)

the decay rate being given by the estimate (1.5.109).

Proof. Indeed, if we define functions k and M respectively by, for all t ≥ 0,

k(t) =

∫ +∞

t

M(E(τ))dτ, (1.5.112)

and for all y ≥ 0,

M(y) = yF−1(y), (1.5.113)

then, thanks to (1.5.108), we have for all t ≥ 0,

k(t) ≤ T0E(t). (1.5.114)

Moreover, since F−1 is a strictly non-negative function, M is an increas-
ing non-negative function. Thus, differentiating (1.5.112) and using (1.5.114), we
deduce that for all s ≥ 0,

−k′(s) = M(E(s)) ≥ M(k(s)/T0),
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which, when integrated between 0 and t, yields for all t ≥ 0,∫ 0

t

k′(s)
T0M(k(s)/T0)

ds ≥ t/T0. (1.5.115)

The change of variable y = k(t)/T0 in (1.5.115) gives for all t ≥ 0,∫ B

k(t)/T0

dy

M(y)
≥ t/T0, (1.5.116)

where B is defined by

0 < B =
1

T0

∫ +∞

0

E(τ)F−1(E(τ))dτ ≤ E(0) < η.

Hence, since M is positive on (0, η], it follows for all r ∈ [B, η] that for all t ≥ 0,∫ r

k(t)/T0

dy

M(y)
≥ t/T0. (1.5.117)

We define Kr by (1.5.106). On the other hand, since F−1 is strictly increasing
on [0, η), for all r ∈ [B, η) and all τ ∈ (0, r], it holds that for all y ∈ [τ, r],

1

yF−1(r)
≤ 1

M(y)
. (1.5.118)

Thus we have for all 0 < τ ≤ r,

1

F−1(r)
(ln r − ln τ) ≤ Kr(τ), (1.5.119)

whence, lim
τ→0+

Kr(τ) = +∞. Thus, Kr is a strictly decreasing function from (0, r]

onto [0,+∞). This, together with (1.5.117), gives us for all t ≥ 0,

k(t) ≤ T0K
−1
r (t/T0). (1.5.120)

In particular, since M is increasing and non-negative on [0, η), while E is
non-increasing, we infer that for all t ≥ 0, θ > 0,

θM(E(t+ θ)) ≤
∫ t+θ

t

M(E(τ))dτ ≤ k(t) ≤ T0K
−1
r (t/T0). (1.5.121)

Hence, we have for all t ≥ 0,

E(t) ≤ M−1
(

min
θ∈(0,t]

(T0γt(θ))
)
, (1.5.122)



1.5. Integral inequalities leading to upper bounds and decay rates 73

where for all θ ∈ (0, t],

γt(θ) =
1

θ
K−1

r ((t− θ)/T0). (1.5.123)

Let now t > 0 be fixed for the moment. Thus θ∗ is a critical point of γt if
and only if it satisfies the relation

K−1
r

(
t− θ∗

T0

)
+

θ∗

T0K ′
r(K

−1
r ((t− θ∗)/T0))

= 0,

or, equivalently, if and only if it satisfies

K−1
r

(
t− θ∗

T0

)
=

θ∗

T0
M

(
K−1

r

(
t− θ∗

T0

))
.

Using the definition of M , we deduce that θ∗ is a critical point of γt if and
only if it satisfies

T0

θ∗
= F−1

(
K−1

r

(
t− θ∗

T0

))
which implies that θ∗ is a critical point of γt if and only if

ψr

(
θ∗

T0

)
=

t

T0
, (1.5.124)

where ψr is defined by (1.5.107) from [1/F−1(r),+∞) to [1/F−1(r),+∞). Since
F is strictly increasing and Kr is strictly decreasing, we deduce that ψr is strictly
increasing and onto from [1/F−1(r),+∞) to [1/F−1(r),+∞). Hence, for all t ≥
T0(1/F

−1(r)), γt has a unique critical point θ(t) at which it attains a minimum,
which is given by

θ(t) = T0ψ
−1
r (t/T0). (1.5.125)

Moreover, by the definition of θ(t), we may write

M−1(T0φ(θ(t))) = K−1
r

(
t− θ(t)

T0

)
= F

(
T0

θ(t)

)
.

Thus, using these identities in (1.5.122), and (1.5.125), we can obtain (1.5.109).
Noting now that ψ−1

r (τ) → +∞ as τ → +∞ and since F is continuous at zero
with F (0) = 0, we deduce that

lim
t→+∞F (1/ψ−1

r (t/T0)) = 0.

So (1.5.109) indeed gives the decay rate of energy as time goes to infinity. �

Recall that if φ is a proper convex function from R → R ∪ {+∞}, then its
convex conjugate φ∗ is defined as

φ∗(y) = sup
x∈R

{xy − φ(x)}.

In order to prove a weighted integral inequality, we need the following lemma.
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Lemma 1.5.19 ([18]). Assume that g is an odd, strictly increasing C1 function from
R to R such that g′(0) = 0, and that there exists an r0 > 0 such that the function
H defined by

H(x) =
√
xg(

√
x) (1.5.126)

is strictly convex on [0, r20 ]. Setting

Ĥ(x) =

{
H(x), if x ∈ [0, r20],
+∞, if x ∈ R− [0, r20 ],

(1.5.127)

and defining a function F by

F (y) =

{
Ĥ∗(y)

y , if y ∈ (0,+∞),

0, if y = 0,
(1.5.128)

where Ĥ∗ stands for the convex conjugate function of Ĥ, then F is a strictly
increasing continuous onto function from [0,+∞) to [0, r20) given by

F (y) =

{
(H ′)−1(y)− H((H′)−1(y))

y , if y ∈ [0, H ′(r20)],

r20 − H(r20)
y , if y ∈ [H ′(r20),+∞).

(1.5.129)

Proof. Noting that g ∈ C1(R), we have H ∈ C1([0, r20 ]). Moreover, for all x ∈
(0, r20],

H ′(x) =
g′(

√
x)

2
+

g(
√
x)

2
√
x

> 0,

and H(0) = 0. On the other hand, since H on [0, r20] is strict convex, the function
H ′ is strictly increasing from [0, r20 ] onto [0, H ′(r20)] and satisfies that for all 0 ≤
x < z ≤ r20 ,

H ′(x) <
H(z)−H(x)

z − x
< H ′(z). (1.5.130)

Thus, the convex conjugate of Ĥ defined as

Ĥ∗(y) = sup
x∈R

{xy − Ĥ(x)}

is a continuous function on R given by

Ĥ∗(y) =

⎧⎨⎩
y(H ′)−1(y)−H((H ′)−1(y)), if y ∈ [0, H ′(r20)],
r20y −H(r20), if y ∈ [H ′(r20),+∞),
0, if y ≤ 0.

(1.5.131)

Thus now using (1.5.130) for x = 0, we can obtain for all z ∈ (0, r20 ],

0 <
H(z)

z
< H ′(z). (1.5.132)
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Next, choosing z = (H ′)−1(y) in the above inequality, we obtain for all
y ∈ (0, H ′(r20)],

0 <
H((H ′)−1(y))

y
< (H ′)−1(y). (1.5.133)

Thus,

lim
y→0

H((H ′)−1(y))

y
= 0. (1.5.134)

Hence noting that F (0) = 0 and using (1.5.134), we can define F as in (1.5.129).

Moreover, F is continuous on [0,+∞). Since (1.5.133) holds, we deduce that
F > 0 on (0, H ′(r20)]. On the other hand, using (1.5.132) for z = r20 , we deduce
that F > 0 on [H ′(r20),+∞). Now we need to prove that F is strictly increasing
from [0,+∞) onto [0, r20). Indeed we first consider the interval [0, H ′(r20)]. Assume
y1, y2 is given in [0, H ′(r20)] such that y1 < y2 and set xi = (H ′)−1(yi) for i = 1, 2.
Then 0 ≤ x1 < x2 ≤ r20 . Thus we can use (1.5.130) for x = x1 and z = x2. Thus
this, together with H ′(x2) > 0, implies

H(x2)

H ′(x2)
− H(x1)

H ′(x2)
< x2 − x1. (1.5.135)

However, since H ′ is non-negative and increasing on [0, r20],

H(x2)

H ′(x2)
− H(x1)

H ′(x1)
≤ H(x2)

H ′(x2)
− H(x1)

H ′(x2)
< x2 − x1. (1.5.136)

Now in the above inequalities if we replace xi by (H ′)−1(yi) for i = 1, 2,
then we can obtain F (y1) < F (y2). Thus F is increasing on [0, H ′(r20)]. On the
other hand, since F is clearly strictly increasing on [H ′(r20),+∞), now it remains
to consider the case y1 ∈ [0, H ′(r20)], y2 ∈ [H ′(r20),+∞), with y1 < y2. Noting
that F (H ′(r20)) < F (y2) if y2 > H ′(r20), we easily conclude that we also have
F (y1) < F (y2) in this case. �

We are ready to state the second weighted integral inequality due to Alabau [18].

Theorem 1.5.20 (The Alabau Inequality [18]). Let g be a given odd, strictly in-
creasing C1 function from R to R such that g′(0) = 0. We assume that there exists
an r0 > 0 such that g is of class of C2 on [0, r0] and H defined by (1.5.126) is
strictly convex on [0, r20 ]. We define Ĥ and F as in Lemma 1.5.4. Moreover, let
T0 > 0 be a fixed real number, let E be a given non-increasing, absolutely continu-
ous, non-negative real function on [0,+∞), and let β > 0 be a given real number
such that

0 <
E(0)

2F (H ′(r20))
≤ β (1.5.137)

and for all 0 ≤ S ≤ T , ∫ T

S

E(t)F−1

(
E(t)

2β

)
dt ≤ T0E(S). (1.5.138)
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Then E(t) decays at +∞ for all t ≥ T0

H′(r20)
,

E(t) ≤ 2βz2(t)
z(t)g′(z(t))− g(z(t))

z(t)g′(z(t)) + g(z(t))
(1.5.139)

where

z(t) = φ−1(t/T0). (1.5.140)

Here, φ is a strictly decreasing and onto function defined from (0, r0] to
[1/H ′(r20),+∞) by

φ(v) =
2v

vg′(v) + g(v)
+ 4α(v), (1.5.141)

where α is defined on (0, r0] by the integral expression

α(τ) =

∫ r0

τ

g(u)
(
u2g′′(u) + ug′(u)− g(u)

)
(ug′(u) + g(u))2(ug′(u)− g(u))

du. (1.5.142)

Proof. Set Ê(t) = E(t)
2β . Then by virtue of (1.5.138), the function Ê(t) satisfies

(1.5.108). Further, since E(t) is non-increasing, and thanks to Lemma 1.5.4 applied
to Ê, we deduce that

Ê(t) ≤ Ê(0) ≤ F (H ′(r20)) = r20 −
H(r20)

H ′(r20)
< r20 . (1.5.143)

Set η = r20 . Then, again by Lemma 1.5.4, F is a strictly increasing onto function
from [0,+∞) to [0, η). Now define B by

0 < B =
1

T0

∫ +∞

0

Ê(τ)F−1(Ê(τ))dτ ≤ Ê(0) < η. (1.5.144)

We also set r = F (H ′(r20)). Then (1.5.143) and (1.5.144) show that r ∈ [B, η),
so we can apply Theorem 1.5.15 to Ê(t) with r and B defined as above. This gives
us the estimate for all t ≥ T0

F−1(r) ,

Ê(t) ≤ F

(
1

ψ−1
r (t/T0)

)
, (1.5.145)

where ψr is the strictly increasing onto function defined from [1/F−1(r),+∞) to
[1/F−1(r),+∞) by (1.5.107) and Kr is defined by (1.5.106). On the other hand,
since F is increasing and (1.5.144) and (1.5.137) hold, we have F−1(r) = H ′(r20).
Hence, F (v) from Lemma 1.5.4 is given by, for all v ∈ [0, F−1(r)],

F (v) = (H ′)−1(v)− H((H ′)−1(v))

v
.
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We can easily check that F is differentiable. Thus, making the change of
variable v = F−1(y) in (1.5.106),

Kr (F (1/s)) =

∫ F−1(r)

1/s

F ′(v)
vF (v)

dv. (1.5.146)

On the other hand, a straightforward computation shows that F ′(v) = H(H′)−1(v)
v2 .

Therefore, using the expression of F (v) and F ′(v) in (1.5.146), and making the
change of variable τ = (H ′)−1(v), in the resulting equality we conclude

Kr (F (1/s)) =

∫ r20

(H′)−1(1/s)

H(τ)H ′′(τ)
(H ′(τ))2(τH ′(τ) −H(τ))

dτ.

Replacing H(τ) =
√
τg(

√
τ ) in the above expression, and making the change

of variable u =
√
τ , we obtain

K (F (1/s)) = 4α
(√

(H ′)−1(1/s)
)

where

α(τ) =

∫ r0

τ

g(u)(u2g′′(u) + ug′(u)− g(u))

(ug′(u) + g(u))2(ug′(u)− g(u))
du. (1.5.147)

Now we set for all v ∈ (0, r0],

φ(v) = ψr

(
1

H ′(v2)

)
. (1.5.148)

Recall that ψr is strictly increasing and onto from

[1/F−1(r),+∞) to [1/F−1(r),+∞),

and H ′(v2) is strictly increasing and onto from (0, r0] to (0, H ′(r20)]. Hence, φ
is strictly decreasing and onto from (0, r0] to [1/H ′(r20),+∞) and φ is given by
(1.5.141). For all t ≥ T0/H

′(r20), we set

s(t) = ψ−1
r (t/T0), z(t) =

√
(H ′)−1(1/s(t)).

Then for all t ≥ T0/H
′(r20),

φ(z(t)) = ψr(s(t)) = t/T0. (1.5.149)

Hence, z(t) satisfies (1.5.140) and z(t) ∈ [0, r0] for all t ≥ T0/H
′(r20). We now need

to rewrite the decay rate given in (1.5.109).

On the other hand, H ′(z2(t)) ≤ H ′(r20), for all t ≥ T0/H
′(r20). Hence, by

noting that

F

(
1

ψ−1
r (t/T0)

)
= F (H ′(z2(t))),

and by Lemma 1.5.4, we have

F (H ′(z2(t))) = z2(t)− H(z2(t))

H ′(z2(t))
.
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Using these last two relations in (1.5.145), together with the expression of H in
terms of g, we can obtain

E(t) ≤ 2βz2(t)
z(t)g′(z(t))− g(z(t))

z(t)g′(z(t)) + g(z(t))
(1.5.150)

which thus concludes the proof. �

The following result is a generalization of a power form of a non-negative
continuous function y(t) (see, e.g., Caraballo, Rubin, and Valero [131]).

Theorem 1.5.21 (The Caraballo–Rubin–Valero Inequality [131]). Let g(t) ≥ 0 be-
long to L1(0, T ) and M ≥ 0, 0 < α ≤ 2. Moreover, let y(t) be a non-negative
continuous function on [0, T ] such that for all t ∈ [0, T ],

y2(t) ≤ M2 + 2

∫ t

0

g(τ)yα(τ)dτ. (1.5.151)

Then for all t ∈ [0, T ], we have

y(t) ≤
(
M2−α + (2− α)

∫ t

0

g(s)ds

)1/(2−α)

, if α < 2, (1.5.152)

⎧⎪⎪⎪⎨⎪⎪⎪⎩y(t) ≤ M exp

(∫ t

0

g(s)ds

)
, if α = 2. (1.5.153)

Proof. Set U(s) =
√
M2 + 2

∫ s

0
g(τ)yα(τ)dτ , which is a non-decreasing function.

Differentiating U2(t), we get

2U(s)
dU(s)

ds
= 2g(s)yα(s) ≤ 2g(s)Uα(s). (1.5.154)

Since U(t) is non-decreasing, there exists a constant 0 ≤ β ≤ T , such that U(t) =
M for all t ∈ [0, β], and U(t) > M for all β ∈ [0, T ]. Clearly, (1.5.152)–(1.5.153)
are satisfied for all t ∈ [0, β]. If t > β, then integrating over (β, t), we can obtain

U2−α(t)

2− α
≤ M2−α

2− α
+

∫ t

0

g(s)ds, if α < 2, (1.5.155)

⎧⎪⎪⎨⎪⎪⎩ U(t) ≤ M exp

(∫ t

0

g(s)ds

)
, if α = 2. (1.5.156)

It therefore follows that

y(t) ≤ U(t) ≤
(
M2−α + (2− α)

∫ t

0

g(s)ds

)1/(2−α)

if α < 2, (1.5.157)

⎧⎪⎪⎨⎪⎪⎩y(t) ≤ U(t) ≤ M exp

(∫ t

0

g(s)ds

)
if α = 2. (1.5.158)

�



Chapter 2

Differential and Difference Inequalities

In this chapter, we establish differential and difference inequalities in analysis that
play a role in applications in the subsequent chapters.

2.1 Differential inequalities leading to uniform bounds

In this section, we introduce certain differential inequalities that provide uniform
bounds and play a crucial role in studying the global well-posedness of solutions,
especially for the existence of a global (uniform) attractor for a semigroup or a
semiflow (a semigroup or a process).

The following two results may be regarded as generalizations of the Bellman–
Gronwall inequality. Since they can be derived by Theorems 1.1.1 and 1.1.2.

Theorem 2.1.1 (The Generalized Bellman–Gronwall Inequality [95, 331]). Assume
that T > 0, f(t) ∈ L1(0, T ), φ(t) ∈ W 1,1(0, T ), f(t) ≥ 0 a.e. on [0, T ], φ(t) ≥ 0
on [0, T ], and for a.e. t ∈ [0, T ],

φ′(t) ≤ 2f(t)
√
φ(t). (2.1.1)

Then for a.e. t ∈ [0, T ], we have√
φ(t) ≤

√
φ(0) +

∫ t

0

f(s)ds ≤ C(T ), (2.1.2)

where C(T ) is a positive constant depending on T > 0.

Proof. Let h(t) =
√
φ(t). It follows from (2.1.1) that

2h(t)h′(t) ≤ 2f(t)h(t),

i.e.,
h′(t) ≤ f(t). (2.1.3)

Thus integrating (2.1.3) with respect to t yields (2.1.2). �

© Springer International Publishing Switzerland 2017
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The next theorem can be found in Renardy, Hrusa and Nohel [835]; it is also
called Ou-Yang inequality [715].

Theorem 2.1.2 (The Ou-Yang Inequality [715]). Let f(t) ∈ L1(0, T ) be such that
f(t) ≥ 0 a.e. on [0, T ], and let a ≥ 0 be a constant. Assume that w(t) ∈ C([0, T ])
satisfies for any t ∈ [0, T ],

1

2
w2(t) ≤ a2

2
+

∫ t

0

f(s)w(s)ds. (2.1.4)

Then for any t ∈ [0, T ], we have

|w(t)| ≤ a+

∫ t

0

f(s)ds ≤ C(T ) (2.1.5)

where C(T ) is a positive constant depending only on T > 0.

Proof. By (2.1.4),

|w(t)|2 ≤ a2 + 2

∫ t

0

f(s)|w(s)|ds ≡ F (t). (2.1.6)

Thus it follows from (2.1.5)–(2.1.6) that

F ′(t) ≤ 2f(t)|w(t)| ≤ 2f(t)
√
F (t),

which together with Theorem 2.1.1 yields√
F (t) ≤

√
F (0) +

∫ t

0

f(s)ds. (2.1.7)

Thus it follows from (2.1.6)–(2.1.7) that

|w(t)| ≤
√

F (t) ≤ a+

∫ t

0

f(s)ds ≤ C(T ). �

The following theorem can be found in Temam [915].

Theorem 2.1.3 (The Uniform Bellman–Gronwall Inequality [915]). Assume that
g(t), h(t) and y(t) are three positive locally integrable functions on (t0,+∞) such
that y′(t) is locally integrable on (t0,+∞) and the following inequalities are satis-
fied for all t ≥ t0,⎧⎨⎩

y′(t) ≤ g(t)y(t) + h(t), (2.1.8)∫ t+r

t

g(s)ds ≤ a1,

∫ t+r

t

h(s)ds ≤ a2,

∫ t+r

t

y(s)ds ≤ a3, (2.1.9)

where r, ai (i = 1, 2, 3) are positive constants. Then for all t ≥ t0,

y(t+ r) ≤
(a3
r

+ a2

)
ea1 . (2.1.10)
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Proof. Assume that t0 ≤ t ≤ s ≤ t+ r. We may rewrite (2.1.8) with t replaced by
s, multiply (2.1.8) by exp{− ∫ s

t
g(τ)dτ}, and obtain the relation

d

dt

{
y(s) exp

(
−

∫ s

t

g(τ)dτ

)}
≤ h(s) exp

{
−

∫ s

t

g(τ)dτ

}
≤ h(s). (2.1.11)

Then integrating (2.1.11) between t1 ∈ [t, t+ r] and t+ r yields

y(t+ r) ≤ y(t1) exp

(∫ t+r

t1

g(τ)dτ

)
+

(∫ t+r

t1

h(s)ds

)
exp

(∫ t+r

t1

g(τ)dτ

)
≤ (y(t1) + a2) exp(a1). (2.1.12)

Therefore integrating (2.1.12) with respect to t1 between t and t + r, gives us
precisely (2.1.10). �

The following inequality is a variant of the generalized Bellman–Gronwall
inequality which is due to Ladyzhenskaya, Solonnikov and Ural’ceva [472].

Theorem 2.1.4 (The Ladyzhenskaya–Solonnikov–Ural’ceva Inequality [472]). As-
sume that the non-negative function y(t) is absolutely continuous on [0, T ], is equal
to zero for t = 0, and satisfies the inequality for almost all t ∈ [0, T ],

y′(t) ≤ c(t)y(t) + F (t) (2.1.13)

with non-negative functions c(t) and F (t) that are integrable over [0, T ].

Then for all t ∈ [0, T ],

y(t) ≤ exp

{∫ t

0

c(τ)dτ

} ∫ t

0

F (τ)dτ ≤ C(T ), (2.1.14)
⎧⎪⎪⎨⎪⎪⎩y′(t) ≤ c(t) exp

{∫ t

0

c(τ)dτ

}∫ t

0

F (τ)dτ + F (t) (2.1.15)

where C(T ) > 0 is a constant depending on T > 0. In particular, for c(t) = C =
constant and non-decreasing F (t), we have for all t > 0,

y(t) ≤ C−1F (t)(eCt − 1), (2.1.16)
{

y′(t) ≤ F (t)eCt. (2.1.17)

Proof. If we rewrite (2.1.13) with t replaced by s, and multiply (2.1.13) by

exp
{
− ∫ t

0 c(s)ds
}
, we obtain

y(t) ≤
∫ t

0

F (τ) exp

{∫ t

τ

c(η)dη

}
dτ

≤
∫ t

0

F (τ)dτ exp

{∫ t

0

c(τ)dτ

}
≤ C(T )

(2.1.18)
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which, when inserted in (2.1.13), yields (2.1.14). If c(t) = C = constant and F (t)
is non-decreasing, then we infer from (2.1.18) that

y(t) ≤ F (t)

∫ t

0

exp (C(t− τ)) dτ

≤ C−1F (t)(eCt − 1)

which, when inserted in (2.1.13), yields (2.1.17). �

If in Theorem 1.2.2 we take τ = 0 and f(t) = w(0) +
∫ t

0 h(s)ds, g(t) =
α(t), y(t) = w(t), then we get the following corollary, which can be also regarded
as a generalization of Theorem 2.1.4.
The next corollary can be found in [472].

Corollary 2.1.1 (The Ladyzhenskaya–Solonnikov–Ural’ceva Inequality [472]). As-
sume that T > 0, α(t) ∈ L1(0, T ), h(t) ∈ L1(0, T ), α(t), h(t), w(t) ≥ 0 a.e. on
[0, T ]. If w(t) ∈ W 1,1(0, T ) satisfies for a.e. t ∈ [0, T ],

w′(t) ≤ α(t)w(t) + h(t), (2.1.19)

then for a.e. t ∈ [0, T ],

w(t) ≤ w(0) exp

(∫ t

0

α(s)ds

)
+

∫ t

0

exp

(∫ t

s

α(σ)dσ

)
h(s)ds. (2.1.20)

The following theorem can be found in Babin and Vishik [54] (see also, e.g.,
Chepyzhov and Vishik [154]), and can be viewed as a generalization of Theorem
2.1.4.

Theorem 2.1.5 (The Babin–Vishik Inequality [54, 154]). Let y(t) ∈ C1[t0, t1],
y(t) ≥ 0 for all t ∈ [t0, t1], and the following inequality holds for all t ∈ [t0, t1],

y′(t) ≤ a(t)y(t) + h(t) (2.1.21)

where a(t), h(t) ∈ C1[t0, t1], a(t) ≥ 0, h(t) ≥ 0. Then for all t ∈ [t0, t1],

y(t) ≤
(
y(t0) +

∫ t

t0

h(τ)dτ

)
exp

(∫ t

t0

a(τ)dτ

)
. (2.1.22)

If for all t ∈ [t0, t1], the following inequality

y′(t) + γy(t) ≤ h(t), (2.1.23)

holds with a constant γ ≥ 0, then for all t ∈ [t0, t1],

y(t) ≤
∫ t

0

e−γ(t−τ)h(τ)dτ + y(0)e−γt. (2.1.24)

In particular, if h(t) = constant = C, γ > 0, then for all t ∈ [t0, t1],

y(t) ≤ Cγ−1
(
1− e−γt

)
+ y(0)e−γt. (2.1.25)
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Proof. Multiplying (2.1.21) by exp
{
− ∫ t

t0
a(τ)dτ

}
, we arrive at

d

dt

(
y(t) exp

{
−

∫ t

t0

a(τ)dτ

})
≤ h(t) exp

{
−

∫ t

t0

a(τ)dτ

}
. (2.1.26)

Integrating (2.1.26) over [0, t] yields

y(t) ≤
(
y(t0) +

∫ t

t0

h(τ) exp

{
−

∫ τ

t0

a(s)ds

}
dτ

)
exp

{∫ t

t0

a(τ)dτ

}
which in turn gives us (2.1.22). Similarly, multiplying (2.1.23) by exp(γt) and
integrating the resulting inequality, we can derive (2.1.24). Estimate (2.1.25) is a
direct result of (2.1.24). �

The following Theorems 2.1.6–2.1.7 are due to Chepyzhov, Pata and Vishik
[156].

Theorem 2.1.6 (The Chepyzhov–Pata–Vishik Inequality [156]).

(i) For every τ ∈ R, every non-negative locally summable function φ on Rτ ≡
[τ,+∞), and every β > 0, we have for a.e. t ≥ τ ,

sup
t≥τ

∫ t

τ

φ(s)e−β(t−s)ds ≤ 1

1− e−β
sup
t≥τ

∫ t+1

t

φ(s)ds. (2.1.27)

(ii) Let ξ(t), φ1(t) and φ2(t) be non-negative locally summable functions on Rτ

satisfying the differential inequality, for a.e. t ∈ Rτ ,

d

dt
ξ(t) + 2βξ(t) ≤ φ1(t) + φ2(t)ξ

1/2(t), (2.1.28)

with some constant β > 0. Then for a.e. t ∈ Rτ ,

ξ(t) ≤ 2ξ(τ)e−2β(t−τ) + 2

∫ t

τ

φ1(s)e
−2β(t−s)ds+

(∫ t

τ

φ2(s)e
−β(t−s)ds

)2

.

(2.1.29)

Proof. (i) Writing t − τ = N + w for some non-negative integer N and some
w ∈ [0, 1), we obtain∫ t

τ

φ(s)e−β(t−s)ds ≤
N−1∑
n=0

e−βn

∫ t−n

t−n−1

φ(s)ds + e−βN

∫ τ+w

τ

φ(s)ds, (2.1.30)

where the sum vanishes for N = 0. Therefore,∫ t

τ

φ(s)e−β(t−s)ds ≤
N∑

n=0

e−βn sup
t≥τ

∫ θ+1

θ

φ(s)ds ≤ 1

1− e−β
sup
t≥τ

∫ θ+1

θ

φ(s)ds,

which gives (2.1.27).
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(ii) In order to prove (2.1.29), we multiply (2.1.28) by e2βt and integrate the
resulting inequality. This yields

ξ(t)e2βt ≤ ξ(τ)e2βτ +

∫ t

τ

φ1(s)e
2βs +

∫ t

τ

φ2(s)ξ
1/2(s)e2βsds. (2.1.31)

Let ψ(t) = ξ(t)e2βt for any t ∈ Rτ , and let t0 ∈ [τ, t] be such that ψ(t0) =
maxs∈[τ,t] ψ(s). Then it follows from (2.1.31) that

ψ(t0) ≤ ξ(τ)e2τ +

∫ t0

τ

φ1(s)e
2βsds+

∫ t0

τ

φ2(s)ξ
1/2(s)e2βsds

≤ ξ(τ)e2τ +

∫ t0

τ

φ1(s)e
2βsds+ ψ1/2(t0)

∫ t0

τ

φ2(s)e
βsds

≤ ξ(τ)e2τ +

∫ t0

τ

φ1(s)e
2βsds+

1

2
ψ(t0) +

1

2

(∫ t0

τ

φ2(s)e
2βsds

)2

,

which immediately yields (2.1.29). �

The next result can be viewed as a corollary of Theorem 2.1.6 (see, e.g.,
Nagasawa [657]).

Corollary 2.1.2 (The Nagasawa Inequality [657]). Let λ(t) (≥ 0) and ω(t) be con-
tinuous functions for which there exist positive constants Ci (i = 1, 2, 3, 4), such
that for all 0 ≤ τ ≤ t,

C1e
C2(t−τ) ≤ exp

(∫ t

τ

ω(s)ds

)
≤ C3e

C4(t−τ). (2.1.32)

Define Λ(t) :=
∫ t+1

t
λ(τ)dτ . Then

C−1 lim
t→+∞ inf Λ(t) ≤ lim

t→+∞ inf

∫ t

0

exp

(
−

∫ t

τ

ω(s)ds

)
λ(τ)dτ

≤ lim
t→+∞ sup

∫ t

0

exp

(
−

∫ t

τ

ω(s)ds

)
λ(τ)dτ

≤ C lim
t→+∞ supΛ(t).

(2.1.33)

Proof. We will prove the estimate from above in (2.1.33), the estimate from below
can be derived in a similar manner. In fact, using (2.1.32); we may obtain∫ t

0

exp

(
−

∫ t

τ

ω(s)ds

)
λ(τ)dτ

≤ exp

(
−

∫ t

0

ω(s)ds

)∫ T+1

0

exp

(∫ τ

0

ω(s)ds

)
λ(τ)dτ
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+

max(0,[t−T ]−1)∑
j=0

∫ t−j

t−j−1

exp

(
−

∫ t

τ

ω(s)ds

)
λ(τ)dτ

≤ C(T ) exp

(
−

∫ t

0

ω(s)ds

)
+ C−1

(
sup
t≥T

Λ(t)

)max(0,[t−T ]−1)∑
j=0

e−C2j .

Here [·] is the integer part symbol. The desired estimate follows with no difficulty.
�

Recently, Qin and Ren [803] generalized the result (2.1.27) in (i) of Theorem
2.1.6.

Theorem 2.1.7 (The Qin–Ren Inequality [803]). For every τ ∈ R, assume that
φ0 and η are non-negative locally summable function on Rτ ≡ [τ,+∞), η is non-
increasing on Rτ . Then for every ν > 0 we have for a.e. t ≥ τ ,

sup
t≥τ

∫ t

τ

φ0(s)e
−ν

∫
t
s
η(w)dwds ≤ 1

1− e−νη(0)
sup
t≥τ

∫ t+1

t

φ0(s)ds. (2.1.34)

Proof. Writing t−τ = N+�, for some non-negative integerN and some� ∈ [0, 1),
we have∫ t

τ

φ0(s)e
−ν

∫ t
s
η(w)dwds

≤ e−ν
∫

s+N
s

η(w)dw

∫ τ+�

τ

φ0(s)ds+

N−1∑
n=0

e−ν
∫

s+n
s

η(w)dw

∫ t−n

t−n−1

φ0(s)ds

≤
N∑

n=0

e−ν
∫ s+n
s

η(w)dw

∫ t+1

t

sup
t≥τ

φ0(s)ds ≤ 1

1− e−ν
∫ s+1
s

η(w)dw
sup
t≥τ

∫ t+1

t

φ0(s)ds

≤ 1

1− e−νη(0)
sup
t≥τ

∫ t+1

t

φ0(s)ds

as claimed. �

The next result is thus due to Chepyzhov, Pata and Vishik [156].

Theorem 2.1.8 (The Chepyzhov–Pata–Vishik Inequality [156]). Let ξ(t) : Rτ →
R+ satisfy for almost every t ≥ τ the differential inequality

d

dt
ξ(t) + φ1(t)ξ(t) ≤ φ2(t), (2.1.35)

where for almost every t ≥ τ , the scalar functions φ1 and φ2 satisfy∫ t

τ

φ1(s)ds ≥ β(t− τ)− γ,

∫ t+1

t

φ2(s)ds ≤ M, (2.1.36)
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for some constants β > 0, γ ≥ 0 and M ≥ 0. Then for almost all t ≥ τ ,

ξ(t) ≤ eγξ(τ)e−β(t−τ) +
Meγ

1− e−β
. (2.1.37)

Proof. Indeed, fix t > τ and define for all s ∈ [τ, t],

w(s) :=

∫ t

s

φ1(y)dy ≥ β(t− s)− γ.

Multiplying (2.1.35) by exp
(∫ t

τ
φ1(s)ds

)
and integrating over [τ, t], we obtain

ξ(t) ≤ ξ(τ)e−w(τ) +

∫ t

τ

e−w(s)φ2(s)ds

≤ eγξ(τ)e−β(t−τ) + eγ
∫ t

τ

e−β(t−s)φ2(s)ds.

(2.1.38)

From (2.1.36) and (2.1.38) it follows that∫ t

τ

e−β(t−s)φ2(s)ds ≤ M

1− e−β
,

which combined with (2.1.38) completes the proof. �

The following lemma can be found in Belleri and Pata [92].

Theorem 2.1.9 (The Belleri–Pata Inequality [92]). Let X be a Banach space, and let
C ⊂ C([0, 1);X), the space of X-valued functions on [0, 1). Let Φ : X → [0,+∞)
be a mapping such that Φ(v(0)) ≤ c, for some c ≥ 0 and every v ∈ C. In addition,
assume that for every v ∈ C the function t �→ Φ(v(t)) is continuously differentiable
and satisfies the differential inequality

d

dt
Φ(v(t)) + k||v(t)||2X ≤ ω (2.1.39)

for some constants ω > 0 and k ≥ 0 independent of v ∈ C. Then for every δ > 0
there is a tδ > 0, such that for all t ≥ tδ,

Φ(v(t)) ≤ sup
v∈X

{
Φ(v) : k||v||2X ≤ ω + δ

}
.

Proof. First, we can verify that the following inequality (for a fixed t),

d

dt
Φ(v(t)) ≥ −δ (2.1.40)

yields
Φ(v(t)) ≤ sup

v∈X

{
Φ(v) : k||v||2 ≤ ω + δ

}
. (2.1.41)
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Indeed, if (2.1.40) holds, then from (2.1.39) it follows readily that k||v||2 ≤ ω + δ.
Thus setting tδ = c/δ and choosing v ∈ C, we know that there is a t0 ∈ [0, tδ]
depending on v, such that (2.1.40) holds for t = t0. If not, we would have

Φ(v(tδ)) ≤ −δtδ +Φ(v(0)) ≤ −δtδ + c = 0,

contradicting the positivity of Φ. Now define

t∗ = sup {τ > t0 : (2.1.41) holds for all t ∈ [t0, τ ]} .

We shall show that t∗ = +∞ and that (2.1.41) holds for every t ≥ tδ,
independently of v ∈ C. Indeed, if t∗ < +∞, then there is a sequence tn ↓ t∗ such
that

Φ(v(tn))− Φ(v(t∗)) > 0,

whence
d

dt
Φ(v(t∗)) ≥ 0.

By the continuity of the derivative, it follows that there exists a right neighborhood
J of t∗ such that (2.1.40) holds for every t ∈ J . Hence (2.1.41) holds for every
t ∈ J , which contradicts to the maximality of t∗. �

Pata and Zelik (see, e.g., [735, 78]) used the following result, which can be
regarded as a corollary of Theorem 2.1.9, to show the existence and regularity of
solutions of 2D wave equations with a nonlinear damping.

Corollary 2.1.3 (The Pata–Zelik Inequality [735, 78]). Let E : H0 → R satisfy,
for all ζ ∈ H0,

β‖ζ‖H0 −m ≤ E(ζ) ≤ Q(‖ζ‖H0) +m,

for some constants β > 0 and m ≥ 0, where Q is a generic positive increasing
function and H0 is a Banach space. Let ξ ∈ C([0,+∞),H0) be given. Assume that
the mapping t �→ E(ξ(t)) is continuously differentiable and fulfills the differential
inequality

d

dt
E(ξ(t)) + λ‖ξ(t)‖H0 ≤ k,

for some constants λ > 0 and k > 0. Then for all t ≥ t0,

‖ξ(t)‖H0 ≤ Q(k +m+ β−1),

where t0 = Q(‖ξ(0)‖H0) +Q(k).

From Corollary 2.1.3 and the usual Bellman–Gronwall inequality we easily
derive the following corollary.
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Corollary 2.1.4 (The Pata–Zelik Inequality [735, 78]). Let Λ : [0,+∞) → [0,+∞)
be an absolutely continuous function satisfying

d

dt
Λ(t) + 2λΛ(t) ≤ h(t)Λ(t) + k

where λ > 0, k ≥ 0 are constants and
∫ t

s
h(τ)dτ ≤ λ(t − s) +m, for all t ≥ s ≥ 0

and some constant m ≥ 0. Then we have for all t ≥ t0,

Λ(t) ≤ Λ(0)eme−λt +
λem

λ
.

The next result is a Bellman–Gronwall type lemma (see, e.g., [327]).

Theorem 2.1.10 (The Grasselli–Pata Inequality [327]). Let Φ be an absolutely con-
tinuous positive function on [0,+∞), which satisfies for some constant ε > 0, the
differential inequality for almost every t ∈ [0,+∞),

d

dt
Φ(t) + 2εΦ(t) ≤ f(t)Φ(t) + h(t) (2.1.42)

where f and h are functions on [0,+∞), such that for almost all t ≥ τ ,∫ t

τ

|f(y)|dy ≤ α

(
1 + (t− τ)ω

)
, sup

t≥0

∫ t+1

t

|h(y)|dy ≤ β (2.1.43)

with some constants α, β > 0 and ω ∈ [0, 1). Then for every t ∈ [0,+∞),

Φ(t) ≤ γΦ(0)e−εt +K (2.1.44)

with some constants γ = γ(f) ≥ 1 and K = K(ε, f, h) ≥ 0.

Proof. Let us first recall the following general fact (see, e.g., [732], or recall
(2.1.27)). For any function h on [0,+∞) satisfying

sup
t≥0

∫ t+1

t

|h(y)|dy ≤ β,

it follows from (2.1.43) that for any ε > 0,∫ +∞

0

e−ε(t−y)|h(y)|dy ≤ βC(ε),

where C(ε) = eε

1−e−ε . Now set m(t) = −2ε+ f(t), then for 0 ≤ τ < t, we have∫ t

τ

m(y)dy = −2ε(t− τ) +

∫ t

τ

f(y)dy ≤ −ε(t− τ) + ln γ
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with some constant γ = γ(ω, α) ≥ 1. Hence, by the generalized Jones inequality
(i.e., Theorem 1.2.3), we conclude from (2.1.42) that

Φ(t) ≤ Φ(0)e
∫ t
0
m(s)ds +

∫ t

0

e
∫ t
s
m(y)dy|h(s)|ds ≤ γΦ(0)e−εt + γβC(ε),

which yields (2.1.44). �

Note that h ≡ 0 implies exponential decay.

Remark 2.1.1. In fact, Theorem 2.1.10 can be generalized (see Lemma A.1, [732])
allowing the right-hand side of the above differential inequality to have an extra

term of the form h̃(t)Φσ(t), with σ ∈ [0, 1) and supt≥0

∫ t+1

t
|h̃(y)|dy ≤ β̃, for some

constant β̃ ≥ 0. Then the conclusion of Theorem 2.1.10 still holds for γ = γ(f) ≥
1

1−σ and K = K(ε, f, h, h̃) ≥ 0.

Remark 2.1.2. Notice that the condition
∫ t

τ
|h(y)|dy ≤ α(1 + (t − τ)ω), for some

constants α ≥ 0 and ω ∈ [0, 1), implies that supt≥0

∫ t+1

t |h(y)|dy < +∞.

The next result summarizes Lemma A.5 in [117] and some results in [732],
whose proof will be left to the reader.

Theorem 2.1.11 (The Brézis–Pata–Prouse–Vishik Inequality [117, 732]). Let Φ, r1,
r2 be non-negative, locally summable functions on [τ,+∞), τ ∈ R, which satisfy,
for some ε > 0 and 0 < σ < 1, the differential inequality for a.e. t ∈ [τ,+∞),

d

dt
Φ(t) + εΦ(t) ≤ r2(t)Φ

1−σ(t) + r1(t). (2.1.45)

Assume also that, for j = 1, 2,

mj = sup
t≥τ

∫ r+1

r

rj(y)dy < +∞.

Then, setting C(ν) = eν/(1− eν), for any t ∈ [τ,+∞),

Φ(t) ≤ 1

σ
Φ(τ)e−ε(t−τ) +

1

σ
m1C(ε) + [m2C(εσ)]1/σ . (2.1.46)

Finally, we introduce the uniform Bellman–Gronwall inequality (cf. Theorem
2.1.3) for r = 1, which can be regarded as a corollary of Theorem 2.1.11 with
σ = 0.

Corollary 2.1.5 (The Pata–Prouse–Vishik Inequality [732]). Let Φ(t) be an abso-
lutely continuous positive function on [0,+∞) satisfying the differential inequality
for almost every t ∈ [0,+∞),

d

dt
Φ(t) ≤ f1(t)Φ(t) + f2(t),
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where f1 and f2 satisfy supt≥0

∫ t+1

t
|fj(y)|dy ≤ αj, for some constants αj ≥ 0

(j = 1, 2). Assume, in addition, that supt≥0

∫ t+1

t Φ(y)dy ≤ α3, for some constant
α3 ≥ 0. Then for almost all t ∈ [0,+∞),

Φ(t+ 1) ≤ (α2 + α3)e
α1 .

The following result may be found in Temam [915]. It is due to Ghidaglia
and furnishes a uniform bound for large time.

Theorem 2.1.12 (The Ghidaglia Inequality [915]). Let y(t) be a positive absolutely
continuous function on (0,+∞) satisfying

y′(t) + γyp(t) ≤ δ (2.1.47)

for constants p > 1, γ > 0, δ > 0. Then for any t > 0,

y(t) ≤ (δ/γ)1/p + (γ(p− 1)t)−1/(p−1). (2.1.48)

Proof. If y(0) ≤
(
δ/γ

)1/p

, then for all t ≥ 0,

y(t) ≤ (δ/γ)1/p. (2.1.49)

If y(0) > (δ/γ)1/p, then there is a t0 ∈ (0,+∞) such that{
y(t) ≥ (δ/γ)1/p, for all 0 ≤ t < t0, (2.1.50)

y(t) ≤ (δ/γ)1/p, for all t ≥ t0. (2.1.51)

For all t ∈ [0, t0], we write z(t) = y(t)− (δ/γ)1/p ≥ 0. Since ap + bp ≤ (a+ b)p for
all a, b ≥ 0, p > 1, we have

yp(t) = [z(t) + (δ/γ)1/p]p ≥ zp(t) + δ/γ. (2.1.52)

From (2.1.47) and (2.1.52) it follows that

z′(t) + γzp(t) ≤ y′(t) + γ

(
yp(t)− δ/γ

)
≤ 0. (2.1.53)

Integrating (2.1.53) over [0, t] yields

zp−1(t) ≤ 1

z(0)1−p + γ(p− 1)t
≤ 1

γ(p− 1)t
,

which implies (2.1.48) for all t ∈ [0, t0) and, since this inequality is obvious for all
t ≥ t0 from (2.1.51), the proof is complete. �

The following result is due to Zlotnik [1024].
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Theorem 2.1.13 (The Zlotnik Inequality [1024]). Let N0 ≥ 0, N1 ≥ 0, and ε0 > 0
be three parameters. Let f ∈ C(R) and y, b ∈ W 1,1(0, T ), for any T > 0. Then we
have the following estimates:

(1) if for all t > 0,
y′(t) ≥ f(y(t)) + b′(t), (2.1.54)

where f(−∞) = +∞ and b(t2)−b(t1) ≥ −N0−N1(t2−t1) for any 0 ≤ t1 ≤ t2,
then the uniform lower bound for all t ≥ 0,

min{y(0), z̃} −N0 ≤ y(t), (2.1.55)

holds, where z̃ = z̃(N1) is such that f(z) ≥ N1 for all z ≤ z̃;

(2) if for all t > 0,
y′(t) ≤ f(y(t)) + b′(t), (2.1.56)

where lim supz→+∞ f(z) ≤ 0 and b(t2) − b(t1) ≤ N0 − ε0(t2 − t1) for any
0 ≤ t1 ≤ t2, then the uniform upper bound for all t ≥ 0,

y(t) ≤ max

{
y(0), ẑ

}
+N0 (2.1.57)

holds, where ẑ = ẑ(ε0) is such that f(z) ≤ ε0 for all z ≥ ẑ.

(3) if f(+∞) = −∞ and b(t2)−b(t1) ≤ N0+N1(t2− t1) for all 0 ≤ t1 ≤ t2, then
we have an estimate of the form (above formula) with a quantity z̃ = z̃(N1)
such that f(z) ≤ −N1 for all z ≥ z̃.

Proof. (1) It obviously suffices to verify inequality (2.1.55) for points t = t2 such
that y(t2) < ỹ0 = min{y(0), z̃}. By the continuity of y on R+ and the initial
condition y(0) = y0 ≥ ỹ0, for any such point (if any), there exists a point t1 ∈ [0, t2)
such that y(t) < ỹ0 for t1 < t ≤ t2 and y(t1) = ỹ0. Integrating the differential
inequality (2.1.54) over (t1, t2) and taking into account the choice of the points t1
and t2 and the assumption on b, we obtain

y(t2) ≥ y(t1) +

∫ t2

t1

f(y(t))dt+ b(t2)− b(t1) ≥ ỹ0 −N0, (2.1.58)

because f(y(t)) ≥ N1 on [t1, t2]. This completes the proof of (2.1.55).

(2) Similarly as in (1), it suffices to verify (2.1.57) for points t = t2 such that
y(t2) > ŷ0 = max{y(0), ẑ}. For any such point, there exists a t1 ∈ [0, t2) such that
y(t) > ŷ0 for t1 < t ≤ t2 and y(t1) = ŷ0. Therefore, we have

y(t2) ≤ y(t1) +

∫ t2

t1

f(y(t))dt+ b(t2)− b(t1) ≤ ŷ0 +N0,

because f(y(t)) ≤ ε0 on [t1, t2], which completes the proof of (2.1.57).

(3) This case can be reduced to case (1), since z′(t) = −f(−z) + (−b)′ for
z = −y. �
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Remark 2.1.3. In Theorem 2.1.13, we may drop the conditions f(−∞) = +∞
and lim supz→+∞ f(z) ≤ 0, take f ∈ C(R×R+), and replace f(y) by f(y, t). The
claim (1) remains valid provided that, for a fixed N1, there exists a point z̃ such
that f(z, t) ≥ N1, for all z ≥ z̃ and all t ≥ 0. Similarly, claim (2) remains valid
provided that, for a fixed ε0 ∈ R, there exists a point ẑ such that f(z, t) ≤ ε0, for
all z ≥ ẑ and all t ≥ 0.

Remark 2.1.4. Theorem 2.1.13 is chosen from Zlotnik [1024], where both claims
are concerned with differential equations are used, but the proof remains valid for
inequalities, and so is Remark 2.1.3.

The next result is due to Galdi [295].

Theorem 2.1.14 (The Galdi Inequality [295]). Let y(t) ∈ C1(R+) be a non-negative
function satisfying the inequality for all t ≥ 0,

ay(t) ≤ b+ y′(t), (2.1.59)

where a > 0, b ≥ 0. If

lim inf
t→+∞ y(t)e−at = 0, (2.1.60)

then y(t) is uniformly bounded and

sup
t≥0

y(t) ≤ b

a
. (2.1.61)

Proof. From (2.1.59) it follows that

− d

dt

(
y(t)e−at

) ≤ be−at,

which, once integrated from t to t1 (t1 > t), gives

−y(t1)e
−at1 + y(t)e−at ≤ b

a

(
e−at − e−at1

)
. (2.1.62)

If we take the inferior limit of both sides of (2.1.62) as t1 → +∞ and use (2.1.60),
then we obtain (2.1.61). The proof is complete. �

We shall next give a result due to Dlotko [213] which is based on a system
of differential inequalities.

Theorem 2.1.15 (The Dlotko Inequality [213]). Let y(t),z(t) : [0,+∞)−→ [0,+∞),
y of class C1, z of class C0, satisfy the following system of inequalities

y′(t) ≤ −αz(t) + β
(
1 + zσ(t)

)
, σ ∈ [0, 1), (2.1.63)

{
y(t) ≤ Cz(t). (2.1.64)
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Then for all t ≥ 0, ⎧⎨⎩
y(t) ≤ max {y(0), Cz1} , (2.1.65)

lim sup
t→+∞

y(t) ≤ Cz1 (2.1.66)

where C,α, β > 0 are constants, and z1 is a positive root of the equation −αr +
β(1 + rσ) = 0.

Proof. Let φ(s) = −αs+β(1+sσ) and for all s ≥ 0 define a new function φ1(s) as

φ1(s) =

{
φ(s0), for 0 ≤ s ≤ s0,
φ(s), for s0 < s

where s0 > 0 is the point of maximum of φ. Evidently φ(s) ≤ φ1(s), s ≥ 0, and
φ1(s) is non-increasing. Then by (2.1.63), it follows

y′(t) ≤ φ1(z(t)) ≤ φ1(C
−1y(t)), (2.1.67)

and so y′(t) ≤ 0 whenever C−1y(t) ≥ z−1
1 . This proves both estimates (2.1.65)

and (2.1.66). �

A differential form of Corollary 1.4.1 can be stated as follows:

Theorem 2.1.16. Assume that v ∈ C1([0,+∞)), v(0) = 0, and there is a positive
constant C such that for all x ∈ [0,+∞),

|v′(x)| ≤ C|v(x)|. (2.1.68)

Then for all x ∈ [0,+∞),
v(x) ≡ 0. (2.1.69)

Proof. Indeed, (2.1.68) implies

|v(x)| ≤ C

∫ x

0

|v(y)|dy, (2.1.70)

because v(0) = 0. Thus (2.1.69) follows from (2.1.70) by the Bellman–Gronwall
inequality, i.e., Theorem 1.1.2. �

In 1992, Ohara [703] proved the following result.

Theorem 2.1.17 (The Ohara Inequality [703]). Let y(t) be a non-negative C1 func-
tion on (0, T ] satisfying for all t ∈ (0, T ],

y′(t) ≤ Ct−1−δ +By(t)−Atλθ−1yθ+1(t), (2.1.71)

with some constants A > 0, B ≥ 0, C ≥ 0, λ > 0, θ > 0 and δ ∈ R. Assume that
λθ ≥ 1 and λ > δ. Then for all t ∈ (0, T ],

y(t) ≤
{(

2λ+ 2BT

A

)1/θ

+
2Ctλ−δ

λ+BT

}
t−λ. (2.1.72)
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Proof. Without loss of generality, we may assume that y(t) > 0. Firstly, we con-
sider the case C = 0.

(i) Setting μ(t) = y(t)−θ, we infer from (2.1.71) that

μ′(t) ≥ −Bθμ(t) +Aθtλθ−1. (2.1.73)

Solving the differential inequality (2.1.73), we obtain for all t ∈ (0, T ],

μ(t) exp{Bθt} ≥ Aθ

∫ t

0

sλθ−1 exp(Bθs)ds

≥ A

λ+BT
tλθ exp(Bθt),

(2.1.74)

which gives us (2.1.72).

(ii) Next, we assume C > 0. Note that for any a ≥ 0, b ≥ 0 and k > 1,

(a+ b)θ+1 ≤ kθ
(
aθ+1 + (k − 1)−θbθ+1

)
. (2.1.75)

Then, setting φ(t) = y(t) + νt−λ, we obtain from (2.1.71) and (2.1.75)

φ′(t)−Bφ(t) +Ak−θtλθ−1φθ+1(t) ≤ t−λ−1[Ctλ−δ − ν(λ +Bt−A(k − 1)−θνθ)].
(2.1.76)

Setting k = 21/θ and fixing a sufficiently small positive constant ν, we conclude
from (2.1.76) for all t ∈ (0, T1] that

φ′(t) ≤ Bφ(t)− (A/2)tλθ−1φθ+1(t), (2.1.77)

for some positive constant T1 (≤ T ).

In view of (i), (2.1.77) implies that for all t ∈ (0, T1],

y(t) ≤ φ(t) ≤
(
2λ+ 2BT

A

)1/θ

t−λ. (2.1.78)

(iii) Assume that there exists an s ∈ (T1, T ) (under the assumption T1 < T ,
otherwise for T1 = T , our assertion is valid) such that

y(s) >

{(
2λ+ 2BT

A

)1/θ

+
2Csλ−δ

λ+BT

}
s−λ. (2.1.79)

Set

t0 = inf

{
t ∈ (T1, T ] : y(t)t

λ >

(
2λ+ 2BT

A

)1/θ

+
2Ctλ−δ

λ+BT

}
.

Then we have

y(t0) =

{(
2λ+ 2BT

A

)1/θ

+
2Ctλ−δ

0

λ+BT

}
t−λ
0 ,
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whence

y(t)tλ >

(
3λ+ 3BT

2A

)1/θ

+
2Ctλ−δ

λ+BT
(2.1.80)

for any t ∈ [t0, T2], with a constant T2 (> t0).

From (2.1.80) and (2.1.71), we obtain that for any t ∈ [t0, T2],

y′(t) <
1

2
(λ+BT )t−1y(t) +By(t)− 3

2
(λ +BT )t−1y(t) < −λt−1y(t). (2.1.81)

Solving the inequality (2.1.81), we obtain for all t ∈ (t0, T2],

y(t)tλ < y(t0)t
λ
0 =

(
2λ+ 2BT

A

)1/θ

+
2Ctλ−δ

0

λ+BT

<

(
2λ+ 2BT

A

)1/θ

+
2Ctλ−δ

λ+BT
,

which contradicts the definition of t0. From (ii) and (iii), we arrive at the desired
result (2.1.72). �

Chen [140] extended the above result (the proof is left to the reader as an
exercise).

Theorem 2.1.18 (The Chen Inequality [140]). Let y(t) be a non-negative C1 func-
tion on (0, T ] satisfying for all t ∈ (0, T ],

y′(t) +Atλθ−1yθ+1(t) ≤ Ctδ +Bt−ky(t) (2.1.82)

with some constants A, θ > 0, λθ ≥ 1, B, C ≥ 0, k ≤ 1 and δ ∈ R. Then for all
t ∈ (0, T ],

y(t) ≤
(
2λ+ 2BT 1−k

A

)1/θ

t−λ + 2C(λ+BT 1−k)−1t−1−δ. (2.1.83)

Giga and Kohn [312] proved the following result.

Theorem 2.1.19 (The Giga–Kohn Inequality [312]). Let g(s) be a non-negative H1

function defined for s ≥ s0. Assume that g′(s) satisfies⎧⎪⎨⎪⎩
C1g

p+1(s) ≤ g(s)g′(s) + C2A, (2.1.84)∫ +∞

s0

(g′(s))2ds ≤ A, (2.1.85)

for some positive constants C1, C2 and A ≤ 1. Then there is a constant C > 0
only depending on C1, C2 and p such that for all s ≥ s0,

g(s) ≤ CA1/(2p). (2.1.86)
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Proof. From (2.1.84) we see that, for almost all s, either

g(s) ≤ A1/(2p) or C1g
p(s) ≤ g′(s) + C2A

1−/(2p).

Since A ≤ 1 and p > 1, it follows from (2.1.85) that∫ s+1

s

g2p(τ)dτ ≤ A+ 2C−2
1

∫ s+1

s

(
(g′(τ))2 + C2

2A
2−1/p

)
dτ ≤ C3A, (2.1.87)

with C3 > 0 only depending on C1 and C2. Applying the interpolation inequality

sup
s≤τ≤s+1

g(τ) ≤ C(p)

[∫ s+1

s

[
(g′(τ))2 + g2(τ)

]
dτ

]θ/2 [∫ s+1

s

g2p(τ)dτ

](1−θ)/(2p)

(2.1.88)
for θ = 1/(p+1), we conclude from (2.1.87)–(2.1.88), and Hölder’s inequality that
for all s ≥ s0,

g(s) ≤ C

(
A1/2 +A1/(2p)

)θ

A(1−θ)/(2p) ≤ CA1/(2p),

which is the estimate (2.1.86). �

In 2009, Yang and Jin [976] proved the following result, which leads to a
uniform bound, e.g., the existence of an absorbing set.

Theorem 2.1.20 (The Yang–Jin Inequality [976]). Let z(t) be a non-negative ab-
solutely continuous function on [0,+∞) satisfying for a.e. t > 0 the differential
inequality for all ε ∈ (0, ε0],

z′(t) + ερz(t) ≤ k + Cε2qzq(t), (2.1.89)

where ε0 = (2ρ/3k)(k/4C)1/q, k, C, ρ > 0, and q > 1 are constants. Then for
t ≥ T (z0),

z(t) ≤ R2 :=
k

2ε0ρ
, (2.1.90)

where T (z0) > 0 is a constant depending on z0 = z(0).

Proof. By our assumptions, we have for all ε ∈ (0, ε0],

3εk

2ρ
≤ 3ε0k

2ρ
=

(
k

4C

)1/q

. (2.1.91)

We distinguish the following three cases:

(1) If

z0 ≤ 1

ε20

(
k

4C

)1/q

:= R1, (2.1.92)
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then there exists a constant T > 0 such that, for any t ∈ [0, T ]

z(t) ≤ 1

ε20

(
k

2C

)1/q

. (2.1.93)

It can be either
T < +∞, Cε2q0 zq(T ) = k/2 (2.1.94)

or
T = +∞. (2.1.95)

Now we claim that (2.1.94) cannot happen; this means that (2.1.95) holds. Suppose
(2.1.94) holds true. Then it follows from (2.1.89) and (2.1.93) that for all t ∈ [0, T ],⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z′(t) + ε0ρz(t) ≤ 3k/2, 0 ≤ t ≤ T, (2.1.96)

zq(t) ≤
(
z0e

−ε0ρt +
3k

2ερ
(1− e−ε0ρt)

)q

≤ zq0e
−ε0ρt +

(
3k

2ε0ρ

)q

(1− e−ε0ρt),

(2.1.97)

where we have used the fact that f(x) = xq (x > 0, q > 1) is a convex function,
i.e.,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x > 0, y > 0, 0 ≤ θ ≤ 1. By (2.1.91) and (2.1.92), we have for all t ∈ [0, T ],

Cε2q0 zq(t) ≤ Cε2q0 zq0e
−ε0ρt+C

(
3ε0k

2ρ

)q

(1−e−ε0ρt) ≤ k

4
e−ε0ρt+

k

4
(1−e−ε0ρt) =

k

4
,

(2.1.98)
which contradicts (2.1.94). Hence T = +∞, and for all 0 ≤ t < +∞, 0 < ε ≤ ε0,

z(t) ≤ z0e
−ερt +

3k

2ερ
(1− e−ερt). (2.1.99)

(2) If z0 > R1, we set ε1 =
√

R1

z0
ε0 (< ε0), that is,

z0 =
1

ε21

(
k

4C

)1/q

. (2.1.100)

Repeating the same argument as in case (1), we have for all 0 ≤ t < +∞,

z(t) ≤ z0e
−ε1ρt +

3k

2ε1ρ

(
1− e−ε1ρt

) ≤ z0, (2.1.101)

where we have used the fact

3k

2ε1ρ
=

ε0
ε

3ε0k

2ρ

1

ε20
=

√
z0
R1

1

ε20

(
k

4C

)1/q

=
√
z0R1 < z0.
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Substituting (2.1.101) into (2.1.89) for ε1 = ε, we get for all t ≥ 0,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z′(t) + ε1ρz(t) ≤ k + Cε2q1 zq0 =
5k

4
, (2.1.102)

z(t) ≤ z0e
−ε1ρt +

5k

4ε1ρ
(1− e−ε1ρt)

≤ z0e
−ε1ρt +

5

6
z0(1− e−ε1ρt).

(2.1.103)

Obviously, (2.1.103) implies for all t ≥ T1(z0),

z(t) ≤ 5

6
z0. (2.1.104)

(3) Taking z̄0 = z(t0) (≤ 5
6z0), for t0 ≥ T1(z0), as an initial datum, we have

the following cases:

(i) If z̄0 ≤ R1, repeating the same argument as in case (1), we obtain for all
t > 0, 0 < ε ≤ ε0,

z(t) ≤ z̄0e
−ερt +

3k

2ερ
(1 − e−ερt), (2.1.105)

which implies z(t) ≤ R2 as t ≥ T2(z0).

(ii) If z̄0 > R1, taking ε̄1 =
√
R1/z̄0ε0 (< ε0) and using the same arguments as

in case (2), we get for all t ≥ T2(z0),

z(t) ≤ 5

6
z̄0 ≤

(
5

6

)2

z0. (2.1.106)

Repeating the above process for finite times, it follows that for all t ≥ Tn(z0),

z(t) ≤
(
5

6

)n

z0 ≤ R1. (2.1.107)

Taking z̃0 = z(t∗) (≤ R1) with t∗ ≥ Tn(z0) as an initial datum, and repeating
the same arguments as in case (1), we can obtain (2.1.90), which completes the
proof. �

Remark 2.1.5. Note that the proof used here is direct and transparent, and quite
different from that of the following theorem, also obtained in 2009 by Gatti et al.
[297], which implies a uniform bound, e.g., the existence of an absorbing set.

Theorem 2.1.21 (The Gatti–Pata–Zelik Inequality [297]). Let α > β ≥ 1 and γ ≥ 0
be such that

β − 1

α− 1
<

1

1 + γ
. (2.1.108)
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Let ψ be a non-negative absolutely continuous function on [0,+∞) which satisfies,
for some constants K ≥ 0, Q ≥ 0, ε0 > 0 and every ε ∈ (0, ε0], the differential
inequality

ψ′(t) + εψ(t) ≤ Kεα[ψ(t)]β + ε−γq(t), (2.1.109)

where q(t) is any non-negative function for which

sup
t≥0

∫ t+1

t

q(y)dy ≤ Q. (2.1.110)

Then there exists a constant R0 > 0 with the following property: for every R ≥ 0,
there is some time tR ≥ 0 such that for all t ≥ tR,

ψ(t) ≤ R0, (2.1.111)

whenever ψ(0) ≤ R. Both R0 and tR can be computed explicitly.

Proof. Estimate (2.1.110) on q(t) implies that for any t ≥ 0 and for all τ > 0,∫ t+τ

t

q(y)dy ≤ Q(1 + τ). (2.1.112)

Under the assumptions on α, β and γ, we choose θ ∈ (0, 1) such that

1− θ > max(β − αθ, γθ).

For ω := 1− γθ > θ, we consider the function

J(r) = −ωrω−θ + ωKrβ−αθ−γθ. (2.1.113)

Since limr→+∞ J(r) = −∞, we can find a ρ ≥ ωQ such that ρ−θ/ω ≤ ε0 and for
all r ≥ ρ1/ω,

J(r) ≤ −1− 2ωQ. (2.1.114)

Now let us introduce the auxiliary function

φ(t) = (ψ(t))ω .

Note that, for a.e. t such that φ(t) ≥ ρ, we have

φ′(t) ≤ −1− 2ωQ+ ωq(t). (2.1.115)

Indeed, for (almost) any fixed t, setting ε := (φ(t))−θ/ω (where we observe that
ε ≤ ε0 when φ(t) ≥ ρ), the differential inequality (2.1.115) reads

φ′(t) ≤ J([φ(t)]1/ω) + ωq(t). (2.1.116)

Now we distinguish two cases:
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(1) If φ(t) ≤ ρ for some t ≥ 0, then φ(t + τ) ≤ 2ρ, for every τ ≥ 0. If not, let
τ1 > 0 be such that φ(t+τ1) > 2ρ, and set τ0 = sup{τ ∈ [0, τ1] : φ(t+τ) ≤ ρ}.
Integrating (2.1.115) over [t+τ0, t+τ1], we eventually obtain a contradiction:

2ρ < φ(t+τ1) ≤ ρ−(τ1−τ0)−2ωQ(τ1−τ0)+ωQ(1+τ1−τ0) < 2ρ. (2.1.117)

(2) If φ(0) > ρ, then φ(t∗) ≤ ρ for some t∗ ≤ φ(0) (1 + ωQ)−1. Indeed, let t > 0
be such that φ(τ) > ρ for all τ ∈ [0, t]. Integrating (2.1.115) on [0, t], we have

ρ < φ(t) ≤ φ(0)− t− 2ωQt+ ωQ(1 + t) ≤ φ(0)− (1 + ωQ)t+ ρ, (2.1.118)

which gives us t < φ(0)(1 + ωQ)−1.

In order to come back to the original ψ(t), we just define

R0 = (2ρ)1/ω , tR = R1/ω(1 + ωQ)−1.

By applying (1) and (2), we hence obtain the assertion. �

We immediately get the following corollary of Theorem 2.1.21.

Corollary 2.1.6 (The Gatti–Pata–Zelik Inequality [297]). Under the assumptions
of Theorem 2.1.21, we have

ψ(t) ≤ Q(ψ(0))e−νt + C∗ (2.1.119)

for some constants ν > 0, C∗ ≥ 0 and some non-negative increasing function Q,
which along with constants ν and C∗ can be explicitly computed in terms of the
parameters α, β and C.

Theorem 2.1.22 (The Gatti–Pata–Zelik Inequality [297]). Assume that z : R+ →
R+ is a positive integrable function and C, t∗ ≥ 0 are two constants such that for
all t ≥ t∗, the following inequality holds,

z(t) ≤ C. (2.1.120)

Moreover, let y : R+ → R+ satisfy the estimate

y′(t) + εy(t) ≤ z(t). (2.1.121)

Then for every η > 0, there exists some time tη ≥ 0 such that for all t ≥ tη,

y(t) ≤ C

ε
+ η. (2.1.122)

Proof. Let t ≥ t∗ and integrate (2.1.121). Then it is easy to see that

y(t) ≤
(
y(0) +

∫ t∗

0

z(s)eεsds

)
e−εt + e−εt

∫ t

t∗
z(s)eεsds
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whence, by (2.1.120),

y(t) ≤
(
y(0) +

∫ t∗

0

z(s)eεsds

)
e−εt +

C

ε
e−εt∗ .

Now since the quantity in parentheses in the last inequality is bounded and inde-
pendent of t, we obtain (2.1.222). �

Next we turn to an abstract result, due to Agmon and Nirenberg [14], which
implies lower bounds and uniqueness of solutions to an abstract differential in-
equality in a Hilbert space of the form∥∥∥∥dudt −Bu(t)

∥∥∥∥ ≤ Φ(t)‖u(t)‖ (2.1.123)

where u(t) is a function with values in a (complex) Hilbert space, B is an un-
bounded linear operator, and Φ is a scalar function.

Let H be a Hilbert space with scalar product (·, ·) and norm ‖ · ‖. We shall
consider functions u(t) defined on an interval [0, T ), taking their values in H , and
satisfying a differential inequality of the form:

∥∥∥∥dudt −B(t)u(t)

∥∥∥∥ ≤ Φ(t)

{
‖u(t)‖2 +

∫ T

t

ω(τ)‖u(τ)‖2dτ
}1/2

. (2.1.124)

Here B(t) (for each t) is a linear operator in H with domain DB(t). We
shall assume that u(t) ∈ DB(t), that u ∈ C1([0, T );H), and that B(t)u(t) ∈
C([0, T );H). Φ(t) denotes a non-negative measurable function which is bounded
in every finite interval [0, T ′] with T ′ < T , ω(t) is a non-negative continuous
function on [0, T ) and we assume that∫ T

0

ω(τ)‖u(τ)‖2dτ < +∞. (2.1.125)

Our main assumptions are as follows: B(t) admits a decomposition of the form

B(t) = B+(t) +B−(t) = B+(t) +B′
−(t) +B′′

−(t) (2.1.126)

where B+(t) is a linear symmetric operator on DB(t), while B′
−(t) and B′′

−(t)
are linear skew-symmetric on DB(t). (Thus, for all x ∈ DB(t), (B+(t)x, x) is real
and 
(B′

−(t)x, x) = 
(B′′
−(t)x, x) = 0). Moreover, we now give the following

hypotheses.

(1) For each t ∈ [0, T ) and all x ∈ DB(t), there holds that


(B+(t)x,B
′
−(t)x) ≥ −γ1(t)‖B+(t)x‖‖x‖ − β1(t)‖x‖2. (2.1.127)
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(2) For each t ∈ [0, T ) and all x ∈ DB(t), there holds that

‖B′′
−(t)x‖2 ≤ γ2(t)‖B+(t)x‖‖x‖ + β2(t)‖x‖2. (2.1.128)

(3) For the solution u of (2.1.123), the function (B+(t)u(t), u(t)) is differentiable
for 0 ≤ t < τ and there holds that

d

dt
(B+(t)u(t), u(t))− 2


(
B+(t)u(t),

du

dt

)
≥ −γ3(t)‖B+(t)u(t)‖‖u(t)‖ − β3(t)‖u(t)‖2.

(2.1.129)

In the sequel, we denote by γi, βi (i = 1, 2, 3), non-negative measurable func-
tions that are bounded on every closed finite subinterval of [0, T ).

Concerning the last hypothesis (3), we make the following remark.

Remark 2.1.6. ([14]) Assume that DB(t) = D is independent of t and that for
every x ∈ D and t ∈ [0, T ), there exists the strong limit

lim
h→0

B(t+ h)x−B(t)x

h
= Ḃ(t)x

hereinafter we use a dot to represent differentiation with respect to t. Moreover,
assume that

‖Ḃ(t)x‖ ≤ γ3(t)‖B+(t)x‖ + β3(t)‖x‖. (2.1.130)

Then hypothesis (3) is valid for a solution u of (2.1.123) provided that B+(t)u(t) is
strongly continuous. Indeed it is easily seen in this case (taking the difference quo-
tient and passing to the limit) that the function (B+(t)u(t), u(t)) is differentiable
there holds that

d

dt

(
B+(t)u(t), u(t)

)
= 2


(
B+(t)u(t),

du

dt

)
+ (Ḃ+(t)u(t), u(t)). (2.1.131)

Combining (2.1.131) and (2.1.130), we can obtain (2.1.129), so that hypoth-
esis (3) holds.

If we set γ(t) = maxi=1,2,3 γi(t), β = maxi=1,2,3 βi(t), then we can state the
following main result.

Theorem 2.1.23 (The Agmon–Nirenberg Inequality [14]). Let u(t) be a solution of
(2.1.123) in [0, T ) and assume that all the hypotheses introduced above hold. Set

q(t) = ‖u(t)‖2 +
∫ T

t

ω(τ)‖u(τ)‖2dτ (2.1.132)

and let [t0, t1) be a sub-interval of [0, T ) such that q(t) > 0 for all t0 ≤ t < t1. Let

f(t) = u′(t)−B(t)u(t) (2.1.133)
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and define for all t0 ≤ t < t1,

ψ(t) :=
2
(f(t), u(t))

q(t)
− ω(t)

‖u(t)‖2
q(t)

(2.1.134)

and

l(t) := log q(t)−
∫ t

t0

ψ(τ)dτ. (2.1.135)

Then l(t) is twice differentiable and satisfies the following second-order differential
inequality in the interval [t0, t1):

l′′(t) + a(t)|l′(t)|+ b(t) ≥ 0, (2.1.136)

where

a(t) = 4γ(t) + ω(t), b(t) = 16γ2(t) + 8β(t) + 4Φ2(t). (2.1.137)

Before proving the above theorem, note that we can write inequality (2.1.123)
in the form

‖f(t)‖ ≤ Φ(t)q1/2(t). (2.1.138)

Therefore, from (2.1.134), (2.1.138), and the estimate ‖u(t)‖2 ≤ q(t), it follows
that

|ψ(t)| ≤ 2Φ(t) + ω(t) (2.1.139)

whence from (2.1.135) and (2.1.139), we derive

log q(t) ≥ l(t)−
∫ t

t0

(2Φ(τ) + ω(τ)) dτ. (2.1.140)

It will be seen later on that the differential inequality (2.1.136) yields a lower
bound for l(t) and thus we shall derive a lower bound for log q(t), and this is our
required result.

Proof of Theorem 2.1.23. Differentiating q(t), using (2.1.133), (2.1.126), (2.1.134),
the symmetry of B+ and the skew-symmetry of B′

− and B′′
−, we find for all t ∈

[t0, t1) :

q(t) = 2
(u′(t), u(t))− ω(t)‖u(t)‖2
= 2
(B(t)u(t), u(t)) + 2
(f(t), u(t))− ω(t)‖u(t)‖2,

q′(t) = 2(B+(t)u(t), u(t)) + ψ(t)q(t).

(2.1.141)

Let

s(t) = exp

(
−

∫ t

t0

ψ(τ)dτ

)
, (2.1.142)
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which clearly satisfies

s′(t) + ψ(t)s(t) = 0. (2.1.143)

Now setting

p(t) = s(t)q(t), (2.1.144)

thus from (2.1.141) and (2.1.143)–(2.1.144), it follows that

l′(t) =
p′(t)
q(t)

=
s(t)q′(t) + s′(t)q(t)

p(t)
=

2

q(t)
(B+(t)u(t), u(t)). (2.1.145)

Next, it follows from hypothesis (3) and from (2.1.145) that p(t) is twice
differentiable, and using (2.1.141) and (2.1.140), we conclude readily

l′′(t) =
2

q

d

dt
(B+u, u)− 2

q2
(B+u, u)[2(B+u, u) + ψq]

≥ 4

q

(B+u, u

′)− 2γ

q
‖B+u‖‖u‖ − 2β

q
‖u‖2

− 4

q2
(B+u, u)

2 − 2ψ

q
(B+u, u)

=
4

q
(B+u,B+u)− 4

q2
(B+u, u)

2 +
4

q

(B+u,B−u)

+
4

q
Re(B+u, f)− 2γ

q
‖B+u‖‖u‖ − 2β

q
‖u‖2 − 2ψ

q2
(B+u, u).

(2.1.146)

Now using ‖u‖2 ≤ q and noting the following inequality

4

q

(‖B+u‖2 − q−1(B+u, u)
2
) ≥ 4

q

∥∥∥∥B+u− (B+u, u)

q
u

∥∥∥∥2

,

we easily arrive at

l′′(t) ≥ 4

q

∥∥∥∥B+u− (B+u, u)

q
u

∥∥∥∥2

+
4

q

(B+u,B−u)

+
4

q

(B+u, f)− 2γ

q
‖B+u‖‖u‖ − 2β

q
‖u‖2 − 2ψ

q2
(B+u, u).

Using (2.1.126) and hypothesis (1), we derive that

l′′(t) ≥ 4

q

∥∥∥∥B+u− (B+u, u)

q
u

∥∥∥∥2 + 4

q

(B+u,B

′′
−u)

− 6γ

q
‖B+u‖‖u‖ − 6β

q
‖u‖2 + 4

q

(B+u, f)− 2ψ

q2
(B+u, u).

(2.1.147)
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Since 
(B′′−u, u) = 0,

|
(B+u,B
′′
−u)| =

∣∣∣∣
(
B+u− (B+u, u)

q
u,B′′

−u
)∣∣∣∣

≤ 1

2

∥∥∥∥B+u− (B+u, u)

q
u

∥∥∥∥2

+
1

2
‖B′′

−u‖2.

Inserting this in (2.1.147), and using hypothesis (2) and the fact that ‖u‖2 ≤ q,
we find

l′′(t) ≥ 2

q

∥∥∥∥B+u− (B+u, u)

q
u

∥∥∥∥2

− 8γ

q
‖B+u‖‖u‖

− 8β +
4

q

(B+u, f)− 2ψ

q2
(B+u, u).

By the definition (2.1.134),

4

q

(B+u, f)− 2ψ

q
(B+u, u)

=
4

q


(
B+u− (B+u, u)

q
u, f

)
+

2ω

q2
‖u‖2(B+u, u)

≥ −1

q

∥∥∥∥B+u− (B+u, u)

q
u

∥∥∥∥2

− 4

q
‖f‖2 + 2ω

q2
‖u‖2(B+u, u),

(2.1.148)

which, inserted in the preceding expression, yields, with the help of (2.1.138),

l′′(t) ≥ 1

q

∥∥∥∥B+u− (B+u, u)

q
u

∥∥∥∥2

− 8γ

q
‖B+u‖‖u‖ − 8β

− 4Φ2(t)− 2ω

q
|(B+u, u)|.

(2.1.149)

Now if θ denotes the angle between the vectors B+u and u in the Hilbert
space, we have ∥∥∥∥B+u− (B+u, u)

q
u

∥∥∥∥2

≥ ‖B+u‖2 sin2 θ, (2.1.150)

and

|l′(t)| = 2

q
|(B+u, u)| = 2

q
‖B+u‖‖u‖| cosθ|. (2.1.151)

Hence,

8γ

q
‖B+u‖‖u‖ = 8γ

q
‖B+u‖‖u‖(sin2 θ + cos2 θ)

≤ 1

q
‖B+u‖2 sin2 θ + 16γ2

q
‖u‖2 sin2 θ + 4γ|l′(t)|. (2.1.152)
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Inserting (2.1.152) into (2.1.149), using (2.1.150)–(2.1.151) and the inequality
‖u‖2 ≤ q, we conclude

l′′(t) ≥ −16γ2 − 8β − 4Φ2(t)− (4γ + ω)|l′(t)|
which thus gives us the desired inequality (2.1.136). �

2.2 Differential inequalities leading to

asymptotic behavior

In this section, we shall collect some differential inequalities which may be used
to determine the large time behavior of functions. This class of inequalities plays
a very significant role in the study of the asymptotic behavior of global solutions
to some evolutionary differential equations, and is a very convenient and powerful
tool in establishing large-time behavior of global solutions when we use energy
methods.

We begin with some familiar results of the classical calculus for the single
real variable analysis.

Lemma 2.2.1.

(1) Let y(t) ∈ L1([0,+∞)) with y(t) ≥ 0 for a.e. t ≥ 0, and assume that
limt→+∞ y(t) exists. Then

lim
t→+∞ y(t) = 0. (2.2.1)

(2) Let y(t) ∈ L1([0,+∞)) with y(t) ≥ 0 for a.e. t ≥ 0, y′(t) ∈ L1([0,+∞)).
Then

lim
t→+∞ y(t) = 0. (2.2.2)

(3) Let y(t) be uniformly continuous on [0,+∞), y(t) ∈ L1([0,+∞)). Then

lim
t→+∞ y(t) = 0. (2.2.3)

(4) Let y(t) be a monotonic function on [0,+∞) and y(t) ∈ L1([0,+∞)). Then

lim
t→+∞ y(t) = 0 (2.2.4)

and as t → +∞,
y(t) = o(1/t). (2.2.5)

Proof. (1) Let limt→+∞ y(t) = A. Since y(t) ∈ L1([0,+∞)), by the Cauchy con-
vergence criterion, we have

lim
n→+∞

∫ n+1

n

y(t)dt = 0. (2.2.6)
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Let αn = inf f([n, n + 1]), βn = sup f([n, n + 1]). Then it follows from the in-
tegration mean value theorem that there exists a sequence λn ∈ [αn, βn] such
that ∫ n+1

n

y(t)dt = λn (2.2.7)

which, together with (2.2.6), yields

lim
n→+∞λn = 0. (2.2.8)

Noting that limt→+∞ y(t) = A, we infer that for any ε > 0, there exists a
constant M1 > 0 such that for t > M1,

A− ε < y(t) < A+ ε. (2.2.9)

Hence, if N > M1, then for n > N and for any t ∈ [n, n+ 1], we have

A− ε < y(t) < A+ ε. (2.2.10)

Then from (2.2.7) we conclude that

A− ε ≤ αn ≤ λn ≤ βn ≤ A+ ε,

which combined with (2.2.8) implies limn→+∞ λn = A = 0.

(2) Since y′(t) ∈ L1([0,+∞)), we infer from the Cauchy convergence criterion
that for any ε > 0, there exists a constant M2 > 0 such that for t1 ≥ t2 ≥ M2, we
have

|y(t1)− y(t2)| = |
∫ t2

t1

y′(t)dt| < ε,

which implies that limt→+∞ y(t) exists. Thus (2.2.2) follows from (2.2.1).

(3) Since y(t) is uniformly continuous on [0,+∞), we infer that for any ε > 0,
there is a constant δ > 0 such that for any t1, t2 ∈ [0,+∞) with |t1 − t2| < δ,

|y(t1)− y(t2)| < ε. (2.2.11)

Since y(t) ∈ L1([0,+∞)), we obtain that for ε1 = δε, there exists a constant
M3 > 0 such that for all t > M3,∣∣∣∣ ∫ t+δ

t

y(s)ds

∣∣∣∣ < δε. (2.2.12)

Now consider the integral
∫ t+δ

t
y(s)ds. When t < s < t + δ, we conclude from

(2.2.11) that

y(s)− ε < y(t) < y(s) + ε,
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which combined with (2.2.12) gives∫ t+δ

t

y(s)ds− δε ≤
∫ t+δ

t

y(t)ds ≤
∫ t+δ

t

y(s)ds+ δε,

i.e., ∣∣∣∣ ∫ t+δ

t

y(t)ds−
∫ t+δ

t

y(s)ds

∣∣∣∣ ≤ δε. (2.2.13)

Thus it follows from (2.2.12) and (2.2.13) that for all t > M3,

|y(t)| = 1

δ

∣∣∣∣ ∫ t+δ

t

y(t)ds

∣∣∣∣
≤ 1

δ

[∣∣∣∣ ∫ t+δ

t

y(t)ds−
∫ t+δ

t

y(s)ds

∣∣∣∣+ ∣∣∣∣ ∫ t+δ

t

y(s)ds

∣∣∣∣] ≤ 2ε,

which implies (2.2.3).

(4) Without loss of generality, we assume that y(t) is monotonically decreas-
ing on [0,+∞). Then

y(t) ≥ 0.

Otherwise, if there exists a t = b > 0 such that y(t) = y(b) < 0, then for all t > b,
we have

y(t) ≤ y(b) < 0,

which implies that ∫ +∞

0

y(t)dt =

∫ b

0

y(t)dt+

∫ +∞

b

y(t)dt

is divergent, a contradiction.

It follows from y(t) ∈ L1([0,+∞)) that for any ε > 0, there is a constant
M4 > 0 such that for all t > M4, we have

ε/2 >

∫ t

t/2

y(s)ds ≥ y(t)

∫ t

t/2

ds = ty(t)/2

that is, for all t > M4,
0 < ty(t) ≤ ε

which gives (2.2.4) and (2.2.5). �

Note that the above lemma provides the asymptotic behavior of y(t) for large
time.

The next theorem is related to the uniform Bellman–Gronwall inequality and
was first established by Shen and Zheng [863] in 1993 (see, e.g., Zheng [998]). It is
very useful and powerful in dealing with the global well-posedness and asymptotic
behavior of solutions to some evolutionary differential equations.
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Theorem 2.2.2 (The Shen–Zheng Inequality [863, 998]). Let 0 < T ≤ +∞, and
assume that y(t), h(t) are non-negative continuous functions on [0, T ] satisfying
the following conditions:⎧⎪⎨⎪⎩

y′(t) ≤ A1y
2(t) +A2 + h(t), (2.2.14)∫ T

0

y(t)dt ≤ A3,

∫ T

0

h(t)dt ≤ A4 (2.2.15)

where Ai (i = 1, 2, 3, 4) are given non-negative constants. Then for any r > 0 with
0 < r < T , the following estimate holds for all t ∈ (0, T − r),

y(t+ r) ≤
(
A3

r
+A2r +A4

)
eA1A3 . (2.2.16)

Furthermore, if T = +∞, then

lim
t→+∞ y(t) = 0. (2.2.17)

Proof. Assume that 0 ≤ t ≤ s ≤ t+ r < T for any given 0 < r < T . We multiply
(2.2.14) by exp

(− ∫ s

t A1y(τ)dτ
)
and obtain the relation

d

ds

(
y(s) exp

{
−

∫ s

t

A1y(τ)dτ

})
≤ (A2 + h(s)) exp

{
−

∫ s

t

A1y(τ)dτ

}
≤ A2 + h(s).

(2.2.18)

Integration between s and t+ r yields

y(t+ r) ≤ y(s) exp

{∫ t+r

s

A1y(τ)dτ

}
+ (A2r +A4) exp

{∫ t+r

t

A1y(τ)dτ

}
≤ (y(s) +A2r +A4) exp(A1A3). (2.2.19)

Next, integrating (2.2.19) with respect to s between t and t + r we obtain
(2.2.16). From (2.2.14) and (2.2.16) we conclude that

y′(t) ≤ A1

[(
A3

r
+A2r +A4

)
eA1A3

]2
+A2 + h(t)

= Ar + h(t), for all t ≥ r,

(2.2.20)

where we denote

Ar ≡ A1

[(
A3

r
+A2r +A4

)
eA1A3

]2
+A2.
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To prove (2.2.17), we use a contradiction argument. Suppose it is not true.
Then there exist a monotonically increasing sequence {tn} and a constant a > 0
such that for all n ∈ N,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

tn ≥ r +
a

4Ar
, tn+1 ≥ tn +

a

4Ar
, (2.2.21)

lim
n→+∞ tn = +∞, (2.2.22)

y(tn) ≥ a

2
> 0. (2.2.23)

On the other hand, from (2.2.20) we know that for all tn − a
4Ar

≤ t < tn,

y(tn)− y(t) ≤ Ar(tn − t) +

∫ tn

t

h(τ)dτ. (2.2.24)

Combining (2.2.21)–(2.2.22) and (2.2.24) yields that for all tn − a
4Ar

≤ t < tn,

a/2− y(t) ≤ y(tn)− y(t) ≤ a/4 +

∫ tn

tn− a
4Ar

h(τ)dτ. (2.2.25)

Thus we deduce from (2.2.23) and (2.2.25) that for all tn − a
4Ar

≤ t < tn,

y(t) +

∫ tn

tn− a
4Ar

h(τ)dτ ≥ a/4. (2.2.26)

Let

nT = max

{
n : n ∈ N, r +

a

4Ar
≤ tn ≤ T

}
. (2.2.27)

Then
lim

T→+∞
nT = +∞. (2.2.28)

Now it follows from (2.2.15) that for all T > 0,

A3 +
aA4

4Ar
≥

∫ T

0

y(τ)dτ +
a

4Ar

∫ T

0

h(τ)dτ

≥
∑

1≤n≤nT

[∫ tn

tn− a
4Ar

y(τ)dτ +
a

4Ar

∫ tn

tn− a
4Ar

h(τ)dτ

]
≥ a2nT

16Ar
,

which contradicts (2.2.28). �
Corollary 2.2.1 (The Shen–Zheng Inequality [863]). If we replace A2 and A3 by
max(A2, A3) in (2.2.16), then for any t ≥ 1,

y(t) ≤ 2
(
max(A2, A3) +A4

)
eA1 max(A2,A3). (2.2.29)



2.2. Differential inequalities leading to asymptotic behavior 111

The following result may be considered as a variant with a variable coefficient
a0 + a(t) of the above inequality (see, e.g., Ducomet and Zlotnik [226]).

Theorem 2.2.3 (The Ducomet–Zlotnik Inequality [226]). Let a0 = constant ≥
0 and a(t), h(t) ∈ L1(R+). If the function y(t) satisfies y(t) ≥ 0 on R+, y ∈
W 1,1(0, T ) for any T > 0, and

dy(t)

dt
+ (a0 + a(t))y(t) ≤ h(t), (2.2.30)

then the following upper bound and the stabilization property hold:

sup
t≥0

y(t) ≤
(
y(0) + ‖h‖L1(R+)

)
exp

{‖a‖L1(R+)

}
, (2.2.31)

⎧⎪⎨⎪⎩ lim
t→+∞ y(t) = 0. (2.2.32)

Proof. By (2.2.30), we have

d

dt

(
y(t) exp

{∫ t

0

(a0 + a(s))ds

})
≤ h(t) exp

{∫ t

0

(a0 + a(s))ds

}
. (2.2.33)

Integrating (2.2.33) and using the assumptions on a0 and a, h, we derive

y(t) ≤ y(0) exp

{
−

∫ t

0

(a0 + a(s))ds

}
+

∫ t

0

h(τ) exp

{
−

∫ t

τ

(a0 + a(s))ds

}
dτ

≤ y(0)e−a0t exp

{∫ t

0

a(s)ds

}
+

∫ t

0

h(τ) exp

{
−

∫ t

τ

(a0 + a(s))ds

}
dτ

≤ (
y(0) + ‖h‖L1(R+)

)
exp

{‖a‖L1(R+)

}
,

which yields us (2.2.31). On the other hand, under our assumptions

y(t), y′(t) ∈ L1(R+). (2.2.34)

Thus (2.2.32) follows from (2.2.34) and (2) in Lemma 2.2.1, and the proof is
complete. �

Later on, the above result was extended by Străskraba and Zlotnik [900] to
the following form.

Theorem 2.2.4 (The Străskraba–Zlotnik Inequality [900]). Let

Y : R+ = [0,+∞) → R+, Y ∈ W 1,1(0, T )

for any T > 0 and satisfy for all t ∈ R+,

Y ′(t) + (a0 + a1(t) + a2(t))Y (t) ≤ G(t), (2.2.35)



112 Chapter 2. Differential and Difference Inequalities

where a0 > 0, a1 ∈ L1(R+), a2 ∈ Lq(R+), and G ∈ Ls(R+), G ≥ 0 for some
q ∈ (1,+∞) and s ∈ [1,+∞]. Then for any ε ∈ (0, 1), for all t ∈ R+, the following
estimate holds,

Y (t) ≤ Cε,q

(
e−a0(1−ε)tY (0) +

∫ t

0

e−a0(1−ε)(t−τ)G(τ)dτ

)
, (2.2.36)

with

Cε,q = exp

(
‖a1‖L1(R+) + q−1

(
a0q

′ε
)−(q−1)

‖a2‖qLq(R+)

)
, q′ = q/(q − 1).

As a consequence of estimate (2.2.36), the following uniform estimate holds,

‖Y ‖
C(R+)

≤ Cε,q

(
Y (0) + [a0(1 − ε)s′]−1/s′‖G‖Ls(R+)

)
(2.2.37)

where s′ = s/(s− 1) and [a0(1 − ε)s′]−1/s′ = 1 in the case s = 1 (i.e., s′ = +∞).
Moreover, if s < +∞, then as t → +∞,

Y (t) → 0. (2.2.38)

Proof. Set (I0a)(t) :=
∫ t

0
a(τ)dτ, a := a1 + a2. Multiplying inequality (2.2.35) by

eI0(a0+a), and applying I0 to the result, we easily get

Y (t) ≤ e−(a0t+I0a)Y (0) +

∫ t

0

e−[a0(t−τ)+
∫ t
τ
a(θ)dθ]G(τ)dτ. (2.2.39)

Using the Hölder and Young inequalities, we get for any 0 ≤ τ ≤ t and ε > 0,∣∣∣∣ ∫ t

τ

a(θ)dθ

∣∣∣∣ ≤ ‖a1‖L1(R+) + (t− τ)1/q
′‖a2‖Lq(R+) ≤ ‖a1‖L1(R+) + a0ε(t− τ)

+ q−1(a0q
′ε)−(q−1)‖a2‖qLq(R+) ≤ a0ε(t− τ) + logCε,q. (2.2.40)

Inserting (2.2.40) into (2.2.39), we obtain (2.2.36). The rest of the proof follows
from the Hölder inequality and the well-known relation for α > 0 and 1 ≤ s < +∞,

lim
t→+∞

∫ t

0

e−α(t−τ)|G(τ)|dτ = 0, for all G ∈ Ls(R+). �

The following result can be viewed as a variant of Theorem 2.2.3 that was
used by Zlotnik [1024].

Theorem 2.2.5 (The Zlotnik Inequality [1024]). Let y(t) ∈ C[0, T ] be a function

such that y ≥ 0, d(yq)
dt ∈ L1(0, T ) for some constant q ≥ 1, and

d(yq)

dt
+ qαyq ≤ af1y

q−1 + f q
2 on (0, T ) (2.2.41)
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where α = constant ≥ 0, f1(t) ∈ L1(0, T ), f2(t) ∈ Lq(0, T ), f1(t) ≥ 0 and f2(t) ≥
0. Then, for all t ∈ [0, T ],

y(t) ≤ exp(−αt)

{
y(0) +

∫ t

0

exp(ατ)f1(τ)dτ +

[∫ t

0

(exp(ατ)f2(τ))
qdτ

]1/q}
,

(2.2.42)
and if T = +∞, then we further have

y(t) ≤ C1/q
ε,q

[
e−qα(1−ε)tyq(0) +

∫ t

0

e−qα(1−ε)(t−τ)(f1(τ) + f q
2 (τ))dτ

]1/q

, (2.2.43)

⎧⎪⎪⎨⎪⎪⎩‖y(t)‖C(R+) ≤ Cε,q

(
y(0) + ‖f1‖L1(R+) + ‖f2‖qLq(R+)

)
(2.2.44)

and as t → +∞
y(t) → 0 (2.2.45)

with
Cε,q = exp

(
(q − 1)‖f1‖L1(R+)

)
. (2.2.46)

Proof. Obviously, multiplying inequality (2.2.41) by exp(qαt) gives us the same
inequality for the functions exp(αt)y(t) and exp(αt)fk(t) instead of y(t) and fk(t),
respectively (k = 1, 2), but for α = 0. Thus we can restrict our considerations to
the case α = 0. Moreover, it suffices to derive the estimate (2.2.42) for t = T .

Set I0(y)(t) =
∫ t

0 y(τ)dτ . When α = 0 in (2.2.41), integrating (2.2.41), we
obtain yq(t) ≤ C + qI0(f1y

q−1) on [0, T ], where C = yq(0) + ‖f2‖qLq(0,T ). We

introduce a non-negative function zε ∈ C[0, T ] such that zqε(t) = C+ε+qI0(f1z
q−1
ε )

on [0, T ], ε > 0. First, it is obvious that zqε(t) ≥ C + ε > 0 and
d(zq

ε)
dt = qf1z

q−1
ε on

[0, T ], whence it follows that zε(t) = (C+ε)1/q+I0(f1) on [0, T ]. Second, note that
yq(0)+ ε ≤ zqε(0), hence it follows that y

q(t) < zqε(t) on [0, t0) for some t0 ∈ (0, T ].
Therefore,

zqε(t0)− yq(t0) ≥ ε+ qI0(f1(z
q−1
ε − yq−1)) |t=t0≥ ε.

Hence we easily see that yq(t)+ε ≤ zqε(t) on [0, T ]. Therefore, y(T ) ≤ (zqε(T )−
ε)1/q, and the estimate

y(T ) ≤ C1/q + ‖f1‖L1(0,T ) ≤ y(0) + ‖f1‖L1(0,T ) + ‖f2‖Lq(0,T )

as ε → 0+ follows. The proof of (2.2.42) is hence complete. To prove (2.2.43)–
(2.2.45), let z(t) = yq(t). Then using the Young inequality we have

qf1y
q + f q

2 = qf1z
(q−1)/q + f q

2 ≤ qf1(
q − 1

q
z + 1/q) + f q

2 = (q − 1)f1z + f1 + f q
2

which, when inserted into (2.2.41), gives

zt + [qα− (q − 1)f1]z ≤ f1 + f q
2 (2.2.47)
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which satisfies (2.2.35) in Theorem 2.2.3 for a0 = qα > 0, a1 = −(q − 1)f1 ∈
L1(0, T ), a2 = 0 and G(t) = f1 + f q

2 ∈ L1(0, T ) with s = 1. Applying Theorem
2.2.3 to (2.2.47) yields

z(t) ≤ Cε,q

[
e−qα(1−ε)tz(0) +

∫ t

0

e−qα(1−ε)(t−τ)(f1(τ) + f q
2 (τ))dτ

]
,

whence

y(t) ≤ C1/q
ε,q

[
e−qα(1−ε)tyq(0) +

∫ t

0

e−qα(1−ε)(t−τ)(f1(τ) + f q
2 (τ))dτ

]1/q

,

with Cε,q given by (2.2.46). Applying Theorem 2.2.3 again to (2.2.47) yields
(2.2.44) and (2.2.45) immediately. �

We should point out here that Străskraba and Zlotnik [901] also established
another related result on the asymptotic behavior of a non-negative function y(t)
(i.e., limt→+∞ y(t) = 0), which is not based on a differential inequality or an inte-
gral inequality, but on an equation or a decomposition of y(t). We now reproduce
this as follows.

Theorem 2.2.6 (The Străskraba–Zlotnik Inequality [901]). Assume that y(t) ∈
W 1,1

loc (R
+) satisfies for all t ∈ R+,⎧⎪⎨⎪⎩

y(t) = y′1(t) + y2(t), (2.2.48)

|y2(t)| ≤
n∑

i=1

αi, |y′(t)| ≤
n∑

i=1

βi, (2.2.49)

where y1(t) ∈ W 1,1
loc (R

+) and lims→+∞ y1(s) = 0, and αi, βi ∈ Lpi(R+) for some
pi ∈ [1,+∞), i = 1, 2, . . . , n. Then

lim
t→+∞ y(t) = 0. (2.2.50)

Proof. Using Sobolev’s embedding theorem W 1,1 ↪→ L∞, we have

|y(t)| ≤ C

∣∣∣∣ ∫ t+1

t

y(s)ds

∣∣∣∣+ C

∫ t+1

t

|y′(s)|ds

≤ C|y1(t+ 1)− y1(t)|+ C

n∑
i=1

∫ t+1

t

(αi + βi)ds

≤ C|y1(t+ 1)− y1(t)|+ C

n∑
i=1

[‖αi‖Lpi (t,t+1) + ‖βi‖Lpi(t,t+1)

]
→ 0, as t → +∞,

which completes the proof. �
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In 2006, Basov [73] proved a similar result.

Theorem 2.2.7 (The Basov Inequality [73]). Let y(t), z(t) ∈ L1(R+), for all t ∈ R+,
y(t) ≥ 0, and

y′(t) ≤ z(t). (2.2.51)

Then as t → +∞,
y(t) → 0. (2.2.52)

Proof. Let us start with the following representation:

y(t) =

∫ t

t−1

y(s)ds+

∫ t

t−1

∫ t

s

y′(τ)dτds. (2.2.53)

Since y ∈ L1(R+), the first integral on the right-hand side goes to 0 as t → +∞.
To estimate the second summand, we note that it is non-negative, y′ ≤ z and
z ∈ L1(R+). That is, we have

0 ≤
∫ t

t−1

∫ t

s

y′(τ)dτds ≤
∫ t

t−1

∫ t

s

|z(τ)|dτds → 0

as t → +∞, which completes the proof. �

The next result can be found in Wang [946].

Theorem 2.2.8 (The Wang Inequality [946]). Assume that h(t) ∈ C([0,+∞)) sat-
isfies

lim
t1>t2→+∞

∫ t1

t2

|h(t)|dt = 0, (2.2.54)

or
lim

t→+∞h(t) = 0, (2.2.55)

and that g(t) ∈ C1([0,+∞)), g(t) ≥ 0, satisfies for all t ≥ 0,

g′(t) ≤ −αg(t) + h(t), (2.2.56)

with a constant α > 0.

Then
lim

t→+∞ g(t) = 0. (2.2.57)

Proof. By (2.2.56), we have

g(t) ≤ g(0)e−αt +

∫ t

0

h(τ)e−α(t−τ)dτ . (2.2.58)

Let v(t) :=
∫ t

0 h(τ)e
−α(t−τ)dτ . Then it suffices to prove

lim
t→+∞ v(t) = 0. (2.2.59)
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Indeed, if (2.2.54) holds, then for any ε > 0, there exists a constant t0 > 0,
such that for t1 > t2 > t0,∣∣∣∣ ∫ t1

t2

h(t)dt

∣∣∣∣ ≤ ∫ t1

t2

|h(t)|dt < ε

which implies that

|h(t)| ∈ L1(R+). (2.2.60)

Obviously, we have

v(t) =

∫ t/2

0

h(τ)e−α(t−τ)dτ +

∫ t

t/2

e−α(t−τ)h(τ)dτ

≡ I1(t) + I2(t).

(2.2.61)

It follows from (2.2.60)–(2.2.61) that as t → +∞, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
|I1(t)| ≤ e−αt/2

∫ t/2

0

|h(τ)|dτ ≤ e−αt/2

∫ +∞

0

|h(τ)|dτ → 0, (2.2.62)

|I2(t)| ≤
∫ t

t/2

|h(τ)|dτ → 0. (2.2.63)

Therefore, (2.2.57) follows from (2.2.58) and (2.2.62)–(2.2.63). If (2.2.55) holds,
then by the l’Hospital Rule,

lim
t→+∞ v(t) = lim

t→+∞

∫ t

0
h(τ)eατdτ

eαt
= lim

t→+∞
h(t)eαt

αeαt

=
1

α
lim

t→+∞h(t) = 0

which, together with (2.2.58), gives (2.2.57), and completes the proof. �

Krejč́ı and Sprekels [462] in 1998 extended the Shen–Zheng inequality (i.e.,
Theorem 2.2.1) when T = +∞ to the following result (see also, Zheng [998]),
which can be also considered as a nonlinear generalization of the Bellman–Gronwall
inequality in Theorem 2.1.3.

Theorem 2.2.9 (The Krejč́ı–Sprekels Inequality [462]). Assume that y(t) is abso-
lutely continuous in [0,+∞), y(t) ≥ 0, y′(t) ∈ L1

loc(R
+) and satisfies the following

conditions for all a.e. t ∈ (0,+∞),⎧⎨⎩
∫ +∞

0

y(t)dt ≤ C1 < +∞, (2.2.64)

y′(t) ≤ f(y(t)) + h(t), (2.2.65)
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where h(t) ≥ 0 is such that ∫ +∞

0

h(t)dt ≤ C2 < +∞, (2.2.66)

and let f be a non-decreasing function from R+ into R+. Then

lim
t→+∞ y(t) = 0. (2.2.67)

If, moreover, there exist constants A1, A2 ≥ 0 such that for any y ≥ 0,

f(y) ≤ A1y
2 +A2, (2.2.68)

then

y(t) ≤
{

eA1C1 [y(0) + C2 +A2], for all t < 1,
eA1C1 [C1 + C2 +A2/2], for all t ≥ 1.

(2.2.69)

Proof. Assume that there exist a constant α > 0 and a sequence tn ↑ +∞, such
that for all n ∈ N,

y(tn) ≥ 2α. (2.2.70)

We may assume (passing to a subsequence if necessary) that the following inequal-
ity holds for every n ∈ N,

tn+1 − tn > 2C1/α+ β (2.2.71)

where
β :=

α

2f(2α)
, t1 > C1/α. (2.2.72)

By (2.2.64) and (2.2.66), the sets

An := {t ∈ [tn − C1/α, tn] : y(t) < α} (2.2.73)

are non-empty and we may set for all n ∈ N,

an := supAn (2.2.74)

and similarly, {
bn := inf{t ∈ [tn, tn + C1/α] : y(t) < α}, (2.2.75)

sn := min{t ∈ [an, bn] : y(t) ≥ 2α}. (2.2.76)

By construction, we have for all n ∈ N,⎧⎪⎨⎪⎩
an < sn ≤ tn < bn < an+1, (2.2.77)

an+1 − bn > β, (2.2.78)

y(an) = y(bn) = α, y(sn) = 2α, y(t) ≥ α, for all t ∈ [an, bn]. (2.2.79)
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We now define an auxiliary function z(t) by the formula

z(t) :=

{
y(t)− α, for all t ∈ ⋃∞

n=1[an, bn],
0, otherwise.

(2.2.80)

Then z(t) is non-negative, absolutely continuous, and for a.e. t > 0, we have

z′(t) ≤ f(z(t) + α) + h(t), z(t) ≤ y(t). (2.2.81)

Moreover, for a.e. t ∈ [sn − β, sn], we have

z(t) ≤ α, (2.2.82)

and integrating (2.2.81) from t to sn, we obtain

α− z(t) ≤
∫ sn

t

(f(z(τ) + α) + h(τ)) dτ

≤ βf(2α) +

∫ sn

sn−β

h(τ)dτ.

(2.2.83)

For all t ∈ [sn − β, sn], we thus have

α/2 ≤ z(t) +

∫ sn

sn−β

h(τ)dτ, (2.2.84)

and integrating (2.2.84) over [sn−β, sn] once more, we conclude that for all n ∈ N,

1

2
αβ ≤

∫ sn

sn−β

(
z(τ) + βh(τ)

)
dτ, (2.2.85)

which is a contradiction, since both z and h are integrable and the intervals (sn −
β, sn) are pairwise disjoint.

In order to prove (2.2.69), it suffices to rewrite (2.2.65) with (2.2.68) in the
form

d

dt

(
y(t)e−A1

∫
t
0
y(τ)dτ

)
≤ (A2 + h(t)) e−A1

∫
t
0
y(τ)dτ . (2.2.86)

Hence, for every 0 ≤ s < t, we have

y(t) ≤ y(s)eA1

∫
t
s
y(τ)dτ +

∫ t

s

[A2 + h(τ)]eA1

∫
t
τ
y(σ)dσdτ

≤ eA1C1 (y(s) + C2 +A2(t− s)) .

(2.2.87)

For any t ≤ 1, we simply put s = 0; for all t ≥ 1, we integrate (2.2.87) with respect
to s from t− 1 to t, which completes the proof. �
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The following example, presented in [462], shows that we cannot expect any
a priori pointwise bound for y(t) if f(y) grows faster than y2.

Example 2.2.1 ([462]). Let ε ∈ (0, 1) be given. For n > 1, we set

yn(t) ≤
⎧⎨⎩ |t− 1|ε−1, for all t ∈ [0, 2] \ [1− 1/n, 1 + 1/n],

n1−ε, for all t ∈ [1− 1/n, 1 + 1/n],
e2−ε, for all t > 2.

(2.2.88)

Then yn are absolutely continuous,
∫ +∞
0

yn(t)dt ≤ 1 + 2/ε, yn(0) = 1, y′n(t) ≤
(1− ε)y

2+ε/(1−ε)
n (t) a.e., and the sequence {yn(1)} is unbounded.

Later on, Zheng [999] showed the following strong version of the inequality
(2.2.65).

Theorem 2.2.10 (The Zheng Inequality [999]). Assume that y(t) is a continuous
non-negative function on [0,+∞) satisfying the following conditions:⎧⎪⎪⎨⎪⎪⎩

∫ +∞

0

y(t)dt ≤ C1 < +∞, (2.2.89)

y(t)− y(s) ≤
∫ t

s

(f(y(τ)) + h(τ))dτ, for all 0 ≤ s < t < +∞, (2.2.90)

where f and h satisfy the same assumptions as in Theorem 2.2.8. Then

lim
t→+∞ y(t) = 0. (2.2.91)

Proof. We shall again use a contradiction argument, exactly as in Theorem 2.2.8.
By the continuity and non-negativity of y(t), and condition (2.2.89), it is easy to
see that if (2.2.91) is not true, then there exist a constant β > 0 and a sequence
tn, tn → +∞, such that y(tn) = β and tn+1 − tn > β/(2f(β)) for all n. Let
mn be the minimum of y on [tn, tn − β/2f(β), tn]. We now estimate the lower
bound of mn.

If mn < β, let the minimum be achieved at t∗n (t∗n < tn) and let t∗∗n = sup{t |
t∗n < t, y(t) < β}. Then y(t∗∗n ) = β. It then follows from (2.2.91) that

β −mn = y(t∗∗n )− y(t∗n) ≤
∫ t∗∗n

t∗n

(f(y(τ)) + h(τ)) dτ

≤ f(β) · β

2f(β)
+

∫ tn

tn−β/(2f(β))

h(t)dt.

(2.2.92)

Thus, for all t ∈ [tn − β/(2f(β)), tn],

β/2 ≤ mn +

∫ tn

tn−β/(2f(β))

h(t)dt

≤ y(t) +

∫ tn

tn−β/(2f(β))

h(t)dt,

(2.2.93)
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which clearly holds when mn = β. Thus, integrating (2.2.93) with respect to t and
summing with respect to n, we reach a contradiction to condition (2.2.89). �

Define the space

Cloc =
{
u : [0,+∞) → R;u|[0,T ] ∈ C[0, T ] for all T > 0

}
,

which is equipped with the seminorm

‖u‖[0,t] := max
0≤τ≤t

|u(τ)|,

where the function u|[0,T ] denotes the restriction of u to [0, T ].

The next result (see, e.g., Theorem 2.2.10, Krejč́ı, Sprekels and Zheng [464])
generalizes Theorem 2.2.1 and Theorems 2.2.8–2.2.9 which have been stated in the
case of continuous functions, while Theorem 2.2.10 ([464]) below extends them to
the discontinuous case. The proof is based on the following lemma.

Lemma 2.2.11 ([464]). Let T > 0, g ∈ Cloc, p ∈ L1(0, T ), and y ∈ BV (0, T ) be
given such that

(i) g(u) ≥ 0, p(t) ≥ 0, y(t) ≥ 0 for every u ≥ 0 and (almost) every t ∈ [0, T ],

(ii) the function q(t) :=
∫ t

0
p(τ)dτ − y(t) is non-decreasing in [0, T ].

For u ≥ 0, put G(u) :=
∫ u

0 g(v)dv. Then the function

Q(t) :=

∫ t

0

g(y(τ))p(τ)dτ −G(y(t)) (2.2.94)

is non-decreasing on [0, T ].

Proof. Indeed, for any n ∈ N, we construct the equidistant partition 0 = s0 < s1 <
· · · < sn = T of the interval [0, T ], sk := Tk/n for k = 0, 1, . . . , n. We approx-
imate the functions p, y by piecewise constant and piecewise linear interpolants,
respectively. To this end, we define⎧⎪⎪⎨⎪⎪⎩

pn(t) :=
n

T

∫ sk

sk−1

p(τ)dτ,

yn(t) := y(sk−1) +
n

T
(t− sk−1) (y(sk)− y(sk−1)) ,

for all t ∈ [sk−1, sk), k = 1, . . . , n, continuously extended to t = T , and a function
Qn : [0, T ] → R by

Qn(t) :=

∫ t

0

g(yn(τ))pn(τ)dτ −G(yn(t)).

By hypothesis (ii), we get for all t ∈ (sk−1, sk),

y′n(t) =
n

T
(y(sk)− y(sk−1)) ≤ n

T

∫ sk

sk−1

p(τ)dτ = pn(τ),
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hence Q′
n(t) = g(yn(t))(pn(t) − y′n(t)) ≥ 0. We now know that pn → p strongly

in L1(0, T ) as n → +∞, yn(t) → y(t) a.e., hence Qn(t) → Q(t) a.e. Since Qn are
non-decreasing for every n, the function Q is also non-decreasing and hence the
proof is complete. �
Theorem 2.2.12 (The Krejč́ı–Sprekels–Zheng Inequality [464]). Let f ∈ Cloc, h ∈
L1(0,+∞), and y ∈ BVloc(0,+∞) ∩ L1(0,+∞) satisfy

(i) f(u) ≥ 0, h(t) ≥ 0, y(t) ≥ 0 for every u ≥ 0 and (almost) every t ≥ 0,

(ii)
∫ +∞
0

h(t)dt =: H,
∫ +∞
0

y(t)dt =: Y ,

(iii) the function q1(t) :=
∫ t

0
(f(y(τ))+h(τ))dτ−y(t) is non-decreasing on (0,+∞).

Then
lim

t→+∞ y(t) = 0. (2.2.95)

If, further, the function F (u) :=
∫ u

0 (max(1, f(v)/v))
−1

dv for all u ≥ 0 satisfies
the condition

lim
u→+∞F (u) = +∞, (2.2.96)

then ⎧⎪⎨⎪⎩
y(t) ≤ Y := F−1(F (y(0)) + Y +H), for all t ≥ 0, (2.2.97)

y(t) ≤ F−1(2Y +H), for all t ≥ 1, (2.2.98)

Var[0,+∞)(y
2) ≤ y2(0) + 4(Y ‖f‖[0,Y ] +HY ). (2.2.99)

Proof. First, we assume that (2.2.96) is valid and for all t > 0, let p(t) := f(y(t))+
h(t). Then we know that the hypotheses of Lemma 2.2.2 are satisfied for any T > 0,
and so the function

Q1(t) :=

∫ t

0

y(τ)(f(y(τ)) + h(τ))

max{y(τ), f(y(τ))} dτ − F (y(t)) (2.2.100)

is non-decreasing in [0,+∞). Obviously, we know that for every t ≥ s ≥ 0,

F (y(t))− F (y(s)) ≤
∫ t

s

y(τ)f(y(τ)) + y(τ)h(τ)

max{y(τ), f(y(τ))} dτ

≤
∫ t

s

(y(τ) + h(τ))dτ ≤ Y +H

which, by taking s = 0, gives (2.2.97). Note that the following inequality,

F (y(t)) ≤ F (y(s)) + Y +H ≤ y(s) + Y +H,

which, integrated over [t− 1, t] for t ≥ 1, yields (2.2.98) immediately.

If now we define

q2(t) :=

∫ t

0

(‖f‖[0,Ȳ ] + h(τ))dτ − y(t), (2.2.101)
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then by assumption (iii) and inequality (2.2.97), we conclude that the function q2
is non-decreasing, and Lemma 2.2.2 for g(u) = u and arbitrary T > 0 implies that
the function

Q2(t) :=

∫ t

0

y(τ)(‖f‖[0,Ȳ ] + h(τ))dτ − 1

2
y2(t) (2.2.102)

is non-decreasing in [0,+∞).

Let S := {tj}nj=0, 0 = t0 < t1 < · · · < tn be an arbitrary sequence, and define

V (S) :=
n∑

j=1

|y2(tj)− y2(tj−1)|. (2.2.103)

Note that in the above definition of V (S), we first eliminate monotone parts
of the sequence {y2(tj)}. To this end, we may choose j0 := 0, and for k ≥ 1,
we define by induction the sets Mk of all indices i ≥ jk−1 such that the sequence
{y2(tj)}ij=jk−1

is monotone. Then we set jk : maxMk until jk = n for some k = n′.
Therefore the sequence {y2(tjk )}n

′
k=0 is alternating, that is,(

y2(tjk+1
)− y2(tjk)

) (
y2(tjk )− y2(tjk−1

)
)
< 0 for k = 1, . . . , n′ − 1 (2.2.104)

and there holds that

V (S) =

n′∑
k=1

|y2(tjk)− y2(tjk−1
)|. (2.2.105)

We now either have (−1)k
(
y2(tjk)− y2(tjk−1

)
)
> 0 for every k = 1, . . . , n′

and

V (S) = y2(0)− y2(tn) + 2

k′∑
i=1

(
y2(tj2i)− y2(tj2i−1 )

)
, k′ =

[
n′

2

]
,

or for every k = 1, 2, . . . , n′,

(−1)k
(
y2(tjk )− y2(tjk−1

)
)
< 0,

and k′′ = [n
′−1
2 ],

V (S) = y2(0)− y2(tn) + 2

k′′∑
i=0

(
y2(tj2i+1)− y2(tj2i)

)
.

Noting that the function (2.2.102) is non-decreasing, we conclude in both
cases

V (S) ≤ y2(0) + 4

∫ tn

0

y(τ)
(‖f‖[0,Ȳ ] + h(τ)

)
dτ

≤ y2(0) + 4
(
Y ‖f‖[0,Ȳ ] +HY

)
.

(2.2.106)
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Since the sequence S is arbitrary, (2.2.99) follows. In particular, the function
y2(t) tends to a finite limit as t → +∞. Note that y(t) is integrable, this limit
must be zero.

Assume now f is an arbitrary non-negative continuous function. Then if for
all u ≥ 0, we take

g(u) := max (0,min(1, 2− u)) , G(u) :=

∫ u

0

g(v)dv,

then from Lemma 2.2.2, it follows that

Q(t) :=

∫ t

0

g(y(τ))(f(y(τ)) + h(τ))dτ −G(τ)

is non-decreasing in [0,+∞). If now for all t ≥ 0, we set y∗(t) := G(y(t)) ≤
y(t), q∗1(t) :=

∫ t

0
(F ∗+h(τ))dτ −y∗(t), where F ∗ := ‖f‖[0,2], then for every t > s >

0, we obtain q∗1(t)− q∗1(s) ≥ Q(t)−Q(s) ≥ 0, hence q∗1 is non-decreasing.

We are hence now in the previous situation, with y∗(t), q∗1(t), f
∗(t) ≡ F ∗

instead of y(t), q1(t), f(u), respectively, which yields that limt→+∞ y∗(t) = 0, so
that there exists a time T > 0 such that y∗(t) ≤ 1 for all t ≥ T . Thus y(t) = y∗(t)
for all t ≥ T ∗ and the proof is now complete. �
Remark 2.2.1 ([464]). In Theorem 2.2.10, if we remove the condition (2.2.96), then
we no longer have an a priori bound for y(t). Indeed, it suffices to consider any

continuous function f(u) ≥ max{1, u} such that F∞ :=
∫ +∞
0 v/f(v)dv < +∞. If

we let Φ(u) :=
∫ u

0
1/f(v)dv, we then have

Φ∞ :=

∫ +∞

0

1/f(v)dv ≤
∫ 1

0

1/f(v)dv +

∫ +∞

1

1/f(v)dv ≤ 1 + F∞ − F (1).

For an arbitrary ε ∈ (0,Φ∞), there is a constant Rε > 0 such that Φ∞ −
Φ(Rε) =

∫ +∞
Rε

1/f(v)dv = ε and define the function

yε(t) :=

{
Φ−1(t), for all t ∈ [0,Φ∞ − ε],
0, for all t > Φ∞ − ε.

Then yε(Φ∞ − ε) = Rε and y′ε(t) = f(yε(t)) for all t ∈ (0,Φ∞ − ε), hence∫ +∞

0

yε(t)dt =

∫ Φε−ε

0

y′ε(t)yε(t)/f(yε(t))dt = F (Rε) ≤ F∞

and ∫ t

0

f(yε(τ))dτ − yε(t) =

{
0, for all t ∈ [0,Φ∞ − ε],
Rε + tf(0), for all t > Φ∞ − ε.

Hence, the hypotheses (i)–(iii) of Theorem 2.2.10 hold with h ≡ 0 and Y =
F∞ independently of ε, while yε(Φ∞ − ε) → +∞ as ε → 0.
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The next result, which can be found in Wang [946], is concerned with the
method of Lyapunov functionals. Since it is a useful tool in dealing with the
asymptotic behavior of global solutions to evolutionary differential equations, we
still state it here.

Theorem 2.2.13 ([946]). Let a > 0 be a constant, and V (t) ∈ C1([a,+∞)) satisfy

(1) V (t) is bounded from below;

dV (t)

dt
≤ −Kg(t) + h(t), (2.2.107)

(2)

⎧⎪⎪⎨⎪⎪⎩g(t) ∈ C1[a,+∞), g(t) ≥ 0,

∫ +∞

a

h(t)dt < +∞, (2.2.108)

where K > 0 is a constant. If there exists a constant β such that

dg(t)

dt
≤ β, (2.2.109)

then
lim

t→+∞ g(t) = 0. (2.2.110)

Proof. If (2.2.110) is not valid, then without loss of generality, we may assume that
β > 0, and there is a constant ε0 > 0 and a sequence {ti}, ti → +∞ satisfying

a = t0 < t1 < t2 < · · · < ti < · · · , ti − ti−1 > 1, i = 1, 2, . . . (2.2.111)

such that
g(ti) > ε0. (2.2.112)

Now choose an α > 0 so small that

ti−1 < ti − α, αβ < ε0/2. (2.2.113)

With the help of (2.2.109), we derive for all t ∈ [ti − α, ti],

g(ti)− g(t) ≤ β(ti − t). (2.2.114)

Then it follows from (2.2.112) and (2.2.114) that

g(t) ≥ g(ti) + β(t− ti) > ε0 − βα > ε0/2, ti − α ≤ t ≤ ti. (2.2.115)

Exploiting (2.2.107) and (2.2.115), we deduce that for all N ∈ N and for all
t ≥ tN ,

V (t) ≤ V (a)−K

∫ +∞

a

g(t)dt+

∫ +∞

a

h(t)dt

≤ V (a)−K

N∑
i=1

∫ ti

ti−α

g(t)dt+

∫ +∞

a

h(t)dt

≤ V (a)− ε0NKα/2 +

∫ +∞

a

h(t)dt.

(2.2.116)
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Thus it follows from (2.2.108) by letting N → +∞ that in (2.2.116),

lim
t→+∞V (t) = −∞,

which contradicts the assumption (1). The proof is thus complete. �

To end this section, we are going to introduce a conjecture due to Cruz-
Sampedro [178] which describes the exact asymptotic behavior of solution at infin-
ity to abstract second-order differential inequalities in Hilbert spaces and extends
previous work of Jäger [392] of Agmon.

Assume H is a Hilbert space over the complex numbers C with inner product
(·, ·) and norm ‖ · ‖. We consider functions ω on R+ with values in H satisfying
the following form of second-order differential inequalities

‖ − ω′′(r) +Brω(r) − k2ω(r)‖ ≤ Cr−1−δ‖ω(r)‖+ g(r), r > 0, (2.2.117)

where C ≥ 0 and δ > 0 are constants, g is a function in L2(R+) with compact
support, and k is a complex number satisfying �k > 0, and as in [392], we as-
sume that Br are non-negative linear operators on H with a common domain D,
independent of r and dense in H, and satisfy the following condition:

Condition I. For every h ∈ D, the map r �→ Brh from R+ to H is continuous
and the function r �→ (Brh, h) is of class C

1 on R+. Moreover, for some constant
β > 1, for all h ∈ D and some r0 ≥ 0,

− d

dr
(Brh, h) ≥ β

r
(Brh, h), r > r0. (2.2.118)

Thus we are in a position to state main results from [178] as follows.

Theorem 2.2.14 ([178]). If ω ∈ W 2,2
loc (R

+,H) is a solution to (2.2.117), with �k > 0,
satisfying ∫ +∞

0

‖ω(r)‖2dr < +∞, (2.2.119)

then there exists a ψ ∈ H such that

lim
r→+∞ exp(−ikr)ω(r) = ψ strongly in H. (2.2.120)

It follows from Theorem 2.2.12 that any square integrable solution ω of
(2.2.117) with �k > 0 satisfies as r → +∞

‖ω(r)‖ = O(exp(−�kr)). (2.2.121)

It follows from the following unique continuation “at infinity”, due to Cruz-
Sampedro [178], that this upper bound is optimal.
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Theorem 2.2.15 ([178]). Assume that ω is defined as in Theorem 2.2.12 and

lim
r→+∞ ‖ exp(−ikr)ω(r)‖ = 0. (2.2.122)

Then ω has compact support.

Recall that the exact asymptotic behavior at infinity of solutions to (2.2.117)
with k ∈ R\{0} has been studied by Jäger [390, 391, 392] who proved not only in
[392] an analogue of Theorem 2.2.12 for δ > 1/2, but also in [390, 391] that if ω is
a solution to (2.2.117) satisfying lim inf

r→+∞‖ω(r)‖ = 0, then ω has compact support.

We also note that, when k ∈ C with �k > 0, Agmon [11] proved Theorem 2.2.12
for the class of operators Br = p(r)S, where S is a fixed non-negative operator
on H and p(r) a positive continuously differentiable function satisfying for some
constant β > 1 and for all r > r0

(rβp(r))′ ≤ 0. (2.2.123)

Furthermore, Agmon [11] also proved Theorem 2.2.13 for this latter class of
operators for β = 2 and conjectured that his result holds for any β > 1. In fact,
Theorem 2.2.13 ([178]) has confirmed that Agmon’s conjecture is correct.

It is known that the usual concrete form of operators Br satisfying Condi-
tion I is given by Br = −Λ/r2 with Λ being the Laplace–Beltrami operator on the
unit sphere Sn−1 (see, e.g., [11, 12, 390, 391]). We also find the concrete operators
Br satisfying Condition I without the form Br = p(r)S in [15, 178].

First, Theorem 2.2.12 is a direct corollary of the abstract results in Theorems
2.2.14 and 2.2.15 below. Since the proofs of these results are simple variants of
Agmon’s proofs [11] of the similar results for Br = p(r)S, we shall omit the detailed
proof here. In order to prove Theorem 2.2.13, it merely suffices to follow Agmon
[11] (see, e.g., Cruz-Sampedro [178]) closely and introduce some new techniques of
the Bessel-function arguments of Agmon to prove his conjecture. Next, to prove
Theorem 2.2.13 we need some auxiliary estimates and definitions.

Consider the following abstract second-order differential operator L

L = − d2

dr2
+ 2Ar

d

dr
+Br, (2.2.124)

where the operator L acts onH-valued functions on R+; for all r > 0,Ar andBr are
linear operators on H with a common domain D dense in H and independent of r.

We first make the following assumptions (see Cruz-Sampedro [178]).

(A) There exists a constant κ > 0 such that for all h ∈ D and r > 0,


(Arh, h) ≥ κ‖h‖2. (2.2.125)

(B) The operators Br are non-negative, and for every h ∈ D, the map r �→ Brh
from R+ to H is continuous and the function r �→ (Brh, h) is of class C

1 on
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R+. Moreover, for some μ > 0, r0 ≥ 0 and r > r0, we have for all h ∈ D,

− d

dr
(Brh, h) ≥ μ

r
(Brh, h). (2.2.126)

Next, we define the domain of the operator L.

Definition 2.2.1 ([178]). By WL we denote the class of H-valued functions v on R+

satisfying:

i) v belongs to the Sobolev space W 2,2
loc (R

+;H), i.e., v is strongly differentiable
and v′ is absolutely continuous on compact subintervals of R+, with v′′ ∈
L2
loc(R

+;H).

ii) For almost all r > 0, v(r) and v′(r) belong to D.

iii) The map r �→ Brv(r) belongs to L2
loc(R

+;H) and the map r �→ (Brv(r), v(r))
is absolutely continuous on compact sub-intervals of R+.

Now taking v ∈ WL and noting that the operators Br are non-negative, for
any r, s in R+,

(Brv(r), v(r)) − (Bsv(s), v(s))

≥ (Brv(s), v(s)) − (Bsv(s), v(s)) + 2
(Brv(s), v(r) − v(s)).
(2.2.127)

Using (2.2.127) and the assumptions on v, we may conclude that for almost
all r > 0,

d

dr
(Brv(r), v(r)) = (Ḃrv(r), v(r)) + 2
(Brv(r), v

′(r)), (2.2.128)

where the prime at v denotes differentiation with respect to r and

(Ḃrv(r), v(r)) =
d

dt
(Btv(r), v(r))|t=r . (2.2.129)

Noting that the following three theorems are straightforward generalizations
of similar results proved by Agmon [11] for Br = p(r)S, we omit their proofs here.
Indeed, Theorem 2.2.14 below can be derived as in [11] from Theorem 2.2.15 which
follows directly from Theorem 2.2.14.

Theorem 2.2.16 ([178]). Assume that v be an H-valued function on R+ such that
v ∈ WL and v(r) = 0 for all 0 ≤ r ≤ r0, where r0 is as in (2.2.126), and further
v satisfies, for all r ≥ r0,

‖Lv(r)‖ ≤ Cr−1−δ‖v(r)‖ + ϕ(r), (2.2.130)

where C ≥ 0 and δ > 0 are constants and ϕ is a function in L2
loc(R

+) satisfying∫ +∞

0

rαϕ2(r)dr < +∞ (2.2.131)
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for some constant α such that 0 ≤ α ≤ μ and α < 1 + 2δ. The constant μ is as
defined in (2.2.126). Assume, in addition, that there holds∫ +∞

0

‖v′(r)‖2 exp(−4ηr)dr < +∞ (2.2.132)

for some constant η satisfying 0 ≤ η < κ, where κ is as in (2.2.125). Then the
following inequality holds:

κ

∫ +∞

0

rα‖v′(r)‖2dr + (μ− α)

∫ +∞

0

rα−1(Brv(r), v(r))dr

≤ κ−1

(∫ +∞

0

rαϕ2(r)dr + C2
1

∫ T

0

rα−2δ‖v′(r)‖2dr
)
,

(2.2.133)

where

C1 = 2C/(1 + 2δ − α) and T = (C1/κ)
1/δ.

Theorem 2.2.17 ([178]). Assume now that v satisfies the assumptions of Theorem
2.2.14 and that the parameter μ in (2.2.126) is larger than 1. Then it follows that
there exists a ψ ∈ H such that

lim
r→+∞ v(r) = ψ (2.2.134)

strongly in H.

We point out here that the following result plays a crucial role in the proof
of Theorem 2.2.13.

Theorem 2.2.18 ([178]). Assume that L is defined as in (2.2.124) and v is an H-
valued function on R+ such that v ∈ WL and v(r) = 0 for all 0 ≤ r ≤ r0, where
r0 is as in (2.2.118), that v satisfies, for all r ≥ r0,

‖Lv(r) + γr−αv(r)‖ ≤ Cr−1−δ‖v(r)‖ + ϕ(r), (2.2.135)

where C ≥ 0 and δ > 0 are constants, γ is a real number, α satisfies 1 < α ≤ β,
and ϕ is a function in L2

loc(R
+) satisfying∫ +∞

0

rα|ϕ(r)|2dr < +∞. (2.2.136)

Moreover, assume that∫ +∞

0

‖v′(r)‖2 exp(−4ηr)dr < +∞ (2.2.137)
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for some constant η satisfying 0 ≤ η < κ, where κ is as in (2.2.125). Then∫ +∞

0

rα−2‖v(r)‖2dr

≤ 4

(κ(α− 1))2

(∫ +∞

0

rα|ϕ(r)|2dr + C2

∫ R0

0

rα−2−2δ‖v(r)‖2dr
)
,

(2.2.138)

where
R0 = (2C/κ(α− 1))

1/δ
.

Remark 2.2.2. ([178]) We observe that the condition that R0 is independent of γ
plays a key role in proving Theorem 2.2.13.

Now define on R+ for all ν > 0, μ > 0 and r > 0,

Gν,μ(r) = (p(r/ν))−1/4 exp

(
−ν

∫ r/ν

1

p(t)1/2dt

)
, (2.2.139)

where p(r) ≡ −k2 + r−μ. Observe that �k > 0, p(r) never vanishes, so that the
square root of p(r) is chosen to satisfy 
(p(r)1/2) > 0. Since the functions Gν,μ are
the WKB approximations (see [706]) to the solutions of the Bessel-like equation

−u′′ +
(
−k2 +

νμ

rμ

)
u = 0, r > 0,

we can employ (2.2.139) to get

G′
ν,μ(r) = −

(
(p(r/ν)1/2 +

1

4ν

p′(r/ν)
p(r/ν)

)
Gν,μ(r) (2.2.140)

and

G′′
ν,μ(r) =

(
−k2 +

νμ

rμ
+

1

r2
gν(r)

)
Gν,μ(r), (2.2.141)

where the constant C1 depends only on k and μ such that for all r > 0 and all
ν > 0,

|gν(r)| ≤ C1. (2.2.142)

Thus gν(r)/r
2 is short-range uniformly in ν, which is crucial to apply The-

orem 2.2.14 in the proof. Next, if we set Aν(r) = −G′
ν,μ(r)/Gν,μ(r), then we can

show that there exists a ν0 > 0, depending on μ, such that for all r > 1 and for
all ν > ν0,


Aν(r) ≥ 1

2
(Im k)3/2|k|−1/2. (2.2.143)

In fact, we may conclude

Aν(r) = (−k2 + (ν/r)μ)1/2 − qν(r)/r, (2.2.144)
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where

qν(r) =
μ

4

(ν/r)μ

(ν/r)μ − k2
.

Since �k > 0, there is a constant C2 > 0 independent of ν such that |qν(r)| ≤
C2 for all r > 0. Let θ = Arg(−ik), |θ| < π/2. Thus using some basic estimates as
in [11], we can derive that


 (
(ν/r)μ − k2

)1/2 ≥ cos θ|(ν/r)μ − k2|1/2
≥ (cos θ)3/2((ν/r)μ + |k|2)1/2

≥ 1√
2
(cos θ)3/2

(
(ν/r)μ/2 + |k|

)
,

(2.2.145)

from which it follows that there exists a ν0 > 0 such that for all ν > ν0 and for all
r > 1,


 Aν(r) ≥ 1

2
(cos θ)3/2|k| = 1

2
(�k)3/2|k|−1/2.

This hence proves (2.2.143). Finally, set Gν,μ(r) = exp(−ρν + iθν), where
ρν and θν are real-valued functions on R+, and note that yν(r) ≡ ρ′ν(r) satisfies
yν(r) = 
 Aν(r) and for all r > 0,

y′ν(r) = (yν)
2 − (θ′ν)

2 − (� k)2 + (
 k)2 − (ν/r)μ −
 gν(r)/r
2. (2.2.146)

After having established Theorems 2.4.14–2.4.16, we can prove Theorem
2.2.13, see [178] for details.

2.3 Differential and difference inequalities

leading to decay rates

From Section 2.2 we know only that the non-negative function (y(t), say) goes
to zero as time tends to infinity. We have no information on the decay rate of
y(t). In fact, the decay rate of y(t) depends on some factors which include some
terms in the inequality. This can be clearly seen from the following two theorems,
which indicate that when the differential inequality involves a decay term h(t),
the corresponding non-negative function y(t) has a similar decay rate.

The next result was obtained in Qin, Ren and Wei [803] to prove the decay
rate of global solutions.

Theorem 2.3.1 (The Qin–Ren–Wei Inequality [803]). Assume that y(t) ∈ C1(R+),
y(t) ≥ 0 on R+, and satisfies for all t > 0,

y′(t) ≤ −C0y(t) + λ(t), (2.3.1)
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where 0 ≤ λ(t) ∈ L1(R+) and C0 > 0 is a constant. Then

lim
t→+∞ y(t) = 0. (2.3.2)

Furthermore,

(1) if λ(t) ≤ C1e
−α0t for all t > 0, with C1 > 0, α0 > 0 being constants, then for

all t > 0,

y(t) ≤ C2e
−αt, (2.3.3)

where C2 > 0 andα > 0 are constants.

(2) if λ(t) ≤ C3(1 + t)−p for all t > 0, where p > 1 and C3 > 0 are constants,
then for all t > 0,

y(t) ≤ C4(1 + t)−p+1, (2.3.4)

with a constant C4 > 0.

Proof. Multiplying (2.3.1) by eC0t and integrating the resulting inequality, we have

y(t) ≤ y(0)e−C0t + e−C0t

∫ t

0

λ(s)eC0sds. (2.3.5)

Noting that λ(t) ∈ L1(R+), we get

e−C0t

∫ t

0

λ(s)eC0sds =

∫ t/2

0

λ(s)e−C0(t−s)ds+

∫ t

t
2

λ(s)e−C0(t−s)ds (2.3.6)

≤ e−(C0/2)t

∫ +∞

0

λ(s)ds+

∫ t

t
2

λ(s)ds → 0, as t → +∞.

Now (2.3.2) follows from (2.3.5) and (2.3.6).

(1) If λ(t) ≤ C1e
−α0t, for all t > 0, with C1 > 0, α0 > 0 being constants,

then it follows from (2.3.5)–(2.3.6) that

y(t) ≤ y(0)e−C0t + C′
1e

−(C0/2)t + C1

∫ t

t
2

e−α0sds

≤ y(0)e−C0t + C′
1e

−(C0/2)t +
C1

α0
e−(α0/2)t

≤ C2e
−αt,

with C′
1 =

∫ +∞
0

λ(s)ds, C2 = max
{
y(0), C′

1,
C1

α0

}
> 0 and α = 1

2 min{C0, α0} >

0. This proves (2.3.3).
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(2) If λ(t) ≤ C3(1 + t)−p, for all t > 0, with p > 1, C3 > 0 being constants,
similarly to case (1), it follows from (2.3.5)–(2.3.6) that for all t > 0,

y(t) ≤ y(0)e−C0t + C′
1e

−(C0/2)t + C3

∫ t

t
2

1

(1 + s)p
ds

≤ y(0)e−C0t + C′
1e

−(C0/2)t +
C3

p− 1

(
1 +

t

2

)−p+1

≤ C4(1 + t)−p+1,

for some constant C4 = C4(y(0), C′
1, C3, p) > 0 depending only on y(0), C′

1, C3

and p. This gives us (2.3.4) and hence the proof is complete. �

For case (1) in Theorem 2.3.1, there is another proof, due to Muñoz Rivera
[645], which will be stated in the next corollary.

Corollary 2.3.1 (The Muñoz Rivera Inequality [645]). Assume that

y(t) ∈ C1(R+), y(t) ≥ 0 on R+,

and satisfies for all t > 0,

y′(t) ≤ −C0y(t) + C1e
−α0t (2.3.7)

where C0, C1, and α0 are positive constants. Then there exist positive constants
C2 and α such that for all t > 0,

y(t) ≤ C2e
−αt. (2.3.8)

Proof. Let

F (t) = y(t) +
2C1

α0
e−α0t.

Then from (2.3.7) we have

F ′(t) = y′(t)− 2C1e
−α0t ≤ −C0y(t)− C1e

−α0t

≤ −αF (t),
(2.3.9)

where α = min (C0, α0/2) > 0. Consequently, for all t > 0,

F (t) ≤ C2e
−αt,

with C2 = F (0) = y(0) + 2C1

α0
, which implies (2.3.8). �

Recently, Qin and Ren [802] extended Theorem 2.3.1 to the next form.
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Theorem 2.3.2 (The Qin–Ren Inequality [802]). Suppose that y(t) ∈ C1(R+),

y(t) ≥ 0 on R+, and h(t) is a positive function satisfying
∫ +∞
0

h(t)dt = +∞.

(1) If y(t) satisfies for all t > 0,

y′(t) ≤ −C0h(t)y(t) + λ(t), (2.3.10)

where 0 ≤ λ(t) ∈ L1(R+), lim
t→+∞

λ(t)
h(t) = 0, and C0 > 0 is a constant, then

lim
t→+∞ y(t) = 0. (2.3.11)

Furthermore,

(2) if λ(t) ≤ C1h(t)e
−α0

∫
t
0
h(s)ds for all t > 0, with C1 > 0, α0 > 0 being

constants, then there exists a constant R1 > 0, such that as t ≥ R1, for all
t > 0,

y(t) ≤ C2e
−α

∫
t
0
h(s)ds, (2.3.12)

with C2 > 0, α > 0 being constants.

Proof. (1) Multiplying (2.3.10) by eC0

∫
t
0
h(ω)dω and integrating the resulting in-

equality, we have

y(t) ≤ y(0)e−C0

∫ t
0
h(ω)dω + e−C0

∫ t
0
h(ω)dω

∫ t

0

λ(s)eC0

∫ s
0
h(ω)dωds. (2.3.13)

Noting that λ(t) ∈ L1(R+), we have

e−C0

∫ t
0
h(ω)dω

∫ t

0

λ(s)eC0

∫ s
0
h(ω)dωds =

∫ t

0

λ(s)e−C0

∫ t
s
h(ω)dωds

=

∫ t

0 λ(s)e
C0

∫
s
0
h(ω)dωds

eC0

∫
t
0
h(ω)dω

.

(2.3.14)

By the l’Hospital rule, we can derive in case (1) that

lim
t→+∞

∫ t

0 λ(s)eC0

∫
s
0
h(ω)dωds

eC0

∫ t
0
h(ω)dω

=
1

C0
lim

t→+∞
λ(t)

h(t)
= 0 (2.3.15)

which, together with (2.3.13) and (2.3.14), gives us (2.3.11).

(2) If λ(t) ≤ C1h(t)e
−α0

∫
t
0
h(ω)dω for all t > 0, then from (2.3.14) it follows

that

0 ≤ 1

C0
lim

t→+∞
λ(t)

h(t)
≤ C1

C0
lim

t→+∞ e−α0

∫
t
0
h(ω)dω = 0,

whence

lim
t→+∞

λ(t)

h(t)
= 0. (2.3.16)
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We claim that there exists a large constant R1 > 0 such that if t ≥ R1, then∫ t

0 λ(s)e
C0

∫
s
0
h(ω)dωds

eC0

∫
t
0
h(ω)dω

≤ e−α
∫

t
0
h(ω)dω, (2.3.17)

where 0 < α < min{C0, α0}.
In fact,

lim
t→+∞

∫ t

0
λ(s)eC0

∫
s
0
h(ω)dωds

e(C0−α)
∫ t
0
h(ω)dω

=
1

C0 − α
lim

t→+∞
λ(t)eC0

∫
t
0
h(ω)dωds

e(C0−α)
∫ t
0
h(ω)dωh(t)

≤ C1

C0 − α
lim

t→+∞ e(α−α0)
∫

t
0
h(ω)dω = 0.

Then there exists a large constant R1 > 0 such that for t ≥ R1,∫ t

0 λ(s)e
C0

∫ s
0
h(ω)dωds

e(C0−α)
∫

t
0
h(ω)dω

≤ 1, (2.3.18)

which is (2.3.17). By (2.3.13), (2.3.17), (2.3.18), for all t ≥ R1,

y(t) ≤ y(0)e−C0

∫ t
0
h(ω)dω + e−α

∫ t
0
h(ω)dω ≤ C2e

−α
∫ t
0
h(ω)dω, (2.3.19)

with C2 = max{y(0), 1} > 0. This proves (2.3.12). �

The next result is simple and can be proved directly.

Theorem 2.3.3 (The Qin–Ren Inequality [802]). Let 0 < y(t) ∈ C1([0,+∞)) and
satisfy for all t > 0,

y′(t) + ayp(t) ≤ 0, y(0) > 0, (2.3.20)

where p ≥ 1 and a > 0 is a constant. Then for all t > 0,

y(t) ≤ y(0)e−at, if p = 1, (2.3.21)
{
y(t) ≤ 1/[y1−p(0) + a(p− 1)t]1/(p−1), if p > 1. (2.3.22)

Note that when p = 1, the estimate (2.3.21) reduces to (2.3.8) with C1 = 0
in Corollary 2.3.1, and (2.3.22) establishes the polynomial decay of y(t).

We may find the following result in Muñoz Rivera [645].

Theorem 2.3.4 (The Muñoz Rivera Inequality [645]). Assume that y(t) ∈ C1(R+),
y(t) ≥ 0 on R+, and satisfies for all t > 0,

y′(t) ≤ −K0[y(t)]
1+1/p +

K1

(1 + t)1+p
(2.3.23)

where K0 > 0,K1 > 0 and p > 1 are constants. Then there exists a constant
K2 > 0 such that for all t > 0,

y(t) ≤ K2[py(0) + 2K1]

(1 + t)p
. (2.3.24)
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Proof. Let h(t) = 2K1

p(1+t)p and g(t) = y(t) + h(t). Then (2.3.23) yields

g′(t) = y′(t)− 2K1

(1 + t)p+1

≤ −K0

{
[y(t)]1+1/p +K−1

0 K1(1 + t)−(1+p)
}

≤ −K0

{
[y(t)]1+1/p +

(p
2

)1+1/p 1

K0K
1/p
1

[h(t)]1+1/p

}
. (2.3.25)

Thus taking a0 = min

(
1, (p2 )

1+1/p 1

K0K
1/p
1

)
, we can obtain

g′(t) ≤ −K0a0

{
[y(t)]1+1/p + [h(t)]1+1/p

}
. (2.3.26)

Noting that

[g(t)]1+1/p = [f(t) + g(t)]1+1/p ≤ a1

(
[f(t)]1+1/p + [g(t)]1+1/p

)
with a1 = 2p−1, we can conclude from (2.3.26) that

g′(t) ≤ −K0a0
a1

[g(t)]1+1/p,

which implies

g(t) ≤ ppg(0)

{
p+

K0a0
a1

[g(0)]1/pt

}−p

≤ pp−1[py(0) + 2K1]

ap2(1 + t)p
(2.3.27)

with a2 = min
(
p, K0a0

a1
[g(0)]1/p

)
. Therefore, (2.3.24) follows from (2.3.27) with

K2 = pp−1/ap2. �

The following result is a generalization of Theorem 2.3.4 (see, e.g., [652]).

Theorem 2.3.5 (The Muñoz Rivera–Racke Inequality [652]). Assume that the func-
tion f(t) ≥ 0 is differentiable on R+ and satisfies for all t > 0,

f ′(t) ≤ −c1
f(0)1/α

f(t)1+
1
α +

c2
(1 + t)β

f(0) (2.3.28)

with positive constants α > 0, c1, c2, f(0) > 0 and

β ≥ α+ 1. (2.3.29)

Then there exists a constant c3 > 0 such that for all t ≥ 0

f(t) ≤ c3
(1 + t)α

f(0). (2.3.30)
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Proof. Let for all t > 0,

F (t) := f(t) +
2c2
α

(1 + t)−αf(0).

Then from (2.3.29), it follows

F ′(t) = f ′(t)− 2c2(1 + t)−(α+1)f(0)

≤ − c1
f(0)1/α

f1+ 1
α (t)− c2(1 + t)−(α+1)f(0),

which yields

F ′(t) ≤ − c

f(0)1/α

(
f1+ 1

α (t) + (1 + t)−(α+1)f(0)1+
1
α

)
≤ − c

F (0)1/α
F 1+ 1

α (t).
(2.3.31)

Integration of (2.3.31) with respect to t yields

F (t) ≤ F (0)

(1 + ct)α
≤ c

(1 + t)α
f(0)

which gives (2.3.30) for some constant c3 > 0. �

The next result is another criterion for the polynomial decay rate which was
obtained by Kim [439] in terms of a difference inequality.

Theorem 2.3.6 (The Kim Inequality [439]). Let H be a continuous, positive, de-
creasing real function on [0,+∞) and bounded by 1. Assume that there are four
constants C1 > 1 and C2, β, γ > 0, such that for all s > 0,

H(s) ≤ C1

(
1

H(s)

)β [
H(s)−H

((
C2

H(s)

)γ

+ s

)]
. (2.3.32)

Then there exist constants C > 0 and δ > 0, such that for any t > 0,

H(t) ≤ Ct−δ. (2.3.33)

Proof. Let t > 0. We distinguish two cases:

(1) if
(

H(s)
C2

)γ

< 1
t , then H(s) ≤ C2

t1/γ
;

(2) if
(

H(s)
C2

)γ

≥ 1
t , then

(
C2

H(s)

)γ

+ s ≤ t+ s, thus

H(t+ s) ≤ H

((
C2

H(s)

)γ

+ s

)
(2.3.34)

and

H(s) ≤ C
1/(β+1)
1

{
H(s)−H(t+ s)

}1/(β+1)

. (2.3.35)
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Consequently, for all s, t > 0,

H(s) ≤ C
1/(β+1)
1

{
H(s)−H(t+ s)

}1/(β+1)

+
C2

t1/γ
. (2.3.36)

Let

Ψt(s) =

[(
C1t

s

)1/(β+1)

+
C2

t1/γ

]−1

.

Now we again distinguish two cases:

(i) if H(s) − H(t + s) ≤ t
t+s , then H(s) ≤ (C1t

t+s )
1/(β+1) + C2

t1/γ
, and thus

Ψt(t+ s)H(t+ s) ≤ 1;

(ii) if t
t+s < H(s) − H(t + s), then tH(s)

t+s ≤ t
t+s < H(s) − H(t + s), and

therefore

Ψt(t+ s)H(t+ s) <
s

t+ s
H(s)Ψt(t+ s) = Ψt(s)H(s)

(
Ψt(t+s)

t+s

Ψt(s)
s

)
< Ψt(s)H(s),

(2.3.37)

where we have used the fact that ξ �−→ Ψt(ξ)ξ is decreasing. Consequently, we
have proved that for any s, t > 0, we have either Ψt(t + s)H(t + s) ≤ 1, or
Ψt(t + s)H(t + s) < Ψt(s)H(s). In particular, we deduce that for any t > 0 and
0 	= n ∈ N, either Ψt((n + 1)t)H((n + 1)t) ≤ 1, or Ψt((n + 1)t)H((n + 1)t) <
Ψt(nt)H(nt). Then by induction, we have

Ψt((n+ 1)t)H((n+ 1)t) ≤ max
(
1,Ψt(t)H(t)

)
= 1 (2.3.38)

where we have used that C1 > 1 and H ≤ 1. Hence for all t > 0 and 0 	= n ∈ N,

H ((n+ 1)t) ≤
(

C1

n+ 1

)1/(β+1)

+
C2

t1/γ
. (2.3.39)

We choose n such that n+ 1 ≤ t < n+ 2 to obtain that for all t ≥ 2,

H(t2) ≤
(
2C1

t

)1/(β+1)

+
C2

t1/γ
. (2.3.40)

The desired result now follows immediately. �

We give below an integro-differential inequality, due to Galdi [295], which
also provides an exponential decay rate.

Theorem 2.3.7 (The Galdi Inequality [295]). Assume that β ≤ +∞ and y(t) is a
real, non-negative continuous function in [0, β) such that

y(t) ∈ C1(0, β), lim
t→β

y(t) = 0. (2.3.41)
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Then if y(t) satisfies the integro-differential inequality for all t ∈ (0, β),

y′(t) + a

∫ β

t

y(s)ds ≤ by(t), (2.3.42)

with constants a > 0 and b ∈ R, then for all t ∈ (0, β),

y(t) ≤ ky(0) exp(−σt), (2.3.43)

where k = σ − 1/[σ1 − δ + δe−σ1β] =
√
b2 + 4a/σ, σ = (

√
b2 + 4a − b)/2, σ1 =√

b2 + 4a, δ = (b +
√
b2 + 4a)/2.

Proof. Let Ψ(t) = y(t)e−bt. Then by (2.3.42)

Ψ′(t) + a

∫ β

t

eb(t−s)Ψ(s)ds ≤ 0. (2.3.44)

Set

F (t) = Ψ(t) + δ

∫ β

t

e−b(t−s)Ψ(s)ds. (2.3.45)

Then from (2.3.44) it follows that

F ′(t) + δF (t) = Ψ′(t) + a

∫ β

t

e−b(t−s)Ψ(s)ds

+ (δ2 − δb− a)

∫ β

t

e−b(t−s)Ψ(s)ds ≤ 0,

(2.3.46)

provided that we choose δ as the positive root to the equation δ2 − δb − a = 0,
that is, 2δ = b+

√
b2 + 4a. Integrating (2.3.42) yields

F (t) ≤ F (0)e−δt,

which can be equivalently rewritten as

y(t) + δ

∫ β

t

y(s)ds ≤ F (0)e(b−δ)t. (2.3.47)

We now estimate F (0) in terms of y(0). From (2.3.43), setting σ1 = 2δ − b,
it follows that

− d

dt

(
e−δt

∫ β

t

y(s)ds

)
≤ F (0)e−σ1t

which, upon integrating from 0 to β, gives∫ β

0

y(s)ds ≤ F (0)
1− e−σ1β

σ1
. (2.3.48)
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Substituting the value of F (0) into (2.3.44), we obtain∫ β

0

y(s)ds ≤ y(0)
1− e−σ1β

σ1 − δ(1− e−σ1β)

which implies

F (0) = y(0) + δ

∫ β

0

y(s)ds ≤ y(0)σ1

σ1 − δ + δe−σ1β
. (2.3.49)

Therefore, taking into account (2.3.47), we finally obtain (2.3.43). �
Remark 2.3.1 ([295]). Note that if b < 0, (2.3.42) immediately implies (2.3.43) for
k = 1 and σ = −b.

Remark 2.3.2 ([295]). Since k ≤ k1 = σ1/(σ1 − δ), it follows from (2.3.47) and
(2.3.49) that (2.3.43) implies for all t ∈ (0, β),

y(t) ≤ k1y(0) exp(−σt). (2.3.50)

The following result is due to Agmon and Nirenberg [13, 14].

Theorem 2.3.8 (The Agmon–Nirenberg inequality). If α(t), β(t) are continuous
non-negative decreasing functions for all t ≥ 0 satisfying for all t ≥ 1,

α(t) ≤ β(t) + c′ (α(t− 1)− α(t)) , (2.3.51)

with some positive constant c′, then for any t ≥ 1,

eσtα(t) ≤ c1 (α(0)− α(1)) + c1

∫ +∞

1

eσtβ(t)dt + c1β(1) (2.3.52)

where c1, σ are positive constants depending only on c′, provided that the right-hand
side of (2.3.52) is finite.

Proof. The proof is easy and is left to the reader as an exercise. �

Now we shall introduce a series of Nakao inequalities (see, e.g., Nakao [681,
663, 666, 680]). These inequalities are connected with difference inequalities, which
are not only very important for the study of asymptotic behavior of global solu-
tions, but also seem to be interesting in their own right. One of advantages of the
Nakao inequalities is that any of them can furnish a decay rate.

The following two theorems can be found in [663, 684].

Theorem 2.3.9 (The Nakao Inequality [663]). Let φ(t) be a bounded positive func-
tion on R+ satisfying, for some constants k and α > 0, and for all t ≥ 0,

kφα+1(t) ≤ φ(t) − φ(t+ 1). (2.3.53)

Then for all t ≥ 1,

φ(t) ≤ {
αk(t− 1) +M−α

}−1/α
, (2.3.54)

where M = supt∈[0,1] φ(t).
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Proof. Setting φ−α(t) = y(t), then from (2.3.53) it follows

y(t+ 1)− y(t) =

∫ 1

0

d

dθ
[θφ(t + 1) + (1− θ)φ(t)]−αdθ

= −α

∫ 1

0

[θφ(t + 1) + (1− θ)φ(t)]−α−1dθ · [φ(t + 1)− φ(t)]

≥ αkφα+1(t)

∫ 1

0

[φ(t)]−α−1dθ

= αk. (2.3.55)

For any t ≥ 1, choose an integer n as n ≤ t < n + 1. Then from (2.3.55) it
follows that

y(t) ≥ y(t− n) + nαk ≥ y(t− n) + (t− 1)αk, (2.3.56)

whence
φ−α(t) ≥ (t− 1)αk + φ−α(t− n), (2.3.57)

or

φ(t) ≤ [αk(t− 1) + φ(t− n)−α]−1/α (2.3.58)

≤ [αk(t− 1) +M−α]−1/α. �

Corollary 2.3.2 (The Nakao Inequality [663]). Let φ(t) be a non-negative non-
increasing function on [0, T ] for any T >> 1 such that for all 0 ≤ t ≤ T − 1,

φα+1(t) ≤ C0(φ(t) − φ(t+ 1)),

with constants C0 > 0 and α > 0. Then for all 1 ≤ t ≤ T ,

φ(t) ≤ {φ−α(0) + αC−1
0 (t− 1)}−1/α.

Theorem 2.3.10 (The Nakao Inequality [663]). Let φ(t) be as in Theorem 2.3.9,
which satisfies (2.3.53) for α = 0. Then we have for all t ≥ 1,

φ(t) ≤ Me−k′t, (2.3.59)

where k′ = − log(1 − k) > 0.

Proof. By (2.3.53) for α = 0, we have

φ(t + 1) ≤ (1− k)φ(t) (which implies k < 1). (2.3.60)

Therefore, for all t ≥ 1, we have for an integer n with n ≤ t < n+ 1,

φ(t) ≤ 1

1− k
φ(t− 1) ≤

(
1

1− k

)n

φ(t− n)

≤ M(1− k)−t = Met log(1−k)

which proves (2.3.59). �
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The next result was given in [663, 666, 676, 662].

Theorem 2.3.11 (The Nakao Inequality [663, 666, 676, 662]). Assume that φ(t) is
a bounded non-negative function on R+ satisfying for all t ≥ 0,

max
s∈[t,t+1]

φ1+α(s) ≤ K0(φ(t) − φ(t+ 1)) + g(t), (2.3.61)

where K0 > 0 is a constant, g(t) a non-negative function, α a non-negative con-
stant. Then we have

(i) if limt→+∞ g(t) = 0, then
lim

t→+∞φ(t) = 0. (2.3.62)

Moreover,

(ii) if we assume that α > 0 and g(t) ≤ K1|t|−θ−1 for constants θ > 1/α,K1 ≥ 0,
then for all t > 0,

φ(t) ≤ C3t
−1/α, (2.3.63)

and

(iii) if α = 0 and g(t) ≤ K2e
−θt for constants θ > 0,K2 ≥ 0, then for all t > 0,

φ(t) ≤ C4e
−θ1t (2.3.64)

where θ1 = min
(
θ, log K0

K0−1

)
, and C3, C4 are positive constants depending

on other constants known from the involved data.

Proof. First, we prove (2.3.62) in (i). Suppose (2.3.62) does not hold. Then there
exist a real sequence

{
tn

}∞
n=1

and a constant ε0 > 0 such that

tn > 2n, φ(tn) ≥ ε0 > 0. (2.3.65)

Also by our assumption on g(t) in (i), we can choose an integer N ≥ 1, which
may be as large as wanted, such that for all t ≥ N ,

g(t) ≤ 1

2
ε1+α
0 . (2.3.66)

By (2.3.61), (2.3.65), and (2.3.66), we have

ε1+α
0 ≤ K0(φ(tN − 1)− φ(tN )) + g(tN − 1) (2.3.67)

and

0 <
1

2
ε1+α
0 ≤ K0(φ(tN − 1)− φ(tN )). (2.3.68)

Therefore, we can use again (2.3.61), (2.3.65), and (2.3.66) to obtain

1

2
ε1+α
0 ≤ K0(φ(tN − 2)− φ(tN − 1)). (2.3.69)
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Repeating this procedure, it follows that for j = 1, . . . , N ,

1

2
ε1+α
0 ≤ K0(φ(tN − j)− φ(tN − j + 1)). (2.3.70)

Summing up the above inequalities over j = 1, . . . , N yields

1

2
Nε1+α

0 ≤ K0{φ(tN −N)− φ(tN )}, (2.3.71)

which is impossible, because the left-hand side tends to +∞ as N goes to +∞,
while the right-hand side remains bounded thanks to the boundedness of φ(t).

Next, we prove (2.3.63) in (ii). Set φ0(t) = vt−θ, v > 0, and w(t) = φ(t) +
φ0(t). Then we have, for any t > 0,

max
s∈[t,t+1]

|w(s)|1+α = max
s∈[t,t+1]

|φ(s) + φ0(s)|1+α

≤ 21+α max
s∈[t,t+1]

[
φ1+α(s) + φ1+α

0 (s)
]

≤ 21+αK0 [w(t) − w(t+ 1)] + I(t),

(2.3.72)

where

I(t) = 21+α
[
−K0vt

−θ +K0v(t+ 1)−θ + v1+αt−θ(1+α) + g(t)
]
. (2.3.73)

We shall show I(t) < 0 for sufficiently large t. Indeed, we write

I(t) = vK02
1+α(t+1)−θ

(
1−

(
t+ 1

t

)θ

+
vα

K0
(t+1)θt−θ(1+α)+

1

vK0
(t+1)θg(t)

)
.

(2.3.74)

Here it is easily seen that there exists a positive integer T1 > 0 such that for
all t > T1, (

t+ 1

t

)θ

− 1 ≥ 1

2
θt−1. (2.3.75)

Therefore, by (2.3.75) and the assumption on g(t) in (ii), we have, for any t ≥ T1,

I(t) ≤ C(t+ 1)−θt−1

[
−θ

2
+

1

vK0K1
+

vα

K0
(t+ 1)θt−θ(1+α)+1

]
. (2.3.76)

Furthermore, since θ > 1
α , we have

lim
t→+∞(t+ 1)θt−θ(1+α)+1 = 0. (2.3.77)

Therefore, if we choose v so large that (vK0K1)
−1 < θ

2 , and choose T (≥ T1)
sufficiently large, then we have for all t > T ,

I(t) < 0. (2.3.78)
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Consequently, for any t > T , we derive from (2.3.72)

max
s∈[t,t+1]

w(s)1+α ≤ 21+αK0 [w(t)− w(t+ 1)] . (2.3.79)

Now, putting w−α(t) = y(t), and noting that

max
s∈[t,t+1]

w1+α(s)

∫ 1

0

{
θw(t+ 1) + (1− θ)w(t)

}−1−α
dθ ≥ 1,

we can deduce from (2.3.79) that for all t > T ,

y(t+ 1)− y(t) =

∫ 1

0

d

dθ

{
θw(t + 1) + (1− θ)w(t)

}−α
dθ

= α

∫ 1

0

{
θw(t + 1) + (1− θ)w(t)

}−1−α
dθ (w(t) − w(t + 1))

≥ α2−1−αK−1
0 . (2.3.80)

Hence, for all t > T and any integer n such that n+T ≤ t < n+T +1, we obtain

y(t) ≥ y(t− n) + nα2−1−αK−1
0

(2.3.81)
≥ min

s∈[T,T+1]
y(s) + nα2−1−αK−1

0

or

w−α(t) ≥
(

max
s∈[T,T+1]

w(s)

)−α

+ nα2−1−αK−1
0 (2.3.82)

whence

w(t) ≤
[

21+αK0

21+αK0[maxs∈[T,T+1] w(s)]−α + α(t− T − 1)

]1/α
. (2.3.83)

From the definition of w(t) and estimate (2.3.83), we thus obtain (2.3.63).

Finally we consider the case α = 0 in (iii). If K0 ≤ 1, then (2.3.61) yields

φ(t+ 1) ≤ g(t) ≤ K2e
−θt (2.3.84)

which needs nothing to prove. Hence, we may suppose K0 > 1. Then from (2.3.61),
it follows

φ(t+ 1) ≤ K0 − 1

K0
φ(t) +

K2

K0
e−θt (2.3.85)

and by induction,

φ(t) ≤
(
K0 − 1

K0

)n

φ(t− n) +

n∑
i=1

(
K0 − 1

K0

)i−1
K2

K0
e−θ(t−i) (2.3.86)

≤
(
K0 − 1

K0

)n

φ(t− n) +
K2

K0
e−θ(t−1)

(
1− (

K0 − 1

K0
eθ)n−1

)(
1− K0 − 1

K0
eθ

)−1
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where n is the integer such that t ≤ n < t + 1. Furthermore, by (2.3.86), there
exists a constant C′ > 0, such that

φ(t) ≤ C
(
e−(log

K0
K0−1 )t + e−θt

)
≤ C′e−θ1t, (2.3.87)

which hence proves (2.3.64). �

The following result is a corollary of Theorem 2.3.11 for r = 0, g(t) = const. >
0.

Corollary 2.3.3 (The Nakao Inequality [663, 666, 676, 662]). Assume that φ(t) is
a non-negative continuous function on [0, T ), T > 1, possibly T = +∞, satisfying
for all t > 0,

sup
s∈[t,t+1]

φ1+γ(s) ≤ C0(φ(t)− φ(t + 1)) +K, (2.3.88)

with some constants C0 > 0,K > 0 and γ > 0. Then for all 0 ≤ t < T ,

φ(t) ≤
{
C−1

0 γ(t− 1)+ +

(
sup

0≤s≤1
φ(s)

)−γ
}−1/γ

+K1/(γ+1), (2.3.89)

with (t−1)+ = max(t−1, 0). If (2.3.88) holds with γ = 0, then instead of (2.3.89)
we have for all 0 ≤ t < T ,

φ(t) ≤ sup
0≤s≤1

φ(s)

(
C0

1 + C0

)[t]

+K, (2.3.90)

where [t] denotes the integral part of t.

Proof. Obviously, it is trivial that (2.3.89) is valid for all 0 ≤ t ≤ 1. Set

β(t) =

{
C−1

0 γ(t− 1)+ +

(
sup

0≤s≤1
φ(s)

)−γ
}−1/γ

.

Thus to prove our assertion, it suffices to show that if for some t ≥ 0,

φ(t) ≤ β(t) +K1/(γ+1), (2.3.91)

then the following inequality holds,

φ(t+ 1) ≤ β(t+ 1) +K1/(γ+1). (2.3.92)

Assume that (2.3.92) is not true. Then

φ(t+ 1) > β(t+ 1) +K1/(γ+1) > K1/(γ+1). (2.3.93)
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We first claim that φ(t) > K1/(γ+1). Indeed, if φ(t) ≤ K1/(γ+1), we have
φ(t) ≤ φ(t+1) and hence inequality (2.3.88) implies φγ+1(t+1) ≤ K, i.e., φ(t+1) ≤
K1/(γ+1), which contradicts (2.3.93). Thus

φ̃(t) ≡ φ(t) −K1/(γ+1) > 0, φ̃(t+ 1) ≡ φ(t+ 1)−K1/(γ+1) > 0.

Consequently,

φ̃1+γ(t) +K ≤
(
φ̃(t) +K1/(γ+1)

)1/(γ+1)

= φ1+γ(t) (2.3.94)

whence, by (2.3.88),

φ̃1+γ(t) ≤ C0

(
φ̃(t)− φ̃(t+ 1)

)
. (2.3.95)

Now set

φ̃−γ(t) = ψ(t).

Then it follows that, by using (2.3.95),

ψ(t+ 1)− ψ(t) = −
∫ 1

0

d

dη

(
ηφ̃(t) + (1− η)φ̃(t+ 1)

)−γ

dη

= γ

∫ 1

0

(
ηφ̃(t) + (1 − η)φ̃(t+ 1)

)−γ−1

dη ·
(
φ̃(t)− φ̃(t+ 1)

)
≥ γφ̃−γ−1(t)

(
φ̃(t)− φ̃(t+ 1)

)
≥ γC−1

0 ,

which, thus, gives us

φ̃−γ(t+ 1) = ψ(t+ 1) ≥ ψ(t) + γC−1
0 = φ̃−γ(t) + γC−1

0 . (2.3.96)

Also from (2.3.96) and (2.3.91), we can derive

φ(t+ 1) = φ̃(t+ 1) +K1/(γ+1) ≤
(
φ̃−γ(t) + γC−1

0

)−1/γ

+K1/(γ+1)

≤
(
γC−1

0 (t− 1)+ +

(
sup

0≤s≤1
φ(s)

)−γ

+ γC−1
0

)−1/γ

+K1/(γ+1)

≤ β(t + 1) +K1/(γ+1)

which contradicts (2.3.93). Hence the proof of (2.3.89) is complete. The proof of
(2.3.90) is easy. �

The next result is a natural generalization of Theorem 2.3.11 (see, e.g., Nakao
[669, 670]).
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Theorem 2.3.12 (The Nakao Inequality [663, 666, 676, 662]). Assume that φ(t) is
a bounded non-negative function on R+ satisfying for all t > 0,

sup
s∈[t,t+1]

φ1+α(s) ≤ C0(1 + t)r(φ(t)− φ(t + 1)) + g(t) (2.3.97)

where C0 > 0 is a constant, g(t) is a non-negative function, and α a non-negative
constant. Then the following assertion hold:

(i) if α > 0, r = 1, and limt→+∞ (log t)
1+1/α

g(t) = 0, then for all t > 0,

φ(t) ≤ C1

(
log(1 + t)

)−1/α

; (2.3.98)

(ii) if α > 0, 0 ≤ r < 1, and limt→+∞ t(1−r)(1+1/α)g(t) = 0, then for all t > 0,

φ(t) ≤ C2t
−(1−r)/α; (2.3.99)

(iii) if α = 0, r = 1, and g(t) ≤ K1t
−θ−1 for constants θ > 0,K1 ≥ 0, then for all

t > 0,
φ(t) ≤ C3(1 + t)−θ′

(2.3.100)

where θ′ = min(θ, C−1
0 );

(iv) if α = 0, 0 ≤ r < 1, and g(t) ≤ K2t
−θ exp

(
− 1

(C0+1)(1−r)(t+ 1)1−r
)

for

θ > 1, then for all t > 0,

φ(t) ≤ C4 exp

(
− 1

(C0 + 1)(1− r)
t1−r

)
. (2.3.101)

The above Ci (i = 1, 2, 3, 4) are constants depending on φ(0) and other constants
known from the involved data.

Proof. The basic idea of the proof is the same as that of Theorem 2.3.11, where
the case r = 0 is treated. We now give the proofs of (i)–(iv) separately.

(i) Set
ψ(t) = φ(t) + ν(log(1 + t))−1/α

where ν is a positive constant to be determined later on. Then by (2.3.97), we
have

sup
s∈[t,t+1]

ψ1+α(s) ≤ 21+α

{
max

s∈[t,t+1]
φ1+α(s) + ν1+α (log(1 + t))

−(1+α)/α

}
≤ C {(1 + t) (ψ(t)− ψ(t+ 1)) I1(t)} (2.3.102)

where

I1(t) = (1 + t)
[
ν (log(2 + t))

−1/α − ν (log(1 + t))
−1/α

]
+ g(t) + ν1+α (log(t+ 1))

−(1+α)/α
.
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We shall show I1(t) ≤ 0 if t is sufficiently large. Noting that for large t > 0,

I1(t) = ν (log(1 + t))−1−1/α

[
(1 + t) log(t+ 1)

{[
log(t+ 2)

log(t+ 1)

]−1/α

− 1

}
+

1

ν
[log(t+ 1)]1+1/αg(t) + να

]
,[

log(t+ 2)

log(t+ 1)

]−1/α

− 1 =

(
log(t+ 2)− log(t+ 1)

log(t+ 1)
+ 1

)−1/α

− 1

≤ − (2α)−1

(
log(t+ 2)− log(t+ 1)

)
(log(t+ 1))

−1
,

we have for large t > 0,

I1(t) ≤ ν(log(t+ 1))−1−1/α

×
{
−(2α)−1(1 + t) log[(t+ 2)/(t+ 1)] + ν−1 (log(t+ 1))

1+1/α
g(t) + να

}
.

Now, by the assumption on g(t), the second term in the brackets in the
right-hand side tends to 0 as t → +∞. Moreover, we can easily check that

lim
t→+∞(1 + t) log

(
t+ 2

t+ 1

)
= 1.

Therefore, there exists a T1 > 0 such that for all t ≥ T1, we have

I1(t) ≤ ν

(
log(t+ 1)

)−1−1/α (
−(4α)−1 +

1

2
να

)
< 0

where we have chosen ν > 0 so that ν < (2α)−1/α. Thus for all t > T1 and small
ν, we have

sup
s∈[t,t+1]

ψ1+α(s) ≤ C′
0(1 + t) [ψ(t)− ψ(t+ 1)] . (2.3.103)

Setting ψ−α(s) = w(s), we obtain

w(t)− w(t + 1) =

∫ 1

0

d

dθ
[θψ(t) + (1− θ)ψ(t + 1)]−αdθ

= −α

∫ 1

0

{θψ(t) + (1− θ)ψ(t + 1)}−1−αdθ [ψ(t)− ψ(t+ 1)]

≤ −αC ′−1
0 (t+ 1)−1. (2.3.104)

Therefore, for the integer n with n+ T1 ≤ t < n+ 1 + T1,

w(t − n)− w(t) ≤ −αC′−1
0

n−1∑
i=0

1

t− i
≤ −αC ′−1

0

∫ n−1

0

1

t− x
dx

≤ −αC′−1
0 (log t− log(t+ 1− n)),
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whence
w(t) ≥ inf

s∈[0,1]
w(s+ T1) + αC′−1

0 log t− αC′−1
0 log(T1 + 2)

which immediately yields

φ(t) ≤ ψ(t) ≤
{

inf
s∈[T1,T1+1]

w(s) + αC′−1
0 log t− αC′−1

0 log(T1 + 2)

}−1/α

.

(2.3.105)
Therefore, for all 0 < t ≤ T1, we easily derive from (2.3.97) that

φ(t) ≤ max
(
g(t), [C0φ(0) + g(0)]1/(1+α)

)
. (2.3.106)

The estimates (2.3.105)–(2.3.106) immediately imply (i).

(ii) In this case, we may set

ψ(t) = φ(t) + νt−(1−r)/α.

Then, as in (2.3.100), we can obtain

sup
s∈[t,t+1]

ψ1+α(s) ≤ 21+α(C0(1 + t)r[ψ(t)− ψ(t+ 1)] + I2(t)), (2.3.107)

where

I2(t) = νt−(1−r)/α

{
C0(1 + t)r

[(
1 + t

t

)−(1−r)/α

− 1

]
+ ν−1t(1−r)/αg(t) + ναt−(1−r)

}
.

Using the assumption on g(t) and the following inequality for large t > 0,(
t+ 1

t

)−(1−r)/α

− 1 ≤ −1− r

2α
t−1

we may obtain for large t > 0,

I2(t) = νt−(1−r)/α+r−1
(−C0(1 + t−1)r(1− r)/2α+ να/2

)
< 0,

where we have chosen ν sufficiently small.

Thus there exists a T2 > 0 such that for all t ≥ T2,

sup
s∈[t,t+1]

ψ1+α(s) ≤ 21+αC0(1 + t)r(ψ(t)− ψ(t+ 1))

which implies, as in the proof of (i), for any positive integer n with C′
0 = 21+αC0,

w(t − n)− w(t) ≤ −αC′−1
0

∫ n−1

0

1

(t− x)r
dx

≤ αC′−1
0 (1− r)−1

(
(t− n+ 1)1−r − t1−r

)
.

This immediately yields (ii).
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(iii) The proofs of (iii) and (iv) are almost the same, so we only show (iv).
By (2.3.97), we derive

φ(t+ 1) ≤ C0(1 + t)r

C0(1 + t)r + 1
φ(t) + g(t)

whence, by induction,

φ(t+ 1) ≤
n∏

i=0

C0(t+ 1− i)r

C0(1 + t− i)r + 1
φ(t− n) +

n∑
j=0

j∏
i=0

C0(t+ 1− i)r

C0(t+ 1− i)r + 1
g(t− j)

= I1 + I2.

Fix the integer n such that n ≤ t < n+ 1. Then it is readily seen that

log(I1) ≤ −
n∑

i=0

1

C0(t+ 1− i)r + 1
+ sup

s∈[0,1]

log φ(s)

≤ −
∫ n

0

1

C0(t+ 1− x)r + 1
+ sup

s∈[0,1]

logφ(s)

≤ − 1

(C0 + 1)(1− r)
(1 + t)1−r +

1

(C0 + 1)(1− r)
(t+ 1− n)1−r

+ log{C0φ(0) + g(0)}1/(1+α)

where in the above second inequality, we assume that sups∈[t,t+1] φ(s) > 0. Thus
this gives us immediately

I1 ≤ C1 exp

(
− 1

(C0 + 1)(1− r)
(1 + t)1−r

)
.

In the same manner, we conclude that

I2 ≤
n−1∑
j=0

exp

(
−

∫ j

0

1

C0(1 + t− x)r + 1
dx

)
g(t− j)

≤ C2 exp

(
− 1

(C0 + 1)(1− r)
(1 + t)1−r

)
.

The proof is hence complete. �

From the proof of Theorem 2.3.12, we easily get the next result, due to
Nakao [685].

Corollary 2.3.4 (The Nakao Inequality [685]). Assume φ(t) that is a non-negative
non-increasing function satisfying (2.3.97) for g(t) ≡ 0 and C0 ≥ 1. Then the
following assertions hold:
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(i) If α > 0 and r < 1, then for all t > 0,

φ(t) ≤
{
φ−α(0) +

α

C0

∫ [t−1]+

0

(1 + t− s)−rds

}−1/α

where [a]+ := max{a, 0}.
(ii) If α = 0 and r < 1, then for all t > 0,

φ(t) ≤ φ(0) exp

{
1

(C0 + 1)(1− r)

}
exp

{
− 1

(C0 + 1)(1− r)
(1 + t)1−r

}
.

The following result, due to Nakao [670], extends from the case θ > 1 in
Theorem 2.3.12 (iv) to the case of θ = 1.

Theorem 2.3.13 (The Nakao Inequality [670]). Assume that (2.3.97) holds for φ(t)
in Theorem 2.3.12. If α = 0, 0 ≤ r < 1 and limt→+∞(1+ t) exp(kt1−r)g(t) = 0 for
some constant k > 0, then for all t > 0,

φ(t) ≤ C′ exp
(−Ct1−r

)
, (2.3.108)

with constants C′, C > 0.

The following result is a generalization of Corollary 2.3.4 (see also [663], [667],
[678], [675]).

Theorem 2.3.14 (The Nakao Inequality [670]). Let φ(t) be a non-negative function
on [0,+∞) satisfying for all t > 0,

sup
t≤s≤t+T

φ1+α(s) ≤ g(t)[φ(t)− φ(t+ T )] (2.3.109)

for constants T > 0, α > 0, and a non-decreasing function g(t). Then φ(t) has the
decay property for all t ≥ T ,

φ(t) ≤
(
φ−α(0) + α

∫ t

T

g−1(s)ds

)−1/α

. (2.3.110)

In particular, if α = 0 and g(t) = constant in the above assumption, then for all
t ≥ T ,

φ(t) ≤ Cφ(0) exp{−λt} (2.3.111)

with some constant λ > 0.

Later on, Kawashima, Nakao, and Ono [423] improved (ii) in Theorem 2.3.12,
which can be stated as a theorem.



2.3. Differential and difference inequalities leading to decay rates 151

Theorem 2.3.15 (The Kawashima–Nakao–Ono Inequality [423]). Let φ(t) be a non-
negative function on [0,+∞), satisfying (2.3.97) for some constants C0, α > 0, 0 ≤
r < 1, and let g(t) satisfy for all t > 0,

0 ≤ g(t) ≤ k1(1 + t)−β (2.3.112)

with some constants k1 and β > 0. Then φ(t) decays, for all t > 0, as

φ(t) ≤ k2(1 + t)−θ, θ = min

(
1− r

α
,

β

1 + α

)
(2.3.113)

where k2 > 0 is a constant depending on φ(0) and other data involved in the
assumptions.

Proof. In fact, we may assume β/(1+α) ≤ (1−r)/α, i.e., 0 < β ≤ (1+α)(1−r)/α.
Suppose (2.3.113) is not true. Then for any largeK > 0, there exists some constant
T > 1 such that for all 0 ≤ t ≤ T − 1/2,

φ(t) ≤ K(1 + t)−β/(1+α),

φ(T ) ≥ K(1 + T )−β/(1+α).

Here we can easily prove φ1+α(t) ≤ max{ck1, c′C0φ(0) + c′′k1} < +∞. Thus
taking t = T − 1 in (2.3.97), we get

K1+α(1 + T )−β ≤ C0T
r
(
KT−β/(1+α) −K(1 + T )−β/(1+α)

)
+ k1(1 + T )−β

and, taking K so large that K > min{2k1, 1}, and for some constant C∗ > 0,

K1+α(1 + T )−β ≤ 2k0T
r
(
T−β/(1+α) − (1 + T )−β/(1+α)

)
≤ 2k0K(1 + T )r−β/(1+α)

(
(1 + T−1)β/(1+α) − 1

)
≤ C∗K(1 + T )r−β/(1+α)−1. (2.3.114)

Since β ≤ (1 + α)(1 − r)/α, (2.3.114) yields

Kα ≤ C∗(1 + T )r−αβ/(1+α)−1 ≤ C∗

which, in fact, is a contradiction if we choose K > C
1/α
∗ . �

Let us now state some generalizations of Theorem 2.3.15 (see, e.g., [680]).

Theorem 2.3.16 (The Nakao Inequality [680]). Assume that φ(t) is a non-negative
continuous non-increasing function on R+ satisfying the inequality for all t ≥ 0,

φ(t+ T ) ≤ C

2∑
i=1

(1 + t)θi [φ(t)− φ(t+ T )]εi , (2.3.115)
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with some constants T > 0, C > 0, 0 < εi ≤ 1 and θi ≤ εi (i = 1, 2). Then φ(t)
has the following decay properties:

(i) If 0 < εi < 1 with ε1 + ε2 < 1 and θi < εi, i = 1, 2, then for all t ≥ 0,

φ(t) ≤ C0(1 + t)−α (2.3.116)

with α = mini=1,2{(εi − θi)/(1− εi)}, where we put (εi − θi)/(1− εi) = +∞
if εi = 1.

(ii) If θ1 = ε1 < 1 and θ2 < ε2 ≤ 1, then for all t ≥ 0,

φ(t) ≤ C0 [log(2 + t)]
−ε1/(1−ε1) . (2.3.117)

(iii) If θ1 = ε1 < 1 and ε2 = θ2 ≤ 1, then for all t ≥ 0,

φ(t) ≤ C0 [log(2 + t)]−α̃ (2.3.118)

with α̃ = mini=1,2{εi/(1− εi)}.
(iv) If ε1 = ε2 = 1, then we have for all t ≥ 0,{

φ(t) ≤ C0 exp{−λt1−θ}, if θ < 1, (2.3.119)

φ(t) ≤ C0(1 + t)−α, if θ = 1 (2.3.120)

with some constants λ > 0, α > 0, where we set θ = min{θ1, θ2}. In the
above, C0 denotes constants depending on φ(0) and other known constants.

Proof. Note that the case: ε1 = ε2 and η1 = η2 was proved in [667] in a more
detailed form. The proof, however, is not applicable to our situation and we employ
a different technique, here, due to Nakao [680].

(i) To prove (2.3.116), we may take M ≥ max0≤s≤1 φ(s) ≡ φ(0) and assume
that for some T ≥ 1,

sup
0≤t≤T

φ(t)(1 + t)α = φ(T )(1 + T )α = M. (2.3.121)

Then, by inequalities (2.3.115), we have

M(1 + T )−α = φ(T ) ≤ C
2∑

i=1

T θiM εi(T−α − (1 + T )−α)εi

≤ C
2∑

i=1

T θiM εiαT−(α+1)εi

(2.3.122)

and

M ≤ C

2∑
i=1

T θi−(α+1)εi−αM εiαεi = C

2∑
i=1

M εiαεi (2.3.123)
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which is a contradiction if we take M > 0 large enough. This means that there
exists a constant C0 = C(φ(0)) > 0 such that for all t ≥ 0,

φ(t)(1 + t)α ≤ C0, (2.3.124)

which proves (2.3.116).

Next, we consider the case (ii). Here we assume, for M ≥ φ(0) and T ≥ 1,
that, for α = ε1

1−ε1
,

sup
0≤t≤T

φ(t) [log(2 + t)]
α
= φ(T ) [log(2 + T )]

α
= M. (2.3.125)

Then we have again by (2.3.116),

M [log(2 + T )]
−α

= φ(T ) ≤ C

2∑
i=1

T θiM εi
[
(log(1 + T ))−α − (log(2 + T ))−α

]εi
≤ C

2∑
i=1

T θiM εiαεi (1 + T )−εi [log(1 + T )]
−(α+1)εi (2.3.126)

whence,

M ≤ C
{
[log(2 + T )]α−(α+1)ε1M ε1 +M ε2

}
= C

2∑
i=1

M εi

which is again a contradiction if we choose M > 0 large enough. This implies
(2.3.117). The proof of (2.3.118) in the case (iii) is essentially included in the
above case. Finally, in the case (iv), we have

φ(t) ≤ C(1 + t)θ[φ(t) − φ(t+ 1)]

which finally implies (2.3.119)–(2.3.120). �

Remark 2.3.3 ([680]). It is clear from the proof that Theorem 2.3.16 admits a
generalization as a difference inequality of the form for all t ≥ 0,

φ(t+ 1) ≤ C

m∑
i=1

(1 + t)ηi (φ(t)− φ(t + 1))
εi . (2.3.127)

For example, if 0 < εi < 1 and ηi < εi, we conclude from the above inequality
that for α = min

{
εi−ηi

1−εi

}
,

φ(t) ≤ C0(1 + t)−α. (2.3.128)

Remark 2.3.4 ([680]). When ε1 = ε2 and θ1 = θ2, more detailed results are proved
in Nakao [664, 667].
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Remark 2.3.5 ([680]). The above theorem can be easily generalized to the difference
inequality of the form for all t > 0,

φ(t+ 1) ≤ C

m∑
i=1

(1 + t)θi [φ(t)− φ(t+ 1)]εi . (2.3.129)

For example, if 0 < εi < 1 and θi < εi, we obtain from (2.3.129) that for all t > 0,

φ(t) ≤ C0(1 + t)−η, (2.3.130)

where η = min1≤i≤m{(εi − θi)/(1− εi)}.
Corollary 2.3.5 ([680]). Let φ(t) be a non-negative function on R+ ≡ [0,+∞)
satisfying for all t > 0,

sup
t≤s≤t+1

φ1+γ(s) ≤ K0(1 + t)β(φ(t) − φ(t+ 1)) (2.3.131)

with some constants K0 > 0, γ > 0, 0 ≤ β < 1. Then φ(t) has the decay properties
for all t > 0,

φ(t) ≤ C0(1 + t)−(1−β)/γ , (2.3.132)

and if γ = 0, then for all t > 0,

φ(t) ≤ C0 exp{−λt1−β} (2.3.133)

where C0 > 0, λ > 0 are constants.

To close this section, we shall introduce some results, due to Vărvărucă [933],
on exact rates of convergence as time goes to infinity for solutions of nonlinear
evolution equations. To this end, we need to introduce some basic concepts on
sub-differential mappings.

Definition 2.3.1. Let X be a real Banach space with dual space X∗. We say that ϕ
is a normal convex function on X if ϕ is a convex function from X to (−∞,+∞],
but ϕ 	≡ +∞.

Definition 2.3.2. A function ϕ : X → (−∞,+∞] is called lower semi-continuous
on X if for all x ∈ X , lim infy→x ϕ(y) ≥ ϕ(x).

Definition 2.3.3. Let ϕ be a normal convex function on a Banach space X with
dual space X∗ and let x ∈ X , we define

∂ϕ(x) = {x∗ ∈ X∗ : ϕ(x) ≤ ϕ(y) + (x− y, x∗) for all y ∈ X} .

We call x∗ ∈ X∗ a sub-gradient of a function ϕ at x ∈ X . We call ∂ϕ(x) the
sub-differential of ϕ at x. Here (·, ·) denotes the duality pairing between X and
X∗. When X is a real Hilbert space with inner product 〈·, ·〉, then we can take
(·, ·) = 〈·, ·〉.
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We can verify from the definition of ∂ϕ(x) that ∂ϕ : X → X∗ is a monotonic
operator, usually called a multi-valued operator, and ∂ϕ(x) is a possibly empty
closed convex set in X . Moreover, we recall that

ϕ(x) = min {ϕ(y) : y ∈ X}
if and only if 0 ∈ ∂ϕ(x).

Now we assume that H is a real Hilbert space with inner product 〈·, ·〉 and
norm | · |, and ϕ : H → R∪{+∞} is a lower semi-continuous convex and bounded
from below function, and has a minimum on H . Without loss of generality, we
may assume that

min
u∈H

ϕ(u) = 0.

We shall first introduce some results, due to Vărvărucă [933], on the asymp-
totic behavior of solutions of the following differential inequalities⎧⎪⎨⎪⎩

|u′(t) + v(t)|2 ≤ a(t)ϕ(u(t)), for a.e. t ∈ (0,+∞),

v(t) ∈ A(u(t)), for a.e. t ∈ (0,+∞),

a ∈ L1(0,+∞),

(2.3.134)

where A := ∂ϕ is the sub-differential of ϕ, and the real-valued function a is non-
negative. Second, we shall introduce some results for the Cauchy problem (2.3.134).
Obviously, when a is identically zero on (0,+∞), (2.3.134) readily reduces to the
following problem {

u′(t) +A(u(t)) 
 0, for a.e. t ∈ (0,+∞),

u(0) = u0, u0 ∈ Dom (A).
(2.3.135)

To proceed, we need the following definition.

Definition 2.3.4. By a solution of (2.3.134), we understand a function

u ∈ W 1,2
loc ([0,+∞);H)

such that u(t) ∈ Dom(A) for a.e. t ∈ (0,+∞) and there exists a

v ∈ L1,2
loc([0,+∞);H)

such that (2.3.134) holds, where A denotes the sub-differential of ϕ.

The following result is due to Brézis [116]; a proof can also be found in [70].

Lemma 2.3.17 ([116]). Let [a, b] be an interval, and ϕ : H → R ∪ {+∞} a lower
semi-continuous convex function. Let u ∈ W 1,2([a, b];H) be such that u(t) ∈
Dom(∂ϕ) for a.e. t ∈ [a, b] and there exists a v ∈ L2(a, b;H) with v(t) ∈ ∂ϕ(u(t))
for a.e. t ∈ [a, b]. Then the mapping t �→ ϕ(u(t)) is absolutely continuous on [a, b]
and its derivative is given by

d

dt
ϕ(u) = 〈v, u′〉, a.e. in (a, b).
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The following results (see [933]) show that the long-time behavior of solutions
of (2.3.134) is in many respects similar to that for the solutions of (2.3.135).

Lemma 2.3.18 ([933]). For any initial data in Dom(A), if the solution of problem
(2.3.135) has a strong limit in H as t → +∞, then any solution of (2.3.134)
converges strongly as t → +∞ to an element of F .

Proof. Let f(t) := u′(t) + v(t) for all t ∈ (0,+∞). Assume first that u satisfies
(2.3.134) and f ∈ L2

loc([0,+∞);H). If we can prove that f ∈ L1(0,+∞;H), then
this readily implies the strong convergence of u as t → +∞ by a standard argument
(see, e.g., [638]). By (2.3.134) and noting that

|f(t)|2 ≤ a(t)ϕ(u(t)), for a.e. t ∈ (0,+∞),

and a ∈ L1(0,+∞), it suffices to prove that t �→ ϕ(u(t)) is also in L1(0,+∞).
Assume that z0 is an arbitrary element of F . Then for a.e. t ∈ (0,+∞),

1

2

d

dt
|u− z0|2 + 〈v, u− z0〉

= 〈u− z0, u
′ + v〉 ≤ |u− z0|

√
aϕ(u) ≤ 1

2
a|u− z0|2 + 1

2
ϕ(u).

(2.3.136)

By the definition of a sub-differential, we have 〈v, u− z0〉 ≥ ϕ(u). Hence, we
conclude from (2.3.136) that

d

dt
|u− z0|2 + ϕ(u) ≤ a|u− z0|2, a.e. in (0,+∞),

and, since a ∈ L1(0,+∞), it follows from the Bellman–Gronwall inequality (e.g.,
Theorem 1.2.1) that t �→ ϕ((u(t)) is in L1(0,+∞). This completes the proof of
the strong convergence of u. �
Lemma 2.3.19 ([933]). If u is any solution to problem (2.3.134), then

lim
t→+∞ϕ(u(t)) = 0. (2.3.137)

Proof. It follows obviously from Lemma 2.3.1 that

d

dt
ϕ(u) = 〈v, u′〉 ≤ 1

4
|u′ + v|2 ≤ 1

4
aϕ(u), a.e. in (0,+∞), (2.3.138)

which, by the Bellman–Gronwall inequality (e.g., Theorem 1.2.1), implies that
ϕ(u(t)) has a finite limit as t → +∞. Noting that t �→ ϕ(u(t)) is in L1(0,+∞)
and using Lemma 2.3.2, we obtain limt→+∞ ϕ(u(t)) = 0. �

Let z ∈ F and p ≥ 2. The function ϕ is said to be locally sub-homogeneous
of degree p with respect to z if there exists an open set Dz containing z such that,
for any u ∈ Dz ∩Dom(ϕ), the mapping

t �→ ϕ(z + t(u− z))

tp

is non-decreasing on (0, 1].
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A function ϕ is said to satisfy the condition (SHp) with respect to z if
there exists an open set Dz containing z such that the following holds: for all
u ∈ Dz ∩Dom(A), for all v ∈ A(u),

〈v, u − z〉 ≥ pϕ(u).

The following result assume that the relation between these two conditions.

Lemma 2.3.20 ([933]). Assume that p ≥ 2 and z ∈ F . If ϕ is locally sub-homogen-
eous of degree p with respect to z, then it satisfies (SHp) with respect to z.

Proof. It follows from the definition of a sub-differential and the local sub-homo-
geneity of ϕ, for all u ∈ Dz ∩Dom(A), for all v ∈ A(u), for all t ∈ (0, 1), that

〈v, z − u〉 ≤ 1

1− t

[
ϕ(z + t(u− z))− ϕ(u)

]
≤ tp − 1

1− t
ϕ(u), (2.3.139)

and the result follows by letting here t ↗ 1. �

The next theorem is due to Vărvărucă [933].

Theorem 2.3.21 ([933]). Let z ∈ F and let ϕ satisfy (SHp) with respect to z, for
some p ≥ 2. Then, for any solution u of (2.3.134) the following holds: if u(0) 	= z,
then u(t) 	= z for all t ≥ 0. In this case, if, in addition, u(t) belongs to the set Dz

in (SHp) for all sufficiently large t, then there exists a non-negative constant Λ∞

such that

lim
t→+∞

pϕ(u(t))

|u(t)− z|p = Λ∞. (2.3.140)

Moreover,

lim
t→+∞

− log |u(t)− z|
t

= Λ∞, if p = 2, (2.3.141)

and

lim
t→+∞

|u(t)− z|2−p

(p− 2)t
= Λ∞, if p > 2. (2.3.142)

Proof. Since the general case can be done by a translation argument, without loss
of generality, we may assume that z = 0. Now let u be any solution of (2.3.134)
with u(0) 	= 0. By noting that ϕ satisfies (SHp) with respect to the origin for
some p ≥ 2, it necessarily satisfies (SH2) with respect to 0. Thus, it follows from
Theorem 2.1 and Remark 2.1 in [932] that u(t) 	= 0 for all t ≥ 0.

Without loss of generality, we now assume that u(t) belongs to D0 in (SHp)
for all t ≥ 0. Consider the function

Λ(t) :=
pϕ(u(t))

|u(t)|p ,
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which, by Lemma 2.3.1., is well defined and absolutely continuous on compact
intervals. On the other hand, by a similar argumentation to that in [932] (e.g.,
Theorem 2.1 and Theorem 2.2), we conclude

1

p

dΛ

dt
+

1

2

1

|u|p
∣∣∣∣v − pϕ(u)

|u|2 u

∣∣∣∣2 ≤ a

2p
Λ, a.e. in (0,+∞), (2.3.143)

or

1

p

dΛ

dt
+

1

2
|u|p−2

∣∣∣∣ v

|u|p−1
− Λ

u

|u|
∣∣∣∣2 ≤ a

2p
Λ, a.e. in (0,+∞). (2.3.144)

Note that in [932], the case p = 2 was only considered with a slightly differ-
ent definition of Λ. Since a ∈ L1(0,+∞), it follows from the Bellman–Gronwall
inequality (e.g., Theorem 1.2.1) that Λ(t) has a finite limit, denoted by Λ∞, as
t → +∞.

For the last part of the theorem, noting that the estimate claimed for p = 2
is a restatement of [932] (see Theorem 2.2), thus it suffices only to consider the
case p > 2. As u(t) 	= 0 for all t ≥ 0, the mapping x(t) := 1

p−2 |u(t)|2−p is well
defined and absolutely continuous on compact intervals, with derivative given by

dx

dt
= −〈u, u′〉

|u|p =
1

|u|p
[
− 〈u, u′ + v〉+ 〈v − pϕ(u)

|u|2 u, u〉
]
+ Λ, a.e. in (0,+∞).

(2.3.145)

Using the Schwarz inequality, it follows from (2.3.145) that∣∣∣∣dxdt − Λ

∣∣∣∣ ≤ 1

|u|p−1

[
|u′ + v|+

∣∣∣∣v − Pϕ(u)

|u|2 u

∣∣∣∣] = c
√
x, a.e. in (0,+∞), (2.3.146)

where the real-valued function c is given by

c :=
√
p− 2

1

|u|p/2
[
|u′ + v|+

∣∣∣∣v − pϕ(u)

|u|2 u

∣∣∣∣], a.e. in (0,+∞).

Using (2.3.134), the boundedness of Λ on [0,+∞), and (2.3.144), we conclude
that c ∈ L2(0,+∞). The required estimate now follows from Lemma 2.3.5 below.
This completes the proof of Theorem 2.3.17. �

We have noted that Theorem 2.3.17 yields optimal estimates only for Λ∞ 	= 0,
which is not necessarily true. However, the condition on ϕ only in a neighborhood
of z ∈ F guarantee that any non-constant solution of (2.3.134) does not reach z,
and also yields lower bounds for |u(t) − z|, only if that the solution u(t) lies in
that neighborhood for all sufficiently large t.

Lemma 2.3.22 ([933]). Assume that x : [0,+∞) → [0,+∞) is a function which is
absolutely continuous on compact intervals and satisfies the differential inequality

−c
√
x+ Λ ≤ dx

dt
≤ c

√
x+ Λ, a.e. in (0,+∞), (2.3.147)
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where Λ is non-negative a.e., and has a finite limit Λ∞ as t → +∞, and c ∈
L2(0,+∞), c ≥ 0 a.e. on (0,+∞). Then

lim
t→+∞

x(t)

t
= Λ∞. (2.3.148)

Proof. Indeed, for each ε > 0, using Young’s inequality, we can derive from
(2.3.147)

− c2

4ε
x+ (Λ − ε) ≤ dx

dt
≤ c2

4ε
x+ (Λ + ε), a.e. in (0,+∞). (2.3.149)

Noting that 1
4εc

2 ∈ L1(0,+∞) and limt→+∞ Λ(t) = Λ∞, we can derive (2.3.148)
from (2.3.149) and Theorem 1.2.1 immediately. �

In order to establish the desired exact rates of convergence, now we need
to obtain, for solutions u which converge to z, values for Λ∞ which are strictly
positive. This can be easily done when the set F is a single point. The following
result then follows readily from Theorem 2.3.17, and further generalizes the ab-
stract results in [302], [303] and [306] from the homogeneous case to the case when
ϕ is locally sub-homogeneous.

Theorem 2.3.23 ([933]). Assume that p ≥ 2 and F = {z̄}. If ϕ satisfies (SHp)
with respect to z̄, and (Cp):

(Cp) there exists m > 0 such that ϕ(u) ≥ m|u− z̄|p, for all u ∈ Dom(ϕ),

then any solution u of (2.3.134) converges strongly to z̄ in H as t → +∞, and the
estimates in Theorem 2.3.17 are valid with Λ∞ > 0.

Proof. It follows obviously that (Cp) implies the strong convergence to z̄ as t →
+∞ of all the solutions of (2.3.135) and from Lemma 2.3.2 that the same is true
for any solution of (2.3.134). Thus, the estimates in Theorem 2.3.17 hold in this
case, and (Cp) guarantees that Λ

∞ > 0. �

When F is not a single point, we may use Theorem 2.3.17 to derive the
required results. To this end, we may assume that ϕ satisfies conditions which
guarantee that all the solutions of (2.3.134) converge strongly in H as t → +∞.
Note that for any given solution of (2.3.134) the value of its limit in F is not
known a priori, so we need to impose a condition to describe the behavior of ϕ in
a neighborhood of F .

The following is a global version of (SHp): for p ≥ 2, we say that ϕ satisfies
the condition (SHpF ) if there exists an open set DF containing F , such that for
all z ∈ F, for all u ∈ DF ∩Dom(A), for all v ∈ A(u),

〈v, u − z〉 ≥ pϕ(u).
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We observe that such a condition is easily satisfied for some applications, we
refer to some examples in Section 12 of Chapter 7 ([933]).

Since the set F of minimizers of ϕ is non-empty, closed and convex, we can
consider the standard projection operator onto F , denoted by P . For p ≥ 2, let
(CpF ) denote the following condition:

there exists an m > 0 such that: ϕ(u) ≥ m|u− Pu|p, for all u ∈ Dom(ϕ).

The following lemma generalizes slightly Lemma 2.4 in [739] with the same
proof.

Lemma 2.3.24 ([739]). Assume that u : [a, b] → H is absolutely continuous, and
let F be a non-empty closed and convex subset of H. Let P denote the projec-
tion operator onto F . Then the mapping t → Pu(t) is absolutely continuous, and
therefore differentiable a.e. on [a, b], with〈

d

dt
Pu, u− Pu

〉
= 0, a.e. in (a, b). (2.3.150)

The following result also generalizes the inequality that for all t ≥ 0,

|u(t)− z̄| ≤ 2|u(t)− Pu(t)|, (2.3.151)

and improves some estimates in [638] (Theorem 1.2, p. 73).

Lemma 2.3.25 ([638]). Assume that A : H → H is a (possibly multi-valued) max-
imal monotone operator with F := A−1(0) 	= ∅, and denote by P the projection
operator onto the closed convex set F . Assume further that u satisfies for a.e.
t ∈ (0,+∞),

u′(t) +A(u(t)) 
 f(t), (2.3.152)

where f ∈ L1(0,+∞;H), and u has a strong limit z̄ as t → +∞, where z̄ ∈ F .
Then for all t ≥ 0,

|u(t)− z̄| ≤ 2|u(t)− Pu(t)|+
∫ +∞

t

|f(τ)|dτ. (2.3.153)

Proof. Note that the following result is well known: If u1, u2 are solutions of

u′
i(t) +A(ui(t)) 
 fi(t), for a.e. t ∈ (0,+∞), i = 1, 2,

where f1, f2 ∈ L1
loc(0,+∞;H), then for all t, h ≥ 0,

|u1(t+ h)− u2(t+ h)| ≤ |u1(t)− u2(t)|+
∫ t+h

t

|f1(τ) − f2(τ)|dτ,

from which the required estimate (2.3.153) and the conclusion:

if u satisfies (2.3.152), then for all t, h ≥ 0,

|u(t+ h)− Pu(t)| ≤ |u(t)− Pu(t)|+
∫ t+h

t

|f(τ)|dτ, (2.3.154)

follow.
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Moreover, we can derive from (2.3.154) and the triangle inequality that for
all t, h ≥ 0,

|u(t+ h)− u(t)| ≤ 2|u(t)− Pu(t)|+
∫ t+h

t

|f(τ)|dτ. (2.3.155)

Therefore letting h → +∞ in (2.3.155) for any t ≥ 0, we can obtain (2.3.153). �

Remark 2.3.6 ([933]). If A is the sub-differential of a lower semi-continuous convex
function ϕ, then the set F in Lemma 2.3.7 coincides with the set of minimizers of ϕ.

Lemma 2.3.26 ([933]). Let x : [0,+∞) → (0,+∞) be a continuous function.

(i) If p > 2 and there exists a constant l > 0 such that

lim
t→+∞

x(t)

t−1/(p−2)
= l, (2.3.156)

then there exists a constant M > 0 such that for all t ≥ 0,∫ +∞

t

xp(τ)dτ ≤ Mx2(t). (2.3.157)

(ii) If there exists a constant l > 0 such that

lim
t→+∞

− logx(t)

t
= l, (2.3.158)

then there exist a constant M > 0 and a sequence {tn} with tn ↗ +∞ such
that for all n ≥ 1, ∫ +∞

tn

x2(τ)dτ ≤ Mx2(tn). (2.3.159)

Proof. An easy calculation gives the following identities for all t ≥ 0,∫ +∞

t

τ−p/(p−2)dτ = (p/2− 1)t−2/(p−2),∫ +∞

t

e−cτdτ =
e−ct

c
, for all c > 0

which readily implies the desired results. Here we leave the details to the reader.
�

Theorem 2.3.27 ([933]). Let p ≥ 2 and let ϕ satisfy (CpF ) and (SHp) with respect
to all the points of F . Then for any solution u of (2.3.134), the following holds:
if u(0) /∈ F , then for all t ≥ 0,

u(t) /∈ F. (2.3.160)
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In this case, u converges strongly in H as t → +∞, and if by z̄ we denote its limit,
then there exists a non-negative constant Λ∞ such that

lim
t→+∞

pϕ(u(t))

|u(t)− z̄|p = Λ∞. (2.3.161)

Moreover,

lim
t→+∞

− log |u(t)− z̄|
t

= Λ∞, if p = 2, (2.3.162)

⎧⎪⎪⎨⎪⎪⎩ lim
t→+∞

|u(t)− z̄|2−p

(p− 2)t
= Λ∞, if p > 2. (2.3.163)

If, either a ≡ 0 on (0,+∞), or (SHpF ) holds, then

Λ∞ > 0. (2.3.164)

Proof. Let u be any solution of (2.3.134) with u(0) /∈ F . For all the points of F ,
we get that (SHp) is valid. Then the first part of Theorem 2.3.17 yields u(t) /∈ F ,
for all t ≥ 0. Due to that (CpF ) implies the “uniform convergence condition” of
Pazy, it then follows that every solution of problem (2.3.135) converges strongly
in H as t → +∞, (see [739], Theorem 2.2). Therefore, by Lemma 2.3.2, the strong
convergence also holds for u; let z̄ be its limit, where z̄ ∈ F . Then the result of
Theorem 2.3.17 obviously holds with respect to z̄.

To prove that Λ∞ > 0, consider first the case when u satisfies (2.3.135). By a
result of Pazy [739] (Lemma 4.6), a more general version of Lemma 2.3.7, (2.3.151)
holds. Thus, it follows immediately from (2.3.151) and (CpF ) that Λ∞ > 0.

When u is a solution of (2.3.134) and ϕ satisfies (SHpF ), it suffices to use
Theorem 2.3.20 to consider now the case when (SHpF ) holds and u satisfies
(2.3.134). In fact, Theorem 2.3.19 holds under the present assumptions. Hence,
by Hölder’s inequality, it follows from Lemma 2.3.7 that for all t ≥ 0,

|u(t)− z̄| ≤ 2|u(t)− Pu(t)|+
∫ +∞

t

√
a(τ)ϕ(u(τ))dτ

≤ 2|u(t)− Pu(t)|+ C1

(∫ +∞

t

ϕ(u(τ))dτ

)1/2

,

(2.3.165)

where C1 :=
(∫ +∞

0
a(τ)dτ

)1/2

≥ 0. Thus we can derive from Theorem 2.3.17 and

(2.3.165) that for all t ≥ 0,

|u(t)− z̄| ≤ 2|u(t)− Pu(t)|+ C2

(∫ +∞

t

|u(τ)− Pu(τ)|pdτ
)1/2

, (2.3.166)

where C2 > 0 is a constant independent of t ≥ 0.
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To prove that Λ∞ > 0, by (CpF ) it suffices to prove that there exist a
constant C > 0 and a sequence {tn} with tn ↗ +∞ such that for all n ≥ 1,

|u(tn)− z̄| ≤ C|u(tn)− Pu(tn)|. (2.3.167)

Thus, (2.3.167) follows immediately from (2.3.166) if we can prove that there exists
a constant C3 > 0 and a sequence {tn} with tn ↗ +∞ such that for all n ≥ 1,(∫ +∞

tn

|u(τ)− Pu(τ)|pdτ
)1/2

≤ C3|u(tn)− Pu(tn)| (2.3.168)

which, by Theorem 2.3.20 (see below), is a straightforward corollary of Lemma
2.3.8. The proof is thus complete. �

Now we shall show the next result when F is not a single point and provides
optimal rates of decay for the distance between the solution u and the set F of
minimizers of ϕ. Denote by (Bp) the following condition: there exists an open set
DF containing F such that for all u ∈ DF ∩Dom(A), for all v ∈ A(u),

〈v, u − Pu〉 ≥ pϕ(u).

Obviously, (SHpF ) implies (Bp).

Theorem 2.3.28 ([933]). Assume p ≥ 2 and ϕ satisfies (Bp) and (CpF ). Then, for
any solution u of problem (2.3.134), there holds that if u(0) /∈ F , then for all
t ≥ 0,

u(t) /∈ F. (2.3.169)

If this case holds, then u strongly converges in H as t → +∞ and there exists a
constant Γ∞ > 0 such that

lim
t→+∞

pϕ(u(t))

|u(t)− Pu(t)|p = Γ∞. (2.3.170)

Moreover,

lim
t→+∞

− log |u(t)− Pu(t)|
t

= Γ∞, if p = 2, (2.3.171)

⎧⎪⎪⎨⎪⎪⎩ lim
t→+∞

|u(t)− Pu(t)|2−p

(p− 2)t
= Γ∞, if p > 2. (2.3.172)

Proof. Let u be any solution of (2.3.134) with u(0) /∈ F . Noting that the proof
of Theorem 2.3.19, (CpF ) guarantees the strong convergence of u and applying
Lemma 2.3.6 when F is the set of minimizers of ϕ, we can obtain that the mapping
t �→ |u(t)− Pu(t)|2 is absolutely continuous on compact intervals, with derivative
given by

d

dt
|u− Pu|2 = 2〈u′, u− Pu〉, a.e. in (0,+∞), (2.3.173)
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which enables us to argue as in the proof of Theorem 2.3.17 by only using “u(t)−
Pu(t)” to replace the difference “u(t)− z” everywhere and (Bp) instead of (SHp).
Thus by assumption (CpF ), we conclude readily that Γ∞ > 0. The proof is thus
complete. �

In order to obtain a characterization for the set of possible values of Λ∞ in
Theorem 2.3.19, we introduce the following assumptions for p ≥ 2:

(H1) : ϕ is locally sub-homogeneous of degree p with respect to all the points
of F ;

(H2) : there exists a reflexive Banach space (V, ‖ · ‖) densely, continuously and
compactly embedded in H such that Dom(ϕ) ⊆ V and for all u ∈ Dom(ϕ),
and z ∈ F , there exists an η > 0, such that

ϕ(u) + |u− z|p ≥ η‖u− z‖p;

(H3) : for each z ∈ F , the function ψz defined on the set

Kz = {t(y − z) : t ≥ 0, y ∈ Dom(ϕ)}

by the relations ψz(0) = 0, and ψz(u) = limt↘0
ϕ(z+tu)

tp for all u ∈ Kz

admits an extension ψ̃z : H → [0,+∞] such that:

(i) Dom(ψ̃z) is the closure in V of Kz;

(ii) ψ̃z is lower semi-continuous on H ;

(iii) for every u ∈ Dom(ψ̃z), there exists a sequence {un} of elements of
Kz such that un → u strongly in H as n → +∞ and

ψ̃z(u) = lim
n→+∞ψz(un).

For the applications, we note that these hypotheses can imply the convexity
of ψ̃z, for all z ∈ F and are easy to determine explicitly ψz for all z ∈ F , as well
as the extensions ψ̃z .

Theorem 2.3.29 ([933]). For p ≥ 2, let ϕ satisfy (H1), (H2), (H3) and (CpF ).
Then the result of Theorem 2.3.19 holds for Λ∞ ≥ 0. Moreover, if u is any non-
stationary solution of problem (2.3.134) with limit z̄, then Λ∞ in Theorem 2.3.19
satisfies: there exist an ω ∈ Dom(∂ψ̃z̄) with |ω| = 1 and a sequence {tn} with
tn ↗ +∞ such that

ω = lim
n→+∞

u(tn)− z̄

|u(tn)− z̄| and ∂ψ̃z̄(ω) 
 Λ∞ω. (2.3.174)

Proof. Under the present hypotheses, Theorem 2.3.19 is valid. Hence it clearly
follows from Lemma 2.3.4. Now let u be any non-stationary solution of (2.3.134),
with limit z̄, where z̄ ∈ F . Without loss of generality, we assume that z̄ = 0; the
general case can be done by a translation argument.
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We first assert that there exists a sequence {tn} with tn ↗ +∞ such that{
v(tn)

|u(tn)|p−1 − Λ(tn)
u(tn)
|u(tn)| → 0, strongly in H,

v(tn) ∈ Au(tn), for all n ≥ 1.
(2.3.175)

Without loss of generality, we assume that for all t ≥ 0, u(t) ∈ D0 in the
definition of local sub-homogeneity of ϕ with respect to 0, which ensures that the
estimates in the proof of Theorem 2.3.17 are valid. In particular, (2.3.144) implies
that ∫ +∞

0

|u(τ)|p−2

∣∣∣∣ v(τ)

|u(τ)|p−1
− Λ(τ)

u(τ)

|u(τ)|
∣∣∣∣2dτ < +∞. (2.3.176)

If p = 2, (2.3.175) follows immediately from (2.3.176), while for p > 2, we
may use Theorem 2.3.19 to deduce from (2.3.176) that for all α > 0,∫ +∞

α

1

τ

∣∣∣∣ v(τ)

|u(τ)|p−1
− Λ(τ)

u(τ)

|u(τ)|
∣∣∣∣2dτ < +∞. (2.3.177)

Since
∫ +∞
α

1
τ dτ = +∞ for all α > 0, (2.3.175) follows immediately in the

case p > 2.

Since limt→+∞ Λ(t) = Λ∞, we can derive from (2.3.175) that{
v(tn)

|u(tn)|p−1 − Λ∞ u(tn)
|u(tn)| → 0, strongly in H,

v(tn) ∈ Au(tn), for all n ≥ 1.
(2.3.178)

Now for all n ≥ 1, let

un := u(tn), vn := v(tn), ωn :=
un

|un| , αn := |un|.

Then we obtain that |ωn| = 1 for all n ≥ 1, and that αn → 0 as n → +∞.

Next, since Λ is bounded on [0,+∞) and (H2) holds with respect to the

origin, hence the set { u(t)
|u(t)| : t ≥ 0} is bounded in V . As V is reflexive and

compactly embedded in H , we know that {ωn} contains a subsequence which
converges weakly in V and strongly in H to an element ω ∈ V with |ω| = 1. For
simplicity, we use the original sequence instead of this convergent subsequence.
Thus

ωn → ω, strongly in H, (2.3.179)

which, along with (2.3.178), yields{
vn

αp−1
n

→ Λ∞ω, strongly in H,

vn ∈ A(αnωn), for all n ≥ 1.
(2.3.180)

Since ωn = 1
αn

, where un = u(tn) ∈ Dom(ϕ) and αn > 0, we can derive that
ωn belongs to the set K0 in (H3) for all n ≥ 1. Since ωn converges to ω weakly
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in V as n → +∞, and K0 is convex, (H3) shows that ω belongs to Dom(ψ̃0).

Since ω was constructed as the limit of ωn = u(tn)
|u(tn)| , it only suffices to prove that

ω ∈ Dom(∂ψ̃0) and ∂ψ̃0(ω) 
 Λ∞ω.

Assume that y is an arbitrary element of K0. Since {αn} converges to 0 as
n → +∞, and Dom(ϕ) is a convex set containing the origin, we derive that there
exists some n0 such that αny ∈ Dom(ϕ) for all n ≥ n0. Noting that vn ∈ A(αnωn),
and using the definition of a sub-differential, we conclude that for all n ≥ n0,

〈vn, αny − αnωn〉 ≤ ϕ(αny)− ϕ(αnωn),

which further yields that for all n ≥ n0,〈
vn

αp−1
n

, y − ωn

〉
≤ ϕ(αny)

αp
n

− ϕ(αnωn)

αp
n

. (2.3.181)

Now passing to the limit as n → +∞ in (2.3.181), using (2.3.179), (2.3.180), the
definition of ψ0 in (H3), and Theorem 2.3.19, we obtain

〈Λ∞ω, y − ω〉 ≤ ψ0(y)− Λ∞

p
. (2.3.182)

On the other hand, it follows from (H3) that (2.3.182) is valid not only for
y ∈ K0, but also for all y ∈ Dom(ψ̃0), i.e., for all y ∈ Dom(ψ̃0),

〈Λ∞ω, y − ω〉 ≤ ψ̃0(y)− Λ∞

p
. (2.3.183)

Thus, choosing y := ω, with ω ∈ Dom(ψ̃0), we obtain that ψ̃0(ω) ≥ 1
pΛ

∞. On

the other hand, since ψ̃0 is lower semi-continuous on H , from (2.3.179), the local
sub-homogeneity of ϕ with respect to 0, and Theorem 2.3.19, it follows that

ψ̃0(ω) ≤ lim
n→+∞ inf ψ0(ωn) ≤ lim

n→+∞ inf
ϕ(αnωn)

αp
n

= lim
n→+∞

Λ(tn)

p
=

Λ∞

p

(2.3.184)

which further shows that ψ̃0(ω) =
1
pΛ

∞. Therefore, (2.3.183) implies that for all

y ∈ Dom(ψ̃0),

〈Λ∞ω, y − ω〉 ≤ ψ̃0(y)− ψ̃0(ω) (2.3.185)

which, therefore, implies that ω ∈ Dom(∂ψ̃0) and ∂ψ̃0(ω) 
 Λ∞ω. The proof is
complete. �

Remark 2.3.7 ([933]). In fact, a special case of Theorem 2.3.21 is that F = {0} and
there exists a reflexive Banach space (V, ‖·‖) which is further densely, continuously
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and compactly embedded in H such that Dom(ϕ) = V , and there exists an η > 0
satisfying for all u ∈ V ,

ϕ(u) ≥ η‖u‖p, (2.3.186)

with ϕ homogeneous of degree p with respect to the origin. For this case, ψ̃0

coincides with ϕ and thus, in Theorem 2.3.21, we recover the classical results in
[303] and [306] that Λ∞ is an eigenvalue for the operator A := ∂ϕ.

Remark 2.3.8 ([933]). In fact, we do not know whether or not it is true that in
Theorem 2.3.21, there exists an ω ∈ H with |ω| = 1 and ∂ψ̃z̄(ω) 
 Λ∞ω, such that

ω = lim
t→+∞

u(t)− z̄

|u(t)− z̄| .

However, such a result is known in the linear case, see, e.g., [303].

Here we shall consider the second-order case and modify the methods to
obtain exact rates of convergence for solutions of the second-order problem⎧⎪⎪⎨⎪⎪⎩

u′′(t) ∈ A(u(t)), for a.e. t ∈ (0,+∞),

u(0) = u0, u0 ∈ Dom(A),

sup
t≥0

|u(t)| < +∞,
(2.3.187)

which indeed generalizes the corresponding results of Biler [106]. Such a result is
due to Vărvărucă [933].

Consider now a solution u of problem (2.3.187). By the above classical exis-
tence and regularity results, e.g., in [628] and [629], without loss of generality, we
may assume that u ∈ W 2,2

loc ((0,+∞);H). By v we denote the second derivative of
u. Thus, we have that v ∈ L2

loc([0,+∞);H), and v(t) ∈ Au(t) for a.e. t ∈ (0,+∞).

The next result, an analogue of Theorem 2.3.19, is also due to [933] and
generalizes the results of Biler [106] by using some ideas from Mitidieri [628].

Theorem 2.3.30 ([933]). Let p ≥ 2 and let ϕ satisfy (CpF ) and (SHp) with respect
to all the points of F . Then for any solution u of (2.3.187), the following holds:
if u0 /∈ F , then u(t) /∈ F for all t ≥ 0.

If this is the case, then u converges strongly in H as t → +∞, and if we
denote by z̄ its limit, then there exists a constant Λ∞ > 0 such that

lim
t→+∞

− log |u(t)− z̄|
t

= Λ∞, if p = 2, (2.3.188)

and

lim
t→+∞

|u(t)− z̄|1−p/2

(p/2− 1)t
= Λ∞, if p > 2. (2.3.189)
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Proof. Assume u satisfies (2.3.187) with u0 ∈ F . Clearly we may derive that
u(t) /∈ F for all t ≥ 0 readily from the following estimates (2.3.190)–(2.3.192). So
we may assume that u(t) /∈ F for all t ≥ 0. Since (CpF ) holds. It follows from
[628] (Theorem 3.1) that u converges strongly as t → +∞ to some point of F ,
denoted by z̄. To prove these estimates, we assume without loss of generality, that
z̄ = 0; the general case can be done by a translation argument.

Noting that the identities

d

dt
(− log |u|) = −〈u, u′〉

|u|2 , a.e. in (0,+∞), (2.3.190)

⎧⎪⎪⎪⎨⎪⎪⎪⎩ d

dt

(
|u|1−p/2

p/2− 1

)
=

−〈u, u′〉
|u|1+p/2

, a.e. in (0,+∞), p > 2, (2.3.191)

we need the study of the function Λ : [0,+∞) → R defined by

Λ :=
−〈u, u′〉
|u|1+p/2

.

Indeed, we can show

dΛ

dt
+

1 + p/2

|u|1+p/2

∣∣∣∣u′ − 〈u, u′〉
|u|2 u

∣∣∣∣2 =
pϕ(u)− 〈v, u〉

|u|1+p/2
, a.e. in (0,+∞), (2.3.192)

by using the identity 2ϕ(u) = |u′|2, which is valid for the solutions of (2.3.187)
(see, e.g., [106] and [629]).

Since (SHp) now holds with respect to 0, Λ(t) is non-increasing on [0,+∞),
and therefore has a limit, denoted by Λ∞. We can easily check that the mapping
t �→ |u(t)|2 is convex and bounded, it is necessarily non-increasing. Hence, its first
derivative is non-positive, and so Λ(t) ≥ 0 for all t ≥ 0, and this proves that Λ∞

is finite and Λ∞ ≥ 0. The required estimates now follow from (2.3.190) and from
(2.3.191), respectively.

Therefore, it suffices to show that Λ∞ > 0. We shall use the contradiction
argument. To this end, assume that Λ∞ = 0. It hence follows from (2.3.192) that∫ +∞

0

|u(τ)|p/2−1 1

|u(τ)|p
∣∣∣∣u′(τ) − 〈u(τ), u′(τ)〉

|u(τ)|2 u(τ)

∣∣∣∣2dτ < +∞.

Using an argument similar to the proof of Theorem 2.3.21, we conclude that
there exists a sequence {tn} with tn ↗ +∞ such that

u′(tn)
|u(tn)|p/2 + Λ(tn)

u(tn)

|u(tn)| → 0, strongly in H.

Since Λ∞ = 0 by assumption, it follows that

u′(tn)
|u(tn)|p/2 → 0, strongly in H
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which together with the equality 2ϕ(u) = |u′|2 implies that as n → +∞,

ϕ(u(tn))

|u(tn)|p → 0.

Thus this contradicts (CpF ) and the fact that (2.3.151) also holds in the present
setting (see, e.g., [628], Theorem 3.1). Therefore, Λ∞ > 0. The proof is complete.

�

2.4 Differential inequalities for non-existence

of global solutions

In this section, we present some differential inequalities which yield the non-
existence of global solutions to certain evolutionary partial differential equations.

We begin with the following two simple differential inequalities (see, e.g.,
Levine [508]).

Theorem 2.4.1 (The Levine Inequality [508]). Let F : [0, T ) → [0,+∞) be a twice
differentiable function satisfying for all t ∈ [0, T ),

F ′′(t) ≥ −λF (t) + g1(F (t)), F ′(0) > 0, F (0) > s1, (2.4.1)

where λ > 0 is a constant, and g1 : R → R is a convex function, H1 is any
indefinite integral of g1(s): for all s ∈ R,

H ′
1(s) = g1(s), (2.4.2)

and there exists an s1 ∈ R such that H1(s)− 1
2λs

2 is non-decreasing on (s1,+∞)
and, for every ε > 0,∫ +∞

s1

{
H1(s)− 1

2
λs2 − [H1(s1)− 1

2
λs21] + ε

}−1/2

ds < +∞, (2.4.3)

that is, [H1(s)− 1
2λs

2]−1/2 is integrable at infinity. Then

T ≤
√
2

2

∫ +∞

F (0)

{
H1(s)− 1

2
λs2 − [H1(s1)− 1

2
λs21] +

1

2
(F ′(0))2

}−1/2

ds (2.4.4)

and

lim
t↑T

F (t) = +∞. (2.4.5)

Proof. Since F ′(0) > 0, it follows that F ′(t) > 0 on an interval [0, η) ⊂ [0, T ). Let
η be the largest number such that F ′(t) > 0 on [0, η). Then F ′(η) = 0 for η < T
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or η = T . If η < T , then multiplying (2.4.1) by F ′(t) for t ∈ [0, η) and integrating
the resulting inequality over (0, η), we obtain

−1

2
(F ′(0))2 > H1(F (η))− 1

2
λF 2(η)− [H1(F (0))− 1

2
λF 2(0)]. (2.4.6)

In view of the fact F (η) ≥ F (0) > s1, the right-hand side of inequality
(2.4.6) is non-negative. Since the left-hand side of (2.4.6) is negative, we reached
a contradiction. This shows η = T. Thus F ′(t) > 0 on the existence interval [0, T )
and F (t) ≥ F (0) > s1 for any t ∈ [0, T ).

It follows, by standard arguments, that for any t ∈ [0, T ),

T ≤
√
2

2

∫ +∞

F (0)

{
H1(s)− 1

2
λs2 −

[
H1(s1)− 1

2
λs21

]
+

1

2
(F ′(0))2

}−1/2

ds.

Therefore, T is bounded from above by the (finite) integral on the right-hand side,
i.e.,

lim
t↑T

F (t) = +∞.

The proof is thus complete. �
Theorem 2.4.2 (The Levine Inequality [508]). Assume that F (t) satisfies for all
t > 0,

F ′′(t) + αF ′(t) ≥ CF r(t), F (0) = F0, F ′(0) = F1 (2.4.7)

where α > 0, C > 0 and r > 0 are all real constants. If F0 ≥ 0, F1 > 0, and

k =

∫ +∞

F0

[
2C

r + 1
(yr+1 − F r+1

0 ) + F 2
1

]−1/2

dy < 1, (2.4.8)

then for all t > 0,
F (t) > 0, F ′(0) > 0, (2.4.9)

and there is a constant T̃ ≤ T ∗ = − ln(1− k)/α, such that as t → T̃−

F (t) → +∞. (2.4.10)

Proof. Multiplying (2.4.7) by eαt, then integrating the resulting expression over
(0, t), we have for all t > 0,

F ′(t) ≥ e−αt

[
F1 + C

∫ t

0

eατF r(τ)dτ

]
. (2.4.11)

If there is a constant t0 > 0 such that F (t) > 0, for all t ∈ (0, t0), while
F (t0) = 0, then for all t ∈ (0, t0), (2.4.11) implies that F ′(t) > 0. Hence, F (t)
is strictly increasing on [0, t0] and thus F (t0) > F0 ≥ 0, which contradicts the
assumption F (t0) = 0. Therefore F (t) > 0 for t > 0, which together with (2.4.11)
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implies that F ′(t) > 0 for t > 0. Now multiplying (2.4.7) by e2αtF ′(t), we get for
all t > 0,

d

dt

[
e2αtF ′(t)

] ≥ 2C

r + 1

d

dt
F r+1(t). (2.4.12)

Integrating (2.4.12) over (0, t), we deduce that for all t > 0,

F ′(t) ≥ e−αt

[
2C

r + 1
(F r+1(t)− F r+1

0 ) + F 2
1

]1/2
, (2.4.13)

whence for all t > 0,

e−αt ≤
[

2C

r + 1
(F r+1(t)− F r+1

0 ) + F 2
1

]−1/2

. (2.4.14)

Integrating (2.4.14) over (0, T ), we can obtain

1− e−αT ≤ α

∫ +∞

F0

[
2C

r + 1
(yr+1 − F r+1

0 ) + F 2
1

]−1/2

dy ≡ k

which completes the proof. �

The following result, due to Levine[508], is a counterpart of differential in-
equalities of the first order.

Theorem 2.4.3 (The Levine Inequality [508]). Let F : [0, T ) → [0,+∞) be a dif-
ferentiable function satisfying for all t ∈ [0, T ],

F ′(t) ≥ −λF (t) + g2(F (t)), F ′(0) > 0, F (0) > s2 (2.4.15)

where λ > 0 is a constant, and g2 : R → R is a convex function with the property
that there exists an s2 > 0 such that g2(s) − λs is positive on (s2,+∞), and for
every ε > 0, ∫ +∞

s2+ε

[g2(s)− λs]
−1

ds < +∞. (2.4.16)

Then

T ≤
∫ +∞

F (0)

(g2(s)− λs)−1ds (2.4.17)

and
lim
t↑T

F (t) = +∞. (2.4.18)

Proof. Indeed, from (2.4.15) we conclude that F ′(t) > 0 as soon as F (t) > s2. By
an argument analogous to that used in Theorem 2.4.2, F ′(t) > 0 on [0, T ) and
consequently F (t) > s2 on [0, T ).

From (2.4.15), we easily find that for any t ∈ [0, T ), (2.4.17) and (2.4.18)
hold. The proof is now complete. �
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The next result may be viewed as a corollary of the above theorem (see, e.g.,
Kaplan [413], also Quittner and Souplet [818]).

Theorem 2.4.4 (The Kaplan–Quittner–Souplet Inequality [413, 818]). Let y(t) be
a non-negative C1 function on [0, T ) satisfying for some λ ∈ R and for p > 1,

y′(t) ≥ yp(t)− λy(t). (2.4.19)

(i) If y(0) > 0 and λ ≤ 0, then

T ≤ y1−p(0)/(p− 1), (2.4.20)

while

(ii) if λ > 0 and y(0) > λ1/(p−1), then

T ≤
∫ +∞

y(0)

(σp − λσ)
−1

dσ. (2.4.21)

Proof. (i) Let y(0) > 0, λ ≤ 0, and set T1 = sup{t : y(s) > 0 on [0, t)}. Then for
any t ∈ [0, T1) ⊆ [0, T ), we have from (2.4.19)

y′(t) ≥ yp(t),

whence
y(t) ≥ [

y1−p(0)− (p− 1)t
]1/(p−1) → +∞ (2.4.22)

as t ↗ Tmax ≡ y1−p(0)/(p− 1). Thus (2.4.20) is valid, since otherwise y(t) will go
to +∞ at Tmax < T because of (2.4.22).

(ii) Let λ > 0 and y(0) > λ1/(p−1), and set y(t) = F (t), g2(s) = sp, p > 1
and s2 = λ1/(p−1). Then (2.4.21) is a consequence result of Theorem 2.4.3. The
proof is thus complete. �

However, assertion (ii) in Theorem 2.4.4 can be extended to the following
result (see, e.g., Bandle and Levine [66]), which can be also viewed as a general-
ization of Theorem 2.4.4.

Theorem 2.4.5 (The Bandle–Levine Inequality [66]). Let y(t) be a non-negative
C1function on [0, T ) which satisfies for some constant λ ∈ R,

y′(t) ≥ f(y(t))− λy(t), (2.4.23)

where p > 1 and f : R+ → R+ is a locally Lipschitz function with the following
properties:

(i) f(0) = 0, f(s) > 0 for all s > 0;

(ii) lims→0 f(s)/s
p = a > 0 for some p > 1;

(iii)
∫ +∞
s 1/f(σ)dσ < +∞ for all s > 0;

(iv) f is convex.
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For λ > 0, denote by sλ the positive solution of f(s)− λs = 0, if y(0) > sλ. Then
y(t) cannot exist beyond

τλ =

∫ +∞

y(0)

ds

f(s)− λs
. (2.4.24)

The next result is an immediate consequence of the above theorem.

Corollary 2.4.1. Let y(t) ∈ C1([0,+∞)) be a non-negative differential function
satisfying {

y′(t) + C1y(t) ≥ C2y
p(t), for all t ∈ [0,+∞), (2.4.25)

y(0) = y0 > 0 (2.4.26)

where C1 ≥ 0, C2 > 0 and p > 1 are constants. Then for all t ≥ 0,

y(t) ≤ C3 :≡ (C1/C2)
1/(p−1). (2.4.27)

Proof. The proof is left to the reader, which is easier. �

The following result is a generalization of Theorem 2.4.4, and improves the
result of Glassey [318] that holds for α > 1, β ≤ 1, γ ≤ 1.

Theorem 2.4.6 (The Glassey–Qin Inequality [318]). Let F : [0,+∞) → (0,+∞) be
a non-negative C1 function satisfying for all t ≥ 0,

F ′(t) ≥ C0F
α(t)(k + t)−β log−γ(1 + k + t), (2.4.28)

such that
F (0) > 0 (2.4.29)

where α > 1, k > 0, β < 1, γ ≥ 0 or β = 1, γ ≤ 1 are constants. Then F (t) blows
up in a finite time.

Proof. From (2.4.28)–(2.4.29) it follows that for all t ≥ 0,

F (t) ≥ F (0) > 0. (2.4.30)

Integrating (2.4.28) we obtain

F 1−α(t) ≤ F 1−α(0)− C0(α− 1)

∫ t

0

(k + s)−β log−γ(1 + k + s)ds. (2.4.31)

Now we compute

I ≡
∫ t

0

(k + s)−β log−γ(1 + k + s)ds

≥
{

log−γ(1 + k + t)
∫ t

0
(k + s)−βds, if β < 1, γ ≥ 0 or β = 1, γ < 1,∫ t

0
(1 + k + s)−1 log−1(1 + k + s)ds, if β = 1, γ = 1

≥

⎧⎪⎨⎪⎩
log−γ(1+k+t)

1−β [(1 + k + t)1−β − (1 + k)1−β ], if β < 1 γ ≥ 0;

log−γ(1 + k + t)[log(1 + k + t)− log(k + t)], if β = 1, γ < 1;
log log(1 + k + t)− log log(1 + k), if β = 1, γ = 1. (2.4.32)
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Obviously, there is a large t0 = t0(k) > 0 such that for t ≥ t0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + k + t)1−β − (1 + k)1−β

≥ 1

2
(1 + k + t)1−β , if β < 1, γ ≥ 0,

(2.4.33)

log(1 + k + t)− log(1 + k)

≥ 1

2
log(1 + k + t), if β = 1,

(2.4.34)

log log(1 + k + t)− log log(1 + k)

≥ 1

2
log log(1 + k + t), if β = 1, γ = 1.

(2.4.35)

Thus it follows from (2.4.31)–(2.4.35) and the desired inequality ln(1 + x) <
1 + x for all x > 0 that for t ≥ t0,

F (t)≥
{
1/

[
F 1−α(0)−C0(α−1)

∫ t

0

(k+s)−β log−γ(1+k+s)ds

]}1/(α−1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
1/

[
F 1−α(0)−C0(α−1)log−γ(1+k+ t)(1+k+ t)1−β/[2(1−β)]

]}1/(α−1)
,

if β<1,γ≥0,{
1/

[
F 1−α(0)−C0(α−1)log−γ(1+k+ t)log(1+k+ t)/2

]}1/(α−1)
,

if β=1, γ=1,{
1/

[
F 1−α(0)−C0(α−1)loglog(1+k+ t)/2

]}1/(α−1)
,

if β=1, γ=1,

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
1/

[
F 1−α(0)−C0(α−1)(1+k+ t)1−β−γ/[2(1−β)]

]}1/(α−1)
,

if β<1, γ≥0,{
1/

[
F 1−α(0)−C0(α−1)log1−γ(1+k+ t)/2

]}1/(α−1)
,

if β=1, γ<1,{
1/

[
F 1−α(0)−C0(α−1)loglog(1+k+ t)/2

]}1/(α−1)
,

if β=1, γ=1.

(2.4.36)

This shows that there is some T0 > 0 such that⎧⎪⎪⎨⎪⎪⎩
F 1−α(0)− C0(α−1)

2(1−β) (1 + k + T0)
1−β−γ = 0, if β < 1, γ ≥ 0,

F 1−α(0)− C0(α−1)
2 log1−γ(1 + k + T0) = 0, if β = 1, γ < 1,

F 1−α(0)− C0(α−1)
2 log log(1 + k + T0) = 0, if β = γ = 1

(2.4.37)

and the desired result follows from (2.4.36)–(2.4.37). �
Remark 2.4.1. Theorem 2.4.6 states that if γ = 0, then Theorem 2.4.6 holds for
β ≤ 1. Now we rewrite (2.4.28) as

F ′(t) ≥ C0F
α(t)(k + t)−(β+γ) (2.4.38)
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which, taking into account the above case for γ ≥ 0, implies that the conclusion
of Theorem 2.4.6 still holds for α > 1, β + γ ≤ 1.

Using the above result, we can easily show the following result (see, e.g.,
Glassey [318]).

Theorem 2.4.7 (The Glassey Inequality [318]). Let F : [0,+∞) → (0,+∞) be a
non-negative C2 function satisfying for all t > 0,

F ′′(t) ≥ C0F
α(t)(k + t)−β log−γ(1 + k + t), (2.4.39)

{
F (0) > 0, F ′(0) > 0 (2.4.40)

where k > 0, α > 1, 0 ≤ γ, β < 2 or γ ≤ 2, β = 2 are constants. Then F (t) blows
up in a finite time.

Proof. By (2.4.39), F ′′(t) > 0 for any t ∈ [0, T ), hence F ′(t) > F ′(0) > 0 and
F (t) > F (0) for any t ∈ [0, T ). Multiplying (2.4.39) by F ′(t), we may obtain

1

2

[
(F ′(t))2

]′ ≥ C0

α+ 1
[Fα+1(t)]′(k + t)−β log−γ(1 + k + t)

≥ C0

α+ 1

d

dt

[
Fα+1(t)(k + t)−β log−γ(1 + k + t)

]
i.e., [

(F ′(t))2
]′ ≥ 2C0

α+ 1

d

dt

[
Fα+1(t)(k + t)−β log−γ(1 + k + t)

]
. (2.4.41)

Integrating (2.4.41) with respect to t gives us

[F ′(t)]2 ≥ [F ′(0)]2 +
2C0

α+ 1
Fα+1(t)(k + t)−β log−γ(1 + k + t)

− 2C0

α+ 1
Fα+1(0)k−β log−γ(1 + k)

≡ C3(C0) +
2C0

α+ 1
Fα+1(t)(k + t)−β log−γ(1 + k + t). (2.4.42)

Let C∗ = C0 be such that C3(C0) = 0. When C0 ≤ C∗, then

C3(C0) ≥ 0. (2.4.43)

From (2.4.42) and (2.4.43) it follows that

F ′(t) ≥
√

2C0

α+ 1
F (α+1)/2(t)(k + t)−β/2 log−γ/2(1 + k + t). (2.4.44)

Applying Theorem 2.4.6 to (2.4.44) yields the conclusion of the theorem.
When C0 > C∗, we may rewrite (2.4.39) with C0 replaced by C∗ and argue again
as above to be able to complete the proof. �
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If we assume α = 0 in (2.4.39), then we can obtain the following theorem.

Theorem 2.4.8 (The Qin Inequality). Let F : [0,+∞) → (0,+∞) be a non-negative
C2 function satisfying

F ′′(t) ≥ C0(k + t)−β log−γ(1 + k + t), (2.4.45)
{

F (0) > 0, F ′(0) > 0 (2.4.46)

where C0 > 0 and β ≤ 1, γ ≥ 0 are constants. Then F (t) blows up in a finite time.

Proof. Obviously, on the one hand, the conditions (2.4.45)–(2.4.46) show that
F ′(t) > F ′(0) > 0 and F (t) > F (0) > 0 for any t ≥ 0. On the other hand, we
deduce from (2.4.45) that

d

dt
(logγ(1 + k + t)F ′(t)) ≥ C0(k + t)−β . (2.4.47)

Integrating (2.4.47) with respect to t, we get

logγ(1+k+t)F ′(t) ≥
{

logγ(1 + k)F ′(0) + C0

1−β [(k + t)1−β − k1−β ], if β < 1,

logγ(1 + k)F ′(0) + C0 ln
k+t
k , if β = 1.

(2.4.48)

Noting that

d

dt
(logγ(1 + k + t)F (t)) ≥ logγ(1 + k + t)F ′(t),

it thus follows from (2.4.47)–(2.4.48) that,

logγ(1 + k + t)F (t)

≥ logγ(1 + k)F (0) +

∫ t

0

logγ(1 + k + s)F ′(s)ds

≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
logγ(1 + k)F (0) +

∫ t

0

[
logγ(1 + k)F ′(0) + C0

1−β [(k + s)1−β − k1−β ]
]
ds,

if β < 1,

logγ(1 + k)F (0) +
∫ t

0 [ln
γ(1 + k)F ′(0) + C0(ln(k + s)− ln k)] ds,

if β = 1,

=

{
I1(C0) + I2(C0)t+

C0

(1−β)(2−β)(k + t)2−β , if β < 1,

I3(C0) + I4(C0)t+ C0(k + t) ln(t+ k), if β = 1,
(2.4.49)

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
I1(C0) = logγ(1 + k)F (0)− C0

(1−β)(2−β)k
2−β,

I2(C0) = logγ(1 + k)F ′(0)− C0

1−β k
1−β,

I3(C0) = logγ(1 + k)F (0)− C0k log k,

I4(C0) = logγ(1 + k)F ′(0)− C0 log k − C0.
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Case 1: β < 1: Let

C1 =
(1− β)(2 − β) logγ(1 + k)F (0)

k2−β
> 0, C2 =

(1− β)F ′(0) logγ(1 + k)

k2−β
> 0.

Then

I1(C1) = 0, I2(C2) = 0.

(1) When C0 ≤ C3 ≡ min[C1, C2] > 0, we know that

I1(C0) ≥ 0, I2(C0) ≥ 0. (2.4.50)

Thus (2.4.49) reduces (due to log(1 + x) ≤ x for all x > 0), as t → +∞, to

F (t) ≥ C0

(1− β)(2 − β)
(k + t)2−β log−γ(1 + k + t) → +∞ (2.4.51)

as long as β < 1. This implies that F (t) blows up in a finite time.

(2) When C0 > C3, I1(C0) and I2(C0) cannot vanish simultaneously. But we
may rewrite (2.4.45) with C0 replaced by C3 and repeat the same argument as
above to be able to complete the proof.

Case 2: β = 1: We can also obtain the following estimate for large t → +∞ as t →
+∞

F (t) ≥ C0(t+ k) log(t+ k)

logγ(1 + k + t)
+

I3(C0) + I4(C0)t

logγ(1 + k + t)

≥ C0(k + t) log(k + t)− C′(k + t)

logγ(1 + k + t)

(2.4.52)

for a constant C′ > 0, which implies that F (t) blows up in a finite time. The proof
is complete. �

The following is an analogue of Theorem 2.4.7 for γ = 0, which was estab-
lished in Kato [419] in order to prove the non-existence of a global solution of
nonlinear wave equations.

Corollary 2.4.2 (The Kato Inequality [419]). If p > 1, a, b, R > 0 are constants,
then the differential inequality for all t ≥ R > 0,

w′′(t) ≥ bt−1−pwp(t), (2.4.53)

has no global solution such that for sufficiently large t ≥ R > 0,

w′(t) ≥ a > 0, w(t) ≥ at. (2.4.54)

Proof. Arguing by contradiction, let w(t) be a global solution. Inequality (2.4.53)
for w(t) ≥ at implies that w′′(t) ≥ bap/t. Hence w′(t) ≥ K log t eventually (i.e., for
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sufficiently large t), where K will denote different positive constants in the sequel.
Therefore, eventually,

w(t) ≥ Kt log t. (2.4.55)

Next, we note that

[(w′(t))2 − 2b(1 + p)−1t−1−pw1+p(t)]′

= 2w′(t)
(
w′′(t)− bt−1−pwp(t)

)
+ 2bt−2−pw1+p(t) > 0,

whence
(w′(t))2 ≥ Kt−1−pw1+p(t)−K. (2.4.56)

Since, by (2.4.55), w(t)/t ≥ K log t eventually, we may omit the last term
−K in (2.4.56) for large t, with the first K modified. Since

t−1−pw1+p(t) = (w(t)/t)
p−1

(w(t)/t)
2 ≥ K(log t)p−1 (w(t)/t)

2
,

(2.4.56) yields

w′(t) ≥ K(log t)(p−1)/2 (w(t)/t) , eventually. (2.4.57)

Since K(log t)(p−1)/2 is arbitrarily large for large t, the linear differential
inequality (2.4.57) for w implies

w(t) ≥ Ktk, eventually, (2.4.58)

for any positive number k. Returning to (2.4.56), we then obtain

w′(t) ≥ Kt−(1+p)/2w(p−1)/4(t)w(p+3)/4(t) ≥ Kw(p+3)/4(t), (2.4.59)

because we can choose k = 2(p + 1)/(p − 1) in (2.4.58). Since (p + 3)/4 > 1,
(2.4.59) is a nonlinear differential inequality in w(t) for which no global solution
with w(t) > 0 exists. This contradiction proves the theorem. �

While studying the blow-up phenomenon of a nonlinear wave equation with
a critical exponent, Todorova and Yordanov [919] proved the following theorem.

Theorem 2.4.9 (The Todorova–Yordanov Inequality [919]). Let 0 ≥ A > −1 and
r > 0. Assume that F (t) is a twice continuously differentiable solution of the
inequality for all t > 0,

F ′′(t) + F ′(t) ≥ C0(t+ k)A|F (t)|1+r , (2.4.60)

with a constant C0 > 0, such that

F (0) > 0, F ′(0) > 0. (2.4.61)

Then F (t) blows up in a finite time. The blow-up time can be estimated by

T0 =

{
2(A+ 1)F−r/2(0)

δα
+ kA+1

}1/(A+1)

− k (2.4.62)

where δ > 0 is a small constant satisfying δ < F ′(0)/[kAF 1+r/2(0)].
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Proof. We now consider the auxiliary initial value problem

Y ′(t) = ν(t+ k)A[Y (t)]1+r/2, Y (0) ≡ F (0) > 0 (2.4.63)

where ν > 0 is a small number to be chosen later on. Since

Y (t) =

{
[Y (0)]−r/2 − νr

2(A+ 1)
[(t+ k)A+1 − kA+1]

}−2/r

(2.4.64)

and A > −1, the solution Y (t) of the above problem blows up at a finite time T0

in (2.4.62) and satisfies for all 0 ≤ t < T0,

Y (t) > Y (0) > 0. (2.4.65)

We now may compute

Y ′′(t) = ν(1 + r/2)(t+ k)A[Y (t)]r/2 + νA(t+ k)A−1[Y (t)]1+r/2

≤ ν2(1 + r/2)(t+ k)2A[Y (t)]1+r ,
(2.4.66)

where we have used that A ≤ 0 and that Y (t) satisfies (2.4.63). Adding (2.4.63)
and (2.4.66), and observing that 2A ≤ A and [Y (t)]1+r/2 < [Y (0)]−r/2[Y (t)]1+r/2,
we thus obtain

Y ′′(t) + Y ′(t) ≤ ν2(1 + r/2)(t+ k)2A[Y (t)]1+r + ν(t+ k)A[Y (t)]1+r/2

≤ B(t+ k)A[Y (t)]1+r,
(2.4.67)

where B = ν2(1 + r/2) + νA[Y (0)]−r/2. Furthermore, we may choose ν > 0 so
small that

B = ν2(1 + r/2) + νA[Y (0)]−r/2 < C0, Y ′(0) = νkA[Y (0)]1+r/2 < F ′(0).

Therefore from (2.4.67) we can obtain the inequality

Y ′′(t) + Y ′(t) ≤ C0(t+ k)A[Y (t)]1+r (2.4.68)

and the initial conditions

Y (0) ≤ F (0), Y ′(0) < F ′(0). (2.4.69)

We can now show that F (t) ≥ Y (t) for all 0 ≤ t < T0, so that F (t) also blows
up in a finite time. From F ′(0) > Y ′(0), we have F ′(t) > Y ′(0) for t > 0 small
enough; consequently,

t0 = sup {t ∈ [0, T0) | F ′(τ) > Y ′(τ) for 0 ≤ τ < t} ,
and assume that t0 < T0, where T0 is the blowup time for Y (t), thus for all
t ∈ [0, t0),

F ′(t) > Y ′(t), F ′(t0) = Y ′(t0). (2.4.70)
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Since F ′(t)− Y ′(t) > 0, the function F (t)− Y (t) is strictly increasing in the
interval 0 ≤ t < t0. In particular, F (t)− Y (t) > F (0)− Y (0) = 0 for all t ∈ [0, t0).
Moreover, F (t0) > Y (t0), because if F (t0) = Y (t0), then the function F (t)− Y (t)
will have zeros at 0 and at t0, so by Rolle’s Theorem, its derivative will vanish
between 0 and t0, i.e., F

′(t1) = Y ′(t1) for some 0 < t1 < t0, which is impossible
by the definition of t0. Therefore,

F (t0) > Y (t0), F ′(t0) = Y ′(t0). (2.4.71)

On the other hand, subtracting (2.4.68) from (2.4.60), we obtain

+[F ′(t)− Y ′(t)] ≥ C(t+ k)2A
{
[F (t)]1+r − [Y (t)]1+r

}
≥ 0

(2.4.72)

for all 0 ≤ t ≤ t0. We now can rewrite (2.4.72) in the form

d

dt

{
et[F ′(t)− Y ′(t)]

} ≥ 0

which, integrated over [0, t0), yields

et0 [F ′(t0)− Y ′(t0)] ≥ F ′(0)− Y ′(0) > 0,

i.e.,
F ′(t0)− Y ′(t0) > 0. (2.4.73)

This is a contradiction to (2.4.71). Thus, t0 ≥ T0, and the proof is hence complete.
�

The next result is due to the Quittner–Souplet Inequality [818].

Theorem 2.4.10 (The Quittner–Souplet Inequality [818]). Assume that 0 < r <
1 < p and k, λ ≥ 0. Let the functions y(t), z(t) ∈ C1 ((0, T )) satisfy y(t) ≥ 0, z(t) >
0 and the following system of differential inequalities on (0, T ):

z′(t) ≥ yp(t), y′(t) + λy(t) + k(z′(t))r ≥ z(t). (2.4.74)

Then T < +∞.

Proof. By translating the origin of time, we may assume that actually y(t), z(t) ∈
C1 ([0, T )) and z(0) > 0. Fix γ > 0 such that max(r, 1/p) < γ < 1. It follows from
the first inequality in (2.4.74) that, for all ε > 0, there exists a constant Cε > 0
such that

Cε (z
′(t))γ ≥ ypγ(t) + (3λ+ 1)y(t)− ε, Cε (z

′(t))γ ≥ 3k (z′(t))γ − ε. (2.4.75)

Hence

2Cε (z
′(t))γ + 3y′(t) ≥ 3

(
y′(t) + λy(t) + k (z′(t))r

)
+ ypγ(t) + y(t)− 2ε.
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By the second inequality in (2.4.74),

2Cε (z
′(t))γ + 3y′(t) ≥ 3z(t) + ypγ(t) + y(t)− 2ε. (2.4.76)

Next, choosing m ∈ (0, γ) and using Young’s inequality, we have

2Cε (z
′(t))γ = 2Cε

(z′(t))γ

zm(t)
zm(t) ≤ εzm/(1−γ)(t) + Cε

z′(t)
zm/γ(t)

.

Hence

C′′
ε

(
zθ(t)

)′
+ εzm/(1−γ)(t) ≥ 2Cε (z

′(t))γ , (2.4.77)

where θ = 1−m/γ ∈ (0, 1), and for a large constant C′′
ε > 0.

Now assume further that m < 1− γ and define

φ = C ′′
ε z

θ(t) + 3y(t).

By combining (2.4.75) and (2.4.76), for 0 < ε < 1, we get

φ′(t) ≥ 3z(t) + ypγ(t) + y(t)− 2ε− εzm/(1−γ)(t)

≥ 2z(t) + ypγ(t) + y(t)− 3ε, 0 ≤ t < T.

Choosing ε < z(0)/3, setting ν = min(pγ, 1/θ) > 1, and using the fact that
z(t) is non-decreasing, we then obtain on (0, T ),

φ′(t) ≥ z(t) + ypγ(t) + y(t) ≥ [z(0)]1−θνzθν(t) + yν(t) ≥ Cφν(t)

with some constant C > 0, which, by virtue of Theorem 2.4.4, implies that T <
+∞. �

The following three results are generalizations of Theorem 2.4.10, which are
due to Quittner and Souplet [818].

Theorem 2.4.11 (The Quittner–Souplet Inequality [818]). Let p, q, ε > 0, pq > 1,
and 0 < T ≤ +∞. Assume that 0 ≤ y(t), z(t) ∈ C1(0, T ), (y(t), z(t)) 	≡ (0, 0), and
that (y(t), z(t)) solves on (0, T )

y′(t) ≥ εzp(t), z′(t) ≥ εyq(t). (2.4.78)

Then T < +∞ and

y(t) ≤ C1(T − t)−α/2, z(t) ≤ C1(T − t)−β/2, 0 < t < T, (2.4.79)

with constants C1 = C1(p, q, ε) > 0, α > 0, β > 0.
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Proof. From (2.4.78) we deduce that

ε−p−1y(t) ≥ ε−p

∫ t

0

zp(s)ds ≥
∫ t

0

(∫ s

0

yq(σ)dσ

)p

ds =: h(t). (2.4.80)

Therefore,

[(h′(t))(p+1)/p]′ = (p+ 1)

(∫ t

0

yq(s)ds

)p

yq(t)

≥ (p+ 1)εq(p+1)h′(t)hq(t) = C
(
hq+1(t)

)′
.

(2.4.81)

Noting that h(0) = h′(0) = 0, (2.4.81) yields

(h′(t))(p+1)/p ≥ Chq+1(t). (2.4.82)

Moreover, since (y(t), z(t)) 	≡ (0, 0), we can assume that h > 0 on (t0, T ) for
some t0 ∈ (0, T ). Putting γ = p q+1

p+1 > 1, we get[
h1−γ(t)

]′
= −(γ − 1)h′(t)h−γ(t) ≤ −C < 0. (2.4.83)

Integrating (2.4.83) over (t, s) for t0 < t < s < T , we may obtain

h1−γ(t) ≥ h1−γ(s) + C(s− t) ≥ C(s− t). (2.4.84)

From (2.4.84) it follows that T < +∞. By letting s → T , we obtain

h(t) ≤ C(T − t)−1/(γ−1) = C(T − t)−α/2, t0 < t < T. (2.4.85)

Next, fix t0 < t < T and let τ = (T − t)/4. Since y′(t) ≥ 0, we have

h(t+ 2τ) =

∫ t+2τ

0

[∫ s

0

yq(σ)dσ

]p
ds

≥ τ

[∫ t+τ

0

yq(σ)dσ

]p
≥ τ [τyq(t)]

p
= τp+1ypq(t).

(2.4.86)

In view of (2.4.85), we deduce that

ypq(t) ≤ τ−(p+1)h(t+ 2τ) ≤ Cτ−(p+1)(T − t− 2τ)−(p+1)/(pq−1)

= C(T − t)−pq(p+1)/(pq−1),
(2.4.87)

hence the estimate of y(t) on (t0, T ) holds. A similar estimate of z(t) follows in
the same way. Since the constant C is independent of t0 and y = z = 0 in (0, t) if
h(t) = 0, the above estimates obtained in (t0, T ) remain true on (0, T ). �
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Theorem 2.4.12 (The Quittner–Souplet Inequality [818]). Let p, q > 0 satisfy pq >
1, and 0 < T < +∞. Assume that 0 ≤ y(t), z(t) are locally absolutely continuous
and non-decreasing on (0, T ), and that (y(t), z(t)) solves a.e. on (0, T )

y′(t) ≤ zp(t), z′(t) ≤ yq(t). (2.4.88)

Assume also that supt∈(0,T ) (y(t) + z(t)) = +∞ and (2.4.79) holds for con-
stants C1 > 0, α > 0, β > 0. Then

y(t) ≥ η(T − t)−α/2, z(t) ≥ η(T − t)−β/2, T − η < t < T, (2.4.89)

with a constant η = η(p, q, C1) > 0.

Proof. We first observe that for suitable a, b (depending on p, q), the functions

ȳ(t) = a(T − t)−α/2, z̄(t) = b(T − t)−β/2 (2.4.90)

satisfy on (0, T ),
ȳ′(t) = z̄p(t), z̄′(t) = ȳq(t). (2.4.91)

We deduce that, for each t ∈ (0, T ),

either y(t) ≥ ȳ(t) or z(t) ≥ z̄(t). (2.4.92)

Indeed, if this failed for some t ∈ (0, T ), then we would have y(t) < ȳ(t− η)
and z(t) < z̄(t− η) for some η > 0 so that, by a simple comparison argument, we
would conclude that y(s) ≤ ȳ(s− η) and z(s) ≤ z̄(s− η), t ≤ s < T , contradicting
the fact that (y, z) is unbounded on (0, T ).

In order to reach a contradiction, we assume that there exist sequences ηi →
0+ and ti → T such that

z(ti) ≤ ηi(T − ti)
−β/2. (2.4.93)

Fix k > 1 and put t′i := ti − k(T − ti). Then (2.4.88), (2.4.93) and z′(t) ≥ 0
guarantee that, for large i,

a(T − ti)
−α/2 ≤ y(ti) ≤ y(t′i) +

∫ ti

t′i

zp(s)ds

≤ C1(T − t′i)
−α/2 + kηpi (T − ti)

1−p(β/2). (2.4.94)

Using 1− p(β/2) = −α/2 and noting that T − t′i = (1 + k)(T − ti), we can get

a ≤ C1(1 + k)−α/2 + kηpi . (2.4.95)

Letting i → +∞, we get a contradiction for k = k(p, q, a) large enough.
Consequently, there exists a η = η(p, q) > 0 such that z(t) ≥ η(T − t)−β/2 on
[T − η, T ). The estimate for y(t) follows in an analogous manner. �
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Theorem 2.4.13 (The Quittner–Souplet Inequality [818]). Let p, q > 0 satisfy pq >
1 and λ > 0. Then there exists a constant k = k(p, q) > 0 such that the system of
differential inequalities for all t ≥ 0

y′(t) ≥ zp(t)− λy(t), z′(t) ≥ yq(t)− λz(t), (2.4.96)

has no global non-negative solution (y(t), z(t)) ∈ C([0,+∞)) ∩ C1((0,+∞)) with
y(0) ≥ kλα/2.

Proof. Set τ = λ−1 and assume that (y(t), z(t)) exists on [0, τ ]. Then there exists
a C1 = C1(q) > 0 such that

y(τ) ≥ C1y(0), z(τ) ≥ C1λ
−1yq(0). (2.4.97)

Indeed, from (2.4.96) we derive that
(
y(t)eλt

)′ ≥ 0, and hence y(t) ≥ y(0)e−λt ≥
y(0)e−1 on [0, τ ]. This implies

(
z(t)eλt

)′ ≥ eλtyq(t) ≥ e−qyq(0) on [0, τ ], hence

z(τ) ≥ e−(q+1)λ−1yq(0), (2.4.98)

which in turn yields (2.4.97). Next, since pq > 1, we may choose A,B > 1 depend-
ing only on p, q, such that p(B − 1) > A and q(A− 1) > B. We claim now that if
for some t0 there exist two constants a, b > 0 such that

y(t0) > a, z(t0) > b, bp > Aλa, aq > Bλb, (2.4.99)

then (y(t), z(t)) cannot exist globally.

To this end, we argue a contradiction and assume that (y, z) exists for all
t > 0. By a time shift, we may assume t0 = 0. Let (ỹ, z̃) be the unique, positive
local solution of

ỹ′(t) = z̃p(t)− λỹ(t), t ≥ 0, (2.4.100)
⎧⎪⎨⎪⎩ z̃′(t) = ỹq(t)− λz̃(t), t ≥ 0, (2.4.101)

ỹ(0) = a, z̃(0) = b. (2.4.102)

By an easy comparison argument (using the fact that z �→ zp and y �→ yq

are increasing functions), it follows that (ỹ, z̃) exists for all t > 0 and we have
y(t) ≥ ỹ(t) > 0 and z(t) ≥ z̃(t) > 0. Set

φ(t) = z̃p(t)−Aλỹ(t), ψ(t) = ỹq(t)−Bλz̃(t).

By (2.4.99), φ(0) > 0 and ψ(0) > 0. Assume now that φ(t), ψ(t) > 0 on [0, T ] for
some T > 0. Then it holds on (0, T ],

ỹ′(t) ≥ (A− 1)λỹ(t), z̃′(t) ≥ (B − 1)λz̃(t). (2.4.103)

On the other hand, for all t ∈ (0, T ], we derive

φ′(t) = pz̃p−1(t)z̃′(t)−Aλỹ′(t) ≥ [p(B − 1)−A]λz̃p(t) > 0 (2.4.104)
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and

ψ′(t) = qỹq−1(t)ỹ′(t)−Bλz̃′(t) ≥ [q(A− 1)−B]λỹq(t) > 0. (2.4.105)

We deduce that φ, ψ > 0 on [0,+∞). Consequently,

ỹ′(t) ≥ Cz̃p(t), z̃′(t) ≥ Cỹq(t) (2.4.106)

with C = 1−max(A−1, B−1) > 0. However, as a consequence of Theorem 2.4.11,
this implies that (ỹ(t), z̃(t)) cannot exist for all t > 0. This contradiction proves
the claim.

Let us now show that, for suitable k, ε, η > 0 (independent of λ), the relation
y(0) ≥ kλα/2 guarantees that a := ελα/2 and b := ηλβ/2 satisfy (2.4.99) for t0 = τ .
In view of the latter claim, this will prove the lemma. The last two conditions in
(2.4.99) are equivalent to⎧⎨⎩ ηpλ

p(q+1)
pq−1 > Aλε

p+1
pq−1 = Aελ

p(q+1)
pq−1 ,

εqλ
q(p+1)
pq−1 > Bλη

q+1
pq−1 = Bηλ

q(p+1)
pq−1 ,

that is, ηp > Aε and εq > Bη; such η, ε > 0 certainly exist since pq > 1. By virtue
of (2.4.97), the first two conditions in (2.4.99) are satisfied if

ελ
p+1
pq−1 < C1kλ

p+1
pq−1 , ηλ

q+1
pq−1 < C1λ

−1kqλ
q(p+1)
pq−1 = C1k

qλ
q+1
pq−1 .

It thus suffices to choose k > max
[
C−1

1 ε, C
−1/q
1 η1/q

]
. �

Now, we need the next comparison theorem which is due to C̆aplygin [130]
(see also, Beckenbach and Bellman [83]).

Theorem 2.4.14 (The C̆aplygin Inequality [130]). If u(t), v(t) ∈ C2([0,+∞)) sat-
isfy the inequalities ⎧⎪⎪⎪⎨⎪⎪⎪⎩

u′′(t) + p(t)u′(t)− q(t)u(t) > 0, t ≥ 0, (2.4.107)

v′′(t) + p(t)v′(t)− q(t)v(t) = 0, t ≥ 0, (2.4.108)

q(t) ≥ 0, t ≥ 0, (2.4.109)

u(0) = v(0), u′(0) = v′(0), (2.4.110)

then for all t > 0,
u(t) > v(t). (2.4.111)

Proof. In fact, subtracting (2.4.108) from (2.4.107), we obtain

w′′(t) + p(t)w′(t)− q(t)w(t) > 0 (2.4.112)

where w = u−v with w(0) = w′(0) = 0. It thus follows that w(t) > 0 in some initial
interval (0, t0]. Assume that w(t) eventually becomes negative, so that w must have
a local maximum at some point t1. At this point, we would have w′ = 0, w > 0,
and therefore, by (2.4.112), w′′ > 0. This, however, contradicts the assumption
that t1 is a local maximum. �



186 Chapter 2. Differential and Difference Inequalities

The next result, due to Agmon and Nirenberg [14], is a generalization of
Theorem 2.4.14.

Theorem 2.4.15 (The Agmon–Nirenberg Inequality [14]). Let f(t) and g(t) be twice
differentiable functions in an interval [t0, t1) such that

f ′′(t) + a(t)|f ′(t)|+ b(t) ≥ 0, (2.4.113)
{
g′′(t) + a(t)|g′(t)|+ b(t) = 0, (2.4.114)

where a(t), b(t) are continuous functions in [t0, t1), a ≥ 0. If f(t0) ≥ g(t0) and
f ′(t0) ≥ g′(t0), then for all t0 ≤ t < t1,

f(t) ≥ g(t).

Proof. Obviously, the function h(t) = f(t)− g(t) satisfies

h′′(t) + a(t)|h′(t)| = f ′′(t)− g′′(t) + a|f ′(t)− g′(t)|
≥ f ′′(t)− g′′(t) + a|f ′(t)| − a|g′(t)|
= f ′′(t) + a|f ′(t)|+ b − (g′′(t) + a|g′(t)|+ b) ≥ 0.

Moreover, h(t0) ≥ 0 and h′(t0) ≥ 0. We have to show that h(t) ≥ 0. Clearly,
it suffices to show that h′(t) ≥ 0. Now if this does not hold for all t, then (since
h′(t0) ≥ 0) there exists a subinterval (α, β) such that h′(t) < 0 for all α < t < β,
while h′(α) = 0. But then by the above observations, in this subinterval

d

dt

(
exp

{
−

∫ t

α

a(s)ds

}
h′(t)

)
≥ 0

and since h′(α) = 0, we reached a contradiction for all α < t < β:

exp

{
−

∫ t

t0

a(s)ds

}
h′(t) ≥ 0.

This completes the proof. �
Theorem 2.4.16 (The Agmon–Nirenberg Inequality [14]). Let f(t) be a (scalar)
twice differentiable function in the interval [t0, t1). Assume that f satisfies a dif-
ferential inequality of the form, for all t0 ≤ t < t1,

f ′′(t) + a(t)|f ′(t)|+ b(t) ≥ 0, (2.4.115)

where a(t) and b(t) are non-negative measurable functions which are bounded in
any compact subinterval contained in [t0, t1). Then the following estimate holds
for all t0 ≤ t < t1:

f(t) ≥ f(t0) + min{0, f ′(t0)}
∫ t

t0

exp

(∫ s

t0

a(r)dr

)
ds

−
∫ t

t0

exp

(∫ s

t0

a(r)dr

) [∫ s

t0

b(σ) exp

(
−

∫ σ

t0

a(ρ)dρ

)
dσ

]
ds. (2.4.116)
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Proof. Assume now first that a(t) and b(t) are continuous. Let g(t) be the solution
of the initial value problem

g′′(t)− a(t)g′(t) + b(t) = 0, g(t0) = f(t0), g
′(t0) = min{0, f ′(t0)}. (2.4.117)

Observe that, since a, b ≥ 0 and since g′(t0) ≤ 0, we have g′(t) ≤ 0 for all t.
Thus g is also a solution of the equation

g′′(t) + a(t)|g′(t)|+ b(t) ≥ 0 (2.4.118)

and g(t0) = f(t0), g
′(t0) ≤ f ′(t0). Now apply Theorem 2.4.15 to the function f in

Theorem 2.4.16 and to the solution of g of (2.4.117). This yields for all t0 ≤ t < t1,

f(t) ≥ g(t).

This is simply the inequality (2.4.116) with explicitly given g. In the general
case when a, b are not assumed to be continuous, but only measurable and locally
bounded, we may consider an arbitrary subinterval [t0, t

′] with t0, t
′ < t1. Since a

and b are measurable and bounded in the subinterval, there exist two sequences
{an(t)} and {bn(t)} of continuous functions in [t0, t

′] such that an(t) ≥ a(t), bn(t) ≥
b(t), and

an → a in L1[t0, t
′], bn → b in L1[t0, t

′
1]. (2.4.119)

Clearly, for all t0 ≤ t ≤ t′ and n = 1, 2, . . . , we have

f ′′(t) + an(t)|f ′(t)|+ bn(t) ≥ 0.

Thus by the preceding consideration (since an and bn are continuous), the
inequality (2.4.116) holds with a and b replaced by an and bn, respectively. Letting
n → +∞ in the latter inequality, from (2.4.119) it follows that (2.4.116) holds for
all t ∈ [t0, t

′] and consequently also for all t ∈ [t0, t1), since t′ is an arbitrary
number such that t0 < t′ < t1. The proof is complete. �

The following result is related to Theorems 2.4.15–2.4.16.

Theorem 2.4.17 (The Agmon–Nirenberg Inequality [14]). Let l(t) be a twice dif-
ferentiable function in [t1, t2] satisfying the differential inequality (2.4.115), where
a(t) and b(t) are non-negative bounded measurable functions in the interval. Then
the following inequality holds for all t0 ≤ t ≤ t1:

l(t) ≤ l(t0)

∫ t1
t

exp{∓ ∫ s

t0
a(r)dr}ds∫ t1

t0
exp{∓ ∫ s

t0
a(r)dr}ds

+ l(t1)

∫ t

t0
exp{∓ ∫ s

t0
a(r)dr}ds∫ t1

t0
exp{∓ ∫ s

t0
a(r)dr}ds

+

∫ t1

t0

(s− t0)b(s)ds exp

{
2

∫ t1

t0

a(τ)dτ

}
(2.4.120)

where we take the negative sign if l(t0) ≤ l(t1) and the positive sign if l(t0) ≥ l(t1).
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The next result, due to Agmon–Nirenberg [14], is an equivalent form to The-
orem 2.4.17.

Theorem 2.4.18 (The Agmon–Nirenberg Inequality [14]). Let f(t) be a twice dif-
ferentiable function in a closed interval [t0, t1] satisfying the differential inequality

f ′′(t) + a(t)f ′(t) + b(t) ≥ 0 (2.4.121)

where a(t), b(t) are bounded measurable functions in the interval. Then the follow-
ing inequality holds for all t0 < t < t1,

f(t) ≤ f(t0)

∫ t1
t exp{∓ ∫ s

t0
|a(r)|dr}ds∫ t1

t0
exp{∓ ∫ s

t0
|a(r)|dr}ds

+ f(t1)

∫ t

t0
exp{∓ ∫ s

t0
|a(r)|dr}ds∫ t1

t0
exp{∓ ∫ s

t0
|a(r)|dr}ds

+

∫ t1

t0

(s− t0)|b(s)|ds exp

{
2

∫ t1

t0

|a(s)|ds
}

(2.4.122)

where we have to take the inequality with negative sign if f(t0) ≤ f(t1), and with
the positive sign if f(t0) ≥ f(t1).

Proof. We first observe that it suffices to establish the theorem when both a(t)
and b(t) are continuous in [t0, t1]. Indeed if the theorem holds in this case, we
easily deduce its validity for measurable and bounded coefficients a, b as follows.
Let {an(t)} be a sequence of continuous functions in [t0, t1] such that an → a
in L1[t0, t1]. Set cn(t) = (a(t) − an(t))f

′(t) + b(t). Since cn(t) is measurable and
bounded, there exists a sequence {bn(t)} of continuous functions in [t0, t1] such
that bn(t) ≥ cn(t) and bn(t)− cn(t) → 0 in L1[t0, t1]. Clearly,

f ′′(t) + an(t)f
′(t) + bn(t) ≥ f ′′(t) + an(t)f

′(t) + cn(t)

= f ′′(t) + a(t)f ′(t) + b(t) ≥ 0.
(2.4.123)

Since an and bn are continuous, it follows from (2.4.123), and from the asser-
tion of the theorem in this case, that the inequality (2.4.122) holds with a and b
replaced by an and bn, respectively. Letting n → +∞ in (2.4.123), and using the
fact that an → a and bn → b in L1[t0, t1], we can obtain (2.4.122) in the general
case.

Assuming, from now on, that a and b are continuous, we denote by g(t) the
unique solution in C2[t0, t1] of the boundary value problem

g′′(t) + a(t)g′(t) + b(t) = 0, g(t0) = f(t0), g(t1) = f(t1). (2.4.124)

Obviously, we have for all t0 ≤ t ≤ t1,

f(t) ≤ g(t). (2.4.125)

Indeed, h(t) = f(t)− g(t) satisfies the relations

h′′(t) + a(t)h′(t) ≥ 0, h(t0) = h(t1) = 0 (2.4.126)
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and (2.4.125) follows from the maximum principle which holds for functions h
satisfying (2.4.126), i.e., the maximum of h in the interval is attained at one of
the end points.

Next, let
g(t) = g0(t) + g1(t), (2.4.127)

where g0 is a solution of the homogeneous differential equation g′′0 + ag′0 = 0 with
g0(t0) = f(t0), g0(t1) = f(t1), while g1(t) is a solution of the non-homogeneous
differential equation (2.4.124) with zero boundary conditions. For g1, we have the
integral representation

g1(t) =

∫ t1

t0

G(t, s)b(s)ds (2.4.128)

with Green’s kernel G(t, s) given by for t ≤ s,

G(t, s) =

[∫ t

t0
exp

(
− ∫ r

t0
a(ρ)dρ

)
dr

] [∫ t1
s exp

(− ∫ r

s a(ρ)dρ
)
dr

]
∫ t1
t0

exp
(
− ∫ r

t0
a(ρ)dρ

)
dr

and for t ≥ s,

G(t, s) =

[∫ s

t0
exp

{
− ∫ r

t0
a(ρ)dρ

}
dr

] [∫ t1
t exp

(− ∫ r

s a(ρ)dρ
)
dr

]
∫ t1
t0

exp
(
− ∫ r

t0
a(ρ)dρ

)
dr

.

From the above formulas, we can derive⎧⎪⎪⎪⎨⎪⎪⎪⎩
|G(t, s)| ≤ exp

(
2

∫ t1

t0

|a(r)|dr
)

(t− t0)(t1 − s)

t1 − t0
, for t ≤ s,

|G(t, s)| ≤ exp

(
2

∫ t1

t0

|a(r)|dr
)

(s− t0)(t1 − t)

t1 − t0
, for t ≥ s.

Using (2.4.128), we can derive g1

|g1(t)| ≤ exp

(
2

∫ t1

t0

|a(r)|dr
) [∫ t

t0

|b(s)|(s− t0)ds+

∫ t1

t

|b(s)|(t− t0)ds

]
≤ exp

(
2

∫ t1

t0

|a(r)|dr
)∫ t1

t0

|b(s)|(s− t0)ds.

Since
f(t) ≤ g(t) ≤ g0(t) + |g1(t)|,

we can see that the proof of (2.4.122) will be complete if we show that

g0(t) ≤ f(t0)

∫ t1
t

exp
(
∓ ∫ s

t0
|a(r)|dr

)
ds∫ t1

t0
exp

(
∓ ∫ s

t0
|a(r)|dr

)
ds

+ f(t1)

∫ t

t0
exp

(
∓ ∫ s

t0
|a(r)|dr

)
ds∫ t1

t0
exp

(
∓ ∫ s

t0
|a(r)|dr

)
ds

(2.4.129)
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where in the inequality we take the negative sign if f(t0) ≤ f(t1) and the positive
sign if f(t0) ≥ f(t1).

We shall only establish (2.4.129) for the case f(t0) ≤ f(t1) since the proof in
the other case is similar. Denote the right-hand side of (2.4.129) (with the negative
sign) by h(t). We have readily

h′′(t) + |a(t)|h′(t) = 0, h(t0) = 0, h(t1) = f(t1). (2.4.130)

Note also that h′ is of constant sign. Since h(t0) ≤ h(t1), we have h′(t) ≥ 0.
Set k(t) = g0(t)−h(t). Since g0 satisfies the equation g′′0 + ag′0 = 0, and h satisfies
equation (2.4.130), it follows that

k′′(t) + a(t)k′(t) = (|a(t)| − a(t))h′(t) ≥ 0,

and consequently the maximum principle (since k(t0) = k(t1) = 0) gives us k(t) ≤
0 or g0(t) ≤ h(t). This yields (2.4.129), which thus completes the proof of the
theorem. �

The following theorem (see, e.g., Ladyzhenskaya, Solonnikov and Ural’ceva
[472], Levine [508]) is very useful in establishing the non-existence of global solu-
tions to some differential equations.

Theorem 2.4.19 (The Ladyzhenskaya– Solonnikov–Ural’ceva –Levine Inequality
[472, 508]). Assume that the twice differentiable positive function Φ(t) satisfies for
all t > 0 the inequality

Φ(t)Φ′′(t)− (1 + γ)(Φ′(t))2 ≥ −2C1Φ(t)Φ
′(t)− C2Φ

2(t), (2.4.131)

where γ > 0 and C1, C2 ≥ 0. Then

(i) if Φ(0) > 0,Φ′(0) + γ2γ
−1Φ(0) > 0, and C1 + C2 > 0, we have

Φ(t) → +∞ (2.4.132)

as

t → t1 ≤ t2 =
1

2
√
C2

1 + γC2

ln

(
γ1Φ(0) + γΦ′(0)
γ2Φ(0) + γΦ′(0)

)
, (2.4.133)

where γ1 = −C1 +
√
C2

1 + γC2, γ2 = −C1 −
√
C2

1 + γC2;

(ii) if Φ(0) > 0,Φ′(0) > 0, and C1 = C2 = 0, then

Φ(t) → +∞ (2.4.134)

as

t → t1 ≤ t2 =
Φ(0)

γΦ′(0)
. (2.4.135)
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Proof. (i) Let y(t) = Φ−γ(t). From (2.4.131) it follows readily that y(t) solves the
inequality

y′′(t) + 2C1y
′(t)− γC2y(t) ≤ 0. (2.4.136)

Let z(t) solve the second-order differential equation{
z′′(t) + 2C1z

′(t)− γC2z(t) = 0, (2.4.137)

z(0) = y(0), z′(0) = y′(0), (2.4.138)

that is,
z(t) = aeγ1t + beγ2t, (2.4.139)

with

a = − γΦ′(0) + γ2Φ(0)

2
√
C2

1 + γC2Φγ+1(0)
< 0, b =

γΦ′(0) + γ1Φ(0)

2
√
C2

1 + γC2Φγ+1(0)
.

It is easy to verify that
z(t2) = 0. (2.4.140)

On the other hand, by a simple comparison principle,

0 ≤ y(t) ≤ z(t)

which, along with (2.4.140), yields limt↑t2 y(t) = 0. Hence (2.4.133) follows imme-
diately.

(ii) When C1 = C2 = 0, we deduce from (2.4.131) that

d2(Φ−γ(t))

dt2
= −γΦ−(α+2)(t)

[
Φ(t)Φ′′(t)− (1 + γ)(Φ′(t))2

] ≤ 0,

whence

Φ(t) ≥ Φ(0)

/[
1− γtΦ′(0)Φ−1(0)

]1/γ
. (2.4.141)

Since 1 − γt2Φ
′(0)Φ−1(0) = 0, then there exists some time t1 ≤ t2 such that

(2.4.134) holds. �

Theorem 2.4.21 below shows that a conclusion similar to (i) of Theorem
2.4.19 holds when C1 = 0, C2 < 0. To this end, we show the following result which
is due to Knops, Levine and Payne [440].

Theorem 2.4.20 (The Knops–Levine–Payne Inequality [440]). If y(t) : [0,+∞) →
[0,+∞) is a C1 function satisfying

y′(t) + y2(t) + a2 ≤ 0, y(0) > 0 (2.4.142)

with a constant a > 0, then there exists some time

t1 ≤ t2 = a−1
[
π/2 + tan−1[y(0)/a]

]
such that as t → t−1 ,

y(t) → +∞. (2.4.143)
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Proof. In fact, solving (2.4.142) we get

tan−1[y(t)/a] ≤ tan−1[y(0)/a]− at. (2.4.144)

It is clear that this inequality cannot hold for all time since the right-hand
side of (2.4.144) tends to −∞, while the left-hand side remains bounded as t tends
to +∞. Obviously, the solution necessarily blows up at some time t1 satisfying

t1 ≤ t2 = a−1{π/2 + tan−1[y(0)/a]}.

This completes the proof. �

Using Theorem 2.4.20, we can easily prove the following result, which corre-
sponds to the case of C2 < 0 in Theorem 2.4.19, and is due to Knops, Levine and
Payne [440].

Theorem 2.4.21 (The Knops–Levine–Payne Inequality [440]). Assume that the
twice differentiable positive function Φ(t) satisfies for all t > 0,

Φ(t)Φ′′(t)− (1 + γ)(Φ′(t))2 ≥ a2Φ2(t), (2.4.145)

where γ > 0, a > 0 are constants, and Φ(0)Φ′(0) < 0. Then there exists some time
t1 ≤ t2 such that

Φ(t) → +∞ (2.4.146)

as

t → t1 ≤ t2 = (
√
γa)−1

[
pi

2
+ tan−1

(−√
γΦ′(0)

Φ(0)a

)]
. (2.4.147)

Proof. Let y(t) = d(Φ−γ(t))
dt /Φ−γ(t) = −γΦ′(t)/Φ(t). Then (2.4.145) becomes

y′(t) + y2(t) + a21 ≤ 0 (2.4.148)

with a1 =
√
γa > 0. Applying Theorem 2.4.20 to (2.4.148) completes the proof

immediately. �

Glassey [317, 318] used the following theorem to establish the blowup of
solutions to nonlinear wave equations.

Theorem 2.4.22 (The Glassey Inequality [317, 318]). Let φ(t) ∈ C2([0,+∞)) sat-
isfy for all t ≥ 0,

φ′′(t) ≥ h(φ(t)), (2.4.149)

with

φ(0) = α > 0, φ′(0) = β > 0. (2.4.150)

Assume that h(s) ≥ 0 for all s ≥ α. Then
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(i) φ′(t) > 0 wherever φ(t) exists;

(ii) we have

t ≤
∫ φ(t)

α

[
β2 + 2

∫ s

α

h(ξ)dξ

]−1/2

ds. (2.4.151)

Proof. Assuming that (i) is false, let t = t1 be the first point where φ′(t1) = 0.
Then integrating the differential inequality (2.4.149) over [0, t1] we obtain

0 = φ′(t1) ≥ φ′(0) +
∫ t1

0

h(φ(s))ds

≥ β +

∫ t1

0

h(φ(s))ds.

By the definition of t1, we know that φ′(s) > 0 for all 0 ≤ s ≤ t1, hence
φ(s) ≥ φ(0) = α for all 0 ≤ s ≤ t1. Thus the integral term above is non-negative,
and the resulting contradiction proves (i). To prove (2.4.151) in (ii), we use the
assertion in (i) and multiply the differential inequality (2.4.149) by φ′(t) to get

φ′(t)φ′′(t) ≥ φ′(t)h(φ(t)),

or

d

dt

(
1

2
(φ′)2 −

∫ φ

α

h(ξ)dξ

)
≥ 0. (2.4.152)

Thus integrating (2.4.152) over [0, t] gives us

(φ′(t))2 ≥ β2 + 2

∫ φ(t)

α

h(ξ)dξ

and, since φ′(t) > 0, we may separate variables and integrate to obtain (2.4.151)
in (ii) immediately. �

The following two results are used to prove the non-existence of global solu-
tions. The simple proofs are left to the reader (see Qin [770]).

Theorem 2.4.23. Let c(t) and y(t) be two non-negative functions on [0,+∞) and
α > 0. Assume that c(t) ∈ L1(0, T ) for any T > 0 and that y(t) is absolutely
continuous and satisfies for all t > 0,

y′(t) + c(t)y1+α(t) ≤ 0. (2.4.153)

Then

y(t) ≤
{
C

∫ t

0

c(s)ds

}−1/α

. (2.4.154)
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Theorem 2.4.24. Let α,C > 0 be two constants. Let y(t) be a non-negative abso-
lutely continuous function on [0,+∞) satisfying for any t > 0,

y′(t) + Cy1−α(t) ≤ 0. (2.4.155)

Then

y(t) ≤
(
yα(0)− αCt

)1/α

. (2.4.156)

The following result is due to Knops and Payne [441].

Theorem 2.4.25 (The Knops–Payne Inequality [441]). Let F : [0, T ) → [0,+∞),
for 0 < T ≤ +∞, be a C2 function satisfying

F (t)F ′′(t)− (F ′(t))2 ≥ −C1F (t) (2.4.157)

with a constant C1 ∈ R.

(i) If C1 ≤ 0, F (0) = 0, then for all t ∈ [0, T ),

F (t) ≡ 0. (2.4.158)

(ii) If C1 ≤ 0, F (0) > 0, then for all t ∈ [0, T ),

F (t) ≥ F (0) exp [F ′(0)t/F (0)] , (2.4.159)

or, equivalently, if there exists a t0 ∈ [0, T ) such that F (t0) > 0, then

F (t) ≥ F (t0) exp [F
′(t0)(t− t0)/F (t0)] ,

and for any 0 < T ′ ≤ T , we have for all 0 ≤ t ≤ T ′,

F (t) ≤ [F (0)]1−t/T ′
[F (T ′)]t/T

′
, (2.4.160)

or, equivalently, for all 0 ≤ t ≤ T ′,

F (t) ≤ F (0) exp

[
t

T ′ ln
F (T ′)
F (0)

]
. (2.4.161)

If, in addition, F ′(0) > 0, then

T < +∞. (2.4.162)

If further T = +∞, limt→+∞ lnF (t)/t = 0, then for all t ∈ [0,+∞),

F (t) ≤ F (0). (2.4.163)

(iii) If C1 > 0, F (0) > 0, F ′(0) > 0, then
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(1) When F ′(0) >
√
2C1F (0), we have{

F (t) ≥ F (0)e
√
A t, (2.4.164)

T < +∞, (2.4.165)

for A2 = [F ′(0)/F (0)]2 − 2C1/F (0) > 0;

(2) When F ′(0) =
√
2C1F (0) (i.e., A2 = 0), we have{

F (t) ≥ F (0) + 2(F (0)C1/2)
1/2t+ C1t

2/2, (2.4.166)

T < +∞. (2.4.167)

(3) When F ′(0) <
√
2C1F (0), we have

F (t) ≥
[
F 1/2(0)e−

√−At/2 +
√
2C1/(−A)(1− e−

√−At/2)
]2

, (2.4.168)

where A < 0.

Proof. (i) If C1 ≤ 0, F (0) = 0, then by continuity it follows that either F (t) ≡ 0
for any t ∈ [0, T ) or there exists an open interval (t1, t2) ⊆ [0, T ) such that for all
0 ≤ t1 < t < t2 ≤ T ,

F (t) > 0. (2.4.169)

The first case is what we wish to prove, so without loss of generality, we may
assume that (2.4.169) holds. Then for all 0 ≤ t1 < t < t2 ≤ T ,

d2

dt2
(lnF (t)) ≥ 0. (2.4.170)

Jensen’s inequality or expansion for lnF (t) in a finite Taylor series may now
be used according to (2.4.170) to yield, for all 0 ≤ t1 < t < t2 ≤ T ,

F (t) ≤ [F (t1)]
(t2−t)/(t2−t1)[F (t2)]

(t−t1)/(t2−t1). (2.4.171)

Let either t1 = 0, or, by continuity, F (t1) = 0. We consider the second
alternative. Then (2.4.171) gives us at once F (t) ≡ 0 for all 0 ≤ t < t2 ≤ T , and
so by continuity we have F (t2) = 0, and hence F (t) = 0 for all 0 ≤ t ≤ T . When
t1 = 0, a repetition of the above argument leads to the same conclusion.

(ii) If C1 ≤ 0, F (0) > 0, then it follows from (2.4.157) that for all 0 ≤ t < T ,

d2

dt2
(lnF (t)) ≥ 0,

which implies that lnF (t) is a convex function. Then expanding lnF (t) in a finite
Taylor series around t = 0 gives us (2.4.159), and (2.4.160)–(2.4.161) are easily
derived from Jensen’s inequality for lnF (t). When further F ′(0) > 0, and if T =
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+∞, then the right-hand side of (2.4.159) will tend to +∞, and hence F (t) → +∞
as t → +∞; this is a contradiction, since F (t) is a C2 function on [0,+∞).
This proves (2.4.162). If, further, T = +∞, limt→+∞ lnF (t)/t = 0, then letting
T ′ → +∞ in (2.4.160), we obtain (2.4.163).

(iii) If C1 > 0, F (0) > 0, F ′(0) > 0, then by continuity we conclude that
there exists a time t1 ≤ T such that

F ′(t) > 0, 0 ≤ t < t1; F (t1) = 0. (2.4.172)

Hence F (t) > F (0) > 0 for all 0 ≤ t < t1, and further, we can deduce from
(2.4.157) that for all 0 ≤ t < t1,

d

dt

[
F ′(t)
F (t)

]
≥ − C1

F (t)
. (2.4.173)

Multiplying (2.4.173) by F ′(t)/F (t) and integrating the resulting inequality,
we may obtain

[F ′(t)/F (t)]2 ≥ A+ 2C1/F (t), 0 ≤ t < t1, (2.4.174)

where A = [F ′(0)/F (0)]2−2C1/F (0). If A ≥ 0, then it follows from (2.4.174) that
F ′(t) > 0 for all t ∈ [0, t1], thus contradicting (2.4.172). Hence F ′(t) ≥ 0 for all
t ∈ [0, T ).

(1) If, further, F ′(0) >
√
2C1F (0), i.e.,

√
A > 0, then we obtain from

(2.4.174) that for all t ∈ [0, T ),

F ′(t) ≥
√
AF (t),

which hence gives us (2.4.164) and (2.4.165).

(2) If A = 0, then we obtain from (2.4.174),

F−1/2(t)F ′(t) ≥
√
2C1

which readily implies (2.4.166) and (2.4.167).

(3) If A < 0, then from (2.4.174) we derive

[F ′(t)/F (t) +
√−A]2 ≥ (F ′(t)/F (t))2 −A ≥ 2C1/F (t)

whence
F ′(t)/F (t) +

√−A ≥
√
2C1/F (t)

i.e.,
F ′(t) ≥ −√−AF (t) +

√
2C1F

1/2(t), (2.4.175)

with F (0) > 0, F ′(0) > 0. Denoting G(t) = F 1/2(t), we obtain from (2.4.175) that

2G′(t)+
√−AG(t) ≥

√
2C1, G(0) = F 1/2(0), G′(0) = F ′(0)/(2F (0)). (2.4.176)

Thus solving the inequality (2.4.176) yields (2.4.168). �
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We next present a series of results on the non-existence of global solutions
to nonlinear differential inequalities. These results were obtained by Alaa and
Guedda [16].

Consider the differential inequality

w′′(t) + g(w′(t)) ≥ h(w(t)) (2.4.177)

subjected to initial conditions w(0) and w′(0). Assume that the functions g and h
are continuous and satisfy ⎧⎪⎪⎨⎪⎪⎩

h(r) > 0, for all r > r0, (2.4.178)

lim inf
r→+∞

h(r)

rp
> 0, p > 1, (2.4.179)

g(r) ≤ Kr, for all r ∈ R, (2.4.180)

where r0 > 0, p > 1 and K is a real constant. Then the following theorem holds.

Theorem 2.4.26 ([16]). There is no global solution w ∈ C2 to (2.4.177) such that

w(0) > r0, w′(0) ≥ 0. (2.4.181)

For the proof of the above theorem, see [16]). �
Remark 2.4.2 ([16]). If there exists a time t0 > 0 such that w(t0) > r0 and
w′(t0) ≥ 0, Theorem 2.4.26 remains valid.

Corollary 2.4.3 ([16]). Let p > 1, p > q > 0, δ, β ∈ R and let α be a positive real
number. Then there is no global solution w(t) to

w′′(t) + δw′(t) ≥ αwp(t)− βwq(t) (2.4.182)

such that
w(0) > (β+/α)1/(p−q), w′(0) ≥ 0 (2.4.183)

where β+ = max{β, 0}.
Remark 2.4.3 ([16]). We find that there exists a global solution to (2.4.182) such
that β > 0 and

0 < w(0) < (β/α)1/(p−q). (2.4.184)

Indeed, the function

w(t) =
r

(1 + est)2/(p−1)

satisfies on R+

w′′(t) +
2

p− 1
sw′(t) = αwp(t)− βw(p+1)/2(t), (2.4.185)
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where

r =

(
β

α

)1/(p−q)

, s2 =
α(p− 1)2

2(p+ 1)
(β/α)(p−1)/(p−q), q = (p+ 1)/2. (2.4.186)

The following result shows that solutions to (2.4.177) may blow up at a finite time
when w′(0) < 0.

If we set

H(r) =

∫ r

0

h(s)ds, (2.4.187)

then we have the following result.

Theorem 2.4.27 ([16]). Assume, in addition, that rg(r) ≥ 0 for any r ≤ 0. Then
inequality (2.4.177) has no global solution w such that

w2
1

2
−H(w0) ≤ −H(r0), (2.4.188)

where w0 = w(0) > r0, w1 = w′(0) < 0.

For the proof of Theorem 2.4.27, we refer the reader to [16]. �
Corollary 2.4.4 ([16]). Let p > 1, p > q > 0, δ ≥ 0, 1 ≥ s > 0 and let α, β be
positive real numbers. There is no global solution w(t) to the following problem{

w′′(t) + δ|w′(t)|s−1w′(t) ≥ αwp(t)− βwq(t), (2.4.189)

w(0) = w0, w′(0) = w1, (2.4.190)

such that
w2

1

2
− α

p+ 1
wp+1

0 +
β

q + 1
wq+1

0

≤ p− q

(p+ 1)(q + 1)
α−(q+1)/(p−q)β(p+1)/(p−q),

(2.4.191)

where
w0 > r0 = (β/α)1/(p−q), w1 < 0. (2.4.192)

Let us give an example. Consider the problem

w′′(t) + δw′(t) = αeτt|w(t)|p−1w(t) + βw(t), (2.4.193)

where α > 0, β ≥ 0 and τ ≥ 0 are constants.

When δ = 1, the change of variable y = et transforms (2.4.193) into

d

dy

(
y2

dz

dy

)
= αyτ |z|p−1z + βz, y ≥ 1,

which is an equation of Emden–Fowler type. For the case τ = 0, we have the
following theorem.



2.4. Differential inequalities for non-existence of global solutions 199

Theorem 2.4.28 ([16]). Let τ = 0, p > 1, δ ∈ R, and let α, β be positive real
numbers. For any Γ 	= 0, there exists a unique global non-trivial solution, wΓ, to
(2.4.193), such that wΓ(0) = Γ. The function wΓ does not change sign and satisfies
the relation

lim
t→+∞

w′
Γ(t)

wΓ(t)
= −δ +

√
δ2 + 4β

2
. (2.4.194)

If, in addition, δ = 0, we have

wΓ(t) = Γ

(
2
√
β(p+ 1)

Ae(p−1)
√
βt +B

)2/(p−1)

e
√
βt, (2.4.195)

where {
A :=

√
β(p+ 1) + 2α|Γ|p−1 +

√
β(p+ 1),

B := −
√
β(p+ 1) + 2α|Γ|p−1 +

√
β(p+ 1).

For the proof of Theorem 2.4.28, we refer the reader to [16]. �

Remark 2.4.4 ([16]). For the case of β = 0, we can derive that if δ ≥ 0, any global
positive solution satisfies

w(t) ≤ Γ[
1 + Γ(p−1)/2 p−1

2

√
2α
p+1 t

]2/(p−1)
= wΓ(t),

where Γ = w(0). Note that if δ = 0, wΓ is the unique global solution to the
following problem {

w′′(t) + δw′(t) = α|w(t)|p−1w(t) + βw(t), (2.4.196)

w(0) = Γ, w′(0) = Γ0. (2.4.197)

such that wΓ(0) = Γ.

Now we discuss the case of τ > 0 and β = 0 and we have the following results.

Theorem 2.4.29 ([16]). Let τ, α > 0 and δ > −τ/2. Assume that p > 1, then any
global solution w to (2.4.193) is monotone and satisfies, for all t ≥ t0,

0 < |w(t)| ≤ |w(t0)|{
1 + p−1

2

√
2α
p+1 |w(t0)|(p−1)/2[eτt/2 − eτt0/2]

}2/(p−1)
(2.4.198)

where t0 is large enough.

For the case of δ = −τ/2, we know E = const., and hence we have the
following corollary.
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Corollary 2.4.5 ([16]). Assume that δ = −τ/2 and β = 0. Then problem (2.4.193)
has a unique family of global solutions

w(t) =
w(0)

[1 + p−1
2

√
2α
p+1 |w(0)|(p−1)/2[eτt/2 − 1]]2/(p−1)

. (2.4.199)

Remark 2.4.5. Estimate (2.4.198) is still valid if in (2.4.193) the equality “=” is
replaced by “≥”. Note that |w(t)| ≤ Ce−[τ/(p−1)]t for large t and the function
Ke−[τ/(p−1)]t satisfies (2.4.193) for any δ ∈ R and any β ≥ 0, where τ and K
satisfy the conditions

τ >
p− 1

2

[
δ +

√
δ2 + 4β

]
(2.4.200)

and
τ2 − (p− 1)δτ − (p− 1)2β = (p− 1)2α|K|p−1. (2.4.201)

Using Theorem 2.4.27 and the function

E0(t) =
1

2
e−τt

{
[w′(t)]2 − βw2(t)

}
− α

p+ 1
wp+1(t) (2.4.202)

as well as the following theorem, we can complete the proof of Theorem 2.4.29,
for its details, see [16]. �
Theorem 2.4.30 ([16]). Let τ, α > 0, β ≤ 0 and δ > −τ/2. Assume that p > 1.
Then there is no global solution to (2.4.196)–(2.4.197) such that

[w′(0)]2 < β[w(0)]2 +
2α

p+ 1
|w(0)|p+1. (2.4.203)

Now to close this chapter, we introduce some results due to Li and Zhou
[537], which were used to prove the breakdown of solutions to the Cauchy problem
for semilinear dissipative wave equations.

The first one is the following comparison theorem, which can be viewed as a
generalization of Theorems 2.4.16–2.4.18.

Theorem 2.4.31 (The Li–Zhou Inequality [537]). Assume that k(t) and h(t) are
twice differentiable functions satisfying the inequalities for all t ≥ 0,{

a(t)k′′(t) + k′(t) ≥ b(t)k1+α(t), (2.4.204)

a(t)h′′(t) + h′(t) ≤ b(t)h1+α(t), (2.4.205)

where α ≥ 0 is a constant and for all t ≥ 0,

a(t) > 0, b(t) > 0. (2.4.206)

Assume further that

k(0) > h(0), k′(0) ≥ h′(0). (2.4.207)

Then for all t > 0,
k′(t) > h′(t). (2.4.208)
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Proof. Without loss of generality, we may suppose that

k′(0) > h′(0). (2.4.209)

In fact, if k′(0) = h′(0), from (2.4.204)–(2.4.205) it easily follows that

k′′(0) > h′′(0). (2.4.210)

Hence, there exists a constant δ0 > 0 so small that k′(t) > h′(t) holds for all
0 < t ≤ δ0; then k′(δ0) > h′(δ0) and k(δ0) > h(δ0). Thus, we can take t = δ0 as
the initial time for establishing the desired estimate.

By (2.4.209) and continuity, if (2.4.208) fails, then there exists a time t∗ > 0
such that for all 0 ≤ t < t∗,

k′(t) > h′(t), k′(t∗) = h′(t∗), (2.4.211)

and then
k′′(t∗) ≤ h′′(t∗). (2.4.212)

On the other hand, by (2.4.207) and (2.4.211), we have

k(t∗) > h(t∗),

so taking t = t∗ in (2.4.204)–(2.4.205) gives

a(t∗)(k′′(t∗)− h′′(t∗)) ≥ b(t∗)(k1+α(t∗)− h1+α(t∗)) > 0,

which contradicts (2.4.212). This finishes the proof. �

In a similar way, we can prove the following theorem and corollaries which
are also due to Li and Zhou [537].

Theorem 2.4.32 (The Li–Zhou Inequality [537]). If hypothesis (2.4.207) in Theo-
rem 2.4.31 is replaced by

k(0) ≥ h(0), k′(0) > h′(0), (2.4.213)

then for all t > 0,
k′(t) > h′(t). (2.4.214)

By taking h(t) ≡ 0 in Theorems 2.4.31–2.4.32 respectively, we get the follow-
ing two corollaries.

Corollary 2.4.6 (The Li–Zhou Inequality [537]). Assume that (2.4.206) holds. If
k(t) satisfies (2.4.204) and

k(0) > 0, k′(0) ≥ 0, (2.4.215)

then for all t > 0,
k′(t) > 0. (2.4.216)
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Corollary 2.4.7 (The Li–Zhou Inequality [537]). If (2.4.215) in Corollary 2.4.6 is
replaced by

k(0) ≥ 0, k′(0) > 0, (2.4.217)

then for all t ≥ 0,
k′(t) > 0. (2.4.218)

Theorem 2.4.33 (The Li–Zhou Inequality [537]). Assume that a(t) satisfies
(2.4.206) and α ≥ 0. If the function h(t) satisfies

a(t)h′′(t) + h′(t) = C0h
1+α(t) (2.4.219)

for a constant C0 > 0, and

h(0) > 0, h′(0) = 0, (2.4.220)

then for all t ≥ 0,
h′′(t) > 0. (2.4.221)

Proof. The relations (2.4.219)–(2.4.220) imply h′′(0) > 0; then if (2.4.221) fails,
by continuity, there exists a constant t∗ > 0 such that for all 0 ≤ t < t∗,

h′′(t) > 0, h′′(t∗) = 0, (2.4.222)

whence
h′′′(t∗) ≤ 0. (2.4.223)

Using (2.4.222) and (2.4.220), we get for all 0 < t ≤ t∗,

h′(t) > 0, h(t) > 0.

In particular, we have
h(t∗), h′(t∗) > 0. (2.4.224)

Differentiating (2.4.219) with respect to t, taking t = t∗, and using (2.4.222)
and (2.4.224), we get

a(t∗)h′′′(t∗) = C0(1 + α)hα(t∗)h′(t∗) > 0

which contradicts (2.4.223). The proof is complete. �
Theorem 2.4.34 (The Li–Zhou Inequality [537]). Assume that the function I(t)
satisfies the inequality for all t > 0,

I ′′(t) + I ′(t) ≥ C0
I1+α(t)

(1 + t)β
(2.4.225)

with
I(0) > 0, I ′(0) ≥ 0, (2.4.226)
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where C0 > 0, α > 0 are constants. When 0 ≤ β ≤ 1, I = I(t) necessarily blows
up in a finite time. Moreover, if

I(0) = ε (2.4.227)

where ε > 0 is a small parameter, then the lifespan T̃ (ε) has the upper bound:

T̃ (ε) ≤
{

exp{aε−α}, if β = 1,

bε−α/(1−β), if 0 ≤ β < 1,
(2.4.228)

where a, b are positive constants independent of ε > 0.

Proof. Without loss of generality, we may suppose that

I ′(0) > 0. (2.4.229)

Indeed, if I ′(0) = 0, then by (2.4.225)–(2.4.226) it is easy to see that I ′′(0) >
0, and so there exists a constant δ0 > 0 so small that I(δ0) > 0 and I ′(δ0) > 0.
Thus we may take t = δ0 as initial time for establishing the desired estimate.

We first prove that when β = 0, the solution I = I(t) to (2.4.225)–(2.4.226)
necessarily blows up in a finite time. In this case, (2.4.225) can be written as

I ′′(t) + I ′(t) ≥ C0I
α+1(t). (2.4.230)

For this purpose, it suffices to show that for η > 0 small enough, the solution
I = I1(t) to the Cauchy problem

I ′1(t) = ηI
1+α/2
1 (t), I = I1(0), (2.4.231)

where
0 < I1(0) < I(0), (2.4.232)

satisfies
I(t) > I1(t) (2.4.233)

in the existence domain. Indeed, for η > 0 small enough we have

I ′1(0) = ηI
1+α/2
1 (0) < I ′(0). (2.4.234)

Moreover,

I ′′1 (t) = η(1 + α/2)I
α/2
1 (t)I ′1(t) = η2(1 + α/2)I1+α

1 (t).

Then, noting that I1(t) ≥ I1(0), for η > 0 small enough we get

I ′′1 (t) + I ′1(t) = η2(1 + α/2)I1+α
1 (t) + ηI

1+α/2
1 (t)

=
[
η2(1 + α/2) + η/I

α/2
1 (t)

]
I1+α
1 (t)

≤
[
η2(1 + α/2) + η/I

α/2
1 (0)

]
I1+α
1 (t) ≤ C0I

1+α
1 (t). (2.4.235)
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Hence, taking into account (2.4.230), (2.4.235), (2.4.232) and (2.4.234), The-
orem 2.4.31 yields for all t ≥ 0,

I ′(t) > I ′1(t),

then, because of (2.4.232), we obtain (2.4.233).

We now use a scaling argument to estimate the lifespan T̃ (ε) of I = I(t) for
β = 0, provided that (2.4.232) holds.

Let
I2(t) = ε−1I(ε−αt). (2.4.236)

From (2.4.229) and (2.4.230) it follows that I2(t) satisfies{
εαI ′′2 (t) + I ′2(t) ≥ C0I

1+α
2 (t), (2.4.237)

I2(0) = 1, I ′2(0) > 0. (2.4.238)

Let I3 = I3(t) solve the following problem:{
εαI ′′3 (t) + I3(t) = C0I

1+α
3 (t), (2.4.239)

I3(0) = 1, I ′3(0) = 0. (2.4.240)

By Theorem 2.4.32, for all t ≥ 0,

I ′2(t) > I ′3(t), (2.4.241)

and so for all t > 0,
I2(t) > I3(t). (2.4.242)

By Theorem 2.4.33, we obtain for all t ≥ 0,

I ′′3 (t) > 0. (2.4.243)

Then, for ε > 0 small enough, it follows from (2.4.239) that

I ′′3 (t) + I ′3(t) ≥ C0I
1+α
3 (t). (2.4.244)

Noting (2.4.240), according to the conclusion obtained in the previous dis-
cussion, I = I3(t) must blow up in a finite time and the lifespan of I = I3(t) has
an upper bound independent of ε. Thus, by (2.4.236) and (2.4.242), the lifespan
T̃ (ε) of I = I(t) satisfies

T̃ (ε) ≤ bε−α, (2.4.245)

where b is a positive constant independent of ε. The estimate (2.4.245) just con-
cerns the case β = 0.

We next consider case β = 1, for which (2.4.225) takes the form

I ′′(t) + I ′(t) ≥ C0
I1+α(t)

1 + t
. (2.4.246)
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Let
J(t) = I(et − 1). (2.4.247)

By (2.4.246) and (2.4.226), it is easy to see that J(t) solves{
e−tJ ′′(t) + (1− e−t)J ′(t) ≥ C0J

1+α(t), (2.4.248)

J(0) > 0, J ′(0) ≥ 0. (2.4.249)

Furthermore, by Corollary 2.4.6, we have for all t > 0,

I ′(t) > 0, (2.4.250)

whence for all t > 0,
J ′(t) > 0. (2.4.251)

Thus from (2.4.248) it follows that

e−tJ ′′(t) + J ′(t) ≥ C0J
1+α(t), (2.4.252)

which, by Theorem 2.4 31, implies for all t > 0,

J ′(t) > J ′
1(t). (2.4.253)

Consequently, for all t ≥ 0,

J(t) > J1(t), (2.4.254)

where J1 = J1(t) solves the problem{
e−tJ ′′

1 (t) + J ′
1(t) = C0J

1+α
1 (t), (2.4.255)

J1(0) = J(0)/2 > 0, J ′
1(0) = 0. (2.4.256)

By Theorem 2.4.32, for all t ≥ 0,

J ′′
1 (t) > 0, (2.4.257)

and then from (2.4.255) it follows that

J ′′
1 (t) + J ′

1(t) ≥ C0J
1+α
1 (t). (2.4.258)

Taking into account (2.4.256), for J1 = J1(t), we can use the result obtained
in the case β = 0. Then when β = 1, by (2.4.247) and (2.4.254), the function I =
I(t) must blow up in a finite time. Moreover, if (2.4.232) holds, noting (2.4.245),
the lifespan T̃ (ε) of I = I(t) satisfies

T̃ (ε) ≤ exp{aε−α}. (2.4.259)

where a is a positive constant independent of ε. The estimate (2.4.225) is nothing
else than (2.4.226) in the case β = 1.
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Finally, we consider the case 0 < β < 1. Let

J(t) = I((t+ 1)1/(1−β) − 1). (2.4.260)

It follows from (2.4.225)–(2.4.226) that J(t) solves the problem⎧⎪⎨⎪⎩
(1− β)2(t+ 1)−β/(1−β)J ′′(t)

+(1− β)[1 − β(t+ 1)−1/(1−β)]J ′(t) ≥ C0J
1+α(t), (2.4.261)

J(0) > 0, J ′(0) ≥ 0. (2.4.262)

By Corollary 2.4.6, we obtain (2.4.250) and (2.4.251). Hence, it follows from
(2.4.261) that

(1− β)2(t+ 1)−β/(1−β)J ′′(t) + J ′(t) ≥ C0J
1+α(t), (2.4.263)

and then, by Theorem 2.4.31, the relations (2.4.253)–(2.4.254) hold, where J1 =
J1(t) satisfies the relations (2.4.256) and

(1− β)2(t+ 1)−β/(1−β)J ′′
1 (t) + J ′

1(t) = C0J
1+α
1 (t). (2.4.264)

By Theorem 2.4.32, we have (2.4.257) and then (2.4.264) implies the relation
(2.4.258). Thus, the result obtained in the case β = 0 is still valid for J1 = J1(t).
Therefore, when 0 < β < 1, by (2.4.260) and (2.4.254), the function I = I(t) must
blow up in a finite time. Moreover, if (2.4.232) holds, then because of (2.4.245),
the lifespan T̃ (ε) of I = I(t) satisfies

T̃ (ε) ≤ bε−α/(1−β), (2.4.265)

where b is a positive constant independent of ε. This gives us (2.4.233) in the case
0 < β < 1. �
Corollary 2.4.8 (The Li–Zhou Inequality [537]). Assume that v = v(t) ≥ 0 satisfies
the estimate

v(t) ≥ C1 + C2

{∫ t

t−2

(t− τ)
v1+α(τ)

τβ
dτ + 2

∫ t−2

t0

v1+α(τ)

τβ
dτ

}
(2.4.266)

where α > 0, 0 ≤ β ≤ 1, t0 ≥ 0 and C1, C2 are positive constants. Then v = v(t)
necessarily blows up in a finite time. Moreover, for

C1 = ε > 0 (2.4.267)

small enough, the lifespan T̃ (ε) of v = v(t) satisfies the estimate (2.4.233).

Proof. Let J = J(t) satisfy

J(t) = C1 + C2

{∫ t

t−2

(t− τ)
J1+α(τ)

τβ
dτ + 2

∫ t−2

t0

J1+α(τ)

τβ
dτ

}
. (2.4.268)



2.4. Differential inequalities for non-existence of global solutions 207

We have for all t ≥ t0,
v(t) ≥ J(t). (2.4.269)

Moreover, it follows from (2.4.268) that J(t) solves the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
J(t0) = C1 > 0, J ′(t) = C2

∫ t

t−2

J1+α(τ)

τβ
dτ, (2.4.270)

J ′′(t) = C2

(
J1+α(t)

tβ
− J1+α(t− 2)

(t− 2)β

)
, (2.4.271)

which implies that for all t ≥ t0,

J(t) > 0, J ′(t) > 0. (2.4.272)

Thus we can choose μ > 0 so large that for all t ≥ t0 + 2,

J ′′(t) + μJ ′(t) = C2

(
J1+α(t)

tβ
− J1+α(t− 2)

(t− 2)β
+ μ

∫ t

t−2

J1+α(τ)

τβ
dτ

)
≥ C2

{
J1+α(t)

tβ
+ [

μ

tβ
− 1

(t− 2)β
]J1+α(t− 2)

}
≥ C2

J1+α(t)

tβ
. (2.4.273)

Let
I(t) = J(μ−1t). (2.4.274)

We obtain for all t ≥ t0 + 2,

I ′′(t) + I ′(t) ≥ C2μ
β−2 I

1+α(t)

tβ
≥ C0

I1+α(t)

(1 + t)β
, (2.4.275)

where C0 > 0 is a constant. Because of (2.4.272), Theorem 2.4.31 can be applied
to I = I(t), and then using the relations (2.4.269) and (2.4.274) we can reach the
desired conclusion. �



Chapter 3

Attractors for Evolutionary
Differential Equations

In this chapter, we prove the existence of global (uniform) attractors for some
evolutionary differential equations. The chapter includes four sections. In Section
3.1, we shall use Theorems 1.1.2 and 2.1.3 to establish the existence of global at-
tractors for a nonlinear reaction-diffusion equation. We refer to Babin and Vishik
[54], Chepyzhov and Vishik [154], and Temam [915] for related concepts of infinite-
dimensional dynamical systems such as absorbing sets, maximal (global) attrac-
tors, etc. In Section 3.2, we employ Theorem 1.5.20 to show the existence of at-
tractors for differential equations with delay. In Section 3.3, we exploit Theorem
2.1.15 to study the global attractors for the Cahn–Hilliard equation in H2 and H3.
In Section 3.4, we use Theorems 2.1.7 and 2.3.2 to establish the global existence,
asymptotic behavior of the solution, and the existence of uniform attractors for
a non-autonomous linear viscoelastic equation with linear damping and a delay
term. All inequalities applied in this chapter are very important in deriving the
existence of global (uniform) attractors. In particular, they may be used to derive
the existence of (uniform) absorbing sets.

3.1 Maximal attractors for nonlinear
reaction-diffusion equations

In this section, we shall use Theorem 1.1.2 and Theorem 2.1.3 to establish the ex-
istence of global attractors for a nonlinear reaction-diffusion equation. We borrow
these results from Temam [915].
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3.1.1 An initial boundary value problem

We shall consider the following initial boundary value problem⎧⎪⎨⎪⎩
ut − dΔu + g(u) = 0 in Ω× R+, (3.1.1)

u = 0 on Γ, (3.1.2)

u(x, 0) = u0(x), x ∈ Ω, (3.1.3)

where Ω is an open bounded set ofRn with smooth boundary Γ, d > 0 is a constant,
u = u(x, t) is a scalar function with initial data u0(x), and g is a polynomial of
odd degree with positive leading coefficient:

g(s) =

2p−1∑
j=0

bjs
j , b2p−1 > 0. (3.1.4)

Let H = L2(Ω), V = H1
0 (Ω). Then we can use the general results on existence

and uniqueness of solutions to parabolic equations (see, e.g., Friedman [272], Lions
[546]) to conclude the following theorem.

Theorem 3.1.1 ([272, 546, 915]). For any given u0 ∈ H, there exists a unique global
solution u of problem (3.1.1)–(3.1.3) such that{

u ∈ L2(0, T ;H1
0 (Ω)) ∩ L2p(0, T ;L2p(Ω)), for all T > 0, (3.1.5)

u ∈ C(R+;H). (3.1.6)

The mapping u0 �→ u(t) is continuous in H. If, in addition, u0 ∈ H1
0 (Ω), then for

all T > 0,
u ∈ C([0, T );V ) ∩ L2(0, T ;H2(Ω)). (3.1.7)

Proof. We refer to [915] for a detailed proof. �

It follows obviously from Theorem 3.1.1 that we can define a semigroup by

S(t) : u0 ∈ H �→ u(t) ∈ H. (3.1.8)

Now the next result, due to Temam [915], reads as follows.

Theorem 3.1.2 ([915]). Assume Ω is an open bounded set of Rn and g satisfies
(3.1.4). The semigroup S(t) associated with problem (3.1.1)–(3.1.3) possesses a
maximal attractor A which is bounded in H1

0 (Ω), and compact and connected in
L2(Ω). Its basin of attraction is the whole space L2(Ω): A attracts all bounded set
of L2(Ω).

Proof. We first prove that there exist absorbing sets in H = L2(Ω) and V =
H1

0 (Ω). Using the Young inequality, we obtain from (3.1.4) the existence a constant
C′

1 > 0 such that for all s ∈ R,∣∣∣∣∣
2p−2∑
j=0

bjs
j+1

∣∣∣∣∣ ≤ 1

2
b2p−1s

2p + C′
1,
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which gives that for all s ∈ R,

1

2
b2p−1s

2p − C′
1 ≤ g(s)s ≤ 3

2
b2p−1s

2p + C′
1. (3.1.9)

Multiplying (3.1.1) by u = u(x, t), integrating over Ω, and using (3.1.2) and
the Green formula, we get

1

2

d

dt
|u|2 + d‖u‖2 +

∫
Ω

g(u)udx = 0, (3.1.10)

which, together with (3.1.9), yields

d

dt
|u|2 + 2d‖u‖2 +

∫
Ω

b2p−1u
2pdx ≤ 2C′

1|Ω|, (3.1.11)

where |Ω| is the measure (volume) of Ω. By the Poincaré inequality, there exists a
constant C0 = C0(Ω) > 0, such that for all u ∈ H1

0 (Ω),

|u| ≤ C0‖u‖. (3.1.12)

Setting C′
2 = 2C′

1|Ω|, we hence conclude from (3.1.11) that

d

dt
|u|2 + 2d

C2
0

|u|2 ≤ C′
2. (3.1.13)

Multiplying (3.1.13) by exp
(

2d
C2

0
t
)
and using the classical Bellman–Gronwall

inequality (e.g., Theorem 1.1.2), we arrive at

|u(t)|2 ≤ |u0|2 exp
(
− 2d

C2
0

t

)
+

C′
2C

2
0

2d

(
1− exp(− 2d

C2
0

t)

)
, (3.1.14)

whence
lim sup
t→+∞

|u(t)| ≤ ρ0, ρ20 = C′
2C

2
0/(2d). (3.1.15)

Therefore, we know that there exists an absorbing set B0 in H , namely, any
ball of H centered at 0 of radius ρ′0 > ρ0. If B is a bounded set of H included
in a ball B(0, R) of H of radius R centered at 0, then S(t)B ⊆ B(0, ρ′0) for all
t ≥ t0 = t0(B; ρ′0) with

t0 =
C2

0

2d
log

(
R2

(ρ′0)2 − ρ20

)
. (3.1.16)

On the other hand, we also derive from (3.1.11), after integration in t, that
for all r > 0,

2d

∫ t+r

t

‖u(s)‖2ds+
∫ t+r

t

∫
Ω

b2p−1u
2pdxds ≤ rC′

2 + |u(t)|2. (3.1.17)
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By (3.1.15), we conclude that for all r > 0,

lim sup
t→+∞

{
2d

∫ t+r

t

‖u(s)‖2ds+
∫ t+r

t

∫
Ω

b2p−1u
2pdxds

}
≤ rC′

2 + ρ20, (3.1.18)

and if u0 ∈ B ⊆ B(0, R) and for all t ≥ t0(B, ρ′0), then we have

2d

∫ t+r

t

‖u(s)‖2ds+
∫ t+r

t

∫
Ω

b2p−1u
2pdxds ≤ rC′

2 + (ρ′0)
2. (3.1.19)

Next, we shall prove that there exists an absorbing set in V = H1
0 (Ω) and

the semigroup S(t) is uniformly compact. In fact, multiplying (3.1.1) by −Δu,
integrating over Ω, and using (3.1.2) and the Green formula, we get

−
∫
Ω

Δu
∂u

∂t
dx =

n∑
i=1

∫
Ω

∂u

∂xi

∂2u

∂t∂xi
dx =

1

2

d

dt
‖u‖2, (3.1.20)

−
∫
Ω

Δug(u)dx =

∫
Ω

∇g(u)∇udx =

n∑
i=1

∫
Ω

g′(u)
(

∂u

∂xi

)2

dx. (3.1.21)

Hence,
1

2

d

dt
‖u‖2 + d|Δu|2 +

∫
Ω

g′(u)|∇u|2dx = 0. (3.1.22)

Similarly to (3.1.9), we may prove by the repeated use of Young’s inequality
that there exists a constant C′

3 > 0 such that for all s ∈ R,

2p− 1

2
b2p−1s

2p−2 − C′
3 ≤ g′(s) =

2p−1∑
i=1

jbjs
j−1 ≤ 3

2
(2p− 1)b2p−1s

2p−2 + C′
3.

(3.1.23)

We also obtain from general results on the Dirichlet problem in Ω that on
H1

0 (Ω) ∩ H2(Ω) |Δu| is a norm equivalent to that induced by H2(Ω). Therefore,
there exists a constant C1 = C1(Ω) > 0, depending on Ω, such that for all u ∈
H1

0 (Ω),
‖u‖ ≤ C1|Δu|. (3.1.24)

Setting C′
4 = 1

2 (2p− 1)b2p−1 > 0, we then deduce from (3.1.23) that

1

2

d

dt
‖u‖2 + (d− C′

3)‖u‖2 + C′
4

∫
Ω

u2p−2|∇u|2dx ≤ 0. (3.1.25)

In particular,
d

dt
‖u‖2 ≤ 2C′

3‖u‖2. (3.1.26)

If u0 is in V = H1
0 (Ω), then the classical Bellman–Gronwall inequality (see

Theorem 2.1.3) shows that for all t > 0,

‖u(t)‖2 ≤ ‖u0‖2 exp(2C′
3t). (3.1.27)
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A bound valid for all t ∈ R+ is obtained by using the uniform Bellman–
Gronwall inequality (e.g., Theorem 2.1.3); for an arbitrary fixed r > 0, we obtain
for all t ≥ t∗,

‖u(t+ r)‖2 ≤ κ

r
exp(2C′

3r), (3.1.28)

provided that for all t ≥ t∗, ∫ t+r

t

‖u(s)‖2ds ≤ κ. (3.1.29)

An explicit value of κ can be derived from (3.1.11) and the above compu-
tation, when t∗ = 0. Hence (3.1.28) provides a uniform bound of ‖u(t)‖ for all
t ≥ r, while (3.1.27) provides a uniform bound for ‖u(t)‖ for all 0 ≤ t ≤ r. For
our purpose, it is simpler and sufficient to set t∗ = t0 (as in (3.1.16)). In this case,
the value of κ is given in (3.1.19), by

κ =
1

2d
(rC′

2 + ρ′20 ). (3.1.30)

Thus it follows that the ball of V of radius ρ1 centered at 0 is absorbing in
V , where

ρ21 =
κ

r
exp(2C′

3r), (3.1.31)

with κ as in (3.1.30), and if u0 belongs to the ball B(0, R) ofH of radius r centered
at 0, then u(t) enters this absorbing set, denoted by B1, at a time t ≤ t0 + r, and
remains in it for all t ≥ t0 + r. At the same time, this result provides the uniform
compactness of S(t): any bounded set B of H is contained in such a ball B(0, R),
and for any u0 ∈ B and for all t ≥ t0 + r, t0, r as above, u(t) belongs to B1, which
is bounded in V and relatively compact in H = L2(Ω). Therefore, by the standard
theory on the existence of the maximal attractor, we have proved the existence of
the maximal attractor in H . �

3.2 Attractors for autonomous differential equations

with delay

In this section, we shall borrow results from Caraballo, Rubin and Valero [131]
as an application of Theorem 1.5.20 to establish the existence of attractors for
differential equations with delay.

We shall consider the following system of equations:{
x′(t) = F (x(t), x(t − h)) = f(xt), t > 0,

x0 = ψ ∈ X, (3.2.1)

where F (F1, . . . , Fn), Fi : R
2n → R, h > 0, X = C([−h, 0], L) ⊂ E (L is a closed

subset of Rn), and F is continuous, and 〈·, ·〉 and | · | denote the scalar product
and norm in Rn, respectively.
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We assume the following conditions hold:

(1) For each ψ ∈ X , there exists at least one solution x(t) of problem (3.2.1)
such that x(t) ∈ X for all t ≥ 0.

(2) There exists a constant K > 0 such that for any ε > 0, there exists a constant
δ(ε) > 0 such that for all x, y ∈ L, if |x|, |y| ≥ K + ε,

〈F (x, y), x〉 ≤ −δ.

(3) There exist constants C > 0, 0 < α ≤ 2 such that for all x, y ∈ L,

〈F (x, y), x〉 ≤ C(1 + |x|α).

First, let us introduce some notation. Let h > 0 be a given positive number
(the delay time) and denote by E the Banach space C([−h, 0];Rn) endowed with
the norm ‖ψ‖ = supσ∈[−h,0] |ψ(σ)|, which is the usual phase space when we deal
with delay differential equations. However, it is sometimes useful to consider the
solutions as mappings from R into Rn (we shall consider Rn in its usual Euclidean
topology and denote by 〈·, ·〉, | · | its scalar product and norm, respectively). For
the case of infinite delay, we shall need a more careful choice of the phase space
(e.g., [53, 341]), but omit those details here. By xt we shall denote the element in
E given by xt(s) = x(t + s) for all s ∈ [−h, 0], and set Rd = {(t, s) ∈ R2, t ≥ s}.
Remark 3.2.1 ([131]).

(i) It follows obvious from condition (2), that for all |x|, |y| > K, x, y ∈ L,

〈F (x, y), x〉 < 0.

(ii) If X = E , then condition (1) is not necessary.

(iii) The most usual case in the applications seems to be L = Rn
+.

We may refer to [131] for the definition of m-semiflow.

Theorem 3.2.1 ([131]). Under above conditions (1) and (3), m-semiflow G is well
defined and bounded for any t ≥ 0.

Proof. Obviously, condition (1) and Lemma 13 in [131] imply that G is well de-
fined. Let x(t) be an arbitrary solution. We shall derive an estimate on any interval
[0, T ]. Multiplying the equality in (3.2.1) by x(t) and using condition (3), we can
get

1

2

d

dt
|x(t)|2 ≤ C(1 + |x(t)|α),

which readily implies for all t ∈ [0, T ],

|x(t)|2 ≤ |x(0)|2 + 2CT + 2

∫ t

0

C|x(s)|αds. (3.2.2)
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Therefore, applying Theorem 1.5.20 to the above inequality (3.2.2) for y(t) =
|x(t)| gives us for all t ∈ [0, T ],⎧⎪⎨⎪⎩

|x(t)| ≤
(
(|x(0)|2 + 2CT )(2−α)/2 + (2− α)CT

)1/(2−α)

if α < 2,

|x(t)| ≤
(
|x(0)|2 + 2CT

)1/2

exp(CT ) if α = 2.

(3.2.3)

We have obtained that any solution exists globally in time in view of Corollary
6 in [131] (note that the continuity of F implies that f is bounded). Hence, in the
case X = E , the semiflow G is well defined without using condition (1). Finally, it
follows from (3.2.3) that G(t, ·) is bounded for any t ≥ 0. �

3.3 H2 estimates for the Cahn–Hilliard equation

In this section, we shall employ Theorem 2.1.15 to study the H2 estimates for the
Cahn–Hilliard equation. We adopt these results from Dlotko [213].

We shall consider the following Cahn–Hilliard equation in H2:

ut = −ε2Δ2u+Δ(f(u)), x ∈ Ω ⊂ Rn, t ≥ 0 (3.3.1)

subject to the initial and boundary conditions⎧⎨⎩
u(0, x) = u0(x), for all x ∈ Ω, (3.3.2)

∂u

∂n
=

∂(Δu)

∂n
= 0, for all x ∈ ∂Ω. (3.3.3)

The function f is assumed to be a polynomial of degree 2p− 1:

f(u) =

2p−1∑
j=1

aju
j , p ∈ N, p ≥ 2, (3.3.4)

with leading coefficient a2p−1 > 0. Moreover, p = 2 if n = 3. It follows obviously
from (3.3.4) that f(0) = 0 and

|Ω|−1

∫
Ω

u(t)dx = |Ω|−1

∫
Ω

u0dx = ū0. (3.3.5)

First, integrating of (3.3.1) over Ω and using (3.3.3), we have for all t ≥ 0.
Second, multiplying (3.3.1) by −ε2Δ2u + f(u), we obtain the existence of the
Lyapunov functional for problem (3.3.1)–(3.3.3),

L(u(t)) =
ε2

2

∫
Ω

|∇u(t)|2dx+

∫
Ω

∫ u(t)

0

f(z)dzdx, (3.3.6)
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with (d/dt)L(u(t)) = −‖∇[−ε2Δu+ f(u)]‖2L2 ≤ 0. It is easy to see that under the
assumption that a2p−1 > 0, the primitive of f ,

F (s) =

∫ s

0

f(z)dz,

is bounded from below for all s ∈ R: F (s) ≥ M. Therefore, from that (3.3.6) we
derive for sufficiently smooth solutions:

ε2

2

∫
Ω

n∑
i=1

u2
xi
(t)dx ≤ ε2

2

∫
Ω

n∑
i=1

u2
0xi

dx+

∫
Ω

F (u0)dx −M |Ω|,

which, together with (3.3.5), guarantees that H1 norm of u(t):

‖u(t)‖H1 =
(
‖∇u(t)‖2L2 + ū2

0

)1/2

≤ c (3.3.7)

where c = c(‖u0‖H1 , ū0) > 0 is a constant depending on ‖u0‖H1 and ū0. Moreover,
under our assumption on n and p, we have H1 ⊂ L2p and F is a polynomial of
degree 2p. The estimate (3.3.7) was used by Temam (see, e.g., [915], (4.105), p.
156) to obtain the estimate

‖Δf(u(t))‖2L2 ≤ k(1 + ‖Δ2u(t)‖2σL2), (3.3.8)

where σ ∈ [0, 1) is a constant and k is a function k = k(‖∇u(t)‖L2, ū0) in-
creasing with respect to both the first argument and the absolute value of the
second argument. Due to (3.3.7), we shall define its finite majorant as K =
k(c(‖∇u0‖L2 , ū0), ū0).

In the sequel, we shall use a general semigroup approach to study the problem
(3.3.1)–(3.3.3). Assume that ∂Ω ∈ C5. We shall show that the operator A = ε2Δ2,
considered on the Hilbert space

H = H1(Ω), (3.3.9)

is sectorial (see, e.g., [355], p. 18).We take the domain of A as follows

D(A) =

{
φ ∈ H5(Ω) :

∂φ

∂n
=

∂(Δφ)

∂n
= 0 on ∂Ω

}
. (3.3.10)

It has been proved in Dlotko [213] that D(A) is dense in H .

Defining in H the scalar product

(φ, ψ)H = (∇φ,∇ψ)L2 + (φ, ψ)L2 , (3.3.11)

and integrating by parts, and using the boundary conditions, we easily check that
for all φ, ψ ∈ D(A),

(Aφ,ψ)H = (φ,Aψ)H , (3.3.12)
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which implies A is symmetric in H . We also note that A is a positive operator:
indeed, for all φ, ψ ∈ D(A),

(Aφ, φ)H = ε2(∇Δφ,∇Δφ)L2 + ε2(Δφ,Δφ)L2 ≥ 0. (3.3.13)

Therefore, for arbitrary δ > 0, A+ δI is bounded from below, i.e., for all φ, ψ ∈
D(A),

((A+ δI)φ, φ)H ≥ δ‖φ‖2H . (3.3.14)

Moreover, applying Theorem 4.9.1 in [922] (see also Theorem 5.5.1 in [922]
and Theorem 19.3 in [271]), we know that for a sufficiently large number ρ0 ≥ 0,
the operators A + ρI, ρ ≥ ρ0, realize an isomorphism of the space D(A) onto
H1(Ω), which together with (3.3.13) shows that A + ρI, ρ ≥ ρ0, are self-adjoint
and bounded from below, and hence are sectorial. Therefore, by the definition of
the sectorial operator [355], A is sectorial itself.

Now using Temam’s estimate (3.3.8), we may obtain an estimate, which is
global in time of the solution of problem (3.3.1)–(3.3.3) in H2.

It is obvious that on the set {φ ∈ H2(Ω) : ∂φ/∂n = 0 on ∂Ω} containing
D(A1/2), with A1/2 = −εΔ([922], Theorem 4.3.3; 8, Problem 18.5) and

D(A1/2) =

{
φ ∈ H3(Ω) :

∂φ

∂n
= 0 on ∂Ω

}
. (3.3.15)

We may define an equivalent norm to the H2 norm as(
‖Δφ‖2L2 + |φ̄|2

)1/2

. (3.3.16)

We should note that if we take u0 ∈ D(A1/2) in the following Theorem 3.3.1
and Lemma 3 in [213], then u(t) belongs to D(A) (see (3.3.10)) for all t > 0.

We have the following theorem (see [213]).

Theorem 3.3.1. The following estimate of the solution of problem (3.3.1)–(3.3.3)
in H2 holds for all t ≥ 0,

‖Δu(t)‖2L2 ≤ max{c1z1, ‖Δu0‖2L2}, (3.3.17)

where z1 is the positive root of the equation

φ(z) := −ε2z +
K

ε2
(1 + zσ) = 0 (3.3.18)

with K,σ defined as in (3.3.8).

Proof. Since u(t) ∈ D(A) for all t > 0, we can multiply (3.3.1) by Δ2u and
integrate over Ω to get

1

2

d

dt

∫
Ω

(Δu)2dx = −ε2
∫
Ω

(Δ2u)2dx+

∫
Ω

Δ(f(u))Δ2udx
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which, together with (3.3.8) and the Cauchy inequality, gives

d

dt

∫
Ω

(Δu)2dx ≤ −ε2
∫
Ω

(Δ2u)2dx+
1

ε2

∫
Ω

Δ(f(u))2dx

≤ −ε2
∫
Ω

(Δ2u)2dx+
k

ε2

{
1 +

(∫
Ω

(Δ2u)2dx

)σ}
,

(3.3.19)

with σ ∈ [0, 1) and k = k(‖∇u(t)‖L2 , ū0). By the Poincaré and Smoller inequalities
(see [874]), it readily follows that∫

Ω

g2dx ≤ c0

∫
Ω

|∇g|2dx ≤ c1

∫
Ω

(Δg)2dx, (3.3.20)

where g ∈ H2 fulfills the relations
∫
Ω
gdx = 0, ∂g/∂n = 0 on ∂Ω. Moreover, noting

the boundary conditions (3.3.3) and using u(t) ∈ D(A) for all t > 0,
∫
ΩΔudx = 0,

(3.3.19) for g = Δu, yields∫
Ω

(Δu)2dx ≤ c1

∫
Ω

(Δ2u)2dx, (3.3.21)

which, by Theorem 2.1.15 for y(t) = ‖Δu‖2L2, z(t) = ‖Δ2u‖2L2 , and using (3.3.16),
gives us the desired (3.3.17). �

3.4 Global existence, exponential stability and uniform

attractors for a non-autonomous wave equation

In this section, we shall use Theorems 2.1.7 and 2.3.2 to establish the global exis-
tence, exponential stability of the solutions, and the existence of uniform attractors
for a non-autonomous linear viscoelastic equation with linear damping and a delay
term. We present these results, found in Qin, Ren and Wei [803].

3.4.1 Global existence and exponential stability

We shall consider the following problem for a non-autonomous linear viscoelastic
equation with linear damping and a delay term,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

utt(x, t)−Δu(x, t) +
∫ t

0
g(t− s)Δu(x, s)ds

+μ1ut(x, t) + μ2ut(x, t− τ) = f(x, t), x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
ut(x, t− τ) = f0(x, t− τ), x ∈ Ω, t ∈ (0, τ),

(3.4.1)

where u = u(x, t), t ≥0, x ∈ Ω, Δ denotes the Laplace operator with respect
to the x variable, Ω is a regular and bounded domain of RN , N ≥ 1, μ1, μ2
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are positive constants, τ > 0 represents the time delay and u0, u1, f0 are given
functions belonging to suitable spaces. We shall study the global existence and
the asymptotic behavior for the solution of problem (3.4.1) with a delay term
appearing in the control term of the equation.

A wave equation with acoustic and memory boundary conditions on a part
of the boundary of the domain Ω was also investigated recently in [935], where
the existence and uniqueness of global solutions have been proved. An exponential
delay result was proved by Mustafa in [653], who, in fact, used the energy method
to show that the damping effect through heat conduction is strong enough to
uniformly stabilize the system. Andrade, Ma, and Qin [45] studied the existence
of uniform attractors for a nonlinear non-autonomous viscoelastic equation in a
bounded domain Ω ⊆ Rn (n ≥ 1) by establishing the uniform asymptotic com-
pactness of the semi-process generated by the global solutions. Ma and Qin [577]
proved the existence of uniform attractors for a nonlinear non-autonomous damped
extensible plate or beam equation in a bounded or unbounded domain Ω ⊆ Rn, by
establishing the uniformly asymptotic compactness of the semi-process generated
by the global solutions.

Recently, Qin, Ren and Wei [803] considered a non-autonomous thermoelas-
tic system with boundary delay and using the contractive mapping method and
multiplier techniques established the asymptotic behavior and the existence of a
uniform attractor of the system. Kirane and Said-Houari [437] considered prob-
lem (3.4.1) with f = 0 and obtained exponential decay results, who used the
energy method and Lyapunov functionals to show that the energy of the solution
decreases exponentially as time tends to infinity.

For the relaxation function g, we assume

(H1) g : R+ → R+ is a C1 function satisfying

g(0) > 0, 1−
∫ +∞

0

g(s)ds = l > 0. (3.4.2)

(H2) There exists a positive non-increasing differentiable function η(t) such that
for all t ≥ 0,

−g′(t) ≥ η(t)g(t),

∫ +∞

0

η(t)dt = +∞. (3.4.3)

Now we introduce the following notations⎧⎪⎪⎨⎪⎪⎩
(φ ∗ ψ)(t) := ∫ t

0 φ(t − τ)ψ(τ)dτ,

(φ  ψ)(t) := ∫ t

0 φ(t − τ)|ψ(t) − ψ(τ)|dτ,
(φ ◦ ψ)(t) := ∫ t

0
φ(t − τ)

∫
Ω
|ψ(t)− ψ(τ)|2dxdτ.

Following [437, 619, 649], we need the following lemmas which will be used
later in order to define the new modified functional energy of problem (3.4.1).
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Lemma 3.4.1. For any function φ ∈ C1(R) and any ψ ∈ H1(0, T ),

(φ ∗ ψ)(t)ψt(t) = −1

2
φ(t)|ψ(t)|2 + 1

2
(φ′  ψ)(t)

= −1

2

d

dt

{
(φ  ψ)(t) −

(∫ t

0

φ(τ)dτ

)
|ψ(t)|2

}
.

(3.4.4)

Proof. See, e.g., [649]. �
Lemma 3.4.2. For any u ∈ H1

0 (Ω),∫
Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds

)2

≤ (1− l)C2
∗(g ◦ ∇u)(t), (3.4.5)

where C∗ > 0 is the Poincaré constant and l is given in (H1).

Proof. See, e.g., [619]. �

Now following [437], we shall prove the global existence and uniqueness of
the solution of problem (3.4.1). In order to state our main result, we introduce the
new variable

z(x, ρ, t) = ut(x, t − τρ), x ∈ Ω, ρ ∈ (0, 1), t > 0. (3.4.6)

Then
τzt(x, ρ, t) + zρ(x, ρ, t) = 0, in Ω× (0, 1)× (0,+∞). (3.4.7)

Then problem (3.4.1) is equivalent to the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(x, t)−Δu(x, t) +
∫ t

0 g(t− s)Δu(x, s)ds
+μ1ut(x, t) + μ2z(x, 1, t) = f(x, t), x ∈ Ω, t > 0,

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Ω, ρ ∈ (0, 1), t > 0,
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
z(x, 0, t) = ut(x, t), x ∈ Ω, t ≥ 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
z(x, ρ, 0) = f0(x, t− τ), x ∈ Ω, t ∈ (0, τ).

(3.4.8)

Next, we shall give a sufficient condition that guarantees that this problem
is globally well posed. Let ξ and ε be positive constants such that

τμ2 − 2τε < ξ < τ(2μ1 − μ2). (3.4.9)

Now we can state the following global existence result.

Theorem 3.4.3 ([803]). For any T > 0, assume that f(x, t) ∈ L2(0, T ;L2(Ω)),
μ1 ≤ μ2, and (H1), (H2) are satisfied. Then for any u0 ∈ H1

0 (Ω), u1 ∈ L2(Ω),
f0 ∈ L2(Ω× (0, 1)), problem (3.4.9) admits a unique weak solution (u, z) on (0, T )
such that

u ∈ C([0, T ], H1
0 (Ω)) ∩ C1([0, T ], L2(Ω)),

ut ∈ L2(0, T ;H1
0 (Ω)) ∩ L2((0, T )× Ω).

(3.4.10)
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Proof. Similarly to [437] and [546], noting that f(x, t) ∈ L2(0, T ;L2(Ω)), we can
easily prove the theorem. �

We now use the energy method and suitable Lyapunov functionals to show
that the energy of the solution of problem (3.4.1) decreases exponentially as time
tends to infinity. Following [437], we shall discuss two cases: μ2 < μ1 and μ2 = μ1.

Case 1: μ2 < μ1.

In this case, we shall show that under the assumption μ2 < μ1, the solution of
problem (3.4.1) is exponentially stable. For this purpose, we need to establish first
several lemmas.

Lemma 3.4.4 ([803]). Let (u, z) be a solution of problem (3.4.8). Suppose (H1) and
(H2) are satisfied and ξ satisfies the inequality (3.4.9). Then the energy functional
defined by

E(t) = E(t, z, u) =
1

2
‖ut(t)‖22 +

1

2

(
1−

∫ t

0

g(s)ds

)
‖∇u(t)‖22

+
1

2
(g ◦ ∇u)(t) +

ξ

2

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx

(3.4.11)

satisfies, for some positive constants M1 and Cε,

dE(t)

dt
≤ −M1

(∫
Ω

u2
t (x, t)dx +

∫
Ω

z2(x, 1, t)dx

)
+

1

2
(g′ ◦ ∇u)(t)− 1

2
g(t)‖∇u‖22 + C

∫
Ω

f2dx.

(3.4.12)

Proof. Similarly to [437], we can easily obtain

dE(t)

dt
= −

(
μ1 − ξ

2τ
− μ2

2
− ε̃

)
‖ut‖22 −

(
ξ

2τ
− μ2

2

)∫
Ω

z2(x, 1, t)dx

+
1

2
(g′ ◦ ∇u)(t)− 1

2
g(t)‖∇u‖22 + C

∫
Ω

f2dx

(3.4.13)

where ε̃ and C = C(ε̃) are positive constants with ε̃ small enough. Then using
(3.4.9), we obtain (3.4.12). �
Lemma 3.4.5 ([803]). Let (u, z) be the solution of problem (3.4.8), the function F1

defined by

F1(t) =

∫
Ω

utudx (3.4.14)

satisfies, for any δ > 0,

dF1(t)

dt
≤

(
1 +

μ1

4δ

)
‖ut‖22 −

(
l

2
− δC2

∗ (μ1 + μ2 + 1)

)
‖∇u‖22

+
1

4δ

∫
Ω

[
z2(x, 1, t) + f2(x, t)

]
dx+

(1− l)

2
(g ◦ ∇u)(t).

(3.4.15)
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Proof. By the first equation in (3.4.8) and a direct computation, we have

F ′
1(t) = ‖ut‖22 − ‖∇u‖22 +

∫
Ω

∇u(t) ·
∫ t

0

g(t− s)∇u(s)dsdx

− μ1

∫
Ω

utudx− μ2

∫
Ω

z(x, 1, t)udx+

∫
Ω

fudx.

(3.4.16)

By the Young and Poincaré inequalities, we have for any δ > 0,∫
Ω

f(x, t)udx ≤ δC2
∗

∫
Ω

|∇u(t)|2dx+
1

4δ

∫
Ω

f2(x, t)dx. (3.4.17)

Combining the estimates in [437], we can easily derive the desired result (3.4.15).
�

Lemma 3.4.6. Let (u, z) be the solution of problem (3.4.8). Then the function F2

defined by

F2(t) =

∫
Ω

∫ 1

0

e−2τρz2d(x, ρ, t)dρdx (3.4.18)

satisfies

dF2(t)

dt
≤ −ρF2(t) +

1

2τ

∫
Ω

u2
t (x, t)dx − c

2τ

∫
Ω

z2(x, 1, t)dx. (3.4.19)

Proof. See, e.g., [437]. �

We shall employ Theorem 2.3.2 to establish the following result. To this end,
we need to construct a suitable Lyapunov functional L.
Theorem 3.4.7 ([803]). Let u be the solution of problem (3.4.1). Assume that μ2 <
μ1, g and η satisfies (H1) and (H2).

(1) If f(x, t) ∈ L2(R+, L2(Ω)) and limt→+∞
‖f‖2

2

η(t) = 0, then

lim
t→+∞E(t) = 0. (3.4.20)

Furthermore,

(2) if f satisfies ‖f‖22 ≤ C1e
−α0

∫
t
0
η(s)ds for all t ≥ 0, where C1 > 0, α0 > 0 are

constants, then there exists a constant R1 > 0, such that for t ≥ R1,

E(t) ≤ C2e
−α

∫
t
0
η(s)ds (3.4.21)

where C2 > 0, α > 0 are constants.
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Proof. Note that we need to construct a functional L(t), equivalent to the energy
E(t), satisfying for all t ≥ 0,

dL(t)
dt

≤ −σL(t) + σ0 ‖ f ‖22, (3.4.22)

where σ, σ0 are positive constants. Specifically, we may define the Lyapunov func-
tional

L(t) := E(t) +NF1(t) +NF2(t) (3.4.23)

where N is a positive real number which will be chosen later. Letting

F(t) = η(t)L(t) + 2γ2E(t), (3.4.24)

which is equivalent to E(t), similarly to [437], we easily obtain

F ′(t) ≤ −γ1η(t)E(t) + η(0)C̃‖f‖22 ≤ −γ3η(t)F(t) + η(0)C̃‖f‖22. (3.4.25)

Applying Theorem 2.3.2 to (3.4.25), with y(t) = F(t), λ(t) = η(0)C̃‖f‖22 and
h(t) = η(t), we can conclude (3.4.20) and (3.4.21). �

Case 2: μ2 = μ1.

Below we shall show that under assumption μ2 = μ1, the solution of problem
(3.4.1) is exponentially stable.

Lemma 3.4.8 ([803]). Let (u, z) be a solution of problem (3.4.8). Suppose (H1) and
(H2) are satisfied. Then the energy functional defined by (3.4.11) satisfies for any
ε̃ > 0 and for all t ≥ 0,

dE(t)

dt
≤ ε̃‖ut‖22 +

1

2
(g′ ◦ ∇u)(t)− 1

2
g(t)‖∇u‖22 + C

∫
Ω

f2dx. (3.4.26)

Proof. The proof is an immediate consequence of Lemma 3.4.2. Choosing ξ = τμ,
we can easily complete the proof. �
Lemma 3.4.9 ([803]). Let (u, z) be the solution of problem (3.4.8). Then the func-
tion F3 defined by

F3(t) = −
∫
Ω

ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx (3.4.27)

satisfies

dF3(t)

dt
≤ (

r + 2r(1 − l)2
) ‖∇u‖22 +

(
r1(1 + r)−

∫ t

0

g(s)ds

)
‖ut‖22 (3.4.28)

+

(
(1 − l)

2r
+ 2r(1− l) +

rC2∗
4r1

+
rC2∗
4r2

+
rC2∗
4r3

)
(g ◦ ∇u)(t)

+ rr2

∫
Ω

z2(x, 1, t)dx− g(0)

4r1
C2

∗(g
′ ◦ ∇u)(t) + r3

∫
Ω

f2(x, t)dx,

where r, r1, r2, and r3 are positive constants.
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Proof. Differentiating (3.4.27) with respect to t and using the first equation in
(3.4.8), we have

F ′
3(t) =

∫
Ω

∇u(t) ·
(∫ t

0

g(t− s)(∇u(t)−∇u(s))ds

)
dx

−
∫
Ω

(∫ t

0

g(t− s)∇u(s)ds

)
·
(∫ t

0

g(t− s)(∇u(t)−∇u(s))ds

)
dx

−
∫
Ω

ut

∫ t

0

g′(t− s)(u(t)− u(s))dsdx−
(∫ t

0

g(s)ds

)
‖ut‖22

− μ1

∫
Ω

ut

∫ t

0

g(t− s)(u(t)− u(s))dsdx (3.4.29)

− μ2

∫
Ω

z(x, 1, t)

∫ t

0

g(t− s)(u(t)− u(s))dsdx

+

∫
Ω

f(x, t)

∫ t

0

g(t− s)(u(t)− u(s))dsdx.

Using Young’s inequality in the last term of (3.4.29), we have for any r3 > 0,∫
Ω

f(x, t)

∫ t

0

g(t−s)(u(t)−u(s))dsdx ≤ r3

∫
Ω

f2(x, t)dx+
C2

∗
4r3

(g◦∇u)(t). (3.4.30)

Combining this with the estimates in [437] with (3.4.30), we can complete the
proof. �

Theorem 3.4.10 ([803]). Let u be the solution of problem (3.4.1). Assume that
μ2 = μ1, and that g satisfies (H1) and (H2).

(1) If f(x, t) ∈ L2(R+, L2(Ω)), limt→+∞
‖f‖2

2

η(t) = 0, then

lim
t→+∞E(t) = 0. (3.4.31)

Furthermore,

(2) if f satisfies ‖f‖22 ≤ K1e
−k0

∫
t
0
η(s)ds for all t ≥ 0, where K1 > 0, k0 > 0 are

constants, then there exists a constant R3 > 0, such that for t ≥ R3,

E(t) ≤ Ke−k
∫

t
0
η(s)ds, (3.4.32)

with K > 0, k > 0 being constants.

Proof. We first define the Lyapunov function as

L̃(t) := aE(t) + a1F1(t) + a2F2(t) + F3(t), (3.4.33)
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where a, a1. and a2 are positive real numbers which will be chosen later. Since the
function g is positive, continuous, and satisfies g(0) > 0, for any fixed t0 > 0, as
t ≥ t0 ≥ 0, ∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds ≡ g0. (3.4.34)

Similarly to [437], we get for all t ≥ t0,

L̃′(t) ≤ −α′L̃(t) + α2(g ◦ ∇u)(t) + α3‖f‖22 (3.4.35)

where α′, α2 and α3 are positive constants; α3 is independent of initial data.

Arguing as in the proof of Theorem 3.4.2, we obtain the results. �

3.4.2 Uniform attractors

In this subsection, we shall establish the existence of uniform attractors for the
system (3.4.8) with right-hand side f(x, t).

Setting v = ut,Rε = [ε,+∞), ε ≥ 0, we consider the system⎧⎪⎪⎨⎪⎪⎩
ut(x, t)− v(x, t) = 0, (x, t) ∈ Ω× (ε,+∞),

utt(x, t)−Δu(x, t) +
∫ 1

0 g(t− s)Δu(x, s)ds
+μ1ut(x, t) + μ2z(x, 1, t) = f(x, t), (x, t) ∈ Ω× (ε,+∞),

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, (x, ρ, t) ∈ Ω× (0, 1)× (ε,+∞),
(3.4.36)

subject to the conditions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u(x, ε) = uε(x), ut(x, ε) = u1ε(x),

ut(x, t − τ) = f0(x, t− τ), x ∈ Ω, ε ≥ 0, (3.4.37)

z(ρ, t) = zε(ρ), ρ ∈ (0, 1), (3.4.38)

u(x, t) = 0, x ∈ ∂Ω, t ≥ ε, (3.4.39)

z(x, 0, t) = ut(x, t), x ∈ Ω, t ≥ ε. (3.4.40)

Let

F = (0, f, 0)T ∈ X ≡ L2
(
Rε, (L

2(Ω))3
)
, H = H1

0 (Ω)× L2(Ω). (3.4.41)

Then the energy of problem (3.4.36) is given by

E(t) =
1

2
‖ut(t)‖22 +

1

2

(
1−

∫ t

0

g(s)ds

)
‖∇u(t)‖22

+
1

2
(g ◦ ∇u)(t) +

ξ

2

∫
Ω

∫ 1

0

z2(x, ρ, t)dρdx.

For any (uε, u1ε) ∈ H and any F ∈ X , we define for all t ≥ ε, ε ≥ 0,

UF (t, ε) : (uε, u1ε) ∈ H �→ (u(t), ut(t)) = UF (t, ε)(uε, u1ε)

where (u(t), ut(t)) is the solution of problem (3.4.36).
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For the proof of our result on the uniform attractors in H, we define the hull
of F0 as

Σ = H(F0) = [F0(t+ h)|h ∈ R+]Y (3.4.42)

where [·]Y denotes the closure in some Banach space Y .

We note that

F0 ∈ X ⊆ X̂ = L2
loc(R

+, (L2(Ω))3),

where F0 is a translation compact function in X̂ in the weak topology, which means
that H(F0) is compact in X̂. We now consider the Banach space Lp

loc(R
+, X1) of

functions σ(s), s ∈ R+, with values in a Banach space X1 that are locally p-power
integrable in the Bochner sense. In particular, for any time interval [t1, t2] ⊆ R+,∫ t2

t1

‖ σ(s) ‖pX1
ds < +∞.

Let σ(s) ∈ Lp
loc(R

+, X1), and consider the quantity

κσ(h) = sup
t∈R+

∫ t+h

t

‖ σ(s) ‖pX1
ds.

Lemma 3.4.11 ([803]). Let Σ be defined as before and F0 ∈ X. Then

(1) F0 is a translation compact function in X̂ and any F ∈ Σ = H(F0) is also a

translation compact function in X̂. Moreover, H(F ) ⊆ H(F0);

(2) the set H(F0) is bounded in L2(R+, (L2(Ω))3) such that for all F ∈ Σ,

κF (h) ≤ κF0(h) < +∞.

Proof. See, e.g., Chepyzhov and Vishik [154]. �

Similarly to Theorem 3.4.1, we have the following existence and uniqueness
result.

Theorem 3.4.12 ([803]). Let Σ = [F0(t+h)|h ∈ R+]X , where F0 ∈ X is an arbitrary
but fixed symbol function. Then for any F ∈ Σ and any (uε, u1ε) ∈ H, ε ≥ 0,
problem (3.4.36) admits a unique global solution (u(t), ut(t)) ∈ H, which generates
a unique family of semiprocesses {UF (t, ε)} (t ≥ ε, ε ≥ 0) on H, namely a two-
parameter family of operators, such that for any t ≥ ε, ε ≥ 0,

UF (t, ε)(uε, u1ε) = (u(t), ut(t)) ∈ H,

u(t) ∈ C
(
Rε, H

1
0 (Ω)

)
, ut ∈ C

(
Rε, L

2(Ω)
)
.

In order to prove our results, we shall introduce some basic concepts and
basic lemmas.
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Definition 3.4.13. Let Y be a Banach space and Σ̂ be a parameter set. The oper-
ators {Uσ(t, ε)} (t ≥ ε, ε ≥ 0, σ ∈ Σ̂) are said to form a family of semi-processes in

Y with symbol space Σ̂, if for any σ ∈ Σ̂

Uσ(t, s)Uσ(s, ε) = Uσ(t, ε), for all t ≥ s ≥ ε, ε ≥ 0, (3.4.43)

Uσ(ε, ε) = Id (identity operator), for all ε ≥ 0. (3.4.44)

Definition 3.4.14. A setB0 is said to be a uniformly (with respect to (w.r.t.) F ∈ Σ̂)

absorbing set for the family of semi-processes {UF (t, ε)} (F ∈ Σ̂, t ≥ ε, ε ≥ 0), if for
every bounded set B of X and any ε ≥ 0, there exists some time t0 = t0(B, ε) ≥ ε,
such that for all t > t0, ⋃

F∈Σ̂

UF (t, ε)B ⊆ B0. (3.4.45)

Definition 3.4.15. The family of semi-processes {UF (t, ε)} (F ∈ Σ̂, t ≥ ε, ε ≥ 0) is

said to be asymptotically compact in Y if
{
UFn(tn, ε)(u

(n)
ε , u

(n)
1ε )

}
is pre-compact

in Y whenever
{
u
(n)
ε , u

(n)
1ε

}
is bounded in Y , F (n) ⊂ Σ̂, and {tn} ⊂ Rε, tn → +∞

as n → +∞.

Definition 3.4.16. A closed set A ⊆ Y is called uniformly (w.r.t. F ∈ Σ̂) if for any
bounded set P of B and any fixed ε ∈ R+,

lim
t→+∞

(
sup
F∈Σ̂

dist
(
UF (t, ε)P,A

))
= 0; (3.4.46)

here dist(·, ·) stands for the usual Hausdorff semi-distance between two sets P1

and P2 in Y , defined as dist(P1, P2) = sup
x1∈P1

inf
x2∈P2

‖x1 − x2‖Y .

Definition 3.4.17. A closed setA ⊆ Y is called the uniform (w.r.t. F ∈ Σ̂) attractor

of the semi-processes {UF (t, ε)} (F ∈ Σ̂, t ≥ ε, ε ≥ 0) acting on Y ifA is a uniformly
attracting set and A satisfies the following minimality property: A belongs to any
closed uniformly attracting set of the semi-processes {UF (t, ε)} (F ∈ Σ̂, t ≥ ε,
ε ≥ 0).

Definition 3.4.18. Let Y be a Banach space and P be a bounded subset of Y , Σ̂
be a symbol space. We call a function φ(·, ·; ·, ·), defined on (Y × Y )× (Σ̂× Σ̂), a

contractive function on P×P if, for any sequence {xn}∞n=1 ⊂ P and any {σn} ⊆ Σ̂,
there are subsequences {xnk

}∞k=1 ⊂ {xn}∞n=1 and {σnk
}∞k=1 ⊂ {σn}∞n=1 such that

lim
k→+∞

lim
l→+∞

φ(xnk
, xnl

;σnk
, σnl

) = 0.

We denote the set of all contractive functions on Y × Y by Contr(P, Σ̂).

More details on the subject of uniform attractors can be found in the books
[45, 154, 577, 770, 773, 774].
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Lemma 3.4.19. Let {UF (t, ε)} (F ∈ Σ̂, t ≥ ε, ε ≥ 0) be a family of semi-processes
that satisfies the translation identities (3.4.43) and (3.4.44) on a Banach space

Y , and has a bounded uniformly (w.r.t. F ∈ Σ̂) absorbing set B0 ⊆ Y . Moreover,
assuming that for any ε > 0, there exist a time T = T (B0, ε) > 0 and a contractive

function φT on B0 ×B0 such that for all x, y ∈ B0, for all F1, F2 ∈ Σ̂,

‖ UF1(T, 0)x− UF2(T, 0)y ‖≤ ε+ φT (x, y;F1, F2).

Then {UF (t, ε)} (F ∈ Σ̂, t ≥ ε, ε ≥ 0) is uniformly
(
w.r.t. F ∈ Σ̂

)
asymptotically

compact in Y .

Proof. See, e.g., [154]. �

First we shall establish that the family of semi-processes {UF (t, ε)} has a
bounded uniformly absorbing set.

Theorem 3.4.20 ([803]). Under the assumption (3.4.41), the family of semi-proces-
ses {UF (t, ε)} (F ∈ Σ, t ≥ ε, ε ≥ 0), corresponding to problem (3.4.36)–(3.4.40) has
a bounded uniformly (w.r.t. F ∈ Σ) absorbing set B0 in H.

Proof. Similarly to the proof of Theorem 3.4.2, we have

dE(t)

dt
≤ −γη(t)E(t) + C1 ‖ f(t) ‖22,

where γ, C1 are two positive constants independent of initial data.

In the following, C denotes a general positive constant independent of initial
data, which may be different in different estimates.

Obviously,

E(t) ≤ E(ε)e−γ
∫ t
ε
η(w)dw + C

∫ t

ε

‖ f(s) ‖22 e−γ
∫ t
s
η(w)dwds. (3.4.47)

Applying Theorem 2.1.7 to (3.4.49), we can conclude that

E(t) ≤ E(ε)e−γ
∫ t
ε
η(w)dw + C

∫ t

ε

‖ F (s) ‖22 e−γ
∫ t
s
η(w)dwds

≤ E(ε)e−γ
∫ t
ε
η(w)dw + C

1

1− e−γη(0)
sup
t≥ε

∫ t+1

t

‖ F (s) ‖22 ds

≤ E(ε)e−γ
∫ t
ε
η(w)dw + C

1

1− e−γη(0)
κF0(1).

Now for any bounded set B0 ⊆ H, for any (uε, u1ε) ∈ B0, and ε ≥ 0, there
exists a constant CB0 > 0 such that E(ε) ≤ CB0 ≤ C. Take

R2
0 = 2

(
2C

κF0(1)

1− e−γη(0)
+ 1

)
,

t0 = t0(ε, F0),

∫ t0

ε

η(w)dw = −γ−1 log

(
CκF0(1) + 1

CCB0(1− e−γη(0))

)
.
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Then for any t ≥ t0 ≥ ε, we have

E(t) ≤ C
κF0(1)

1− e−γη(0)
+ CCB0e

−γ
∫ t0
ε

η(w)dw ≤ R2
0

2
,

which thus gives us
‖ (u(t), ut(t)) ‖2H≤ 2E(t) ≤ R2

0.

Then, B0(0, R0) = {u(t), ut(t) ∈ H :‖ (u(t), ut(t)) ‖H≤ R0} ⊆ H is a uni-
formly absorbing set for any F ∈ Σ, i.e., for any bounded subset B in H, there
exists a time t0 = t0(ε, F0) ≥ ε, such that for all t ≥ t0,⋃

F∈Σ

UF (t, ε)B ⊆ B0.

The proof is thus complete. �

Now following [803], we can prove that the family of semi-processes {UF (t, ε)}
(F ∈ Σ, t ≥ ε, ε ≥ 0), corresponding to (3.4.37) is uniformly (w.r.t. F ∈ Σ)
asymptotically compact in H. Hence, by the standard existence theory of uniform
attractors, we can establish the existence of uniformly (w.r.t. F ∈ Σ) compact
attractor AF .



Chapter 4

Global Existence and Uniqueness
for Evolutionary PDEs

In this chapter, we present some results on global existence and uniqueness of
solutions to evolutionary PEDs obtained by application of analytic inequalities in
Chapters 1 and 2. This chapter consists of four sections. In Section 4.1, we use
the simultaneous singular Bellman–Gronwall inequality, i.e., Theorem 1.3.2, to
discuss the local existence, regularity, and continuous dependence on initial data
of solutions to a weakly coupled parabolic system for non-regular initial data.
In Section 4.2, we use Theorem 1.4.9 to study some properties of solutions to the
Cauchy problem for multi-dimensional conservation laws with anomalous diffusion.
In Section 4.3, we use Theorem 2.1.19 to investigate the blow-up of solutions of
semilinear heat equations. In Section 4.4, we exploit Theorems 2.1.17 and 2.1.18
to establish the global existence, L∞ estimates, and decay estimates of solutions
for the quasilinear parabolic system. Inequalities used in this chapter are crucial
in obtaining the global solutions.

4.1 A weakly coupled Parabolic system

In this section, we use Theorem 1.3.2 to establish the local existence, regular-
ity, and continuous dependence on initial data of solutions to a weakly coupled
parabolic system for non-regular initial data. These results are taken from Dick-
stein and Loayza [210].

We shall consider the following weakly coupled parabolic system for non-
regular initial data ⎧⎪⎨⎪⎩

ut −Δu = vp in (0, T )× RN , (4.1.1)

vt −Δv = uq in (0, T )× RN , (4.1.2)

u(0) = u0, v(0) = v0 in RN , (4.1.3)

where p, q ≥ 1, pq > 1, and u0, v0 ∈ C0(R
N ).

Y. Qin, Analytic Inequalities and Their Applications in PDEs, Operator  
Theory: Advances and Applications 241, DOI 10.1007/978-3-319-00831-8_4 

231© Springer International Publishing Switzerland 2017



232 Chapter 4. Global Existence and Uniqueness for Evolutionary PDEs

It is well known (see [210]) that the problem (4.1.1)–(4.1.3) has a unique
classical solution w(t) = (u(t), v(t)) defined on a maximal interval [0, T ), T ≤ +∞.
Escobedo and Herrero [237] proved that when T < +∞, then ‖u(t)‖L∞(RN ) → +∞
and ‖v(t)‖L∞(RN ) → +∞ as t → T−. In this case, we say that w blows up at the
blow-up time T . We also know that blow-up phenomena for semilinear parabolic
systems in RN have been studied by several authors, see, e.g., Andreucci, Herrero
ad Velázquez [47], Dickstein and Loayza [210], Deng and Levine [201], Escobedo
and Herrero [237], Levine [514], Quittner and Souplet [817], Zaag [987], etc.

We need to introduce first some notations. Lr stands for the Lebesgue space
Lr(RN ) and ‖ · ‖Lr denotes its usual norm. Thus by the results from Brézis and
Cazenave [118] and Weissler [955], the following problem is locally well posed in
Lr(RN ) when r ≥ 1 and 2r > N(p − 1) or r > 1 and 2r = N(p − 1), and the
solution to the following nonlinear problem is classical for all t > 0:{

ut −Δu = |u|p−1u in (0, T )× RN , (4.1.4)

u(0) = u0 in RN . (4.1.5)

Now following [210], consider Er,s ≡ Lr + Ls, which is the Banach space
endowed with the standard norm

‖u‖r,s = inf {‖ur‖Lr + ‖us‖Ls , u = ur + us, ur ∈ Lr, us ∈ Ls} .
Recall that Dickstein [208] showed problem (4.1.4)–(4.1.5) is also locally well

posed in Er,s provided that r ≥ 1 and 2r > N(p − 1). Existence of solutions
(regular for all t > 0) was also obtained for initial data u0 ∈ M, the space of finite
measures in RN .

The first fact we need is that the heat semigroup S(t) is defined in Er,s and
satisfies if 1 ≤ r ≤ s ≤ γ,

sup
0<t≤T

‖S(t)u‖Lγ ≤ Ct−(N/2)(1/r−1/γ)‖u‖r,s, (4.1.6)

where C = max
(
1, T (N/2)(1/r−1/s)

)
.

We also need the following lemma.

Lemma 4.1.1 ([210]). Assume that 0 < p, 0 < q such that pq > 1, and γ1,0 >
0, γ2,0 > 0, 0 < c1 < d1, 0 < c2 < d2 such that

p

γ2,0
− 1

γ1,0
= c1,

q

γ1,0
− 1

γ2,0
= c2, (4.1.7)

for any n ∈ N, define γ1,0, γ2,0 recursively by

p

γ2,n
− 1

γ1,n+1
= d1,

q

γ1,n
− 1

γ2,n+1
= d2. (4.1.8)

Then {γ1,n}n∈N, {γ2,n}n∈N are increasing sequences such that p
γ2,N

< d1,
q

γ1,N
< d2

for some N ∈ N.

For the proof of Lemma 4.1.1, see [210]. �
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We now discuss the admissibility of Er1,s1 ×Er2,s2 as a space of solutions of
problem (4.1.1)–(4.1.3). For w = (u, v) ∈ Er1,s1 × Er2,s2 , we set ‖w‖r1,s1,r2,s2 =
‖u‖r1,s1 + ‖v‖r2,s2 .
Theorem 4.1.2 ([210]). Assume that p ≥ 1, q ≥ 1, 1 ≤ r1 ≤ s1 ≤ qr2, 1 ≤ r2 ≤
s2 ≤ pr1 such that

max
(
p/r2 − 1/r1, q/r1 − 1/r2

)
< 2/N. (4.1.9)

Then for any w0 ∈ Er1,s1 ×Er2,s2 , there exist a time T > 0 and a unique classical
solution w ∈ C([0, T );Er1,s1 × Er2,s2) to problem (4.1.1)–(4.1.3) in (0, T ).

Let BM be the closed ball of radius M > 0 of Er1,s1×Er2,s2 . For any w0, z0 ∈
Er1,s1 × Er2,s2 , denote by w = (uw, vw), z = (uz, vz) the corresponding solutions.
Given M > 0, there exists a time T > 0 such that for all w0, z0 ∈ BM and for
any γ1 ∈ [s1,+∞], γ2 ∈ [s2,+∞], we can find a constant C > 0 such that for all
t ∈ (0, T ),

t(N/2)(1/r1−1/γ1)‖uw(t)− uz(t)‖Lγ1 + t(N/2)(1/r2−1/γ2)‖vw(t)− vz(t)‖Lγ2

≤ C‖w0 − z0‖r1,s1,r2,s2 . (4.1.10)

Proof. Since the proof is only based on the fixed point argument due to Weissler
[955], we shall just present the details of the novelties appearing here, which can
be divided into the following several steps.

Step 1. Existence of a Weak Solution: For any w0 ∈ Er1,s1 × Er2,s2 , T < 1, and
M > 0 such that ‖u0‖r1,s1 + ‖v0‖r2,s2 ≤ M , let

α1 =
N

2

(
1/r1 − 1/(qr2)

)
, α2 =

N

2

(
1/r2 − 1/(pr1)

)
, (4.1.11)

and

W =

⎧⎨⎩
w = (u, v) ∈ L∞((0, T );Lqr2 × Lpr1),

‖w‖W ≡ sup
t∈(0,T )

(
tα1‖u(t)‖Lqr2 + tα2‖v(t)‖Lpr1

)⎫⎬⎭ . (4.1.12)

W obviously is a Banach space with the norm ‖ · ‖W . For the rest of this part, we
refer to [210].

Step 2. Regularity: See the details in [210].

Step 3. Uniqueness: See the details in [210].

Step 4. Continuous Dependence: Consider w0 = (uw,0, vw,0), z0 = (uz,0, vz,0) and
assume w(t) = (uw(t), vw(t)), z(t) = (uz(t), vz(t)) is the corresponding solution
defined in [0, T ) with initial data w0 and z0, respectively.

Letting

φ(t) = tα1‖uw(t)− uz(t)‖Lqr2 , ψ(t) = tα2‖vw(t)− vz(t)‖Lpr1 .
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Then it follows (for the details, see [210])

φ(t) ≤ C

(
‖uw,0 − uz,0‖r1,s1 + tα1

∫ t

0

(t− s)−α1s−pα2ψ(s)ds

)
, (4.1.13)

ψ(t) ≤ C

(
‖vw,0 − vz,0‖r2,s2 + tα2

∫ t

0

(t− s)−α2s−qα1φ(s)ds

)
. (4.1.14)

Therefore, applying Theorem 1.3.2 to (4.1.13)–(4.1.14), we can conclude

tα1‖uw(t)− uz(t)‖Lqr2 + tα2‖vw(t)− vz(t)‖Lpr1 ≤ C‖w0 − z0‖r1,s1,r2,s2
which is just (4.1.10) for γ1 = qr2 and γ2 = pr1.

For the rest of (4.1.10), see [210]. �

Remark 4.1.1 ([210]). In fact, for different values of r1, s1, r2, s2, p, q, we
can also obtain other existence results of solutions to problem (4.1.1)–(4.1.3) for
w0 ∈ Er1,s1 × Er2,s2 . For example, Theorem 4.1.1 still applies the case when
r1 = s1, r2 = s2 and qr2 = r1. Indeed, if qr2 < r1, there exists a unique solution
w(t) = (u(t), v(t)) ∈ C((0, T );Lr1 × Lr1) of problem (4.1.1)–(4.1.3), 0 < t < T ,
such that u(t)− S(t)u0, v(t)− S(t)v0 ∈ C((0, T );Lr1).

4.2 A convection equation with anomalous diffusion

In this section, we shall use Theorem 1.4.9 to study the Cauchy problem for a
multi-dimensional conservation law with anomalous diffusion. These results are
taken from Brandolese and Karch [115].

We shall consider the following problem{
ut + (−Δ)α/2u+∇ · f(u) = 0, x ∈ Rd, t > 0, (4.2.1)

u(x, 0) = u0, (4.2.2)

where we always assume 1 < α < 2, and that the C1 vector field f(u) =
(f1(u), . . . , fd(u)) is of a polynomial growth, namely, it satisfies the usual esti-
mates

|f(u)| ≤ C|u|q, |f(u)− f(v)| ≤ C|u− v| (|u|q−1 + |v|q−1
)

(4.2.3)

for some constants C > 0 and q > 1 and for all u, v ∈ R.

The notation used here is as follows: The Lp-norm of a Lebesgue measurable,
real-valued function v ∈ Lp(Rd) defined on Rd is denoted by ‖v‖Lp . In the sequel,
we shall use the weighted L∞ space

L∞
θ =

{
v ∈ L∞(Rd) : ‖v‖L∞

θ
≡ ess sup

x∈Rd

|v(x)|(1 + |x|)θ < +∞
}

(4.2.4)
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for any θ ≥ 0, and its homogeneous counterpart is

L̇∞
θ =

{
v ∈ L∞(Rd\{0}) : ‖v‖L∞

θ
≡ ess sup

x∈Rd

|v(x)||x|θ < +∞
}
. (4.2.5)

By the same letter C independent of x we denote the universal constants
which may vary from line to line. Sometimes, we write, e.g., C = C(T ) when we
want to emphasize the dependence of C on a parameter T .

We need the following lemmas.

Lemma 4.2.1 ([115]). For any u0 ∈ L1(Rd) and 1 < α ≤ 2, the initial value
problem (4.2.1)–(4.2.2) has a unique solution u ∈ C([0,+∞);L1(Rd)) such that
for every p ∈ [1,+∞],

u ∈ C((0,+∞);W 1,p(Rd)) (4.2.6)

and the following estimate holds true for all t > 0,

‖u(t)‖Lp ≤ Ct−(d/α)(1−1/p)‖u0‖L1 (4.2.7)

with a constant C > 0 independent of t and u0. Moreover, if u0 ∈ Lp(Rd), then
the corresponding solution u satisfies

u ∈ C([0,+∞);Lp(Rd)), ‖u(t)‖Lp ≤ ‖u0‖Lp . (4.2.8)

Proof. We refer to Biler, Karch, and Woyczyński [107], Droniou, Gallouet, and
Vovelle [217] and Droniou and Imbert [218] for the details of the proof. �

In following lemma, we shall give some space-time estimates for the solution
of the linear problem

vt + (−Δ)α/2v = 0 (4.2.9)

with
v(x, 0) = v0 (4.2.10)

where
v(x, t) = Sα(t)v0(x) = pα(·, t) ∗ v0(x). (4.2.11)

This lemma contains a direct generalization to Rd of estimates from Hayashi,
Kaikina, Naumkin, and Shishmarev ([354], Lemma 1.40). Thus, we only sketch its
proof.

Lemma 4.2.2 ([115]). Assume that v0 ∈ L∞
α+d. There exists a constant C > 0,

independent of v0 and t, such that

‖Sα(t)v0‖L∞ ≤ Cmin{t−d/α‖v0‖L1 , ‖v0‖L∞}, (4.2.12)

‖Sα(t)v0‖L∞
α+d

≤ C(1 + t)‖v0‖L∞
α+d

, (4.2.13)

‖∇Sα(t)v0‖L∞
α+d

≤ Ct−1/α‖v0‖L∞
α+d

+ Ct1−1/α‖v0‖L1. (4.2.14)
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Proof. We refer to [115] for details of the proof. �

Recall that the authors in [354] proved that if u0 ∈ L∞
α+d, then the corre-

sponding solution to problem (4.2.1)–(4.2.2) satisfies u ∈ C([0, T ], L∞
α+d) for every

T > 0.

We also note the critical exponent q̃ ≡ 1+α−1
d plays a crucial role for studying

the large-time behavior of solutions to problem (4.2.1)–(4.2.2). Indeed, using the
terminology of Biler, Karch and Woyczyńshi [107], the behavior of solutions as
t → +∞ is genuinely nonlinear when q = q̃, is weakly nonlinear when q > q̃, and
is (expected to be) hyperbolic when 1 < q < q̃.

Brandolese and Karch [115] improved the above-mentioned space-time esti-
mates in [354] by considering the supercritical case q > q̃ and the critical case
q = q̃. Such a result can be stated in the next theorem.

Theorem 4.2.3 ([115]).

(i) Let α ∈ (1, 2). Assume that u = u(x, t) is a solution of the Cauchy problem
(4.2.1)–(4.2.2), where the nonlinearity f satisfies (4.2.3) with q > q̃ = 1 +
(α − 1)/d and u0 ∈ L∞

α+d. There exists a constant C > 0, depending on u0

but independent of x and t, such that for all x ∈ Rd, t > 0,

|u(x, t)| ≤ Cpα(x, 1 + t). (4.2.15)

The same conclusion holds true for q = q̃ provided that ‖u0‖L1 is sufficiently
small.

(ii) Under the more stringent assumption

u0 ∈ Eα+d ≡
{
v ∈ W 1,∞

loc (Rd) : ‖v‖Eα+d
≡ ‖v‖L∞

α+d+1
+‖∇v‖L∞

α+d+1
< +∞

}
,

we also have for all t > 0,

‖∇u(t)‖L∞
α+d+1

≤ C(1 + t). (4.2.16)

Proof. First we recall estimates (4.2.7) and (4.2.8) with p = +∞. The solution
satisfies

‖u(t)‖L∞ ≤ C(1 + t)−d/α. (4.2.17)

Hence, in order to establish (4.2.15), it suffices to show that

‖u(t)‖L∞
α+d

≤ C(1 + t). (4.2.18)

Indeed, using the basic estimate

g(x, t) ≤ (1 + t)−d/α min{1, |x(1 + t)−1/α|−α−d}
and the asymptotic formula (4.2.13) (implying that min{1, |x|−α−d} ≤ CPα(x)
for all x ∈ Rd and a constant C > 0), we easily obtain

g(x, t) ≡ min
{
(1 + t)−d/α, (1 + t)/(1 + |x|)α+d

}
≤ Cpα(x, t+ 1).
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To prove (4.2.16), we only use the following integral equation which follows
from the Duhamel principle

u(t) = Sαu0 −
∫ t

0

∇Sα(t− s) · f(u)(s)ds, (4.2.19)

where Sαu0(x) = pα(x, t) ∗ u0(x) is the solution of the linear equation (4.2.4)
subject to the initial datum u0. Hence it follows from (4.2.19) and (4.2.3) that

‖∇Sα(t− τ)f(u(τ))‖L∞
α+d

≤ C(t− τ)−1/α‖u(τ)‖q−1
L∞ ‖u(τ)‖L∞

α+d
+ C(t− τ)1−1/α‖u(τ)‖qLq .

Moreover, since by (4.2.7) and (4.2.8) with p = q, the solution satisfies

‖u(τ)‖qLq ≤ C(1 + τ)−d(q−1)/α (4.2.20)

where we have used the inequalities∫ t

0

(t− τ)1−1/α‖u(τ)‖qLqdτ ≤ C

∫ t

0

(t− τ)1−1/α(1 + τ)−d(q−1)/αdτ ≤ C(1 + t),

which holds for 1/α + d(q − 1)/α ≥ 1. Thus, by computing the L∞
α+d-norm of

(4.2.19) and using (4.2.13), we arrive at

‖u(t)‖L∞
α+d

≤ C(1 + t) +C

∫ t

0

(t− τ)−1/α(1 + τ)−d(q−1)/α‖u(τ)‖L∞
α+d

dτ. (4.2.21)

Similarly, for the time-critical case 1/α+ d(q − 1)/α = 1 (i.e., for q = q̃), we
can use the following estimate to obtain the desired result:

‖u(τ)‖L∞ ≤ Cτ−d/α‖u0‖L1 (4.2.22)

with a constant C > 0 independent of u0 and t > 0. Hence, we obtain the coun-
terpart of the inequality of (4.2.21):

‖u(t)‖L∞
α+d

≤ C(1+t)+C‖u0‖q−1
L1

∫ t

0

(t−τ)−1/ατ−d(q−1)/α‖u(τ)‖L∞
α+d

dτ. (4.2.23)

Finally, applying the singular Bellman–Gronwall inequality of Theorem 1.4.9
to inequalities (4.2.21) and (4.2.23), we can complete the proof of (4.2.16). �

4.3 Estimates on solutions for semilinear heat equations

In this section, we use Theorem 2.1.19 to investigate the blow-up of solutions of
the semilinear heat equations. We took these results from Giga and Kohn [312].

We shall consider the following semilinear problem of heat equations{
ut −Δu− |u|p−1u = 0 in Ω× [0, T ), (4.3.1)

u = 0 on ∂Ω× [0, T ) (4.3.2)
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where Ω ⊆ Rn is a domain, possibly unbounded, with C2,α boundary, u is a
scalar-valued function and p > 1.

We assume that the function u is a classical solution to problem (4.3.1)–
(4.3.2), with

u,∇u,∇2u, and ut bounded and continuous on Ω× [0, τ) for every τ < T
(4.3.3)

and T is the blow-up time: as t → T−,

sup
x∈Ω

|u(x, t)| → +∞.

If Ω 	= Rn, then (4.3.1) imposes a Dirichlet condition (4.3.2) at ∂Ω, i.e.,
if D is unbounded, then (4.3.3) includes the condition that u stays bounded as
|x| → +∞. For the simplicity, we may assume that the initial data satisfy

u(x, 0) = u0(x) ∈ C2(Ω). (4.3.4)

We shall prove some estimates on solutions to problem (4.3.1)–(4.3.3) in this
section with the help of Theorem 2.1.19.

For any a ∈ Ω, writing the solution in “similarity variables about (a, T )”
means considering the function wa(y, s), defined by

wa(y, s) = (T − t)1/(p−1)u(x, t), y = (x− a)(T − t)−1/2, s = − log(T − t) (4.3.5)

which solves

ws − 1

ρ
∇ · (ρ∇w) +

1

p− 1
w − |w|p−1w = 0 (4.3.6)

with ρ(y) = exp(− 1
4 |y|2), on the space-time domain

Wa =
{
(y, s) : s > s0, e

−s/2y + a ∈ Ω
}
, s0 = − logT. (4.3.7)

The slice of Wa at time s will be denoted by Ωa(s):

Ωa(s) = es/2(Ω− a). (4.3.8)

We define the energy E(wa) by

E(wa) =

∫
Wa

ρ(y)

[
1

2
|∇wa|2 + 1

2(p− 1)
|wa|2 − 1

p+ 1
|wa|p+1

]
dy (4.3.9)

and shall often suppress the subscript a, writing w for wa, Ω(s) for Ωa(s), etc.

Theorem 4.3.1 ([310]). Let a ∈ Ω, and suppose that Ω is star-shaped with respect to
a. Let E0 = E(wa)(s0) denote the initial energy for wa, and assume that E0 ≤ 1.
Then w = wa satisfies ∫ ∫

Wa

|ws|2ρdyds ≤ E0, (4.3.10)



4.3. Estimates on solutions for semilinear heat equations 239

and for every s ≥ s0, we have ∫
Ω(s)

|w|2ρdy ≤ C(n, p)E
1/p
0 , (4.3.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ s+1

s

(∫
Ω(τ)

|w|p+1ρdy

)2

dτ ≤ C(n, p)E
(p+1)/p
0 , (4.3.12)

∫ s+1

s

(∫
Ω(τ)

(|∇w|2 + |w|2)ρdy
)2

dτ ≤ C(n, p)E
(p+1)/p
0 . (4.3.13)

Proof. The a priori estimates for w in (4.3.10)–(4.3.13) are more or less the same
as those in Propositions 2.2 of [310], except that their dependence on initial energy
is more explicit.

The first assertion (4.3.10) is identical to (2.20) of [310]. For (4.3.11), we

recall (2.24) of [310]: if g(s) =
( ∫

Ω(s) |w|2ρdy
)1/2

, then

gg′ + 2E[w](s) ≥ Cgp+1 (4.3.14)

with a constant C = C(n, p) > 0. Since E(w) is decreasing (this is (2.23) of [310]),
it follows from (4.3.14) that

Cgp+1 ≤ gg′ + 2E0. (4.3.15)

Applying Theorem 2.1.19 to (4.3.15) shows that (4.3.10) and (4.3.15) imply
(4.3.12). To prove (4.3.12), we recall (2.28) of [310]:(∫

Ω(s)

|w|p+1ρdy

)2

≤ C(p)
{
g2(s)

∫
Ω(s)

|ws|2ρdy + E2
0

}
. (4.3.16)

Integrating with respect to s, making use of (4.3.10) and (4.3.11), and noting

that E2
0 ≤ E

(p+1)/p
0 since p > 1 and E0 ≤ 1, we get (4.3.12). To get the last result

(4.3.13), we derive from the definition of E[w] in (4.3.9)

1

2

∫
Ω(s)

(
|∇w|2 + 1

p− 1
|w|2

)
ρdy = E[w](s) +

1

p+ 1

∫
Ω(s)

|w|p+1ρdy. (4.3.17)

Since E[w](s) ≤ E0, it follows from (4.3.17) that∫
Ω(s)

(
|∇w|2 + |w|2

)
ρdy ≤ C(p)

[
E0 +

∫
Ω(s)

|w|p+1ρdy
]
. (4.3.18)

Squaring both sides of (4.3.18), integrating with respect to s, and making
use of (4.3.12), we easily obtain (4.3.13).

The proof is thus complete. �
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4.4 Global existence decay estimates
for a quasilinear parabolic system

In this section, we shall exploit Theorem 2.1.18 to establish L∞ decay estimates
on solutions for a quasilinear parabolic system. We choose these results from
Chen [140].

We shall consider the quasilinear parabolic system⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut = div(|∇u|m∇u) + f(u, v), x ∈ Ω, t > 0,

vt = div(|∇v|m∇v) + g(u, v), x ∈ Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

(4.4.1)

where Ω is a bounded domain in RN (N > 1) with smooth boundary ∂Ω and
m > 0.

For m = 0, f(u, v) = uαvp, g(u, v) = uqvβ and u0(x), v0(x) ≥ 0, the existence
and non-existence of solutions (see, e.g., [238, 209, 947, 144] and the references
therein) for problem (4.4.1) were studied.

We now recall some known results in the literature.

Assume that the initial data u0(x), v0(x) ≥ 0 and u0, v0 ∈ L∞(Ω). Then we
have

(A1): if α > 1 or β > 1 or s0 = (1 − α)(1 − β) − pq < 0, then problem (4.4.1)
admits a global solution for small initial data and this solution necessarily
blows up in a finite time for large initial data;

(A2): all solutions of problem (4.4.1) exist globally if α, β ≤ 1 and s0 ≥ 0.

Next, we study problem (4.4.1) for general initial data and give the L∞

decay estimates for solutions of problem (4.4.1), that is, the behavior of solutions
as t → 0+ and t → +∞. To deal with such a problem, one usually bases on the
comparison principle (see, e.g., [238, 209, 947, 144]), while the method used here
is very different by using an improved Moser’s technique as in [683, 141]. Indeed,
we have neither the restriction of the non-negativity nor the bounded on u0(x)
and v0(x).

Definition 4.4.1. A pair of measurable functions (u(x, t), v(x, t)) on Ω×R+ is said
to be a global weak solution of problem (4.4.1) if

u(x, t), v(x, t) ∈ L∞
loc(R

+,W 1,m+1
0 ) ∩ Lm+1

loc (R+,Wm+1
0 )

and the equalities∫ t

0

∫
Ω

{− uφt + |∇u|m∇u∇φ− f(u, v)φ
}
dxdt

=

∫
Ω

{
u0(x)φ(x, 0) − u(x, t)φ(x, t)

}
dx,
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∫ t

0

∫
Ω

{− vφt + |∇v|m∇u∇φ− g(u, v)φ
}
dxdt

=

∫
Ω

{v0(x)φ(x, 0) − v(x, t)φ(x, t)}dx

are valid for any t > 0 and any φ ∈ C1(R+, C1
0 (Ω)), where R+ = (0,+∞),R+ =

[0,+∞).

Lemma 4.4.1 ([140]). Assume that

(H1) The functions f(u, v), g(u, v) ∈ C(R2) ∩ C1(R2 \ {(0, 0)}) and for all
(u, v) ∈ R2,

|f(u, v)| ≤ k1|u|α|v|p, |g(u, v)| ≤ k2|u|q|v|β , (4.4.2)

where the parameters α, β, p, q satisfy

0 ≤ α, β < 1+m; m, p, q > 0; sm = (m+1−α)(m+1−β)−pq > 0. (4.4.3)

(H2) u0(x) ∈ Lp0(Ω), v0(x) ∈ Lq0(Ω) with

p0 > max{1, q + 1− α}, q0 > max{1, p+ 1− β}.

Then problem (4.4.1) admits a global weak solution (u(x, t), v(x, t)) satisfying

u(x, t) ≡ u(t) ∈ L∞(R+, Lp0), v(x, t) ≡ v(t) ∈ L∞(R+, Lq0)

and for any T > 0 and for all t ∈ (0, T ],

||u(t)||L∞ ≤ Ct−σ, ||v(t)||L∞ ≤ Ct−σ, (4.4.4)

||u(t)||m+2
Lm+2 + ||v(t)||m+2

Lm+2 ≤ C
(
t−1−σ + t1−2(p+α)σ + t1−2(q+β)σ

)
, (4.4.5)

where the constants

C = C(T, ||u0||Lp0 , ||v0||Lq0 ) > 0,

σ = min

{
N

p0(m+ 2) +mN
,

N

q0(m+ 2) +mN

}
> 0.

In order to show Theorem 4.4.1, we also need the following lemmas.

Lemma 4.4.2 ([672]). Let β ≥ 0, N > p ≥ 1, β + 1 ≥ q, and 1 ≤ r ≤ q ≤
(β + 1)Np/(N − p). Then for |u|βu ∈ W 1,p(Ω), we have

||u||Lq ≤ C1/(β+1)||u||1−θ
Lr |||u|βu||θ/(β+1)

W 1,p , (4.4.6)

with θ = (β+1)(r−1−q−1)/(N−1−p−1+(β+1)r−1)−1, where C > 0 is a constant
depending only on N, p and r.
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For j = 1, 2, . . . , we choose fj(u, v), gj(u, v) ∈ C1 as follows: fj(u, v) =
f(u, v), gj(u, v) = g(u, v) when u2 + v2 ≥ j−2, |fj(u, v)| ≤ η, |gj(u, v)| ≤ η when
u2+v2 ≤ j−2 with some η > 0 and (fj(u, v), gj(u, v)) → (f(u, v), g(u, v)) uniformly
in R2 as j → +∞.

Let (u0,j, v0,j) ∈ C2
0 (Ω) and u0,j → u0 in Lp0(Ω), v0,j → v0 in Lq0(Ω) as

j → +∞. We consider the following approximation of problem (4.4.1):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut = div((|∇u|2 + j−1)m/2∇u) + fj(u, v), x ∈ Ω, t > 0,

vt = div((|∇v|2 + j−1)m/2∇v) + gj(u, v), x ∈ Ω, t > 0,

u(x, 0) = u0,j(x), v(x, 0) = v0,j(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

(4.4.7)

The approximate problem (4.4.8) is a standard quasilinear parabolic system
and admits a unique smooth solution (uj(x, t), vj(x, t)) on [0, T ) for each j =
1, 2, . . . , (see, e.g., [546, 471]). Furthermore, if T < +∞, then

lim supt→T−(||u(t)||L∞ + ||v(t)||L∞) = +∞.

In what follows, we always write u (v) instead of uj (vj) and up (vp) for
|u|p−1u (|v|p−1v) where p > 0. Also, let C and Ci be the generic constants inde-
pendent of j and p changeable from line to line.

Lemma 4.4.3 ([140]). Let (H1) and (H2) hold. If (u(x, t), v(x, t)) is the solution of
problem (4.4.7), then

u(t) ∈ L∞(R+, Lp0(Ω)), v(t) ∈ L∞(R+, Lq0(Ω)). (4.4.8)

We now derive the L∞ decay estimates for u(t) and v(t) based on the above
Lemmas 4.4.1–4.4.3.

Theorem 4.4.4 ([140]). Under the assumption of Lemma 4.4.2 and for any T > 0,
the solution (u(t), v(t)) also satisfies for all 0 < t ≤ T ,

||u(t)||L∞ ≤ Ct−a, ||v(t)||L∞ ≤ Ct−b, (4.4.9)

where the constant C depends on T , ||u0||Lp0 , ||v0||Lq0 , and a = N/(p0(m+ 2) +
mN), b = N/(q0(m+ 2) +mN).

Proof. For the details of the following arguments, see [140]. Following [140], we
have

y′n(t) + C3||u||λn+tn
Lλn

(
ξn−1t

−mn−1
)m−tn

+ C3||v||μn+sn
Lμn

(
ηn−1t

−rn−1
)m−sn

≤ C(λn + μn)
(
λσ1
n ||u(t)||λn

Lλn
+ μσ2

n ||v(t)||μn

Lμn

)
(4.4.10)

where for all t ≥ 0,
yn(t) = ||u(t)||λn

Lλn
+ ||v(t)||μn

Lμn
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and for An−1, αn, βn, τn and σ0, see [140]. This gives us that for all 0 < t ≤ T ,

y′n(t) + C3A
αn
n−1t

βny1+τn
n (t) ≤ Cλn + Cλσ0+1

n yn(t) + CAαn
n−1T

βn . (4.4.11)

Applying Theorem 2.1.18 to (4.4.11), we have for all 0 < t ≤ T ,

yn(t) ≤ Bnt
−(1+βn)/τn , (4.4.12)

where

Bn = 2(C3A
αn
n−1)

−1/τn

(
C3λ

σ0+1
n +

1 + βn

τn

)1/τn

+ 2Cλn

(
Cλσ0+1

n +
1 + βn

τn

)−1

.

For the rest of the proof of (4.4.9), see [140]. �



Chapter 5

Global Existence and Uniqueness
for Abstract Evolutionary
Differential Equations

In this chapter, we discuss the global existence and uniqueness for some abstract
models and ODEs. The chapter consists of three sections. In Section 5.1, we apply
Corollary 1.4.4 to prove the global-in-time existence of solutions to an abstract
evolutionary equation written below. In Section 5.2, we employ Theorem 2.1.23
and Theorem 2.4.16 to show the uniqueness of the solution to the Cauchy problem
for vector-valued functions satisfying a differential inequality. In Section 5.3, we
apply a new Gronwall-type inequality in Theorem 2.1.21 to a viscoelastic system
with small dissipation. The inequalities applied here are specially selected so that
they play a very important role in deriving the global existence and uniqueness of
solutions.

5.1 Global existence of solutions to abstract
evolutionary equations

In this section, we shall apply Corollary 1.4.4 to prove the global-in-time existence
of solutions to an abstract evolutionary equation. These results are taken from Ye
and Li [980].

We shall consider the abstract evolutionary equation⎧⎨⎩
du

dt
+Au = f(t, u), t > t0, (5.1.1)

u(t0) = x. (5.1.2)

We assume that

(H1) X is a Banach space with the norm ‖ · ‖. X is a sectorial operator on X
such that the fractal power of A1 = A + αI is well defined, and for any
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α ≥ 0, the graph space Xα = D(Aα
1 ) with graph norm ‖x‖α = ‖Aα

1x‖ is
also well defined. Xs equipped with the norm ‖ · ‖s is a linear subspace of
X and constitutes a Banach space, Us is an open set in R×Xs, f : Us → X
is well defined. We only discuss the case Xs = X .

(H2) There exists α ∈ [0, 1) such that f maps some open set U in R×Xα into
X , and f is locally continuous with respect to t in U , and locally Lipschitz
continuous with respect to u, i.e., if for all (t∗, u∗) ∈ U , there exists a
neighborhood V ⊆ U of (t∗, u∗) such that for any (t, u) ∈ V, (s, v) ∈ V ,

‖f(t, u)− f(s, v)‖ ≤ L (|t− s|μ + ‖u− v‖α) , (5.1.3)

where L and μ ∈ (0, 1) are positive constants.

Definition 5.1.1. A function u(t) is said to be a solution on [t0, t1) to problem
(5.1.1)–(5.1.2) if u(t) is a continuous function from [t0, t1) → Xs satisfying

(1) u(t0) = x,

(2) for all t ∈ (t0, t1), (t, u(t)) ∈ Xs, u(t) ∈ D(A),
du

dt
exists and satisfies (5.1.1),

(3) for all t ∈ (t0, t1), t �→ f(t, u(t)) is locally Hölder continuous and there exists

some constant ρ > 0 such that
∫ t0+ρ

t0
‖f(t, u(t))‖dt < +∞.

Here Xs equipped with the norm ‖ · ‖s is a linear subspace of X and a Banach
space, Us is an open set in R×X , and f : Us → X is well defined.

5.1.1 Equivalent solutions

In this subsection, we prove the equivalence of solutions to problem (5.1.1)–(5.1.2)
to the integral equation

u(t) = e−(t−t0)Ax+

∫ t

t0

e−(t−s)Af(s, u(s))ds. (5.1.4)

The following Lemmas are due to Ye and Li [980].

Lemma 5.1.1 ([980]). Under the above assumptions (H1) and (H2), the following
assertions hold true:

(1) If u solves problem (5.1.1)–(5.1.2) on [t0, t1), then u also solves (5.1.4).

(2) If u(t) : [t0, t1) → Xα is a continuous function, and for some ρ > 0,∫ t0+ρ

t0
‖f(s, u(s))‖ds < +∞, and for all t ∈ [t0, t1), u solves (5.1.4), then

u(t) solves problem (5.1.1)–(5.1.2) on [t0, t1).

Applying the contraction mapping principle to the integral equation (5.1.4),
we can show the following local existence theorem.

Lemma 5.1.2 ([980]). Assume that above assumptions (H1) and (H2) hold. Then
for any (t0, x) ∈ U , there exists some time T = T (t0, x) > 0 such that problem
(5.1.1)–(5.1.2) admits a unique solution on [t0, t0 + T ).
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We shall use the continuation method to show the global existence of solutions
based on a local solution established in Lemma 5.1.2. We also need the following
lemma.

Lemma 5.1.3 ([980]). Assume that the above assumptions (H1) and (H2) hold, and
for any bounded closed set B ⊂ U , f(B) is bounded in X. If u is a solution to
problem (5.1.1)–(5.1.2) on [t0, t1) with the maximal time t1, then either t1 = +∞,
or there exists a sequence tn → t−1 (as n → +∞) such that (tn, u(tn)) → ∂U (if U
is unbound, then +∞ ∈ ∂U).

Theorem 5.1.4. ([980]) Assume that (H1) and (H2) hold, with U = (τ,+∞)×Xα,
and for any (t, u) ∈ U , f satisfies

‖f(t, u)‖ ≤ K(t)(1 + ‖u‖α) (5.1.5)

where K(·) is continuous on (τ,+∞). If t0 > τ, x ∈ Xα, then for any t ≥ t0,
problem (5.1.1)–(5.1.2) admits a unique global solution u(t).

Proof. If the assertion does not hold, then by Lemma 5.1.3, there exist some time
t1 < +∞ and a sequence tn → t1− such that

‖u(tn)‖α → +∞. (5.1.6)

However, from (5.1.4)–(5.1.5) it follows that

‖u(t)‖α ≤ ‖e−(t−t0)Ax‖α +

∫ t

t0

‖Aα
1 e

−(t−s)A‖K(s)(1 + ‖u(s)‖α)ds

≤ C1‖x‖α +

∫ t

t0

C2(t− s)−α(1 + ‖u(s)‖α)ds

≤ a+ b

∫ t

t0

(t− s)−α‖u(s)‖αds.

(5.1.7)

Now applying Corollary 1.4.4 to (5.1.7), we can conclude that ‖u(t)‖α ≤ M , which
contradicts (5.1.6). The proof is now complete. �

5.2 Uniqueness of solutions for differential equations

in a Hilbert space

In this section, we shall employ Theorem 2.1.23 and Theorem 2.4.16 to show
the uniqueness of the solution to the Cauchy problem for vector-valued functions
satisfying a differential inequality. These results are taken from Agmon and Niren-
berg [14].
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We shall consider the Cauchy problem for vector-valued functions u(t) satis-
fying the differential inequality

∥∥∥∥dudt −B(t)u(t)

∥∥∥∥ ≤ Φ(t)

{
‖u(t)‖2 +

∫ T

t

ω(τ)‖u(τ)‖2dτ
}1/2

(5.2.1)

where B(t) (for each t) is a linear operator in H with domain DB(t). We assume
here that u(t) ∈ DB(t), that u ∈ C1([0, T );H), and that B(t)u(t) ∈ C([0, T );H).
Φ(t) denotes a non-negative measurable function which is bounded in every finite
interval [0, T ′] with T ′ < T , ω(t) is a non-negative continuous function on [0, T )
satisfying ∫ T

0

ω(τ)‖u(τ)‖2dτ < +∞. (5.2.2)

Moreover, we shall derive lower bounds for such functions which show that
if u(t) satisfies (5.2.1) in an infinite interval [0,+∞), then ‖u(t)‖ cannot tend too
rapidly to zero when t → +∞, unless u is identically zero.

Consider u(t) satisfying the differential inequality (5.2.1) in an interval [0, T )
(assuming, as before, that u∈C1([0,T );H),u(t)∈DB(t), B(t)u(t)∈C([0,T );H)).
Assume that hypotheses (1)–(3) (see (2.1.127)–(2.1.129)) in Section 2.1 hold,
and set

γ(t) = max
i=1,2,3

γi(t), β(t) = max
i=1,2,3

βi(t).

We have the following uniqueness result for problem (5.2.1).

Theorem 5.2.1 ([14]).

(i) If u(t) = 0 on some interval (t0, T ), 0 < t0 < T , then for all t ∈ [0, T ),

u(t) ≡ 0. (5.2.3)

(ii) In the special case when ω(t) ≡ 0, if u(t0) = 0 for some t0, then for all
t ∈ [0, T ),

u(t) ≡ 0. (5.2.4)

Proof. Assume that the vector-valued function u(t) satisfying (5.2.1) is not iden-
tically zero. As in (2.1.132), let

q(t) = ‖u(t)‖2 +
∫ T

t

ω(τ)‖u(τ)‖2dτ. (5.2.5)

Consider some subinterval [t0, t1), 0 ≤ t0 < t1 ≤ T , where q(t) > 0.
Following Theorem 2.1.22, we define on this subinterval a function l(t) by

l(t) = log q(t)−
∫ t

t0

ψ(τ)dτ (5.2.6)
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where

ψ(t) =
2Re(u′ −Bu, u)

q(t)
− ω(t)

‖u(t)‖2
q(t)

.

Noting that ψ(t) is continuous in [t0, t1) and using (5.2.1), we conclude

|ψ(t)| ≤ 2‖u′ −Bu‖‖u‖
q(t)

+ ω(t)
‖u(t)‖2
q(t)

≤ 2Φ(t) + ω(t). (5.2.7)

Now, by Theorem 2.1.23, l(t) is twice differentiable and satisfies in [t0, t1)
the differential inequality

l′′(t) + a(t)|l′(t)|+ b(t) ≥ 0, (5.2.8)

where a(t) and b(t) are non-negative locally bounded measurable functions given
by (2.1.137). Also, we note that

l(t0) = log q(t0), l
′(t0) = q′(t0)/q(t0)− ψ(t0) ≥ q′(t0)/q(t0)− 2Φ(t0)− ω(t0).

(5.2.9)

Applying Theorem 2.4.16 to the function l(t), it follows from (2.4.116),
(5.2.9), (5.2.6) and (5.2.7) that

log q(t) ≥ l(t)−
∫ t

t0

|ψ(τ)|dτ ≥ l(t)− 2

∫ t

t0

Φ(τ)dτ −
∫ t

t0

ω(τ)dτ

≥ log q(t0) + min {0, q′(t0)/q(t0)− 2Φ(t0)− ω(t0)}
∫ t

t0

exp

(∫ s

t0

a(r)dr

)
ds

−
∫ t

t0

exp

(∫ s

t0

a(r)dr

) [∫ s

t0

b(σ) exp

(
−

∫ σ

t0

a(ρ)dρ

)
dσ

]
ds

− 2

∫ t

t0

Φ(τ)dτ −
∫ t

t0

ω(τ)dτ. (5.2.10)

We also note the following lower bound for log q(t), which holds for all t0 ≤
t ≤ t′ < t1,

log q(t) ≥ log q(t′) + min
(
0, q′(t′)/q(t′)− 2Φ(t′)− ω(t′)

)∫ t′

t

exp

(∫ t′

s

a(r)dr

)
ds

−
∫ t′

t

exp

(∫ t′

s

a(r)dr

)[∫ t′

s

b(σ) exp

(
−

∫ t′

σ

a(ρ)dρ

)
dσ

]
ds

− 2

∫ t′

t

Φ(τ)dτ −
∫ t′

t

ω(τ)dτ (5.2.11)

which can be obtained in a straightforward way from the preceding considerations
by replacing t by −t. Following [14], we can show that (5.2.10) and (5.2.11) imply
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that if u is not identically zero (which we have assumed), then q(t) > 0 for all t ∈
[0, T ). To this end, we show that if q(t̄) = 0 for some t̄, then we get a contradiction.
Indeed, in this case q is not identically zero in at least one of the two intervals [0, t̄)
and [t̄, T ). Assume, for instance, that q is not identically zero in the first interval.
Clearly, in this case there exists a subinterval [t0, t1) with 0 ≤ t0 < t1 ≤ t̄ such
that q(t) > 0 for all t0 ≤ t < t1 while q(t1) = 0. We apply estimate (5.2.20) to
log q(t) on this subinterval. Since [t0, t1] is a bounded interval contained in [0, T ),
the functions a, b,Φ, ω are all bounded by some constant M in [t0, t1). Thus it
follows from (5.2.20) that for all t0 ≤ t < t1,

log q(t) ≥ log q(t0)− C,

for some constant C > 0. Hence, q(t) ≥ q(t0)e
−C for all t0 ≤ t < t1, so that by

continuity we also have q(t1) ≥ q(t0)e
−C > 0, a contradiction. Similarly, using

(5.2.21) we may derive a contradiction when q is not identically zero in [t̄, T ).
Thus, we have proved that q > 0 for all t if u 	≡ 0. This implies, in particular, the
assertions (i) and (ii) of the theorem, since in the case of (i), we have q(t) = 0 for
all t ≥ t0, while in the case of (ii), we have q(t0) = ‖u(t0)‖2 = 0, so that in both
cases we must have u ≡ 0. �

5.3 Dissipative estimates for PDEs

In this section, we shall apply Theorem 2.1.21 to a viscoelastic system with small
dissipation. These results are due to Gatti, Pata, and Zelik [297].

It is well known that dissipative partial differential equations play a crucial
role in modern mathematical physics which can be usually reformulated as the
Cauchy problem in a suitable Banach space (X, ‖·‖) (the phase space) of the form⎧⎨⎩

d

dt
ξ(t) = A(ξ(t), t), t > 0,

ξ(0) = x ∈ X,

where, for every t ≥ 0, A(·, t) is some operator densely defined on X . The global
well-posedness for all initial data x ∈ X defines the solution operator S(t), namely,
a one-parameter family of operators S(t) : X → X such that S(t)x = ξ(t) is
the unique solution at time t ≥ 0 to the Cauchy problem with initial datum x.
Moreover, further continuity properties of the solutions will reflect in the analogous
continuity properties of S(t). In the autonomous case (i.e., when A does not depend
explicitly on t), the maps S(t) form a semigroup of operators.

We shall consider the following evolution system arising in the theory of
isothermal viscoelasticity (see, e.g., [174, 298]){

utt −Δu− ∫ +∞
0 μ(s)Δη(s)ds + g(u) = f,

∂tη = −∂sη + ∂tu,
(5.3.1)
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where Ω ⊆ R3 is a bounded domain with smooth boundary ∂Ω, and u = u(x, t) :
Ω× [0,+∞) → R, η = ηt(x, s) : Ω×R+ × [0,+∞) → R, subject to the boundary
and initial conditions{

u(t)|∂Ω = ηt|∂Ω = ηt(0) = 0,
u(0) = u0, ∂tu(0) = ν0, η0(s) = η0(s),

(5.3.2)

with u0, ν0, η0(s) being the given data. Here, μ : R
+ → [0,+∞) is a summable

absolutely continuous function, with μ′(s) < 0 almost everywhere. Moreover, the
inequality

μ(s+ σ) ≤ Θe−δσμ(s) (5.3.3)

holds for some constants Θ ≥ 1 and δ > 0, every σ ≥ 0, and almost every s ∈ R+.
Without loss of generality, we also assume that∫ +∞

0

μ(s)ds = 1.

In fact, the Cauchy problem (5.3.1)–(5.3.2) is called in the so-called memory
setting (see, e.g., [180, 182]), and is equivalent to (see, e.g., [326]) the following
example of an integro-differential equation arising in the theory of isothermal
viscoelasticity

utt − 2Δu+

∫ +∞

0

μ(s)Δu(t− s)ds+ g(u) = f, (5.3.4)

subject to boundary and initial conditions

u(t)|∂Ω = 0, (5.3.5)

u(0) = u0, u(t)|t<0 = u0 − η0(−t), ∂tu(0) = ν0. (5.3.6)

We set H = L2(Ω) and V = H1
0 (Ω) with the usual inner products, and

interpret −Δ as a positive self-adjoint operator on H with domain H2(Ω)∩H1
0 (Ω).

We also consider the Hilbert space M = L2
μ(R

+;V ) of square-summable functions
on R+ with values in V , with respect to the measure μ(s)ds. To explain the
boundary conditions on η, we may view −∂s as the linear operator on M with
domain

Dom(T ) = {η = η(s) ∈ M : ∂sη ∈ M, η(0) = 0}.
Then, −∂s is the infinitesimal generator of the right-translation semigroup on M .
Now, we introduce the product Hilbert space X = V ×H ×M .

Choosing f ∈ H independent of time and g ∈ C2(R), with g(0) = 0, such
that the growth condition

|g′′(u)| ≤ C(1 + |u|) (5.3.7)

and the dissipation condition

lim
|u|→+∞

inf
g(u)

u
> −λ (5.3.8)
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are satisfied, here λ > 0 is the first eigenvalue of −Δ, problem (5.3.1)–(5.3.2) gen-
erates a strongly continuous semigroup S(t) on X which yields the global attractor
A (see [298]). As a byproduct, this establishes the existence of an absorbing set
B, but no information is available about the actual entrance time in B, starting
from a bounded subset of X . On the other hand, due to the very low dissipation,
it seems out of reach to prove the existence of B by means of standard estimates,
without using the gradient-system structure (except in the simpler case when g is
sub-linear).

However, if we give a further assumption on the nonlinearity, then applying
Theorem 2.1.21, we may find an absorbing set in a direct way.

We take g ∈ C1(R), with g(0) = 0. Instead of (5.3.8), we assume the slightly
less general condition

lim inf
|u|→+∞

g′(u) > −λ. (5.3.9)

Moreover, we replace (5.3.7) by

|g(u)|6/5 ≤ CG(u) + C, (5.3.10)

where

G =

∫ u

0

g(y)dy.

Remark 5.3.1 ([297]). In fact, for instance, any function of the form g(u) = u|u|p+
g0(u), p ∈ (0, 4], with g0(0) = 0 and for all q < p, |g′0(u)| ≤ C(1 + |u|q). This
includes the physically significant case of the derivative of the double-well potential
g(u) = u3 − u can satisfy conditions (5.3.9)–(5.3.10).

Remark 5.3.2 ([297]). Obviously, it is easy to check that (5.3.10) yields the bound

|g(u)| ≤ C(1 + |u|5). (5.3.11)

In fact, (5.3.9) and (5.3.11) suffice to ensure the existence of (possibly non-
unique) solutions for all initial data x ∈ X , using a standard Galerkin approxima-
tion scheme. We agree to call Galerkin solutions those solutions obtained as limits
in the approximation scheme, for which formal estimates apply. We also note that
it seems impossible to obtain dissipative estimates for Galerkin solutions in the
presence of a nonlinearity of supercritical growth rate (that is, with reference to
the remark above, when p > 2) using the Lyapunov function approach, since the
asymptotic compactness of such solutions is not known.

For any u = u(x) ∈ V , we may define

G(u) =

∫
Ω

G(u(x))dx.

Then following lemma is a straightforward consequence of (5.3.9) (see [297]).
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Lemma 5.3.1 ([297]). There exist constants κ ∈ (0, 1) and C ≥ 0 such that for
every u ∈ V ,

〈g(u), u〉H ≥ G(u)− κ

2
‖u‖2V − C, G(u) ≥ −κ

2
‖u‖2V − C. (5.3.12)

Give a Galerkin solution ξ(t) = (u(t), ∂tu(t), η
t), with ξ(0) = (u0, ν0, η0), we

may also define the corresponding energy by

E(t) =
1

2
‖ξ(t)‖2.

Then we have the following main result due to Gatti, Pata and Zelik [297].

Theorem 5.3.2 ([297]). Assume that (5.3.9) and (5.3.10) hold, then there exists a
constant R0 > 0 such that, for every R > 0 and every x = (u0, ν0, η0) ∈ X with
‖x‖ ≤ R, the energy E(t) of a corresponding Galerkin solution fulfills the relation,
for all t ≥ tR,

E(t) ≤ R0 (5.3.13)

with some time tR ≥ 0 depending only on R. Both R0 and tR can be explicitly
computed.

Proof. To simplify the calculations, we may assume that (5.3.3) holds with Θ = 1.
In this case, (5.3.3) is equivalent to the following inequality

μ′(s) + δμ(s) ≤ 0. (5.3.14)

Obviously, the (Lyapunov) functional

L(t) = E(t) +G(u(t)) − 〈f, u(t)〉H
satisfies the equality

dL(t)

dt
= −2I(t), (5.3.15)

with

I(t) = −
∫ +∞

0

μ′(s)‖ηt(s)‖2V ds ≥ δ‖ηt‖2M ,

where the latter inequality follows from (5.3.14). Following [731], choosing now
ν > 0 small and sν > 0 such that

∫ sν
0 μ(s)ds ≤ ν/2, and putting

μν(s) = μ(sν)χ(0,sν ](s) + μ(s)χ(sν ,+∞)(s),

and introducing the further functionals{
Φ1(t) = − ∫+∞

0 μν(s)〈∂tu(t), ηt(s)〉Hds,
Φ2(t) = 〈∂tu(t), u(t)〉H ,
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we can conclude, by exploiting (5.3.11) and (5.3.14), the inequalities (cf., [298],
[731])⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d

dt
Φ1(t) ≤ εν‖u‖2V − (1− εν)‖∂tu‖2H + cνI + cν

+

∫ +∞

0

μ(s) | 〈g(u), η(s)〉H | ds,
d

dt
Φ2(t) ≤ − (1− κ− εν)‖u‖2V + ‖∂tu‖2H − κ

2
‖u‖2V −G(u) + cνI + cν ,

for some constants cν ≥ 0 and εν > 0 such that εν → 0 as ν → 0 (both cν and εν
can be explicitly computed). Therefore, it follows that by fixing ν small enough,
the functional Φ(t) = 2Φ1(t) + Φ2(t) satisfies

d

dt
Φ(t) + 2ωE(t) +

κ

2
‖u‖2V +G(u)

≤ cI + 2

∫ +∞

0

μ(s)|〈g(u), η(s)〉H |ds+ c,

(5.3.16)

with some constant ω > 0. Hereinafter in this section, c ≥ 0 stands for a generic
constant, independent of the initial data. Hence, for any ε ∈ (0, ε0] and κ ≥ 0, we
may set

Λ(t) = L(t) + εΦ(t) + κ.

On the other hand, it follows from (5.3.12) that, if ε0 > 0 is small enough
and κ is large enough, then we have

1− κ

2
E ≤ Λ ≤ 2E +G(u) + c. (5.3.17)

In particular, using again (5.3.12), we may arrive at

2ωE +
κ

2
‖u‖2V +G(u) ≥ ωΛ− c.

Thus combining (5.3.15) and (5.3.16) and using (5.3.14), up to further re-
ducing ε0 is needed, we can obtain

d

dt
Λ(t) + ωεΛ(t) ≤ −δ‖η‖2M + 2ε

∫ +∞

0

μ(s) | 〈g(u), η(s)〉H | ds+ c.

Moreover, it follows from (5.3.12) and (5.3.17) that

|G(u)| ≤ G(u) + κE + c ≤ Λ + c.
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Therefore, using (5.3.10), we obtain

2ε

∫ +∞

0

μ(s)|〈g(u), η(s)〉H |ds ≤ cε

∫ +∞

0

μ(s)‖g(u)‖L6/5‖η(s)‖V ds
≤ cε‖η‖M‖g(u)‖L6/5

≤ cε‖η‖M + cε‖η‖M |G(u)|5/6
≤ δ‖η‖2M + cε2Λ5/3 + c,

which implies that for every ε ∈ (0, ωε0],

d

dt
Λ(t) + εΛ(t) ≤ cε2Λ5/3 + c.

By (5.3.11) and (5.3.17),

E(t) ≤ 2

1− κ
Λ(t), Λ(0) ≤ c(1 +R6). (5.3.18)

Therefore, applying Theorem 2.1.21 to (5.3.18), we can obtain the desired result.
�
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Chapter 6

Global Existence and
Asymptotic Behavior for
Equations of Fluid Dynamics

In this chapter, we prove the global existence and asymptotic behavior of solutions
to fluid models. The chapter includes five sections. In Section 6.1, we exploit
Theorems 1.4.11 and 1.5.1 to show the asymptotic behavior of the solutions to the
Navier–Stokes equations in 2D exterior domains. In Section 6.2, we use Theorems
2.2.1 and Theorem 2.2.9 to investigate the asymptotic behavior of the Lα norm
(α > 2) of strong solutions to the initial value problem for the nonstationary
Navier–Stokes equations in the whole space. In Section 6.3, we use Theorem 2.2.3
to study an equation for a 1D viscous compressible barotropic fluid. In Section
6.4, we exploit Theorems 1.1.2, 2.1.13 and 2.2.4 to establish uniform estimates for
symmetric solutions to s system of quasilinear equations. In Section 6.5, we use
Theorems 1.2.1, 2.1.13, and 2.2.2 to establish the pointwise and the stabilization for
1D compressible Navier–Stokes equations. In the nuclear fluid case, we also justify
the sharpness of the main condition on the “self-gravitation” force. Inequalities
used in this chapter are crucial and typical in establishing the global existence and
large-time behavior of global solutions to fluid models.

6.1 Asymptotic behavior for the 2D homogeneous

incompressible Navier–Stokes equations

In this section, we shall exploit Theorems 1.4.11 and 1.5.1 to show the asymptotic
behavior of the incompressible Navier–Stokes equations in 2D exterior domains.
These results are chosen from Bae and Jin [57] as applications of Theorems 1.4.11
and 1.5.1.

© Springer International Publishing Switzerland 2017
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6.1.1 Introduction

We shall consider the following incompressible Navier–Stokes equations⎧⎨⎩
∂u

∂t
+ (u · ∇)u −Δu+∇p = 0, in (x, t) ∈ Ω× (0,+∞), (6.1.1)

∇ · u = 0, in (x, t) ∈ Ω× (0,+∞), (6.1.2)

subject to no slip boundary and initial conditions

u(x, t) = 0, on ∂Ω, (6.1.3)
{
u(x, 0) = u0(x), (6.1.4)

where u and p are the velocity and pressure, respectively, of the incompressible
fluid in an exterior domain Ω of a simply connected set B in R2 which contains the
origin and is contained in a bounded ball, for example, the unit ball. Furthermore,
we assume that the boundary ∂B is smooth enough to get the unique existence of
the solution.

We now introduce the following definition.

Definition 6.1.1. Let C∞
0, σ(Ω) denote the set of all C∞-real vector functions φ =

(φ1, φ2) with compact support in Ω, such that div φ = 0. L2
σ(Ω) is the closure of

C∞
0, σ, with respect to the L2-norm || · ||L2 . We use the usual notation that Lp

σ(Ω)
means the set of measurable functions in Lp(Ω) with divergence free.

Let PΩ be the Leray projection from L2(Ω) → L2
σ(Ω), and let −AΩ = PΩΔ

be the infinitesimal generator of semigroup e−AΩt. Let us recall the following well-
known decay estimates of the Stokes semigroup in a 2D exterior domain (see
[194, 867]).

Lemma 6.1.1 ([57]). Let f ∈ Lr
σ(Ω). Then we have for all t > 0,

||e−AΩ(t)f ||Lq ≤ Ct−( 1
r− 1

q )‖f‖Lr , (6.1.5)

with 1 < r ≤ q ≤ +∞, 1 < r < q = +∞; and for all t > 0,

‖∇e−AΩ(t)f‖Lq ≤ Ct−( 1
r− 1

q )− 1
2 ‖f‖Lr , (6.1.6)

with 1 < r ≤ q ≤ 2.

Assume that u is a solution of the Navier–Stokes equations in a 2D domain
with the initial velocity u0 ∈ L2

σ(Ω). Dan and Shibata [193] showed the following
lemma (see also, e.g., Kozonon and Ogawa [458]).

Lemma 6.1.2 ([57]). There holds that, for 2 ≤ q < +∞, as t → +∞,

||u(t)||Lq = o(t−(1/2−1/q)), ‖∇u(t)‖L2 = o(t−1/2). (6.1.7)

Moreover, we have
‖u(t)‖L∞ = o(t−1/2). (6.1.8)
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Lemma 6.1.3 ([57]). Assume that u is a solution of problem (6.1.1)–(6.1.4) satis-
fying Lemma 6.1.2. Then we have, for all t > s > 0, and for 2 ≤ q ≤ +∞,

||e−AΩ(t−s)[PΩ(u · ∇)u](s)||Lq ≤ C(t− s)−1/2||u⊗ u||Lq . (6.1.9)

Proof. Let φ ∈ C∞
0,σ(Ω). We note that for 1

q′ = 1− 1
q , by (6.1.6),

〈e−AΩ(t−s)[PΩ(u · ∇)u](s), φ〉 = 〈u⊗ u,∇e−AΩ(t−s)φ〉
≤ C||u⊗ u||Lq ||∇e−AΩ(t−s)φ||Lq′ ≤ C||u ⊗ u||Lq(t− s)−1/2||φ||Lq′ .

Consequently,

||e−AΩ(t−s)[PΩ(u · ∇)u](s)||Lq ≤ C(t− s)−1/2||u⊗ u||Lq . �

For the proof of our main theorem, we need the following lemma.

Lemma 6.1.4 ([57]). For all t > 0, we have, if u0 ∈ L2
σ(Ω) for q ≥ 2, then

||u(t)||Lq ≤ Ct−1/2+1/q ,

and if u0 ∈ Lq(Ω) ∩ L2
σ(Ω) for 1 < q < 2, then

||u(t)||Lq ≤ Ct−1/2+1/q .

Proof. It is well known that u(t) ∈ Lq(Ω) for 2 ≤ q ≤ +∞ if u0 ∈ L2
σ(Ω).

Moreover, ||u(t)||Lq ≤ Ct−1/2+1/q for 2 ≤ q ≤ +∞. Hence, we have only to show
that u(t) ∈ Lq(Ω) for 1 < q < 2, if u0 ∈ Lq(Ω)∩L2

σ(Ω). By the Duhamel principle,
u can be represented as

u(t) = e−AΩtu0 +

∫ t

0

e−AΩ(t−s)[PΩ(u · ∇)u](s)ds = I + II. (6.1.10)

By (6.1.5), I and II are estimated by

||I||Lq ≤ C||u0||Lq , ||II||Lq ≤ C

∫ t

0

||(u · ∇)u(s)||Lqds.

By the Hölder inequality,

||(u · ∇)u(s)||Lq ≤ ||u(s)||L2q/(2−q) ||∇u(s)||L2 ,

and from (6.1.7), it follows

||u(s)||L2q/(2−q) ≤ Cs−1/2+(2−q)/2q = Cs−1+1/q, ||∇u(s)‖L2 ≤ Cs−1/2.

Hence,

||II||Lq ≤ C

∫ t

0

s−3/2+1/qds ≤ Ct−1/2+1/q.

By the estimates of I and II, we conclude that, for 1 < q < 2, if u0 ∈
Lq(Ω) ∩ L2

σ(Ω), for all t > 0,

||u(t)||Lq ≤ Ct−1/2+1/q . �
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Remark 6.1.1 ([57]). We note that u0 ∈ L2
σ(Ω) ∩ Lr(Ω), 1 < r ≤ q < 2, implies

u0 ∈ Lq(Ω), by interpolation techniques. We note that if 0 < ε < min{1/q, 1/2},
then

lim
t→0+

t−ε

∫ t

0

s−1/2||u(s)||Lqds = 0,

since by Lemma 6.1.2, for all q ≥ 2,∫ t

0

s−1/2||u(s)||Lqds ≤ C

∫ t

0

s−1/2s−(1/2)+(1/q)ds ≤ Ct1/q,

and for all 1 < q < 2,∫ t

0

s−1/2||u(s)||Lqds ≤ C

∫ t

0

s−1/2(1 + s)−1/2+1/q ≤ Ct1/2(1 + t)−1/2+1/q.

Theorem 6.1.5 ([57]). Let 1 < r ≤ q < +∞ or 1 < r < q = +∞. Assume
u0 ∈ L2

σ(Ω) ∩ Lr(Ω). Let u be the solution of the Navier–Stokes equations in a
two-dimensional exterior domain Ω with the initial velocity u0, so that estimates
(6.1.7)–(6.1.8) hold. Moreover, assume that for a given small ε > 0, for all t > 0,

||u(t)||L∞ ≤ εt−1/2. (6.1.11)

Then, for 1 < r ≤ q < +∞ or 1 < r < q = +∞,

||u(t)||Lq = O
(
t−1/r+1/q

)
. (6.1.12)

Moreover, for 1 < r ≤ q ≤ 2,

||∇u(t)||Lq = O
(
t−1/r+1/q−1/2

)
. (6.1.13)

Proof. By the Duhamel principle, u can be written as u = I + II, where I and II
are defined in (6.1.10). By (6.1.5), we have, for 1 < r ≤ q ≤ +∞ or 1 < r < q =
+∞, if u0 ∈ Lr(Ω),

||I||Lq ≤ Ct−(1/r−1/q). (6.1.14)

By (6.1.6), we also get, for 1 < r ≤ q ≤ 2, whenever u0 ∈ Lr(Ω),

‖∇I‖Lq ≤ Ct−1/r+1/q−1/2.

Step 1. We shall prove the inequality (6.1.12) for 1 < r ≤ q ≤ +∞, 2q
q+2 < r (since

2q
q+2 ≤ 2).

By the hypotheses,

||u⊗ u||Lq ≤ C||u(s)||L∞ ||u(s)||Lq ≤ Cεs−1/2||u(s)||Lq .
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If we apply (6.1.5) to II, then

||II||Lq ≤ Cε

∫ t

0

(t− s)−1/2s−1/2||u(s)||Lqds. (6.1.15)

Combining (6.1.14) and (6.1.15), we derive for 1 < r ≤ q ≤ +∞,

||u(t)||Lq ≤ Ct−(1/r−1/q) + Cε

∫ t

0

(t− s)−1/2s−1/2||u(s)||Lqds. (6.1.16)

Let X(t) = ||u(t)||Lq ; then (6.1.16) can be rewritten as

X(t) ≤ Ct−(1/r−1/q) + Cε

∫ t

0

(t− s)−1/2s−1/2X(s)ds. (6.1.17)

By Theorem 1.4.11,

X(t) ≤ Ct−( 1
r− 1

q ) + Cεt−1/2

∫ t

0

s−1/2X(s)ds. (6.1.18)

Recall Remark 6.1.1 that if ε < min
{

1
q ,

1
2

}
, 1 < q ≤ +∞, we get

lim
t→0+

t−ε

∫ t

0

s−1/2X(s)ds = 0.

Hence, applying Theorem 1.5.1, we conclude that there is a constant ε0 > 0
such that for 0 < ε ≤ ε0, for all t > 0, for 1

r − 1
q < 1

2 , i.e., for
2q
q+2 < r ≤ q < +∞,

X(t) ≤ Ct−( 1
r− 1

q ). (6.1.19)

Step 2. We shall prove the inequality (6.1.12) for 1 < r < 2q
2+q , r ≤ q < +∞.

Taking p ∈ (1, r), and using (6.1.6),

||e−AΩ(t−s)[PΩ(u · ∇)u](s)||Lq ≤ C(t− s)−1/p+1/q||PΩ(u · ∇)u](s)||Lp (6.1.20)

≤ C(t− s)−1/p+1/q||(u · ∇)u||Lp ≤ C(t− s)−1/p+1/q||u(s)||L2p/(2−p) ||∇u(s)||L2 .

Let m = 2p
2−p . Since m > r > p = 2m

2+m , the result of Step 1, implies that, if

u0 ∈ Lr(Ω) ∩ L2
σ(Ω),

||u||Lm ≤ Ct−1/r+1/m.

Hence, II can be estimated as, for all t > 0,

||II||Lq ≤ C

∫ t

0

(t− s)−1/p+1/qs−1/r+1/ms−1/2ds ≤ Ct−1/r+1/q.

Step 3. We shall prove the inequality (6.1.12) for 1 < r < q = +∞.
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Taking p ∈ (1, 2) with 2r
2+r < p < r, and using (6.1.5), we get

||e−AΩ(t−s)[PΩ(u · ∇)u](s)||L∞ ≤ C(t− s)−1/p||u(s)||L2p/(2−p) ||∇u(s)||L2 .

Let m = 2p
2−p . Since m > r > p = 2m

2+m , the result of Step 1 implies that, if

u0 ∈ Lr(Ω) ∩ L2
σ(Ω),

||u||Lm ≤ Ct−1/r+1/m.

Hence, II can be estimated as, for all t > 0,

||II||L∞ ≤ C

∫ t

0

(t− s)−1/ps−1/r+1/ms−1/2ds ≤ Ct−1/r.

Step 4. We shall prove the inequality (6.1.13) for 1 < r ≤ q ≤ 2 (since that
2q
q+2 ≤ 1).

Choosing 1 < p < r, and using (6.1.6), we have

||∇e−AΩ(t−s)[PΩ(u · ∇)u](s)||Lq ≤ C(t− s)−1/p+1/q−1/2||PΩ(u · ∇)u(s)||Lp .

We note that

||PΩ(u · ∇)u(s)||Lp ≤ C||(u · ∇)u(s)||Lp ≤ C||u(s)||L2p/(2−p) ||∇u(s)||L2 .

Letm = 2p
2−p . Note that 2 < m < +∞. By (6.1.19) of Step 1, if u0 ∈ Lr(Ω)∩L2

σ(Ω),

||u(s)||Lm ≤ Cs−1/r+1/m.

Hence, ∇II can be estimated as

||∇II||Lq ≤ C

∫ t

0

(t−s)−1/p+1/q−1/2s−1/r+(2−p)/2ps−1/2ds ≤ Ct−1/r+1/q−1/2. �

6.2 Large-time behavior for nonhomogeneous

incompressible Navier–Stokes equations

In this section, we shall use Theorems 2.2.1 and 2.2.9 to investigate the asymptotic
behavior of the Lα norm (α > 2) of strong solutions to the initial value problem
for the nonstationary Navier–Stokes equations in the whole space. We present the
results from Zheng [999] as applications of Theorems 2.2.1 and 2.2.9. We shall
consider the following initial value problem for the nonstationary Navier–Stokes
equations in the whole space Rn:⎧⎪⎨⎪⎩

vt − μΔv + (v · ∇)v +∇p = f in [0,+∞)× Rn,

∇ · v = 0 in [0,+∞)× Rn,

v|t=0 = a(x) in Rn,

(6.2.1)
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where n ≥ 2 and μ is a given positive constant, a(x) is the initial velocity, f(x, t)
is the external force, and v(x, t), p(x, t) are the vector field, the scalar field re-
spectively. The pressure p is determined up to a constant by the vector field v.

Throughout this section, we always assume that a and f are weakly diver-
gence free, i.e.,

∇ · f = 0, a.e. in (0,+∞), (6.2.2)
{
∇ · a = 0 (6.2.3)

are satisfied in the sense of distributions.

By a solution of problem (6.2.1) on [0, T ] we mean a divergence-free vector
field v(t, x) ∈ L1(0, T ;L2

loc(R
n)) such that∫ T

0

∫
Rn

[v · φ′ + μv ·Δφ+ (v · ∇)φ · v + f · φ]dxdt = −
∫
Rn

aφ|t=0dx (6.2.4)

for every regular divergence-free vector field φ(t, x), which has compact support
in the space variables and satisfies φ(T, x) ≡ 0.

First, we shall use Theorem 2.2.1 to prove the following theorem, due to
Zheng [999].

Theorem 6.2.1 ([999]). Let n ≥ 3 and α ≥ n. Assume that a ∈ Lα(Rn) ∩ L2(Rn)
and f ∈ L1(0,+∞;Lα(Rn) ∩ L2(Rn)) ∩ L∞(0,+∞;Lα(Rn)) and satisfy (6.2.2)
and (6.2.3). If ||a||Lα(Rn)∩L2(Rn), ||f ||L1(0,+∞;L2(Rn)), and ||f ||L∞(0,+∞;Lα(Rn)) are
sufficiently small, then when α > n, problem (6.2.1) admits a unique solution
v ∈ C([0,+∞);L2(Rn) ∩ Lα(Rn)) ∩ L2(0,+∞;H1(Rn)). Moreover, as t → +∞,

||v(t)||Lα(Rn) → 0. (6.2.5)

Proof. We follow the proof due to [999]. The case α > n: The global existence and
uniqueness of strong solutions were proved in [87]. The proof of (6.2.5) consists
of the following four steps. In the first two steps, we essentially use the same
argumentation as in [87].

Step 1. Let T ∈ (0,+∞) and v be a solution of problem (6.2.1) in the class

v(t) ∈ L1(0, T ;W 2,α(Rn)), vt(t) ∈ L1(0, T ;Lα(Rn)). (6.2.6)

Then it follows from Theorem 1.4 and Lemma 3.1 in [87] that y(t) = ||v(t)||Lα

satisfies the following differential inequality (see formula (3.6) in [87]):{
y′(t) ≤ −C8

(
C9μK

−β − μ− n+α
α−n yγ

)
y1+β + ||f ||Lα , t ∈ (0, T ),

y(0) = ||a||Lα ,
(6.2.7)

where

K = ||a||L2 +
∫ +∞
0

||f(τ)||L2dτ, (6.2.8)
{
β = 4α

(α−2)n , γ = 2α2(n−2)
n(α−2)(α−n) (6.2.9)

and C8, C9 are positive constants independent of t, v, a, f , as described in [87].



264 Chapter 6. Existence and Behavior for Equations of Fluid Dynamics

Step 2. Let z(t) be the solution to the initial value problem{
z′(t) = −C8[C9μK

−β − μ− n+α
α−n zγ(t)]z1+β(t) + ||f(t)||Lα ,

z(0) = ||a||Lα .
(6.2.10)

Then, as proved in [87], when the smallness conditions on a and f are satisfied,
problem (6.2.10) admits a global solution z(t) ∈ C([0,+∞)), z(t) ≥ 0, z′(t) ∈
L1
loc((0,+∞)). Moreover, for all t ≥ 0,

0 ≤ zγ(t) ≤ C9

2
μ2α/(α−n)K−β. (6.2.11)

Step 3. It turns out that, by (6.2.10)–(6.2.11), the following holds: for all t ≥ 0,{
z′(t) + C10z

1+β(t) ≤ ||f(t)||Lα ,

z(0) = ||a||Lα ,
(6.2.12)

with

C10 =
C8C9

2
μK−β. (6.2.13)

Integrating the equation in (6.2.12) with respect to t yields for all t ≥ 0,∫ t

0

z1+β(τ)dτ ≤ 1

C10

(∫ +∞

0

||f ||Lαdτ + ||a||Lα

)
≡: C̃. (6.2.14)

Now let w(t) = z1+β(t). It thus follows from (6.2.12) and Young’s inequality
that

w′(t) = (1 + β)zβ(t)z′(t) ≤ (1 + β)zβ(t)||f(t)||Lα ≤ βz1+β(t) +
1

1 + β
||f(t)||1+β

Lα

≤ β

2
w2(t) +

β

2
+

1

1 + β
||f(t)||1+β

Lα . (6.2.15)

By the assumption on f, ||f ||1+β
Lα ∈ L1(R+). By Theorem 2.2.1, we conclude

from (6.2.14)–(6.2.15) that as t → +∞,

w(t) → 0, (6.2.16)

i.e., as t → +∞,
z(t) → 0. (6.2.17)

On the other hand, it follows from (6.2.10), (6.2.7), and the comparison principle
for ODEs that for all t ≥ 0,

0 ≤ y(t) ≤ z(t). (6.2.18)

Step 4. By approximating a and f by regular vector fields, then passing to the
limit, as shown in [87], we can deduce that for the unique global solution v whose
existence is stated in Theorem 6.2.1, as well as in Theorem 0.2 in [87], ||v||Lα also
satisfies (6.2.18). Thus the proof is complete by combining (6.2.18) with (6.2.17).

�
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Second, we shall use Theorem 2.2.9 to show the next result also due to Zheng
[999].

Theorem 6.2.2 ([999]). Let n = 2 and α > n = 2. Assume that a ∈ Lα(Rn) ∩
L2(Rn), f ∈ L1(0,+∞;Lα(Rn) ∩L2(Rn)). Then problem (6.2.1) admits a unique
solution

v(t) ∈ C([0,+∞);L2(Rn) ∩ Lα(Rn)) ∩ L2(0,+∞;H1(Rn)).

Moreover, as t → +∞,
||v(t)||Lα → 0. (6.2.19)

Proof. The proof consists of the following steps.

Step 1. For the case n = 2, we know that for a ∈ L2(Rn), f ∈ L1([0,+∞);L2(Rn)),
problem (6.2.1) admits a unique solution

v(t) ∈ C([0,+∞);L2(Rn)) ∩ L2([0,+∞);H1(Rn)), vt(t) ∈ L1([0,+∞);H1(Rn))

(see, e.g., [914]). On the other hand, under the additional assumptions on a and
f , the local existence and uniqueness result of Theorem 2.2 in [87] states that
the above solution v(t) belongs to C([0, T0);L

α(Rn)) for some T0 > 0. Therefore,
to prove that v(t) ∈ C([0,+∞);Lα(Rn)), it suffices to show that ||v(t)||Lα is
uniformly bounded. It is easy to see from the energy inequality that for all t ≥ 0,

||v(t)||L2 ≤ ||a||L2 +

∫ +∞

0

||f(s)||L2ds, (6.2.20)

and for all t ≥ 0,

μ

∫ t

0

||∇v(s)||2L2ds ≤
(
||a||L2 +

∫ +∞

0

||f(s)||L2ds
)∫ +∞

0

||f(s)||L2ds. (6.2.21)

By the Gagliardo–Nirenberg inequality for n = 2, we have

||v(t)||Lα ≤ C||∇v(t)||(α−2)/α
L2 ||v(t)||2/αL2 . (6.2.22)

Then it follows from (6.2.20)–(6.2.22) that v(t) belongs to Lq(0,+∞;Lα(R2)) with
q = 2α

α−2 . Now 2/q + n/α = 1 (n = 2). Then it is well known (see, e.g., [87])
that ||v(t)||Lα is uniformly bounded. Therefore, combining this with the local
existence and uniqueness result, we can conclude that v(t) ∈ C([0,+∞);Lα(R2)).
Furthermore, it follows that ∫ +∞

0

||v(t)||qLαdt ≤ Cq (6.2.23)

with any q, such that 2α/(α− 2) ≤ q < +∞.
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Step 2. We now want to show that y(t) = ||v(t)||pLα , p = α2/(α− 2) ≥ 2α/(α− 2)
satisfies condition (2.2.90) in Theorem 2.2.9. To this end, we approximate a and
f by sequences of smooth divergence-free vector fields ak and fk with compact
support in x such that

ak → a strongly in Lα(R2) ∩ L2(R2), (6.2.24)
{
fk → f strongly in L1([0,+∞);Lα(R2) ∩ L2(R2)) (6.2.25)

and

fk → f weakly in L∞([0,+∞);Lα(R2)). (6.2.26)

Then for each ak and fk, since n = 2, problem (6.2.1) has a unique global
smooth solution vk. Multiplying the first equation in (6.2.1) by |vk|α−2vk, inte-
grating the result with respect to x, and using integration by parts we obtain

1

α

d

dt
||vk||αLα +

μ

2
Nα(vk) + 4μ

α− 2

α
Mα(vk) = I1 + I2, (6.2.27)

where

Nα(vk) =

∫
R2

|∇vk|2|vk|α−2dx, (6.2.28)

⎧⎪⎪⎨⎪⎪⎩Mα(vk) =

∫
R2

|∇|vk|α/2|2dx, (6.2.29)

and I1 and I2 are integrals involving pk and fk, respectively. Following the same
proof as for Lemmas 1.1 and 1.2 in [87], we can derive the following estimates

|I1| ≤ C
(α − 2)2

μ
||vk||α+2

Lα+2 , (6.2.30)

and

|I2| ≤ ||fk||Lα ||vk||α−1
Lα . (6.2.31)

Let g = |vk|α/2. By the Gagliardo–Nirenberg inequality for n = 2,

||g||L2(α+2)/α ≤ C||∇g||2/(α+2)
L2 ||g||α/(α+2)

L2 , (6.2.32)

i.e.,

||vk||α+2
Lα+2 ≤ C||vk||αLα (Mα(vk))

2/α . (6.2.33)

Note that ∣∣∣∇|vk|α/2
∣∣∣ ≤ α

2
|vk|(α/2)−1|∇vk| a.e. in R2. (6.2.34)

Combining (6.2.32) with (6.2.33) yields, for any ε > 0,

||vk||α+2
Lα+2 ≤ C||vk||αLα (Nα(vk))

2/α ≤ εNα(vk) + Cε||vk||α
2/(α−2)

Lα . (6.2.35)
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Then it follows from (6.2.27), (6.2.30), (6.2.31) and (6.2.35) that

1

α

d

dt
||vk||αLα +

μ

4
Nα(vk) + 2μ

α− 2

α
Mα(vk)

≤ C||vk||α
2/(α−2)

Lα + ||fk||Lα ||vk||α−1
Lα .

(6.2.36)

Therefore, for p = α2/(α− 2),

d

dt
||vk||pLα ≤ C

(
||vk||(α

2+2α)/(α−2)
Lα + ||fk||Lα ||vk||p−1

Lα

)
. (6.2.37)

Integrating (6.2.37) with respect to t yields that for any 0 ≤ s < t < +∞,

||vk(t)||pLα − ||vk(s)||pLα

≤ C

∫ t

s

(
||vk(τ)||(α

2+2α)/(α−2)
Lα + ||fk(τ)||Lα ||vk(τ)||p−1

Lα

)
dτ

≤ C

∫ t

s

(
||vk(τ)||p(α+2)/α

Lα + ||vk(τ)||pLα + ||fk(τ)||pLα

)
dτ.

(6.2.38)

On the other hand, by the energy estimates it is easy to conclude from the
first equation of problem (6.2.1) that

vk → v in C([0,+∞);L2(R2)) (6.2.39)

and

vk → v in L2([0,+∞);H1(R2)). (6.2.40)

Indeed, we deduce from the first equation of problem (6.2.1) and the Gagliardo–
Nirenberg inequality that

1

2

d

dt
||v − vk||2L2 + μ||∇(v − vk)||2L2 (6.2.41)

≤ C||v − vk||2L4 ||∇vk||L2 + C||f − fk||L2 ||v − vk||L2

≤ C||v − vk||L2 ||∇(v − vk)||L2 ||∇vk||L2 + C||f − fk||L2 ||v − vk||L2

≤ μ

2
||∇(v − vk)||2L2 + C||v − vk||2L2 ||∇vk||2L2 + C||f − fk||L2 ||v − vk||L2 ,

whence

d

dt
||v − vk||L2 ≤ C||∇vk||2L2 ||v − vk||L2 + C||f − fk||L2 . (6.2.42)

It follows from (6.2.42), (6.2.21) that as k → +∞, for all t > 0,

||v − vk(t)||L2 (6.2.43)

≤
(
||a− ak||L2 + C

∫ t

0

||f − fk||L2dτ

)
exp

(∫ t

0

||∇vk(τ)||2L2dτ

)
→ 0.
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Integrating (6.2.41) with respect to t and combining the result with (6.2.43)
yields that for any t > 0, as k → +∞,∫ t

0

||∇(v − vk)||2L2dτ → 0. (6.2.44)

By the Gagliardo–Nirenberg inequality (6.2.22), we have

vk → v in Lq([0,+∞);Lα(R2)) (6.2.45)

with q = 2α/(α − 2). Since ||vk||Lα and ||v||Lα are uniformly bounded, it follows
from (6.2.45) that for any T > 0, for any q, 1 ≤ q < +∞,

||vk||Lα → ||v||Lα in Lq(0, T ), (6.2.46)

which also implies that for almost all t ∈ (0, T ), ||vk(t)||Lα → ||v(t)||Lα . Taking
the limit in (6.2.38) yields

||v(t)||pLα − ||v(s)||pLα ≤ C

∫ t

s

(
||v(τ)||p(α+2)/α

Lα + ||v(τ)||pLα + ||f(τ)||pLα

)
dτ.

(6.2.47)

By continuity of ||v(t)||pLα , (6.2.47) holds for any 0 ≤ s < t < +∞. Thus
combining (6.2.47) with (6.2.23) and applying Theorem 2.2.9 yields, as t → +∞,

||v(t)||Lα → 0,

which completes the proof. �

6.3 A uniform lower Bound for density of a 1D viscous
compressible barotropic fluid equation

In this section, we shall use Theorem 2.2.3 to give a uniform lower bound for
density of a 1D viscous compressible barotropic fluid equation. These results are
adopted from Straŝkraba and Zlotnik [900].

We consider the following system of equations describing 1D flow of a viscous
compressible barotropic fluid:{

ρt + (ρu)x = 0, (6.3.1)

(ρu)t + (ρu2)x − (
μux − p(ρ)

)
x
= ρf, (6.3.2)

in the domain Q = Ω × R+ = (0, l) × (0,+∞) with the boundary and initial
conditions

u |x=0,l= 0; ρ |t=0= ρ0(x), u |t=0= u0(x) in Ω. (6.3.3)

As in [900], we make the following assumptions:
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1) The mass force
f(x, t) = f∞(x) + Δf(x, t) (6.3.4)

with f∞ ∈ L∞(Ω) and Δf = f1 + f2 with f1 ∈ L∞,1(Q) ∩ L∞,2(QT )
for all T > 0 and f2 ∈ L∞,2(Q). Here QT = Ω × (0, T ), we use the
anisotropic Lebesgue space Lq,s(Q) equipped with the norm ‖w‖Lq,s(Q) :=∥∥‖w‖Lq(Ω)

∥∥
Ls(R+)

.

2) The initial data satisfy ρ0, u0 ∈ H1(Ω) and 0 < ρ0 ≤ ρ0, u0 |x=0,l= 0.

3) The state function p is continuous and increasing function on R+ = [0,+∞)
such that

p(0) = 0, p(+∞) = +∞, p′(r) ∈ L∞
loc(R

+), (6.3.5)
⎧⎪⎨⎪⎩rp′(r) = O(1) as r → 0+, (6.3.6)

p(r) = O(rγ0 ) as r → 0+, (6.3.7)

for some constant 0 < γ0 ≤ 1. (Obviously, these conditions are satisfied for
the most popular state functions p(r) = p1r

γ with p1 > 0 and γ > 0.)

4) Assume also that the viscosity coefficient μ = const. > 0.

It readily follows from the results in [430, 1022, 1023] and conditions (6.3.5)–
(6.3.6) and the above conditions 1), 2) on f and ρ0, u0 that the strong generalized
solution exists and is unique.

Introduce the integration operators Iw(x) :=
∫ x

0 w(ξ)dξ and I∗w(x) :=∫ l

x
w(ξ)dξ and the mean value 〈w〉 := 1

l

∫ l

0
w(x)dx for w ∈ L1(Ω). Set also I〈1〉w :=

Iw − 〈Iw〉 = −I∗w + 〈I∗w〉. Note that for all w ∈ L1(Ω),

‖ I〈1〉w ‖C(Ω)≤‖ w ‖L1(Ω) . (6.3.8)

We recall some well-known results on uniform estimates (with respect to
time) of the solution to the problem (6.3.1)–(6.3.3) and its asymptotic behavior
as t → +∞. Obviously, we have the mass and energy conservation laws⎧⎪⎪⎨⎪⎪⎩

∫
Ω

ρ(x, t)dx =

∫
Ω

ρ0(x)dx =: m, (6.3.9)

d

dt

∫
Ω

(
1

2
ρu2 + P (ρ)− ρF

)
dx+ μ

∫
Ω

u2
xdx =

∫
Ω

ρΔfudx, (6.3.10)

with the functions P (r) := r
∫ r

1
p(s)−p(1)

s2 ds ≥ 0 for r > 0 and F := If∞. Let

N > 1 be an arbitrarily large parameter and K(i)(N),Ki = Ki(N), (i = 1, 2, . . . )
be positive non-decreasing functions of N which may also depend on μ, p, and m, l.

Lemma 6.3.1 ([900]). Assume that conditions (6.3.4)–(6.3.7) and the following
conditions hold{

0 < ρ0 ≤ N, ‖u0‖L2(Ω) ≤ N, ‖f∞‖L∞(Ω) ≤ N, (6.3.11)

‖f1‖L∞,1(Q) + ‖f2‖L∞,2(Q) ≤ N, ‖P (ρ0)‖L1(Ω) ≤ N. (6.3.12)
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Then we have

(i) ‖√ρu‖L2,∞(Q) + ‖P (ρ)‖L1,∞(Q) + ‖ux‖L2(Q) ≤ K(1)(N); (6.3.13)

(ii) ρ(x, t) ≤ ρ̄ =: K(2)(N) (6.3.14)

(iii) the total kinetic energy tends to zero, i.e., as t → +∞,

1

2

∫
Ω

(ρu2)(x, t)dx → 0. (6.3.15)

Proof. We refer to Straŝkraba and Zlotnik [900] for the detailed proof. �

Now consider the stationary problem

p(ρ∞)x = ρ∞f∞ on Ω, (6.3.16)
⎧⎨⎩ ∫

Ω

ρ∞(x)dx = m. (6.3.17)

Here we mainly discuss the case of positive solutions, more exactly, functions
ρ∞ ∈ C(Ω) such that ρ∞ > 0 on Ω, and p(ρ∞)x ∈ L∞(Ω). In order to get the
necessary and sufficient conditions for its existence, we introduce the quantities:

Fmin := min
Ω

F (x), Fmax := max
Ω

F (x), Cp :=

∫ 1

0

p(r)

r2
dr ≤ +∞.

Lemma 6.3.2 ([900]). Assume that condition (6.3.4) holds and f∞ ∈ L∞(Ω). Then
the positive solution ρ∞ to problem (6.3.16)–(6.3.17) exists if and only if⎧⎪⎪⎨⎪⎪⎩

Cp < +∞,

Cp = +∞ or Fmax − Fmin < Ψ(+∞),

1
m

∫
Ω
Ψ−1(F (x)− Fmin)dx < 1,

(6.3.18)

where Ψ(r) := p(r)
r +

∫ r

0
p(s)
s2 ds for r > 0 and Ψ(0) = 0, with Ψ−1 being the inverse

of Ψ. Moreover, for Cp < +∞, the function Ψ is required to be continuous and

increasing on R+. In addition, the positive solution is unique.

Obviously, if Ψ(+∞) = +∞, then the condition Fmax − Fmin < Ψ(+∞) is
automatically satisfied. Recall that the positive solutions were studied in [88] in
the case p ∈ C1(R+), p′ > 0, and f∞ ∈ L1(Ω). The generalization of conditions
from [88] for p ∈ C(R+), p increasing, as well as a simplification for f∞ ∈ L∞(Ω)
have been done in [1020, 1021, 1024].

Recall that if p(r) = p1r
γ with p1 > 0, then Cp = +∞ for 0 < γ ≤ 1.

While, for γ > 1, we have Cp < +∞ and Ψ(r) = p1γ
′rγ−1,Ψ(+∞) = +∞, and

Ψ−1(s) =
(

s
p1γ′

)1/(γ−1)

with γ′ = γ
γ−1 .
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It also follows from (6.3.16) that under condition (6.3.5) and for f∞ ∈ L∞(Ω),
the positive solution ρ∞ belongs to W 1,∞(Ω).

Let BV (Ω) be the space of functions of the bounded variation on Ω, with
the norm ‖w‖BV (Ω) := supΩ|w(x)| +VarΩw.

Lemma 6.3.3 ([900]). Assume conditions (6.3.4)–(6.3.6) and (6.3.18) hold and
f∞ ∈ BV (Ω). Then the density stabilizes to the stationary one in Lq(Ω)-norm,
i.e., for all q ∈ [1,+∞), as t → +∞,

‖ρ(·, t)− ρ∞(·)‖Lq(Ω) → 0. (6.3.19)

Moreover, as t → +∞,

‖p∞[ρ]− p(ρ∞)‖C(Ω) → 0, (6.3.20)

with

p(∞)[ρ] := −I∗(ρf∞) + 〈p(ρ) + I∗(ρf∞)〉 = 〈p(ρ)〉 + I<1>(ρf∞). (6.3.21)

Proof. We refer to Straŝkraba and Zlotnik [900] for the detailed proof. �

After preparation in Lemmas 6.3.1–6.3.3, we are in a position to prove a
uniform lower bound for the density in the next theorem.

Theorem 6.3.4 ([900]). Assume conditions (6.3.4)–(6.3.7), (6.3.11)–(6.3.12),
(6.3.18) and N−1 ≤ ρ0, f∞ ∈ BV (Ω) hold. Then the density is globally uniformly
bounded from below, i.e.,

0 < ρ < ρ(x, t) in Q, (6.3.22)

where ρ > 0 is a constant.

Proof. We exploit and develop the approach from Proposition 6.1 in [255]. Dividing
the equation (6.3.1) by ρ, we get

(log ρ)t + u(log ρ)x + ux = 0. (6.3.23)

Applying the operator I〈1〉 to equation (6.3.2) and using the boundary con-
ditions (6.3.3), we get

αt + ρu2 − μux + p(ρ)− 〈ρu2 + p(ρ)〉 = I〈1〉(ρf) (6.3.24)

with the function α := I〈1〉(ρu).
Equations (6.3.23) and (6.3.24) together with the formula ρu2 = u(I〈1〉(ρu))x

yield the equality

(μ log η − α)t + u(μ log η − α)x + 〈ρu2 + p(ρ)〉+ I〈1〉(ρf) = p(ρ), (6.3.25)
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with η := 1
ρ . Using the function p(∞)[ρ], in (6.3.21), and introducing the functions

y := βηγ0 and β := e−(γ0/μ)α where γ0 is taken from condition (6.3.7), we can
rewrite (6.3.25) as the following linear first-order partial differential equation for y:

yt + uyx +
γ0
μ

[
〈ρu2〉+ p(∞)[ρ] + I〈1〉(ρΔf)

]
y =

γ0
μ
βρ−γ0p(ρ). (6.3.26)

First, (6.3.8) implies the inequality

(μ log η − α)t + u(μ log η − α)x ≤ p(ρ̄) +m‖f‖L∞(Ω).

Passing to Lagrangian coordinates and integrating the result with respect to t, we
have

max
Ω

(μ log η − α) ≤ max
Ω

((μ log η − α)|t=0) + I0(p(ρ̄) +m‖f‖L∞(Ω)).

Using (6.3.8), the mass conservation law and the energy estimates (6.3.9)–
(6.3.10), we conclude

‖α‖C(Q) ≤ ‖ρu‖L1,∞(Q) ≤ m1/2‖√ρu‖L2,∞(Q) ≤ m1/2K(1) =: K3, (6.3.27)

By estimate (6.3.27) and assumptions 1) and 2) on ρ0 and f , we obtain, for all
T > 0,

η(x, t) ≤ K1,T := K2 exp
1

μ
(p(ρ̄) + 2mN)(T + 1) in QT . (6.3.28)

On the other hand, it follows from (6.3.27) that

K−1
3 ≤ β ≤ K3 = e(γ0/μ)m

1/2K(1)

, K−1
3 y ≤ ηγ0 ≤ K3y in Q. (6.3.29)

Exploiting (6.3.4)–(6.3.7) and the uniform upper bound (6.3.14), we have

‖ρ−γ0p(ρ)‖C(Q) ≤ K4. (6.3.30)

Using (6.3.20) in Lemma 6.3.3, we get

0 <
1

2
p(ρ∞) ≤ p(∞)[ρ] in Q \QT0 (6.3.31)

for sufficiently large T0 > 0. Thus it follows from equation (6.3.26) and (6.3.29)–
(6.3.31) that y satisfies the differential inequality

yt + uyx +
γ0
μ

(1
2
p(ρ∞)−m‖f1‖L∞(Ω) −m‖f2‖L∞(Ω)

)
y

≤ γ0
μ
K3K4 =: K5 in Q \QT0 .

(6.3.32)



6.4. Uniform bounds on specific volume 273

By (6.3.28), in particular, ‖y(·, T0)‖C(Ω) ≤ K6,T0 = K3K
γ0

1,T0
. Multiplying

(6.3.32) byρyk−1with k > 1, integrating the result over Ω, and using the elementary
formula

ρ(yt + uyx)y
k−1 =

1

k
[(ρyk)t + (ρuyk)x], (6.3.33)

we obtain that the function Yk = (
∫
Ω
ρykdx)1/k > 0, satisfies the differential

inequality

1

k

d

dt
(Y k

k ) + (a0 + a1 + a2)Y
k
k ≤ K5

∫
Ω

ρyk−1dx ≤ K5m
1/kY k−1

k on (T0,+∞).

(6.3.34)

Here a0 = γ0

2μp(ρ∞), as = − γ0

μ m‖fs‖L∞(Ω) for s = 1, 2. It follows from

(6.3.34) that Y = Yk satisfies also inequality (2.2.35) in Theorem 2.2.3 over
(T0,+∞), with G = K5m

1/k. Therefore, using estimate (2.2.37) in Theorem 2.2.3
for s = +∞,

‖Yk‖C([T0,+∞)) ≤ K7

(
Yk(T0) +

2

a0
K5m

1/k

)
≤ K8,T0m

1/k (6.3.35)

with K7 = exp γ0

μ

(
mN + 1

p(ρ∞) (mN)2
)

and K8,T0 = K7

(
K6,T0 + 2

a0
K5

)
, but

Yk(t) → maxΩy(x, t) as k → +∞, so estimate (6.3.35) yields

y ≤ K8,T0 in Q \QT0
,

which, together with (6.3.28)–(6.3.29) yields

η ≤ η̄ = max
{
K1,T0 , (K3K8,T0)

1/γ0

}
.

Setting ρ = η̄−1, we thus complete the proof. �

6.4 Uniform bounds on specific volume for symmetri-

cally quasilinear viscous barotropic fluid equations

In this section, we exploit Theorems 1.1.2, 2.1.13, and 2.2.4 to establish uniform
estimates on specific volume for symmetrically quasilinear equations. We took
these results from Zlotnik [1024].

We shall consider the following symmetrically quasilinear equations

ηt = (rmu)x, η = 1/ρ, (6.4.1)
⎧⎪⎨⎪⎩ut = rm[v(η)ρ(rmu)x − p(η)]x + g[r], (6.4.2)

rt = u, (6.4.3)
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in the domain Q = Ω× R+, and with the boundary and initial conditions

u|x=0,M = 0, η|t=0 = η0(x), u|t=0 = u0(x), r|t=0 = r0(x) on Ω (6.4.4)

with η0 > 0 and r0 > 0 on Ω satisfying

(r0(x))m+1 = (m+ 1)

∫ x

0

(η0)(x′)dx′ + am+1 on Ω, a > 0, (6.4.5)

where the functions η, u, and r are the specific volume, the velocity, and the
Euler coordinate, the functions ρ, p, and v are the density, pressure, and vis-
cosity coefficient, the function g is the mass force, Ω = (0,M), the constant M
is the total mass of the gas and g[r](x, t) = g(r(x, t), t). The values m = 0, 1, 2
correspond to the plane, cylinder, and spherical symmetry, respectively. In fact,
problem (6.4.1)–(6.4.5) describes symmetric solutions of the equations of motion
of a viscous barotropic gas (a compressible fluid) in a closed volume. This system
can be written in Lagrange material coordinates x and t.

We introduce the mean value on Ω and integration operators:

〈v〉 = M−1

∫
Ω

v(x)dx, (Iv)(x) =

∫ x

0

v(x′)dx′, (Ity)(t) =

∫ t

0

y(τ)dτ,

and the antiderivatives as follows:

E(ζ) =

∫ ζ

1

[−p(ξ)]dξ, A(ζ) =

∫ ζ

1

[v(ξ)/ξ]dξ, G(χ) =

∫ χ

1

gs(χ
′)dχ′.

We set (v, w) =
∫
Ω v(x)w(x)dx and E+(ζ) = max{E(ζ), 0}. As usual, we use

the classical Lebesgue Lq(Ω) together with their anisotropic version Lq,r(Q), for
q, r ∈ [1,+∞), equipped with the associated norm by

‖ · ‖Lq,r(Q) =
∥∥ ‖ · ‖Lq(Ω)

∥∥
Lr(R+)

.

We also use the abbreviation ‖ · ‖Ω for ‖ · ‖L2(Ω). Let also V2(Q) be the standard
space of functions w having finite (parabolic) energy ‖w‖V2(Q) = ‖w‖L2,∞(Q) +
‖wx‖L2(Q). By H1(Ω) (resp. H2,1(QT )), we denote the standard Sobolev space
equipped with the norm ‖ϕ‖H1(Ω) = ‖ϕ‖L2(Ω) + ‖ϕx‖L2(Ω) (resp. ‖w‖H2,1(QT ) =
‖w‖L2,∞(QT )+‖wx‖V2(QT )+‖wt‖L2(QT )). HereinafterQT = Ω×(0, T ),Q = Ω×R+.

For brevity, we shall consider regular generalized solutions of problem (6.4.1)–
(6.4.5) such that η ∈ W 1

2 (QT ), u ∈ W 2,1
2 (QT ), and r ∈ W 1

2 (QT ). Moreover,
ρ = 1/η ∈ L∞(QT ) for all T > 0. Note that by (6.4.1) and (6.4.3), η, r ∈ C(QT )
for all T > 0.

First it readily follows from equation (6.4.1) and (6.4.4) that

||η(·, t)||L1(Ω) = V ≡ ||η0||L1(Ω) on R+ = [0,+∞). (6.4.6)
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By (6.4.1) and (6.4.3), we have(
η − (m+ 1)−1(rm+1)x

)
t
= 0,

which, together with (6.4.5), gives us

(m+ 1)−1(rm+1)x = η in Q. (6.4.7)

Thus noting that rt|x=0 = 0 and r0(0) = a, we arrive at

rm+1 = (m+ 1)Iη + am+1 in Q (6.4.8)

which, together with (6.4.6), readily implies

a ≤ r ≤ R =
(
(m+ 1)V + am+1

)1/(m+1)
in Q.

Assume that

1) the functions p and v are defined and continuous on R+,

v(ζ) > 0 on R+;

2) g(χ, t) = gs(χ) + Δg(χ, t),

where gs ∈ L∞(a,R),Δg is a measurable function on (a,R) × R+, and
|Δg(χ, t)| ≤ Δḡ(t) = ḡ1(t) + ḡ2(t) for χ ∈ (a,R) and t > 0; 3) ḡk ∈ Lk(R+)
and ḡk ≥ 0, k = 1, 2. We set

g̃s(χ) = χ−mgs(χ), Δg[r](x, t) = Δg(r(x, t), t).

We also use the notation as follows: The symbol K with indices stands for
positive non-decreasing functions of the parameter N > 1 which may also depend
on a,M,m, and some other parameters, but are independent of the functions
η0, u0, and g. In the proofs, we shall omit the argument N . The symbol c with
indices is the generic positive constant.

Lemma 6.4.1 ([1024]). Assume the following conditions hold:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

||η0||L1(Ω) + ||E+(η
0)||L1(Ω) + ||u0||Ω + ||gs||L∞(a,R)

≤ N, ||ḡ1||L1(R+) + ||ḡ2||L2(R+) ≤ N, (6.4.9)

0 < v0 ≤ v(ζ) on R+, (6.4.10)

0 < E(1)(ζ) ≡ E(ζ) + c(0)(ζ + 1)

on R+ for some constant c(0) > 0. (6.4.11)

Then there holds that

||E(1)(η)||L1,∞(Q) + ||u||L2,∞(Q)||(v(η)ρ)1/2(rmu)x||Q ≤ K(1)(N). (6.4.12)
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Proof. By (6.4.2) and the boundary condition in (6.4.4), we have

(r−mut, ϕ) + (v(η)ρ(rmu)x − p(η), ϕx)− (g̃s(r), ϕ) = (r−mΔg[r], ϕ) (6.4.13)

with an arbitrary function ϕ such that ϕ, ϕx ∈ L2(QT ) for all T > 0 and ϕ|x=0,M =
0. Setting ϕ = rmu, using (6.4.1) and (6.4.3), the relations (E(η))t = −p(η)ηt and
(G(r))t = gs(r)rt, and (6.4.6), we can obtain that, for any ε > 0,

M
(
E(1)(η) + (1/2)u2 −G(r)

)
t
+ ||[v(η)ρ]1/2(rmu)x||2Ω

= (Δg[r], u) ≤ M1/2g1||u||Ω + (2ε)−1M2g22 + (ε/2)||u||2L∞(Ω).
(6.4.14)

Obviously, we have

||u||L∞(Ω) ≤ a−m||(rmu)x||L1(Ω) ≤ a−mV 1/2||ρ1/2(rmu)x||Ω. (6.4.15)

Thus choosing ε = a2mν0/V in (6.4.14), using assumptions (6.4.9)–(6.4.11),
and applying the Bellman–Gronwall inequality in Theorem 1.1.2, we can derive
(6.4.12).

Note that condition (6.4.10) implies

A(0+) ≡ lim
ζ→0+

A(ζ) = −∞, A(+∞) ≡ lim
ζ→+∞

A(ζ) = +∞. (6.4.16)

We set Λω = Iω − (V )−1〈ηIω〉 for ω ∈ L1(Ω), where V = V/M . We can readily
verify that Λfx = f − (V )−1〈ηf〉 for f ∈ W 1

1 (Ω) and ||Λω||C(Ω) ≤ ||ω||L1(Ω). �

Lemma 6.4.2 ([1024]). There holds that

(A(η))t = p(η)− d+ (Λ(r−mu))t + d1, (6.4.17)

where

d = (V )−1〈ηp(η)〉 + Λ(g̃s(r))

and

d1 = mΛ(r−m−1u2)− V −1||u||2Ω − V
−1〈ν(η)(rmu)x〉 − Λ(r−mΔg[r]).

Proof. Setting σ = ν(η)ρ(rmu)x−p(η) and using (6.4.3), we may transform (6.4.2)
to the form

(r−mu)t +mr−m−1u2 = σx + r−mg[r]. (6.4.18)

Applying the operator Λ to this equation (6.4.18), we obtain

(Λ(r−mu))t − V̄ −1〈u2〉+mΛ(r−m−1u2) = σ − V̄ −1〈ησ〉 + Λ(r−mg[r])

where we have used the relation (see (6.4.1))

〈(ηt)I(r−mu)〉 = −〈u2〉.
Thus noting that σ = (A(η))t − p(η), we can prove (6.4.17). �
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Obviously, if ν(ζ) ≡ const., then 〈ν(η)(rmu)x〉 = 0, and the expression for
d1 in (6.4.17) can be simplified.

The next theorem concerns a uniform lower bound for the function η.

Theorem 6.4.3 ([1024]). If assumptions (6.4.9)–(6.4.10) and the following condi-
tions hold, ⎧⎪⎪⎪⎨⎪⎪⎪⎩

N−1 ≤ η0(x) on Ω, (6.4.19)

ζν(ζ) ≤ c0(E+(ζ) + ζ + 1) on R+, (6.4.20)

p(0+) = +∞; ζp(ζ) = O(E(ζ)) as ζ → 0+;

limζ→+∞p(ζ) < +∞, (6.4.21)

then we have

K(2)(N)−1 ≤ η(x, t) in Q. (6.4.22)

Proof. First, by (6.4.4) and the continuity of the functions p and ν, the function
A(−1), its inverse A, and the function f(y) = p(A(−1)(y)) are defined and contin-
uous on R+. Second, by assumption (6.4.20), we also know f(−∞) = +∞. Since
p is continuous on R+, it follows from (6.4.21) that for sufficiently large c(0), c1,
and c2, ⎧⎪⎪⎨⎪⎪⎩

0 < E+(ζ) + ζ + 1 ≤ c1E
(1)(ζ)

= c1

(
E(ζ) + c(0)(ζ + 1)

)
on R+, (6.4.23)

ζp(ζ) ≤ c2E
(1)(ζ) on R+. (6.4.24)

Thus it remains to estimate terms on the right-hand side of (6.4.17). Indeed, using
(6.4.24) and (6.4.11), we derive⎧⎪⎨⎪⎩

d ≤ V −1c2||E(1)(η)||L1(Ω) +Ma−m||gs(r)||L∞(Ω)

≤ V −1c2K
(1) +Ma−mN, (6.4.25)

||Λ(r−mu)||C(Ω) ≤ a−m||u||L1(Ω) ≤ M1/2a−mK(1). (6.4.26)

On the one hand, we can derive from (6.4.20), (6.4.23), (6.4.13) and (6.4.11)
that

||d1||C(Ω) ≤ (ma−m−1 + V −1)||u||2Ω
+ V −1

(
c0c1||E(1)(η)||L1(Ω)

)1/2

||[ν(η)ρ]1/2(rmu)x||Ω
+Ma−m||Δg[r]||L∞(Ω) ≤ (ma−m−1 + V −1)MV a−2m||ρ1/2(rmu)x||2Ω
+ V −1

(
c0c1K

(1)
)1/2

||[ν(η)ρ]1/2(rmu)x||Ω +Ma−m(g1 + g2).
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On the other hand, using (6.4.11), the second condition in (6.4.9), and (6.4.10),
we conclude that for all ε > 0 and for all 0 ≤ t1 < t2,∫ t2

t1

||d1||C(Ω)dt ≤ c3
[
(ν−1

0 + ε−1K(1))||[ν(η)ρ]1/2ux||Q
+ ||g1||L1(R+) + ε−1||g2||2L2(R+)

]
+ ε(t2 − t1) ≤ (1 + ε−1)K1 + ε(t2 − t1),

(6.4.27)

with a constant c3 = c3(a,M, V,m).

Therefore, applying assertion (1) in Theorem 2.1.13 with y = A(η) and b =
−Itd+Λ(r−mu) + Itd1 to (6.4.17) and using (6.4.25)–(6.4.27) with ε = 1, we can
obtain

min{A(η0(x)),−K2} −K3 ≤ A(η(x, t)) in Q,

which, together with (6.4.19) and A(0+) = −∞, readily implies (6.4.22). �
Remark 6.4.1 ([1024]). Let g2 = 0, i.e., ||Δg||L1(R+) ≤ N . Then condition (6.4.10)
can be omitted in Lemma 6.4.1 and weakened in Theorem 6.4.1 by replacing it by
the conditions ζ/ν(ζ) = O(E(ζ)) as ζ → 0+, A(0+) = −∞, and limζ→+∞ν(ζ) > 0.
Under these conditions, we have ζ/ν(ζ) ≤ cE(1)(ζ) (see (6.4.23)), and hence,

||u||L∞(Ω) ≤ a−m||(rmu)x||L1(Ω) ≤ a−m
(
cK(1)

)1/2

||[ν(η)ρ]1/2(rmu)x||Ω.

Moreover, A(+∞) = +∞.

The next result is concerned with a uniform upper bound for the function η
under a particular additional condition on the absolute value of the function g̃s.

Theorem 6.4.4 ([1024]). Assume conditions (6.4.9), (6.4.10), (6.4.20) and the fol-
lowing conditions hold:⎧⎪⎪⎪⎨⎪⎪⎪⎩

η0(x) ≤ N on Ω, (6.4.28)

pγ(ζ) ≡ c(1)ζ−γ ≤ p(ζ)

on R+ for some constants c(1) > 0 and γ ≥ 1, (6.4.29)

p(+∞) = 0. (6.4.30)

If g̃s is a function such that

M ||g̃s||L∞(a,R)/pγ(V ) ≤ 1−N−1, (6.4.31)

then
η(x, t) ≤ K(3)(N) in Q. (6.4.32)

Proof. Obviously, by the assumptions on p and ν, condition (6.4.11) and inequality
(6.4.22) are valid. Therefore, we can use the energy estimate (6.4.12) and estimates
(6.4.26) and (6.4.27).
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By assumption (6.4.29) and the Jensen inequality, we have

〈ηp(η)〉 ≥ 〈c(1)η1−γ〉 ≥ c(1)(V )1−γ ,

which, along with condition (6.4.30) yields

−d ≤ −pγ(V ) +M ||g̃s||L∞(Ω) ≤ −N−lpγ(V ) ≤ −K−1
1 .

Therefore, applying assertion (2) in Theorem 2.1.13 to (6.4.17) (by (6.4.16) and
(6.4.30), in this case, f(+∞) = p(A(−1)(+∞)) = 0) and using the estimate −d ≤
−K−1

1 and (6.4.26) and (6.4.27) with ε = (2K1)
−1 > 0, we can obtain the estimate

A(η(x, t)) ≤ max{A(η0(x),K2}+K3 in Q, which, together with condition (6.4.28)
and the property A(+∞) = +∞, implies (6.4.32). �

In the sequel, we shall prove the stabilization of the function u to zero in the
norm of Lq(Ω) as t → +∞.

To this end, we first consider the auxiliary linear non-uniformly parabolic
problem {

bvt = (κDv − ψ)x + a0v + f, (6.4.33)

v|x=0,M = 0, v|t=0 = v0(x) on Ω. (6.4.34)

Suppose that the following properties hold for all T > 0: (1) b, κ ∈ L∞(QT ), b >
0, κ > 0, a0, bt ∈ L1(QT ), ψ ∈ L2(QT ); (2) f = f0+Δf , and |Δf | ≤ |f1|+ |f2|; (3)
f, fk ∈ L1(QT ), k = 0, 1, 2, and v0 ∈ L1(Ω).

We now consider generalized solutions with v ∈ L∞(QT ), vx ∈ L2(QT ), and
vt ∈ L1(QT ) for all T > 0.

Theorem 6.4.5 ([1024]). Let b ∈ L∞(Q), ||1/κ||L1,∞(Q) ≤ Nκ and q ∈ [2,+∞) with
q′ = q/(q − 1). If

d1 = ||(b0)1/qv0||Lq(Ω) + ||b−1/q′f1||Lq,1(Q) + q||f2||L1,q(Q) < +∞, (6.4.35)

ψ = f0 = 0, (6.4.36)

and

||b−1/q′(a0 + q−1bt)v||Lq,1(Q) ≤ N1,

then we have

|||v|||q ≡ ||b1/qv||Lq,∞(Q) + ||v||L∞,q(Q) ≤ c1(Nκ)(d1 +N1) (6.4.37)

and as t → +∞,
||(b1/qv)(·, t)||Lq(Ω) → 0. (6.4.38)

Proof. We know that the solution v of problem (6.4.33)–(6.4.34) satisfies the in-
tegral identity

(bvt, ϕ) + (κvx − ψ, ϕx) = (a0v + f, ϕ) (6.4.39)
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for all ϕ ∈ H1
0 . Choosing ϕ = q|v|q−2v in (6.4.39), we obtain(||b|v|q||L1(Ω)

)
t
+ 4(q′)−1||κ1/2(|v|q/2−1v)x||2Ω

= q(ψ, (|v|q−2v)x) + q(aqv + f, |v|q−2v),
(6.4.40)

where aq = a0 + q−1bt. It is easy to see that(
M ||b||L∞(Ω)

)−1 ||b|v|q||L1(Ω)

≤ ||v||qL∞(Ω) ≤ ||1/κ||L1(Ω)||κ1/2(|v|q/2−1v)x||2Ω.
(6.4.41)

Therefore, using (6.4.36) and the inequality on the right-hand side of (6.4.41), the
Hölder inequality, and the estimate

q(f2, |v|q−2v) ≤ q||f2||L1(Ω)||v||q−1
L∞(Ω)

≤ ε(q′)−1||v||qL∞(Ω) + ε−(q−1)q−1(q||f2||L1(Ω))
q

with an arbitrary ε > 0, we can derive from (6.4.40),(
||b1/qv||qL∞(Ω)

)
t
+ 3(Nκq

′)−1||v||qL∞(Ω)

≤ q||b−1/q′(aqv + f1)||Lq(Ω)||b1/qv||q−1
Lq(Ω) + (Nκq)

q−1||f2||qL1(Ω).
(6.4.42)

Using the inequality on the left-hand side of (6.4.41), we can derive a dif-
ferential inequality for ||b1/qv||Lq(Ω). Note the following fact: Let α ≥ 0 and let
1 ≤ s < +∞. From the Hölder inequality, we obtain, for all t > 0 and y ∈ Ls(R+),∫ t

0

exp(α(τ − t))|y(τ)|dτ ≤ α−(s−1)/s

∫ t

0

exp(α(τ − t))|y(τ)|sdτ (6.4.43)

and it was proved in [49] that for all y ∈ L1(R+), as t → +∞,∫ t

0

exp(α(τ − t))|y(τ)|dτ → 0. (6.4.44)

Applying Theorem 2.2.4, (6.4.43)–(6.4.44) imply (6.4.38) and the estimate

||b1/qv||Lq,∞(Ω) ≤ d̃1 = ||(b0)1/qv0||Lq(Ω) + ||b−1/q′aqv||Lq,1(Ω) + ||b−1/q′f1||Lq,1(Ω)

+ (Nκq)
1−1/q||f2||Lq,1 .

Integrating inequality (6.4.42), we obtain

||v||L∞,q(Q) ≤ (Nκq
′/3)1/qq1/q d̃1,

which gives us (6.4.37). �
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6.5 Stabilization for the 1D compressible
Navier–Stokes equations

In this section, we shall use Theorems 1.2.1, 2.1.13, and 2.2.2 to establish the
stabilization for the 1D compressible Navier–Stokes equations. These results are
due to Ducomet and Zlotnik [226].

We shall consider the following system of quasilinear differential equations
governing the 1D motions of viscous compressible heat-conducting media⎧⎪⎨⎪⎩

ut = vx, (6.5.1)

vt = σx + g, (6.5.2)

e[u, θ]t = σvx + πx, (6.5.3)

subject to the following boundary and initial conditions:

v|x=0 = 0, σ|x=M = −pΓ, θ|x=0 = θΓ, π|x=M = 0, (6.5.4)
{
u|t=0 = u0(x), v|t=0 = v0(x), θ|t=0 = θ0(x), (6.5.5)

where an outer pressure pΓ = const. and a given temperature θΓ = const. > 0,
(x, t) ∈ Q ≡ Ω × R+ = (0,M) × (0,+∞) are the Lagrangian mass coordinates,
and M is the total mass of the medium. The unknown quantities u > 0 and
θ > 0 are the specific volume, the velocity, and the absolute temperature. We
also denote by ρ = 1

u the density, σ = νρvx − p[u, θ] the stress, e(u, θ) the
internal energy, and −π = −κ[u, θ]ρθx the heat flux. Hereinafter, the notation
λ[u, θ](x, t) = λ(u(x, t), θ(x, t)), for λ = e, p, κ, etc., is used.

We first define the Helmholtz free energy

Ψ(u, θ) = −cV θ log θ − P0(u)− P1(u)θ,

where cV = const. > 0. Then thermodynamics indicates that

p(u, θ) = −Ψu(u, θ) = p0(u) + p1(u)θ, (6.5.6)

with p0 = P
′
0 and p1 = P

′
1, and

e(u, θ) = Ψ(u, θ)− θΨθ(u, θ) = −P0(u) + cV θ, (6.5.7)

where Ψu = ∂Ψ
∂u and Ψθ = ∂Ψ

∂θ .

Now, we consider the more difficult case of the nuclear fluid and assume that
the functions p0, p1 ∈ C1(R+) satisfy{

lim
u→0+

p0(u) = +∞, lim
u→+∞ p0(u) = 0, (6.5.8)

p1(u) ≥ 0, up1(u) = O(1) as u → +∞, (6.5.9)
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and that the viscosity and heat conductivity coefficients satisfy that

ν = const. > 0 and κ ∈ C1(R+ × R+),

with 0 < κ ≤ κ(u, θ) ≤ κ, where κ and κ are given constants. We do not impose
any growth conditions on the derivatives of κ.

Assume that the initial data are such that u0 ∈ L∞(Ω) with ess infΩ u0 >
0, v0 ∈ L4(Ω), θ0 ∈ L2(Ω), log θ0 ∈ L1(Ω) with θ0 > 0. Moreover, we assume
g ∈ L1(Ω) is the so-called “self-gravitation force”.

Indeed, these dynamical boundary conditions (6.5.6) mean that we impose a
fixed stress on the right boundary (fixed external pressure in the fluid context, or
stress-free condition for pΓ = 0 in the solid context) and consider the fixed bound-
ary left. For the thermal boundary conditions, we suppose that the temperature
is known on the fixed boundary and the flux is zero on the free one.

Obviously, this monotonicity is not valid in a number of physical situations,
for example, the case of the two-term pressure

p(u, θ) = p0(u) + p1(u)θ, (6.5.10)

which is linear in θ, but is with complicated non-monotone p0(u), this is crucial
important for nuclear fluid models (see [221, 223, 222] and references therein).

We shall borrow here the notations in Section 6.4 and use the integration

operators I∗ϕ(x) =
∫ M

x
ϕ(ξ)dξ, for ϕ ∈ L1(Ω), and I0a(t) =

∫ t

0
a(τ)dτ , for a ∈

L1(0, T ), and define the function for all x ∈ Ω,

pS(x) := pΓ −
∫ M

x

g(ξ)dξ,

which will play the role of a stationary pressure, and set p
S

:= minΩ pS and
p̄S := maxΩ pS . Obviously, p

S
≤ pΓ ≤ p̄S . Let N > 1 be an arbitrarily large

parameter and Ki = Ki(N) and K(i) = K(i)(N), i = 0, 1, 2, . . . , be positive non-
decreasing functions of N , which may also depend on M, v, κ, κ̄, etc; but neither
on the initial data nor on g.

To simplify the presentation, we shall only discuss the case of so-called reg-
ular weak (or strong) solutions (see, e.g., [49]) such that u ∈ L∞(QT ), ux, ut ∈
L2,∞(QT ),minQ̄T

u > 0, and v, θ ∈ H2,1(QT ),minQ̄T
θ > 0 for any T > 0.

Now we are in a position to state our main result due to [226].

Theorem 6.5.1 ([226]). Assume that the initial data, pΓ, and g satisfy

N−1 ≤ u0 ≤ N, ‖v0‖L4(Ω) + ‖ log θ0‖L1(Ω) + ‖θ0‖L2(Ω) ≤ N, (6.5.11)
{

‖g‖L1(Ω) ≤ N, N−1 ≤ p
S
. (6.5.12)
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Then the following estimates in Q together with the L2(Ω)-stabilization property
hold:

0 < K−1
1 = u ≤ u(x, t) ≤ ū = K2 in Q, (6.5.13)

‖v‖V2(Q) + ‖v2‖V2(Q) + ‖ log θ‖L1,∞(Q) + ‖(log θ)x‖L2(Q)

+ ‖θ − θΓ‖V2(Q) ≤ K3, (6.5.14)

‖p[u, θ]− pS‖L2(Q) ≤ K4, (6.5.15)

‖v2(·, t)‖L2(Ω) + ‖θ(·, t)− θΓ‖L2(Ω) + ‖p[u, θ](·, t)
− pS(·)‖L2(Ω) → 0 as t → +∞. (6.5.16)

Remark 6.5.1 ([226]).

(1) The second set of conditions (6.5.12) implies that N−1 ≤ pΓ.

(2) For non-monotone p(u, θΓ), if there exist two points 0 < u(1) < u(2) such
that

p
S
< p(1) := p(u(1), θΓ) < p(2) := p(u(2), θΓ) < p̄S

and ⎧⎪⎪⎨⎪⎪⎩
p(1) ≤ p(u, θΓ), for 0 < u ≤ u(1),

p(1) ≤ p(u, θΓ) ≤ p(2), for u(1) < u < u(2),

p(u, θΓ) ≤ p(2), for u(2) ≤ u,

then necessarily uS /∈ C(Ω).

Note that the second condition (6.5.12) is essential in Theorem 6.5.1.

The proof of Theorem 6.5.1 can be divided by a series of Lemmas 6.5.1–6.5.6
providing necessary a priori estimates and stabilization properties. Sometimes, we
use the abbreviation ‖ · ‖G for ‖ · ‖L2(G).

Lemma 6.5.2 ([226]). The following energy estimates hold⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖u‖L1,∞(Q) + ||v||L2,∞(Q) + ‖θ‖L1,∞(Q)

+‖ log θ‖L1,∞(Q) ≤ K(1), (6.5.17)∥∥∥∥√ρ

θ
vx

∥∥∥∥
Q

+

∥∥∥∥√ρ

θ
θx

∥∥∥∥
Q

≤ K(2). (6.5.18)

Proof. An easy calculation shows equations (6.5.1)–(6.5.7) imply⎧⎨⎩
(
1

2
v2 + e[u, θ]

)
t

= (σv + π)x + gv, (6.5.19)

cV θt = πx + (νρvx − p1[u]θ)vx. (6.5.20)

Hereinafter we use the notation λ[u](x, t) = λ(u(x, t)), for λ = pi, Pi, i = 0, 1, etc.
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Multiplying (6.5.20) by θΓ/θ and subtracting the result from (6.5.19), we
obtain (

1

2
v2 + e[u, θ]− cV θΓ log

θ

θΓ
− θΓP1[u] + pΓu

)
t

+ θΓν
ρ

θ
v2x

=
(
(σ + pΓ)v

)
x
+

(
1− θΓ

θ

)
πx + gv.

Next, setting P (u, θ) := P0(u) + P1(u)θ, integrating the above equality over
Ω and using the formula∫

Ω

gvdx =

∫
Ω

(I∗g)vxdx =
d

dt

∫
Ω

(I∗g)udx,

we get, for any constant C,

d

dt

∫
Ω

[
1

2
v2 + cV θΓ

(
θ

θΓ
− log

θ

θΓ

)
+ pSu− P [u, θΓ] + C

]
dx

+ θΓ

∫
Ω

(
ν
ρ

θ
v2x + κ[u, θ]

ρ

θ2
θ2x

)
dx = 0.

(6.5.21)

Conditions (6.5.8) and (6.5.9) imply the property for all ε > 0,

P (u, θΓ) ≤ εu+ Cε on R+.

Integrating (6.5.21) over (0, T ) for any T > 0, applying conditions (6.5.11)
and (6.5.12), and choosing ε := 1

2pS , we can obtain (6.5.17) and (6.5.18). Here we

used the inequality 1
2α ≤ α− logα+ log 2− 1. �

Lemma 6.5.3 ([226]). The following uniform lower bound holds:

0 < u =
(
K(3)

)−1

≤ u(x, t) in Q. (6.5.22)

Proof. Acting of the operator I∗ on (6.5.2), we have

I∗vt = −νρvx + p[u, θ]− pS, (6.5.23)

which, together with the relation ρvx = (log u)t, gives us

(ν log u)t = p[u, θ]− pS − I∗vt. (6.5.24)

Now putting y := ν log u, using the fact that p1[u]θ ≥ 0 and fixing any x ∈ Ω,
we get

dy

dt
≥ p0

(
exp

y

ν

)
− p̄S − d

dt
I∗v.



6.5. Stabilization for the 1D compressible Navier–Stokes equations 285

The function f(z) := p0(exp
z
ν ) − p̄S has the property f(−∞) = +∞ (see,

e.g., (6.5.8)). Moreover, due to the energy estimate (6.5.17), we get∣∣∣I∗v∣∣∣t
τ

∣∣∣ ≤ 2 sup
Q

|I∗v| ≤ 2M1/2‖v‖L2,∞(Q) ≤ K0. (6.5.25)

Thus Claim (i) in Theorem 2.1.13 (with N1 = 0) implies

min{ν log u0(x), ν log ŭ} −K0 ≤ y(x, t),

with a number ŭ such that p0(u)− p̄S ≥ 0, for any 0 < u ≤ ŭ. Then

u := min{N−1, ŭ} exp
(
−K0

ν

)
≤ u(x, t) in Q. �

Lemma 6.5.4 ([226]). The following uniform upper bound holds: u(x, t) ≤ ū = K(4)

in Q̄.

Proof. First we rewrite (6.5.1) as

ut =
1

ν
(σ + δ)u+

1

ν
u(p[u, θ]− δ),

where δ > 0 is a parameter. Now we may consider this as an ordinary differential
equation with respect to u and obtain the formula

u = exp

(
1

ν
I0(σ + δ)

){
u0 +

1

ν
I0

[
exp

(
− 1

ν
I0(σ + δ)

)
u(p[u, θ]− δ)

]}
.

(6.5.26)
Applying the operator I0 to (6.5.23), we get

I0σ = −pSt− I∗(v − v0).

Thus, choosing δ := 1
2pS and using estimate (6.5.25) we obtain on Ω, for all

0 ≤ τ ≤ t,

1

ν
I0(σ + δ)

∣∣∣t
τ
= − 1

ν
(pS − δ)(t− τ) − 1

ν
I∗v

∣∣∣t
∗
≤ −α(t− τ) +K1,

with α := 1
2ν pS > 0. Conditions (6.5.8) and (6.5.9) on p0 and p1, together with

the lower bound u ≤ u, give us

u(p[u, θ]− δ) ≤ umax{p0[u]− δ, 0}+ up1[u]θ ≤ K2 +K3θ.

Therefore, it follows from (6.5.26) that

û(t) := ‖u(·, t)‖L∞(Ω) ≤ K4e
−αt

[
1 +

∫ t

0

eατ (1 + ‖θ(·, τ)‖L∞(Ω))dτ

]
. (6.5.27)
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Setting a := ‖
√
ρ

θ θx‖2Ω, using the inequalities (see, e.g., [44, 49]) for all ε > 0,

‖θ‖L∞(Ω) ≤ θΓ + ‖θx‖L1(Ω) ≤ θΓ +
(
a‖θ‖L1(Ω)‖θ‖L∞(Ω)û

)1/2

≤ ε‖θ‖L∞(Ω) + θΓ +
1

4ε
a‖θ‖L1(Ω)û,

and the estimate ‖θ‖L1,∞(Ω) ≤ K(1), we conclude

‖θ‖L∞(Ω) ≤ K5(1 + aû).

Thus, by estimate (6.5.27), the function z(t) := eαtû(t) satisfies

z(t) ≤ K6

(
eαt +

∫ t

0

a(τ)z(τ)dτ

)
on R+.

Since ‖a‖L1(R+) ≤ (K(2))2 according to Lemma 6.5.1, Theorem 1.2.1 yields

z(t) ≤ K6 exp
(
αt+K6(K

(2))2
)
= K(4)eαt on R+,

whence u ≤ û ≤ ū := K(4) in Q. �

Corollary 6.5.1 ([226]). For v, the following estimates hold

1√
M

‖v‖Q ≤ ‖v‖L∞,2(Q) ≤ (K(1))1/2
∥∥∥∥ vx√

θ

∥∥∥∥
Q

≤ K(5), (6.5.28)

‖(log θ)x‖Q ≤ ū1/2K(2). (6.5.29)

Proof. In fact, we derive from Lemma 6.5.1

‖v‖C(Ω) ≤ ‖vx‖L1(Ω) ≤ ‖θ‖1/2L1(Ω)

∥∥∥∥ vx√
θ

∥∥∥∥
Ω

≤ (K(1))1/2
∥∥∥∥ vx√

θ

∥∥∥∥
Ω

(6.5.30)

and ∥∥∥∥ vx√
θ

∥∥∥∥
Q

≤ ū1/2

∥∥∥∥√ρ

θ
vx

∥∥∥∥
Q

≤ ū1/2K(2).

Similarly, we can prove (6.5.29). �

Lemma 6.5.5 ([226]). The following estimates hold for v2 and θ − θΓ:{
‖v2‖V2(Q) + ‖θ − θΓ‖V2(Q) ≤ K(6),

‖v2(·, t)‖Ω + ‖θ(·, t)− θΓ‖Ω → 0 as t → +∞.
(6.5.31)
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Proof. In fact, we may rewrite (6.5.19) as(
1

2
v2 + cV (θ − θΓ)

)
t

= (σv + π)x + p0[u]vx + gv.

Thus, taking the L2(Ω)-inner product with 1
2v

2 + cV (θ − θΓ), we obtain

1

2

d

dt

∫
Ω

(
1

2
v2 + cV (θ − θΓ)

)2

dx

+

∫
Ω

[
(νρvx − p[u, θ])v + κ[u, θ]ρθx

]
(vvx + cV θx)dx

=

∫
Ω

(p0[u]vx + gv)

(
1

2
v2 + cV (θ − θΓ)

)
dx

− pΓ

(
v

(
1

2
v2 + cV (θ − θΓ)

))∣∣∣∣
x=M

.

(6.5.32)

Now taking the L2(Ω)-inner product of (6.5.2) with v3, we get

1

4

d

dt

∫
Ω

v4dx+ 3

∫
Ω

(νρvx − p[u, θ])v2vxdx =

∫
Ω

gv3dx− pΓv
3

∣∣∣∣
x=M

.

Adding equality (6.5.32) to the last one multiplied by a parameter δ ≥ 1,
we get

1

2

d

dt

∫
Ω

[(
1

2
v2 + cV (θ − θΓ)

)2

+
δ

2
v4

]
dx

+

∫
Ω

[(1 + 3δ)νρv2v2xdx+ cV κ[u, θ]ρθ
2
x]dx

= −
∫
Ω

(νcV + κ[u, θ])ρvvxθxdx

+

∫
Ω

[
p0[u]vx

(
1

2
v2 + cV (θ − θΓ)

)
+ p[u, θ]((1 + 3δ)v2vx + cV vθx)

]
dx

+

∫
Ω

gv

((
1

2
+ δ

)
v2 + cV (θ − θΓ)

)
dx

− pΓ

(
v

((
1

2
+ δ

)
v2 + cV (θ − θΓ)

)) ∣∣∣∣
x=M

=: I1 + I2 + I3 + I4. (6.5.33)

Now we need to estimate the summands in the last equality. First, using the
two-sided bounds u ≤ u ≤ ū and κ ≤ κ ≤ κ̄, we obtain

K−1
1

(
δ‖vvx‖2Ω + ‖θx‖2Ω

) ≤ ∫
Ω

[(1 + 3δ)νρv2v2x + cV κ[u, θ]ρθ
2
x]dx, (6.5.34)
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and for all ε > 0,

|I1| ≤ K2‖vvx‖Ω‖θx‖Ω ≤ K2
2

4ε
‖vvx‖2Ω + ε‖θx‖2Ω. (6.5.35)

Second, using the estimates |p0[u]| ≤ K3 and the inequality

|p[u, θ]| = |p[u, θΓ] + p1[u](θ − θΓ)| ≤ K4(1 + |θ − θΓ|),
we have

|I2| ≤ K5

[∫
Ω

(δv2|vx|+ |vθx|)dx +

∫
Ω

|θ − θΓ|(|vx|+ δv2|vx|+ |vθx|)dx
]

=: K5(I21 + I22). (6.5.36)

Furthermore, the following estimates hold, for any ε > 0,

I21 ≤ δ‖vvx‖Ω‖v‖Ω + ‖v‖Ω‖θx‖Ω ≤ ε
(
δ‖vvx‖2Ω + ‖θx‖2Ω

)
+

δ + 1

4ε
‖v‖2Ω (6.5.37)

and

I22 ≤ ‖θ − θΩ‖L∞(Ω)

∥∥∥∥ vx√
θ

∥∥∥∥
Ω

‖θ‖1/2L1(Ω) + ‖θ − θΓ‖Ω‖v‖L∞(Ω)

(
δ‖vvx‖Ω + ‖θx‖Ω

)
≤ ε

(
δ

2
‖vvx‖2Ω + ‖θx‖2Ω

)
+

MK(1)

2ε

∥∥∥∥ vx√
θ

∥∥∥∥2

Ω

+
δ

ε
‖v‖2L∞(Ω)‖θ − θΓ‖2Ω. (6.5.38)

Third,

|I3|+ |I4| ≤
(
‖g‖L1(Ω) + pΓ

)
‖v‖C(Ω)M

1/2‖(1 + 2δ)vvx + cV θx‖Ω

≤ ε
(
δ‖vvx‖2Ω + ‖θx‖2Ω

)
+

K6δ

ε
‖v‖2

C(Ω)
.

(6.5.39)

All the above quantities Ki, 1 ≤ i ≤ 6, are independent of δ and ε.

Now, choosing ε := K−1
7 small enough, δ := K8 large enough, and setting

y :=

∫
Ω

[(
1

2
v2 + cV (θ − θΓ)

)2

+
δ

2
v4

]
dx,

we derive from (6.5.33)–(6.5.39)

dy

dt
+K−1

9 (‖vvx‖2Ω + ‖θx‖2Ω) ≤ K10(ay + h), (6.5.40)

with a := ‖v‖2L∞(Ω) and h := ‖ vx√
θ
‖2Ω (see (6.5.30)), which, along with the inequal-

ities,

K−1
11

(
1

2
‖v2‖2Ω + ‖θ − θΓ‖2Ω

)
≤ y ≤ K11

(
1

2
‖v2‖2Ω + ‖θ − θΓ‖2Ω

)
,
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gives us
dy

dt
+K−1

12 y ≤ K10(ay + h),

with K12 := K9K11M
2. By Corollary 6.5.1, we have

‖a‖L1(R+) ≤ K(1)‖h‖L1(R+) ≤ (K(5))2. (6.5.41)

Therefore, by Theorem 2.2.2, we conclude as t → +∞,

sup
t≥0

y(t) ≤ K13, y(t) → 0.

On the other hand, integrating inequality (6.5.40) over R+, we also obtain

K−1
9 (‖vvx‖2Q + ‖θx‖2Q) ≤ y(0) +K10

(
‖a‖L1(R+) sup

t≥0
y + ‖h‖L1(R+)

)
,

whence ‖vvx‖Q + ‖θx‖Q ≤ K14. �
Lemma 6.5.6 ([226]). The following estimate holds:

‖vx‖Q ≤ K(7). (6.5.42)

Proof. Taking L2-inner product of the second equation (6.5.2) with v, we get (cf.
(6.5.21))

d

dt

∫
Ω

(
1

2
v2 + pSu− P [u, θΓ]

)
dx +

∫
Ω

νρv2xdx =

∫
Ω

p1[u](θ − θΓ)vxdx.

Integrating this equality over (0, T ) and exploiting the bounds u ≤ u ≤ ū,
we can get

‖vx‖2QT
≤ K1(1 + ‖θ − θΓ‖QT ‖vx‖QT ).

Thus ‖vx‖QT ≤ K
1/2
1 +K1‖θ− θΓ‖QT ≤ K

1/2
1 +K1M‖θx‖QT , for any T > 0, and

the result follows from Lemma 6.5.4. �

Now we establish additional properties of p[u, θ]− pS .

Lemma 6.5.7 ([226]). The following estimates together with the stabilization prop-
erty hold {

‖p[u, θ]− pS‖Q ≤ K(8), (6.5.43)

‖p[u, θ](·, t)− pS(·)‖Ω → 0 as t → +∞. (6.5.44)

Proof. (1) Obviously, from equation (6.5.22) it follows that for any T > 0,

‖p[u, θ]− pS‖2QT
+ ‖I∗vt‖2QT

= ‖νρvx‖2QT
+ 2

∫
QT

(p[u, θ]− pS)I
∗vtdxdt. (6.5.45)
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Using elementary transformations and the bounds u ≤ u ≤ ū, we have∫
Ω

(p[u, θ]− pS)I
∗vtdxdt

=

∫
QT

(
p[u, θΓ]− pS

)
I∗vtdxdt +

∫
QT

p1[u](θ − θΓ)I
∗vtdxdt

=

∫
Ω

(p[u, θΓ]− pS)I
∗vdx|T0 −

∫
QT

pu[u, θΓ]utI
∗vdxdt

+

∫
QT

p1[u](θ − θΓ)I
∗vtdxdt

≤ K1(‖v(·, T )‖Γ + ‖v0‖Ω + ‖vx‖QT ‖v‖QT + ‖θ − θΓ‖QT ‖I∗vt‖QT ),

whence

‖p[u, θ]− pS‖2QT
+

1

2
‖I∗vt‖2QT

(6.5.46)

≤ νu−2‖vx‖2QT
+K1(‖v(·, T )‖Ω + ‖v0‖Ω +M‖vx‖2QT

) + (K1M
2)‖θx‖2QT

.

Therefore, estimate (6.5.44) follows from Lemmas 6.5.1, 6.5.4 and 6.5.5.

(2) First, instead of property (6.5.44), let us prove that, as t → +∞,

‖p[u, θΓ](·, t)− pS(·)‖Ω → 0. (6.5.47)

Using the estimates u ≤ u (see (6.5.43)) and ‖θx‖Q ≤ K(6), we have

‖p[u, θΓ]− pS‖Q ≤ ‖p[u, θ]− pS‖Q + ‖p1[u]‖L∞(Q)‖θ − θΓ‖Q ≤ K2. (6.5.48)

Therefore∫ +∞

0

∣∣∣∣ ddt‖p[u, θΓ]− pS‖2Ω
∣∣∣∣ dt = 2

∫ +∞

0

∣∣∣∣∫
Ω

pu[u, θΓ]ut(p[u, θΓ]− pS)dx

∣∣∣∣ dt
≤ 2‖pu[u, θΓ]‖L∞(Q)‖vx‖Q‖p[u, θΓ]− pS‖Q ≤ K3 (6.5.49)

which, along with estimates (6.5.48), implies property (6.5.47).

Finally, by the bounds u ≤ u ≤ ū and the stabilization property (6.5.31), as
t → +∞, ∣∣∣‖p[u, θ]− pS‖2Ω − ‖p[u, θΓ]− pS‖2Ω

∣∣∣
≤ [2M1/2(‖p[u, θΓ]‖L∞(Ω) + p̄S)

+ ‖p1[u]L∞(Ω)‖θ − θΓ‖Ω]‖p1[u]‖L∞(Ω)‖θ − θΓ‖Ω
≤ K4(1 + ‖θ − θΓ‖Ω)‖θ − θΓ‖Ω → 0,

which, together with (6.5.47), implies (6.5.44). �



Chapter 7

Asymptotic Behavior of Solutions for
Parabolic and Elliptic Equations

In this chapter, we shall study the asymptotic behavior for parabolic and elliptic
equations. This chapter embraces three sections. In Section 7.1, we shall use The-
orems 2.1.14 and 2.3.7 to establish the uniform and decay estimates for flows in
a semi-infinite straight channel. In Section 7.2, we shall exploit Theorems 2.3.17–
2.3.21 to establish exact rates of convergence for nonlinear PDEs. In Section 7.3,
we shall apply Theorem 2.2.11 and the Lyapunov functional method (i.e., Lemma
2.5.3 of [121]) to prove the large-time behavior of solutions to the initial boundary
value problem of (semilinear) parabolic equations. All inequalities applied in this
chapter are specially selected and crucial in proving the asymptotic behavior of
solutions to some parabolic and elliptic equations.

7.1 Decay estimates for flows in a semi-infinite
straight channel

In this section, we shall use Theorems 2.1.14 and 2.3.7 to establish the uniform
and decay estimates for the flows in a semi-infinite straight channel. We choose
these results from Galdi [295].

7.1.1 Uniform estimates

We shall consider in this subsection flows occurring in a straight cylinder Ω =
{xn > 0} × Σ, where the cross section Σ is a C∞ smooth, bounded and simply
connected to a more general class of domains, n is its unit outward normal vector.
The cross section at distance a from the origin is denoted by Σ(a), despite all
cross sections having the same shape and size. Denote by (u, τ) a solution to the

Y. Qin, Analytic Inequalities and Their Applications in PDEs, Operator  
Theory: Advances and Applications 241, DOI 10.1007/978-3-319-00831-8_7 

291© Springer International Publishing Switzerland 2017
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problem

Δu = ∇τ, in Ω, (7.1.1)

∇ · u = 0, in Ω, (7.1.2)

u = 0, on ∂Ω− Σ(0), (7.1.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ ∫
Σ

u · ndxn = 0. (7.1.4)

For simplicity, we assume (u, τ) is regular, that is, indefinitely differentiable
in the closure of any bounded subset of Ω. We also note, however, that the same
conclusions may be reached merely assuming (u, τ) to possess the same regularity
of generalized solutions to Leray’s problem (see, e.g., Galdi [295], Chapter V.I.).
We shall first show that every regular solution to problem (7.1.1)–(7.1.4) with u
satisfying a general “growth” condition as |x| → +∞ has, in fact, square summable
gradients over the whole of Ω. Next, we further prove that these solutions decay
exponentially fast in the Dirichlet integral, i.e.,

‖u‖H1(ΩR) ≤ C‖u‖H1(Ω) exp(−σR) (7.1.5)

where Ωa = {x ∈ Ω : xn > a} and C, σ are positive constants depending on Σ.
Now we use Theorem 2.1.14 to prove the following uniform estimate.

Theorem 7.1.1 ([295]). Let (u, τ) be a regular solution to problem (7.1.1)–(7.1.4)
with

lim inf
xn→+∞

(∫ xn

0

[∫
Σ(ξ)

∇u : ∇u dΣ

]
dξ

)
e−axn = 0 (7.1.6)

where a−1 ≡ (1/2 + C0)
√
μ, C0 > 0 is a constant specified and μ > 0 is the

Poincaré constant for Σ. Then

‖u‖H1(Ω) < +∞. (7.1.7)

Proof. In fact, multiplying both sides of (7.1.1) by u and integrating by parts over
(0, xn)× Σ, we have

G(xn) ≡
∫ xn

0

[∫
Σ(ξ)

∇u : ∇u dΣ

]
dxn

=

∫
Σ(xn)

(
τun − 1

2

∂u2

∂xn

)
dΣ−

∫
Σ(0)

(
τun − 1

2

∂u2

∂xn

)
dΣ.

(7.1.8)

Integrating this relation from t to t+ 1, t ≥ 0, we obtain∫ t+1

t

G(xn)dxn =

∫
Ωt,t+1

(
τun − 1

2

∂u2

∂xn

)
dx+ b (7.1.9)
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where Ωt,t+1 = Ω ∩ {x ∈ Rn : t < xn < t+ 1} and b ≡ − ∫
Σ(0)

(τun − 1
2
∂u2

∂xn
)dΣ.

Consider the problem ⎧⎪⎨⎪⎩
∇ · w = un, in Ωt,t+1, (7.1.10)

w ∈ H1
0 (Ωt,t+1), (7.1.11)

‖w‖H1(Ωt,t+1) ≤ C0‖un‖L2(Ωt,t+1). (7.1.12)

Since
∫
Ωt,t+1

undx = 0, problem (7.1.10)–(7.1.12) admits a solution with a

constant C0 > 0 independent of t (see Theorem III 3.1 and Lemma III 3.3 in Galdi
[295]). Thus it follows from (7.1.9)–(7.1.12) that∫ t+1

t

G(xn)dxn =

∫
Ωt,t+1

(
−∇τ · w − 1

2

∂u2

∂xn

)
dx+ b

=

∫
Ωt,t+1

(
−∇u : ∇w − 1

2

∂u2

∂xn

)
dx+ b

≤
(
C0 +

1

2

)
‖u‖L2(Ωt,t+1)‖u‖H1(Ωt,t+1) + b.

(7.1.13)

We next observe that, since u vanishes at ∂Ω, there exists μ = μ(Σ) > 0 (the
Poincaré constant for Σ) such that

‖u‖2L2(Σ) ≤ μ‖∇u‖2L2(Σ). (7.1.14)

In fact, we may give estimates for μ (see (II.4.4 ) and Exercise II.4.2 in Galdi

[295]): μ ≤ 1
2 |Σ| if n = 3; μ ≤ (2d)2

π2 if n = 2.

By (7.1.14), we get

y(t) ≡
∫ t+1

t

G(xn)dxn ≤ √
μ

(
C0 +

1

2

)
‖u‖2H1(Ωt,t+1)

+ b. (7.1.15)

Since ‖u‖2H1(Ωt,t+1)
= dy

dt , (7.1.15) can be rewritten as

ay(t) ≤ b+
dy(t)

dt
(7.1.16)

where a is defined in the theorem. Thus (7.1.16) implies that y(t) satisfies (2.1.58)
in Theorem 2.1.14 with b = |b|, and furthermore, it is easy to show that, in view of
(7.1.15), y(t) verifies (2.1.59) in Theorem 2.1.14 and hence Theorem 2.1.14 implies
for all t > 1, ∫ t+1

t

G(xn)dxn ≤ |b|
a
, (7.1.17)

which yields
l ≡ lim

xn→+∞G(xn) = ‖u‖H1(Ω) < +∞. (7.1.18)
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In fact, since G(xn) is monotonically increasing in xn, l exists (either finite or
infinite).

If we assume l = +∞, then by the monotone convergence theorem, we deduce

lim
xn→+∞

∫ t+1

t

G(xn)dxn =

∫ 1

0

G(ξ + t)dξ = +∞

which contradicts (7.1.17). Therefore, (7.1.18) holds and hence the proof is com-
plete. �

7.1.2 Exponential decay

In this subsection, we shall derive the exponential estimate (7.1.5) by using Theo-
rem 2.3.7. The next theorem is the second result in this section, which is also due
to Galdi [295].

Theorem 7.1.2 ([295]). Let (u, τ) be a regular solution to problem (7.1.1)–(7.1.4)
satisfying (7.1.6). Then (7.1.7) holds and for all R > 0, the inequality (7.1.5) holds
with

C = [2(C2
0 + 2)1/2]/[(C2

0 + 2)1/2 − C0], σ = [(C2
0 + 2)1/2 − C0]/μ

where C0 > 0 is the constant in (7.1.12) and μ is the Poincaré constant for Σ.
Moreover, for all |α| ≥ 0, (u, τ) satisfies the pointwise estimate

|Dαu(x)|+ |Dα∇τ(x)| ≤ C2‖u(x)‖H1(Ω) exp(−σxn), (7.1.19)

for every x ∈ Ω with xn ≥ 1.

Proof. From Theorem 7.1.1, it follows that (7.1.7) holds, and so it suffices to show
that (7.1.5) is valid. For the sake of simplicity, we shall only treat the case n = 3
and Cartesian coordinates will be denoted by x1, x2, x3 and x, y, z, indifferently.
Proceeding as in the proof of Theorem 7.1.1, we may write the identity

−
∫ z1

z

(∫
Σ(ξ)

∇u : ∇udΣ

)
dξ

=

∫
Σ(z1)

(
τu3 − 1

2

∂u2

∂z

)
dΣ−

∫
Σ(z)

(
τu3 − 1

2

∂u2

∂z

)
dΣ.

(7.1.20)

By virtue of Theorems 7.1.1 and 2.3.7, we know that u,∇τ ∈ Hm(Ω) for all m ≥ 0
and so, in particular, it easily follows that as z1 → +∞,

i(z1) ≡
∫
Σ(z1)

τu3(x
′, z1)dx′ = o(1). (7.1.21)
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In fact, setting

τ̄(z1) =
1

|Σ|
∫
Σ

τ(x′, z1)dx′,

it follows from (7.1.4) and the Poincaré inequality that

|i(z1)| =
∣∣∣∣∣
∫
Σ(z1)

(τ − τ̄ )u3(x
′, z1)dx′

∣∣∣∣∣ ≤ C‖τ‖H1(Σ)‖u‖L2(Σ) (7.1.22)

and (7.1.21) becomes a consequence of

|Dαu(x)| → 0 as |x| → +∞ in Ω, (7.1.23)
{
|Dα∇τ(x)| → 0 as |x| → +∞ in Ω. (7.1.24)

Thus, letting z1 → +∞ in (7.1.20), we derive from (7.1.21) and (7.1.23),

H(z) ≡
∫ +∞

z

(∫
Σ(ξ)

∇u : ∇udΣ

)
dξ =

∫
Σ(z)

(
τu3 − 1

2

∂u2

∂z

)
dΣ. (7.1.25)

Integrating both sides of (7.1.25) between t + l and t + l + 1 with l a non-
negative integer, we obtain∫ t+l+1

t+l

H(z)dz =

∫ t+l+1

t+l

∫
Σ(z)

τu3dΣdz − 1

2

∫
Σ(t+l+1)

u2dΣ+
1

2

∫
Σ(t+l)

u2dΣ.

(7.1.26)
By writing u3 = ∇ · w with w being a solution to (7.1.12) and by arguing as in
the proof of Theorem 7.1.1, from (7.1.26) it follows that∫ t+l+1

t+l

H(z)dz ≤ C0
√
μ‖u‖2H1(Ωt+l,t+l+1)

− 1

2

∫
Σ(t+l+1)

u2dΣ+
1

2

∫
Σ(t+l+1)

u2dΣ.

(7.1.27)

Summing both sides of (7.1.27) from l = 0 to l = +∞ and observing that
limz→+∞

∫
Σ(z)

u2(x′, z)dΣ = 0, we get∫ +∞

t

H(z)dz ≤ C0
√
μH(t) +

1

2

∫
Σ(t)

u2dΣ. (7.1.28)

Since, by (7.1.14), we have∫
Σ(t)

u2dΣ ≤ μ

∫
Σ(t)

∇u : ∇udΣ = −μH ′(t)

which, along with (7.1.28), gives us

H ′(t) +
2

μ

∫ +∞

t

H(s)ds ≤ 2C0√
μ
H(t). (7.1.29)

Thus applying now Theorem 2.3.7 to the inequality (7.1.29), we can complete the
proof of (7.1.5) and hence of the theorem. �
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7.2 Exact rates of convergence for nonlinear PDEs

In this section, we shall exploit Theorems 2.3.17–2.3.21 to establish exact rates of
convergence for nonlinear PDEs. We pick these results from Vărvărucă [933].

7.2.1 Nonlinear diffusion equations and porous medium equations

Let Ω be an open and bounded subset of Rn, n ≥ 1, whose boundary ∂Ω is a C2

manifold. Let β ⊆ R × R be a maximal monotone graph with β−1(0) 	= ∅, and
j : R → R ∪ {+∞} a lower semi-continuous convex function, such that β = ∂j.
We assume that minr∈R j(r) = 0.

First, we introduce a definition.

Definition 7.2.1 ([933]). We say that a function j is of type (Tp) if j−1(0) is
a finite interval, denoted by [β1, β2], there exists a constant ε > 0 such that
(β1 − ε, β2 + ε) ⊆ Dom(j), and the following conditions hold⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r �→ j(r)
(β1−r)p non-increasing on (−∞, β1) ∩Dom(j),

limr↗β1

j(r)
(β1−r)p := b1 > 0,

r �→ j(r)
(r−β2)p

non-increasing on (β2,+∞) ∩Dom(j),

limr↘β2

j(r)
(r−β2)p

:= b2 > 0.

(7.2.1)

Note that these functions are (globally) sub-homogeneous of degree p with
respect to all the points of [β1, β2]. An important example for the following form
in this class is called of type (Ep),

j(r) =

⎧⎨⎩ b1(β1 − r)p, for r < β1,
0, for β1 ≤ r ≤ β2,
b2(r − β2)

p, for r > β2.
(7.2.2)

We now consider some problems of nonlinear PDEs to which Theorems 2.3.17–
2.3.20 in Chapter 2 can be applied.

Problem 7.2.1 ([933]). The problem for the nonlinear diffusion equations⎧⎪⎨⎪⎩
∂u
∂t −Δβ(u) = 0, a.e. in Ω× (0,+∞),

β(u) = 0, a.e. in ∂Ω× (0,+∞),

u(x, 0) = u0(x), a.e. in Ω.

(7.2.3)

For the problem (7.2.3), we assume:

1) lim|r|→+∞
j(r)
|r| = +∞,

2) the operator β is single-valued and continuous on R.

Then it follows from [70, 116] that the problem can be written in the form
(2.3.135) in the space H−1(Ω), endowed with the inner product: for all u, v ∈
H−1(Ω),

〈u, v〉 = (J−1u, v),
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where J = −Δ is the canonical isomorphism (duality mapping) from H1
0 (Ω) onto

H−1(Ω) and (·, ·) is the usual pairing between H1
0 (Ω) and H−1(Ω), with the func-

tion ϕ given by

ϕ(u) =

{ ∫
Ω j(u(x))dx, if u ∈ L1(Ω) and j(u) ∈ L1(Ω),
+∞, otherwise.

The set F of minimizers of ϕ is given by

F =
{
u ∈ L1(Ω) : u(x) ∈ [β1, β2] a.e. x ∈ Ω

}
.

It is easy to show that if j is of type (Tp), then ϕ is (globally) sub-homo-
geneous of degree p with respect to all the points of F . Let us prove that (CpF )
(see Section 2.3 in Chapter 2 for its definition) also holds. To this end, we may
consider the operator P̃ : Lp(Ω) → F, defined a.e. in Ω, by

[P̃ u](x) =

⎧⎨⎩
β1, for u(x) < β1,
u(x), for β1 ≤ u(x) ≤ β2,
β2, for u(x) > β2.

Thus the following inequalities prove (CpF ): for all u ∈ Dom(ϕ) ⊆ Lp(Ω),

|u− Pu|p ≤ |u− P̃ u|p ≤ K1‖u− P̃ u‖p ≤ K2ϕ(u),

where ‖ · ‖ denotes the Lp(Ω) norm, and K1,K2 are positive constants. There-
fore, if j is of type (Tp), then we can apply Theorems 2.3.19–2.3.20 to reach the
conclusions.

Our analysis can be divided into different cases as follows.

Case I: The porous medium equation for the function j of type (Ep) with β1 =
β2 = 0 and b1 = b2 = 1/p, where p > 2.

Note that Theorem 2.3.17 implies that solutions converge to 0 at an exact
algebraic rate in both the H−1(Ω) and Lp(Ω) norms.

Obviously, as in Remark 2.3.7, Theorem 2.3.18 can also be applied with
V := Lp(Ω). Actually, since ϕ is homogeneous of degree p, the problem (7.2.3) is
covered by the result in [306], although not mentioned there. Related results have
been obtained for the problem (7.2.3) by completely different methods in [51].

Case II: The two-phase Stefan problem in the form (7.2.3) in Problem 7.2.1 for a
function j of type (E2), with β1 	= β2.

This problem was mentioned in [116], and analyzed in detail in [70], whose
physical description was also given.

We note that the functions u and β(u) represent the enthalpy, and respec-
tively the temperature of a system composed of water and ice, where phase tran-
sition can take place at the temperature 0; the boundary of the body is being
kept at this critical value of the temperature. In fact, there is a “huge” number of
equilibrium states for the enthalpy.
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We would like to mention the significant process in [384] has been made on
the problem of identifying the limit of a solution for this equation in terms of its
initial data. Theorem 2.3.18 asserts that the enthalpy converges to an equilibrium
state at a rate which is exactly of exponential type in the H−1(Ω) norm, and
also shows that the equilibrium is never reached if the initial state is not one of
equilibrium.

It follows easily from Theorem 2.3.19 that, if p = 2, then

lim
t→+∞

− log
√
ϕ(u(t))

t
= Λ∞, (7.2.4)

and, because of the particular form of ϕ in the Stefan problem, we deduce from
(7.2.4) that

lim
t→+∞

− log ‖β(u(t))‖
t

= Λ∞ (7.2.5)

where ‖ · ‖ denotes the L2(Ω) norm, and thus the convergence of the temperature
to 0 is also exactly at an exponential rate.

However, Theorem 2.3.21 seems not to apply in general in Problem 7.2.1 if
j is of type (Tp), but only when β1 = β2 =: β. In this case, we can show that
Theorem 2.3.21 holds with V := Lp(Ω) and

ψ̃β(u) =

⎧⎨⎩
∫
Ω

j0(u(x))dx, if u ∈ Lp(Ω),

+∞, otherwise,
(7.2.6)

where j0(r) = b1(r
−)p + b2(r

+)p, and the real number β is identified with the
function taking the value β almost everywhere in Ω.

Problem 7.2.2 ([933]). The parabolic equation governed by the pseudo-p-Laplace
operator, p ≥ 2, with nonlinear Neumann boundary conditions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u
∂t −

n∑
i=1

∂

∂xi

(
| ∂u
∂xi

|p−2 ∂u

∂xi

)
= 0, a.e. in Ω× (0,+∞),

−
n∑

i=1

| ∂u
∂xi

|p−2 ∂u

∂xi
cos(−→n ,−→ei ) ∈ β(u), a.e. in ∂Ω× (0,+∞),

u(x, 0) = u0(x), a.e. in Ω,

(7.2.7)

where −→n is the outward normal on ∂Ω, and {−→ei : i ∈ {1, . . . , n}} is the canonical
basis in Rn.

From [70, 116] for p = 2, and [932], (Example 1.5.4, p. 18) for p > 2, it
follows that this equation in (7.2.7) can be written in the form (2.3.135) in the
space L2(Ω) with the usual inner product, and with ϕ given by

ϕ(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

p

n∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣p dx +

∫
∂Ω

j(u(x))dσ,

if u ∈ W 1,p(Ω) and j(u) ∈ L1(∂Ω),
+∞, otherwise.

(7.2.8)



7.2. Exact rates of convergence for nonlinear PDEs 299

Then

F =
{
u ∈ W 1,p(Ω) : ∃ c ∈ [β1, β2] such that u(x) = c, a.e. x ∈ Ω

}
. (7.2.9)

We may show that if j is of type (Tp) for the same value of p as in the pseudo-
p-Laplace operator, then it follows from Wirtinger’s and Friedrichs’ Inequalities
that ϕ is (globally) sub-homogeneous of degree p with respect to all the points
of F , and (CpF ) also holds. Thus, if j is of type (Tp), then Theorems 2.3.19–
2.3.20 hold for solution u to the problem (7.2.7). Moreover, we may prove that the
hypotheses of Theorem 2.3.21 are also satisfied for V := W 1,p(Ω) and, for β1 	= β2,
hence we can derive from Theorem 2.3.21 that

(1) for z ∈ (β1, β2):

ψ̃z(u) =

⎧⎪⎨⎪⎩
1

p

n∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣p dx, if u ∈ W 1,p(Ω),

+∞, otherwise,

(7.2.10)

(2) for z = β1:

ψ̃z(u) =

⎧⎪⎨⎪⎩
1

p

n∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣p dx+

∫
∂Ω

j1(u(x))dσ, if u ∈ W 1,p(Ω),

+∞, otherwise,
(7.2.11)

(3) for z = β2:

ψ̃z(u) =

⎧⎪⎨⎪⎩
1

p

n∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣p dx+

∫
∂Ω

j2(u(x))dσ, if u ∈ W 1,p(Ω),

+∞, otherwise,
(7.2.12)

where j1(r) = b1(r
−)p, and j2(r) = b2(r

+)p, for r ∈ R. For the case β1 =
β2 =: β, we have

ψ̃β(u) =

⎧⎪⎨⎪⎩
1

p

n∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣p dx+

∫
∂Ω

j0(u(x))dσ, if u ∈ W 1,p(Ω),

+∞, otherwise,
(7.2.13)

where j0(r) = b1(r
−)p + b2(r

+)p.

A typical example arising in physics with the form considered here is the
thermostat control process, where the function j involved is of type (E2) with
β1 	= β2, we may refer to [70] for details.

We should point out here that Theorem 2.3.21 can be also applied in some
cases where j is not necessarily of type (Tp), namely:



300 Chapter 7. Asymptotic Behavior of Solutions

• Dirichlet boundary conditions: Dom(j) = {0}, j(0) = 0,

• Neumann boundary conditions: j(r) = 0, for all r ∈ R,

• the Signorini problem: Dom(j) = [0,+∞), j(r) = 0, for all r ≥ 0.

The first two above are easy to handle, while in the third case, in Theorem
2.3.21, we only take V := W 1,p(Ω), and with ψ̃0 = ϕ and respectively, for all
z ∈ (0,+∞),

ψ̃z(u) =

⎧⎪⎨⎪⎩
1

p

n∑
i=1

∫
Ω

| ∂u
∂xi

|pdx, if u ∈ W 1,p(Ω),

+∞, otherwise.

(7.2.14)

Remark 7.2.1 ([933]). It was considered in [306] that the parabolic problem gov-
erned by the standard p-Laplace operator, p > 2, with Dirichlet boundary condi-
tions (i.e., equation (2.3.135)) with H := L2(Ω) and ϕ given by

ϕ(u) =

⎧⎨⎩
1

p

∫
Ω

|∇u|pdx, if u ∈ W 1,p
0 (Ω),

+∞, otherwise.
(7.2.15)

This example fits into the framework described in Remark 2.3.7 with V :=W 1,p
0 (Ω).

7.3 Large-time behavior of solutions for
parabolic equations

In this section, in order to apply Theorem 2.2.11, we shall use the Lyapunov
functional method (i.e., Lemma 2.5.3 of [121]) to prove the large-time behavior of
solutions to the initial boundary value problem of (semilinear) parabolic equations.
We choose these results from Wang [946].

7.3.1 Large-time behavior for semilinear parabolic equations

We shall consider in this subsection the following semilinear wave equations⎧⎪⎨⎪⎩
uit − diΔui = fi(x, t, u1, . . . , um), x ∈ Ω, t > 0, (7.3.1)

ui(x, t) = 0, x ∈ ∂Ω, t > 0, (7.3.2)

ui(x, 0) = φi(x), x ∈ Ω, i = 1, 2, . . . ,m (7.3.3)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, ν denotes the
unit outward normal to ∂Ω.

We first introduce the following lemma.
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Lemma 7.3.1 ([121]). Let fi ∈ C1(Ω×R+×Rm), i = 1, 2, . . . ,m, and let u(x, t) =
(u1(x, t), . . . , um(x, t)) be a global solution to problem (7.3.1)–(7.3.3) such that
there exists a constant K > 0 verifying

|ui(x, t)| ≤ K, x ∈ Ω, t > 0, i = 1, 2, . . . ,m. (7.3.4)

Then there exists a constant M > 0 such that for all t ≥ 1, i = 1, 2, . . . ,m,

‖ui(·, t)‖C2+α(Ω) ≤ M, (7.3.5)

with 0 < α < 1.

Proof. See, e.g., Brown, Dunne and Darduer [121]. �

Lemma 7.3.2 ([946]). Let u(x, t) = (u1(x, t), . . . , um(x, t)) be a bounded solution to
problem (7.3.1)–(7.3.3), u∗

i (x) ∈ C(Ω), i = 1, 2, . . . ,m. Set

g(t) =

∫
Ω

m∑
i=1

[(ui(x, t)− u∗
i (x))

2 + |∇ui(x, t)|2]dx. (7.3.6)

If fi(x, t, u) ∈ C1(Ω×R+ ×Rm), (i = 1, 2, . . . ,m), then there exists a constant β
such that for all 0 ≤ t < +∞,

dg(t)

dt
≤ β. (7.3.7)

Proof. By the divergence theorem and Lemma 7.3.1, we derive that there exist
constants βi (i = 1, 2, . . . ,m) such that

d

dt

∫
Ω

|∇ui(x, t)|2dx = 2

∫
Ω

∇ui · ∇(uit)dx

= −2

∫
Ω

uitΔuidx+ 2

∫
Ω

uit
∂ui

∂ν
ds

= −2

∫
Ω

Δui(diΔui + fi(x, t, u))dx ≤ βi, (7.3.8)

d

dt

∫
Ω

|ui(x, t)− u∗
i (x)|2dx = 2

∫
Ω

(ui − u∗
i )(diΔui + fi(x, t, u))dx ≤ βi. (7.3.9)

The proof is hence complete. �

We now state the first main result, due to Wang [946], in this section.

Theorem 7.3.3 ([946]). Under the assumptions of Lemma 7.3.2, let

g(t) =

∫
Ω

m∑
i=1

|∇ui(x, t)|2dx.
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If uifi(x, u) ≤ 0, i = 1, 2, . . . ,m, then

lim
t→+∞

∫
Ω

m∑
i=1

(|∇ui(x, t)|2 + u2
i (x, t)

)
dx = 0 (7.3.10)

or equivalently,
lim

t→+∞ ‖u‖H1(Ω) = 0. (7.3.11)

Proof. Similarly to the proof of Lemma 7.3.2, we can show that there exists a
constant β such that

dg(t)

dt
≤ β. (7.3.12)

Let

V (t) =

∫
Ω

m∑
i=1

u2
i (x, t)dx.

Then

dV (t)

dt
= 2

∫
Ω

m∑
i=1

uiuitdx = 2

∫
Ω

m∑
i=1

ui(diΔui + fi(x, t, u))dx

≤ 2

∫
Ω

m∑
i=1

diui∇uidx = −2

∫
Ω

m∑
i=1

di|∇ui|2dx

≤ −2d

∫
Ω

m∑
i=1

|∇ui(x, t)|2dx = −2dg(t)

(7.3.13)

with d = min(d1, . . . , dm) > 0. Therefore, we conclude from Theorem 2.2.11

lim
t→+∞

∫
Ω

m∑
i=1

|∇ui|2dx = 0. (7.3.14)

Thus by the Poincaré inequality, it follows from Theorem 2.2.11 that

lim
t→+∞

∫
Ω

m∑
i=1

u2
i dx = 0

which, together with (7.3.14), gives us (7.3.11). The proof is now complete. �

7.3.2 Large-time behavior of solutions for parabolic equations

In this subsection, in order to apply Theorem 2.2.7, we shall consider the following
Cauchy problem for a linear non-homogeneous heat equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − dΔu = f(x, t), x ∈ Ω, t > 0, (7.3.15)

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0, (7.3.16)

u(x, 0) = φ(x), x ∈ Ω (7.3.17)
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where Ω ⊆ Rn is a bounded domain with smooth boundary ∂Ω and unit outward
normal ν.

The next is the second result of this section due to Wang [946].

Theorem 7.3.4 ([946]). Assume that f(x, t) ∈ C(Ω × [0,+∞)), ∂Ω ∈ Cα, φ(x) ∈
Cα(Ω) such that ∫

Ω

f(x, t)dx = 0,

∫
Ω

φ(x)dx = 0, (7.3.18)

and that u(x, t) is a solution to the problem (7.3.15)–(7.3.17). If there exists a
number p > n/2, p ≥ 1 such that

lim
t→+∞

∫
Ω

|f(x, t)|pdx = 0, (7.3.19)

then there is a number p′ > n/2 such that

lim
t→+∞

∫
Ω

|u(x, t)|p′
dx = 0. (7.3.20)

Proof. Set ū(t) = 1
|Ω|

∫
Ω
u(x, t)dx with |Ω| being the volume of Ω. Noting the

following relations from (7.3.15)–(7.3.16) and (7.3.18),

dū(t)

dt
=

1

|Ω|
∫
Ω

f(x, t)dx = 0, ū(0) =
1

|Ω|
∫
Ω

φ(x)dx = 0,

we can derive
ū(t) ≡ 0. (7.3.21)

Now multiplying (7.3.15) by u in L2(Ω), we arrive at

1

2

d

dt

∫
Ω

u2dx = −d

∫
Ω

|∇u|2dx+

∫
Ω

ufdx. (7.3.22)

Thus by the Hölder inequality, we have, for any ε > 0,∫
Ω

ufdx ≤ C(ε)

(∫
Ω

|f |pdx
)2/p

+ ε

(∫
Ω

|u|qdx
)2/q

(7.3.23)

with q = p/(p− 1). Since p > n/2, p ≥ 1, when n > 2, by the embedding theorem,
we know that p > 2n/(n + 2) and H1(Ω) ↪→ Lq(Ω); when n = 2, p > 1, we also
see, by the embedding theorem, that H1(Ω) ↪→ Lq(Ω); when n = 1, we still have
H1(Ω) ↪→ C(Ω) ↪→ L∞(Ω). In one word, we always have

H1(Ω) ↪→ Lq(Ω)

which gives us (∫
Ω

|u|qdx
)2/q

≤ C

(∫
Ω

|∇u|2dx
)
. (7.3.24)
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Inserting (7.3.23)–(7.3.24) into (7.3.22) implies

d

dt

∫
Ω

u2dx ≤ −2d

∫
Ω

|∇u|2dx+ Cε

∫
Ω

|∇u|2dx+ C(ε)

(∫
Ω

|f |pdx
)2/p

. (7.3.25)

Picking ε > 0 small enough in (7.3.25) and using the Poincaré inequality, we
conclude

d

dt

∫
Ω

u2dx ≤ −α

∫
Ω

|∇u|2dx+ C(ε)‖f‖2Lp(Ω). (7.3.26)

By assumption (7.3.19) and Theorem 2.2.7, we can derive

lim
t→+∞

∫
Ω

u2dx = 0. (7.3.27)

Thus when n ≤ 3, we know that p′ = 2 > n/2 and hence (7.3.20) follows from
(7.3.27); when n > 3, multiplying (7.3.15) by |u|m−1u (m > 1) and integrating
the result over Ω, we deduce

1

m+ 1

d

dt

∫
Ω

|u|m+1dx = − 4md

(1 +m)2

∫
Ω

∣∣∣∣∇|u|(m+1)/2

∣∣∣∣2dx+

∫
Ω

fu|u|m−1dx

≤ − 4md

m+ 1

∫
Ω

∣∣∣∣∇|u|(m+1)/2

∣∣∣∣2dx+

∫
Ω

|f ||u|mdx. (7.3.28)

Let w = |u|(m+1)/2, then we derive from (7.3.28) that for all ε > 0,

1

m+ 1

d

dt

∫
Ω

w2dx ≤ − 4md

(m+ 1)2

∫
Ω

|∇w|2dx+

∫
Ω

|f |w2m/(m+1)dx, (7.3.29)

lim
t→+∞

∫
Ω

w4/(m+1)dx = lim
t→+∞

∫
Ω

u2dx = 0, (7.3.30)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ ∫
Ω

|f |w2m/(m+1)dx ≤ C(ε)

(∫
Ω

|f |pdx
)2/p

+ ε

(∫
Ω

w2mq/(m+1)dx

)2/q

. (7.3.31)

Set q0 = 2mq/(m+ 1). Then we have(∫
Ω

w2mq/(m+1)dx

)2/q

= ‖w‖4m/(m+1)
Lq0(Ω) . (7.3.32)

By the Hölder inequality, we have

‖w‖Lq0(Ω) ≤ ‖w‖θLl(Ω)‖w‖1−θ
Lr(Ω), 1/q0 = θ/l + (1− θ)/r, θ ∈ (0, 1). (7.3.33)

Hence from (7.3.33) it follows that for all ε > 0,

‖w‖4m/(m+1)
Lq0(Ω) ≤ C‖w‖4mθ/(m+1)

Ll(Ω)
‖w‖4m(1−θ)/(m+1)

Lr(Ω)

≤ C(ε)‖w‖8mθ/(m+1)

Ll(Ω)
+ ε‖w‖8m(1−θ)/(m+1)

Lr(Ω) .
(7.3.34)
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In (7.3.34), choosing l = 4/(m+1), r = 2n/(n−2) and θ such that 4m(1−θ) =
m+ 1, we derive

1 +m

2mq
=

(1 +m)(p− 1)

2mp
=

(1 +m)(3m− 1)

16m)
+

(1 +m)(n− 2)

8mn

which gives us

m =
1

3
[1 + 8 ((p− 1)/p− (n− 2)/(4n))] . (7.3.35)

Since p > n/2, we easily verify from (7.3.35) that m > 1. Let a = (p− 1)/p− (n−
2)/(4n). Then

m =
1

3
(1 + 8a), 1 +m =

1

3
(4 + 8a). (7.3.36)

Since H1(Ω) ↪→ L2n/(n−2)(Ω) = Lr(Ω), we get

‖w‖2Lr(Ω) ≤ C

∫
Ω

|∇w|2dx+ C

∫
Ω

w2dx

≤ C

∫
Ω

|∇w|2dx+ 2C

∫
Ω

|w − w|2dx+ 2C

∫
Ω

w2dx

≤ C

∫
Ω

|∇w|2dx+ C

∫
Ω

w2dx.

(7.3.37)

Inserting (7.3.31)–(7.3.34) and (7.3.37) into (7.3.29), we can conclude

1

m+ 1

d

dt

∫
Ω

w2dx ≤ − 4md

(m+ 1)2

∫
Ω

|∇w|2dx + C(ε)‖f‖2Lp(Ω) (7.3.38)

+ C(ε)‖w‖8mθ/(1+m)

Ll(Ω)
+ ε

(∫
Ω

|∇w|2dx+

∫
Ω

w2dx

)
.

Choosing ε > 0 small enough in (7.3.38) and applying the Poincaré inequality,∫
Ω

|∇w|2dx ≥ C

∫
Ω

w2dx− C

∫
Ω

w2dx,

we obtain from (7.3.38) that for some constant α > 0,

d

dt

∫
Ω

w2dx ≤ −α

∫
Ω

w2dx+ h(t), (7.3.39)

where

h(t) = C

(∫
Ω

w2dx + ‖f‖2Lp(Ω) + ‖w‖8mθ/(m+1)

Ll(Ω)

)
.

Since

w =
1

|Ω|
∫
Ω

wdx =
1

|Ω|
∫
Ω

|u|(m+1)/2dx

=
1

|Ω|
∫
Ω

|u|(2+4a)/3dx ≤ C

(∫
Ω

u2dx

)(1+2a)/3
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and using (7.3.30) and assumption (7.3.19), we can get

lim
t→+∞h(t) = 0. (7.3.40)

By Theorem 2.2.7 and (7.3.39)–(7.3.40), we have
∫
Ω
w2dx = 0, i.e.,

lim
t→+∞

∫
Ω

|u|m+1dx = 0. (7.3.41)

Multiplying (7.3.15) by |u|m1−1u and integrating the result over Ω, we can get
the corresponding (7.3.28) wherem should be replaced bym1. Let w = |u|(m1+1)/2,
the corresponding (7.3.29)–(7.3.34) hold where m should be replaced by m1.
Choosing l = 2(1 + m1)/(1 + m1), q0 = 2qm1/(1 + m1), θ ∈ (0, 1) such that
4m1(1− θ) = 1 +m1, r = 2n/(n− 2) in (7.3.33) to get

m1 =
1

3

(
1 + 16a/3 + 32a2/3

)
.

Hence
1 +m1 = 4/3 + (4/3)2a+ 2(4/3)2a2.

Similarly to (7.3.41), we can get

lim
t→+∞

∫
Ω

|u|m1+1dx = 0. (7.3.42)

Repeating the same process as the proof of (7.3.41), we can derive

lim
t→+∞

∫
Ω

|u|mk+1dx = 0 (7.3.43)

where mk verifies

1 +mk = 4/3 + (4/3)2a+ (4/3)3a2 + · · ·+ (4/3)k+1ak + 2(4/3)k+1ak+1

> 4/3 + (4/3)2a+ · · ·+ (4/3)k+1ak ≡ g(k, a).

Obviously, as 4a/3 ≥ 1, g(k, a) is divergent to +∞; while as 4a/3 < 1, g(k, a)
converges to

4

3

(
1

1− 4a/3

)
=

4

3− 4a
=

4

3− 4(1− 1/p− 1/4 + 1/(2n))

and 4
3−4(1−1/p−1/4+1/(2n)) > n/2 is equivalent to

8 > 3n− 4n (1− 1/p− 1/4 + 1/(2n)) = 4n (1/p− 1/(2n))

which is further equivalent to n/p < 2+1/2. Since p > n/2, we have n/p < 2+1/2.
Hence when k is large sufficiently, 1+mk > n/2. The proof is thus complete. �



Chapter 8

Asymptotic Behavior of Solutions to
Hyperbolic Equations

This chapter mainly studies the asymptotic behavior of solutions to some hyper-
bolic equations. This chapter includes seven sections. In Section 8.1, we shall use
Theorem 2.3.11 to study the decay of solutions to 1D nonlinear wave equations.
In Section 8.2, we shall exploit Theorem 2.3.14 to investigate the decay property
of the solutions to the initial boundary value problem for a wave equation with a
dissipative term. In Section 8.3, we shall apply Theorem 2.3.6 to establish the poly-
nomial decay rate for nonlinear wave equations. In Section 8.4, we shall employ
Theorems 1.5.13–1.5.14 and Corollary 1.5.2 to establish the decay rate estimates
for the wave equation damped with a boundary nonlinear velocity feedback ρ(ut).
In Section 8.5, we shall apply Theorem 2.3.14 to study the large-time behavior of
energy for a N -dimensional dissipative anisotropic elastic system. In Section 8.6,
we shall use Theorem 1.5.12 to study the stabilization of weakly coupled evolu-
tion equations. In Section 8.7, we shall use Theorem 1.5.9 to study the energy
decay rates of nonlinear hyperbolic systems by a nonlinear feedback which can
be localized on a part of the boundary or locally distributed. Inequalities used in
this chapter are specially chosen and very important in proving the decay rates of
global solutions to some hyperbolic equations.

8.1 Estimates on approximated solutions for
1D nonlinear wave equations

In this section, we shall use Theorem 2.3.11 to study the decay of solutions to 1D
nonlinear wave equations. We choose these results from Nakao [665].

We shall consider the following nonlinear wave equations:

utt − uxx + α(x)ut + ρ(x, ut) + β(x, u) = f(x, t) on [0, π]× R+ (8.1.1)

Y. Qin, Analytic Inequalities and Their Applications in PDEs, Operator  
Theory: Advances and Applications 241, DOI 10.1007/978-3-319-00831-8_8 
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with initial boundary conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), u(0, t) = u(π, t) = 0, (8.1.2)

where R+ = [0,+∞).

Throughout this section, we shall make the following assumptions:

(A1) There exist some constants α0, α1 > 0 such that α(x) ∈ C2[0, π] and
0 < α0 < α(x) ≤ α1, for all x ∈ [0, π].

(A2) ρ(x, s) ∈ C3([0, π]× R) and satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
k0

2∑
i=1

|s|ri+2 ≤ ρ(x, s)s ≤ k1

2∑
i=1

(1 + |s|ri)s2, (8.1.3)

k0

2∑
i=1

|s|ri ≤ ∂ρ(x, s)

∂s
≤ k1

2∑
i=1

(1 + |s|ri) (8.1.4)

for some non-negative constants ri (i = 1, 2).

(A3) β(x, u) ∈ C3([0, π] × R) and satisfies β(x, u)u ≥ 0 and
∫ u

0 β(x, s)ds ≤
k2β(x, u)u for some constant k2 > 0.

Assume initial data (u0, u1) ∈ V0 × V0. Finally, we assume

(A4) f ∈ C3(R+;L2[0, π]) ∩ ⋂2
k=1 C

3−k(R+;Hk[0, π] ∩ Ḣk−1[0, π])(⊂ C2([0, π] ×
R+)) and

δi(t) :=

(∫ t+1

t

‖ Di
tf(s) ‖2L2 ds

)1/2

≤ νie
−λit (8.1.5)

where νi, λi are positive constants, i = 0, 1, 2, 3.

In what follows, we denote by Dt and Dx the partial derivatives ∂/∂t and
∂/∂x, respectively. We refer to Lions [546] for standard function spaces and norms
used here.

Lemma 8.1.1 ([546]). The Sobolev space H1 ≡ H1([0, π]) is embedded continuously
into C1/2([0, π]), in particular, into Lp ≡ Lp([0, π]) 0 < p ≤ +∞, we have for all
u ∈ H1,

‖ u ‖Lp + ‖ u ‖C1/2 ≤ C ‖ u ‖H1 ,

or for all u ∈ H1,

‖ u ‖Lp + ‖ u ‖C1/2 ≤ C′ ‖ u ‖Ḣ1 ,

where C, C′ are positive constants, we define ‖ u ‖Ḣ1=‖ ∇u ‖L2 , which is equiv-

alent to ‖ u ‖H1= (‖ u ‖2L2 + ‖ ∇u ‖L2)1/2 for u ∈ Ḣ1, Ḣ1 is the homogeneous
Sobolev space.
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We now employ Galerkin’s method to construct the solutions. Let {φ(x)}∞k=1

be the eigenfunctions of the operator −(d/dx)2 in L2 with the zero boundary
condition, that is, φk(x) = sin kx. We introduce the subspace V0 of L2 as follows:

V0 = closed linear extension of the eigenfunctions {φk} in H4}.
We assume the following expansion as an mth approximate solution

um = um(x, t) =

m∑
k=1

λm
k (t)φk(x) (8.1.6)

where the functions λm
k (t) (k = 1, 2, . . . ,m) are differentiable real-valued function

for t ∈ R+ which are determined by the system of ordinary differential equations

(D2
t um, φk) + (Dxum, Dxφk) + (α(x)Dtum, φk)

+ (ρ(·, Dtum) + β(·, um), φk) = (f, φk), k = 1, 2, . . . ,m.
(8.1.7)

We assume the initial data (u0, u1) ∈ V0 × V0 and the initial values λm
k (0)

and Dtλ
m
k (0) for the system (8.1.7) are chosen in such a way that as m → +∞,

we have ⎧⎪⎪⎪⎨⎪⎪⎪⎩
um0 = um(x, 0) =

∑m
k=1 λ

m
k (0)φk(x)

→ u0(x) = u0 strongly in H4,

(Dtum)0 = Dtum(x, 0) =
∑m

k=1 Dtλ
m
k (0)φk(x)

→ (Dtu)0(x) ≡ u1(x) strongly in H4.

(8.1.8)

The global existence of functions λm
k (k = 0, 1, 2, . . . ,m) follows from the

standard energy estimate of um(t) and the theory of ordinary differential equa-
tions. We denote by Ci (i = 0, 1, 2, . . . ) various constants which may depend on
other known constants.

Now we can use Theorem 2.3.11 to prove the following theorem.

Theorem 8.1.2 ([665]). Under assumptions (A1)–(A4), we have, for all t ≥ 0,

E(um(t)) ≤ K0(t), (8.1.9)

and
2∑

i=1

∫ t+1

t

‖ Dtum(s) ‖ri+2
Lri+2 ds ≤ C0

(
K2

0(t) + δ20(t)
)

(8.1.10)

where

E(u(t)) =

(
‖ Dtu(t) ‖2L2 + ‖ u(t) ‖2

Ḣ1
+2

∫ π

0

∫ u(t)

0

β(x, s)dsdx

)1/2

and K0(t) > 0 is a constant such that K0(t) ≤ const.e−λ′
0t for some constant

λ′
0 > 0.
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Proof. In fact, the proof is essentially included in Nakao [679] and we only brief
it. From (8.1.6), it follows

E2(um(t+ 1))− E2(um(t)) + 2

∫ t+1

t

{
(ρ(x,Dtum), Dtum) + (αDtum, Dtum)

}
ds

= 2

∫ t+1

t

(f(s), Dtum(s))ds (8.1.11)

which, together with the assumptions (A1)–(A2), gives us

α0

∫ t+1

t

‖ Dtum(s) ‖2L2 ds+ 2k0

2∑
i=0

∫ t+1

t

‖ Dtum(s) ‖ri+2
Lri+2 ds

≤ 1

α0
δ20(t) + E2(um(t))− E2(um(t+ 1)) (≡ A2(t)). (8.1.12)

Hence there exist two points t1 ∈ [t, t+ 1/4] and t2 ∈ [t+ 3/4, t+ 1] such that

α0 ‖ Dtum(ti) ‖2L2≤ 4A2(t), i = 1, 2. (8.1.13)

Multiplying (8.1.7) by λm
k (t), summing over k from 1 to m and integrating

over [t1, t2], we have∫ t2

t1

{
‖ um(s) ‖2

Ḣ1 +(β(·, um(s)), um(s))
}
ds

≤
2∑

i=1

| (Dtum(ti), um(ti)) | +
∫ t2

t1

‖ Dtum(s) ‖2L2 ds

+

∫ t2

t1

{
α1 | (Dtum(s), um(s)) | + | (ρ(·, Dtum(s)), um(s)) |

+ | (f(s), um(s)) |
}
ds (8.1.14)

≤ C1

(
A(t) + δ0(t) +

2∑
i=1

A(t)2(ri+1)/(ri+2)

)
max

s∈[t,t+1]
‖ um(s) ‖Ḣ1 +α−1

0 A2(t)

where we have used the assumption (A2) and the inequality (8.1.4). From (8.1.12)
and (8.1.14), it follows that there exists a point t∗ ∈ [t1, t2] such that

‖ um(t∗) ‖2
Ḣ1 +

(
β(·, um(t∗)), um(t∗)

)
+ α0 ‖ Dtum(t∗) ‖2L2

≤ 2C1

(
A(t) + δ0(t) +

2∑
i=1

A(t)2(ri+1)/(ri+2)

)
max

s∈[t,t+1]
‖ um(s) ‖Ḣ1

+ 2(1 + α−1
0 )A2(t)
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which, together with (A3), implies

E(um(t∗))2 (8.1.15)

≤ C2

{(
A(t) + δ0(t) +

2∑
i=1

A(t)2(ri+1)/(ri+2)

)
max

s∈[t,t+1]
‖ um(s) ‖Ḣ1 +A2(t)

}
.

Therefore, using a similar equality as (8.1.11), we get

max
s∈[t,t+1]

E2(um(s))

≤ E2(um(t∗)) +
∫ t+1

t

2
{
(ρ(x,Dtum(s)), Dtum(s))

+ | (αDtum, Dtum) | + | (f,Dsum) |
}
ds

≤ C3

{(
A(t) + δ0(t) +

2∑
i=1

A(t)2(ri+1)/(ri+2)

)
max

s∈[t,t+1]
E(um(s))

+A2(t) + δ20(t)

}
which yields, by the Young inequality,

max
s∈[t,t+1]

E2(um(s)) ≤ C4

(
A2(t) + δ20(t) +

2∑
i=1

A(t)4(ri+1)/(ri+2)

)
. (8.1.16)

If we assume E(um(t)) ≤ E(um(t + 1)) for some t > 0, then A2(t) ≤
(1/α0)δ

2
0(t) and we derive from (8.1.16)

max
s∈[t,t+1]

E2(um(s)) ≤ C5

(
δ20(t) +

2∑
i=1

δ0(t)
4(ri+1)/(ri+2)

)
which implies for all t ≥ 0,

E2(um(t)) ≤ max

(
max
s∈[0,1]

E2(um(s)),max
t

C5

(
δ20(t) +

2∑
i=1

δ0(t)
4(ri+1)/(ri+2)

))
.

Thus we know

max
s∈[0,1]

E2(um(s)) ≤ E2(um(0)) +
1

α0
δ20(0) ≤ C6(‖ u0 ‖Ḣ1 , ‖ u1 ‖L2, δ0(0))

where C6 denotes a constant depending on ‖ u0 ‖Ḣ1 , ‖ u1 ‖L2 and δ0(0). Thus we
obtain for all t ≥ 0,

E2(um(t)) ≤ C6 + C5max
t

(
δ20(t) +

2∑
i=1

δ0(t)
4(ri+1)/(ri+2)

)
(8.1.17)
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which implies the boundedness of E2(um(t)) on R+. Since A(t) is bounded by
(8.1.17), we deduce from (8.1.6)

max
s∈[t,t+1]

E2(um(s)) ≤ C7

(
A(t)2 + δ20(t)

)
≤ C8

(
E2(um(t))− E2(um(t+ 1)) + δ20(t)

)
which, together with Theorem 2.3.11, implies (8.1.10). The inequality (8.1.11)
follows immediately from (8.1.10). �

8.2 Estimates on approximated solutions
of wave equations

In this section, we shall exploit Theorem 2.3.14 to establish the decay estimates of
the solutions to the initial boundary value problem for a dissipative wave equation.
These results are adopted from Nakao [678].

Consider the following initial boundary value problem for the dissipative wave
equation ⎧⎪⎨⎪⎩

utt −Δu+ ρ(x, ut) = 0, in Ω× [0,+∞), (8.2.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω (8.2.2)

u(x, t) = 0, on ∂Ω (8.2.3)

where ρ(x, v) is a function like ρ(x, v) = a(x)|v|rv, −1 < r < +∞.

Here we shall treat the so-called strong solutions rather than energy finite
solutions. To this end, we assume that ∂Ω is smooth (say, C2 class), and restrict
the growth order of ρ(x, v) as |v| → +∞. Note that when ρ(x, v) = a(x)|v|rv,
Nakao [678] proved the following result: if 0 < r ≤ 2/(N − 2)+, then

E(t) ≤ C1(1 + t)−2η,

with η = min{1/r, 2(r + 1)/r(N − 2)+} and if −1 < r < 0, then

E(t) ≤ C1(1 + t)−2η̃,

with η̃ = min{−(r+1)/r, −2/r(N − 2)+}, where C1 > 0 is a constant depending
on ||u0||H2 + ||∇u1||. We recall that η = 1/r if 1 ≤ N ≤ 4, and the decay rate
η̃ in the latter case coincides with the result in [673], where the case ρ(x, v) =
|v|rv, −1 < r < 0 was treated.

We now make the following hypotheses on ρ(x, v):

(H) ρ(x, v) ∈ C(Ω×R) is monotonically increasing in v and satisfies the following
assumptions:
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(i) a(x)|v|r+2 ≤ ρ(x, v)v ≤ k0a(x)
{
|v|r+2 + |v|2

}
if |v| ≤ 1 with some

−1 < r < +∞,

(ii) a(x)|v|p+2 ≤ ρ(x, v)v ≤ k1a(x){|v|p+2 + |v|2} if |v| ≥ 1 with some
−1 ≤ p ≤ 2/(N − 2) (−1 ≤ p < +∞ if N = 1, 2), where k0, k1 are pos-
itive constants and a(x) is a bounded function satisfying the condition
(8.2.6), i.e.,

a(x) ≥ ε0 > 0 on ω,

where ω is a neighborhood in Ω of Γ(x0) for some x0 ∈ RN .

In fact, there are indeed some functions of ρ(x, v) to satisfy the assumption
(H). For example, when ρ(x, v) = a(x)|v|rv, we can choose ρ = r and the case
−1 < r ≤ 2/(N − 2)+ is included; while when ρ(x, v) = a(x)v/

√
1 + v2, we can

choose r = 0 and ρ = −1.

In the following, we shall use Theorem 2.3.14 to show the next result due to
Nakao [678].

Theorem 8.2.1 ([678]). Assume that ∂Ω is C2 class, u0 ∈ H2(Ω) ∩ H1
0 (Ω), u1 ∈

H1
0 (Ω). Then under the assumption (H), the problem (8.2.1)–(8.2.3) admits a

unique solution

u(t) ∈ W 2,∞([0,+∞), L2(Ω)) ∩W 1,∞([0,+∞), H1
0 ) ∩ L∞([0,+∞), H2(Ω))

satisfying the decay property,

E(t) ≤ C1(1 + t)−2ηi , i = 1, 2, 3, 4, (8.2.4)

where C1 > 0 is a constant depending on ‖u0‖H2 + ‖u1‖H1 and the decay rates
ηi (i = 1, 2, 3, 4) are given as follows corresponding to the different cases.

(1) If r ≥ 0 and 0 ≤ p ≤ 2/(N − 2) ( 0 ≤ p < +∞ if N = 1, 2), then we have

η1 = min

{
1

r
,

2(p+ 1)

p(N − 2)+

}
.

(2) If r ≥ 0 and −1 ≤ p < 0, then we have

η2 = min

{
1

r
,

−2

p(N − 2)+

}
.

(3) If −1 < r < 0, 0 ≤ p ≤ 2/(N − 2) (0 ≤ p < +∞ if N = 1, 2), then we have

η3 = min

{−(r + 1)

r
,

2(p+ 1)

p(N − 2)+

}
.

(4) If −1 < r < 0 and −1 ≤ p < 0, then we have

η4 = min

{−(r + 1)

r
,

−2

p(N − 2)+

}
.
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Remark 8.2.1 ([678])).

(i) If N = 2 and r = 0, then the rates η1, η2 can be chosen arbitrarily large.

(ii) If N = 1 and r = 0, then E(t) ≤ C1e
−λt.

(iii) If p = 0, then the constant C1 in (8.2.7) can be replaced by C0 = C(E(0)) and
the result is valid for the energy finite solutions. In particular, if p = r = 0,
we have the usual exponential decay as in Zuazua [1028].

(iv) More precisely, the estimate (8.2.7) may be written as, for a fixed T > 0,

E(t) ≤
{
E(0)−1/(2ηi) + C−1

1 (t− T )+
}−2ηi

.

First, by the standard method (see Lions and Strauss [544], and [674]) we can
prove the existence and uniqueness of global solutions. Next, we show the decay
estimate (8.2.7). For the proof of Theorem 8.2.1, we need the following lemmas.

Lemma 8.2.2 (The Gagliardo–Nirenberg Interpolation Inequality). Let 1 ≤ r <
p ≤ +∞,1 ≤ q ≤ p and 0 ≤ m. Then we have, for all v ∈ Wm,p ∩ Lr,

||v||Wk,p ≤ C||v||θWm,q ||v||1−θ
r , (8.2.5)

with some constant C > 0 and

θ =

(
k

N
+

1

r
− 1

p

)(
m

N
+

1

r
− 1

q

)−1

provided that 0 < θ ≤ 1 (0 < θ < 1 if p = +∞ and mq = N).

Proof of Theorem 8.2.1. Assume that (u0, u1) ∈ (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω) and
u(t) is the strong solution obtained in Theorem 8.2.1.

Multiplying the equation (8.2.1) by ut and integrating it over [t, t + T ] ×
Ω, T > 0, we have∫ t+T

t

∫
Ω

ρ(x, ut)utdxds = E(t)− E(t+ T ) ≡ Dr+2(t). (8.2.6)

Multiplying the equation (8.2.1) by u and integrating the result, we get

∫ t+T

t

∫
Ω

{|ut|2 − |∇u|2}dxds

= −
∫ t+T

t

∫
Ω

ρ(x, ut)udxds+ (ut(t+ T ), u(t+ T ))− (ut(t), u(t)).

(8.2.7)
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Multiplying the equation (8.2.1) by (x− x0) · ∇u, we can obtain

N

2

∫ t+T

t

∫
Ω

{|ut|2 − |∇u|2}dxds+
∫ t+T

t

∫
Ω

|∇u|2dxds

+

∫ t+T

t

∫
Ω

ρ(x, ut)(x− x0) · ∇udxds

= (ut(t+ T ), (x− x0) · ∇u(t+ T ))− (ut(t), (x − x0) · ∇u)

+
1

2

∫ t+T

t

∫
∂Ω

(x− x0) · ν
∣∣∣∣∂u∂ν

∣∣∣∣2 dσds.
(8.2.8)

Now we take a function η ∈ W 1,∞(Ω) such that

η = 1 on ω̃ , η ≥ 0 and η = 0 on Ω\ω
where ω̃ is an open set in Ω with Γ(x0) ⊂ ω̃ ⊂ ω.

Multiplying the equation (8.2.1) by ηu and integrating the resulting equation,
we arrive at∫ t+T

t

∫
Ω

η|∇u|2dxds = (ut(t)− ηu(t))− (ut(t+ T ), ηu(t+ T )) (8.2.9)

+

∫ t+T

t

∫
Ω

∇η · u∇udxds+

∫ t+T

t

∫
Ω

η|ut|2dxds−
∫ t+T

t

∫
Ω

ρ(x, ut)u dxds

which is valid for any η ∈ W 1,∞(Ω).

Finally, we take a vector field h(x) such that

h = ν on Γ(x0), h · ν ≥ 0 on ∂Ω and h = 0 on Ω\ω̂
where ω̂ is an open set in RN with the property

Γ(x0) ⊂ ω̂ ∩ Ω ⊂ ω .

Then multiplying the equation (8.2.1) by h ·∇u and integrating the resulting
equation, we can conclude

1

2

∫ t+T

t

∫
∂Ω

h · ν
∣∣∣∣∂u∂ν

∣∣∣∣2 dxdσ
= (ut(t), h · ∇u(t))− (ut(t+ T ), h · ∇u(t+ T ))

− 1

2

∫ t+T

t

∫
Ω

∇ · h|ut|2dxds +
∑
i,j

∫ t+T

t

∫
Ω

∂u

∂xi

∂u

∂xj

∂hi

∂xj
dxds

+

∫ t+T

t

∫
Ω

ρ(x, ut)h · ∇udxds

(8.2.10)

which is valid for any vector field h(x).
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Then from (8.2.7) and (8.2.8), it follows that∫ t+T

t

E(s)ds

≤ C

{
||ut(t+ T )||||∇u(t+ T )||+ ||ut(t)||||∇u(t)||

+

∫ t+T

t

∫
Ω

|ρ(x, ut)|(|u|+ |∇u|)dxds+
∫ t+T

t

∫
Γ(x0)

(x− x0) · ν|∂u
∂ν

|2dxds
}

≤ C

{
Dr+2(t) + E(t+ T )

+

∫ t+T

t

∫
Ω

|ρ(x, ut)|(|u|+ |∇u|)dxds+
∫ t+T

t

∫
Γ(x0)

|∂u
∂ν

|2dxds
}
. (8.2.11)

To estimate the last term in (8.2.11), we shall use (8.2.7) and (8.2.8). First,
we derive from (8.2.8)∫ t+T

t

∫
Ω

η|∇u|2dxds ≤ C

{
E(t+ T ) + E(t) +

∫ t+T

t

∫
ω

|u|2dxds

+

∫ t+T

t

∫
ω

|ut|2dxds + C

∫ t+T

t

∫
Ω

|ρ(x, ut)u|dxds
}

(8.2.12)

where we have used the fact that |∇η|2/η is bounded. Second, we infer from
(8.2.10)∫ t+T

t

∫
Γ(x0)

∣∣∣∣∂u∂ν
∣∣∣∣2 dσds ≤

∫ t+T

t

∫
∂Ω

h · ν
∣∣∣∣∂u∂ν

∣∣∣∣2 dσds
≤ C

{
E(t+ T ) + E(t) +

∫ t+T

t

∫
ω

|∇u|2dxds

+

∫ t+T

t

∫
ω

|ut|2dxds+
∫ t+T

t

∫
ω

|ρ(x, ut)||∇u|dxds
}
.

(8.2.13)

It follows from (8.2.12) and (8.2.13) (note that ∂Ω is C2 class) that∫ t+T

t

∫
Γ(x0)

∣∣∣∣∂u∂ν
∣∣∣∣2 dσds

≤ C

{
E(t+ T ) + E(t) +

∫ t+T

t

∫
ω

|u(s)|2dxds

+

∫ t+T

t

∫
ω

|ut|2dxds
}

+

∫ t+T

t

∫
ω

|ρ(x, ut)|(|u|+ |∇u|)dxds.

(8.2.14)
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From (8.2.11) and (8.2.14), we may conclude

TE(t+ T ) ≤
∫ t+T

t

E(s)ds (8.2.15)

≤ C

{
Dr+2(t) + E(t+ T ) +

∫ t+T

t

∫
ω

|u(s)|2dxds

+

∫ t+T

t

∫
ω

|ut|2dxds +
∫ t+T

t

∫
ω

|ρ(x, ut)|(|u|+ |∇u|)dxds
}
.

Thus, taking a large T > 0 and using (8.2.6), we can obtain

E(t) ≤ C

{
Dr+2(t) +

∫ t+T

t

∫
ω

|u(s)|2dxds +
∫ t+T

t

∫
ω

|ut|2dxds

+

∫ t+T

t

∫
Ω

|ρ|(|u|+ |∇u|)dxds
}
. (8.2.16)

Now we fix a large T > 0 in the sequel. In order to estimate the last term in
(8.2.14), we first note that by assumption on ρ, we have∫ t+T

t

∫
Ω

|ρ(x, ut)|(|u|+ |∇u|)dxds

≤ C

{∫ t+T

t

∫
Ω1

a(x)(|ut|+ |ut|r+1)(|u|+ |∇u|)dxds

+

∫ t+T

t

∫
Ω2

a(x)(|ut|+ |ut|p+1)(|u|+ |∇u|)dxds
}

≡ I1 + I2,

(8.2.17)

where we set for each t ≥ 0,

Ω1 = Ω1(t) =
{
x ∈ Ω

∣∣∣|ut(x, t)| ≤ 1
}

and Ω2 = Ω\Ω1.

Second, we note that u(t) satisfies, at least formally,

uttt −Δut +
∂

∂v
ρ(x, ut)utt = 0. (8.2.18)

Since ∂
∂vρ(x, v) ≥ 0 by the monotonicity, multiplying (8.2.16) by utt and

integrating the resulting equation, we get for all t ≥ 0,

||utt(t)||2 + ||∇ut(t)||2 ≤ ||utt(0)||2 + ||∇u(0)||2
≤ ||Δu0 + ρ(x, u1)||2 + ||∇u1||2.
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Here, because −1 ≤ p ≤ 2/(N − 2) (−1 ≤ p < +∞ if N = 1, 2),

||ρ(x, u1)||2 ≤ C

∫
Ω

(|u1|+ |u1|2 + |∇u1|2(p+1))dx

≤ C
(
‖u1‖+ ‖u1‖2 + ‖∇u1‖2(p+1)

)
.

Hence, we have
||utt(t)||2 + ||∇ut(t)||2 ≤ C1 < +∞. (8.2.19)

If ρ(x, v) is not differentiable in the above, we only approximate it appro-
priately by smooth non-decreasing functions ρε(x, v), because the solution u(t) is
given as a limit function of the approximate solutions uε(t), which satisfies (8.2.17)
corresponding to ρε(x, ut). By (8.2.17), we also know

||Δu(t)||2 = ||utt(t) + ρ(x, ut)||2

≤ C
{
||utt(t)||2 + ||ut(t)||+ ||ut(t)||2 + ||∇ut(t)||2(p+1)

}
(8.2.20)

≤ C1 < +∞,

where we have used again the assumption p ≤ 2/(N−2)+. When ρ is independent
of x or a(x) ≥ ε0 > 0 on Ω, we can derive (8.2.20) without the restriction on p
by multiplying the equation by −Δut and integrating, though in the latter case,
we must make an additional assumption on ρ(x, v) with respect to x dependence.
Once the estimate (8.2.20) has been established, the argument below is valid for
p such that −1 ≤ p ≤ 4/(N − 2)+. To estimate Ii (i = 1, 2), in (8.2.17) and derive
difference inequalities on E(t), we need to consider the cases separately.

Case (1): r ≥ 0 and 0 ≤ p ≤ 2/(N − 2) (0 ≤ p < +∞ if N = 1, 2). By Poincaré’s
inequality, we may get,

I1 ≤ C

(∫ t+T

t

∫
Ω1

a(x)|ut|2dxds
)1/2 (∫ t+T

t

||∇u(s)||2ds
)1/2

≤ C

(∫ t+T

t

∫
Ω1

a(x)|ut|r+2dxds

)1/(r+2) √
E(t)

≤ C

(∫ t+T

t

∫
Ω1

ρ(x, ut)utdxds

)1/(r+2) √
E(t)

≤ CD(t)
√
E(t) (8.2.21)

and

I2 ≤ C

∫ t+T

t

∫
Ω2

a(x)|ut|p+1(|u|+ |∇u|)dxds (8.2.22)

≤ C

(∫ t+T

t

∫
Ω2

a(x)|ut|p+2dxds

)(p+1)/(p+2) (∫ t+T

t

∫
Ω

|∇u|p+2dxds
)1/(p+2)
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where we have noted that by (8.2.20) and Lemma 8.2.1,

||∇u||p+2 ≤ C||∇u||1−θ||Δu||θ ≤ C1E
(1−θ)/2(t)

with θ = pN/(2(p+ 2)) (≤ 1).

Hence

I2 ≤ C1(D(t))(r+2)(p+1)/(p+2)(E(t))(4+2p−Np)/(4(p+2)). (8.2.23)

It follows from (8.2.16), (8.2.21) and (8.2.23) that

E(t) ≤ C

(
A2

1(t) +

∫ t+T

t

∫
ω

(|u|2 + |ut|2)dxds
)

(8.2.24)

where

A2
1(t) = C1

(
Dr+2(t) +D2(t) + (D(t))4(r+2)(p+1)/(4+2p+Np)

)
. (8.2.25)

Case (2): 0 ≤ r and −1 ≤ p < 0. Instead of (8.2.22), we have,

I2 ≤ C

∫ t+T

t

∫
Ω2

a(x)|ut|(|u|+ |∇u)|)dxds

≤ C

(∫ t+T

t

∫
Ω2

a(x)|ut|2dxds
)1/2 (∫ t+T

t

||∇u(s)||2ds
)1/2

≤ C

(∫ t+T

t

∫
Ω2

a(x)|ut|p+2dxds

)α/(2(p+2))

×
(∫ t+T

t

∫
Ω

|ut|2N/(N−2)+dxds

)(2−α)(N−2)+/4N √
E(t)

≤ C1

(∫ t+T

t

∫
Ω

ρ(x, ut)utdxds

)α/(2(p+2)) √
E(t)

≤ C1(D(t))α(r+2)/(2(p+2))
√
E(t) (8.2.26)

with

α = 4(p+ 2)/(4− pN + 2p), α = p+ 2− ε, 0 < ε � 1, if N = 2.

Hence, it follows that

E(t) ≤ C

(
A2

2(t) +

∫ t+T

t

∫
ω

(|u|2 + |ut|2)dxds
)
, (8.2.27)
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where

A2
2(t) = C1

(
Dr+2(t) +D2(t) + (D(t))4(r+2)/(4−pN+2p)

)
. (8.2.28)

Here we have noted that the last term in (8.2.28) should be replaced by

(D(t))r+2+ε, 0 < ε � 1,

when N = 2.

Case (3): −1 < r < 0 and 0 ≤ p ≤ 2/(N − 2) (0 ≤ p < +∞ if N = 1, 2). Then,
instead of (8.2.21), we have,

I1 ≤ C

∫ t+T

t

∫
Ω1

a(x)|ut|r+1(|u|+ |∇u|)dxds

≤ C

(∫ t+T

t

∫
Ω1

a(x)|ut|r+2dxds

)(r+1)/(r+2) (∫ t+T

t

∫
Ω

|∇u|r+2dxds

)1/(r+2)

≤ C(D(t))r+1
√
E(t). (8.2.29)

Hence, we obtain (8.2.24) with A2
1(t) replaced by

A2
3(t) = C1

{
Dr+2(t) + (D(t))2(r+1) + (D(t))4(r+2)(p+1)/(4+pN+2p)

}
. (8.2.30)

Case (4): −1 < r < 0 and −1 ≤ p < 0. We obtain, by the above arguments, the
inequality (8.2.24) with A2

1(t) replaced by

A2
4(t) = C1

{
Dr+2(t) + (D(t))2(r+1) + (D(t))4(r+2)/(4−pN+2p)

}
. (8.2.31)

When N = 2, a modification is needed in the last term. Thus we obtain

E2(t) ≤ C

{
A2

i (t) +

∫ t+T

t

∫
ω

(|u|2 + |ut|2)dxds
}

(8.2.32)

for i = 1, 2, 3, 4, which corresponds to the cases (1), (2), (3) and (4), respectively.

To achieve the desired difference inequality on E(t), we need further to es-
timate the last term in (8.2.30). For the second term on the right-hand side in
(8.2.32), we can prove the following claim:

There exists a constant C > 0 such that∫ t+T

t

||u(s)||2ds ≤ C

{
A2

i (t) +

∫ t+T

t

∫
ω

|ut|2dxds
}
. (8.2.33)
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In fact, we prove (8.2.33) by contradiction. If (8.2.33) were false, there exists
a sequence {tn}∞n=1 and a sequence of solutions {un}∞n=1 such that∫ tn+T

tn

||un(s)||2ds ≤ n

{
A2

i (tn) +

∫ tn+T

tn

∫
ω

|unt|2dxds
}

(8.2.34)

for n = 1, 2, 3, . . . , where Ai(t) should be defined with u(t) replaced by un(t). In
the sequel, for simplicity, we write u(t) for un(t), never changing the feature of the
proof.

Setting

λ2
n =

∫ tn+T

tn

||u(s)||2ds

and
vn(t) = u(t+ tn)/λn, 0 < t ≤ T,

we have from (8.2.34)

Q2
n ≡ 1

λ2
n

{
A2

i (tn) +

∫ tn+T

tn

∫
ω

|ut(s)|2dxds
}
→ 0 as n → +∞ (8.2.35)

and ∫ T

0

||vn(s)||2ds = 1. (8.2.36)

Thus, we deduce from the inequality (8.2.32) with t = tn, for sufficiently large n,
and for all 0 ≤ t ≤ T ,

1

2
(||vn(t)||2 + ||∇vn(t)||2) ≤ 1

2
(||vn(0)||2 + ||∇vn(0)||2)

≤ C{Qn
2 + 1} ≤ 2C < +∞.

(8.2.37)

To take a limit of {vn(t)}, we shall first check that

lim
n→+∞

1

λn
ρ(x, ut(t+ tn)) = 0 in L1([0, T ]× Ω).

Indeed, for the case (1), we know (cf. (8.2.21), (8.2.22) and (8.2.24))∫ t+T

t

∫
Ω

|ρ(x, ut(s))|dxds ≤ C1

{
D(t) + (D(t))(r+2)(p+1)/(p+2)

}
≤ C

(
A1(t) +Aβ

1 (t)
) (8.2.38)

with

β = 1 +
Np

2(p+ 2)
> 1.



322 Chapter 8. Asymptotic Behavior of Solutions to Hyperbolic Equations

Hence, as n → +∞,

1

λn

∫ tn+T

tn

∫
Ω

|ρ(x, ut)|dxds ≤ C
{
Qn +Qβ

nλ
β−1
n

}
→ 0. (8.2.39)

For the case (2), we see (cf. (8.2.26))∫ t+T

t

∫
Ω

|ρ(x, ut)|dxds ≤ C1

{
D(t) + (D(t))2(r+2)/(4−pN+2p)

}
≤ C1A2(t)

and as n → +∞,

1

λn

∫ tn+T

tn

∫
Ω

|ρ(x, ut)|dxds ≤ CQn → 0. (8.2.40)

For the above cases (3) and (4), we can also prove easily the same conclusions
as those in (8.2.39) and (8.2.40), respectively. Thus, we have proved that, as n →
+∞

1

λn
ρ(x, ut(t+ tn)) → 0 in L1([0,T]× Ω). (8.2.41)

Therefore, along a subsequence, we have

vn(t) → v(t) weakly star in W 1,∞([0, T ], L2(Ω)) ∩ L∞([0, T ], H1
0 (Ω))

and strongly in L2([0, T ]× Ω)

and the limit function v(t) ∈ W 1,∞([0, T ];L2) ∩ L∞([0, T ], H1
0 ) satisfies, by

(8.2.35), (8.2.36) and (8.2.41),

vtt −Δv = 0 on [0,T]× Ω, (8.2.42)∫ T

0

∫
ω

|vt|2dxds = 0 (8.2.43)

and ∫ T

0

||v(t)||2dt = 1. (8.2.44)

By a standard theory, we know that v(t) belongs, in fact, to C1([0, T ], L2) ∩
C([0, T ];H1

0 ) and the equation (8.2.42), together with the condition (8.2.43), im-
plies

v(x, t) ≡ 0 on [0,T]× Ω.

Indeed, we can apply the inequality (8.2.32) to u(t) ≡ vt(t), i.e., uε ≡ vt ∗
ηε(t), ηε(t) being the mollifier in t, (note that ρ ≡ 0 in this situation). Then,
(8.2.43) implies E(0) = 0 for u(t) = vt(t), that is, vt(0) = vtt(0) = 0 in Ω and
hence, vt(x, t) = 0 or v(x, t) = v(x), independent of t, on Ω which, together
with the boundary condition, implies the above result. For more general result
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on the unique continuation property of wave equations, we refer to [1028]. This
contradicts to another condition (8.2.44). Thus (8.2.33) is valid.

Now by (8.2.33) and the inequality (8.2.32), we can conclude

E(t) ≤ C

(
A2

i (t) +

∫ t+T

t

∫
ω

|ut|2dxds
)

(8.2.45)

for each case i = 1, 2, 3 and 4.

Indeed, we shall estimate the last term in (8.2.45) in terms of four cases
(1)–(4). For the case (1), we get∫ t+T

t

∫
ω

|ut|2dxds ≤ C

∫ t+T

t

∫
Ω

a(x)|ut|2dxds

≤ C

(∫ t+T

t

∫
Ω1

a(x)|ut|r+2dxds

)2/(r+2)

+ C

∫ t+T

t

∫
Ω2

a(x)|ut|p+2dxds

≤ C

⎧⎨⎩
(∫ t+T

t

∫
Ω

ρ(x, ut)utdxds

)2/(r+2)

+

∫ t+T

t

∫
Ω

ρ(x, ut)utdxds

⎫⎬⎭
≤ C

(
D2(t) +Dr+2(t)

)
. (8.2.46)

Thus it follows from (8.2.25), (8.2.32) and (8.2.46) that

E(t) ≤ C1

(
D2(t) + (D(t))4(r+2)(p+1)/(4+2p+Np)

)
≤ C1(D(t))(r+2)κ1

with

κ1 = min

{
2

r + 2
,

4(p+ 1)

4 + 2p+Np

}
,

where we have used the fact that E(t) is bounded. Recalling the definition of D(t),
we get

E1/κ1(t) ≤ C1

(
E(t)− E(t+ T )

)
. (8.2.47)

Therefore, applying Theorem 2.3.14 to (8.2.47), we obtain

E(t) ≤ C1(1 + t)−2η1 (8.2.48)

with

η1 = min

{
1

r
,

2(p+ 1)

(N − 2)+p

}
.

Obviously, if p = r = 0, we have the exponential decay of E(t), which is, in
fact, valid for energy finite solutions. When r > 0, the above decay rate is valid
even for N = 2 since we can take ε > 0 small enough. But, if r = 0 and N = 2,
we should replace η1 by an arbitrarily large number.
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For the case (2): 0 ≤ r and −1 ≤ p < 0, we have (cf. (8.2.26))∫ t+T

t

∫
Ω2

a(x)|ut|2dxds ≤ C1(D(t))4(r+2)/(4−Np+2p)

with a modification for N = 2, and hence, instead of (8.2.46), we get∫ t+T

t

∫
ω

|ut|2dxds ≤ C1

{
D2(t) + (D(t))4(r+2)/(4−Np+2p)

}
. (8.2.49)

Thus from (8.2.28), (8.2.45) and (8.2.49), we can derive

E(t) ≤ C1

{
D2(t) + (D(t))4(r+2)/(4−Np+2p)

}
≤ C1(D(t))(r+2)κ2

and

E1/κ2(t) ≤ C1

(
E(t)− E(T + t)

)
(8.2.50)

with

κ2 = min

{
2

r + 2
,

4

4−Np+ 2p

}
.

Applying Theorem 2.3.14 to (8.2.50), we obtain

E(t) ≤ C1(1 + t)−2η2

with

η2 = min

{
1

r + 1
,

−2

p(N − 2)+

}
, −1 ≤ p < 0.

When r = 0 and N = 2, we should understand that η2 denotes an arbitrarily large
number.

For the case (3), we may get∫ t+T

t

∫
Ω1

a(x)|ut|2dxds ≤ C

∫ t+T

t

∫
Ω1

a(x)|ut|r+2dxds

≤
∫ t+T

t

∫
Ω1

ρ(x, ut)utdxds ≤ CDr+2(t)

(8.2.51)

whence, ∫ t+T

t

∫
ω

|ut|2dxds ≤ C1D
r+2(t).

Thus noting (8.2.30) and (8.2.45), we obtain

E(t) ≤ C1

{
D(t)2(r+1) +D(t)4(r+2)(p+1)/(4+Np+2p)

}
(8.2.52)
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which, by Theorem 2.3.14, implies,

E(t) ≤ C1(1 + t)−2η3

with

η3 = min

{−(r + 1)

r
,

2(p+ 1)

p(N − 2)+

}
.

For N = 2, we also obtain the same result by taking sufficiently small ε > 0.

Finally, for the case (4), we have∫ t+T

t

∫
ω

|ut|2dxds ≤ C1

{
Dr+2(t) + (D(t))4(r+2)/(4−Np+2p)

}
.

and hence, by (8.2.31) and (8.2.45),

E(t) ≤ C1

{
(D(t))2(r+1) + (D(t))4(r+2)/(4−Np+2p)

}
which, together with Theorem 2.3.14, yields

E(t) ≤ C1(1 + t)−2η4

with

η4 = min

{−(r + 1)

r
,

−2

p(N − 2)+

}
.

Therefore the proof of Theorem 8.2.1 is now complete. �

8.3 Polynomial decay rate for nonlinear wave equations

In this section, we shall apply Theorem 2.3.6 to establish the polynomial decay
rate for nonlinear wave equations. Such a result is chosen from Kim [439].

We shall consider the following wave equation with a localized linear dissi-
pation in a three-dimensional bounded domain Ω on which there exists a trapped
ray ⎧⎨⎩

wtt −Δw + α(x)wt = 0, in Ω× R+,
w = 0, on ∂Ω× R+,
(w(·, 0), wt(·, 0)) = (w0, w1) in Ω,

(8.3.1)

where Ω is a bounded domain in R3 with a boundary ∂Ω at least Lipschitz, and α
is a non-negative function in L∞(Ω) and depends on a non-empty proper subset
ω of Ω on which 1/α ∈ L∞(ω) (in particular, {x ∈ Ω : α(x) > 0} is a non-empty
open set).

For non-identically zero initial data (w0, w1) ∈ H1
0 (Ω)×L2(Ω), we define the

energy of the solution w of problem (8.3.1) at time t by

E(w, t) =

∫
Ω

(|wt(x, t)|2 + |∇w(x, t)|2) dx.
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We note that E(w, t) is a continuous decreasing function of time and we have,
for any 0 ≤ t0 < t1,

E(w, t1) = E(w, t0)− 2

∫ t1

t0

∫
Ω

α(x)|wt(x, t)|2 dxdt. (8.3.2)

We shall use Theorem 2.3.6 to study the energy decay rates for the damped wave
equation (8.3.1).

To achieve this result, we shall construct a geometry (Ω, ω) with a trapped ray
(the geometric control condition is then not fulfilled) and establish a polynomial
decay rate, therefore better than the logarithmic one when (w0, w1) ∈ (H2(Ω) ∩
H1

0 (Ω))×H1
0 (Ω).

Now we assume (w0, w1) ∈ (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω).

Let us now introduce our working geometry and explain why there is a
trapped ray.

First, we set D(r1, r2) =
{
(x1, x2) ∈ R2 : |x1| < r1, |x2| < r2

}
where r1, r2 >

0. Next, let m1,m2, ρ > 0. We choose Ω a connected open set in R3 bounded by
Γ1,Γ2,Υ where⎧⎪⎨⎪⎩

Γ1 = D(m1,m2)× {ρ}, with boundary ∂Γ1,

Γ2 = D(m1,m2)× {−ρ}, with boundary ∂Γ2,

Υ is a surface with boundary∂Υ = ∂Γ1 ∪ ∂Γ2.

Therefore, the boundary of Ω is ∂Ω = ∂Γ1 ∪ ∂Γ2 ∪Υ.

Second, we assume that either ∂Ω is C2 with Υ ⊂ (R2\D(m1,m2)) × R (in
particular, Υ ∈ C2) or Ω is convex (in particular Υ is Lipschitz).

Third, we choose ω = Ω ∩ Θ where Θ is a small neighborhood of Υ in R3

such that Θ ∩D(M1,M2)× [−ρ, ρ] = ∅ for some M1 ∈ (0,m1) and M2 ∈ (0,m2).

Now we recall that the bicharacteristics associated to ∂2
t − Δ in the whole

space are curves in the space-time variables and their Fourier variables described by{
x(s) = x0 + 2ξ(s)s,

t(s) = t0 − 2τ(s)s,
and

{
ξ(s) = ξ0,

τ(s) = τ0,

with |ξ(s)|2 − τ2(s) = 0 for all s ∈ [0,+∞), when (x0, t0, ξ0, τ0) ∈ R4 × (R4\{0}).
The rays associated to ∂2

t −Δ in the whole space are the projection of the bichar-
acteristics on the space-time domain. In particular, for all s ∈ [0,+∞),⎧⎪⎨⎪⎩

x(s)− x0 − 2ξ0s = 0,

t(s) + 2τ0s = 0,

|ξ0|2 − τ20 = 0,

(8.3.3)

with, t0 = 0 and τ0 	= 0. For the definition of generalized bicharacteristics, we refer
to [614].
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Recall that the boundary ∂Ω (and more precisely Υ) is Lipschitz or of class
C2 will not create difficulties. Following the idea in [439], we may define the ray
starting at x0 ∈ Ω with direction ξ0 ∈ S2 (S is the unit sphere in R3, i.e., |ξ0| = 1)
by a continuous curve x(s) parametrized by s satisfying the following rules: it is
the solution of problem (8.3.3) with initial data x(0) = x0 for s ∈ [0, s0] until it
hits the boundary ∂Ω at x(s0); if for some s1 > 0, x(s1) ∈ Υ, the parametrization
of the curve x(s) stops; if for some s1 > 0, x(s1) ∈ (Γ1∪Γ2)\(∂Γ1∪∂Γ2), the curve
x(s) is reflected like a billiard ball following the rule of geometric optics “angle of
incidence = angle of reflection” until it hits the boundary ∂Ω at x(s2) for some
s2 > s1. We shall only consider the above geometry (Ω, ω). Recall that the real
function α ∈ L∞(ω) satisfies α ≥ 0 and 1/α ∈ L∞(Ω).

We use Theorem 2.3.6 to prove the next theorem due to [439].

Theorem 8.3.1 ([439]). There exist constants C > 0 and δ > 0 such that for any
t > 0 and any initial data (w0, w1) ∈ (H2(Ω) ∩H1

0 (Ω)) ×H1
0 (Ω), the solution of

problem (8.3.1) satisfies∫
Ω

(|wt(x, t)|2 + |∇w(x, t)|2) dx ≤ C

tδ
‖(w0, w1)‖2(H2(Ω)∩H1

0 (Ω))×H1
0 (Ω). (8.3.4)

Remark 8.3.1 ([439]). The polynomial decay rate for the damped wave equations
holds in particular for the following two choices of a non-negative real function
α : α > 0 a.e. on X where X is a neighborhood of Υ in R3; α ∈ C(Ω) such that
α > 0 on Υ. Indeed, with such a choice of α, we may choose ω as above.

Remark 8.3.2 ([439]). In a two-dimensional square domain, the polynomial de-
cay rate for the damped wave equations was established by Liu and Rao [490],
which was generalized recently by Burq and Hitrik [123] for partially rectangular
planar domain by using resolvent estimates. In the one-dimensional case, a sharp
polynomial decay rate was established by Zhang and Zuazua [995] for a wave-heat
coupled system where the dissipation acts through the heat equation on a proper
sub-domain.

To achieve the above polynomial decay rate, we need to establish a kind of
observability estimates for the wave equations, i.e., we have the following result.

Theorem 8.3.2 ([439]). The following two statements are equivalent.

(i) There exist constants C > 0 and δ > 0 such that for any non-identically zero
initial data (u0, u1) ∈ (H2(Ω) ∩H1

0 (Ω))×H1
0 (Ω), the solution u of the wave

equation ⎧⎪⎨⎪⎩
utt −Δu = 0, in Ω× R,

u = 0, on ∂Ω× R,

(u(·, 0), ut(·, 0)) = (u0, u1) in Ω

(8.3.5)
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satisfies

‖(u0, u1)‖2H1
0 (Ω)×L2(Ω) ≤ C

∫ CΛ1/δ

0

∫
Ω

α(x)
(|ut(x, t)|2 + |u(x, t)|2) dxdt,

(8.3.6)

where Λ =
‖(u0,u1)‖2

(H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)

‖(u0,u1)‖2

H1
0
(Ω)×L2(Ω)

.

(ii) There exist constants C > 0 and δ > 0 such that for any non-identically zero
initial data (w0, w1) ∈ (H2(Ω) ∩H1

0 (Ω))×H1
0 (Ω), the solution w of problem

(8.3.1) satisfies

E(w, t) ≤ C

tδ

∥∥∥(w0, w1)
∥∥∥2

(H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)
.

Clearly, the proof of Theorem 8.3.1 now reduces to (8.3.6) of Theorem 8.3.2.
We also note that (8.3.6) looks like an observability estimate where the time of
observability depends on the quantity Λ which can be seen as a measure of the
frequency of the initial data (u0, u1).

In fact, by an easy minimization technique, (8.3.6) is equivalent to that there
exists a constant C > 0 such that for any h > 0 sufficiently small, and for any u,
solution of (8.3.5) with initial data (u0, u1) ∈ (H2(Ω) ∩ H1

0 (Ω)) × H1
0 (Ω), there

holds that

‖(u0, u1)‖2H1
0 (Ω)×L2(Ω) ≤ C

∫ C(1/h)1/δ

0

∫
Ω

α(x)
(∣∣ut(x, t)

∣∣2 + ∣∣u(x, t)∣∣2) dxdt

+ h
∥∥∥(u0, u1)

∥∥∥2

(H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)
.

Following [439], we shall divide the proof of (8.3.6) into two steps:

1) We shall choose ω0 an adequate subset of D(m1,m2) × (− ρ
4 ,

ρ
4 ) such that

any ray starting at any x0 ∈ Ω with any direction ξ0 ∈ S2 will meet a
suitable compact set in ω0∪ω, this will imply an observability estimate with
ω0 ∪ ω × (0, T ) being the domain of observation for some T > 0.

2) Since 1/α ∈ L∞(ω), we only need to establish a kind of Hölder interpolation
estimate against the fact that if u = 0 on ω × (0, C(1/h)1/δ) for any h > 0
sufficiently small, then u = 0 on ω0 ∪ ω × (0, T ).

To show this fact, by a classical trace inequality valid for any solution of the
wave equation with homogeneous Dirichlet boundary condition, we only replace
the term

u|ω×(0,C(1/h)1/δ) by ∂νu
∣∣∣
Υ×(−C(1/h)1/δ,C(1/h)1/δ)

in the above Hölder interpolation estimate (see Theorem 8.3.3) where ν is the unit
outward normal to ∂Ω.
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The notation in this section is as follows: c denotes a positive constant which
only may depend on (m1,m2, ρ), and γ will denote an absolute constant larger
than one. The value of c > 0 and γ > 1 may change from line to line.

Proof of Theorem 8.3.2. The proof uses many classical techniques for hyperbolic
systems (see, e.g., [548]) as a decomposition argument in order to deal with the
wave equation with a second member and as a useful transformation for deriving
estimates with weaker norms from a stronger game of norms.

We now prove (ii) ⇒ (i). First, let (u0, u1) = (w0, w1). Next, we combine the
polynomial decay rate for E(w, t) and the formula (8.3.2) applied with t0 = 0 and
t1 = t, in order to get by choosing

t =

(
2C‖(u0, u1)‖2(H2(Ω)∩H1

0 (Ω))×H1
0 (Ω)

‖(u0, u1)‖2H1
0 (Ω)×L2(Ω)

)1/δ

,

the following inequality

‖(u0, u1)‖2H1
0 (Ω)×L2(Ω) ≤ 4

∫ (2CΛ)1/δ

0

∫
Ω

α(x)|wt(x, t)|2 dxdt.

Since u− w solves a damped wave equation with a second member αut and with
identically zero initial data, we conclude that

‖(u0, u1)‖2H1
0 (Ω)×L2(Ω) ≤ 16

∫ (2CΛ)1/δ

0

∫
Ω

α(x)|ut(x, t)|2 dxdt (8.3.7)

holds with the same δ as the one of the statement (ii).

Next, we prove (i) ⇒ (ii). We divide the proof into three steps.

Step 1. Let (w0, w1) = (u0, u1). Then by using the above similar decomposition
argument, it follows from (i) that for the solution w of problem (8.3.1), there holds
that

E(w, 0) ≤ 2C
(
1 + c‖α‖L∞(Ω)C

2Λ2/δ
)∫ CΛ1/δ

0

∫
Ω

α(x)
(|wt(x, t)|2 + |w(x, t)|2) dxdt,

which also holds for any non-identically zero initial data (w0, w1) ∈ (H2(Ω) ∩
H1

0 (Ω))×H1
0 (Ω).

Step 2. We only need to apply the previous inequality to ∂tw̃ where w̃ is a solu-
tion of problem (8.3.1) with non-identically zero initial data (w̃(·, 0), w̃t(·, 0)) =
(w̃0, w̃1) ∈ (H2(Ω)∩H1

0 (Ω))
2 satisfying the compatibility condition Δw̃0 −αw̃1 ∈

H1
0 (Ω). Noticing that E(w̃, 0) ≤ c(1 + ‖α‖L∞(Ω))E(w̃t, 0), there exists some con-

stant c1 > 0 depending on (Ω, ω, α, δ) such that

E(w̃, 0) + E(w̃t, 0) ≤ c1Λ̃
2/δ

∫ c1Λ̃
1/δ

0

∫
Ω

α(x)
(∣∣w̃tt(x, t)

∣∣2 + ∣∣w̃t(x, t)
∣∣2) dxdt,
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with

Λ̃ =
E(w̃t, 0) + ‖(w̃1,Δw̃0 − αw̃1)‖2(H2(Ω)∩H1

0 (Ω))×H1
0 (Ω)

E(w̃, 0) + E(w̃t, 0)
.

This, by a translation on the time variable and (8.3.2), implies that there
is some constant c1 > 0 depending on (Ω, ω, α, δ) such that it holds that for all
s ≥ 0,

H(s) ≤ c1

(
1

H(s)

)2/δ
[
H(s)−H

(
c1

(
1

H(s)

)1/δ

+ s

)]
, (8.3.8)

where

H(s) = σ
E(w̃, s) + E(w̃t, s)

E(w̃t, 0) + ‖(w̃1,Δw̃0 − αw̃1)‖2(H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)

and σ > 0 is a constant depending on (Ω, ω, α) such that H is bounded by one.
Applying Theorem 2.3.6 to (8.3.8), we conclude that there are constants C > 0
and δ > 0 such that for all t > 0,

E(w̃t, t) ≤ C

tδ

(
E(w̃t, 0) + ‖(w̃1,Δw̃0 − αw̃1)‖2(H2(Ω)∩H1

0 (Ω))×H1
0 (Ω)

)
.

Step 3. We may use a well-known transformation in order to deduce the desired
statement (ii) from Step 2. Indeed, we apply the previous inequality to

w̃(·, t) =
∫ t

0

w(·, �) d� − (−Δ)−1(w1 + αw0) in Ω.

This thus completes the proof of Theorem 8.3.2. �

8.4 Decay rate estimates for dissipative wave equations

In this section, we shall employ Theorems 1.5.13–1.5.14 and Corollary 1.5.2 to
establish the decay rate estimates for the wave equation damped with a boundary
nonlinear velocity feedback ρ(ut). We adopt these results from Martinez [587].

We shall study the decay property of the solutions of the wave equation
damped by a nonlinear boundary feedback⎧⎪⎪⎪⎨⎪⎪⎪⎩

utt −Δu = 0 in Γ× R+, (8.4.1)

u = 0 on Γ0 × R+, (8.4.2)

∂νu+m · νρ(ut) = 0 on Γ1 × R+, (8.4.3)

u(0) = u0, ut(0) = u1 (8.4.4)

where Ω is a bounded open domain of class C2 in RN and let {Γ0,Γ1} be a partition
of its boundary Γ. By ν we denote the outward unit normal vector to Γ and fix
x0 in RN , we define

m(x) = x− x0.
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Usually, we can define the energy of the problem (8.4.1)–(8.4.4) by

E(t) =
1

2

∫
Ω

(
u2
t + |∇u|2

)
dx.

In the sequel, we shall use Theorems 1.5.13–1.5.14 and Corollary 1.5.2 to show an
explicit decay estimate of the energy even if ρ has not a polynomial behavior in
zero.

Assume ρ : R → R is a non-decreasing continuous function such that ρ(0) =
0. Moreover, we assume that{

Γ0 	= ∅, Γ0 ∩ Γ1 = ∅, (8.4.5)

m · ν ≤ 0 on Γ0, and m · ν ≥ 0 on Γ1. (8.4.6)

Indeed, there exist some examples to verify (8.4.5)–(8.4.6), e.g., if Ω = Ω1\Ω0,
where Ω0 and Ω1 are convex sets such that Ω0 ⊂ Ω1, then (8.4.5)–(8.4.6) are
satisfied with Γ0 = ∂Ω0,Γ1 = ∂Ω1, and x0 ∈ Ω0.

We also assume that there exist a strictly increasing and a odd function g of
class C1 on [−1, 1] and two positive constants c1 and c2 such that{

|g(y)| ≤ |ρ(y)| ≤ |g−1(y)|, for all y ∈ [−1, 1],

c1|y| ≤ |ρ(y)| ≤ c2|y|, for all |y| ≥ 1,
(8.4.7)

where g−1 denotes the inverse function of g. Set

G(y) = yg(y), H(y) = g(y)/y, (8.4.8)

where H(0) = g′(0). As usual, denote

H1
Γ0
(Ω) :=

{
u ∈ H1(Ω); u = 0 on Γ0

}
.

The following standard theorem due to Komornik [449] concerns the existence
and the regularity of the solutions.

Theorem 8.4.1 ([449]). Assume (8.4.5)–(8.4.6) hold.

(i) If (u0, u1) ∈ H1
Γ0
(Ω) × L2(Ω), then problem (8.4.1)–(8.4.4) has a unique

solution such that

u ∈ C(R+, H1
Γ0
(Ω)) ∩ C1(R+, L2(Ω)). (8.4.9)

The energy of the solution u defined by

E(t) =
1

2

∫
Ω

(
u2
t + |∇u|2

)
dx (8.4.10)

is non-increasing.
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(ii) Moreover, if ρ is globally Lipschitz, (u0, u1) ∈ (H2(Ω) ∩ H1
Γ0
(Ω)) × H1

Γ0
(Ω)

satisfying

∂νu
0 +m · νρ(u1) = 0 on Γ1, (8.4.11)

then the solution of problem (8.4.1)–(8.4.4) has the stronger regularity prop-
erty {

u ∈ L∞(R+, H2(Ω)), ut ∈ L∞(R+, H1
Γ0
(Ω)), (8.4.12)

utt ∈ L∞(R+, L2(Ω)). (8.4.13)

We shall use Theorems 1.5.13–1.5.14 and Corollary 1.5.2 to show the next
result due to Martinez [587].

Theorem 8.4.2 ([587]). Assume that (8.4.5)–(8.4.7) hold. Then for any (u0, u1) ∈
H1

Γ0
(Ω) × L2(Ω), the solution u to problem (8.4.1)–(8.4.4) satisfies the estimate

for all t ≥ 1,

E(t) ≤ C

(
G−1

(
1

t

))2

, (8.4.14)

with a constant C > 0 only depending on the initial energy E(0) and in a con-
tinuous way. Moreover if H(0) = 0 and H is non-decreasing on [0, η] for some
constant η > 0, then we have the following better estimate for all t ≥ 1,

E(t) ≤ C

(
g−1

(
1

t

))2

, (8.4.15)

with a constant C > 0 only depending on the initial energy E(0) in a continuous
way.

Note that the case where ρ has a polynomial behavior in zero corresponds to
the case g(y) = cyp for y ∈ [0, 1]. We refer to [587] for some examples.

Proof. To prove Theorem 8.4.2, following [587], we can divide three parts in the
following.

(I) First, we need to use the multiplier method to give the following three lemmas
whose proofs can be found in [587].

Lemma 8.4.3 ([587]). The function E : R+ → R+ is non-increasing, locally abso-
lutely continuous and

E′(t) = −
∫
Γ1

m · νutρ(ut)ds. (8.4.16)

Lemma 8.4.4 ([587]). Let φ : R+ → R be a function of class C2. For all 0 ≤ S <
T < +∞, letting

M(u) = 2m · ∇u + (N − 1)u, (8.4.17)
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then we have

2

∫ T

S

E2(t)φ′(t)dt

=

∫ T

S

Eφ′
∫
Γ

(
M(u)∂νu+m · ν(u2

t − |∇u|2)) dsdt
+

∫ T

S

(E′φ′ + Eφ′′)
∫
Ω

utM(u)dxdt−
[
Eφ′

∫
Ω

utM(u)dx

]T
S

.

(8.4.18)

Now assume that φ is a strictly increasing concave function. Therefore, φ′ is
a bounded function on R+. Denote λ the maximum of φ′.

Lemma 8.4.5 ([587]). There exists a positive constant c such that for all 0 ≤ S < T ,
we have∫ T

S

E2(t)φ′(t)dt ≤ cE2(S) + c

∫ T

S

E(t)φ′(t)
(∫

Γ1

m · ν
(
u2
t + ρ(u2

t )
)
ds

)
dt.

(8.4.19)

(II) Next, we show first estimate on the decay rate of the energy.

Assume now that φ is a strictly increasing concave function of class C2 on
[0,+∞) such that as t → +∞,

φ(t) → +∞, φ′(t) → 0, (8.4.20)

(e.g., t �→ ln(1 + t) ). Now introduce for all t ≥ 1,

h(t) = g−1(φ′(t)), (8.4.21)

such that h is a decreasing positive function satisfying as t → +∞,

h(t) → 0.

Following [587], we can prove the next two lemmas.

Lemma 8.4.6 ([587]). There exists a positive constant c such that for all 1 ≤ S <
T < +∞,∫ T

S

E(t)φ′(t)
∫
Γ1

m · ν u2
tdsdt ≤ cE2(S) + cE(S)

∫ T

S

φ′(t)
(
g−1(φ′(t))

)2

dt.

(8.4.22)

Lemma 8.4.7 ([587]). There exists a positive constant c independent of the constant
of Lipschitz of ρ such that for all 1 ≤ S < T < +∞,∫ T

S

E(t)φ′(t)
∫
Γ1

m · νρ2(ut)dsdt ≤ cE2(S) + cE(S)

∫ T

S

φ′(t)
(
g−1(φ′(t))

)2

dt.

(8.4.23)
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Now we assume that φ satisfies the following additional property:∫ +∞

1

φ′(t)
(
g−1(φ′(t))

)2

dt converges, (8.4.24)

which, indeed, is closely related to the behavior of g near 0 and the decay rate of
φ′ at infinity. Then it follows from [587] that there exists a constant c > 0 such
that for all 1 ≤ S < T ,∫ T

S

E2(t)φ′(t)dt ≤ cE2(S) + cE(S)

∫ +∞

S

φ′(t)
(
g−1(φ′(t))

)2

dt, (8.4.25)

which, in particular, implies that for all S ≥ 1,∫ +∞

S

E2(t)φ′(t)dt ≤ cE(S). (8.4.26)

Define F (t) := E(t+ 1) and φ̃(t) := φ(t+ 1) on [0,+∞). Thus we can apply
the Bellman–Gronwall inequality in Theorem 1.5.13 with σ = 1 to obtain a decay
rate estimate on F , so on E : there exists a constant C > 0 depending on E(1) in
a continuous way such that for all t ≥ 1,

E(t) ≤ C

φ(t)
, (8.4.27)

which readily gives us a first estimate of the decay rate of the energy.

Now we define ψ for all t ∈ [1,+∞) by

ψ(t) = 1 +

∫ t

1

1

g( 1τ )
dτ. (8.4.28)

Then ψ is a strictly increasing function of class C2 on [1, +∞) such that as t →
+∞,

ψ′(t) =
1

g(1t )
→ +∞,

which gives us as t → +∞,

ψ(t) → +∞,∫ +∞

1

(
g−1

(
1

ψ′(τ)

))2

dτ =

∫ +∞

1

1

τ2
dτ < +∞.

Define φ for all t ∈ [1 +∞) by

φ(t) = ψ−1(t). (8.4.29)
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Obviously, φ is a strictly increasing concave function of class C2 on [1,+∞)
that satisfies all the special assumptions (see [587] for details). With this special
modified φ, it follows from (8.4.25) that∫ T

S

E2(t)φ′(t)dt ≤ cE2(S) + cE(S)

∫ +∞

S

φ′(t)
(
g−1(φ′(t))

)2

dt

≤ cE2(S) + cE(S)

∫ +∞

φ(S)

(
g−1(φ′(φ−1(τ)))

)2

dτ

≤ cE2(S) + cE(S)

∫ +∞

φ(S)

(
g−1

(
1

(φ−1)(τ)

))2

dτ

≤ cE2(S) + cE(S)

∫ +∞

φ(S)

1

τ2
dτ = cE2(S) + c

E(S)

φ(S)
.

(8.4.30)

Then we can apply Theorem 1.5.14 with σ = σ′ = 1 to obtain that for all t ≥ 1,

E(t) ≤ C

φ2(t)
, (8.4.31)

which is clearly a better estimate than (8.4.27). For the rest of the proof of (8.4.14),
we may refer the reader to [587]. �
(III) Third, we shall derive the second estimate on the decay rate of the energy.

The proof of this part can be found in [587]. Thus the proof of Theorem 8.4.2
is complete. �

8.5 Energy decay for a dissipative anisotropic

elastic system

In order to apply Theorem 2.3.14 in this section, we shall study the large-time be-
havior of energy for a N -dimensional dissipative anisotropic elastic system. These
results are chosen from Qin, Liu and Deng [787].

We denote by Ω an open bounded domain of RN with sufficiently smooth
boundary ∂Ω. If φ = φ(x, t) is the displacement vector field, then the system in
question reads:

φ′′
i − [Aijklφk,l],j + f̂ iφ′

i = 0 in Ω× [0,+∞) (8.5.1)

where i, j, k, l = 1, 2, . . . , N and φ(x, t) = (φ1, . . . , φN ), ω′ = ∂ω/∂t, ω′′ =
∂2ω/∂2t, ω,j = ∂ω/∂xj, and we use Einstein’s convention on summing over re-

peated lower indices, and f̂ i = f̂ i(x) (i = 1, 2, . . . , N) are smooth non-negative
functions on Ω which may vanish somewhere on Ω.
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The initial conditions and boundary conditions are given by{
φ(x, 0) = φ0(x), φ′(x, 0) = φ1(x), (8.5.2)

φ|∂Ω = 0. (8.5.3)

The functions Aijkl(x) (i, j, k, l = 1, 2, . . . , N) are sufficiently smooth func-
tions satisfying

Aijkl = Ajikl = Aklij (8.5.4)

and there are two positive constants α and β such that for any N × N matrix
(ξij)N×N , there holds on Ω

Aijklξijξkl ≥ αξijξij , (8.5.5)
{
(Aijkl − qμAijkl,μ)ξijξij ≥ βAijklξijξkl (8.5.6)

where μ = 1, 2, . . . , N.

Recall that when N = 3 and f̂ i = ĝi ≡ 0, Beale [74, 80, 112] proved the
global existence and regularity of solutions for linear homogeneous wave equations
with acoustic boundary in a Hilbert space of data with finite energy by means
of semigroup methods, and the asymptotic behavior was obtained in [80], but
no decay rate was given there. Muñoz Rivera and Qin [651] also studied the same
model as in [74, 80, 112] and obtained the polynomial decay estimate of the energy.
For the following general case⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ′′
i − [Aijklφk,l],j + f̂ iφ′

i = 0, in Ω× [0,+∞) (8.5.7)

f̂ i ≥ 0, i = 1, 2, . . . , N, f̂(x) = (f̂1, . . . , f̂N ) 	≡ 0, for all x ∈ Ω, (8.5.8)

mi(x)ε
′′
i (x, t) + di(x)ε

′
i(x, t) + ki(x)εi(x, t) = −ρφ′

i(x, t), on Γ0, (8.5.9)

ε′i(x, t) + gi = Aijklφk,lνj , on Γ0, (8.5.10)

gi(x, t) = −ĝiφ′
i(x, t), i = 1, 2, . . . , N (8.5.11)

when f̂ i = ĝi ≡ 0, Qin and Muñoz Rivera [797] established the polynomial decay of
energy for problem (8.5.17)–(8.5.21). The object of this section is to use Theorem
2.3.13, by combining the methods in [677, 1028], to prove the decay property of
energy for problem (8.5.1)–(8.5.3).

We only use standard function spaces and omit their definitions, but we note
that || · || denotes the L2 norm on Ω.

Define the space

H = (H1
0 (Ω))

N × (L2(Ω))N , with H1
0 (Ω) = {u : u ∈ H1(Ω), u|∂Ω = 0}.

It follows that H together with the inner product

(u,w) =

∫
Ω

(uN+jwN+j +Aijklui,jwk,l)dx (8.5.12)
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is a Hilbert space, where u = (u1, u2, . . . , u2N )T , w = (w1, w2, . . . , w2N )T ∈ H.
Here the superscript “T ” denotes the transposition of a vector. Thus from (8.5.5)
it follows that the induced norm on H by the above inner product

|u|2H =

∫
Ω

(uN+juN+j +Aijklui,juk,l)dx

is equivalent to the usual norm on H

||u||H =

(∫
Ω

(uN+juN+j + ui,jui,j)dx

)1/2

for any u = (u1, u2, . . . , u2N)T ∈ H.

Define an operator A on H so that for smooth

U = (φ, φt) = (φ1, . . . , φN , φ′
1, . . . , φ

′
N ) ∈ R2N ,

equations (8.5.1)–(8.5.3) are equivalent to U(t) ∈ D(A) and

Ut = AU

where U = (u1, u2, . . . , u2N )T satisfies

ui = φi, uN+i = φ′
i, i = 1, 2, . . . , N (8.5.13)

and

D(A) =
{
U = (u1, u2, . . . , u2N )T ∈ H : uN+i ∈ H1

0 (Ω),

(Aijkluk,l),j − f̂ iuN+i ∈ L2(Ω)
}
.

(8.5.14)

Obviously, we can derive from (8.5.1)–(8.5.3) and (8.5.14) that

u′
i = uN+i (8.5.15)

{
u′
N+i = (Aijkluk,l),j − f̂ iuN+i (8.5.16)

where i = 1, 2, . . . , N .

For any U ∈ D(A), it follows from (8.5.12)–(8.5.16) and the definition of
D(A) that

(AU,U) =

∫
Ω

AijkluN+k,lui,j + [(Aijkluk,l),j − f̂ iuN+i]uN+idx

=

∫
Ω

AijkluN+k,lui,jdx +

∫
∂Ω

Aijkluk,lνjuN+idS

−
∫
Ω

AijkluN+i,juk,ldx−
∫
Ω

f̂ iuN+iuN+idx

= −
∫
Ω

f̂ iuN+iuN+idx ≤ 0

(8.5.17)
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which implies that A is a dissipative operator on H. Thus, similar to the proofs in
[74, 80, 112, 798], we can obtain the following results on the global existence and
regularity of global solutions.

Theorem 8.5.1 ([787]). The operator A defined on H is closed, densely defined and
dissipative. It generates a C0-semigroup on H.

Theorem 8.5.2 ([787]). Assume that U0 ∈ H is C∞ and vanishes near ∂Ω, let U(t)
be the solution of U ′(t) = AU(t), t ≥ 0, with U(0) = U0. Then u1(t), . . . , u2N (t) ∈
C∞(Ω) for any t ≥ 0.

We now introduce the following energy functions⎧⎨⎩ E0(t;φ) =
1

2

∫
Ω

(φ′
iφ

′
i + Aijklφi,jφk,l)dx, (8.5.18)

Eh(t;φ) = E0(t; ∂
h
t φ), h = 1, 2, . . . ,m. (8.5.19)

If f̂ i(x) (i = 1, 2, . . . , N) are smooth functions and φ(x, t) = (φ1(x, t), . . . , φN (x, t))

is a smooth solution of problem (8.5.1)–(8.5.3), then ∂k

∂tk
φi (k = 0, 1, . . . ,m) nec-

essarily vanish on the boundary of Ω.

The following is our main result in this section.

Theorem 8.5.3 ([787]). Assume that f̂ i(x) ≥ 0 (i = 1, 2, . . . , N) on Ω and there
exist a point x0 ∈ RN and a neighborhood ω of Γ(x0) such that for i = 1, 2, . . . , N,

f̂ i(x) ≥ ε0 > 0 on ω and

∫
ω

1

(f̂ i(x))pi

dx < +∞ (8.5.20)

for some 0 < pi < 1. Furthermore, assume that f̂ i(x) (i = 1, 2, . . . , N) belong to
Cm−1(Ω) and (φ0, φ1) satisfies the compatibility condition of the m order with m
satisfying

m >
N

2
.

Then the solution φ(x, t) of problem (8.5.1)–(8.5.3) satisfies the decay property:
for h = 0, 1, 2, . . . ,m,

Eh(t) ≤
(
Eh(0)

−N/2mp + C(t− T )+
)−2mp/N

, (8.5.21)

where 0 ≤ t < +∞ with some time T > 0 independent of (φ0, φ1), and α+ =
max{α, 0}.
Proof. In order to prove this theorem, we need Theorem 2.3.14 and the techniques
in [677, 1028].

First, multiplying the equation (8.5.1) by φ′
i and integrating the result on

[t, t+ T ]× Ω, t > 0, T > 0, we have∫ t+T

t

∫
Ω

f̂ iφ′
iφ

′
idxds = E0(t)− E0(t+ T ) ≡ D2(t). (8.5.22)
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Next, multiplying the equation (8.5.1) by φi and integrating the result, we
arrive at∫ t+T

t

∫
Ω

(Aijklφi,jφk,l − φ′
iφ

′
i)dxds

= −
∫ t+T

t

∫
Ω

f̂ iφ′
iφidxds− (φ′

i(t+ T ), φi(t+ T )) + (φ′
i(t), φi(t))

(8.5.23)

where (·, ·) denotes the inner product in L2.

We shall derive the inequality

∫ t+T

t

E(s)ds ≤ C

{
E(t+ T ) +D2(t) +

∫ t+T

t

∫
ω

(φ′
iφ

′
i + φiφi)dxds

}
. (8.5.24)

Multiplying the equation (8.5.1) by qμφi,μ, and integrating the result, we obtain

∫ t+T

t

∫
Ω

φ
′′
i qμφi,μdxds−

∫ t+T

t

∫
Ω

[Aijklφk,l],jqμφi,μdxds

= −
∫ t+T

t

∫
Ω

f̂ iφ′
iqμφi,μdxds.

(8.5.25)

Thus from (8.5.4), we can derive

(Aijklφk,lφi,j),μ = Aijkl,μφk,lφi,j + 2Aijklφk,lφi,jμ (8.5.26)

or

Aijklφk,lφi,jμ =
1

2

[
(Aijklφklφi,j),μ −Aijkl,μφk,lφi,j

]
. (8.5.27)

By (8.5.27), we arrive at∫ t+T

t

∫
Ω

[Aijklφk,l],jqμφi,μdxds

=

∫ t+T

t

∫
∂Ω

Aijklνjqμφk,lφi,jdσds

−
∫ t+T

t

∫
Ω

(Aijklqμ,jφk,lφi,μ +Aijklφk,lqμφi,jμ)dxds

=

∫ t+T

t

∫
∂Ω

Aijklνjqμφk,lφi,jdσds−
∫ t+T

t

∫
Ω

Aijklqμ,jφk,lφi,μdxds

− 1

2

∫ t+T

t

∫
Ω

{(Aijklφk,lφk,l),μ −Aijkl,μφi,jφk,l}dxds
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=

∫ t+T

t

∫
∂Ω

Aijklνjqμφk,lφi,jdσds−
∫ t+T

t

∫
Ω

Aijklqμ,jφk,lφi,μdxds

− 1

2

∫ t+T

t

∫
∂Ω

Aijklφk,lφi,jνμqμdσds+
1

2

∫ t+T

t

∫
Ω

Aijklφk,lφi,jqμ,μdxds

− 1

2

∫ t+T

t

∫
Ω

Aijkl,μφi,jφk,ldxds. (8.5.28)

Noting that φ|∂Ω = 0, it holds that on ∂Ω

νjφi,μ = νμφi,j . (8.5.29)

By (8.5.25), (8.5.28) and (8.5.29), we deduce

N

2

∫ t+T

t

∫
Ω

(φ′
iφ

′
i −Aijklφi,jφk,l)dxds +

∫ t+T

t

∫
Ω

Aijklφi,jφk,ldxds

= −
∫ t+T

t

∫
Ω

f̂ iφ′
iqμφi,μdxds− (φ′

i(t+ T ), qμφi,μ(t+ T )) + (φ′
i(t), qμφi,μ(t))

+
1

2

∫ t+T

t

∫
Ω

Aijkl,μφk,lφi,jqμdxds+
1

2

∫ t+T

t

∫
∂Ω

Aijklφk,lφi,μqμνjdσds

+
1

2

∫ t+T

t

∫
Ω

Aijklφk,lφi,jqμ,μdxds. (8.5.30)

Therefore, it follows from (8.5.6), (8.5.23) and (8.5.30) that(
N

2
− γ

)∫ t+T

t

∫
Ω

φ′
iφ

′
idxds+

[
γ − 2N − (1 + β)

2

] ∫ t+T

t

∫
Ω

Aijklφk,lφi,jdxds

≤ C

(∫ t+T

t

∫
Ω

f̂ iφ′
iφ

′
idxds

)1/2 (∫ t+T

t

∫
Ω

φi,μφi,μdxds

)1/2

+ C{E0(t) + E0(t+ T )}+ C

∫ t+T

t

∫
Γ(x0)

Aijklφi,νjφi,νjdσds (8.5.31)

for any constant γ > 0.

Now taking 2N−(1+β)
2 < γ < N

2 and using (8.5.22), we can get∫ t+T

t

E0(s)ds ≤ C{E0(T + t) +D2(t)} + C

∫ t+T

t

∫
Γ(x0)

Aijklφi,νjφi,νjdσds.

(8.5.32)

To estimate the last term on the right-hand side of (8.5.32), we take a function
ηi ∈ C1(Ω) such that

0 ≤ ηi ≤ 1, ηi = 1 on ω̂, ηi = 0 on Ω \ ω and
ηi,jηi,j√
ηi
√
ηi

∈ C(Ω) (8.5.33)

where ω̂ is an open set in Ω with Γ(x0) ⊂ ω̂ ⊂ ω.
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Now multiplying equation (8.5.1) by ηiφi and integrating, we can derive∫ t+T

t

∫
Ω

Aijklφi,jφk,ldxds

≤ C

{
E0(t) + E0(t+ T ) +

∫ t+T

t

∫
ω

(φ′
iφ

′
i + φiφi)dxds

} (8.5.34)

where, by the Hölder inequality and (8.5.33), we have used the inequality

|(φi, ηi,jφi,j)| = |
∫
Ω

φi
ηi,j√
ηi

√
ηiφi,jdx| ≤ C

(∫
Ω

φiφidx

)1/2(∫
Ω

√
ηiφi,jφi,jdx

)1/2
.

(8.5.35)
Furthermore, we take an open set ω̃ in RN with ω̃ ∩ ∂Ω ⊂ ω̂ and C1 vector field
si such that si = νi on Γ(x0), si · νi ≥ 0 on ∂Ω and si = 0 on Ω\ω̃.

Now multiplying the equation (8.5.1) by si · φi,j and integrating the result,
we can conclude∫ t+T

t

∫
Γ(x0)

Aijklφi,νjφi,νjdxds ≤
∫ t+T

t

∫
∂Ω

si · νiAijklφi,νjφi,νjdσds

≤ C

∫ t+T

t

∫
ω̃

(φ′
iφ

′
i +Aijklφi,jφk,l)dxds + C{E0(t) + E0(t+ T )}. (8.5.36)

Thus from (8.5.32), (8.5.34) and (8.5.36), it follows readily∫ t+T

t

E0(s)ds ≤ C

{
E0(t+ T ) +D2(t) +

∫ t+T

t

∫
ω

(φ′
iφ

′
i + φiφi)dxds

}
.

(8.5.37)

Noting that

TE0(t+ T ) ≤
∫ t+T

t

E0(s)ds,

we can derive from (8.5.37) that if we take T > 2C, then we get

E0(t+ T ) ≤ C

{
D2(t) +

∫ t+T

t

∫
ω

(φ′
iφ

′
i + φiφi)dxds

}
. (8.5.38)

We now estimate the last two terms on the right-hand side of (8.5.38). To
treat the last term, we need the following inequality.

Lemma 8.5.4 ([787]). For a large T > 0, there exists a constant C > 0, independent
of (φ0, φ1), such that the estimate∫ t+T

t

∫
Ω

φi(s)φi(s)dxds ≤ C

∫ t+T

t

∫
Ω

f̂ iφ′
iφ

′
idxds+

∫ t+T

t

∫
ω

φ′
iφ

′
idxds (8.5.39)

holds for any energy finite solution of problem (8.5.1)–(8.5.3).
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Proof. We prove (8.5.39) by the contradiction argument. If (8.5.39) were false,
there exist a sequence {tn}∞n=1 and a sequence of solutions {φin}∞n=1 such that{ ∫ tn+T

tn

∫
Ω
φin(s)φin(s)dxds = 1,∫ tn+T

tn

∫
Ω f̂ iφ′

inφ
′
indxds+

∫ tn+T

tn

∫
ω φ′

inφ
′
indxds → 0 as n → +∞.

(8.5.40)

We note that inequality (8.5.38) remains valid by homogeneity even if we replace
φi(t) by φin(t).

Thus, setting ψin(t) = φin(t + tn), 0 < t ≤ T , from (8.5.40)–(8.5.41) it
follows that∫ T

0

∫
Ω

ψin(s)ψin(s)dxds = 1, (8.5.41)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
M2

n ≡
∫ T

0

∫
Ω

f̂ iψ′
in(s)ψ

′
in(s)dxds

+

∫ T

0

∫
ω

ψ′
in(s)ψ

′
in(s)dxds → 0 as n → +∞

(8.5.42)

and by (8.5.22) and (8.5.38),

sup
0≤t≤T

{∫
Ω

(ψ′
in(s)ψ

′
in(s) + ψin,j(s)ψin,j(s))dx

}
= 2E0(ψin(0))

= 2
{
E0(ψin(T )) +

∫ T

0

∫
Ω

f̂ iψ′
in(s)ψ

′
in(s)dxds

}
≤ C{M2

n + 1} ≤ 2C < +∞

(8.5.43)

for large n, where C > 0 is a constant independent of (φ0, φ1).

Therefore, {ψin(t)} converges along a subsequence to a function ψi(t) ∈
C([0, T ];H1

0 ) ∩ C1([0, T ];L2) in appropriate topologies, which is a solution of the
problem {

ψ′′
i − [Aijklψi,l],j = 0 in Ω× [0,T],

ψ|∂Ω = 0.

Thus by (8.5.42)–(8.5.43), we conclude,⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ T

0

∫
Ω

f̂ iψ′
iψ

′
idxds = 0, (8.5.44)∫ T

0

∫
Ω

ψiψidxds = 1. (8.5.45)

This is a contradiction if we take a large T > 0 (T > d(Ω), diameter of Ω, is
sufficiently large), because the condition (8.5.44) implies ψi ≡ 0 for a solution of
the elastic system above.
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Now, by (8.5.38) and Lemma 8.5.1, we have

E0(t+ T ) ≤ C

{
D2(t) +

∫ t+T

t

∫
ω

φ′
iφ

′
idxds

}
. (8.5.46)

Finally, by the assumption on f̂ i(x) and Lemma 8.5.1, we can obtain∫ t+T

t

∫
ω

φ′
iφ

′
idxds

≤
{∫ t+T

t

∫
ω

f̂ iφ′
iφ

′
idxds

}pi/(pi+1) {∫ t+T

t

∫
ω

f̂ i(x)
−pi

dxds

}1/(pi+1)

×
N∑
i=1

sup
t≤s≤t+T

||φ′
i(s)||2/(pi+1)

L∞

≤
N∑
i=1

CD(t)2pi/(pi+1) sup
t≤s≤t+T

||φ′
i(s)||2(1−(N/2m))/(pi+1)||φ′

i(s)||N/(m(pi+1))
Hm

≤
N∑
i=1

CD(t)2pi/(pi+1)E0(t)
(2m−N)/2m(pi+1) ≡ A2(t). (8.5.47)

Thus we may derive from (8.5.46) that

E0(t+ T ) ≤ C[D2(t) +A2(t)]

which, together with identity (8.5.22), implies

E0(t) ≤ C[D2(t) +A2(t)].

Thus, recalling the definition of A2(t) and using Young’s inequality, we arrive at

E0(t) ≤ CD2(t) + CD(t)4mp/(2mp+N), (8.5.48)

or

E0(t)
1+ N

2mp ≤ C
{
E0(t)− E0(t+ T )

}
, (8.5.49)

where p = min{p1, . . . , pN} > 0.

Now, applying Theorem 2.3.14 to inequality (8.5.49), we obtain the decay
estimate

E0(t) ≤
{
E0(0)

−N/2mp + C(t− T )+
}−2mp/N

(8.5.50)

for 0 ≤ t < +∞ with some T > 0 independent of (φ0, φ1), where we have used the
notation α+ = max{α, 0}.
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Similarly, keeping in mind that equations (8.5.1)–(8.5.3) are all linear in t,
we have that for h = 0, 1, . . . , N ,

Eh(t) ≤
{
Eh(0)

−N/2mp + C(t− T )+
}−2mp/N

. (8.5.51)

The proof is thus complete. �
�

8.6 Stabilization of weakly coupled wave equations

In this section, we shall use Theorem 1.5.12 to study the stabilization of weakly
coupled wave equations. These results are chosen from Alabau, Cannarsa and
Komornik [19].

In this section, we shall study the stability of the system{
utt +A1u+But + αv = 0,

vtt +A2v + αu = 0,
(8.6.1)

in a separable real Hilbert space H with norm ‖ · ‖ and scalar product 〈·, ·〉, where
A1, A2 and B are self-adjoint positive linear operators in H . In addition, we also
assume that B is a bounded operator. By L(H) we shall denote the Banach algebra
of all bounded linear operators B : H → H equipped with the usual norm

‖B‖ = sup{|Bx| : x ∈ H, |x| ≤ 1}.
We shall use the notation A : D(A) ⊂ H → H for any linear operator on H with
domain D(A).

We now recall basic notions of semigroup theory, a classical topic in functional
analysis (see, e.g., [235]). Let A : D(A) ⊂ H → H be the infinitesimal generator
of a C0-semigroup of bounded linear operators on H denoted by {etA}t≥0, or, e

tA.
It is well known that the H-valued function U(t) := etAx is continuous for any
x ∈ H , of class C1([0,+∞), H) for any x ∈ D(A), and that, in the latter case, U
solves the Cauchy problem{

U ′(t) = AU(t), for all t ≥ 0,

U(0) = x.
(8.6.2)

Moreover, for any k ∈ N,

x ∈ D(Ak) ⇒ U (k)(t) = etAAkx = AketAx.

We also recall that a semigroup etA is said to be strongly stable if for all
x ∈ H ,

lim
t→+∞ etAx = 0.
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If there exist two constants M,ω > 0 such that for all t ≥ 0,

‖etA‖ ≤ Me−ωt,

then etA is called exponentially stable.

Now we consider the weakly coupled system of second-order evolution equa-
tions in a Hilbert space H ,{

utt +A1u+But + αv = 0,

vtt +A2v + αu = 0,
(8.6.3)

and assume the following condition hold:

(H1) For i = 1, 2, Ai : D(Ai) ⊂ H → H is a densely defined closed linear operator
such that

Ai = A∗
i , 〈Aix, x〉 ≥ ωi|x|2, for all x ∈ D(Ai), (8.6.4)

for some constant ωi > 0, i = 1, 2.

(H2) B is a bounded linear operator on H such that

B = B∗, 〈Bx, x〉 ≥ β|x|2, for all x ∈ H, (8.6.5)

for some constant β > 0.

(H3) The parameter α is a real number such that

0 < |α| < √
ω1ω2. (8.6.6)

Thus we can rewrite system (8.6.3) with the initial conditions,{
u(0) = u0, ut(0) = u1,

v(0) = v0, vt(0) = v1,
(8.6.7)

as an abstract Cauchy problem of type (8.6.2) in a standard way with the product
space

H := D(A
1/2
1 )×H ×D(A

1/2
2 )×H.

We can also write an element U ∈ H as

U = (u, p, v, q), where u ∈ D(A
1/2
1 ), v ∈ D(A

1/2
2 ), p, q ∈ H.

Thus it follows from assumption (8.6.4) that H is a Hilbert space with the
scalar product

(U |Û) := 〈A1u, û〉+ 〈p, p̂〉+ 〈A2v, v̂〉+ 〈q, q̂〉, for all U, Û ∈ H.



346 Chapter 8. Asymptotic Behavior of Solutions to Hyperbolic Equations

Let A : D(A) ⊂ H → H be the operator defined as follows

D(A) = D(A1)×D(A
1/2
1 )×D(A2)×D(A

1/2
2 ),

AU = (p,−A1u−Bp− αv, q,−A2v − αu), for all U ∈ D(A).

Then problem (8.6.3) takes the equivalent form

U ′(t) = AU(t), U(0) = U0, (8.6.8)

where U0 = (u0, u1, v0, v1).

On the other hand, from the classical results (see, e.g., [740]) it follows that A
generates a C0-semigroup etA onH. In fact,A is a bounded perturbation of a maxi-
mal dissipative operator. It is also easy to check that etAU0 = (u(t), p(t), v(t), q(t)),
where the pair (u, v) is the solution of system (8.6.3) with initial conditions (8.6.7).

In general, we do not know how to characterize the domains of An for large
n. However, under suitable assumptions, we can show that the subspace ofH given
by for all n ≥ 0,

Hn = D(A
(n+1)/2
1 )×D(A

n/2
1 )×D(A

(n+1)/2
2 )×D(A

n/2
2 ),

is contained in, and sometimes equal to, D(An).

In order to apply Theorem 1.5.12, we need the following lemmas, which have
been proved in [19].

Lemma 8.6.1 ([19]). Assume that (8.6.4) and (8.6.5) hold. Let n ≥ 1 be such that⎧⎪⎪⎨⎪⎪⎩
BD(A

(k+1)/2
1 ) ⊆ D(A

k/2
1 ), (8.6.9)

D(A
(k/2)+1
1 ) ⊆ D(A

k/2
2 ), (8.6.10)

D(A
(k/2)+1
2 ) ⊆ D(A

k/2
1 ), (8.6.11)

for every integer k satisfying 0 < k ≤ n − 1 (no assumption if n = 1). Then
Hk ⊂ D(Ak) for every 0 ≤ k ≤ n.

Remark 8.6.1 ([19]). In the same manner, we may derive the equality

Hk = D(Ak), 0 ≤ k ≤ n,

provided that conditions (8.6.10) and (8.6.11) are replaced by the stronger as-
sumptions {

D(A
(k+1)/2
1 ) ⊆ D(A

k/2
2 ),

D(A
(k+1)/2
2 ) ⊆ D(A

k/2
1 ), 0 < k ≤ n− 1.

Notice that the above assumptions hold trivially whenever A1 = A2.
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We recall that the energies associated with operators A1, A2 are given by

Ei(u, p) =
1

2
(|A1/2

i u|2 + |p|2), for all (u, p) ∈ D(A
1/2
i )×H (i = 1, 2).

Now we also define the total energy of the system as

E(U) := E1(u, p) + E2(v, q) + α〈u, v〉. (8.6.12)

thus, from assumption (H1) it follows that, for i = 1, 2, for all u ∈ D(A
1/2
i ), for

all p ∈ H ,

|u|2 ≤ 2

ωi
Ei(u, p). (8.6.13)

Applying the Cauchy–Schwarz inequality, it follows that under hypotheses
(H1) and (H3), the total energy E controls the energies of the components: if

U = (u, p, v, q) ∈ D(A
1/2
1 )×H ×D(A

1/2
2 )×H,

then
E(U) ≥ v(α)

[
E1(u, p) + E2(v, q)

]
(8.6.14)

with v(α) = 1− |α|(ω1ω2)
−1/2 > 0.

Obviously, the following lemma shows that (8.6.8) is a dissipative system.

Lemma 8.6.2 ([19]). Assume that (8.6.4)–(8.6.5) hold and let U = (u, p, v, q) =
(u, ut, v, vt) be the solution of problem (8.6.8) with U0 ∈ D(A). Then for all t ≥ 0,

d

dt
E(U(t)) = −|B1/2ut(t)|2. (8.6.15)

In particular, t �→ E(U(t)) is non-increasing on [0,+∞).

In order to apply the polynomial decay criterion of Theorem 1.5.12 to problem
(8.6.8), we have to bound the integral of the total energy of U , on any time interval
[0, T ], by a linear combination of the energies of the derivatives of U at 0. The
next lemma is the first step towards such a final goal.

Lemma 8.6.3 ([19]). Assume that (8.6.4)–(8.6.6) hold and let U = (u, ut, v, vt) be
the solution of problem (8.6.8) with U0 ∈ D(A). Then for some constant c ≥ 0
and every T ≥ 0, ∫ T

0

E(U(t))dt ≤
∫ T

0

|vt(t)|2dt+ cE(U(0)). (8.6.16)

We note that the above result shows that the main technical difficulty en-

countered here is to control the integral term
∫ T

0 |vt|2dt by the total energy of U
(and of a finite number of its derivatives) at 0. As simple as it may appear, such
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an estimate cannot be taken for granted as there is no direct dissipation term
in the second equation of (8.6.3). In fact, for its validity, we shall need an extra
assumption on the problem and a delicate iteration argument.

As we have already noted, in addition to assumptions (H1)–(H3), we need
to impose further restrictions on the data, that is, we shall assume that, for some

integer j ≥ 2, and for all u ∈ D(A
j/2
2 ),

|A1u| ≤ c|Aj/2
2 u|. (8.6.17)

Remark 8.6.2 ([19]). In fact, condition (8.6.17) can be rewritten equivalently as a
domain inclusion such that for all u ∈ H ,

D(A
j/2
2 ) ⊆ D(A1), |A1A

−j/2
2 u| ≤ c|u|. (8.6.18)

Theorem 8.6.4 ([19]). Assume that (8.6.4)–(8.6.6) and (8.6.17) hold.

(i) If U0 ∈ D(Anj) for some integer n ≥ 1, then the solution U of problem
(8.6.8) satisfies for all t > 0,

E(U(t)) ≤ cn
tn

nj∑
k=0

E(U (k)(0)), (8.6.19)

for some constant cn > 0.

(ii) For every U0 ∈ H, we have as t → +∞,

E(U(t)) → 0.

Proof. Obviously, part (ii) of this theorem follows readily from (i) by using the
density of D(Aj) in H. Furthermore, by Theorem 1.5.15, part (i) will follow if we
have established the estimate∫ T

0

E(U(t))dt ≤ c

j∑
k=0

E(U (k)(0)) (8.6.20)

for every fixed T > 0, with a constant c > 0 depending only on α. Thus the rest
of this subsection shall prove (8.6.20) for which we need some intermediate steps
presented below as separate lemmas without recalling the standing assumptions
(8.6.4)–(8.6.6) and (8.6.17). The reader should note that all constants, labeled c,
may depend on α but not on T and blow up as |α| ↓ 0 or |α| ↑ √

ω1ω2. �

8.7 Energy decay rates of nonlinear dissipative
hyperbolic systems

In this section, we shall use Theorem 1.5.9 to study the energy decay rates of non-
linear hyperbolic systems by a nonlinear feedback which can be localized on a part
of the boundary or locally distributed. We adopt these results from Alabau [18].
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We shall consider the following second-order equation{
utt(t)(·) +Au(t)(·) +B(·, ut(t)(·)) = 0, t > 0, (8.7.1)

u(0)(·) = u0(·), ut(·) = u1(·) (8.7.2)

where A is a coercive self-adjoint densely defined linear unbounded operator in
H , with domain D(A), and Ω is a bounded open subset of RN with a smooth
boundary denoted by Γ and ω is an open subset of Ω of positive measure.

Let H = L2(Ω) and by | · |H we denote the L2-norm on Ω. Note that the
above abstract equation can include the Petrovsky equation or the system of linear
elasticity. Let V = D(A1/2). The operator B is the monotone continuous operator
defined from Ω×H on H by

B(·, v) = ρ(·, v). (8.7.3)

We assume the feedback function ρ satisfies the following hypotheses:

(H) ρ ∈ C(Ω×R) and is monotone increasing with respect to the second variable,
there exist a function a ∈ C(Ω), a ≥ 0 on Ω, and a strictly increasing function
g ∈ C1(R) such that⎧⎪⎨⎪⎩
a(x)|v| ≤ |ρ(x, v)| ≤ Ca(x)|v|, for all x ∈ Ω, if |v| ≥ 1, (8.7.4)

a(x)g(|v|) ≤ |ρ(x, v)| ≤ Ca(x)g−1(|v|), for all x ∈ Ω, if |v| ≤ 1, (8.7.5)

a(x) ≥ a− > 0, for all x ∈ ω, (8.7.6)

where g−1 denotes the inverse function of g and where C is a positive con-
stant.

We recall the following classical existence and regularity result (see, e.g.,
[479] and [350] for the proof) using the theory of the maximal nonlinear monotone
operator.

Theorem 8.7.1 ([18]). Assume hypothesis (H) holds. Then for all (u0, u1) ∈ V ×H,
the problem (8.7.1)–(8.7.2) has a unique solution

u ∈ C([0,+∞), V ) ∩ C1([0,+∞), H).

Moreover, for all (u0, u1) ∈ D(A) × V , the solution u of problem (8.7.1)–(8.7.2)
belongs to the class L∞([0,+∞), D(A)) ∩W 1,∞([0,+∞), V ) ∩W 2,∞([0,+∞), H)
and its energy, defined by

E(t) =
1

2

(
|ut(t)|2H + |A1/2u(t)|2H

)
, (8.7.7)

satisfies the following dissipation relation

E′(t) = −
∫
Ω

ut(t, x)ρ(x, ut(t, x))dx ≤ 0. (8.7.8)
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In this section, we shall prove the following main result, due to Alabau [18],
by making use of Theorem 1.5.9.

Theorem 8.7.2 ([18]). Assume hypothesis (H) holds. Assume that there exists a
constant r0 ∈ (0, 1) with g(r0) < 1, such that g ∈ C2([0, r0]) and the function H
defined by (1.5.170) is strictly convex on [0, r20]. Let δi for i = 1, 2, 3 and (u0, u1) ∈
D(A)×V , satisfying 0 < |u1|2H + |A1/2u0|2H , be given and let f be the non-negative
C1 and strictly increasing function defined from [0, r20) onto [0,+∞) by, for all
s ∈ [0, 2βr20),

f(s) = F−1

(
s

2β

)
, (8.7.9)

where F is given by (1.5.173) and where β = βE(0) depends on E(0) in the follow-
ing manner:

βE(0) = max{η1, η2E(0} (8.7.10)

where η1 and η2 are independent of E(0). We assume that the energy E(t) defined
by (8.7.7) associated to the solution of problem (8.7.1)–(8.7.2) satisfies∫ T

S

f(E(t))E(t)dt ≤ δ1E(S)f(E(S)) + δ2

∫ T

S

f(E(t))

(∫
Ω

|ρ(x, ut(t)(x))|2dx
)
dt

+ δ3

∫ T

S

f(E(t))

(∫
ω

|ut(t)(x)|2dx
)
dt. (8.7.11)

Then E(t) satisfies the estimate for all t ≥ T0/H
′(r20),

E(t) ≤ 2βE(0)z
2(t)

z(t)g′(z(t))− g(z(t))

z(t)g′(z(t)) + g(z(t))
, (8.7.12)

where z is given by

z(t) = φ−1(t/T0) (8.7.13)

with φ being the strictly decreasing and onto function defined from (0, r0] onto
[1/H ′(r20),+∞) by

φ(v) =
2v

vg′(v) + g(v)
+ 4α(v) (8.7.14)

where α is defined on (0, r0] by the following integral expression

α(τ) =

∫ r0

τ

g(u)(u2g′′(u) + ug′(u)− g(u))

(ug′(u) + g(u))2(ug′(u)− g(u))
du. (8.7.15)

Proof. Let ε0 = g(r0). From the assumption on r0, we have 0 < ε0 < 1. Thus from
the hypothesis (H), it follows that for all x ∈ Ω if |v| ≤ ε0,

a(x)g(|v|) ≤ |ρ(x, v)| ≤ Ca(x)g−1(|v|).
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For ε0 ≤ |v| ≤ 1, we obtain, noting that g−1 is increasing on R,

r0 ≤ g−1(|v|) ≤ g−1(1).

Hence, using (H), we get for all x ∈ Ω and for all ε0 ≤ |v| ≤ 1,

|ρ(x, v)| ≤ Ca(x)
g−1(|v|)

|v| |v| ≤ Ca(x)
g−1(1)

ε0
|v|,

and

|ρ(x, v)| ≥ a(x)
g(|v|)
|v| |v| ≥ a(x)g(ε0)|v|.

Hence ρ satisfies the following inequalities for all x ∈ Ω and for all |v| ≤ ε0,

c1a(x)|v| ≤ |ρ(x, v)| ≤ c2a(x)|v|, (8.7.16)

and for all x ∈ Ω, for all |v| ≤ ε0,

c1a(x)g(|v|) ≤ |ρ(x, v)| ≤ c2a(x)g
−1(|v|). (8.7.17)

Let, for all fixed t ≥ 0,Ωt
1 = {x ∈ Ω : |ut(t)(x)| ≤ ε0}, and

cg =
1

c2‖a‖L∞
. (8.7.18)

Thus, using the definition of cg and (8.7.17), we can derive for all x ∈ Ωt
1,

c2g|ρ(x, ut(t)(x))|2 ≤ r20 .

Hence, noting that

1

|Ωt
1|

∫
Ωt

1

c2g|ρ(x, ut(t)(x))|2dx ∈ [0, r20],

which is the domain of convexity of H , and by Jensen’s inequality, we deduce

H

(
1

|Ωt
1|

∫
Ωt

1

c2g|ρ(x, ut(t)(x))|2dx
)

≤ 1

|Ωt
1|

∫
Ωt

1

H(c2g|ρ(x, ut(t)(x))|2)dx

≤ 1

|Ωt
1|

∫
Ωt

1

cg|ρ(x, ut(t)(x))|g(cg |ρ(x, ut(t)(x))|)dx.

(8.7.19)

However, from (8.7.17), we can infer that on Ωt
1,

cg|ρ(x, ut(t)(x))| ≤ g−1(|ut(t)(x)|).
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Hence, noting that g is increasing, we may obtain

g(cg|ρ(x, ut(t)(x))|) ≤ |ut(t)(x)| on Ωt
1

which, together with (8.7.19), implies

H

(
1

|Ωt
1|

∫
Ωt

1

c2g|ρ(x, ut(t)(x))|2dx
)

≤ 1

|Ωt
1|

∫
Ωt

1

cg|ut(t)(x)ρ(x, ut(t)(x))|dx.
(8.7.20)

On the other hand, using (8.7.17), we may obtain

1

|Ωt
1|

∫
Ωt

1

cg|ut(t)(x)ρ(x, ut(t)(x))|dx ≤ 1

|Ωt
1|

∫
Ωt

1

ε0g
−1(ε0)dx = H(r20) (8.7.21)

which yields

H−1

(
1

|Ωt
1|

∫
Ωt

1

cgut(t)(x)ρ(x, ut(t)(x))dx

)
∈ [0, r20]. (8.7.22)

Now let f be an arbitrary non-negative strictly increasing function defined
from [0, η) onto [0,+∞). Then, it follows from (8.7.20) that∫ T

S

f(E(t))

∫
Ωt

1

|ρ(x, ut(u)(x))|2dxdt

≤
∫ T

S

|Ωt
1|

c2g
f(E(t))H−1

(
1

|Ωt
1|

∫
Ωt

1

cgut(t)(x)ρ(x, ut(t)(x))dx

)
dt.

(8.7.23)

We now define Ĥ as in (1.5.171). Then Ĥ is a convex and proper function.
Hence, we may apply Young’s inequality to any numbers A and B in R, that is,

AB ≤ Ĥ∗(A) + Ĥ(B). (8.7.24)

We can thus apply the above inequality (8.7.24) to A = A(t) = f(E(t)) and

B = B(t) = H−1

(
1

|Ωt
1|

∫
Ωt

1

cgut(t)(x)ρ(x, ut(t)(x))dx

)
.

Since B(t) ∈ [0, r20 ], and using (8.7.8), we readily deduce

|Ωt
1|

c2g
f(E(t))H−1

(
1

|Ωt
1|

∫
Ωt

1

cgut(t)(x)ρ(x, ut(t)(x))dx

)

≤ |Ωt
1|

c2g
Ĥ∗(f(E(t))) +

1

cg

∫
Ωt

1

ut(t)(x)ρ(x, ut(t)(x))dx

≤ |Ω|
c2g

Ĥ∗(f(E(t))) +
1

cg
(−E′(t)).

(8.7.25)
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Inserting (8.7.25) into (8.7.23) gives us, for all 0 ≤ S ≤ T ,∫ T

S

f(E(t))

∫
Ωt

1

|ρ(x, ut(t)(x))|2dxdt

≤ |Ω|
c2g

∫ T

S

Ĥ∗(f(E(t)))dt +
1

cg
E(S).

(8.7.26)

We also note |ut(t)| ≥ ε0 on Ω\Ωt
1. Hence, from (8.7.16) it follows that for

all x ∈ Ω\Ωt
1,

|ρ(x, ut(t)(x))|2 ≤ 1

cg
ut(t)(x)ρ(x, ut(t)(x)), (8.7.27)

which further implies∫ T

S

f(E(t))

∫
Ω\Ωt

1

|ρ(x, ut(t)(x))|2dxdt ≤ 1

cg

∫ T

S

(−E′(t))f(E(t))dt. (8.7.28)

To estimate the term
∫ T

S
f(E(t))

∫
ω
|ut(t)|2dxdt, we set

r21 = H−1(c1a−cgH(r20)) (8.7.29)

and

ε1 = min
(
r0, g(r1)

)
. (8.7.30)

Then we have ε1 ≤ ε0.

We now define, for fixed t ≥ 0, the set ωt
1 = {x ∈ ω : |ut(t)(x)| ≤ ε1}. Using

(H), we have a(x) ≥ a− for all x ∈ ω. Thus, using (8.7.17), we may obtain for all
x ∈ ωt

1,

ut(t)(x)g(ut(t)(x)) ≤ 1

c1a−
ut(t)(x)ρ(x, ut(t)(x)). (8.7.31)

On the other hand, noting that

1

|ωt
1|

∫
ωt

1

|ut(t)(x)|2dx ≤ |ε1|2 ≤ r20 ,

and, using Jensen’s inequality together with (8.7.31), we conclude

H

(
1

|ωt
1|

∫
ωt

1

|ut(t)(x)|2dx
)

≤ 1

|ωt
1|

∫
ωt

1

H(|ut(t)(x)|2)dx

≤ 1

|ωt
1|

∫
ωt

1

ut(t)(x)g(ut(t)(x))dx

≤ 1

|ωt
1|c1a−

∫
ωt

1

ut(t)(x)ρ(x, ut(t)(x))dx.
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Therefore, we have∫ T

S

f(E(t))

∫
ωt

1

|ut(t)(x)|2dxdt

≤
∫ T

S

|ωt
1|f(E(t))H−1

(
1

|ωt
1|c1a−

∫
ωt

1

ut(t)(x)ρ(x, ut(t)(x))dx

)
dt.

(8.7.32)

Setting A = A(t) = f(E(t)) and

B = B(t) = H−1

(
1

|ωt
1|c1a−

∫
ωt

1

ut(t)(x)ρ(x, ut(t)(x))dx

)
,

and by the choice of ε1 > 0, we can derive

1

|ωt
1|c1a−

∫
ωt

1

ut(t)(x)ρ(x, ut(t)(x))dx ≤ c2‖a‖L∞

c1a−
ε1g

−1(ε1)

≤ H(r21)
c2‖a‖L∞

c1a−
= H(r20).

Hence, B(t) ∈ [0, r20 ]. Now applying Young’s inequality (8.7.24) with this choice of
A and B, taking into account (8.7.8) in (8.7.32), we conclude, for all 0 ≤ S ≤ T ,∫ T

S

f(E(t))

∫
ωt

1

|ut(t)(x)|2dxdt ≤ |ω|
∫ T

S

Ĥ∗(f(E(t)))dt +
1

c1a−
E(S). (8.7.33)

We have |ut(t)| ≥ ε1 on ω\ωt
1. For |ut(t)| ≥ ε0, (8.7.16) holds. Hence we just

need to prove that similar inequalities hold for ε1 ≤ |ut(t)| ≤ ε0. For this purpose,
due to (8.7.17), ρ satisfies for all x ∈ Ω and ε1 ≤ |v| ≤ ε0,

c̃1a(x)|v| ≤ |ρ(x, v)| ≤ c̃2a(x)|v|, (8.7.34)

where, since g(ε1) ≤ ε0, we have c̃1 = c1g(ε1/ε0) ≤ c1 and c̃2 = c2g
−1(ε0/ε1) ≥ c2.

Thus, (8.7.16) also holds on ω\ωt
1 with the constants c1 and c2 replaced by c̃1 and

c̃2 respectively. Obviously, we have for all x ∈ ω\ωt
1,

|ut(t)(x)|2 ≤ 1

c̃1a−
ut(t)(x)ρ(x, ut(t))(x)), (8.7.35)

which implies∫ T

S

f(E(t))

∫
ω\ωt

1

|ut(t)(x)|2dxdt ≤ 1

c̃1a−

∫ T

S

(−E′(t))f(E(t))dt. (8.7.36)
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Now inserting (8.7.26), (8.7.28), (8.7.33) and (8.7.36) in (8.7.11), we can get∫ T

S

f(E(t))E(t)dt ≤ δ1E(S)f(E(S)) +

(
δ2
cg

+
δ3

c1a−

)
E(S) (8.7.37)

+

(
δ2
cg

+
δ3

c1a−

)∫ T

S

(−E′(t))f(E(t))dt +

(
δ2

|Ω|
c2g

+ δ3|ω|
)∫ T

S

Ĥ ∗ (f(E(t)))dt.

We define F by (1.5.172), and recall that F is a strictly increasing function
from [0,+∞) onto [0, r20) (see, e.g., Lemma 1.5.4). We also choose a real number
β = βE(0) as follows:

β = max

(
δ3|ω|+ δ2|Ω|

c2g
,

E(0)

2F (H ′(r20))

)
. (8.7.38)

We now choose the weighted function f as follows: for all s ∈ [0, 2βr20),

f(s) = F−1(
s

2β
). (8.7.39)

Then f is a strictly increasing function from [0, 2βr20) onto [0,+∞) and f satisfies
the relation for all s ∈ [0, 2βr20),

βĤ∗(f(s)) =
1

2
sf(s).

Since E is non-increasing, we may get for all t ≥ 0,

E(t) ≤ E(0) < E(0)
r20

F (H ′(r20))
≤ 2βr20 .

Hence, we have, in particular, for all t ≥ 0,

βĤ∗(f(E(t))) =
1

2
E(t)f(E(t)). (8.7.40)

Note that with this choice of β and f , the last term on the right-hand side of
(8.7.37) is bounded above by

1

2

∫ T

S

E(t)F (E(t))dt. (8.7.41)

On the other hand, we recall that −E′ is non-negative on [0,+∞), E is non-
negative and non-increasing on [0,+∞) whereas f is non-negative and increasing
on [0, 2βr20). Thus, the third term on the right-hand side of (8.7.37) is bounded
above by(

δ2
cg

+
δ3

c̃1a−

)∫ T

S

(−E′(t))f(E(t))dt ≤
(
δ2
cg

+
δ3

c̃1a−

)
E(S)F−1

(
E(S)

β

)
.

(8.7.42)
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Thus inserting (8.7.41) and (8.7.42) into (8.7.37), yields∫ T

S

E(t)F−1

(
E(t)

2β

)
dt

≤ 2β

(
δ1

δ2
cg

+
δ3

c̃1a−

)
E(S)F−1

(
E(S)

2β

)
+ 2

(
δ2
cg

+
δ3

c1a−

)
E(S).

Hence, the energy E satisfies the estimate for all 0 ≤ S ≤ T ,∫ T

S

E(t)F−1

(
E(t)

2β

)
dt ≤ T0E(S), (8.7.43)

where T0 is independent of E(0) and, with our choice of β, is given by

T0 = 2

(
δ2
cg

+
δ3

c1a−
+

(
δ1 +

δ2
cg

+
δ3
c̃1

a−

)
H ′(r20)

)
. (8.7.44)

Therefore, the functions g,H,E and β satisfies the hypotheses of Theorem 1.5.19.
Therefore, applying Theorem 1.5.19 to (8.7.43), we conclude that E satisfies the
desired estimate (8.7.12), which completes the proof. �
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Chapter 9

Asymptotic Behavior of Solutions
to Thermoviscoelastic,
Thermoviscoelastoplastic and
Thermomagnetoelastic Equations

In this chapter, we shall establish the asymptotic behavior for thermoviscoelastic,
thermoviscoelastoplastic and thermomagnetoelastic equations. This chapter con-
sists of three sections. In Section 9.1, we shall first employ Lemma 1.5.4 to extend
the decay results in [620] for a viscoelastic system to those for the thermoviscoelas-
tic system (9.1.1) and then establish the existence of the global attractor for the
homogeneous thermoviscoelastic system (9.1.54). In Section 9.2, we shall employ
Theorem 2.2.8 to investigate weak stabilization for a thermoviscoelastoplastic sys-
tem with hysteresis. In Section 9.3, we shall apply Theorems 2.3.1, 2.3.4–2.3.5
and Corollary 2.3.1, we consider initial boundary value problems for some linear
thermomagnetoelastic models describing elastic materials where reciprocal effects
of the temperature, the magnetic field and the elastic displacement are taken
into account. Inequalities used in this chapter are carefully selected and crucial
in deriving the large-time behavior (including decay rates) of solutions to some
thermoviscoelastic, thermoviscoelastoplastic and thermomagnetoelastic equations.

9.1 Large-time behavior for thermoviscoelastic systems

In this section, we shall first employ Lemma 1.5.4 to extend the decay results in
[620] for a viscoelastic system to those for the thermoviscoelastic system (9.1.1) and
then establish the existence of the global attractor for the homogeneous thermo-
viscoelastic system (9.1.54). These results here are picked from Qin and Ma [794].

© Springer International Publishing Switzerland 2017
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We shall consider the following thermoviscoelastic problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
utt −Δu+

∫ t

0
g(t− τ)Δu(τ)dτ +∇ θ = 0, (x, t) ∈ Ω× R+,

θt −Δθ + div ut = 0, (x, t) ∈ Ω× R+,
θ = 0, (x, t) ∈ ∂Ω× R+,
u = 0, (x, t) ∈ Γ0 × R+,
∂u
∂ν − ∫ t

0
g(t− τ)∂u∂ν dτ + h(ut) = 0, (x, t) ∈ Γ1 × R+,

(9.1.1)

with the initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ Ω, (9.1.2)

where Ω is a bounded domain of Rn with a smooth boundary ∂Ω = Γ0 ∪Γ1. Here
Γ0 and Γ1 are closed and disjoint, with meas (Γ0) > 0, ν is the unit outward
normal to ∂Ω, u(x, t) and θ(x, t) represent displacement vector and temperature
derivations, respectively, g, h are specific functions.

We assume that the basic conditions on the relaxation function g(t) hold

(H1) g ∈ C1([0,+∞)) ∩ L1((0,+∞));

(H2) g(t) ≥ 0, g′(t) ≤ 0, for all t > 0;

(H3) l = 1− ∫ +∞
0

g(t) dt > 0.

Note that condition (H3) simply states that the static modulus of elasticity
is positive. This restriction is quite natural. In addition, conditions (H1) and (H2)
imply

g(+∞) = lim
t→+∞g(t) = 0. (9.1.3)

In the sequel, we denote by ‖ · ‖ the norm of L2(Ω).

The energy E(u, θ, t) of problem (9.1.1) can be defined by

E(t) ≡ E(u, θ, t) =
1

2

∫
Ω

(
u2
t + θ2 +

(
1−

∫ t

0

g(s)ds

)
|∇u|2

)
dx+

1

2
(g ◦ ∇u)(t),

(9.1.4)
where, for all v ∈ L2(Ω),

(g ◦ v)(t) =
∫
Ω

∫ t

0

g(t− s) | v(t)− v(s) |2 dsdx. (9.1.5)

By a straightforward calculation, under assumption (A2) (see below), we have

dE(t)

dt
=

1

2
(gt ◦ ∇u)− 1

2
g(t)

∫
Ω

| ∇u |2 dx−
∫
Ω

| ∇θ |2 dx−
∫
Γ1

uth(ut)dΓ ≤ 0,

(9.1.6)
which indicates that the energy E(u, θ, t) decreases on (0,+∞).

Indeed, if the relaxation function g(t) satisfies conditions (H1), (H2) and
(H3), Navarro [686] proved the asymptotic stability for system (9.1.1), Liu and
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Zheng [567] proved that the energy decays to zero exponentially. However, the most
interesting question is whether the energy decays exponentially or polynomially as
t → +∞. In the case of higher space dimension, the problem is more complicated.
Recently, Liu [558] proved the exponential stability with a boundary feedback. In
order to see such complexity, we look at some special cases: thermoelastic systems
and viscoelastic systems.

We make the following assumptions on the general decay of the kernel g and
the function h (see Messaoudi [617]).

(A1) g : R+ → R+, g(0) > 0 is a differentiable function satisfying (H1)–(H3) and
that there exists a non-increasing differentiable function η such that

g′(t) ≤ −η(t)g(t), t ≥ 0 and

∫ +∞

0

η(t)dt = +∞.

(A2) h : R → R is a non-decreasing C0 function such that there exists a strictly
increasing function h0 ∈ C1([0,+∞)) with h0(0) = 0, and positive constants
c1, c2, and ε such that

h0(|s|) ≤| h(s) |≤ h−1
0 (|s|) for all | s |≤ ε,

c1|s| ≤| h(s) |≤ c2|s| for all | s |≥ ε.

Hypothesis (A2) implies that sh(s) > 0, for all s 	= 0.

Set
V =

{
v ∈ H1(Ω) : v = 0 on Γ0

}
,

with an equivalent norm

‖ v ‖2V =
1

2
‖ ∇v ‖2 +

1

2

∫
Γ1

uh(u)dΓ. (9.1.7)

Using a standard semigroup approach, we may easily prove the following
global existence result.

Lemma 9.1.1 ([794]). Assume that (A1)–(A2) hold. Then

(i) for every initial condition (u0, u1, θ0) ∈ V × L2(Ω)× L2(Ω), problem (9.1.1)
has a unique global mild solution (u(t), v(t)) satisfying

u(t) ∈ C(R+, V ) ∩ C1(R+, L2(Ω)), θ(t) ∈ C(R+, L2(Ω));

(ii) for every initial condition (u0, u1, θ0) ∈ (H2(Ω)∩V )×V × (H2(Ω)∩H1
0 (Ω)),

problem (9.1.1) has a unique global classical solution (u(t), v(t)) satisfying

u(t) ∈ C(R+, H2(Ω) ∩ V ) ∩C1(R+, V ) ∩ C2(R+, L2(Ω)),

θ(t) ∈ C(R+, H2(Ω) ∩H1
0 (Ω))

with R+ = [0,+∞).
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Proof. In order to use the theory of semigroups, we introduce the new variable

wt(x, s) = u(x, t)− u(x, t− s) (9.1.8)

and extend the solution u to negative times, setting u(t) = 0 for t < 0 and v = ut.
Then problem (9.1.1) can be transformed into the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − v = 0, (x, t) ∈ Ω× R+,

vt − lΔu− ∫ +∞
0 g(s)Δwt(t− s)ds+ div θ = 0, (x, t) ∈ Ω× R+,

θt −Δθ + div ut = 0, (x, t) ∈ Ω× R+,

wt
t = −wt

s + ut, (x, t) ∈ Ω× R+,

θ = 0, (x, t) ∈ ∂Ω× R+,

u = 0, (x, t) ∈ Γ0 × R+,

l ∂u∂ν +

∫ t

0

g(t− τ)∂w
t

∂ν dτ + h(ut) = 0, (x, t) ∈ Γ1 × R+,

(9.1.9)

where g satisfies (A1). In view of (A1), let L2
g(R

+, V ) be the Hilbert space of
V -valued functions on R+, endowed with the norm

‖ w ‖2L2
g(R

+,V )=

∫ +∞

0

g(s) ‖ w(s) ‖2V ds.

We consider problem (9.1.9) in the following Hilbert space

H = V × L2 × L2 × L2
g(R

+, V )

with the energy norm

‖(u, v, θ, θt, w)‖H =

{
l‖u‖2V +

1

2

(
‖v‖2+ ‖ θ ‖2

)
+

∫ +∞

0

g(s)‖w(s)‖2V ds

}1/2

(9.1.10)
and define a linear unbounded operator A on H by

A(u, v, θ, w) = (v,B(u,w) −∇θ,Δθ −∇v, v − ws) (9.1.11)

where wt
s =

∂wt

∂s and

B(u,w) = lΔu+

∫ +∞

0

g(s)Δwt(s)ds.

Then problem (9.1.9) can be formulated as an abstract Cauchy problem

Φ′ = AΦ, Φ = (u, v, θ, w)
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on the Hilbert space H for an initial condition Φ(0) = (u0, u1, θ0, w0). The domain
of A is given by:

D(A) =

{
(u, v, θ, w) ∈ H : θ ∈ H2(Ω) ∩H1

0 (Ω), v ∈ V,

lu+

∫ +∞

0

g(s)wt(s) ds ∈ H2(Ω) ∩ V,

wt(s) ∈ H1
g (R

+, V ), wt(0) = 0,

l
∂u

∂ν
+

∫ +∞

0

g(t− τ)
∂wt

∂ν
dτ + h(ut) = 0 on Γ1

}
. (9.1.12)

It is clear that D(A) is dense in H.

First, we prove that A is dissipative and closed. By a straightforward calcu-
lation, it follows from Lemma 3.2 in [558] that

〈A(u, v, θ, w), (u, v, θ, θt, w)〉H
= (v, u)V +

1

2
(B(u,w) −∇θ, v) +

1

2
(Δθ − div v, θ) + (v − ws, w)L2

g(R
+,V )

= −1

2

∫
Γ1

uh(u)dΓ− 1

2
‖ ∇θ ‖2 −g(s) ‖ w(s) ‖2V

∣∣∣+∞

0

+

∫ +∞

0

g′(s) ‖ w(s) ‖2(H1
Γ1

(Ω))n ds

≤ 0.

Thus A is dissipative. In order to prove that A is closed, let (un, vn, θn, wn) ∈ D(A)
be such that {

(un, vn, θn, wn) → (u, v, θ, w) in H,

A(un, vn, θn, wn) → (a, b, c, d) in H.

Then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un → u in V, (9.1.13)

vn → v in L2(Ω), (9.1.14)

θn → θ in H1
0 (Ω), (9.1.15)

wn → w in L2
g(R

+, V ), (9.1.16)

vn → a in V, (9.1.17)

B(un, wn)−∇θn → b in L2(Ω),Δθn − div vn → c in L2(Ω), (9.1.18)

vn − wns → d in L2
g(R

+, V ). (9.1.19)

By (9.1.14) and (9.1.17), we can obtain{
vn → v in V, (9.1.20)

v = a ∈ V. (9.1.21)
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By (9.1.19) and (9.1.21), we deduce

Δθn → c+ div v in L2(Ω), (9.1.22)

and noting that Δ is an isomorphism from H2(Ω) ∩H1
0 (Ω) onto L2(Ω), it follows

from (9.1.15) that
θn → θ in H2(Ω) ∩H1

0 (Ω). (9.1.23)

It therefore follows from (9.1.19) and (9.1.24) that

c = Δθ − div v, θ ∈ H2(Ω) ∩H1
0 (Ω). (9.1.24)

From (9.1.16), (9.1.20) and (9.1.21), we derive{
wn → w in H1

g (R
+, V ), (9.1.25)

d = v − ws, w ∈ H1
g (R

+, V ), w(0) = 0. (9.1.26)

In addition, it follows from (9.1.13), (9.1.16) and (9.1.24) that

B(un, wn)−∇θ → B(u,w)−∇θ (9.1.27)

in the sense of distribution. It therefore follows from (9.1.18) and (9.1.28) that

b = B(u,w)−∇θ, B(u,w) ∈ L2(Ω) (9.1.28)

and

lu+

∫ +∞

0

g(s)w(s)ds ∈ H2(Ω) ∩ V, (9.1.29)

since μΔ+(λ+μ)∇div is an isomorphism from H2(Ω)∩V onto L2(Ω). Moreover,
by (9.1.21), (9.1.30) and the trace theorem, we conclude

l
∂u

∂ν
+

∫ +∞

0

g(t− τ)
∂w

∂ν
dτ + h(ut) = 0 on Γ1.

Thus, by (9.1.22), (9.1.25), (9.1.27), (9.1.29) and (9.1.30), we conclude

A(u, v, θ, w) = (a, b, c, d), (u, v, θ, w) ∈ D(A).

Hence, A is closed.

Next, we prove that 0 ∈ ρ(A), where ρ(A) is the resolvent of the operator A.
For any G = (g1, g2, g3, g4) ∈ H, consider

AΦ = G, (9.1.30)

i.e.,

v = g1, in V, (9.1.31)

B(u,w)−∇θ = g2, in L2(Ω), (9.1.32)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩Δθ − div v = g3, in L2(Ω), (9.1.33)

v − ws = g4, in L2
g(R

+, V ). (9.1.34)
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Inserting v = g1 obtained from (9.1.31) into (9.1.33), we can obtain

Δθ = g3 + div g1 ∈ L2(Ω). (9.1.35)

By the standard theory for linear elliptic equations, we have a unique θ ∈ H2(Ω)∩
H1

0 (Ω) satisfying (9.1.36).

We plug v = g1 obtained from (9.1.31) into (9.1.34) to get

ws = g1 − g4 ∈ L2
g(R

+, V ). (9.1.36)

Applying the standard theory for the linear elliptic equations again, we know
that there exists a unique w ∈ H1

g (R
+, V ) satisfying (9.1.36). Then plugging θ

and w just obtained from solving (9.1.35), (9.1.36) respectively into (9.1.32) and
applying the standard theory for the linear elliptic equations again yields the
unique solvability of u ∈ D(A) for (9.1.32), and such that lu+

∫ +∞
0 g(s)w(s) ds ∈

H2(Ω) ∩ V . Thus the unique solvability of (9.1.30) follows. It is clear from the
regularity theory for the linear elliptic equations that ‖Φ‖H ≤ K‖G‖H with K
being a positive constant independent of Φ. From the semigroup theory (see, e.g.,
[558, 717, 1000]), we can complete the proof. �

Now we state and prove our main result. First we establish several lemmas
in the following.

Using the Cauchy–Schwartz and Poincaré’s inequalities, we can obtain the
following lemma (see, e.g., [617]) immediately.

Lemma 9.1.2 ([617]). There exists a constant c > 0 such that for all u ∈ V ,∫
Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds
)2

dx ≤ c(g ◦ ∇u)(t).

Now we are going to construct a Lyapunov functional F(t) equivalent to E(t).
To this end, we define several functionals which allow us to obtain the required
estimates.

Lemma 9.1.3 ([794]). Under the assumptions (A1)–(A2), the function F1 defined by

F1(t) =

∫
Ω

uutdx

satisfies the estimate

F ′
1(t) ≤ − l

2

∫
Ω

| ∇u |2 dx+

∫
Ω

u2
tdx+ c(g ◦ ∇u)(t)

+
λ2
0

4ε

∫
Ω

| ∇θ |2 dx+ c

∫
Γ1

h2(ut)dΓ

(9.1.37)

where λ0 > 0 is the best constant in Poincaré’s inequality.
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Proof. By a straightforward calculation, using (9.1.1), we obtain

F ′
1(t) =

∫
Ω

u2
tdx +

∫
Ω

uΔudx−
∫
Ω

u∇θdx−
∫
Ω

u

(∫ t

0

g(t− τ)Δu(τ)dτ

)
dx

≤
∫
Ω

u2
tdx − l

∫
Ω

| ∇u |2 dx−
∫
Ω

u∇θdx (9.1.38)

+

∫
Ω

∇u

(∫ t

0

g(t− τ)(∇u(τ) −∇u(t))dτ

)
dx −

∫
Γ1

uh(ut)dΓ.

Using Young’s inequality and Lemma 9.1.2, we get for any ε > 0,∫
Ω

∇u

(∫ t

0

g(t− τ)(∇u(τ) −∇u(t))dτ

)
dx

≤ ε

∫
Ω

| ∇u |2 dx+
1

4ε

∫
Ω

(∫ t

0

g(t− τ) | ∇u(τ) −∇u(t) | dτ
)2

dx

≤ ε

∫
Ω

| ∇u |2 dx+
c

ε
(g ◦ ∇u)(t). (9.1.39)

Using Poincaré’s and Young’s inequalities, we find that

−
∫
Ω

u∇θdx ≤ ε

∫
Ω

| ∇u |2 dx+
λ2
0

4ε

∫
Ω

| ∇θ |2 dx. (9.1.40)

Similarly, using the Trace Theorem, we conclude for any ε > 0,

−
∫
Γ1

uh(ut)dΓ ≤ ε

∫
Ω

| ∇u |2 dx +
λ2
0

4ε

∫
Γ1

h2(ut)dΓ. (9.1.41)

Combining (9.1.39)–(9.1.41) and choosing ε > 0 small enough, we can show
(9.1.37). �

Lemma 9.1.4 ([794]). Under the assumptions (A1)–(A2), the function F2 defined by

F2(t) = −
∫
Ω

ut

∫ t

0

g(t− τ)(u(t) − u(τ))dτdx

satisfies the estimate

F ′
2(t) ≤ −

(∫ t

0

g(s)ds− ε

)∫
Ω

u2
tdx+ ε

∫
Ω

(| ∇u |2 + | ∇θ |2)dx

+
c

ε
(g ◦ ∇u)(t)− c

ε
(g′ ◦ ∇u)(t) + c

∫
Γ1

h2(ut)dΓ

(9.1.42)

for any 0 < ε < 1.
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Proof. By exploiting (9.1.1) and integrating by parts, we can get

F ′
2(t) =

(
1−

∫ t

s

g(s)ds

)∫
Ω

∇u

(∫ t

0

g(t− τ)(∇u(t) −∇u(τ))dτ

)
dx

+

∫
Γ1

(∫ t

0

g(t− τ)(u(t) − u(τ))dτ

)
h(ut)dΓ

−
∫
Ω

ut

(∫ t

0

g′(t− τ)(u(t) − u(τ))dτ

)
dx

+

∫
Ω

∇θ

(∫ t

0

g(t− τ)(u(t) − u(τ))dτ

)
dx

−
(∫ t

0

g(s)ds

)∫
Ω

u2
tdx+

∫
Ω

(∫ t

0

g(t− τ)(∇u(t) −∇u(τ))dτ

)2

dx.

Using Young’s and Poincaré’s inequalities and Lemma 9.1.2, we obtain for any
ε > 0,(

1−
∫ t

s

g(s)ds

)∫
Ω

∇u

(∫ t

0

g(t− τ)(∇u(t) −∇u(τ))dτ

)
dx

≤ ε

∫
Ω

| ∇u |2 dx+
c

ε
(g ◦ ∇u)(t),∫

Γ1

(∫ t

0

g(t− τ)(u(t)− u(τ))dτ

)
h(ut)dΓ ≤ c(g ◦ ∇u)(t) + c

∫
Γ1

h2(ut)dΓ,

−
∫
Ω

ut

(∫ t

0

g′(t− τ)(u(t) − u(τ))dτ

)
dx ≤ ε

∫
Ω

u2
tdx− λ2

0

4ε
(g′ ◦ ∇u)(t),∫

Ω

∇θ

(∫ t

0

g(t− τ)(u(t) − u(τ))dτ

)
dx ≤ ε

∫
Ω

| ∇θ |2 dx+
λ2
0

4ε
(g ◦ ∇u)(t).

Combining all above estimates, we can obtain (9.1.42). �

Now for N1, N2 > 1, let

F(t) = N1E(t) +N2F2(t) + F1(t)

and set g0 =
∫ t0
0

g(s)ds > 0 for some fixed t0 > 0. By combining (9.1.6), (9.1.37)
and (9.1.42), taking ε > 0 small enough, and N1, N2 large enough, we arrive at

F ′(t) ≤ − l

4

∫
Ω

| ∇u |2 dx− k

∫
Ω

u2
tdx

− k1

∫
Ω

| ∇θ |2 dx+ c(g ◦ ∇u)(t) + c

∫
Γ1

h2(ht)dΓ,

where

k =

(
N2g0 − l

4
− 1

)
> 0, k1 = (N1 − εN2) > 0,



366 Chapter 9. Thermoviscoelastic, Thermoviscoelastoplastic . . . Equations

which yields, for all t ≥ t0,

F ′(t) ≤ −β1E(t) + c(g ◦ ∇u)(t) + c

∫
Γ1

h2(ht)dΓ, (9.1.43)

or

E(t) ≤ −β2F ′(t) + c(g ◦ ∇u)(t) + c

∫
Γ1

h2(ht)dΓ. (9.1.44)

On the other hand, we can choose N1 so large that F(t) is equivalent to
E(t), i.e.,

F(t) ∼ E(t). (9.1.45)

Now our main result, due to Qin and Ma [794], reads as follows.

Theorem 9.1.5 ([794]). Assume that (A1)–(A2) hold. Then there exists a constant
C > 0 such that, for t large enough, the solution of problem (9.1.1) satisfies

E(t) ≤ C

(
H−1

0

(
1∫ t

0
η(s)ds

))2

, (9.1.46)

where H0(s) = sh0(s). Moreover, if K defined by K(s) = h0(s)
s is strictly increasing

with K(0) = 0, then we have the improved estimate

E(t) ≤ C

(
h−1
0

(
1∫ t

0
η(s)ds

))2

. (9.1.47)

Proof. We borrow some ideas from [620] for a viscoelastic system. Define φ(t) =

1 +
∫ t

1
1

h0(1/s)
ds. Then

φ′(t) =
1

h0(1/t)
> 0, for all t ≥ 1, φ′(t) → +∞ as t → +∞,

and φ′(t) is strictly increasing. Thus φ is convex and strictly increasingC2 function,
with φ(t) → +∞ as t → +∞. If we put σ0 = φ−1, then σ0 is strictly increasing,
σ′
0(t) = h0(1/t) is decreasing, and σ0(t) → +∞ as t → +∞.

Now we define

σ(t) := σ0

(∫ t

0

η(s)ds

)
,

for some t1 ≥ t0 with
∫ t1
0

η(s)ds ≥ 1. Using the properties of σ0 and η, we easily
check that σ is a strictly increasing and concave twice differentiable function, such
that σ(t) → +∞ as t → +∞. It follows from (9.1.44) and (9.1.45) that for all
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T ≥ s ≥ t1,∫ T

s

σ′(t)E2(t)dt ≤ c

∫ T

s

σ′(t)E(t)F(t)dt

≤ −c1

∫ T

s

σ′FF ′dt+ c2

∫ T

s

σ′F(g ◦ ∇u)dt+ c2

∫ T

s

σ′F
(∫

Γ1

h2(ut)dΓ

)
dt

≤ cE2(s) + c

∫ T

s

σ′E(g ◦ ∇u)dt+ c

∫ T

s

σ′E
(∫

Γ1

h2(ut)dΓ

)
dt. (9.1.48)

Now we need to estimate the last two terms of (9.1.48) as follows

I1 =

∫ T

s

σ′E(g ◦ ∇u)dt, I2 =

∫ T

s

σ′E
(∫

Γ1

h2(ut)dΓ

)
dt.

Using (A1), the definition of σ and noting the fact that σ′
0 and η are non-

increasing, we derive

σ′(t)g(t− τ) = σ′
0

(∫ t

0

η(s)ds

)
η(t)g(t− τ) ≤ cη(t)g(t− τ)

≤ cη(t− τ)g(t− τ) ≤ −cg′(t− τ)

which implies

I1 ≤ −c

∫ T

s

E

(∫
Ω

∫ t

0

g′(t− τ) | ∇u(t)−∇u(τ) |2 dτdx

)
dt

≤ −c

∫ T

s

EE′dt ≤ cE2(s).

(9.1.49)

For I2, we consider the following partition of Γ1,⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ11 = {x ∈ Γ1 :| ut |> ε},
Γ12 =

{
x ∈ Γ1 :| ut |≤ ε and | ut |≤ σ′

0

(∫ t

0 η(s)ds
)}

,

Γ13 =
{
x ∈ Γ1 :| ut |≤ ε and | ut |> σ′

0

(∫ t

0
η(s)ds

)}
.

(9.1.50)

Using (A2), (9.1.6), and the properties of σ, σ0 and η, we obtain

σ′(t)
∫
Γ11

h2(ut)dΓ ≤ cσ′(t)
∫
Γ11

uth(ut)dΓ ≤ −cE′(t),

σ′(t)
∫
Γ12

h2(ut)dΓ ≤ η(t)σ′
0

(∫ t

0

η(s)ds

)∫
Γ12

(
h−1
0 (|ut|)

)2
dΓ

≤ η(t)σ′
0

(∫ t

0

η(s)ds

)(
h−1
0

(
σ′
0

(∫ t

0

η(s)ds

)))2

,
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σ′(t)
∫
Γ13

h2(ut)dΓ = η(t)σ′
0

(∫ t

0

η(s)ds

)∫
Γ13

h2(ut)dΓ

≤ η(t)h−1
0 (ε)

∫
Γ13

uth(ut)dΓ ≤ −cE′(t)

which imply

σ′(t)
∫
Γ1

h2(ut)dΓ ≤ −cE′(t) + cη(t)σ′
0

(∫ t

0

η(s)ds

)(
h−1
0

(
σ′
0

(∫ t

0

η(s)ds

)))2

.

Hence

I2 ≤ cE2(s) + cE(s)

∫ T

s

η(t)σ′
0

(∫ t

0

η(s)ds

)(
h−1
0

(
σ′
0

(∫ t

0

η(s)ds

)))2

dt.

(9.1.51)
Therefore a combination of (9.1.48), (9.1.49) and (9.1.51) yields∫ T

s

σ′(t)E2(t)dt

≤ cE2(s) + cE(s)

∫ +∞

s

η(t)σ′
0

(∫ t

0

η(s)ds

)(
h−1
0

(
σ′
0

(∫ t

0

η(s)ds

)))2

dt

= cE2(s) + cE(s)

∫ +∞
∫

s
0
η(s)ds

σ′
0(τ)(h

−1
0 (σ′

0(τ)))
2dτ

= cE2(s) + cE(s)

∫ +∞

σ0(
∫

s
0
η(s)ds)

(
h−1
0

(
h0(1/s)

))2

ds

= cE2(s) +
cE(s)

σ0(
∫ s

0 η(s)ds)
= cE2(s) +

cE(s)

σ(s)
.

Thus by Lemma 1.5.4 with p = q = 1, we conclude for all t ≥ t1,

E(t) ≤ c

σ(t)2
=

c(
σ0

( ∫ s

0
η(s)ds

))2 . (9.1.52)

To obtain (9.1.46), we may take s0 such that h0(1/s0) ≤ 1. Since h0 is
increasing and H0(s) = sh0(s), we may derive for all s ≥ s0,

σ−1
0 (s) ≤ 1 + (s− 1)

1

h0(1/s)
≤ s

h0(1/s)
=

1

H0(1/s)
.

Hence, with t = 1
H0(1/s)

, we easily obtain for all t ≥ 1,

1

σ0(t)
≤ H−1

0 (1/t),

which yields (9.1.46) by virtue of (9.1.52).
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To prove (9.1.47), we take

σ0 = φ−1 where φ(t) = 1 +

∫ t

1

1

K(1/s)
ds, t ≥ 1,

and replace (9.1.50) by⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ11 = {x ∈ Γ1 :| ut |> ε} ,
Γ12 =

{
x ∈ Γ1 :| ut |≤ ε and h−1

0 (| ut |) ≤ K−1
(
σ′
0

(∫ t

0
η(s)ds

))}
,

Γ13 =
{
x ∈ Γ1 :| ut |≤ ε and h−1

0 (| ut |) > K−1
(
σ′
0

(∫ t

0
η(s)ds

))}
.

Then repeating similar computations, we obtain (9.1.47) immediately. �

9.2 A thermoviscoelastoplastic system with hysteresis

In this section, we shall employ Theorem 2.2.8 to investigate weak stabilization for
a thermoviscoelastoplastic system with hysteresis. We choose these results from
Krejč́ı and Sprekels [462].

9.2.1 Thermoelastoplastic constitutive laws

We recall that the observation of the uniaxial load-deformation experiments for
many materials reveals that the stress-strain (σ − ε) relations strongly depend
on the absolute (Kelvin) temperature θ and exhibits a strong plastic behavior
confirmed by the occurrence of rate-independent hysteresis loops ([462]).

If such a relation involves a hysteresis, it is impossible to be expressed in
terms of simple-valued functions since the latter are certainly not able to give
a correct account of the inherent memory structure that are responsibly for the
complicated looping in the interior of experimentally observed hysteresis loops.

To avoid these difficulties, the Russian group in the seventies (see, e.g., [459])
introduced the notion of hysteresis operators with which Krejč́ı and Sprekels [461]
proposed a different approach to thermoelastoplastic hysteresis. Assume that the
temperature-dependent plastic stress σp satisfies the following form of an operator
P of Prandtl–Ishlinskii type,

σp = P [ε, θ] :=

∫ +∞

0

ϕ(r, θ)sr [ε]dr (9.2.1)

where sr denotes the so-called stop operator or elastic-plastic element with thresh-
old r > 0 (to be defined below), and ϕ(·, θ) ≥ 0 is a density function with respect
to r > 0 and the absolute temperature θ. The integral formula (9.2.1) corresponds
to an infinite rheological combination in parallel of elements sr.



370 Chapter 9. Thermoviscoelastic, Thermoviscoelastoplastic . . . Equations

We recall that the stop operator sr : W 1,1(0, T ) → W 1,1(0, T ) in equation
(9.2.1) is defined as the solution operator σr = sr[ε] of the variational inequality

|σr(t)| ≤ r, (ε̇(t)− σ̇r(t))(σr(t)− σ̃) ≥ 0 for a.e. t ∈ [0, T ], for all σ̃ ∈ [−r, r],
(9.2.2)

(where ε̇(t) = d
dtε(t)) with initial condition

σr(0) = sign(ε(0))min{r, |ε(0)|} (9.2.3)

which describes the strain-stress law of Prandtl’s model for elastic-perfectly plastic
materials with a unit elasticity modulus and yield point r.

For the given density function ϕ in (9.2.1), then it can be identified by let-
ting ε monotonically increase for fixed temperature θ starting from the origin.
Therefore, the corresponding formula reads (see [460])

Φ(ε, θ) =

∫ ε

0

∫ +∞

s

ϕ(r, θ)drds. (9.2.4)

We now only consider the case when ϕ is non-negative, i.e., the initial loading
curves at each constant temperature are concave and non-decreasing.

The operator sr has following properties for whose proof, we refer to [120,
460].

Lemma 9.2.1. Let r > 0 be given. Then

(i) For every ε ∈ W 1,1(0, T ), we have, for a.e. t ∈ [0, T ],(
d

dt
sr[ε]

)2

= ε̇
d

dt
sr[ε]. (9.2.5)

(ii) For every ε1, ε2 ∈ W 1,1(0, T ), we have, for a.e. t ∈ [0, T ],

1

2

d

dt
(sr[ε1]− sr[ε2])

2 ≤ (ε̇1 − ε̇2) (sr[ε1]− sr[ε2]) , (9.2.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
∫ T

0

∣∣∣∣ ddt (sr[ε1]− sr[ε2])(t)

∣∣∣∣dt ≤ |ε1(0)− ε2(0)|+ 2

∫ T

0

|ε̇1 − ε̇2|(t)dt,
(9.2.7)

|(sr[ε1]− sr[ε2])(t)| ≤ 2 max
0≤τ≤t

|ε1(τ) − ε2(τ)|. (9.2.8)

(iii) For every r, q > 0 and ε ∈ W 1,1(0, T ), we have, for all t ∈ [0, T ],

|(sr[ε]− sq[ε])(t)| ≤ |r − q|. (9.2.9)

In fact, it follows from the inequalities (9.2.8)–(9.2.9) that the stop operator
sr is Lipschitz continuous in W 1,1(0, T ) and admits a Lipschitz continuous exten-
sion onto C[0, T ]. Moreover, by definition we immediately know that sr is a causal
operator, that is, the following implication holds for every t ∈ [0, T ],

ε1(τ) = ε2(τ), for all τ ∈ [0, t] ⇒ sr[ε1] = sr[ε2](t) (9.2.10)
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which indicates that the output values at time t depend only on past values of the
input. Due to this reason, we need to consider sr as a family of operators acting
in the spaces C[0, t] for all t ∈ [0, T ].

The following corollary immediately follows from inequality (9.2.8).

Corollary 9.2.1 ([462]). For all ε, ε1, ε2 ∈ W 1,1(0, T ), we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sr[ε]

(
ε̇− d

dt
sr[ε]

)
≥ 0 a.e. in [0, T ] (energy inequality), (9.2.11)

|(sr [ε1]− sr[ε2])(t)| ≤ |ε1(0)− ε2(0)|+
∫ t

0

|ε̇1 − ε̇2|(τ)dτ,
for all t ∈ [0, T ].

(9.2.12)

In this section, we shall consider the one-dimensional equation of motion

ρutt = σx + f, (9.2.13)

where ρ > 0 is a constant referential density, u is the displacement, σ is the total
un-axial stress and f is the volume force density.

We assume that σ can be decomposed into the sum

σ = σp + σe + σv + σd, (9.2.14)

where

σe = γ(ε), (9.2.15)

is the (nonlinear) kinematic hardening component with a given non-decreasing
Lipschitz continuous function γ : R → R, γ(0) = 0,

σv = με̇ (9.2.16)

with a constant μ > 0 is the viscous component,

σd = −βθ (9.2.17)

is the thermic dilation component with a constant β ∈ R and σp is the thermoplas-
tic component given by (9.2.1). Equation (9.2.16) can be interpreted rheologically
as a combination in parallel of the above components (see, e.g., [529]). Assume
the stop operator sr acts on functions of x and t satisfying the formula

sr[ε](x, t) := sr[ε(x, ·)](t), (9.2.18)

i.e., x plays the role of a parameter. The equation of motion (9.2.15) is now coupled
with the energy balance equation

Ut = σεt − qx + g, (9.2.19)
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where U is the total internal energy, q is the heat flux and g is the heat source
density. The model is thermodynamically consistent provided the temperature θ
and the entropy S satisfy the inequalities

θ > 0, (9.2.20)
⎧⎨⎩St ≥ g

θ
−

(q
θ

)
x

(the Clausius–Duhem inequality), (9.2.21)

in an appropriate sense.

The authors in [461] derived the following expression for thermoplastic parts
of internal energy Up and entropy Sp in operator form corresponding to the con-
stitutive law (9.2.1),

Up = V [ε, θ] := 1

2

∫ +∞

0

(ϕ(r, θ) − θϕθ(r, θ))s
2
r [ε]dr, (9.2.22)

⎧⎪⎪⎪⎨⎪⎪⎪⎩Sp = S[ε, θ] := −1

2

∫ +∞

0

ϕθ(r, θ))s
2
r [ε]dr. (9.2.23)

Combining (9.2.16), (9.2.22), (9.2.23), we put

U := CV θ + V [ε, θ] + Γ(ε) + V0, (9.2.24)
{
S := CV log θ + S[ε, θ] + βε, (9.2.25)

where CV > 0, the purely caloric part of the specific heat is a constant, V0 > 0 is
a constant which is chosen in order to ensure that U ≥ 0 according to Hypothesis
(H2) below, and Γ(ε) :=

∫ ε

0
γ(s)ds. For the heat flux, we assume Fourier’s law

q = −κθx (9.2.26)

with a constant heat conduction coefficient κ > 0. The system (9.2.13), (9.2.19) is
coupled with the small deformation hypothesis

ε = ux (9.2.27)

and the system (9.2.13)–(9.2.19) can be rewritten as the form{
ρutt − (γ(ux) + P [ux, θ] + μuxt − βθ)x = f(θ, x, t), (9.2.28)

(CV θ + V [ux, θ])t − κθxx = (P [ux, θ] + μuxt − βθ)uxt + g(θ, x, t) (9.2.29)

where x ∈ [0, T ], t ∈ [0, T ] with T > 0, μ > 0, CV > 0, β ∈ R being fixed
constants, γ : R → R, f, g : [0,+∞) × [0, 1] × [0, T ] → R are given functions,
and P ,V are the operators defined by (9.2.1), (9.2.22) with a given distribution
function ϕ : ([0,+∞))2 → [0,+∞) satisfying Hypothesis (H2) below.

Consider problem (9.2.28)–(9.2.29). Assume that the volume force and heat
source densities are given functions of x and t which may also depend on the
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instantaneous value of θ. Then by rescaling the units so that ρ ≡ κ ≡ 1, the
system (9.2.28)–(9.2.29) reduces to the following boundary and initial conditions{

u(0, t) = u(1, t) = θx(0, t) = θx(1, t) = 0, for all t ≥ 0, (9.2.30)

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x). (9.2.31)

Here we assume the data to satisfy the following conditions

Hypothesis (H1).

(i) u0, u1 ∈ H2(0, 1)∩H1
0 (0, 1), θ

0 ∈ H1(0, 1), and there exists a constant δ > 0
such that for all x ∈ [0, 1],

θ0(x) ≥ δ. (9.2.32)

(ii) γ : R → R is an absolutely continuous function, γ(0) = 0, and there exists a
constant γ0 > 0 such that

0 ≤ dγ(ε)

dε
≤ γ0 a.e. in R. (9.2.33)

(iii) The functions f, g are measurable, f(·, x, t), g(·, x, t) are absolutely continu-
ous in [0,+∞) for a.e. (x, t) ∈ [0, 1]× [0, T ]. Moreover, there exists a constant
K > 0 and functions f0, g0 ∈ L2([0, 1]× [0, T ]) such that

g(0, x, t) = g0(x, t) ≥ 0,

a.e. (x, t) ∈ [0, 1]× [0, T ], (9.2.34)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
|f(θ, x, t)|+ |ft(θ, x, t)| ≤ f0(x, t),

a.e. (θ, x, t) ∈ [0,+∞)× [0, 1]× [0, T ], (9.2.35)

|fθ(θ, x, t)|+ |gθ(θ, x, t)| ≤ K,

a.e. (θ, x, t) ∈ [0,+∞)× [0, 1]× [0, T ]. (9.2.36)

Hypothesis (H2).

The function ϕ : ([0,+∞))2 → [0,+∞) is measurable, ϕ(r, ·), ϕθ(r, ·) are
absolutely continuous for a.e. r > 0, and there exist constants L > 0, V0 > 0 such
that for a.e. θ > 0, the following inequalities hold.∫ +∞

0

ϕ(r, θ)dr ≤ L, (9.2.37)∫ +∞

0

|ϕθ(r, θ)|dr ≤ L, (9.2.38)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ ∫ +∞

0

θ|ϕθθ(r, θ)|r2dr ≤ CV , (9.2.39)

where CV > 0 is the constant introduced in (9.2.24)–(9.2.25),

1

2

∫ +∞

0

|ϕ(r, θ) − θϕθ(r, θ)|(1 + r2)dr ≤ V0. (9.2.40)

The next result is the existence result in [463] stated as follows.
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Theorem 9.2.2 ([462]). Let Hypotheses (H1), (H2) hold. Then there exists a unique
solution (u(t), θ(t)) to the problem (9.2.28)–(9.2.31) such that⎧⎪⎨⎪⎩

utt, uxx, uxxt, θx ∈ L∞(0, T ;L2(0, 1)), (9.2.41)

uxtt, θt, θxx ∈ L2([0, T ]× [0, T ]), (9.2.42)

θ, u, ux, uxt ∈ C([0, 1]× [0, T ]). (9.2.43)

In addition, there exists a constant c0 > 0 depending only on the given data such
that for all t ∈ [0, T ] and x ∈ [0, 1], we have

θ(x, t) ≥ δe−c0t > 0, (9.2.44)

and problem (9.2.28)–(9.2.31) are satisfied almost everywhere.

Corollary 9.2.2 ([462]). The solution from Theorem 9.2.1 satisfies the Clausius–
Duhem inequality (9.2.21) with S defined by (9.2.25), (9.2.23) almost everywhere
in [0, 1]× [0, T ].

Now we begin to prove that the velocity tends to 0 in L2 as t → +∞, but
due to the technical reason, we do not know the asymptotic behaviour in time for
the velocity gradient and the temperature.

Theorem 9.2.3 ([462]). Assume the hypotheses of Theorem 9.2.1 hold. Assume,
moreover, that γ(ε) = γ0ε for some γ0 > 0 and that f(θ, x, t) = g(θ, x, t) = 0
for all θ > 0 and a.e. x ∈ [0, 1], t > 0. Then the solution (u(t), θ(t)) of problem
(9.2.28)–(9.2.31) satisfies

lim
t→+∞

∫ 1

0

u2
t (x, t)dx = 0. (9.2.45)

Proof. In the sequel, by C1, C2, . . . we denote universal constants depending only
on the initial conditions. The proof can be split into six steps.

Step 1.Multiplying (9.2.28) by ut, and adding the result to (9.2.29) and integrating
with respect to x over [0, 1], we have the global balance identity

d

dt

∫ 1

0

(
1

2
u2
t +

γ0
2
u2
x + CV θ + V [ux, θ]

)
(x, t)dx = 0. (9.2.46)

Step 2. Multiplying (9.2.29) by −1/θ, we may rewrite the result in the form(
−CV log θ +

1

2

∫ +∞

0

ϕθ(r, θ)s
2
r [ux]dr

)
t

+
1

θ
(θxx + μu2

xt)

+
1

θ

∫ +∞

0

ϕ(r, θ)sr [ux](ux − sr[ux])tdr + βuxt = 0,

(9.2.47)
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and integrating with respect to x and t, we can obtain from (9.2.11) that∫ 1

0

(
− CV log θ +

1

2

∫ +∞

0

ϕθ(r, θ)s
2
r [ux]dr

)
(x, t)dx

+

∫ t

0

∫ 1

0

(
θ2x
θ2

+ μ
u2
xt

θ

)
dxdτ ≤ C1.

(9.2.48)

On the other hand, using the relations∫ +∞

0

ϕθ(r, θ)s
2
r [ux]dr

=

∫ +∞

0

[(ϕθ(r, θ)− ϕθ(r, 1)) + (ϕθ(r, 1)− ϕ(r, 1)) + ϕ(r, 1)] s2r[ux]dr

≥ −
∫ +∞

0

[|ϕθ(r, θ)− ϕθ(r, 1)|+ |ϕθ(r, 1)− ϕ(r, 1)|] r2dr (9.2.49)

the left-hand side of (9.2.48) can be estimated. In fact, from Hypothesis (H2) it
follows that ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫ +∞

0

|ϕθ(r, 1)− ϕ(r, 1)|r2dr ≤ 2V0, (9.2.50)∫ +∞

0

|ϕθ(r, θ)− ϕθ(r, 1)|r2dr

≤
∣∣∣∣ ∫ θ

1

∫ +∞

0

|ϕθθ(r, θ
′)|drdθ′

∣∣∣∣ ≤ CV | log θ|.
(9.2.51)

Using now the trivial inequality

| log θ| ≤ max{θ,− log θ}, (9.2.52)

and ∫ 1

0

θ(x, t)dx ≤ C2, (9.2.53)

(which follows from (9.2.46)), we conclude that∫ 1

0

| log θ(x, t)|dx +

∫ t

0

∫ 1

0

(
θ2x
θ2

+
u2
xt

θ

)
dxdτ ≤ C3. (9.2.54)

Step 3. For every x and t, we have

|ut(x, t)| ≤
∫ 1

0

|uxt(ξ, t)|dξ ≤
∫ 1

0

|uxt|√
θ

√
θdξ ≤

√
C2

(∫ 1

0

u2
xt

θ
dξ

)1/2

. (9.2.55)

Hence ∫ t

0

max
x∈[0,1]

|ut(x, τ)|2dτ ≤ C4. (9.2.56)
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Step 4. Analogously, for every x, y and t, we get

√
θ(x, t) ≤

√
θ(y, t) +

1

2

∫ 1

0

|θx|√
θ
(ξ, t)dξ

≤
√
θ(y, t) +

1

2

(
C2

∫ 1

0

θ2x
θ2

(ξ, t)dξ

)1/2

.

(9.2.57)

Hence

max
x∈[0,1]

θ(x, t) ≤ C5

(
1 +

∫ 1

0

θ2x
θ2

(ξ, t)dξ

)
. (9.2.58)

Step 5. Multiplying (9.2.28) by ut and integrating the result over x, we can obtain
from (9.2.41)

1

2

d

dt

∫ 1

0

u2
t (x, t)dx + μ

∫ 1

0

u2
xt(x, t)dx ≤

∫ 1

0

(V0 + |β|θ + γ0|ux|)|uxt|(x, t)dx,
(9.2.59)

which, by Hölder’s inequality, together with (9.2.46) and (9.2.58), leads to

d

dt

∫ 1

0

u2
t (x, t)dx +

∫ 1

0

u2
xt(x, t)dx ≤ C6

(
1 +

∫ 1

0

θ2(x, t)dx

)
≤ C7

(
1 + max

x∈[0,1]
θ(x, t)

)
≤ C8

(
1 +

∫ 1

0

θ2x
θ2

(x, t)dx

)
.

(9.2.60)

Step 6. For any t > 0, if we set

y(t) :=

∫ 1

0

u2
t (x, t)dx, h(t) := C8

∫ 1

0

θ2x
θ2

(x, t)dx, (9.2.61)

then from (9.2.54)–(9.2.56), it follows∫ t

0

y(τ)dτ ≤ C4,

∫ t

0

h(τ)dτ ≤ C8C3, (9.2.62)

and further (9.2.60) can be rewritten in the form

y′(t) + y(t) ≤ C8 + h(t), a.e. t ∈ [0,+∞). (9.2.63)

Therefore, applying Theorem 2.2.8 to (9.2.63), we can complete the proof. �
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9.3 Asymptotic behavior for a linear
thermomagnetoelastic system

In order to apply Theorems 2.3.1, 2.3.4–2.3.5 and Corollary 2.3.1, we shall consider
in this section initial boundary value problems for some linear thermo-magneto-
elastic models describing elastic materials where reciprocal effects of the tempera-
ture, the magnetic field and the elastic displacement are taken into account. These
results introduced here are chosen from Munõz Rivera and Racke [652].

We shall consider the initial boundary value problems for linear differential
equations of the homogeneous, isotropic case in three space dimensions (see Munõz
Rivera and Racke [652])⎧⎪⎨⎪⎩

utt − Eu− α[∇× h]×−→
H + γ∇θ = 0, (9.3.1)

ht −Δh− β∇× [ut ×−→
H ] = 0, (9.3.2)

θt − κΔθ + γ div ut = 0, (9.3.3)

subject to the initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x), h(0, x) = h0(x), θ(0, x) = θ0(x), (9.3.4)

and the boundary conditions for h and θ

∇× h× ν = 0, h · v = 0, θ = 0 on Γ (9.3.5)

and the memory type boundary condition for u,

u = 0 on Γ0, u+ r ∗ ∂νu = 0 on Γ1, (9.3.6)

where u = (u1, u2, u3)′ = u(t, x) is the displacement vector depending on the
time variable t ≥ 0 and on x ∈ R3, h = (h1, h2, h3)′ = h(t, x) is the magnetic
field, θ = θ(t, x) is the temperature difference with respect to a fixed reference
temperature, and Ω ⊂ R3 is a bounded domain with smooth boundary Γ = ∂Ω
and Γ = Γ0 ∪ Γ1 with Γ0 ∩ Γ1 	= ∅, and ∂νu is an abbreviation,

∂νu := (Cijklu
k
,lv

j)i=1,2,3 − αHh3ν + αHν3h (9.3.7)

which is the natural Neumann type boundary operator for equation (9.3.1), the
sign ∗ denotes the convolution in time, i.e.,

(r ∗ f)(t) :=
∫ t

0

r(t − s)f(s)ds.

We assume that there is a point x0 ∈ Ω such that{
Γ0 = {x ∈ Γ|(x− x0) · ν(x) ≤ 0}, (9.3.8)

Γ1 = {x ∈ Γ|(x− x0) · ν(x) ≥ a > 0} (9.3.9)



378 Chapter 9. Thermoviscoelastic, Thermoviscoelastoplastic . . . Equations

for some constant a > 0 and ν = ν(x) denoting the exterior normal vector in
x ∈ Γ. E is the elasticity operator

Eu = [(Cijklu
k
,l),j ]i=1,2,3 , (9.3.10)

where Cijkl (i, j, k, l = 1, 2, 3) are the elastic moduli being constant here and
leading in the homogeneous isotropic case under consideration to

Cijkl = λδijδkl + μ(δikδjl + δjkδil) (δij : Kronecker delta) (9.3.11)

whence
Eu = μΔu+ (λ+ μ)∇div u, (9.3.12)

with positive constants λ and μ. Parameters α, β with αβ > 0, γ 	= 0 and κ > 0

are constants,
−→
H = (0, 0, H)′ is a constant vector with H 	= 0 distinguishing

the x3-direction. The notation “, j” means differentiation with respect to xj , and
superscript ′ stands for the transposition of a vector or a matrix.

Differentiating the boundary condition on Γ1, we can get

∂νu+
r′

r(0)
∗ ∂νu = − ut

r(0)
(9.3.13)

or, in terms of the associated resolvent kernel g, we have

∂νu = −τut − τg ∗ ut (9.3.14)

with

τ :=
1

r(0)
> 0. (9.3.15)

First, we shall assume that g essentially decays exponentially, i.e., for all
t ≥ 0, ⎧⎪⎨⎪⎩

0 < g(t) ≤ c0e
−g0t,

−c1g(t) ≤ g′(t) ≤ −c2g(t),

−c3g
′(t) ≤ g′′(t) ≤ −c4g

′(t),
(9.3.16)

with positive constants g0, c0, c1, c2, c3, c4. The classical example g̃ is

g̃(t) = c0e
−g0t.

The exponential type kernel together with the “damping” boundary condition on
Γ1 will lead to an exponential decay result for (u, h, θ)(t).

Second, we shall consider polynomially decaying kernels satisfying for any
t ≥ 0, ⎧⎪⎨⎪⎩

0 < g(t) ≤ b0(1 + t)−p,

−b1g(t)
(p+1)/p ≤ g′(t) ≤ −b2g(t)

(p+1)/p,

−b3|g′(t)|(p+2)/(p+1) ≤ g′′(t) ≤ −b4|g′(t)|(p+2)/(p+1),

(9.3.17)
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with positive constants b0, b1, b2, b3, b4 and p ≥ 1. The typical example g is

g(t) = b0(1 + t)−p.

The required result will be a polynomial decay for the solution (u, h, θ)(t).

We assume that the initial magnetic field h0 satisfy

divh0 = 0 (9.3.18)

which implies by (9.3.2), for all t ≥ 0,

div h(t, ·) = 0.

Concerning the resolvent kernel g, we assume either condition (9.3.16) or
(9.3.17). Since we have formulated condition in terms of the resolvent kernel, we
point out the following relationship between the decay of a kernel and the decay
of the associated resolvent kernel.

Let

b(t) := −r′(t)
r(0)

.

Then b and g satisfy
b+ g = −b ∗ g.

Lemma 9.3.1 ([652]).

(i) If g satisfies that there exist a constant γ > 0 and a constant cg > 0 such
that for all t ≥ 0:

|g(t)| ≤ cge
−γt,

and if for some constant 0 < ε < γ,

cg < γ − ε

holds, then we have for all t ≥ 0,

|b(t)| ≤ cg(γ − ε)

γ − ε− cg
e−εt.

(ii) If g satisfies that there exist a number p > 1 and a constant cg > 0, such that
for all t ≥ 0:

|g(t)| ≤ cg(1 + t)−p,

and if

1

cg
> cp := sup

0≤t<+∞

∫ t

0

(1 + t)p(1 + t− τ)−p(1 + τ)−pdτ

holds, then we have for all t ≥ 0,

|b(t)| ≤ cg
1− cgcp

(1 + t)−p.
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Proof. (i) Let
g̃(t) := eεtg(t), b̃(t) := eεtb(t).

Then
g̃ + b̃ = −g̃ ∗ b̃.

Note that the operator G given by

G(h) := g̃ ∗ h,
acting on h ∈ C[0, T ], T > 0 arbitrary, but fixed, has the norm less than or equal
to

cg
γ−ε . Hence

sup
0≤t≤T

|b̃(t)| ≤ 1

1− cg/(γ − ε)
sup

0≤t≤T
|g̃(t)| ≤ cg(γ − ε)

γ − ε− cg
,

which implies the assertion in (i).

(ii) Let
g̃(t) := (1 + t)pg(t), b̃(t) := (1 + t)pb(t).

Then
g̃ + b̃ = −k[g] ∗ b

with kernel

k[g](t, τ) := g̃(t− τ)(1 + t)p(1 + t− τ)−p(1 + τ)−p.

The operator K[g] acting on C[0, T ] as

K[g](h) := k[g] ∗ h
has the norm less than or equal to

cg sup
0≤t<+∞

∫ t

0

(1 + t)p(1 + t− τ)−p(1 + τ)−pdτ ≤ cgcp.

Hence

sup
0≤t≤T

|b̃(t)| ≤ 1

1− cgcp
sup

0≤t≤T
|g̃(t)| ≤ cg

1− cgcp
,

which gives us the assertion (ii). �
Remark 9.3.1 ([652]). For the finiteness of cp, compare Lemma 7.4 in [822] in a
more general setting.

Remark 9.3.2 ([652]). Since the resolvent kernel of the resolvent kernel is the orig-
inal kernel, it is clear that in (ii) of Lemma 9.3.1, no stronger uniform polynomial
decay can be obtained. In this sense, the characterization is sharp and shows that
exponentially decaying kernels correspond to exponentially decaying resolvents,
and polynomial decaying kernels correspond to polynomially decaying resolvents.
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Taking the boundary condition (9.3.6) for u on Γ1 in the form (9.3.14), and
performing an integration by parts, we may get

∂νu = −τut − τg ∗ ut

= −τut − τg(0)u− τg′ ∗ u+ τgu0.
(9.3.19)

As a non-negative energy function, we can define

F (t) :=
1

2

∫
Ω

(
|ut|2 + Cijklu

k
,lu

i
,j +

α

β
|h|2 + |θ|2

)
(t, x)dx

− τ

2

∫
Γ1

(g′�u)(t, z)dz +
τ

2
g(t)

∫
Γ1

|u|2(t, z)dz,
(9.3.20)

where

(f�φ)(t) :=

∫ t

0

f(t− s)|φ(t) − φ(s)|2ds.

Lemma 9.3.2 ([652]). For f, φ ∈ C1([0,+∞),R), we have

2(f ∗ φ)(t)φt(t) = (f ′�φ)(t) +
d

dt

{∫ t

0

f(s)ds|φ(t)|2 − (f�φ)(t)

}
− f(t)|φ(t)|2.

Proof. Obviously, we have

d

dt
(f�φ)(t) = f ′�φ+ 2

∫ t

0

f(t− s)(φ(t) − φ(s))ds φt

= f ′�φ− 2f ∗ φ φt + 2

∫ t

0

f(s)ds φφt

= f ′�φ− 2f ∗ φ φt +
d

dt

{∫ t

0

f(s)ds|φ|2
}
− f |φ|2. �

Lemma 9.3.3 ([652]). The following estimate holds

dF (t)

dt
≤ − α

β

∫
Ω

|∇ × h|2dx− κ

∫
Ω

(∇θ)2dx− τ

2

∫
Γ1

|ut|2dz

− τ

2

∫
Γ1

g′′�udz +
τg′

2

∫
Γ1

|u|2dz + τg2
∫
Γ1

|u0|2dz.

Proof. Multiplying equation (9.3.1) by ut, equation (9.3.2) by α
β h and (9.3.3) by

θ, and integrating and summing the resulting equalities, we obtain

1

2

d

dt
M(t) =

∫
Γ1

∂vuutdz − α

β

∫
Ω

|∇ × h|2dx− κ

∫
Ω

|∇θ|2dz (9.3.21)

with

M = M(t) =:

∫
Ω

(
|ut|2 + Cijklu

k
,lu

i
,j +

α

β
|h|2 + |θ|2

)
dx.
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Using (9.3.19) and Lemma 9.3.2, we can get

dM(t)

dt
= − α

β

∫
Ω

|∇ × h|2dx− κ

∫
Ω

|∇θ|2dx− τ

∫
Γ1

|ut|2dz

− τg(0)

∫
Γ1

uutdz − τ

∫
Γ1

(g′ ∗ u)utdz + τg

∫
Γ1

u0utdz

= − α

β

∫
Ω

|∇ × h|2dx− κ

∫
Ω

|∇θ|2dx− τ

∫
Γ1

|ut|2dz

− 1

2

d

dt

{
τg

∫
Γ1

|u|2dz − τ

∫
Γ1

g′�udz

}
− τ

2

∫
Γ1

g′′�udz +
τg′

2

∫
Γ1

|u|2dz + τg

∫
Γ1

u0utdz

which yields the assertion. �

Define

q(x) := x− x0.

Lemma 9.3.4 ([652]). Let

f := α(∇× h)×−→
H − γ∇θ.

Then we have

d

dt

∫
Ω

utq
ku,kdx =

∫
Γ

∂u

∂νA
qku,kdz −

∫
Ω

Cijmlu
m
,l q

k
,ju

i
,kdx

− 1

2

∫
Γ

qkνkCijmlu
m
,l u

i
,jdz +

1

2

∫
Γ

qkνk|ut|2dz

+
1

2

∫
Ω

qk,kCijmlu
m
,l u

i
,jdx− 1

2

∫
Ω

qk,k|ut|2dx+

∫
Ω

fqku,kdx.

Proof. Multiplying (9.3.1) by qku,k and integrating the result, we arrive at

d

dt

∫
Ω

utq
ku,kdx =

∫
Ω

uttq
ku,kdx+

∫
Ω

utq
kut,kdx

=

∫
Ω

(Cijmlu
m
,l ),jq

kui
,kdx+

1

2

∫
Ω

|ut|2,kqkdx+

∫
Ω

fqku,kdx

=

∫
Γ

Cijmlu
m
,l v

jqkui
,kdz −

∫
Ω

Cijmlu
m
,l ∂j(q

kui
,k)dx

+
1

2

∫
Γ

qkνk|ut|2dz − 1

2

∫
Ω

qk,k|ut|2dx+

∫
Ω

fqku,kdx.
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Using the symmetry of the moduli Cijml, we conclude

d

dt

∫
Ω

utq
ku,kdx =

∫
Γ

∂u

∂vA
qku,kdz −

∫
Ω

Cijmlu
m
,l q

k
,ju

i
,kdx

− 1

2

∫
Ω

qk(Cijmlu
m
,l u

i
,j),kdx +

1

2

∫
Γ

qkνk|ut|2dz

− 1

2

∫
Ω

qk,k|ut|2dx+

∫
Ω

fqku,kdx. �

From Lemma 9.3.4, we get by using qk = xk − xk
0 ,

d

dt

∫
Ω

utq
ku,kdx =

∫
Γ

∂u

∂vA
qku,kdz −

∫
Ω

Cijmlu
m
,l u

i
,kdx

− 1

2

∫
Ω

qkνkCijmlu
m
,l u

i
,jdx+

1

2

∫
Γ

qkνk|ut|2dz

+
3

2

∫
Ω

Cijmlu
m
,l u

i
,jdx− 3

2

∫
Ω

|ut|2dx+

∫
Ω

fqku,kdx

which thus implies

d

dt

∫
Ω

utq
ku,kdx =

∫
Γ

∂u

∂νA
qku,kdz − 1

2

∫
Ω

(|ut|2 + Cijmlu
m
,l u

i
,k)kdx

+

∫
Ω

(Cijmlu
m
,l u

i
,k − |ut|2)dx− 1

2

∫
Γ

qkvkCijmlu
m
,l u

i
,kdz

+
1

2

∫
Γ

qkvk|ut|2dz +
∫
Ω

fqku,kdx. (9.3.22)

Using the differential equation (9.3.1), we obtain

d

dt

∫
Ω

utudx =

∫
Ω

uuttdx+

∫
Ω

|ut|2dx

=

∫
Ω

ui{Cijmlu
m
,l ),j + f i}dx+

∫
Ω

|ut|2dx

=

∫
Γ

u
∂u

∂νA
dz −

∫
Ω

(Cijmlu
m
,l u

i
,j − |ut|2)dx +

∫
Ω

ufdx

which yields∫
Ω

(Cijmlu
m
,l u

i
,j − |ut|2)dx = − d

dt

∫
Ω

utudx+

∫
Γ

u
∂u

∂νA
dz +

∫
Ω

ufdx.
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Thus substituting this identity into (9.3.52), we get

d

dt
χ(t) =

∫
Γ

∂u

∂νA
qku,kdx− 1

2

∫
Ω

(|ut|2 + Cijmlu
m
,l u

i
,j)dz

+

∫
Γ

u
∂u

∂νA
dz +

∫
Ω

ufdx− 1

2

∫
Γ

qkνkCijmlu
m
,l u

i
,jdz

+
1

2

∫
Γ

qkνk|ut|2dz +
∫
Ω

fqku,kdx

with

χ(t) =:

∫
Ω

utq
ku,kdx+

∫
Ω

utudx.

Since u = 0 on Γ0, we have∫
Γ0

∂u

∂ν
qku,kdz =

∫
Γ0

∣∣∣∣∂u∂ν
∣∣∣∣2 qkνkdz, (9.3.23)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
∫
Γ0

div uνqku,kdz =

∫
Γ0

qkνk| div u|2dz, (9.3.24)∫
Γ0

(∇u)νqku,kdz =

∫
Γ0

qkνk| div u|2dz. (9.3.25)

Observing that (9.3.11) yields

∂u

∂νA
= λdiv uν + μ

∂u

∂ν
+ μ(∇u)ν,

we conclude from (9.3.23)–(9.3.25)∫
Γ

∂u

∂νA
qku,kdz =

∫
Γ0

qkνk

{
μ

∣∣∣∣∂u∂ν
∣∣∣∣2 + (μ+ λ)| div u|2

}
dz +

∫
Γ1

∂u

∂vA
qku,kdz

which implies

d

dt
χ(t) =

∫
Γ0

qkνk

{
μ

∣∣∣∣∂u∂ν
∣∣∣∣2 + (μ+ λ)| div u|2

}
dx

+

∫
Γ1

∂u

∂νA
qku,kdx− 1

2

∫
Ω

{|ut|2 + Cijmlu
m
,l u

i
,j

}
dx

− 1

2

∫
Γ

qkνkCijmlu
m
,l u

i
,jdx +

∫
Γ

u
∂u

∂νA
dz

+

∫
Ω

ufdz +
1

2

∫
Γ1

qkνk|ut|2dz +
∫
Ω

fqku,kdx.

(9.3.26)

Since on Γ1,
qkνk ≥ a > 0,
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we can get⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
Γ1

∂u

∂νA
qku,kdz ≤ c

∫
Γ1

∣∣∣∣ ∂u∂νA

∣∣∣∣2 dz + 1

8

∫
Γ1

qkνkCijmlu
m
,l u

i
,jdz, (9.3.27)∫

Γ1

∂u

∂νA
udz ≤ c

∫
Γ1

∣∣∣∣ ∂u∂νA

∣∣∣∣2 dz + 1

8

∫
Ω

Cijmlu
m
,l u

i
,jdx, (9.3.28)

where c > 0 denotes various positive constants.

Noting that on Γ0,

Cijmlu
m
,l u

i
,j = μ|∂u

∂ν
|2 + (μ+ λ)| div u|2

and using (9.3.26)–(9.3.28), we obtain

d

dt
χ(t) ≤ − 1

4

∫
Ω

(|ut|2 + Cijmlu
m
,l u

i
,j)dx + c

∫
Γ1

∣∣∣∣ ∂u∂νA

∣∣∣∣2 dz
+

1

2

∫
Γ1

qkνk|ut|2dz − 1

4

∫
Γ1

qkνkCijmlu
m
,l u

i
,jdz

+

∫
Ω

ufdx+

∫
Ω

fqku,kdx.

On Γ1, using (9.3.19), we have

∂u

∂νA
= ∂vu+ αHh3ν + αHhν3

= − τut − τgu− τ

∫ t

0

g′(t− s) (u(s, ·)− u(t, ·)) ds

+ τgu0 + αHh3ν − αHhν3.

Noting that∫ t

0

g′(t− s) (u(s, ·)− u(0, ·))ds ≤
(∫ t

0

|g′(s)|ds
)1/2

(|g′|�u)
1/2

,

we arrive at∫
Ω

|f |2dx ≤ c

∫
Ω

|∇ × h|2dx+ c

∫
Ω

|∇θ|2dx,∫
Γ1

∣∣∣∣ ∂u

∂νA

∣∣∣∣2 dz ≤ c

∫
Γ1

(|ut|2 + g2|u|2 + |g′|�u)dx+ cg2F (0) + c

∫
Ω

|∇ × h|2dx.

Using ∫
Ω

|h|2dx+

∫
Ω

|∇h|2dx ≤ c

∫
Ω

|∇ × h|2dx
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in our situation because of the properties of h and the fact that Ω is simply
connected (see page 358 in [211] or page 157 in [498]), we thus have proved the
following lemma.

Lemma 9.3.5 ([652]). The following estimate holds,

d

dt
χ(t) ≤ − 1

2

∫
Ω

(|ut|2 + Cijmlu
m
,l u

i
,j)dx− 1

4

∫
Γ1

Cijmlu
m
,l u

i
,jdz

+ c

∫
Ω

(|∇ × h|2 + |∇θ|2)dx + c

∫
Γ1

|ut|2dz

+ c

∫
Γ1

|g′|�udz + cg2F (0).

Now we can prove the following main results which is due to [652].

Theorem 9.3.6 ([652]). Let g be an exponentially decaying resolvent kernel as in
(9.3.16), and assume (9.3.18) holds. Then the energy F defined in (9.3.20), which
is associated to the solution of the initial boundary value problem (9.3.1)–(9.3.6),
decays exponentially, i.e., there exist constants d0 > 0, d1 > 0 such that for all
t ≥ 0,

F (t) ≤ d0e
−d1tF (0). (9.3.29)

Proof. Let

L(t) := NF (t) + χ(t), (9.3.30)

with N > 0 sufficiently large.

Then there are positive constants k0, k1 such that for all t ≥ 0,

k0F (t) ≤ L(t) ≤ k1F (t). (9.3.31)

Moreover, for N large enough, using Lemmas 9.3.3 and 9.3.5,

d

dt
L(t) ≤ −k2F (t) + cg2F (0)

with a constant k2 > 0. Here we have used the assumption (9.3.16) in order to
conclude the following estimates

−τ

2

∫
Γ1

g′′�udz ≤ c̃

∫
Γ1

g′�udz

and
τ

2

∫
Γ1

g′|u|2dz ≤ −c̃

∫
Γ1

g|u|2dz

for the corresponding two terms appearing in Lemma 9.3.3, where c̃ > 0 is a
constant.
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Thus we obtain
d

dt
L(t) ≤ −k2

k1
L(t) + cg2F (0).

Using the exponential decay of g, we conclude from Theorem 2.3.1 or Corollary
2.3.1 that there exist constants d̃0, d̃1 > 0 such that for all t ≥ 0:

L(t) ≤ d̃0e
−d̃1tL(0)

which implies (9.3.29) by using (9.3.31) again. �

Finally, we consider the case where g decays polynomially as in (9.3.17).

Theorem 9.3.7 ([652]). Let g be a polynomial decaying resolvent kernel as in
(9.3.17), and assume (9.3.18) holds. Then the energy F defined in (9.3.20), which
is associated to the initial boundary value problem (9.3.1)–(9.3.6), decays polyno-
mially, i.e., there exists a constant d2 > 0 such that for all t ≥ 0,

F (t) ≤ d2
(1 + t)p+1

F (0). (9.3.32)

Proof. We define the functional L(t) as in (9.3.30) and we have the equivalence to
the energy F (t) as given in (9.3.31). A negative term

−cg(t)

∫
Γ1

|u|2(t, z)dz

can be obtained from Lemma 9.3.5 and the estimate

g(t)

∫
Γ1

|u|2(t, z)dz ≤ c

∫
Ω

Cijmlu
m
,l u

i
,j(t, x)dx.

From Lemmas 9.3.3 and 9.3.5, using the properties of g′′ from the assumption
(9.3.17) for the term

−τ

2

∫
Γ1

g′′�udz,

we can obtain

d

dt
L(t) ≤ − k3

(
M(t) + g(t)

∫
Γ1

|u|2dz +N

∫
Γ1

|g′|1+ 1
1+p�udz

)
+ k4

∫
Γ1

|g′|�udz + cg2F (0),

(9.3.33)

where k3, k4 denote positive constants and M = M(t) was defined in (9.3.21). �

To continue the proof, we need several inequalities collected in the next two
lemmas which are based on those from [648], partially extending those.
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Lemma 9.3.8 ([652]). Let m and h be integrable functions, and let 0 ≤ r < 1 and
q > 0. Then for any t ≥ 0, we have∫ t

0

|m(t− τ)h(τ)|dτ (9.3.34)

≤
(∫ t

0

|m(t− τ)|1+ 1−r
q |h(τ)|dτ

)q/(q+1) (∫ t

0

|m(t− τ)|r |h(τ)|dτ
)1/(q+1)

.

Proof. Let

v(τ) := |m(t− τ)|1−(r/(q+1)|h(τ)|q/(q+1) ,

w(τ) := |m(t− τ)|r/(1+q)|h(τ)|1/(q+1).

Then for any fixed t ≥ 0, we obtain

|m(t− τ)h(τ)| = |v(τ)h(τ)|.
Applying the Hölder’s inequality with exponents

δ =
q

q + 1
for v and δ∗ = q + 1 for w,

we get the desired estimate (9.3.34). �
Lemma 9.3.9 ([652]). Let p > 1, 0 ≤ r < 1 and t ≥ 0. Then we have, for 0 < r < 1,∫

Γ1

|g′|�udz ≤ 2

(∫ t

0

|g′(τ)|r ||u||2L∞((0,t),L2(Γ1))

)1/(1+(1−r)(p+1))

×
(∫

Γ1

|g′|1+ 1
p+1�udz

)(1−r)(p+1)/(1+(1−r)(p+1))

,

(9.3.35)

and for r = 0,∫
Γ1

|g′|�udz ≤ 2

(∫ t

0

||u(τ, ·)||2L2(Γ1)
dτ + t||u(τ, ·)||2L2(Γ1)

)1/(p+2)

×
(∫

Γ1

|g′|1+ 1
p+1�udz

)(p+1)/(p+2)

.

(9.3.36)

Proof. Applying Lemma 9.3.6 with m(τ) := |g′(τ)|, h(τ) :=
∫
Γ1

|u(t) − u(τ)|2dz
and q := (1− r)(p + 1) (t > 0 fixed) proves the lemma immediately. �

Applying Lemma 9.3.7 with 1 > r > 0, we get∫
Γ1

|g′|1+(1/(p+1))�udz ≥ c(∫ t

0
|g′|r(τ)dz

)1+(1/(1−r)(p+1))

F (0)1/(1−r)(p+1)

×
(∫

Γ1

|g′|�udz

)1+(1/(1−r)(p+1))

(with c = c(r) as long as r is not yet fixed).
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On the other hand, we may have(
cg

∫
Γ1

|u|2dz +M

)1+ 1
(1−r)(p+1)

≤ cF (0)
1

(1−r)(p+1)

(
M + cg

∫
Γ1

|u|2dz
)
.

We conclude from (9.3.33) using the last two inequalities:

d

dt
L(t) ≤ −c

F (0)
1

(1−r)(p+1)

[(
cg

∫
Γ1

|u|2dz +M

)1+ 1
(1−r)(p+1)

+

(∫
Γ1

|g′|�udz

)1+ 1
(1−r)(p+1)

]
+ cg2F (0)

if r > 1/(p+ 1) such that
∫ +∞
0 |g′|r(τ)dτ < +∞.

This implies, using (9.3.32),

d

dt
L(t) ≤ −c̃

L(0)
1

(1−r)(p+1)

L(t)1+
1

(1−r)(p+1) + cg2(t)L(0) (9.3.37)

with some constant c̃ > 0. Thus Theorem 2.3.4 with f = L, α = (1− r)(p+1) and
β = p2 gives us

L(t) ≤ c

(1 + t)(1−r)(p+1)
L(0). (9.3.38)

Choosing 1 ≥ r > 1/(p+ 1) such that

α = (1− r)(p + 1) > 1

or, equivalently,
1

1 + p
< r <

p

1 + p
,

we obtain from the inequality (9.3.38)∫ +∞

0

F (τ)dτ ≤ c

∫ +∞

0

L(τ)dτ ≤ cL(0) (9.3.39)

and
t||u(t, ·)||2L2(Γ1)

≤ ctL(t) ≤ cL(0) (9.3.40)

as well as ∫ t

0

||u(τ, ·)||2L2(Γ1)
dτ ≤ c

∫ +∞

0

L(τ)dτ ≤ cL(0). (9.3.41)

From the estimates (9.3.39)–(9.3.41), we conclude, using Lemma 9.3.7 again,
now with r = 0:∫

Γ1

|g′|1+1/(p+1)�udz ≥ c

F (0)1/(p+1)

(∫
Γ1

|g′|�udz

)1+1/(p+1)

,



390 Chapter 9. Thermoviscoelastic, Thermoviscoelastoplastic . . . Equations

and hence, with the same arguments as in the derivation of (9.3.37),

d

dt
L(t) ≤ −c

L(0)1/(p+1)
L(t)1+(1/(p+1)) + cg2(t)L(0)

This implies by applying Theorems 2.3.4–2.3.5 again with α = p+ 1, β = 2p
(≥ p+ 1)

L(t) ≤ c

(1 + t)p+1
L(0)

and hence, by (9.3.31) and for some constant d2 > 0 such that

F (t) ≤ d2
(1 + t)p+1

F (0)

which completes the proof of Theorem 9.3.2. �

Remark 9.3.3 ([652]). We note that for a thermoviscoelastic system discussed
in [648], it was shown that a polynomial relaxation function cannot lead to an
exponential decay. This gives us a hint for the conjecture that the polynomial decay
rate obtained here can not be replaced by an exponential decay result. Indeed, for
the system of pure elasticity, with the memory type boundary as discussed here, the
exponential decay for exponential kernels was shown in [20]. A merely polynomial
kernel there can not lead to a general exponential decay result, which can be seen
as follows.

To end this section, we give an example.

In the one-dimensional case, the system of equations of elasticity in Ω :=
(0, 1) with memory type boundary condition reduces to the problem⎧⎪⎨⎪⎩

utt − αuxx = 0, (9.3.42)

u |t=0= 0, ut |t=0= u1, (9.3.43)

u |x=0= 0, (u+ (ux ∗ r)) |x=1= 0, (9.3.44)

where α > 0 is a constant. The energy is given by

E(t) :=
∫ 1

0

(|ut|2 + α|ux|2)(t, x)dx.

We assume

u0 = 0, u1 ∈ C∞
0 (Ω)\{0} (9.3.45)

and for the kernel b with −r′(t)/r(0):

b(t) =
1

(1 + t)p
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for some constant p > 1. Now the assumption that there exist constants c > 0 and
δ > 0 such that for all t ≥ 0, we have

E(t) ≤ ce−δtE(0) (9.3.46)

which will lead to a contradiction in the sequel.

Observe that v := ut satisfies the same system (9.3.42)–(9.3.44) as u due to
the choice of the initial data in (9.3.45). Hence also the energy associated to v
decays exponentially, which implies, using the differential equation and Sobolev’s
imbedding theorem, that there is a constant c0 > 0 depending on the initial data
such that for all t ≥ 0:

|u(t, 1)|+ |ux(t, 1)| ≤ c0e
−δt. (9.3.47)

The boundary condition (9.3.43) can also be stated as (cf. (9.3.13))

(−b ∗ ux + ux + τu) |x=1= 0,

which implies by (9.3.47)∣∣∣∣ ∫ t

0

1

(1 + t− s)p
ux(s, 1)ds

∣∣∣∣ ≤ c0e
−δt. (9.3.48)

On the other hand, by dividing the integral from 0 to t into two parts from
0 to t

2 and from t
2 to t, it can be easily seen that for any m > 1,∣∣∣∣ ∫ t

0

1

(1 + t− s)m
ux(s, 1)ds

∣∣∣∣ ≤ c0
(1 + t)m

. (9.3.49)

For all t ≥ 0 and β ≥ 0, let

Gβ(t) =

∫ +∞

t+β

ux(s, 1)ds.

Then∫ t

0

1

(1 + t− s)p
ux(s, 1)ds =

[
1

(1 + s)p
Gβ(t− s)

]s=t

s=0

+ p

∫ t

0

1

(1 + s)p
Gβ(t− s)ds

=
Gβ(0)

(1 + t)p
−Gβ(t) +O

(
1

(1 + t)p+1

)
, (9.3.50)

where we have used (9.3.49) for m = p+ 1.

Case 1: There exists a β̃ ∈ [0,+∞) such that Gβ̃(0) 	= 0. Thus from (9.3.50), it
follows

lim
t→+∞

∣∣∣∣∫ t

0

1

(1 + t− s)p
ux(s, 1)ds

∣∣∣∣ (1 + t)p = Gβ̃(0) 	= 0

which is a contraction to (9.3.48).
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Case 2: For all β ∈ [0,+∞) : Gβ(0) = 0. This implies that for all t ≥ 0,

ux(t, 1) = 0,

and hence, using the boundary condition and the initial condition u0 = 0, we see
that u satisfies ⎧⎪⎨⎪⎩

utt − αuxx = 0,

u |t=0 = 0, ut |t=0 = u1,

u |x=0 = 0, u |x=1 = 0,

which yields that the energy

E(t) =
∫ 1

0

|u1(x)|2dx

is a constant, this is a contraction to assumption (9.3.46).



Chapter 10

Blow-up of Solutions to Nonlinear
Hyperbolic Equations and
Hyperbolic-Elliptic Inequalities

In this chapter, we shall consider the blow-up of solutions to some nonlinear hyper-
bolic equations and hyperbolic-elliptic inequalities. This chapter consists of seven
sections. In Section 10.1, we apply Theorem 2.4.6 to investigate the blow-up of
solutions to semilinear wave equations. In Section 10.2, we shall employ Theorem
2.4.22 to study the blow-up of solutions to semilinear wave equations. In Section
10.3, we shall employ Theorem 2.4.7 or Corollary 2.4.2 to establish the blow-up of
solutions of some nonlinear hyperbolic equations. In Section 10.4, we shall exploit
Corollary 2.4.8 to study the blow-up and estimates of the lifespan of solutions
to semilinear wave equations. In Section 10.5, we shall employ Theorem 2.4.9 to
investigate the Cauchy problem for the dissipative nonlinear wave equations. In
Section 10.6, we shall apply Theorem 2.4.4 to investigate the blow-up of solutions
to wave equations with a nonlinear dissipation. In Section 10.7, we shall apply
Theorem 2.4.26 to prove the non-existence of global non-negative solutions to
the quasilinear hyperbolic-elliptic inequalities. Inequalities chosen in this chapter
are specially selected and very important in deriving the blow-up of solutions to
nonlinear hyperbolic equations and hyperbolic-elliptic inequalities.

10.1 Blow-up of solutions for nonlinear wave equations

In this section, we apply Theorem 2.4.6 to study the blow-up of solutions to
semilinear wave equations. Here we shall choose the results due to Glassey [318].

Consider the following Cauchy problem⎧⎨⎩
∂2u

∂t2
−Δu = |u|p, x ∈ Rn, 0 < t ≤ T, (10.1.1)

u(x, 0) = f(x), ut(x, 0) = g(x), (10.1.2)
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where Δ denotes the Laplacian. We expect “small” solutions to exist globally
if a given sufficiently regular datum is small at infinity and p is large enough
(depending on n), while most solutions should blow up in a finite time if p is “too
small” (but greater than one). Thus we can guess that there exists a critical value
of p say p0(n) such that global existence of all small solutions holds if p > p0(n),
while most solutions blow up in a finite time if 1 < p < p0(n).

The following theorem is due to Glassey [318].

Theorem 10.1.1 ([318]). Let 0 < T, n ≤ 3, and u(x, t) ∈ C2(Rn × [0, T )) be a
solution to problem (10.1.1)–(10.1.2).

(1) Assume that

(i) f, g ∈ C∞
0 (Rn), supp{f, g} ⊆ {|x| ≤ k};

(ii) cf ≡ ∫
Rn f(x)dx > 0, cg ≡ ∫

Rn g(x)dx > 0;

(iii) 1 < p < n+1+
√
n2+10n−7

2(n−1) (1 < p < +∞, if n = 1).

Then T < +∞, i.e., u blows up in a finite time.

(2) Let p = 1 +
√
2 when n = 3, let the Cauchy data satisfy above (i) and (ii),

then there exists a positive constant c0, depending only on k, such that if
u ∈ C2(R3× [0, T )) is a solution to problem (10.1.1)–(10.1.2), then T < +∞,
provided that cf ≥ c0 and cg ≥ c0.

Remark 10.1.1 ([318]).

(1) We do not discuss the case n = 1 explicitly since the result of it follows from
Kato’s theorem [418]. However, the proof given here extends easily to n = 1.
We also note that there is no critical value of p for n = 1, because the free
solution (the solution of utt − uxx = 0 with the same data) does not decay
uniformly to zero as t → +∞.

(2) We observe the critical value of p,

p0(n) =
1

2(n− 1)
[n+ 1 + (n2 + 10n− 7)1/2] (10.1.3)

is the large root of the quadratic

(n− 1)p2 − (n+ 1)p− 2 = 0.

(3) For n = 3, we know from John’s theorem [405] that the present blow-up
result up to and including the critical value p0(3) = 1 +

√
2 is sharp, so we

also expect that p0(2) =
1
2 (3 +

√
17) is sharp.

(4) We note that hypothesis (i) implies the existence of a unique classical local
in time solution to problem (10.1.1) (for n ≤ 3). Such a solution u can be
obtained by iteration; thus u has compact support in x for each fixed t.
Moreover, it suffices to assume that f ∈ C3

0 , g ∈ C2
0 over Rn;n = 2, 3.
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(5) Strauss in [898] discussed a similar quadratic equation for p arising in analyz-
ing the asymptotic behavior of solutions to nonlinear Schrödinger equations
of the form

iut = Δu+ up,

and had also answered an early conjecture of the present result.

First we derive the lower bounds on Lp-norms of solutions of problem (10.1.1).
Note that the free solution will be the solution u0 of

∂2u0

∂t2
−Δu0 = 0 (10.1.4)

with the same Cauchy data as u. By Lq-norms we denote

‖h‖q =
(∫

Rn

|h(x)|qdx
)1/q

, (q ≥ 1)

an integral without explicit limits is to be taken over all of Rn, and the letters c
are universal constants which may change from line to line.

The proof of the following lemma can be found in [318].

Lemma 10.1.2 ([318]). Let u ∈ C2(Rn × [0, T )) be a solution of problem (10.1.1)
with the Cauchy data satisfying hypotheses (i) and (ii) of Theorem 10.1.1. Let
p > 1 if n = 3; p > 2 if n = 2, then there exists a positive constant c, depending
only on p, n, k, c and Cg such that∫

|u|pdx ≥ c(k + t)
−(n−1)(p−2)

2 ln−v(1 + k + t) (10.1.5)

on 0 ≤ t < T , where

v =

{
1
2 (p− 2), if n = 2,

v = 0, if n = 3.

Corollary 10.1.1 ([318]). Let k, n, p > 2 be fixed, then the constant c in (10.1.5)
tends to infinity as cf and cg tend to infinity.

Now we are in a position to prove Theorem 10.1.1.

Proof. Let u satisfy (10.1.1)–(10.1.2), we shall derive a contradiction by assuming
that T = +∞.

First assume that 1 < p ≤ 1 + 2/n for any n. Define

F (t) =

∫
udx. (10.1.6)

Since u has the compact support, the integral extends only over the set {|x| <
k + t}.
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Integrating (10.1.1), we obtain

F ′′(t) =
∫

|u|pdx =

∫
|x|<k+t

|u|pdx. (10.1.7)

By Hölder’s inequality, we have

F (t) ≤ c‖u(t)‖p(k + t)n(
p−1
p ) (10.1.8)

where a constant c > 0 depends only on n, p. Thus (10.1.7) implies

F ′′(t) ≥ cF p(t)(k + t)−n(p−1) (10.1.9)

where we have used the fact F (t) > 0 and u ≥ u0 on Rn × [0, T ),

F (t) ≥
∫
|x|<k+t

u0dx = cf + tcg > 0.

Using estimate (10.1.7) and the initial condition F ′(0) = cg > 0, we conclude
that F ′(t) > 0. Hence multiplying (10.1.9) by F ′(t), we may get

1

2

d

dt
(F ′(t))2 ≥ c

p+ 1
(k + t)−n(p−1) d

dt
F p+1(t)

≥ d

dt

[
c

p+ 1
F p+1(t)(k + t)−n(p−1)

]
.

Thus
1

2
(F ′(t))2 ≥ c

p+ 1
F p+1(t)(k + t)−n(p−1)

+
1

2
(F ′(0))2 − c

p+ 1
F p+1(0)k−n(p−1).

(10.1.10)

If c in (10.1.9) satisfies

c ≤ c∗ ≡ p+ 1

2
(F ′(0))2 F−p−1(0)kn(p−1),

then (10.1.10) gives us

(F ′(t))2 ≥ 2c

p+ 1
(k + t)−n(p−1)F p+1(t). (10.1.11)

If c in (10.1.9) satisfies c > c∗, we replace (10.1.9) by

F ′′(t) ≥ c∗F p(t)(k + t)−n(p−1) (10.1.12)

and obtain the same inequality as above (10.1.11) with c replaced by c∗, in either
case, (10.1.11) yields the differential inequality

F ′′(t) ≥ cFα(t) · (k + t)−β (10.1.13)
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where α = (p+ 1)/2, β = (n(p − 1))/2, c > 0. Since α > 1, (10.1.13) implies that
F → +∞ in a finite time, provided that β ≤ 1, which holds iff p ≤ 1 + 2/n.

Therefore, to proceed, we may assume that

1 + 2/n < p <
1

2(n− 1)
[n+ 1 + (n2 + 10n− 7)1/2] ≡ p0(n), n = 2, 3. (10.1.14)

Notice that the additional hypothesis in Lemma 10.1.1 (p > 2 if n = 2) is now
superfluous. We treat the critical case p = p0(n) for n = 3 at the conclusion of
this discussion.

Defining again F (t) by

F (t) =

∫
|x|<k+t

udx =

∫
udx, (10.1.15)

we have

F ′′(t) =
∫

|u|pdx (10.1.16)

so that applying Lemma 10.1.1 gives us

F ′′(t) =
∫

|u|pdx ≥ c(k + t)−
(n−1)(p−2)

2 ln−ν(1 + k + t). (10.1.17)

We recall from Lemma 10.1.1 and (10.1.14) that ν ≥ 0 for n = 2 and n = 3.
Thus (10.1.17) implies

d

dt
[lnν(1 + k + t)F ′(t)]− ν(1+ k+ t)−1 lnν−1(1+ k+ t)F ′(t) ≥ c(k+ t)−

(n−1)(p−2)
2

whence
d

dt
[lnν(1 + k + t)F ′(t)] ≥ c(k + t)−

(n−1)(p−2)
2

since ν ≥ 0 and F ′(t) ≥ 0 for all t.

Integrating once in time, we then have

lnν(1 + k + t)F ′(t)

≥ cg ln
ν(1 + k) + c

[
1− (n− 1)(p− 2)

2

]−1[
(k + t)1−

(n−1)(p−2)
2 − k1−

(n−1)(p−2)
2

]
since F ′(0) = cg. We note that

1− (n− 1)(p− 2)

2
> 0, iff p < 2 + 2(n+ 1)−1

which is true by (10.1.14). Since ν > 0 and F (t) ≥ 0 for all t > 0,

d

dt
[lnν(1 + k + t)F (t)] ≥ lnν(1 + k + t)F ′(t).
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Therefore, we can integrate once again to get

lnν(1 + k + t)F (t) ≥ c′f + tc′g − c

(
1− (n− 1)(p− 2)

2

)−1

k1−
(n−1)(p−2)

2 t

+ c

[
1− (n− 1)(p− 2)

2

]−1 [
2− (n− 1)(p− 2)

2

]−1

× [(k + t)2−
(n−1)(p−2)

2 − k2−
(n−1)(p−2)

2 ] (10.1.18)

where c′f = cf ln
ν(1 + k), c′g = cg ln

ν(1 + k).

Set

c3 =

[
1− (n− 1)(p− 2)

2

]
c′gk

(n−1)(p−2)
2 −1, (10.1.19)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ c4 = c′f

[
1− (n− 1)(p− 2)

2

] [
2− (n− 1)(p− 2)

2

]
k

(n−1)(p−2)
2 −2, (10.1.20)

c∗∗ = min(c3, c4) > 0. (10.1.21)

If c in (10.1.17) (which depends only p, n, k, cf and cg) satisfies c ≤ c∗∗, then
(10.1.18) shows that there exists a positive constant c such that

F (t) ≥ c(k + t)2−
(n−1)(p−2)

2 · ln−v(1 + k + t). (10.1.22)

If c in (10.1.17) satisfies c > c∗∗, we replace (10.1.17) by

F ′′(t) ≥ c∗∗(k + t)
−(n−1)(p−2)

2 · ln−v(1 + k + t) (10.1.23)

and again proceed to derive an inequality of the form (10.1.22).

In the inequality

c(k + t)n(p−1)‖u(t)‖pp ≥ FP (t), (10.1.24)

we may write, for some θ ∈ (0, 1), the right-hand side in the form

F p(t) = F θp(t)F (1−θ)p(t)

and estimate the second factor below using (10.1.22). Thus (10.1.24) implies

‖u(t)‖pp ≥ cF θp(t)(k+t)
p(1−θ)

2 [4−(n−1)(p−2)]−n(p−1) ln−vp(1−θ)(1+k+t). (10.1.25)

Inserting inequality (10.1.25) into (10.1.16), we can get

F ′′(t) ≥ cF θp(t) · (k + t)−u ln−ε(1 + k + t) (10.1.26)

where ⎧⎨⎩μ = n(p− 1)− p(1− θ)

2
[4− (n− 1)(p− 2)], (10.1.27)

ε = νp(1 − θ) ≥ 0. (10.1.28)
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Multiplying (10.1.26) by F ′(t), we may get

1

2

d

dt
(F ′(t))2 ≥ d

dt

[
c

θp+ 1
F θp+1(t) · (k + t)−μ ln−ε(1 + k + t)

]
(10.1.29)

provided that

μ ≥ 0. (10.1.30)

Assume (10.1.30) for the moment; then (10.1.29) implies

(F ′(t))2 ≥ 2c

θp+ 1
F θp+1(t)(k + t)−μ ln−ε(1 + k + t) (10.1.31)

provided that c in (10.1.26) is chosen sufficiently small exactly as in the argument
yielding (10.1.11) from (10.1.9). Estimate (10.1.31) thus gives us the differential
inequality

F ′(t) ≥ cFα(t) · (k + t)−β ln−
ε
2 (1 + k + t) (10.1.32)

where α = 1
2 (θp + 1), β = 1

2μ, c > 0. Applying Theorem 2.4.6 to (10.1.32) shows
that F → +∞ in a finite time whenever

α > 1, β < 1, 0 ≤ ε, or α > 1, β = 1, ε/2 ≤ 1. (10.1.33)

This analysis is based on the assumption that some θ ∈ (0, 1) exists for which
(10.1.30) and (10.1.33) are valid. Hence the final list of constraints is

(1) α > 1, 0 ≤ μ < 2, 0 ≤ ε, (2) α > 1 μ = 2, ε ≤ 2. (10.1.34)

We now need to verify these inequalities are satisfied simultaneously. By
(10.1.27) and (10.1.34), case (1) is equivalent to the list of constraints in the
following: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

θ >
1

p
, (10.1.35)

1− 2n(p− 1)

p[4− (n− 1)(p− 2)]
≤ θ < 1− 2[n(p− 1)− 2]

p[4− (n− 1)(p− 2)]

=
p[4− (n− 1)(p− 2)]− 2[n(p− 1)− 2]

p[4− (n− 1)(p− 2)]
. (10.1.36)

Hence case (1) holds iff

max

{
p−1,

p[4− (n− 1)(p− 2)]− 2n(p− 1)

p[4− (n− 1)(p− 2)]

}
< θ

<
p[4− (n− 1)(p− 2)]− 2[n(p− 1)− 2]

p[4− (n− 1)(p− 2)]
.

(10.1.37)
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A simple calculation shows that

1

p
>

p[4− (n− 1)(p− 2)]− 2n(p− 1)

p[4− (n− 1)(p− 2)]

iff p > 2
n−1 , and this holds by assumption (10.1.14) on p for n = 2, 3, therefore,

from (10.1.37) case (1) holds if

1

p
< θ <

p[4− (n− 1)(p− 2)]− 2[n(p− 1)− 2]

p[4− (n− 1)(p− 2)]
(10.1.38)

which also shows that θ < 1 if n(p−1)−2 > 0, i.e., if p > 1+ 2
n . This is guaranteed

by (10.1.14). Thus by (10.1.38), we can require

4− (n− 1)(p− 2) < p[4− (n− 1)(p− 2)]− 2[n(p− 1)− 2],

i.e.,
(p− 1)[4− (n− 1)(p− 2)] > 2[n(p− 1)− 2].

This is equivalent to
(n− 1)p2 − (n+ 1)p− 2 < 0 (10.1.39)

which holds if

p <
1

2(n− 1)

[
n+ 1 + (n2 + 10n− 7)1/2

]
. (10.1.40)

This is precisely hypothesis (iii) of the theorem. Similarly, case (2) holds if⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/p < θ = 1− 2[n(p− 1)− 2]

p[4− (n− 1)(p− 2)]

=
p[4− (n− 1)(p− 2)]− 2[n(p− 1)− 2]

p[4− (n− 1)(p− 2)]
,

(10.1.41)

θ ≥ 1− 4

p(p− 2)
. (10.1.42)

We may find a θ satisfying (10.1.41), which also implies (10.1.40). When
n = 3, ν = 0 (by Lemma 10.1.1), so ε = 0 in (10.1.28). Hence, (10.1.42)) holds
automatically in three dimensions n = 3; when n = 2, by (10.1.28),

ε = νp(1 − θ) =
1

2
p(p− 2)(1− θ)

where we have used ν = 1
2 (p − 2) from Lemma 10.1.1, thus (10.1.42) is the ad-

ditional constraint imposed by case (2) when n = 2 by (10.1.55), and p > 2 by
(10.1.14). Hence (10.1.41)–(10.1.42) are satisfied whenever

1

p
> 1− 4

p(p− 2)
.

But this holds iff p2 − 3p − 2 < 0 which is precisely (10.1.39) when n = 2. This
completes the proof of the theorem. �
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Now let n = 3, p = p0(3) = 1 +
√
2. Thus

p2 − 2p− 1 = 0. (10.1.43)

In this case, the interval (10.1.38) degenerates to a point, and we obtain θ =
1/ρ, α = 1, β = 1, μ = 2, i.e., we get the linear differential inequality

F ′(t) ≥ cF (t)(k + t)−1

which implies power growth in t for F , with a rate depending on c. Since we have
restricted c several times, we are not a priori clear that c can be made large by
choosing large data, this, however, is the case that we establish with the following
argument.

In fact, we shall show that the functional F (t), defined by (10.1.6), satisfies
an estimate of the form, for all t > 0,

F (t) ≥ c(k + t)d, (10.1.44)

where c > 0 depends only on cg, cf and the fixed values of k and p, and where
d > 0 can be made arbitrarily large, provided that cf and cg (defined in part (1)
of the theorem ) are sufficiently large.

To do this, consider again the inequality

F ′′(t) =
∫

|u|pdx ≥ c(k + t)−(p−2). (10.1.45)

From Corollary 10.1.1, we derive that this constant c > 0 is proportional to cp1,
where c1 = min

{
cg, k

−1cf
}
> 0. Consider now the Cauchy data for which c1, now

p = 1 +
√
2 > 2, and the constants c3, c4, defined by (10.1.19), (10.1.20), depend

linearly on cf , cg, hence, for large data, we may assume that the constant c in
(10.1.17) above satisfies c > c∗∗, where c∗∗ is defined by (10.1.21). Therefore we
obtain an inequality of the form (10.1.23), which is then integrated to get (10.1.22),
which will be written as, for all t,

F (t) ≥ c2(k + t)2−(p−2), (10.1.46)

where c2 > 0 is proportional to c1 (since c∗∗ is also proportional to c1).

Next, the constant c > 0 in (10.1.8):

F (t) ≤ c‖u(t)‖p(k + t)3(
p−1
p ) (10.1.47)

depends only on p; we write c = cp.

Therefore, we conclude

‖u(t)‖pp ≥ cp · F p(t) · (k + t)−3(p−1), cp > 0. (10.1.48)
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We now write F p(t) = F (t) · F p−1(t) and estimate the second factor below
using (10.1.46), it follows that

‖u(t)‖pp ≥ cp · F (t) · (k + t)−3(p−1)cp−1
2 (k + t)

p−1
2 [4−2(p−2)]

= cp,kc
p−1
1 F (t)(k + t)−2

(10.1.49)

since c2 is proportional to c1, and p satisfies (10.1.43). Thus, this and (10.1.45)
imply for all t > 0,

F ′′(t) ≥ c5F (t)(k + t)−2, (10.1.50)

where c5 > 0 is proportional to cp−1
1 .

From (10.1.50), we derive for all t > 0,

d

dt

[
F ′2(t)− c5F

2(t)

(k + t)2

]
≥ 0, (10.1.51)

whence

(F ′(t))2 ≥ c5F
2(t)

(k + t)2
+ c2g −

c5c
2
f

k2

≥ c5F
2(t)

2(k + t)2
+ c2g −

c5c
2
f

k2
+

c5c
2
2

2
(k + t)2−2(p−2)

(10.1.52)

where we have used (10.1.46). The exponent in the last term here, 2− 2(p− 2) is
positive if p < 3, which is satisfied by p = 1 +

√
2. Hence, (10.1.52) shows that

(F ′(t))2 ≥ c6F
2(t)(k + t)−2 (10.1.53)

where c6 > 0 is proportional to cp−1
1 . By increasing the initial time if necessary, we

can therefore assume (10.1.53) holds for all t > 0. It then follows from (10.1.53)
that for all t > 0,

F ′(t) ≥ dF (t)(k + t)−1, (10.1.54)

where d > 0 is proportional to c
(p−1)/2
1 .

Estimate (10.1.54) implies, for all t > 0,

F (t) ≥ F (0)k−d(k + t)d, (10.1.55)

which is estimate (10.1.44), and d > 0 can be made arbitrarily large provided that
both cf and cg are sufficiently large.

Returning to (10.1.9) and using (10.1.55), we have, for any θ′ ∈ (0, 1) and
for all t > 0,

F ′′(t) ≥ cpF
p(t)(k + t)−3(p−1)

= cpF
pθ′

(t)F p(1−θ′)(t)(k + t)−3(p−1)

≥ cp,k,dF
pθ′

(t)c
p(1−θ′)
f (k + t)dp(1−θ′)−3(p−1)

(10.1.56)
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which obviously will imply finite time blow-up of F (t) as before, provided that we
can choose a θ′ ∈ (0, 1), satisfying

pθ′ > 1 (10.1.57)

and

0 ≤ 3(p− 1)− dp(1− θ′) ≤ 2. (10.1.58)

Thus we require that θ′ satisfy

max

{
1

p
, 1− 3(p− 1)

dp

}
≤ θ′ < 1− 3p− 5

dp
. (10.1.59)

Now choosing 1
p < 1 − 3(p−1)

dp for d > 3, (10.1.59) always holds, indeed, this

can be achieved by a sufficiently large choice of c1. Finally (10.1.59) also implies
that any such θ′ satisfies 0 < θ′ < 1, since p = 1 +

√
2 > 5/3, and this completes

the proof. �
Remark 10.1.2 ([318]). For n > 3, we can easily recover Kato’s result [418] as
follows, let u be a solution of (10.1.1) with finite speed of propagation. Then,
noting that

∫
u0dx ≥ c1(k + t), where c1 = min

{
cg, k

−1cf
}
, we get

F (t) =

∫
udx ≥ c1(k + t).

This estimate holds in any dimension, regardless of the sign of the funda-
mental solution, thus it follows from (10.1.7)–(10.1.8) that, for θ ∈ (0, 1),

F ′′(t) =
∫

|u|pdx ≥ cF p(t)(k + t)−n(p−1)

≥ cF θp(t)(k + t)p(1−θ)−n(p−1).

Integrating this as before, we find that F (t) → +∞ in a finite time provided that

1 < p ≤ n+ 1

n− 1

which is Kato’s theorem [418] when specialized to (10.1.1).

10.2 Blow-up of solutions to semilinear wave equations

In this section, we shall employ Theorem 2.4.22 to study the blow-up of solutions
to semilinear wave equations. These results are due to Glassey [316].

It is well known that the blow-up problem on a bounded domain is more
relatively easier, since the method of proof, closely following that of Kaplan [413],



404 Chapter 10. Blow-up of Solutions

is independent of both the spatial dimension and the Riemann function of the
wave operator.

We shall consider the initial boundary value problem⎧⎪⎨⎪⎩
∂2u
∂t2 −Δu = f(u) x ∈ Ω, t > 0,

u(x, 0) = 0 for x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, t > 0,

(10.2.1)

where Ω ⊆ Rn is a bounded open set with smooth boundary ∂Ω.

Let ψ(x) denote the first eigenfunction for the problem{
Δψ + μψ = 0, x ∈ Ω,

ψ = 0 on ∂Ω,
(10.2.2)

and let μ = μ1 be the corresponding first eigenvalue.

By a classical theorem (see [176]), we may assume that ψ(x) > 0 in Ω.

We now give two assumptions. Let S ⊂ Rn and let λ, α, β denote non-
negative constants. The first hypothesis (H1) concerns the Cauchy data:

(H1) u(x, 0) ≥ α, ∂u
∂t (x, 0) ≥ β for all x ∈ S.

Second, we specify the nature of the nonlinearity:

(H2) f(s) is bounded from below by a locally Lipschitzian, convex function g(s)
satisfying

(i) g(s)− λs is a non-negative, non-decreasing function for all s ≥ α;

(ii) g(s) grows fast enough as s → +∞ so that the integral

T0 =

∫ +∞

α

[
λα2 + β2 − λs2 + 2

∫ s

α

g(ξ) dξ

]−1/2

ds (10.2.3)

converges.

We assume that

(i) u0(x) = u(x, 0) ≥ 0, u1(x)ut(x, 0) ≥ 0 for all x ∈ Ω, there exist two points
x0, x1 ∈ Ω such that u0(x0) = u(x0, 0) > 0, u1(x1) = ut(x1, 0) > 0.

(ii) (H2) holds with λ = μ,

α =

∫
Ω

ψ(x)u(x0, 0) dx; β =

∫
Ω

ψ(x)ut(x1, 0) dx.

Note that both α and β are positive by hypotheses.

We may now prove the following main result due to Glassey [316].
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Theorem 10.2.1 ([316]). Assume that u(x, t) is a C2 solution of problem (10.2.1)
such that (i) and (ii) hold. Then

lim
t→t−0

sup
x∈Ω

|u(x, t)| = +∞

for some finite time t0 ≤ T0, where T0 is given by (10.2.3).

Proof. Let ψ(x) be as defined by (10.2.2). Without loss of generality, we may
assume that ψ is normalized: ∫

Ω

ψ(x) dx = 1.

Let

φ(t) =

∫
Ω

ψ(x)u(x, t) dx.

Then multiplying (10.2.1) by ψ and integrating over Ω, and noting that u ∈ C2,
we obtain ∫

Ω

ψutt dx = φ̈ =

∫
Ω

ψΔu dx+

∫
Ω

ψf(u) dx.

By Jensen’s inequality and (ii), we have, since ψ is normalized,∫
Ω

ψf(u) dx ≥
∫
Ω

ψg(u) dx ≥ g(

∫
Ω

ψu dx) = g(φ).

Now using

ψΔu = ∇ · (ψ∇u)−∇ · (u∇ψ) + uΔψ;

and the boundary conditions satisfied by u and ψ, we have∫
Ω

ψΔu dx =

∫
Ω

uΔψ dx = −μ

∫
Ω

uψ dx = −μφ(t).

Thus we obtain
φ̈+ μφ ≥ g(φ)

with

φ(0) =

∫
Ω

ψ(x)u(x, 0) dx = α > 0; φ̇(0) =

∫
Ω

ψ(x)ut(x, 0) dx = β > 0.

Hypothesis (ii) implies that Theorem 2.4.22 is applicable with h(s) = g(s)−
μs, therefore

t ≤
∫ φ(t)

α

[
μα2 + β2 − μs2 + 2

∫ s

α

g(ξ) dξ

]−1/2

ds,
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and φ(t) develops a singularity in a finite time t0 ≤ T0, where

T0 =

∫ +∞

α

[
μα2 + β2 − μs2 + 2

∫ s

α

g(ξ)dξ

]−1/2

ds.

Finally, since φ(t) > 0, we have

φ(t) = |φ(t)| =
∣∣∣∣ ∫

Ω

ψ(x)u(x, t) dx

∣∣∣∣ ≤ sup
x∈Ω

|u(x, t)|
∫
Ω

ψ(x) dx

= sup
x∈Ω

|u(x, t)|,

which thus proves the theorem. �

Corollary 10.2.1 ([316]). For each p, 1 ≤ p ≤ +∞,

‖u(t)‖Lp(Ω) =

(∫
Ω

|u(x, t)|p dx
)1/p

blows up in a finite time.

Proof. The proof of the corollary is simply to apply Hölder’s inequality to the
term | ∫Ω ψ(x)u(x, t) dx|. �

Remark 10.2.1 ([316]). As Kaplan has noted (see, e.g., [413]), Δ may be replaced
by any uniformly elliptic self-adjoint second-order operator

n∑
i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)

with smooth coefficients aij(x).

Remark 10.2.2 ([316]). The same result of Theorem 10.2.1 holds if the boundary
condition is of the form

u(x, t) = Φ(x, t) for all x ∈ ∂Ω, t ≥ 0

provided that Φ(x, t) ≥ 0 for all x ∈ ∂Ω, t ≥ 0. To show this, we need only to
prove that the term − ∫

Ω
∇·(u∇ψ) dx is non-negative. Now ψ obeys the maximum

(minimum) principle, and assumes its minimum value (zero) on ∂Ω. It thus follows
that Δψ is directed toward the interior of Ω, so that ∂ψ

∂ν ≤ 0 on ∂Ω, where ν =
outer normal to ∂Ω. Then clearly

−
∫
Ω

∇ · (u∇ψ) dx = −
∫
∂Ω

Φ(x, t)
∂ψ

∂ν
(x) dSx ≥ 0.
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Remark 10.2.3 ([316]). The corresponding problem with general linear homoge-
neous boundary conditions on u can be treated similarly. We define ψ(x) as the
first eigenfunction of Δψ + μψ = 0 in Ω, satisfying the same boundary conditions
as u on ∂Ω. For example, if the boundary condition is

∂u

∂ν
= 0, x ∈ ∂Ω,

we may choose

ψ(x) = const. = (measure(Ω))−1 ≡ (m(Ω))−1

so that

φ(t) =

∫
Ω

ψ(x)u(x, t) dx =
1

m(Ω)

∫
Ω

u(x, t) dx.

We then easily obtain d2φ
dt2 ≡ φ̈ ≥ g(φ), and proceed as above.

We now consider the Cauchy problem for the equation (10.2.1)1 over R
n×R+

for n ≤ 3, and only discuss the case n = 3, while the method is similar when n = 1
or 2.

To this end, for any R > 0, we define

ψ(x) =
c

r
sin

πr

R
, for all |x| = r ≤ R, (10.2.4)

where c > 0 is chosen so that
∫
|x|≤R

ψ(x) dx = 1. Let μ = π2/R2 and we also

assume that

(i) (H1) holds for arbitrary α > 0, β > 0, with S = {x ∈ R3 : |x| ≤ R + 2T0},
where T0 > 0 is given by (10.2.3) with λ = μ;

(ii) Δu(x, 0) ≥ 0 for all x ∈ S;

(iii) (H2) holds with λ = μ in the following weakened form: the function g(u) is
assumed convex only for all u ≥ α.

Under the above assumptions, we can prove the following blow-up result.

Theorem 10.2.2 ([316]). Let u(x, t) be a C2 solution to the Cauchy problem
(10.2.1)1 such that (i)–(iii) hold. Then

lim
t→t−0

sup
|x|≤R

|u(x, t)| = +∞ (10.2.5)

for some finite time t0 ≤ T0.

Proof. The solution u(x, t) to the Cauchy problem of the equation (10.2.1)1 satis-
fies the following nonlinear integral equation

u(x, t) = u0(x, t) +
1

4π

∫ t

0

1

t− τ

∫
|y−x|=t−τ

f(u(y, τ)) dSydτ
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where u0(x, t) is the solution of the linear equation with the same data as that of
u when t = 0. Thus,

u0(x, t) =
t

4π

∫
|ω|=1

∂u

∂t
(x+ ωt, 0) dω +

1

4π

∫
|ω|=1

u(x+ ωt, 0) dω

+
1

4πt

∫
|y−x|≤t

Δu(y, 0) dy.

From (i) it clearly follows u0(x, t) ≥ α+ βt for all |x| ≤ R+ T0, 0 ≤ t ≤ T0.

We now claim that u(x, t) ≥ α for all |x| ≤ R, 0 ≤ t ≤ T0. Let C(x0, T0)
be any backward characteristic cone, the x-coordinate of whose vertex x0 satisfies
|x0| ≤ R. We shall show that u(x, t) ≥ α in C(x0, T0) using Keller’s method. Then,
since x0 was an arbitrary point in |x| ≤ R, we shall prove the claim. In fact, we
assume the assertion u(x, t) ≥ α in C(x0, T0) is false. Let

t1 = inf{t : u(x, t) < α in C(x0, T0)},

and let (x1, t1+ε), with sufficiently small ε, be a point in C(x0, T0) where u(x1, t1+
ε) < α. Then from the integral equation, it follows

u(x1, t1 + ε)− α = u0(x1, t1 + ε)− α

+
1

4π

∫ t1+ε

0

1

t1 + ε− τ

∫
|y−x1|=t1+ε−τ

f(u(y, τ))dSydτ.

Now |x1| ≤ R+T0, so that u0(x1, t1+ ε)−α ≥ βt1 from the above equality. Using
(H2) and the definition of the point t1, we conclude

u(x1, t1 + ε)− α

≥ βt1 +
1

4π

∫ t1+ε

t1

1

t1 + ε− τ

∫
|y−x1|=t1+ε−τ

g(u(y, τ))dSydτ

≥ C +
1

4π

∫ t1+ε

t1

1

t1 + ε− τ

∫
|y−x1|=t1+ε−τ

[g(u(y, τ))− g(α)] dSydτ

where constant C > 0 depends on β, t1, ε and the positive value of g(α). We now
split this integral into two components, one over the set u ≥ α; the other over the
component of this set. Whenever u ≥ α, g(u)− g(α) is non-negative, so we may
restrict our attention to the region u < α.

Therefore, since g is Lipschitizian, we get

u(x1, t1 + ε)− α ≥ εK(u− α)min + C,

where (u − α)min is the least value of u − α in the backward characteristic cone
C(x1, t1 + ε) for all t ≥ t1, and where K is proportional to the Lipschitz constant
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for g. Taking 0 < ε < 1/K and applying the above to the point in C(x1, t1 + ε)
where u− α assumes its minimum, we may get

(u− α)min ≥ C + εK(u− α)min.

Thus

(u− α)min ≥ 1

1− εK
> 0

which is impossible. Hence no such point t1 exists, and the claim is thus proved.
Now let ψ(x) and μ be as defined above. Then

Δψ + μψ = 0 in |x| < R;

ψ vanishes on |x| = R, and
∂ψ

∂r

∣∣∣
|x|=R

< 0.

Multiplying (10.2.1)1 by ψ(x) and integrating over |x| ≤ R; with

φ(t) =

∫
|x|≤R

ψ(x)u(x, t) dx,

we may obtain

φ̈ =

∫
|x|≤R

ψΔu dx+

∫
|x|≤R

ψf(u) dx.

Now U(x, t) ≥ α for all |x| ≤ R, 0 ≤ t ≤ T0; thus, by the convexity of g and
Jensen’s inequality,∫

|x|≤R

ψf(u) dx ≥
∫
|x|≤R

ψg(u) dx ≥ g(φ).

Using the properties of ψ and the fact that u is a positive solution, we can
get ∫

|x|≤R

ψΔu dx =

∫
|x|≤R

[∇ · (ψ∇u)−∇ · (u∇ψ) + uΔψ]dx ≥ −μφ(t).

Therefore, φ̈+ μφ ≥ g(φ) with

φ(0) =

∫
|x|≤R

ψ(x)u(x, 0) dx ≡ α1 ≥ α; φ(0) =

∫
|x|≤R

ψ(x)ut(x, 0) dx ≡ β1 ≥ β.

Now applying Theorem 2.4.22 with h(s) = g(s) − μs; we can find that φ(t)
blows up in a finite time t0 ≤ T1, where

T1 =

∫ +∞

α1

[
μα2

1 + β2
1 − μs2 + 2

∫ s

α1

g(ξ) dξ

]−1/2

ds.
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It thus remains only to show that T1 ≤ T0. For this purpose, set

T ∗ = T ∗(α, β) =
∫ +∞

α

[
μα2 + β2 − μs2 + 2

∫ s

α

g(ξ) dξ

]−1/2

ds

=

∫ +∞

α

[
β2 + 2

∫ s

α

(g(ξ)− μξ) dξ

]−1/2

ds.

Then from (iii) it follows that T ∗(α, β) decreases as α, β increase. Hence since
α1 ≥ α, β1 ≥ β, we obtain

T1 = T ∗(α1, β1) ≤ T ∗(α, β) = T0.

Thus φ(t) blows up in a finite time t0 ≤ T0. Then

φ(t) = |φ(t)| ≤ sup
|x|≤R

|u(x, t)|
∫
|x|≤R

ψ(x) dx = sup
|x|≤R

|u(x, t)|

which thus completes the proof. �
Remark 10.2.4 ([316]). When n = 3, Keller ([432]) assumes that on some set
|x− x0| ≤ T , the data satisfy

u(x, 0) = α = const.; ut(x, 0) ≥ β = const.,

which, when β > 0, is a special case of (H1).

Corollary 10.2.2 ([316]). For each p, 1 ≤ p ≤ +∞, the expression(∫
|x|≤R

|u(x, t)|p dx
)1/p

blows up in a finite time.

10.3 Blow-up of solutions to nonlinear

hyperbolic equations

In this section, we shall employ Theorem 2.4.7 or Corollary 2.4.2 to establish
the blow-up of solutions of some nonlinear hyperbolic equations. We choose these
results from Kato [418].

We shall consider in this section the equation

utt +Au = Fu = f(t, x, u), t ≥ 0, x ∈ Rn, (10.3.1)

where A is an elliptic linear operator of the form

A = −
n∑

i,k=1

∂jajk(t, x)∂k −
n∑

j=1

∂jaj(t, x), ∂j =
∂

∂xj
.
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An essential property of A is that A∗1 = 0, where A∗ denotes the formal
adjoint of A. We assume that f satisfies⎧⎨⎩ f(t, x, s) ≥

{
b|s|p0 , for all |s| ≤ 1,
b|s|p, for all |s| ≥ 1,

(10.3.2)

1 < p ≤ p0 = (n+ 1)/(n− 1). (10.3.3)

If n = 1, p0 may be any number greater than or equal to p.

However, condition (10.3.3) is not general enough to recover John’s value
p = p0 < 1 + 21/2 for n = 3, but it is rather general in other respect since p may
be any number larger than 1 and may be different from p0.

The main result in Kato [418] reads as follows.

Theorem 10.3.1 ([418]). Assume that (10.3.2)–(10.3.3) hold for f . Let u be a gen-
eralized solution of problem (10.3.1) on a time interval 0 ≤ t ≤ T ≤ +∞, which
is supported on a forward cone

KR = {(t, x); t ≥ 0, |x| ≤ t+R} , R > 0.

Moreover, assume that, for w(t) =
∫
Rn u(t, x)dx,

either (a) wt(0) > 0, or (b) wt(0) = 0 and w(0) 	= 0. (10.3.4)

Then we necessarily have T < +∞.

Remark 10.3.1 ([418]). We usually suppose that a generalized solution u of (10.3.1)
on 0 ≤ t < T at least satisfies the following conditions⎧⎨⎩

u and Fu are in C([0, T ];L1
loc(R

n)), (10.3.5)

d2

dt2
(u, φ) + (u,A∗φ) = (Fu, φ) for every φ ∈ C∞

0 (Rn). (10.3.6)

It seems necessary to admit such generalized solutions u in the theorem, at least
for n ≥ 4, since condition (10.3.2) for small |s| might conflict with the existence
of classical solutions to problem (10.3.1).

Remark 10.3.2 ([418]). The condition that u is supported on KR would require
that A is uniformly elliptic and that f(t, x, 0) = 0.

Remark 10.3.3. The assumptions on u are not absurd, in the sense that with
certain additional assumptions such as Lipschitz continuity of f(t, x, s) in s, the
existence of solutions u of problem (10.3.1) satisfying these conditions can be
proved at least on a finite time interval (see, e.g., Reed [832]).

Remark 10.3.4 ([418]). It is interesting to compare (10.3.3) with the condition used
by Fujita [282] for positive solutions of the nonlinear heat equation ut−Δu = Fu.
Fujita’s blow-up condition roughly corresponds to (10.3.2) with 1 < p ≤ p0 <
(n+2)/n, while global solutions are shown to exist for small initial data if f(s) = sq

with q > (n + 2)/n. The critical case q = (n+ 2)/n was proved by Weissler [956]
to belong to the blow-up case.
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In order to prove Theorem 10.3.1, we need an elementary lemma as follows
(see, e.g., [418]).

Lemma 10.3.2 ([418]). Let

g0(s) = inf {|s|p0 , |s|p} , s ∈ R. (10.3.7)

Then there is a convex function g on R and a constant b1 > 0 such that

f(t, x, s) ≥ g(s) ≥ b1g0(s), g(0) = 0. (10.3.8)

Proof. Indeed, estimates (10.3.2)–(10.3.3) imply that f ≥ bg0. Hence it suffices to
find a convex function g such that bg0 ≥ g ≥ b1g0 with some b1 > 0. This is trivial
since g0 is piecewise convex with a finite derivative. �

Proof of Theorem 10.3.1. We make for simplicity some changes in notation. We
shall normalize the Lebesgue measure dx so that the unit ball has unit volume.
Also we shift the origin of time t so that the cone KR has the form |x| ≤ t and the
initial time is at t = R, hence this will change T into T +R, but we shall denote
it again by T .

With the above modifications, we have

wtt ≥ (g(u), 1), R ≤ t < T. (10.3.9)

To see this, we have only to apply (10.3.6) with a φ ≥ 0 such that φ = 1 on BR′ ,
where R′ > R. We denote by Br the closed ball in Rn with center 0 and radius
r. Then A∗φ = 0 and φ = 1 on the support of u(t, ·) for all t < R′, which yields
(10.3.9) for all t < R′ by (10.3.8). Since R′ is arbitrary, we obtain (10.3.9) for all
t > T .

Since g is convex and the integral in (g(u), 1) may be taken on the ball Bt,
which has volume tn, it follows from (10.3.8),

(g(u), 1) = tn(g(u), t−n)Bt ≥ g((u, t−n)Bt)

= tn(g(t−nw) ≥ b1t
ng0(t

−nw),

where (·, ·)Bt denotes the scalar product in L2(Bt). Thus (10.3.9) gives us a dif-
ferential inequality for w:

wtt ≥ b1t
n inf

{
t−np0 |w|p0 , t−np|w|p} , R ≤ t < T. (10.3.10)

We shall complete the proof by assuming that T = +∞ in (10.3.10) and
deducing a contradiction.

To this end, we first note that wt is monotone non-decreasing because wtt > 0,
by (10.3.10). If wt(R) = a > 0, it follows that wt ≥ a for all t ≥ R and so
w ≥ w(R) + at > 0 for sufficiently large t. If wt(R) = 0, then w(R) 	= 0 by
hypothesis, so that wtt(R) > 0 by (10.3.10) and wt(R + ε) > 0 for some ε > 0. If
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we take R + ε as the new initial time, we are in the same situation as above. In
any case, there is a constant R1 ≥ R,R1 ≥ 1, such that for all t ≥ R1 ≥ 1,

wt ≥ a > 0, w ≥ at > 0, (10.3.11)

possibly with a modified a > 0.

Now (10.3.3) implies that n − np0 = −1 − p0 and n − np ≥ −1 − p. For all
t ≥ R1 ≥ 1, therefore, (10.3.10) yields

wtt ≥ b1 inf
{
t−t−p0wp0 , t−1−pwp

}
= b1t

−1−pwp inf
{
(w/t)p0−p, 1

} ≥ b2t
−1−pwp,

where b2 = b1 inf {ap0−p, 1} > 0, because w/t ≥ a > 0 by (10.3.11) and p0−p ≥ 0.
Thus applying Theorem 2.4.7 or Corollary 2.4.2 to the above inequality completes
the proof. �

10.4 Breakdown of solutions to semilinear
wave equations �u + ut = |u|1+α

In this section, we shall exploit Corollary 2.4.8 to study the blow-up and estimates
of the lifespan of solutions to semilinear wave equations. We here adopt the results
from Li and Zhou [537].

We shall consider the following Cauchy problem for fully nonlinear wave
equations with linear dissipation{ �u+ ut = F (u,Du,DxDu), (10.4.1)

t = 0 : u = εϕ(x), ut = εψ(x), (10.4.2)

where

Dx =

(
∂

∂x1
, . . . ,

∂

∂xn

)
, D =

(
∂

∂t
,

∂

∂x1
, . . . ,

∂

∂xn

)
, (10.4.3)

and ϕ, ψ ∈ C∞
0 (Rn) and ε > 0 is a small parameter.

Let

λ̂ = (λ; (λi), i = 0, 1, . . . , n; (λij), i, j = 0, 1, . . . , n, i+ j ≥ 1). (10.4.4)

Assume that in a neighborhood of λ̂ = 0, the nonlinear term F = F (λ̂) in (10.4.1)
is a sufficiently smooth function satisfying

F (λ̂) = O(|λ̂|1+α), (10.4.5)

where α is an integer ≥ 1.
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Note that Nishida [699] and Matsumura [593, 594] studied this kind of prob-
lem in some special cases. For all n and α with n ≥ 1 and α ≥ 1, Li [540] obtained
the following lower bound for the lifespan T̃ (ε) of classical solutions to the Cauchy
problem (10.4.1)–(10.4.2),

T̃ (ε) ≥

⎧⎪⎨⎪⎩
+∞, if nα > 2,

exp{āε−α}, if nα = 2,

b̄ε−2α/(2−nα), if nα < 2,

(10.4.6)

where ā and b̄ are positive constants independent of ε.

In order to show the sharpness of estimate (10.4.6), we now consider the
Cauchy problem (10.4.1)–(10.4.2) with F = |u|1+α and for all x ∈ Rn,

ϕ(x) ≡ 0, ψ(x) ≥ 0, (10.4.7)

and ∫
Rn

ψ(x) dx > 0. (10.4.8)

Let
v = S(t)g (10.4.9)

be the solution to the Cauchy problem{ �v + vt = 0, (10.4.10)

t = 0 : v = 0, vt = g(x). (10.4.11)

Then the solution u to the Cauchy problem{ �u+ ut = F (t, x), (10.4.12)

t = 0 : u = f(x), ut = g(x) (10.4.13)

can be expressed as

u = ∂t(S(t)f) + S(t)(f + g) +

∫ t

0

S(t− τ)F (τ, ·) dτ. (10.4.14)

When n ≤ 2, we have (see, e.g., Chapter 6 in [176]) that

S(t)g =
1

2
e−t/2

∫
|x−y|≤t

I0

(
1

2

√
t2 − |x− y|2

)
g(y) dy, if n = 1 (10.4.15)

and

S(t)g =
1

2π
e−t/2

∫
|x−y|≤t

I0
ch

(
1
2

√
t2 − |x− y|2

)
√
t2 − |x− y|2 g(y) dy, if n = 2 (10.4.16)
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where

I0(y) =

+∞∑
m=0

1

(m!)2

(y
2

)2m

(10.4.17)

is the Bessel function of order zero with imaginary argument, which satisfies

I ′′0 (y) +
1

y
I ′0(y)− I0(y) = 0 (10.4.18)

and the following asymptotic formula holds as y → +∞,

I0(y) ≈
√

1

2πy
ey. (10.4.19)

By the positivity of the fundamental solution to problem (10.4.1), (10.4.7)–
(10.4.8) in the case n ≤ 2 (see (10.4.15)–(10.4.16)), we have

u(t, x) ≥ 0, (10.4.20)

then u = u(t, x) is a solution to the Cauchy problem{
�u+ ut = u1+α,
t = 0 : u = 0, ut = εψ(x).

(10.4.21)

When α ≥ 1 is an integer, (10.4.21) is a particular case of the Cauchy problem
(10.4.1)–(10.4.2), then by Corollary 2.4.8, we can get the sharpness of (10.4.6).

10.5 Blow-up of solutions to nonlinear wave equations

with damping

In this section, we shall employ Theorem 2.4.9 to investigate the Cauchy problem
for the dissipative nonlinear wave equations. The results introduced here are from
Todorova and Yordanov [919].

We shall study the global existence, blow-up and asymptotic behavior as
t → +∞ for solutions of the following Cauchy problem for the dissipative nonlinear
wave equation { �u+ ut = |u(x, t)|p, (t, x) ∈ R+ × Rn, (10.5.1)

t = 0 : u = εu0, ut = εu1, (10.5.2)

where � = ∂2
t − Δx is the wave operator, ε > 0, and (u0, u1) are compactly

supported data from the energy space:{
u0 ∈ H1(Rn), u1 ∈ L2(Rn),
supp ui ⊆ B(K) ≡ {x ∈ Rn : |x| < K} , i = 0, 1,
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and the so-called critical exponent pc(n) is the number defined by the following
property (see also Section 10.4):

For pc(n) < p, all small data solutions of problem (10.5.1)–(10.5.2) exist
global in time, while for 1 < p < pc(n), all solutions with data positive on average
blow up in a finite time no matter how small the initial data are.

Recall that if the damping is missing, the critical exponent for the nonlinear
wave equation �u = |u|p is the positive root p0(n) of the equation (n − 1)p2 −
(n + 1)p − 2 = 0, where n ≥ 2 is the space dimension (for p0(1) = +∞, see
Sideris [869]). This is known as Strauss’ conjecture [870] which was solved for more
than 20 years, beginning from Glassey [319], John [405], Sideris [870], Choquet-
Bruhat [162], [163], Zhou [1013], Agemi, Kubota and Takmura [10], and ending
with Lindblad and Sogge [544], Georgiev, Lindblad, and Sogge [299] and Tataru
[910]. Moreover, Nakao and Ono in [684] also proved the global existence for the
damped wave equation (10.5.1) for p > 1 + 4/n.

Todorova and Yordanov [919] solved the critical exponent case for problem
(10.5.1)–(10.5.2) with a source and a linear damping term and proved that the
damping is powerful enough to shift the critical exponent p0(n) of the wave equa-
tion to the left, i.e., the critical exponent pc(n) for equation (10.5.1) is strictly less
than p0(n), which will be studied in the following result for the critical exponent
pc(n) = 1 + 2/n of problem (10.5.1)–(10.5.2). Thus, pc(n) < p0(n).

We shall use Theorem 2.4.9 to show the next blow-up result.

Theorem 10.5.1 ([919]). Let 1 < p < 1 + 2/n. If

ci =

∫
Rn

ui(x) dx > 0, i = 0, 1,

then for any ε > 0, the solution of problem (10.5.1)–(10.5.2) will blow up in a
finite time.

Proof. The proof will be split into two parts. First, we show the result for expo-
nents in the smaller range 1 < p < 1 + 1/n. Let

F (t) =

∫
Rn

u(t, x)dx, (10.5.3)

where u is the local solution of problem (10.5.1)–(10.5.2).

(1) For 1 < p < 1 + 1/n. Following [919], we can derive

F̈ (t) + Ḟ (t) ≥ C(t+K)−n(p−1) | F (t) |p . (10.5.4)

We observe that from Theorem 2.4.9 the blowup of F follows immediately. Not-
ing that F (0) = εc0 and Ḟ (0) = εc1 are positive by assumptions and applying
Theorem 2.4.9 to (10.5.4), we can conclude that F blows up in a finite time if
1 < p < 1 + 1/n.
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(2) For 1+ 1/n ≤ p < 1 + 2/n. The details of arguments for this case can be
found in [919].

The lower estimate for F is given by the next lemma.

Lemma 10.5.2 ([919]). Under the assumptions of Theorem 10.5.1 hold, i.e., 1 <
p < 1 + 2/n and

ci ≡
∫
Rn

ui(x)dx > 0, i = 0, 1,

for each B ≥ 0, there exists a constant CB > 0 such that for all t ≥ 0,

F (t) ≥ CB(t+K)B. (10.5.5)

In fact, we can now derive a stronger version of (10.5.4) by writing | F |p as
| F |(p−1)/2| F |(p+1)/2 and using Lemma 10.5.1, the following modified inequality

F̈ (t) + Ḟ (t) ≥ C(t+K)(p−1)(B/2−n)|F (t)|(p+1)/2. (10.5.6)

Thus choosing B = n, applying Lemma 10.5.1 and Theorem 2.4.9, we can complete
the proof of Theorem 10.5.1. �

To prove Lemma 10.5.1, we may refer the reader to [919] for details. �

10.6 Blow-up of solutions to wave equations with
a nonlinear dissipation

In this section, we shall apply Theorem 2.4.4 to investigate the blow-up of solutions
to wave equations with a nonlinear dissipation. We choose these results from Tatar
[909].

We shall consider the following equation

utt + λu + ut(Vγ ∗ u2
t ) = Δu+ a | u |p−1 u in RN × (0,+∞), (10.6.1)

subject to initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN , (10.6.2)

where

(Vγ ∗ u2
t )(x, t) =

∫
RN

Vγ(x− y)u2
t (y, t)dy (10.6.3)

and

Vγ(x) = |x|−γ , 0 < γ < N, λ ≥ 0, a > 0, p > 1.

We shall use the usual Lp, 1 ≤ p ≤ +∞ spaces and Sobolev spacesHk, k = 1, 2, . . . .
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First we recall the following global existence result: If a = 0 and (u0, u1) ∈
H2(RN )×(H1(RN )∩Lq(RN )), q = 6N/(3N−2γ), then problem (10.6.1)–(10.6.2)
admits a global solution (see, e.g., [634], [639], [909]) satisfying

(i) u(t) ∈ C([0,+∞);E) and for any t > 0,

‖ u(t) ‖2E +

∫ t

0

∫
RN

u2
t (x, s)dx

∫
RN

| x− y |−γ u2
t (y, s)dyds =‖ u(0) ‖2E

(10.6.4)
where

E =

{
w = (w1, w2) : ‖ w ‖E= 1

2

(∫
RN

[λw2
1 + |∇w1|2 + w2

2 ]dx

)1/2

< +∞
}
.

(10.6.5)

(ii) for any T > 0,

u(t) ∈ C([0, T ];L2(RN )). (10.6.6)

(iii) for any T > 0,

utt(t),∇ut(t),Δu(t), ut(t)

∫
RN

| x− y |−γ u2
t (y, t)dy ∈ L∞([0, T ], L2(RN )).

(10.6.7)

The following is the blow-up theorem due to Tatar [909].

Theorem 10.6.1 ([909]). Let p > 3 and assume the above hypotheses hold. Then
for any T > 0, we can find initial data u0(x) and u1(x) (of compact support) for
which the corresponding solution u(x, t) blows up at a finite time T ∗ ≤ T .

Proof. Multiplying (10.6.1) by ut, and integrating over RN , we have

dE(t)

dt
= −

∫
RN

u2
t

∫
RN

Vγ(x − y)u2
t (y, t)dydx (10.6.8)

where

E(t) =

∫
RN

[
1

2
λu2 +

1

2
u2
t +

1

2
| ∇u |2 − a

p+ 1
| u |p+1

]
dx. (10.6.9)

Noting that dE(t)/dt ≤ 0, we obtain for all t ≥ 0,

E(t) ≤ E(0). (10.6.10)

Let us introduce the functional

H(t) =

∫ t

0

∫
RN

{
a

p+ 1
|u|p+1 − 1

2
λu2 − 1

2
u2
t −

1

2
| ∇u |2

}
dxds+(dt+l)

∫
RN

u2
0dx.

(10.6.11)



10.6. Blow-up of solutions to wave equations with a nonlinear dissipation 419

The positive constants d and l are to be chosen later on. A differentiation of this
functional (with the above observation (10.6.10)) implies that

H ′(t) = −E(t) + d

∫
RN

u2
0dx ≥ d

∫
RN

u2
0dx− E(0). (10.6.12)

We readily choose d so that

d

∫
RN

u2
0dx− E(0) = H ′(0) > 0. (10.6.13)

It follows from (10.6.12)–(10.6.13) that for all t ≥ 0,

H ′(t) ≥ H ′(0).

Moreover, the identity (10.6.8) yields

H ′(0)−H ′(t) = −
∫ t

0

∫
RN

u2
t (Vγ ∗ u2

t )dxds ≤ 0. (10.6.14)

Now we choose a second auxiliary functional

L(t) = H1−σ(t) +
ε

2

(∫
RN

u2dx−
∫
RN

u2
0dx

)
with ε > 0 and 0 < σ = (p− 3)/[6(p+ 1)] < 1. We next show that L(t) satisfies

L′(t) ≥ CLq(t), q > 1

which will yield the blow-up of solutions in a finite time by Theorem 2.4.4.

A direct calculation gives us

L′(t) = (1− σ)H−σ(t)H ′(t) + ε

∫
RN

u0u1dx+ ε

∫ t

0

∫
RN

u2
tdxds

+ ε

∫ t

0

∫
RN

uuttdxds.

(10.6.15)

The last term in (10.6.15) may be estimated by multiplying (10.6.1) by u and
integrating the result over RN × (0, t). Indeed,∫ t

0

∫
RN

uuttdxds = − λ

∫ t

0

∫
RN

u2dxds−
∫ t

0

∫
RN

|∇u|2dxds (10.6.16)

+ a

∫ t

0

∫
RN

|u|p+1dxds −
∫ t

0

∫
RN

uut(Vγ ∗ u2
t )dxds.
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We have, by the Parseval equality and convolution property enjoyed by the kernel
Vγ(x) (see, e.g., [634], Chapters 7.1 and 3.4),∫ t

0

∫
RN

uut

∫
RN

Vγ(x− y)u2
tdydxds

≤
∫ t

0

[∫
RN

(VN+γ
2

∗ u2
t )

2dx

]1/2 [∫
RN

(
VN+γ

2
∗ (uut)

)2

dx

]1/2
ds.

In fact,∫
RN

uut

∫
RN

Vγ(x− y)u2
tdydx =

∫
RN

ûutV̂γ ∗ u2
tdx =

∫
RN

ûut | V̂N+γ
2

|2 û2
tdx

≤
[∫

RN

( ̂VN+γ
2

∗ u2
t )

2dx

]1/2 [∫
RN

( ̂VN+γ
2

∗ (uut))
2dx

]1/2
. (10.6.17)

The notion ·̂ stands for the Fourier transform. Also, by the Cauchy–Schwarz in-
equality, we have

VN+γ
2

∗ (uut) =

∫
RN

VN+γ
2

(x− y)utu(y)dy

≤
(∫

RN

VN+γ
2

(x− y)u2
t (y)dy

)1/2 (∫
RN

VN+γ
2

(x − y)u2(y)dy

)1/2

.

That is,

VN+γ
2

∗ (uut) ≤
(
VN+γ

2
∗ u2

t

)1/2(
VN+γ

2
∗ u2

)1/2

.

Therefore,∫ t

0

∫
RN

uut

∫
RN

Vγ(x− y)u2
tdydxds

≤
∫ t

0

[∫
RN

(
VN+γ

2
∗ u2

t

)2

dx

]1/2 [∫
RN

(
VN+γ

2
∗ u2

t

)(
VN+γ

2
∗ u2

)
dx

]1/2
ds

≤
∫ t

0

[∫
RN

(VN+γ
2

∗ u2
t )

2dx

]3/4 [∫
RN

(VN+γ
2

∗ u2)2dx

]1/4
ds.

By the Young inequality, we get for any δ > 0,∫ t

0

∫
RN

uut

∫
RN

Vγ(x− y)u2
tdydxds (10.6.18)

≤ δ

∫ t

0

∫
RN

(
VN+γ

2
∗ u2

t

)2

dxds+
1

4δ3

∫ t

0

∫
RN

(
VN+γ

2
∗ u2

)2

dxds.
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Inserting (10.6.16)–(10.6.18) to (10.6.15), we conclude

L′(t) ≥ (1− σ)H−σ(t)H ′(t) + ε

∫
RN

u0u1dx+ ε

∫ t

0

∫
RN

u2
tdxds

− λε

∫ t

0

∫
RN

u2dxds− ε

∫ t

0

∫
RN

| ∇u |2 dxds

+ aε

∫ t

0

∫
RN

| u |p+1 dxds− εδ

∫ t

0

∫
RN

(
VN+γ

2
∗ u2

t

)2

dxds

− ε

4δ3

∫ t

0

∫
RN

(
VN+γ

2
∗ u2

)2

dxds. (10.6.19)

By a similar argument to that in (10.6.17), we may obtain∫
RN

(
VN+γ

2
∗ u2

t

)2

dx =

∫
RN

u2
t

(
Vγ ∗ u2

t

)
dx.

It follows then from (10.6.7) that∫ t

0

∫
RN

(
VN+γ

2
∗ u2

t

)2

dxds = H ′(t)−H ′(0). (10.6.20)

The last term on the right-hand side of (10.6.19) may be handled as follows. By
Hölder’s inequality, we see that∫ t

0

∫
RN

(
VN+γ

2
∗ u2

)2

dxds

=

∫ t

0

∫
RN

u2
(
Vγ ∗ u2

)
dxds (10.6.21)

≤
∫ t

0

(∫
RN

| u |p+1 dx

)2/(p+1) (∫
RN

(Vγ ∗ u2)(p+1)/(p−1)dx

)(p−1)/(p+1)

ds

≤
(∫ t

0

∫
RN

| u |p+1 dxds

)2/(p+1) (∫ t

0

∫
RN

(Vγ ∗ u2)(p+1)/(p−1)dxds

)(p−1)/(p+1)

.

Using the Hardy–Littlewood–Sobolev inequality, we get∫
RN

(
Vγ ∗ u2

)(p+1)/(p−1)

dx ≤ A

(∫
RN

u2rdx

)(1/r)(p+1)/(p−1)

with A > 0 and r = N(p+ 1)/(2pN − γ(p+ 1)).

Observe that when p > 3, we have 2r ≤ p + 1 (in fact 2r < p + 1). Indeed,
p > 3 implies γ < N ≤ 2N(p− 1)/(p− 1), then 2r < p+ 1.
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By Hölder’s inequality, we have∫
RN

(
Vγ ∗ u2

)(p+1)/(p−1)

dx ≤ C(R + T )μ1

(∫
RN

| u |p+1 dx

)2/(p−1)

for some positive constant C and μ1 = (N/r(p− 1))(p+ 1− 2r). Therefore, when
p > 3,(∫ t

0

∫
RN

(Vγ ∗ u2)(p+1)/(p−1)dxds

)(p−1)/(p+1)

≤ Ĉ(R+ T )μ2

(∫ t

0

(∫
RN

| u |p+1 dx

)2/(p−1)

ds

)(p−1)/(p+1)

≤ Ĉ(R+ T )μ2

(∫ t

0

1(p−1)/(p−3)ds

)(p−3)/(p+1) (∫ t

0

∫
RN

| u |p+1 dxds

)2/(p+1)

,

where Ĉ = C(p−1)/(p+1) and μ2 = (N/r)(1 − (2r/p + 1)). From now on, C will
denote a generic positive constant which may change from line to line. Hence from
(10.6.21) it follows that∫ t

0

∫
RN

(
VN+γ

2
∗ u2

)2

dxds ≤ C(R+T )μ2T (p−3)/(p+1)

(∫ t

0

∫
RN

|u|p+1dxds

)4/(p+1)

.

(10.6.22)
By (10.6.20) and (10.6.22), we obtain from (10.6.19) that

L′(t) ≥ (1− σ)H−σ(t)H ′(t)− εδH ′(t) + εδH ′(0) + ε

∫
RN

u0u1dx

+ ε

∫ t

0

∫
RN

u2
tdxds − λε

∫ t

0

∫
RN

u2dxds− ε

∫ t

0

∫
RN

|∇u|2dxds

+ aε

∫ t

0

∫
RN

|u|p+1dxds− ε

4δ3
C(R+ T )μ2T (p−3)/(p+1)

×
(∫ t

0

∫
RN

|u|p+1dxds

)4/(p+1)

. (10.6.23)

Selecting δ = MH−σ(t), the inequality (10.6.23) becomes

L′(t) ≥
(
(1− σ)− εM

)
H−σ(t)H ′(t) + εMH−σ(t)H ′(0) + ε

∫
RN

u0u1dx

+ ε

∫ t

0

∫
RN

u2
tdxds− λε

∫ t

0

∫
RN

u2dxds− ε

∫ t

0

∫
RN

|∇u|2dxds

+ aε

∫ t

0

∫
RN

|u|p+1dxds− ε

4M3
C(R + T )μ2T (p−3)/(p+1)H3σ(t)

×
(∫ t

0

∫
RN

|u|p+1dxds

)4/(p+1)

. (10.6.24)
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Now we estimate the last term on the right-hand side of (10.6.24), from the defi-
nition of H(t) it follows that

H3σ(t) ≤ 23σ−1

[(
a

p+ 1

)3σ(∫ t

0

∫
RN

|u|p+1dxds

)3σ

+ (dT + l)3σ
(∫

RN

u2
0dx

)3σ
]
.

Therefore,

H3σ(t)

(∫ t

0

∫
RN

|u|p+1dxds

)4/(p+1)

≤ 23σ−1 (a/(p+ 1))
3σ

(∫ t

0

∫
RN

|u|p+1dxds

)3σ+(4/(p+1))

+ 23σ−1(dT + l)3σ
(∫

RN

u2
0dx

)3σ (∫ t

0

∫
RN

|u|p+1dxds

)4/(p+1)

.

As σ = (p− 3)/[6(p+1)] and p > 3, we have 3σ+4/(p+1) ≤ 1. In this case,
we have

H3σ(t)

(∫ t

0

∫
RN

|u|p+1dxds

)4/(p+1)

≤ 23σ−1

[
(a/(p+ 1))3σ + (dT + l)3σ

(∫
RN

u2
0dx

)3σ
](

1 +

∫ t

0

∫
RN

|u|p+1dxds

)
.

Inserting this estimate in (10.6.24) and choosing ε ≤ (1− σ)/M , we may obtain

L′(t) ≥ ε

∫
RN

u0u1dx+ ε

∫ t

0

∫
RN

u2
tdxds− λε

∫ t

0

∫
RN

u2dxds

− ε

∫ t

0

∫
RN

|∇u|2dsdx+ aε

∫ t

0

∫
RN

|u|p+1dxds

− ε

M
B(T )

∫ t

0

∫
RN

|u|p+1dxds− ε

M
B(T ),

where
B(T ) = 23(σ−1)C(R + T )μ2T (p−3)/(p+1)

×
[(

a/(p+ 1)
)3σ

+ (dT + l)3σ
( ∫

RN

u2
0dx

)3σ
]
.

For a positive constant K to be determined later on, we may also write

L′(t) ≥ KH(t)− aK

p+ 1

∫ t

0

∫
RN

|u|p+1dxds + λ
K

2

∫ t

0

∫
RN

u2dxds

+
K

2

∫ t

0

∫
RN

u2
tdxds+

K

2

∫ t

0

∫
RN

|∇u|2dxds−K(dT + l)

∫
RN

u2
0dx
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+ ε

∫
RN

u0u1dx− ε

M
B(T ) + ε

∫ t

0

∫
RN

u2
tdxds− λε

∫ t

0

∫
RN

u2dxds

− ε

∫ t

0

∫
RN

|∇u|2dxds+ aε

∫ t

0

∫
RN

|u|p+1dxds

− ε

M
B(T )

∫ t

0

∫
RN

|u|p+1dxds.

That is,

L′(t) ≥ KH(t) +

[
ε

(
a− B(T )

M

)
− aK

p+ 1

] ∫ t

0

∫
RN

|u|p+1dxds

+ λ

(
K

2
− ε

)∫ t

0

∫
RN

u2dxds+

(
K

2
− ε

)∫ t

0

∫
RN

|∇u|2dxds

+

(
K

2
+ ε

)∫ t

0

∫
RN

u2
tdxds + ε

∫
RN

u0u1dx−K(dT + l)

×
∫
RN

u2
0dx− ε

M
B(T ).

Putting K = 2ε, we conclude that

L′(t) ≥ 2εH(t) + ε

[
a
p− 1

p+ 1
− B(T )

M

] ∫ t

0

∫
RN

|u|p+1dxds

+ 2ε

∫ t

0

∫
RN

u2
tdxds+ ε

[∫
RN

u0u1dx − 2(dT + l)

∫
RN

u2
0dx− B(T )

M

]
.

Choose u0 and u1 such that∫
RN

u0u1dx− 2(dT + l)

∫
RN

u2
0dx > 0, (10.6.25)

indeed, since the set of initial data satisfying (10.6.6) and (10.6.25) is not empty,
we can pick M so large that∫

Rn

u0u1dx− 2(dT + l)

∫
Rn

u2
0dx ≥ B(T )

M
> 0.

The constant M must also be sufficiently large so that ap−1
p+1 > B(T )

M . Once this is
satisfied, we can select b such that

a
p− 1

p+ 1
− B(T )

M
≥ b > 0.

It follows that

L′(t) ≥ 2εH(t) + εb

∫ t

0

∫
RN

|u|p+1dxds+ 2ε

∫ t

0

∫
RN

u2
tdxds. (10.6.26)
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Next, it is clear that

L1/(1−σ)(t) ≤ 21/(1−σ)

{
H(t) + ε1/(1−σ)

(∫ t

0

∫
RN

utudxds

)1/(1−σ)
}
. (10.6.27)

By the Cauchy–Schwarz inequality and Hölder’s inequality, we obtain∫ t

0

∫
RN

utudxds

≤
∫ t

0

(∫
RN

u2dx

)1/2 (∫
RN

u2
tdx

)1/2

ds

≤ C(R + T )μ3

∫ t

0

(∫
RN

up+1dx

)1/(p+1) (∫
RN

u2
tdx

)1/2

ds

≤ C(R + T )μ3

{∫ t

0

(∫
RN

up+1dx

)2/(p+1)

ds

}1/2 {∫ t

0

∫
RN

u2
tdxds

}1/2

,

where μ3 = (N/2)
(
p− 1/p+ 1

)
> 0.

Therefore,(∫ t

0

∫
RN

utudxds

)1/(1−σ)

(10.6.28)

≤ C(R+ T )μ4Tα

{∫ t

0

∫
RN

up+1dxds)

}1/(p+1)(1−σ) {∫ t

0

∫
RN

u2
tdxds)

}1/2(1−σ)

≤ C(R+ T )μ4Tα

{∫ t

0

∫
RN

u2
tdxds+

(∫ t

0

∫
RN

up+1dxds

)2/(p+1)(1−2σ)
}
,

where

μ4 =
μ3

1− σ
=

N

2(1− σ)

(
p− 1

p+ 1

)
=

N(p− 1)

p+ 3
, α =

p− 1

p+ 3
.

We have used Young’s inequality with 2(1− σ) and 2(1− σ/(1 − 2σ)) in the last
inequality.

Finally, it is easy to see, from (10.6.26) and (10.6.28), that we can find a
sufficiently large constant C̃ > 0 such that

L1/(1−σ)(t) ≤ C̃L′(t).

Thus, integrating over (0, t), we conclude

Lσ/(1−σ)(t) ≥ 1

L(0)−σ/(1−σ) − σt

C̃(1−σ)
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which implies that L(t) blows up at a finite time

T ∗ ≤ (1− σ)C̃L(0)−σ/(1−σ)

σ
.

As L(0) = H1−σ(0) =
(
l
∫
RN u2

0dx
)1−σ

, choosing l such that

l ≥
(
(1− σ)C̃

σT

)(∫
RN

u2
0dx

)−1

,

we conclude that T ∗ ≤ T . �

10.7 Blow-up of solutions to the quasilinear
hyperbolic-elliptic inequalities

In this section, we shall apply Theorem 2.4.26 to prove the non-existence of global
non-negative solutions to the quasilinear hyperbolic-elliptic inequalities. These re-
sults are chosen from Alaa and Guedda [16].

We shall introduce some blow-up results, due to Alaa and Guedda [16], on
the non-existence of global non-negative solutions to the following

utt − aΔu + ϕ

(∫
Ω

|∇u|2dx
)
Δu+ δut ≥ f(x, t), on Ω× (0, T ) (10.7.1)

⎧⎪⎨⎪⎩u = 0, in ∂Ω× (0, T ) (10.7.2)

where Ω is a regular open subset of RN , N ≥ 1, a > 0 and f ∈ L∞(0,+∞;L2(Ω)).
The function ϕ : R+ → R+ is locally Lipschitz satisfying

ϕ(s) ≥ bsγ (10.7.3)

where b > 0 and γ > 0.

Let Φ1 be a positive eigenfunction of

−ΔΦ1 = λ1Φ1, Φ1

∣∣∣
∂Ω

= 0,

where λ1 is the first eigenvalue. We assume that

‖Φ1‖L2(Ω) = 1. (10.7.4)

Theorem 10.7.1 ([16]). Let δ ∈ R and γ > 0. Assume for all t ≥ 0,∫
Ω

f(x, t)Φ1(x)dx ≥ 0. (10.7.5)

Then there exists no global solution to problem (10.7.1)–(10.7.2) such that∫
Ω

u(x, 0)Φ1(x)dx > λ
−1/2
1

(a
b

)1/2γ

,

∫
Ω

ut(x, 0)Φ1(x)dx ≥ 0.
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Proof. Let u be a global solution. Multiplying equation (10.7.1) by Φ1, we can get

ω′′ + δω′ ≥ λ1ϕ

(∫
Ω

|∇u|2dx
)
ω − aλ1ω, (10.7.6)

where

ω(t) =

∫
Ω

u(x, t)Φ1(x)dx and ω′ :=
dω

dt
.

As ω(0) > 0, we obtain that ω(t) > 0 on (0, t0) for t0 > 0 small. On the other
hand, we have

ϕ

(∫
Ω

|∇u|2dx
)

≥ b

(∫
Ω

|∇u|2dx
)γ

,

whence

ϕ

(∫
Ω

|∇u|2dx
)

≥ bλγ
1

(∫
Ω

|u|2dx
)γ

.

Next, using Hölder’s inequality and (10.7.4), we deduce that

ω2(t) ≤
∫
Ω

|u|2dx, whence ϕ

(∫
Ω

|∇u|2dx
)

≥ bλγ
1ω

2γ

which, substituted into (10.7.6), yields

ω′′ + δω′ ≥ bλγ+1
1 ω2γ+1 − aλ1ω, (10.7.7)

on [0, t0).

Finally, since γ > 0, ω′(0) ≥ 0 and ω(0) is larger than
(
a/(bλγ

1 )
)1/2γ

, we
deduce from Theorem 2.4.26 that ω is not global. This is a contradiction. This
hence completes the proof. �

The following result is an immediate consequence of Corollary 2.4.4.

Corollary 10.7.1 ([16]). Let γ > 0 and δ ≥ 0. Let u be a solution to problem
(10.7.1)–(10.7.2). Assume that

B2 + aλ1A
2 − λγ

1

γ + 1
bA2(γ+1) ≤ γ

γ + 1

(
aγ+1

b

)1/γ

, (10.7.8)

where ⎧⎪⎪⎨⎪⎪⎩
A =

∫
Ω

u(x, 0)Φ1(x)dx > λ
−1/2
1

(a
b

)1/2γ

,

B =

∫
Ω

ut(x, 0)Φ1(x)dx < 0.

(10.7.9)

Then the function

ω(t) =

∫
Ω

u(x, t)Φ1(x)dx

is not global.



Chapter 11

Blow-up of Solutions to
Abstract Equations and
Thermoelastic Equations

In this chapter, we shall study the blow-up of solutions to abstract equations
and thermoelastic equations. This chapter consists of six sections. In Section 11.1,
we shall employ Theorem 2.4.19 to prove the blow-up results of solutions to a
class of abstract initial and initial boundary value problems. In Section 11.2, we
shall employ Theorem 2.4.20 to study the blow-up of solutions to a class abstract
nonlinear equations. In Section 11.3, we shall employ Theorem 2.4.19 to prove
some abstract blow-up results. In Section 11.4, we shall employ Theorems 2.4.1 and
2.4.3 to study the blow-up results for two classes of evolutionary partial differential
equations. In Section 11.5, we shall use Theorems 2.4.19–2.4.20 to study the blow-
up phenomena of solutions to mixed problems. In Section 11.6, we shall employ
Theorem 2.4.19 to establish the blow-up results for a nonlinear one-dimensional
thermoelastic system with a non-autonomous forcing term and a thermal memory
when the heat flux obeys both Fourier’s law and Gurtin and Pipkin’s law which
extended those in [336]. Inequalities used in this chapter are very crucial in deriving
the blow-up of solutions to some abstract equations and thermoelastic equations.

11.1 Blow-up of solutions to abstract

nonlinear equations

In this section, we shall employ Theorem 2.4.19 to prove the blow-up results of
solutions to a wide class of abstract initial and initial boundary value problems.
These results are picked from Levine [505].

We shall consider the following initial and initial boundary value problems

P
d2u

dt2
= −A(t)u+ F(u), t ∈ [0, T ), u(0) = u0, ut(0) = v0, (11.1.1)

Y. Qin, Analytic Inequalities and Their Applications in PDEs, Operator  
Theory: Advances and Applications 241, DOI 10.1007/978-3-319-00831-8_11 

429© Springer International Publishing Switzerland 2017



430 Chapter 11. Blow-up of Solutions

where u is a Hilbert space-valued function of t, A(t) is a symmetric linear operator
defined and non-negative for each t ≥ 0, P is strictly positive symmetric operator
and F is a given nonlinearity.

Let u be a twice strongly continuously differentiable function satisfying
(11.1.1) on [0, T ). Suppose F has a symmetric Fréchet derivative Fx so that the
scalar-valued function

G(x) ≡
∫ 1

0

(F(ρx), x)dρ (11.1.2)

is an appropriate corresponding “potential” for F . Assume further that there is a
constant α > 0 such that

(x,F(x)) ≥ 2(2α+ 1)G(x) (11.1.3)

for all x in the appropriate domain. Then, if

G(u0) >
1

2

[
(u0, A(0)u0) + (v0, Pv0)

]
≡ E(0), (11.1.4)

then the interval of existence of u is bounded and, for some T < +∞,

lim
t→T−

(u(t), Pu(t)) = +∞ (11.1.5)

which implies that if the initial potential energy of the nonlinearity is larger than
the total initial energy of the linear problem, then (11.1.1) does not admit global
solutions.

Let H be a real Hilbert space, and let D ⊆ H be a dense linear subspace.
Let (·, ·) denote the scalar product on H and let ‖ · ‖ denote the corresponding
norm.

We assume that for each t ≥ 0:

(A1) A(t) : D → H is a symmetric linear operator;

(A2) (x,A(t)x) ≥ 0 if x ∈ D. (Thus A(t) has a self-adjoint extension, but we do
not use this fact).

(A3) If v : [0,+∞) → H is strongly continuously differentiable and if, for all t ≥
0, v(t) and dv(t)/dt ∈ D, then (v(t), A(t)v(t)) is continuously differentiable
and, for all t ≥ 0,

QA(v, v)(t) ≡ (d/dt)(v(t), A(t)v(t)) − 2(dv(t)/dt, A(t)v(t)) ≤ 0.

We assume further that

(P1) P is a symmetric linear operator, P : DP → H and that D ⊆ DP ⊆ H.

(P2) (x, Px) > 0 for all x ∈ DP , x 	= 0.

Moreover, assume that D is a Hilbert space under a scalar product (·, ·)D.
Assume that the injection from D into H is continuous as a mapping of Hilbert
spaces, that is, there is a constant c > 0 such that ‖x‖ ≤ c‖x‖D for all x ∈ D.
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Then we assume that

(F1) F : D → H is continuously differential as a function from D equipped
with ‖ ·‖D into H , that the Fréchet derivative Fx is a symmetric, bounded
linear operator on H and that x → Fx is a strongly continuous map from
D into L(H), the collection of bounded linear operators from H into itself.

(F2) Let G(x) ≡ ∫ 1

0 (F(ρx), x)dρ denote the potential associated with F , that
is, G : D → R is the unique up to a constant scalar-valued function whose
Fréchet derivative G(x) is defined by

Gxy = (F(x), y)

for all x, y ∈ D. Assume that for some constant α > 0 and for all x ∈ D,

(x,F(x)) ≥ 2(2α+ 1)G(x). (11.1.6)

The verification of the action of Gx can be carried out directly from the
definition.

Note that the following is a useful formula in the sequel, which is valid for
v : [0, T ) → D with a strongly continuous derivative vt likewise taking values in D:

G(v(t)) − G(v(0)) =
∫ t

0

(F(v(η)), vη(η))dη (11.1.7)

where the strong continuity of v and vt are taken in the sense of the norm on
D. This follows directly from the chain rule and the action of Gx. The following
formal proof is nevertheless instructive. Suppressing the t argument, we have

d

dt
G(v(t)) =

∫ 1

0

[ρ(Fρvvt, v) + (F(ρv), vt)] dρ

=

∫ 1

0

[
ρ
d

dρ
(F(ρv), vt) + (F(ρv), vt)

]
dρ

=

∫ 1

0

d

dρ
[ρ(F(ρv), vt)] dρ

= (F(v(t)), vt(t)),

where we have used the symmetry of Fx in the second line.

Definition 11.1.1. We say that u : [0, T ) → H is a solution to Putt = −A(t)u+F(u)
if, for each t, u(t) and utt belong to D (ut being the strong derivative of u in the
norm ‖·‖D on D), utt exists and is strongly continuous in the sense of the norm on
H and takes values in DP , and the differential equation is satisfied in the classical
sense.

We have the following result due to Levine [505].
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Theorem 11.1.1 ([505]). Let u : [0, T ) → H be a solution to problem (11.1.1) in the
sense of Definition 11.1.1. Let P,F and A(·) satisfy the above hypotheses. Then
each of the following statements holds:

(i) If

β0 ≡ 2
{
G(u0)− 1

2
[(u0, A(0)u0) + (v0, Pv0)]

}
> 0, (11.1.8)

then the solution can only exist on a bounded interval [0, T ) and

lim
t→T−

(u(t), Pu(t)) = +∞

where

T ≤ Tβ0 ≡ α−1
{
[β0(u0, Pu0) + (u0, Pv0)

2]1/2 + (u0, Pv0)
}−1

(u0, Pu0).

(ii) If ⎧⎨⎩ G(u0) =
1

2
[(u0, A(0)u0) + (v0, Pv0)], (11.1.9)

(v0, Pv0)/(v0, Pu0) = λ > 0, (11.1.10)

then the solution can only exist on a bounded interval [0, T ) and

lim
t→T−

(u(t), Pu(t)) = +∞

where

T ≤ (2aλ)−1.

It clearly follows from Theorem 11.1.1 that if u0 satisfies

G(u0) >
1

2
(u0, A(0)u0), (11.1.11)

then there exist v0’s such that the corresponding solutions blow up in a finite time.

Remark 11.1.1 ([505]). Obviously, the solutions to (11.1.1) are not necessarily
unique. If, however, (x, Px) ≥ λ(x, x) for all x ∈ D and some λ > 0 and if F is such
that the difference w of two solutions satisfies ‖wtt + A(t)w‖ ≤ K(t)(w,Pw)1/2

where K(t) is a locally bounded function on [0, T ) depending upon u and v, then
w(0) = wt(0) = 0 implies w ≡ 0. For details, we refer to [502].

Corollary 11.1.1 ([505]). Let F(sx) = s1+δF(x) for some constant δ > 0 and for
all x ∈ D. Let (x0,F(x0)) > 0 for some point x0 ∈ D. Then there are infinitely
many vectors u0 such that (11.1.11) holds.
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Proof. Choose s so large that

sδG(x0) = sδ
∫ 1

0

(F(ρx0), x0)dρ >
1

2
(x0, A(0)x0)

(s ≥ s0, say ). Then for any u0 = sx0 with s ≥ s0,

G(u0) = sδ+2G(x0) >
1

2
(u0, A(0)u0).

In fact, in most applications δ and α can be chosen as δ = 4α.

Therefore, we are now in a position to prove Theorem11.1.1. �

Proof of Theorem 11.1.1. Let

F (t) = (u(t), Pu(t)) +Q2 + β(t+ τ)2 (11.1.12)

where Q, β and τ are non-negative constants to be determined later on. Then,
using the symmetric of P , we have

F ′(t) = 2(ut, Pu) + 2β(t+ τ),

and

F ′′(t) = 2(ut, Put) + 2(u, Putt) + 2β.

Thus it follows that

F (t)F ′′(t)− (α+ 1)(F ′(t))2

= 4(α+ 1)S2 + 4(α+ 1)Q2[(ut, Put) + β]

+ 2F (t)
{
(u, Putt)− (2α+ 1)[(ut, Put) + β)]

}
,

(11.1.13)

where

S2 =
[
(u, Pu) + β(t+ τ)2

][
(ut, Put) + β

]− [
(u, Pu) + β(t+ τ)2

] ≥ 0.

Define from (11.1.13),

H(t) = (u, Putt)− (2α+ 1)[(ut, Put) + β]

= −(u,Au)− (2α+ 1)[(ut, Put) + β] + (u,F(u)).
(11.1.14)

Thus

H ′(t) = −[QA(u, u) + 2(ut, Au) + 2(2α+ 1)(ut, Putt)] + d(u,F(u))/dt

= −QA(u, u) + 4α(ut, Au) + d(u,F(u))/dt− 2(2α+ 1)/(ut,F(u))

which implies

H ′(t) = − (2α+ 1)QA(u, u) + 2αd(u,Au)/dt

+ d(u,F(u))/dt− 2(2α+ 1)(ut,F(u))
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and using (i), (ii), the positive semi-definiteness of A(t), (11.1.6) and (11.1.7),

H(t) = H(0) + 2α(u,Au)− 2α(u0, A(0)u0)− (2α+ 1)

∫ t

0

QA(u, u)dη

+ (u,F(u))− (u0,F(u0))− 2(2α+ 1)[G(u)− G(u0)]

≥ 2(2α+ 1)
{
G(u0)− 1

2
[(u0, A(0)u0) + (v0, Pv0) + β]

}
. (11.1.15)

Now suppose (11.1.8) holds. Then with Q2 = 0 and β = β0, we find that H(t) ≥ 0
and hence (F−α)′(t) ≤ 0. Also F ′(0) = 2(u0, Pv0) + 2β0τ > 0 if τ is sufficiently
large. Thus, by Theorem 2.4.19, the interval of existence cannot, in this case,
exceed Tβ0 = F (0)/αF ′(0) in length, i.e.,

T ≤ (u0, Pu0) + β0τ
2

2α((u0, Pv0) + β0τ)2
= f(τ).

On the other hand, we know f(τ) has a minimum, which is

(αβ0)
−1

{
−(u0, Pv0) + [(u0, Pv0)

2 + β0(u0, Pu0)
1/2]

}
,

on the interval, (−(u0, Pv0)/β0,+∞) at

τ = β−1
0

{
−(u0, Pu0) + [(u0, Pv0)

2 + β0(u0, Pu0)]
1/2

}
.

Thus

T ≤ Tβ0 = α−1
{
[β0(u0, Pu0) + (u0, Pv0)

2]1/2 + (u0, Pu0)
}−1

(u0, Pu0).

If (11.1.9) and (11.1.10) hold, the proof is easier. Let Q2 = 0 and β = 0 so that
[F−α(t)]′′ ≤ 0 where F (t) = (u(t), Pu(t)) and limt→T−(u(t), Pu(t)) = +∞ where
T ≤ F (0)/αF ′(0) = (u0, Pu0)/2α(u0, Pv0) = 1/2αλ, by Theorem 2.4.19. �

11.2 Blow-up of solutions to a class of abstract

nonlinear equations

In this section, we shall employ Theorems 2.4.19–2.4.20 to study the blow-up of
solutions to a class of abstract nonlinear equations. These results are chosen from
Knops, Levine and Payne [440].

We shall consider the following abstract nonlinear problem⎧⎪⎨⎪⎩
P
d2u

dt2
= −Nu+A∗F(Au(t)), t ∈ [0, T ), (11.2.1)

u(0) = u0,
du

dt
(0) = v0, u0, v0 ∈ D (11.2.2)
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where H is a real Hilbert space with scalar product (·, ·) and norm || · ||, and D1, D
are dense linear subspaces with D1 ⊆ D, by L(H) we denote the bounded linear
operators from H into H , A : D → L(H) is a given linear, one-to-one, but not
necessarily bounded, transformation, L1

A denotes the image of A restricted to D1,
A∗ is the adjoint operator of A, that is, A∗ : L1

A → H , such that for all x, y ∈ D1,

B(Ax,Ay) = −(A∗Ax, y). (11.2.3)

Let LA denote the image of A, i.e., LA = {X ∈ L(H)|X = Ax for some x ∈
D}. Assume that there is a given positively definite form B : LA × LA → R. We
use this form to make LA into a Hilbert space in the usual manner.

Let W : LA → R be a nonlinear functional which possesses at each point
X ∈ LA a Fréchet derivative WX , which is continuous in the topology of FA

induced by B. By the Riesz representation theorem, the action of WX can be
written as for all Y ∈ LA,

WX · Y = B(Y, Z), (11.2.4)

for some Z ∈ LA which is uniquely determined by X . We shall denote the func-
tional by Z = F(X), so that (11.2.4) reduces to

WX · Y = B(Y,F(X)). (11.2.5)

Here F is a mapping from LA into LA. For technical reasons, we shall assume that

X ∈ L1
A ⇒ F(X) ∈ L1

A. (11.2.6)

Let P and N be symmetric linear operators from D1 into H , that is, for all
x, y ∈ D1,

(x, Py) = (Px, y), (11.2.7)
{
(x,Ny) = (Nx, y). (11.2.8)

We shall assume that there is a constant λ > 0 such that

(x,Nx) ≥ λ(x, Px), for all x ∈ D1 (11.2.9)

and

(x, Px) > 0, for all x ∈ D1, x 	= 0. (11.2.10)

We shall further assume that the bilinear forms (x, Py) and (x,Ny) can be
extended to all of D in such a way that (11.2.9) and (11.2.10) hold on D. Let
u : [0, T ) → D be a Hilbert space-valued function belonging to C1([0, T ), D), the
space of once strongly continuously differentiable functions whose strong deriva-
tives likewise take values in D.

We need the following definitions which were introduced in [440].
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Definition 11.2.1 (Weak Solutions). We say that u ∈ C1([0, T ), D) is a weak
solution of the Cauchy problem (11.2.1)–(11.2.2) provided that for every ϕ ∈
C∞([0, T ), D), u satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(ϕ(t), P
du(t)

dt
)− (ϕ(0), Pv0) =

∫ t

0

[(
dϕ(η)

dη
, P

du(η)

dη

)
− (Nϕ(η), u(η)),

−B(Aϕ(η), AF(u(η)))

]
dη, (11.2.11)

E(t) ≡ 1

2

[(
du

dt
, P

du

dt

)
+ (u(t), Nu(t))

]
+W (Au(t)) ≤ E(0). (11.2.12)

We assume, moreover, that the scalar-valued functions, (u(t), Pu(t)) and

1

2

[(
du

dt
, P

du

dt

)
− (u,Nu)− 2B(Au,F(Au))

]
are continuous functions of t ∈ [0, T ).

Definition 11.2.2 (Strong Solutions). We say that u : [0, T ) → D is a strong solu-

tion of problem (11.2.1)–(11.2.2) if u, dudt and d2u
dt2 all exist and are continuous in the

strong sense, take values in D1, and problem (11.2.1)–(11.2.2) hold in the classical
sense. Moreover, we assume that Pu, P du

dt and Nu are strongly continuous.

We assume in all cases that

d

dt
(u(t), Pu(t)) = 2

(
u(t), P

du(t)

dt

)
(11.2.13)

and in the case of strong solutions it holds that⎧⎪⎪⎨⎪⎪⎩
d

dt

(
du(t)

dt
, P

du(t)

dt

)
= 2

(
d2u(t)

dt2
, P

du(t)

dt

)
, (11.2.14)

d

dt
(u(t), Nu(t)) = 2

(
du(t)

dt
,Nu(t)

)
. (11.2.15)

In the latter case, using (11.2.3), (11.2.6), and (11.2.1)–(11.2.2) together with
(11.2.13)–(11.2.15), we may deduce (11.2.12) with equality.

We also assume thatW is almost homogeneous from above of degree 2(1+2α)
for some constant α > 0, i.e., for all x ∈ D,

2(1 + 2α)W (Ax) ≥ B(Ax,F(Ax)). (11.2.16)

Equation (11.2.16) may be regarded as a statement about the constitutive
assumptions in applications to elasticity. Alternatively, we may simply assume that
a particular weak solution to problem (11.2.1)–(11.2.2) satisfies, for all t ∈ [0, T ),

2(1 + 2α)W (Au(t)) ≥ B(Au(t),F(Au(t))), (11.2.17)

for some constant α > 0.
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We may find an example in [440] which satisfies all above assumptions of
problem (11.2.1)–(11.2.2).

Theorem 11.2.1 ([440]). If E(0) < 0, then, a weak solution u(t) to problem
(11.2.1)–(11.2.2), cannot exist on [0,+∞), and, in fact, for some time t1 > 0,

(u(t), Pu(t)) ≥ [t1/(t1 − t)]1/αF (0)− β(t+ t0)
2 (11.2.18)

where t1 < t0/α and t0 is given by (11.2.36) below.

Proof. Let β and t0 be positive constants to be determined later, and let F (t) be
the function defined by

F (t) = (u, Pu) + β(t+ t0)
2, t ∈ [0, T ] (11.2.19)

where u is the weak solution to problem (11.2.1)–(11.2.2) in Definition 11.2.1. We
know that F (t) is a real-valued continuous function of t which is also positively
definite in the sense that

i) F (t) ≥ 0, for all t, t0 and β ≥ 0; (11.2.20)
{
ii) F (t) = 0 ⇔ u = 0, β = 0, for t0 > 0, t ∈ [0, T ). (11.2.21)

We shall show that F (t) satisfies a second-order differential inequality on
a class of weak solutions of problem (11.2.1)–(11.2.2) satisfying the inequality
(11.2.16).
Now from (11.2.19), it readily follows

F ′(t) = 2

(
u, P

du

dt

)
+ 2β(t+ t0). (11.2.22)

Since (11.2.11) holds for the limit of smooth functions ϕ, (11.2.22) may be rewrit-
ten as

F ′(t) = 2(u0, Pv0)−2

∫ t

0

[
(u,Nu) + B(Au,F(Au))−

(
du

dη
, P

du

dη

)]
dη+2β(t+t0),

(11.2.23)
which, differentiated in t, leads to

F ′′(t) = 2

(
du

dt
, P

du

dt

)
− 2(u,Nu)− 2B(Au,F(Au)) + 2β. (11.2.24)

On the other hand, in view of (11.2.11) and (11.2.12), we may rearrange
(11.2.24) to arrive at

F ′′(t) = 4(1 + α)

(
du

dt
, P

du

dt

)
+ 4α(u,Nu) (11.2.25)

+ 2 [2(1 + 2α)W (Au)− B(Au,F(Au))]− 4(1 + 2α)E(0) + 2β.
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Hence from (11.2.22) and (11.2.25), it follows readily

F (t)F ′′(t)− (1 + α)(F ′(t))2

= S2(t) + 4α(u,Nu)F (t)− 2(1 + 2α)(β + 2E(0))F (t)

+ 2
[
2(1 + 2α)W (Au)− B(Au,F(Au))

]
F (t),

(11.2.26)

where α > 0 is the constant defined in (11.2.16) and

S2(t) = 4(1 + α)

{ [
(u, Pu) + β(t+ t0)

2
] [(du

dt
, P

du

dt

)
+ β

]
−

[(
u, P

du

dt

)
+ β(t+ t0)

]2 }
.

(11.2.27)

Since 1 + α ≥ 0, it follows from Schwarz’ inequality that

S2(t) ≥ 0. (11.2.28)

Thus, using of the assumption that the class of weak solutions is restricted by
inequality (11.2.16), we derive from (11.2.26),

F (t)F ′′(t)−(1+α)(F ′(t))2 ≥ 4α(u,Nu)F (t)−2(1+2α)(β+2E(0))F (t), (11.2.29)

which is our fundamental second-order differential inequality.

We now prove the Hölder continuity of solutions (within a certain class) upon
the initial data.

To this end, we can define the class M of solutions considered here by

M = {u : G(T ) ≤ M2}, (11.2.30)

where M is a constant and take G(t) = (u, Pu). The initial data (u0, v0) is also
required to satisfy

E(0) ≤ 0, (11.2.31)

which implies W (Au0) ≤ 0. Thus it follows immediately from (11.2.29), with
β = 0, that inequality

d2

dt2
(
G−α(t)

) ≤ 0 (11.2.32)

holds on the interval [0, T ), hence applying Jensen’s inequality, we have

Gα(t) ≤ [G(0)G(T )]α/[(1− t/T )Gα(T ) + (t/T )Gα(0)]. (11.2.33)

Obviously, this last expression indicates that the null solution is stable on
compact subsets of [0, T ) in the class M under small perturbations of the initial
data (u0, v0). Using logarithmic convexity, we can also observe that the restriction
E(0) ≤ 0 can easily be relaxed (see, e.g., [503]).
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On the other hand, uniqueness of the null solution in the case when W (0) < 0
follows immediately from (11.2.33) since under homogeneous initial data E(0) =
W (0) < 0 and the assertion of this theorem are applicable. Indeed, condition
E(0) < 0 implies W (Au0) < 0 and

B(Au0,F(Au0)) < 0.

Setting β + 2E(0) = 0 in (11.2.28), then we have for all F (t) > 0, t ∈ [0, T ) and

d2(F−α(t))

dt2
≤ 0. (11.2.34)

Using Theorem 2.4.19, in this case, T cannot be infinite, i.e., no weak solution can
exist for all time. In fact, it follows from (11.2.34) by integration that

Fα(t) ≥ Fα(0)

[
1− αt (F (0))

−1 dF (0)

dt

]−1

. (11.2.35)

We readily claim that no matter what the values of u0 and v0 are, we may
always choose t0 so large that dF (0)/dt > 0, and, therefore, we conclude from
(11.2.35) that there is a time t1 such that F (t) → +∞ as t → t−1 . Hence, for the
data E(0) < 0, any solution possesses finite blow-up time. The value of t1 can

be estimated by selecting the value t0 which minimizes F (0)/ dF (0)
dt . Thus we may

take

t0 =
1

2E(0)

[
(u0, Pv0)− {(u0, Pv0)

2 − 2E(0)(u0, Pu0)}1/2
]

(11.2.36)

and then αt1 ≤ t0. Using (11.2.36), we obtain from (11.2.35)

Fα(t) ≥ t1
t1 − t

Fα(0), t < t1 (11.2.37)

which completes the proof. �
Theorem 11.2.2 ([440]).

(i) If E(0) = 0 and (u0, Pv0) > 0, then limt→T−(u(t), Pu(t)) = +∞ for some
time T , 0 < T < +∞.

(ii) If E(0) = 0 and (u0, Pv0) = 0, then u(t) ≡ 0 if and only if W (0) = 0
and u0 = v0 = 0. Otherwise, limt→T−(u(t), Pu(t)) = +∞ for some time T ,
0 < T < +∞.

(iii) If E(0) = 0 and (u0, Pv0) < 0, then either the solution blows up in a finite
time in the sense of the preceding statements or else

(u0, Pu0) > (u(t), Pu(t)) > [1− α(u0, Pv0)/(u0, Pu0)]
−1/α(u0, Pu0).

(11.2.38)
Moreover, both cases can occur.
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Proof. We refer to [440] for details. �

In the following result, we shall assume

E(0) > 0, (11.2.39)

and define
k1 ≡ αλ/(2α+ 1)E(0) (11.2.40)

and

J1(0) = (u0, Pu0)
2
{
E(0)/(u0, Pu0)+λ(2α+1)−1[k1(u0, Pu0)]

2α− 1
}
. (11.2.41)

Theorem 11.2.3 ([440]).

(i) If E(0) > 0, k1(u0, Pu0) > 1 and (u0, Pv0) > 0, then (u, Pu) becomes un-
bounded like (t1 − t)−k for some positive constants k and t1.

(ii) The above statement (i) holds if (u0, Pv0) = 0, the other conditions on the
data being unchanged.

(iii) If E(0) > 0, k1(u0, Pu0) > 1 and (u0, Pv0) < 0, but

(u0, Pv0)
2 ≤ J1(0),

then the assertions of the above two statements (i)–(ii) still hold.

Proof. For the proofs of (i) and (iii), we refer to [440] for details. Here we only
give the proof of (ii) as application of Theorem 2.4.20.

To this end, we now take β = 0 and employ the function G(t) = (u, Pu). If
we also use the positive-definiteness conditions (11.2.9)–(11.2.10), the fundamental
inequality (11.2.29) may be rewritten as

G(t)G′′(t)− (1 + α)(G′(t))2 ≥ 4αλG2(t)− 4(1 + 2α)E(0)G(t). (11.2.42)

(ii) When (u0, Pv0) = 0, E(0) > 0, k1(u0, Pu0) > 1, i.e.,

αλG(0)

(1 + 2α)E(0)
> 1, G′(0) = 0, (11.2.43)

then there exists a constant δ > 0 such that

k1G(0) ≥ 1 + 2δ, k1 = αλ/[(1 + 2α)E(0)], (11.2.44)

while by continuity there exists an interval [0, t2] such that for all t ∈ [0, t2],

k1G(t) ≥ 1 + δ, (11.2.45)

which, along with (11.2.45), implies that for all t ∈ [0, t2] (see [440]),

d2(G−α(t))

dt2
≤ −4α2δλG−α(t)

(1 + δ)
. (11.2.46)
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On discarding the right-hand side of (11.2.46) and integrating, we see that
dG(t)/dt ≥ 0, t ∈ [0, t2], and hence G(t) cannot decrease on [0, t2].

Thus we may choose t2 = +∞ and obtain over the interval of existence

d2(G−α(t))

dt2
≤ −8α2δλG−α(t)

(1 + 2δ)
. (11.2.47)

Setting

y(t) =
d(G−α(t))

dt

/
G−α(t) = −α

dG(t)

dt

/
G(t), (11.2.48)

then (11.2.47) reduces to
dy

dt
+ y2 + a2 ≤ 0 (11.2.49)

with

a2 =
8α2δλ

(1 + δ)
. (11.2.50)

Applying Theorem 2.4.20 to (11.2.49), we conclude inequality (11.2.47) can-
not hold for all time, and hence the solution necessarily ceases to exist after a
finite time. In fact, integrating (11.2.49), we have, since y(0) = 0,

G(t) ≥ G(0)/(cos at)α/a
2

, (11.2.51)

which implies G(t) becomes unbounded at some t̂0 where t̂0 ≤ π/2a. �

11.3 Blow-up of solutions to formally

parabolic equations

In this section, we shall employ Theorem 2.4.19 to prove some non-existence “ab-
stract” theorems, which are due to Levine [504].

We shall consider the following abstract problem

P
du

dt
= −Au+ F (u(t)), t ∈ [0, T ), F (0) = 0, u(0) = u0 (11.3.1)

where P and A are “positive” linear operators defined on a dense subdomain D
of a real Hilbert space H , where F satisfies the following assumption:

(F1) F : D → H has a symmetric Fréchet derivative Fx at each x ∈ D, x �→ Fx is
strongly continuous, and the scalar-valued function G : D → R, the potential
associated with F , defined by

G (x) =

∫ 1

0

(F (ρx), x)dρ (11.3.2)
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satisfies that for all x ∈ D and some constant α > 0,

2(α+ 1)G (x) ≤ (x,F (x))

and F (0) = 0 for simplicity, with u0 satisfying

G (u0) >
1

2
(u0, Au0), (11.3.3)

then the existence interval [0, T ) of u is bounded, and the solution becomes ar-

bitrarily large in the sense that both (u, Pu) and
∫ t

0 (u, Pu)dη are unbounded
in [0, T ). In the sequel, we assume that, P and A(t) are symmetric linear

operators defined on a dense domain D ⊆ H , Ȧ(t) =
d

dt
A(t) exists in the

strong sense.

First we observe that for any v : [0, T ) → D which is strongly continuously
differentiable in the D norm, we derive from (11.3.2)

d

dt
G (v(t)) = (F (v(t)), vt(t)) (11.3.4)

where vt ≡ dv/dt. For convenience, we give a simple formal proof of (11.3.4), using
the symmetry of Fx,

d

dt
G (v(t)) =

d

dt

∫ 1

0

(F (ρv), v)dρ

=

∫ 1

0

[ρ(Fρv · v, vt) + (F (ρv), vt)]dρ

=

∫ 1

0

ρ
d

dρ

(
(F (ρv), vt) + (F (ρv), vt)

)
dρ

=

∫ 1

0

d

dρ
[ρ(F (ρv), vt)]dρ = (F (v(t)), vt(t)).

The next result is due to [504].

Theorem 11.3.1 ([504]). Let u : [0, T ) → D be a strongly continuously differentiable
solution in the D norm to the problem (11.3.1) with u0 ∈ D. Assume that, for each
t, A(t) and P are symmetric and

(i) (x, Px) > 0 for all x ∈ D, x 	= 0;

(ii) (x,A(t)x) ≥ 0 for all x ∈ D;

(iii) (x, Ȧ(t)x) ≤ 0 for all x ∈ D;

(iv) Condition (F1) is satisfied.

Finally, let u0 satisfy

G (u0) >
1

2
(u0, A(0)u0). (11.3.5)
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Then the existence interval [0, T ) of u is bounded, and, i.e.,

T ≤ [
(2α+ 1)(u0, Pu0)/α

2(2α+ 2)
] [

G (u0)− 1

2
(u0, A(0)u0)

]−1

, (11.3.6)

and

lim
t→T−

∫ t

0

(u(η), Pu(η))dη = +∞, (11.3.7)

lim
t→T−

sup(u(t), Pu(t)) = +∞. (11.3.8)

Proof. The proof used here is the so-called “concavity” arguments. Assume that
T = +∞, and for any T0 > 0, β > 0 and τ > 0, let, for all t ∈ [0, T0],

F (t) =

∫ t

0

(u, Pu)dη + (T0 − t)(u0, Pu0) + β(t+ τ)2. (11.3.9)

Since
F ′(t) = (u, Pu)− (u0, Pu0) + 2β(t+ τ)

= 2

∫ t

0

(u, Puη)dη + 2β(t+ τ),
(11.3.10)

we can get that F ′(0) = 2βτ > 0 and that F (t) > 0 for all t ∈ [0, T0]. Thus F
−α(t)

is defined for any α > 0. If we can show that (F−α(t))′′ ≤ 0, then, since a concave
function must always lie below any tangent line, we can derive

F−α(t) ≤ F−α(0) + [F−α(0)]′t
or

F (t) ≥ F (1+1/α)(0)
[
F (0)− αtF ′(0)

]−1/α

. (11.3.11)

We shall note that for large enough τ , we may choose T0 such that T0 ≥
F (0)/αF ′(0) ≡ Tβτ . Thus, it follows from (11.3.1) and (11.3.11) that the existence
interval of u must be contained in [0, F (0)/αF ′(0)) and that (11.3.7) and (11.3.8)
hold if we can prove that [F−α(t)]′′ ≤ 0, which is in fact equivalent to the condition
F (t)F ′′(t)− (α + 1)(F ′(t))2 ≥ 0. Indeed, we have,

F ′′(t) = 2

∫ t

0

(uη, Pu),ηdη + 2(ut, Pu)0 + 2β

= 4(α+ 1)

[∫ t

0

(uη, Pη)dη + β

]
+ 2

∫ t

0

[(uη, Pu),η − 2(α+ 1)(uη, Puη)]dη

+ 2[(ut, Pu)0 − (2α+ 1)β]. (11.3.12)
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Therefore, using (11.3.1), we find

F (t)F ′′(t)− (α+ 1)(F ′(t))2

≥ 4(α+ 1)S2 + 2F (t)

{
−

∫ t

0

[(u,Au),η − 2(α+ 1)(uη, Au)]dη

}
+ 2F

∫ t

0

[(u,F (u))),η − 2(α+ 1)(uη,F (u))]dη

+ 4(α+ 1)(T0 − t)(u0, Pu0)

[∫ t

0

(uη, Puη)dη + β

]
+ 2F [(ut, Pu)0 − (2α+ 1)β]

where, by Schwarz’ inequality, we have

S2 =

(∫ t

0

(u, Pu)dη + β(t+ τ)2
)(∫ t

0

(uη, Puη)dη + β

)
−

(∫ t

0

(uη, Pu)dη + β(t+ τ)

)2

≥ 0.

Thus from (11.3.4) and assumption (iii) it follows

F (t)F ′′(t)− (α+ 1)(F ′(t))2

≥ 4αF (t)

∫ t

0

(uη, Au)dη + 2F (t) [(u,F (u))− 2(α+ 1)G (u)]

+ 2F (t) [2(α+ 1)G (u0)− (u0, A(0)u0)− (2α+ 1)β] .

(11.3.13)

Hence, from assumptions (i), (ii), (iii), (iv), (11.3.13) and a further compu-
tation, we derive that for all t ∈ [0, T0)

F (t)F ′′(t)− (α+ 1)(F ′(t))2

≥ 4(α+ 1)F (t)

[
G (u0)− 1

2
(u0, A(0)u0)− (2α+ 1)β/2(α+ 1)

]
.

(11.3.14)

Therefore, for any β > 0 such that

(2α+ 1)β = 2(α+ 1)

[
G (u0)− 1

2
(u0, A(0)u0)

]
,

we have

F (t)F ′′(t)− (α+ 1)(F ′(t))2 ≥ 0, (F−α(t))′′ ≤ 0. (11.3.15)

Thus applying Theorem 2.4.19 (ii) to (11.3.15), we conclude that the exis-
tence interval of u is bounded. Let

β0 = 2(α+ 1)

[
G (u0)− 1

2
(u0, A(0)u0)

]
/(2α+ 1)
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and

Tβτ = F (0)/αF ′(0) = [T0(u0, Pu0) + βτ2]/2αβτ.

Since T0 ≥ Tβτ , we have (F−α(t))′′ ≤ 0 even if we take T0 = Tβτ . This
latter choice implies that Tβτ = βτ2[2αβτ − (u0, Pu0)]

−1; thus we must choose τ
so large that 2αβτ > (u0, Pu0). As a function of τ, Tβτ has a minimum at τ =
τ(β) = (u0, Pu0)/(αβ) and Tβτ(β) = (u0, Pu0)/(α

2β). This latter value attains
its minimum when β = β0 since β is restricted to (0, β0]. Thus, T cannot exceed
(u0, Pu0)α

−2β−1
0 . �

The following corollary, due to [504], states that there may be many initial
vectors u0 such that the corresponding solutions to (11.3.1) have a finite blow-up
time.

Corollary 11.3.1 ([504]). Let F be homogeneous of degree 1 + δ for some δ > 0,
that is, F (sx) = s1+δF (x) for all s > 0 and all x ∈ D. Assume that there exists
an x0 ∈ D such that (x0,F (x0)) > 0. Then there are an infinite number of initial
vectors u0 which satisfy condition (11.3.5) of Theorem 11.3.1.

Proof. Let u0 = sx0 where s is so large that

sδG (x0) = sδ
∫ 1

0

F (ρx0), x0)dρ >
1

2
(x0, A(0)x0).

Then G (u0) >
1
2 (x0, A(0)x0) for all

s >

[
1

2
(1 + δ)(x0, A(0)x0)(x0,F (x0))

−1

]1/δ
. �

Remark 11.3.1 ([504]). In fact, in most applications of Corollary 11.3.1, we may
take δ = 2α.

Remark 11.3.2 ([504]). If F satisfies the hypothesis of Corollary 11.3.1, and all
the other assumptions on F , P and A(·) hold, then the blow-up time T = T (u0) =
T (sx0) → 0 as s → +∞. To see this, we only note that

0 < T (sx0) ≤
[
(2α+ 1)(x0, Px0)/2α

2(α+ 1)
] [

G (x0)s
δ − 1

2
(x0, A(0)x0)

]−1

and that the right-hand side of this inequality approaches zero as s → +∞. Thus,
roughly speaking, the larger the initial value, the smaller the interval of existence.

Remark 11.3.3 ([504]). We note that Theorem 11.3.1 is false if (11.3.5) is not
satisfied. Indeed, if we let f ∈ C2(0, π), f 	= 0, satisfy

f ′′ + f2 = 0, f(0) = f(π) = 0,
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then we obtain that u(x, t) = f(x) solves⎧⎪⎨⎪⎩
∂u
∂t = ∂2u

∂x2 + u2 in (0, π)× [0,+∞),

u(x, 0) = f(x), x ∈ (0, π),

u(0, t) = u(π, t) = 0, t ∈ [0,+∞).

The nonlinearity F (u) = u2 satisfies hypothesis (F1) with α = 1
2 and

G (f) =
1

3

∫ π

0

f3dx.

However,

G (f) =
1

3
(f, f2) =

1

3
(f ′, f ′) <

1

2
(f ′, f ′)

which does not satisfy (11.3.5).

However, a similar result to Theorem 11.3.1 is true for weak solutions pro-
vided that we define a weak solution in an appropriate manner. To do this, let
D∗ ⊇ D denote a dense subdomain of H upon which P ∗ ≡ P 1/2, A∗ ≡ P 1/2 and
F (·) are defined. We assume that A is independent of t here.

Definition 11.3.1. We say that u : [0, T ) → D∗ is a weak solution of problem
(11.3.1) if u, P ∗u,A∗u and F (u) are strongly continuous, if u possesses a weak
derivative (assumed locally integrable on [0, T )) which is D∗, valued, if P ∗u pos-
sesses a weak derivative (P ∗u)t and (P ∗u)t = P ∗ut and if, for every φ : [0, T ) → D∗
with these properties,

(P ∗φ, P ∗u) = (P ∗φ(0), P ∗u(0)) +
∫ t

0

(P ∗φη, P
∗u)dη

+

∫ t

0

[(φ,F (u)) − (A∗φ,A∗u)]dη.
(11.3.16)

The conditions in the definition ensure that
d

dη
(P ∗u, P ∗u) = 2(P ∗uη, P

∗u).

Besides (iv) of Theorem 11.3.1 on F , we further assume that weak solutions
satisfy

2

∫ t

0

‖P ∗uη‖2dη + ‖A∗u(t)‖2 + 2G (u0) ≤ ‖A∗u0‖2 + 2G (u(t)). (11.3.17)

In fact, this can easily be obtained formally by taking scalar products of both sides
of (11.3.1) with u, integrating from 0 to t and using (11.3.4). Equation (11.3.17)
is a kind of “energy” inequality.
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Theorem 11.3.2 ([504]). Let u : [0, T ) → D∗ be a weak solution of problem (11.3.1)
in the sense of Definition 11.3.1 and assume (11.3.17) holds. If

G (u0) >
1

2
‖A∗u0‖2, (11.3.18)

then T < +∞, and

lim
t→T−

∫ t

0

‖P ∗u‖2dη = +∞ (11.3.19)

and consequently
lim

t→T−
sup ‖P ∗u(t)‖ = +∞. (11.3.20)

Proof. For arbitrary T0, β, τ > 0 and t ∈ [0, T0), let

F (t) ≡
∫ t

0

‖P ∗u‖2dη + (T0 − t)‖P ∗u0‖2 + β(t+ τ)2. (11.3.21)

Then from (11.3.16) with u = φ it follows

F ′(t) = ‖P ∗u‖2 − ‖P ∗u0‖2 + 2β(t+ τ)

= 2

∫ t

0

[(u,F (u))− ‖A∗u‖2]dη + 2β(t+ τ),

= 2

∫ t

0

(P ∗u, P ∗uη)dη + 2β(t+ τ),

(11.3.22)

which gives us

F ′′(t) = 4(α+ 1)

[∫ t

0

‖P ∗uη‖2dη + β

]
+ 2

[
(u,F (u))− ‖A∗u‖2 − 2(α+ 1)

∫ t

0

‖P ∗uη‖2dη − (2α+ 1)β

]
.

Hence from (11.3.17) and assumption (iv) it follows

F ′′(t) ≥ 4(α+ 1)

[∫ t

0

‖P ∗uη‖2dη + β

]
(11.3.23)

+ 2
[
2(α+ 1)G (u0)− (α+ 1)‖A∗u0‖2 + α‖A∗u(t)‖2 − (2α+ 1)β

]
.

Thus combining (11.3.21)–(11.3.23) and (11.3.18), we may obtain

F (t)F ′′(t)− (α+ 1)(F ′(t))2 ≥ 0

if 0 < β ≤ 2(α + 1)[G (u0) − 1
2‖A∗u0‖2]/(2α + 1). Since F ′(0) = 2βτ > 0, by

Theorem 2.4.19, the existence interval of u is finite and (11.3.19)–(11.3.20) hold,
as we shall see from (11.3.11). An analysis similar to that used in the proof of
Theorem 11.3.1 shows that

T ≤
[
(2α+ 1)‖P ∗u0‖2/(2α2(α+ 1))

] [
G (u0)− 1

2
‖A∗u0‖2

]−1

. �
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11.4 Blow-up of solutions to evolutionary PDEs

In this section, we shall employ Theorems 2.4.1 and 2.4.3 to investigate the blow-up
results for two classes of evolutionary partial differential equations. These results
are picked from Levine [508].

We shall consider the following two initial boundary value problems⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2 = Lu+ F1(u(x, t)), (x, t) ∈ Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω

ut(x, 0) = v0(x), x ∈ Ω

u(x, t) = 0, (x, t) ∈ Γ1 × (0, T ),∑n
i,j=1aiju,i(x, t)vj(x) + βu(x, t) = 0, (x, t) ∈ Γ2 × (0, T )

(11.4.1)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u
∂t = Lu+ F2(u(x, t)), (x, t) ∈ Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω

u(x, t) = 0, (x, t) ∈ Γ1 × (0, T ),∑n
i,j=1aiju,i(x, t)vj(x) + βu(x, t) = 0, (x, t) ∈ Γ2 × (0, T ),

(11.4.2)

where β is a given constant and F ,F1 are given functions of a real-variable to be
suitably restricted below. The solution u(x, t) is a real-valued function, and all the
other functions will be taken to be real-valued. The number T may be finite or
infinite.

Let Ω ⊆ Rn be a bounded domain with a piecewise smooth boundary ∂Ω.
Let

(Lf)(x) =
n∑

i,j=1

((ai,j(x)f,i(x))) (f,i = ∂f/∂xi)

be a given second-order linear differential operator. Here the coefficients aij are
assumed to be continuously differentiable with aij(x) = aji(x), i, j = 1, 2, . . . , n.
L need not be elliptic.

Let Γ1 ∪ Γ2 = ∂Ω where Γ1 and Γ2 are piecewise smooth disjoint sub-
manifolds of ∂Ω. Let v = (v1, . . . , vn) denote the outer normal to ∂Ω.

We first make the following assumptions on L. The eigenvalue problem⎧⎪⎨⎪⎩
Lψ + λψ = 0, x ∈ Ω,

ψ = 0, x ∈ Γ1,∑n
i,j=1aijψ,ivj + βψ = 0, x ∈ Γ2

(11.4.3)

possesses a positive solution ψ (on Ω) for some real number λ. We shall assume L
is normalized so that ∫

Ω

ψ(x)dx = 1. (11.4.4)
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Now we further give the following assumptions on F1,F2.

1) There are convex functions G1,G2 : R → R such that

Fi(s) ≥ Gi(s); i = 1, 2, s ∈ R.

2) Let H1(s) be any indefinite integral of G1(s), (H′
1 = G1(s)), and there is a

number s1 ∈ R such that

H1(s)− λs2

2

is non-decreasing on (s1,+∞) and, for every ε > 0, there holds that∫ +∞

s0

(
H1(s)− 1

2
λs2 −

[
H1(s1)− 1

2
λs21

]
+ ε

)−1/2

ds < +∞,

that is, [H1(s)− 1
2λs

2]−1/2, is integrable at infinity.

3) There is a number s2 ∈ R such that G2(s)− λs is positive on (s2,+∞), and
for any ε > 0, there holds that∫ +∞

s2+ε

[G2(s)− λs]−1ds < +∞.

We now give a definition of a weak solution to problems (11.4.1) and (11.4.2).

Definition 11.4.1 ([508]). We say u : Ω× [0, T ] → R is a weak solution to problem
(11.4.1) if, for each t ∈ (0, T ),

(i) u(·, t) ∈ L1(Ω),F1(u(·, t)) ∈ L1(Ω),

(ii) ut(·, t) exists and is in L1(Ω),

(iii) u is sufficiently regular to satisfy the initial and boundary conditions
(11.4.1)2–(11.4.1)5, and if for every φ : Ω × [0,+∞) → R, twice continu-
ously differentiable in Ω× (0, T ) and satisfying (11.4.1)4–(11.4.1)5, we have,
for all t ∈ [0, T ),∫

Ω

φ(x, t)ut(x, t)dx =

∫
Ω

φ(x, 0)v0(x)dx

+

∫ t

0

∫
Ω

[
∂φ

∂η
(x, η)

∂u

∂η
(x, η) + (Lφ)(x, η)u(x, η)

]
dxdη

+

∫ t

0

∫
Ω

φ(x, η)F1(u(x, η))dxdη.

(11.4.5)

Definition 11.4.2 ([508]). We say u : Ω× [0, T ] → R is a weak solution to problem
(11.4.2) if

(i) u(·, t) ∈ L1(Ω) for each t ∈ [0, T ),
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(ii) u is sufficiently regular to satisfy (11.4.2)2–(11.4.2)4 and if, for all φ : Ω ×
[0, T ) → R, φ twice continuously differentiable in x and continuously differ-
entiable in t satisfying (11.4.2)3–(11.4.2)4, we have, for all t ∈ [0, T ),∫

Ω

φ(x, t)u(x, t)dx =

∫
Ω

φ(x, 0)u0(x)dx

+

∫ t

0

∫
Ω

[
∂φ

∂η
(x, η)u(x, η) + (Lφ)(x, η)u(x, η)

]
dxdη

+

∫ t

0

∫
Ω

φ(x, η)F2(u(x, η))dxdη.

(11.4.6)

Remark 11.4.1 ([508]). Obviously, (11.4.5)–(11.4.6) can be obtained from (11.4.1)1
and (11.4.2)1 formally by multiplying them by G, integrating the resulting expres-
sion over Ω× [0, t) and performing integrations by parts.

Remark 11.4.2 ([508]). Note that the definitions of weak solutions for problems
(11.4.1) and (11.4.2) do not require u to possess spacial derivatives except near the
set Γ2× [0, T ) and that only one t derivative for problem (11.4.1) or no t derivative
need be required at all for problem (11.4.2). Thus u0(x) may have discontinuities
away from Γ2. This is in contrast to problems treated by the concavity or indirect
lower bound methods where the existence of

E1(t) =
1

2

∫
Ω

(
∂u

∂t

)2

dx+
1

2

n∑
i,j=1

∫
Ω

aij(x)
∂u

∂xi

∂u

∂xj
dx−

∫
Ω

H1(u(x, t))dx

is required for problem (11.4.1) and the existence of

E2(t) =

∫ t

0

∫
Ω

(
∂u

∂η

)2

dxdη +
1

2

n∑
i,j=1

∫
Ω

aij(x)
∂u

∂xi

∂u

∂xj
dx

−
∫
Ω

(∫ u(x,t)

0

G2(σ)dσ

)
dx

is required for problem (11.4.2). Here the nonlinearities F1 and F2 are taken to
be identical with G1 and G2, respectively.

We now establish the following theorems.

Theorem 11.4.1 ([508]). Let u : Ω × [0, T ) → R be a weak solution to problem
(11.4.1) in the sense of Definition 11.4.1 and let L,F1 satisfy the above hypothe-
ses. If

F0 ≡
∫
Ω

ψ(x)u0(x)dx > s1, (11.4.7)

⎧⎪⎪⎨⎪⎪⎩F ′
0 ≡

∫
Ω

ψ(x)v0(x)dx > 0, (11.4.8)
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then the interval [0, T ) is necessarily bounded and⎧⎪⎪⎨⎪⎪⎩
lim

t→T−

( ∫
Ω

| u(x, t) |p dx
)1/p

= +∞, 1 ≤ p < +∞, (11.4.9)

lim
t→T−

sup(max
x∈Ω

| u(x, t) |) = +∞ (11.4.10)

where

T ≤ 1

2

√
2

∫ +∞

F0

(
H1(s)− 1

2
λs2 −

(
H1(s1)− 1

2
λs21

)
+

1

2
(F ′

0)
2

)−1/2

ds.

Proof. Let

F (t) =

∫
Ω

ψ(x)u(x, t)dx.

Then

F ′(t) =
∫
Ω

ψ(x)ut(x, t)dx.

If we now put φ(x, t) = ψ(x) in (11.4.5), we find, using (11.4.3) that

F ′(t) = F ′(0)−λ

∫ t

0

∫
Ω

ψ(x)u(x, η)dxdη+

∫ t

0

∫
Ω

ψ(x)F1(u(x, η))dxdη. (11.4.11)

Thus (11.4.11) implies that F ′′(t) exists and

F ′′(t) = −λF (t) +

∫
Ω

ψ(x)F1(u(x, t))dx

≥ −λF (t) +

∫
Ω

ψ(x)G1(u(x, t))dx.

Finally, by Jensen’s inequality, we conclude

F ′′(t) ≥ −λF (t) + G1(F (t)). (11.4.12)

Therefore, applying Theorem 2.4.1 to (11.4.12), we may complete the proof. �
Theorem 11.4.2 ([508]). Let u : Ω × [0, T ) → R be a weak solution to problem
(11.4.2) in the sense of Definition 11.4.2 and let L,F2 satisfy the above hypothe-
ses. If

F0 ≡
∫
Ω

ψ(x)u0(x)dx > s2, (11.4.13)

then (11.4.9)–(11.4.10) hold for some time T < +∞ where

T ≤
∫ +∞

F0

[G2(s)− λs]−1ds.
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Proof. Defining F (t) as in the previous proof and setting G(x, t) = L(x, t) in
(11.4.6), we find that

F (t) = F (0)− λ

∫ t

0

∫
Ω

ψ(x)u(x, η)dxdη +

∫ t

0

∫
Ω

ψ(x)F2(u(x, η))dxdη

which, indeed, implies that F ′(t) exists. Hence it follows as before that

F ′(t) ≥ −λF (t) + G2(F (t)). (11.4.14)

Hence applying Theorem 2.4.3 again to (11.4.14), we can complete the proof. �

11.5 Blow-up of solutions to initial boundary
value problems

In this section, we shall use Theorems 2.4.19–2.4.20 to study the blow-up phe-
nomena of solutions to mixed problems. We adopt these results from Levine and
Payne [520].

We shall consider the following two initial boundary value problems defined
on the domain D × [0, T ) :⎧⎪⎨⎪⎩

ρ(∂u/∂t) = (−1)mMu, in D × [0, T ),

Qj(u) = (−1)mfj(Nju), j = 0, 1, . . . ,m− 1 on ∂D × [0, T ),

u(x, 0) = u0(x),

(11.5.1)

and⎧⎪⎨⎪⎩
ρ(∂2u/∂t2) = (−1)mMu, in D × [0, T ),

Qj(u) = (−1)mfj(Nju), j = 0, 1, . . . ,m− 1 on ∂D × [0, T ),

u(x, 0) = u0(x), (∂u/∂t)(x, 0) = v0(x).

(11.5.2)

Here ρ, M , Qj and Nj , are assumed to be independent of the parameter t. The
function ρ is assumed to be positive in D, and the fj are given locally functions.

Let M denote a formally self-adjoint differential operator of order 2m defined
on a bounded domain D of Rn. The coefficients of the operator are assumed to
possess derivatives of the order indicated in the formal expression for the operator.

For elements u and v in the domain D(M) of the operator M , we may write
the following expression:∫

D

[vMu− uMv] dx =

m−1∑
j=0

∮
∂D

{Nj(v)Qj(u)−Nj(u)Qj(v)} ds (11.5.3)

where Nj and Qj are linear differential operators on the boundary; in detail, we
assume that Nj is a boundary operator containing derivatives up to order j while
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Qj is of order 2m− 1 − j. The forms of Nj and Qj are not uniquely determined
by (11.5.3). For example, in the theory of elastic plates where M = Δ2 (the
biharmonic operator), the boundary operators may depend on a parameter usually
referred to as a Poisson ratio. The symbol ∂D denotes the boundary of D.

We assume further that the differential operators,M,N, and Q are such that
the quantity A(v, u) defined by

(−1)mA(v, u) = −
∫
D

vMudx+

m−1∑
j=0

∮
∂D

Nj(v)Qj(u)ds (11.5.4)

is a symmetric positive semidefinite bilinear form.

In addition, they satisfy for some positive α, for a constant p to be specified
later, and for all m− 1 times continuously differentiable functions φ the condition

m−1∑
j=0

{
Nj(φ)fj(Nj(φ)) − 2(pα+ 1)

∫ Nj(φ)

0

fj(σ) dσ

}
≥ 0. (11.5.5)

It is easy to check that if for arbitrary Zj , the point functions fj are of the form

fj(Zj) = |Zj |2pα+1bj(Zj), (11.5.6)

where each bj is a non-decreasing function of Zj, then (11.5.5) is satisfied auto-
matically.

By virtue of Theorem 2.4.19, we shall show that no solution with initial data
in a certain class can exist for all time provided that (11.5.5), with p appropriately
chosen, is satisfied. The method used here is a concavity method which has been
extensively employed in the literature (see, e.g., Levine [504], [505], Levine and
Payne [522] and Knops, Levine and Payne [440]).

First, we establish the following theorem for problem (11.5.1).

Theorem 11.5.1 ([520]). Solutions of problem (11.5.1) cannot exist for all time
with initial data satisfying the inequality

m−1∑
j=0

∮
∂D

∫ Nj(u0(s))

0

fj(η)dηds > 1/2A(u0, u0) (11.5.7)

if (11.5.5) is satisfied for p = 1.

Proof. To apply Theorem 2.4.19, we need to find a twice continuously differentiable
non-negative functional F (t) defined on solutions of problem (11.5.1) such that

F (t) = 0, u = 0, (11.5.8)
⎧⎨⎩ d2(F−α(t))

dt2
≤ 0, α > 0. (11.5.9)
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Here α will turn out to be the constant α in (11.5.5). Clearly, in order to establish
(11.5.9), we need only show that F (t)F ′′(t)− (α+ 1)(F ′(t))2 ≥ 0.

To this end, we first assume that u exists on D× [0,+∞) and then show that
this leads to a contradiction. In this case, we may select an F (t) of the following
form for 0 ≤ t ≤ T0 < +∞:

F (t) =

∫ t

0

∫
D

ρu2dxdη + (T0 − t)

∫
D

ρu2
0dx + β(t+ τ)2 (11.5.10)

where positive constants T0, β and τ will be determined later on. Then

F ′(t) =
∫
D

ρu2dx−
∫
D0

ρu2
0dx+ 2β(t+ τ)

= 2

∫ t

0

∫
D

ρu
∂u

∂η
dxdη + 2β(t+ τ)

= 2

∫ t

0

∫
D

(−1)muMudxdη + 2β(t+ τ) (11.5.11)

= 2

m−1∑
j=0

∮
∂D

∫ t

0

Nj(u)fj(Nj(u))dsdη − 2

∫ t

0

A(u, u)dη + 2β(t+ τ)

and

F ′′(t) = 2

m−1∑
j=0

∮
∂D

Nj(u)fj(Nj(u))ds− 2A(u, u) + 2β. (11.5.12)

Thus it follows from (11.5.10)–(11.5.12) that

F (t)F ′′(t)− (α+ 1) (F ′(t))2

≥ F (t)

{
− 2A(u, u) + 2

m−1∑
j=0

∮
∂D

Nj(u)fj(Nj(u))ds+ 2β

− 4(α+ 1)

∫ t

0

∫
D

ρ

(
∂u

∂η

)2

dxdη

}
.

(11.5.13)

Now in (11.5.13), dropping the term

{
4(α+ 1)(T0 − t)

∫
D

ρu2
0 dx

}{∫ t

0

∫
D

ρ

(
∂u

∂η

)2

dxdη + β

}
,

and using the Schwarz inequality in the expression for (dF/dt)2, and inserting the
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following relation into (11.5.13),

2

∫ t

0

∫
D

ρ

(
∂u

∂η

)2

dxdη = 2(−1)m
∫ t

0

∫
D

Mu
∂u

∂η
dxdη

= 2
m−1∑
j=0

∮
∂D

∫ t

0

∂

∂η
(Nj(u))fj(Nj(u))dsdη − 2

∫ t

0

A

(
u,

∂u

∂η

)
dη

= 2

m−1∑
j=0

∮
∂D

{∫ Nj(u)

0

fj(σ) dσ

}
ds−A(u, u) +A(u0, u0)

− 2

m−1∑
j=0

∮
∂D

{∫ Nj(u0)

0

fj(σ) dσ

}
ds,

we conclude from (11.5.13)[
F (t)F ′′(t)− (α+ 1) (F ′(t))2

]
F−1(t) (11.5.14)

≥ 2αA(u, u) + 2

⎧⎨⎩
m−1∑
j=0

∮ [
Nj(u)fj(Nj(u))− 2(α+ 1)

∫ Nj(u)

0

fj(σ)dσ

]
ds

⎫⎬⎭
− 4(α+ 1)

⎡⎣A(u0, u0)

2
−

m−1∑
j=0

∮
∂D

{∫ Nj(u0)

0

fj(σ) dσ

}
ds

⎤⎦− 2(2α+ 1)β.

By hypothesis the first two terms on the right-hand side of (11.5.14) are non-
negative, and since the data term is assumed to satisfy (11.5.7), we may select

β =
2(α+ 1)

2α+ 1

⎧⎨⎩
m−1∑
j=0

∮
∂D

{∫ Nj(u0)

0

fj(σ)dσ

}
ds− A(u0, u0)

2

⎫⎬⎭ > 0. (11.5.15)

Then we readily obtain

F (t)F ′′(t)− (α+ 1)(F ′(t))2 ≥ 0 (11.5.16)

which will lead to the non-existence result by Theorem 2.4.19. Since the conse-
quences of (11.5.16) have been investigated in [440] and [504] (see Section 11.3),
we merely sketch here the arguments. In fact, from the definition (11.5.10), we
derive that F (t) > 0 in [0, T ] so that

d2(F−α(t))

dt2
≤ 0, (11.5.17)

which gives us

F−α(t) ≤ F−α(0)[1− α(F ′(0)/F (0))t], 0 ≤ t ≤ T0, (11.5.18)
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which shows that F−α(t) necessarily decays to zero in a finite time

T ≤ F (0)/(αF ′(0))

if F ′(0) > 0 and T0 ≥ F (0)/(αF ′(0)). But with the choice of F , we have F ′(0) =
2βτ > 0. A simple computation shows that T0 ≥ F (0)/(αF ′(0)) provided that τ
is chosen to satisfy

τ >
1

2
(αβ)−1

∫
D

ρu2
0dx (11.5.19)

and T0 is then taken so large that

T0 ≥ βτ2
[
2αβτ −

∫
D

ρu2
0dx

]−1

. (11.5.20)

The blow-up time T cannot exceed the minimum value of the right-hand side of
(11.5.19), considered as a function of τ . In fact, T ≤ (α2β)−1

∫
D ρu2

0dx. �

Second, we establish the following theorem, due to [520], for problem (11.5.2).

Theorem 11.5.2 ([520]). Solutions of problem (11.5.2) cannot exist for all time,
with initial data satisfying the inequality

E(0) =
1

2

[∫
D

ρv20dx+A(u0, u0)

]
−

m−1∑
j=0

∫
∂D

[∫ Nj(u0)

0

fj(σ)dσ

]
ds < 0,

(11.5.21)
if (11.5.5) is satisfied for p = 2.

Proof. In fact, we may choose

F (t) =

∫
D

ρu2dx+ β(t+ τ)2 (11.5.22)

with β and τ again positive to be determined later. Then we have

F ′(t) = 2

∫
D

ρu
∂u

∂t
dx+ 2β(t+ τ), (11.5.23)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
F ′′(t) = 2

∫
D

ρ

(
∂u

∂t

)2

dx+ 2(−1)m
∫
D

uMudx+ 2β

(11.5.24)

= 2

∫
D

ρ
∂u

∂t
dx+ 2

m−1∑
j=0

∮
∂D

Nj(u)fj(Nj(u))ds− 2A(u, u) + 2β.

Now if we define

E(t) =
1

2

[∫
D

ρ
∂u

∂t
dx+A(u, u)

]
−

m−1∑
j=0

∮
∂D

[∫ Nj(u)

0

fj(σ)dσ

]
ds, (11.5.25)
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then

E′(t) =
∫
D

ρ
∂u

∂t

∂2u

∂t2
dx+A(u,

∂u

∂t
)−

m−1∑
j=0

∮
∂D

Nj

(
∂u

∂t

)
fj(Nj(u))ds

=

∫
D

∂u

∂t

[
ρ
∂2u

∂t2
− (−1)mMu

]
dx = 0. (11.5.26)

Thus
E(t) = E(0), (11.5.27)

and (11.5.24) may be rewritten, using (11.5.5) with p = 2, as

F ′′(t) ≥ 2

∫
D

ρ

(
∂u

∂t

)2

dx+ 4(2α+ 1)
m−1∑
j=0

∮
∂D

{∫ Nj(u)

0

fj(σ)dσ

}
ds

− 2A(u, u) + 2β,

(11.5.28)

which yields, by using (11.5.25) and (11.5.27),

F ′′(t) ≥ 4(α+ 1)

∫
D

ρ

(
∂u

∂t

)2

dx+ 4αA(u, u)− 4(2α+ 1)E(0) + 2β. (11.5.29)

It then follows from (11.5.22), (11.2.23) and (11.5.29) that

F (t)F ′′(t)− (α+ 1) (F ′(t))2

≥ 4(α+ 1)

[{∫
D

ρu2dx + β(t+ τ)2
}{∫

D

ρ

(
∂u

∂t

)2

+ β

}

×
(∫

D

ρu
∂u

∂t
dx+ β(t+ τ)

)2
]

+ 4αFA(u, u)− 2(2α+ 1)
[
2E(0) + β

]
F (t).

(11.5.30)

Note that the first term on the right-hand side of (11.5.30) is non-negative
by Schwarz’ inequality. If we choose

β = −2E(0), (11.5.31)

then we arrive at (F−α(t))
′′ ≤ 0, which leads to the breakdown of solution in a

finite time provided that F ′(0) > 0. But

F (0) = 2

{∫
D

ρu0v0dx− 2E(0)τ

}
, (11.5.32)

and it is clear that because of condition (11.5.21), the constant τ may be chosen
so large that F ′(0) > 0 (provided that

∫
D ρu0v0dx is finite). �
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It is worth pointing out here that similar inequalities hold for appropriately
defined weak solutions of problems (11.5.1) and (11.5.2).

Indeed, if A(u, u) is positive definite and satisfies

A(u, u) ≥ k2
∫
D

ρu2dx, (11.5.33)

then we can obtain somewhat different results for problem (11.5.2).

For instance, assume that in problem (11.5.2), E(0) ≤ 0, β is chosen to be
zero, and (11.5.33) is satisfied. Then (11.5.33) leads to

F (t)F ′′(t)− (α+ 1) (F ′(t))2 ≥ 4k2αF 2(t) (11.5.34)

or (
F−α(t)

)′′ ≤ −4k2αF−α(t). (11.5.35)

We may show that (11.5.35) which yields the solution of problem (11.5.2) blows
up in a finite time.

If the contrary holds and the following substitution is made

y =
d(F−α(t))/dt

F−α(t)
= −α

dF (t)/dt

F (t)
, (11.5.36)

then (11.5.35) reduces to

dy/dt+ y2 + 4k2α ≤ 0, (11.5.37)

which yields

tan−1[y(t)/2k
√
α] ≤ tan−1[y(0)/2k

√
α]− 2k

√
αt. (11.5.38)

Therefore applying Theorem 2.4.20 to (11.5.37), we can conclude that the solution
must blow up in a finite time T satisfying

T ≤ (
2k

√
α
)−1 {π/2 + tan−1[y(0)/2k

√
α]}. (11.5.39)

Finally, as in [440, 504, 505, 522] under various other combinations of initial data
assumptions, we can derive the blow-up of solutions in a finite time. �

11.6 Blow-up of solutions to the Cauchy problem

in nonlinear one-dimensional thermoelasticity

In this section, we employ Theorem 2.4.19 to establish the blow-up results for a
nonlinear one-dimensional thermoelastic system with a non-autonomous forcing
term and a thermal memory when the heat flux obeys both Fourier’s law. These
results are chosen from Qin and Muñoz Rivera [800] (see also Qin [770]).



11.6. Blow-up of solutions to the Cauchy problem 459

We shall consider the following Cauchy problem with a non-autonomous forc-
ing term and a thermal memory

utt = auxx + bθx + dux −mut + f(t, u), (11.6.1)
{
cθt = κθxx + g ∗ θxx + buxt + pux + qθx (11.6.2)

with the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), for all x ∈ R (11.6.3)

where by u = u(x, t) and θ = θ(x, t) we stand for the displacement and the tem-
perature difference respectively, the function g = g(t) is the relaxation kernel, the

sign ∗ is the convolution product, i.e., g ∗ y(·, t) =
∫ t

0 g(t − τ)y(·, τ)dτ , the coef-
ficients a, b, c are positive constants, while d, κ, p, q,m are non-negative constants
and the function f = f(t, u) is a non-autonomous forcing term.

Assume that for any fixed t > 0, f(t, u) is the Fréchet derivative of some
functional F (t, u) such that

d

dt
F (t, u) = Ft(t, u) + f(t, u)ut (11.6.4)

and there exists a constant α > 0 such that

g̃(t) = eαtg(t) (11.6.5)

is a positive definite kernel. Indeed, we find there exists a function g̃(t) to satisfy
(11.6.5). To this end, we need Lemma 7.2.1 in Qin [770].

In fact, if taking g(t) ∈ C1[0,+∞) such that

g′(t) = −γg(t) + c0e
−δt, g(0) > c0γ

−1 (11.6.6)

with δ > 0, γ > 0 and c0 ≥ 0 being constants and defining

G(t) = g(t) +
2c0
δ

e−δt, (11.6.7)

then we get for γ0 = min(γ, δ/2),

G′(t) = −γg(t)− c0e
−βt ≤ −γ0G(t)

which implies
g(t) ≤ G(t) ≤ G(0)e−γ0t ≡: c1e

−γ0t (11.6.8)

with c1 = g(0) + 2c0
δ > 0.

Letting now ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

J1(ω) = 
ˆ̃g(t) =
∫ +∞
0 eαtg(t) cosωtdt,

J2(ω) = �ˆ̃g(t) =
∫ +∞
0

eαtg(t) sinωtdt,

I1(ω) =
∫ +∞
0 e(α−δ)t cosωtdt,

I2(ω) =
∫ +∞
0

e(α−δ)t sinωtdt,
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we can derive that for 0 < α < δ,

I1(ω) =
1

δ − α
− ω2

(δ − α)2
I2(ω), I2(ω) =

ω

δ − α
I1(ω),

i.e.,

I1(ω) =
δ − α

(δ − α)2 + ω2
, I2(ω) =

ω

(δ − α)2 + ω2
. (11.6.9)

Using (11.6.6), (11.6.8) and integrating by parts, we can obtain

ωJ1(ω) = (γ − α)J2(ω)− c0I2(ω), (11.6.10)
{
ωJ2(ω) = g(0)− (γ − α)J1(ω) + c0I1(ω). (11.6.11)

Inserting (11.6.9) into (11.6.10)–(11.6.11) implies that for 0 < α < min(γ0, δ),

J1(ω) =
g(0)(γ − α)

(γ − α)2 + ω2
− c0ω

(γ − α)2 + ω2
I2(ω) +

c0(γ − α)

(γ − α)2 + ω2
I1(ω)

=
[g(0)(γ − α)− c0]ω

2 + g(0)(γ − α)(δ − α)2 + c0(γ − α)(δ − α)

[(γ − α)2 + ω2][(δ − α)2 + ω2]
.

(11.6.12)

Thus choosing α so small that

0 < α ≤ min
{
δ, γ0, [g(0)γ − c0]/g(0)

}
,

then we conclude from (11.6.12)

J1(ω) ≥ c

1 + ω2
> 0, ∀ω ∈ (−∞,+∞)

which, together with Lemma 7.2.1 of [770], yields that g̃(t) is a strongly positive
definite kernel satisfying (11.6.5).

Next, in order to prove our desired results, we need to use Theorem 2.4.19
(see, e.g., Theorem 1.3.1 in [770] due to Kalantarov and Ladyzhenskaya [409])
which was also proved in [438, 440, 504].

Note that the energy for the system (11.6.1)–(11.6.2) is defined as

E(t) =

∫ +∞

−∞

[
u2
t/2 + au2

x/2− F (t, u) + cθ2/2
]
dx. (11.6.13)

Then by setting
v = eαtu, w = eαtθ, (11.6.14)

the problem (11.6.1)–(11.6.3) reduces to the following problem

vtt = avxx + bwx + dvx − (m− 2α)vt + (m− α)αv + f̃(t, v), (11.6.15)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

cwt = κwxx + g̃ ∗wxx + bvxt + (p− bα)vx + qwx + cαw, (11.6.16)

t = 0 : v = u0(x) ≡ v0(x), vt = u1(x) + αu0(x) ≡ v1(x),

w = θ0(x) ≡ w0(x)
(11.6.17)
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with f̃(t, v) = eαtf(t, e−αtv). The energy for problem (11.6.15)–(11.6.17) can be
defined by

Ẽ(t) =

∫ +∞

−∞

[
− (m− α)αv2/2 + v2t /2 + av2x/2− F̃ (t, v) + cw2/2

]
dx (11.6.18)

with F̃ (t, v) = e2αtF (t, e−αtv). The main idea here is only to prove that the
solution to the problem (11.6.15)–(11.6.17) blows up in a finite time, which further
implies the blow-up of solutions of problem (11.6.1)–(11.6.3).

The following lemmas, due to Qin and Muñoz Rivera [800], concern the
results on Ẽ(t) ≤ Ẽ(0) ≤ 0 when we assume that Ẽ(0) ≤ 0.

Lemma 11.6.1 ([800, 770]). We assume that Ẽ(0) ≤ 0, and (11.6.5) holds. Then
if the following assumptions hold, when α = m

2 = p
b > 0, d = 0 and κ ≥ 0, it holds

that for any u ∈ R and for all t > 0,

αuf(t, u) ≤ (α−m)α2u2 + Ft(t, u). (11.6.19)

Then for all t > 0,
Ẽ(t) ≤ Ẽ(0) ≤ 0. (11.6.20)

Proof. Obviously, by an easy computation it follows from (11.6.5) that

F̃t(t, v) = 2αF̃ (t, v) + e2αtFt(t, u)− αvf̃(t, v)

= e2αt[2αF (t, u) + Ft(t, u)− αuf(t, u)].
(11.6.21)

On the other hand, we can derive from (11.6.4), (11.6.14) and (11.6.21) that

d

dt
F̃ (t, v) = 2αe2αtF (t, e−αtv) + e2αt

d

dt
F (t, u)

= 2αF̃ (t, v) + e2αtFt(t, u) + e2αtf(t, u)ut

= 2αF̃ (t, v) + e2αtFt(t, u) + e2αtf(t, u)[−αeαtv + eαtvt]

= e2αt[2αF (t, u) + Ft(t, u)− αuf(t, u)] + f̃(t, v)vt

= F̃t(t, v) + f̃(t, v)vt. (11.6.22)

Thus using (11.6.13), (11.6.15)–(11.6.17) and (11.6.22), we get

Ẽ′(t) = d

∫ +∞

−∞
vxvtdx− (m− 2α)

∫ +∞

−∞
v2t dx−

∫ +∞

−∞
F̃t(t, v)dx− κ

∫ +∞

−∞
w2

xdx

−
∫ +∞

−∞
g̃ ∗ wx wxdx+ (p− bα)

∫ +∞

−∞
vxwdx + cα

∫ +∞

−∞
w2dx. (11.6.23)

It is easy now to verify from (11.6.19) that

2αF̃ (t, v)− (α−m)α2v2 − F̃t(t, v) ≤ 0
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which, along with (11.6.18), further implies

Ẽ′(t) = − κ

∫ +∞

−∞
w2

xdx−
∫ +∞

−∞
g̃ ∗ wx wxdx+ cα

∫ +∞

−∞
w2dx−

∫ +∞

−∞
F̃t(t, v)dx

≤ −
∫ +∞

−∞
g̃ ∗ wxwxdx+ 2αẼ(t)− α

∫ +∞

−∞
(v2t + av2x)dx

+

∫ +∞

−∞
[2αF̃ (t, v)− (α−m)α2v2 − F̃t(t, v)]dx

≤ −
∫ +∞

−∞
g̃ ∗ wx wxdx+ 2αẼ(t).

Therefore,

Ẽ(t) ≤ Ẽ(0)−
∫ +∞

−∞

∫ t

0

g̃ ∗ wx wxdτdx + 2α

∫ t

0

Ẽ(τ)dτ

≤ Ẽ(0) + 2α

∫ t

0

Ẽ(τ)dτ.

(11.6.24)

That is, for all t > 0,

Ẽ(t) ≤ Ẽ(0)e2αt ≤ 0,

which, together with (11.6.24), yields (11.6.20). �

Let

Ψ(t) =

∫ +∞

−∞
v2(x, t)dx + β(t+ t0)

2

where β ≥ 0 and t0 > 0 are to be determined later on.

The next lemma, also due to Qin and Muñoz Rivera [800], plays a key role in
showing that Ψ(t) verifies the assumptions of Theorem 2.4.19 (or Theorem 1.3.1
of [770]) by choosing suitable β ≥ 0, t0 > 0 and initial data (u0, u1, θ0).

Lemma 11.6.2 ([800, 770]). We assume that for any t ≥ 0, Ẽ(t) ≤ Ẽ(0) ≤ 0 and
initial data

u0 ∈ H2(R), u1 ∈ H1(R), θ0 ∈ H1(R) (11.6.25)

and the following assumptions holds: when α = m
2 = p

b > 0 and d = 0, there exists
a positive constant

γ ≥ (
√
1 + b2c/a− 1)/(4c), for all u ∈ R, t > 0 (11.6.26)

verifying

uf(t, u)− 2(1 + 2γ)F (t, u) ≥ 0, for all u ∈ R, t > 0 (11.6.27)
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and initial data satisfy∫ +∞

−∞
u0u1dx > 0, if Ẽ(0) < 0, (11.6.28)

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ∫ +∞

−∞
u0u1dx > 0,

∫ +∞

−∞
u2
0dx > 0, if Ẽ(0) = 0, (11.6.29)

Then for β > 0 small enough and suitable t0 > 0 or β = 0, there exist constants
C1 ≥ 0 and C2 ≥ 0 such that (i) or (ii) in Theorem 2.4.19 holds.

Proof. By a direct calculation, we have

Ψ′(t) = 2

[∫ +∞

−∞
vvtdx+ β(t+ t0)

]
, (11.6.30)

⎧⎪⎪⎪⎨⎪⎪⎪⎩Ψ′′(t) = 2

[∫ +∞

−∞
(v2t + vvtt)dx+ β

]
. (11.6.31)

Using the Cauchy inequality and the Hölder inequality, we derive

[∫ +∞

−∞
vvtdx+ β(t+ t0)

]2

≤
{(∫ +∞

−∞
v2dx

)1/2 (∫ +∞

−∞
v2t dx

)1/2

+
√
β(t+ t0)

√
β

}2

≤ Ψ(t)

(∫ +∞

−∞
v2t dx+ β

)
which, together with (11.6.30) and (11.6.31), yields

Ψ(t)Ψ′′(t)− (1 + γ)(Ψ′(t))2

= 2Ψ(t)

[∫ +∞

−∞
(v2t + vvtt)dx + β

]
− 4(1 + γ)

[∫ +∞

−∞
vvtdx+ β(t+ t0)

]2
≥ 2Ψ(t)

[
−(1 + 2γ)

(∫ +∞

−∞
v2t dx+ β

)
+

∫ +∞

−∞
vvttdx

]
. (11.6.32)

Inserting (11.6.15) into (11.6.32), integrating by parts and using

∫ +∞

−∞
v2t dx = 2Ẽ(t) +

∫ +∞

−∞
[(m− α)αv2 − av2x + 2F̃ (t, v)− cw2]dx,
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we conclude

Ψ(t)Ψ′′(t)− (1 + γ)(Ψ′(t))2 (11.6.33)

≥ 2Ψ(t)

[
−(1 + 2γ)

(∫ +∞

−∞
v2t dx+ β

)
−

∫ +∞

−∞
(av2x + bvxw)dx

−(m− 2α)

∫ +∞

−∞
vvtdx+ (m− α)α

∫ +∞

−∞
v2dx+

∫ +∞

−∞
vf̃(t, v)dx

]
.

Noting that (1 + 2γ)c− ε1 ≥ 0 for ε1 = b2/8aγ > 0, we derive from (11.6.33)

Ψ(t)Ψ′′(t)− (1 + γ)(Ψ′(t))2

≥ 2Ψ(t)

{
−2(1 + 2γ)Ẽ(t)− (1 + 2γ)β − 2γα(m− α)

∫ +∞

−∞
v2dx− b

∫ +∞

−∞
vxwdx

+2aγ

∫ +∞

−∞
v2xdx− (m− 2α)

∫ +∞

−∞
v2dx+

∫ +∞

−∞
[vf̃(t, v)− 2(1 + 2γ)F̃ (t, v)]dx

}
≥ 2Ψ(t)

{
−2(1 + 2γ)Ẽ(0)− (1 + 2γ)β − 2γα2Ψ(t) + [(1 + 2γ)c− ε1]

∫ +∞

−∞
w2dx

+

(
2aγ − b2

4ε1

)∫ +∞

−∞
v2xdx+

∫ +∞

−∞
[vf̃(t, v)− 2(1 + 2γ)F̃ (t, v)]dx

}
≥ 2Ψ(t)[−2(1 + 2γ)Ẽ(0)− (1 + 2γ)β − 2γα2Ψ(t)]. (11.6.34)

If Ẽ(0) < 0, we may pick β > 0 and t0 > 0 in (11.6.34) so small that

0 < β ≤ −2Ẽ(0), 0 < t0 <
1

2

[
1 +

√
1 + 4αβ−1

∫ +∞

−∞
u0u1dx

]
(11.6.35)

which, with (11.6.28), implies (1) of Theorem 2.4.19 with C1 = 0, C2 = 4γα2 and
γ1 = 2γα, γ2 = −2γα.

If Ẽ(0) = 0, then we take β = 0 in (11.6.34) and can use (11.6.29) to derive
(i) or (ii) of Theorem 2.4.19 with C1 = 0, C2 = 4γα2 and γ1 = 2γα, γ2 = −2γα.
The proof is hence complete. �

Now we read our main result due to Qin and Muñoz Rivera [800] in this
section.

Theorem 11.6.3 ([800, 770]). We assume that assumptions in Lemma 11.6.1 and
assumptions in Lemma 11.6.2 hold, then the solution v(t) in L2(R) to problem
(11.6.15)–(11.6.17) blows up in a finite time, that is, there exists some time t1 > 0
such that

lim
t→t−1

∫ +∞

−∞
v2(x, t)dx = +∞ (11.6.36)
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and further the solution u(t) in L2(R) to problem (11.6.1)–(11.6.3) blows up in a
finite time, that is,

lim
t→t−1

∫ +∞

−∞
u2(x, t)dx = +∞. (11.6.37)

Proof. By Lemma 11.6.1, we can get

Ẽ(t) ≤ Ẽ(0) ≤ 0

which, together with Lemma 11.6.2, implies that (i) or (ii) of Theorem 2.4.19
holds. Thus we can derive (11.6.36)–(11.6.37) from (11.6.5) and Theorem 2.4.19.
The proof is now complete. �



Chapter 12

Appendix: Basic Inequalities

In this chapter, we shall collect some basic inequalities which play a very cru-
cial role in classical calculus. These inequalities include the Young inequality,
the Hölder inequality, the Minkowski inequality, the Jensen inequality, and the
Hausdorff–Young inequality, etc.

12.1 The Young inequalities

In this section we introduce the Young inequalities.

Theorem 12.1.1. Let f be a real-valued, continuous and strictly increasing function
on [0, c] with c > 0. If f(0) = 0, a ∈ [0, c] and b ∈ [0, f(c)], then we have

ab ≤
∫ a

0

f(x)dx +

∫ b

0

f−1(x)dx (12.1.1)

where f−1 is the inverse function of f . Equality in (12.1.1) holds if and only if
b = f(a).

This is a classical result called “the Young inequality” whose proof can be
found in Young [985].

If we take f(x) = xp−1 with p > 1 in Theorem 12.1.1, then we conclude the
following corollary.

Corollary 12.1.1. There holds that

ab ≤ ap

p
+

bq

q
(12.1.2)

where a, b ≥ 0, p > 1 and 1/p+ 1/q = 1.

If 0 < p < 1, then

ab ≥ ap

p
+

bq

q
. (12.1.3)

The equalities in (12.1.2) and (12.1.3) hold if and only if b = ap−1.
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Hirzallah and Omar improved the above Young inequality (see, e.g., Kuang
[466]).

Theorem 12.1.2 (The Hirzallah–Omar Inequality). For a, b ≥ 0, p > 1 and 1/p+
1/q = 1, there holds that

a2b2 + (ap − bq)2/r2 ≤
(
ap

p
+

bq

q

)2

(12.1.4)

with r = max(p, q).

In fact, the Young inequality has the following refinement.

Theorem 12.1.3. Let 1 < p < +∞, p ∨ q = max(p, q), p ∧ q = min(p, q), a, b ≥ 0.
Then we have

1

p ∨ q
(
√
a−

√
b)2 ≤ a/p+ b/q − a1/pb1/q ≤ 1

p ∧ q
(
√
a−

√
b)2. (12.1.5)

In Corollary 12.1.1, if we consider a and b as εa and ε−1b respectively, we
can conclude the following corollary.

Corollary 12.1.2. For any ε > 0, we have

ab ≤ εpap

p
+

bq

qεq
(12.1.6)

where a, b ≥ 0, p > 1 and 1/p+ 1/q = 1.

The Young inequality has several variants in the following.

Corollary 12.1.3 (The Young inequality).

(1) Let a, b > 0, 1/p+ 1/q = 1, 1 < p < +∞. Then

(i) a1/pb1/q ≤ a/p+ b/q; (12.1.7)

(ii) a1/pb1/q ≤ a/(pε1/q) + bε1/p/q, for all ε > 0; (12.1.8)

(iii) aαb1−α ≤ αa+ (1− α)b, 0 < α < 1. (12.1.9)

(2) Let ak ≥ 0, pk > 0,
∑m

k=1 pk = 1. Then

m∏
k=1

apk

k ≤
m∑

k=1

pkak. (12.1.10)

The Young inequality also has the following improved versions (see, e.g.,
Kuang [466]).

Theorem 12.1.4 (The Gerber Inequality).

(1) Let 0 < x < cy, c ≥ 1,M = cλ+1

2y λ(1− λ)(x − y)2.
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(i) If 0 < λ < 1 or λ > 2, then we have

M

c3
< λx+ (1 − λ)y − xλy1−λ < M. (12.1.11)

(ii) If λ < 0 or 1 < λ < 2, then we have

M

c3
> λx+ (1 − λ)y − xλy1−λ > M. (12.1.12)

(2) Let r, x > 0, y > −1/r. Then

xy ≤ x

(
xr − 1

r

)
+

(
1 + ry

1 + r

)1+1/r

. (12.1.13)

(3) Let 1 < pk < +∞,
∑n

k=1
1
pk

= 1. Then

n∏
k=1

|ak| ≤
n∑

k=1

1

pk
|ak|. (12.1.14)

In 1932, Takahashi [906] proved the following inverse Young inequality.

Theorem 12.1.5 (The Takahashi Inequality). If for x ≥ 0, f and g are continuous
and increasing functions such that f(0) = g(0) = 0, g−1(x) ≥ f(x) for all x ≥ 0,
and if for every a > 0 and b > 0, we have

ab ≤
∫ a

0

f(x)dx+

∫ b

0

g(x)dx, (12.1.15)

then f and g are invertible with f−1 = g, f = g−1.

In 1989, the Chinese mathematicians Lizhi Xu and Chunling Zou proved the
following inverse theorem (see also Kuang [466]).

Theorem 12.1.6. Let f, g be strictly increasing and continuous, f(0) = g(0) = 0,
f be defined on [0, c], b ∈ [0, f(c)].

(1) If g−1(x) ≥ f(x), for all x ∈ [0, c], and for all a ∈ [0, c], and for all
b ∈ [0, f(c)], there holds that

ab ≤
∫ a

0

f(x)dx +

∫ b

0

g(x)dx, (12.1.16)

then f and g are invertible with f = g−1 or g = f−1.

(2) If for all x ∈ [0, c], g−1(x) ≤ f(x) and for all a ∈ [0, c], and for all b ∈
[0, f(c)], there holds∫ a

0

f(x)dx +

∫ b

0

g(x)dx ≤ af(a) + bg(b)− f(a)f(b), (12.1.17)

then f and g are invertible with f = g−1 or g = f−1.
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(3) For a ∈ [0, c], b ∈ [0, f(c)], there holds that∫ a

0

f(x)dx +

∫ b

0

f−1(x)dx ≤ af(a) + bf−1(b)− f(a)f−1(b). (12.1.18)

The Young inequality has several generalizations as follows (see, e.g., Kuang
[466]).

Theorem 12.1.7 (The Oppenheim Inequality). Let fk(x) be non-negatively con-
tinuous increasing, ak ≥ 0, k = 1, 2, . . . , n. If there is at least one k such that
fk(0) = 0, then we have

n∏
k=1

fk(ak) ≤
n∑

k=1

∫ ak

0

∏
j �=k

fj(x)dfk(x) (12.1.19)

and the equality in (12.1.19) holds if and only if a1 = · · · = an.

Theorem 12.1.8 (The Cooper Inequality). Let gk(x) be strictly increasing and con-
tinuous, gk(0) = 0, ak ≥ 0, k = 1, 2, . . . , n. If

∏n
k=1 g

−1
k (x) = x, then we have

n∏
k=1

ak ≤
n∑

k=1

∫ ak

0

gk(x)

x
dx (12.1.20)

and the equality (12.1.20) holds if and only if g(a1) = · · · = g(an).

Theorem 12.1.9. Let f be strictly increasing and continuous, f(0) = 0, f−1 the
inverse function of f , [x] the maximal integral part of x. Then for any m,n ∈ N,
we have

mn ≤
m∑

k=0

[f(k)] +

n∑
k=0

[f−1(k)]. (12.1.21)

In 1988, the Chinese mathematician Lizhi Xu proved the following result
(see, e.g., Kuang [466]).

Theorem 12.1.10. Let a, b > 0 and f be strictly increasing and continuous, f(0) =
0, f−1 the inverse function of f . Then the following assertions hold.

ab ≤
∫ a

0

f(x)dx+

∫ b

0

f−1(y)dy ≤ af(a) + bf−1(b)− f(a)f−1(b). (12.1.22)

(i) If f(x) is convex, then when f ′′(x)[b − f(a)] ≥ 0, we have

ab+
1

2
[b− f(a)][f−1(b)− a] ≤

∫ a

0

f(x)dx +

∫ b

0

f−1(y)dy. (12.1.23)
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(ii) If f ′′(x)[b − f(a)] ≤ 0, then we have

ab+
1

2
[b− f(a)][f−1(b)− a] ≥

∫ a

0

f(x)dx +

∫ b

0

f−1(y)dy. (12.1.24)

If f ′ is monotone, let h = (1/n)[f−1(b)− a], n ≥ 2,

Sn = bf−1(b)− h

{
(f(a) + b)/2 +

n−1∑
k=1

f(a+ kh)

}
, (12.1.25)

then we have∣∣∣∣∫ a

0

f(x)dx+

∫ b

0

f−1(y)dy − Sn

∣∣∣∣ ≤ (h2/8)|f ′(a)− f ′[f−1(b)]|. (12.1.26)

The following result, due to Zsolt, is related to the Young inequality (see,
e.g., Kuang [466]).

Theorem 12.1.11. Assume that f(x, y) exists continuous partial derivatives of sec-
ond order such that ∂

∂x
∂
∂y f(x, y) ≥ 0, x, y ≥ 0. Then for any non-negative numbers

x, y and any Young function φ,

f(x, y) ≤ f(0, 0) +

∫ x

0

∂

∂t
f [t, φ(t)]dt +

∫ y

0

∂

∂s
f [φ(−1)(s), s]ds (12.1.27)

where φ(−1) denotes the right inverse of φ.

12.2 The Hausdorff–Young inequalities and the

Young inequalities

Since the following inequalities will involve the concept of the Marcinkiewicz space
or the weak Lp space denoted by Lp

∗, we first introduce some basic concepts related
to the Marcinkiewicz space.

Definition 12.2.1. Let (X,μ) be a measurable space with positive μ, f(x) a μ-
measurable function defined on X . If for any α > 0, the set

Eα = Eα(f) =
{
x : |f(x)| > α

}
is measurable, then the function

f∗(α) = μ(Eα)

is said to be the distributional function of f .

Clearly, f∗(α) is a non-negative function and it is easy to verify the following
properties.
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Lemma 12.2.1.

(1) f∗(α) is a non-increasing, right continuous function;

(2) if |f(x)| ≤ |g(x)|, then f∗(α) ≤ g∗(α);
(3) if {fm(x)} is a μ-measurable sequence, and

0 ≤ f1(x) ≤ f2(x) ≤ · · · ≤ fm(x) · · · ↑ f(x), m → +∞,

then we have

(fm)∗(α) ↑ f∗(α), m → +∞;

(4) if |f(x)| ≤ |g(x)|+ |h(x)|, then

f∗(α) ≤ g∗(α/2) + h∗(α/2).

Now we are in a position to introduce the concept of the Marcinkiewicz space
or the weak Lp space.

Definition 12.2.2. Let 1 ≤ p < +∞. If

‖f‖p,w ≡ ‖f‖Lp
∗ = [f ]p = sup

α>0
αf∗(α)1/p < +∞, (12.2.1)

then we call f to satisfy the Marcinkiewicz condition. All the functions sat-
isfying the Marcinkiewicz condition (12.2.1) constitute a space which is called
Marcinkiewicz space or the weak Lp space, denoted by Lp

∗. In particular, when
p = +∞, we make a convention: L∞

∗ = L∞.

Remark 12.2.1.

(1) It is easy to see that Lp ↪→ Lp
∗.

(2) ‖ · ‖Lp
∗ = [·]p is not a norm, but due to

[f + g]p ≤ 2([f ]p + [g]p),

Lp
∗ is a quasi-norm vector space with this quasi-norm.

For the Fourier convolution, we collect the famous Hausdorff–Young inequal-
ities and Young inequalities for the convolution as follows. We can find its proof
in some books of functional analysis, e.g., Yosida [986] and Belleni-Morante and
McBride [91].

Theorem 12.2.2 (The Hausdorff–Young Inequality). If f ∈ Lp(Rn) and 1 ≤ p ≤ 2,
p−1 + q−1 = 1. Then we have

‖Ff‖q = ‖f̂‖q ≤ ‖f‖p (12.2.2)

where Ff = f̂ is the Fourier transform of f .
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Theorem 12.2.3 (The Hausdorff–Young Inequality). Let 1 < p < 2, p−1+q−1 = 1.
Then we have

‖Ff‖q,w = ‖f̂‖q,w ≤ Cp,q‖f‖p,w (12.2.3)

with a constant Cp,q > 0.

Theorem 12.2.4 (The Discrete Hausdorff–Young Inequality). Let f ∈ Lp[0, 2π],
and

f(x) ∼
+∞∑

n=−∞
Cne

inx. (12.2.4)

Then we have (
+∞∑

n=−∞
|Cn|p′

)1/p′

≤
(

1

2π

∫ 2π

0

|f(x)|pdx
)1/p

(12.2.5)

with 1/p+ 1/p′ = 1.

Theorem 12.2.5 (The Young Inequality). Let K ∈ Lρ(Rn), φ ∈ Lp(Rn) with 1 <
p < ρ′, 1/ρ+ 1/ρ′ = 1. Then we have

‖K ∗ φ‖Lq(Rn) ≤ ‖K‖Lρ(Rn)‖φ‖Lp(Rn) (12.2.6)

where 1 + 1/q = 1/ρ+ 1/p and K ∗ φ is the Fourier convolution of K and φ on
Rn defined by (K ∗ φ)(x) = ∫

Rn K(x− y)φ(y)dy.

For the one-dimensional case, we have the following form of the Hausdorff–
Young inequality (see, e.g., Belleni-Morante and McBride [91]).

Theorem 12.2.6 (The Young Inequality). Let 1 ≤ p, q ≤ +∞ and f ∈ Lp(R), g ∈
Lq(R). Then we have

f ∗ g ∈ Lr(R) (12.2.7)

and
‖f ∗ g‖Lr(R) ≤ ‖f‖Lp(R)‖g‖Lq(R) (12.2.8)

where 1 + 1/r = 1/p+ 1/q and f ∗ g is the Fourier convolution of f and g on R

defined by

(f ∗ g)(x) =
∫
R

f(x− y)g(y)dy. (12.2.9)

Remark 12.2.2. The important special cases in Theorem 12.2.5 embrace:

(1) p = q = r = 1 and (2) q = 1, r = p.

Theorem 12.2.7 (The Generalized Young Inequality). If 1 < p, q, r < +∞, p−1 +
q−1 = 1 + r−1. Then we have

‖f ∗ g‖r ≤ Cp,q‖f‖p‖g‖q,w. (12.2.10)
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Theorem 12.2.8 (The Weak Young Inequality). If 1 < p, q, r < +∞, p−1 + q−1 =
1+ r−1. Then we have

‖f ∗ g‖r,w ≤ Cp,q‖f‖p,w‖g‖q,w (12.2.11)

where Cp,q > 0 is a constant.

In the above, ‖ · ‖p,w = ‖ · ‖Lp
∗ denotes the quasi-norm of space Lp

∗(Rn), the
weak Lp(Rn) space.

12.3 The Hölder inequalities

The following is the discrete Hölder inequality which was proved by Hölder in 1889
(see, e.g., Hölder [369]). However, as pointed out by Lech [493] that in fact it should
be called the Roger inequality or Roger–Hölder inequality since Roger established
the inequality (12.3.1) in 1888 earlier than Hölder did in 1889. However, we still
call it the Hölder inequality.

Theorem 12.3.1. If ak ≥ 0, bk ≥ 0 for k = 1, 2, . . . , n, and 1/p + 1/q = 1 with
p > 1, then

n∑
k=1

akbk ≤
(

n∑
k=1

apk

)1/p ( n∑
k=1

bqk

)1/q

. (12.3.1)

If 0 < p < 1, then

n∑
k=1

akbk ≥
(

n∑
k=1

apk

)1/p ( n∑
k=1

bqk

)1/q

. (12.3.2)

Here the equalities in (12.3.1)–(12.3.2) hold if and only if αapk = βbqk for k =
1, 2, . . . , n where α and β are real non-negative constants with α2 + β2 > 0.

Remark 12.3.1. If p = 1 or p = +∞, we have the trivial case⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
k=1

akbk ≤
(

n∑
k=1

ak

)
sup

1≤k≤n
bk, if p = 1; (12.3.3)

n∑
k=1

akbk ≤
(

n∑
k=1

bk

)
sup

1≤k≤n
ak, if p = +∞. (12.3.4)

Remark 12.3.2. When p = q = 2, we call (12.3.1)–(12.3.2) to be the Cauchy
inequality, or the Schwarz inequality or the Cauchy–Schwarz inequality or the
Bunyakovskii inequality.

In 1992, Dragomir [215] gave a refinement of the Cauchy inequality.
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Theorem 12.3.2 (The Dragomir Inequality). Let ak, bk real numbers and |ak| +
|bk| 	= 0. Then we have(∑

k

akbk

)2

≤
[∑

k

(a2k + b2k)

] [∑
k

a2kb
2
k

a2k + b2k

]
≤

(∑
k

a2k

)(∑
k

b2k

)
. (12.3.5)

For a = {ak} (k ∈ N is finite or infinite), if we define⎧⎨⎩ ‖a‖p = (
∑

k a
p
k)

1/p
for 0 < p < +∞;

‖a‖∞ = sup
k

|ak| for p = +∞,

then we have the following refinement of the Hölder inequality.

Theorem 12.3.3. Let ak, bk > 0, 1/p+ 1/q = 1, 1 < p < +∞, p ∨ q = max(p, q),

p ∧ q = min(p, q), Sn =
∑

k a
p/2
k b

q/2
k

(
∑

k ap
k)

1/2(
∑

k bqk)
1/2 . Then we have

2

p ∨ q
(1− Sn) ≤ 1− ‖ab‖1

‖a‖p‖b‖q ≤ 2

p ∧ q
(1− Sn). (12.3.6)

The following result is a generalization with negative exponents.

Theorem 12.3.4. If ak > 0, bk > 0 for k = 1, 2, . . . , n, and 1/p + 1/q = 1 with
p < 0 or q < 0, then we have( n∑

k=1

apk

)1/p( n∑
k=1

bqk

)1/q

≤
n∑

k=1

akbk (12.3.7)

with equality in (12.3.7) holding if and only if αapk = βbqk for k = 1, 2, . . . , n where
α and β are real non-negative constants with α2 + β2 > 0.

Jensen [394] proved the following generalization of the Hölder inequality.

Theorem 12.3.5 (The Jensen Inequality). Let ajk > 0, pj > 0, (j = 1, 2, . . . ,m;
k = 1, 2, . . . , n),

∑m
j=1

1
pj

≥ 1. Then we have

n∑
k=1

⎛⎝ m∏
j=1

ajk

⎞⎠ ≤
m∏
j=1

(
n∑

k=1

a
pj

jk

)1/pj

. (12.3.8)

If pj < 0,
∑m

j=1
1
pj

≤ −1, then we have

n∑
k=1

⎛⎝ m∏
j=1

ajk

⎞⎠ ≥
m∏
j=1

(
n∑

k=1

a
pj

jk

)1/pj

. (12.3.9)

The equalities in (12.3.8)–(12.3.9) hold if and only if
∑m

j=1 1/pj = 1 and all the
column vectors of the matrix (ajk) are proportional to each other.
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The next result is a generalization of the above Jensen inequality.

Theorem 12.3.6. Let ajk > 0 (j = 1, 2, . . . ,m; k = 1, 2, . . . , n), r > 0, pj > 0,∑
j 1/pj ≥ 1/r. Then the following inequality holds

(
n∑

k=1

m∏
j=1

a
1/pj

jk

)1/r

≤
m∏
j=1

(
n∑

k=1

a
1/r
jk

)1/pj

. (12.3.10)

Here the equality in (12.3.10) holds if and only if
∑m

j=1 1/pj = 1/r and all the
column vectors of the matrix (ajk) are proportional to each other.

We have also the following weighted Hölder inequality.

Theorem 12.3.7. Under assumptions of Theorem 12.3.6, if

1 < pj < +∞,
∑n

j=11/pj = 1, ωk > 0,

then we have
m∑

k=1

⎛⎝ωk

n∏
j=1

ajk

⎞⎠ ≤
n∏

j=1

(
m∑

k=1

ωka
pj

jk

)1/pj

. (12.3.11)

The following theorem is the converse theorem for the Hölder inequality.

Theorem 12.3.8. Let p > 1, 1/p+1/q = 1, B > 0. Then for all a = {ak} satisfying(∑
k

|ak|p
)1/p

≤ A, (12.3.12)

there holds ∑
k

|akbk| ≤ AB (12.3.13)

if and only if (∑
k

|bk|q
)1/q

≤ B. (12.3.14)

By virtue of the discrete Hölder inequality (see Theorem 12.3.1), we easily
obtain the following integral form of the Hölder inequality.

Theorem 12.3.9. If f ∈ Lp(Ω), g ∈ Lq(Ω) and Ω ⊆ Rn is a smooth open set, then

fg ∈ L1(Ω) (12.3.15)

and

‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω) (12.3.16)
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with 1 ≤ p ≤ +∞, 1/p+ 1/q = 1 and{
‖f‖Lp(Ω) =

{∫
Ω
|f(x)|pdx}1/p

; (12.3.17)

‖f‖L∞ = esssupx∈Ω |f(x)|. (12.3.18)

If 0 < p < 1, then we have

‖fg‖L1(Ω) ≥ ‖f‖Lp(Ω)‖g‖Lq(Ω). (12.3.19)

The equalities in (12.3.16) and (12.3.19) hold if and only if there exist β ∈ R and
real numbers C1, C2 which are not all zeros such that C1|f(x)|p = C2|g(x)|q and
arg(f(x)g(x)) = β almost everywhere on Ω hold.

Remark 12.3.3. We have the corresponding weighted Hölder inequality of the
integral form. Let 1 < p < +∞, f ∈ Lp(Ω), g ∈ Lq(Ω), 1/p+ 1/q = 1, ω(x) > 0
on Ω. Then we have∫

Ω

|fg|ω(x)dx ≤
(∫

Ω

|f(x)|pω(x)dx
)1/p (∫

Ω

|g(x)|qω(x)dx
)1/q

. (12.3.20)

The following result is a variant of the integral form of the Hölder inequality
which is due to Everitt [242].

Theorem 12.3.10. Let p > 1, 1/p+1/q = 1. Let E and E′ with E′ ⊆ E be Lebesgue-
measurable linear sets. If f1 and f2 are complex measurable functions such that
f1 ∈ Lp(E), f2 ∈ Lq(E), define the function H by

H(E) =

(∫
E

|f1(x)|pdx
)1/p (∫

E

|f2(x)|qdx
)1/q

−
∣∣∣∣∫

E

f1(x)f2(x)dx

∣∣∣∣ .
Then

0 ≤ H(E − E′) ≤ H(E)−H(E′). (12.3.21)

Pecaric (see also [466]) proved the following monotonic property of the Hölder
inequality.

Theorem 12.3.11. Let ak, bk ≥ 0, uk ≥ vk ≥ 0, 1/p+ 1/q = 1, 1 < p < +∞. Then
we have

0 ≤
(

n∑
k=1

vka
p
k

)1/p ( n∑
k=1

vkb
q
k

)1/q

−
n∑

k=1

vkakbk

≤
(

n∑
k=1

uka
p
k

)1/p ( n∑
k=1

ukb
q
k

)1/q

−
n∑

k=1

ukakbk.

(12.3.22)



478 Chapter 12. Appendix: Basic Inequalities

If 0 < p < 1, then we have(
n∑

k=1

vka
p
k

)1/p ( n∑
k=1

vkb
q
k

)1/q

−
n∑

k=1

vkakbk

≥
(

n∑
k=1

uka
p
k

)1/p ( n∑
k=1

ukb
q
k

)1/q

−
n∑

k=1

ukakbk.

(12.3.23)

Chinese mathematicians have made a great contribution in improving many
famous inequalities including the Hölder inequality and the Minkowski inequality.
In what follows, we shall introduce some of their elegant results on the Hölder
inequality. Ke Hu (see, e.g., Kuang [466]) proved the following theorem.

Theorem 12.3.12 (The Hu Inequality). Let p ≥ q ≥ 0, 1/p+1/q = 1, 1−en+em ≥
0, an, bn ≥ 0. Then

∑
n

anbn ≤
(∑

n

bqn

)(1/q−1/p) {(∑
n

apn

)2 (∑
n

bqn

)2

−
[(∑

n

bqnen

)∑
n

apn −
(∑

n

bqn

)(∑
n

apnen

)]2 }1/(2p)

.

(12.3.24)

The corresponding integral form of the above inequality is as follows.

Theorem 12.3.13. Let p ≥ q ≥ 0, 1/p+1/q = 1, 1−ω(x)+ω(y) ≥ 0, f(x), g(x) ≥ 0.
Then⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
fgdx ≤

(∫
gqdx

)(1/q−1/p) {(∫
fpdx

)2 (∫
gqdx

)2

−
[(∫

gqωdx

)∫
fpdx−

(∫
gqdx

)(∫
fpωdx

)]2 }1/(2p)

.

(12.3.25)

Corollary 12.3.1. Let an ≥ 0, p > 1, 1− en+ em ≥ 0, n,m = 1, 2, . . . , N. Then we
have(

N∑
k=1

ak

)2(2p−1)

≤
(

N∑
k=1

apk

)2 {
N2

(
N∑

k=1

ak

)2

−
[
N

N∑
k=1

akek −
(

N∑
k=1

ak

)(
N∑

k=1

ek

)]2}p−1

.

(12.3.26)

The corresponding integral form of the above corollary is the following corol-
lary.
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Corollary 12.3.2. Let f ≥ 0, p > 1, 1 − ω(x) + ω(y) ≥ 0, x, y ∈ [a, b]. Then we
have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∫ b

a

fdx

)2(2p−1)

≤
(∫ b

a

fpdx

)2 {
(b − a)2

(∫ b

a

fdx

)2

−
[
(b− a)

∫ b

a

fωdx

−
(∫ b

a

fdx

)(∫ b

a

ωdx

)]2}p−1

. (12.3.27)

In 1998, Ke Hu (see, e.g., [466]) further proved the following theorem.

Theorem 12.3.14. Let f, g ≥ 0, f ∈ Lp[0, b], g ∈ Lq[0, b], p ≥ q > 1, 1/p+1/q = 1,
|ω̄(x)ω(y) − ω(x)ω̄(y)| ≤ 1, x, y ∈ [0, b]. If we define

Fs(t) =

{(∫ t

0

gqdτ

)2/q−2/p}s{(∫ t

0

fpdτ

)2(∫ t

0

gqdτ

)2

−
[(∫ t

0

fpωdτ

)(∫ t

0

gqω̄dτ

)
−

(∫ t

0

fpω̄dτ

)(∫ t

0

gqωτ

)]2}s/p

−
(∫ t

0

fgdτ

)2s

,

then for 0 ≤ t1 ≤ t2 ≤ b, s = 1, 2, . . . , there holds that

Fs(t2) ≥ Fs(t1) ≥ 0. (12.3.28)

In 2000, Yang [975] gave the following result.

Theorem 12.3.15. Let

ajk > 0, j = 1, 2, . . . ,m, k = 1, 2, . . . , n,

pj > 0,
∑m

j=11/pj = 1.

Set

h(t) =

n∏
i=1

⎧⎨⎩
m∑
j=1

(
n∏

k=1

ajk

)1−t

(api

ji )
t

⎫⎬⎭
1/pi

,

then h is a monotone increasing function in t, particularly,

h(0) ≤ h(1/2) ≤ h(1) (12.3.29)

is a refinement of the Hölder inequality.

In 1998, Liu [560] improved the Cauchy inequality when some additional
assumptions are imposed.
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Theorem 12.3.16. Let 0 < x1 ≤ x2/2 ≤ · · · ≤ xn/n, 0 < yn ≤ yn−1 ≤ · · · ≤ y1, the
Cauchy inequality can be improved as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
n∑

k=1

xkyk

)2

≤
(

n∑
k=1

yk

)
n∑

k=1

(
x2
k − 1

4
xk−1xk

)
yk, (12.3.30)

(
n∑

k=1

xkyk

)2

≤
(

n∑
k=1

yk

){
n∑

k=1

(
7k + 1

8k
x2
k − k

8(k − 1)
x2
k−1

)
yk

}
(12.3.31)

and if and only if xk = kx1, yk = y1, the equalities in (12.3.30) and (12.3.31) hold
where x0 = 0.

Remark 12.3.4. In 1999, Alzer [26] further improved the above result as(
n∑

k=1

xkyk

)2

≤
(

n∑
k=1

yk

)
n∑

k=1

(
α+

β

k

)
x2
kyk (12.3.32)

if α ≥ 3/4, β ≥ 1− α.

In Torchinsky [920], we find the following extensive form.

Theorem 12.3.17. Let 1 < p < +∞, 1/p + 1/q = 1, 0 ≤ xn ≤ xn−1 ≤ · · · ≤ x1,
0 ≤ yn ≤ yn−1 ≤ · · · ≤ y1, Bn = 1

m−k

∑n
j=k+1 yj. Then we have

n∑
k=1

xkyk ≤
(

m∑
i=1

xp
i

)1/p
⎧⎨⎩

k∑
j=1

yqj + (m− k)Bq
n

⎫⎬⎭
1/q

(12.3.33)

where 0 ≤ k ≤ m ≤ n.

The following two theorems are related results on the Hölder inequality.

Theorem 12.3.18. Let ak, bk > 0, 1/p+ 1/q = 1/r < 1, p, q > 0. Then

2‖ab‖1/r1 ≤ ‖a‖p‖b‖q +
(∑

k

a2−p
k b2k

)1/p (∑
k

a2kb
2−q
k

)1/q

. (12.3.34)

(1) (The Daykin–Eliezer Inequality) If p, q > 0 or p > 0, q < 0, r < 0, then we
have

‖ab‖r ≤ ‖a‖p‖b‖q. (12.3.35)

(2) (The Acezel–Beckenbach Inequality) If p < 0, q < 0 or p > 0, q < 0, r > 0,
then we have

‖ab‖r ≥ ‖a‖p‖b‖q. (12.3.36)

In 1968, Daykin–Eliezer [197] proved the next result.
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Theorem 12.3.19. Let 1/p+ 1/q = 1/r, Q =
∏n

j,k=1 (ajakbjbk)
ajakbjbk .

(1) If 0 < ak < 1, 0 < bk < 1 or Q < 1 and 1/r < 1, then

‖ab‖1/r1 ≤
{∑

k

a2−p
k b2k

}1/p {∑
k

a2kb
2−q
k

}1/q

. (12.3.37)

(2) If ak > 1, bk > 1 or Q > 1 and 1/r < 1, then

‖ab‖1/r1 ≤ ‖a‖p‖b‖q. (12.3.38)

In 1992, Zhonglie Wang (see also Kuang [466]) improved the above result
and proved the following result.

Theorem 12.3.20. Let a = (a1, . . . , an), b = (b1, . . . , bn), ak, bk > 0, 1 ≤ k ≤ n,
1/p+ 1/q − 1 = 1/r, p, q > 0. Then

‖ab‖1+1/r
1 ≤

{
‖a‖p‖b‖q‖a2/p−1b2/p‖p‖a2/qb2/q−1‖q

}1/2

(12.3.39)

and
f(x) = ‖(ab)(1−x)/pax‖p‖(ab)(1−x)/qbx‖q (12.3.40)

is a logarithmically convex function. Particularly, when r = +∞, i.e., 1/p+1/q =
1, f(x) attains its minimum at x = 0.

To conclude this section, we shall review some results on the backward Hölder
inequality whose definition is defined as follows.

Definition 12.3.1. The backward Hölder inequality means to seek a constantCp,q >
0 such that (

n∑
k=1

apk

)1/p ( n∑
k=1

bqk

)1/q

≤ Cpq

n∑
k=1

akbk (12.3.41)

where 1 < p < +∞, 1/p+ 1/q = 1, ak, bk ≥ 0, k = 1, 2, . . . , n.

In 1989, You made some improvements (see, e.g., Kuang [466]).

Theorem 12.3.21 (The Yau Inequality). Let 0 < m1 ≤ ak ≤ M1, 0 < m2 ≤ bk ≤
M2, 1 ≤ k ≤ n, 1/p+ 1/q = 1/r.

(1) If p, q > 0, then we have(
m1

M1

)r/q (
m2

M2

)r/p

≤ ‖ab‖r
‖a‖p‖b‖q ≤ 1. (12.3.42)

(2) If p > 0, q < 0, r > 0, then we have

1 ≤ ‖ab‖r
‖a‖p‖b‖q ≤

(
m1

M1

)r/q (
M2

m2

)r/p

. (12.3.43)
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(3) If p > 0, q < 0, r < 0, then we have

1 ≥ ‖ab‖r
‖a‖p‖b‖q ≥

(
m1

M1

)r/q (
M2

m2

)r/p

. (12.3.44)

(4) If p < 0, q < 0, then we have

1 ≤ ‖ab‖r
‖a‖p‖b‖q ≤

(
M1

m1

)r/q (
M2

m2

)r/p

. (12.3.45)

Diaz, Goldman and Metcalf (see, e.g., [466]) showed the following theorem.

Theorem 12.3.22. Let 0 < m1 ≤ ak ≤ M1, 0 < m2 ≤ bk ≤ M2, k = 1, 2, . . . , n,
1/p+ 1/q = 1. Then

‖a||p‖b‖q ≤ Cp,q‖ab‖1 (12.3.46)

where

Cp,q =
C1(p, q)

C2(p, q)
, C1(p, q) = Mp

1M
q
2 −mp

1m
q
2,

C2(p, q) =
{
[p(M1m2M

q
2 −m1M2m

q
2)]

1/p
[q(M2m1M

p
1 −m2M1m

p
1)]

}1/q

.

Particularly, if p = q = 2, then we have

‖ab‖1 ≤ ‖a‖2‖b‖2 ≤ C3‖ab‖1. (12.3.47)

Let

β1 =
M1/m1

(M1/m1) + (M2/m2)
, β2 =

M2/m2

(M1/m1) + (M2/m2)
,

then the equality in (12.3.46) holds if and only if k = β1n, l = β2n are all integers,
and k’s aj agree with m1, the rest l’s (l = n − k) aj agree with M1, and the
corresponding bk agree with M2,m2 respectively.

Remark 12.3.5. In 1925, Polya–Szego (see, e.g., Agarwal and Pan [9] and Kuang
[466]) proved in (12.3.47)

C3 =
1

2

(√
M1M2

m1m2
+

√
m1m2

M1M2

)
.

In 1964, Diaz and Metcalf (see [466]) improved the constant C3:

m1M1‖b‖22 +m2M2‖a||22
m1m2 +M1M2

≤ ‖ab‖1.

In 1969, Baraes (see, e.g., [466]) proved the following result.
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Remark 12.3.6. If 0 ≤ a1 ≤ · · · ≤ an, 0 ≤ bn ≤ · · · ≤ b1 and ak−1 + ak+1 ≤ 2ak,
bk−1 + bk+1 ≤ 2bk, k = 1, 2, . . . , n − 1, then C3 = (2n − 1)/(n − 2) in (12.3.47),
and the equality in (12.3.47) holds if and only if ak = n− k, bk = k − 1.

The corresponding integral form of Theorem 12.3.22 is the following theorem.

Theorem 12.3.23. Let f ∈ Lp[0, a], g ∈ Lq[0, a]. If f, g are non-negative concave
functions such that 0 < ‖f‖p < +∞, 0 < ‖g‖q < +∞, then we have

‖f‖p‖g‖q ≤ Cp,q‖fg‖1 (12.3.48)

where

Cp,q =
6

(1 + p)1/p(1 + q)1/qa1−1/p−1/q
if p > 1;

Cp,q =
3

(1 + p)1/p(1 + q)1/qa1−1/p−1/q
if |p| < 1, |q| < 1.

Remark 12.3.7. In 1986, Guangqing Chen (see, e.g., [466]) proved that: if p, q > 0,
1/p+ 1/q = 1, then the constant Cp,q in (12.3.46) may be expressed as

Cp,q =
(1/p)1/p(1/q)1/q[x2f(x1)− x1f(x2)]

(x2 − x1)1/q[f(x1)− f(x2)]1/p

where

f(x) = x−q/p, x1 = min
1≤k≤n

{ |ak|p
|akbk|

}
< x2 = max

1≤k≤n

{ |ak|p
|akbk|

}
.

The weighted form of (12.3.47) can be stated as (see, e.g., Kuang [466]) the
following theorem.

Theorem 12.3.24. Let ak, bk > 0, ωk ≥ 0 be not all zero, 1 ≤ k ≤ n. Then

1 ≤
(∑n

k=1 a
2
kωk

) (∑n
k=1 b

2
kωk

)
(
∑n

k=1 akbkωk)
≤ max

j,k

(akbj + ajbk)
2

4akajbkbj
. (12.3.49)

The corresponding integral form is the following result (see, e.g., Kuang
[466]).

Theorem 12.3.25 (The Zagier inequality). Let f, g be decreasing on [a, b], f(b) =
g(b) = 0, and the weighted function ω be integrable on [a, b]. Then

‖f‖22,ω‖g‖22,ω ≤ max

{
f(a)

∫ b

a

gωdx, g(a)

∫ b

a

fωdx

}
‖fg‖1,ω (12.3.50)

where ‖f‖2,ω =
∫ b

a f2ωdx.
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In 1991, Yutong Lou (see, e.g., [466]) proved the following analogue.

Theorem 12.3.26. Let 0 < m1 ≤ f(x) ≤ M1, 0 < m2 ≤ g(x) ≤ M2, x ∈ E,
f, g, ω ∈ L(E), ω ≥ 0. Then we have

‖f‖2,ω‖g‖2,ω ≤ C‖fg‖1,ω (12.3.51)

whose discrete case is
‖a‖2,ω‖b‖2,ω ≤ C‖ab‖1,ω (12.3.52)

where 0 < m1 ≤ ak ≤ M1, 0 < m2 ≤ bk ≤ M2 and C = m1m2+M1M2

2
√
m1m2M1M2

.

Remark 12.3.8. For the above discrete case, Xiaohua Liu (see, e.g., [466]) showed
that (12.3.46) holds with

C = Cp,q

(
m1m2

M1M2

)
(12.3.53)

where the function takes the form

Cp,q(t) = (p1/pq1/q)−1 1− t

(1− t1/p)1/p(1 − t1/q)1/q
.

The corresponding weighted form is as follows:

Let 0 < m ≤ ak/bk ≤ M , ωk ≥ 0. Then

‖a‖p,ω‖b‖p,ω ≤ Cp,q(m/M)‖ab‖1,ω (12.3.54)

with ‖a‖p,ω = (
∑

k a
p
kωk)

1/p
.

Remark 12.3.9. The integral form of (12.3.54) is as follows. Let (X,Σ, μ) be a
measurable space, f, g non-negative μ-measurable functions on X . If 0 < m ≤
f(x)/g(x) ≤ M , a.e., x ∈ X , f, g ∈ L(X), 1/p+ 1/q = 1, p, q > 0, then we have

‖f‖p,w‖g‖q,w ≤ Cp,q

(m

M

)
‖fg‖1,w (12.3.55)

where ‖f‖p,w = (�
∫
X fpωdx)1/p.

Yadong Zhuang (see, e.g., [466]) also proved the following similar results.

Theorem 12.3.27.

(1) Let 0 < m1 ≤ ak ≤ M1, 0 < m2 ≤ bk ≤ M2, k = 1, 2, . . . , n, 1/p+ 1/q = 1,
1 < p < +∞. Then for any α, β > 0, there holds

‖a‖p‖b‖p ≤ Cp,q‖ab‖1 (12.3.56)

with Cp,q = (αp)−1/p(βq)−1/q max
{

αMp
1 +βmq

2

M1m2
,
αmp

1+βMq
2

M2m1

}
;

(2) ap/p+ bq/q ≤ Cp,qab (12.3.57)
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where 1 < p < +∞, 1/p + 1/q = 1, 0 < m1 ≤ a ≤ M1, 0 < m2 ≤ b ≤ M2

and
‖f‖p‖g‖q ≤ Cp,q‖fg‖1 (12.3.58)

with 0 < m1 ≤ f(x) ≤ M1, 0 < m2 ≤ g(x) ≤ M2, x ∈ E and

Cp,q = max {(mp
1/p+M q

2/q)/(m1M2), (M
p
1 /p+mq

2/q)/(M1m2)} .

In 1986, Jianbo Shao (see, e.g., [466]) showed the following result.

Theorem 12.3.28. Let 0 < m1 ≤ |ak| ≤ M1, 0 < m2 ≤ |bk| ≤ M2, 1 ≤ k ≤ n.
Then √

m2M2

m1M1

(
n∑

k=1

|ak|2
)

+

√
m1M1

m2M2

(
n∑

k=1

|bk|2
)

≤
(√

M1M2

m1m2
+

√
m1m2

M1M2

)(
n∑

k=1

|akbk|
)
.

(12.3.59)

The equality in (12.3.59) holds if and only if p’s ak agree with m1, the rest l’s ak
(l = n− p) agree with M1, the corresponding bk agree with M2,m2, respectively.

Zagier (see, e.g., Alzer [26]) proved the next backward Cauchy inequality.

Theorem 12.3.29. Let a1 ≥ a2 ≥ · · · ≥ an > 0, b1 ≥ b2 ≥ · · · ≥ bn > 0. Then(
n∑

k=1

a2k

)(
n∑

k=1

b2k

)
≤ C2

n∑
k=1

akbk (12.3.60)

where C2 = max{a1
∑n

k=1 bk, b1
∑n

k=1 ak}. The equality in (12.3.60) holds if and
only if a1 = · · · = an and b1 = · · · = bn.

In 1995, Pecaric (see, e.g., [466]) gave the weighted form of (12.3.60).

Theorem 12.3.30. Let {ak}, {bk}, {uk}, {vk} be decreasing sequence, ωk > 0. Then
we have (

n∑
k=1

ωkakuk

)(
n∑

k=1

ωkbkvk

)
≤ C2

n∑
k=1

ωkakbk (12.3.61)

where C2 = max{u1

∑n
k=1 ωkvk, v1

∑n
k=1 ωkuk}.

The corresponding integral form is the following theorem.

Theorem 12.3.31. Assume that f, g ≥ 0 are monotonically decreasing. Then for
any integrable functions F,G : [0,+∞) → [0, 1], there holds

(f, F )(g,G) ≤ C2(f, g) (12.3.62)

where C2 = max{∫ +∞
0

f(x)dx,
∫ +∞
0

g(x)dx} and (f, g) =
∫ +∞
0

f(x)g(x)dx.
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12.4 The Minkowski inequalities

In 1896, Minkowski (see, e.g., [466]) established the following famous inequality.

Theorem 12.4.1. Let a = {a1, . . . , an} or a = {a1, . . . , an, . . . } be a real sequence
or a complex sequence. Define{

‖a‖p = (
∑

k |ak|p)1/p if 1 ≤ p < +∞;

‖a‖∞ = supk |ak| if p = +∞.

Then for 1 ≤ p ≤ +∞, we have

‖a+ b‖p ≤ ‖a‖p + ‖b‖p. (12.4.1)

If 0 	= p < 1, then
‖a+ b‖p ≥ ‖a‖p + ‖b‖p (12.4.2)

where when p < 0, we require that ak, bk, ak + bk 	= 0 (k = 1, 2, . . . ).

Moreover, when p 	= 0, 1, the equality in (12.4.1) holds if the sequences a
and b are proportional. When p = 1, the equality in (12.4.2) holds if and only if
arg ak = arg bk for all k = 1, 2, . . . .

Remark 12.4.1. If we replace p by 1/p in (12.4.1), we can obtain the following
assertions:

(1) if 1 ≤ p < +∞, then we have{∑
k

|ak + bk|1/p
}p

≥
(∑

k

|ak|1/p
)p

+

(∑
k

|bk|1/p
)p

; (12.4.3)

(2) if 0 < p < 1, then we have{∑
k

|ak + bk|1/p
}p

≤
(∑

k

|ak|1/p
)p

+

(∑
k

|bk|1/p
)p

. (12.4.4)

We also have the following generalization.

Theorem 12.4.2. Let aj = (aj1, . . . , ajk, . . . ), 1 ≤ j ≤ m. Then we have∥∥∥∥ m∑
j=1

aj

∥∥∥∥
p

≤
m∑
j=1

‖aj‖p, 1 ≤ p ≤ +∞. (12.4.5)

Particularly, if 1 ≤ p < +∞, then we have⎧⎨⎩∑
k

m∑
j=1

|ajk|p
⎫⎬⎭

1/p

≤
m∑
j=1

(∑
k

|ajk|p
)1/p

. (12.4.6)
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Remark 12.4.2. The inequality (12.4.6) has the following weighted form: Let
pj, qk > 0, 1 < p < +∞. Then there holds⎧⎨⎩

+∞∑
k=1

qk

(
+∞∑
j=1

pj |ajk|
)p

⎫⎬⎭
1/p

≤
+∞∑
j=1

pj

(
+∞∑
k=1

qk|ajk|p
)1/p

. (12.4.7)

In the applications, the following integral form of the Minkowski inequality
is frequently used.

Theorem 12.4.3. Let Ω be a smooth open set in Rn and f, g ∈ Lp(Ω) with 1 ≤ p ≤
+∞. Then we have

f + g ∈ Lp(Ω) (12.4.8)

and
‖f + g‖Lp(Ω) ≤ ‖f‖Lp(Ω) + ‖g‖Lp(Ω). (12.4.9)

If 0 < p < 1, then we have

‖f + g‖Lp(Ω) ≥ ‖f‖Lp(Ω) + ‖g‖Lp(Ω). (12.4.10)

If p > 1, the equality in (12.4.9) holds if and only if there exist constants C1 and
C2 which are not all zero such that C1f(x) = C2g(x) a.e. in Ω.

If p = 1, then the equality in (12.4.9) holds if and only if arg f(x) = arg g(x) a.e.
in Ω or there exists a non-negative measurable function h such that fh = g a.e.
in the set A = {x ∈ Ω|f(x)g(x) 	= 0}.

In what follows, we shall introduce some generalizations and improvements
of the Minkowski inequality (see, e.g., Kuang [466]).

Theorem 12.4.4 (The Minkowski Inequality of Product Type). Let ak, bk ≥ 0 (k =
1, 2, . . . , n). Then we have{

n∏
k=1

(ak + bk)

}1/n

≥
(

n∏
k=1

ak

)1/n

+

(
n∏

k=1

bk

)1/n

. (12.4.11)

Theorem 12.4.5 (The Determinant Minkowski Inequality).

(1) Assume that A,B are n× n positively definite matrices. Then we have

|A|1/n + |B|1/n ≤ |A+B|1/n (12.4.12)

where |A| = detA stands for the determinant of A.

(2) Assume that Ak (k = 1, . . . ,m) are n × n positively definite matrices. Then
for any λk > 0,

m∑
k=1

λk|Ak|1/n ≤
∣∣∣∣∣

m∑
k=1

λkAk

∣∣∣∣∣
1/n

(12.4.13)

and the equality in (12.4.13) holds if and only if for any two matrices Aj , Ak,
there is a constant Cjk > 0 such that Aj = CjkAk or Ak = CjkAj .
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Ke Hu (see, e.g., [466]) improved the Minkowski inequality in the following
way.

Theorem 12.4.6 (The Hu Inequality). Let ak, bk ≥ 0, p ≥ 1. Then we have{∑
k

(ak + bk)
p

}1/p

≤
(∑

k

apk

)1/p

+

(∑
k

bpk

)1/p

− 1

2
g(p)R2(a, b) (12.4.14)

where g(p) = 1/(2p) for p ≥ 2; g(p) = (p− 1)/(2p) for 1 ≤ p < 2,

R(a, b) =

∑
k(a

p
k + bpk)[

∑
k(ak + bk)

pek]− [
∑

k(a
p
k + bpk)ek]

∑
k(ak + bk)

p

{∑k(ak + bk)p}3/2
and 1− ek + ej ≥ 0.

In 1997, Xiehua Sun (see, e.g., [466]) established the following generalized
Minkowski inequality.

Theorem 12.4.7 (The Sun Inequality). Assume that real numbers pj satisfy∑m
j=11/pj = 1/r, r > 0, m ≥ 2,

ajk > 0, j = 1, 2, . . . ,m, k = 1, 2, . . . , n.

Then when one of {pj} is positive (pj > 0, say), other pk < 0 (k 	= j), there holds

m∏
j=1

‖ajk‖pj ≤
∥∥∥∥ m∏

j=1

ajk

∥∥∥∥
r

. (12.4.15)

The equality in (12.4.15) holds if and only if

api

i1/a
pj

j1 = api

i2/a
pj

j2 = · · · = api

in/a
pj

jn (i, j = 1, 2, . . . ,m). (12.4.16)

In 1948, Toyama (see, e.g., [466]) gave a backward Minkowski inequality.

Theorem 12.4.8. Assume that not all ajk ≥ 0 are zero, and 0 < r < s. Then we
have

[
∑n

k=1(
∑m

j=1 a
s
jk)

r/s]1/r

[
∑m

j=1(
∑n

k=1 a
r
jk)

s/r ]1/s
≤ (min{m,n})1/r−1/s . (12.4.17)

The upper bound is optimal.

To end this section, we shall introduce some inequalities for the integral
average.

Definition 12.4.1. Let 0 < μ(E) < +∞, 1 ≤ p < +∞. Set

Mp(f) =

{
1

μ(E)

∫
E

|f(x)|pdμ
}1/p

.

We call Mp(f) to be the mean value of f with respect to p.
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Concerning Mp(f), we have the following properties.

Theorem 12.4.9.

(1) (The Hölder Inequality) M1(fg) ≤ Mp(f)Mq(g) with 1/p+1/q = 1, 1 < p <
+∞;

(2) (The Minkowski Inequality) Mp(f + g) ≤ Mp(f) +Mp(g) with 1 ≤ p < +∞;

(3) limp→+∞ Mp(f) = ‖f‖∞;

(4) Mp(f) is increasing in p: 1 ≤ p1 ≤ p2 =⇒ Mp1(f) ≤ Mp2(f);

(5) Mp(f) is increasing with respect to E, i.e., if E1 ⊆ E2, then{
1

μ(E1)

∫
E1

|f |pdμ
}1/p

≤
{

1

μ(E2)

∫
E2

|f |pdμ
}1/p

.

(6) (Mp(f))
p is logarithmically convex in p; Mp(f) is logarithmically convex in

1/p since we have
Mr(f) ≤ (Mp(f))

1−α(Mq(f))
α

where 0 < α < 1 and 1/r = (1− α)/p+ α/q.

In 1989, Guangrong You (see, e.g., [466]) established the following backward
Minkowski inequality.

Theorem 12.4.10. Let 0 < m1 ≤ ak ≤ M1, 0 < m2 ≤ bk ≤ M2, 1 ≤ k ≤ n,
1/p+ 1/q = 1. Then

(1) if p > 1, then we have(
m1 +m2

M1 +M2

)1/p
{(

m1

M1

)1/q

‖a‖p +
(
m2

M2

)1/q

‖b‖p
}

≤ ‖a+ b‖p ≤ ‖a‖p + ‖b‖p;
(12.4.18)

(2) if 0 < p < 1, then

‖a‖p + ‖b‖p ≤ ‖a+ b‖p

≤
(
M1 +M2

m1 +m2

)1/p
{(

m1

M1

)1/q

‖a‖p +
(
m2

M2

)1/q

‖b‖p
}
.

(12.4.19)

The following result was obtained by Sanja in 1995 (see, e.g., Kuang [466]).

Theorem 12.4.11. Let f, gk : [a, b] → R be non-negative increasing and gk ∈
Lp[a, b], k = 1, . . . , n. Then for 1 < p < +∞, the Minkowski inequality holds

n∑
k=1

{∫ b

a

(gpk(x))
′f(x)dx

}1/p

≤
{∫ b

a

(
n∑

k=1

gpk(x)

)′
f(x)dx

}1/p

. (12.4.20)

If f is decreasing and gk(a) = 0, k = 1, 2, . . . , n, then the converse inequality holds.
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12.5 The Jensen inequalities

In this subsection, we shall introduce the Jensen inequality and the generalized
Jensen inequalities due to Steffensen [890] and Ciesielski [165]. Since these inequal-
ities will involve the concept of a convex function on a line segment, we first give
the definition of a convex function on a line segment.

Definition 12.5.1. A function f is called convex on a line segment I ⊆ R if and
only if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (12.5.1)

holds for all x, y ∈ I and all real numbers λ ∈ [0, 1]. A convex function f on I is
said to be strictly convex if the strict inequality holds in (12.5.1) for x 	= y. If −f
is convex on I, then f is said to be concave on I.

There are several equivalent definitions in the literature. We collect them
here.

Definition 12.5.2. A function f is called convex on a line segment I ⊆ R if and
only if (12.5.1) holds with λ = 1/2. A convex function f on I is said to be strictly
convex if the strict inequality holds in (12.5.1) for λ = 1/2, x 	= y.

Definition 12.5.3. A function f is called convex on a line segment I ⊆ R if and
only if for any x1, x2, x3 ∈ I with x1 < x2 < x3, we have(

f(x2)− f(x1)
)
/(x2 − x1) ≤

(
f(x3)− f(x2)

)
/(x3 − x2). (12.5.2)

A convex function f on I is said to be strictly convex if strict inequality holds in
(12.5.2) for any x1, x2, x3 ∈ I with x1 < x2 < x3.

Definition 12.5.4. A function f is called convex on a line segment I ⊆ R if and
only if for any x1, x2, x3 ∈ I with x1 < x2 < x3, we have

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x1)

x3 − x1
≤ f(x3)− f(x2)

x3 − x2
. (12.5.3)

A convex function f on I is said to be strictly convex if the strict inequalities hold
in (12.5.3) for any x1, x2, x3 ∈ I with x1 < x2 < x3.

Definition 12.5.5. A function f is said to be convex on I if and only if the set
A = {(x, y) : f(x) ≤ y, x ∈ I} is a convex set in R2.

Definition 12.5.6. A function f is said to be convex on I if and only if for all
x0 ∈ I, φ(x) = [f(x)− f(x0)]/(x− x0) is an increasing function on I.

If f has a higher regularity, we have the following results.

Theorem 12.5.1. A differentiable function f is said to be convex on I if and only
if there exists a countable set A ⊂ I such that f ′ is increasing on I −A.
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Theorem 12.5.2. If f is a differentiable function of second order, then f is said to
be convex on I if and only if f ′′(x) ≥ 0, for all x ∈ I.

Remark 12.5.1. If f ′′(x) > 0, for all x ∈ I, then f is strictly convex on I. But the
converse is not true.

In the sequel, we shall introduce some related concepts of convex functions.

Definition 12.5.7. If f is a positive function on I and ln f(x) is a convex function,
then f is said to be logarithmical convex. In this case,

ln f [αx+ (1− α)y] ≤ α ln f(x) + (1− α) ln f(y) = ln[f(x)αf(y)1−α]

or

f(αx+ (1− α)y) ≤ f(x)αf(y)1−α

for any x, y ∈ I and all α ∈ [0, 1].

For logarithmical convex functions, we have such a result.

Theorem 12.5.3. A positive function f is logarithmical convex on I if and only if
for any real number a, f(x)eax is convex.

Definition 12.5.8. If f is a positive function on I and for any x1, x2 ∈ I, there
holds [

f

(
x1 + x2

2

)]2
≤ f(x1)f(x2), (12.5.4)

then f is said to be weakly logarithmical convex.

For weakly logarithmical convex functions, we have the next theorem.

Theorem 12.5.4. Let f, g be weakly logarithmical functions on I. Then[
f

(
x1 + x2

2

)]2
+

[
g

(
x1 + x2

2

)]2
≤ [f(x1) + g(x1)][f(x2) + g(x2)]. (12.5.5)

Note that when x1, x2 > 0, we have from (12.5.4)

f(A(x1, x2)) ≤ G(f(x1), f(x2))

where
A(x1, x2) = (x1 + x2)/2, G(x1, x2) =

√
x1x2. (12.5.6)

Thus motivated by (12.5.6), we now introduce

Mp(x, y) =

[
1

2
(xp + yp)

]1/p
, p 	= 0; M0(x, y) = lim

p→0+
Mp(x, y) =

√
xy.

Definition 12.5.9. If f(Mp(x, y)) ≤ Mp(f(x), f(y)), then f is said to be p-power
convex on I.
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Definition 12.5.10. Let f be a real function on I. If for any x, y ∈ I, 0 ≤ λ ≤ 1,
there holds that

f(λx+ (1 − λ)y) ≤ max{f(x), f(y)}
then f is said to be a quasilinear convex function on I.

For a quasilinear convex function, we have the following theorem.

Theorem 12.5.5. A function f is a quasi-linear function on I if and only if for
any x, y ∈ I, λ ∈ [0, 1], z = λx + (1 − λ)y and if f(x) ≤ f(y), then f(z) ≤ f(y).
Particularly, if for any x, y ∈ I, 0 < λ < 1, z = λx + (1 − λ)y, f(x) < f(y), we
have f(z) < f(y). Then f is said to be pseudo-convex on I.

Among the above inequalities for convex functions, the Jensen inequality
should be the famous one which has the discrete form and integral form. The
following is the discrete form (see, e.g., Jensen [394]).

Theorem 12.5.6. Let φ(u) : [α, β] −→ R be a convex function. Assume that ak ≥
0 (k = 1, 2, . . . , n) are non-negative constants verifying

∑n
i=1 ak > 0, then for any

x1, x2, . . . , xn ∈ [α, β], we have

φ

(∑n
k=1 akxk∑n
k=1 ak

)
≤

∑n
k=1 akφ(xk)∑n

k=1 ak
. (12.5.7)

Steffensen [890] extended the above Jensen inequality for convex functions.

Theorem 12.5.7. If f is a convex function and xk never decreases, and if ck (k =
1, . . . , n) satisfies the conditions

n∑
k=ν

ck ≤
n∑

k=1

ck (ν = 1, . . . , n) with

n∑
k=1

ck > 0, (12.5.8)

then

f

(∑n
k=1 ckxk∑n
k=1 ck

)
≤

∑n
k=1 ckf(xk)∑n

k=1 ck
. (12.5.9)

The above result evidently generalizes the Jensen inequality in Theorem
12.5.6 since here we do require that the ck (k = 1, 2, . . . , n) are non-negative.

There are some refinements of the Jensen inequality which we shall collect
in the following seven theorems (see, e.g., Kuang [466]).

Theorem 12.5.8. Let F : D → R, xk ∈ D, 1 ≤ k ≤ n. Set

fk,n =
1

Ck
n

∑
1≤i1<···<ik≤n

f

⎛⎝1

k

k∑
j=1

xij

⎞⎠ ,

gk,n =
1

Ck
n+k−1

∑
1≤i1<···<ik≤n

f

⎛⎝1

k

k∑
j=1

xij

⎞⎠ .

(12.5.10)
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Then ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f

(
1

n

n∑
k=1

xk

)
= fn,n ≤ · · · ≤ f(k+1),n ≤ fk,n

≤ · · · ≤ f1,n =
1

n

n∑
k=1

f(xk),

(12.5.11)

f

(
1

n

n∑
k=1

xk

)
≤ · · · ≤ g(k+1),n ≤ gk,n

≤ · · · ≤ 1

n

n∑
k=1

f(xk), k = 1, . . . , n.

(12.5.12)

Dragomir [215] proved the following theorem

Theorem 12.5.9. Let X be a linear space, A a convex subset of X, f : A → R a
convex function, xk ∈ A, ωk ≥ 0, qk ≥ 0, 1 ≤ k ≤ n. Set

Gn =

n∑
k=1

ωk > 0, Qn =

n∑
k=1

qk > 0. (12.5.13)

Then we have

(1) f

(
1

Qn

n∑
k=1

qkxk

)
≤ 1

Qk
n

n∑
i1,...,ik=1

qi1 · · · qikf
⎛⎝1

k

k∑
j=1

xij

⎞⎠
(12.5.14)

≤ 1

Qk
n

n∑
i1,...,ik=1

qi1 · · · qikf
⎛⎝ 1

Gk

k∑
j=1

ωjxij

⎞⎠ ≤ 1

Qn

n∑
k=1

qkf(xk);

(2)
1

Q2
n

n∑
k=1

n∑
j=1

qkqjf

(
xk + xj

2

)
≤ 1

Q2
n

n∑
k=1

n∑
j=1

qkqj

∫ 1

0

f(txk + (1− t)xj)dt

(12.5.15)

≤ 1

Qn

n∑
k=1

qkf(xk);

(3) f

(
1

Qn

n∑
k=1

qkxk

)
≤ 1

Qn

n∑
k=1

qkf

(
txk + (1− t)

1

Qn

n∑
k=1

qkxk

)
(12.5.16)

≤ 1

Q2
n

n∑
k=1

n∑
j=1

qkqjf(txk + (1− t)xj) ≤ 1

Qn

n∑
k=1

qkf(xk), t ∈ [0, 1].

In 1980, Vasic (see, e.g., [466]) proved the following refinement of the Jensen
inequality.
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Theorem 12.5.10. Under assumptions of the above theorem, let m ≤ xk ≤ M ,
x̄ = 1

Qn

∑n
k=1 qkf(xk). Then

1

Qn

n∑
k=1

qkf(xk) ≤ 1

M −m

{
(M − x̄)f(m) + (x̄−m)f(M)

}
. (12.5.17)

If f(x)
x−m is increasing on (m,M ], then

1

Qn

n∑
k=1

qkf(xk) ≤ 1

M −m
(x̄−m)f(M). (12.5.18)

If f(x)
M−x is increasing on [m,M), then

1

Qn

n∑
k=1

qkf(xk) ≤ 1

M −m
(M − x̄)f(m). (12.5.19)

Theorem 12.5.11 (The Lah–Ribaric Inequality). Let f be convex on [a, b], qk ≥
0,

∑n
k=1 qk = 1, xk ∈ [a, b], then we have

n∑
k=1

qkf(xk) ≤ b−∑
qkxk

b− a
f(a) +

∑
qkxk − a

b− a
f(b). (12.5.20)

Theorem 12.5.12 (The Dragomir–Ionescu Inequality). Let f be a differentiable
convex function on (a, b), pk ≥ 0, xk ∈ (a, b). Then we have

0 ≤
n∑

k=1

pkf(xk)− f

(
n∑

k=1

pkxk

)
≤

n∑
k=1

pkxkf
′(xk)−

[
n∑

k=1

pkxk

][
n∑

k=1

pkf
′(xk)

]
.

(12.5.21)

In 1985, Bingan Wang (see, e.g., [466]) gave another refinement of Theorem
12.5.6.

Theorem 12.5.13. Let φ be a convex function on D. Then for any xk ∈ D, pk >
0, 1 ≤ k ≤ n, there holds

φ

(
n∑

k=1

pkxk

/
n∑

k=1

pk

)
≤

⎛⎝ k∑
j=1

pj

/
n∑

j=1

pj

⎞⎠φ

⎛⎝ k∑
j=1

pjxj

/
k∑

j=1

pj

⎞⎠
+

⎛⎝ n∑
j=k+1

pj

/
n∑

j=1

pj

⎞⎠φ

⎛⎝ n∑
j=k+1

pjxj

/
n∑

j=k+1

pj

⎞⎠
≤

n∑
j=1

pjf(xj)

/
n∑

j=1

pj (12.5.22)

and the equalities in (12.5.22) hold if and only if x1 = · · · = xn.
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The Hadamard inequality can be also considered as a refinement of the Jensen
inequality.

Theorem 12.5.14. Let φ be a convex function on [a, b]. Then for any x1, x2 ∈ [a, b],
we have

φ

(
x1 + x2

2

)
≤ 1

x2 − x1

∫ x2

x1

φ(x)dx ≤ 1

2
[φ(x1) + φ(x2)]. (12.5.23)

The equality in (12.5.23) holds if and only if φ is a linear function.

In 2000, Brnetic et al. also established the following inequality (see, e.g.,
Kuang [466]).

Theorem 12.5.15. Assume that f : [0, 1] → R be a convex. Let

h(t) =
1

n

n∑
k=1

f [(1− t)xk + txk+1].

Then h(t) is a convex function on [0, 1] satisfying

f

(
1

n

n∑
k=1

xk

)
≤ h(t) ≤ 1

n

n∑
k=1

f(xk). (12.5.24)

Similarly to the Hölder inequality, there is the backward Jensen inequality
which was obtained by Slater in 1980.

Theorem 12.5.16 (The Slater Inequality). Let φ(t) be a convex and increasing
function on (a, b). Then for any xk ∈ (a, b), pk ≥ 0, 1 ≤ k ≤ n,

∑n
k=1 pk >

0,
∑n

k=1 pkφ
′
+(xk) > 0, there holds that∑n

k=1 pkφ(xk)∑n
k=1 pk

≤ φ

(∑n
k=1 pkφ

′
+(xk)xk∑n

k=1 pkφ
′
+(xk)

)
(12.5.25)

where φ′
+(xk) is the right derivative of φ at xk.

The following is the integral form of Jensen’s inequality.

Theorem 12.5.17. Let φ(u) : [α, β] → R be a convex function. Assume that f : t ∈
[a, b] → [α, β], and p(t) are continuous functions with p(t) ≥ 0, p(t) 	≡ 0. Then we
have

φ

(∫ b

a f(t)p(t)dt∫ b

a
p(t)dt

)
≤

∫ b

a φ(f(t))p(t)dt∫ b

a
p(t)dt

. (12.5.26)

A corresponding integral form of the Jensen inequality was also obtained
(see, e.g., Steffensen [891]).



496 Chapter 12. Appendix: Basic Inequalities

Theorem 12.5.18. If f is a convex function and g never increases and h satisfies
the conditions

0 ≤
∫ θ

0

h(x)dx ≤
∫ 1

0

h(x)dx with 0 ≤ θ ≤ 1 and

∫ 1

0

h(x)dx > 0, (12.5.27)

then

f

(∫ 1

0
h(x)g(x)dx∫ 1

0 h(x)dx

)
≤

∫ 1

0
h(x)f(g(x))dx∫ 1

0 h(x)dx
. (12.5.28)

In the sequel, we would like to mention the results related to the above results
of Steffensen’s inequalities, which are due to Ciesielski [165]. The following is its
discrete form.

Theorem 12.5.19. Let {pi} be a sequence of real numbers such that

k∑
i=1

pi ≥ 0 for k = 1, 2, . . . , n and

n∑
i=1

|pi| > 0. (12.5.29)

Let xi ∈ [0, a] (where a > 0 is a constant) for i = 1, . . . , n and let x1 ≥ x2 ≥ · · · ≥
xn. Furthermore, let f and f ′ be convex functions in [0, a] and f(0) ≤ 0. Then we
have

f

(∑n
i=1 pixi∑n
i=1 |pi|

)
≤

∑n
i=1 pif(xi)∑n

i=1 |pi|
. (12.5.30)

The corresponding integral form was also obtained (see, e.g., Ciesielski [165])
as follows.

Theorem 12.5.20. Let the function g be non-increasing in [α, β] and let a ≥ g(t) ≥
0 in [α, β]. Let f and f ′ be convex in [0, a] and let f(0) ≤ 0. Furthermore, let p(t)
be a function integrable in the Lebesgue sense in [α, β] such that∫ x

α

p(t)dt ≥ 0 for x ∈ [α, β] and

∫ β

α

|p(t)|dt > 0. (12.5.31)

Then we have

f

(∫ β

α
p(t)g(t)dt∫ β

α |p(t)|dt

)
≤

∫ β

α
p(t)f(g(t))dt∫ β

α |p(t)|dt
. (12.5.32)
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5012–5014.

[53] F.V. Atkinson and J.R. Haddock, On determining phase spaces for func-
tional differential equations, Funkcial. Ekvac., 31 (1988), 331–347.

[54] A.V. Babin and M.I. Vishik, Attractors of Evolution Equations, Studies
in Mathematics and its Applications, Vol. 25, North-Holland, Amsterdam,
1992.

[55] H.O. Bae, Temporal and spatial decays for the Stokes flow, J. Math. Fluid
Mech., 10 (2008), 503–530.

[56] H.O. Bae and H.J. Choe, Decay rate for the incompressible flows in half
space, Math. Z., 238 (2001),799–816.

[57] H.O. Bae and B.J. Jin, Asymptotic behavior for the Navier–Stokes equa-
tions in 2D exterior domains, J. Functional Anal., 240 (2006), 508–529.

[58] D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer
Academic Publishers Dordrecht, 1992.

[59] J.M. Ball, Stability analysis for an extensible beam, J. Differential Equa-
tions, 14 (1973), 399–418.

[60] J.M. Ball, Finite time blow up in nonlinear problems, Nonlinear Evolution
Equations, M.G. Crandall, ed., Academic Press, New York, 1977.

[61] J.M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear
evolution equations, Quart. J. Math. Oxford, 28 (1977), 473–486.

[62] J.M. Ball, Strong continuous semigroups, weak solutions, and the variation
of constants formula, Proc. Amer. Math. Soc., 63 (1977), 370–373.



Bibliography 501

[63] J.M. Ball, On the asymptotic behavior of generalized processes with
applications to nonlinear evolution equations, J. Differential Equations,
27 (1978), 224–265.

[64] J.M. Ball, Global attractors for damped semilinear wave equations, Discr.
Contin. Dyn. Syst., 10 (2004), 31–52.

[65] C. Bandle, Blow up in exterior domains, Recent Advances in Nonlinear
Elliptic and Parabolic Problems, P. Benilan, M. Chipot, L. Evans, and M.
Pierre, eds., Pitman Notes, 208 (1988), 15–27.

[66] C. Bandle and H.A. Levine, On the existence and nonexistence of global
solutions of reaction-diffusion equations in sectorial domains, Trans. Amer.
Math. Soc., 316 (1989), 595–622.

[67] C. Bandle and H.A. Levine, Fujita type results for convection reaction-
diffusion equations in exterior domains, Z. angew. Math. Phys., 40 (1989),
655–667.

[68] C. Bandle, H.A. Levine and Q.S. Zhang, Critical exponents of Fujita type
for inhomogeneous parabolic equations and systems, J. Math. Anal. Appl.,
251 (2000), 624–648.

[69] P. Baras and L. Cohen, Complete blow up for the solution of a semilinear
heat equation, J. Functional Anal., 71 (1987), 142–174.

[70] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems,
Academic Press, Boston, 1993.
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1984.

[154] V.V. Chepyzhov and M.I. Vishik, Attractors of Equations of Mathemati-
cal Physics, Providence, Rhode Island, Colloquium Publications, Vol. 49,
American Math. Soc., 2001.

[155] V.V. Chepyzhov, V. Pata and M.I. Vishik, Averaging of nonautonomous
damped wave equations with singularly oscillating external forces, J. Math.
Pures Appl., 90 (2008), 469–491.

[156] V.V. Chepyzhov, V. Pata and M.I. Vishik, Averaging of 2D Navier–
Stokes equations with singularly oscillating external forces, Nonlinearity,
22 (2009), 351–370.

[157] C.-C. Poon, Blow-up behavior for semilinear heat equations in nonconvex
domains, Diff. Integ. Eqns., 13 (2000), 1111–1138.

[158] C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems
and Differential Equations, Mathematical Surveys and Monographs, Vol.
70, American Math. Soc., 1999.

[159] M. Chipot and F.B. Weissler, Some blow up results for a nonlinear parabolic
equation with a gradient term, SIAM J. Math. Anal., 20 (1989), 886–907.

[160] M. Chlebik and M. Fila, From critical exponents to blow up rates for
parabolic problems, Rend. Mat. Appl., 19 (1999), 449–470.



Bibliography 507

[161] M. Chlebik and M. Fila, On the blow up rate for the heat equation with
a nonlinear boundary condition, Math. Meth. Appl. Sci., 23 (2000), 1323–
1330.

[162] Y. Choquet-Bruhat, Cas d’existence globale de solutions de l’équation utt−
Δu = A|u|p, C. R. Acad. Sci. Paris Sér. I., 306 (1988), 359–364.

[163] Y. Choquet-Bruhat, Global existence for solutions of utt −Δu = A|u|p, J.
Differential Equations, 82 (1989), 98–108.

[164] S.C. Chu and F.T. Metcalf, On Gronwall’s inequality, Proc. Amer. Math.
Soc., 18 (1967), 439–440.

[165] Z. Ciesielski, A note on some inequalities of Jensen’s type, Ann. Polon.
Math., 4 (1958), 269–274.

[166] B.D. Coleman and M.E. Gurtin, Equipresence and constitutive equation
for rigid heat conductors, Z. angew. Math. Phys., 18 (1967), 199–208.

[167] F. Conrad, J. Leblond and J.P. Marmorat, Stabilization of second order
evolution equations by unbounded nonlinear feedback, Proc. Fifth IFAC
Symp. Control Distributed Parameter Systems, Perpignan, pp. 101–116,
1989.

[168] F. Conrad and B. Rao, Decay of solutions of wave equations in a star-shaped
domain with non-linear boundary feedback, Asymptotic Anal., 7 (1993),
159–177.

[169] A. Constantin, Solutions globales des équations différentielles perturbées,
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valeurs moyennes, Acta Math., 30 (1906), 175–193.

[395] S. Jiang, Global large solutions to initial boundary value problems in one-
dimensional nonlinear thermoviscoelasticity, Quart. Appl. Math., 51 (1993)
731–744.

[396] S. Jiang, On the asymptotic behavior of the motion of a viscous heat-
conducting one-dimensional real gas, Math. Z., 216 (1994) 317–336.

[397] S. Jiang, On initial boundary value problems for a viscous, heat-conducting,
one-dimensional real gas, J. Differential Equations, 110 (1994), 157–181.

[398] S. Jiang, Global spherically symmetric solutions to the equations of a
viscous polytropic ideal gas in an exterior domain, Comm. Math. Phys.,
178 (1996), 339–374.

[399] S. Jiang, Global smooth solutions to a one-dimensional nonlinear thermo-
viscoelastic model, Adv. Math. Sci. Appl., 7 (1997), 771–787.

[400] S. Jiang, Global solutions of the Cauchy problem for a viscous polytropic
ideal gas, Ann. Scuola Norm Sup, Pisa Cl. Sci., XXVI (1998), 47–74.

[401] S. Jiang, Large-time behavior of solutions to the equations of a viscous
polytropic ideal gas, Ann. Mate. Pura Appl., CLXXV (1998), 253–275.

[402] S. Jiang, Large-time behavior of solutions to the equations of a one-
dimensional viscous polytropic ideal gas in unbounded domains, Comm.
Math. Phys., 200 (1999), 181–193.

[403] S. Jiang and R. Racke, Evolution Equations in Thermoelasticity, Pitman
Series Monographs and Surveys in Pure and Applied Mathematics, 112,
Chapman & Hall/CRC, Boca Raton, FL, 2000.



522 Bibliography

[404] F. John, Continuous dependence on data for solutions of partial differential
equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960),
551–585.

[405] F. John, Blow-up of solutions of nonlinear wave equations in three space
dimensions, Manuscripta Math., 28 (1979), 235–268.

[406] F. John, Nonlinear Wave Equations, Formation of Singularities, University
Lecture Series, American Math. Soc., Vol. 2, 1990.

[407] G.S. Jones, Fundamental inequalities for discrete and discontinuous func-
tional equations, J. Soc. Ind. Appl. Math., 12 (1964), 43–57.

[408] R. Kajikiya and T. Miyakawa, On L2 decay of weak solutions of the Navier–
Stokes equations in Rn, Math. Z., 192 (1986), 135–148.

[409] V.K. Kalantarov and O.A. Ladyzhenskaya, The occurrence of collapse for
quasilinear equations of parabolic and hyperbolic types, J. Soviet Math.,
10 (1978), 53–70.

[410] I.A. Kaliev and M.S. Podkuiko, On a boundary value problem for the equa-
tions of a viscous heat-conducting gas in noncylindrical domains shrinking
in time, Differential Equations, 42 (2006), 1426–1446.

[411] Y.I. Kanel, Cauchy problem for the equations of gasdynamics with viscosity,
Siberian Math. J., 20 (1979), 208–218.

[412] R. Kanwal, Generalized Functions: Theory and Technique, Academic Press,
New York, 1983.

[413] S. Kaplan, On the growth of solutions of quasilinear parabolic equations,
Comm. Pure Appl. Math., 16 (1963), 327–330.

[414] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc.
Japan, 19 (1967), 508–520.

[415] T. Kato, Notes on the differentiability of nonlinear semigroups, Proc. Symp.
Pure Math., AMS, 16 (1970), 91–94.

[416] T. Kato, The Cauchy problem for quasilinear symmetric hyperbolic sys-
tems, Arch. Rat. Mech. Anal., 58 (1975), 181–205.

[417] T. Kato, Quasilinear equations of evolution, with applications to partial dif-
ferential equations, in Spectral Theory and Differential Equations, Lecture
Notes in Math., 448 (1975), 25–70.

[418] T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations,
Comm. Pure Appl. Math., 33 (1980), 501–505.

[419] T. Kato, Strong Lp solutions of the Navier–Stokes equations in Rn, with
application to weak solutions, Math. Z., 192 (1984), 471–480.

[420] T. Kato, Abstract Differential Equations and Nonlinear Mixed Problem,
Fermi Lectures, Scuola Normale Sup., Pisa, 1985.

[421] S. Kawashima, Systems of a hyperbolic-parabolic composite type, with ap-
plications to the equations of magnetohydrodynamics, Ph.D. Thesis, Kyoto
Univ., Dec., 1983.



Bibliography 523

[422] S. Kawashima, Large-time behavior of solutions to hyperbolic-parabolic
systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh,
106 (1987), 169–194.

[423] S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions
to the Cauchy problem of the semilinear wave equation with a dissipative
term, J. Math. Soc. Japan, 47 (1995), 617–653.

[424] S. Kawashima and T. Nishida, Global solutions to the initial value problem
for the equations of one-dimensional motion of viscous polytropic gases, J.
Math. Kyoto Univ., 21 (1981), 825–837.

[425] B. Kawohl, Global existence of large solutions to initial boundary value
problems for a viscous, heat-conducting, one-dimensional real gas, J. Dif-
ferential Equations, 58 (1985), 76–103.

[426] B. Kawohl and L.A. Peletier, Observations on blow up and cores for non-
linear parabolic equations, Math. Z., 202 (1989), 207–217.

[427] A.V. Kazhikhov, Sur la solubilité globale des problèmes mono dimension-
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[580] L. Maligranda, Why Hölder’s inequality should be called Rogers’ inequality,
Mathematical Inequalities and Applications, 1 (1998), 69–83.

[581] B. Mandelbrot, Fractals, Form, Chance and Dimension, Freeman, San Fran-
cisco, 1977.



Bibliography 533

[582] M. Marcus and V.J. Mizel, Absolute continuity on tracks and mappings of
Sobolev spaces, Arch. Rat. Mech. Anal., 45 (1972), 294–320.

[583] M. Marcus and V.J. Mizel, Complete characterization of functions which
act, via superposition, on Sobolev spaces, Trans. Amer. Math. Soc.,
251 (1979), 187–218.

[584] J.B. Martin, Plasticity: Fundamentals and General Results, MIT Press,
Cambridge, MA, 1975.

[585] A.H. Martin, Global existence questions for reaction-diffusion systems, Pit-
man Res. Notes Math., 1 (1986), 169–177.

[586] P. Martinez, A new method to obtain decay rate estimates for dissipative
systems with localized damping, Rev. Mat. Comput., 12 (1999), 251–283.

[587] P. Martinez, A new method to obtain decay rate estimates for dissipative
systems, ESAIM: Control, Opti. Cal. Var., 4 (1999), 419–444.

[588] P. Martinez, Decay of solutions of the wave equation with a local highly
degenerate dissipation, Asymptotic Anal., 19 (1999) 1–17.

[589] P. Martinez, A new method to obtain decay rate estimates for dissipative
systems with localized damping, Rev. Mat. Compl. Madrid, 12 (2009), 419–
444.

[590] A.A. Martyniuk and R. Gautowski, Integral Inequalities and Stability of
Motion, Naukova Dumka, Kiev, 1979 (in Russian).

[591] A.A. Martyniuk, V. Lakshmikanthan and S. Leela, Motion Stability: The
Method of Integral Inequalities, Naukova Dumka, Kiev, 1977 (in Russian).

[592] K. Masuda, Weak solutions of Navier–Stokes equations, Tohoku Math. J.,
36 (1984), 623–646.

[593] A. Matsumura, Global existence and asymptotics of the solution of the
second-order quasilinear hyperbolic equations with the first-order dissipa-
tion, Publ. RIMS, Kyoto Univ., 13 (1977), 349–379.

[594] A. Matsumura, Initial value problems for some quasilinear partial differen-
tial equations in mathematical physics, Ph.D. Thesis, Kyoto Univ., June,
1980.

[595] A. Matsumura, An energy method for the equations of motion of compress-
ible viscous heat-conductive fluids, MRC Technical Summary Report, 2194,
Univ. Wisconsin-Madison, 1981.

[596] A. Matsumura, Large-time behavior of the spherically symmetric solutions
of an isothermal model of compressible viscous gas, Transport Theory and
Statist. Phys., 21 (1992), 579–592.

[597] A. Matsumura, On the asymptotic behaviour of solutions of semilinear wave
equations, Publ. RIMS Kyoto Univ., 121 (1976), 169–189.

[598] A. Matsumura and T. Nishida, The initial value problem for the equations
of motion of viscous and heat-conductive gases, J. Math. Kyoto. Univ.,
20 (1980), 67–104.



534 Bibliography

[599] A. Matsumura and T. Nishida, Initial boundary value problems for the
equations of motion of general fluids, Computing Meth. in Appl. Sci. and
Engin. V., North-Holland, Amsterdam, 1982, pp. 389–406.

[600] A. Matsumura and T. Nishida, Initial boundary value problems for the
equations of motion of compressible viscous fluids, Contemporary Mathe-
matics, 17 (1983), 109–116.

[601] A. Matsumura and T. Nishida, Initial boundary value problems for the
equations of motion of compressible viscous and heat-conductive fluids,
Comm. Math. Phys., 89 (1983), 445–464.
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[871] M. Silhavý, The Mechanics and Thermodynamics of Continuous Media,
Springer, Berlin-Heidelberg, 1996.

[872] M. Slemrod, Global existence, uniqueness and asymptotic stability of clas-
sical smooth solutions in 1D nonlinear thermoelasticity, Arch. Rat. Mech.
Anal., 76 (1981), 97–133.

[873] M. Slemrod and E. Infante, An Invariance Principle for Dynamical Systems
on Banach Space, Instability of Continuous Systems, H. Leipholz ed., pp.
215–221, Springer-Verlag, Berlin, 1971.

[874] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-
Verlag, New York, 1983.

[875] S. Snoussi, S. Tayachi and F. Weissler, Asymptotically self-similar global
solutions of a semilinear parabolic equation with a nonlinear gradient term,
Proc. Roy. Soc. Edinburgh A, 129 (1999), 1291–1307.

[876] S.L. Sobolev, On a theorem of functional analysis, Math. Sbornik, 4 (1938),
471–497.

[877] S.L. Sobolev, Applications of Functional Analysis to Mathematical Physics,
Amer. Math. Soc. Transl. Monographs, Vol. 7 (1963), [II. 3, Notes for II,
Notes for III].

[878] S.L. Sobolev, Denseness of finite fields in the space Lm
q (En), Sib. Mat. Zh.,

3 (1963), 673–682 (in Russian).

[879] S.L. Sobolev, Partial differential equations of mathematical physics, Intern.
Ser. of Monographs in Pure and Appl. Math., Vol. 50, Pergamon Press,
Oxford, 1964.



Bibliography 551

[880] C.D. Sogge, Lectures on Nonlinear Wave Equations, Monographs in Anal-
ysis, Vol. 2, International Press Incompressible, Boston, 1995.

[881] P. Souplet, Nonexistence of global solutions to some differential inequalities
of the second order and applications, Portugal Math., 52 (1995), 289–299.

[882] P. Souplet and F.B. Weissler, Self-similar subsolutions and blow-up for non-
linear parabolic equations, Nonlinear Anal., TMA, 30 (1997), 4637–4641.

[883] R.P. Sperb, Maximum Principles and Their Applications, Academic Press,
New York, London, Toronto, Sidney, San Francisco, 1981.

[884] J. Sprekels, Global existence of thermomechanical processes in nonconvex
free energies of Ginzberg–Landau form, J. Math. Anal. Appl., 141 (1989),
333–348.

[885] J. Sprekels, Global existence of thermomechanical processes in nonlinear
thin rods under velocity feedbacks, Math. Meth. Appl. Sci., 15 (1992), 265–
274.

[886] J. Sprekels and S. Zheng, Global solutions to the equations of a Ginzburg–
Landau theory for structural phase transitions in shape memory alloys,
Physica D, 39 (1989), 59–76.

[887] J. Sprekels and S. Zheng, Maximal attractor for the system of a Landau–
Ginzburg theory for structural phase transitions in shape memory alloys,
Physica D, 121 (1998), 252–262.

[888] J. Sprekels, S. Zheng and P. Zhu, Asymptotic behavior of the solutions to
a Landau–Ginzburg system with viscosity for martensitic phase transitions
in shape memory alloys, SIAM J. Math. Anal., 29 (1998), 69–84.

[889] O.J. Staffans, On a nonlinear hyperbolic Volterra equation, SIAM J. Math.
Anal., 11 (1980), 793–812.

[890] J.F. Steffensen, On a generalization of certain inequalities by Tchebychef
and Jensen, Skand. Aktuarietidskr., 1925(3-4)(1925), 137–147.

[891] J.F. Steffensen, Bounds of certain trigonometric integrals, Tenth Scandina-
vian Math. Congress 1946, Copenhagen J. Gjellerups Forlag, 1947.

[892] E.M. Stein, Singular Integrals and Differentiability Properties of Functions,
Princeton Univ. Press, 1970.

[893] N. Sternberg, Blow up near higher modes of nonlinear wave equations,
Trans. Amer. Math. Soc., 296 (1986), 315–325.

[894] B. Straughan, Further global nonexistence theorems for abstract nonlinear
wave equations, Proc. Amer. Math. Soc., 48 (1975), 381–390.

[895] B. Straughan, Instability, Nonexistence and Weighted Energy Methods
in Fluid Dynamics and Related Theories, Res. Notes Math., 74, Pitman,
Boston, 1982.

[896] B. Straughan, Qualitative Analysis of Some Equations in Contemporary
Continuum Mechanics, Thesis, Heriot-Watt Univ., 1974.



552 Bibliography

[897] W.A. Strauss, On continuity of functions with values in various Banach
spaces, Pacific J. Math., 19 (1966), 543–551.

[898] W.A. Strauss, Everywhere defined wave operators, in: Nonlinear Evolu-
tion Equations, M.G. Crandall, ed., pp. 85–102, New York-San Francisco-
London, Academic Press 1978.

[899] W.A. Strauss, Nonlinear scattering theory at lower energy, J. Functional
Anal., 41 (1981), 110–133.

[900] I. Stras̆kraba and A. Zlotnik, On a decay rate for 1D viscous compressible
barotropic fluid equations, J. Evol. Eqns., 2 (2002), 69–96.

[901] I. Stras̆kraba and A. Zlotnik, Global behavior of 1D viscous compressible
barotropic fluid with a free boundary and large data, J. Math. Fluid Mech.,
5 (2003), 119–143.

[902] A.M. Stuart and M.S. Floater, On the computation of blow up, European
J. Appl. Math., 1 (1990), 47–71.

[903] F. Sun and M. Wang, Existence and non-existence of global solutions of a
degenerate parabolic system with nonlinear boundary conditions, J. Partial
Differential Equations, 17 (2004), 71–79.

[904] F. Sun and M.Wang, Nonexistence of global solutions for nonlinear strongly
damped hyperbolic systems, Discr. Contin. Dyn. Syst., 12 (2005), 949–958.

[905] F. Sun and M. Wang, Existence and nonexistence of global solutions
for a nonlinear hyperbolic system with damping, Nonlinear Anal., TMA,
66 (2007), 2889–2910.

[906] T. Takahashi, Remarks on some inequalities, Tôhoku Math. J., 36 (1932),
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