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Preface

The main purpose of this book is to present some of the old and recent results
on homomorphisms and derivations in Banach algebras, quasi-Banach algebras,
C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras, and multi-
normed algebras.

In 1940, S. M. Ulam [321] proposed a stability problem on group homomor-
phisms in metric groups. In 1941, D. H. Hyers [133] proved the stability of additive
mappings in Banach spaces associated with the Cauchy equation. In 1978, Th. M.
Rassias [267] proved the stability of R-linear mappings associated with the Cauchy
equation, and in 2002 C. Park [220] proved the stability of C-linear mappings
in the spirit of Hyers, Ulam, and Rassias in Banach modules. Homomorphisms
and derivations in Banach algebras, quasi-Banach algebras, C*-algebras, C*-
ternary algebras, non-Archimedean Banach algebras and multi-normed algebras
are additive and R-linear or C-linear, and so we study the stability problems for
additive functional equations and additive mappings. Using the direct method and
the fixed point method, the authors have studied the stability and the superstability
of homomorphisms and derivations in Banach algebras, quasi-Banach algebras,
C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras, and multi-
normed algebras, which are also associated with additive functional equations and
additive functional inequalities.

The book provides a survey of both the latest and new results especially on the
following topics:

(1) Stability theory for several new functional equations in Banach algebras and
C*-algebras via fixed point method and direct method.

(2) Stability theory for several new functional inequalities in Banach algebras and
C*-algebras via fixed point method and direct method.

(3) Stability theory of well-known new functional equations in non-Archimedean
Banach algebras and non-Archimedean C*-algebras.

(4) Stability theory for several new functional equations and functional inequalities
in multi-Banach algebras and multi-C*-algebras via fixed point method and
direct method.

vii



viii Preface

The book is intended to be accessible especially to graduate students who
have a basic background with operator theory, functional analysis, functional
equations, and analytic inequalities including an introduction to Banach alge-
bras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean
Banach algebras, and multi-normed algebras.

In Chap. 1, we provide a brief introduction to concepts with historic remarks
for functional equations and their stability and the definitions of Banach alge-
bras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean
Banach algebras, and multi-normed algebras.

In Chap.2, we study the stability of additive functional equations in Banach
spaces as well as the stability and the superstability of isomorphisms, homomor-
phisms, derivations, and generalized derivations in Banach algebras and quasi-
Banach algebras associated with additive functional equations.

In Chap. 3, we study the stability and the superstability of isomorphisms, homo-
morphisms, and derivations in C*-algebras, Lie C*-algebras, and JC*-algebras, as
well as the stability and the superstability of linear mappings in Banach modules
over unital C*-algebras. Moreover, we study Jordan *-derivations, quadratic Jordan
x-derivations, («, 8, y)-derivations on Lie C*-algebras, square root functional
equations, 3rd root functional equations, and positive-additive functional equations.

In Chap. 4, we study the stability of C-linear mappings in Banach spaces and
linear mappings in normed modules over a C*-algebra as well as the stability of
homomorphisms and derivations in proper CQ*-algebras associated with functional
inequalities.

In Chap.5, we study the stability and the superstability of C*-ternary homo-
morphisms, C*-ternary derivations, C*-ternary 3-homomorphisms, and C*-ternary
3-derivations in C*-ternary algebras as well as investigate the stability of JB*-triple
homomorphisms and JB*-triple derivations in JB*-triples by using the direct method
and the fixed point method.

In Chap. 6, we study the stability of linear mappings in multi-Banach spaces
as well as the stability and the superstability of isomorphisms, homomorphisms,
and derivations in multi-Banach algebras, multi-C*-algebras, proper multi-CQ*-
algebras, and multi-C*-ternary algebras. Moreover, we study the stability of
ternary Jordan homomorphisms and ternary Jordan derivations in multi-C*-ternary
algebras.

Finally, in Chap.7, we study the stability of additive functional equations
in non-Archimedean Banach spaces as well as the stability of homomorphisms
and derivations in non-Archimedean C*-algebras and non-Archimedean Lie C*-
algebras.

Jinju, South Korea Yeol Je Cho
Seoul, South Korea Choonkil Park
Athens, Greece Themistocles M. Rassias
Tehran, Iran Reza Saadati
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Chapter 1
Introduction

In this chapter, we recall some definitions and results which will be used later on in
the book.

The study of functional equations has a long history. In 1791 and 1809, Legendre
[184] and Gauss [121] attempted to provide a solution of the following functional
equation:

Ja+y) =) +10)

for all x,y € R, which is called the Cauchy functional equation. A function
f : R — Ris called an additive function if it satisfies the Cauchy functional
equation. In 1821, Cauchy [67] first found the general solution of the Cauchy
functional equation, that is, if f : R — R is a continuous additive function, then
f is R-linear, that is, f(x) = mx, where m is a constant. Further, we can consider the
biadditive function on R x R as follows:

A function f : R x R — R is called a biadditive function if it is additive in each
variable, that is,

fx+y,2) =fx2 +f(,2)
and
fly+2) =fxy) +f(x2)

for all x,y,z € R. It is well-known that every continuous biadditive function
f:R xR — Ris of the form

f(x,y) = mxy
for all x,y € R, where m is a constant.
© Springer International Publishing Switzerland 2015 1
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2 1 Introduction

Since the time of Legendre and Gauss, several mathematicians had dealt with
additive functional equations in their books [4—6, 178, 313] and a number of them
have studied Lagrange’s mean value theorem and related functional equations, Pom-
peiu’s mean value theorem and associated functional equations, two-dimensional
mean value theorem and functional equations as well as several kinds of functional
equations. We know that the mean value theorems have been motivated to study
the functional equations (see the book “Mean Value Theorems and Functional
Equations” by Sahoo and Riedel [305]) in 1998.

In 1940, Ulam [321] proposed the following stability problem of functional
equations:

Given a group Gy, a metric group G, with the metric d(-, -) and a positive number
&, does there exist § > 0 such that, if a mapping f : G| — G, satisfies

d(f (xy).f()f (v)) = 8

forall x,y € Gy, then there exists a homomorphism h : G — G, such that

d(f(x), h(x)) < ¢

forallx € Gy?

Since then, several mathematicians have dealt with special cases as well as
generalizations of Ulam’s problem.

In fact, in 1941, Hyers [133] provided a partial solution to Ulam’s problem for
the case of approximately additive mappings in which G and G, are Banach spaces
with § = ¢ as follows:

Let X and Y be Banach spaces and let ¢ > 0. Then, for all g : X — Y with

Sug( le(x+y) —gx) —gWI <&,
X, Y€

there exists a unique mapping f : X — Y such that

sup [|g(x) —f(W)[| = &

xX€X

and

Ja+y) =fx)+10)

forall x,y € X.

This proof remains unchanged if G| is an Abelian semigroup. Particularly, in
1968, it was proved by Forti ([115], Proposition 1) that the following theorem can
be proved:
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Theorem F (Forti). Let (S,+) be an arbitrary semigroup and E be a Banach
space. Assume that f : S — E satisfies

If(x+y) —f) —fOI <e. (A)
Then the limit

gx) = lim ACED)

n—oo 2N

(B)
exists forall x € S and g : S — E is the unique function satisfying

If () =gl =& g(2x) = 2g(x).

Finally, if the semigroup S is Abelian, then G is additive.

Here, the proof method which generates the solution g by the formula like (B) is
called the direct method.

If f is a mapping of a group or a semigroup (S, -) into a vector space E, then we
call the following expression:

Cfey) =fx-y) =) =f()

the Cauchy difference of f on § x S. In the case that E is a topological vector space,
we call the equation of homomorphism stable if, whenever the Cauchy difference
Cf is bounded on S x S, there exists a homomorphism g : § — E such that f — g is
bounded on S.

In 1980, Ritz [298] generalized Theorem F as follows: Let (X, *) be a power-
associative groupoid, i.e., X is a nonempty set with a binary relation x; * x, € X
such that the left powers satisfy X" = x % x" for all m,n > 1 and x € X. Let
(Y, ] - |) be a topological vector space over the field Q of rational numbers with Q
topologized by its usual absolute value | - |.

Theorem R (Rétz). Let V be a nonempty bounded Q-convex subset of Y contain-
ing the origin and assume that Y is sequentially complete. Let f : X — Y satisfy the
following conditions: for all x|, x, € X, there exist k > 2 such that

Sl xx)!) =" % ©

foralln > 1and
@) +f00) —fla *xx) € V. (D)
Then there exists a function g : X — Y such that g(x1) + g(x2) = g(x1 * x2) and

f(x) — g(x) € V, where V is the sequential closure of V for all x € X. When Y is a
Hausdorff space, then g is uniquely determined.



4 1 Introduction

Note that the condition (C) is satisfied when X is commutative and it takes the
place of the commutativity in proving the additivity of g. However, as Ritz pointed
out in his paper, the condition

(xl * XZ)kn = xlin * XI;

for all x;,x, € X, where X is a semigroup, and, for all k > 1, does not imply the
commutativity.

In the proofs of Theorems F and R, the completeness of the image space E and the
sequential completeness of Y, respectively, were essential in proving the existence
of the limit which defined the additive function g. The question arises whether the
completeness is necessary for the existence of an odd additive function g such that
f — g is uniformly bounded, given that the Cauchy difference is bounded.

For this problem, in 1988, Schwaiger [306] proved the following:

Theorem S (Schwaiger). Let E be a normed space with the property that, for each
Sunctionf : Z — E, whose Cauchy difference Cf = f(x+y)—f(x)—f(y) is bounded
forallx,y € Z and there exists an additive mapping g : Z — E such that f(x) — g(x)
is bounded for all x € 7. Then E is complete.

Corollary 1. The statement of Theorem S remains true if 7. is replaced by any
vector space over Q.

In 1950, Aoki [17] generalized Hyers’ theorem as follows:

Theorem A (Aoki). Let Ey and E; be two Banach spaces. If there exist K > 0 and
0 <p < 1 such that

If (x4 3) =) =fOI = K(Ix[I” + lIvlI”)

forall x,y € Ej, then there exists a unique additive mapping g : E; — E, such that

IFe) - sl < 35—

x[l”

forall x € E.

In 1978, Th. M. Rassias [267] formulated and proved the stability theorem for
the linear mapping between Banach spaces E; and E, subject to the continuity of
f(tx) with respect to t € R for each fixed x € E;. Thus Rassias’ Theorem implies
Aoki’s Theorem as a special case. Later, in 1990, Th. M. Rassias [274] observed that
the proof of his stability theorem also holds true for p < 0. In 1991, Gajda [119]
showed that the proof of Rassias’ Theorem can be proved also for the case p > 1
by just replacing n by —n in (B). These results are stated in a generalized form as
follows (see Rassias and Semrl [293)):
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Theorem RS (Th.M. Rassias and P. Semrl). Ler 5(s, t) be nonnegative function
for all nonnegative real numbers s,t and positive homogeneous of degree p, where
pisreal andp # 1, i.e., B(As,At) = APB(s, 1) for all nonnegative A, s,t. Given a
normed space E; and a Banach space E,, assume that f . E| — E, satisfies the
inequality

1F G +y) =f) =fWI = BAlixll. yID

forallx,y € E|. Then there exists a unique additive mapping g : E\ — E, such that

If () — gl = 8]lx]1”

forall x € E,, where

_ —g(_“), p<1,
- 1,1
5. p> 1

The proofs for the cases p < 1 and p > 1 were provided by applying the direct
methods. For p < 1, the additive mapping g is given by (B), while, in case p > 1,
the formula is

g0 = lim 2'7(3;).

Corollary 2. Let f : E\ — E, be a mapping satisfying the hypotheses of
Theorem RS and suppose that f is continuous at a single point y € Ej. Then the
additive mapping g is continuous.

Corollary 3. If, under the hypotheses of Theorem RS, we assume that, for each
fixed x € E\, the mapping t — f(tx) from R to E; is continuous, then the additive
mapping g is R—linear.

Remark 4. (1) For p = 0, Theorem RS, Corollaries 2 and 3 reduce to the results
of Hyers in 1941. If we put B(s,7) = &(s” + #’), then we obtain the results of
Rassias [267] in 1978 and Gajda [119] in 1991.

(2) The case p = 1 was excluded in Theorem RS. Simple counterexamples prove
that one can not extend Rassias’ Theorem when p takes the value one (see Z.
Gajda [119], Rassias and Semrl [293] and Hyers and Rassias [135] in 1992).

A further generalization of the Hyers-Ulam stability for a large class of mappings
was obtained by Isac and Rassias [139] by introducing the following:

Definition 5. A mapping f : E; — E; is said to be ¢-additive if there exist @ > 0
and a function ¢ : Ry — R satisfying
t
lim w =0

t—>+oo
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such that

If (x +y) =f ) =fOII = Plo(llxlD) + ¢ (lyID]

forall x,y € E;.
n [139], Isac and Rassias proved the following:

Theorem IR (Isac and Rassias). Let E| be a real normed vector space and E; be
a real Banach space. Let f : Ey — E; be a mapping such that f (tx) is continuous in
t for each fixed x € Ey. If f is ¢-additive and ¢ satisfies the following conditions:

1) ¢(ts) < P ()P (s) forall s,t € R;
2) ¢@) <tforallt>1,
then there exists a unique R-linear mapping T : E; — E; such that

Il ) = 5 UxD

Tl = 50

forall x € Ey.

Remark 6. (1) If ¢(¢) = ” with p < 1, then, from Theorem IR, we obtain Rassias’
Theorem [267].

(2) If p < 0 and ¢(¢r) = ¢ with ¢ > 0, then Theorem IR is implied by the result of
Gajda in 1991.

Since the time the above stated results have been proven, several mathematicians
(cf. [1, 3, 14, 44, 46, 49-65, 69-80, 82-85, 87-90, 95-99, 101-107, 109, 116-
118, 120, 122, 124, 125, 129-134, 136, 137, 140-149, 151-153, 156158, 160-
162, 164, 173-179, 187, 189, 190, 195-201, 207, 208, 212, 214, 217, 219, 221-
223, 226, 228, 230, 236, 239-241, 262, 266, 268, 269, 275-288, 296-303, 309,
311-322, 324, 330, 331] and also very recent survey papers [42, 60, 61]) have
extensively studied stability theorems for several kinds of functional equations
in various spaces, for example, Banach spaces, 2-Banach spaces, Banach n-
Lie algebras, quasi-Banach spaces, Banach ternary algebras, non-Archimedean
normed and Banach spaces, metric and ultra metric spaces, Menger probabilistic
normed spaces, probabilistic normed space, p-2-normed spaces, C*-algebras, C*-
ternary algebras, Banach ternary algebras, Banach modules, inner product spaces,
Heisenberg groups and others. Further, we have to pay attention to applications
of the Hyers-Ulam-Rassias stability problems, for example, (partial) differential
equations, Fréchet functional equations, Riccati differential equations, Volterra
integral equations, group and ring theory and some kinds of equations (see
[66, 142, 150, 154, 159, 176, 185, 186, 192-194, 259-261, 327, 329]). For more
details on recent development in Ulam’s type stability and its applications, see
the papers of Brillouét-Belluot et al. [53] and Cieplifiski [86] in 2012 (see also
[3-22, 47,78, 79, 81, 110-112, 138, 148-150, 154, 157-163, 165, 166, 183, 204,
205, 213, 215, 216, 245, 246, 249, 255, 257, 263, 264, 270-295, 302, 304, 328]).
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A functional equation is called stable if any function satisfying the functional
equation “approximately” is near to a true solution of the functional equation. We
say that a functional equation is superstable if every approximate solution is an
exact solution of it (see some recent papers [40, 41, 55, 59]).

1.1 Fixed Point Theorems

In this section, we present some fixed point theorems which will play important
roles in proving our main theorems. All stability results for functional equations
were proved by applying direct method. Since the direct method sometimes does
not work. In consequence, the fixed point method for studying the stability of
functional equations was used for the first time by Baker in 1991 (see [43]). Next, in
2003, Radu [265] gave a lecture at Seminar on Fixed Point Theory Cluj-Napoca
and proved a stability of functional equation by fixed method. Then, in 2003,
Ciadariu and Radu [62, 64] considered Jensen functional equation and proved a
stability result via fixed point method. Jung and Chang [155] proved the stability
of a cubic type functional equation with the fixed point alternative. Since then,
some authors [151-153, 156, 157, 162, 164, 191, 211, 234, 251, 256] considered
some important functional equations and proved the stability results via fixed point
method introduced by Baker and Radu.

The Banach fixed point theorem [45] (also known as the Banach contraction
principle) is an important tool in the theory of metric spaces because it guarantees
the existence and uniqueness of fixed points of certain self mappings of metric
spaces and provides a constructive method to find those fixed points. The theorem
is named after Banach (1892-1945) and was first stated by him in 1922.

Theorem 1.1 (Banach [45]). Let (X,d) be a complete metric space and
T : X—X be a contraction, i.e., there exists o € [0, 1) such that

d(Tx, Ty) < ad(x,y)

for all x,y € X. Then there exists a unique a € X such that Ta = a.
Moreover, for all x € X,

Iim T"x =a
n—>oo

and, in fact, for all x € X,

1
d(x,a) < d(x, Tx).
o

1-—
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Theorem 1.2 ([62, 265]). Let (X, d) be a complete metric space and J : X — X be
a strictly contractive mapping, i.e., there exists a Lipschitz constant L < 1 such that

d(Jx,Jy) < Ld(x,y)

forall x,y € X. Then we have

(1) The mapping J has a unique fixed point x* € X;
(2) The fixed point x* is globally attractive, i.e.,

lim J"x = x*
n—>oo

forallx € X;
(3) The following inequalities hold:

d(J"x, x*) < L"d(x,x*),
1
d(J"x,x*) < ﬁd(J"x, J' ),

1
1-L

d(x,x*) < d(x, Jx)

forallx € Xandn > 1.

Following Luxemburg [188], the concept of a generalized complete metric space
may be introduced as in this quotation:

Let X be a nonempty set. A functiond : X x X — [0, oo] is called a generalized
metric on X if, for any x,y,z € X,

(1) d(x,y) = 0if and only if x = y;
(2) d(x,y) = d(y,x);
3) d(x,2) <d(x,y) +d(y,2).

This concept differs from the usual concept of a complete metric space by the
fact that not every two points in X have necessarily a finite distance. One might call
such a space a generalized complete metric space.

Next, Diaz and Margolis [95] proved a theorem of the alternative for any
contraction mapping 7 on a generalized complete metric space X. The conclusion
of the theorem, speaking in general terms, asserts that: either all consecutive pairs
of the sequence of successive approximations (starting from an element xy of X)
are infinitely far apart or the sequence of successive approximations, with initial
element x( converges to a fixed point of T (what particular fixed point depends, in
general, on the initial element xy).

Theorem 1.3 ([62, 95]). Let (X,d) be a complete generalized metric space and
J : X — X be a strictly contractive mapping with a Lipschitz constant L < 1. Then,
for each x € X, either
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d(J"x, J" x) = o0

for all n > 0 or there exists a positive integer ngy such that

(1) d(J"x,J""1x) < oo for all n > ny;

(2) The sequence (J"x) converges to a fixed point y* of J;

(3) y* is the unique fixed point of J in the set Y = {y € X : d(J"x,y) < oo};
@) d(y,y*) < 1d(. Jy) forally € Y.

1.2 Quasi-Banach Algebras

Let X be a vector space on field C. A normed space X in which, for all x,y € X,
xy € X and ||xy|| < |lx|/|ly]| is called a complex normed algebra. A complete normed
algebra is called a Banach algebra. Moreover, if there exists a unit element e such
that ex = xe = x for all x € X, then |e| = 1 and X is called a unital Banach
algebra.

Let X,Y be Banach algebras. A C-linear mapping H : X — Y is called a
homomorphism in Banach algebras if H satisfies

H(xy) = H(x)H(y)

for all x,y € X. A C-linear mapping § : X — X is called a derivation on X if §
satisfies

8(xy) = 8(x)y + x8(y)

forall x,y € X.
We recall some basic facts concerning quasi-Banach spaces and some prelimi-
nary results.

Definition 1.4 ([48, 300]). Let X be a real linear space. A quasi-norm is a real-
valued function on X satisfying the following:

(1) ||lx|| > 0 forall x € X and ||x|| = 0 if and only if x = 0;
) ||Ax]| = |A|- ||x|| forall A € R and x € X;
(3) There is a constant K > 1 such that ||x + y|| < K(||x|| + ||y|]) forallx,y € X.

The pair (X, || - ||) is called a quasi-normed space if || - || is a quasi-norm on X.
The smallest possible K is called the modulus of concavity of || - ||. Obviously, the
balls with respect to || - || define a linear topology on X. By a quasi-Banach space
we mean a complete quasi-normed space, i.e., a quasi-normed space in which every
|| - [|-Cauchy sequence in X converges. This class includes Banach spaces and the
most significant class of quasi-Banach spaces which are not Banach spaces are the
L, spaces for 0 < p < 1 with the quasi-norm || - [|..
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A quasi-norm || - || is called a p-norm (0 < p < 1) if
[l + P < [lxll” + [lylI”

for all x, y € X. In this case, a quasi-Banach space is called a p-Banach space.

For any p-norm, the formula d(x, y) := ||x — y||” gives us a translation invariant
metric on X. By the Aoki—Rolewicz theorem [300] (see also [48]), each quasi-norm
is equivalent to some p-norm. Since it is much easier to work with p-norms than
quasi-norms, henceforth we restrict our attention mainly to p-norms.

Definition 1.5 ([10]). Let (A, || - ||) be a quasi-normed space. The quasi-normed
space (A, || - ||) is called a quasi-normed algebra if A is an algebra and there exists a
constant C > 0 such that

eyl < Clixll - Iyl

for all x,y € A. A quasi-Banach algebra is a complete quasi-normed algebra.
If the quasi-norm || - || is a p-norm, then the quasi-Banach algebra is called a
p-Banach algebra.

1.3 C*-Algebras

Let U be a Banach algebra. Then an involution on U is a mapping u — u* from U
into U which satisfies the following conditions:

(1) w* =uforallu e U;
() (au+ pv)* =au* + pv*;
3) (wv)* =v*u* forallu,v € U.

If, in addition, ||u*u| = |ju||? for all u € U, then U is a C*-algebra.
Let U,V be C*-algebras. A C-linear mapping H : U — V is called a
homomorphism in C*-algebras if H satisfies

H(xy) = HWH(y), H(X") =H(x)"

for all x,y € U. A C-linear mapping § : U — U is called a derivation on U if §
satisfies

8(xy) = 8(x)y + x8(y)

forall x,y € U.
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Suppose that A is a complex Banach x-algebra. Let C-linear mapping
8 : D(§) — A be a derivation on A, where D(§) is the domain of § and D(5)
is dense in A. If § satisfies the additional condition

§(a*) = 8(a)*

for all a € A, then § is called a *-derivation on A.

It is well-known that, if A is a C*-algebra and D() is A, then the derivation § is
bounded.

Now, we consider proper CQ*-algebras, which arise as completions of
C*-algebras (see [15-39]) as follows:

Let A be a Banach module over the C*-algebra Ay with an involution *
and C*-norm || - |lo such that A, C A. We say that (A, Ap) is a proper CQ*-
algebra if

(1) Ay is dense in A with respect to its norm || - ||;
(2) An involution *, which extends the involution of Ay, is defined in A with the
property (xy)* = y*x* for all x,y € A whenever the multiplication is defined;

(3) lyllo = sup,ea juy<1 x| forall y € Ay.
Definition 1.6. Let (A, Ap) and (B, By) be proper CQ*-algebras.

(1) A C-linear mapping i : A — B is called a proper CQ*-algebra homomor-
phism if

h(xy) = h(x)h(y)

for all x,y € A whenever the multiplication is defined;
(2) A C-linear mapping § : A — A is called a derivation on A if

8(xy) = 8(x)y + x8(y)
for all x,y € A whenever the multiplication is defined.

A C*-algebra C endowed with the Lie product [x,y] := =5* on C is called a Lie
C*-algebra (see [224, 225, 227)).

Definition 1.7. Let A and B be Lie C*-algebras. A C-linear mapping H : A — B is
called a Lie C*-algebra homomorphism if

H([x,y]) = [H(x), H(y)]
forallx,y € A.

Definition 1.8. Let A be a Lie C*-algebra. A C-linear mapping 6 : A — A is called
a Lie derivation if

8([x, 5D = [8(x), y] + [x. 6(»)]
for all x,y € A.
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1.4 C*-Ternary Algebras

Ternary algebraic structures appear more or less naturally in various domains of
theoretical and mathematical physics, for example, the quark model inspired a
particular brand of ternary algebraic system. One such attempt has been proposed
by Nambu in 1973 and is now known under the name of “Nambu mechanics” [316]
(see also [332]).

A C*-ternary algebra is a complex Banach space A, equipped with a ternary
product (x,y,z) — [x,y,z] of A3 into A, which is C-linear in the outer variables,
conjugate C-linear in the middle variable and associative in the sense that

[x, v, [z, w, v]] = [x, [w, z,¥],v] = [[x,y,2], w, V]

and satisfies

IBe 2l < el - Iyl - Nzll, e x 2l = el

(see [332)).

If a C*-ternary algebra (A, [+, -, -]) has the identity, i.e., an element e € A such
that x = [x, e, ¢] = [e, e, x] for all x € A, then it is routine to verify that A, endowed
withxoy := [x,e,y] and x* := [e, x, €], is a unital C*-algebra. Conversely, if (A, o)
is a unital C*-algebra, then [x, y, 7] := x o y* o z makes A into a C*-ternary algebra.

A C-linear mapping H : A — B is called a C*-ternary algebra homomorphism
if

H([x.y.z]) = [H(x), H(y), H(2)]

for all x,y,z € A. A C-linear mapping § : A — A is called a C*-ternary derivation
if

([, y.2]) = [8(x).y. 2] + [x.8(y). 2] + [x.,8(2)]

for all x,y,z € A (see [231]).

Ternary structures and their generalization, the so-called n-ary structures, are
important in view of their applications in physics (see [171]).

Suppose that J is a complex vector space endowed with a real trilinear
composition J X J X J 3 (x,y,2) = {xy*z} € J which is complex bilinear in
(x, z) and conjugate linear in y. Then J is called a Jordan triple system if

{oy*z} = {2y"x}
and

oy vy + o viu*zh — ™zt vl = {2l uy vl
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We are interested in Jordan triple systems having a Banach space structure.
A complex Jordan triple system [J with a Banach space norm | - || is called a J*-
triple if, for all x € J, the operator xTx™* is hermitian in the sense of Banach algebra
theory. Here the operator xOlx* on 7 is defined by (xOx*)y := {xx*y}. This implies
that xOlx™* has the real spectrum o (xOx*) C R. A J*-triple J is called a JB*-triple
if every x € J satisfies o(xOx*) > 0 and [|xOx*| = ||x||>.

A C-linear mapping H : J — L is called a JB*-triple homomorphism if

H({xyz}) = {H)H(y)H(2)}

for all x,y,z € J. A C-linear mapping § : J — J is called a JB*-triple
derivation if

8(xyz}) = {8()yz} + {Ix8(y)z} + {xyd(2)}

forall x,y,z € J (see [225]).

1.5 Non-Archimedean Normed Algebras

By a non-Archimedean field we mean a field K equipped with a function (valuation)
| - | from K into [0, 0o) such that

(1) |r| = 0if and only if r = 0;
) |rs| = [rllsl;
3) |r+ s| <max{|r|,|s|} forall r,s € K.
Clearly, |1| = | — 1| = 1 and |n| < 1 for all n > 1. By the trivial valuation we
mean the mapping | - | taking everything but 0 into 1 and |0] = 0.
Let X be a vector space over a field K with a non-Archimedean non-trivial

valuation | - |. A function | - || : X — [0, 00) is called a non-Archimedean norm
if it satisfies the following conditions:

(1) ||lx|| = O forall x € X if and only if x = 0;
(2) Forallr € K,x € X, ||rx| = |r|||x]|;
(3) The strong triangle inequality (ultrametric) holds, i.e.,

llx + yll < max{{|x], Iyll}

forall x,y € X.

Then (X, || - ||) is called a non-Archimedean normed space. From the fact that

%y — X || < max{[xj41 — x| :m <j<n-—1}
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for all n > 1 with n > m, a sequence {x,} is a Cauchy sequence if and only if
{Xn4+1 — x,} converges to zero in a non-Archimedean normed space. By a complete
non-Archimedean normed space we mean one in which every Cauchy sequence is
convergent.

For any nonzero rational number x, there exists a unique integer n, € Z such that

a .,
r=P
where a and b are integers not divisible by p. Then |x|, := p™ defines a non-
Archimedean norm on Q. The completion of Q with respect to the metric d(x,y) =
|x — y|, is denoted by Q,, which is called the p-adic number field.

A non-Archimedean Banach algebra is a complete non-Archimedaen algebra A
which satisfies |ab| < ||a| - ||b| for all a,b € A. For more detailed definitions of
non-Archimedean Banach algebras, the readers refer to [310].

If U is a non-Archimedean Banach algebra, then an involution on ¢/ is a mapping
t — t* from Y into U satisfying the following:

(1) r* =tforallt eU;
2) (as + Br)* =as™ + pr*;
3) (sp)* =r*s* forall s,z € U.

If, in addition |#*¢] = |¢||*> for all t+ € U, then U is a non-Archimedean
C*—algebra.

1.6 Multi-normed Algebras

The notion of multi-normed space was introduced by Dales and Polyakov in [92].
This concept is somewhat similar to the operator sequence space and has some
connections with the operator spaces and Banach lattices. Motivations for the study
of multi-normed spaces and many examples are given in [91, 92, 206].

Let (£, - ||) be a complex normed space and let k € N. We denote by £* the
linear space £ @ --- @ &£ consisting of k-tuples (xy,--- ,x), where xi,--- ,x;, € £.
The linear operations on £ are defined coordinate-wise. The zero element of either
& or £F is denoted by 0. We denote by N the set {1,2,---,k} and by X the group
of permutations on k symbols.

Definition 1.9. A multi-norm on {£* : k € N} is a sequence

(F- My = - llx - k € N)

such that || - || is a norm on & for each k € N:

(A1) [|(o(1ys = s Xom)lle = |(x1, -+, x) ||« forallo € Xy and xy, -+, x¢ € &;
(A2) ||(ot1x1,'~ ,ozkxk)||k < (max,-eNk |Ol,'|) ||X1,"' ,Xk”k for all Ap, -, 0 € C and
Xp, e, Xk €&
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(A3) [|Gers Xk, O) Ik = (et oo k1) k1 forall xy, -+ g € &5
(A4) [ty o1, XD e = 1en, -+ xe— ) lx—1 forallxy, -+ g € €.

In this case, we say that ((X, || - ||x) : k € N) is a multi-normed space.

Lemma 1.10 ([206]). Suppose that (€, || - |lx) : k € N) is a multi-normed space
and let k € N. Then

M e D)l = [lx[| for all x € &; )
() maxien, 5l < .- x)lle = ey Il = kmaxien, ||| for all

RPRER ,xkeé’.

It follows from (2) that, if (£, || -||) is a Banach space, then (¥, || - ||x) is a Banach
space for each k € N. In this case, ((E¥, || - ||lx) : k € N) is a multi-Banach space.

Now, we state two important examples of multi-norms for an arbitrary normed
space & (see [92]).

Example 1.11. The sequence (|| - ||« : k € N) on {£F : k € N} defined by

llx1, ==, xllx := max [lx|
ieNy

for all x,---,x;, € & is a multi-norm called the minimum multi-norm. The
terminology “minimum” is justified by the property (2).

Example 1.12. Let {(|| - |¥ : k € N) : @ € A} be the (non-empty) family of all
multi-norms on {£* : k € N}. For k € N, set

e, ==+ xellle := sup [|Ger, -+ 20 [l
a€A
forall x;,--- ,x; € £ Then (||| - |||x : k € N) is a multi-norm on {&* : k € N}, which

is called the maximum multi-norm.

We need the following observation which can be easily deduced from the triangle
inequality for the norm || - || and the property (2) of multi-norms.

Lemma 1.13. Suppose that k € N and (x,-+- ,x;) € EX. For eachj € {1,--- ,k},
let (x)n>1 be a sequence in & such that limy,—oo¥, = x;. Then, for each
01+, ) € EX, we have

fim () — 1, 2k =) = (0 =y, — ).

n—

Definition 1.14. Let ((£%,] - |lx) : k € N) be a multi-normed space. A sequence
(x,) in & is a multi-null sequence if, for any ¢ > 0, there exists ny € N such that

sup || (xp, -+ s Xnpi—1) Ik < &
keN

for each n > ny. We say that the sequence (x,) is multi-convergent to a point x € £
(write lim,—, 0 X, = x) if (x, — x) is a multi-null sequence.
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Definition 1.15 ([92, 170, 202]). Let (A, | - ||) be a normed algebra such that
(A5 || - k) : k € N) is a multi-normed space. Then ((A*, | - |lx) : k € N) is
called a multi-normed algebra it

(aibr, - ab)lle < (ar, -+ ca)llk - |(Br, -+ o)k

for all k € N and ay,--- ,at, by, -+, by € A. Further, the multi-normed algebra
((A%, || - k) @ k € N) is called a multi-Banach algebra if (A, || - ||¢) : k € N) is a
multi-Banach space.

Example 1.16 ([92, 202, 252]). Let p,g with 1 < p < g < oo and A =
£P. The algebra A is a Banach sequence algebra with respect to coordinatewise
multiplication of sequences. Let (|| - ||x : k € N) be the standard (p, g)-multi-norm
on {A* : k € N}. Then ((A*, || - ||lx) : k € N) is a multi-Banach algebra.

Definition 1.17. Let (A, ||-||) be a Banach x-algebra with the involution *. A multi-
C*-algebra is a multi-Banach algebra such that

laaf. - aad)| = (a1, . a)l*.

In a series of the papers [15-33, 36-38] and [318-320], many authors have
considered a special class of quasi x-algebras, called proper CQ*-algebras, which
arise as completions of C*-algebras. They can be introduced in the following way:

Let 2 be a linear space and A be a x-algebra contained in 2. We say that 2 is
a quasi-x-algebra over A if the right and left multiplications of an element of 2
and an element of A are always defined and linear. An involution * which extends
the involution of A is defined in 2 with the property (ab)* = b*a™ whenever the
multiplication is defined.

A quasi-x-algebra (2, A) is said to be topological if there exists a locally convex
topology 7 on 2 such that

(Q1) The involution a — a™* is continuous;
(Q2) The mappings a + ab and a +— ba are continuous for each b € A;
(Q3) Ais dense in 2 with topology t.

In a topological quasi-*-algebra, the associative law holds in the following two
formulations:

a(bc) = (ab)c, b(ac) = (ba)c

forallb,c € Aand a € 2.
A CQ*-algebra is a topological quasi-*-algebra (2(,.4) with the following
properties:

(CQ1) (A, ||]l«) is a C*-algebra with respect to the norm || || « and the involution *;
(CQ2) (A, ] - 1) is a Banach space and ||a*|| = |a|| for all a € ;
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(CQ3) Forall b € A, we have

bl = max{ sup flab]l. sup [lball}.

llall<t lall<1

Bagarello and Trapani [34] showed that both (L7 (X, n), Co(X)) and (LP (X, ),
L*° (X)) are CQ*-algebras.

Now, we define the multi-CQ*-algebra.

Let (A, A) be a CQ*-algebra. We say that {(A*, AX) : k € N} is a multi-CQ*-
algebraif, for each k € N, the couple (¥, A¥) is a CQ*-algebra, where {2 : k € N}
and {A* : k € N} are a multi-Banach algebra and a multi-C*-algebra, respectively.

Example 1.18. In [34], the authors showed that the couple (2, A) is a CQ*-algebra,
where 20 = €7 and A = ¢,. Now, consider Example 1.16. Then {(2*, A¥) : k € N}
is a multi-CQ*-algebra.

Definition 1.19. Let ((A*, || - |x) : k € N) be a multi-Banach space. A multi-C*-
ternary algebra is a complex multi-Banach space ((AX, | - [lx) : k € N) equipped
with a ternary product.



Chapter 2
Stability of Functional Equations in Banach
Algebras

Beginning around the year 1980, the topic of approximate homomorphisms and
derivations and their stability theory in the field of functional equations and
inequalities was taken up by several mathematicians (see Hyers and Rassias [135],
Rassias [285] and the references therein).

In this chapter, in the first section, we show that, if X and Y are normed spaces
with the norms || - ||x and || - ||y, respectively, and f : X — Y is a mapping such that

@ +£0) + 7@y < | éf(qx SCATCIR

for all x,y,z € X and for a fixed nonzero rational number ¢, then f is Cauchy
additive. Next, we approximate isomorphisms and derivations in Banach algebras
by the direct method.

In Sect. 2.2, we consider the m-variable additive functional equation:

=1

for al m € N and m > 2 and, by the fixed point method, we approximate
homomorphisms and derivations in Banach algebras.

In Sect.2.3, we prove the Hyers-Ulam stability of homomorphisms in quasi-
Banach algebras and generalized derivations on quasi-Banach algebras for the
following functional equation:

YD ai—x) | +nf (Z qxi) =ng ) f(x).
i=1 j=1 i=1 i=1

© Springer International Publishing Switzerland 2015 19
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In Sect.2.4, we approximate homomorphisms in real Banach algebras and
generalized derivations on real Banach algebras for the following Cauchy-Jensen
functional equations

f(% —i—z) —i—f(x;zy —i—z) =f(x) + 2f(2)

and

(5 +2) =100 +10) + 2 ).

2.1 Stability of %f gx+qy+q2) =fx) +f@) +f )

Using the direct method, we investigate isomorphisms in Banach algebras and
derivations on Banach algebras associated with the following functional equation

éf(qx gyt 42) = FO) + 1) + 1) @.1)

for a fixed nonzero rational number g.

2.1.1 Isomorphisms in Banach Algebras

Here we consider isomorphisms in Banach algebras associated with the functional
equation (2.1).

Lemma 2.1. Let X and Y be normed spaces with norms ||-||x and |- ||y, respectively.
Let f : X — Y be a mapping with f(0) = 0 such that

1
1) +70) +7 @) = | flax+av + 90, 22)
forallx,y,z € X, then f is Cauchy additive, i.e.,

Jx+y) =fx) +f).

Proof. Letting z = 0 and y = —x in (2.2), we get

1)+ =0l < | éf(O) | =0
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for all x € X. Hence f(—x) = —f(x) for all x € X. Letting 7 = —x — y in (2.2),
we get

) +fO0) —fx+ Dy = IfF ) +f0) +f(=x =Wy
1
=| o,
=0
for all x,y € X. Thus

Ja+y) =) +10)

for all x, y € X. This completes the proof. |

Here, we assume that A is a Banach algebra with the norm |- ||4 and B is a Banach
algebra with the norm || - || 5.

Theorem 2.2. Let r # 1, 6 be nonnegative real numbers and f : A — B be a
bijective mapping with f(0) = 0 such that

1
I8 () +£0) +@lls = | _flae+ay + 42|, 23)
and

I ) =f@f O s < OUxIE + IvIE 24

forallp € T := {1 € C: |A| = 1} and x,y,z € A, then the bijective mapping
f A — Bis an isomorphism.

Proof. Let u = 1 in (2.3). By Lemma 2.1, the mapping f : A — B is Cauchy
additive. Letting z = 0 and y = —pux in (2.3), we get

wuf(x) = f(pux) = uf(x) +f(=px) =0

for all x € A and so f(ux) = uf(x) for all x € A. By (2.3), the mappingf : A — B
is C-linear.

(i) Assume that r < 1. By (2.4), we have

1
FCey) = f@fW)lls = lim 27 (4%xy) =20 2"V s

nr
. 2r 2r
< lim = Ollxls" + [Iyll4

=0
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for all x,y € A and so

Jxy) =f@)f ()

for all x,y € A.
(i1)) Assume that r > 1. By a similar method to the proof of the case (i), one can
prove that the mapping f : A — B satisfies

Jxy) = ff ()

for all x,y € A. Therefore, the bijective mapping f : A — B is an isomorphism
in Banach algebras. This completes the proof. O

Theorem 2.3. Let r # 1, 6 be nonnegative real numbers and f : A — B be a
bijective mapping satisfying f(0) = 0 and (2.3) such that

If Cey) =f U DIz = 6 - [Iwlly - llx] (2.5)

forall x,y € A, then the bijective mapping f : A — B is an isomorphism.
Proof. By (2.3), the mapping f : A — B is C-linear.
(i) Assume that r < 1. By (2.5), we have

1
I Cey) = f@fW)lls = lim 27 (4%xy) =20 2"V s

nr
. r r
=< nlggo ?9 Awlly - Nl

=0
for all x,y € A and so

fy) =f@)f )

for all x,y € A.
(i) Assume that » > 1. By a similar method to the proof of the case (i), one can
prove that the mapping f : A — B satisfies

Jy) =f@f ()

for all x,y € A. Therefore, the bijective mapping f : A — B is an isomorphism.
This completes the proof. O
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2.1.2 Derivations in Banach Algebras

We consider derivations on Banach algebras associated with the functional equa-
tion (2.1).

Theorem 2.4. Let r # 1, 0 be nonnegative real numbers and f : A — A be a
mapping with f(0) = 0 such that

1
I8 +F0) 4 F @ = | S ar +ay + )] 2.6)
and

FCy) =f @)y = Dlla < O+ IvlE 2.7

forall w € T and x,y,z € A, then the mapping f : A — A is a derivation on A.
Proof. By (2.7), the mapping f : A — A is C-linear.
(i) Assume thatr < 1. By (2.7),

If (xy) = f )y = xf (D) [l

1
= Jim @) —f(2') - 2"y = 2 ')l

IA

lim FH(IIXIIZ\’ + lIylly
=0
for all x,y € A and so
FOy) =f)y + 2 ()

forall x,y € A.
(i1)) Assume that r > 1. By a similar method to the proof of the case (i), one can
prove that the mapping f : A — A satisfies

fOy) =fx)y +xf ()

for all x,y € A. Therefore, the mapping f : A — A is a derivation on A. This
completes the proof. |

Theorem 2.5. Let r # 1, 6 be nonnegative real numbers and f : A — A be a
mapping satisfying f(0) = 0 and (2.6) such that

If Cey) =f )y = Wlla < 6 - llxll}s - 1y ll5

forall x,y € A, then the mapping f : A — A is a derivation on A.
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Proof. The proof is similar to the proofs of Theorems 2.2 and 2.4. |

2.2 Stability of m-Variable Functional Equations

In this section, using the fixed point method, we prove the Hyers-Ulam stability of
homomorphisms and of derivations on Banach algebras for the following additive
functional equation (see [108]):

m m

S 5 ) E0-(E

j=1,j#i i=1 i=1

for all m € N with m > 2.

2.2.1 Stability of Homomorphisms in Banach Algebras

For any mapping f : A — B, we define

Duf (X1, Xm)
= iuf(mm f 5) + y xi)—zf(ufmxi)
i=1 j=1,j#i i=1 i=1

forallp e T':={v eC:|v| =1}andxy, -+, X, € A.
Now, we prove the Hyers-Ulam stability of homomorphisms in Banach algebras

for the functional equation D, f(xi,---,x,) = 0. Assume that A is a complex
Banach algebra with norm || - ||4 and B is a complex Banach algebra with norm
-1l

Theorem 2.6. Let f : A — B be a mapping for which there are functions
@ : A" — [0, 00) and V : A> — [0, 00) such that

limj— oo M@ (mixy, -+, mx,,) = 0, (2.8)
[Duf Gt o+ xm) s < @xr, - Xm), (2.9)
If (xy) —f D)l = ¥ (x, ). (2.10)

limj s 00 ™4 (mix, miy) = 0 (2.11)
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forall p € TV and xy,+++ , Xy, x,y € A. If there exists L < 1 such that
@(mx,0,-++,0) < mLo(x,0,---,0)

for all x € A, then there exists a unique homomorphism H : A — B such that

If(x) —H®)z = ¢(x.0,---.,0) (2.12)

m—mL
forall x € A.

Proof. Consider the set X := {g : A — B} and introduce the generalized metric
on X:

d(gvh) = lnf{C € R"r : ||g('x) - h('x)”B E C@(X, 07 Tty O)s V.X € A}v
which (X, d) is complete.
Now, we consider the linear mapping J : X — X such that Jg(x) := %g(mx)
for all x € A. Now, we have d(Jg,Jh) < Ld(g,h) for all g,h € X. Letting u = 1,

x=xjand x; = --- =x,;, = 0in (2.9), we get

If (mx) — mf (@) ||z < ¢(x,0,---.,0) (2.13)

for all x € A and so
1 1
[ = —rmo)| | < —per0.---.0)
m B~ m

for all x € A. Hence d(f, Jf) < %
By Theorem 1.3, there exists a mapping H : A — B such that

(1) H is afixed point of J, i.e.,
H(mx) = mH(x) (2.14)
for all x € A. The mapping H is a unique fixed point of J in the set
Y={geX:d(f,g) < oo}

This implies that H is a unique mapping satisfying (2.13) such that there exists
C € (0, co) satisfying

[H(x) —f@)lls = Co(x,0,---,0)

forallx € A;
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(2) d(J"f,H) — 0 as n — oo. This implies the equality

o L)

n—oo m"

= H(x) (2.15)

forall x € A;
(3) d(f.H) = ; Ld(f Jf), which implies the inequality d(f,H) < —— mL
implies that the inequality (2.12) holds.

Thus it follows from (2.8), (2.9) and (2.14) that

| 3 ) n(3on) - 2( o)

,

=1 i=1
] Srloeras 3 w)
j=Lj
") =2 ( n+1 1)‘
+f<;mx) f ;m X 5
1
< lim —(p(m X1, ,m'x,) =0
n—oo mh
forall x{,---,x, € A and so

ZH(mxi + ) xj) n H(Zm:x,-) — 2H<me,-) (2.16)

i=1 J=1,j# i=1 i=1

for all x;,---,x, € A. By a similar method given in above, we get
wH(mx) = H(mux) for all 4 € T' and x € A. Thus one can show that the
mapping H : A — B is C-linear. It follows from (2.10) that

1
1H(xy) = HHG) |5 = lim —Zf(m"xy) = f(m"x)f (m"y) |5

IA

lim —w(m x, m"y)

n—>o0 m

=0

for all x,y € A and so H(xy) = H(x)H(y) forall x,y € A. Thus H : A — Bisa
homomorphism satisfying (2.12). This completes the proof. |

Corollary 2.7. Let r < 1, 6 be nonnegative real numbers and f : A — B be a
mapping such that

IDuf Cers-- - xm)lls < 6 - (lxally + lo2lly + - + lxmll}) 2.17)
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and
If Cey) = fAf DIz = 0 - (llxlly - lIvll2) (2.18)
forall p € T  and xy,+++ , Xy, x,y € A. Then there exists a unique homomorphism
H : A — B such that
0

If(x) —H@)z =

—— |,

forall x € A.
Proof. The proof follows from Theorem 2.6 by taking

O, xm) = 0 (e lly + 2lly + - 4 lxnlly)
¥ (x,y) =6 - ([|xlly - [1y[l3)

forall x;,--+ , Xy, x,y €Aand L = m"~. O

Theorem 2.8. Let f : A — B be a mapping for which there exist the functions
@ : A" — [0, 00) and V : A> — [0, 00) such that

lim mo(m™xy,--- ,mx,) =0, (2.19)
J—>00

|IDIAf(x17“' axm)”B = ¢(x17"' a-xm)7 (220)
If ) = ff D < ¥ (x, ), (221
lim m?y(mx,my) =0 (2.22)

J—>00
for all n € T! and xi,--- JXm, X,y € A. If there exists L < 1 such that
¢(x,0,---,0) < %(p(mx, 0,---,0) for all x € A, then there exists a unique

homomorphism H : A — B such that

If(x) —H®) |z < ¢(x.0,---.,0) (2.23)

m — mL
forall x € A.

Proof. We consider the linear mapping J : X — X such that

Jglx) := mg(x)

m
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for all x € A. It follows from (2.13) that
X X L
H_f(-x)_mf(_)H E(p(_vos"'vo) S _(p(-xvos"'vo)
m B m m

for all x € A and so d(f,Jf) < % By Theorem 1.3, there exists a mapping
H : A — B such that

(1) H is afixed point of J, i.e.,
H(mx) = mH(x) (2.24)
for all x € A. The mapping H is a unique fixed point of J in the set
Y={geX:d(f,g) < oo}

This implies that H is a unique mapping satisfying (2.20) such that there exists
C € (0, co) satisfying

[H(x) —f@)lls < Co(x,0,---,0)

forallx € A;
(2) d(J"f,H) — 0 as n — oo. This implies the equality

X
lim m"f

Jim mf ()

= H(x)

forallx € A;
3) d(f,H) < 1%Ld(f ,Jf), which implies the inequality

d(f,H) <

m—mL’
which implies that the inequality (2.23) holds.
The rest of the proof is similar to the proof of Theorem 2.6. |

Corollary 2.9. Let r > 1, 0 be nonnegative real numbers and let f : A — B be a
mapping such that

IDuf ety xm) B < 6= (llxenlly + N2l + -+ llxmlly) (2.25)
and

If (ey) =f@f Wl = & - ([lxIl} - [1y[I3) (2.26)
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forall p € T  and xy,+++ , Xy, x,y € A. Then there exists a unique homomorphism
H : A — B such that

If(x) —H@)z =

xr
prm

forall x € A.
Proof. The proof follows from Theorem 2.6 by taking

QO xm) = 0 (e lly + 2lly + - 4 lxnlly)
¥ (x,y) =6 - ([|xlly - [1y[3)

forall x;,--+ , Xy, x,y €Aand L = m'™". O

2.2.2 Stability of Derivations in Banach Algebras

Now, we prove the Hyers-Ulam stability of derivations on Banach algebras for the
functional equation D, f (xy, -+, x,) = 0.

Theorem 2.10. Let f : A — A be a mapping for which there exist the functions
@ : A" — [0, 00) and V : A> — [0, 00) such that

lim m~(mixy, -+ ,m'x,) = 0, (2.27)
J—>00
||D/Af(x1"” 7xm)||A S (p(-xla”' 9-xm)a (228)
If (xy) = f()y = xf W)lla < P(x,y), (2.29)
lim m™ %y (m/x, m'y) = 0 (2.30)
J—>00
for all un € T! and xi,--- JXm, X,y € A. If there exists L < 1 such that

¢(mx,0,---,0) < mLp(x,0,---,0) for all x € A. Then there exists a unique
derivation § : A — A such that

If () = 8()lla <

¢(x,0,---,0) (2.31)
m— mL

forall x € A.
Proof. By the same reasoning as in the proof of Theorem 2.6, there exists a unique

C-linear mapping § : A — A satisfying (2.31). The mapping § : A — A is given by

5() = fim LY

n—oo mh

(2.32)



30 2 Stability of Functional Equations in Banach Algebras
for all x € A. It follows from (2.29), (2.30) and (2.32) that

[18(xy) = 8(x)y — x8(y)lla

1
= lim — If (m*xy) — f(m"x) - m"y — m"xf (m"y)]| 4

n—>oQo

1
< lim —y(m"x,m"y)
n—>00 -t

=0
for all x,y € A and so

§(xy) = 8(x)y + x8(y)
for all x,y € A. Thus § : A — A is a derivation satisfying (2.31). This completes
the proof. O

Corollary 2.11. Let r < 1, 6 be nonnegative real numbers andf : A — A be a
mapping such that

IDwfCere = x)lla < 6= (Ixally + -+ + [lxmll}) (2.33)

and
1FGey) =f @)y = Wlla < 6 - (llxll - 1y 113) (2.34)
forall w € T' and x1,+++ ,xn,x,y € A. Then there exists a unique derivation

8 1 A — A such that

If () = 8()la =

—— |,

forall x € A.
Proof. The proof follows from Theorem 2.10 by taking

QO xm) i= 0 (bally + - bl
Ve y) =0 (llxlly - llvlli)

forall x;,--+ , Xy, x,y €Aand L = m"~.. O

Remark 2.12. Letf : A — B be a mapping for which there exist the functions
@ : A™ — [0,00) and ¥ : A2 — [0, o) such that

lim W/(p(m_jxl, e ,m_jxm) =0, (2.35)

j—o0
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IDuf (ers -+ xa)lla < @(xr, -+ X)), (2.36)
If () —f)y =D la = ¥ (x,9), (2.37)
lim m¥y (m~x,m™y) =0 (2.38)
J—>00
for all p € T! and xi,--- s Xm,X,y € A. If there exists L < 1 such that

o(mx,0,---,0) < l%(p(x,O,--- ,0) for all x € A. Then there exists a unique
derivation § : A — A such that

If () = 8()la = ¢(x.0,---.,0) (2.39)

m— mL
for all x € A.

Corollary 2.13. Let r > 1, 0 be nonnegative real numbers and f : A — A be a
mapping such that

IDuf Gerye = xm)lla < 0= (lxlly + - llxnll3) (2.40)
and

If (xy) =f )y = Wlla = 0 - (lxlly - Iy llz) (2.41)
for all u € T! and xi,--- s Xm, X,y € A. Then there exists a unique derivation

6 : A — A such that

If () = 8()la =

xr
——— |,

forall x € A.
Proof. Consider Remark 2.12 and take
e(xr, - xm) =0 (lxally + - llxmll3).

Ve, y) i= 6 - (IIxlly - [1y[l7)

forall x;,--+ , Xy, x,y €Aand L = m'™". O

2.3 Stability in Quasi-Banach Algebras

Let g be a positive rational number and n be a nonnegative integer. We consider the
Hpyers-Ulam stability of homomorphisms in quasi-Banach algebras and generalized
derivations on quasi-Banach algebras for the following functional equation:
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n

S (S i — ) (3 ) = na s (2.42)
j=1 i=1 i=1

i=1

This is applied to investigate some isomorphisms in quasi-Banach algebras (see
[180, 233, 238]).
2.3.1 Stability of Homomorphisms in Quasi-Banach Algebras

Let g be a positive rational number. For any mapping f : A — B, we define
Df : A" — Bby

Df(xr, %)
=Y (D ati—x)) + (D ax) —na Y fx)
=1 j=1 i=1 i=1
forall x1,--- ,x, € X.

Lemma 2.14. Letf : A — B be a mapping satisfies the functional equation (2.42).
Then the mapping f is Cauchy additive and R-linear.

Proof. The proof is easy (see also [229, 267]). O

Now, we prove the Hyers-Ulam stability of homomorphisms in quasi-Banach
algebras.

Theorem 2.15. Assume thatr > 2 ifng > 1 and 0 < r < 1 ifng < 1. Let 6 be a
positive real number and f : A — B be an odd mapping such that

IDFCer, -+ x) s < 0 Il (2.43)
j=1
and
If (xy) =FFO)ls < OClxlly + 11yl (2.44)
forall x,y,x1,--- ,x, € A. If f(tx) is continuous in t € R for each fixed x € A, then

there exists a unique homomorphism H : A — B such that

0
If () =H@®) g < ——— [Ixll; (2.45)
((ng)Pr — (nq)?)»

forall x € A.
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Proof. Letting x; = -+ = x, = x1in (2.43), we get
lInf (ngx) — n*qf @) ||s < nb|lxIl} (2.46)

for all x € A and so

o =nar ()], < ool

for all x € A. Since B is a p-Banach algebra, we have

H( DI (nq)’) ()’ ((n;)m)Hz
Sloan() -l e

0 gy
= T 2 gy

forallm > 1,1 withm > [ and x € A. It follows from (2.47) that the sequence
{(ng)f( (n;)d )} is a Cauchy sequence for all x € A. Since B is complete, the sequence

{(ng)%( (nZ)d)} converges. So one can define a mapping H : A — B by

HE = Jim () (s

for all x € A. Moreover, letting / = 0 and m — oo in (2.47), we get (2.46). It follows
from (2.43) that

X
DH(xy,- - , X, — 1 dHD e, — H
IDHG+ xls = Jim )| F (oo )|
(nq)’6
< dli>oo (nq) 7 & Z” il
=0
for all x{,---,x, € A. Thus we have

DH(x1,++ ,x,) =0

for all xy,---,x, € A. By (2.43), the mapping H : A — B is Cauchy additive and
R-linear. It follows from (2.45) that
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[H (xy) — H)H()l|s

= lim (nq)ZdHf<W¥nq)d) f(%q)fz)f(ﬁ) HB

)2d

(ng)*'0 r r
Jim S el + 1)

=0

IA

forall x,y € A and so

H(xy) = H(x)H(y)

for all x,y € A.
Now, let T : A — B be another mapping satisfying (2.46). Then we have

1 (x) = T(x)]|5
= (ng)’ HH< (nq)d) T( (n;)d) HB

oK (|4 (Gg) = (g 1 (Ggre) ~* (ago)l)

2 - (nq)?K0

= T
((ng)"" — (nq)")" (ng)*
which tends to zero as n — oo for all x € A. So we can conclude that H(x) = T(x)

for all x € A. This proves the uniqueness of H. Thus the mapping H : A — Bisa
unique homomorphism satisfying (2.46). This completes the proof. a

IA

llxll4.

Theorem 2.16. Assume that0 < r < 1 ifng > 1 and thatr > 2 ifng < 1. Let 0
be a positive real number, and let f : A — B be an odd mapping satisfying (2.43)
and (2.45). If f(tx) is continuous in t € R for each fixed x € A, then there exists a
unique homomorphism H : A — B such that

0
If () —H® s = ———— lIxll4 (248)
((ng)? — (ng)Pr)»

forall x € A.
Proof. It follows from (2.46) that

1 0
IIf (x) — n—qf("qx)HB < n—q“x”/ra

for all x € A. Since B is a p-Banach algebra, we have
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|t =

f()™)|

mgH Sy~ o )mf(( nay*io| (2.49)

= Oy
= i A
(197 2= (ngy"

for allm > 1, I with m > [ and x € A. It follows from (2.49) that the sequence
{ T f((nq)dx)} is a Cauchy sequence for all x € A. Since B is complete, the

sequence { f ((nq)“x)} converges. So one can define a mapping H : A — B by

HE) = lim o f ()"

for all x € A. Moreover, letting [ = 0 and m — oo in (2.49), we get (2.48).
The rest of the proof is similar to the proof of Theorem 2.15. a

2.3.2 Isomorphisms in Quasi-Banach Algebras

Assume that A is a quasi-Banach algebra with the quasi-norm || - |4 and the unit
e and B is a p-Banach algebra with the p-norm || - || and the unit ¢’. Let K be the
modulus of concavity of || - | 5.

Now, we consider isomorphisms in quasi-Banach algebras.

Theorem 2.17. Assume thatr > 2 ifng > 1 andthat 0 <r < 1 ifng < 1. Let 0 be
a positive real number and f : A — B be an odd bijective mapping satisfying (2.43)
such that

fxy) = ff ) (2.50)

forall x,y € A. If limy_ o0 (nq)%f( (nq)d) = ¢’ and f(tx) is continuous int € R for
each fixed x € A, then the mapping f : A — B is an isomorphism.

Proof. The condition (2.50) implies that f : A — B satisfies (2.45). By the same
reasoning as in the proof of Theorem 2.15, there exists a unique homomorphism
H : A — B, which is defined by

H(x) := hm(nq)f(( )d)

for all x € A. Thus we have
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HQ) = Hiex) = Jim () () = Jim 00)'F (15 )

= Jim (1)’ (== )/(x) = () = £

(nq)

forall x € A. So the bijective mapping f : A — B is an isomorphism. This completes
the proof. O

Remark 2.18. Assume that 0 < r < 1if ng > 1 and that r > 2 if ng < 1. Let 6 be
a positive real number and f : A — B be an odd bijective mapping satisfying (2.43)
and (2.50). If f(zx) is continuous in ¢ € R for each fixed x € A and

iy )df ((ng)’e) = ¢,

then the mapping f : A — B is an isomorphism.

2.3.3 Stability of Generalized Derivations in Quasi-Banach
Algebras

Assume that A is a p-Banach algebra with the p-norm || - ||4. Let K be the modulus
of concavity of || - ||-

Definition 2.19 ([18]). A generalized derivation § : A — A is R-linear and fulfills
the generalized Leibniz rule:

8(xyz) = 8(xy)z — x6(y)z + x6(yz)

forall x,y,z € A.

Now, we prove the Hyers-Ulam stability of generalized derivations on quasi-
Banach algebras.

Theorem 2.20. Assume that r > 3 ifng > l and that 0 < r < 1 ifng < 1. Let 0
be a positive real number and f : A — A be an odd mapping satisfying (2.43) such
that

If (xyz) —fCey)z + xf ()2 — xf (y2)[|a
< O(lxlly + Iylly + Nzl (2.51)

for all x,y,z € A. If f(tx) is continuous in t € R for each fixed x € A, then there
exists a unique generalized derivation § : A — A such that
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0
IF () =8 lla = —————lIxll; (252)
((ng)r — (nq)?)”

forall x € A.

Proof. By the same reasoning as in the proof of Theorem 2.15, there exists a unique
R-linear mapping § : A — A satisfying (2.52). The mapping § : A — A is defined by

509 1= Jim ()’ (.53
for all x € A. It follows from (2.51) that
[6(xyz) — 8(xy)z + x8(y)z — x8(y2)[la
= Jim (ng)* H’c( ( x;)zw) ((n);y)m) (nZ)d
o () v~ wa (o)

3d
(”w<mu+wm+mm>

m
d—oo (

=0
forall x,y,z € A and so

8(xyz) = 8(xy)z — x8(y)z + x6(yz2)

for all x,y,z € A. Thus the mapping § : A — A is a unique generalized derivation
satisfying (2.52). This completes the proof. |

Theorem 2.21. Assume that 0 < r < 1 ifng > 1 and thatr > 3 if nq < 1. Let
0 be a positive real number and f : A — A be an odd mapping satisfying (2.43)
and (2.51). If f(tx) is continuous in t € R for each fixed x € A, then there exists a
unique generalized derivation § : A — A such that

0
IF () =8 lla = ——————lIxll; (2.53)
((ng)? — (ng)Pr)?

forall x € A.

Proof. By the same reasoning as in the proof of Theorem 2.16, there exists a unique
R-linear mapping § : A — A satisfying (2.53). The mapping § : A — A is defined by

§(x) := lim f((ng)"x)

()“'

forall x € A.
The rest of the proof is similar to the proof of Theorem 2.20. a
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2.4 Stability of Cauchy—Jensen Functional Equations

In this section, we prove the Hyers-Ulam stability of homomorphisms in real Banach
algebras and generalized derivations on real Banach algebras for the following
Cauchy-Jensen functional equations(see also [19, 147, 232]):

F(52 +2) +1(52 +2) =0 + 270
and

(2 +2) =500 +10) + 2 ).

2.4.1 Stability of Homomorphisms in Real Banach Algebras

Assume that A is a real Banach algebra with the norm || - ||4 and B is a real Banach
algebra with the norm || - ||5. For any mapping f : A — B, we define

Iy =152 +2) +1(5 42— - 20

forall x,y,z € A.
Now, we prove the Hyers-Ulam stability of homomorphisms in real Banach
algebras for the functional equation Cf(x, y, z) = 0.

Lemma 2.22. Let X and Y be vector spaces. If a mapping f : X — Y satisfies

f(’% +2) +1(5 + ) =/ + 200, (2.54)
152 +2) (52 +9) =1 (2.55)

or
2(E +2) =100 +70) + U@ (2.56)

forall x,y,z € X, then the mapping f : X — Y is Cauchy additive.
Proof. Letting x = y in (2.54), we get

fx+2) +f) =fx) +2f(2)
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forall x,z € X and so f(x + z) = f(x) + f(z) forall x,z € X. Hence f : X — Y is
Cauchy additive. Letting x = y in (2.55), we get

fx+2) —fz) =f(x)

forall x,z € X and so f(x + z) = f(x) + f(z) forall x,z € X. Hence f : X — Y is
Cauchy additive. Letting x = y in (2.56), we get

2f(x + z) = 2f(x) + 2f(2)

forallx,z € X and so f(x + z) = f(x) + f(z) forallx,z € X. Hencef : X — Y is
Cauchy additive. This completes the proof. |

The mappings f : X — Y given in the statement of Lemma 2.22 are called
Cauchy—-Jensen type additive mappings. Putting z = 0 in (2.56), we get the Jensen
additive mapping 2f(’%) = f(x) + f(y) and, putting x = y in (2.56), we get the
Cauchy additive mapping f(x 4+ z) = f(x) + f(z).

Theorem 2.23. Let f : A — B be a mapping for which there exists a function
¢ : A®> = [0, 00) such that

> %(p(ij, 2y, 27) < oo, (2.57)

J=0

ICf(x.y. 2B < ¢(x,y,2), (2.58)
) =fCF Ds < (. 7, 0) (2.59)

forall x,y,z € A. If there exists L < 1 such that

o(x,x,x) < 2L<,o(f 2

222

for all x € A and f(tx) is continuous in t € R for each fixed x € A, then there exists
a unique homomorphism H : A — B such that

If(x) —H®)z <

S5z 2L<p(x, X, X) (2.60)

forall x € A.

Proof. Consider the set

X:={g:A— B}
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and introduce the generalized metric on X defined by
d(g.h) = inf{C € Ry : [|g(x) —h(¥)[s = Co(x.x,x), Vx € A},

which (X, d) is complete.
Now, we consider the linear mapping J : X — X such that

Jg) = 5520
for all x € A. Note that
d(Jg.Jh) < Ld(g. h)
forall g,h € X. Letting y = z = x in (2.58), we get

If (20) = 2f (D)8 = @(x, x,x) 2.61)

for all x € A and so
1 1
lreo = >r@o] < Setxx
2 B~ 2

for all x € A. Hence d(f,Jf) < % By Theorem 1.3, there exists a mapping
H : A — B such that

(1) H is afixed point of J, i.e.,
H(2x) = 2H(x) (2.62)
for all x € A. The mapping H is a unique fixed point of J in the set
Y={geX:d(f,g) < oo}

This implies that H is a unique mapping satisfying (2.62) such that there exists
C € (0, co) satisfying

[1H(x) —f@)lls = Co(x,x,x)

forallx € A;
(2) d(J"f,H) — 0 as n — oo. This implies the equality

o 2
m
n—oo 2N

= H() (2.63)

forallx € A;
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3) d(f,H) < 1%Ld(f ,Jf), which implies the inequality

d(f,H) < .
¢ )_2—2L

This implies that the inequality (2.60) holds.
It follows from (2.57), (2.58) and (2.63) that

HH(X—;y +z) +H(x;y +z) —H(x)—ZH(z)HB

1
= lim - " e+ y) +2"2) + 2" (k= y) +2"2)
—f(2"x) = 2f(2"2)lls
1
lim —(2"x,2",2")

n—>00 2

=0

IA

for all x,y,z € A and so
Xty x—y
H(T + z) + H(T + z) — H(x) + 2H(2)

forall x,y,z € A. By Lemma 2.22, the mapping H : A — B is Cauchy additive.
By (2.58), the mapping H : A — B is R-linear. It follows from (2.59) that

: 1 n n n
IH(y) = HOHG) |5 = lim 2lf (4"xy) = f2"0f (")l
1
< lim —@(2"x,2"y,0)
n—oc0 41
. 1
< lim —¢(2"x,2"y,0)
n—o00 2N
=0
for all x,y € A and so
H(xy) = H(x)H(y)

for all x,y € A. Thus H : A — B is a homomorphism satisfying (2.60). This

completes the proof. |
Corollary 2.24. Let r < 1, 0 be nonnegative real numbers and f : A — B be a
mapping such that

G ey, s =< OClxlly + [IyIl; + l1zI13) (2.64)
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and

1F Cey) =f@f Dl < OClxlla + 11yI13) (2.65)

forall x,y,z € A. If f(tx) is continuous in t € R for each fixed x € A, then there
exists a unique homomorphism H : A — B such that

(2
1) — H@ls < —0

< sy

forall x € A.
Proof. The proof follows from Theorem 2.23 by taking
p(x.y.2) := O(Ixlly + Iylls + 212

forallx,y,z€e Aand L = 271 We get the desired result. O

Theorem 2.25. Let f : A — B be a mapping for which there exists a function
@ : A3 — [0, 00) satisfying (2.58) and (2.59) such that

o0
20:4;'@(%, % %) < o0 (2.66)

J=

forall x,y,z € A. If there exists L < 1 such that
1
P(x,x,x) < §L¢(2x, 2x, 2x)

for all x € A and f(tx) is continuous in t € R for each fixed x € A, then there exists
a unique homomorphism H : A — B such that

IF @)~ HE = =57

@(x, x, x) (2.67)

forall x € A.

Proof. We consider the linear mapping J : X — X such that

Jg(x) := 2g(§)

for all x € A. It follows from (2.61) that

o -2 (5)] <o(E25) < Lptern
2/ 1B 222 2



2.4 Stability of Cauchy—Jensen Functional Equations 43

for all x € A. Hence d(f,Jf) < % By Theorem 1.3, there exists a mapping
H : A — B such that

(1) H is afixed pointof J, i.e.,
H(2x) = 2H(x) (2.68)
for all x € A. The mapping H is a unique fixed point of J in the set
Y={geX:d({f,g) < oo}

This implies that H is a unique mapping satisfying (2.68) such that there exists
C € (0, co) satisfying

[H(x) —f@)lls = Co(x,x,x)

forallx € A;
(2) d(J'f,H) — 0 as n — oo. This implies the equality

lim 2"f(2x) H(x) (2.69)

forallx € A;
3) d(f,H) < 1%Ld(f ,Jf), which implies the inequality

L
2-2L’

d(f,H) <

which implies that the inequality (2.67) holds.
It follows from (2.58), (2.66) and (2.69) that

15 42) (52 ) o -,

R B X=Y LN (XN <
o nllH}oz f( -+l + Zn) +f(2n+1 + 2”) f(Z") 2f(2”) ‘B
< lim 2"<p(i,1,3)
n—00 n°Qnn
< lim 4"(p(x > Z)
n—00 i 2" 2n
=0

for all x,y,z € A and so

H(x;y +z) +H<)%y +z) — H(x) + 2H(2)
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for all x,y,z € A. By Lemma 2.22, the mapping H : A — B is Cauchy additive.
By (2.58), the mapping H : A — B is R-linear. It follows from (2.59) that

/GGG,

. Xy
< lim 4”@(—,—,0)
n—00 n- on
=0

IH (xy) = HOHQ) s = lim 4"

forall x,y € A and so

H(xy) = H(x)H(y)

for all x,y € A. Thus H : A — B is a homomorphism satisfying (2.67). This
completes the proof. |

Corollary 2.26. Let r > 2, 0 be nonnegative real numbers and f : A — B be a
mapping satisfying (2.64) and (2.65). If f (tx) is continuous in t € R for each fixed
X € A, then there exists a unique homomorphism H : A — B such that

IF@) = @l < 57—

[l

forall x € A.
Proof. The proof follows from Theorem 2.25 by taking

p(x,y,2) := O(|xlly 4 lIvlla + llzl2)

forall x,y,z € Aand L = 2!, O

2.4.2 Stability of Generalized Derivations in Real Banach
Algebras

Assume that A is a real Banach algebra with the norm || - ||4. For any mapping
f 1A — A, we define

D/, 1= 2 (S +2) @ —10) - 2

forall x,y,z € A.
Now, we prove the Hyers-Ulam stability of generalized derivations on real
Banach algebras for the functional equation Df (x, y,z) = 0.



2.4 Stability of Cauchy—Jensen Functional Equations 45

Theorem 2.27. Let f : A — A be a mapping for which there exists a function
¢ 1 A3 — [0, 00) satisfying (2.57) such that

IDf(x,y,2)|la < ¢(x,y,2) (2.70)

and

If (cyz) —f )z + xf ()2 — xf (v2)lla < @(x,y,2) (2.71)

forall x,y,z € A. If there exists L < 1 such that

( )<2L (.x X X)
X, X, X P i
4 =2\2 22

forall x € A and f(tx) is continuous in t € R for each fixed x € A, then there exists
a unique generalized derivation § : A — A such that

If () = 8()lla <

< TP r) 2.72)

forall x € A.

Proof. Consider the set
X:={g:A—>A}
and introduce the generalized metric on X defined by
d(g.h) = inf{C € Ry : [[g(x) = h(¥)[la = Co(x.x,x), Vx € A},

which (X, d) is complete.
Now, we consider the linear mapping J : X — X such that

Jg(x) 1= %g(ZX)
for all x € A. Now, we have
d(Jg.Jh) < Ld(g. h)
forall g, h € X. Letting y = z = x in (2.70), we get
12 (2%) — 4f (D) [la = @(x, x. %) (2.73)

for all x € A and so
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i - 3700)] < Jotex

forall x € A. Hence d(f, Jf) < %. By Theorem 1.3, there exists a mapping§ : A — A
such that

(1) & is a fixed point of J, i.e.,
8(2x) = 26(x) (2.74)
for all x € A. The mapping § is a unique fixed point of J in the set
Y={geX:d(f,g) < oo}

This implies that § is a unique mapping satisfying (2.74) such that there exists
C € (0, co) satisfying

[6(x) —f () lla = Colx, x,x)

forallx € A;
(2) d(J"f,8) — 0asn — oo. This implies the equality

lim ﬂ = §(x) (2.75)

n—oo 2
forallx € A;
3) d(f,d) < ﬁd(f, Jf), which implies the inequality

1
d(f,8) < .
V9 = 7=21

This implies that the inequality (2.72) holds.
It follows from (2.57), (2.70) and (2.75) that

Hza(x er Y 4 2) = 80 — 50) — 25(2) HA

: 1 n— n n n n
= nll)ngo§||2f(2 "+ ) 4 2"2) —f(2"%) = f(2") — 2 (2"2) |l
1
< lim —@(2"x,2"y,2"7)
n—o0 N
=0

for all x,y,z € A and so
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25(’% +2) =50 +80) +25(2)

for all x,y,z € A. By Lemma 2.22, the mapping § : A — A is Cauchy additive.
By (2.71), the mapping § : A — A is R-linear. It follows from (2.71) that

6 (xyz) — 8(xy)z + x8(y)z — x8(y2) [l

1
= lim ool (8xy0) —f(4'xy) - 2"z + 2'af (2) - 22 = 2" (4"32)

IA

1
lim —@(2"x,2"y,2"7)
n—o0 8N

1
< lim —@(2"x,2"y,2"7)

n—o00 2N
=0

for all x,y,z € A and so

8(xyz) = 8(xy)z — x6(y)z + x6(yz)

forall x,y,z € A. Thus § : A — A is a generalized derivation satisfying (2.72).
This completes the proof. O

Corollary 2.28. Let r < 1, 0 be nonnegative real numbers and f : A — A be a
mapping such that

IDFCGey. Dla < 0+ Ixlf - Iyl - 1zl13 (2.76)
and
F(2) — F )z + 5 5)z — (32 1a 2.77)

5 5 5
<0 llxll - MIyllx - Nzlla

forall x,y,z € A. If f(tx) is continuous in t € R for each fixed x € A, then there
exists a unique generalized derivation § : A — A such that

0
@) = 8@l < 57— el

forall x € A.
Proof. The proof follows from Theorem 2.27 by taking

e y.2) =0 Ilxl - lIyllg - Nzl 3

forallx,y,z€Aand L = 2"~", O



48 2 Stability of Functional Equations in Banach Algebras

Theorem 2.29. Let f : A — A be a mapping for which there exists a function
@ 1 A3 — [0, 00) satisfying (2.70) and (2.71) such that

o0
ZSj(p(%, % %) <0 (2.78)

j=0

forall x,y,z € A. If there exists L < 1 such that
1
o(x, x,x) < ELgo(Zx, 2x, 2x)

forall x € A and f(tx) is continuous in t € R for each fixed x € A, then there exists
a unique generalized derivation § : A — A such that

IF@ =8l = 7=

o(x, x,x) (2.79)
forall x € A.
Proof. We consider the linear mapping J : X — X such that
I8 = 2(3)
for all x € A. It follows from (2.73) that

-], = 2359 < oo

for all x € A. Hence d(f, Jf) < %. By Theorem 1.3, there exists a mapping § : A —

A such that
(1) & is a fixed point of J, i.e.,

8(2x) = 26(x) (2.80)
for all x € A. The mapping § is a unique fixed point of J in the set
Y={geX:d(f,g) < oo}

This implies that § is a unique mapping satisfying (2.80) such that there exists
C € (0, co) satisfying

[6() —=f(X)la = Co(x, x,x)

forallx € A;
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(2) d(J"f,8) — 0asn — oo. This implies the equality

lim 2”f( ) = 8(x) (2.81)

n—>o00

forallx € A;
3) d(f,d) < ﬁd(f, Jf), which implies the inequality

L

d(f,8) < ,
V9 =31

which implies that the inequality (2.79) holds.
It follows from (2.70), (2.78) and (2.81) that

J25( ﬂﬂ) 5~ 50) ~25(2)
= Jim 2727 (xzily +30)~1(5) ~1(5) -2 (5],
< ngI&Z"w(— = ;)
< lim 8'(5 3050
=0

for all x,y,z € A and so

zs(x Ty 2) = 8 + 80) + 28(2)

for all x,y,z € A. By Lemma 2.22, the mapping § : A — A is Cauchy additive.
It is straight forward to show that the mapping § : A — A is R-linear. It follows
from (2.71) that

18Ceyz) — 8(xy)z + x8(3)z — x8(y2) |
() (2) 5+ 525 - ()

< lim 8'p(=.. 2. 2)
n—00 2n 2n 2)1

=0

= lim §"
n—>00

,

for all x,y,z € A and so

8(xyz) = 8(xy)z — x8(y)z + x6(yz2)

forall x,y,z € A. Thus § : A — A is a generalized derivation satisfying (2.80).
This completes the proof. |
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Corollary 2.30. Let r > 3, 0 be nonnegative real numbers andf : A — A be a
mapping satisfying (2.76) and (2.77). If f(tx) is continuous in t € R for each fixed
X € A, then there exists a unique generalized derivation § : A — A such that

0
@) = 6@l = 57— Ila

forall x € A.
Proof. The proof follows from Theorem 2.29 by taking

e y.2) =0 Ilxl - lIyllg - Nzl 3

forall x,y,z € Aand L = 2!, O



Chapter 3
Stability of Functional Equations in C*-Algebras

In this chapter, we study the stability of some important functional equations in
x-algebras by using both the direct and fixed point methods.

In Sect. 3.1, we consider the linear bijection 4 : A — B of a unital C*-algebra
A onto a unital C*-algebra B and show that it is a C*-algebra isomorphism when
h(3"uy) = h(3"u)h(y) for all unitaries u € A,y € A and n € Z by the Ulam method.

In Sect. 3.2, we introduce a new functional equation, which is called the Apollo-
nius type additive functional equation, and a solution of the functional equation is
called the Apollonius type additive mapping:

Lz—x)+Lz—y) = ——L(x +y) + 2L(z — %)

Also, we investigate homomorphisms and derivations in C*-algebras associated
with the Apollonius type additive functional equation, homomorphisms and deriva-
tions on Lie C*-algebras associated with the Apollonius type additive functional
equation. Finally, we study homomorphisms and derivations on JC*-algebras
associated with the Apollonius type additive functional equation.

In Sect.3.3, by using the fixed point method, we prove the Hyers-Ulam sta-
bility of homomorphisms in C*-algebras and Lie C*-algebras and derivations on
C*-algebras and Lie C*-algebras for the following Jensen type functional equation

1(52) +1(52) =re.

In Sect. 3.4, we introduce the following additive functional equation :

Xn:f(% Z rixi—%rjxj) er(x,) —nf( Zr,xl),
j=1

1<i<n,i#j i=1

© Springer International Publishing Switzerland 2015 51
Y.J. Cho et al., Stability of Functional Equations in Banach
Algebras, DOI 10.1007/978-3-319-18708-2_3



52 3 Stability of Functional Equations in C*-Algebras

where ry, -, r, € R. Using the fixed point method, we investigate the Hyers-Ulam
stability of the above functional equation in Banach modules over a C*-algebra.
These results are applied to investigate C*-algebra homomorphisms in unital
C*-algebras.

In Sect. 3.5, we show that, if an odd mapping f : X — Y satisfies the functional
equation:

UC(Z?:M/)JF )3 UC(Z?:K—U‘U)X/)
' tj) =0,1 '
Zﬁ:l‘(l‘) =1

d
= (-1Cr—g-1C—1 + 1) Zf(xj),

J=1

then the odd mapping f : X — Y is additive. Also, we prove the Hyers-Ulam
stability of the above functional equation in Banach modules over a unital C*-
algebra. As an application, we show that every almost linear bijection 2 : A — B of
a unital C*-algebra A onto a unital C*-algebra B is a C*-algebra isomorphism when
h(f—:uy) = h(f—:u)h(y) for all unitariesu € A,y € Aandn € N,

In Sect. 3.6, we investigate the Hyers-Ulam stability of Jordan *-derivations and f
quadratic Jordan *-derivations on real C*-algebras and real JC*-algebras. Also, we
prove the superstability of Jordan *-derivations and quadratic Jordan *-derivations
on real C*-algebras and real JC*-algebras under some conditions.

In Sect. 3.7, we investigate the Hyers-Ulam stability of («, 8, y)-derivations on
Lie C*-algebras associated with the following functional equation:

7 (x2 —x1> +f (x1 - 3x3) +f (3x1 + 3x3 —xz) — ).

3 3 3

In Sects. 3.8 and 3.9, we introduce a square root functional equation and a 3rd
root functional equation. By using both the fixed point method and direct method,
we prove the Hyers-Ulam stability of the square root functional equation and of the
3rd root functional equation in C*-algebras.

In Sect. 3.10, we introduce the following functional equation:

T ((x# +y#)m) = (T(x)i + T(y)#)m

for all x,y € A" and a fixed integer m greater than 1, which is called a positive-
additive functional equation. Using the fixed point and direct methods, we prove
the stability of the positive-additive functional equation in C*-algebras.

Finally, in Sect.3.11, we show that every almost unital almost linear mapping
f : A — B of JC*-algebra A to a JC*-algebra B is a homomorphism when
f(R"uoy) = f(2"u) of (y) for all unitaries u € A, y € A and n > 0 and every almost
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unital almost linear continuous mapping f : A — B of a JC*-algebra A of real rank
zero to a JC*-algebra B is a homomorphism when f(2"u o y) = f(2"u) o f(y) for all
uef{ved:v=ov*|v| =1, visinvertible}, y € A and n > 0. Furthermore, we
prove the Hyers-Ulam stability of *x-homomorphisms in JC*-algebras and C-linear
x-derivations on JC*-algebras.

3.1 Isomorphisms in Unital C*-Algebras

It is shown that every almost linear bijection 2 : A — B of a unital C*-algebra A
onto a unital C*-algebra B is a C*-algebra isomorphism when 2(3"uy) = h(3"u)h(y)
for all unitaries u € A,y € A, n € Z and an almost linear continuous bijection
h: A — B of aunital C*-algebra A of real rank zero onto a unital C*-algebra B is a
C*-algebra isomorphism when i(3"uy) = h(3"u)h(y) forallu € {v € A | v = v*,
|lv]] = 1, v is invertible}, y € A and n € Z.

Assume that X and Y are left normed modules over a unital C*-algebra A. It is
shown that every surjective isometry 7 : X — Y satisfying 7(0) = 0 and T'(ux) =
uT(x) for all x € X and unitaries u € A is an A-linear isomorphism. This is applied
to investigate C*-algebra isomorphisms in unital C*-algebras.

Let X and Y be Banach spaces with the norms | - || and || - ||, respectively.
Consider a mapping f : X — Y such that f(¢x) is continuous in ¢ € R for each fixed
x € X. Th. M. Rassias [267] introduced the following inequality, which is called the
Cauchy-Rassias inequality. Assume that there exist constants 8 > 0 and p € [0, 1)
such that

If x4+ ) =) =fO < O + 1yII7)

for all x,y € X. Th. M. Rassias [267] showed that there exists a unique R-linear
mapping 7 : X — Y such that

IF () =T =

4
;I
forall x € X. The above inequality has provided a lot of influence in the development
of what we now call the Hyers—Ulam stability of functional equations. Beginning
around the year 1980 the topic of approximate homomorphisms or the stability
of the equation of homomorphism was studied by a number of mathematicians.
In [145], Jun and Lee proved the following:

Denote by ¢ : X x X — [0, 00) a function such that

o0

P(x,y) = Z %(p(?r/x, 3y) < 00

j=
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for all x, y € X. Suppose thatf : X — Y is a mapping satisfying f(0) = 0 and

[ 100 =100 = 0

for all x, y € X. Then there exists a unique additive mapping 7 : X — Y such that

1
) = T@)| = 3 (@(x. —x) + ¢(—x. 3x))

for all x € X. In [242], Park and Park applied Jun and Lee’s result to Jensen’s
equation in Banach modules over a C*-algebra.

Throughout this section, let A be a unital C*-algebra with the norm || - || and
the unit e and B be a unital C*-algebra with the norm || - ||. Let U(A) be the set
of unitary elements in A, Ay, = {x € A | x = x*} and [;(A;,) = {v € Ay |
|lv]| = 1, v is invertible}.

We prove that every almost linear bijection 7 : A — B is a C*-algebra
isomorphism when h(3"uy) = h(3"u)h(y) for all u € U(A),y € A, n € Z and,
for a unital C*-algebra A of real rank zero, every almost linear continuous bijection
h : A — B is a C*-algebra isomorphism when h(3"uy) = h(3"u)h(y) for all
u € I(Ay),y € A and n € Z. Also, we prove that every surjective isometry
satisfying some conditions is a C*-algebra isomorphism.

3.1.1 C*-Algebra Isomorphisms in Unital C*-Algebras

Now, we investigate C*-algebra isomorphisms in unital C*-algebras.

Theorem 3.1. Let h : A — B be a bijective mapping satisfying h(0) = 0 and
h(3"uy) = h(3"u)h(y) for allu € U(A), y € A and n € Z, for which there exists a
function ¢ : A x A — [0, 00) such that

o0

1 S
o(x,y) = Z §<p(3’x, 3y) < oo, 3.1)
j=0
[2n(B ) — o = )| = o), (32)
A3 "u™) — h(3"w)*|| < @(3"u,3"u) (3.3)

forallpeS' :={LeC:|A| =1} uec U), neZandx,y € A. Assume that

. h(3"%)
lim

n—oo 3N

(3.4)

is invertible. Then the bijective mapping h : A — B is a C*-algebra isomorphism.
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Proof. Put 1 = 1 € S'. By direct method there exists a unique additive mapping
H : A — B such that

1 -
[7(x) = HX)|| < g(w(x, —x) + ¢(—x, 3x)) (3.5)
for all x € A. The additive mapping H : A — B is given by
o1
H(x) = lim —h(3"x)
n—o00 3N

for all x € A. By the assumption, for each u € st

1

3)1

3 1
2h( 2“ x) — h(3"x) H < 50(3"x.0).

which tends to zero as n — oo for all x € A. Hence we have

h n
2H(“2x)=nn 214 = lim “(“) WH(x)

—00 3” n—00

forall 4 € S' and x € A. Since H : A — B is additive,

H(ux) = ZH(%) = pH(®x) (3.6)

forall u € S' and x € A.
Now, let A € C (A # 0) and M be an integer greater than 4|1|. Then we have

<-<l—-===

‘ A 1 2 1
M 4 3 3

By Kadison and Pedersen [167], there exist three elements (i, (s, w3 € S' such
that 3% = W1 + M2 + us3. So, by (3.6), we have

H(Ax) = H(%/I : 3%x) - M-H(% : 3%x) - A;H(S%x)

M M
= ?H(MX + Hox + p3x) = ?(H(Mlx) + H(pox) + H(psx))

M M A
== H(x) = —-3-H
3 (1 + p2 + p3)H(x) 3y (x)

= AH(x)
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for all x € A. Hence we have

H(¢x +ny) = H(x) + H(ny) = CH(x) + nH(y)

forallZ,n € C (¢,n # 0) and x,y € A and H(0x) = 0 = 0H(x) for all x € A. Thus
the unique additive mapping H : A — B is a C-linear mapping. By (3.1) and (3.3),
we get

W@ _ L hGw)”

ST
H(M ) o nllzgo 3n n—00 3n
. h(3"u)\* *

= (Jim, =57) =0

for all u € U(A). Since H is C-linear and each x € A is a finite linear combination
of unitary elements (see [168]), i.e., x = 3., Aju; for all ;; € C and u; € U(A),
we have ‘

HE) = H(;Tjuf) = D TH) = 3 A HG

N (ZA"H(”J')) =n O~ Au)* = H(x)*
= =1

for all x € A. Since h(3"uy) = h(3"u)h(y) for all u € U(A),y € Aand n € Z,
we have

H) = lim 3 h(3"w) = lm S hGWAY) = H@h) ()
forall u € U(A) and y € A. By the additivity of H and (3.7), we have
3"H(uy) = H(3"uy) = H(u(3"y)) = H(u)h(3"y)
forall u € U(A) and y € A. Hence it follows that
Hiw) = 3, H@hG'Y) = H 3 h(3) (8)
forallu € U(A) and y € A. Taking n — oo in (3.8), we obtain
H(uy) = H(u)H(y) (3.9)
forall u € U(A) and y € A. Since H is C-linear and each x € A is a finite linear

combination of unitary elements, i.e., x = ij=1 Ajuj forall A; € C and u; € U(A),
it follows from (3.9) that
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H(xy) =H ( > /WJY) =Y NHwy) =y LHu)H()
=1

J=1 J=1

= H( ) Aw)HG) = HOHE)
j=1
forall x,y € A. By (3.7) and (3.9), we have
H(e)H(y) = H(ey) = H(e)h(y)

h(3"e)

forall y € A. Since lim, o0 =57~ = H(e) is invertible,

H(y) = h(y)
for all y € A. Therefore, the bijective mapping » : A — B is a C*-algebra
isomorphism. This completes the proof. |

Corollary 3.2. Let h : A — B be a bijective mapping satisfying h(0) = 0 and
h(3"uy) = h(3"u)h(y) for allu € UA), y € A and n € Z, for which there exist
constants 0 > 0 and p € [0, 1) such that

|2n(E) = ) — )| = 00117 + 1)

and

|h(3"u*) — h(3"u)*|| < 2-3™6
or a € S ue . n € Zandx,y € A Assume that lim,_,e "5 s
forall p € S U(A) Z and x,y € A. A hat i Be)
invertible. Then the bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. Defining

p(x.y) = O(x]” + lIyl")
(Rassias upper bound in the Cauchy-Rassias inequality) and applying Theorem 3.1,
we get the desired result. O

Theorem 3.3. Let h : A — B be a bijective mapping satisfying h(0) = 0 and
h(3"uy) = h(3"u)h(y) for allu € U(A), y € A and n € Z, for which there exists a
function ¢ : A x A — [0, 00) satisfying (3.1), (3.3) and (3.4) such that

2n(B2) — i) = )| = o) (3.10)

for w = 1,iandx,y € A. If h(tx) is continuous in t € R for each fixed x € A, then
the bijective mapping h : A — B is a C*-algebra isomorphism.
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Proof. Put u = 1in(3.10). Then, there exists a unique additive mapping H : A — B
satisfying (3.5). Also, by (3.10), the additive mapping H : A — B is R-linear.

Put 4 = iand y = 0 in (3.10). By the same method as in the proof of
Theorem 3.1, one can obtain that

' 2h(kx ih(3"
H = 20( ) = tim 212D _ gy G
2 n—

oo 3n n—00 n

= iH(x)

forall x € A. Foreach A € C,let A = s + it for all 5,¢ € R. So, we have

H(Ax) = H(sx + itx) = sH(x) + tH(ix) = sH(x) + itH(x)
= (s+ i)H(x) = AH(x)

forall A € C and x € A. Thus we have

H(¢x +ny) = H(x) + H(ny) = CH(x) + nH(y)

forall ¢, n € C and x,y € A. Hence the additive mapping H : A — B is C-linear.
The rest of the proof is the same as in the proof of Theorem 3.1. This completes
the proof. |

From now on, assume that A is a unital C*-algebra of real rank zero, where “real
rank zero” means that the set of invertible self-adjoint elements is dense in the set
of self-adjoint elements (see [54]).

Now, we investigate continuous C*-algebra isomorphisms in unital C*-algebras.

Theorem 3.4. Let h : A — B be a continuous bijective mapping satisfying
h(0) = 0 and h(3"uy) = h(3"u)h(y) for all u € 1,(As), y € A and n € Z, for which
there exists a function ¢ : A x A — [0, 00) satisfying (3.1), (3.2), (3.3) and (3.4).
Then the bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. 1t is straight forward to show that, there exists a unique C-linear involution
H : A — B satistying (3.5). Since 2(3"uy) = h(3"u)h(y) forall u € ,(Asa),y €A
and n € Z, we have

1 1
H(uy) = lim —h3"uy) = lim —h(3"u)h(y) = H(u)h(y) (3.11)
n—o00 3N n—o00 37
forall u € I1(Ay,) and y € A. By the additivity of H and (3.11), we have

3"H(uy) = H(3"uy) = H(u(3"y)) = H(u)h(3"y)
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forall u € I (Ay,) and y € A. Hence we have
Hlu) = 3, H@AG') = H) 3 h(3) (.12
forall u € I;(Ay,) and y € A. Taking n — oo in (3.12), we obtain
H(uy) = H(u)H(y) (3.13)
forall u € I1(Ay,) and y € A. By (3.11) and (3.13), we have

H(e)H(y) = H(ey) = H(e)h(y)

h(3"e)

5 =H (e) is invertible,

for all y € A. Since lim,— o

H(y) = h(y)

forally € A. So H : A — B is continuous. But, by the assumption that A has real
rank zero, it is easy to show that I;(A,) is dense in {x € Ay, : ||x|| = 1}. Thus, for
each w € {z € Ay, : ||z]| = 13}, there exists a sequence {«;} such that x; — w as
Jj— ooandk; € I1(Ay,). Since H : A — B is continuous, it follows from (3.13) that

H(wy) = H(lim 1Gy) = lim H(qy) = lim H()H(y)

= H(lim 5)H(y) = Hn)H() (3.14)

forallw € {z€ Ay : ||z] = 1} andy € A. Foreachx € A, x = ’#
xtx*
2

X = and x; 1= adjoint.
First, consider the case that x; # 0 and x, # 0. Since H : A — B is C-linear, it
follows from (3.14) that
H(xy) = H(x1y + ixzy)
el =y + il —2y)
H(blgg ol

= IxliH (|| a )+ el (II N )

= Il (o ) HO) + el (72 ) HO)

= {r (s l”m) iH (Jlx 2||H)}H(y)

= H(x; + ix2)H(y) = H(x)H(y)

forally € A.
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Next, consider the case that x; # 0,x; = 0. Since H : A — B is C-linear, it
follows from (3.14) that

X1 X1
Heo) = Hew) = H(Jlull ) = I lH ()
X1

X1
= bl () HO) = H(lall o ) HO)
= HeH() = HOH()

forally € A.
Finally, consider the case that x; = 0,x, # 0. Since H : A — B is C-linear, it
follows from (3.14) that

. . X2 . X2
H(xy) = H(ixyy) = H(z||x2||my) = l||x2||H(my)
X2
(B

= H(ix)H(y) = H(x)H(y)

= il H H) = H(ilxl =) H()
(7o) (el

for all y € A. Hence
H(xy) = Hx)H(y)

for all x,y € A. Therefore, the bijective mapping # : A — B is a C*-algebra
isomorphism. This completes the proof. O

Corollary 3.5. Let h: A — B be a continuous bijective mapping satisfying h(0) =
0 and h(3"uy) = h(3"u)h(y) for all u € 1,(Asa), y € A and n € Z, for which there
exist constants 0 > 0 and p € [0, 1) such that

2n() = ) = | = 0117 + 1)
and

|h(3"u*) — h(3"u)*| < 2-3"6
orall w € S, u € II(Ay), n € Z and x,y € A. Assume that lim,— s &:e) is
fe 2 y 3
invertible. Then the bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. Defining

p(x.y) = O([lxl” + lIyl”)

(Rassias upper bound in the Cauchy-Rassias inequality) and applying Theorem 3.4,
we get the desired result. |
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Remark 3.6. If h : A — B is a continuous bijective mapping satisfying 42(0) = 0
and A(3"uy) = h(3"u)h(y) for all u € I,(Asx), y € A and n € Z, for which there
exists a function ¢ : A x A — [0, 00) satisfying (3.1), (3.3), (3.4) and (3.10). Then
the bijective mapping & : A — B is a C*-algebra isomorphism.

3.1.2 On the Mazur-Ulam Theorem in Modules over
C*-Algebras

Now, we prove the Mazur-Ulam theorem in modules over C*-algebras.

Lemma 3.7 ([114]). If T is an isometry from a normed vector space X onto a
normed vector space Y, then

Tx+y)=Tkx) +T()—T()
and
T(rx) =rT(x) + (1 —r)T(0)

forallr € R.

Corollary 3.8 ([114]). If T is an isometry from a normed vector space X onto a
normed vector space Y and T(0) = O, then T is R-linear.

Theorem 3.9. Let X and Y be left normed modules over a unital C*-algebra A. If
T : X — Y is a surjective isometry with T(0) = 0 and T(ux) = uT(x) for all
ue U(A)andx € X, then T : X — Y is an A-linear isomorphism.

Proof. By Corollary 3.8, T : X — Y is R-linear. Since i € U(A), T(ix) = iT(x) for
allx € X. ForeachA € C, A = A; + i, forall A;, A, € R. Thus we have
T(Ax) = T(Aix 4+ idy x) = T(A1x) + T Ay x)
= MT(x) + iT(Arx) = (A1 + iA)T(x)
= AT(x)

for all x € X. Since each a € A is a finite linear combination of unitary elements,
ie,a= 3, Auforall ; € Candu; € U(A),

T(ax) = T( znjx,-u,-x) - zn:)LjT(uix) - Z AuT(x) = aT(x)
j=1 j=1

j=1
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for all x € X and so
T(ax + by) = T(ax) + T(by) = aT(x) + bT(y)

forall a,b € A and x,y € X. This completes the proof. O
Now, we investigate C*-algebra isomorphisms in unital C*-algebras.

Theorem 3.10. If T : A — B is a surjective isometry with T(0) = 0, T(iu) =
iT(u), T(u*) = T(w)* and T(uv) = T(w)T(v) for allu,v € U(A), thenT : A — B
is a C*-algebra isomorphism.

Proof. 1t is straight forward to show that, T : A — B is R-linear and
T(Au) = AT(u)

forall A € C and u € U(A). Since each a € A is a finite linear combination of
unitary elements, i.e.,a = Y7, Aju; forall A; € C and u; € U(A), we have

T(Aa) = T(anuju,) - iu,r(uj) - x(iA,T(u,-))
j=1 j=1

j=1

=1 ( anxju,) = AT(a)

Jj=1

forallA € Canda € A. Thus T : A — B is C-linear. Furthermore, we have

T(a") = T(FZIJT,-@;‘) = ;ET(u;) = ;)TJT(”J')*

_ T(zn:xjuj)* — T(a)*
=1

forall a € A and

T(av) = T( Y Awv) = D AT wv) = Y 4T w)T()
=1

j=1 j=1

- T( Z A,-u,-) T(v) = T(a)T(v)

j=1

foralla € A and v € U(A). Since each b € A is a finite linear combination of
unitary elements, i.e., b = Z;":l v;v; for all v; € C and v; € U(A), we have
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T(ab) = T( 3 ujavj) =3 yT(avy) =Y vT@T (W)

j=1 j=1 j=1

= T(a)T(Xm: vjvj) = T(a)T(b)

j=1

forall a,b € Aandso T : A — B is multiplicative. Therefore, T : A — Bisa
C*-algebra isomorphism. This completes the proof. |

3.2 Apollonius Type Additive Functional Equations

In an inner product space, the following equality:
1 x+ y 2
Iz =xI? 4+ Iz =1 = Sl =12 + 2]z - 52|

holds, which is called the Apollonius’ identity. The following functional equation,
which was motivated by this equation,

1
06—+ 06—y = 506y +20(: - 27) (3.15)

is quadratic. For this reason, the function equation (3.15) is called a quadratic
functional equation of Apollonius type and each solution of the functional equa-
tion (3.15) is called a quadratic mapping of Apollonius type. In [144], Jun and Kim
investigated the quadratic functional equation of Apollonius type.

In this section, modifying the above equality (3.15), we consider a new functional
equation, which is called the Apollonius type additive functional equation and whose
solution of the functional equation is said to be the Apollonius type additive mapping
[209]:

Lz—x)+Lz—y) = ——L(x +y) + 2L(z - %)

n [126], Gilanyi showed that, if f has it’s values in an inner product space and
satisfies the functional inequality:

12 () 4+ 2f () — FEy DI < IIF )|l (3.16)

then f satisfies the Jordan—von Neumann functional inequality

2f(0) + 2/ () = f () +f 7).
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In [113] and [127], Fechner and Gildnyi proved the stability of the functional
inequality (3.16), respectively. In [253], Park et al. proved the stability of functional
inequalities associated with Jordan—von Neumann type additive functional equa-
tions.

In 1932, Jordan observed that £(#) is a (non-associative) algebra via the
anticommutator product x oy 1= ’# A commutative algebra X with the product
x o yis called a Jordan algebra. A Jordan C*-subalgebra of a C*-algebra endowed
with the anti-commutator product is called a JC*-algebra. A C*-algebra C endowed
with the Lie product [x, y] = 25 on C is called a Lie C*-algebra.

In this section, we investigate homomorphisms and derivations in C*-algebras
associated with the Apollonius type additive functional equation. Also, we inves-
tigate homomorphisms and derivations on Lie C*-algebras associated with the
Apollonius type additive functional equation.

Finally, we investigate homomorphisms and derivations on JC*-algebras associ-

ated with the Apollonius type additive functional equation.

3.2.1 Homomorphisms and Derivations on C*-Algebras

Now, we study homomorphisms and derivations on C*-algebras.

Theorem 3.11. Let A be a uniquely 2-divisible Abelian group and B be a normed
linear space. A mapping f : A — B satisfies the following:

lre—v+re—n+ g <|r--52)] @

forall x,y,z € Aifand only if f : A — B is additive.
Proof. Lettingx =y =z =01n(3.17), we get
5
S @lls = 21£(0)ll5
and so f(0) = 0. Letting z = 0 and y = —x in (3.17), we get

If (=x) + /s < 2[lf (0) ]|l =0

for all x € A and hence f(—x) = —f(x) for all x € A. Lettingx = y = 2zin (3.17),
we get

1
212+ 3760 < I2r©)ln =0
for all z € A and hence

f(42) = —4f(—2) = 4/ (2)
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forall z € A. Letting z = ¥ in (3.17), we get

(52) +(05%) + ], = rom =0

for all x,y € A and so

—3x+y x—3y 1 _
£ y ) +7( y )+ S/ +) =0 (3.18)
forall x,y € A. Let wy = # and w, = x_fy in (3.18). Then we have
1 1 wi +w
FO01) +f002) = == (=21 = 2wa) = 2f @y + 2m5) = 2f ()

for all w;, w, € A and so f is additive.
It is clear that each additive mapping satisfies the inequality (3.17). This
completes the proof. O

Now, we investigate C*-algebra homomorphisms between C*-algebras and
linear derivations on C*-algebras associated with the Apollonius type additive
functional equation. From now on, assume that A is a C*-algebra with the norm
| - la and B is a C*-algebra with the norm || - ||.

Lemma 3.12. Letf : A — B be an additive mapping such that f (ux) = uf(x) for
allx € Aand u € T' = {A € C : |A| = 1}. Then the mapping f is C-linear.

Proof. Let A € C (A # 0) and M an integer greater than 4|A|.

Then we have [£]| < 1 < 1 —2 = 1 By Theorem 1 of [54], there exist three

elements 11, /12, 3 € T! such that 3% =1 + M2+ p3. And f(x) =3 - %x) =
3f(%x) forall x € A and sof(%x) = %f(x) for all x € A. Thus

M _A 1 _A M, /A
1000 =15 357) =m-1(5355%) = /039
= TG i+ i) = G0 + (12 +f(30)

A
= T w4 )0 = 53
= A (%)
for all x € A. Hence we have
F@Cx+ny) =f(Cx) +f(ny) = {fx) + nf ()

forall &,n € C (¢,n # 0) and all x,y € A. And f(0x) = 0 = Of (x) for all x € A.
So the additive mapping f : A — B is a C-linear mapping. This completes the
proof. O
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Theorem 3.13. Let r > 1, 6 be nonnegative real numbers and f : A — B be a
mapping such that

1
lre—mo+we—n+sa+n| < lre-22 69
1) = F@F Ol = 0l - Il (320
") = 1" s < 201l (21

forallp € TV := {A € C:|A| = 1} and x,y,z € A. Then the mappingf : A — B
is a C*-algebra homomorphism.

Proof. Let u = 11in (3.19). By Theorem 3.11, the mapping f : A — B is additive.
Lettingy = —x and z = 0 in (3.19), we get

If (=px) + uf () l|s < 127 (0) ]|z = O
forallx € A and € T! and so
—f(px) + pf ) = f(—px) + puf(x) =0

for all x € A and pu € T!. Hence f(ux) = uf(x) forall x € A and u € T'. So, the
mapping f : A — B is C-linear. It follows from (3.20) that

1(53) G G)

lell - My It

f Gey) =ff Wl = lim_ 4"

n

,

< lim
n—>oo0 41

=0

for all x,y € A and so

Fy) = f@f ()

for all x,y € A. It follows from (3.21) that

lF&™) =)l = lim 2" V(;—:) ~1(5)

n+1
1 r
< nhm ——|lxIl’s

B

=0
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for all x € A and so

f6) =f)*
for all x € A. Therefore, the mapping f : A — B is a C*-algebra homomorphism.
This completes the proof. O

Remark 3.14. Let r < 1, 6 be positive real numbers and f : A — B be a mapping
satisfying (3.19), (3.20) and (3.21). Then the mapping f : A — B is a C*-algebra
homomorphism.

Theorem 3.15. Let r > 1, 6 be nonnegative real numbers and f : A — A be a

mapping satisfying (3.21) such that

If Cey) = f )y = () la = 0 - [Ixll - IyIl5 (3.22)

forall x,y € A. Then the mapping f : A — A is a linear derivation.

Proof. By applying Lemma 3.12, the mapping f : A — A is C-linear. It follows
from (3.22) that

If (29) = f @)y = 3)|la = lim 4" f(;‘_y) - f(zi)zl _ zif( 21 ) HA
< lim Tl 1ol
=0

forall x,y € A and so

fy) = f@)y +xf ()

for all x,y € A. Thus the mapping f : A — A is a linear derivation. This completes
the proof. O

Remark 3.16. Let r < 1, 6 be positive real numbers and f : A — A be a mapping
satisfying (3.19) and (3.22). Then the mapping f : A — A is a linear derivation.

3.2.2 Homomorphisms and Derivations in Lie C*-Algebras

Assume that A is a Lie C*-algebra with the norm | - |4 and B is a Lie C*-algebra
with the norm || - ||5.

We recall that a C-linear mapping H : A — B is called a Lie C*-algebra
homomorphism if H : A — B satisfies the following:

H([x,y]) = [H(x). H(y)]
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for all x,y € A. A C-linear mapping D : A — A is called a Lie derivation if
D : A — A satisfies the following:

D([x.y]) = [D().y] + [x. D(y)]

forallx,y € A.

Now, we investigate Lie C*-algebra homomorphisms in Lie C*-algebras and
Lie derivations on Lie C*-algebras associated with the Apollonius type additive
functional equation.

Theorem 3.17. Let r > 1, 6 be nonnegative real numbers and f : A — B be a
mapping satisfying (3.19) such that

I (e yD) = [F). SOl < 0 - [lxl - [1yIlx (3.23)

forall x,y € A. Then the mapping f : A — B is a Lie C*-algebra homomorphism.

Proof. 1t is straight forward to show that, the mapping f : A — B is C-linear. It

follows from (3.23) that
Ge) -G,

lell - My It

lim 4"
n—00

o) - 001

n

IA

lim
n—o0 41

=0
for all x,y € A and so

F(ey) = [F@).f )]

for all x,y € A. Hence the mapping f : A — B is a Lie C*-algebra homomorphism.
This completes the proof. O

Remark 3.18. If r < 1, 0 is positive real numbers and f : A — B be a mapping
satisfying (3.19) and (3.23). Then the mapping f : A — B is a Lie C*-algebra
homomorphism.

Theorem 3.19. Let r > 1, 6 be nonnegative real numbers and f : A — A be a
mapping satisfying (3.19) such that

I (e, D) = [F(). 3] = Be. fO)lla = 6 - (1l - [y Il (3.24)

forall x,y € A. Then the mapping f : A — A is a Lie derivation.

Proof. 1t is straight forward to show that, the mapping f : A — A is C-linear. It
follows from (3.24) that



3.2 Apollonius Type Additive Functional Equations 69

I (B yD) = [F (). 31 = [ f )]l

(]
= lin ¢ (55) -1 () 5= [5G,
< lim 7l -

=0

forall x,y € A and so

J(ey) = [FG). )] + [xfO)]
forall x,y € A. Thus the mapping f : A — A is a Lie derivation. This completes the
proof. O

Remark 3.20. If r < 1, 0 is positive real numbers and f : A — A be a mapping
satisfying (3.19) and (3.24). Then the mapping f : A — A is a Lie derivation.

3.2.3 Homomorphisms and Derivations in JC*-Algebras

Assume that A is a JC*-algebra with the norm || - |4 and B is a JC*-algebra with the
norm || - 5.

A C-linear mapping H : A — B is called a JC*-algebra homomorphism if H :
A — B satisfies the following:

H(xoy) =H(x)oH(y)

for all x,y € A. A C-linear mapping D : A — A is called a Jordan derivation if
D : A — A satisfies the following:

D(xoy) =D(x)oy+xoD(y)

for all x,y € A.

Now, we investigate JC*-algebra homomorphisms between JC*-algebras and
Jordan derivations on JC*-algebras associated with the Apollonius type additive
functional equation.

Remark 3.21. Let r > 1, 6 be nonnegative real numbers and f : A — B be a
mapping satisfying (3.19) such that

lf(xoy) =f@) of s < 0 - llxlly - Iyl (3.25)

for all x,y € A. Then the mapping f : A — B is a JC*-algebra homomorphism.
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Remark 3.22. Letr < 1, 6 be positive real numbers and f : A — B be a mapping
satisfying (3.19) and (3.25). Then the mapping f : A — B is a JC*-algebra
homomorphism.

Remark 3.23. Let r > 1, 6 be nonnegative real numbers and f : A — A be a

mapping satisfying (3.19) such that

If(xoy) =f(x)oy—xof(yla=0-Ilxll - Ilylly (3.26)

for all x, y € A. Then the mapping f : A — A is a Jordan derivation.

Remark 3.24. Let r < 1, 0 be positive real numbers and f : A — A be a mapping
satisfying (3.19) and (3.26). Then the mapping f : A — A is a Jordan derivation.

3.3 Stability of Jensen Type Functional Equations
in C*-Algebras

Using the fixed point method, we consider [250] the Hyers-Ulam stability of
homomorphisms in C*-algebras and Lie C*-algebras and derivations on C*-
algebras and Lie C*-algebras for the following Jensen type functional equation:

1(52) + (52 =re.

3.3.1 Stability of Homomorphisms in C*-Algebras

Assume that A is a C*-algebra with the norm || - ||4 and B is a C*-algebra with the
norm || - ||g. For any mapping f : A — B, we define

Duf ) = wf (52 + () — w0

forallp e T':={v eC:|v|=1}andx,y € A.
Now, we prove the Hyers-Ulam stability of homomorphisms in C*-algebras for
the functional equation D, f(x,y) = 0.

Theorem 3.25. Let f : A — B be a mapping for which there exists a function
¢ 1 A2 — [0, 00) such that

o0
> 27 (2/x, 2y) < oo, (3.27)
j=0
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IDf(x. 9B < @(x.y), (3.28)
If Gey) =ff W)z < @(x.y), (3.29)
If (™) —fx)* ||z < @(x,x) (3.30)

forall p € T  and x,y € A. If there exists L < 1 such that
X
< —_
p(x,0) < 2L¢(2,0)

for all x € A, then there exists a unique C*-algebra homomorphism H : A — B
such that

)~ H@ s < = p(x.0) (3.31)

forall x € A.

Proof. Consider the set
X:={g:A— B}
and introduce the generalized metric on X defined by
d(g.h) = inf{C € Ry : [[g(x) — h(¥)]|s = Cp(x.0), Vx € A},

which (X, d) is complete.
Now, we consider the linear mapping J : X — X such that

1
Je(x) := 58(2%)
for all x € A. Thus we have
d(Jg.Jh) < Ld(g. h)
forall g, h € X. Letting u = 1 and y = 0 in (3.28), we get
X
H2f (5) —f(x) H < ¢(x,0) (3.32)
B
for all x € A and so
1 1
lr@ -S| = S0 < o0

for all x € A. Hence d(f, Jf) < L.
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By Theorem 1.3, there exists a mapping H : A — B such that
(1) H is afixed pointof J, i.e.,
H(2x) = 2H(x) (3.33)
for all x € A. The mapping H is a unique fixed point of J in the set
Y={geX:d({f,g) < oo}

This implies that H is a unique mapping satisfying (3.33) such that there exists
C € (0, 0o) satisfying

[H(x) —f(0) ]z = Co(x.0)

forallx € A;
(2) d(J'f,H) — 0 as n — oo. This implies the equality
lim L&)
im ———
n—oo 2N

— H(») (3.34)

forallx € A;
3) d(f,H) < 1%Ld(f ,Jf), which implies the inequality

L
d(f, H) < ——.
G =777

This implies that the inequality (3.31) holds.
It follows from (3.27), (3.28) and (3.34) that

|+ (557 +#(5%) w0,

1
= lim ;Ilf(Z”_l(x +)) HfQ =) = f2") I
< lim %go(Z”x, 2"y)
=0

forall x,y € A and so

H(x er y) + H(x > y) — H(x) (3.35)

forall x,y € A. Letting 7 = ’% andw = )% in (3.35), we get
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H(iZ)+Hw) =H(z+w)
for all z, w € A. So the mapping H : A — B is Cauchy additive, i.e.,
H(z+w)=H() + Hw)
for all z,w € A. Letting y = x in (3.28), we get
uf (x) = f(px)
forall 4 € T! and x € A. By a similar method to above, we get
wH(x) = H(px)

for all © € T! and x € A. Thus one can show that the mapping H : A — B is
C-linear. It follows from (3.29) that

15 (xy) = HCOHG) s = lim % If (4"xy) = f(2")f 2"y 18

IA

1
lim —@(2"x,2"%)
n—o00 41

IA

1
lim —@(2"x,2"%)
n—>o0 N
=0
for all x,y € A. Then we have
H(xy) = H(x)H(y)

for all x,y € A. It follows from (3.30) that

[HO) ~ HOO® s = Tim 22" ~ 2"

IA

1
lim —@(2"x,2"x)
n—>o00 2N
=0
for all x € A. Then we have
H(E*) = Hx)*

for all x € A. Thus H : A — B is a C*-algebra homomorphism satisfying (3.31).
This completes the proof. O



74 3 Stability of Functional Equations in C*-Algebras

Corollary 3.26. Let r < 1, 6 be nonnegative real numbers andf : A — B be a
mapping such that

IDuf e )8 = OClxlly + lIvll)- (3.36)
If Cey) = fAf Dl < O(lIxll3 + [1yI13)- (3.37)
F &™) = f )" s < 26 ]1xll3 (3.38)

forall w € T' and x,y € A. Then there exists a unique C*-algebra homomorphism
H : A — B such that

r

If(x) —Hx)|z < 5o

[l (3.39)

forall x € A.
Proof. The proof follows from Theorem 3.25 by taking

e y) i= O(Ixlly + lIylla)

forallx,y€ Aand L = 2"\ O

Theorem 3.27. Let f : A — B be a mapping for which there exists a function
@ 1 A2 = [0, 00) satisfying (3.28), (3.29) and (3.30) such that

o0
. Xy
4 (—., — )< 3.40
ZO 0(35) <o (3.40)
forall x,y € A. If there exists L < 1 such that

1
o(x,0) < EL(p(Zx, 0)

for all x € A, then there exists a unique C*-algebra homomorphism H : A — B
such that

If () = H®) s <

557 #x.0) (3.41)

forall x € A.

Proof. We consider the linear mapping J : X — X such that

Jg(x) := 2g<§)
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for all x € A. It follows from (3.32) that

023, =o(30) = boe

for all x € A and hence d(f,Jf) < % By Theorem 1.3, there exists a mapping
H : A — B such that

(1) H is afixed point of J, i.e.,
H(2x) = 2H(x) (3.42)
for all x € A. The mapping H is a unique fixed point of J in the set
Y={geX:d(f,g) < oo}

This implies that H is a unique mapping satisfying (3.42) such that there exists
C € (0, co) satisfying

[1H(x) —f@)]z < Co(x,0)

forallx € A;
(2) d(J"f,H) — 0 as n — oo. This implies the equality

lim. 2"f(§> = H(x)

forallx € A;
3) d(f,H) < 1%Ld(f ,Jf), which implies the inequality

L
dif ,H) < ,
¢ )_2—2L

which implies that the inequality (3.41) holds.

The rest of the proof is similar to the proof of Theorem 3.25. This completes the
proof. O

Corollary 3.28. Let r > 2, 0 be nonnegative real numbers and f : A — B be a
mapping satisfying (3.36), (3.37) and (3.38). Then there exists a unique C*-algebra
homomorphism H : A — B such that

@~ HW s = 50 e (.43

forall x € A.
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Proof. The proof follows from Theorem 3.27 by taking

p(x.y) := O(Ixll; + Iylla)

forallx,y € Aand L = 2!, O

Theorem 3.29. Letf : A — B be an odd mapping for which there exists a function
Q A2 > [0, 00) satisfying (3.27), (3.28), (3.29) and (3.30). If there exists L < 1
such that

(x.3x) < 2L (x 3x>

X, 3X) = AN A

¥ ¥ D)

for all x € A, then there exists a unique C*-algebra homomorphism H : A — B
such that

) = Hle = 53—

o(x, 3x) (3.44)

forall x € A.

Proof. Consider the set
X:={g:A— B}
and introduce the generalized metric on X defined by
d(g.h) = inf{C € Ry : [|g(x) — h(x)[ls = Co(x,3x), Vx € A},

which (X, d) is complete.
Now, we consider the linear mapping J : X — X such that

Jg(x) = %g(ZX)
for all x € A. Now, we have
d(Jg,Jh) < Ld(g,h)
forall g, h € X. Letting © = 1 and replacing y by 3x in (3.28), we get

If (2x) = 2f(¥) ||z < ¢(x,3x) (3.45)

for all x € A and so

) — 379l < 39(x. 39
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for all x € A. Hence d(f, Jf) < % By Theorem 1.3, there exists a mapping H : A —
B such that

(1) H is afixed pointof J, i.e.,
H(2x) = 2H(x) (3.46)
for all x € A. The mapping H is a unique fixed point of J in the set
Y={geX:d(f g < oo}

This implies that H is a unique mapping satisfying (3.46) such that there exists
C € (0, co) satisfying

[1H(x) = f(0) ][z = Co(x. 3x)

forallx € A;
(2) d(J'f,H) — 0 as n — oo. This implies the equality

forallx € A;
3) d(f,H) < 1%Ld(f ,Jf), which implies the inequality

d(f,H) <

2-2L
This implies that the inequality (3.44) holds.

The rest of the proof is similar to the proof of Theorem 3.25. This completes the
proof. O

Corollary 3.30. Let r < %, 0 be nonnegative real numbers and f : A — B be an
odd mapping such that

IDuf e )8 < 0 - lxll} - [1yIl (3.47)
If Cey) = f DIz < 6 - llxlly - Iyl4- (3.48)
IF) =™ s < OlxlY (3.49)

forall w € T' and x,y € A. Then there exists a unique C*-algebra homomorphism
H : A — B such that

370
If () = H®) Iz < IxlI3 (3.50)

- 2_22r

forall x € A.
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Proof. The proof follows from Theorem 3.29 by taking

@ y) =0 |lxly - ylly

forallx,y € Aand L = 22r=1, O

Theorem 3.31. Letf : A — B be an odd mapping for which there exists a function
@ A2 > [0, 00) satisfying (3.28), (3.29), (3.30) and (3.40). If there exists L < 1
such that

1
o(x,3x) < §L¢(2x, 6x)

for all x € A, then there exists a unique C*-algebra homomorphism H : A — B
such that

If () —H@) s < ¢(x,3x) (3.51)

2-2L
forall x € A.

Proof. We consider the linear mapping J : X — X such that
X
Jg(x) == Zg(z)
for all x € A. It follows from (3.45) that

H x 3x

-2 ()], <¢(5.3) = 50039

for all x € A and hence d(f,Jf) < % By Theorem 1.3, there exists a mapping
H : A — B such that

(1) H is afixed pointof J, i.e.,
H(2x) = 2H(x) (3.52)
for all x € A. The mapping H is a unique fixed point of J in the set
Y={geX:d(f g < oo}

This implies that H is a unique mapping satisfying (3.52) such that there exists
C € (0, co) satisfying

[1H(x) = f(0) ][z = Co(x. 3x)

forallx € A;
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(2) d(J"f,H) — 0 as n — oo. This implies the equality

lim Z”f(%) = H(x)

n—>o0o

forallx € A;
3) d(f,H) < 1%Ld(f ,Jf), which implies the inequality

d(f,H) <

2-2L
which implies that the inequality (3.51) holds.

The rest of the proof is similar to the proof of Theorem 3.25. This completes the
proof. |

Corollary 3.32. Letr > 1, 0 be nonnegative real numbers andf : A — B be an odd
mapping satisfying (3.47), (3.48) and (3.49). Then there exists a unique C*-algebra
homomorphism H : A — B such that

0

55 I (3.53)

If(x) —H@)s <

forall x € A.
Proof. The proof follows from Theorem 3.31 by taking

@ y) =0 lxlly - Iyl

forallx,y € Aand L = 277", O

3.3.2 Stability of Derivations in C*-Algebras

Now, we prove the Hyers-Ulam stability of derivations on C*-algebras for the
functional equation D, f(x,y) = 0.

Theorem 3.33. Let f : A — A be a mapping for which there exists a function
@ 1 A2 — [0, 00) satisfying (3.27) such that

ID.f .94 < @(x,y) (3.54)

and

If (xy) —f)y —xf(Mla < @(x,y) (3.55)

forall u € T" and x,y € A. If there exists L < 1 such that
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X
P

0(x0) < 2L (3.0)

for all x € A. Then there exists a unique derivation § : A — A such that

)~ 5@y < - (x.0) (3.56)

forall x € A.

Proof. 1t is straight forward to show that, there exists a unique involutive C-linear
mapping § : A — A satisfying (3.56). The mapping § : A — A is given by

f(2"x)
om

3(x) = lim
for all x € A. It follows from (3.55) that
6(xy) —8(x)y —x8(¥) |4

1
= Jim () = (20 2y = 25 2"

IA

1
lim —@((2"x,2"%)
n—>o00 41

: 1 n n
= lim ~Ce(2'x.2y)
=0

forall x,y € A and so

8(xy) = 8(x)y + x8(y)

forall x,y € A. Thus § : A — A is a derivation satisfying (3.56). This completes the
proof. O

Corollary 3.34. Let r < 1, 0 be nonnegative real numbers and f : A — A be a
mapping such that

I1Duf e, ¥)lla < O(lxllx + 1yIl) (3.57)
and
If Cey) —=f @)y = Dlla < O(xly + I¥I}) (3.58)

forall w € T and x,y € A. Then there exists a unique derivation § : A — A such
that

"9
1) — 8 s < —

e e (3.59)

forall x € A.
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Proof. The proof follows from Theorem 3.33 by taking

p(x.y) := O(Ixll; + Iylla)

forallx,y € Aand L = 2"", O

Remark 3.35. If f : A — A is a mapping for which there exists a function ¢ :
A2 - [0, 00) satisfying (3.40), (3.54) and (3.55). If there exists L < 1 such that
¢(x,0) < %L(p(Zx, 0) for all x € A, then there exists a unique derivation§ : A — A
such that

If (x) = 8(x)lla < @(x,0) (3.60)

2—2L
forall x € A.

Corollary 3.36. Let r > 2, 0 be nonnegative real numbers and f : A — A be a
mapping satisfying (3.57) and (3.58).
Then there exists a unique derivation § : A — A such that

0
2r—2

If () = 8()lla < Il (3.61)

forall x € A.
Proof. The proof follows from Theorem 3.35 by taking

@, y) = 0(x[l3 + lIyl)
forallx,y € Aand L = 2!, O

Remark 3.37. For the inequalities controlled by the product of powers of norms,
one can obtain similar results to Theorems 3.29 and 3.31 and Corollaries 3.30
and 3.32.

3.3.3 Stability of Homomorphisms in Lie C*-Algebras

Assume that A is a Lie C*-algebra with the norm | - |4 and B is a Lie C*-algebra
with the norm || - ||5.

Now, we prove the Hyers-Ulam stability of homomorphisms in Lie C*-algebras
for the functional equation D,f(x,y) = 0.

Theorem 3.38. Let f : A — B be a mapping for which there exists a function
@ 1 A = [0, 00) satisfying (3.27) and (3.28) such that

If (B, D) = [F(). SOl = ¢(x. ) (3.62)
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forall x,y € A. If there exists L < 1 such that

0(0) < 2Lg(3.0)

for all x € A, then there exists a unique Lie C*-algebra homomorphism H : A — B

satisfying (3.31).

Proof. 1t is straight forward to show that, there exists a unique C-linear mapping
H : A — B satisfying (3.31). The mapping H : A — B is given by

H = tim {20

n—oo 2N

for all x € A. It follows from (3.62) that

1 ([x. y]) = [H(x), HY)] |5

Jim %Ilf(4" [ yD) = [F2"0). 2"Vl

IA

1
lim —@((2"x,2"%)
n—>o00 41

IA

1
lim —@((2"x,2"%)
n—>o0 N
=0

for all x,y € A and so

H([x,y]) = [H(x). H()]

for all x,y € A. Thus H : A — B is a Lie C*-algebra homomorphism
satisfying (3.31). This completes the proof. O

Corollary 3.39. Let r < 1, 6 be nonnegative real numbers andf : A — B be a
mapping satisfying (3.36) such that

I (B yD) = Q). < OCllxlla + 11y I12) (3.63)

forall x,y € A.
Then there exists a unique Lie C*-algebra homomorphism H : A — B
satisfying (3.39).

Proof. The proof follows from Theorem 3.38 by taking
@, y) = 0lxlly + lIyll)

forallx,y € Aand L = 2"", O
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Remark 3.40. If f : A — B is a mapping for which there exists a function
@ : A2 — [0, 00) satisfying (3.28), (3.40) and (3.62). If there exists L < 1 such
that ¢(x, 0) < %L(p(Zx, 0) for all x € A, then there exists a unique Lie C*-algebra
homomorphism H : A — B satisfying (3.41).

Corollary 3.41. Let r > 2, 0 be nonnegative real numbers and f : A — B be a
mapping satisfying (3.36) and (3.63). Then there exists a unique Lie C*-algebra
homomorphism H : A — B satisfying (3.43).

Proof. The proof follows from Theorem 3.40 by taking

@x,y) = 0(x[l} + lIyll)
forallx,y € Aand L = 2!, O

Remark 3.42. For the inequalities controlled by the product of powers of norms,
one can obtain similar results to Theorems 3.29 and 3.31 and their corollaries.

3.3.4 Stability of Lie Derivations in C*-Algebras

Assume that A is a Lie C*-algebra with the norm || - ||4.
Now, we prove the Hyers-Ulam stability of derivations on Lie C*-algebras for
the functional equation D, f(x,y) = 0.

Theorem 3.43. Let f : A — A be a mapping for which there exists a function
¢ 1 A = [0, 00) satisfying (3.27) and (3.54) such that

IF (e yD) = [F (). 3] = e fWlla = @(x, ) (3.64)

forall x,y € A. If there exists L < 1 such that

0(x.0) = 2L (3.0)

for all x € A. Then there exists a unique Lie derivation § : A — A satisfying (3.56).

Proof. 1t is easy to show that, there exists a unique involution C-linear mapping
8 1 A — A satisfying (3.56). The mapping § : A — A is given by

3(x) = nl'm f(z_:x)

i
for all x € A. It follows from (3.62) that
181, y) — [8Cx), y] = [x, 8]l

1
= lim CIF(@ o)) - 2792 - 2% @D
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1
< lim H(p(Z"x, 2"y)

n—oo
. 1
< lim —@(2"x,2"y)
n—>o0 N
=0
for all x,y € A and so

§(fx.yD) = [8(x), y] + [x. 8(y)]

forall x,y € A. Thus § : A — A is a derivation satisfying (3.56). This completes the
proof. O
Corollary 3.44. Let r < 1, 6 be nonnegative real numbers andf : A — A be a
mapping satisfying (3.57) such that

I (e, D) = [F(). 3] = Beo f Ol = OClxlly + lIvll) (3.65)

for all x,y € A. Then there exists a unique Lie derivation § : A — A
satisfying (3.59).

Proof. The proof follows from Theorem 3.38 by taking

o y) := O(Ixlly + lIvlla)

forallx,y € Aand L = 2"", O

Remark 3.45. If f : A — A is a mapping for which there exists a function
Q: A - [0, 00) satisfying (3.40), (3.54) and (3.64). Whenever there exists L < 1
such that

1
@(X, 0) =< §L¢(2x5 0)

for all x € A, then there exists a unique Lie derivation § : A — A satisfying (3.60).

Corollary 3.46. Let r > 2, 8 be nonnegative real numbers and f : A — A be
a mapping satisfying (3.57) and (3.65). Then there exists a unique Lie derivation
8 : A — A satisfying (3.61).

Proof. The proof follows from Theorem 3.45 by taking
o y) = 0lxlly + lIyll)

forallx,y € Aand L = 2!, O

Remark 3.47. For the inequalities controlled by the product of powers of norms,
one can obtain similar results to Theorems 3.29 and 3.31 and their corollaries.
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3.4 Generalized Additive Mapping

Recently, Park and Park [243] introduced and investigated the following generalized
additive functional equation

Zn:riL Zn:rj(xi —x) |+ (Zn: ri) L (Zn: rixi)
i=1 i=1 i=1

J=1

= (i: ri) Zn: riL(x;) (3.66)
=1/ i=1

forall ry,---,r, € (0,00) whose solution is called a generalized additive mapping.
In this section, we consider [210] the following additive functional equation
which is somewhat different from (3.66):

Xn:f(% Z rixX; — %rjxj) + Xn:"if(xi) = ”f(% Zrixi) (3.67)
=1 ! '

1<i<n,i#j i= i=1

=

forall ry,---,r, € R. Every solution of the functional equation (3.67) is said to be
a generalized additive mapping.

Using the fixed point method, we investigate the Hyers—Ulam stability of the
functional equation (3.67) in Banach modules over a C*-algebra. These results are
applied to investigate C*-algebra homomorphisms in unital C*-algebras.

Throughout this section, assume that A is a unital C*-algebra with the norm || - || 4
and the unit e that B is a unital C*-algebra with the norm || - || and X and Y are
left Banach modules over a unital C*-algebra A with the norms || - ||x and || - ||y,
respectively. Let U(A) be the group of unitary elements in A and let ry,--- ,r, € R.

3.4.1 Hpyers—Ulam Stability of Functional Equations
in Banach Modules over a C*-Algebra

For any mapping f : X — Y, u € U(A) and u € C, we define D, ,, ... ,,f and
Dy yf - X" — Y by

Du,rl,-" ,r,,f(xl DI xn)

= zn:f(% Z TillX; — %rju-xj) + Zn: riuf (x;) — ”f(% Zn: r,-ux,-)
j=1 i=1 i=1

I<i<n,i#j
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and
D;L,rl,-",rnf(xl’ e axn)
n 1 1 n 1 n
= Zf(z Z Urix; — E,urjxj) + Z wrif (x;) — nf(z Z ,U,}’ixi)
j=1 1<i<n.i#j i=1 i=1
for all x;,---,x, € X, respectively.
Lemma 3.48. Let X and Y be linear spaces and ry,--- , r, be real numbers with

Yotk #0andr; # 0, 1, # 0 for some 1 < i < j < n.Assume that a mapping
L : X — Y satisfies the functional equation (3.67) for all xy,--- ,x, € X. Then the
mapping L is additive. Moreover, L(ryx) = riL(x) forallx € X and 1 < k < n.

Proof. Since Y ;_, ri # 0, putting x; = --- = x, = 0in (3.67), we get L(0) = 0.
Without loss of generality, we assume that r;, r, # 0. Lettingx3 = --- = x, =0
in (3.67), we get

—rix] + rx riXi — rx
L(—1 12 2 2)-l—L(—1 12 2 2)+r1L(x1)+r2L(x2)

—2L (%) (3.68)

for all x, x, € X. Letting x, = 01in (3.68), we get

nL(x) =L (%) L (_rz”” ) (3.69)
for all x; € X. Similarly, by putting x; = 0 in (3.68), we get
rL(x) = L (%) —L (_rzm) (3.70)

for all x, € X. It follows from (3.68), (3.69) and (3.70) that

L (—r1x1 + rzxz) 4L (rlxl - rzxz)
2 2
() ()LL)

— L (lel + szz)

2
for all x;, x, € X. Replacing x; and x; by %‘ and 3—;‘ in (3.71), we get

L(=x+y) + L(x = y) + L) + L(y) — L(=x) — L(=)
= 2L(x + ) (3.72)
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forall x,y € X. Letting y = —x in (3.72), we get that
L(—2x) + L(2x) =0

for all x € X. Then the mapping L is odd. Therefore, it follows from (3.72) that the
mapping L is additive. Moreover, let x € X and 1 < k < n. Setting x; = x and
x; = 0forall 1 <1 <nwithl # kin (3.67) and, using the oddness of L, it follows
that L(rgx) = riL(x). This completes the proof. |

Using the same method as in the proof of Lemma 3.48, we have an alternative
result of Lemma 3.48 when > ;_, ry = 0.

Lemma 3.49. Let X and Y be linear spaces and ry,--- , r, be real numbers with
ri # 0,1 # 0 for some 1 < i < j < n. Assume that a mapping L : X — Y with
L(0) = 0 satisfies the functional equation (3.67) for all x1,--- ,x, € X. Then the
mapping L is additive. Moreover, L(rix) = riL(x) forallx € X and all 1 <k < n.

Now, we investigate the Hyers-Ulam stability of a generalized additive mapping
in Banach modules over a unital C*-algebra. Here ry, - - - , r,, are real numbers such
thatr; #0andr; # Oforfixed 1 <i<j<n.

Theorem 3.50. Let f : X — Y be a mapping satisfying f(0) = 0 for which there
exists a function ¢ : X" — [0, 00) such that

”De,rl,“',rnf(xls T 7'xn)”Y =< @(xlv e ,Xn) (373)

foreachxy,--- ,x, € X. Let

(pl:j(-xsy)::(p<os"'507 X 705"'705 y 705"'70)

forallx,y € Xand 1 <i < j < n.If there exists 0 < C < 1 such that
P2xy, -0+, 2x) = 2C@(x1, -+ xp)

for all xi,--- ,x, € X, then there exists a unique generalized additive mapping
L : X — Y such that

1)~ LMy = == foa (2. 2) +20(2.-2)

Z -
ri

T 4-4C T T
2x X
+ (pij(T,-’O) + 2<Pij'(7i,0)
2x X
+ </’ii(0, —) + 2@,,-(0,——)} (3.74)
Ty Ty

for all x € X. Moreover, L(ryx) = riL(x) forallx € X and 1 <k < n.
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Proof. Foreach 1 < k < n with k # i,j, let x4 = 0 in (3.73). Then we get the
following inequality:

—IiX; + FX; (rixi - rjxj> (rixi + rjxj>
—of (L
) () - (7

+ rf )+ nf ()|

=@(0.0,_xi_0.+.0. x5 0-0) (375
SN—— ——
ith jth

for all x;, x; € X. Letting x; = 01in (3.75), we get

I (-22) =7 (Z2) + )| = gi0.x) (3.76)

for all x; € X. Similarly, letting x; = 0 in (3.75), we get

7 th

I (-50) =1 (5) + | = pytxi.0) (3.77)

for all x; € X. It follows from (3.75), (3.76) and (3.77) that
TiXi + rix TiX; — 1iX riX; + rix
(=57 wo (5) - ()

+f(r‘x‘) +1(%) —f(— )=,
< @i(xi, %)) + @ii(xi, 0) + (0, x;) (3.78)

for all x;, x; € X. Replacing x; and x; by %—f‘ and Zr—;‘ in (3.78), it follows that

If(=x+y) +f(x=y) = 2f(x+)
+ /() +10) —f(=0) =f(=D)ly

2x 2y 2x 2y
=gl —> +@i{ —.0) +¢;|0,— (3.79)
rior T T

forall x,y € X. Putting y = x in (3.79), we get
12/ (x) = 2f (—x) — 2f (29) [l

coE ) raf) o

i J
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for all x € X. Replacing x and y by 5 and —3 in (3.79), respectively, we get

IF o) + f(=0)ly

< wi;(rfi, ~2)+ wzf(rfi,o) ¥ @ij(o,—;) (3.81)

J J

for all x € X. It follows from (3.80) and (3.81) that

30 -], < v (.82

for all x € X, where

Y(x) = ‘Pij(zx’ 2x) + 2<pij(x f)

w2l
2x X 2x X
+ (,Oij(—, 0) + Z(Pij(—, 0) + (,Oij((), —) + Z(Pij((), ——).
r; T rj T

J

Consider the set W := {g : X — Y} and introduce the generalized metric on W
defined by

d(g.h) = inf{C € Ry : [lg(x) — h(0)ly < CY(x), Vx € X}.

It is easy to show that OV, d) is complete. Now, we consider the linear mapping
J : W — W such that

1
Jg(x) := Eg(Zx) (3.83)

for all x € X. It follows that d(Jg,Jh) < Cd(g,h) for all g,h € W and so
d(f,Jf) < %. By Theorem 1.3, there exists a mapping L : X — Y such that

(1) Lis afixed point of J, i.e.,
L(2x) = 2L(x) (3.84)
for all x € X. The mapping L is a unique fixed point of J in the set
Z={geW:d(f, g < oo}.

This implies that L is a unique mapping satisfying (3.84) such that there exists
C € (0, co) satisfying

ILx) —f )y = CY(x)

forall x € X;
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(2) d(J*f,L) — 0 as n — oo. This implies the equality

2n
im T2 _ 1)
n—oo 2N
forall x € X
3) df,.L) < d(f Jf), which implies the inequality d(f,L) < . This

implies that the inequality (3.74) holds.
Since ¢(2xy, -+ ,2x,) < 2Cp(xy,--- ,x,), we have

. 1
||D6‘,r1,~",r,,L('x17 e 5xn)||Y = lim _” erg, rnf(z X1,y 2k-xn)||Y
k—o00 2k

< hm —90(2kx1, -, 2%%,)
< lim C* o1, ,x,) =0
k—00

for all x,---,x, € X. Therefore, the mapping L : X — Y satisfies the Eq. (3.67)
and L(0) = 0. Hence, by Lemma 3.49, L is a generalized additive mapping and
L(rx) = riL(x) for all x € X and all 1 < k < n. This completes the proof. |

Theorem 3.51. Let f : X — Y be a mapping satisfying f(0) = 0 for which there
exists a function ¢ : X" — [0, 00) satisfying

” u,ry ., rnf(xls v-xn)” = (p(X1, et 7-xn) (385)

forallxy, - ,x, € Xandu € U(A). If there exists 0 < C < 1 such that
P2xy, -0+, 2x,) = 2C@(x1, -+ xp)

for all xi,--- ,x, € X, then there exists a unique A-linear generalized additive
mapping L : X — Y satisfying (3.74) for all x € X. Moreover, L(ryx) = riL(x)
forallx e Xand1 <k <n.

Proof. By Theorem 3.50, there exists a unique generalized additive mapping L :
X — Y satisfying (3.74) and, moreover, L(ryx) = riL(x) forallx € X and 1 <k <
n. By the assumption, for all u € U(A), we get

HD”’”“"""L(O""’O’ x ,0...,0)H
\/—/ Y

ith

1 k
= lim 2—H w0, 0, 2Kx ,0---,0)HY

k—o0 2k
ith
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1
< lim —g(0.++,0, 2% ,0--+,0)

k=00 2

< k]_igock(p@,... 0, x ,0--- ,0)

=0
forall x € X and so

riul(x) = L(r;ux)
forall u € U(A) and x € X. Since L(r;x) = r;L(x) for all x € X and r; # 0, we have
L(ux) = uL(x)

forall u € U(A) and x € X. Now, we have

L(ax 4 by) = L(ax) + L(by) = aL(x) + bL(y)
for all a,b € A(a,b # 0) and x,y € X. Since L(0x) = 0 = OL(x) for all x € X,

the unique generalized additive mapping L : X — Y is an A-linear mapping. This
completes the proof. |

Theorem 3.52. Let f : X — Y be a mapping satisfying f(0) = 0 for which there
exists a function ¢ : X" — [0, 00) such that

”De,rl,“',rnf(xls Tt 7'xn)”Y = @(xlv e ,Xn) (386)
forall xy,--- ,x, € X. If there exists 0 < C < 1 such that
C
@(-xlv”' 52}’1) S E@(z-xlv”' szxn)

for all x1,--- ,x, € X, then there exists a unique generalized additive mapping
L: X — Y such that

If (x) = L)y
=3 —C4c{‘/”f"(27f’ Zr_j) + 2“’”’(%’ _%)

- <py(2r—f,0) + 2%(%,0) + %’(0, zr—f) + 2%‘(0’ —;)} (3.87)

J

for all x € X, where @ is defined in the statement of Theorem 3.50. Moreover,
L(ryx) = nilL(x) forallx €e X and 1 < k < n.
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Proof. Tt follows from (3.82) that

X

1 Cc
— — — ) < —
b f( )H =2 (2) =30
for all x € X, where v is defined in the proof of Theorem 3.50. The rest of the proof
is similar to the proof of Theorem 3.50. This completes the proof. a
Remark 3.53. Letf : X — Y be a mapping with f(0) = O for which there exists a
function ¢ : X" — [0, co) satisfying

” u,r, rnf(xls"' 7xn)|| =< (p(.X1,"' vxn) (388)

forall x;,---,x, € Xand u € U(A). If there exists 0 < C < 1 such that

C
¢(x17"' azn) f E¢(2x17"' az-xn)

for all xy,---,x, € X, then there exists a unique A-linear generalized additive
mapping L : X — Y satisfying (3.87) for all x € X. Moreover, L(r;x) = riL(x)
forallxe Xand 1 <k <n.

Remark 3.54. InTheorems 3.52 and 3.53, one can assume that Y _;_, rx # 0O instead
of f(0) = 0.

3.4.2 Homomorphisms in Unital C*-Algebras

Now, we investigate C*-algebra homomorphisms in unital C*-algebras.
We use the following lemma in the proof of the following theorem.

Lemma 3.55 ([229]). Letf : A — B be an additive mapping such that
f(ux) = uf(x) forallx € Aand u € S' := {1 € C: |A| = 1}. Then the mapping
f :A — Bis C-linear.

Theorem 3.56. Letf : A — B be a mapping with f(0) = 0 for which there exists a
function ¢ : A" — [0, 00) satisfying

|| KTty V,f(-xls"'7-xn)HB§¢(xlv"'sxn), (389)
ko*y ko \* koo k
[t @], < o2, ' ,<2 u). (3.90)
k — k k k
Hf(2 ux) —f 2" u)f (x) ||B < 90(2 ux,---,2 ux) (3.91)

n times
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forall x,x,+++ ,x, € A, u € UA), k € Nand n € S'. If there exists 0 < C < 1
such that

(p(Z.XI,“‘ ,an) S ZC(p(xl?“' axﬂ)

orall x1,-+- ,x, € A, then the mapping f : A — B is a C*-algebra homomorphism.
pping 8 P

Proof. Since |J| > 3, letting u = 1 and x; = Oforall 1 < k < n with k # i,j
in (3.89), we get

f (#) +f (L) + ) + 1if @)

riX; + 1jX;
— 2f( 5 J J)

for all x;,x; € A. By Lemma 3.48, the mapping f is additive and f(r;x) = rif(x)
forall x € A and k = i,j. So, by letting x;, = x and x; = O for all 1 < k < n with
k # iin (3.89), it follows that f(jx) = uf(x) forall x € A and i € S'. Therefore,
by Lemma 3.55, the mapping f is C-linear. Hence it follows from (3.90) and (3.91)
that

1
) = £ @715 = lim ¢ [FQ'") — 1w,

IA

1

lim —@(2ku,~~- ,2ku)

k—>o0 2K —_—————
n times

lim Ck(p(u,--- ,u)
k—>00 ——

n times

IA

=0

and
1
1) —Faf @l = Jim 5 72w — Q]

< lim lgo(Zkux ,Zkux)
~ k—o0 2k N
n times

< lim quo(ux,m ,ux)
k—00 N—— —
n times

=0
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forallx € Aand u € U(A) and so

JW®)y =f@*,  fux) =fu)f(x)

for all x € A and u € U(A). Since f is C-linear and each x € A is a finite linear
combination of unitary elements (see [168]), i.e., x = Zf:l Aruy, where Ay € C
and u; € U(A) forall 1 <k < n, we have

fe =f (Z )Tku;‘) =D A () =D A w)*
k=1 k=1 k=1
= (Z Akf(uk)) =f (Z Akuk) = f(0)*
k=1

k=1

and

m

flay) = (Z kuky) = > A (wy)

=Y Mf)f () =1 (Z Akuk)f(y) =fOF ()
k=1 k=1

for all x,y € A. Therefore, the mapping f : A — B is a C*-algebra homomorphism.
This completes the proof. |

Remark 3.57. Letf : A — B be a mapping with f(0) = 0 for which there exists a
function ¢ : A" — [0, 00) satisfying

1D e G )l < 00,00+ 30),

A T N
I e I

forall x,x;,--- ,x, € A,u € UQA),k e Nand u € S!. If there exists 0 < C < 1
such that

C
¢(x17"' azn) f E¢(2x17"' az-xn)

forall x;,--- ,x, € A, then the mapping f : A — B is a C*-algebra homomorphism.
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Remark 3.58. In Theorem 3.56 and last remark, one can assume that ZZ=1 re #0
instead of f(0) = 0.

Theorem 3.59. Letf : A — B be a mapping with f(0) = 0 for which there exists a
Sfunction ¢ : A" — [0, 00) satisfying (3.90), (3.91) and

”D;L,rl,"' ,r,,f(xla e 9xn)”B 5 (p(xlv e 7xn)7 (394)

forall x1,--+ ,x, € Aand u € S'. Assume that limy_, o %f(Zke) is invertible. If
there exists 0 < C < 1 such that

(p(z-xls"' 72-xn) S 2C¢(-xlv”' s-xn)

orall xi,--- ,x, € A, then the mapping f : A — B is a C*-algebra homomorphism.
pping. 8 P

Proof. Consider the C*-algebras A and B as left Banach modules over the unital
C*-algebra C. By Theorem 3.51, there exists a unique C-linear generalized additive
mapping H : A — B defined by

— T 1 k
H(x) = lim —f(2'x)
for all x € A. By (3.90) and (3.91), we get
. 1
[ () = H@* |, = lim e [r (2) = (2)" [

: 1 k k

)

n times
=0

and

1
|H () = H@f ()l = Jlim = [f (2w) = fAf @)

< lim i(,(J(Zkux, .- 2kux)

T koo QRN L T O
n times

=0

forall u € U(A) and x € A and so

H(u*) =Hw)*, H(ux) = H(u)f(x)
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forall u € U(A) and x € A. Therefore, by the additivity of H, we have
H(ux) = lim 1y (2*ux) = H(u) lim lf (2"x) = Hw)H(x) (3.95)
k—o0 2k k—o00 2k )
forall u € U(A) and x € A. Since H is C-linear and each x € A is a finite linear

combination of unitary elements, i.e., x = ka=1 Ay, where Ay € Cand uy € U(A)
for all 1 < k < n, it follows from (3.95) that

H(xy) = H (Z Akuky> =Y MH ()
k=1 k=1

= Z AMHw)H(y) = H (Z lkuk) H(y)
k=1 k=1

= HX)H(y)

and
m

H (Z A_ku;‘) =D AHw)
k=1

k=1

H (x*)

I
M=

IH (u)* = (Z /\kH(uk))

k=1
m *
H( Z Akuk) = H(x)*
k=1
forall x,y € A. Since H(e) = limy— oo Zlkf (2%e) is invertible and

H(e)H(y) = H(ey) = H(e)f (v). H(y) =f())

for all y € A. Therefore, the mapping f : A — B is a C*-algebra homomorphism.
This completes the proof. O

k=1

Remark 3.60. Letf : A — B be a mapping with f(0) = 0 for which there exists a
function ¢ : A" — [0, 00) satisfying (3.92), (3.93) and

||DMJ1#"J:f(xls L x)llB < @, LX),

forallx;,---,x, € Aand u € S'. Assume that lim;_ 2/‘f(2€—k) is invertible. If there
exists 0 < C < 1 such that

C
Pl 20) = S@(2x0. e 2)

for all xi,--- ,x, € A, then the mapping f : A — B is a C*-algebra homomorphism.
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In the last Remark, one can assume that ) ;_, rx # 0 instead of f(0) = 0.
Theorem 3.61. Letf : A — B be a mapping with f(0) = 0 for which there exists a
function ¢ : A" — [0, 00) satisfying (3.90), (3.91) and

”D;L,rl,"' ,r,,f(xla e 9xn)”B 5 (p(xlv e 7xn) (396)

for w = i,1 and x1,--- ,x, € A. Assume that lim;_ 2%}‘(2’%) is invertible and,
for each fixed x € A, the mapping t — f(tx) is continuous in t € R. If there exists
0 < C < 1 such that

(p(z-xls"' 72-xn) S 2C¢(-xlv”' s-xn)

orall xi,--- ,x, € A, then the mapping f : A — B is a C*-algebra homomorphism.
pping. 8 P

Proof. Put u = 11in (3.96). By the same reasoning as in the proof of Theorem 3.50,
there exists a unique generalized additive mapping H : A — B defined by

e
H() = kl—lglo 2k
for all x € A. It is straight forward to show that, the generalized additive mapping
H : A — B is R-linear. By the same method as in the proof of Theorem 3.51, we
have

HD,L,”,...,,”H(O,--- 0, x 0. ’O)HY
jth
= i ! D 0 0, 2x ,0---,0
UE&?H e f (0,0, 2K 0+, )HY
jth

. 1 X
Skllgloigo(o’.“ .0, 2%x ,0---,0)
jth
=0

for all x € A and so
riH (x) = H(rjjix)
for all x € A. Since H(rjx) = rjH(x) for all x € X and r; # 0, we have

H(px) = pH(x)
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for all x € A and u = i, 1. For each element A € C, we have A = s + it, where
s,t € R. Thus it follows that

H(Ax) = H(sx + itx) = sH(x) + tH(ix) = sH(x) + itH(x)
= (s+ inH(x) = AH(x)
forall A € C and x € A. So, we have

H(Ex + ny) = H(Ex) + H(ny) = {H(x) + nH(y)

forall ¢, n € C and x,y € A. Hence the generalized additive mapping H : A — B is
C-linear.

The rest of the proof is the same as in the proof of Theorem 3.59. This completes
the proof. O

The following is an alternative result of Theorem 3.61.

Remark 3.62. Letf : A — B be a mapping with f(0) = 0 for which there exists a
function ¢ : A" — [0, 00) satisfying (3.92), (3.93) and

||DM,V1,~'~,r,f(-xls e 7-xn)||B E (p(-xls e 7-xn)

forall x,x;,--+ ,x, € Aand u =i, 1. Assume that limy_, 5 2/‘f(2€—k) is invertible and,
for each fixed x € A, the mapping ¢ — f(tx) is continuous in ¢ € R. If there exists
0 < C < 1 such that

C
¢(x17"' azn) f E¢(2x17"' az-xn)

for all xi,--- ,x, € A, then the mapping f : A — B is a C*-algebra homomorphism.

Remark 3.63. Also, one can assume that ) ;_, rx # 0 instead of f(0) = 0.

3.5 Generalized Additive Mappings in Banach Modules

Let X, Y be vector spaces. It is shown that, if an odd mapping f : X — Y satisfies
the functional equation

P S (1) 0y
e x oy

tj) =0,1
Y =1
d
= (0m1C—am1 Gt + 1) Y _f(). (3.97)

j=1
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then the odd mapping f : X — Y is additive. Also, we consider the Hyers-Ulam
stability of the functional equation (3.97) in Banach modules over a unital C*-
algebra. As an application, we show that every almost linear bijection 2 : A — B of
a unital C*-algebra A onto a unital C*-algebra B is a C*-algebra isomorphism when
h(%uy) = h(Zu)h(y) for all unitaries u € A,y € A and n > 0 [20].

Throughout this section, assume that r is a positive rational number and d, [ are
integers with 1 </ < %.

3.5.1 0Odd Functional Equations in d-Variables

Now, assume that X and Y are real linear spaces.

Lemma 3.64. An odd mapping f : X — Y satisfies (3.97) for all x;,x3,--+ ,x5 € X
if and only if f is Cauchy additive.

Proof. Assume that f : X — Y satisfies (3.97) for all x, x5, -+ ,x; € X. Note that
f(0) = 0 and f(—x) = —f(x) for all x € X since f is an odd mapping. Putting

x] =x,x =yandx3 = --- = x5 = 01in (3.97), we get
X+
(4—2C1 =42 C1» + 1)i’f(—y)
;
= (4—1C1 —a—1 C—1 + D(f(x) + £ () (3.98)

forall x,y € X. Since 4—»C; —g— Ci—2 + 1 =41 C; —y—1 Ci—1 + 1, we have

o (FH) =/ +50)

forall x,y € X. Letting y = 0 in (3.98), we get 7f(7) = f(x) for all x € X. Hence
we have

fa+n =of (FH) =5 +50)

for all x,y € X. Thus f is Cauchy additive.
The converse is obviously true. This completes the proof. O

In the proof of Lemma 3.64, we prove the following.

Corollary 3.65. An odd mapping f : X — Y satisfies

o (FH) =/ +50)

forall x,y € X if and only if f is Cauchy additive.
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3.5.2 Stability of Odd Functional Equations in Banach
Modules over a C*-Algebra

Assume that A is a unital C*-algebra with the norm | - | and a unitary group U(A)

and X, Y are left Banach modules over a unital C*-algebra A with norms || - || and
|| - ||, respectively.
For any mapping f : X — Y, we set
Duf(xl’... ’xd)
e > (=D P,
T rf( r ) + Z rf( r )
tj) =0,1
Zﬁ:l j) =1

d
—(4=1C1—4-1 C—1 + 1) Z uf (x;)

Jj=1
forallu € U(A) and x1,--- , x4 € X.

Theorem 3.66. Letr # 2. Let f : X — Y be an odd mapping for which there exists
a function ¢ : X? — [0, 00) such that

N 2 2
QX1 e, xg) = Z(:) 591)(;)61,"' ,;Xd) <00 (3.99)
j=
and
”Duf(-xls"' ,.Xd)” E(/’(xla"' v-xd) (3.100)
forallu € U(A) and xy,- -+ ,xq € X. Then there exists a unique A-linear generalized

additive mapping L : X — Y such that

1
x) — L(x)| < o(x,x,0,---,0 (3.101)
I~ = 50— 1)<p( D”*)
— 2 times
forall x € X.
Proof. Note that f(0) = 0 and f(—x) = —f(x) for all x € X since f is an odd
mapping. Let u = 1 € U(A). Putting x; = x, = xandx3 = --- = x, = 0

in (3.100), we have

1
d—2C1—42C2+1

()20 f(ano o)

d — 2 times
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forall x € X. Letting t :=4— C; —y— C1—> + 1, we get
o5 (Co)] = goler 0 0)
d — 2 times
for all x € X. Hence we have
e on rn-‘rl 2n+l
|5 (59) - 3 (G|

’J’l

() =55

2n

< (2" 2o 0) (3.102)
_2”+1t(p ’r N ’

d — 2 times

forallx € X and n > 1. By (3.102), we have

|3 (o) = 50 o)l

_szﬂ (rk ik ..,0) (3.103)

d — 2 times

forall x € X and m,n > 1 with m < n. This shows that the sequence {3 f( X))}

is a Cauchy sequence for all x € X. Since Y is complete, the sequence {5 f Zx)}
converges for all x € X. So we can define a mapping L : X — Y by

n

o= i 1)

for all x € X. Since f(—x) = —f(x) for all x € X, we have L(—x) = —L(x) for all
x € X. Also, we get

D1 L(xy, -+ .xq)|| = lim —

n—>o00 2N

rn 2}’! 2}’!
< lim —w( —Xp, ,—xd)
rn

n—o00 2N

=0

for all x;,--- ,x4 € X. So L is a generalized additive mapping. Putting m = 0 and
letting n — oo in (3.103), we get (3.101).

Now, let L' : X — Y be another additive mapping satisfying (3.101). By
Lemma 3.64, L and L’ are additive. So we have
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IL(x) — L' ()| :; L(i ) ( )H
< 215 ol + e () =15
2r" 28 2"
= ntl t(p( T u)

d — 2 times

which tends to zero as n — oo for all x € X. So we can conclude that L(x) = L' (x)
for all x € X. This proves the uniqueness of L.
By the assumption, for each u € U(A), we get

n

IDLG, 0. Ol = lim - Duf(z_x u)H

n—o00 2N
d — 1 times d — 1 times
er n
< lim —(p(—x,O,--- ,0)
n—o00 2N M ~———
d — 1 times
=0

for all x € X and so

ux
(=1C1 —4—1 C—1 + l)rL(T) = (4-1C1 —a—1 Ci—1 + Dul(x)
forall u € U(A) and x € X. Since L is additive,
L(ux) = rL(ﬂ) — uL(x) (3.104)
r

forallu € U(A) and x € X.
Now, let a € A (a # 0) and M be an integer greater than 4|a|. Then we have

a 1 2 1
‘— <-<l—-=z=_.
M 4 3 3

By Kadison and Pederson [167], there exist three elements u;, uy, u3 € U(A) such
that 357 = u; + ua + u3. So, by (3.104), we have

M _a I _a M a
M M
= ?L(ulx + upx + uzx) = ?(L(ulx) + L(uzx) + L(uzx))

M M
= ?(ul +ux + uz)L(x) = 3 3]‘%14()6)

= aL(x)
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forall a € A and x € X. Hence we have
L(ax + by) = L(ax) + L(by) = aL(x) + bL(y)

forall a,b € A witha,b # 0 and x,y € X and L(0x) = 0 = OL(x) for all x € X. So
the unique generalized additive mapping L : X — Y is an A-linear mapping. This
completes the proof. O

Corollary 3.67. Letr > 2 and 9, p > 1 be positive real numbers or let r < 2 and
0, p < 1 be positive real numbers. Let f : X — Y be an odd mapping such that

d
IDuf Gt xa) || < 6 [P

j=1
forallu € U(A) and x1,--- , x4 € X. Then there exists a unique A-linear generalized
additive mapping L : X — Y such that
Ly’

[lx[1”

lF6) = Ll < ("' =21 (4—2C1 —4—2 C1—» + 1)

forall x € X.

Proof. Defining ¢(xy,--- ,x4) = 0 Z/['l=1 [|xj||” and applying Theorem 3.66, we get
the desired result. a

Theorem 3.68. Letr # 2. Let f : X — Y be an odd mapping for which there exists
a function ¢ : X* — [0, 00) satisfying (3.100) such that

o

. Y v 2
Px1, o0, xq) = Zﬁﬁl’(le,'“ ,Zxd> <00
j=
forallu € U(A) and xy,--- ,xq € X. Then there exists a unique A-linear generalized
additive mapping L : X — Y such that
1)~ L) < : p(x.x.0.--.0)
X) —L(x)|| < PLXX, 0,0
2(4—2C1 —4—2 Cr2 + 1) —

d — 2 times
forall x € X.

Proof. Note that f(0) = 0 and f(—x) = —f(x) for all x € X since f is an odd
mapping. Let u = 1 € U(A). Putting x; = x, = xandx3 = --- = x, = 0
in (3.100), we have

1
d—2C1 =42 C— + 1

(20 =

(p(x,x,O,---,O)

d — 2 times
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forall x € X. Letting t :=4— C; —y— C1—> + 1, we get

Hf()——f( )Hf—qﬂ(x Tx0.00.0)

d — 2 times
forall x € X.
The rest of the proof is similar to the proof of Theorem 3.66. This completes the
proof. O

Corollary 3.69. Letr < 2 and 0, p > 1 be positive real numbers or let r > 2 and
0, p < 1 be positive real numbers. Let f : X — Y be an odd mapping such that

d
IDuf Gt xa) || < 6 Illl?

j=1
forallu € U(A)andx,--+ ,xq4 € X. Then there exists a unique A-linear generalized
additive mapping L : X — Y such that
I ~ Lol < i el
x) —Lx)| < X
2t =) (4—2C —4—2 Ci2 + 1)
forall x € X.
Proof. Defining
d
PG x) = 03 Il
and applying Theorem 3.68, we get the desired result. a

Now, we investigate the Hyers—Ulam stability of linear mappings for the case
d=2.

Theorem 3.70. Let r # 2. Let f : X — Y be an odd mapping for which there exists
a function ¢ : X> — [0, 00) such that

and

ux+ uy

[ () — @ — )] = pey) (3.105)
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for all u € U(A) and x,y € X. Then there exists a unique A-linear mapping
L : X — Y such that

) ~ Ll < 5660

forall x € X.
Proof. Letu =1 € U(A). Putting x = y in (3.105), we have

o (22) - 2] = o0

for all x € X and so

@) — 26(22) | < 2otn
o= 51(00)] =3

forall x € X.
The rest of the proof is the same as in the proof of Theorem 3.66. This completes
the proof. |

Corollary 3.71. Let r > 2 and 0, p > 1 be positive real numbers or let r < 2 and
0, p < 1 be positive real numbers. Let f : X — Y be an odd mapping such that

ux + uy
[7(5=2) — w0 — )| = 60117 + 11)
for all u € U(A) and x,y € X. Then there exists a unique A-linear mapping
L : X — Y such that

—1

If () = L || <

| |

forall x € X.

Proof. Defining ¢(x,y) = 6(||x||” + ||[y||?) and applying Theorem 3.70, we get the
desired results. |

Theorem 3.72. Let r # 2. Let f : X — Y be an odd mapping for which there exists
a function ¢ : X> — [0, 00) satisfying (3.105) such that

0o S

_ 2 @

Px,y) = 21: ;‘P(Eﬁﬁ 5)’) <o
=

for all u € U(A) and all x,y € X. Then there exists a unique A-linear mapping
L : X — Y such that
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1.
Fe) = L&) = Z6(x.x)
forall x € X.
Proof. Letu = 1 € U(A). Putting x = y in (3.105), we have
2
|7(5%) = 20| = 0.0
r

for all x € X and so
1 ror
JE— < — —_ —
Hf(x) f( )H— - (2x’ 2x)
forall x € X.

The rest of the proof is similar to the proof of Theorem 3.66. This completes the
proof. O

Corollary 3.73. Letr < 2 and 9, p > 1 be positive real numbers or let r > 2 and
0, p < 1 be positive real numbers. Let f : X — Y be an odd mapping such that

ux+uy

o7 (52 = w0 = w )| = 0P+ 1v17)

for all u € U(A) and x,y € X. Then there exists a unique A-linear mapping
L : X — Y such that

p—1

=0
e =L = == Il

forall x € X.

Proof. Defining ¢(x,y) = 6(||x||” + ||y|I”) and applying Theorem 3.72, we get the
desired results. |

3.5.3 [Isomorphisms in Unital C*-Algebras

Assume that A is a unital C*-algebra with the norm || - || and the unit ¢ and B is a
unital C*-algebra with the norm || - ||. Let U(A) be the set of unitary elements in A.
Now, we investigate C*-algebra isomorphisms in unital C*-algebras.

Theorem 3.74. Letr # 2. Let h : A — B be an odd bijective mapping satisfying
( uy) = h(r,, w)h(y) for allu € U(A), y € A and n > 0 for which there exists a
functlon ¢ 1 AY - [0, 00) such that
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X4 2J
2(;5('0(;)61"“ ,F.Xd) < 00, (3106)
j=

IIDuh(Mw' Xl < @(xr, -+ xa),

Hh(—u) h( <(p(2n 2—u) (3.107)
\_,_r.a

d times

forallpeS' :={LeC: |Al=1LuecUQA),n>0andxi,-- x5 €A. Assume
that lim,— o ;n—,,h(f—:e) is invertible. Then the odd bijective mapping h : A — B is a
C*-algebra isomorphism.

Proof. Consider the C*-algebras A and B as left Banach modules over the unital
C*-algebra C. By Theorem 3.66, there exists a unique C-linear generalized additive
mapping H : A — B such that

I
1) = HWI = 5— ey f(x.x.0--.0)  (3.108)

d — 2 times

for all x € A. The generalized additive mapping H : A — B is given by

for all x € A. By (3.106) and (3.107), we get

H®u*) = lim ﬂh(zu ) = lim ﬂh(zu)*

n—00 21" \ nro0 21\

NN
= ( lim —h(—u)) = H(u)*
n—o00 2N 2
for all u € U(A). Since H is C-linear and each x € A is a finite linear combination

of unitary elements (see [168]), i.e., x = > ", Aju; for all ;; € C and u; € U(A),
we have ‘

H(x*) = H(irju;) i iTH(u,-)*
=1 =1 =1
— (L) =( f A) = HE*
j=1 j=1

for all x € A. Since h(3uy) = h(Zu)h(y) forallu € U(A),y € Aand n > 0, we
have
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.o 2 Lo 2
Haw) = lim n(G) = tim, 2o (o)
= Hwh(y) (3.109)

forall u € U(A) and y € A. By the additivity of H and (3.109), we have

%H(uy) = H(%uy) = H(M(%)’)) = H(“)h(%y)

forall u € U(A) and y € A. Hence we have
% 2" P
H(uy) = EH(u)h<r—ny) - H(u);h(r—ny) (3.110)
forallu € U(A) and y € A. Taking n — oo in (3.110), we obtain
H(uy) = HwH(y) (3.111)

forall u € U(A) and y € A. Since H is C-linear and each x € A is a finite linear
combination of unitary elements, i.e., x = ij=1 Ajuj forall A; € C and u; € U(A),
it follows from (3.111) that

H(xy) =H ( > /WJY) =Y NHwy) =Y LHu)H()
j=1 Jj=1

j=1

j=1

forall x,y € A. By (3.109) and (3.111), we have

H(e)H(y) = H(ey) = H(e)h(y)

forall y € A. Since lim,—c0 Zrh(3¢) = H(e) is invertible,

H(y) = h(y)

for all y € A. Therefore, the odd bijective mapping h : A — B is a C*-algebra
isomorphism. This completes the proof. O

Corollary 3.75. Let r > 2 and 6, p > 1 be positive real numbers or let r < 2 and
0, p < 1 be positive real numbers. Let h : A — B be an odd bijective mapping
satisfying h(%uy) = h(Zu)h(y) for allu € U(A), y € A and n > 0 such that

Iz Iz
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d
IDuhG - x)ll <6 Il

Jj=1
and

2o
<d—
=4

2" 2" \*
() =)
rn rn
forall u € Shue U(A),n>0andxy,--- ,xq € A. Assume that lim,_, 5 ;—:h(f—:e)
is invertible. Then the odd bijective mapping h : A — B is a C*-algebra
isomorphism.

Proof. Defining
d
Pxr. e xg) =0 ) [l
j=1

and applying Theorem 3.74, we get the desired results. |

Theorem 3.76. Let r # 2. Let h : A — B be an odd bijective mapping satisfying
h(f—:uy) = h(f—,’,’u)h(y) forallu € U(A), y € A and n > 0 for which there exists a

function ¢ : A — [0, 00) satisfying (3.106), (3.107). Assume that lim,_ s ;—Zh(%—Ze)
is invertible such that

IDuhCx1, - x|l < o(xr,-- -, Xa) (3.112)

forall xi,--- ,x; € A and u = 1,i. If h(tx) is continuous in t € R for each fixed
X € A, then the odd bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. Put u = 1in(3.112). By the same reasoning as in the proof of Theorem 3.74,
there exists a unique generalized additive mapping H : A — B satisfying (3.108).
By (3.112), the generalized additive mapping H : A — B is R-linear. Put u = i
in (3.112). By the same method as in the proof of Theorem 3.66, one can obtain that

Moo i on
H(ix) = lim —h(—ix) — lim > h(—x) = iH(x)
" r

n—o00 2N n—o0 2N

for all x € A. For each element A € C, let A = s + it, where s, t € R. Then we have

H(Ax) = H(sx + itx) = sH(x) 4+ tH(ix) = sH(x) + itH(x)
= (s+ it)H(x) = AH(x)

forall A € C and x € A. Thus we have
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H(¢x+ ny) = H(Cx) + H(ny) = {H(x) + nH(y)

forall ¢,n € C and x,y € A. Hence the generalized additive mapping H : A — B is
C-linear.

The rest of the proof is the same as in the proof of Theorem 3.66. This completes
the proof. O

3.6 Jordan %-Derivations and Quadratic Jordan
#-Derivations

Jordan *-derivations were introduced in [307, 308] for the first time and the structure
of such derivations has been investigated in [52]. The reason for introducing
these mappings was the fact that the problem of representing quadratic forms by
sesquilinear ones is closely connected with the structure of Jordan *-derivations.
In [13], An et al. investigated Jordan x-derivations on C*-algebras and Jordan
x-derivations on JC*-algebras associated with a special functional inequality.

In this section, we consider the Hyers-Ulam stability of Jordan *-derivations and
quadratic Jordan *-derivations on real C*-algebras and real JC*-algebras. We also
prove the superstability of Jordan *x-derivations and quadratic Jordan *-derivations
on real C*-algebras and real JC*-algebras under some conditions [50].

3.6.1 Stability of Jordan %-Derivations

Here we prove the Hyers—Ulam stability of Jordan *-derivations on real C*-algebras
and real JC*-algebras.

Definition 3.77. Let A be a real C*-algebra. An R-linear mapping D : A — A is
called a Jordan *-derivation if

D(a*) = a*D(a) + D(a)a*

foralla € A.

The mapping D, : A — A,a — a*x — xa*, where x is a fixed element in A,
is a Jordan *-derivation. A real C*-algebra A endowed with the Jordan product
aob:= “I’—erb“ on A is called a real JC*-algebra (see [13, 225]).

Definition 3.78. Let .4 be a real JC*-algebra. An R-linear mapping § : A — A is
called a Jordan x-derivation if

8(a®) = a* o D(a) + D(a) o a*

forall a € A.
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Theorem 3.79. Let A be a real C*-algebra. Suppose thatf : A — Ais a mapping
with f(0) = 0 for which there exists a function ¢ : A> — [0, 00) such that

@a.b.c):= #(p(Z”aZ”b,Z”c) < 00 (3.113)
n=0
and
If(Aa + b + ¢*) = Af(a) — f(b) —f(c)c™ = c*f (o)
< ¢(a,b,c) (3.114)

forall A € Randa,b,c € A. Then there exists a unique Jordan x-derivation § on

A satisfying

If(a) — 8(a)|| < ¢(a,a,0) (3.115)

foralla € A.
Proof. Settinga = b,c = 0and A = 1in (3.114), we have

If (2a) = 2f(@)|| < ¢(a.a.0)

for all a € A. One can use induction to show that

n m n—1
k=m

foralln > m > 0 and a € A. It follows from (3.113) and (3.116) that the
sequence {f (') } is a Cauchy sequence. Due to the completeness of A, this sequence
is convergent Define

o f&'

n—>oo n

d(a) :=

(3.117)

for all a € A. Then we have

1 1 f@*a) 1
8(550) = Jim, 55 = 79@

for each k € N. Putting ¢ = 0 and replacing a and b by 2"a and 2"b, respectively,
in (3.114), we get

1 n 1 n 1 n < 1 n n
H @ 0a+b) = A5 f2"a) — f 2'D) H < 5:9(2'a,2'b.0).
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Taking n — 0o, we obtain
§(ha + b) = A8(a) + 8(b)

forall a,b € Aand A € R. So § is R-linear. Putting « = b = 0 and substituting ¢
by 2"c in (3.114), we get

1 1 1
H ﬁf(zanz) _ ﬁf(znc)(znc*) _ ﬁ(znc*)f(znc)
< %(p(o, 0,2%)

< %(p(0,0,Z"c).
Taking n — 0o, we obtain
8(c®) = 8(c)c* + c*8(c)
for all ¢ € A. Moreover, it follows from (3.116) with m = 0 and (3.117) that
[6(a) —f(a)|| < ¢(a.a.0)
foralla € A.

For the uniqueness of §, let § : A —> B be another Jordan x-derivation
satisfying (3.115). Then we have

18(a) = 8(a) %ua(z"a) —Q'a)]

IA

1 ~
7 18Q@%) —f 2" )| + IIf (2"a) — 62" a)]))

o
1 nbi i
<2 § ﬁgo(z Ya,2"a, 0)
j=1

001
=2) —¢(@a.2a.0).
j=n4J<p(a a,0)

which tends to zero as n — oo for all a € A. So § is unique. Therefore, § is a Jordan
x-derivation on .A. This completes the proof. O

Remark 3.80. Let A be a real C*-algebra. Suppose that f : A — A is a mapping
with £(0) = 0 for which there exists a function ¢ : A> — [0, 0o) satisfying (3.114)
and
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o0
~ — a b c
P00 =327 (5 ) <00

n=1

for all a, b, c € A. Then there exists a unique Jordan *-derivation § on A satisfying

If (@) = 8(a)|| < ¢(a.a.0)

foralla € A.

Corollary 3.81. Let A be a real C*-algebra and ¢, p be positive real numbers with
p # 1. Suppose that f : A — A is a mapping satisfying

If (ka + b + %) = Af (@) — f(b) — ¢f () — f(e)c*|
< e(lal” + 11217 + Nlel”)

forall A € Randa,b,c € A. Then there exists a unique Jordan x-derivation § on

A satisfying

2e
2=

If(@) = é(a)| = llall” (3.118)

foralla € A.
Proof. Putting

p(a.b.c) = e(l|al” + [[BII” + lIc]”)

in Theorem 3.79, we get the desired result. O

Now, we consider the Hyers-Ulam stability of Jordan *-derivations on a real
JC*-algebra A. Since the proofs are similar to the above results, here we omit them.

Remark 3.82. Let A be a real JC*-algebra. Suppose that f : A — A is a mapping
with £(0) = 0 for which there exists a function ¢ : A3 — [0, c0) such that

oo

1
Ga.b.c):= ST#(2'a,2'h,2") < 00

n=0

and

If(Aa + b+ ¢*) — Af(@) —f(b) — f(c) o c* — c* o f(O)|
<¢(a,b,c) (3.119)
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forall A € R and a, b, ¢ € A. Then there exists a unique Jordan *-derivation § on A
satisfying

If(a) = 8(@)|| < ¢(a,a.0)

foralla € A.

Remark 3.83. Let A be a real JC*-algebra. Suppose that f : A — A is a mapping
with £(0) = 0 for which there exists a function ¢ : A* — [0, c0) satisfying (3.119)
and
3(a b, c) izn_l(a b C)<
a,b,c) = —, =, = (o)
v P\gn 2 o

n=

for all a, b, c € A. Then there exists a unique Jordan *-derivation § on A satisfying

If(a) = 8@l < ¢(a.a,0)

foralla € A.
Corollary 3.84. Let Abe areal JC*-algebra and e, p be positive real numbers with
p # 1. Suppose that f : A — A is a mapping satisfying
If(Ra + b + ¢*) = Af(a) —f(b) = ¢* o f(c) = f(c) o c*|
< e([lall” + 1817 + llell”)
forall A € Rand a,b,c € A. Then there exists a unique Jordan *-derivation § on

A satisfying

2e

@)~ 3@l = 5=

llall”

foralla € A
Proof. The result follows from Remarks 3.82 and 3.83 by putting

p(a.b.c) = e(llal” + [I]" + llc[l”). O

3.6.2  Stability of Quadratic Jordan %-Derivations

Now, we prove the Hyers-Ulam stability of quadratic Jordan *-derivations on real
C*-algebras and real JC*-algebras.
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Definition 3.85. Let A be a real C*-algebra. A mapping D : A — A is called a
quadratic Jordan x-derivation if D is a quadratic R-homogeneous mapping, that is,
D is quadratic, D(Aa) = A’D(a) foralla € Aand A € R and

D(a’) = (a*)’D(a) + D(a)(a*)*

forall a € A.

The mapping D, : A — A, a — (a*)’x — x(a*)?, where x is a fixed element in
A, is a quadratic Jordan *-derivation.

Definition 3.86. Let A be a real JC*-algebra. A mapping § : A — A is called a
quadratic Jordan x-derivation if § is a quadratic R-homogeneous mapping and

§(a®) = (a*)* o D(a) + D(a) o (a*)’

foralla € A.

Theorem 3.87. Let A be a real C*-algebra. Suppose thatf : A — Ais a mapping
with f(0) = 0 for which there exists a function ¢ : A> — [0, 00) such that

oo

3 1
Gla.b) =Y F(p(Zka, 2kb) < o0,
k=0

If (Aa + Ab) + f(Aa — Ab) — 2A%f(a) — 2A°f(b)||
<o(a,b), (3.120)
If(a®) — f(a)(@*)* — (@*)*f(a)|| < @(a,a) (3.121)

foralla,b € Aand )\ € R. Then there exists a unique quadratic Jordan x-derivation
8 on A satisfying

(@)~ 8@l < 36(@a) (3.122)

foralla € A.
Proof. Puttinga = band A = 1 in (3.120), we have

If 2a) — 4f (@) < ¢(a.a)

for all a € A. One can use induction to show that
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n—1
f@a)  f@ra)| _ 1 ¢(2%a,2%)
_ < = I - 3.123
) 4n 4m 4 ;ﬂ 4k ( )
f(2"a)
foralln > m > 0 and a € A. It follows from (3.123) that the sequence m

is a Cauchy sequence. Since A4 is complete, this sequence is convergent. Define

8(a) := lim ACK)

n—00 4n

forall a € A. Since f(0) = 0, we have §(0) = 0. Replacing a and b by 2"a and 2"b,
respectively, in (3.120), we get

Hf(zn(xa TAD) | f@Qa=db) o fQ') L f@'D) |
4n 4n 4n 4n
_ ¢(2%a,2"b)

Taking n — oo, we obtain
§(Aa + Ab) + 8(Aa — Ab) = 2A28(a) + 2A%5(b) (3.124)

foralla,b € Aand A € R. Putting A = 1 in (3.124), we obtain that § is a quadratic
mapping. It is easy to check that the quadratic mapping § satisfying (3.122) is unique
(see the proof of Theorem 3.79). Setting b := ain (3.124), we get §(2Aa) = 4A%8(a)
foralla € Aand A € R. Hence §(Aa) = A%8(a) foralla € A and A € R. Replacing
aby 2"ain (3.121), we get

MR NG (L WL o
42n 2n

42n 4
_ Hf(22na2) 22n(a*)2f(2na) f(2"a) 22n(a*)2 H
- 42n 22n 4n 4n 22n
- ¢(2"a,2"a)
- 42n
- ¢(2"a,2"a)
= —4n

for all a € A. Thus we have

¢(2"a,2"a)
4n B

18(a®) — (@*)*8(a) — 8(@)(@™)*|| = lim 0.

Therefore, § is a quadratic Jordan x-derivation on .4. This completes the proof. O
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Remark 3.88. Let A be a real C*-algebra. Suppose that f : A — Ais a
mapping with f(0) = 0 for which there exists a function ¢ : A> — [0, 00)
satisfying (3.120), (3.121) and

s a b
@(a,b) = 24’@(?, ?) <
k=1

for all a,b € A. Then there exists a unique quadratic Jordan *-derivation § on A
satisfying

(@)~ 8l < 36(@a)

foralla € A.

Corollary 3.89. Let A be a real C*-algebra and ¢, p be positive real numbers with
p # 2. Suppose that f : A — A is a mapping such that

lf(Xa + Ab) + f(Aa — Ab) — 2A°f(a) — 2A°F (b)|| < e(llall” + I|bII")
and

If (@) = a’f (@) = f(@)(@*)*|| < 2¢]all”

foralla,b € Aand A € R. Then there exists a unique quadratic Jordan x-derivation
8 on A satisfying

2e

@) ~ 3@l = ;=

lall” (3.125)

foralla € A.
Proof. Putting

¢(a,b) = &([lall” + [6]")

in Theorem 3.87, we get the desired result. |

Here we assume that A is a real JC*-algebra. Then we can get the Hyers-Ulam
stability of quadratic Jordan x-derivations on 4.

Remark 3.90. Suppose that f : A — A is a mapping with f(0) = 0 for which there
exists a function ¢ : A% — [0, 00) such that

oo

3 1
Gla.b) =Y F(p(Zka, 2kb) < oo,
k=0
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If (Aa + Ab) + f(ra — Ab) — 2A%f(a) — 2A%f(b)|| < @(a,b),  (3.126)
If (@®) — (a*)* o f(a) — f(a) o (a*)?|| < ¢(a.,a) (3.127)

forall a,b € Aand A € R. Then there exists a unique quadratic Jordan *-derivation
8 on A satisfying

@ ~ 5@ = (a.a)

foralla € A.

Remark 3.91. Suppose that f : A — A is a mapping with f(0) = 0 for which there
exists a function ¢ : A> — [0, c0) satisfying (3.126), (3.127) and

~ . (a b
¢(a,b) = 24 ¢<?’?) < 00
k=1

for all a,b € A. Then there exists a unique quadratic Jordan *-derivation § on .4
satisfying

@ ~ 5@ < (a.a)

foralla € A.

We can obtain the following Remark by letting ¢(a,b) = e(||a|? + ||b||”) in
Remarks 3.90 and 3.91.

Remark 3.92. Let ¢ and p be positive real numbers with p # 2. Suppose that
f: A— Ais amapping such that

If (ha + Ab) + f(a — Ab) — 22°f(a) = 22°f (b) | < e(lla|l” + bII")

and

If(@®) — (@) o f(a) = f(a) o (@*)*| < 2ellal”

forall a,b € Aand A € R. Then there exists a unique quadratic Jordan *-derivation
8 on A satisfying

2e

@ ~ sl = =5,

lall”

foralla € A.
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3.6.3 Stability of Jordan %-Derivations: The Fixed
Point Method

Now, we assume that A is a real C*-algebra and prove the stability of Jordan -
derivations by the fixed point method.

Theorem 3.93. Letf : A — A be a mapping with f(0) = 0 and ¢ : A> — [0, o)
be a function such that

If(Ra + b + ) = Af(a) = f(b) = f(e)c* = c*f(O)|
< g(a,b,c) (3.128)

forall A € Randa,b,c € A. If there exists a constant k € (0, 1) such that
¢(2a,2b,2c) < 2kp(a,b,c) (3.129)

for all a,b,c € A, then there exists a unique Jordan *-derivation § : A — A
satisfying

1
@ = 5@l = 55— (@0 (3.130)

foralla € A.
Proof. 1t follows from (3.129) that

. e(2a, 2/p, 2c)
lim ——= =0
j—>00 2

forall a,b,c € A.Putting A = 1,a = b and ¢ = 0in (3.128), we have
If (2a) — 2f(@)|| < ¢(a,a,0)
for all a € A and so
1 1
lr@-3rea)| = Se@.a.0 (3.131)

for all a € A. We consider the set £2 := {h: A — A : h(0) = 0} and introduce the
generalized metric on 2 defined as follows:

d(hi, hy) :==inf{C € (0,00) : [[h1(a) — h2(a)| < Ce(a,a,0), Ya € A}
if there exists such a constant C and, otherwise, d(h, h;) = oo. We know that d is

a generalized metric on £2 and the metric space (2, d) is complete. We now define
the linear mapping 7' : 2 — £2 by
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Th(a) = %h(2a) (3.132)

for all a € A. For any hj,h, € £2,1let C € R* be an arbitrary constant with
d(l’ll, hz) < C, that is,

[h1(a) — ha(a)|| < Co(a,a,0) (3.133)

for all a € A. Substituting a by 2a in the inequality (3.133) and using the
equalities (3.129) and (3.132), we have

1
IThi(@) = Tha(a) | = i (2a) — ha(2a) |

IA

1
EC(p(Za, 2a,0)

IA

Cko(2a,2a,0)

for all a € A and so d(Thy,Th;) < Ck. Therefore, we conclude that
d(Thy, Thy) < kd(hy, hy) for all hy, hy, € 2. It follows from (3.131) that

d(1f.f) < % (3.134)

By Theorem 1.3, the sequence {T"f} converges to a unique fixed point§ : A — A
inthe set 2; = {h € 2 : d(f,h) < oo}, that s,

tim £ (ina) = 5(a)

n—00 n

for all a € A. By Theorem 1.3 and (3.134), we have

dar.f) _ 1

.9 = 4 = 30-n

The above inequalities show that (3.130) holds for all ¢ € A. Thus, by the same
proof of Theorem 3.79, we can deduce that § is R-linear by letting ¢ = 0 and
replacing a and b by 2"a and 2"b, respectively, in (3.128). Also, we have

8(c?) = 8(c)c* + ¢*8(c)

forall ¢ € A. This completes the proof. |

The following shows that we can obtain a more accurate approximation
of (3.118) in the case p < 1.
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Corollary 3.94. Let p, 0 be non-negative real numbers withp < l andf : A — A
be a mapping with f(0) = 0 such that

[f(ha + b+ ¢*) = Af (@) — f(b) = f(e)e™ = c*f (O]
< O(lal” + 11217 + llcl”)

for all A € R and a,b,c € A. Then there exists a unique Jordan x-derivation

8 1 A — Asatisfying

If(a) = 8(a)|l <

lal”
2—2r

foralla € A.
Proof. The result follows from Theorem 3.93 by taking

p(a.b.c) = 0(lall” + [[B1” + llc]”)-

|

In the following, we show that, under some conditions, the superstability for
Jordan x-derivations on real C*-algebras.

Corollary 3.95. Letp, g, r, 0 be non-negative real numbers such that
p+ q+r e (1,00). Suppose that a mapping f : A — A satisfies the following:

If(ha + b + ¢*) = Af (@) — f(b) = f(e)e™ = c*f (O]
< O(lal” b1 Nl (3.135)

foralla,b,c € A. Then f is a Jordan *-derivation on A.

Proof. Lettinga = b = ¢ = 0 in (3.135), we have f(0) = 0. Once more, if we

putA = 1,c¢ = 0 and a = b in (3.135), then we get f(2a) = 2f(a) for all a € A.
. . .. noN _ An " f(@"a

By induction, it is easy to see that f(2"a) = 2"f(a) and so f(a) = % foralla € A

and n € N. Now, it follows from Theorem 3.93 that f is a Jordan *-derivation. [

Note that, in Corollary 3.95, if p + g + r € (0,1) and p > 0 such that
the inequality (3.135) holds, then, by applying ¢(x,y) = 0(||la|”||b]|?]c||") in
Theorem 3.93, f is again a Jordan *-derivation.

Theorem 3.96. Letf : A — A be a mapping with f(0) = 0 and ¢ : A> — [0, c0)
be a function such that

If(Aa + Ab) + f(Aa — Ab) — 2A%f(a) — 2A%f(b)|| < ¢(a.b)  (3.136)
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and
If (@) = f(@)(@*)* = (@*)’f (@) < p(a,a)
foralla,b € Aand A € R. If there exists a constant k € (0, 1) such that
©(2a,2b) < 4kp(a,b) (3.137)

for all a,b € A, then there exists a unique quadratic Jordan x-derivation

8 : A — A satisfying

1
If(a) — 5(61)||_4(1 )w(a,a) (3.138)

foralla € A.

Proof. By the same proof of Theorem 3.93, we consider the set
={g: A— A:g(0) = 0} and define the mapping d on £2 x 2 as follows:

d(g,h) :=inf{c € (0,0) : ||g(a) — h(a)| < c¢(a,a), Ya € A}

if there exists such a constant ¢ and, otherwise, d(g, #) = oco. One can easily show
that (£2, d) is complete. Now, we consider the mapping 7 : £2 — £2 defined by

Tgla) = 1500)

foralla € A. Forany g, h € £2 with d(g, h) < ¢, by the definition of d and T, we get

| 5800~ 0| < epa.20)

for all a € A. Using (3.137), we have

H 4g(2a) - —h(Za) H < ckop(a,a)
for all a € A. The above inequality shows that d(Tg, Th) < kd(g, h) forall g,h € £2.
Hence T is a strictly contractive mapping on §2 with the Lipschitz constant k.
Now, we prove that d(7f, f) < co. Puttinga = band A = 1in (3.136), we obtain
I 2a) — 4f (@) < ¢(a.a)

for all a € A and so

|30 @] < jo@a (3.139)
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for all a € A. We deduce from (3.139) that d(Tf,f) < 4—11. It follows from
Theorem 1.3 that d(7T"g, T”+1g) < oo for all n > 0 and so, in Theorem 1.3, we
have nyp = 0. Thus Theorem 1.3 hold on the whole §2. Hence there exists a unique
mapping § : A — A such that § is a fixed point of T and 7""f — § as n — oo. Thus
we have

ACAC)
im

n—oo 41

= 6(a)

for all a € A and so

1
df,8) < md(Tfaf) < 11—k

The above equalities show that (3.138) is true for all a € A. Now, it follows
from (3.137) that

. 92", 2"b)
lim —M = =

n—00 4n

0.

The rest of the proof is easy. |

In the following, we find a more accurate approximation relative to Corol-
lary 3.89 with the same conditions on the mapping f when p < 2. In fact, we obtain
a refinement of the inequality (3.125).

Corollary 3.97. Let 0 and p be positive real numbers with p < 2. Suppose that
f: A— Ais amapping such that

If(Aa + Ab) + f(Aa — Ab) — 2A°f(a) — 22 (B)|| < O(llall” + [B]1")
and
If (@) — (@*)’f(a) — f(a)(@*)*|| < 26]|al/”

foralla,b € Aand A € R. Then there exists a unique quadratic Jordan x-derivation
8 on A satisfying

If(a) = 8(a)|| <

llall”
4

foralla € A.
Proof. If we put

¢(a,b) = 6(|lall” + |[b]")

in Theorem 3.96, then we obtain the desired result. O
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The following shows that, under which conditions, a quadratic Jordan -
derivation on a real C*-algebra is superstable.

Corollary 3.98. Let 0, p, q be positive real numbers with p + q # 2. Suppose that
f: A— Ais amapping such that
If(Aa + Ab) + f(Aa — Ab) — 22°f (a) = 22°f () |
< 0(llal”llB)*) (3.140)

and

If(a®) — (@*)*f(a) — f(a)(@*)*| < O|al"* (3.141)

foralla,b € Aand A € R. Then f is a quadratic Jordan x-derivation on A.

Proof. Putting a = b = 0 in (3.140), we get f(0) = 0. Now, if we puta = b and
A = 1in (3.140), then we have f(2a) = 4f(a) for all a € A. It is easy to see, by
induction, that f(2"a) = 4"f(a) and so f(a) = L (i,”,“) foralla € Aandn € N.
It follows from Theorem 3.96 that f is a quadratic homogeneous mapping. Letting

@(a,b) = 6(]|a||”||b||?) in Theorem 3.96, the we can obtain the desired result. [

3.7 (a, B, y)-Derivations on Lie C*-Algebras:
The Direct Method

Let A be a Lie C*-algebra. A C-linear mapping D : A — A is a called an («, B, y)-
derivation of A if there exist o, 8, y € C such that

aD([x,y]) = BID(X).y] + y[x. D()]

for all x,y € A.

In this section, we review some works of Eshaghi Gordji et al. [98, 100] on the
Hyers-Ulam stability of («, 8, y)-derivations on Lie C*-algebras associated with the
following functional equation:

A () (TR <

In fact, we investigate the superstability and the Hyers—Ulam stability of
(o, B, y)-derivations on Lie C*-algebras.

Assume that A is a Lie C*-algebra with the norm || - ||. Now, we remember a
lemma to be used in the last sections.
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Lemma 3.99. Let X, Y be linear spaces and f : X — Y be an additive mapping
such that f(ux) = uf(x) forallx € X and u € T' := {1 € C: |A| = 1}. Then the
mapping f : X — Y is C-linear.

Lemma 3.100. Letf : A — A be a mapping such that

Hf(xz gxl) +f(x1 —33x3) +f(3x1 + §X3 —xz)HA
< IFGDl (3.142)

forall x1,x2,x3 € A. Then the mapping f : A — A is additive.

Proof. Letting x; = x, = x3 = 01in (3.142), we get ||3f(0)||4 < |[f(0)|]a+ = 0 and
sof(0) = 0. Letting x; = x, = 01in (3.142), we get

If(=x3) +/(x3)[la = IF(O)[la =0

for all x3 € A. Hence f(—x3) = —f(x3) for all x3 € A. Letting x; = 0 and x, = 6x3
in (3.142), we get

If (2x3) = 2f (x3)lla < IF (O)[la = O

for all x3 € A and so f(2x3) = 2f(x3) for all x3 € A. Letting x; = 0 and x, = 9x3
in (3.142), we get

If (3x3) = 3f(x3)lla < If (0)]la =0

for all x3 € A and so f(3x3) = 3f(x3) for all x3 € A. Letting x; = 0 in (3.142), we
get

(3) +re +£(a-3)], = rOls =0
for all x5, x3 € A. Then we have
f(%) + f(=x3) +f(x3 - %) =0 (3.143)

forall xa, x3 € A. Letting t; = x3 — % and 7, = 7 in (3.143), we get

f)—fth+6)+f(H)=0

forall #;,, € A and so f is additive. This completes the proof. O

Now, we prove the superstability of («, 8, y)-derivations in Lie C*-algebra A.
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Theorem 3.101. Let p # 1, 6 be nonnegative real numbers andf : A — A be a
mapping such that, for some o, 8,y € C,

Hf(,uxz?’— xl) +f(x1 —33,ux3) n ,uf(3xl + §X3 —xz) H

= IFGel (3.144)

and
lloof ([x1, x2]) — BIf (x1), x2] — v [x1, £ )]l
< O(lx 117 + l|lx[1*) (3.145)

forall w € T' and x1,x5,x3 € A. Then the mapping f : A — A is an (a, B, y)-
derivation.

Proof. Assume p > 1. Let © = 1 in (3.144). By Lemma 3.100, the mapping
f 1A — Aisadditive. Letting x; = x, = 0in (3.144), we get

If (=px3) + pufx3)lla < IF(0))la = O
forall x3 € A and . € T'. Then we have
—f(ux3) + puf (x3) = f(—px3) + uf(x3) =0
forall x3 € A and € T'. Hence f(ux3) = uf(x3) forallx3 € Aand u € T'.

By Lemma 3.99, the mapping f : A — A is C-linear. Since f is additive, it follows
from (3.145) that

llef (fer, x2]) = BIF (xn), xa] = y [xr. f(x2)] 14

[x1, x2]

- o (1) 2] [
< im 20 2+ bl )

=0
for all x;,x; € A. Thus for some «, 8,y € C

af ([x1,x2]) = Blf(x1), x2] + yx1,f(x2)]

for all x1, x, € A. Hence the mappingf : A — Ais an («, B, y)-derivation. Similarly,
one obtains the results for the case p < 1. This completes the proof. O

Now, we prove the Hyers-Ulam stability of («, S, y)-derivations on Lie
C*-algebras.



3.7 (a, B, y)-Derivations on Lie C*-Algebras: The Direct Method 127

Theorem 3.102. Let p > 1, 0 be nonnegative real numbers and f : A — A be a
mapping with f(0) = 0 such that, for some o, 8,y € C,

() () o (PR |

< O(lxt 17 + flxe2ll” + (13 ]17) (3.146)
and
lloof ([x1, x2]) = BIf (x1), x2] — v [x1, £ ()]l
< 0(lx 17 + llx[1) (3.147)

forall w € T and x1,x,,x3 € A. Then there exists a unique (o, 8, y)-derivation
D : A — A such that

37 (1 4 27)6|lx |7

D) —=feen)l = ¥ 3 (3.148)
forall x| € A.
Proof. Letting u = 1, x, = 2x; and x3 = 0 in (3.146), we get
X
[3r(5) —reo| = a+ 2001 (3.149)
for all x; € A. By induction, we have
x| n—1
nel( 2y i(1=p)
(5)—rem| =a 2l 33
for all x; € A. Hence
n+m 1
3 (3n+m Bl H
n—1
< (L+2)0]n |7 3300
i=0
n+m—1
<A+ 20| Yo 30 (3.150)

i=m

forall m,n > 1 and x; € A. This implies that the sequence {3"f(3})} is a Cauchy
sequence for all x; € A. Since A is complete, the sequence {3"f(3})} converges.
Thus one can define the mapping D : A — A by
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o= iy (3)

for all x; € A. Moreover, letting m = 0 and n — oo in (3.150), we get (3.148). It
follows from (3.146) that

(25 () o222 )|

3 3
= (5 ()

() ()

n

0
o Pl + [l [ 4 fles 1)

< lim
n—>oo
=0

forall £ € T! and x1, x2, x3 € A and so

MX2 — X1 X1 — 3uxs 3x1 4+ 3x3 —x
o D(*—7) +un(Z577)
)+ 3 )TH 3

= uD(x1) (3.151)

for all 4 € T' and x;,x,x3 € A. Let 4 = 1 in (3.151). Then the mapping
D : A — A satisfies the inequality (3.142). By Lemma 3.100, the mapping
D : A — A is additive. Letting x;, = x = 0 in (3.151), we get

D( 3’““) + uD (%) = 0 and so D(ux3) = puD(x3) for all u € T' and all
x3 € A. By Lemma 3.99, D is C-linear. It follows from (3.147) that

laD([x1, x2]) — BID(x1), x2] — v [x1, D(x)]||
“f([xlg’nx -l 2 G

2p)_0

= lim 9"
n—>oQ

for all x1,x, € A. So, for some «, 8,y € A, we have

aD([x1,x2]) = B[D(x1), x2] + y[x1, D(x2)]

for all x;,x, € A. Thus D is an («, 8, y)-derivation.
Now, let D’ : A — A be another (o, B, y)-derivation satisfying (3.148). Then we
have
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IDGx1) — D ()|

D(3) - ( ol
=3(|o(5) G|+ 12 G) - (3)])

_ 23+ 21’)31’
= 3w@Er—3)

_371

Ollxl”

which tends to zero as n — oo for all x; € A. So we can conclude that
D(x)) = D (x1) for all x; € A. This proves the uniqueness of D. Therefore,
the mapping D : A — A is a unique (¢, B, y)-derivation satisfying (3.148). This
completes the proof. O

Theorem 3.103. Let p < 1, 6 be nonnegative real numbers and f : A — A with
f(0) = 0 be a mapping satisfying (3.146) and (3.147). Then there exists a unique
(o, B, y)-derivation D : A — A such that

37 (1 4 27)6|lx |7

o (3.152)

IDG) — )l <
forall x| € A.
Proof. It follows from (3.149) that
e — 37Gx| < T+ 2960

for all x; € A. By induction, we have

Hf(m) - 3_1nf(3”X1)H < (14270 Zn: 3i—1)

i=1

for all x; € A. Hence we have

|5 @) = 5 )|

< (1 + 2‘”)9|IX1 ”p Z 3(i+m)(p—l)
i=1
n+m '
<1+ 2)0)x P Y 30D (3.153)
i=m+1

for all m > 1 and x; € A. This implies that the sequence { 3/ (3"x1)} is a Cauchy
sequence for all x; € A. Since A is complete, the sequence {3,, f(3"x1)} converges.
Thus one can define the mapping D : A — A by
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. 1
D(xy) := lim ﬁf(3"x1)

for all x; € A. Moreover, letting m = 0 and n — oo in (3.153), we get (3.152).
The rest of the proof is similar to the proof of Theorem 3.102. This completes
the proof. |

Corollary 3.104. Let 6 be a nonnegative real number. Let f : A — A with be a
mapping f(0) = 0 such that, for some o, B,y € C,

() e () () < |

<40
and

lloof (P, x2]) = BIF(x1), x2] — y[x1, f(x2)]|| < 6

forall p € T' and x1,x,x3 € A. Then there exists a unique (o, B, y)-derivation
D : A — A such that

0
IDCr) =fe)ll = 5

forall x, € A.

3.8 Square Roots and 3rd Root Functional Equations:
The Direct Method

In this section, we introduce a square root functional equation and a 3rd root
functional equation. We prove the Hyers-Ulam stability of the square root functional
equation and of the 3rd root functional equation in C*-algebras.

Definition 3.105 ([96]). Let A be a C*-algebra and x € A be a self-adjoint element,
i.e., x* = x. Then x is said to be positive if it is of the form yy* for some y € A. The
set of positive elements of A is denoted by A™.

Note that A" is a closed convex cone (see [96]). It is well-known that, for a
positive element x and a positive integer n, there exists a unique positive element

y € A% such that x = y". We denote y by x (see [128]).
In this section, we introduce a square root functional equation:

S(x Fy4atyicd 4 y%x%y%) = S(x) + SO) (3.154)
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and a 3rd root functional equation:
1 1 1 1 1 1
T(x Ty 4 3xiyiad + 3y§x§y§) =T(x) + T(y) (3.155)

for all x,y € A™. Each solution of the square root functional equation is called a
square root mapping and each solution of the 3rd root functional equation is called
a 3rd root mapping.

Note that the functions S(x) = /x = x2 and T(x) = ¢/x = x3 in the set of non-
negative real numbers are solutions of the functional equations (3.154) and (3.155),
respectively.

Throughout this section, let AT and B* be the sets of positive elements in C*-
algebras A and B, respectively.

3.8.1 Stability of the Square Root Functional Equation

Here we investigate the square root functional equation in C*-algebras.

Lemma 3.106. Let S : At — BY be a square root mapping satisfying (3.154).
Then S satisfies

S(4"x) = 2"S(x) (3.156)

forallx € At andn € Z.

Proof. Putting x = y = 01in (3.154), we obtain S(0) = 0. Letting y = 0 in (3.154),
we obtain

S(4%) = S(x) = 2°S(x)
forallx € A*.
First of all, we use the induction on 7 to prove the equality (3.155) for all n > 1.
Replacing y by x in (3.154), we get
S(4x) = 25(x) (3.157)
for all x € A™. So the equality (3.156) holds for n = 1. Assume that

S(4*x) = 2kS(x) (3.158)

holds for a positive integer k. Replacing x by 4x in (3.158) and using (3.157), we
obtain

S@F1x) = S(4* - 4x) = 25S(4x) = 2+ 5(x)
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for all x € A™. So the equality (3.156) holds for n = k + 1. Thus, by induction, we
have

S(4"x) = 2"S(x) (3.159)

forallx e At andn > 1.
Next, replacing x by 4™"x in (3.159), we obtain

S(x) =S@"-47"x) =2"S(4 "x)
forall x € AT and n > 1 and so
S@"x) = 2"S(x)
forall x e AT and n > 1. Therefore, we have
S(4"x) = 2"S(»)

forall x € A™ and n € Z. This completes the proof. |

Now, we prove the Hyers-Ulam stability of the square root functional equation
in C*-algebras.

Theorem 3.107. Letf : At — B be a mapping for which there exists a function
¢ AT x AT — [0, 00) such that

Px,y) = iijp(—., —.) < o0 (3.160)

j=1
and
Hf(x +y 4 xiyixi 4 y%x%y%) —fx) —f0) H < p(x,y) (3.161)

for all x,y € AY. Then there exists a unique square root mapping S : AT — AT
satisfying (3.154) and

1
IF@ =S < 36(x.9) (3.162)

forall x € AT,

Proof. Letting y = xin (3.161), we get

4021 = p(x.0 (3.163)
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for all x € AT. It follows from (3.163) that

po-r ()] =e(33)

forall x € AT. Hence

() -2 @l =3 2o (Gy) e
+1

for all m,1 > 1 with m > [ and x € A™. It follows from (3.160) and (3.164) that the
sequence {2*f (3¢)} is a Cauchy sequence for all x € A™. Since BT is complete, the

sequence {Zkf (:—k)} converges and so one can define the mapping S : AT — B* by
i ke (X
s = i 21(3)
forall x € AT. By (3.163) and (3.164), we have
HS(x +y+ x%y%x% + y%x%y%) —S(x)—S) H
1 1 1 1 1 1
i (D ) )
= Jim 2 Hf 4% ) =N\

k y)
kl—lgloz q0(4k 4k
=0

IA

forall x,y € AT and so
S<x+y —l—x%y%x% —i—y%x%y%) —S(x)—S() =0.

Hence the mapping S : AT — B™ is a square root mapping. Moreover, letting [ = 0
and m — oo in (3.164), we get (3.162). So, there exists a square root mapping
S :AT — BT satisfying (3.154) and (3.162).

Now, let &’ : AT — BT be another square root mapping satisfying (3.154)
and (3.162). Then we have

IS = 8’| = qus(%) ~S% H

=2[s(5) (@) +2

2.29 /x Xx
S2Vp(x xy
2 44" 44

$(3) ()]

which tends to zero as ¢ — oo for all x € A™. So we can conclude that S(x) = §'(x)
for all x € A™. This proves the uniqueness of S. This completes the proof. a
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Corollary 3.108. Letp > % and 01, 0, be non-negative real numbers, and let
f : AT — B be a mapping such that

Hf(x +y+aiyixd + y%x%y%) —f) =) H
< 01 ([Ix]1” + IylP) + 62 - IIx]1% - [Iyll2 (3.165)

for all x,y € AY. Then there exists a unique square root mapping S : AT — BT
satisfying (3.154) and

260, + 6,

0
@) = S < = Il

forallx € AT,
Proof. Define
P v
o(x.y) = O (IxlI” + lIyll") + 62 - [IxII> - lIyll>

and apply Theorem 3.107. Then we get the desired result. |

Theorem 3.109. Let f : AT — B be a mapping for which there exists a function
@ AT x AT — [0, 00) satisfying (3.161) such that

o0
Fx,y) := Y 27p#x, 4y) < oo
j=0

for all x,y € AY. Then there exists a unique square root mapping S : AT — BT
satisfying (3.154) and

)~ Sl < 56(c.9)

forallx € AT,

Proof. Tt follows from (3.163) that

I~ 5760 = Joten

for all x € AT. The rest of the proof is similar to the proof of Theorem 3.107. O
Corollary 3.110. Let 0 < p < %, 01, 6, be non-negative real numbers and f :
AT — B* be a mapping satisfying (3.165). Then there exists a unique square root
mapping S : AT — BT satisfying (3.154) and
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20, + 6,

IF@ =Sl = 5=

[lx11”

forallx € AT,

Proof. Define

] )
@(x,y) = O(Ixl]” 4 [Iy[I") + 62 - [lx][> - Iyll>

and apply Theorem 3.109. Then we get the desired result. O

3.8.2 Stability of the 3rd Root Functional Equation

Now, we investigate the 3rd root functional equation in C*-algebras.

Lemma 3.111. Let T : At — BT be a 3rd root mapping satisfying (3.155). Then
T satisfies

T(8"x) = 2"T(x)

forallx € At andn € Z.
Proof. The proof is similar to the proof of Lemma 3.106. a

Now, we prove the Hyers-Ulam stability of the 3rd root functional equation in
C*-algebras.

Theorem 3.112. Let f : At — B be a mapping for which there exists a function
¢ AT x AT — [0, 00) such that

o0
o(x,y) = Yy il < o0
$o0(3.3)
and

r(x + 3+ 3dyiad 43556008 — 0 - 70|
= ¢, y) (3.166)

for all x,y € AT. Then there exists a unique 3rd root mapping T : AT — AT
satisfying (3.155) and

1) ~T@I = 36)

forallx € A™.



136 3 Stability of Functional Equations in C*-Algebras
Proof. Letting y = x in (3.166), we get

I (8x) = 2f (D) [| < p(x,x) (3.167)

for all x € A™. The rest of the proof is similar to the proof of Theorem 3.107. O

Corollary 3.113. Letp > 3 91, 0, be non-negative real numbers andf : At — BT
be a mapping such that

Hf(x+y+3xx S 4 3ydady z) — ) f(y)H
< O (IxIP + [IylIP) + 62 - 1)) 2 - [y]l2 (3.168)

for all x,y € A™. Then there exists a unique 3rd root mapping T : AT — BT
satisfying (3.155) and

91+92

) - Tl = -~

— 5 Il

forallx € AT,

Proof. Define

) P 2
¢ y) = Ou(Ix]” + [Iyll”) + 02 - [lxl> - Iyl

and apply Theorem 3.112. Then we get the desired result. O

Theorem 3.114. Let f : At — BT be a mapping for which there exists a function
@ : AT x AT — [0, 00) satisfying (3.166) such that

o0
o(x,y) = 22_j<p(8ix, 8'y) < 00
j=0

for all x,y € A™. Then there exists a unique 3rd root mapping T : AT — BT
satisfying (3.155) and

) - T = 58

forallx € A™.
Proof. 1t follows from (3.167) that

0~ 30 = ot

for all x € A™. The rest of the proof is similar to the proof of Theorem 3.107. [
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Corollary 3.115. Let0 <p < %, 01, 6> be non-negative real numbers and
f : At — BT be a mapping satisfying (3.168). Then there exists a unique 3rd root
mapping T : AT — BT satisfying (3.155) and

20, + 0
0 = Tl = =2 e

forallx € AY.

Proof. Define ¢(x,y) = 01(|x||”+ |[y|[”) +65-||x[|Z -|[y|| 2 and apply Theorem 3.114.
Then we get the desired result. O

3.9 Square Root and 3rd Root Functional Equations:
The Fixed Point Method

In this section, we prove the Hyers-Ulam stability of the square root functional
equation and the 3rd root functional equation in C*-algebras via fixed point
method [235].

3.9.1 Stability of the Square Root Functional Equation

In this section, we investigate the square root functional equation in C*-algebras.
Now, we prove the Hyers-Ulam stability of the square root functional equation
in C*-algebras.

Theorem 3.116. Let ¢ : AT x AT — [0, 00) be a function such that there exists
L < 1 with

L
ox.y) = —¢(4x. 4y) (3.169)
forallx,y € AT. Letf : AT — BY be a mapping satisfying
111 111
Hf(x +y+axtyixd + y4x2y4) —fx)—f) H
< o(x,y) (3.170)

for all x,y € AY. Then there exists a unique square root mapping S : AT — AT
satisfying (3.154) and

) — Sl < 55

o(x, x) 3.171)

forallx € AT,
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Proof. Letting y = x in (3.170), we get
IF(4x) = 2f )| = p(x. %) (3.172)
for all x € A™. Consider the set
X:={g:A" - BT}
and introduce the generalized metric on X defined by
d(g.h) = inf{p € Ry : [[g(x) —h()]| < pox,x), Vxe At}

where, as usual, inf¢) = +o0 which (X, d) is complete.
Now, we consider the linear mapping J : X — X such that

Jg(x) :=2g (2)

forall x € AT. Let g, h € X be given such that d(g, h) = ¢. Then
I8G) = hX)| < ¢(x, x)

for all x € AT. Hence we have
X X
g — 0ol = |2¢(5) —2n(3)| = Lot
forall x € A*. So, d(g. h) = e implies that d(Jg, Jh) < Le. This means that
d(Jg.Jh) < Ld(g, h)

for all g, h € X. It follows from (3.172) that

o) = botc

for all x € AT and so d(f,Jf) < % By Theorem 1.3, there exists a mapping

S: AT — BT satisfying the following:

(1) Sis afixed point of J, i.e.,

S(%) - %S(x) (3.173)

for all x € AT, The mapping S is a unique fixed point of J in the set

M={geX:d(f,g) <oo}.
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This implies that S is a unique mapping satisfying (3.173) such that there exists
a u € (0, 00) satisfying

If () =S = ne(x.x)

forallx e At;
(2) d(J"f,S) — 0as n — oo. This implies the equality

lim 2"f (41) = S(x)

n—>o00

forallx € AT,
3) d(,S) < 1%Ld(f, Jf), which implies the inequality

L
d(f.S) < .
¢ )_2—2L

This implies that the inequality (3.171) holds.
By (3.169) and (3.170), we have

f(x +y +x%y%x% +yél*x;y}t) _f<£) —f( y )

4n 4n 4n
XY
<2n (_’_)
- (p 4)1 4)1

<L'¢(x,y)

27!

|

forall x,y € AT and n € N. So, we have
HS(x+y +x%y%x% +y%x%y%) —Sx) —S(y)H =0

for all x,y € A™. Thus the mapping S : AT — B™ is a square root mapping. This
completes the proof. |

Corollary 3.117. Letp > % 01, 0, be non-negative real numbers andf : AT — BT
be a mapping such that

Hf (x +y+xiyix +y%x%y%) —fx) =) H
< O (IxlP + lylP) + 65 - [1xll% - (1] 2 (3.174)

forall x,y € AT. Then there exists a unique square root mapping S : AT — BT
satisfying (3.154) and
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0
100 — G < 22t SR

forallx € AT,

Proof. The proof follows from Theorem 3.116 by taking
o@.y) = Ol + IyIP) + 62 [lx]% - [Iy]1% forallx,y € AT and L=2"%. O

Theorem 3.118. Let ¢ : AT x AT — [0, 00) be a function such that there exists
L < 1 with

p(xy) < 2L<p(4 Z)

forall x,y € AT. Let f : AT — BY be a mapping satisfying (3.170). Then there
exists a unique square root mapping S : AT — A% satisfying (3.154) and

If () =S@| =

1
PEETAMRY
forallx € AT,

Proof. Let (X, d) be the generalized metric space defined in the proof of Theo-
rem 3.116. Consider the linear mapping J : X — X such that

Jg(x) := %gt(4x)

for all x € AT, It follows from (3.172) that

i 3] = So0

forallx € A™. Sod(f,Jf) < 3
The rest of the proof is similar to the proof of Theorem 3.116. This completes
the proof. O

Corollary 3.119. Let0 <p < %, 01, 6> be non-negative real numbers and
f : AT — BT be a mapping satisfying (3.174). Then there exists a unique square
root mapping S : At — BT satisfying (3.154) and

20 6
e = sl = 2 e

forallx € AY.
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Proof. The proof follows from Theorem 3.118 by taking

r )
@(x,y) = O(Ixl” + [Iy[I") + 62 - [Ix][= - lIyll>

forallx,y € AT and L = 2271, O

3.9.2 Stability of the 3rd Root Functional Equation

Now, we investigate the 3rd root functional equation in C*-algebras.
Now, we prove the Hyers-Ulam stability of the 3rd root functional equation in
C*-algebras.

Theorem 3.120. Let ¢ : AT x AT — [0, 00) be a function such that there exists an
L < 1 with

L
(p(x’ }’) = 5@(8)(’ 8)’)
forallx,y € AT, Letf : AT — BT be a mapping satisfying
111 111
(x4 3+ 30 yied - 3y8yd) 0 - 70|
< px.y) (3.175)

for all x,y € AT. Then there exists a unique 3rd root mapping T : AT — AT
satisfying (3.155) and

IF@) = T = =570
forallx € AY.
Proof. Letting y = xin (3.175), we get
1F(8x) =2f (Wl = ¢(x. %) (3.176)

for all x € A™. Let (X,d) be the generalized metric space defined in the proof of
Theorem 3.116. Consider the linear mapping J : X — X such that

Jg(x) :=2g (%)

forallx e AT,
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Now, we consider the linear mapping J : X — X such that
X
Jg(x) :=2g (§)

for all x € A*. It follows from (3.176) that

lre0 =21 (3) ] = Soten

for all x € X and so d(f, Jf) < %
The rest of the proof is similar to the proof of Theorem 3.116. This completes
the proof. O

Corollary 3.121. Letp > 3 91, 0, be non-negative real numbers andf : At — BT
be a mapping such that

Hf (x +y43xyins 4 3y%x%y%) —f(x) —f) H
< O (IxIP + [I¥lIP) + 62 - 1)) 2 - [y]l2 (3.177)

for all x,y € A™. Then there exists a unique 3rd root mapping T : AT — Bt
satisfying (3.155) and

0 (%)
IF(x) — T < 2“%ﬂwp

forallx € AT,

Proof. The proof follows from Theorem 3.120 by taking

4 P
p(x.y) = O (Ixl1” + lIyll") + 62 - [IxI|> - llyll2

forallx,y e AT and L = 2'7%. O
Theorem 3.122. Let ¢ : AT x AT — [0, 00) be a function such that there exists
L < 1 with

p(xy) < 2L<p(8 g)

forall x,y € AT. Let f : AT — BY be a mapping satisfying (3.175). Then there
exists a unique 3rd root mapping T : AT — AY satisfying (3.155) and

IF@) ~T@I < 5—57

¢(x,x)

forallx € AT,
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Proof. Let (X,d) be the generalized metric space defined in the proof of Theo-
rem 3.116. Consider the linear mapping J : X — X such that

I8 = 3889

for all x € A*. It follows from (3.176) that

i~ 3789 = So0

forallx € A and so d(f, Jf) < 3.
The rest of the proof is similar to the proof of Theorem 3.116. This completes
the proof. |

Corollary 3.123. Let0 <p < %, 01, 6, be non-negative real numbers and
f 1 AT — BT be a mapping satisfying (3.177). Then there exists a unique 3rd root
mapping T : AT — BT satisfying (3.155) and

@~ Tl = 22 2 e

forallx € AY.

Proof. The proof follows from Theorem 3.122 by taking

r )
@(x,y) = Ou(llxll” + IylI”) + 02 - x> - [Ivll>

forallx,y € AT and L = 2371, O

3.10 Positive-Additive Functional Equation

In this section, we consider a positive-additive functional equation in C*-algebras
[258]. Using fixed point and direct methods, we prove the stability of the positive-
additive functional equation in C*-algebras.

Definition 3.124 ([96]). Let A be a C*-algebra and x € A be a self-adjoint element,
i.e., x* = x. Then x is said to be positive if it is of the form yy* for some y € A. The
set of positive elements of A is denoted by A™.

Note that AT is a closed convex cone (see [96]). It is well known that for a
positive element x and a positive integer n there exists a unique positive element

y € A% such that x = y". We denote y by x (see [128]).
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In this section, we introduce the following functional equation:
1 L\™ 1 1\™
T((xm +ym) ) = (T(x)m + T(y)m) (3.178)

for all x,y € A" and a fixed integer m greater than 1, which is called a positive-
additive functional equation. Each solution of the positive-additive functional
equation is called a positive-additive mapping.

Note that the function f(x) = cx for any ¢ > 0 in the set of non-negative real
numbers is a solution of the functional equation (3.178).

Throughout this section, let AT and B* be the sets of positive elements in
C*-algebras A and B, respectively. Assume that m is a fixed integer greater than 1.

3.10.1 Stability of the Positive-Additive Functional
Equations: The Fixed Point Method

Here we investigate the positive-additive functional equation (3.178) in C*-algebras.
Lemma 3.125. Let T : AT — BT be a positive-additive mapping satisfy-
ing (3.178). Then T satisfies

T(2"x) =2"T(x)

forallx € A andn € Z.
Proof. Putting x = y in (3.178), we obtain T(2"x) = 2™T(x) for all x € A*. So,
one can show that

T(2™x) = 2™T(x)

forallx e AT andn € Z. O

Using the fixed point method, we prove the Hyers-Ulam stability of the positive-
additive functional equation (3.178) in C*-algebras. Note that the fundamental ideas
in the proofs of the main results in this section are contained in [62—64].

Theorem 3.126. Let ¢ : AT x AT — [0, 00) be a function such that there exists
L < 1 with

L
p(x,y) < om® (2"x,2™y) (3.179)

forallx,y € AT, Letf : AT — BT be a mapping satisfying
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7 (% +3%)") = (r0x +7007) | = 0em G180y

forallx,y € A*. Then there exists a unique positive-additive mapping T : AT — AT
satisfying (3.178) and

L
IF@) = TWI < Zr—r0r2) (3.181)
forallx € AT,
Proof. Letting y = x in (3.180), we get
If @) — 2" ()| < (x.x) (3.182)

for all x € AT. Consider the set
X:={g:A" - Bt}
and introduce the generalized metric on X defined by
d(g.h) = inf{p € Ry : () = h(¥)|| < po(x,x), ¥x € AT},

where, as usual, inf¢p = +oo which (X, d) is complete.
Now, we consider the linear mapping J : X — X such that

s = 2"g ()
forall x € AT. Let g, h € X be given such that d(g, h) = &. Then we have
l8(x) = ()| < @(x.x)
forall x € A" and so
g =@ = |2"5(57) = 2"8(55) | = Lot
forall x € A™. So, d(g. h) = e implies that d(Jg, Jh) < Le. This means that
d(Jg,Jh) < Ld(g,h)

for all g, h € X. It follows from (3.182) that

I =27 (2 )1l = 500
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for all x € AT and so d(f.Jf) < ZL,,, By Theorem 1.3, there exists a mapping

T : A" — BT satisfying the following:
(1) T is afixed point of J, i.e.,

X

T(z—m) - zimT(x) (3.183)

for all x € A*. The mapping T is a unique fixed point of J in the set
M={geX:d({f, g) < oo}

This implies that 7" is a unique mapping satisfying (3.183) such that there exists
a u € (0, 00) satisfying

If () =T = nelx.x)

forallx e At;
(2) d(J"f,T) — 0 as n — oo. This implies the equality

lim 2’””f( al ) = T()

n—>00 Qmn

forallx e At;

3) d(f.T) < 1TlLd(f ,Jf), which implies the inequality

L
dif,.T) < ———.
¢ )_2'”—2’"L

This implies that the inequality (3.181) holds.
By (3.179) and (3.180), we have

(2 (mr(55) + ()Y
= 2mn‘”<2fnn’%)

= L™¢(x.y)

ZWIVI

forall x,y € AT and n € N and so
() -1t s T

for all x,y € AT. Thus the mapping T : A* — B% is positive-additive. This
completes the proof. |
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Corollary 3.127. Letp > 1, 0y, 6, be non-negative real numbers andf : At — B+
be a mapping such that

V(e +07)") = (e +r007)|
< O (IxlP + Iy 17y + 65 - lIxl% - Iyll2 (3.184)

forallx,y € A™. Then there exists a unique positive-additive mapping T : AT — BT
satisfying (3.178) and

0
1@~ Tl = S22 e

forallx € AT,

Proof. The proof follows from Theorem 3.126 by taking

P P
@(x,y) = O1(xlI” + IylI”) + 62 - [lx]1Z - Iyl 2
forallx,y € AT and L = 2", O

Theorem 3.128. Let ¢ : AT x AT — [0, 00) be a function such that there exists an
L < 1 with

p(x,y) <2"Lg (;n 2ym)

forall x,y € AT. Let f : At — B™ be a mapping satisfying (3.180). Then there
exists a unique positive-additive mapping T : AT — A™ satisfying (3.178) and

1
) =T = 57— #x.0)

2’”L
forallx € A™.

Proof. Let (X, d) be the generalized metric space defined in the proof of Theo-
rem 3.126. Consider the linear mapping J : X — X such that

Jg) 1= 5.8 (")

for all x € A™. It follows from (3.182) that

I - o) < et

forallx € A™ and so d(f, Jf) < 3.
The rest of the proof is similar to the proof of Theorem 3.126. This completes
the proof. |
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Corollary 3.129. Let 0 < p < 1, 6y, 8, be non-negative real numbers and
f : AT — BY be a mapping satisfying (3.184). Then there exists a unique positive-
additive mapping T : At — B™ satisfying (3.178) and

200+ 6,
1F) = T@I < S Il

forallx € AY.

Proof. The proof follows from Theorem 3.128 by taking

r )
@(x,y) = O(Ixl]” 4+ [Iy[I") + 62 - [Ix]|= - Iyll>

forallx,y € AT and L = 2", O

3.10.2 Stability of the Positive-Additive Functional
Equations: The Direct Method

Now, using the direct method of Hyers, we prove the Hyers-Ulam stability of the
positive-additive functional equation (3.178) in C*-algebras.

Theorem 3.130. Letf : AT — B be a mapping for which there exists a function
¢ AT x AT — [0, 00) satisfying (3.180) and
o0 x y
G(x,y) = szf(p( ) < 00 (3.185)

omj’ pmj
j=1

forallx,y € AT. Then there exists a unique positive-additive mapping T : At — AT
satisfying (3.178) and

1
If () =T = ITiAREY (3.186)

forallx € AT,

Proof. Tt follows from (3.182) that

bo-2v(3)

=¢(3)

forallx € AT and so

() - R ) e
J
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for all k,/ > 1 with k > [ and x € AT. It follows from (3.185) and (3.187)
that the sequence {mef (sz)} is a Cauchy sequence for all x € AT, Since B7 is

complete, the sequence {2"f (55)} converges and so one can define the mapping
T:AY — BT by

7(x) := lim 2" (2m])
forall x € AT. By (3.180) and (3.185), we have
(s 2 ot 70|

= i 2y (E )

Jj—>oo

~((zr(55)) "+ ((55)) )|
= Jim 2% (55 39)

=0

forall x,y € AT and so
T((xi +y#) ) - (T(x)i + T(y)#) -0

for all x,y € A™. Hence the mapping T : AT — B™ is positive-additive. Moreover,
letting [ = 0 and passing the limit k — oo in (3.187), we get (3.186). So there exists
a positive-additive mapping T : AT — B satisfying (3.178) and (3.186).

Now, let T’ : AT — BT be another positive-additive mapping satisfying (3.178)
and (3.186). Then we have

1T ='W
=21 (55) -7 (35)]
=27 (5) = ()| =2

<2-2’”‘1~ X X
= @(ﬁ7%),

(3) 7 ()]

which tends to zero as ¢ — oo forall x € AT, So, we can conclude that T(x) = T"(x)
for all x € A, which proves the uniqueness of 7. This completes the proof. |



150 3 Stability of Functional Equations in C*-Algebras

Corollary 3.131. Letp > 1, 0y, 0, be non-negative real numbers andf : AT — B+
be a mapping satisfying (3.184). Then there exists a unique positive-additive
mapping T : AT — BT satisfying (3.178) and

)
@)~ Tl < 222
forallx € AT,

Proof. Define

r )
@(x,y) = Ou(llxll” + IylI”) + 02 - x> - lIvll>

and apply Theorem 3.130. Then we get the desired result. |

Theorem 3.132. Letf : AT — B be a mapping for which there exists a function
@ AT x AT — [0, 00) satisfying (3.180) such that

o0
§(x,y) i= ) 27"p(2"x, 2"y) < o0
j=0
forallx,y € A™. Then there exists a unique positive-additive mapping T : AT — BT

satisfying (3.178) and

1)~ TWI = 5,606

forallx € AT,

Proof. Tt follows from (3.182) that

00— 5@ = 5ot

for all x € AT, The rest of the proof is similar to the proof of Theorem 3.130. O

Corollary 3.133. Let 0 < p < 1, 61, 6, be non-negative real numbers and
f : AT — BY be a mapping satisfying (3.184). Then there exists a unique positive-
additive mapping T : At — B satisfying (3.178) and

20, + 0,
— mp

) =TI = 55—, X

forallx € AT,



3.11 Stability of *-Homomorphisms in JC*-Algebras 151
Proof. Define

) P L
¢ y) = Ou((Ix]” + lIylI”) + 02 - [lx]= - [Iy]l2

and apply Theorem 3.132. Then we get the desired result. O

3.11 Stability of *-Homomorphisms in JC*-Algebras

It is shown that every almost unital almost linear mapping f : A — B of JC*-
algebra A to a JC*-algebra 5 is a homomorphism when f(2"u o y) = f(2"u) o f(y)
for all unitaries u € A,y € A and n > 0 and every almost unital almost linear
continuous mapping f : A — B of a JC*-algebra A of real rank zero to a JC*-
algebra B is a homomorphism when f(2"u o y) = f(2"u) o f(y) forallu € {v € A :
v =v* ||v|| = 1, v is invertible}, y € A and n > 0.

Furthermore, we prove the Hyers-Ulam stability of *-homomorphisms in JC*-
algebras and C-linear *-derivations on JC*-algebras.

Our knowledge concerning the continuity properties of epimorphisms on Banach
algebras, Jordan—Banach algebras, and, more generally, non-associative complete
normed algebras, is now fairly complete and satisfactory (see [143] and [326]). A
basic continuity problem consists in determining algebraic conditions on a Banach
algebra A which ensure that derivations on A are continuous. In 1996, Villena [326]
proved that derivations on semisimple Jordan—Banach algebras are continuous.

Let E; and E, be Banach spaces with the norms || - || and || - ||, respectively.
Consider f : E; — E, to be a mapping such that f(x) is continuous in ¢ € R for
each fixed x € E;. Assume that there exist constants # > 0 and p € [0, 1) such that

If G +y) =f @) =fOI = OIxl” + [y [1”)

forall x,y € E;. In [267], Th. M. Rassias showed that there exists a unique R-linear
mapping T : E; — E, such that

lF ) =T =

< Sl

for all x € E;. Gdvruta [123] generalized the Rassias’ result.

In [146], Jun et al. proved the following:

Let X and Y be Banach spaces. Denote by ¢ : X x X — [0, 00) a function such
that

o
e(x) = ZZ_j((p(Zj_lx, 0) + ¢(0, 27 %) + (2 'x, 27 %)) < 00
j=1
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for all x € X. Suppose thatf, g, h : X — Y are mappings satisfying

1275 ~ g0 — )| < ()

for all x,y € X. Then there exists a unique additive mapping 7 : X — Y such that

|I2f(;) T = g + [2O0)]| + e (),

@) =T = 8O + 2[1AO)]| + ¢(x.0) + £(x),
1) = T = 2[gO)] + [1RO)] + ¢(0,x) + &(x)

forall x € X.

In Theorem 7.2 of Johnson [143], Johnson also investigated almost algebra -
homomorphisms between Banach x-algebras:

Suppose that ¢ and B are Banach x-algebras which satisfy the conditions of
Theorem 3.1 in [143]. Then, for each positive € and K, there exists a positive § such
that if T € LU, B) with |T|| < K, |TY|| < § and | T(x*)* — T(x)|| < §||x| for all
x € U, then there exists a x-homomorphism 77 : & — B with ||T — T’|| < €. Here
L(U, B) is the space of bounded linear mappings from ¢/ into B and

TY(x,y) = T(xy) = T()T()

for all x,y € U (see [143] for details).

The original motivation to introduce the class of nonassociative algebras known
as Jordan algebras came from quantum mechanics (see [323]).

Let H be a complex Hilbert space, regarded as the “state space” of a quantum
mechanical system. Let £(7) be the real vector space of all bounded self-
adjoint linear operators on H, interpreted as the (bounded) observables of the
system. In 1932, Jordan observed that £(7{) is a (nonassociative) algebra via the
anticommutator product xoy := ’% A commutative algebra X with productxoy
is called a Jordan algebra if

¥ o(xoy) =xo0(x*oy).

A complex Jordan algebra C with the product x o y and involution x +— x* is
called a JB*-algebra if C carries a Banach space norm || - || satisfying

lroyll < lxl - lIyll, ™}l = flll®.
Here {xy*z} := xo (y* 02) —y* 0o (zox) + z o (x o y*) denotes the Jordan triple

product of x, v,z € C. A unital Jordan C*-subalgebra of a C*-algebra endowed with
the anticommutator product is called a JC*-algebra.
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Throughout this section, let A be a JC*-algebra with the norm || - || and the unit
e and B be a JC*-algebra with the norm || - || and the unit ¢’. Let

UA) ={ucA:u'u=uu*=¢e}), Ay,={xecA:x=x"},
I1(Ay) = {v € Ay @ ||v]| = 1, v is invertible}.

In this section, we prove that every almost unital almost linear mapping
h: A — Bis ahomomorphism when h(3"u o y) = h(3"u) o h(y) for all u € U(A),
y € Aand n > 0 and, for a JC*-algebra A of real rank zero, every almost
unital almost linear continuous mapping # : A — B is a homomorphism when
h(3"uoy) = h(3"u) o h(y) forallu € I,(Ay),y € Aandn > 0.

Furthermore, we prove the Hyers-Ulam stability of x-homomorphisms between
JC*-algebras and C-linear *-derivations on JC*-algebras.

3.11.1 =-Homomorphisms in JC*-Algebras

Now, we investigate *x-homomorphisms in JC*-algebras.

Theorem 3.134. Let f,g,h : A — B be mappings satisfying f(0) = 0, g(0) = 0
and h(0) = 0 and let f(2"uoy) = f(2"u) o f(y), gR"uoy) = g(2"u) o g(y) and
h(2"uoy) = h(2"u) o h(y) foru € U(A), y € A and n > 0 for which there exists a
Sunction ¢ : A\ {0} x A\ {0} — [0, 00) such that

Flry) =Y 2792 "x, 27 y) < o0, (3.188)
j=0
+
[2(F55) — 180 — uh(y) | < ¢txy). (3.189)
IF 2" u™) —fQ"wW)*|| < ¢(2"u,2"u) (3.190)

forallu e T':={A € C||A| =1}, u e U(A), x,y € Aandn > 0. Assume that

i f(2%) _
m =e.

n—oo N

(3.191)

Then the mappingsf,g,h : A — B are x-homomorphisms.

Proof. Put u = 1 € T'. It follows from Corollary 2.5 of [146] that there exists a
unique additive mapping H : A — B such that

|2(5) —H@| = 6. Nlg - HWI = 9(x.0) + £,
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[A(x) = HX) | < ¢(0,x) + &(x) (3.192)

forall x € A\ {0}, where

o0
e =Y 27(p(27'x.0) + ¢(0.27'x) + (2 'x. 271x)) < 00

j=1
for all x € A\ {0}. The additive mapping H : A — B is given by
. 1
H(x) = lim —f(2"x)
n—>00 N
for all x € A and
lim 27"f(2"x) = lim 27"g(2"x) = lim 27"h(2"x)
n—00 n—00 n—00
forall x € A. Let f(x) = 2f(3) for all x € A. Then we have

1. 1
lim —F(2"x) = lim —f(2"x)
n n—o0 2N

n—>o00

for all x € A. By the assumption, we have

If (2" px) = uf 2" |

1 1 1 1
2100 = S1(2"0) = Suh(2") + Sug (") + Suh(@') — uf ')

IA

1 1
5927, 2'%) + S| ple(2x, 2')
= ¢(2"x,2"x)

forall 4 € T' and x € A\ {0}. Thus 27"||f (2" ux) — uf (2"x)|| = 0 as n — oo for
all u € T! and x € A\ {0}. Hence we have

f@u) L W)

on n—o00 2

H(ux) = lim WH (x) (3.193)
n—>oo
forall u € T! and x € A\ {0}.

Now, let A € C (A # 0) and M be an integer greater than 2|A|. Then we have

|A14| < % =1- %. By Theorem 1 of Kadison and Pedersen [167], there exist four

elements (1, s, 43, w4 € T' such that 4% = W1 + U2 + 3 + pg. Note that
H(x) = H?2- %x) = 2H(%x) for all x € A and so H(%x) = %H(x) for all x € A.
Thus, by (3.193), we have
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H(Ax) = H(%/I -4%x) - M-H(% .4%x)
M

——H(4ix)—1l—4H( X+ pox + pax + pLax)
= w) T K1 M2 M3 Ha

= S0 + ) + H(psn) + H(10)

M
= Z(Ml + o+ pu3 4 pa)H(x)

M

=7 -4;—/[H(x) = AH(x)

for all x € A. Hence we have
H(¢x +ny) = H(lx) + H(ny) = CH(x) 4+ nH(y)
forall ,n € C\ {0} and x,y € A and H(0x) = 0 = 0H(x) for all x € A. So the

unique additive mapping H : A — B is a C-linear mapping. By (3.188) and (3.190),
we get

f@wy QW _( - f2M)
= Jim 5 = (Jin

H(u*) = lim

n—00 on n—00 on

)" = Hw*

for all u € U(A). Since H is C-linear and each x € A is a finite linear combination
of unitary elements (see [168]), say, x = ij=1 Ajujforall A; € Cand uj € U(A), it
follows that

HG) = H(;A_juj) = ;Ey(uf) - ];A_,H(uj)*

= (L) = (3w = ey
j=1 Jj=1

for all x € A. Since f(2"uoy) = f(2"u) o f(y) forall u € U(A),y € Aandn > 0,
we have

Hlwoy) = lim 2_f(Muoy) = lim -_f(2") /()
— H(u) o f(y) (3.194)
for all u € U(A) and y € A. By the additivity of H and (3.194), we have
2"H(uoy) = H(2'uoy) = H(uo (2"y)) = H(u) o f(2"y)

forall u € U(A) and y € A and so
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H(oy) = 5. H() o f(2') = H) o 3 f(2) (3.195)

forall u € U(A) and y € A. Taking n — oo in (3.195), we obtain
H(uoy) = H(u) o H(y) (3.196)
forall u € U(A) and y € A. Since H is C-linear and each x € A is a finite linear

combination of unitary elements, i.e., x = » " | A;u; forall A; € C and u; € U(A),
it follows from (3.196) that

H(xoy) = (Z jujoy) = D AH(w o)
= j=1
= 2 hHG) o HO) = H( 3 A) 0 HO)
=1 j=1
= H(x) o H(y)
forall x,y € A. By (3.194) and (3.196), we have
H(e) o H(y) = H(eoy) = H(e) o f(y)

forall y € A. Since lim,—, L (2 9 —H (e) = ¢, it follows that

H(y) =f(y)
for all y € A. Similarly, H(y) = g(y) = h(y) for all y € A. Therefore, the mapping
f,g, h: A— B are x-homomorphisms. This completes the proof. a

Corollary 3.135. Letf,g,h : A — B be mappings satisfying f(0) = 0, g(0) = 0

and h(0) = 0 and let f2Q"uoy) = f(2"u) o f(y), g2"uoy) = g(2"u) o g(y) and
h(2"uoy) = h(2"u) o h(y) for allu € U(A), y € A and n > 0 for which there exist
constants 0 > 0 and p € [0, 1) such that

(Mx+ uy)

|2f — 1g(x) = ph()| < 67 + Iy11)

and

IF2"u*) —f ") || < 2716

forallp € T', u € U(A), n > 0and x,y € A\{0}. Assume that 1im,,—, f(;:e) =¢
Then the mappings f, g and h are x-homomorphisms.

Proof. Define ¢(x,y) = 0(|x||” + |y|I?) for all x,y € A\ {0} and apply
Theorem 3.134. The we have the conclusion. O
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Theorem 3.136. Let f,g,h : A — B be mappings satisfying f(0) = 0, g(0) = 0
and h(0) = 0 and let f(2"uoy) = f(2"u) o f(y), gR"uoy) = g(2"u) o g(y) and
h(2"uoy) = h(2"u) o h(y) for allu € U(A), y € Aandn > 0 for which there exists
a function ¢ : A x A — [0, 00) satisfying (3.188), (3.190) and (3.191) such that

r(37)

— g — uh()| = oy (3.197)
forall x,y € A\ {0} and n = 1,i. If f(tx) is continuous in t € R for each fixed
x € A, then the mappingsf, g, h : A — B are x-homomorphisms.

Proof. Put u = 11in (3.197). By the same reasoning as the proof of Theorem 3.134,
there exists a unique additive mapping H : A — B satisfying the inequality (3.192).
It is easy to show that, the additive mapping H : A — B is R-linear.

Put 4 = iin (3.197). By the same method as the proof of Theorem 3.134, one
can obtain that

) = i POy T2

n—>o0

= iH(x)
for all x € A. For each element A € C, A = s + it forall s, € R. So, we have

H(Ax) = H(sx + itx) = sH(x) + tH(ix) = sH(x) + itH(x)
= (s+ it)H(x) = AH(x)

forall A € Cand x € A and

H(Ex + ny) = H(Ex) + H(ny) = {H(x) + nH(y)

forall £, n € C and x,y € A. Hence the additive mapping H : A — B is C-linear.
The rest of the proof is the same as the proof of Theorem 3.134. This completes
the proof. O

From now on, assume that A is a JC*-algebra of real rank zero, where “real rank
zero” means that the set of invertible self-adjoint elements is dense in the set of
self-adjoint elements (see [54]).

Now, we investigate continuous *-homomorphisms between JC*-algebras.

Theorem 3.137. Letf, g, h: A — B be continuous mappings satisfying f(0) = 0,
g(0) = 0and h(0) = 0andlet f(2"uoy) = f(2"u) of (y), g(2"uoy) = g(2"u) o g(y)
and h(2"u o y) = h(2"u) o h(y) for all u € I,(As,), y € A and all n > 0 for which
there exists a function ¢ : A x A — [0, 00) satisfying (3.188), (3.189), (3.190)
and (3.191). Then the mappingsf, g, h : A — B are x-homomorphisms.
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Proof. By the same reasoning as the proof of Theorem 3.134, there exists a unique
C-linear involution mapping H : A — B satisfying the inequality (3.192). Since
fQM"oy) =f(2"u) of(y) forall u € I}(As,),y € Aand n > 0, we have

Hlwoy) = lim 2_f(Muoy) = lim -_f(2") /()
= Hw) o f(y) (3.198)
for all u € I1(Ay,) and y € A. By the additivity of H and (3.198), we have
2"H(uoy) =H(2'woy) = H(uo (2"y)) = H(u) o f(2"y)

for all u € I(A,,) and y € A. Hence it follows that

Hlwoy) = 3 Hw) 0 f(2'y) = Hw)o 2 f(2") (3.199)
forall u € I (Ay,) and y € A. Taking n — o0 in (3.199), we obtain
H(uoy) = H(u) o H(y) (3.200)
forall u € I (Ay,) and y € A. By (3.198) and (3.200), we have

H(e) o H(y) = H(eoy) = H(e) o f(y)

Q%)
mn

= H(e) = ¢/, we have

H(y) =f()

for all y € A. Similarly, H(y) = g(y) = h(y) forally € A. SoH : A — Bis
continuous. But, by the assumption that .4 has real rank zero, it is easy to show that
I1(Ay,) is dense in {x € Ay, : ||x|| = 1}. So, foreachw € {z € Ay, : ||z]| = 1},
there exists a sequence {k;} such that x;, — wasj — oo and «; € I;(Ay,). Since
H : A — B is continuous, it follows from (3.200) that

forall y € A. Since lim,, o

Hwoy) = H( lim &; o y) = lim H(k; o y)
Jj—>00 Jj—>00
= lim H(x;) o H(y) = H( lim Kj) o H(y)
Jj—>o0o j—>oo
= H(w) o H(y) (3.201)
forallwe {z€ Ay, : ||z]l = 1}andy € A.
xtx* x—x*

* . r— *
Foreachx € A, let x = H'z" + i%5;—, where x| = *5— and x; 1= ;- are
self-adjoint.
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First, consider the case that x; # 0,x; # 0. Since H : A — B is C-linear, it
follows from (3.201) that

. X1
Hxoy) = Hw oy +ix0y) = H(lul oy +illal 2 ox)

= Il (o ov) + il (o)

= Il () o HO) + illeallH () o HO)

- {H(”x‘”m) (II 2”m)} o H(y)

= H(x; + ix;) o H(y) = H(x) o H(y)

forall y € A.
Next, consider the case that x; 7% 0 and x, = 0. Since H : A — B is C-linear, it
follows from (3.201) that

X1 X1
H(xoy) = H(xi oy) = H(|xi [l o) = ImlIH( = o)
B B

= bl () o HO) = H(lall ) 0 HO)
= H(x1) 0 HO) = H@) 0 H()

forall y € A.
Finally, consider the case that x; = 0,x, # 0. Since H : A — B is C-linear, it
follows from (3.201) that

. ] =
H(xoy) = H(ixyoy) = ( ||X2||H y) = l||x2||H<m Oy)

= ilallH () o HO) = H{ile |5 ) 0 HO)
= H(ixs) 0 H() = H(x) o H()

for all y € A. Hence we have

H(xoy) = H(x) o H(y)

for all x,y € A. Therefore, the mappings f, g,k : A — B are *x-homomorphisms.
This completes the proof. |

Corollary 3.138. Letf,g,h: A — B be continuous mappings satisfying f (0) = 0,
g(0) = 0and h(0) = O and let f(2"uoy) = f(2"u) of (y), g(2"uoy) = g(2"u) o g(y)
and h(2'uoy) = h(2"u) o h(y) for all u € I,(As,), y € Aandn > 0 for which there
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exist constants 0 > 0 and p € [0, 1) such that

|2 (B2 - g = seh) | < 60ale + i)

and

”f(znu*) —f(2”u)*||1 2np+16

forall p € TY, u € I1(Ag), x,y € A\ {0} and n > 0. If lim,— o f(%:e) = ¢, then
the mappingsf, g, h : A — B are x-homomorphisms.

Proof. Define

o(x.y) = 6(Ix]” + lIylI")

for all x,y € A\ {0} and then apply Theorem 3.137. Then we get the desired
result. a

Remark 3.139. Letf,g,h : A — B be continuous mappings satisfying f(0) = 0,
g(0) = 0and 1(0) = O and let f(2"uoy) = f(2"u) of (), g(2"uoy) = g(2"u) o g(y)
and h(2"u o y) = h(2"u) o h(y) for all u € I,(A,,), y € A and n > 0 for which
there exists a function ¢ : A x A — [0, 00) satisfying (3.188), (3.190), (3.191)
and (3.197). Then the mappings f, g, h : A — I3 are *-homomorphisms.

Note that there exists a unique C-linear mapping H : A — B satisfying the
system of the inequalities (3.192).

3.11.2 Stability of *-Homomorphisms in JC*-Algebras

Now, we prove the Hyers-Ulam stability of *-homomorphisms in JC*-algebras.

Theorem 3.140. Let f,g,h : A — B be mappings with f(0) = 0, g(0) = 0 and
h(0) = 0 for which there exists a function ¢ : A* — [0, 00) such that

o0
Gy, zw) =Y 27p(2x, 2y, 2z, 2w) < oo, (3.202)
j=0

J2r () — i) — ) £ @ o 70|
< o(x,y,z,w), (3.203)

"™ —f2"w)*|| < 9(2"u,2"u,0,0) (3.204)
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forallp € TY, u € U(A), x,y,z,w € A\ {0} and n > 0. Then there exists a unique
x-homomorphism H : A — B such that

27(3) — H)| = e, 80 = H@II = 9(+.0,0.0) + e,
1h() = H@I < 9(0.5,0,0) + e(2) (3.205)

forall x € A\ {0}, where

o0
e(x) 1= Y 27(p(2"x.0.0.0) + ¢(0.27"'x,0,0) + ¢(2"'x.27'x,0,0))
j=1
< o0.
Proof Putz = w = O and u = 1 € T! in (3.203). By the same reasoning as
in the proof of Theorem 3.134, there exists a unique C-linear involutive mapping

H : A — B satistying the inequality (3.205). The C-linear mapping H : A — B is
given by

1
H(x) = lim —f(2"x) (3.206)
n—>o00 N
for all x € A. It follows from (3.206) that

H(x) = lim . 2"2)

n—oo 221

(3.207)

forall x € A. Letx = y = 01in (3.203). Then we get

1 (322) ~ 1 o )| < 000,02

forall z, w € A. Since %(p(O, 0,2"z,2"w) < 2%(/)(0, 0,2"z,2"w), it follows that

Zf(%Z"z o 2"w) —F(2"2) 0 f(2"w) H (3.208)

1
22
1 n n
< 550(0.0.2'2.2"w) (3.209)
1
< igo(0,0, 2"z,2"w)

for all z,w € A. By (3.206), (3.207) and (3.208), we have
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zowy . 2f(32%zow) . 2f(32"z02"w)
2H( 2 ) - n1—1>nolo 22n - nlllgo on . Qn
= i (2D SOy 12Dy, S
T 500 on on s on n—oo 2N
= H(z) o H(w)

for all z, w € A. But, since H is C-linear,
zow
H(zow) = ZH(T) — H(z) o H(w)

for all z,w € A. Hence the C-linear mapping H : A — B is a x-homomorphism
satisfying the inequality (3.205). This completes the proof. a

Corollary 3.141. Letf,g,h : A — B be a mapping with f(0) = 0, g(0) = 0 and
h(0) = 0 for which there exist constants 8 > 0 and p € [0, 1) such that

Jor () — i) — ) £ @ o7 0)|

< O(xl” + [IyI” + lzlI” + [wll”)
and
IF2"u*) — f(2"u)*|| < 2716

forall w € T, u € U(A), x,y,z,w € A\ {0} and n > 0. Then there exists a unique
x-homomorphism H : A — B such that

() - o] = -
3

lg() = H@I = S=— 0.
3—2r

100 — HE@| < = 0"

Sforall x € A\ {0}.
Proof. Define

@@y, zow) = O(|x[I” + [IylI” + llzll” + lIwl”)

and apply Theorem 3.140. Then we get the desired result. |
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Remark 3.142. Letf,g,h : A — B be a mapping with f(0) = 0, g(0) = 0 and
h(0) = 0 for which there exists a function ¢ : A* — [0, 00) satisfying (3.202)
and (3.203) such that

st e

) e () — A () ~ () o f )| < gy 2w

for all x,y,z,w € A\ {0} and u = 1,i. If f(zx) is continuous in # € R for each
fixed x € A, then there exists a unique *-homomorphism H : A — B satisfying the
inequality (3.205).

Note that there exists a unique C-linear mapping H : A — B satisfying the
inequality (3.205).



Chapter 4
Stability of Functional Inequalities
in Banach Algebras

In this chapter, we study functional inequalities in Banach algebras via the direct
and fixed point methods.
In Sect. 4.1, we consider the following additive functional inequality:

IF (2%) +f2y) + 2/ @ < 12f(x +y + 2l

Next, we approximate the homomorphisms in proper CQ*-algebras and
derivations on proper CQ*-algebras associated with the above additive functional
inequality by direct method.

In Sect. 4.2, we consider the functional inequality

IF ) + ) +F@ +FWI =< [IF) + O+ z+wl.

Next, we prove that, if f : A — B is a multiplicative mapping such that

If () +fO) + @) + W < IF ) +f O + 2+ pw)|

for all x,y,z,w € Aandall u € T := {A € C : |A| = 1}. Then the mapping
f A — Bisa C*-algebra homomorphism. Moreover, by using fixed point method,
we prove the Hyers-Ulam stability of the functional following inequality:
If () +/O) +/ @) +fWl
= Fe) +f+z+wl
14 4 P P
FOIx” + Iy 17+ zl” 4+ [Iwll? 4 lxll = - Iyl - Az« - fwll <)

in real Banach spaces.
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4.1 Stability of Additive Functional Inequalities
in Banach Algebras

In this section, by the direct method, we prove the Hyers-Ulam stability of the
following additive functional inequality:

IF (2%) +2y) + 2/ @ < 12f(x +y + 2| 4.1

Then we consider homomorphisms in proper CQ*-algebras and derivations on
proper CQ*-algebras associated with the additive functional inequality (4.1) (see
[181, 182, 186, 254]).

4.1.1 Stability of C-Linear Mappings in Banach Spaces

Now, we investigate the Hyers-Ulam stability of C-linear mappings in Banach
spaces associated with the additive functional inequality.
Now, we assume that X, Y are Banach spaces.

Lemma 4.1. Letf : X — Y be a mapping satisfying the following:

If (2%) +f2y) + 2/ @y < [12f(x+y +Dly (4.2)

forallx,y,z € X. Then f is additive.
Proof. Letting x = y = z = 0 in (4.2), we get ||[4f(0)|ly < ||2f(0)||y and so

f(0) = 0. Letting z = 0 and replacing y by —x in (4.2), we get

If (2x0) +f(=20)lly = [2f(O)[ly =0

for all x € X. Hence f(—2x) = —f(2x) and so f(—x) = —f(x) forall x € X.
Letting y = 0 and replacing z by —x in (4.2), we get

If (2%) + 2f (=) lly = 12/ (0)[ly = 0

for all x € X. Thus we have f(2x) = 2f(x) for all x € X. Letting replacing z by
—x —yin (4.2), we get

IF(2%) +f(2y) = 2f(x + )y < (12 (O)[ly = 0

for all x,y € X. Thus we have

fQ2x +2y) = f(2x) +f(2y)
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for all x € X and so

Jx+y) =f& +5)

for all x,y € X. This completes the proof. O

Theorem 4.2. Letf : X — Y be a mapping with f(0) = 0. If there exists a function
@ : X> — [0, 00) satisfying the following;

If(2x) +f(2y) + 2fD)ly < 12f(x +y + Dy + ¢(x,y,2) 4.3)
and
=1 . . .
G.y.2) =Y 5@ ((=2Vx, (=2)y, (=2)/2) < o0 (4.4)
Jj=0

forall x,y,z € X, then there exists a unique additive mapping L : X — Y such that

() — L)y < %@(o,—x,x) @.5)

forall x € X.

Proof. Replacing x,y,z by 0, —(—2)"x, (—2)"x, respectively, and dividing by 2"*!
in (4.3). Since f(0) = 0, we get

' f(=2)" ) f(=2)")
(_2)n+1 (_2)11

< 55190, ~(-2)"%, (-2
Y

for all x € X. From the above inequality, we have

n—1

=2

J=4q

DY) (=20
2 (2

‘f((—Z)"x) (D)%)
27 (-2

Y Y

n—1
< 3 S0, ~(-2x, (-2))
J=q

forall x € X and ¢,n > 1 with ¢ < n. From (4.4), the sequence {’ (E:g:)‘) }is

a Cauchy sequence for all x € X. Since Y is complete, the sequence {f (E:g:")}
converges for all x € X and so we can define a mapping L : X — Y by

L(x) := nlggo f_(g:;;:x)

forall x € X.
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In order to prove that L satisfies (4.5), if we put ¢ = 0 and let n — oo in the
above inequality, then we obtain

> 1 . . 1
If(x) = LX)y < Z F‘D(O’ —(=2¥x, (=2)x) = 595(0, —X,X)
j=0

for all x € X. Replacing x, y, z by (—2)"x, (—=2)"y, (—2)"z, respectively, and dividing
by 2" in (4.3), we get

‘f((—2)"2X) D" | 22
2 ey e
(26 +y+2)
2y

Y

<

| 2 2 2
Y

for all x, y, z € X. Since (4.4) gives
b 1 n n n
n—>o0 N
for all x, y, z € X, if we let n — oo in the above inequality, then we get
[L(2x) + L(2y) + 2L(2)|ly < [2L(x+y + 2) [y,
and so L is additive by Lemma 4.1.

Now, to prove the uniqueness of L, let L' : X — Y be another additive mapping
satisfying (4.5). Since L and L’ are additive, we have

1
ILG) = L' )l > |L@") - L' @],

IA

2L = 7@, + [LC — )],

1
=5 2¢(0, —2"x,2"x)

A

[els)
1 . .
— E +n +n
=2 —t ﬁ@(ov (_2)] X, (_2)] X),
=

which goes to zero as n — oo for all x € X by (4.4). Consequently, L is a unique
additive mapping satisfying (4.5). This completes the proof. a
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Corollary 4.3. Letf : X — Y be a mapping. If there exists a function
¢ 1 X3 — [0, 00) satisfying (4.3) and

~ i y
Pl 2= Zz (( D 2)) % (46

forall x,y,z € X, then there exists a unique additive mapping L : X — Y such that

1
If @) = L@y = 5¢(0. —x,x) 4.7
forall x € X.

Proof. Since ¢(0,0,0) < oo in (4.6), we have ¢(0,0,0) = 0 and sof(O) = 0.
Replacing x,y,z by 0, — = 2)"’ = 2),, , respectively, and multiplying by 2"~ ! in (4.3),

we get
f— n—l1 * f—
|2t () -2 ()

<21y (0, o L)
= 2" (=2

for all x € X. From the above inequality, we have

— 6[
H( )f(( 2)*1) - )f(( 2)4)
- 2”(( 2))_( 2 lf(( 2" 1)

=2
< ¢ i—1 X X
< 2 (0 )

i=q+1
i=q+1
for all x € X and ¢,n > 1 with ¢ < n. From (4.6), the sequence %(—2)”}‘ (ﬁ) }

is a Cauchy sequence for all x € X. Since Y is complete, the sequence

{ =2)*f (ﬁ)} converges for all x € X and so we can define a mapping
L:X— Yby

L(x) := hm( 2)f(( 2)”)
forall x € X.

In order to prove that L satisfies (4.7), if we put ¢ = 0 and let n — oo in the
above inequality, then we obtain

> i X X 1.
I~ 10l = 327 (o,—@, @) = 80,5
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for all x € X. Replacing x.y,z by = (_}—é)n, oy Tespectively, and multiplying
by 2" in (4.3), we get

A\ 2x A\ 2y Y <
H( 2”((—2)")“ 2”((—2)")” ( z)f((—zw)

()

Y

WXy 2
,hEe ((—2)"’ = <—2>n)

=

for all x, y, z € X. Since (4.6) gives

. x y 2\
in2e (5 o) =0

forall x,y,z € X, if we let n — oo in the above inequality, then we get

IL(2%) 4+ L(2y) + 2LG)[ly < [2L(x +y + 2)|¥

and so L is additive by Lemma 4.1.
The rest of the proof is the same as in the corresponding part of the proof of
Theorem 4.2. This completes the proof. O

Lemma 4.4. Letf : X — Y be a mapping satisfying

IF (20) + pf 2y) + 2f @)lly = 12/ (x + py + 2)lly (4.8)

forall uw € T and all x,y, z € X. Then f is C-linear.

Proof. Ifweputu = 1in (4.8), thenf is additive by Lemma 4.1. Replacing x, y, z by
ux, —x, 0 in (4.8), respectively, we get f (2ux) + puf(—2x) = 0 and so f(ux) = uf(x)
forall 4 € T! and x € X. Thus we have

J(ux + fix) = f(px) +f(ix) = pf (x) + if (x)

forall & € T! and x € X and so f(tx) = #f(x) for any real number ¢ with |¢| < I and
all x € X.

On the other hand, since f(2x) = 2f(x), we get f(2"x) = 2"f(x) for all n > 1.
So, for any real number ¢, there exists an integer n > 1 with || < 2". Thus we have

Fa) =1 (2 x) = 2 (5:) = 2 2F ) = (0.

Now, we consider any « € C with o = ¢ 4 si for some real numbers ¢, s. Since
f(ix) = if(x) all x € X, we have

Jlax) = f(tx) +f(six) = 1f (¥) + of (ix) = 1f (x) + 5if (x) = of (x)

and so f is C-linear. This completes the proof. O
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Theorem 4.5. Let f : X — Y be a mapping with f(0) = 0. If there exists a function
@ : X? — [0, 00) satisfying (4.4) and

IF(20) + uf 2y) + 2/ @lly = 12f(x + py + Dy + ¢(x.y.2) (4.9)
for all p € T' and x,y,z € X, then there exists a unique C-linear mapping
L : X — Y satisfying (4.5).

Proof. If we put © = 11in (4.9), then, by Theorem 4.2, there exists a unique additive
mapping L : X — Y defined by

for all x € X, which satisfies (4.5). By the similar method to the corresponding part
in the proof of Theorem 4.2, L satisfies

[L(2x) + uL(2y) + 2L |ly < [I2L(x + py + 2)[ly
for all u € T! and x,y,z € X. Thus Lemma 4.4 gives that L is C-linear. This

completes the proof. |

Corollary 4.6. Letf : X — Y be a mapping. If there exists a function
¢ X> — [0,00) satisfying (4.6) and (4.9), then there exists a unique C-linear
mapping L : X — Y satisfying (4.7).

Proof. If we put u = 11n (4.9), then, by Corollary 4.3, there exists a unique additive
mapping L : X — Y defined by

L(x) := lim (-2)'f ( (_’;),,)

for all x € X which satisfies (4.7).
The rest of the proof is the same as in the corresponding part of the proof of
Theorem 4.5. a

4.1.2 Stability of Homomorphisms in Proper CQ*-Algebras

Now, we investigate the Hyers-Ulam stability of isomorphisms in proper CQ*-
algebras associated with the additive functional inequality.

Theorem 4.7. Letf : A — B be a mapping with f(0) = 0. If there exists a function
@ 1 A3 = [0, 00) satisfying

IF(20) + uf (2y) + 2/ @)lls < 12/ (x + py + 2l + @(x.y.2)  (4.10)
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and

oo

P(x,y.2) 1= Zzi ((=2Yx, (—=2)y, (—2)'z) < oo, 4.11)

Jj=0

forall u € T  and x,v, z € A. If in addition, there exists a function ¢ : A> — [0, 00)
satisfying

1) —F @Ol < $(x.y) 4.12)
and
Tim - H((-2)"x. (-2 =0 .13)

for all x,y € A whenever the multiplication is defined, then there exists a unique
proper CQ*-algebra homomorphism h : A — B such that

1
”f(x) - h(x)”B = E@(Ov —X, x) (414)

forall x € A.
Proof. By Theorem 4.5, we have a unique C-linear mapping /2 : A — B defined by

f((=2)"x)
hx) = lim —— "= (—2)"

for all x € A which satisfies (4.14).

Now, we show that i(xy) = h(x)h(y) for all x,y € A whenever the multiplication
is defined. Replacing x,y by (—2)"x, (—2)"y, respectively, and dividing by 4"
in (4.12), we get

%[f((—Z)"X(—2)”y) —f((=2)"9f ((=2)"

< Fd)(( 2)"x. (=2)"y)

for all x, y € A whenever the multiplication is defined. Also, we have

S((=2)*"xy)

E T h(xy)

1
lim —f((=2)"x(=2)"y) = lim
n—>o00 41 n—00
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and

Jim, (22 = tim K0 i 200

= h(x)h(y)

for all x,y € A whenever the multiplication is defined. If we let n — oo in the
above inequality, then (4.13) gives h(xy) = h(x)h(y) for all x,y € A whenever the
multiplication is defined. This completes the proof. O

Corollary 4.8. Let 0, p be nonnegative real numbers withp < 1 andf : A — B be
a mapping satisfying

If(20) + uf (2y) + 2/ @)l
< 12f e+ wy + 2)lls + OCUxlG + il + llzll)

and

IFCey) = FEF O s < OXIT + Iv17)

forall p € T and x,y,z € A whenever the multiplication is defined. Then there
exists a unique proper CQ*-algebra homomorphism h : A — B such that

If () = h(0) s <

p
< 5=l

forallx € A
Proof. Let ¢ : A3 — [0, c0) be a mapping defined by

9.y, 2) = O(Ixlly + Iylix + NIzl

for all x,y,z € A. For any p < 1, we have

e’} 1 ) . .
G0y2) =D 50 ((=2)x (=2)y. (=2)2)
Jj=0

[e.]

2 P p p
> 7 Ol + Uylla + llzll2)

J=0

7 (Il I+ [215).
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In addition, let ¢ : A2 — [0, 00) be ¢(x,y) = O(||x| 7 + |ly||7). Forany p < 1, we
have

2pn

. 1 n n I T 2 2p 2py
Jlim g (=2 (=2)"y) = lim = 0(lY + b1 = 0

for all x,y € A. By applying Theorem 4.7, there exists a unique proper CQ*-algebra
homomorphism 4 : A — B such that

1)~ Hls = 350 ~x.5) = 5ol

for all x € A. This completes the proof. |

Corollary 4.9. Let 0, p be nonnegative real numbers withp < 1 andf : A — B be
a mapping satisfying

If (2x) + wuf (2y) + 2f(2) |15
< 12f(xc + py + 2 ls + OIxI + vl + l1zl%)

and

lIf Gey) = F Ol < 6 - IIx% - Il

for all x,y € A whenever the multiplication is defined. Then there exists a unique
proper CQ*-algebra homomorphism h : A — B such that

If (x) = h(0) s =

= Il

forallx € A
Proof. Let a mapping ¢ : A> — [0, 00) be defined by

o(x.y.2) = 0(lxly + Iylly + llzIl3)
forall x,y,z € A and ¢ : A2 — [0, 00) be a mapping defined by
PCe.y) =0 |Ixly - Iyl

forall x,y € A. When p < 1, we have §(x, y,7) < oo and

2pn

1 2
lim —¢((=2)"x, (=2)"y) = lim
n—o00 41 n—oo 4"

26 [lxll - Iylly =0
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for all x,y,z € A. By applying Theorem 4.7, there exists a unique proper CQ*-
algebra homomorphism # : A — B such that

1 26
If (x) = h(x)|ls = 5@(0’ —X,X) = m”x”[/;
for all x € A. This completes the proof. |

Theorem 4.10. Let f : A — B be a mapping. Suppose that there exists a function
¢ 1 A3 = [0, 00) satisfying (4.10) and

§xy.2) = 2f<p( S i)<oo (4.15)
22\ o

for all x,y,z € A If in addition, there exists a function ¢ : A> — [0,00)
satisfying (4.12) and

lim 4"¢ (L L) =0 (4.16)
AN

for all x,y € A whenever the multiplication is defined, then there exists a unique
proper CQ*-algebra homomorphism h : A — B such that

1
“f(x) - h(x)”B = E@(Ov —X, x) (417)

forall x € A.
Proof. By Corollary 4.12, we have a unique C-linear mapping i : A — B defined by

W) = lim (=2)'f ((_"z)n)

for all x € A, which satisfies (4.17). Now, replacing x, y by ﬁ ﬁ, respectively,
and multiplying by 4" in (4.12), we get

v [f ((—xz)" ' (—yz)") - ((—xz)")f ((—yz)")}

O
=& ((—2)"’ (—2)")

for all x,y € A whenever the multiplication is defined. Since

B

. n X Yy 1 _9\2n ry = h(x
s ((—2)*1 ' (—2)") = 2 ((—2)2") = k)
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and

1im4"f( ol )f( Y )

AN AN
= A ((—zw) DY ((—yzw)
= h(x)h(y)

for all x,y € A whenever the multiplication is defined. If we let n — oo in the
above inequality then (4.16) gives h(xy) = h(x)h(y) for all x,y € A whenever the
multiplication is defined. This completes the proof. |

Corollary 4.11. Let 0, p be nonnegative real numbers withp > 1 andf : A — B
be a mapping satisfying

If (2x) + uf (2y) + 2f(2) |15
< 12f(xc + py + 2 ls + OIxI + vl + l1zl%)

and

1FGy) —F@F DIz < 0P + Iyl

forall w € T' and x,y,z € A whenever the multiplication is defined. Then there
exists a unique proper CQ*-algebra homomorphism h : A — B such that

p
[l

) = bl = 55—

forallx € A
Proof. Let ¢ : A3 — [0, 00) be a mapping defined by

o y.2) = O(xlly + Iyllx + Nzl

forall x,y,z € A. When p > 1, we get

(Z)(x,y,z):z 2l(p( a Fi > i’ : i)
22\ o

21'
=> EQ(IIXIIZ + Iyl + I3

i=1

20
= S5 (lls + W1 + 1l
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for all x,y, z € A. In addition, let ¢ : A> — [0, co) be a mapping defined by

$(x.y) = O(IxIIY + I

forall x,y € A. When p > 1, we get

. n X Yy _
ngngow(@,@)— Tim 0 + 1) = 0

for all x,y € A. By applying Theorem 4.10, there exists a unique proper CQ*-
algebra homomorphism # : A — B such that

P
[lx[l

1)~ hlls < 360,50 = 22

for all x € A. This completes the proof. |

Corollary 4.12. Let 0, p be nonnegative real numbers withp > 1 andf : A — B
be a mapping satisfying

If 2x) + uf (2y) + 2f(2) |5
< 2f G+ py + s + OUxIG + Iy + 1zI1%)
and
If (xy) = F O < 6 - x5 - Iyl

forall w € T' and x,y,z € A whenever the multiplication is defined. Then there
exists a unique proper CQ*-algebra homomorphism h : A — B such that

I e) = h) = 55—

1Al

forall x € A.
Proof. Let ¢ : A3 — [0, c0) be a mapping defined by

oy, 2) = O(lxlly + Iylix + Nzl
forall x,y,z € A and ¢ : A2 — [0, 00) be a mapping defined by
PCe.y) =0 |Ixly - Iyl

forall x,y € A. For any p > 1, we have ¢(x,y,z) < oo and

47
— | _ . L p =
e ¢(< 2 (= z)n)—nlﬁ& S0 Il - Il = 0
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for all x,y,z € A. By applying Theorem 4.10, there exists a unique proper CQ*-
algebra homomorphism # : A — B such that

1. 20
IF @) = hls = 360, —x.2) = Z— I}
for all x € A. This completes the proof. O

4.1.3 Stability of Derivations in Proper CQ*-Algebras

Now, we consider the Hyers-Ulam stability of derivations on proper CQ*-algebras
associated with the additive functional inequality.

Theorem 4.13. Let f : A — A be a mapping with f(0) = 0. Suppose that there
exists a function ¢ : A> — [0, 00) such that

If (2%) + uf 2y) + 2f (@D la < 112f(x + y + 2a + 9(x.y.2)  (4.18)

and

o0

Fey,2) = Zzi ((—2)x, (=2)y, (~2)2) < (4.19)

forall u € T  and x,y, z € A. If, in addition, there exists a function  : A> — [0, o)
such that

) = 1@y = W)l = Y @.) 20
and
Tim Y ()" (-2)') = 0 @21

for all x,y € A whenever the multiplication is defined, then there exists a unique
derivation § on A such that

19— 59l = 560, 5. 4.22)

forall x € A.
Proof. By Theorem 4.5, we have a unique C-linear mapping § : A — A defined by

8(x) = nlggo f(E:j;ZX)

for all x € A which satisfies (4.22).
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Now, we show that §(xy) = §(x)8(y) for all x,y € A whenever the multiplication
is defined. Replacing x,y by (—2)"x, (—2)"y, respectively, and dividing by 4" in
(4.3), we have

%V((—Z)"X(—Z)"y) —f(=2)"0)(=2)"y = (=2)" %/ ((=2)"y)]

A
1
< V(D 5 (2))
for all x, y € A whenever the multiplication is defined. Also, we have
_9)\2n
i (=22 = tim L s,
.1 n wo o S22 (=2)"y
Jim (200 (22)'y = Jim = = 5y
and
N N ) N
Jim G2 F(22)') = lim S = a80)

for all x, y € A whenever the multiplication is defined. If we let » — oo in the above
inequality, then (4.21) gives §(xy) = 8(x)y — x8(y) for all x,y € A whenever the
multiplication is defined. This completes the proof. O

Corollary 4.14. Let 0, p be nonnegative real numbers withp < l andf : A — A
be a mapping satisfying

If (2x) + 1f (2y) + 2f(2)l|a
< 12f (e + py 4+ 2 lla + OdIxI; + vl + l1zl%)

and

1 Gy) —F @)y =0 la < Ol + [IvI1F)

forall w € T' and x,y,z € A whenever the multiplication is defined. Then there
exists a unique derivation § on A such that

If () = 8()la =

P
5l

forall x € A.
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Proof. Let ¢ : A3 — [0, 00) be a mapping defined by

o y.2) = O(lxlly + Iyllx + Nzl

for all x,y,z € A. For any p < 1, we have

QZ)(X, Vs Z) L= Z %‘p ((_z)jxv (_Z)Jyv (_Z)JZ)
Jj=0

- 217j p 4 4
= > 00l + DI + 1l
=0

26
= 55 (RlZ + Iyl + Dzl)-

In addition, let ¥ : A2 — [0, 00) be a mapping defined by

Yxy) = 0(Ix]1Z + Iyl

for all x,y € A. For any p < 1, we have

2pn

. 1 n n I T 2 2p 2p —
Jim (2" (<2)') = Jim SO+ ) =0
for all x,y € A. By applying Theorem 4.13, there exists a unique proper
CQ*-algebra homomorphism /2 : A — B such that

1
“f(x) - 5(x)||A f 5@(03 —X, x) = ”X”[[;

22
for all x € A. This completes the proof. |

Corollary 4.15. Let 0, p be nonnegative real numbers withp < 1 andf : A — B
be a mapping satisfying

IF(2x) + wf(2y) 4+ 2f@)lla < 12f(x + py + 2)lla + OIxl + [yl + llzl%)
and
I Cey) — F @)y —2f D) la < 0~ [IxII% - IyIIA

forall x,y,z € A whenever the multiplication is defined. Then there exists a unique
derivation § on A such that

6
1) — 8 a < —

P
= Il

forall x € A.
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Proof. Let ¢ : A3 — [0, 00) be a mapping defined by

oy, 2) = O(xlly + Iylix + Nzl
forall x,y,z € Aand ¥ : A> — [0, o) be a mapping by

Y(xy) =0 lxly - Iyl
forall x,y € A. For any p < 1, we have ¢(x,y, z) < oo and

2pn

o 2
lim —¢((=2)"x, (=2)"y) = lim 0 Ixlly - Iyl =0
n—00 41 n—00

4n

for all x,y,z € A. By applying Theorem 4.13, there exists a unique proper CQ*-
algebra homomorphism § : A — A such that

20
22

19— 5l = 560, ~x0) = 3=y

for all x € A. This completes the proof. O

Theorem 4.16. Letf : A — A be a mapping. Suppose that there exists a function
@ : A3 — [0, 00) satisfying (4.18) and

~ o o i X y 2z
P(x.y.2) = ;w ((—zy" o (_2),.) <00 (4.23)

for all x,y,z € A. If. in addition, there exists a function ¥ : A> — [0,00)
satisfying (4.20) and

. X y
lim 4"y | ——,—— ] =0 4.24
s v (S ) @2
forall x,y € A, then there exists a unique derivation § on A satisfying

1
“f('x) - S(X)”A = E@(Ov —X, x) (425)

forall x € A.

Proof. By Corollary 4.18, we have a unique C-linear mapping § : A — A defined by

o= Jim (-2 (55 )
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for all x € A, which satisfies (4.25). Now, replacing x, y by ﬁ, ﬁ, respectively,
and multiplying by 4" in (4.20), we get

n x . y _ 'x y
4[f(eaw (—@") f(k—mn)f((—@")}

ey v
—4w(&w“&30

for all x, y € A whenever the multiplication is defined. Also, we have

. n X y 1 _9\2n Xy _
i 4 (o ) = 22 () =500

A

1im4"f( a ) Y
%\ C2r )

= tim 207 ()t o =00

and

1

. Xy
in ¢ St ()

(=2 y
=1 - lim (=2)"f| —— ) =6

Ay A G (S ) =00
for all x, y € A whenever the multiplication is defined. If we let » — oo in the above
inequality, then (4.24) gives §(xy) = 8(x)y — x8(y) for all x,y € A whenever the
multiplication is defined. This completes the proof. O

Corollary 4.17. Let 0, p be nonnegative real numbers withp > 1l andf : A — A
be a mapping satisfying

If (2x) + 1f (2y) + 2f(2)l|a
< 12f (e + py 4+ 2 lla + 01Xl + vl + l1zI%)

and

1 (y) —F @)y =D la < OCxIT + 17
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forall p € T and x,y,z € A whenever the multiplication is defined. Then there
exists a unique derivation § on A such that

IF@) = 8Colla = 57— Iz

forall x € A.
Proof. Let ¢ : A3 — [0, c0) be a mapping by
o(x,y,2) = O(Ixlly + Iyl + Nzl

for all x,y,z € A. For any p > 1, we have

. i y <
P0.2): Zz (( Dy 2))

o0

= Z SO0 + Il + 121)

20
= 55 ey + Iyl + i)

In addition, let ¥ : A%> — [0, co) be a mapping defined by
$(x.y) = O(IxIIY + 1)

forall x,y € A. For any p > 1, we get

o x y o\ _ 4"
nll)ngo4w((_—2)n,@)— Tim L0 + 1) =0

for all x,y € A. By applying Theorem 4.16, there exists a unique proper CQ*-
algebra homomorphism § : A — A such that

0
If(x) =8()lla < </)(0 —X,X) = 2—II 1%

for all x € A. This completes the proof. O
Corollary 4.18. Let 0, p be nonnegative real numbers withp > 1 andf : A — B
be a mapping satisfying
IF(22) + uf 2y) + 2 (@) lla
< 12f e+ wy + 2)lla + OCUxl + il + llzI)
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and

I Gey) = f @)y = xf ) lla < 6 - llxlly - Iylx

forall p € T and x,y,z € A whenever the multiplication is defined. Then there
exists a unique derivation § on A such that

If () = 8()la =

P
5l

forall x € A.
Proof. Let ¢ : A3 — [0, 00) be a mapping defined by

oy, 2) = O(xlly + Iylix + Nzl
forall x,y,z € A and ¥ : A2 — [0, 00) be a mapping defined by
Yx.y) =0 lxll} - llyllz

forall x,y € A. When p > 1, we have ¢(x,y, z) < oo and

o x y .4
lim 4"¢ ( ) = Jim om0 - Ixlla - Iz = 0

A o\ S T ) T A 5

for all x,y,z € A. By applying Theorem 4.10, there exists a unique proper CQ*-
algebra homomorphism § : A — A such that

1. 26
IF@ = 8lla = 560, —x.%) = 35— Il

for all x € A. This completes the proof. |

4.2 Stability of Functional Inequalities over C*-Algebras

In this section, we investigate a module linear mapping associated with the following
functional inequality.

IF ) + ) +F@ +FWI =< [IF) + O +z+wl. (4.26)

This is applied to understand homomorphisms in C*-algebras. Moreover, we prove
the Hyers-Ulam stability of the functional following inequality:
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IF) +£0) +£ ) +F )|
< )+ +z+w)
FOUII” + (17 + 21”4+ Iwll? + =5 - Il T - 11zl - wl %) @.27)

in real Banach spaces. Using the fixed point method, we prove the Hyers-Ulam
stability of the functional inequality (4.27) in real Banach spaces.

4.2.1 Functional Inequalities in Normed Modules
over C*-Algebras

Throughout this section, let A be a unital C*-algebra with the unitary group U(A)
and the unit e and let B be a C*-algebra. Assume that X is a normed A-module with
the norm || - || and Y is a normed A-module with the norm || - ||.

Now, we investigate an A-linear mapping associated with the functional inequal-
ity (4.26).

Theorem 4.19. Letf : X — Y be a mapping such that

IF ) +/O) +/ @) +uf Wl < If () + &+ 2+ uw) (4.28)

forallx,y,z,w € X and u € U(A). Then the mappingf : X — Y is A-linear.
Proof. Lettingx =y=z=w=0andu = e € U(A) in (4.28), we have

147 )| < 112/ (0)].
Sof(0) = 0. Letting x = w = 0 in (4.28), we have
lFo) +/@I = IF 6 + 2 (4.29)
forall y,z € X. Replacing y and z by x and y + z + w in (4.29), respectively, we get
IFe) +/0+z+wl < If&xc+y+z+wl
for all x,y,z,w € X and so
If ) +f0) +/ @+ /W < Ifx+y+z+w)] (4.30)
forall x,y,z,w € X. Letting z = w = 0 and y = —x in (4.30), we have

If () + £l < IFO) =0
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for all x € X. Hence f(—x) = —f(x) for all x € X. Lettingz = —x —yand w = 0
in (4.30), we have

If) + 1) —f&x+ D= Ifx) +f0) +f(—=x—=[ = IF O =0
for all x,y € X. Thus

Ja+y) =fx)+10)

forall x,y € X. Letting z = —uw and x = y = 0 in (4.28), we have
I =f w) + uf W)l = If (=uw) + wf Wl < 2fO0)[| = 0
forall w € X and all u € U(A). Thus we have
fuw) = uf(w) (4.31)

forallu € U(A) and all w € X.
Now, let a € A (a # 0) and M be an integer greater than 4|a|. Then we have

a 1 2 1
l=l<-<1—==-.
M 4 3 3

By Theorem 1 of Kadison and Pedersen [167], there exist three elements u, uy, u3 €
U(A) such that 357 = u; + uas + u3. So, by (4.31), we have

s = (435) =133 = )

= A;h(ulx + Upx + uzx) = %/I(f(IMX) + f(u2x) + f(u3x))

= T+ 4w/ = 53 () = af()

for all x € X. Therefore, f : X — Y is A-linear. This completes the proof. a
Corollary 4.20. Let f : A — B be a multiplicative mapping such that

If () +fO0) +/@) + /) < lF ) +f +z+ pw)| (4.32)

forallx,y,z,zwe Aand u € T := {A € C: |A| = 1}. Then the mappingf : A — B
is a C*-algebra homomorphism.

Proof. By Theorem 4.19, the multiplicative mapping f : A — B is C-linear since
C*-algebras are normed modules over C. So, the multiplicative mapping f : A — B
is a C*-algebra homomorphism. O
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Assume that X is a real normed linear space and Y is a real Banach space. Now,
we prove the Hyers-Ulam stability of the functional inequality (4.27) in real Banach
spaces.

Theorem 4.21. Assume thatf : X — Y is an odd mapping for which there exist the
constants 0 > 0 andp € R such that p # 1 and f : X — Y satisfies the following
functional inequality:

IF ) + /) + /(@) + 7
= If®) +fO+z+wll
» L ] v
FOUxl” + 17+ N2l” + Il 4l - Ayl -zl - lhwll#) - (4.33)
forallx,y,z,w € X. Then there exists a unique Cauchy additive mappingA : X — Y
such that

22 +2

1) =A@ = 5

01x|1? (4.34)

for all x € X. If; in addition, f : X — Y is a mapping such that the transformation
t = f(tx) is continuousin t € R for each fixed x € X, then A is an R-linear mapping.
Proof. Since f is odd, f(0) = 0 and f(—x) = —f(x) for all x € X. Letting x = 0,
z=yand w = —2yin (4.33), we have

12/ ) —f@)Il = 2+ 2°)01Iyl)” (4.35)

for all y € X and so

X 2 427
— — I
-2 )] = o
for all x € X. Hence we have
m—1 5
(XN _Amp (X H 2+ 20 1 ,
Hzf(zz) Zf(zm) = 2. il (4.36)

forallm,/ > 1 withm > [and x € X.

Assume that p > 1. It follows from (4.36) that the sequence {2f (5¢)} is a Cauchy
sequence for all x € X. Since Y is complete, the sequence {2¢f (3¢)} converges and
so one can define the mapping A : X — Y by

T ke (X
o= i 21 (3)
forall x € X. Letting / = 0 and m — oo in (4.36), we get

22 42
2 =2

IF(x) =AM = Ollxl 1
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for all x € X. It follows from (4.33) that

P (50) + 27 () 2 () + 27 (3)]
P (5]

k
) ) P P
o Uell” I A D2l A Al - Q= =yl - flzll - fiwli ) 4.37)

for all x,y, z, w € X. Letting k — oo in (4.37), we get
[AG) +A(Y) +AG) + AW = [AK) + Ay + 2+ w)| (4.38)

for all x,y,z,w € X. It is easy to show that A : X — Y is odd. Lettingw = —y — z
and x = 0 in (4.38), we get A(y + z) = A(y) + A(z) for all y, z € X. So, there exists
a Cauchy additive mapping A : X — Y satisfying (4.34) for the case p > 1.

Now, let T : X — Y be another Cauchy additive mapping satisfying (4.33). Then
we have

IAG) = T =27 |4 (%) - (%) H
=2 (|t G) - G| 17 )~ (7))

O],

which tends to zero as ¢ — oo for all x € X. So, we can conclude that A(x) = T(x)
for all x € X. This proves the uniqueness of A.
Assume that p < 1. It follows from (4.35) that

2042
lrco - 3ren] < 2260
for all x € X. Hence we have
|7 = o) < 25 23 ) 2—9||x||P (439)

for all m,I > 1 with m > [ and x € X. It follows from (4.39) that the
sequence {%f(2kx)} is a Cauchy sequence for all x € X. Since Y is complete,

the sequence {% f(2*x)} converges and so one can define the mapping A : X — Y by
A(x) == lim ks 1 (2"x)
" ko0 2K

forall x € X. Letting / = 0 and m — oo in (4.39), we get
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2’ +2
O11xl1”

I AW = 53—

forall x € X.
The rest of the proof is similar to the above proof. So, there exists a unique
Cauchy additive mapping A : X — Y such that

2 +2
127 2|

IF(x) =A@ = O llx1” (4.40)

for all x € X. Assume that f : X — Y is a mapping such that the transformation
t — f(tx) is continuous in ¢ € R for each fixed x € X. By the same reasoning as
in the proof of Theorem 4.19, one can prove that A is an R-linear mapping. This
completes the proof. |

Using the fixed point method, we prove the Hyers-Ulam stability of the func-
tional inequality (4.27) in Banach spaces.

Theorem 4.22. Letf : X — Y be an odd mapping for which there exists a function
¢ : X* — [0, 00) such that there exists L < 1 such that

1
P(x,y,z,w) < §L<p(2x, 2y,2z,2w)

forall x,y,z,w € X and

If () +f) +f (@) + W)l
<) +fO+z+w + elx,y,z,w) (4.41)

forallx,y,z,w € X. Then there exists a unique Cauchy additive mappingA : X — Y
such that

If(x) =AM < @(0,x,x, —2x) (4.42)

2-2L
forall x € X.

Proof. Consider the set S := {g : X — Y} and introduce the generalized metric on
S as follows:

d(g,h) = inf{K € R} : ||g(x) — h(x)|| < Kg(0,x,x, —2x), Vx € X}.

which (S, d) is complete.
Now, we consider the linear mapping J : S — S defined by

Jg(x) :=2g (g)
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for all x € X. Now, we have
d(Jg,Jh) < Ld(g.h)

forall g,h € S. Sincef : X — Y is odd, f(0) = 0 and f(—x) = —f(x) forall x € X.
Letting z =y = xand w = —2x in (4.41), we have

12/ () —f (20l = 112/ (x) +f(=20)[| < ¢(0.x,x, —2x) (4.43)

for all x € X. It follows from (4.43) that
Hf(x) =2f (E)H <e¢ (0, f, f,—x) < E<,0(O,x,x, —2x)
] 2701 = 22 -2

for all x € X. Hence d(f,Jf) < % By Theorem 1.3, there exists a mapping
A : X — Y satisfying the following:

(1) Aisafixed point of J, i.e.,

A (%) - %A(x) (4.44)

forall x € X. Then A : X — Y is an odd mapping. The mapping A is a unique
fixed point of J in the set

M={geS:df,g) < oo}

This implies that A is a unique mapping satisfying (4.44) such that there exists
a K € (0, co) satisfying

”f(-x) - A(-x)” = K(p(osxs X, —2)6)

forall x € X;
(2) d(J*f,A) — 0as n — oo. This implies the equality

lim 2'f (21) = A(x) (4.45)

forall x € X;
3) d(f.A) < ﬁd(f, Jf), which implies the inequality

L
2-2L°

d(f,A) <

This implies that the inequality (4.42) holds.
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It follows from (4.41) and (4.45) that

[A(X) +A() +A@R) + AW = [AX) + A + 2+ w)l

forallx,y,z,w € X. By Theorem 4.19, the mapping A : X — Y is a Cauchy additive
mapping. Therefore, there exists a unique Cauchy additive mapping A : X — Y
satisfying (4.43). This completes the proof. O

Corollary 4.23. Let r > 1 and 0 be nonnegative real numbers andf : X — Y be
an odd mapping such that
IF ) +/0) + /(@) +fW)
= If®) +fO+z+wll
A"+ 17+ 2l Iwll” Il % - Iyl - 2l - Il 5) - (4.46)

forallx,y,z,w € X. Then there exists a unique Cauchy additive mapping A : X — Y
such that

e —Awl < 5

O1lx("

forall x € X.
Proof. The proof follows from Theorem 4.22 by taking

QD(X, IR W)
= Ol + 117+ Nzl + Iwl” + Il - Iyl - 11zl - wll )

forall x,y,z,we Xand L = 217" and so we get the desired result. O

Remark 4.24. Let f : X — Y be an odd mapping for which there exists a
function ¢ : X* — [0, 00) satisfying (4.41). By the similar method to the proof

of Theorem 4.22, one can show that, if there exists L < 1 such that
Xy zw

e <21 (5.2 2.%)

@(x,y,z,w) < 2L¢p 2533

forall x,y, z, w € X, then there exists a unique Cauchy additive mappingA : X — Y
such that

lFe) =A@ < (0, x, x, —2x)

2-2L
forall x € X.
For the case 0 < r < 1, one can obtain the similar result to Corollary 4.23:
Let0 < r < 1,0 > 0 be real numbers and f : X — Y be an odd mapping
satisfying (4.46). Then there exists a unique Cauchy additive mapping A : X — Y
such that
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2+

10— AW = 3 )l

forall x € X.

4.2.2 On Additive Functional Inequalities in Normed
Modules over C*-Algebras

In [12], An investigated the following additive functional inequality:

IfF () +f0) +7@) +fWI < If (x +3) +fz+wll (4.47)

in normed modules over a C*-algebra. This is applied to understand homomor-
phisms in C*-algebras. Moreover, he proved the Hyers-Ulam stability of the
functional following inequality:
IF ) +f) +F@ +fWl
< Ifxe+y+z+wl + OlxPIyI”lll” wll? (4.48)

in real Banach spaces, where 6 and p are positive real numbers with 4p # 1.
Gilanyi [126] showed that, if f satisfies the functional following inequality:

12/ (0) +2f () =fx =W = Ifx + ), (4.49)

then f satisfies the Jordan-von Neumann functional equation:

2f () +2f () =fx +y) +f(x=y).

Fechner [113] and Gilédnyi [127] proved the Hyers-Ulam stability of the func-
tional inequality (4.49). Park et al. [253] investigated the functional following
inequality:

IF &) +/0) +f@I = Ifx+y+ 2| (4.50)

in Banach spaces and proved the Hyers-Ulam stability of the functional inequal-
ity (4.50) in Banach spaces.

Now, let A be a unital C*-algebra with the unitary group U(A) and the unit e and
let B be a C*-algebra. Assume that X is a normed A-module with the norm || - ||x
and Y is a normed A-module with the norm || - ||y.

Theorem 4.25. Letf : X — Y be a mapping such that

luf (x) +f () + @) + Wy < If(ux +y) +f@+w)ly (4.51)



4.2 Stability of Functional Inequalities over C*-Algebras 193

forallx,y,z,w € X and u € U(A). Then the mappingf : X — Y is A-linear.
Proof. Lettingx =y=z=w=0andu = e € U(A) in (4.51), we have

147 (0)[ly < [2/(0)]ly
and so f(0) = 0. Letting z = w = 0 in (4.51), we have
IF ) + Dy < IFG+ )y (4.52)

for all x,y € X. Replacing x and y by x + y and z + w in (4.52), respectively, we
have

If&x+y) +fc+wly = Ifx+y+z+wly
forall x,y,z,w € X and so
If ) +f0) +f@) +fWly = If&c+y+z+wly (4.53)
forall x,y,z.w € X. Letting z = w = 0 and y = —x in (4.53), we have
If () +f(=0)lly = [IfO)[ly =0

for all x € X. Hence f(—x) = —f(x) for all x € X. Lettingz = —x —yand w = 0
in (4.53), we have

If &) +f0) —fx+ 0y = If&) +£0) + (== lly = [IF(O0)lly =0
forall x,y € X. Thus we have
fx+y) =1 +f0)
forall x,y € X. Lettingy = —uxand y = w = 0 in (4.51), we have
If (ux) — f(ux)lly = [If (ux) +f(—ux)|ly < [2f(0)[ly =0
forall x € X and u € U(A). Thus we have
Fux) = uf (x) (4.54)

forallu € U(A) and x € X.
Now, let a € A with a # 0 and M be an integer greater than 4|a|. Then we have

<-<l—-===

‘a‘ 1 2 1
4 3 3
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By Theorem 1 of Kadison and Pedersen [167], there exist three elements
up, uz, u3 € U(A) such that 357 = uy + up + u3 and so, by (4.54), we have

M _a 1 _a M a
f(ax) =f(? : 3A—4x) - M-f(3 : 3Mx) - ?f(3ﬂx)
M M
= ?h(ulx + uox + uzx) = ?(f(”lx) + f(u2x) + f (u3x))
M M
= S+ w)f () = T30 = af ()
for all x € X. Therefore, f : X — Y is A-linear. This completes the proof. O

Corollary 4.26. Letf : A — B be a multiplicative mapping such that

f @) +70) +7@) +fWI < [If (ux +y) +fz+w) (4.55)

forallx,y,z,we Aand u € T := {A € C: |A| = 1}. Then the mappingf : A — B
is a C*-algebra homomorphism.

Proof. By Theorem 4.25, the multiplicative mapping f : A — B is C-linear since
C*-algebras are normed modules over C. So, the multiplicative mapping f : A — B
is a C*-algebra homomorphism. |

Theorem 4.27. Let X be a real normed linear space and Y be a real Banach space.
Assume that f : X — Y is an approximately additive odd mapping for which there
exist the constants 0 > 0 and p € R such that 4p # 1 and f satisfies the general
Cauchy-Rassias inequality:

If ) + /) +/@ +5Wl
= Wf&+y+z+wll + Oyl wl? (4.56)

forall x,y,z,w € X. Then there exists a unique additive mapping L : X — Y such
that

376
IF ) = LIl < mnxll“’ (4.57)

for all x € X. If, in addition, f : X — Y is a mapping such that the transformation
t — f(tx) is continuousint € R for each fixed x € X, then L is an R-linear mapping.

Proof. Sincef is odd, f(0) = 0 and f(—x) = —f(x) forall x € X. Lettingy =z =x
and w = —3x in (4.56), we have

13 (x) — £ (3x)|| < 376]]x||* (4.58)

for all x € X and so

I~ (2)] = 5 it
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for all x € X. Hence we have

) -G =T 6

j=l

forallm,/ > 1withm > [and x € X.
Assume thatp > 4—11. It follows from (4.59) that the sequence {3*f (5¢)} is a Cauchy

sequence for all x € X. Since Y is complete, the sequence {3*f (5¢)} converges and
so one can define the mapping L : X — Y by

T ke X
L = klggo3 f (3")
for all x € X. Letting [ = 0 and m — oo in (4.59), we have

3r6

153
817 —3

If () = L) =

for all x € X. It follows from (4.56) that

B () +3r () +37 (5) + 37 (5]

x+y+z+w 3%0
3 (y—) H + Il I IP =112 w i (4.60)

=

3k 81pk

for all x,y,z,w € X. Letting k — o0 in (4.60), we get
[L(x) + L) + L(2) + LW)|| < |IL(x +y +z +w)|| (4.61)

for all x,y,z,w € X. Itis easy to show that L : X — Y is odd. Letting z = —x —y
andw = 0in (4.61), we get L(x +y) = L(x) + L(y) for all x,y € X. So, there exists
an additive mapping L : X — Y satisfying (4.57) for the case p > %.

Now, let T : X — Y be another additive mapping satisfying (4.57). Then we have

IL(x) — T(x)|| = 34 HL (%) -T (%) H

= (e (3o ) (G

A

4
[l [,

which tends to zero as ¢ — oo for all x € X. So we can conclude that L(x) = T(x)
for all x € X. This proves the uniqueness of L.
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Assume that p < 4—11. It follows from (4.58) that

< 317—19 ||x||4p

I - S

for all x € X. Hence we have

H f(3x)——f<3'"x) <37 ‘92 o 1531 (4.62)

for all m,I > 1 with m > [ and x € X. It follows from (4.62) that the
sequence {%kf(3kx)} is a Cauchy sequence for all x € X. Since Y is complete,

the sequence {3% f(3*x)} converges and so one can define the mapping L : X — Y by
R PP
L(x) == k1_1>n010 ﬁf (3"x)

for all x € X. Letting / = 0 and m — o0 in (4.62), we have

370
381

If () =L = 155
forall x € X.

The rest of the proof is similar to the above proof. So, there exists a unique
additive mapping L : X — Y satisfying

376
1) = LIl < mnxll“’ (4.63)

for all x € X. Assume that f : X — Y is a mapping such that the transformation
t — f(tx) is continuous in ¢ € R for each fixed x € X. By the same reasoning as
in the proof of Theorem 4.25, one can prove that L is an R-linear mapping This
completes the proof. |

4.2.3 Generalization of Cauchy-Rassias Inequalities
via the Fixed Point Method

Now, we improve the results of An’s results [12], which presented at last pages. In
fact, we get a better error estimation of main result of An by applying the fixed point
alternative theorem.
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Theorem 4.28. Let X be a real normed linear space and Y be a real Banach space.
Assume that f : X — Y is an approximately additive odd mapping satisfying the
general Cauchy-Rassias inequality:

If () + ) +f(@) + )l
< lfx+y+z+w| + e,y z,w) (4.64)

for all x,y,z,w € X, where ¢ : X* — [0,00) is a given function. If there exists
0 < L < 1 such that

1
ox,y,z,w) < §L<p(3x, 3y, 3z,3w) (4.65)

forall x,y,z,w € X. Then there exists a unique additive mapping A : X — Y such
that

IF () =A@ =

L
3 3L(,o(x, X, x, —3x) (4.66)

for all x € X. If; in addition, f : X — Y is a mapping such that the transformation
t = f(tx) is continuous in t € R for each fixed x € X, then A is an R-linear mapping.

Proof. Since f is odd, f(0) = 0 and f(—x) = —f(x) for all x € X. Consider the set
S := {g : X — Y} and introduce the generalized metric on S as follows:

d(g,h) =inf{C € Ry : ||g(x) — h(x)| < Cop(x,x,x,—3x), Vx € X}.
Now, we show that (S, d) is complete. Let {A,} be a Cauchy sequence in (S, d).
Then, for any ¢ > 0, there exists an integer N, > 0 such that d(h,,, h,) < & for all
m,n > N;. Then there exists C € (0, ¢) such that

7 (x) — By ()| < Co(x, x, x, —3x) < ep(x, x, x, —3X) (4.67)

for all m,n > N, and x € X. Since Y is complete, {/,(x)} converges for each x € X.
Thus a mapping & : X — Y can be defined by

h(x) := lim h,(x) (4.68)
n—>o00
for all x € X. Letting n — o0 in (4.67), we have

m>N, = ||hn(x) — h, ()| < ep(x, x,x, —3x)
= ce{CeR;:|gkx)—h)]| < Co(x,x,x,—3x), Vx € X}
= d(hu,h) <e¢

for all x € X. This means that the Cauchy sequence {4,} converges to & in (S, d).
Hence (S, d) is complete.
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Now, we consider the linear mapping A : S — S defined by

Ag(x) == 3g (g) (4.69)

for all x € X. We show that A is a strictly contractive on S. For any g,h € S, let
C,., > 0 be an arbitrary constant with d(g, 1) < C, ;. Then we have

d(g.h) = Con == [I8() = ()| = Conplx, x. x, =3x)

= () (5)1 =30 (3359

— 3¢ (g) —3n (g) | < LCynp(r, x. %, —3%)

for all x € X. This means d(Ag, Ah) < LC,;. Hence we see that d(Ag, Ah) <
Ld(g,h) for any g,h € S. Therefore, A is a strictly contractive on S with the
Lipschitz constant 0 < L < 1.

Letting y = z = x and w = —3x in (4.64), we have

[3/(x) —fBx)|| < @(x,x,x,—3x) (4.70)
for all x € X and so
X X X X 1
Hf(x) =3f (g) H =9 (5, 33 —x) < §L<p(x,x,x, —3x)
for all x € X. Thus we have
L
d(f, Af) < 3

Therefore, it follows of Theorem 1.3 that the sequence {A"f} converges to the
unique fixed point A of A, i.e.,

AW = (AN == lim 37 (1)
and A(3x) = 3A(x) for all x € X. Also, we have
1 L
d(A.f) = md(/lf,f) =3

which means that (4.66) holds.

Assume that f : X — Y is a mapping such that the transformation t — f(tx) is
continuous in ¢ € R for each fixed x € X. By the same reasoning as in the proof
of Theorem 4.25, one can prove that A is an R-linear mapping. This completes the
proof. |
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In the following, we get a better error estimation of the main result of An [12].

Corollary 4.29. Let X be a real normed linear space and Y be a real Banach space.
Assume that f : X — Y is an approximately additive odd mapping for which there
exist the constants 0 > 0 and p € R such that 4p # 1 and f satisfies the general
Cauchy-Rassias inequality:

lF ) +50) +/(@) +fWl
= f&+y+z+wl + Oyl wi”

forall x,y,z,w € X. Then there exists a unique additive mapping A : X — Y such
that

31
If () =A@ < m”x”“”

for all x € X. If; in addition, f : X — Y is a mapping such that the transformation
t = f(tx) is continuousin t € R for each fixed x € X, then A is an R-linear mapping.

Proof. In Theorem 4.28, take
p(x,y,z,w) == Olx|P[IyI” | z]|” [[w]|”

forall x,y,z,w € X and L = 81 1=P_ Then we have desired result. O

Corollary 4.30. Let X be a real normed linear space and Y be a real Banach space.
Assume that f : X — Y is an approximately additive odd mapping for which there
exist the constants 0 > 0 and p € R such that 4p # 1 and f satisfies the general
Cauchy-Rassias inequality:

IF ) +f) +/@ +7Wl
= f&+y+z+wl + 0" + [IyI1” + llzl” + [wll”)

forall x,y,z,w € X. Then there exists a unique additive mapping A : X — Y such
that

(37 +3)6

IF () =AW = oo [x[1”

for all x € X. If; in addition, f : X — Y is a mapping such that the transformation
t = f(tx) is continuousin t € R for each fixed x € X, then A is an R-linear mapping.

Proof. In Theorem 4.28, take
p(x,y,z,w) = O|x[|” + [IyII” + llzl|” + [w]l”

forall x,y,z,we Xand L = 3177, Then we have desired result. O



Chapter 5
Stability of Functional Equations
in C*-Ternary Algebras

Ternary algebraic operations were considered in the nineteenth century by several
mathematicians such as Cayley [68] who introduced the notion of cubic matrix
which, in turn, was generalized by Kapranov et al. [169]. The simplest example
of such non-trivial ternary operation is given by the following composition rule:

{as b7 C}ijk - E am’lbljmcmkn

1<l m,n<N

foreachi,j,k=1,2,--- ,N.

Ternary structures and their generalization, the so-called n-ary structures, raise
certain hopes in view of their applications in physics. Some significant applications
are as follows (see [171] and [172]):

(1) The algebra of nonions generated by two matrices

010 010
001 ], 0 0w
100 2?00,

where v = e%, was introduced by Sylvester as a ternary analog of Hamiltons
quaternions (see [2]).

(2) The quark model inspired a particular brand of ternary algebraic systems. The
so-called Nambu mechanics is based on such structures (see [93]).

There are also some applications, although still hypothetical, in the fractional
quantum Hall effect, the nonstandard statistics, supersymmetric theory and the
Yang-Baxter equation (see [2, 171] and [325]).

In Sect. 5.1, we prove the Hyers-Ulam stability of C*-ternary 3-derivations
and of C*-ternary 3-homomorphisms for the following functional equation:

© Springer International Publishing Switzerland 2015 201
Y.J. Cho et al., Stability of Functional Equations in Banach
Algebras, DOI 10.1007/978-3-319-18708-2_5
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fE+ny+ya+2)= Y fGy.w
1<ijk<2

in C*-ternary algebras.

In Sect.5.2, we consider the following Apollonius type additive functional
equation:

1
PG+ = =36+ + 2 (= 57

and prove the superstability of C*-ternary homomorphisms, C*-ternary derivations,
JB*-triple homomorphisms and JB*-triple derivations by using the fixed point
method.

In Sect. 5.3, we prove the Hyers-Ulam stability of bi-0-derivations on JB*-triples.

5.1 C*-Ternary 3-Homomorphism and C*-Ternary
3-Derivations

In this section, we prove the Hyers-Ulam stability of C*-ternary 3-derivations and
of C*-ternary 3-homomorphisms for the following functional equation:

fo+ny+yma+2)= Y f@y.a)

1<ijk<2

in C*-ternary algebras (see [94]).

Let X and Y be complex vector spaces. A mapping f : XxXxX — Y iscalled a 3-
additive mapping if f is additive for each variable and a mapping f : XxXxX — Yis
called a 3-C-linear mapping if f is C-linear for each variable. A 3-C-linear mapping
H:AXAxA — Biscalled a C*-ternary 3-homomorphism if it satisfies

H([x1,y1,z1], [x2, y2, 2], [x3, y3. 23])

= [H(-xls-x27-x3)vH(ylvy25 y3)s H(ZleZa Z3)]

for all x1, y1, 21, X2, ¥2, 22, X3, ¥3, 23 € A. For a given mapping f : A3 — B, we define

D pnf (X1, X2, Y1, Y2, 21, 22)

= f(Ax1 + Axa, uy1 + py2, vz1 + vza) — Apv Z S i vy, ze)
1<ijk<2

forall A, u,v € S' ;= {1 € C:|A| = 1} and x1, X2, y1, y2.21. 22 € A.
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Bae and Park [21] proved the Hyers—Ulam stability of 3-homomorphisms in
C*-ternary algebras for the following functional equation:

Dy pnf (X1, Xx2,¥1,¥2,21,22) = 0.

Lemma 5.1 ([21]). Let X and Y be complex vector spaces andf : X x X x X — Y
be a 3-additive mapping such that

f(Ax, py, vz) = Apvf(x.y.2)
forall A, v € S' and x,y,z € X. Then f is 3-C-linear.
Theorem 5.2 ([21]). Let p,q.r € (0,00) withp + g+ r < 3 and 0 € (0, 00) and
f : A3 — B be a mapping such that
1Dy o (o1, X2, ¥1,¥2, 21, 22) || (5.1

< 6 -max{|x [, [|x2[l} - max{[[y1 ], [y} - max{[|z1 ], [|z2]I}"
and

IFCBers yis zils 2, y2, 22], [x3,¥3, 23])
—[fCe1, x2,x3), f 1, y2, ¥3).f (21, 22, 23) ]| (5.2)

3
<03 Il - il - i)

i=1

forall A, v € St and x1, x3, x3, Y1,¥2,¥3,21, 22,23 € A. Then there exists a unique
C*-ternary 3-homomorphism H : A> — B such that

fGe.y.2) —Hx.y. 9 = 7 [l Ayl - Nzl (5.3)

— ptgtr

forall x,y,z € A.

5.1.1 C*-Ternary 3-Homomorphisms in C*-Ternary Algebras

Now, we investigate C*-ternary 3-homomorphisms in C*-ternary algebras.

Theorem 5.3. Letp,q,r € (0,00) withp + g+ r < 3 and 0 € (0, 00) and
f : A> — B be a mapping satisfying (5.1) and (5.2). If there exists (xo, o, z0) € A®
such that

1
lim —f(2"x0, 2"yo, 2"20) = €,
n—o0 8"

then the mapping f is a C*-ternary 3-homomorphism.
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Proof. By Theorem 5.2, there exists a unique C*-ternary 3-homomorphism
H : A’ — B satisfying (5.3). Note that

1
H(x,y,z) := lim —f(2"x,2"y,2"z)
n—o00 81
for all x, y, z € A. By the assumption, we have

o1
H(x0.y0.20) = lim —f(2"x0,2"yp,2"20) = €.
n—o00 8"
It follows from (5.2) that

I[H (x1, x2,%3), H(y1, y2,¥3), H(z1, 22, 23)]
—[H(x1,x2,x3). H(y1, y2.y3).f (21, 22. 23)]l

1H ([x1, y1, 1], [x2, ¥2, 22], [x3, ¥3, 23])
—[H(x1,x2,x3). H(y1, y2.y3).f (21, 22. 23)]l

: 1 n n n n n n
= lim @Ilf([Z x1. 2"y 21l [2"x2, 2%y, 2], [2"%3, 2"y3, 23])

—[f(2"x1,2"x2,2"x3), f(2"y1. 2"y2,2"y3). f (21, 22, 3)]|l

gt 2
< lim == > bl il -zl
i=1
=0

for all x1, x2, X3, y1,y2,¥3.21, 22,23 € A and so

[H(x1,x2,x3), Hy1, y2.¥3), H(z1, 22, 23)]

= [H(x1,x2,x3), Hy1,¥2,¥3),f (21, 22, 23)]
for all xy,x2,x3,¥1,¥2,3,21,22,23 € A. Letting x; = y; = xo0,x2 = Y2 = Yo
and x3 = y3 = 7o in the last equality, we get f(z1, 22,23) = H(z1,22,23) for all

71,22,23 € A. Therefore, the mapping f is a C*-ternary 3-homomorphism. This
completes the proof. O

Theorem 5.4. Let p;, qi,ri € (0,00) (i = 1,2,3) suchthatp; # 1 orq; # 1 or
ri # 1 for some 1 <i<3,0,n¢(0,00)andf : A> — B be a mapping such that

||D/1,/L,Uf(x17-x27ylsy27 ZlyZZ)”
< Ol - e 172 - flya 1 - ly2ll%2 (5.4

Fly - My2 0% - Mz ll™ = lz2ll™ 4 el -l 172 = flza 1™ - lz201™)
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and

If ([x1. y1. 21]s [x2, y2. 2], [x3. v3, 23])
—[f(x1, x2,%3). f (1. y2. y3) . f (21, 22, 23)] |
< P - 2172 - s 17 (5.5)
Al A2l - Alysll - llza ™ -zl - flzs )™
for all A, v € S' and xi,x2,X3,91,2,Y3.21.22,23 € A. Then the mapping
f : A% — B is a C*-ternary 3-homomorphism.

Proof. Letting x; = y; = zx = 0 (i,j,k = 1,2) in (5.4), we get £(0,0,0) = 0.
PuttingA = u=v =1,x =0andy, = z = 0 (j,k = 1,2) in (5.4), we have
f(x1,0,0) = 0 for all x; € A. Similarly, we get f(0,y;,0) = £(0,0,z;) = 0 for all
1,21 € A. Setting A = 4 =v = 1,x, = 0,y, = 0and 7y = z = 0, we have
f(x1,y1,0) = 0 for all x;,y; € A. Similarly, we get f(x1,0,z1) = f(0,y1,z1) =0
for all x1,y1,z1 € A.

Now, letting A = u = v = 1l and y, = 75 = 0in (5.4), we have
fr +x2,y1,21) = flxr,y1,21) + f(x2,y1,21)

for all x1,x2,y1,21 € A. Similarly, one can show that the other equations hold and
so f is 3-additive. Letting x, = y, = zo = 0in (5.4), we get

Jxy, pyr,vzi) = Apvf(xy, yi,z1)
for all A, u,v € S' and x;,y1,z1 € A. So, by Lemma 5.1, the mapping f is
3-C-linear.

Without any loss of generality, we may suppose that p; # 1. Let p; < 1.
It follows from (5.5) that

f (1, y1s z1], 2, y2, 22 [x3, 3, 23])
—[f (1,22, x3), f (01, ¥2. ¥3). f (215 22, 23)] |
. 1
= nll>I§o > F([3"x1, y1. z1], [x2. ¥2. 22]. [x3, ¥3, 23])
—[F(3"x1,x2,x3),. f (V1. ¥2. ¥3). f (21, 22. 23)] |
np1
(a7 - e 172 = floes 172 - [lya 19 = [ly2 12

3n
Ayl Mz ll™ -zl - flza 1)

IA

n lim
n—o0

=0
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for all x1, x2, X3, Y1, 2,3, 21, 22, 23 € A. Let p; > 1. It follows from (5.5) that

If ([x1, 1, 2], [x2, y2, 22, [x3, y3, 23])
=[f(xe1, x2,x3), f(v1, y2, ¥3) . f (21, 22, 23)] |

1
f([ﬁxl’yl’m]’ [Xz,yz, ZZ], [x3ay37 Z3])

lim 3"
n—oo

J(anm). £ S 20|

n

IA

(e 70l 17 = s llP2 - Ayl - lly2 112

ysll = Alzall™ -zl - flza ™)

n lim

n—o00 31

=0
for all x1, x2, x3, y1, ¥2, V3, 21, 22, 23 € A. Therefore, we have

Sy 2], [x2,y2, 2], [x3, v3. 23])
= [f(x1,x2,%3), f V1, ¥2. ¥3).f (21, 22, 23)]

for all x1, x2, x3,y1,¥2,¥3,21,22,23 € A. Therefore, the mapping f : A’ > Bisa
C*-ternary 3-homomorphism. This completes the proof. O

Remark 5.5. Let ¢ : A® — [0, 00) and ¥ : A° — [0, 00) be the functions such that
@(x1,- -+ x6) =0

if x;, = 0 forsome 1 <i < 6 and
1 n
ﬁw(xlv”'s3 -xis"'v-x9) = 0
or
1
Snw(-xls ey X, 'a-x9) - O'
3n
Suppose that f : A3 — B is a mapping satisfying
D5 e (1, 22,31, ¥2, 21, 2) 1| < (X1, X2, Y1, Y2, 21, 22)
and

If ([x1, 1, 2], [x2, y2, 22, [x3, y3, 23])
=[f(x1, x2,x3), f(v1, y2, ¥3) . f (21, 22, 23)] |

< (X1, X2, %3, Y1, Y2, Y3, 21, 22, 23)
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forall A, u,v € S! and X1,X2,X3,¥1,¥2, 3,21, 22,23 € A. Then the mapping f is a
C*-ternary 3-homomorphism.

Corollary 5.6. Let p;,q;,ri € (0,00) (i = 1,2,3) such that p; # 1 or q; # 1 or
ri # 1 for some 1 <i<3,0,n¢(0,00)andf : A> — B be a mapping such that
D puuf (X1, %2, Y1, ¥2. 21, 22) ||

< Ol - el -yl - 21 - flzall™ - 1221
and

”f([‘xl?yla Zl]’ [Xz,yz, 22]’ [X3,y3, 23])
—[f (1, x2, x3), f (01, ¥2, ¥3) . f (21, 22, 23)] |

<l ez 172 - Al [P Qlya 1= ly2ll% - Ays % - lzll™ - llz2 )" - flzs]l™

forall A, u,v € S' and X1,X2,X3,V1,¥2, V3,21, 22,23 € A. Then the mapping f :
A3 — B is a C*-ternary 3-homomorphism.

5.1.2 C*-Ternary 3-Derivations in C*-Ternary Algebras

Now, we investigate C*-ternary 3-derivations in C*-ternary algebras.

Definition 5.7. A 3-C-linear mapping D : A> — A is called a C*-ternary
3-derivation if it satisfies the following:

D([x1,y1, 21], [x2, y2, 22], [x3. ¥3. 23])
= [D(x1,x2,x3), [y1,¥5, y3]. [21. 25 . 23]]
+pxr, 23, %3], D1, y2. ¥3). [21. 25, 23]]
+Her, x5, x3], 1, ¥3 5 y3), D(z1, 22, 23)]
forall x1,x2,x3, y1,¥2,¥3. 21, 22, 23 € A.

Theorem 5.8. Let p,q,r € (0,00) withp +q+r < 3 and 6 € (0,00), and let
f: A® — A be a mapping such that

D3 punf Cer, x2, 31, ¥2. 21, 22) || (5.6)
< 0 -max{|x ||, [lx2[|}” - max{[[y1 [, [[y2[1}7 - max{[|z1 ]|, [|z2[|}"
and

”f([xls)’thL [-x25 Y2, ZZ]s [—x35y37 Z3])
_[f(xlsx27-x3)v [YIsy;vy:ﬂv [Zl?Z;s Z3]]
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_[[xlvx;s-x3]sf(_ylsy27 yS), [le Z>2ks Z3]]
_[[xlvx;s-x:;]s [ylsy;7y3]7f(zlsZ27 Z3)]||

3
<0 lll? - ville - Nzl 5.7)

i=1

forall A, u,v € St and x1, X2, X3, Y1, Y2, V3,21, 22, 23 € A. Then there exists a unique
C*-ternary 3-derivation § : A> — A such that

0
— kP vl Il

I Cey.2) = 8Ce v DI = S5 g Il - Iyl -zl (5.8)
forall x,y,z € A.
Proof. By the same method as in the proof of [21, Theorem 1.2], we obtain a 3-C-
linear mapping § : A3 — A satisfying (5.8) and the mapping

|
8(x,y,2) := lim —f(2x,2'y,27)
j—o0 8

for all x,y, z € A. It follows from (5.7) that

18(Lx1, yi, z1]s [x2, ¥2, 201, [x3, y3, z3])
—[8(x1,x2,x3), [y, 5 ¥l [z1. 25 23]
_[[xlsx;7x3]7 8(}’17)72, )’3), [le Z;7Z3]]

_[[xlsx;7x3]7 [ylsy;7y3]78(Z17Z27Z3)]”
: 1 3n 3n 3n
=n11>noloﬁllf(2 [x1,y1, 21], 27" [x2, y2, 22], 27" [x3, ¥3, 23])

—[f(2"x1,2"x2,2"x3), [2"y1, 2"y5 , 2"y3). [2"21, 225, 2" 23]

—[[2"x1,2"x5, 2"x3], f(2"y1, 292, 2"y3), [2"21, 225, 2"23]]

—[[2"x1,2"x3, 2"x3], [2"y1. 2"y3, 2"y3). f (2721, 2" 22, 2" 23)] |
ganp+atn 3

Sl - il -zl = 0

i=1

< lim ————
n—>00 83”

for all x1, x2, X3, y1,¥2, 3,21, 22,23 € A.
Now, let T : A3 — A be another 3-derivation satisfying (5.8). Then we have

1
16Cx,y,2) = T(x,y,2)[| = r [6(2"x,2"y,2"z) — T(2"x,2"y,2"2)||

IA

1
i 1627x. 2%y, 2%2) — f(2'x. 2y, 2°2) |
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1
g Q% 2'y.270) - T2 2'y.27)|
92(1)+q+r—3)n+ 1

= WHXHP Ayl Nzl

which tends to zero as n — oo for all x,y,z € A. So we can conclude that

8(x,y,z) = T(x,y,z) for all x,y,z € A. This proves the uniqueness of §. Therefore,
the mapping § : A> — A is a unique C*-ternary 3-derivation satisfying (5.8). This
completes the proof. |

Corollary 5.9. Let € € (0,00) and f : A> — A be a mapping satisfying
1DA punf (X1, X2, ¥1,¥2, 21, 22) || < €
and
f (1 y1s 21, [x2, v2, 22], s, 3, 23])
—[f (a1, %2, x3), [y1, 55, v3), 21, 25 23]

_[[xlvx;5x3]sf(_ylsy27 yS), [le Z;s Z3]]
_[[xlvx;5x3]s [ylsyz(vy:;]vf(zlsZZv Z3)]||

< 3¢

forall A, u,v € St and x1, X2, X3, Y1, Y2, V3,21, 22, 23 € A. Then there exists a unique
C*-ternary 3-derivation § : A> — A such that

IfCx,y,2) = 8(x, y.2)|| <

~N M

forall x,y,z € A.

5.2 Apollonius Type Additive Functional Equations

C. Park and Th. M. Rassias proved the superstability of C*-ternary homomorphisms,
C*-ternary derivations, JB*-triple homomorphisms and JB*-triple derivations asso-
ciated with the following Apollonius type additive functional equation:

PG+ = =3G9+ (= 57

by using the direct method (see [244-248]).
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In this section, under the conditions of the theorems, we can show that the map-
pings f must be zero and we correct some conditions. Furthermore, we prove the
superstability of C*-ternary homomorphisms, C*-ternary derivations, JB*-triple
homomorphisms and JB*-triple derivations by using fixed point method.

In an inner product space, the following equality holds:

y
o=l + 2=y = g e =P + 2]~

which is called the Apollonius’ identity. The following functional equation, which
was motivated by this equation:

+y)

06—+ 0~y = 506~y +20(:~ 12 (5.9)

is quadratic. For this reason, the function equation (5.9) is called a quadratic func-
tional equation of Apollonius type and each solution of the functional equation (5.9)
is said to be a quadratic mapping of Apollonius type. Jun and Kim [144] investigated
the quadratic functional equation of Apollonius type.

Now, employing the above equality (5.9), we introduce a new functional
equation, which is called the Apollonius type additive functional equation and
whose solution of the functional equation is said to be the Apollonius type additive

mapping:

Liz—x)+L(z—y) = ——L(x +y) + ZL(Z — %)

5.2.1 Homomorphisms in C*-Ternary Algebras

Assume that A is a C*-ternary algebra with the norm || - ||4 and that B is a C*-ternary
algebra with the norm || - ||5.
Now, we investigate homomorphisms in C*-ternary algebras.

Lemma 5.10. Letf : A — B be a mapping such that

a9 +fe—n+ gt < [re-EH] 0

forall x,y,z € A. Then f is additive.

Proof. Letting x = y = z = 0 in (5.10), we get H gf(O)HB < [12(0)|l5 and s0
f(0) = 0. Letting z = 0 and y = —x in (5.10), we have

If (=) +f )z < 12/(0)][z = 0



5.2 Apollonius Type Additive Functional Equations 211

for all x € A. Hence f(—x) = —f(x) for all x € A. Letting x = y = 2z in (5.10), we
have

1
212+ 3r60)|  < 12715 =0
forall z € A and so

fl4z) = —4f(—2) = 4f(2)

forall z € A. Letting z = ** in (5.10), we have

I(E52) 4+ (52) e 0, = prons =o

for all x,y € A and so

—3x+y x—3y 1 _
(=) +1(F57) + e +m =0 (5.11)
forall x,y € A. Let w; = =2 and w, = *2 in (5.11). Then we have
1 1 wr +w
FO0) +F0w2) = = f (=21 = 2w3) = = f(@wi + 2w2) = 2f (2
2 2 2
for all w;, w, € A and so f is additive. This completes the proof. |

Theorem 5.11. Let r # 1, 6 be a nonnegative real number andf : A — B be a
mapping such that

(12— 1) + uf =) + Sf e +)
2 B

< 2f(z—xj;y) (5.12)
B
and
(3. 2) = @ £G).S @]
< O + IV + Il (5.13)

forall p € T := {1 € C : |A| = 1} and all x,y,z € A. Then the mapping
f A — Bis a C*-ternary algebra homomorphism.

Proof. Assumer > 1.Let u = 1in (5.12). By Lemma 5.10, the mappingf : A — B
is additive. Letting y = —x and z = 0, we get

(=10 + @5 < 12Ol = 0
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forallx € Aand yu € T' and so

—f(ux) + puf (x) = f(=px) + pf(x) =0

forall x € A and u € T'. Hence f(uux) = uf(x) forall x € A and i € T'. By the
same reasoning as in the proof of Theorem 2.1 of Park [227], the mappingf : A — B

is C-linear. It follows from (5.13) that

If (e y. 2) = [F(0).f ). S @]

= tim (575 75) - 1) ()7 ()],
< im ST+ I+ 1l
=0

forall x,y,z € A and so

J(x.y.2)) = [F@)./ (). f(2)]

for all x,y,z € A. Hence the mapping f : A — B is a C*-ternary algebra

homomorphism.

Similarly, one obtains the result for the case r < 1. This completes the proof. O

5.2.2 Derivations in C*-Ternary Algebras

Assume that A is a C*-ternary algebra with the norm || - ||4. Now, we investigate

derivations on C*-ternary algebras.

Theorem 5.12. Let r # 1 and 0 be nonnegative real numbers, and letf : A — A

be a mapping such that

(12— 1) + uf (=) + Sfx +)
2 A

2f(z—x—:y)

If([x, v, 2D) = (), y, 2] = [x.f (), 2] =[x, . f ()]l
< Ol + Iyl + llzlly

=

A

and

forall x,y,z € A. Then the mapping f : A — A is a C*-ternary derivation.

(5.14)
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Proof. Assume r > 1. By the same reasoning as in the proof of Theorem 5.11, the
mapping f : A — A is C-linear. It follows from (5.15) that

”f([xa Vs Z]) - [f(x)vyv Z] - [-xvf(y)s Z] - [-xv yvf(z)]”A

= (P2 - [r(5). 2 5]
151) 3] 53 GO,
< tim SOy I+ e

n—oo 81

=0
forall x,y,z € A and so

f(x,y.2D) = ),y 2 + [x.f (), 2] + [x, v.f(2)]

for all x,y,z € A. Thus the mapping f : A — A is a C*-ternary derivation.
Similarly, one obtains the result for the case r < 1. This completes the proof. O

5.2.3 Homomorphisms in JB*-Triples

Assume that 7 is a JB*-triple with the norm | - | 7 and that £ is a JB*-triple with
the norm || - || 2.
Now, we investigate homomorphisms in JB*-triples.

Theorem 5.13. Let r # 1, 0 be a nonnegative real number andf : J — L be a
mapping such that

Fhz = o) + e =3) + S+ )|

< 2f(z—x:y) (5.15)
L
and
If (xyz}) — F O Of (D} 2
< 0=l + Iyl + l1zI%) (5.16)

forall w € T' and all x,v,z € J. Then the mapping f : J — L is a JB*-triple
homomorphism.
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Proof. Assume r > 1. By the same reasoning as in the proof of Theorem 5.11, the
mapping f : J — L is C-linear. It follows from (5.16) that

If (a3 = F O @}l 2

= s PG ) - VGG Ghe
< im S0+ 11 + 21
=0

for all x,y,z € J and so

fyz}) = ff0f (@}

for all x,y,z € J. Hence the mapping f : J — L is a JB*-triple homomorphism.
Similarly, one obtains the result for the case r < 1. This completes the proof. O

5.2.4 Derivations in JB*-Triples

Assume that 7 is a JB*-triple with the norm || - || 7. Now, we investigate derivations
on JB*-triples.

Theorem 5.14. Let r # 1, 6 be a nonnegative real number andf : J — J be a
mapping such that

(12— 1) + uf =) + Sf(c+y)
2 J

2f(z—x+y)H (5.17)
J

=

4

and

If ({xyz}) — If vz} — Ixf )z} — f @3 7
< 0=l + Iyl% + lz1%) (5.18)

forall x,y,z € J. Then the mapping f : J — J is a JB*-triple derivation.

Proof. Assume r > 1. By the same reasoning as in the proof of Theorem 5.11, the
mapping f : J — J is C-linear. It follows from (5.18) that
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bz — @0ed — (0N} — b @)l

(5 -1 53]

—{—f( Dot~ G,

(IIXII + IV + 11z1%)

lim 8"
n—00

I A

Snr
=0

forall x,y,z € J and so

fQxyz}) = f@yz} + )z} + f (@)}

for all x,y,z € J. Thus the mapping f : J — J is a JB*-triple derivation.
Similarly, one obtains the result for the case r < 1. This completes the proof. O

5.2.5 C*-Ternary Homomorphisms: Fixed Point Method

Now, we prove the superstability of C*-ternary homomorphisms by the using fixed
point method.

Theorem 5.15. Let ¢ : A3 — [0,00) be a function such that there exists ¢ < 1
with

X Z
o(x,y,z) < 8agp (2 ; 5) (5.19)

forall x,y,z € A. Letf : A — B be a mapping satisfying (5.12) and

“f([xv Y, Z]) - V(x)sf(y)7f(z)]||3 = (p(-xv Y, Z) (520)

forallx,y,z € A. Then the mapping f : A — B is a C*-ternary homomorphism.

Proof. By the same reasoning as in the proof of Theorem 5.11, one can show that
the mapping f : A — B is C-linear. It follows from (5.19) that

1
lim —@(2"x,2"y,2"7) =0 (5.21)
n—o0 8N
forall x,y,z € A. Since f : A — B is additive, it follows from (5.20) and (5.21) that

J(ey.2) = [F®).f )./ ()]

for all x,y,z € A. Thus the mapping f : A — B is a C*-ternary homomorphism.
This completes the proof. |
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Theorem 5.16. Let ¢ : A — [0, 00) be a function such that there exists o < 1
with

o
p(x,y,2) < 5% (2x,2y,2z) (5.22)
forall x,y,z € A. Let f : A — B be a mapping satisfying (5.12) and (5.20). Then

the mapping f : A — B is a C*-ternary homomorphism.

Proof. By the same reasoning as in the proof of Theorem 5.11, one can show that
the mapping f : A — B is C-linear. It follows from (5.22) that

lim 2" (2i Yz ) =0 (5.23)

n—>00 o1’ on

forall x,y,z € A. Since f : A — B is additive, it follows from (5.20) and (5.23) that

J(x.y.2)) = [F@)./ (). f(2)]

for all x,y,z € A. Thus the mapping f : A — B is a C*-ternary homomorphism.
This completes the proof. |

Remark 5.17. Theorem 5.11 follows from Theorems 5.15 and 5.16 by taking
0, y,2) = Ol + Iy + [z

forall x,y,z € A.

5.2.6 C*-Ternary Derivations: The Fixed Point Method

Now, we prove the superstability of C*-ternary derivations by using the fixed point
method.

Theorem 5.18. Let ¢ : A> — [0, 00) be a function satisfying (5.19). Letf : A — A
be a mapping satisfying (5.14) and
If (e, y. 2D) = [F(). y. 2] = Be. f (). 2] = [y, f(2)]la
< o, y,2) (5.24)

forall x,y,z € A. Then the mapping f : A — A is a C*-ternary derivation.
Proof. The proof is similar to the proof of Theorem 5.15. |

Theorem 5.19. Let ¢ : A> — [0, 00) be a function satisfying (5.22). Letf : A — A
be a mapping satisfying (5.14) and (5.24). Then the mapping f : A — A is a C*-
ternary derivation.
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Proof. The proof is similar to the proof of Theorem 5.16. |
Remark 5.20. Theorem 5.12 follows from Theorems 5.18 and 5.19 by taking

o(x,y.2) = (Xl + Iy I + llzll*)

forall x,y,z € A.

5.2.7 JB*-Triple Homomorphisms: The Fixed Point Method

Now, we prove the superstability of JB*-triple homomorphisms by using the fixed
point method.

Theorem 5.21. Let ¢ : J> — [0, 00) be a function such that there exists @ < 1
with

X Z
@(x,y,2) < 8agp (5, % 5) (5.25)

forallx,y,z € J. Letf : T — L be a mapping satisfying (5.15) and

If (xyz}) = Ff W (@3l = ¢(x.y.2) (5.26)

forall x,y,z € J. Then the mapping f : J — L is a JB*-triple homomorphism.

Proof. By the same reasoning as in the proof of Theorem 5.13, one can show that
the mapping f : J — L is C-linear. It follows from (5.25) that

1
lim 5(/)(2")5, 2"y,2"7) =0 (5.27)

n—>oo

for all x,y,z € J. Since f : J — L is additive, it follows from (5.26) and (5.27)
that

S y.2)) = [Fx)./ (). f(2)]

for all x,y,z € J. Thus the mapping f : J — L is a JB*-triple homomorphism.
This completes the proof. |
Theorem 5.22. Let ¢ : J° — [0, 00) be a function such that there exists an o < 1
with

o
p(x,y,2) < 5% (2x,2y,2z) (5.28)

forall x,y,z € J. Let f : J — L be a mapping satisfying (5.15) and (5.26). Then
the mapping f : J — L is a JB*-triple homomorphism.
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Proof. By the same reasoning as in the proof of Theorem 5.13, one can show that
the mapping f : J — L is C-linear. It follows from (5.28) that

m e (X Y 2) =
Jlim 2% (5.5 57) =0 (5.29)
for all x,y,z € J. Since f : J — L is additive, it follows from (5.26) and (5.29)
that

S y.2)) = [Fx)./ (). f(2)]

for all x,y,z € J. Thus the mapping f : J — L is a C*-ternary homomorphism.
This completes the proof. O

Remark 5.23. Theorem 5.13 follows from Theorems 5.21 and 5.22 by taking

o(x,y.2) = O(Ixl” + Iy I + llzlI*")

forall x,y,z € J.

5.2.8 JB*-Triple Derivations: Fixed Point Method

Now, we prove the superstability of JB*-triple derivations by using the fixed point
method.

Theorem 5.24. Let ¢ : J> — [0,00) be a function satisfying (5.25). Let
f:J — J be a mapping satisfying (5.17) and
If (xyzd) = F )yzy = L )z} — f (D)3l
< ¢x,y,2) (5.30)

forall x,y,z € J. Then the mapping f © J — J is a JB*-triple derivation.
Proof. The proof is similar to the proof of Theorem 5.21. |

Theorem 5.25. Let ¢ : J> — [0,00) be a function satisfying (5.28). Let
f  J — J be a mapping satisfying (5.17) and (5.30). Then the mapping
f:J — Jis a JB*-triple derivation.

Proof. The proof is similar to the proof of Theorem 5.22. a
Remark 5.26. Theorem 5.14 follows from Theorems 5.24 and 5.25 by taking

o(x,y.2) = (Xl + Iy I + llzll*")

forall x,y,z € J.
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5.3 Bi-0-Derivations in JB*-Triples

In this section, we prove the Hyers-Ulam stability of bi-0-derivations in JB*-
triples (see [237]).

Definition 5.27 ([97]). LetJ be a complex JB*-triple and 6 : J — J be a C-linear
mapping. A C-bilinear mapping D : J x J — J is called a bi-0-derivation on J if

D({x. y,z}. w) = {D(x,w), 0(y), 0(2)} + {0(x), D(y.w). 0(2)}
(), 0(y). D(z. w)}

and

D(x.{y,z.w}) = {D(x,y), 0(2), 0(w)} + {0(y). D(x.2), 0 (W)}
+0(). 0(2). D(x, w)}

forall x,y,z,w € J.

The w-variable of the left side in the first equality is C-linear and the x-variable
of the left side in the second equality is C-linear. But the w-variable of the right side
in the first equality is not C-linear and the x-variable of the right side in the second
equality is not C-linear. Thus we correct the definition of bi-8-derivation as follows:

Definition 5.28. Let J be a complex JB*-triple and 0 : J — J be a C-linear
mapping. A C-bilinear mapping D : J x J — J is called a bi-0-derivation on
Jif
D({x,y.z}. w) = {D(x, ), 0(y). 0(2)} + {0(x). D(y. w"), 0(2)}
(), 0(y). D(z. w)}

and

D(x, {y.z.w}) = {D(x.y).0(z). (W)} + {0(y). D(x*.2), ()}
+0(). 0(2). D(x, w)}

forall x,y,z,w € J.

Under the conditions of [97, Theorem 2.5], we can easily show that the mapping
D :J xJ — J must be zero. In particular, if f is bi-additive, then D must be zero.
In this section, we correct the statements of the results, and prove the corrected
theorems and corollaries.

Throughout this section, assume that J is a JB*-triple with the norm || - ||. For any
mapping f : J x J — J, we define
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E) uf(x,y,2,w)
= f(Ax + Ay, pz — pw)
+f(Ax — Ay, uz + puw) — 2Auf (x, 2) + 2Auf (y, w)

forallx,y,zzweJand A, u € T' ;= {1 e C: |A| = 1}.
Lemma 5.29 ([21]). Letf : J X J — J be a mapping satisfying

E/\,/Lf(xs Y.z, W) =0

forallx,y,z,w € Jand A, i € T'. Then the mapping f : J x J — J is C-bilinear.
Now, we prove the Hyers-Ulam stability of bi-6-derivations on JB*-triples.
Theorem 5.30. Let p, ¢ be positive real numbers withp < 1 andf : J xJ — J
with f(0,0) = 0, h : J — J with h(0) = 0 be the mappings such that
1B uf (%, 3, 2, W) + h(pa + pb) — ph(a) — ph(b)||
< e(lxll” + Iy 11” + Nlzll” + Iwll” + llal” + [1217) (5.3D)

and

If (G, y. 23, w) = {f (x, w), h(y), h(2)}
—{h(0).f 0. W) (@)} — {h(x), h().f @ W]
I G {y. 2 wh) = (6. ). ~(2), (W)}
—{h().f (" 2), h(w)} = {h(). h(2). [ (x, W)
< e(llxll” + Iy11” + llzl” + lwll”) (5.32)

forall A\, ju € T' and x,y,z,w € J. If the mapping f : J x J — J satisfies the
following:

1 1
lim —f(2"x,2"y) = lim —f(2"x, 8"y)
n—00 41 n—o0 16"
1
16

— lim —f(8"x,2"), (5.33)
n—>o00 7

then there exist a unique C-linear mapping 6 : J — J and a unique bi-0-derivation
D :J xJ — J such that

2e
2-—-2p

[h(a) — B(a) || = llall” (5.34)
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and

5¢e
4 -2

1 (x.2) = D(x. 2)|| < (Il + 11z1”) (5.35)

foralla,x,z €J.

Proof. Lettingx =y =z=w = 01in (5.31), we have

h(ua + ub) — ph(a) — phd)|| < e(llal” + [16]")

for all @, b € J. By the same reasoning as in the proof of Park [227, Theorem 2.1],
one can show that there exists a unique C-linear mapping 6 : J — J satisfying (5.34)
and the mapping 6 : J — J is given by

1
lim —h(2"a)

9(61) : n—oo 2"
foralla € J. LettingA = p=1,a=b =0,y =xandw = —zin (5.31), we have
If (2x, 22) — 2f(x, 2) + 2f (x, =) || < 2&(||x[[” + [|z[I") (5.36)

forall x,z € J. LettingA = u =1,a=b =0,y = —xand w = zin (5.31), we
have

If (2x. 22) = 2f (x, 2) + 2f (=x. D) || = 2e([Ix]|” + [1z]I") (5.37)
forallx,z € J.LettingA = pu =1,a=>b=0,x =z=0in(5.31), we have
f . =w) +f(=y.w) + 21 (. )| < e(llyll” + [[wll”) (5.38)
for all y, w € J. Replacing y, w by x, z in (5.38), respectively, we have
1 G, =2) +f(=x.2) + 2 (x. )| < e(llx[[” + [1z[I”) (5.39)
for all x,z € J. By (5.36) and (5.39), we obtain

If (2x. 22) — 4f (x.2) +f(x, =2) = f(=x. 2|
< 3e([lxll” + [l=11) (5.40)

for all x, z € J. By (5.36) and (5.37), we obtain

If (e, =2) = f(=x. 2| = 2&([lx][” + [|z]1") (5.41)
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for all x, z € J. By (5.40) and (5.41), we obtain

If (2x,22) — 4f (x. ) || = Sellx[I” + [1z]”) (5.42)

for all x, z € J. It follows from (5.42) that

for all x,z € J and m,/ > 1 with m > [. This implies that the sequence
{4—lnf(2”x, 2"z)} is a Cauchy sequence for all x,z € J. Since J is complete, the
sequence {4% f(2"x, 2"z)} converges and so one can define the mapping D : J xJ —
J by

m—1

5¢20
=2 ST+l 543

1 1
7 f£(2'x,2'7) — 4—mf(2’", 2"7)
=l

1
D(x,2) = lim —f(2"x,2"2)
n—o00 41

for all x, z € J. Moreover, letting / = 0 and passing the limit m — oo in (5.43), we
have (5.35). Leta = b = 0in (5.31). Then, by the definition of the mapping D, we
have

: 1 n n n n
13D v,z w) | = lim 1By uf (2", 2", 2", 2"w)|

pn

.2
< lim ——e(llx]l” + [IyI1” + llz” + [Iwl”)
n—o00 4"

=0

forall A, u € T! and all x, v,z,w € J. By Lemma 5.29, the mapping D : J xJ — J
is C-bilinear. It follows from (5.32) and (5.33) that

ID({x, . 2} w) — {D(x, w), (), 0(2)} — {0 (x), D(y, w™), 0(2)}
—{0(x), 00). Dz W}l + [ID(x, {y, 2z, w}) — {D(x,), 0(2), O (W)}
—{0(»). D(x*,2), 6(W)} —{0(y). 0(2). D(x, w)} |

1 1 1 1
= tim (| g/t 0.3 2 — { 7@ 20, R, w2
1 n 1 n n, *x 1 n
— { 5@, @ 2w, Sh(2"))
1 n 1 n 1 n n
— {520, h(@"y). @'z 2"W)]

1 n n 1 n n 1 n 1 n
+ H Sl (27%. 8"y 2 W) — {Ef(z %,2'y), 2:h(2'2), oh(2 w)}
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1 n 1 n, .k n 1 n
— {52, @ 2'2), 5 h@w)|

1 1 1
— {22y, —h(2'2). —F(2"x. 2" }H)
{5:h@"). 5;h(2'2). 2f(2%.2"w)
. 2P
< lim
n—o0 24n

(Ul + Iy lP + Izl + [1wll”)
=0

for all x,y,z,w € J and so

D({x,y,z}, w) = {D(x,w), 0(y), 0(2)}

+HO(x), Dy, w*), 0(2)} + {0(x), 0(). D(z. w)}

and

D(x, {y, z,w}) = {D(x,), 0(2), 0 (w)}
+{0(y). D(x*,2),0(w)} + {0(y). 0(2), D(x,w)}

forall x,y,z,w € J.
Let T : JxJ — J be another C-bilinear mapping satisfying (5.35). Then we have

DG, 2) = T(x. 2)|

1
= @ IP@'x.2") = T(2"x.2"7)|

1 1

< SIP@2") — Q% 29| + I (252 — T2"x,2'7)|
2" P P

< )

< 25 g (I + 1211,

which tends to zero as n — oo for all x,z € J. This proves the uniqueness of D.
Therefore, the mapping D : J x J — J is a unique bi-6-derivation satisfying (5.35).
This completes the proof. |

Similarly, one can obtain the following theorem.

Remark 5.31. Let p, € be positive real numbers with p > 4 andf : J x J — J with
f(0,0) = 0, h : J — J with h(0) = 0 be the mappings satisfying (5.31), (5.32)
and (5.33). Then there exist a unique C-linear mapping 6 : J — J and a unique
bi-f-derivation D : J x J — J such that

[h(a) = B(a) | =

llall”
» -2
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and

5¢e
27 —4

1 (x.2) = D(x. 2)|| < (Ul + 11217

foralla,x,z € J.

Theorem 5.32. Let p, €, § be nonnegative real numbers with 0 < p < 1 and
fiJIxJ = Jwithf(0,0) = 0, h : J — J with h(0) = 0 be the mappings
satisfying (5.33) and

Exuf (x.y, 2. w) + h(pa + pb) — ph(a) — ph®d)||
= ellxPIy Izl Iwli” llall”16]1” + 6 (5.44)

and

If (. y. 23, w) = {F (x, w), h(y), h(2)}
—{h(0).f . W), (@)} — {h(x), h (). f @ W]
G {y. 2 wh) = (6. ). h(2), (W)}
—{h().f (", 2), h(w)} — {h(y), h(2).f(x, W]
=< elxl”IyI”lzl” Iwl” + 8 (545)

forall A, € T' and x,y,z,w € J. Then there exist a unique C-linear mapping
0 : J — J and a unique bi-0-derivation D : J x J — J such that

[A(a) — 0(a)|| <6 (5.46)
and
If(x,2) = D(x,2)|| <4 (5.47)

foralla,x,z € J.
Proof. Lettingx =y =z =w = 0in (5.44), we have
lh(na + ub) — ph(a) — phd)|| < 8
for all a,b € J. By the same reasoning as in the proof of Park [227, Theorem 2.1],

one can show that there exists a unique C-linear mapping 0 : J — J satisfying (5.46)
and the mapping 0 : J — J is given by

1
f(a) := lim ih(Z”a)
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foralla € J. LettingA = u =1,a=5b =0,y =xand w = —z in (5.44), we have
If (2x,22) = 2f(x,2) + 2f (x, —2)|| = & (5.48)

forall x,z € J. LettingA = u = 1,a=b =0,y = —xand w = zin (5.44), we
have

If (2x,22) = 2f (x,2) + 2f (—x,2)|| < 8 (5.49)
forallx,z € J.Letting A = u =1,a = b = 0,x = 7z = 0in (5.44), we have
If . =w) +f(=y.w) + 2/ (. W) = & (5.50)
forall y,w € J. Replacing y, w by x, z in (5.50), respectively, we have
1F e, =2) +/(=x.2) +2f(x.2) | <& (5.51)
for all x, z € J. By (5.48) and (5.51), we obtain
If (2x,22) — 4f (x.2) + f(x. —2) —f(=x.2)|| = 26 (5.52)
for all x, z € J. By (5.48) and (5.49), we obtain
IF G, =2) =f(=x, )] < 8 (5.53)
for all x,z € J. By (5.52) and (5.53), we obtain
If (2x,22) — 4f (x, 2)|| < 38 (5.54)
for all x, z € J. It follows from (5.54) that
< SEL (5.55)

LTy

1 1
H If(zlx, 2'7) — 4—mf(2”’, 2"7) 2

for all x,z € J and m,I > 1 with m > [ This implies that the sequence
{4%]‘(2%, 2"z)} is a Cauchy sequence for all x,z € J. Since J is complete, the
sequence {%nf 2"x, 2”z)} converges and so one can define the mapping D : JxJ — J
by

1
D(x.2) = lim 2f(2"x,2'2)

for all x, z € J. Moreover, letting [ = 0 and passing the limit m — oo in (5.55), we
have (5.47).



226 5 Stability of Functional Equations in C*-Ternary Algebras

Leta = b = 01in (5.44). Then by the definition of the mapping D, we have

”ELMD(-xv ¥, Z, W) ”

. 1 n n n n
< lim —
=0

forall A, u € T! and x,y,z, w € J. By Lemma 5.29, the mapping D : J x J — J is
C-bilinear. It follows from (5.33) and (5.45) that

ID({x. y. 2} w) — {D(x. ). 0(y). 0(2)} — {0(x). D(y. w"), 0(2)}
—{0(). 0(y). Dz W)} + D, {y. 2. w}) = {D(x.y), 0(2). O (W)}
—{0(»). D(x*,2), 6(W)} = {6(y). 0(2). D(x, W)}II

hm H —F(8"x. v, 2}, 2'w) — {—f(znx 2'w), h(Z”y) —h(Z”z)}
- {ih(Z”x), @y 2), ih(Z”z)}
- {inh(znx), L), inf(z"z, 2'w))
+ H S/ @ 8"y 2 w) = {—f(znx 2"y), —h(2”z) —h(2”w)}
- {ih(Z”y), @2, ih(Z”w)}
— {%h@"y), 2—lnh(2"z), %f(2"x, 2"w)} H)

24" p P p p 5
< fim (S DIl + 557

=0

forall x,y,z,w € J and so

D({x.y,z}. w) = {D(x,w), 0(y). 0(2)}
+{0(x).D(y.w"). 0(2)} +{6(x). 6 (). Dz, w)}

and

D(x, {y.z,w}) = {D(x,y), 0(2). 0 (w)}
+{0(»). D", 2), 0(w)} +{6(1). 6(2), D(x, w)}

forall x,y,z,w € J.
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Let T : JxJ — J be another C-bilinear mapping satisfying (5.47). Then we have
ID(x,z) — T(x,2)|

1
= @ IP@"x.2") = T(2"x.2"7)|

IA

1 1
F1P@%.2'0) — @29 + L I@"x.2'0) = T2 2'3)|

26
4n

IA

3

which tends to zero as n — oo for all x,z € J. This proves the uniqueness of D.
Therefore, the mapping D : J x J — J is a unique bi-6-derivation satisfying (5.47).
This completes the proof. O

Theorem 5.33. Let p, ¢ be positive real numbers withp # landf : J xJ — J
with f(0,0) = 0, h : J — J with h(0) = 0 be the mappings such that
I Ex uf (x.y, 2. w) + h(pa + pb) — ph(a) — ph®d)||
=< ellx Iy Pzl wli” fleli” 111" (5.56)

and

I ({x. . 25, w) = i (e, w), h(y), h(2)}

—{h(0). [, W), h(2)} = {h(x), h(y).f (@ W)

I (x Ay, zow}) = (6. 9), h(2), h(w)}

—{h().f (", 2), h(w)} — {h(), h(2). f(x, W)

< elxl” Iy lI” 2" wl” (5.57)

forall A, € T' and x,v,z,w € J. Then the mapping h : J — J is a C-linear
mapping and the mapping f : J x J — J is a bi-h-derivation.
Proof. Lettingx =y = z=w = 01in (5.56), we have

[h(pa + pb) — ph(a) — ph®d)|| <0

for all a, b € J. By the same reasoning as in the proof of [227, Theorem 2.1], one
can show that the mapping /2 : J/ — J is a C-linear mapping. Lettinga = b = 0
in (5.56), we have

IExuf (x.y. 2. w)|| = 0O
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forall A,u € T' and x,y,z,w € J. By Lemma 5.29, the mapping f : J x J — J is
C-bilinear.
For the case p < 1, it follows from (5.57) that

lFGx.y, b w) = (e w) k(). h(2)} = {h(x).f (v, W), h(2)}
—{h(), h (). f @ W + If e £y, 2. wh) — f (x 3), ~(2), h(w)}
— {h().f(".2). h(w)} = {h(). h(2). f(x W]

hm H S 8%k, y, 2}, 2"w) — {—f(znx 2"w), —h(Z"y) —h(2”z)}
- {ih(Z”x), @52, ih(Z”z)}
- {inh(znx), iﬂh(zny), inf(z"z, 2"w)}
+ a8 ) — (@ 2, Sh@), )
3 h@). Q027 k)
- {%h@"y), 2—1”;1(2"1), %f(f‘x, »w)|)

4pn8
o P Iy P Dzl w

< lim
n—>o00 2

=0

for all x,y,z,w € J and so the mapping f : J x J — J is a bi-h-derivation.
Similarly, for the case p > 1, one can show that the mapping f : J xJ — J is

a bi-h-derivation. Therefore, the mapping 4 : J — J is a C-linear mapping and the

mapping f : J x J — J is a bi-h-derivation. This completes the proof. a



Chapter 6
Stability of Functional Equations
in Multi-Banach Algebras

In this chapter, we extend some results from last chapters in multi-Banach algebras
(see [7,91, 218, 252]).

In Sect.6.1, we consider the stability of the m-variable additive functional
equation:

if(mx,-—i— Zm: xj) +f( Y Xi) = 2f<§:mxi)
i=1 =1, i=1 i=1

for each m > 2, which was presented at Sect.2.2 of Chap.2 and, by the fixed
point method, we approximate homomorphisms and derivations in multi-Banach
algebras.

In Sect. 6.2, by using the fixed point method, we prove the Hyers-Ulam stability
of homomorphisms in multi-C*-ternary algebras and derivations on multi-C*-
ternary algebras for the additive functional equation:

m m

igml:f(mxi - Xm: xj) +f(in) - zf( 1 mxi)

=L =1 i=

for each m > 2.

In Sect. 6.3, we consider the functional equation (3.97) presented at Sect. 3.5 of
Chap. 3 and we use a fixed point method to prove the Hyers-Ulam stability of the
functional equation (3.97) in multi-Banach modules over a unital multi-C*-algebra.

© Springer International Publishing Switzerland 2015 229
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As an application, we show that every almost linear bijection # : A — B of a unital
multi-C*-algebra A onto a unital multi-C*-algebra B is a C*-algebra isomorphism
when

2n n
h(—uy) = h(—u)h(y)
for all unitaries u € U(A),y € Aandn > 0.

In Sect. 6.4, we approximate the following additive functional inequality:

d+1

d+1
[ s, Y s,
i=1 i=1
+

= (B ()

for all x11,-+- ,xxq+1 € X where d > 2 is a fixed integer. Also, we investigate
homomorphisms in proper multi-CQ*-algebras and derivations on proper multi-
CQ*-algebras associated with the above additive functional inequality.

In Sect. 6.5, by using the fixed point method, we prove the Hyers-Ulam stability
of homomorphisms and derivations on multi-C*—ternary algebras for the additive
functional equation:

.{7_ . d V4 d
2(ZEE 3 0) = Yose) + 2300,
j=1 j=1 j=1

6.1 Stability of m-Variable Additive Mappings

For any mapping f : A — B, we define
DMf(-xls 7-xm)

= Z,uf(mx, + Z x,) + Hf(iz;n;xi) —2f<HIZ:l;mxi)

j=1,j#i

forallp e T':={veC:|v|=1}andxy, -, x, € A.

6.1.1 Stability of Homomorphisms in Multi-Banach Algebras

Now, we prove the Hyers-Ulam stability of homomorphisms in multi-Banach
algebras for the functional equation D, f (x1, -+ ,x) = 0.
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Theorem 6.1. Let (B, || - ||x) : k > 1) be a multi-Banach algebra. Let f : A — B
be a mapping for which there exists the functions ¢ : A™ — [0,00) and
¥ 1 A% — [0, 00) such that

lim m_<i<p(mix11,~-~ S X X, e ,nzjka) =0, (6.1)
J—>00
||(DMf(-x117"' axlm)a”' 7D[Af(-xk17"' aka))“k
S (p(-xlla”' 7-x1ma”' ,.Xkl,"' a-ka)7 (62)
[(FGeryn) = F)f )=+ o f Gavi) — F (adf ) [l
f I//(-xlvylv”' ,xk,)’k) (63)
and
im m ™2y (mdxy, mlyy, -+ mix, mly) = 0 (6.4)
J—>00
fOr all 12 S Tl and-xlls"' s XIms * s Xkls s Xkms X1 * s Xy Xy Y100 5 Yk € A I‘f

there exists L < 1 such that

m m m

w(mxllvos“' sovm-levos"' 507”' sm-xklsov”' 70)

m m m

SMqu(xllsov”' 7Os-x21507”' 505"' 7-xk1705"' 70)

for all x11,x21,+++ ,xk1 € A, then there exists a unique homomorphism H : A — B
such that

[(FCer) —H(xt), -+, f (o) — H(xi)) ||

m m m

qo(xlvos"'sovstOv”' 505"' 7-xk507”' 50) (6'5)

1
<
~ m—mL

forall xy,--- ,x; € A.

Proof. Consider the set X := {g : A — B} and introduce the generalized metric on
X as follows:

d(g.h) =inf{C e Ry : [[(g(x1) —h(x1), -+ . g(x) — h(xi) Ik

m m m

Scw(xlvos“'sov-xasov”' 505"' 7-xk507”' 50)7 v-xlv”' s-xkEA}s

which (X, d) is complete.
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Now, we consider the linear mapping J : X — X such that

1
Jg(x) := —g(mx)
m
for all x € A. Now, we have
d(Jg,Jh) < Ld(g.h)

forall g,h € X. Letting u = I, x5 = xjandxp = -+ = x4, = 0,1 < i <k,
in (6.2), we have

[ (f (mx1) —mf (x1), - -+, f(mxx) — mf () ||

m m m

S@(-xlvos"' 707-x2507”' 507”' 7-xk507”' 50) (6'6)

forall x;,--- ,xx € A and so

10 G) = f ) - o fO) — —Fmx) i
m m

< %q)(xl’()’... ,0,x0,0,-44,0,+++ ,x;,0, - ’())

for all xy,--- ,x; € A. Hence d(f, Jf) < % By Theorem 1.3, there exists a mapping
H : A — B such that

(1) H is afixed point of J, i.e.,
H(mx) = mH (x) 6.7)
for all x € A. The mapping H is a unique fixed point of J in the set
Y={geX:d(f,g) < oo}

This implies that H is a unique mapping satisfying (6.7) such that there exists
C € (0, co) satisfying

ICH () = f (), == H () = f Oe) [l

m m m

§C<p(x1,0,---,0,x2,0,--- L0, x, 0,00 ’0)

forall xi,--- ,x; € A;
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(2) d(J"f,H) — 0 as n — oo. This implies the equality

im L7 _ g (6.8)

n—oo m"

forallx € A;
3) d(f,H) < 1%Ld(f ,Jf), which implies the inequality

d(f,H) < .
¢ )_m—mL

This implies that the inequality (6.4) holds.
It follows from (6.1), (6.2) and (6.8) that

H ZH mxy; + Z xlj)+H(Zx1,) ZH(meI,),

e 3 g lzﬁélxk,) e ) (Y,
= | (S 3 i)

J=L.j#i

+f( Xm: m"xu) - Zf( Xm: mn+1xli)a
i=1 i=1
, Xm:f (monki + 2’”: m"xkj)
i=1

=L

() (),

1
< lim —@(m"xip, - m Xy, e m X, e )
n—o00 M

=0

forall xi1, -+ ,Xtm, ", XK1, , Xem € A and so
ZH(mx, + Z x,) + H(Zx,) = 2H<me,) (6.9)
j=1,j#i

forall x;,--- ,x, € A. So H is additive. By a similar method to above, we get

wH(mx) = H(myx)
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for all © € T! and x € A. Thus one can show that the mapping H : A — B is
C-linear. It follows from (6.3), (6.4) and (6.8) that

| (H (x1y1) — H(x1)H(y1), -+, Hxay) — Ho) H(e) [l
1
= lim — || (f(m*"x1y1) — f (m"x)f (m"y1),

n—00 m

o fmP i) — F (" x)f (m" ) |k

IA

1
lim —21//(m"x1,m"y1,--- ,m"x, m"yy)
n—o00 m"
=0
for all x1,y1,--+ , X, yx € A and so

H(xy) = H(x)H(y)

for all x,y € A. Thus H : A — B is a homomorphism satisfying (6.5). This
completes the proof. |

Corollary 6.2. Let (B*, | - |lx) : k > 1) be a multi-Banach algebra. Let r < 1 and
0 be nonnegative real numbers and f : A — B be a mapping such that

I(Df Cerrs = Xtm)s = s Dyf Okt ==+ Xm)) Ml

= 0( D gl + -+ D vinl?) (6.10)
j=1 =1

and
[(FCe1y) —ff 1), o f i) —f ) i) 1k
< 6ol - el + -+ el - el ) 6.11)
for all i € T' and xi1,-++  Xipow++ 2 Xk1s X X1 X XYoo Yk € A

Then there exists a unique homomorphism H : A — B such that

[(FCer) — H(xt), -+, f (o) — H(a)) |l

—— (Il + Il -+ el + el )

forall xy,--- ,x; € A.
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Proof. The proof follows from Theorem 6.1 by taking
Qi+ X Xn) = 0( D eyl 4o+ Y )
j=1 j=1

and

Yy ey = 0 (I lly - ylly + -+ lelly - llyell)

— —1
forall-xllv"' s XIms s Xkl s Xkms X150 5 Xy X, Y1, 000 5 Yk €Aand L =m""".

|

Theorem 6.3. Let ((BX, ||-||x) : k > 1) be a multi-Banach algebra. Letf : A — B be
a mapping for which there are functions ¢ : A™ — [0, 00) and ¥ : A* — [0, 00)
such that

Jim g n e m ) =0, (6.12)
IDuf (it Xim)e e+ Df Gett -+ )l
< Q11 s Xl Xk s Xt (6.13)
[GFGeryn) = ff )y e f Gy — ) i) [l
SYL YL X Vi) (6.14)
and
Jim my (mxy, m 7y, m T, m Ty = 0 (6.15)

fOr all /"L € Tl and-xlls"' s Xms "t s XkLs 0 s Xkms X1 ° 5 Xms Xy Y1000 5 Vk S A I.f
there exists L < 1 such that

@(xllsov”' sOs-lesOv”' 507”' 7-xk1705"' 70)

m m m

L
< —w(mxn,O,--- ,0,mxz1,0,--,0,-++ ,mxy, 0, -+ ,0)
m

for all x11,x31,+++ ,xk1 € A, then there exists a unique homomorphism H : A — B
such that

1) —H(x), -+ f () — Hx) [l

m m m

(p(xl,O,---,O,xz,O,---,0,---,xk,0,---,0) (6.16)

=
m— mL

forall xy,--- ,x; € A.
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Proof. We consider the linear mapping J : X — X such that

Jg(x) ;== mg (x)

m
for all x € A. It follows from (6.6) that

0 (). s ()

k

E@(E7O’... ,(),)2,(),... 0, ,)&,0,... ,0) (6.17)
m m m
L
< ~p(5%1,0.,0.5,0,- 0, . 5.0, ,0)
m
for all x{,---,x;, € A. Hence we have
L
m

By Theorem 1.3, there exists a mapping H : A — B such that
(1) H is afixed pointof J, i.e.,

H(mx) = mH(x) (6.18)
for all x € A. The mapping H is a unique fixed point of J in the set
Y={geX:d(f,g) < oo}

This implies that H is a unique mapping satisfying (6.18) such that there exists
C € (0, 0o) satisfying

ICH () =f (), - H () = f Oo) [l

m m m

§C<p(x1,0,---,0,x2,0,--- L0, x, 0,00 ’0)

forall xi,--- ,x; € A;
(2) d(J"f,H) — 0 as n — oo. This implies the equality

lim m"f (i) — H(x)

n—00 mh

forallx € A;
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3) d(f,H) < 1%Ld(f ,Jf), which implies the inequality

d(f,H) <

m—mL’
which implies that the inequality (6.16) holds.

The rest of the proof is similar to the proof of Theorem 6.1. This completes the
proof. O

Corollary 6.4. Let ((B*, |- ||x) : k > 1) be a multi-Banach algebra. Let r > 1, 0 be
nonnegative real numbers and f : A — B be a mapping such that

I(Df Cerrs =+ xtm)s = s Dyf (rts ==+ Xm)) Ml

= 9(2 lbelly + -+ ||ka||2) (6.19)
j=1 =1

and
[(FCe1y) —ff 1), o f i) —f)f i) 1k
<O (Il - Iyally -+ el - llellz) (6.20)
for all ILL S Tl and X1l s Xlms o=t s Xkls "t 5 Xkms X1 ° " * 7-xm7-x7ylv”' syk S A'

Then there exists a unique homomorphism H : A — B such that

[(FCer) —H(x1), -+, f () — H(xi)) ||

< X r+ r++ X r+ r
< (Wl + I+ -+ sl + Dely)

forall xy,--- ,x; € A.

Proof. The proof follows from Theorem 6.3 by taking

m m
(p('xllv”' s Xlms* ot s Xkls " 7-ka) = Q(Z ||x1]||2 + “'+ Z ||'ka||2)7

j=1 j=1

Yy ey = 0 (el - Iyl + - el - el2)

— ol
forall-xllv"' s XIms s Xkl s Xkms X150 5 Xmy X, Y1, 000 5 Yk €AandL=m"".
O
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6.1.2 Stability of Derivations in Multi-Banach Algebras

Now, we prove the Hyers-Ulam stability of derivations in multi-Banach algebras for
the following functional equation:

DMf(-xlv"' 7-xm):O
forallu e T':={v € C:|v| = 1}and xj,--- ,x, € A.

Theorem 6.5. Let ((A*, || - |lx) : k > 1) be a multi-Banach algebra. Let f : A — A
be a mapping for which there exist the functions ¢ : A™ — [0, 00) and
Y 1 A% — [0, 00) such that

lim m™(mixiy, - WX, - Xk, - Xg) = 0, (6.21)
J—)OO

I(Duf Cerns e e s s Xtm)s o s Dyf Okt ==+ 5 Xaam)) [l

E(p(-xlls"'s-xlms"'7-xkls"'7-ka)s (622)

10 Geryn) —f ey —xuf (o) = - f Gayie) — f () yie — xuf (i) [l

SY LY Xk Ye) (6.23)
and
lim w2y (g, miyn, -+ o, miye) = O (6.24)
J—00
fOr all M € Tl and-xlls"' s Xlms "t s XkLs s Xkms X1 ° 5 Xms Xy Y1000 5 Vk S A I‘f

there exists L < 1 such that

m m m

w(mxllvos“' sovm-levos"' 507”' sm-xklsov”' 70)

m m m

SMqu(xllsov”' 7Os-x21507”' 505"' 7-xk1705"' 70)

for all x11,x31,+ -+ ,Xxx1 € A, then there exists a unique derivation § : A — A such
that

10 Ge) = 8Gen), -+ f (o) — 8(a)) Ik

m m m

qo(-xlvos"' ,O,XZ,O,"' 505"' 7-xk507”' 50) (6'25)

=
m— mL

forall xy,--- ,x; € A.
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Proof. By the same reasoning as in the proof of Theorem 6.1, there exists a unique
C-linear mapping § : A — A satisfying (6.24). The mapping § : A — A is given by

50 = lim LU

n—00 mn

(6.26)
for all x € A. It follows from (6.21), (6.24) and (6.26) that

[[(BCx1y1) — 8(x1)yr — x18(y1), -+ SCayr) — S(x)ye — X1 (i) Iy

: 1 n n n n n
= lim Wﬂ(f(mz xiy1) —f(m"xy) - m"yr — m"x,f (m"y,),

n—>o00
e Sy — f(m ) -y — m i (m"y) |l
< lim m_Z”W(m”xl,m"yl,--- ,m"x, m"yy)

n—>oo
=0

for all x,y € A and so

8(xy) = 8(x)y + x8(y)

forall x,y € A. Thus § : A — A is a derivation satisfying (6.23). This completes the
proof. |

Corollary 6.6. Let (A, |- ||x) : k > 1) be a multi-Banach algebra. Let r < 1, 0 be
nonnegative real numbers and f : A — A be a mapping such that

I(Df Cerrs ==+ X1m)s = s Dyf Orts ==+ Xm)) Ml

< 6( 2 Irylls + -+ X ) (6.27)
j=1 j=1

and
[(FCery) = f ey = xif 1), ==+ f Gy — F o) ye — xif i) 1k
<0 (lerlly - Myall + -+ lxelly - Ivell2) (6.28)
for all i € T' and x11,-++  Xipo-++ s Xkls =+ X X1 X X Y1 Yk € A

Then there exists a unique derivation § : A — A such that

2
[lx[ls"

[(FGer) = 8Cxt), -+, far) — Sk <

m—m"

forall x € A.
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Proof. The proof follows from Theorem 6.5 by taking

m m
POt X i) = O( 2 eylly o+ D gl )
j=1 j=1

Yy ey = 0 (I lly - vlly + -+ lelly - llyell)

forallx,ye Aand L = m’". O

Remark 6.7. Let (A%, || - ||lx) : K > 1) be a multi-Banach algebra. Letf : A — A
be a mapping for which there exist the functions ¢ : A — [0, c0) and
¥ 1 A% — [0, 0o) such that

lim np(m™xyy, o m Xy mIXg, M X)) = 0, (6.29)
J—>00
N(DufCern, o s Xtm), s+ Duf (ks Xim)) |k
SO, Xt S Xkt Xham) s (6.30)
|(FCoryr) —F )y — x1if ), -+ f o) — F ) ye — xif ) |1k
SYLYL L X V) (6.31)
and
lim mzjl//(m_jxl,m_jyl, .. ,m_jxk,m_jyk) =0 (6.32)
J—>00
for all o € T' and xi1, -+, Xpp -+ Xkto e+ Xkms X100 Xy X, V1,00 k€ ALIE

there exists L < 1 such that
m m m
—N——
@(mxllsov”' 7Osm-x21507”' 505"' ,m.Xkl,O,"' 70)

L
< (%, 0.++0.5%1,0,+,0,++ 1, 0,40
m

for all x1,x1,--+ , X1 € A, then there exists a unique derivation § : A — A such
that

10 Ge) = 8Gen), -+ f (o) — 8(a)) [k

m m m

(p(xl,O,---,O,xz,O,---,0,---,xk,0,---,0) (6.33)

L
<
~ m—mL

for all xq,---,x; € A.
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Corollary 6.8. Let (A, || - ||x) : k > 1) be a multi-Banach algebra. Let r > 1, 0 be
nonnegative real numbers and f : A — A be a mapping such that

I(Duf Cerrs e e s s Xtm)s o s Dyf Okt ==+ 5 Xaam)) [l

m m
<O D Il +--+ X Iyl
j=1 j=1

and
10 Geiyr) =fGeoyr —x1f ()= f Gave) = f ()i — xaf (i) |
< (Il Il + -+ Wl - el )
forall w € TV and X11,+++ Xty s XK1y "+ s Xkms X1s**+ s Xy X, V1, + » V% € A.

Then there exists a unique derivation § : A — A such that

2
[l 3"

[0 Ger) = 8Cen). -+ f o) = 8 [l <

forall x € A.
Proof. The proof follows from Remark 6.7 by taking

m m
Pt X i) = 0( 2 eylly o+ D gl )
Jj=1 Jj=1

Yy ey = 0 (el - Iyl + - el - el2)

forallx,y € Aand L = m'™". O

6.2 Ternary Jordan Homomorphisms and Derivations
in Multi-C*-Ternary Algebras

In this section, using the fixed point method, we prove the Hyers-Ulam stability of
homomorphisms in multi-C*-ternary algebras and derivations on multi-C*-ternary
algebras for the following additive functional equation:

Zf(mx, + IZ:#ZX,) +f<Zx,) = 2f(me,)

foreach m > 2.
Throughout this section, assume that A, B are C*-ternary algebras.
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6.2.1 Stability of Homomorphisms in Multi-C*-Ternary
Algebras

For any mapping f : A — B, we define

Dyuf(xX1, -+, Xm)
=St Y )+ (o) — 2 (e Yo m)
i=1 j=1j#i i=1 i=1

forallu €e T':={v € C:|v| = 1}and xj,--- ,x, € A.
Using Theorem 1.3, we prove the Hyers-Ulam stability of homomorphisms in
multi-C* ternary algebras for the functional equation

Duf(xi, -+, xm) = 0.

Theorem 6.9. Let ((BY, || - |lk) : k > 1) be a multi-C*-ternary algebra. Let
f : A = B be a mapping for which there exist the functions ¢ : A™ — [0, c0)
and  : A* — [0, 00) such that

hm m_jqo(nzjxll, ,lem, ,Mxkl, ,Wtika) = 0, (634)
J—>00
||(D/Af(-x117“' axlm)a”' 9D[Lf(xkla”' 7'ka))||k

5 (p(-xlla”' 7-x1ma”' ,.Xkl,"' a-ka)7 (635)

G (Bers yi, z1]) = [FGe). f ), f(z)],
o S s ze]) = G f ) f @)D [k

S Y XL Y1.20, s Xk Vi Zk) (6.36)
and
lim m™ Yy (mlxy, nly,, mizy, -+ mlx, My, miz) = 0 (6.37)
J—>00
fOrallM [S Tl and.XII,"' s Xlms * s Xkls 0 s Xkms X1, *° s-xkvyls"' 7yk5
21, , 2 € A. If there exists L < 1 such that

w(mxllvos"' sovm-levos"' 507”' sm-xklsov”' 70)
m m m

SmL<p(X11,0,--- 0,221,000, -+ X1, 0, -+ ,0)
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for all x11,x21,+ ,Xx1 € A, then there exists a unique homomorphism H : A — B
such that

[(FCer) —H(x1), -+, f () — H(xi)) ||

m m m

(p(xl,O,---,O,xz,O,---,0,---,xk,0,---,0) (6.38)

1
<
~ m—mL

forall xy,--- ,x; € A.

Proof. Consider the set X := {g : A — B} and introduce the generalized metric on
X as follows:

d(g.h) = inf{C € Ry : [[(g(x1) = hCx1), -+, g () — h(xn)) Ik

m m m

S C(/J(‘x1707... ’O’XZ’O,"' 707“‘ 7‘xk707“‘ 70)7 V‘xl"“ 7'xk GA},

which (X, d) is complete.
Now, we consider the linear mapping J : X — X such that

1
Jg(x) 1= —g(mx)
m
for all x € A. Now, we have

d(Jg,Jh) < Ld(g. h)

IA
IA
z

forall g,h € X. Lettingu = 1, x;; = x;andxp = -+ = x;, = 0 (1
in (6.35), we have

[ (macy) — mf (1), - - f Omoxe) — mf () [k

m m

< (p(xl,O,--- 0.09.0. - 0, .z 0,--- ,0) (6.39)

for all xy,--- ,x; € A. Thus we have

1 (x1) — %f(mm), At %f(ka))llk

m m m

w(xlsov”' sOs-vaOs"' 707”' s-xkvos"' 70)

=

3|~

for all xy,--- ,x; € A. Hence d(f, Jf) < % By Theorem 1.3, there exists a mapping
H : A — B such that
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(1) H is afixed pointof J, i.e.,
H(mx) = mH(x) (6.40)
for all x € A. The mapping H is a unique fixed point of J in the set
Y={geX:d{f,g) < oo}

This implies that H is a unique mapping satisfying (6.40) such that there exists
C € (0, co) satisfying the following:

[(H (1) = f (), - H () = f ) [l

m m m

S C(p<-x1507”' 705x2705"' 707”' s-xkvos"' 70)

forall x;,--- ,x; €A,
(2) d(J"f,H) — 0 as n — oo. This implies the equality

L L")
im —

n—oco m"

= H(x) (6.41)

forallx € A;
3) d(f,H) < 1%Ld(f ,Jf), which implies the inequality

d(f,H) <

m—mL’
This implies that the inequality (6.38) holds.
It follows from (6.34), (6.35) and (6.41) that

H(ZM;H(’"X“ + Xy’n;xlf) +H(§;xli) - ZH(gmxu),

j=1,j#i
,ZH(mxk, + Z xk]) + H(Zxk,) — 2H<mek,)) H
i=1 j=1,j;£i i=1 i=1
= n]ggo% (Zf(m”'Hxh‘ + Z m xlj)
=1 J=1j#i
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m

i=1 J=Lj#

(Ern) (S,

1
< lim —@@m"x1, -+ 0 "Xy, oo M xg, o0 X)) = 0
n—o00 mh
forall xi1, - ,Xtm, " , XK1, * , Xem € A and so
ZH(mxi + Z xj) + H( in) = ZH( Z mxi) (6.42)
i=1 j=1,j#i i=1 i=1
for all xi, -+, x, € A. Thus H is additive. By the similar method, we have

WH(mx) = H(mux)

for all u € T' and x € A. Thus one can show that the mapping H : A — B is
C-linear. It follows from (6.36), (6.37) and (6.41) that

I (H ([x1, y1,z1]) — [H(x1), H(y1), H(z1)].
< H ([ yes zi]) — [H (i) H(ye) s H(z))D) 1k

1
= lim —|[(f([m"x1,m"y1, m"z1]) = [f (m"x1).f (m"y1). f (m"21)].

n—00 m-

e f (I o mPye m"z]) = [f (") f (m" i) f (" 20)]) |1k

) 1
< lim —y(m"x;,m"yy, -+ m"xe, m"yy)

n—00 m

=0
for all x1,y1,--+ , Xk, yx € A and so

H([x.y.z]) = [H(x), H(y), H(2)]
for all x,y € A. Thus H : A — B is a homomorphism satisfying (6.38). This
completes the proof. O

Corollary 6.10. Let ((BX, | - ||x): k> 1) be a multi-C*-ternary algebra. Let r < 1, 6
be nonnegative real numbers and f : A — B be a mapping such that
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IDuf Gerrs == xum)s o+ Dpf Goras =+, Xiam)) |k

<O D Iwlly 4+ Y gl (6.43)
j=1 j=1

and

I (F(ersyvi,z1]) = [FGeD). f 1) f(z0)]s
oo s es k) = [FGo) s f )5 f @)D Ik
<O (Iea lh - Myalla - Mzelly + -« loelly - Ivells - lzell) (6.44)

forall p € T' and x11, -+, Xims =+ Xkl "+ Xoons X1y o+ s Xk V1o oo+ 5 Vs
21, , 2k € A. Then there exists a unique homomorphism H : A — B such that

() —H(xt), -+, f (o) — H(x)) ||

=

(e lly + <= + llxell)

m—m"
forall xy,--- ,x; € A.

Proof. The proof follows from Theorem 6.9 by taking

m m
@(‘xlls s Xdms s Xkttt s-ka) = 0(2 ”'xl]”; +eet Z ||xk]||:\)s
Jj=1 Jj=1

VX1, V1,205 Xk Vi Zk)
i= 0 (el - Myalla - Nzl 4+ - 4 Dl - el - llzelly)
for all xqip,--+, X1, s Xkls oo 5 Xkms X1, Xk V1,0 > Yk, 21,0+ 2% € A and
L=m"" O

Theorem 6.11. Let ((B*,|| - |lx) : k > 1) be a multi-C*-ternary algebra. Let
f : A — B be a mapping for which there exist the functions ¢ : A™ — [0, c0)
and  : A% — [0, 00) satisfying the inequalities (6.35) and (6.36) such that

11m m](p(ml-xllv Tty m_j-xlms Y m_j.Xkl, Tty m_]-ka) = 0 (6'45)
J—>00
and
lim mYy (m™x;, m ™y, mzy, o m g, m Ty, mTz) = 0 (6.46)

j—oo
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1
SJorall w € T  and xy1, -+« Xty s Xkls = s Xkms> X1 " "+ 5 Xs V1" * > Yho
21, , 2k € A. If there exists L < 1 such that
m m m

QD(XU,O,'-' sOs-levOs"' 507”' s-xklsov”' 70)

L
=< —<p(mxn,0,--- ,0,mx21,0,+++,0,--+ ,mxgy, 0, - - ,0)
m
for all x11,x21,-+ ,Xx1 € A, then there exists a unique homomorphism H : A — B
such that
|(F(x1) — H(xp), -+ L f (i) — H(x) [l
< o(%1.0- 032,00+ 5,0, 0)  (647)
m— mL
forall xy,--- ,x; € A.

Proof. We consider the linear mapping J : X — X defined by

Jg(x) := mg( )

X
m

for all x € A. It follows from (6.39) that

0 (). s ()]

<o(2.04,0,2,0,,0. % 0,0 0)
m m
L
S—</)<x1,0,~~~,0,x2,0,---,0,~~~,xk70,---,0) (6.48)
m
forall x,--- ,x; € A. Hence we have
L
m

By Theorem 1.3, there exists a mapping H : A — B such that
(1) H is afixed pointof J, i.e.,

H(mx) = mH(x) (6.49)

for all x € A. The mapping H is a unique fixed point of J in the set
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Y={geX:d{f,g) < oo}

This implies that H is a unique mapping satisfying (6.49) such that there exists
C € (0, co) satisfying the following:

| (H (x1) = f(x1), -+ HOa) — ) llx

m

< C(p(X1,0,--- ,0,x0,0,-44,0, -+, x;,0, - - ’())

forall x;,--- ,x; €A,
(2) d(J'f,H) — 0 as n — oo. This implies the equality

lim m"f (i) — H(x)

n—00 m'"

forallx € A;
3) d(f,H) < 1%Ld(f ,Jf), which implies the inequality

d(f,H) < ,
Y )_m—mL

which implies that the inequality (6.47) holds.

The rest of the proof is similar to the proof of Theorem 6.9. This completes the
proof. |

Corollary 6.12. Let (B, || - l«) : k& = 1) be a multi-C*-ternary algebra. Let
r > 1, 8 be nonnegative real numbers and f : A — B be a mapping such that
satisfying (6.43) and (6.44). Then there exists a unique homomorphism H : A — B
such that

17 (e1) = H(xr), -+ o f (o) — H () Il

<

X r+...+ X r
(o )

forall xy,--- ,x; € A.

Proof. The proof follows from Theorem 6.11 by taking

m m
Pttt e x) = 0( D Il + -+ D gl ),
j=1 j=1
V(XL Y1210 Xkeo Vi Zk)
= 0 (Il - Iyl -zl + - el - Hyells - Naxllz)

for all xqip,--+ , X1, Xkls oo 5 Xkms X1, Xk V1,0 > Yk, 21,0+ 2% € A and
L=m"". O
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6.2.2 Stability of Derivations in Multi-C*-Ternary Algebras

Now, we prove the Hyers-Ulam stability of derivations on multi-C*-ternary algebras
for the following functional equation:

D, f(xt,-+ ,xn) =0

forallp e T':={veC:|v|=1}andxy, -, x, € A.
Theorem 6.13. Let (A, | - |lk) : k > 1) be a multi-C*-ternary algebra. Let
f A = A be a mapping for which there exist the functions ¢ : A™ — [0, c0)
and r : A* — [0, 00) satisfying (6.34), (6.35) and (6.37) such that
G (e, yr.z]) = F &)y, 2] = [ f O 2] = ey f (0]
o S yio k) — [F () s vies zd

=[xk, f ) s 2] — ks i f @)D Nl (6.50)
S YL YL Xk Vi 2k)
forall jw € TV and xy1, -+« Xy s+ Xktow o Xy X1u v+ S Xk V10" o Vho
21, , 2 € A. If there exists L < 1 such that

m m m

w(mxn,O,--- ,0,mxz1,0,---,0,--+ ,mxy,0,- - ,0)

m m m

< mLp(%1.0,+.0, %10, 0.+ 1, 0,0

for all xi1,x21,++ ,xx1 € A, then there exists a unique derivation § : A — A
such that

I Ge) = 8Gen), -+ f () — 8(a)) e

m m m

(p(xl,O,--- 0.09.0. - 0, .z 0,--- ,0) (6.51)

=
m— mL

forall x,--- ,x; € A.

Proof. By the same reasoning as in the proof of Theorem 6.9, there exists a unique
C-linear mapping § : A — A satisfying (6.50) and the mapping § : A — A is
given by

§(x) = lim AGED) (6.52)

—>o0 m"



250 6 Stability of Functional Equations in Multi-Banach Algebras

for all x € A. It follows from (6.34), (6.37) and (6.52) that

I S(Per, y1, z1]) = [8Cx1), y1, z1] = [x1, 8(v1), z1] = [xrs v, f(z0)]s
oo 8P, yio zi]) — [8CGa), v 2
=P, 8O), 2] — s yis 8 (@)D Ik

) 1
= Hm — | (f ([ x1, m"y1, m"z1]) = [fOm"x1), m"y1, m"z1]
n—o0 m>"

—[m"x1, f(m"y1), m"z1] — [m"x1, m"y1, f(m"z1)],
s f(m i, My, mz]) — [f(m" ), m"y, m"zi]

—[m"xp, f(m"yi), m"zi) — [m"xi, m"yi, f (m" 2i)]) |«

< lim m ™" (m"xy, m"yy, m"zy, - m g, myy, m'z)
n—>oo
=0
forall xy, -+, Xm, Y1, ** , Yk» 215+ , 2 € A and s0

8([x,y,2) = [6(x),y,2] + [x,8(y), 2] + [x,¥,6(2)]

forall x,y,z € A. Thus § : A — A is a derivation satisfying (6.50). This completes
the proof. |

Corollary 6.14. Let (A%, |- |l) : k = 1) be a multi-C*-ternary algebra. Let r<1, 0
be nonnegative real numbers and f : A — A be a mapping such that

I(Duf Cerrs e e s s X1m)s s Dyf Gkt ==+ 5 Xem)) &

< 0( 2 bl 4+ X Il ) (6.53)
=1 =1

and
e,y zi]) = [F ), v 2] = e f ), 2] = By f (@],
oo f Bk es ze]) = [F o) s yis 2]
—[xe, fOr) 2] — o yis £ (@)D Ml (6.54)
<O (loeally - yally - Nz lly 4= 4 llcella - vl - lyella)
forall p € T' and x11, -+, Xims =+ Xk, Xoons X1y o+ s X V1o oo+ 5 Vs
21, . 2 € A. Then there exists a unique derivation § : A — A such that

10 Ge) = 8Cen). -+ f () = 8l < (el <o i)

m —m

forall xy,--- ,x; € A.
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Proof. The proof follows from Theorem 6.50 by taking

m m
POt X i) = O( 2 eylly o+ D gl )
j=1 j=1

Yo, Y121, 5 Xk Vis k)

= 0 (el - Iyalla -zl =+ <= el - ey - llyvell)

for all xp,-- , Xk, y1,°°* , Y% 21, ,2% € A and L = m'". This completes the
proof. O

Remark 6.15. Let (A%, | - |lx) : & > 1) be a multi-C*-ternary algebra. Let
f : A — A be a mapping for which there exist the functions ¢ : A" — [0, c0)
and ¢ : A [0, 0o) satisfying (6.35), (6.45), (6.46) and (6.50) for all u € T! and
X1y 5 Xlms s Xkl s Xk X15° 5 Xks Y1 5 Yks 21, 2k € A. If there exists
L < 1 such that

m m m

4

/N

mx11,0,+--,0,mx1,0,---,0,-- ,mx;,0,--- ,0)

m m m

L
S _qo(xllvos"' 7Os-x21507”' 705"' 7-xk1705"' 50)
m

for all x1,x1,--+ , X1 € A, then there exists a unique derivation § : A — A such
that

(F(x1) = 8(xr), ==+ o f () — 8(x)) I«
L
<
~ m—mL

m m m

(p(xl’()’... ,0,x0,0,-44,0, -+, x;,0, - - ’())

for all xq,---,x; € A.

Corollary 6.16. Let (A%, | - |lx) : k > 1) be a multi-C*-ternary algebra. Let
r > 1, 0 be nonnegative real numbers andf : A — A be a mapping satisfying (6.53)
and (6.54). Then there exists a unique derivation § : A — A such that

107 Ge1) = 8Cen), -+ f () = 8l = (el + -+ i)

m —m

forall xy,--- ,x; € A.
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Proof. The proof follows from Theorem 6.15 by taking

m m
POt X i) = O( 2 eylly o+ D gl )
j=1 j=1

w(xlsylvzls"' 7xks)’k7Zk)

= 0 (el - Iyalla -zl =+ <= el - ey - llyvell)

for all x,-++ , Xk, Y1, , V&, 21,2 € A and L = m'™". This completes the
proof. O

6.3 Generalized Additive Mappings and Isomorphisms
in Multi-C*-Algebras

Let X and Y be vector spaces. It is shown that, if an odd mapping f : X — Y
satisfies the functional equation (3.97), then the odd mapping f is additive. Also,
we use the fixed point method to prove the Hyers-Ulam stability of the functional
equation (3.97) in multi-Banach modules over a unital multi-C*-algebra. As an
application, we show that every almost linear bijection & : A — B of a unital multi-
C*-algebra A onto a unital multi-C*-algebra B is a C*-algebra isomorphism when

(Z) i

for all unitaries u € U(A),y € Aandn > 0.

6.3.1 Stability of Odd Functional Equations in Multi-Banach
Modules over a Multi-C*-Algebra

We assume that ((A%, || - ||x) : & > 1) is a unital multi-C*-algebra and ((X*, || - |l¢) :
k> 1), (Y%, ||-|lx) : k > 1) are multi-Banach left modules over (A%, ||-|[x) : k > 1).
Moreover, by U(A), we denote the unitary group of A. For any mappingf : X — Y,
we set
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Dyf (x1, -+, xq)
i ux; Y (=) Vu;
=rf(—=——) + y (—" : )
(=5=)+ X 0=
tj) =0,1
d .
Zj: 1 ) =1
d
—~(-1Cr =41 Gt + 1) Y uf(x)
j=1

forallu € U(A) and xy,--- , x4 € X.

Theorem 6.17. Letr # 2 and f : X — Y be an odd mapping such that, for each
k > 1, there exists a function ¢y : X*¢ — [0, 00) such that

R 2J 2J 2J 2J
]1_1>Holo 5%k (;XU, R S LTRARE ;xkd) =0 (6.55)
and
|(Duf 11, x1a), =+ Duf Ok xka) ||
E@k(‘xlls"'7-xld7”'s-xkls"'7-xkd) (6'56)
forallu € U(A) and x11,-++ ,X14," "+ »Xk1, "+ »Xka € X. If there exists L < 1 such
that
d d
2 2 2 2
(pk<_xlls —X11, " 705"' s —Xk1s — Xkl 50)
r r r r
d d
2
E ;quk(xlls-xlls"' 705"' s Xk1s Xk1s°° 50)
forallk > 1 and x11,--- ,xx1 € X, then there exist a unique A-linear generalized
additive mapping A : X — Y such that
[(AGer) —f(xr), - Ala) = f (o) [l (6.57)

1
<
T 2(02C =42 Co+ 1)1 -L)

(pk(xl,xl,O,...,O,...,xk,xk,O,...,O)
N—— N——

d — 2 times d — 2 times

forallk > 1 andxy, -+ ,x; € X.
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Proof. Put S :={A:X — Y}and

d(A.h) = inf{C € Ry : [[(A(x1) = h(x1). -+, Al) — h(x) [k
d d

< Cor(x1,x1,0,-++,0,-++ , x4, %, 0,4+ ,0), k> 1, x1,-++ ,x € X}

for all A,h € S which (S,d) is a complete generalized metric space. Define a
mapping J : S — S by

2
JA(x) = ) (—x)
2 r
forall A € S and x € X. Now, we have

d(JA,Jh) < Ld(A,h)

for all A,h € S. For a fixed k > 1, puttingu = 1 € U(A), x;i = xp = x; and
X3 =---=x;g = 0foreachi € {1,---, k} in (6.56), we have

(o) a ) ),

1
S @k(-xls-xlsov”'507”'5xk7-xk507”'50)
d—2C—a—2Co+1 - _—

d — 2 times d — 2 times

since fisoddand ¢ : =4 C; —3—» C1—» + 1 =4—1 C; —y—1 C;=1 + 1. Thus we have

10~ ) g0 ()

1
< —wk(xl,xl,o,... 0, e XX 0,5 ,0)
2t N’
d — 2 times d — 2 times
for all xy,---,x; € X and so
1
afJf) = 5 (6.58)

Consequently, by Theorem 1.3, there exists a mapping A : X — Y such that
(1) A is a fixed point of J, i.e.,

A (zx) = zA(x) (6.59)
r r

for all x € X and A is unique in the set

Y={AeX:d{f A) < ool
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This means that A is a unique mapping satisfying (6.59) such that there exists
C € (0, 00) with

(A —f (), -+ AGa) = fa) [k

=< C(pk(X],xl’O,--- ’0’--. ’xk’xk’o’... ’0)
N—— ——
d — 2 times d — 2 times
forallk > 1and xq,--- ,x; € X;

(2) d(J*f, A) — 0as n — oo. This implies the equality
L2
lim —f (—x) = A(x) (6.60)
rn

forall x € X;
3) d(f,A) < 1%Ld(f, Jf) which together with (6.58) gives

d(f,A) <
¢ )_2t—2tL

and so the inequality (6.57) holds for all xy,--- ,x; € X.

Next, note that the fact that the mapping f is odd and (6.60) imply that A is odd.
Moreover, by (6.55) and (6.56), we have

(D1 A1, x1a), -+, Di A, -+, Xka)) Ik

oL 2" 2" 2" on
—nll)Holoi Dyf Fxll,"' ,Fxld s Dof kal,“' ’kad )
. 7t n on on on
Snll)noloi@k F-xllv"'sﬁxlds"'vﬁxkls"'vﬁxkd
=0
for all k > 1 and x11,--- , X140, . Xx1, -+ , % € X and so A is a generalized

additive mapping.
For any fixed u € U(A) and x € X, using (6.55) and (6.56), we have

H(DMA(x, 0,---,0), -+, DuA(x,0,--- ,0))Hk

d — 1 times d — 1 times

(N ) R )

rn

R
= lim —
n—o00 2N

d — 1 times d — 1 times

.o 2" 2"
lim —QOk(—X,O,"',O,"',—X,O,"',O)
n—>o0 2" M —— M ——

d — 1 times d — 1 times

IA

=0
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and so
ux
(@-1Cr—a—1 Cr1 + I)VA(T) = (4=1C1 —a—1 C—1 + DuA(x).

Since A is a generalized additive mapping, from Lemma 3.64 it follows that A is
additive and so

A(ux) = rA(?) = ul(x)

for all u € U(A) and x € X. It is straight forward to show that A is an A-linear
mapping (see also Theorem 3.1 in [20]). This completes the proof. a
Corollary 6.18. Let r # 2 and 0,p € (0,00). Assume also that p > 1 for r > 2
andp < 1 forr < 2. Iff : X — Y is an odd mapping such that

|(Duf (X115 s x1a), =+ Duf (s =+ X)) |14
d d
= O( X Il + o+ D )
=1 =1

forallu € UA), k > 1 and x11,+*+ ,X1d4,*** ,Xk1, "+ > Xka € X, then there exists a
unique A-linear generalized additive mapping A : X — Y such that

[(AGe) = f(x1), ==+ AG) = fFCa) Iy
) -1
T (P =2 (42C1 —a—2 Cia + 1)

(et [[” 4=+ 1l 7)

forallk > 1 andxy, -+ ,x, € X.

Proof. Taking L = fj:—:ll and

d d
r(X11, - Xiay e Xkl Xka) = 9(2 ey ll” + ... + Z ”xkj”p)
=1

Jj=1
forall kK > 1 and x11,--+ ,x14,*** , Xk1,*** ,Xk¢ € X in Theorem 6.17, we get the
desired assertion. O

Theorem 6.19. Letr # 2. Let f : X — Y be an odd mapping for which there exists
a function ¢ : X* — [0, 00) such that

; 2% [ i i /i o
m — —X cee, —X e, —X R . =
favid r/§0 > 11, Y 1ds oY kl» Y kd
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and
|(Duf (11, s x10)s - Dof (et -+ 5 X)) [k
S @11, Xidy Xk Xkd)
for all u € U(A) and x11,--+ ,X14,"** , Xk1, - ,Xka € X. If there exists L < 1
such that
d d d
(r r 0 r r 0 r r O)
X1, =X11, -, U, = X210, = X215 000, Uy ooy 2 Xk, T XKD, 0
AT PR) PR
d d d
;
=< §L<p(x11,x11,--- 0,301, 200,00+, 0,00+ X, Xeg, e 0 ,0)
forall xi1,x31,++ ,xx1 € X, then there exists a unique A-linear generalized additive
mapping A : X — Y such that

sup (A —f (), -+ AGa) = fa) [k

L
< sup <p(xl,X1,0,--- ,0,
=1 2(a—2C1 —a—2 Ci—2 + 1)(1 = L) —
— 2 times
e 7xk5xk705"' 50)
———
d — 2 times
forall xy,--- ,x; € X.

Proof. Note that f(0) = 0 and f(—x) = —f(x) for all x € X since f is an odd
mapping. Let u = 1 € U(A). Putting x;; = xpp = xj and x5 =

e _xim = 0
(1 <i<k)in (6.56), we have
2 2
if | =2 ) =2 ) | ) — 2f ()
r r k
< 1 (1,21.0.-.0 0.-:-.0)
X1, X1, Uy e ee Upeee Xy X, Uy e ey .
o d—ZCl —d-2 Cl—2 + 1(p b dj/—“ ko Tk dj/—“
— 2 times — 2 times

Letting ¢ :=4—» C; —4—> C;—» + 1, we have

(r0 =27 (3m) o s = 2 (5)

k
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1 r r r r
S_w(_xly_.XI,O,-.-70,'..7—xk,—xk,0’...’0)
rt 2 2 N—— 2 2
d — 2 times d — 2 times
L
= _f/’(xl,xl,O,--- 0, X, xp, 0, - ’0)
2t ———
d — 2 times d — 2 times
forall xy,--- ,x, € X.
The rest of the proof is similar to the proof of Theorem 6.17. This completes the
proof. -

Corollary 6.20. Letr < 2 and 0, p > 1 be positive real numbers or let r > 2 and
0, p < 1 be positive real numbers. Let f : X — Y be an odd mapping such that

|(Duf (X115 s x1a)s -+ Duf (s ==+ X)) ||
d d
< 0( DIl + -+ Y Iyl
Jj=1 j=1

forallu € U(A) and x11,-++ ,X14,*" Xk, »Xra € X. Then there exists a unique
A-linear generalized additive mapping A : X — Y such that

sup ICAG) = f (), -+ AGa) —f () [k

1o
< sup

xi|1P e |lx|IP
=1 (27— ) (4 2C —4—2 Crp + 1) ([ el [lxk[1)

forall x € X.
Proof. Define

d d
@(‘xlls"' s Xlds 0t s Xkl " 7-xkd) = Q(Z ”'xl]”p + “'+ Z ”'xk]”p)

j=1 j=1

Pl

and put L = Z— in Theorem 6.19. Then we get the desired result. |

Now, we investigate the Hyers—Ulam stability of linear mappings for the case
d=2.

Theorem 6.21. Let r # 2. Let f : X — Y be an odd mapping for which there exists
a function ¢ : X?¥ — [0, 00) such that

j—=o0 2/

4 (Y b
lim —¢ (—.xl, R CRR e 1 ) —-)’k) =0
v 1) v v
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and

(o (M) —uf (x1) — uf ().

o (M) — ) — wrow) |

SOy Xk Vi) (6.61)

forallu e UA) and x1, Xk, y1+++ ,yx € X. If there exists L < 1 such that
2 2 2 2 2 2 2
@ | =x1, =X, =X, =X, =X =X | S =L (g, 0, X0, X, 0 X, Xk)
ror r-r ror r

for all x1,---x; € X. Then there exists a unique A-linear generalized additive
mapping A : X — Y such that

sup [CAGe) =f (), Ala) = f () Ik

L
< sup ————@(x1, X1, , Xp, X
_k211)2(1_L)<p(1 : o)

forall xy,--- ,x; € X.

Proof. Letu =1 € U(A). Putting x; = y; (1 <i < k) in (6.61), we have

(5 (2e) () )

< @(rr, Xy, -0, Xk Xk)

k

for all x € X and so

(-5 20)- -5 (2)

k
< E(P(xlaxla e Xk, Xk)
forall x € X.
The rest of the proof is the same as in the proof of Theorem 6.17. This completes
the proof. |

Corollary 6.22. Letr > 2 and 9, p > 1 be positive real numbers or let r < 2 and
0, p < 1 be positive real numbers. Let f : X — Y be an odd mapping such that
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(o () — wp) = o),

r

By ”f(uxk + uyk)

)~ w5 |

k
<03 (gl + 117

j=1

forallu € U(A) and x1,---xx € X. Then there exists a unique A-linear generalized
additive mapping A : X — Y such that

] ¢
sup | (Ar) = f ).+ . Aw) —f (i) e = sup T ; [11”

forall xy,---x; € X.

Proof. Define

k
PCet v X0 y0) = 60 (17 + |yl

j=1
and apply Theorem 6.21. Then we get the desired result. |

Theorem 6.23. Let r # 2. Let f : X — Y be an odd mapping for which there exists
a function ¢ : X?¥ — [0, 00) such that

B A b
Jim S (oG G ) =0

and

(o (w) —uf (x1) — uf (),

. ”f(uxk + uyk)

—uf ()~ uf ) |,
<@L, Y1, L X Vr) (6.62)

forallu e UA) and xy, -+ Xk, y1+++ ,yx € X. If there exists L < 1 such that

r r r r r r r
@ (Exh 21 X, DXt s Exk) < §L<p (1, X1, X2, X2, L X, Xg)

for all x1,---xx € X. Then there exists a unique A-linear generalized additive
mapping A : X — Y such that
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sup [(AG) =f@er). - AGa) = f () Ik

1
< sup ————@(x1, X1, , Xp, X
_k211)2(1_L)<p(1 : o)

forall xy,--- ,x; € X.

Proof. Letu =1 € U(A). Putting x; = y; (1 <i < k) in (6.62), we have

H (’f (%xl) =2f(x1), -+, 1f (%Xk) - 2f(xk))

k

E (p(-xls-xlv”' sxkv-xk)
forall x;,--- ,x; € X and so
2 qr 2 qr
e = 5f (5x) o fw0 = oF (5)
r\2 r\2 «
- 1 (r r r r )
= r(p lev 2.x1, 5 Zxkv 2-xk

IA

1
§L</’(x1,X1,"' s Xks Xi)

forall xq,--- ,x;, € X.
The rest of the proof is similar to the proof of Theorem 6.17. This completes the
proof. O

Corollary 6.24. Letr > 2 and 0, p > 1 be positive real numbers or let r < 2 and
0, p < 1 be positive real numbers. Let f : X — Y be an odd mapping such that

(o (M) —uf (x1) — uf (),

Uxy + uyy
- 'f(f) —uf (xe) — uf(}’k)) Hk
k
=02 (gl + 1)
j=1
forallu € U(A) and xy,---x; € X. Then there exists a unique A-linear generalized
additive mapping A : X — Y such that

e g
sup | (Ar) = f(). -+ . Aw) —f () e < sup o —g FZI 17

forall xy,---x; € X.
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Proof. Define

k
eCet v X030 = 0 (17 + [y

Jj=1

and apply Theorem 6.23. Then we get the desired result. |

6.3.2 Isomorphisms in Unital Multi-C*-Algebras

Assume that A and B are unital multi-C*-algebras with the unit e. Let U(A) be the
set of unitary elements in A.
Now, we investigate C*-algebra isomorphisms in unital multi-C*-algebras.

Theorem 6.25. Let r # 2. Let h : A — B be an odd bijective mapping satisfying

n n

() =1y

forallu € U(A),y € Aandn > 0 for which there exists a function ¢ : A* — [0, o)
such that

1% 2J 2J 2 2J
im —@ | =X, =X1d, =Xkt 0, =%k | = 0,
12 12 )zl 12

j>oo Y

(D hCxrr, - Xx1a), - s Dyh(xn, -+ 5 X)) Ik

S @11, Xids Xkl Xikd)

A 2", 2" \* 2", 2" \*
—u; | —h{—=w ) .- h|—=u, | —h|—w
r}’l rn rn rn

2" 2" 2" 2"
<< J— “ee J— “ee J— cee J—
_w(rnul, L ,rnuk)

and

k

d times d times

forallp € S'' == A € C: |Al =1} u,---,ux € UA), n > 0 and
X11,* " , Xrg € A. Assume that lim,,_, oo ;—Zh(%—,:e) is invertible. Then the odd bijective
mapping h : A — B is a C*-algebra isomorphism.

Proof. Consider the multi-C*-algebras A and B as left Banach modules over
the unital multi-C*-algebra C. By Theorem 6.17, there exists a unique C-linear
generalized additive mapping H : A — B such that



6.3 Generalized Additive Mappings and Isomorphisms in Multi-C*-Algebras

263
sup || (h(x1) — H(x1), -+, h(xx) — H(xe)) [|x
k>1
< ! 0 0 0 0
= sup (P(xlaX, sttt Uy Xy Xy, Uy oo ey )
=1 2(02C1—a—2 Cra + 1) b —_—
d — 2 times d — 2 times
forall x;, -+ ,x; € Ain which H : A — Bis given by
rﬂ n
H(x) = lim —h(—x)
n—>o00 2N n
forall x € A.
The rest of the proof is easy. This completes the proof. |

Corollary 6.26. Let r > 2 and 0, p > 1 be positive real numbers or let r < 2 and
0, p < 1 be positive real numbers. Let h : A — B be an odd bijective mapping
satisfying

() =1y

forallu e U(A),y € Aandn > 0 such that

|(Dph(xn, -+ x1a), -, Duh(as -+ xka)) |k

d
<60 (beyll” + -+ + llxgll?)
j=1
and
2" 2" \* 2" 2" \*
() o () () () )
arn
<kd —0

ren
forallp € S, u e UA), n>0andxyy, -+, Xra € A. Assume that lim,_ s ;—Zh(f—:e)
is invertible. Then the odd bijective mapping h : A — B is a C*-algebra
isomorphism.

Proof. Define

d
Q(X11, e o Xig, et Xeds L Xkd) = 92(”%’”” + - gl )
=1

and apply Theorem 6.25. Then we get the desired result.
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6.4 Additive Functional Inequalities in Proper
Multi-CQ*-Algebras

In this section, we approximate the following additive functional inequality:

d+1 d+1
[ Qs Y|,
i=1 i=1

d+1 d+1 ..
o (ZEm) o (EE) e
m m k
for all x11,--- ,x¢q4+1 € X, where d > 2 is a fixed integer. Also, we investigate

homomorphisms in proper multi-CQ*-algebras and derivations on proper multi-
CQ*-algebras associated with the above additive functional inequality.

6.4.1 Stability of C-Linear Mappings in Multi-Banach Spaces

Now, we investigate the Hyers-Ulam stability of C-linear mappings in multi-Banach
spaces associated with the multi-additive functional inequality (6.63).

In this section, we assume that (X, || - ||) and (Y, | - ||) are Banach spaces such
that (X*, || - |lx) and (Y*, || - ||x) are multi-Banach spaces.

Lemma 6.27. Let f : X — Y be a mapping satisfying (6.63) in which f(0) = 0.
Then f is additive.

Proof. Letting x3 = --+ = x441 = 0 and replacing x; by x and x, by —x in (6.63),
we have

If () + (=0l =< [lmf(0)|| =0

for all x € X. Hence f(—x) = —f(x) for all x € X. Replacing x; by x, x, by y and x3
by —x — y and putting x4 = - -+ = x441 = 0 in (6.63), we have

IFe) +F0) =fxe+ 9 = [IFe) +50) +/(=x =)l
=< [mf )|l
=0

for all x,y € X. Thus we have

f+y) =fx) +1()

for all x, y € X. This completes the proof. O
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Theorem 6.28. Letf : X — Y be a mapping. If there exists a function
@ XKk 5[0, 00) satisfying the following:
d+1 d+1
H Qs 3o ) |
a1 A1
= (). ()|
m m k
+ QX1 X1d 1 Xk s Xkd 1) (6.64)
and
Q11 s XTd+1, 7 Xkl > Xkd+1)
o
= ZSUPdJQD (@7 xqpn o d 7 g d T g d T )
prg ]
< 00 (6.65)

forall xi1,-++ ,Xpq+1 € X, then there exists a unique additive mapping L : X — Y
such that

ililf [1(FCe1) = Lxp), =+, f () — LOa)) [l

S sup@(xy, Xp, e e e, —dXy, s Xy Xy o0, —dXg)

(6.66)
k>1

forall x,--- ,x; € X.

Proof. Since ¢(0,---,0) < oo in (6.65), we have ¢(0,---,0) = 0 and so f(0) = 0.

Replacing x;1, -+ , xig by x; and x;44+1 by —dx; (1 < i < k), respectively, in (6.64),
since f(0) = 0, we have

1(df Ger) — f(doxr). -+ df (xi) — f(dxi)) Il

= |[(df (x1) + f(=dx1),--- . df () + f(—=dx) |l
< [(mf(0),---,mf(0))]|x

+ @(xr, Xy, —dXy, e Xy Xy e, —dXg)

for all xq, -+, x; € X. From the above inequality, we have

- () - (3))]

X1 X1 Xk Xk
E@ Evgs”'v_-xls"'72537”'5_)@()
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for all x1, .-+, x; € X. Replacing x; by d™"x; (1 < i < k) in the above inequality, we
have
ne (KLY ntl A1 o (XK Xk H
(@ (o) = () oo () = (),
< (x_l ... S S _ﬂ)
— dn+l’dn+l’ ’ dn’ ’dn+l’dn+l’ ’ an

From the above inequality, we have

sup | (7 (Go) =ar () -t (G) =0 (),
<Zigr;1(d’“ (o) = ()@ () = @r ()1,
<Zi1i[1)d’(p(d]+l dJ‘H’.“’_%’.“’%’%"”’_%)

forallx;, -+ ,x; € Xandg,n > 1 with ¢ < n. From (6.64), the sequence {d"f ()}
is a Cauchy sequence for all x € X and so it is convergent in the complete multi-
norm Y. Thus we can define a mapping L : X — Y by

. n X
L) = lim &'f ()
forall x € X.

In order to prove that L satisfies (6.66), if we put ¢ = 0 and let n — o0 in the
above inequality, then we obtain

sup I Ger) — L(xr), -+ o f (o) — L) e

dxl Xk Xk dxk
< E supd’ e —— s D
k=1 dj+1 d/+1’ gty T ity i+ gt
Jj=0
= Sup@(xl’xl’... ,—d.XI,"' S Xiey Xpey = ° ,_ka)
k>1

for all x1,---,xt € X. Replacing x;; by % (1 <i<kandl <j <d+1),
respectively, and multiplying by @"*! in (6.64), we have
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d+1 xi
(i)
d+1
< [ (S| + ot et e )

forall x;j € X (1 <j <d + 1). Since (6.65) gives

lim d"sup g

( X11 X1d+1 X11 X1d+1) -0
n—>oQ k>1

gn U g ek T et

forall x;j € X (1 <j <d + 1), letting n — oo in the above inequality, we have
d+1 d+1
|3 ] = (=) (©:67)
i=1 m

and so L is additive by Lemma 6.27.
Now, to prove the uniqueness of L, let L' : X — Y be another additive mapping
satisfying (6.66). Since L and L’ are additive, we have
ILG) = L' @)l

L(G) -+ (@)l
= (L@ -G+

=d

v ()= (@)

<" 20 X x —dx X x —dx
< O\ g g
o0
=2 supd"p(A),
Zkzll) ¢ (4)
j=0
where
®(A)
k
d+1 d+1
_ X X —dx X X —dx
TN g g e ek L gt |

which goes to zero as n — oo for all x € X by (6.65). Consequently, L is the unique
additive mapping satisfying (6.66). This completes the proof. a
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Corollary 6.29. Let f : X — Y be a mapping with f(0) = 0. If there exists a
function ¢ : X*T* — [0, 00) satisfying (6.64) and

o0
- 1 . .
P(x11, e+ Xeak) 1= Zigg P (@xi1,- -+ dxpat1) < 00 (6.68)
Jj=0
forall xi1,++ ,Xpq+1 € X, then there exists a unique additive mapping L : X — Y
such that

sup [ (f(x1) — L(x1), -+, f () — L) [l

k=1
S sup @(xp, Xy, e, —dxy, e X Xgy e e e, —dXg) (6.69)
k=1
forall x,--- ,x; € X.
Proof. The proof is same as in the corresponding part of the proof of Theorem 6.28.
|
Lemma 6.30. Letf : X — Y be a mapping satisfying the following:
d d
i=1Xi T UXd+1
|37 + e < fmp(B= X 60
i=1

forall p € T' and x1,--- ,x441 € X. Then f is C-linear.

Proof. 1f we put © = 1 1in (6.70), then f is additive by Lemma 6.27.
Putting x; = x, x; = 0(2 < i < d) and x44+1 = —x, respectively, we get
F(ux) 4+ uf (—=x) = 0 and so f(uux) = uf(x) forall u € T! and x € X. Thus we have

Jux + px) = f(px) +f(x) = pf (x) + if (x)

forall u € T! and x € X and so f(tx) = tf(x) for any real number ¢ with || < 1 and
x € X.

On the other hand, since f(mx) = mf(x), we get f(m"x) = m"f(x) foralln € N.
So, for any real number 7, there exists a positive integer n with |f| < m". Thus we
have

F@0) = (m'- —x) = m'f (—ox) = f ) = ).

Now, we consider any o« € C with @« = t + si for some real numbers ¢, s. Since
f(ix) = if (x) holds, we have

Jlax) = f(tx) +f(six) = 1f (¥) + of (ix) = 1f (x) + 5if () = of (x)

and so f is C-linear. This completes the proof. |
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Theorem 6.31. Letf : X — Y be a mapping. If there exists a function
@ XKk 5 [0, 00) satisfying (6.64) and

I( 5+ if e 3 + wowar) |,
i=1

i=1

- H (mf(zlfl:l X1+ UX1d+1 ) o ,mf( Zflzlxki + UXk g1 )) Hk

m m
+ @11, Xka+1) (6.71)
forall w € T  and xy1,+++ ,Xpa+1 € X, then there exists a unique C-linear mapping

L : X — Y satisfying (6.66).

Proof. 1f we put © = 1 in (6.71), then, by Theorem 6.28, there exists a unique
additive mapping L : X — Y defined by

o= o ()

for all x € X which satisfies (6.66). By the similar method to the corresponding part
of the proof of Theorem 6.28, L satisfies the following:

H igdl:L(xi) + ,uL(xd+1)H < HmL(M) H

for all u € T! and x;,--- ,Xgq+1 € X. Thus Lemma 6.30 gives that L is C-linear.
This completes the proof. |

Corollary 6.32. Let f : X — Y be a mapping with f(0) = 0. If there exists a
function ¢ : XXk — [0, 00) satisfying (6.68) and (6.70), then there exists a unique
C-linear mapping L : X — Y satisfying (6.71).

Proof. The proof is same as in the corresponding part of the proof of Theorem 6.31.
|

6.4.2 Stability of Homomorphisms in Proper
Multi-CQ*-Algebras

Now, we investigate the Hyers-Ulam stability of isomorphisms in proper multi-
CQ*-algebras associated with the additive functional inequality.

We assume that (A, || - ||) and (B, || - ||) are Banach algebras such that (A%, || - ||x)
and (B, || - ||x) are multi-Banach algebras.
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Theorem 6.33. Letf : A — B be a mapping. Suppose that there exists a function
@ AMTE [0, 00) satisfying (6.65) and

H ( Zd:f(xli) + wf (xra41), - Zd:f(xki) + Mf(xkd+1)) Hk
i=1

i=1

- H (mf(ZI['Ll X1+ UX1d+1 ) o ,mf( Zflzlxki + UXk g1 )) Hk

m m
+ o(x11, - Xed+1) (6.72)

for all u € T! and x4, - - ,Xkd+1 € A. If, in addition, there exists a function
¢ : A% — [0, 00) satisfying the following:

[ (FGeryn) —fCe)f )=+ f Gaye) — FOa)f ) Ik

SO, Y1 Xk Vi) (6.73)
and
lim supd®'¢(d "xi,d "y, ,d "xi,d ") = 0 (6.74)
00 k>
forall xi,-++ ,xk, 1, ,Yx € A whenever the multiplication is defined, then there

exists a unique proper CQ*-algebra homomorphism h : A — B such that
sup [(F(er) = R(xr), -+ f () — B(x) [l
=

= Sup(;b(.X],XI,"' s_dxlv”' s Xies Xy =0 ,_d.Xk) (6~75)
k>1

forall xy,--- ,x; € A.
Proof. By Theorem 6.31, we have a unique C-linear mapping & : A — B defined by
(X
o= e (2)
for all x € A which satisfies (6.75).

Now, we show that h(xy) = h(x)h(y) for all x, y € A whenever the multiplication
is defined. Replacing x;, y; by d "x;, d™"y; (1 < i < k), respectively, and multiplying
by d*" in (6.73), we have

1@ [f(d™"x1d™"y1) = f(d"x0)f (d"y1)],
wo P d i) = f(d 7" xf (0D
<d¢(d "x1,d "1, d "X, d ") (6.76)
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for all xi,-+ ,x¢, y1,-++ , ¥k € A whenever the multiplication is defined. Also, we
have

lim d*'f(d"xd™"y) = lim d*'f(d"*"xy) = h(xy)
n—>oo n—oo
and
lim d*'f(d"x)f(d"y) = lim d"f(d""x)- lim d"f(d™"y)
n—>oo n—o0 n—oo
= h(x)h(y)

for all x,y € A whenever the multiplication is defined. If we let n — oo in the
above inequality, then (6.74) gives h(xy) = h(x)h(y) for all x,y € A whenever the
multiplication is defined. This completes the proof. |

Corollary 6.34. Let 0, p be nonnegative real numbers withp > 1 andf : A — B
be a mapping satisfying the following:

I( S )+ g Y o) + i),
i=1 i=1

- H (mf(Zlexu’: Hx1d+1)’___ ’mf(Z?zlxki’;: HXkd+1)) Hk
K od+l

+0- Z Z [lx:: 117 (6.77)
=1 i=1

forall u € T! and x11,+++ , Xxas1 € A. 1If, in addition,

[(FCery) =fGDfOn)s - f Gaye) — FO)f i) Ik

d+1
<0 (il + Iyl (6.78)
i=1
forall xi, -+ X, y1,+++ , Yk € A whenever the multiplication is defined. Then there

exists a unique proper CQ* -algebra homomorphism h : A — B such that

LSS R
sup [|(F(x1) — h(x1), -+ () = h(x) [k < sup ————6 > |lx|l”
k=1 k=1 AP =1 =

forall xy,--- ,x; € A.
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Proof. Let ¢ : AM** — [0, 00) be a mapping defined by

k d+1
QXL Xt Xkl Xkd1) = QZZ [z |7

=1 i=1

When p > 1, we have

@(xll,"' s Xld+1s 0 s Xkl 7xkd+1)

= Zsupd’go(d T, d T g

e
cd T g, d T i)
1 00 d] +1 k d+1
=4 Z 40+ | SUPG Z Z x|
j=0 =1 i=1

d+

k
SUPE
k=l

1
e |-
=1

In addition, let ¢ : A%* — [0, o) be a mapping defined by

d+1

POy xoy) = 0 ) (Il + [yill™).

i=1
When p > 1, we have
lim d®"¢(d"x1,d "yy, - . d " "xe, d ")
n—>o0

on d+1

d
= 0 Z(lelllz” + [yil™)

n—> dzP”

=0

for all xy, -+, Xk, y1,-++ .y € A. By applying Theorem 6.33, there exists a unique
proper CQ*-algebra homomorphism 4 : A — B such that

9 Z x[1”

for all x1,---,xx € A. This completes the proof. O

sup [(FCer) = hCxr), -+ f ) — h(a) e < sup
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Corollary 6.35. Let 0, p be nonnegative real numbers withp > 1 andf : A — B
be a mapping satisfying the following:

I( S )+ g Y o) + Was)|,
i=1 i=1

- H (mf(z;izl X1 + UX1d+1 ) o ,mf( Zﬁl:lxzd + WXk g1 )) Hk

m m
k d+1
+6- 3 Il (6.79)
=1 i=1
forall p € T and x11,-++ , xq11 € A. If, in addition,
I (FCry) = fFf ), f Gayve) = FEf ) Il
d+1
<6 (sill” - yilP) (6.80)
i=1
forall xi,--+ , X, y1,* -+ , Yk € A whenever the multiplication is defined. Then there

exists a unique proper CQ*-algebra homomorphism h : A — B such that

sup [|(f(x1) = h(x1), -+ . f () — h(e) [l < sup - 9 Z (B[

k>1

forall xy,--- ,x; € A.
Proof. Let ¢ : AM** — [0, 00) be a mapping defined by

k d+1

Q1L Xttt X Xearn) = 600> [l

=1 i=1

When p > 1, we have

QX1 X141, s Xkl Xkd+1)

E'qg

1 —im1
supdp(d ™ xp1, -0 d T X a4,
0 Z

.

—im1 —im1
o d7 T e d T Xja1)

1 [e9) d]+l k d+1

= 22 gy S0 2 il

j=0 =1 i=1

0 k d+1
= sy ) il
== A !
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In addition, let ¢ : A%* — [0, o) be a mapping defined by

d+1

Gy o0 = 0 ) (il - yill)-

i=1
When p > 1, we have
lim d®"¢(d™"x1,d"yy, -+ ,d " xp, d ")
n—>oo
on d+1

d
_ 0 s )

n—> dzn

=0

for all xy, -+, Xk, y1,-++ ,yx € A. By applying Theorem 6.33, there exists a unique
proper CQ*-algebra homomorphism 4 : A — B such that

9 Z i [1”

for all x1,---,xx € A. This completes the proof. O

sup [(FCer) = hCxr), -+ f ) — h(a) e < sup

Remark 6.36. Letf : A — Bbe a mapping with f(0) = 0. Suppose that there exists
a function ¢ : ATk — [0, 0o) satisfying (6.68) and

I( Zd:f(xu) G 3 ) + uf i)

< (e

+ o1, Xkas1) (6.81)

Mx1d+1) ( > flzl Xki + WXk d41 )) H
yooe,mf
m k

m

for all u € T! and x11,-++ ,Xxq41 € A. If, in addition, there exists a function
¢ : A% — [0, 00) satisfying the following:

[ (FCery) = fCeDf 1), ==+ o f Gaye) — fCa)f i) Nl
SO, Y1 Xk Vi) (6.82)
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and
lim supd ¢ (d"xy,d"y1, - ,d"xe. d"yi) = 0 (6.83)
n—00 k>1

for all xy, -+, Xk, y1,-++ ,yx € A whenever the multiplication is defined, then there

exists a unique proper CQ*-algebra homomorphism 7 : A — B satisfying the
following:

sup (FCx1) = Alxr), -+, f ) — hOa) [k

< SupGaxr, xi, e, —dXy, e X X e, —dX) (6.84)
k>1

for all xy,---,x; € A.

Corollary 6.37. Let 0, p be nonnegative real numbers withp < 1l andf : A — B
be a mapping satisfying the following:

H ( Xd:f(xli) + wf(x1a1), -+ Xd:f(xki) + Mf(xkd+1)) Hk
i=1 i=1

- H (mf(ZI['Ll X1+ UX1d+1 ) o ,mf( Zflzlxki + UXk g1 )) H
ko d+1 " " k
+6-3 > il (6.85)

=1 i=1

forall u € T! and x11,+++ , Xxas1 € A. 1If, in addition,

[ (FGeryn) —fCe)f ), -+ f Gaye) — FOa)f ) Ik

d+1
<0 (il + Iyl (6.86)
i=1
forall xi,-++ ,xk, 1, ,Yx € A whenever the multiplication is defined, then there

exists a unique proper CQ*-algebra homomorphism h : A — B satisfying

d+d &
—h JEREIN —h < 0 I3
sup 1 CGer) = AGxr), -+ f () — (i) [le < P z§=1 [l

forall xy,--- ,x; € A.
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Proof. Let ¢ : A* — [0, 00) be a mapping defined by

d+1
PGy X)) = 0 Y (]l + [yill™).

i=1
When p < 1, we have
lim d ¢ (d"xy,d"yy, - . d"xp, d"yy)
n—>o00
wmp A+l

6+ (sl + 1yl
i=1

= lim
n—o0 ("

=0

for all xy,--+ ,xx,y1,+-+ .y« € A. By Remark 6.36, there exists a unique proper
CQ*-algebra homomorphism 4 : A — B such that

d+d &
—h JEREIN —h < 0 p
sup | (1) = k). -+ .S () = h(x)) e < sup 7= ; o

for all x1,---,xx € A. This completes the proof. O

Corollary 6.38. Let 0, p be nonnegative real numbers withp < 1 andf : A — B
be a mapping satisfying the following:

H ( Xd:f(xli) + wf(x1a+1), - Xd:f(xki) + Mf(xkd+1)) Hk
i=1 i=1

d d
< H (mf(2i=1 X1i + UX1a+1 ), N ’mf(zl:]xki + Mxkd+1)) H
m m k
k d+1

+0- Z Z llxsi 11 (6.87)
=1 i=1

forall p € TV and x11,-++ , x¢q11 € A. If, in addition,

[(FCery) =fGDf )= f Gaye) —FO)f i) Ik

d+1
<6 (il yill) (6.88)
i=1
forall x\,-+- ,xx,y1,-++ ,Yx € A whenever the multiplication is defined, then there

exists a unique proper CQ*-algebra homomorphism h : A — B such that
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9 Z x[1”

sup [(FCer) = hCxr), -+ f ) — h(a) e < sup

forall xy,--- ,x; € A.
Proof. Let ¢ : A* — [0, 00) be a mapping defined by

d+1

SOty xe ) = 0+ (bl - [yill)-

i=1

When p < 1, we have

lim d2¢(d"xy,d"y1, -, d"x, d"yr)

n—->oo
opn A+l
= lim =03 (all” - yil")
i=1
=0
for all x;,--+ X, y1.--- .y« € A. By Remark 6.36, there exists a unique proper

CQ*-algebra homomorphism 4 : A — B such that

@ Z lxi 117

for all x1,---,xx € A. This completes the proof. O

ilili [(FGer) = A(xr), -« o f o) — RO Ik < SUP

6.4.3 Stability of Derivations in Proper CQ*-Algebras

Now, we investigate the Hyers-Ulam stability of derivations on proper multi-CQ*-
algebras associated with the additive functional inequality.

In this section, we assume that (A, || - ||) is a Banach algebra such that (A%, || - ||x)
is a multi-Banach algebra.

Theorem 6.39. Letf : A — A be a mapping. Suppose that there exists a function
@ : AKTE [0, 00) satisfying (6.65) and

I( Zd:f(xu) G 3 ) + uf i)

i=1

H(mf( pal 1X1L+Hx1d+l>’“.’mf(Z?=Iin+ﬂxkd+l))Hk

m m

+ QX115+ Xed+1) (6.89)
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for all u € T! and x4, - - ,Xkd+1 € A. If, in addition, there exists a function
¥ 2 A% — [0, 00) satisfying the following:

[ (FGeryn) = fe)yr — xif (1), =+ o f Gaye) —f )y — xaf ) |l

S YLy Xk V) (6.90)
and

Tim sup Ay (d™"x1,d "y, - d "xe, d7y) = 0 (6.91)
forall x\,-+- ,xx,y1,-++ ,Yx € A whenever the multiplication is defined, then there

exists a unique derivation § : A — A satisfying the following:
sup (o) —8Cxr), -+ o f () — () Ik
>

= Sup(;b(.X],XI,"' s_dxlv”' s Xies Xy =0 ,_d.Xk) (6~92)
k>1

forall xy,--- ,x; € A.
Proof. By Theorem 6.31, we have a unique C-linear mapping § : A — A defined by
§(x) := lim d"f (i)
n—00 dn
for all x € A which satisfies (6.92).

Now, we show that §(xy) = §(x)8(y) for all x,y € A whenever the multiplication
is defined. Replacing x;, y; by d "x;, d™"y; (1 < i < k), respectively, and multiplying
by d*" in (6.90), we have

1@ [f(d"x1d™"y1) = d™"f(d"x)yr —d~"x1f (d"y)],

o PR d ) — d (A )y — d " xf (d o)

<d*™Y(d"x;,d "y, d "X d 7 yE) (6.93)
for all x,-+ ,x¢, y1,-++ , ¥k € A whenever the multiplication is defined. Also, we
have
lim d*'f(d"xd™"y) = lim d*'f(d"*"xy) = §(xy).
n—->oo n—>oo
lim d*'f(d"x)d ™"y = lim d"f(d"x) -y = §(x)y
n—>oo n—>oo

and

lim d*'d™"xf(d™"y) = lim x-d"f(d™"y) = x8(y)
n—>o0 n—>o0
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for all x, y € A whenever the multiplication is defined. If we let n — oo in the above
inequality, then (6.93) gives

8(xy) = 8(x)y —xd(y)
for all x,y € A whenever the multiplication is defined. This completes the proof. [

Corollary 6.40. Let 0, p be nonnegative real numbers withp > 1 andf : A — A
be a mapping such that

I( 3+ e o 3 ) + i),
i=1 i=1

- H (mf(zlfl:l X1+ UX1d+1 ) o ,mf( Zflzlxki + UXk g1 )) Hk

m m
k d+1

+0- Z Z [lx:: 117 (6.94)
=1 i=1

forall u € T! and x11,+++ , Xxas1 € A. 1If, in addition,

[ (FCeryr) = fFGeDyr —xif ), -+ o f Gave) — f () ye — xaf ) 1k

d+1
<6 (bl + lyil™) (6.95)
i=1
forall xi,-++ ,xk, 1, ,Yx € A whenever the multiplication is defined, then there

exists a unique derivation § : A — A satisfying the following:

5 5 dar + d@ d »
_ — < E
i‘;}? 1 (f(x1) (1), f () )k = i‘;}? 7 —d £ [l

forall xy,--- ,x; € A.
Proof. The proof is same to the proof given in Corollary 6.34. a

Corollary 6.41. Let 0, p be nonnegative real numbers withp > 1 andf : A — A
be a mapping such that

I( S )+ g Y o) + i),
i=1 i=1

- H (mf(ZI['Ll X1+ UX1d+1 ) o ,mf( Zflzlxki + UXk g1 )) Hk

m m
k d+1

+0- Z Z [lx:: 117 (6.96)

=1 i=1
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forall u € T! and x11,+++ , Xxas1 € A. 1If, in addition,

10 Geryn) = f ey —xif (o) = o f Gayie) — f () yie — xif (i) Il

d+1
<60y (Il - Iyl (6.97)

i=1
forall x\,-+- ,xx,y1,-++ ,Yx € A whenever the multiplication is defined, then there

exists a unique derivation § : A — A satisfying the following:

5 5 dar + d@ d »
_ — < E
i‘;}? 1 (f(x1) (1), f () )k = i‘;}? 7 —d £ [l

forall x,--- ,x; € A.

Remark 6.42. Letf : A — A be a mapping with f(0) = 0. Suppose that there exists

a function ¢ : AXTk — [0, 00) satisfying (6.68) and (6.89). If, in addition, there
exists a function ¥ : A%* — [0, co) such that

[(FCeryr) =fGDf )= f Gaye) —FO)f i) Ik
SYXLYL X YE)

(6.98)
and
lim iilf A2y (d"xy, d"yy, -+ d" X, d"ye) = 0 (6.99)
for all xy, -+, Xk, ¥1,--+ , ¥k € A whenever the multiplication is defined, then there
exists a unique derivation § : A — A such that
sup [(FCer) = 8(x1), -+ f Goe) — 8(a)) e
< iulf(z)(xl’xl"" s —dXy, e X, Xy e, —dXy) (6.100)
>
forall x1,--- ,x; € A.

Corollary 6.43. Let 0, p be nonnegative real numbers withp < 1 andf : A — A
be a mapping satisfying the following:
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H(if(x”) + if (rg+1), -+ ,Xd:f(xki) + uf(xde)) Hk

i=1

- H (mf(z’ | Xt +Mx1d+l)’“. ’mf(Z?zl)Cki + Mxkd+l))Hk

m m
k d+1

+6-D 3 (6.101)
=1 i=1

forall p € T and x11,-++ , xq11 € A. If, in addition,

0 Geryn) = fGeoyr —xif (o) = o f Gayie) — f () yie — xif () Il

d+1
<0 (bl + 1yl (6.102)
i=1
forall xi,-- X, y1,+++ , Yk € A whenever the multiplication is defined. Then there

exists a unique derivation § : A — A satisfying

Sup [ (r1) = 8(x1). -+ . fxe) = 5<xk)>||k<sup GZII x”
forall xy,--- ,x; € A.

Corollary 6.44. Let 0, p be nonnegative real numbers withp < l andf : A — A
be a mapping satisfying the following:

H ( Xd:f(xli) + wf(x1a1), -+ Xd:f(xki) + Mf(xkd+1)) Hk
i=1 i=1

- H (mf(z‘ | Xt +Mx1d+l)7”. ’mf(zlfl:lxki + Mxkd+l))Hk

m m
k d+1

+6-3 > il (6.103)

=1 i=1
forall p € TV and x11,-++ , x¢q11 € A. If, in addition,

(FCeryn) = FGe)yr = xaf o)+ f Cavi) — f o)y — xif ) e
d+1

<60 (sl - vl (6.104)

i=1
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forall x\,-+- ,xk,y1,-++ ,Yyx € A whenever the multiplication is defined, then there
exists a unique derivation § : A — A such that

k
d+d
sup |(fer) = 8(x1). -+ f (5x) = 8 e < sup 776 ; ]

forall xy,--- ,x; € A.

6.5 Stability of Homomorphisms and Derivations
in Multi-C*-Ternary Algebras

Using the fixed point method, we prove the Hyers-Ulam stability of homomor-
phisms and derivations on multi-C*-ternary algebras for the additive functional
equation:

P~ - d
2o (S5 + 2ow) = of) +2 3 f0).
j=1 j=1 J=1

6.5.1 Stability of Homomorphisms

Assume that A, B are C*-ternary algebras.
For any mapping f : A — B, we define

Cuf (X1, Xp, 1,0+, Ya)

D=1 1 2 - -
=2 (S ) = Yo uf) =2 ) pf o)
j=1 j=1 J=1

forallu e T':= {1 € C:|A| =1} and x;, - ,X,,y1, -+ ,Ya € A. One can easily
show that a mapping f : A — B satisfies

CMf(xla"' 7-xpay19“' ayd) = O

forall € T" and xy, -+, x,, y1,*+ ,ya € A if and only if

J(ux + Ay) = puf(x) + Af (y)

forall u,A € T' and x,y € A.
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Now, we introduce the following lemma for the main results in this section:

Lemma 6.45. Let {x,}, {y.} and {z,} be the convergent sequences in A. Then the
sequence {[x,, yn, 24|} is convergent in A

Proof. Let x,y,z € A be such that
lim x, =x, limy,=y, Ilimz, =z
n—>oo n—>oo

n—o0
Since
[xmyna Zn] - [x,y,z]
= [—xn —XYn — Y, Zns Z] + [—xnvyns Z] + [X,yn —y,Zn] + [xn,y,Zn _Z]

foralln > 1, we get

I1Bens Yns 2] = P ys 2l = lxew = x[Hlyn = Yllllze = 2l + [0 = x[ [y ][ l|z]
F el llyn = yllllzall + a1y Hlz0 = 21

for all » > 1 and so
lim [y, v, za] = [, y.2].
n—>oo

This completes the proof. |

Using Theorem 1.3, we prove the Hyers-Ulam stability of homomorphisms in
multi-C*~ternary algebras for the following functional equation:

C/Af(-xls"' 7-xm) = 0
Theorem 6.46. Let ((B*,|| - |lx) : k > 1) be a multi-C*-ternary algebra. Let

f 1 A — B be a mapping for which there exist the functions ¢ : APTD* — [0, c0)
and  : A% — [0, 00) such that

Lim y ™oy ey X, Y Y s
Y X Y X Y VL Y ka) = 0, (6.105)
H (C;Af(xn,"' VX1p, V11,
sy Cuf (ks X Vet e vykd)) Hk (6.106)

SO, X VUL s Vs Tt s Xkt Xy YhLs s Ykd) s
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| (£t = ). 700 f ).
P yio z]) — [f(xk),f(yk)’f(zk)]) Hk

E w(xlsylvzlv”' ,Xk,yk,Zk), (6107)
Tim Ty Y Yy Y Y e ") =0 (6.108)
and
Jim YWY XL Y YL 2 Y X Y Ve k) = 0 (6.109)
Jor all n € T! and x,--- s X1ps Y115 ° s Y1ds> " 5 Xkl " s Xkps Yk1s*** » Ykd»
XLt X V1 Yk 2l o2k € A, where y = X2 If there exists L < 1
such that
p+d p+d p+d
w(y-xls"' y VX1, VX2, 00 s VX2, Y XKyt s)’xk)
p+d p+d p+d
< VL(P(xh"' XL, X2, 0 Xyttt Xyt ,xk) (6.110)
for all x1,x3,--- ,x; € A, then there exists a unique multi-C*-ternary algebra

homomorphism H : A — B such that

(e = H@). - ) = Hew )|

p+d p+d p+d

1 e — e —
Xyttt s X1 X2yt 5, X0, 0 0 Xy ot s Xk

S AT 6.111)

forall xy,--- ,x; € A.

Proof. Let u = 1 andx; = y; = x; for 1 <i < kin (6.106). Then we have

| (Frw = e, w0 = vrew) |

1 p+d p+d p+d
SE(p(xl’...’xl’xz’...’xz’...’xk’...’xk) (6.112)
for all x;,---,x; € A. Consider the set E := {g : A — B} and introduce the

generalized metric on E as follows:
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d(g. ) = inf {C € Ry ¢ | (gr) = hen). -+ g = hiww) )|

p+d p+d p+d

e e e e e
S C(p('xl"" 7'xl7'x25"' 7'x25"' 7'xk5"' 7'xk)7 V'xl"" 7'xk EA}

which (E, d) is complete.
Now, we consider the linear mapping A : E — E such that

1
Ag(x) = —g(yx)
14
for all x € A. Now, we have
d(Ag, Ah) < Ld(g.h)

for all g,h € E. Let g,h € E and C € [0,00] be an arbitrary constant with
d(g,h) < C. From the definition of d, we have

p+d p+d
| () =)+ g = b)) | = Co(Fm TR S m)

for all x1, .-+, x; € A. By the assumption and the last inequality, we have
| (gt = anG). -+ . Agw) — anw) |

- % H (g(wn) —h(yx1), - . g(yx) — ”(V"k)) Hk

p+d p+d
C

;@(V—xlv”' s VX1t s YV Xy ot 7ka)

IA

p+d p+d
N e N
CL@ Xlstor s XLyt o e s Xy oot Xk

IA

forall x{,---,x; € A and so
(Are —foa)- Afe) =) |,

=| (if(m) —f ). %f(yxk) ~rw)|

%H (f()/xl) —vf@), e f () = Vf(xk)) Hk

p+d p+d
1 T —
_(p(xl’... S XL, Xk, ’xk)
2y

IA
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for all x1,---,x, € A. Hence d(Af,f) < % By Theorem 1.3, the sequence { A"f}
converges to a fixed point H of A, i.e., H : A — B is a mapping defined by

HG) = Jim (A°f)0) = fim (") (6.113)

and H(yx) = yH(x) for all x € A. Also, H is the unique fixed point of A in the set
E' ={ge€E:d(f,g) <oo}and

AH.f) = T2 =

i.e., the inequality (6.111) holds for all x,--- ,x; € A. Thus it follows from the
definition of H, (6.105) and (6.106) that

H(ZH( - e ZWU)—iuH(xu)—ZiuHm/),

J=1 J=1

R SO I S |

Jj=1 Jj=1

ZI')—l Xy -
=i . (2 ( n~=Jj= n )
Jim S =F—+v j;uyl,
p d
=Y ) =2 uf ().
j=1 j=1
n2§=1:“~xkj " !
: ,Zf()/ -5 +y Zﬂyk/‘)
=1
p d
=D WO ) =2 ) W) |
j=1 J=1
Snl_lwoy (Cpf(l/ X1 Y X VIV L Y Y1)

CCuf "kt Y X, VYR J/"ykd)) Hk

1
lim _(p(y X115 7anlp-ynyll7"' synyldv

n—>oQ y

IA

VXK Y X YV Y k) = 0
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1
for all w € T and X117, ,X1p, Vi1, 2 Vid> "+ > Xkls =" " s Xkps Yh1, - » Ykd € A.
Hence we have

ZH( / IMU Zp,ylj) Z,uH(xU)+ZZp,H(yU

j=1

1
forall w € T°, X101, - , X1, Y11, " s Y1d> "+ > Xkl " " » Xkps Vi1, * » Yka € A and
1 <i <kandso

H(Ax + py) = AH(x) + wH(y)
forall A, u € T! and x, y € A. Therefore, by Lemma 3.12, the mapping H : A — B

is C-linear.
On the other hand, it follows from (6.107) and (6.108) that

| (H (020 = ) HOw. H)),

(i zid) = [H ). HOo H) |

= lim 3
n—00 y n

(e v e y'ad) = [0 £ 0.0 |

(r (e v v'al) = [Foma) G S ).

< lim —Iﬁ(y XL Y'YL Yz Y X Y Y Y k)

n—>oo

=0
for all x1,y1,21, -+ , Xk, Y&» 2 € A. Thus we have

H([x.y.z]) = [H(x), H(y), H(2)]

forall x,y,z € A. Thus H : A — B is a homomorphism satisfying (6.111).

Now, let T : A — B be another multi-C*-ternary algebras homomorphism
satisfying (6.111). Since d(f,T) < m and T is C-linear, we get T € E’ and
(AT)(x) = %(Tyx) = T(x) forallx € A, i.e., T is a fixed point of A. Since H is the
unique fixed point of A € E’, we have H = T. This completes the proof. O
Theorem 6.47. Let ((BX,| - |lx) : k > 1) be a multi-C*-ternary algebra.

Letf : A — B be amapping for which there exist the functions ¢ : APTD* — [0, 00)
and  : A% — [0, 00) satisfying the inequalities (6.106) and (6.107) such that
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by X X
lim y”@(i,... ,i,)ﬂ’... ,yﬁ,... ’ﬁ’
n—>oo y" ]/" yn ]/" Vn
X
RSP ',yij)zo, (6.114)
14 14
im g (2L 2L x_ky_kz_k>_
Jim y w(yn,yn,yn, s e gn) =0 (6.115)
and
X X
lim yz”w(—l,y—l,zl,m ,—",&,zk) =0 (6.116)
n—o00 yVl yVl VVL yn
forall u € T and xyy, -+ s X1ps Y117t s V1ds * " 5 Xkl * 3 Xkps Y *** 5 Yid
X1yt Xk V10t 3 Vs 21500 2k € A, wherey = p—?d. If there exists L < 1 such
that
p+d p+d p+d
X1 X1 X2 X2 Xi Xi
(p(_s s T s T sttty T s T s_)
14 vV v 14 14 14
L p+d p+d p+d
S —(p(xl’... 'S TR o SR o AT ' SN ’xk) (6.117)
14

for all xi,x3,-++ ,xx € A, then there exists a unique multi-C*-ternary algebra
homomorphism H : A — B such that

FGx) —H@x), -, f () — H(xe)
k
. p+d ptd p+d )

S (1 —_L)zy(p(xl’ S X1, X2, XD, Xyttt Xk (6118)

forall xy,--- ,x; € A.

Proof. 1f we replace x; in (6.112) by %for 1 <i <k, then we have

d

(e =vr(5) s -vr(2)],
p+

p+d p+d

1 1 1 1 1 1 1
EEQD(_,... __...,_,...,_,...,_> (6.119)
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for all xi,---,x € A. Consider the set E := {g : A — B} and introduce the
generalized metric on E as follows:

dg.m) = inf{C e Ry : | (g0) = hlr). - g0 —h(x) |

p+d p+d p+d
———— ——— e N
< Cfp(xl,"' JX1, XD, e XD Xyt ,xk), Vxp, -, Xk GA},

which (E, d) is complete. Now, we consider the linear mapping A : E — E such
that

X
Ag(x) == ygl -
()
for all x € A. Now, we have
d(Ag, Ah) < Ld(g, h)

for all g,h € E. Let g,h € E and C € [0,00] be an arbitrary constant with
d(g,h) < C. From the definition of d, we have

p+d p+d

| (0 =)+ g = b)) | = Co(Fm TR S m)

for all x1, .-+, x; € A. By the assumption and the last inequality, we have
|(Age) = Aha), -+ Ag(w) — AhGw) I

6G)-1G)5G) -G

p+d p+d
—— ——
X1 X1 Xk Xk
< C)/QD(_,"' S e ,_)
Y Y Y
p+d p+d
—— ——
ECL(p(-xls"'7-xls"'7-xks"'7-xk)
forall x;,--- ,xx € A and so

d(Ag, Ah) < Ld(g, h)

forany g, h € E. It follows from (6.119) that d(Af,f) < % Therefore, according to

Theorem 1.3, the sequence { A"f} converges to a fixed point H of A,i.e., H:A — B
is a mapping defined by



290 6 Stability of Functional Equations in Multi-Banach Algebras

H(x) = lim (A"f)(x) = lim y"f(i) (6.120)
n—00 n—00 y"
forall x € A.
The rest of the proof is similar to the proof of Theorem 6.46 and so we omit it.
This completes the proof. |

Theorem 6.48. Let r and 0 be non-negative real numbers such that r ¢ [1, 3] and
(B5, || - k) : k = 1) be a multi-C*-ternary algebra. Let f : A — B be a mapping
such that

H(C;Jf(xll,”' S X1ps Y115 5 Vid)s

oo Cuf Qs =+ Xagps Vi1, ,ykd))Hk (6.121)

p d P d
< 0( D Il + 2 lvwlly + -+ D gl + - )
Jj=1 Jj=1 j=1 j=1

and
| (v 2D = ). £00). £,
e Qv D) = 00,00 S @) | (6.122)
< Ol - Iylla-llzalla 4+ - el - el - llzelly)
forall jp € T and x11,- -+, X1p Y112+ 2 Yids ="+ Xkls "+ Xeps Yk1+*** + Vids
X1yt s Xks V1o > Vks 21+ ** » 2k € A. Then there exists a unique C*-ternary algebra

homomorphism H : A — B such that

| (r) = ). ) = HE) |

- 2"(p+d)o
T 2(p+2d)" — (p + 2d)27|

(el + ==+ [l (6.123)

forall x,--- ,x; € A.

Proof. The proof follows from Theorem 6.46 by taking

QXL S Xy VUL s V1ds " Xkl Xips Yhls "+ Ykd)

P d p d
= 9( D o llly 4+ D il + o+ D glly + Y ||yk,-||;),
=1 =1 =1 =1
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Y (X1, V1,20, Xk, Vi 2k)
= Ol - vl - lzally + o 4 el - el - lzell})
forall 1 € T and Xy1, <+, Xip, Y11, V1ds ** » Xkls =" s Xkps VKl *** » Vids

Xlaoo Xk Y1 Vil .2k €A, L =2"""(p+2d)", when 0 < r < 1, and
L=2-2"""(p+2d)""!, when r > 3. This completes the proof. |

Theorem 6.49. Let ((B*,|| - |lx) : k > 1) be a multi-C*-ternary algebra. Let
f 1 A — B be a mapping for which there exist the functions ¢ : APTD* — [0, c0)
and y : A% — [0, 00) such that

lim d™"o(d"x11,- -+ ,d"xip, d"y11, -+, d"y1p,

n—>oo

,dn.Xkl,"' sdn-xkps"' 7dnykls"' ,dn)’kd) = Os (6124)

(Cuf 11, o X1p, Y11, L V1d)s
e aC[Lf(xkla”' 9-xkpaykla”' 7)’kd))||k (6.125)

SO, X VUL s Vs T s Xk Xy YhLs s Ykd) s

I (F(Bers yvi,z1]) = [FGeD). f (). f(z0)]s
co S Y zid) — [FO) s f ) f @)D Mk

S YY1, 20,0 s Xk Vi 2k)s (6.126)
lim d="Y(d"x1,d"y.d"z1, -+ d"xp, d"yi, d"z) = 0 (6.127)
n—>o0
and
lim d=2"y (d"xy, d"yi, 21, d"x, d"yg, zi) = 0 (6.128)

n—>o00

1
Jorall w € T  and x11,-++ , X1p, Y11, s V1ds "+ 2 Xk1s 2 Xkps Vkls *** » Vids

X1yttt X Y1 Ve 21ttt 5 2k € A, where 'y = P"_%. If there exists L < 1 such
that
p+d p+d p+d
(p(dxl,'-' Jdxy,dxa, - dxa, - dxg, - ,dxk) (6.129)
P d 4 d p d

—_—— e — —_——
EdL(p<07”' sOs-xls"' ,XI,O,"' 705x27”' s X2, 507”' sOs-xkv”' s-xk)
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forallxy,xy,--+ ,xx € A, then there exists a unique homomorphism H : A — B such
that

() — HQxr), -+ o f (o) — H(xe) [

p d P
1 —— ——
= =g (0 0 ETTR 0, (6.130)
d p d
e ——
X, X2, ,0,“',0,)6/(,"',)6/()
forall xy,--- ,x; € A.

Proof. Letu = landx; =0, y; =x;forl <i <kin(6.125). Then we get

[(F(dx1) = df (x1). -+ f(doxi) — df (i) [k (6.131)
1 p d p d p d
—_—~—— —— ——
< s0(0 0RO 0w 0 0 TR
for all xi,---,x € A. Consider the set E := {g : A — B} and introduce the

generalized metric on E as follows:

d(g.h)
=inf{C e Ry : (g(x1) —h(x1), -, 8(x) —h(x) [k, V1, . x € A}
P d P d P d
< C(p(O,--- 0.5 0, 0.0 0, om)

which (E, d) is complete.
Now, we consider the linear mapping A : E — E defined by

1
Ag(x) := —g(dy)
for all x € A. Now, we have
d(Ag, Ah) < Ld(g.h)

for all g,h € E. Let g,h € E and let C € [0, 00| be an arbitrary constant with
d(g,h) < C. From the definition of d, we have

(g (x1) — h(x1), -+, g(xi) — h(xi)) [l
p d p d
o — ——
< Cp(0- 05T Tm 0 05w
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for all x1, .-+, x; € A. By the assumption and the last inequality, we have

[(Ag(x1) — Ah(xy), -+, Ag(a) — Ah(x) |l

= Cllll(g(dm) — h(dxy), -~ . (8(dxi) — h(dxp) ||

p d p d
C N e N e N
EEw(os“'sovdxlv”'sdxlv”'507”'705dxk5"'7dxk)
P d 4 d
—— e — —_—— A~
ECL¢<05"'707-xls"'7-x17”'507”'705-xk7”'s-xk)
for all xy,--- ,x; € A. Thus we have

CAF ) =)+ Af) —Fel
= |Gt .+ )~ )|,

1
= EH(f(Xm) —df(x1), -+, f(dxx) — df () Ik
1 r—j‘\ _/\_d r—j‘\ _/\.d
ﬁﬁo(O, O X, oo xq, e, 0,000 0, g, 0 a-xk)

=

for all x1,--- ,x; € A. Hence d(Af,f) < %. By Theorem 1.3, the sequence { A"f}
converges to a fixed point H of A, i.e., H : A — B is a mapping defined by

HW = lim (A')0) = lim —f(d") (6.132)

and H(dx) = dH(x) for all x € A. Also, H is the unique fixed point of A in the set
E' ={ge€E:d(f,g) <oo}and

AH.f) = A0 = G

i.e., the inequality (6.130) holds for all x;, -+ ,x; € A. It follows from the definition
of H, (6.124) and (6.125) that

| (2H( 1“ & Zﬁ%) iuH(xu)—zqu(yu),

j=1 j=1

.. ,ZH(M + Xd: uyk/) - Xp: JH (x) =2 Xd: “H(y"f)) Hk
=1

j=1 J=1
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,,Z, 1 X n
= lim —H 2f d T-’_d Zﬂylj)

n—>oo

p d
=D (dxy) =2y uf(d'y),

j=1 Jj=1

n ZI'J=1 HX n 4
,2f(d ]T +d Zﬂykj)
=1

— Xp: wf(d"xig) — 2 Xd: “f(dnykj)) Hk
j=1 =

< lim —H (C,,f(d Xt d X, d My, 0, d Y1),

n—)OO

LCuf (@ - d X, Ay, ,d"ykd)) Hk

+ lim —Gﬂ(d xit, e, d"xp, d"yin, -+, d"Yha,
Vl—)OO

od"x, e d X, d Y, d Ykg) =0

1
for all w € T and xi1,-- ,X1p, Y11, 2 V1d> "+ > Xkl =" * s Xips Yh1,** » Ykd € A.
Hence we have

ZH( zl“u ZIWU) ZMH(xU)+ZXI:MH(YU
J=

1
for all € T, xi1, -, Xipa Y115 - 2 Vids " s Xkls "+ > Xkps Yhlo -+ + > Y € A and
1 <i<kandso

H(Ax + py) = AH(x) + wH(y)
forall A, u € T! and x, y € A. Therefore, by Lemma 3.12, the mapping H : A — B

is C-linear.
On the other hand, it follows from (6.126) and (6.127) that

(@1, 21]) = (HG) HO, ),

H(e i z) = [H ). HOO. H@) |
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= lim L Hf([d"xl, d"yy, dnzl])

n—>00 d3”

—|f@).fd).fda .
- ’f([d"xk, d"yi., d"Zk])
[ sy s,

1
< lim EW(d"xl,d"yl,d"zl,--- S x, d"ye, d" 7))

n—>oo

=0
for all x1,y1,21, -+ , X, Y. 2% € A. Thus

H([x.y.z]) = [H(x), H(y), H(2)]

for all x,y,z € A. Thus H : A — B is a multi-C*-ternary algebra homomorphism
satisfying (6.129).

Now, let T : A — B be another C*-ternary algebras homomorphism satis-
fying (6.130). Since d(f,T) < m and T is C-linear, we have T € E’ and

(AT)(x) = %(Tyx) = T(x) forallx € A, i.e., T is a fixed point of A. Since H is the
unique fixed point of A € E’, we have H = T. This completes the proof. O

Theorem 6.50. Let r, s, 6 be nonnegative real numbers such that 0 < r # 1,
0 < s # 3andletd > 2. Suppose that f : A — B is a mapping with f(0) = 0
satisfying (6.121) and

| (712D = 00 S G
o S (P s k) — [f(xk),f(Yk),f(Zk)]) Hk (6.133)
< 6l - Il - Nzl + - el - el - el )

forall u e T! and x;,- - S Xk V1t s Vks 21,0 5 2k € A. Then there exists a unique
C*—ternary algebra homomorphism H : A — B such that

(PG = H@). - f ) = HE)

l

d@ r r
= m(”xl o+ -+ ”-xKHA) (6.134)

forall xy, -+ ,xx € A
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Proof. Let0 <r < 1and0 < s < 3. Similarly, one can prove the theorem for other
cases. The proof follows from Theorem 6.49 by taking

QI X VUL 2 V1ds 2 Xk > Xkps VKL » Ykd)

P d p d
= (2 el + 2 vl -+ D Il + - vl )
Jj=1 Jj=1 j=1 j=1

VX1, 1,20, 00+ Xk, Vi 2k)
= Ol vl - Mzl o 4 el el - lzell)
forall o € T and Xi1, -+, Xips Yi1s " s Vids** > Xkls* "+ > Xkps VkIs *** » Vids X1,

Xk V1 Va2, .k €EAand L =d!, when0 < r < 1and 0 < s < 3 and
L=2—d"', whenr > 1ands > 3. This completes the proof. O

Now, assume that A is a unital multi-C*-ternary algebra with the norm || - || and
the unit e and B is a unital C*-ternary algebra with the norm || - || and the unit ¢’

We investigate homomorphisms in multi-C*-ternary algebras associated with the
following functional equation:

C)l.f(xlv"' ’xp7yl’... ,yd) = O
Theorem 6.51. Let r < 1, 0 be nonnegative real numbers and f : A — B be a
mapping satisfying (6.121) and (6.122). If there exist a real number A > 1 (resp.,
0 < A < 1) and an element xo € A such that lim,_ Ainf()k"xo) = ¢ (resp.,

lim,, 00 A'f(5%) = €'), then the mapping f : A — B is a multi-C*~ternary algebra
homomorphism.

Proof. By using the proof of Theorem 6.48, there exists a unique multi-C*-ternary
algebra homomorphism H : A — B satisfying (6.123). It follows from (6.123) that

A = lim 3or ) (s ) = i 27 ( 7))

forallx e Aand A > 1 (0 < A < 1). Therefore, by the assumption, we get that
H(xp) = €. Let A > 1 and lim,,— oo %f(k”xo) = ¢. It follows from (6.122) that

| (1) HOD. HED) = ) Hf @)
o H ). HOw). H(z0)) = [H ), HOWf @) |
= | (B 2] - (). HOD.SE))
o Hlxe v 3l = [H00), HOL/ @O |
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. 1
- nll>nolo A2n

o Ay ) = PO S @) |

m

= lim 2O Cxally - Dynlla - Nl + oo el el - Dzl

—>00

(f(WM, Ayrz]) = [F(A%x). f Ay f (D]

=0
forall x{,---,x; € A and so

[H(x), H(y). H(2)] = [H(x), H(y).f(2)]

for all x,y, z € A. Letting x = y = xp in the last equality, we get f(z) = H(z) for all
z € A. Similarly, one can show that H(x) = f(x) forallx € A when 0 < A < 1 and
lim,, 00 A"f(j—?,) =e.

Similarly, one can show the theorem for the case A > 1. Therefore, the mapping
f : A — B is a multi-C*-ternary algebra homomorphism. This completes the
proof. |

Remark 6.52. Let r > 1, 6 be nonnegative real numbers and f : A — B be a
mapping satisfying (6.121) and (6.122). If there exist a real number A > 1 (resp.,
0 < A < 1) and an element xy € A such that lim,— A—lnf(/\”xo) = ¢ (resp.,
lim, 0o A"f(5%) = €’), then the mapping f : A — B is a multi-C*-ternary algebra
homomorphism.

6.5.2 Stability of Derivations in Multi-C*-Ternary Algebras

Assume that A is a C*-ternary algebra with the norm || - ||.
Park [231] proved the Hyers-Ulam stability of derivations on C*-ternary algebras
for the following functional equation:

C/J,f(xlv"' ’xp’yl’... ’yd) :O

For any mappingf : A — A, let

Df(-xvyv Z) :f([-xvyv Z]) - [f(x)vyv Z] - [xsf(y)v Z] - [X,y,f(z)]
forall x,y,z € A.

Theorem 6.53. Let (A, || - |lx) : k € N) be a multi-C*-ternary algebra. Let
f 1 A — A be a mapping for which there exist the functions ¢ : APTD* — [0, 00)
and r : A% — [0, 00) satisfying the inequalities (6.105), (6.106) and (6.108) such
that
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H (Df(xl,yl, z1), -+ Df (e, i, Zk)) H

<YLY, 2000 Xk Vi Zk) (6.135)
forall € TV and xi1, -+, X1p, Y11, * s Vlds " > Xkls* " > Xkps Vil *** » Vids
X1t s Xk Y1, Vi 2l .2k € A, where y = P+2d If there exists L < 1
such that
p+d p+d p+d
(p(yxl’... S YXL, VX2, oYX, YK, ’)/xk)
p+d p+d p+d
S VLGD(XIH" s X1y X2yt s XDyt Xyttt s-xk) (6.136)
for all x1,x3,+++ ,x;x € A, then there exists a unique multi-C*-ternary derivation
8 : A — B such that
[ (re =80 p0 = s60)) |
1 p+d p+d p+d
5—90( 15 ',Xl,xz,"',xz,"',xk,---,xk) (6.137)
(1-1L)2y
forall xy,--- ,x; € A.

Proof. By the same reasoning as in the proof of Theorem 6.46, there exists a unique
C-linear mapping 6 : A — A satisfying (6.135). The mapping 6 : A — A is given by

@) = lim (AP = fim —fy") (6.138)

and §(yx) = yé(x) for all x € A. Also, H is the unique fixed point of A in the set
={geE:d(f,g) < oo}and

1
46.0) = A = T

i.e., the inequality (6.110) holds for all xq, - - - , x; € A. It follows from the definition
of 8, (6.105), (6.106) and (6.138) that

H (CMS(XU,"' ,xlp))11,"')’1d),"' ,Cufg(xkl,"' 7xkpyklv"'ykd)) Hk

= i _H<C/Af(l/ X1t Y X YL Y ya)s

n—o0 y
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s Cuf Y X Y X VI YR ,)’"ykd)) Hk

|
< Im —e(y"xin, - Y XY i L Y Y,
n—>oo )/

c VX Y X VIR Y Yka)

=0

1
for all w € T and xi1,-- ,X1p, Y11, " 2 V1d> """ > Xkl =" " » Xkps Vh1,** > Ykd € A.
Hence we have

D M l - -
28(—"2 +y Hyij) =D 1b0y) +2 3 pnd(yy)

j=1 J=1 Jj=1

1
forall w € T, X1, , X1, Y11, s Y1d> "+ > Xkl " » Xkps Vi1, * » Yka € A and
1 <i <kandso

S(Ax + py) = A8(x) + ud(y)
forall A, € T' and x,y € A. Therefore, by Lemma 3.12, the mapping § : A — B

is C-linear.
On the other hand, it follows from (6.108) and (6.135) that

H (Dg(xlvylszl)s"' vD(S(xks)’bZk)) Hk

H 1 n n n n n n
lim _Hf<Df(y XLV VLY Zl)v"' sf(y XV ViV Zk)) H

n—oc0 y3n
s 1 n n n n n n
< m —y(y e, Yy vz v G Ve v )
n—)OO)/
=0
forall x1,y1,21, -+ , Xk, Y. 2 € A and so

@(xr,y1,ziD)s -+ 8, yrs 2i]))
= ([§Ce1), v1)s @D] + [x1,8(v1), z1] + [x1,y1, 8(z0)], (6.139)
s [80), )y (@] + s 8Ovk)s 2] + s v 8(z)])

for all x, y, z € A and so the mapping § : A — A is a C*-ternary derivation. It follows
from (6.135) and (6.108) that
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| (821 = BC) 1 21) = b 80, 21] = ey f )l

e 8By 2] = 8003k, 7 = B 800 2 — ey @01 |

: 1 n n n n
= lim mH(f[)/ X1,Y yl,Zl] - [f()/ xl)v)/ )’1,21]

n—>oo )/

=[x f( "y, 2] =[x, vy f (@],
s S X Y Yk 2] — X)) Y Yk 2]

— V" "y, ad = [y x, Vnyk’f(Z")]) H

.1
< Hm —y (" Yy 2 v X ¥V e 2)
n—>o0 y

=0

for all x1, 1,21, , X, Yk, 2x € A and so

(8P, y.2]) = [6(x).y.2] + [x.8(»). 2] + [x.y.f(2)] (6.140)
for all x, y, z € A. Hence it follows from (6.139) and (6.140) that

[x.y.8(2)] = [x,y.f(2)] (6.141)
forall x,y,z € A. Letting x = y = f(z) — §(2) in (6.141), we have

IF@ @I = |[f0 - @./0 - 5@./@ - 6@ =0 ©142)

for all z;,--- ,z € A and hence f(z) = 8(z) for all z € A. Therefore, the mapping
f A — Ais amulti-C*~ternary derivation. This completes the proof. O

Corollary 6.54. Letr < 1, s < 2, 6 be non-negative real numbers andf : A — A
be a mapping satisfying (6.121) and

[ (Df(xl,yl, 21), -, Df (x, yx, Zk)) I
<Ol - Myl - Nzlly 4 == 4 el - el - Nzell)

for all x1,y1,21,*+ , Xk, Yk, 2k € A. Then the mapping f : A — A is a multi-C*-
ternary derivation.

Proof. Define

O, XDy YT 2 Vlds ot 2 XKL s Xkps VI * 5 Vkd)

P d p d
= 0( D" Il + D vl D Il + D vl )
j=1 j=1 j=1 j=1
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and
VX1, Y1, 21500+ 5 Xk Yis %)
= 00l Il a5+ el - el - el
for all X1, y1,21, s Xk Yo Zhs X115+ 5 X1ps Y115 "% 5 Vds """ s Xk1 "+ Xips

Vi1, ,Yka € A and applying Theorem 6.53. Then we get the desired result. [

Theorem 6.55. Let (A%, || - |lx) : k > 1) be a multi-C*-ternary algebra. Let
f 1 A — A be a mapping for which there exist the functions ¢ : APTD* — [0, c0)
and ¢ : A% — [0, 00) satisfying (6.106), (6.114), (6.115) and (6.135) for all

po€ T' and xi1,--+  Xipy Vil e o Yide ot Xkt Xkpa VKL o 2 Vkds X1a s+ 3 Xk,
Vi, s Vi 2, 2 €A, where y = "%Zd. If there exists L < 1 such that
pt+d p+d p+d
X1 X1 X X2 Xk Xk
(,0<—, s Ty T Ty Ty s T s_) (614‘3)
14 Vv 14 14 14
p+d pt+d pt+d
L —N— —— —_——
E_QD KXlstor s X5 X2y 00 s XDy 00y Xy o0, X (6‘144)
14
for all xi,x3,-++ ,xx € A, then there exists a unique multi-C*-ternary algebra

homomorphism § : A — A such that

1GFGer) = 8Cx1), =+, f o) — 8(x)) [l
ptd pt+d p+d

1 e — e —
Xlytot s X1, X2yt 3 X000 Xy ot s Xk

T (6.145)

forall xy,--- ,x; € A.

Proof. By the same reasoning as in the proof of Theorem 6.47, there exists a unique
C-linear mapping § : A — A satisfying (6.135). The rest of the proof is similar to
the proof of Theorem 6.53 and so we omit it. |



Chapter 7
Stability of Functional Equations
in Non-Archimedean Banach Algebras

In [203], Moslehian and Rassias proved the Hyers-Ulam stability of the Cauchy
and quadratic functional equations in non-Archimedean normed spaces. After their
results, some papers (see, for instance, [71, 83, 103]) on the stability of other
equations in such spaces have been published.

Next, Eshaghi-Gordji et al. and Cho et al. applied the direct method or the
fixed point method to prove the stability of some functional equations in non-
Archimedean Banach algebras. In this chapter, we study the directions mentioned
above and apply the fixed point method to show the Hyers-Ulam stability of some
wide classes of functional equations in non-Archimedean Banach algebras and non-
Archimedean C*-algebras.

In Sect.7.1, we extend the results presented in Chap.3 to the setting of non-
Archimedean C*-algebras.

In Sect.7.2, we extend the results presented in Chap.2 to the setting of non-
Archimedean C*-algebras. In fact, by using the fixed point method, we prove
the Hyers-Ulam stability of homomorphisms and derivations on non-Archimedean
C*-algebras and non-Archimedean Lie C*-algebras for the following additive
functional equation:

m m m m
Zf(mx,-—i— Z xj) —|—f( x,-):2f<me,-)
i=1 j=1,j#i i=1 i=1
foreach m > 2.
© Springer International Publishing Switzerland 2015 303
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7.1 Stability of Jensen Type Functional Equations:
The Fixed Point Approach

Using the fixed point method, we prove the Hyers-Ulam stability of homomor-
phisms in non-Archimedean C*-algebras and non-Archimedean Lie C*-algebras
and derivations on non-Archimedean C*-algebras and non-Archimedean Lie C*-
algebras for the following Jensen type functional equation:

1(52) +1(52) =re.

7.1.1 Stability of Homomorphisms in Non-Archimedean
C*-Algebras

Throughout this section, assume that A is a non-Archimedean C*-algebra with the
norm | - ||4 and B is a non-Archimedean C*-algebra with the norm || - ||5.
For any mapping f : A — B, we define

D,f(x,y) == Mf(%) + Mf()%) —f(px) (7.1

forallp e T':={v e C:|v|=1}andx,y € A.
Now, we prove the Hyers-Ulam stability of homomorphisms in non-
Archimedean C*-algebras for the functional equation D, f(x,y) = 0.

Theorem 7.1. Let f : A — B be a mapping for which there exist the functions
.Y :A?> — [0,00) and n : A — [0, 00) such that

ID.f(x, vl < @(x,y), (7.2)
If (xy) = ff DB < ¥(x,y) (7.3)

and
If (™) —f)* NIz < n(x) (7.4)

forall p € T' and x,y € A. If there exists L < 1 such that |2| < 1 and

©(2x,2y) < [2|Lop(x,y), (7.5)
¥ (2x,2y) < |4|LyY (x,y) (7.6)

and

1(2x) < |2|Ln(x) (1.7)
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forall x,y € A, then there exists a unique non-Archimedean C*-algebra homomor-
phism H : A — B such that

L
Fe) —H s = 1—7 ¢ 0) (7.8)
forall x € A.

Proof. 1t follows from (7.5), (7.6), (7.7) and L < 1 that

1
lim —@(2"x,2"%) = 0, (7.9)

n—00 |2|"

1
lim —— ¥ (2"x,2"y) = 0 (7.10)

n—>o00 |2|2n

and

1
lim —n(2"x) = 0 (7.11)

n—00 IZI”

for all x,y € A. Consider the set X := {g : A — B} and introduce the generalized
metric on X as follows:

d(g.h) = inf{C € Ry : [[g(x) — h(x)[ls < Cp(x.0). Vx € A},

which (X, d) is complete.
Now, we consider the linear mapping J : X — X defined by

1
Je(x) = —8(2%)
for all x € A. Now, we have
d(Jg,Jh) < Ld(g.h)

forall g, h € X. Letting u = 1 and y = 0 in (7.2), we have

2(2) -r@| < ex0) (7.12)
2 B

for all x € A and so

o - 30, = pe@r0 < Lot0

for all x € A. Hence d(f,Jf) < L. By Theorem 1.3, there exists a mapping
H : A — B such that
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(1) H is afixed pointof J, i.e.,

H(2x) = 2H(x)

for all x € A. The mapping H is a unique fixed point of J in the set

={geX:d{f, g < oo}

(7.13)

This implies that H is a unique mapping satisfying (7.13) such that there exists

C € (0, 00) such that

[H(x) —f(0)]s = Co(x.0)

forallx € A;
(2) d(J'f,H) — 0 as n — oo. This implies the equality
2)1
im L2 _ po
n—oo 2N
forallx € A;

3) d(f,H) < 1%Ld(f ,Jf), which implies the inequality

L
d(f, H) < ——.
G =777

This implies that the inequality (7.8) holds.
It follows from (7.5) and (7.14) that

HH(X +y) +H (-

zy) _H(X)H

—Ilf(Z” Ha+ )+ =) =20l

oo [2|
< hm W(p(Z"x, 2"y)
=0

for all x,y € A. Then we have

() (75 =

forall x,y € A. Letting z = ’% andw = ? in (7.15), we have

H(z)+ Hw) =H(z+w)

(7.14)

(7.15)
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for all z, w € A and so the mapping H : A — B is Cauchy additive, i.e.,
H(z+w)=H(z) + Hw)
forall z,w € A. Letting y = x in (7.2), we get
wf(x) = f (ux)
for all £ € T! and all x € A. By the similar method as in above, we have
pH(x) = H(px)

forall € T!' and x € A. Thus one can show that the mapping H : A — B is
C-linear. It follows from (7.6) that

1
IH(xy) = HR)H) s = lim

=0 J4]"

If (4"xy) = fQR"0)f 2"y) 8

1
< lim —y¥(2"x,2"y)
n—o0o |4|”
=0
for all x,y € A and so

H(xy) = H(x)H(y)

for all x,y € A. It follows from (7.7) that

. 1
lim
n—00 |2|"

IH (x*) — H(x)" |5 lF2"x%) = £ 2" "I

1
lim —n(2"x)

n—00 |2|”

=0

IA

for all x € A and so
H(x*) = H(x)*

for all x € A. Thus H : A — B is a non-Archimedean C*-algebra homomorphism
satisfying (7.8). This completes the proof. |
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Corollary 7.2. Let r < 1, 0 be nonnegative real numbers and f : A — B be a
mapping such that

I1Duf e, W) s < O(lxll + I1yl2)s (7.16)
If () —ff W s < OCxll + Iylla) (7.17)

and
If (™) —f )"z < Ol (7.18)

forall w € T' and x,y € A. Then there exists a unique non-Archimedean C*-
algebra homomorphism H : A — B such that

21”6

If () —HX) s = mllelZ (7.19)

forall x € A.
Proof. The proof follows from Theorem 7.1 by taking

px.y) =¥y = 0(|xlly + lIyla).
n(x) := 0(|lxl»)

forallx,y € Aand L = |2|~L. O

Theorem 7.3. Let f : A — B be a mapping for which there exist the functions
0,V A2 = [0,00) and n : A — [0, 00) satisfying (7.2), (7.3) and (7.4). If there
exists L < 1 such that |2| < 1 and

12]¢ (% %) < Lo(x.y), (7.20)
4]y (% %) <Ly (x,y) (7.21)

and
[2[n (%) < Ln(x) (7.22)

forall x,y € A, then there exists a unique non-Archimedean C*-algebra homomor-
phism H : A — B such that

L
If(x) —Hx)||s < mw(x, 0) (7.23)

forall x € A.
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Proof. Tt follows from (7.20), (7.21), (7.22) and L < 1 that

Xy
hrn |2]" go(— i) =0,
: 2y (X y)_
nl_lllolo|2| w(Zn’Zn =0

and

lim 20 (=) =0
Jim 121 (5;) =

for all x,y € A. We consider the linear mapping J : X — X defined by

Jg(x) := 2g(§)

for all x € A. It follows from (7.12) that

eo-3(3)], 20(3) = bt

L
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for all x € A. Hence d(f,Jf) < - By Theorem 1.3, there exists a mapping

H : A — B such that
(1) H is afixed point of J, i.e.,

H(2x) = 2H(x)

for all x € A. The mapping H is a unique fixed point of J in the set

={geX:d{f, g < oo}

(7.24)

This implies that H is a unique mapping satisfying (7.24) such that there exists

C € (0, 00) such that

[1H(x) —f@)]z < Co(x,0)

forallx € A;
(2) d(J'f,H) — 0 as n — oo. This implies the equality

i, () = He

forallx € A;
3) d(f,H) < 1%Ld(f ,Jf), which implies the inequality
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L
d(f" H) 5 TAT AT
12| - |2IL
which implies that the inequality (7.23) holds.

The rest of the proof is similar to the proof of Theorem 7.1. This completes the
proof. |

Corollary 7.4. Let r > 2, 6 be nonnegative real numbers and f : A — B be
a mapping satisfying (7.16), (7.17) and (7.18). Then there exists a unique non-
Archimedean C*-algebra homomorphism H : A — B such that

0 r
If () —HX) s = mllelA (7.25)

forall x € A.
Proof. The proof follows from Theorem 7.3 by taking

¢(x,y) = ¥ xy) = 0(Ixlly + Iy, 1) = Ollx[l}

forallx,y € Aand L = |2]'". O

Theorem 7.5. Letf : A — B be an odd mapping for which there exist the functions
0, : A2 — [0,00) and 1 : A — [0, 00) satisfying (7.2), (7.3) and (7.4). If there
exists L < 1 such that

oe.30) < 2lp (3. )

for all x € A and (7.5), (7.6) and (7.7) hold then there exists a unique non-
Archimedean C*-algebra homomorphism H : A — B such that

1) — Hlls < mw(x, 3) (7.26)

forall x € A.

Proof. Consider the set X := {g : A — B} and introduce the generalized metric on
X as follows:

d(g.h) = inf{C € Ry : [[g(x) = h(¥)[|]s = Co(x,3x), Vx € A,

which (X,d) is complete. Now, we consider the linear mapping J:X — X
defined by

1
Jg(x) := Eg(2X)
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for all x € A. Now, we have

d(Jg.Jh) < Ld(g.h)
forall g, h € X. Letting © = 1 and replacing y by 3x in (7.2), we have

IF (2x) = 2f (D) [ls < @ (x. 3x) (7.27)

for all x € A and so

10 = 5rC0], = o3

for all x € A. Hence d(f,Jf) < o By Theorem 1.3, there exists a mapping
H : A — B such that

(1) H is afixed point of J, i.e.,
H(2x) = 2H(x) (7.28)
for all x € A. The mapping H is a unique fixed point of J in the set
Y={geX:d(f,g) < oo}

This implies that H is a unique mapping satisfying (7.28) such that there exists
C € (0, 00) such that

[H(x) = f(0)|ls < Co(x,3x)
forallx € A;

(2) d(J"f,H) — 0 as n — oo. This implies the equality

lim

n—>o0

129 _ ey

forallx € A;

3) d(f,.H) < ﬁd(f ,Jf), which implies the inequality

1
12[ = [2|L

This implies that the inequality (7.26) holds.

The rest of the proof is similar to the proof of Theorem 7.1. This completes the
proof. O
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Corollary 7.6. Letr < %, 0 be nonnegative real numbers andf : A — B be an odd
mapping such that

IDuf Ce, s < 0« lxll3 - 11yll4 (7.29)
If Cey) = ff DB < 6 - llxlly - Iyl (7.30)

and
lF ™) =) s < Oy (7.31)

for all w € T' and x,y € A. Then there exists a unique non-Archimedean
C*-algebra homomorphism H : A — B such that

370
1 (x) = H@) Iz < Wllxlli’ (7.32)

forall x € A.
Proof. The proof follows from Theorem 7.5 by taking

pOy) =Y xy) =0 fxly - lIyla, 0 =6 - lxll}

forallx,y € Aand L = |2|>~". O

Theorem 7.7. Letf : A — B be an odd mapping for which there exist the functions
0,V A2 = [0,00) and n : A — [0, 00) satisfying (7.2), (7.3), and (7.4). If there
exists L < 1 such that

1
o(x,3x) < ngo(Zx, 6x)

for all x € A, and also (7.20), (7.21) and (7.22) hold, then there exists a unique

non-Archimedean C*-algebra homomorphism H : A — B such that

1) — Hlls < mw(x, 3) (7.33)

forall x € A.
Proof. We consider the linear mapping J : X — X defined by

Jglx) := Zg(g)

for all x € A. It follows from (7.27) that

o -S| <22 < Loan
21=%\22) =]
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for all x € A. Hence d(f,Jf) < % By Theorem 1.3, there exists a mapping
H : A — B such that

(1) H is afixed point of J, i.e.,
H(2x) = 2H(x) (7.34)
for all x € A. The mapping H is a unique fixed point of J in the set
Y={geX:d(f,g) < oo}

This implies that H is a unique mapping satisfying (7.34) such that there exists
C € (0, 00) such that

[1H(x) —f()lls = Co(x, 3x)
forallx € A;
(2) d(J'f,H) — 0 as n — oo. This implies the equality
. n i _
nl_ll&zf(zn) =H®

forallx € A;
(3) d(f.H) < —d(f.Jf), which implies the inequality

— 1-L

L
2-2L’

d(f,H) <

which implies that the inequality (7.33) holds.
The rest of the proof is similar to the proof of Theorem 7.1. O

Corollary 7.8. Let r > 1, 6 be nonnegative real numbers and f : A — B be an
odd mapping satisfying (7.29), (7.30) and (7.31). Then there exists a unique non-
Archimedean C*-algebra homomorphism H : A — B such that

If () —H@) [z < el1 (7.35)

0
27— 12
forall x € A.

Proof. The proof follows from Theorem 7.7 by taking
p(y) =¥ xy) =0 fxly - lIyla, 0 =6 - |lxl}

forall x,y € Aand L = |2|'7%". O
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7.1.2  Stability of Derivations in Non-Archimedean
C*-Algebras

Assume that A is a non-Archimedean C*-algebra with the norm || - | 4.
Now, we prove the Hyers-Ulam stability of derivations in non-Archimedean C*-
algebras for the functional equation D,f (x,y) = 0.

Theorem 7.9. Let f : A — A be a mapping for which there exist the functions
@,V 1 A2 = [0, 00) such that

I1DufGe, )4 < (x,y) (7.36)

and

If (ey) =f @)y = W la = ¥ (x.y) (7.37)
forall w € T and all x,y € A. If there exists L < 1 such that
X
p(x,0) < |2|L<p(§,0)

for all x € A, (7.5) and (7.6) hold. Then there exists a unique non-Archimedean
derivation § : A — A such that

L
) =6l < 7= 9(.0) (7.38)
forall x € A.

Proof. By the same reasoning as in the proof of Theorem 7.1, there exists a unique
involution C-linear mapping § : A — A satisfying (7.38). Also, the mapping
8 : A — Ais given by

f(@2"x)
o

8(x) = lim
n—>oo
for all x € A. It follows from (7.37) that
6(xy) = 8(x)y —x8(y) |4
3 1 n n n n n
= lim ——||f(4"xy) —f(2"x) - 2"y — 2"xf (2"y) |

w250 T4]"

1
< lim
oo [A]"

=0

¥(2'x,2"y)

for all x,y € A. Then we have

§(xy) = 8(x)y + x8(y)

forall x,y € A. Thus § : A — A is a derivation satisfying (7.38). This completes the
proof. O
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Corollary 7.10. Let r < 1, 6 be nonnegative real numbers andf : A — A be a
mapping such that

IDuf Ge ) lla =< OClxly + [1ylI2) (7.39)

and

If Cey) =f )y = W la = OClxly + lIvll2) (7.40)

forall i € T and x,y € A. Then there exists a unique derivation § : A — A such
that

170 =801 = 520l (.41

forall x € A.
Proof. The proof follows from Theorem 7.9 by taking

p(x.y) = Y(x.y) = Olxlly + [Iyll})

forallx,y € Aand L = |2~ O

Remark 7.11. Letf : A — A be a mapping for which there exist the functions
@, : A% — [0, 00) satisfying (7.36) and (7.37). If there exists L < 1 such that

&msﬁwmm

forall x € A, (7.20) and (7.21) hold, then there exists a unique derivation § : A — A
such that

L
If(x) =8 ||la < m¢(xa 0) (7.42)

forall x € A.

Corollary 7.12. Let r > 2, 6 be nonnegative real numbers and f : A — A
be a mapping satisfying (7.39) and (7.40). Then there exists a unique derivation
8 : A — A such that

If(x) = 8()lla < |2|, 2 ||I I (7.43)

forall x € A.
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Proof. The proof follows from Remark 7.11 by taking

p(x.y) = ¥x.y) == 0(xl3 + IlyIl})

forallx,y € Aand L = |2|'™". O

Remark 7.13. For the inequalities controlled by the product of powers of norms,
one can obtain similar results to Theorems 7.5, 7.7 and Corollaries 7.6, 7.8.

7.1.3 Stability of Homomorphisms in Non-Archimedean
Lie C*-Algebras
A non-Archimedean C*-algebra C endowed with the Lie product

XYy —yx
2

[x,y] :==

on C is called a non-Archimedean Lie C*-algebra (see [224, 225, 227]).

Definition 7.14. Let A and B be non-Archimedean Lie C*-algebras. A C-linear
mapping H : A — B is called a non-Archimedean Lie C*-algebra homomorphism if

H([x.y]) = [H(x). H(y)]

for all x,y € A.

Throughout this section, assume that A is a non-Archimedean Lie C*-algebra
with the norm || - |4 and B is a non-Archimedean Lie C*-algebra with the norm

Il s
Now, we prove the Hyers-Ulam stability of homomorphisms in non-

Archimedean Lie C*-algebras for the functional equation D, f(x,y) = 0.

Theorem 7.15. Letf : A — B be a mapping for which there are functions
@,V 1 A2 = [0, 00) satisfying (7.2) such that

If (e, D) = F). Dl = ¥ (x.y) (7.44)
forall x,y € A. If there exists L < 1 such that
0(x.0) < 2ILg (5.0)

for all x € A, and also (7.5) and (7.6) hold, then there exists a unique non-
Archimedean Lie C*-algebra homomorphism H : A — B satisfying (7.8).
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Proof. By the same reasoning as in the proof of Theorem 7.1, there exists a unique
C-linear mapping H : A — B satisfying (7.8). Also, the mapping H : A — B is
given by

H(x) = tim 122

n—oo 2N

for all x € A. It follows from (7.44) that

1H ([x. y]) — [H(x). H)] 5

1
= lim Wllf@" [e.yD) = [F(2"%)./2"V)]ll8

1
< lim — ¢ (2"x,2"y)
n—o00 |4|”
=0

for all x,y € A. Then we have

H([x.y]) = [H(x). H(y)]

for all x,y € A. Thus H : A — B is a non-Archimedean Lie C*-algebra
homomorphism satisfying (7.8). This completes the proof. |

Corollary 7.16. Let r < 1, 0 be nonnegative real numbers and f : A — B be a
mapping satisfying (7.16) such that

I (B yD) = @Ol =< OClxlla + 11y I12) (7.45)

for all x,y € A. Then there exists a unique non-Archimedean Lie C*-algebra
homomorphism H : A — B satisfying (7.19).

Proof. The proof follows from Theorem 7.15 by taking

p(x.y) = ¥(x.y) = Olxlly + [Iyll})

forallx,y € Aand L = |2|"~L. O

Remark 7.17. Letf : A — B be a mapping for which there exist the functions
. 1 A> — [0,00) and 1 : A — [0, 0o) satisfying (7.2), (7.5), (7.6) and (7.44). If
there exists L < 1 such that

1
o(x,0) < ngo(Zx, 0)

for all x € A, then there exists a unique non-Archimedean Lie C*-algebra
homomorphism H : A — B satisfying (7.23).
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Corollary 7.18. Let r > 2, 0 be nonnegative real numbers and f : A — B be a
mapping satisfying (7.16) and (7.45). Then there exists a unique non-Archimedean
Lie C*-algebra homomorphism H : A — B satisfying (7.25).

Proof. The proof follows from Remark 7.17 by taking
p(x.y) = ¥(x.y) = O(lxlly + lIyll})

forallx,y € Aand L = |2|'7". O

Remark 7.19. For the inequalities controlled by the product of powers of norms,
one can obtain similar results to Theorems 7.5, 7.7 and their corollaries.

7.1.4  Stability of Non-Archimedean Lie Derivations
in C*-Algebras

First, we give the following definition on the non-Archimedean Lie derivation in a
non-Archimedean Lie C*-algebra.

Definition 7.20. Let A be a non-Archimedean Lie C*-algebra. A C-linear mapping
8 : A — A s called a non-Archimedean Lie derivation if

§(fx.y) = [8(x), y] + [x. 8(y)]

forall x,y € A.

Assume that A is a non-Archimedean Lie C*-algebra with the norm || - |4.
Now, we prove the Hyers-Ulam stability of non-Archimedean Lie derivations on
non-Archimedean Lie C*-algebras for the functional equation

D,f(x,y) = 0.

Theorem 7.21. Let f : A — A be a mapping for which there exists a function
@,V 1 A2 = [0, 00) satisfying (1.5), (1.6) and (7.36) such that

I (b yD) = [F). 3] = [ f D]l = ¥ (x.y) (7.46)
forall x,y € A. If there exists L < 1 such that
0(x.0) < 2ILg 5.0)

for all x € A. Then there exists a unique non-Archimedean Lie derivation § : A — A
satisfying (7.38).
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Proof. By the same reasoning as in the proof of Theorem 7.1, there exists a unique
involution C-linear mapping § : A — A satisfying (7.38). Also, the mapping
8 :A — Ais given by

500 — tim 7O

n—oo 2N

for all x € A. It follows from (7.44) that

16(Ee. ) = [8(x). ] = [x. ()] la

Wllf(4”[x D = IF2%), 2% = [2"x.f 2 )] |4

< lim —¢(2”x, 2"y)
n—o00 |4|”

=0
for all x,y € A. Then we have

8([x, y]) = [6(x), y] + [x.6(»)]
for all x,y € A. Thus § : A — A is a non-Archimedean Lie derivation
satisfying (7.38). This completes the proof. |
Corollary 7.22. Let r < 1, 0 be nonnegative real numbers and f : A — A be a

mapping satisfying (7.39) such that

I (Be yD) = [F). 3] = e f D)l < OClIxlly + lIvll2) (7.47)

for all x,y € A. Then there exists a unique non-Archimedean Lie derivation
8 1 A — A satisfying (7.41).

Proof. The proof follows from Theorem 7.15 by taking

¢ y) = ¥y) = 0(lxly + lIylh), @) = Ollx[}

forallx,y € Aand L = |2| L. O

Remark 7.23. Let f : A — A be a mapping for which there exist functions
0. : A2 — [0,00) and n : A — [0, 00) satisfying (7.20), (7.21), (7.22), (7.36)
and (7.46). If there exists L < 1 such that

wm<ﬁwmm

for all x € A, then there exists a unique non-Archimedean Lie derivation§ : A — A
satisfying (7.42).
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Corollary 7.24. Let r > 2, 0 be nonnegative real numbers and f : A — A be a
mapping satisfying (7.39) and (7.47). Then there exists a unique non-Archimedean
Lie derivation § : A — A satisfying (7.43).

Proof. The proof follows from Remark 7.23 by taking
p(xy) = ¥ (xy) = Olxlly + [Iyll})

forallx,y € Aand L = |2|'™". O

Remark 7.25. For the inequalities controlled by the product of powers of norms,
one can obtain similar results to Theorems 7.5, 7.7 and their corollaries.

7.2 Stability for m-Variable Additive Functional Equations

Using the fixed point method, we prove the Hyers-Ulam stability of homomor-
phisms and derivations on non-Archimedean C*-algebras and non-Archimedean Lie
C*-algebras for the following additive functional equation:

igm;f (i + Xm: %) +£( Xm:xt') =2f (gm;mx) (7.48)

J=Lj# i=1

for each m > 2. For any mapping f : A — B, we define

Duf (X1, Xm)
= iuf(mm f ) +(n 3 xi)—zf(ufmxi)
i=1 j=1,ji i=1 i=1

forallp e T':={veC:|v|=1}andxy, -, x, € A.

7.2.1 Stability of Homomorphisms and Derivations
in Non-Archimedean C*-Algebras

Now, we prove the Hyers—Ulam stability of homomorphisms in non-Archimedean
C*-algebras for the functional equation D f (x1, -+ , x,) = 0.

Theorem 7.26. Let f : A — B be a mapping for which there exist the functions
@A™ — [0,00), ¥ : A2 — [0,00) and n : A — [0, 00) such that |m| < 1 is far
from zero and

”D/Lf(xls"' v-xm)”B = (p(-xls"' v-xm)s (749)
If (xy) =ffF O)lls < ¥ (x.y) (7.50)
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and

IF&™) =f ) lls < n(x) (7.51)
forallpp € T  and x1, -+ , %, x,y € A. If there exists L < 1 such that

o(mxy, -+ ,mxy) < |m|Lo(x1,-+ ,Xn), (7.52)
¥ (mx.my) < [mPPL (x.y) (7.53)

and
n(mx) < |m|Ln(x) (7.54)
forall x,y,x,--+ ,x, € A, then there exists a unique non-Archimedean C*-algebra

homomorphism H : A — B such that

1
If (x) —HX)|s = |m—L§0(x,0w“ .0) (7.55)

| = |m|
forall x € A.

Proof. 1t follows from (7.52), (7.53), (7.54) and L < 1 that

1
lim ——@@m"xy,--- ,m"x,) =0, (7.56)

n—00 |m|"

1
lim ——— ¢ (m"x,m"y) =0 (7.57)

n—>00 |m|2"

and

1
lim —— p(m"x) = 0 (7.58)

n—00 |m|"

for all x,y,x1,-- ,x, € A. Let us define §2 to be the set of all mappings g : A — B
and introduce a generalized metric on §2 as follows:

d(g, h) (7.59)
= inf{k € (0,00) : ||g(x) — h(x)|lp < k¢p(x,0,---,0), Vx € A},
which (£2, d) is a generalized complete metric space. Now, we consider the function
J 1 2 — 2 defined by Jg(x) = #g(mx) for all x € A and g € £2. Note that, for all
g, hes,

d(g,h) <k = |lg(x) —h(x)|s < kp(x,0,---,0)
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— H%g(mx) — %h(mx) HB < %q&(mx,o,... ,0)

1 1
- H—g(mx) — —h(mx) H < kL¢(mx,0,---,0)
m m B
= d(Jg,Jh) < kL. (7.60)
From this, it is easy to see that
d(Jg.Jk) < Ld(g.h)

for all g,h € 2, that is, J is a self-function of §2 with the Lipschitz constant L.
Putting u = 1, x =x;and x, = x3 = -+ = x,, = 01in (7.49) we have

If (mx) —mf () ||z < ¢(x,0,---,0) (7.61)

forall x € A. Then
lr9 = —romo)|, = 00 (7.62)
for all x € A, that is,

d(f.f) < 1w
|m|

Now, from the fixed point method, it follows that there exists a fixed point H of
J in £2 such that

H(x) = nILIgO %f(m"x) (7.63)

for all x € A since lim,,— oo d(J"f, H) = 0.
On the other hand, it follows from (7.49), (7.56) and (7.63) that

: 1 n n
1D HG %)l = Tim (—,,Df(m st )|
n—oo |l m B
1
< lim —¢(m X1, , M Xy) (7.64)
=0.

By the similar method as in above, we have

WH(mx) = H(mux)
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for all © € T! and x € A. Thus one can show that the mapping H : A — B is
C-linear. It follows from (7.50), (7.57) and (7.63) that

[IH (xy) — H(X)H(Y)IIB

If (m*"xy) — (") (m"y) |15

= lim

n—>00 | |2
< lim Y (m"x, m"y)
n—>00 |m|2
=0 (7.65)

for all x,y € A and so H(xy) = H(x)H(y) forall x,y € A. Thus H : A — Bisa
homomorphism satisfying (7.55).

Also, by (7.51), (7.58), (7.63) and the similar method, we have H(x*) = H(x)*.
This completes the proof. O

Corollary 7.27. Let r > 1, 0 be nonnegative real numbers and f : A — B be a
mapping such that

IDWf(xers - s xm) s < 0 - (il + lally + -+ + [l

If (cy) = ffDs <6 (lxlly - 11yll’4) (7.66)
and
™) =f)* s < 6 - I}

forall u € T andxy,--- , X, X, y € A. Then there exists a unique non-Archimedean
C*-algebra homomorphism H : A — B such that

Ilf () — H(X)IIB_| = | |,II I (7.67)

forall x € A.
Proof. The proof follows from Theorem 7.26 by taking

@, xm) o= 0 (s + beally + -+ lxnll),

Y y) =0 (Ilxlly - Iylla).
n(x) =0 - xIl3 (7.68)

forall x;,--+ , X, x,y € Aand L = |m|"~". O
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Now, we prove the Hyers-Ulam stability of derivations on non-Archimedean
C*-algebras for the functional equation

DMf(-xls"' 7-xm) =0.
Remark 7.28. Letf : A — A be a mapping for which there exist the functions

@ A" — [0,00), ¥ : A2 — [0,00) and  : A — [0, 00) such that |m| < 1 is far
from zero and

IDuf ety xm)lla < @(xr, =+, Xm),

If Cey) = f )y —xfW)lla < ¥(x,y) (7.69)

and

IF&™) =f D) a = n(x)

forall u € T! and x,, - - - s Xm, X,y € A. If there exists L < 1 such that (7.52), (7.53)
and (7.54) hold, then there exists a unique non-Archimedean C*-algebra derivation
8 : A — A such that

() — (o) lla < mm, 0. .0)

for all x € A.

7.2.2 Stability of Homomorphisms and Derivations
in Non-Archimedean Lie C*-Algebras

Now, we prove the Hyers-Ulam stability of homomorphisms in non-Archimedean
Lie C*-algebras for the functional equation D,,f (x1, -+ , x,) = 0.

Theorem 7.29. Let f : A — B be a mapping for which there exist the functions
@ 1 A" — [0, 00) and ¥ : A2 — [0, 00) such that (7.49) and (7.51) hold and

I (e yD) = F@). Dl < ¥ (x.y) (7.70)

forall w € T and x,y € A. If there exists L < 1 and (7.52) and (7.53) hold, then
there exists a unique non-Archimedean Lie C*-algebra homomorphism H : A — B

such that (7.55) hold.
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Proof. By the same reasoning as in the proof of Theorem 7.26, we can find the
mapping H : A — B given by

J(m"x)

H(x) = lim = (7.71)
for all x € A. Tt follows from (7.53) and (7.71) that
14 ([x, y]) — [H(X) H)llls
= lim |m|2 £ e, ¥]) — [ ("), £ On" )]s
< lim |m|2 ¥ (", m'"y) (1.72)
=0
forall x,y € A and so
H([x,y]) = [H(x), H(y)] (7.73)

for all x,y € A. Thus H : A — B is a non-Archimedean Lie C*-algebra
homomorphism satisfying (7.55). This completes the proof. |

Corollary 7.30. Let r > 1, 8 be nonnegative real numbers and f : A — B be a
mapping such that

IDufGer, e+ cxa)llp < Ol lly + x2lly + -+ + [l

I (e yD) = [F). SOl < 0 - [lxll - 1y Il (7.74)
and
FG™) —f) s < 6 - [xIl
forall u € T  and xy,- -+ , X, X, y € A. Then there exists a unique non-Archimedean

Lie C*-algebra homomorphism H : A — B such that

0
Ilf () = H(X)HB_I —m |,II Il (7.75)

forall x € A.

Proof. The proof follows from Theorem 7.29 and the method similar to Corol-
lary 7.27. |
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Definition 7.31. Let A be a non-Archimedean Lie C*-algebra. A C-linear mapping
8 : A — Ais called a non-Archimedean Lie derivation if

([ y) = [8(x), y] + [x. 8(y)]

forall x,y € A.

Now, we prove the Hyers-Ulam stability of derivations on non-Archimedean Lie
C*-algebras for the functional equation

D, f(x1,-++ ,xm) = 0.

Theorem 7.32. Let f : A — A be a mapping for which there exist the functions
@ 1 A" — [0, 00) and ¥ : A2 — [0, 00) such that (7.49) and (7.51) hold and

I (Be yD) = F (). y] = e fOD1lla = ¥ (x.y) (7.76)

forall x,y € A. If there exists L < 1 and (7.52) and (7.53) hold, then there exists a
unique non-Archimedean Lie derivation § : A — A such that such that (7.55) holds.

Proof. 1t is straight forward to show, there exists a unique C-linear mapping
8 1 A — A satisfying (7.55) and the mapping § : A — A is given by

§() = lim LU (1.77)
n—>oo mn
for all x € A. It follows from (7.53) and (7.75) that
16, y]) — [S(X) ¥l =[x 6W]lla
= Jlim |2,, LFn? .y = [ ") om"s] = " £ )]
< nll>oo | 1|2 Y (m"x, m"y) (7.78)
=0

for all x,y € A and so

§(fe.yD) = [8(x).y] + [x. 8(»)]

for all x,y € A. Thus 6 : A — A is a non-Archimedean Lie derivation
satisfying (7.55). This completes the proof. O
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