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Preface

The first edition of this book appeared in 1998 and was published by Vieweg
(Braunschweig/Wiesbaden). Several years later, the book was sold out and no
longer available. Some time ago, I discussed this situation jointly with Ulrike
Schmickler-Hirzebruch from Vieweg (which is now Springer-Vieweg) and with
Clemens Heine from Springer Germany, and we opted for a second edition
published by Springer, this publisher being better linked to the English language
market.

The book covers many algorithms for summation and integration, most of which
have not changed much in the meantime and are still up-to-date. Fasenmyer’s
algorithm for definite summation (Chap. 4) is very old, nevertheless it is so easy
to describe that it must be included for didactical reasons. Gosper’s algorithm
(Chap. 5) solves the problem of how to find a hypergeometric antidifference, and it
is the starting point of Zeilberger’s celebrated algorithm for definite summation
(Chap. 7). The book also covers the differential counterpart of Zeilberger’s
summation algorithm (Chap. 10) as well as its integration counterparts (Chaps. 11
and 12), and Gosper’s algorithm is the driving force for all these algorithms.
Therefore, its description remained unchanged. The other mentioned algorithms are
also still up-to-date. Therefore, the above chapters have been updated only
cautiously. However, in most chapters, new developments are cited and suggestions
for further reading are given. As in the first edition, in all chapters an introduction to
the corresponding q-theory is given.

The situation is quite different concerning the following parts of the book.
Multivariate hypergeometric summation was still unfeasible when the first edition
was written. In the meantime, ideas by Wegschaider cleared the way. These newer
developments are incorporated and illustrated in Chap. 4, and the corresponding
multsum-package is introduced. Furthermore, van Hoeij’s algorithm has
dramatically improved the efficiency of finding hypergeometric term solutions of
holonomic recurrence equations over Petkovšek’s original approach. Therefore,
his ideas have been incorporated in Chap. 8 so that the reader gets a clear
impression of where the new efficiency comes from. Nevertheless, the presentation
of Petkovšek’s original algorithm has not been withdrawn since it is still
interesting from a historical point of view. More decisively, the efficiency of van
Hoeij’s algorithm can only be understood by comparison with Petkovšek’s
approach. The chapter finishes with the Maple package qFPS which contains the
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q-case of van Hoeij’s algorithm. More details about operator factorization are
given in Chaps. 9 and 12. Finally, there were some new developments on discrete
Rodrigues formulas, by my Ph.D. student Kornelia Fischer, which have been
incorporated in Chap. 13.

For the first edition I had selected Maple as the computer algebra system in
which the algorithms were programmed and demonstrated. Moreover, these (and
some more) algorithms were incorporated in the packages hsum (and qsum for
the q-case). This selection has proven successful, and since the other packages
mentioned (multsum and qFPS) are also written in Maple, Maple is still the best
system to keep the book self-contained.

On the web resource www.hypergeometric-summation.org/ all the
Maple packages

• hsum.mpl (programs for hypergeometric summation)
• qsum.mpl (programs for q-hypergeometric summation)
• multsum.mpl (programs for multiple hypergeometric summation)
• qFPS.mpl (contains the q-Petkovšek-van-Hoeij algorithm)

and further materials such as the book’s Maple sessions are available. These
packages are regularly updated to work with newer versions of Maple.

I would like to thank Mama Foupouagnigni, Jürgen Gerhard, Dieter Schmersau�

and Glenn P. Tesler who had read the first edition very carefully and identified
several errors that I could correct. Special thanks go to Mark van Hoeij for his warm
hospitality when I visited him in November–December 2013 at Florida State
University (FSU) in Tallahassee. He gave me important assistance, especially
concerning Chap. 9, about his brilliant algorithm. Also special thanks go to Torsten
Sprenger who updated the hsum and qsum packages, contributed the multsum
(Chap. 4) and qFPS packages (Chap. 9) and incorporated the FormalPower-
Series package, which is mentioned in Chaps. 10 and 13, into Maple. Finally
I am very grateful to Martin Muldoon who smoothed out the English of the man-
uscript again.

The finalization of this project was made possible by a sabbatical from the
University of Kassel, and by the Alexander von Humboldt Foundation who
financed my stay in the USA by awarding an alumni research scholarship. I am
very grateful for this invaluable support.

Last but not least, I thank Ulrike Schmickler-Hirzebruch from Vieweg,
Clemens Heine from Springer Germany, and Lynn Brandon from Springer
London, for their good collaboration and for making this second edition possible.

January 15, 2014 Wolfram Koepf
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Preface to the First Edition

The current book is the result of a lecture course that I gave at the Free University,
Berlin, during the spring semester 1995. This course was influenced by the
remarkable book Concrete Mathematics by Graham, Knuth, and Patashnik, and by
the interesting lecture notes Identities and Their Computer Proofs by Herbert Wilf
[Wilf93]. In the meantime, these notes have appeared together with other material
in the book A = B by Petkovšek, Wilf, and Zeilberger [PWZ96].

In contrast to the books just mentioned, it is my objective to present the material
by giving more detailed advice on implementation. Furthermore, I wished to
cover not only material about recurrence equations but also about differential
equations, not only about sums but also about integrals, and finally not only the
hypergeometric case but also its q-analogue.

In the current book, up-to-date algorithmic techniques for summation are
described in detail, and worked out using Maple programs. With Maple release
V.4 and higher, some of these tools are available through Maple’s sum command
and sumtools package, by an implementation that I incorporated in the Maple
library prior to my lecture course. In this book, readers are invited to implement
the algorithms step by step. This will give them a detailed insight into the structure
of the algorithms under consideration, and will enable them to solve quite involved
problems.

The book covers Gosper’s algorithm for indefinite hypergeometric summation
and Zeilberger’s algorithm for definite hypergeometric summation, as well as the
WZ method and extensions of these algorithms. Petkovšek’s decision procedure
for hypergeometric term solutions of holonomic recurrence equations completes
the picture on the summation topic.

By an analogous technique, differential equations, derivative rules, and similar
identities for sums can be generated, and a chapter on this topic is included.
An equivalent theory of hyperexponential integration, both indefinite and definite,
which was given by Almkvist and Zeilberger, completes the book.

The combination of all results considered gives work with orthogonal
polynomials and (hypergeometric type) special functions a solid algorithmic
foundation. Hence, many examples from this very active field are given.

vii



Although multiple sums are briefly mentioned in Chapter 4, I have not covered
the algorithmic theory of multisums, integral sums, etc., which was developed by
Wilf and Zeilberger. Instead, by many examples I show how the one-dimensional
theory can be applied successfully to double sums and integral sums, in particular
to sums and integrals involving orthogonal polynomials.

The book contains many worked examples of the algorithms considered, and
Maple implementations of them are presented. Furthermore, a lot of exercises
encourage the readers to do their own implementations in Maple, and to study the
topics included in detail. Exercises that demand Maple implementations are
marked by a diamond (�).

In all chapters, an introduction to the corresponding q-theory is given, whereas
in the hypergeometric case, the algorithms are rigorously presented and detailed
proofs of the statements are given, in the q-case we state only the results, indicate
their proofs, present Maple implementations, and give examples and exercises.

A basic knowledge of a programming language such as Pascal or C should be
sufficient to understand the Maple programs and to solve the corresponding
exercises since all major Maple procedures that are used are briefly described. On
the other hand, a deeper familiarity with Maple might help the reader to understand
the code in more detail.

I could have presented the algorithms in pseudo code, without giving preference
to a particular computer algebra system. On the other hand, an implementation in
an existing and widely distributed computer algebra system makes the algorithms
ready for execution, and therefore fills them with life. As a result, every student
can execute all the examples no matter how complicated they may be.

Hence I had to decide on one of the major systems. Of the most important
general purpose systems, Axiom [JS93], Macsyma [Macsyma], Maple [Char-et-
al91]–[Char-et-al92], Mathematica [Wolfram96] and REDUCE [Hearn95],
undoubtedly Maple and Mathematica have the largest audiences, since they are
accessible at most universities and research institutions.

I wished to write my code as near as possible to the mathematical description of
the corresponding algorithms, and since the latter depend heavily on the fast
symbolic solution of (sometimes very complicated) systems of linear equations,
the poor performance of Mathematica’s Solve command for linear systems (see
[PS95]) supported my decision to choose Maple. Furthermore, Maple is much
friendlier with respect to user information (e.g., the infolevel routine).

Readers who use one of these systems can access some of the algorithms
considered:

Axiom The sum command contains an implementation of Gosper’s
algorithm.

Macsyma The sum command contains an implementation of Gosper’s
algorithm written by Gosper.
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Maple Maple’s sum command contains an implementation of Gosper’s
algorithm, completely rewritten by the author for Maple V.4.
There are implementations of Zeilberger ([Zeilberger91b],
[PWZ96]), and Koornwinder [Koornwinder93] of Zeilberger’s
algorithm; Almkvist and Zeilberger [AZ91] implemented the
continuous version. Maple V.4’s sumtools package was written
by the author [Koepf96] and contains an implementation of
Zeilberger’s algorithm. In the present book, structured implemen-
tations of Gosper’s algorithm, Zeilberger’s algorithm, Petkovšek’s
algorithm and their q-analogues are developed. Salvy and
Zimmermann’s Generating Functions package gfun [SZ94] and
Chyzak’s Mgfun package [Chyzak94] are also strongly connected
with the algorithms developed in the current book.

Mathematica Implementations of Gosper’s and Zeilberger’s algorithms were
done by Paule and Schorn [PS95], and Petkovšek implemented his
algorithm and the corresponding q-version ([Petkovšek92],
[PWZ96], and [APP98]). Also Paule and Riese [PR97] imple-
mented the q-analog of Zeilberger’s algorithm. A package on
multidimensional summation is due to Wegschaider
[Wegschaider97].1

REDUCE Gosper’s and Zeilberger’s algorithms are accessible by an
implementation of Koepf and Stölting [Koepf95b]; Böing and
Koepf [BK97] implemented the q-analogs of Gosper’s and
Zeilberger’s algorithm.

The Maple programs for the current book are discussed in detail in the text.
Some of the implementations are even printed in the book. The programs are
collected in the package hsum and can be obtained from the URL http://www.
hypergeometric-summation.org/. Worksheets containing the examples
given in the text, as well as Maple solutions of the exercises are available at the
same URL. The corresponding q-analogs of Gosper’s, Zeilberger’s and Petkovšek’s
algorithms are implemented in the package qsum [BK99], written by Harald
Böing, and can be obtained from the same site.

The present book is designed for use in the framework of a seminar. In seminars
at German universities, every participating student is asked to present a lecture
about a certain topic. The arrangement of the book makes the division into lectures
easy. Each chapter covers a certain subtopic which can be presented by one or two
students. Obviously, the book is also suitable for a lecture course in this area since
it was written in connection with such a course presented by the author. Special
notational conventions used in the book are defined at their first occurrence, and
are listed in the List of Symbols.

1 On the web see http://www.math.upenn.edu/*wilf/progs.html and
http://www.risc.jku.at/research/combinat/software/.
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I would like to thank Peter Deuflhard, who introduced me to the study of this
topic, for his support and encouragement. Furthermore, I thank Martin Grötschel,
without whose support the final version would not have been possible. Thanks go
to Herbert Melenk for his advice on Gröbner bases, and for his excellent REDUCE
implementation [MA94]. Due to his severe bicycling accident, the paper [MK95]
is still unfinished. Also, I am very grateful for the warm hospitality of the ETH
Zürich, where I visited to install my code in the Maple library, and especially to
Mike Monagan, who headed the installation. Furthermore, thanks go to Tom
Koornwinder for his implementation zeilb which was the starting point of my
Maple implementations, and to Harald Böing who did some extensions of the
implementations of this book that are covered in the hsum package as well as the
q-implementation under my supervision. A few of the exercises have been col-
lected by Torsten Thiele, and Lisa Temme corrected some of my English language
mistakes. I am very grateful to Martin Muldoon who smoothed out the English of
the final manuscript and to Harald Böing for the final proofreading.

Last but not least, I thank Ulrike Schmickler-Hirzebruch from Vieweg as well
as the editor of the current book series Martin Aigner for their good collaboration
and for making this project happen.

April 15, 1998 Wolfram Koepf
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Introduction

Although the first steps towards an algorithmic treatment of summation go back to
Celine Fasenmyer in the 1940s, these methods have not been used widely because
of the lack of tools, such as fast computers and computer algebra systems, for the
necessary calculations.

Perhaps the first algorithm which probably would not have been found without
the use of a computer algebra system (as the developer states), is Gosper’s
algorithm for indefinite hypergeometric summation, which was discovered in 1978.

In the past two decades computer algebra systems like Maple have achieved
recognition because computers with large amounts of memory are now available
cheaply for everybody. In several papers appearing in the early nineties, Doron
Zeilberger went back to the ideas of Celine Fasenmyer and used Gosper’s
algorithm in a non-obvious way to find a very efficient algorithm for definite
hypergeometric summation.

Zeilberger’s paradigm is to generate a recurrence equation with respect to some
discrete variable for a sum under consideration. In the current text this method is
extended in an obvious way and the generation of differential equations with
respect to non-discrete variables is investigated. Following work of Almkvist and
Zeilberger, it is further shown how recurrence and differential equations for
definite integrals are established.

In particular, the combination of all these results gives work with orthogonal
polynomials and special functions a solid algorithmic foundation.

I would like to explain these ideas in more detail in connection with the
Legendre polynomials PnðxÞ, that form a polynomial system which is orthogonal
with respect to the scalar product

hf ðxÞ; gðxÞi ¼
Z1

�1

f ðxÞ gðxÞ dx:

Note that by using the Gram-Schmidt orthogonalization process applied to the
monomial list ð1; x; x2; . . .Þ the orthogonal polynomials related to the given scalar
product are well-defined up to constant factors.

In different books on orthogonal polynomials one finds quite different
characterizations for the Legendre polynomials PnðxÞ. Any of the representations
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PnðxÞ ¼
Xn

k¼0

n

k

� � �n� 1
k

� �
1� x

2

� �k

; ð1Þ

PnðxÞ ¼
1
2n

Xn

k¼0

n

k

� �2
ðx� 1Þn�k ðxþ 1Þk ð2Þ

or

PnðxÞ ¼
1
2n

Xbn=2c

k¼0

ð�1Þk n

k

� � 2n� 2k

n

� �
xn�2k ð3Þ

as a sum might be used to define PnðxÞ, or these polynomials might be defined by
means of the Rodrigues formula

PnðxÞ ¼
ð�1Þn

2n n!

dn

dxn
ð1� x2Þn: ð4Þ

Another possibility is to introduce the Legendre polynomials via one of the gen-
erating functions

X1
n¼0

PnðxÞ zn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2xzþ z2
p ; ð5Þ

and

X1
n¼0

1
n!

PnðxÞ zn ¼ exz J0ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

Þ ; ð6Þ

the latter with the aid of the Bessel function.
Still other possibilities are to define the Legendre polynomials as a solution of

the recurrence equation

nþ 2ð ÞPnþ2ðxÞ � 2 nþ 3ð Þx Pnþ1ðxÞ þ nþ 1ð ÞPnðxÞ ¼ 0 ð7Þ

having the initial values

P0ðxÞ ¼ 1; P1ðxÞ ¼ x;

or as a solution of the differential equation

1� x2
� �

P00nðxÞ � 2 x P0nðxÞ þ n nþ 1ð ÞPnðxÞ ¼ 0 ð8Þ
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satisfying

Pnð1Þ ¼ 1; P0nð1Þ ¼
nðnþ 1Þ

2
:

Both the recurrence and differential equations are holonomic, i.e. they are
homogeneous and linear, and have polynomial coefficients.2

These different representations of PnðxÞ give a remarkable set of identities
which are proved by an amazing variety of methods in books on orthogonal
polynomials. This situation raises the question of which of these representations
might be the most natural.

No satisfying answer can be given to the question of which of the three sum
representations (1)–(3) might be preferable, and there are even further different
representations. Rodrigues type representations are specific to the classical
orthogonal polynomials and many interesting function families cannot be
described by such formulas. Furthermore, generating functions cannot always be
represented by elementary functions; see (6). Hence, the recurrence equation (7)
and the differential equation (8) are most natural since both turn out to constitute a
normal form: When common factors of their coefficients are canceled, then they
are the uniquely determined holonomic equations of lowest order valid for PnðxÞ.

The crucial point is that the algorithms that we describe provide a method for finding
these recurrence and differential equations for functions given by sums like (1)–(3), by
Rodrigues type formulas like (4) or by generating functions like (5)–(6). In particular,
this serves as an algorithmic method to prove that the above representations of the
Legendre polynomials all constitute the same family of functions.

Next, I would like to emphasize another aspect. Even though the sum
representations (1)–(3) cannot be sorted by preference, they can be categorized.
The underlying idea for this categorization is the concept of hypergeometric
functions, in terms of which (1)–(3) read as

PnðxÞ ¼ 2 F1
�n; nþ 1

1

� 				1� x

2

�
;

PnðxÞ ¼
x� 1

2

� �n

2F1
�n;�n

1

� 				xþ 1
x� 1

�

and

PnðxÞ ¼
2n

n

� �
xn

2n 2F1
�n=2;�n=2þ 1=2

�nþ 1=2

� 				 1x2

�
: ð9Þ

Hence, this procedure places us in the world of hypergeometric transformations.

2 Note that since there is a strong analogy between a differential equation and a recurrence
equation, we try to avoid the notions recursion, recurrence relation etc. throughout the book;
these are not relations, but equations.
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It turns out that there is a deep connection between this categorization and the
algorithms that we describe. Indeed, the notion of hypergeometric functions is
central to the presentation in this book, and hence we restrict ourselves to the
consideration of hypergeometric sums.

As a final comment, I mention that the evaluation Pnð1Þ ¼ 1 is quite simple if
one of the representations (1)–(2) is at hand, and is quite involved in terms of (3).
In this case, the evaluation Pnð1Þ ¼ 1 is equivalent to the identity

Xbn=2c

k¼0

ð�1Þk n

k

� � 2n� 2k

n

� �
¼ 2n : ð10Þ

Hence we are led to a summation identity that is a by-product of the method used.
This is a typical connection between orthogonal polynomials and summation, and
one of the reasons why the algorithmic examination of such summation identities
is one of the primary concerns of the present text. According to (9), the identity
(10) is a particular case of the Chu-Vandermonde identity (Chap. 2).

I see no need to give a rigorous introduction to orthogonal polynomials and
special functions. Many good introductions exist, for example [AAR99, Chiha-
ra78, Gautschi04, Ismail09, KLS10],3 [NU88, OLBC10, Rainville60, Szegö39]
and [Tricomi55]. The level of activity in the field of orthogonal polynomials and
special functions is illustrated by the fact that five of the above monographs have
appeared since the first edition of my book.

The purpose of my presentation is to give an algorithmic viewpoint on the
topic, and to present implementations of efficient algorithms in computer algebra.

References

AAR99. Andrews, G., Askey, R.A., Roy, R.: Special Functions. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, Cambridge (1999)

Chihara78. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach
Publishers, New York (1978) (reprinted by Dover Publ., Dover, 2011)

Gautschi04. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford
University Press, New York (2004)

Ismail09. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in one Variable.
Cambridge University Press, Cambridge (2005)

KLS10. Koekoek, R., Lesky, P., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and
their q-Analogues. Springer Monographs in Mathematics. Springer, Berlin (2010)

KS98a. Koekoek, R., Swarttouw, R.F.: The Askey-scheme of hypergeometric orthogonal
polynomials and its q-analogue. Report 98–17. Faculty of Technical Mathematics and
Informatics, Delft University of Technology (1998). http://aw.twi.tudelft.nl/koekoek/askey.
html

3 Which contains in particular an extension of the widely distributed internet resource [KS98a].

xvi Introduction

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://aw.twi.tudelft.nl/koekoek/askey.html
http://aw.twi.tudelft.nl/koekoek/askey.html


NU88. Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics (Translated
from the Russian by R.P. Boas). Birkhäuser, Basel (1988)

OLBC10. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of
Mathematical Functions. Cambridge University Press, New York (2010). http://dlmf.nist.gov

Rainville60. Rainville, E.D.: Special Functions. The MacMillan Co., New York (1960)
Szegö39. Szegö, G.: Orthogonal Polynomials, Vol. 23. American Mathematical Society College

Publishers, New York (1939) (Fourth Edition and extended version, 1975)
Tricomi55. Tricomi, F.G.: Vorlesungen über Orthogonalreihen. Grundlehren der Mathematischen

Wissenschaften 76, Springer, Berlin (1955)

Introduction xvii

http://dlmf.nist.gov


Chapter 1
The Gamma Function

Apart from the elementary transcendental functions such as the exponential and
trigonometric functions and their inverses, the Gamma function is probably the most
important transcendental function. It was defined by Euler to interpolate the factorials
at noninteger arguments.

Following Euler, we define

Γ (z) :=
∞∫

0

t z−1 e−t dt,

and call it the Gamma function.
This improper integral exists for complex z ∈ C with Re z > 0 (or, if you prefer

only to think of real variables, for real z > 0). Using integration by parts, we get the
fundamental functional equation

Γ (z + 1) =
∞∫

0

t z e−t dt = −t z e−t
∣∣∣∣
t=∞

t=0
+ z

∞∫

0

t z−1e−t dt = zΓ (z). (1.1)

From the initial value

Γ (1) =
∞∫

0

e−t dt = −e−t
∣∣∣∣
∞

0
= 1,

it follows further by induction that

Γ (k + 1) = k! (1.2)

for k ∈ N�0 :={0, 1, 2, . . .}. Therefore the Γ -function interpolates the factor-
ial function continuously, and we may define the factorial function by (1.2), for
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2 1 The Gamma Function

Fig. 1.1 The Gamma function on the real axis

noninteger values k ∈ C. In this book we will use the Gamma and factorial functions
interchangeably, related by (1.2).1

For points z �∈ Z :={. . . ,−2,−1, 0, 1, 2, . . .} with nonpositive real part one reads
the fundamental functional equation (1.1) from right to left to obtain

Γ (z) = Γ (z + 1)

z
,

and defines the Γ -function by a recursive application of this rule for z ∈ C\Z with
nonpositive real part (in particular for z ∈ R\Z with z < 0) (Figs. 1.1 and 1.2).

The resulting function is differentiable in the whole complex plane (proved by
standard differentiation under the integral sign) except at the nonpositive integers
where it has poles of order 1. By continuity, we may set

1

Γ (−k)
= 0 (k ∈ N�0), (1.3)

and by our general interpretation this reads as 1
k! = 0 for k = −1,−2, . . .. In

function-theoretic terms this means that the function 1\Γ is an entire function, i.e.,
it is analytic in the entire complex plane with zeros exactly at the negative integers
and the origin, the poles of Γ .

By induction, we get from (1.1) for k ∈ N :={1, 2, 3, . . .}

1 Computer algebra systems like Maple and Mathematica share this policy.



1 The Gamma Function 3

Γ (z + k) = z (z + 1) · · · (z + k − 1) Γ (z) = (z)k Γ (z) . (1.4)

The shifted factorial

(z)k :=
k−1∏
j=0

(z + j) = Γ (z + k)

Γ (z)
(k ∈ N) , (1.5)

which occurs in (1.4), is also called the Pochhammer symbol. It will occur frequently
in this book. For k = 0 the Pochhammer symbol is defined as (z)0 := 1 and for
arbitrary k ∈ C it can be defined by the right term of (1.5). In this book, however,
we will use the Pochhammer symbol only for integer values of k.

From the fundamental identities (1.1) and (1.4), we get the following limit relation
at the poles −k (k ∈ N�0) of the Γ -function

lim
z→−k

(z + k)Γ (z) = lim
z→−k

(z + k)Γ (z + k)

(z)k
= lim

z→−k

Γ (z + k + 1)

(z)k

= 1

(−k)k
= (−1)k

k! . (1.6)

This computation may be interpreted as the residue computation

Res
z=−k

Γ (z) = (−1)k

k! .

Note that the identity

(z)k = z (z + 1) · · · (z + k − 2) (z + k − 1) (1.7)

= (−1)k (1 − z − k) (2 − z − k) · · · (−z − 1) (−z) = (−1)k (1 − z − k)k

reads, in terms of Γ -functions, as

Γ (z + k)

Γ (z)
= (−1)k Γ (1 − z)

Γ (1 − z − k)

or equivalently

Γ (z) Γ (1 − z) = (−1)k Γ (z + k) Γ (1 − (z + k)). (1.8)

It turns out that in general

Γ (z) Γ (1 − z) = π

sin(π z)
or equivalently

sin(π z)

π
= 1

Γ (z)
· 1

Γ (1 − z)
, (1.9)



4 1 The Gamma Function

Fig. 1.2 The function |Γ (z)| for complex z

which puts (1.8) in a more general setting. Equation (1.9) is called the reflection
formula of the Γ -function, a proof of which is outlined in Exercise 1.7. Note that
a function theoretic interpretation of (1.9) is essentially given by the fact that the
functions on both the left and the right hand sides of (1.9) have the same set of
zeros over C. This set consists of precisely the integers, all zeros having order one
and identical local behavior. That’s why both functions have the same Weierstrass
product representation. Without proof we note the product representations of the sine
function

sin(π z) = π z
∞∏

k=1

(
1 − z2

k2

)

whose zeros obviously are precisely the integers, and of the Gamma function

Γ (z) = lim
n→∞

n! nz

(z)n+1
= e−γ z

z

∞∏
k=1

(
1 + z

k

)−1
e

z
k (1.10)

where

γ := lim
n→∞

(
n∑

k=1

1

k
− ln n

)
≈ 0.57721 56649 01532 86060 65120 90082
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Fig. 1.3 The binomial coefficients
(20

k

)
for k = 0, . . . , 20

denotes the Euler-Mascheroni constant. Of course both representations can be com-
bined to obtain the reflection formula (1.9).

Furthermore, by (1.4) the binomial coefficients can be written in terms of the
Γ -function as

(
z

k

)
= z (z − 1) · · · (z − k + 1)

k! = Γ (z + 1)

k! Γ (z − k + 1)
(1.11)

for arbitrary z ∈ C, z + 1 �= 0,−1, . . ., and z − k + 1 �= 0,−1, . . .. In particular, by
(1.3), for k, n ∈ N�0, we have

(
n

k

)
= 0 for k < 0 and k > n

in agreement with the elementary definition of the binomial coefficient as a product
(Fig. 1.3).

Note, further, the following relation between the Pochhammer symbol and the
binomial coefficient,

(
z

k

)
= (−1)k

(
k − z − 1

k

)
= (−1)k

k! (−z)k .

Now we would like to consider the Beta function, defined by
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B(z, w) :=
1∫

0

t z−1 (1 − t)w−1 dt.

This improper integral exists for Re z > 0, Re w > 0. We shall show now that the
Beta function can be expressed in terms of the Γ -function. The substitution t = 1−x
shows immediately that

B(z, w) = B(w, z) . (1.12)

Next, we use the substitution t = sin2 ϕ to obtain the trigonometric representation

B(z, w) = 2

π/2∫

0

sin2z−1 ϕ · cos2w−1 ϕ dϕ . (1.13)

Now we consider the product

Γ (z) Γ (w) =
∞∫

0

t z−1e−t dt ·
∞∫

0

uw−1e−udu

and use the substitutions t = x2 and u = y2 to obtain

Γ (z) Γ (w) = 4

∞∫

0

e−x2
x2z−1dx

∞∫

0

e−y2
y2w−1dy

= 4

∞∫

0

∞∫

0

e−x2−y2
x2z−1 y2w−1dxdy. (1.14)

Applying polar coordinates x = r cos ϕ, y = r sin ϕ to this double integral, we get

Γ (z) Γ (w) = 4

π/2∫

0

∞∫

0

e−r2
r2z+2w−2 cos2z−1 ϕ · sin2w−1 ϕ · r dr dϕ

= 2

∞∫

0

e−r2
r2z+2w−1 dr · 2

π/2∫

0

cos2z−1 ϕ · sin2w−1 ϕ dϕ

= Γ (z + w) B(w, z) = Γ (z + w) B(z, w)

where the substitution r = √
t , and Eqs. (1.13) and (1.12) are utilized.

Therefore we have deduced
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Theorem 1.1 For Re z > 0 and Re w > 0 the identity

B(z, w) =
1∫

0

t z−1 (1 − t)w−1 dt = 2

π/2∫

0

sin2z−1 ϕ · cos2w−1 ϕ dϕ = Γ (z)Γ (w)

Γ (z + w)

is valid. �

Session 1.2 Maple knows the Γ -function. We define

> term :=GAMMA(z)*GAMMA(1-z);
term := Γ (z) Γ (1 − z)

Maple uses the reflection formula:

> simplify(term);
π

sin (π z)

We can convert between Γ , factorial, and binomial terms.

> convert(n!,GAMMA);
Γ (n + 1)

> res :=convert(binomial(n,k),factorial);

res := n!
k! (n − k)!

> convert(res,binomial);(
n

k

)

> res :=expand(GAMMA(n+4));

Γ (n) n4 + 6 Γ (n) n3 + 11 Γ (n) n2 + 6 Γ (n) n
> collect(res,GAMMA,factor);

Γ (n) n (n + 1) (n + 2) (n + 3)

> simplify(GAMMA(n+4)/n!);

(n + 3) (n + 2) (n + 1)

> expand(binomial(n+2,k-1));

(n + 2) (n + 1) k
(n

k

)
(n + 3 − k) (n + 2 − k) (n + 1 − k)

> simplify(pochhammer(z,k)*GAMMA(z)/GAMMA(z+k));

1

Maple can simplify the integrals

> int(tˆ(z-1)*exp(-t),t=0..infinity);
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Γ (z)
> int(tˆ(z-1)*(1-t)ˆ(w-1),t=0..1);

Γ (w) Γ (z)

Γ (z + w)
and, if we make the correct assumption on z and w, Maple discovers the Beta function

> assume(z,positive);
> assume(w,positive);

> int(tˆ(z-1)*(1-t)ˆ(w-1),t=0..1);

B (w, z)

Maple also evaluates the trigonometric integral
> int(sin(phi)ˆ(2*z-1)*cos(phi)ˆ(2*w-1),phi=0..Pi/2);

1

2

Γ (w) Γ (z)

Γ (z + w)

By (1.2), we know the exact values of the Γ -function at the positive integers. To
calculate the exact value of the Γ -function at the point 1/2, we use the substitution
t = x2 in our definition and utilize the well-known probability integral, which gives
us

Γ (1/2) =
∞∫

0

t−1/2 e−t dt = 2

∞∫

0

e−x2
dx = √

π . (1.15)

Note that this result is also easily deduced from (1.14) (for z = w), or from the
reflection formula (1.9), and yields a closed form for all half integer values using the
basic functional equation (1.1).

Further Reading

For further reading on the Gamma function we recommend the book [AAR99],
Chap. 1.

Exercises

Exercise 1.1 Use the value Γ (1/2) to determine formulas for Γ (1/2 + k) and
Γ (k/2) in terms of factorials with integer arguments, assuming k ∈ Z.

Exercise 1.2 Show that for k ∈ N�0

lim
z→k

Γ (1 − z)

Γ (1 − 2z)
= (−1)k (2k)!

k! .
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Hint: Use (1.6).

Exercise 1.3 Use (1.10) to prove the limits

(a) lim
n→∞

Γ (n+1) nz

Γ (n+z+1)
= 1,

(b) lim
n→∞

Γ (n+a)
Γ (n+b)

nb−a = 1.

Exercise 1.4 Show that for z ∈ C, k ∈ N�0

(a) (2z)2k = 4k (z)k (z + 1/2)k,

(b) (3z)3k = 27k(z)k (z + 1/3)k (z + 2/3)k .

Deduce a similar rule for (mz)mk where m ∈ N, m ≥ 4.

Exercise 1.5 Prove the following rules for the Pochhammer symbol

(a) (z)n+k = (z)n (z + n)k,

(b) (1/2)k = (2 k)!
4k k! .

Exercise 1.6 Give a definition of the Pochhammer symbol (a)k for negative k which
is consistent with (1.4).

Exercise 1.7 (Reflection Formula) Use Theorem 1.1 to prove (1.9). Hint: The iden-
tity

Γ (z) Γ (1 − z) = B(z, 1 − z),

and the substitution t = x/(1 + x) yields an integral representation that can be
evaluated by the residue theorem.

Exercise 1.8 For Re z > 0, Re w > 0 write

π/2∫

0

sin2z−1 ϕ · cos2w−1 ϕ dϕ

in terms of the Γ -function.

Exercise 1.9 Use Theorem 1.1 to represent the integrals (n, m ∈ R)

π/2∫

0

cosn t dt ,

π/2∫

0

sinm t dt , and

π/2∫

0

cosn t sinm t dt

in terms of the Γ -function. For n, m ∈ N�0, express the result in terms of factorials
with integer arguments.
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Exercise 1.10 Calculate for m, n ≥ 0 the definite integral

1∫

0

xm lnn x dx .

Exercise 1.11 Evaluate

1∫

−1

(1 + t)z−1 (1 − t)w−1 dt.

Reference

AAR99. Andrews, G., Askey, R.A., Roy, R.: Special Functions. Encyclopedia of Mathematics and
its Applications. Cambridge University Press, Cambridge (1999)



Chapter 2
Hypergeometric Identities

In this chapter we deal with hypergeometric identities. These are identities like

n∑
k=0

(
n
k

)
= 2n, (2.1)

n∑
k=0

(−1)k
(

n
k

)
= 0 (n ∞= 0), (2.2)

n∑
k=0

(
n
k

)2

= (2n)!
n!2 =

(
2n
n

)
, (2.3)

n∑
k=0

(−1)k
(

n
k

)2

=
⎧⎨
⎩

0 if n is odd
(−1)n/2 n!
(n/2)!2 otherwise

, (2.4)

n∑
k=0

(−1)k
(

n
k

)3

=
⎧⎨
⎩

0 if n is odd
(−1)n/2 (3n/2)!

(n/2)!3 otherwise
, (2.5)

or

n∑
k=−n

(−1)k
(

n + b
n + k

) (
n + c
c + k

) (
b + c
b + k

)
= Γ (b + c + n + 1)

n! Γ (b + 1) Γ (c + 1)
, (2.6)

involving sums of a special type. We will meet the above identities—and many
more—in one form or another at several places later on in this book. For the moment,
we will not prove any of these identities. However, all of them will be proved by
several methods later.

We would like to mention that these kinds of identities can often be interpreted
combinatorially. Assume S is a set with n elements. The left-hand side of (2.1)
counts the number of subsets of S with k elements and sums these. The right-hand
side counts the total number of subsets of S. As soon as we have this combinatorial
interpretation and proofs using combinatorial arguments for both sides, we have

W. Koepf, Hypergeometric Summation, Universitext, 11
DOI: 10.1007/978-1-4471-6464-7_2, © Springer-Verlag London 2014
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proved (2.1) combinatorially. On the other hand, in many cases we have the opposite
situation: By combinatorial considerations, a sum of the above type occurs, but we
are lacking a (combinatorial) method to evaluate this sum directly. One may ask
whether the sum under consideration can be rewritten in a simpler form.

We will not deal with combinatorial interpretations of identities in this book.
Instead, we will introduce several methods to find simpler form representations for
sums of the above type.

What do the above sums have in common? They all are definite sums of the type

F =
∈∑

k=−∈
ak (2.7)

the sum to be taken over all integers k. This is so since (for any n ∈ N�0) all summands
vanish outside a finite set. We say that ak has finite support in this situation. In most
of the above cases this is the interval k = 0, . . . , n.

A sum of type (2.7) is called ahypergeometric series if the term ratio ak+1/ak rep-
resents a rational function of k. In this case we call the summand ak a hypergeometric
term.1

Note that the summands of the above identities (2.1)–(2.6) not only represent
hypergeometric terms with respect to the summation variable k, but form hypergeo-
metric terms with respect to all variables (k, n, a, b, c) involved.

Without giving a formal definition, we call an equation a hypergeometric identity
if it represents a hypergeometric series (2.7) by hypergeometric terms like the right-
hand sides of (2.1)–(2.6).2 If the sum is written in terms of products of binomial
coefficients, we will frequently also speak of a binomial sum identity. Binomial
sum identities are hypergeometric ones if the arguments of the binomial coefficients
occurring are integer-linear in the summation variable k, i.e., they are of the form
αk + β with α ∈ Z, β ∈ K, K denoting any field of characteristic zero, e.g. K =
Q, R or C. For simplicity, in the current text, we generally assume K = Q or a
transcendental extension of Q with a finite number of variables adjoined, i.e. K =
Q(x1, x2, . . . , xm),3 and it is implicitly understood that the variables x1, x2, . . . , xm

are independent of the other variables occurring in the given context.
We will further frequently deal with the case of rational-linear input with argu-

ments of the form αk + β with α ∈ Q.
Assume now a hypergeometric series (2.7) is given. In this chapter we begin by

considering how to find a representation of F in terms of the generalized hypergeo-
metric function p Fq given by

1 A hypergeometric term is always the summand, not the sum!
2 The right-hand sides an form m-fold hypergeometric terms. These are generalizations of hyper-
geometric terms satisfying a recurrence equation of the type an+m = R(n) an for some m ∈ N with
rational R(n).
3
Q(x1, x2, . . . , xm) denotes the field of rational functions in the variables x1, x2, . . . , xm over Q.
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p Fq

(
α1, α2, . . . , αp

β1, β2, . . . , βq

∣∣∣∣ x

)
: =

∈∑
k=0

Ak xk =
∈∑

k=0

(α1)k · (α2)k · · · (αp)k

(β1)k · (β2)k · · · (βq)k

xk

k! . (2.8)

This is the appropriate thing to do since we shall see soon that the term ratio ak+1/ak

of the summand ak : = Ak xk of p Fq is a general rational function in k in factored
form.

The numbers αk are called the upper and βk the lower parameters of p Fq . Note
that p Fq(x) is well-defined if no lower parameter is a negative integer or zero and it
constitutes a convergent series if p → q, or if p = q + 1 and |x | < 1.

We will, however, deal almost exclusively with the case where p Fq(x) is a poly-
nomial so that convergence is not an issue. This situation occurs if one of the upper
parameters is a negative integer. Throughout the present book, the letter n will denote
a nonnegative integer and −n, −2n, or −n − 1, etc. might denote upper parameters.
In such a case, p Fq(x) is a polynomial in x of degree (at most) n, 2n, or n + 1,
respectively.

Since by the definition of the shifted factorial

(α)k+1

(α)k
= k + α,

the summand ak = Ak xk of the generalized hypergeometric function has the rational
term ratio

ak+1

ak
= Ak+1xk+1

Ak xk
= (k + α1) · (k + α2) . . . (k + αp)

(k + β1) · (k + β2) . . . (k + βq)

x

k + 1
(k ∈ N�0), (2.9)

i.e., the first order recurrence equation

(k +β1) ·(k +β2) · · · (k +βq) ·(k +1) Ak+1 −(k +α1) ·(k +α2) · · · (k +αp) Ak = 0
(2.10)

is valid for Ak .
Note that the extra factor (k + 1) in the denominator of (2.9) which does not

occur in the list of lower parameters guarantees that p Fq(x), which is a power series,
corresponds to a bilateral sum (2.7), i.e., for arbitrary A0 ∞= 0, the statement A−1 = 0
can be deduced from (2.10), so that all coefficients Ak with negative k vanish.4 This
argument applies whenever none of the upper parameters is a positive integer, whereas
in the latter case the lower bound k = 0 of p Fq(x) is not the natural one, i.e., the
summand ak is not identically zero for negative k, and therefore p Fq(x) cannot be
considered as a bilateral sum.

The generalized hypergeometric series generalizes the exponential and geometric
series: For

4 This fact is also expressed by the k!-term in the denominator of the right-hand sum (2.8).
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ex =
∈∑

k=0

xk

k! ,

we have ak = xk/k!, and therefore ak+1/ak = x/(k + 1) so that ex = 0 F0(x). For

1

1 − x
=

∈∑
k=0

xk,

we have ak = xk (k ∈ N�0), hence ak+1/ak = x (k ∈ N�0). Note that this term
ratio is not valid for k = −1; however, after multiplication by (k +1), the recurrence
equation (k +1)ak+1 −(k +1)xak = 0 is valid for all k ∈ Z, and we have for |x | < 1

1

1 − x
= 1 F0

(
1
−

∣∣∣∣ x

)
.

In particular, since the upper parameter is a positive integer, this is not a bilateral
sum of type (2.7).

Note that the function 2 F1(x) (whose radius of convergence is 1) was introduced
by Gauss and is therefore called Gauss’ hypergeometric function. On the other
hand, the series 1 F1(x) converges for all x ∈ C and is called Kummer’s confluent
hypergeometric function.

If a hypergeometric series (2.7) is given and if a0 ∞= 0, then it is easy to represent F
in terms of a generalized hypergeometric function if we are able to find polynomials
uk and vk such that

ak+1

ak
= uk

vk
(2.11)

and if we assume a complete factorization in linear factors of uk and vk , by comparison
with (2.9).

We introduce some notation. K(k) denotes the field of rational functions in the
variable k over K, and K[k] denotes the ring of polynomials in k over K. Similarly,
K(n, k) and K[n, k] are the field of rational functions and the ring of polynomials in
two variables, respectively.

Session 2.1 As we saw above, given ak , it is crucial to find polynomials uk, vk ∈
Q[k] such that (2.11) is valid. How can we find these with Maple? We saw in Session
1.2 that Maple’s expand command expands binomial coefficients and factorial and
Γ function terms. Therefore, we have for example

> expand(binomial(n+2,k-1)/binomial(n-1,k+2));

(n + 2) (n + 1) kn (k + 2) (k + 1)

(n + 3 − k) (n + 2 − k) (n + 1 − k) (n − k − 2) (n − k − 1) (n − k)

However, we must say that this is not a safe procedure. This is shown in the following
example that we will consider in more detail in Example 2.5.
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> summand:=binomial(n,k)/2ˆn:

> term:=subs(n=n+1,summand)-summand:

> expr:=expand(subs(k=k+1,term)/term);

expr := − 1/2

(
n
k

)
n

⎛
⎜⎜⎝1/2

(
n
k

)
n

(n + 1 − k) 2n + 1/2

(
n
k

)

(n + 1 − k) 2n −

(
n
k

)

2n

⎞
⎟⎟⎠

−1

(k + 1)−1 (
2n)−1

+ 1/2

(
n
k

)
⎛
⎜⎜⎝1/2

(
n
k

)
n

(n + 1 − k) 2n + 1/2

(
n
k

)

(n + 1 − k) 2n −

(
n
k

)

2n

⎞
⎟⎟⎠

−1

(k + 1)−1 (
2n)−1

+
(

n
k

)
k

⎛
⎜⎜⎝1/2

(
n
k

)
n

(n + 1 − k) 2n + 1/2

(
n
k

)

(n + 1 − k) 2n −

(
n
k

)

2n

⎞
⎟⎟⎠

−1

(k + 1)−1 (
2n)−1

> normal(expr);

− (−n − 1 + k) (2 k + 1 − n)

(−n − 1 + 2 k) (k + 1)

We see that in this example, the situation can be resolved by a further application of
normal or simplify.5 On the other hand, this procedure is not at all efficient in
cases like

> normal(expand(GAMMA(k+10000)/GAMMA(k+9999)));

k + 9999

Issuing this command gives you time to have lunch before you receive the trivial
result. The reason is that both numerator and denominator are expanded indepen-
dently as multiples of Γ (k). In the worst case you receive the error message

Error, (in expand/GAMMA) object too large

depending on the memory situation on your computer! We will now present a better
method for the given purpose which is implemented in the hsum package6

> read "hsum.mpl";

which gives an instant answer to the much more complicated question

5 Note that simplify can easily handle the next question. However, simplify does not always
simplify towards a rational function, even if the result is rational. Moreover, simplify is a
combination of so many algorithms so that it is not even possible to describe its full mechanism. It
is better to use simplification commands that have a clear description.
6 The current updated version is hsum17.mpl. In future Maple sessions we will always assume
that the hsum package is loaded by the read command.
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> simpcomb(GAMMA(k+1000000)/GAMMA(k+999999));

k + 999999

The following algorithm, which is almost trivial but decisive, describes how uk and
vk can be identified (at least) for input of a special type. We will later see that the
same algorithm applies for input of a more general type.

Algorithm 2.2 (simpcomb)
The following algorithm decides the rationality of term ratios ak+1/ak :

1. Input: ak+1/ak , where ak ∞= 0 is a ratio of products of rational functions, powers,
factorials, Γ function terms, binomial coefficients and Pochhammer symbols that
are rational-linear in their arguments.7

2. (togamma)
Build ak+1/ak , and convert all occurrences of factorials, binomial coefficients,
and Pochhammer symbols to Γ function terms according to (1.2), (1.5), and
(1.11), avoiding negative arguments. The case of binomial coefficients is done
by the rules

(
a
k

)
≈

⎧⎪⎨
⎪⎩

(−1)k Γ (k−a)
Γ (k+1) Γ (−a)

if a ∈ Z, a < 0
0 if a − k ∈ Z, a − k < 0

Γ (a+1)
Γ (k+1) Γ (a−k+1)

otherwise
.

3. (simplify_gamma)
Rewrite the preceding expression recursively according to the rule (see (1.4))

Γ (a + j) = a(a + 1) · · · (a + j − 1) · Γ (a)

whenever the arguments a and a + j of two representing Γ function terms have
positive integer difference j . Reduce the final fraction canceling common Γ

terms.
4. (simplify_power)

Rewrite the preceding expression recursively according to the rule

ba+ j = b j ba

whenever the arguments a and a+ j of two representing power terms have positive
integer difference j . Reduce the final fraction canceling common power terms.

5. The expression ak+1/ak is rational if and only if the resulting expression uk/vk

in step 4 is rational, i.e., uk, vk ∈ Q[k].
6. Output: (uk, vk).

7 If the input terms have integer-linear arguments in k, then the ratio ak+1/ak is clearly a rational
function; if the input terms are rational-linear in k, then this is not automatically the case, and the
algorithm detects this.

http://dx.doi.org/10.1007/978-1-4471-6464-7_1
http://dx.doi.org/10.1007/978-1-4471-6464-7_1
http://dx.doi.org/10.1007/978-1-4471-6464-7_1
http://dx.doi.org/10.1007/978-1-4471-6464-7_1
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Proof Note that this result follows immediately from the given form of ak (as a ratio)
and therefore of the expression ak+1/ak . The given form guarantees that common
Γ and power terms in the numerator and denominator cancel in steps (3) and (4) if
ak+1/ak is rational.

Note that, for integer-linear input, it is clear, by the use of the given rewrite rules,
that all Γ and power terms cancel and polynomials uk, vk ∈ Q[k] are constructed.

Example 2.3 The sine function has the power series representation

sin x =
∈∑

k=0

(−1)k x2k+1

(2k + 1)! .

To find its hypergeometric counterpart, we start with ak = (−1)k x2k+1

(2k+1)! and use Algo-
rithm 2.2. We get the term ratio

ak+1

ak
= (2k + 1)!

(−1)k x2k+1 · (−1)k+1 x2k+3

(2k + 3)!
= (2k + 1)!

(−1)k x2k+1 · −(−1)k x2 x2k+1

(2k + 3)(2k + 2)(2k + 1)!
= − x2

(2k + 3)(2k + 2)
= 1(

k + 3
2

)
(k + 1)

(
− x2

4

)
.

Since a0 = x , this leads finally to the hypergeometric representation

sin x =
∈∑

k=0

(−1)k x2k+1

(2k + 1)! = x · 0 F1

( −
3
2

∣∣∣∣− x2

4

)

by Algorithm 2.2.

Example 2.4 As another example, the rationality of ak+1/ak for

ak = Γ (2k)

4k Γ (k) Γ (k + 1/2)

is recognized using the given procedure by the stepwise transformations

ak+1

ak
= Γ (2k + 2)

4k+1Γ (k + 1)Γ (k + 3/2)
/

Γ (2k)

4kΓ (k)Γ (k + 1/2)

= (2k)(2k + 1)Γ (2k)4k Γ (k) Γ (k + 1/2)

Γ (2k) 4 · 4k kΓ (k)(k + 1/2)Γ (k + 1/2)
= (2k)(2k + 1)

4k(k + 1/2)
= 1.

From the resulting information, it follows by induction (or easier, by the hyper-
geometric coefficient formula (2.8)) that for k ∈ N
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Γ (2k)

4k Γ (k) Γ (k + 1/2)
= ak = a1 = Γ (2)

4 Γ (1)Γ (3/2)
= 1

2 Γ (1/2)
= 1

2
√

π
, (2.12)

using (1.15). Note that (2.12), which is called the duplication formula of the Γ

function, is valid for all k ∈ C, k not the half of a negative integer or zero, a fact
which, however, cannot be proved by the present method.

Algorithm 2.2 also applies to

bk = Γ (2k) − α 4k Γ (k) Γ (k + 1/2)

and the same procedure leads to

bk+1

bk
= 2 k (2 k + 1)

(check!) which is true whenever α ∞= 1
2
√

π
. If α = 1

2
√

π
, however, by the above

computation, bk ≥ 0 and therefore bk+1/bk is not properly defined.
Note that the occurrence of another variable, α, had the side effect that our cal-

culation was not valid for a particular value of α. This is a typical situation since we
work with rational arithmetic and must make sure that no denominator which might
appear in any intermediate calculation is ever equal to zero.

Example 2.5 Next, we consider the expression (n ∈ N�0)

ak : = 1

2n+1

(
n + 1

k

)
− 1

2n

(
n
k

)
. (2.13)

Note that ak does not have the form required in the above algorithm since it is not
just a ratio but a sum of ratios. On the other hand, it is easily seen that for any sum
ak = αk+βk of expressions αk and βk for which αk/βk ∈ K(k) is a rational function,8

the same algorithm applies. This is obviously the case for the two summands of ak .
We obtain by the method described

ak+1

ak
=

1
2n+1

(
n + 1
k + 1

)
− 1

2n

(
n

k + 1

)

1
2n+1

(
n + 1

k

)
− 1

2n

(
n
k

)

=
Γ (n + 2)

Γ (k + 2)Γ (n − k + 1)
− 2

Γ (n + 1)

Γ (k + 2)Γ (n − k)

Γ (n + 2)

Γ (k + 1)Γ (n − k + 2)
− 2

Γ (n + 1)

Γ (k + 1)Γ (n − k + 1)

8 In such a case, αk and βk are called similar hypergeometric terms, see p. 94.

http://dx.doi.org/10.1007/978-1-4471-6464-7_1
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=
(n + 1)Γ (n + 1)

(k + 1)Γ (k + 1)(n − k)Γ (n − k)
− 2

Γ (n + 1)

(k + 1)Γ (k + 1)Γ (n − k)

(n + 1)Γ (n + 1)

Γ (k + 1)(n − k)(n − k + 1)Γ (n − k)
− 2

Γ (n + 1)

Γ (k + 1)(n − k)Γ (n − k)

=
n + 1

(k + 1)(n − k)
− 2

k + 1
n + 1

(n − k)(n − k + 1)
− 2

n − k

= n − k + 1

k + 1
· n + 1 − 2(n − k)

n + 1 − 2(n − k + 1)

= − (k − n − 1) (k − n/2 + 1/2)

(k − n/2 − 1/2) (k + 1)
. (2.14)

If we are now interested in

F =
∈∑

k=−∈
ak, (2.15)

then, according to (2.9), from the final factored form of (2.14) we can read off the
list of upper parameters (−n − 1,−n/2 + 1/2), the lower parameter (−n/2 − 1/2),
and x = −1; and by

a0 = 1

2n+1

(
n + 1

0

)
− 1

2n

(
n
0

)
= − 1

2n+1 ,

we see (by induction, or by the hypergeometric coefficient formula (2.8)) that

ak = (−n − 1)k (−n/2 + 1/2)k

(−n/2 − 1/2)k k! (−1)k a0 = − (−n − 1)k (−n/2 + 1/2)k

(−n/2 − 1/2)k k! (−1)k 1

2n+1

and therefore

∈∑
k=−∈

(
1

2n+1

(
n + 1

k

)
− 1

2n

(
n
k

))
= − 1

2n+1 2 F1

( −n−1,−n/2+1/2
−n/2 − 1/2

∣∣∣∣ −1

)
.

(2.16)

Note that the upper parameters of (2.16) show in particular that the sum F given by
(2.15) for n ∈ N�0 is finite with summands k = 0, . . . , n + 1 for even n and with

summands k = 0, . . . , n−1
2 for odd n. Furthermore we note that according to identity

(2.1) F ≥ 0 (check!).
Let us consider the even case first. If n = 2m ∈ N�0 is even, then by (2.16) we

get for m ∈ N

2 F1

( −2m − 1 ,−m + 1/2
−m − 1/2

∣∣∣∣−1

)
≥ 0.
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On the other hand, for odd n, we divided by zero in (2.14) so that this deduction is
not valid. In this case the hypergeometric series (2.16) has a negative integer lower
parameter −n/2 − 1/2. Nevertheless, this is a valid hypergeometric series since the
sum is from k = 0, . . . , n−1

2 only. However, it turns out that its sum is not equal to
0 in this case.

Example 2.6 (Dixon’s Identity) Identity (2.6) (n ∈ N�0) is called Dixon’s identity.
We will now give a hypergeometric version. Therefore, for

ak := (−1)k
(

n + b
n + k

) (
n + c
c + k

) (
b + c
b + k

)
,

we calculate by Algorithm 2.2

ak+1

ak
= (k − n) (k − b) (k − c)

(k + n + 1) (k + b + 1) (k + c + 1)
(2.17)

(check!), and from

a0 =
(

n + b
n

)(
n + c

c

)(
b + c

b

)
,

we are led to the hypergeometric representation

(
n + b

n

)(
n + c

c

)(
b + c

b

)
4 F3

( −n ,−b ,−c , 1
n + 1 , b + 1 , c + 1

∣∣∣∣ 1

)
,

where we had to add the number 1 to the list of upper parameters since the denomi-
nator of (2.17) did not contain a factor (k + 1).

But, be careful! Did you realize that this hypergeometric function corresponds to
the sum of Dixon’s term for k = 0, . . . ,∈ rather than for k = −∈, . . . ,∈? In a
later example, we will see that in some instances this might be exactly what we want.

In our case, however, to get rid of this problem, and to deduce a 3 F2 rather than a
4 F3 representation, we realize that one of the lower parameters, n + 1, is assumed to
be an integer. In such a situation we must apply a suitable shift. Since the summation
is over all k ∈ Z, a shift of the summation index by an integer does not change
the value of the sum. This is the nice thing when working with bilateral sums: their
value is invariant with respect to shifts of the summation variable. Therefore, in our
example, we shift the summation index by −n, i.e., we consider bk = ak−n with

n∑
k=−n

ak =
∈∑

k=−∈
ak =

∈∑
k=−∈

bk =
2n∑

k=0

bk

and we get from (2.17)
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bk+1

bk
= ak−n+1

ak−n
= (k − 2n) (k − n − b) (k − n − c)

(k + 1) (k − n + b + 1) (k − n + c + 1)
.

By this procedure, we generated a (k + 1)-term in the denominator and since

b0 = a−n = (−1)n
(

n + c
c − n

) (
b + c
b − n

)
,

we have, finally, the hypergeometric representation

F = (−1)n
(

n + c
c − n

) (
b + c
b − n

)
3 F2

( −2n ,−n − b ,−n − c
−n + b + 1 ,−n + c + 1

∣∣∣∣ 1

)

for the Dixon sum.
Note that we see from this hypergeometric representation and from the method

of its discovery that the left-hand side is a sum in the range k = −n, . . . , n. At first
glance this might not have been obvious. 	
Next, we would like to give some more examples that show how one takes care of
possible shifts.

Example 2.7 Let us consider ak = k

(
n
k

)
. Then

ak+1

ak
= n − k

k
.

We see that this cannot be the term ratio of a hypergeometric representation since
the denominator has a zero root. This corresponds to the fact that a0 = 0, and any
hypergeometric representation has a0 ∞= 0. By a suitable shift, however, we can
overcome this difficulty and, as an important observation, the term ratio given shows
us which shift will be successful! Since the denominator root is zero, we shift by one
to eliminate it and to construct a (k + 1)-term. For bk : = ak+1, we get

bk+1

bk
= ak+2

ak+1
= −k + 1 − n

k + 1

so that, from b0 = a1 = n, it follows that

n∑
k=0

k

(
n
k

)
= n · 1 F0

( −n + 1
−

∣∣∣∣−1

)
.

Next, we consider the similar expression ak = 1
k

(
n
k

)
. Here we are interested in

∈∑
k=1

ak rather than the bilateral sum. Let’s see what can be done nevertheless. We

have
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ak+1

ak
= −k(k − n)

(k + 1)2 . (2.18)

Since the numerator has a zero root, we must shift by one again. In the present case,
there is no chance to keep a (k + 1)-term in the denominator and therefore we have
to increase the number of upper parameters by adding one to them.

The final result is

n∑
k=1

1

k

(
n
k

)
= n · 3 F2

( −n + 1 , 1 , 1
2 , 2

∣∣∣∣−1

)
.

In this example, the extra factor (k+1) that we put in both numerator and denominator
of (2.18) helped us a lot since this step made the sum finite to the left—and that was
exactly what we needed.

Both examples given show that for quite similar input, the orders p and q of the
corresponding hypergeometric representations can be quite different. 	

Now we are prepared to state and prove the main result of this chapter. We state
it only for bilateral sums and mention that a similar algorithm can be given for sums
k = k0, . . . ,∈.

Algorithm 2.8 (Conversion of Sums into Hypergeometric Notation) The following
algorithm converts hypergeometric sums into hypergeometric notation:

1. Input: the summand ak , given as ratio of products of rational functions, powers,
factorials, Γ function terms, binomial coefficients, and Pochhammer symbols
that are rational-linear in their arguments, or a sum or difference of such terms
like expression (2.13) in Example 2.5.

2. Calculate ak+1/ak and apply Algorithm 2.2 to it generating uk, vk ∈ Q[k] such
that ak+1

ak
= uk

vk
.

If Algorithm 2.2 decides that ak+1/ak is not rational then return: “No hypergeo-
metric representation exists.”

3. Factorize uk, vk over the rationals.9 If there are nonlinear factors, then return:
“No rational factorization found”; exit. (For factors of degree →4, one may use
symbolic complex solutions, though.) If the last step was successful, however,
then we have a representation

uk = A (k+α1) (k+α2) · · · (k+αp) and vk = B (k+β1) (k+β2) · · · (k+βq+1).

4. If any of the parameters β1, . . . , βq+1 is an integer, then calculate the minimal
such value10 m and shift the summation variable by −m + 1, i.e. shift all upper

9 Rational factorization will be considered in more detail on p. 83.
10 If parameters are involved, this might be undecidable, compare e.g. the Dixon case!
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and lower parameters by −m + 1. Denote the new upper and lower parameters
by (α1, . . . , αp) and (β1, . . . , βq+1) again.

5. If none of the shifted lower parameters equals one, then return:
“The bilateral sum does not have a hypergeometric representation.”

6. Calculate the initial value b0 = aK , where K : = −m + 1 is the total shift that
occurred in step 4 if applicable, else K : = 0; set upper := α1, . . . , αp, and
lower : = β1, . . . , βq assuming βq+1 = 1; set x : = A/B.

7. Output: the hypergeometric function b0·hypergeom(upper,lower,x).

Proof Obviously, in step 2, Algorithm 2.2 decides whether or not ak+1/ak is rational.
If not, then no hypergeometric representation exists by the definition of a hyperge-
ometric series, whereas in the affirmative case uk, vk ∈ Q[k] are constructed. Note
that this step undoubtedly succeeds if the Γ -arguments occurring are integer-linear
w.r.t. k, although this is not a necessary condition.

If the factorization in step 3 fails, no hypergeometric representation with rational
parameters exists. If, on the other hand, a factorization is found, then it obviously
defines a hypergeometric representation if none of the corresponding lower para-
meters is a negative integer. The shift in step 4—if applicable—guarantees that all
negative integer lower parameters disappear (and at the same time that one of the
lower parameters equals 1). This shift corresponds to a shift of the summation vari-
able k and does not change the value of the series.

Finally, if the remaining list of lower parameters does not contain the value 1,
then the bilateral sum cannot be represented by a one-sided infinite hypergeometric
representation.

If the shift is K , then we work with bk = ak+K , and
∑

bk = ∑
ak , so that the

initial value is given by b0 = aK .

A Maple implementation of the algorithm is given in Session 3.6. If the algorithm
fails because ak+1/ak turns out not to be rational, then it may still be possible to find
a number l ∈ N such that ak+l/ak is rational; compare Algorithm 8.4. In this case the
series under consideration can be written as a sum of l generalized hypergeometric
functions.

If other variables are involved then the shifts of steps (4) and (5) might depend on
the particular values of these variables. As in Example 2.6, the knowledge that any
of the variables occurring is an integer might influence this decision. We give some
final examples of an application of Algorithm 2.8.

Example 2.9 (Legendre Polynomials) Let us give the Legendre polynomials by the
series

Pn(x) :=
∈∑

k=−∈

(
n
k

) (−n − 1
k

) (
1 − x

2

)k

,

which, of course, is a hypergeometric one. For

ak :=
(

n
k

) (−n − 1
k

) (
1 − x

2

)k

,
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we get by Algorithm 2.2

ak+1

ak
= (k − n) (k + n + 1)

(k + 1)2 · 1 − x

2
,

and therefore we have

Pn(x) = 2 F1

( −n, n + 1
1

∣∣∣∣ 1 − x

2

)
. (2.19)

This shows in particular that Pn(x) is a polynomial of degree n with respect to x .
Next we consider the family

F = Pn+1(x) − Pn(x) =
∈∑

k=−∈
ak

of consecutive differences of Legendre polynomials. Note that F defines a polyno-
mial of degree n + 1. Does F constitute a hypergeometric series? By (2.19), it is the
difference of two hypergeometric functions, but our question is different. Algorithm
2.8 helps us to find the answer.

An application of Algorithm 2.2 gives

ak+1

ak
= (k + n + 1) (k − n − 1)

k (k + 1)
· 1 − x

2
.

We see that a shift by one is necessary to obtain a hypergeometric representation.
For bk : = ak+1, we have

bk+1

bk
= (k + n + 2) (k − n)

(k + 1) (k + 2)
· 1 − x

2
,

so that with
b0 = a1 = −(n + 1) (1 − x),

there follows

Pn+1(x) − Pn(x) = −(n + 1) (1 − x) · 2 F1

( −n , n + 2
2

∣∣∣∣ 1 − x

2

)
.

Example 2.10 (Non-Natural Bounds) In this example, we would like to present a
further method which is of value if the upper bound of a hypergeometric sum is not
a natural one, i.e., the summand is not identically zero outside the summation region
(so that we don’t have a bilateral sum). In this case a direct application of Algorithm
2.8 is not possible. We saw how the use of an extra 1 as upper parameter can be
used if the left bound is not a natural one for the sum under consideration. But what
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if the right bound is not natural? Here a change of variable, essentially of the type
k ≈ −k, helps (hence reversing the order of summation)!

Let us consider the example

F =
m∑

k=0

ak : =
m∑

k=0

(−1)k
(

n
k

)
,

for arbitrary m � n. Here the lower bound is a natural one, but the upper bound is
not. We change the summation variable, set bk = am−k and get

F =
m∑

k=0

bk =
m∑

k=0

(−1)m−k
(

n
m − k

)
,

for which we find
bk+1

bk
= k − m

k + n − m + 1
,

so that by b0 = am = (−1)m
(

n
m

)
, we have

F = (−1)m
(

n
m

)
2 F1

( −m , 1
n − m + 1

∣∣∣∣ 1

)
.

Note that the extra upper parameter 1 made the lower bound a natural one, and
the upper bound m was natural from the beginning! We will investigate this example
further in later chapters.

Session 2.11 Maple can discover some hypergeometric identities:
> sum(binomial(n,k),k=0..n);

2n

However, in many cases the output is different from ours and more complicated.11

> res := sum(binomial(n,k)ˆ2,k=0..n);

res : = 4nΓ (n + 1/2)√
π Γ (n + 1)

> res2:=convert(res,binomial);

res2 : = 4n
(

n − 1/2
−1/2

)

> simplify(res2) assuming n::integer;

11 The next two sums presented are not really “nice” and need an application of the Gamma
duplication formula for conversion towards simple forms. Even Maple’s assume facility does not
simplify appropriately.
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4n
(

n − 1/2
−1/2

)

> sum((-1)ˆk*binomial(n,k)ˆ2,k=0..n);√
π 2n

Γ (1 + 1/2 n) Γ (1/2 − 1/2 n)

The latter output is equivalent to (2.3), see Exercise 2.7.
Dixon’s sum is also simplified:

> sum((-1)ˆk*binomial(n+b,n+k)*binomial(n+c,c+k)*
> binomial(b+c,b+k),k=-n..n);(

b + c
b

)
Γ (n + b + 1 + c)

Γ (b + c + 1) Γ (n + 1)

The Maple procedure
> ratio:=proc(a,k); simpcomb(subs(k=k+1,a)/a); end proc:

from the hsum package calculates ak+1/ak and simplifies this expression according
to Algorithm 2.2; the Maple procedure hyperterm(upper,lower,x,k) gen-
erates the hypergeometric term corresponding to the upper parameters upper, the
lower parameters lower, the variable x , and the summation variable k.

We have for example

> ratio((-1)ˆk*binomial(n+b,n+k)*binomial(n+c,c+k)*
> binomial(b+c,b+k),k);

(b − k) (−n + k) (c − k)

(n + 1 + k) (c + k + 1) (b + k + 1)
> ratio(hyperterm([-n,n+1],[1],(1-x)/2,k),k);

−1

2

(−n + k) (n + 1 + k) (−1 + x)

(k + 1)2

> ratio(subs(n=n+1,hyperterm([-n,n+1],[1],(1-x)/2,k))-
> hyperterm([-n,n+1],[1],(1-x)/2,k),k);

−1

2

(−1 + x) (n + 1 + k) (−n − 1 + k)

k (k + 1)

Since binomial sums come in quite different disguises, it is an important fact that by
the notion of the generalized hypergeometric function these sums are classified and
hence can be identified. This fact will be stressed in the next chapter. This point of
view has been popularized by Dick Askey and George Andrews.

q-Hypergeometric Identities

An important extension of the hypergeometric function is the q-hypergeometric
function (as a general reference for q-hypergeometric functions, see [GR90], and
for an elementary introduction [Gasper97])



q-Hypergeometric Identities 27

r φs

(
a1, a2, . . . , ar

b1, b2, . . . , bs

∣∣∣∣ q, x

)
:=

∈∑
k=0

(a1, a2, . . . , ar ; q)k

(b1, b2, . . . , bs; q)k

xk

(q; q)k

⎛
⎜⎝(−1)k q

(
k
2

)⎞
⎟⎠

1+s−r

where (a1, a2, . . . , ar ; q)k is a short form for the product
⎡r

j=1

(
a j ; q

)
k , and

(a; q)k :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k−1⎡
j=0

(1 − aq j ) if k > 0

1 if k = 0
|k|⎡
j=1

(1 − aq− j )−1 if k < 0

∈⎡
j=0

(1 − aq j ) if k = ∈

denotes the q-Pochhammer symbol. The q-hypergeometric functions are also called
basic hypergeometric functions since they come with the base q.

An rφs series terminates if one of its numerator parameters is of the form q−n

with n ∈ N. In the non-terminating case the q-hypergeometric series converges in its

disk of convergence if |q| < 1. The additional factor
⎛
⎜⎝(−1)k q

(
k
2

)⎞
⎟⎠

1+s−r

(which does not

occur in the corresponding definition of the generalized hypergeometric function)12

is to facilitate a confluence process. With this factor one gets the simple formula

lim
ar ≈∈ rφs

(
a1, a2, . . . , ar

b1, b2, . . . , bs

∣∣∣∣ q,
x

ar

)
= r−1φs

(
a1, a2, . . . , ar−1
b1, b2, . . . , bs

∣∣∣∣ q, x

)
.

An expression ak is called a q-hypergeometric term if ak+1/ak is a rational function
with respect to qk , a typical example of which is given by the summand of the q-
hypergeometric series. Using the notion of the q-hypergeometric function, series
with this property are classified and hence can be identified.

Since for q ≈ 1−

lim
q≈1−

(qa; q)k

(q; q)k
= (a)k

k! , (2.20)

one has

lim
q≈1− rφs

(
qa1 , qa2 , . . . , qar

qb1 , qb2 , . . . , qbs

∣∣∣∣ q, (q − 1)1+s−r x

)
= r Fs

(
a1, a2, . . . , ar

b1, b2, . . . , bs

∣∣∣∣ x

)

12 Note that basic hypergeometric functions and their properties were already considered in
[Bailey35] where the definition of the q-hypergeometric function was given without this additional
factor, though.
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which connects the q-hypergeometric function with the hypergeometric function.
By

[k]q := 1 − qk

1 − q
= 1 + q + · · · + qk−1,

[k]q ! := (q; q)k

(1 − q)k
= [k]q · [k − 1]q · · · [1]q ,

⎢
n
k

⎣
q

:= [n]q !
[k]q ! · [n − k]q !

and

Γq(z) := (q; q)∈
(qz; q)∈

(1 − q)1−z

one defines the q-brackets (or q-numbers), the q-factorial, the q-binomial coefficient
and the q-Gamma function, and there are q-analogues for many hypergeometric
identities (see e.g. [GR90]).

We consider an example: Whereas the binomial theorem states that

∈∑
k=0

(
α

k

)
xk =

∈∑
k=0

(−α)k

k! (−x)k = 1 F0

( −α

−
∣∣∣∣−x

)
= (1 + x)α , (2.21)

(a particular case of which is (2.1)), the q-binomial theorem due to Cauchy, Jacobi
and Heine is the identity (|q| < 1, |x | < 1)

1φ0

(
a
−

∣∣∣∣ q, x

)
=

∈∑
k=0

(a; q)k

(q; q)k
xk = (ax; q)∈

(x; q)∈
. (2.22)

More details can be found in [Gasper97, GR90], and we will continue these consid-
erations in the later chapters.

Further Reading

For further reading on hypergeometric identities we refer to [AAR99], Chaps. 2–4,
and for the q-case to [GR90].

Exercises

Exercise 2.1 Show that (2.12) remains valid in the limit as k tends to the half of a
negative integer or zero. Hint: Use Exercise 1.1.
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Exercise 2.2 Prove that the rational term ratio (2.9) together with the initial value
A0 = 1 implies the hypergeometric coefficient formula (2.8).

Exercise 2.3 (Hypergeometric Differential Equation, see e.g. [Rainville60]) Show

that the generalized hypergeometric functionF(x): = p Fq

(
α1, α2, . . . , αp

β1, β2, . . . , βq

∣∣∣∣ x

)
satis-

fies the hypergeometric differential equation

θ(θ +β1 − 1) · · · (θ +βq − 1)F(x) = x(θ +α1)(θ +α2) · · · (θ +αp)F(x) (2.23)

where θ denotes the differential operatorθ f (x) = x f ′(x). Hint: Substitute the series
into (2.23), and equate coefficients.

Exercise 2.4 (Hypergeometric Derivative Rule, see e.g. [Rainville60]) Show that

the generalized hypergeometric function Fn(x): = p Fq

(
α1, α2, . . . , αp

β1, β2, . . . , βq

∣∣∣∣ x

)

satisfies the derivative rules

θ Fn(x) = n
⎤

Fn+1(x) − Fn(x)
⎥

for any of its numerator parameters n: = αk (k = 1, . . . , p) and

θ Fn(x) = (n − 1)
⎤

Fn−1(x) − Fn(x)
⎥

for any of its denominator parameters n: = βk (k = 1, . . . , q).

Exercise 2.5 (Hypergeometric Recurrence Equation) How can Exercises 2.3 and 2.4
be combined to obtain a recurrence equation with respect to any of the parameters
of p Fq? What is the order of this recurrence equation?

Exercise 2.6 Use Algorithm 2.2 to determine ak+1/ak for ak : = b(n+ j, k)−b(n, k)

for j = 1, . . . , 3 when

(a) b(n, k) =
(

n
k

)
,

(b) b(n, k) =
(

n − k
k

)
,

(c) b(n, k) = n

(
n
k

)
,

(d) b(n, k) = (n − k)!
Exercise 2.7 In Session 2.11, Maple’s result

n∑
k=0

(−1)k
(

n
k

)2

=
√

π 2n

Γ

(
1 + 1

2
n

)
Γ

(
1

2
− 1

2
n

)

was obtained. Show that this result is equivalent to (2.4).
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Exercise 2.8 Use Algorithm 2.8 to calculate the hypergeometric representations of
the sums occurring in (2.1)–(2.5). Which hypergeometric terms are determined by
the right-hand sides of these identities?

Exercise 2.9 Use an adaptation of Algorithm 2.8 to find hypergeometric representa-
tions for

∑B
k=A ak with largest possible summation range, if

(a) ak = k(k − 1)(k − 2)

(
n
k

)
,

(b) ak =
(

n − k
k

)
,

(c) ak = 1
k(k−1)(k−2)

(
2n
k

)
,

(d) ak =
(

n
k

)(
2k
n

)
.

Which shifts are necessary? Which are the actual ranges (A, B) of the hyperge-
ometric representations?

Exercise 2.10 Show, by a treatment similar to Example 2.5, the identity

2 F1

( −n−1 , −n/2+1/2
−n/2 − 1/2

∣∣∣∣ x

)
=

n∑
k=0

(−n−1)k (−n/2+1/2)k

(−n/2 − 1/2)k
xk = (1 + x) (1 − x)n,

which is valid for even n.

Exercise 2.11 The following are the standard series representations of some elemen-
tary functions. Use Algorithm 2.8 to give their hypergeometric equivalents.

(a) exp(x) =
∈∑

k=0

xk

k! ,

(b) ln(1 + x) =
∈∑

k=1

(−1)k+1

k xk,

(c) cos(x) =
∈∑

k=0

(−1)k

(2k)! x2k,

(d) (1 + x)α =
∈∑

k=0

(
α

k

)
xk,

(e) arctan(x) =
∈∑

k=0

(−1)k

2k+1 x2k+1,

(e) arcsin(x) =
∈∑

k=0

(−1)k

2k+1

(−1/2
k

)
x2k+1.
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Exercise 2.12 The Legendre polynomials have the following two different series
representations

Pn(x) = 1

2n

n∑
k=0

(
n
k

)2

(x − 1)n−k (x + 1)k

and

Pn(x) = 1

2n

�n/2�∑
k=0

(−1)k
(

n
k

)(
2n − 2k

n

)
xn−2k

besides the one presented in Example 2.9. Convert these into hypergeometric
notation. Here

�x�: = max {n ∈ Z | n → x}

denotes the floor function.
Which identities between hypergeometric functions correspond to the equality of

the three given hypergeometric representations for the Legendre polynomials?
Note that we are not yet able to prove that the three different series representations

for the Legendre polynomials represent the same family of functions. This assertion
will be proved in Chap. 4, Exercise 4.3.

Exercise 2.13 Give a hypergeometric representation for the sum and difference of
consecutive Legendre polynomials Pn+1(x)± Pn(x). Try to give one for Pn+2(x)±
Pn(x). What happens?

Exercise 2.14 (Apéry Numbers, see [Apéry79]) Convert the Apéry numbers

An :=
n∑

k=0

(
n
k

)2( n + k
k

)2

into hypergeometric notation.


 Exercise 2.15 Write the Maple function hyperterm(upper,lower,x,k)
(in terms of pochhammer) that was utilized in Session 3.11.

Exercise 2.16 (Bieberbach Conjecture, see [deBranges85]) The following sum was
an essential tool in the proof of the Bieberbach conjecture by de Branges in 1984
[deBranges85] (see also Example 7.8)

n∑
j=k

(−1)k+ j
(

2 j
j − k

)(
n + j + 1

n − j

)
e− j t .

Convert into hypergeometric notation under the hypothesis that k denotes a positive
integer.

http://dx.doi.org/10.1007/978-1-4471-6464-7_4
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Exercise 2.17 Convert the identity (see [GKP94], p. 171)

∈∑
k=−∈

(−1)k(
2 n + 2 b + 2 c + 2 d
n + b + c + d + k

)
(

n + b
n + k

) (
b + c
b + k

) (
c + d
c + k

)(
d + n
d + k

)
=

Γ (n+b+c+d+1)Γ (n+b+c+1)Γ (n+b+d+1)Γ (n+c+d+1)Γ (b+c+d+1)

n!Γ (2n + 2b + 2c + 2d + 1) Γ (n + c + 1) Γ (b + d + 1) Γ (b + 1) Γ (c + 1) Γ (d + 1)
.

into hypergeometric notation. What are the natural bounds?

Exercise 2.18 Maple’s expand procedure expands Γ function terms Γ (a + k) for
integer k in terms of Γ (a). When followed by normal to cancel common factors,
this gives an alternative way to decide the rationality of expressions involving Γ

terms.
Time the simplification of the expressions Γ (k + 1000)/Γ (k + 999), and Γ (k +

5000)/Γ (k + 4999) using normal(expand(…)) and simpcomb. Explain!

Exercise 2.19 Let ak denote the kth summand of the generalized hypergeometric

function p Fq

⎤
α1,...,αp
β1,...,βq

∣∣∣ x
⎥
. Show that the following limit procedure generates the

mth partial sum

m∑
k=0

ak = lim
ε≈0

p+1 Fq+1

( −m, α1, . . . , αp

−m + ε, β1, . . . , βq

∣∣∣∣ x

)
.

Exercise 2.20 Show that Kummer’s confluent hypergeometric function is the fol-
lowing limiting case13 of Gauss’ hypergeometric function

1 F1

(
a
c

∣∣∣∣ x

)
= lim

b≈∈ 2 F1

(
a, b

c

∣∣∣∣ x

b

)
.

Exercise 2.21 Prove the following equations for the q-Pochhammer symbol:

(a) (a; q)n = (a; q)∈
(aqn; q)∈ ,

(b) 1−aq2n

1−a = (q
√

a; q)n (−q
√

a; q)n

(
√

a; q)n (−√
a; q)n

,

(c) (a; q)n (−a; q)n = (
a2; q2

)
n ,

(d) (a; q)n = (
q1−n/a; q

)
n (−a)n q

(
n
2

)

.

13 This is a confluence process, again; hence the name of the function.
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Exercise 2.22 Prove (2.20).

Exercise 2.23 Show that for k, n ∈ N the relations

(a) [k]q ! = Γq(k + 1) ,

(b)

⎢
n
k

⎣
q

= (q; q)n
(q; q)k ·(q; q)n−k

are valid.

Exercise 2.24 Work out the connection between the binomial theorem (2.21) and the
q-binomial theorem (2.22).

Exercise 2.25 Prove the q-binomial theorem (2.22). Hint: Deduce the functional
equation

f (a, x) = (1 − ax) f (aq, x)

for f (a, x): = 1φ0

(
a
−

∣∣∣∣ q, x

)
by series manipulations, and use induction to show

that
f (a, x) = (ax; q)n f (aqn, x)

which gives
f (a, x) = (ax; q)∈ f (0, x)

for n ≈ ∈ (see [Gasper97]).

Exercise 2.26 Show that

1φ0

(
a
−

∣∣∣∣ q, x

)
· 1φ0

(
b
−

∣∣∣∣ q, ax

)
= 1φ0

(
ab
−

∣∣∣∣ q, x

)
.
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Chapter 3
Hypergeometric Database

In this chapter we list some of the major hypergeometric identities. Note that most of
these do not require any variables to have integer values. We give examples showing
how this database can be used in connection with Algorithm 2.8 to generate binomial
identities.

The following identities can be found in the book of Bailey [Bailey35], the hy-
pergeometric “bible”. Many more hypergeometric identities are known, but despite
this it turns out that most identities that occur “in practice” can be traced back to one
of those given here (see e.g. [Roy87]). Since the current chapter will give no more
than an idea of how such a database can be used to generate identities, we do not
emphasize a “completion” of the given list.

In later chapters, we will give other methods by means of which binomial identities
can be discovered without referring to such a database.

Note that, if not otherwise stated, a, b, c, d, e denote arbitrary complex numbers,
such that

(a) none of the occurring lower parameters is a nonpositive integer,

and

(b) the hypergeometric sums involved converge.

All series considered have radius of convergence 1, and are evaluated at some bound-
ary point. One can show that for p = q + 1 the generalized hypergeometric function
p Fq converges absolutely on the unit circle if

Re

⎛
⎝

q∑
j=1

β j −
p∑

j=1

α j

⎞
⎠ > 0,

(see [Rainville60], Chap. 5). Throughout, the variable n denotes a nonnegative
integer.

W. Koepf, Hypergeometric Summation, Universitext, 35
DOI: 10.1007/978-1-4471-6464-7_3, © Springer-Verlag London 2014
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Hypergeometric Database

1. (Gauss) ([Bailey35], pp. 2–3)

2 F1

(
a, b

c

∣∣∣∣ 1

)
= (c − b)−a

(c)−a
= Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
. (3.1)

If −a = n ∞ N�0, this is the Chu-Vandermonde identity

2 F1

( −n, b
c

∣∣∣∣ 1

)
= (c − b)n

(c)n
.

2. (Kummer) ([Bailey35], p. 9)

2 F1

(
a, b

1 + a − b

∣∣∣∣−1

)
= (1 + a)−b

(1 + a/2)−b
= Γ (1 + a − b)Γ (1 + a/2)

Γ (1 + a)Γ (1 + a/2 − b)
.

3. (Pfaff-Saalschütz) ([Bailey35], p. 9)

3 F2

(
a, b,−n

c, 1 + a + b − c − n

∣∣∣∣ 1

)
= (c − a)n (c − b)n

(c)n (c − a − b)n
.

4. (Dixon) ([Bailey35], p. 13)

3 F2

(
a, b, c

1 + a − b, 1 + a − c

∣∣∣∣ 1

)
= (1 + a)−c (1 + a/2 − b)−c

(1 + a/2)−c (1 + a − b)−c

= Γ (1 + a/2)Γ (1 + a − b)Γ (1 + a − c)Γ (1 + a/2 − b − c)

Γ (1 + a)Γ (1 + a/2 − b)Γ (1 + a/2 − c)Γ (1 + a − b − c)
.

5. (Watson, Whipple) ([Bailey35], p. 16)

3 F2

(
a, b, c

(a + b + 1)/2, 2c

∣∣∣∣ 1

)
=

∈
π Γ

( 1+2c
2

)
Γ

( 1+a+b
2

)
Γ

( 1−a−b+2c
2

)

Γ
( 1+a

2

)
Γ

( 1+b
2

)
Γ

( 1−a+2c
2

)
Γ

( 1−b+2c
2

) .

6. (Whipple) ([Bailey35], p. 16)

3 F2

(
a, 1 − a, c

e, 1 + 2c − e

∣∣∣∣ 1

)
= π 21−2cΓ (e)Γ (1 + 2c − e)

Γ
( a+e

2

)
Γ

( a+1+2c−e
2

)
Γ

( 1−a+e
2

)
Γ

( 2+2c−a−e
2

) .

We do not prove any of these identities now. All of them, and many more, will be
proved later by several methods.

In order to find a hypergeometric term representation for a given series, when
such a list of hypergeometric identities is at hand, one may utilize Algorithm 2.8.
This converts the sum under consideration into hypergeometric form so that one can
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use the above list as a database. If the hypergeometric function is in the list, the job
is done. We practice some examples:

Example 3.1 We check first whether identity (2.3) can be found in our list. For

ak :=
(

n
k

)2

, we get

ak+1

ak
= (k − n)2

(k + 1)2 ,

and therefore
n∑

k=0

(
n
k

)2

= 2 F1

( −n,−n
1

∣∣∣∣ 1

)
.

This is obviously a particular case of the Chu-Vandermonde identity (b = −n, c =
1), and we have

n∑
k=0

(
n
k

)2

= (1 + n)n

(1)n
= (2n)!

n!2 =
(

2n
n

)
,

which proves (2.3).
It is worth remembering that the square binomial sum is a particular case of the

Chu-Vandermonde identity.

Example 3.2 To check identity (2.4) for even n, we replace n by 2m (m ∞ N) and

get for ak := (−1)k

(
2m
k

)2

the term ratio

ak+1

ak
= − (k − 2 m)2

(k + 1)2 ,

and therefore

2m∑
k=0

(−1)k
(

2m
k

)2

= 2 F1

( −2m,−2m
1

∣∣∣∣−1

)
.

This is not a particular case of the Chu-Vandermonde identity, since the 2 F1 is
evaluated at x = −1. But, fortunately, Kummer’s identity applies with a = b =
−2m, and gives formally

2m∑
k=0

(−1)k
(

2m
k

)2

= (1 − 2m)2m

(1 − m)2m
= Γ (1 − m)

Γ (1 − 2m)Γ (1 + m)
.

This is a formal result which cannot be a valid representation for our sum because
the Pochhammer symbols in both numerator and denominator have a zero factor in

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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common (since m is a positive integer). Equivalently, Γ function terms with negative
integer arguments occur. On the other hand, by a continuity argument (Kummer’s
identity is valid for m near an integer), we get the correct result through a limit
computation using the limit deduced in Exercise 1.2. However, we try to keep a rather
algebraic viewpoint and avoid limit computations as much as possible. Therefore, to
deduce a simpler representation (essentially, by cancelling the common zero factors
in both numerator and denominator) for

sm := (1 − 2m)2m

(1 − m)2m
,

we compute (by Algorithm 2.2)

sm+1

sm
= −4

m + 1/2

m + 1

(you see: it’s always the same trick!), and it follows that

2m∑
k=0

(−1)k
(

2m
k

)2

= sm = (1/2)m

m! (−4)m = (−1)m (2m)!
(m!)2 = (−1)m

(
2m
m

)
,

where we used Exercise 1.5 to rewrite the result in terms of factorials and binomial
coefficients. Hence, (2.4) is seen to be valid for even n.

Example 3.3 For identity (2.5), we again make a check for even n and replace n by

2m (m ∞ N). Then, we have for ak := (−1)k

(
2m
k

)3

, the term ratio

ak+1

ak
= (k − 2 m)3

(k + 1)3 ,

so that
2m∑

k=0

(−1)k
(

2m
k

)3

= 3 F2

( −2m,−2m,−2m
1, 1

∣∣∣∣ 1

)
.

Therefore, to utilize our database, we check whether there is a 3 F2 entry with unit
argument. There are four such entries, namely: Pfaff-Saalschütz’s, Dixon’s, Watson’s
and Whipple’s identities. First, let us try to match the arguments with those in the
Pfaff-Saalschütz identity. Therefore, we set n = −a = −b = 2m and c = 1. Thus,
we get 1 + a + b − c − n = −2m, and since this does not equal 1 we don’t find a
match. On the other hand, with Dixon’s identity, the choice a = b = c = −2m is
successful.

Formally, we have therefore that

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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2m∑
k=0

(
2m
k

)3

= (1 − 2m)2m (1 + m)2m

(1 − m)2m (1)2m
.

Again, this is only a formal result. As in Example 3.2, we use Algorithm 3.2 to
deduce the term ratio

sm+1

sm
= −27

(m + 1/3) (m + 2/3)

(1 + m)2

for

sm := (1 − 2m)2m (1 + m)2m

(1 − m)2m (1)2m
,

to deduce the standard representation

sm = (−27)m (1/3)m (2/3)m

m!2 .

Using Exercise 1.4, we finally have (2.5), for even n.
This example shows that the cube binomial sum is a particular case of Dixon’s

identity.

Example 3.4 We continue with Example 3.10, where we discovered that, for m < n

m∑
k=0

(−1)k
(

n
k

)
= (−1)m

(
n
m

)
2 F1

( −m, 1
n − m + 1

∣∣∣∣ 1

)
.

We see that this representation is again a particular case of the Chu-Vandermonde
identity and leads to

m∑
k=0

(−1)k
(

n
k

)
= (−1)m

(
n
m

)
(n − m)m

(n − m + 1)m
= (−1)m n − m

n

(
n
m

)
.

Note that in Exercise 3.10 this result will be obtained by other means. Furthermore,
we will meet this result later in connection with Gosper’s algorithm.

Example 3.5 (Székely Identity, see [Székely85]). Finally, we try to find a hyperge-
ometric term representation for the series

F =
∞∑

k=−∞
ak :=

∞∑
k=−∞

(
A + B + C + D + E − k

E − k

) (
A + D
k + D

) (
B + C
k + C

)

(3.2)

=
(

A + C + D + E
A + C

) (
B + C + D + E

C + E

)
,

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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given first by Székely [Székely85] who proved this identity by combinatorial means
(for integer-valued variables).

We get the term ratio

ak+1

ak
= (k − A) (k − B) (k − E)

(k − (A + B + C + D + E)) (k + 1 + D) (k + 1 + C)
.

Since there is no (k + 1)-term in the denominator, we need an assumption about
some of the variables. Assuming C is an integer, we may shift the summation by −C
and get

F =
(

A+B+2 C+D+E
E + C

)(
A + D
D − C

)
3 F2

( −A − C, −B − C, −C − E
−(A+B+2C+D+E), 1+D−C

∣∣∣∣ 1

)
.

This is a particular case of the Pfaff-Saalschütz identity with the choice n := C +
E, a := − A − C, b := − B − C and c := − (A + B + 2C + D + E) if we further
assume E to be an integer.

Hence, the Pfaff-Saalschütz identity gives

F =
(

A+B+2 C+D+E
E + C

)(
A + D
D − C

)
(−B−C−D−E)C+E (−A−C−D−E)C+E

(−A − B − 2C − D − E)C+E (−D − E)C+E
.

To simplify the result further, we observe that the main integer variable is now
n = C + E . Therefore, replacing E by n − C and denoting the last term for F by
Fn , with the aid of the term ratio

Fn+1

Fn
= (n + A + D + 1) (n + B + D + 1)

(n + D + 1 − C) (n + 1)
,

we have the reformulation

F =
(

A + D
D − C

)
(A + D + 1)C+E (B + D + 1)C+E

(C + E)! (D + 1 − C)C+E
.

Converting the Pochhammer symbols and the binomial coefficients to Γ function
terms according to (1.5) and (1.11) shows

F = Γ (A + C + D + E + 1)Γ (B + C + D + E + 1)

Γ (B + D + 1)Γ (D + E + 1)Γ (C + E + 1)Γ (A + C + 1)
,

which obviously is (3.2). →
The examples given show that the database can be used efficiently to find hypergeo-
metric term representations of binomial sums. On the other hand, the procedure is not
always straightforward but needs limit considerations, or other tricks. Furthermore,
it cannot be a safe assumption that we will ever have a complete list of all valid
hypergeometric identities at hand. Therefore, we will develop other methods soon.

http://dx.doi.org/10.1007/978-1-4471-6464-7_1
http://dx.doi.org/10.1007/978-1-4471-6464-7_1
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Session 3.6 Maple knows a lot about hypergeometric functions, and can reproduce
some hypergeometric identities.

For this purpose, one may use the procedure hypergeom (upper,lower,x)
representing the hypergeometric function whose upper and lower parameters are
given by the lists upper and lower, and argument x . We get for example

> term:=hypergeom([a,b],[c],1);

term := 2 F1(a, b; c; 1)

> simplify(term);

Γ (c) Γ (c − a − b)

Γ (c − a) Γ (c − b)
> simplify(hypergeom([a,b],[1+a-b],-1));

2−a∈
π Γ (1 + a − b)

Γ (1/2 + 1/2 a) Γ (1 + 1/2 a − b)
> simplify(hypergeom([a,b,-n],[c,1+a+b-c-n],1))
> assuming(n,integer);

3 F2(a, b,−n; c, 1 + a + b − c − n; 1)

> simplify(hypergeom([a,b,c],[1+a-b,1+a-c],1));

2−a∈
π Γ (1 + a − b) Γ (1 + a − c) Γ (1 + 1/2 a − b − c)

Γ (1/2 + 1/2 a) Γ (1 + 1/2 a − b) Γ (1 + 1/2 a − c) Γ (1 + a − b − c)
> simplify(hypergeom([a,b,c],[(a+b+1)/2,2*c],1));∈

π Γ (c + 1/2) Γ (1/2 + 1/2 a + 1/2 b) Γ (1/2 − 1/2 b − 1/2 a + c)

Γ (1/2 + 1/2 a) Γ (1/2 + 1/2 b) Γ (1/2 − 1/2 a + c) Γ (1/2 − 1/2 b + c)
> simplify(hypergeom([a,1-a,c],[e,1+2*c-e],1));

2
Γ (e) Γ (1 + 2 c − e) π 4−c

Γ (1/2 − 1/2 a + 1/2 e) Γ (1 − 1/2 a + c − 1/2 e) Γ (1/2 a + 1/2 e) Γ (1/2 a + 1/2 + c − 1/2 e)

We see that our hypergeometric database (except for the Pfaff-Saalschütz identity)
is accessible in Maple although the output differs modulo an application of the
duplication formula.

If Maple cannot represent binomial sums in closed form, it sometimes converts
them into hypergeometric notation:

> sum(binomial(n,k)ˆ3,k=0..n);

3 F2(−n,−n,−n; 1, 1; −1)

Finally, we reproduce the computations for the Székely identity:
> summand:=binomial(A+B+C+D+E-k,E-k)*binomial(A+D,k+D)*
> binomial(B+C,k+C);

summand :=
(

A + B + C + D + E − k
E − k

)(
A + D
k + D

)(
B + C
k + C

)

> ratio(summand,k);

(E − k) (A − k) (B − k)

(k + 1 + D) (k + 1 + C) (A + B + C + D + E − k)
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> init:=simplify(eval(summand,k=-C));

init :=
(

A + B + 2 C + D + E
E + C

)(
A + D
D − C

)

> term:=init*
> hyperterm([-B-C-D-E,-A-C-D-E,1],[-A-B-2*C-D-E,-D-E],1,C+E):

> term:=subs(E=n-C,term):

> ratio(term,n);

− (A + D + n + 1) (B + D + n + 1)

(−D − n − 1 + C) (n + 1)
> expr:=eval(subs(pochhammer=1,n=0,term));

expr :=
(

A + D
D − C

)

> simpcomb(expr*hyperterm([A+D+1,B+D+1],[D+1-C],1,C+E));

Γ (A + C + D + E + 1) Γ (B + C + D + E + 1)

Γ (A + C + 1) Γ (B + D + 1) Γ (1 + D + E) Γ (E + C + 1)

The following Maple procedure Sumtohyper(term,k) is an implementation of
Algorithm 2.8, for the case that no shift is necessary, and automates the conversion
of binomial sums into hypergeometric notation. A complete version (including the
shifting) is available in the hsum package.

Sumtohyper :=proc(f,k)
local rat,num,den,x,numlist,denlist,init,i,j;
init :=eval(f,k=0);
if init=0 then

ERROR("shift necessary")
end if;
rat := simpcomb(subs(k=k+1,f)/f);
if not type(rat,ratpoly(anything,k)) then

ERROR("cannot be converted into hypergeometric form")
end if;
num :=numer(rat);
den :=denom(rat);
numlist :=-[solve(num,k)];
denlist :=-[solve(den,k)];
if not(member(1,denlist,’i’)) then

ERROR("shift necessary or no conversion possible")
end if;
x :=lcoeff(num,k)/lcoeff(den,k);
denlist :=subsop(i=NULL,denlist);
init*Hypergeom(numlist,denlist,x)
end proc:

Note that Sumtohyper gives the result using the inert form Hypergeom of
hypergeom to avoid automatic evaluation. We get:

> Sumtohyper(binomial(n,k)ˆ2,k);

Hypergeom ([−n,−n], [1], 1)
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> Sumtohyper((-1)ˆk*binomial(2*m,k)ˆ2,k);

Hypergeom ([−2 m,−2 m], [1],−1)

> Sumtohyper((-1)ˆk*binomial(2*m,k)ˆ3,k);

Hypergeom ([−2 m,−2 m,−2 m], [1, 1], 1)

Note that the hsum package furthermore contains the rather similar function
termtohyper which uses the same algorithm to rewrite a hypergeometric term in
its normal hypergeometric form as the coefficient of a hypergeometric function. For
this procedure only the output lineinit*Hypergeom(numlist,denlist,x)
has to be changed towards the hypergeometric term init*hyperterm
(numlist, denlist,x,k).

Example 3.7 (Hypergeometric Transformations) Here we would like to deduce the
Pfaff transformation

1

(1 − x)a
· 2 F1

(
a, b

c

∣∣∣∣− x

1 − x

)
= 2 F1

(
a, c − b

c

∣∣∣∣ x

)
(3.3)

which is valid whenever |x | < 1/2. The left-hand side is the series

∞∑
k=0

(a)k (b)k

(c)k k! (−1)k xk (1 − x)−k−a,

and expanding (1 − x)−k−a by the binomial theorem, one gets

∞∑
k=0

∞∑
j=0

(a)k (b)k (−1)k

(c)k k!
(a + k) j

j ! x j+k .

The coefficient of xn in this double series is

n∑
k=0

(a)k (b)k (−1)k (a + k)n−k

(c)k k! (n − k)! = (a)n

n!
n∑

k=0

(b)k (−n)k

(c)k k! = (a)n (c − b)n

(c)n n! (3.4)

by an application of the Chu-Vandermonde identity (you might use termtohyper
to obtain the first equality, see Exercise 3.8). Hence (3.3) is deduced. More hyperge-
ometric transformations of this type are considered in Exercise 3.7. →
We would like to point out that there is a Mathematica package written by Christian
Krattenthaler [Krattenthaler94a] which contains a database for generalized hyperge-
ometric functions that is much larger than ours. In particular, this package deals with
all kinds of hypergeometric transformations like those of Kummer, Pfaff and Euler
(see the previous example and Exercise 3.7). With this package these transformations
and many more can be carried out automatically.
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q-Hypergeometric Database

In the last chapter we introduced q-hypergeometric functions, and we saw a q-
analogue of the binomial theorem. Similar q-analogues exist for the entries of our
database and for other hypergeometric identities. As an example, we state the q-
analogues of the Gauss and of the Pfaff-Saalschütz identities (due to Jacobi and
Heine, and to Jackson, respectively):

2φ1

(
a, b

c

∣∣∣∣ q,
c

ab

)
= (c/a; q)∞ (c/b; q)∞

(c; q)∞ (c/(ab); q)∞
,

∣∣∣ c

ab

∣∣∣ < 1, (3.5)

3φ2

(
q−n, a, b
c, ab

cqn−1

∣∣∣∣∣ q, q

)
= (c/a; q)n (c/b; q)n

(c; q)n (c/(ab); q)n
. (3.6)

Replacing a, b, c by qa, qb, and qc, respectively, and letting q ≈ 1, one obtains the
identities of Gauss and Pfaff-Saalschütz.

Note that the method which was developed in this chapter can be adapted to
the q-case. In particular, Christian Krattenthaler designed a Mathematica package
[Krattenthaler94b] containing a large database for q-hypergeometric functions.

With regard to Maple, the qsum package contains q-analogues of the algorithms
discussed here. After loading this package by read "qsum.mpl"; you have ac-
cess to a procedure qsimpcomb(expr) which performs simplifications to decide
the rationality of ratios ak+1/ak in terms of qk . The procedure qratio(expr,k)
computes the term ratio of expr w.r.t. k and simplifies it. Furthermore, you can
use the procedure sum2qhyper(expr,q,k) to convert a q-hypergeometric sum
into q-hypergeometric notation. For input purposes the procedures qpochhammer
(a,q,k), qfactorial(k,q), qGAMMA(k,q), qbinomial(n,k,q),
qbrackets(k,q) as well asqphihyperterm(upper,lower,q,x,k), are
accessible.

Some examples for the use of the package are given by
> qsimpcomb(qˆbinomial(k,2)*qbinomial(n,k,q));

q1/2k2
qpochhammer (q, q, n)

q1/2 kqpochhammer (q, q, k) qpochhammer (q, q, n − k)
> qratio(qˆbinomial(k,2)*qbinomial(n,k,q),k);

− qk − qn

−1 + qqk

> sum2qhyper(qˆbinomial(k,2)*qbinomial(n,k,q),q,k);

φ
([q−n], [], q,−qn)
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Further Reading

For further reading on the hypergeometric database we refer to[AAR99, Chaps. 3--5],
and for the q-case to [GR90]. Prudnikov et al. [PBM90] is an encyclopedia of such
identities.

Exercises

Exercise 3.1 Prove (2.4)–(2.5), for odd n, using the database.

Exercise 3.2 Show that the identities

(a)
n∑

k=0

(
a
k

)(
b

n − k

)
=

(
a + b

n

)
,

(b)
n∑

k=0

(
n
k

)(
s

t − k

)
=

(
n + s

t

)
,

(c)
n∑

k=0

(
n
k

)(
s

t + k

)
=

(
n + s
n + t

)
,

all are special instances of the Chu-Vandermonde identity.

Exercise 3.3 Find, using the database, hypergeometric terms for the sums

(a)
2n∑

k=0
(−1)k

(
2n
k

)(
2k
k

)(
4n − 2k
2n − k

)
,

(b)
n∑

j=k
(−1)k+ j

(
2 j

j − k

)(
n + j + 1

n − j

)
,

(c)
n∑

k=0

(
n
k

)(
2n
k

)
,

(d)
n∑

k=0
(−1)k

(
n
k

) (
n+x−k

x − k

)
y

y+x−k
;

compare Exercise 2.16.

Exercise 3.4 Prove, using the database, Stanley’s identity (see e.g. [Strehl94], (19))

∞∑
k=−∞

(
a

m − k

)(
b

n − k

)(
a + b + k

k

)
=

(
a + n

m

)(
b + m

n

)
.

Exercise 3.5 Which of the following binomial sums are special cases of results in
our database?

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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(a)
n∑

k=0
k

(
n
k

)
,

(b)
n∑

k=0
(−1)k

(
n
k

)(
b + k

n

)
,

(c)
n∑

k=0
(−1)k

(
n
k

)(
2k
n

)
,

(d)
n∑

k=0
(−1)k

(
n
k

)(
3k
n

)
.

In the affirmative cases, give the hypergeometric term results. Hint: If necessary,
distinguish between odd and even n.

Exercise 3.6 Find hypergeometric terms for the following sums using the database.

(a)
n∑

k=0
(−1)k

(
n
k

)(
2n − k
m − k

)
,

(b)
n∑

k=0
(−1)k

(
n
k

)(
k + s

t

)
.

Exercise 3.7 Prove the following identities between hypergeometric functions using
the database.

(a) (Kummer) ex · 1 F1

(
a
b

∣∣∣∣−x

)
= 1 F1

(
b − a

b

∣∣∣∣ x

)
,

(b) (Euler) (1 − x)a+b−c · 2 F1

(
a, b

c

∣∣∣∣ x

)
= 2 F1

(
c − a, c − b

c

∣∣∣∣ x

)
.

Hint: Use the method of Example 3.7.

Exercise 3.8 Use termtohyper to deduce the left equation of (3.4).

Exercise 3.9 Use the Pfaff transformation of Example 3.7 to verify the identity

n∑
k=0

(
n
k

)(−n − 1
k

) (
1 − x

2

)k

= 1

2n

n∑
k=0

(
n
k

)2

(x + 1)n−k(x − 1)k

between two representations of the Legendre polynomials.

Exercise 3.10 Use Exercise 2.19 to simplify
m∑

k=0
(−1)k

(
n
k

)
.

Exercise 3.11 Prove the following identity for the Pochhammer symbols

(x + y)n =
n∑

k=0

(
n
k

)
(x)k (y)n−k .
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Exercise 3.12 Show that

sn :=
n∑

k=0

(−1)k
(

n
k

)(
2k
n

)
= (−2)n .

Hint: Distinguish between even and odd n.

Exercise 3.13 Assume n = −a ∞ N�0. Bring the identities of Watson and Whipple
to a form like identities (2.4)–(2.5), i.e. derive different formulas for even and odd
n. (In this form, the results look more natural, and there is no need for the number π

to occur.) Hint: Calculate sn+2/sn for the right-hand sides sn and read off the results
for even and odd n, respectively.

Exercise 3.14 A generalized hypergeometric function p Fq

(
α1,...,αp
β1,...,βq

∣∣∣ x
)

is called

• k-balanced if b1 + b2 + · · · + bq = a1 + a2 + · · · + ap + k;
• balanced or Saalschützian if it is 1-balanced;
• well-poised, if p = q + 1, and 1 + a1 = b1 + a2 = b2 + a3 = · · · = bq + ap;
• nearly-poised of the first kind, if p = q+1, and b1+a2 = b2+a3 = · · · = bq +ap.
• nearly-poised of the second kind, if p = q +1, and 1+a1 = b1 +a2 = b2 +a3 =

· · · = bq−1 + ap−1.

Check which of these properties are satisfied by the entries of our database.

Exercise 3.15 Convert into q-hypergeometric notation:

(a)
n∑

k=0

[
n
k

]
q

xk,

(b)
n∑

k=0

[
n
k

]2

q
xk,

(c)
n∑

k=0
q

(
k + j

2

) [
n
k

]
q
,

(d)
n∑

k=0
qk2

[
n
k

]
q

[
n

n − k

]
q
,

(e)
2n∑

k=0
qk2

[
2n
k

]
q

[
n

n − k

]
q
,

(f)
2n∑

k=0
qk2

[
2n
k

]
q

[
2n

2n − k

]
q
.

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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Exercise 3.16 Show that the identity

n∑
k=0

qk2
[
n
k

]2

q
=

(∈
q; q

)
n

(−∈
q; q

)
n (−q; q)n

(q; q)n

is a special case of the q-Gauss identity (3.5) for a = q−n ,

2φ1

(
q−n, b

c

∣∣∣∣ q,
cqn

b

)
= (cqn; q)∞ (c/b; q)∞

(c; q)∞ (cqn/b; q)∞
= (c/b; q)n

(c; q)n
(3.7)

which is the q-analogue of the Chu-Vandermonde identity. Prove the second equality
in (3.7).

Exercise 3.17 Show that by reversing the order of summation, the q-Chu-
Vandermonde identity yields the form

2φ1

(
q−n, b

c

∣∣∣∣ q, q

)
= (c/b; q)n

(c; q)n
bn .
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Chapter 4
Holonomic Recurrence Equations

The main algorithmic idea for finding hypergeometric term representations of
hypergeometric series goes back to Celine Fasenmyer (often called Sister Celine):
Her idea is to find a recurrence equation for the sum ([Fasenmyer45, Fasenmyer49],
see also [Zeilberger82]). If the resulting recurrence equation can be solved explicitly,
you are done. In the 1940s, under the direction of Earl Rainville, Celine Fasenmyer
wrote her Ph.D. thesis [Fasenmyer45] on techniques to find such a recurrence equa-
tion. Doron Zeilberger [Zeilberger90a, Zeilberger95] extended this idea in the 1990s.
In ([Rainville60], Chap. 14), Rainville presented one of Fasenmyer’s techniques.
Another one (compare [Fasenmyer49]) will be the topic of the present chapter.

Example 4.1 The easiest example for Fasenmyer’s algorithm concerns the sum

sn : =
n∑

k=0

(
n
k

)
=

∞∑
k=−∞

(
n
k

)
.

It is well-known that the binomial coefficients satisfy the Pascal triangle recurrence
equation

(
n + 1
k + 1

)
=

(
n
k

)
+

(
n

k + 1

)
.

Summing this identity for k = −∞, . . . ,∞ yields

∞∑
k=−∞

(
n + 1
k + 1

)
=

∞∑
k=−∞

(
n
k

)
+

∞∑
k=−∞

(
n

k + 1

)

or equivalently
sn+1 = 2 sn (4.1)

W. Koepf, Hypergeometric Summation, Universitext, 49
DOI: 10.1007/978-1-4471-6464-7_4, © Springer-Verlag London 2014
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since the two right-hand sums agree because they differ only by a shift of the sum-
mation variable. From (4.1) and s0 = 1 one easily deduces sn = 2n by induction or
by the hypergeometric coefficient formula.

You may not have seen this direct proof for the identity

n∑
k=0

(
n
k

)
= 2n (4.2)

before. Observe that this method not only proved (4.2) but the right-hand side was
directly computed given the left-hand side.

To illustrate the use of this technique by a less simple example, let us for the
moment assume we have found the recurrence equation

n sn+1 − 2 (n + 1) sn = 0

for the sum

sn : =
n∑

k=0

k

(
n
k

)
.

If so, then we would have

sn+1

sn
= 2

n + 1

n
.

This equation tells us that a shift by one (putting a (n + 1) term in the denominator)
makes sn the coefficient of a generalized hypergeometric series. For tn : = sn+1 we
have therefore

tn+1

tn
= 2

n + 2

n + 1
,

so that using the initial value t0 = s1 =
1∑

k=0
k

(
1
k

)
= 1, it follows from the

coefficient formula (2.8)–(2.9)

tn = (2)n
2n

n! = (n + 1) 2n,

hence,

sn = tn−1 = n 2n−1 (n ∈ 1). �
But how do we find a recurrence equation for a hypergeometric sum? Let us give
some examples along the lines of Fasenmyer’s development.

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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Example 4.2 We consider the above example sum

sn =
∞∑

k=−∞
F(n, k) (4.3)

with

F(n, k) = k

(
n
k

)
.

Celine Fasenmyer’s idea is to deduce, in the first step, a mixed recurrence equation

I∑
i=0

J∑
j=0

ai j F(n + j, k + i) = 0 (4.4)

for the summand F(n, k) with the property that the coefficients ai j = ai j (n) (i =
0, . . . , I, j = 0, . . . , J ) are polynomials with respect to n and do not depend on k.
Such a recurrence equation is called k-free; we will see soon why this is an important
issue.

Let us choose I = J = 1. Then we have the setup

a00 F(n, k) + a01 F(n + 1, k) + a10 F(n, k + 1) + a11 F(n + 1, k + 1) = 0.

For simplicity, let’s choose a00 = 1 (which would obviously be a bad choice if a
recurrence equation with a00 = 0 were to exist).

Division by F(n, k) yields

1 + a01
F(n + 1, k)

F(n, k)
+ a10

F(n, k + 1)

F(n, k)
+ a11

F(n + 1, k + 1)

F(n, k)
= 0.

By an application of Algorithm 2.2 this results in a purely rational equation whenever
F(n, k) satisfies the hypotheses of Algorithm 2.2 with respect to both n and k.

In our case, we substitute the given F(n, k) = k

(
n
k

)
and obtain

1 + a01
n + 1

n + 1 − k
+ a10

n − k

k
+ a11

n + 1

k
= 0

which—after multiplication by the common denominator—results in the equation

(n + 1 − k) k + a01 (n + 1) k + a10 (n − k) (n + 1 − k) + a11 (n + 1) (n + 1 − k) = 0.

To find k-free coefficients ai j , we may consider the resulting expression as a poly-
nomial in k and equate coefficients. This leads to the linear system
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a10 = 1

n a10 + (n + 1) a11 = 0

(n + 1) a01 − (2n + 1)a10 − (n + 1) a11 = −(n + 1)

that we might solve with Maple:

> solve({a[1,0]=1,n*a[1,0]+(n+1)*a[1,1]=0,
> (n+1)*a[0,1]-(2*n+1)*a[1,0]-(n+1)*a[1,1]=-(n+1)},
> {a[0,1],a[1,0],a[1,1]});

{
a0,1 = 0, a1,0 = 1, a1,1 = − n

n + 1

}

therefore leading to the valid recurrence equation

(n + 1) F(n, k + 1) + (n + 1) F(n, k) − nF(n + 1, k + 1) = 0 (4.5)

for F(n, k).
Now we come to the second step: To deduce a recurrence equation for the series,

we sum the k-free recurrence equation (4.5) for k = −∞, . . . ,∞. Since the two
shifted series

sn =
∞∑

k=−∞
F(n, k) =

∞∑
k=−∞

F(n, k + 1)

have the same value (observe how helpful, again, the bilateral infinite summation
bounds are!), we get

2 (n + 1) sn − n sn+1 = 0

for sn , as announced. �
Note that the technique—if successful—obviously generates a homogeneous linear
recurrence equation with polynomial coefficients for sn . Such a recurrence equation
is called holonomic.

Example 4.3 Next, we would like to find a holonomic recurrence equation for the
Legendre polynomials. We recall the hypergeometric representation (see Exam-
ple 2.9)

Pn(x) =
∞∑

k=−∞

(
n
k

) (−n − 1
k

) (
1 − x

2

)k

.

Therefore, we set
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F(n, k) : =
(

n
k

) (−n − 1
k

) (
1 − x

2

)k

.

We note that Fasenmyer’s method fails for I = J = 1 since the linear system to be
solved in this case has no solution (check!). Therefore, we try the next best choice
and set I = 1, J = 2:

0 = a00 F(n, k) + a01 F(n + 1, k) + a02 F(n + 2, k)

+a10 F(n, k + 1) + a11 F(n + 1, k + 1) + a12 F(n + 2, k + 1).

Note that by induction, all of the ratios F(n+ j,k+i)
F(n,k)

(i, j → N�0) turn out to be rational
and can be treated by Algorithm 2.2. In the present case, division by F(n, k) yields

0 = a00 + a01
n + 1 + k

n + 1 − k
+ a02

(n + 2 + k) (n + 1 + k)

(n + 2 − k) (n + 1 − k)

+ a10
(n − k) (n + 1 + k) (x − 1)

2 (k + 1)2 + a11
(x − 1) (n + 2 + k) (n + 1 + k)

2 (k + 1)2

+ a12
(x − 1) (k + 3 + n) (n + 2 + k) (n + 1 + k)

2 (k + 1)2 (n + 1 − k)

which—after multiplication by the common denominator—results in a large poly-
nomial equation of degree 4 in k. Equating coefficients gives a huge linear system
with the astonishingly simple general solution

a00 = 0,

a01 = (x − 1) (2 n + 3)

n + 1
a10,

a02 = 0,

a10 = a10,

a11 = −2 n + 3

n + 1
a10,

a12 = n + 2

n + 1
a10.

Therefore, we have found a recurrence equation. Setting a10 = 1 yields, after mul-
tiplication by the common denominator,

0 = (n + 2) F(n + 2, k + 1) − (2 n + 3) F(n + 1, k + 1) + (n + 1) F(n, k + 1)

+ (1 − x) (2 n + 3) F(n + 1, k).

Summing with respect to k, finally gives the three-term recurrence equation

(n + 2) Pn+2(x) − (2 n + 3) x Pn+1(x) + (n + 1) Pn(x) = 0

for the Legendre polynomials. �
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Now we have understood Fasenmyer’s recipe and we are prepared to give a detailed
description of her method.

Algorithm 4.4 (Fasenmyer) The following algorithm searches for a holonomic
recurrence equation for series of the form (4.3).

1. (kfreerecursion)
Choose appropriate numbers I, J → N. Then the following procedure finds a
k-free linear recurrence equation with polynomial coefficients (4.4) of order (I, J )

if such a recurrence equation is valid.

(a) Input: F(n, k) satisfying the hypotheses of Algorithm 2.2 with respect to
both n and k.

(b) Use the generic expression (4.4) with as yet undetermined ai j and substitute
the given F(n, k).

(c) Divide by F(n, k) and apply Algorithm 2.2 to rationalize the resulting expres-
sion.

(d) Bring this rational expression into normal form, i.e., put everything on a
common denominator, and multiply by it.

(e) Equate the coefficients with respect to k, i.e., set all coefficients of k-powers
equal to zero and solve the resulting linear system for the variables ai j (i =
0, . . . , I, j = 0, . . . , J ).

(f) If only the trivial solution ai j ≈ 0 exists, then no k-free recurrence equation
of order (I, J ) is valid; exit.

(g) If a solution exists, substitute it in (4.4) and multiply by the common denom-
inator.

(h) Output: The k-free recurrence equation for F(n, k) of the last step.

2. (fasenmyer)
Choose an appropriate number J , an upper bound for the order of the resulting
recurrence equation. Then the following procedure searches for a holonomic
recurrence equation for sn , given by (4.3).

(a) Input: The summand F(n, k) satisfying the hypotheses of Algorithm 2.2 with
respect to both n and k.

(b) Apply the procedure kfreerecursion to F(n, k), with I = J .1 If
this is successful, take the resulting k-free recurrence equation and replace
F(n + j, k + i) symbolically by sn+ j . This generates a holonomic recurrence
equation RE for sn .

(c) If the resulting recurrence equation RE is trivial (0 = 0) then exit.
(d) Output: The holonomic recurrence equation RE for sn of step (b).

Proof (kfreerecursion): Obviously, Algorithm 2.2 rationalizes the generic
expression in step (c) for the given type of input. Therefore, from now on, ratio-
nal arithmetic applies and it is clear that the resulting expression is identical to zero

1 This choice is random and might not be the best possible. For a more detailed discussion see
Theorem 7.10.
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if and only if its numerator is the zero polynomial with respect to k. Therefore, for
F(n, k) to satisfy a non-trivial k-free linear recurrence equation with polynomial
coefficients, it is necessary and sufficient that the equations system of step (e) has a
nontrivial solution. The rest ofkfreerecursion is straightforward linear algebra.

(fasenmyer): Summing the k-free recurrence equation

I∑
i=0

J∑
j=0

ai j F(n + j, k + i) = 0

for k = −∞, . . . ,∞, yields

0 =
∞∑

k=−∞

I∑
i=0

J∑
j=0

ai j (n) F(n + j, k + i)

=
I∑

i=0

J∑
j=0

ai j (n)

( ∞∑
k=−∞

F(n + j, k + i)

)

=
I∑

i=0

J∑
j=0

ai j (n) sn+ j =
J∑

j=0

(
I∑

i=0

ai j (n)

)
sn+ j

since ai j (n) does not depend on k. Therefore, the method described obviously leads
to a holonomic recurrence equation for sn if kfreerecursion was successful. �

We saw in Example 4.3 that the application of Fasenmyer’s method may lead to
rather complicated intermediate results, even if the end result is quite simple. This
is a typical situation for symbolic (i.e. non-numeric) algorithms and it is faster (and
safer) to let Maple do the calculations for us.

Session 4.5 The following Maple procedure kfreerec(f,k,n,kmax,nmax)
automates the search for the k-free recurrence equation of F(n, k) of order (I, J ) =
(kmax,nmax).

kfreerec:=proc(f,k,n,kmax,nmax)
local N,ansatz,variables,rec,i,j,l,solution,F,a;
if nargs>5 then F:=args[6] end if;
if nargs>6 then a:=args[7] end if;
N:=(kmax+1)*(nmax+1);
ansatz:=add(add(
a[i,j]*simpcomb(subs(n=n+j,k=k+i,f)/f),
j=0..nmax),i=0..kmax);

ansatz:=collect(numer(normal(ansatz)),k);
variables:={seq(seq(a[i,j],j=0..nmax),i=0..kmax)};
solution:={solve({coeffs(ansatz,k)},variables)};
if subs(op(solution),variables)={0} then
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ERROR(cat("No k-free recurrence equation of order
(",kmax,",",nmax,") exists"));

end if;
rec:=add(add(a[i,j]*F(n+j,k+i),j=0..nmax),i=0..kmax);
rec:=subs(op(1,solution),rec);
rec:=numer(normal(rec));
collect(rec,F,factor)=0
end proc:

Note that the use of optional fifth and sixth arguments, F and a, guarantees that no
global variables with these names interfere with our calculations.

Let us try this function on the above problems, and on some similar examples2:

> rec:=kfreerec(k*binomial(n,k),k,n,1,1,F,a);

rec := − (n + 1) a1,1 F (n, k) − (n + 1) a1,1 F (n, k + 1) + a1,1 F (n + 1, k + 1) n = 0

> subs(a[1,1]=1,rec);
− (n + 1) F (n, k) − (n + 1) F (n, k + 1) + F (n + 1, k + 1) n = 0

> rec:=kfreerec(binomial(n,k),k,n,1,1,F,a);
rec := −a1,1 F (n, k) − a1,1 F (n, k + 1) + a1,1 F (n + 1, k + 1) = 0

> subs(a[1,1]=1,rec);

−F (n, k) − F (n, k + 1) + F (n + 1, k + 1) = 0
The previous computation generated the Pascal triangle recurrence equation

−
(

n
k

)
−

(
n

k + 1

)
+

(
n + 1
k + 1

)
= 0

for the binomial coefficients automatically. In a similar fashion one gets for the
summand

(
n
k

)
xk yn−k

> rec:=kfreerec(binomial(n,k)*xˆk*yˆ(n-k),k,n,1,1,F,a);

rec := −a1,1x F (n, k) − a1,1 yF (n, k + 1) + a1,1 F (n + 1, k + 1) = 0

> subs(a[1,1]=1,rec);

−x F (n, k) − yF (n, k + 1) + F (n + 1, k + 1) = 0
Summing this extension of Pascal’s triangle recurrence obviously yields

2 Note that for reasons of efficiency expressions, sets, etc. in Maple are sorted by their memory
allocation, hence rather randomly. In particular, in different Maple sessions you might get differ-
ently sorted results. For this reason, some of the Maple procedures, e.g. solve, have random
effects. Therefore, executing the examples below in different Maple sessions may result in different
surviving variables ai j .
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(x + y) sn = sn+1

for the sum

sn =
n∑

k=0

(
n
k

)
xk yn−k

and therefore the binomial theorem

n∑
k=0

(
n
k

)
xk yn−k = (x + y)n .

Note that using the summand of the left-hand side we therefore generated the closed
form on the right-hand side automatically.

Next, we reproduce the result from Example 4.3

> rec:=kfreerec(binomial(n,k)*binomial(-n-1,k)*
> ((1-x)/2)ˆk,k,n,1,2,F,a);

rec := a1,0 (n + 1) F (n, k + 1) − a1,0 (−1 + x) (2 n + 3) F (n + 1, k)

− a1,0 (2 n + 3) F (n + 1, k + 1) + a1,0 (n + 2) F (n + 2, k + 1) = 0

> legendretermrec:=subs(a[1,0]=1,rec);

(n + 1) F(n, k + 1) − (−1 + x) (2 n + 3) F(n + 1, k)

− (2 n + 3) F(n + 1, k + 1) + (n + 2) F(n + 2, k + 1) = 0
> rec:=kfreerec((-1)ˆk*binomial(n,k)/k!*xˆk,k,n,1,2,F,a);

a0, 1 (n + 1) F(n, k + 1) + a0, 1 x F(n + 1, k) − a0, 1 (2 n + 3) F(n + 1, k + 1)

+ a0, 1 (n + 2) F(n + 2, k + 1) = 0

> laguerretermrec:=subs(a[0,1]=1,rec);

(n + 1) F(n, k + 1) + F(n + 1, k) x − (2 n + 3) F(n + 1, k + 1)

+ (n + 2) F(n + 2, k + 1) = 0

Furthermore, the last example generated a k-free recurrence equation for the sum-
mand of the Laguerre polynomials

Ln(x) : =
n∑

k=0

(−1)k

k!
(

n
k

)
xk .

The following Maple procedure combines the two steps and calculates a holonomic
recurrence equation for the sum using Fasenmyer’s method with I = J = nmax.
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fasenmyer:=proc(f,k,sn,nmax)
local F,a,n,S,i,j,rec;
if type(sn,function) then
S:=op(0,sn);
n:=op(1,sn)

else
n:=sn

end if;
rec:=lhs(kfreerec(f,k,n,nmax,nmax,F,a));
rec:=applyrule(F(n+j::integer,k+i::integer)=S(n+j),rec);
rec:=normal(solve(rec,S(n+nmax)));
rec:=denom(rec)*S(n+nmax)-numer(rec);
collect(rec,S,factor)=0
end proc:

By the use of normal (solve (. . .)), factors involving the parameters ai j that
are common to the coefficients of all terms Sn+ j in the resulting recurrence equation
are canceled.

Here are some holonomic recurrence equations:

> fasenmyer(k*binomial(n,k),k,s(n),1);

(−2 n − 2) s (n) + ns (n + 1) = 0

> fasenmyer(binomial(n,k),k,s(n),1);

s (n + 1) − 2 s (n) = 0

> legendrerec:=fasenmyer(
> binomial(n,k)*binomial(-n-1,k)*((1-x)/2)ˆk,k,s(n),2);

legendrerec := (n + 1) s (n) − x (2 n + 3) s (n + 1) + (n + 2) s (n + 2) = 0

> laguerrerec:=fasenmyer(
> (-1)ˆk*binomial(n,k)/k!*xˆk,k,s(n),2);

laguerrerec := (n + 1) s (n) + (−2 n − 3 + x) s (n + 1) + (n + 2) s (n + 2) = 0

Therefore, we have reproduced the three-term recurrence equation for the Legen-
dre polynomials that we saw in Example 4.3, and we have obtained the three-term
recurrence equation

(n + 2) Ln+2(x) + (x − 2 n − 3) Ln+1(x) + (n + 1) Ln(x) = 0

for the Laguerre polynomials.

The next example shows that it may happen that no k-free recurrence equation
exists.

Example 4.6 (Counterexample, [WZ92]) We consider the sum

sn : =
∞∑

k=−∞

1

k2 + n2 + 1
.
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We propose that for this input

F(n, k) : = 1

k2 + n2 + 1

no k-free recurrence equation exists (see [WZ92]). We choose this example even
though in the given case the sum under consideration is not finite. It is easy to see,
however, that a similar argument applies to the summand of the sum

Sn : =
∞∑

k=−∞

1

k2 + n2 + 1

(
n
k

)
=

n∑
k=0

1

k2 + n2 + 1

(
n
k

)
;

see Exercise 4.18.
Note that the number of variables ai j always equals V = (I + 1)(J + 1). In the

present case, it turns out that the number of equations E to be satisfied by the variables
ai j equals E = 2V − 1. Therefore, for any choice of I and J there are many more
equations than variables and no non-trivial solution can be expected.

To prove this, assume a k-free recurrence equation is valid for F(n, k). This cor-
responds to an equation of the form

I∑
i=0

J∑
j=0

ai j (n)

(k + i)2 + (n + j)2 + 1
= 0. (4.6)

The left-hand side is a rational function with respect to k. Since any rational
function over C is uniquely determined by a finite number of points, (4.6) is valid for
all k → C. Since not all ai j (n) are identically zero, the left-hand side is a nontrivial
sum of meromorphic terms with respect to the variable k. If we take one of the
complex poles k = k̃ → C of one of the summands, we note that all other summands
are finite at k = k̃. Hence for k = k̃ we obtain a contradiction of the form ∞ = 0,
and (4.6) cannot be valid. �
It can be shown that for input of a special type, the situation in the above example
cannot happen. If I = J , for this type of input, the number of linear equations grows
linearly with J rather than quadratically and hence, eventually, for large enough J , a
k-free recurrence equation must result. In Theorem 7.10, we will prove that for such
proper hypergeometric terms a k-free linear recurrence equation with polynomial
coefficients is satisfied. A hypergeometric term F(n, k) is called proper if it has
finite support, and is of the form F(n, k) = P(n, k)

Q(n,k)
R(n,k)

wnzk where P(n, k)

is a polynomial (polynomial part) and Q(n, k), R(n, k) are Γ -term products with
integer-linear arguments (factorial part).

If Fasenmyer’s algorithm applies, it can prove hypergeometric identities, as
Example 4.1 showed, and other identities as well: In Exercise 4.3, it is shown that
the three different hypergeometric representations (of the Legendre polynomials)
given in Exercise 2.12 define the same functions: just prove that the three different
representations satisfy the same holonomic recurrence equation and the same initial
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values. That’s it. This is Zeilberger’s paradigm [Zeilberger90a], which will be devel-
oped further in later chapters. Another easy adaption of Fasenmyer’s algorithm is
the computation of differential equations instead of recurrence equations, see Exer-
cise 4.4.

Note that Fasenmyer’s algorithm, although very intuitive, has several drawbacks,
some of them severe:

1. It does not state for which type of input it will be successful. However, Theo-
rem 7.10 gives a partial but satisfying answer to this question.

2. The procedure kfreerec is a decision procedure which will find a k-free recur-
rence equation of order (I, J ) whenever one exists. This is nice. On the other
hand, no prior knowledge about a safe choice for I and J is given. Compare
Theorem 7.10, again.

3. In the procedurefasenmyer, on the other hand, where the bound J for the order
of a proposed recurrence equation is given, no control over a safe choice for I is
known. Therefore we arbitrarily set I = J . See Theorem 7.10 for a priori bounds
for both I and J for proper hypergeometric terms. Moreover, we will discuss this
issue in the sequel, and show how it can be resolved intelligently.

4. Nobody can guarantee thatfasenmyerwill find the holonomic recurrence equa-
tion of lowest order valid for sn . If a holonomic recurrence equation of order J
is valid for the sum, whereas for no I → N a k-free recurrence equation of order
(I, J ) for the summand F(n, k) holds—which can happen—this recurrence equa-
tion for the sum cannot be found by the present method. Quite a few examples
of this type are in the exercises. This is therefore a severe problem that can be
partially resolved. This will also be discussed in the sequel.

5. The most important problem, however, is the complexity problem: The most
complicated and time-consuming part of the method illustrated in this chapter is
the solution of the linear system. This system has (I + 1)(J + 1) variables. If I
is large, this is much greater than J , and seems to be much more than necessary
to find a holonomic equation of order J having only J free coefficients. This
complexity behavior in the order of the resulting recurrence equation is the most
severe drawback of Fasenmyer’s method. For our choice I = J we have (J +1)2

variables to consider.

The last problem (5) of our list will be resolved in Chap. 7. The final tool is the
recurrence equation for the sum, which has order J . Zeilberger’s algorithm finds it
by solving a linear system with (essentially) J variables, in contrast to I J as the
method of this chapter. This might make the difference between being able or not
being able to solve the question under consideration.

Nevertheless there are ways to streamline Fasenmyer’s approach. Wegschaider
[Wegschaider97] developed a more efficient algorithm than Fasenmyer’s original
method in order to use the algorithm also for multiple summation. He modified
Fasenmyer’s algorithm in two ways, which we describe now briefly for the one-
dimensional case. These concepts can be easily adapted to the multivariate case, e.g.
to double or triple sums.

http://dx.doi.org/10.1007/978-1-4471-6464-7_7
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Firstly, Wegschaider utilized an idea by Verbaeten [Verbaeten76] using special
polyhedral summation ranges leading to much smaller linear systems and thus to more
efficiency. The second improvement uses the fact that recurrences for F(n, k) need
not be k-free in order to deduce a holonomic recurrence equation for the sum sn =∑∞

k=−∞ F(n, k). For this purpose Wegschaider introduced certificate recurrence
equations consisting of telescoping parts that vanish by summation and a main part
which corresponds roughly to the holonomic recurrence equation for sn being sought.

We consider the following example illustrating both improvements. Let

F(n, k) = (−1)k
(

2n

k

)3

. (4.7)

Applying Fasenmyer’s algorithm to F(n, k) given by (4.7) with I = 8 and J = 3,
we get the following large k-free recurrence equation

(384n5 + 4288n4 + 18936n3 + 41318n2 + 44535n + 18969)(n + 1)2(2n + 1)2 F(n, k)

+2(21309 + 48846n + 44563n2 + 20214n3 + 4556n4 + 408n5)(n + 1)2(2n + 1)2 F(n, k + 1)

− 4(158772 + 369213n + 340279n2 + 155322n3 + 35108n4 + 3144n5)(n + 1)2(2n + 1)2 F(n, k + 2)

+ 2(926643 + 2157810n + 1990621n2 + 909162n3 + 205556n4 + 18408n5)(n + 1)2(2n + 1)2 F(n, k + 3)

− 10(255957 + 596199n + 550114n2 + 251280n3 + 56816n4 + 5088n5)(n + 1)2(2n + 1)2 F(n, k + 4)

+ 2(926643 + 2157810n + 1990621n2 + 909162n3 + 205556n4 + 18408n5)(n + 1)2(2n + 1)2 F(n, k + 5)

− 4(158772 + 369213n + 340279n2 + 155322n3 + 35108n4 + 3144n5)(n + 1)2(2n + 1)2 F(n, k + 6)

+ 2(21309 + 48846n + 44563n2 + 20214n3 + 4556n4 + 408n5)(n + 1)2(2n + 1)2 F(n, k + 7)

+ (384n5 + 4288n4 + 18936n3 + 41318n2 + 44535n + 18969)(n + 1)2(2n + 1)2 F(n, k + 8)

− (169575 + 5800081n3 + 3486980n2 + 5984198n4 + 1177050n + 3980740n5

+ 459040n7 + 1710920n6 + 4608n9 + 69888n8)F(n + 1, k + 2)

− (10997070 + 350110242n3 + 214468788n2 + 356106570n4 + 74137278n

+ 234442404n5 + 26732352n7 + 100057488n6 + 267840n9 + 4062240n8)F(n + 1, k + 3)

− (108413445 + 3350010438n3 + 2067361566n2 + 3388782252n4 + 721658283n

+ 2222280648n5 + 252327264n7 + 945944832n6 + 2526336n9 + 38316096n8)F(n + 1, k + 4)

− (250652220 + 7652852110n3 + 4736323490n2 + 7725210842n4 + 1659756198n

+ 5058477028n5 + 573443776n7 + 2151062672n6 + 5739840n9 + 87054240n8)F(n + 1, k + 5)

− (108413445 + 3350010438n3 + 2067361566n2 + 3388782252n4 + 721658283n

+ 2222280648n5 + 252327264n7 + 945944832n6 + 2526336n9 + 38316096n8)F(n + 1, k + 6)

− (10997070 + 350110242n3 + 214468788n2 + 356106570n4 + 74137278n + 234442404n5

+ 26732352n7 + 100057488n6 + 267840n9 + 4062240n8)F(n + 1, k + 7)

+ (169575 + 5800081n3 + 3486980n2 + 5984198n4 + 1177050n + 3980740n5

+ 459040n7 + 1710920n6 + 4608n9 + 69888n8)F(n + 1, k + 8)

− (−312606 − 8764049n3 − 5648475n2 − 8421402n4 − 2038176n − 5215700n5

− 523040n7 − 2088744n6 − 4608n9 − 74496n8)F(n + 2, k + 4)
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− (3983364 + 108578372n3 + 70829130n2 + 103059462n4 + 25816932n + 63119108n5

+ 6231872n7 + 25047648n6 + 54720n9 + 884640n8)F(n + 2, k + 5)

− (57568644 + 1475731758n3 + 972932346n2 + 1393651260n4 + 361506960n

+ 852058296n5 + 84180480n7 + 338123280n6 + 739584n9 + 11956608n8)F(n + 2, k + 6)

− (3983364 + 108578372n3 + 70829130n2 + 103059462n4 + 25816932n + 63119108n5

+ 6231872n7 + 25047648n6 + 54720n9 + 884640n8)F(n + 2, k + 7)

− (−312606 − 8764049n3 − 5648475n2 − 8421402n4 − 2038176n − 5215700n5

− 523040n7 − 2088744n6 − 4608n9 − 74496n8)F(n + 2, k + 8)

− (720 + 3475n + 6398n2 + 5624n3 + 2368n4 + 384n5)(n + 3)2(2n + 5)2 F(n + 3, k + 6)

− (2(1560n5 + 9620n4 + 22942n3 + 26371n2 + 14603n + 3120))(n + 3)2(2n + 5)2 F(n + 3, k + 7)

− (720 + 3475n + 6398n2 + 5624n3 + 2368n4 + 384n5)(n + 3)2(2n + 5)2 F(n + 3, k + 8) = 0

for the summand F(n, k). Summing w.r.t. k → Z and shifting by one gives a holo-
nomic recurrence equation of order 2

9(6n + 5)(3n + 2)(3n + 1)(6n + 1)(36n3 + 168n2 + 257n + 128)sn

+ (3540 + 160164n2 + 302838n3 + 188784n5 + 41526n

+ 317592n4 + 7776n7 + 59616n6)sn+1

+ (36n3 + 60n2 + 29n + 3)(n + 2)2(2n + 3)2sn+2 = 0

for the famous Dixon sum sn = ∑∞
k=−∞ F(n, k). It turns out that in our example

the structure set S : = {(i, j) → Z
2 | 0 � i √ 8, 0 � j � 3} is the smallest

rectangular region for which Fasenmyer’s algorithm succeeds. However, as one can
see from the above recurrence for F(n, k), only a certain part of the rectangular grid
of the 9 · 4 = 36 variables in S is needed in the resulting recurrence. If we consider
I = 2 and J = 3, then in step (e) of Fasenmyer’s algorithm we get a polynomial
in k of degree 24. This leads to a linear system with 25 equations and 12 variables
which has no non-trivial solution. The crucial idea of Wegschaider’s improvement
to Fasenmyer’s algorithm uses the fact that the degree of the polynomial does not
change if we add certain points to the structure set as shown in Fig. 4.1.

The additional points can be determined directly from the input term F(n, k) by
computing certain boundary points and structure lines which is done by the so-called
Verbaeten completion [Verbaeten76]. This results in a homogeneous linear system
of 25 equations and 25 variables. Solving this linear system one obtains a non-trivial
solution leading to the same k-free holonomic recurrence equation for F(n, k) as for
the rectangular structure set S by considering a significantly smaller linear system.

Wegschaider’s second improvement is the introduction of holonomic recurrence
equations of a more general form, not restricting to k-free recurrences. The recurrence
equation
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Fig. 4.1 Verbaeten
completion of structure sets
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boundary points

structure lines

(−20kn2 − 30kn − 11k + 96n2 + 48n + 6 + 56n3)F(n, k)

+ (27 + 552n2 + 336n3 − 27k + 260n − 48kn2 − 72kn)F(n, k + 1)

+ (108 + 552n2 + 240n3 + 27k + 422n + 48kn2 + 72kn)F(n, k + 2)

+ (30kn + 11k + 116n + 39 + 96n2 + 16n3 + 20kn2)F(n, k + 3)

+ (−42kn − 16k + 6n − 6 − 28kn2 + 48n2 + 40n3)F(n + 1, k + 2)

+ (42kn + 16k + 100n + 42 + 28kn2 + 48n2 − 16n3)F(n + 1, k + 3) = 0

is a recurrence for F(n, k), but the coefficients are not independent of the summation
variable k. However, it is possible to rewrite this recurrence equation in the following
form

4(n + 1)2(6n + 5)F(n + 1, k) + 12(6n + 5)(3n + 2)(3n + 1)F(n, k)

+ πk
(
4(n + 1)2(6n + 5)F(n + 1, k) + 4(n + 1)2(6n + 5)F(n + 1, k + 1)

+ (−14(k + 3)(n + 1) + 12n + 16 + 28(k + 3)(n + 1)2

− 16(n + 1)2 − 16(n + 1)3 + 2k)F(n + 1, k + 2)

+ (20(k + 3)(n + 1)2 − 744(n + 1)2 − 10(k + 3)(n + 1)

+ 258n + 236 + 592(n + 1)3 + k)F(n, k)

+ (−34(k + 3)(n + 1) + 156n + 152 + 4k − 412(n + 1)2

+ 256(n + 1)3 + (68(k + 3))(n + 1)2)F(n, k + 1)

+ (−10(k + 3)(n + 1) + 12n + 14 + k − 32(n + 1)2

+ 16(n + 1)3 + 20(k + 3)(n + 1)2)F(n, k + 2)
) = 0,
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where γkak = ak+1 − ak is the forward difference operator. Note that the so-called
main part (the first line) of this certificate recurrence equation is k-free. After sum-
mation w.r.t. k the γ-part vanishes through telescoping and the resulting recurrence
equation for sn reads

3(3 n + 1)(3 n + 2) sn + (n + 1)2 sn+1 = 0.

As usual the solution of this first-order recurrence is a hypergeometric term which
can be written in terms of products of Pochhammer symbols that can be read off
easily from the recurrence. The term ratio is given by

sn+1

sn
= −3(3n + 1)(3n + 2)

(n + 1)2 = − (3n + 1)(3n + 2)(3n + 3)

(n + 1)3 .

Using the initial value s0 = ∑0
k=0(−1)k

(2n
k

)3 = 1, we obtain the result

sn =
2n∑

k=0

(−1)k
(

2n

k

)3

= (−1)n27n

( 1
3

)
n

( 2
3

)
n

( 3
3

)
n

(1)3
n

= (−1)n (3n)!
n!3 ,

which is a special case of Dixon’s identity.

Session 4.7 Let’s have a look at the computer generated proof using Sprenger’s
Maple package multsum [Sprenger04] containing an implementation of
Wegschaider’s algorithm. After loading the package

> read "multsum.mpl";
> with(multsum):
> infolevel[multsum]:=3:

we define the summand

> term:=(-1)ˆk*binomial(2*n,k)ˆ3;

term : = (−1)k
(

2 n

k

)3

Fasenmyer’s algorithm with rectangular structure set (I = 8, J = 3) yields the
large output that we saw on page 61 and that we suppress:

> rec:=findrec(term,k,n,F,structureset=rect([8,3]),
> certificate=false,upperkbound=0):

_krec: structure set: [[-] -] number of equations: 43 number of variables: 36

output suppressed (k-free recurrence of order [[8],3])
Summing w.r.t. k and shifting by 1 gives a holonomic recurrence equation of order
2 for sn

> shiftrec(sumrec(rec,s));
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{9 (6 n + 5) (3 n + 2) (3 n + 1) (6 n + 1)
(
36 n3 + 168 n2 + 257 n + 128

)
s (n)

+ (3540 + 160164 n2 + 41526 n + 302838 n3

+ 317592 n4 + 188784 n5 + 59616 n6 + 7776 n7)s (n + 1)

+ (
36 n3 + 60 n2 + 29 n + 3

)
(n + 2)2 (2 n + 3)2 s (n + 2) = 0}

The optimal structure set can be determined by

> opt(term,k,n,[[2],3]);

{[−1, 0], [0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4],
[2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [3, 0],
[3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8]}

Now we apply Wegschaider’s improvement with optimal structure set using
Verbaeten completion. The following algorithm iterates over increasing optimal
structure sets based on rectangular structure sets.

> findrec(term,k,n,F,strategy=3,structureset=optimal,
> certificate=false,upperkbound=0);
_krec: structure set: [[1] 0] number of equations: 4 number of variables: 2

_krec: structure set: [[0] 1] number of equations: 7 number of variables: 4

_krec: structure set: [[1] 1] number of equations: 10 number of variables: 6

_krec: structure set: [[0] 2] number of equations: 13 number of variables: 9

_krec: structure set: [[1] 2] number of equations: 16 number of variables: 12

_krec: structure set: [[0] 3] number of equations: 19 number of variables: 16

_krec: structure set: [[1] 3] number of equations: 22 number of variables: 20

_krec: structure set: [[2] 3] number of equations: 25 number of variables: 25

output suppressed (k-free recurrence of order [[8],3])
Next we consider Wegschaider’s algorithm using a certificate recurrence equation

> rec:=findrec(term,k,n,F,structureset=optimal,
> certificate=true,upperkbound=1);

_rec: structure set: [[1] 0] number of equations: 4 number of variables: 3
_rec: structure set: [[0] 1] number of equations: 7 number of variables: 6
_rec: structure set: [[1] 1] number of equations: 10 number of variables: 10

rec := {4 (n + 1)2 (6 n + 5) F (n + 1, k) + 12 (6 n + 5) (3 n + 2) (3 n + 1) F (n, k)

+ γk(4 (n + 1)2 (6 n + 5) F (n + 1, k) + 4 (n + 1)2 (6 n + 5) F (n + 1, k + 1)

+ (28 (n + 1)2 (k + 3) − 16 (n + 1)2 + 2 k + 16 − 16 (n + 1)3

− 14 (n + 1) (k + 3) + 12 n)F (n + 1, k + 2) + (258 n + 236 + k

− 10 (n + 1) (k + 3) + 20 (n + 1)2 (k + 3) − 744 (n + 1)2

+ 592 (n + 1)3)F (n, k) + (−412 (n + 1)2 + 256 (n + 1)3 + 4 k + 152

+ 68 (n + 1)2 (k + 3) − 34 (n + 1) (k + 3) + 156 n)F (n, k + 1)

+ (−32 (n + 1)2 + 16 (n + 1)3 + k + 14 + 20 (n + 1)2 (k + 3)

− 10 (n + 1) (k + 3) + 12 n)F (n, k + 2)) = 0}
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The result is the following non-k-free recurrence equation.

> certorec(rec);

{(48 n + 6 − 11 k − 30 nk − 20 n2k + 96 n2 + 56 n3
)

F (n, k)

+ (
27 + 552 n2 − 27 k + 260 n − 48 n2k − 72 nk + 336 n3

)
F (n, k + 1)

+ (
108 + 552 n2 + 27 k + 422 n + 48 n2k + 72 nk + 240 n3

)
F (n, k + 2)

+ (
96 n2 + 116 n + 39 + 16 n3 + 11 k + 20 n2k + 30 nk

)
F (n, k + 3)

+ (−28 n2k + 48 n2 − 42 nk + 6 n − 16 k − 6 + 40 n3
)

F (n + 1, k + 2)

+ (
28 n2k + 48 n2 + 42 nk + 100 n + 16 k + 42 − 16 n3

)
F (n + 1, k + 3) = 0}

Nevertheless, by telescoping this gives a first order holonomic recurrence equation
for sn

> multsumrecursion(term,k,s(n));
_rec: structure set: [[1] 0] number of equations: 4 number of variables: 3

_rec: structure set: [[0] 1] number of equations: 7 number of variables: 6

_rec: structure set: [[1] 1] number of equations: 10 number of variables: 10

3 (3 n + 2) (3 n + 1) s (n) + (n + 1)2 s (n + 1) = 0
which yields a closed form for sn . The final result can be retrieved completely auto-
matically by a single Maple call:

> multsumrecursion(term,k,s(n),hypersol);
_rec: structure set: [[1] 0] number of equations: 4 number of variables: 3

_rec: structure set: [[0] 1] number of equations: 7 number of variables: 6

_rec: structure set: [[1] 1] number of equations: 10 number of variables: 10

s (0) (−27)n pochhammer (2/3, n) pochhammer (1/3, n)

(n!)2

For the determination of the initial value s0 the natural bounds of the sum must be
known. Since these cannot be determined easily in all instances—especially in the
multivariate case—the determination of the initial values is therefore left to the user.

Multiple Summation

Fasenmyer’s technique can be extended to obtain holonomic recurrence equations
for multiple sums

sn =
∞∑

k1=−∞
· · ·

∞∑
km=−∞

F(n, k1, . . . , km)

by using linear algebra to deduce a mixed recurrence equation

I1∑
i1=0

· · ·
Im∑

im=0

J∑
j=0

ai j F(n + j, k1 + i1, . . . , km + im) = 0
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for the summand. Summation then yields a holonomic recurrence equation for sn .
But with increasing number of summation variables m and increasing order of the
proposed recurrence equation the number of linear equations to be solved increases
dramatically. For m > 1 these problems are so severe that only very few results can
be obtained with reasonable time and memory resources.

In [WZ92] Wilf and Zeilberger presented a slightly different approach using a
multidimensional antidifference. For practical purposes, however, their method still
turns out to be rather inefficient.

More efficiently, one can again apply Verbaeten completion to multiple summa-
tion. For example, if we consider the hypergeometric term

F(n, k1, k2) =
(

n

k2

)(
k2

k1

)
xk1 yk2−k1 zn−k2 ,

then the number of equations in the resulting linear system corresponding to the
structure sets of a cube (J = I1 = I2 = 3) and a corresponding larger polyhedral
set S are the same; see Fig. 4.2. The black cube contains 64 variables, and the grey
structure set S with the same number of equations contains 200 variables. On the
other hand, the cube surrounding S has 1,000 variables 800 of which must vanish in
the linear equations generated.

Of course, this example is simple enough to be resolved. For F(n, k1, k2) one
obtains the recurrence

F(n + 1, k1 + 1, k2 + 1) − z F(n, k1 + 1, k2 + 1) − y F(n, k1 + 1, k2) − x F(n, k1, k2) = 0

which yields for sn = ∑∞
k1,k2=−∞ F(n, k1, k2) after summation

(x + z + y) sn − sn+1 = 0

with result

sn = (x + z + y)n .

To show that Wegschaider’s second improvement also has a great impact on multiple
summation, we consider the following hypergeometric term

G(n, k1, k2) =
(

t

k1

)(
u

k2

)(
v

n − k1 − k2

)

with parameters t , u and v. Then

(k1 − t)G(n, k1, k2) + (k2 + 1)G(n + 1, k1 + 1, k2 + 1)

+(n − k2 + 1)G(n + 1, k1 + 1, k2) + (n − u − v − k1 − 1)G(n, k1 + 1, k2) = 0



68 4 Holonomic Recurrence Equations

Fig. 4.2 Different structure sets for F(n, k1, k2) with the same number of equations

is a recurrence equation for G(n, k1, k2), which is obviously not (k1, k2)-free. How-
ever, one can rewrite this recurrence equation in the following form

(n + 1)G(n + 1, k1, k2) + (n − t − u − v)G(n, k1, k2)

+γk1

(
(k2 + 1)G(n + 1, k1 − 1, k2 + 1) + (n − k2 + 1)G(n + 1, k1 − 1, k2)

+(n − u − v − k1 + 1)G(n, k1 − 1, k2)
)

+γk2

(
(k2 − 1)G(n + 1, k1, k2 − 1)

) = 0.

The main part of this certificate recurrence equation (the first line) is (k1, k2)-free.
After summation w.r.t. k1 and k2 the γ-parts disappear and one obtains the following
simple recurrence equation

(n + 1)sn+1 + (n − t − u − v)sn = 0

for the double sum sn = ∑∞
k1,k2=−∞ G(n, k1, k2) leading (with s0 = 1) to the closed

form
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sn =
t∑

k1=0

u∑
k2=0

(
t

k1

)(
u

k2

)(
v

n − k1 − k2

)
= (−1)n

n! (−(t + u + v))n =
(

t + u + v

n

)
.

In contrast, the smallest (k1, k2)-free recurrence equation for G(n, k1, k2) computed
by Fasenmyer’s algorithm is

(n + 3)G(n + 3, k1 + 1, k2 + 1) + (n − v + 2)G(n + 2, k1 + 1, k2 + 1)

+ (n − u + 2)G(n + 2, k1 + 1, k2) + (n − t + 2)G(n + 2, k1, k2 + 1)

+ (n − u − v + 1)G(n + 1, k1 + 1, k2) + (n − t − v + 1)G(n + 1, k1, k2 + 1)

+ (n − t − u + 1)G(n + 1, k1, k2) + (n − t − u − v)G(n, k1, k2) = 0,

which leads to a recurrence equation of order 3 and misses the above simple recur-
rence of order 1.

Session 4.8 The multsum package contains both Verbaeten completion and
certificate recurrences in the multivariate case. The examples above are treated by
the following Maple commands.

> F:=binomial(n,k2)*binomial(k2,k1)*xˆk1*yˆ(k2-k1)*zˆ(n-k2);

F := binomial(n, k2) binomial(k2, k1) xk1 y(k2−k1) z(n−k2)

> multsumrecursion(F,[k1,k2],s(n));
(x + z + y) s(n) − s(n + 1) = 0

> multsumrecursion(F,[k1,k2],s(n),hypersol);

s(0) (x + z + y)n

> G:=binomial(t,k1)*binomial(u,k2)*binomial(v,n-k1-k2);

binomial(t, k1) binomial(u, k2) binomial(v, n − k1 − k2)

> multsumrecursion(G,[k1,k2],s(n));
(−t − u − v + n) s(n) + (n + 1) s(n + 1) = 0

The whole computation can be done in a single command:

> multsumrecursion(G,[k1,k2],s(n),hypersol);

binomial(t + u + v, n) s(0)

Next we consider yet another complicated double sum

sn =
∞∑

i=−∞

∞∑
j=−∞

(
j − i
n − i

) (
t − u − j + i
r + u − n + i

) (
u
i

)(
t − u
j − i

) (
u − t
v − j

)
.

We define the summand

> term:=binomial(j-i,n-i)*binomial(t-u-j+i,r+u-n+i)*
> binomial(u,i)*binomial(t-u,j-i)*binomial(u-t,v-j):

and compute the recurrence for the double sum
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> RE:=multsumrecursion(term,[i,j],s(n));

(−v + n) (−r + n − 2 u) s(n) − (n + 1) (n − r − v − u + 1) s(n + 1) = 0

In one step we get the resulting hypergeometric term

> multsumrecursion(term,[i,j],s(n),hypersol);

s(0) pochhammer(−v, n) pochhammer(−2 u − r, n)

n! pochhammer(1 − u − v − r, n)
hence

sn = (−v)n (−2 u − r)n

(1 − u − v − r)n n! .

Wegschaider’s algorithm is able to deduce hypergeometric double or triple sum
identities which were out of reach with Fasenmyer’s original approach, e.g. identities
like [Strehl93, Strehl94]

n∑
k=0

n∑
j=0

(
n
k

) (
n + 1

k

) (
k
j

)3

=
n∑

k=0

(
n
k

)2 (
n + k

k

)2

. (4.8)

This identity is settled by showing that both sides satisfy (enough initial values
and) the same holonomic recurrence. The common recurrence is obtained by the
commands

> term1:=binomial(n,k)*binomial(n+k,k)*binomial(k,j)ˆ3;

binomial(n, k) binomial(n + k, k) binomial(k, j)3

> RE1:=multsumrecursion(term1,[k,j],s(n),upperkbound=2);

s(n) (n + 1)3 − (3 + 2 n) (17 n2 + 39 + 51 n) s(n + 1) + (n + 2)3 s(n + 2) = 0

> term2:=binomial(n,k)ˆ2*binomial(n+k,k)ˆ2;

binomial(n, k)2 binomial(n + k, k)2

> RE2:=multsumrecursion(term2,k,s(n),upperkbound=2);

s(n) (n + 1)3 − (3 + 2 n) (17 n2 + 39 + 51 n) s(n + 1) + (n + 2)3 s(n + 2) = 0

Note that the smallest k-free recurrence equation for the summand of the left-hand
side of (4.8) has order J = 7, and the smallest k-free recurrence equation for the
summand of the right-hand side has order J = 5, although both sums satisfy the
second order recurrence

(n + 2)3 sn+2 − (2 n + 3)
(

17 n2 + 51 n + 39
)

sn+1 + (n + 1)3 sn = 0.

The latter identities cannot be proved by iterative summation since the inner sums
do not satisfy a hypergeometric recurrence equation. Nevertheless, in many cases,
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iterative techniques turn out to be successful when dealing with multiple sums. This
method is considered in forthcoming chapters.

q-Holonomic Recurrence Equations

In the preceding two chapters we have introduced q-hypergeometric functions, and
we have seen q-analogues of the binomial theorem and of the identities of Gauss and
Pfaff-Saalschütz.

Similarly, q-analogues for the classical orthogonal polynomials can be given,
see e.g. [AW85, KLS10]. The Legendre polynomials Pn(x), e.g., have several
q-analogues. The polynomials

pn(x |q) = 2ϕ1

(
q−n, qn+1

q

∣∣∣∣ q, qx

)

are called the little q-Legendre polynomials; the polynomials

Pn(x; c; q) = 3ϕ2

(
q−n, qn+1, x

q, cq

∣∣∣∣ q, q

)

are called the big q-Legendre polynomials; and the polynomials

Pn(x; q) = 4ϕ3

(
q−n, qn+1,

≥
q eiφ ,

≥
q e−iφ

q,−q,−q

∣∣∣∣ q, q

)
, (x = cos φ)

and

Pn(x |q) = 4ϕ3

(
q−n, qn+1, q1/4 eiφ , q1/4 e−iφ

q,−≥
q,−q

∣∣∣∣ q, q

)
, (x = cos φ)

(see [KLS10], Sect. 14.5.1), which are related by

Pn(x |q2) = Pn(x; q), (4.9)

are both called the continuous q-Legendre polynomials. Similarly the generalized
Laguerre polynomials

L(θ)
n (x): =

n∑
k=0

(−1)k

k!
(

n + θ

n − k

)
xk =

(
n + θ

n

)
1 F1

( −n
1 + θ

∣∣∣∣ x

)

have the q-analogues
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L(θ)
n (x; q) =

(
qθ+1; q

)
n

(q; q)n
1ϕ1

(
q−n

qθ+1

∣∣∣∣ q,−xqn+θ+1
)

(see e.g. [KLS10], Sect. 14.21), which are called the q-Laguerre polynomials. All
of these polynomial systems are contained in the so-called Askey-Wilson scheme
[AW85], [KLS10].

It is rather straightforward to extend Fasenmyer’s method to the q-hypergeometric
situation. If

sn =
∞∑

k=−∞
F(n, k),

and F(n, k) is rational w.r.t. both qk and qn , then the same method applies if we
expand in powers of K : = qk rather than in powers of k. The resulting recurrence
equation is then holonomic in qn .

The qsum package contains a Maple procedure qfasenmyer(term,q,k,
s(n),kmax,nmax) to generate this recurrence equation using a k-free recurrence
equation of the summand term of order (kmax, nmax) w.r.t. (k, n) if applicable.
The request

> qfasenmyer(qbinomial(n,k,q),q,k,s(n),1,2);

for example, results in the recurrence equation

( 1 − q( n+1 ) ) s( n ) + s( n + 2 ) − 2 s( n + 1 ) = 0.

In the exercises, the reader is asked to find recurrence equations for some of the
q-hypergeometric series mentioned.

There is also a multivariate scenario in the q-case which was treated in [Riese03].

Further Reading

For further reading on the univariate case see [Zeilberger82, PWZ96], and on the
multivariate case [Wegschaider97, Sprenger04, Riese03].

Exercises

Exercise 4.1 Prove the identities (2.2)–(2.5) using Fasenmyer’s method. Try to
prove (2.6). What happens? What does the “Pascal triangle recurrence equation”
for the squares of the binomial coefficients look like?

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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Exercise 4.2 Try to prove the entries of our hypergeometric database of Chap. 3
using Fasenmyer’s method. Which entries can be proved and which cannot? What
is the reason for the failure?

Exercise 4.3 Show that the three different hypergeometric representations (see
Exercise 2.12)

Pn(x) =
n∑

k=0

(
n
k

) (−n − 1
k

) (
1 − x

2

)k

,

Pn(x) = 1

2n

n∑
k=0

(
n
k

)2

(x − 1)n−k (x + 1)k,

and

Pn(x) = 1

2n

	n/2
∑
k=0

(−1)k
(

n
k

) (
2n − 2k

n

)
xn−2k

define the same family of functions. Hint: Generate the same holonomic recurrence
equation for all of these representations, and show that they satisfy the same initial
values.

� Exercise 4.4 Write a Maple procedure fasenmyerdiffeq(f,k,s(x),
xmax) that computes a differential equation for

s(x) =
∞∑

k=−∞
F(x, k)

which uses a function kfreediffeq(f,k,x,kmax,xmax) also to be
implemented. The functionfasenmyerdiffeq is applicable if F(x, k) is a hyper-
geometric term w.r.t. k and a hyperexponential term w.r.t. x , compare Chap. 10.

Apply the procedure to generate a differential equation for the Legendre polyno-
mials, using all three hypergeometric representations given in Exercise 5.3.

Exercise 4.5 The Legendre polynomials Pn(x) are orthogonal in [−1, 1]
1∫

−1

Pm(x) Pn(x) dx = 0 for m �= n.

Check the orthogonality for 0 √ m < n = 0, 1, 2, 3, 4, 5.

http://dx.doi.org/10.1007/978-1-4471-6464-7_3
http://dx.doi.org/10.1007/978-1-4471-6464-7_10
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Exercise 4.6 Show that the numbers

Fn+1 : =
	n/2
∑
k=0

(
n − k

k

)

are the Fibonacci numbers, i.e.

Fn+2 − Fn+1 − Fn = 0, with F1 = 1 , F2 = 1.

Exercise 4.7 Show that the sum

sn : =
n∑

k=0

(
n
k

)3

satisfies the holonomic recurrence equation

0 = 8 (3 n + 7) (n + 1)2 sn + (3 n + 5)
(

15 n2 + 55 n + 48
)

sn+1

+2
(

9 n3 + 57 n2 + 116 n + 74
)

sn+2 − (3 n + 4) (n + 3)2 sn+3.

Later we will deduce a recurrence equation of lower order for sn .

Exercise 4.8 Prove the identity (n → N�0)

n∑
k=0

(
n
k

)3

=
n∑

k=0

(
n
k

)2 (
2k
n

)
.

Exercise 4.9 The Laguerre polynomials are orthogonal in [0,∞) with respect to
the density e−x , i.e.

∞∫

0

Lm(x) Ln(x) e−x dx = 0 for m �= n.

Check the orthogonality for 0 √ m < n √ 5.

Exercise 4.10 Deduce a three-term recurrence equation for the generalized
Laguerre polynomials

L(θ)
n (x) : =

n∑
k=0

(−1)k

k!
(

n + θ

n − k

)
xk =

(
n + θ

n

)
1 F1

( −n
1 + θ

∣∣∣∣ x

)
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Show, for 0 √ m < n √ 5, that L(θ)
m (x) and L(θ)

n (x) are orthogonal in [0,∞) with
respect to the density xθe−x .

Exercise 4.11 Find holonomic recurrence equations for the Fasenmyer polynomials
([Fasenmyer47], see also [Rainville60], Chap. 14, Exercise 2) with respect to n →
N�0

(a) fn(x) : = 2 F2

( −n , n + 1
1 , 1/2

∣∣∣∣ x

)
,

(b) gn(x) : = 3 F2

( −n , n + 1, a
1, 1/2

∣∣∣∣ − x

)
.

Exercise 4.12 Find holonomic recurrence equations for the following sequences
(n → N�0):

(a) fn(x) : = 2 F2

( −n , n + ε

1 , 1 + θ

∣∣∣∣ x

)
,

(b) gn(x) : = (2x)n
3 F1

( −n/2 , −n/2 + 1/2, 1 + θ

1 + ε

∣∣∣∣ − 1
x2

)
.

Exercise 4.13 Find a holonomic recurrence equation for the Bateman polynomials
(see e.g. [Rainville60], Chap. 18)

Zn(x) : = 2 F2

( −n , n + 1
1, 1

∣∣∣∣ x

)
.

Exercise 4.14 Show that the polynomials

fn(x) : =
(

ζ

n

)
1 F1

( −n
1 + ζ − n

∣∣∣∣ x

)
= L(ζ−n)

n (x),

which are related to the generalized Laguerre polynomials, do not form a family of
orthogonal polynomials, since they do not satisfy a three-term recurrence equation
of the type

fn(x) = (An + Bn x) fn−1(x) + Cn fn−2(x)

for some constants An, Bn, Cn (Favard’s Theorem, see [Chihara78]).

Exercise 4.15 Show that for Example 4.6, the number E of equations to be satisfied
by the variables ai j , is given by E = 2V − 1.

Exercise 4.16 Use kfreerec to deduce the following hypergeometric term rep-
resentations. Note that the bounds of these sums are not the natural ones.

(a)
m∑

k=0
(−1)k

(
n
k

)
= (−1)m

(
n − 1

m

)
,
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(b)
m∑

k=0

(
n + k

k

)
=

(
n + m + 1

n

)
,

(c)
m∑

k=0

(
k
n

)
=

(
m + 1
n + 1

)
,

(d)
m∑

k=0

1
2k

(
m + k

k

)
= 2m .

Exercise 4.17 Find a holonomic recurrence equation for the Hermite polynomials

Hn(x) : = n!
	n/2
∑
k=0

(−1)k

(n − 2k)!k! (2x)n−2k .

Show, for 0 √ m < n √ 5, that Hm(x) and Hn(x) are orthogonal in (−∞,∞) with
respect to the density e−x2

.

Exercise 4.18 Show that no k-free recurrence equation is valid for the term

F(n, k) : =
(

n
k

)
1

k2 + n2 + 1
;

compare Example 4.6.

Exercise 4.19 Try to prove the q-analogues of the Chu-Vandermonde and of the
Pfaff-Saalschütz identities (3.7)

2ϕ1

(
q−n, b

c

∣∣∣∣ q,
cqn

b

)
= (c/b; q)n

(c; q)n

and (3.6)

3ϕ2

(
q−n, a, b
c, ab

cqn−1

∣∣∣∣∣ q, q

)
= (c/a; q)n (c/b; q)n

(c; q)n (c/(ab); q)n

by the q-Fasenmyer method, using qfasenmyer. What happens?

Exercise 4.20 Find three-term recurrence equations for the little q-Legendre poly-
nomials and for the q-Laguerre polynomials defined on p. 71–72.

http://dx.doi.org/10.1007/978-1-4471-6464-7_3
http://dx.doi.org/10.1007/978-1-4471-6464-7_3
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Chapter 5
Gosper’s Algorithm

For a moment, let’s have a break from searching for hypergeometric term solutions
and recurrence equations of infinite series. Instead, we will deal with sums with
variable limits of summation, an interesting topic in itself. Later, this will prove to
be a useful tool in discovering an algorithmic method for infinite sums.

Let us motivate the topic of the present chapter by considering the issue of inte-
gration. Thanks to the fundamental theorem of calculus, the knowledge of an anti-
derivative, i.e., a function F(x) with the property

F ∞(x) = f (x)

makes the evaluation of any definite integral of f easy, according to the simple rule1

b∫

a

f (x) dx = F(b) − F(a).

Therefore, a large database of antiderivatives makes definite integration a solvable
task. On the other hand, no database is complete, and all of us know that many tricks
may be needed if an integrand cannot be found in the database.

To avoid those problems, an algorithmic theory of integration in elementary terms
has been developed by Risch [Risch69, Risch70], and others (see [Bronstein96], and
[GCL92, Chaps. 11, 12]). This theory, however, is rather difficult.

It turns out that a discrete analogue of Risch’s algorithm for indefinite summation,
an algorithm due to Gosper ([Gosper78], see also [GKP94], and [Koepf95a]), is much
simpler.

Gosper’s algorithm deals with the question of how to find a (forward) antidiffer-
ence sk for given ak , i.e. a sequence sk for which

1 Of course this is only so if f is absolutely continuous. Otherwise the Fundamental Theorem of
Calculus might not be applicable.

W. Koepf, Hypergeometric Summation, Universitext, 79
DOI: 10.1007/978-1-4471-6464-7_5, © Springer-Verlag London 2014
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ak = Δsk = sk+1 − sk, (5.1)

in the particular case that sk is a hypergeometric term, i.e.

sk+1

sk
∈ Q(k). (5.2)

Finding an antidifference sk according to (5.1) is called indefinite summation.
Note that—similar to the case of integration—once an antidifference sk of ak is

known, definite summation is easy since by telescoping we get

n∑
k=m

ak = (sn+1 − sn) + (sn − sn−1) + · · · + (sm+1 − sm) = sn+1 − sm,

by an evaluation at the (shifted) limits of summation.
Note that if a hypergeometric term antidifference sk exists, we call the input

function ak Gosper-summable. This function must then itself be a hypergeometric
term, since by (5.1) and (5.2),

ak+1

ak
= sk+2 − sk+1

sk+1 − sk
= sk+1

sk

sk+2
sk+1

− 1
sk+1

sk
− 1

= uk

vk
∈ Q(k), (5.3)

with polynomials uk, vk ∈ Q[k] which can be found by Algorithm 2.2.
What follows is a short overview of Gosper’s algorithm.
In the first step, Gosper uses a representation lemma for rational functions to

express ak+1/ak in terms of some specific polynomials.
The idea behind this step comes from the following observation: If we calculate

ak from sk = (2k)!/k!, for example, we get

ak = sk+1 − sk = (2k + 2)!
(k + 1)! − (2k)!

k! = (4k + 1) · (2k)!
k! ,

i.e. a product of a polynomial pk = (4k + 1) and a factorial term bk = (2k)!
k! for

which bk+1
bk

is rational, hence there are qk, rk ∈ Q[k] with bk+1
bk

= qk+1
rk+1

.
Gosper then shows that such a representation with the property

gcd (qk, rk+ j ) = 1 for all j ∈ N�0, (5.4)

can generally be found and gives an algorithm to generate it (Lemma 5.1 and Algo-
rithm 5.2). The greatest common divisor of the two polynomials qk and rk is denoted
by gcd (qk, rk).2

2 Relation gcd( f, g) = 1 means that there is no nontrivial, hence nonconstant, common divisor.
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Therefore for ak we have the relation3

ak+1

ak
= pk+1

pk

qk+1

rk+1
, (5.5)

with pk corresponding to its polynomial part and (qk, rk) to its factorial part.
Gosper finally defines the function fk by the equation

fk := sk+1

ak+1

pk+1

rk+1
or sk = rk

pk
fk−1 ak, (5.6)

from which one sees immediately that

fk = sk+1

ak+1

pk+1

rk+1
= sk+1

sk+2 − sk+1

pk+1

rk+1
= 1

sk+2
sk+1

− 1

pk+1

rk+1

is rational. Using property (5.4), Gosper proves the essential fact that fk is a poly-
nomial (Lemma 5.4).

It follows by definition that the polynomial fk satisfies

ak = sk+1 − sk = rk+1

pk+1
fk ak+1 − rk

pk
fk−1 ak .

Multiplying by pk/ak , and using (5.5), gives the inhomogeneous linear recurrence
equation

pk = ak+1

ak

pk

pk+1
rk+1 fk − rk fk−1 = qk+1 fk − rk fk−1 (5.7)

for fk . Using (5.7), Gosper gives an upper bound for the degree of fk in terms of pk ,
qk , and rk (Lemma 5.5). This yields a method for calculating fk by introducing the
appropriate generic polynomial, equating coefficients, and solving the corresponding
linear system, so that we finally find sk , given by (5.6).

If one of the steps to find the polynomial fk fails, then the algorithm has proved
that no hypergeometric term antidifference sk of ak exists, which may give valu-
able information. Thus in this situation, Gosper’s algorithm did not fail, but instead
decided the nonexistence of a hypergeometric term antidifference.

Having seen a general overview of Gosper’s algorithm, we will now go on to
prove each of its steps.

Lemma 5.1 and Algorithm The functions pk, qk and rk in (5.5) can be chosen such
that

gcd (qk, rk+ j ) = 1 for all j ∈ N�0. (5.8)

3 We use the same functions pk , qk , and rk as Gosper did, even though he worked with the backward
antidifference. It may mean that we have some more shifts here than necessary.
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Proof We start with the initial choice pk := 1, qk := uk−1, and rk := vk−1. Now either
(5.8) is satisfied, and so we are done, or (5.8) is not valid. In the latter case there is
some j ∈ N�0 such that

gcd (qk, rk+ j ) = gk with deg(gk) > 0. (5.9)

Let J denote the set of all j ∈ N�0 such that (5.9) is valid. The construction of the
finite set J is considered in Algorithm 5.2.

For any j ∈ J , we may eliminate the common factor gk choosing new functions
p∞

k , q ∞
k and r ∞

k where

p∞
k = pk gk gk−1 . . . gk− j+1, q ∞

k = qk

gk
, and r ∞

k = rk

gk− j
,

since then

p∞
k+1

p∞
k

q ∞
k+1

r ∞
k+1

= pk+1 gk+1 gk . . . gk− j+2

pk gk gk−1 . . . gk− j+1

qk+1

gk+1

gk− j+1

rk+1
= pk+1

pk

qk+1

rk+1
.

By (5.9) it follows that

gcd (q ∞
k, r ∞

k+ j ) = gcd

(
qk

gk
,

rk+ j

gk

)
= 1

so that for the triple (p∞
k, q ∞

k, r ∞
k), (5.9) no longer is valid. Therefore, applying the

rewriting technique to all j ∈ J leads to (pk, qk, rk) satisfying (5.8). Note that if
J contains more than one number, then the gcd condition has to be checked again
before continuing with each of the rewriting steps since it may happen that one of
the previous rewritings had already done the job. �→
For any two polynomials qk and rk , the number4

disp(qk, rk) := max
{

j ∈ N�0 | gcd(qk, rk+ j ) = gk with deg(gk) > 0
}

is called the dispersion of qk and rk (note that this notion is not symmetric!). Fur-
thermore, the set

J :=
{

j ∈ N�0 | gcd(qk, rk+ j ) = gk with deg(gk) > 0
}

is called the dispersion set of qk and rk . Note that the dispersion of two polynomials
gives information about their shift structure (answering the question: Does an integer
shift generate a common divisor?).

4 For the sake of completeness let the maximum of the empty set equal −≈.
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The next algorithm shows how to find the dispersion set J . The reader who is
familiar with polynomial resultants (see e.g. [DST88], Appendix, [GCL92, Chap. 7],
[Koepf06, Sect. 7.5]) might observe that J is the set of nonnegative integer roots of
the resultant of qk and rk+ j with respect to k.

With Maple, this set can be found roughly using

dispersionset:=proc(q,r,k)
isolve(resultant(q,subs(k=k+j,r),k),j)

end proc:

(which calculates all integer roots, not just the nonnegative ones, though). This is a
short and elegant description. Note, however, that this way of calculating the disper-
sion set is not very efficient, particularly because the variable j that is used makes the
problem a two-variable problem even though the dispersion set only contains infor-
mation about polynomials of one variable. Further, the resultant of two polynomials
qk , and rk+ j of degrees m and n with respect to k, respectively, is a polynomial of
degree mn with respect to j .

Since the dispersion set can be calculated more efficiently using rational factor-
ization, this approach will be dealt with here. It is an important fact that rational
factorization can be done algorithmically (see e.g. [Zippel93, GCL92, Chap. 8]).
Moreover, computer algebra systems like Maple contain (for our purposes) rather
efficient implementations for the rational factorization of polynomials, which need
about the same time as is needed to find all integer roots of a polynomial. Since the
resultant computation generates a polynomial (in j) of much higher degree, the cal-
culation of its integer roots is typically more time consuming than the factorization
of the original polynomials qk , and rk+ j .

Therefore the following algorithm, first implemented by Koornwinder in his
Maple package zeilb [Koornwinder93] and described in an article by Man and
Wright [MW94], makes the entire resultant computation superfluous, and gives a
fairly efficient method to obtain the dispersion set.

Algorithm 5.2 (dispersionset) The following algorithm calculates the dis-
persion set of two polynomials qk and rk :

1. Input: Two polynomials qk and rk ∈ Q[k].
2. Factorize qk and rk over Q. (This is exactly what Maple’s factor command

does.)
3. Set J := {}. For each pair of factors sk of qk , and tk of rk calculate D :=

primedispersion(s,t,k) by the following steps:

(a) If the degrees m of sk , and n of tk are different, return D := {}; exit.
(b) Calculate the coefficients a := coeff(s,k,n), b := coeff(s,k,

n-1), c := coeff(t,k,n), and d := coeff(t,k,n-1).
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(c) If j := bc−ad
acn is not a nonnegative integer, then return D := {}; exit.

(d) Check whether csk − atk+ j √ 0. If this is the case, then set D := { j}, else
set D := {}. Return D.
J := J ≥ D.

4. Output: J .

Proof First, we show that the dispersion of two polynomials qk and rk which are
relatively prime (over the rationals) is given by the subroutine primedispersion
(q,r,k).

Assume that qk , and rk have dispersion j ≥ 0. We propose that in this case qk

and rk must have the same degree and their ratio must be constant, since the relation

gcd(qk, rk+ j ) = gk 
= 1,

implies that qk has the rational factor gk , and rk has the rational factor gk− j . Therefore,
since by assumption qk and rk are relatively prime, the degree of gk must be equal
to the (common) degree n of qk and rk , proving our assertion.

Hence, the two polynomials

qk = akn + bkn−1 + · · · ,

and
rk = ckn + dkn−1 + · · ·

have dispersion j ∈ N�0 if and only if

c

a
qk √ rk+ j = c(k + j)n +d(k + j)n−1 +· · · = ckn +(cnj + d) kn−1 +· · · (5.10)

using the binomial expansion. The resulting identity can be valid only if the coeffi-
cients of kn−1 on both sides match, implying

bc

a
= cnj + d, or j = bc − ad

acn
. (5.11)

Therefore j , given by (5.11), must be a nonnegative integer. In the affirmative case,
rk+ j is completely known, and (5.10) can be checked.

To calculate the complete dispersion set of qk , and rk , the algorithm uses the
subroutine primedispersion for any pair of rational factors of qk , and rk , and
all dispersion entries found are collected in the set J . �→
Session 5.3 We implement the dispersion calculation described in Algorithm 5.2 in
Maple. The first procedure

primedispersion:=proc(q,r,k)
local f,g,n,a,b,c,d,j;
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f:=collect(q,k);
g:=collect(r,k);
n:=degree(f,k);
if n=0 or n<>degree(g,k) then return {} end if;
a:=coeff(f,k,n);
b:=coeff(f,k,n-1);
c:=coeff(g,k,n);
d:=coeff(g,k,n-1);
j:=normal((b*c-a*d)/(a*c*n));
if not type(j,nonnegint) then return {} end if;
if collect(c*f-a*subs(k=k+j,g),k)=0 then
return {j}

else
return {};

end if;
end proc: # primedispersion

calculates the dispersion of two polynomials of the same degree, which do not have
proper rational factors. Therefore the procedure

dispersionset:=proc(q,r,k)
local f,g,i,j,result,tmp,op1,op2;
f:=map2(op,1,op(2,factors(q)));
g:=map2(op,1,op(2,factors(r)));
result:={};
for op1 in f do
for op2 in g do

tmp:=primedispersion(op1,op2,k);
if tmp<>{} then result:=result union {op(1,tmp)}
end if;

end do;
end do;
return result;
end proc: # dispersionset

completes the implementation of Algorithm 5.2.
Next we do an example computation to show the different timings between the

resultant-based and the resultant-free algorithms. We give two polynomials in fac-
tored form so that we know the dispersion set in advance, and expand them. Read
off the dispersion set by a brief look at the input before looking for Maple’s answer!

> q:=expand(k*(3*kˆ2+a)*(k-2536)*(kˆ3+a));

3 k7 − 2533 a k4 − 7608 k6 − 7608 k3 a + a k5 + a2 k2 − 2536 a2 k
> r:=expand(subs(k=k-345,q));



86 5 Gosper’s Algorithm

258519719195803125 k − 40460071839750 a + 484174775025 a k

+ 4678182 k3 a − 2211703920 k2 a − 4258 a k4 − 3226 a2 k

+ 993945 a2 + a k5 + a2 k2 − 17894813625 k4

− 1924651077159375 k2 + 7735770995625 k3 − 14853 k6

+ 23247135 k5 + 3 k7 − 14574010679829421875

> TIME:=time(): dispersionset(q,r,k); time()-TIME;

{345, 2881}
0.015

> TIME:=time(): res:=resultant(q,subs(k=k+j,r),k):

> time()-TIME;
0.281

> TIME:=time(): isolve(res): time()-TIME;
0.187

> degree(res,j);

49
Here we see that the resultant-free calculation finds the two shifts quite efficiently,
whereas the resultant computation is much more time consuming, particularly since
several variables are involved. The computation returns a polynomial of degree 49
in j . Have a look at it, and observe its huge coefficients! It is not surprising that the
calculation of its integer roots is also rather time consuming: This computation alone
needs much longer than that of the entire resultant-free dispersion computation!

The next step in Gosper’s proof is to check that fk , defined by (5.6), is a polynomial.

Lemma 5.4 The function fk , defined by (5.6–5.8), is a polynomial.

Proof Since we know that fk is rational, we may assume

fk = ck

dk

with polynomials ck , dk such that dk has positive degree and

gcd (ck, dk) = 1 = gcd (ck−1, dk−1). (5.12)

Then after multiplication by dk dk−1 the recurrence Eq. (5.7) gives the main equation

dk dk−1 pk = dk dk−1(qk+1 fk − rk fk−1) = ck dk−1 qk+1 − ck−1 dk rk . (5.13)

Now let j ≥ 0 be the dispersion of dk with itself, i.e. the largest integer such that

gcd (dk, dk+ j ) = gk 
= 1. (5.14)
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Since j is maximal, and dk+ j is a multiple of gk , we have

gcd (dk−1, dk+ j ) = 1 = gcd (dk−1, gk). (5.15)

Therefore, shifting k by −( j + 1) in (5.14), we get

gcd (dk−( j+1), dk−1) = gk−( j+1) 
= 1, (5.16)

and, shifting k by − j in the left side of (5.15), we get

gcd (dk−( j+1), dk) = 1 = gcd (gk−( j+1), dk) (5.17)

since dk−( j+1) is a multiple of gk−( j+1).
Now, we take a careful look at the main Eq. (5.13). We divide this equation by gk

and get
dk dk−1 pk

gk
= ck dk−1 qk+1

gk
− ck−1 dk rk

gk
. (5.18)

Since, by (5.14), dk is divisible by gk , the left-hand side of (5.18) is a polynomial.
The same is true for the rightmost term, so that it follows that ck dk−1 qk+1 is divisible
by gk . By (5.15), dk−1 and gk are relatively prime. By (5.14), dk is divisible by gk , so
that, by (5.12), ck and gk are relatively prime, too. Therefore qk+1 must be divisible
by gk , and hence qk is divisible by gk−1.

Next, we divide (5.13) by gk−( j+1). We get

dk dk−1 pk

gk−( j+1)

= ck dk−1 qk+1

gk−( j+1)

− ck−1 dk rk

gk−( j+1)

. (5.19)

Since, by (5.16), dk−1 is divisible by gk−( j+1), the left-hand side of (5.19) is a
polynomial. The same is true for the middle term. It follows that ck−1 dk rk is divisible
by gk−( j+1). By (5.17), dk and gk−( j+1) are relatively prime. By (5.16), dk−1 is
divisible by gk−( j+1), so that, by (5.12) ck−1 and gk−( j+1) are relatively prime, too.
Therefore rk must be divisible by gk−( j+1), and hence rk+ j is divisible by gk−1.

So we have finally found that both qk and rk+ j are divisible by gk−1. This con-
tradicts the main condition (5.8), however, and therefore fk must be a polynomial.

�→
The last step of Gosper’s algorithm gives an a priori bound for the degree of fk .
Remember, as soon as such a bound is known in advance, a generic polynomial
can be substituted into the main Eq. (5.7), and fk can be calculated by equating
coefficients. If in the following lemma the degree bound is negative or if linear
algebra does not provide a suitable fk , then we can deduce that such an fk does not
exist.

Lemma 5.5 and Algorithm An upper bound for the degree of fk is determined by
the following algorithm.
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1. If deg(qk+1 + rk) ≤ deg(qk+1 − rk), then

deg fk = deg pk − deg(qk+1 − rk).

2. If n := deg(qk+1 + rk) > deg(qk+1 − rk), then let a denote the coefficient of kn

in the polynomial qk+1 + rk , and b denote the coefficient of kn−1 in qk+1 − rk .

(a) If −2b/a is not a nonnegative integer, then

deg fk = deg pk − n + 1.

(b) If −2b/a is a nonnegative integer, then

deg fk ≤ max{−2b/a, deg pk − n + 1}.

Proof We rewrite the main Eq. (5.7) as

pk = (qk+1 − rk)
fk + fk−1

2
+ (qk+1 + rk)

fk − fk−1

2
. (5.20)

Observe that for any polynomial fk 
√ 0, one has the identity

deg( fk − fk−1) = deg( fk + fk−1) − 1, (5.21)

since the highest order term in fk − fk−1 cancels, whereas the highest order term of
fk + fk−1 is not equal to 0.5

Therefore, if deg(qk+1 + rk) ≤ deg(qk+1 − rk), then the second summand in
(5.20) is definitely of lower degree than the first one. This gives 1.

If deg(qk+1 + rk) > deg(qk+1 − rk), then the situation is a little bit more compli-
cated. Let m be the degree of fk , and fk = ckm + · · · . Then, by (5.20),

pk =
(

b + a
m

2

)
c kn+m−1 + terms of lower order,

proving 2. �→
This finishes the proof of Gosper’s algorithm.

Next, we give some example classes to which Gosper’s algorithm can be applied.

Example 5.6 (Polynomials) Any polynomial ak is Gosper-summable, since any
polynomial ak has a polynomial antidifference sk (proof by induction!). Assum-
ing we do not cancel common factors in ak+1/ak (compare with Exercise 5.16), then
the application of Gosper’s algorithm leads to the initial choice pk = 1, qk = ak and
rk = ak−1. Therefore, the dispersion set contains the number 1, so that the rewriting

5 For convenience, we set deg(0) := − 1. Then (5.21) remains valid for non-zero constant fk .
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according to Lemma 5.1 leads to the final choice pk = ak , and qk = rk = 1, sat-
isfying the conditions of Lemma 5.1. Hence, the main equation is equivalent to the
difference equation

ak = fk − fk−1 (5.22)

for fk , and, according to (5.6), we also have fk = sk+1. Since qk+1 − rk √ 0,
case (2b) of Lemma 5.5 applies, and the degree bound turns out to be equal to
deg pk + 1 = deg ak + 1. Note that by (5.21) this can be directly seen from (5.22).
So, in the final step, the coefficients of sk are determined by solving a linear system
with deg ak + 2 variables.

Note, however, that for polynomials there exist faster algorithms than Gosper’s
to deduce their antidifference; see Exercise 5.1.

Example 5.7 (Rational Functions) Not every rational function ak is Gosper-
summable. Indeed, Gosper’s algorithm proves that ak = 1/k does not have a hyper-
geometric term antidifference: We get the representation pk = 1, qk = k − 1 and
rk = k satisfying the conditions of Lemma 5.1, and the degree bound corresponding
to Lemma 5.5 is equal to zero. Therefore, we have the setup fk = c for some constant
c, and the main equation reads

1 = ck − ck = 0,

so that obviously no solution exists.
Therefore the harmonic numbers

Hk =
k∑

j=1

1

j

do not constitute a hypergeometric term. Note that Hk−1 is a discrete antidifference
of ak since obviously Hk − Hk−1 = 1

k .
If, on the other hand, some rational ak has a rational antidifference sk , then it

is Gosper-summable, and the application of Gosper’s algorithm is a safe way to
determine sk . As an example, we consider

ak = 1

k
− 1

k + 1
= 1

k(k + 1)
.

Obviously, sk can be determined by telescoping here (do it!). Instead, we use Gosper’s
algorithm: In the present case the initial choice of pk = 1, qk = k −1 and rk = k +1
is final. Again case (2b) of Lemma 5.5 applies and gives the degree bound 1 for fk .
With the generic polynomial fk = a + bk, the main equation reads

1 = k(a + bk) − (k + 1)(a + b(k − 1)) = b − a.
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This generates a solution space of dimension 1, and we may set b = 0 (to make the
order of fk the lowest possible). Equating coefficients, we get a = −1.

Therefore fk = −1. By (5.6), we finally have

sk = rk

pk
fk−1ak = −(k + 1)

1

k(k + 1)
= −1

k
.

Example 5.8 (Binomial Theorem) We try now to see whether the expression

ak :=
(

n
k

)
is Gosper-summable. In the affirmative case, this would imply a hyper-

geometric term formula for
m∑

k=0

(
n
k

)

for arbitrary m. Such a formula would extend the binomial identity (2.1) which is
the special case when the upper bound m = n is the natural one.

We get
ak+1

ak
= n − k

k + 1
,

and therefore the initial choice pk = 1, qk = n − k + 1, and rk = k, which is final.
In Lemma 5.5, case (1) applies, and the degree bound yields the value −1. Hence

no polynomial fk satisfying the main equation can exist, and therefore ak is not
Gosper-summable.

Now we change the problem a little, and consider the alternating sum with

ak := (−1)k
(

n
k

)
. Note that in Example 3.4, we discovered the formula

m∑
k=0

ak =
m∑

k=0

(−1)k
(

n
k

)
= (−1)m n − m

n

(
n
m

)
(5.23)

by other means, which shows that ak is indeed Gosper-summable. But how does
Gosper’s algorithm deduce this result?

Using
ak+1

ak
= k − n

k + 1
,

we have pk = 1, qk = k − n − 1, and rk = k. In the current situation, Lemma 5.5
leads to the case (2a) and the degree bound 0 for fk . Substituting fk = c into the
main equation leads to the identity

1 = (k − n) c − k c = −nc,

with the solution c = −1/n, so that fk = −1/n. Finally, by (5.6), we have

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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sk = rk

pk
fk−1 ak = − k

n
ak = − k

n
(−1)k

(
n
k

)

in agreement with (5.23) (check!). �
We summarize the results of this chapter in:

Algorithm 5.9 (Gosper) Given ak , the following algorithm decides whether there
is a hypergeometric term antidifference sk , and returns it in the affirmative case:

1. Input: ak 
√ 0, a hypergeometric term.
2. Calculate the term ratio ak+1/ak . Use Algorithm 2.2 to find uk, vk ∈ Q[k] for

which ak+1

ak
= uk

vk
.

3. Calculate pk , qk and rk ∈ Q[k] with the property (5.8) by Algorithm 5.1.
4. Use Algorithm 5.5 to determine the degree bound M for the polynomial

fk ∈ Q[k]. If M < 0, then return “no hypergeometric term solution exists”;
exit.

5. Substitute the generic polynomial

fk = b0 + b1k + b2k2 + · · · + bM k M

in the functional equation

pk = qk+1 fk − rk fk−1

for fk , equate coefficients, and solve the resulting linear system for the unknowns
bl (l = 0, . . . , M).

6. If there is no solution, then return “no hypergeometric term solution exists”; exit.
7. Output: sk = rk

pk
fk−1 ak . �→

Gosper’s algorithm shows in particular that whenever ak possesses a hypergeo-
metric term antidifference sk then, by (5.6), sk has to be a rational multiple of ak :

sk = Rk ak with Rk = rk

pk
fk−1.

We call Rk the rational certificate of the hypergeometric term ak : Given Rk , it is
easy to check by pure rational arithmetic (which is fast) whether sk = Rk ak is an
antidifference of ak by simply checking that

sk+1 − sk = Rk+1 ak+1 − Rk ak = ak

or equivalently
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Rk + 1

Rk+1
= ak+1

ak
(5.24)

without knowing where the information about Rk comes from. Therefore for both the
application of Gosper’s algorithm and for a fast proof of its result, given Rk , (besides
polynomial arithmetic) it is only necessary to decide the rationality of ak+1/ak which
is done by Algorithm 2.2.

Finally, we consider the following question: Assume you are given a rational
function Rk which is known to be the rational certificate of some hypergeometric
term ak . Is ak then uniquely determined by Rk? It is clear that for a multiple ãk = cak

of ak we get the same Rk . The following corollary states that the converse is also
true.

Corollary 5.10 Let the rational certificate Rk of a hypergeometric term ak be given.
Then ak is uniquely determined by Rk up to a constant factor.

Proof This follows immediately from (5.24): Given Rk , (5.24) is a first order recur-
rence equation for ak , determining this hypergeometric term uniquely up to a multi-
plicative constant. �→
Session 5.11 Gosper’s algorithm is implemented in Maple and is used as a subroutine
of the sum command.6 By the assignment infolevel[SumTools]:=5, inter-
mediate information is given. We get for the polynomial ak = k3

> infolevel[SumTools]:=5:

> s:=SumTools[Hypergeometric][Gosper](kˆ3,k);

Gosper: Step 1 of Gosper’s algorithm

Gosper: Step 2 of Gosper’s algorithm
PolynomialNormalForm: construct the polynomial normal form
Gosper: Step 3 of Gosper’s algorithm
Gosper: find non-zero polynomial solution
Gosper: upper bound 4
Gosper: size of the system: 4 equations, 5 unknowns

1

4
k2 (1 − 2 k + k2)

The result can be verified by computing sk+1 − sk :
> expand(eval(s,k=k+1)-s);

k3

We reproduce the results of Examples 5.7 and 5.8.
> SumTools[Hypergeometric][Gosper](1/k,k);

Gosper: Step 1 of Gosper’s algorithm
Gosper: Step 2 of Gosper’s algorithm
PolynomialNormalForm: construct the polynomial normal form

6 The current author did the implementation of Version V.4 which is available in the sumtools
package. However, this version is now superseded by the SumTools package.
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Gosper: Step 3 of Gosper’s algorithm
Gosper: find non-zero polynomial solution
Gosper: upper bound 0
Gosper: size of the system: 1 equations, 1 unknowns

Error, (in SumTools:-Hypergeometric:-Gosper) no solution found

> SumTools[Hypergeometric][Gosper](binomial(n,k),k);

Gosper: Step 1 of Gosper’s algorithm
Gosper: Step 2 of Gosper’s algorithm
PolynomialNormalForm: construct the polynomial normal form

Gosper: Step 3 of Gosper’s algorithm
Gosper: find non-zero polynomial solution

Error, (in SumTools:-Hypergeometric:-Gosper) no solution found

> SumTools[Hypergeometric][Gosper]((-1)ˆk*

> binomial(n,k),k);
0.281

Gosper: Step 1 of Gosper’s algorithm

Gosper: Step 2 of Gosper’s algorithm
PolynomialNormalForm: construct the polynomial normal form
Gosper: Step 3 of Gosper’s algorithm
Gosper: find non-zero polynomial solution
Gosper: upper bound 0
Gosper: size of the system: 1 equations, 1 unknowns

−k (−1)k binomial(n, k)

n
We give a final example:

> SumTools[Hypergeometric][Gosper](k*k!,k);

Gosper: Step 1 of Gosper’s algorithm

Gosper: Step 2 of Gosper’s algorithm
PolynomialNormalForm: construct the polynomial normal form
Gosper: Step 3 of Gosper’s algorithm
Gosper: find non-zero polynomial solution
Gosper: upper bound 0
Gosper: size of the system: 1 equations, 1 unknowns

k!
The hsum package also contains a procedure gosper which is decomposed by the
algorithms dispersionset and degreebound, compare Exercises 5.3–5.6.

We would like to remark that many more summation algorithms have been published.
Karr [Karr81] gave a difference field analogue to Risch integration, and hence consid-
ered summation in a rather general framework, see also [Schneider01, Schneider04,
Schneider08].

Paule [Paule95] presented an algorithm for indefinite hypergeometric summation
(slightly different from Gosper’s) based on greatest factorial factorization which
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extends to more general cases. Paule’s approach can be regarded as a deduction of
Gosper’s algorithm. Böing ([Böing98, Lemma 3.2]) pointed out how the dispersion
arises quite naturally when searching for a hypergeometric type antidifference; see,
e.g., [Koepf06]. Furthermore, [Koepf06] contains a simplified variant of Gosper’s
algorithm which abandons the rewriting procedure of Lemma 5.1.

Abramov, Bronstein, and Petkovšek [ABP95] presented a method of obtaining
fk as a solution of the recurrence Eq. (5.7) by solving a linear system whose size is
not proportional to the degree of fk , and iterative computations. Hence if the degree
bound for fk is large, this method is advantageous.

Linearization of Gosper’s Algorithm

Although the set of hypergeometric terms is closed under multiplication and taking
reciprocals, it is not closed under addition; e.g. 2k + 1 is not a hypergeometric term
although 2k and 1 are.

As a result, Gosper’s algorithm is nonlinear, i.e., if ak and bk are Gosper-
summable, then ak + bk is not necessarily Gosper-summable. Moreover, ak + bk

might be Gosper-summable, although the individual summands ak and bk are not;
e.g., for ak = 1

k+1 and bk = − 1
k . These are important disadvantages.

Given an arbitrary linear combination of hypergeometric terms one would like to
decide whether or not there is an antidifference of the same type. Petkovšek, Wilf
and Zeilberger [PWZ96] found a way to linearize Gosper’s algorithm in this way.

The essential tool is to consider similarity under hypergeometric terms. Two
hypergeometric terms ak and bk are called similar if their ratio ak/bk ∈ Q(k) is
a rational function of k. This notion divides the family of hypergeometric terms into
equivalence classes one of which consists of the rational functions.

Now, if a linear combination of hypergeometric terms is given, it can be written
as a linear combination of pairwise dissimilar ones. Petkovšek, Wilf and Zeilberger
[PWZ96] show that an application of Gosper’s algorithm to these dissimilar sum-
mands decides whether or not the given linear combination of hypergeometric terms
has an antidifference of the same type; this applies if and only if Gosper’s algorithm
is successful for each of the dissimilar summands.

q-Gosper Algorithm

Just as Gosper’s algorithm finds a hypergeometric term antidifference whenever one
exists, there is a corresponding q-analogue (see [Koornwinder93], compare [PR97])
which finds a q-hypergeometric term antidifference whenever one exists.

An implementation [BK99] based on Koornwinder’s work [Koornwinder93] and
the present book is available through the qsum package containing the Maple pro-
cedure qgosper(term,q,k) for this purpose.
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The request

> qgosper((-1)ˆk*qˆ(k*(k-1)/2)*qbinomial(n,k,q),q,k);

e.g., results in the q-hypergeometric antidifference

(1 − qk) (−1)k q(1/2 k (k−1)) qbinomial(n, k, q)

qn − 1
.

In [Riese96] Gosper’s algorithm was generalized to the bibasic case, i.e., to (p, q)-
hypergeometric terms that are hypergeometric with respect to two bases p and q,
and in [Böing98] to q-hypergeometric terms that are hypergeometric with respect to
a finite number of bases q = (q1, . . . , qm), see also [BK99]. The qsum package con-
tains an implementation of this algorithm. The following computation gives [GR90],
Appendix II, Formula (34):

> qgosper((1-a*pˆk*qˆk)/(1-a)/cˆk*qpochhammer(a,p,k)/
> qpochhammer(a*p/c,p,k)*qpochhammer(c,q,k)/
> qpochhammer(q,q,k),[p,q],k=0..n);

qpochhammer(c, q, n + 1) qpochhammer(a, p, n + 1) (−c + p(n+1) a)

(−1 + q(n+1)) c(−n−1)
/

(qpochhammer(q, q, n + 1)

qpochhammer(
a p

c
, p, n + 1) (−1 + a) (−1 + c))

Further Reading

For further reading on Gosper’s algorithm see [GKP94, PWZ96, Koepf06], and for
the q-case [Koornwinder93, PR97] and [BK99].

Exercises

Exercise 5.1 Let Δ denote the forward difference operator

Δsk = sk+1 − sk

and for m ∈ Z, let

k
m := k!

(k − m)!

denote the falling factorial. Note that k
m = k(k − 1) · · · (k − m + 1) for m ∈ N.

Show that
Δk

m = m · k
m−1

,
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where the difference operator is assumed to operate with respect to the variable k.
Show that therefore

b−1∑
k=a

k
m = k

m+1

m + 1

∣∣∣∣∣
k=b

k=a

= b
m+1 − a

m+1

m + 1
f or m 
= −1.

Observe the astonishing analogy to the formulas

d

dx
xm = m xm−1 and

b∫

a

xm dx = bm+1 − am+1

m + 1
(m 
= −1).

The above information can be used to find the antidifference for any polynomial
without solving a linear system, just by rewriting. How?

Exercise 5.2 (Summation by Parts) Show the following rule of summation by parts
(which is similar to the integration by parts formula):

b∑
k=a

uk Δvk = ukvk
∣∣k=b+1
k=a −

b∑
k=a

vk+1 Δuk .

Use it to find an antidifference of the harmonic numbers

Hk =
k∑

j=1

1

j

that we introduced in Example 5.7, in terms of themselves.


Exercise 5.3 Write a Maple procedure update(p,q,r,k) that uses disper-
sionset to update the functions (pk, qk, rk) according to Lemma 5.1.


 Exercise 5.4 Write a Maple procedure degreebound(p,q,r,k) determin-
ing the degree bound for fk according to Lemma 5.5. Check the function with the
examples of this chapter and use it for the later exercises!


 Exercise 5.5 Write a Maple procedurefindf(p,q,r,k) that solves the linear
system to find fk , and returns this polynomial.


 Exercise 5.6 Write a Maple procedure gosper(a,k) that applies Gosper’s
algorithm to ak .

Exercise 5.7 Calculate the antidifference solution for ak = 1
k(k+1)

, see Example 5.7.

Exercise 5.8 Find antidifferences for the following sequences.
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(a) ak := 1
k(k+10)

,

(b) ak := 1
k(k+1)(k+2)...(k+10)

,

(c) ak := 6 k+3
4 k4+8 k3+8 k2+4 k+3

,

(d) ak := 2k
(
k3−3 k2−3 k−1

)
k3(k+1)3 ,

(e) ak := (k + n) (k + n)!,
(f) ak := n Γ (k+n+2)

(k+n+1)Γ (k+2)Γ (n+1)
,

(g) ak :=
(

k
n

)
,

(h) ak := (−1)k(
n
k

) ,

(i) ak :=

(
m
k

)

(
n
k

) ,

(j) ak := k

(
m − k − 1
m − n − 1

)
,

(k) ak := (k)n,

(l) ak := (k − n)n .

Exercise 5.9 Check whether the summands of identities (2.3–2.6) are Gosper-
summable.

Exercise 5.10 Show that if ak = tk+m − tk for some hypergeometric term tk , and
m ∈ N, then ak is Gosper-summable. Determine the antidifference sk in terms of tk .

Exercise 5.11 In SIAM Review 36, 1994, Problem 94-2 [OK94], the following
question was posed:

Determine the infinite sum

S =
≈∑

n=1

(−1)n+1(4n + 1)(2n − 1)!!
2n(2n − 1)(n + 1)! ,

where (2n − 1)!! = 1 · 3 . . . (2n − 1).

Solve the problem using Gosper’s algorithm. For the limit computation, use Stirling’s
formula

lim
n∇≈

n!√
n (n/e)n

= √
2π.

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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Give another proof using the hypergeometric database.

Exercise 5.12 Are the sequences

(a) ak := 1
2n+1

(
n + 1

k

)
− 1

2n

(
n
k

)
,

(b) ak := (n+1)!2
(2n+2)!

(
n + 1

k

)2

− n!2
(2n)!

(
n
k

)2

Gosper-summable? Try to give an interpretation with regard to identities (2.1) and
(2.3)! Hint: Sum from k = −≈ to k = ≈.

Exercise 5.13 Characterize those hypergeometric terms ak for which the rational
certificate Rk is given by (α constant)

(a) Rk = α
α−1 ,

(b) Rk = k,

(c) Rk = k2,

(d) Rk = 1/k,

(e) Rk = (k − 1)/k,

(f) Rk = (k + 1)/k.

Exercise 5.14 Assume, sk, s̃k are the antidifferences of two hypergeometric terms
ak, ãk with rational certificates Rk, R̃k . Then s̃k = 1/sk implies R̃k = 1 − Rk .

Exercise 5.15 Calculate

(a)
n∑

k=0

(
n
k

)(
n + 1

k

)

(
2n
2k

) ,

(b)
n∑

k=0

(
2k
k

)(
2n − 2k

n − k

)

(n−k+1)(k+1)
.

Exercise 5.16 Assume, in the application of Gosper’s algorithm to a polynomial ak

(Example 5.6), that ak+1/ak is reduced. Show that then the dispersion calculation
according to Lemma 5.1 “repairs” this, and generates pk = ak , and qk = rk = 1 as
in the non-reduced case.

Exercise 5.17 Show that if fk in Gosper’s algorithm is not uniquely determined, it
contains exactly one parameter; this happens if and only if ak is rational. Hence in
general the solution space has dimension 0 or 1.

Exercise 5.18 In Example 5.8 it was shown that ak :=
(

n
k

)
does not possess a

hypergeometric term antidifference for arbitrary n. Show that, on the other hand, ak

has a hypergeometric term antidifference for fixed negative n ∈ Z. Determine the
degree bound of fk . How does it depend on the particular value of n?

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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Exercise 5.19 It is well-known that

≈∑
k=1

1

k2 = π2

6
.

From this result it follows that 1/k2 does not have a hypergeometric term antidiffer-
ence. Why? Hint: The number π2 is irrational.

Exercise 5.20 The expression

ak :=

k−1∏
j=1

(
bj2 + cj + d

)

k∏
j=1

(
bj2 + cj + e

)

is Gosper-summable [Gosper78]. Try your Gosper implementation of Exercise 5.6
on this input. Does it work? If it does not, why not? If necessary, modify your
implementation to work for this example.7

Exercise 5.21 In SIAM Review 38, 1996, Problem 96-16 [IR96], the following
question was posed:

Define

Sn(p) =
n∑

j=0

{(
pn + p + 1
pj + p − 1

)
−

(
pn + p + 1
pj + p − 2

)}

for integers n ≥ 0 and p ≥ 1.
Evaluate Sn(p) for p = 1, 2, 3, 4, 5, 6.
Solve this problem for p = 1 and p = 2 using Gosper’s algorithm. For a solution

for p = 3, 4, 5, 6 see Exercise 7.34.

Exercise 5.22 For the following expressions sk , construct ak := sk+1 − sk

(ak := sk+2 − sk), and apply the q-analogue of Gosper’s algorithm to find the
antidifference of ak . Verify the results.

(a) sk := (a; q)k ,

(b) sk :=
[
n
k

]
q
,

(c) sk := [k]q .

Exercise 5.23 Find a q-hypergeometric antidifference (or just a hypergeometric
antidifference) for ak := q jk where j is assumed to be any integer. Then replace j
iteratively by 1, 2, 3, . . . , and apply the q-Gosper algorithm. Describe what happens
and explain!

7 It might be inefficient to use the modified implementation in the general case, though.
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Exercise 5.24 Find a q-hypergeometric antidifference for

(a) ak := q jk (n; q)k ( j = 1, . . . , 5),

(b) ak := qk+ j −qk

(qk+ j−1)(qk−1)
( j = 1, 2, 3),

(c) ak := (−1)k q

( k
2

) [
n
k

]
q
,

(d) ak := q jk [k]q ( j = 1, . . . , 5),

(e) ak := q

( k
2

)
[k]q ,

(f) ak := q− k(k+1)
2 [k]q .
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Chapter 6
The Wilf-Zeilberger Method

In this chapter, we study the connection between Gosper’s algorithm and definite
sums. Firstly, we give a direct application of Gosper’s algorithm to definite summa-
tion. Throughout this chapter k denotes a summation variable, n denotes a nonnega-
tive integer variable, and F(n, k) denotes a hypergeometric term with respect to both
n and k, i.e.

F(n + 1, k)

F(n, k)
and

F(n, k + 1)

F(n, k)

are rational functions with respect to both n and k. Further, we assume that F(n, k)

has finite support. The latter means that for any fixed n ∞ N�0 we have F(n, k) ∈= 0
only for finitely many k ∞ Z.

For those summands, we have

Theorem 6.1 Let F(n, k) be a hypergeometric term with respect to both n and k,
Gosper-summable with respect to k with an antidifference sk = G(n, k) that is finite
for all k ∞ Z. Furthermore, let F(n, k) be well-defined for all n ∞ N�0, and have
finite support. Then

∞∑
k=−∞

F(n, k) = 0 (6.1)

for all but (possibly) finitely many n ∞ N�0. In detail: If G(n, k) = R(n, k) F(n, k)

is an antidifference of F(n, k) with respect to k, then (6.1) is valid for all n ∞ N�0
for which the denominator of R(n, k) is not identical to zero.

Proof By assumption, F(n, k) is Gosper-summable with respect to k, so there is a
(hypergeometric term) antidifference G(n, k):

F(n, k) = G(n, k + 1) − G(n, k).

Summing over all k leads to

W. Koepf, Hypergeometric Summation, Universitext, 103
DOI: 10.1007/978-1-4471-6464-7_6, © Springer-Verlag London 2014
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∞∑
k=−∞

F(n, k) =
∞∑

k=−∞

(
G(n, k + 1) − G(n, k)

)
= 0

since the right-hand side is telescoping. Note that because F(n, k) has finite support,
the sum under investigation is finite. The only problem which might occur, is that
G(n, k) has a singularity at a certain n ∞ N�0. Since G(n, k) = R(n, k) F(n, k)

is a rational multiple of F(n, k), the only singularities of G(n, k) are the poles of
R(n, k). →≈
Note that if the denominator of R(n, k) for some integer k ∞ Z (depending on
n) has a zero, this must be compensated by a zero of F(n, k) since otherwise the
antidifference G(n, k) = R(n, k) F(n, k) is not finite for this particular k. Therefore,
the zeros n ∞ N�0 of the denominator of R(n, k) that are mentioned in the theorem
are those which are independent of k.

Example 6.2 In Example 5.8, we showed that F(n, k) = (−1)k
(

n
k

)
is Gosper-

summable with

G(n, k) = − k

n
F(n, k). (6.2)

It follows immediately from Theorem 6.1 that for n ∞ N (but not (!) for n = 0 since
this is a pole of (6.2))

n∑
k=0

(−1)k
(

n
k

)
= 0,

(compare with (2.2)).
On the other hand, for n = 0 we have

0∑
k=0

(−1)k
(

n
k

)
= 1.

As another example we consider

F(n, k) =

(
n
k

)(
n + 1

k

)
(

2n
2k

) .

First we must define F(n, k) for k > n and for k < 0 since in this case the given
representation is of the form 0/0 (or ∞/∞ if we replace the binomial coefficients
by Γ terms).

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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In these cases it is better to define F(n, k) so that the formula

F(n, k + 1)

F(n, k)
= (n + 1 − k) (2 k + 1)

(2 n − 2 k − 1) (k + 1)

for the term ratio remains valid. From the value F(n, n) = n + 1, we get then

F(n, n + 1) = F(n, k + 1)

F(n, k)

∣∣∣∣
k=n

· F(n, n) = −2 n + 1

n + 1
(n + 1) = −(2n + 1)

and

F(n, n + 2) = F(n, k + 1)

F(n, k)

∣∣∣∣
k=n+1

· F(n, n + 1) = 0

so that F(n, k) = 0 for k √ n + 2. Similarly, one shows that F(n, k) = 0 for k < 0.
Therefore F(n, k) has finite support.

This fact is taken care of by the computation

> termtohyper(
> binomial(n,k)*binomial(n+1,k)/binomial(2*n,2*k),k);

pochhammer(−n − 1, k) (2 k)!
4k (k!)2 pochhammer(−n + 1

2
, k)

which uses Algorithm 2.8 and shows that we have a sum from k = 0 to k = n + 1.
It turns out that F(n, k) is Gosper-summable with

G(n, k) = (2 n − 2 k + 1) k

n + 1
F(n, k)

(check!). Therefore by Theorem 6.1 we have

n+1∑
k=0

(
n
k

)(
n + 1

k

)
(

2n
2k

) = 0

for all n ∞ N�0; compare Exercise 5.15. ≥
As an immediate consequence of Theorem 6.1, we have

Corollary 6.3 Let F(n, k) be a hypergeometric term with respect to both n and k,
well-defined for all n ∞ N�0, and having finite support. If

∑∞
k=−∞ F(n, k) can be

represented by hypergeometric terms which are not identically zero, then F(n, k) is
not finitely Gosper-summable with respect to k.
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Example 6.4 From the identities (2.1)–(2.6), we immediately observe that none of

(
n
k

)
,

(
n
k

)2
, (−1)k

(
n
k

)2
, (−1)k

(
n
k

)3
, (−1)k

(
n + b
n + k

) (
n + c
c + k

)(
b + c
b + k

)

are Gosper-summable functions according to Corollary 1; compare this with
Example 5.8. ≥

Note that the corollary shows that results on definite series like (2.1)–(2.6) can
never be obtained by a direct application of Gosper’s algorithm!

On the other hand, some very nice examples of an application of Gosper’s al-
gorithm are given by the Wilf-Zeilberger method for definite summation ([WZ90a,
WZ90b]; see also [PWZ96, Koepf95a]).

The Wilf-Zeilberger method (WZ method for short) is a clever application of
Gosper’s algorithm to prove identities of the form

sn :=
∞∑

k=−∞
F(n, k) = 1 (6.3)

for which F(n, k) is a hypergeometric term with respect to both n and k with finite
support.

To prove a statement of the form (6.3) by the WZ method, one applies Gosper’s
algorithm to the expression

ak := F(n + 1, k) − F(n, k)

(rather than to F(n, k) itself!) with respect to the variable k. If successful, this gen-
erates G(n, k) with

ak = F(n + 1, k) − F(n, k) = G(n, k + 1) − G(n, k), (6.4)

and summing over all k leads to

sn+1 − sn =
∞∑

k=−∞

(
F(n + 1, k) − F(n, k)

)
=

∞∑
k=−∞

(
G(n, k + 1) − G(n, k)

)
= 0

since the right-hand side is again telescoping. Therefore, sn is constant, sn = s0, and
if we are able to prove s0 = 1, we are done. Note that s0 = 1 can generally be proved
since F(n, k) has finite support, so that no questions concerning convergence arise.

We summarize the above in

Algorithm 6.5 (Wilf-Zeilberger Method to Prove Hypergeometric Identities) This
method proves the identity (6.3) for n > N , where N ∞ N�0 is determined by
step 4.

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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1. Input: F(n, k), a hypergeometric term with respect to both n and k with finite
support (with respect to the summation variable k).

2. Define ak := F(n + 1, k) − F(n, k).
3. Apply Gosper’s algorithm to ak . If successful, a hypergeometric term antidiffer-

ence G(n, k) = R̃(n, k) ak is generated. If not, the method fails; exit.
4. Let N be the largest nonnegative integer root of the denominator Q̃ ∞ Q[n, k] of

R̃(n, k) (found by a rational factorization), i.e. Q̃(N , k) ≡ 0.
5. If sN+1 := ∑∞

k=−∞ F(N +1, k) = 1, the procedure has proved (6.3) for n > N .
6. This initial value, sN+1, can be evaluated by an application of Algorithm 2.8

which provides the information about suitable natural bounds of the sum.

The method described is very simple, and is a direct application of Gosper’s
algorithm. It has the disadvantage, however, that we have no prior knowledge about
for which input it will work. As a test suite for the capabilities of the given method
we use the set of hypergeometric identities found in the book of Bailey [Bailey35]
which is reproduced in Table 6.1.

Since the WZ method works only if n is an integer, we can only try to prove
the statements of Bailey’s list in Table 6.1 if one of the upper parameters of the
hypergeometric series involved is assumed to be a negative integer.

Note that the rationality of ak+1/ak for the WZ method is generally decided by
Algorithm 2.2 since

ak+1

ak
= F(n + 1, k + 1) − F(n, k + 1)

F(n + 1, k) − F(n, k)
= F(n, k + 1)

F(n, k)
·

F(n + 1, k + 1)

F(n, k + 1)
− 1

F(n + 1, k)

F(n, k)
− 1

.

When Gosper’s algorithm generates the function G(n, k), it also finds the rational
function

R(n, k) := G(n, k)

F(n, k)
.

R(n, k) is rational since G(n, k) is a rational multiple of ak = F(n + 1, k) −
F(n, k), G(n, k) = r(n, k) · (F(n + 1, k) − F(n, k)), say, so that

R(n, k) = G(n, k)

F(n, k)
= r(n, k)

F(n + 1, k) − F(n, k)

F(n, k)
= r(n, k)

(
F(n + 1, k)

F(n, k)
− 1

)

is also rational. R(n, k) is called the WZ certificate of F(n, k). Once the WZ cer-
tificate of a hypergeometric expression F(n, k) is known, it is a matter of purely
rational arithmetic to decide on the validity of the statement to be proved (6.3). This
is quick and easy and can, in principle, be done by hand since one only has to show
(6.4) which after division by F(n, k) is equivalent (modulo a possible application of
Algorithm 2.2) to the purely rational identity
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Table 6.1 Bailey’s hypergeometric database

Page Theorem Identity

2 Chu-V. 2 F1

(
a, b

c

∣∣∣∣ 1

)
= (c − b)−a

(c)−a
= Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)3 Gauss

9 Pfaff-S. 3 F2

(
a, b,−n

c, 1 + a + b − c − n

∣∣∣∣ 1

)
= (c − a)n (c − b)n

(c)n (c − a − b)n

9 Kummer 2 F1

(
a, b

1 + a − b

∣∣∣∣ −1

)
= (1 + a)−b

(1 + a/2)−b
= Γ (1 + a − b)Γ (1 + a/2)

Γ (1 + a)Γ (1 + a/2 − b)

11 Gauss 2 F1

(
a, b

(a + b + 1)/2

∣∣∣∣ 1

2

)
= Γ (1/2)Γ ((a + b + 1)/2)

Γ ((a + 1)/2)Γ ((b + 1)/2)

11 Bailey 2 F1

(
a, 1 − a

c

∣∣∣∣ 1

2

)
= Γ (c/2)Γ ((c + 1)/2)

Γ ((a + c)/2)Γ ((1 − a + c)/2)

13 Dixon 3 F2

(
a, b, c

1 + a − b, 1 + a − c

∣∣∣∣ 1

)
= (1 + a)−c (1 + a/2 − b)−c

(1 + a/2)−c (1 + a − b)−c

= Γ (1 + a/2)Γ (1 + a − b)Γ (1 + a − c)Γ (1 + a/2 − b − c)

Γ (1 + a)Γ (1 + a/2 − b)Γ (1 + a/2 − c)Γ (1 + a − b − c)

16 Watson 3 F2

(
a, b, c

(a + b + 1)/2, 2c

∣∣∣∣∣ 1

)
=

Γ ( 1
2 )Γ (

1 + 2c

2
)Γ (

1 + a + b

2
)Γ (

1 − a − b + 2c

2
)

Γ (
1 + a

2
)Γ (

1 + b

2
)Γ (

1 − a + 2c

2
)Γ (

1 − b + 2c

2
)

Whipple

16 Whipple 3 F2

(
a, 1 − a, c

e, 1 + 2c − e

∣∣∣∣ 1

)
= π21−2cΓ (e)Γ (1 + 2c − e)

Γ ( a+e
2 )Γ ( a+1+2c−e

2 )Γ ( 1−a+e
2 )Γ ( 2+2c−a−e

2 )

26 Dougall 7 F6

(
a, 1+a/2, b, c, d, 1 + 2a − b − c − d + n,−n

a/2, 1+a−b, 1+a−c, 1+a−d, b+c+d−a−n, 1+a+n

∣∣∣∣ 1

)

= (1 + a)n (1 + a − b − c)n (1 + a − b − d)n (1 + a − c − d)n

(1 + a − b)n(1 + a − c)n (1 + a − d)n (1 + a − b − c − d)n

25 Dougall 5 F4

(
a, 1+a/2, c, d, e

a/2, 1+a−c, 1+a−d, 1+a−e

∣∣∣∣ 1

)
= (1+a)−e(1+a−c−d)−e

(1+a−c)−e(1+a−d)−e

27 = Γ (1 + a − c)Γ (1 + a − d)Γ (1 + a − e)Γ (1 + a − c − d − e)

Γ (1 + a)Γ (1 + a − d − e)Γ (1 + a − c − e)Γ (1 + a − c − d)

28 Whipple 4 F3

(
a, 1+a/2, d, e

a/2, 1+a−d, 1+a−e

∣∣∣∣ −1

)
= (1+a)−e

(1+a−d)−e
= Γ (1+a−d)Γ (1+a−e)

Γ (1+a)Γ (1+a−d−e)

30 Bailey 3 F2

(
a, 1 + a/2,−n

a/2, w

∣∣∣∣ 1

)
= (w − a − 1 − n)(w − a)n−1

(w)n

30 Bailey 3 F2

(
a, b,−n

1 + a − b, 1 + 2b − n

∣∣∣∣ 1

)
= (a − 2b)n(1 + a/2 − b)n(−b)n

(1 + a − b)n(a/2 − b)n(−2b)n

30 Bailey 4 F3

(
a, 1 + a/2, b,−n

a/2, 1 + a − b, 1 + 2b − n

∣∣∣∣ 1

)
= (a − 2b)n(−b)n

(1 + a − b)n(−2b)n

30 Bailey 4 F3

(
a, 1+a/2, b,−n

a/2, 1+a−b, 2+2b−n

∣∣∣∣ 1

)
= (a−2b−1)n(1/2+a/2−b)n(−b−1)n

(1+a−b)n(a/2−b−1/2)n(−2b−1)n
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F(n + 1, k)

F(n, k)
− 1 + R(n, k) − R(n, k + 1)

F(n, k + 1)

F(n, k)
= 0. (6.5)

Example 6.6 (Binomial Identity) As an example, to prove the binomial identity (2.1)
in the form

sn :=
n∑

k=0

F(n, k) =
n∑

k=0

1

2n

(
n
k

)
= 1 (6.6)

by the WZ method, we set

ak := 1

2n+1

(
n + 1

k

)
− 1

2n

(
n
k

)
;

compare Example 2.5 and Exercise 5.12. Algorithm 2.2 yields

ak+1

ak
= F(n + 1, k + 1) − F(n, k + 1)

F(n + 1, k) − F(n, k)
= (n − k + 1) (n − 2 k − 1)

(n + 1 − 2 k) (k + 1)
.

Therefore Gosper’s algorithm can be applied (do it!), and results in

G(n, k) = k

n + 1 − 2 k

(
1

2n+1

(
n + 1

k

)
− 1

2n

(
n
k

))
.

This proves (6.6) since s0 = ∑0
k=0 1 = 1. Note that the denominator zero k = n+1

2
of the rational factor R̃(n, k) = k/(n + 1 − 2 k), which is an integer for odd values
of n, is compensated for by a zero of ak at this point so that G(n, k) is finite there,
thus the argument remains valid.

The WZ certificate is

R(n, k) = G(n, k)

F(n, k)
= − k

2(n + 1 − k)

(check!), and the proof of identity (6.6) is therefore reduced to simplifying the rational
expression

F(n + 1, k)

F(n, k)
− 1 + R(n, k) − R(n, k + 1)

F(n, k + 1)

F(n, k)

= n + 1

2(n + 1 − k)
− 1 − k

2(n + 1 − k)
+ k + 1

2(n − k)
· n − k

k + 1

to zero, which is trivial. ≥
Table 6.2 is a complete list of those identities in Bailey’s list (Table 6.1) that can
be treated by the given method, together with their rational certificates. Using the
latter the reader may easily prove these identities. Observe that therefore Table 6.2
consists of simple proofs for all of these statements. You might check any of these by

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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Table 6.2 The WZ Method

Identity n R(n, k)

Chu-Vandermonde −a − (c + k − 1) k

(c − b + n) (n + 1 − k)

Pfaff-Saalschütz n − k (c + k − 1) (c − b + n − a − k)

(c − b + n) (n + 1 − k) (c − a + n)

Kummer −b − k

2(n + 1 − k)

Dixon −c − (a − b + k) k

(2 + a − 2 b + 2 n) (n + 1 − k)

Watson −c − (2 n − k + 1) k (a + b − 1 + 2 k)

2 (1 + b + 2 n) (1 + a + 2 n) (n + 1 − k)Whipple

Whipple −c − (e + k − 1) k (2 n + e − k)

(n + 1 − k) (a + 2 n + e) (−a + 1 + 2 n + e)

Dougall n

− (2n+2a+2−c−d−b) (1+a−b−c−d+n−k) k (a−d+k) (a−c+k) (a−b+k)

(1+2a−b−c−d+n) (1+a−c−d+n) (1+a−b−d+n) (1+a−b−c+n) (a+2k) (n+1−k)

Dougall −e − (a − c + k) (a − d + k) k

(1 + a − c − d + n) (a + 2 k) (n + 1 − k)

Whipple −e − k (a − d + k)

(a + 2 k) (n + 1 − k)

Bailey n

(
na+a2−wa+a−2+2nk−2n+4k+2ka−2kw

)
(w+k−1) k

(a + 2k) (n + 2 + a − w) (w − a − 1 + n) (k − n − 1)

Bailey n −
(
ba − 2b2 + n + 2bn + 1 − k

)
(−2b + n − k) k (a − b + k)

(−b + n) (2 + a − 2b + 2 n) b (a − 2b + n) (n + 1 − k)

Bailey n
(n − ba − k + 1 − 2kb) (−2b + n − k) k (a − b + k)

(−b + n) b (a + 2k) (a − 2b + n) (n + 1 − k)

Bailey n − (2b − ab + 2nb + 2nab − 2n − 2n2 + a2b − 2ab2 + 4nbk + 2abk + 2k
+4nk − 4bk − 4b2k − 2k2) k (a − b + k) (1 + 2 b − n + k)/

((n + 1 − k) b (a + 2 k) (b + 1 − n) (a − 2b − 1 + n) (a − 2 b + 1 + 2 n))

simply verifying (6.5). Note how simple the rational certificate of Dougall’s identity
is compared to the much more complicated rational certificate of the last of Bailey’s
identities and also note the contrast with the complexity of the corresponding inputs.

Note that neither the statements of Gauss and Bailey with argument x = 1/2
([Bailey35], p. 11) can be deduced with respect to any of the parameters involved,
nor can Watson’s Theorem ([Bailey35], p. 16) be proved by the WZ method with
respect to Watson’s original integer parameter a, nor can the method be applied to
Whipple’s Theorem ([Bailey35], p. 16) concerning parameters a or b since, in all
these cases, the term ratio ak+1/ak is not rational.
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In particular, the results of Table 6.2 constitute the first proof of our hypergeometric
database given in Chap. 2, except for Watson’s identity (with respect to the parameters
a or b).

Session 6.7 We can use the Gosper implementation gosper(a,k) of the hsum
package which for Gosper-summable ak returns a hypergeometric term antidiffer-
ence. We recommend, however, that you write such a Maple procedure on your own;
see Exercises 5.3–5.6.

The procedure

WZcertificate:=proc(F,k,n)
local a,gos;
a:=subs(n=n+1,F)-F;
try
gos:=gosper(a,k);

catch:
error ‘WZ method fails‘;

end try;
return simpcomb(gos/F);
end proc:

calculates the rational certificate of the WZ method when applied to F(n, k), if
this is applicable. Here, we use Maple’s try, catch and error commands to
give our own error message in case gosper does not return a hypergeometric term
antidifference.

The calculation

> WZcertificate(binomial(n,k)/2ˆn,k,n);

1

2

k

−n − 1 + k
confirms the result of Example 6.5, and

> WZcertificate(binomial(n,k)*xˆk/(1+x)ˆn,k,n);

k

(−n − 1 + k) (1 + x)

yields the binomial theorem.1 On the other hand, the calculation

> WZcertificate(binomial(n,k),k,n);

Error, (in WZcertificate) WZ method fails

shows that the WZ method is not applicable for F(n, k) =
(

n
k

)
. This is not sur-

prising since we know that the sum

∞∑
k=−∞

(
n
k

)

1 What happens if x = −1?

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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is not constant with respect to n.
We prove some of the identities of Chap. 1:

> WZcertificate(binomial(n,k)ˆ2/binomial(2*n,n),k,n);

1

2

(−3 n − 3 + 2 k) k2

(2 n + 1) (−n − 1 + k)2

> WZcertificate(
> (-1)ˆk*binomial(n+b,n+k)*binomial(n+c,c+k)*binomial(b+c,b+k)/
> (GAMMA(b+c+n+1)/(n!*GAMMA(b+1)*GAMMA(c+1))),k,n);

1

2

(c + k) (b + k)

(b + c + n + 1) (−n − 1 + k)

The final statement proves Dixon’s identity in binomial form (1.6) where no conver-
sion to hypergeometric form was necessary!

Note that the success of the procedure WZcertificate proves that sn =∑∞
k=−∞ F(n, k) is constant! You can find this constant by merely considering the

initial value s0 = ∑∞
k=−∞ F(0, k). If F(n, k) has finite support this sum is finite and

can thus be evaluated in finite terms since its bounds can be found by Algorithm 2.8.
Here is an example for which the WZ method does not work (compare [PS95]).

Although
∞∑

k=−∞

(−1)k

(−3)n

(
n
k

)(
3k
n

)
= 1

is a true statement for n ∞ N�0 (see Session 7.4 and Exercise 7.14) supported by the
calculation

> seq(
> add((-1)ˆk/(-3)ˆn*binomial(n,k)*binomial(3*k,n),k=0..n),
> n=0..25);

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

the WZ method fails:
> WZcertificate(
> (-1)ˆk/(-3)ˆn*binomial(n,k)*binomial(3*k,n),k,n);

Error, (in WZcertificate) WZ method fails

Note that the main identity (6.4) has a remarkable symmetry. In the WZ approach,
(6.4) is then summed with respect to k to obtain a formula for

∑
k∞Z F(n, k). There

seems to be no reason why the roles of n and k should not be interchangeable to
obtain a formula for

∑
n∞Z G(n, k). Under very mild restrictions this is indeed the

case, and the resulting formula is called the companion identity. Hence by proving
one identity, a new identity is generated. Wilf and Zeilberger ([WZ90a, WZ90b])
also introduced the notion of the dual identity, and Gessel [Gessel95] used a related
approach to generate new identities from known ones in an almost algorithmic way.
More details about these topics can be found in [PWZ96, Chapter II 7].

http://dx.doi.org/10.1007/978-1-4471-6464-7_1
http://dx.doi.org/10.1007/978-1-4471-6464-7_1
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q-WZ Method

In the previous chapters we have already seen q-hypergeometric identities. As in
the hypergeometric case, such identities can be proven by an application of the
q-analogue of Gosper’s algorithm.

The procedure

qWZcertificate:=proc(F,q,k,n)
local a,gos;
a:=subs(n=n+1,F)-F;
try
gos:=qgosper(a,q,k);

catch:
error ‘q-WZ method fails‘;

end try;
return qsimpcomb(gos/F);
end proc:

which uses theqgosper implementation of theqsum package calculates the certifi-
cate, rational in qn , of the q-WZ method when applied to F(n, k), if this is applicable.
For example, the request

> qWZcertificate(
> qphihyperterm([qˆ(-n),b],[c],q,c/b*qˆn,k)/
> (qpochhammer(c/b,q,n)/qpochhammer(c,q,n)),q,k,n);

results in

− qn (−1 + qk) (q − qk c) b

(qn q − qk) (−c qn + b)
(6.7)

which gives the proof certificate for the q-Chu-Vandermonde identity (3.7). This
proves the q-Chu-Vandermonde identity and at the same time gives a manual proof
at your disposal which uses only rational arithmetic; see Exercise 6.9.

Further Reading

For further reading on the WZ method see [Gessel95], [PWZ96], [Wilf05] and
[Koepf06].

Exercises

Exercise 6.1 Prove the identity

http://dx.doi.org/10.1007/978-1-4471-6464-7_3
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∞∑
k=−∞

(−1)k(
2 n + 2 b + 2 c + 2 d
n + b + c + d + k

)
(

n + b
n + k

) (
b + c
b + k

) (
c + d
c + k

)(
d + n
d + k

)
=

Γ (n + b + c + d + 1)Γ (n + b + c + 1)Γ (n + b + d + 1)Γ (n + c + d + 1)Γ (b + c + d + 1)
n!Γ (2n + 2b + 2c + 2d + 1) Γ (n + c + 1) Γ (b + d + 1) Γ (b+1) Γ (c+1) Γ (d+1)

(see Exercise 2.17) by the WZ method.


 Exercise 6.2 Write a Maple procedure checksum(F,R,k,n) that checks
whether

∑∞
k=−∞ F(n, k) = 1, using the rational certificate R(n, k); see (6.5).

Use this procedure to prove the identities of Bailey’s list using the rational
certificates of Table 6.2 (and no Gosper implementation!).

Exercise 6.3 Prove Székely’s and Stanley’s identity (Example 3.5 and Exercise 3.4)
by the WZ method.

Exercise 6.4 (Clausen Identity) Prove the following hypergeometric identity due
to Clausen

4 F3

(
a, b, 1/2 − a − b − n,−n

1/2 + a + b, 1 − a − n, 1 − b − n

∣∣∣∣ 1

)
= (2a)n (a + b)n (2b)n

(2a + 2b)n (a)n (b)n
.

Exercise 6.5 In Corollary 5.10, we saw that the rational certificate of Gosper’s
algorithm is essentially unique. Show that the same is not true for the rational WZ
certificate. Hint: A counterexample can be found in this chapter.

Exercise 6.6 Prove the identities of Exercise 3.2 by the WZ method.

Exercise 6.7 Try to prove the following identities by the WZ method:

(a)
n∑

k=−n
(−1)k

(
2n

n + k

)(
2b

b + k

)(
2c

c + k

)
= (n + b + c)!(2n)!(2b)!(2c)!

(n + b)!(b + c)!(n + c)!n!b!c! ,

(b)
m∑

k=0

(
n

m + k

)(
m + k

2k

)
4k =

4m

(
n
m

)(
n − 1/2

m

)

(
2m
m

) ,

(c)
n∑

k=0

(
m − r + s

k

)(
n + r − s

n − k

)(
r + k
n + m

)
=

(
r
m

)(
s
n

)
,

(d)
n∑

k=−n
(−1)k

(
n + a
n + k

)(
a + n
a + k

)
=

(
n + a

n

)
,

(e)
n∑

k=1
k

(
n
k

)(
s
k

)
= s

(
n + s − 1

n − 1

)
,

(f)
n∑

k=0

(−1)k

k+x

(
n
k

)
= 1

x

(
n + x

n

) .
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Specify carefully any restrictions on the parameters occurring!

Exercise 6.8 Assume that F(n, k) is Gosper-summable with respect to k. Then the
Maple procedure WZcertificate always finds a rational certificate for the WZ
method. Why?

Exercise 6.9 Describe in detail how the proof certificate (6.7) can be used to prove
the q-Chu-Vandermonde identity by rational arithmetic.

Exercise 6.10 Use the q-WZ method to prove the q-binomial theorem (2.22) for
a = q−n

∞∑
k=0

(
q−n; q

)
k

(q; q)k
xk =

(
q−n x; q

)
∞

(x; q)∞
= (q/x; q)n q−(n+1

2 ) (−x)n,

the q-Pfaff-Saalschütz identity (3.6)

3φ2

(
q−n, a, b
c, ab

cqn−1

∣∣∣∣∣ q, q

)
= (c/a; q)n (c/b; q)n

(c; q)n (c/(ab); q)n
,

the q-Kummer identity

2φ1

(
a, b

aq/b

∣∣∣∣ q,−q

b

)
= (−q; q)∞

(
aq, aq2/b2; q2

)
∞

(−q/b, aq/b; q)∞
,

([GR90], Appendix (II.9)) for b = q−n , the q-Dixon identity

4φ3

(
a,−q

√
a, b, q−n

−√
a, aq/b, aq1+n

∣∣∣∣ q,
q1+n√

a

b

)
=

(
aq, q

√
a/b; q

)
n(

q
√

a, aq/b; q
)

n

,

([GR90], Appendix (II.14)), and Jackson’s identity

8φ7

(
a, q

√
a,−q

√
a, b, c, d, e, q−n√

a,−√
a, aq/b, aq/c, aq/d, aq/e, aq1+n

∣∣∣∣ q, q

)

= (aq, aq/(bc), aq/(bd), aq/(cd); q)n

(aq/b, aq/c, aq/d, aq/(bcd); q)n
,

where a2q = bcdeq−n ([GR90], Appendix (II.22)), which is a q-analogue of
Dougall’s identity.

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_3
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Chapter 7
Zeilberger’s Algorithm

In this chapter, we introduce Zeilberger’s extension of Gosper’s algorithm
([Zeilberger90b, Zeilberger91a, Zeilberger91b]), using which one can not only prove
hypergeometric identities but also sum definite series in many cases, if they represent
hypergeometric terms.

Like Fasenmyer, Zeilberger deals with the question of how to determine a holo-
nomic recurrence equation

J∑
j=0

Pj (n) sn+ j = 0 (7.1)

with polynomials Pj ∞ Q[n], for sums

sn :=
∈∑

k=−∈
F(n, k) (7.2)

where F(n, k) is a hypergeometric term with respect to both n and k. We assume
further that F(n, k) has finite support.

If F(n, k) is Gosper-summable with respect to k, then we get a hypergeometric
term form representation for any sum

b∑
k=a

F(n, k),

in particular if a and b are the natural bounds of F(n, k). On the other hand, as we saw
in Theorem 6.1, this information is worthless since we get sn ≡ 0 in all these cases.
Therefore it is never possible to find a nonzero hypergeometric term representation
for sn , by a direct application of Gosper’s algorithm.

Zeilberger’s idea is to apply Gosper’s algorithm in the following non-obvious
way: For suitable J = 1, 2, . . . set

W. Koepf, Hypergeometric Summation, Universitext, 117
DOI: 10.1007/978-1-4471-6464-7_7, © Springer-Verlag London 2014
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ak := F(n, k) +
J∑

j=1

Γ j (n) F(n + j, k) (7.3)

with as yet undetermined variables Γ j depending on n, but not depending on k. Then

ak+1

ak
=

F(n, k + 1) +
J∑

j=1
Γ j (n) F(n + j, k + 1)

F(n, k) +
J∑

j=1
Γ j (n) F(n + j, k)

= F(n, k + 1)

F(n, k)
·

1 +
J∑

j=1
Γ j (n)

F(n + j, k + 1)

F(n, k + 1)

1 +
J∑

j=1
Γ j (n)

F(n + j, k)

F(n, k)

∞ Q(n, k) (7.4)

turns out to be rational with respect to k, so Gosper’s algorithm is applicable.
The first step of Gosper’s algorithm generates three polynomials pk , qk and rk .

Note that since the variables Γ j ( j = 1, . . . , J ) are unknowns, the dispersion set
always contains the value 1, and after the rewriting, the unknowns Γ j occur linearly
in pk . Next, we calculate the degree bound M for fk . This can be done by a mechanical
application of Lemma 5.5, computing over Q(n), and thus ignoring possible values
of n for which the bound might be lower, since we search for a bound which is valid
for all n.

Zeilberger’s crucial observation is the following: If we take the appropriate generic
polynomial

fk = b0 + b1k + b2k2 + · · · + bM k M ,

and equate coefficients in the functional Eq. (5.7) for fk , we get a linear system in the
coefficients bl (l = 0, . . . , M) of fk and the unknowns Γ j ( j = 1, . . . , J ). Rather
than solving this system for bl (l = 0, . . . , M) alone, we may search for a solution
for bl (l = 0, . . . , M) and Γ j ( j = 1, . . . , J ) at the same time!

If this procedure is successful, it provides us with an antidifference G(n, k) of ak

(depending on n), and a set of rational functions Γ j (n) ∞ Q(n) ( j = 1, . . . , J ) such
that

G(n, k + 1) − G(n, k) = ak = F(n, k) +
J∑

j=1

Γ j (n) F(n + j, k). (7.5)

Therefore, by summation

http://dx.doi.org/10.1007/978-1-4471-6464-7_5
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∈∑
k=−∈

ak =
∈∑

k=−∈


⎧F(n, k) +

J∑
j=1

Γ j (n) F(n + j, k)

⎨
⎩

= sn +
J∑

j=1

Γ j (n) sn+ j =
∈∑

k=−∈

(
G(n, k + 1) − G(n, k)

)
= 0,

since the right-hand side is a telescoping sum. After multiplication by the common
denominator this establishes the desired recurrence Eq. (7.1).

Note that if this procedure is not successful, this does not prove that such a
holonomic recurrence equation is not valid. Zeilberger’s luck is that this happens
rather rarely.

Example 7.1 Let’s try again to find a holonomic recurrence equation of first order
for

sn :=
n∑

k=0

(
n
k

)
.

In Chap. 4, Exercise 4.1, we found such a recurrence equation by Fasenmyer’s
method. Now, we use Zeilberger’s algorithm.

We set

F(n, k) :=
(

n
k

)

and
ak := F(n, k) + Γ1 F(n + 1, k) =

(
n
k

)
+ Γ1

(
n + 1

k

)
.

By Algorithm 2.2, we get

ak+1

ak
= (n + 1 − k) (n − k + Γ1n + Γ1)

(n + 1 − k + Γ1n + Γ1) (k + 1)
. (7.6)

The dispersion calculation shows that we have pk = n + 1 − k + Γ1n + Γ1, qk =
n + 2 − k and rk = k (observe the shift of the factors containing Γ1 in the numerator
and denominator of (7.6)). The degree bound for fk turns out to be zero. Substituting
the generic polynomial fk = b0 in (5.7) yields the identity

n + 1 − k + Γ1n + Γ1 = (n + 1 − k )b0 − k b0.

Equating coefficients of like powers of k gives the linear equations

−1 + 2 b0 = 0
n + 1 + Γ1n + Γ1 − (n + 1) b0 = 0

http://dx.doi.org/10.1007/978-1-4471-6464-7_4
http://dx.doi.org/10.1007/978-1-4471-6464-7_5
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that we can solve for the unknowns {b0, Γ1} to give the solution

{b0 = 1/2, Γ1 = −1/2} .

Therefore fk = 1/2, but the more important information for us is that Γ1 = −1/2
which produces the recurrence equation

sn − 1

2
sn+1 = 0.

Using s0 = 1, we conclude that sn = 2n . →
Session 7.2 We apply our previous Maple procedures (compare Exercises 5.3–5.6),
available from hsum.mpl, to the above example.

> F:=binomial(n,k);

binomial(n, k)

> A:=F+sigma[1]*subs(n=n+1,F);

binomial(n, k) + Γ1 binomial(n + 1, k)

> rat:=ratio(A,k);

− (−n − 1 + k) (−n + k − Γ1 n − Γ1)

(−n − 1 + k − Γ1 n − Γ1) (k + 1)

> p:=1: q:=subs(k=k-1,numer(rat)): r:=subs(k=k-1,denom(rat)):

> upd:=update(p,q,r,k);

[−n − 1 + k − Γ1 n − Γ1, n + 2 − k, k]
> p:=op(1,upd): q:=op(2,upd): r:=op(3,upd):

> degreebound(p,q,r,k);

0

> f:=b[0];

b0

> rec:=collect(subs(k=k+1,q)*f-r*subs(k=k-1,f)-p,k);

(−2 b0 − 1) k + (n + 1) b0 + Γ1 n + n + 1 + Γ1

> sol:={solve({coeffs(rec,k)},{sigma[1],b[0]})};

{{b0 = −1

2
, Γ1 = −1

2
}}
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> sigma[1]:=subs(op(1,sol),sigma[1]);

−1

2

> S(n)+sigma[1]*S(n+1)=0;

S(n) − 1

2
S(n + 1) = 0

These steps can be combined by the following procedure searching for a holo-
nomic recurrence equation of order one:

zeilberger:=proc(F,k,sn)
local n,A,S,sigma,rat,p,q,r,upd,deg,f,b,j,var,rec,sol,num,den;
option remember;
if type(sn,function) then S:=op(0,sn); n:=op(1,sn)else n:=sn end if;
A:=F+sigma[1]*subs(n=n+1,F);
rat:=ratio(A,k);
if not type(rat,ratpoly(anything,k)) then

error ‘Algorithm not applicable‘
end if;
p:=1: q:=subs(k=k-1,numer(rat)): r:=subs(k=k-1,denom(rat)):
upd:=update(p,q,r,k);
p:=op(1,upd): q:=op(2,upd): r:=op(3,upd):
deg:=degreebound(p,q,r,k);
if deg<0 then

error ‘Algorithm finds no recurrence equation of first order‘
end if;
f:=add(b[j]*kˆj,j=0..deg);
var:={sigma[1],seq(b[j],j=0..deg)};
rec:=collect(subs(k=k+1,q)*f-r*subs(k=k-1,f)-p,k);
sol:={solve({coeffs(rec,k)},var)};
if sol={} then

error ‘Algorithm finds no recurrence equation of first order‘
end if;
sigma[1]:=subs(op(1,sol),sigma[1]);
sigma[1]:=normal(sigma[1]);
for j from 0 to deg do

sigma[1]:=subs(b[j]=0,sigma[1]);
end do;
num:=factor(numer(sigma[1]));
den:=factor(denom(sigma[1]));
return den*S(n)+num*S(n+1)=0;
end proc:

Therefore, in just one step we get

> zeilberger(binomial(n,k),k,s(n));

2 s(n) − s(n + 1) = 0

and similarly

> zeilberger(binomial(n,k)ˆ2,k,s(n));
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(4 n + 2) s(n) + (−n − 1) s(n + 1) = 0

> zeilberger((-1)ˆk*
> binomial(n+b,n+k)*binomial(n+c,c+k)*binomial(b+c, b+k),
> k,s(n));

(b + c + n + 1) s(n) + (−n − 1) s(n + 1) = 0

This gives a very short proof for Dixon’s theorem. (Finish this proof!). Moreover,
given the left-hand side of Dixon’s theorem, we have deduced its right-hand side.
What about Dougall’s Theorem? Can we derive the right-hand side of Dougall’s
identity directly from the left-hand sum? Here is the application:

> zeilberger(hyperterm([a,1+a/2,b,c,d,1+2*a-b-c-d+n,-n],
> [a/2,1+a-b,1+a-c,1+a-d,1+a-(1+2*a-b-c-d+n),1+a+n],1,k),
> k,s(n));

(1 + a + n) (a − d − c + 1 + n) (a + 1 + n − b − d) (a − c + n + 1 − b) s(n)−
(n + 1 + a − d) (a − c + 1 + n) (a + 1 + n − b) (1 + a − b − c − d + n)

s(n + 1) = 0

which yields an immediate result!
To get the hypergeometric term solutions automatically, we use

closedform:=proc(F,k,sn)
local zeilberg,S,n,rat,num,den,lc,numlist,denlist,j,i,init,cert;
if type(sn,function) then S:=op(0,sn); n:=op(1,sn) else n:=sn end if;
init:=eval(eval(F,k=0),n=0);
if init=0 then
error ‘Shift necessary‘

end if;
zeilberg:=zeilberger(F,k,S(n));
rat:=normal(solve(zeilberg,S(n+1))/S(n));
num:=numer(rat);
den:=denom(rat);
lc:=lcoeff(num,n)/lcoeff(den,n);
numlist:=normal([solve(num,n)]);
numlist:=[seq(-j,j=numlist)];
denlist:=normal([solve(den,n)]);
denlist:=[seq(-j,j=denlist)];
if member(1,denlist,’i’) then
denlist:= subsop(i=NULL,denlist)

else
numlist:= [op(numlist),1]

end if;
return init*hyperterm(numlist,denlist,lc,n);
end proc:

Here, we assume that the sum goes from k = 0 to k = n,1 and F(0, 0) is well-
defined. In particular F(0, 0) ≈= 0; otherwise an appropriate shift must be applied in
advance.

1 The sum can also have bounds [−n, . . . , n] as the Dixon example has. We need mainly s0 =
F(0, 0) ≈= 0.
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For the above examples we get
> closedform(binomial(n,k),k,n);

2n

> closedform(binomial(n,k)ˆ2,k,n);

(2 n)!
(n!)2

> closedform((-1)ˆk*binomial(n+b,n+k)*
> binomial(n+c,c+k)*binomial(b+c,b+k),k,n);

binomial(b + c, b) pochhammer(b + c + 1, n)

n!
> closedform(hyperterm([a,1+a/2,b,c,d,1+2*a-b-c-d+n,-n],
> [a/2,1+a-b,1+a-c,1+a-d,1+a-(1+2*a-b-c-d+n),1+a+n],1,k),k,n);

pochhammer(1 + a, n) pochhammer(a − d − c + 1, n)

pochhammer(a + 1 − b − d, n) pochhammer(a − c + 1 − b, n)/(

pochhammer(1 + a − d, n) pochhammer(1 + a − c, n)

pochhammer(1 + a − b, n) pochhammer(1 + a − b − c − d, n))

We do not yet have a proof for Watson’s identity with respect to integer −a = m ∞
N�0, and arbitrary b, c ∞ Q. Let’s find one using Zeilberger’s algorithm! We will
distinguish between even and odd m. First let m = 2n, n ∞ N�0. Here we get

> closedform(hyperterm([-2*n,b,c],[(-2*n+b+1)/2,2*c],1,k),k,n);

(2 n)! 4(−n) pochhammer

⎛
c + 1

2
− 1

2
b, n

⎜

pochhammer

⎛
1

2
+ c, n

⎜
pochhammer

⎛
1

2
− 1

2
b, n

⎜
n!

Similarly, for odd m, we get using m = 2n + 1
> closedform(
> hyperterm([-2*n-1,b,c],[(-2*n-1+b+1)/2,2*c],1,k),k,n);

n! pochhammer

⎛
1 + c − 1

2
b, n

⎜

pochhammer(c + 1, n) pochhammer

⎛
1 − 1

2
b, n

⎜

These results can be combined easily to prove Watson’s identity!

We see that the application of Zeilberger’s algorithm has the advantage over the
WZ method that the right-hand side of the hypergeometric identity of interest does
not have to be known in advance, but instead is generated by the algorithm. Therefore,
Zeilberger’s algorithm can be used to calculate the values of definite sums rather than
only to prove identities.

In particular all hypergeometric identities that we had proved using the WZ method
can be generated by Zeilberger’s algorithm.
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Moreover, one might be lucky and the returned recurrence equation can be solved
explicitly even though it is not of first order. For example, with this method, we obtain
identities (2.4), (2.5) directly without the a priori distinction between even and odd
values of n.

Session 7.3 The Maple procedure

MAXORDER:=5:

sumrecursion:=proc(F,k,sn)
local n,S,b,sigma,rat,p,q,r,upd,deg,f,i,j,jj,l,var,req,sol,
num,den,J,a; option remember;
if type(sn,function) then S:=op(0,sn); n:=op(1,sn) else n:=sn end if;
for J from 1 to MAXORDER do
a:=F+add(sigma[j]*subs(n=n+j,F),j=1..J);
rat:=ratio(a,k);
if not type(rat,ratpoly(anything,k)) then
error ‘Algorithm not applicable‘

end if;
p:=1: q:=subs(k=k-1,numer(rat)): r:=subs(k=k-1,denom(rat)):
upd:=update(p,q,r,k);
p:=op(1,upd): q:=op(2,upd): r:=op(3,upd):
deg:=degreebound(p,q,r,k);
if deg>=0 then
f:=add(b[j]*kˆj,j=0..deg);
var:={seq(sigma[jj],jj=1..J),seq(b[jj],jj=0..deg)};
req:=collect(subs(k=k+1,q)*f-r*subs(k=k-1,f)-p,k);
sol:={solve({coeffs(req,k)},var)};
if not(sol={} or
{seq(op(2,op(l,op(1,sol))),l=1..nops(op(1,sol)))}={0}) then
req:=S(n)+add(sigma[j]*S(n+j),j=1..J);
req:=subs(op(1,sol),req);
req:=numer(normal(req));
req:=collect(req,[seq(S(n+J-j),j=0..J)]);
return map(factor,req)=0;

end if;
end if;

end do;
error
cat(‘Algorithm finds no recurrence equation of order
<= ‘,MAXORDER);
end proc:

uses Zeilberger’s method iteratively increasing the order J . It results in the holo-
nomic recurrence equation of lowest order that can be obtained by this method; see
Exercise 7.14. Although for a specific type of input we know a priori that this algo-
rithm terminates (see Theorem 7.10), we search only up to order MAXORDER, which
is a global variable that can be adjusted. The default value for MAXORDER is set to
5 since higher order recurrence equations are often too complicated to be useful.

The calculations

> sumrecursion((-1)ˆk*binomial(n,k)ˆ2,k,s(n));

(n + 2) s(n + 2) + 4 s(n) (n + 1) = 0

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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> sumrecursion((-1)ˆk*binomial(n,k)ˆ3,k,s(n));

(n + 2)2 s(n + 2) + 3 s(n) (3 n + 4) (3 n + 2) = 0

for example, imply identities (2.4), (2.5) in a straightforward manner, using two
initial values rather than one!

With Zeilberger’s algorithm at hand, one has the possibility to prove identities
of another type: If we want to show that two sums represent the same function, we
prove that they satisfy the same holonomic recurrence equation and the same initial
values. That’s it. This is Zeilberger’s paradigm. Here are some examples.

Session 7.4 To prove the identity

sn =
n∑

k=0

(
n
k

)3 =
n∑

k=0

(
n
k

)2( 2k
n

)
(7.7)

(compare Exercise 4.8), we calculate the common holonomic recurrence equation

> sumrecursion(binomial(n,k)ˆ3,k,s(n));

−(n + 2)2 s(n + 2) + (7 n2 + 21 n + 16) s(n + 1) + 8 s(n) (n + 1)2 = 0

> sumrecursion(binomial(n,k)ˆ2*binomial(2*k,n),k,s(n));

−(n + 2)2 s(n + 2) + (7 n2 + 21 n + 16) s(n + 1) + 8 s(n) (n + 1)2 = 0

and check that two initial values s0 = 1 and s1 = 2 agree. That’s all you need to do!
Note that (7.7) is not at all trivial, since for n = 1 it reads 1 + 1 = 0 + 2.

Another example of the same type is given by the three different representations
of the Legendre polynomials that we met earlier:

> sumrecursion(
> binomial(n,k)*binomial(-n-1,k)*((1-x)/2)ˆk,k,s(n));

(n + 2) s(n + 2) − (2 n + 3) x s(n + 1) + s(n) (n + 1) = 0

> sumrecursion(
> 1/2ˆn*binomial(n,k)ˆ2*(x-1)ˆ(n-k)*(x+1)ˆk,k,s(n));

(n + 2) s(n + 2) − (2 n + 3) x s(n + 1) + s(n) (n + 1) = 0

> sumrecursion(1/2ˆn*(-1)ˆk*binomial(n,k)*
> binomial(2*n-2*k,n)*xˆ(n-2*k),k,s(n));

(n + 2) s(n + 2) − (2 n + 3) xs(n + 1) + s(n) (n + 1) = 0

Finally, we present a holonomic recurrence equation for the so-called Apéry num-
bers

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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An :=
n∑

k=0

(
n
k

)2( n + k
k

)2
, (7.8)

namely

(n + 2)3 An+2 − (2 n + 3)
(

17 n2 + 51 n + 39
)

An+1 + (n + 1)3 An = 0. (7.9)

This played a crucial role in Apéry’s proof [Apéry79] of the irrationality of the
number

π(3) =
∈∑

k=1

1

k3 .

Even the proof of this recurrence equation is not at all trivial (without Zeilberger’s
algorithm: try it yourself!). Concerning this question, you might have a look in van
der Poorten’s [vanderPoorten78] entertaining presentation of Apéry’s proof and its
history.2 On the other hand, it seems to be much simpler to prove such a recurrence
equation than to derive it from scratch. Let’s have a look at Zeilberger’s approach.
We get

> sumrecursion(binomial(n,k)ˆ2*binomial(n+k,k)ˆ2,k,s(n));

(n + 2)3 s(n + 2) − (2 n + 3) (17 n2 + 51 n + 39) s(n + 1) + (n + 1)3 s(n) = 0

Hence Zeilberger’s algorithm finds the recurrence equation completely automat-
ically!

Note that—unlike Fasenmyer’s approach—Zeilberger’s algorithm almost always
generates the lowest order recurrence equation in reasonable time.

Here is an example from [PS95] which shows that this is not always the case,
though; see Exercise 7.14 as well. For the sum

sn :=
∈∑

k=−∈
(−1)k

(
n
k

) (
3k
n

)
,

we have

> sumrecursion((-1)ˆk*binomial(n,k)*binomial(3*k,n),k,s(n));

2 (2 n + 3) s(n + 2) + 3 (5 n + 7) s(n + 1) + 9 s(n) (n + 1) = 0

The sum has the value (−3)n as we shall soon show. Therefore sn satisfies the first
order recurrence equation sn+1 +3 sn = 0. Hence, we see that Zeilberger’s algorithm
does not always generate the recurrence equation of lowest order.

2 “To convince ourselves of the validity of Apéry’s proof we need only complete the following
exercise: show that (7.9) is valid for (7.8). Neither Cohen nor I had been able to prove this in the
intervening two months…”.
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On the other hand, the identity sn = (−3)n is easily checked using the recurrence
equation that is returned by Zeilberger’s algorithm: Just substitute sn = (−3)n into
the recurrence equation obtained, check whether the recurrence equation is satisfied,
and check enough initial values. Then you are done because typically a holonomic
recurrence equation of order N together with N initial values determines sn uniquely.3

In the given case, we get

2(3 + 2n)(−3)n+2 + 3(5n + 7)(−3)n+1 + 9(n + 1)(−3)n

= (−3)n (18(3 + 2n) − 9(5n + 7) + 9(n + 1)) = 0,

and the initial values s0 = 1 and s1 = −3 are easily checked. This finishes the proof
of the statement sn = (−3)n .

It should be mentioned that—as for the WZ method—Zeilberger’s method faces
problems if a pole appears for some n ∞ N�0 anywhere in the intermediate cal-
culations. This happens if the rational certificate of the intermediate application of
Gosper’s algorithm (see (7.5))

⎝R(n, k) = G(n, k)

ak

has nonnegative integer denominator zeros with respect to n.
We summarize the above in the following algorithm.

Algorithm 7.5 (Zeilberger) Given F(n, k), this algorithm searches for a holonomic
recurrence equation for sn := ∑∈

k=−∈ F(n, k):

1. Input: F(n, k) ≈≡ 0, a hypergeometric term with respect to both n and k.
2. Set J := 1.
3. Set ak := F(n, k) + ∑J

j=1 Γ j (n) F(n + j, k) with undetermined variables Γ j

depending on n, but not depending on k.
4. Apply the adaptation of Gosper’s algorithm described to ak : In the last step,

solve the linear system for the coefficients of fk , and at the same time for the
unknowns Γ j ( j = 1, . . . , J ). If the procedure is successful, Gosper’s algorithm
finds G(n, k) with

G(n, k + 1) − G(n, k) = ak .

Be aware of possible nonnegative integer denominator zeros, with respect to n,
of the rational certificate

⎝R(n, k) = G(n, k)

ak

where the resulting recurrence equation might not be valid.

3 This can fail only if some of the zeros of the highest or lowest coefficient polynomials are integers.
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The calculation also determines the functions Γ j ∞ Q(n) ( j = 1, . . . , J ).
If the procedure is not successful then increase J by one and continue with
step 3.

5. Output: By summation, we have

sn +
J∑

j=1

Γ j (n) sn+ j = 0

for sn , if the right-hand side is telescoping, in particular if F(n, k) has finite
support with respect to k. Multiplication by the common denominator results in
the holonomic recurrence equation sought. �

The next example shows how sums with non-natural bounds can be treated, leading
generally to inhomogeneous recurrence equations.

Example 7.6 (Non-Natural Bounds; compare [PS95]) We consider the sum

sn =
√n/3≥∑
k=0

(
n − 2k

k

) ⎛
− 4

27

⎜k

.

For F(n, k) =
(

n − 2k
k

) ⎞− 4
27

⎟k
, the calculation

> F:=binomial(n-2*k,k)*(-4/27)ˆk:

> Sumtohyper(F,k);

Hypergeom

⎛
[−1

3
n, −1

3
n + 2

3
, −1

3
n + 1

3
], [−1

2
n, −1

2
n + 1

2
], 1

⎜

suggests that the natural bounds are k = 0, . . . , √n/3≥. But, be careful! The term
ratio F(n, k + 1)/F(n, k)

> ratio(F,k);

4

27

(−n + 3 k + 2) (−n + 3 k + 1) (−n + 3 k)

(k + 1) (−n + 2 k + 1) (−n + 2 k)

shows, on the one hand, that, for k = √n/3≥, it follows that F(n, k + 1) = 0. On the
other hand, since both n/2 and (n +1)/2 are zeros of its denominator, it may happen
that the value of F(n, k) begins to differ from zero again for k > √n/2≥. And it does!
See, for example, what happens for n = 20:

> map(expand,subs(n=20,
> [seq(binomial(n-2*j,j)*(-4/27)ˆj,j=0..15)]));
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⎠
1,

−8

3
,

640

243
,

−23296

19683
,

14080

59049
,

−28672

1594323
,

114688

387420489
, 0, 0, 0, 0,

16777216

1853020188851841
,

7633633280

150094635296999121
,

63887638528

450283905890997363
,

3468186091520

12157665459056928801
,

1403921729847296

2954312706550833698643

]

Hence, the given bounds are not the natural ones, and F(n, k) does not have finite
support. Nevertheless, we take J = 2 (the choice J = 1 is not successful), set
ak = F(n, k) + Γ1 F(n + 1, k) + Γ2 F(n + 2, k), and use Zeilberger’s procedure to
get

F(n, k) + Γ1 F(n + 1, k) + Γ2 F(n + 2, k) = G(n, k + 1) − G(n, k) (7.10)

for

Γ1 = 3(n + 4)

2(n + 3)
, Γ2 = −9(n + 2)

2(n + 3)
,

and G(n, k) = R(n, k)F(n, k) with

R(n, k) = 27

2

(n − 2 k + 2) k (n − 2 k + 1)

(n + 3) (n − 3 k + 2) (n − 3 k + 1)
.

Summation of (7.10) from k = 0 to k = √(n + 2)/3≥ by telescoping generates the
recurrence equation for sn

⌊
n+2

3

⎪
∑
k=0

F(n, k) + 3(n + 4)

2(n + 3)

⌊
n+2

3

⎪
∑
k=0

F(n + 1, k) − 9(n + 2)

2(n + 3)

⌊
n+2

3

⎪
∑
k=0

F(n + 2, k)

= G(n, √(n + 2)/3≥ + 1) − G(n, 0) = 0.

We choose the upper summation bound k = √(n+2)/3≥ since F(n+2, k) is involved
in (7.10). On the other hand, since F(n, k) = 0 for k immediately after √n/3≥, we
get

sn + 3(n + 4)

2(n + 3)
sn+1 − 9(n + 2)

2(n + 3)
sn+2 = G(n, [(n + 2)/3] + 1) − G(n, 0) = 0.

Even though in general we get an inhomogeneous recurrence equation if non-natural
bounds are involved, in the current case it turns out that the resulting recurrence
equation is homogeneous despite the fact that the bounds are not the natural ones.
This is so since F(n, k) = 0 for all k between √n/3≥ and √n/2≥, and G(n, k) is a
multiple of F(n, k). Hence we have determined the holonomic recurrence equation
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9 (n + 2) sn+2 − 3 (n + 4) sn+1 − 2 (n + 3) sn = 0

for sn . Note that the hsum package contains an implementation sumrecursion
(F,k=a..b,s(n)) of the inhomogeneous version of Zeilberger’s algorithm,
which finds the above recurrence equation automatically:

> re:=sumrecursion(F,k=0..n/3,s(n));

−9 (2 + n) s(2 + n) + 3 (n + 4) s(n + 1) + 2 (n + 3) s(n) = 0

This establishes our result for nonnegative integers n that are divisible by 3. For
other values of n we compute sumrecursion(F,k=0..n/3-1/3,s(n));
and sumrecursion(F,k=0..n/3-2/3,s(n)); with the same result.

We will come back to this example in Session 9.12. →
In the next two examples we show two methods by means of which one can

find hypergeometric representations of certain double sums without the need of
Wegschaider’s algorithm.

Example 7.7 (Clausen’s Formula, see e.g. [Rainville60]) Here we deduce Clausen’s
formula

⎛
2 F1

⎛
a, b

a + b + 1/2

∣∣∣∣ x

⎜⎜2

= 3 F2

⎛
2a, 2b, a + b

a + b + 1/2, 2a + 2b

∣∣∣∣ x

⎜
(7.11)

which gives all possible squares of 2 F1 functions generating a 3 F2. Therefore we
equate coefficients using the Cauchy product, and apply Zeilberger’s algorithm to
the left-hand side with respect to the summation variable.

Rewriting the left-hand side of (7.11) using the Cauchy product yields

( ∈∑
k=0

(a)k (b)k⎞
a + b + 1

2

⎟
k k! xk

⎡2

=
∈∑

k=0

k∑
j=0

(a) j (b) j⎞
a + b + 1

2

⎟
j j !

(a)k− j (b)k− j⎞
a + b + 1

2

⎟
k− j (k − j)! xk .

The coefficient of xk on the right is a sum for which Zeilberger’s algorithm generates
the hypergeometric term4

> Closedform(hyperterm([a,b],[a+b+1/2],1,j)*
> hyperterm([a,b],[a+b+1/2],1,k-j),j,k);

Hyperterm

⎛
[2 b, 2 a, a + b], [2 a + 2 b, a + b + 1

2
], 1, k

⎜

Hence we have discovered the right-hand side of (7.11)! →
Next, we give an example of a rather complicated double sum identity that can be
discovered by Zeilberger’s algorithm. The motivation for dealing with this sum will
be apparent soon.

4 Closedform is the same as closedform, with hyperterm replaced by the inert form
Hyperterm in the output, preventing evaluation, and hence emphasizing the hypergeometric
structure.
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Example 7.8 (Double Sum Identity, see [Gasper86]) We try to find a hypergeometric
representation for the double sum

√ n−k
2 ≥∑

j=0

⎞ 1
2

⎟
j

⎞
γ
2 +1

⎟
n− j

⎞
γ+3

2

⎟
n−2 j (γ+1)n−2 j

j ! ⎞ γ+3
2

⎟
n− j

⎞
γ+1

2

⎟
n−2 j (n − 2 j)! 3 F2

⎛
2 j − n, n − 2 j + γ + 1, γ+1

2
γ + 1, γ+2

2

∣∣∣∣ x

⎜
.

Application of Zeilberger’s algorithm to the summand gives

> zeilberger(pochhammer(1/2,j)*pochhammer(alpha/2+1,n-j)*
> pochhammer((alpha+3)/2,n-2*j)*pochhammer(alpha+1,n-2*j)/
> j!/pochhammer((alpha+3)/2,n-j)/pochhammer((alpha+1)/2,n-2*j)/
> (n-2*j)!*hyperterm([2*j-n,n-2*j+alpha+1,(alpha+1)/2],
> [alpha+1,(alpha+2)/2],x,k),k,AG(j));

Error, (in zeilberger) Algorithm finds no recurrence equation
of first order

Unfortunately, no recurrence equation of first order is discovered, so that we don’t
see a hypergeometric term solution. Therefore, did we lose the battle? No, because
following Gasper, we can change the order of summation, summing with respect to
j first! Using this approach we get for the outer summand the first order recurrence
equation with respect to k

> zeilberger(pochhammer(1/2,j)*pochhammer(alpha/2+1,n-j)*
> pochhammer((alpha+3)/2,n-2*j)*pochhammer(alpha+1,n-2*j)/
> j!/pochhammer((alpha+3)/2,n-j)/pochhammer((alpha+1)/2,n-2*j)/
> (n-2*j)!*hyperterm([2*j-n,n-2*j+alpha+1,(alpha+1)/2],
> [alpha+1,(alpha+2)/2],x,k),j,AG(k));

x (γ + 1 + 2 k) (−n + k) (k + γ + 2 + n) AG(k)

− (k + 1) (γ + 1 + k) (γ + 3 + 2 k) AG(k + 1) = 0

Hence we have discovered the representation

√ n−k
2 ≥∑

j=0

⎞ 1
2

⎟
j

⎞
γ
2 +1

⎟
n− j

⎞
γ+3

2

⎟
n−2 j (γ+1)n−2 j

j ! ⎞γ+3
2

⎟
n− j

⎞
γ+1

2

⎟
n−2 j (n − 2 j)!

× 3 F2

⎛
2 j − n, n − 2 j + γ + 1, γ+1

2
γ + 1, γ+2

2

∣∣∣∣ x

⎜

= C(n, γ) · 3 F2

⎛ −n, n + γ + 2, γ+1
2

γ + 1, γ+3
2

∣∣∣∣ x

⎜

where C(n, γ) depends only on n and γ. To find C(n, γ), we apply Zeilberger’s
algorithm to the coefficient of the left-hand 3 F2 function with respect to n with the
result

> closedform(pochhammer(1/2,j)*pochhammer(alpha/2+1,n-j)*
> pochhammer((alpha+3)/2,n-2*j)*pochhammer(alpha+1,n-2*j)/j!/
> pochhammer((alpha+3)/2,n-j)/pochhammer((alpha+1)/2,n-2*j)/
> (n-2*j)!,j,n);
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pochhammer(γ + 2, n)

n!

Hence C(n, γ) = (γ + 2)n

n! , and therefore

(γ + 2)n

n! 3 F2

⎛ −n, n + γ + 2, γ+1
2

γ + 1, γ+3
2

∣∣∣∣ x

⎜

=
√ n−k

2 ≥∑
j=0

⎞ 1
2

⎟
j

⎞
γ
2 +1

⎟
n− j

⎞
γ+3

2

⎟
n−2 j (γ+1)n−2 j

j ! ⎞γ+3
2

⎟
n− j

⎞
γ+1

2

⎟
n−2 j (n − 2 j)!

× 3 F2

⎛
2 j − n, n − 2 j + γ + 1, γ+1

2
γ + 1, γ+2

2

∣∣∣∣ x

⎜
.

Applying Clausen’s formula with a = j − n/2, and b = (n − 2 j + γ + 1)/2 to
the right-hand side yields the Askey-Gasper identity [AG76]

(γ + 2)n

n! 3 F2

⎛ −n, n + γ + 2, γ+1
2

γ + 1, γ+3
2

∣∣∣∣ x

⎜

=
√ n−k

2 ≥∑
j=0

⎞ 1
2

⎟
j

⎞
γ
2 +1

⎟
n− j

⎞
γ+3

2

⎟
n−2 j (γ+1)n−2 j

j ! ⎞ γ+3
2

⎟
n− j

⎞
γ+1

2

⎟
n−2 j (n − 2 j)!

⎛
2 F1

⎛
j − n

2 ,
n−2 j+γ+1

2
γ+2

2

∣∣∣∣ x

⎜⎜2

,

(7.12)

which implies the Askey-Gasper inequality

3 F2

⎛ −n, n + γ + 2, γ+1
2

γ + 1, γ+3
2

∣∣∣∣ x

⎜
≥ 0 (x ∞ [−1, 1], γ > −2, γ ≈= −1).

For γ = 2, 4, 6, . . . (compare Exercise 2.16) this was the key inequality in de
Branges’ proof [deBranges85] of the Bieberbach conjecture. Note that the same
argument can be applied to Weinstein’s version of the proof [Weinstein91]; compare
([Todorov92, Wilf94, KS96]).

Note that, whereas it turned out to be easy to deduce the left-hand side from the
right-hand side of (7.12), there is no simple way to reverse this process. Finding this
representation starting with the left-hand side of (7.12) was Askey’s and Gasper’s
brilliant achievement. →

The given method can be used to prove and discover many more hypergeometric
representations of double sums, in particular for sums of orthogonal polynomials,
for example those in [Feldheim43, AF69], or [AG71]. Some examples of this type
are given in the exercises.
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Like the Wilf-Zeilberger method, Zeilberger’s algorithm is accompanied by a
rational certification mechanism. With this rational certificate (see Exercise 7.16) it
is again possible to prove the resulting recurrence equation by rational arithmetic
without any knowledge of where either the certificate and the recurrence equation
come from. This is an important issue as the following example shows:

Example 7.9 Assume that we find an antiderivative using Maple and we would like
to prove it using the fundamental theorem of calculus:

> integral:=int(x/(1-xˆ2),x);

−1

2
ln(x − 1) − 1

2
ln(x + 1)

This calculation is obviously proved if we get the integrand back after differenti-
ation.

> derivative:=diff(integral,x);

−1

2

1

x − 1
− 1

2

1

x + 1

We see, however, that differentiation does not generate the integrand. In the given
case, this is not a crucial issue since the integrand is rational, and the identity

x

1 − x2 = − 1

2(x − 1)
− 1

2(x + 1)

is easily checked, for example by

> normal(derivative-x/(1-xˆ2));

0

This step is much more difficult if nonrational functions are involved. We get, for
example

> integral:=int(sqrt(xˆ2+yˆ2),x);

1

2
x

⎢
x2 + y2 + 1

2
y2 ln

(
x + ⎢

x2 + y2
)

> derivative:=diff(integral,x);

1

2

⎢
x2 + y2 + 1

2
x2⎣

x2 + y2
+ 1

2

y2

(
1 + x⎢

x2 + y2

⎡

x + ⎢
x2 + y2

> normal(derivative);

⎢
x2 + y2
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Here we are lucky that, although the differentiated antiderivative is quite different
from the original integrand, we get the integrand back using normal. This is so
since the term under investigation is rational in the variables x, y and

⎢
x2 + y2.

We give a final example.

> integral:=int(sin(3*x)/cos(x),x);

−2 cos(x)2 + ln(cos(x))

> derivative:=diff(integral,x);

4 cos(x) sin(x) − sin(x)

cos(x)

> expand(sin(3*x)/cos(x)-derivative);

0

The underlying identity

sin(3 x)

cos(x)
= 4 sin(x) cos(x) − sin(x)

cos(x)

cannot be shown by rational arithmetic. To prove this statement, addition formu-
las for trigonometric functions are utilized, which can be done using the expand
command. →

This leaves us with one unanswered question about Zeilberger’s algorithm: How
can we guarantee that the algorithm terminates? We continue to increase the order
J until we find the resulting recurrence equation. Since we saw that Zeilberger’s
algorithm might miss the lowest order recurrence equation, how can we be sure
that it terminates at all? Luckily, one can prove that for proper hypergeomet-
ric terms Zeilberger’s algorithm does actually terminate. Recall that a hypergeo-
metric term F(n, k) is called proper if it has finite support, and is of the form
F(n, k) = P(n, k)

Q(n,k)
R(n,k)

wnzk where P(n, k) is a polynomial (polynomial part)
and Q(n, k), R(n, k) are ϕ -term products with integer-linear arguments (factorial
part).

We have as a first step

Theorem 7.10 (see [WZ92, GKP94]) Let F(n, k)be a proper hypergeometric term,
written in the form

F(n, k) = P(n, k)
ϕ (γ1k + φ1n + c1) · · · ϕ (γpk + φpn + cp)

ϕ (θ1k + ε1n + d1) · · · ϕ (θqk + εqn + dq)
wn zk, (7.13)

P ∞ Q[n, k], γl , φl , θl , εl ∞ Z, and cl , dl , w, z ∞ Q.
Then there exists a k-free holonomic recurrence equation with polynomials ai j (n)
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I∑
i=0

J∑
j=0

ai j (n) F(n + j, k + i) = 0 (7.14)

for large enough I and J . To be precise, the condition

J ≥ J0 :=
p∑

l=1

|γl | +
q∑

l=1

|θl | and I ≥

⎧

p∑
l=1

|φl |+
q∑

l=1

|εl |−1

⎨
⎩ · J0 + deg

k
P(n, k) (7.15)

is sufficient (but not necessary) for such a recurrence equation to exist.

Proof We use operator notation that will be especially helpful in the proof of the
theorem’s corollary.

Let K and N denote the (forward) shift operators with respect to k and n, respec-
tively, hence

K i N j F(n, k) = F(n + j, k + i).

Then (7.14) reads H(N , K , n) F(n, k) = 0 with the holonomic operator

H(N , K , n) =
I∑

i=0

J∑
j=0

ai j (n)K i N j . (7.16)

The operator H(N , K , n) is a polynomial in the variables N , K and n since each
ai j (n) is a polynomial in n. Note, however, that the polynomial ring in the variables
(N , K , n, k) is not commutative since by the calculation K (kak) − kK ak = (k +
1)ak+1 − kak+1 = ak+1 = K ak we see that the commutator rule K k − kK = K is
valid. Similarly Nn − nN = N , but the other pairs of variables commute with each
other.

Now, assume F(n, k) is a proper hypergeometric term. We will show that the
application of H(N , K , n) to F(n, k) results in a proper hypergeometric term again.
Let F(n, k) and H(N , K , n) be given by (7.13) and (7.16), respectively. Then we
set

⎝H(n, k) :=

p⎤
l=1

ϕ (γl k + φln + s(−γl)γl I + s(−φl)φl J + cl)

q⎤
l=1

ϕ (θl k + εln + s(θl)θl I + s(εl)εl J + dl)

wn zk, (7.17)

with s(x) denoting the Heaviside function

s(x) :=
⎥

1 if x > 0
0 otherwise

.
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The importance of ⎝H(n, k) comes from the fact that for all i = 0, . . . , I and j =
0, . . . , J the expression ai j (n)K i N j F(n, k) is a polynomial multiple of ⎝H(n, k).
This is a consequence of the fundamental identity (1.4) of the ϕ function. Since a
finite sum of polynomials forms a polynomial, we see that H(N , K , n)F(n, k) is
indeed a proper hypergeometric term.

Moreover, a closer look shows that

ai j (n)K i N j F(n, k) = pi j (n, k) ⎝H(n, k) (pi j (n, k) ∞ Q[n, k]),

where the polynomial factor pi j (n, k) has degree at most

D := degk P(n, k) +
( p∑

l=1

|γl | +
q∑

l=1

|θl |
⎡

I +
( p∑

l=1

|φl | +
q∑

l=1

|εl |
⎡

J

with respect to k (see Exercise 7.17).
Hence the identity H(N , K , n) F(n, k) = 0 to be proved reads

I∑
i=0

J∑
j=0

pi j (n, k) ⎝H(n, k) = 0.

This must be valid for all k ∞ Z, which is only possible if

p(n, k) :=
I∑

i=0

J∑
j=0

pi j (n, k) ≡ 0

for all k ∞ Z. Equating coefficients yields at most D + 1 homogeneous linear
equations in the (I + 1)(J + 1) variables. This system undoubtedly has a nontrivial
solution if there are more variables than equations, which is the case if (7.15) is
valid. 
�
Note that with more effort better (often sharp) bounds can be obtained [MZ05] using
the signs of the coefficients γl and θl . However, the most important applications of
Theorem 7.10 are the next two corollaries which rely on the existence of I and J .

Corollary 7.11 (see [WZ92, GKP94]) Let F(n, k) be a proper hypergeometric
term, given by (7.13). Then there exist polynomials Γ j (n) ∞ Q[n] ( j = 0, . . . , J )

(not all zero) and a proper hypergeometric term G(n, k) such that

J∑
j=0

Γ j (n) F(n + j, k) = G(n, k + 1) − G(n, k) (7.18)

for large enough J .

http://dx.doi.org/10.1007/978-1-4471-6464-7_1
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Proof Let I be the smallest possible choice such that Theorem 7.10 applies. We
write

H(N , K , n) = H(N , 1, n) − (K − 1) h(N , K , n) (7.19)

for some linear difference operator h(N , K , n). Note that this is equivalent to a
noncommutative division by K −1 (which is possible since H(N , 1, n)−H(N , K , n)

has a zero at K = 1) in the polynomial ring considered corresponding to

H(N , 1, n) − H(N , K , n) = (K − 1) h(N , K , n).

Since H(N , 1, n) is a polynomial of degree J in N , we may write

H(N , 1, n) =
J∑

j=0

Γ j (n) N j .

By the proof of Theorem 7.10

G(n, k) := h(N , K , n) F(n, k) (7.20)

is a proper hypergeometric term. Applying (7.19) to F(n, k), we get

0 = H(N , K , n) F(n, k) =
(

H(N , 1, n) − (K − 1) h(N , K , n)
)

F(n, k)

=
J∑

j=0

Γ j (n) N j F(n, k) − (K − 1) G(n, k),

so that (7.18) is valid.
It remains to prove that at least one of the polynomials Γ j is nonzero. Assume

all Γ j are identically zero, so then in particular G(n, k) is independent of k. Since
G(n, k) is a hypergeometric term with respect to n, there are polynomials ζ0(n) and
ζ1(n) such that

(ζ0(n) + ζ1(n) N ) G(n, k) = 0.

Therefore, by (7.20)
(ζ0(n) + ζ1(n) N ) h(N , K , n)

forms a nonzero linear difference operator of degree I − 1 with respect to K which,
applied to F(n, k), yields zero. This contradicts the minimality of I . 
�
Finally we get

Corollary 7.12 (see [WZ92, GKP94]) For series of proper hypergeometric terms,
Zeilberger’s algorithm terminates.
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Proof For proper hypergeometric F(n, k), Corollary 7.11 shows that Zeilberger’s
sum

J∑
j=0

Γ j (n) F(n + j, k)

has a proper hypergeometric antidifference G(n, k) for suitably chosen Γ j (n) ( j =
0, . . . , J ) and J ∞ N. Since Gosper’s algorithm is a decision procedure for such an
output, it will find G(n, k). Summation yields the desired recurrence equation for
the sum, if F(n, k) has finite support. 
�

In the past decade many more details concerning Zeilberger’s algorithm have been
studied.

In Exercise 7.33 it is shown that Zeilberger’s algorithm does not terminate for all
hypergeometric series. However, Abramov ([Abramov02], see also [AL00]) gave a
criterion, by means of which the applicability of Zeilberger’s algorithm to hyperge-
ometric terms can be checked a priori. This is implemented in the Maple package
SumTools as SumTools[Hypergeometric][IsZApplicable]. Koorn-
winder [Koornwinder98] and Vidunas [Vidunas02] extended Zeilberger’s algorithm
to nonterminating series. This is implemented as Maple package infhsum.mpl,
see [Vidunas01], and put into the q-context in [CHM08]. Gerhard [Gerhard01] used
a modular approach and gave a worst case asymptotic cost analysis for Zeilberger’s
algorithm.

In [Zeilberger90a] Zeilberger had given a different approach to summation based
on non-commutative elimination techniques. This was further developed by Chyzak
and Salvy [CS98], Koepf [Koepf97a, Koepf97b] and others. An extension of Zeil-
berger’s fast algorithm to the general holonomic case was given in [Chyzak00].
In [CKS09] it was shown how the methods of both Fasenmyer’s and Zeilberger’s
approach can be generalized to certain non-holonomic summations.

The CAOP project (Computer Algebra and Orthogonal Polynomials) [CAOP]
is a web resource which computes recurrence and differential equations online for
families of the Askey-Wilson scheme using the Maple programs of this chapter and
of Chap. 10.

A multivariate variant of Zeilberger’s algorithm was considered in [AZ06].

q-Zeilberger Algorithm

In the previous chapter, the q-analogue of Gosper’s algorithm was used to obtain a
q-analogue of the WZ method for proving q-identities.

Applying the same adaptation that we met in this chapter to the q-Gosper algorithm
by solving the linear system for the coefficients of fk (which turns out to be a
Laurent polynomial here), and at the same time for the unknowns Γ j ( j = 1, . . . , J )

yields the q-analogue of Zeilberger’s algorithm for finding recurrence equations for

http://dx.doi.org/10.1007/978-1-4471-6464-7_10
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q-hypergeometric sums. This algorithm is much stronger in generating q-identities
than the q-Fasenmyer method that we saw in Chap. 4.

An implementation [BK99] based on Koornwinder’s [Koornwinder93] and the
implementations of the present book is given in the qsum package containing
the Maple procedure qsumrecursion(F,q,k,S(n)) for this purpose. The
request5

> qsumrecursion(qbinomial(n,k,q),q,k,S(n),recursion=up);

−S(2 + n) + 2 S(n + 1) + (−1 + q(n+1)) S(n) = 0

e.g., confirms the recurrence equation that was already computed in Chap. 4. Whereas
in Exercise 4.19 the q-analogue of Fasenmyer’s method failed to generate the q-
analogues of the Chu-Vandermonde and of the Pfaff-Saalschütz identities (3.7) and
(3.6), the q-analogue of Zeilberger’s algorithm is quickly successful; see Exer-
cise 7.35.

Further Reading

For further reading on Zeilberger’s algorithm see [GKP94, PWZ96, Koepf06], and
for the q-case [Koornwinder93, PR97] and [BK99].

Exercises

Exercise 7.1 Prove the identities (2.4)–(2.5) using Zeilberger’s algorithm in detail
(without Maple!).

Exercise 7.2 Prove the entries of our hypergeometric database in Chap. 3 using
Zeilberger’s algorithm. Which entries with respect to which variables cannot be
solved? Why?

Exercise 7.3 Prove Bailey’s hypergeometric identities (Table 6.1, under Algorithm
6.5) using Zeilberger’s algorithm.

Exercise 7.4 Show that if sn satisfies a holonomic recurrence equation, then it sat-
isfies a holonomic recurrence equation of lowest order which is unique up to poly-
nomial multiples.

Exercise 7.5 Determine for which x the following sums have a hypergeometric term
representation:

5 Without the option recursion=up, the procedure gives the recurrence equation in terms of
downward shifts.

http://dx.doi.org/10.1007/978-1-4471-6464-7_4
http://dx.doi.org/10.1007/978-1-4471-6464-7_4
http://dx.doi.org/10.1007/978-1-4471-6464-7_3
http://dx.doi.org/10.1007/978-1-4471-6464-7_3
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_3
http://dx.doi.org/10.1007/978-1-4471-6464-7_6
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(a)
n∑

k=0

(
n + k

k

)
xk,

(b)
∈∑

k=0

(
n + k

k

)
xk,

(c)
n∑

k=0

(
n − k

k

)
xk,

(d)
∈∑

k=0

(
n − k

k

)
xk .

Exercise 7.6 Show that the hypergeometric function of Gauss’ identity (3.1)

sm := 2 F1

⎛
a, b

c + m

∣∣∣∣ 1

⎜

satisfies the recurrence equation

(c + m) (a + b − c − m) sm + (b − c − m) (a − m − c) sm+1 = 0

with respect to the parameter m. Therefore one has, for m ∞ N,

2 F1

⎛
a, b

c + m

∣∣∣∣ 1

⎜
= (c − a)m (c − b)m

(c)m (c − a − b)m
2 F1

⎛
a, b

c

∣∣∣∣ 1

⎜
.

Show that letting m → ∈ implies Gauss’ identity for arbitrary a, b and c for which
we have convergence (see [PS95]).

Exercise 7.7 Take the left-hand sides of the identities of Exercise 6.7, and deduce
the right-hand sides by Zeilberger’s algorithm whenever possible.

Exercise 7.8 Prove the following identity, proposed in SIAM Review 37, 1995,
Problem 95-1 (a) [XT95]:

m∑
k=0

(
m
k

)(
n + k

k

)(
n + 1
j − k

)
=

n∑
k=0

(
n
k

)(
m + k

k

)(
m + 1
j − k

)
.

Exercise 7.9 Prove, by Zeilberger’s algorithm,

(x + y)n =
n∑

k=0

(
n
k

)
(x)k (y)n−k .

Exercise 7.10 (Classical Discrete Orthogonal Polynomials) Find three-term recur-
rence equations with respect to all possible variables for the following families of
discrete orthogonal polynomials (see [KLS10, Koepf97a]). The parameters x , N and
n denote nonnegative integers.

http://dx.doi.org/10.1007/978-1-4471-6464-7_3
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Krawtchouk Polynomials

Kn(x; p, N ) = 2 F1

⎛ −n,−x
−N

∣∣∣∣ 1

p

⎜
.

Meixner Polynomials

Mn(x;φ, c) = 2 F1

⎛ −n,−x
φ

∣∣∣∣ 1 − 1

c

⎜
.

Charlier Polynomials

Cn(x, a) = 2 F0

⎛ −n,−x
−

∣∣∣∣−1

a

⎜
= (−1)n

an
(x − n + 1)n · 1 F1

⎛ −n
x − n + 1

∣∣∣∣ a

⎜
.

Hahn Polynomials

Qn(x;γ, φ, N ) = (γ + x + 1)n (x − N )n

(γ + 1)n (−N )n
3 F2

⎛ −n, −x, φ + N + 1 − x
N + 1 − x − n, −γ − x − n

∣∣∣∣ 1

⎜

= 3 F2

⎛ −n, −x, γ + φ + n + 1
γ + 1, −N

∣∣∣∣ 1

⎜
.

Prove that the different representations define the same functions whenever applica-
ble.


 Exercise 7.11 In the previous exercise we introduced the classical discrete
orthogonal polynomials. Their recurrence equations with respect to x can be written
in the form

Γ(x)
∇ pn(x) + ζ(x)
pn(x) + λn pn(x) = 0,

or, equivalently, in the form

Γ(x)
pn(x) + ζ(x)∇ pn(x) + λn pn(x) = 0

where 
 f (x) = f (x +1)− f (x) denotes the forward and ∇ f (x) = f (x)− f (x −1)

denotes the backward difference operator, with Γ(x) = Γ(x + 1) + ζ(x + 1) and
ζ(x) = −Γ(x). Write two Maple procedures sumdeltanabla(F,k,s(x)) and
‘sumdelta+nabla‘(F,k,s(x)) to search for recurrence equations in these
forms, respectively, and apply these implementations to the polynomial systems that
were defined in the previous exercise. Note that in these forms the results are much
simpler than the recurrence equation results of the previous exercise. Furthermore,
for the classical discrete orthogonal polynomials, Γ(x) and ζ(x) are polynomials of
degree at most 2 and 1, respectively.

Exercise 7.12 (Wilson Polynomials) The Wilson polynomials [Wilson80] (see
[KLS10], (10.1.1)) are given by
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Wn(x2) = Wn(x2; a, b, c, d)

= (a + b)n (a + c)n (a + d)n

× 4 F3

⎛ −n, a+b+c+d+n−1, a−i x, a+i x
a + b, a + c, a + d

∣∣∣∣ 1

⎜
.

Find three-term recurrence equations with respect to all parameters involved, partic-
ularly with respect to n and i x .6

Furthermore, prove the identity

Wn(x2; a, b, c, d) = Wn(x2; b, a, c, d).

The three-term recurrence equations for Wn(x2) with respect to n and i x are quite
complicated. There are much simpler recurrence equations for

⎝Wn(x2) = Wn(x2)

(a + b)n (a + c)n (a + d)n

of the form ([KLS10], (10.1.4))

γ(x) ⎝Wn(x2) = An ⎝Wn+1(x2) − (An + Cn) ⎝Wn(x2) + Cn ⎝Wn−1(x2)

where γ(x) does not depend on n, and An, Cn do not depend on x , and (compare
[KLS10], (10.1.6))

φn ⎝Wn(x2) = ⎝B(x) ⎝Wn(i(x + 1)) − (⎝B(x) + ⎝D(x)) ⎝Wn(x) + ⎝D(x) ⎝Wn(i(x − 1)),

where φn does not depend on x , and ⎝B(x), ⎝D(x) do not depend on n, respectively.
Find these! Also use the procedure ‘sumdelta+nabla‘ from the previous exer-
cise for which the result looks rather simple.

Exercise 7.13 (Whipple Transformation) Show that

4 F3

⎛ −n, b, c, d
e, f, g

∣∣∣∣ 1

⎜
= ( f − b)n (g − b)n

( f )n (g)n

× 4 F3

⎛ −n, b, e − c, e − d
e, b − f − n + 1, b − g − n + 1

∣∣∣∣ 1

⎜

constitutes an identity provided that e + f + g = −n + b + c + d + 1.

Exercise 7.14 Show, for d = 2, 3, 4, 5, that

∈∑
k=−∈

(−1)k
(

n
k

) (
dk
n

)
= (−d)n, (7.21)

6 There is no recurrence w.r.t. x , but w.r.t. y = i x .
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by an application of Zeilberger’s algorithm [PS95]. What are the orders of the result-
ing recurrence equations?

Can one prove (7.21) for arbitrary d ∞ N by Zeilberger’s algorithm?

Exercise 7.15 Show that the two results concerning the Watson identity in Ses-
sion 8.2 are equivalent to Watson’s identity.

Exercise 7.16 Define an appropriate rational certificate R(n, k) for Zeilberger’s
algorithm, and give a detailed description of which rational identity must be checked
to prove the resulting recurrence equation with the aid of R(n, k).

Exercise 7.17 Prove that for all i = 0, . . . , I and j = 0, . . . , J the expression
K i N j F(n, k) is a polynomial multiple of ⎝H(n, k), given by (7.17),

K i N j F(n, k) = p(n, k) ⎝H(n, k) (p(n, k) ∞ Q[n, k]),

where the polynomial factor p(n, k) has degree at most

degk P(n, k) +
( p∑

l=1

|γl | +
q∑

l=1

|θl |
⎡

I +
( p∑

l=1

|φl | +
q∑

l=1

|εl |
⎡

J

with respect to k.

Exercise 7.18 Find hypergeometric term representations for the following sums

(a)
m−1∑
k=0

4 (−1)k
⎛

m − 1
k

⎜⎛
2 m − 1

2 k

⎜⎞
4 m2+16 k2−16 km+16 k−6 m+3

⎟
⎛

4 m − 1
4 k

⎜⎞
4 m−4 k−3

⎟⎞
4 m−4 k−1

⎟ ,

(b)
n−p∑
k=0

⎛
1 + 2 n

2 p + 2 k + 1

⎜ ⎛
p + k

k

⎜
,

(c)
√n/2≥∑
k=0

(−n/2)k (−n/2 + 1/2)k

k! (b + 1/2)k
,

(d)
n∑

k=0

(−1/4
k

)2( −1/4
n − k

)2
,

(e) 3 F2

⎛ −n, 1 − a − n, 1 − b − n
a, b

∣∣∣∣ 1

⎜
,

(f) 3 F2

⎛ −n + k, k + 1/2, n + k + 2
k + 3/2, 2k + 1

∣∣∣∣ 1

⎜
.

Exercise 7.19 Show that Zeilberger’s algorithm applied to

sn := 3 F2

⎛ −n, b, c + m
b + 1, c

∣∣∣∣ 1

⎜
,
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for any fixed given m ∞ N�0, generates the recurrence equation of first order

(n + 1 + b) sn+1 − (n + 1) sn = 0,

valid for n ≥ m, the degree bound to find fk being equal to m. This shows that the
complexity of Zeilberger’s algorithm can be arbitrarily high despite its success for
J = 1.

Exercise 7.20 Prove the identity

√n/2≥∑
k=0

(
n − k

k

)
xk = 1

2n

√n/2≥∑
k=0

(
n + 1
2k + 1

)
(1 + 4x)k .

Give two different hypergeometric representations of the Fibonacci numbers, thus
extending the result of Exercise 4.6.

Exercise 7.21 Prove the following identity, proposed in SIAM Review 37, 1995,
Problem 95-1 (b) [XT95]:

m∑
k=0

(
2n − m − 1 − k

n − k

)(
m + k

k

)
=

(
2n − 1

n

)
(m ≤ n − 1).

What is the result for the corresponding sum

n∑
k=0

(
2n − m − 1 − k

n − k

)(
m + k

k

)

with natural bounds?

Exercise 7.22 (Clausen’s Product Identity) Use the method of Example 7.7 to prove
the Clausen product identity

2 F1

⎛
1/4 + a, 1/4 + b

1 + a + b

∣∣∣∣ x

⎜
· 2 F1

⎛
1/4 − a, 1/4 − b

1 − a − b

∣∣∣∣ x

⎜

= 3 F2

⎛
1/2, 1/2 + a − b, 1/2 − a + b

1 + a + b, 1 − a − b

∣∣∣∣ x

⎜
.

Exercise 7.23 Use the method of Example 7.7 to find hypergeometric representa-
tions for the following products

(a) 0 F1

⎛ −
a

∣∣∣∣ x

⎜
· 0 F1

⎛ −
b

∣∣∣∣ x

⎜
,

(b) 1 F1

⎛
a
b

∣∣∣∣ x

⎜
· 1 F1

⎛
a
b

∣∣∣∣−x

⎜
,
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(c) 0 F2

⎛ −
a, b

∣∣∣∣ x

⎜
· 0 F2

⎛ −
a, b

∣∣∣∣ −x

⎜
.

Exercise 7.24 Which hypergeometric identity of Bailey’s list (Table 6.1, under
Algorithm 6.5) was proved by the application of Zeilberger’s algorithm in Example 7.8;
see [Gasper86].

Exercise 7.25 Use the method of Example 7.8 to discover a hypergeometric repre-
sentation of the double sum

n∑
k=0

(
n
k

)
(c)k (m)n−k · 3 F2

⎛ −k, a, b
c, d

∣∣∣∣ 1

⎜
;

(see [Gasper74]).

Exercise 7.26 Consider the infinite matrix

Amn :=
∈∑

k=−∈

∈∑
j=−∈

(
m
j

)2( m
k

)2( 2m + n − j − k
2m

)
.

Prove that

Amn =
∈∑

k=−∈

(
m + n − k

k

)2( m + n − 2k
m − k

)2 =
∈∑

k=−∈

(
m
k

)(
n
k

)(
m + k

k

)(
n + k

k

)
.

This shows in particular that Amn is symmetric, and its diagonal elements Ann are
the Apéry numbers An of (7.8).

Exercise 7.27 The Maple procedure sumrecursion of Session 7.3 is not very
efficient since ratio is applied to the sum ak , i.e., simpcomb is applied to rather
complicated expressions in general. Rewrite sumrecursion by a more direct
approach using (7.4). Compare the timings of the two different versions of the pro-
cedure using the examples of this chapter, in particular Dougall’s identity.
Exercise 7.28 Prove (10)

S(n) :=
√n/2≥∑
k=0

(−1)k
(

n
k

)(
2n − 2k

n

)
= 2n,

using Zeilberger’s algorithm.

Exercise 7.29 (Parameter Derivative) Use the method of Example 7.8 to obtain the
identity ([AF69], (3.46), see also [Askey68], (8))

L(γ+μ)
n (x) =

n∑
k=0

(μ)n−k

(n − k)! L(γ)
k (x)

http://dx.doi.org/10.1007/978-1-4471-6464-7_6
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for the generalized Laguerre polynomials

L(γ)
n (x) =

n∑
k=0

(−1)k

k!
(

n + γ

n − k

)
xk =

(
n + γ

n

)
1 F1

⎛ −n
1 + γ

∣∣∣∣ x

⎜
.

Take the limit as μ → 0 to get for the derivative with respect to the parameter γ

([Koepf97a, KS98b])

∂

∂γ
L(γ)

n (x) =
n−1∑
k=0

1

n − k
L(γ)

k (x).

Exercise 7.30 (Jacobi Polynomials) The Jacobi polynomials P(γ,φ)
n (x) generalize

the Legendre polynomials Pn(x) = P(0,0)
n (x), and can be defined by the hypergeo-

metric representation

P(γ,φ)
n (x) =

(
n + γ

n

)
2 F1

⎛ −n, n + γ + φ + 1
γ + 1

∣∣∣∣ 1 − x

2

⎜
.

Deduce the identities (see [Askey68, AG71], (2.7)–(2.8))

P(a,φ)
n (x) =

n∑
k=0

(2k + γ + φ + 1)
ϕ (n + φ + 1)

ϕ (k + φ + 1)

ϕ (n + k + a + φ + 1)

ϕ (n + a + φ + 1)

× ϕ (k + γ + φ + 1)

ϕ (n + k + γ + φ + 2)

(a − γ)n−k

(n − k)! P(γ,φ)
k (x)

and

P(γ,b)
n (x) =

n∑
k=0

(−1)n−k (2k + γ + φ + 1)
ϕ (n + γ + 1)

ϕ (k + γ + 1)

ϕ (n + k + γ + b + 1)

ϕ (n + γ + b + 1)

× ϕ (k + γ + φ + 1)

ϕ (n + k + γ + φ + 2)

(b − φ)n−k

(n − k)! P(γ,φ)
k (x)

by applying the method of Example 7.8. From these identities the representations

∂

∂γ
P(γ,φ)

n (x) =
n−1∑
k=0

1

γ + φ + 1 + k + n
·
(

P(γ,φ)
n (x)

+γ + φ + 1 + 2 k

n − k

(φ + k + 1)n−k

(γ + φ + k + 1)n−k
P(γ,φ)

k (x)
)

and

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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∂

∂φ
P(γ,φ)

n (x) =
n−1∑
k=0

1

γ + φ + 1 + k + n
·
(

P(γ,φ)
n (x)

+(−1)n−k γ + φ + 1 + 2 k

n − k

(γ + k + 1)n−k

(γ + φ + k + 1)n−k
P(γ,φ)

k (x)
)

for the parameter derivatives of the Jacobi polynomials can be obtained ([Fröhlich,
KS98b]).

Exercise 7.31 (Bessel Functions) The product of two Bessel functions

Jn(x) =
( x

2

)n ∈∑
k=0

(−1)k

4k k! ϕ (k + 1 + n)
x2k

and Jm(x) has a hypergeometric representation. Generate this representation.

Exercise 7.32 Let F(n, k) and sn be hypergeometric terms. Prove: The WZ method
fails to prove the identity

∈∑
k=−∈

F(n, k)

sn
= 1

if and only if Zeilberger’s algorithm fails to discover the first order recurrence equa-
tion valid for

sn =
∈∑

k=−∈
F(n, k).

Exercise 7.33 Show by an explicit consideration that Zeilberger’s algorithm does
not terminate for

F(n, k) = 1

k2 + n2 + 1

(
n
k

)

([Stölting], Lemma 13, p. 60).

Exercise 7.34 In SIAM Review 38, 1996, Problem 96-16 [IR96], the following
question was posed:

Define

Sn(p) =
n∑

j=0

⎥(
pn + p + 1
pj + p − 1

)
−

(
pn + p + 1
pj + p − 2

)⎦

for integers n ≥ 0 and p ≥ 1.
Evaluate Sn(p) for p = 1, 2, 3, 4, 5, 6. …
Solve this problem for p = 3, 4, 5, 6 using Zeilberger’s algorithm. For p = 1 and
p = 2 the problem was solved in Exercise 5.21 by Gosper’s algorithm. Hint: For
p = 3 the bounds are not the natural ones.
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Exercise 7.35 Use the q-analogue of Zeilberger’s algorithm to generate the
q-analogues of the Chu-Vandermonde and of the Pfaff-Saalschütz identities (3.7)

2φ1

⎛
q−n, b

c

∣∣∣∣ q,
cqn

b

⎜
= (c/b; q)n

(c; q)n

and (3.6)

3φ2

(
q−n, a, b
c, ab

cqn−1

∣∣∣∣∣ q, q

⎡
= (c/a; q)n (c/b; q)n

(c; q)n (c/(ab); q)n
;

compare (4.19).

Exercise 7.36 Use the q-Zeilberger algorithm to generate the q-analogues of the
binomial theorem, and of Kummer’s, Dixon’s and Dougall’s identities that were
proved by the q-WZ method in Exercise 6.10 on p. 115.

Exercise 7.37 (q-Orthogonal Polynomials) Find three-term recurrence equations
for the little q-Legendre polynomials, the big q-Legendre polynomials, the contin-
uous q-Legendre polynomials, and the q-Laguerre polynomials, see pp. 71. Prove
the identity (4.9)

Pn(x |q2) = Pn(x; q).

For the little and big q-Legendre polynomials, give recurrence equations w.r.t. x .
Replace x by qx if necessary.

Exercise 7.38 (Stanton’s Conjecture) Prove Stanton’s Conjecture

2n∑
k=0

(−1)k q4k2
⎛

2n

n − 4k

⎜
q

=
n∑

k=0

q2k2
[

n
2k

]
q2

(
−q; q2

)
n−2k

(
−1; q4

)
k
.

This conjecture was first proved by Paule and Riese [PS95] using the q-Zeilberger
algorithm.

Exercise 7.39 (q-Hypergeometric Transformations) Prove the following q-hyper-
geometric transformations:
Watson’s transformation:

8φ7

⎛
a, q

√
a,−q

√
a, b, c, d, e, q−n√

a,−√
a, aq/b, aq/c, aq/d, aq/e, aq1+n

∣∣∣∣ q,
a2q2+n

bcde

⎜

= (aq, aq/(de); q)n

(aq/d, aq/e; q)n
4φ3

⎛
aq/(bc), d, e, q−n

aq/b, aq/c, deq−n/a

∣∣∣∣ q, q

⎜

([GR90], Appendix (III.18)), Bailey’s transformation:

http://dx.doi.org/10.1007/978-1-4471-6464-7_3
http://dx.doi.org/10.1007/978-1-4471-6464-7_3
http://dx.doi.org/10.1007/978-1-4471-6464-7_4
http://dx.doi.org/10.1007/978-1-4471-6464-7_4
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10φ9

⎛
a, q

√
a,−q

√
a, b, c, d, e, f, λaq1+n/(e f ), q−n√

a,−√
a, aq/b, aq/c, aq/d, aq/e, aq/ f, e f q−n/λ, aq1+n

∣∣∣∣ q, q

⎜

= (aq, aq/(e f ), λq/e, λq/ f ; q)n

(aq/e, aq/ f, λq/(e f ), λq; q)n
·

10φ9

⎛
λ, q

√
λ,−q

√
λ, λb/a, λc/a, λd/a, e, f, λaq1+n/(e f ), q−n√

λ,−√
λ, aq/b, aq/c, aq/d, λq/e, λq/ f, e f q−n/a, λq1+n

∣∣∣∣ q, q

⎜

([GR90], Appendix (III.28)), where c = qa2/(bdλ), and

5φ4

⎛
a, b, c, d, q−n

aq/b, aq/c, aq/d, a2q−n/λ2

∣∣∣∣ q, q

⎜
=

⎞
λq/a,λ2q/a; q

⎟
n

(λq,λ2q/a2; q)n
·

12φ11

⎛
λ, q

√
λ,−q

√
λ, λb/a, λc/a, λd/a,

√
a,−√

a,
√

aq,−√
aq, λ2q1+n/a, q−n√

λ,−√
λ, aq/b, aq/c, aq/d, λq/

√
a,−λq/

√
a, λ

√
q/a,−λ

√
q/a, aq−n/λ, λq1+n

∣∣∣∣q, q

⎜

([GR90], Appendix (III.25)), where c = qa2/(bdλ).
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Chapter 8
Extensions of the Algorithms

In this chapter, we extend Gosper’s, Wilf-Zeilberger’s and Zeilberger’s methods to
accept rational-linear Γ inputs rather than only integer-linear ones [Koepf95a]. For
such an input ak+1/ak is not always rational, so that Gosper’s algorithm may not
apply. Therefore, we raise a different question: Given a nonnegative integer m, can
we find a sequence sk for given ak satisfying

ak = sk+m − sk (8.1)

in the particular case that sk is an m-fold hypergeometric term, i.e.,

sk+m

sk
∞ Q(k) ? (8.2)

Note that in this case the input function ak is itself an m-fold hypergeometric term
since by (8.1) and (8.2)

ak+m

ak
= sk+2m − sk+m

sk+m − sk
= sk+m

sk

sk+2m
sk+m

− 1
sk+m

sk
− 1

= uk

vk

is rational, i.e., uk and vk can be chosen to be polynomials, uk, vk ∞ Q[k].
Assume that, given ak , we have found an m-fold antidifference, namely sk with

the property sk+m − sk = ak . Then we can easily construct an antidifference s̃k of
ak by the simple definition

s̃k := sk + sk+1 + · · · + sk+(m−1) (8.3)

since then, by telescoping,

s̃k+1 − s̃k = (sk+1 + · · · + sk+m) − (sk + · · · + sk+(m−1)) = sk+m − sk = ak .

W. Koepf, Hypergeometric Summation, Universitext, 153
DOI: 10.1007/978-1-4471-6464-7_8, © Springer-Verlag London 2014
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We summarize

Lemma 8.1 and Algorithm If sk is an m-fold antidifference of ak then s̃k given by
(8.3) forms an antidifference of ak . �

Assume next that an m-fold antidifference sk of ak forms a hypergeometric term.
Then obviously

sk+m

sk
= sk+m

sk+(m−1)

· sk+(m−1)

sk+(m−2))

· · · sk+1

sk

is also rational, and therefore our algorithm below will find sk .
An m-fold hypergeometric m-fold antidifference can always be constructed by an

application of Gosper’s original algorithm in the following way:

Algorithm 8.2 (extended_gosper)
The following steps generate an m-fold hypergeometric m-fold antidifference:

1. Input: m ∞ N, and ak in terms of rational functions, powers, factorials, Γ function
terms, binomial coefficients and Pochhammer symbols that are rational-linear in
their arguments.

2. Define bk := akm .
3. Apply Gosper’s algorithm to bk with respect to k. Get the antidifference tk of bk ,

or the statement: “No hypergeometric term antidifference of bk , and therefore no
m-fold hypergeometric m-fold term antidifference of ak exists.”

4. The output sk := tk/m is a solution of (8.1) with the property (8.2).

Proof The existence of an m-fold hypergeometric solution sk of

sk+m − sk = ak (8.4)

is equivalent to the existence of a rational solution S(k) of

r(k) S(k + m) − S(k) = 1 (8.5)

where r(k) = ak+m/ak and S(k) = sk/ak . The existence of a hypergeometric
solution tk of

tk+1 − tk = akm = bk (8.6)

is equivalent to the existence of a rational solution T (k) of

r(km) T (k + 1) − T (k) = 1 (8.7)

where T (k) = tk/akm . Clearly (8.5) and (8.7) are either both solvable and have
solutions such that T (k) = S(km), or are both unsolvable. So either (8.6) has no
hypergeometric solution and (8.4) has no m-fold hypergeometric solution, or (8.6)
has a hypergeometric solution tk = T (k)akm and (8.4) has an m-fold hypergeometric
solution sk = S(k)ak = T (k/m)ak , hence sk = tk/m . �
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Example 8.3 As an example, we consider ak := k
( k

2

)!, and m = 2. Then bk =
a2k = 2k k!, and Gosper’s algorithm yields tk = 2k!. Therefore sk = tk/2 = 2

( k
2

)!
has the property that

sk+2 − sk = ak .

By (8.3), we find the antidifference

s̃k = sk + sk+1 = 2

(
k

2

⎧
! + 2

(
k + 1

2

⎧
!

of ak .

We consider two more examples: If ak =
⎨

k/3
n

⎩
then our algorithm generates the

antidifference

s̃k = −
(
n − k

3

)
n + 1

(
k
3
n

⎧
−

(
n − k

3 − 1/3
)

n + 1

(
k
3 + 1/3

n

⎧
−

(
n − k

3 − 2/3
)

n + 1

(
k
3 + 2/3

n

⎧
,

and if ak =
⎨

n
k/2 + 1

⎩
−

⎨
n

k/2

⎩
then

s̃k =
⎨

k
2 + 1

⎩

n − k − 1

((
n

k
2 + 1

⎧
−

(
n
k
2

⎧⎧
+

⎨
k
2 + 3/2

⎩

n − k − 2

((
n

k
2 + 3/2

⎧
−

(
n

k
2 + 1/2

⎧⎧
.

For more examples, see Exercise 8.5. ∈
Next, we give an algorithm that finds an appropriate nonnegative integer m for

suitable input.

Algorithm 8.4 (find_mfold)
The following is an algorithm generating a successful choice of m for an appli-

cation of Algorithm 8.2.

1. Input: ak as a ratio of products of rational functions, powers, factorials, Γ function
terms, binomial coefficients, and Pochhammer symbols that are rational-linear in
their arguments.

2. Build the list of all arguments. They are of the form p j/q j k + α j with integer
p j and q j , p j/q j in lowest terms, q j positive.

3. Calculate m := lcm{q j }.
Proof It is clear that the procedure generates a representation for bk = akm with the
given choice of m which is integer-linear in the arguments involved. Since in this
case bk+1/bk is rational, Algorithm 8.2 is applicable. �

We mention that in our examples above, the given procedure yields the desired

values m = 2 for ak := k
( k

2

)!, m = 3 for ak =
⎨

k/3
n

⎩
, and m = 2 for ak =⎨

n
k/2 + 1

⎩
−

⎨
n

k/2

⎩
.
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Session 8.5 In Exercise 8.2 you are asked to write an implementation of the above
extended version of Gosper’s algorithm. Such an implementation is available in the
hsum package .

The function extended_gosper(a,k,m) returns the m-fold antidifference
of ak if applicable, whereas with extended_gosper(a,k), we get an antidif-
ference of ak using Lemma 8.1 and the number m obtained by using Algorithm 8.4.

The above calculations are done by
> extended_gosper(k*(k/2)!,k,2);

2

(
1

2
k

⎧
!

> extended_gosper(k*(k/2)!,k);

2

(
1

2
k

⎧
! + 2

(
1

2
k + 1

2

⎧
!

> extended_gosper(binomial(k/3,n),k,3);

(
1

3
k − n

⎧
binomial

(
1

3
k, n

⎧

n + 1

> extended_gosper(binomial(k/3,n),k);

(
1

3
k − n

⎧
binomial

(
1

3
k, n

⎧

n + 1
+

(
1

3
k + 1

3
− n

⎧
binomial

(
1

3
k + 1

3
, n

⎧

n + 1

+

(
1

3
k + 2

3
− n

⎧
binomial

(
1

3
k + 2

3
, n

⎧

n + 1

> extended_gosper(binomial(n,k/2+1)-binomial(n,k/2),k,2);

−

(
1

2
k + 1

⎧ (
binomial

(
n,

1

2
k + 1

⎧
− binomial

(
n,

1

2
k

⎧⎧

k + 1 − n

> extended_gosper(binomial(n,k/2+1)-binomial(n,k/2),k);

−

(
1

2
k + 1

⎧ (
binomial

(
n,

1

2
k + 1

⎧
− binomial

(
n,

1

2
k

⎧⎧

k + 1 − n

−

(
1

2
k + 3

2

⎧ (
binomial

(
n,

1

2
k + 3

2

⎧
− binomial

(
n,

1

2
k + 1

2

⎧⎧

k + 2 − n
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Note that Algorithm 8.2 is also implemented in the Maple packageSumTools under
the name SumTools[Hypergeometric][KoepfGosper]:

> SumTools[Hypergeometric][KoepfGosper](
> binomial(n,k/2+1)-binomial(n,k/2),k);

−

(
1

2
k + 1

⎧ (
binomial

(
n,

1

2
k + 1

⎧
− binomial

(
n,

1

2
k

⎧⎧

k + 1 − n

−

(
1

2
k + 3

2

⎧ (
binomial

(
n,

1

2
k + 3

2

⎧
− binomial

(
n,

1

2
k + 1

2

⎧⎧

k + 2 − n

Next, we will give an extended version of the WZ method which resolves some
questions that remained unanswered in Chap. 6 so that finally Bailey’s complete list
(Table 6.1) can be settled using a unified approach.

Assume that for a hypergeometric identity the WZ method fails. This may happen
either because ak+1/ak is not rational, or because there is no single formula for the
result as in Andrews’ statement

3 F2

( −n , n + 3a , a
3a/2 , (3a + 1)/2

∣∣∣∣ 3

4

⎧
=

⎛
⎜

0 if n �= 0 (mod 3)
n! (a + 1)n/3

(n/3)! (3a + 1)n
otherwise

(8.8)

which—together with many similar identities listed in Table 8.1—can be found in a
paper of Gessel and Stanton [GS82].

In such cases, we proceed as follows. Assume we want to prove an identity of the
form

sn :=
→⎝

k=−→
F(n, k) = constant (n mod m constant), (8.9)

such as, e.g., (8.8) divided by n! (a+1)n/3
(n/3)! (3a+1)n

, m denoting a certain positive integer and
F(n, k) being an (m, l)-fold hypergeometric term with respect to (n, k), i.e.

F(n + m, k)

F(n, k)
,

F(n, k + l)

F(n, k)
∞ Q(n, k),

with finite support with respect to k. Then we apply the extended version of Gosper’s
algorithm to find an l-fold antidifference of the expression

ak := F(n + m, k) − F(n, k)

with respect to the variable k.1 If successful, this generates G(n, k) with

1 In most cases l = 1, so that Gosper’s original algorithm is applied.

http://dx.doi.org/10.1007/978-1-4471-6464-7_6
http://dx.doi.org/10.1007/978-1-4471-6464-7_6
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Table 8.1 Gessel and Stanton’s hypergeometric identities

Equation Identity

(1.1) 3 F2

⎞
−n , n + 3a , a

3a/2 , (3a + 1)/2

∣∣∣∣∣
3

4

⎟
=

⎛
⎜

0 if n �= 0 (mod 3)
n! (a + 1)n/3

(n/3)! (3a + 1)n
otherwise

(1.2) 5 F4

⎞
2a , 2b , 1 − 2b , 1 + 2a/3 , −n

a − b + 1 , a + b + 1/2 , 2a/3 , 1 + 2a + 2n

∣∣∣∣∣
1

4

⎟
= (a + 1/2)n (a + 1)n

(a + b + 1/2)n (a − b + 1)n

(1.3) 5 F4

⎞
a, b, a+1/2−b, 1+2a/3, −n

2a+1−2b, 2b, 2a/3, 1+a+n/2

∣∣∣∣∣ 4

⎟
=

⎛
⎜

0 if n odd
n! (a+1)n/2 2−n

( n
2 )!(a−b+1)n/2(b+1

2 )n/2
otherwise

(1.4) 3 F2

⎞
1/2 + 3a , 1/2 − 3a , −n

1/2 , −3n

∣∣∣∣∣
3

4

⎟
= (1/2 − a)n (1/2 + a)n

(1/3)n (2/3)n

(1.5) 3 F2

⎞
1 + 3a , 1 − 3a , −n

3/2 , −1 − 3n

∣∣∣∣∣
3

4

⎟
= (1 + a)n (1 − a)n

(2/3)n (4/3)n

(1.6) 3 F2

⎞
2a , 1 − a , −n

2a + 2 , −a − 1/2 − 3n/2

∣∣∣∣∣ 1

⎟
= ((n + 3)/2)n (n + 1)(2a + 1)

(1 + (n + 2a + 1)/2)n (2a + n + 1)

(1.7) 7 F6

⎞
2a , 2b , 1 − 2b , 1 + 2a/3 , a + d + n + 1/2 , a − d , −n

a − b + 1 , a + b + 1/2 , 2a/3 , −2d − 2n , 2d + 1 , 1 + 2a + 2n

∣∣∣∣∣ 1

⎟

= (2a + 1)2n (b + d + 1/2)n (d − b + 1)n

(2d + 1)2n (a + b + 1/2)n (a − b + 1)n
= (a + 1/2)n (a + 1)n (b + d + 1/2)n (d − b + 1)n

(a + b + 1/2)n (a − b + 1)n (d + 1/2)n (d + 1)n

(1.8) 7 F6

⎞
a , b , a + 1/2 − b , 1 + 2a/3 , 1 − 2d , 2a + 2d + n , −n

2a − 2b + 1 , 2b , 2a/3 , a + d + 1/2 , 1 − d − n/2 , 1 + a + n/2

∣∣∣∣∣ 1

⎟

=
⎛
⎜

0 if n odd
(b + d)n/2 (d − b + a + 1/2)n/2 n! (a + 1)n/2 2−n

(b + 1/2)n/2 (a + d + 1/2)n/2 (d)n/2 (n/2)! (a − b + 1)n/2
otherwise

(3.7) 2 F1

⎞
−n , −2n − 2/3

4/3

∣∣∣∣∣ −8

⎟
= (5/6)n

(3/2)n
(−27)n

(5.21) 3 F2

⎞
3a + 1/2 , 3a + 1 , −n

6a + 1 , −n/3 + 2a + 1

∣∣∣∣∣
4

3

⎟
=

⎠⎛
⎠⎜

0 if n �= 0 (mod 3)

(1/3)n/3 (2/3)n/3

(1 + 2a)n/3 (−2a)n/3
otherwise

(5.22) 2 F1

⎞
−n , 1/2

2n + 3/2

∣∣∣∣∣
1

4

⎟
= (1/2)n

(2n + 3/2)n

(
27

4

⎧n

(5.23) 2 F1

⎞
−n , −1/3 − 2n

2/3

∣∣∣∣∣−8

⎟
= (−27)n

(5.24) 2 F1

⎞
−n , n/2 + 1

4/3

∣∣∣∣∣
8

9

⎟
=

⎛
⎜

0 if n odd
(1/2)n/2

(7/6)n/2
(−3)−(n/2) otherwise

(5.25) 2 F1

⎞
−n , 1/2

(n + 3)/2

∣∣∣∣∣ 4

⎟
=

⎛
⎜

0 if n odd
(1/2)n/2 (3/2)n/2

(5/6)n/2 (7/6)n/2
otherwise

(5.27) 4 F3

⎞
1/3 − n , −n/2 , (1 − n)/2 , 22/21 − 3n/7

5/6 , 4/3 , 1/21 − 3n/7

∣∣∣∣∣−27

⎟
= (−8)n

1 − 9n
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ak = F(n + m, k) − F(n, k) = G(n, k + l) − G(n, k) , (8.10)

and summation over all k leads to

sn+m − sn =
→⎝

k=−→

⎨
F(n +m, k)− F(n, k)

⎩
=

→⎝
k=−→

⎨
G(n, k + l)− G(n, k)

⎩
= 0

since the right-hand side can be viewed as the sum of l telescoping series. Therefore
sn is constant mod m, and these m constants can be calculated using suitable initial
values. This can be accomplished if the series considered is terminating, i.e., if
F(n, k) has finite support. Note that again the function

R(n, k) = G(n, k)

F(n, k)
(8.11)

acts as a rational certificate function, the extended WZ certificate.
Once the extended WZ certificate is known, it is a matter of pure rational arithmetic

to decide the validity of (8.9) since the only thing that one has to show is (8.10) which
after division by F(n, k) is equivalent to the purely rational identity

F(n + m, k)

F(n, k)
− 1 − R(n, k + l)

F(n, k + l)

F(n, k)
+ R(n, k) = 0

Example 8.6 (Andrews’ Identity) As an example, we prove (8.8): In the given case,
we set m = 3, l = 1, and further

F(n, k) := (−n)k (n + 3a)k (a)k

k! (3a/2)k ((3a + 1)/2)k

(n/3)! (3a + 1)n

n! (a + 1)n/3

(
3

4

⎧k

.

We notice that
F(n, k + 1)

F(n, k)
and

F(n + 3, k)

F(n, k)

are (complicated) rational functions:

> F:=hyperterm([-n,n+3*a,a],[3*a/2,(3*a+1)/2],3/4,k)*(n/3)!*
> pochhammer(3*a+1,n)/(n!*pochhammer(a+1,n/3)):

> ratio(F,k);

3 (k − n) (n + 3 a + k) (a + k)

(3 a + 2 k) (3 a + 1 + 2 k) (k + 1)

> simpcomb(subs(n=n+3,F)/F);

− (n + 3) (n + 3 a + k) (n + 3 a + k + 1) (n + 3 a + k + 2)

(k − n − 1) (−n − 2 + k) (−n − 3 + k) (n + 3 a)
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An application of Gosper’s algorithm to ak = F(n + 3, k) − F(n, k) is successful,
and leads to the rational certificate

R(n, k) = (2 n + 3 + 3 a) k (3 a − 1 + 2 k) (3 a + 2 k − 2)

(n + 3 a) (k − n − 1) (−n − 2 + k) (−n − 3 + k)

by the calculation

> A:=subs(n=n+3,F)-F: gos:=gosper(A,k):

> simpcomb(gos/F);

(2 n + 3 + 3 a) k (3 a − 1 + 2 k) (3 a + 2 k − 2)

(n + 3 a) (k − n − 1) (−n − 2 + k) (−n − 3 + k)

Therefore

→⎝
k=−→

F(n, k) =
n⎝

k=0

F(n, k) = constant (n mod 3 constant),

and statement (8.8) follows using three trivial initial values (check those!).

Session 8.7 We can automate the calculation of the extended WZ certificate by the
procedure

WZcertificate:=proc(F,k,n)
local a,gos,m,l;
if nargs>3 then m:=args[4] else m:=1 end if;
if nargs>4 then l:=args[5] else l:=1 end if;
a:=subs(n=n+m,F)-F;
try
gos:=extended_gosper(a,k,l);

catch:
error ‘Extended WZ method fails‘

end try;
return simpcomb(gos/F);
end proc:

with optional fourth argument m and fifth argument l, extending the procedure given
in Session 6.7. For Andrews’ example, we get

> WZcertificate(F,k,n,3);

(2 n + 3 + 3 a) k (3 a − 1 + 2 k) (3 a + 2 k − 2)

(n + 3 a) (−n − 1 + k) (−n − 2 + k) (−n − 3 + k)

Table 8.1 lists the hypergeometric identities of the Gessel-Stanton paper (Eq. (1.4)
corrects a misprint in [GS82]), and Table 8.2 contains their rational certificates
(8.11), calculated by WZcertificate, together with the certificates of Bailey’s
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Table 8.2 The extended WZ method

Bailey p. n m R(n, k)

11, Gauss −a 2 − k (1 + n − b − 2 k)

(n + 1 − k) (n + 2 − k)

11, Bailey −a 2
2 (c − 1 + k) k (2 n + 3)

(n + 2 − k) (n + 1 − k) (n + 2 − c)

16, Watson −a 2 − k (2 c − 1 + k) (1 + n − b − 2 k)

(n + 1 − k) (n + 2 − k) (1 + n − b + 2 c)

16, Whipple −a 2
2 k (−2 c + e − k) (e − 1 + k) (2 n + 3)

(n + 1 − k) (n + 2 − k) (n + 1 − 2 c + e) (n + 2 − e)

Equation m R(n, k)

(1.1) 3 − (3 a + 2 k − 2) k (3 a − 1 + 2 k) (2 n + 3 + 3 a)

(n + 3 a) (n + 1 − k) (n + 2 − k) (n + 3 − k)

(1.2) 1 − 2 (2 a + 2 b − 1 + 2 k) k (a − b + k)

(n + 1 − k) (1 + 2 a + 2 n + k) (2 a + 3 k)

(1.3) 2 − (2 a − 2 b + k) (2 b + k − 1) k

(n + 2 − k) (n + 1 − k) (2 a + 3 k)

(1.4) 1 − 8 (2 k − 1) k (3 n − k + 1)

27 (n + 1 − k) (1 − 2 a + 2 n) (1 + 2 a + 2 n)

(1.5) 1 − 2 (2 k + 1) k (3 n + 2 − k)

27 (n + 1 − k) (1 − a + n) (a + 1 + n)

(1.6) 2 − (2a+k+1) (2a+3+3n−2k) k
(
9n2+2na+34n+2a+33−8nk−16k

)
3 (n + 2 − k) (n + 1 − k) (2 a + n + 1) (3 n + 5) (3 n + 7)

(1.7) 1 − (2 d+2 n−k+1) (2 d+k) (2 a+2 b−1+2 k) k (a−b+k) (4 n+2 a+3+2 d)

(n+1−k) (1+2a+2n+k) (2a+3k) (2a+2d+2n+1) (2b+2d+1+2n) (d−b+1+n)

(1.8) 2 − 2 (2 a+2 d−1+2 k) k (2 b+k−1) (2 a−2 b+k) (2 d+n−2 k) (n+1+a+d)

(n+2−k) (n+1−k) (2d−2b+2a+1+n) (2a+3k) (2b+2d+n) (2a+2d+n)

(3.7) 1
(7 n + 9 − 3 k) (3 k + 1) k

9 (6 n + 8 − 3 k) (6 n + 5 − 3 k) (n + 1 − k)

(5.21) 3 − k (6 a + k) (n − 6 a − 3 k)

(n + 1 − k) (n + 2 − k) (n + 3 − k)

(5.22) 1 − 4 (−1 + 6 k) k

9 (n + 1 − k) (4 n + 3 + 2 k)

(5.23) 1
k (−1 + 3 k) (21 n + 23 − 9 k)

27 (n + 1 − k) (4 + 6 n − 3 k) (7 + 6 n − 3 k)

(5.24) 2
3 (1 + 3 k) k

(n + 1 − k) (n + 2 − k)

(5.25) 2 − (−1 + 3 k) k

9 (n + 2 − k) (n + 1 − k)

(5.27) 1 − (−1 + 6 k) (1 + 3 k) k

4 (1 + n − 2 k) (2 + 3 n − 3 k) (−1 + 9 n − 21 k)

list (Table 6.1) to which the WZ method did not apply. In all cases considered we
have l = 1, so that Gosper’s original algorithm is applied.

http://dx.doi.org/10.1007/978-1-4471-6464-7_6
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Table 8.3 Gessel and Stanton’s open problems

Equation Identity

(6.2) 7 F6

(
a + 1/2 , a , b , 1 − b ,−n , (2a + 1)/3 + n , a/2 + 1

1/2 , (2a − b + 3)/3 , (2a + b + 2)/3 ,−3n , 2a + 1 + 3n , a/2

∣∣∣∣ 1

⎧

= ((2a + 2)/3)n (2a/3 + 1)n ((1 + b)/3)n ((2 − b)/3)n

((2a − b)/3 + 1)n ((2a + b + 2)/3)n (2/3)n (1/3)n

(6.3) 5 F4

(
a + 1/2, a,−n, (2a + 1)/3 + n, a/2 + 1

1/2 ,−3n , 2a + 1 + 3n , a/2

∣∣∣∣ 9

⎧
= ((2a + 2)/3)n (2a/3 + 1)n

(2/3)n (1/3)n

(6.5) 2 F1

( −n ,−n + 1/4
2n + 5/4

∣∣∣∣ 1

9

⎧
= (5/4)2n

(2/3)n (13/12)n

(
26

35

⎧n

(6.6) 2 F1

( −n ,−n + 1/4
2n + 9/4

∣∣∣∣ 1

9

⎧
= (9/4)2n

(4/3)n (17/12)n

(
26

35

⎧n

Rational certificates

Equation m R(n, k)

(6.2) 1 − 2 (a + 2 + 3 n) (3 n − k + 1) (2 a + b − 1 + 3 k) (2 a − b + 3 k) (2 k − 1) k

3 (a+2k) (2−b+3n) (1+b+3n) (2a+1+3n+k) (2a+2+3n+k) (n +1−k)

(6.3) 1 − (2 a + 4 + 6 n) (3 n − k + 1) (2 k − 1) k

(3 a + 6 k) (2 a + 1 + 3 n + k) (2 a + 2 + 3 n + k) (n + 1 − k)

(6.5) 1 −9 k
(
52 n2 + 75 n + 26 + 16 kn + 24 k − 32 k2

)
16 (8 n + 5 + 4 k) (4 n + 3 − 4 k) (n + 1 − k)

(6.6) 1 −9 k
(
52 n2 + 127 n + 72 + 16 kn − 4 k − 32 k2

)
16 (8 n + 9 + 4 k) (4 n + 3 − 4 k) (n + 1 − k)

Note, that Gessel and Stanton were not able to present proofs for their statements
(6.2), (6.3), (6.5), and (6.6)2: Table 8.3 contains proofs (see [Koepf95a]).

As with the original WZ approach, this method is not capable of proving Gessel-
Stanton’s (6.1), which is a non-terminating version of (6.2). Also, Gessel-Stanton’s
result (1.9)

3 F2

( −sb + s + 1 , b − 1 ,−n
b + 1 , s(−n − b) − n

∣∣∣∣ 1

⎧
= (1 + s + sn)n b (n + 1)

(1 + s(b + n))n (b + n)
(8.12)

is beyond the capabilities of the given method since in this case the summand is
an (m, l)-fold hypergeometric term only for fixed (rational), but not arbitrary s; cf.
Exercise 8.8.

Next, we give examples of an application for which l �= 1. To prove the identity
(n ∞ N)

2 Obviously these were proved subsequently by Zeilberger’s algorithm.
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−
n⎝

k=0

(−2)n
⎨

n
k

⎩
·
⎨

k/2
n

⎩
= 1 , (8.13)

we apply the extended WZ method with l = 2, m = 1, and get the rational certificate

R(n, k) = − (k − 1) (2 n − k)

n (n + 1 − k)
,

which proves (8.13). Note that (8.13) is not valid for n = 0 where the denominator
of the extended WZ certificate is zero.

Finally, we consider an extension of Zeilberger’s algorithm dealing with the ques-
tion of determining a holonomic recurrence equation (7.1) for sums (7.2) for which
F(n, k) is an (m, l)-fold hypergeometric term with respect to (n, k).

In particular, this applies to all cases when the input function F(n, k) is given as a
ratio of products of rational functions, powers, factorials, Γ function terms, binomial
coefficients, and Pochhammer symbols that are rational-linear in their arguments with
respect to both n and k.

We mention that Zeilberger’s original algorithm may be applicable although this
is generally the case only if the arguments are integer-linear. An example of that type
is given by the function

sn := 2 F1

( −n/2 ,−n/2 + 1/2
b + 1/2

∣∣∣∣ 1

⎧
=

→⎝
k=0

(−n/2)k (−n/2 + 1/2)k

k! (b + 1/2)k
,

for which an application of Zeilberger’s algorithm yields the recurrence equation

(2b + n) sn+1 − 2(b + n) sn = 0 ,

and therefore the explicit representation

sn = 2n (b)n

(2b)n
.

Zeilberger’s algorithm applies since F(n+1, k)/F(n, k) and F(n, k+1)/F(n, k)

are rational although the expression for F(n, k) is not integer-linear in its arguments.
On the other hand, Zeilberger’s algorithm is not directly applicable to every

F(n, k) with rational-linear Γ -arguments. An example of this situation is the left-
hand side of Watson’s theorem (Table 6.1) with respect to variable a.

We present now an algorithm which can be applied for arbitrary rational-linear
input [Koepf95a].

Algorithm 8.8 (extended_sumrecursion)
The following steps constitute an algorithm to determine a holonomic recurrence

equation (7.1) for sums (7.2).

http://dx.doi.org/10.1007/978-1-4471-6464-7_7
http://dx.doi.org/10.1007/978-1-4471-6464-7_7
http://dx.doi.org/10.1007/978-1-4471-6464-7_6
http://dx.doi.org/10.1007/978-1-4471-6464-7_7
http://dx.doi.org/10.1007/978-1-4471-6464-7_7
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1. Input: F(n, k), given as a ratio of products of rational functions, powers, factorials,
Γ function terms, binomial coefficients, and Pochhammer symbols with rational-
linear arguments in n and k.

2. Form the list of all arguments. They are of the form p j/q j n + s j/t j k + α j with
integers p j , q j , s j , t j , p j/q j and s j/t j in lowest terms, q j and t j positive.

3. Calculate m := lcm{q j } and l := lcm{t j }.
4. Define F̃(n, k) := F(mn, kl). Then F̃(n, k) is integer-linear in its arguments.
5. Apply Zeilberger’s algorithm to F̃(n, k) to get the recurrence equation

J⎝
j=0

Pj (n) s̃n+ j = 0 (8.14)

with polynomials Pj in n, for the sum

s̃n :=
→⎝

k=−→
F̃(n, k).

6. The output is the recurrence equation

J⎝
j=0

Pj (n/m) sn+mj = 0

for the sum

sn :=
→⎝

k=−→
F(n, k).

Proof Our construction provides us with F̃(n, k) integer-linear in the arguments
involved. Therefore Zeilberger’s algorithm can be applied, and yields the recurrence
equation (8.14), say. Assume first that l = 1. Then, by definition, we have s̃n = smn

so that we get

0 =
J⎝

j=0

Pj (n) s̃n+ j =
J⎝

j=0

Pj (n) smn+mj ,

and the substitution n = n/m gives the result.
If l > 1, then Zeilberger’s algorithm is an application of Gosper’s to

ak = F̃(n, k) +
J⎝

j=1

σ j (n) F̃(n + j, k).

If successful, we get G(n, k) with
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ak = F̃(n, k) +
J⎝

j=1

σ j (n) F̃(n + j, k) = G(n, k + 1) − G(n, k).

We sum this equation with respect to all k = k̃/ l (k̃ ∞ Z). Then the right-hand
side can be viewed as a sum of l telescoping sums, again, and we have

0 =
⎝

k=k̃/ l

F̃(n, k) +
J⎝

j=1

σ j (n)
⎝

k=k̃/ l

F̃(n + j, k)

=
⎝

k=k̃/ l

F(mn, kl) +
J⎝

j=1

σ j (n)
⎝

k=k̃/ l

F(mn + mj, kl)

= smn +
J⎝

j=1

σ j (n) smn+mj ,

which yields the result. �

Example 8.9 As a first example, we apply the algorithm to Watson’s function

sn = 3 F2

( −n , b , c
(−n + b + 1)/2 , 2c

∣∣∣∣ 1

⎧

with respect to the variable n (Watson’s original integer variable) to which Zeil-
berger’s algorithm does not apply directly. In this case, the algorithm determines
m = 2 and l = 1, and leads to the two-fold recurrence equation

(b − 2c − n − 1) (n + 1) sn − (b − n − 1) (2c + n + 1) sn+2 = 0

from which the explicit right-hand representation listed in Table 6.1 can be deduced
for integer n since s0 = 1 and

s1 = 1 + −1 b c

1 (b/2) (2c)
= 0.

Example 8.10 As another example, we consider one of the identities of the paper of
Gessel and Stanton [GS82]: The evaluation of ([GS82], (1.8))

sn := 7 F6

(
a , b , a + 1/2 − b , 1 + 2a/3 , 1 − 2d , 2a + 2d + n ,−n

2a − 2b + 1 , 2b , 2a/3 , a + d + 1/2 , 1 − d − n/2 , 1 + a + n/2

∣∣∣∣ 1

⎧

=
⎛
⎜

0
(b + d)n/2 (d − b + a + 1/2)n/2 n! (a + 1)n/2 2−n

(b + 1/2)n/2 (a + d + 1/2)n/2 (d)n/2 (n/2)! (a − b + 1)n/2

if n odd

otherwise

http://dx.doi.org/10.1007/978-1-4471-6464-7_6
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cannot be handled with respect to n using Zeilberger’s algorithm. The extended
version, however, leads to the equivalent 2-fold recurrence equation

0 = (n + 1 + 2d + 2a)(2b − n − 2a − 2)(n + 1 + 2b)(n + 2d)sn+2

+(n + 1 + 2d − 2b + 2a)(n + 2d + 2b)(2a + n + 2)(n + 1)sn .

Session 8.11 The procedure sumrecursion included in the hsum package con-
tains an implementation of the extended Zeilberger algorithm. Let’s deal with the
Watson example (Example 8.9) again. Set

> summand:=hyperterm([-n,b,c],[(-n+b+1)/2,2*c],1,k);

summand := pochhammer(−n, k) pochhammer(b, k) pochhammer(c, k)

pochhammer

(
−n

2
+ b

2
+ 1

2
, k

⎧
pochhammer(2 c, k) k!

Then this summand is not a hypergeometric term w.r.t. the variable n as the compu-
tation

> ratio(summand,n);

−
Γ

(
−n

2
+ b

2

⎧
(n + 1) Γ

(
−n

2
+ b

2
+ 1

2
+ k

⎧

Γ

(
−n

2
+ b

2
+ k

⎧
(−n − 1 + k) Γ

(
−n

2
+ b

2
+ 1

2

⎧

shows. Therefore the implementationsumrecursion of Session 7.3 is not applica-
ble. However, for the given example Algorithm 8.8 extended_sumrecursion
is applied with the result

> sumrecursion(summand,k,s(n));
(b − 2 c − n − 1) (n + 1) s(n) − (2 c + n + 1) (−n + b − 1) s(n + 2) = 0

Furthermore, the procedure hyperrecursion(upper,lower,x,s(n))
yields a recurrence equation with respect to n for the hypergeometric function with
upper parametersupper, lower parameterslower, and point x . We get for example

> hyperrecursion([-n,n+3*a,a],[3/2*a,(3*a+1)/2],3/4,s(n));

−(n + 1 + 3 a) (n + 2 + 3 a) s(n + 3) + (n + 1) (n + 2) s(n) = 0

Gessel-Stanton (1.6)
> hyperrecursion([2*a,1-a,-n],[2*a+2,-a-1/2-3/2*n],1,s(n));

3 (3 n + 7) (3 n + 5) (n + 2 a + 1) s(n)

− (2 a + 7 + 3 n) (2 a + 5 + 3 n) (2 a + 3 + 3 n) s(n + 2) = 0

Gessel-Stanton (1.7)
> hyperrecursion([2*a,2*b,1-2*b,1+2/3*a,a+d+n+1/2,a-d,-n],
> [a-b+1,a+b+1/2,2/3*a,-2*d-2*n, 2*d+1,1+2*a+2*n],1,s(n));

(d + n + 1) (2 d + 2 n + 1) (a + 1 + n − b) (2 a + 2 b + 1 + 2 n) s(n + 1)+
(2 d + 2 n + 1 + 2 b) (−d − n − 1 + b) (a + 1 + n) (2 a + 1 + 2 n) s(n) = 0
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Gessel-Stanton (6.2)
> hyperrecursion([a+1/2,a,b,1-b,-n,(2*a+1)/3+n,a/2+1],
> [1/2,(2*a-b+3)/3,(2*a+b+2)/3,-3*n,2*a+1+3*n,a/2],1,s(n));

(1 + 3 n) (3 n + 2) (2 a − b + 3 + 3 n) (2 a + b + 2 + 3 n) s(n + 1)

+ (b + 1 + 3 n) (−2 + b − 3 n) (2 a + 2 + 3 n) (2 a + 3 + 3 n) s(n) = 0

Note that Algorithm 8.8 is also implemented in the Maple packageSumTools under
the name SumTools[Hypergeometric][KoepfZeilberger].

Finally, we characterize the input to which Algorithm 8.8 can be safely applied. If
F(n, k) is a hypergeometric term with respect to both n and k that has finite support,
and is of the form F(n, k) = P(n, k)

Q(n,k)
R(n,k)

wnzk where P(n, k) is a polynomial and
Q(n, k), R(n, k) are Γ -term products with rational-linear arguments we call it an
admissible hypergeometric term. Note that in particular, any proper hypergeometric
term is admissible. For admissible terms, however, rational-linear rather than only
integer-linear Γ terms are allowed. We have

Theorem 8.12 (Applicability of Extended Algorithm) For sums of admissible
hypergeometric terms Algorithm 8.8 terminates.

Proof Given any admissible hypergeometric term F(n, k), it is easily seen that
F̃(n, k) := F(mn, kl), which is constructed in Step 4 of Algorithm 8.8, forms a
proper hypergeometric term. Therefore, by Corollary 7.12, the application of Zeil-
berger’s algorithm terminates, and results in a holonomic recurrence equation for
s̃n . Hence, the holonomic recurrence equation for sn , generated by the algorithm,
is valid. �

Further Reading

For further reading on the extensions of this chapter see [GS82, Koepf95a, HKS12].

Exercises

Exercise 8.1 Show that Algorithm 8.2, the extension of Gosper’s algorithm, carries
a rational certificate sk/ak . Describe the certification procedure.

≈ Exercise 8.2 Write a Maple procedure extended_gosper(a,k,m) corre-
sponding to Algorithm 8.2, Session 8.11.

≈ Exercise 8.3 Write a Maple procedurefind_mfold corresponding to Algorithm
8.4, Session 8.11.

≈ Exercise 8.4 Give an algorithm to find the hypergeometric term solution for sn ,
given by the recurrence equation (m ∞ N)
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Q(n) sn+m = P(n) sn (P, Q ∞ Q[n])

and implement it in Maple.

Exercise 8.5 Find the antidifferences of

(a) 3k+2
k+2

⎨
k

k/2

⎩
,

(b) 3k+4
k+4

⎨
k/2
k/4

⎩
,

(c) 23k2+42k+16
4(k+1)(k+2)

⎨
3k/2
k/2

⎩
.

≈ Exercise 8.6 Write a Maple procedureextended_sumrecursion correspond-
ing to Algorithm 8.8.

Exercise 8.6 Generate the right-hand sides of the hypergeometric identities of
Table 8.1 by an application of the extended Zeilberger procedure to the left-hand
sides.

Exercise 8.7 Prove (8.12) for s = 1, . . . , 5 as well as for s = 1/2, 1/3, 1/4.

Exercise 8.8 Apply both Zeilberger’s algorithm and its extended version to the sum

2 F1

( −n/2,−n/2 + 1/2
b + 1/2

∣∣∣∣ 1

⎧
.

How can one construct the recurrence equation generated by the extended algorithm
from the (simpler) recurrence equation generated by Zeilberger’s algorithm? Write
the result as a factorization in operator notation.

Exercise 8.9 The numbers

fn :=
√n/2≥⎝
k=0

⎨
n − k

k

⎩
=

√n/2≥⎝
k=0

(− n
2 )k (− n−1

2 )k

(−n)k
(−4)k

represent the Fibonacci numbers, cf. Exercise 7.20.
Apply both Zeilberger’s algorithm and its extended version to both representations

of fn and describe what happens.
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Chapter 9
Petkovšek’s and van Hoeij’s Algorithm

We saw that in many cases Zeilberger’s algorithm obtains the holonomic recurrence
equation of lowest order for a given definite sum sn . In particular, if the order of the
resulting recurrence equation is one, or if the latter contains only two shifts sn and
sn+m for some m ∞ N, then one finds a hypergeometric term representation for the
sum under consideration using m initial values.

In this chapter we show what to do if sn is a hypergeometric term, but Zeilberger’s
algorithm fails to find the corresponding recurrence equation of order one. Indeed,
we study the more general situation of finding all hypergeometric term solutions of
any given holonomic recurrence equation. This situation had been investigated by
Petkovšek [Petkovšek92] who found an algorithm that solves the above problem.

Note that this algorithm is completely independent of Zeilberger’s, and is itself
of interest. Like Gosper’s algorithm it is a decision procedure to find hypergeomet-
ric terms, this time as solutions of arbitrary holonomic recurrence equations rather
than the fairly specific recurrence equation sn+1 − sn = an .1 In particular, this algo-
rithm can be used to find the hypergeometric term solutions of recurrence equations
returned by Zeilberger’s algorithm.

Petkovšek’s algorithm comes in two parts. In a first step, Petkovšek gives an
algorithm to find all polynomial solutions of a given holonomic recurrence equation.
In a second part, this subalgorithm is used to determine the hypergeometric term
solutions of a given holonomic recurrence equation.

To omit lengthy notation, we describe the details for the situation where the given
recurrence equation has order two, which indeed is the most interesting case.

Example 9.1 (Polynomial Solutions of Holonomic Recurrence Equations) Here, we
consider the generic second order example. Our considerations will lead us to a
generic algorithm for this case [Petkovšek92].

1 If an+1/an = un/vn (un, vn ∞ Q[n]), then the difference equation sn+1 − sn = an implies the
holonomic recurrence equation vn sn+2 − (un + vn) sn+1 + un sn = 0.

W. Koepf, Hypergeometric Summation, Universitext, 169
DOI: 10.1007/978-1-4471-6464-7_9, © Springer-Verlag London 2014
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Assume that a second order holonomic recurrence equation

Pn sn+2 + Qn sn+1 + Rn sn = 0 (Pn, Qn, Rn ∞ Q[n]) (9.1)

for sn is given. We wish to find all polynomial solutions sn ∈≡ 0 of this equation.

Note that the only thing we need is an upper bound for the degree of any poly-
nomial solution. As soon as we have such an upper bound, we can substitute a
generic polynomial for the solution sn into (9.1), equate coefficients, and solve the
corresponding linear system for the unknown coefficients of sn . If the linear system
possesses a nontrivial solution, we have found sn , and if not, no such polynomial
solution exists.

Now we show how an upper bound for the unknown degree N of the nontrivial
solution

sn = nN + δ1 nN−1 + · · · + δN

with the unknown coefficients δl (l = 1, . . . , N ) can be determined. Since the recur-
rence equation is linear and homogeneous, any multiple of a solution is also a solution
so that it is sufficient to consider solution polynomials whose leading coefficients
equal to one. Those polynomials are called monic.

Assume we have the representations

Pn = α0 nM + α1 nM−1 + · · · + αM ,

Qn = β0 nM + β1 nM−1 + · · · + βM

and
Rn = γ0 nM + γ1 nM−1 + · · · + γM

for the given polynomials, where M is the maximal degree of the triple (Pn, Qn, Rn).
Note that for any j ∞ N the shift sn+ j can be expanded by the binomial theorem

as

sn+ j = (n + j)N + δ1 (n + j)N−1 + δ2 (n + j)N−2 + · · · + δN

= nN + (δ1 + j N ) nN−1 +
(

δ2 + j (N − 1)δ1 + j2 N (N − 1)

2

)
nN−2 + · · · .

Substituting all polynomials into (9.1) yields

0 =
(
α0 nM + α1 nM−1 + · · ·

⎧ (
nN + (δ1 + 2N ) nN−1 + · · ·

⎧

+
(
β0 nM + β1 nM−1 + · · ·

⎧ (
nN + (δ1 + N ) nN−1 + · · ·

⎧
(9.2)

+
(
γ0 nM + γ1 nM−1 + · · ·

⎧ (
nN + δ1nN−1 + · · ·

⎧
.
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Equating the coefficients of nM+N , we get, in particular,

α0 + β0 + γ0 = 0. (9.3)

Therefore, for any nontrivial polynomial solution, this equation must be valid. If (9.3)
is not satisfied, no polynomial solution exists, and we can quit. Therefore, assume
that (9.3) is valid. Then we equate the coefficients of nM+N−1 in (9.2), use (9.3) to
replace α0 in terms of β0 and γ0, and get the condition

α1 + β1 + γ1 − (β0 + 2 γ0) N = 0. (9.4)

Now two things can happen. Either β0 +2 γ0 ∈= 0, in which case (9.4) gives a unique
choice for the exact degree N of sn . If this is not a nonnegative integer, we quit.
Otherwise we have found the degree bound searched for.

Assume finally, that

β0 + 2 γ0 = 0. (9.5)

Then, furthermore, by (9.4),
α1 + β1 + γ1 = 0 (9.6)

must be valid. We equate the coefficients of nM+N−2 in (9.2), use (9.3), (9.5) and
(9.6) as replacement rules, and get the condition

N 2γ0 − (β1 + γ0 + 2 γ1) N + α2 + β2 + γ2 = 0.

To prove that this final condition yields only two possible choices for N , we will
check that γ0 ∈= 0. Assume, to the contrary, γ0 = 0. Then, by (9.5), β0 = 0, and,
by (9.3), α0 = 0, a contradiction to the choice of M . This finishes the search for
the degree bound, and the proof of the algorithm to find all polynomial solutions of
(9.1).

To convince ourselves that the calculations that were hidden above are correct,
we repeat them with Maple:

> P:=add(alpha[l]*nˆ(M-l),l=0..2):

> Q:=add(beta[l]*nˆ(M-l),l=0..2):

> R:=add(gamma[l]*nˆ(M-l),l=0..2):

> s:=add(delta[l]*nˆ(N-l),l=0..2):

> term:=expand(P*subs(n=n+2,s)+Q*subs(n=n+1,s)+R*s):
> term:=expand(
> subs((n+1)ˆN=nˆN+N*nˆ(N-1)+N*(N-1)/2*nˆ(N-2),term)):
> term:=expand(
> subs((n+2)ˆN=nˆN+2*N*nˆ(N-1)+4*N*(N-1)/2*nˆ(N-2),term)):

> term:=numer(normal(term/(nˆM*nˆN))):

> term:=collect(term,n):

> deg:=degree(term,n):
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> eq1:=factor(coeff(term,n,deg));

2 δ0 (γ0 + α0 + β0)

> eq1:=normal(eq1/(2*delta[0]));

γ0 + α0 + β0

> alpha[0]:=solve(eq1,alpha[0]);

−γ0 − β0

> eq2:=factor(coeff(term,n,deg-1));

−2 δ0 (−β1 + 2 N γ0 + β0 N − γ1 − α1)

> eq2:=collect(normal(eq2/(2*delta[0])),N);

(−2 γ0 − β0) N + β1 + γ1 + α1

> alpha[1]:=solve(coeff(eq2,N,0),alpha[1]);

−β1 − γ1

> beta[0]:=solve(coeff(eq2,N,1),beta[0]);

−2 γ0

> eq3:=factor(coeff(term,n,deg-2));

2 δ0 (−β1 N − 2 γ1 N − N γ0 + N 2 γ0 + γ2 + α2 + β2)

> eq3:=collect(normal(eq3/(2*delta[0])),N);

N 2 γ0 + (−β1 − 2 γ1 − γ0) N + γ2 + α2 + β2

Example 9.2 Now we consider a less general example. We search for the polynomial
solutions sn ∈≡ 0 of the recurrence equation

n(n + 1)sn+2 − 2n(n + 100)sn+1 + (n + 99)(n + 100)sn = 0. (9.7)

Here Pn = n2 + n, Qn = −2n2 − 200n and Rn = n2 + 199n + 9900. Therefore,
we have M = 2. We get

α0 + β0 + γ0 = 1 − 2 + 1 = 0,

so that condition (9.3) is satisfied. Since

β0 + 2 γ0 = −2 + 2 = 0,

Equation (9.5) is also valid. Therefore we calculate

α1 + β1 + γ1 = 1 − 200 + 199 = 0,

and we see that (9.6) holds too. Hence we know that the degree N must satisfy the
quadratic equation

N 2 − 199N + 9900 = (N − 99)(N − 100) = 0

with the solutions N = 99, 100. Since both are nonnegative integers, these two cases
may actually appear. They lead to the polynomial solutions
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(n)99 and (n)100 (9.8)

of (9.7) (check!). With Maple, the general polynomial solution (of degree 100) is
generated as follows.

> P:=n*(n+1):

> Q:=-2*n*(n+100):

> R:=(n+99)*(n+100):

> s:=add(delta[100-l]*nˆl,l=0..100):

> rec:=collect(P*subs(n=n+2,s)+Q*subs(n=n+1,s)+R*s,n):

> sol:=solve({coeffs(rec,n)},{seq(delta[l],l=0..100)}):

> factor(subs(sol,s));

n (n + 98) (n + 97) (n + 96) (n + 95) (n + 94) (n + 93) (n + 92) (n + 91)

(n + 90) (n + 89) (n + 88) (n + 87) (n + 86) (n + 85) (n + 84)

(n + 83) (n + 82) (n + 81) (n + 80) (n + 79) (n + 78) (n + 77)

(n + 76) (n + 75) (n + 74) (n + 73) (n + 72) (n + 71) (n + 70)

(n + 69) (n + 68) (n + 67) (n + 66) (n + 65) (n + 64) (n + 63)

(n + 62) (n + 61) (n + 60) (n + 59) (n + 58) (n + 57) (n + 56)

(n + 55) (n + 54) (n + 53) (n + 52) (n + 51) (n + 50) (n + 49)

(n + 48) (n + 47) (n + 46) (n + 45) (n + 44) (n + 43) (n + 42)

(n + 41) (n + 40) (n + 39) (n + 38) (n + 37) (n + 36) (n + 35)

(n + 34) (n + 33) (n + 32) (n + 31) (n + 30) (n + 29) (n + 28)

(n + 27) (n + 26) (n + 25) (n + 24) (n + 23) (n + 22) (n + 21)

(n + 20) (n + 19) (n + 18) (n + 17) (n + 16) (n + 15) (n + 14)

(n + 13) (n + 12) (n + 11) (n + 10) (n + 9) (n + 8) (n + 7) (n + 6)

(n + 5) (n + 4) (n + 3) (n + 2) (n + 1) (δ1 − 4851 δ0 + n δ0)

In this example, the final linear system is quite complicated, and takes a second to
solve.2 Have a look at these equations! Finally, the factorization takes some time.

Example 9.3 Let us consider the same example from a different perspective. Using
the shift operator N , as we did in the previous chapters, (9.7) can be rewritten in the
form (

n(n + 1)N 2 − 2n(n + 100)N + (n + 99)(n + 100)
⎧

sn = 0. (9.9)

Now observe that the operator

T (N , n) = n(n + 1)N 2 − 2n(n + 100)N + (n + 99)(n + 100)

has the following three different polynomial factorizations

2 In the article [ABP95] a method is introduced to obtain the resulting polynomial essentially by
solving a linear system not depending on its degree, and iterative computations. In cases like the
given one this method is obviously advantageous.
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T (N , n) =
(

nN − (n + 100)
⎧(

nN − (n + 99)
⎧

=
(

nN − (n + 99)
⎧(

nN − (n + 100)
⎧

(9.10)

=
(
(n + 1)N − (n + 100)

⎧(
(n − 1)N − (n + 99)

⎧
.

You can check these results by writing the operator equations out, or by using the
commutator rule Nn − nN = N and polynomial arithmetic. Note that the existence
of three essentially different factorizations is a consequence of the noncommutativity
of the polynomial ring we are dealing with.

In view of (9.10), we see that if any of the right factors applied to sn is zero, then
T (N , n)sn is zero too, and hence (9.9) is satisfied. Since the right factors correspond
to hypergeometric terms satisfying the first order recurrence equations

nsn+1 − (n + 99)sn = 0, nsn+1 − (n + 100)sn = 0,

and (n − 1)sn+1 − (n + 99)sn = 0,
(9.11)

respectively, these are hypergeometric term solutions of (9.9). Let us check which
of these hypergeometric term solutions are polynomials. The first term satisfies

sn+1

sn
= n + 99

n
,

and one therefore realizes that up to a constant factor

sn = (100)n−1

(n − 1)! = (98 + n)!
99! (n − 1)! = (n)99

99! .

This is one of the polynomial solutions that we met in (9.8). The second term of
(9.11) yields similarly up to a constant factor

sn = (101)n−1

(n − 1)! = (99 + n)!
100! (n − 1)! = (n)100

100! ,

the second polynomial solution that we met in (9.8). Finally, the third term of (9.11)
gives

sn = (101)n−2

(n − 2)! = (98 + n)!
100! (n − 2)! = (n − 1)100

100! .

This is a third (linearly dependent) polynomial solution of (9.7). Check that all three
solutions that we have generated are covered by Maple’s output.

The remaining question is: Can factorizations like (9.10) of operators T (N , n) be
generated automatically? The answer is twofold:
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• Using the algorithm of this chapter and further techniques leads to an algorithm
to find factorizations of operators T (N , n) that are polynomials w.r.t. N and have
rational coefficients w.r.t. n. This will be discussed later.

• Noncommutative polynomial factorizations of operator polynomials T (N , n) can
be found using advanced commutative and noncommutative Gröbner basis tech-
niques. We mention that there is an implementation in the computer algebra sys-
tem REDUCE [Hearn95] for the calculation of noncommutative Gröbner bases
and polynomial factorization in noncommutative polynomial rings, given by com-
mutator rules [MA94]. This package ncpoly easily generates the factorizations
(9.10).
Note that, for the given example, the REDUCE factorization algorithm gener-
ates the factorizations (9.10) much faster than Maple generated the polynomial
solutions by Petkovšek’s algorithm. This is not very surprising: Whereas with
Petkovšek’s algorithm the complete polynomial solution has to be calculated, in
particular all the coefficients of the polynomials of degree 100 have to be found
(Note, however, Footnote 2), each of the operator factorizations requires only the
calculation of the much simpler recurrence equation that is valid for the corre-
sponding solution. The advantages and disadvantages of both approaches will be
discussed in more detail later.

Example 9.4 Let’s check whether there are polynomial solutions of the Apéry recur-
rence equation

(n + 2)3 sn+2 − (2n + 3)
(

17n2 + 51n + 39
⎧

sn+1 + (n + 1)3 sn = 0

of the sum

sn =
n⎨

k=0

(
n

k

)2(
n + k

k

)2

.

We see at a glance that Apéry’s recurrence equation does not possess any polynomial
solution since α0 + β0 + γ0 = 1 − 34 + 1 ∈= 0.

Session 9.5 The Maple procedure

rec2poly:=proc()
local rec,s,n,P,Q,R,M,N,alpha,beta,gamma,delta,sol,tmp,l,S,REC;
rec:=expand(args[1]):
if type(rec,‘equation‘) then rec:=op(1,rec)-op(2,rec) end if;
s:=op(0,args[2]);
n:=op(1,args[2]);
P:=collect(coeff(rec,s(n+2)),n);
Q:=collect(coeff(rec,s(n+1)),n);
R:=collect(coeff(rec,s(n)),n);
M:=max(degree(P,n),degree(Q,n),degree(R,n));
alpha[0]:=coeff(P,n,M);
beta[0]:=coeff(Q,n,M);
gamma[0]:=coeff(R,n,M);
# check first condition
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if not(simplify(alpha[0]+beta[0]+gamma[0])=0) then
error ‘No polynomial solution exists‘;

end if;
alpha[1]:=coeff(P,n,M-1);
beta[1]:=coeff(Q,n,M-1);
gamma[1]:=coeff(R,n,M-1);
# check second condition
if not(simplify(beta[0]+2*gamma[0])=0) then
N:=normal((alpha[1]+beta[1]+gamma[1])/(beta[0]+2*gamma[0]));

# check third condition
elif not(simplify(alpha[1]+beta[1]+gamma[1])=0) then
error ‘No polynomial solution exists‘;

else
alpha[2]:=coeff(P,n,M-2);
beta[2]:=coeff(Q,n,M-2);
gamma[2]:=coeff(R,n,M-2);
sol:={solve(Nˆ2*gamma[0]-(beta[1]+gamma[0]+
2*gamma[1])*N+alpha[2]+beta[2]+gamma[2],N)};

N:=max(op(select(type,sol,nonnegint)));
end if;
if type(N,negint) then
error ‘No polynomial solution exists‘;

end if;
S:=add(delta[N-l]*nˆl,l=0..N);
REC:=collect(P*subs(n=n+2,S)+Q*subs(n=n+1,S)+R*S,n);
sol:={solve(normal({coeffs(REC,n)}),{seq(delta[l],l=0..N)})};
if sol={} or {seq(op(2,op(l,op(1,sol))),l=1..nops(op(1,sol)))}={0}
then error ‘No polynomial solution exists‘

end if;
return factor(subs(op(1,sol),S));
end proc:

is an implementation of the above algorithm to find all monic polynomial solutions
of a second order holonomic recurrence equation. We get for example

> rec2poly(
> n*(n+1)*s(n+2)-2*n*(n+10)*s(n+1)+(n+9)*(n+10)*s(n),s(n));

n (n + 8) (n + 7) (n + 6) (n + 5) (n + 4) (n + 3) (n + 2) (n + 1)

(n δ0 + δ1 − 36 δ0)
> rec2poly(
> n*(n+1)*s(n+2)-2*n*(n+20)*s(n+1)+(n+19)*(n+20)*s(n),s(n));

n (n + 18) (n + 17) (n + 16) (n + 15) (n + 14) (n + 13) (n + 12) (n + 11)

(n + 10) (n + 9) (n + 8) (n + 7) (n + 6) (n + 5) (n + 4) (n + 3) (n + 2)

(n + 1) (n δ0 + δ1 − 171 δ0)

Now, having described and proved how the procedure works for second order recur-
rence equations, we state the general algorithm without proof; see Exercise 9.4.
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Algorithm 9.6 (Polynomial Solutions of Holonomic Recurrence Equations) The
following algorithm finds all polynomial solutions of a given holonomic recurrence
equation.

1. Input: A holonomic recurrence equation

J⎨
j=0

Pj (n) sn+ j = 0 (9.12)

with polynomials

Pj (n) =
M⎨

l=0

α jl nM−l ∞ Q[n],

such that one of α j0 ∈= 0 ( j = 0, . . . , J ).
2. Set m := 0.
3. Compute for all l = 0, . . . , m

blm :=
J⎨

j=0

j l α j,m−l .

If blm = 0 for all l = 0, . . . , m, increase m by one, and repeat Step 3.
4. Let N be the set of nonnegative integer roots N ∞ N�0 of the polynomial

m⎨
l=0

⎩
 N

l


⎛ blm . (9.13)

5. If N = → then return “no polynomial solution exists”; exit.
6. Set N := maxN . Find the general polynomial solution sn of (9.12) by substi-

tuting the generic polynomial of degree N , equating coefficients, and solving the
corresponding linear system.

7. Output: The polynomial solution sn , determined in the previous step. �
Note that the main part in proving the algorithm is to show that the iteration in Step
3 stops (it turns out that it does not exceed J steps), and that formula (9.13) is valid;
see [Petkovšek92, PWZ96].

We move on to our main problem of finding the hypergeometric term solutions
of a given holonomic recurrence equation. For this purpose we will need a refined
version of Gosper’s representation lemma for rational functions (Lemma 5.1) which
is due to Petkovšek.

Lemma 9.7 and Algorithm (Gosper-Petkovšek Representation of Rational Func-
tions) Any rational function tk ∞ Q(k)\{0} has a representation of the form

tk = C
pk+1

pk

qk+1

rk+1
(9.14)



178 9 Petkovšek’s and van Hoeij’s Algorithm

where pk, qk, rk ∞ Q[k] are monic polynomials, C ∞ Q, and the following properties
are valid:

(a) gcd (qk, rk+ j ) = 1 for all j ∞ N�0;
(b) gcd (pk, qk+1) = 1;
(c) gcd (pk, rk) = 1.

Proof Let

tk = C
uk

vk
,

where uk, vk ∞ Q[k] are in lowest terms, and are monic.
Gosper’s rewriting procedure, given in Lemma 5.1 and applied in a specific way,

see below, generates the above representation if we start with the initialization pk :=
1, qk := uk−1, and rk := vk−1.

The validity of (a) is then a consequence of Lemma 5.1. It remains to prove (b)
and (c).

We apply Gosper’s rewriting procedure in such a way that for each rewrite step
we take the minimal j ∞ N for which

gcd (qk, rk+ j ) = gk ∈≡ 1, (9.15)

successively increasing this value.
In particular, we have then

gcd (qk, rk+i ) = 1 for all i < j.

Since, by (9.15), gk+i− j is a divisor of rk+i , it follows that

gcd (qk, gk+i− j ) = 1 for all i < j, (9.16)

and since gk−i is a divisor of qk−i , we have also

gcd (gk−i , rk) = 1 for all i < j. (9.17)

At the beginning of the rewriting, we start with gcd (pk, qk+1) = 1 since pk ≡ 1.
With every rewriting step, we set p≈

k = pk gk gk−1 . . . gk− j+1 and q ≈
k+1 = qk+1

gk+1
so

that by (9.16) p≈
k and q ≈

k+1 cannot have a common factor either. This proves (b).
Similarly, at the beginning of the rewriting, we have gcd (pk, rk) = 1. With every

rewriting step, we set p≈
k = pk gk gk−1 . . . gk− j+1 and r ≈

k = rk
gk− j

so that by (9.17)

p≈
k and r ≈

k do not have a common factor, and (c) is proved. √≥
Note that parts (b) and (c) of the lemma state in particular that in the Gosper-

Petkovšek representation (9.14) no canceling between the factors qk+1 and pk , or
pk+1 and rk+1 occurs. It turns out that the Gosper-Petkovšek representation is unique,
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and for this it is essential to take the minimal j ∞ N in each rewrite step; see Exercise
9.15.

We are now ready to state and prove Petkovšek’s main algorithm for second order
recurrence equations.

Example 9.8 (Hypergeometric Term Solutions of Holonomic Recurrence Equations)
Here, we consider the generic second order example. Our considerations will lead
us to a generic algorithm for this case [Petkovšek92].

Assume that a second order holonomic recurrence equation

Pn sn+2 + Qn sn+1 + Rn sn = 0 (Pn, Qn, Rn ∞ Q[n]) (9.18)

for sn is given. We would like to find all hypergeometric term solutions sn ∈≡ 0 of
this equation.

Since sn is assumed to be a hypergeometric term, the term ratio

sn+1

sn
= tn ∞ Q(n) (9.19)

is rational. Hence, by Lemma 9.7, there exist C ∞ Q and pn, qn, rn ∞ Q[n] such that

tn = C
pn+1

pn

qn+1

rn+1
, (9.20)

and the gcd conditions (a)–(c) of Lemma 9.7 are valid.
Dividing (9.18) by sn and substituting (9.19), we can therefore write

Pn tn+1 tn + Qn tn + Rn = 0.

Using (9.20), we obtain (after multiplication by pn rn+1 rn+2) the equation

C2 Pn pn+2 qn+2 qn+1 + C Qn pn+1 qn+1 rn+2 + Rn pn rn+1 rn+2 = 0. (9.21)

Now, we make extensive use of the gcd conditions of Lemma 9.7. Since the first and
second summands of (9.21) have the common factor qn+1, division by this term shows
that the third summand Rn pn rn+1 rn+2 must be divisible by qn+1. By Lemma 9.7,
qn+1 is relatively prime to pn , rn+1 and rn+2 so that it follows that Rn/qn+1 ∞ Q[n].
In particular, we obtain the information that qn must be a monic factor of Rn−1.
There are only finitely many such choices. But note that there might be many, if the
degree of Rn is large; see Exercise 9.11.

Similarly, the second and third summands of (9.21) have the common factor rn+2.
Division by this term shows therefore that the first summand Pn pn+2 qn+2 qn+1 must
be divisible by rn+2. By Lemma 9.7, rn+2 is relatively prime to qn+1, qn+2 and pn+2
so that Pn/rn+2 ∞ Q[n]. In particular, we obtain the information that rn must be one
of the finitely many monic factors of Pn−2.
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For any chosen pair (qn, rn) of monic factors of (Rn−1, Pn−2) we can cancel
qn+1 rn+2 in (9.21) and obtain the polynomial equation

C2 Pn

rn+2
qn+2 pn+2 + C Qn pn+1 + Rn

qn+1
rn+1 pn = 0. (9.22)

Next, we determine the constant C . Therefore, we consider the leading coefficient of
the left-hand side of (9.22), and realize that this generates a quadratic equation for
C since pn , pn+1 and pn+2 have the same degree. So, for each choice of qn and rn

(as factors of Rn−1 and Pn−2, respectively) there are at most two possible choices
for C ∞ Q.3

For any fixed choice for qn , rn and C , we can use Algorithm 9.6 (which for
the present situation is described in Example 9.1 and Session 9.5) to determine
whether there are any nonzero polynomial solutions pn of (9.22). Any such solution
provides us with a hypergeometric term solution of (9.18). On the other hand, no
other hypergeometric term solutions exist.

Example 9.9 Consider the recurrence equation

(n + 4) sn+2 + sn+1 − (n + 1) sn = 0 (9.23)

with Pn = n + 4, Qn = 1, and Rn = −n − 1. The only possible choices for qn

(monic factors of Rn−1) are qn = 1 or qn = n and for rn (monic factors of Pn−2) are
rn = 1 or rn = n + 2.

The following Maple session generates the possible values for tn = sn+1
sn

:
> P:=n+4: Q:=1: R:=-n-1: q:=1: r:=1:
> {solve(coeff(collect(Cˆ2*normal(P/subs(n=n+2,r))*subs(n=n+2,q)
> +C*Q+normal(R/subs(n=n+1,q))*subs(n=n+1,r),n),n),C)};

{−1, 1}
> C:=-1:
> pol:=rec2poly(Cˆ2*normal(P/subs(n=n+2,r))*p(n+2)*subs(n=n+2,q)+
> C*Q*p(n+1)+normal(R/subs(n=n+1,q))*p(n)*subs(n=n+1,r),p(n));

Error, (in rec2poly) No polynomial solution exists

> C:=1:
> pol:=rec2poly(Cˆ2*normal(P/subs(n=n+2,r))*p(n+2)*subs(n=n+2,q)+
> C*Q*p(n+1)+normal(R/subs(n=n+1,q))*p(n)*subs(n=n+1,r),p(n));

Error, (in rec2poly) No polynomial solution exists

> q:=n: C:=’C’:
> {solve(lcoeff(collect(Cˆ2*normal(P/subs(n=n+2,r))*subs(n=n+2,q)+
> C*Q+normal(R/subs(n=n+1,q))*subs(n=n+1,r),n),n),C)};

{0}
> q:=1: r:=n+2: C:=’C’:

3 Since the degree of the polynomial w.r.t. C is two, we are not confined to Q and can find all
solutions C ∞ C if we want. These computations may take place in an extension field of Q.
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> {solve(lcoeff(collect(Cˆ2*normal(P/subs(n=n+2,r))*subs(n=n+2,q)+
> C*Q+normal(R/subs(n=n+1,q))*subs(n=n+1,r),n),n),C)};

{}
> q:=n:
> {solve(lcoeff(collect(Cˆ2*normal(P/subs(n=n+2,r))*subs(n=n+2,q)+
> C*Q+normal(R/subs(n=n+1,q))*subs(n=n+1,r),n),n),C)};

{−1, 1}
> C:=-1:
> pol:=rec2poly(Cˆ2*normal(P/subs(n=n+2,r))*p(n+2)*subs(n=n+2,q)+
> C*Q*p(n+1)+normal(R/subs(n=n+1,q))*p(n)*subs(n=n+1,r),p(n));

1

2
δ0 (3 + 2 n)

> t:=normal(C*subs(n=n+1,pol)*subs(n=n+1,q)/(pol*subs(n=n+1,r)));

− (5 + 2 n) (n + 1)

(3 + 2 n) (n + 3)
> C:=1:
> pol:=rec2poly(Cˆ2*normal(P/subs(n=n+2,r))*p(n+2)*subs(n=n+2,q)+
> C*Q*p(n+1)+normal(R/subs(n=n+1,q))*p(n)*subs(n=n+1,r),p(n));

δ0

> t:=normal(C*subs(n=n+1,pol)*subs(n=n+1,q)/(pol*subs(n=n+1,r)));

n + 1

n + 3

Therefore, we see that there are exactly two linearly independent hypergeometric
term solutions (over Q(n)) of (9.23) with

sn+1

sn
= − (5 + 2 n) (n + 1)

(3 + 2 n) (n + 3)
and

sn+1

sn
= n + 1

n + 3
,

respectively, i.e. (up to a constant factor),

sn = (1)n (5/2)n

(3)n (3/2)n
(−1)n = 2

3

(−1)n (2n + 3)

(n + 1)(n + 2)
and sn = (1)n

(3)n
= 2

(n + 1)(n + 2)
.

Example 9.10 Again, we might use a factorization of the operator polynomial

T (N , n) = (n + 4) N 2 + N − (n + 1) (9.24)

corresponding to the recurrence equation (9.23) to check the results of the previous
example. As we mentioned earlier, any existing polynomial right factor of T (N , n)

of order one in N generates one hypergeometric term solution of the corresponding
holonomic recurrence equation, and vice versa.

The implementation [MA94]—which is based on polynomial arithmetic and
Gröbner basis computations—shows, however, that there is only one single poly-
nomial factorization of T (N , n) with polynomial coefficients in Q[n], namely

T (N , n) = (n + 4) N 2 + N − (n + 1) = (N + 1)
(
(n + 3)N − (n + 1)

⎧
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which corresponds to the hypergeometric solution

sn = (1)n

(3)n
= 2

(n + 1)(n + 2)

of (9.23) that we also found using Petkovšek’s algorithm.
Why, however, is the second solution

sn = (1)n (5/2)n

(3)n (3/2)n
(−1)n = 2

3

(−1)n (2n + 3)

(n + 1)(n + 2)
(9.25)

not generated? The operator polynomial

(n + 1)(2n + 5)N − (n + 3)(2n + 3)

corresponding to (9.25) cannot be a right factor of (9.24) since any polynomial right
factor of (9.24) has degree at most one in n. Therefore this term is hidden! Note that
Petkovšek’s algorithm finds factorizations with rational coefficients, hence elements
of Q(n) rather than Q[n] (this is its advantage), but is restricted to first order right
factors (this is its disadvantage).

However, Petkovšek’s algorithm is the starting point of a general factorization
algorithm for recurrence operators T (N , n) over Q(n). It finds all first order right
factors of T . The so-called adjoint operator can be used to find all first order left
factors of T as well. To find second order right factors of T , one generates the
so-called symmetric product of T with itself, i.e., the recurrence operator whose
solutions are the products of the solutions of T , and applies Petkovšek’s algorithm.
This result can be used to find the second order right factors of T . Higher order
right and left factors of T are dealt with in a similar way. Details can be found, e.g.,
in [Bronstein94, vdPS03, Horn08]. For the computation of the symmetric product
using linear algebra see e.g. [Stanley80, SZ94].4

Note that noncommutative polynomial factorization can also be applied to find
right factors of operator polynomials corresponding to differential equations or even
mixed recurrence-differential equations (see Example 12.5).

Example 9.11 Using Zeilberger’s algorithm, we obtain the recurrence equation

2(2 n + 3)sn+2 + 3(5 n + 7)sn+1 + 9(n + 1)sn = 0 (9.26)

for

sn =
n⎨

k=0

(−1)k
(

n

k

)(
3k

n

)

by the calculation

4 The symmetric product of two recurrence equations can be computed using the function
‘rec*rec‘ from the gfun package.
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> rec:=sumrecursion((-1)ˆk*binomial(n,k)*binomial(3*k,n),k,s(n));

2 (3 + 2 n) s(n + 2) + 3 (5 n + 7) s(n + 1) + 9 (n + 1) s(n) = 0

Let’s derive the hypergeometric term solutions of this recurrence equation! We have
Pn = 2(2n + 3), Qn = 3(5n + 7) and Rn = 9(n + 1). It turns out that the only
choice that generates a hypergeometric term solution is given by qn = 1, rn = 1
and C = −3. This leads to the polynomial solution pn = 1 by Algorithm 9.6, and
therefore to the rational term ratio

sn+1

sn
= tn = −3,

so that Sn := (−3)n is a solution of (9.26). Since S0 = s0 and S1 = s1, and since the
solution of (9.26) with two initial values is unique, it turns out that sn = Sn = (−3)n .

Session 9.12 We implement Petkovšek’s algorithm for recurrence equations of order
two. The Maple procedure

generateproducts:=proc(a)
local f,r,n;
r:=[a];
f:=proc(a,x)
local p,t;
if member(x,a,p) then

t:=subsop(p=NULL,a); procname(t,x),t
end if;

end;
n:=nops(a);
while (0<n) do
r:=[op(map(f,r,a[n])),op(r)];
n:=n-1;
while (0<n) and (a[n+1]=a[n]) do

n:=n-1;
end do;

end do;
return map(convert,r,‘*‘);
end proc:

recursively generates the set of products with factors in the given list r. Hence

rec2hyper:=proc()
local rec,s,n,P,Q,R,i,j,Qfactors,Qchoices,Rfactors,Rchoices,

p,q,r,c,sol,C,tmp,t,cchoices;
rec:=expand(args[1]):
if type(rec,‘equation‘) then rec:=op(1,rec)-op(2,rec) end if;
s:=op(0,args[2]);
n:=op(1,args[2]);
P:=coeff(rec,s(n+2));
Q:=coeff(rec,s(n+1));
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R:=coeff(rec,s(n));
if (P=0) then

return {-factor_over_Q(R,n,0)/factor_over_Q(Q,n,0)};
end if;
R:=factor_over_Q(R,n,-1,Qfactors);
Qchoices:=generateproducts(Qfactors);
P:=factor_over_Q(P,n,-2,Rfactors);
Rchoices:=generateproducts(Rfactors);
sol:={};
for q in Qchoices do

for r in Rchoices do
cchoices:=(Cˆ2*(P/subs(n=n+2,r))*subs(n=n+2,q)+C*Q+

(R/subs(n=n+1,q))*subs(n=n+1,r));
try

cchoices:=normal(
{solve(lcoeff(expand(normal(cchoices)),n),C)});

for c in cchoices do
try

tmp:=normal((cˆ2*(P/subs(n=n+2,r))*
subs(n=n+2,q)*p(n+2)+c*Q*p(n+1)+
(R/subs(n=n+1,q))*subs(n=n+1,r)*p(n)));

tmp:=rec2poly(eval(tmp),p(n));
t:=normal(c*subs(n=n+1,tmp)*subs(n=n+1,q)/

(tmp*subs(n=n+1,r)));
sol:={op(sol),t};

catch:
end try;

end do;
catch:
end try;

end do;
end do;
return sol;
end proc:

is an implementation of Petkovšek’s algorithm (over Q) for recurrence equations of
order 2, where

factor_over_Q:=proc(poly,n,shift,rootlist) local p,i,j,l,lf,f;
f:=factors(subs(n=n+shift,poly)); l:=f[2]; if (nargs=4) then
lf:=select(x->degree(x[1],n)=1,l);
rootlist:=[1];
for i from 1 to nops(lf) do

for j from 1 to lf[i][2] do
rootlist:=[op(op(rootlist)),lf[i][1]];

end do;
end do;

end if;
return f[1]*mul(factor(subs(n=n-shift,(l[i][1])))ˆl[i][2],
i=1..nops(l));

end proc:
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is an auxiliary function. The procedure rec2hyper results in the set of term
ratios tn = sn+1/sn of all possible hypergeometric term solutions. Let’s use the
procedure on the above examples:

> rec2hyper((n+4)*s(n+2)+s(n+1)-(n+1)*s(n),s(n));⎜
n + 1

n + 3
, − (5 + 2 n) (n + 1)

(3 + 2 n) (n + 3)

⎝

> rec2hyper(
> 2*(2*n+3)*s(n+2)+3*(5*n+7)*s(n+1)+9*s(n)*(n+1),s(n));

{−3}
What about the Apéry numbers?

> rec2hyper(
> (n+1)ˆ3*s(n)-(2*n+3)*(17*nˆ2+51*n+39)*s(n+1)+s(n+2)*(n+2)ˆ3
> ,s(n));

{}
Hence, Petkovšek’s algorithm has proved that the Apéry numbers are not hypergeo-
metric terms!

Here are some more results:

> rec2hyper(
> 2*n*(1+n)*s(n)+(2-3*n-nˆ2)*s(n+1)+(n-1)*s(n+2),s(n));

{2, n + 1}
> rec2hyper(s(n+2)-(n+1)*s(n+1)-(n+1)*s(n),s(n));

{n + 1}
> rec2hyper(81*(2+3*n)*(4+3*n)*s(n)-
> 6*(70+99*n+36*nˆ2)*s(n+1)+8*(2+n)*(3+2*n)*s(n+2),s(n));⎜

27

4

⎝

In Example 7.6, we had considered the sum

sn =
	n/3
⎨
k=0

(
n − 2k

k

) (
− 4

27

)k

and we were able to find the recurrence equation

9(n + 2)sn+2 − 3(n + 4)sn+1 − 2(n + 3)sn = 0 (9.27)

for sn . Let us use Petkovšek’s algorithm to find hypergeometric term solutions.

> rec2hyper(9*(n+2)*s(n+2)-3*(n+4)*s(n+1)-2*(n+3)*s(n),s(n));⎜
−1

3
,

2 (7 + 3 n)

3 (4 + 3 n)

⎝



186 9 Petkovšek’s and van Hoeij’s Algorithm

Hence both

un =
(

−1

3

)n

and vn = (7/3)n

(4/3)n

(
2

3

)n

= 3n + 4

4

(
2

3

)n

are hypergeometric term solutions of (9.27), and by the linear structure every solu-
tion of (9.27) must be a linear combination of these. Therefore we try to find a
representation for sn of the form

sn = αun + βvn .

The values s0 = s1 = 1 generate the linear system

α + β = 1 and − α

3
+ 7β

6
= 1

for (α, β) with the solution

α = 1

9
and β = 8

9
.

Hence we have found that

sn = 1

9

(
−1

3

)n

+ 2(3n + 4)

9

(
2

3

)n

.

Finally, we state without proof Petkovšek’s general result on hypergeometric term
solutions of higher order recurrence equations [Petkovšek92]. It is a straightforward
generalization of Example 9.8; see Exercise 9.8.

Algorithm 9.13 (Hypergeometric Term Solutions of Holonomic Recurrence Equa-
tions) The following algorithm finds all hypergeometric term solutions of a given
holonomic recurrence equation.

1. Input: A holonomic recurrence equation

J⎨
j=0

Pj (n) sn+ j = 0 (9.28)

with polynomials Pj ∞ Q[n].
2. Set L := {}.
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3. For all monic factors qn of P0(n − 1) and rn of PJ (n − J ) do:

(a) For j = 0, . . . , J set

h j (n) := Pj (n) ·
j⎞

l=1

qn+l ·
J⎞

l= j+1

rn+l .

(b) Let M := max
0≤ j≤J

deg h j (n), and for j = 0, . . . , J let α j denote the coeffi-

cient of nM in h j (n).
(c) For any solution C ∞ Q (or C ∞ C) of the polynomial equation

J⎨
j=0

α j C
j = 0 (9.29)

do: Apply Algorithm 9.6 to the recurrence equation

J⎨
j=0

C j h j (n) pn+ j = 0 (9.30)

to find all polynomial solutions pn of (9.30). If there is a polynomial solution
pn , then add the term ratio

tn = C
pn+1

pn

qn+1

rn+1

to the set L .

4. Output: Return the set L of term ratios of all hypergeometric term solutions of
(9.28). �

Note that in Petkovšek’s algorithm rational factorization (in (9.29) and (9.13)) plays
an essential role again. If factorizations are done over C, then the necessary algebraic
extensions make the algorithm very slow. In practice, it turns out that algebraic exten-
sions are most often unnecessary. The hsum package contains an implementation
rechyper of Algorithm 9.13 over Q, as described. Most often this suffices. The
program algebraicrechyper works in extension fields.

Using the notion of similarity under hypergeometric terms, see p. 94, not only is
Petkovšek’s algorithm shown to find the set of all hypergeometric term solutions, but
this set forms a basis for all linear combinations of hypergeometric term solutions
([PWZ96], Sect. 8.7). Hence if Petkovšek’s algorithm does not find any solution, it
has proved that no linear combination of hypergeometric terms is a solution.
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The algorithmic derivation of hypergeometric term representations of sums

sn =
∞⎨

k=−∞
F(n, k)

of admissible hypergeometric terms F(n, k) is now complete: An application of
Zeilberger’s algorithm or its extension generates a holonomic recurrence equation
for sn , and an application of Petkovšek’s algorithm finds the hypergeometric term
solutions of the resulting recurrence equation whenever those hypergeometric terms
exist. Finally, by checking enough initial values, we can determine whether or not
one of these hypergeometric terms (or a linear combination of them like in Session
9.12) represents sn .

In Exercise 9.3, we present a list of hypergeometric sums with hypergeometric
term representations for which the Wilf-Zeilberger approach fails, and Zeilberger’s
algorithm generates a recurrence equation of order two. Obviously in all these cases
Petkovšek’s algorithm finds the hypergeometric term representations.

Note, however, that the complexity of Petkovšek’s algorithm in practice can be
quite high, particularly if the recurrence equation has high degree polynomial coef-
ficients, since in this case quite a few choices have to be checked. We will look at
this in more detail in the following example.

Session 9.14 To check the efficiency of Petkovšek’s algorithm we would like to gen-
erate a recurrence equation with “sufficiently difficult” hypergeometric term solu-
tions. The Maple program

HolonomicRE:=proc(term,sk)
local s,k,r;
s:=op(0,sk): k:=op(1,sk):
r:=ratio(term,k);
denom(r)*s(k+1)-numer(r)*s(k)=0;
end proc:

computes the first order recurrence equation for a hypergeometric term. Hence the
computations

> term1:=GAMMA(n+1/2)ˆ5*GAMMA(n+1)/GAMMA(n+3/4)ˆ3/GAMMA(n+1/3);

term1 :=
Γ (n + 1

2
)5 Γ (n + 1)

Γ (n + 3

4
)3 Γ (n + 1

3
)

> RE1:=HolonomicRE(term1,s(n));

RE1 := (4 n + 3)3 (3 n + 1) s(n + 1) − 6 (2 n + 1)5 (n + 1) s(n) = 0
> term2:=GAMMA(n+1/4)/GAMMA(n+1)ˆ3/GAMMA(n+1/3)ˆ4;

term2 :=
Γ (n + 1

4
)

Γ (n + 1)3 Γ (n + 1

3
)4
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> RE2:=HolonomicRE(term2,s(n));

RE2 := 4 (n + 1)3 (3 n + 1)4 s(n + 1) − (324 n + 81) s(n) = 0

yield the recurrences RE1 and RE2 that are valid for an = Γ (n+1/2)5 Γ (n+1)

Γ (n+3/4)3 Γ (n+1/3)
and

bn = Γ (n+1/4)

Γ (n+1)3 Γ (n+1/3)4 , respectively.
Using linear algebra, it is now easy to find a recurrence equation which is valid for

the sum an + bn (and for any linear combination of an and bn) (see e.g. [Stanley80,
SZ94]). With the gfun package, we get5

> tmp:=gfun[‘rec+rec‘](RE1,RE2,s(n)):
> if type(tmp,set) then tmp:=select(has,tmp,n)[1] end if:

> RE:=map(factor,tmp);

RE := 486 (4 n + 1) (n + 1)(6912 n12 + 134784 n11 + 1201536 n10

+ 6475072 n9 + 23494256 n8 + 60469320 n7 + 113205728 n6

+ 155330368 n5 + 155030016 n4 + 109737216 n3 + 52242624 n2

+ 14979384 n + 1944351)(2 n + 1)5 s(n) − 3 (3 n + 1)(

47775744 n24 + 1289945088 n23 + 16502538240 n22

+ 133078892544 n21 + 759170949120 n20 + 3259238326272 n19

+ 10937158309888 n18 + 29413823444992 n17

+ 64488148739328 n16 + 116634920972032 n15

+ 175425566746048 n14 + 220546391942592 n13

+ 232395627484608 n12 + 205363007155392 n11

+ 151961459800128 n10 + 93817776256832 n9

+ 48035486487104 n8 + 20215755160896 n7 + 6904026511616 n6

+ 1877330292224 n5 + 393755684352 n4 + 59712834816 n3

+ 5524092864 n2 + 132123312 n − 17831097)s(n + 1) + 4(

6912 n12 + 51840 n11 + 175104 n10 + 352192 n9 + 469808 n8

+ 437960 n7 + 292648 n6 + 141288 n5 + 42024 n4 − 5416 n3

− 13640 n2 − 5648 n − 721)(3 n + 1) (n + 2)3 (4 + 3 n)4 (4 n + 7)3

s(n + 2)

This recurrence has leading coefficient Pn

> leading:=coeff(RE,s(n+2));

leading := 4(6912 n12 + 51840 n11 + 175104 n10 + 352192 n9 + 469808 n8

+ 437960 n7 + 292648 n6 + 141288 n5 + 42024 n4 − 5416 n3

− 13640 n2 − 5648 n − 721)(3 n + 1) (n + 2)3 (4 + 3 n)4 (4 n + 7)3

and trailing coefficient Rn

5 gfun treats the algebra of holonomic functions. Note that ‘rec+rec‘ sometimes returns a
recurrence and sometimes a set which also contains some initial values. Therefore we check the
output.
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> trailing:=coeff(RE,s(n));

trailing := 486 (4 n + 1) (n + 1)(6912 n12 + 134784 n11 + 1201536 n10

+ 6475072 n9 + 23494256 n8 + 60469320 n7 + 113205728 n6

+ 155330368 n5 + 155030016 n4 + 109737216 n3 + 52242624 n2

+ 14979384 n + 1944351)(2 n + 1)5

that already have quite a few factors, hence 25 · 42 · 5 · 6 = 15,360 cases have to be
checked. It turns out that Petkovšek’s algorithm takes about one minute to find the
solutions, as one can see from the computation

> TIME:=time(): rec2hyper(RE,s(n)); time()-TIME;⎟
81 (4 n + 1)

4 (n + 1)3 (3 n + 1)4 ,
6 (n + 1) (2 n + 1)5

(4 n + 3)3 (3 n + 1)

⎠

76.612

In the sequel we will consider how such an example can be dealt with more efficiently
since much fewer cases have to be treated.

Mark van Hoeij [vanHoeij98, CvH06] used a different, and much more efficient,
approach to finding hypergeometric term solutions of holonomic recurrence equa-
tions by considering the local behavior of the solution terms. He implemented his
algorithm in Maple as LREtools[hypergeomsols]. This is the state-of the-
art algorithm for finding hypergeometric term solutions of holonomic recurrence
equations.

In the sequel I would like to present the main ideas of van Hoeij’s approach. How
does a general hypergeometric term solution sn of (9.28) look? In the first place, it
must be a hypergeometric term, therefore by (2.8) having a representation

sn = (α1)n · (α2)n · · · (αp)n

(β1)n · (β2)n · · · (βq)n

xn

n! = C · Γ (n + α1) . . . Γ (n + αp)

Γ (n + β1) . . . Γ (n + βq) · Γ (n + 1)
xn,

where we used (1.5) to rewrite the Pochhammer symbols in terms of Gamma func-
tions. Next, by (1.4) every Gamma factor occurring here can be replaced by a rational
function times another Gamma factor whose argument differs only by an integer.6

Therefore, for example, we can choose Re αk, Re βk ∞ (0, 1]. Then, we get

sn = R(n) · Γ (n + α1) . . . Γ (n + αp)

Γ (n + β1) . . . Γ (n + βq) · Γ (n + 1)
xn

for some rational function R(n) ∞ Q(n), this time αk, βk being uniquely determined.
Since some of the αk or βk now might agree, we finally end up with a representation
of the form

6 For the algebraist: We look at these αs and βs not as elements in C, but in C/Z.

http://dx.doi.org/10.1007/978-1-4471-6464-7_2
http://dx.doi.org/10.1007/978-1-4471-6464-7_1
http://dx.doi.org/10.1007/978-1-4471-6464-7_1
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sn = R(n) · xn ·
J⎞

j=1

Γ (n − a j )
e j (a j ∞ C, e j ∞ Z\{0}), (9.31)

where all these data are uniquely determined. The numbers a j ( j = 1, . . . , J ) are
the finite Gamma singularities of order e j . By

r(sn) = sn+1

sn
= R(n + 1)

R(n)
· x ·

J⎞
j=1

(n − a j )
e j ∞ Q(n) (9.32)

we denote the rational certificate of the hypergeometric term sn (9.31) as usual. Here
the part stemming from the Gamma functions is completely factorized.

The crucial idea behind van Hoeij’s approach is now to check the zeros and poles of
a possible solution sn of (9.28). Note that the rational function R(n) has only finitely
many zeros and poles, whereas every Gamma term in representation (9.31) creates
an infinite number of zeros or poles since Γ (z) has poles exactly at the nonnegative
integers. We call this the singularity structure of sn . If we can find this singularity
structure, then we can find the solutions.

Next, we consider a simple example which shows how the singularity structure
of a solution of (9.28) can be observed.

Example 9.15 The easiest example is the recurrence equation

sn+1 − (n + 1) sn = 0. (9.33)

We can use the recurrence in two directions. When we use it to compute—starting
with s0, say—the values of sn from the previous ones in the forward direction, then
all these can be computed without any problem, encountering no zeros or poles. This
is because for no value n ∞ Z is the coefficient of sn+1 zero. However, if we use
(9.33) in the backward direction, this is different. Since the coefficient of sn in (9.33)
is zero at n = −1, the recurrence cannot be used to compute s−1 from s0. This leads
to a pole of sn for n = −1. This pole repeatedly appears for all negative n ∞ Z. That
is exactly how the Gamma function behaves, see Chap. 1. Therefore the Gamma
structure of a solution of (9.33) contains Γ (n + 1), and this can be read off directly
from the leading and trailing coefficients of (9.33).

The representation (9.31) gives us the complete information about the finite local
singularity structure of a hypergeometric term. We call the set of pairs

Sing (sn) := {(a j , e j ) | j = 1, . . . , J }

the set of local types of the hypergeometric term sn at its finite singularities a j .
Note that—as we saw—the singularities a j ∞ C are known modulo Z, and e j ∞
Z\{0}, ( j = 1, . . . , J ).

When two hypergeometric terms sn and tn are similar, i.e. their quotient is a
rational function, then their representations (9.31) have the same singularity structure

http://dx.doi.org/10.1007/978-1-4471-6464-7_1
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Sing (sn), and we must just find the corresponding data J ∞ N, a j ∞ C, e j ∞ Z\{0}
for j = 1, . . . , J .

One can also study the singularity structure at infinity. Let’s discuss the local type
of sn at ∞. For this purpose we look at the behavior of the rational certificate at ∞.
Substituting t = 1

n , we can write the asymptotic expansion

r(sn)

(
1

t

)
= c t−ν(1 + d t + O(t2)) = c nν

(
1 + d

n
+ O

(
1

n2

))
.

The uniquely determined data triple (c, ν, d) is called the local type of sn at ∞.
Note that d again is known only modulo Z since an integer shift in a Gamma term
leads to a shift of the same size in d. Note moreover that for two hypergeometric
terms sn and tn with data (c1, ν1, d1) and (c2, ν2, d2), the product sn · tn has the data
(c1 · c2, ν1 + ν2, d1 + d2), see Exercise 9.16. Therefore, we get

Theorem 9.16 (Fuchs Relations) Let be R(n) = p(n)
q(n)

with p(n), q(n) ∞ Q[n]. The
following relations between the local types of a hypergeometric term sn given by
(9.31) are valid:

(a) ν =
J⎨

j=1

e j ,

(b) d = −
J⎨

j=1

a j e j + deg(p(n)) − deg(q(n)),

(c) c = x,

where (c, ν, d) denotes the local type of sn at ∞.

Proof By expanding the product in (9.32), we get for n → ∞

sn+1

sn
= p(n + 1)q(n)

p(n)q(n + 1)
x

J⎞
j=1

(n − a j )
e j

= x

⎩
n

J∑
j=1

e j −
J⎨

j=1

a j e j n

J∑
j=1

e j −1
+

(
deg(p(n)) − deg(q(n))

⎧
n

J∑
j=1

e j −1
. . .


⎪⎛

from which one can read off the data of the theorem. �
Note that—modulo an integer—(b) reads as

d ≡ −
J⎨

j=1

a j e j (mod Z). (9.34)

The Fuchs relations can be used for a fast check of whether a solution term is possible
or not.
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Session 9.17 We continue with Session 9.14. The rational certificates of the
hypergeometric terms term1 and term2 are given by

> rat1:=ratio(term1,n);

rat1 := 6 (2 n + 1)5 (n + 1)

(4 n + 3)3 (3 n + 1)

> rat2:=ratio(term2,n);

rat2 := 81 (4 n + 1)

4 (n + 1)3 (3 n + 1)4

The Maple command asympt can compute the asymptotic series of a function,
and for rat1 and rat2 we get

> asympt(rat1,n,10);

n2 + 11 n

12
+ 7

36
+ 25

864 n
− 605

20736 n2 + 7037

248832 n3 − 39589

1492992 n4 + O

(
1

n5

)

> asympt(rat2,n,10);

1

n6 − 49

12 n7 + 361

36 n8 − 521

27 n9 + O

(
1

n10

)

from which one can read off the local types at ∞, namely (1, 2, 11/12) and
(1,−6,−49/12) forrat1andrat2, respectively. The procedureinfinitetype
computes these data for a hypergeometric term term:

infinitetype:=proc(term,n)
local rat,t,tay,c,nu,d;
rat:=ratio(term,n);
nu:=degree(numer(rat),n)-degree(denom(rat),n);
rat:=normal(subs(n=1/t,rat/nˆnu));
tay:=convert(series(rat,t=0,2),polynom);
[coeff(tay,t,0),nu,coeff(tay,t,1)/coeff(tay,t,0)];
end proc:

Using infinitetype, we recover the above data
> infinitetype(term1,n);[

1, 2,
11

12

]

> infinitetype(term2,n);[
1, −6, −49

12

]

Now we continue with the recurrence equation RE from Session 9.14, for which
we get, using van Hoeij’s algorithm
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> TIME:=time():
> sol:=LREtools[hypergeomsols](RE,s(n),{},output=basis);
> time()-TIME;

sol :=
⎡
⎢⎣

Γ (n + 1

2
)5 Γ (n + 1)

Γ (n + 1

3
) Γ (n + 3

4
)3

,

Γ (n + 1

4
)

Γ (n + 1

3
)4 Γ (n + 1)3

⎤
⎥⎦

0.343

which yields of course the same solutions as before

> map(x->ratio(x,n),sol);[
6 (n + 1) (2 n + 1)5

(4 n + 3)3 (3 n + 1)
,

81 (4 n + 1)

4 (n + 1)3 (3 n + 1)4

]

but in a fraction of the computing time of Petkovšek’s algorithm. Let’s try to explain
how this works.

We recall the leading and trailing coefficients of the recurrence equation for this
example:

> leading;

leading := 4(6912 n12 + 51840 n11 + 175104 n10 + 352192 n9 + 469808 n8

+ 437960 n7 + 292648 n6 + 141288 n5 + 42024 n4 − 5416 n3

− 13640 n2 − 5648 n − 721)(3 n + 1) (n + 2)3 (4 + 3 n)4 (4 n + 7)3

> trailing;

trailing := 486 (4 n + 1) (n + 1)(6912 n12 + 134784 n11 + 1201536 n10

+ 6475072 n9 + 23494256 n8 + 60469320 n7 + 113205728 n6

+ 155330368 n5 + 155030016 n4 + 109737216 n3 + 52242624 n2

+ 14979384 n + 1944351)(2 n + 1)5

We can easily read off the zeros (that will lead us to the Gamma singularities) of
the leading coefficient (namely, n = − 1

3 ,−2,− 4
3 ,− 7

4 ), and the zeros of the trailing
coefficient (namely n = − 1

4 ,−1,− 1
2 ), omitting the zeros of the two polynomials

of 12th degree7 that almost always constitute so-called apparent singularities, since
they don’t show up in the solution and therefore only look like singularities. Recall
that the Gamma terms of a possible solution of the recurrence equation are only
known modulo Z. However, it will also be important to check how often such a zero
occurs. Therefore let’s take the zeros from the interval [−1, 0) and add their degrees.
Then we arrive at the (zero, degree) list

7 If we take the zeros of such polynomials under consideration, we have to work in a complicated
algebraic extension field. Van Hoeij showed how this can be avoided, but we will not consider this
case here.
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⎜(
−1

3
, 5

)
, (−1, 3),

(
−3

4
, 3

)⎝
corresponding to the factors

⎜(
n + 1

3
, 5

)
, (n + 1, 3),

(
n + 3

4
, 3

)⎝
(9.35)

for the leading coefficient and at

⎜(
−1

4
, 1

)
, (−1, 1),

(
−1

2
, 5

)⎝
corresponding to the factors

⎜(
n + 1

4
, 1

)
, (n + 1, 1),

(
n + 1

2
, 5

)⎝
(9.36)

for the trailing coefficient, respectively. By the argument given in Example 9.15, only
Gamma terms of arguments given in (9.36) up to the given orders can occur in the
numerator of a possible solution of the form (9.31) of RE. In a similar way, by using
the recurrence equation in the backward direction, one sees that only Gamma terms
of arguments given in (9.35) up to the given orders can occur in the denominator of
a possible solution of the form (9.31) of RE.

Let us count how many Gamma products are possible that are in the ranges (9.36)
(for the numerator) and (9.35) (for the denominator). There are 6 · 4 · 4 · 2 · 2 · 6 =
2,304 possible solutions. Petkovšek’s algorithm had to consider 15,360 cases. There-
fore we already have a considerable saving. But we can do much better if we addi-
tionally use the Fuchs relations of Theorem 9.16. For this step, we use the Newton
polygon of the difference operator (see [CvH06], Algorithm Newton τ -polygon, see
also [Nörlund24], pp. 312–313, and [Birkhoff30], pp. 210–21) as a black box algo-
rithm which directly reads off from the recurrence equation possible choices for ν

as well as possible choices for c. This algorithm is included in the hsum package.
Applying it to the recurrence equation RE yields

> NewtonpolygonRE(RE,s(n));

{[−6, 429981696 − 429981696 n, {1}],
[2, −429981696 + 429981696 n, {1}]}

This fast computation shows that there are only two possible values for ν, namely
ν = −6 or ν = 2. In both cases there is only one possible value for c, namely a zero
of the polynomial 429981696 − 429981696 n, hence c = 1.

Now we can check easily how many Gamma combinations additionally satisfy
the first Fuchs relation (Theorem 9.16 (a)). For ν = −2 or ν = 6, we compute

> number:=0:
> for e1 from 0 to 5 do
> for e2 from 0 to 3 do
> for e3 from 0 to 3 do
> for e4 from -1 to 0 do
> for e5 from -1 to 0 do
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> for e6 from -5 to 0 do
> if element(e1+e2+e3+e4+e5+e6,{2,-6})
> then number:=number+1;
> end if;
> end do;
> end do;
> end do;
> end do;
> end do;
> end do;
> number;

302
hence there are only 302 such combinations. That’s clearly a relevant reduction from
the original 15,360 cases, and this is the main reason why van Hoeij’s algorithm is
so fast.

Van Hoeij’s complete algorithm goes one step further and reads off in another
step the possible values for d directly from the recurrence equation. Therefore the
second Fuchs relation (9.34) can be checked, too, and leads to a further reduction.
In our example case, only 22 choices survive and have to be checked, two of which
are the solutions sought.

Finally, for each possible Gamma combination (9.31) the rational function R(n)

has to be computed. However, this step can be reduced to the search for a polynomial
as in Petkovšek’s algorithm where the symmetric product mentioned previously is
utilized again.8

q-Petkovšek-van Hoeij Algorithm

There is a q-analogue of Petkovšek’s algorithm which was published by Abramov,
Paule, and Petkovšek [APP98] (see also [BK99]).

An implementation of the algorithm of [BK99] is given in the qsum package.
The Maple procedure qrecsolve(rec,s(n)) contains this implementation.9

The q-analogue of Fasenmyer’s method generates a second order recurrence equa-
tion for the q-Chu-Vandermonde sum

> RE:=qfasenmyer(
> qphihyperterm([qˆ(-n),b],[c],q,c/qˆ(-n)/b,k),q,k,s(n),1,2);

(−b c q(n+1) + b q + b − b q(n+2) − c q(n+1) + q(2+2 n) b c) s(n + 1)

− q (q(n+1) − 1) (qn c − b) S(n) + b (c q(n+1) − 1) s(n + 2) = 0

for which the q-Petkovšek algorithm generates the q-hypergeometric solution

8 Moreover, the computation of d in the last step already leads to the degree bound for the polynomial
sought.
9 qrecsolve has enhanced capabilities, which is the reason for its name.
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> qrecsolve(RE,q,s(n),output=qhypergeometric);⎡
⎢⎣
⎡
⎢⎣

qpochhammer
( c

b
, q, n

⎧

qpochhammer(c, q, n)
, 0 ≤ n

⎤
⎥⎦
⎤
⎥⎦

This is equivalent to the first order recurrence equation
> qrecsolve(RE,q,s(n),output=uprec);

[[b (qn c − 1) s(n + 1) + (−qn c + b) s(n) = 0]]
Note, however, that in this case an application of the q-analogue of Zeilberger’s
algorithm determines this recurrence equation in one step (and faster):

> qsumrecursion(qphihyperterm(
> [qˆ(-n),b],[c],q,c/qˆ(-n)/b,k),q,k,s(n),recursion=up);

b (qn c − 1) s(n + 1) + (−qn c + b) s(n) = 0

Note that there is also a q-variant of van Hoeij’s algorithm. Again, the number of
calls of subroutines in the q-Petkovšek algorithm can be drastically lowered by this
approach ([CvH06], see also [Horn08, HKS12]). We give an example.

Session 9.18 For this session, we load Sprenger’s qFPS package
([KS12, Sprenger09], see also [HKS12]).10

> read "qFPS.mpl";
> with(qFPS):

As an example we want to compute a rather complicated recurrence equation which,
by construction, has a very simple solution.

> m:=14:
> RE1:=qshift(F(x),[x],q)-x*F(x):
> RE2:=mul(x+i*qˆi,i=1..floor((m-1)/2))*
> qshift(F(x),[x$2],q)+mul(x-i*qˆi,i=1..floor(m/2))*F(x):
> RE:=qMultiplyRE(RE2,RE1,F(x))=0;

RE := (x + q) (2 q2 + x) (3 q3 + x) (4 q4 + x) (5 q5 + x) (6 q6 + x)

Sqx, x, x (F(x)) − (x + q) (2 q2 + x) (3 q3 + x) (4 q4 + x) (5 q5 + x)

(6 q6 + x) q2 x Sqx, x (F(x)) − (−x + q) (2 q2 − x) (3 q3 − x) (4 q4 − x)

(5 q5 − x) (6 q6 − x) (7 q7 − x) Sqx (F(x)) + (−x + q) (2 q2 − x)

(3 q3 − x) (4 q4 − x) (5 q5 − x) (6 q6 − x) (7 q7 − x) x F(x) = 0

which uses the q-shift operator Sqx , where x = qn , and convert it towards a regular
q-recurrence equation

> RE3:=qREtoqRE(RE,F(x),s(n));

10 Note that the packages qsum and qFPS are not completely compatible with each other so that
it may be useful not to use them in parallel.
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RE3 := (qn + q) (2 q2 + qn) (3 q3 + qn) (4 q4 + qn) (5 q5 + qn) (6 q6 + qn)

s(n + 3) − (qn + q) (2 q2 + qn) (3 q3 + qn) (4 q4 + qn) (5 q5 + qn)

(6 q6 + qn) q2 qn s(n + 2) − (−qn + q) (2 q2 − qn) (3 q3 − qn)

(4 q4 − qn) (5 q5 − qn) (6 q6 − qn) (7 q7 − qn) s(n + 1) + (−qn + q)

(2 q2 − qn) (3 q3 − qn) (4 q4 − qn) (5 q5 − qn) (6 q6 − qn) (7 q7 − qn)

qn s(n) = 0

The latter equation RE3 can be solved using the q-Petkovšek algorithm
> TIME:=time(): qrecsolve(RE3,q,s(n)); time()-TIME;

[[qbinomial(n, 2), 0 ≤ n]]
252.441

which takes several minutes. On the other hand, the q-van Hoeij algorithm, imple-
mented in the qHypergeomSolveRE command, applied to RE3

> TIME:=time(): qHypergeomSolveRE(RE3,s(n)); time()-TIME;

A1 q
(n−1) n

2

2.449
is much faster. With the command

> TIME:=time(): qHypergeomSolveRE(RE,F(x)); time()-TIME;

[x]
2.293

one can directly factorize RE w.r.t. the variable x .

The results in [FKTN12] depend heavily on an efficient implementation of the q-
Petkovšek-van Hoeij algorithm and were computed using the qHypergeomSolve
RE command of Sprenger’s qFPS package.

Further Reading

For further reading on the algorithms of this chapter see [Nörlund24, CvH06,
HKS12].

Exercises

Exercise 9.1 In particular the Maple procedure rec2poly of Session 9.5 can be
used to find polynomial solutions of first order recurrence equations. Describe this
in detail. Find the polynomial solutions of
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(a) n2 sn+1 − (n + 20)2 sn = 0, (b) n sn+1 − (n + 40) sn = 0.

Write any sn as hypergeometric term and check the results.

Exercise 9.2 The fixed point free permutations of n items are called derangements.
Their number Dn is given by

Dn = n!
n⎨

k=0

(−1)k

k! .

Show that Dn satisfies the recurrence equation

(n + 2) Dn+2 − (n + 1) Dn+1 − (n + 1) Dn = 0.

Use both Gosper’s and Petkovšek’s algorithms to prove that Dn does not constitute
a hypergeometric term.

Exercise 9.3 The following is a list of hypergeometric series for which hypergeo-
metric term representations are given (7.5.3.32)–(7.5.3.40) on p. 556 in the exten-
sive bibliography [PBM90]. For all of them, Zeilberger’s algorithm does not find the
recurrence equation of lowest order and hence the WZ method does not apply (see
Exercise 7.32).

Find hypergeometric term representations for the following hypergeometric sums:

(a) 4 F3

( −n, a, a + 1/2, b
2a, (b − n + 1)/2, (b − n)/2 + 1

∣∣∣∣ 1

)
,

(b) 4 F3

( −n, a, a + 1/2, b
2a + 1, (b − n)/2, (b − n + 1)/2

∣∣∣∣ 1

)
,

(c) 4 F3

( −n, a, a + 1/2, b
2a + 1, (b − n + 1)/2, (b − n)/2 + 1

∣∣∣∣ 1

)
,

(d) 4 F3

( −n, a, b,−1/2 − a − b − n
−a − n,−b − n, a + b + 1/2

∣∣∣∣ 1

)
,

(e) 4 F3

( −n, a, b, 1/2 − a − b − n
−a − n, 1 − b − n, a + b + 1/2

∣∣∣∣ 1

)
,

(f) 4 F3

( −n, a, b, 1/2 − a − b − n
1 − a − n, 1 − b − n, a + b − 1/2

∣∣∣∣ 1

)
,

(g) 4 F3

( −n, a, b, 3/2 − a − b − n
1 − a − n, 1 − b − n, a + b + 1/2

∣∣∣∣ 1

)
,

(h) 4 F3

( −n, a, b, 3/2 − a − b − n
1 − a − n, 2 − b − n, a + b − 1/2

∣∣∣∣ 1

)
,

(i) 4 F3

( −n, a, b, 5/2 − a − b − n
2 − a − n, 2 − b − n, a + b − 1/2

∣∣∣∣ 1

)
.

Note that the complexity of Petkovšek’s algorithm is so high that some of these results
take up to about half a minute of computation time or more. Therefore also apply van
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Hoeij’s algorithm via the LREtools[hypergeomsols] command and compare
timings and results.

Exercise 9.4 Prove Algorithm 9.6 on the polynomial solutions of holonomic recur-
rence equations of arbitrary order.

∇ Exercise 9.5 Write a Maple procedure recpoly(rec,s(n)) that implements
Algorithm 9.6.

Exercise 9.6 In Exercise 8.9 the recurrence equation

(n + 1 + 2 b) (n + 2 b) sn+2 − 4(n + b) (n + 1 + b) sn = 0

for

sn = 2 F1

( −n/2,−n/2 + 1/2
b + 1/2

∣∣∣∣ 1

)

was determined by the extended version of Zeilberger’s algorithm with m = 2.
Similarly, one gets the recurrence equations

(n + 1 + 2 b) (n + 2 + 2 b) (n + 2 b) sn+3−8(n+2+b) (n + 1 + b) (n + b) sn = 0

and

0 = (n + 2 + 2 b) (n + 2 b) (n + 3 + 2 b) (n + 1 + 2 b) sn+4

−16(n + 3 + b) (n + 2 + b) (n + 1 + b) (n + b) sn

when using m = 3 and m = 4. In a first step, find the hypergeometric term solutions
of these recurrence equations by a direct argument, and deduce the closed form of
sn . Then use Petkovšek’s algorithm for the same purpose.

Exercise 9.7 Show that the differential equation

0 = a(1 − z) z F ≈≈≈(x) +
(

a + a2 + a b + z − 3 a z − 3 a2 z − 2 z2 + z3
⎧

F ≈≈(z)

+
(
−3 a2 − 2 a3 + b − z − 4 a z − b z + z2 + 3 a z2

⎧
F ≈(z)

+2 a2(z − 1) F(z) (9.37)

leads to the recurrence equation

0 = a(2 + n) (3 + n) (2 + a + b + n) un+3

+ (2 + n)
(

1 − 3 a − 6 a2 − 2 a3 + b + n − 4 a n − 3 a2 n − a n2
⎧

un+2

−
(

1 + 4 a + 2 a2 + b + 3 n + 4 a n + b n + 2 n2
⎧

un+1

+ (a + n) (2 a + n) un
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for the coefficients of a power series solution

F(z) =
∞⎨

n=0

un zn

of (9.37); see e.g. [GK95] or [SZ94]. You can use the diffeqtorec command
of the gfun package [SZ94] for this purpose. Find the hypergeometric function
solutions of (9.37).

Exercise 9.8 Prove Algorithm 9.13 on the hypergeometric term solutions of holo-
nomic recurrence equations of arbitrary order.

Exercise 9.9 Write a Maple procedure rechyper(rec,s(n)) that implements
Algorithm 9.13, and apply your implementation to the recurrence equations of Exer-
cises 9.6–9.7.

Exercise 9.10 (m-fold Hypergeometric Terms) [PS95, HKS12] Modify Algorithm
9.13 such that one finds, given m ∞ N, all m-fold hypergeometric terms sn having a
term ratio sn+m

sn
∞ Q(n)

which satisfy the recurrence equation (9.28).

Exercise 9.11 (Complexity) Assume that two polynomials Pn and Rn of degree p
and r , respectively, are given that are factorized in linear factors over Q. How often
does Petkovšek’s algorithm, applied to the recurrence equation

Pn sn+2 + Qn sn+1 + Rn sn = 0,

have to call Algorithm 9.6, described in Example 9.1?

Exercise 9.12 Find a hypergeometric term representation of the sum

sn =
n⎨

k=0

(−1)k
(

r − s − k

k

)(
r − 2 k

n − k

)

r − n − k + 1
.

Exercise 9.13 Derive a second order recurrence equation for the coefficient Ak of
the double sum

n⎨
k=0

Ak =
n⎨

k=0

(
n

k

)
(c)k (m)n−k · 3 F2

⎩
 −k, a, b

c, d

∣∣∣∣∣∣ 1


⎛,

and show that Ak does not satisfy any holonomic recurrence equation of first order;
compare Exercise 7.25.
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Exercise 9.14 Show again that the harmonic numbers

Hn =
n⎨

k=1

1

k

do not constitute a hypergeometric term. For this purpose find a holonomic recurrence
equation for Hn , and apply Petkovšek’s algorithm.

Exercise 9.15 Show that the Gosper-Petkovšek representation given by Algorithm
9.7 is unique. Use tk = (k+1)(k+2)

k to show that it is essential to take the minimal
j ∞ N in each rewrite step to obtain the Gosper-Petkovšek representation, since
otherwise one of the gcd conditions (b) or (c) may be invalid [Stölting96, p. 30].

Exercise 9.16 Show that for two hypergeometric terms sn and tn with local data
(c1, ν1, d1) and (c2, ν2, d2) at infinity, the product sn · tn has the data (c1 · c2, ν1 +
ν2, d1 + d2).

Exercise 9.17 Generate a recurrence equation for which the computation time using
Petkovšek’s algorithm is at least 1,000 seconds by using the ideas of Sessions 9.14 and
9.17 by adding three sufficiently complicated hypergeometric terms. Use the Maple
procedure LocalInfiniteType(RE,s(n)) contained in the hsum package to
recover the infinite types of the three solutions as well as van Hoeij’s algorithm to
compute its solution basis.

Exercise 9.18 (Symmetrizing) Prove the following identity of Rogers

⎨
k∞Z

F(n, k) =
⎨
k∞Z

(−1)k q
k(3k−1)

2

(q; q)n+k (q; q)n−k
= 1

(q; q)n

by an application of the q-analogues of Zeilberger’s and Petkovšek’s algorithms.
Note that the q-Zeilberger algorithm returns a recurrence equation of order 3 rather
than 1.

By creative symmetrizing [PR97], the q-Zeilberger algorithm can be taught to do
better: Note that F(n,−k) = qk F(n, k), hence

⎨
k∞Z

F(n, k) =
⎨
k∞Z

qk F(n, k).

Show that the application of the q-Zeilberger algorithm to G(n, k) = 1+qk

2 F(n, k)

yields the resulting first order recurrence equation in one step.

Exercise 9.19 [PR97] Prove the identity

⎨
k∞Z

qk2+k

(q; q)k (q; q)n−k
=

⎨
k∞Z

(−1)k q
k(5k+3)

2

(q; q)n+k+1 (q; q)n−k
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using the q-Zeilberger algorithm and

(a) the procedure ‘recursion/compare‘ of the qsum package,11

(b) creative symmetrizing, see Exercise 9.18.

Exercise 9.20 Prove Jackson’s terminating q-analogue of Dixon’s identity

⎨
k∞Z

(−1)k
[
n + b
n + k

]
q

[
n + c
c + k

]
q

[
b + c
b + k

]
q

q
k(3k−1)

2 =
[
n + b + c

n, b, c

]
q

(9.38)

where [
n + b + c

n, b, c

]
q

= [n + b + c]q !
[n]q ! [b]q ! [c]q !

using the q-Zeilberger algorithm and

(a) the q-Petkovšek algorithm,
(b) creative symmetrizing, see Exercise 9.18.

Show that (9.38) is equivalent to [GR90, Appendix (II.15)]:

3φ2

(
q−2n, b, c

q1−2n/b, q1−2n/c

∣∣∣∣ q,
q2−n

bc

)
= (b, c; q)n (q, bc; q)2n

(q, bc; q)n (b, c; q)2n
.
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Chapter 10
Differential Equations for Sums

In this chapter, as an interesting variation of Zeilberger’s method, we present an
algorithm which generates holonomic differential equations rather than recurrence
equations for definite sums of a certain type. Again, we call a differential equation
holonomic, if it is homogeneous, linear and has polynomial coefficients. In this book,
we deal exclusively with ordinary differential equations, in which only derivatives
with respect to a single variable, denoted here by x , occur. A function that satisfies
a holonomic differential equation is also called holonomic.

A first order holonomic recurrence equation

Qn sn+1 − Pn sn = 0 (P, Q ∞ Q[n])

is equivalent to a rational term ratio

sn+1

sn
= Pn

Qn
∞ Q(n),

hence to the fact that sn is a hypergeometric term.
Similarly, a first order holonomic differential equation

Q(x) S∈(x) − P(x) S(x) = 0 (P, Q ∞ Q[x])

is equivalent to a rational logarithmic derivative

S∈(x)

S(x)
= P(x)

Q(x)
∞ Q(x), (10.1)

and we call a (differentiable) function of the variable x a hyperexponential term if it
satisfies (10.1).

It is possible to characterize hyperexponential terms by elementary functions.

W. Koepf, Hypergeometric Summation, Universitext, 205
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Lemma 10.1 A function S(x) is a complex hyperexponential term, i.e. S∈(x)/S(x) ∞
C(x), if and only if it has a representation

S(x) = eR(x) ·
J∏

j=1

(x − x j )
Γ j (10.2)

for R(x) ∞ C(x), and Γ j , x j ∞ C ( j = 1, . . . , J ). Moreover, if S(x) is a rational
hyperexponential term, i.e. S∈(x)/S(x) ∞ Q(x), and if the roots of Q(x) are rational,
then we have

S(x) = C · eR(x) · m
√

T (x) (10.3)

for C ∞ C, R, T ∞ Q(x) and m ∞ N.

Proof Taking the antiderivative of the defining Eq. (10.1), we get

ln S(x) =
∫

(ln S(x))∈ dx =
∫

S∈(x)

S(x)
dx =

∫
P(x)

Q(x)
dx .

Expanding the integrand into partial fractions (over C), one can see that the anti-
derivative of a rational function is the sum of a rational function and of logarithmic
terms of the form

Γ j ln(x − x j ) (Γ j , x j ∞ C ( j = 1, . . . , J )),

x j ( j = 1, . . . , J ) being the complex roots of Q(x). Therefore we get

ln S(x) = R(x) +
J∑

j=1

Γ j ln(x − x j )

for rational R ∞ C(x). Exponentiation gives us (10.2). If S∈(x)/S(x) ∞ Q(x) and if
the roots x j of Q(x) are rational, then it turns out that so are Γ j ∞ Q ( j = 1, . . . , J ).
Finally (10.3) follows if we take m as the least common multiple of the denominators
of Γ j ( j = 1, . . . , J ).

Note that, on the other hand, any function with representation (10.2) or (10.3) is
easily seen to be a hyperexponential term. �

Hyperexponential terms that have a representation (10.3) with m = 1 are of
special interest. We call them strictly hyperexponential terms.

We call the roots x j ( j = 1, . . . , J ) of the denominator polynomial Q(x) of
(10.1) the critical points of the hyperexponential term S(x) since these are the points
where S∈(x)/S(x) has a pole. This may, or may not, imply that S(x) is ill-defined at
x j depending on the corresponding value Γ j . If Γ j ∞ N then by (10.2) S(x) is well-
defined in a neighborhood of x j . For example, any zero of an arbitrary polynomial
S(x) is a critical point in which case Γ j is the order of the zero since
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S(x) = c(x − x j )
N + higher order terms

implies

S∈(x)

S(x)
= N

x − x j
+ higher order terms.

Next, we state the main algorithm which generates differential equations for definite
sums.

Algorithm 10.2 Given F(x, k), this algorithm searches for a homogeneous, linear
differential equation for S(x) = ∑∞

k=−∞ F(x, k):

1. Input: F(x, k) →≈ 0, a hypergeometric term with respect to k, which is hyperexpo-
nential with respect to x such that F ∈(x, k)/F(x, k) ∞ Q(x, k). Assume further
that

S(x) =
∞∑

k=−∞
F(x, k)

converges absolutely and uniformly in a certain region D √ C (or D √ R).
2. Set J := 1.
3. Set ak := F (J )(x, k) + ∑J−1

j=0 π j (x) F ( j)(x, k) with undetermined variables π j

depending on x , but independent of k.
4. Apply the adaptation of Gosper’s algorithm described in Chap. 6 to ak : In the last

step, solve the linear system for the coefficients of fk , and at the same time for
the unknowns π j ( j = 0, . . . , J −1). In the affirmative case, Gosper’s algorithm
finds G(x, k) with

ak = G(x, k + 1) − G(x, k). (10.4)

Moreover, the calculation determines the functions π j (x). If F(x, k) is strictly
hyperexponential with respect to x , then π j ∞ Q(x) ( j = 0, . . . , J − 1).
If the procedure is not successful then increase J by one and continue with
Step 3.

5. Output: By summation, we have

S(J )(x) +
J−1∑
j=0

π j (x) S( j)(x) = 0

for S(x), valid in D. Multiplication by the common denominator results in the
differential equation sought. If F(x, k) is strictly hyperexponential with respect
to x , then this differential equation is holonomic.

http://dx.doi.org/10.1007/978-1-4471-6464-7_6
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Proof The proof of this algorithm is a straightforward adaptation of the proof of
Algorithm 7.5. The main difference is that, in the current case, we cannot restrict
ourselves to terms with finite support because the simplest examples do not have this
property; see, e.g., Example 10.3 below. Since we assume that

∞∑
k=−∞

F(x, k)

converges absolutely and uniformly in D, in particular F(x, k) ≥ 0 for k ≥ ±∞.
Summation of (10.4) then yields a telescoping right-hand side which by a limit
consideration tends to zero. �
We give some examples.

Example 10.3 (Elementary Functions) As a first example, we consider the exponen-
tial function, given by its power series representation

ex = S(x) =
∞∑

k=0

1

k! xk .

Note that since the given sum is a power series, the following general method is
applicable: The holonomic recurrence equation for the coefficient Ak = 1/k!,

(k + 1) Ak+1 − Ak = 0, (10.5)

can be converted to the differential equation

S∈(x) − S(x) = 0 (10.6)

by summing (10.5) from k = 0, . . . ,∞. This method of generating a holonomic
differential equation can always be applied to functions given by power (or Laurent)
series with holonomic coefficients; see, e.g. [Koepf92, Koepf06, GKP94, GK95].

Let us nevertheless use instead Algorithm 10.2, which is more flexible since it is
not restricted to power or Laurent series. The summand F(x, k) = xk/k! does not
have finite support (for k ≥ +∞), but the desired convergence property is valid in
the neighborhood of any point x ∞ C. We define

ak := F(x, k) + π1 F ∈(x, k) = xk

k! + π1
xk−1

(k − 1)!
and get

ak+1

ak
= x (x + π1k + π1)

(k + 1) (x + π1k)
,



10 Differential Equations for Sums 209

so Gosper’s algorithm is applicable. We find that pk = x + π1k, qk = x and rk = k.
The degree bound for fk equals 0, and if we substitute the generic polynomial fk = b0
into the main equation for fk , and equate the coefficients, we get the solution

{b0 = 1, π1 = −1} .

In particular this establishes the differential equation (5.6), once again.
Similarly, for

sin x = S(x) =
∞∑

k=0

(−1)k

(2k + 1)! x2k+1,

we use J = 2, set F(x, k) := (−1)k

(2k + 1)! x2k+1 and

ak := F(x, k) + π1 F ∈(x, k) + π2 F ∈∈(x, k)

= (−1)k

(2k + 1)! x2k+1 + π1
(−1)k

(2k)! x2k + π2
(−1)k

(2k − 1)! x2k−1.

This leads to the term ratio

ak+1

ak
= − x2

(
x2 + 2π1kx + 3 xπ1 + 4 π2k2 + 10π2k + 6π2

)
(4 k + 6) (k + 1)

(
x2 + 2π1kx + xπ1 + 4π2k2 + 2π2k

) ,

and to pk = x2 + 2π1xk + π1x + 4π2k2 + 2 π2k, qk = −x2 and rk = 2 (2 k + 1) k.
The degree bound of fk is 0 again, and with fk = b0, we finally find

{π1 = 0, π2 = 1, b0 = −1} .

In particular, we have deduced the differential equation

S∈∈(x) + S(x) = 0

for the power series S(x).

Example 10.4 (Legendre Polynomials) As a more sophisticated and probably more
interesting example, we consider the Legendre polynomials once more, given by
their representation

Pn(x) = S(x) =
∞∑

k=−∞

(
n

k

)(−n − 1

k

) (
1 − x

2

)k

.

The holonomic differential equation of Pn(x) could be deduced from the hypergeo-
metric representation (2.19) of Pn(x) and the hypergeometric differential equation;

http://dx.doi.org/10.1007/978-1-4471-6464-7_5
http://dx.doi.org/10.1007/978-1-4471-6464-7_2
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see Exercise 2.3. We use Algorithm 10.2, instead, and therefore set

F(x, k) :=
(

n

k

)(−n − 1

k

)(
1 − x

2

)k

.

Once again, the choice J = 1 is not successful, hence we use J = 2. For

ak := F(x, k) + π1 F ∈(x, k) + π2 F ∈∈(x, k),

we get the term ratio

ak+1

ak
= (x−1)

(
1−2 x+x2−π1k+π1kx−π1+xπ1+π2k2+π2k

)
(n−k) (n+1+k)

2 (k + 1)2 (
1 − 2 x + x2 − π1k + π1kx + π2k2 − π2k

) .

Now, we have

pk = 1 − 2 x + x2 − π1k + π1kx + π2k2 − π2k,

qk = (x − 1) (n + k) (n − k + 1) , rk = 2 k2,

and the degree bound 0 for fk . For fk = b0, we finally get

{
b0 = x − 1

(n + 1) n
, π1 = − 2 x

(n + 1) n
, π2 = 1 − x2

(n + 1) n

}
,

in particular the differential equation

(
1 − x2

)
P ∈∈

n (x) − 2x P ∈
n(x) + (n + 1) n Pn(x) = 0.

Session 10.5 The Maple procedure

sumdiffeq:=proc(F,k,sx)

local x,S,a,b,sigma,rat,p,q,r,upd,deg,f,j,jj,l,var,deq,sol,

num,den,J,cert;

if type(sx,function) then

S:=op(0,sx); x:=op(1,sx)

else

x:=sx

end if;

for J from 1 to MAXORDER do

a:=add(sigma[j]*diff(F,[x$j]),j=0..J-1)+diff(F,x$J);

rat:=simpcomb(a/subs(k=k-1,a));

if not type(rat,ratpoly(anything,k)) then

error ‘Algorithm not applicable‘

end if;

p:=1: q:=subs(k=k-1,numer(rat)): r:=subs(k=k-1,denom(rat)):

upd:=update(p,q,r,k);
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p:=op(1,upd): q:=op(2,upd): r:=op(3,upd):

deg:=degreebound(p,q,r,k);

if deg>=0 then

f:=add(b[j]*kˆj,j=0..deg);

var:={seq(sigma[jj],jj=0..J-1),seq(b[jj],jj=0..deg)};

deq:=collect(subs(k=k+1,q)*f-r*subs(k=k-1,f)-p,k);

sol:={solve({coeffs(deq,k)},var)};

if not(sol={} or

{seq(op(2,op(l,op(1,sol))),l=1..nops(op(1,sol)))}={0}) then

deq:=add(sigma[j]*diff(S(x),[x$j]),j=0..J-1)+diff(S(x),x$J);

deq:=normal(subs(op(1,sol),deq));

deq:=numer(deq);

deq:=collect(deq,[seq(diff(S(x),x$(J-j)),j=0..J-1),S(x)]);

return map(factor,deq)=0;

end if;

end if;

end do;

error cat(‘Algorithm finds no differential equation of order <= ‘,

MAXORDER);

end proc:

implements Algorithm 10.2. Note that only a few lines from the code of the Maple
procedure sumrecursion of Session 7.3 had to be changed: All occurrences of
shifts are replaced by the corresponding derivatives, and that’s it. Note moreover that
we do not need a specific simplification procedure for the ratios f ∈(x)/ f (x) of hyper-
exponential terms f (x) since the differentiation of a term of the form (10.2) by the
chain rule reproduces the exponential term, which therefore cancels in f ∈(x)/ f (x),
to give a result which is automatically rational.

We use the above procedure to calculate the differential equations of our previous
examples, again:

> sumdiffeq(1/k!*xˆk,k,S(x));

S(x) − d
dx S(x) = 0

> sumdiffeq((-1)ˆk/(2*k+1)!*xˆ(2*k+1),k,S(x));

S(x) + d2

dx2 S(x) = 0

> sumdiffeq(binomial(n,k)*binomial(-n-1,k)*((1-x)/2)ˆk,k,S(x));

−(−1 + x) (x + 1) d2

dx2 S(x) − 2 d
dx S(x) x + S(x) n (n + 1) = 0

The coefficient (−1)k xk

(2 k+1)! of the function S(x) = sin
√

x/
√

x is strictly hyperexponen-
tial with respect to x so that the differential equation generated by Algorithm 10.2 is
holonomic:

> sumdiffeq((-1)ˆk/(2*k+1)!*xˆk,k,S(x));

S(x) + 6 d
dx S(x) + 4 x d2

dx2 S(x) = 0
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This is not so for S(x) = e
√

x =
∞∑

k=0

1
k! x

k/2 [here we have m = 2 in (10.3)], hence

we get a differential equation with nonpolynomial coefficients:

> sumdiffeq(1/k!*xˆ(k/2),k,S(x));

S(x) − 2
√

x d
dx S(x) = 0

Similarly, we deduce the differential equation

> sumdiffeq((-1)ˆk/(2*k+1)!*xˆ((2*k+1)/m),k,S(x));

S(x) + (m − 1) m x
m−2

m d
dx S(x) + m2 x

2 (m−1)
m d2

dx2 S(x) = 0

for S(x) = sin m
√

x . In Exercise 10.7, a modified version of Algorithm 10.2 is to
be used to determine holonomic differential equations for e

√
x , e

3√x , sin
√

x , and
sin 3

√
x .

The Bessel function

J0(x) =
∞∑

k=0

(−1)k

4k k!2 x2k

satisfies the Bessel differential equation
> sumdiffeq((-1)ˆk/(4ˆk*k!ˆ2)*xˆ(2*k),k,S(x));

S(x) x + d
dx S(x) + x d2

dx2 S(x) = 0

See Exercise 10.9 for the complete family Jn(x) of Bessel functions.
Note however, that one has to be careful that the sum under consideration is indeed

supported for k = −∞, . . . ,∞. For the geometric series, we get for example

> sumdiffeq(xˆk,k,S(x));

−(−1 + x) (x b0 − x − b0)
d

dx S(x) + S(x) x = 0

Here a differential equation for the bilateral sum

∞∑
k=−∞

xk =
−1∑

k=−∞
xk +

∞∑
k=0

xk

is generated which converges nowhere however since
∑∞

k=0 xk converges inside and∑−1
k=−∞ xk converges outside the unit disk D := {z ∞ C | |z| < 1}.
On the other hand, the method easily deduces an inhomogeneous differential

equation for

S(x) =
∞∑

k=0

xk .
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We calculate the antidifference of ak = xk + π1kxk−1 by (5.6)

G(x, k) = rk

pk
fk−1 ak = −xk−1 (−kb0 + kxb0 − xb0 − kx + x),

so that summation for k = 0 to k = ∞ yields

S(x) − (x − 1) (xb0 − x − b0) S∈(x) =
∞∑

k=0

(
G(x, k + 1) − G(x, k)

)

= lim
k≥∞ G(x, k) − G(x, 0) = 1 − b0.

Hence, we might choose b0 = 1 to obtain the homogeneous differential equation

S(x) + (x − 1) S∈(x) = 0

for S(x).

Example 10.6 (Hypergeometric Transformations) Here we apply Algorithm 10.2
to obtain proofs of hypergeometric transformations like the ones that we met in
Exercise 3.7.

These were the transformations of Kummer

ex · 1 F1

(
a
b

∣∣∣∣−x

)
= 1 F1

(
b − a

b

∣∣∣∣ x

)
, (10.7)

Pfaff
1

(1 − x)a
· 2 F1

(
a, b

c

∣∣∣∣ − x

1 − x

)
= 2 F1

(
a, c − b

c

∣∣∣∣ x

)
, (10.8)

and of Euler

(1 − x)a+b−c · 2 F1

(
a, b

c

∣∣∣∣ x

)
= 2 F1

(
c − a, c − b

c

∣∣∣∣ x

)
. (10.9)

In Exercise 3.7 these identities were deduced by an application of the Chu-Vander-
monde and Pfaff-Saalschütz identities, respectively, by equating coefficients in each
identity. We can work with differential equations instead. Algorithm 10.2 is able to
generate proofs for such types of hypergeometric transformations.

For the left- and right-hand sides of (10.7)–(10.9), Maple gives:
for the Kummer transformation

> sumdiffeq(exp(x)*hyperterm([a],[b],-x,k),k,S(x));

x d2

dx2 S(x) + (b − x) d
dx S(x) + (−b + a) S(x) = 0

http://dx.doi.org/10.1007/978-1-4471-6464-7_5
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> sumdiffeq(hyperterm([b-a],[b],x,k),k,S(x));

x d2

dx2 S(x) + (b − x) d
dx S(x) + (−b + a) S(x) = 0

for the Pfaff transformation

> sumdiffeq(1/(1-x)ˆa*hyperterm([a,b],[c],-x/(1-x),k),k,S(x));

−x (−1 + x) d2

dx2 S(x) − (−x b + x + x a − c + c x) d
dx S(x) + S(x) a (−c + b) = 0

> sumdiffeq(hyperterm([a,c-b],[c],x,k),k,S(x));

−x (−1 + x) d2

dx2 S(x) − (−x b + x + x a − c + c x) d
dx S(x) + S(x) a (−c + b) = 0

and for the Euler transformation

> sumdiffeq((1-x)ˆ(a+b-c)*hyperterm([a,b],[c],x,k),k,S(x));

x (−1 + x) d2

dx2 S(x) − (x b − x − 2 c x + x a + c) d
dx S(x)

+ S(x) (−c + b) (−c + a) = 0

> sumdiffeq(hyperterm([c-a,c-b],[c],x,k),k,S(x));

x (−1 + x) d2

dx2 S(x) − (x b − x − 2 c x + x a + c) d
dx S(x)

+ S(x) (−c + b) (−c + a) = 0

Hence we obtained in each case the same second-order differential equation. Note
that by standard results on ordinary differential equations, the solution f (x) of a dif-
ferential equation of order J is uniquely determined by J initial values f ( j)(x0) ( j =
0, . . . , J − 1) at a regular point x0.

Therefore, it only remains to check two initial values to finish the proof of each
of our identities. We choose x0 = 0, and get
for the Kummer transformation

> simplify(subs(x=0,exp(x)*hypergeom([a],[b],-x)-
> hypergeom([b-a],[b],x)));

0

> simplify(subs(x=0,diff(exp(x)*hypergeom([a],[b],-x)-
> hypergeom([b-a],[b],x),x)));

0

for the Pfaff transformation
> simplify(subs(x=0,1/(1-x)ˆa*hypergeom([a,b],[c],-x/(1-x))-
> hypergeom([a,c-b],[c],x)));

0

> simplify(subs(x=0,diff(1/(1-x)ˆa*hypergeom([a,b],[c],-x/(1-x))-
> hypergeom([a,c-b],[c],x),x)));

0

and for the Euler transformation
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> simplify(subs(x=0,(1-x)ˆ(a+b-c)*hypergeom([a,b],[c],x)-
hypergeom([c-a,c-b],[c],x)));

0

> simplify(subs(x=0,diff((1-x)ˆ(a+b-c)*hypergeom([a,b],[c],x)-
> hypergeom([c-a,c-b],[c],x),x)));

0

and we are done.

Session 10.7 (Derivative Rules) We can modify Algorithms 7.5 and 10.2 to detect
a derivative rule of the form

S∈
n(x) =

J∑
j=0

π j (n, x) Sn+ j (x)

with π j ∞ Q(n, x) for

Sn(x) =
∞∑

k=−∞
F(n, x, k),

F(n, x, k) being hypergeometric with respect to n, k and strictly hyperexponential
with respect to x , rather than a pure recurrence or differential equation. This is done
by the Maple implementation

sumdiffrule:=proc(F,k,snx)
local n,x,S,a,b,sigma,rat,p,q,r,upd,deg,f,j,jj,l,var,req,sol,
sol2,num,den,J;
if type(snx,function) then
S:=op(0,snx); n:=op(1,snx); x:=op(2,snx);

else
n:=op(1,snx); x:=op(2,snx);

end if;
for J from 1 to MAXORDER do
a:=diff(F,x)-add(sigma[j]*subs(n=n+j,F),j=0..J);
rat:=ratio(a,k);
if not type(rat,ratpoly(anything,k)) then

error ‘Algorithm not applicable‘;
end if;
p:=1: q:=subs(k=k-1,numer(rat)): r:=subs(k=k-1,denom(rat)):
upd:=update(p,q,r,k);
p:=op(1,upd): q:=op(2,upd): r:=op(3,upd):
deg:=degreebound(p,q,r,k);
if deg>=0 then

f:=add(b[j]*kˆj,j=0..deg);
var:={seq(sigma[jj],jj=0..J),seq(b[jj],jj=0..deg)};
req:=collect(subs(k=k+1,q)*f-r*subs(k=k-1,f)-p,k);
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sol:={solve({coeffs(req,k)},var)};
if not(sol={} or
{seq(op(2,op(l,op(1,sol))),l=1..nops(op(1,sol)))}={0})
then sol2:=add(sigma[j]*S(n+j,x),j=0..J);
sol2:=subs(op(1,sol),sol2);
return diff(S(n,x),x)=map(factor,sol2);

end if;
end if;

end do;
error cat(‘Algorithm finds no derivative rule of order <= ‘,
MAXORDER);
end proc:

Which derivative rule do the Legendre polynomials satisfy? Here we go:
> sumdiffrule
> (binomial(n,k)*binomial(-n-1,k)*((1-x)/2)ˆk,k,
> P(n,x));

γ

γx
P(n, x) = − x (n + 1) P(n, x)

(−1 + x) (1 + x)
+ (n + 1) P(n + 1, x)

(−1 + x) (1 + x)

More general identities between the shifted derivatives of a family of functions
Sn(x) are discussed in [Koepf97a]. They can be treated by a similar approach. One
more example of this type is given next.

Session 10.8 (Integration Rules) Here we are interested in obtaining representa-
tions for the antiderivative

∫
Sn(x)dx of a hypergeometric sum

Sn(x) =
∞∑

k=−∞
F(n, x, k),

F(n, x, k) being hypergeometric with respect to n, k and strictly hyperexponential
with respect to x , in terms of the original functions Sn .

Assume that we find one or several representations of Sn(x) of the form

Sn(x) =
J∑

j=−J

π j (n, x) S∈
n+ j (x)

with π j ∞ Q(n, x) for Sn(x). If one of these representations has coefficients π j that
are independent of x , then we can integrate and get the representation

∫
Sn(x) dx =

J∑
j=−J

π j (n) Sn+ j (x)

for the antiderivative of Sn(x), an integration rule for Sn(x).
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By another modification of the previous algorithms, for J = 1 this is done by the
Maple implementation1

sumintrule:=proc(F,k,snx)

local n,x,S,a,b,sigma,rat,p,q,r,upd,deg,f,j,jj,l,var,req,sol,pol,

coefflist,DS,sol2,num,den;

if type(snx,function) then

S:=op(0,snx); n:=op(1,snx); x:=op(2,snx);

else

n:=op(1,snx); x:=op(2,snx);

end if;

a:=F-add(sigma[j]*diff(subs(n=n+j,F),x),j=-1..1);

rat:=ratio(a,k);

if not type(rat,ratpoly(anything,k)) then

error ‘Algorithm not applicable‘

end if;

p:=1: q:=subs(k=k-1,numer(rat)): r:=subs(k=k-1,denom(rat)):

upd:=update(p,q,r,k);

p:=op(1,upd): q:=op(2,upd): r:=op(3,upd):

deg:=degreebound(p,q,r,k);

if deg>=0 then

f:=add(b[j]*kˆj,j=0..deg);

var:={seq(sigma[jj],jj=-1..1),seq(b[jj],jj=0..deg)};

req:=collect(subs(k=k+1,q)*f-r*subs(k=k-1,f)-p,k);

sol:={solve({coeffs(req,k)},var)};

if not(sol={} or

{seq(op(2,op(l,op(1,sol))),l=1..nops(op(1,sol)))}={0}) then

req:=S(n,x)-add(sigma[j]*DS(n+j,x),j=-1..1);

req:=subs(op(1,sol),req);

req:=numer(normal(req));

req:=collect(req,S(n,x));

pol:=collect(coeff(req,S(n,x)),x);

coefflist:={coeffs(pol,x)} minus {coeff(pol,x,0)};

for j from -1 to 1 do

req:=collect(req,DS(n+j,x));

pol:=collect(coeff(req,DS(n+j,x)),x);

coefflist:={op(coefflist),op({coeffs(pol,x)} minus

{coeff(pol,x,0)})};

end do;

sol2:={solve(coefflist,indets(var) minus {x,n})};

if sol2={} then ERROR(‘No such identity exists‘) end if;

req:=add(sigma[j]*S(n+j,x),j=-1..1);

req:=subs(op(1,sol),req);

req:=subs(op(1,sol2),req);

req:=map(factor,req);

return Int(S(n,x),x)=req;

end if;

1 The implementation can be extended easily to J > 1, but this is not necessary for our purposes.
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end if;

error ‘Algorithm finds no integration rule‘;

end proc:

As an example, we consider the Legendre polynomials again. We obtain the
representation

> sumintrule(
> binomial(n,k)*binomial(-n-1,k)*((1-x)/2)ˆk,k,P(n,x));

∫
P(n, x) dx = −P(n − 1, x)

2 n + 1
+ P(n + 1, x)

2 n + 1

Note that by the same method one can obtain an integration rule for the Jacobi
polynomials, which cannot be found in mathematical compilations like [OLBC10,
Erdélyi53]; see Exercise 10.14. The Jacobi polynomials generalize the Legendre
polynomials.

The algorithms of this chapter permit us to find differential equations for series
of hyperexponential terms. In the special case of power series this can be handled by
a much simpler approach as shown in Example 10.13 which is implemented in the
gfun package [SZ94] as gfun[rectodiffeq]. Summation of the series will be
successful if the resulting differential equation can be solved.

For the converse question of finding a power series representation of a holonomic
function the FormalPowerSeries package can be used which is implemented
in the convert(...,FormalPowerSeries)command (see e.g.[Koepf92,
GK95]). As an example, one can compute

> convert(exp(arcsinh(x)),FormalPowerSeries);

x +
∞∑

k=0

− (−1)k 4(−k) (2 k)! x2 k

(k!)2 (2 k − 1)

This procedure is successful if the resulting holonomic recurrence equation for the
power series coefficients can be solved. For this purpose van Hoeij’s algorithm is
used, see Chap. 9.

Using a similar approach the algorithmic computation of formal Fourier series
was dealt with in [Nana10].

q-Differential Equations for Sums

As a q-analogue of the differential operator one can define the q-derivative
operator2

Dq f (x) := f (x) − f (qx)

(1 − q)x
.

2 See [GR90, p. 22, Exercise 1.12]. There are other q-analogues as well, see [GR90, Sect. 7].

http://dx.doi.org/10.1007/978-1-4471-6464-7_9
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The q-derivative operator has the property

lim
q≥1

Dq f (x) = f ∈(x).

Note that after replacing x by qx , a q-differential equation can be regarded as a
recurrence equation.

A q-analogue of Algorithm 10.2 can be used to generate q-differential equations
for q-hypergeometric sums. An implementation of this algorithm is given in the
qsum package. This package contains the Maple procedure qsumdiffeq(F,q,
k,S(x))for this purpose. The following are q-analogues of the exponential, the
sine and cosine functions (see e.g. [GR90, Exercise 1.14]):

eq(x) := 1ϕ0

(
0
−

∣∣∣∣ q, x

)
=

∞∑
k=0

xk

(q; q)k
= 1

(x; q)∞
,

Eq(x) := 0ϕ0

(−
−

∣∣∣∣ q,−x

)
=

∞∑
k=0

q(k
2)

(q; q)k
xk = (−x; q)∞ ,

sinq(x) := eq(i x) − eq(−i x)

2i
=

∞∑
k=0

(−1)k x2k+1

(q; q)2k+1
,

Sinq(x) := Eq(i x) − Eq(−i x)

2i
,

cosq(x) := eq(i x) + eq(−i x)

2
=

∞∑
k=0

(−1)k x2k

(q; q)2k
,

Cosq(x) := Eq(i x) + Eq(−i x)

2
.

The requests

> qsumdiffeq(qphihyperterm([0],[],q,x,k),q,k,eq(x));

eq(x) + (−1 + q) Dqx (eq(x), x, q) = 0

and

> qsumdiffeq(qphihyperterm([],[],q,-x,k),q,k,Eq(x));

Eq(x) + (1 + x) (−1 + q) Dqx (Eq(x), x, q) = 0

e.g., generate the q-differential equations for the two q-exponentials eq (x) and Eq(x),
respectively, and
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> qsumdiffeq(
> (-1)ˆk*xˆ(2*k+1)/qpochhammer(q,q,2*k+1),q,k,sinq(x));

sinq(x) + (−1 + q)2 Dqx (sinq(x), x, x, q) = 0

gives the q-differential equation for the q-sine function sinq(x).
If one uses the option evalqdiff=true,3 then the resulting q-differential

equation for S(x) is written in terms of S(x), S(qx), S(q2x), . . .:

> qsumdiffeq(
> (-1)ˆk*xˆ(2*k+1)/qpochhammer(q,q,2*k+1),q,k,sinq(x),
> evalqdiff=true);

(x2 + 1) qsinq(x) − (q + 1)sinq(x q) + sinq(x q2) = 0

More q-differential equations will be considered in the exercises. Note that the algo-
rithm considered here uses the q-series representation to find q-differential equations.
For algorithms using the algebra of q-holonomic functions see ([KRM07, KK09,
KS12, Sprenger09]).

Exercises

Exercise 10.1 Show that if S(x) is a hyperexponential term, then so is S∈(x). Show
further that S∈(x)/S(x) = R(x) ∞ Q(x) implies that S(n)/S(x) ∞ Q(x) for each
n ∞ N. Use the definition of a hyperexponential term directly, and do not use the
explicit representation of Lemma 10.1.

Exercise 10.2 Show that any rational function S(x) is a hyperexponential term, hav-
ing critical points at its zeros and at its poles. Determine the corresponding exponents
Γ j .

Exercise 10.3 Show, again, that the three different representations of the Legendre
polynomials

Pn(x) =
∞∑

k=−∞

(
n

k

)(−n − 1

k

) (
1 − x

2

)k

,

Pn(x) = 1

2n

n∑
k=0

(
n

k

)2

(x − 1)n−k (x + 1)k

and

Pn(x) = 1

2n


n/2�∑
k=0

(−1)k
(

n

k

)(
2n − 2k

n

)
xn−2k,

3 Or sets the global variable _qsumdiffeq_evalqdiff:=true;
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define the same family of functions, this time by showing that all three functions
satisfy the same differential equation and initial values. Do they also satisfy the same
derivative rules?

Exercise 10.4 Find recurrence and differential equations of order two for the con-
secutive differences Pn+1(x) − Pn(x) of the Legendre polynomials.

Show that the differential equation of order two of S(x) := Pn+2(x) − Pn(x) has
the nice property that the coefficient of S∈(x) vanishes.

Exercise 10.5 In [KS96], an article connected with de Branges’ proof of the Bieber-
bach conjecture, the functions

Bn(y) = 1

2y

(
C−1/2

n+1 (1 − 2y) − C−1/2
n (1 − 2y)

)

play a central role. Here,

C−1/2
n (x) = (1 − x) 2 F1

(
1 − n, n

2

∣∣∣∣ 1 − x

2

)

denotes the family of Gegenbauer polynomials with upper index φ = −1/2. For
φ > −1/2 (φ →= 0) the Gegenbauer polynomials are defined by

Cφ
n (x) = (2φ)n

n! 2 F1

( −n, n + 2φ

φ + 1/2

∣∣∣∣ 1 − x

2

)
.

Show that C−1/2
n (x) are the limiting functions for φ ≥ −1/2 of Cφ

n (x).
Find recurrence and differential equations of order two for Bn(y). Furthermore,

give a hypergeometric representation of Bn(y).

Exercise 10.6 In [KS94], the Bateman functions [Bateman31]

Fn(t) = e−t

n

n∑
k=1

(−1)k

(k − 1)!
(

n

k

)
(2t)k (10.10)

were considered. Give a hypergeometric representation of Fn(t).
Find recurrence and differential equations of order two for Fn(t). Note how simple

the differential equation looks! Generate a derivative rule for Fn(t).
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Furthermore, show the identities

Fn(t) = e−t
(

Ln(2t) − Ln−1(2t)
)
,

Fn(t) = −e−t 2t
n L(1)

n−1(2t),

(n − 1)
(

Fn(t) − Fn−1(t)
)

+ (n + 1)
(

Fn(t) − Fn+1(t)
)

= 2 t Fn(t),

F ∈
n(t) − F ∈

n+1(t) = Fn(t) + Fn+1(t),

all developed in [Bateman31], where

L(Γ)
n (x) =

n∑
k=0

(−1)k

k!
(

n + Γ

n − k

)
xk

denote the (generalized) Laguerre polynomials Ln(x) = L(x)
n .

Exercise 10.7 Find holonomic differential equations for e
√

x , e
√

3x , sin
√

x , and
sin

√
3x using Algorithm 10.2 with an appropriately chosen J .4 Hint: If J is large

enough, the resulting differential equation is not unique. Choose the open parameters
such that the coefficients give polynomials.

Exercise 10.8 Find a differential equation with respect to x and recurrence equations
with respect to n and m for the associated Legendre functions [OLBC10, (14.3.6)]

Pm
n (x) = 1

θ(1 − m)

(
x + 1

x − 1

)m
2 · 2 F1

( −n, n + 1
1 − m

∣∣∣∣ 1 − x

2

)
.

Exercise 10.9 Find holonomic differential and recurrence equations and a derivative
rule for the Bessel functions

Jn(x) =
( x

2

)n ∞∑
k=0

(−1)k

4k k!θ(k + 1 + n)
x2k .

Exercise 10.10 Find derivative rules for the generalized Laguerre polynomials (see
Exercise 10.6) and for the Hermite polynomials

Hn(x) := n!

n/2�∑
k=0

(−1)k

(n − 2k)!k! (2x)n−2k .

4 For another approach you can use the FormalPowerSeries package ([Koepf92, Koepf06])
which is implemented in convert(...,FormalPowerSeries) and can be invoked
by bind(FormalPowerSeries); One of our examples is then given by the command
HolonomicDE(exp(sqrt(x)),F(x));
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Exercise 10.11 (Quadratic Transformations) Show the following quadratic trans-
formations of the Gauss hypergeometric function:

(a) 2 F1

(
a, b
2b

∣∣∣∣ 4x

(1 + x)2

)
= (1 + x)2a · 2 F1

(
a, a − b + 1/2

b + 1/2

∣∣∣∣ x2
)

,

(b) 2 F1

(
a, b

a + b + 1/2

∣∣∣∣ 4x(1 − x)

)
= 2 F1

(
2a, 2b

a + b + 1/2

∣∣∣∣ x

)
,

(c) 2 F1

(
a, 1 − a

c

∣∣∣∣ x

)
= (1 − x)c−1 · 2 F1

(
c−a

2 , c+a−1
2

c

∣∣∣∣ 4x(1 − x)

)
.

Exercise 10.12 (Whipple Transformation) Show that

3 F2

(
a/2, a/2+1/2, 1+a−b−c

1 + a − b, 1 + a − c

∣∣∣∣ − 4x

(1 − x)2

)
= (1 − x)a · 3 F2

(
a, b, c

1+a−b, 1+a−c

∣∣∣∣ x

)
.

Exercise 10.13 (Kummer’s Second Identity) Show the identity

e−x
1 F1

(
a

2a

∣∣∣∣ 2x

)
= 0 F1

( −
a + 1/2

∣∣∣∣ x2

4

)
.

Exercise 10.14 (Jacobi Polynomials) The Jacobi polynomials P(Γ,ε)
n (x) were

defined in Exercise 7.30 by the hypergeometric representation

P(Γ,ε)
n (x) =

(
n + Γ

n

)
2 F1

( −n, n + Γ + ε + 1
Γ + 1

∣∣∣∣ 1 − x

2

)
.

Find an integration rule for the Jacobi polynomials (see [Koepf97a]).

Exercise 10.15 (Bessel Polynomials) The Bessel polynomials B(Γ)
n (x) are given

by

B(Γ)
n (x) = 2 F0

( −n, n + Γ + 1
−

∣∣∣∣ − x

2

)
= (n + Γ + 1)n

2n xn
1 F1

( −n
−2n − Γ

∣∣∣∣ 2

x

)
.

Show, by changing the order of summation, that the two representations agree. Find
a derivative rule and an integration rule for these polynomials; see [KS98b].

Exercise 10.16 (Classical Orthogonal Polynomials) The Jacobi polynomials (see
Exercise 10.14), the Laguerre polynomials (see Exercise 10.6), the Hermite poly-
nomials (see Exercise 10.10), and the Bessel polynomials (see Exercise 10.15), are
called the classical orthogonal polynomials.

Show that these satisfy a differential equation of the form

π(x) p∈∈
n(x) + ζ(x) p∈

n(x) + λn pn(x) = 0,

where π(x) and ζ(x) are polynomials of degree at most 2 and 1, respectively; compare
Exercise 7.11.
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Exercise 10.17 (Ramanujan’s Notebook) In Ramanujan’s second notebook
[Ramanujan57] on p. 258 one finds the identity

2 F1

( 1
3 , 2

3
1

∣∣∣∣ 1 −
(

1 − x

1 + 2x

)3
)

= (1 + 2x) 2 F1

( 1
3 , 2

3
1

∣∣∣∣ x3
)

.

Following Garvan [Garvan95] we might ask to generalize this result: For which
A, B, C, a, b, c, d is

2 F1

(
A, B

C

∣∣∣∣ 1 −
(

1 − x

1 + 2x

)3
)

= (1 + 2x)d
2 F1

(
a, b

c

∣∣∣∣ x3
)

? (10.11)

Hint: Find the differential equations for both sides of (10.11), and arbitrary A, B, C,

a, b, c and d. These differential equations must be multiples of each other. Multiply-
ing by suitable polynomials, and equating coefficients, one gets a nonlinear system
of equations for the unknowns A, B, C, a, b, c and d which (e.g., by computing a
Gröbner basis) can be solved to obtain the (essentially) unique solution.

Exercise 10.18 Investigate the behavior of the q-analogues of the exponential and
trigonometric functions in the limiting case q ≥ 1.

Exercise 10.19 Compute q-differential equations for

(a) S(x) := Sinq(x),

(b) S(x) := cosq(x),

(c) S(x) := Cosq(x),

(d) S(x) := cosq(x) + i sinq(x),

(e) S(x) := Cosq(x) + i Sinq(x).

Show that

eq(i x) = cosq(x) + i sinq(x) and Eq(i x) = Cosq(x) + i Sinq(x).

Rewrite these q-differential equations for S(x) in terms of S(x), S(qx) and S(q2x).

Exercise 10.20 Find q-differential equations for

(a) S(x) := 2ϕ1

(
a, b

c

∣∣∣∣ q, x

)
,

(b) S(x) := 3ϕ2

(
a, b, c
d, e

∣∣∣∣ q, x

)
.

What is the order of the q-differential equation for pϕq(x)?
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Chapter 11
Hyperexponential Antiderivatives

In this chapter, we consider a continuous counterpart of Gosper’s algorithm. The
appropriate question is to find a hyperexponential term antiderivative G(x) of a
given f (x) whenever one exists.

In the affirmative case, as in the discrete case, the input function f (x) itself must
be a hyperexponential term since G ∞(x) = R(x)G(x) (R ∈ Q(x)) implies

G ∞∞(x) = R∞(x)G(x) + R(x)G ∞(x) =
(

R∞(x)

R(x)
+ R(x)

)
G ∞(x),

and therefore
f ∞(x)

f (x)
= G ∞∞(x)

G ∞(x)
= R∞(x)

R(x)
+ R(x)

is rational.
Note that the Risch-Bronstein algorithm ([Risch69, Risch70, Bronstein92,

Bronstein96, GCL92, Chaps. 11–12]) is much more powerful so that from this per-
spective not much seems to be gained by a continuous version of Gosper’s algorithm.
On the other hand, we are mainly interested in applying the resulting algorithm, this
time to definite integration rather than summation. This will be done in Chap. 12.

The following continuous counterpart of Gosper’s algorithm for indefinite inte-
gration in hyperexponential terms is due to Almkvist and Zeilberger ([AZ90], Sect. 5)
and its proof is along the lines of that of Gosper’s algorithm.

Algorithm 11.1 (Continuous Gosper Algorithm) Given f (x), the following algo-
rithm decides whether there is a hyperexponential term antiderivative G(x), and
returns it if there is one:

1. Input: f (x) �→ 0, a hyperexponential term.
2. Calculate the logarithmic derivative f ∞(x)/ f (x). Cancellation of exponential

terms yields b(x), c(x) ∈ Q[x] for which

W. Koepf, Hypergeometric Summation, Universitext, 227
DOI: 10.1007/978-1-4471-6464-7_11, © Springer-Verlag London 2014
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f ∞(x)

f (x)
= b(x)

c(x)

with gcd(b(x), c(x)) = 1.
3. Calculate p(x), q(x) and r(x) ∈ Q[x] satisfying

f ∞(x)

f (x)
= p∞(x)

p(x)
+ q(x)

r(x)
(11.1)

with the property

gcd
(

r(x), q(x) − jr ∞(x)
)

= 1 for all j ∈ N�0 (11.2)

by a rewriting process starting with p(x) = 1, q(x) = b(x) and r(x) = c(x),
and applying the rewrite rules

p̃(x) = p(x) g(x) j ,

q̃(x) = j
d

dx

(
r(x)

g(x)

)
+ q(x) − j r ∞(x)

g(x)
and

r̃(x) = r(x)

g(x)
(11.3)

whenever the resultant of q(x) − jr ∞(x) and r(x) has a nonnegative integer root
j (see e.g. [DST88], Appendix, [GCL92], Chap. 7), and therefore

g(x) = gcd
(

r(x), q(x) − jr ∞(x)
)

�= 1 .

4. Use an adapted version of Algorithm 5.5 (see Session 11.3 and Exercise 11.6) to
determine the degree bound M ∈ N for the polynomial f̃ (x) ∈ Q[x] for which

G(x) = r(x) f̃ (x)

p(x)
f (x) . (11.4)

If M < 0, then return “no hyperexponential term solution exists”; exit.
5. Substitute the generic polynomial

f̃ (x) = b0 + b1x + b2x2 + . . . + bM x M

into the functional equation

p(x) =
(

q(x) + r ∞(x)
)

f̃ (x) + r(x) f̃ ∞(x) (11.5)
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for f̃ (x). Equate coefficients, and solve the resulting linear system for the
unknowns bl(l = 0, . . . , M).

6. If there is no solution, then return “no hyperexponential term solution exists”;
exit.

7. Output: G(x) according to (11.4).

Proof First, we have to show that the rewriting of step 3 leaves the term

f ∞(x)

f (x)
= p∞(x)

p(x)
+ q(x)

r(x)

invariant. This is established by the calculation

p̃∞(x)

p̃(x)
+ q̃(x)

r̃(x)
= p∞(x)

p(x)
+ j

g∞(x)

g(x)
+

(
j

d

dx

(
r(x)

g(x)

)
+ q(x) − j r ∞(x)

g(x)

)
g(x)

r(x)

= p∞(x)

p(x)
+ j

g∞(x)

g(x)
+ j

r ∞(x)

r(x)
− j

g∞(x)

g(x)
+ q(x)

r(x)
− j

r ∞(x)

r(x)

= p∞(x)

p(x)
+ q(x)

r(x)
.

Next we define f̃ (x) by (11.4), take the derivative of this equation and substitute the
resulting equation into the identity f (x) = G ∞(x) to get

f (x) = d

dx

(
r(x) f̃ (x)

p(x)
f (x)

)

= r(x) f̃ (x)
d

dx

(
f (x)

p(x)

)
+ r(x) f̃ ∞(x)

f (x)

p(x)
+ r ∞(x) f̃ (x)

f (x)

p(x)

= r(x) f̃ (x)

(
f ∞(x)

f (x)
− p∞(x)

p(x)

)
f (x)

p(x)
+ r(x) f̃ ∞(x)

f (x)

p(x)
+ r ∞(x) f̃ (x)

f (x)

p(x)

= r(x) f̃ (x)
q(x)

r(x)

f (x)

p(x)
+ r(x) f̃ ∞(x)

f (x)

p(x)
+ r ∞(x) f̃ (x)

f (x)

p(x)
,

using (11.1). Multiplying by p(x)/ f (x) yields (11.5).
Note that, again, the main single fact to be proved is that f̃ (x), defined by (11.4),

is a polynomial. Since f̃ (x) is clearly rational, we may write

f̃ (x) = u(x)

v(x)
(11.6)

with polynomials u(x), v(x) ∈ Q[x] satisfying

gcd (u(x), v(x)) = 1 . (11.7)
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Assume now that the degree of v(x) is positive. Then substitution of (11.6) in (11.5)
yields

p(x) = q(x)
u(x)

v(x)
+ r ∞(x)

u(x)

v(x)
+ r(x)

(
u∞(x)v(x) − v∞(x)u(x)

v2(x)

)
,

and after multiplication by v2(x), we have

p(x)v2(x) = q(x)u(x)v(x) + r ∞(x)u(x)v(x) + r(x)u∞(x)v(x) − r(x)v∞(x)u(x).

(11.8)

Let w(x) denote any nonconstant prime factor over Q of v(x). Such a factor exists
since by assumption v(x) is not constant. Then we have, for some k ∈ N, the repre-
sentation1

v(x) = wk(x) ṽ(x) (11.9)

for which the conditions

gcd (w(x), w∞(x)) = 1 and gcd (w(x), ṽ(x)) = 1 (11.10)

are satisfied. After division by wk(x), substitution of (11.9) into (11.8) gives the
identity

p(x)wk(x)ṽ2(x) = q(x)u(x)ṽ(x) + r ∞(x)u(x)ṽ(x) + r(x)u∞(x)ṽ(x)

− r(x)u(x)ṽ∞(x) − kr(x)u(x)w∞(x)ṽ(x)

w(x)
. (11.11)

Therefore, r(x)u(x)w∞(x)ṽ(x) is a constant multiple of w(x), and, by conditions
(11.7) and (11.10), we conclude that w(x) must be a divisor of r(x). Hence, we can
write

r(x) = w(x) r̃(x) (11.12)

for some r̃(x) ∈ Q[x]. Note that differentiation yields

w∞(x)r̃(x) = r ∞(x) − w(x)r̃ ∞(x). (11.13)

Substitution of (11.12) in (11.11) then gives

p(x)wk(x)ṽ2(x) = q(x)u(x)ṽ(x) + r ∞(x)u(x)ṽ(x) + w(x)r̃(x)u∞(x)ṽ(x)

− w(x)r̃(x)u(x)ṽ∞(x) − ku(x)w∞(x)r̃(x)ṽ(x)

= q(x)u(x)ṽ(x) + r ∞(x)u(x)ṽ(x) + w(x)r̃(x)u∞(x)ṽ(x)

− w(x)r̃(x)u(x)ṽ∞(x) − ku(x)ṽ(x)
(
r ∞(x) − w(x)r̃ ∞(x)

)

1 For details see, e.g., [DST88], Appendix.
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where we have used (11.13). Dividing by w(x) again, we get finally

p(x)wk−1(x)ṽ2(x) = r̃(x)u∞(x)ṽ(x) − r̃(x)u(x)ṽ∞(x) + ku(x)ṽ(x)r̃ ∞(x)

+ q(x) − (k − 1)r ∞(x)

w(x)
u(x)ṽ(x).

The conditions (11.7) and (11.10) imply that neither u(x) nor ṽ(x) have a common
divisor with w(x) so that from the above identity we see that w(x) is a divisor of
q(x)− (k −1)r ∞(x). This, however, contradicts the main gcd condition (11.2) so that
our assumption about the degree of v(x) cannot be valid. Hence f̃ (x) is a polynomial.

The degree bound algorithm for f̃ (x) is very similar to the discrete case, and
its complete description is given in the Maple procedure contdegreebound
(p,q,r,x) in Session 11.3 and its proof is left to the reader (Exercise 11.6). �

Example 11.2 Let us consider

f (x) = e−x2
(

1 − 2x2
)

and check whether the antiderivative

G(x) =
∫

e−x2
(

1 − 2x2
)

dx

is a hyperexponential term. We have

f ∞(x)

f (x)
= −2x

(
2x2 − 3

)
2x2 − 1

,

so that we set initially

p(x) = 1, q(x) = −2x
(

2x2 − 3
)

and r(x) = 2x2 − 1.

The dispersion condition (11.2) yields

J : = { j ∈ N�0 | gcd
(

r(x), q(x) − jr ∞(x)
)

�= 1} = {1}

and the rewrite procedure (11.3) generates the final choice

p(x) = 2x2 − 1, q(x) = −2x and r(x) = 1.

The degree bound for f̃ (x) is 1, and we substitute the generic first order polynomial
into the main Eq. (11.5). Equating coefficients gives f̃ (x) = −x , and by (11.4) we
have finally
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G(x) = r(x) f̃ (x)

p(x)
f (x) = xe−x2

.

For the similar example function

f (x) = e−x2
(

1 − x2
)

the same procedure yields p(x) = x2 − 1, q(x) = −2x and r(x) = 1, and the
degree bound for f̃ (x) turns out to be equal to 1 again, but in this case no first
order polynomial f̃ (x) satisfies (11.5). Hence we conclude that f (x) does not have
a hyperexponential antiderivative. Indeed, its antiderivative

G(x) =
∫

e−x2
(

1 − x2
)

dx =
≈

π

4
erf(x) + x

2
e−x2

,

is in terms of the error function

erf(x): = 2≈
π

x∫

0

e−t2
dt.

Note that one can prove that the error function is not representable by elementary
functions. This result cannot be obtained by the current method. Algorithm 11.1
proves instead the weaker statement that G(x) as well as erf x are not hyperexpo-
nential terms. √
Session 11.3 The following is a complete implementation of Algorithm 11.1.

contratio:=proc(f,x)
simpcomb(diff(f,x)/f);

end proc:

contdispersionset:=proc(q,r,x)
# finds the nonnegative integer dispersion values j
local j,res,s,l;
res:=frontend(resultant,[r,q-j*diff(r,x),x]); # (11.2)
s:=simplify({solve(res,j)});
l:={};
for j in s do
if type(j,nonnegint) then l:=l union {j} end if;

end do;
return convert(l,set);
end proc:

contupdate:=proc(p,q,r,x)
# updates the triple [p,q,r] according to gcd-condition
local dis,g,pnew,qnew,rnew,j;
g:=frontend(gcd,[r,q-diff(r,x)]); # (11.2), j=1
if has(g,x) then
pnew:=normal(p*g); # (11.3), j=1
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qnew:=normal(diff(r/g,x)+(q-diff(r,x))/g); # (11.3), j=1
rnew:=normal(r/g); # (11.3), j=1

else
pnew:=p; qnew:=q; rnew:=r;

end if;
dis:=contdispersionset(qnew,rnew,x);
for j in dis do
g:=frontend(gcd,[rnew,qnew-j*diff(rnew,x)]); # (11.2)
if has(g,x) then

pnew:=normal(pnew*gˆj); # (11.3)
qnew:=normal(j*diff(rnew/g,x)+(qnew-j*diff(rnew,x))/g); # (11.3)
rnew:=normal(rnew/g); # (11.3)

end if;
end do;
return [pnew,qnew,rnew];
end proc:

contdegreebound:=proc(p,q,r,x)
# calculates the degree bound for f
local pol1,pol2,deg1,deg2,a,b;
pol1:=collect(r,x);
pol2:=collect(q+diff(r,x),x);
if pol1=0 then deg1:=-1 else deg1:=degree(pol1,x) end if;
if pol2=0 then deg2:=-1 else deg2:=degree(pol2,x) end if;
if deg1<=deg2 then return degree(p,x)-deg2 end if;
a:=coeff(pol1,x,deg1);
b:=coeff(pol2,x,deg1-1);
if not(type(-b/a,nonnegint)) then

return degree(p,x)-deg1+1
else

return max(-b/a,degree(p,x)-deg1+1)
end if;

end proc:

contfindf:=proc(p,q,r,x)
# finds ftilde, given the triple [p,q,r]
local deg,ftilde,a,j,deq,sol,result;
deg:=contdegreebound(p,q,r,x);
if deg<0 then error ‘No polynomial ftilde exists‘ end if;
ftilde:=add(a[j]*xˆj,j=0..deg);
deq:=collect((q+diff(r,x))*ftilde+r*diff(ftilde,x)-p,x); # (11.5)
sol:={solve({coeffs(deq,x)},{seq(a[j],j=0..deg)})};
if sol={} then

error ‘No polynomial ftilde exists‘
else

result:=subs(op(1,sol),ftilde);
end if;
for j from 0 to deg do

result:=subs(a[j]=0,result);
end do;
return result;
end proc:

contgosper:=proc(f,x)
# implements the continuous version of Gosper’s algorithm
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local rat,p,q,r,pqr,ftilde;
rat:=contratio(f,x);
if not type(rat,ratpoly(anything,x)) then

error ‘Algorithm not applicable‘
end if;
p:=1; q:=numer(rat); r:=denom(rat);
pqr:=contupdate(p,q,r,x);
p:=op(1,pqr); q:=op(2,pqr); r:=op(3,pqr);
try

ftilde:=contfindf(p,q,r,x);
catch:

error ‘No hyperexponential antiderivative exists‘;
end try;
return normal(r*ftilde*f/p); # (11.4)
end proc:

The procedure contgosper(f,x) invokes all particular subalgorithms and
yields the hyperexponential type antiderivative sought, or one of the error
messages “algorithm not applicable” or “no hyperexponential antiderivative exists”
is issued.

Note that the main difference between our implementations of Gosper’s algorithm
(see Exercise 5.6) and the current algorithm is the fact that we could not avoid a
resultant computation in the latter case; compare with Algorithm 4.2. Since j =
1 typically occurs in the rewriting step 3, this case is handled separately by the
procedurecontupdate(p,q,r,x) to avoid unnecessary resultant computations.

The above examples are handled by the statements

> contgosper(exp(-xˆ2)*(1-2*xˆ2),x);

x e−x2

> contgosper(exp(-xˆ2)*(1-xˆ2),x);

   Error, (in contgosper) No hyperexponential antiderivative exists

We give some more examples

> contgosper(exp(-xˆ2),x);

   Error, (in contgosper) No hyperexponential antiderivative exists

> contgosper(x*exp(-xˆ2),x);

−1

2
e−x2

> f:=diff(exp((1+x)/(1-x))*(1+xˆ2)/(1-xˆ2),x);(
1

1 − x
+ x + 1

(1 − x)2

)
e

1+x
1−x

(
x2 + 1

)

1 − x2 + 2 x e
1+x
1−x

1 − x2 + 2 e
1+x
1−x

(
x2 + 1

)
x

(1 − x2)2

> contgosper(f,x);

e
1+x
1−x

(
x2 + 1

)
1 − x2
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Example 11.4 (Rational Functions) If a rational function f (x) ∈ Q(x) has a ratio-
nal antiderivative, Algorithm 11.1 will find it. In particular, in such a case, Algorithm
11.1 will give the output safely as a rational function G(x) ∈ Q(x). This is not the
case with the Maple procedure int as the following example shows.2

> term:=diff((1+xˆ2)/(1-xˆ10),x);

2 x

1 − x10 + 10 (x2 + 1) x9

(1 − x10)2

> contgosper(term,x);

− (1 + x8) x2

(x6 − x5 + x − 1) (x4 + x3 + x2 + x + 1)
> integral:=int(term,x);

−1/5 (−1 + x)−1 − 2/5 arctan

(
4 x + 1 + ≈

5√
10 − 2

≈
5

)
1√

10 − 2
≈

5
− 2/5 arctan

(
4 x + 1 − ≈

5√
10 + 2

≈
5

)
1√

10 + 2
≈

5

+1/5 (x + 1)−1 + 2/5 arctan

(
4 x − 1 − ≈

5√
10 − 2

≈
5

)
1√

10 − 2
≈

5
+ 2/5 arctan

(
4 x − 1 + ≈

5√
10 + 2

≈
5

)
1√

10 + 2
≈

5

+1/5

(
−8

≈
5 −

(
−5 + ≈

5
) (≈

5 − 1
))

x − 2
≈

5
(≈

5 − 1
)

+ 20 − 4
≈

5(
10 + 2

≈
5
) (

2 x2 − x + ≈
5x + 2

)

+1/5

(
8

≈
5 −

(
−≈

5 − 5
) (

−1 − ≈
5
))

x + 2
≈

5
(
−1 − ≈

5
)

+ 4
≈

5 + 20(
10 − 2

≈
5
) (

2 x2 − x − ≈
5x + 2

)

+1/5

(
−8

≈
5 −

(
−≈

5 − 5
) (≈

5 + 1
))

x − 2
≈

5
(≈

5 + 1
)

+ 4
≈

5 + 20(
10 − 2

≈
5
) (

2 x2 + x + ≈
5x + 2

)

+1/5

(
8

≈
5 −

(
−5 + ≈

5
) (

1 − ≈
5
))

x + 2
≈

5
(

1 − ≈
5
)

+ 20 − 4
≈

5(
10 + 2

≈
5
) (

2 x2 + x − ≈
5x + 2

)

−4 arctan

(
4 x − 1 + ≈

5√
10 + 2

≈
5

)(
10 + 2

≈
5
)−3/2 − 4 arctan

(
4 x − 1 − ≈

5√
10 − 2

≈
5

)(
10 − 2

≈
5
)−3/2

+4 arctan

(
4 x + 1 + ≈

5√
10 − 2

≈
5

)(
10 − 2

≈
5
)−3/2 + 4 arctan

(
4 x + 1 − ≈

5√
10 + 2

≈
5

)(
10 + 2

≈
5
)−3/2

−4/5 arctan

(
4 x − 1 + ≈

5√
10 + 2

≈
5

)≈
5
(

10 + 2
≈

5
)−3/2 + 4/5 arctan

(
4 x − 1 − ≈

5√
10 − 2

≈
5

)≈
5

(
10 − 2

≈
5
)−3/2

−4/5 arctan

(
4 x + 1 + ≈

5√
10 − 2

≈
5

)≈
5
(

10 − 2
≈

5
)−3/2 + 4/5 arctan

(
4 x + 1 − ≈

5√
10 + 2

≈
5

)≈
5

(
10 + 2

≈
5
)−3/2

> integral:=normal(integral);

320 (x2 + 1)
/(

(x + 1) (
≈

5 − 5) (2 x2 + x + 5(1/2) x + 2) (5 + ≈
5)

(−2 x2 − x + ≈
5 x − 2) (−1 + x) (2 x2 − x + ≈

5 x + 2)(−2 x2 + x + ≈
5 x − 2)

)
> normal(integral,expanded);

2 This result may depend on the version of Maple you use.
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−x2 − 1

−1 + x10

Note that even with normal we could not get rid of the square roots to convert the
result to an expression in Q(x), but we need the option expanded.

Maple has an implementation of Risch’s algorithm ([Risch69]–[Risch70]) which
unfortunately is not invoked in the current example. Risch’s algorithm can be directly
invoked using ‘int/risch‘, which yields correctly

> ‘int/risch‘(term,x);

2 (−1

2
− 1

2
x2)

−1 + x10

Further Reading

For further reading on the algorithms of this chapter see [AZ90].

Exercises

Exercise 11.1 Which of the following functions have a hyperexponential antideriv-
ative?

(a) f (x) = e1/x , (b) f (x) = ex2 (
4 x2+1

)
≈

x
,

(c) f (x) = (1+x)α

(1−x)α+1 , (d) f (x) = (1+x)α

(1−x)α+2 ,

(e) f (x) = ex3+x2 (
1 + 2x + 2x2 + 5x3 + 3x4

)
.

In the affirmative cases, compare the results with those of Maple’s int and (if
applicable) ‘int/risch‘ commands.

Exercise 11.2 Use Maple’s differentiation procedure to differentiate 10 different
hyperexponential terms, integrate them with contgosper, and check the results.

Exercise 11.3 Take the fifth (tenth) derivative of f (x) = 1+x2

1±x10 . Use contgosper
iteratively to reconstruct f . Try the same procedure using int and ‘int/risch‘.

Exercise 11.4 Compare the calculation for the antiderivatives of

f (x) = xm−1 (1 + xm)α

(1 − xm)α+n

for m = 1, 2, 3 and n = 2, . . . , 5, using Algorithm 11.1 in form of the implementation
contgosper of Session 11.3, and the int procedure, respectively.
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Exercise 11.5 Describe the rational certification mechanism connected with Algo-
rithm 11.1.

Exercise 11.6 Give a complete description and proof of the degree bound compu-
tation of Algorithm 11.1.

Exercise 11.7 Give a hypergeometric representation of the error function.
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Chapter 12
Holonomic Equations for Integrals

Now we are ready to consider definite integration of hyperexponential terms.
If the corresponding indefinite integral is a hyperexponential term again, then
Algorithm 11.1 applies, and definite integration is trivial.

In this chapter we consider definite integrals of the type

In =
b∫

a

F(n, t) dt (12.1)

where F(n, t) is a hypergeometric term with respect to n and a hyperexponential
term with respect to t , or of the type

I (x) =
b∫

a

F(x, t) dt, (12.2)

F(x, t) being a hyperexponential term with respect to both x and t .
Generally, we cannot expect that a hyperexponential term antiderivative exists, so

the next best thing we can hope for is a holonomic equation for In or I (x), in other
words a holonomic recurrence equation for In or a holonomic differential equation
for I (x), respectively. As in the way we derived holonomic equations for definite
sums applying Gosper’s algorithm to an appropriate auxiliary function, we can apply
the continuous version of Gosper’s algorithm to the current problem.

This procedure results in the following pair of algorithms [AZ90, AZ91].

Algorithm 12.1 (Almkvist, Zeilberger) Given F(n, t) or F(x, t), this algorithm
searches for a holonomic recurrence or differential equation for In or I (x), defined
by (12.1) or (12.2), respectively.

1. Input: F(n, t) ∞∈ 0 (F(x, t) ∞∈ 0), a hypergeometric term with respect to n,
hyperexponential with respect to t (or: a hyperexponential term with respect to
both x and t).

W. Koepf, Hypergeometric Summation, Universitext, 239
DOI: 10.1007/978-1-4471-6464-7_12, © Springer-Verlag London 2014
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2. Set J := 1.
3. Set

f (t) := F(n, t) +
J∑

j=1

σ j (n) F(n + j, t)

or

f (t) := F(x, t) +
J∑

j=1

σ j (x)
∂ j

∂x j
F(x, t),

respectively, with undetermined variables σ j depending on n (or x), but indepen-
dent of t .

4. Apply the continuous Gosper algorithm adapted in the following way to f (t): In
the last step, solve the linear system for the coefficients of f̃ (t), and at the same
time for the unknowns σ j ( j = 1, . . . , J ). In the affirmative case, the continuous
Gosper algorithm finds G(n, t) with

d

dt
G(n, t) = f (t)

or G(x, t) with
∂

∂t
G(x, t) = f (t).

Pay attention to possible nonnegative integer denominator zeros with respect to
n (or x) of the rational certificate

R̃(n, t) = G(n, t)

f (t)

(
R̃(x, t) = G(x, t)

f (t)

)

where the resulting holonomic equation might not be valid.
The calculation also determines the functions σ j ( j = 1, . . . , J ) that are in Q(n)

or Q(x). If the procedure is not successful then increase J by one and continue
with step 3.

5. Output: By integration from t = a to t = b, from the fundamental theorem of
calculus it follows that

In +
J∑

j=1

σ j (n) In+ j = G(n, b) − G(n, a) = G(n, t)

∣∣∣∣
t=b

t=a
(12.3)

or

I (x) +
J∑

j=1

σ j (x) I ( j)(x) = G(x, b) − G(x, a) = G(x, t)

∣∣∣∣
t=b

t=a
(12.4)
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for In (I (x)) where the right-hand sides of (12.3)–(12.4) in actual situations may
have to be defined as limits. Multiplication by the common denominator results
in the equation sought. �→

Note that generally an inhomogeneous recurrence or differential equation results.
In many interesting cases, however, we can choose the integration bounds such that
the resulting holonomic equation is homogeneous.

Example 12.2 We come back to the definition of the Γ function. Let

I (n) :=
≈∫

0

F(n, t) dt =
≈∫

0

tn−1 e−t dt.

With J := 1, for

f (t) = F(n, t) + σ1 F(n + 1, t) = tn−1 e−t + σ1 tn e−t

we have
f √(t)
f (t)

= −t + n − 1 − σ1t2 + σ1nt

t (1 + σ1t)
,

and the usual rewriting step yields the triple

p(t) = 1 + σ1t , q(t) = n − 1 − t and r(t) = t.

The degree bound for f̃ (t) is zero, and equating coefficients in the main Eq. (11.5)
for f̃ (t) = b0 implies b0 = 1

n , σ1 = − 1
n . Since for Re n > 0 we have

G(n, t)

∣∣∣∣
t=≈

t=0
= t

n − t
f (t)

∣∣∣∣
t=≈

t=0
= 0

(requiring limit computations), we arrive at the holonomic recurrence equation

n In − In+1 = 0 (Re n > 0).

Note that this equation holds for all n ≥ Cwith Re n > 0 since no further assumption
was needed in the derivation. A hypergeometric term solution, however, can only be
given using a suitable initial value, I1 = 1, say, so that for integer n ≥ N we get
In = (n − 1)!

It is typical that we could also have deduced the result by an intelligent application
of integration by parts as we did in Chap. 1. The main advantage of the technique
given here is that the result is derived completely automatically.

http://dx.doi.org/10.1007/978-1-4471-6464-7_11
http://dx.doi.org/10.1007/978-1-4471-6464-7_1
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Example 12.3 Next, we would like to find a holonomic differential equation for

I (x) :=
≈∫

0

F(x, t) dt =
≈∫

0

e
− x2

t2
−t2

dt

(see [AZ90]). For J = 1, the procedure does not return a result, hence we set J := 2.
After some complicated calculations, we get

p(t) = t4 − 2 σ1xt2 − 2 σ2t2 + 4 σ2x2,

q(t) = 2 x2 − 4 t2 − 2 t4 and r(t) = t3.

The polynomial f̃ (t) is of degree zero, f̃ (t) = b0 say, and we get b0 = −1/2, σ1 = 0
and σ2 = −1/4. Hence we are led to the differential equation

I √√(x) − 4 I (x) = 0.

Note that in this particular case, the resulting differential equation can be used easily
to find a hyperexponential term representing the integral under consideration.

Since the functions e2x and e−2x are linearly independent solutions of the given
differential equation, its general solution is a linear combination

I (x) = αe2x + βe−2x .

Since lim
x→≈ I (x) = 0, we must have α = 0.

Furthermore, using the initial value (see 1.15)

I (0) =
≈∫

0

e−t2
dt =

√
π

2
,

we have finally β = √
π/2 and

I (x) =
√

π

2
e−2x ,

a rather surprising outcome, indeed!

Session 12.4 The procedures intrecursion(F,t,S(n)) and intdiffeq
(F,t,S(x)) below implement Algorithm 12.1. Their output is a homogeneous
recurrence/differential equation for the definite integral under consideration assum-
ing that the integration bounds are chosen such that the right-hand sides of (12.3)
and (12.4) vanish.

http://dx.doi.org/10.1007/978-1-4471-6464-7_1
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intrecursion:=proc(F,t,sn)
local S,n,f,b,sigma,rat,p,q,r,upd,deg,ftilde,j,jj,l,var,req,sol,
num,den,J,cert;
if type(sn,function) then

S:=op(0,sn); n:=op(1,sn) else n:=sn
end if;
for J from 1 to MAXORDER do

f:=F+add(sigma[j]*subs(n=n+j,F),j=1..J);
rat:=contratio(f,t);
if not type(rat,ratpoly(anything,t)) then
error ‘Algorithm not applicable‘;

end if;
p:=1: q:=numer(rat): r:=denom(rat):
upd:=contupdate(p,q,r,t);
p:=op(1,upd): q:=op(2,upd): r:=op(3,upd):
deg:=contdegreebound(p,q,r,t);
if deg>=0 then
ftilde:=add(b[j]*tˆj,j=0..deg);
var:={seq(sigma[jj],jj=1..J),seq(b[jj],jj=0..deg)};
req:=collect((q+diff(r,t))*ftilde+r*diff(ftilde,t)-p,t);
sol:={solve({coeffs(req,t)},var)};
if not(sol={} or
{seq(op(2,op(l,op(1,sol))),l=1..nops(op(1,sol)))}={0}) then

req:=S(n)+add(sigma[j]*S(n+j),j=1..J);
req:=normal(subs(op(1,sol),req));
req:=collect(numer(req),[seq(S(n+J-j),j=0..J)]);
return map(factor,req)=0;

end if;
end if;

end do;
error cat(‘Algorithm finds no recurrence equation of order <= ‘,
MAXORDER);
end proc:

intdiffeq:=proc(F,t,sx)
local x,S,f,b,sigma,rat,p,q,r,upd,deg,ftilde,j,jj,l,var,deq,sol,
num,den,J,cert;
if type(sx,function) then

S:=op(0,sx); x:=op(1,sx) else x:=sx
end if;
for J from 1 to MAXORDER do

f:=F+add(sigma[j]*diff(F,x$j),j=1..J);
rat:=contratio(f,t);
if not type(rat,ratpoly(anything,t)) then
error ‘Algorithm not applicable‘;

end if;
p:=1: q:=numer(rat): r:=denom(rat):
upd:=contupdate(p,q,r,t);
p:=op(1,upd): q:=op(2,upd): r:=op(3,upd):
deg:=contdegreebound(p,q,r,t);
if deg>=0 then
ftilde:=add(b[j]*tˆj,j=0..deg);
var:={seq(sigma[jj],jj=1..J),seq(b[jj],jj=0..deg)};



244 12 Holonomic Equations for Integrals

deq:=collect((q+diff(r,t))*ftilde+r*diff(ftilde,t)-p,t);
sol:={solve({coeffs(deq,t)},var)};
if not(sol={} or
{seq(op(2,op(l,op(1,sol))),l=1..nops(op(1,sol)))}={0}) then

deq:=S(x)+add(sigma[j]*diff(S(x),x$j),j=1..J);
deq:=normal(subs(op(1,sol),deq));
deq:=numer(deq);
deq:=collect(deq,[seq(diff(S(x),x$(J-j)),j=0..J-1),S(x)]);
deq:=numer(normal(deq));
deq:=collect(deq,[seq(diff(S(x),x$(J-j)),j=0..J-1),S(x)]);
return map(factor,deq)=0;

end if;
end if;

end do;
error cat(‘Algorithm finds no differential equation of order <= ‘,
MAXORDER);
end proc:

Note that these procedures are only slightly adapted versions of the previous
procedures sumrecursion(F,k,S(n)) and sumdiffeq(F,k,S(x)).

We repeat the above examples with Maple1:

> intrecursion(exp(-t)*tˆ(z-1),t,S(z));

S(z) z − S(z + 1) = 0
> intdiffeq(exp(-xˆ2/tˆ2-tˆ2),t,S(x));

4 S(x) − d2

dx2 S(x) = 0

Let us rediscover the connection of the Beta function, defined by

B(z, w) =
1∫

0

t z−1 (1 − t)w−1 dt

with the Γ function, namely

1∫

0

t z−1 (1 − t)w−1 dt = Γ (z)Γ (w)

Γ (z + w)
(12.5)

(see Theorem 1.1) for integer z, w ≥ N�1:

> intrecursion(tˆ(z-1)*(1-t)ˆ(w-1),t,S(z));
−(z + w) S(z + 1) + S(z) z = 0

> intrecursion(tˆ(z-1)*(1-t)ˆ(w-1),t,S(w));
−(z + w) S(w + 1) + S(w) w = 0

The initial values for w = 1 and z = 1 are easily established.

1 Unfortunately, one cannot use a function name like I(z) since I is Maple’s complex unit.
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Example 12.5 Again, we might interpret the resulting holonomic equations in an
appropriate noncommutative polynomial ring. Let’s have another look at Exam-
ple 12.3 from this point of view. Here the resulting differential equation can be
written as (

D2 − 4
)

I (x) = 0

using the differential operator D. The product rule shows that D(x f (x)) = f (x) +
x f √(x) = (1 + x D) f (x), i.e. the commutator rule Dx − x D = 1 is valid. The
operator polynomial D2 − 4 has the factorizations

D2 − 4 = (D − 2)(D + 2) = (D + 2)(D − 2)

with the two different right factors D ± 2 corresponding to the particular hyperex-
ponential solutions e±2x that we met in Example 12.3. In particular, we realize that
Algorithm 12.1 did not discover the differential equation of lowest order valid for
I (x).

This was a very simple example. Let’s do a more complicated one! We consider

I (x) :=
≈∫

−≈

x2(
x4 + t2

) (
1 + t2

) dt. (12.6)

Algorithm 12.1 yields the differential equation DE2 of second order

> DE2:=intdiffeq(xˆ2/((xˆ4+tˆ2)*(1+tˆ2)),t,S(x));

DE2 := (x − 1) (x + 1) (x2 + 1) x d2

dx2 S(x) + (7 x4 + 1) d
dx S(x) + 8 x3 S(x) = 0

for I (x). This corresponds to the operator equation P(D, x)I (x) = 0 with the
operator polynomial

P(D, x) := (x4 − 1)x D2 +
(

7 x4 + 1
)

D + 8 x3. (12.7)

The REDUCE implementation ncpoly [MA94] mentioned earlier yields 60 differ-
ent noncommutative polynomial factorizations of P(D, x) (wow!), one of which is
given by2

P(D, x) =
(
(x2 − 1)x D + (3x2 + 1)

)(
(x2 + 1)D + 2x

)
. (12.8)

The right factor (x2 + 1)D + 2x corresponds to the differential equation

(x2 + 1)I √(x) + 2x I (x) = 0, (12.9)

2 Singular’s [GLMS10] FirstWeyl command of the ncfactor library can also find this fac-
torization.
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that turns out to be valid for I (x). This can be seen by the calculations

> integral:=contgosper((xˆ2+1)*
> diff(xˆ2/((xˆ4+tˆ2)*(1+tˆ2)),x)+2*x*xˆ2/((xˆ4+tˆ2)*(1+tˆ2)),x);

− −x2 + t2

(x4 + t2) (1 + t2)
> limit(integral,t=infinity);

0

Solving (12.9) we get

ln I (x) =
∫

I √(x)

I (x)
dx = −

∫
2x

1 + x2 dx = − ln(1 + x2) + C1,

hence

I (x) = C

1 + x2 .

By the calculation

I (1) =
≈∫

−≈

1

(1 + t2)2 dt = π

2

we have C = π , and finally for x ∞= 0 the result

I (x) =
≈∫

−≈

x2(
x4 + t2

) (
1 + t2

) dt = π

1 + x2 .

Now, having resolved the particular question of computing the definite integral (12.6),
we would like to consider the question of factoring differential operators from a
more general perspective. Maple can factor differential operators over Q(x) (and
not only over the polynomial ring Q[x]!) by an implementation of Mark van Hoeij
([vanHoeij96, vanHoeij97], see also [Bronstein94]). This implementation is part
of the DEtools package. Note that this implementation is used by the dsolve
command to solve holonomic differential equations.

Considering our above example, again, as a first step, we select the names of the
operators and convert the differential equation to a differential operator:

> _Envdiffopdomain:=[Dx,x]:

> P:=DEtools[de2diffop](DE2,S(x));

P := (x5 − x) Dx2 + (7 x4 + 1) Dx + 8 x3

according to (12.7). The DEtools[DFactor] command can factorize differential
operators over Q(x). In our example, we get

> fac:=DEtools[DFactor](P);
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fac :=
[
(x5 − x) Dx + 3 x4 + 1, Dx + 4 x3

(x − 1) (x + 1) (x2 + 1)

]

resulting in a left and a right factor of P . With DEtools[mult] one can multiply
the two differential operators resulting in P again3:

> DEtools[mult](op(1,fac),op(2,fac));

(x5 − x) Dx2 + (7 x4 + 1) Dx + 8 x3

Of course the given first order right factor corresponds to a hyperexponential solution.
We deduce the corresponding first order differential equation

> DE1:=DEtools[diffop2de](op(2,fac),S(x));

DE1 := 4 x3 S(x)

(x − 1) (x + 1) (x2 + 1)
+ ( d

dx S(x)
)

and get the logarithmic derivative of this solution as

> logder:=solve(DE1,diff(S(x),x))/S(x);

logder := − 4 x3

(x − 1) (x + 1) (x2 + 1)

so that the corresponding solution is given as

> exp(int(logder,x));

1

(x − 1) (x + 1) (x2 + 1)

which therefore is also given by dsolve

> dsolve(DE1,S(x));

S(x) = _C1

(x2 + 1) (x2 − 1)

Having computed this solution, one can find the second linearly independent solution.
This explains dsolve’s output for our starting differential equation DE2

> dsolve(DE2,S(x));

S(x) = _C1

x4 − 1
+ _C2 x2

x4 − 1

which—of course—covers (with C1 = −π and C2 = π ) the obtained solution of
our particular problem.

Example 12.6 (Euler Integral Representation) Euler gave the following integral
representation

2 F1

(
a, b

c

∣∣∣∣ x

)
= Γ (c)

Γ (b)Γ (c − b)

1∫

0

tb−1(1 − t)c−b−1(1 − t x)−a dt (12.10)

3 Similarly the two differential operators given in (12.8) can be treated.
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for the Gauss hypergeometric function. Can we prove it? We note that (12.10) is
valid if its left- and right-hand sides both satisfy the same holonomic differential
equation and initial values. Let’s first generate their common differential equation
using Algorithms 10.2 and 12.1, respectively.

> sumdiffeq(hyperterm([a,b],[c],x,k),k,S(x));

x (x − 1) d2

dx2 S(x) + (x + x a + x b − c) d
dx S(x) + S(x) a b = 0

> intdiffeq(GAMMA(c)/(GAMMA(b)*GAMMA(c-b))*
> tˆ(b-1)*(1-t)ˆ(c-b-1)*(1-t*x)ˆ(-a),t,S(x));

x (x − 1) d2

dx2 S(x) + (x + x a + x b − c) d
dx S(x) + S(x) a b = 0

For x = 0, the initial value statement

1 = Γ (c)

Γ (b)Γ (c − b)

1∫

0

tb−1(1 − t)c−b−1 dt

is a particular case of the Beta function identity (12.5). The equality of the corre-
sponding derivatives at x = 0 yields

b

c
= Γ (c)

Γ (b)Γ (c − b)

1∫

0

tb (1 − t)c−b−1 dt

another case of the Beta function identity. These results are also suggested by the
computations

> intrecursion(
> GAMMA(c)/(GAMMA(b)*GAMMA(c-b))*tˆ(b-1)*(1-t)ˆ(c-b-1),t,S(b));

S(b) − S(b + 1) = 0
> intrecursion(c/b*GAMMA(c)/(GAMMA(b)*GAMMA(c-b))*
> subs(x=0,diff(tˆ(b-1)*(1-t)ˆ(c-b-1)*(1-t*x)ˆ(-a),x)),t,S(b));

S(b) − S(b + 1) = 0

Note that (12.10) turns out to be valid whenever |x | < 1 and Re (c) > Re (b) > 0.

Example 12.7 (Bateman Integral Representation) Bateman discovered a hyperge-
ometric representation for

1∫

0

tc−1 (1 − t)d−1
2 F1

(
a, b

c

∣∣∣∣ t x

)
dt.

How can we rediscover his representation? In Example 7.8 for a similar discrete
example we changed the order of summation, and were successful. Hence we change
the order between integration and summation and interpret the above integral as



12 Holonomic Equations for Integrals 249

≈∑
k=−≈

Sk =
≈∑

k=−≈

1∫

0

tc−1 (1 − t)d−1 (a)k (b)k

(c)k k! (t x)k dt.

The calculation
> intrecursion(
> tˆ(c-1)*(1-t)ˆ(d-1)*hyperterm([a,b],[c],t*x,k),t,S(k));

−(k + 1) (d + k + c) S(k + 1) + S(k) x (b + k) (a + k) = 0

shows that the resulting function is indeed a hypergeometric sum. Evaluating Sk

using the initial value

S0 =
1∫

0

tc−1 (1 − t)d−1 dt = Γ (c)Γ (d)

Γ (c + d)
,

we have finally deduced Bateman’s identity ([Bateman09, Erdélyi53], p. 78)

1∫

0

tc−1 (1 − t)d−1
2 F1

(
a, b

c

∣∣∣∣ t x

)
dt = Γ (c)Γ (d)

Γ (c + d)
2 F1

(
a, b

c + d

∣∣∣∣ x

)
.

Note that this method can be used to prove and discover many hypergeometric repre-
sentations of integrals of sums, in particular for integrals of orthogonal polynomials,
see e.g. [Feldheim43, AF69], or [AG71]. Some more examples of this type are given
in the exercises.

Further Reading

For further reading on the algorithms of this chapter see [AZ90].

Exercises

Exercise 12.1 Find both a holonomic recurrence and differential equation for the
Abramowitz functions (see [AS64], 27.5)

A(n, x) :=
≈∫

0

tn e−t2− x
t dt. (12.11)
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Exercise 12.2 Prove the following integral representations for the Kummer hyper-
geometric function

Γ (a)Γ (b − a)

Γ (b)
1 F1

(
a
b

∣∣∣∣ x

)
=

1∫

0

etx ta−1 (1 − t)b−a−1 dt

= 21−b ex/2

1∫

−1

e− t x
2 (1 + t)b−a−1 (1 − t)a−1 dt.

Exercise 12.3 Evaluate the integral

1∫

0

e−1/t t−3−n (1 − t)n dt .

Exercise 12.4 Describe a continuous version of the WZ method for the proof of
a hypergeometric term integration identity. Apply the method to the appropriate
examples of this chapter, in particular to Exercise 12.3.

Exercise 12.5 Deduce the identities

(a) 3 F2

(
a, b, c
d, e

∣∣∣∣ x

)
= Γ (d)

Γ (a)Γ (d−a)

1∫
0

ta−1 (1 − t)d−a−1
2 F1

(
b, c

e

∣∣∣∣ xt

)
dt,

(b) 1 F1

(
a
b

∣∣∣∣ x

)
= 1

Γ (a)

≈∫
0

e−t ta−1
0 F1

( −
b

∣∣∣∣ xt

)
dt,

(c) 2 F1

(
a, b − d

c

∣∣∣∣ x

)
= Γ (b)

Γ (d)Γ (b−d)

1∫
0

tb−d−1 (1 − t)d−1
2 F1

(
a, b

c

∣∣∣∣ xt

)
dt .

� Exercise 12.6 [Derivative Rules] Implement intdiffrule(F,t,S(n,x))
as a modified version of Algorithm 10.2 which detects a derivative rule (see Exam-
ple 10.7) of the form

I √
n(x) =

J∑
j=0

σ j (n, x) In+ j (x)

with σ j ≥ Q(n, x) for

In(x) =
b∫

a

F(n, x, t) dt,

F(n, x, t) being hypergeometric with respect to n, hyperexponential with respect
to t , and strictly hyperexponential with respect to x ,under the hypothesis that the
integration bounds are chosen such that the resulting equation is homogeneous.

Apply the procedure to the Abramowitz functions (12.11).
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Exercise 12.7 (Gauss Identity) In Exercise 7.6 the Gauss identity (3.1)

2 F1

(
a , b

c

∣∣∣∣ 1

)
= Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
(12.12)

of our hypergeometric database in Chap. 3 was proved for arbitrary a, b and c. Give an
alternative proof of (12.12) by using Euler’s integral representation of Example 12.6.

Exercise 12.8 Find a homogeneous differential equation for (see [AS64], (27.6))

I (x) :=
≈∫

0

e−t2

t + x
dt.

Exercise 12.9 (Schläfli’s Integral) Show that the contour integral

Pn(x) = 1

2π i

∫

γ

(t2 − 1)n

2n (t − x)n+1 dt

where γ denotes a closed curve surrounding the point x ≥ C once in the counter-
clockwise direction, is a representation of the Legendre polynomials.

Exercise 12.10 (Airy Integral) Assume γ is a curve that is not closed but chosen
such that the integrand of

A(x) := 1

2π i

∫

γ

etx− t3
3 dt

vanishes at its boundary points. What does γ look like? Can one assume that γ lies
entirely on the real axis? Derive a holonomic differential equation for A(x). Note that
the resulting differential equation is one of the simplest differential equations whose
solutions Ai(x) and Bi(x), called Airy functions (see e.g. [OLBC10], (9.2.1)), are
not elementary.

Exercise 12.11 Show that the Bessel functions

Jn(x) =
( x

2

)n ≈∑
k=0

(−1)k

4k k! Γ (k + 1 + n)
x2k,

which we defined in Exercise 10.9, have the integral representation

Jn(x) = (x/2)n

√
π Γ (n + 1/2)

1∫

−1

eixt (1 − t2)n−1/2 dt.

http://dx.doi.org/10.1007/978-1-4471-6464-7_3
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Exercise 12.12 Give a hypergeometric representation of the integral

≈∫

0

e−a2 x2
xm−1 Jn(bx) dx,

where Jn(x) denote the Bessel functions.

Exercise 12.13 [KS94] Show that the Bateman functions (10.10)

Fn(t) = e−t

n

n∑
k=1

(−1)k

(k − 1)!
(

n
k

)
(2t)k,

which we defined in Exercise 10.6, have the representation

Fn(t) = 1

π

≈∫

−≈
eitτ (τ + i)n−1

(τ − i)n+1 dτ.

Exercise 12.14 Calculate

≈∫

0

tn e−t Ln

(
t
1 − x

2

)
dt,

Ln(x) = L(0)
n (x) denoting the Laguerre polynomials.

Exercise 12.15 Algorithm 12.1 may yield a differential equation with nonpolyno-
mial coefficients if

∂
∂t F(x, t)

F(x, t)
≥ Q(t) but ∞≥ Q(x) .

Show that the algorithm generates the differential equation

−2 (−x2 + ln ( x ) ) x
(
I √ ( x )

) + (−1 + 2 x2 ) I ( x ) = 0

for

I (x) :=
≈∫

−≈
xt2

e−x2t2
dt.

Use dsolve to solve this differential equation, and hence find the explicit formula

I (x) =
√

π√
x2 − ln( x )
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for I (x). Check this result numerically for x = 1, . . . , 5.
Use the same procedure to evaluate the definite integrals

(a)
≈∫

−≈
xt e−x2t2

dt ,

(b)
≈∫

−≈
xa+bt−ct2

e−x2t2
dt .

Exercise 12.16 Find a differential equation for

G(t) =
≈∫

0

e− t
x e− x2

2 dx ;

see SIAM Review 37, 1995, Problem 95-16 [Glasser95].

Exercise 12.17 Prove the integral representation

n∑
k=0

1

k! xk = xn+1ex

n!
≈∫

1

tne−xt dt

for the partial sums of the exponential series (see e.g. [AS64], (5.2.8)). Hint: Use
Exercise 2.19 to find a common differential equation. Note that the limits of integra-
tion are not the natural ones.
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Chapter 13
Rodrigues Formulas and Generating
Functions

In this chapter we use the algorithms of the preceding chapter to obtain holonomic
equations for function families given by Rodrigues type formulas and generating
functions [AZ90]. For this purpose we must assume that the reader is familiar with
complex contour integration and the Cauchy integral formula, see e.g. [Ahlfors53].

Let f (x) denote a function of a complex variable x that is analytic in a simply-
connected domain D ∞ C (for example in a disk). Recall that the Cauchy integral
formula states that such an f (x) is infinitely differentiable, and its derivatives can
be expressed by the integrals

f (n)(x) = n!
2π i

∫

γ

f (t)

(t − x)n+1 dt (13.1)

where γ denotes a closed curve lying completely in D and winding around the point
x ∈ C once in the counterclockwise direction. This will be assumed throughout the
current chapter.

Assume now that a family of functions fn(x) is given by a Rodrigues type
formula

fn(x) = gn(x)
dn

dxn
hn(x) (13.2)

in terms of the nth derivative of another function hn(x). Applying (13.1) to f = hn ,
we can write fn(x) as the integral

fn(x) = gn(x)
n!

2π i

∫

γ

hn(t)

(t − x)n+1 dt. (13.3)

W. Koepf, Hypergeometric Summation, Universitext, 255
DOI: 10.1007/978-1-4471-6464-7_13, © Springer-Verlag London 2014
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Example 13.1 (Legendre Polynomials) As an example, we consider the family
fn(x) given by the Rodrigues formula

fn(x) = (−1)n

2n n!
dn

dxn
(1 − x2)n . (13.4)

An application of (13.3) shows that fn(x) has the integral representation

fn(x) = (−1)n

2n

1

2π i

∫

γ

(1 − t2)n

(t − x)n+1 dt.

On the other hand, in Exercise 12.9 it was shown that the Legendre polynomials are
given by Schläfli’s integral

Pn(x) = 1

2π i

∫

γ

(t2 − 1)n

2n (t − x)n+1 dt.

Hence we have verified that the Rodrigues formula (13.4) represents the Legendre
polynomials

Pn(x) = (−1)n

2n n!
dn

dxn
(1 − x2)n .

Session 13.2 Representation (13.3) makes it possible to utilize Algorithm 12.1 for
functions given by a Rodrigues type formula (13.2).

The Maple procedures

rodriguesrecursion:=proc(g,h,x,sn)
local S,n,t,result;
if type(sn,function) then
S:=op(0,sn); n:=op(1,sn);

else
n:=op(1,sn);

end if;
result:=intrecursion(n!*g*subs(x=t,h)/(t-x)ˆ(n+1),t,S(n));
end proc:

rodriguesdiffeq:=proc(g,h,n,sx)
local S,x,t,result;
if type(sx,function) then
S:=op(0,sx); x:=op(1,sx);

else
x:=op(1,sx);

end if;
result:=intdiffeq(g*subs(x=t,h)/(t-x)ˆ(n+1),t,S(x));
end proc:
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use the integral representation (13.3) to find recurrence and differential equations for
fn(x), given by (13.2).

Note that the resulting holonomic equations are always homogeneous since γ is
closed.

We do some examples. The calculations

> rodriguesrecursion((-1)ˆn/(2ˆn*n!),(1-xˆ2)ˆn,x,P(n));

(n + 2) P(n + 2) − x (3 + 2 n) P(n + 1) + (n + 1) P(n) = 0

> rodriguesdiffeq((-1)ˆn/(2ˆn*n!),(1-xˆ2)ˆn,n,P(x));

−(−1 + x) (1 + x) d2

dx2 P(x) − 2 x d
dx P(x) + P(x) n (n + 1) = 0

yield Example 13.1 again, namely the recurrence and differential equations of the
Legendre polynomials. These equations might be compared with those calculated
from the series representation of the Legendre polynomials

> sumrecursion(binomial(n,k)*binomial(-n-1,k)*((1-x)/2)ˆk,k,P(n));

(n + 2) P(n + 2) − x (3 + 2 n) P(n + 1) + (n + 1) P(n) = 0

> sumdiffeq(binomial(n,k)*binomial(-n-1,k)*((1-x)/2)ˆk,k,P(x));

−(−1 + x) (1 + x) d2

dx2 P(x) − 2 x d
dx P(x) + P(x) n (n + 1) = 0

Having therefore proved the above, the family

fn(x) = (−1)n

2n n!
dn

dxn
(1 − x2)n

now satisfies the same recurrence equation as Pn(x) does. To show that fn(x) =
Pn(x) for all n ∈ N�0 we have only to check the two initial values

f0(x) = (−1)n

2n n!
dn

dxn
(1 − x2)n

∣∣∣
n=0

= 1 = P0(x)

and

f1(x) = (−1)n

2n n!
dn

dxn
(1 − x2)n

∣∣∣
n=1

= −1

2
(−2x) = x = P1(x).

The following are the recurrence and differential equations of the generalized
Laguerre polynomials

L(α)
n (x) :=

n∑
k=0

(−1)k

k!
(

n + α

n − k

)
xk
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> sumrecursion((-1)ˆk/k!*binomial(n+alpha,n-k)*xˆk,k,L(n));

(n + 2) L(n + 2) − (α + 3 − x + 2 n) L(n + 1) + (n + α + 1) L(n) = 0

> sumdiffeq((-1)ˆk/k!*binomial(n+alpha,n-k)*xˆk,k,L(x));

x d2

dx2 L(x) + (−x + α + 1) d
dx L(x) + L(x) n = 0

stemming from their series representation. These calculations can be compared with

> rodriguesrecursion(
> exp(x)/(n!*xˆalpha),exp(-x)*xˆ(alpha+n),x,L(n));

(n + 2) L(n + 2) − (α + 3 − x + 2 n) L(n + 1) + (n + α + 1) L(n) = 0

> rodriguesdiffeq(exp(x)/(n!*xˆalpha),exp(-x)*xˆ(alpha+n),n,L(x));

x d2

dx2 L(x) + (−x + α + 1) d
dx L(x) + L(x) n = 0

After checking the initial values, these calculations prove the valid Rodrigues formula

L(α)
n (x) = ex

n! xα

dn

dxn

(
e−x xα+n)

for the generalized Laguerre polynomials.

Next, we would like to find recurrence equations for families given by discrete
Rodrigues formulas. These are in terms of the nth power of one of the difference
operators Δ or ∇ instead of the differential operator d

dx . Note that this research has
been done by Fischer [Fischer13].

There are two difference operators, the backward difference operator

∇ f (x) = f (x) − f (x − 1)

and the forward difference operator

Δ f (x) = f (x + 1) − f (x).

Since the theories with ∇ and Δ are very similar, we consider here only the ∇ case.
To be able to apply Zeilberger’s algorithm in a suitable way it is essential to have a

representation of ∇n f (x) as a series, similarly as Cauchy’s theorem yields an integral
representation for dn

dxn f (x). However, such a representation is easy to find. Since

∇2 f (x) = f (x) − 2 f (x − 1) + f (x − 2),

∇3 f (x) = f (x) − 3 f (x − 1) + 3 f (x − 2) − f (x − 3),

by induction we get for n ∈ N�0
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∇n f (x) =
n∑

k=0

(−1)k
(

n
k

)
f (x − k). (13.5)

Therefore, using (13.5), we can apply Zeilberger’s algorithm to every family of
functions fn(x) of the form

fn(x) = gn(x)∇nhn(x) (13.6)

in terms of the nth power of ∇ of hn(x).

Session 13.3 Representation (13.5) makes it possible to utilize Algorithm 8.5 for
functions given by a discrete Rodrigues type formula (13.6).

The Maple procedure

nablarodriguesrec:=proc(g,h,x,sn)
local S,n,k,result;
if type(sn,function) then
S:=op(0,sn); n:=op(1,sn);

else
n:=op(1,sn);

end if;
result:=sumrecursion(g*(-1)ˆk*binomial(n,k)*subs(x=x-k,h),k,S(n));
end proc:

uses the series representation (13.5) to find a recurrence equation w.r.t. n for fn(x),
given by (13.6). Note that the resulting holonomic equation is always homogeneous
since the binomial coefficient in (13.5) makes the bounds natural.

Assume the family fn(x) is given by the formula

fn(x) = x !
ax

∇n ax

x ! .

Then we can compute the following recurrence equation w.r.t. n

> nablarodriguesrec(x!/aˆx,aˆx/x!,x,C(n));

a C(n + 2) − (a + n − x + 1) C(n + 1) + (n + 1) C(n) = 0

for fn(x). Comparing this recurrence equation with that for the Charlier polynomials
(see Exercise 7.10) given by the hypergeometric representation

Cn(x, a) = 2 F0

( −n,−x
−

∣∣∣∣ −1

a

)
,

through the computation

> sumrecursion(hyperterm([-n,-x],[],-1/a,k),k,C(n));

a C(n + 2) − (a + n − x + 1) C(n + 1) + (n + 1) C(n) = 0
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we see that fn(x) = Cn(x, a) by just checking two initial values again. This yields
the representation

Cn(x, a) = x !
ax

∇n ax

x !
for the Charlier polynomials given in ([KLS10], (9.14.10)).

Note, however, that the discrete Rodrigues formula can even be translated directly
towards a series representation by (13.5). In the Charlier case, we get for example

fn(x) = x !
ax

∇n ax

x !
= x !

ax

n∑
k=0

(−1)k
(

n
k

)
ax−k

(x − k)! = 2 F0

( −n,−x
−

∣∣∣∣−1

a

)

as the computation
> Sumtohyper(x!/aˆx*(-1)ˆk*binomial(n,k)*subs(x=x-k,aˆx/x!),k);

Hypergeom

(
[−n, −x], [], −1

a

)

shows.
Similarly the code

nablarodriguesdiffeq:=proc(g,h,n,sx)
local S,x,k,result;
if type(sx,function) then
S:=op(0,sx); x:=op(1,sx);

else
x:=op(1,sx);

end if;
result:=sumrecursion(g*(-1)ˆk*binomial(n,k)*subs(x=x-k,h),k,S(x));
end proc:

generates the two identical difference equations (which are also recurrence equations)
for the two different representations:

> nablarodriguesdiffeq(x!/aˆx,aˆx/x!,n,C(x));

a C(x + 2) − (a − n + x + 1) C(x + 1) + (x + 1) C(x) = 0

> sumrecursion(hyperterm([-n,-x],[],-1/a,k),k,C(x));

a C(x + 2) − (a − n + x + 1) C(x + 1) + (x + 1) C(x) = 0

Other families can be treated in a similar way, see Exercise 13.7.

Next, we examine generating functions of the family of functions fn(x). Note
that the generating function of fn(x) is given by the power series
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F(z) =
→∑

n=0

fn(x) zn .

Often generating functions are not elementary functions (see e.g. (6) and
Exercise 13.11) or the formal power series is nowhere convergent. Therefore we
deal with the more general generating function

F(z) =
→∑

n=0

an fn(x) zn, (13.7)

an being a given sequence. In particular, for an = 1/n!, this is called the exponential
generating function of fn(x).

Applying the Cauchy integral formula (13.1) to F(z) and using Taylor’s theorem
we get the integral representation

fn(x) = 1

an

F (n)(0)

n! = 1

an

1

2π i

∫

γ

F(t)

tn+1 dt (13.8)

for fn(x), which, in combination with Algorithm 12.1, can be used to obtain recur-
rence and differential equations for functions whose generating function F(z) (given
by (13.7)) is a hyperexponential term.

Session 13.4 The Maple procedures

GFrecursion:=proc(F,a,z,sn)
local S,n;
if type(sn,function) then
S:=op(0,sn); n:=op(1,sn);

else
n:=op(1,sn);

end if;
return intrecursion(F/a/zˆ(n+1),z,S(n));
end proc:

GFdiffeq:=proc(F,a,z,n,sx)
local S,x;
if type(sx,function) then
S:=op(0,sx); x:=op(1,sx);

else
x:=op(1,sx);

end if;
return intdiffeq(F/a/zˆ(n+1),z,S(x));
end proc:
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use Algorithm 12.1 to find recurrence and differential equations for fn(x), given by
(13.7), according to (13.8).

For example, the calculations

> GFrecursion((1-z)ˆ(-alpha-1)*exp(x*z/(z-1)),1,z,L(n));

(n + 2) L(n + 2) − (α + 3 − x + 2 n) L(n + 1) + (n + α + 1) L(n) = 0

> GFdiffeq((1-z)ˆ(-alpha-1)*exp(x*z/(z-1)),1,z,n,L(x));

x d2

dx2 L(x) + (−x + α + 1) d
dx L(x) + L(x) n = 0

show that

(1 − z)−α−1 e
xz

z−1 =
→∑

n=0

L(α)
n (x) zn

is the generating function of the generalized Laguerre polynomials. The initial values
can be checked by using Taylor’s theorem.

Whereas GFrecursion works for hyperexponential input, a more general pro-
cedure can find the recurrence equation for the power series coefficients for every
holonomic input. This is implemented in the FormalPowerSeries package
([Koepf92, Koepf06]) and can be invoked by the convert command.

For the same example as above we get

> convert((1-z)ˆ(-alpha-1)*exp(x*z/(z-1)),
> FormalPowerSeries,z,L(n),recurrence);

(n + 2) L(n + 2) + (−2 n + x − α − 3) L(n + 1) + (n + 1 + α) L(n) = 0

which is of course the same recurrence equation.

q-Rodrigues Formulas

In this section we consider the computation of q-recurrence equations for families
given by a q-Rodrigues formula. The research of this section was again developed
by Fischer [Fischer13].

In ([KLS10], (14.21.12)), the following formula is given for the q-Laguerre poly-
nomials

L(α)
n (x; q) = (1 − q)n

(q, q)n w(x;α; q)
Dn

q w(x;α + n; q) (13.9)

where

w(x;α; q) = xα

(−x, q)→
.
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To continue, we need a series representation for the nth power of the q-derivative
operator Dq . Such a representation was given by ([KRM07], (4))

Dn
q f (x) = 1

(1 − q)n xn

n∑
k=0

(−1)k
[
n
k

]
q

q

( k
2

)
−(n−1)k

f (qk x). (13.10)

For a proof see also ([Sprenger09], 1.12). Note that another formula for Dn
q f (x)

appeared in ([AM08], 2.13), which contains a misprint, though.1

Session 13.5 To get a recurrence equation for

fn(x) = gn(x)Dn
q hn(x),

we apply the q-Zeilberger algorithm to (13.10) and therefore get the implementation

qrodriguesrec:=proc(g,h,q,x,sn)
local S,n,k,result;
if type(sn,function) then
S:=op(0,sn); n:=op(1,sn);

else
n:=op(1,sn);

end if;
result:=qsumrecursion(g/((1-q)ˆn*xˆn)*(-1)ˆk*qbinomial(n,k,q)*
qˆ(binomial(k,2)-(n-1)*k)*subs(x=x*qˆk,h),q,k,S(n));

end proc:

Applying this procedure to (13.9) we get

> w:=xˆalpha/qpochhammer(-x,q,infinity);

w := xα

qpochhammer(−x, q, →)

> qrodriguesrec((1-q)ˆn/(qpochhammer(q,q,n)*w),
> subs(alpha=alpha+n,w),q,x,L(n));

(−1 + qn) q L(n) + (−q(2 n+α) x − q(α+n+1) − q(n+1) + q2 + q) L(n − 1)

+ (q(α+n) − q) q L(−2 + n) = 0

Of course the series representation

1 Their corrected formula Dn
q f (x) = (−1)n q

−
( n

2

)
(1−q)n xn

n∑
r=0

(−1)r
[
n
r

]
q

q

( r
2

)
f (qn−r x) follows from

(13.10) by changing the order of summation r = n − k.



264 13 Rodrigues Formulas and Generating Functions

L(α)
n (x; q) =

(
qα+1; q

)
n

(q; q)n
1φ1

(
q−n

qα+1

∣∣∣∣ q,−xqn+α+1
)

yields the same recurrence equation for L(α)
n (x; q):

> qsumrecursion(qpochhammer(qˆ(alpha+1),q,n)/qpochhammer(q,q,n)*
> qphihyperterm([qˆ(-n)],[qˆ(alpha+1)],q,-x*qˆ(n+alpha+1),k),
> q,k,L(n));

(−1 + qn) q L(n) + (−q(2 n+α) x − q(α+n+1) − q(n+1) + q2 + q) L(n − 1)

+ (q(α+n) − q) q L(−2 + n) = 0

As in the discrete case, we can use (13.10) directly to rewrite the q-Rodrigues formula
(13.9) as a series. This can be done by the computation

> sum2qhyper((1-q)ˆn/
> (qpochhammer(q,q,n)*w)/((1-q)ˆn*xˆ(n))*(-1)ˆk*
> qbinomial(n,k,q)*qˆ(binomial(k,2)-(n-1)*k)*
> subs({x=x*qˆk,alpha=alpha+n},w),q,k);

φ([q(−n), −x], [0], q, qα qn q)

qpochhammer(q, q, n)

We have therefore found a second independent hypergeometric representation

L(α)
n (x; q) = 1

(q; q)n
2φ1

(
q−n,−x

0

∣∣∣∣ q, qn+α+1
)

.

Compare ([KLS10], (14.21.1)).

Further Reading

For further reading on the algorithms of this chapter see [AZ90].

Exercises

Exercise 13.1 (Bateman Functions) Prove that the Bateman functions [Bateman31,
KS94]

Fn(t) = e−t

n

n∑
k=1

(−1)k

(k − 1)!
(

n
k

)
(2t)k

(see Exercise 10.6) satisfy the Rodrigues formula
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Fn(t) = t et

n!
dn

dtn

(
e−2t tn−1

)

and have the generating function

e−t 1+z
1−z =

→∑
n=0

Fn(t) zn .

Exercise 13.2 (Hermite Polynomials) Prove the Rodrigues formula

Hn(x) = (−1)n ex2 dn

dxn
e−x2

of the Hermite polynomials

Hn(x): = n!
≈n/2√∑
k=0

(−1)k

(n − 2k)!k! (2x)n−2k .

Furthermore use the method of Example 7.8 to deduce the exponential generating
function

e2 xz−z2 =
→∑

n=0

1

n! Hn(x) zn .

Verify the result using the method of the present chapter.

Exercise 13.3 (Jacobi Polynomials) Prove the Rodrigues formula

P(α,β)
n (x) = (−1)n

2n n! (1 − x)−α(1 + x)−β dn

dxn

(
(1 − x)α(1 + x)β (1 − x2)n

)

for the Jacobi polynomials P(α,β)
n (x) which are given by the representation

P(α,β)
n (x) =

(
n + α

n

)
2 F1

( −n, n + α + β + 1
α + 1

∣∣∣∣ 1 − x

2

)
.

Exercise 13.4 (Gegenbauer Polynomials) The Gegenbauer polynomials Cν
n (x) are

for ν ≥= 0 given by

Cν
n (x) = (2ν)n

(ν + 1/2)n
P(ν−1/2,ν−1/2)

n (x).

Show that this definition is compatible with the one given in Exercise 10.5:
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Cν
n (x) = (2ν)n

n! 2 F1

( −n, n + 2ν

ν + 1/2

∣∣∣∣ 1 − x

2

)
.

Show also that the Gegenbauer polynomials are generated by the simple function

→∑
n=0

Cν
n (x) zn = 1(

1 − 2 xz + z2
)ν .

In particular, one has for the Legendre polynomials

→∑
n=0

Pn(x) zn = 1√
1 − 2xz + z2

.

Exercise 13.5 Show that

F(z) = 1

1 − z − z2

constitutes the generating function of the Fibonacci numbers.

Exercise 13.6 (Laguerre Polynomials) Prove the identity

e−xz (1 + z)α =
→∑

n=0

L(α−n)
n (x) zn .

Exercise 13.7 (Discrete Orthogonal Polynomials: Rodrigues Representations) The
Krawtchouk, Meixner and Hahn polynomials were given in Exercise 7.10 by the
following hypergeometric representations:

Kn(x; p, N ) = 2 F1

( −n ,−x
−N

∣∣∣∣ 1

p

)
,

Mn(x;β, c) = 2 F1

( −n ,−x
β

∣∣∣∣ 1 − 1

c

)
,

and

Qn(x;α, β, N ) = 3 F2

( −n ,−x , α + β + n + 1
α + 1 ,−N

∣∣∣∣ 1

)
.

Show that these polynomial families have the following discrete Rodrigues repre-
sentations (see [KLS10], Chap. 9)

Kn(x; p, N ) = 1(
N
x

)(
p

1−p

)x
∇n

((
N − n

x

)(
p

1 − p

)x)
,
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Mn(x;β, c) = x !
(β)x cx

∇n
(

(β + n)x cx

x !
)

,

and

Qn(x;α, β, N ) = (−1)n (β + 1)n

ω(x;α, β, N ) (−N )n
∇nω(x;α + n, β + n, N − n),

where

ω(x;α, β, N ) =
(

α + x
x

) (
β + N − x

N − x

)
.

Exercise 13.8 (Discrete Orthogonal Polynomials: Generating Functions) Show
that the Charlier, Krawtchouk and Meixner polynomials (see Exercises 7.10 and
13.7) have the following generating functions (see [KLS10], Chap. 9):

→∑
n=0

Cn(x, a)
zn

n! = ez
(

1 − z

a

)x
,

N∑
n=0

(
N
n

)
Kn(x; p, N ) zn =

(
1 − (1 − p)

p
z

)x

(1 + z)N−x ,

→∑
n=0

(β)n

n! Mn(x;β, c) zn =
(

1 − z

c

)x
(1 − z)−x−β.


 Exercise 13.9 Find and prove a summation formula for Δn f (x) similar to
(13.5). Then write corresponding Maple procedures deltarodriguesrec and
deltarodriguesdiffeq to compute recurrence and difference equations for
fn(x) = gn(x)Δnhn(x). Use your programs to compute recurrence equations w.r.t.
n and x for

fn(x) =
(

x
n

)
Δn an bx

x ! .


 Exercise 13.10 If F(z) is a Laurent polynomial

F(z) =
n∑

k=−n

ak zk,

then the coefficient a0 is called the constant term of F(z) and is denoted by

a0 = CTz F(z).
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Write two Maple procedures CTrecursion(F,z,s(n)) and CTdiffeq
(F,z,s(x)) that calculate a holonomic recurrence and differential equation,
respectively, for the constant term of F(z).

Determine a holonomic recurrence equation with respect to n and a holonomic
differential equation with respect to x for the function

Sn(x): = CTz

(
z + x + 1

z

)n

.

Show further that the functions

Pn(x) = CTz

(
(x + z)2 − 1

2z

)n

are the Legendre polynomials.

Exercise 13.11 (Legendre Polynomials) Deduce the exponential generating func-
tion (6) of the Legendre polynomials

→∑
n=0

1

n! Pn(x) zn = exz J0

(
z
√

1 − x2
)

.

Hint: Prove the hypergeometric representation

Pn(x) = xn
2 F1

( −n/2, (1 − n)/2
1

∣∣∣∣ 1 − 1

x2

)

for the Legendre polynomials, and use it to represent the left-hand side. Then change
the order of summation.

Exercise 13.12 (Big q-Jacobi Polynomials) Prove the following identity for the so-
called big q-Jacobi polynomials ([KLS10], Sect. 14.5)

Pn(x; a, b, c; q) = 3φ2

(
q−n, abqn+1, x

aq, cq

∣∣∣∣ q, q

)

= ancnqn(n+1)(1 − q)n

(aq, q)n (cq, q)n w(x; a, b, c; q)
Dn

q w(x; aqn, bqn, cqn; q)

where

w(x; a, b, c; q) = (a−1x, q)→ (c−1x, q)→
(x, q)→ (bc−1x, q)→

.


 Exercise 13.13 Implement a Maple procedure qrodriguesdiffeq(g,h,q,
n,s(x)) using qsumdiffeq, and apply it to the q-Laguerre and to the Big
q-Jacobi polynomials.
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z
k
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L(α)
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L(α)
n (x; q) (q-Laguerre polynomials), 72

Fn (Fibonacci numbers), 74
fn(x) (Fasenmyer polynomials), 75
Zn(x) (Bateman polynomials), 75
Hn(x) (Hermite polynomials), 76
gcd ( f, g) (greatest common divisor of poly-

nomials), 80
deg (qk) (degree of polynomial), 82, 87
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k!! (double factorial), 97
ζ(z) (zeta function), 126
K , N (shift operators), 135
Kn(x; p, N ) (Krawtchouk polynomials),

141
Mn(x; β, c) (Meixner polynomials), 141
Cn(x, a) (Charlier polynomials), 141
Qn(x; α, β, N ) (Hahn polynomials), 141
→ (backward difference operator), 141
Wn(x2; a, b, c, d) (Wilson polynomials),

141
P(α,β)

n (x) (Jacobi polynomials), 146
Jn(x) (Bessel functions), 147
Dn (number of derangements), 199
D (unit disk), 212
Dq (q-derivative operator), 218, 262
eq (x), Eq (x) (q-exponential functions), 219
sinq (x), Sinq (x) (q-sine functions), 219
cosq (x), Cosq (x) (q-cosine functions), 219
Cν

n (x) (Gegenbauer polynomials), 221
Fn(t) (Bateman functions), 221
Pm

n (x) (associated Legendre functions), 222

B(α)
n (x) (Bessel polynomials), 223

erf (x) (error function), 232
D (differential operator), 245
A(n, x) (Abramowitz functions), 249
Ai(x) (Airy function), 251
Bi(x) (Airy function), 251
CTz F(z) (constant term of Laurent polyno-

mial), 267
Pn(x; a, b, c; q) (big q-Jacobi polynomi-

als), 268

A
Abramowitz functions, 249
add (addition), 55, 112
Adjoint operator, 182
Admissible hypergeometric term, 167
Airy functions, 251
Airy integral, 251
Algebra of q-holonomic functions, 220
Algebra of holonomic functions, 189
algebraicrechyper(rec,s(n)),

187
Algorithm

Almkvist-Zeilberger, 227, 239
continuous Gosper, 227
extended_gosper, 154
Fasenmyer, 54
Gosper, 79
van Hoeij, 169, 190
Petkovšek, 169

q-differential equations, 219
q-Gosper, 94
q-Petkovšek, 196
q-Zeilberger, 138, 139
Risch, 79, 236
Risch-Bronstein, 227
simpcomb, 16
Zeilberger, 117, 127

Almkvist-Zeilberger algorithm, 227, 239
Andrews’ identity, 157
Antidifference, 79

m-fold, 153
Apéry numbers, 31, 125, 145, 185
Apéry recurrence equation, 126, 175, 185
Apparent singularity, 194
a priori bound, 60, 87, 134
Askey-Gasper identity, 132
Askey-Gasper inequality, 132
Askey-Wilson scheme, 72, 138
Associated Legendre functions, 222
assume, 8
asympt, 193
Asymptotic series, 193
Axiom, viii

B
Backward antidifference, 81
Backward difference operator, 141, 258
Bailey identity, 107, 161
Bailey transformation, 148
Bailey’s hypergeometric database, 36
Balanced hypergeometric series, 47
Basic hypergeometric function, 27
Bateman functions, 221, 252, 264
Bateman integral representation, 248
Bateman polynomials, 75
Bessel differential equation, 212, 222
Bessel functions, 147, 212, 222, 251
Bessel polynomials, 223
Beta function, 5, 244
Bieberbach conjecture, 31, 132, 221

Weinstein proofs, 132
Big q-Legendre polynomials, 71, 148
Big q-Jacobi polynomials, 268
Bilateral sum, 13
bind(FormalPowerSeries), 222
binomial(n,k), 7
Binomial sum identity, 12
Binomial theorem, 28, 90, 111

q-analogue, 28, 115, 148
Branges’ theorem, de, 31, 132, 221



Index 273

C
CAOP project (www.caop.org), 138
catch, 111
Cauchy integral formula, 255
Certificate recurrence equation, 61, 65
Certificate, rational

of Almkvist-Zeilberger algorithm, 240
of continuous Gosper algorithm, 237
of extended Gosper algorithm, 167
of extended WZ method, 159
of hypergeometric term, 91
of q-WZ method, 113
of WZ method, 107
of Zeilberger algorithm, 127

Charlier polynomials, 141, 259
generating function, 267
Rodrigues formula, 260

checksum(F,R,k,n), 114
Chu-Vandermonde identity, 36, 107
Classical discrete orthogonal polynomials,

140, 266, 267
Classical orthogonal polynomials, 223
Clausen formula, 130
Clausen identity, 114
Clausen product identity, 130, 144
Closedform(F,k,n), 130
closedform(F,k,n), 122
Companion identity, 112
Compatible recurrence equations, 203
Complexity, 60, 144, 188, 199, 201
Confluence process, 27, 32
Constant term of Laurent polynomial, 267
contdegreebound(p,q,r,x), 232
contdispersionset(q,r,x), 232
contfindf(p,q,r,x), 233
contgosper(f,x), 234
Continuous q-Legendre polynomials, 71,

148
Continuous Gosper algorithm, 227
Contour integration, 255
contratio(f,x), 232
contupdate(p,q,r,x), 232
convert, 7
convert(. . .,FormalPowerSeries),

218, 222, 262
Cosine function, q-analogue, 219
Creative symmetrizing, 202
Critical point of hyperexponential term, 206
CTdiffeq(F,z,s(x)), 268
CTrecursion(F,z,s(n)), 268

D
Database

of antiderivatives, 79
of hypergeometric identities, 36
of q-hypergeometric identities, 44

Decision procedure, 60
Definite integration, 227, 239
Definite summation, 12, 103, 117

natural bounds, 13, 24
non-natural bounds, 24, 128

degreebound(p,q,r,k), 93, 96
deltarodriguesdiffeq(g,h,n,s(x)),

267
deltarodriguesrec(g,h,x,s(n)),

267
Derangement numbers, 199
Derivative rule, 215, 250

Bateman functions, 221
Bessel functions, 222
Bessel polynomials, 223
Hermite polynomials, 222
hypergeometric function, 29
Laguerre polynomials, 222
Legendre polynomials, 216, 221

de2diffop, 246
DEtools package, 246
DEtools[de2diffop], 246
DEtools[DFactor], 246
DEtools[diffop2de], 247
DEtools[mult], 247
DFactor, 246
diff(f,x), 133
diffeqtorec, 201
Difference operator, 64, 95, 141, 258
Differential equation

Abramowitz functions, 249
Airy functions, 251
Bateman functions, 221
Bessel functions, 212, 222
Bessel polynomials, 223
generalized Laguerre polynomials, 257
Hermite polynomials, 223
holonomic, 205
hypergeometric, 29
inhomogeneous, 212, 241
Jacobi polynomials, 223
Laguerre polynomials, 223
Legendre polynomials, 209, 257

Differential operator, 245
diffop2de, 247
Discrete orthogonal polynomials, 140, 266,

267
Discrete Rodrigues formula, 258
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Dispersion of polynomials, 82
dispersionset(q,r,k), 85, 93
Dixon identity, 20, 36, 64, 107

q-analogue, 115, 148
Double sum identity, 131
Dougall identity, 107, 122

q-analogue, 115, 148
dsolve, 246, 247, 252
Dual identity, 112
Dummy variables in Maple, 42
Duplication formula of Γ function, 18

E
_Envdiffopdomain, 246
Equivalent recurrence equations, 203
error, 111
Error function, 232, 237
Euler integral representation, 247
Euler transformation, 213
Euler-Mascheroni constant, 5
expand, 7, 14, 32, 134
Exponential function, q-analogue, 219
Exponential generating function, 261

Charlier polynomials, 267
Hermite polynomials, 265
Legendre polynomials, 268

extended+_+gosper algorithm, 184
extended_gosper(a,k), 156
extended_gosper(a,k,m), 156, 167
extended+_+sumrecursion, 168
extended WZ certificate, 159

F
factor, 83
factorial(k), 7
Factorial part, 59, 81, 134
Factorization

noncommutative, 173
rational, 22, 83, 187

factor+_+over+_+Q, 184
Falling factorial, 95
fasenmyer(f,k,s(n),nmax), 57
Fasenmyer algorithm, 54
fasenmyerdiffeq(f,k,s(x),xmax),

73
Fasenmyer polynomials, 75
Favard’s Theorem, 75
Fibonacci numbers, 74, 144, 266
findf(p,q,r,k), 96
find_mfold, 167
Finite support, 12, 103, 117, 157
FirstWeyl (Singular), 245

Fixed point free permutations, 199
Floor function, 31
for loop in Maple, 42
FormalPowerSeries package, 218,

222, 262
Forward antidifference, 79
Forward difference operator, 64, 95, 141, 258
Fuchs relations, 192, 195

G
GAMMA(z), 7
Gamma function, 1, 241

duplication formula, 18
reflection formula, 4

Gauss hypergeometric function, 14, 32
Bateman integral representation, 248
Euler integral representation, 247

Gauss identity, 36, 107, 161
Gcd, 80
Gegenbauer polynomials, 221

generating function, 265
Generalized hypergeometric function, 12
Generalized Laguerre polynomials, 71, 74,

222, 266
generating function, 262
parameter derivative, 145
Rodrigues formula, 257

generateproducts(f), 183
Generating function, 260

Charlier polynomials, 267
exponential, 261
Gegenbauer polynomials, 265
generalized Laguerre polynomials, 262
Krawtchouk polynomials, 267
Legendre polynomials, 266
Meixner polynomials, 267

Generation of identities, 123
Gessel-Stanton identities, 158
GFdiffeq(F,a,z,n,s(x)), 261
GFrecursion(F,a,z,s(n)), 261
gfun package, ix, 189, 201, 218
gfun[diffeqtorec], 201
gfun[‘rec*rec‘], 182
gfun[‘rec+rec‘], 189
gfun[rectodiffeq], 218
Gosper

-summable, 80
algorithm, 79

continuous version, 227
q-analogue, 94
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gosper(a,k), 96, 111
Greatest common divisor, 80
Greatest factorial factorization, 93
Gröbner basis, 175

H
Hahn polynomials, 141

Rodrigues formula, 266
Harmonic numbers, 89, 202
Hermite polynomials, 76

derivative rule, 222
differential equation, 223
exponential generating function, 265
Rodrigues formula, 265

Holonomic
differential equation, 205
function, 205
operator, 135
q-function, 220
recurrence equation, 52

HolonomicDE, 222
HolonomicRE(term,s(k)), 188
hsum package, ix, 15, 42, 43, 93, 130, 156,

166
Hyperexponential term, 73, 205, 227

antiderivative, 227
strictly, 206

hypergeom(upper,lower,x), 41
Hypergeometric

database
Bailey, 36

differential equation, 29
function

basic, 27
confluent, 14, 32, 250
derivative rule, 29
Gauss, 14, 32, 247, 248
generalized, 12
Kummer, 14, 32, 250
recurrence equation, 29

identity, 12
series, 12

balanced, 47
basic, 27
generalized, 12
k-balanced, 47
lower parameters, 13
nearly-poised, 47
Saalschützian, 47
upper parameters, 13
well-poised, 47

sum, 12

term, 12
admissible, 167
antidifference, 80
local type, 191
local type at ≈, 192
m-fold, 153
(m, l)-fold, 157
proper, 59, 134
rational certificate, 91
with respect to two variables, 103

transformation, 43, 213
q-analogue, 148

hypergeomsols, 190, 193, 200
hyperrecursion(upper,lower,x,s(n)),

166
hyperterm(upper,lower,x,k), 26,

31

I
Identity

Andrews, 157
Askey-Gasper, 132
Bailey, 107, 161
binomial sum, 12
Chu-Vandermonde, 36, 107
Clausen, 114
Dixon, 20, 36, 64, 107
double sum, 131
Dougall, 107, 122
Gauss, 36, 107, 161, 251
generation of, 123, 127
Gessel-Stanton, 158
hypergeometric, 12
integral sum, 249
Jackson, 115, 148
Kummer, 36, 107, 223
Pfaff-Saalschütz, 36, 107
proving, 106, 123, 214, 249
q-Chu-Vandermonde, 48, 76, 113, 115,

139, 148, 196
q-Dixon, 115, 148
q-Dougall, 115, 148
q-Gauss, 44, 48
q-Kummer, 115, 148
q-Pfaff-Saalschütz, 44, 76, 115, 139, 148
Stanley, 45
Strehl, 70
Székely, 40
Watson, 36, 107, 161
Whipple, 36, 107, 161

Indefinite integration, 227
Indefinite summation, 80
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Inequality of Askey and Gasper, 132
infhsum package, 138
infinitetype, 193
infolevel, viii, 92
Inhomogeneous

differential equation, 212, 241
recurrence equation, 129, 241

int(f,x), 133, 235
int(f,x=a..b), 7
intdiffeq(F,t,S(x)), 242
intdiffrule(F,t,S(n,x)), 250
Integer-linear, 12
Integral formula of Cauchy, 255
Integral representation

Bateman, 248
Bateman functions, 252
Bessel functions, 251
Beta function, 5, 244
Euler, 247
Gamma function, 1, 241
generating function, 261
Kummer hypergeometric function, 250
Legendre polynomials, 256
Rodrigues formula, 255

Integral sum identity, 249
Integration

contour, 255
definite, 227, 239
indefinite, 227

Integration rule, 216
Bessel polynomials, 223
Jacobi polynomials, 218, 223
Legendre polynomials, 218

intrecursion(F,t,S(n)), 242
isolve, 83
IsZApplicable, 138

J
Jackson identity, 115, 148
Jacobi polynomials, 146, 223

integration rule, 218, 223
parameter derivative, 147
q-analogue, 268
Rodrigues formula, 265

K
k-balanced hypergeometric series, 47
kfreediffeq(f,k,x,kmax,xmax),

73
kfreerec(f,k,n,kmax,nmax), 55
k-free recurrence equation, 51
KoepfGosper, 157

KoepfZeilberger, 167
Krawtchouk polynomials, 141

generating function, 267
Rodrigues formula, 266

Kummer hypergeometric function, 14, 32
integral representation, 250

Kummer identity, 36, 107
q-analogue, 115, 148

Kummer transformation, 46, 213

L
Laguerre polynomials, 57

differential equation, 223
generalized, 71, 74, 222

derivative rule, 222
generating function, 262
parameter derivative, 145
Rodrigues formula, 257

q-analogue, 72, 148, 262
Legendre functions, associated, 222
Legendre polynomials, 23, 46, 125, 220

derivative rule, 216, 221
differential equation, 209
exponential generating function, 268
generating function, 266
integration rule, 218
q-analogues, 76
recurrence equation, 52, 73
Rodrigues formula, 256
Schläfli’s integral, 251, 256

Little q-Legendre polynomials, 71, 148
recurrence equation, 76

LocalInfiniteType(RE,s(n)), 202
Local type of hypergeometric term, 191

at ≈, 192
Lower parameters of hypergeometric series,

13
LREtools[hypergeomsols], 190,

193, 200

M
Macsyma, viii
map, 55
Mathematica, ix
MAXORDER, 124
Meixner polynomials, 141

generating function, 267
Rodrigues formula, 266

m-fold antidifference, 153
m-fold hypergeometric term, 153
Monic polynomial, 170
(m, l)-fold hypergeometric term, 157
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Mgfun package, ix
mul (multiplication), 184, 197
mult, 247
multsum package, 64

N
nablarodriguesdiffeq(g,h,n,s(x)),

260
nablarodriguesrec(g,h,x,s(n)),

259
Natural bounds of definite sum, 13, 24
ncfactor library (Singular), 245
ncpoly package (REDUCE), ix, 175, 245
Nearly-poised hypergeometric series, 47
Newton polygon, 195
NewtonpolygonRE(RE,s(n)), 195
Noncommutative factorization, 173, 181
Non-natural bounds, 128
normal, 15, 32, 55, 133, 236
Number of derangements, 199

O
Operator

differential, 245
holonomic, 135
shift, 135

Optional argument of a Maple procedure, 56
Ordinary differential equation, 205
Orthogonal polynomials

classical, 223
classical discrete, 140, 266, 267

P
Parameter derivative

Jacobi polynomials, 147
Laguerre polynomials, 145

Pascal triangle, 49, 56
Petkovšek algorithm, 169

q-analogue, 196
Pfaff transformation, 43, 213
Pfaff-Saalschütz identity, 36, 107
pochhammer(a,k), 123
pochhammer, 7
Pochhammer symbol, 3
Polynomial part, 59, 81, 134
Polynomial resultant, 83, 228, 234
Polynomial solutions of recurrence equa-

tions, 169
Polynomials

Bateman, 75
Bessel, 223

big q-Legendre, 71, 148
big q-Jacobi, 268
Charlier, 141, 259
continuous q-Legendre, 71, 148
Fasenmyer, 75
Gegenbauer, 221, 265
Hahn, 141
Hermite, 76, 222, 223, 265
Jacobi, 146, 218, 223, 265
Krawtchouk, 141
Laguerre, 57, 71, 74, 145, 222, 223, 257,

262, 266
Legendre, 23, 46, 52, 73, 125, 209, 216,

218, 220, 221, 251, 256
little q-Legendre, 71, 76, 148
Meixner, 141
monic, 170
orthogonal, 223

discrete, 140, 266, 267
q-Laguerre, 72, 148, 262
Wilson, 141

Power series, 13
primedispersion(q,r,k), 84
Probability integral, 8
Proper hypergeometric term, 59, 134
Proving identities, 106, 123, 157, 214, 249

Q
q-analogue, 28
q-binomial coefficient, 28
q-binomial theorem, 28, 115, 148
q-brackets, 28
q-Chu-Vandermonde identity, 48, 76, 113,

115, 139, 148, 196
q-cosine function, 219
q-derivative operator, 218
q-Dixon identity, 115, 148
q-Dougall identity, 115, 148
q-exponential function, 219
q-factorial, 28
q-Gamma function, 28
q-Gauss identity, 44, 48
q-Gosper algorithm, 94
q-hypergeometric

database, 44
function, 26
series, 26
term, 27
transformation, 148

q-Kummer identity, 115, 148
q-Laguerre polynomials, 72, 148

Rodrigues formula, 262
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little, 71, 76, 148

q-numbers, 28
q-Petkovšek algorithm, 196
q-Pfaff-Saalschütz identity, 44, 76, 115, 139,

148
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q-sine function, 219
q-Vandermonde identity, 48, 76, 113, 115,

139, 148, 196
q-WZ method, 113
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qFPS package, 197, 198
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qMultiplyRE, 197
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qshift, 197
qsimpcomb(expr), 44
qsum package, 44, 72, 94, 113, 139, 196,
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qsumdiffeq(F,q,k,S(x)), 219, 268
qsumrecursion(F,q,k,S(n)), 139
Quadratic transformation, 223
qWZcertificate(F,k,n), 113

R
ratio(a,k), 26
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of Almkvist-Zeilberger algorithm, 240
of continuous Gosper algorithm, 237
of extended Gosper algorithm, 167
of extended WZ method, 159
of hypergeometric term, 91
of q-WZ method, 113
of WZ method, 107
of Zeilberger algorithm, 127
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read, 15
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‘rec+rec‘, 189
rechyper(rec,s(n)), 187, 201
recpoly(rec,s(n)), 200
rectodiffeq, 218
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rec2poly(rec,s(n)), 175
Recurrence equation

Apéry numbers, 126, 175, 185
discrete orthogonal polynomials, 140,

266
holonomic, 52
hypergeometric function, 29
inhomogeneous, 129, 241
k-free, 51
Laguerre polynomials, 58
Legendre polynomials, 52, 73
little q-Legendre polynomials, 76

‘recursion/compare‘, 203
REDUCE, 175, 245
Reflection formula of Γ function, 4
resultant(q,r,k), 83
Resultant of polynomials, 83, 228, 234
Risch algorithm, 79, 236
Risch-Bronstein algorithm, 227
Rodrigues formula, 255

big q-Jacobi polynomials, 268
Charlier polynomials, 260
discrete, 258
generalized Laguerre polynomials, 257
Hahn polynomials, 266
Hermite polynomials, 265
Jacobi polynomials, 265
Krawtchouk polynomials, 266
Legendre polynomials, 256
Meixner polynomials, 266
q-Laguerre polynomials, 262

rodriguesdiffeq(g,h,n,s(x)),
256

rodriguesrecursion(g,h,x,s(n)),
256

S
Saalschütz identity, 36, 107
Saalschützian hypergeometric series, 47
Schläfli’s integral, 251, 256
seq(f,j=list), 42
Shift operator, 135
Shift structure, 82
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Shifted factorial, 3
simpcomb(expr), 26
simpcomb algorithm, 16
simplify, 7, 15
simplify_gamma algorithm, 16
simplify_power algorithm, 16
Sine function, q-analogue, 219
Singular, 245
Singularity

apparent, 194
structure of hypergemetric term, 191,

192
solve, 52
Stanley identity, 45
Stanton conjecture, 148
Stirling formula, 97
Strehl identity, 70
Strictly hyperexponential term, 206
Structure set, 62
sum(a,k), 92
sum(a,k=m..n), 25, 41
sumdeltanabla(F,k,s(x)), 141
‘sumdelta+nabla‘(F,k,s(x)),

141, 142
sumdiffeq(F,k,S(x)), 210
sumdiffrule(F,k,S(n,x)), 215
sumintrule(F,k,S(n,x)), 217
Summable, Gosper-, 80
Summation

by parts, 96
definite, 12, 103, 117

natural bounds, 13, 24
non-natural bounds, 24, 128

indefinite, 80
sumrecursion(F,k,s(n)), 124, 145,

166
sumrecursion(F,k=a..b,s(n)),

130
Sumtohyper(f,k), 42
SumTools package, 92, 138, 157, 167
SumTools[Hypergeometric]

[Gosper], 92
SumTools[Hypergeometric]

[IsZApplicable], 138
SumTools[Hypergeometric]

[KoepfGosper], 157
SumTools[Hypergeometric]

[KoepfZeilberger], 167
sum2qhyper(expr,q,k), 44
Support, finite, 12, 103
Symmetric product, 182, 196
Symmetrizing, 202
Székely identity, 40

T
Telescoping sum, 61, 64, 104, 106, 119, 128
termtohyper(f,k), 43
time(), 85
Transformation

Bailey, 148
Euler, 213
hypergeometric, 213

q-analogue, 148
Kummer, 213
Pfaff, 43, 213
quadratic, 223
Watson, 148
Whipple, 142, 223

try, 111

U
update(p,q,r,k), 96
Upper parameters of hypergeometric series,

13

V
Vandermonde identity, 36, 107
van Hoeij algorithm, 169, 190, 197, 200, 218
Verbaeten completion, 62, 65, 67

W
Watson identity, 36, 107, 161
Watson transformation, 148
Weierstrass product representation, 4
Weinstein proof of Bieberbach conjecture,

132
Well-poised hypergeometric series, 47
Whipple identity, 36, 107, 161
Whipple transformation, 142, 223
Wilf-Zeilberger method, 106
Wilson polynomials, 141
www.caop.org, 138
WZ certificate, 107

extended, 159
q-analogue, 113

WZcertificate(F,k,n), 111
WZcertificate(F,k,n,m,l), 160
WZ method, 106

q-analogue, 113

Z
zeilberger(F,k,s(n)), 121
Zeilberger algorithm, 117, 127

q-analogue, 138, 139
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