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Introduction

The book. The majority of the basic algorithms of computations with matrices
are expressed via the entries of the matrices and are not taking into account the
individual properties or the specific structure of these matrices. This often results
in a unjustified high complexity of the algorithms.

For instance, the multiplication of two matrices of order N via the entries
of the matrices requires in general N3 operations. For many classes of structured
matrices this complexity can be reduced by an appropriate presentation of the
factors and the product as well as the algorithm. For this purpose we have to
represent the matrices and the algorithm not in terms of the entries of the matrices,
but in terms of other parameters (generators) which are essentially involved in the
description of the structure of these matrices. For matrices of the form

A:{aik}fszl, [ :xiTyk, i,kil,?,...,N

with z;,yx € C*, n < N, which are often called separable matrices, the natural
parameters (generators) are the n-dimensional vectors x;, yx (¢,k = 1,...,N). The
computations for matrices of this form in terms of the natural parameters are of
a much lower complexity. So for the product of two such matrices, A and

B = {bkj}llc\{j:h brj = v,{uj, k,j=1,2,..., N,
we get C = AB = {cij}f\fj:l with
N

N
2 : T T T 2 : T
Cij = IEi ykvk Uj = IEi ykvk Uj.
k=1

k=1

Hence the product C' is a matrix with separable generators x; and

N
wj = (Z ykl}g> Uj.
k=1

To compute the sum a = Egzl ykv,{ one requires Nn? operations and the products
wj =au; (j=1,...,N) cost Nn? operations. Thus for the multiplication of two

Xiii



xiv Introduction

matrices in separable form one needs only 2n?N operations. If n is fixed, the
complexity is asymptotically equal to O(N). A similar situation appears also for
the inversion of matrices of this type.

This book contains a systematic theoretical and computational study of sev-
eral types of generalizations of separable matrices. It is related to semiseparable,
quasiseparable, band and companion representations of matrices. For them their
natural parameters, called generators, are analyzed and algorithms are expressed
in terms of generators. Connections between matrices and boundary value prob-
lems for discrete systems play an important role. The book is focused on algorithms
of multiplication, inversion and description of eigenstructure of matrices. A large
number of illustrations are provided in the text. The book consists of eight parts.

Description of parts. The first part is mainly of a theoretical character. Here we in-
troduce the notions of quasiseparable and semiseparable structure. These notions
are illustrated on some well-known examples of tridiagonal matrices, band matri-
ces, diagonal plus semiseparable matrices, scalar and block companion matrices.
We derive various properties of quasiseparable and semiseparable structure which
are used in the sequel. An essential part of the material concerns the minimal rank
completion problem.

The second part is devoted to completion to Green matrices and to unitary
matrices and also to the completion of mutually inverse matrices.

Discrete systems with boundary conditions allow to present a transparent
description of various algorithms which is started in the third part. We begin the
presentation of algorithms with multiplication by vectors and then with algorithms
which are based on some well-known inversion formulas via quasiseparable struc-
ture. An essential role in this part plays the interplay between the quasiseparable
structure and discrete-time varying linear systems with boundary conditions.

The fourth part contains factorization and inversion algorithms for matrices
via quasiseparable and semiseparable structure. We present the LDU factorization
and inversion algorithms for strongly regular matrices. Algorithms of this type are
extended to arbitrary matrices with quasiseparable representations of the first
order. In the last chapter algorithms for the QR factorization and the QR based
solver for linear algebraic systems are presented.

The second volume is divided into Parts V-VIII. The titles are as follows.
Part V: The eigenvalue structure of order one quasiseparable matrices; Part VI:
Divide and conquer method for eigenproblem; Part VII: Algorithms for QR itera-
tions and for reduction to Hessenberg form; Part VIII: QR iterations for companion
matrices.

To whom this book is addressed. The book belongs to the area of theoretical
and computational Linear Algebra. It is a self-contained monograph which has
the structure of a graduate text. The main material was developed the last 30-40
years and is presented here following the lines and principles of a course in Linear
Algebra. The book is based mostly on the relatively recent results obtained by
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the authors and their coauthors. All these features together with many significant
applications and accessible style will make it widely useful for engineers, scientists,
numerical analysts, computer scientists and mathematicians alike.

Acknowledgment. We would like to express our gratitude the late Israel Koltracht
and also Harry Dym, Rien Kaashoek, Thomas Kailath and Peter Lancaster with
whom the work on semiseparable matrices has been started. It is also a pleasure
to thank our colleagues Tom Bella, Dario Bini, Paola Boito, Patrick Dewilde,
Luca Gemignani, Vadim Olshevsky, Victor Pan, Eugene Tyrtyshnikov, Marc Van
Barel, Raf Vandebril, Hugo Woerdeman, Jianlin Xia and Pavel Zhlobich for fruitful
discussions and cooperation. The authors acknowledge the help and understanding
of the School of Mathematical Sciences at Tel-Aviv University and of the Nathan
and Lilly Silver Family Foundation. We thank also the Israel Science Foundation
for partial support of our work by a grant in the period from 1997 till 2000.



Part I

Basics on Separable, Semi-
separable and Quasiseparable
Representations of Matrices



Introduction to Part I

In this part we introduce and study three types of representations of matrices: pure
separable, semi-separable and quasi-separable. Each representation is defined via
its generators and each representation has its order. For N x N matrices, using
these representations, we derive algorithms of linear O(N) complexity for some
important procedures and operations. These fast algorithms are expressed in terms
of the representations or generators. Generators are in fact the parameters that
allow to reduce essentially the complexity of the main algorithms. Important topics
in this part are minimal rank completion of matrices and necessary preparations
for the next parts. In particular, here are introduced the classes of tridiagonal,
scalar and block companion, Green, band, Hessenberg and other matrices. This
part contains also a review of different factorizations and theorems of inversion of
matrices. For each class of representations of matrices we introduce the notion of
order r of a representation. These orders play an essential role in the estimates for
complexity of the fast algorithms. More precisely, for an algorithm with complexity
¢ we obtain an estimate of the form ¢ < w(r)N, where w(r) is a polynomial in r.



Chapter 1

Matrices with Separable
Representation and Low
Complexity Algorithms

One of the simplest representations of matrices used for a reduction of complexity
of algorithms is the separable representation. The term separable comes from the
fact that the (block) entries Ag; of such an N x N matrix A can be presented in
a separated form

Akj:bk'Cj, j,k}:].,...,]\f7

where by and c; are matrices of certain sizes. The latter matrices are now con-
sidered as the main parameters (they form the so-called separable generators).
Our aim is to represent the main operations, such as multiplication, inversion,
different factorizations and others, on separable represented matrices in terms of
their generators. In the cases when the generators have small sizes this leads to a
considerable reduction of the complexity of the algorithms. The notion of separa-
ble order that we introduce in this chapter is used essentially in estimates of the
complexity of the algorithms.

One of our main tools is to reduce operations on separable matrices to op-
erations on time-dependent linear systems with boundary conditions. The latter
systems represent certain recurrences which are often convenient in computations.
In the next chapters more complicated representations of matrices are considered,
namely the semiseparable and quasiseparable ones. The material of this chapter
serves as a model for the developments in the other ones.

This chapter consists of the following sections: The first section contains some
basic formulas of factorization of matrices, while basic formulas for LDU factor-
izations and inversion are presented in the sixth and in the seventh sections. The
second section contains the definitions of separable and diagonal plus separable
representations of matrices, with some examples. In the third it is studied the mul-
tiplication of a separable matrix with a vector. Systems with boundary conditions

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 3
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_1, © Springer Basel 2014



4 Chapterl. The Separable Case

and, associated to them, matrices in diagonal plus separable form are considered in
the forth section. In the fifth section are presented algorithms of multiplication of
matrices via generators, and in the last three sections inversion and factorization
methods are studied.

§1.1 Rank and related factorizations

Here we present some well-known facts on factorization of matrices in a form
convenient for the subsequent use.

Let A be an m X n matrix of rank r. Let by, bo,...,b. be m-dimensional
columns which are a basis of the column space Im(A) of the matrix A. For every
column of the matrix A one has

A(:7j):2bk’ykj7 j:]-a"'7n
k=1

for some complex numbers ;. Setting B=[ b1 b2 ... b ], ' = (fykj);:’;:l
one gets
A=B.T (1.1)

with matrices B, I of sizes m X r, r X n respectively. Moreover, using the inequalities
r=rank A <rankB <r, r=rankA <rankI' <r

one obtains
rank A = rank B = rankI"' = r. (1.2)

The factorization (1.1) with matrices B, satisfying the condition (1.2) is called
the rank factorization of the matrix A.

Let V be an r x n matrix with rank V' = r and let for i = 1,...,r the symbol
I(i) mean the first nonzero element in the ith row of V. We say that the matrix
V is in the canonical form if the condition

(1) <1(2) <---<I(r) (1.3)
holds. From (1.3) it follows that
V@i+1:im1:0(i+1)—1)=0, i=1,...,r—L (1.4)

Applying some elementary transformations to the r x n matrix I" in (1.1) one
can obtain the representation I' = P - V with an invertible » X r» matrix P and a
matrix V' in the canonical form. Setting By = BP one gets instead of (1.1) the
factorization

A=B -V (1.5)
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with matrices By, V of sizes m X r,r X n such that
rank A = rank By =rankV =r, V in the canonical form. (1.6)

The factorization (1.5) with matrices By, V satisfying the condition (1.6) is called
the rank canonical factorization of the matrix A.

Taking the basis by, ba, . .., b, in the column space Im(A) to be orthonormal,
one obtains the factorization (1.1) with matrices B, T of sizes m x r,r x n such
that

rank A =rank B =rankI' =7, B*B=1I,. (1.7)
The factorization (1.1) with matrices B, T" satisfying the condition (1.7) is called
the orthogonal rank factorization of the matrix A.

Applying unitary transformations to the r x n matrix I' one obtains the
representation I' = P - R with a unitary r X r matrix P and an upper triangular
r x n matrix R, i.e., satisfying the condition R;; =0, 7 > j. Setting ) = BP one
gets instead of (1.1) the factorization

A=Q" R (1.8)
with matrices @, R of sizes m x r,7 X n such that
rank A =rank @ =rankR=r, Q*Q=1I,, R;;=0,i>j. (1.9)

The factorization (1.8) with matrices @, R satisfying the condition (1.9) is called
the orthogonal rank upper triangular factorization of the matrix A.

Another form of orthogonal rank factorization is the singular value decompo-
sition (SVD), i.e., the factorization of an m x n matrix A of rank r in the form

A=Q -X-U
with matrices @, U of sizes m X r,r X n such that
rank A =rankQ =rankU =r, Q*Q=UU" =1,

and the r x r diagonal matrix ¥ has positive diagonal entries. The diagonal entries
of ¥ are supposed to satisfy

Y1 > Yog > - 2> Xy

which is always true up to a change of rows and columns.
Rank factorization of a matrix is not unique. However there is a simple con-
nection between two different rank factorizations of the same matrix.

Lemma 1.1. Let P,Q and B,T" be two pairs of matrices of sizes m X r,r X n. such
that
P-Q=B-T, rankP =rank(@) =rank B =rankl =r.

Then there exists an invertible matriz S of size r x r such that P = BS™!
and (Q = ST.
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Proof. The matrix P has a left inverse P and the matrix Q@ has a right inverse @
Multiplying the equality
PQ =BT (1.10)

by P on the left one obtains R
Q= (PB)I (1.11)

while multiplying (1.10) by Q on the right one gets
P = B(IQ). (1.12)
Furthermore, multiplying (1.12) by P on the left we conclude that
(PB)(TQ) = I. (1.13)

Define the 7 x r matrix S by S = PB. The equality (1.13) implies that S is
invertible and S~! = I'Q. It now follows from (1.12), (1.11) that P = BS™!, Q =
ST. O

§1.2 Definitions and first examples

Let A = (Ai;)Y;—, be an N x N block matrix with blocks of sizes m; x n; and
with rank p. Consider the rank factorization

A=PQ (1.14)

with the matrices P, Q of sizes Zi\[:l m; X p and p X Zjvzl n;j, respectively, such
that
rank A = rank P = rank Q = p.

Based on factorizations of the form (1.14) we can define representations for any
block matrix.

Definiton 1.2. Let A = (Aij>£’j:1 be an N x N block matrix with blocks A4; ;,
i,7 = 1,2,..., N of size m; x n; represented in the form A = PQ, where P =
col(p(i))Y;, Q =row(q(i))}¥, are matrices with blocks p(i),q(i) (i = 1,...,N) of
sizes m; X 7 and r X n; respectively. Then the representation A = PQ), or which is
equivalent, the representation

Ay =p(i)a(j), i,j=1,....N (1.15)

is called a separable representation of order r of the matrix A. We also say that A
is represented in separable of order r form.

The matrices p(i),q(¢) (i = 1,...,N) are called the separable generators of
the matrix A. The matrices P and @ are called the matrices of generators of A.

The number 7 is called the order of these generators.

The rank p of the matrix A is called the separable order of A.
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Theorem 1.3. The separable order of a matrix is equal to the minimal order of its
separable generators.

The proof is obvious. O

Let A be a matrix represented in separable of order r form. The rank of A
is at most r. The 2N matrices which form the generators of the matrix A have
in total less than 2mrN entries, where m = max.¥ ;{m;,n;}. Compared with the

N N
number of entries of A there are fewer entries whenever r < (Z m1)2(21 " )
In fact r is assumed to be much smaller, so that less data are needed to store and
work with the matrix A.

Example 1.4. Consider the N x N matrix

1 2 3 o N-—-1 N

2 4 6 <o 2(N=-1) 2N

3 6 9 o 3(N=-1) 3N

A= : : : : :
N-1 2(N-1) 3(N-1) --- (N-12 (N-1)N

N 2N 3N <+ (N=1)N N?

The following separable generators of order one can be used for A:

Next we consider perturbations of block matrices represented in separable of
order r form by block diagonal matrices.

Definiton 1.5. Let A = (Aij>1]‘\fj=1 = D + B be an N x N block matrix with
blocks A4; j,4,j =1,2,..., N of sizes m; x n;, which is the sum of a block diagonal
matrix D = diag(d(i))X_; with blocks d(i) of sizes m; x n; and a matrix B of rank
p. The number p is called the separable order of the matrix A. Assume that the
matrix B is represented in separable of order r form: B = P() with the matrices
of generators P = col(p(i));, @ = row(q(i))X,, which are matrices with blocks
p(i),q(i) (i =1,...,N) of sizes m; x r and r X n;, respectively. Then A is called
a matrix with diagonal plus separable of order r representation.

The matrices p(i),q(i) (i = 1,...,N) are called the separable generators of
the matrix A. The matrices d(¢) (i =1,..., N) are called the diagonal generators
of A.

The above definition means that the matrix A = (Aij)ﬁ\szl has the represen-
tation A;; = p(i)q(j) + di;d(é), 1 <i,5 < N, where §;; is the Kronecker symbol.
Example 1.6. Consider the 3 x 3 matrix

1 -2 2
A=1| 6 18 8
7 20 18
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We have A = 21 + B, where

-1 -2 2
B = 6 16 8
7 20 16

The 3 x 3 matrix B has a zero determinant, which means that it admits a sepa-
rable representation of an order less than 3 and because rank B # 1, its minimal
separable order is greater than one. Indeed,

hence the matrix A has the diagonal generators d(1) = d(2) = d(3) = 2 and the
separable of order 2 generators

and

§1.3 The algorithm of multiplication by a vector

Let A = (Aij)%'d = D + PQ@ be an N x N block matrix with blocks A, ;,
1,7 =1,2,..., N of size m; xn;, in diagonal plus separable of order r representation
with separable generators p(i),q(i) (i = 1,...,N) of order r. Let x = col(z(i))},
be a vector with column coordinates (i) of sizes n;. The product y = Az of the
matrix A by the vector x is a vector y = col(y(i))X; with column coordinates y(i)
of sizes m;. We consider various procedures to compute the components y(i).

§1.3.1 Forward and backward computation of y

For y one obtains

N

N
y(i) = Z Aiga(j) =Y p(D)a(j)2(j) + d(D)a(i) = p(i)xn+1 + d(@)z(i),

Jj=1

where
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One can see that the variable y; satisfies the following relations: x; = 0 and for
i=1,....,N

%

Xit1 = Y a(i)z(5),

j=1

hence one obtains the recursion
Xi+1 = xi +q(i)z(i), i=1,...,N.

Alternatively, for y one obtains
N N
y(i) = Z Ay (j) = Zp(i>CI(j)93(j) + d(i)x(i) = p(i)no + d(i)x (i),

where
N

m= > q()zQ)-

j=it1
One has ny = 0 and it follows that 7; satisfies the recurrence relations
From these relations one obtains the following algorithms for computing the
product y = Ax.
Algorithm 1.7. (Multiplication by a vector with forward computation of data)
1. Start with

x1=0 (1.16)
and for ¢ = 2,..., N + 1 compute recursively
Xi = Xi—1 +q(i — Da(i —1). (1.17)

2. Compute for £ =1,..., N the components of the vector y:
y(k) = p(k)xn+1 + d(k)x(k). (1.18)

Algorithm 1.8. (Multiplication by a vector with backward computation of data)
1. Start with

ny =0 (1.19)
and for : = N — 1,...,0 compute recursively
mi = Ni+1+q(i + Dz(i+1). (1.20)

2. Compute for kK = N,...,1 the components of the vector y:

y(k) = p(k)no + d(k)z (k). (1.21)
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The complexity of the arithmetic operations used in Algorithms 1.7 and 1.8
is as follows.

1. The formula (1.17): r additions plus the matrix multiplication, which com-
prises rn;_1 multiplications and r(n;—; — 1) additions.

2. The formula (1.18) or (1.21): mgr + myny multiplications and my(r — 1) +
my, + my(nk — 1) additions.

3. The formula (1.20): r additions plus the matrix multiplication, which com-
prises rn;41 multiplications and r(n;+1 — 1) additions.

For instance, the matrix operation ¢(i — 1)x(¢ — 1) in formula (1.17) is a
product of an r X n;_; matrix ¢(i — 1) by an n;_;-dimensional vector z(i — 1) and
hence it requires rn;—; multiplications and r(n;,—1 — 1) additions. Thus the total
complexity for computation of the value y; is 2rn;_; arithmetical operations. In
the same way one obtains complexities for the computation of the other variables
of the algorithm.

Hence, the total complexity of Algorithm 1.7 is estimated as

N
c<?2 Z(rnk,l + mgr + meng). (1.22)
k=1

Similarly the complexity of Algorithm 1.8 is estimated as

N

c< 2Z(rnk+1 + mgr + mgng). (1.23)
k=1

Let the block sizes my, ni be bounded by the number m, i.e., my,nr < m.
In this case inequality (1.22) or inequality (1.23) yield the estimate

¢ < (2r+m)2mN.

Thus, for a matrix with diagonal plus separable representation the multiplication
by a vector costs O(N) arithmetic operations in contrast with O(N?) for a matrix
in general form. It is clear that in this form the best estimate is obtained when r
equals the separable order of the matrix.

§1.3.2 Forward-backward computation of y

Here we consider another procedure which will be extended later to various types
of representations. In this case the vector y is found as y = yr, + yp + yu, where
yr = Arx, yp = Apz, yy = Ayx and A, Ap, Ay are correspondingly the
strictly lower triangular, the diagonal and the strictly upper triangular parts of
the matrix A.
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For yr, one has yr,(1) = 0 and for ¢ > 2 one obtains

i—1 i—1
yr(i) =Y Aiz(j) =Y p(i)a(i)z () = p(i)x:
j=1 j=1
where -
Xi = Y ali)z()).
j=1
One can see that the variable y; satisfies the following relations: x; = 0 and for
i=1,..., N — 1 one obtains the recursion

Xi+1 = Xi +q(i)x (7).

For yy one has yy(N) = 0 and for i < N — 1 one obtains

N N
yo(i) = > Ayz(i) = Y p(i)g(d)z() = p(i)m,
j=i+1 j=it1
where
N
ni= Y ai)z)-
j=it+1

One has ny = 0 and it follows that for i = N, ... 2 the variable 7; satisfies the
recurrence relation
Ni—1 = 1 + q(i)x(i).
For yp it is obvious that yp(i) = p(i)q(¢)z(:) + d(i)x(i), i =1,...,N.
From these relations one obtains the following algorithm for computing the
product y = Ax.

Algorithm 1.9. (Forward-backward multiplication by a vector)
1. Start with y(1) =0, x1 =0 and for ¢ = 2,..., N compute recursively
Xi = Xi—1+q(i — Dx(i — 1), (1.24)
yr(i) = p(i)x:. (1.25)
2. Compute fori=1,..., N
yp(i) = (p(i)q(i) + d(i))x(i). (1.26)
3. Start with yy(N) =0, nxy =0 and for i = N —1,...,1 compute recursively
mi = Mit1 +q(i + Da(i + 1), (1.27)
yo (i) = p(i)mi- (1.28)

4. Compute the vector y
y=yrL+Yyp+yu. (1.29)
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The complexity of the arithmetic operations used in Algorithm 1.9 is as
follows.

1. The formula (1.24): r additions and a matrix vector multiplication which
comprises another rn;_; multiplications and r(n;—; — 1) additions.
2. The formula (1.25): m,r multiplications and m;(r — 1) additions.

3. The formula (1.26): m;rn; multiplications and m;(r — 1)n; additions plus
m;n; additions inside the brackets and then another m;n; multiplications
and m;(n; — 1) additions.

4. The formula (1.27): r additions and a matrix vector multiplication which
comprises another rn;; multiplications and r(n;+; — 1) additions.

5. The formula (1.28): m,r multiplications and m;(r — 1) additions.

6. The formula (1.29): 2my, additions.

Hence the total complexity of Algorithm 1.9 is estimated as follows:

N
c< QZ[mk(Qr—l—nk—l—rnk) + g7+ TNE1 + M) (1.30)
k=1

Let the block sizes my, ni be bounded by the number m, i.e., my,nr < m.
In this case using the inequality (1.30) one obtains the estimate

c< (rm+4r+m+1)2mN. (1.31)

Thus for a matrix with separable representation the forward multiplication by a
vector in Algorithm 1.7, the backward multiplication by a vector in Algorithm 1.8,
as well as the forward-backward multiplication by a vector in Algorithm 1.9 costs
O(N) arithmetic operations in contrast to O(N?) for a matrix in general form. It
is clear that in the form (1.31) the best estimate is obtained when r equals the
separable order of the matrix.

§1.4 Systems with homogeneous boundary
conditions associated with matrices in
diagonal plus separable form

Let A = {Ay}});—, be an N x N block matrix with diagonal plus separable
representation with block entries of sizes m; X n;, with separable generators
p(i)(i=1,...,N), q(5) (j=1,...,N) of order r.

§1.4.1 Forward and backward systems

Consider in detail the arithmetic operations used in Algorithm 1.7. The formulas
(1.16), (1.17) and (1.18) together describe what is called a discrete-time forward
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system with homogeneous boundary conditions:

Xr+1 = Xk + q(k)z(k), k=1,...,N
y(k) =p(k)xny1 +d(k)x(k), k=1,...,N (1.32)
x1 = 0.

Consider in detail the arithmetic operations used in Algorithm 1.8. The for-
mulas (1.19), (1.20) and (1.21) together describe what is called a discrete-time
backward system with homogeneous boundary conditions:

Me—1 = Mk + q(k)x(k), k=N,...,1
y(k) = p(k)no +d(k)xz(k), k=N,... 1 (1.33)
nn = 0.

Here the vectors z(k) (k = 1,...,N) are called the input, the vectors y(k)
(k =1,...,N) are called the output, and the vectors x, and n of size r are
called the state space variables of the respective systems. The transformation
from x = (x(k))Y_, to y = (y(k))A_, is a linear transformation which maps the
input of the system into the output. This transformation is called the input-output
operator of the system.

Thus one obtains the following.

Theorem 1.10. Let A be an N x N block matriz with diagonal plus separable of
order r representation with separable generators p(k),q(k) (k = 1,...,N) and
diagonal generators d(k) (k=1,...,N).

Then A is the matriz of the input-output operator of the forward system (1.32)
and of the backward system (1.33) with coefficients equal to the corresponding
generators of the matrixz A.

The inverse statement is also true.

Theorem 1.11. Let there be given a forward system (1.32) or a backward system
(1.33).

Then the matrix A with separable of order r generators p(k),q(k) (k =
1,...,N) and diagonal generators d(k) (k = 1,...,N) which are equal to the
corresponding coefficients of the system, is the matriz of the input-output operator
of the system (1.32), respectively (1.33).

Proof. Let x be an input of the system. One can easily prove by induction that
the solution of the first equation in (1.32) is given by

k—1
Xe =Y _q()z(j), k=1,...,N+1. (1.34)
j=1
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Indeed, for £ = 1 the relation (1.34) follows directly from x; = 0. Suppose that
(1.34) holds for some k, k > 1. Using the first equation from (1.32) one gets

E

-1

() (G) + q(k)a(k) = q()=(5)-

1 j=1

XEk+1

.
I

Similarly, the solution of the first equation in the backward system (1.33) is
given by

= > q@)z(), k=N,...,0. (1.35)
j=k+1

Indeed, for k = N the relation (1.35) follows directly from ny = 0. Suppose that
(1.35) holds for some k, k < N. Using the first equation from (1.33) one gets

M=y q()z() +ak)zk) =D q(i)z().
=kt =k

Thus for the output y one obtains in both cases

N
y(k) = p(k)Y_a(i)z(G) + d(k)a(k), k=1,...,N.

j=1
From here one obtains y = Ax with the matrix A of the form A= D+ PQ. O

Example 1.12. Consider the N x N matrix A from Example 1.4 with the separable
generators p(k) = q(k) = k, k = 1,...,N and the diagonal generators d(k) =
0, k=1,...,N.

Then the forward system with homogenous boundary conditions (1.32) be-
comes

Xe+1 = Xk + kz(k), k=1,...,N,
y(k) = p(k)xny1 +d(k)x(k) = kxns1, k=1,...,N, (1.36)
x1=0

and the backward system with homogeneous boundary conditions (1.33) becomes

Ne—1 =k + ka(k), k=N,...,1,
y(k) = p(k)no + d(k)x(k) = kno, k=1,...,N, (1.37)



§1.4. Systems with homogeneous boundary conditions 15

§1.4.2 Forward-backward descriptor systems

Consider in detail the arithmetic operations used in Algorithm 1.9. Using formulas
(1.25), (1.26), (1.28) one has

y(k) = p(k)xx + p(k)nr. + p(k)q(k)z(k) + d(k)z(k), k=1,...,N.  (1.38)
Here the auxiliary variables y, 7 are determined via the recurrence relations
x1=0, xi=xi-1+q(i—1z(i-1), i=2,...,N; (1.39)
v =0, m=ni41+qli+Dz(i+1), i=N-1,...,1. (1.40)
One can rewrite relations (1.39), (1.40) in the form
X1 =0 X1 =xk+aq(k)z(k), k=1,...,N-1; (1.41)
N =0, nk—1=mne +aq(k)z(k), k=N,....2 (1.42)

The formulas (1.38), (1.41), (1.42) together are called the forward-backward de-
scriptor system with homogeneous boundary conditions:

Xk+1 = Xk + q(k)z(k), k=1,...,.N -1
Ne—1 = Mk + q(k)x(k), k=N,...,2 (1.43)
y(k) = p(k)xx + p(k)nk + (p(k)q(k) + d(k))z(k), k=1,...,N
x1 =0, nny=0.
Alternatively, consider the system (1.32). From the recursions
Xk+1 :Xk+q(k)x(k)7 k= 17"'3Na X1 :Oa (144)
it follows that
N
xni1 =y qlk)z(k).
k=1
Denote
N
me= > q(i)z(i).
i=k+1
Then the following recursion takes place
Nk—1 = Nk +q(k‘)l’(k), k= Na"'327 NN = 07 (145)

while
XN+1 = Xk + q(k)z (k) + 15
Inserting this relation in the second equation of the system (1.32) we get
y(k) = p(k)xk + p(k)mw + (p(k)q(k) + d(k))z(k), k=1,...,N. (1.46)
The equations (1.44)—(1.46) form again the system (1.43).
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In the system (1.43) as above the vectors (k) (k = 1,...,N) are called the
input, the vectors y(k) (k = 1,..., N) are called the output, and the vectors xx and
Ny of size r are called the state space variables of the system. The transformation
from x = (x(k))Y_, to y = (y(k))A_, is a linear transformation which maps the
input of the system into the output. This transformation is called the input-output
operator of the system.

Thus one obtains the following.

Theorem 1.13. Let A be an N x N block matriz with diagonal plus separable of
order r representation, with separable generators p(k),q(k) (k = 1,...,N) and
diagonal generators d(k) (k=1,...,N).

Then A is the matriz of the input-output operator of the system (1.43) with
coefficients equal to the corresponding generators of A.

The inverse statement is also true.

Theorem 1.14. Let there be given a system (1.43). Then the matriz A with sep-
arable of order r generators p(k),q(k) (k = 1,...,N) and diagonal generators
d(k) (k =1,...,N) which are equal to the corresponding coefficients of the sys-
tem, is the matriz of the input-output operator of the system (1.43).

Example 1.15. Consider the N x N matrix from Example 1.4 with the same sep-
arable generators p(k) = q(k) =k, k= 1,..., N and with the diagonal generators
d(k) =0, k = 1,...,N. Then the descriptor system with boundary conditions
(1.43) becomes

Xk+1 = Xk + q(k)x(k) = xr + kx(k), k=1,...,N—1,
Me—1 = Mk + q(k)x(k) =nx + kx(k), k=N,...,2,
y(k) = p(k)xk + p(k). + p(k)q(k)a(k) = kxp + ke + kK*a(k), k=1,....N,
x1=0, nv=0. O

§1.5 Multiplication of matrices

In this section we consider products of matrices with separable or diagonal plus
separable representations. We derive formulas to compute generators of the prod-
uct.

§1.5.1 Product of matrices with separable representations

In this subsection it is shown that the product of two suitable matrices with given
separable representations of orders r and s, respectively, is a matrix with separable
representation of the lesser order. Formulas for separable generators of the product
are derived.
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Theorem 1.16. Let A and A® be two N x N block matrices of total scalar

sizes of (Zivzl m;) X (Zf\il v;) and (Zf\il Vi) X (Zf\il n;) respectively, repre-
sented in separable form of order r and respectively s, with separable generators
pM (i), qM @), i = 1,...,N and p?(i),q? @), i = 1,...,N which are matri-
ces of sizes m; X v, T X v;, v; X § and s X n; respectively. In matrix form, if
we consider the matrices P(Y) = col(pM (i)X,, QM) = row(¢M (@)Y, P?) =

col(p@ (NN, QP =row(q¢@ (i)Y, then AN = POQM gnd A?) = PRIQX),
Denote by Z the r X s matriz

N
Z=QWp? = Zq(l)(k)p(Q)(k).
k=1

Then the product block matriz A = AW AP admits the order s separable
representation A = PQ®), where P = P Z, with separable generators p(l)(i)Z,
q? (1),i=1,...,N of sizes m; X s and s x n;, respectively, as well as the order r
separable representation A = PMQ where Q = ZQP, with separable generators
pM (i), Z¢gP @), i=1,...,N of sizes m; x r and T x n;, respectively.

Proof. For any i, =1,...,N
A=AMAR) = pM pRIoR) = p)Zz®) = (P(I)Z)Q(Q) - p(l)(ZQ(Q)).

Therefore, the product block matrix A = AMA® admits the order s separa-
ble representation A = PQ®?), where P = PWZ, with separable generators
pM(i)Z, ¢ (i), i = 1,...,N as well as the order r separable representation
A = PMQ, where Q = ZQ®), with separable generators p(!) (i), Zq¢® (i), i =
1,...,N. O

Let m be the maximal block size of the matrices A, A je.,

m= 1g}€au§XN(mk, Vky T )-

The complexity of the arithmetic operations of the algorithm in Theorem 1.16 is
calculated as follows.
1. Computation of Z: Zszl rvys multiplications and Zszl r(v—1)s additions,
thus less than 2mrsN arithmetic operations.
2. Computation of P = P Z: Zfil m;rs multiplications and Zfil mi(r—1)s
additions, thus less than 2mrsN arithmetic operations.
3. Computation of A = PQ®: Z;\;l rsn; multiplications and Z;\;l r(s—1)n;
additions, thus less than 2mrsN arithmetic operations.

Thus the total complexity of the algorithm for the multiplication of two block
matrices with separable representation is linear, namely

c < 6mrsN

arithmetic operations.
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§1.5.2 Product of matrices with diagonal plus
separable representations

In this subsection it is shown that the product of two suitable matrices with given
diagonal plus separable representations of orders r and s, respectively, is a matrix
with diagonal plus separable representation of order at most r + s. Formulas for
the separable and diagonal generators of the product are derived.

Theorem 1.17. Let AV and A®) be two N x N block matrices of total scalar sizes
(vazl m;) X (vazl v;) and (Zf\;l Vi) X (vazl n;), respectively, given in diagonal
plus separable form of orders v and s, respectively, namely A has the diago-
nal generators d(l)(i)7 i=1,...,N of size m; X v; and the separable generators
pM(i),qM ), i = 1,...,N of sizes m; x v and 7 X v;, respectively, while A
has the diagonal generators d® (1), i=1,...,N of size v; X n; and the separable
generators p® (i), ¢ (i), i = 1,..., N of sizes v; x s and s x n;, respectively. In
matriz form, if we consider also the matrices

DW = diag(dV (i)N,, PY =col(pM @)X, QW =row(¢™ (i)Y

i=1> =1
and
D@ = diag(d® (i))X,, P® =col(p@ (@)X, Q¥ =row(q® (i)N,,

then AV = DM 4 pMQM) gnd A2 = D@ 4 pRQQ),
Denote by Z the r X s matriz

N
Z=QWP® =3 "M (k)p® (k). (1.47)
k=1

Then the product block matriz A = AN AR) admits the order r + s diagonal
plus separable representation A = D + PQ with the diagonal generators d(i), i =
1,...,N of size m; x n; and the separable generators p(i),q(i), i = 1,...,N of
sizes m; X (r +s) and (r + s) X n;, respectively. These generators are given by the
formulas

d(i) = dW (i)d® (), i=1,...,N, (1.48)

p(i) = ( pME) dD(@)pP ) ), i=1,...,N, (1.49)
N (V@D (@) + ZgP () i

q(i) = < 42 ) , i=1,...,N. (1.50)

Proof. We have
A=AMA®@) — (D(l) + p(l)Q(l))(D(2) + p(2)Q(2)) =D+ PQ
with

QWD®A 4 ZQ(Q))
D=DWpA  p= ( p) p)pR )’ Q= < 0 .

Here Z is the r x s matrix defined in (1.47).
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The formula D = DM D®) means (1.48) for diagonal entries. For the com-
putation of p(i), note that

N

=1’

(PO DOPO ) = col ( pM(E) dD(@)p@D )
which implies (1.49). Finally, using the fact that
QWD = row(qM (i)dP i)y, QP =row(g® ()L,
we obtain (1.50). O
Let m be the maximal block size of the matrices A, A?) e,

m = max (mg, Vg, nk).
1<k<N

The complexity of the arithmetic operations of the algorithm in Theorem 1.17 is
calculated as follows.

1. The computation of Z = QM P2 costs less than 7mNs multiplications and
less than r(mN —1)s additions, thus less than 2rmN s arithmetic operations.

2. Computation of all the formulas (1.48) costs Zfil m;v;n; multiplications and
Z?;l m;(v; — 1)n; additions, thus less than 2m3N arithmetic operations.

3. Computation of all the formulas (1.49): Zfil m;v;s multiplications and
Z?;l m;(v; — 1)s additions, thus less than 2m?sN arithmetic operations.

4. Computation of all the formulas (1.50): the computation of ¢(*)(i)d® (i) re-
quires for vazl rv;n; multiplications and Zf\il r(v;—1)n; additions, thus less
than 2m?2rN arithmetic operations. The computation of all Z¢(? (i) costs at
most rs Nm multiplications and r(s— 1) Nm additions, thus less than 2rsNm
arithmetic operations.

Thus the total complexity of the algorithm for the multiplication of two block
matrices with diagonal plus separable representation is linear, namely

c < (2m? + 2sm + 2rm + 4drs)mN

arithmetic operations. For a scalar matrix there are ¢ = (2rs+r+s+1)N arithmetic
operations.

Example 1.18. Consider the 3 x 3 matrix A" which has a diagonal plus order 1
separable representation:

1 3 -5
AN = 6 —-15 30 | =D+ PDQW
3 -9 20
2.0 0 -1
=103 0|+ 6 |(1 -3 5)
00 5 3
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It follows from this computation that the diagonal generators are d(1) = 2,d(2) =
3,d(3) = 5 and the separable generators are p(1) = —1,p(2) = 6,p(3) = 3,4(1
Multiply the matrix A on the right by the matrix

~—

4 2 3 1 2 3
AP = 2 7 6 | =3I1+|2 4 6 |,
3 6 12 36 9

which has the following separable generators
p@ () =¢? @) =i, i=1,23,

as Example 1.4 for N = 3 shows, and diagonal generators d® (1) = d(2) =
d®(3) =3.

Theorem 1.17 gives the following diagonal plus order 2 separable representa-
tion of the product matrix. Compute first according to (1.47)

1
Z=(1 -3 5) § = 10.

Compute d(i), i = 1,2,3 using (1.48)
d(1) =dM(1)d? (1) =6, d(2) =3-3=19, d(3) =5-3 = 15.
Compute p(i), ¢ = 1,2,3 using (1.49)

)= (pP1) aO@)pP) )= (-1 2:1),
)=(6 6), pB)=(3 15).
Compute ¢(i), i = 1,2,3 using (1.50)

o(1) = < q<1>(1)d<2q>((21))(1+) Zq? (1) > _ ( 1.3+11o-1 > _ ( 113 )

@=(90) (1) = (73) ().

As a check, compute the product matrix A as A = D + P(Q where D =
diag(d(i))i_y, P = col(p(i))i_1, Q = row(q(i)){-, namely

p(2

(
(
(
(

6 0 O -1 2
A=10 9 0 + 6 6 < 113 121 435 )
0 0 15 3 15
6 0 O -1 -7 =39
=0 9 0 + 84 78 288
0 0 15 54 63 180
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and note that the result of the direct multiplication is the matrix

-5 -7 =39
A=AMA@ = | 84 87 288 |. O
54 63 195

§1.6  Schur factorization and inversion of block matrices

Let A = {Aij}%zl be a block matrix with block entries of sizes m; x m; which has

invertible principal leading submatrices {Aij}ﬁjzl, k=1,2,...,N. Such a matrix
A is called strongly reqular. Here we derive some general results concerning Schur
factorizations of strongly regular matrices. It will be proved that every strongly

regular matrix A admits the LDU factorization
A= LDU, (1.51)

where L, U, D are block matrices with the same sizes of blocks as A, L and U are
block lower and respectively upper triangular matrices with only identities on the
main diagonals and D is a block diagonal matrix.

We start with a detailed study of factorizations of 2 x 2 block matrices with
invertible principal submatrices. We also derive inversion formulas for such matri-
ces.

Theorem 1.19. Let A be an (m1 +ms) X (m1 +me) matriz partitioned in the form
A A
A =
( Ao1 Ax
with matrices Ayq, A1, Ao1, Aoo of sizes m1 X mq, my X ma, My X M1, Mo X Ms,

respectively.
Assume that the matriz A1 is invertible. Then the factorization

_ I’ml 0 All 0 Iml A1_11A12
A= ( An AL I, > ( 0 T > ( 0 In, ) (1.52)

with I’ = Agg — A21A1_11A12, holds. Moreover the formula
det A = det A1y det I’ (1.53)

1s valid. Furthermore the matriz A is invertible if and only if the matrix T is
invertible and in this case the inversion formula

(1.54)

A1 AT+ AT AT T A AT — A Al
—F_1A21A;11 1“—1

holds.
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Assume that the matriz Ass is invertible. Then the factorization

A L, ApAY © 0 I, 0
A‘( 0 I, 0 Ap )\ At 40 1., ) (1.55)

with © = Ay — A12A;21A21, holds. Moreover the formula
det A = det Ago det © (1.56)

is valid. Furthermore the matriz A is invertible if and only if the matriz © is
invertible and in this case the inversion formula

_ 0! —O 14,45} >
At = _ _ - 22 _ 1.57
< 7A221A21@71 A221 —+ A221A21@71A12A221 ( )

holds.

Proof. Assume that the matrix Aq; is invertible. Applying (block) Gauss elimi-
nation to the matrix A we obtain the formula (1.52). The formula (1.53) follows
directly from (1.52). Moreover from (1.53) it follows that A is invertible if and
only if T is invertible. If the last condition is valid, then the matrix A~! may be
represented in the form

A"l = ( Iml *A1_11A12 > ( 141_11 01 ) ( Im1 . 0 >
0 Im2 0 I~ 7A21A11 Im2
Multiplication of the factors yields (1.54).

Now assume that the matrix Ags is invertible. The formula (1.55) is obtained
by applying (1.52) to the matrix

0 In, A 0 ILn, \ [ A Axn
Iml 0 Im2 0 o A12 All '
The formula (1.56) follows directly from (1.55). Furthermore, from (1.55) it follows

that A is invertible if and only if © is invertible and in this case the matrix A~!
may be represented in the form

a1l < I, 0 > ( et o0 ) < Lo, —ApAy >
—Ay Asy Iy, 0 Ay 0 I, '
Multiplication of the factors in the last equality yields (1.57). O

Now we consider the LDU factorization for an arbitrary matrix with invertible
principal leading submatrices.
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Theorem 1.20. Let A = {A;;}1;_; be a block matriz with block entries of sizes
m; X my and with invertible principal leading submatrices Ay = {Aij}ﬁjzlv k=
1,2,...,N.

Then A admits a unique LDU factorization (1.51). Moreover the factors in
(1.51) may be determined as follows. Let the matriz A be partitioned in the form

_( Ax—1 By _
A_< o Mk>’ k=2,.... N (1.58)

with the submatrices A, = A(1 : k,1: k) partitioned in the form

o A b _
Ak_< " dk>’ k=2,.... N. (1.59)

The matriz D in (1.51) is a block diagonal matric

D= diag{’Yl7~-~77N}7

with invertible diagonal blocks v, (k. =1,...,N) of sizes my X my, obtained by the
formulas
v =d1, Yk :dk_CkA]:,llbky k=2,...,N. (1.60)

Furthermore, the matrices L,U in (1.51) are determined via the relations

L(k:N,k)=Ap(, )yt k=1,...,N—1 (1.61)
Ulk,k:N)=~,"Ak(1,:), k=1,...,N—1, (1.62)

where
A=A, Ap=M,—-CyA' By, k=2,...,N—1. (1.63)

Proof. The existence of the factorization (1.51) is established by induction on k.
For k = 1 one obviously obtains Ay = L1 D Uy with Ly = I, D1 = A;,U; = 1.
Suppose by induction that for some k£ with 2 < k < N the factorization

Ap—1 = Ly_1Dy_1Up_1 (1.64)

holds, with block lower and upper triangular L;_; and Ug_; having identities
on the main diagonals, and with block diagonal Djy_;. Consider the matrix Ay
partitioned in the form (1.59). Applying formula (1.52) one gets

_ I 0 A 0 I Al by
Ay = ( CkA]:,ll I ) ( 0 dp _CkA;,llbk > ( 0 I ' (1.65>

Furthermore, using (1.64) one obtains

A — Ly 0 Dy 0 Up—1 Up—14;" by
k= CkA;_llLk,1 I 0 dk — CkA;_llbk 0 I ’



24 Chapterl. The Separable Case

Here the first and the last factors are (block) lower and upper triangular matrices
with identities on the main diagonals and the middle factor is a block diagonal
matrix. Thus one obtains the factorization of the form (1.51) for the matrix Ag.
Taking k = N one obtains the factorization (1.51) for the matrix A.

To prove the uniqueness, let

A= L1D1U; = LaD5Us

be two LDU factorizations of the matrix A. All the matrices here are invertible.
Moreover, one has
Ly'Ly = (DyUs) (DU )7L

Since the matrix Lo 'L, is lower triangular with only identities on the main di-
agonal and the matrix (DoUs)(D1U;) ™" is upper triangular, one gets Ly L =
(DoUs)(D1U;)~t = I and therefore Ly = Ly and D1U; = DsUs,. From the sec-
ond equality since Dj, D5 are diagonal and U;, Us are upper triangular with only
identities on the main diagonals one obtains D1 = Dy, Uy = Us.

To derive the formulas for the factors, consider at the beginning the first
column of the matrix L, the first row of the matrix U and the first diagonal entry
of the matrix D. From A = LDU one obviously gets

Y1 :A(L].) :dh A(,l) :L(S,l)"}/l, A(].,) :’YlU(].,S),
which means
D(1,1) =y, L(1)=ACGD", U =9 MAL:). (1.66)

Next let A be partitioned in the form (1.58). By the formula (1.52),

_ 1 0 A1 0 I Al B B
= (b V(5 2)(1 AP wea

This implies in particular that

Ap—14m =AQ:k—14+m,1:k—14m)

- Ijq 0 A1 0 I AN B(:,1:m)
T\ Gl im, )AL Iy, 0 Ap(l:m,1:m) 0 L, ’

m=1,....N—k+1,k=2,...,N. (1.68)

Every matrix Ay is strongly regular and therefore admits the LDU factorization.
Moreover from (1.68) it follows that every matrix Ay has the LDU factorization.
Let Ay—1 = Ly—1Dp—1Ux—1 and Ay = X D},Y}, be the corresponding LDU factor-
izations. Substituting this in (1.67) one obtains the LDU factorization A = LDU
with

_ L1 0 - Dy, 0 _ Uk-1 Uk—lA]:,llBk
p= (it w) 2= (O o) o= (™).
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Using (1.68) with m = 1 and the equalities Cy(1,:) = ¢, Bi(:,1) = by we have

o I 0 A1 0 I Al b
P ad, T 0 Ax(1,1) 0 I '

Comparing with (1.65), we get Ag(1,1) = v%. Now applying (1.66) to the matrix
Aj we obtain

D(k7 k) = D;g(lv 1) = Yk, L(k : N7 k) = Xk:(:7 1) = Ak(:7 1)719_17

which completes the proof. O

If a square N x N matrix A is symmetric (4;; = Aj;, ¢,5,=1,...,N) and
positive definite (namely the scalar product < Az, z >> 0 for any N-dimensional
nonzero block vector z), then the matrix A admits the Cholesky decomposition,
which is identical with the LDU decomposition in which U = LT and this A =
LDLT is obtained much faster.

§1.7 A general inversion formula

Here we present a well-known inversion formula with a complete proof.

Theorem 1.21. Let A be an m X m invertible matrix and B and C be m X n and
n X m matrices.

The matriz A — BC' is invertible if and only if the matriz V =1, — CA™'B
s invertible. Moreover, if this is the case the inversion formula

(A-BO)'=A"t4 A 'BVtcA™? (1.69)
holds.

Proof. We start with the case A = I,,, i.e., with the proof that the matrix I,,, — BC
is invertible if and only if the matrix I,, — C'B is invertible and moreover if this is
the case the inversion formula

(I, —BC)™' =1+ B(I, - CB)"'C (1.70)

holds.
Applying the formulas (1.55) and (1.52) to the matrix R = ( In B ) one

¢ I,
I, B I, -BC 0 I, 0O

_ I’r 0 I’m 0 I’m B
S\ C I, 0 I,-CB 0 I )’

has

(1.71)

S
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Hence it follows that I, — BC is invertible if and only if I, — C'B is invertible.
Moreover, using the fact that

I m B - _ I’m -B I’m 0 - _ I’m 0
0 I n B 0 I’n ’ C I’n N -C I’n
one obtains
I,—BC 0
0 I,
_ I m B I’m 0 I’m 0 I m B I m 0
- 0 I, c I, 0 I,—-CB 0 I, -C I, )

Furthermore, assuming that the matrix I, — BC (or the matrix I, — CB) is
invertible one obtains

((ImBC)1 0 >

0 I,

_ I’"L 0 ‘[’l'YL - B I’"L O I’"L 0 I’"L B
“\C I, I, 0 (I, -CB)™! -C I, 0 I, /)
Consequently,

1 I, —B I, 0 L, O I,
oo - (5 ) (5 ) (2 2) ()
ie.,

(Im,—BC) ™' = (I, —B) I 0 In +B(I,—-CB)™'C
m m O (In _ CB)—I 70 m n )

which completes the proof of (1.70).

Now consider the case of an arbitrary m X m invertible matrix A. One has
A — BC = A(I,,, — (A7'B)C). Therefore the matrix A — BC is invertible if and
only if the matrix I,,, — (A7'B)C is. But as it was shown above, the matrix
L, — (A71B)C is invertible if and only if the matrix I, — CA™'B = V is and
moreover, if this is the case, using the formula (1.70) one gets

(I, —A™'BC) ' =1, +A'BV~!IC,

which implies (1.69). O

Corollary 1.22. Let B and C' be m x n and n x m matrices. Then
det(I,, — BC) = det(I, — CB). (1.72)

The proof follows directly from the formula (1.71).
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§1.8 Inversion of matrices with diagonal
plus separable representation

In this section it is shown that inverting a matrix in separable representation of
order r amounts to inverting an r X r matrix.

Theorem 1.23. Let A be an N x N block matriz with diagonal plus separable of
order r representation and let the diagonal generators d(i), i = 1,...,N of sizes
m; x m; be invertible. Consider the diagonal matriz D = diag(d(i))Y., and the
matrices P = col(p(i))Y,, Q = row(q(i))}X., which are formed with the separable
generators p(i),q(i) (i = 1,...,N) of sizes m; X r and r X m;, respectively, such
that A = D + PQ. Define the r x r matriz V = I, + QD™ 'P. Then obviously

V =T+ qk)(dk) " pk). (1.73)
k=1

The matriz A = D + PQ is invertible if and only if the v X r matriz V =
I, + QD™ 1P is invertible. Moreover, if this is the case, then entries of the inverse
matriz A~ are given by the formulas

A7, g) = (d(i) " 6s5 — (d(@) " p(O)V () (d () i =1,...,N. (1.74)

Proof. Applying Theorem 1.21 we conclude that the matrix A is invertible if and
only if the matrix V' is and if this is the case the inversion formula

At=p ' —p-lpy-igDp~!
holds, i.e.,
A>< — D>< +P><Q><7
with D* = D!, P*X = —D7'P, Q* = V-'QD~!. Here D* is a block di-
agonal matrix and P*,Q* are matrices of sizes (Zfil mi) X7r, rX (Zfil mi),

respectively. Hence we have obtained a diagonal plus separable of order r represen-
tation of the matrix A~1. Moreover, we have D* = diag(dx(‘))Z 1 with dx(‘) =

(d(i>>_17 i=1...,N, P* = COl(pX(i»fil with p () = - ()) (Z>

N and Q* = row(¢* (7)), with ¢*(i) = )(d(z)) , i =1,. N
This means that the matrices d* (i) (¢ =1,..., N) and p*(i),q* () (i=1,. N)
are the diagonal and separable generators of the matrix A~!. Hence the formula

(1.74) follows.
Another proof of the theorem can be obtained using the system (1.32)

Xk+1 = xk +q(K)z(k), k=1,...,N
y(k) = p(k)xny1 + d(k)z(k), k=1,...,N,
x1 =0.
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Since the blocks d(k), k = 1,..., N are invertible one obtains from the second
equation that

z(k) =d*(k)y(k) — p*(k)xn+1, k=1,...,N.
Substituting this in the first equation we get
Xi+1 = Xk + (k) (d(k)) "y (k) — q(k)(d(k)) " p(k)xn+1
for k=1,..., N. Hence, using also that x; = 0 it follows that

N N
v = O alk)(d(k) My (k) (Zq<k><d<k>>1p<k>> XN,
k=1

k=1

which means that N
Vxngr =3 q(k)(d(k) y(k), (1.75)
k=1

with V' given by (1.73). From (1.75) and the invertibility of V' we obtain
N
X1 = Vg (R)y(k).
k=1

Define the state space variables x;, k=1,...,N + 1 via
X1 =0, xpp=xp T K)yk), k=1,...,N.
It follows that XKH—I = xn~N+1- Thus we obtain the system
Xip1 = X5+ (R)x(k), k=1,....N
x(k) = p* (k)xnyq +d*(k)z(k), k=1,...,N, (1.76)
xi =0.

By Theorem 1.11 we obtain that A~! has the diagonal generators d* (i), i
1,..., N and the separable generators p* (i), ¢*(i), i=1,...,N.

O

Example 1.24. Consider the N x N matrix

2 2 3 o N-1 N
2 8 6 <o 2(N-1) 2N
3 6 18 < 3(N-1) 3N
A= . . : ) : .
N—-1 2(N-1) 3(N-1) --- 2(N-12% (N-1)N
N 2N 3N -+ (N=1)N 2N?

which resembles the matrix from Example 1.4, having the same separable gener-
ators p(i) = ¢(i) =4, i = 1,..., N, but it also has non zero diagonal generators

d(i)=14* i=1,...,N.
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If we define the diagonal matrix D = diag(d(i)); and the matrices

P =col(p(i))X, and Q =row(q(i))Y,

which are formed with the separable generators, then A = D + PQ.
Theorem 1.23 above can be used to invert the matrix A as follows.

Define the r x r matrix V = I, + QD' P, which for » = 1 is a scalar. One
has, by (1.73),

N

V=14 qk)(dk)'pk)=1+> k- ;2 k=1+N.
k=1 k=1

The matrix A = D + PQ is therefore invertible for any positive integer NV,
since V = 1+ N # 0. Moreover, the entries of the inverse matrix A~! are given
by the formulas (1.74). Therefore, for any i,j = 1,..., N the corresponding entry
of A7t is

AT, §) = (d(@) 1 0i5 — (d(@) PV (i) (d ()~

R N T
T2 T 2 N e

1 1 1 (=N)%
= -8 - .

i TUj(N+1) T N+1 o dj

It follows that

N - —3 ~ N1 —N
1 1 1 1 1
T2 4N 6 T 2(N-1) 2N
1 1 17 ! i
Al 1 3 6 9 3(N-1) 3N
CN+1 :
1 ! 1 1N 1
N-1 2(]\[1—1) 3(]\[1—1) (N—1)2 (Nl—l)N
N 2N T 3N (N-1)N N
as one can also check directly . O

Based on the formulas (1.73), (1.74) one obtains the following fast algorithm
for the solution of the system of linear algebraic equations Ax = y with z and y
partitioned in the form z = col(z(i))Y,, y = col(y(i))X;, where x(i) and y(i) are

m;-dimensional columns.

Algorithm 1.25.
1) Compute
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2) Compute the r x r matrix

N
V=1L + (q(k)(d(k)) " p(k).
k=1

3) Compute the r-dimensional column

N
2= > a0)0) M)

Jj=1

4) Solve the r x r linear system
Vw = z.

5) Compute the vector x = (z(i))N;:

(i) = (d(i) ™" (y(0) + p(i)w).

The complexity of the arithmetic operations used in Algorithm 1.25 is cal-
culated as follows.

1. Step 1: Zszl p(my;) arithmetic operations of addition or multiplication.

2. Step 2: consists in the addition of an r X r matrix to a sum of two matrix
multiplications which comprise each rmj multiplications and r(my — 1)my,
additions, thus this step costs less than r? + Ei\;l 4rmz arithmetic opera-
tions.

3. Step 3: is a sum of matrix matrix multiplications which comprise each rm?
multiplications and r(my — 1)my, additions and matrix vector multiplications
which comprise each rmj multiplications and r(mj — 1) additions, thus this
step costs less than 22[:1 2rmy,(my, + 1) arithmetic operations.

4. Step 4: p(r) arithmetic operations.

5. Step 5: inside the brackets m; additions and a matrix vector multiplication
which costs m;r multiplications and m;(r — 1) additions, plus m? multiplica-
tions and m;(m; — 1) additions outside the brackets, thus in total less than

Z,ivzl 2my(r + my,) arithmetic operations.

Here p(m) is the complexity of the solution of an m x m system of linear
algebraic equations using a standard method.
Thus the total complexity of the algorithm is

N
e= 7%+ p(r) + 3 (Brmr + 2+ mx)2my + p(my))
k=1

arithmetic operations. Setting m = maxj<i<n(mi) one obtains the estimate

c < (p(m) +m@Bmr +2r +m))N + 1% + p(r).



§1.9. LDU factorization of matrices 31

§1.9 LDU factorization of matrices with
diagonal plus separable representation

Let A be an N x N block matrix with block entries of sizes m; x m;. By Theorem
1.20 if A is a strongly regular matrix, then it admits the LDU factorization

A=LDU, (1.77)

where L, U, D are block matrices with the same sizes of blocks as A, and L and U
are block lower and upper triangular matrices with identities on the main diago-
nals, while D is a block diagonal matrix. Next we derive a specification of Theorem
1.20 for matrices with diagonal plus separable representations.

Theorem 1.26. Let A = {A;}YN,_, be an N x N block matriz with block en-
tries of sizes m; x my with invertible principal leading block submatrices Ay =
{Aij}ﬁjzl, k=1,...,N. Assume that for A it is given a diagonal plus separable
representation of order r, i.e., A has the diagonal generators do(i), i =1,...,N of
sizes m; X m; and the separable generators p(i),q(i), i =1,..., N of sizes m; X r
and r x m; respectively. In matriz form, A = Do+ PQ with Dy = diag(do (7)),
P = col(p(i))X, and Q = row(q(i))X,.

Then in the factorization (1.77) the matriz L is the identity matrixz plus the
strictly lower triangular part of a matriz PQY in separable form of order r, namely
L has the lower separable generators p(i), i = 2,..., N, which are the same as for
the matriz A, and ¢~ (i), i = 1,..., N —1 of size v x m;, while the matriz U is the
identity matriz plus the strictly upper triangular part of a matriz PYQ in separable
form of order r, namely U has the upper separable generators q(i), i = 2,..., N,
which are the same as for the matriz A, and p¥ (i), i =1,..., N —1 of size m; x 7.
Finally the matriz D has the form

D :dlag{’)’hy’)’N}

with blocks v;, i = 1,...,N of sizes m; x m;. Here PY = col(pY (i)Y, and

QLY = row(q(i))X,. These ingredients are obtained as follows:

1. Compute
n=do(1) +p(1)q(l), " (1) =gy pYA)=97"p(1), (1.78)
oy = I, — ¢ (1)mpY (1). (1.79)
2. Fork=2,...,N — 1, compute

Br = ar—1q(k), (1.80)
V& = do(k) + p(k)Br, (1.81)
q" (k) = By, (1.82)
pY (k) = v 'p(k)on—1, (1.83)
o = oe—1 — ¢~ (k)vep” (k). (1.84)
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3. Compute
YN = do(N) + p(N)an-14(N). (1.85)

Here o, (k =1,...,N —=1), B (k=2,...,N — 1) are auxziliary variables
which are r X r and respectively v X my matrices.

Proof. One must check that
D= diag{,)qw . 77]\[}
and moreover that the matrices L, U satisfy the relations

L(k+1:N,k) = Poiq“(k), k=1,....,N—1, (1.86)
Uk,k+1:N)=pY(k)Hpy1, k=1,...,N —1, (1.87)

with the matrices Py, Hy defined by
P = col(p(i) gy Hy = row(q(@) Yy, k=1,...,N

and the elements 4, ¢" (k), pY (k) determined in the statement of the theorem.
Denote also

G = col(p(i)y, Q= rowla(i)y, k=1,...,N
and introduce the matrices
ar =1, — QpA; "Gy, k=1,...,N—1. (1.88)
In the formulas (1.58), (1.59) one gets
Bi = Gip_1Hy, Cr = PpQr—1, b= Gr_1h(k), cx=pk)Qr-1.
Using the formulas (1.60) one gets
w1 =do(1) +p(1)g(l), ~r =do(k) +p(k)ar_19(k), k=2,...,N, (1.89)

which means that the formulas (1.78), (1.81), (1.85) for v (k = 1,...,N) hold,
and moreover using (1.61)—(1.63) we obtain

L(k:N,k)=Ap(:, )y, Y, k=1,...,N, (1.90)
Uk,k:N)=~,"Ak(1,:), k=1,...,N, (1.91)

where

A=A, Ap=Mp+ Peap_1H, — PoH,, k=2,...,N. (1.92)
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Now we will prove the relations (1.86), (1.87). For ¥ = 1 one has 73 =
do(1) + p(1)g(1) and one gets

A1(2:N,1)=A(2: N, 1) = Paq(1),
A1(1,2: N)=A(1,2: N) =p(1)H>

and hence using (1.90), (1.91) one obtains
L(2:N,1) = Pyg“(1), U(1,2:N)=pY(1)H,

with the elements ¢~ (1),pY (1) defined in (1.78).
For k£ > 1 one has the following. One obtains the representations

Mi(1) = Ak : N, k) = < dO(%LZ((%Q(’“) ) k=2,... . N—1 (1.93)

and

Mi(1,:) = A(k,k : N) = ( do(k) +p(k)g(k) p(k)Hisr ), k=2,...,N—1.
(1.94)
Taking the first columns in (1.92) and using (1.93) one obtains

Ap(:,1) = < Pk+1olk_1Q(k) )

Similarly, taking the first rows in (1.92) and using (1.94) one obtains
Ak(l,:) = ( Yk p(k)ak,lHkH )

Thus one obtains the relations

Ap(:1) = < Pk+1a7:—161(k> >

Tk
k=2,....N
< Pk+1q/(k> >a ) )

and
Ap(L)=(w pk)ar—1Her )=(mw P(k)Hpyr ), k=2,...,N,
with the elements 7, from (1.81) and
q' (k) = ak-1q(k), p'(k)=p(k)ar-1.

Furthermore, using (1.90), (1.91) and (1.80), (1.82), (1.83) one obtains (1.86) and
(1.87).

It remains to prove the relations (1.79), (1.84). The equality (1.79) follows
directly from the definition (1.88) and the relations

Q1 =q(1), Gi=p(), v =do(1)+p(1)q(1).



34 Chapterl. The Separable Case
For k > 1, applying the factorization (1.65) one obtains

e < I 0 > ( A1 O > ( I AN Groiq(k) >
FT p)QraAt, T 0 /)0 I ’

which implies

i (1 —ANGeaak) (A0 I 0
k 0 I 0 ! —p(k)Qr—1At, 1)

It follows that
_ AL AT
Qk( ! Ak*lGIk_l(I(k) ) =( Q-1 q(k)) ( é AkilGIk_l(I(k) )

0
— ( Qi1 ar_1q(k) ):( Qr-1 ¢ (k) ) (1.96)

( —p(k‘)Qf;—lA;,ll ?f >G’“ - ( —p(k)Qi-lA;,ll ?f > ( ilgl;)l >
(s )= (S ) oo

Now from the definition (1.88) and the relations (1.95)—(1.97) one gets

and

ap = ar_1 — ¢ (k)y, v’ (k),
which completes the proof. O

In order to compute the complexity of the algorithm in Theorem 1.26, de-
note by p(my) the complexity of inverting an my X my matrix and put m =
maxi << (Mmg).

The first computation in (1.78) is the multiplication of an m; x r matrix by
an 7 X mj matrix, which comprises rm? multiplications and (r — 1)m? additions,
therefore less than 2rmf arithmetic operations. It then adds two m; x m; matri-
ces. The second computation in (1.78) costs less than p(m;) + 2rm? arithmetic
operations, while the last computation in (1.78) adds another 2rm? arithmetic
operations. Computing (1.79) involves less than r? + 2rm? + 2rm? arithmetic
operations.

For each k = 2,..., N — 1 Step 2 of the algorithm in the theorem requires
less than 2r?my, arithmetic operations for (1.80), less than m3 + 2m3r for (1.81),
less than p(mg) + 2mir for (1.82), while (1.83) adds less than 2m3r + 2myr?
arithmetic operations. Finally, (1.84) is analogous to (1.79), namely it costs less
than 72 4+ 4rm? arithmetic operations.

In Step 3 of the algorithm the computation of (1.85) is analogous to (1.80)
and (1.81), namely it costs less than m% + 2rm% + 2r?my arithmetic operations.
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The total complexity of the algorithm in Theorem 1.26 is

N

c< Z(mk(mk + 672 4 10rmy) + 72 + p(my,)),
k=1

therefore
¢ < (m(m + 6r% + 10rm) + 72 + p(m))N.

It is easy to compute that for scalar matrices the algorithm costs less than (572 +
5r + 3)N arithmetic operations.

Example 1.27. Consider the 3 x 3 matrix A from Example 1.6,

1 -1
A=20+PQ=2T+| 2 2 L33
- 2 5 1

Let us compute for A the LDU factorization using Theorem 1.26.
Compute in Step 1, by (1.78),

m:%uwmmﬂn=&ﬁﬂ+(1”<é>:L

(1) =gy = ( ; ) ) =ywtp)=(1 -1).

By (1.79),

alzl,»—qL(l)%pU(l):<(1) (1)>_(_; ;>:(02 ;’>

Step 2. For k = 2 compute, using (1.80),

5k52a21q(2)(_02 ;)<g>

compute using (1.81)

Il
7 N\
© Ut
N~

=) 4o =2+ (2 2) ()

compute using (1.82)

p=ser=(3)1=( 1)

compute using (1.83)

pU(2)=’v;1p(2)a2_1:310(2 2)( 0 1>:<2 s )
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and by (1.84) compute
Qg = Q-1 *QL(Q)’YQPU(Q)
—2 3 6 10 15 15 _4 3

Finally, in Step 3 compute by (1.85)
2 -1 3 128
v =73 =do(3) + p(3)az—1¢(3) =2+ (5 1) ( 3 3B ) < | > = 5
5 5

As a check that the generators obtained above give the LDU decomposition
of A, the following L, D, U matrices are computed using these generators:

1 0 0 1 0 0
L= sty 1 (6 1 0],
p(3)¢*(1) p(3)¢*(2) 1 Tl
v 0 0 1 0 O
D=0 % o |=(03 o |,
128
0 0 0 0 2
1 pY(1)q(2) pY(1)q(3) 1 -2 2
U=1]0 1 pY(2)q(3) | =0 1 -2
0 0 1 0 0 1
Then a direct multiplication gives
1 -2 2
DU=1| 0 30 -4 |,
128
0 0 3
and so L(DU) = A. O
Example 1.28. Consider the N x N matrix A from Example 1.24 with the same
separable generators p(i) = q(i) =4, i = 1,..., N and diagonal generators

do(i) =% i=1,...,N.
Theorem 1.26 above can be used to compute separable generators for the

matrices in the LDU decomposition of A.

1. Compute using (1.78)

n=do(1) +p(1)g(1) =1*+1-1=2, ¢“(1) =q(1)y"
1
2

27
P’ (1) =77 "p(1) =
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and using (1.79)

1 1 1
=L —¢d"Wmp)=1-_-2._ = _.
Qi " ()mp~ (1) 9 9 9

2. One can prove by induction that for any 1 <k < N — 1,

- 1
k41

1

Ve =k(k+1), q¢"(k)=p"(k)= Kk 4+ 1)

g (1.98)

Indeed, this has been proved for k£ = 1. Suppose that it is true for a certain
k> 1 and let us verify (1.98) for k + 1. First, by (1.80),

Br+1 =arq(k+1) = (k+1)=1.

k+1
Then, using (1.81)
Yerr =do(k+1) +pk+ 1)1 = (k+ 1>+ (k+1)- 1= (k+1)(k+2),

using (1.82)
1

L _ -1 _
¢ (k+1) = Brt1Yepr = i+ 1)(k+2)°

and using (1.83)

1 1
v 1) =~; ! 1 1= : 1)-
p-(k+1) =k + Daggr (k- 1)(k +2) (k+1) b1
1

(k+1)(k+2)
Finally, by (1.84)

g1 = ag — " (k+ Dyep” (k +1)
1 1 1 1
- - k1) (k+2)- - b
b1 D) FEOVEFD ) T k2

which completes the induction.
3. Compute using (1.85)

1
v = do(N) +p(N)ay_1g(N) = N2+ N - N N= N24+ N =N(N+1).

Therefore the generators of the lower triangular matrix L are

1
. . Ly . .
p(i) =1, q¢“(j)= . . , 1=2,....,.N, j=1,...,N—1,
(4) () iG+1)
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the generators of the upper triangular matrix U are

1
p (Z) ’[:(Z. 1)7 Q(]> .]7 1 ) ) ) .] ) ) )

and the entries of the diagonal matrix D are
vi=i(t+1), i=1,...,N. O

One can obtain LDU factorizations also for matrices in separable form which
are not strongly regular. In this case the matrix D is not invertible.

Example 1.29. Consider the N x N block matrix A in separable of order r form
with the separable generators p(i),q(i),i = 1,..., N of sizes m; x r and r X m;,
respectively, and suppose that

rank A = rank A11 =r = ms.

It follows that

pWa()  p(1)g() p(1)g(N)
. p(2)q(1)  p(2)q(2) P(2)q(N)
p(V)g(1) p(N)g(2) p(N)q(N)

and that p(1) and ¢(1) are invertible matrices of sizes r x r.
Applying the formula (1.52) with

p(2)
A =p)g(1), A= : q(1), Aiz=p1)(q?2) ... qN)),
p(N)
p(2)q(2) - p(2)g(N)
Ay = :
p(N)q(2) -+ p(N)g(N)

we get I' = 0 and therefore we obtain the factorization A = LDU with

I, 0 0 - 0 0
p(2)(p(1))*1 Iy, 0 oo 0 0

p(3)(p(1))"
PN D) 0 0 o Ly, 0
p(N)(p(l))il 0 0 0 ImN
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Im2 O 0 0
0 0 I, 0 0
U= . ,
0 0 0 Ly s 0
O O O 0 I’"LN
and

D = diag{p(1)q(1),0,0,...,0}.

§1.10 Solution of linear systems in the presence of
the LDU factorization of the matrix of
the system in diagonal plus separable form

Suppose that the conditions in the statement of Theorem 1.26 are fulfilled. Then
solving the system Ax = y with A = LDU, i.e., LDUx = y amounts to solving
linear systems with two triangular matrices and a diagonal matrix in three steps:
solve Lz =y, solve Dw = z and solve Uz = w.

1. In the first step one has to solve the equation Lz = y with a lower N x N
triangular block matrix L = (Lij)i\szl having only identities on the main diagonal,
ie.,

iLijz(j) +2(0)=y(i), i=1,...,N. (1.99)

In the presence of generators of order r for the matrix L, namely p(i), ¢ =
.., N of size m; x r which are the same as for the matrix A and ¢"(i), i =
.., N —1 of size r x m;, one has

Lij =p(i)d“(j), 1<j<i<N

hence the equation (1.99) becomes
p(i)> ¢ ()z() + 2(i) =y(i), i=1,...,N. (1.100)

Denote L
i
Xi=»_q"(4)2(j), i=1,...,N,
j=1
Then the variables x; satisfy the recurrence relation
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and the initial condition

x1 = 0. (1.102)
Equation (1.100) becomes
p()xi +2(1) = y(@), i=1,...,N,
therefore together with (1.102), which gives z(1), one obtains
2(1) =y(1), z(i) =yG) —p(i)xi, i=2,...,N. (1.103)

and
Xi=Xi1+¢*G—1D)z(i—-1), 2()=y@G)—p(i)xi i=2,...,N.

2. In the second step one has to solve the equation Dw = z, where D is
a diagonal matrix with invertible m; x m; blocks v;, ¢ = 1,..., N, on the main
diagonal. It follows that

hence
w(i) =~; t2(i), i=1,...,N.

3. In the third step one has to solve the equation Uz = w with an upper
triangular N x N block matrix U = (Uij)g\szl having only identities on the main
diagonal. This amounts to

N
> Uija(j) + 2(i) = w(i), i=1,...,N. (1.104)
j=i+1

When generators of order r for the matrix U are known, namely pY (i), i =
1,..., N —1of size m; xr and ¢(i), i = 2,..., N of size r x m; which are the same
as for the matrix A, one has

Uiy =pY(D)q(j), 1<i<j<N,
hence the equation (1.104) becomes

N

pU () Y qi)a(i) +x(i) =w(i), i=1,...,N. (1.105)
j=i+1
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Denote
N

m= Y q@x@G), i=1,...,N.

j=i+1
Then the variables 7); satisfy the recurrence relation

and the initial condition
nn = 0. (1.107)

Equation (1.105) becomes
pY (i) +x(i) = w(@), i=1,...,N,
therefore together with (1.107), which gives x(IN), one obtains
2(N)=w(N), z(i)=w()—pY()p, i=N-1,...,1 (1.108)
Summing the relations (1.107), (1.108) and (1.106) it follows that
z(N)=w(N), ny=0

and

i =iv1 +q(i+ V(i +1),  2() =w(i) —p”(@)m, i=N-1,...,L

The above considerations lead to the following algorithm. Note that the sim-
pler Step 2 above can be performed inside Step 3 and together with it, and this is
how we are going to proceed.

Algorithm 1.30. Solution of linear systems using the LDU
factorization of a separable matrix
First compute with the LDU algorithm from Theorem 1.26 above the lower
separable generators ¢~ (j), j =1,...,N — 1, of the lower triangular matrix L,
the upper separable generators pV (i), i =1,...,N — 1, of the upper triangular
matrix U, and the entries of v;, ¢ = 1,..., N, of the diagonal matrix D.
1 Start with

x1=0, z(1)=y(1)
and for i = 2,..., N compute recursively
Xi = Xi—1+q" (i —1)z(i — 1) (1.109)

and
z(i) = y(i) — p(i)xi- (1.110)
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2 Start with
v =0, z(N)=7y"2(N)

and for : = N —1,...,1 compute recursively
ni = Niv1 +q(i + 1)x(i + 1) (1.111)
and
(i) = 7; t2(8) — p¥ (D). (1.112)

The complexity of this algorithm is linear in N and therefore much lower
than that of the usual solution of a linear system with an arbitrary matrix. Indeed,
denote by v(n) the complexity of inverting an n x n matrix.

The computation of (1.109) and of (1.111) for each iteration costs each
additions and a matrix vector multiplication which comprises rm; multiplications
and r(m; — 1) additions, thus in total 2rm; arithmetic operations.

The computation of (1.110) costs m, additions and a matrix vector multipli-
cation which comprises m;r multiplications and m;(r — 1) additions, thus in total
2m;r arithmetic operations.

Finally, the computation of (1.112) costs m; additions between two matrix
vector products, the first of which comprises v(m;) arithmetic operations together
with (m;)? multiplications and m;(m;—1) additions, while the second product uses
m;r multiplications and m,(r — 1) additions, thus in total less than 2m;(m; + r)
arithmetic operations.

It follows that the total complexity is

N
c< ZQmi(élr +m;),

i=1
so if we set m = maxi<;<ny m;, then
¢ < 2m(4r+ m)N.

Example 1.31. Let N > 3 and consider the N x N matrix A from Example
1.24, with the same separable generators and diagonal generators. In the present
example Algorithm 1.30 will be used to solve the linear system Ax = y, where

y=(5 14 24 20 25 30 --- 5N )",

with y(1) =5, y(2) = 14, y(3) =24 and y(i) = 54, i = 4,...,N.

In Example 1.28 the separable generators and diagonal entries of the matrices
in the LDU factorization of A are computed and it follows that the generators of
the lower triangular matrix L are

1

. . Ly . .
p(i) =1, q¢“(j)= . . , 1=2,....,.N, j=1,...,N—1,
¥ D=6+
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the generators of the upper triangular matrix U are

1
Uy- . . . .
= = =1,...,N -1 =2,...,N
p (Z) i(i+1)7 Q(j) j7 1 ) ) ) .] ) )
and the entries of the diagonal matrix D are
vi=i(t+1), i=1,...,N.

First perform Step 1 of the Algorithm 1.30. Set x1 =0, 2(1) = y(1) =5 and
for ¢ = 2 compute (1.109)

. . 1 5
Xo=Xi=Xi1+q"(i—1)z(i—-1)=0+ 0 .5 = o
and (1.110)
2(2) = 2(1) =y()) —pl)xi =14 -2 ) =9
For ¢ = 3 compute (1.109)
I 5 1
X3 =Xi = X2+ q¢"(2)z(2) = 2+6~9:4,
and (1.110)
2(3) =z(i) =y(3) —p(3)xz =24 -3 -4 =12.
For i = 4 compute (1.109) and (1.110)
1
Xa=x3+q"(3)2(3) =4+ 19 1255 z(4) =y(4) —p(4)xa=20—-4-5=0.
One can prove by induction that for 4 < ¢ < N one has
Xi =5, 2(i) = 0. (1.113)

Indeed, this is true for ¢ = 4. Suppose that (1.113) is true for a certain i. Then for
i+ 1 (1.109) becomes

1
Ly- .
Xett =X @2 =5+,
again and (1.110) becomes
2i4+1)=y@E+1) —p(i+1)xit1 =5k — k-5 =0,

which completes the induction. It follows that

z=(59 12 0 - 0)".
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Next perform Step 2 of the Algorithm 1.30. Set ny = 0, (N) = y5 2(N) =0
and for i = N — 1 compute (1.111)

N-1=ni =nit1+q(i+1Dz(i+1)=0+N-0=0,
and (1.112)

2(N = 1) = o(i) = 7, " 2(0) — p" (i)mi = (Nfl)N - (Nfl)N 0=0.

Then compute the same formulas for i = N —2,...,5,4. Aslong as (i +1) =0
and 7;41 = 0, formula (1.111) gives ; = 0. And as long as n; = 0 and also z(i) = 0,
which is true for ¢ > 3, formula (1.112) gives (i) = 0 too.

It remains to compute 7;, 2(¢) for i = 3,2, 1. For i = 3, by (1.111) and (1.112),
one has that

1 1
ms = nata(d)a(4) = 0440 =0, 2(3) =5 =3)p By = ;| 12, 0=1
For i = 2, by (1.111) and (1.112), one has that
-1 U 1 1
ne =n3+¢(3)x(3) =04+3-1=3, x(2) =", 2(2)—p" (2)n2 = 5. 3-9— 5. 3-3 =1
Finally, for ¢ = 1, by (1.111) and (1.112), one has that
1 U 1 1
m=n+q2)x(2)=3+2-1=5, z(l)=~; z1)=p"U)m=_-5—_-5=0
Therefore the solution of the system is
z=(0 110 -~ 0)". 0

We also presented earlier Algorithm 1.25 for solving linear systems. The anal-
ysis of their complexity shows that the LDU algorithm above is more expensive
then the other one. However, the stability of Algorithm 1.25 for large matrices is
problematic.

§1.11 Comments

This chapter contains mostly well-known results, but in this form they appear here
for the first time.



Chapter 2

The Minimal Rank
Completion Problem

Here we study the problem of completion of a partially specified matrix with a
given lower triangular part to a matrix with minimal rank. This chapter contains
a formula for the rank of a minimal completion and an algorithm to build such a
completion, first in the case of a 2 x 2 block matrix, which is then of help for the
proof of the general case. For further purposes we also find a condition equivalent
with the uniqueness of the minimal completion. Examples which analyze scalar
and block matrices are given for all the procedures and for the use of the main
formulas.

62.1 The definition. The case of a 2 X 2 block matrix

Let
A 7L ?
A1 Az ?
A= . .
An1 An2 ... AnnN
be a partially specified block matrix with elements of sizes m; xn;, ¢,7=1,..., N,

with a given lower triangular part A = {4;j}1<j<i<n. The completion of A (or
A) to a matrix with the smallest possible rank is called a minimal rank completion
and its rank 7, is called the minimal completion rank of A.

We start with the simplest case of a partially specified 2 x 2 block matrix.

A11 ?
A= 2.1
( An As ) (2.1)
with the specified blocks A11, As21, Aag of sizes m1 X 1, Mo X Ny, Mo X No, TESpPEC-
tively.

Lemma 2.1. Let

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 45
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_2, © Springer Basel 2014
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The minimal completion rank of A is given by the formula
Fr = rank( iu > + rank( Aoy Aos ) — rank Ag;. (2.2)
21
Moreover, a minimal rank completion Ay, of a partially specified matriz A has

the form Ap, = PQ, where the matrices P, Q of sizes (m1+m2) X 7,71, X (n1+n2),
which satisfy the condition

rank A;, = rank P = rank Q = 7, (2.3)
can be obtained via the following algorithm.
Set
p1 = rank < ﬁll ) , p2= rank( Asr Aoo ) , 8 =rank Ay. (2.4)
21

11

. o . A ) )
Applying the rank factorization to the matrix ( A ) determine the matri-
21

ces Pi,q of sizes (my +ma) X p1,p1 X ny, respectively, such that

( ﬁll > =P, -q, rank P, =rankqg=p;. (2.5)
21

Determine the matrices p, P’ of sizes m1 X p1,ma X p1 from the partition

H:(ﬁ). (2.6)

Applying the rank canonical factorization to the matriz ( P Ay ) of the

size mg X (p1 +na), determine the matriz P of size ma X pg and the matriz V of
size p2 X (p1 + na) in the canonical form such that

( P Aoy ) = PV7 rank P = rank V = p2. (2.7)
Determine the matrices Z, P" of sizes ma X s,ma X (p2—s) from the partition
P=(z P") (2.8)

and the matrices a,v,q" of the sizes s X p1, 8 X na, (p2 — 8) X ng from the partition

a v
V= . 2.9
( Ops—s)yxpr 4" ) 29)

The matriz a has a right inverse a. Compute the matriz ¢ = av and take y to be
an arbitrary my X (p2 — s) matrix.

Set ,
p Yy q q

P= . Q= . 2.10

( P/ P// ) < O(p27s)><n1 q// ) ( )



§2.1. The definition. The case of a 2 x 2 block matrix 47

Proof. Let p1, p2, s be the numbers given by (2.4). Starting with the rank factor-

ization for the matrix ( > one determines the matrices Pp,q via (2.5). Next

11
Aoy
one determines the matrices p, P’ from the partition (2.6). Using (2.5), (2.6) one
gets Ao; = P’q and since the matrix g has full row rank one obtains

rank Ag; = rank P’ = s. (2.11)

Moreover, one gets

(Ao An)=(P an)(§ )
and therefore
rank( Pl A22 ) = rank( A21 A22 ) = p2.

Applying the rank canonical factorization to the matrix ( P Ay ) one deter-
mines the matrix P and the matrix V in the canonical form such that (2.7) holds.
One needs to check that the representation (2.9) of the matrix V' is possible. Let
1(i), i =1,..., p2 be indices of the first nonzero entries in the rows of V, we set
also I(p2 + 1) = p1 + n2 + 1. One can easily derive that

V(1) = < @i > J=1k), .. k+1)—1, k=1,...,ps (2.12)
O(Pz*k)xj

with k x j matrices a; with full row rank. Indeed, since j < I(k+ 1) — 1, using
(1.4) we get

V(k+1:p2,1:1(k+1)—1)=0.
Since j > I(k), using the fact that V is in the canonical form we conclude that the
matrix a; = V(1 :4,1:1(k+ 1) — 1) has full row rank. Now using (2.7) we have
P = PV(:7 1: p1) and using (2.12) with j = p; we obtain

Vi(l:py) = ( e ) 7 (2.13)
0(ps—k)xp1

where k is a number such that I(k) < p; <I(k+1)—1 and the k x p; matrix a,,
has full row rank k. Thus we get P’ = P(:,1 : k)a,,. Here P(:7 1: k) is a matrix
with full column rank %k and since rankP’ = s we conclude that k = s. Inserting
k = s in (2.13) we obtain the partition (2.9).

Next one determines the matrices Z, P” from the partition (2.8) and the
matrices a,v,q” from the partition (2.9). Furthermore, using (2.7), (2.8), (2.9)
one gets

P = Za, (2.14)
A22 =Zv + P”q”. (215)
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The matrix a of size s x p; has rank s and therefore has a right inverse a. Thus,
from (2.14) one obtains Z = P’a. Substituting the last expression in (2.15) and
setting ¢’ = av one obtains

Ags = Pq +P"q". (2.16)

Next one determines the matrices P, @ via (2.10). Setting A;, = PQ and using
(2.5), (2.16) and (2.10) one obtains

A11 *
Ar =
L(hlhﬁ’
i.e., the matrix Ay, is a completion of A.

Now it will be proved that the number 71, defined in (2.2) is the minimal
completion rank of A and moreover (2.3) holds. Let

o A11 X
%(mlm)’

with a matrix X of the size m1 X ns, be a completion of A. Using the formulas
(2.5), (2.6), (2.16) one gets

X
AO = ( g?q qu/+PﬂqH > (2'17>

The matrix P; of size (my + ma) X p1 has full column rank p;. Applying the
orthogonal rank factorization to P; one determines the matrix Py of size (my +
mz) X p1 and the invertible matrix Ry of size p; X p; such that the representation

Py =PyRy, PiPy=1, (2.18)

holds. Next one determines the matrices pg, P} of sizes my X p1,ma X p; from the

partition
Py = ( ’};2 > (2.19)

Combining the relations (2.6), (2.18) and (2.19) one obtains
p=poRo, P'=PFyRy,

and moreover
pop + ()" P' = Ro. (2.20)

Further, the matrix P from (2.7) has full column rank. Applying the orthogonal
rank upper triangular factorization to P one obtains the matrix ]50 of size mg X pa
with ]36* Py=1 . and the upper triangular invertible matrix R of size ps X p2 such
that

P = PFyR. (2.21)
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We determine the matrices Zy, P} of sizes ma X s,ma X (p2 — $) and Ry1, Ri2, Raa
of sizes s X 5,5 X (p2 — 5), (p2 — 8) X (p2 — s) from the partitions

Ri1 Rpo )

Po=(2 P)), R= ( (2.22)

0 Ry

Note that here the matrix Roo is invertible. Using the relation ]36*]30 = I,, one
gets
Z(TZO = I, (P(l)/)*P(/)/ = IP275’ (P(;/)*ZO = O(pQ—S)XS' (223)

Using (2.21), (2.22) and (2.8) one obtains

R R
(z P')=(2 Pm( 0 Rl§)7

whence
Z = ZyRy1, P"=ZoRis+ PRos. (2.24)
Next, relations (2.14), (2.23), (2.24) yield
(PP = (P)Y*Za = (P{)*ZyR11a =0 (2.25)
and
(Py)*P" = (Py)" ZoRi2 + (Py)" Py Raa = Raa. (2.26)

Now setting
ro( Bo'ri Bo (R
0 Ry (R
and using relations (2.17), (2.20), (2.25), (2.26) one obtains

*
RAO(% q//)-

Note that since the matrix V in (2.9) has full row rank one gets
rank ¢ = ps — s. (2.27)
Thus one obtains
rank RAo = rank g + rank q” = p; + po — 5 = 7',

and thus we conclude that rank Ag > 7. But as it was shown above, the product
Ar = PQ of the matrices P, Q of sizes (m1+mz) X7, 71, X (n1+n2) is a completion
of A. Hence we conclude that

7, <rank Ay, < rank P,rankQ < 7.

Hence it follows that (2.3) holds, the number 7, is the minimal completion rank
of A and the matrix Ay, is a completion of A of this rank. O



50 Chapter 2. The Minimal Rank Completion Problem

Example 2.2. We consider the partially specified matrix

111 ? 2
112 2?2 2
A=1111 21
1111 1

of the form (2.1). One has

1 1 1 1 1 1 2 1
A11<1 1 2)7 A21(1 1 1>, A22<1 1>
and therefore

p1 = rank( jll > = 2, P2 = rank( A21 A22 ) = 2, s = I‘aIlkAgl =1.
2

1
(2.28)
Hence, by formula (2.2), the minimal completion rank 7, of A equals 3.
Next we apply the algorithm from Lemma 2.1 to compute a minimal com-
pletion of A. Using (2.5) one gets

P =

—= == =
— = N
)

I
7N
o
o -

and using (2.6) one obtains

(1
P=11

Next we apply the factorization (

, 112 1
(P A22):<1 11 1)

and determine the matrices

; 1 2 1101
P(l 1>’ V<0010)

Using partitions (2.8), (2.9) one gets

a=(1 1), v=(0 1), ¢=(10), PN:(?)

1

N o=
~_
T
I
7N\
—
—_ =
~__

.7) to the matrix
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Finally by the formulas (2.10) one determines the matrices
1 ; u 1100 1
P=| ] 3/22 Q=100 100
111 00010

with arbitrary numbers y;, y2 and obtain the minimal completion in the form

11 1 4 1
o112 o1
Ap = PQ = 111 2 1 (2.29)
11 1 1 1
Note that if we take the right inverse of a in the form a = < (1) > we obtain
. 0 0 0
q':av:(l)(() 1):<01>
so that
1100 0 } } ; o ;
Q=10010 1], A, =PQ= Y2 7
000 1 0 1 11 2 1
111 1 1
which is another minimal rank completion of A. O

§2.2 Solution of the general minimal rank
completion problem. Examples

Now we consider the minimal rank completion problem for an arbitrary partially
specified matrix with a given lower triangular part.

Theorem 2.3. Let A be a partially specified block matriz with elements of sizes
m; X nj, 4,5 =1,...,N and a given lower triangular part A = {Ai;}1<j<i<n-
The minimal completion rank of A is given by the formula

N N
P = Zrank[l(k :N,1:k)— Zrank[l(k :N,1:k—1). (2.30)
k=1 k=2

Moreover, a minimal rank completion Ap of A has the form Ap = PQ, where
the matrices P, Q of sizes Zfil m; X Tp, 7L X Zfil n; which satisfy the condition

rank A;, = rank P = rank Qrp, (2.31)

may be obtained via the following algorithm.
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1. Set A = A(:, 1), p1 = rank A gy = le\il m;.
Using the rank factorization of the matriz A determine the matrices Py, Q1
of sizes 1 X p1 and p1 X ny, respectively, such that

AWM = P Q, (2.32)
with
rank P; = rank Q1 = p1. (2.33)
Set ry = p;.
2. For k=2,...,N perform the following.
Set ny, = Zf;k M, A\p = Zi:ll mg, Vi = Zi:ll n;. Determine the matrices
Py_1, P of sizes \i, X Th—1, Mk X TR—1, Tespectively, from the partition

_( B
Poa= (7). -

Set
A®) = A(k : N, k), si= rankA(k: N,1:k— 1), pr= rank;l(k :N,1: k).
Using the rank canonical factorization of the matriz ( P AK) ) determine
the matrices ]5;€7 Vic of sizes ng X pr, pr X (Tk—1 + ny), respectively, such that
( p] A ) = Pka, rank P, = rank V}, = Pk- (2.35)
Determine the matrices Zy, P} of sizes i X sk, Mk X (pr, — Sk) and the matrices
ak, Vi, gy of sizes Sk X Tg—1, Sk X Nk, (pk — Sk ) X Nk, Tespectively, from the partitions
- a v
R S T (2.36)
(or—sk)xTe—1 9k

The matriz ap has a right inverse ai. Compute q, = apvr and take yi to be
arbitrary A X (pr. — sk) matriz. Next, set

Pe1 i ) ( Qr—1 @ )
P, = , = , Tk =Tk_1+ Pk — Sk-
* ( PI; Plé/ O O(pk—Sk)XVk qg g Rl PR i
(2.37)

3. Seth:rN, P:PN, Q:QN

Proof. We consider the sequence of block N x k matrices Ay, = PrQr, k=1,..., N
and the sequence of partially specified matrices

Ay 7 L
Agl A22 ?

A = : : . ., k=1,...,N

k Apr Apy . Ak

Ant An2 ... ANk
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with the given parts Aj, = {4;5,1

<j<kj<i<N} k=1,...,N. We prove
by induction that for any £k =1,..., N the

the matrix Ay is a completion of A with
rank Ay = rank P, = rank Qi = rp. (2.38)

For k = 1 this follows from (2.32), (2.33). Let for some k with 2 < k < N the
matrix Ag_1 = Py_1Qr_1 with rank Ay_1 = rank P,_; = rank@Qy_1 = rp_1 be a
completion of Ay_;. Consider the partially specified matrix

A - Ap1(1:k—=1,1:k-1) ?
T\ Ak N1:k—1)  A(k:Nk) )

One has

A1l k—1,1:k—1)\ )
rank< Ap—1(k:N,1:k—-1) =rank Ap_1 = 75_1.

Next, the part Aj,_; contains the submatrix A(k: N,1:k—1) and since Ay is

a completion of Ay_; one gets Ap_1(k: N,1:k—1)= A(k: N,1:k—1). Thus
one has

rank( Ap—1(k:N,1:k—-1) zzl(k : N, k) ) = rank[l(k :N,1: k) = pr,
rank A,_1(k: N,1:k—1)= rank;l(k N, 1:k—1) = sg.

Now applying the algorithm from Lemma 2.1 to the partially specified matrix Ay,
one obtains the formulas (2.34)—(2.37) to compute the matrices Py, Q) satisfying
(2.38) such that A = PrQy is a completion of flk. Since /lk contains the part
Ay, the matrix Ay, is a completion of Ay.

For kK = N we conclude that A, = PyQyx = PQ is a completion of A and
the equality (2.31) holds.

It remains to show that the number 7; defined in (2.30) is the minimal
completion rank of A. Let Ay be completion of A. Set

tr =rank Ag(:,1: k), k=1,...,N,
pr =rank Ag(k : N,1: k) =rank A(k: N,1: k), k=1,...,N,
sp =rank Ag(k: N,1:k—1) =rank A(k: N,1:k—1), k=2,...,N.

One obviously has t; = p;. Next, for £ =2,..., N we use the partitions

ooy [ A1 k—-1,1:k—-1) Ao(l:k—-1,k)
AO("l'k)( OA(k:N,l:k—l) OA(k:N,k) )

and applying the formula (2.2) from Lemma 2.1 we get

ty >th—1+px— Sk, k=2,...,N. (2.39)



54 Chapter 2. The Minimal Rank Completion Problem

It is clear that ty = rank Ag and from (2.39) it follows that

tN > tn-1+pN — SN Zitn—2+ (pn—1+pN) — (SN—1+SN) > -+
N N
Zh-l—Zpk—ZskaL- O
k=2 k=2

Example 2.4. Let A be a partially specified matrix with scalar elements and given
lower triangular part

A= {Aijh<jcica =

—_ == N
— = N %
— N % %
N % % ¥

The minimal completion rank of A is given by the formula

4 4
fL:Zrank;l(k:&l:k)—Zrank[l(k‘:&l:k‘—l)
k=1 k=2
=1+24+2+1-(1+1+4+1)=3.

A minimal rank completion Ay, of A has the form A; = PQ, where the
matrices P, () of sizes Zf;l m; X fp, =4 X 3,7 X Zf\;l n; = 3 X 4 which satisfy
the condition

rank Ay = rank P = rank ) = 3,

can be obtained via the following algorithm.

Step 1. Set AM = A(;;1)=(2 1 1 1 )T, p1 = rankA®) =1, n =
Zilil m; = 4.

Determine the matrices Py, Q1 of the sizes 71 x p1 =4 x 1 and p; xny = 1x1,
respectively, such that (2.32) and (2.33) hold. In this example P, = AM Q; = 1.

Set 1y = p1 = 1.

Step 2. For k = 2 perform the following.

Set no = 2?22 m; =3, Ao = 212:—11 m; =1, vy = 222:_11 n; = 1. Determine
the matrices ]52,1,P2’ of sizes Ao X ro—1 = 1 X 1,12 X 191 = 3 X 1, respectively,

1
from the partition (2.34). In this example P, =2, Py = | 1
1
Set
~ 2 ~
AP = A2:4,2)=| 1 |, sy=rankA(2:4,1:2—-1)=1,
1

po =rank A(2:4,1:2) =2.
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Using the rank canonical factorization of the matrix ( Py A® ) =

— = =
— = N

determine the matrices Pg7 V5 of the sizes 12 X pa = 3X 2, pa X (ro_1+n2) = 2 X 2,
respectively, such that (2.35) takes place. In this example

1 2
PB=|11 V2<(1)(1)>
11

Determine the matrices Zs, Py of sizes 2 X s =3 X 1,12 X (p2 —s2) =3 x 1
and the matrices as, ve, g5 of the sizes so X ra_1, 83 X N2, (p2 — $2) X ng, thus all of

2
them 1 x 1, from the partitions (2.36). Namely, Py = | 1 |,a2=¢4 =1,v3 =0.
1

The matrix as has a right inverse ao = 1. Compute ¢4 = dove = 0 and take
y2 to be an arbitrary Ao X (p2 — s2) = 1 x 1 matrix, for instance yo = 0.
Next, from (2.37):

) 2 0
_( Py \_ [ 1 2 _ Q2-1 ¢\ _ (10
PQ_(P; P2”> L] T 0 @ )T 0 1)

11

rTo=T1+p2—82=1+2-1=2.

For k = 3 perform again Step 2. Set 13 = 2, A3 = 2, v3 = 2. Determine the
matrices P3_1, P} of sizes A3 X rg_1 =2 X 2,m3 X r3_1 = 2 X 2, respectively, from

the partition (2.34). It follows that P} = ( i 1 ) .

Set

2
1

ps =rank A(3:4,1: 3)=2.

A(3>A(3:4,3)( ) s3=rank A(3:4,1:3—-1) =1,

Using the rank canonical factorization of the matrix ( P; A® ) determine

the matrices f’g,Vg of the sizes 2 x 2,2 x 3, respectively, such that (2.35) takes
place. It follows that

R 11 11 1
P3(1 0)’ V3<0 0 1)'

Determine the matrices Zs, P{’ and the matrices as, vs, g5 of proper sizes from

the partitions (2.36). It follows that P} = ( (1) >, az = ( 11 ) ,q4 = 1,03 = 1.
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. R 1 N 1
The matrix a3 has a right inverse ag = < 0 > Compute ¢5 = dsvs = < 0 >

0

and take y3 to be an arbitrary A3 x (ps — s3) matrix, for instance y3 = 0

Next, from (2.37):

P g
r-(5 &)

, 1 01
Q3(0 Qa1 q?,) 01 0], r=3
(p3—s3)Xvs3 g3 0 0 1

— = =N
= =N O
O = OO

—_

Finally, for £ = 4 perform again Step 2. Set ny = 1, Ay = 3, vq4 = 3.
Determine the matrix Pj of size 14 X r4—1 = 1 x 3 from the partition (2.34). It
follows that P{= (1 1 0).

Set

AW = A(4:4,4) =2, sy=rankA(4:4,1:3) =1, py=rank A(4:4,1:4)=1.

Determine the matrices ]347 V, of the sizes 1 x 1,1 x 4, respectively, such that
(2.35) holds. It follows that

Pi=1, Vi=(1 1 0 2).

Determine the matrices Z4, P;’ and the matrices a4, v4, gj of proper sizes from
the partitions (2.36). It follows that P; and ¢} do not exist, as = (1 1 0 ),
Vg4 = 2.

1
The matrix a4 has a right inverse a4 = 0 |. Compute ¢} = d4v4 and take
0
Y4 to be an arbitrary Ay X (ps — s4) matrix. Since py = s4, the matrix y4 does not
exist.

Next, from (2.37),

2 00
P(ﬁ?, y4> 120
RN A 111 |
110
, 101 2
Q4(0 ©s q;*,) 0100/, ra=3
(pa=sa)xva 2 0010

Step 3. Set 7, =rs =3, P =Py, Q = Qq.
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The minimal rank completion obtained here is

Ap = PQ =

— = =N
—— N O
— N
I IO

¢

Example 2.5. Let A be a partially specified block matrix with scalar elements and
given lower triangular part

A= {Aijh<j<ics =

cCoOo0OoOX ™
OO O X ¥
OO ™ * ¥
O 2 T ¥ * ¥
2D @ ¥ ¥ ¥ %
D ¥ ¥ ¥ ¥ ¥

with v # 0 and 3 scalars. The given 6 x 6 part can be seen as the strictly lower
triangular part of a scalar 5-band Toeplitz Hermitian matrix of size 7 x 7.
The minimal completion rank of A is given by the formula

6 6
=Y rank A(k:6,1:k)— Y rank A(k:6,1:k—1)

k=1 k=2
=(14+2+2+2+2+1)—-(1+14+141+4+1)=5.

Using algorithm from Theorem 2.3 one can determine a minimal rank completion
Ap of A in the form Ay = PQ, where the matrices P, Q of sizes Z?Zl m; X ff, =
6 x 5,7 X Z?zl n; = 5 X 6 are given by

g 00 00 10000 0
v £ 000 01000 0
p=| 0 /5 00 o=]0010 0 0
0 0 v B 0| 0001 7 ol
00 0 ~ 0 Y
000 01 0000 v 5
and therefore

3000 0 0

~ B 00 0 0

0~ B8 0 0 0
AL*oofyﬁBjo

000~ B 0

0000 ~ 8 0
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Example 2.6. Consider the 4 x 4 partially specified matrix

A=

—

?
2
1
1

S = SRR
KR IPRCRE

with given lower triangular part A = {4;;}1<j<i<4. Set
Pk = rank[l(k 24,1:k), k=1,2,3,4; s}, = rank;l(k 4,1:k-1), k=2,3,4.

One has
pr=1 k=134 ph=2 s.=1, k=234

and therefore, by Theorem 2.3, the minimal completion rank of A equals two.
Moreover, by Theorem 2.3, a minimal rank completion of A is given by Ap = PQ,
with

1 0
1 2 1 01 1
P=14 ’Q_(()lOO)’
11
ie.,
1 01 1
1 211
Ac=14717 11
1111 o

In a similar way one can solve the minimal rank completion problem for a
partially specified block matrix

Bin B2 ... Bin
? BQQ e BQN

B = . . ) .
? ? ByN

with given upper triangular part B = {Bij}i<i<j<n. Applying formula (2.30) to
the matrix B* one obtains the expression for the minimal completion rank of B:

N N
fu = Zranké(l ckk:N)— Zranké(l ck—1,k:N). (2.40)
k=1 k=2

Moreover applying to Bf the algorithm from Theorem 2.3 and taking transposed
matrices we may compute a minimal rank completion of the matrix B.
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Example 2.7. Consider the 4 x 4 partially specified matrix B

10
B:

B IRSUI
B N

1 1

1 1

71

with given upper triangular part B = {B;;}1<i<j<a. Set

oh= ranké(l tkok:4), k=1,2,3,4; s = rankB(l ck—1,k:4), k=2,3,4.
One has

oh=1 k=14 pl=2 k=23, s/=1 k=24, s5=2

and by formula (2.40) one obtains 7y = 2. Next, by Theorem 2.3, a minimal rank
completion of Bt is given by H!G!, with

1110
’H_(0111>'

From here one obtains the minimal rank completion By of B:

G:

o O O =
—_ == O

0
By =GH =

OO O =
—
— =

1
1
1

Example 2.8. Consider the 4 x 4 partially specified matrix B
1
B =

ECERCIRCH )
D0 N
N = = =

1
2
?
with given upper triangular part B = {B;;}1<i<j<a. Set

oy =rank B(1:k,k:4), k=1,2,3,4; sy =rankB(1:k—1,k:4), k=2,3,4.

By formula (2.40), one obtains 7y = 3. Next, by Theorem 2.3 and Example 2.4, a
minimal rank completion of B is given by HTG”, with

2 1 1 1
., H=|02 11
0010

@
Il
N = O =
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From here one obtains the minimal rank completion By of B:

By =GH =

BN O N
OIS NI
R S
N = = =

Example 2.9. Consider the 6 x 6 partially specified matrix B

D N N ) 0 D
D N N 0 D 2
v Y T =2 O
VY TR © O
TR OO0 O
DR OO0 oo

with given upper triangular part B = {B;; }1<i<j<¢. Here 7 # 0 and j are scalars.
Set

p%:ranké(l:k‘,k:@, k=1,...,6; sg:ranké(l:k:—l,k:G)7 k=2,...,6.

By formula (2.40), one obtains 7y = 5. Next, by Theorem 2.3 and Example 2.5, a
minimal rank completion of BT is given by HTG”, with

[ R e Rl e R e R B Y
= I N R
oo o~ OoOO
o~ O OO
™R oo oo
=
I
oo oo™
oo oW
oo w2 O
oW © O
oL oo o
—_— o oo o

namely G = Q7, H = PT, where P and @ have been computed in Example 2.5.
From here one obtains the minimal rank completion By of B:

By = GH =

oo oo™
OO oo™
oo owR ©
oORPYH®R oo
(=R e\ I o e )
W2 oo oo
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§2.3 Uniqueness of the minimal rank completion

Here we consider a condition for the uniqueness of a minimal rank completion. As
above we start with a partially specified 2 x 2 block matrix.

Lemma 2.10. Let A
o
A= A 2.41
( Ay A ) (2.41)

with the specified blocks A11, As1, Aso of sizes m1 X ny,mao X Ny, Mo X No, TESpPEc-
tively, such that mi,ny > 0.
A minimal rank completion of A is unique if and only if the condition

rank( ﬁu ) = rank( Agy Asg ) =rank As; (= s (2.42)
21

holds. Moreover, if this is the case, the minimal completion rank 71, of A equals s.

Proof. To prove the sufficiency, let the condition (2.42) hold. Formula (2.2) implies
71, = s. Let A, By, be two minimal rank completions of A. We show that A;, = By,.
Consider the rank factorizations

A, =P-Q, BL=F-G,

with the matrices P, F' of size (m1 + ma) X s and the matrices Q,G of size s x
(n1 + n2) such that

rank P = rank @) = rank F' = rank G = s.

We use the partitions

P(;;)Q(q q), F(Ff/>7G(9 J")

with m1 x s submatrices p, f, ma x s submatrices P’, F’, s x n; submatrices ¢, g
and s X my submatrices ¢/, ¢’. One has

All
—P.g=F-q.
(42 )=rra=r

By Lemma 1.1, there is an invertible matrix S of size s x s such that P = F'S. In
particular, P’ = F'S. Next one has

(A2 Ap )=PQ=FG=PS5'G.

But also one has Ay = P’q with the matrices P’, ¢ of sizes ms X s, s X ny and since
rank Ap; = s one gets rank P’ = s. Hence the equality P'Q = P'S~'G implies
Q = S™'G. We conclude that

Ap = PQ=FSS™'G = FG = By,

as claimed.
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To prove the necessity, suppose that the condition (2.42) does not hold. Set
s = rank As;. Assume that

P2 = rank( Agy Asg ) > s.

Applying the algorithm from Lemma 2.1 one obtains a minimal rank completion
of A in the form

(P vy ¢ 4 \_( An pd +yd"
A = ( P p” > ( 0 q// > = ( Aoy Ags ’ (2'43>
with an arbitrary mj X (p2 — ) matrix y. From (2.27) we see that the matrix ¢” is

not zero. Hence, we can take different matrices y to obtain different matrices yq”.
Substituting this in (2.43), we obtain different minimal rank completions of A.

An
A
Lemma 2.1 with p2 — s = 0 one obtains a minimal rank completion in the form

m=( )0,

rank( £,>rank( q ¢ ):pl.

Assume now that p; := rank ( ) > s = po. Using the algorithm from

with

Here the matrix has full column rank p;. But using (2.11) we see that

j
rankP’ = s < p; and therefore there is a nonzero p; X ne matrix Q" such that
P’'Q)’ = 0. At the same time one has ( g, ) Q' # 0 and therefore pQ)’ # 0. Define
A7 by

i(g,)(q ¢+Q).
We see that

o pa pd+pQ" Y\ _ [ Aun pqd +pQ’
L P'q P'q Ay Az '

Hence, the matrix A’ is a minimal rank completion of A that is different from

Ar. O
Corollary 2.11. Let the partially specified matriz A from (2.41) satisfy the condi-
tion

rank( An > = rank As1.
Aoy

Then there is a matriz S such that A1, = SAs1 and furthermore the unspecified
entry in (2.41) can be chosen as A1a = SAag to obtain a minimal rank completion.
Moreover, if the condition (2.42) is valid, then the unique minimal rank completion
of (2.41) is given by the formula Aj2 = SAss.
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Proof. Set
s := rank ( An > = rank A9
Aoy

and consider the rank factorization
An _ p
Aoy = p! q,

with matrices p, P, q of sizes m1 X s,my X 8,5 X ny, respectively, such that

rank ( ]ID), ) =rankq = s.

We have Ap; = P’q and since ran Asy = s, the rAnatrix P’ has full column rank
and therefore has a left inverse P’. Setting S = pP’ one gets

A1 =pq ZPP/P/C] = SP/C] = SA4s.

Hence taking A1 = SAs; and Ag = ( in 312 > we get
21 22

SAs1 SAs S
Ay = = A A .
0 ( A21 A22 ) ( I > ( 21 22 )

rank Ag < rank( A1 Aoo ) <7,

Consequently,

where 77, is the minimal completion rank of (2.41), which implies that A, is a
minimal rank completion of (2.41). Moreover, if the condition (2.42) is satisfied,
then by Lemma 2.10 this minimal rank completion is unique. O

Example 2.12. Consider the partially specified matrix

A:

— =
e
— N =
el = SERC R
[ = SERCEE

of the form (2.41). One has
1 1 1 1 1 2 1 1
A11<1 1 1)7 A21(1 1 1>, A22<1 1>
and therefore

rank( in > = rank( Asr Aoo ) =rank Ay = 2.
21
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Hence the minimal rank completion of A is unique. Moreover this completion is
the matrix

11 1 1 1
11 1 1 1
11 2 1 1
11 111 o
Example 2.13. Consider the partially specified matrix
1 11 7 7
11 2 7 7
A=l 11121
11 1 11

from Example 2.2. From (2.28) we see that a minimal rank completion of A is
not unique. Moreover, one can obtain different minimal rank completions of A
by taking different values of y1,y2 in the formula (2.29). Furthermore, another
minimal rank completion of A is for instance the matrix

11101
11 20 2
1112 1
1111 1 o

Now we derive a uniqueness criterion for the minimal rank completion of an
arbitrary partially specified block matrix with a given lower triangular part.

Theorem 2.14. Let A be a partially specified block matrix with elements of sizes
m; X ng, 4,5 =1,...,N with m; > 0,ny > 0 and with a given lower triangular
part A ={Ajjhi<j<icn-
Then the following are equivalent:
(i) the minimal rank completion of A is unique;
(ii) rank A(k: N,1: k) =rank A(k+1: N,k: N) =rank A(k+1: N,k+1: N),
k=1,...,N—1;
(iii) the numbers rank ;1(2 :N,1:5), 1 <j<i<N are all equal;
(iv) rank 121(]\77 1) = 7, where 7, is the minimal completion rank of A.

Proof. Clearly rank;l(N,l) < rank[l(i :N,1:j) <7, 1 <j<i<N.So(iv)
implies (iii). The implication (iii)=-(ii) is also trivial. Let us prove (ii)=(i) and
(ii)=(iv). Assume that (ii) holds. Using the formula (2.30) one gets

7 =rank A(1: N,1) = rank A(N,1: N).
Consider the partially specified matrix

A= A(1: N —1,1) ?
0 A(N,1) A(N,2:N) |
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Every completion of A is a completion of Ag. If rank A(N, 1) < 71, then by (2.2)
the minimal completion rank of Ag is given by

rank A(1: N,1) +rank A(N,1: N) —rank A(N, 1) > 7,

which is a contradiction. Thus one obtains (iv).
Furthermore,

7L :rank;l(l :N,1) = rank;l(N,l :N) = rank;l(N,l)

and therefore, by (2.2), the minimal completion rank of Ay equals #;, and by
Lemma 2.10 the minimal rank completion of Ag is unique. Hence, if A has two
different minimal rank completions one obtains two different minimal rank com-
pletions of Ay, a contradiction. Thus, one has proved (i).

We finish by proving the implication (i)=-(ii). Assume that (i) holds and let
Ap be the unique minimal rank completion of A. For each k = 2,..., N consider
the partially specified matrix

A = Ar(1:k=1,1:k-1) ?
= Ap(k:N,1:k—1)  Ap(k:N,k:N)
B AL~(1:k—1,1:k—1) ?
- A(k:N,1:k—-1) Ap(k: N,k:N) |~

Every completion of Ay is a completion of A. Hence Ay cannot have completions
of rank less than 7. At the same time, the matrix Aj, is a completion of Ay of
rank 77. Hence, 7, is the minimal completion rank of Ag. Moreover, Ay, is the
unique minimal rank completion of Ay, otherwise one obtains different minimal
rank completions of 4. By Lemma 2.10,

Ap(1:k-1,1:k-1)\ 5o ) ) '
rank( Ak N1k —1) >rank(A(k.N,1.k:—1) AL(]{,‘.NJC.N))

=rank A(k: N,1:k—1)=7#p.
Now using the inequalities

7, :rank[l(k‘ N, 1:k—1)< rank[l(k‘— 1:N,1:k—1)<rank A =7r,
fp =rank A(k: N,1:k—1) <rank A(k: N,1: k) <rank A; = 7y,

one obtains (ii). O

Example 2.15. The partially specified matrix

A=

— =
N NN D
W W Y
I SRS EEEN |
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has the unique minimal rank completion

Ar =

—
NN NN
W W w w
N

§2.4 Comments

The material of this chapter is borrowed from the Ph.D. Thesis of H. Woerdeman
[48], but our proofs are different.



Chapter 3

Matrices in Diagonal Plus
Semiseparable Form

Here we consider diagonal plus semiseparable representations of matrices. This is
a direct generalization of diagonal plus separable representations studied in Chap-
ter 1. Note that every matrix may be represented in the diagonal plus semisepara-
ble form. The problem is to obtain such a representation with minimal orders. This
may be treated as the problem of completing strictly lower triangular and strictly
upper triangular parts of a matrix to matrices with minimal ranks, since it will be
proved that minimal orders of the generators are equal to the ranks of those min-
imal completions. Thus one can apply results of Chapter 2 to determine diagonal
plus semiseparable representation of a matrix. An algorithm for finding minimal
generators of a semiseparable representation of a given matrix is presented.

§3.1 Definitions

Let A = {Aij}%zl be a matrix with block entries of sizes m; X n;. Denote by
A = {Aij}i<j<i<n the strictly lower triangular part of A. We treat AL as a
given lower triangular part of a partially specified (N — 1) x (N — 1) block matrix
B = {Bij}f-v:’é\’[j;ll with B;; = A;; for 1 < j < ¢ < N. The minimal completion
rank 7y, of flL is called the lower semiseparable order of the matrix A.

Similarly denote by Ay = {A;;}1<i<j<n the strictly upper triangular part
of A. We treat Ay as a given upper triangular part of a partially specified (N —
1) x (N = 1) block matrix C = {Ci;};1 ;% with Bj; = Ajj for 1 <i < j < N.
The minimal completion rank 7y of Ay is called the upper semiseparable order of
the matrix A.

We say also that A has semiseparable order (f1,7y).

Let S = {S;;}1;=, be a matrix with block entries Sj; of sizes m; x n; and

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 67
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with zero diagonal. Assume that the entries of S are represented in the form

p(i)g(j), 1<j<i<N,
Sij =1 0 1<i=j<N, (3.1)
g(@h(), 1<i<j<N

1,..

Here p(i) (i = 2,...,N), q(j) (j = ., N — 1) are matrices of sizes m; X
rL, i X nj, respectively, g(i) (i=1,...,N —1), h(j) (j = 2,...,N) are matrices
of sizes m; X ry, ru X nj, respectively. The representation of the matrix S in
the form (3.1) is called a semiseparable representation. The elements p(i) (i =
2,....N),q)) =1,...,N=1)and g(z) (i=1,...,N—1), h(j§) (j =2,...,N)
are called semiseparable generators of the matrix S. The numbers rz and i are
called the orders of these generators.
The representation (3.1) means that if we introduce the matrices

P = col(p(i))iy, @ = row(q(4);5"
of sizes (Zf\;g m;) X T, T X (Zj\:ll n;) and the matrices
G = col(g@)iLy",  H = row(h(j))2s

of sizes (Zf\;l m;) X1y, ry X (Z;V=2 n;) and we define the (N —1) x (N —1) block
matrices S;, = PQ and Sy = GH of ranks rz, and ry at most, then the relations

trils(S) = tril(Sp), trius(S) = triu(Svy),

hold. Here tril(X), triu(X) denote the lower triangular and upper triangular parts
of a matrix X and trils(S), trius(S) denote strictly lower triangular and strictly
upper triangular parts of the matrix S. In other words, the strictly lower triangular
and the strictly upper triangular parts of the matrix S may be completed to some
matrices Sy and Sy with the ranks not greater than r; and ry, respectively.

Let A be a matrix with block entries A;; of sizes m; x n; represented as a
sum A = D + S of a block diagonal matrix D = diag(d(i))}Y, with the entries
d(7) of sizes m; x n; and a matrix S with semiseparable representation (3.1). The
entries of A are specified as follows:

p(i)g(j), 1<j<i<N
Aij = § d(@), 1<i=j<N, (3.2)
g()h(j), 1<i<j<N.

The representation of the matrix A in the form (3.2) is called diagonal plus
semiseparable representation.

The elements p(i) (¢ = 2,...,N), ¢(j) (j = 1,...,N —1) and g(i) (i =
1,...,N=1), h(j) (j =2,...,N) are called lower and upper semiseparable gener-
ators of the matrix A. The most interesting case for us is when for a given matrix
A the orders r;, and ry are minimal. Lower and upper semiseparable generators
of A with minimal orders are called minimal semiseparable generators.



§3.2. Semiseparable order and minimal semiseparable generators 69

63.2 Semiseparable order and minimal
semiseparable generators

Here we derive a formula to compute the lower semiseparable order of a matrix.
We show that the lower semiseparable order is the minimal order of semiseparable
generators and we derive an algorithm to compute a set of such generators.

Theorem 3.1. Let A be a matriz with block entries of sizes m;xnj, i,j =1,..., N,
with specified strictly lower triangular part A = {A;;}1<j<i<n.
Then the lower semiseparable order of A is given by the formula

N-1 N-—2
fr = Z rank A(k+1: N,1:k)— Z rank A(k+2: N,1:k). (3.3)
k=1 k=1

Proof. We treat the strictly lower triangular part A = {A;;}1<jci<n of A as a
given lower triangular part of a partially specified (N — 1) x (N — 1) block matrix
B= {Blj}f\;évj;ll with B;; = A;; for 1 < j <4 < N. By Theorem 2.3 the minimal
completion rank of A is given by the formula (3.3). g
Theorem 3.2. Let A be a matriz with block entries of sizes m;xn;, i,j=1,...,N,
with specified strictly lower triangular part A = {Ay;}1<jci<n-

Then the lower semiseparable order 71, is the minimal order of lower semisep-
arable generators of the matriz A. Moreover, a set of lower semiseparable gener-
ators p(z1) (i=2,...,N), q(j) (j =1,...,N —1) of order 71, may be obtained via
the following algorithm.

1.1. Set AN = A(2: N, 1), rank A = p;, gy = Zf\iz m;.

Using the rank factorization of the matriz A determine the matrices Py, Qq
of the sizes 2 X p1 and p1 X ny, respectively, such that

A(l) = P2Q13
with
rank P, = rank @)1 = p;.

Set ry = p;.

1.2. For k=2,...,N — 1 perform the following.

Set Ni41 = Zil\;k_H mi, Apt1 = Zf:z mg, Vg = Zi:ll n;. Determine the
matrices Py, Py, of sizes g1 X Th—1, k41 X Tk—1, Tespectively, from the partition

Py
n=( g ).
P

A® = A(k4+1: N, k), rank P/, = s, rank( P/, AR ) = pp.

Set



70 Chapter 3. Matrices in Diagonal Plus Semiseparable Form

Using the rank canonical factorization of the matrix ( Py Ak ) deter-

mine the matrices Pk+17Vk of the sizes Ni+1 X Pi, pr X (re—1 + nk), respectively,
such that

( Py A(F) ) = Pk+1Vk7 rankf)k_,_l = rank V; = pk.

Determine the matrices Zyy1, P, of sizes Mg11 X Sk, M1 X (o — sk) and the
matrices aj, Uk, qp of the sizes sk X ry—_1, Sk X Nk, (pk — Sk) X Nk from the partitions

. ag Uk
Pk+1:(Zk+1 Plé/Jrl)v Vk(o //>-
(pr—sk)xri—1 i
The matriz ay, has a right inverse ai. Compute q), = axvy, take yx to be arbitrary
Met1 X (pr — si) matriz and set

by Yk > < Qk—1 Q )
P = = k Th = Tk—1+ Pk — Sk.
o < Piyn Pl )’ O Opr—siyxve @k ) TR R
1.3. Set #r, =ry—1, P=Pn, Q = Qn_1.
2. Determine the matrices p(i), i = 2,..., N of sizes m; X7, and the matrices
q(j), 7=1,...,N —1 of sizes *1, x nj from the partitions

P =col(p(i)X,, Q= row(q(j))V7"

Proof. By Theorem 2.3, a completion A, of A with the minimal rank 77, has the
form A;, = P(Q), where the matrices P, () of sizes ZfVZQ m; X 7p, L X Z?:ll n; may
be obtained via Step 1 of the algorithm.

Since A7, = PQ is a completion of A, one obtains Aij = (Arp)i; = p(t)g(d),
1<j<i<N,ie, p@i) (i =2,....,N), q(4j) (j =1,...,N — 1) are lower
semiseparable generators of the matrix A.

To prove that the semiseparable order 7; is the minimal order of lower
semiseparable generators, assume that p'(i) (1 =2,...,N), ¢(j) (j=1,...,N-1)
are lower semiseparable generators of A of some order 7} . We set P’ = col(p/(i))V,,
Q' = row(q’ (j))évzjl and then A7 = P'Q’. The matrix A’ is a completion of A.
Moreover the rank p} of A is not greater than 7; and since by Theorem 2.3
the number #; is the minimal completion rank of A, we conclude that 7, <
pL < 7L m

The same relations are valid for the upper semiseparable order and minimal
upper semiseparable generators of a matrix. More precisely, for a matrix A with
a specified upper triangular part the upper semiseparable order is given by the
formula

N—-1 N—-2
fy =Y rank A(1:kk+1:N)— > rankA(l:kk+2:N).
k=1 k=1

Moreover, a set of minimal upper semiseparable generators may be obtained in
much the same way as in Theorem 3.2.
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Example 3.3. We consider the 5 x 5 matrix A with the specified strictly lower
triangular part

o

I
= e
= N 0 e
[
[ IR JER IR
RIS

Using Example 2.6, one obtains a set of minimal lower semiseparable generators
of the matrix A:

P = (1 0).p6)= (1 2).p)=(1 1)p6)=(1 1),

q(1)<é>> q(2)<‘1)), q(3)((1)>, q(4)(é).

Similarly, consider the 5 x 5 matrix B with the specified strictly upper tri-
angular part

&

I
T S R
N0 0
O I il
R el
N == O

Using Example 2.7, one obtains a set of minimal upper semiseparable generators

of the matrix B:
(0 1),
0
(V) e

gM)=(10),92=(0 1),9B3)=(0 1), g(4)
h(5)

= (o) m=(1). m=(]).

Example 3.4. Consider the 5 x 5 matrix

d 2 1 11
2 d 2 11
A= 1 2 d 2 1
11 2 d 2
1 1 1 2 d

Using Example 2.4, one obtains a set of minimal lower semiseparable generators
of the matrix A:

p(2)=(200), p3)

|
—
—
\V]
o
S—
g
—~
=~
N~—
|
—
[
[
—_
N
=
—
Ut
=
|
—
[
—_
o
S—
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Similarly, considering the 5 x 5 matrix B with the specified strictly upper
triangular part from Example 2.8 one obtains a set of minimal upper semiseparable
generators:

g(l):(l 0 0),g(2):(0 1 0),9(3):(1 0 1),9(4):(2 0 0),

2 1 1 1
r2)=[o, w3)=(2], r@=[1], we)=[1].
0 0 1 0 0

Example 3.5. Consider the 7 x 7 scalar Toeplitz Hermitian 5-band matrix

N

Il
cCoo o2 ™R
coo=2 ™R
OO WL W
O WL W= O
L2 L ™R oo
™R m=R oo o
O TR oo oo

where v # 0, a and 3 are scalars.
Using Example 2.5, one obtains a set of minimal lower semiseparable gener-
ators of the matrix A:

p2)=(B0000), pB)=(yB000), p4)=(0~ B 00),

p(B)=(00~ B 0), p6)=(000~0), p(7)=(0000 1),
1 0 0
0 1 0
gq)y=101|, ¢@=10{, a@=]1][,
0 0 0
0 0 0
0 0 0
0 0 0
q4) =101, qB)=01], q6)=[0
1 f 0
0 ~ 3

Similarly, considering the 7 x 7 matrix B with the specified strictly upper tri-
angular part from Example 2.9, one obtains a set of minimal upper semiseparable
generators

g1)=(10000), g2)=(01000), ¢g(B83)=(00100),
g)=(00010), g5)=(00075), g©)=(00008),
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B gl 0
0 B v
h2)=1| 01, hB)=101, hd)=1| 8 |,
0 0 0
0 0 0
0 0 0
0 0 0
hB)=1| ~ 1, h6)=101, R(7)=10
5 ¥ 0
0 0 1 O
Example 3.6. Consider the companion matrix
0 0 ... 0 —a
1 0 e 0 —Q
C=|
0 ... 1 0 —any—2
0 0 e 1 —QN_1

Here one has 7;, = N — 1, #y = 1 and minimal rank completions of the strictly
lower and strictly upper triangular parts are

0o ... 0 —Q

0 ... 0 —Q
Ap=1In_1, Ay= ) .

0 ... 0 —an—9

Furthermore, lower and upper semiseparable generators of C' are

p(i)=e; 1=2,...,N, q(j):eé, j=1,...,N—1,

gi) = -1, i=1,...,N—1, h(j)=0,j=2,...,N—1, h(N) = 1.

Here e; is the ith column vector of the standard basis in CV—1. O

§3.3 Comments

For the first time semiseparable representations of matrices were used for sym-
metric matrices in the monograph by F.R. Gantmacher and M.G. Krein [36]. The
relationships between semiseparable representations and minimal rank comple-
tions are presented in detail for the first time in this chapter.



Chapter 4

Quasiseparable Representations:
The Basics

This chapter is of introductory character. Here for any block matrix the lower
and the upper rank numbers are defined as the ranks of the maximal (block)
submatrices entirely located in the strictly lower triangular part and respectively
in the strictly upper triangular part of the matrix. Using these ranks we define
the quasiseparable orders of a matrix. These notions are illustrated on various
examples. The chapter contains also the definition and examples of quasiseparable
representations of matrices and their basic properties. The connection of rank
numbers with the orders of quasiseparable representations is studied in detail in
the next section.

64.1 The rank numbers and quasiseparable order.
Examples

§4.1.1 The definitions

Let A = {A4;;}];=; be a matrix with block entries. Consider the ranks of the
maximal submatrices of A entirely located in the strictly lower triangular part
and in the strictly upper triangular part:

rank A(k+1:N,1:k)=pk, k=1,...,.N—1 (4.1)
and

rank A(1: k,k+1:N)=p{, k=1,...,N—1. (4.2)
The numbers pé (k=1,...,N—1) are called the lower rank numbers of the matrix

A. The numbers pY (k =1,...,N — 1) are called the upper rank numbers of the
matrix A.

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 75
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Let A = {A;;}1;_; be a matrix with block entries with lower rank numbers
pk (k=1,...,N —1) and upper rank numbers p{ (k=1,..., N —1). Set

L U
L = max U = max .
P 1<k<N-1 P> P 1<k<N—-1 Pk

We say that the matrix A has lower quasiseparable order pr, and upper quasisep-
arable order py. We say also that A has quasiseparable order (pr, pv).
§4.1.2 The companion matrix

For the monic polynomial p(z) = VN +an_1z¥ 1+ -+ a1z +ap, the companion
matriz of p(z) is defined to be

0 0 0 —wo
1 0 0 —Q]
C=| 1+ 0 : (4.3)
0 ... 1 0 —an—2
0 0 1 —QN—-1

The polynomial p(z) is the characteristic polynomial for the matrix C.
The maximal submatrices of C' from the strictly lower triangular part are

0o ... 1
Ck+1:N,1:k)=| + -~ |, k=1...,N-1
0o ... 0

and therefore the lower rank numbers of the matrix C are equal to one. Further,
the maximal submatrices of C' from the strictly upper triangular part are

0 ... —Qp
C:kk+1:N)=| : . : . k=1,...,N—1

0 ... — -1

and therefore the upper rank numbers of C' are not greater than one. Moreover, if
the coefficient oy is not zero, then all upper rank numbers of the matrix C' equal
one.

The companion matrix C defined in (4.3) has lower quasiseparable order
one and upper quasiseparable order at most one. If at least one of the numbers
ag, k=0,...,N — 2 is not equal to zero, C' has quasiseparable order (1,1).

64.1.3 The block companion matrix

For the monic matrix polynomial p(z) = Iz™ + ay_12¥ "1+ - + a12 + ag with
n X n matrix coefficients oy (k = 0,...,N — 1), the block companion matriz of
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p(z) is defined similarly as above, i.e., via

0 0o ... 0 —Q
In 0 0 —Q
o=l - : . (4.4)
o ... I, 0 —an_g
0 0 ... I, —an_1

The polynomial det[p(z)] of degree Nn is the characteristic polynomial for the
matrix C’.
For k=1,...,N — 1 one has

0 ... In 0 ... —Qp
C'(k+1:N,1:k)=1|: . |, C'Q:kk+1:N)=1[ 1 -,

0...0 0 ... —apq
Therefore the lower rank numbers of C’ equal n and the upper rank numbers are
not greater than n.

The block companion matrix C’ defined in (4.4) has lower quasiseparable
order n and upper quasiseparable order n at most.

64.1.4 Tridiagonal matrices and band matrices

Consider a scalar matrix A = {A;}N,_, with A;; = 0 for |i — j| > 1. This is a

tridiagonal scalar matrix. For K =1,..., N — 1 one has
0 ... Atk
Ak+1:N,1:k)=| + . ,
0 0
0 0 (4.5)
A(l:kk+1:N)= : oo
Agk+1 ... 0

Hence it follows that the lower and upper rank numbers of this matrix are not
greater than one. If A is irreducible, i.e., all subdiagonal and superdiagonal entries
Ak41,k, Ak k+1 are not equal to zero, all lower and upper rank numbers of A are
equal to one.

Let A = {Aij}?fj:l be a block tridiagonal matrix with block entries A;; of
sizes m; x n;, i.e., A;j = 0 for |¢ — j| > 1. In this case for k =1,..., N — 1 the
relations (4.5) hold with block entries. Since the blocks Apt1,, and Ag p41 have
respective the sizes my41 X ni and my X niy1 one gets

L : U :
pr <min{mgi1,n}, pr < min{mg,ng1}, k=1,...,N—1.
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Consider a (b, by)-band scalar matrix B = {By;}},_,, i.e., Bij = 0 for
t—7j >br,j—1>by. One has

0 ... B,
Bk+1:N1:k)=|: ~ = |, k=1,... N-1
0 0
with
Bitvi1 oo Brtik
Bllc = BbLJrLl BbLJrLk R k=1,...,bg,
0 Bk+bL,k
Bitvik—br4+1 -+  Bryig
B, = : : , k=bp,+1,...,N—by —1,
0 Bk+bL,k
Bitik—br+1 -+ Brtik
B, = : : , k=N-bp,...,N -1
0 ... By

)

Since the sizes of the scalar matrices Bj, are not greater than by, the lower rank
numbers of the matrix B are not greater than by. In the same way one obtains
that the upper rank numbers of B are not greater than by . Similar relations hold
for band matrices with block entries.

A tridiagonal scalar matrix A = {A;;})¥;_; has quasiseparable order (1,1) at
most. If for some ¢ and j with (1 <4,5 < N—1)onehas A;11,; # 0 A, j41 # 0, then
A has quasiseparable order (1,1). A (bz,by)-band scalar matrix B = {Bj;}}V;_,
has quasiseparable order (br,by) at most.

§4.1.5 Matrices with diagonal plus semiseparable representations

Let A be a matrix with block entries A;; of sizes m; x n; with the diagonal plus
semiseparable representation

p(i)q(j), 1<j<i<N,
g(i)h(j), 1<i<j<N.

Herep(i) (i =2,...,N), q(j) (j =1,..., N—1) are matrices of sizes m; X rp,, 7, X
n;, respectively, and g(i) (i = 1,...,N — 1), h(j) (j = 2,..., N) are matrices of
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sizes m; X ry, ry X nj, respectively. The lower rank numbers of the matrix A of
the form (4.6) are always not greater than r; and the upper rank numbers are
always not greater than ry. Indeed, one has

A(]{:+1:N71:]{:):Pk+1Qk, A(l:]{:7k—|—12N>:Gka+1, k=1,....,N—1

with Py = col(p(i)){L;,, Qu = row(q(i))iiy, Gr = col(g(i))i=y, Hy = row(h(i))L,.
The matrices Piy1 and Qi have rp columns and rows, respectively, and so

pk<rp, k=1,...,N—1.
Similarly, the matrices G, and Hy1 have ryy columns and rows respectively and so
ol <ry, k=1,...,N—1.

The matrix defined in (4.6) has quasiseparable order (rr,ry) at most.

64.2 Quasiseparable generators

Here we define the main representation of matrices used in this book.

Let {a(k)} be a family of matrices of sizes 7 X rip_1. For positive integers
i,j, i > j define the operation aj; as follows: aj; = a(i —1)-----a(j + 1) for
i>j+1, a7, ;=1

Let {b(k)} be a family of matrices of sizes 11 X 7. For positive integers
i,J, j > i define the operation b as follows: b5 = b(i+1)-----b(j —1) for j > i+1,
biir = I,

It is easy to see that

ai>j = ai>ka,§+m7 i>k>j (4.7

and

b5 = b abe,, 1< k<. (4.8)

Let A = {Aij}?szl be a matrix with block entries A;; of sizes m; x n;.
Assume that the entries of A are represented in the form
p(ia;q(j), 1<j<i<N,
Aj; =< d(i), 1<i=j<N, (4.9)
g(ib5h(j), 1<i<j<N.

Here p(i) (i = 2,...,N), ¢(4) G = 1,...,N—=1), ak) (k =2,...,N -1
are matrices of sizes m; x rF |, r]’; x n;, rixrk |, respectively, g(i) (i =
1,....,N=1), h(4) j =2,...,N), bk) (k=2,...,N — 1) are matrices of sizes
mixr?, rjUfl xnj, rd_ xr¥ respectively, d(i) (i = 1,..., N) are m; xn; matrices.
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The representation of a matrix A in the form (4.9) is called a quasiseparable rep-
resentation. The elements p(i) (i = 2,...,N), ¢(j) j =1,...,N —1), a(k) (k=
2,....,.N=1); g6@) ¢ =1,...,N=1), h(j) j =2,...,N), b(k) (k=2,...,N —
1); d(3) (z = 1 ,N) are called quasiseparable generators of the matrix A. The
numbers <, rY (k: =1,...,N —1) are called the orders of these generators. The
elements p(4) (4 —27...,N)7 q(j) G=1,...,N=1), a(k) (k=2,...,N—1) and
g(@)i=1,...,N=1), h(j) j =2,...,N), b(k) (k=2,...,N—1) are called also
lower quasiseparable generators and upper quasiseparable generators of the matrix
A. For scalar matrices the elements d(i) are numbers and the generators p(i), g(7)
and ¢(j), h(j) are rows and columns of the corresponding sizes.

Sometimes we define also lower and upper quasiseparable generators for the
indices £k = 0 and k£ = N. More precisely we define the numbers réﬁ r{(,, rg, ry to
be arbitrary nonnegative integers and p(1), ¢(IN), a(1),a(N), g(N), h(1),b(1),b(N)
to be arbitrary matrices of sizes my x ¥ vk xnn, rExrl rkxrk | myxr§,rY x

ni, 1y X r?,r% , x 5. In this case we use the name quasiseparable generators

of orders rE,rY (k = 0,...,N) for the set p(k),q(k),a(k); g(k), h(k),b(k); k =
1,..., N and the names lower quasiseparable generators and upper quasiseparable
generators for the sets p(k),q(k),a(k), k = 1,...,N and g(k),h(k),b(k), k =
1,..., N, respectively.

In the examples above one has the following.

1. For the companion matrix C defined in (4.3) quasiseparable generators may
be taken in the form

p(i)=1,i=2,...,N, q(j) = 1, Jj=1...,N )
alk)=0,k=2,...,N—1, g(i):fai,l,z:l,...,Nfl,
h(j)=0,j=2,...,N—1, h(N)=1, (4.10)
b(k)=1,k=2,...,N — 1,

dii)=0,i=1,...,N—1, d(N)=—an_1.

p(i)=1I,, i=2,...,N, qj)=1I,, j=1,...,N—1,

a(k)f(), k72,...,N71, g(i) = —a;—1,i=1,...,N — 1,

h(j) =0, j=2,...,N—1,h(N) = I,,

b(k) = I, k_2,...,N—1, d(i) = 0, i=1,...,N—1, d(N) = —an_1.

3. For a scalar tridiagonal matrix A = {A;;}1;_, one has

p(i) =1, i=2,...,N, q(j) =Aj1 ,5=1,...,N -1,
a(k)=bk)=0,k=2,...,N —1,

g(i) =Asip1, i=1,...,N—1, h(j)=1, j=2,...,N,

d(k) = Ags,  k=1,...,N. (4.11)
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Similarly,b for a block tridiagonal matrix with entries A;; of sizes m; X n;
one has

N, q(j) = Aj41,;,  j=1,...,N
0 N =1 b(k) = Oppxngsns k=2, N —1;
gi) = Aiir1,  i=1,...,N—=1, h(j) = I, j=2...,N
d(k) = Awg, k=1,....N

p(l :Imm i=2,...,

4. To determine quasiseparable generators of a (by,, byy)-band scalar matrix
B = {Bi}i,

ij=1

we use the shift n x n matrices

0 1 0 0
0 0 1 0
Jn =
Do 1
0 0 O 0
and the n-dimensional rows e, = ( 1 0 ... 0O ) The lower and upper

quasiseparable generators of the matrix B may be taken in the form

Bji1,j
p(i)=ey,,i=2,....,N, q(j) = : ,j=1,...,N—1;
Bjtb,,j
ak)=Jy,, k=2,...,N —1;
9(i)=( Biit1 .- Biiyv, ), i=1,....N—1, h(j)=e},,j=2,...,N;
bk)=Jp , k=2,...,N—1.

Here the entries B;; for ¢ > N or j > N are assumed to be zero.
f

5. Let A be a matrix with the given diagonal plus semiseparable representation
(4.6), with lower and upper semiseparable generators p(i) (i = 2,...,N),
qj) G=1,...,N=1and g(i) (i=1,...,N=1),h(j) (j =2,...,N) of or-
ders r;, and ry, respectively. For A one gets the quasiseparable representation
with lower and upper quasiseparable generators by setting

p(l),Z:2,7N7 Q(])a]:]-avN*L a(k):ITL7k:2a7N71’
gi), i=1,....N—1, h(j), j=2,....N, blk)=1I,, k=2,...,N—1.
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64.3 Minimal completion rank, rank numbers,
and quasiseparable order

In this section we compare the minimal completion rank and the rank numbers of
a matrix. For a matrix A the minimal completion rank 7, is greater than or equal
to the lower quasiseparable order pr. The difference between these two numbers
may be essential, as one can see, for instance, for an irreducible tridiagonal matrix,
i.e., for a tridiagonal matrix with all the entries non-zeros on the subdiagonal and
the superdiagonal. Necessary and sufficient conditions for the equality of these two
numbers and for the equality of rank numbers and the minimal completion rank
are given as follows.

Theorem 4.1. For a matriz A the inequality 7y, > pr holds and pr = 71 if and
only if
rank A(k+1: N,1:k)=rank A(k+2: N,1:k), k=1,...,ky—1;
rank A(k+1:N,1:k—1)=rank A(k+1:N,1:k), k=ko+1,....,N—1

)

(4.12)
where ko, 1 < ko < N —1 is such that p;, = rank A(ko+1: N, 1: ko). Furthermore,
the rank numbers pﬁ (k=1,...,N —1) of A are not greater than the minimal
completion rank 71, and moreover

pk =7y, k=1,...,N—-1 (4.13)
valid if and only if
pE =rank A(N,1), k=1,...,N—1. (4.14)

Proof. We write the equality (3.3) in the form

TA‘L = I‘aHkA(k‘() +1: N, 1: k‘())
ko—1
+ Y [rank A(k+1: N,1: k) —rank A(k +2: N,1: k)]
k=1

N-1
+ Z [rank A(k+1:N,1:k)—rank A(k+1: N,1:k—1)].
k=ko+1

Since

rank A(k+1: N,1: k) >rank A(k+2: N,1: k),
rank A(k+1:N,1:k) >rankA(k+1:N,1:k—-1)

and pr, = rank A(ko + 1 : N,1 : ko), we conclude that 7, > pr and moreover
7, = pr if and only if the condition (4.12) holds.
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From the inequality 7;, > pr and the fact that py, is the maximal lower rank
number of the matrix A we conclude that

pbk<ip, k=1,...,N-1.
Let the condition (4.14) hold. Using the inequalities
rank A(N,1) <rank A(k+1:N,1:k—1)
<rvank A(k+1:N,1:k)=pk, k=2,...,.N-1,
we conclude that
rank A(k+1:N,1:k—1)=rank A(k+1:N,1:k), k=2,...,N—1

Hence, using (3.3) one obtains 77, = rank A(2 : N, 1) = p¥ and using (4.14) again
one obtains (4.13)

Assume that the condition (4.13) holds. Recall that the number 7, is the
minimal completion rank of the strictly lower triangular part A = {Aijhi<j<i<n
of the matrix A. Consider the partially specified matrix

A2:N—1,1) ?
AO:( A(N, 1) A(N,?:Nl))'

Let 7o be the minimal completion rank of Ap. Since the given part of Ag is a
submatrix of A, one gets 1o < #1,. Formula (2.2) yields

ro =rank A(2: N,1) 4+ rank A(N,1: N — 1) —rank A(N, 1).

Now if rank A(N, 1) < 7, one gets ro > 7, a contradiction. O

84.4 The quasiseparable and semiseparable generators

Let A be a matrix with lower semiseparable generators p(i) (i = 2,...,N), q(j)
(j=1,...,N —1) of order r1. As mentioned above, A has lower quasiseparable
generators

p(i),i=2,....N, q(j),j=1,....N—1, a(k)=1I.,, k=2,...,N—1
of orders rf =rp (k=1,...,N —1).
Under some conditions the converse statement holds.

Theorem 4.2. Let A be a block matriz with lower quasiseparable generators p(i)
(i=2,...,N),q() G=1,...,N—=1), a(k) (k =2,...,N — 1) such that the

orders of these generators are constant r]% =rg (k=1,...,N—1) and the ro x rg
matrices a(k) (k=2,...,N — 1) are invertible.
Then the matriz A has lower semiseparable generators p(i) (1 = 2,...,N),

q(5) G =1,...,N —1) of order ro which are given by the formulas
p(i) =p(i)az, i=2,...,N, §(j)=(a711) "q(), j=1,....,N—1. (4.15)
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Proof. One has the quasiseparable representation
Aij =p(i)ajq(j), 1<j<i<N.

For any i,j with 1 < j <4 < N, using the formula aj; = a;;a7,,, and the fact
that the matrix a7, , is invertible one gets a;; = a;; (a7, ;)" and therefore

Aij = (p(0)az) (a7 1) a()- (4.16)

Define the matrices p(i) (i = 2,...,N), ¢(j) (j =1,...,N —1) by (4.15). Every
matrix p(i) has 79 columns and every matrix ¢(j) has ro rows. Moreover using
(4.16) one gets

Ay =p(i)q(j), 1<j<i<N

and therefore p(i) (i =2,...,N), ¢(4) (j =1,...,N — 1) are lower semiseparable
generators of order ry of the matrix A. O

In the same way one obtains the corresponding statement for upper genera-
tors.

Theorem 4.3. Let A be a block matriz with lower quasiseparable generators g(i)
(i=1,...,N=1), h(§) G =2,...,N), b(k) (k =2,...,N — 1) such that the

orders of these generators are constant r,g =rog(k=1,...,N—1) and the ro X g
matrices b(k) (k=2,...,N — 1) are invertible.
Then the matriz A has lower semiseparable generators g(i) (1 =1,...,N—1),

il(]) (j=2,...,N) of order ro which are given by the formulas

9(1) = g()(b5p) " i= 1, N =1, h(j) = b5R(5), 5=2,...,N. (417)

§4.5 Comments

The rank numbers of a matrix have been defined and used in by M. Fiedler and
T.L. Markham in [30], [29], see also a note by E. Tyrtyshnikov [44]. The qua-
siseparable representations were used in the paper [38] and in the monograph by
P.M. Dewilde and A.J. van der Veen [15] in the study of discrete time-varying sys-
tems. The connection between quasiseparable and semiseparable representations
was discussed by R. Vandebril, M. Van Barel and N. Mastronardi in the note [45]
and in the book [46].

The material of this chapter is taken mainly from [20] and [27].



Chapter 5

Quasiseparable Generators

It is clear from the preceding chapter that any matrix has quasiseparable repre-
sentations. By padding given quasiseparable generators with zero matrices of large
sizes one can arrange that they have arbitrarily large orders. However, one is look-
ing for generators of minimal orders, because they will give better computational
complexity in applications.

This chapter defines minimality for quasiseparable generators in a natural
way. Algorithms to build them from a given triangular part or from a general
set of generators are given. A notion of similarity for two sets of generators of
the same matrix readily emerges and it turns out that all minimal generators are
similar. Also, notions of normality for sets of generators are defined and minimal
and general normal generators are computed.

Approximations of a given matrix by another matrix with predefined small
quasiseparable order conclude this chapter.

To be more precise, the first section has a preliminary character; in it, using
quasiseparable generators of a matrix we define some auxiliary matrices which are
employed in the sequel. In the second section it is shown that the minimal orders
of the quasiseparable generators coincide with the corresponding rank numbers of
the matrix. An algorithm to build a set of minimal lower quasiseparable generators
of a matrix with the strictly lower triangular part given is also presented. As a
corollary one obtains that the maximal orders of minimal quasiseparable genera-
tors coincide with the quasiseparable orders of a matrix. The third section contains
some examples of computing of quasiseparable generators. A special example of
the block companion matrix is considered in the fourth section. In Section 5 a crite-
rion for minimality of generators is proved and some examples show its usefulness.
In Section 6 we consider relations between different sets of generators of the same
matrix. Here we define a notion of similarity for candidate quasiseparable gener-
ator sets of the same matrix. It turns out that sets of matrices similar to a given
set of generators are also quasiseparable generators. Also, any two sets of minimal
quasiseparable generators of the same matrix are similar. A counterexample shows
that non-minimal generators are not always similar. The seventh section computes

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 85
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_5, © Springer Basel 2014
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a set of minimal generators from a set of given presumably non-minimal gener-
ators. In Section 8 we consider special quasiseparable generators satisfying some
orthonormality conditions. The last section gives the approximations of a matrix
by a quasiseparable matrix with orders not exceeding a specified maximum, or
with a matrix for which the middle (diagonal) factor in the SVD decomposition
has only entries which are larger than a specified tolerance.

§5.1 Auxiliary matrices and relations

In this section we derive some connections between a quasiseparable representation
of a matrix and the structure of its submatrices.

Let p(i) i =2,...,N),q(j) 4 =1,...,N=1), alk) (k=2,...,N —1) be

i i Vo L Ly L . .
matrices of sizes m; X 1;_q, 1 Xnj, 1y X1y, respectively. We define the matrices

Qr (k=1,...,N —1) of sizes r,’i X Z?:1 n; and the matrices Py (k = N,...,2)

of sizes Y _;_, m; x rk_| via the relations

Qr = rOW(QI?JrLz‘Q(i))?:h k=1,...,N-1 (5.1)
P, = col(p(i)a7,_y )iy, k=N,....2. (5.2)

One can check directly that the matrices Py, Q satisfy the recursion relations

Qi=q(1), Qr=_(ak)Qr1 qk)), k=2,...,N—1; (5.3)

p(k)

Py = p(N), Py = : k=N—1,...,2. 5.4
=) po= (M) (54)
Similarly, let ¢g(z) (: = 1,...,N —1), h(y) (j = 2,...,N), bk) (k =
2,...,N —1) be matrices of sizes m; x 7Y, 7”?71 X ngj, r,lil X r,g, respectively. We
define the matrices G, (k=1,...,N —1) of sizes Z?Zl m; x r and the matrices

Hy (k=N,...,2) of sizes rY_| x Zf\;k n; via the relations
G = col(g(D)b5py1)izy, k=1,...,N -1 (5.5)
Hy, =row(by_y ;h(i)iL,, k=N,...,2. (5.6)

One can check directly that the matrices Gy, Hy satisfy the recursion relations

Gi=9(1), Gr= < Gk;(llj))(k) ) , k=2,...,N —1; (5.7)

Hy =h(N), Hp={( hk) bk)Hpsr ), k=N-1,...,2. (5.8)

The following relations for the corresponding submatrices of a quasiseparable
matrix follow directly from the definition (4.9).
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Lemma 5.1. Let A = {Aij}fszl be a matriz with lower quasiseparable gener-
ators p(i) (i = 2,...,N), q(4) G = 1,...,N—=1), a(k) (k =2,...,N — 1)
of orders r,f (k = 1,...,N — 1). Using these generators define the matrices

Qr(k=1,...,N—=1), P, (k=N,...,2) via the formulas (5.1), (5.2).
Then the equalities

Ak+1:N,1:k)=Pe1Qp, k=1,...,N—1, (5.9)
hold.

Proof. The first formula from (4.9) yields

p(k+Dag,,,9(1) .. plk+Dag,, za(k)
Ak+1:N,1:k) = ,
p(Nag,a(l) ... p(N)ag za(k)
k=1,...,N—1.

Furthermore using the equalities (4.7) one obtains

p(k+1)
p(k+2)ag
Ak +1:N,1:k) = e

p(N>aK7,k
. ( al?+1,1Q(1) a,?+17k_1q(k —-1) q(k) )
= Pr1Qr- O

Corollary 5.2. Under the conditions of Lemma 5.1, the equalities

A(k+1:N,k) = Pry1q(k), k=1,...,N—1, (5.10)
and
Ak+1,1:k)=pk+1)Qx, k=1,...,N—1, (5.11)

hold.

Proof. Using (5.3) we see that Q(:, k) = ¢(k) and therefore using (5.9) we obtain
A(k+1:N,k) = Pryiq(k), k=1,...,N—1.

Similarly using (5.9) and (5.4) one obtains (5.11). O

Conversely, it is easy to check that the relations (5.10) or (5.11) define a
quasiseparable representation of the strictly lower triangular part of a matrix.
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Lemma 5.3. Let A = {A;;}1,_, be a block matriz. Consider the relations (5.10)
or the relations (5.11), where Py, (k =2,...,N) and Qi (k=1,...,N — 1) are
matrices defined via the relations (5.2) and (5.1) with some matrices p(i) (i =
2,...,N),q(5)(j=1,...,N—=1), a(k) (k=2,...,N —1).

Then p(i) (i =2,...,N), q(4) G =1,....N—=1), a(k) (k=2,...,N—=1)
are lower quasiseparable generators of the matriz A.

Proof. Let the equalities (5.10) hold. Using (5.2) one obtains
A(k+1: N, k) = Pey1q(k) = col(p(i)a;))itp1q(k), k=1,...,N—1

which implies the first formula from (4.9).
Now let the equalities (5.11) hold. Using (5.1) one obtains

Ak, 1:k—=1)=pk)Qr-1 = p(k)rovv(a,?jq(j));?;117 k=2...,N
from which the first formula from (4.9) follows. g

Similarly one can prove the following assertions concerning the strictly upper
triangular part of the matrix A.

Lemma 5.4. Let A = {Aij}%zl be a matrix with upper quasiseparable gener-
ators g(i) i = 1,...,N —=1), h(y) (j = 2,...,N), bk) (k =2,...,N — 1)
of orders r,g (k = 1,...,N — 1). Using these generators define the matrices

Gp(k=1,...,N=1), H; (k=N,...,2) via (5.5), (5.6).
Then the equalities

A(l:kk+1:N)=GyHpp1, k=1,...,N—1, (5.12)

hold.

Corollary 5.5. Under the conditions of Lemma 5.4, the equalities

Alk,k+1:N)=g(k)Hyy1, k=1,...,N—-1 (5.13)
and
A(l: kk+1)=Grh(k+1), k=1,...,N—-1 (5.14)

hold.

Lemma 5.6. Let A = {Aij}?fj:l be a block matriz. Let the relations (5.13) or
the relations (5.14), where Hy (k = 2,...,N) and Gy, (k = 1,...,N — 1) are
matrices defined via the relations (5.6) and (5.5) with some matrices g(i) (i =
1,....N=1), h(j) j=2,...,N), b(k) (k =2,...,N — 1), hold.

Then g(i) i=1,...,N—=1), h(j) § =2,...,N), b(k) (k=2,...,N—=1)
are upper quasiseparable generators of the matriz A.
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§5.2 Existence and minimality of
quasiseparable generators

Let A = {Aij}f\fj:l be a block matrix with lower quasiseparable generators p(i)

(i=2,...,N),q(3) G=1,...,N=1),a(k) (k=2,...,N —1). The matrices p'(i)
(i=2,....N),qd() (j=1,....N—1),d (k) (k=2,...,N — 1) defined by

v = (o0 0). 7= ). wm=(Y 7).

with zeros of the corresponding sizes, are also a set of lower quasiseparable gener-
ators of the same matrix A. Indeed one can check easily that

p(i)azq(7) = p'(i)(@)54' (), 1<j<i<N.

We see that the orders of quasiseparable generators of a matrix can be arbitrarily
large. We will be interested in generators of minimal orders.

Definiton 5.7. Let p(i) (¢ = 2,...,N), ¢(j) (j = 1,...,N = 1), a(k) (kK =
2,...,N — 1) be lower quasiseparable generators of a matrix A with the orders
ri (k =1,...,N — 1). These generators are called minimal if for any other set
of lower quasiseparable generators of A with orders ¢, (k = 1,...,N — 1) the
inequalities

re <ty, k=1,...,N—1

hold. The orders r;, (k = 1,...,N — 1) are called the minimal orders of lower
quasiseparable generators of the matrix A.

At first we show that the orders of quasiseparable generators are not smaller
than the corresponding rank numbers.

Lemma 5.8. Let A = {Aij}%zl be a block matriz with the lower rank numbers
pk(k=1,...,N —1) and let ty (k =1,...,N — 1) be the orders of some lower
quasiseparable generators of the matriz A.

Then

pE<tp, k=1,...,N—1.

Proof. Assume that p’'(i) (i = 2,...,N), ¢(j) (j =1,....,.N —=1), d'(k) (k =
2,...,N —1) are lower quasiseparable generators of the matrix A with the orders
ty (k=1,...,N—1). Define the matrices P, (k =2,...,N), Q;, (k=1,...,N—1)
by the formulas (5.1), (5.2). By Lemma 5.1,

A(k+1:N,1:k) =P Qs k=1,...,N—1.

Since the number of the columns of the matrix P, and that of the rows in the
matrix @), are both equal to ¢, one obtains

ph=rankA(k+1:N,1:k)<ty, k=1,...,N —1. O
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Now we give an algorithm to compute a set of minimal quasiseparable gen-
erators of a matrix with a given strictly lower triangular part.

Theorem 5.9. Let A = {Aij}?fj:l be a block matriz with lower rank numbers
pk(k=1,...,N—1).

Then the matriz A has lower quasiseparable generators with orders pﬁ (k=
1,...,N —1). Moreover, a set p(i) (i =2,...,N), q(4) j=1,...,N —1), a(k)
(k=2,...,N — 1) of lower quasiseparable generators of the matriz A with these
orders is obtained by means of the following algorithm.

1. Set AV = A(2 : N,1). Using rank factorization of the matric AW determine
the matrices Py, q(1) of the sizes (Ef; mi) X 11, r1 X N1, respectively such that

AWM = Pyq(1) (5.15)

with
rank P, = rank ¢(1) = rankA® = r,. (5.16)
2. Fork=2,...,N — 1 perform the following.
Set AR = A(k +1: N,k).
Determine the matrices p(k), P{ of sizes my X 11, (Zikﬂ mi) X Tgp_1,

respectively, from the partition
k
P, = < p]gé,) ) . (5.17)

Using the rank factorization of the matriz ( p/ AK) ), determine the num-
ber i and the matrices Pgi1, Vi of sizes (Zf\;m—l mi) X Ty Tk X (rg—1 + nk),
respectively, such that

(B AW ) = PV, (5.18)
rank Py1q = rank Vj, = rank( P! AK) ) = 7g. (5.19)

Determine the matrices a(k), q(k) of sizes ri, X rp—1, 7K X ny, respectively, from the
partition

Vie=(a(k) q(k) ). (5.20)

3. Set
p(N) = Py. (5.21)

Proof. Consider the matrices Py, (k = 2,..., N — 1) defined in the algorithm.
Comparing the corresponding entries in (5.18) and (5.20) one gets

P! = Pyyia(k), k=2,...,N—1.
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Hence from the relations (5.21) and (5.17) it follows that the matrices P, (k =
2,...,N — 1) satisfy the recursion (5.4). Furthermore, using (5.15), (5.18), (5.20)
one gets
Ak+1:N,k) = Peyiqk), k=1,...,N—1

Thus, by Lemma 5.3, p(i) (i = 2,...,N), q(4) (j =1,...,N = 1), a(k) (k =
2,...,N —1) are lower quasiseparable generators of the matrix A.

Next we prove that the orders 7, (k = 1,...,N — 1) are equal to the cor-
responding rank numbers p~ (k = 1,..., N — 1). Define the matrices Q. (k =
1,..., N —1) via the relations (5.3). By Lemma 5.1,

Ak+1:N,1:k)=Py1Qk, k=1,...,N—1.
We should check that
rank Pyy1 =rankQr =1, k=1,...,N —1.

This means that the matrices P41, Q) have full column rank and row rank, re-
spectively, and therefore

pé =ry, k=1,...,N—1.
The relations (5.16), (5.19) imply that the conditions
rank Poy1 =715, k=1,...,N—1

hold. Next, using the relation (5.15) one gets rank(q(1)) = 1. Assume that for
some k with N —1 > k > 2 the relation rank Qx_1 = 7,—1 holds. Using (5.3) one
has

= (at) at)) (%57 0. (5.2)

The matrix ( Q’z)*l 0 > has full row rank. Moreover using (5.18) one gets

1
rank (a(k) q(k) )=y

and furthermore, by using (5.22), one obtains

rank Q; = rank ( a(k) q(k) ) = rp. O

In order to compute the complexity of the algorithm from Theorem 5.9 one
has to compute only the number of operations in (5.15), (5.18). Every such fac-
torization costs O(N) operations and hence the total complexity of the algorithm
is O(N?).

Corollary 5.10. The lower rank numbers of a matrix are equal to the minimal
orders of its lower quasiseparable generators. Moreover, a set of minimal lower
generators can be obtained by means of the algorithm from Theorem 5.9.
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Corollary 5.11. Let A be a matriz with quasiseparable order (pr, pu).
The minimal orders rk (k=1,...,N—1) andrY (k=1,...,N —1) of lower
and upper quasiseparable generators of A satisfy the relations

L U
max 7, = pL max 7. = pu
1<k<N-1 F PL> 1<k<N-1 F PUs

i.e., the mazimal orders of minimal quasiseparable generators of a matriz are equal
to its quasiseparable orders.

§5.3 Examples

Example 5.12. We compute lower quasiseparable generators for the 6 x 6 scalar
matrix

e e S S e
— == N % ¥
— = X % %
— N % ¥ % ¥
— % % % % ¥
X % X X ¥ %

By formula (5.15), one obtains

P2 = , q(].) = 17 r = 1.

el e

Next, for k = 2 formula (5.17) yields p(2) = 1 and, moreover, using formula
(5.18) one gets

(P AP ) = =P3Vs

— = =
Y

with

— = =
S S )
o
I
7N
O =
=]
N~~~
<
)
|
N

Using the partition (5.20) one obtains a(2)

I
7N
[l
N~~~
)
—
K
I
N



§5.3. Examples 93

For k = 3 formula (5.17) yields p(3) = ( 1 2 ) and, moreover, using formula
(5.18) one gets

1 11
(Py A®)={1 1 1 |=PVs
1 11
with
1
P4: 1 , Vgi(l 1 1), 7‘3:1.
1

Using the partition (5.20) one obtains a(3) = ( 1 1), ¢(3) = 1.
For k = 4 formula (5.17) yields p(4) = 1 and, moreover, using formula (5.18)

one gets
1 2
(1 1>:P5V4

1 2 1 0
P (12 v (10, e

Using the partition (5.20) one obtains a(4) = < (1) ) , q(4) = ( (; )
2

For k = 5 formula (5.17) yields p(5) = ( 1
(5.18) one gets

(A

with

) and, moreover, using formula

(P AB) Y =(1 1 1)=PRVs

with
Po=1, Ve=(1 1 1), r=1

Using the partition (5.20) one obtains a(5) = ( 1 1 ), ¢(5) = 1.
Finally, by formula (5.21), one gets p(6) = Ps = 1.

Thus one obtains a set of minimal lower quasiseparable generators of the
matrix A:
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Example 5.13. Consider the N x N matrix

d 1 2 3 N-2 N-1
1 d 4 6 2N —2) 2(N-1)
2 4 d 9 3(N-2) 3(N-1)
. 3 6 9 d AN —2) 4(N-1)
N-2 2(N-2) 3(N-2) 4N-2) - d (N —1)2
N-1 2(N-1) 3(N—1) 4N—-1) --- (N—1)? d

Aset p(i) (i=2,...,N), q(4) §=1,...,N—=1), alk) (k=2,...,N —1)
of lower quasiseparable generators of the matrix A with order one is obtained via
the following algorithm.

Step 1. Set AD = A2:N,1)=(1 2 3 --- N—2 N-1)". Using
rank factorization of the matrix A() determine the matrices Py, g(1) of the sizes
(ZZI\;Q mi) xr1 = (N—1)x1,r xng =1x1, respectively, such that (5.15),(5.16)

hold. Indeed, take Py = AM, ¢(1) = 1.
Step 2. For k =2,..., N — 1 perform the following.
We have

AP Z AR+ N = (B KEED) o V-2 k1))

Determine the matrices p(k), P of sizes 1 x 1, (N — k) x 1, respectively, from
the partition (5.17), namely
k
= ().

It follows that p(k) =k —1,P/ = (k k+1 .- N—2 N—1)".
Using rank factorization of the matrix ( P! Ak) ) determine the matrices
Pyt1, Vi such that (5.18) and (5.19) hold. For instance,

Poi=(k k+1 -~ N-2 N-1)", V=(1 k), m=1
Determine the matrices a(k), ¢(k) from the partition (5.20), namely
Vie=(a(k) q(k) ).

This means that a(k) = 1, q(k) = k.
Finally, p(N) = Py = N — 1.
In this way, we obtained the following lower quasiseparable generators:
p(l):Z*].,Z:27,N, q(]):]a]:137N717
alk)=1,k=2,...,N—1. O
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Example 5.14. Consider the N x N matrix

1 a a2 . GN_2 aN—l
b 1 a cooalNT3 gN2
b2 b 1 . aN—4 aN—3
A =
b]\/:—2 bN'_?’ bN._4 . 1 a
bN—l bN_2 bN_3 . b 1

The algorithm yields the quasiseparable generators

p(i)=0b, i=2,...,N, qj)=1,j=1,...,N—1,
ak)=b,k=2,...,N—1, g(i)=1,i=1,....N—1,
h(j)=a,j=2,...,N, bk)=a,k=2,...,N—1,
dk)=1,k=1,...,N. o

Example 5.15. Consider the 7 x 7 scalar Toeplitz Hermitian 5-band matrix A from
Example 3.5, namely

N

I
cCoo o WK

=2 L ™
OO WL W
O WL W= O
L L ™R oo
R R oo o
O =R oo oo

o o OO

where v # 0. We use Theorem 5.
matrix.

to obtain quasiseparable generators for this

The matrix A has lower rank numbers pZ (k = 1,...,6) not exceeding 2.
Then A has lower quasiseparable generators with orders pﬁ (k=1,...,6). More-
over a set p(i) (i = 2,...,7), q(j) (j = 1,...,6), a(k) (k = 2,...,6) of lower
quasiseparable generators of A with these orders are obtained by means of the
following algorithm.

Step 1. Set AN = A(2:7,1) = ( B v 0 0 0 O )T. Using rank factor-
ization of the matrix A(") determine the matrices P, ¢(1) of the sizes (23:2 mi) X
r1 =6x1,r; xng =1x 1, respectively, such that (5.15),(5.16) take place. Indeed,
take P, = AW ¢(1) = 1.

Step 2. For k =2,...,6 perform the following:

Set k=2and A® = A2+1:7,2)=( 8 ~ 0 0 0)".

Determine the matrices p(k), P} of sizes

7

m2><’r‘2_1:1><17<z mi>><r2_1:5><1,

=241
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respectively, from the partition (5.17), namely

P — ( p}()z) )

It follows that p(2) = 8,Pf =(~v 0 0 0 0)".

Using rank factorization of the matrix ( Py A® ) determine the matrices
Py, Vs of sizes (Z;QH mi) X 19 =5 X 2,19 X (ra—1 +n2) = 2 X 2, respectively,
such that (5.18) and (5.19) hold. For instance,

B

Py =

OO OO
[ e B an O]
o
I
7N
O =
=]
N~~~
<
)
|
N

Determine the matrices a(2), ¢(2) of sizes ro X 191 =2 X 1,79 X ng =2 x 1,
respectively, from the partition (5.20), namely

Vo=(a(2) q2)).

This means that a(2) = ( (1) ) L q(2) = ( ! )

Set k=3 and A® = AB+1:7,3)=( 8 v 0 0)".

Determine the matrices p(3), Py’ of sizes 1 x 2, 4 x 2, respectively, from the
0 ~

0 0

0 0

0 0

Using rank factorization of the matrix ( Py A® ) determine the matrices
P51, V3 of sizes 4 x 2, 2 x 3, respectively, such that (5.18) and (5.19) hold. For

instance,
01 0
Y ‘/3 - ( O O 1 ) Y 7A3 - 2

Determine the matrices a(3), ¢(3) of sizes 2 x 2, 2 x 1, respectively, from the
partition (5.20). It follows that a(3) = ( 8 (1) > , q(3) = ( (1) )

g
Set k=4and AW =A4+1:7,4)=| ~
0

partition (5.17). It follows that p(3) = (v 5 ), P{ =

Py =

oo o
SO ™
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Determine the matrices p(4), Py’ of sizes 1 x 2, 3 x 2, respectively, from the
0
partition (5.17). It follows that p(4) = (v B8 ), P/ =1 0 0
0 0

Using rank factorization of the matrix ( Py A® ) determine the matrices
Pyi1,Vy of sizes 3 x 2, 2 x 3, respectively, such that (5.18) and (5.19) hold. For
instance

v B

01 0
Piai={0 v |, V4<0 0 1>7 Ty = 2.
0 0

Determine the matrices a(4), ¢(4) of sizes 2 x 2, 2 x 1, respectively, from the

partition (5.20). It follows that a(4) = ( 8 (1) > q(4) = ( (1) )

Determine the matrices p(5), Py’ of sizes 1 x 2, 2 x 2, respectively, from the

partition (5.17). It follows that p(5) = (v 8 ), Pi = < 8 g )

Using rank factorization of the matrix ( Py A®) ) determine the matrices
Psy1,V5 of sizes 2 x 2, 2 x 3, respectively, such that (5.18) and (5.19) hold. For

instance,
1 0 0
P5+1(0 1>7 VB(O g 5)7 T5:2'

Determine the matrices a(5), ¢(5) of sizes 2 x 2, 2 x 1, respectively, from the

partition (5.20). It follows that a(5) = < 8 g > »q(5) = < 5 )

Finally, set £ = 6 and A®) = A(6 + 1 : 7,6) = . Determine the matrices
p(6), P{ of sizes 1 x 2, 1 x 2, respectively, from the partition (5.17). It follows
that p(6) = ( 10 ), P/ = ( 0 1 ) Using rank factorization of the matrix

( P A©) ) determine the matrices P7, Vs of sizes 1 x 1, 1 x 3, respectively, such
that (5.18) and (5.19) hold. For instance,

f)7:17 ‘/6:<0 1 5)7 7"6:1.

Determine the matrices a(6) q( ) of sizes 1 x 2, 1 x 1, respectively, from the
partition (5.20). It follows that a(6) = ( 0 1 ), (6) = 5.

In Step 3 of the algorithm set p( )=P;=1.

Summing up, the following lower quasiseparable generators have been ob-
tained:

p(2) =B, p(3)=p*) =p(5)= (v B) 0
o) = 1, 0(2) = q(3) = =(?> =(§) (6) = 5.
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a(2)<é>,a(3)a(4)<g é),a(5)<8 g),a(a)(o 1).

Since the matrix A is Hermitian and for a symmetric matrix the generators
9(5) = ()", j=1,....N =1, h(i) = p(i)7, i = 2,....N, b(k) = a(k)", k =
2,...,N — 1, the following upper quasiseparable generators can been obtained:

b =5 1@ =i =) = (). o= (). wm-1L
9(1) =1, 92)=9gB3)=9(®)=(0 1), g6)=(B 7). g(6)=5,

=1 o) o= 0)mo=(1)

In order to describe completely the matrix A note that the diagonal entries
ared(k)=«, k=1,...,N

The order of the above quasiseparable generators is much lower than 5, which
is the order of the minimal semiseparable generators obtained for the same matrix

=
—~
N~—
—
—_
o
SN—
>
—
w
=
|

in Example 3.5 . O
Example 5.16. Consider the 5 x 5 matrix
d 2 1 1 1
2 d 2 11
A=11 2 d 2 1
1 1 2 d 2
1 1 1 2 d
. . :
Then A® = L= [ =1, AP =AB:5,2)=( 1 |,
1 1 1
1 1 2
p2)=2, P/ =11 and the rank factorization gives P = [ 1 1 |, Vo =
1 11

(1) > and their rank is ro = 2. Therefore a(2) = < L >, q(2) = ( 0 >

0 1
1)710 =(1 2

1 1 11 1 . _
>7 (O 0 1)andthelrranklsr32_

"=
¢ ;),q 3)
A) = 2

A(4)—A( 4)= (1 1),Pf =(1 0) and the rank
factorization gives P5 =1, V ( 1 0 2 ) and their rank is r4 = 1. Therefore

a@)= (1 0), q(4)=2.

O =

AB) = , P = < L > and the rank

11

factorization gives Py =

N
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Summing up, a set of lower quasiseparable generators of the matrix A is

p(2) =2, pB)=(1 2), p@)=(1 1), pB6)=1,
=1 a@=(7) w=(1) -2
a(2)=<(1)), a(3):((1) (1)) a4)=(1 0).

Since the matrix A is hermitian, a set of upper quasiseparable generators of
this matrix is

g(1) =1, 9@)=(0 1), gB3)=(1 1), g4)=2

h2) =2, h(3):(;>’ h(4>:(
b2)=(1 0), b(3)(} 8) b(4)(

Notice that for a symmetric matrix the generators satisfy g(j) = q(4)7, j =
L....N—=1,h(i)=p()T, i=2,...,N,b(k) =alk)’, k=2,...,N — 1.

Note also that the semiseparable generators obtained for the same matrix
in Example 3.4 have a higher order than the quasiseparable generators obtained
here. O

§5.4 Quasiseparable generators of block companion
matrices viewed as scalar matrices

For the monic n x n matrix polynomial of order N
P(z) = InzN +any_ 12V '+ oz + ag

with coefficients oy (k = 0,..., N — 1), the block companion N x N matrix
associated to it is

0 0 ‘e 0 —Qp
In 0 e 0 —Q
0 In 0 —QN_2
0o o0 ... I, —an-1

We will regard the matrix C' = {C};}7"Y_, as an nN x nN scalar matrix.

Consider the submatrices of the form C’(k+1: Nn,1: k). We have

O(n—k)xk
C'(k+1:Nn,1:k)= Iy, , k=1,...,n, (5.24)

O(TLN—’I’L—k)) xk
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C'(k+1:Nn,1:k)= ( Onx (k=) In

, k=n+1,...,nN —n,
O(nN—n—k)x (k—n) 0>

(5.25)
C'(k+1:Nn,1:k)
= ( Oun—-tyx(h—n) Inn-k —an_1i(k—=nN+n+1:n,1:k—nN+n)),
k=nN-n+1,...,nN — 1. (5.26)
By formula (4.1), " is a scalar matrix with lower rank numbers
pézk‘, k=1,...,n,
pizn, k=n+1,...,nN —n,
pﬁan—h k=nN-n+1,....nN — 1.
By Theorem 5.9 the matrix C’ has lower quasiseparable generators with
orders pf (k=1,...,nN—1)andaset p(i) (i =2,...,nN), ¢(j) G =1,...,nN—

1), a(k) (k=2,...,nN — 1) of lower quasiseparable generators of C’ with these
orders are given via the algorithm in the theorem. Thus we obtain the following

L.Set C'M =C'(2:nN,1)=(0 -+ 0 1 0 -+ 0 )T7 which is an
(nN —1) x 1 matrix with n— 1 zeroes before the 1. Using rank factorization of the
matrix C'() determine the matrices Ps, g(1) of sizes (nN —1) x r; = (nN —1) x 1,
r1 X 1 =1 x 1, respectively, such that (5.15), (5.16) take place. We get

P=C'M  41)=1. (5.27)

2. For k=2,...,nN — 1 perform the following.
For k =2,...,n we get

P,=C'(k:Nn,1:k—1). (5.28)

Indeed, for k = 2 the relation (5.28) follows from (5.27). Let for some k with
2 < k < n the relation (5.28) hold. Using (5.17) we get

p(k)=C'(k,1:k—1), P/ =C'(k+1:Nn,1:k—1). (5.29)

Taking C'®) = C'(k+1: Nn,k) we get ( P/ C'® ) =C'(k+1:Nn,1:k)
and inserting (5.24) in (5.18), (5.19) we get

Poj1 =C'(k+1:Nn,1:k), Vi=1I, (5.30)

which completes the proof of (5.28).
Fork=n+1,...,Nn—n we get

P, =C'(k:Nn,k—n:k-1). (5.31)
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Indeed for & = n + 1 the relation (5.28) follows from (5.30). with k = n. Let for
some k with n <k < Nn —n — 1 the relation (5.31) hold. Using (5.17) we get

pk)=C'(kk—n:k—1), P/=C"(k+1:Nnk—n:k—1).  (5.32)

Taking C'®) = C'(k+1: Nn,k) we get ( P/ C'® ) =C'(k+1:Nn,1:k),
and using (5.25) we get

0y, I,
(py C® )( . >

O(annfk) Xn

Hence, using the factorization (5.18), (5.19) we get

Pk+1=C’(k:—|—1:Nn,k—n:k)=( In )7 Vk:<0n><1 In)
O(’rLN—’rL—k)Xn
(5.33)
which completes the proof of (5.31).
Fork=Nn—n+1,...,Nn—1 we get
P =Inn_ki1 (5.34)

Indeed, for k = Nn—n+1 the relation (5.34) follows from (5.33) with k = Nn—n.
Let for some k with Nn —n+1 < k < Nn — 2 the relation (5.34) hold. Using
(5.17) we get

pk) = (1 Oiuvnry )s PU=( Oniyxs Tnr ). (5.35)
Using (5.26) we have C'*) = L., where
Ly=—-an_1(k—nN+n+1:nk—nN+n),
and therefore we get
(P 0 ) = (Ouv-ims T i ).
Hence in the rank factorization (5.18) one can take
Poyi =ILin—k, Vi=(O0wmn-mx1 Inn—k Lr). (5.36)
This in particular implies (5.34).

From this it follows that the quasiseparable generators p(k), k =2,...,nN
which are the first row of Py are vectors of length min(k—1,n,nN —k+1) given by:

p(k) = 01 (k—1), k=2,....n
pk)=(1 Oix@m-1y ), k=n+1,...,nN—n, (5.37)
p(k) :( O1x(nN— k)), k=nN-n+1,...,nN.
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It also follows that the quasiseparable generators ¢(k), kK = 1,...,nN — 1,
which are the last column of Vi, are vectors of length min(k, n,nN — k) given by:

q(k) = < O(’f—f)“ > k=1,...,n, (5.38)
q(k:)z(o("_ll)Xl >, k=n+1,...,nN —n,

q(k) = —any-1(k—nN+n+1:nk—nN+n), k=nN-n+1,...,nN —1.

Further, the quasiseparable generators a(k), k = 2,...,nN — 1, which are
the all columns of V}, except its last column, are matrices given by:

a(k)< T ) k—2...m

O1x(k—1)
a(k) = Om—1)x1 o , k=n4+1,...,nN —n, (5.39)
0 O1x(n-1)

a(k):( 0(nN—k:)><1 Iank )7 k‘:nN—n—l—l,...,nN—l.
In order to find upper quasiseparable generators for C’ just note that its

upper triangular part is the same as the upper triangular part of the separable
block matrix GH, where

G=(—-af —af -« =% ), H=(0, -~ 0, I,).

Therefore one can take as quasiseparable generators of the scalar matrix C’
the matrices b(k) = I,,, k =2,...,nN — 1 and the following vectors of length n:

g(k) = —as(t,1:n),

where s and ¢ are the quotient and the remainder of the integer division of k£ by
n,ie,k=sn+t, 0<t<n-—1,and

h(k) =0px1, k=1,...,nN —n
and

h(k) = < Ok—nN+n—1)x1 > , k=nN-n+1,...,nN.
OnN—k)x1

§5.5 Minimality conditions

Now we proceed with a careful study of minimality conditions for quasiseparable
generators.
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Theorem 5.17. Let A = {A,»j}fszl be a block matriz with the lower quasiseparable
generators p(i) (1 =2,...,N), q(j) j=1,...,N—=1), a(k) (k=2,...,N —1) of
the orders ri, (k=1,...,N —1). Define the matrices Qi (k=1,...,N —1), and
P, (k=2,...,N) by the formulas (5.1) and (5.2).

The quasiseparable generators p(i) (i = 2,...,N), ¢(4) (G = 1,...,N —
1), a(k) (k=2,...,N —1) are minimal if and only if the following relations hold:

rank Py =rank Qg =75, k=1,...,N — 1. (5.40)

Proof. Lemma 5.1 yields the representations (5.9), where the matrix Pyy1 has 7y
columns and the matrix Q) has r; rows.

Assume that the quasiseparable generators p(i), ¢(j), a(k) are minimal. Then,
by Corollary 5.10, the relations

rank A(k+1:N,1:k)=mr,, k=1,...,.N—1 (5.41)
hold. Hence using the inequalities
rank Qy < ri, rank Py1 <7k, rank A(k+1: N,1: k) < min(rank Py, rank Q)

one obtains (5.40).

Assume that the relations (5.40) hold, which means that the matrices Py
have full column rank and the matrices @ full row rank. Then using (5.9) one
obtains (5.41) and therefore, by Corollary 5.10, the quasiseparable generators
p(2),q(j), a(k) are minimal. O

Next we present a minimality criterion for quasiseparable generators without
using the matrices Py, Q.

Theorem 5.18. Let A = {A;; %‘:1 be a block matriz with the lower quasiseparable
generators p(i) (i=2,...,N), q(4) j=1,...,N—=1), alk) (k=2,...,N—1) of
the orders ri, (k=1,...,N —1).

These generators are minimal if and only if the following relations hold:
rank(q(1)) = ry; (5.42)
rank < Z( ) ) =7ryp—1, rank( a(k) qk) )=mr, k=2,....,N—1; (543)
rank(p(N)) = rn_1. (5.44)

Proof. By Theorem 5.17, the minimality of the quasiseparable generators p(%),
q(4), a(k) is equivalent to the relations (5.40).

Assume that the relations (5.40) hold. This already implies (5.42) by (5.3)
and (5.44) by (5.4). For k = 2,...,N — 1 using (5.3) and (5.4) one obtains the
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representations

= (att) o) (% 7). (5.45)
Pk(é P;?+1 >(ZEIZ

The matrix ( a(k) ¢(k) ) contains 7, rows and the matrix ( ‘Z(k) ) contains

()

; ) . (5.46)

ri—1 columns. Hence (5.45) and (5.46) imply
rank Qp < rank( a(k) q(k) ) <7, rankP, < rank( Z( ) > < rR_1.

From here using (5.40) one obtains (5.43).
Assume that the relations (5.42)—(5.44) hold. Let us prove by induction that
from the relations

rank(g(1)) =7y, rank ( a(k) q(k) ) =1, k=2,...,.N—1

it follows that
rankQr =71, k=1,...,N—1.
The case £k = 1 is clear. Assume that for some k, 2 < k < N — 1 one has

0 > has full row rank.

rank Qi—1 = ri—1. This means that the matrix ( Q’a_l I

Hence using (5.45) one obtains
rank Qy = rank( a(k) q(k) ) = rg.

Similarly, using (5.46) one obtains the relations

rank P, =rg_1, k=2,...,N. O

Tt is also the case that upper quasiseparable generators g(i) (i =1,...,N —

1), h(j) (7 =2,...,N), b(k) (k=2,...,N—1) of the orders pi (k = 1 ,Nfl)
of the matrix A are minimal if and only if

rank(g(1)) = p1; (5.47)

rank ( g(k) b(k) ) = pk, rank bk) ) _ Pk-1, k=2 N-1 (5.48)

) h(k) — 41 ) ) )
rank(h(N)) = py—1. (5.49)

Now we apply the minimality criterion obtained in Theorem 5.18 to some
examples.
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Example 5.19. Let A be a matrix with block entries of sizes [ x [ and with
diagonal plus semiseparable representation with lower semiseparable generators
p(i) (i=2,...,N), q(5) (j =1,...,N—1) of order l. The corresponding lower qua-
siseparable generators of A are p(i) (t =2,...,N), ¢(j) (j =1,...,N—1), a(k) =
I; (k=2,...,N —1). One has

(20 = ("9 ) (ot a) )= (5 ath) ) k=2 -1,

and therefore the conditions (5.43) are valid automatically. Hence these generators
are minimal if and only if

rank(q(1)) = rank(p(N)) = I.

For scalar matrices with quasiseparable generators of order one the minimal-
ity conditions of lower generators (5.42)—(5.44) have the form

lg(D> > 0;  [p(k)* + la(k)* >0, |g(k)[* +|a(k)[> > 0,
k=2,...,N—1; [p(\N)]*>0

and the minimality conditions (5.47)—(5.49) for upper generators are equivalent to

9> > 05 [g(k)[* + [b(k)]* >0,  |h(k)[* + [b(k)[* >0,
k=2,...,N—1; |h(N)?*>0. O

§5.6 Sets of generators. Minimality and similarity

As was mentioned above, quasiseparable generators of a matrix are not unique.
We consider here relations between different quasiseparable generators of a given
matrix.

Theorem 5.20. Let A be a block matriz with lower quasiseparable generators p(i)
(i=2,...,N),q(y) G=1,....N=1), alk) (k=2,...,N—=1) of orders Ty

(k=1,...,N — 1) and suppose that for the matrices Sy, (k = 1,...,N — 1) of

sizes ri X 15, and matrices p'(i) (i = 2,...,N), ¢(j) G =1,...,N — 1), '(k)
(k=2,...,N —1) of corresponding sizes the relations

q(k) = Spd'(k), k=1,...,N—1, (5.50)

a(k)Sk_1 = Sga'(k), k=2,...,N—1, (5.51)

PR =p()Se 1, k=2, N (5.52)

hold.

Then the elements p'(1) (i = 2,...,N), ¢(j) G =1,...,N—=1), d'(k) (k =
yo .y N=1) are lower quasiseparable genemtors of the matmx A of orders rfc (k=
1,...,N—1).
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Proof. For any j =1,...,N — 1, using (5.50), (5.52) one has
p(i +1)q(i) = p(i +1)8;4' () = p'(G + 1)’ (5)- (5.53)

Next for any 1 < j <i—1< N — 1, using (5.50), (5.51) one gets

p(i)a(i —1)----- a(j +1)q(j) = p(i)a(i —1) - ---- a(j +1)854'(5)
=p(i)a(i—1)----- a(j +2)Sj11d (5 + 1)q'(j)
= =p()Si—1d' (i = 1)a'(i =2) - -+ a' (5 +1)q'(4)

and moreover using (5.52) one obtains

p(ia(i—1)----- a(j +1)q(j) =p/()a’'(i =1) -+ d(j+1)d'(j).  (5.54)
Thus from the relations (5.53), (5.54) one obtains
p(i)ag;a(j) = p'(i)(@)54'(j), 1<j<i<N,
which implies that p'(¢) (¢ = 2,...,N), ¢'(j) G =1,...,N =1), o(k) (k =
2,...,N — 1) are lower quasiseparable generators of the same matrix A. O
We also use another version of Theorem 5.20, which is proved in a similar
way.

Theorem 5.21. Let A be a block matriz with lower quasiseparable generators p(i)
(i=2,...,N),q(yj) G=1,...,.N=1), alk) (k =2,...,N — 1) of orders ry
(k=1,...,N —1) and let for matrices Sy, (k=1,...,N —1) of sizes 1}, X 1}, and
matrices p'(i) i=2,...,N), ¢ (j) G=1,...,N=1),a (k) (k=2,...,N—1) of
corresponding sizes the relations

Skq(k) = ¢ (k), k=1,...,N—1, (5.55)
a'(k)Sk—1 = Sa(k), k=2,...,N—1, (5.56)
p(k) =p'(k)Sk_1, k=2,....,N (5.57)
hold.
Then the elements p'(i) (i =2,...,N), ¢(j) (j =1,...,N —=1), d'(k) (k=
2,...,N—1) are lower quasiseparable generators of the matriz A of orders r}, (k =
1,...,N—1).

Theorem 5.21 admits the following generalization.

Theorem 5.22. Let A be a block matriz with lower quasiseparable generators p(i)
(i=2,...,N),q() G=1,...,N=1), alk) (k =2,...,N — 1) of orders ry
(k=1,...,N —1). Using the generators q(j),a(k) define the matrices Qi (k =
1,...,N — 1) via relations (5.3). Let for matrices S, (k=1,...,N — 1) of sizes
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. X 1 and matrices p'(i) (1 = 2,...,N), ¢ () G =1,...,N=1), d(k) (k =

2,...,N —1) of corresponding sizes the relations
Srq(k) = ¢ (k), k=1,...,N —1, (5.58)
a/(k)sklekfl = Ska(k)Qkfla k= 2, N — 1, (559)
p(k)Qr-1 = p/(k>5k_1Qk_1, k=2,....,N (5.60)
hold.

Then the elements p’(i) (i =2,...,N), ¢(j) (j =1,...,N —=1), d'(k) (k=
2,...,N—1) are lower quasiseparable generators of the matriz A of orders r}, (k=
1,...,N—1).

Proof. Using the equalities (5.11) we have
Ak+1,1:k)=pk+1)Qk, k=1,...,N — 1. (5.61)

Using the elements ¢'(j),a’(k), define the matrices @}, (k = 1,...,N — 1) via
relations (5.3). One proves by induction that

QL =5.Qu, k=1,...,N—1.
Indeed for k =1 (5.58) yields
Q1 =4 (1) = S1g(1) = S1Qn.

Let for some k with 2 < k < N — 1 the equality Q;C_l = Sk—1Qk—1 hold. Using
(5.3) and(5.58),(5.59) we get

Q=(d®)Qhy ¢(k) )= (d®)Sk1Qrr d(k))
= ( Spa(k)Qi—1 Ska(k) ) = SiQx.

Thus, (5.60) and (5.61) yield
Ak+1,1: k) =pk+1)Qr =p'(k+1)SkQr =p'(k+1)Q}, k=1,...,N—1.

From here by Lemma 5.3 we conclude that p'(i) (i = 2,...,N), ¢(j) (j =

1,....,N—=1), d'(k) (k=2,...,N —1) are lower quasiseparable generators of the
matrix A. It is clear that a/(k) (k = 2, ..., N—1) are matrices of sizes r}, xr},_; and
hence the numbers r}, (k =1,..., N — 1) are the orders of these generators. [

Applying Theorem 5.22 to the transposed matrix A7 we obtain the corre-
sponding result for upper quasiseparable generators.

Lemma 5.23. Let A be a block matriz with upper quasiseparable generators

g(®) (t=1,...,N=1), h(j) j=2,...,N), b(k) (k=2,...,N—1)
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of orders ri, (k =1,...,N —1). Using the generators g(k),b(k) define the matrices
G (k =1,...,N — 1) via relations (5.7). Suppose that for matrices Sy (k =
1,...,N —1) of sizes ri x r}, and matrices ¢’'(i) (i = 1,...,N —1), h'(j) (j =
2,...,N), (k) (k=2,...,N — 1) of corresponding sizes the relations

g(k)Sk = ¢'(k), k=1,...,N —1, (5.62)
Gr_1Sk_1b' (k) = Gx_1b(k)Sk, k=2,...,N —1, (5.63)
Gr_1Sk_1h' (k) = Gx_1h(k), k=2,....,N (5.64)
hold.
Then the elements ¢'(i) (i =1,...,N—=1), h'(j) (j = 2,...,N), ¥'(k) (k =
2,...,N—1) are upper quasiseparable generators of the matriz A of orders r}, (k=
1,...,N—1).

Next we introduce a notion of similarity for sets of quasiseparable generators
of a matrix.

Definiton 5.24. Let p(i) (i = 2,...,N), ¢(4) (j = 1,...,N = 1), a(k) (k =
2,...,N — 1) be lower quasiseparable generators of a matrix A and let p'(i) (i =
2,...,N), d(G)G=1,....N=1), d'(k) (k=2,...,N — 1) be also lower qua-
siseparable generators of A of the same orders. These generators are called similar
if there exist invertible matrices S; (kK = 1,..., N — 1) such that the relations
(5.50)—(5.52) hold.

Next it will be proved that any two sets of minimal quasiseparable generators
of a matrix are similar.

Theorem 5.25. Let A = {Aij}?fj:l be a block matriz and let

p(i) (i=2,...,N), () G=1,....,N 1), a(k) (k=2,...,N —1)

p/(l) (2:237]\[)3 q/(]) (]:137N71)7 a/(k) (k:237N71)

be two sets of lower quasiseparable generators of the matriz A with the minimal
ordersr, (k=1,...,N —1).

Then the quasiseparable generators p(i) (i = 2,...,N), ...
1), ak) (k =2,...,N—=1) and p'(i) (: = 2,...,N), ¢(§) (j =1,...,N —
1), d'(k) (k=2,...,N — 1) are similar.

Proof. Using p(i), q(j), a(k) and p'(7),¢'(j), a’ (k) define the matrices Py41, Qr and
P, Qs (k=1,...,N — 1), respectively, via the formulas (5.1) and (5.2). The
matrices Pyy1, Py, contain 73 columns, the matrices Q, Q) contain rj rows.
Moreover, by Theorem 5.17, the ranks of these matrices are equal to r. Lemma
5.1 implies that

Ak +1:N,1:k)=Pe1Qp = PL1Qy, k=1,...,N—1.
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Hence, by Lemma 1.1, there exist invertible ry, x r;, matrices S (k=1,...,N—1)
such that
Qr=5:Q,, k=1,...,N—1, (5.65)

and Pyy1 = P/é+15k_17 k=1,...,N — 1, which implies that
P, = PySk-1, k=2,...,N. (5.66)
Using (5.65) and (5.3) one gets
q(1) = S14'(1) (5.67)
and
(ab)Qiot a(k) ) =Si (@ R)Qhy ¢() ), k=2.. .N—1 (5.68)
Equating the corresponding entries in (5.68) one obtains

q(k) = Skq'(k), k=2,...,N—1 (5.69)
and
a(k)Qr_1 = Spad'(k)Q}_,, k=2,...,N—1. (5.70)

The relations (5.67), (5.69) mean (5.50). Furthermore using (5.70) and (5.65) one
gets
a(k>Sk—1Q;g—1 =a(k)Qr-1 = Ska'(k)Q;_h k=2,...,N—1.

From here since each matrix @, has full row rank one gets
a(k)Sk-1 = Ska’(k), k=2,...,N—1,

which is (5.51). Finally, using (5.66) and (5.4) one obtains

P/ (N) = p(N)Sn-1, ( p(k) )Sk_l — ( P(k) ) C k=N-1,...2

p/(N> :p(N)SN—17 p/(k) :p(k)Sk—h k:N_17"'727
i.e., the relations (5.52) hold. O

The statement of Theorem 5.25 is not true without assuming the minimal-
ity of quasiseparable generators. For instance, taking the sets of quasiseparable
generators
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and
. . 1 1
i =1 0), di=(1 ). at=(,
one can easily check that
p(i)azq(d) = p'(i)(a')5d'(G), 1<j<i<N.

However, it is clear that in this example the equalities (5.51) with invertible ma-
trices Si_1, Sk are impossible.

§5.7 Reduction to minimal quasiseparable generators

At first we consider the case when the quasiseparable generators of a matrix,
not necessarily minimal, are given. Our goal is using the given quasiseparable
generators to compute other quasiseparable generators of the same matrix, but
with minimal orders.

Theorem 5.26. Let A = {Aij}?fj:l be a block matrixz with block entries of sizes m; X
n; and lower quasiseparable generators p(i) (i =2,...,N), ¢(j) j=1,...,N—1),
alk) (k=2,...,N—=1) of orders l; (k=1,...,N —1).

Then a set p(i) (1 =2,...,N), ¢(j) j=1,...,N—-1), a(k) (k=2,...,N—
1) of minimal lower quasiseparable generators of the matriz A is determined from
the quasiseparable generators p(i), q(j), a(k) via the following algorithm.

1.1. Using rank factorization of the matriz (1) determine the matrices
L1,q¢' (1) of sizes Iy X r}, 7] X ny, respectively, such that

q(1) = L1q'(1), (5.71)
rank L1 = rank(q'(1)) = rank(q(1)) = r}. (5.72)

1.2. For k=2,...,N — 1 perform the following. Using rank factorization of the
matriz ( a(k)Lr—1 q(k) ) determine the matrices Ly, Vi, of sizes Ly, X1}, 7}, X
(r,_y + nx), respectively, such that

( a(k)Lk,1 q(k) ) :Lka, (573)
rank L, = rank Vi, = rank ( a(k)Li—1 q(k) ) =1}. (5.74)
Determine the matrices o' (k), ¢ (k) of sizes 1, X rj_y, 7}, X ny, respectively,

from the partition
Vi = [ a(k) q'(k) ] . (5.75)

1.3. Fork=2,...,N compute

(k) = p(k)Lg-1. (5.76)
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2.1. Using rank factorization of the matriz p'(N) determine the matrices p(N),
SNn_1 of sizes mn X TN_1,TN_1 X TN_q, Tespectively, such that

p'(N)=p(N)Sy-_1, (5.77)

rank(p(N)) = rank Sy_1 = rank(p'(N)) = ry_1. (5.78)

2.2. For k=N —1,...,2 perform the following. Using rank factorization of the

/
matriz p (,k) determine the matrices Uy, Sp—1 of sizes (my + ) X
Ska’ (k)

Th—1,Tk—1 X Th_, Tespectively, such that
p(k) \ _

< Ska’(k) - UkSkfla (5.79)

p'(k)
rank U, = rank Si_1 = rank Sa' (k) =TRp_1. (5.80)

Determine the matrices p(k),a(k) of sizes my X ri—1,7k X rp—1 Tespectively,

from the partition
Uy = ( gg’;; > . (5.81)
2.3. Fork=1,...,N —1 compute
q(k) = Skq'(k). (5.82)
Proof. Comparing the corresponding entries in (5.73), (5.75) one gets
q(k) = Liq'(k), a(k)Ly—1 = Lyd'(k), k=2,...,N—1.

Together with the formulas (5.76), (5.71) this implies, by Theorem 5.20, that the
elements p'(i) (i =2,...,N), /() G=1,...,N=1), d(k) (k=2,...,N—-1)
are lower quasiseparable generators of the matrix A.

Similarly, comparing the corresponding entries in (5.79), (5.81) one obtains

a(k)Sk—1 = Ska’(k‘), p/(k> =p(k)Sk-1, k=2,...,N—1

Together with the formulas (5.77), (5.82), by Theorem 5.21, we conclude that the
elements p(i) (i = 2,...,N), ¢(4) G =1,...,N=1), ak) (k=2,...,N—1)
are lower quasiseparable generators of the same matrix A. Let us establish the
minimality of these generators. Using the relations (5.78), (5.80) and (5.81) we see
that

p(k) ) _ _ . 7)) —
rank ( g(k) > =rg-1, k=2,...,N—1; rank(p(N)) =ry_1. (5.83)

It remains to check that
rank(q(1)) =rq (5.84)
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and
rank ( a(k) qk) )=rp, k=2,...,N—1. (5.85)

Using the relations (5.72), (5.74), (5.75) one has
rank(¢’(1)) =7}, rank [ a' (k) ¢'(k) ] =r,k=2...,N—1
and using (5.78), (5.80) one obtains
rank Sy =71, k=1,...,N—1.

This means that all the matrices ¢'(1), ( a’(k) ¢'(k) ), k =2,...,N —1; S,
k=1,...,N —1 have full row rank. Now from the equality ¢(1) = S1¢’(1) we see
that rank(¢(1)) = rank S; and hence (5.84) holds. For &k = 2,..., N — 1 one has
Sk—1 0

0 7 ) has full row rank one obtains

the following. Since the matrix (

rank ( a(k) (k) ) = rank (( a(k) q(k) ) ( sko,l ? >)

(5.86)
=rank ( a(k)Sk—1 (k) ).
Next, using the equalities a(k)Sk—1 = Ska’(k), (k) = Skq’' (k) one gets
((a(k)Sk-1 q(k) ) =Sk ( d'(k) ¢'(k))
which implies
rank [ a(k)Sk—1 (k) | = rank Sy = ry. (5.87)

Combining (5.86) and (5.87) together one obtains (5.85). From the relations
(5.83)—(5.85) and Theorem 5.18 we conclude that p(i), (), a(k) are minimal lower
quasiseparable generators of the matrix A. O

65.8 Normal quasiseparable generators

Now we consider a special case where quasiseparable generators satisfy certain
orthonormality conditions.

Definiton 5.27. The lower quasiseparable generators

of orders ri, (k =1,...,N — 1) of a block matrix are said to be in the left normal
form if the relations

p*(N>p(N> =Ly, a*(k)a(k) +p*(k)p(k) =l ,, k=N-1,...,2 (588>
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The lower quasiseparable generators p(i) (i = 2,...,N), ¢(j) j=1,...,N—
1), a(k) (k=2,...,N —1) of orders ry, (k =1,...,N — 1) of a block matrix are
said to be in the right normal form if the relations

Q(l)q*(l) =1, a(k>a*(k> + q(k)q*(k‘) =Iy, k=2...,N-1 (589>
hold.

Let p(i) (1 =2,...,N), q() §=1,...,.N—=1), a(k) (k=2,...,N —1) be
lower quasiseparable generators of orders v, (k =1,..., N — 1) of a block matrix.
These generators determine the matrices Qr, £k = 1,...,N — 1 and P, k =
N,...,2 via the relations (5.1) and (5.2). The conditions (5.88) and (5.89) are
equivalent to orthonormality of the columns of the matrices P, and the rows of
the matrices Qy, respectively.

Lemma 5.28. Let Qk, k = 1,...,N — 1 be matrices of the form (5.1). Then the
relations
QuQr=1Ir, k=1,...,N—-1 (5.90)

and (5.89) are equivalent.
Let Py, k= N,...,2 be matrices of the form (5.2). Then the relations
PP, =1,

Tk—19

k=2,...,N (5.91)
and (5.88) are equivalent.

Proof. The recursions (5.3) imply

a(1)q" (1) = Q1. QwQj = a(k)Qr—1Q;_1a"(k) +q(k)g"(k), k=2,....N — 1.

(5.92)
Let the conditions (5.90) hold. Using (5.92) one obtains (5.89). Conversely, assum-
ing that (5.89) is valid and using (5.92) one obtains (5.90) by induction.

Next the recursions (5.4) imply
PyPy =p*(N)p(N), PiP,=a"(k)Py Pepra(k)+p™(k)p(k), k=N-1,...,2.
Hence the equivalence of (5.91) and (5.88) follows. O

Given a set of lower quasiseparable generators of a matrix, one can obtain
another set of quasiseparable generators in the left normal form or in the right
normal form. For instance, quasiseparable generators in the left normal form are
obtained as follows.

Theorem 5.29. Let A = {Aij}%zl be a matriz with block entries A;; of sizes m; X
n; and lower quasiseparable generators p(i) (i =2,...,N), ¢(4) (j=1,...,N —
1), a(k) (k=2,...,N—1) of orders ry, (k=1,...,N —1).

Then a setp(i) (i =2,...,N), ¢(4) G =1,...,N=1), a(k) (k=2,...,N —
1) of lower quasiseparable generators of the matriz A in the left normal form is
determined from the generators p(i),q(j), a(k) via the following algorithm.
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1. Using orthogonal factorization of the matriz p(N) determine the matrices
D(N), Sn_1 of sizes my X rly_1,7_1 X rN_1, Tespectively, such that

p(N) =p(N)Sn-1, (5.93)
Pr(N)P(N) =1Ly, - (5.94)

2. For k=N —1,...,2 perform the following. Using orthogonal factorization

of the matriz ( Spgz@) ) determine the matrices Uy, Sp—1 of sizes (my, +
k

Th) X Th_1,Th_q X Tk—1, Tespectively, such that
p(k) 1\ _
< Ska(]f) > - UkSkfla (595)
UiU, = Iy . (5.96)

Determine the matrices p(k), a(k) of sizes my X 11,_y, 7}, X 1}, , respectively,

from the partition )
Uy = < ZE’;; > . (5.97)

3. Fork=1,...,N —1 compute
q(k) = Ska(k). (5.98)
Proof. Comparing the corresponding entries in (5.95), (5.97) one obtains
a(k)Sip—1 = Sra(k), pk)=pk)Sk—1, k=2,...,N—1.

Together with the formulas (5.93), (5.98) this implies the relations (5.55)—(5.57).
Applying Theorem 5.21 we conclude that the elements p(i) (1 = 2,...,N), ¢(j)
(G=1,...,N=1),a(k) (k=2,...,N —1) are lower quasiseparable generators of
the matrix A. Moreover from the relations (5.94) and (5.96), (5.97) we see that
these generators are in the left normal form. O

Let A be a block matrix with given entries in the strictly lower triangular
part. Using a specification of the algorithm from Theorem 5.9 one obtains a set of
minimal quasiseparable generators of A in the left normal form.

Theorem 5.30. Let A = {Ay;}N,_, be a matriz with block entries Ay; of sizes
mi X nj.
The following algorithm yields a set p(i) (i = 2,...,N), ¢(j) ( = 1,...,
N —1), alk) (k =2,..., N —1) of lower quasiseparable generators in the left
normal form of A.
1. Set AN = A(2 : N, 1). Using orthogonal factorization of the matrix AW
determine the matrices Py, q(1) of sizes (Zf; mi) X1y and ry X ny, respec-

tively, such that
AWM = Pyq(1), (5.99)
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with Py satisfying the relations
P;Py=1,, r =rankAWD, (5.100)

2. For k=2,...,N — 1 perform the following.
Set A®) = A(k+1: N,k).
Determine the matrices p(k), P{ of sizes my X 11, (Zikﬂ mi) X Tgp_1,

respectively, from the partition
k
P, = ( p}(jé,) ) . (5.101)

Using orthogonal factorization of the matrix ( p/ AK) ) determine the

matrices Pxi1, Vi of sizes (Zi=k+1 ml) X Ty T X (Tk—1 + nk), respectively,

such that
(P AW ) =PV, (5.102)
with P41 satisfying the relations
Pl Por =1, rp=rank( P/ AW ). (5.103)

Determine the matrices a(k),q(k) of sizes 1 X Tk—1,7k X Ny, respectively,
from the partition
Vii=(a(k) q(k)). (5.104)

3. Set
p(N) = Py. (5.105)

Proof. The orthogonal factorization is a particular case of the rank factorization.
Hence, by Theorem 5.9, the elements p(i) (i = 2,...,N), ¢(j) (j =1,...,N —
1), a(k) (k = 2,...,N — 1) are minimal lower quasiseparable generators of the
matrix A. Moreover, using the relations (5.100), (5.103) and the second part of
Lemma 5.28 one concludes that these generators are in the left normal form. [

65.9 Approximation by matrices with
quasiseparable representation

Next we consider approximation of a given matrix A by a matrix A with small
quasiseparable order. There are two ways to proceed. In the first, the maximal
order [ of quasiseparable generators of the approximation is given. In the second
one, the tolerance 7 of the approximation is given and in this case the orders of
generators are not restricted. For a given block matrix A = {Aij}%=1 with block
entries A;; of sizes m; x n; based on the algorithm from Theorem 5.30 one obtains
the following algorithm to compute lower quasiseparable generators of such an

approximation.
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Algorithm 5.31.
1. Set AN = A(2: N,1). Compute the SVD decomposition of the matrix A1),

i.e., determine the matrices Uy, 31, Vi of sizes (ZfVZQ mi) X P1, P1 X P1, P1 X N1,

respectively, such that
AW = Uz,

where
rank AM) = rankU; = rank ©; = rank V; = p1, uiu, =nvi =1,
and ¥, is a diagonal matrix with positive diagonal entries. Set
r1 = min{p1, [}

or take r1 to be equal to the number of diagonal entries of the matrix 3
greater than the tolerance 7.
Determine the matrices P, (1) via

P2 = Ul(i,l : 7”'1), q(l) = 21(1 : 7”'1,1 : 7”'1)V1(1 : 7”'1,2).

2. For k=2,...,N — 1 perform the following.
Set A®) = A(k+1: N,k).

. . . N
Determine the matrices p(k), P/ of sizes my X rj_1, (Zi:kﬂ mi) X Th_1,

respectively, from the partition

()

Compute the SVD decomposition of the matrix ( p/ A®) ), i.e., determine

the matrices Uy, X, Vi of sizes (Zf\ikﬂ m,») X Pky Pl X Pl P& X (Mg +78—-1),
respectively, such that

( P! Ak) ): U2 Vi,
where
rank ( P}/ A% ) = rank Uy = rank ¥y = rank Vi, = p, UpUy = ViV = I,
and X is a diagonal matrix with positive diagonal entries. Set
r, = min{py, Z}

or take 7 to be equal to the number of diagonal entries of the matrix >
greater than the tolerance 7.
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Determine the matrices Pyy1,a(k), ¢(k) via

Pk+1 = Uk(:7 1: Tk)7
alk) =1 :rg, L) Vie(L i re, 1 rp—1),
qk) =2k i, Lorg)Vie(L s rgy re—1 + 1 rp—1 + ).

3. Set p(N) = Pn.

Note that this algorithm yields quasiseparable generators in the left normal
form.

65.10 Comments

The auxiliary matrices from Section 1 have been defined and used in the paper
[38], the monograph [15] and the paper [20]. An algorithm to compute minimal
quasiseparable generators of a matrix has been suggested in [15]. Minimality and
similarity conditions for quasiseparable generators were studied in [38] and [15].
The method of reduction to minimal generators was suggested in [15]. The normal
quasiseparable generators were used in fact in the monographs [46, 47]. The idea
of the approximation method presented in Section 9 is taken from [15] and [6].

The material of this chapter is taken mainly from [27], where the minimality
Theorem 5.18 appeared for the first time.



Chapter 6

Rank Numbers of Pairs of Mutually
Inverse Matrices, Asplund Theorems

In this chapter we extend the notion of rank numbers introduced in Chapter 4 to
wider sets of submatrices. Lower rank numbers for a square matrix relative to the
diagonal ¢ — j are introduced as the ranks of the maximal submatrices entirely
located under that diagonal, and the upper rank numbers relative to a diagonal
are defined correspondingly. If the given matrix is invertible, a strong link exists
between these numbers for the matrix and its inverse. In particular, the lower and
upper rank numbers relative to the main diagonal are the same for a matrix with
square blocks on the main diagonal and for its inverse matrix. This implies that
for such a square matrix the lower and upper quasiseparable orders coincide with
the ones of the inverse matrix.

A class of square block matrices A = {A;;} with square blocks A;; on the main
diagonal, and whose inverses are band matrices is thoroughly studied. These are
the Green matrices. Namely, it turns out that the lower and upper rank numbers
relative to a diagonal are larger than a certain minimal value. A lower Green matrix
of order ¢ is a matrix whose lower rank numbers relative to the diagonal i — j = ¢
are the minimal ones. An upper Green matrix of order ¢ is defined accordingly,
and a Green matrix of order ¢ is an upper and a lower Green matrix of order t.
The first Asplund theorem, which states that A is a Green matrix of order ¢ if and
only if A~! is a band matrix of order ¢, readily follows from the proved relation
between the rank numbers relative to a diagonal for the pair (4, A=1).

It is then proved that for a square invertible block matrix A the sum of mini-
mal completion ranks for the lower triangular part of A and plus the corresponding
sum for its inverse A~! equals the size of the matrix. This implies the second As-
plund theorem. Another corollary of this result gives an equivalent criterion for
the equality between the orders of the minimal lower semiseparable generators of
Aand A1

In this chapter we also consider rank-one perturbations of Green matrices and
an extension of the results obtained for the inverses of matrices on linear-fractional
transformations.

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 119
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_6, © Springer Basel 2014
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§6.1 Rank numbers of pairs of inverse matrices

Let A = {Aij}%zl be a square matrix with block entries A;; of sizes m; x n;,
where Ef\il m; = vazl n;, and let ¢ be an integer such that |t| < N. Denote
to = max{1l, —t}, ty = min{N —¢t—1, N}. We will consider maximal submatrices
of the matrix A with the indices of entries satisfying i — j > ¢. These submatrices
are A(k+t+1:N,1:k), k=to,...,tn. The ranks r,f,t(A) of these submatrices
are called the lower rank numbers of the matrixz A relative to the diagonal i—j = t,
ie.,

riy(A) =rank A(k+t+1:N,1:k), k=to,... ty.

Similarly we consider the maximal submatrices of A with the indices of entries
satisfying j — ¢ > ¢. These submatrices are A(1 : k,k+¢+1: N), k=tg,...,tn.
The ranks rgt of these submatrices are called the upper rank numbers of the matriz
A relative to the diagonal j —i =1t, i.e.,

r,g,t(A) =rank A(1: k,k+t+1:N), k=tg,...,tN.

We define also r,’;jt(A), rﬁt(A) for the values of k less than ¢y or greater than
tn setting them to be zero.

We consider here relations between the rank numbers of a matrix and of its
inverse.

Theorem 6.1. Let A be an invertible block matriz with entries of sizes m; X
nj, i,j = 1,...,N. Consider the matriz A=' as a block matriz with sizes of
entries n; X my, 4,5 =1,...,N.

The following relations hold:

N N
rE A+ > =k (AT YD me, k=t by, (6.1)
i=k+1 i=k+t+1
N N
A+ Y mi=r, AT+ D me k=to,... ty. (6.2)
i=k+1 i=k+t+1

Proof. Let Q be an Ny x N invertible matrix and [y,t¢1,l2,t2 be nonnegative
integers such that [y + Iy = t1 + to = N;. We consider the partitions of the

matrices Q, Q™!
(U B (U B
Q - ( C D ) ) Q - ( C/ D/ > )

where U, B, C, D are matrices of sizes [y X t1, I1 X to, lo X1, I3 X ta, respectively,
and U’, B/, C', D’ are matrices of the corresponding sizes t1 X l1, t1 X la, to X
ll, to X 12.
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We prove that the ranks of the matrices C' and C’ are connected via relations
rank C' + to = rank C’ + l5. (6.3)

One can check directly that
C 0 0
( 0 I, ) _E( 0 I, >F’ (64)

-D CB
E - < It2 D/ ) ) F - Q
are invertible matrices with inverses

_ -D' C'B _ _
E1< I I > Fl=qQ "
2

where

Indeed, one has

c' 0 -D CB c' 0 -DC" CB U B
25 1)r=(7 D )T =" T )(En)
_( -DC'U+CB'C —-DC'B+CB'D
o Cc'U+DC C'B+D'D
It is clear that C'U + D'C =0, C'B + D'D = I and using the equalities C'U =
—D'C, DD'"+CB’' =1, C'B + D'D = I one obtains
-DC'U+CB'C=DD'C+CB'C=C,
-DC'B+CB'D=-D(I—-D'D)+ (I —DD"YD =0.
Similarly, one obtains
o( D CB\_(-D CB D' C'B
I D o I D’ I D
DD'+CB" -DC'B+CB'D\ (I
0 C'B+D'D ~\ 0

0
= IR
From (6.4) it follows that
c 0 ¢ 0
rank< 0 1, )rank( 0 I, >,
which implies (6.3).

Now we take @Q = A, where A is from the statement of the theorem. We set

N N
12 = Z m;, tQ = Z n;. (65)

i=k+t+1 i=k+1
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Then
C=Ak+t+1:N,1:k),
C'=AYk+1:N1:k+t)
=AY (k+t)—t+1:N,1:k+1)

and by the definition of the lower rank numbers relative to some diagonal one
obtains

rank C =y (A), rankC’ =rf,, (A7) (6.6)
Substituting the expressions (6.5), (6.6) in (6.3) one obtains (6.1).
The application of (6.1) to the transpose matrix A7 yields (6.2). O

§6.2 Rank numbers relative to the main diagonal.
Quasiseparable orders

Here we consider relations for rank numbers of pairs of mutually inverse matrices

relative to the main diagonal, i.e., the case ¢t = 0.

Corollary 6.2. Let A be an invertible block matriz with entries of sizes m; X
nj, i,j = 1,...,N. Consider the matriz A=' as a block matriz with sizes of
entries n; X mj, ¢, =1,...,N.

The following relations hold:

an—rko Zm“ =1,...,N -1, (6.7)

= k:+1 = k:+1
Zml—rko Zn k=1,...,N—1. (6.8)
i=k+1 1=k-+1

The proof is obtained directly from (6.1), (6.2) by setting ¢ = 0.

Now we consider the case of a block matrix with square entries on the main
diagonal. Concerning the rank numbers relative to the main diagonal one obtains
the following result.

Corollary 6.3. Let A = {Ay}N,_, be an invertible block matriz with entries of
sizes my x myj, 4,5 =1,...,N.

Then rank numbers of A relative to the main diagonal i = j coincide with
the corresponding rank numbers of A™1.

The proof is obtained directly from (6.7), (6.8) by setting m; = n;.

Corollary 6.3 implies that for an invertible block matrix A with square entries
on the main diagonal, the quasiseparable orders ny,, ny coincide with quasisepara-
ble orders of the inverse A~!. The same is true for the corresponding rank numbers
of Aand A1,
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§6.3 Green and band matrices

Here we consider a class of matrices whose inverses, if they exist, are band matrices.
Consider first square scalar matrices A = {Aij}?szl. Let ¢ be an integer such

that N > ¢ > 0. The matrix A is called an upper Green matriz of order t if its

upper rank numbers relative to the diagonal j — ¢ = —t are not greater than t:

ri_(A) =rank A(1:k,k—t+1:N)<t, k=tt+1,...,N.

Notice that if A is an invertible upper Green matrix of order ¢, then all its
upper rank numbers relative to the diagonal j — i = —t equal ¢. Indeed, assume
that for some k € {t,..., N} we have r{ ,(A) < t. We get

Al: k) =( ALk, 1:k—t) AQ:kk—t+1:N)).

Here A(1:k,1:k—t)isak x (k—t) matrix and rank A(1 : k,k—t+1: N) <t
Hence, rank A(1 : k,:) < k and therefore A is a singular matrix.

A scalar matrix A = {Ay;}Y;_, is called an upper band matriz of order t if
AijZOfOTj—i>t.
Theorem 6.4 (The first Asplund theorem). An invertible matriz A is an upper band
matriz of order t if and only if its inverse is an upper Green matriz of order t.

The proof follows from the more general Theorem 6.6 obtained below for
block matrices.

Next we consider block matrices A = {Aij}fszl with entries of sizes m; x
mj, 4,5 =1,...,N.
Lemma 6.5. Let A be an invertible matriz with block entries of sizes myxmy, i,j =
1,...,N. Then the rank numbers r,]j’_t(A)mgj_t(A) (k=t+1,...,N—-1) of A
relative to the diagonals i —j = —t, j—1i = —t, respectively, satisfy the inequalities

r,’;jft(A), r,gﬁt(A) >a, k=t+1,...,N—1,
with
k
ap= Y my k=t+1,... N-L (6.9)
i=k—t+1
Proof. Assume that for some k with t + 1 < k < N — 1 one has

r,g,_t(A) =rank A(1: kk—t+1:N) < ay. (6.10)

The matrix A(1 : k,:) contains my + --- + my rows and is obtained from the
submatrix A(1 : k,k —t+ 1 : N) by the addition of mq + -+ + mg—; columns.
From (6.10) it follows that the rank of A(1 : k,:) is less than the number of its
rows. This implies that the matrix A is not invertible.

Using the inequalities rg_t(A) >a (k=t+1,...,N—1) for the transpose
matrix A” one obtains rf _,(4) > ap (k=t+1,...,N —1). O
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We call the matrix A a lower Green matrix of order t if its lower rank numbers

relative to the diagonal ¢ — j = —t satisfy the inequalities
k
re (A< Y mi, k=t+1,...,N-1 (6.11)
i=k—t+1

By Lemma 6.5, an invertible lower Green matrix of order ¢ satisfies the equalities

k
re (A= Y mi, k=t+1,...,N-1 (6.12)
i=k—t+1

The matrix A is called an upper Green matrixz of order t if its upper rank numbers

relative to the diagonal j — i = —t satisfy the inequalities
k
rg (A< Y mi, k=t+1,...,N-1 (6.13)
i=k—t+1

By Lemma 6.5, an invertible upper Green matrix of order ¢ satisfies the equalities

k
rh (A= Y mi, k=t+1,...,N-1 (6.14)
i=k—t+1

The matrix A is said to be a Green matrix of order t if it is both an upper and a
lower Green matrix of order ¢.

Let A be a Green matrix of order t. Set ng = maxit1<pr<n—1 ) With oy
from (6.9). It is clear that A has quasiseparable order (ng,no) at most. Indeed,
each submatrix of A of the form A(1: k,k+1:N) (k=1,...,N —1) is a part
of the submatrix Q = A(1: k,k—t+1: N)fork=¢t+1,...,N—1and a part
of the submatrix ;41 = A(1:t+1,2: N) for k=1,...,t. Since, by assumption,
rank Q. = a4, one obtains

rank A(1: k,k+1:N)<ng, k=1,...,N—1.

)

One can check similarly that
rank A(k+1:N,1:k)<mng, k=1,...,N—1.

A matrix A = {Aij}?fj:l is said to be a lower band matriz of order t if
Aij = 0for i — j > t, an upper band matriz of order t if A;; =0 for j —i > ¢, and
a band matriz of order t if A;; =0 for |1 — j| > t.

Theorem 6.6. Let A = {Aij}f»\szl be an invertible matriz with block entries of sizes
m; X myj, t,j =1,...,N and let t > 0 be an integer.

Then A~! = {B,»j}f»\fj:l is a lower band matriz of order t if and only if A is
a lower Green matriz of order t.
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A7l is an upper band matriz of order t if and only if A is an upper Green
matriz of order t.

A1 is a band matriz of order t if and only if A is a Green matriz of order t.

Proof. Setting in (6.1) n; = m;, changing ¢ to —t and taking into account that
t > 0, one obtains

i=k—t+1
Hence it follows that (6.12) holds if and only if
r,f_t,t(Afl) =rank AN (k+1:N,1:k—t)=0, k=t+1,...,N—1.

The last relations are valid if and only if B;; = 0 for ¢ — j > ¢.
The application of (6.12) to the transposed matrix A yields (6.14). O

Example 6.7. Consider the 7 x 7 matrix

N

I
OO OO N W
OO O~ N W
SO = DN WN =
O DN WN=O
=N W= OO
N W RO OO
W= OOOOo

A is a band matrix of order 2, which means that its entries A;; = 0, for any
li — 7] > 2.
Its inverse B = A~! must be a Green matrix of order 2. Indeed, we have

7 6 0 4 -3 0 1
6 12 -6 -3 6 -3 0

. 0 -6 12 -6 -3 6 -3
B=A"1=". 4 -3 —6 13 -6 -3 4
Y1 3 6 -3 =6 12 =6 0

0 -3 6 -3 —6 12 —6

1 0 -3 4 0 -6 7

and one can check easily that

rank B(1:7,1:2) =rankB(2:7,1:3)=rank B(3:7,1:4)
=rankB(4:7,1:5) =rankB(5:7,1:6) (6.15)
=rankB(6:7,1:7) =2
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and

rank B(1:2,1:7) =rankB(1:3,2:7) =rank B(1:4,3:7)
=rank B(1:5,4:7) =rankB(1:6,5:7)
=rankB(1:7,6:7) =2. O

§6.4 The inverses of diagonal plus Green of
order one matrices

Here we consider invertible block matrices of the form A = D + G, where D is a
block diagonal matrix and G is a Green matrix of order one. We show that when
D is invertible the inverse matrix A~! has the same form.

Theorem 6.8. Let A be a block invertible matriz with entries of sizes m; xmy, i,j =
1,..., N, represented in the form A = D + G, where D = diag(D(1), D(2),...,
D(N)) is a block diagonal invertible matriz and G is a block lower Green of order
one matrix.

Then the matriz A~ admits the representation A~' = D=1 4+ G*, where G*
s a block lower Green of order one matriz.

Proof. For k=2,..., N — 1 we use the partitions of the matrix A in the form

Al:k-1,1:k-1) A(1:k-1,k) AQ:k—-1,k+1:N)

A= Ak, 1:k—1) Ak, k) A(k,k+1:N)
Ak+1:N,1:k—-1) Ak+1:N,k) Ak+1:N,k+1:N)
(6.16)
Since A — D is a Green of order one matrix, (6.9) yields
K A(k,1:k—1) A(k,k) — D(k)
PR AR +1: N1 k—1) A(k+1:N,k) ) ="
Consequently,
Ak, 1:k—1) A(k,k)—D(k) \ _ [ pk)
(A(kJrl:N,l:kl) Ak+1:Nk) )\ Peya (@1 g(k))
(6.17)

with the matrices p(k), Pry1, Qr—1,q(k) of sizes my xmy,, (va:kﬂ mi) X ks, M X
(Zi:ll mz‘), my X my, respectively.
One can determine the matrices P,_; and @k—s—l of sizes (Zf;ll mi) X My

and my X (va:k 41 m,»), respectively, such that the matrices

Bi1=A(l:k—=1,1:k—1)— P 1Qx 1 (6.18)
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and
Cry1 =AMk +1:N,k+1:N) = Pri1Qrir (6.19)

are invertible. Indeed, introduce the notations
k-1

A1 =A(l:k—=1,1:k—1), pk< p(k) > ve=3 m.

Pri1 i=1

From (6.16) and (6.17) it follows that

A(:,l:kl)(é £k><g';_1 >

A > = vg. Set pr = rank Ag_q; it
Qr-1

is clear that pi < vg. One can determine an invertible v X v, matrix Ry such that

Hence, since A is invertible, we get rank <

4
RkAk;—l = ( Ak*l ) s (620)

O(kapk)XVk

with a py, X v, matrix A}, such that rank A} | = pg. Let Q._; be a (vr, —pr) X v
matrix composed of the rows of the matrix (Q;_1 which completes the rows of the
Ag

Qr—1

matrix Aj_; to the row basis of the matrix ( ) One can choose a v X my,

matrix Zj such that

ZpQr—1 = ( Oé’ixyk ) : (6.21)
k—1
From (6.20) and (6.21) it follows that
A/
RpAi—1+ ZpQp-1 = ( QiH ) . (6.22)
k—1

A/
It is clear that the matrix ( Qf“_l > is invertible. Hence (6.22) implies (6.18)
k—1

with the invertible matrix

A/
B, . = R! k—1 )
k—1 k ( Q;g—l
and P,_; = —R; ' Z). In a similar way one can obtain the equality (6.19) with an
invertible matrix Cy1.
Next set
Py

P=1| pk) |, Q=( Q1 qk) Qi1 )

Py
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Using the equalities (6.16) and (6.17) we get
A—PQ =S5,

with the block upper triangular invertible matrix S of the form

kal * *
S = 0 D(k) *
0 0 Cip
By Theorem 1.21,
At =51 W, (6.23)

with W = S71P(I,,, + QS™1P)"1QS~ L. It is clear that

Bk:ll * *
St = 0  (DKk)™' (6.24)
0 0 G
and
rank W < my,. (6.25)

Consider the matrix G* = A=! — D=1, From (6.23) and (6.24) it follows that
G*(k:N,1:k)=-W(k:N,1:k)
and hence, using (6.25), we conclude that
rankG*(k: N,1: k) <my, k=2,...,N—1.

This means that G* is a block lower Green of order one matrix. O

Corollary 6.9. Let A be a block invertible matriz with entries of sizes myxmyj, i,j =
1,..., N, represented in the form A = D+ F, where D = diag(D(1), D(2),...,
D(N)) is a block diagonal matriz and F is a block upper Green of order one matriz.

Then the matriz A=Y admits the representation A~' = D=1 + F* | where F*
s a block upper Green of order one matrix.

The proof is obtained by applying Theorem 6.8 to the transposed matrix AT
Combining Theorem 6.8 and Corollary 6.9 we obtain the corresponding result
for diagonal plus Green of order one matrices.

Theorem 6.10. Let A be a block invertible matriz with entries of sizes m; x m;,
i,j=1,...,N, represented in the form A = D + G, where D = diag(D(1), D(2),
.., D(N)) is a block diagonal matriz and G is a block Green of order one matriz.
Then the matriz A~' admits the representation A~ = D=1+ G*, where G*

1s a block Green of order one matriz.
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§6.5 Minimal completion ranks of pairs of mutually
inverse matrices. The inverse of an irreducible
band matrix

Here we apply Theorem 6.1 to obtain relations between minimal completion ranks
of pairs of mutually inverse matrices. As a corollary we obtain a version of the
second Asplund theorem.

Theorem 6.11. Let A = {A;;}N

of size m; x nj. So ZNlml = ZNlnl =: N1. The inverse of A is partitioned
according to the partitioning of A: A=1 := B = {Bj;}N where Byj; is of size
n; X my. Put

ivj=1 be an invertible matriz with block entries A;;

1,j=17

A={Aijhi<j<isn, B={Bijhi<j<i<n.

Then
Fr(A) + 7 (B) = Ni, (6.26)

where 71,(A) and 7r,(B) are the minimal completion ranks of the parts A and B,
respectively.

Proof. Applying formula (2.30) to the matrix A one gets

N N-1
Fr(A) = ZrankA(k :N,1: k) — Z rank A(k+1: N,1:k). (6.27)
k=1 k=1

Applying formula (3.3) to the matrix B = A~! one gets

N-1 N-1
FL(B) = Z rank B(k+1:N,1:k)— Z rank B(k+1:N,1:k—1). (6.28)
k=1 k=2

Using formula (6.1) with ¢ = 0 and ¢t = —1 one obtains the equalities

rank A(k+1:N,1:k) Z n;
i=k+1

(6.29)
—rankB(k+1:N,1:k) Z mi, k=1,...,N—1
i=k+1
and
rank A(k : N,1: k) Z n;
1=k+1
N (6.30)

=rankB(k+1:N,1:k—1)+» m; k=1,...,N.
i=k
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Now (6.29) and (6.30) yield the equalities

N-1 N-1 N
erankAk—l—l N,1:k) Z Z
=1 k=1
N ; N (6.31)
rank B(k+1: N,1: k) + Z Z
k=1 k=1 i=Fk
and
N N-1 N
ZrankA(k:N,l:k)+Z Z n;
k=1 k=1 i=k+1
N1 N N (6.32)
:ZrankB(k—l—l:N,l:k:—l ZZ
k=1 k=1 i=

Subtracting (6.31) from (6.32) and using formulas (6.27), (6.28) one obtains

N
fL(A) = —f‘L(B> + Z:TI”L]€7

which implies (6.26). O
Example 6.12. Consider the 7 x 7 matrix

s

|
QR Q2 Q2 X
Q2 Q 2 2 e
QL2 Q2 Qe e
QL 2 Qe @
Q QL QLR e 2
Q QAU Q2 8 8
QAL 2 2@ 2 & 2 2

Applying the formula (2.30) to the lower triangular part A = {A;;}i<j<i<7
we obtain the minimal completion rank #1(A) = 6. Theorem 6.11 means that
71(A) + 7, (B) = 7, where B = {B;;}1<j<i<7 is the strictly lower triangular part
of the matrix B = A~!. Notice that we have

1

B=A"= (6a+d)(a—d)

Q@ Q2 2 2 9 Q
SRS S I I e )
SIS~ B e I ST
SIS S T S SIS
SEE T oI S S S
S Qoo o o9
SIS I S

where a = —(5a + d) and it follows that the 7 x 7 matrix of rank 1 which has all
its entries equal to a is a minimal rank completion of 5. O
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As a corollary of Theorem 6.11 one obtains the following well-known result.

Theorem 6.13 (The second Asplund theorem). Let A = {Aij}?fj:l be an invertible
scalar matriz. Lett € {0,1,..., N —1} and let A denotes the lower triangular part
A= {Aij}j<i+t, 1<i,j<N Of the matriz A.

Then #r(A) = t if and only if A=' is a lower band of order t matriz with
nonzero elements on the diagonal 1 — j =t.

The statement of the theorem follows from a more general Theorem 6.17,
which will be proved below.

Example 6.14. Consider the 7 x 7 matrix B from Example 6.7. This is an invertible
matrix. We have (6.15) and also

rank B(2:7,1:2) =rankB(3:7,1:3) =rankB(4:7,1:4) =rank B(5:7,1:5)
=rank B(6:7,1:6) =2.

We treat B as a block (N — ¢+ 1) x (N —t + 1) matrix with entries of sizes
m; X nj, wheremy =---=my =1, my_yp1 =t n1=t, no=---=ny_y1 = 1.
B = {Bij}1<j<it2<7 is the lower triangular part of B relative to this partition.
By (2.30), we get 1 (B) = 2. By the second Asplund theorem, the inverse B! is
a lower band of order 2 irreducible matrix. This is the matrix A from the same
example. O

Using Theorem 6.13 one can show that there is a matrix A with a given
minimal order of diagonal plus semiseparable representation whose inverse A4~*
has a larger minimal order of diagonal plus semiseparable representation.

Theorem 6.15. Let A be an invertible N x N scalar matriz whose part
A ={A;;}jcitt, 1<ij<nN

has the minimal completion rank t. Then the matriz A admits a diagonal plus semi-
separable representation with lower semiseparable generators of order not greater
than t and the order of lower semiseparable generators for the matriz A=1 is not
less than N —t.

Proof. The strictly lower triangular part of the matrix A is a part of A. Hence
the minimal completion rank of the strictly upper triangular part of A is not
greater than ¢. Therefore, by Theorem 3.2, the matrix A admits a diagonal plus
semiseparable representation with lower semiseparable generators of order not
greater than t.

Next, by Theorem 6.13, the inverse A~! is a lower band of order ¢ matrix
with nonzero elements on the diagonal i — j = ¢. For any completion A; of the
strictly lower triangular part of the matrix A~!, the submatrix Ag = A;(t + 1 :
N,1: N —t) is an upper triangular matrix with nonzero entries on the main
diagonal. The matrix Ay is invertible and therefore rank Ay = N —t, which implies
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rank A; > N —t. It follows that the minimal completion rank of the strictly lower
triangular part of the matrix A is not less than N — ¢. From here, by Theorem
3.2, the minimal order of the lower semiseparable generators of the matrix A~! is
greater than or equal to N — t. O

Example 6.16. This example illustrates Theorem 6.15 for a specific case of a 7 x 7
matrix and t = 2.

Consider the matrix B which appeared in Example 6.7. This matrix has
N =7 and it is invertible, since it has been found in that example as the inverse
of the matrix A (up to the constant factor é, which now will be ignored). For ¢ = 2
it follows from Example 6.14 that the part

7T —6 * * *

-6 12 —6 * *

0 -6 12 —6 *
B = {Bij}j<i+t, 1<4,j<7 = 4 -3 —6 13 -6 *
-3 6 -3 —6 12 —6

0 -3 6 -3 -6 12 -—
1 0 -3 4 0 —6

* % ¥

N O ¥ ¥ ¥ X X

of B has the minimal completion rank ¢. It follows from Theorem 6.15 that the
matrix B admits a diagonal plus semiseparable representation with lower semisep-
arable generators of order not greater than ¢ = 2 and the order of lower semisepa-
rable generators for the matrix A = B~ is not less than N —t =7 — 2 = 5. Also,
applying the formula to the matrix A in Example 6.7 we obtain that the lower
semiseparable order of this matrix equals 5. O

Now we present the proof of a generalization of Theorem 6.13.

Theorem 6.17. Let A = {A;;});_; be an invertible block matriz with A;; of size
mxm (m >0). Lett € {0,1,...,N — 1} and let A denote the lower triangular
part of A, A= {Aij}j<itt, 1<ij<n-

Then 71,(A) = tm if and only if A=! is a lower band of order t matriz with
tvertible entries on the diagonal i — j =t.

Proof. First, let t = 0, i.e., A = {A;;}1<j<i<n is the strictly lower triangular part
of the matrix A. Then 71 (A) = 0 if and only if A is block upper triangular. But
since the blocks of A are square, this holds if and only if A~! is upper triangular,
and since A1 is invertible its diagonal entries are invertible.

Next, let t € {1,...,N —1}. View A as an (N — ¢+ 1) x (N —t+ 1) block
matrix where the first ¢ block columns of A and its last ¢ block rows are taken
together. In A~! this corresponds to taking together the first ¢ block rows and the

last ¢ block columns. Denote A~ = {Bij}%zl; in such partition the strictly lower
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triangular part of A~! has the form

Biin 7 ... 7
Biia1 DBig2p2 ?
B = . .
Bt Bya ... By nN—¢

By Theorem 6.11, #,(A) = tm if and only if the part B has the minimal completion
rank equal to Nm — tm, which is precisely its order. This is equivalent to the fact
that the matrix

Bit11 Biti2 ... Biyin—t

R Biio1 DBitoo ... DBiyon—t
B= ) ) )

Bn Bn2 ... By nN—t

is invertible and moreover, by Theorem 6.11, the minimal completion rank of
the strictly lower triangular part of the matrix B! equals zero. Use now the
t = 0 case to see that this can happen if and only if B;; = 0, j < ¢ —t and
Bjyi4, j=1,...,N —t are invertible matrices. O

Another corollary of Theorem 6.11 concerns the situation when the minimal
completion rank of the strictly lower triangular part of a matrix coincides with
the minimal completion rank of the strictly lower triangular part of its inverse.

Corollary 6.18. Let A = {Aij}%=1 be an invertible block matriz with A;; of size

m; X nj, so that vazl m; = Zi\il n; =: Ni. The inverse of A is partitioned

according to the partitioning of A: A~' .= B = {Bij}%’:p where B;; is of size
n; X my. Put
Ao = {Aijhi<j<i<n, Bo={Bij}i<j<i<n.
Then
7r.(Ao) = 7 (Bo) (6.33)
if and only if

N N-1
Zk_l rank A(k: N,1:k) — Zk—z rank A(k+1: N,1:k—1)=N;. (6.34)

Proof. Using Theorem 6.11 we see that the condition (6.33) is equivalent to the
equality

71(Ao) = N1 — 71 (A), (6.35)
where A = {A;;}1<j<i<n. Substituting in (6.35) the expression (6.27) and the
expression

N-1 N-1
7r(Ay) = Zk:l rank A(k+1:N,1:k)— Z rank A(k+1:N,1:k—1)

one obtains (6.34). O
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This corollary yields a necessary and sufficient condition for equality of the
orders of minimal lower semiseparable generators of a matrix and of its inverse.

Example 6.19. Consider the 7 x 7 matrix
3

s
I
— o =W N W
— == e W Ol
— = =Y W
[ N B N |
— = 00— =
— O R~ B = -
== e

—_

0

For the matrix A formula (6.34) is valid. Indeed,
7 6
ZrankA(k‘ (7, 10k) — ZrankA(kJr 1:7,1:k—-1)
k=1 k=2
=(1+2+34+2+2+2+1)—(1+2+1+1+1)="T. %

§6.6 Linear-fractional transformations of matrices

Here we extend some results obtained above in this chapter for the inverses to the
fractional transformations of matrices.

§6.6.1 The definition and the basic property
A linear-fractional transformation is a function ® : C — C defined by

() = az+

= s (6.36)

with some complex numbers «, 3,7, such that ad — 8y # 0. Let A be a square
matrix such that the matrix yA+ d7 is invertible. Then the matrix ®(A) = («A+
BI)(yA+6I)~1 is well defined. We obtain the following generalization of Corollary
6.3.

Theorem 6.20. Let A = {Ay;}Y,_, be a block matriz with entries of sizes m; X
mj, 4,5 =1,...,N and let ®(2) be a linear-fractional transformation of the form
(6.36). Assume that the matriz yA + 01 is invertible.

Then the rank numbers of the matrixz A relative to the main diagonal i = j
coincide with the corresponding rank numbers of the matriz ®(A).

Proof. Assume that v # 0 and set b = §/~. We obviously have

B(A) = i (ol + (B — ab)(A+bI)Y). (6.37)
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Since ad — By # 0, we have that § — ab # 0. It is clear that the rank numbers
of the matrix ®(A) relative to the main diagonal coincide with the corresponding
rank numbers of the matrix (A +bI)~!. By Corollary 6.3, these rank numbers are
equal to the ones of the matrix A + bI. The rank numbers of the latter matrix
relative to the main diagonal are the same as for A.

Now let v = 0. Then ad — By # 0 implies  # 0, @ # 0 and therefore

1
D(A) 5 (A + BI). (6.38)
In this case the statement of the theorem is trivial. O

§6.6.2 Linear-fractional transformations of Green
and band matrices

Here we extend the results of Section §6.3 on linear-fractional transforms of ma-
trices.

Theorem 6.21. Let A = {Ay;}Y,_, be a block matriz with entries of sizes m; X
mj, 4,j =1,...,N and let t > 0 be an integer. Let ®(z) be a fractional transfor-
mation of the form (6.36). Assume that vy # 0 and the matriz yA+01 is invertible.
Setb=10/7.
®(A) is a lower band matriz of order t if and only if A+ bl is a lower Green
matriz of order t.
®(A) is an upper band matriz of order t if and only if A+bI is an upper Green
matriz of order t.
®(A) is a band matriz of order t if and only if A+ bl is a Green matriz of
order t.

Proof. From the formula (6.37) it follows that the matrix ®(A) is a lower (upper)
band matrix of order ¢ if and only if the matrix (A+bI)~! is. By Theorem 6.6, the
latter holds if and only if A + b is a lower (upper) Green matrix of order ¢t. [

§6.6.3 Unitary Hessenberg and Hermitian matrices

Consider now the linear-fractional transformation (6.36) with the coefficients a,
B, 7, ¢ satisfying the conditions

v =lyle?, 5 =10]e"%, v #£ 0.8 #0, 2O0) £ 1,

. P (6.39)
a=l|yle?, B=15e", 6 =0+0, — 0.

It is well known that in this case the transformation ®(z) maps the real line onto
the unit circle without the point 2 = «/~. Assume that A is a Hermitian matrix
such that the matrix yA + I is invertible; then the matrix ®(A) is well defined
and ®(A) is unitary if and only if A is a Hermitian matrix. As a direct consequence
of Theorem 6.21 we obtain the following statement.
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Theorem 6.22. Let A be a scalar square matriz and let ®(z) be a linear-fractional
transformation of the form (6.36) satisfying the conditions (6.39). Assume that
the matriz yA + 01 is invertible and set b= §/~.

Then ®(A) is a unitary upper Hessenberg matriz if and only if A is Hermitian
and A+ bl is a lower Green of order one matrix.

Proof. The matrix A is Hermitian if and only if ®(A) is a unitary matrix. By
Theorem 6.21 ®(A) is a lower band of order one, i.e., an upper Hessenberg matrix,
if and only if A + bl is a lower Green of order one matrix. g

§6.6.4 Linear-fractional transformations of diagonal
plus Green of order one matrices

Here we derive a generalization of Theorem 6.8 on linear-fractional transformations
of matrices.

Theorem 6.23. Let A be a block matriz with entries of sizes m;xmy;, 4,5 =1,..., N
represented in the form A = D + G, where D = diag(D(1), D(2),...,D(N)) is a
block diagonal invertible matriz and G is a block lower Green of order one matriz.
Let ®(z) be a fractional transformation of the form (6.36). Assume that v # 0 and
the matrices yA + 61 and yvD + 01 are invertible.

Then the matriz ®(A) admits the representation

®(A) =d(D) +G*, (6.40)
where G* is a block lower Green of order one matriz.

Proof. Assume that v # 0. Setting b = ¢/ and using the formula (6.37) we get

B(A) = i (al + (8 — ab)[(D +bI) + G V).

Applying Theorem 6.8 to the matrix (D + bI) + G we obtain
(D +bI)+ G|t = (D +bI)~' + Gy,
where Gy is a block lower Green of order one matrix. Hence, it follows that
1 1
P(A) = ) (al + (B —ab)(D+bI)7") + 7(5—ab)G0. (6.41)

Notice that )
N (OJ +(8—ab)(D+ bI)*l) = (D)

and }Y(B —ab)Gy is a block lower Green of order one matrix. Hence, it follows that
(6.41) implies (6.40).
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Assume that v = 0. Using (6.38) we get
1 1
®(4) = (aD+aG+BI) = (aD+BI) + (:;G = ®(D) + G*,

where G* = $ G is a block lower Green of order one matrix. O

§6.7 Comments

Symmetric Green matrices, named one-pair (or single-pair) matrices were con-
sidered in the monograph by F.R. Gantmacher and M.G. Krein [36]. The classi-
cal inversion theorems for Green and band matrices with elements from a non-
commutative field were obtained by E. Asplund in the paper [2].

Theorem 6.1 is based on the coupling relations obtained in [3]. The presen-
tation in the first three sections follows the paper [26]. Results similar to ones in
Section 4 are presented in the monograph by R. Vandebril, M. Van Barel, and N.
Mastronardi [46], but our proofs are different. The results of Section 5 were ob-
tained by H. Woerdeman in [48]. Section 6 is based on the paper by L. Gemignani
[33], but our presentation is different.



Chapter 7

Unitary Matrices with
Quasiseparable Representations

In this chapter we study in detail the quasiseparable representations of unitary
matrices. We show that for unitary matrices the quasiseparable representations
are closely connected with factorization representations of a matrix as a product
of elementary unitary matrices.

In the first section we present with the proof the well-known results on Givens
rotations and QR factorizations of matrices. In the second section we derive re-
lations between rank numbers of unitary matrices. In the third section we study
factorization representations of unitary matrices and their connections with qua-
siseparable representations. In the fourth section we consider a special case of
unitary Hessenberg matrices. In the last section we study special quasiseparable
representations of matrices for which computations may be performed with a lower
complexity.

§7.1 QR and related factorizations of matrices
Let A be an m x n matrix. Then A may be represented in the form
A=Q R (7.1)
with an m X m unitary matrix @ and an m X n matrix R = (R;;) such that
Rij =0 for i>j. (7.2)

The factorization (7.1) is called the QR factorization of the matrix A. To determine
the factors ) and R one can proceed as follows.

. . a . .
For a two-dimensional complex vector z = ( > there is a complex Givens

b

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 139
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_7, © Springer Basel 2014
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rotation matrix, i.e., a 2 X 2 unitary matrix G, such that

()

with some complex number r. The matrix G and the number r may be determined

by the formulas
G=( & 2 )0 r=viak e,

where

forx#0and c=1, s =0 for z =0.
At first we determine a complex Givens rotation matrix G,,_1 from the
condition

Gm-1A(m —1:m,1) = ( (T) )

Define the m X m unitary matrix Gp—1 = Im_2® Gm_1. Then the matrix A; =

Gm-1A4 has a zero entry in the (m,1) position. Next we determine a complex
Givens rotation matrix G,,_o from the condition

/
Gm2A(m—2:m—1,1)= <g )

and we define the m x m unitary matrix G2 = In_3® Gpm_o ® I;. The matrix
Ay = G,_2A; has zero entries in the (m —1,1) and (m, 1) positions. We proceed
in the same way with the first columns of the matrices A, A1, Ao, ..., A;—2 and
obtain the matrix

A(l) = Am,1 = él e émflA

with all the entries zero, except for the first one in the first column:
AM(2:m,1) =0.

Here GOV = C~7'1 . ém_l is an m X m unitary matrix.
Next we apply the same procedure to the second column of the matrix A,
We determine a complex Givens rotation matrix Gg,llll from the condition

GY AV (m —1:m,2) = ( ] )

and define the m x m unitary matrix Gl 1=Im2o® GV | The matrix Agl) =

m— m—1-*

C:',f,lb)_lA(l) has all the entries zero, except for the first one in the first column, and
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also a zero entry in the (m,2) position. We continue in the same way and obtain
the matrix
A®@ = @ a4

with zero entries in the two first columns below the main diagonal. Here G G(1)
is an m X m unitary matrix.

We apply this procedure to the third column of the matrix A®), and so on.
Finally we obtain an m X m unitary matrix @ such that the matrix R = Q*A
satisfies the condition (7.2).

Next we consider some factorizations related to the QR factorization. Let J
be the m x m permutation matrix

J = : . :

1 ... 0

One can rewrite the equality (7.1) in the form
A= (QJ)(JR).

Setting QJ = @', JR = R’ we obtain the representation of the matrix A in the
form

A=0Q R, (7.3)
with a unitary m x m matrix @’ and an m x n matrix R’ = (R};) such that
R;; =0, for i+j<m+1. (7.4)

The factorization (7.4) is called the QR factorization of the matrix A.
Applying (7.1) to transposed matrices we obtain the factorization

A=LQ, (7.5)

where L = (L;;) is an m x n matrix with L;; = 0 for j > ¢ and @ is a unitary
n x n matrix. The factorization (7.5) is called the LQ factorization of the matrix
A. Similarly applying (7.3) to transposed matrices we obtain the factorization

A=1'Q, (7.6)

where L' = (L;;) is an m x n matrix with L{; = 0 for j+i <n+1and Q is a
unitary n x n matrix. The factorization (7.6) is called the L'Q factorization of the
matrix A.

Assume that m > n and consider the QR factorization (7.1) of the matrix
A. The condition (7.2) means that the matrix R in (7.1) has the form

"= (o)
O(m—n) Xmn
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where X is an n X n upper triangular matrix. Setting V = Q(:,1 : n) we get
A=V .X. (7.7)

Here the m x n matrix V' has orthonormal columns, i.e., V*V = I,, and X is an
n X n upper triangular matrix. The factorization (7.7) is called the truncated QR
factorization of the matrix A. In the same way one can obtain truncated forms for
other factorizations mentioned here.

§7.2 The rank numbers and quasiseparable generators

Here we present relations for lower and upper rank numbers of unitary matrices
relative to the main diagonal in a block representation.

Theorem 7.1. Let V' be a unitary block matriz with entries of sizes m; x nj, 1,j =
1,..., N, with lower rank numbers pﬁ (k=1,...,N —1) and upper rank numbers
p (k=1,...,N —1). The following relations hold:

N N
pE + Z n; = py + Z m;, k=1,...,N—1 (7.8)

i=k+1 i=k+1

or

rankV(k+1:N,1:k) Z n;

1=k+1
N (7.9)
=rankV(L:kk+1:N)+ > mi, k=1,...,N-1
i=k+1

Proof. We consider V—! = V* as a block matrix with entries of sizes n; xm; (i,7 =

1,...,N). Using the formula (6.7) from Corollary 6.2 we get
Tk}O an—rkov* Zm“ = 7...,]\i’*]..
1=k+1 i=k+1
But we have obviously ry O(V*) =T Y(V) (k=1,...,N —1). Moreover, by the
definition of rank numbers we have rk70(V) = pk, Tk Y (V) = p¥ and therefore we
conclude that the relations (7.8) hold. O

From here one can easily derive a corollary concerning the orders of minimal
quasiseparable generators of unitary matrices.

Corollary 7.2. Let U be a unitary block matriz with entries of sizes m; xnj, ¢,j =
1,..., N with lower rank numbersry (k =1,...,N—1). Then U has minimal lower
quasiseparable generators of orders ri, (k=1,..., N —1) and upper quasiseparable

generators of orders ri, + i (k=1,...,N — 1), where p = Zivzk+1(ni —m;).
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Proof. By Theorem 7.1, the upper rank numbers of U equal rp+pu; (k=1,..., N—
1). By Theorem 5.9, the matrix U has lower quasiseparable generators of orders
rr (k=1,...,N —1) and upper quasiseparable generators of orders ri + puy (k =
1 N —1). By Corollary 5.10, these generators are minimal. O

gee ey

§7.3 Factorization representations

Here we derive factorization representations for matrices with quasiseparable struc-
ture.

§7.3.1 Block triangular matrices

We start with representations of block triangular matrices.

Lemma 7.3. Let W be a block upper triangular unitary matriz with block entries
of sizes v; X ng, 4,5 =1,...,N. Set

k
s0=0, sp=> (Wi—mni) k=1...,N-1 (7.10)

=1

Then all the numbers s, are nonnegative. Moreover, the matric W admits
the factorization

W =WWsy--- Wy (7.11)
with
Wy = diag{Wh, I, }; Wi = diag{I,,, Wi, Is,}, k=2,...,N —1; (712)
Wy = diag{Zyy, W}, '
where Wy, are unitary matrices of sizes (Sx—1 + k) X (sg—1 + vx) and
k—1 N
Xe=D mi k=Y v
i=1 i=k+1
Furthermore one can determine the matrices Wy, (k= 1,...,N) using the follow-
g algorithm.
1. Set
Wy =W. (7.13)

2. Fork=1,...,N —1 perform the following. Set

wy, = Wk(l D Sp—1+ vk, 1 nyg) (7.14)
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and determine the unitary (sgx—1 + vi) X (Sk—1 + vk) matriz Wy from the

condition
Wiwy = ( Iy ) . (7.15)
Osk XNk
Compute the matrix
_ (W 0 \y
Zy = ( 0 I, )Wk (7.16)
and determine the Xk4+1 X Xk+1 matric Wk+1 from the partition
I 0
Zy = e ) 1
; ( 0 Win ) (7.17)
3. Set )
Wn = Wh. (7.18)

Proof. At first we show that the condition s, > 0, k=1,..., N —1 holds. Indeed,
consider the submatrix W(:,1 : k) composed of the first & block columns of the

matrix W. We have W(:,1: k) = ( %k

(Zle n;). From the invertibility of W it follows that rank £ = Zle n; and thus
S i <Y v, 1<k<N -1
Next we prove by induction that

: . . k
> , where €, is a matrix of size (3, ;) ¥

I

Xk+1 0

W=WWy---W, .
1Wa k( 0 Wit

), k=0,1,...,N —1. (7.19)

Here W (k =1,...,N — 1) are block upper triangular unitary matrices with
entries of sizes Vi(k) X nj, 1,5 =k,..., N, where y,(ck) = sk + Nk, Vi(k)
E+1,...,N.

The relation (7.19) with k& = 0 follows from (7.13) and the definition of the

matrix W. Let for some k with k =1,..., N — 1 the representation

= yi7i =

. . . I, O
W= T T . 2
1Vv2 k—1 ( 0 I;Vk > (7 0)

with the matrix W}, defined as above hold. The first block column of Wy has the

form
A wk
Wi(:,1) = ,
k( ) ( O¢kXTLk >

where wy, is an (si + ny) X n, matrix such that wiw, = I,,,. We take a unitary
(sk + nk) X (sk + ng) matrix Wy, such that (7.15) holds. Then

Wl:( 0 T . _ I’nk
( 0 I¢k >Wk(.71) B ( O(Sk+¢k)><nk )
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Define the matrix Zj by (7.16). Since Zj, is unitary, the representation (7.17) holds.
From (7.16), (7.17) we get

B Wi 0 I, 0 >
Wi = A . 7.21
g < 0 Iy, ) < 0 Wit (7.21)
Here WkH is a unitary block upper triangular matrix with entries of sizes z/i(kH) X
nj, 4,5 = k+1,..., N, where z/i(kH) =v;,t=k+2,...,Nand y,i’itl) = Vk+1+Sk =

Nk+1 + Sg+1. Inserting (7.21) in (7.20), we obtain (7.19).
Finally, using (7.19) with £ = N — 1 and (7.18) we obtain the factorization
(7.11). O

The reverse statement is the following.

Lemma 7.4. Let W be a block matriz with block entries of sizes v; X nj, 1,5 =
1,..., N which admits the factorization (7.11), (7.12) with some (Sk—1 + Vi) X
(Sk—1 + vi) matrices Wy, (k=1,...,N), where the numbers sg, k=0,...,N —1
are defined in (7.10).

Then W is a block upper triangular matriz.

Proof. We prove the statement by induction on N. For N = 2 the matrix W is a
2 x 2 block matrix with entries of sizes v; X nj, i,j = 1,2 (11 + 12 = n1 +ng) and

we have
s (W 0 I,, 0
wwlwz( - )( - )
Hence it follows that the left bottom block of size 5 X n1 in the matrix W equals
zero. Let for some N > 2 the (N — 1) x (NN — 1) block matrix

W' =Wi---Wx_y,
with

Wl/ = diag{Whqul}, Wé = diag{IXk, Wk, I¢;€}, k= 2, ey N — 27
WI/\/'fl = diag{IXN717WN—1}7

where W), are matrices of sizes (sp—1 + V) X (sg—1 + V) and
k—1 N-1
Xk = Znia ¢;c = Z Vi,
i=1 i=k-+1
be upper triangular. The matrix W defined via (7.11), (7.12) may be written in

the form
= - (W0 In 0
|/1/_L[1--~”/N—1”N_< 0 IVN >( 0 WN)
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Hence using the fact that W’ is upper triangular it follows that

" n .
W(i+1:N,1:i)(W(Z+1'éV 1’1”))0, i=1,...,N—1,
which completes the proof of the lemma. O

§7.3.2 Factorization of general unitary matrices and
compression of generators

Here we consider block unitary matrices with given quasiseparable representa-
tions. For such matrices we derive a factorization representation as products of
elementary unitary matrices. Together with the factorization of a matrix we ob-
tain another set of its quasiseparable generators. In some cases these generators
have smaller orders than the original ones.

Theorem 7.5. Let U = {U;;} N Yj=1 be a block unitary matriz with entries of sizes
m; X nj, lower quasiseparable generators p(i) (i = 2,. ..,N) qi)G=1,...,N—

1), a(k) (k=2,...,N —1) of orders rE (k=1,... — 1), upper quaszsepamble
genemtorsg(')(':1,...7]\7—1), hG) G=2,..., )7 b(k )(k—2 LN =1) of
orders r¥ (k=1,...,N — 1) and diagonal entries d(k) (k=1,..., ) Set
PN = 07 Pk—1 = min{mk + Pk, 7"]%_1}7
Vk:mk+Pk_Pk—17k:N7-~-727 vy =m1 + p1, (722)
sN=0, sp1=np+sg—vk, k=N,...,2.

Then all the numbers s, are nonnegative and the matriz U has upper qua-

siseparable generators of orders sy, (k=1,..., N —1) and admits the factorization
U=V.F, (7.23)
where V' is a block lower triangular unitary matriz with block entries of sizes
m; X vj (i,5 =1,...,N) and F is a block upper triangular unitary matriz with
block entries of sizes v; x nj (i,j =1,...,N). Moreover, one can choose V in the
form
V=VnVN_1---Vs, (7.24)
with
Vi. = diag{l,,, Vi, Loy }» k= 2,...,N — 1, Vi = diag{L,, Vn'}, (7.25)

k N
where n = Y . 11 Miy, Gk = D impiq Vi, the Vi (k= 2,...,N) are (my + pg) ¥
(my + pr) unitary matrices and the matriz F has the form

F=FFE-- Fy, (7.26)
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with
Fy = diag{F1,Is,}, Fy=diag{l,,,F Is,}, k=2,...,N—1,

e (7.27)
Iy = dlag{IXNaFN}a

where X = Zf;ll ng, and Fy, (k=1,...,N) are (sg—1+ vg) X (Sk—1 + V) unitary
matrices.

Furthermore, a set of upper quasiseparable generators gs(i) (i =1,...,N —
1), hs(4) (=2,...,N), bs(k) (k=2,...,N—1) of orders sy, (k=1,...,N —1)
as well as the unitary matrices Vi, (k =2,...,N), Fr, (k=1,...,N) are obtained
using the following algorithm.

Set Xn11,YN+1, 2n41 to be the empty 0 x 0 matrices and ¢(N), a(N), g(N),
b(N), gs(N) to be empty matrices of sizes Oxnn,0xrk | mnyx0,75 | x0,myx0,
respectively.

For k= N,...,2 perform the following. Compute the QR factorization

{ szj-(llfl)(k) } =V ( oyff]gl > ; (7.28)

where Vi, is a unitary matriz of sizes (my + pr) X (my + px), Xk s a matriz of
sizes prp_1 X 7”#1' Compute the (my, + pr) X (ng + sk) matrix

. dk)  gs(k)
Zp=V; <Xk+1q(k) . ) (7.29)

and determine the matrices hj,, h}, Ay, O of sizes pr—1 XN, Pr—1 X Sk, Vg X Mg, Vi X
Sk, respectively, from the partition

_ | e bk
Zp = { Ao ] (7.30)

The submatrix ( A O ) has orthonormal rows and one can determine the
(nk + sk) X (ng + sk) unitary matriz Fy, from the condition

( Ak) ®k )F‘];;k = ( OVszk,1 Iljk ) (731)

Determine the matrices hs(k),bs(k),dr(k), gr(k) of sizes sp—1 X g, Sp—1 X Sk, Vg X
ng, Vi X Sk, respectively, from the partition

[ (k) buk)
Fk—[w) gF<k>}' (7.32)

Compute the matrices Yy, of the size r,(él X Sk—1 and zi of the size px_1 X Sgp_1
by the formulas

Vi = h(k)BE(K) + b(k)Yiep1 b5 (k), 2 = Rih*(k) + hybt (k). (7.33)
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Finally, compute

gs(k = 1) = g(k — )Yz, (7.34)
and set () M
F = 7.35
! X2q(1) Z2 ( )
Proof. Using the generators ¢(k), a(k) and g(k), b(k) define the matrices Q, k =
1,..., N of sizes r,f X Xk+1 via relations
Q1=q(1), Qrv=(ak)Qu1 qk)), k=2,....,N (7.36)
and the matrices Gy, k= 1,..., N of sizes ng1 x ¥ via relations
Gr—1b(k) >
Gi=g(l), Gp= L k=2,...,N 7.37
T (7.7
(here we set 7% = 7§ = 0). Using the equalities (5.11) and (5.14), we get
Uk,1:k—1)=pk)Qr-1, k=2,....,N (7.38)
and
Ul:k—-1,k)=Gr_1h(k), k=2,...,N. (7.39)
We prove by induction that sz > 0, k = N,...,1 and all the matrices
S U(].k 1k) GkYk+1>
Uy = ’ . k=1,...,N 7.40
¥ ( Xi+1Qk Zht1 (7.40)

are unitary. We prove also that the matrices ( JAVAR G ) , (k= N,...,2) have
orthonormal rows and the relations
Gr—1h(k) = Gr_1Yihs(k), k=2,...,N (7.41)
Gr-1b(k)Yiy1 = Ge1Yibs(k), k=2,...,N (7.42)
hold.
For k = N the matrices GNYn 41, XN+1@ N, 2n+1 are empty and hence Uy =
U is a unitary matrix. By definition, we have sy = 0. Let for some k with N >
k > 2 the matrix Uy be unitary. Inserting (7.36), (7.37) and (7.38), (7.39) in (7.40)
we get
R Ul:k—1,1:k—1) Gr_1h(k) Gr-1b(k)Yit1
Uk = p(k)Qr—1 d(k) 9(k)Yii1
Xi+10(k)Qr-1 Xi+1q(k) Zht1
Using (7.28), (7.29) and (7.30) we obtain
I 0 R Ul:k=1,1:k—1) Gr_1h(k) Gr-1b(k)Yit1
< oy ) Uy = XkQr-1 h}, h}, . (7.43)
k Ol/k XXk Ak} @k;

Here the matrix ( Ar Oy ) has the size vy, x (s + nk).
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Since the matrix I O*
0V

v > 0 holds and the matrix ( A O ) has orthonormal rows. Hence one can
determine a unitary (ng + si) X (ng + si) matrix Fy such that (7.31) holds. Next,
using (7.32) we have

( h(k) b(k)Yii > s ( Yo w ) (7.44)

l "
hk hk 2k Wy

> ﬁk is unitary the inequality sx_1 = sp + ng —

with the matrices Y}, zx of sizes r,gA X Sk—1,Pk—1 X Sk—1 determined via (7.33)

and some matrices wj,, wy of sizes r | x vk, px—1 x ;. Thus using (7.43), (7.31)
and (7.44) we get

I 0 R I 0 U(]. k- ]., 1:k— 1) kalyk CTYk,lw;C
< 8}9 Vk;* ) Uk( 6}9 F’:) - Xka,1 2k wg

OVk XXk OVk XSk—1 IVk

Since the matrix I O* ﬁk I O* is unitary we conclude that Gy_iw), =
0 Vg 0 Fy

0, wy = 0 and therefore

L 0 \p (I O
i )n (s

Ul:k—1,1:k—1) GpYe 0 5 (7.45)
Ur 0
= XkQr—1 2k 0 = 0 I
0 0o I, <

Hence it follows that the matrix Uk—l is unitary. Moreover (7.44) implies that
(h(k) b(k)Yigr ) Fi=( Vi wj )
and using the fact that Gk,lw;c = 0 we obtain
( Grp—1h(k) Gr-1b(k)Yig1 ) = ( Ge—1Yr 0 ) Fy. (7.46)

From here using the partition (7.32) we obtain the equalities (7.41), (7.42).
Thus, by Lemma 5.23, we conclude that g5(¢) (i =1,...,N —1), hs(j) (j =
2,...,N), bs(k) (k =2,...,N — 1) are upper quasiseparable generators of the
matrix U.
Next, using (7.45) we get

. . (I, O Tee1 0 I, 0 _
Unv=U, Uk—< 0 Vk)( 0 I, 0 I , k=N,... 2.

) (7.47)
Comparing (7.40) with & = 1 and (7.35) we have U; = F;. Combining this equality
with the relations (7.47) we obtain the factorization (7.23)—(7.27). O
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Corollary 7.6. Under the conditions of Theorem 7.5 the factorizations

hE)  b(k)Yin Y. o
Gi_1 O Gr_ 0

( ’61 V*> d(k)  g(k)Yis < bt ) 2zt 0| Fy,

k Xpyrq(k)  zpga 0 I,

k=2 ... N (7.48)

0 IPk—l"FVk

hold.

The proof follows directly from the equalities (7.46), (7.30), (7.31) and (7.33).

Next we show that if lower quasiseparable generators of a unitary matrix U
are minimal, then Theorem 7.5 may be used for compression of upper quasisepa-
rable generators of U.

Corollary 7.7. Under the conditions of Theorem 7.5, assume that the lower qua-
siseparable generators p(i) (i = 2,...,N), ¢(j) (j =1,...,N = 1), a(k) (k =
2,...,N —1) are minimal.

Then the upper quasiseparable generators g<(i) (i =1,...,N—1), hs(j) (j =

2 ,N), bs(k) (k=2,...,N —1) obtained in the algorithm are minimal.

g

Proof. From (7.22) it follows that

N
Sk = Pk + Z(nlimlh k:177N71

i=k+1
and moreover py < rf (k=1,...,N —1). Hence we get
N
sk <Th+ Y (mi—mi), k=1,...,N-1 (7.49)
i=k+1

By Corollary 5.10, the orders rZ (k = 1,...,N — 1) of the generators p(i) (i =
2,...,N), q(4) (j=1,...,N—=1), a(k) (k=2,...,N—1) equal the corresponding
lower rank numbers of the matrix U. Comparing (7.49) with the formula (7.8) we
obtain

Skgplkjv k:L...,N*]_,

where p¥ (k =1,...,N — 1) are the upper rank numbers of the matrix U. But

sp (k=1,...,N — 1) are the orders of some upper quasiseparable generators of
the matrix U and applying Corollary 5.10 again we conclude that these orders
are minimal. Hence the upper quasiseparable generators gs(¢) (i = 1,...,N —

1), hs(4) (j =2,...,N), bs(k) (k=2,...,N — 1) are minimal. O
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§7.3.3 Generators via factorization

Next we prove the converse statement. For a unitary matrix given as a product of
elementary matrices we obtain a quasiseparable representation.

Theorem 7.8. Let U be a block unitary matriz with entries of sizes m; X nj, 1,j =
1,..., N represented as a product

U=V F, (7.50)

where V' is a block lower triangular unitary matriz with block entries of sizes
m; X vj (i,5 =1,...,N) and F is a block upper triangular unitary matriz with
block entries of sizes v; x nj (1,7 =1,...,N). Set po =0, so =0 and

k k

pk:Z(Vi_mi)7 SkZZ(Vi—ni), k=1,...,N. (7.51)

i=1 i=1

By Lemma 7.3, applied to the transposed matriz V', the numbers pj, are nonneg-
ative and the matriz V' admits the factorization

V= VN‘N/N_l ‘72‘71, (7.52)
with

Vi = diag{V1,I4,}, Vi =diag{I,,, Vi, Is,}, k=2,...,N —1,

- ' (7.53)

Vn = diag{l,y,Vn},
where n, = Zi:ll m;, ¢ = Zil\;k-u v and Vi, (k=2,...,N) are (mg+pr)x (mr+
pk) unitary matrices. By Lemma 7.3, applied to the matriz F, all the numbers sy,
are nonnegative and one has the factorization

F=FFE-- Fy, (7.54)
with

Fy = diag{Fy, I3, }, Fy, = diag{L,,, Fi, s, }, k=2,...,N — 1,

~ (7.55)

FN = diag{IXN7FN},
where X, = Zi:ll n; and F, (k =1,...,N) are (ng + sg) X (ng + sg) unitary
matrices.

Then the matriz U has lower quasiseparable generators of orders py (k =
1,...,N —1) and upper quasiseparable generators of orders s, (k=1,...,N—1).
Moreover, a set of such quasiseparable generators p(i) (i = 2,...,N), q(j) (j =
1,....,.N—=1), a(k) (k =2,...,N—=1); g(¢) (i = 1,...,N —=1), h(y) ( =
2,...,N), bk) (k=2,...,N—=1); d(i) (i=1,...,N) may be obtained as follows.
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Determine the generators p(i) (i =2,...,N), a(k) (k=2,...,N—=1), h(j) ( =
2,...,N), b(k) (k=2,...,N —1) from the partitions

_ | (k) dv(k) _ _
Vi = [ (k) au (k) ] k=2,...,N—1, (7.56)

with the matrices p(k), a(k), dv (k), qv (k) of sizes My X pr—1, Pk X P—1, M X Vi, P X
v, respectively, and

_ | hk) (k) _
F’f‘[dF(k) gF(k)],k:_Z...,N—l, (7.58)

with the matrices h(k),b(k),dr(k), gr(k) of sizes sp—1 XNy, Sk—1 X Sk, Vi X Nk, Vi X
sk, respectively. Next compute the generators q(j) (j = 1,...,N —1), g(i) (i =
1,....,N—=1),d(i) (i =1,...,N) via recursion relations as follows.

1. Compute the matriz
Wy =WViF; (7.60)

and determine the matrices d(1), g(1),q(1), 81 of sizes m1 X n1,my X s1, p1 X
ni, p1 X 1 from the partition

Wy = [ d(1) (1) ] . (7.61)

2. Fork=2,...,N — 1 compute the matriz

0

Wk: _ Vk: |: 5k)0—1 I
vk

} Fy, (7.62)

and determine the matrices d(k), g(k), q(k), Bk of sizes my X ng, my, X Sk, pi. X
Nk, P X Sx from the partition

_ | dk) g(k)

with the auziliary variables By, which are py X s matrices.

3. Compute
d(N) = p(N)Bn-1h(N) 4+ dv(N)dr(N). (7.64)

Proof. By Lemma 5.3 and Lemma 5.6, one needs to check that the relations

Uk,1:k—1)=p(k)Qu_1, k=2,...,N, (7.65)
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with the matrices Qx (k=1,..., N — 1) defined in (5.1) and
ULk —1,k) = Gerh(k), k=2,...,N, (7.66)
with the matrices G (k=1,...,N — 1) defined in (5.5), and also
Uk, k) = d(k), k=1,...,N (7.67)

hold.
Define the matrices Cy by

C‘k:Vk-~-1~/2171F1~-~Fk7 k=1,...,N.

Using (7.52), (7.53) and (7.54), (7.55) we get

= [ Cy O _
Ck_( 0 I¢k>7 k=1,...,N, (7.68)
with matrices Cj of sizes o} X o, where
k
o = ZW = NMk+1 + Pk = Xk+1 + Sk-
i=1

In particular, o9 = 0. Moreover, using (7.50), (7.52), (7.54) we have
U=y Vig1)Cr(EFyp1 - Fn), k=1,....N—1; U=Cl.

Furthermore from (7.53), (7.55) we get

¥ o I, 0 ~ ~ I 0
VN"‘Vk+1< 16+1 *)7 Fk+1"'FN( X6+1 *)
and therefore
Ul:k1:k)=Cr(l:mk41,1: xkt1), k=1,...,N. (7.69)

Here we treat U as a block matrix with entries of sizes m; x n; and C}, as a scalar
Ok X 0 matrix.
Next we prove by induction that

Cr—1(1: i, L i xk)  Gr-1h(k) Gr-1b(k)
Cr = p(k)Qr-1 d(k) g(k) . k=1,...,N—1.
a(k)Qr—1 q(k) Br

For k = 1, using (7.60), (7.61) we get

== (2 4]
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Let for some k with 1 < k < N — 2 the relation (7.70) hold. Using the equalities
(5.3) and (5.7) one can rewrite (7.70) in the form

Ck: < Ck(lznk-ﬁ-hl:Xk-‘rl) Gk )
Qk Be )

Using the fact that Ci41 = Vk+1éka+1 and (7.68), (7.53) and (7.55) we obtain

Cr(1:mg41,1: xk+1) G 0O
Ck+1 — (1"76+1 0 ) <ka+1 0 >

0
Vk+1 on %k IVkJrl 0 Fk;.l,_l
(7.71)
From here using the relations (7.56) and (7.58) we get
p(k+1)Qxk )
C +1: + 1 = Wii1 = ,
k1 (k41 Mk+2 T Ph+1 Xk+1) k+1 ( a(k +1)Qy, (7.72)

Croar (1 M1, Xarr + 12 Xaga + s641) = ( Grh(k+1) Gpb(k+1) ).
Next, using (7.62) and (7.63) we obtain

Crt1(M+1 + 1 Do + Pty Xe+1 + 12 X2 + Skt1)

v B 0 g Ak+1) g(k+1) (7.73)
= Vi+1 0 I, k+1 = q(k +1) Brin .

Combining the equalities (7.71), (7.72), (7.73) we obtain

Ce(1:me+1,1: xe+1) Grh(k+1) Grb(k+1)
Crt1 = p(k+1)Qk d(k+1) g(k+1) )
alk +1)Qy qlk+1) B

which completes the proof of (7.70).

Now combining the relations (7.69) and (7.70) we obtain the equalities (7.65),
(7.66) with k = 2,...,N — 1 and (7.67) with k =1,..., N — 1.

Finally, in the same way as above we obtain the formula (7.71), but with
k=N-1:

Cn-1(l:nn,1:xn) Gn-1 O
Iy 0 : I, O
CN( iy VN) Q-1 B 0 ( o FN).
O O IIJN

From here using the relation U = Cy = Cy and the partitions (7.57) and (7.59)
we obtain (7.65) and (7.66) with & = N. Using also the equality (7.64) we obtain
(7.67) with k = N. O

For the case of a block upper triangular matrix we obtain the following
statement.
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Corollary 7.9. Let F' be a unitary block upper triangular matriz with block entries

of sizes m; X ny, 4,5 =1,...,N. Set sg =0 and
k
se=Y (mi—mn;), k=1,...,N. (7.74)
i=1
By Lemma 7.3, the matriz F admits the factorization (7.54), (7.55) with the
unitary matrices Fy, Fy, k = 2,...,N — 1, Fy of orders mi, ni + si, k =

2,...,N — 1, ny, respectively.

Then upper quasiseparable generators g(i) (1 = 1,...,N —1), h(j) (j =
2,...,N), b(k) (k=2,...,N—1) and diagonal entries d(k) (k=1,...,N) of the
matriz F are determined from the partitions

F=(d1) g(1) ), (7.75)
rem (19 M) e v, (.16
Fy = ( Z% ) : (7.77)
with the matrices h(k), b(k), d(k), g(k) of $izes Sk_1 Xk, Sk—1 X Sk, Mk X T, M X S

respectively.

Proof. We use Theorem 7.8 with v; =m; (i=1,...,N) and V = I. The numbers
pr in (7.51) are all zero and the numbers sy are defined via (7.74). Hence, the
partition (7.61) takes the form (7.75). Moreover, from (7.62) and (7.58) it follows
that

Wi=(0 L, )Fe=(dr(k) gr(k)), k=2,...,N—1

From here using (7.63) we get
(d) gk) )= (de(t) gr(k) ), k=2,...,N-1.

Inserting this in (7.58) we obtain (7.76). Finally, from (7.64) we get d(N) = dp(N)
and combining this with (7.59) we obtain (7.77). O

§7.4 Unitary Hessenberg matrices

Let U = {uij}%zl be an N x N scalar matrix. The matrix U is called upper
Hessenberg if its entries below the first subdiagonal are zeros, i.e., u;; = 0 for
i > j + 1. We consider here the upper Hessenberg matrices that are also unitary.

One can show that using a similarity transformation with a diagonal unitary
matrix one can reduce an upper Hessenberg matrix to an upper Hessenberg one

with the real nonnegative subdiagonal entries. Indeed, if

U(+1,i) =pe?, i=1,...,N—1,
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with 0 < ¢; < 27 and p; > 0, then setting 1; = Zj\:l wj,t=1,...,N=1, Yy =
0 and taking D = diag{e¥?,...,e¥~} we obtain the upper Hessenberg matrix
V = D*UD with subdiagonal entries uy, >0, k=1,...,N — 1.

Theorem 7.10. Let U be an N x N unitary upper Hessenberg matriz. The matrix
U admits the factorization

U=0U,0,---Uy, (7.78)
with
Uy = diag{Iy_1,Up, In_p_1}, k=1,...,N — 1, Uy = diag{Ix_1, pn}, (7.79)

where Uy, are 2 X 2 unitary matrices and pn s a complex number with |py| = 1.
Moreover, if the subdiagonal entries of the matriz U are nonnegative the

matrices Uy, k=1,..., N — 1, may be written in the form
Uk = ( Pk uk* ) ) (780>
HE =P
with pg > 0, |pk)® + p2 =1, and the matriz U has the representation
—P1PG —P2HIPG —P3H2MIPG  —PN—1KUN—2---B1P5 —PNHIN-1--- 1P
H1 —p2p]  —p3pM2p] 0 —PN—1BN-—2---p2p] —PNHN-1---H2pP]
0 K2 —p3p5  t —PN—1MN-2 ... 1305 —PNUN-—1--- 303
U = . . . ’
H3 . .
: —PN-1PN_o —PNUN—-1PN_o
0 0 BN-1 —PNPN_1
(7.81)

where i, > 0, |ppl? +pi =1(k=1,...,N —1), po = —1, |pn| =1.

Proof. We treat U as an (N + 1) x (N + 1) block matrix U = {Uij}%:o with
entries of sizes m; x nj, where

mog=mi=---=mn_1=1, my=0, ng=0,n=no=---=ny=1.
(7.82)
Relative to this partition U is a block upper triangular unitary matrix. By Lemma
7.3, U admits the factorization

U=0UyU, - -Uy_1Un (7.83)

with the matrix Uy = diag{Uop, In—_1}, where Uy is a complex number with |Uy| =
1, and the matrices Uy, k = 1,..., N, defined via (7.79) with 2 x 2 unitary matrices
Uk, k=1,...,N —1, and a complex number Uy = py such that |py| = 1.
Moreover, from the proof of Lemma 7.3 it follows that the number Uy and
the 2 x 2 unitary matrices Uy, k = 1,..., N —1 are determined from the conditions
(7.15). Since ny = 0, the condition (7.15) for Uy has the form Uyw = w’, where
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w,w’ are 1 x 0 empty matrices so that one can take Uy = 1, and therefore Uy = In.
Inserting Uy = I in (7.83) we obtain the factorization (7.78).

Next assume that the subdiagonal entries pug, kK =1,..., N — 1 of the matrix
U are real and nonnegative. The formulas (7.15) mean that the 2 x 2 matrices
Ui, k=1,...,N — 1, are determined from the conditions

Uii(zi):(é) (7.84)

where py, > 0, |pk|?> + i = 1. One can easily check that the matrices Uy defined
by (7.80) satisfy (7.84).
Thus, the matrix U = {uij}ﬁ\szo with the sizes of the entries defined in (7.82)

is represented in the factorized form (7.83) with Uy = diag{1, Iy_1}, the matrices
Uy, as in (7.79) with the matrices Uy, of the form (7.80), and Uy = diag{In_1, px}.
Set po = —1. By Corollary 7.9, upper quasiseparable generators and diagonal
entries of the matrix U are given by

6(i) = —p7 i=0,.. .N—1; h()=ps j=1,...,N;
bk)=pr, k=1,...,N—1

and d(k) = px, k=1,...,N — 1 (the entries d(0) and d(N) are 1 x 0 and 0 x 1
empty matrices). Hence the representation (7.81) follows. O

§7.5 Efficient generators

Here we introduce a special type of quasiseparable generators. Using such genera-
tors in algorithms allows in some cases to reduce the complexity of computations.
We consider here for simplicity matrices with special partitions into blocks.

Definiton 7.11. Let A be a block matrix with entries of sizes m; x m;, ¢,j =
1,...,N, where my =mo =--- =mpy_1 = m,my = r, with lower quasiseparable
generators p(i) (i =2,...,N), q(4) G =1,...,N—=1), a(k) (k=2,...,N —1)
with orders equal to r. These lower quasiseparable generators are called efficient if
they are in the left normal form and the r x r matrices a(k) (k=2,...,N —1) are
upper triangular and have upper quasiseparable generators with orders equal m.

We prove here that for any matrix with a special partition with given qua-
siseparable generators one can obtain a set of efficient quasiseparable generators.

Theorem 7.12. Let A be a block matriz with entries of sizes m; x mj, 4,5 =
1,...,N, where mi = mg = --- =mpy_1 = m,my = r with lower quasiseparable
generators p(i) i =2,...,N), ¢(j) 4 =1,...,.N=1), a(k) (k=2,...,N—1)
with orders equal to r. A set of efficient lower quasiseparable generators p(i) (i =
2,...,N), ¢ G =1,....,.N=1), a(k) (k=2,...,N —1) of the matriz A is
determined using the following algorithm.
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1.1. Compute the QR factorization
p(N) = pv(N)Xn, (7.85)

where py (N) is a unitary matriz of size r X r, Xy is a matriz of size v X 1.
1.2. For k=N —1,...,2 perform the following. Compute the QR factorization

[ in(llz)(k) ] =Vi ( ok ) (7.86)

where Vi, is a unitary matriz of size (m—+1r) x (m+7r), Xy, is a matriz of size r X r.
Determine the matrices py (k), ay(k), dv(k), qv(k) of sizes m x r, r x r, m X
m, T X m from the partition

[ vl dv(k)
=0 i | (750

1.3. Fork=1,...,N — 1 compute the matrices
q'(k) = Xp11q(k) (7.88)

of sizes r X m.
2.1. Set Q1 = I and for k=2,..., N — 1 compute the QR factorizations

ay (k)Qr—1 = Qra(k), (7.89)

where Q. is an r X r unitary matriz and a(k) is an r X r upper triangular matriz.

2.2. Fork=1,...,N — 1 compute the matrices
q(k) = Qrd'(k), p(k+1)=py(k+1)Qk (7.90)

of sizes r X m and m X r respectively.

Moreover, for any k with 2 < k < N — 1 the upper quasiseparable generators
9@ =1, =1, BPG) G =27, o) (¢ =2,...,r — 1) and
diagonal entries d (t) (¢t =1,...,7) of the matriz a(k) are determined using the
following algorithm.

1. Define the unitary matriz W) by

I 0 Qr—1 O
W(k) — m mxr Vi rXm 791
O QF )\ Opr I (7.91)
and set Wl(k) =Wk,
2. Fori=1,...,r —1 perform the following. Set

w® = WP m+1,1) (7.92)

K2 ?
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and determine the unitary (m+ 1) x (m + 1) matriz Wi(k) from the condition

(W) — ( o > (7.93)

mx1

Compute the (m+r+1—1) x (m+r+1—1) matriz

(F)ye )
70 _ ( (WZ-O ) 0 >W§’“) (7.94)

and determine the (m + 1 — i) X (m +r — i) matriz Wl(f)l from the partition

1 0
Zi(k):< - ) (7.95)
0 W
3. Set )
Wk =) (7.96)

which is an (m+ 1) x (m+ 1) sized matriz.

4. Determine the elements g((xk) (@) (i=1,...,7m=1), AP ) G=2,...,7r), a((xk)(t)
(t=2,...,r—1) and i) (t) (t=1,...,r) from the partitions

w10 = (dP) ¢Pa) ), (7.97)
GO
W _ ( ng)((i; 23“8 ) L i=2..r—1, (7.98)
()
W (1) = < Z?‘k)g; ) 7 (7.99)

with the complex numbers dy (1) and the matrices gt (i)7h&k) (i),b((xk)(i) of sizes
1 xm,m x 1,m X m, respectively.

Proof. From the formulas (7.85)—(7.88) it follows that

p(k) =pv(k) Xk, k=2,...,N; Xppra(k)=ayv(k)Xk, k=2,...,N—1;
q/(k) = Xk+1Q(k)v k=1,...,N-1,

with pi, (N)py(N) = I, a},(k)ay (k) + pi(B)pv(k) = I, k = N —1,...,2.
By Theorem 5.29, this means that py (i) (¢ = 2,...,N), ¢(j) j =1,...,N —
1), av(k) (k=2,...,N — 1) are lower quasiseparable generators of the matrix A
in the left normal form.

Next, formulas (7.89), (7.90) and Theorem 5.20 imply that p(:) (i =2, ...,
N), ¢4) G=1,....,.N—=1),ak) (k=2,...,N — 1) are lower quasiseparable
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generators of the matrix A. Consider the unitary matrices W) from (7.91). Using
(7.87) we get

_ dy (k)
Wk = [ pv (k)@ n } k=2,...,N—1.
Qrav(k)Qr-1 Qrav (k)

Comparing this with (7.89), (7.90) we see that

p(k)  dv (k)

W(k)[lj( 1 . k=2.. N-1.

a(k) Qv (k)
Hence, that the generators p(i), G(j), a(k) are in the left normal form.

Next, for any k with 2 < k < N —1, since the matrix a(k) is upper triangular,
the unitary (m +7) x (m+r) matrix W) may be treated as a block matrix with
entries of sizes v; X pj, 1,5 =1,...,7r, where

m=m+lwr=--=v,=1 m=--=p1=1 g =m+1.
By Lemma 7.3, W) admits the factorization
WE — i E e e,
with
Wit = diag{W{". 1, 1},
W = diag{L,_,, W™ I}, i=2,...,r—1,
WH = diag{I,_,, W},
where Wi(k) are unitary matrices of size (m + 1) x (m + 1) defined via the rela-
tions (7.91)—(7.96). By Corollary 7.9, upper quasiseparable generators g(* (i) (i =

L...,r=1), A¥() (G =2,...,7), b () (t =2,...,r — 1) and diagonal entries
d®(t) (t =1,...,r) of the matrix W) are determined from the partitions

Wit = (d® (1) ¢®(1) ),

with the elements d*)(1), g®®) (1) of sizes (m 4 1) x 1, (m + 1) x m, respectively,

(k) (5 (k
w _ (WG bR (i) -
W, <d(k)(i) g(k (i) 1=2,...,7r—1,

with the complex numbers d*) (i) and the matrices g(¥) (i), h(*) (i), b() (i) of sizes
1 x m,m x 1,m X m respectively,

(k)
®y _ [ hV(r)
Wr ( d(k) (’f‘) ’
with the elements h(¥) (1), d® () of sizes m x (m + 1),1 x (m + 1), respectively.
Using the fact that a(k) = W® (m + 1 : m + 7,1 : r) we obtain the formulas

(7.97)—(7.99) for the upper quasiseparable generators and diagonal entries of the
matrix a(k). O
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In order to compute the complexity of the algorithm in the previous theorem
we proceed as follows. We will not take into account operations of assignment,
scalar multiplications by 1 or additions by 0.

In formula (7.91), each of the two matrix multiplications builds an r x (m+r)
matrix where each entry is computed by means of r arithmetical multiplications
and r — 1 arithmetical additions, hence formula (7.91) uses less than 472(m + r)
arithmetical operations.

Formula (7.93) requires p(m+1) operations, where p(k) is the cost of inverting
a k X k matrix by a standard method.

In formula (7.94), the matrix multiplication builds an (m + 1) x (m +r +
1 — ¢) matrix where each entry is computed by means of m + 1 arithmetical
multiplications and m arithmetical additions, hence formula (7.94) uses less than
2(m + 1)?(m + r) arithmetical operations.

Finally, in formula (7.90) each of the two matrix multiplications builds an
r X m matrix where each entry is computed by means of r arithmetical multipli-
cations and r — 1 arithmetical additions, hence formula (7.90) uses less than 4r?m
arithmetical operations.

In total, Step 2.2 of the algorithm performs (7.90) N — 1 times, while (7.91)—
(7.94) are computed N — 2 times.

If we denote rp; = max(r,m), then the total complexity ¢ of the algorithm
satisfies

c< (12rp(rar + 1) + p(rar + 1))(N —2) +4(rar)* (N — 1) < 80(rar)® N,

therefore the algorithm is of complexity O((rar)2N). For scalar matrices rpy = 1
and there are no additions so that

c < 19N — 36.

§7.6 Comments

Factorization representations of unitary matrices were used in the monograph [15]
and the papers [23], [4]. The representations of unitary matrices via products
of Givens matrices were studied by S. Delvaux and M. Van Barel in [14]. The
representations of unitary Hessenberg matrices were studied intensively in the
literature, see for instance the papers by W.B. Gragg [32] and P.E. Gill, G.H.
Golub, W. Murray and M.A. Saunders [34]. Results close to the ones from Section
5 are presented in the paper by S. Delvaux and M. Van Barel [12].

The presentation of the material in such a form as in this chapter appears
for the first time.
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Introduction to Part 11

This part is a natural extension of the previous one. It is also of matrix theoretical
character, mostly dedicated to completion problems for different classes of partially
specified matrices. The main material is contained in the first three chapters, which
deal with completion to Green matrices of matrices specified on a band. The
novelty is the approach in which the algorithms are described directly in terms
of the unspecified entries, without additional intermediate steps (compare with
[10, 11, 40]). The direct algorithm of completion to a Green matrix is presented in
Chapter 8. The properties of the completions are studied in detail in Chapter 9.
Chapter 10 contains applications of the completion method to some special types of
specified bands. Chapter 11 is dedicated to application for the completion problem
of mutually inverse matrices. Here is considered the problem when the original
matrix is specified in its lower (with the diagonal) triangular section and the
inverse matrix is specified in its strictly upper triangular section. In the final
chapter we consider the problem of completion of a partially specified matrix with
a given lower triangular part to a unitary matrix.

The material of this part, except for its last chapter, is not used in the sub-
sequent three parts. The last chapter is used in Part VII. More than that, Part II,
except for the last chapters, does not deal directly with semiseparable or quasisep-
arable representations of matrices. However matrices with small quasiseparable
orders appear in examples of Part II. The reader interested in a shortcut to al-
gorithms for semi- and quasi-separable representations may skip this part at the
first reading.



Chapter 8

Completion to Green Matrices

N

In this chapter the problem of completing a given band A = {A;;, i — j| < ntiiet,

n > 1 to a Green matrix of order n is considered. The submatrices of the band A4,

By,=Ak-n+1:kk—n+1:k), k=n+1,...,N—1, (8.1)

play a key role.

If all the matrices By, are invertible then the completion exists and is unique.
If some of the matrices By are not invertible then it may be that the completion
does not exist or is not unique.

The unique completion can be obtained by computing the principal leading
submatrices of the given matrix.
68.1 Auxiliary relations

We start with the following auxiliary result.

Lemma 8.1. Let Q be a square matriz which has a partition

B X I
Q=(v B ZzZ |,
FH U B//

where B', B, B" are square matrices. Assume that the matriz B is invertible.
Then:

1) The relations

X I Y B
rank( B 7 > =rank B, rank( U ) =rank B (8.2)

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 165
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_8, © Springer Basel 2014
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hold if and only if I’ = XB~'Z, T = UB~'Y. Moreover, in this case the follow-
ing factorizations hold:

I XB1 0 6 0 0 I 0 0
=0 1 o 0 B Z BY I 0 |, (8.3)
0 0 I 0 U B” 0 0 I
where § = B' — XB~Y, and
I 0 0 B X 0 I 0 0
o=(0 1 o0 Y B 0 0 I B'Z |, (84)
0 UB™' I 0 0 ~ 00 I

where vy = B" —UB'Z.
2) Assume that the conditions (8.2) are valid. Then the following conditions are
equivalent:

1. the matriz ) is invertible;
B X

2. the submatrzx< v B

) and the element v are invertible;

3. the submatriz ( 5 B

If these conditions hold, set

(7 3)-(5 ) (F5)-(2 %)
Y B Bl By, )’ U B BY, B,

Then the inverse matriz Q' is given by the formulas

> and the element & are invertible.

By B, 0
Q'=| By Biy+B'ZyWWB! —Blzy! |; (8.5)
0 —’Y_IUB_l ,y—l
51 —0~1XB~! 0
Q'=|( -B'vé6 ' B!, +B Y6 'XB' By, |. (8.6)
0 By, By

Proof. 1) Since the matrix B invertible one obviously gets
rank X :rank( B Z ) = rank B.
B

X T

Hence, by Lemma 2.10, the condition rank( B 7

> = rank B is equivalent
X I
B

to the fact that the matrix ( 7

> is the unique minimal rank completion
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X 1
B Z
in such completion is determined by the formula I' = SZ with the matrix S
such that SB = X, i.e., S = XB~!. Consequently, I' = XB~'Z. Applying the

of the partially specified matrix < ) By Corollary 2.11, the element I"

same arguments to the matrix transpose to < I{, 5 ) one obtains the formula
I =UB"'Y.

Using the equalities I' = XB~'Z, I' = UB~'Y one can directly check the
validity of the relations (8.3), (8.4).

2) From the formula (8.4) we conclude that the matrix @ is invertible if and

!
only if the submatrix ( g )‘5 > and the element ~ are invertible, in which case
I 0 0 By Bi; 0 1 0 0
Q'=|l01 -B'Z BY, Biy, 0 0 1 0
0 0 I 0 0 ~! 0 -UB ' I

Multiplying the factors in the right-hand side of this equality one obtains (8.5).
3) From the formula (8.3) we conclude that the matrix @ is invertible if and

only if the submatrix < 5 BZ,, > and the element ¢ are invertible, in which case

1 0 0 s7too 0 I -XB™' 0
QU= -BY I 0 0 B} B 0 I 0
0 0 I 0 Bj, By o 0 I

Multiplying the factors in the right-hand side of this equality one obtains (8.6).
O

§8.2 Completion formulas

In this section we derive explicit formulas for completion of a given band A =
{4;j,|i — j| <n}, n>1 to a Green matrix A of order n.

Theorem 8.2. Let A be a partially specified block matriz with block entries of sizes
m; X mj, 4,5 =1,...,N, with a given band A = {A;;,|i — j| < n}. Assume that
all the submatrices of the band A of the form
Bro=Alk—-n+1:kk—n+1:k), k=n+1,...,.N—1 (8.7)
are invertible.
Then the band A has a unique completion A to a Green matriz of order n.
One obtains this completion by successive computations of its principal leading

submatrices
Ap:=AQ1:k1:k), k=n+1,...,N

as follows.
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In the first step set

Apy1=A0:n+1,1:n+1). (8.8)

Let for some k with n+1 <k < N — 1 the matrix Ay be given. The matriz
A1 is obtained via the following operations. Start by partitioning Ay in the form

By X ] (8.9)

A’“:[Yk By,

with By, defined in (8.7). Next, compute the submatriz Ap+1 by the formula

B, X, E
Appr=| Yo By Zp |, (8.10)
F, Up My

where My, Zy, Uy, are determined from the band via the equalities

My =Ak+1,k+1), Zp=A(k—n+1:kk+1), Uy=Ak+1,k-—n+1:k)

(8.11)
and Ey, Fy, are computed by the formulas
Ey = XyBy ' Zy, Fp=UyB; 'Ys. (8.12)
Finally, set
A=Ay. (8.13)

Proof. We must prove that the matrix A defined by the relations (8.7)—(8.13)
satisfies (6.11) and (6.13). Consider the submatrices of A of the form

Q.=A1:k,k—n+1:N), Up,=Ak-n+1:N,1:k), k=n+1,... N—-1

(8.14)
By the definition of rank numbers,
r,gﬁn(A) = rank O, r]]jﬁn(A) =rankVUy;, k=n+1,...,N—1,
and thus the conditions (6.11), (6.13) are equivalent to
rank Qp < ap, rankV¥i <ax, k=n+1,....N—-1 (8.15)

with o = mg_pt1 + -+ + mg. Comparing the definitions (8.10) and (8.14), we
see that

Y. By

Q=% D) we=| B U] k=n+l.N-L
By Zk x * %
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Here each By, is an invertible matrix of order oy and hence the conditions (8.15)
are equivalent to

rank Qp =rank VU, =, k=n+1,...,N —1. (8.16)
Next, using (8.12) one gets
E; X, _ _ )
<Zj) = (Bj)lezj, (F; U;j)=U;B;'(Y; Bj), j=n+l,...,N—1,
These equalities imply that

AL jj+1) = A G j—n+1:j)(B;'Z), j=n+1,...,N—-1 (817)

and
AG+1,1:5) = (U;B;HAG —n+1:41:j), j=n+1...,N-1. (818)
Let n+1 <k <j <N —1. Comparing the first k& rows in (8.17) one obtains

ALk, j+1) = A(L: k,j—n+1:5)(B;'Z;), k=n+1,...,N=1, k<j< N-1

(8.19)
This means that every column of the matrix Q, starting with the column with the
index ay + 1, is a linear combination of the previous columns of 2. It follows that
all the columns of the matrix €2, are linear combinations of its first a; columns,

. X
i.e., the columns of the matrix [ Bk } and consequently
k

X
rank( B: > = rank Q.

In a similar way one gets
rank( Y. B ) = rank Uy.
But since By, is an invertible matrix of order ay,

rank €, = rank ¥, = rank B, = «y.

To prove the uniqueness, suppose A = {Aij}fszl is a completion of A satis-
fying (6.11), (6.13), which is equivalent to (8.15) with the matrices Qy, ¥), defined
in (8.14). Since the matrices By, of the form (8.7) are invertible matrices of sizes

ap X o, one gets
rank Qp = rank Uy =rank By, k=n+1,...,N —1. (8.20)
Consider the submatrices

Wi =A1:kk—n+1:k+1), Cp, = A(k—n+1:k+1,1: k), k=n+1,...,N-1
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Comparing with (8.10) one gets

o Xk Ek _ Yk Bk
Wk_(Bk Z, )’C’“_(Fk Uy >
Each Wy contains B and is contained in 2 and each C) contains By and is
contained in ¥y. Hence (8.20) implies

rank Wy, = rankCy, =rank By, k=n+1,...,N —1,
and using the first part of Lemma 8.1 we conclude that
Ey=XyB,'Zy, F,=UyB;'Ys, k=n+1,...,N—1.

This means that all the unspecified entries of A are uniquely determined by for-
mulas (8.12). O

Example 8.3. This example uses Theorem 8.2 in order to find the Green completion
of order 1 of a given scalar band

B 7?7 7?7
1 B ? 7 2
(6%) 1 63 ? ?
? a3 1 B ?
? ? (7] 1 65
2 0?2 7 a5 0

=

A= {4y li-jl<1}y=

For this band n = 1 and N = 6 and all the submatrices of A of the form (8.7) are
scalars, namely

B,=Ak-n+1:kk—-n+1:k)=1, k=n+1,....N—-1

and are invertible. Then A has a unique completion A which is a Green matrix
of order 1. One obtains this completion by successive computation of its principal
leading submatrices

Ap:=A1:k1:k), k=2,...,6

as follows.
In the first step, set as in (8.8)

Ao = A = At Ll = A2 = ()4
1

Let for k=2 with2=n+1<k < N — 1 =5 the matrix Ax be given. The
matrix Az = Aj41 is obtained via the following operations. Start with partitioning
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. B, Xy .
As in the form of (8.9), namely Ay = vi B , with By, = Bo = 1 defined
k k
in (8.7). It follows that B =0, X5 = f1,Y2 = ay.

Next compute the submatrix Ag41 = As by (8.10), namely

B, Xi Ex
Ak+1 = Ad = Yk Bk Zk )
F, Uy My

where My, Uy, Z), are determined from the band via (8.11):

My =M, =A(k+1,k+1)=A(3,3) =1,

Zi=2Zy=Alk —n+1:kk+1) = A(2,3) = Ba,

Uy =Us=Ak+1,k—n+1:k)=A(3,2) = ay
and Ey, Fj, are computed by (8.12):

Ey = Ey = Xi.B; ' Zy = 182, Fo = F, = UpB, 'Y}, = asay.
It follows that

0 B B2
Az aq 1 B2
201 (2 1

We continue in the same way and obtain the completion

A= Ag
0 B1 B1B2  B1B2B3 B1B2B384 B1B28384P85
o 1 B2 Bafs  B2B3Bs  B2364Ps
o o 1 B3 B384 B3840
[e%:1e51e%1 Q32 a3 1 B4 BaBs
Q4030001 O30 40 ay 1 Bs
Q5040309001 Q50403010 (5004 (X3 (504 (0759 0

O

Example 8.4. This example uses Theorem 8.2 in order to find the Green completion
of order 2 of a scalar given band

0 81 P ? ?

?

o 1 B2 Pofis 7 ?
~ o o o 1 Bz P3Bs 7
= s — < =
¢ {C”’ |Z J' - 2} ? [e%1e%) (e%:} 1 B4 BaBs
? ? 403 QY 1 65
? ? ?

Q5004 (0751 0
where a0 # 1, k=2,3,4 and a0 # 0, k= 1,5.
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For this band n = 2 and N = 6 and all the submatrices of C' of the form
(8.7), namely

Br=Ck—n+1:kk—n+1:k)=Ck—1:kk—1:k)

< Tk 5’“‘1), k=2,...,6,
ap—1 Ok

are invertible, where v, =1, k =3,...,6 and 7o = 0 while 0, =1, k = 2,...,5,
86 = 0. Then C has a unique completion C' which is a Green matrix of order
2. One obtains this completion by successive computation of its principal leading
submatrices

Cp,=C1:k1:k), k=3,...,6

as follows.
In the first step, set as in (8.8)

_ N 0 B Bipe
C3=Cr1=C(1l:n+1,1:n+1)=C(1:3,1:3)= aq 1 B2
a1 Q2 1

Note that this matrix is the same as the matrix Az in Example 8.3.

Let for k=3 with3=n+1<k <N —1 =5 the matrix Cj be given. The
matrix Cy = Cj41 is obtained via the following operations. Start with partitioning
. _( B, Xk . - - 1 B

Cs5 in the form (8.9), namely Cj, = ( Y. B, ) with B, = B3 = ay 1

defined in (8.7). It follows that By ' = ! ( 1 7{32 ) and B} =0, X3 =

1-—a2f2 —Qg
(B BB ),Ys= ( 02[;1 >

Next compute the submatrix Cky1 = Cy by the formula (8.10), namely

B, X. Ei
Crp1r=Cs=| Yo Br Zp |,
F, Uy My

where My, Uy, Zi are determined from the band via (8.11):

My=Ms=Clk+1,k+1)=C(4,4) =1,
ZkZgé’(kn+1:k,k+1)é'(2:3,4)(ﬁéﬁg >

3
Uk:U3=C~'(k+1,k—n—|—1:k):é(4,2:3):(a3a2 s )
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and Ey, Fj, are computed by (8.12):

Es=Ey=XiB.'Z=( 1 B1B2 ) ! ( 1 *152 ) ( B2 )

1—ofy \ —02 B3
0
=(p1 Bif2) ( 3 > = 18203,
3
_ 1 1 - «
_ _ 1y 2 1
Fy = F, = UB; 'Y, = ( asag a3)1—0¢262<—042 1 )(agal)
(€51
= ( Q30 Q3 ) ( 0 ) = (x3(¥20(1.
It follows that
0 B1 PPz BiB283
O = o 1 B2 B233
(651851 (&%) 1 B3
30001 o300 Qs 1
Continuing this way, we finally get
C =Cs
0 B1 B1B2  B1B283 B1P2B38s B1828384085
o 1 B2 B2fs B2B3Bs  B2384Ps
_ a0 1% 1 B3 B304 B38485
azaan o as 1 B4 BaPBs
Q4030201 Q030 003 ay 1 Bs
5004300201 50430 504003 Q504 (675 O
Note that this matrix is the same as the matrix A = Ag in Example 8.3. O

Example 8.5. This example uses Theorem 8.2 in order to find the Green completion
of order 2 of the given scalar band

12 3 7 77
6 1 2 3 7 7
7 . 5 6 1 2 3 7
775 6 1 2
77 75 6 1

For this band n = 2 and N = 6 and all the submatrices of A of the form
(8.7), namely

Bk:fl(k—n—l—l:k,k—n—i—l:k:):A(k—l:ch—l:k:):((13 ?)
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are invertible. Then A has a unique completion A which is a Green matrix of
order 2. One obtains this completion by successive computation of its principal
leading submatrices

A=A :k1:k), k=3,...,6,
as follows.

In the first step, set as in (8.8)

1
Az3=Ap1=A(l:n+1,1:n+1)=A(1:3,1:3)=| 6
5

D =N
=N W

Let for k=3 with3=n+1<k < N — 1 =5 the matrix A be given. The
matrix Ay = Aj41 is obtained via the following operations. Start with partitioning

/
Az in the form (8.9), namely Ay = ( }Bi,k gk ), with By, = Bg = ( fli ? > It
k k

follows that By ' = 1 ( ;1 _21 > and By =1,X3=(2 3).¥;= ( g >

Next compute the submatrix Ag41 = A4 by (8.10), namely

B, X. E
A =As=| Yo Br Zip |,
F, U, M,

where My, Uy, Z), are determined from the band via (8.11):

My =Ms=A(k+1,k+1)=A(4,4) =1,

Zy=Zs=Alk—n+1:kk+1)=A(2:3,4)

Uy =Us=Ak+1,k—n+1:k)=A4,2:3) = ( )
and Ej, Fj, are computed by (8.12):
_ 1 -1 2 3
m-n-xetz-(2 o) (3 4)(1)
! 50
—(23)(#)=1
( )< 11 11
— 1/ -1 2 6
Fy=F,=UiB;, 'Y= (5 6)11( 6 _1>(5)
4 206
( )< 11 11
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It follows that

50

s 1o 4

A= 5 6 1 2
206

06 5 6 1

Agy1 start with partition-

. It follows that B;l =

In order to obtain for k = 4 the matrix As

ing A4 in the form (8.9), with By, = By = ( (13

-1 2 .
111( 6 -1 )7Whlle

1 2 3 3 5 6
BQZ(G 1>7 X4:(2 131>7 and }/21:(206 5>.
11

Next compute My, Uy, Z4 from the band via (8.11):

2
1

My =My =A(k+1,k+1) = A(5,5) =1,

ZkZ4A(kn+1:k,k+1)[1(3:4,5)<g>,
A 5 6

Ur=Us=Ak+1,k—n+1:k)=A(53:4) = (

and Ey, Fj, are computed by (8.12):
Ey=Ey = X,B; ' Z), = (
o 12 5 6
Fy=F,=UB; Y, = (5 6)11< 6 1 )( 206 5
< 5

6
=(1h 1) 200 5 > = )

O W N W
ot
o
N

It follows that

50 833
L2 3 9
6 1 2 3
As=| 5 6 1 2 3
2;%6 5 6 1 2
2529 206
121 11 5 6 1

Finally, in order to obtain for k¥ = 5 the matrix Ag = Ap41 start with

L2 > defined in (8.7). It

partitioning As in the form (8.9), with By = Bs = ( 6 1
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follows that By ' = } ( _61 _21 > while

50 833 206
11 1 5 6
By =A4;, Xs5=| 3 ]Ei) , and Y5 = < 23 206 &
9 3 121 11

Next compute M5, Us, Z5 from the band via (8.11):

Mp=Ms=A(k+1,k+1) = A(6,6) = 1,

ZkZ5[1(kn+1:k,k+1)/1(4:5,6)(g),
5 6

Ur=Us=Ak+1,k—n+1:k)=A(6,4:5) = (
and compute Fy, Fy, by (8.12):

50 833

11 1

Es = B, = X.B;, ' 7, 3 %
2 3

50 833 13878
11 21 1 1331
= 3 11 18 = 1 )
9 3 11 0
< 2

11

-1 ) < o506
1) )
6 -1 21219 21016 5

206 5 6
11 _ ([ 80362 2529
2529 206 - 1331 121

Fs=F,=UB;, 'Y, =(5 6)

_ 31 4
_( 11 11 ) o1 1 5

It follows that

I I
6 1 2 3 33
5 6 1 2 131 5
A=ds=| 200 5 § | o 3
26.%;%9 2})056 5 6 1 9
81 33 12 21 2 19 21016 5 6 1
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)

%)

¢

One can give simple examples showing that if some of the matrices By are
not invertible, then the desired completion does not exist or is not unique. Indeed

consider the partially specified matrix

1
A= 1
x

— O
=R
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where x denotes an unspecified entry. In this case n = 1 and a completion which
is a Green matrix of order one does not exist. Another example is

1 0
A= 0 0
z 1

— =R

Here every choice of x defines a completion which is a Green matrix of order one.

Remark. In the conditions of Theorem 8.2 consider the partially specified matrix
A*(A*) with a given band A*(A*). One can check easily that the completion of
A'(A*) to a Green matrix of order n coincides with the matrix A*(A*).

68.3 Comments
The material of the first section may be found in textbooks of linear algebra, for

instance the condition (8.2) is contained in the monograph by F.R. Gantmakher
[31]. The basic Theorem 8.2 was obtained in [26].



Chapter 9

Completion to Matrices with Band
Inverses and with Minimal Ranks

Here we study properties of the unique Green completion obtained in Theorem
8.2 of the previous Chapter 8. In the first section it is shown that this completion
is invertible if and only if all the matrices

Dy=Ak-n:kk—-n:k), k=n+1,...,N (9.1)
are invertible. In this case all the principal leading submatrices
AVR) = A k,j: k), 1<j<j4+n<k<N

of the completion are also invertible.

In the second section we discuss the properties of the LDU factorization of
the completion. It is shown that L and U are lower and respectively upper Green
matrices of order n. Also, A~ is a band matrix of order n and in its corresponding
factorization L~! is a lower band of order n, while U~ is an upper band of order
n and moreover the elements of the matrices L, D, U can be determined explicitly
with straightforward formulas.

In the third section we study some remarkable properties of the principal
submatrices of the completions to Green matrices. If all the matrices By, of the form
(8.1) are invertible a permanence principle holds true: the Green completion of a
matrix AU¥) coincides with the matrix of the form GU-*) of the Green completion.
If also the matrices Dy, of the form (9.1) are invertible, then each element of the
inverse of the Green completion of the band coincides with the corresponding
element of the inverse of the Green completion of the matrix AU*). Moreover, if
Dy, are invertible the band of order n + 1 of the Green completion A of order n of
a band of order n has a unique completion which is a Green matrix of order n+ 1,
and the latter coincides with A. See in this respect Examples 8.3 and 8.4.

In the fourth section we use the permanence principle for the inverse to a
Green matrix in order to obtain the inverse explicitly.

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 179
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_9, © Springer Basel 2014



180 Chapter 9. Completion to Matrices with Band Inverses and with Minimal Ranks

In the last section we show that the completion obtained in Chapter 8 has
minimal rank if and only if all the matrices Dy, are of minimal rank.

§9.1 Completion to invertible matrices

At first we get necessary and sufficient conditions for the completion obtained in
Theorem 8.2 to be invertible. If these conditions hold we also obtain the invert-
ibility of the principal submatrices of the completion.

Theorem 9.1. Let A be a partially specified block matriz with block entries of sizes
mixmy, i,5=1,..., N, with a given band A = {Aj, |i—j| < n}. Assume that all
the submatrices of the band A of the form (8.7) are invertible. Then by Theorem
8.2, the band A has a unique completion A which is a Green matriz of order n.
The matriz A is invertible if and only if all the submatrices of A of the form

Dpy=Ak-n:kk—m:k), k=n+1,...,N (9.2)
are invertible. Moreover, in this case all the submatrices of A of the form

AGR) = A ki k), 1<jk<N, k—j>n (9.3)
are invertible.

Proof. Assume that the matrix A from the statement of the theorem is invertible.
Let us prove that this implies invertibility of all the matrices AU*) of the form
(9.3). From this, setting j = k — n, we will obtain invertibility of all the matrices
Dy, of the form (9.2).

We consider partitions of A in the form

B, X, T,
A= Yr Br Zg , k=n+1,...,N—-1, (94)
ry U, By

!
where the matrices By, are defined in (8.7). Here one has ( }Bik )ng > = ALR),
kDB

Since A is a Green matrix of order n and the matrices By are invertible, one
obtains

X, T Y, Bk>
rank k) =rank =rank B, k=n+1,...,N —1.
( By 2y ) ( e Uk g

From this using the second part of Lemma 8.1 we conclude that all the submatrices
AR with k=n+1,..., N — 1 are invertible.

Next it will be proved that the remaining submatrices AU*) of the form (9.3)
are also invertible. For any k € {n+2,...,N} and j € {2,...,k —n} consider the
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partition of the matrix A% in the form

(1,k) Bé'o on F;'o
AT = Yo Bj, Zj, ) (9.5)
% Ui Bj

where jo = j+n — 1 and B, is defined by (8.7), i.e., Bj, = A(j : Jjo,J : jo)-

B, Z; ,
One has ( U]' BJ” > = AUHR) Tt is easy to see that the invertible submatrix
J Jo

AR k> n 42, of the Green matrix A of order n is also a Green matrix of the
same order. Indeed, one obviously has

rankA(l’k)(l:j,jfnJrl:k):rankA(l cjj—n+1:k)
<rankA(l:j,j—n+1:N)

J
= Z mi::aj7 ]:n+1,7k71
i=j—n+1

and similarly
rank ACP (G —n4+1:k1:5) <aj, j=n+1,... k-1

Since the numbers a; are minimal rank numbers for invertible matrices A®R) one
gets

rank AC®) (1: 5,5 —n+1:k) =rank ACP (G —n+1:k1:5) = oy,
j=n+1,... k-1

Thus taking into account that the matrix Bj, is invertible one obtains

X, I Y. B;
rank Jo 7 Jo ) = rank< J0 J > =rank B, .
< Bjo Jo Fyo Uj JO

Hence, since the matrix A" is invertible, by virtue of the second part of Lemma
8.1 it follows that the submatrix AU"*) is invertible.

Assume that all the submatrices Dy, of the form (9.2) are invertible. It will
be proved by induction that this implies that all the submatrices of the matrix A
of the form AR = A1 :k,1:k), k=n+1,...,N are invertible. Taking here
k = N we will obtain that the matrix A = AN is invertible. For k = n + 1 one
has A"+ = D, 1. which is invertible. Assume that for some k > n + 1 the

matrix AF) is invertible. For the matrix A%+ consider the partition
- B, X, T
AGKD = | vy By Z |,

I Ue M,
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where the matrix By, is defined in (8.7) and My = A(k + 1,k + 1). Here one has

By, Xk \ _ 4.k Br Zx \ _
(Yk Bk)A ’ Us My = Divr.

Since the matrices By and Dy are invertible, the Schur complement v, = M}, —
UnB, 17, is also invertible. The matrix A% is invertible by the assumption.
Using again the second part of Lemma 8.1, we conclude that the matrix A(1++1)
is invertible. g

Example 9.2. The present example is an illustration of Theorem 9.1. Consider
A in Example 8.3 which is a partially specified scalar matrix with a given band
A = {Ayj,|i—j| <n}, where n = 1. Then all the submatrices of the band A of the
form (8.7) are scalars equal to 1 and thus invertible. Consider also the completion
A of A to a Green matrix of order 1 in the same Example 8.3.

_ By Theorem 9.1, the matrix A is invertible if and only if all the submatrices
of A of the form (9.2), namely

_( 0 5 _ L e _ (1 B
DQ—(al 1>7 Dk_(Oékl 1 )7k_374757 Dk_<a5 0 )

are invertible. Moreover, in this case all the submatrices of A of the form (9.3),
namely AUF) = A(j:k,j:k), 1 <j,k <N, k—7j>n are invertible as well.

It is easy to see that all the matrices Dy are invertible if and only if oy Sy #
1, k= 3,4,5 and ayfr # 0, k = 2,6. In the sequel it will be shown that all the
matrices A(j : k,j: k), 1 <j <k <6, are also invertible in this case. O

As a direct corollary of Theorem 6.6, Theorem 8.2 and Theorem 9.1 one
obtains the following result.

Theorem 9.3. Let A be a partially specified block matriz with block entries of sizes
m; X mj, i,5 =1,...,N, with a given band A= {Aij, i — j| < n}. Assume that
all the submatrices of A of the form (8.7), (9.2) are invertible and let A be the
completion of A to the Green matriz of order n.

Then the matriz A is invertible and A~ is a band matriz of order n.

§9.2 The LDU factorization

Let A = {Aij}?szl be a block matrix with block entries of sizes m; x m; and
invertible principal leading submatrices {Aij}ﬁjzlv k=1,2,...,N. By Theorem
1.20, A admits the LDU factorization

A= LAU, (9.6)

where L,U, A are block matrices with the same sizes of blocks as A, while L
and U are block lower and upper triangular matrices with identities on the main
diagonals and A is a block diagonal matrix.
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Now we proceed with LDU factorizations of Green matrices obtained via the
completion procedure.

Theorem 9.4. Let A be a partially specified block matriz with block entries of sizes
m; X mj, i, =1,..., N, with a given band A = {A;;,|i — j| < n}. Assume that
all the submatrices of the band A of the form

Ak—n+1:kk—n+1:k), k=n+1,...,N—1 (9.7)

are invertible. Then by Theorem 8.2, the band A has a unique completion A which
1s a Green matriz of order n. Assume also that all the submatrices of the band A
of the form

Alk—n:kk—n:k), k=n+1,...,N, (9.8)

and

A(l:k,1:k), k=1,...,n, (9.9)

are invertible.

Then all the submatrices of A of the form A(1 : k,1:k), k=1,...,N, are
invertible and in the factorization (9.6) of A the matrices L and U are, respectively,
a lower Green matrix of order n and an upper Green matriz of order n. Moreover,
the matriz A~' is a band matriz of order n and in the corresponding factorization

At =yutaTtiL? (9.10)
L= is lower band of order n block lower triangular matriz
Lij, 0<1—yj<n,
L_l(iaj): Iv Z:jv (911)
0, 1< j,t—j>n,
U~! is upper band of order n block upper triangular matriz
Uij, 0<j—1<n,
U6, =<1, i=]j (9.12)
0, 1>75,j—1>n
and
A = diag(Ay, ..., AnN) (9.13)

s a block diagonal matrix.
Furthermore, the elements L;j, Uy, Ay are determined explicitly via the for-
mulas

Ay =M, Ap=(My— Vi1 B Ze-1)™t, k=2,...,N, (9.14)
Ly =-Vi1B; '), k=2,...,N, (9.15)
Ur = —B; ' Zk-1, k=2,...,N, (9.16)
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where we denote

Uik
Li=(Li ... Lpg-1), Uy = : , k=1,...,n,
Uk—1k
Uk—n,k
Liy=( Likk—n - Lip-1), Up= : , k=n+1,....N
Uk—1,k
and also
=AQ:k1:k), Zr=A1 :kk+1), i = A(k+1,1:k), k=1,...,n,
—Ak—-n+1:kk—n+1:k), k=n+1,...,N—1,
=Ak—n+1:kk+1), Vi =A(k+1,k—n+1:k), k=n+1,...,N—1,
= A(k, k), k=1,...,N.

Proof. The invertibility of the submatrices (9.7) ensures, by Theorem 8.2, that
there is a unique completion A of A to a Green matrix of order n. Also, from
Theorem 9.1, based on the invertibility of the submatrices (9.8) it follows that all
the submatrices of A of the form A(1:k,1:k), k=n+1,...,N, are invertible.
Together with the invertibility of the submatrices (9.9) one obtains the invertibility
of all the submatrices A(1: k,1: k), k =1,..., N and therefore, by Theorem 1.20,
the factorization (9.6) of the matrix A exists.

Since AU is an upper triangular matrix one gets
A(k—n+1:N,1:k)=Lk—n+1:N,1:k)(AU)(L:k,1:k), k=n+1,....N
and since every matrix (AU)(1 : k,1: k) is invertible one obtains

rank A(k—n+1:N,1:k)=rankL(k—n+1:N,1:k), k=n+1,...,N.

From here, since A is a Green matrix of order n we conclude that L is a lower
Green matrix of the same order. In a similar way one shows that U is an upper
Green matrix of order n.

By Theorem 9.3 the matrix A~! is a band matrix of order n. It is clear that
L~' and U~! are block lower and upper triangular matrices with identities on the
main diagonals. Moreover, by Theorem 6.6, L~! and U~ are lower and upper
band matrices of order n and thus the representations (9.11), (9.12) are valid.

Now we derive the formulas (9.14)—(9.16). From (1.51) it follows directly that
A(1,1) = A(1,1) and therefore

Ay =Mt
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Next we set

Dy=A1:k1:k), k=2,....n; Dp=Ak-n:kk—m:k), k=n+1,...,N.

(9.17)
One obviously has the partitions
Br1 Zi
Dy = k=2,...,N.
k < Vk:—l Mk: ) )
From here, using (1.54) one obtains the formulas for the inverse matrices
—B; ! Z) 4T
Dyt = y k-1 k=10 —2,...,N 1
k ( *ijlkalBkj_ll 1—1]:1 ) k ) ) ) (9 8)

with ', = My — Vi—1 B} Zi—1.
From (9.10) one gets

ATILTIA =T
Consider the elements in the lower band:
(AL AY (K, 12 k) = U(k,1: k), k=2,...,n,

(AL Ak, k—n:k)=U(k,k—n:k), k=n+1,...,N.
Since A~'L~! is a lower triangular lower band of order n matrix,
(ALY (k1 k)AL k12 k) =U(k,1: k), k=2,....n,
(AL Ykn—k:k)A(k—n:kk—n:k)=Ulk,k—n:k),k=n+1,...,N.
Using (9.11), (9.13), (9.17) and the fact that U is upper triangular one gets
Ay ( Ly I)Dy=(0 1), k=2,...,N. (9.19)

In a similar way, since AU"!A~! = L one gets

Dk(lék)Ak(?), k=2,...,N. (9.20)

Now from (9.19), (9.20) it follows that

Ap( Ly IT)=(0 I)D;l,(UI’“>Ak:D,;1<?.), k=2,...,N,

and using (9.18) one gets

- 1 e UrA -B. 1 Zp Tyt
( ApLy Ag ) = ( 7Fk1Vk*1Bk711 Fkl )’ R = b —]i L
Ay I,
from which the formulas (9.14) with £ = 2,..., N and the formulas (9.15), (9.16)
follow directly. O

Remark. Similar results are valid for the submatrices A(k : N,k : N) and for
the UDL factorization of a matrix A which is a completion of a given band to the
unique Green matrix.
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89.3 The Permanence Principle

In this section we study some remarkable properties of the principal submatrices
of the completions to Green matrices.

In the sequel we use the following notations. For a matrix A = {Aij}%’:p
the symbol Al (1 <s<t<N) Qenotes the submatrix of A of the form
AGY) = A(s : t,s : t) and for a band A = {A;;,|i —j| < n, 1 <4,5 < N} the
symbol A?) denotes the band A" = {A;;, i — j| < n, s <i,7 <t}. For a band
A the symbol G(A) denotes the completion of A to a Green matrix of order n. We
use also the notation Jj; for the set of indices {(4,7) : k <4,j <lI}.

Theorem 9.5 (The Permanence Principle). Let A be a partially specified block
matriz with block entries of sizes m; x mj, 1,5 = 1,..., N, with a given band
A= {A,|i —j| <n}. Assume that all the submatrices of the band A of the form
(8.7) are invertible.

1) The following relations hold:
(G(A)EY = GABY), 1<st<N,t—s>n+1. (9.21)

2) Assume additionally that all the submatrices of the band A of the form (9.2)
are invertible. Then the following relations hold:

(G (0.5) = [GAT) (0, 5), (9-22)
fOT n+1<t<N-1, (Z,j) S J17t \ Jt_n_A,_Lt,'

(G 4) = [GASD)] (0, ) (9-23)
fOT 2 S S S N — n, (Za]) € JS,N \ Js,s+n71;

[G(A)] 7 (6, §) = [GAPD) TG, ) (9.24)
fOT l1<s<t<N,t—s>n, (Z,j) S Js,t \ (Js,s-‘rn—l @] Jt—n-‘rl,t)-

Proof. 1) By Theorem 8.2, the bands A, Alst) have completions which are Green

matrices of order n. Consider the matrix A = G(A). Its principal leading subma-
trices

A(s: k,s: k), k=n+s,...,t

are determined as follows. One obviously has

A(s:n+s,s:n+s)=A(s:n+s,s:n+s). (9.25)
Next, comparing with (8.9), (8.10) one obtains the formulas

B/(:) Xlis)

A(s:k,s:k)(yk(s) B, ), E=n+s,...,t—1 (9.26)
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and

B]E:S) Xlgs) E;(:)
A(stk+Ls:k+1)=| v B, 2z, |, k=n+s...,t—1 (927
Y U, My

with By and My, Uy, Zj, defined in (8.7) and (8.11), and
X =Xp(s:k—n,2), Y =Yi(,s:k—n), (9.28)
EY = Ey(s:k—n,:), F* =F(,s:k—n), (9.29)

where the matrices Xy, Y, Ei, F, are defined via the partitions (8.9), (8.10). More-
over, using (8.12) one gets

EY =xB 17, FY =U.B; 'Y, (9.30)

Consider the matrix G = G(A®!)) = {Gy;}! ;_,. Using the formulas (8.8)-
(8.12) one obtains the following expressions for its principal leading submatrices

G‘k:f}'(s:k,s:k), k=n+s,...,t.

One has R . }
Gnis=G(s:n+s,s:n+s)=A(s:n+s,s:n+s) (9.31)
and next for k =n+s,...,t — 1 for the given submatrix Gy we use the partition
R A(s) - (s)
Go= Dy K (9.32)
Y, By,

with By, defined in (8.7) and we compute the submatrix Gk+1 by the recipe

Gepi=| ¥ B, 2z |, (9.33)
EY U My

where My, Uy, Zj, are defined in (8.11) and E,Es) , F,Es) are computed by the recipes
EBY =XB 7, B =UB Y. (9.34)

We used here that the specified entries of G coincide with the corresponding entries
of A" and hence the matrices By, My, Uy, Z;, in (9.26), (9.27) and in (9.32),
(9.33) respectively, are the same.

Now it is easy to prove by induction that

A(s:k‘,s:k)z@(s:k‘,s:k‘), k=n+s,...,t, (9.35)
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which implies (9.21). Indeed, comparing (9.25) and (9.31) one gets
A(s:n+s,s:n+s)=G(s:n+s,s:n+s).

Let (9.35) hold for some k with n 4+ s < k <t — 1 the equality. Using (9.26) and
(9.32) one gets
X}gs) _ X}gs)

The formulas (9.27) and (9.34) yield

v 7).

)

E]E:S) _ E](CS)7 Fk(S) _ Fés)
and thus comparing (9.30) and (9.33) one obtains
As  k+1,s: k+1)=G(s: k+1,s: k+1),

which completes the proof.

2) By Theorem 9.1, the matrix A = G([l) and its submatrices of the form
A = A(s: t,s: t), 1<s,t<N, s—t2>n,areinvertible.

At first we consider partitions of the matrix A = G(A) in the form

B, X, T,
A=Y B 2z |, t=n+1,...,N—1, (9.36)
I’ U, B

where the matrices B; are defined in (8.7). From here, taking into account (9.21)

. By Xt \ _ 400 _ AL
one obtains ( Y, B, > =AY = G(AWY). Set

(55 - (G @)

Application of the formula (8.5) to the matrix A partitioned in the form (9.36)
yields
(B (Bphz 0
Ail = (Bg)gl * *

0 * *

It follows that the blocks (B.)11, (Bl)12, (B})21 of the matrix (A™Y)~1 coincide
with the corresponding blocks of the matrix A~!. This implies that the entries of
A~ with the indices (i, ) € J1,¢\ Jt—n+1,t coincide with the corresponding entries
of (AMD)=1 ie., (9.22) holds.

Next we consider partitions of A in the form

B;o XSO F{So
A=Y, Bs Zs, |, so=s+n-1, s=2,...,N—n, (9.37)

1" "
. U, Bl
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where the matrices Bs, are defined in (8.7). From here, taking into account (9.21)

one obtains ( 550 gf,o > = AN = G(AGN)), Set
S0 S0

-1
(A(S,N))*l _ Bso Zé;/o _ (B;q:o)ll (B%O)H )
Us, B, (Bi))21  (By))22

S0

Application of the formula (8.6) to the matrix A partitioned in the form (9.37)
yields

* * 0
Ail = * * (Bgo)lg s
0 (Bf)21 (Bg)2e

It follows that the blocks (B )12, (B. )21, (B )22 of the matrix (AN)~1 co-
incide with the corresponding blocks of the matrix A~!. This implies that the
entries of A~! with the indices (i, j) € Js n \ Js,s, coincide with the corresponding
entries of (A(N))=1 ie., (9.23) holds.
Finally, for 1 < s <t < N, t —s > n we consider the partition of the matrix
AN in the form
B;t Xt F/st
AN = | Y, B, Zg |, (9.38)
'Y, Us B

where the matrices B; are defined in (8.7). From here, taking into account (9.21)

: B;t Xt _ A(st) A(s,t)
one obtains ( Y, B, ) = ALY = G(ABY), Set

-1
(A(s,t)>—1 — B;t Xt _ (B%t)ll (B%t>12 )
Ys,t B, (Bst)21 (Bst)22

Application of the formula (8.5) to the matrix A®™) partitioned in the form (9.38)
yields
(Bi)n  (Bgiz 0O
(A=t = | (Bl o x

0 * *

It follows that the blocks (B%,)11, (B’)12, (B’)21 of the matrix (A®*)~1 co-
incide with the corresponding blocks of the matrix (A))~!, This implies that
the entries of (A(S’N))*1 with indices (7,7) € Jst \ Ji—n+1,1 coincide with the
corresponding entries of (A()~1 ie.,

[GACDN] ) = [GASITHEL ) (60) € Tt \ Tt
Comparison of this relation with (9.23) yields (9.24). O

Next we present another result which also has a character of a permanence
principle.
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Theorem 9.6. Let A be a block matriz with entries of sizes m;xm;, 1,j =1,...,N.
Assume that A is a Green matriz of order n and that all the submatrices of A of
the form (9.2) are invertible. Consider the band G = {A;;,|i — j| <n+ 1} of A.

The band G has a unique completion which is a Green matrix of order n+1,
moreover this completion coincides with the matriz A.

Proof. Since all the matrices (9.2) are invertible, by Theorem 8.2 the band G has
a unique completion G which is a Green matrix of order n 4 1. Let us show that
A is a Green matrix of order n + 1. Then, by the uniqueness stated in Theorem
8.2, we will conclude that A = G.

We must prove that

rank A(1: k,k—n: N) Z ms, k=n+2,...,N—1, (9.39)
s=k—n
rank A(k —n: N,1:k) Z mg, k=n+2,...,N—1. (9.40)
s=k—n
One has

A(l:kk—n:N)=( Al:k,k—n) A(l:kk—n+1:N) ).
Here A(1 : k,k —n) is a matrix of the size (m1 +- -+ my) X mg_,. It follows that

rank A(1: k,k—n: N) < mp_n,+rank A(1 : k,k—n+1: N), k=n+2,...,N—L1
(9.41)
Since A is a Green matrix of order n,

rank A(L: b,k —n+1:N)= > ms k=n+2,...,N—1 (942

s=k—n+1
From (9.41), (9.42) one obtains
k
rank A(1: k,k—n: N) <mg_n+ Z mg = Z ms, k=n+2,...,N—
s=k—n+1 s=k—n
(9.43)
On the other hand, the matrix A(1:k,k —n : N) contains the submatrix
Ak —n:k,k—n:k)= Dy,
which is invertible and has order Z’:: w—n Ms. Therefore,
rank A(1: k,k—n: N) Z ms, k=n+2,...,N—1 (9.44)

s=k—n

Comparing (9.44) and (9.43) one obtains (9.39). The relation (9.40) is obtained
similarly. 0
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Example 9.7. Examples 8.3 and 8.4 illustrate the last of the Permanence Principles.
Indeed, consider the band C' of order 2 from Example 8.4, which is a band of the
order 1 Green completion A obtained in Example 8.3 for the band of order 1
denoted A in that example. C' has a unique completion C' which is a Green matrix
of order 2 and it is obtained in Example 8.4 and this completion satisfies C' = A,
ie., it is A itself. O

§9.4 The inversion formula

Assume that the partially specified block matrix A = {A4;;}V,_, with a given

band A = {A;;,|i — j| < n} satisfies the conditions of Theorem 9.3 and let A be
completed in such a way that A is a Green matrix of order n. By Theorem 9.3,
A is invertible and the matrix A~! is a band of order n. In this section we derive
explicit formulas for the entries of A1,

In this section we use the notation X (i) for the ith entry of a block row or
of a block column.

Theorem 9.8. Let A be a partially specified block matriz with block entries of sizes
m; X mj, 4,5 =1,...,N, with a given band A = {A;;,|i — j| < n}. Assume that
all the submatrices of A of the form

Bro=Alk—-n+1:kk—n+1:k), k=n+1,...,.N—1

are invertible. By Theorem 8.2, the band A has a unique completion A which is a
Green matriz of order n. Assume that all the submatrices of A of the form

Dp=Ak—-n:kk—-n:k), k=n+1,...,N,
are invertible. For k=n+1,...,N — 1 set
Xp=Ak—nk—n+1:k), Ak —n+1:kk—n),
Vi = A(k —n, k —n), =Ak—n+1:kk+1),
Up=Ak+1,k—n+1:k), Mk_A(k—I—l k+1)

and for k <1 denote by Ji, the set of indices {(i,7): k <1 ] <I}.
Then the entries of the inverse matriz A~' = {A};}i'j=1 with the indices
li — j| < n are given by the formulas:

k:+n + Z AS+TL 5s+1n s+n(k - 5), (945)
A;k - 7Ak+n i k+n + Z ASJF” - s+n®5+n(k - S)a (946)

A?cz 6]:+nq)k+n - +ZAa+n ;rn s+n( —S), (947)



192 Chapter 9. Completion to Matrices with Band Inverses and with Minimal Ranks

with
Ay =B 'Yy, &, =XyB;', 0n=Vi—XyB;'Y,

fm‘ (i, k), (k,Z) € J1’n+1, 1> k,’

k+n—1
e =Tt Y Mk +n— )y Wik +n— 1), (9.48)
t==k
i+n—1
Ay =—Mea(k— iy + D Mli+n—t)y " Wik +n—1), (9.49)
t=k
i+n—1
Ay = = Wi ( Z A(k+n—t)y, Wili+n—1t),  (9.50)

with
Ay =B;'Z,, Wi, =UiBy"', v, =M —UB; "' Z,

fOT (Z,k),(k‘,Z) € Jl,N \ (Jl,n+1 U Jan,N)a i = kfna"'akf 1;.

N-1
Ao =7+ )0 Mk +n =ty Wik +n —t), (9.51)
t=k
N-1
b= —Ap_1(k — i)y 1+ZAt i+ n—t)y Wik +n —t), (9.52)
o
Al = =7 Wi ( Z (k+n—t)y, ' Wi(i +n—1t), (9.53)
t=k

fOT (i,k), (k‘,l) S JN—TL,N7 i< k.

Proof. To derive (9.45) we take an index k from the range {1,...,n+ 1}. For any
(i,k), (k,i) € Ji,nt1, © > k one has (i, k), (k,7) € J1 k4n \ Jo+1,6+n and hence, by
Theorem 9.5, one can obtain the entries A}, A/, from the matrix (A(++7)=1 by
the formula (9.22), i.e

fo = (AR T ) AL = (ABFTY 713G k). (9.54)

We set k+n =t and for s = 1,...,k consider the matrices A, For the case
s =k, i.e., for the matrix A***7) e use the partition

Alkk+n) _ Vitn  Xgin .
Yk+n Bk+n

Application of the inversion formula (1.57) yields

(Alektn)y=1 ( Orin 05t n®htn ) '
7Ak+n5k_+n *
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Hence it follows that

(AREED) L k) = 5L k=1,...,n+1, (9.55)
(ABFY (ki) = =6, Pran(i— k), k=1,....n+1,i=k+1,...,n+1,
(9.56)
(A(k’Hn))fl(i,k):*AHn( )6/:+na k=1...on+1i=k+1....,n+1
(9.57)

Setting in (9.55)—(9.57) k = 1 one obtains the relations (9.45)—(9.47) for the case
k = 1. Assume now that k = 2,...,.n+ 1,2 < i <n-+1, i > k and for s =
1,...,k — 1 consider the matrices A5 partitioned in the form

V;'-‘rn Xs+n F/st
A = | Vi Beon Za |, s=1,....k—1,
th Ust Bgt

where Vi, = A(s,8), Bogn =A(s+1:84+n,s+1:s5+n), B, =A(s+n+1:
t,s+n+1:t). Wehave s+1 <k <n+1 < n+s and therefore in such a partition
the elements with the indices (i, k), (k,4) lie in the middle block in the positions

(i—s,k—s),(k—s,i—s), respectively. Note that ( B§+n g,, > AlHLY) and
st st

—1
(A(s-i-l,t))—l — ( BS-HL Zst ) — ( (Als-&-l,t)ll (A;+1,t)12 > )
Ust By (Asyre)2r (Al g)2e

Application of the formula (8.6) yields

set

0 0 0 5s_-i}n _6s_-|}nq)5+n 0
(A(s’t))_1 = 0 (A;_,_l,t)ll (A;+1,t)12 + —As-i-n(ssjrln As-i-n(ssjrlnq)s'*‘" 0
0 ( /s+1,t)21 (A/s+1,t)22 0 0 0

It follows that

(ACD) i, k) = (ACTED) TG k) + Ay (i = )00 Pasn(k — 5),

s=1,... k-1, (9.58)
(ACD) Tk, i) = (ACTE) Tk, 0) + Ay (b = 8)8,L, Poyn(i — 5),
s=1,....k—1. (9.59)

Applying the relations (9.58), (9.59) for s = 1,...,k — 1 successively one obtains

k—1
(AR (G k) = (AN T G R 4> " Ay (i— )0, @srn(k—s),  (9.60)

s=1

(A(l’k+TL))_1(k,i) (A Ak, k“"" kz +ZAS+,L ;+n Psin(i—s). (9.61)
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Now the relations (9.46), (9.47) follow directly from (9.60), (9.61) and (9.56),
(9.57). Setting in (9.60) or in (9.61) ¢ = k and taking into account (9.55) one
obtains (9.45).

In order to derive (9.48)—(9.50) we take an index k from the range {n +
2,...,N—n—1}.Fori=k—n,...,konehas (i,k), (k,i) € Jo—nitn \ (Jo—n,k—1U
Jit1,i+n) and hence, by Theorem 9.5, one can obtain the entries A};, A, from the
matrix (AF=1)) =1 by the formula (9.24), i.e.,

i = (AL ) G = (ARG, =k

(9.62)
We set k—n = s and for t = k,...,i+n consider the matrices A®*). For the case
t =k, i.e., for the matrix A*~"%) one has the partition
A(k—n,k)) _ Bk‘*l Zk‘*l )
U1 My
Application of the inversion formula (1.54) yields
A ~1
Alk=n,k)y =1 _ < B * k717k71 ) '
( ) 7’Yk_11Wk71 PYk_ll
Therefore,
(AT Tk k) = iy (9.63)
(AF=mRN =1k ) = — A (k — i)yl di=k—n,....k—1, (9.64)
(AE=mIN =G k) = 7 L Wy (k =), i=k—mn,....k—1. (9.65)
Taking i = k — n in (9.64), (9.65) one obtains the formulas (9.49), (9.50) for the
entries A}, ;. A}, respectively. Assume that i = k—n +1,...,k and for
t=k,...,i+n—1 consider the matrices A*+1) partitioned in the form

B;t Xst F;t
A =y, B, Z, |, t=k,...,i+n—1,
F/s/t Ut Mt

where B, = A(k—n:t—-n,k—n:t—n), Bp=A(t—n+1:t,t—n+1:1t), My =
A(t+ 1,t+ 1). In such a partition the elements with the indices (i, k), (k, ) lie
in the middle block in the positions (i —t +n,k —t +n),(k —t +n,i —t +n),

/
By Xa ) = A6 and set

respectively. Note that
pechivery ( Yy B

-1
(A(s,t))—l — ( }B;;t )];st > — ( (A;t)ll (Alst)w >
s,t t .
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Application of the formula (8.5) yields

D (Ag)n (A2 0 0 01 0 1
(AT = [ (A7)0 (AL)az 0 |+ | 0 Ay "Wy —Apyy
0 0 0 0 —w'We

Hence it follows that

(AGHFNY LG gy = (A0 k) + AP +n — )y, Wik +n—t),

(9.66)
t=k,...;i4+n—1,

(AL 3y = (ASD) (k) + Ap(k +n — t)y; T Wili +n — 1),

(9.67)
t=k,...,i+n—1.

Applying the relations (9.66), (9.67) for t = i+n—1,..., k successively one obtains

1+n—1
(AEmmkEm) =1 k) = (AK—mR)) = Z Ae(i+n — )y " Wik +n —t),
(9.68)

1+n—1
(A(k_n’k+n))_l(k,i) (A(k nk) Z Ae(k+n—t)y Wt( +n—t).
(9.69)

Now the relations (9.49), (9.50) for i = k —n+1,...,k — 1 follow directly from
(9.68), (9.69) and (9.64), (9.65). Setting in (9.68) or in (9.69) i« = k and taking
into account (9.63) one obtains (9.48).

To derive (9.51)—(9.53) we take an index k from the range {N —n,...,N}.
For any (i,k),(k,i) € Jn—nn, ¢ < k one has (3, k), (k,7) € Jk—n.N \ Jk—n k-1
and hence, by Theorem 9.5, one can obtain the entries A}, A}, from the matrix
(AE=nN)) =1 1y the formula (9.24), i.e

wi = (AT R d), Al = (AR TN R).
Next the relations (9.51)—(9.53) are obtained in the same way as (9.48)—(9.50). O

In the case when a specified band of a block matrix A = {A;;}];_; is tridi-
agonal and hence the corresponding inverse is a tridiagonal matrix, the inversion
formulas may be simplified essentially.

Corollary 9.9. Let A be a partially specified block matrix with block entries of sizes
mi; X my, 4,§ = 1,..., N, with a given band A = {A;;,|i — j| < 1}. Let all the
diagonal entries of A,

By = A, k=2,..., N—1

)
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be invertible matrices, by Theorem 8.2 the band A has a unique completion A which
is a Green matriz of order one. Assume also that all the submatrices of the band
A of the form

Dpy=Ak-1:kk—1:k), k=2,...,N
are invertible. Set

Zy = Ak, Uk = Ay M = Ao, k=2,...,N -1,
Ay =B ' Zy, Wy = UpB. ", v = My, —Up By ' Zy, k=2,...,N -1,
Ay = By Agy, &y = A1pBy ', 8y = Ay — A1aBy ' Aoy, 03 = Agz — Aoz By Ass.

Then the entries of the inverse matric A~ = {Aj;}YN,_, with the indices
|i — 7] <1 are given by the formulas

A/n = 52_17 A/22 = 53_1 + A252_1‘I)27 A/21 = _A252_17 A/12 = _52_1‘1)2;
Al =+ Ay Wey, k=3,...,N =L Ayy =iy
A =Mty Al = =%y Wher, E=3,..,N.

Example 9.10. In this example the Corollary 9.9 will be used in order to find the
inverse matrix A~ of the Green matrix of order one A = Ag which has been
obtained in Example 8.3.

The band A from which in Example 8.3 one computes the matrix A, namely

o /7 7 7
(65} 1 [32 ? ? ?
~ . . ? (6] 1 Bd ? ?
A=Apli=jlsli=1 5 5 4 1 5 2
? ? ? (67} 1 65
T 7 7 a5 O
has all its submatrices of the form
Dy=Ak—1:kk—1:k), k=2,...,6
invertible if and only if the entries of the given band A satisfy
Oékﬁk 7é ]., k= 3,4, 5, O‘kﬂk # O, k= 2, 6, (970)

as it is easy to see and as it has been also shown in Example 8.4, where the above
submatrices have been denoted By, k = 2,...,6. Suppose in the sequel that the
conditions (9.70) are satisfied so that the submatrices Dy, are invertible.
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As Corollary 9.9 asks, set
Bp,=1, k=2,...,5, Zy=Apkt1 =0k Up =41 =01, k=2,...,5
My=Apipp1 =1, k=2,...,4, Ms=A5415+1 =0,
Ay =B;'Zy =B, Wy =UxBy ' =i, k=2,...,5,
Yo =M, —UpB, ' Zy =1 — apBe, k=2,...,5,
Ay = B2_1A21 =ay, P2 = A12B2_1 = B,
6o = A11 — A12B5 1 Aoy =0 — a1 By, 03 = Agz — A23B3_1A32 =1— 0.

Then the entries of the inverse matrix A~" = {A};}),_, with the indices
|i — 7] <1 are given by the formulas

_ _ a2
Ay =037 + 8oby =) o
/ —1 1 / —1 1
Ay = *A252 = 8 Al = *52 ¢y = a1;
_ Br—1
;i)—l,k = *Akflf}/k_ll = - 1— ak—lﬁk—l 5 k= 33 . 763
— O —
A;c,kfl - 77k;_11Wk*1 = ot k=3,...,6,

11— 1Bt
and the other diagonal entries are

1
1Py’
bk = iy T ARy W =
1

asfBs

A/11:62_1:_

1 ar B

k=35
1—op_1Br—1 1—opfk
Agﬁ = ’Y(a:ll =

The inverse of a Green matrix of order one is a tridiagonal matrix, so that
all its nonzero entries have already been found. O

§9.5 Completion to matrices of minimal ranks

In this section we consider, as above, a partially specified block matrix A with block
entries of sizes m; x mj, 4,5 =1,..., N, with a given band A = {4,;, |i — j| < n}.
We assume here that the sizes of the blocks satisfy the condition

m; = Mpts, 1=2,...,N—n—1. (9.71)
This implies that all the submatrices of the band A of the form

Br=A(k—n+1:kk—n+1:k), k=n+1,...,N—1 (9.72)
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. 7 1 .
have the same size v x v, where v = Z;:Q m;. Assume that all the matrices

By (k=n+1,...,N —1) of the form (9.72) are invertible. By Theorem 8.2, the
band A has a unique completion A which is a Green matrix of order n. It is clear
that rank A > v. In this section we obtain necessary and sufficient conditions for
the completion A to be of minimal rank v.

Theorem 9.11. Let A be a partially specified block matriz with block entries of sizes
m; x mj, 4,7 =1,...,N, with a given band A= {A;j,|i — j| < n} such that the
condition (9.71) holds. Set v = 272_21 mj. Assume that all the submatrices of the

~ '] ~
band A of the form (9.72) are invertible. By Theorem 8.2, the band A has a unique

completion A which is a Green matriz of order n. .
Then rank A = v if and only if all the submatrices of A of the form
Dp=Ak—-n:kk—-n:k), k=n+1,...,N (9.73)
satisfy the condition
rank D, =v, k=n-+1,...,N. (9.74)
Proof. Assume that rank A = v. Since Dy, are submatrices of A, we get

rank D <v, k=n+1,...,N.

At the same time, for k. = n+ 1,...,N — 1 each submatrix D contains the
submatrix By and the submatrix Dy contains the submatrix By _1. Since the
v X v matrices B (k=n+1,..., N — 1) are invertible, we get

rank Dy >v, k=n+1,...,N.

Hence the equalities (9.74) follow.

Assume that the equalities (9.74) hold. We prove by induction that all the
submatrices of A of the form A% = A(1:k,1:k), k=n+1,..., N satisfy the
condition

rank AY®) =y k=n+41,...,N. (9.75)
Taking here k = N we will obtain rank A = rank ALN) = .,

For k = n 4+ 1 we have A"tD = D, 1 and therefore rank A7+ =
rank D, 1. Assume by induction on k that for some & > n 4+ 1 (9.75) holds. For
the matrix A%+ consider the partition

B, X, T}

AGRYD — Ly By Zy |, (9.76)
T Up M,

where the matrix By, is defined in (9.72) and My = A(k + 1,k + 1). Here one has
By, Xk \ _ 0.k

( o > = AL, (9.77)

By, Zy \ _
< 0oL > — Djsr. (9.78)
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Applying to the matrix Dj41 partitioned in the form (9.78) the factorization
(1.52), we get

Dir = I 0 B, 0 I B 'z,
LT\ Bt T 0 0 I

with v, = My — UkBngk. From here, since rank By, = rank Dy, we get v, = 0.
Now applying the factorization (8.4) to the matrix A¥*1) partitioned in the form
(9.76) we get

1 0 0 B, Xr O I 0 0
ALE+D — [0 I 0 Y, Bp 0O 0 I B'Z
0 U.B.' I 0 0 0 00 I
From here, using (9.77) we conclude that rank AR = rank ALK = 3, 0

With scalar matrices the condition (9.71) is satisfied automatically and we
obtain the following.

Corollary 9.12. Let A be a partially specified scalar matriz with a given band
A={A;;,|i — j| <n}. Assume that all the submatrices of A of the form

B,=Ak-n+1:kk—m+1:k), k=n+1,...,N—1,

which are matrices of the size n x n, are invertible. By Theorem 8.2, the band A
has a unique completion A which is a Green matrixz of order n.

Then the inequality rank A > n holds. Moreover, rank A = n if and only if
the submatrices of A of the form

Dpy=Ak-n:kk—m:k), k=n+1,...,N
satisfy the condition

rank D =n, k=n+1,...,N.

69.6 Comments

The material of this chapter is taken mostly from the paper [26]. The factorization
representation presented in the second section were obtained by H. Dym and
I. Gohberg in [10], see also the paper by I. Gohberg, M.A. Kaashoek and H.J.
Woerdeman [40]. The first part of Theorem 9.5 generalizes the corresponding result
by R.L. Ellis, I. Gohberg and I.D. Lay in [17] obtained for the positive definite case.
Theorem 10.3 was obtained in [10] using other methods. Theorem 9.11 appears
here for the first time.



Chapter 10

Completion of Special Types
of Matrices

Here we consider completions to Green matrices under some conditions on the
specified band. If all the submatrices By, of the form (8.1) are invertible, then the
unique completion to a Green matrix is a positive (definite) matrix if and only if
all the matrices Dy, of the form (9.1) are positive (definite). The positive definite
Green completion has the maximal determinant among all the positive definite
completions.

The theory takes a nice form in the case of a block Toeplitz band of order
n. In this case it is sufficient to ask the invertibility of the principal leading n x n
submatrix. The unique completion to a Green matrix of order n is readily seen to
be a Toeplitz matrix.

The example of a tridiagonal band with identities on the main diagonal is
treated in detail. Special attention is paid to the case when the tridiagonal band
is also Toeplitz.

In the last section we apply the results obtained in this part to special 2 x 2
block matrices.

For instance, it turns out that such a matrix is positive definite if and only if
it is selfadjoint and its entries are strict contractions. The inversion formulas are
then applied to the case when the tridiagonal matrix is also Toeplitz.

§10.1 The positive case

In this section we consider the case where the completion of the given band A =
{4;j,]i — j| < n}, n > 1 of a block square matrix A to a Green matrix will also
be a positive or a positive definite matrix. Here a & x k matrix A is said to be
positive if (Az,x) > 0 for any x € C* and A is said to be positive definite if there
exists § > 0 such that (Ax, x) > 6(z,z) for any x € C*. Here (-,-) denotes a scalar
product in CF.

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 201
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_10, © Springer Basel 2014
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Theorem 10.1. Let A be a partially specified block matriz with block entries of sizes
m; X mj, 4,5 =1,...,N, with a given band A = {A;;,|i — j| < n}. Assume that
all the submatrices of the band A of the form

B,=Ak-n+1:kk—n+1:k), k=n+1,...,N-1 (10.1)

are invertible. Then:

1

A has a unique completion which is a Green matriz of order n and is a
positive matriz if and only if all the submatrices of the band A of the form

Dpy=Ak-n:kk—n:k), k=n+1,....N (10.2)

are positive. In this case the desired completion is determined by successive
computation of its principal leading submatrices

Ap:=A1:k,1:k), k=n+1,...,N,

as follows.
In the first step we set

Apy1=A0:n+1,1:n+1). (10.3)

Let for some k with n+1 <k < N — 1 the matrix Ay be given. The matriz
A1 is obtained via the following operations. We start by partitioning Ay in

the form
B, X
A = k , 10.4

with By, defined in (10.1). Next we compute the submatriz Axy1 by the recipe

B, X, E
Appr = Xi Br Zr |, (10.5)
E;  Zp My
where My, Zi. are determined from the band by the recipes
My =Ak+1,k+1), Zy=Ak-n+1:kk+1), (10.6)
and Ey are computed by the formula
Ey = XB;, ' Z. (10.7)
Finally, we set
A= Apy. (10.8)

Under the conditions of part 1), the completion given by the formulas (10.3)—
(10.8) is the unique positive definite completion of A such that the inverse
matriz A~ is band of order n if and only if all the submatrices Dy, k =
n+1,...,N of the form (10.2) are positive definite.
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In the proof of the theorem we use the following auxiliary result.

Lemma 10.2. Let QQ be a square matriz which has a partition

B X T
Q=| x* B 2 |, (10.9)
r 7Z* B

where B’, B, B” are square matrices. Assume that the matriz B is invertible and
!
the matrices ( 5* )é )7 ( 5* BZ,, > are positive (positive definite).
If the condition

X T
rank( B 7 > =rank B (10.10)

is satisfied then the matriz Q is positive (positive definite).

Proof. The matrix @ satisfies the conditions of Lemma 8.1. Application of the
equality (8.4) from this lemma yields the factorization

I 0 0 B X 0 I 0 0
Q=0 1 o X* B 0 o I B'Z |, (1011
0 zZ*B~' I 0 0 v 0 0 1
"X
where v = B” — Z*B~1Z. The matrix ( Y+ B ) is positive (positive definite)

by the assumption of the lemma. Since the matrix < ; BZ,, ) is positive (posi-

tive definite) the Schur complement + is also positive (positive definite). Thus the
equality (10.11) implies that @ is a positive (positive definite) matrix. O

Proof of the theorem. 1) By Theorem 8.2, the band A has a unique completion
which is a Green matrix of order n. Application of the formulas (8.8)-(8.13) to
the selfadjoint case yields the formulas (10.3)-(10.8). It remains to prove that
this completion A is a positive matrix if and only if all the submatrices Dy, k =
n+1,...,N of the form (10.2) are positive. The necessity is obvious. To get the
sufficiency we shall prove by induction that all the submatrices of the matrix A
of the form Ay, = A1 : k,1 : k), k =n+1,...,N, are positive. Taking here
k = N we will obtain that the matrix A = Ay is positive. For k = n + 1 one has
Ap+1 = Dypy1, which is positive. Assume that for some k& > n + 1 the matrix Ay
is positive. For the matrix Ay11 consider the partition (10.5), where the matrix
By, is defined in (10.1) and My, = A(k + 1,k + 1). Here one has

B, X . By, Zg _
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The matrix Ay is positive by assumption. The matrix Dy4q is positive by the
statement of the theorem. Moreover since Ag41 is a Green matrix of order n and
the matrix By, is invertible, one has

X Ep\
rank< B. Zn )rankBk.

Thus, by Lemma 10.2, we conclude that the matrix A1 is positive.

2) By Theorem 9.1, the completion A, which is a Green matrix, is invertible
if and only if all the submatrices Dy, k = n+ 1,..., N of the form (10.2) are
invertible. Moreover, in this case the inverse matrix A~! is band of order n. We
must prove that the obtained matrix A is positive definite if and only if all the
submatrices Dy, k = n+ 1,..., N of the form (10.2) are positive definite. The
proof is the same as in part 1). O

Next we show that among positive definite completions of a specified band
the completion to a Green matrix is the unique completion with the maximal
determinant.

Theorem 10.3. Let A be a partially specified block matriz with block entries of sizes
m; X mj, i,5 =1,...,N, with a given band A= {Aij,|i — j| < n}. Assume that
A has a positive definite completion A which is a Green matriz of order n. Let H
be any other positive definite completion of A. Then

det A > det H
with equality if and only if A= H.

Proof. First we establish the following auxiliary result. Let () be a positive definite
matrix partitioned in the form (10.9), where the element I is unspecified and must
be determined in such a way that det @ will be maximal. It will be proved that
the last holds if and only if the condition (10.10) is satisfied.

I -XB ' 0
Multiplying the matrix @ by the matrix | 0 I 0 from the left
0 0 I
1 0 0
and by the matrix [ —B~'X* I 0 | from the right, one obtains the matrix
0 0 I
by 0 v
= 0 B Z |,
q,* Z* B//

where § = B’ — XB7!X*, U =T — XB~!'Z. It is clear that Q; and § are
positive definite matrices and det Q = det Q1. Next multiplying @)1 by the matrix
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1 0 0 1 0 0
0 I 0 | from the left and by the matrix [ 0 I —B~'Z | from
0 —Z*B~' I 0 0 1

the right one obtains the matrix

6 0 U
QQ = 0 B 0 )
v 0 v
where v = B” — Z*B~'Z. Tt is clear that Q; is positive definite and det Q; =
I 0 0
det Q2. Multiplying the matrix Q)2 by the matrix 0 I 0 from the
—u*s~t 0 T
I 0 —6'v
left and by the matrix | 0 I 0 from the right one obtains the matrix
0 0 1
o 0 0
@Rs=| 0 B 0
0 0 y—U*s 1w

The matrix ()3 is positive definite and moreover one has
det Q = det Q3 = det § - det B - det(y — U*§~1W).

The value det @ will be maximal if and only if det(y — U*6~1¥) will be maximal.
The matrix v — ¥*§~1 U is positive definite and we obviously have v — U*§~1¥ <
7. This implies that det(y — U*§~1W) < det~y with equality if and only if v —
U*§~ W = «,ie., U =T — XB~'Z = 0, which by the first part of Lemma 8.1 is
equivalent to (10.10).

Assume now that A is a completion of A such that A4 is a Green matrix of
order n. For any k € {n+1,..., N — 1} consider partition of A in the form

B, X, Ty
A= X; B, %
r: Z: B!

where the matrix By, is defined in (10.1). Since A is a Green matrix of order n one
has

Xy Tw \ B
rank(Bk Zk)mnkB;€7 k=n+1,...,N—1.

Let H be any other positive definite completion of A. Since, by Theorem 8.2, the
completion of A which is a Green matrix of order n is unique, H is not a Green
matrix. This implies that for some kg € {n+1,..., N — 1} the matrix H may be
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partitioned in the form

with

Xy Ty
rank< Br 7. > rank By, .

It follows that det A > det H. O

§10.2 The Toeplitz case
Here we consider the special case of a Toeplitz band. We show that the completion
of this band to a Green matrix is a Toeplitz matrix.

Theorem 10.4. Let A be a partially specified block matriz with block entries of size
mxm, with a given Toeplitz band A = {A;_;,|i—j| < n}. Assume that the matriz

Ay A ... Al
Al AO te A—n+2
B= _ o _ (10.12)
An—l An—2 (R AO

18 tnvertible.

Then A has a unique completion which is a Green matriz of order n. More-
over, this completion is a block Toeplitz matriz A = {Ai_j}fszl with the unspeci-
fied entries determined successively by the relations

Ge=(A_g4n ... A1), A,=GE, s=n+1,...,N—1, (10.13)
As—n
H, = : ,As=FH,, s=n-+1,...,N—1, (10.14)
As1
where
Ay
E=B"" : ., F=(4, ... A )B . (10.15)
Ay

Proof. Since the band A is Toeplitz, all the submatrices of A of the form (8.7)
are equal to the matrix B defined by (10.12). By Theorem 8.2, the band A has
a unique completion A which is a Green matrix of order n and moreover this
completion is determined by the relations (8.8)—(8.13). In the case considered we
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can rewrite the relations (8.11)-(8.12) as follows. Since A is Toeplitz, the matrices
Zy, Uy, from (8.11) have the form

A—n
Zy, = : , Ui=(An ... A1), k=n+1,...,N-1
Ay

It follows that the matrices Bk_le, U;CB,;1 do not depend on k, more precisely
one has B,;le =F, UkBgl = F', where the matrices £ and F are defined by
the relations (10.15). Next, one can write down the relations (8.12) in the form

A(L,k+1)=A(L,k—n+1:kE, Ak+1,i)=FAk—-n+1:k/1i),
1=1,....k—n, k=n+1,...,N—1.

Changing the index k by ¢ + s one obtains

A(iyi+s+1)=A(,i+s—n+1:i+s)E,
A(l+s+1,))=FA(i+s—n+1:i+s,i), (10.16)
t1=1,...,N—s—1, s=n,...,N—2.

Let us prove by induction on s that the elements A(i,i+s), A(i+s,7) do not
depend on ¢ and are determined by the relations

A(l,i+s)=A_g, A(i+s,i)=A4,, i=1,...,.N—s; s=1,...,N—1, (10.17)
where the blocks A_;, Ag are defined in (10.13), (10.14). For s = 1,...,n we have
Aliyi+s) = A(ii+s)=A_,, Ali+s,i) = A(i+ s,1) = A,.

Assume that for some s with s > n the relations
A(lyi+71)=A_, AGi+7,9)=A;, i=1,....N—7, 7=1,...,s

hold. This implies that

A(lyi+s—n+1:i+s)= ( A sin1 ... Ay ):GS_H7
AsfnJrl
Ali+s—n+1:i+s,i)= : = Hgsy1.
As

Substituting these expressions in (10.16) one obtains

A(i,i+$+1):Gs+1E:A,S,1, A(Z.+S+17Z.):FHS+1:AS+1. O
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. ompletion of specified tridiagonal parts
10.3 C leti f ified tridi 1 part
with identities on the main diagonal

§10.3.1 The general case

We consider here the case of a partially specified block matrix A with block entries
of sizes m;xmy, i,j = 1,..., N, with a given tridiagonal part A = {4,;, |i—j| < 1}
such that

An':I,Z':L...,N; Aiyi+1:ai, A7;+1’i:b7; Z:].,,N*l (1018)

For such a matrix the matrices By from the condition (8.7) of Theorem 8.2 are
identities. By Theorem 8.2, A has a unique completion A that is a Green matrix of
order one. Moreover using the relations (8.8)—(8.13) with n = 1 and the definition
(10.18) one gets

A(1:2,1:2)=A(1:2,1:2), (10.19)
) _ | B, Xk
asein = [ 5% ),
B, X E
AQ:k+1,1:k+D)=| Y% I Z |, (10.20)
F., U, I
k=2,...,N—1
with
Zy =ag, Ug=b (10.21)
and
Ey = X2y, Fp=UpY}. (10.22)

Comparing (10.19), (10.20) one obtains

AQ:k—1,k) =Xy, Ak, 1:k—1)=Y}, k=2,...,N;

10.23
Ak k) =1, k=1,...,N, (10.23)
with
Ex
Xo=uay, Yo=0b1; Xpp1= 7 Yepr=(Fe U ), k=2,...,N—1.

(10.24)

Moreover, combining (10.21), (10.22) and (10.24) together one gets

Xo=a1, Ya=0b1; Xi 1<Xkak> Yy 1:(kak bk)

’ ’ + ak ) + ) (1025>

k=2,...,N—1.
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Thus from (10.23), (10.25) using Lemma 5.6 and Lemma 5.3 we conclude that the
completion A is given by the recipe

a1 aj—1, 1<i<j<N,
Ay =<1, 1<i=j<N, (10.26)
bifl"‘ijrlbj, 1§]<Z§N

Next, by Theorem 9.1, one obtains that the completion A is invertible if and
only if all the matrices

_( I a _
Dk_<bk1 7 >,I<;_2,...7N (10.27)

are invertible, which in turn is equivalent to the invertibility of the matrices I —abg
and/or I —bgay (k=1,...,N —1). If these conditions hold, we can compute the

inverse matrix A~! = {A;j}fszl using Corollary 9.9. One has By, = I, My =

I, Zy = ag, Ux = bg, Ap = ag, Wi = bg, vx = I — brag, Az = by, P2 =ay, 62 =
I — ayby, 03 = I — asbs. Furthermore, one obtains

Al = (I —aby)™t,

Aby = (I — agbo) ™ + b1 (I —aib1) ay,

Ay = —bi (I —ayby)™t,

Aly = —(I —ayby) tag;

he1k = —ak—1(I — bp_1ap_1) ' =—(I —ar_1bx_1) tar_1, k=3,...,N;
Afjoy = —(I = bp_rap—1) " "be—1 = —bp_1(I —ap—1bp—1)™', k=3,...,N;
e = (I —br_1ax_1)" " + ap(I — brag) by

I —apbp) ' 4 b1 (I —ap_1bp1) tap_1, k=3,...,N—1;
I

—by_1an—1)"".

= (
!
vy = (
Thus one obtains the inversion formula

Al =ca, Ay =brackiap1+cp, k=2,...,N—1, Ayy =d, (10.28)
A;’kJrl = —cag, A;CJrLk:—bkC]€7 k=1,...,N—1,
where ¢, = (I —agby) ' (k=1,...,N—1),d=(I —bn_1any—_1)"".

Next, by Theorem 10.1, the matrix A is positive definite if and only if all
the matrices Dy, k = 2,..., N, are positive definite. This is equivalent to the
conditions that by, = aj and the matrices I — ajay are positive definite (k =
1,...,N —1). The last holds if and only if all the matrices ay, (k=1,...,N —1)
are strict contractions.
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§10.3.2 The Toeplitz case

Now we consider a particular case where a partially specified block matrix A with
entries of sizes m x m has a given tridiagonal part A = {A;;,|¢ — j| < 1} which is
Toeplitz with identities on the main diagonal, i.e.,

I a =« *
b I a

A=| * b I
* % % ... T

Here a and b are some m x m matrices and the asterisks denote the unspecified
entries. It was proved above that A has a unique completion which is a Green
matrix of order one. Moreover applying the formula (10.26) one obtains that this
completion is a Toeplitz matrix of the form

I a a? cooar!

b I a ..oan?

A= b2 b I co.oan3
bn—l bn—2 bn—3 . I

This fact follows also from Theorem 10.4. Furthermore A is invertible if and only
if the matrices I — ab or I — ba are invertible. Formula (10.28) yields the inverse

c —ca 0 0 0 0

—bc bea + ¢ —ca 0 0 0
0 —bc beca + ¢ 0 0 0

A= : : : : . Co [ (10:29)
0 0 0 beca + ¢ —ca 0
0 0 0 —be bca+c —ca
0 0 0 0 —be d
where ¢ = (I —ab)~!, d = (I — ba)~!.

By Theorem 10.1, the matrix A is positive definite if and only if b = a* and

lla| < 1.

Also, by Theorem 9.11, rank A = m if and only if ab = ba = I.
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§10.4 Completion of special 2 X 2 block matrices

§10.4.1 Completion formulas

Let m > 0 be an integer and let A be a partially specified matrix of the form

I g
a=(w7)

where G is a partially specified block square matrix with block entries of sizes
vi X, 4,5 =1,..., N, with a given part G = {g;5,j7 —i¢ < m} and H is a partially
specified block square matrix with block entries of sizes u; x v;, 4,5 = 1,..., N,
with a given part H = {hi;,i—j < m}. This means that A is a partially specified
block square matrix with a given band A = {A;;,|i — j| < N +m}, with

A1:N,1:N)=1, AN+1:2N,N+1:2N)=1; (10.30)
Ai1j+N:gij7 1327]§Najfl§m,

) o (10.31)
Aisng=hy, 1<4,j<N,i—j<m.

Lemma 10.5. Set
GB =G(k+1:N,1:k+m), HP  =HQ1 : k+m,k+1:N), k=1,...,N—m—1

and assume that all the matrices I — GEHEP and/or v, = I — HEGE (k =
1,...,N —m —1) are invertible.
Then the band A has a unique completion A which is a Green matriz of order

n=N+m.

Moreover, this completion is obtained by successive computation of its principal
leading submatrices

Apyn i =AQ:k+n,1:k+n), k=1,...,N—m,

as follows.
In the first step we set

B Iy G(1:N,1:m+1)
Anr = < H(l:m+1,1:N) It ' (10.32)

Let for some k with 1 < k < N—m—1 the matriz Agy, be given. The matrix
Akynt1 is obtained via the following operations. Start by partitioning Agyn as

I 0 X
Apn=| 0 1 aGB . (10.33)
Y, HE I
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Next, compute the submatric Akiny1 by the formula

I 0 X, E
0o I Gf Zz

Aktn = » ‘ )
ot v, HZ T 0
F, U, 0 I

(10.34)

where U}, Z;, are determined from the specified parts G, H via the equalities

Z, =Gk+1:N,k+m+1), U,=H(k+m+1,k+1:N) (10.35)
and Ey, Fy, are computed by the formulas
B, = =Xy 'HP Z;, F.=-UiGP, 'Y (10.36)
Finally, set
A= Asn. (10.37)

Proof. In the case considered we represent the matrices from the condition (8.7)
of Theorem 8.2 in the form

Bijn =Ak+1:k+nk+1:k+n)
_( A(k+1:N,k+1:N) CA(k+1:N,N+1:k+n)
\AN+1:k+nk+1:N) AN+1:k+nN+1:k+n) )’

k=1,....N —m.

Using the definitions (10.30), (10.31) we get

B — I Gk+1:N,1:k+m)
htn H(1:k+mk+1:N) I ’
that is 5
B'“*":<fff G}k ) k=1,...,N—m—1. (10.38)

From the condition of the lemma it follows that all the matrices (10.38) are invert-
ible and hence, by Theorem 8.2, the band A has a unique completion A which is
a Green matrix of order n = N +m. Moreover, applying the formulas (8.8)—(8.13)
one obtains the following.

Applying (8.8) and using the corresponding partition we get

App1 =AQ:N+m+1,1: N+m+1)

- A(1:N,1:N) ) AQ1:N,N+1:N+m+1)
C\AN+1:N+m+1,1:N) AAN+1:N+m+1,N+1:N+m+1)

and using (10.30), (10.31) we get (10.32).
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By (8.9),

B! Xk
A — n+k +n = —m—
n+k ( Yiin  Biin >, kE=1,...,.N—m—1, (10.39)

with }
Biyn =Ak+1:k+m+N,k+1:k+m+N).
Furthermore using (10.30), (10.31) one obtains

Biyn =A1:k1:k)=A(1:k1:k)=1, (10.40)
Xign =A1 :k,k+1:k+N+m)
=(AQ:kk+1:N) AQ:k,N+1:k+N+m))
=(0 G(l:k,1:k+m)),
ie.,
Xppm=(0 X[ ), (10.41)
with X}, = G(1:k,1:k+m), and similarly

Yitn =Ak+1:k+N+m,1:k)
- Ak+1:N,1:k) - 0
C\AN+4+1:k+N+m,1:k) ) \ Hl:k4+m,1:k) )’

0
Yipn = ( ¥ ) (10.42)

with Y/ = H(1 : K+ m,1 : k). Combining (10.38)-(10.42) together one obtains
(10.33).
The application of (8.10), (8.11) yields

Bl Xntk Enyr
Ak-l—n-i—l = Yn+k Bn+k Zn+k 5 k= 1, ey N — m, (1043)
Fn+k Un+k Mn+k

with
Muyip = Ak + N +m+1Lk+N+m+1),
Zpam =A(k+1:k+m+N,k+m+ N +1),
Uptn =A(k+m+N+1,k+1:k+m+N).

Using (10.30) one obtains

Mysk=Ak+N+m+1,k+N+m+1)=1 (10.44)
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and using (10.30), (10.31) one gets

g A(k+1:Nk+N+m+1) (G +1:Nk+m+1)
= \AWN+1:k+N+mk+N+m+1)) 0 ’

ie.,
!
Zp4n = ( Zok ) ; (10.45)

and

Ukin = (A(k+N+m+1,k+1:N) Ak+N+m+1,N+1:k+N+m))
=(Hk+m+1L,k+1:N) 0),

ie.,

Upin= (U, 0), (10.46)

with Z}, U, defined in (10.35). Combining (10.33) and (10.43)—(10.46) one obtains
(10.34), (10.35).

Next, by virtue of (1.54) the inverses to the matrices (10.38) are given by
the formulas

B.,~117B B, —1
Byl = ( I+G’117;IBH’< G > k=1,....N—m—1. (10.47)
Ve Hi Yk

From here, applying (8.12) with the matrices X4k, Yntk, Zntk, Unt+k defined in
(10.41), (10.42), (10.45), (10.46) one obtains (10.36).
Finally, using the formula (10.37) we obtain the completion A. O

§10.4.2 Completion to invertible and positive matrices

Using Theorem 9.1 one can easily derive the necessary and sufficient conditions
for the completion obtained in Lemma 10.5 to be invertible. Indeed, in the case
considered 10.30), (10.31) show that the matrices (9.2) of Theorem 9.1 have the
form

I GD>
Diin = k) k=1,...,N—m, 10.48
k+ <HkD T ( )
with
GP=G(k:N,1:k4+m), HH=HQ1:k4+m,k:N), k=1,...,N—m.

By Theorem 9.1, the completion A defined in Lemma 10.5 is an invertible matrix if
and only if all the matrices (10.48) are invertible, i.e., if and only if all the matrices
I - GPHP and/or I — HPGP (k = 1,...,N —m) are invertible. Moreover, by
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Theorem 9.3, the matrix A~' = {A};}72_, is a band matrix of order N +m. Next,

using the formula (1.54) for the matrix

(4 9)

one can write down the inversion formula

—1 I —|— G’}/_lH —G’Y_l
A - -1 —1 9
- H Y
where v = I — HG. The condition A}; = 0 for |i — j| > N 4 m means that the
completions G and H of the specified parts G and H given in Lemma 10.5 are
such that the matrices Gy~! and y~'H have zero entries in the parts j — i >
m, i — j < m, respectively. In the case m = 0 this means that the matrices Gy~!
and v~ 'H are lower and upper triangular.
Now we consider the case of a Hermitian partially specified matrix

I G
(4 9)

where G = {91’;’}%’:1 is a partially specified block square matrix with block entries
of sizes v; X pj, 4,7 =1,..., N, with a specified part G= {9ij,j —1 < m}. Set as
above

GE=Gk+1:N,1:k4+m), k=1,....N—m—1;

GP=Gk:N,1:k+m), k=1,...,N—m.
Assume that all the matrices I —GB(GE)* or v, = I - (GE)*(GB) (k=1,...,N—

m —1) are invertible. Then by Lemma 10.5 the band A has a unique completion A
which is a Green matrix of order N + m. Moreover this completion is determined
by the formulas (10.32)—(10.37) with Hermitian matrices Aj. By the first part of

Theorem 10.1, this completion is a positive matrix if and only if all the matrices
I oap
=1,...,.N —
( (GkD)* I > ) k ) 9 m,
are positive. This implies that A is positive if and only if all the matrices I —
(GkD)*(GkD)7 k=1,...,N —m, are positive, i.e., if and only if all the matrices G,’?
are contractions: ||GP|| < 1. Similarly, from the second part of Theorem 10.1 we

conclude that the completion A is positive definite if and only if all the matrices
GP are strict contractions, ie., |GP|| <1, k=1,...,N —m.

§10.4.3 Completion to matrices of minimal ranks

Let A be a partially specified matrix of the form

(19
=(w 7))
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where G is a partially specified block square matrix with block entries of sizes
m; X mj, i,j =1,..., N, with a given part G = {g;,j < i} and H is a partially
specified block square matrix with block entries of sizes m; x m;, 4,7 =1,..., N,
with a given part H = {hij,i < j}. This means that A is a partially specified
block square matrix with a given band A = {4y, |i — j| < N}, with

A(1:N,1:N)=1, A(N+1:2N,N+1:2N) =1,
Aij+N = gij, 1 <4, ) <N, j<i; Aignj=hij, 1 <4, <N, i<

Set v = vazl m; and assume that all the matrices I — GBHP and/or I —
HPGE (k=1,...,N —1), where

GE=Gk+1:N,1:k), HF=H(1:kk+1:N), k=1,...,N -1,

are invertible. By Lemma 10.5, the band A has a unique completion A which is a
Green matrix of order N.

Theorem 10.6. Let A be a partially specified matriz of the form

(I g
a=(n 1)

where G is a partially specified block square matrix with block entries of sizes m; X
mj, 4,5 = 1,...,N, with a given part G = {9ij,7 < i} and H is a partially
specified block square matriz with block entries of sizes m; X my, i,j =1,...,N,
with a given part H = {hij,i < j}. Setv = Zf;l m;. Assume that all the matrices
I—-GPHP and/or I - HEGB (k=1,...,N — 1), where

GB=Gk+1:N,1:k), HP =HQ1 :k,k+1:N), k=1,...,N—1,

are invertible. By Lemma 10.5, A has a unique completion A which is a Green
matriz of order N. Set also

gr=G(k:N,k), hpy=H(k,k:N), k=1,...,N.
Then rank A = v if and only if

hlgl - I’ml (1049)
and
B B —1 _ _
hill =GB HE ) g =TI, k=2,...,N. (10.50)

Proof. By Theorem 9.11, rank A = v if and only if

rank Dy =v, k=1,...,N. (10.51)
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For k = 1 we have the partition

L,
D1 = ( hy gll >

and therefore rank Dy 1 = v if and only if (10.49) holds.
For k = 2,..., N we use the partitions

Bryn-1 Z
Dk+N:( k+N—1 ZE+N >

Uk+N I
We have 5
I G
B, = ’“1>, k=2,...,N—1 10.52
k+N-1 (HkB—l T ( )
and
Zk+N(gOk>,Uk+N(hk 0), k=2,...,N. (10.53)

The conditions (10.51), i.e., rank Dy n = rank By y—1 hold if and only if
I —UpsnBily_1Zken =0, k=2,...,N. (10.54)

Applying the inversion formula (1.57) to the matrix Bj4y—1 partitioned in the
form (10.52) we get

S ((U=GELHE )T
Biinoa= ( * R (10.55)
Using (10.55), (10.54) and (10.53) we obtain (10.50). O

§10.5 Comments

In the presentation of the results of this chapter we follow the paper [26]. The
formula (10.29) was obtained by I. Gohberg and G. Heinig in [35]. Theorem 10.6
appears here for the first time.



Chapter 11

Completion of Mutually
Inverse Matrices

In this chapter we consider the problem when the original matrix is specified in
its lower (with the diagonal) triangular section and the inverse one is specified in
its strictly upper triangular section.

§11.1 The statement and preliminaries

Let
g 7 ?
921 g22 ?
g= :
gN1 gnN2 ... GNN
be a partially specified block matrix with elements of sizes m; xm,, 4,7 =1,..., N,

with a given lower triangular part G = {gi;}1<j<i<n and let

? h12 . hl,N
77 ... han
H =
7 L. ?
be a partially specified block matrix with elements of sizes m; xmy, 4,7 =1,..., N,

with a given strictly upper triangular part H = {hi; }1<i<j<n. The problem is to
determine an invertible matrix G with block entries of sizes m; x m;, 4,5 =
1,...,N, such that G is a completion of G and G~' is a completion of H. We
study this problem using the previous results on completion of partially specified

matrices of the form
a=(19 (11.1)
“\H I ) ’

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 219
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Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_11, © Springer Basel 2014



220 Chapter 11. Completion of Mutually Inverse Matrices

We start with an auxiliary result concerning matrices of the form

I, G
A= ( "L > (11.2)
with some positive integer v.

Lemma 11.1. A matriz A of the form (11.2) satisfies the condition rank A = v if
and only if the matrices G and H are invertible and H = G~1.

Proof. Indeed, the equality HG = I implies

A(E)(L, G).

Consequently, rank A = v.
Now assume that rank A = v. Then

X
A(X;)(Yl Vs ) (11.3)
with v X v matrices X1, Xo,Y7,Ys. Comparing (11.2) and (11.3) we get
X\Y1=1 XYoo =1, H=X,Y;, G=XYs.

It follows that the matrices X; and X5 are invertible, with X l'—v; and X5 L=
Y5 and moreover H = XX, Land G = X1 X5 L These last equalities mean
GH = HG = 1. O

Corollary 11.2. A matrix A of the form

I, G
A=(& 2)

satisfies the condition rank A = v if and only if the matrix G is unitary.

As it was mentioned above, in the solution of the completion problem for
the partially specified matrices of the form (11.1) a crucial role is played by the
submatrices

GE=G(k+1:N,1:k), HB=HQ1:k,k+1:N), k=1,...,.N—1

for which all the matrices I — GkBH,éB and/or I — H,kaB k=1,...,N —1, are
invertible. We show that this condition means that the matrices G and H, which
are completions of G and H such that H = G~!, are strongly regular matrices,
i.e., all the principal leading submatrices

Gy,=G(1:k,1:k), H,=H(l:k1:k), k=1,...,N

) )

are invertible.
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Lemma 11.3. Let G = {g;;}V., and H = {h;;}Y_; be invertible block matrices with
entries of sizes m; x m; such that H = G~'. Set

GB=Gk+1:N,1:k), HP =H(1:k,k+1:N), k=1,...,N—1.

All the matrices I-GEHP and/or I-HPGE (k=1,..., N—1) are invertible
if and only if all the matrices

G :k,1:k), H(l:k,1:k), k=1,...,.N -1
and
G(k:N,k:N), H(k:N,k:N), k=N,...,2

are invertible.

Proof. We obviously have
H(:k )G 1:k)=1I, G{E:N,:)H(:,k:N)=1I, k=1,...,N.

Using the partitions

H(l:k:)=( Hl:k1:k) HP), G(:J;k):(G(l:kél:k)),

and

G(k::]\ﬂ:):( GB |, G(k:N,k:N) ),

H

H(7k N>:(H(kN7k N)>7 k:Nv 727

we get
H(1:k1:k)G(:k1:k)=1—-HPGE, k=1,...,N -1
and
G(k:N,k:N)H(k:N,k:N)=I-GE \HP |, k=N,...,2.

Hence the statement of the lemma follows. O

§11.2 The basic theorem

Here under the assumption that all the matrices IkaB H,? and/or IfH,kaB, k=
1,...,N — 1, are invertible we obtain necessary and sufficient conditions for exis-
tence of a solution to the problem of determining an invertible matrix G' and the
matrix H = G~! such that G is a completion of G and H is a completion of .
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Theorem 11.4. Let G and H be partially specified block matrices with entries of
sizes m; X myj, 4,5 = 1,..., N such that G has a given lower triangular part G =

{9iihi<j<i<n and H has a given strictly upper triangular part H= {hijhi<icj<n-
Set

GE=Gk+1:N,1:k), HF=HQ1:k,k+1:N), k=1,...,N—1 (11.4)

and assume that all the matrices I — GEHP and/or I - HPGE (k=1,...,N-1)
are invertible.
For the complete statement of the theorem, set

g(k) = G(k, k), gkzé(k;zv,k), hy=H(k,k:N), k=1,...,N,

g =Gk +1:Nk), hj=H(k,k+1:N), k=1,...,N—1,
=Gk, 1:k—1), k:G(k+1:N,1:kfl), k=2,...,N—1

and
Ap=(I—-HZ GY ) Hil gy, k=2,...,N -1

Then there exists an invertible matric G = {gij}fszl such that G is a com-
pletion of G and H = G~ = {hij}g\szl is a completion of H if and only if all the
matrices

g(1), g(k)+GLAL, k=2,...,N—1, g(N) (11.5)

are invertible. Such a matrix G is unique.
Furthermore, the matrices G and H are obtained as follows. At first we de-
termine the unspecified diagonal entries hi;, i = 1,..., N, of H by the formulas

hit = (Imy, — HPGP) (9(1) 7", (11.6)
Pk = (Imy, — My (gh + GYAR)) (g(k) + GLAR) ™, k=2,...,N—1, (1L.7)
hvn = (9(N) ™ (Imy — GR_ HN_1)- (11.8)

Next we determine the matrices G and H by successive computation of the
submatrices

Gr:=GA:N,1:k), Hy:=HQ1:k1:N), k=1,...,N,
as follows. On the first step we set
Gi=G(1:N,1), Hi=(hy H12:N)). (11.9)

Let for some k with 1 < k < N — 1 the matrices Gy and Hy, be given. We start
with partitioning Gy, and Hy, in the form

. G N
Gk:(G%)’ Hy=(H, HP), (11.10)
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with
Gy,=G(l:k/1:k), H,=H(l:k/1:k) (11.11)

and GkB, H,f defined in (11.4). Next we compute the submatrices Gk+1 and ﬁk+1
by the formulas

A G, FE, - H, HE
Gri1 = k) Hpq= k , 11.12
bt ( GY  gei1 > ht ( Fy higr ( )
where hy11, B}, F}, are computed by the formulas
hgt1=H(k+1,k+1:N),
Ep = —Gi(I = HPGP) " Hf gra, (11.13)
F| = —hy 1 GE(I — HEGB) ' Hy.

Finally we get . .
G=GNy, H=Hy. (11.14)

Proof. Assume that all the matrices of the form (11.5) are invertible. We show
that the formulas (11.6)—(11.8) yield the diagonal entries Hy;, ¢ = 1,...,N of H
such that the conditions (10.49), (10.50) of Theorem 10.6 are satisfied.

Consider the condition (10.49). We use the partitions

hy:=H(1,:)=( hn H(1,2: N) )=(hn HEP)
and
g1 =G(1:N,1) = ( ‘Lé? )
and write the equality (10.49) in the form
hug(1) + HPGY = Iy, -

Hence it follows that the desired value of hj; is given by the formula (11.6).
For k =2,...,N — 1 we consider the condition (10.50) with the partitions

he=( hw Hkk+1:N))=(hw hj)

and

gk =G(k: N, k) = ( ggf) )

k
. o Gk, 1:k—1) _( G,
Gr1=Glk: N, 1:k 1)_(G(k+1:N,1:k1) “\GL )
By (1.70), we get

(I-Gg HP ) ' =1+Gy (I -HZ \GZ ) "HY
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and therefore the condition (10.50) may be expressed in the form

hi(gr + GE (I = HP G )T HE (k) = I,

(‘ha ) [( g;z) >+( g;’z, >Ak} — 1.

Hence it follows that the desired value of hyy is given by the formula (11.7).
Finally, for K = N we use the formulas hy = hyy and gy = g(N) and
obtain the condition (10.50) in the form

ie.,

hnn(I — Gﬁleﬁfﬁ_lg(N) =Iny-

Hence it follows that the desired value of hyy is given by the formula (11.8).
Next set v = Zfil m; and consider the partially specified matrix

_ Il/ gl
A= ( v L ) (11.15)

where G; is a partially specified block square matrix with block entries of sizes
m; X mj;, i, = 1,..., N, with a given part G =G = {9ij,7 < i} and H; is a
partially specified block square matrix with block entries of sizes m; x m;, 4,j =
1,...,N, with a given part H; = {hi;,i < j}. By Lemma 10.5, there is a unique
completion A of A such that A is a Green matrix of order N. Moreover, the matrix
A is obtained via the formulas (10.32)—(10.37). Notice that the computation of the
matrix A via the formulas (10.32)—(10.37) means the computation of the matrices
G and H which are the completions of G; and H; via the formulas (11.9)—(11.14).
Next, by Theorem 10.6 the matrix

A= ( b f > (11.16)

is of rank v. By Lemma 11.1, this means that the matrices G and H are invertible
and H =G~ L.

Let G be an invertible matrix such that G is a completion of G and H =
G~! is a completion of H. We prove that this implies that the matrices (11.5)
are invertible and that such matrix G is unique. By Lemma 11.3, the matrices
g(1) = G(1,1) and g(N) = G(N,N) are invertible. Also, by Lemma 11.3, the
matrices Gi, k=1,..., N — 1 are invertible. The matrix Gy = G is invertible by
the assumption. For k = 2,..., N we use the partitions

Gr_1 Ei_ )
Gp = k=1 )
. < G, g(k)

Since the matrices Gi_1 and Gy are invertible, the Schur complements

Ty =g(k) - GG Erly, k=2,...,N, (11.17)
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are also invertible. Next consider the matrix A of the form (11.16). By Lemma
11.1, rank A =v = vazl m;. It follows that

rankA(l : k,k—N+1:2N)<vy, k=N+1,...,2N -1

rankA(k—N+1:2N,1:k)<v, k=N+1,...,2N -1,
i.e., A is a Green matrix of order N. The matrix A may be treated as a completion
of the partially specified matrlx (11.15) with the partially specified parts G, and
H, with the given parts Gy = G = {gij,j < i} and H; = {hy;,i < j}. By Lemma
10.5, for the given parts él and H 1 the completion A which is a Green matrix of
order N is unique. To get uniqueness of G it remains to check that the specified
parts G1 and H; are uniquely determined. Indeed the part G, =G is given. The
entries of the upper triangular part H; coincide for i < j with the given entries hij
of the part H. Since rank A = v, by Theorem 10.6 the conditions (10.49), (10.50)
hold. But as it was shown above the diagonal elements h;; (i = 1,...,N) of
H, are uniquely determined from these conditions by the formulas (11.6)-(11.8),
which completes the proof of the uniqueness. The matrix A is a completion of
the partially specified matrix A of the form (11.15) and hence, by Lemma 10.5,
the matrix A satisfies the equalities (10.32)—(10.37) and therefore the matrix G
satisfies the equalities (11.9)—(11.14). Using the first equality in (11.13) we get

E, ,=-G,(I-HP ,GE )'HP g, k=2,...,N. (11.18)
Inserting (11.18) in (11.17) we obtain
Up = g(k) + GL(I = H 1 Giy) " Hi g, k=2,...,N—1,
and thus the matrices g(k) + G, Ag (k =2,..., N — 1) are invertible. O

§11.3 The direct method

As it was proved above in Lemma 11.3, invertibility of the matrices I — GE H ,f

and/or I — HPGE k=1,..., N — 1 implies that the completions G and H = G~*

are strongly regular, i.e., all the principal leading submatrices
Gy,=G(:k/1:k), H,=H(l:k/1:k), k=1,...,N,

are invertible.
Here we derive some other formulas for the completions G and H using the
inverses of the matrices Gy and Hy.

Theorem 11.5. Under the conditions of Theorem 11.4 the matrices G and H = G~*
may be obtained by successive computation of their principal leading submatrices

G,=G(1:k1:k), H,=H(1:k1:k), k=1,...,N,
as follows. In the first step we set
G, =G(1,1) (11.19)
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and compute
Hy = (I, — HYGT)(g(1))~". (11.20)

Let for some k with 2 < k < N the matrices Gy_1, Hy,_1 be given. We
compute the submatrices Gy, Hy by the formulas

Gr—1 Eg
G = 11.21
. ( L M) (11.21)
and
_( Wk
Hk( r ) (11.22)

withWy, = ( Hy—1  Hj, ), where G}, g(k), Hj, are determined from the given parts
G and H by the recipes

' =Gk, 1:k—1), g(k)=G(k,k), H,=H(1 :k—1,k)

and Ey and Fy, are computed by the formulas

Ey, = —H; H g (11.23)
and
Fro=( =hG{ Im, —higi )Gy (11.24)
Finally we set
G=Gy, H=Hy. (11.25)

Proof. By Lemma 11.3, the matrices Gy, H, (k =1,..., N) are invertible.
The equality (11.19) is obvious. The equality (11.20) follows from (11.6).
For k = 2,..., N we proceed as follows. Using the equality

H(l:k-1,:)G(:,k)=0

with the partitions

H(l:k‘—L:):(kal Hl?fl)’ G(:’k):(f;:)

we obtain
Hp 1E + H;?,lgk =0.

This yields (11.23). Moreover, we obtain the matrix G by the formula (11.21).
Next we use the equality

H(k,)G(:,1:k)=(0 --- 0 I)

with the partitions

Hk)=(F ), G(:,l:k):(%)
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and obtain
FoGr+hGp=(0 - 0 1).

Hence it follows that
Fe=[(0 -+ 0 I)-nGP]G;"
From here using the partition
GP=(G{ a.)

we obtain (11.24). Moreover, we obtain the matrix Hy by the formula (11.22). O

§11.4 The factorization

As it was mentioned above, invertibility of the matrices I — GkB H ,? and/or I —
H,kaB E =1,...,N — 1 implies that the completions G and H = G~ are
strongly regular. By Theorem 1.20, the matrix G admits the factorization G =
LUy, where L is a block lower triangular matrix (not necessarily with identities
on the main diagonal) and U; is an upper triangular matrix with identities on
the main diagonal. The inverse U = Ufl of U; is also a block upper triangular
matrix with identities on the main diagonal. Next we derive simple formulas for
the factors L and U.

Theorem 11.6. Under the conditions of Theorem 11.4 the matriz G admits the
factorization
G=LU, (11.26)

where L is a block lower triangular matriz and U is an upper triangular matriz
with identities on the main diagonal. Moreover, the subcolumns of L in the lower
triangular part and the subcolumns of U in the strictly upper triangular part are
determined by the formulas

L(1:N,1)=G(1:N,1), (11.27)
Lk:N,k)=(I-GE  HP ) 'gx, k=2,...,N, (11.28)

and
UQd:k—1,k)=HP ((I-GE HE )'gx, k=2,...,N, (11.29)

where gr, = G(k : N, k).

Proof. By Lemma 11.3, the matrices G(1 : k,1: k) (k =1,..., N) are invertible.
By Theorem 1.20, the matrix G admits the factorization G = LU; with a block
lower triangular matrix L and a block upper triangular matrix U; with identities
on the main diagonal. Set U = Uy ! Then U is also a block upper triangular matrix
with identities on the main diagonal. Thus we obtain (11.26), which implies

GU = L. (11.30)
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Moreover, for the matrix H = G~! we get H = UL™!, which implies

HL=U.

Comparing the first columns in (11.30) we obtain (11.27).
For k = 2,..., N we proceed as follows. Set

Le=L(k:N,k), Us=U(l:k-1k), k=2,...,N.

(11.31)

Taking the kth columns and the rows from %k to N in (11.30) and using the upper

triangular form of U we get
G(k:N,1:k)U(1:k,k) = L.
From here using the partitions

U

Gk:N,1:k)=( G2, gr ), U(l:l-@k;):( 7

we get GB_ Uy, + g, = Ly, or

Ly — G2 Uy = g

(11.32)

Taking the kth columns and the rows from 1 to & — 1 in (11.31) and using the

lower triangular form of the matrix L we get
HQl:k—-1,k:N)L(k: N,k)=UQ1:k—-1,k),

ie.,

7H£_1Lk + U, = 0.
Combining (11.32) and (11.33) together we obtain the equation

I _GE_1 Ly — 9k
—H? 1 Uk 0/
Applying the inversion formula (1.57) we get

Ly
Us ) Hl§71(I*GkalHli1)il *

Hence the equalities (11.28), (11.29) follow.

§11.5 Comments

(I-GP HE )™ ) ( Ik >

(11.33)

The material of the first three sections appears here for the first time. In the last
section we derived the factorization formulas obtained by H. Dym and I. Gohberg

in [11].
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Completion to Unitary Matrices

In this chapter we study the problem of completion of a partially specified matrix
with a given lower triangular part to a unitary matrix.

§12.1 Auxiliary relations

At first we consider some relations for block positive and positive definite matrices.
Recall that a kxk matrix A is said to be positive, and we write A > 0, if (Az,z) >0
for any € C* and A is said to be positive definite if there exists § > 0 such that
(Az,z) > 6(x,z) for any x € CF.

A Z
AOZ(Z* D)7

where A is a square n X n matriz and D is a square m X m matriz.

Assume that the matriz Ag is positive.

Then the equation AE = Z has a solution E and for any such E the matriz
D — Z*FE 1is positive. Moreover, the relation

Lemma 12.1. Let

dim Ker Ag = dim Ker A + dim Ker(D — Z*E) (12.1)

holds.

Proof. Since Ay is positive, there exists an (n+m) x (n +m) matrix K such that
Ay = K*K. Consider the partition of the matrix K in the form K = ( K, Ko )
with submatrices K7 and K of the sizes (n +m) x n and (n + m) x m. We have

(4 5)-(8) i x

The matrix Ag is positive and, therefore, its principal leading submatrix A is
Hermitian. Let us prove that Z*x = 0 for any x € Ker A, which implies that the

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 229
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equation AE = Z has a solution. Indeed, for any x € Ker A we have 0 = z* Ax =
r* K} K1z = ||[K1z||?, and therefore K1z = 0. Hence Z*x = K5 K o = 0.
Next let F be a solution of the equation AF = Z. We use the factorization

(g*g):(é*?)<éDoz*E)<é?>. (12.2)

Since the matrix Ag is positive this implies that the matrix

< A 0
A(O D—Z*E) (12.3)
is positive and hence the matrix D — Z*E is positive.
The relation (12.1) follows directly from (12.2). O

§12.2 An existence and uniqueness theorem

Let U be a partially specified block matrix with a given lower triangular part
U = {u;j,i > j}. In this chapter we consider the problem of completing the lower
triangular part U to a unitary matrix U.

Theorem 12.2. Let U be a partially specified block matriz with entries of sizes
m; X mj, 4,5 =1,...,N, with a given lower triangular part U = {u;; }1<j<i<n -
The matriz U has a unitary completion U if and only if the submatrices

UP=U(k:N,1:k), k=1,....,N
satisfy the conditions
I—(UPYyUP >0, dimKer(I— (UP)*'UP)>my, k=1,2,...,N. (124)

Moreover, the unitary completion U is obtained by successive computation of
the submatrices .
U,=U(l:N,1:k), k=1,...,N,

as follows. In the first step we set
U, =U(1:N,1). (12.5)

Let for some k with 2 < k < N the matriz Uk,l be given. We start with partition-

mg Up_1 in the form
Gea= (s ) (126)

with

Upr=UQd:k—1,1:k—1), UP,=U(k:N,1:k-1). (12.7)
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Next the submatriz Uy, is obtained by the formulas

v f Uy Ty

Ur = ( vk 7z, ) (12.8)

where Zy, is determined from the specified part U by

Zp =U(k: N, k) (12.9)
and Ty, is defined as
=T +1% k=2 N, (12.10)
where
r' = v, By, (12.11)

the matriz Ey being a solution of the equation
(I = (U UL By = (UL Z, (12.12)

and the vector F,(f) s an arbitrary solution of the equation

Up_ T =0 (12.13)
satisfying the condition
Ty r® =1 - zr 7z — V)T, (12.14)

The element F,(;) is defined uniquely, i.e., it does not depend on the choice of the
solution Ey, of equation (12.12).
Finally, we get .
U="0Uy. (12.15)
Furthermore, if the condition (12.4) holds and additionally
|UB|| <1, k=1,...,N—1, (12.16)

then the matrices Uy, (k =1,...,N) are nonsingular, the unitary completion U is
unique and the elements Ty (k =1,...,N) are determined by the formulas

I =-Ue(I—UB)UB ) UB ) Zy, k=2,...,N. (12.17)

Proof. First we prove the sufficiency. Assume that the condition of the theorem
holds. Determine the first block column U(:,1) = U; of the matrix U by the
formula (12.5). Using (12.4) with k = 1 we get UfUl = I, . Next,fork=2,...,N
we determine successively the submatrices U, = U(:,1 : k) in such a way that
the columns of Uk are orthonormal. Suppose that for some k, 2 < k < N, the
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submatrix U, k_1, has been constructed. We show that one can determine the matrix
I’ of the size vp_1 X my, where vp_1 = Zf;ll m;, in such a way that the block

column U}, = ( Ek ) is orthogonal to the columns of Up_1 and (U}, = Iy
k

Then we determine the submatrix Uy, by the formulas (12.6)-(12.9). By using the
representation (12.6) we obtain that the block vector column T'y, is defined by the
relations

Ui T + (UL ) Zy = 0, (12.18)
FZFk + Z,:Zk = Imk~ (12.19)

We prove that the system of equations (12.18), (12.19) has a solution which is
given by the relations (12.10)—(12.14).

Since the columns of the matrix Uy_; are orthonormal, by using the repre-
sentation (12.6) we obtain the equality

Ul U1 =1—UP)UE,. (12.20)
Further, from the representation
U =(U 2)
it follows that

I— (UkB—l)*UkB—l *(Ulf—l)*Zk

_ D\x7rD —
= W)Uy ~Z;UB | 1-27; 2

(12.21)
The first condition in (12.4) means that I — (UP)*UP is a positive matrix, so by
Lemma 12.1 for the matrix I — (UP)*UP we conclude that the equation (12.12)

has a solution E}). Moreover, one can check easily that the formula (12.11) yields
a solution of the equation (12.18). Indeed, using (12.20) we obtain

U2—1F§<1) = U§—1Uk—1Ek = (I - (UkB—l)*UkB—l)Ek = _(UkB—l)*Zk'

Furthermore, the vector F,(cl) does not depend on the choice of the solution Ej
of the equation (12.12). Indeed, for any E such that (I — (UP |)*UP )E = 0
by using (12.20) we obtain U} _,Ur—1E = 0 and therefore Uy_1 E = 0. Thus the

equation (12.18) has a solution F,(;)

form I'y, = F;cl) + F,(f), where F,(f) is a solution of the equation U,:_lF,(f) = 0.
Notice that by virtue of (12.11) and (12.13) we have

and, moreover, any solution of (12.18) has the

My r® = oy T =0

and therefore " " . .
FZFkZ(Fk )*Fk +(Fk )*Fk :
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Hence, in order to satisfy the equation (12.19) we must determine the block column

vector F,(f) such that U;‘le,(f) = 0 and (12.14) holds. Using (12.11) and (12.12)
one can write the right-hand part of the equality (12.14), Ay = In, — Z;Zy —

(F](:))*FS:)7 in the form
Ap=1In, —Z;Zy — EfU;_Uk_1Ey
= I, — Z3 2k — (I = (UL U ) En]" Bi = Iy, — Zi 21+ Z3U By
Applying Lemma 12.1 to the matrix I — (UP)*UP represented in the form (12.21)

we conclude that the matrix Ay is positive. Set g = rank Ag; clearly, 0 < up <

my. If pp = 0 one can take F;f) = 0. Assume that 0 < pr < my. Using the
condition (12.4) and the formula (12.1) we get

dimKer(I — (UZ |)*UE ) + dim Ker Ay, > my,.
Since dim Ker A, = my — pg, we get
dimKer(I — (UE)*UL }) > .
But using (12.20) we get
dim Ker(U;_,Ui—1) = dimKer U}_; > pus.

It follows that Ker U;/_; contains j; orthonormal vector columns, i.e., there exists
a Vg1 X p matrix ® such that Uj_, @, = 0 and @ P = I,,, . Since the my x my,
matrix Ay is positive and has the rank pg, there exists an my x pi matrix Wy
such that Ay = W, U7, Set F,(f) = &, ;. One can easily check that U,;k_lF,(f) =0
and
CI) T = 0010, U] = W Uf = Ay
Finally, in the case Ker Uj_; = {0}, equality (12.20) yields
Ker(I — (UiL1)"Ui ) = {0}

Hence, by Lemma 12.1, using the second condition in (12.4) we obtain I — Z; Z, +
ZyUB (B, =0.

Now we prove the necessity. Let U be a unitary completion of the lower
triangular part U. For k = 1 we have U; = U(:,1) = U(:,1) and, hence, U;U; =
I,,. For k=2,..., N we use the representation

UkD = ( Uy Zi )
and the partition (12.8). The orthonormality of the columns of the matrix U =
U(:,1: k) implies that
Ui Ur + (Uil1) 2y, = 0,
e+ 2ZiZy=1, k=2,...,N.
UpiUk—1 + (U ) Uy = 1



234 Chapter 12. Completion to Unitary Matrices

One can recast these equalities as
~Uia) Ze = Uik, =Z3Uiy = TiUk1,
I— (Ukal)*Ulffl = Ul;kflkalv I— ZZZk = FZFM

ie.,
I*(UB )*UB 7(UB )*Zk
_ DyxrrD _ k—1 k—1 k—1
I= () Ui ( -Z;UB | VAV
_ ( Uf;l )( Uy Tk ), k=2,....N.
k

This implies I — (UP)*UP = M} My, k =2,...,N, where M, = ( U1 Ty )
Hence, the matrices I — (UP)*UP (k= 2,..., N) are positive. Moreover, since the

matrices M}, have the sizes vi_1 x (vg—1 + my), we conclude that
dimKer(I — (UP)*UP) >my, k=2,...,N.

Finally, we check that if the conditions (12.16) are satisfied, then the unitary
completion U is unique and the formulas (12.17) hold. The conditions (12.16)
imply that the matrices I — (U,ﬁl)*U,ﬁ17 k=2,...,N, are invertible. Moreover,
by using the formulas (12.10)—(12.13) we obtain that the unspecified entries of the
unitary completion are determined by the relations

Ty =—Ups(I—(UE UL ) UE)Z+TP, k=2,... N,

where U,;lF,(f) = 0. But the equality (12.20) implies that Ker U} _; = {0} and,

therefore, F,(f) = 0. We conclude that the unitary completion U is unique and the

relations (12.17) hold. O

Remark. By Lemma 11.3, the condition (12.16) means that the unitary completion
U is a strongly regular matrix.

Example 12.3. In this example necessary and sufficient conditions for the existence
of a unitary completion of a partially specified scalar matrix with a given diagonal
and subdiagonal part will be found using Theorem 12.2.

Let
dq * * * *
my  do % * *
U= 0 mo dz *x %
0 0 ms d4 *

0 0 0 mg ds

The partially specified matrix &/ has a unitary completion U if and only if
the submatrices R
UP=Uk:5,1:k), k=1,...,5

satisfy the conditions (12.4). We will now check when these conditions hold.
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For k = 1 we have

—=

I—(UPYUP=1-(di mi 0 0 0) =1—|di)* — |m1|?

OODS

and therefore (12.4) reads
|di* + |ma* = 1. (12.22)

For k = 2 we have

mq dg

_gmysgp_ (L0 (mi 0 0 0 0 mo
I (UQ)U2<O 1> (dg m200) 0 0
0 0

- 1-— \m1|2 —mldg
—del 1— |d2|2 — |m2\2 ’
For a 2 x 2 matrix the condition (12.4) means that the trace of a matrix is non-
negative and the determinant is zero. Hence we get

Ima* 4 [mal* + |da* <2, (1 — |[ma ) (1 = [ma|? — |da|?) — [ma|?|da|* = 0,

i.e., the trace is positive if and only if |m;]|?> < 1 and |d2|? + |m2|? < 1 both hold.
The first inequality follows readily from the equality which has been deduced for
the case k = 1, while the second inequality is new. The kernel of the matrix that
we obtained is not null if and only if its determinant is zero, which means

(1= [mal*) (1 = moaf? = [daf*) = [ma [*|da]* = 0,
or

1= [ma]? = [mal* + ma|*|ma]* — |daf* = 0.
Therefore, the conditions (12.4) are satisfied for k = 1 and k = 2 if and only if
1+ [ma*Ime|® = [ma|® + [ma|* + |do|* < 2. (12.23)

For k = 3 we have

1 0 0 0 0 0 0 mo d3
I-WUPyvP=10 10 |- m 0 0 0 0 ms
00 1 ds mz 0 0 0 0
1 0 0
= 0 1—\m2|2 —m2d3
0
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In the same way as above we get
1+ |mal?Ims|? = |ma|?® + |ms|?® + |ds|? < 2. (12.24)

For k = 4 we have

1 000 0 0
N Dy+x77D __ 01 0 O 0 0 0 0 ms d4
[=WE)Ue=1 4 ¢ 1 ¢ ms 0 00 0 my
00 0 1 dy  my
10 0 0
0 1 0 0
0 0 1—|ms? —mady
0 0 —d4m3 1—\d4\2—\m4|2
and obtain
1+ |ms?mal? = |ma|? + |ma)?® + |da]® < 2. (12.25)

Finally, for £k = 5 we get

10 0 0 0 0
01 0 0O 0
I—UPyUvP=[00100 0 [(0 0 0 my d5)
0 00 1O my
0 00 01 ds
1 00 0 0
010 0 0
0 0 1 0 0
0 0 0 1—\m4|2 —m4d5
0 0 O —d5m4 1—|d5|2

Here we get
mal? +|ds[> <2, (1~ |ma*)(1 — |d5|*) — [maf*|ds|* = 0,

which means
|mal?® + |ds|* = 1. (12.26)

It follows that the partially specified matrix U has a unitary completion U
if and only if m;, i =1,...,4 and d;, i = 1,...,5 satisfy the conditions (12.22)-
(12.26).

Since the partially specified matrix U is a Hessenberg matrix it follows that
its unitary completions are unitary Hessenberg matrices.

As a particular case of this example take

m1:m2=m3:m4:1, d1:d2:d3:d4:d5:0. (12.27)
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It is easy to check that these values satisfy all the conditions (12.22)—(12.26),
therefore unitary completions exist in this particular case. Moreover, any one of
them has the form (7.81), where po = —1, |ps| = 1, and from (12.27) it follows
that

Nk:17pk:07 k:17"'747

therefore the unitary completion is

000 0 p
100 00
0100 0],
001 00
00 010
with |p] = 1. O

612.3 Unitary completion via quasiseparable
representation

Let U be a partially specified block matrix with a lower triangular part U with
given lower quasiseparable generators and diagonal entries. As above, we consider
the problem of completing U to a unitary matrix. By Corollary 7.2, such a com-
pletion, if it exists, has upper quasiseparable generators with orders equal to the
corresponding rank numbers of the given lower part. The problem is to formulate
the conditions of Theorem 12.2 in terms of lower quasiseparable generators and
diagonal entries of U and to compute a set of upper quasiseparable generators of
the completion.

§12.3.1 Existence theorem

Here we present a version of Theorem 12.2 for partially specified matrices with
the lower triangular part given in quasiseparable form.

Theorem 12.4. LetU be a partially specified block matriz with entries of sizes m; X

my, 4,5 =1,..., N, with a lower triangular part U given via lower quasiseparable
generators p(i) (1 =2,...,N), ¢(j) j=1,...,N—=1), a(k) (k=2,...,N—=1) of
orders i, (k=1,...,N —1) and diagonal entries d(k) (k=1,...,N). Set

poN =0, pr—1 =min{mg + pg, re-1}, k=DN,...,2

: (12.28)
70 =0, 7 = min{my + 7%—1, 7c}, k=1,...,N—1.

Using the given lower generators p(k),a(k) determine via truncated QR or QR/
factorizations (see Section §7.1) matrices Vi, X, k = N, ..., 2 of sizes (my+pr) X
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Pr—1 and pr_1 X rp_1, respectively, such that V'V =1, _ and the relations

p(k)
N)=VyX =V X, k=N-—-1,...,2 12.29
p( ) NN, ( X}c+1a(k‘) ) kAEks ) ) ( )

hold. Using the given lower generators q(k),a(k) determine via truncated LQ or
L'Q factorizations (see Section §7.1) matrices Yy, Fy, k = 1,...,N — 1 of sizes
K X T and T, X (Tg—1 +my), respectively, such that Fi,F} = I, and the relations

q)=nF, (ak)Yer qk))=YeF, k=2,...,N—1 (12.30)
hold.
Define the matrices Ay, (k=1,...,N) by
Ay = ( Q(ql()l) ) (12.31)
_ (k)Yi—1 d(k) _
Ay = ( ina(kk)kal Xera(h) > . k=2,...,N—1, (12.32)
An = ( p(N)Yn—1 d(N) ). (12.33)

The partially specified matrix U has a unitary completion U if and only if the
conditions

I—A;A, >0, dimKer(I — A[Ax) >my, k=1,...,N, (12.34)

hold.
Furthermore, if the conditions (12.34) hold and additionally

| XpaYal <1, k=1,...,N—1, (12.35)

then the unitary completion U is unique.
Moreover, if the conditions (12.34) and (12.35) hold, a set of upper qua-
siseparable generators g(i) (i = 1,...,N —1), h(j) (j = 2,...,N), b(k) (k =

2,...,N = 1) of the matriz U is determined by the formulas
g(1) = —d()Fy, g(i)=—( p(i)Yizy d(i) )F',i=2,...,N—1, (12.36)
h(j) = (I = Y7 X7 X5Y5-0) 7 Y (07 (1)d(5) + a* (1) X1 Xja(d),
j=2,...,N—1, (12.37)
h(N) = (I - YN L XN XNYN-1) 7Yt (N)A(N),
b(k)=(1Ir,_, —h(k) )F, k=2,...,N—1. (12.38)

Proof. Using the lower quasiseparable generators determine the matrices Qy (k =
1,...,N—=1)and P, (k= N,...,2) via equalities (5.1) and (5.2). By Lemma 5.1,
we have

Uk+1:N,1:k)=Po1Qr, k=1,...,N—1. (12.39)
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Using also the equalities Q1 = ¢(1), Py = p(N) and the recursions (5.3), (5.4) we
get

U(:N,1)= ( Pif}l()l) > (12.40)
(L - . _ p(]f)Q -1 d(k‘) _ _
Uk:N,1:k)= ( Pkﬂa(k)ka,l Pepra(k) ) k=2,...,N -1, (12.41)

UN,1:N)=( p(N)Qn-1 d(N) ). (12.42)

Next using the matrices Vi and F}, we determine the matrices Pk(v) and Q,(CF)
by means of the recursion relations

I, 0
Py =vy, PV = ( M W) ) Vi, k=N-1,..,2 (12.43)
0 P,CJrl
and
(F) () 0
Q7 =R, Q=R (1 . k=2,...,N—1. (12.44)
my
Using the equalities V|V, = I,, | and FiF} = I, one can easily check that
PPV =1, ., k=2,...,N (12.45)
and
QM =1, k=1,...,N-1 (12.46)

We prove by induction that

Qr="Q", k=1,...N—-1, (12.47)
and
P.=PYX,, k=N,...2 (12.48)

Using the first equalities in (12.30) and (12.44) we have
Q1 =q(1) =1 =",

Let for some k with 2 < k& < N — 2 the relation Qr_1 = Yk—lQ;(fi)l hold. Using
the recursion (5.3) we get

Qi = (a®)Qir ath) ) = (ak¥iaQ, k) )

(F)
= (a(k)Yeo1 qlk) )(Q%l 10 >

From here using the factorization (12.30) and the recursion (12.44) we obtain
(12.47).
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Using the first equalities in (12.29) and (12.43) we have
Py =p(N) = Vx Xy = P{) Xn.

Let for some k& with N —1 > k > 3 the relation Px41 = PéﬁXkH hold. Using
the recursion (5.4) we get

sz( p(k) >:< P >:<fmk OV)< p(k) >
Pytia(k) P;€(+3Xk+1a(k> 0 P1£+i Krra(k) )
From here using the factorization (12.29) and the recursion (12.43) we obtain
(12.47).

Now combining the relations (12.40)-(12.42) and (12.47), (12.48) we obtain
the representations

- I 0
U(l1:N,1 m A
( 7) ( 0 P2(V)> 1,
U(k:N,1:k)= k A k—1 ., k=2,...,N—1,
( ) < 0 P,SK%) ‘“( 0 Imk>

N OB
U(N,l:N):AN( N-1 )

with the matrices Ay, k= 1,..., N defined in (12.31)-(12.33). From here using the
equalities (12.45), (12.46) we conclude that the conditions (12.4) of Theorem 12.2
and the conditions (12.34) are equivalent. Hence, by Theorem 12.2, the partially
specified matrix I has a unitary completion U if and only if the conditions (12.34)
are satisfied.
Combining the relations (12.39) and (12.47), (12.48) we obtain the represen-
tations
. %

Uk+1:N,1:k)=P

N X1 VeQY), k=1,...,N 1. (12.49)

From here using the equalities (12.45), (12.46) we conclude that the conditions
(12.16) of Theorem 12.2 and the conditions (12.35) are equivalent. Hence, if (12.35)
holds, then by Theorem 12.2 the unitary completion U is unique.

To compute upper quasiseparable generators of the matrix U we apply the
formula (12.17). As in Theorem 12.4, we set

U,=U(l:k,1:k), k=1,...,N,

UP=U(k+1:N,1:k), k=1,....N—1, Zy=Z(k:N,k), k=2,...,N.
Using (12.49) and (12.45) we have

WP UL, = Q) Vi XX QU k=2,...,N.
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Next, the inversion formula (1.70) and the equalities (12.46) yield
(= (U U )™ =T+ QD) Y X (= XY Y X0 T XY @),
k=2....N,
and in conjunction with (12.49) and (12.46) we obtain
(1= (UL ) UE ) UE )"
= (QU) T+ Y X5 (= XiYe Vi X0) T XYY X5 (P,

k=2..., N.

Using the formula (1.70) we get
* — * F) \* * * — * * V) *

(7= W) UL U2 = Q7)) (0 = Y Xp X)X ()

k=2,...,N.
Thus, using (12.17) we get
U1:k—1,k)=Gr_1h(k), k=2,...,N, (12.50)
with
Gr=—U@QF), k=1,...,N—1, (12.51)
and

hk) = (I =Yy  Xi XY ) W Xi (P 2, k=2,...,N.  (12.52)

Let us check that the elements h(k) are determined by the formulas (12.37). Using
the formula (5.10) we have

Zk:< d(k) >7k:2,...7N—17 Zy = d(N).

Using (12.48) we get

I, 0

0 et 1 Xpy1q(k)
whence, by (12.43) and (12.45),
(PISV)) Zp =Vy ( Xk+(1q)(k) ) k=2 N1 (PJ(VV)) Zy = Vyd(N).

Next, using the factorizations (12.29) we obtain

Xiy1q(k)

=p*(k)d(k) + a” (k) X} Xkt19(k), (12.53)
k=2,...,N—1,

X5(PY Y Zy = p*(N)d(N). (12.54)

" " I d(k
Xmﬁhm=&w( (>)
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Inserting (12.53) and (12.54) in (12.52) we obtain the formulas (12.37) for the
elements h(j) (j =2,...,N).

It remains to check that the matrices G (k= 1,..., N —1) in (12.51) satisfy
the recursion relations

G1=y9(1), Gip= ( G’“g‘(llf)(k) ) ,k=2,...,N -1, (12.55)

with the elements g(k) (k = 1,...,N — 1) and b(k) (k = 2,...,N — 1) defined
in (12.36) and (12.38). By Lemma 5.6, this together with (12.50) implies that
g(@) i=1,...,.N=1), h(§) (j=2,...,N), b(k) (k=2,...,N —1) are the upper
quasiseparable generators of the matrix U. Using (12.44) with & = 1 we have

Gi = -U(1,1)(Q")* = —d(1)Fy.

For k = 2,...,N — 1 we use the formulas (12.50), (12.51) and (5.11) and obtain
the partitions
U, = ( Uk-1 Gr—1h(k) >
p()Qier (k)

Finally, using (12.44), (12.51), (12.47) and (12.46) we get

- (L, Y- (G0) e

§12.3.2 Diagonal correction for scalar matrices

Here for scalar matrices we assume that the conditions (12.35) of Theorem 12.4
are valid and derive other necessary and sufficient conditions for the existence of
a unitary completion U of the specified lower triangular part U. We suppose that
the lower quasiseparable generators of U are fixed and the conditions are imposed
on the diagonal entries.

Theorem 12.5. Let U be a partially specified scalar matriz with a lower triangular
part U given via lower quasiseparable generators p(i) (i = 2,...,N), q(j) (j =
1,...,N=1), a(k) (k=2,...,N—1) of ordersry, (k=1,...,N—1) and diagonal
entries d(k) (k=1,...,N). Set

poN =0, pr—1 =min{l + pg, re—1}, k=N-—-1,...,2
70 =0, T =min{l 4+ 71, 7%}, k=1,...,N—1.
Using these lower generators determine the matrices Vi, X, k= N,...,2, of sizes

(14 pr) X pr—1 and pg—1 X r—1 such that V;*Vi, = I, | via truncated QR or QR’
factorizations (see Section §7.1)

p( ) NAN, ( ):k: 1CL(]€) ) kAEks ) ) ( )
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and the matrices Yy, Fy, of sizes 1y, X 7, and 7 X (Ty—1 +my) such that R Fy = I,
via LQ or L'Q factorizations (see Section §7.1)
q)=v1F, (ak)Yeor qk) ) =YpFy, k=2,...,N -1, (12.57)
Assume that the conditions
| X1 Vil <1, k=1,....N—1, (12.58)

hold.
The partially specified matricx U has a unique unitary completion U if and
only if the conditions

\d(k)+ak| :bk, k:].,...,N, (1259)
with

g;;(] Ak) 1]k
“ @k 1+fl:(I—Ak) 1fk v ( )

bi =1 —hiha,
b2 = 1= gi(I = Ap) " ge — hihy, g5 (I — Ag) ™" fiol? k=2 N-1,
L4+ (I — Ap) "L fe (1+ ff(I— Ag)~1fr)?
by =1— fifn, (12.61)

where

fk:Yk*flp*(k% k:2a"'7N7 hk:Xk+1Q(k)a k:]-a"wN*lv
g = Yk*_la*(k)X:+1hk, Ak = Yk*_lX]:Xlecfla k= 2, .. .,N — 1,

hold.

Proof. By Theorem 12.4, the partially specified matrix ¢/ has a unitary comple-
tion if and only if the conditions (12.34) hold, and if this is the case the unitary
completion is unique. For a matrix with scalar entries the conditions (12.34) are
equivalent to the conditions

JAd =1, k=1,...N, (12.63)

where the matrices Ay are defined in (12.31)-(12.33). Using (12.31) we obtain the
condition (12.63) with k£ =1 in the form

|d(1)|?> =1 — hih;.
Similarly, using (12.33) we obtain the condition (12.63) with k¥ = N in the form

[d(N)2 =1 fifw.
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For k =2,..., N —1 we use the fact that the condition (12.63) is equivalent to the
condition that the matrix I — A} Ay is positive and singular. Using the formula
(12.32) we get

YR Ya (XL, pYis  d(k)
A’f""“‘( Tk T RXi >(Xk+1a<zfm1 qu(k))'

By (12.56), we have
P (k)p(k) + a™ (k) Xi 1 Xprra(k) = Xp Xp
and hence using the notations (12.62) we get

. I— A, —(frd(k) + gx)
= Ay = < —(a (k) fi +97) 1= (|d(k)]* + i) > '

By the condition (12.58), the matrix Ay is positive definite. Hence, using the
equality (12.1) from Lemma 12.1 we conclude that the matrix I — A} Ay, is positive
and singular if and only if

(@ (k) fi + gi)(I = M)~ (frd(k) + gi) + |d(k)|* + Ryl = 1. (12.64)
Setting
ap = frll = A) oy Be=gi(I = A"y vk = g5 — Ax) " gk + hihy,
we rewrite (12.64) in the form
(1+ a)ld(k)[* + 2Re(d(k)Br) = 1 — .,

which is equivalent to

2
1— 2
1+ g L+oar  (I+oaw)
This means (12.59) with the numbers ag, by as in (12.60), (12.5). O

§12.4 Comments

In this chapter we extended to block matrices the results obtained in [5] for matri-
ces with scalar entries. Under the conditions (12.4), (12.16) the formula for unitary
completion in the factorized form was obtained by H. Dym and I. Gohberg in [11].
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Quasiseparable Representations
of Matrices, Descriptor Systems
with Boundary Conditions

and First Applications



Introduction to Part III

In this part we study the interplay between the quasiseparable and semiseparable
representations of matrices and discrete time variant systems with boundary con-
ditions. This part contains the transformation of matrices into descriptor systems
with boundary conditions and the deduction from the latter of different fast al-
gorithms. Note that the mentioned transformation allows to represent semi- and
quasi-separable representations as a type of forwards and/or backwards recursion
relations. As applications we describe the first fast algorithms for inversion of
matrices and fast algorithms for multiplication of matrices. The main results are
expressed in terms of the appropriate generators.



Chapter 13

Quasiseparable Representations
and Descriptor Systems
with Boundary Conditions

In this chapter we show that the quasiseparable representation of a matrix is
closely connected with the treatment of this matrix as a matrix of the input-output
operator of a discrete-time varying linear system with boundary conditions.

613.1 The algorithm of multiplication by a vector

Here we derive a fast linear complexity algorithm to compute a product of a matrix
in the quasiseparable form by a vector. In the subsequent section we show that
the relations used in this algorithm form a discrete time descriptor system with
homogeneous boundary conditions

Let A = {Aij}i\fj:l be a matrix of block entries of sizes m; x n; with qua-
siseparable generators p(i) (i = 2,...,N), ¢(j) (j = 1,...,N = 1), a(k) (k =
2,... . N—1); g(i) (i=1,...,N—1), h(j) (j=2,...,N), b(k) (k=2,...,N —
1); d(i) (i = 1,...,N) of orders r& 7Y (k = 1,..., N — 1). This means that the
matrix A has the quasiseparable representation

p(i)az;q(j), 1<j<i<N,
Ay = q d(i), 1<i=j<N, (13.1)
9(D)b5h(5), < quadl <i < j < N.

The multiplication of this matrix by a vector may be performed as follows.
Let # = col(z(i))Y, be a vector with column coordinates z(i) of sizes n;. The
product y = Az is a vector y = col(y(i))., with column coordinates y(i) of sizes

m;. The vector y is found as y = yr, + yp + yu, where y, = Apz, yp = Apx,

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 247
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_13, © Springer Basel 2014
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yu = Ayz and Ay, Ap, Ay are correspondingly the strictly lower triangular, the
diagonal and the strictly upper triangular parts of the matrix A.

For y;, one has y1,(1) = 0 and for ¢ > 2, using the first branch of the relations
(13.1), one obtains

D=3 Ayeli) = Y p(0aza()eG) = pli)x
where -
= Za;jQ(]’)m(])

One can see that the variable y; satisfies the following relations: x2 = ¢(1)x(1)
and fori=2,...,N — 1,

Xi+1 Z a2+1"7q Z a7,+1 jq ) + a’7,>+1,2q(7’)x(7')'

Using the equality (4.7) with i+1 instead of i and k = i—1 one gets a7, ; = a(i)ag;.

ij
Using also the fact that a; 1, = {rL one obtains the recursion

Xi+1 = afi Za”q +q(0)x(i) = a(i)xi + q() (7).

For yy one has yy(N) = 0 and for ¢ < N — 1, using the third branch of the
relations (13.1), one obtains

N
Z Aya(i) =Y g(b5h()x() = g(i)m:,
Jj=i+1 Jj=i+1

where
N
= > b5h)()
j=i+1
One has ny-1 = h(N)z(N) and from the equalities (4.8) and b |, = I,
follows that 7; satisfies the recursion relations

N
i1 = by h(G)a() Z b5 3405y i h(@)w (i) = b(i)ni+h(i)x(i).
Jj=t Jj=1+1
For yp it is obvious that yp(i) = d(¢)z(i), i =1,..., N.
From these relations one obtains the following algorithm for computing the
product y = Ax.
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Algorithm 13.1. (Multiplication by a vector)

1. Start with y,(1) = 0, x2 = ¢(1)z(1), yr(2) = p(2)x2 and for i = 3,..., N
compute recursively

xi =a(i — 1)xi—1 +q(i — D)x(i — 1), (13.2)
yr(i) = p(i)x:- (13.3)

2. Compute fori=1,..., N

yp (i) = d(@)x(i). (13.4)
3. Start with yy(N) =0, ny—1 = h(N)z(N), yo(N —1) = g(N — 1)ny—_1 and
for i =N —2,...,1 compute recursively
ni = b(i + 1)niy1 + h(i + Da(i + 1), (13.5)
yu (i) = g(i)n;. (13.6)
4. Compute the vector y
Yy=YyL+Yp +yu. (13.7)

This is a generalization of Algorithm 1.9.
The complexity of the operations used in Algorithm 13.1 is determined as
follows.

1. The formula (13.2): ;- 17‘1 Q-I-TZ 1n;—1 multiplications and (r 1 1)r1!3_2_~_
rE | (ni—1 — 1) additions.

2. The formula (13.3): m;r% | multiplications and m;(r’ ; — 1) additions.
3. The formula (13.4): m;n; multiplications and m;(n; — 1) additions.

4. The formula (13.5): r7r% | + rn;;1 multiplications and rY(r%; — 1) +
rY(nip1 — 1) addltlons

5. The formula (13.6): m;r¥ multiplications and m;(rY — 1) additions.

Indeed, the operation a(i —1)x;—_1 is a product of an r , x L | matrix a(i —1) by

an X | -dimensional vector y;_1 and hence it requires r* ;7% , multiplications and
(rl | —1)rL , additions. The operation q(i—1)z(i—1) is a product of an rX | xn;_;
matrix ¢(i — 1) by an n;_i-dimensional vector z(i — 1) and hence it requires
rL  n;_1 multiplications and 7% ; (n;_; — 1) additions. Thus, the total complexity
for computation of the value ; is less than 2(rX ;rF , + 7L ;n;_1) operations. In
the same way one obtains complexities for the computation of the other variables
of the algorithm. We conclude that the total complexity of Algorithm 13.1 is

N
c<2 Z[mk(rﬁl 1l A+ ng) Fnk1TE_ g e TE TR T+ TR TR ] (13.8)
k=1
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Let the sizes of blocks my, ny and the orders of generators £, ¥ be bounded
by the numbers m and r, respectively, i.e., mg, nx < m, r,f, r,g < r. In this case
(13.8) yields the estimate

c < 2N(4mr + 2r* + m?).

Thus for a matrix with quasiseparable representation the multiplication by a vector
costs O(N) operations in contrast to O(N?) for a matrix in general form.

§13.2 Descriptor systems with homogeneous
boundary conditions

Let A= {A”}Z "j=1 be a matrix with quasiseparable generators
p(i) (1=2,...,N), qji)G=1,...,.N=1), a(k)(k=2,...,N—-1)
g() (i=1,..., 1), h(j) (G=2,...,N),

N —
b(k) (k =2, .. ,N 1); d@)(i=1,...,N)

of orders rZ,r¥ (k=1,...,N —1). Let z, y be vectors such that y = Az. Consider
in detail the operatlons used in Algorithm 13.1. Using formulas (13.3), (13.4),
(13.6) one has

y(k) = p(k)xx + g(k)me + d(k)x(k), k=1,...,N. (13.9)
Here the auxiliary variables y, 7 are determined via the recursion relations

x1=0, x2=¢q@)z(1), xi=ali—1)xi-1+q(i—1z(i—1),i=3,...,N,
(13.10)
ny =0, ny-1=h(N)z(N), n;=>b(+1)nr1+h(E+)z(i+1), 1 =N-2,...,1.
(13.11)
Take r&, r§ to be arbitrary nonnegative integers and p(1), g(N),a(1),b(N) to be
arbitrary matrices of sizes my x r& my x r{, v x vl r§ | x 7Y, respectively.
One can rewrite relations (13.10), (13.11) in the form

x1 =0z, Xer1=a(k)xk+q(k)z(k), k=1,...,N-1, (13.12)
nN = 07.%7 Nek—1 = b(k)nk + h(k)x(k), k=N,...,2. (13.13)

Relations (13.9), (13.12), (13.13) together form what is called a discrete-time de-
scriptor system with homogeneous boundary conditions:

Xk+1 = a(k)xr + q(k)x(k), k=1,...,N —1,
Nk—1 = b(k)me + h(k)z(k), k=N,...,2,
y(k) = p(k)xx + g(k)ne + d(k)x(k), k=1,...,N,
x1 =0, nny=0.

(13.14)
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Here the vectors (k) (k =1,...,N) are called the input of the system, the
vectors y(k) (k = 1,...,N) are called the output, the vectors xi and n of sizes
r,f_l and r,g are called the state space variables of the system. The mapping from

z = (z(k)N_, toy = (y(k))A_, is a linear transformation which transforms the
input of the system into the output. This transformation is called the input-output
operator of the system

For convenience of notation, we define also the matrices ¢(N), h(1), a(N), b(1)
as arbitrary r{(, X Ny, rg X Ny, rﬁ X 7“]]’(,717 r([)] X r{] matrices respectively. Thus one
obtains the following.

Theorem 13.2. Let A be a block matrix with quasiseparable generators
p(k)a Q(k)v a(k); g(k)a h(k)a b(k)a d(k) k= 1,..., N.

Then A is a matriz of the input-output operator of the system (13.14) with
coefficients equal to the corresponding quasiseparable generators of A.

The inverse statement is also true.

Theorem 13.3. Suppose that a system (13.14) is given. Then the matriz A with
quasiseparable generators p(k), q(k), a(k); g(k), h(k), b(k); d(k) (k =1,...,N)
which are equal to the corresponding coefficients of the system, is a matriz of the
input-output operator of the system (13.14).

Proof. Let x be an input of the system. One can easily prove by induction that
the solution of the first equation in (13.14) is given by

Xk = Za;?ﬂ(j)w(j% k=1,...,N. (13.15)

Indeed, for k = 1 the relation (13.15) follows directly from x; = 0. Let for some
k, k > 1, the relation (13. 15) hold. Using the first equation from (13.14) and the
equalities a’,, , = I, agy, ; = a(k)ag ;, one gets

k—
X1 = af Z ag;4(7)x(5) + q(k)a(k)

= Z ai1,;4()2 () + agyq pa(k Zak+1 7a(7)z(4).
=1

Similarly, the solution of the second equation in (13.14) is given by

N
> bgh(e(i), k=N,...L (13.16)
j=k+1
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Indeed, for k = N the relation (13.16) follows directly from 5y = 0. Let for some
k,k < N the relation (13.16) hold. Using the second equation from (13.14) and
the equalities by, =1 by, 5= b(k)bk], one gets

Bt =00) 3 BERGIG) + h(Re )
j=k+1
N
Z bk 1] >+b 1kh Zb jh
j=k+1 i=k

Thus for the output y one obtains

Zak] j) + d(k) Z b k=1,...,N.

j=k+1
Therefore, one obtains y = Az, with the matrix A given by (13.1). O
Remark 13.4. The system (13.14) may be transformed to the form
Apug1 = Brug + Crz(k), k=1,...,N,

y(k) = Eyup + Frugsr + d(k)x(k), k=1,...,N, (13.17)
Pul = 07 QUN+1 = 07

with

p(k ), Fr=(0 g(k)),

p_ <(é()> QZ(?)?) (13.18)

Conversely, a system (13.17) with Ej, Fj, P,Q as in (13.18) and

Ak:(&(o) 58@)7 B'f:(é(ok) dfm)’

where a(k), d(k) are invertible matrices, may be transformed to the form (13.14).
The form (13.17) of a descriptor system with boundary conditions is used often in
system theory.

Applying Theorem 13.2 and Theorem 13.3 to triangular matrices one obtains
the following statements.
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Corollary 13.5. A matriz A is a lower triangular matrix with lower quasiseparable
generators p(k),q(k),a(k) (k=1,...,N) and diagonal entries d(k) (k=1,...,N)
if and only if A is a matriz of the input-output operator of the system
Xk+1 = a(k)xk +q(k)x(k), k=1,...,N—1,
y(k) = p(k)xx + d(k)x(k), k=1,...,N,
x1 = 0.
Corollary 13.6. A matriz A is an upper triangular matrix with upper quasiseparable
generators g(k), h(k),b(k) (k =1,...,N) and diagonal entries d(k) (k=1,...,N)
if and only if A is a matriz of the input-output operator of the system
Nk—1 = b(k)ﬁk +h(k)$(k), k :Na"'a2
y(k) = g(k)m + d(k)x(k), k=1,...,N
nN = 0.

§13.3 Examples

Example 13.7. Consider the N x N matrix from Example 5.13,

d 1 2 3 N -2 N-—-1
1 d 4 6 2(N-2) 2(N-1)
2 4 d 9 3(N-2) 3(N-1)
A= 3 6 9 d 4(N—-2) 4(N-1)
N-2 2(N-2) 3(N-2) 4N-2) - d (N —1)?
N—-1 2(N—-1) 3(N—-1) 4N-1) -+ (N-1)? d

The following lower quasiseparable generators, which have been obtained in
the same Example 5.13, and the following diagonal entries can be used:

p(@)=i—1,i=2,...N, q(j)=j,j=1,...N—1, a(k)=1k=2,....N—1,
h(i)=i—1,i=2,...N, g(j)=j.j=1,...N—1, blk)=1,k=2,...N—1,
d(k)=d, k=1,...,N.

Then the descriptor system with boundary conditions (13.14) becomes

Xk+1=a(k‘)Xk +q(k)x(k)=xr +kz(k), k

_1=b(k)nk +h(k)x(k)=n,+ (k—1D)x(k), k=N,...,2,
() p(k)xw+9(k)ne +d(k)z(k) = (k —1)xx + kne +dx(k), k=1
x1=0, nn=0. O
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Example 13.8. Consider the N x N matrix

w h h h h
p a 0 0 0
p 0 a O 0
A=1p 0 0 «a 0
p 0 0 0 -+ «

For A one can use the following quasiseparable generators

p(i)=p, i=2,...,N, ¢q(1)=1, ¢q(j)=0,j=2,...,N —1,
alk)=1,k=2,...,N—1, g¢g(1)=1, g()*0,372 LN -1,
h(i)=h,i=2,...,N, b(k)=1, k=2,...,N —1,
d(l)=p, dk)=a, k=2,...,N.
Then the descriptor system with boundary conditions (13.14) reads
x1=0, nyv=0 x2=a(l)x1+q1)z(l)=xz(1),
Xk+1—a(7f)><k+qk‘)()—1 Xe+0- x(k) 1)7 k=2,...,N—1,
(k)Xk+9(k)77k+d( Jz(k) = (1)+nk+a:c(k) k=2,...,N,
) (

( )
)=

y(1) =p(W)x1 + g(1)m + px(l) = n1 + pax(1). o
Example 13.9. Consider the 5 x 5 matrix
d 2 1 1 1
2 d 2 1 1
A= 1 2 d 2 1
1 1 2 d 2
1 1 1 2 d

from Example 5.16 and use the quasiseparable generators of order two obtained
there.

Then the first state space variable of the descriptor system with boundary
conditions (13.14) becomes

x1=0, x2=a(l)x1+q(l)z(l)=u2(1),
(e (- (38).
(o o) (2)+ (1)

x +x

X4

X5

Il
—
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~—
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The other state space variables of the system becomes

n5s =0, n4=0b(5)n5 + h(5)z(5) = x(5),

e () (3 )= (05 )
(1 8)(35(5;&)36(4))*(;)””(3) ( ((5)) (())++2xx<(33))>7

(1 0) ( ;"((55))j j(%)j;;(é”;) > 4+ 20(2) = 2(5) + 2(4) + 2(3) + 22(2).

12

=~
I

From the form of the state space variables, it follows that the components of
the output vector can be obtained as

y(1) = p(L)x1 + g()m + d(1)z(1) = m + da(1)
=dz(1) 4+ 22(2) + =(3) + z(4) + x(5),
y(2) = p(2)x2 + 9(2)n2 + d(2)x(2) = 22(1) + dz(2)
P 0) (GEIET )
= 2x(1) + dz(2) + 22(3) + z(4) + =(5),
y(3) =pB3)xs + 9(3)ns + d(3)z(3)

(1 2) ( igg ) 11 )( x(5>x+)m(4) )+dm(3)
= (1) + 2x(2 )—I—dx(?) +

—~

and
y(5) = z(1) + z(2) + z(3) + 2z(4) + dz(5). O

§13.4 Inversion of triangular matrices

In the sequel in this chapter we apply the system approach to design of fast
algorithms. We start with the simplest case of inversion of triangular matrices.

Theorem 13.10. Let A = {A;;}N Yj=1 be an invertible block lower triangular matriz
with entries of sizes m; x m;, with lower quasiseparable generators p(k), q(k), a(k)
(k=1,...,N) of orders r£ and diagonal entries d(k) (k=1,...,N).

Then the inverse A~' is a block lower triangular matriz with lower qua-
siseparable generators —(d(k)) " 1p(k), q(k)(d(k))~!, a(k) —q(k)(d(k)) " *p(k) (k =
1,...,N) of orders rt and diagonal entries d(k)~™' (k=1,...,N).
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Moreover, the solution of the system of linear algebraic equations Ax =y is
obtained via the following algorithm:

Start with
2(1) = (d(1))"'y(1), x2 = ¢(1)x(1), (13.19)
then for k=2,..., N — 1 compute recursively
(k) = (d(k)) " (y(k) — p(k)xx), (13.20)
Xi+1 = a(k)xk + q(k)z(k), (13.21)
and finally compute
z(N) = (d(N)) " (y(N) = p(N)xn)- (13.22)

Proof. By Corollary 13.5 A, is a matrix of the input-output operator of the system

Xk41 :a(k)Xk+q(k)x(k)a k= 17"'3N713
y(k) = p(k)xx + d(k)z(k), k=1,...,N, (13.23)
x1 = 0.

Switching the input and output one obtains the inverse system

Xkt1 = (a(k) — q(k)(d(k)) "' p(k)xk + q(k)(d(k))"'y(k), k=1,...,N 1,
(k) = —(d(k)) " p(k)xk + (d(k)) "y (k), k=1,....N,
x1 =0, (13.24)

which corresponds to the inverse matrix A~!. Applying Corollary 13.5 again, but
in the opposite direction, we conclude that the elements

—(d(k)) " p(k), qk)(d(R)) ", alk) — q(k)(d(k)"p(k) (k= 1,...,N)

and d(k)~! (k= 1,..., N) are lower quasiseparable generators and diagonal entries
of the lower triangular matrix A~!. It is clear that the orders of these lower
generators are the same as for the original matrix A.

Combining the first and the last equations in (13.23) and the second equation
n (13.24) one obtains the formulas (13.19)—(13.22). O

The complexity of the operations used in Theorem 13.10 to compute gen-
erators and diagonal entries of the inverse matrix is calculated as follows. The
computation of the values (d(k))~! costs p(my), where p(m) denotes complex-
ity of inversion of an m X m matrix using a standard method. The compu-
tation of (d(k))~1p(k),q(k)(d(k))~1, a(k) — q(k)((d(k))~‘p(k)) costs respectively
mirk | rkm2 rEmgrl | arithmetic multiplications and my (mg—1)rE |, rE(my—
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Dymy, 7E(mg — 1)rE | arithmetical additions. Thus the total complexity here is
given by the expression

N
c< Z(ﬁ(mk) +2mirk | 4 2rEm2 4 2rkmprk )
k=1

and setting m = max;<p<ny(myg), r = maXOSkSN(rﬁ) one obtains the estimate
c < N(p(m) + 4m?*r + 2mr?). (13.25)

The complexity of the solution of the system Az = y is determined by the
number of operations which are used in the formulas (13.20), (13.21) to compute
the values x, xx. The computation by these formulas costs respectively less than
p(mi) +m2 + my(mg — 1) + my + 2mkr£71 and 2r£r,€71 + 2r,€mk arithmetical
operations, where p(m) is the complexity of solving an m X m system of linear
algebraic equations using a standard method. Thus the total complexity here is

N
c< Z(kar,’;:l +2m3 + p(mg) 4+ 2rErE |+ 2rEmy,)
k=1

operations and the estimate is
c < (dmr +2m? + 2r* + p(m))N. (13.26)

Note that this way we solve the system without computing the quasiseparable
generators of the inverse matrix.

Example 13.11. Consider the N x N matrix

100 --- 00

110 --- 0 0

111 - 00
A= :

1 1 1 1 0

1 11 11

For A one can use the following lower quasiseparable generators of order 1
p(i)=1,1=2,...,.N, q(j)=1,j=1,....N-1, ak)=1,k=2,...,N—1,

and the diagonal entries d(k) =1, k=1,...,N.
In this example we will apply Theorem 13.10 in order to find the inverse
matrix A~! and the solution z = (z(k))g=1,n of the linear system Az =y for a
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given vector y = (y(k))r=1,n. First, by this theorem the inverse A~! is a block
lower triangular matrix with lower quasiseparable generators

p'(i) = —(d(i)) " 'p(i) = 1, i=2,...,N,
q(j) = q()(d() ! =1, j=1,...,N—1,
and

of orders 1, and diagonal entries d’(k) = d(k)"' =1 k=1,...,N. It follows that

100 0 0
-1 10 0 0
0 ~1 1 00
AT = ,
0 00 - 10
0 00 - -11

Indeed, a direct computation also shows that the matrix A~! above is the inverse
of the given matrix A.

Moreover, by Theorem 13.10 the solution of the system of linear algebraic
equations Ax = y is obtained via the following algorithm:

Start with (13.19) to compute

then for k =2,..., N — 1 compute recursively by (13.20)
2(2) = x(k) = (d(k)) " (y(k) — p(k)xx) = y(2) — (1),
and by (13.21)
X3 = X1 = a(k)xk + q(k)z(k) = x2 + 2(2) = z(1) + 2(2).
Suppose that for a certain k, 2 < k < N — 2 we have
w(k) =y(k) —x(1) —2(2) —2(3) —--- —a(k - 1)

and
Xi+1 =z(1) +2(2) +2(3) + - - - + z(k)
which are true for k¥ = 2. We will prove this for k 4+ 1. We have by (13.20)

w(k+1) = (d(k+ 1)) (y(k + 1) — p(k + 1)xk+1)
=1-ylk+1)—1-(xz(1)+2(2)+z(3)+ -+ x(k))
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and by (13.21)
Xiro = a(k+1)xpp1+q(k4+1)z(k+1) = 1-(z(1)+z(2)+2(3)+- - -+z(k))+1-z(k+1)

so that the induction on k is completed.
Finally, perform the last step of the algorithm, i.e., compute by (13.22)

o(N) = (d(N) ™ (y(N)=p(N)xw) = y(N) —2(1)~2(2) ~2(3)—...—x(N=1). O

Example 13.12. Consider the N x N matrix

300 --- 00
13 0 --- 00
o013 --- 00
A= . :
000 --- 30
000 --- 1 3

For A one can use the following lower quasiseparable generators of order 1
pii)=1,i=2....N, q(j)=1,j=1,....N—1, a(k)=0,k=2,...,N—1,

and the diagonal entries d(k) =3, k=1,...,N.

In this example we will apply Theorem 13.10 in order to find the inverse
matrix A~! and the solution z = (z(k))g=1n of the linear system Az =y for a
given vector y = (y(k))k=1 n. First, by this theorem the inverse A~! is a block
lower triangular matrix with lower quasiseparable generators

_ 1
(i) = =(d@)"'pi) = =5 i=2,.. N,
A 1
¢()=ai)dG) " =5 =L N1
and ) 1
@ (F) = ak) — g(B)(AR) () =0~ S =~ k=2, N
of orders 1, and diagonal entries d'(k) = d(k)™' = 1 k =1,...,N. It follows
that
: 0 0 - 0 0
i : 0 - 0 0
9
1 7? 1 . 0 0
27 9 3
Al = . . .
(71)N—2 (71)N—\5 ( 1)N—4 1 0
Syver (St B 5
1 1
( 3)N (31\2—1 3N-2 -1 3 <>
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In a similar way as in Theorem 13.10, but using Corollary 13.6. one obtains
the corresponding result for upper triangular matrices.

Theorem 13.13. Let A = {Aij}%=1 be an invertible block upper triangular matriz
with entries of sizes m; X m;, with upper quasiseparable generators g(k), h(k), b(k)
(k=1,...,N) of orders v and diagonal entries d(k) (k=1,...,N).

Then the inverse A= is a block upper triangular matriz with upper qua-
siseparable generators —(d(k))~1g(k), h(k)(d(k))~t,b(k) — h(k)(d(k)) tg(k) (k =
1,...,N) of orders r and diagonal entries d(k)~* (k=1,...,N).

Moreover, the solution of the system of linear algebraic equations Ax =y is
obtained via the following algorithm:

Start with

2(N) = (d(N)) " y(N), ny-1 = h(N)z(N),
then for k=N —1,...,2 compute recursively

(k) = (d(k) " (y(k) — g(k)m),
k-1 = b(k)nk + h(k)z(k)
and finally compute

w(1) = (d(1)) " (y(1) — g()m).

One can easily check that the complexity of the algorithm from Theorem
13.13 satisfies the estimate (13.25).

§13.5 Comments

Systems of the form (13.14) and their input-output matrices were studied and
used by I. Gohberg, M.A. Kaashoek and L. Lerer in [38] and by P.M. Dewilde and
A.J. van der Veen in [15]. In the paper [22] systems with more general boundary
condition were considered.



Chapter 14

The First Inversion Algorithms

Here we consider inversion methods for some classes of matrices and representa-
tions. In the first section we apply the idea used in Section §13.4 for a general case
of matrices with quasiseparable representations with invertible diagonal entries.
In the second section we discuss an inversion method for matrices with lower qua-
siseparable and upper semisiseparable representations, under some restrictions on
generators. This method is based on the representation of the matrix as a sum
of an invertible lower triangular matrix and a matrix of a small rank. The same
results are obtained in the subsequent Chapter 16 via the system approach.

§14.1 Inversion of matrices in quasiseparable represen-
tation with invertible diagonal elements

Consider a matrix A = {Aij}i\szl with quasiseparable generators

p(i)(iZQ,...,N>, q(j)(j:L...,N—l), a(k;)( :2,...,]\7—1)
g(i)(izlv"'vNilx h(])(]:27 ,N),
b(k) (k=2,....N—1); d(G)(i=1,...N)

of orders rf,rY (k=1,...,N —1). Let 2,y be vectors such that y = Az.

Let rf,r¥ be arbitrary nonnegative integers and p(1),g(N),a(1),b(N) be
arbitrary matrices of sizes my X r{}, mpy X r%, rf X r{}, 7"%71 X 7“][{,, respectively.

Consider also the discrete-time descriptor system with homogeneous bound-
ary conditions (13.14) for which A is the matrix of the input-output operator.
Suppose also that all d(k), k =1,..., N are invertible.

In this case one can obtain the coordinates of the input variable z(k), k =
1,..., N, as an expression in the coordinates of the output variable y(k), k =
1,..., N, the state space variables xx,nx, kK = 1,..., N and some of the quasisep-
arable generators of the matrix A. Indeed, multiplying

y(k) = p(k)xx + g(k)ni + d(k)x(k), k=1,....,N

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 261
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_14, © Springer Basel 2014
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on the left by (d(k))~! one obtains
(k) = —(d(k)) " p(k)xk — (d(k) " g(k)me + (d(k) " y(k), k=1,...,N. (14.1)
Substituting these coordinates in the recursion relations

i1 = a(k)xx +q(k)z(k), k=1,...,N—1,
Me—1 = b(k)nk + h(k)z(k), k=N,...,2

of the state space variables, it follows that

Xit1 = (a(k) — q(k)(d(k) ™ p(k))xe — a(k)(d(k) ™ g(k)nk + q(k)(d(k)) " y(k),

k=1,...,N—1, (14.2)
-1 = —h(k)(d(k)) " p(k)xn + (b(k) — h(k)(d(k)) " g(k))mk + h(k)(d(k) " y(k),
k=N,...,2. (14.3)

In order to define completely the state space variables only their boundary values
x1=0,nv=0 (14.4)

are needed.
Denote by a* (k),b*(k),c*(k),e*(k), f*(k),g*(k), k=1,..., N, the matri-
ces

a* (k) = a(k) — q(k)(d(k))"'p(k), k=1,...,N—1, (14.5)
b (k) = b(k) — h(k)(d(k))"'g(k), k=N,...,2, (14.6)
(k) = q(k)(d(k) "t g(k), =1,...,N—1, (14.7)
e* (k) = h(k)(d(k)) " 'p(k), N,...,2, (14.8)
FX (k) = h(k)(d(k) " y(k), =N,...,2, (14.9)
97 (k) = q(k)(d(k)) " y(k), =1...,N-1 (14.10)

Then the system (§14.1)—(14.4) becomes

Xir1 = a* (k)xx — ¢ (K)ne + g™ (k),  k=1,....N -1,
Nk—1 = _ex(k>Xk+bX(k)nk+fX(k>7 k=N,...,2, (1411)
x1=0, nny=0.
If f*(k), g*(k) are taken as the right-hand side the system (14.11) becomes

Xk+1*ax(k)Xk+CX(k)77k:Qx(k)a kil,...,N*L
Me—1 + e (K)xe =0 (kK)m. = f*(k), k=N,...,2,
x1 =0, nny=0.
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It follows that the system (14.11) can be rewritten as the following system
of linear algebraic equations:

I 0 0 0 0 0 0 X1
—a*(1) ¢*(1) I 0 0 0 0 m
0 I eX(2) —bX(2) 0 0 0 X2
0 0 —a*(2) ¢*(2) 1 0 0 72
0 0 0 I eX(3) 0 0 X3
0 0 0 0 0 o e (N) =05 (N) | |
0 0 0 0 0o -~ 0 I N
= (0 (W) (F*@) (@*@)T (@) - ()T 0)"
(14.12)

with a block tridiagonal matrix. Thus the inversion of the matrix A has been
reduced to the inversion of a block tridiagonal matrix.

Also, let a(N),b(1) be arbitrary matrices of sizes r% x rk | and 7§ x ¥
respectively.

Theorem 14.1. Let A = {Ay}Y,_, be a block matriz with entries of sizes m; X
mj, with lower quasiseparable generators p(k),q(k),a(k) (k=1,...,N) of orders
rE, upper quasiseparable generators g(k), h(k),b(k) (k = 1,...,N) of orders rY
and invertible diagonal entries d(k) (k=1,...,N). Using these generators define
a*(k), b= (k),c*(k),e* (k) via the relations (14.5)—(14.8).

The matriz A is invertible if and only if the matriz in (14.12) is invertible.
Moreover, if the last condition holds, then for any block vector y = (y(k))A_, the
solution © = (z(k))N_, of the equation Az =y is given by the relation (14.1).

Proof. Let the matrix in (14.12) be invertible. One must prove that A is invertible
also. Suppose to this end that Az = 0, and let us show that x = 0.

Substituting y(k) = 0, k = 1,..., N in (14.1), (§14.1), (§14.1), (14.9) and
(14.10) one obtains

(k) = —(d(k))"'p(k)xx — (d(k) " g(k)ne, k=1,...,N, (14.13)
with

k1 = (a(k) — q(k)(d(k)) " p(k))xk — q(k)(d(K)) " g(k)m,  k=1,...,N—1,
k-1 = —h(k)(d(k)) " p(k)xi + (b(k) — h(k)(d(k) " g(k))m, k= N,....2.

In the notations (14.5)—(14.8), it follows that z is given using state space variables
Xk, M, which satisfy (14.11) with f* (k) = 0,¢* (k) = 0. This means that the state
space variables are a solution of the system (14.12) with the right-hand side equal
to zero. By the assumption, this means that the state space variables themselves
are zero, which by virtue of (14.13) yields (k) =0, kK =1,..., N. Therefore, the
matrix A is invertible.
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Conversely, suppose that the matrix A is invertible. Let xx,mx k= 1,..., N,
be the solution of the system (14.12) with the zero right-hand side. This means

Xk+1:ax(k>Xk—C><(k)77k7 k:17"'7N_17
Ne—1 = —e*(K)xx + 0 (k)mk, k=N,...,2, (14.14)
x1=0, nny=0.

Using the relations (14.5)—(14.8) we get

X1 = a(k)xe + q(k) (= (d(k) ™ p(k)xn — (d(k)) ™ g(k)me),

k=1,...,N—1, (14.15)
M1 = b(k)m + h(k)(—(d(k)) " p(k)xr — (d(k) " g(k)me),
k=N,...2 (14.16)

Set (k) = —(d(k)) " p(k)xr — (d(k))~*g(k)nk, which is equivalent to
p(k)xk + d(k)z(k) + g(k)ne =0, k=1,...,N. (14.17)

Combining relations (14.15)—(14.17) we get

Xk+1 = a(k)Xk + Q(k)x(k)v k= 1. N — 1,
Ne—1 = b(k)ni + h(k)z(k), k=N,...,2, (14.18)

x1 =0, nny=0.

Comparing with (13.14) we conclude that Az = 0, where z = (z(k))X_,.
Since the matrix A is invertible, it follows that z = 0. Inserting this in (14.18) we
get

x1=0, Xit1=alk)xx, k=1,...,N—1,

v =0, me—1 =bk)ne, k=N,...,2
whence

Xk =0, e =0, k=1,...,N.

Therefore, the matrix in (14.12) is invertible. O

There exist various fast methods for the solution of systems of the form
(14.12). We may consider the matrix in (14.12) as a band matrix with the band-
width 7% + U, where r¥ = max)_, rf and r¥ = max}_, 7V and use a method
described for instance in [43], pp. 202-207. However, we can use the block tridiag-

onal form of the matrix and the identity entries in the lower subdiagonal in order
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to simplify the algorithm. Equation (14.12) is equivalent to the conditions (14.4)
and the equation

(1) I 0 0 -0 0 m g (1)
I eX(2) —b*(2) 0 -0 0 X2 f*(2)
0 —a*(2) ¢*(2) I -0 0 M2 9%(2)
0 0 I eX@3) -0 0 xs | = | £773)
6 0 0 0 jex(.N) X.N fX(N)

(14.19)
with the matrix obtained from the matrix in (14.12) by deleting the first and the
last columns and rows.

Proceed as in the method of Gaussian elimination. Consider the extended
matrix A that corresponds to equation (14.19). In the first stage take the first
three rows of A,

c*(1) I 0 0 -+ 0 g*(1)
I eX(©2) —b%@2) 0 - 0 X2 |,
0 —a*(2) ¢*(2) I 0 ¢g*(2)

and perform the following transformations. Multiply the second row by ¢*(1),
subtract the result from the first one and interchange the resulting first two rows.
The result is the matrix

I e (2) —b%(2) 0 -+ 0 £4(2)
0 I—c*(1)eX(2) (b (2) 0 -+ 0 g*(1)—c(1)f*(2)
0 —aX(2) X2 I 0 9%(2)

Next applying Gaussian elimination with partial pivoting to the last two rows of
this matrix we transform it to the upper triangular form

I eX(2) =b<(2) 0 0 - 0 fX(2)
0 )\2 P2 w2 o --- 0 §2 s
0 0 62 V2 0o --- 0 g/2

with upper triangular Az, ¢z. Taking the last row from this matrix and the two
next rows from A we obtain the matrix

0 0 & vy 0 0 -~ 0 g
00 I eX@3) —b3 0 -~ 0 fX@3)
0 0 0 —a*(3) ¢*(3) I 0 ¢*(3)

For such a matrix we may proceed as above, and so on. At every step except the
last one we obtain a matrix of the form

0 - 0 &1 vk 0 0 0 g,
0 - 0 I e*(k) —b<(k) O 0 F*(k)
0 -~ 0 0 —a*(k) (k) I 0 g*(k)
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Such a matrix is reduced to the form

0 -~ 0 I eX(k) —b*(k) 0 0 0 fx(k)
0 - 0 0 X Pk wp, 0 -~ 0 g
0 0 O 0 Ek Vk O O g;c

with upper triangular Ay, .
In the last step we deal with the last two rows of the transformed matrix,

which are
0 0 -+ 0 énv—1 YN-1 Gn_q
00 --- 0 I e*(N) f*(N)

Multiplying the second row by ¢x_1, subtracting the result from the first row and
next changing the first and the second rows we obtain the matrix

(oo 00 W 7A)

where Ay = vn_1 — én—1e”(N) and gy = g1 — en—1f " (N).
Thus equation (14.19) is reduced to the form

. (2)

I eX(2) —bX(2) 0 0 0 ! G2
0 A P2 wo 0 0 X2 £4(3)
0 0 I eX(3) 0 0 Zi _ s
0 0 0 0 - 0 A : X (N
N XN f*(N)

gN

The last equation can be solved easily.
Thus we obtain the following algorithm.

Algorithm 14.2. Let A be an invertible matrix with quasiseparable generators
p(k),q(k), a(k); g(k), h(k),b(k);d(k) (k =1,...,N), such that the diagonal entries
d(k) (k=1,...,N) are invertible.
Then the solution x of the equation Az = y is obtained as follows:
1. For k =1,..., N perform the following operations: find the solutions ¢y, ¢,
wr. of the equations

d(k)¢r =p(k), d(k)or = g(k), d(k)ur = y(k),
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2. Solve the system (14.12) to obtain the values xx, 1k, £k =1,..., N. as follows:
21.1. Set x1=0,ny =0, v1 =1, ¢f = g*(1), ¢&1 =™ (1).
2.1.2. For k=2,...,N — 1, perform the following: compute

¢ =Vk—1 — k1€ (k), cf =c_1b*(k), g1 = gh_1 — —1f"(k),

using Gaussian elimination with partial pivoting transform the ma-
trix
G4 0 g
—a* (k) (k) T g (k)

( Ak Pk Wk Gk >
0 & w g, )’
2.1.3. Compute Ay = vy—_1 —én—1e*(N), gn = gh_1 — en—1f<(N).
2.2.1.  Find the solution yy of the equation Ay xn = gn, compute ny_1 =
JHN) — e (N)xw-
2.2.2. For k=N —1,...,2, find the solution xj of the equation Axxr =
Gk — PrMk — Wi Xk+1 and compute ng 1 = f* (k) —e* (k) xx +b™ (k).
3. For k=1,...,N. find the components of the solution

to the form

z(k) = —rXxk — kK + -
4. Obtain the solution as = = col(x(k))I_; .

Let us calculate the complexity of this algorithm. To this end we denote by

1. v(m) the complexity of solving an equation Agz = y with an unknown block
column vector x of size m; if X and Y are matrices with k columns, then the
complexity of the equations AgX =Y is kv(m).

2. ¢(m, k) the complexity of transforming an m X k submatrix to an upper
triangular form using Gaussian elimination.

3. v(m) the complexity of the solution of a system of linear algebraic equations
with an m x m (upper) triangular matrix.

Denote also r = maX,iV:O r,%, s = max,ivzo r,ﬂﬂ n = maX,iV:O ng. These will be
used mainly in upper estimates for the product of two matrices; for example, the
product of an rﬁ X n, matrix and an n; X r,lil matrix costs exactly r,f o ‘7”12]71
multiplications and r,f “(ng—1)- 7"12]—1 additions, hence less that 2rns operations.

Step 1 of the algorithm asks solving for each k = 1,..., N three systems,
with an ng X 7‘#17 an ng X rg and an n; X 1 matrix, which means at most
Nv(n)(r + s + 1) operations. For each k # N, three multiplications of an 7F x ny
matrix with an ng x 7“1];117 an ng X r,g and an n; X 1 matrix are performed,
together with a subtraction of two r,]j X r,f_l matrices, which cost in total less
than N(272n + 2rns + 2rn + r2) operations. For each k # 1, three multiplications

of an r,gA X ny matrix with an ng x r,& an ny X r,il and an ng X 1 matrix are
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performed, together with a subtraction of two 7{ | x r¥ matrices, which cost in
total less than N (2s%n + 2rns + 2sn + s?) operations.

In Step 2.1.2 of the algorithm, for each £ = 1,..., N a submatrix of size
(rk 4+ rE)y < (rE_, +7Y) is brought to the upper triangular form, which costs at
most N({(2r,r 4+ s) operations.

The same step as well as Step 2.1.3 performs three matrix multiplications
with the r,il X r,&l matrix ¢;_1, respectively ¢y_1, with matrices of sizes r,&l X
r,f_l, 7'12]—1 X r,g and 7"12]—1 x 1, together with two subtractions of r,f_l X r,f_l and
rE_| x1, so that the total cost of these steps is less than N (2rs(r+s+1)+7%+7).

Steps 2.2.1 and 2.2.2 find the unknown vectors xx, k = 2,..., N, from equa-
tions with an upper triangular matrix, which costs (N —1)v(rf_,) operations, plus
four matrix multiplications with a vector and four subtractions. These have an ex-
tra cost of less than 27‘,5_1 -r,g +2r,€_1 -r,f +2r,(€]_1 ~r,€_1 —1—27“,2]_1 ~r,g —1—27“,5_1 +2r,(€]_1.
In total, these two sub-steps cost less than N (v(r) + 4rs + 2r? + 252 4 2r + 2s).

Finally, Step 3 asks for 2/N multiplications and 2N additions and it costs less
than N (2nr 4 2ns + 2n) operations.

The total complexity of the algorithm is thus less than

(V) (r+s+1)+2(r+s)>+(r+s)n+r’+s+(2r,r+s)+2rs(r+s+1)
+r? +r4v(r) +4rs + 2r? 4+ 2% + 2r + 2s + 2nr + 2ns + 2n) N.

Example 14.3. Consider the N x N matrix

1 a a? - a2 oN-

b 1 a - a3 N2

b 1 o aVt N
A= )
bN'72 bNﬂS bN74 . 1 a
bel bN72 bN73 . b 1

which has been introduced in Example 5.14. The inverse of this scalar matrix will
be found again to be exactly as in (10.29) for the scalar case.

For A a set of quasiseparable generators have been obtained in Example 5.14,
namely

p(i)=b, i=2,...,N, a(k)=b, k=2,...,N—1,
hi)=a, i=2,....N, blk)=a, k=2,...,N—1,

Consider the equation Az = y. Then the above algorithm will find = for a
given y in the following way.
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Define like in (14.5)—(14.10) for k=1,...,N — 1

@ (K) = a(k) — a(R)(d(R) "p(k) = b— | =0, (k) = a(R)(d(R)) "g(k) = 1,
g (k) = a(k)(d(k) "y (k) = y(k)

and for k=2,...,N

(k) = b(R) — A(E)(A(R) (k) = a— T =0, ¢ (k) = h(K)(d(k) " p(k) = ab

£ (k) = h(k)(d(k) " y(k) = ay(k).

Solve the following linear system of 2N equations with 2N unknowns with a
tridiagonal matrix:

100 0 0 0 0 X1
01 1 0 0 0 0 m ay((l))
01 ab 0 0 0 0 Yo 3”(2>
00 0 1 1 0 0 - ayy(>
00 0 1 ab 0 0 =

_ . s y(3)
00 0 0 0 - ab 0 N ;
00 00 0 -~ 0 1 nN “ygN)

Note that this matrix is invertible under the additional assumption that ab # 1.
From the theorem it follows that the matrix A is also invertible if and only if this
condition takes place.

This ends the first step of Algorithm 14.2. In Step 2 solve the system (14.12)
to obtain the values xx, nx, k=1,..., N as follows:

Perform Sub-step 2.1.1, i.e., set

x1=0,ny=0,v =1 g1 =g"(1)=y(1), & =c*(1) =L
Perform Sub-step 2.1.2: first for k = 2, i.e., compute
Cp = V-1 — Cp—1e (k) =1—ab, ) =cp_1b*(k)=1-0=0,
9k = k-1 — Ce—1f (k) = y(1) — ay(2)
then form the matrix

(afy oy 7 o5 ) =07 110 ).

No Gaussian elimination with partial pivoting is needed to transform the matrix

to the form )
Ak PE Wk Gk
0 & w g, )
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It follows that

do=1—ab, pa=0, we=0, go=1y(l)—ay(2),
¢ =1, ve =1, g5 =y(2)

Perform again Sub-step 2.1.2, now in turn for £k = 3,..., N — 1. Since a* (k),
b*(k), ¢*(k), e*(k), f*(k) and g* (k) are constant, namely equal to a*(2), b*(2),
c*(2), e*(2), f*(2) and g*(2), respectively, it follows that for any k =3,...,N—1
we have again

)\k) =1- ab7 Pk = 07 Wy = 07 gk = y(k - 1) - a’y(k)
=1 e =1, g, =y(k).

In Sub-step 2.1.3 compute
AN = UN_l—éN_lex(N> =1—ab, gy = gEV—l_EN—le(AO = y(N—l)—ay(N).

Sub-step 2.1 is now complete.
In Sub-step 2.2.1 find the solution x of the equation Ay xny = gy, in our

ay(N) — y(N — 1)

ab—1 ’

and compute ny_1 = f*(N) — e*(N)xn. In our case

XN =

L (ay(N) (N 1)

_aby(N — 1) — ay(N)
ab—1 '

nn-1 = ay(N) — abxny = ay(N) —

Perform Sub-step 2.2.2 for Kk = N — 1, i.e., find the solution xyy_1 of the
equation AN _1XN-1 = gN—1—PN-1MN—1—WN—_1XN and compute ny_o = f*(N—
1)—e*(N=1)xn—1—b*(N—1)nny—_1. In our case py_1 = wy_1 =b*(N—-1) =0,
so that

—-1) - — —2)—ay(N —1
N ay(N ;l))_ i/(N 2), - aby(N jz))— 1y( ) (14.20)

Perform again Sub-step 2.2.2 for k = N —2,...,2, i.e., find the solution xj of
the equation A\g Xk = gk — peMk — WrXk+1 and compute n_1 = f>* (k) —e*(k)xr —
b* (k)ng. Since Ak, pr, wk, f*(k),e*(k),b* (k) are constant upon k, which means
that they are equal to Ay—1,pn—1,wn—1, f*(N —1),e*(N —1),b*(N — 1), re-
spectively, and g = y(k — 1) —ay(k), k = N —1,...,2, it follows that, like in
(14.20),

ay(k) — y(k — 1) aby(k — 1) — ay(k)

Xk = ab—1 y NMk—1 = ab—1
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In the third step of Algorithm 14.2, using (14.1) one obtains the solution
z(k) =y(k) — . —bxk, k=1,...,N.

Fork=2,...,N -1

(ab—1Dy(k) — bay(k) + by(k — 1) + ay(k + 1) — aby(k)

z(k) = ab—1
~ by(k—1) = (ab+ 1)y(k) + ay(k + 1)
N ab—1 ’
while
2(1) = y(1) — 1 = (ab — 1)y(1)a;itb1y(1> +ay(2) _ —y(i)bt(iy@)
and

2(N) = y(N) — xn = (ab—1)y(N) —all))agj(ll\f) +by(N —1) _ by(N ;bli—ly(N))

Written in a compact manner, it follows that x as a function of y is as follows

-1 a 0 0 -0 0 0
z(1) b —(ab+1) a 0 -0 0 0
x(2) 0 b —(ab+1) a -0 0 0
z(3) [~ 1 0 0 b —(ab+1)---0 0 0
: ab—11 . : : : : : :
z(N) 0 0 0 0 oo b—(ab+1) a
0 0 0 0 -0 b -1
T
(v y@2) »yB) - y(N-1) y(N)) .
Note that the matrix in the above equation is in fact the inverse of the original
matrix A. O

§14.2 The extension method for matrices with
quasiseparable/semiseparable representations

Here we consider matrices with given lower quasiseparable and upper semisepa-
rable generators. For such a matrix we use a representation as a sum of a lower
triangular matrix and a matrix of a small rank. Under the conditions on generators
such that the lower triangular part is invertible we obtain an explicit inversion for-
mula for the whole matrix. Based on this formula, using a well-known procedure
in numerical methods for differential equations, we obtain a stable algorithm for
solution of the corresponding system of linear algebraic equations.
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§14.2.1 The inversion formula

In this subsection for a matrix with quasiseparable/semiseparable representation
an explicit inversion formula is obtained under some restrictions on generators.

Theorem 14.4. Let A be an invertible block matriz with block entries of sizes m; X
mj, with lower quasiseparable generators p(k),q(k),a(k) (k=1,...,N) of orders
rE (k= 0,...,N), upper semiseparable generators g(k),h(k) (k = 1,...,N) of
order ry, and diagonal entries d(k) (k=1,...,N). Assume that all the matrices

D(k) = d(k) — g(k)h(k), k=1,...,N, (14.21)

are invertible.
Introduce the matrices

_ | ak) _ _ ([ alk) 0
W= | W0y | ow=Tow w1 = (00
k=1,...,N,
K; = ( Orit,w > j=0,...,N, (14.23)
and define
U(k) = E(k) = B(k)(D(k))"'C(k), U* = K{Ugz Ko (14.24)

Then the matriz A is invertible if and only if the matrix U* is invertible,
and in this case the inverse matriz A1 is given by the formula

A7l =LX 4 8%, (14.25)
where
—(D@)CHUZBG)DG) ™Y, 1<j<i<N,
L*(i,5) =< (D)7}, i =3, (14.26)
0, 1< 7,
S%(i,5) = (D(i))" (C(H) U Ko)(U*) T (KRUZ 1 ;BG)DG) ™, (14.27)
1<i,j<N.

Proof. We represent the matrix A in the form

A=L+GH,

where G = col(g(i))Y.;, H =row(h(i))Y; and
0, i<,
L(i, j) = § D), i=7j,

p(i)az;q(j) — g(i)h(j), 1<j<i<N.
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For the elements in the strictly lower triangular part of the matrix L one obtains
the representation

L(i, ) = ( p(i) g(i))<a6>j Ii)(_qé@)), 1<j<i<N,

L(i,j) = CH)EGB(j), 1<j<i<N,

with the matrices C (i), B(j), E(k) defined in (14.22). Hence it follows that L is
a block lower triangular matrix with lower quasiseparable generators C(k), B(k),
E(k) (k =1,...,N) and diagonal entries D(k) (k = 1,..., N). By the formula
(1.69),

At =L - L QU TtHL T,

where
U*=1I,+HL'G.

Moreover, using (1.72) one gets
det(L+GH) =det (L (I+ L 'GH)) =det L-det (I + HL™'G)

which implies
N
det A = <H det D(i)) det U™, (14.28)
i=1

It follows that the matrix A is invertible if and only if the matrix U* is invertible.
Applying Theorem 13.10 to the invertible matrix L one obtains that L~! is
a block lower triangular matrix with lower quasiseparable generators

—(D(k))"'C(k), B(k)(D(k))"",U(k) (k=1,...,N)

and diagonal entries (D(k))™! (k=1,..., N). Hence the formula (14.26) follows.

To obtain the representation (14.24) for the matrix U* and the represen-
tations (14.27) for the matrix S* = —L~'G(U*) "' HL™! we proceed as follows.
One obviously has

C(i)K;_1 = g(i), KI'B(i) = —h(i), i=1,...,N. (14.29)

It will be proved that
L7'G = col ((D(1)) " C(i) U7 Ko)
Indeed, using (14.26) and the first equalities from (14.29) one gets

1

i—1

(L7'G)(i,:) = (D() ' g(i) = Y (D) C@i)U7, B(m)(D(m)) ™ g(m)

m=1

— (D()LC0) Koo — 3 Uz, Bm)(Dm)) ™ Cm) Ko
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Furthermore, using the equalities
B(m)(D(m))~'C(m) = E(m) — U(m) (14.30)

and E(m)K,,—1 = K, U2 ,U(m) =U;,,_, one gets

Z’

(L7'G)(i,2) = (D))" C() | Ki1 — Z U(m)) K-
= (D(Z))_lc(l) Ki—l - i(UﬁnK”” - Ui,>m—1Km—1> = ( ( )) C( >U1>OKO

In a similar way we prove that

N

—HL™" =row (KZUz 1 ;BG)DG) ), -

Namely, using (14.26) and the last equality from (14.29) one gets

—(HL™Y)(:,4) = —h(j)( T+ Z h(m ~1Cm)U;B()(D(G) ™

m=j+1

N
Y KnBm)(D(m))'Cm)Uy; | BG)DG) ™

m=j+1

Furthermore, using (14.30) and U(m)U. ., = U

mj m+1,5°

KIE(m)= KL_, one gets

m

B(j)(D(5)~"

m=j+1

(HL )( [KT+ Z Km 1 rn] K?;LU;H-L])

= KJT\;U1\>f+1,jB(J'>(D(j)>71~

Finally,
U* =1, +HL'G =1, +Zh UL Ko

N

= I, — Y KIB@)(D() "' C0)U Ko = I, ZKT U(i))U;u Ko
i=1
N

= Iru - Z(KzT—lUio - Kz‘TUz'>+1,0)K0 = KJY\;UJ\>1+1,0K0a
i=1

which completes the proof. O
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In accordance with the formula (14.25), the solution of the system Az =y is
given by the relation

x(i) = (D(i))"'y(i) — (D@)'CE) f; — (D(i)) " C(i)Gie, 1<i< N, (14.31)

where
Gi = Uy Ko, ZU>B G ty(G), e=—U) KX v

One can define the elements G; and f; recursively:

Gl = Ko, Gi+1 = U(Z)Gl, 1< < N; (1432)
fi=0,  fin=U@)fi +B@)(D@) 'y(i), 1<i<N (14.33)

and rewrite (14.31) as

(i) = (D(i)) "'y (i) — (D(i) "' C(i)xi, (14.34)
where
Xi=Gict fi, 1<i<N+1 (14.35)
and
—(KXGn+1) H(E R fy+1)- (14.36)

§14.2.2 The orthogonalization procedure

The formulas (14.32)—(14.36) give an O(N) algorithm for the solution of the linear
system Az = y. However, the direct computation of the solution by this algorithm
for large N may lead to considerable errors. This occurs because of large entries in
the elements G;, f; and the fact that the matrix G; becomes close to a matrix of
rank one, which leads to large errors in the inversion of the matrix K% Gpn41. To
improve the performance of the algorithm we apply an orthogonalization procedure
which is well known from the shooting method used in the numerical analysis for
differential equations (see, for instance [1]). The idea we take from this method is
to use on every step, instead of (14.35), another representation

where ; are (rf_l + ry) X ry matrices with orthonormal columns and ¢; are
(rf | + ry)-dimensional vectors orthogonal to the columns of €2;.

In the first step one has G; = Ky, fi = 0, and setting ¢; = ¢ one gets x1 =
G1c1. Here Gy is a matrix with orthonormal columns and setting Q1 = G1, ¢1 =0
one obtains (14.37) with ¢ = 1.
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Let for some ¢ with 1 < < N — 1 the equality (14.37) hold. Note that from
(14.32), (14.33) and (14.35) it follows that

Xi+1 = Giyrc+ fi = U(i)Gic+ U (i) f; + B(i)(D(i)) " y(i),
whence
Xit1 = U(i)x; + B(@)(D(i)) ty(i).

Using (14.37) one gets
Xit1 = U(0)Qic; + U(i)¢i + B(i)(D (1))~ y(0).

Next we compute the matrix G, ; and the vector f;, ; by the formulas

i = U, [l =U()¢i + B@)(D@) (i)

and obtain
Xi+1 = G;-Hci + fi/—‘,-l'
For the matrix G}, we compute the QR factorization G}, ; = Q;11A;11 with

the matrix ;1 with orthonormal columns and the upper triangular matrix A;; 1.
Hence. one has

Xit1 = Qir1Aip1¢i + fiiq (14.38)

Next we compute the vector
biv1 = fizr — U1 fig (14.39)

Using Q7,141 = I one gets 27, ¢;+1 = 0 which implies that ¢;,; is orthogonal
to the columns of Q;1;. Finally, substituting (14.39) in (14.38) one obtains

Xi+1 = Qit1Cit1 + Pit1,
with

!
Civ1 = Nig1ci + Q5 fiq-

Thus, under the assumption that all the matrices Ay (kK = 2,...,N + 1)
are invertible (this holds for instance if all the matrices U(k) (k = 1,...,N) are
invertible) one obtains the following algorithm.

Algorithm 14.5.

. . 0,1, )
1. Starting with Q; = Ky = < roxru ), ¢1 = Ot ip,yx1 and for i =
TU
1,..., N, perform the following operations:



§14.2. Matrices with quasiseparable/semiseparable representations 277

1.1. Compute

B; = B@)(D@)™",  U(i) = E(i) — B;C(i),
;‘+1 = U(i), f¢/+1 = U(i)¢s + Bz?J(’)

1.2. Using a standard orthogonalization procedure determine the matrix
Q; 41 with orthonormal columns and the upper triangular matrix A;
such that Gj,; = Qi 1Ay,

1.3. Compute

biv1 = fiv1 — U1 fi-
2. Compute
en1 = —[KNQn1] (K on+1)-

3. For i = N,...,1, compute

C; = Ai_+11(ci+1 - Q;‘k+1fz‘/+1)v
Xi = Qic; + @5,
(i) = (D(i) " 'y(i) — (D(i) " C i) xi-

Set m = maxj<p<n(my), 7 = max{(maxo<r<ny—17F),7"). The complexity
of Algorithm 14.5 is estimated as follows.

1. The matrix D(i): m? arithmetical additions and a matrix multiplication
which costs m?r arithmetical multiplications and m?(r — 1) arithmetical ad-
ditions.

2. The matrix B;: rp(m) arithmetical operations and a matrix multiplication
which costs 2rm? arithmetical multiplications and 2r(m — 1)m arithmetical
additions.

3. The matrix U(i): (2r)? arithmetical additions and a matrix multiplication
which costs (2r)m(2r) arithmetical multiplications and (2r)(m—1)(2r) arith-
metical additions.

4. The matrix G} ;: the multiplication of a 27 x 2r matrix with a 2r x r matrix
thus less than 8r3 arithmetical operations.

5. The computation of f; ;: two matrix vector multiplications and a vector

addition, thus less than 8r2 4+ 4rm + 2r arithmetical operations.
6. The product 7, f/, ;: less than 872 operations.
7. Step 1.2: p(r) operations.
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8. The vector ¢;1: less than 472 + 2r operations.
9. The vector ¢;: another p(r) operations.
10. The vector ;: less than 4r? operations

11. The vector x(i): less than 2m? + 2m?r operations.

Here ¢(r) is the complexity of the QR factorization of a 2r x r matrix, p(r)
is the complexity of the solution of an r X r linear system by the standard Gauss
method, o(r) is the complexity of the solution of an r x r linear triangular system
by a standard method. Thus, the total complexity of the algorithm does not exceed

(6m>r + p(m) + 4m®r + 8r*m + 87° + 20r° + 4r + 2m> + o(r) + (1)) N.

§14.3 Comments

The diagonal inversion method was suggested by I. Koltracht in [41] for matrices
with diagonal plus semiseparable representations. The extension of this method to
matrices with quasiseparable representations as well as the treatment via discrete
descriptor system appears here for the first time.

Theorem 14.4 in a more general setting was obtained by I. Gohberg and M.A.
Kaashoek in [37]. The presentation of the results in §14.2 follows the paper [22] in
which results of numerical tests are also presented.

The methods of these chapter were extended in [24], [25] to diagonal plus
semiseparable operator matrices; these papers contain also results of numerical
tests for block matrices and integral equations.



Chapter 15

Inversion of Matrices in Diagonal
Plus Semiseparable Form

Here we study in detail the inversion methods for matrices with diagonal plus
semiseparable representations. For scalar matrices we obtain an inversion algo-
rithm without any restrictions.

§15.1 The modified inversion formula

In this section we obtain a specification of the formula (14.25) for matrices with
diagonal plus semiseparable representation.

Theorem 15.1. Let A be a scalar matriz with lower semiseparable gemerators
p(k),q(k), (k =1,...,N) of order rr, upper semiseparable generators g(k),h(k)
of order ry, and diagonal entries d(k) (k=1,...,N). Assume that the matrices

8 = d(k) — g(B)h(K), lx = d(k) — p(k)q(k), k=1,...,N (15.1)

are invertible.
Introduce the matrices

sy =( 40 ) = s, K= ().
)

and define
U(k) = I, +ry — B(k)3; "C(K), (15.2)

U* = K§Ug 1y oKo; (15.3)

V(k) =1y — F(k) 'V (), (15.4)

VX = Mg Voy 1 Mo. (15.5)

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 279
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_15, © Springer Basel 2014
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Then the matriz A is invertible if and only if the matriz U* and/or the
matriz V> are invertible, and in this case the inverse matriz A" is given by the
formula

(6:)7(C ) zoKo)(U )THK Unya,;B()(6;) T 1<i<j< N,
61) 1"’(51) ()Ui>oK0)(UX)_1(K1€U1\>/+1,iB(i))(5i)_17 =7,

1) E@OV; v Mo) (V) H (Mg Vo F())(15) 7Y 1<j<i<N.
(15.6)

Remark. The formula (15.6) means that under the assumption that the matrices
(15.1) are invertible, the inverse matrix A~! has semiseparable generators with
the same orders as the original matrix. More precisely the elements

(01) " H(CR)UZ  Ko)(UX)™, (KqUZ 1 BK)(0k)™ k=1,...,N,
are upper semiseparable generators of order 7y and the elements
(lk)_l(E(k)kaN-i-lMO)(Vx)_17 (Mgﬂvz)ko(k‘»(lk)_lv k=1,...,N,

are lower semiseparable generators of order r7, of A71.

Proof of the theorem. By Theorem 14.4, the matrix A is invertible if and only if
U™ is invertible. Moreover in this case the formulas from (15.6) with ¢ < j follow
directly from (14.25)—(14.27).

In order to obtain the last formula in (15.6) (with ¢ > j) consider the matrix
AT, This matrix has lower semiseparable generators h” (k), g7 (k) of order 7y, up-
per semiseparable generators ¢ (k), p? (k) of order 71, and diagonal entries d” (k).
Set

and define
U'(k) = Lnptry — B'(B)(8,) 7' C'(k), U = Mg (U")41,0Mo-
Using (14.28), we get
N
det AT = (H det 5;) det U*. (15.7)
i=1
Moreover, applying the first formula in (15.6) to the matrix A7 we get

(AT) (i, 4) = (8) 1 (C (D) (U)o Mo) (U )M (M (U)Fr 41 ;B (1)) ()"
1<i<j<N. (15.8)
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Using the transposed matrices in (15.7) and the equalities
(0)" =, (B'(k))" = E(k), (C"(k))" = F(k), (U'(k))" =V (k),

we get

N
det A = <H det zi> det V*.

i=1

281

(15.9)

(15.10)

Therefore, the matrix A is invertible if and only if the matrix V' is invertible.

Taking the transposed matrices in (15.8) and using the equalities (15.9) we
the last formula in (15.6).

Example 15.2. Consider the N x N matrix

0 a a a a
—a 0 a a a
—a —a 0 a a
A= : )
—a —a —a 0 a
—-a —a —a —a 0

where a # 0 is a scalar.
For the matrix A one can use the semiseparable generators

pli)=a,i=2,...,N, qi)=—-1,j=1,...,N—1, dk)=0, k=1,...

g(j)=1,7=1,...,N—1, h(i)=a, i=2,...,N.
Let us use Theorem 15.1 to find the inverse matrix. First,
o = d(k) —g(k)h(k) =0 —a = —a, Iy =d(k)—p(k)q(k) =0—a(-1)

Moreover r;, = ry = 1. Introduce the matrices

obtain
O

= a.

s = (40 )= (20). = a0) = (a 1), o= (7).

E(k)=(1 —a), f(k‘)=<a1>7 MF(?)’

and define
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Then the product U(k)U(k + 1) for two consecutive indices is equal to

()0 8)- (5.

whence
( L0 )7 N =2r,
S 0 1
UN+1,0:U(N)U(N*1) """ U(l): 0 !
( a ), N=2r-1
a 0
and so
(0 1)(10>(0) N=on
x Trr> 01 1
U :KOUN-H,OKO: 0o ! 0
(0 1)(a 8)(1)0 N=2 1.
It follows that A is invertible if and only if N is even. The same result is

given by V*. Indeed, one has
V(k) = drp4ru —

therefore

and

)(2)-1 wr

10
T 01
VX = Mg ViSy 1Mo = 0 a 0
(0 1)1 1 )=0 N=2r—-1

Suppose in the sequel that N is even. Then A is invertible according to
Theorem 15.1, and by the same theorem one can compute the inverse matrix 4~*
as follows.

First compute

((1) ?), 1=2m—1
Uo=U@G—0)U@GE—2)---- UQl) = 0 1
_(a 8>7 1= 2m,
and
(é (1)) J=2n,
Unir; =UMNUN—1)----- UG+1)= 0 !
(a 8), 71=2n—1
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and using them compute

L i)z, Ky) = i(a1)<é?>(?) =iz,

" s (ng) (V) =i i
and

s . (0 1)(1 O>(i>(—i> =1, j=2n,
mhmmem»éz (01><§g>(:i)<i>Lj2nL

Then if 1 <17 < j < N it follows that

1. 1 . _ a1 ;1
A 1(17]) = 5 (C(Z)UﬁoKO)(UX) 1(KgﬂUﬁ+1,jB(]))6, = (-1) a
[ J
Also,
—1/; - L1 N x\—1(T77r> 1 1 il
AT (i) = 5 + 5 (C(Z>Ui,oK0)(U ) (K UN-‘,—l,’iB(/L))(S' T +(=1) a 0.

In order to compute the remaining entries of the inverse matrix, first compute

1 0 .
(O 1)7 1= 2m,
Vinp =V@E+1)V(@E+2)-----V(N) = 0 a
<1 O)’ 1=2m—1,
and
1 0 .
VS =VOVE) VG- =8 2
(1 0)7 j:2n7

and using them compute

1 31(1a)<(1)$>(‘f) — 1, i=om,
3 (E(0)V;5v11Mo) = 0 a 0
' Y1 a)(1 >( ):1 i=2m—1
a 5 O 1 ) )
and
(0 1)(1 O)( “ >1 — -1 j=2m—1,
ree o1 0 1 1 )a a
(MO%,jF(j))l_: 0 a a
Tl (3 8)(5): - e
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Then if 1 < j < i < N it follows that
1. . 1 . _ a1 i 1
A0g) = ) (BOVSea M) (V) RV PG| = (1)

Therefore, the inverse matrix is

0 1 11 11
1 ‘6 1 b b b
1 1 ‘6 1 T 1
a a a a
i i 1 { i
Ailf a 7(11 a O a a
1 11 1 _
1 ¢t 1 1 0
a a a a <>

§15.2 Scalar matrices with diagonal plus
semiseparable representation

The next aim is to derive from Theorem 15.1 an algorithm to compute quasisepa-
rable generators of the inverse to a matrix A with given semiseparable generators,
in the case where some of the numbers §; or [, may be zeros.

First we present another version of Theorem 15.1 with some auxiliary matrices.

Lemma 15.3. Let the conditions of Theorem 15.1 hold. Let Ay, Uy (k=1,...,N)
and Ty, Qi (k=1,...,N) be invertible matrices of orders ry and ry,, respectively.
Define the matrices Zy, Sk, X, Yi of sizes (rp, +rv) xry,ru X (rp+ry),rL X

(rp +ru), (rp +ry) X rp via the forward recursions
Zy =Ko,  Zryr = ZeAp — B(k) ((06)7'C(k)ZrAy), k=1,...,N, (15.11)
X1=M], Xpy1=DiXp— (DeXeF(k)(x)" ') C(k), k=1,...,N, (15.12)

and backward recursions

Sni1=K{, Sk = UpSks1 — (ViSks1B(k)(8x) ') C(k), k= N,...,1, (15.13)
Yni1 = Moy, Vi = Vi1 — F(k) ((lk)_lE(k)YkHQk) , k=N,...,1. (15.14)
Then the elements of the inverse matriz A~' can be expressed as
A0, 5) = ((6) 71O Zidi) (Siv1Ziga) 055 (V58541 B(G)(6;) 1) i < j
(15.15)
and
A7) = (1) 710 ) (XY) T3 (DX FG) W) 7). i> 4
(15.16)
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Proof. First we consider the elements of (15.6) with ¢ < j. The expression UioKO
may be written in the form

UioKo=ZAZ - ATY, i=1,.. N+1 (15.17)

Indeed, for ¢« = 1 (15.17) is obvious. Assume that for some ¢ with 1 < i < N
(15.17) has been proven. One has

Uii1.0Ko = U@ U7 Ko = U()Z:ATY - AT

K2

and using (15.2) and (15.11) one gets
U2 = (I - BG)(6:)C0) Z
= (ZiAi = B(i) ((6:;) ' C(1) Z:i i) AT = Ziga AT

as needed.
Similarly, one gets

KoUg i, =93 WL S0, j=N,...,0. (15.18)

Indeed, for j = N (15.18) is obvious. Assume that for some j with N > j > 1
(15.18) has been proven. One has
K(?Uﬁ-u,j—l - K5U§+1,jU(j) - l1117\71 e ‘I’;_&1Sj+1U(j)
and using (15.2) and (15.13) one gets
Si+1U(5) = S (I = B()(8;) 7' C (1)
= U (9,851 — (9,811 B()(6;) ) CG)) = ¥;'S;,
as needed.

From (15.18), (15.17) and (15.3) one obtains for U* for any k =0, ..., N the
representations

U* = KgUﬁ+1,kU€+1,0K0 = ‘I'El T \I’ﬁ1(5k+1zk+1)Alzl T Af1~ (15.19)

Thus using the first expression in (15.6) and the representations (15.17),
(15.18) and (15.19) one gets

Ail(i,j) = (62)710(Z)Z2A;_11 e A;lAl e AiflAi(SiJrlZH,l)il
X Wiy Wy Wy Wy UN R U7 S5 B()(6,) 7Y, i<
and hence the representation (15.15) follows.

A similar procedure is applied to the case i > j. The expression M{ V0<J may
be written in the form

Mg Ve =T T4 X, 1<j<N+1 (15.20)
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Indeed, for j = 1 (15.20) is obvious. Assume that for some j with 1 < j < N
(15.20) has been proven. One has

Mg Vo = Mg VsV (i) =T T XV ()
and using (15.4) and (15.12) one gets

X;V(4) = X; (I - FG)I) 1 EWG))
=T, (03X, = (0;XF () (1)) B()) =T X,

as needed.
Similarly, one gets

Vi Mo =Yi Q4 - Qy!, i=N,....0. (15.21)

I

Indeed, for ¢ = N (15.21) is obvious. Assume that for some ¢ with N > ¢ > 1
(15.21) has been proven. One has

Vs v Mo = V(i)Viy Mo = V(i) Vi Q7 - - Oy

?

and using (15.4) and (15.14) one gets

V(i)Yisr = (I = F(i)(l:) ' E()) Yit
= (Yir1 Qi — F(i) (1) E(0)Yia ) Q7 = Y07,

as needed.
From (15.21), (15.20) and (15.5) one obtains for V* for any kK = 0,..., N
the representations

V= MOTV(kakiLNHMO = Fl_l e F;—11(XiYi)Qi_1 T QRIl- (15-22)

Thus using the last expression in (15.6) and the representations (15.20),
(15.21) and (15.22) one gets
A7, 5) = )T B Y Q0 - Q3 Qv - Qe (X Y)
X Tiy e Tyl T T X GO FG ()~

and hence the representation (15.16) follows. O

Now assume that A is a scalar matrix. In this case the elements dy, [, are
complex numbers. By making the concrete appropriate choice of the matrices
Ak, Vi, [k, Q we may eliminate singularities for the values d; = 0, I, = 0 in the
expressions

1 1 1 1

C(k)ZyAy, TpXpF(k) , UpSkiB(k) -, E(k)Yi Qe  (15.23)
51@ lk 5]@ lk
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used in Lemma 15.3. Next, let us introduce the following notations. For a vector u,
uj, means the coordinate of u with the maximal absolute value and @ is a vector
with the same dimension as u with u;, in the joth position and zeros in the others.
Now for an n-dimensional column vector u and a number § we define the n x n
matrix W (u,d) by

0 —m0

Jo
0 1 e 0

0

Wi(u,d) = -

(u,9) 00 ... & 0
0o 0 ... —jj] o1

0

for w # 0, with ¢ in the (jo,jo) position, and W (u,d) = diag{d, I,,—1} for u = 0.
One obviously has

det W(u,d) =46 (15.24)
and furthermore
10 —m 0 w 0
0 1 2 0 s 0
JO
W= & ° : S : _ :
wdu=114146 . 5 0 wj, su;, |
00 ... —M .1 Un 0
Jo
whence
W (u,8)u = 5. (15.25)

Similarly, for an n-dimensional row v one obtains
oW (uT,6) = o0 (15.26)

Theorem 15.4. Let A be a scalar matriz with lower semiseparable gemerators
p(k),q(k) (k=1,...,N) of order r,, upper semiseparable generators g(k), h(k) of
order ry, and diagonal entries d(k) (k=1,...,N).

Introduce the matrices and the numbers

w-(Bh): - o (1)
B = (gb) —p(8) ), F(8) = ( ’; ) iy = (),
5 = d(k) — g(k)h(k), — d(k) — p(k)g(k), 1<k<N,
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and define forward recursively

Z1 = [(07 Vg = C(k‘)Zk, Zk+1 = ZkWT(’U,{,(Sk) - B(k‘)f}k, k= 1, .. .,]\77
(15.27)

Xi=Mg, fi=XeF(k), Xpp1 = W(fu,l) Xy — frE(k), k=1,...,N
(15.28)

and backward recursively

SN+1 ZKg, up = Sg4+1B(k), Sk = W (ug, 0k)Sk+1 — urC(k), k=N,...,1,

(15.29)
Yni1 = Mo, wy = E(k)Yi1, Yo = Vet W (wi,lg) — F(k)iy, k= N,...,1.
(15.30)
Then
det(SipZy) = det(XYy) =det A#0, 1<k<N+1, (15.31)
and the inverse matriz A~ has the lower quasiseparable generators
Oe(Xe Y)Y feo W(faoli), k=1,...,N, (15.32)
with orders equal to ri, upper quasiseparable generators
O (Sk41Zk41) ", G, Wug,0k), k=1,...,N, (15.33)
with orders equal to ry, and diagonal entries
det(di’“tjz’“), k=1,...,N. (15.34)

Proof. In the expressions (15.23) we put
ok = C(k)Zn,  fr= XpF(k), wp=Sw1Bk), wp=Ek)Yis. (15.35)
Next, we take
Ay =WT@E, 61), T = W(fe, ), U = W (ug,or), U =W (w] 1) (15.36)

and using (15.25) and (15.26) we obtain

1 ~ 1 ~
(5 C(k)ZkAk = Vg, FkaF(k)l = fk,
k . ) k (15.37)
.Sy 1B(k) 5 = iy, lkE(k)YkHQk = Wy

Inserting this in the relations (15.11)—(15.14) we obtain the equalities (15.27)—
(15.30), which do not contain dj,; in the denominators.
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Next, substituting A, = W7 (v}, 6;), Ui, = W(ug,dx) in (15.19) we obtain
for U* for 0 < k < N the representation

U* =W un,0n) - W (uks1, Opg1) (Skt1 Zea 1) [WF (v, 6)]

15.38
Wl 60)) 7 1559

Hence, using (14.28) and (15.24) we conclude that
det(SpZy) = det A, k=1,...,N +1. (15.39)

Similarly, substituting Iy = W(fx,lx), Q% = WT(wl,l;) in (15.22) one
obtains for V* for k = 0,..., N the representation

V¥ =W ln) - W (o bt (X0 Y)W (i, 1)) ™0 W (g, )]
(15.40)
Hence, using (15.10) and (15.24) we conclude that

det(XyYy) = det A, k=1,...,N+1L (15.41)
Next, substituting (15.37) in (15.15) and (15.16) we obtain
AN, g) = @d(X V) TGy, 0>,
with T'y, = W (fk,lx), and
A7, ) = ﬁi(Si+IZi+1)71\II7;<jﬂja 1< g,

with ¥y, = W(ug, ;). It follows that the elements defined in (15.32) and (15.33)
are lower and upper quasiseparable generators of the matrix A1,
To get the representations of the diagonal entries of the matrix A~! we use

the formula
A7Y(i,i) = det AL,/ det A, (15.42)

where Aj; is the matrix obtained from A by removing its ¢th row and éth column.
Then applying (15.39) to the matrix A}, we obtain

A_l(i, Z) = det(Si+1Zi)/detA. Il

Numerical experiments showed that direct computations by the formulas
(15.27)—(15.34) for large N lead to overflow. This occurs because of large entries
of the matrices Zy, Sk, Xk, Yr. This effect may be overcome by an appropriate
scaling. For an (m +n) x n matrix F' = row(F'(¢))"_; and an n x (m + n) matrix

F = col(F (i) ,, the scaling matrix of size n x n is defined by

B(F) = diag{1/|W()[I}iz,-

Here || - || is the Euclidean norm of the vector. In the numerical tests we tried such
scaling successfully. Other variants of scaling may be used.
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One can use instead of (15.27)—(15.30) other relations containing scaling
matrices §(+). Set forward recursively

Z1 =Ko, v, =Ck)ZLB(Zk), Zii1 = ZuB(Zp )WL (v],61) — B(k)vg,

k=1,....N,
X, =ME, fi=B(Xp)XKF(k), Xpy1 = W(fx, ) B(Xe) Xy, — frE(k),
k=1, .. N

and backward recursively

Sni1=Kg, ug=B(Sk41)k1B(k), Sk = W (ug, 0x)B(Sk+1)Sk1 — wC(k),

k=N,.. .1,
Yni1 =My, wip = E(k)Yir18Yit1), Y = Yir1 BYVer1) W (w}, 1) — F(k)idy,
k=N,....1

This means that instead of (15.35) we use the relations

vg = C(k)ZkB(Zy), fr = B(Xi) Xi F(K),

15.43
ug = B(Sk+1)Sk+1B(k),  wi = E(k)Yi418(Vit1). ( )

and instead of (15.36) we take
Ap = B(Z)WT (vl 6k), Tk = W(fi, k) B(X), (15.44)

Uy = W(ug, 6k)B(Skr1)s U = BV a1 )W (wil, 1)

In the same way as in the proof of Theorem 15.4, we use Lemma 15.3 and
conclude that the elements

PV (k) = wp(Xe V) g (k) = fr, D (k) = W (fro k) B(Sks1),
k=1,...,N,
and
g (k) = 04 (Skg1 Zr1) "L R (k) = aw, bV (k) = W (up, 6,)B(Xr),
k=1,...,N,

are lower and upper quasiseparable generators of the matrix A1,

To obtain representations for diagonal entries we proceed as follows. Similarly
to (15.38)

U* =B (Sne)W Hun, 0n) -+ B (Skgr)W ™ (un, 6) (Sk Zi)
X Wi, 66— )] 7' B (Zkr) - W (o], 60)] ' B H(20).

Using (14.28) and (15.24), this yields
det(SpZy) = det B(Sn41) - - - det B(Sk+1) det Adet B(Zj—1) - - - det B(Z1).
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Applying this formula to the matrix A}, obtained from A by removing its kth row
and kth column one gets

det(Sy417) = det B(Sn41) - - - det B(Sk4o) det Al det B(Zp_1) ... det B(Z1).

Thus, using (15.42) one obtains the representations of diagonal entries of the
matrix A1

dM (k) = det B(Sk11) det(Spy12x)/ det(SkZy), k=1,...,N.

Therefore, to compute quasiseparable generators of the matrix A~! one can
use the following algorithm.

Algorithm 15.5. 1. Compute for e =1,..., N

2. Start with Sy41 = ( Orpxr,  Iry ), and for i = N, ..., 1 perform the following
operations:
determine the scaling matrix 5(S;+1) and compute

Spr1 = B(Sis1)Siv1,  wi =S} B(i),
determine the column vector 4; and the matrix W (u;, d;), compute

Si = W(ui,6:)S% 1 — wC(i), hW@E) =a;, bY(@)=W(ui,d)B(Sit1)-

K2

3. Start with Z; = ( OT;XTU > and for ¢ = 1,..., N perform the following oper-
Ty
ations:

determine the scaling matrix 8(Z;) and compute
70 =7:8(Z;), wvi=C(i)Z?,
determine the row vector 9; and the matrix W (v}, d;), compute
Zip1 = ZPWT (0], 6:) = B(i)oi, g™V (i) = 6(Si1Ziga) ™"

4. Start with X; = ( Orpxry  Irg ) and for 4 = 1,..., N perform the following
operations:
determine the scaling matrix §(X;) and compute

X)=B(X)X;, fi=X)F(i),
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determine the column vector f, and the matrix W (f;,1;), compute

Xipr = W(fi, l)X? = FiEG), V@) = fi, aW@) =W(fi,1:)B(X:).

1

L

5. Start with Yy.1 = < Oruxrs ) and for i = N,...,1 perform the following

operations:
determine the scaling matrix 5(Y;+1) and compute

Vi, =Yi1B(Yir1), wi = E(i)Y,
determine the row vector w; and the matrix W (w!,1;), compute
Y =Y W (w] 1) — F(iyas, p™M(i) = i (X;Y;) .
6. Compute fori =1,..., N
dW (i) = det B(Si11) det(Si12;)/ det(S; Zy).

Set r = max{r’,rV}. Then the complexity of Algorithm 15.5 is estimated as
follows.

1. The numbers d;,l;: 2r operations of arithmetical multiplication and 2r oper-
ations of arithmetical additions.
2. The matrix S?, ,: 6(r) operations.

3. The vector u;: 2r? operations of arithmetical multiplication and r(2r — 1)
operations of arithmetical additions.

4. The matrix W (u;,d;): r — 1 operations.

o

The matrix S;: less than 413 + 272 operations of arithmetical multiplication
and arithmetical additions.

The matrix b1 (7): less than 27 operations.
The matrix Z?: (r) operations.

The vector v;: less than 4r2 operations.

© o N>

The matrix W (vl d;): r — 1 operations.

10. The matrix Z;,1: less than 4r3 4 2r? operations.
11. The product S;11Z;41: less than 4r3 operations.
12. The vector g(Y)(i): p(r) operations.

13. The matrix X2: 6(r) operations.

14. The vector f;: less than 472 operations.

15. The matrix W(f;,1;): r — 1 operations.

16. The matrix X;1: less than 473 + 2r operations.

17. The matrix a(V)(i): less than 2r® operations.
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18.
19.
20.
21.
22.
23.
24.
25.

The matrix Y, ;: (r) operations.

The vector w;: less than 4r2 operations.

The matrix W (w!,[;): r — 1 operations.

The matrix Y;: less than 473 4 2r? operations.
The product X;Y;: less than 4r3 operations.
The vector p™")(i): p(r) operations.

The product S;;17Z;: less than 413 operations.
The number d* (i): 3¢(r) operations.

Here p(n) is the complexity of solving of an n x n linear system by the

standard Gauss method, {(n) is the complexity of computing an n xn determinant,
O(n) is the complexity of the scaling operation S(Fy)Fy or Fa3(Fy) for an n X 2n
matrix F1 or a 2n X n matrix F5, respectively. Thus the total complexity of the
algorithm does not exceed

(2p(r) + 3¢(r) + 281 +46(r) + 16r° + 101 — 4)N.

This number may be reduced by using special forms of the matrices W and £.

§15.3 Comments

The results of this chapter were obtained in the papers [18], [19], which contain
also results of numerical tests. In the case of diagonal plus semiseparable of order
one representations the algorithm may be simplified essentially (see [18]).



Chapter 16

Quasiseparable/Semiseparable
Representations and
One-direction Systems

Here we consider matrices with the lower quasiseparable and upper semisepara-
ble representations discussed in Section §14.2. We show that such representations
correspond to discrete systems without backward recursions, i.e., to one-direction
systems. We study such systems in detail and derive inversion algorithms for ma-
trices of their input-output operators.

§16.1 Systems with diagonal main coefficients
and homogeneous boundary conditions
Here we consider systems which correspond to matrices with a given quasisep-

arable representation for the strictly lower triangular part and a semiseparable
representation for the strictly upper triangular part.

Theorem 16.1. Let A = {Ay;}Y,_, be a matriz with block entries of sizes m; X
N, with lower quasisepamble generators p(k),q(k),a(k) (k = 1,...,N) of or-

ders vt (k 0,...,N), upper semiseparable generators g(i) (i = 1,...,N —
1), h(j) (] 2,...,N) of order ry, and diagonal entries d(k) (k = 1,...,N).
Define g(N), h(1) to be arbitrary matrices of sizes my X ry,ry X ni respectwely
Set
_( alk) 0 _( alk) _
D(k) = d(k) — g(k)h(k), k=1,...,N, (16.1)

I. 0 0,.L,.L 0
M, = T My = To X7 .
! < 00 Ory xcry ) 7 ? < 00 ) I, )

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 295
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_16, © Springer Basel 2014



296 Chapter16. Quasiseparable/Semiseparable and Systems

Then A is a matriz of the input-output operator of the discrete system

fesr = B f + B(k)a(k), k=1,...,N,
y(k) = C(k)fr + D(k)x(k), k=1,...,N, (16.2)
Mifi +Myfns1 =0,

with the input x = (z(k))N_,, the output y = (y(k))N_, and the state space vari-
ables fr, (k=1,...,N+1).

Proof. The matrix A has quasiseparable generators p(i), ¢(j), a(k); g(i), h(j),
b(k) = I; d(k). By Theorem 13.2, A is a matrix of the input-output operator of
the system (13.14) with b(k) = I,

Xe+1 = a(k)xk + q(k)z(k), k=1,...,N -1,
Me—1 = M + h(k)x(k), k=N,...,2, (16.3)
y(k) = p(k)xk + g(k)me + d(k)x(k), k=1,...,N. '
x1=0, nnv=0.
The second recursion in (16.3) may be written in the form
Nk = Ne—1 — h(k)xz(k), k=2,...,N. (16.4)
We introduce another state space variable z = g1, k= 2,..., N+1, and obtain
zk41 = 2z — h(k)z(k), k=2,...,N. (16.5)
Next we set
z1 = 2o+ h(1)x(1). (16.6)
Combining (16.5) and (16.6), one gets
Zkt1 =z — h(k)x(k), k=1,...,N. (16.7)
Moreover using zx+1 =% (k=1,...,N) one has
nk:Zkfh(k)m(k), kil,...,N.
Substituting these expressions into the last equations in (16.3) one obtains
y(k) = p(k)xx + 9(k)(zx — h(k)z(k)) +d(k)z(k), k=1,...,N,
whence
y(k) = p(k)xk + g(k)zi + D(k)z(k), k=1,...,N, (16.8)

with the matrices D(k) defined in (16.1). Next we set xn+1 = a(N)xn+q(N)z(N),
which together with the first equations from (16.3) yields

Xk+1 = a(k)xr + q(k)x(k), k=1,...,N. (16.9)
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Finally, using the boundary conditions from (16.3) and nxy = zy41 one gets

x1=0, zny1=0. (16.10)
Thus combining (16.9), (16.7), (16.8) and (16.10) one obtains the system
Xe+1 = a(k )Xk+Q(k‘)$( ), k=1,...,N,
Zk+1—2:k— (k)xz(k), k=1,...,N,
y(k) = p(k)xx + g(k)zx + D(k)x(k), k=1,...,N,

X1 = 0 ZN+1 = 0.

If we now introduce the state space variable f = < ;Ck ) (k=1,...,N+1)
k

and use the matrices E(k), B(k),C(k) (k=1,...,N) and M;, M from (16.1), we
obtain the system (16.2). O

Corollary 16.2. Let A = {Ay;}},_, be a matriz with block entries of sizes m; X nj,
with lower semiseparable generators p(i) (i =2,...,N), q(j) j =1,...,N —1)
of order rr, upper semiseparable generators g(i) (i = 1,...,N — 1), h(j) (j =
2,...,N) of order ry, and diagonal entries d(k) (k=1,...,N). Definep(1), ¢(N),
g(N), h(1) to be arbitrary matrices of sizes m1 X T, 7, X NN, My X Iy, Ty X N,

respectively.
Set
s =( M0 ) cw=(s) ),
D(k) =d(k) — g(k)h(k), =1,...,N; (16.11)

(I, 0 o Opxry O
Ml_(o Or,,m,)’ MQ_( 0 I, )

Then A is a matriz of the input-output operator of the discrete system

frv1 = fo + B(k)x(k), k=1,...,N,
y(k) = C(k)fx + D(k)a(k), k=1,...,N, (16.12)
Mifi+Myfnyr =0,

with the input © = (x(k))_,, the output y = (y(k))N_,, and the state space

variables fr, (k=1,...,N+1).

The proof follows directly from Theorem 16.1 by setting r,]j =r, k=
0,...,Nanda(k)=1I,,,k=1,...,N.
The converse of the statement in Theorem 16.1 reads

Theorem 16.3. Let there be given a system (16.2) with the input vectors x(k), k =
1,..., N, of sizes ny, output vectors y(k), k =1,..., N, of sizes my, and the state
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space variables fr, k=1,..., N +1, of sizes r£71 +ry, k=1,...,N + 1. Let the
matrices E(k) in (16.2) have the form

E(k) = ( “(Ok) b&) ) k=1,...,N (16.13)

with matrices a(k) of sizes rE x rE_, and invertible matrices b(k) of size ry x ry,
and let the matrices My, M have the form

I. 0 0,.r 0
My = r Moy = rEXry . 16.14
1 ( 01 Oy >, 2 ( 0 I, > (16.14)

For the matrices B(k), C(k) of sizes (rE + 1) x ng,my x (rf_, +rv) define the
partitions

B(k) = ( 22?) ) C(k)y=( p(k) g(k)) (16.15)

with matrices q(k), h(k), p(k), g(k) of sizes rE X ng, vy X ng, my x rE_,my X 1y,
respectively.
Then the matriz A with lower quasiseparable generators p(k), q(k),a(k) (k =

1,...,N) with orders rt (k=0,...,N), upper semiseparable generators
9(1) = g()(b(1)) 7", 9() = g(i)b7, i=2,...,N — 1, (16.16)
h(j) = (b]>+1 )" "h(j), 7=2,...,N,

of order ry, and diagonal entries
d(k) = D(k) — g(k)(b(k))"*h(k), k=1,...,N, (16.17)
is a matriz of the input-output operator of the system (16.2).

Proof. Set fj, = ( ?;k ) (k=1,..., N+1) with the vector columns yy, zj of sizes
k

rk | ru, respectively. Using the equalities (16.13), (16.14), (16.15) we present the
system (16.2) in the form

Xk+1 = a(k)xx + q(k)z(k), k=1...,N,
ZW = b(k)zx + h(k)z(k), k=1...,N, (16.18)
(k) = p(k)xx + g(k)zx + D(k)x(k), k=1,...,N, .

X1 = O, ZN+1 = 0.

From the first equations of this system one gets

X1 = a(k)xi + q(k)z(k), k=1,...,N—1. (16.19)
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Using the second equation of the system one gets

ze = (0(k) zia1 — (b(k) " h(k)2z(k), k=N,..., 1. (16.20)
We introduce the variables 1 = zx+1, k= 1,..., N. Using (16.20) one gets

ne—1 = (b(k)) tnp — (b(k))'h(k)x(k), k=N,... 1. (16.21)
Moreover, (16.20) implies

2k = (b(k)) top — (b(k)) " *h(k)x(k), k=N,... 1
Substituting these expressions in the third equations from (16.18) one gets
y(k) = p(k)xi + g(k)(0(k)) " i + (D(k) — g (k) (b(k)) " h(k))a(k), k=1,...,N,
whence
y(k) = p(k)xe + g(R) b)) e + d(R)a(k), k=1,....N, (16.22)

with d(k) defined in (16.17). Using the equality ny = zy4+1 and the boundary
conditions from (16.18) one obtains

x1=0, nv=0. (16.23)

Combining (16.19), (16.21), (16.22) and (16.23) one obtains the following system
equivalent to (16.18):

Xk+1 = a(k)xr + q(k)z(k), k=1,...,N—1,

-1 = (b(k)) ™ e — (b))~ h(k)a(k), k=N,...,2,

y(k) = p(k)xx + g(k)(b(k)) ™ 'ne + d(k)a(k), k=1,...,N,
x1=0, nn=0.

(16.24)

By Theorem 13.3, the matrix A with quasiseparable generators p(k), q(k), a(k);
g(k)(b(k))~L, —(b(k))~*h(k), (b(k))~t;d(k) (k= 1,..., N)is amatrix of the input-
output operator of the system (16.24).

It remains to check that the matrices §(i) (i = 1,...,N — 1), h(j) (j =
2,...,N) defined in (16.16) are upper semiseparable generators of the matrix
A. Set b(k) = (b(k))™", k = 1,...,N. As it was shown above, the elements
are upper quasiseparable generators of A. Since the matrices b(k) are invertible,
Theorem 4.3 yields the upper quasiseparable generators of the matrix A

§(i) = g(i)b(i) (b7, 1)~ " i=1,...,N =1, h(j) = =b5b(j)h(j), j=2,...,N.
Using the equalities

i’fji)(j) =070, b= (bj>+1,1)71
one obtains h(j) = —(b71.1) 7 h(F), §=2,..., N. Using the equality BfQ = I one
gets g(1) = g(1)(b(1)) .
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Finally using the equalities
B(i)(i’fwﬁil - (b(i))ilbal,l - bi>,1a i=2,...,N,
one gets g(i) = g(i)by;, i =2,...,N — 1. O

Corollary 16.4. Let there be given a system (16.2) with the input vectors x(k), k =
1,..., N, of sizes ny, the output vectors y(k), k=1,...,N, of sizes my, and the
state space variables fr, k = 1,...,N + 1, of sizes ri + ry. For the matrices
B(k),C(k) of sizes (rp +ry) X ng,my X (rp, +ry) define the partitions

B0y = (40 ). ctI= () o)),

with matrices q(k), h(k),p(k),g(k) of sizes ri X ng,ru X Ng, My X rL, M X Ty,
respectively.

Then the matriz A with lower semiseparable generators p(i) (i =2,...,N),
q(j) (j = 1,...,N = 1) of order rr, upper semiseparable generators g(i) (i =
1,...,N—=1), =h(j) (j =2,...,N) of order ry, and diagonal entries

d(k) = D(k) — g(k)h(k), k=1,...,N,
is a matriz of the input-output operator of the system (16.12).

The proof follows directly from Theorem 16.3 by setting 7f = rp, k =
0,....,Nand E(k) =1, 4r,, k=1,...,N.

An analog of Theorem 16.1 for matrices with given lower semiseparable and
upper quasiseparable generators is the following.

Theorem 16.5. Let A = {Aij}f\fj:l be a matriz with block entries of sizes m; X n;,
with lower semiseparable generators p(i) (i=2,...,N), q(4) j=1,...,N—1) of
order rp,, upper quasiseparable generators g(k), h(k),b(k) (k=1,...,N) of orders
rY (k=0,...,N), and diagonal entries d(k) (k=1,...,N). Define p(1),q(N) to

be arbitrary matrices of sizes my X rr,rr X ny, respectively.

Set
s =N o0 ) Bw=( ) cw=(ow aw).
D(k) = d(k) — p(k)q(k), k=1,...,N,
= < i O%OU ) = < i 152 >

Then A is a matriz of the input-output operator of the discrete system
frx—1 = E(k)fx + B(k)z(k), k=1,...,N,
y(k) = C(k)fr + D(k)x(k), k=1,...,N,
Mifo+ Mafy =0,
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with the input x = (x(k))A_,, the output y = (y(k))N_,, and the state space
variables fr, (k=10,...,N).

§16.2 The general one-direction systems

Here we consider discrete systems with boundary conditions which are a gener-
alization of the systems considered in Section §16.1. More precisely we consider
systems of the form

fk+1:E(k)fk+B(k)x(k)v k:]-a"'7N7

y(k) = C(k)fr. + D(k)x(k), k=1,...,N, (16.25)
Mifi+Msfys1 =0.

Here the input of the system are the ng-dimensional vectors z(k) (k=1,...,N),
the output are the mg-dimensional vectors y(k) (k = 1,...,N), the state space
variables are the rg-dimensional vectors fi (k = 1,...,N + 1). The coefficients

of the system are the matrices E(k), B(k),C(k),D(k) (k = 1,...,N) of sizes
Thtl X Thy Tht1 X Mg, Mg X Tk, Mg, X N, respectively. The boundary conditions are
determined by the matrices M;, My of sizes r1 X 71,71 X ry41, respectively.

The system (16.25) is said to have well-posed boundary conditions if the
homogeneous system

(16.26)
Mifi+Mafyyr =0,

{fk+1:E(k)fk7 k:17"'7N_17
has only the trivial solution. It is easy to see that solution of (16.26) satisfies the
relations

fo=EBZofi, k=1,...,N+1. (16.27)

In particular, fy4+1 = Eﬁ 41,0 f1 and the boundary conditions yield
(M1 + MyE3 o) f1 = 0. (16.28)

It follows that the system (16.25) is well posed if and only if the r; x r; matrix
M = M, + MQENJrl o is invertible. Indeed, if det M # 0, then f; = 0 and by
virtue of (16.27) the system (16.26) has only the trivial solution. If (16.26) has
only the trivial solution, then (16.28) has only the trivial solution, which implies
invertibility of M.

In the case of well-posed boundary conditions the output y = (y(k))_, is
uniquely determined by the input z = (z(k))~_,. Hence a linear operator A such
that y = Az is defined. The operator A is called the input-output operatorof the
system (16.25). We derive explicit formulas for these operators.
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Theorem 16.6. Let there be given a system (16.25) with coefficients E(k), B(k),
C(k), D(k) (k = 1,...,N) and My, M2, which are matrices of sizes Tp41 X
Thky k41 X Mg, M X Tk, Mg X N and 11 X 11,71 X TN41, respectively, and with
well-posed boundary conditions.

Then the matrix A = {Aij}?fj:l of the input-output operator of the system
s given by the formula

Sij + C()E;B(j),1 < j <i<N,

Aij = § D(i) + Si, 1<i=j<N, (16.29)
Sij 1<i<j<N,
where
Sij = —C()EgM ' MxER , ;B(j), (16.30)
with
M = My + MoER, 4 o (16.31)

Moreover, the matriz A has lower quasiseparable generators p(i) (i =2,...,
N),qij) G=1,...,.N=1),a(k) (k=2,...,N—=1) of orders rp41 (k=10,...,N)
given by the formulas

p(i) = C(i), i=2,...,N,
q(j) = I = E7, oM~ 'MyER 4 ;j)B(j), j=1,...,N —1, (16.32)
a(k) = E(k), k=2,...,N—1,

upper semiseparable generators g(i) (1 = 1,...,N —1), h(j) (j = 2,...,N) of
order ry+1 given by the formulas

g(i) = —C(H)EgM "My, i=1,...,N —1; h(j)=E5,,;B(), j=2,...,N,
and diagonal entries

d(k) = —C(k)EyM ' MyE ,,  B(k)+ D(k), k=1,...,N. (16.34)
Proof. One can check by induction that the solution of the first equation in (16.25)
is given by

k—1
fe=ERfi+ > ErB()z(j), k=1,...,N+1 (16.35)
j=1

Indeed, for k& = 1 the relation (16.35) follows directly from E7, = I. Let for
some k,k > 1, (16.35) hold. Using the first equation in (16.25) and the equalities
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E(k)Eqy = B0 Egoe =1 By = E(k)EY; one gets

frr1 = k()f1+ZE ) + B(k)z(k)
k—1
=B of1+ Y By jB()2() + Efpy  Blk)x(k)
jfl
k+1 of1+ZEk+1J ) (J)
Jj=1

Setting in (16.35) k = N + 1 and using the boundary conditions of (16.28)
and the definition (16.31) one gets

N
fr==M"My [ > E3, B()x(j)
j=1

Inserting this formula for f; into (16.35) and using the second identity in (16.25)
one gets

N
y(i) = = CH)EgM My [ " E3 .,y ;B()z(j)

+C() iE;B(j)x(j) +D()z(i), i=1,...,N.

This means that y(i) = Zjvzl Ai;x(j), 7=1,..., N, where A;; is given by (16.29).
Thus the matrix A has the desired representation (16.29).

Now we check that the elements defined in (16.32)-(16.34) are generators of
the matrix A.

For ¢ > j, using the first formula from (16.29) and the identity E; =
EjE7, o one gets

A =C( )E>B( ) —C(i )E>E>+1 OM*lMQE;H’jB(j),
which implies
Ay = OB ~ By oM MoEfy )BG), 1< <i<N.

Hence, the matrices defined in (16.32) are lower quasiseparable generators of the
matrix A.
For ¢ < j, using the third formula in (16.29) one gets

Aij = (—CHEgM M) (Exy, ;B(j), 1<i<j<N.
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Hence, the matrices defined in (16.33) are upper quasiseparable generators of the
matrix A.

The formula (16.34) for diagonal entries follows directly from the second
formula in (16.29). O

Corollary 16.7. Under the conditions of Theorem 16.6, let v, r{(,H, ry be nonneg-
atiwe integers such that rf +ry =1y, rﬁﬂ + ry = rN41, and let the matrices
My, My in the boundary conditions in (16.25) have the form

i < Li 0 ) M, - < Orfxorm 0 ) (16.36)

0 07'U Xry I’FU

Then the matrices S;; in (16.30) have the form

Sij = g(@)h(j), 1<i,j<N (16.37)
with
g(i) = =(C)ER)(:,rt + 1:rt + 1), i=1,...,N 1, 639
h(j) = Ex (B 1 Bk +1 vk +10,0), G=2,...,N,
where

Esy = EKH_LO(T%H +1: rJL\,H +ry,rE 41 4ry).

Proof. For the ryy1 X r1 matrix Eifﬂ,o consider the partition

> _( Eun En
N+1,0 Eyy Ey )’

with the matrices E11, F12, F21, Fas of sizes rﬁ_ﬂ X rlL, rﬁ_ﬂ X Ty, Ty X rlL, Ty X1y,
respectively. Inserting this expression and the expressions (16.36) in (16.31) one

gets
I 0
M=
< Ey1 B >

0 0
MM < - >
2 0 FEg

Inserting this expression in (16.30) one obtains the representation

and furthermore

. 0 O . N

with the matrices g(4), h(j) determined in (16.38). O

Remark. The matrices g(i) (¢ = 1,...,N — 1), h(j) (j = 2,...,N) defined in
(16.38) are upper semiseparable generators of order ry of the matrix A. This
follows from (16.37) and the last formula in (16.29).
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§16.3 Inversion of matrices with quasiseparable/
semiseparable representations
via one-direction systems
Here we derive inversion formulas for matrices of input-output operators of one-
sided systems.
Theorem 16.8. Let there be given a system
fk+1:E(k)fk+B(k)x(k)7 k:L'"aNa
y(k) = C(k) fr. + D(k)x(k), k=1,...,N, (16.39)
Mifi + Mafny1 =0,

with coefficients E(k), B(k),C(k),D(k) (k = 1,...,N) and My, My which are
matrices of $izes k41 X Thy Tht1 X Mg, Mg X T, Mg X My, and 71 X 11,71 X TN41,
respectively, and with well-posed boundary conditions. Assume that all the matrices
D(k) (k=1,...,N) are invertible. Define the matrices

U(k) = E(k) — B(k)(D(k))"'C(k), k=1,...,N.

The matrix A of the input-output operator of the system is invertible if and
only if the matriz
M* = M, +M2U]\>,+170 (16.40)

is invertible. Furthermore, if this is the case the inverse matriz A~ is given by
the formula

875 = (D(i))'C)UZ B(G) (D)1, 1<j<i<N,
AT G) = (@) + ST 1<i=j<N, (16.41)
Sz, Cicien

where
Sy = (D) C)UZ(M*) " MaUg .y ;BG)(D()) (16.42)

Proof. Assume that the matrix M* is invertible. Let Ax = 0. In this case the
system (16.39) takes the form

fk+1:E(k)fk+B(k)x(k)v k:]-a"'7N7
0= C(k)fr + D(k)x(k), k=1,...,N, (16.43)
M fr + Mafn4+1 =0.

From the second equation of this system one gets

z(k) = —(D(k))"'C(k)fr, k=1,...,N. (16.44)
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Substituting this in the second equation in (16.43) one gets

frr1 =U(k) fr, k=1,...,N,
My f1+ Mafni1 =0.

It follows that (M, +M2Uﬁ+170)f1 = 0, and since M * is invertible, one gets f; = 0
and therefore f, = 0, k = 1,..., N. Now using (16.44) one gets x(k) = 0, k =
1,..., N, and therefore the matrix A is invertible.

Assume that the matrix A is invertible. Take f; such that M* f; = 0. We
need to show that f; = 0. Put f = Uk>70f1, k=1,...,N+1 and define z(k), k =
1,..., N via (16.44). One can easily check that the relations (16.43) hold. Hence,
A((z(k))N_,) = 0. Since A is invertible, this implies that z(k) =0, k=1,...,N

and so
— E(k)fe,  k=1,....N,
Jerr = BB i (16.45)
Mifi1+ Mafyyr =0.

But the boundary conditions of (16.39) are well posed. Therefore, (16.45) has only
the trivial solution. In particular, f; = 0.
Now changing the input and the output in the system (16.39) one obtains

the system

fer1 = U(k) fie + B(k)(D(K)) " y(k), k=1,...,N,

2(k) = —(D(E) L) i+ (D) "y(k), k=1,...,N,  (16.46)

Mifi + Mafny1=0.
Let the matrix M > be invertible. This implies that the system (16.46) has well-
posed boundary conditions and hence the input-output operator of this system,

which is A71, is defined. Furthermore, applying the formulas (16.29), (16.30) to
the system (16.46) one obtains the formulas (16.41), (16.42). O

Another proof of Theorem 14.4. By Theorem 16.1, A is the matrix of the input-
output operator of the discrete system

fer1 = E(k)fi. + B(k)z(k), k=1,...,N,
y(k) = Ck) fo + D(R)a(k), k=1,...,N, (16.47)
Mifi1+ Mafyyr =0,

with the coefficients E(k), B(k), C(k), D(k) defined in (14.22), (14.21) and

1.1 0 0,1, L 0
M _ T M — To XT .
! ( 00 O’I“U Xru > ’ 2 ( OO " I’I"U >

The matrix M* from (16.40) has the form

I.c 0 0Ly L 0 I.c 0
= (o, ) (M JuRae= (T ),
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with the matrix U* defined in (14.24). Hence, by Theorem 16.8, the matrix A is
invertible if and only if the matrix U* is invertible. Furthermore, one gets

(M*)™' My = Ko(U*) 'Ky
Inserting this in (16.42) and using also (16.41) one obtains the formulas (14.25)—
(14.27). 0

§16.4 Comments

The method presented in this chapter was developed by I. Gohberg and M.A.
Kaashoek in [37].



Chapter 17

Multiplication of Matrices

This chapter considers the product A = A; Ay of block matrices A; = {AZ(.JI.) ZI-Yj:l

and Ay = {AS) %:1 with block entries of compatible sizes m; xv; and v; xn;. One
assumes that quasiseparable generators of the factors are given and one derives
formulas and algorithms to compute quasiseparable generators of the product.

The product of two matrices is seen as the input-output operator of the
cascade system obtained from the two systems whose input-output operator are
the two factors. The general case of the product is treated by using the results for
the product of lower /upper triangular matrices.

The computational complexity of the product is O(N) and it can further
be improved, although keeping the same order, for matrices with diagonal plus
semiseparable representations.

§17.1 The rank numbers of the product

We start with the estimate of rank numbers of the product of two matrices via
the rank numbers of the factors.

Lemma 17.1. Let Ajand As be block matrices with lower and upper rank numbers
pEp¥ (k=1,...,N—1) and sk, sY (k=1,...,N—1).

Then the rank numbers th t7 (k = 1,...,N — 1) of the product A = A1 A,
satisfy the inequalities

te <pp skt <pl+si, k=1 ,N-1
Proof. One has
Ak+1:N,1:k)=A1(k+1:N,:)A2(:,1: k)
=A1(k+1:N,1:k)Ax(1:k,1:k)
+A1(k+1:Nk+1:N)As(k+1:N,1:k),
=1,...,N—1.

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 309
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_17, © Springer Basel 2014
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From here and the equalities

ti =rank Ak +1: N,1:k),
pb =rank Ay (k+1:N,1:k),
sk =rank Ag(k +1: N,1:k)

it follows that ti < p,];‘ —&-5157 k=1,...,N—1.
Applying the obtained result to transposed matrices one obtains the esti-
mates for the upper rank numbers. O

Lemma 17.1 implies that one can obtain generators of the product with orders
not greater than the sum of the corresponding orders of the factors.

§17.2 Multiplication of triangular matrices

We start with a detailed study of products of triangular matrices.

Theorem 17.2. Let Ay be a block lower triangular matriz with lower quasiseparable
generators p™M (k), ¢V (k), aM (k) (k=1,...,N) of orders vt (k=0,...,N) and
diagonal entries dV (k) (k = 1,...,N), and let Ay be a block lower triangular
matriz with lower quasiseparable generators p® (k), ¢ (k), a® (k) (k=1,...,N)
of orders st (k=0,...,N) and diagonal entries d? (k) (k=1,...,N).

Then the product A = A1As is a block lower triangular matriz with lower
quasiseparable generators

b0 = (p0m) awpm ). aw = ().

@) (k
() O Y .
a(k:)-( 0 a® (k) >, k=1,...,N
of orders vt + sk (k=0,...,N) and diagonal entries
d(k) = dV (k)d? k), k=1,...,N. (17.2)

Proof. By Corollary 13.5, the matrix Ay is a matrix of the input-output operator
of the system

2 =a® @ + @ (k)ak), k=1,...,N -1,
u(k) = pP (k)P +d? (k)a(k), k=1,...,N, (17.3)
X =o.

Here the vector x = (z(k))A_, is the input of the system and the vector u =
(u(k))N_, is the output. Similarly, by Corollary 13.5, A; is a matrix of the input-
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output operator of the system

A= aW )y + W kyulk), k=1,...,N -1,
y(k) = pO (B +dV (k)uk), k=1,...,N, (17.4)
i =o.
Here we take the vector u to be the input of the system (17.4) and the vector
y = (y(k))N_, is the output.

Substituting the second expression from (17.3) into the system (17.4) one
obtains the system

X](:ng — a(l)(k) ) 4+ q(l)(k)p(Z)(k)X](f) + ¢V (k) dP (K)x(k), k=1,...,N—1,
x,(fl 7a(2)(k) +q(2)(k) (k), k=1,...,N—1,
y(k) = pO (k) + dD (k)p® (k)x? + dD (k)d® (k)z(k), k=1,...,N,
D=0 @ —q,
(17.5)

with the input z and the output y. The product A = A; A, is a matrix of the input-
output operator of the system (17.5). Introducing the new state space variable

X(l)
Xk = ’(i:g) ,k:].,...,N
Xk

and the elements p(k), ¢(k), a(k), d(k) by the formulas (17.1), (17.2), we represent
the system (17.5) in the form

Xk41 :a(k)Xk+Q(k)x(k)a k= 17"'3N713
y(k) = p(k)xx + d(k)x(k), k=1,...,N,
X1 = 0.

By Corollary 13.5, the elements p(k), q(k), a(k),d(k) defined in (17.1), (17.2) are
lower quasiseparable generators and the diagonal entries of the lower triangu-
lar matrix A. From (17.1) it follows that the orders of these generators equal
r,f + r,g. O

Applying Theorem 17.2 to transposed matrices we obtain a similar result for
the product of upper triangular matrices.

Theorem 17.3. Let A1 be a block upper triangular matriz with upper quasiseparable
generators g™ (k), AV (k), M (k) (k = 1,...,N) of orders r{ (k = 0,...,N)
and diagonal entries dV (k) (k=1,...,N) and let Ay be a block upper tmangular
matriz with upper quasiseparable generators g® (k), h®(k), b)(k) (k =1,...,N)
of orders s (k=0,...,N) and diagonal entries d? (k) (k=1,...,N).
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Then the product A = A1As is a block upper triangular matriz with a set of
upper quasiseparable generators

)
g(k) = (dD(R)gD (k) gD(k) ). h(k) = ( Oy 1) >

17.6
= (28 ) ke -
R (k)g® (k) b (k) )
of orders v +sY (k=0,...,N) and diagonal entries
d(k) = dV(k)d? k), k=1,...,N. (17.7)

Next we obtain quasiseparable generators of a product of a lower triangular
matrix and an upper triangular matrix with orders equal to the corresponding
orders of the factors.

Theorem 17.4. Let Ay be a block lower triangular matriz with lower quasiseparable
generators pM(k), ¢V (k),aM (k) (k = 1,...,N) of orders rk(k=0,....,N) and
diagonal entries d(l)(k:) (k =1,...,N) and let Ay be a block upper triangular
matriz with upper quasiseparable generators g (k), h® (k),b®)(k) (k=1,...,N)
of orders v (k=0,...,N) and diagonal entries d? (k) (k =1,...,N).

Then the product A = Aj1As is a block matriz with quasiseparable genera-
tors p(k),q(k), a(k); g(k), h(k),b(k);d(k) (k = 1,...,N) of orders rk vV (k =
0,...,N), where the generators p(k),a(k),b(k), h(k) coincide with the correspond-
ing generators of the factors, i.e.,

p(k) = PO (), h(k) = KO (k), a(k) =aD(k), bk) =bO(k), k=1,...,N,

(17.8)
and the generators q(k), g(k),d(k) are determined via the recursion relations
Bo =0z, (17.9)
dk) g(k) \ _ [ pW(k) dD(k) Br-1 0 R (k) 5@ (k)
q(k) Bk )\ aM(k) qW(k) 0 I d2(k) ¢@k) )
=1,...,N, (17.10)

with the auxiliary variables By, which are r,f X r,g matrices.

Proof. By Corollary 13.6, As is a matrix of the input-output operator of the system
M1 = bP (B + h® (k)x(k), k=N,....2
u(k) = gP (k) +dP (K)x(k), k=1,...,N (17.11)
ny = 0.

Here the vector x = (z(k))A_, is the input of the system and the vector u =
(u(k))N_, is the output. By Corollary 13.5, A; is a matrix of the input output
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operator of the system

Xir1 = aD(E)xe + ¢V (k)uk), k=1,...,N—1,
y(k) = pO(k)xp + dP (k)u(k), k=1,...,N, (17.12)
X1 = 0.

Here we take the vector u to be input of the system (17.12) and the vector y =
(y(k))N_, is the output. We represent the systems (17.11) and (17.12) in the form

oo (233)= (B S5 ) () o o
and

ama ()= () 20) (3 ) o

Here by definition 179 = 5@ (1)n; + A (1)z(1) and xyn11 = a(N)xn +
¢ (N)u(N). Next we introduce the new state space variable

X =Xk — Br1me—1, k=1,...,N, (17.15)
with Sj defined in (17.9), (17.10). Using (17.9) one obtains the boundary condition
x1 = 0. (17.16)

Moreover, substituting the expressions (17.15) in (17.14) one gets

(7O )= (T 200 ) (X ames )y

which implies
() = Coog ) (lof) o)) (%7 1) (i)
k=1,...,N.

Using the equalities (17.13) and (17.10) one obtains
( y(k) > _ ( P (k) ) 'y ( (k) g(k) > ( (k) )
Xics1 + Bl a(k) )T qk) B w )

whence
y(k) = p(k)xs + g(Bym + d(R)e(k), k=1,...,N (17.17)

and
Xpr1 = a(k)xy +q(k)z(k), k=1,...,N—1. (17.18)
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Combining the relations (17.11), (17.16), (17.17) and (17.18) one obtains the sys-
tem

X1 = a(k)xg + q(k)z(k), k=1,....N-1,

e = b(k)mn + h(k)z(k), k=N,...2,

)
y(k) = p(k)xy, + g(k)n + d(k)x(k), k=1,...,N,

with the input x and the output y. Moreover, A = A1 As is a matrix of the input-
output operator of this system. By Theorem 13.3, p(k), q(k), a(k); g(k), h(k),
b(k); d(k) (k=1,...,N) are quasiseparable generators of the matrix A. O

A similar result is obtained for the product of upper triangular and lower
triangular matrices.

Theorem 17.5. Let A1 be a block upper triangular matriz with upper quasiseparable
generators g™ (k), hV (k), b (k) (k =1,...,N) of orders rY (k=0,...,N) and
diagonal entries dV (k) (k = 1,...,N) and let Ay be a block lower triangular
matriz with lower quasiseparable generators p (k), ¢ (k),a® (k) (k=1,...,N)
of orders rk (k=0,...,N) and diagonal entries d® (k) (k=1,...,N).

Then the product A = Aj1As is a block matriz with quasiseparable genera-
tors p(k),q(k), a(k);g(k), h(k),b(k);d(k) (k = 1,...,N) of orders rt v¥ (k =
0,...,N), where the generators q(k), a(k),b(k), g(k) coincide with the correspond-
ing generators of the factors, i.e.,

a(k) = ¢? k), g(k) = gV(k). a(k) =a® (k). b(k) =0V (k), k=1, N
(17.19)
and the generators p(k), h(k),d(k) are determined via the recursion relations

IN+1 = O’r%xr{(ﬂ (17'2())
< v h(k) > _ < hW (k) bW (k) ) ( I 0 > < PP (k) d®(k) >
p(k) d(k) )~ \ dP(k) gW(k) 0 Yt a® (k) ¢P(k) )’
k=N,... 1, (17.21)

with the auziliary variables g, which are rY | x rk | matrices.

Proof. By Corollary 13.5, the matrix As is a matrix of the input output operator
of the system
Yot = aP(B)xe + ¢@(R)x(k), k=1,...,N—1,
u(k) = p@(k)xx + d® (k)x(k), k=1,...,N, (17.22)
x1 = 0.

Here the vector x = (z(k))A_, is the input of the system and the vector u =
(u(k))N_, is the output. By Corollary 13.6, A; is a matrix of the input-output
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operator of the system
M1 = b (K)ne + RO ()u(k), k=N,...,2,
y(k) = g k), + dV (k)u(k), k=1,...,N, (17.23)
nn = 0.

Here we take the vector u to be input of the system (17.23) and the vector y =
(y(k))A_, is the output. We represent the systems (17.22) and (17.23) in the form

_ u(k) \ _ ( PP (k) d® (k) Xk _
x1 =0, ( Yot > = < a(2)(k) q(2)(k) > < (k) >,l<: 1,...,N, (17.24)
and
_ M1\ _ [ PO(k) b (k) u(k) _
Ny =0, ( y(k) > = < d(l)(k:) g(l)(k‘) ) < - >,k‘N,...,2. (17.25)
Here 1 = a®(N)xy + @ (N)a(N) and 5o = 50 (L + A (1)u(1), by

definition.
Next we introduce the new state space variable

Me =Mk — Vet1Xk+1, k=1,...,N, (17.26)
with vy defined in (17.20), (17.21). Using (17.20) one obtains the boundary con-
dition

iy = 0. (17.27)
Moreover, substituting the expressions (17.26) in (17.25) one gets

(4 )= (5 20 ) 2 )
which implies
(i) - (o (500 ) (5. (2
k=N,..., 1

Using the equalities (17.24) and (17.21) one obtains

Mot +mxe | _ [ 0D(k) e h(k) ” -
( k y(k) > - <g(1>(k)>nk+ (p(k) d(k)) (x(k) ) k=N,... 1
It follows that
y(k) = p(k)xi + g(k)nj, +d(k)ax(k), k=1,...,N, (17.28)

and
o1 = b(k)my, + h(k)z(k), k=N,...,2. (17.29)
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Combining the relations (17.22), (17.27), (17.28) and (17.29), one obtains the
system

Xk+1 = a(k)xk + q(k)z(k), k=1,...,N -1,
y(k) (k‘)Xk +g(k)my, + d(k)z(k), k=1,...,N,

x1=0, ny=0,

with the input x and the output y. Moreover, A = A; A5 is a matrix of the input-
output operator of this system. By Theorem 13.3, p(k), q(k), a(k); g(k), h(k),
b(k); d(k) (k=1,...,N) are quasiseparable generators of the matrix A. O

§17.3 The general case

Here we derive formulas for quasiseparable generators of a product of two matrices
with given quasiseparable representations.

Theorem 17.6. Let A1 and Az be two block matrices with quasiseparable generators
PO ), gD (), o (k)sg (k). hO(R), BV (E):dV(E) (k= 1......N) of orders
risry (k=0,...,N) and p( )(k) ¢ D (k), a®(k); g P (k), KD (k), b@ (k); dP (k)

(k=1,...,N) of orders sk, s¥ (k=0,...,N), respectively.

Then the product A = A1 As is a block matrix with quasisepamble genemtors
p(k),q(k), a(k); g(k), h(k),b(k);d(k) (k =1,...,N) of orders rk+sk rV +s¥ (k =
0,...,N). These generators are determined as follows We set By = OT.LXSU and

compute recursively

(3 %)= (ol oty ) (57 1) (56 el )

k=1,...,N; (17.30)
next we set YN y1 = 0.0 g1, and compute recursively
e h(k) ) _ (k) b (k) I 0 P (k) d® (k)
plk) d"(k) )\ dD(k) gW(k) 0 Yr+1 a® (k) ¢ (k) )’
k=N,..., 1 (17.31)

7 . ; ; ; Ly U U L
Here By, i are auziliary variables which are matrices of sizes rj/ X sy, 7y _1 X 81_1.

Finally, we set

W (£)d® (k) + §
p(k) = (pM (k) pk) ), ak) = ( 1 (k)z(z)((]]z;+Q(k) ) (17.32)
a® M) (k)p(@
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@)

g(k) = (dD(k)gP (k) +g(k) gV (k) ), h(k)= < hﬁ(é? > (17.34)
b2 (k

b(k) = < h(l)(k);@))(k) b(l?(k) >v (17.35)

dk)y=d'(k)+d"(k), k=1,...,N. (17.36)

Proof. For a matrix B we denote by Br,Bp, By the strictly lower triangular,
the diagonal and the strictly upper triangular parts extended by zeros. One has
B = By + Bp + By. Using these representations for the given matrices Ay, A one
gets

A= AAy = (AD + 4D 4+ AD)AP 4 4D + AP,

which implies
A=APAP 4 A 4 AV AR + (A + A AP + AD) + (AT + A7) AP,
Consequently,

Ay = (APAD +4D) + AP AP + (4D + 4P AP +45)) |, (17.37)
Ay = (Agmg) +(AD 4 A AP 4 A2y 4 aD 4 A§}>)A§§>) Lo (73)

Ap = (APAD + (A5 + AP (AP + D)) . (17.39)

A(Ll) is a block lower triangular matrix with lower quasiseparable generators
pM(k), ¢ (k), aV(k) (k = 1,...,N) and zeros on the diagonal. A(LQ) + A(DQ)
is a block lower triangular matrix with lower quasiseparable generators p(g)(k‘)7
¢ k), a®(k) (k = 1,...,N) and diagonal entries d® (k) (k = 1,...,N). By
Theorem 17.2, the matrix AS)(ASLQ) + A(DZ)) has lower quasiseparable generators
p(k),q(k),a(k) (k=1,...,N), with p(k), §(k) defined by the formulas

1) (2)
PRy = (pO(k) 0), q(k)(" ;%)(’“)), (17.40)

and a(k) defined by the formulas (17.33).

AS—}) is a block lower triangular matrix with lower quasiseparable genera-
tors pM(k), ¢V (k),aM (k) (k = 1,...,N) and zeros on the diagonal, Ag) is
a block upper triangular matrix with upper quasiseparable generators 9(2)(k‘),
A (k), b2)(k) (k = 1,...,N) and zeros on the diagonal. By Theorem 17.4, the
matrix A(Ll)A(UQ) has quasiseparable generators p™)(k), §(k), a™(k); g(k), h®) (k),
b2 (k);d' (k) (k=1,...,N) with §(k), g(k), d'(k) (k=1,...,N) determined via
(17.30).
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Further, Ag) + AS) is a block upper triangular matrix with upper qua-
siseparable generators g™ (k), A (k), b (k) (k = 1,...,N) and diagonal en-
tries dV(k) (k = 1,...,N), A(LQ) + Ag) is a block lower triangular matrix with
lower quasiseparable generators p®(k), ¢ (k),a® (k) (k = 1,...,N) and di-
agonal entries d® (k) (k = 1,...,N). By Theorem 17.5, the matrix (Ag) +
AS))(AS-?) +A(D2)) has quasiseparable generators p(k), ¢? (k), a® (k); g™ (k), h(k),
bV (k);d" (k) (k=1,...,N) with p(k), h(k) and d”(k) determined via (17.31).

By the formula (17.39), the diagonal entries of the matrix A are the sums of
the diagonal entries of the matrices Ag)Ag) and (Ag) + AS))(AS-?) + A(DZ)) and
hence the relations (17.36) hold.

Next, by formula (17.37) one gets

A 5) = p(D)a5(0) + 5@ 562 () +pD (@) (@V)5d0), 1<j<i<N.
(17.41)
Consider the elements p(i)a;;q(j) (1 < j < i < N). Using the formulas (17.32)
one has

W (A (7) & (i
pi)ea) = (p00) 30) Jaz (40D ),

which implies
p(i)az;q(j) = X1+ X2 + X3+ Xy,

with

W (a2 (5 (1) (N 7(2) [
X = (p000) o)a?j(q 5(32))6&)(])), Xo= (0 ﬁ(i))a;j(q é‘ggféj)(]))’
xa= G0 0)a (V) X (0 a0)e; ().

Using (17.40) one obtains
X1 = p(i)ag;q(4)-

Next, note that ai>j is an upper triangular matrix of the form
a>_(wm@ )
> — )
ij 0 (al ))i>j
and therefore one gets

Xo = (1) (@®)7qP (), Xz =pW(i)(@M)7q(j), Xa=0.

ij
Hence it follows that the expressions p(i)aqu( Jj) coincide with the right-hand sides
of equalities (17.41) and therefore

Ay =p(i)ajq(j), 1<j<i<N.
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This implies that the elements p(i) (i = 2,...,N), ¢(j) (j =1,...,N = 1), a(k)
(k=2,...,N —1) defined in (17.32), (17.33) are lower quasiseparable generators
of the matrix A.

In a similar way using the formula (17.38) we derive the formulas (17.34),
(17.35) for upper quasiseparable generators of the matrix A. O

Remark 17.7. One can check easily that the relations of Theorem 17.6 may be
recast as

Bo = Org xsY
d'(k) gk) \ _ ( PP (k) dD(k) Br-1 0 h2 (k) 6P (k)
(a0 %5 ) = Cooy ooy ) (75" 7) (ol gty )
k=1,...,N; (17.42)
IN+1 = Or%xsﬁa
o h(k) N\ _ (k) bW (k) I 0 pP (k) 0
( p(k) d"(k) ) a ( 0 gW(k) ) ( 0 Yre1 > ( a® (k) ¢ (k) )7
k=N,... 1. (17.43)

1. . . . . L U U L
Here By, v are auxiliary variables, which are matrices of sizes 3y X si , 7;/_; X 5;_1.

Next,

b0 = (@m0 +a®pm) ). g = E ) ara
a® M) (k)p)
a(k) = ( O(k) a C(l@)]?k)(k) ) (17.45)
2)
gk)=( gk) ¢Mk) ), h(k)= ( ;L(kHZ(l)((lZ))d@(k) > (17.46)
b3 (k
b(k) = ( h(l)(k)g(](%(k) b(l)o(k) >7 (17.47)
d(k)y=d'(k)+d"(k), k=1,...,N. (17.48)

§17.4 Multiplication by triangular matrices

Next we consider particular cases where one of the factors is a triangular matrix.

Corollary 17.8. Let Ay be a block upper triangular matriz with upper quasisepara-
ble generators gM (k), h(V(k),bM (k) (k = 1,...,N) of orders r{ (k =0,...,N)
and diagonal entries dV (k) (k = 1,...,N), and Ay be a block matriz with qua-
siseparable generators p® (k), ¢ (k),a® (k); g (k), N (k), b (k); d® (k) (k =
1,...,N) of orders sk, s (k=0,...,N) respectively.
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Then the product A = Ay As is a block matriz with quasiseparable generators
p(k), a(k), a(k): g(k), h(k), b(k); d(k) (k = 1,...,N) of orders sF,r¥ + sV (k =
0,...,N). These generators are determined as follows. We set yny11 = OT%
and we compute recursively

( Vi B(k>>_<h“><k) bW (k) )(I 0 ><p(2><k) d<2>(k>>
p(k) dk) )~ \ dV(k) gW(k) 0 Yt a®(k) ¢@ (k) )
k=N,... 1 (17.49)

L
XSN7

Here vy are r,lil X s£71 matrices. Next we set

q(k) = ¢® (k), a(k) = a® (k), (17.50)
(2)
g(k) = ( dV(k)gP (k) ¢V (k) ), h(k)= ( hﬁ(]gc) ) (17.51)
b3 (k
b(k) = ( h(l)(k)!(](%(k) b(l?(k) ) . (17.52)

Proof. Since the matrix A; is upper triangular one can set
pM(k)=0, ¢V(k)=0, aV(k)=0.
Inserting this in (17.30) we get
d(k)=0, qk)=0, g(k)=0.

From here, using (17.31) and (17.34)—(17.36) we obtain the formulas (17.49) and
(17.51), (17.52) for upper quasiseparable generators and diagonal entries of the
product A = A; As. Using (17.32), (17.33) we obtain the formulas

plk) = (0 pk) ), (k) = < q<2?(k) ) a(k) = ( 8 a<2?(k) )

for lower quasiseparable generators of the matrix A. One can see easily that such
lower quasiseparable generators may be replaced by the other ones p(k), q(k) =
¢ (k),a(k) =a®(k) (k=1,...,N). O

Applying Corollary 17.8 to transposed matrices we obtain the following statement.

Corollary 17.9. Let A1 be a block matriz with quasiseparable generators p(l)(k‘),
aD(k), aD(k); gV (k), KO (K), b (k); dV(R) (k = 1,...,N) of orders rf,rl
(k=0,...,N). Let Ay be a block lower triangular matriz with lower quasiseparable
generators p? (k), ¢? (k), ¥® (k) (k =1,...,N) of orders sk (k=0,...,N) and
diagonal entries d? (k) (k=1,...,N).

Then the product A = Ay As is a block matriz with quasiseparable generators
p(k),q(k), a(k);g(k),h(k),b(k);d(k) (k = 1,...,N) of orders &t + sk +¥ (k =
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0,...,N). These generators are determined as follows. We set yy41 = 0,0 st
and we compute recursively

w o h(k)\ _ (Y)W (k) I 0 pP (k) d® (k)
(atty ot )= (2o oo ) (0 e ) (i sy )
k=N, .. .1 (17.53)

Here vy are 7”/2]—1 X 5£—1 matrices. Next we set

g(k) = g (k), b(k) = b (k), (17.54)
1 - W (E)d@ (L

p(k) = ( pW (k) Bk) ), q(k) = ( 1 5(2))(1@)( ) > (17.55)
a(k W (Y@ (k

a(k) :( 0( ) q C(L(Q))’Ek)( ) ) (17.56)

Corollary 17.10. Let Ay be a block lower triangular matriz with lower quasisepa-
rable generators p™ (k), ¢V (k),a (k) (k =1,...,N) of orders rf (k=0,...,N)
and diagonal entries dV (k) (k = 1,...,N) and Ay be a block matriz with qua-
siseparable generators p? (k),¢® (k),a® (k); g (k), N (k), b (k); d® (k) (k =
1,...,N) of orders sk, sY (k=0,...,N).

Then the product A = Ay As is a block matriz with quasiseparable generators
p(k), a(k), a(k); glk), h(k), b(k); (k) (k = 1,...,N) of orders vt + sk,sU (k =
0,...,N). These generators are determined as follows. We set By = Orgmg and
compute recursively

(a0 0= (rod wm ) (%5 ) () sl )

k=1,...,N. (17.57)
Here B, are rE x s¥ matrices. Next we set
b(k) = 0P (k), h(k) = h®(k), (17.58)
p(k)=( pM (k) dV(k)pD(k) ), qlk)= qg()@f) ) (17.59)
a® () 2
a(k) = ( O(k) ! C(L@)Izk)(k) > : (17.60)

Proof. Since the matrix A; is lower triangular, one can set
gV (k) =0, hV(k)=0, bV (k) =0.
Inserting this in (17.43) we get

d"(k)=0, h(k)=0, p(k)=0.
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From here, using (17.42), (17.44), (17.45) and (17.48), we obtain the formulas
(17.57) and (17.59), (17.60) for lower quasiseparable generators and diagonal en-
tries of the product A = A;A,. Using (17.46), (17.47) we obtain the formulas

o0 = (o 0), i = (") i = (00

for upper quasiseparable generators of the matrix A. One can see easily that such
upper quasiseparable generators may be replaced by the other ones g(k), h(k) =
R (k) b(k) = b (k) (k=1,...,N). O

Applying Corollary 17.10 to transposed matrices we obtain the following
statement.

Corollary 17.11. Let Ay be a block matriz with quasiseparable genemtors p( )(k),
g (k),aW (k); gV (k), RV (k), 6D (k);dV (k) (k =1,...,N) of ordersrf,r{ (k=
0,...,N). Let Az be a block upper tm'cmgular matriz with upper quasiseparable
generators g? (k), h® (k), b (k) (k =1,...,N) of orders s¥ (k=0,...,N) and
diagonal entries d® (k) (k=1,...,N).

Then the product A = A1 A is a block matriz with quasiseparable genemtors
p(k),q(k), a(k);g(k),h(k),b(k);d(k) (k = 1,...,N) of orders rE,rv¥ + s¥ (k =
0,...,N). These generators are determined as follows. We set By = 0,25y and
compute recursively

(o %)= Ciofi) o ) (75 1) (o) s ).

k=1,...,N. (17.61)

Here B, are rE x s¥ matrices. Next we set
p(k) = pM (k) a(k) = a'V(k), (17.62)
gk = (§k) gO®) ), h(k) = ( h(l)’z:))o(lg " > (17.63)
b(k) = ( h(l)?(;;;g( k) b(l?(k:) > (17.64)

§17.5 Complexity analysis

Here we derive an expressmn for the complexity of the Algorithm 17.6. Let A1) =
{A Ny and A = {A” }iv;—1 be matrices with block entries of sizes m; x v;
and v; X nj, respectively, and with quasiseparable generators and their orders as
in Theorem 17.6.
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We start with the formula (17.30). This formula may be written in the form

d'(k) gk M (k 0 0
( (j((k)) gék) > = (Z(l)gk; > Be—1 (W@ (k) b (k) ) + (O 4O (k) g (k) ) :
(17.65)
Here the multiplication of the r,il X slkll matrix B5_1 by the slkll X (slk] +ny) ma-
trix ( AP (k) 6@ (k) ) costs ri_;sY_ (s +ny) multiplications and rf_; (s{_; —
1)(s¥ + ny) additions, thus less than 2rf  s¥ | (s¥ + ny) operations. Next, the
multiplication of the result by the (my + rf) x rf | matrix ( Zi;gg ) costs
(my +rE)rE | (sY + ny) operations and (my + L) (rE | — 1)(s¥ + ny) additions,
thus less than 2(my, + r&)rE | (s¥ + ny) operations. Finally, the multiplication of
the r£ x vy, matrix ¢ (k) by the g x s matrix g (k) costs less than 2rfv;s¥
operations. Thus the total complexity of the formula (17.65) is less than

2(rf_ysi_q (s + ) + (me + gy (sg +nw) + rivesy)

operations.
In a similar way we rewrite (17.31) in the form

(st a0 )= (i

where ;41 is an r{ st matrix, ( a@ (k) ¢@ (k) ) is an sk x (sk_; +ng) matrix,
(1)
and ( Z(I)EZ)) ) is an (rd | +my) x 7Y matrix.
One obtains that the complexity is less than
2(ri_yvisioy + i sk (siy ) + (i +ma)ry (si_y + i)

Next, one can see easily that the computation of the products

dV(k)p@ k), ¢V (k)AD(K), ¢V (k)pP k), dD(k)g? (k),
RO (k)P k), RO (k)gP k),  dD (k)d® (k)

by using the formulas (17.32)—(17.36) requires respectively

my (2v, — 1)5%_17 r,f(QVk — 1)ng, r,f(?yk — 1)3%_17 m(2uy, — 1)3%,

r,gfl(Qz/k — D)ng, rgfl(2uk - 1)55, mg(2v, — 1)ny

operations.
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Thus the total complexity of the algorithm is estimated as follows:
N
c<?2 Z [r,’;jl(skU +ng)(sY +mp +rE) +rEusy

k=1
L .U UL U L L
+ (s + 71y Fme)ry (Sg_q + k) +Tp_ kS + MrleSE_y

L L L U U U U
+ rpvEng + T VgS—1 T MEVES, + Tp_1VkNg + Tp_1VESE + mkuknk} .

Let the sizes of matrices my, ng, v, be bounded by the number m and the

orders of generators r¥, r", sk sU be bounded by the numbers 7/, 7", s', s":

M, iy e <m, e <ol el <oosk < sY < s
In this case one obtains the estimate
c<2N |7 (" +m)( " +m+7r")+r'ms”" + (s +r" +m)r" (s +m)
+7"ms’ +r'ms’ +m* (s + 8" + 1 +1") +r'ms” +m?].
If we now set r = max{r’,r", s, s"}, then
c < 2N (2r(r +m)(2r +m) + 4r®m + dm*r + m?),

ie.,
¢ < 2N (473 +10r*m + 6m?r + m?). (17.66)

§17.6 Product of matrices with semiseparable
representations

The rules obtained above for quasiseparable representations remain true for semi-
separable generators.

Theorem 17.12. Let A; be a block matriz with lower semiseparable gemerators
pM(k), ¢qV(k) (k=1,...,N) of order rr, upper semiseparable generators g™V (k),
hO(k) (k=1,...,N) of order ry, and diagonal entries dV (k) (k =1,...,N).
Let Ay be a block matriz with lower semiseparable generators p®(k), ¢ (k)
(k=1,...,N) of order sr,, upper semiseparable generators g (k), h® (k) (k =
1,...,N) of order sy, and diagonal entries d? (k) (k=1,...,N).

Then the product A = Ay Ay is a block matriz with lower semiseparable gener-
ators p(i) (i =2,...,N), 4(4) (j =1,...,N —1) of order rr, + s, upper semisep-
arable generators (i) (i=1,...,N—1), il(]) (j=2,...,N) of order ry + sy and
diagonal entries d(k) (k =1,...,N). These generators are determined as follows.
We set Bo = 0r, x5, and we compute recursively

(58 2)-(" S (5 (" )
k=1,...,N; (17.67)
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next we set ynN4+1 = Ory xs,, and compute recursively
wo h(k) O\ _ ( WMk T I 0 PP (k) d® (k)
pk) d'(k) )~ \ dV(k) ¢M(k) 0 Y41 I q®k) )
k=N,...,1. (17.68)

Here By, v are auziliary variables, which are matrices of sizes rp X sy,ry X SL.
Next we set

2=0 z=Y ¢VEpAE),i=2,... N1,
k=2

wy =0, wi =Y hW(k)g?(k),i=2,... N-1
k=2

Finally, we determine generators by the formulas

p(i) = ( pM @) pM(@)zi—1 +5() ), i=2,...,N, (17.69)
oo (a1 G) +d() — 24P () i L

q(j) = < 4@ () > ) j=1,...,N—1; (17.70)
9(@) = (g @) dV(@)g® (@) + (i) — gV (iwi ), i=1,...,N -1, (17.71)
. h(j) + w;_ A (j ,

h(j) = ( h(]Hh(;)(j)h () ) j=2....N, (17.72)
d(k) =d (k) +d"(k), k=1,...,N. (17.73)

Proof. We apply Theorem 17.6 with a™V (k) = I, a® (k) = I, 0™ (k) = I, b (k) =
I. Inserting these values into the formulas (17.30), (17.31) one obtains the formu-
las (17.67), (17.68) to determine the elements d’(k),d” (k), p(k), q(k), (k), h(k).
Next, using the formulas (17.32)—(17.36) one obtains the formulas (17.73) for the
diagonal entries of the matrix A = A; A5 and the formulas

b0 = (0w o), aw = (O gy

a(k) = < é q(l)(k)}”u)(k) ) k=1,...,N (17.75)
and

g(k) = ( dD(k)gD (k) +g(k) gWM(k) ), h(k) = < h:()]i’;) ) (17.76)

b(k) = ( h(l)(k)lg(g)(k) ? ) k=1,...,N, (17.77)

for lower and upper quasiseparable generators of A.
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To obtain lower semiseparable generators of the matrix A we apply Theorem
4.2. From (17.75) one obtains easily the equalities

ai(é > hn 4 ;)P(Q)(‘f))(é Zil—l), i=2,...,N (17.78)

and

Gt = (1 "D ) (15 vy

(17.79)

Substituting the expressions (17.74), (17.78), (17.79) in the formulas (4.15) one

obtains the formulas (17.69), (17.70) for lower semiseparable generators of the
matrix A.

Applying the obtained formulas to transposed matrices we obtain the formu-

las (17.71), (17.72) for upper semiseparable generators of A. O

To get an estimate for the complexity c of the algorithm presented in Theorem
17.12 we set m to be the maximal size of the blocks of the matrices A1, A and
r = max{ry, v, s, Sy }. Then one can derive the estimate

¢ < 2N(9r®m + 6m?r +m?).

which is an improvement over (17.66).

617.7 Comments

Algorithms for multiplication of matrices via quasiseparable representations can
be found for instance in [20]. The treatment via discrete systems appears for the
first time in this chapter.



Part IV

Factorization and
Inversion



Introduction to Part IV

This part is devoted to the problem of LDU and QR factorizations of matrices
in terms of their semiseparable or quasiseparable representations. We also provide
fast algorithms for these factorizations in terms of generators of the appropriate
representations. The results allow one to design fast algorithms for inversion of
matrices via their quasiseparable structure and to deduce via this structure fast
solvers for linear algebraic systems. In this part, like in Part III, one can find
illustrative examples and the computation of the complexity in detail.



Chapter 18

The LDU Factorization and Inversion

Let A be a block matrix with block entries of sizes m; x m; and with invertible
principal leading submatrices A(1 : k,1: k), k = 1,..., N. Such matrix is called
strongly regular. By Theorem 1.20, A admits the LDU factorization

A=LDU, (18.1)

where L, U, D are block matrices with the same sizes of blocks as A and L and U are
block lower and upper triangular matrices with identities on the main diagonals,
while D is a block diagonal matrix.

It is proved that the lower rank numbers of L are the lower rank numbers of
A and the upper rank numbers of U are the upper rank numbers of A. Also, the
minimal completion rank of the strictly lower triangular part of L is the minimal
completion rank of the strictly lower triangular part of A and the minimal com-
pletion rank of the strictly upper triangular part of U is the minimal completion
rank of the strictly upper triangular part of A.

It is shown that a part of the quasiseparable generators of the factors L and U
are the same as for the original matrix A and the rest of the generators are obtained
via an algorithm with linear complexity O(N). This opens the way to solve the
linear system Ax = y by factoring A = LDU, in fact computing the induced
quasiseparable representations for L, D and U and solving L(D(Uz)) = y, namely
Lz =y, Dw = z and then Uz = w. Note that linear systems with a triangular
matrix have been treated in the preceding chapter.

Since the inverse matrix has the decomposition A=! = U='D~ 1L~ we will
find quasiseparable generators for A=! via an O(N) algorithm.

§18.1 Rank numbers and minimal completion ranks

Here for a strongly regular matrix we show that the rank numbers and minimal
completion ranks of a matrix are equal to the corresponding numbers of the fac-
tors in the LDU factorization. This implies that one can obtain quasiseparable
and semiseparable representations of the factors with the same orders as for the
matrix A.

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 329
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_18, © Springer Basel 2014



330 Chapter 18. The LDU Factorization and Inversion

Lemma 18.1. Let A be a block matriz with block entries of sizes m; x m; and
with invertible principal leading submatrices A(1 : k,1 : k), k = 1,...,N. Let
pk(k=1,....,N—1) and p{ (k=1,...,N —1) be lower and upper rank numbers
of A and 71, and Ty be minimal completion ranks of the strictly lower triangular
and strictly upper triangular parts of A.

Then in the factorization (18.1) the matriz L is a lower triangular matriz
with lower rank numbers p£ (k =1,...,N = 1) and U is an upper triangular
matriz with upper rank numbers plk] (k=1,...,N —1). Moreover, the minimal
completion rank of the strictly lower triangular part of L equals 71, and the minimal
completion rank of the strictly upper triangular part of U equals 7y .

Proof. Set
Ly=L(1:k1:k), U,=(DU)1:k/1:k), k=1,...,N.
Formula (18.1) implies
A =LUg, k=1,...,N,

and since Ay, is invertible the matrices Ly, Uy, are also invertible. Using (18.1) and
the fact that the matrix Uy is upper triangular one gets
Ak+1:N,1:k)=Lk+1:N,1:k)Uy, k=1,...,N —1, (18.2)
and
Ak+2:N,1:k)=L(k+2:N,1:k)DU;, k=1,...,N—2. (18.3)

From (18.2), since the matrices Uy, are invertible, one obtains
pt =rank A(k+1:N,1:k) =rankL(k+1:N,1:k), k=1,...,N—1. (18.4)

From (18.3), since the matrices Uy, are invertible, one obtains
rank A(k+2: N,1:k)=rankL(k+2:N,1:k), k=1,...,N—2. (18.5)

From the formulas (18.4) and (18.5) we see that the expression for the minimal
completion rank in the formula (3.3) to be applied to the matrix A coincides with
the one for the matrix L.

Using the transposed matrices we obtain the corresponding equalities for the
upper rank numbers and minimal completion ranks. O

618.2 The factorization algorithm

Next we derive an algorithm to compute quasiseparable generators of the factors

in the factorization (18.1).

Theorem 18.2. Let A = {A;;}Y;_, be a block matriz with block entries of sizes m; x
m; and with invertible principal leading block submatrices Ay = {Aij}ﬁjzl, k=
1,...,N. Assume that A has lower quasiseparable generators p(i) (i =2,...,N),



§18.2. The factorization algorithm 331

qj) G=1,....,N—1),a(k) (k=2,...,N—1) of orders rE (k=1,...,N — 1)
upper quasiseparable generators g(i) (it =1,...,N —1), h(j) (j =2,...,N), b(k
(k =2,...,N —1) of orders r{ (k = 1,...,N — 1), and dzagonal entmes d(k
(k=1,...,N).

Then in the factorization (18.1) the matriz L has lower quasiseparable gen-
erators p(i) (i = 2,...,N), ¢V(G) G =1,....,N—=1), ak) (k=2,...,N —1),
the matriz U has upper quasiseparable generators g™V (i) (i =1,...,N — 1), h(j)
(j=2,...,N), blk) (k =2,...,N —1), and the matriz D has the form D =
diag{y1,...,vn}. Here the elements p(i), a(k), h(j), b(k) are the same as for
the matriz A and the elements ¢V (5), gV (i), v are determined via the following
algorithm.

)
)

1. Compute
n=d(1), ¢V =g, ¢V 1) =77"9(1), (18.6)
fi =M (Mmg(1). (18.7)

2. Fork=2,...,N — 1 compute

Y = d(k) — p(k) fre—1h(k), (18.8)
g (k) = lg(k) — a(k) fs—1h (k)] (18.9)
g (k) = g(k) — p(k) fr—1b(k)], (18.10)
fre = a(k) fo1b(k) + ¢ (B)yrg™ (k). (18.11)

3. Compute
v =d(N) — p(N)fn-1h(N). (18.12)

Here fr, (k=1,...,N — 1) are auxiliary variables, which are r]% X r,g matrices.

Proof. We should check that

D :dlag{’)’hy’)’N}

and moreover, by Lemma 5.3 and Lemma 5.6, that the matrices L,U satisfy the
relations
L(k+1:N,k) = PeyrgM(k), k=1,...,N—1, (18.13)
Uk,k+1:N)=g¢gW(k)Hpy1, k=1,...,N—1, (18.14)
with the matrices Py, Hj, defined in (5.2), (5.6) and the elements v, ¢ (k), g™ (k)

determined in the algorithm.
Using Lemma 5.1 and Lemma 5.4 one obtains the following partitions of the

matrix A:
A1 Gr—1Hy
A= . k=2....N,
( PrQr-1 M,
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with the matrices Py, Qy defined in (5.1), (5.2) and the matrices Gy, Hy defined
in (5.5), (5.6). Moreover, using (5.11) and (5.14) one obtains the partitions of the
principal leading submatrices Ay, = A(1: k,1: k) in the form

Ay = ( p(;j)gli—l G’“C;(llg(k) > . k=2,....N. (18.15)
Next we introduce the matrices
fo=QrA'Gy, k=1,...,N—1. (18.16)
By Theorem 1.20,
n=d), = d(k) = p(k) feoth(k), k=2,....N (18.17)

which mean that the formulas (18.6), (18.8), (18.12) for v, (k = 1,...,N) hold

and moreover

L(k:N,k)=Ap(;, )7, ', k=1,...,N, (18.18)
Uk, k:N)=~,"Ak(1,2), k=1,...,N, (18.19)

where
A=A, Ay=M,—P.fr1Hy, k=2,...,N. (18.20)

Now we will prove the relations (18.13), (18.14). For k = 1 one has vy, = d(1)
and, using (5.10), (5.13) one gets

A1(2:N,1)=A(2: N,1) = Pq(1),

A1(1,2: N)=A(1,2: N)=g(1)Hs
and hence using (18.18), (18.19) one obtains

L(2:N,1) = PyqY, U@1,2:N) =gV (1)H,

with ¢ (1) and g™ (1) defined in (18.6).
For k > 1 one has the following. Using (5.10) one obtains the representations

d(k)

Mi(:,1) = A(k : N k) = ( Peraq(k)

), k=2,...,N—1. (18.21)

Similarly, using (5.13) one obtains the representations
Mi(1,:) = A(k,k: N) = ( d(k) g(k)Hg41 ) , k=2,...,N—-1. (18.22)

Using the recursions (5.4) and (5.8) one gets

Pofe_1Hy = ( Pki(llz)(k) )fk_l( h(k) b(k)Hpgr ). (18.23)
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Next, taking the first columns in (18.20), (18.23) and using (18.21) one obtains

1) = d(k) — p(k) fe—1h(k
Ak(-,l)* ( Pk-',—l( (k‘) kfk 1h >

Similarly, taking the first rows in (18.20), (18.23) and using (18.22) one obtains

Ar(1,:) = ( d(k) = p(k) fr—1h(k) (g(k) — p(k) fr—1b(k)) Hyt1 ) -
Thus,

Ak(:,l)

Yk
, k=2,...,N—1,
< Pri1q' (k) >

Ak(17:): ( V& g/(k)Hk-l‘l )7 k:2,...,N71,

and

with the elements 7, from (18.8) and

(k) = q(k) — a(k) fe-1h(k),  g'(k) = g(k) — p(k) f—1b(k).

Furthermore, using (18.18), (18.19) one obtains (18.13), (18.14).
It remains to prove the relations (18.7) and (18.11). The equality (18.7)
follows directly from the definition (18.16) and the relations

Ql = Q(l)v G = 9(1), 7= d(l)

For k > 1 applying the factorization (1.52) to the matrices Ay partitioned in the
form (18.15) one obtains

. I 0 Ap—1 0 >(1 A,;lle_lh(k)>
T\ (k) Qi A, T 0 T 0 I ’

whence

4l ( I —A' Gr_1h(k) ) < Al 0 > ( 0 )
oo I 0 i ()Qk Al T
(18.24)

Using the recursion (5.3) and (18.16) one has

a(§ TG ) Cam@is —athfian(h) +ae) )
— (a7 B ).

Using the recursion (5.7) and (18.16) one has

( 7p(k)Q£71A1;_11 ? )G’“ N ( —p(k)jc’i]:})lgg;)+ o(k) ) = ( Gk;/(l}?)%) >

(18.25)
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Now from the definition (18.16) and the relations (18.24)—(18.26) one gets
i = a(k) fr-1b(k) + ¢ (k) g’ (k),
which completes the proof. O

Set m = maxi<g<n(mg), r = maxlSkSN_l(r,f,r,g). The complexity of the
operations used in the algorithm from Theorem 18.2 is estimated as follows.

1. The formula (18.8): Two matrix multiplications which require mr? arithmeti-
cal multiplications and m(r—1)r arithmetical additions and m?r arithmetical
multiplications and m?(r — 1) arithmetical additions, respectively, and a ma-
trix addition which costs m? arithmetical additions. Thus (18.8) costs less
than 2mr? + 2m?2r arithmetical operations.

2. The formula (18.9): In the parentheses two matrix multiplications which
require r® arithmetical multiplications and 7?(r — 1) arithmetical additions
and r?m arithmetical multiplications and r(r — 1)m arithmetical additions,
respectively, and a matrix addition which costs rm arithmetical additions.

Denote by p(m) the complexity of the solution of an m x m system of
linear algebraic equations using a standard method. Thus finding v, L costs
p(m) arithmetical operations. Multiplying by ~, ! costs rm? arithmetical
multiplications and r(m — 1)m arithmetical additions.

Thus (18.9) costs in total less than 273 +2r2m+p(m)+2rm? arithmetical
operations.

3. The formula (18.10) costs the same number of operations, except for p(m)
arithmetical operations if we keep 7, ! from before.

4. The formula (18.11): less than 4r3 + 2m?r + 2mr? operations.

Thus the complexity is estimated by
¢ < (8% + 8r?m + 8m?r + p(m))N. (18.27)

Example 18.3. Consider the N x N matrix A from Example 5.14,

1 a a2 (LN_2 (LN_1
b 1 aVN=3 N2
b2 b 1 aN—4 aN—3
A= . )
bN;Q bNﬂS bN.74 .. 1 CL
bN—l bN_2 bN_3 b 1

with ab # 1.
For this matrix the quasiseparable generators of the factors in the LDU fac-
torization (18.1) will be computed using the algorithm in Theorem 18.2.
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For A one can choose the quasiseparable generators which have been com-
puted in Example 5.14. These are:

p(l):b7 2’227...7]\77 a(k):b7 ]{:27.“7]\]_17

which will also be generators for the lower triangular matrix L in the LDU de-
composition,

h(i):a, i:27...7N7 b(k):a7 ]{:27_“7]\7_17

which will also be generators for the upper triangular matrix U in the LDU de-
composition, and

a)=1, g()=1, j=1,....N—1, dk)=1, k=1,...,N.

It remains to compute the entries v, k= 1,..., N of the diagonal matrix
D, the generators ¢V (j), j = 1,...,N — 1 of L, the generators g(V)(j), j =
1,...,N —1 of U and the auxiliary variables f;, j=1,...,N —1.

One has

n=d1) =1, ¢V(1)=ql)y' =1,
g (1) =71 g(1) = 1,
A=dP DM () =1,
Y2 = d(2) = p(2)f1h(2) = 1 — ab,
gV (2) = (q¢(2) — a(2) 1h(2)y; ' = 1,
9M(2) =75 '(9(2) —p(2) f1b(2)) = 1,
fo=a(2)£16(2) + ¢V (2)729"(2) = ab+ 1 — ab = 1.

One can prove by induction that
w=1—ab, k=2,....N, ¢V =9V =f=1, j=1,....,N—1.

Indeed, suppose that for a certain k these formulas are true. Then for k + 1 one
has

Vo1 =dk+1) —plk+ 1) frh(k+1)=1-a-1-b=1—ab,
¢V (k+1) = (g(k + 1) —a(k + 1) frh(k + 1))y}, = (1—a-1-b)/(1 —ab) = 1,

g Mk +1) =71 (g(k +1) = p(k + 1) frb(k + 1)) =

and

1
l—a-1-b)=1
lfab( “ b)

Fra1 = alk + 1) fub(k + 1) + ¢V (k + Dypos1 g (k + 1)
—a-1-b+1-(1—ab)-1=1.
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Using the quasiseparable generators which have been found for the factor
matrices, one concludes that

1 0 0 0 0
b 1 0 0 0
b2 b 1 0 0
L= ,
bN._Q bN.—3 bN.—4 1 0
bN—l bN_2 bN—3 b 1
D = diag(1,1 —ab,1 —ab,...,1 — ab),
and
1 a a2 --- agN-2 gN-1
01 a alV=3 N2
00 1 aV=t N3
U=1] . )
0 0 O 1 a
0 0 O 0 1 o

Example 18.4. Consider the N x N tridiagonal matrix

d B 0 0 0
a 0 B 0 0
0 a 0 0 0
A= . 7
0 0 0 0 B
0 0 0 a 0

with d # 0. We apply the algorithm from Theorem 18.2 to compute the quasisep-
arable generators of the factors in the LDU factorization of A.

For A one can choose the quasiseparable generators
pli)=a, i=2,...,N, a(k)=0, k=2,...,N —1,

which will also be generators for the lower triangular matrix L in the LDU de-
composition,

which will also be generators for the upper triangular matrix U in the LDU de-
composition and

Q(j>:17 g(j>:57 j:17"'7N_17 d(1>:d7 d(k):07 k:27"'7N'
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It remains to compute the entries v, k& =1,..., N, of the diagonal matrix
D, the generators ¢V (j), j =1,...,N — 1, of L, the generators g (j), j =
1,...,N —1, of U, and the auxiliary variables f;, j=1,...,N —1.

One has

_ _ M1 — g1 (1) (1) — ~—1 _ B
n=dl)=d, ¢’O)=e¢W)y =, ¢’M)=mn91)=
fir=d® (W)= 9 =d(2) - p@)fih(2) =0 - afy = -,

(@) = @D - a@fh@N5" = L o) =75 62) ~pfbe) =

2 = DB + 4D 2)rag V(D) =
One can prove by induction that

szfaﬁaq(l)(k):17fk:g(1)(k):57 k:]-a 7N71

Vk—1 Yk Yk

Indeed, suppose that for a certain k these formulas are true. Then for k + 1 one
has

ot = d(k + 1) — p(k + 1) feh(k + 1) = —jf ,
dO 4+ 1) = (q(k +1) — a(k + D fh(k+ Dyt =
Yk+1
gV 4+ 1) = 7l (gl + 1) — p(k + D fib(k+ 1) = ©
Yk+1

and
_ ) & _ 1 p_ B
fer1=alk+ 1) fib(k+ 1)+ ¢V (k+ Dyipr9't(k+1) = Vh+1 = .
Vk+1 Yk+1 Vk+1

It is clear that the recursion v, = 7yx—2 holds and therefore

vomer = d, Yo = — 7 LT

It follows that

D:diag{d,—af,d,—aﬂ,...d}

for odd N and 5 8 5
« « «
D =di d,— d,— ood,—
1ag{7 d77 d’ b }

for even N.



338 Chapter 18. The LDU Factorization and Inversion

Using the quasiseparable generators found for the factor matrices, we obtain

B
1 0 00 0-- 00 éiodgg”'gg
a 1,0 0000 00 1 % 0 .00
0 -4 1 0000 a
R A
d b .
00 0-¢1--00 :
L. @ d
00 0 0 0 “ 1 00 0 0 0 0
for even N and
;
10000 00 é%odgg 88
31d000~00 O B 0 o
0-41 00 00 a Y
N SRR T N TR e
d )
00 0-41--- 00 _
: e 00 00 0 --1-4¢
0.0 000 gl 00 0 0 0 0 1
for odd N. O
Example 18.5. Consider the 5 x 5 matrix
321 11
2 3 2 1 1
A=]1 2 3 2 1
112 3 2
111 2 3

Using Example 5.16 we get quasiseparable generators of A:

p2)=2pB3)=(1 2),p4)=(1 1),p05)=1,
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From Theorem 18.2 it follows that in the factorization (18.1) for the matrix A
the matrix L has lower quasiseparable generators p(i) (i = 2,...,5), ¢P(j) (j =
1,...,5=1), a(k) (k = 2,...,5 — 1), the matrix U has upper quasiseparable
generators ¢V (i) (i =1,...,5—1), h(j) (G =2,...,5), b(k) (k=2,...,5—1),
and the matrix D has the form D = diag{~1,...,7s}. Here the elements p(i), a(k),
h(j), b(k) are the same as for the matrix A and the elements ¢(*)(j), ¢(*) (i), v
will be determined according to the algorithm in the theorem. Thus we proceed
as follows.

Compute

1 B 1
v =d1)=3, ¢V1)=q)y "= 5 g (1) =~71g9(1) = 5

fi=dV(D)mgP () =

For k = 2 we compute the diagonal entry

>~
ot

Y2 = d(2) — p(2) fa—1h(2) =3 — 3 = 3’

the generators

@) =) - a) @i = (1) - (>§2>§;(32>
90 2) =5 [9(2) ~ p(2) fa-1b(2)] = 2 -,

and the auxiliary matrix

fo=a(2)fou1b(2) + ¢ (2)129M(2)
(0 )y (F) a2 =15 )

For k = 3 we compute the diagonal entry

73 =d(3) —p(3)f2h(3) =3 (1 2 );<_32 _32 ) < ;>§’

the generators of L and U, respectively,
g (3) = [4(3) — a(3) f2h(3)]r5 "

() (s )% 2)()i=1(2)

5 [9(3) — p(3) £2b(3)]

(- (5 ) (0 0) ez 50

9" (3) =
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and the auxiliary matrix
fs = a(3)£20(3) + ¢ (3)339") (3)
11\1/ 3 =2 10 1/2)\81 1/42
(0)s (%2 7)(0) s () ss2 =5 (27)
For k = 4 we compute the diagonal entry

wmst}(E2) (1)1

the last generator of L

¢V (4) = [a(4) — a(4) fsh(4)] !
<2(1 0)213<;1 g)(i))ii?’

and the last generator of U

9V (4) =71 9(4) — p(4) f2b(4)]
::f? (2'_( L ); ( 3 é > ( é )> - 12'

Also for k = 4 we compute f, the auxiliary matrix which will be used in the

computation of vs:

fo=a(4) fsb(4) + ¢ (4) 729" (4)
4 2 1 101110 18
= 1 - .
(10 )8 ( 2 5 ) ( 0 > s
Finally, we compute ~s:

18 15
—3-1. C.1="".
s 11 11

Thus the generators q(l)(k)7 k=1,...,4 of L are
1 1 —2 1 2 10
M) = M (9) = M) (3) = MW (4) =
¢’ (1) =5, 472 5<3>,q(3) 8<5>,q() 1

the generators gV (k), k =1,...,4 of U are
dIM) =5, V) = (=2 3),90@) = (2 5), ¢V(W)=
3’ 5 ’ 8 ’ 11’

and the diagonal entries of D are

g5 8 1115
"= 772_37 93_5774_ 8775_11
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In the decomposition A = LDU of the matrix A of size N = 5, the matrix
L has lower quasiseparable generators p(i) (i =2,...,N), ¢P() (j =1,...,N —
1), a(k) (k=2,...,N — 1), therefore

1 0 0 0 O
210 0 0
N I
L= 1 0 O
??710
PEoEow
3 5 4 11

The matrix U has upper quasiseparable generators ¢g( (i) (i = 1,...,N —
1), h(j) (j=2,...,N), b(k) (k=2,...,N — 1), therefore U is equal to LT:

12111
L O
01 5 o
U=100 1 ¢
00 0 1 1
0000 1

The matrix D has the form

58 11 15
D = di . — diag {3 .
1ag{717 77]\[} lag{ 73757 8711}
§18.3 Solution of linear systems and analog
of Levinson algorithm
Let A be a matrix satisfying the conditions of Theorem 18.2. The solution of the

corresponding linear system Ax = y may be calculated as follows.

Algorithm 18.6.
1. Start with

n=d(1), 1) =q(1), ¢ (1) ="g(1), (18.28)
fir =gV (1), (18.29)
then for k = 2,..., N — 1 compute recursively

Ve = d(k) — p(k) fr—1h(k), ( )
q(k) = q(k) — a(k) fe—1h(k), (18.31)
g (k) = v g (k) — p(k) fr1b(k)], (18.32)
fi = a(k) fr-1b(k) + G(k)g™ (k), (18.33)
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and finally compute
v =d(N) — p(N)fn-1h(N). (18.34)

2. Start with
Z(]-) = ’Yl_ly(]-)v X2 = (j(].)w(l),

then for k = 2,..., N — 1 compute recursively
2(k) = v H(y(k) = p(k)xk), (18.35)
Xe+1 = a(k)xk + G(k)z(k), (18.36)

and finally compute
2(N) = 75" (y(N) = p(N)xn). (18.37)

3. Start with
2(N) = 2(N), nv-1 = h(N)a(N),

then for k = N —1,...,2 compute recursively
(k) = z(k) — g (k). (18.38)
Nk—1 = b(k)mi + h(k)x(k) (18.39)

and finally compute
z(1) = z(1) — gV (D)m. (18.40)

We justify Algorithm 18.6 as follows. At first we compute the factorization
A=LU,

where L is a block lower triangular matrix and U is a block upper triangular
matrix with identities on the main diagonal. Using the algorithm from Theorem
18.2 one obtains the factorization of A in the form

A= LDU,

with the block lower and upper triangular matrices L and U with identities on the
main diagonals and a block diagonal matrix D. Here L has lower quasiseparable
generators p(i) (i =2,...,N), ¢V(j) (j=1,...,N=1), a(k) (k=2,...,N —1),
U has upper quasiseparable generators gV (i) (i = 1,...,N — 1), h(j) (j =
2,...,N), b(k) (k=2,...,N —1), and D has the form D = diag{~1,...,7n},
where the elements p(i ) ( ), h(j), b(k) are the same as for the matrix A and
the elements ¢ (5), ¢(*) (i), v are determined via the formulas (18.6)-(18.12).
Set L = LD. One can easily see that L is a block lower triangular matrix
with lower quasiseparable generators p(i) (i = 2,...,N), ¢(j) = q(l)(j)fyj (Jj =
1,...,N—=1), a(k) (k =2,...,N — 1) and diagonal entries v; (k = 1,...,N).
Thus using the formulas (18.6)—(18.12) we obtain the formulas (18.28)—(18.34) for
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lower quasiseparable generators and diagonal entries of the matrix L and upper
quasiseparable generators of the matrix U.

Applying the algorithm from Theorem 13.10 to the matrix L we obtain Step 2
of the Algorithm 18.6 for determining the solution z of the system Lz = y. Finally,
applying the algorithm from Theorem 13.13 we obtain Step 3 for determining the
vector x from the system Uz = z.

Set m = maxi<gp<n(mg), r = maxlngN_l(r,f,r,g). The complexity of the
operations used in the first step of Algorithm 18.6 is estimated as follows.

1. The formula (18.30): Like in (18.8) two matrix multiplications which require
mr? arithmetical multiplications and m(r — 1)r arithmetical additions and
m?2r arithmetical multiplications and m?(r — 1) arithmetical additions, re-
spectively, and a matrix addition which costs m? arithmetical additions. Thus

the formula (18.30) costs less than 2mr? + 2m?r arithmetical operations.

2. The formula (18.31): Like in the parentheses of the formula (18.9), two matrix
multiplications which require 73 arithmetical multiplications and r2(r — 1)
arithmetical additions and r?m arithmetical multiplications and r(r — 1)m
arithmetical additions, respectively, and a matrix addition which costs rm
arithmetical additions.

Thus the formula (18.31) costs in total less than 273 + 2r2m + p(m)
arithmetical operations.

3. The formula (18.32): In the parentheses two matrix multiplications which
require 73 arithmetical multiplications and r?(r — 1) arithmetical additions
and 7?m arithmetical multiplications and 7(r — 1)m arithmetical additions,
respectively, and a matrix addition which costs rm arithmetical additions.

Denote by p(m) the complexity of the solution of an m x m system of
linear algebraic equations using a standard method. Thus finding v, 1 costs
p(m) arithmetical operations. Multiplying by 7, 1 costs rm? arithmetical
multiplications and r(m — 1)m arithmetical additions.

Thus the formula (18.32) costs in total less than 2r3 + 2r?m + p(m) +
2rm? arithmetical operations.

4. The formula (18.33): less than 473 + 2m?r operations.

Thus the total estimate for the complexity of Step 1 is
c1 < (8% 4+ 6r?m + 6rm? + p(m))N.

Applying the estimate (13.26) to the triangular systems Lz =yand Uz = w we
obtain the estimates

co < (2r% +4mr +2m? + p(m))N, ¢z < (2r2 + 4mr + 2m?* + p(m))N.
Thus the total estimate for the complexity of the Algorithm 18.6 is

c < (87 + 6r?m + 6m>r + 8mr + 41> + 4m? + 3p(m))N.
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Next we present another justification of the Algorithm 18.6 based on the
successive solution of the equations

Ape® = y® E=1,. N (18.41)

with Ay = A(1 : k1 : k), y® = (y(1)...y(k))". We use also the auxiliary
equations
AGY =Gy, k=1,...,N-1 (18.42)

with the matrices Gy defined in (5.5). We set (1) = 2(1), Ggl) = ¢M(1) and for
k=2,...,N we use the partitions

S — ( t;@ ) y ) = ( y;zk)l) > G = ( g(ﬁ%k) >

Here z(k) and y(k) are the last components of the vectors z(*) and y(*) and g™ (k)
is the last block row of the matrix Gy.

It is clear that z(1) = (d(1))"*y(1) and ¢V (1) = (d(1))"'g(1). For k =
2,..., N, using the partitions of the submatrices Ay as

[ A Groih(k)
= et ™)

and the recursion (5.7), the system (18.42) may be written in the form

{ Ap1Gy + Gro1h(k)g™ (k) = Gr1b(k), (18.43)
p(k)Qr-1Gj_y + d(k)g™M (k) = g(k),
and the system (18.41) in the form
Ap_itp—1 + Grorh(k)z(k) = y*= 1
k—1te—1 + Gr_1h(k)z(k) =y ) (18.44)
p(k)Qr-1tx—1 +d(k)z(k) = y(k).
From the first equation in (18.43) we get
ko1 = G (k) = h(k)g® (k). (18.45)

Inserting this in the second equation in (18.43) we get
p(k)Qu—1 Gy b(k) + (d(k) — p(k)Qu1GL2 1 h(k)g D (k) = g(k).  (18.46)
Similarly, the first equation in (18.44) may be written in the form

try = 2% D = GW h(k)z(k). (18.47)
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Inserting this in the second equation in (18.44) we get

p(k)Qr—12" ™V + (d(k) — p(k)Qr-1G  h(k))z(k) = y(k). (18.48)

As it was shown in the proof of Theorem 18.2, the variable

fio1 = Qr1 A4, Groq = QkflG/(gl_%

satisfies the recursion relations (18.29), (18.33). Thus the equalities (18.46), (18.48)
may be written in the form

g (k) = g(k) — p(k) fr—1b(k) (18.49)
and

vez(k) = y(k) — p(k)xx, (18.50)

with v, defined in (18.30) and xx = Qp_12*~Y. From (18.49) and (18.50) we
obtain the formulas (18.32) and (18.35), (18.37).

Next we derive recursion relations for xj. We obviously have x2 = ¢(1)z(1) =
G(1)z(1) and for k = 2,..., N—1, using the recursion (5.3) and the equality (18.47),
we get

-1 (1)
(a(k)Qir  q(k) )( ak )Cz;gc];)lh(k)z(k) >
— a(k)xi + (k) — a(k) fr_1h(k))z(k) = alk)xe + a(k)=(k),

with ¢(k) defined in (18.31).
It remains to justify Step 3 of Algorithm 18.6. First we prove by induction
that

t =col(z()) — g (@Om)ly, k=1,...,N—1, (18.51)
where i
Nik = Z(b( )z ]+1h(j + 1)2(] + 1)7
with
b (k) = b(k) — h(k)g™® (k). (18.52)

Using (18.41) with k = 1,2 and the partition 2(?) = ( zt(12) ) we get

ty =2 — gW(1)h(2)2(2).
Let for some k with 2 < k < N — 1 the relation

tho1 = col(z(i) — g ()i k—1)1=] (18.53)
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!
hold. Using the formula (18.45) and the partitions G,(;) = ( g(glgk) > one can

easily derive that

Gy = col(gV (@) (OW)5 )y, k=1,...,N 1. (18.54)

Next, using (18.47), the partition z(*) = < tZk(B > and the formulas (18.53),
(18.54) we get

e = ( tz’“@ ) — col(gM (i) (BD) 5y 1 hlk + 1)2(k + )5,
whence
te(k) = z(k) — gV ()h(k + 1) z(k + 1) = 2(k) — gD (k) (18.55)
and
tr(i) =t (i) — g (@) (OM) 5y (ke + 1)2(k + 1)
=2(i) —g" )( YDik—1 + (O) 5 bk + 1)z(k + 1))
=2()— gV (@)pw, i=1,....k—1. (18.56)
From (18.55) and (18.56) we obtain (18.51).

Thus we have z = 2(V) = < ;}]{&1) >, and therefore z(N) = 2(N) and

(i) =ty (i) = 2() — gDy, i=N—-1,...,1, (18.57)

where 7; = n;,y—1. We have ny_1 = h(N)z(N) = h(N)z(N). Next, for i =
N—1,...,2 we get

N-—1
i1 = Z (b(l))f—1,j+1h(j +1)2(j + 1)
j=i—1
N-—1
)+ Z BN h G+ 1)z + 1)
j=i
N-—1
= h(i)z(i) + b (4) Z BN h(G+ 1)z + 1)
=i

= b (i) + h(i)=(i),
and so, using (18.57) and (18.52), we get
ni—1 = (b(i) = h(i)g'™ (i))ns + h(i)(w (@) + ¢ (0)) = b(@)mi + h(i)z (D).

This recursive algorithm may be viewed as an analog of the famous Levinson
algorithm for Toeplitz systems.
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§18.4 The inversion formula

Under the assumptions of Theorem 18.2 the generators of the inverse matrix can
be obtained via the following algorithm.

Theorem 18.7. Let A = {Azg}” 1

m; X my; and with invertible principal leading block submatrices Ay = {A”}2 =15
1,. N Assume that A has quasiseparable generators p(i) (i = 2,...,N),
() (

D, alk) (k = 2,...,N —1), g(i) (i = 1,...,N — 1), h(j)
J
k

be a block matrixz with block entries of sizes

QE'T‘

2 N), b(k) (k =2,...,N—1),d(k) (k=1,...,N) of orders rf,r¥
SN —1).
Then quasiseparable generators p™M (i) (i = LN, qMVG) (G =1,...,
N71)7 a(l)(k) (k = 23 H '7N71)7 g(l)(z) (Z = 17 . N71)7 h( )(]) (] = 23 c. '7N)7
bO(E) (k=2,...,N=1),dV(k) (k=1,...,N) of the inverse A~" are determined
as follows.
1. Determine the elements ¢V (5) (j =1,...,N—=1), g (@) (i=1,...,N—1)
and v (k=1,...,N) via the formulas
n=d1), ¢ =)t ¢ (1) =7 tg(1),
fr = W)mg(1);
Ve = d(k) = p(k) fe—1h(k),
gV (k) = la(k) — a(k) fr—sh(k)i
g (k) = i g (k) = p(k) fu1b(k)], (18.59)
Fr = alk) fiab(k) + ¢ (k) -y - g (),
k=2,...,N—1;

N N
H I =l

(18.58)

v =d(N) — p(N)fn_1h(N). (18.60)
2. Compute Ay, hD(N), p()(N),dV(N) by
AN h<1>(N)) (h(N)) .
= —p(N) I), 18.61
( p(l)(N) d(l)(N) I Y ( p( ) ) ( )
then for k=N —1,...,2 compute \g, AV (k),p™M (k),dV (k) by
aV (k) = a(k) — ¢ (k)p(k), b (k) = b(k) — h(k)g™ (k), (18.62)
< Mk h<1>(k)> B <h(k) b (k) ) <’yk1 0 ) < —pk) I >
PO dO) 1 —®® )\ 0w ) L) g0 )
(18.63)
and finally compute
dM =47t — gWagM (). (18.64)
Here M\, (k = N,...,2) are auxiliary variables, which are 7'12]—1 X r,f_l matrices.

Proof. By Theorem 18.2, one obtains the factorization of the matrix A in the form
(18.1) with the block lower triangular matrix L which has lower quasiseparable



348 Chapter 18. The LDU Factorization and Inversion

generators p(i) (i =2,...,N), ¢V () (G=1,...,N—1), a(k) (k=2,...,N —1)
and identity diagonal entries, the block upper triangular matrix U with upper
quasiseparable generators gV (i) (i = 1,...,N—1), h(j) (j =2,...,N), b(k) (k =
2,...,N — 1) and identity diagonal entries, and the block diagonal matrix D =
diag{v1,...,vn}. Here, p(i), a(k), h(j), b(k) are the same as for the matrix A
and ¢ (5), ¢gM (i), are determined via the formulas (18.58)—(18.60).

For the inverse matrix one has

A= WU 'tDHL

By Theorem 13.13, the matrix U ! has upper quasiseparable generators fg(l)(i)
(i=1,...,N=1),h(5) (j=2,...,N), b (E)(k=2,...,N — 1) with b (k) de-
fined in (18.62). One can easily see that the matrix U ! D~! is an upper triangular
matrix with upper quasiseparable generators —g™M (i) (i = 1,..., N — 1), h(j)fy;1
(j=2,...,N), b (k)(k=2,...,N —1), and diagonal entries ’y,;l (k=1,...,N).
Next, by Theorem 13.10, the matrix L~ has lower quasiseparable generators —p(4)
(i=2,....,N), ¢V (G=1,...,N=1), aV(k) (k=2,...,N — 1), with a(P) (k)
defined in (18.62). Now by Theorem 17.5 the generators ¢V (k), a™V(k), bV (),
g(l)(k) determined above coincide with the corresponding generators of the ma-
trix A~!, and the rest of the generators p™)(k), h(Y) (k), d (k) of this matrix are
determined via recursive relations

)‘N+1 = OrU xrk

N
( M RD(K) > B ( h(k)y, bW (k) ) (1 0 ) ( —pk) I )
p (k) dD (k) Wl =Wk SN0 N ) \aD(k) ¢M(k) )
k=N,..., 1.
From here for k = N one obtains the equality (18.61), for k = N —1,...,2 the
equalities (18.63), and for k = 1 the equality (18.64). O

The complexity of the algorithm presented here is estimated as follows. For
the computations by the formulas (18.59) one has the estimate (18.27). The use
of the formula (18.62) costs at most 2r’mN operations. The formula (18.63) may
be written in the form

Mo (k) > ( h(k) ) 1
= —p(k) I
(p(l)(k) d(l)(k) 7 Vi ( p(k) )
b (k)
# (Lol ) e (4969 ¢09).
The cost of computations by this formula does not exceed

pim) 4+ 2(m%(r +m) + (r + m)?>m +r3(r + m) +r(r +m)?).

Here p(m) denotes the complexity of the inversion of an m X m matrix using a
standard method. Thus the total estimate for the complexity is

c < (p(m) + 2p(m) + 87 + 22r*m + 12m*r + 4m*)N. (18.65)
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§18.5 The case of a diagonal plus semiseparable
representation

In this section we derive a specification of Theorem 18.2 for matrices with diagonal
plus semiseparable representations.

Theorem 18.8. Let A = {A;;}V Yj=1 be a block matriz with block entries of sizes m;x
m; and with invertible principal leading block submatrices Ay = {A”}” k=
1,...,N. Assume that A has lower semiseparable generators p(i) (i = 2,...,N),
(j) (j =1,...,N — 1) of order rr,, upper semiseparable generators g(i) (
yoos N—=1), h(y) (j = 2,...,N) of order ry, and diagonal entries d(k) (k
oo N

Then in the factorization (18.1) the matriz L has lower semiseparable gen-
erators p(i) (i = 2,...,N), ¢V () (j = 1,...,N — 1), the matriz U has upper
semiseparable generators gV (i) (i =1,...,N — 1), h(j) (j = 2,...,N), and the
matriz D has the form D = diag{~1,...,yn}. Here the elements p(i), h(j) are the
same as for the matriz A and the elements ¢V (5), gV (i), v are determined via
the following algorithm.

q
1
1

1. Compute

n=d1), ¢V =qnt ¢P1) =77"9(D), (18.66)
fr=adVW)mgM (). (18.67)
2. Fork=2,...,N — 1 compute

Ve = d(k) — p(k) fe—1h(k), (18.68)
g (k) = [q(k) = fa-rh(k)]y;, (18.69)
g (k) = v (k) — p(k) fr—1], (18.70)
fr = fr1 +aD (&) reg™ (k). (18.71)
3. Compute
v = d(N) = p(N) fn-1h(N). (18.72)
Here f, (k=1,...,N —1) are auxiliary variables, which are ri, X ry matrices.

Proof. A may be treated as a matrix with the lower quasiseparable generators
p(i),i=2,...,N, q(),j=1,....N=-1, ak)=1I.,, k=2,...,N—1;
and upper quasiseparable generators
g(i),i=1,...,.N—=1, h(),j=2,....,N, bk)=1L,, k=2,...,N—1.
Hence, by Theorem 18.2, the matrix L has lower quasiseparable generators

p(@),i=2,...,N, ¢MG),j=1,....N—1, ak)=1I.,, k=2,...,N—1,
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and the matrix U has upper quasiseparable generators
gV@),i=1,....,.N—=1, h(j),j=2,...,N, bk)=1I,, k=2,...,N—1.

Thus, by Theorem 4.2, the matrix L has lower semiseparable generators p(i) (i =
2,...,N), ¢M() (j=1,...,N —1) and by Theorem 4.3 the elements g(*) (i) (i =
1,...,N —=1),5h(j) (j = 2,...,N) are upper semiseparable generators of the
matrix U. O

One can easily check that here instead of the estimate for complexity (18.27)
one obtains the better one

¢ < (8r*m + 4m*r + p(m))N.

In the corresponding algorithm for the solution of the system Ax = y one obtains
the estimate
d < (dmr + p(m))N

instead of (13.25), and the total estimate is
c < (87*m + 4m>r + 8mr + 3p(m))N.

Example 18.9. Consider the matrix A from Example 18.3 with a # 0, b # 0,
ab # 1. For this matrix one can use the semiseparable generators

p(i) =b"", h(i)=da""', i=2,...,N,

. 1 ) 1 .
Q(j)_aj,17 g(.])_bjil’ j_177N_17 d(k)_17 k_177N

One can use Theorem 18.8 to find the LDU factorization of A. It follows that
in the factorization (18.1) the matrix L has lower semiseparable generators p(7)
(i=2,...,N), ¢M() (j=1,...,N — 1), the matrix U has upper semiseparable
generators gV (i) (i =1,...,N —1), h(j) (j = 2,...,N), and the matrix D has
the form D = diag{~1,...,yn}. Here the elements p(i), h(j) are the same as for
the matrix A and the elements ¢ (5), ¢() (), v; are determined via the algorithm
in the theorem.

Compute the new semiseparable generators and auxiliary variables with the
first step of the algorithm, namely

n=d1)=1, ¢V1)=ql)y'=1 gP1)=9"91) =1,
fi=dPWngP Q) =1, 1 =d(?2)-p2)fih2)=1-ba.

One can prove by induction that

Y=1—ab, k=2,...,N,
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and

1 1 1
1 1
q( )(k):bk_17 g( )(k):ak_17 fk:ak_lbk_17 k:17aN71

Indeed, suppose this is true for a certain value of k. Then for k£ + 1 one has
1
VYk+1 = d(k + 1) _p(k + 1>fkh(k + 1) =1- bkakflbkfla’k =1- ba‘7
1 1 1 1
(1 _ -1 _ k _
q )(k + 1) - [Q(k + 1) - fkh(k+ 1)]7]“-1 - (bk - ak_lbk_la > 1—ab - bk’

1 1 1 1
1 _ 1 _ k _
g( )(k+1)*7k+1[9(k+1)7p(k+1)fk]* 1—ab <ak -b ak_lbk_l) - a’f’

1 1 1 1
— (1) (1) — —
o1 =fe+ ¢V (k+ DyerrgV (k+1) = dh—1ph=1 T i (1 — ab) b= kb

and the induction hypothesis is proved.
It is clear that these semiseparable generators for the matrices L, D and U
give the same factorization matrices as in Example 18.3. O

618.6 Comments

This chapter is an extension of results obtained by I. Gohberg, T. Kailath and
1. Koltracht in [38] for scalar matrices with diagonal plus semiseparable represen-
tations. The results of [38] were extended to scalar matrices with quasiseparable
representations in [20] and to block matrices in [22]. Further generalizations to
matrices with quasiseparable representations out of a band may be found in [28]
and to diagonal plus semiseparable operator matrices in [24] and [25].

The recursive method mentioned in Section §18.3 was used by I. Gohberg, T.
Kailath and I. Koltracht in [39] for linear algebraic systems with structured matri-
ces. An O(N?) recursive algorithm for systems with matrices with lower or upper
quasiseparable representations was suggested in [16]. The recursive (Levinson-like)
fast algorithm for linear algebraic systems with matrices with quasiseparable rep-
resentations was suggested by R. Vandebril, N. Mastronardi and M. Van Barel
in [46, 47].



Chapter 19

Scalar Matrices with
Quasiseparable Order One

Generators with orders one are complex numbers. One can then apply the linear
complexity inversion algorithm from Theorem 18.2 suggested under the conditions
of invertibility of the principal leading submatrices of the matrix. In this chapter
an algorithm to determine quasiseparable generators of the inverse without any
restrictions on the principal leading submatrices is obtained. In the proofs here,
the matrices adjAy of principal leading submatrices Ay are used instead of their
inverses A,;l.

The direct use of representations may lead to overflow or underflow in the
computing process. That is why an equivalent representation of generators in-
cluding some scaling coefficients is then used. The particular cases of matrices
with diagonal plus semiseparable representations and of tridiagonal matrices are
considered separately.

§19.1 Inversion formula

In this section we derive a basic result for this chapter.

Theorem 19.1. Let A be an invertible scalar matriz with quasiseparable of orders
one generators p(i) (i =2,...,N), ¢(j) G =1,....,.N—=1), a(k) (k=2,...,N —
1,...,N). Using these generators define

e = d(k)a(k) — p(k)g(k), &, = d(k)b(k) — g(k)h(k), 2<k<N-1; (19.1)

also, define forward recursively s1 = q(1), v1 = g(1), fr = q(1)g(1), 1 = d(1)

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 353
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and fork=2,..., N —1

q(k)vk—1 — a(k) fe—1h(k), vk = g(k)y—1 — p(k) fe—1b(k),
d(k)yr—1 — p(k) fe—1h(k),
a(k) f
d(

)
k) fe—1b(k)d(k) + q(k)vr + skg(k) — ve—1q(k)g(k)
N)'YN—l —p(N)fv-1h(N);

then define backward recursively tny = p(N), uny = h(N), zy = h(N)p(N), Oy =
d(N) and fork=N —1,...,2

p(k)Oks1 — g(k)zesra(k),  up = h(k)Okt1 — b(k)zrt1q(k),
d(k)Ok41 — g(k)zr+1q(k),

b(k)
d(1)

19.3
= bk ra(R)d(k) + AR)t -+ ukp(k) — B h(R)p(k). (19:3)
= d(1)82 — g(1)2z2q(1)
and
Pk = Yo—10k — fr—12k, 2< k<N, p1 = po;
M o=0a, Ae=-10k1 — a(k) fr_12p01b(k), 2< kK< N -1, (19.4)

AN = YN-1,

and set det A = p.

Then pr, = p, k=1,...,N and the elements —t;/p (i =2,...,N), s; (j =
1,....,N=1), Iy (k =2,....N—=1); v; (¢ =1,...,N—=1), —u;/p (j =
2,...,N), o (k=2,...,N—=1); \/p (k=1,...,N) are quasiseparable gen-
erators of the inverse matriz A~1

In the proof of the theorem the following auxiliary result is used essentially.

Lemma 19.2. Assume that a matriz A admits the representation
A Ay GH 7
PQ B

where Ag, B are square matrices, and P,G and Q, H are correspondingly columns
and rows with appropriate sizes.

Then

det A = det A - det B — [Q(adj Ao)G|[H (adj B)P], (19.5)
o o —((adj 4)G) (H (adl B))

254 = (o By P Qo Ar) B ). 9o

where A and B’ are matrices of the same sizes as Ay and B, respectively.
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Proof. Assume for the moment that the matrices Ay, B, A are invertible. Then the
inversion formula (1.54) yields

S (A A OHBTIP)QAGY) (A5 G)(HB
. _< —(B7'P)(Q4; 1) B-1 > (19.7)

where B = B — P(QA;'G)H. Moreover, by the formula (1.53) one has det A =
det Ay - det B. Next, using (1.72) one gets

det B =det B-det (I — B~'P(QA;'G)H) = det B (1 — (QA; 'G)(HB™'P))

and therefore

det A = det Ap - det B <1 B [Q(adj Ap)G][H (adj B)P]>

det Ay - det B
= det Ay - det B — [Q(adj Ao)G][H (adj B) P]

and thus (19.5) is valid without any restriction.
Now using the inversion formula (1.69) we represent the matrix B~! in the
following form:

1
(HB~1P)(QA;'G)
_adjB (1 _ H(adj B)P Q(adj AO)G> ~!(adj B)P Q(adj A)G H(adj B)

det B det B det Ay det B det Ag det B
adj B Q(adj Ag)G [(adj B)P][H (adj B)]

~ detB + det Ag - det B — [H (adj B) P][Q(adj Ao)G] det B

Br=pt (B71P)(QAT'G)(HB ™)

It follows that

adj B)P det Ag HE! = H(adj B) det Ay

B7lP = ( =
det A ’ det A

and moreover

det A ’
_ - dj A9)G][H (adj B)]
Aty = @ .
(A5 &) (HB ™) o
Inserting this in (19.7) we obtain (19.6) without any restriction. O

Proof of the theorem. Using Lemma 5.1 and Lemma 5.4 one obtains for every
k, 1 <k < N —1, the representation

Ay GrHy 1
A= . 19.8
( Pi1Qr Brta (19:8)
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Here Ay is the leading principal submatrix of size k X k£ and the column vectors
Py, Gy and the row vectors Qy, Hj are given via (5.2), (5.5) and (5.1), (5.6).
We introduce the notations
Vi = (adj Ag)Gr, Sk = Qr(adj Ax), fr = Qr(adj Ax)Gy, v = det Ag;  (19.9)
Tk = (adj Bk)Pk, Uk = Hk(adj Bk), ZE = Hk(adj Bk)Pk, ek = det Bk. (19.10)
From (19.5) it follows that
det A = det Ay, - det Bi41 — [Qk(adj Ak)GkHHk+1(adj Bk+1)Pk+1]
= YOkt — fezryr = pry1, 1<ESN -1

Next from (19.6) one obtains

/ —
Ak ViUk+t > , (19.11)

adjA =
) ( ~Ti11S¢  Bjo,

where A}, Bj ., are matrices with the same sizes as Ay, Bpy1.
Consider the elements defined by (19.9). Let sk, vi be the last entries of the
row vector Sy and the column vector Vj, respectively. For kK = 1 one has

Si=s1=¢(1), Vi=vi=g(1), fi=4q1)g(1), n=d.
For k > 2, the following holds. From the representation

_ Ap_1 Gk,lh(k)
A = ( p(K)Quy (k) >

and from (19.5) it follows that
Ve = d(k)vk—1 — p(k) fe—1h(k). (19.12)

Assume for the moment that Ay_; and Ay are invertible and apply the formula
(19.7) to the matrix Ay. Then B = B — P(QA;'G)H from (19.7) becomes

adJ Ak—l

o Tk Tk
detAk,le_lh(k) = .

d(k) — p(k)Qr—1 T detAp1 o1

From (19.7) one obtains

. (Aklﬁ(Ak%Gk-l)(h(k) T () (Qr-1 A —(Akllek_1>h(k>vgkl>
k )

=7 (k) (@A) kN
whence
Vi adj Ax—1 1 _
adjdg = [ o FVer(h(R), 2 pR)Skr =Veeah(R) ) g 44
—p(k)Sk-1 V-1

Next, taking into consideration the recursion (5.3) and the equality

Qr—1Vi—1 = fr—1,
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one obtains

Sr = Qradj A = ( a(k)Qk,1 q(k) ) adj Ag
— (Cak), 1, B+ fiahB)p(R)) — aR)pURI LSk —a(k) i 1h(R) + (k)i ).

Using (19.12) one obtains

Yk feah(R)p(R)] = d(k)

and thus one concludes that

Sk = ( (d(k)a(k) = p(k)q(k)Sk-1  —a(k)fu—th(k) +a(k)ye-1 ),  (19.14)
which holds without any restriction.

Similarly, from (5.7) and the equality Sk—1Gr—1 = fr—1 one obtains

Vk = (adj Ak)Gk = adj Ak ( Gkg;(lkb)(k) )

_ ( Vie— 1{7191 e+ h(k)p(k) fre—1]b(k) — h(k)g(k)} )
—p(k) fr—1b(k) + vk—19(k)

and then, by virtue of (19.12),

_ ( Ve—1(d(k)b(k) — g(k)h(k))
Vk( Ye—19(k ) p( )fk b(k ) > (19'15)

Next for fj one gets

e )
= a(k) fr—1d(k)b(k) — ) —

) — a(k) f—19(k)h(k) + q(k)vk—19(k) — q(k)p(k) fe—1b(k)
k) + g(k)[a(k) k-1 — a(k) f—1h(k)]
10(k)] — q(k)ve—19(k). (19.16)

a(k) fr—1b(k)d(
+ q(k)[k-19(k) — p(k) fi—

Thus the numbers sk, vk, fi, Ve satisfy the relations (19.2), and moreover
for the vectors Sy, Vi one has the recursions

Si=s1, Sk=1(1Sk—1 sk ), k=2,...,N—1, (19.17)

Vi =1, sz(VkU;‘;k), k=2,...,N—1, (19.18)

where I, 0 are given by (19.1).
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Next we consider the elements defined by (19.10). Let ti, uj be the first
entries of the column vector 7}, and the row vector Uy, respectively. For £ = N
one has

Tn =tn Zp(Z\O7 UNZUNZh(ZV)7 ZNZh(ZV)p(ZV)7 9N=d(N>.

For 1 < k < N — 1 one has the following. Consider the submatrices By =
A(k: N,k : N). Using (5.10) and (5.13) one obtains the representations

_ d(k)  g(k)Hps
Br= < Pri1q(k) Bk+i+ ) '

The application of (19.5) yields
Qk = d(k)&kH - q(k)zk+1g(k).

Moreover, assuming for the moment that Byi1, Bj are invertible, we apply the
formula (1.57) to the matrix By and obtain

0 Ok41 —
Bl = 1 }5:1 0 1 ) Z% g(k>Hk+1Bk+11 1 1
© T\ B Pena) % Bl P (a5 () ) (i Bl + Bl

From here one obtains representations similar to (19.13):

odi By — Or+1 - —9(k)Uk+1
1=\ () o080 4 T (g(k) ) g(R) s )
Then one can proceed as in (19.14)-(19.16), but in the backward direction,
to obtain the desired relations (19.3) for ti, wug, 0k, zr and to prove that the
columns T} and the rows Uy, satisfy the recursions

Ty = tn, T’“<Tkikllk)’ k=N—1,...2

UN:”LLN, Uk:(uk 6kUk+1)a k:Nfl...,Q.

(19.19)

Indeed, using (5.4) and the equality U1 P41 = 2k+1 one has

= ( Ory1p(k) — g(k)zpq1a(k) >
T2 {10k + q(k)2k419(R)) /Oki1la(k) — p(k)g(k)} )~

Since (0 + g(k)zk+19(k))/0k+1 = d(k), one obtains

_( Oryip(k) — g(k)zpr1a(k)
T = ( Ten {d(R)a(k) — p(k)g(k)) >
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Next, using (5.8) and the equality Hy417T)4+1 = 2k+1 one has
Up = ( h(k) b(k)Hy1 )adj By
= ( h(k)Ort1 — b(k)zer1q(k)  (d(k)b(k) — h(k)g(k))Urs1 ) -
Finally, we conclude that
2k = Up Py
= (0)hr = Rz iaa®) (dR0R) — R ) ()
— B0y 1p(k) — b(E)2h s 1(R)p(k) + d(R)B() 4 10(8) — h(E)g (k)24 10(k)
= b(k)zky1a(k)d(k) + h(k)[p(k)Or1 — g(k)zrr1a(k)]
+ p(k)[h(F)Okv1 — b(K)zk41q(k)] — h(k)Or11p(k).
Multiplying (19.19) by —p~1, N >k > 2 one obtains

~In/p=—tn/pn, —Ti/p= ( 7(:;]:1//[;))% >7 k=N-1,...,2
(19.20)

and

~Un/p=—ux/p, —Ux/p=( —ur/p —6kUrs1/p ), k=N—-1...,2.
(19.21)

Let Ax be the diagonal entries of the matrix adj A. Consider the matrices

Ap_1 Gr—1b(k)Hy 11
Pr1a(k)Qr—1 Bit1 ’
]{,‘:27...,N—1; A?\/‘:AN—l

4:%,4:(

obtained from A by removing its kth row and kth column. One has obviously
A =detBys =03, Ay =detAn_1=7n-1
and using (19.5) one gets
det A}, = det Ap_1-det Bry1 —a(k)(Qr—1adj Ax—1Gr—1)(Pry1 adj Bry1Hg11)b(k)

from which the relations (19.4) for A\j follow.
Thus for the inverse matrix A~! one has the following. From (19.11) we
conclude that

A Y E+1:N1:k)=(~Tws1/p)Sk, k=1,...,N —1.

Moreover, —T}/p, Sk satisfy (19.20) and (19.17). Hence, by Lemma 5.3, the ele-
ments —t;/p (1 =2,...,N), s; §j=1,....,N—=1), I (k=2,...,N —1) are lower
quasiseparable generators of the inverse matrix A~!. Next, one has

AY1:kk+1:N)=Vi(~Urs1/p), k=1,...,N -1,
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where Vi, (—Ug41/p) satisfy (19.18) and (19.21). Hence, by Lemma 5.6, the ele-
ments v; (¢ =2,...,N), —u;/p(j =2,...,N), & (k=2,...,N — 1) are upper
quasiseparable generators of the inverse matrix A~!. Finally, for the diagonal en-
tries one has

A7k, k) = det A}/ det A = i/ p.

Thus the numbers —t;/p (i =2,...,N), s; (j=1,...,N—-1), lx (k=2,...,N —
1); v, (i=1,...,N=1), —u;/p(j=2,...,N), o (k=2,...,N—=1); M\e/p (k=
1,...,N) are quasiseparable generators of the inverse matrix A~!. O

§19.2 Examples

Here Theorem 19.1 is illustrated by concrete examples.

Example 19.3. Consider the matrix

a1 0 0 Bl
0 az 0 fpo
0 0 Qa3 53
€1 €2 €3 04

Then one can take the scalar quasiseparable generators

g(1) = B1, g(2) = P2, 9(3) = B3, h(2) = h(3) =0, h(4) =1,
p(2) =p3) =0, p(4) =1, q(1) = €1, q(2) = €2, q(3) = €3,
dk) = an, k=1,...,4, a(2)=a(3)=0b(2)=b(3)=1.

One can therefore compute

la = ag, 02 = a2, I3 = a3, d3 = a3,

s1=c¢€1, v1 =P1, L =eab, n=a,

53 = €21, V2 = a1, Y2 = ea,

fo=e1Bias + e28201 + €201 82 — €22 = 1B + 25201,

83 = €30p0r1, V3 = B30, Y3 = Qzanqq,

f3 = e1fieas + e2f201 a3 + 3830201 + €301 B3 — o €333
= e1 10003 + 22013 + €383002011

Y4 = agazanan — €1 810003 — €200 — €383002007.

On the other hand,

ta=1, ug=1, 24 =1, 04 = ay, t3 = —f33,
Uz = —e€gz, 93 = Qz30yg4 — 5363, Z3 = —Q3,
ty = —fB203, Uz = —az€3, O = apazay — axfzez — PBaazen, 29 = azan,

01 = aranazay — ajasfBiez — oy Paazer — Prazaner.
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Denote det A by A. Then

P4 = Q30201 xq — €1810003 — €282001 03 — €33300001
p3 = aoaiazoy — o Baes — €113 — 220003

p2 = apapazoy — a1oefBies — agfaaizenr — €181a300

and

AL = ooy — agfizez — Baaizey,

Az = opooy — €1 B1an — €220,

361

= A,
:A7

:A7 P1292:A7

A2 = aazoy — a1 3€3 — €18 103,

Ay = Y3 = Q3i(].

One defines the following numbers, which will be the quasiseparable genera-

tors of the inverse matrix:

=5

Bs

p(4) =

-1
A’

(2)
d(1) =€, ¢2)=ear, §(3)=ecaa,
a(2) =b(2) = a2, a(3) =5(3) =
g(1) = B1, §(2) = Bea1, gB3) = [350@061,
= 3€3 b €3 b -1
) =0 = k=
and
5 B AL _ Qoag0y — o fize3 — PBaczen
d(l) = AT A )
Sy A2 aioazag — agfzez — e1fiaz
Son A3 a0y — €1f1an — €220
~ Q302001
di4) = A
One can build the matrix
(1) g(HA2)  §1bR)AB)  F(1)b(2)b(3)h(4)
p(2)q(1) d(2) G(2)h(3) g(2)b(3)h(4)
p(3)a(2)q(1) p(3)q(2) d(3) G(3)h(4) ’
p(4)a(3)a(2)q(1) p(4)a(3)q(2)  p(4)q(3) d(4)
namely
A Brages  Proges  —Prasas
1 Baouz€eq A2 Bacri€s —fBraras
A Baoz€r Bzeg0 A3 —B3anay |’
—Q302€1 —Q3€20¢(1 —€30201 Q302001

which is indeed A~1.
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Example 19.4. Let a # 0 be a scalar and consider the (N — 1) x (N — 1) matrix

—(N —=1a a a a a
a —(N —1)a a a a
a a —(N-1)a --- a a
A= . . .
a a a coo —=(N—=1)a a
a a a a —(N -1)a

For the matrix A one can use the quasiseparable generators

pli)=a,i=2,...,N —1, qj)=1,4j=1,...,.N—2,
ak)=1,k=2,...,N -2, g(j)=1,j=1,...,N -2,
h(i):a,i:Q,...7N—1, b(k>:17k:277N_27
dk)=—(N—-1)a, k=1,...,N — L.

Then

and forwards one can compute
s1=1, vu=1, fi=1 ~vm =—-(N-1)q,
and prove by induction that for k=1,...,N —1
Ve = (-1)"NF1aF (N — k),  fo=(=1)FTkN*1a" 1 v = s = (—Na)" .

One can also compute backwards

2
tn—1=a, un-—1=a, zy-1=a", Oy_1=—(N-1)a,

and prove by induction that for k=N —1,...,1
O = YNk = (_1)N—kkNN—k—1aN—k7 g = g = (_1)N—k—1NN—k—1aN—k7
2 = (_1)1\771@71(]\, _ k>NN7k71aN7k+1.
It follows that for k=1,...,N —1
Pk = Ye—10k — fr—12k
— (_1)k—1Nk—2ak—1(N + 1— k)(_l)N_kkNN_k_laN_k
_ (_1>k72(k_ _ 1)Nk72ak72(—1)N7k71(N _ k,)NkaflaNfIH»l

= (—DNTIINNBN (N + 1 - k)k — (k- 1)(N — k)
(—1)N*1NN*2aN*1 =det A
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Also
Ak = Ye—10k+1 — fre—12k+1
= (=1 k*lNk72akfl N+1—k)(-1 N—-k—1 k41 NN*k*QGkafl
(-1) ( )(=1) ( )
o (71)k_2(k _ 1)Nk—2ak—2(71)N—k—2(N o k o 1)NN—k:—2aN—k:
= (—D)VNN N 2((N+ 1K) (k+1) — (k- 1)(N -k —1))
=2(-1)NNN=3N 2,

One defines the following numbers, which will be the quasiseparable genera-
tors of the inverse matrix

} (71)N7iNN7i71aN7i 1 ‘

_ —(~1) , =92, ,N-1
p(Z) pz ( 1)N_1NN_2aN_1 ( ) (Na)’—l’ g ) ’ ;
i(j) = (=1 Y(Na)™t, j=1,....N—-2, a(k)=—-Na,k=2,...,N—2,
9() = (=17 (Na)’ ™" = 4(j), j=1...,N-2
a(k) = —Na = b(k), k=2,...,N—2,
. (_ )N zNN z—laN—i i1 1 .
h(l) = (71)N71NN7204N71 ( 1) (Na)ifl = p(l>7 1= 27 7N 17
- e 2(—1)NNN=3gN -2 2
d(ky = M = 21 @ = k=1,... N-1.

pr ()N-INN-2aN-1 = 7 Ng
If i > j, then the element (A™1);; of the inverse matrix is
p()g(iai —a(i=2)- - -a(i+1)
1 1

(1) (N (1) (Nay =

=D (i Na’

and if i < j, then the element (A~!);; of the inverse matrix is

GG —1)b(j —2) - - '5(””:‘;@

also. Therefore, the inverse matrix is

2 1 1 -+ 1 1
121 -~ 11
1112 011
" Na : Do
11 1 2 1
11 1 1 2

which is indeed A~!. O
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Example 19.5. Let N = 2r+1 be an odd number and consider the (N —1)x (N —1)
irreducible tridiagonal matrix

0 B 0 .- 0 0 0
(%) 0 52 e 0 0 0
0 as; 0 --- 0 0 0

A — . . . . E . ,
0 0 0 0 BN_3 0
0 0 0 an_2 0 BN—2
0 0 0 0 an_1 0

with
o #0,1=2,...,N—-1, p;#0,j=1,...,N—2.

For the matrix A one can use the quasiseparable generators

pli)=ai, i=2,....N—1, q()=1, j=1,....,N—2,
a(k)=0, k=2,....N-2, g¢(j)=8,j=1,....N—2,
hi)=1, i=2,...,N—1, bk)=0, k=2,...,N—2,
dk)=d, k=1,...,N—1.

Then
lk:fak, 5]6:7[3]@, k:2,...,N72

and one can compute forwards

51 =1, v1 = B, J1= D5, m =0,
sg =7 =0, vy =0, Yo = —anfh, fa=0,
s3 = —f, vz = —aaf31 s, 73 =0, fz = —a2810s,
s4 =0, vy =0, Ya = agasf1P3,  fa=0,
85 = apoufiPB3, s = azasfiB3fBs, 5 =0, f5 = azayB18355.
By induction, one can prove that for m =0,...,r — 1,
Yoem+1 =0,  fami1 = (=1)" a0y - - - - aomB1fB3 - Bam+1,
Soma1 = (—1) "oy - - - o B1B3 - Bam—1,
Voam+1 = Q0lg = -+ -+ 042m5153 """ 62m+1~
Also, form=1,...,r,
Yom = (—1)"agq - -+ - - a2mf1B3 - - Bom—1, S2m = V2am = fom = 0.

One can also compute backwards

in-1=an-1, un-1=1, zy-i1=an-1, Onv_1=0,

tn—2=0, uny_2=0, zy_2=0, Ony_o2=—an_108nN-2,
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tn_3 = —any_1an-_308N—2, UN—3=—aN—18N-2,
ZN-3 = —any-_1aN-30N—2, On_3=0.
By induction, one can prove that for m =0,...,r —1,
Oom+1 = (—1)" " "an_1an_3 - 0omi2BN—28N—a - Bom+1,

Z2m+1 = tam+1 = U2m+1 = 0.

Also, form=1,...,r,
Zom = (—1)"""an_1an_3 - oomBN_2BN_4- - Bam+1,
U2m = (_1)7‘_maN—1aN—3 """ 04277L+26N—26N—4 """ 62m+17
tom = (—1)"" Many_1an_g - aomfPN—28N—a- " Bam+1, bom =0.

It follows that for k=1,...,N —1

pr=(—1)"an_jan_3 - oofBN_2fN—4-""- b1 =detA
and
M=0=0, A\=0, k=2,....N—2, Anx_s=0.

One defines the following numbers, which will be the quasiseparable genera-
tors of the inverse matrix

1

p(2m) = (—1)m*+! . p(2m+1) =0,

p( ) ( ) Qo0 + -+ - a2m—26153 """ BQm—l p( )

- 1 -

h(2m) = (=1)m*+! ; h(2m +1) =0,
( ) ( ) Qg+ - -t 02mB1B3 -+ Bam—1 ( )
d(k):Oa (j(] = 54, g(]) = vy,

With the above generators one can write the inverse matrix A~!. For in-
stance, the last column L of the inverse matrix has the even components L(2m) =
0, m=1,...,r — 1, since sy, = 0 and L(2r) = 0, since d(2r) = 0. The odd
components are given by

- 1
h(2r) = (—=1)" 1
( ) ( ) 00y Q183 Bar—1
and it follows that
1 _ m
LE2m+1) = (—1)r—m+ Pn-s .. Patm). (19.22)
QN—1 ON-3 Q2(m+1)

Similarly one can find the remaining part of the matrix A=!. %
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§19.3 Inversion algorithm with scaling

We present here an algorithm to compute quasiseparable generators of the inverse
matrix A~!. The direct use of representations derived in Theorem 19.1 may lead
to an overflow or underflow in the computing process. That is why we use an
equivalent representation of generators including some scaling coefficients.

Algorithm 19.6. Let A be an invertible scalar matrix with quasiseparable of orders
one generators p(i) (i =2,...,N),q(j) (j=1,...,N=1),a(k) (k=2,...,N—-1);
g@) i=1,...,.N=1),h(j) G =2,...,N), bk) (k=2,....,N—1); d(k) (k =
1,...,N).

Then quasiseparable of orders one generators t; (t =2,....,N), 5, (j =
Lo, N=1), Ik (k=2,...,N=1); % (i=1,...,N=1), 4 (j =2,...,N), o
(k=2,...,N —1); e (k=1,...,N) of the matrix A~! are given as follows.

1.1.1.  Set 8§ =q(1), vj =g(1), 7v; = d(1) and compute f1 = q(1)g(1).

1.1.2. Introduce the scaling coefficient 3{ as 8f = 1/ max(|y}|,|f]|) or using

another method.

1.1.3. Compute

~ I 7 I = I ~ I
71:7{[313 flzfiﬂu 51:[315/1’ Ul:”i@l-

1.2. For k=2,..., N — 1, perform the following operations:
1.2.1.  Compute

Ik = d(k)a(k) — q(k)p(k), o = d(k)b(k) — h(k)g(k),

st = q(k)k—1 — a(k) fu1h(k), i = g(k)k—1 — p(k) fr—1b(k),
Vi = d(k)¥p—1 — p(k) fe—1h(k),

fi = a(k) fr1b(k)d(k) + q(k)vy, + sg(k) — k—1q(k)g (k).

1.2.2. Introduce the scaling coefficient 3 as 8f = 1/max(|v;|, |f1]) or by
using another method.
1.2.3. Compute

:Yk:f}/]/cﬂ]ga fk:flip/81£7 5k:ﬂ/€5;€7
Ok = B, Ik =Bilk, Ok = B0k
2.1.1.  Set thy = pn, uly = hn, 0 = dy and compute 2y = hypn.
2.1.2.  Introduce the scaling coefficient 35 as 8§ = 1/ max(|0/y|, |2|) or by

using another method.
2.1.3. Compute

On = ngﬂ%, ZN = Z;VB]l\j}a th = B]l\]ftGVv UXI = UINBJI\/}’

PN =AN-10n — fn_1Zn,  In = —t}/pN, N = —ul/pN.
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2.2. For k=N —1,...,2, perform the following operations:
2.2.1. Compute
th = p(k)br1 — g(k)Zurra(k),  uj, = h(k)frr — b(k)Zrraq(k),
0 = dibiir — g(k)Ze1a(k),
2, = b(k)Zr1a(k)d(k) + h(k)t), + uip(k) — Oxah(k)p(k).
2.2.2. Introduce the scaling coefficient Y as 8Y = 1/ max(|6}], |2}|) or by

using another method.
2.2.3. Compute
O = 0187, Zx =218, th =Bt ul =uiBy,

Pk = Fk-10k — fro1Zr, T = —t]/pr, Uk = —ul/ Pk

3.1. Compute A\; = égﬂ{/ﬁg.
3.2. Fork=2,...,N — 1, compute

N = A—1041 — a(k) fr—1Ze410(k), M = NoBY /-

3.3. Compute Ay = An-18%/pn-

To justify this algorithm note the followmg It is easy to prove by induction
that the elements S, o, %, fk and t, uy, Gk, Z are connected with the
corresponding elements of (19.2), (19.3) via the relations

k k k k
se=si[[8] e =o[[8] e =w]]8 f=£]]8 1<k<N-1,
i=1 i=1 i=1 i=1

and

N N
UZ—UkHB tkH@7 = Hﬁ%ik:%nﬁf], N>k>2
—k i=k

It follows that

k—1 N
pr = (Hﬁf)p(ﬂﬁ?) 2<k<N
i=1 i=k
and

k—1 N
2=<H5{)Ak< 11 6?), 2<k<N-1.
i=1

i=k+1
Notice also that

I =158, i >4 65 =658, i<
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Thus one obtains
til7;>j$j
P
T B ((8)7) 7 8 (T AL)
7 N _
(T2 BE) 2 i(TT; BY)

Aij:*

and

O[T Bl >—15<<<5{J> ) ([T B!
N
(Hrn 1 ) p,](H’rn:] ’{rjz)
5< " B
= * i = 171(5571], 1< ]

pj
Hence the elements ¢; (i = 2,...,N), §; (j =1,...,N — 1), I (k=2,...,N—-1)
and 9; (i =1,...,.N—=1), @; (j =2,...,N), o (k = 2,...,N — 1) given by
Algorithm 19.6 are correspondingly lower and upper quasiseparable generators of
the matrix A. The diagonal entries of A may be expressed as follows:

0(ITL, 87) 6o

A\ =0 = —
O e s
k=1 pr\—11y/ U /
S\k = Ak/p = (lekl_lﬂ ) A (Hl k+15 ) AkiﬂkUa 2 S k < N — ]-a
(1 8D (I, B9
S v T — v (TS Bh :’Yleﬁ%’
NSNS v g prN) N

which corresponds to Steps 3.1-3.3 in Algorithm 19.6.

An easy calculation shows that Algorithm 19.6 requires 58(N — 2) + 20 op-
erations. At the same time, substituting m = 1, r = 1 in (18.65) one obtains
the estimate ¢ < 52N for the complexity of the algorithm from Theorem 18.7,
to be applied to scalar matrices with quasiseparable order one. The last estimate
is better than that for Algorithm 19.6, but the algorithm from Theorem 18.7 is
obtained under some restrictions.

It is clear that using consequently Algorithm 19.6 for quasiseparable genera-
tors of the matrix A~! and then applying Algorithm 13.1 to the product z = A=ty
one obtains an algorithm of linear complexity for the solution of the linear equation
Ax =y.
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619.4 The case of diagonal plus semiseparable
representation

Let A be a scalar matrix with lower and upper semiseparable generators p(i)
(t=2,...,N),q(j) G=1,...,N—=1)and g(4) (i = 1,...,N —1), h(y) (j =
2,...,N) of order one, and diagonal entries d(k) (k = 1,...,N). Such a matrix
has quasiseparable generators p(i) (i = 2,...,N),q(j) (j =1,...,N-1),a(k) =1,
k=2,....,.N=1);9(t) i =1,....N=1), h(y) j =2,...,N), bk) =1 (k =
2,...,N—=1);d(k) (k=1,...,N). Hence one can set ay = by = 1 in Algorithm
19.6 and obtain the following method.

Algorithm 19.7. Let A be a scalar matrix with lower and upper semiseparable
generators p(i) (1 =2,...,N),q(j) (j=1,...,N—=1)and g(¢) (i=1,...,N —1),
h(j) (j =2,...,N) of order one and diagonal entries d(k) (k = 1,..., N). Then the

quasiseparable of orders one generators —t; (1 =2,...,N),§; (j=1,...,N—-1), [
(k=2,....,N=1);% (i=1,....,N=1), —t; (j =2,...,N), 0 (k=2,...,N—1);
Ak (k=1,...,N) of the matrix A~1 are obtained as follows.
1.1.1.  Set 8§ =q(1), vj =g(1), 71 = d(1) and compute f1 = q(1)g(1).
1.1.2. Introduce the scaling coefficient 5{ as 8f = 1/ max(|v}|,|fi]) or by
using another method.

1.1.3. Compute
= ’YiB{v fl = fiﬂllv S1 = B{Sllv U1 = Uiﬁll

1.2. For k=2,...,N — 1, perform the following operations:
1.2.1. Compute

le = d(k) — q(k)p(k), Sk = d(k) — h(k)g(k),
s = q(k)e-1 — fro1h(k), v}, = g(k)An—1 — p(k) fr—1,
vr. = d(k)yx—1 — p(k) fr_1h(k),

fr. = fr—1d(k) + q(k)vy, + s1.9(k) — Ar—14(k)g(k).

1.2.2. Introduce the scaling coefficient B as 8 = 1/max(|v,|,|f7]) or by
using another method.

1.2.3. Compute
Yo =B fro=fiBh. 5k = Bisi
Uk = viBE, v =Bilk, O = BLok.
2.1.1. Set ty=p(N), uyy=h(N), 0 =d(N) and compute zj =h(N)p(N).

2.1.2. Introduce the scaling coefficient 35 as 8§ = 1/ max(|0/y|, |2|) or by
using another method.
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2.2.

3.1.
3.2.

3.3.

Chapter 19. Scalar Matrices with Quasiseparable Order One

2.1.3. Compute
Oy = 00BY, in=20BY, th=B8Y%t,  ul=u\BY,
pn =AN-10n — fn1in, v =t} /pN, Gn = —uf/pN-

For k=N —1,...,2, perform the following operations:
2.2.1. Compute

th = (k)01 — g(k)Zk1,  wj, = h(k)Orir — Zpiaq(k),
v = d(k)Oi1 — g(k)Zrira(k),
2 = Zerad(k) + h(R)E, + uip(k) — O h(k)p(k).

2.2.2. Introduce the scaling coefficient 85 as B¢ = 1/ max(|6}|,|z}|) or by
using another method.

2.2.3. Compute
b =001, Be=28, =00t uil =By,
Pk = k—10k — fr—1Zk,  th = —t/Pr, U = —uy/pr-

Compute \; = 0281 /2.
For k =2,..., N — 1, compute

Ne = Fo-10k41 — foo1Zbs1, Mk = AiBY /-

Compute AN = f?N_lﬁjl{,/ﬁN.
The amount of operations for this algorithm is 42(N — 2) + 20.

§19.5 The case of a tridiagonal matrix

Consider a tridiagonal scalar matrix A = {Aij}i\szl, ie., A;; =0 for |¢ — j| > 1.
Quasiseparable of orders one generators of the matrix A may be defined (see

§4.11) via
p(l):]., 2—27...,N, q(j):Aj+17j,j:17...7N717
alk) =b(k) =0,k =2,...,N — 1;
g(i) = Aii+, i=1,...,N—1, h(j)=1, j=2,...,N;
d(k) = A,  k=1,...N.

As a direct consequence of Theorem 19.1 one obtains the following inversion

formula that is valid for any invertible tridiagonal matrix.
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Theorem 19.8. Let A = {A;;}1;_, be an invertible tridiagonal matriz. Let us
define:
Iy =—Aps1ky Ok = —Akpt1, 2<k<N-1

forward recursively s1 = A1, vi = A12, fi = s1v1, 11 = A1 and for k =
2. N—1

Sp = Apr1,87e—1, Uk = Ap kr1Ve—1,

Ve = Ak kVe—1 — fr—1,

[ = Ve—1Ar+1,6 A% k11,

YN = AN NYN-1 — fN—1,

backward recursively ty =1, uy =1, 2y =1, Oy = An Ny and for k = N —

1,....2
te = Opt1, Uk = Opt1, 2k = Opga,
0r = Ak kOk+1 — Ak k+12k+1 Ak+1.k,
0, = A1,192 - A2,1Z2A1,2,
and
Pt = Yo—10k — fr—1zx, 2<k <N, p1 = p2,
M =0 M =7—10k41,2<ESN -1, Ay =7n-1.
Set det A = p.

Then pr, = p, k=1,...,N, and the elements —t;/p; (i =2,...,N), s; (j =
L..,N=1), Iy (k=2....N=1); v; (i =1,....N—1), —u;/p; (j =
2,...,N), 6 (k =2,...,N—=1); M\e/pr (k = 1,...,N) are quasiseparable of
orders one generators of the matriz A~1.

Applying the scaling method described in Subsection §19.3 one obtains in
the case of a tridiagonal matrix the following method.

Algorithm 19.9. Let A = {Aij}fszl be a tridiagonal matrix. Then the quasisep-
arable generators —t; (i = 2,...,N), 5, (j = 1,...,N — 1), I (k=2,...,N—
); 9 (i=1,...,N=1), =i (j =2,...,N), & (k=2,...,N—=1); A\ (k =
1,...,N) of orders one of the matrix A~! are obtained as follows.

1.1.1. Set 8§ = Aaq, v] = A1 2, ¥4 = A1,1 and compute f{ = sjv].

1.1.2. Introduce the scaling coefficient 5{ as 8f = 1/ max(|v}|,|fi]) or by

using another method.
1.1.3. Compute

~ I F I = I ~ I
71:7{[313 flzfiﬂb 51:[315/1’ Ul:”i@l-

1.2. For k=2,..., N — 1, perform the following operations:
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3.2.

Chapter 19. Scalar Matrices with Quasiseparable Order One

1.2.1. Compute

lk = —Akt1,k, Ok = — Ak, k+1;
S, = Ak+1,5Vk—1, V), = Ak kt1Vk6—1,
Vo = AVe-1 — fro1,  fr = Apr1 a0
1.2.2. Introduce the scaling coefficient 3 as 8f = 1/max(|v;|, |f1]) or by
using another method.
1.2.3. Compute R
e =By fr = fiBh, Sk = Bisi
O = vpBh, Ik = Bilk, Ok = BLok.
2.1.1. Set ng =TN,N, Z;V =1.
2.1.2. Introduce the scaling coefficient 35 as B, = 1/ max(|0y|,|2|) or by
using another method.
2.1.3. Compute
Oy =0yBN, Zv = ZNBN,
PN =AN-10N — [N-1ZN, In = —Zn/pN, Un =1in.
For k=N —1,...,2, perform the following operations:
2.2.1. Set z}, = 0x+1 and compute

/ ~ ~
0, = Ak k011 — Ak o1 Zk+1Ak+1 k-

2.2.2. Introduce the scaling coefficient 8¢ as BY = 1/ max(|6},, |2}|) or by
using another method.
2.2.3. Compute

ék = Q;gﬂllg]a gk = Z;gﬂg?
Pk = A-10k — fr—1%k, Th = —Zk/pr, Gk =ty

Compute \; = 0281 /2.
For k =2,..., N — 1, compute

e = Yk-10k+18Y / o

3.3. Compute \y = f?N_lﬁJ[{,/ﬁN.

This algorithm requires 23(N — 2) + 14 operations.

619.6 Comments

The material of this chapter is taken mostly from the paper [21].



Chapter 20

The QR-Factorization Based Method

In this chapter we present a method for the inversion of block matrices with given
quasiseparable representations without any restriction on the matrix except its
invertibility. It is based on a special representation of a block invertible matrix A
in the form

A=VUR, (20.1)

where V is a block lower triangular unitary matrix and U is a block upper trian-
gular unitary matrix, with nonsquare blocks, and R is a block upper triangular
matrix with square invertible blocks on the main diagonal. This is a form of the
QR factorization of the matrix A in which the unitary Q-factor is written in a
special form.

The matrices V, U, R are given by their quasiseparable generators, which
are computed via quasiseparable generators of the original matrix A. Using this
representation we find the solution of the system of linear algebraic equations
Ax =y as ¢ = R™'U*V*y. As a result, we obtain a linear complexity algorithm
to find the solution =z.

In the first step of the method we compute the factorization A = V'T', where
V is a block lower triangular unitary matrix and T is a block upper triangular
matrix. In general, these matrices have rectangular blocks on the main diagonal.
In order to obtain matrices which are convenient for inversion, we compute for the
matrix 7' the factorization T' = UR, where U is a block upper triangular unitary
matrix and R is a block upper triangular matrix with square invertible blocks
on the main diagonal. Below we present the description of both steps with the
detailed justification.

§20.1 Factorization of triangular matrices

We derive here factorizations which are valid for any block triangular matrices
with given quasiseparable generators.

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 373
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory:
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_20, © Springer Basel 2014
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Lemma 20.1. Let A = {A,»j}ffj:l be a block lower triangular matriz with entries
of sizes m; x n; and lower quasiseparable generators p(i) (i =2,...,N), ¢(j) (j =
1,...,N—=1), a(k) (k=2,...,N — 1) and diagonal entries d(k) (k =1,...,N).
Using these generators and the diagonal entries define matrices

A1:<d(1)>, Ak:<p(k) d(k)),kzz,...,N—L Ay = (p(N) d(N))

q(1) a(k) q(k)
(20.2)
and then set
Ay = diag{A1, I, }, Ay, = diag{l,,,, Ax, I, }, k=2,...,N — 1, (203)
fiN ZZdjag{]hN,f4N}7 ’
where n, = Ei:ll My, Ve = Zil\;k-u n;.
Then o ~
A=ANAN_1---A;. (20.4)
Proof. Let us prove by induction the validity of the relations
5 3 Al:k,1:k) O
Ap--- Ay = Qr 0 , k=1,...,N -1, (20.5)

0 Ly,

where the matrices Q) are given by (5.1).
For k =1 (20.5) is obvious. Suppose (20.5) holds for k& with 1 <k < N — 2.
Then

App1Ag - Ay
Lo 0 0 0 Al:k1:k) 0 0
0 pk+1) dk+1) 0 Qk 0 0
- 0 a(k+1) ¢k+1) 0 0 L,y O
0 0 0 I, 0 0 I,
Al :k,1:k) 0 0
B plk+1)Qr dk+1) 0
- ak+1)Qr qk+1) 0
O O I’Yk+1

Using the equality (5.11) we get

(A(l:k:,l:k:) 0

p(k+1)Qr d(k+1) > =A(l:k+1,1:k+1)

and thus using (5.3) we conclude that

o AQ:k+1,1:k+1) 0
Ap1Ag - AL = Qi1 0
0

Yk+1
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The relation (20.5) with £ = N — 1 and the relation (5.11) yield

Qn-1 0

) Al:N—-1,1:N—-1) 0
0 Iy

AN-~-211=(

_(A(l:Nl,l:Nl) 0
B P(N)Qn-1 d(N)

The inverse statement is also valid.

Lemma 20.2. Let A be a block matriz with entries of sizes my xnj, i,j=1,...,N
and let be given the factorization

A=ANAn_--- Ay (20.6)
with - ~
Ay = diag{As, L, }, A = diag{l,,, A, I, }, k=2,...,N —1,
Ay = diag{Iy, An},
where M, = Z;:ll mi, Ve = Zi]ik-i-l n;, and with matrices Ay, A (k=2,...,N—
1), An of sizes (m1+7rE) xny, (mgp+rE) < (ng+rE ) (k=2,...,N—1), my x

(ny + rﬁq): respectively. Assume that the matrices A, (k=1,...,N) are parti-
tioned in the form

IEORY _ (PR d®)
Ay = ( q(1) >, Ar ( k) q(k) >’ (20.7)
k=2,...,N—1, Ay=(p[N) d(N)),

with submatrices d(k) (k=1,...,N), p(i) i =2,...,N), q(4) j =1,...,N —
1), a(k) (k = 2,...,N — 1) of sizes my X ng, m; x rt
respectively.

Then A is a block lower triangular matriz with lower quasiseparable genera-
torsp(i) (1 =2,...,N), q(j) (j=1,...,N=1), a(k) (k=2,...,N—1) of orders
rk(k=1,...,N —1) and diagonal entries d(k) (k=1,...,N).

Proof. Using the elements d(k),p(k), q¢(k),a(k) from the partitions (20.7), define
the block lower triangular matrix A" = {A};}),_; by
(iaja(j), 1<j<i<N,
Aij = q d), 1<i=j<N,
0, 1<i<j<N.

=B

This means that p(i) (i =2,...,N), q(4) j=1,...,N=1), a(k) (k=2,...,N—
1) are lower quasiseparable generators of orders r,f (k =1,...,N — 1) of the
matrix A" and d(k) (k =1,...,N) are diagonal entries of A’. Using Lemma 20.1
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and the formula (20.6), we conclude that A = A’ and therefore A is a block lower
triangular matrix with these lower quasiseparable generators and diagonal entries
d(k) (k=1,...,N). O

Similar results are valid for block upper triangular matrices and are obtained
by passing to transposed matrices.

Lemma 20.3. Let A be a block upper triangular matriz with entries of sizes m; X n;
and upper quasiseparable generators g(i) (i=1,...,N —1), h(j) (j =2,...,N),
b(k) (k = 2,...,N — 1) and diagonal entries d(k) (k = 1,...,N). Using these
quasiseparable generators and diagonal entries define matrices

hEN) J (20.8)
v A= (M),
and then set
Al = diag{Ala Id>1}v Ak = diag{jxka Aka I¢k}a (20 9>
k=2,...,N—1; Ay =diag{l,,,An}, '
where x), = Ef;ll ng, O = EZN:,CH m;.
Then o ~

A=A1Ay---Apn. (20.10)
Lemma 20.4. Let A be a block matriz with entries of sizes m; xnj, i,j=1,..., N,

and let be given the factorization
A=AAy - Ay,
with ~ ~
A= diag{Ala Id>1}a Ay = diag{jxka Aka I¢k}a
k=2,...,N—1, Ay =diag{l,,,An},
where x, = Z;:ll ni, ¢p = Zi]ik-i-l m;, and with matrices Ay, A, (k=2,...,N—
1), Anx of sizes m1 x (n1 + 1Y), (mp + 7Y ) x (ng +rY) (k = 2,...,N —
1), (mn +75_,) x ny respectively. Assume that the matrices Ax (k=1,...,N)
are partitioned in the form
M@)
(k) )’
)
) bl

g
with submatrices d(k) (k=1,...,N), g(i) i=1,...,N—=1),h(j) j=2,...,N),
b(k) (k=2,...,N—1) of sizes my x ng, m; xr?, 7"?71 xn;, rd_ xrY respectively.

a >
KON

A= (1) g(1) ), Ak=(

>

(
(
k=2,...,N—1, AN< E

a
2 =
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Then A is a block upper triangular matrix with upper quasiseparable genera-
torsg(i) (1 =1,...,N—=1), h(4) (j =2,...,N), bk) (k=2,...,N —1) of orders
r7 (k=1,...,N —1) and diagonal entries d(k) (k=1,...,N).

§20.2 The first factorization theorem

Let A be a block matrix with given quasiseparable generators. We present here an
algorithm for computing generators and diagonal entries of a unitary block lower
triangular matrix V and a block upper triangular matrix 7" such that A = V'T.

Theorem 20.5. Let A = {Ay;}N,_, be a block matriz with entries of sizes m; X
n;, lower quasiseparable generators p(i) (i = 2,...,N), ¢(j) (j = 1,...,N —
1), a(k) (k=2,...,N —1) of orders rE (k=1,...,N — 1), upper quasiseparable
generators g(1) (i=1,...,N—=1), h(j) (j =2,...,N), b(k) (k=2,...,N —1) of
orders r{ (k=1,...,N —1), and diagonal entries d(k) (k=1,...,N). Set

PN =0, Pk—1 Zmin{mk+Pk7 7"15_1}7 k:N7"'727 Po =0,

, U (20.11)
Vi = Mg+ pp — -1, P =7Tp +pk,  k=1,...,N
and
k—1 N
Wkizmu ¢ = Z Vi.
i=1 i=k+1
Then the matriz A admits the factorization
A=VT, (20.12)
where V' is a block lower triangular unitary matriz with block entries of sizes
m; X vj (4,7 = 1,...,N) and T is a block upper triangular matriz with block
entries of sizes v; x n; (i,j = 1,...,N). The matriz V is determined via the
relations o ~
V=VnVN_1---V1, (20.13)
where

Vi = diag{V1, I, }, Vi = diag{L,,,, Vi, s, },
k=2,...,N -1, Vy = diag{I,, Vn},
with (my, + pr) X (Mg + pr) unitary matrices obtained by means of the following
algorithm.
1. Using QR factorization or another method, compute the factorization
p(N) = VN< 0 AN > (20.14)

I/NX’I']I\’]71

where Vi is a unitary matriz of size my X my and Xy is a matriz of size py—1 X
L
TN _1-
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2. For k=N —1,...,2 using QR factorization or another method, compute the

factorization
p(k) ) < X )
=V , 20.15
( Xk-l—la(k) b 0Vk><7‘£’71 ( )

where Vi, is a unitary matriz of size (my + pr) X (my + px) and Xy, is a matriz of
. L
size pp—1 X 4.

3. Set V1 to be a vy X v unitary matriz.

Moreover, lower quasiseparable generators py (i) (i = 2,...,N), qv(j) (§ =
1,....,.N=1), av(k) (k =2,...,N = 1) of orders p, (k =1,...,N —1), and
diagonal entries dy (k) (k=1,...,N) of the matriz V, which are matrices of sizes

My X pi—1,pj X Vj, Pk X pr—1 and my X vy, respectively, are determined from the
partitions

Vv =( pv(N) dy(N) ), (20.16)
_ [ pv(k) dv(k) N

Vi = ( av(k) v (k) ) k=N-1,...,2, (20.17)
_ [ dv(1)

Vi = ( (1) > (20.18)

Furthermore, upper quasiseparable generators gr(i) (i =1,...,N—=1), hr(j) (j =
2,...,N),bp(k) (k=2,...,N—1) of orders p}, (k=1,...,N—1) are determined
by the formulas

h(N) = pi,(N)d(N), hp(N) = ( h(N) > dr(N) = di,(N)d(N), (20.19)

dr(1) = dy (1)d(1) + gy (1) X2q(1),  g7(1) = ( di(D)g(1) ¢;-(1) ). (20.21)

Proof. By Lemma 20.2, (20.13) implies that V is a block lower triangular matrix
with lower quasiseparable generators py (i) (i =2,...,N), qv(j) (j =1,...,N —
1), ay(k) (k =2,...,N — 1), and diagonal entries dy (k) (k =1,..., N) defined
in (20.16), (20.17), (20.18). Hence V* is a block upper trlangular matrix with
entries of sizes v; X m; (i,j = 7...7N ), with upper quasiseparable generators
gy(@) (i =1,...,N=1), p}, j) j=2,...,N), al,(k) (k=2,...,N —1) and
diagonal entries di, (k) (k = 1,...,N). Con51der the matrix T = V*A. Applying
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Corollary 17.8 with
g (k) = gy (k), h“ (k) = pir(k), b (k) = a (k). dD (k) = dy (k),
p(2)(k):p(k), @ (k) = q(k), P (k) = a(k),
9P (k) = g(k), WP (k) =h(k), 0@ (&) =0b(k), dP(k)=d(k)

and using the notation Xy, instead of ~; for the auxiliary variables, we obtain the
formulas in (20.20) and (20.21) for upper generators by (k) and gr(k), the formula
(20.19) and the relations

Xy =py(N)p(N), pr(N)=dy(N)p(N), (20.22)
( Xe  h(k) > _ ( py (k) aj (k) > ( I 0 ) ( p(k) d(k) )
pr(k) dr(k) dyy (k) qy (k) 0 Xipn a(k) q(k) )’
k=N-—1,...,1, (20.23)
hr(k) = < ZEZ; > k=2,...,N (20.24)

for the upper generators hp(k), diagonal entries dr (k) and lower generators pr (k).
Here vy are auxiliary variables.

From (20.23), (20.24) we obtain the formulas (20.20) and (20.21) for hp(k)
and dp(k) and the relations

Xk = py (k)p(k) + ay (k) Xk 1a(k),

pr(k) = &5 (k)p(k) + ¢ (k) Xera(k), k=N—1,...,2. (20.25)

It remains to check that T is a block lower triangular matrix. Combin-
ing (20.14), (20.15) and (20.16), (20.17) with (20.22), (20.25), we conclude that
pr(k) =0, k=2,...,N. Hence, T is lower triangular. O

Corollary 20.6. Under the conditions of Theorem 20.5, the orders of lower qua-
siseparable generators of the matriz V are not greater than the corresponding or-
ders of lower quasiseparable generators of the matrix A and the orders of upper
quasiseparable generators of the matriz T are not greater than the sum of the
corresponding orders of lower and upper quasiseparable generators of A:

o <rk, p<rE4+rl, k=1,...,N-1. (20.26)

Furthermore, if A has quasiseparable order (pr,pu), the matriz V' has the lower
quasiseparable order pr at most and the matriz T has the upper quasiseparable
order pr, + pu at most.

Proof. The inequalities (20.26) follow directly from the relations

PN—-1 = min{va 70]]’(771}3 Pk—1 = min{mk + pkarl]clfl}a k=N-1,...,2,

oy =17+ pr, k=1,...,N —1.
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Taking quasiseparable generators of A with minimal orders, Corollary 5.11
yields
r,fgpL, rgng, k=1,...,N—1,
and therefore
PkSPL P;CSPL+PU7 k:177N_1

Hence, the lower quasiseparable order of V' does not exceed p; and the upper
quasiseparable order of T' does not exceed pr, + pu. Il

§20.3 The second factorization theorem

In this section we consider the factorization of a block upper triangular matrix T'
with given generators in the form 7' = UR with a block upper triangular unitary
matrix U and a block upper triangular matrix R with square blocks on the main
diagonal.

Theorem 20.7. Let T = {T;; %:1 be a block upper triangular matriz with entries
of sizes v; X n; such that

k N
Sk 1= Z(Vi -n;)) >0, k=1,...,N—-1, sy= Z(Vi —n;) =0, (20.27)

i=1 i=1
and with upper quasiseparable generators gr(i) (i = 1,...,N —1), hr(j) (4 =
2,...,N), br(k) (k=2,...,N—1) of orders pj, (k =1,...,N —1) and diagonal

entries dr(k) (k=1,...,N).
Then T admits the factorization

T =UR, (20.28)

where U is a block upper triangular unitary matriz with block entries of sizes
vixn; (1,5 =1,...,N) with upper quasiseparable generators gy (i) (i =1,...,N—
1), hu(j) (G = 2,...,N), by(k) (k = 2,...,N — 1) of orders s, = S0, (vi —
n;) (k=1,...,N—1) and diagonal entries dy(k) (k=1,...,N), and R is a block
upper triangular matriz with block entries of sizes n; x nj (i,j =1,...,N), upper
quasiseparable generators gg(i) (i =1,...,N — 1), hg(j) (j = 2,...,N), br(k)
(k=2,...,N —1) of orders p), (k =1,...,N — 1) and square upper triangular
diagonal entries dr(k) (k=1,...,N).

Quasiseparable generators and the diagonal entries of the matrices U, R are
determined using the following algorithm.

1. Compute s;1 = v1 — ny1. Compute the QR factorization

dp(1) = U1( dr(1) > (20.29)

051 Xniy
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where Uy is a vy X vy unitary matriz and dr(1) is an upper triangular nq X nq
matriz.
Determine the matrices dy (1), gu(1) of sizes v1 X ny, v1 X s1 from the
partition
Ui = ( du(1) gu(1) ) (20.30)
Compute
gr(1) =dy()gr(1), Y1 =g;(1)gr(1). (20.31)

2. Fork=2,...,N—1, perform the following. Compute sy = sx—1+ v —ng.
Compute the QR factorization

( Yk&;f(tz)(k) > _ Uk( Odffii)k ) (20.32)

where Uy, is an (ng + sg) X (ng + sg) unitary matriz and dr (k) is an ng X ny upper
triangular matrix.

Determine the matrices dy(k), gu(k), hu(k), bu(k) of sizes v X ng, v X
Sk, Sk—1 X Nk, Sk—1 X S from the partition

_( hu(k) bu(k)
Uy = ( dg(k) gg(k) > (20.33)

Compute

gr(k) = By (k)Y 1br (k) + diy (K)gr(k), Vi = by (6)Yi_1br (k) + gty (K)gr (k),

(20.34)
where Uy is an (ng + si) X (ng + sg) unitary matriz, dr(k) is an ng X ng upper
triangular matriz, and gr(k) and Yy are matrices of sizes ni X pj, and si X pj,
respectively.

Set
hr(k) = hp(k), br(k)=>br(k). (20.35)
3. Compute the QR factorization
( YNC;;?]@()N ) ) = Undg(N), (20.36)

where Uy is a unitary matriz of sizes (Wny + sy-1) X (vn + sy—1) and dg(N) is
an upper triangular matriz of sizes ny X ny.
Set
hi(N) = hp(N). (20.37)

Determine the matrices dy(N), hy(N) of sizes N X ny, SN—1 X ny from

the partition
hu(N) )
Uy = . 20.38
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Proof. From (20.27) it follows that all the numbers s; are nonnegative and
v1=84+n1, Vg+Sg_1=np+sk k=2,....N—1, vy+sy_1=npn.

Let Ug, k = 1,..., N, be the unitary matrices defined in (20.29), (20.32),
(20.36). Set } )
U = diag{U1,1y, }, Uy = diag{ly,, U, Iy, },

k=2,...,N—1, Uy =diag{ly,Un},
with x, = Zi:ll ng, = Zil\ik-u v;, and then set
U=0U,U0,---Uy. (20.39)

Since the matrices Uy, are unitary, all matrices Uy, are also unitary and hence so
is the matrix U. Moreover, from Lemma 20.4 it follows that U is a block up-
per triangular matrix with upper quasiseparable generators gy (i) (i =1,...,N —
1), hu(4) (j =2,...,N), by(k) (k=2,...,N—1) and diagonal entries dy (k) (k =
1,...,N) defined in (20.30), (20.33), (20.38). Hence U* is a block lower triangular
unitary matrix with entries of sizes n; x v; (4,5 = 1,..., N) and with lower qua-
siseparable generators hj; (i) (1 =2,...,N), g5() (G =1,...,N —=1), bj;(k) (k =
2,...,N —1) and diagonal entries dj;(k) (k=1,...,N).

We apply Theorem 17.4 to determine quasiseparable generators of the prod-
uct R =U*T. Using (17.8) we obtain the formulas (20.35), (20.37) for the gener-
ators hr(k),br(k). Next, using the recursion relations (17.9), (17.10) we get

( Zﬁg; g;;/(ll) ) =Uy (dr(1) gr(1) ), (20.40)
dr(k) gr(k) \ _ ;s ( Ye—1hr(k) Yi-1br(k)
( qr(k)  Yi ) = U ( dr (k) gr(k) ) ’
k=2 ... N—1, (20.41)

Yy-1hr(N) ]7 (20.42)

with the auxiliary variables Y}, which are s, x p) matrices. From (20.40) and
(20.41) we obtain the formulas

dr(1) ) " < dr(k) ) " < Yi—1hr(k) )
— Urdr(1), —U k=2, N-1
(anty ) =vrem () )= (i
(20.43)
for the diagonal entries dg(k) and the lower quasiseparable generators qr(k), and

( 91;(11) > = Ufgr(1), ( glif(kk) > - U’:( Yk;%(k) > k: 2%;114)
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for determining upper quasiseparable generators gr(k) and auxiliary variables
Y).. Comparing (20.43), (20.42) with (20.29), (20.32), (20.38), we conclude that
qr(k) =0, k=1,...,N —1, and dr(k), k = 1,..., N are upper triangular ma-
trices. Hence, R is an upper triangular matrix. From (20.44) using the partitions
(20.30), (20.33) we obtain the formulas (20.31), (20.34).

From the equalities br(j) = br(j),j = 2,..., N —1 it follows that the orders
of the upper quasiseparable generators of the matrix R are equal to the corre-
sponding orders pj, (k =1,...,N — 1) of upper quasiseparable generators of the
matrix 7. g

Remark. The condition (20.27) of Theorem 20.7 holds if the matrix T is invertible.
Indeed, consider the submatrix T'(:,1 : k) composed of the first k& block columns

of T. We have T'(:,1 : k) = (1(;’“

(Zle n;). From the invertibility of the matrix T' it follows that rank T} = Zle n;
and thus Ele n; < Zle v;, 1 < k < N — 1. Next, since T is invertible, it is
a square matrix and hence Efil v, = Zf;l n;. Moreover one can see easily that
in the case where T is invertible the diagonal blocks dg(k) (k = 1,...,N) are
invertible matrices.

Below we will show that the condition (20.27) is satisfied if the matrix T'
is obtained via the factorization (20.12), where the original matrix A has the
sizes of blocks m; x m;, 4,5 = 1,...,N. Moreover, in this case the numbers

: : . k
, where T}, is a matrix of size (D, ;) x

Sk = Zle(z/i —n;) (k=1,...,N —1) are equal to the corresponding orders pj of
lower quasiseparable generators of the matrix V.

Corollary 20.8. Let A = {Ay;}Y;_, be a block matriz with entries of sizes m; x m;

(with square blocks on the main diagonal). Let V,T be the matrices obtained in
Theorem 20.5 and U, R be the matrices obtained in Theorem 20.7.

Then the orders of upper quasiseparable generators of the matriz U are equal
to the corresponding orders of lower quasiseparable generators of the matriz V :

Sk = Pk, k:1,...7N. (2045)

Furthermore, if A has quasiseparable order (pr,pv), then the matriz U has the
lower quasiseparable order pr, at most and the matriz R has the upper quasisepa-
rable order pr, + py at most.

Proof. The orders s, (k=1,..., N —1) of upper quasiseparable generators of the
matrix U are obtained via the relations

k
sk=Z(Vi—ni)7 k=1,...,N—1,
i=1
with
vi=mi+p1, Vk=mi+pkx—pPr-1, k=2,...,N—1,
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where p, (k=1,...,N — 1) are the orders of lower quasiseparable generators of
the matrix V. By the condition of the corollary, m; = n; (i = 1,..., N) which
implies (20.45). Furthermore, using the fact that the orders of upper quasiseparable
generators of the matrices 7" and R coincide and the second part of Corollary 20.6
we conclude that the matrix U has the lower quasiseparable order py, at most and
the matrix R has the upper quasiseparable order py, 4+ py at most. O

620.4 Solution of linear systems

Let us now consider the system Ax = y of linear algebraic equations with block
invertible matrix A with given quasiseparable generators. Using Theorems 20.5,
20.7, Algorithm 13.1 and the algorithm from Theorem 13.13 we obtain the follow-
ing algorithm.

Algorithm 20.9. Let A = {A4;;}],_; be a block invertible matrix with entries
of sizes m; x nj, lower quasiseparable generators p() (t=2,....,N), q(j) ( =
1,...,N-1), ak) (k=2,...,N — 1) of orders rt (k = 1,...,N — 1), upper
quasiseparable generators g() (i=1,....,N=1), h(j) (j = 2,.. .,N)7 b(k) (k =
2,...,N —1) of orders rY (k = 1,. N — 1) and diagonal entries d(k) (k =
1,...,N). Then solution of the system Ax =y is computed as follows.

1. Using the algorithm from Theorem 20.5, compute quasiseparable generators
pv(@) G=2,...,N), qv(§) G =1,....,.N=1), ay(k) (k=2,...,N — 1),
gr(i) (i=1,...,N=1), hr(j) j=2,...,N), bp(k) (k=2,...,N —1) and
diagonal entries dy (k), dr(k) (k = 1,...,N) of the block lower triangular
unitary matrix V' and the block upper triangular matrix 7" such that A = VT

2. Using the algorithm from Theorem 20.7, compute quasiseparable generators
gu(i) t=1,...,N=1), hy(y) j =2,...,N), by(k) (k=2,...,N —1),
gr(@) (i=1,...,N—=1), hg(j) (j =2,...,N), br(k) (k=2,...,N—1) and
diagonal entries dy (k), dr(k) (k = 1,...,N) of the block upper triangular
unitary matrix U and the block upper triangular matrix R with invertible
diagonal entries such that "= UR.

3. Compute the product & = V*y as follows: start with Z(N ) = dj,(N)y(N),
w1 = pir(N)y(N), #(N —1) = g (N = Lywy_1 +djy (N = y(N — 1), and
for i =N —2,...,1 compute recursively

wi = ay (i + Dwipr +py (i + Dy(i+1),  2(i) = gy (Dwi + dy (1)y ().

4. Compute the product & = U*Z as follows: start with (1) = df(1)z(1),
zo = g5 (1)Z(1), £(2) = hji(2)2z2 + df;(2)2(2), and for ¢ = 3,..., N compute
recursively

20 = (i — Dz + gy (i — Da(i— 1), 2() = diy ()&(0) + his (i)

5. Compute the solution z of the equation Rx = % as follows: start with z(N) =
(dr(N)&(N), nn—1 = hr(N)Z(N), and for i = N — 1,...,2 compute
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recursively
Ni—1 = br(@)m + hr(i)x(i), (i) = (dr(0)) 7' (2(0) - gr(i)n),
and finally compute z(1) = (dr(1))"1(£(1) — gr(1)m).

Here in Steps 3 and 4 we used Algorithm 13.1 for the upper triangular matrix
V* with upper quasiseparable generators ¢j; (i), (1 = 1,...,N —1), pi.(4), (4 =
2,...,N), ai,(k) (k=2,...,N—1) and diagonal entries d}, (k) (k=1,...,N) and
for the lower triangular matrix U* with lower quasiseparable generators hj; (i) (i =
2,...,N), g;(5) G=1,...,N—=1), bj;(k) (k=2,...,N —1) and diagonal entries
di; (k) (k=1,...,N). Computations in Steps 3 and 4 may be performed also based
on the relation (20.13) for the matrix V and the relation (20.39) for the matrix
U. In Step 5 we apply the algorithm from Theorem 13.13 to the upper triangular
matrix R.

§20.5 Complexity

Let us estimate the costs of computations in the Algorithm 20.9 presented above. In
Step 1, i.e., in the algorithm from Theorem 20.5, costs are determined by the rela-
tions (20.15) and (20.20). In (20.15), computing of the product Xpy1a(k) requires
pkr,]jr,%_l operations of arithmetical multiplication and less operations of arith-
metical addition, and the QR factorization costs ¥(my + pr, r,f_l) operations. Here
Y¥(m,n) means the complexity of QR factorization for a matrix of size m x n. In
(20.20), the computation of the products p{, (k)d(k), a} (k)Xr+1q(k), pir(k)g(k),
di, (k) g(k), di(k)d(k), ¢ (k)Xk+1q(k) cost respectively pr_1mnk, pr—1pering,
pk,lmkrg, z/kmkrg, ViMgng, I/kpkrﬁnk operations of arithmetical multiplication
and less operations of arithmetical addition.

Thus the total complexity of Step 1 is

N
c1 < > [0(mk + prori_1) + 2(pr—1minn + prorprrEn + proamiry
k=1

U L
+ vgmry + vemgng + Viprry nk)]

operations. In Step 2, i.e., in the algorithm from Theorem 20.7, costs are de-
termined by the relations (20.32). Computation of the products Yj;_1hr(k) and
Yi—1br(k) costs less than 2sy_1pF ny and 2s,_1pF | pE arithmetical operations,
respectively, the computation of the QR factorization costs ¥(sg—1 + vk, ng + pi )
operations. Thus the total complexity of Step 2 is

N

ca < [(sko1 + vi e + pk) + 2581051 (s + i)
k=1
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operations. In Step 3, we apply to the upper triangular matrix V* the relation
(13.8) with my = vg, ng = my, ¢ = pg, rL =0 and obtain the complexity

N

s =Y [Ukpk + Mi1pk + prprr + vimal.
k=1

In Step 4, we apply to the lower triangular matrix U* the relation (13.8) with
myg = Nk, Nk = Vg, r,g =0, r]% = 51 and obtain the complexity

N

C4 = E [(MSk—1 + Vk—1Sk—1 + Sk—15k—2 + NkVk).
k=1

And finally the complexity of Step 5 is given by

N

s =Y _[nph + nkr1ph + PPt + C(nn),
k=1

where 5 (n) is the complexity of solving an n X n linear triangular system by
the standard method. The total complexity of Algorithm 20.9 is the sum ¢ =
c1+co+c3+cqg+cs.

Assume that the sizes of blocks my, ng, the orders of quasiseparable gener-
ators 7F, r¥ of the matrix A and the values Zle(mi —n;) are bounded by the
numbers m, 7, s, respectively, i.e.,

k
L
me, ng <m, k=1,...,N, ry, r,ggn Z(mi—ni)gso, k=1,...,N—1.
i=1

Then the following estimates are obtained. From the relation px_1 = min{my +
pr, TE_,} it follows that py < r and from the equality p}, = ¥ + pi we conclude
that pj, < 2r. Next, we have

N N
Zyk :ka <mN
= k=1

k=1
and from v, = my + pr — pr—1 we conclude that

k k k
sk=Y (i—m) =Y (mi+pi—pi1—ni)=pp+ »_(mi—ni) <r+so,
=1 =1 =1
k—1
Vi + Sk—1 :mk+Pk+Z(mi*ni) <m+r+ sp.
=1
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Using these relations the complexities ¢y, co, ¢3, ¢4, c5 are estimated as follows:

c1 < (9(m +r,7r) + drm? + 2r3m + 2rPm + 2m> + 2r°m?)N,
ca < (9(m + 1+ s9,n + 2r) + 4(rm + 2r?)so + 4r*m + 8)N,
c3 < 2(2mr + 12 +m?)N,

cy < N(2mr + 1% + s0(2mr 4 2r + s0) +m?),

cs < N(dmr + 412 4+ {(m)).

Thus, the total complexity of Algorithm 20.9 is estimated as

c< (Ym+r,r)+9(r+m+so,m+r) +¢(m) + 4rm? + 2r3m + 6r°m
+ 2r2m? 4 2m3 + 82 + 8mr + 672 + 2m> + so(4mr + 4r? 4+ 2r + so))N.

Therefore, in this case Algorithm 20.9 has a linear O(N) complexity.
Assume that the sizes of the blocks of the matrix A satisfy my = ng, k =
1,...,N. Then since syp = 0 we conclude that

c< (19(m+r,r) + 9 (r+m,m+r) —&-(f(m) + 4rm? 4+ 2r3m + 6r2m

; ) 20.46
+ 2r%2m? + 2m3 + 873 + 8mr + 612 + 2m2)N. ( )

§20.6 The case of scalar matrices

We consider here the case of a matrix A = {A;;}]\;_; with scalar entries, i.e.,
mr = ni = 1. Let r,f (k=1,...,N — 1) be the orders of lower quasiseparable
generators of A. In the factorization A = VUR the matrix R is a scalar upper
triangular matrix and V, U are unitary matrices. Thus we have here a special
form of the QR factorization in which the unitary factor is represented as the
product VU. The matrix V = {Uij}%'d with scalar entries v;; may be treated, by
Theorem 20.5, as a block lower triangular matrix with blocks of sizes 1 x vy,. Here
v =14 pr—pr—1 (k=1,...,N), where pj are the orders of lower quasiseparable
generators of the block matrix V' which are defined by the relations py = 0, px—1 =
min{1+ pg, vt} (k= N —1,...,1). The fact that V is a block lower triangular
matrix means that v;; = 0 for j > > ;_, vx = i + p;. Similarly, for the unitary
matrix U = {u;;}1;_;, one has that it follows from Theorem 20.7 that u;; = 0
for ¢ > j + p;. Moreover, by Corollary 20.8, the orders of upper quasiseparable
generators of U equal py. If for some r holds r,f <r, k=1,...,N — 1, we obtain
pr. < 7 and hence the matrices V and U satisfy the relations v;; = 0 for j > i +r
and u;; = 0 for i > j + 7.

In the case of scalar matrices we obtain the following specification of the
factorization Theorems 20.5 and 20.7.

Theorem 20.10. Let A = {Aij}f\szl be a scalar matriz with lower quasiseparable
generators p(i) (i=2,...,N), q(j) (j=1,...,N—=1), a(k) (k=2,...,N—1) of
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orders vk (k=1,...,N —1), upper quasiseparable generators g(i) (i =1,...,N —
1), h(4) (j =2,...,N), b(k) (k=2,...,N —1) of orders rJ (k=1,...,N — 1),
and diagonal entries d(k) (k = 1,...,N). Let us define the numbers py via the
recursion relations py =0, po = 0, pp—1 = min{l + py, r& |}, k=N,...,2 and
setmp =1,np=1Lvk =1+ pr — pr—1, P :rngpk, k=1,...,N.

The matriz A admits the factorization

A=VUR,

where V' is a unitary matriz represented in the block lower triangular form with
blocks of sizes m; x v; (i,j = 1,...,N), lower generators py(i) (i = 2,...,N),
av(j) G=1,...,N=1),ay(k) (k=2,...,N—1) of orders pi, (k=1,...,N—1),
and diagonal entries dy (k) (k =1,...,N), U is a unitary matric represented in
the block upper triangular form with blocks of sizes v; x n; (i, =1,...,N), upper
quasiseparable generators gy(i) (i = 1,...,N — 1), hy(j) (j = 2,...,N), by(k)
(k=2,...,N—=1) of orders p, (k =1,...,N — 1), and diagonal entries dy (k)
(k=1,...,N), and R is an upper triangular scalar matriz with upper generators
gr(i) i=1,...,N—=1), hg(j) j=2,...,N), br(k) (k=2,...,N —1) of orders
pr (k=1,...,N —1), and diagonal entries drp(k) (k=1,...,N).
The generators and the diagonal entries of the matrices V,U, R are deter-
mined using the following algorithm.
1. Set Vy = 1. If rk_, > 0, set Xx = p(N), py(N) = 1, h(N) = ( ZE]AV[; >
and dy (N),dr(N) to be 1, x0 and 0 x 1 empty matrices; else set Xn,py(N)
to be the 0 x 0 and 1 x 0 empty matrices, dy(N) = 1, hg(N) = h(N),
dp(N) =d(N).
1.2. For k=N —1,...,2 perform the following. Compute the QR factorization

( Xkﬁ(lka)(k) ) =V ( Oy,ff,gl > ’

where Vi, is a unitary matriz of sizes (1+ px) X (14 pi) and Xy is a matriz of
sizes pp—1 X rL_|. Determine matrices py (k), ay(k), dy(k), qv (k) of sizes
1 X pr—1, pr X pr—1, L X (L + px — pr—1), px % (1 + px — pr—1) from the

partition
_( pv(k) dv(k)
Vi = ( av(k) qv(k) >

Compute

b= B 008+ b ()Xo, i) = (")),
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1.3.

2.1.

2.2.

2.3.

Choose a unitary matriz Vi of sizes v1 x v1. Determine the matrices dy (1),
qv (1) of sizes 1 X v1, p1 X v1 from the partition

i- ()
Compute

dr(1) = dy, (1)d(1) + qi (1) X2q(1),  gr(1) = ( dy(1)g(1) i (1) ).

Thus we have computed the matrices Vi, and quasiseparable generators bgr(k),
hr(k) of the matriz R.
Compute the QR factorization

dr(1) = Uy ( dr(1) ) 7

OP1><1

where Uy is a v1 X v1 unitary matriz and dr(1) is a number.
Determine the matrices dy (1), gu (1) of sizes v1 X1, v1 X p1 from the partition

U= (du(1) gu(1)).
Compute
gr(1) =dy()gr(1), Y1 =g;(1)gr(1).

Compute the QR factorization

Vi—1hr(k) ) _ Us dr(k)
dr (k) Oppx1 )’
where Uy is a (1 + px) X (1 + pi) unitary matriz and dr(k) is a number.

Determine the matrices dy(k), gu(k), hu(k), bu(k) of sizes v X 1, v X
Pks Pk—1 X 1, px—1 X px from the partition

Compute
gr(k) = hi;(k)Ye—1br(k)+di (k) gr(k), Yi = by (k)Yi-1br(k)+g((k)gr (k).

Set Uy = 1. Ifrk | > 0 set hy(N) =1 and dyy(N) to be 0 x 1 empty matriz;
else set dy(N) =1 and hy(N) to be 0 x 1 empty matriz.

Compute dg(N) = ( YNCE;?]}\;CI()N> >

Thus we have computed quasiseparable generators gr(k) and diagonal entries
dr(k) of the matriz R.
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For a matrix with scalar entries we obtain the following algorithm for solving
a system of linear algebraic equations.

Algorithm 20.11. Let A = {A;;}}Y,_; be an invertible matrix with scalar entries
and with lower quasiseparable generators p(i) (¢ =2,...,N), ¢(j) j=1,...,N—
1), a(k) (k=2,...,N —1) of orders 7% (k =1,..., N — 1), upper quasiseparable
generatorsg(') (i=1,...,N=1), h(j) (j=2,...,N), b(k) (k=2,...,N —1) of
orders rY (k =1,. N — 1), and diagonal entries d(k) (k = 1,...,N). Then the
solution of the system Ax = y is given as follows.

1. Using the algorithm from Theorem 20.10, compute lower quasiseparable
generators py (i) (i = 2,...,N), qv(4j) (j = 1,...,N = 1), av(k) (k =
2,...,N — 1) and diagonal entries dy (k) (¢ = 1,...,N) of the unitary
block lower triangular matrix V', upper quasiseparable generators gy (i) (i =
1,...,N=1), hy(j) §=2,...,N), by(k) (k=2,...,N — 1) and diagonal
entries dy (k) (k=1,..., N) of the unitary block upper triangular matrix U,
and upper quasiseparable generators gr(i) (i = 1,...,N — 1), hg(j) (j =
2,...,N), bg(k) (k=2,...,N—1) and diagonal entries dg(k) (k =1,...,N)
of the upper triangular matrix R, so that A = VUR.

2. Compute the product & = V*y as follows: start with (N) = d}, (N)y(N),
wn—1 = py (Ny(N), #(N —1) = g5 (N — w1 +di (N ~ y(N - 1) and
for i = N —2,...,1 compute recursively

d
(

wi = ay (i + Dwipr +py (i + Dy +1),  2(0) = qy(Hwi + dy (D)y(0).

3. Compute the product & = U*Z as follows: start with (1) = d;(1)2(1),
zo = g5;(1)&(1), £(2) = hf;(2)z2 + d;(2)Z(2) and for i = 3,..., N compute
recursively

s = b= Vi + g5 = DEli— 1), &) = diy ()2(0) + hiy ()=

4. Compute the solution z of the equation Rz = & as follows: start with z(N) =
(dr(N))"'&(N), nn—1 = hr(N)&(N) and for ¢ = N —1,...,2 compute
recursively

Ni—1 = br(D)n; + hr(i)2(i), (i) = (dr(i)) " (2(1) — gr(i)m),
and finally compute x(1) = (dg(1))"*(2(1) — gr(1)m).

The inequality (20.46) for a scalar matrix yields the following estimate for
the complexity of Algorithm 20.11:

c<NW(L+r,7r) +9(r + 1,7+ 1)+ 5 +10r% + 107 + 4).

§20.7 Comments

The idea of the method used in this chapter was suggested by P.M. Dewilde and
A.J. van der Veen in the monograph [15] for infinite matrices. The theorems and
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algorithms of this chapter suitable for finite block matrices were obtained in the
paper [23], but the proofs presented here are essentially simpler. A similar method,
but using Givens representations instead of a part of quasiseparable generators,
was suggested by M. Van Barel and S. Delvaux in [13].

Instead of the factorization (20.1) one can use in a similar way the representa-
tion of the matrix A in the form A = ULV with unitary block triangular matrices
U,V and a triangular matrix L. Such an approach was used by N. Mastronardi,
S. Chandrasekaran, S. Van Huffel, E. Van Camp and M. Van Barel for matrices
with diagonal plus semiseparable of order one representations in [42, 9], and by S.
Chandrasekaran and M. Gu for matrices with banded plus semiseparable of order
one representations in [7], by S. Chandrasekaran, P.M. Dewilde, M. Gu, T. Pals,
X. Sun and A.J. van der Veen in [6, 8] for solving some inversion and least squares
problems for matrices with quasiseparable representations. This method was ex-
tended to matrices with hierarchically semiseparable representations via reduction
to quasiseparable ones, see the paper [49] by J. Xia, S. Chandrasekaran, M. Gu
and X.S. Li and the literature cited therein.
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